blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
281
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
57
license_type
stringclasses
2 values
repo_name
stringlengths
6
116
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
313 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
18.2k
668M
star_events_count
int64
0
102k
fork_events_count
int64
0
38.2k
gha_license_id
stringclasses
17 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
107 values
src_encoding
stringclasses
20 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
4
6.02M
extension
stringclasses
78 values
content
stringlengths
2
6.02M
authors
sequencelengths
1
1
author
stringlengths
0
175
5fd06e2db99d7b1ac0e485ea5df4f198d3d33b3c
deb07bdfe74e7680b75a68a03920cb5700551525
/corpusCreator.py
f8d01202cb2703bd725daf6b9e520375fbb0c979
[]
no_license
Tzvi23/Hierarchical-Summarization-Part1
dcb2be6dd5bfb01efb9dff0087b840d6801aa9ab
d4645c1a22ff938d025836ba5e97f685b4749a21
refs/heads/master
2022-12-04T12:29:33.581258
2020-08-29T13:56:42
2020-08-29T13:56:42
254,397,090
3
0
null
2020-08-29T12:26:15
2020-04-09T14:40:06
Jupyter Notebook
UTF-8
Python
false
false
4,219
py
""" !!! This file is not used in the project anymore """ # TODO check if can be deleted import xml.etree.ElementTree as ET import os import copy import pickle def get_jaccard_sim(str1, str2): a = set(str1.split()) b = set(str2.split()) c = a.intersection(b) return float(len(c)) / (len(a) + len(b) - len(c)) def init_sectionNames_dict(mode='list'): """ NOT USED """ corpusDict = dict() sections_types = ['chairmans statement', 'chief executive officer ceo review', 'chief executive officer ceo report', 'governance statement', 'remuneration report', 'business review', 'financial review', 'operating review', 'highlights', 'auditors report', 'risk management', 'chairmans governance introduction', 'Corporate Social Responsibility CSR disclosures'] for section in sections_types: if mode == 'list': corpusDict[section.lower()] = list() if mode == 'float': corpusDict[section.lower()] = float(0) return corpusDict def createCorpusBySectionName(dir_path='output/xml/'): sectionNames = list() file_corpus = dict() corpus = dict() for filename in os.listdir(dir_path): print('Processing: {0}'.format(filename)) if filename.endswith('.txt.xml'): corpus.clear() tree = ET.parse(dir_path + filename) root = tree.getroot() for elem in root: if elem.attrib: if elem.attrib['name'].lower() not in corpus: corpus[elem.attrib['name'].lower()] = list() for sub_element in elem: corpus[elem.attrib['name'].lower()].append(sub_element.text) file_corpus[int(filename[:-8])] = copy.deepcopy(corpus) for sectionName in corpus.keys(): sectionNames.append(sectionName) return file_corpus, set(sectionNames) def loadCorpus(file, dir_path='saved_data'): if not os.path.isdir(dir_path): os.mkdir(dir_path) files_pickle, sections_pickle = createCorpusBySectionName() with open(dir_path + '/' + file, 'wb') as saveFile: print('Saving data to {0} ...'.format(dir_path + '/' + file)) pickle.dump([files_pickle, sections_pickle], saveFile) print('Created {0} and saved'.format(file)) else: if os.path.isfile(dir_path + '/' + file): with open(dir_path + '/' + file, 'rb') as saveFile: print('Loading {0} ...'.format(file)) files_pickle, sections_pickle = pickle.load(saveFile) else: files_pickle, sections_pickle = createCorpusBySectionName() with open(dir_path + '/' + file, 'wb') as saveFile: print('Created {0} and saved'.format(file)) pickle.dump([files_pickle, sections_pickle], saveFile) return files_pickle, sections_pickle def mostRelevantTag(name, res_dict): for pre_defined_sections in res_dict.keys(): res_dict[pre_defined_sections] = get_jaccard_sim(name, pre_defined_sections) max_value = max(res_dict.values()) # maximum value if max_value == 0: return -1 max_keys = [k for k, v in res_dict.items() if v == max_value] # getting all keys containing the `maximum` return max_keys def process_corpus(corpus): local_jaccard_dict = init_sectionNames_dict('float') dict_sections = init_sectionNames_dict() counterFile = 1 counterSize = len(corpus) for file in corpus.keys(): print('Processing Corpus {0}/{1}'.format(counterFile, counterSize)) for section in corpus[file].keys(): keys = mostRelevantTag(section, local_jaccard_dict) if keys == -1: continue for key in keys: if not corpus[file][section]: # Check if trying to add empty list break dict_sections[key].append((file, corpus[file][section])) counterFile += 1 print('Done!') return dict_sections # files, sections = loadCorpus('corpus.pickle') # process_corpus(files) # print()
9733eca28b6e292fb6b0767730696d4de44b3fc9
43b4cf47d85e0306b92bbbe044eb74960f34a7c9
/core/migrations/0015_auto_20191118_1451.py
2f6bfee7b477233e3d81cf4000360124db8e4cec
[]
no_license
Alexanader/eCommerce-site
d84f06cb29c6f6be4ed8e4259cd1d6150b93b985
b62e66184b28df43ec940983612a636bc9aaec90
refs/heads/master
2020-12-15T15:00:20.720901
2020-01-20T16:39:53
2020-01-20T16:39:53
235,148,076
0
0
null
null
null
null
UTF-8
Python
false
false
370
py
# Generated by Django 2.2 on 2019-11-18 14:51 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('core', '0014_auto_20191118_1450'), ] operations = [ migrations.RenameField( model_name='billingaddress', old_name='countries', new_name='country', ), ]
cd979cf383863e27fac2a067d8e949630956d387
e82b761f53d6a3ae023ee65a219eea38e66946a0
/All_In_One/addons/io_scene_md2/quake2/bsp.py
fd4a108bf3ac3eaa8e59362e0ea2f1064605f00e
[]
no_license
2434325680/Learnbgame
f3a050c28df588cbb3b14e1067a58221252e2e40
7b796d30dfd22b7706a93e4419ed913d18d29a44
refs/heads/master
2023-08-22T23:59:55.711050
2021-10-17T07:26:07
2021-10-17T07:26:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
35,530
py
"""This module provides file I/O for Quake 2 BSP map files. Example: bsp_file = bsp.Bsp.open('base1.bsp') References: Quake 2 Source - id Software - https://github.com/id-Software/Quake-2 Quake 2 BSP File Format - Max McGuire - http://www.flipcode.com/archives/Quake_2_BSP_File_Format.shtml """ import io import struct __all__ = ['BadBspFile', 'is_bspfile', 'Bsp'] class BadBspFile(Exception): pass def _check_bspfile(fp): fp.seek(0) data = fp.read(struct.calcsize('<4si')) identity, version = struct.unpack('<4si', data)[0] return identity is b'IBSP' and version is 38 def is_bspfile(filename): """Quickly see if a file is a bsp file by checking the magic number. The filename argument may be a file for file-like object. """ result = False try: if hasattr(filename, 'read'): return _check_bspfile(fp=filename) else: with open(filename, 'rb') as fp: return _check_bspfile(fp) except: pass return result class ClassSequence: """Class for reading a sequence of data structures""" Class = None @classmethod def write(cls, file, structures): for structure in structures: cls.Class.write(file, structure) @classmethod def read(cls, file): return [cls.Class(*c) for c in struct.iter_unpack(cls.Class.format, file.read())] class Entities: """Class for representing the entities lump""" @classmethod def write(cls, file, entities): entities_data = entities.encode('cp437') file.write(entities_data) @classmethod def read(cls, file): entities_data = file.read() return entities_data.decode('cp437') class Plane: """Class for representing a bsp plane Attributes: normal: The normal vector to the plane. distance: The distance from world (0, 0, 0) to a point on the plane type: Planes are classified as follows: 0: Axial plane aligned to the x-axis. 1: Axial plane aligned to the y-axis. 2: Axial plane aligned to the z-axis. 3: Non-axial plane roughly aligned to the x-axis. 4: Non-axial plane roughly aligned to the y-axis. 5: Non-axial plane roughly aligned to the z-axis. """ format = '<4fi' size = struct.calcsize(format) __slots__ = ( 'normal', 'distance', 'type' ) def __init__(self, normal_x, normal_y, normal_z, distance, type): self.normal = normal_x, normal_y, normal_z self.distance = distance self.type = type @classmethod def write(cls, file, plane): plane_data = struct.pack(cls.format, *plane.normal, plane.distance, plane.type) file.write(plane_data) @classmethod def read(cls, file): plane_data = file.read(cls.size) plane_struct = struct.unpack(cls.format, plane_data) return Plane(*plane_struct) class Planes(ClassSequence): Class = Plane class Vertex: """Class for representing a vertex A Vertex is an XYZ triple. Attributes: x: The x-coordinate y: The y-coordinate z: The z-coordinate """ format = '<3f' size = struct.calcsize(format) __slots__ = ( 'x', 'y', 'z' ) def __init__(self, x, y, z): self.x = x self.y = y self.z = z def __getitem__(self, item): if type(item) is int: return [self.x, self.y, self.z][item] elif type(item) is slice: start = item.start or 0 stop = item.stop or 3 return [self.x, self.y, self.z][start:stop] @classmethod def write(cls, file, vertex): vertex_data = struct.pack(cls.format, vertex.x, vertex.y, vertex.z) file.write(vertex_data) @classmethod def read(cls, file): vertex_data = file.read(cls.size) vertex_struct = struct.unpack(cls.format, vertex_data) return Vertex(*vertex_struct) class Vertexes(ClassSequence): Class = Vertex class Visibilities: @classmethod def write(cls, file, structures): file.write(structures) @classmethod def read(cls, file): return file.read() class Node: """Class for representing a node A Node is a data structure used to compose a bsp tree data structure. A child may be a Node or a Leaf. Attributes: plane_number: The number of the plane that partitions the node. children: A two-tuple of the two sub-spaces formed by the partitioning plane. Note: Child 0 is the front sub-space, and 1 is the back sub-space. Note: If bit 15 is set, the child is a leaf. bounding_box_min: The minimum coordinate of the bounding box containing this node and all of its children. bounding_box_max: The maximum coordinate of the bounding box containing this node and all of its children. first_face: The number of the first face in Bsp.mark_surfaces. number_of_faces: The number of faces contained in the node. These are stored in consecutive order in Bsp.mark_surfaces starting at Node.first_face. """ format = '<3i6h2H' size = struct.calcsize(format) __slots__ = ( 'plane_number', 'children', 'bounding_box_min', 'bounding_box_max', 'first_face', 'number_of_faces' ) def __init__(self, plane_number, child_front, child_back, bounding_box_min_x, bounding_box_min_y, bounding_box_min_z, bounding_box_max_x, bounding_box_max_y, bounding_box_max_z, first_face, number_of_faces): self.plane_number = plane_number self.children = child_front, child_back self.bounding_box_min = bounding_box_min_x, bounding_box_min_y, bounding_box_min_z self.bounding_box_max = bounding_box_max_x, bounding_box_max_y, bounding_box_max_z self.first_face = first_face self.number_of_faces = number_of_faces @classmethod def write(cls, file, node): node_data = struct.pack(cls.format, node.plane_number, *node.children, *node.bounding_box_min, *node.bounding_box_max, node.first_face, node.number_of_faces) file.write(node_data) @classmethod def read(cls, file): node_data = file.read(cls.size) node_struct = struct.unpack(cls.format, node_data) return Node(*node_struct) class Nodes(ClassSequence): Class = Node class SurfaceFlag: LIGHT = 0x1 SLICK = 0x2 SKY = 0x4 WARP = 0x8 TRANS33 = 0x10 TRANS66 = 0x20 FLOWING = 0x40 NODRAW = 0x80 class TextureInfo: """Class for representing a texture info Attributes: s: The s vector in texture space represented as an XYZ three-tuple. s_offset: Horizontal offset in texture space. t: The t vector in texture space represented as an XYZ three-tuple. t_offset: Vertical offset in texture space. flags: A bitfield of surface behaviors. value: texture_name: The path of the texture. next_texture_info: For animated textures. Sequence will be terminated with a value of -1 """ format = '<8f2i32si' size = struct.calcsize(format) __slots__ = ( 's', 's_offset', 't', 't_offset', 'flags', 'value', 'texture_name', 'next_texture_info' ) def __init__(self, s_x, s_y, s_z, s_offset, t_x, t_y, t_z, t_offset, flags, value, texture_name, next_texture_info): self.s = s_x, s_y, s_z self.s_offset = s_offset self.t = t_x, t_y, t_z self.t_offset = t_offset self.flags = flags self.value = value if type(texture_name) == bytes: self.texture_name = texture_name.split(b'\00')[0].decode('ascii') else: self.texture_name = texture_name self.next_texture_info = next_texture_info @classmethod def write(cls, file, texture_info): texture_info_data = struct.pack(cls.format, *texture_info.s, texture_info.s_offset, *texture_info.t, texture_info.t_offset, texture_info.flags, texture_info.value, texture_info.texture_name.encode('ascii'), texture_info.next_texture_info) file.write(texture_info_data) @classmethod def read(cls, file): texture_info_data = file.read(cls.size) texture_info_struct = struct.unpack(cls.format, texture_info_data) return TextureInfo(*texture_info_struct) class TextureInfos(ClassSequence): Class = TextureInfo class Face: """Class for representing a face Attributes: plane_number: The plane in which the face lies. side: Which side of the plane the face lies. 0 is the front, 1 is the back. first_edge: The number of the first edge in Bsp.surf_edges. number_of_edges: The number of edges contained within the face. These are stored in consecutive order in Bsp.surf_edges starting at Face.first_edge. texture_info: The number of the texture info for this face. styles: A four-tuple of lightmap styles. light_offset: The offset into the lighting data. """ format = '<Hhi2h4Bi' size = struct.calcsize(format) __slots__ = ( 'plane_number', 'side', 'first_edge', 'number_of_edges', 'texture_info', 'styles', 'light_offset' ) def __init__(self, plane_number, side, first_edge, number_of_edges, texture_info, style_0, style_1, style_2, style_3, light_offset): self.plane_number = plane_number self.side = side self.first_edge = first_edge self.number_of_edges = number_of_edges self.texture_info = texture_info self.styles = style_0, style_1, style_2, style_3 self.light_offset = light_offset @classmethod def write(cls, file, plane): face_data = struct.pack(cls.format, plane.plane_number, plane.side, plane.first_edge, plane.number_of_edges, plane.texture_info, *plane.styles, plane.light_offset) file.write(face_data) @classmethod def read(cls, file): face_data = file.read(cls.size) face_struct = struct.unpack(cls.format, face_data) return Face(*face_struct) class Faces(ClassSequence): Class = Face class Lighting: @classmethod def write(cls, file, lighting): file.write(lighting) @classmethod def read(cls, file): return file.read() class Contents: SOLID = 1 WINDOW = 2 AUX = 4 LAVA = 8 SLIME = 16 WATER = 32 MIST = 64 LAST_VISIBLE = 64 AREAPORTAL = 0x8000 PLAYERCLIP = 0x10000 MONSTERCLIP = 0x20000 CURRENT_0 = 0x40000 CURRENT_90 = 0x80000 CURRENT_180 = 0x100000 CURRENT_270 = 0x200000 CURRENT_UP = 0x400000 CURRENT_DOWN = 0x800000 ORIGIN = 0x1000000 MONSTER = 0x2000000 DEADMONSTER = 0x4000000 DETAIL = 0x8000000 TRANSLUCENT = 0x10000000 LADDER = 0x20000000 class Leaf: """Class for representing a leaf Attributes: contents: The content of the leaf. Affect the player's view. cluster: The cluster containing this leaf. -1 for no visibility info. area: The area containing this leaf. bounding_box_min: The minimum coordinate of the bounding box containing this node. bounding_box_max: The maximum coordinate of the bounding box containing this node. first_leaf_face: The number of the first face in Bsp.faces number_of_leaf_faces: The number of faces contained within the leaf. These are stored in consecutive order in Bsp.faces at Leaf.first_leaf_face. first_leaf_brush: The number of the first brush in Bsp.brushes number_of_leaf_brushes: The number of brushes contained within the leaf. These are stored in consecutive order in Bsp.brushes at Leaf.first_leaf_brush. """ format = '<i8h4H' size = struct.calcsize(format) __slots__ = ( 'contents', 'cluster', 'area', 'bounding_box_min', 'bounding_box_max', 'first_leaf_face', 'number_of_leaf_faces', 'first_leaf_brush', 'number_of_leaf_brushes' ) def __init__(self, contents, cluster, area, bounding_box_min_x, bounding_box_min_y, bounding_box_min_z, bounding_box_max_x, bounding_box_max_y, bounding_box_max_z, first_leaf_face, number_of_leaf_faces, first_leaf_brush, number_of_leaf_brushes): self.contents = contents self.cluster = cluster self.area = area self.bounding_box_min = bounding_box_min_x, bounding_box_min_y, bounding_box_min_z self.bounding_box_max = bounding_box_max_x, bounding_box_max_y, bounding_box_max_z self.first_leaf_face = first_leaf_face self.number_of_leaf_faces = number_of_leaf_faces self.first_leaf_brush = first_leaf_brush self.number_of_leaf_brushes = number_of_leaf_brushes @classmethod def write(cls, file, leaf): leaf_data = struct.pack(cls.format, leaf.contents, leaf.cluster, leaf.area, *leaf.bounding_box_min, *leaf.bounding_box_max, leaf.first_leaf_face, leaf.number_of_leaf_faces, leaf.first_leaf_brush, leaf.number_of_leaf_brushes) file.write(leaf_data) @classmethod def read(cls, file): leaf_data = file.read(cls.size) leaf_struct = struct.unpack(cls.format, leaf_data) return Leaf(*leaf_struct) class Leafs(ClassSequence): Class = Leaf class LeafFaces: @classmethod def write(cls, file, leaf_faces): leaf_faces_format = '<{}H'.format(len(leaf_faces)) leaf_faces_data = struct.pack(leaf_faces_format, *leaf_faces) file.write(leaf_faces_data) @classmethod def read(cls, file): return [lf[0] for lf in struct.iter_unpack('<H', file.read())] class LeafBrushes: @classmethod def write(cls, file, leaf_brushes): leaf_brushes_format = '<{}H'.format(len(leaf_brushes)) leaf_brushes_data = struct.pack(leaf_brushes_format, *leaf_brushes) file.write(leaf_brushes_data) @classmethod def read(cls, file): return [lb[0] for lb in struct.iter_unpack('<H', file.read())] class Edge: """Class for representing a edge Attributes: vertexes: A two-tuple of vertexes that form the edge. Vertex 0 is the start vertex, and 1 is the end vertex. """ format = '<2H' size = struct.calcsize(format) __slots__ = ( 'vertexes' ) def __init__(self, vertex_0, vertex_1): self.vertexes = vertex_0, vertex_1 def __getitem__(self, item): if item > 1: raise IndexError('list index of out of range') return self.vertexes[item] @classmethod def write(cls, file, edge): edge_data = struct.pack(cls.format, *edge.vertexes) file.write(edge_data) @classmethod def read(cls, file): edge_data = file.read(cls.size) edge_struct = struct.unpack(cls.format, edge_data) return Edge(*edge_struct) class Edges(ClassSequence): Class = Edge class SurfEdges: @classmethod def write(cls, file, surf_edges): surf_edges_format = '<{}H'.format(len(surf_edges)) surf_edges_data = struct.pack(surf_edges_format, *surf_edges) file.write(surf_edges_data) @classmethod def read(cls, file): return [se[0] for se in struct.iter_unpack('<H', file.read())] class Model: """Class for representing a model Attributes: bounding_box_min: The minimum coordinate of the bounding box containing the model. bounding_box_max: The maximum coordinate of the bounding box containing the model. origin: The origin of the model. head_node: A four-tuple of indexes. Corresponds to number of map hulls. visleafs: The number of leaves in the bsp tree? first_face: The number of the first face in Bsp.mark_surfaces. number_of_faces: The number of faces contained in the node. These are stored in consecutive order in Bsp.mark_surfaces starting at Model.first_face. """ format = '<9f3i' size = struct.calcsize(format) __slots__ = ( 'bounding_box_min', 'bounding_box_max', 'origin', 'head_node', 'first_face', 'number_of_faces' ) def __init__(self, bounding_box_min_x, bounding_box_min_y, bounding_box_min_z, bounding_box_max_x, bounding_box_max_y, bounding_box_max_z, origin_x, origin_y, origin_z, head_node, first_face, number_of_faces): self.bounding_box_min = bounding_box_min_x, bounding_box_min_y, bounding_box_min_z self.bounding_box_max = bounding_box_max_x, bounding_box_max_y, bounding_box_max_z self.origin = origin_x, origin_y, origin_z self.head_node = head_node self.first_face = first_face self.number_of_faces = number_of_faces @classmethod def write(cls, file, model): model_data = struct.pack(cls.format, *model.bounding_box_min, *model.bounding_box_max, *model.origin, model.head_node, model.first_face, model.number_of_faces) file.write(model_data) @classmethod def read(cls, file): model_data = file.read(cls.size) model_struct = struct.unpack(cls.format, model_data) return Model(*model_struct) class Models(ClassSequence): Class = Model class Brush: format = '<3i' size = struct.calcsize(format) __slots__ = ( 'first_side', 'number_of_sides', 'contents' ) def __init__(self, first_side, number_of_sides, contents): self.first_side = first_side self.number_of_sides = number_of_sides self.contents = contents @classmethod def write(cls, file, brush): brush_data = struct.pack(cls.format, brush.first_side, brush.number_of_sides, brush.contents) file.write(brush_data) @classmethod def read(cls, file): brush_data = file.read(cls.size) brush_struct = struct.unpack(cls.format, brush_data) return Brush(*brush_struct) class Brushes(ClassSequence): Class = Brush class BrushSide: format = '<Hh' size = struct.calcsize(format) __slots__ = ( 'plane_number', 'texture_info' ) def __init__(self, plane_number, texture_info): self.plane_number = plane_number self.texture_info = texture_info @classmethod def write(cls, file, brush_side): brush_side_data = struct.pack(cls.format, brush_side.plane_number, brush_side.texture_info) file.write(brush_side_data) @classmethod def read(cls, file): brush_side_data = file.read(cls.size) brush_side_struct = struct.unpack(cls.format, brush_side_data) return BrushSide(*brush_side_struct) class BrushSides(ClassSequence): Class = BrushSide class Pop: @classmethod def write(cls, file, structures): file.write(structures) @classmethod def read(cls, file): return file.read() class Area: format = '<2i' size = struct.calcsize(format) __slots__ = ( 'number_of_area_portals', 'first_area_portal' ) def __init__(self, number_of_area_portals, first_area_portal): self.number_of_area_portals = number_of_area_portals self.first_area_portal = first_area_portal @classmethod def write(cls, file, area): area_data = struct.pack(cls.format, area.number_of_area_portals, area.first_area_portal) file.write(area_data) @classmethod def read(cls, file): area_data = file.read(cls.size) area_struct = struct.unpack(cls.format, area_data) return Area(*area_struct) class Areas(ClassSequence): Class = Area class AreaPortal: format = '<2i' size = struct.calcsize(format) __slots__ = ( 'portal_number', 'other_area' ) def __init__(self, portal_number, other_area): self.portal_number = portal_number self.other_area = other_area @classmethod def write(cls, file, area): area_data = struct.pack(cls.format, area.portal_number, area.other_area) file.write(area_data) @classmethod def read(cls, file): area_data = file.read(cls.size) area_struct = struct.unpack(cls.format, area_data) return AreaPortal(*area_struct) class AreaPortals(ClassSequence): Class = AreaPortal class Lump: """Class for representing a lump. A lump is a section of data that typically contains a sequence of data structures. Attributes: offset: The offset of the lump entry from the start of the file. length: The length of the lump entry. """ format = '<2i' size = struct.calcsize(format) __slots__ = ( 'offset', 'length' ) def __init__(self, offset, length): self.offset = offset self.length = length @classmethod def write(cls, file, lump): lump_data = struct.pack(cls.format, lump.offset, lump.length) file.write(lump_data) @classmethod def read(cls, file): lump_data = file.read(cls.size) lump_struct = struct.unpack(cls.format, lump_data) return Lump(*lump_struct) class Header: """Class for representing a Bsp file header Attributes: identity: The file identity. Should be b'IBSP'. version: The file version. Should be 38. lumps: A sequence of nineteen Lumps """ format = '<4si{}'.format(Lump.format[1:] * 19) size = struct.calcsize(format) order = [ Entities, Planes, Vertexes, Visibilities, Nodes, TextureInfos, Faces, Lighting, Leafs, LeafFaces, LeafBrushes, Edges, SurfEdges, Models, Brushes, BrushSides, Pop, Areas, AreaPortals ] __slots__ = ( 'identity', 'version', 'lumps' ) def __init__(self, identity, version, lumps): self.identity = identity self.version = version self.lumps = lumps @classmethod def write(cls, file, header): lump_values = [] for lump in header.lumps: lump_values += lump.offset, lump.length header_data = struct.pack(cls.format, header.identity, header.version, *lump_values) file.write(header_data) @classmethod def read(cls, file): data = file.read(cls.size) lumps_start = struct.calcsize('<4si') header_data = data[:lumps_start] header_struct = struct.unpack('<4si', header_data) ident = header_struct[0] version = header_struct[1] lumps_data = data[lumps_start:] lumps = [Lump(*l) for l in struct.iter_unpack(Lump.format, lumps_data)] return Header(ident, version, lumps) class Bsp: """Class for working with Bsp files Example: b = Bsp.open(file) Attributes: identity: Identity of the Bsp file. Should be b'IBSP' version: Version of the Bsp file. Should be 38 entities: A string containing the entity definitions. planes: A list of Plane objects used by the bsp tree data structure. vertexes: A list of Vertex objects. visibilities: A list of integers representing visibility data. nodes: A list of Node objects used by the bsp tree data structure. texture_infos: A list of TextureInfo objects. faces: A list of Face objects. lighting: A list of ints representing lighting data. leafs: A list of Leaf objects used by the bsp tree data structure. leaf_faces: A list of ints representing a consecutive list of faces used by the Leaf objects. leaf_brushes: A list of ints representing a consecutive list of edges used by the Leaf objects. edges: A list of Edge objects. surf_edges: A list of ints representing a consecutive list of edges used by the Face objects. models: A list of Model objects. brushes: A list of Brush objects. brush_sides: A list of BrushSide objects. pop: Proof of purchase? Always 256 bytes of null data if present. areas: A list of Area objects. area_portals: A list of AreaPortal objects. """ def __init__(self): self.fp = None self.mode = None self._did_modify = False self.identity = b'IBSP' self.version = 38 self.entities = "" self.planes = [] self.vertexes = [] self.visibilities = [] self.nodes = [] self.texture_infos = [] self.faces = [] self.lighting = b'' self.leafs = [] self.leaf_faces = [] self.leaf_brushes = [] self.edges = [] self.surf_edges = [] self.models = [] self.brushes = [] self.brush_sides = [] self.pop = [] self.areas = [] self.area_portals = [] Lump = Lump Header = Header Entities = Entities Planes = Planes Vertexes = Vertexes Visibilities = Visibilities Visibilities = Visibilities Nodes = Nodes TextureInfos = TextureInfos Faces = Faces Lighting = Lighting Leafs = Leafs LeafFaces = LeafFaces LeafBrushes = LeafBrushes Edges = Edges SurfEdges = SurfEdges Models = Models Brushes = Brushes BrushSides = BrushSides Pop = Pop Areas = Areas AreaPortals = AreaPortals @classmethod def open(cls, file, mode='r'): """Returns a Bsp object Args: file: Either the path to the file, a file-like object, or bytes. mode: An optional string that indicates which mode to open the file Returns: An Bsp object constructed from the information read from the file-like object. Raises: ValueError: If an invalid file mode is given. RuntimeError: If the file argument is not a file-like object. """ if mode not in ('r', 'w', 'a'): raise ValueError("invalid mode: '%s'" % mode) filemode = {'r': 'rb', 'w': 'w+b', 'a': 'r+b'}[mode] if isinstance(file, str): file = io.open(file, filemode) elif isinstance(file, bytes): file = io.BytesIO(file) elif not hasattr(file, 'read'): raise RuntimeError( "Bsp.open() requires 'file' to be a path, a file-like object, " "or bytes") # Read if mode == 'r': return cls._read_file(file, mode) # Write elif mode == 'w': bsp = cls() bsp.fp = file bsp.mode = 'w' bsp._did_modify = True return bsp # Append else: bsp = cls._read_file(file, mode) bsp._did_modify = True return bsp @classmethod def _read_file(cls, file, mode): def _read_lump(Class): lump = header.lumps[header.order.index(Class)] file.seek(lump.offset) return Class.read(io.BytesIO(file.read(lump.length))) bsp = cls() bsp.mode = mode bsp.fp = file # Header header = cls.Header.read(file) bsp.identity = header.identity bsp.version = header.version bsp.entities = _read_lump(cls.Entities) bsp.planes = _read_lump(cls.Planes) bsp.vertexes = _read_lump(cls.Vertexes) bsp.visibilities = _read_lump(cls.Visibilities) bsp.nodes = _read_lump(cls.Nodes) bsp.texture_infos = _read_lump(cls.TextureInfos) bsp.faces = _read_lump(cls.Faces) bsp.lighting = _read_lump(cls.Lighting) bsp.leafs = _read_lump(cls.Leafs) bsp.leaf_faces = _read_lump(cls.LeafFaces) bsp.leaf_brushes = _read_lump(cls.LeafBrushes) bsp.edges = _read_lump(cls.Edges) bsp.surf_edges = _read_lump(cls.SurfEdges) bsp.models = _read_lump(cls.Models) bsp.brushes = _read_lump(cls.Brushes) bsp.brush_sides = _read_lump(cls.BrushSides) bsp.pop = _read_lump(cls.Pop) bsp.areas = _read_lump(cls.Areas) bsp.area_portals = _read_lump(cls.AreaPortals) return bsp @classmethod def _write_file(cls, file, bsp): def _write_lump(Class, data): offset = file.tell() Class.write(file, data) size = file.tell() - offset return cls.Lump(offset, size) lumps = [cls.Lump(0, 0) for _ in range(19)] header = cls.Header(bsp.identity, bsp.version, lumps) lump_index = header.order.index # Stub out header info cls.Header.write(file, header) lumps[lump_index(cls.Entities)] = _write_lump(cls.Entities, bsp.entities) lumps[lump_index(cls.Planes)] = _write_lump(cls.Planes, bsp.planes) lumps[lump_index(cls.Vertexes)] = _write_lump(cls.Vertexes, bsp.vertexes) lumps[lump_index(cls.Visibilities)] = _write_lump(cls.Visibilities, bsp.visibilities) lumps[lump_index(cls.Nodes)] = _write_lump(cls.Nodes, bsp.nodes) lumps[lump_index(cls.TextureInfos)] = _write_lump(cls.TextureInfos, bsp.texture_infos) lumps[lump_index(cls.Faces)] = _write_lump(cls.Faces, bsp.faces) lumps[lump_index(cls.Lighting)] = _write_lump(cls.Lighting, bsp.lighting) lumps[lump_index(cls.Leafs)] = _write_lump(cls.Leafs, bsp.leafs) lumps[lump_index(cls.LeafFaces)] = _write_lump(cls.LeafFaces, bsp.leaf_faces) lumps[lump_index(cls.LeafBrushes)] = _write_lump(cls.LeafBrushes, bsp.leaf_brushes) lumps[lump_index(cls.Edges)] = _write_lump(cls.Edges, bsp.edges) lumps[lump_index(cls.SurfEdges)] = _write_lump(cls.SurfEdges, bsp.surf_edges) lumps[lump_index(cls.Models)] = _write_lump(cls.Models, bsp.models) lumps[lump_index(cls.Brushes)] = _write_lump(cls.Brushes, bsp.brushes) lumps[lump_index(cls.BrushSides)] = _write_lump(cls.BrushSides, bsp.brush_sides) lumps[lump_index(cls.Pop)] = _write_lump(cls.Pop, bsp.pop) lumps[lump_index(cls.Areas)] = _write_lump(cls.Areas, bsp.areas) lumps[lump_index(cls.AreaPortals)] = _write_lump(cls.AreaPortals, bsp.area_portals) end_of_file = file.tell() # Finalize header file.seek(0) cls.Header.write(file, header) file.seek(end_of_file) def save(self, file): """Writes Bsp data to file Args: file: Either the path to the file, or a file-like object, or bytes. Raises: RuntimeError: If the file argument is not a file-like object. """ should_close = False if isinstance(file, str): file = io.open(file, 'r+b') should_close = True elif isinstance(file, bytes): file = io.BytesIO(file) should_close = True elif not hasattr(file, 'write'): raise RuntimeError( "Bsp.open() requires 'file' to be a path, a file-like object, " "or bytes") self._write_file(file, self) if should_close: file.close() def __enter__(self): return self def __exit__(self, type, value, traceback): self.close() def close(self): """Closes the file pointer if possible. If mode is 'w' or 'a', the file will be written to. """ if self.fp: if self.mode in ('w', 'a') and self._did_modify: self.fp.seek(0) self._write_file(self.fp, self) self.fp.truncate() file_object = self.fp self.fp = None file_object.close()
55a4e8e8c4aa91e9545e39a617b5c10879c37d07
33eb4fd807c1a641f52f7124ec7b256ce07612f1
/test/optimization/test_converters.py
ceb47854904a2313fb0dfe0c2ea5d0555a45b620
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
levbishop/qiskit-aqua
9ee27da1533cbb9746fe5ff5255533bd9742faa5
50e4d935241452bb76296cea6144a9fc452c5e2c
refs/heads/master
2022-12-04T01:48:18.477406
2020-08-11T19:25:03
2020-08-11T19:25:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
30,877
py
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Test Converters """ import logging import unittest from test.optimization.optimization_test_case import QiskitOptimizationTestCase import numpy as np from docplex.mp.model import Model from qiskit.aqua.algorithms import NumPyMinimumEigensolver from qiskit.aqua.operators import Z, I from qiskit.optimization import QuadraticProgram, QiskitOptimizationError from qiskit.optimization.algorithms import MinimumEigenOptimizer, CplexOptimizer, ADMMOptimizer from qiskit.optimization.algorithms import OptimizationResult from qiskit.optimization.algorithms.admm_optimizer import ADMMParameters from qiskit.optimization.algorithms.optimization_algorithm import OptimizationResultStatus from qiskit.optimization.converters import (InequalityToEquality, IntegerToBinary, LinearEqualityToPenalty, QuadraticProgramToIsing, IsingToQuadraticProgram) from qiskit.optimization.problems import Constraint, Variable logger = logging.getLogger(__name__) QUBIT_OP_MAXIMIZE_SAMPLE = ( -199999.5 * (I ^ I ^ I ^ Z) + -399999.5 * (I ^ I ^ Z ^ I) + -599999.5 * (I ^ Z ^ I ^ I) + -799999.5 * (Z ^ I ^ I ^ I) + 100000 * (I ^ I ^ Z ^ Z) + 150000 * (I ^ Z ^ I ^ Z) + 300000 * (I ^ Z ^ Z ^ I) + 200000 * (Z ^ I ^ I ^ Z) + 400000 * (Z ^ I ^ Z ^ I) + 600000 * (Z ^ Z ^ I ^ I) ) OFFSET_MAXIMIZE_SAMPLE = 1149998 class TestConverters(QiskitOptimizationTestCase): """Test Converters""" def test_empty_problem(self): """ Test empty problem """ op = QuadraticProgram() conv = InequalityToEquality() op = conv.convert(op) conv = IntegerToBinary() op = conv.convert(op) conv = LinearEqualityToPenalty() op = conv.convert(op) _, shift = op.to_ising() self.assertEqual(shift, 0.0) def test_valid_variable_type(self): """Validate the types of the variables for QuadraticProgram.to_ising.""" # Integer variable with self.assertRaises(QiskitOptimizationError): op = QuadraticProgram() op.integer_var(0, 10, "int_var") _ = op.to_ising() # Continuous variable with self.assertRaises(QiskitOptimizationError): op = QuadraticProgram() op.continuous_var(0, 10, "continuous_var") _ = op.to_ising() def test_inequality_binary(self): """ Test InequalityToEqualityConverter with binary variables """ op = QuadraticProgram() for i in range(3): op.binary_var(name='x{}'.format(i)) # Linear constraints linear_constraint = {'x0': 1, 'x1': 1} op.linear_constraint(linear_constraint, Constraint.Sense.EQ, 1, 'x0x1') linear_constraint = {'x1': 1, 'x2': -1} op.linear_constraint(linear_constraint, Constraint.Sense.LE, 2, 'x1x2') linear_constraint = {'x0': 1, 'x2': 3} op.linear_constraint(linear_constraint, Constraint.Sense.GE, 2, 'x0x2') # Quadratic constraints quadratic = {('x0', 'x1'): 1, ('x1', 'x2'): 2} op.quadratic_constraint({}, quadratic, Constraint.Sense.LE, 3, 'x0x1_x1x2LE') quadratic = {('x0', 'x1'): 3, ('x1', 'x2'): 4} op.quadratic_constraint({}, quadratic, Constraint.Sense.GE, 3, 'x0x1_x1x2GE') # Convert inequality constraints into equality constraints conv = InequalityToEquality() op2 = conv.convert(op) self.assertListEqual([v.name for v in op2.variables], ['x0', 'x1', 'x2', 'x1x2@int_slack', 'x0x2@int_slack', 'x0x1_x1x2LE@int_slack', 'x0x1_x1x2GE@int_slack']) # Check names and objective senses self.assertEqual(op.name, op2.name) self.assertEqual(op.objective.sense, op2.objective.sense) # For linear constraints lst = [ op2.linear_constraints[0].linear.to_dict()[0], op2.linear_constraints[0].linear.to_dict()[1], ] self.assertListEqual(lst, [1, 1]) self.assertEqual(op2.linear_constraints[0].sense, Constraint.Sense.EQ) lst = [ op2.linear_constraints[1].linear.to_dict()[1], op2.linear_constraints[1].linear.to_dict()[2], op2.linear_constraints[1].linear.to_dict()[3], ] self.assertListEqual(lst, [1, -1, 1]) lst = [op2.variables[3].lowerbound, op2.variables[3].upperbound] self.assertListEqual(lst, [0, 3]) self.assertEqual(op2.linear_constraints[1].sense, Constraint.Sense.EQ) lst = [ op2.linear_constraints[2].linear.to_dict()[0], op2.linear_constraints[2].linear.to_dict()[2], op2.linear_constraints[2].linear.to_dict()[4], ] self.assertListEqual(lst, [1, 3, -1]) lst = [op2.variables[4].lowerbound, op2.variables[4].upperbound] self.assertListEqual(lst, [0, 2]) self.assertEqual(op2.linear_constraints[2].sense, Constraint.Sense.EQ) # For quadratic constraints lst = [ op2.quadratic_constraints[0].quadratic.to_dict()[(0, 1)], op2.quadratic_constraints[0].quadratic.to_dict()[(1, 2)], op2.quadratic_constraints[0].linear.to_dict()[5], ] self.assertListEqual(lst, [1, 2, 1]) lst = [op2.variables[5].lowerbound, op2.variables[5].upperbound] self.assertListEqual(lst, [0, 3]) lst = [ op2.quadratic_constraints[1].quadratic.to_dict()[(0, 1)], op2.quadratic_constraints[1].quadratic.to_dict()[(1, 2)], op2.quadratic_constraints[1].linear.to_dict()[6], ] self.assertListEqual(lst, [3, 4, -1]) lst = [op2.variables[6].lowerbound, op2.variables[6].upperbound] self.assertListEqual(lst, [0, 4]) result = OptimizationResult(x=np.arange(7), fval=0, variables=op2.variables) new_result = conv.interpret(result) np.testing.assert_array_almost_equal(new_result.x, np.arange(3)) self.assertListEqual(new_result.variable_names, ['x0', 'x1', 'x2']) self.assertDictEqual(new_result.variables_dict, {'x0': 0, 'x1': 1, 'x2': 2}) def test_inequality_integer(self): """ Test InequalityToEqualityConverter with integer variables """ op = QuadraticProgram() for i in range(3): op.integer_var(name='x{}'.format(i), lowerbound=-3, upperbound=3) # Linear constraints linear_constraint = {'x0': 1, 'x1': 1} op.linear_constraint(linear_constraint, Constraint.Sense.EQ, 1, 'x0x1') linear_constraint = {'x1': 1, 'x2': -1} op.linear_constraint(linear_constraint, Constraint.Sense.LE, 2, 'x1x2') linear_constraint = {'x0': 1, 'x2': 3} op.linear_constraint(linear_constraint, Constraint.Sense.GE, 2, 'x0x2') # Quadratic constraints quadratic = {('x0', 'x1'): 1, ('x1', 'x2'): 2} op.quadratic_constraint({}, quadratic, Constraint.Sense.LE, 3, 'x0x1_x1x2LE') quadratic = {('x0', 'x1'): 3, ('x1', 'x2'): 4} op.quadratic_constraint({}, quadratic, Constraint.Sense.GE, 3, 'x0x1_x1x2GE') conv = InequalityToEquality() op2 = conv.convert(op) self.assertListEqual([v.name for v in op2.variables], ['x0', 'x1', 'x2', 'x1x2@int_slack', 'x0x2@int_slack', 'x0x1_x1x2LE@int_slack', 'x0x1_x1x2GE@int_slack']) # For linear constraints lst = [ op2.linear_constraints[0].linear.to_dict()[0], op2.linear_constraints[0].linear.to_dict()[1], ] self.assertListEqual(lst, [1, 1]) self.assertEqual(op2.linear_constraints[0].sense, Constraint.Sense.EQ) lst = [ op2.linear_constraints[1].linear.to_dict()[1], op2.linear_constraints[1].linear.to_dict()[2], op2.linear_constraints[1].linear.to_dict()[3], ] self.assertListEqual(lst, [1, -1, 1]) lst = [op2.variables[3].lowerbound, op2.variables[3].upperbound] self.assertListEqual(lst, [0, 8]) self.assertEqual(op2.linear_constraints[1].sense, Constraint.Sense.EQ) lst = [ op2.linear_constraints[2].linear.to_dict()[0], op2.linear_constraints[2].linear.to_dict()[2], op2.linear_constraints[2].linear.to_dict()[4], ] self.assertListEqual(lst, [1, 3, -1]) lst = [op2.variables[4].lowerbound, op2.variables[4].upperbound] self.assertListEqual(lst, [0, 10]) self.assertEqual(op2.linear_constraints[2].sense, Constraint.Sense.EQ) # For quadratic constraints lst = [ op2.quadratic_constraints[0].quadratic.to_dict()[(0, 1)], op2.quadratic_constraints[0].quadratic.to_dict()[(1, 2)], op2.quadratic_constraints[0].linear.to_dict()[5], ] self.assertListEqual(lst, [1, 2, 1]) lst = [op2.variables[5].lowerbound, op2.variables[5].upperbound] self.assertListEqual(lst, [0, 30]) lst = [ op2.quadratic_constraints[1].quadratic.to_dict()[(0, 1)], op2.quadratic_constraints[1].quadratic.to_dict()[(1, 2)], op2.quadratic_constraints[1].linear.to_dict()[6], ] self.assertListEqual(lst, [3, 4, -1]) lst = [op2.variables[6].lowerbound, op2.variables[6].upperbound] self.assertListEqual(lst, [0, 60]) result = OptimizationResult(x=np.arange(7), fval=0, variables=op2.variables) new_result = conv.interpret(result) np.testing.assert_array_almost_equal(new_result.x, np.arange(3)) self.assertListEqual(new_result.variable_names, ['x0', 'x1', 'x2']) self.assertDictEqual(new_result.variables_dict, {'x0': 0, 'x1': 1, 'x2': 2}) def test_inequality_mode_integer(self): """ Test integer mode of InequalityToEqualityConverter() """ op = QuadraticProgram() for i in range(3): op.binary_var(name='x{}'.format(i)) # Linear constraints linear_constraint = {'x0': 1, 'x1': 1} op.linear_constraint(linear_constraint, Constraint.Sense.EQ, 1, 'x0x1') linear_constraint = {'x1': 1, 'x2': -1} op.linear_constraint(linear_constraint, Constraint.Sense.LE, 2, 'x1x2') linear_constraint = {'x0': 1, 'x2': 3} op.linear_constraint(linear_constraint, Constraint.Sense.GE, 2, 'x0x2') conv = InequalityToEquality(mode='integer') op2 = conv.convert(op) lst = [op2.variables[3].vartype, op2.variables[4].vartype] self.assertListEqual(lst, [Variable.Type.INTEGER, Variable.Type.INTEGER]) def test_inequality_mode_continuous(self): """ Test continuous mode of InequalityToEqualityConverter() """ op = QuadraticProgram() for i in range(3): op.binary_var(name='x{}'.format(i)) # Linear constraints linear_constraint = {'x0': 1, 'x1': 1} op.linear_constraint(linear_constraint, Constraint.Sense.EQ, 1, 'x0x1') linear_constraint = {'x1': 1, 'x2': -1} op.linear_constraint(linear_constraint, Constraint.Sense.LE, 2, 'x1x2') linear_constraint = {'x0': 1, 'x2': 3} op.linear_constraint(linear_constraint, Constraint.Sense.GE, 2, 'x0x2') conv = InequalityToEquality(mode='continuous') op2 = conv.convert(op) lst = [op2.variables[3].vartype, op2.variables[4].vartype] self.assertListEqual(lst, [Variable.Type.CONTINUOUS, Variable.Type.CONTINUOUS]) def test_inequality_mode_auto(self): """ Test auto mode of InequalityToEqualityConverter() """ op = QuadraticProgram() for i in range(3): op.binary_var(name='x{}'.format(i)) # Linear constraints linear_constraint = {'x0': 1, 'x1': 1} op.linear_constraint(linear_constraint, Constraint.Sense.EQ, 1, 'x0x1') linear_constraint = {'x1': 1, 'x2': -1} op.linear_constraint(linear_constraint, Constraint.Sense.LE, 2, 'x1x2') linear_constraint = {'x0': 1.1, 'x2': 2.2} op.linear_constraint(linear_constraint, Constraint.Sense.GE, 3.3, 'x0x2') conv = InequalityToEquality(mode='auto') op2 = conv.convert(op) lst = [op2.variables[3].vartype, op2.variables[4].vartype] self.assertListEqual(lst, [Variable.Type.INTEGER, Variable.Type.CONTINUOUS]) def test_penalize_sense(self): """ Test PenalizeLinearEqualityConstraints with senses """ op = QuadraticProgram() for i in range(3): op.binary_var(name='x{}'.format(i)) # Linear constraints linear_constraint = {'x0': 1, 'x1': 1} op.linear_constraint(linear_constraint, Constraint.Sense.EQ, 1, 'x0x1') linear_constraint = {'x1': 1, 'x2': -1} op.linear_constraint(linear_constraint, Constraint.Sense.LE, 2, 'x1x2') linear_constraint = {'x0': 1, 'x2': 3} op.linear_constraint(linear_constraint, Constraint.Sense.GE, 2, 'x0x2') self.assertEqual(op.get_num_linear_constraints(), 3) conv = LinearEqualityToPenalty() with self.assertRaises(QiskitOptimizationError): conv.convert(op) def test_penalize_binary(self): """ Test PenalizeLinearEqualityConstraints with binary variables """ op = QuadraticProgram() for i in range(3): op.binary_var(name='x{}'.format(i)) # Linear constraints linear_constraint = {'x0': 1, 'x1': 1} op.linear_constraint(linear_constraint, Constraint.Sense.EQ, 1, 'x0x1') linear_constraint = {'x1': 1, 'x2': -1} op.linear_constraint(linear_constraint, Constraint.Sense.EQ, 2, 'x1x2') linear_constraint = {'x0': 1, 'x2': 3} op.linear_constraint(linear_constraint, Constraint.Sense.EQ, 2, 'x0x2') self.assertEqual(op.get_num_linear_constraints(), 3) conv = LinearEqualityToPenalty() op2 = conv.convert(op) self.assertEqual(op2.get_num_linear_constraints(), 0) result = OptimizationResult(x=np.arange(3), fval=0, variables=op2.variables) new_result = conv.interpret(result) self.assertEqual(new_result.status, OptimizationResultStatus.INFEASIBLE) np.testing.assert_array_almost_equal(new_result.x, np.arange(3)) self.assertListEqual(result.variable_names, ['x0', 'x1', 'x2']) self.assertDictEqual(result.variables_dict, {'x0': 0, 'x1': 1, 'x2': 2}) def test_penalize_integer(self): """ Test PenalizeLinearEqualityConstraints with integer variables """ op = QuadraticProgram() for i in range(3): op.integer_var(name='x{}'.format(i), lowerbound=-3, upperbound=3) # Linear constraints linear_constraint = {'x0': 1, 'x1': 1} op.linear_constraint(linear_constraint, Constraint.Sense.EQ, 1, 'x0x1') linear_constraint = {'x1': 1, 'x2': -1} op.linear_constraint(linear_constraint, Constraint.Sense.EQ, 2, 'x1x2') linear_constraint = {'x0': 1, 'x2': -1} op.linear_constraint(linear_constraint, Constraint.Sense.EQ, 1, 'x0x2') op.minimize(constant=3, linear={'x0': 1}, quadratic={('x1', 'x2'): 2}) self.assertEqual(op.get_num_linear_constraints(), 3) conv = LinearEqualityToPenalty() op2 = conv.convert(op) self.assertEqual(op2.get_num_linear_constraints(), 0) result = OptimizationResult(x=[0, 1, -1], fval=1, variables=op2.variables) new_result = conv.interpret(result) self.assertAlmostEqual(new_result.fval, 1) self.assertEqual(new_result.status, OptimizationResultStatus.SUCCESS) np.testing.assert_array_almost_equal(new_result.x, [0, 1, -1]) self.assertListEqual(result.variable_names, ['x0', 'x1', 'x2']) self.assertDictEqual(result.variables_dict, {'x0': 0, 'x1': 1, 'x2': -1}) def test_integer_to_binary(self): """ Test integer to binary """ op = QuadraticProgram() for i in range(0, 2): op.binary_var(name='x{}'.format(i)) op.integer_var(name='x2', lowerbound=0, upperbound=5) linear = {} for i, x in enumerate(op.variables): linear[x.name] = i + 1 op.maximize(0, linear, {}) conv = IntegerToBinary() op2 = conv.convert(op) self.assertEqual(op2.get_num_vars(), 5) self.assertListEqual([x.vartype for x in op2.variables], [Variable.Type.BINARY] * 5) self.assertListEqual([x.name for x in op2.variables], ['x0', 'x1', 'x2@0', 'x2@1', 'x2@2']) dct = op2.objective.linear.to_dict() self.assertEqual(dct[2], 3) self.assertEqual(dct[3], 6) self.assertEqual(dct[4], 6) def test_binary_to_integer(self): """ Test binary to integer """ op = QuadraticProgram() for i in range(0, 2): op.binary_var(name='x{}'.format(i)) op.integer_var(name='x2', lowerbound=0, upperbound=5) linear = {'x0': 1, 'x1': 2, 'x2': 1} op.maximize(0, linear, {}) linear = {} for x in op.variables: linear[x.name] = 1 op.linear_constraint(linear, Constraint.Sense.EQ, 6, 'x0x1x2') conv = IntegerToBinary() op2 = conv.convert(op) result = OptimizationResult(x=[0, 1, 1, 1, 1], fval=17, variables=op2.variables) new_result = conv.interpret(result) np.testing.assert_array_almost_equal(new_result.x, [0, 1, 5]) self.assertEqual(new_result.fval, 17) self.assertListEqual(new_result.variable_names, ['x0', 'x1', 'x2']) self.assertDictEqual(new_result.variables_dict, {'x0': 0, 'x1': 1, 'x2': 5}) def test_optimizationproblem_to_ising(self): """ Test optimization problem to operators""" op = QuadraticProgram() for i in range(4): op.binary_var(name='x{}'.format(i)) linear = {} for x in op.variables: linear[x.name] = 1 op.maximize(0, linear, {}) linear = {} for i, x in enumerate(op.variables): linear[x.name] = i + 1 op.linear_constraint(linear, Constraint.Sense.EQ, 3, 'sum1') penalize = LinearEqualityToPenalty(penalty=1e5) op2 = penalize.convert(op) qubitop, offset = op2.to_ising() self.assertEqual(qubitop, QUBIT_OP_MAXIMIZE_SAMPLE) self.assertEqual(offset, OFFSET_MAXIMIZE_SAMPLE) def test_ising_to_quadraticprogram_linear(self): """ Test optimization problem to operators with linear=True""" op = QUBIT_OP_MAXIMIZE_SAMPLE offset = OFFSET_MAXIMIZE_SAMPLE quadratic = QuadraticProgram() quadratic.from_ising(op, offset, linear=True) self.assertEqual(quadratic.get_num_vars(), 4) self.assertEqual(quadratic.get_num_linear_constraints(), 0) self.assertEqual(quadratic.get_num_quadratic_constraints(), 0) self.assertEqual(quadratic.objective.sense, quadratic.objective.Sense.MINIMIZE) self.assertAlmostEqual(quadratic.objective.constant, 900000) linear_matrix = np.zeros((1, 4)) linear_matrix[0, 0] = -500001 linear_matrix[0, 1] = -800001 linear_matrix[0, 2] = -900001 linear_matrix[0, 3] = -800001 quadratic_matrix = np.zeros((4, 4)) quadratic_matrix[0, 1] = 400000 quadratic_matrix[0, 2] = 600000 quadratic_matrix[1, 2] = 1200000 quadratic_matrix[0, 3] = 800000 quadratic_matrix[1, 3] = 1600000 quadratic_matrix[2, 3] = 2400000 np.testing.assert_array_almost_equal( quadratic.objective.linear.coefficients.toarray(), linear_matrix ) np.testing.assert_array_almost_equal( quadratic.objective.quadratic.coefficients.toarray(), quadratic_matrix ) def test_ising_to_quadraticprogram_quadratic(self): """ Test optimization problem to operators with linear=False""" op = QUBIT_OP_MAXIMIZE_SAMPLE offset = OFFSET_MAXIMIZE_SAMPLE quadratic = QuadraticProgram() quadratic.from_ising(op, offset, linear=False) self.assertEqual(quadratic.get_num_vars(), 4) self.assertEqual(quadratic.get_num_linear_constraints(), 0) self.assertEqual(quadratic.get_num_quadratic_constraints(), 0) self.assertEqual(quadratic.objective.sense, quadratic.objective.Sense.MINIMIZE) self.assertAlmostEqual(quadratic.objective.constant, 900000) quadratic_matrix = np.zeros((4, 4)) quadratic_matrix[0, 0] = -500001 quadratic_matrix[0, 1] = 400000 quadratic_matrix[0, 2] = 600000 quadratic_matrix[0, 3] = 800000 quadratic_matrix[1, 1] = -800001 quadratic_matrix[1, 2] = 1200000 quadratic_matrix[1, 3] = 1600000 quadratic_matrix[2, 2] = -900001 quadratic_matrix[2, 3] = 2400000 quadratic_matrix[3, 3] = -800001 np.testing.assert_array_almost_equal( quadratic.objective.quadratic.coefficients.toarray(), quadratic_matrix ) def test_continuous_variable_decode(self): """ Test decode func of IntegerToBinaryConverter for continuous variables""" try: mdl = Model('test_continuous_varable_decode') c = mdl.continuous_var(lb=0, ub=10.9, name='c') x = mdl.binary_var(name='x') mdl.maximize(c + x * x) op = QuadraticProgram() op.from_docplex(mdl) converter = IntegerToBinary() op = converter.convert(op) admm_params = ADMMParameters() qubo_optimizer = MinimumEigenOptimizer(NumPyMinimumEigensolver()) continuous_optimizer = CplexOptimizer() solver = ADMMOptimizer( qubo_optimizer=qubo_optimizer, continuous_optimizer=continuous_optimizer, params=admm_params, ) result = solver.solve(op) result = converter.interpret(result) self.assertEqual(result.x[0], 10.9) self.assertListEqual(result.variable_names, ['c', 'x']) self.assertDictEqual(result.variables_dict, {'c': 10.9, 'x': 0}) except NameError as ex: self.skipTest(str(ex)) def test_auto_penalty(self): """ Test auto penalty function""" op = QuadraticProgram() op.binary_var('x') op.binary_var('y') op.binary_var('z') op.minimize(constant=3, linear={'x': 1}, quadratic={('x', 'y'): 2}) op.linear_constraint(linear={'x': 1, 'y': 1, 'z': 1}, sense='EQ', rhs=2, name='xyz_eq') lineq2penalty = LinearEqualityToPenalty(penalty=1e5) lineq2penalty_auto = LinearEqualityToPenalty() qubo = lineq2penalty.convert(op) qubo_auto = lineq2penalty_auto.convert(op) exact_mes = NumPyMinimumEigensolver() exact = MinimumEigenOptimizer(exact_mes) result = exact.solve(qubo) result_auto = exact.solve(qubo_auto) self.assertEqual(result.fval, result_auto.fval) np.testing.assert_array_almost_equal(result.x, result_auto.x) def test_auto_penalty_warning(self): """ Test warnings of auto penalty function""" op = QuadraticProgram() op.binary_var('x') op.binary_var('y') op.binary_var('z') op.minimize(linear={'x': 1, 'y': 2}) op.linear_constraint(linear={'x': 0.5, 'y': 0.5, 'z': 0.5}, sense='EQ', rhs=1, name='xyz') with self.assertLogs('qiskit.optimization', level='WARNING') as log: lineq2penalty = LinearEqualityToPenalty() _ = lineq2penalty.convert(op) warning = ( 'WARNING:qiskit.optimization.converters.linear_equality_to_penalty:' 'Warning: Using 100000.000000 for the penalty coefficient because a float ' 'coefficient exists in constraints. \nThe value could be too small. If so, ' 'set the penalty coefficient manually.' ) self.assertIn(warning, log.output) def test_linear_equality_to_penalty_decode(self): """ Test decode func of LinearEqualityToPenalty""" qprog = QuadraticProgram() qprog.binary_var('x') qprog.binary_var('y') qprog.binary_var('z') qprog.maximize(linear={'x': 3, 'y': 1, 'z': 1}) qprog.linear_constraint(linear={'x': 1, 'y': 1, 'z': 1}, sense='EQ', rhs=2, name='xyz_eq') lineq2penalty = LinearEqualityToPenalty() qubo = lineq2penalty.convert(qprog) exact_mes = NumPyMinimumEigensolver() exact = MinimumEigenOptimizer(exact_mes) result = exact.solve(qubo) decoded_result = lineq2penalty.interpret(result) self.assertEqual(decoded_result.fval, 4) np.testing.assert_array_almost_equal(decoded_result.x, [1, 1, 0]) self.assertEqual(decoded_result.status, OptimizationResultStatus.SUCCESS) self.assertListEqual(decoded_result.variable_names, ['x', 'y', 'z']) self.assertDictEqual(decoded_result.variables_dict, {'x': 1.0, 'y': 1.0, 'z': 0.0}) infeasible_result = OptimizationResult(x=[1, 1, 1], fval=0, variables=qprog.variables) decoded_infeasible_result = lineq2penalty.interpret(infeasible_result) self.assertEqual(decoded_infeasible_result.fval, 5) np.testing.assert_array_almost_equal(decoded_infeasible_result.x, [1, 1, 1]) self.assertEqual(decoded_infeasible_result.status, OptimizationResultStatus.INFEASIBLE) self.assertListEqual(infeasible_result.variable_names, ['x', 'y', 'z']) self.assertDictEqual(infeasible_result.variables_dict, {'x': 1.0, 'y': 1.0, 'z': 1.0}) def test_empty_problem_deprecated(self): """ Test empty problem """ op = QuadraticProgram() conv = InequalityToEquality() op = conv.encode(op) conv = IntegerToBinary() op = conv.encode(op) conv = LinearEqualityToPenalty() op = conv.encode(op) conv = QuadraticProgramToIsing() _, shift = conv.encode(op) self.assertEqual(shift, 0.0) def test_valid_variable_type_deprecated(self): """Validate the types of the variables for QuadraticProgramToIsing.""" # Integer variable with self.assertRaises(QiskitOptimizationError): op = QuadraticProgram() op.integer_var(0, 10, "int_var") conv = QuadraticProgramToIsing() _ = conv.encode(op) # Continuous variable with self.assertRaises(QiskitOptimizationError): op = QuadraticProgram() op.continuous_var(0, 10, "continuous_var") conv = QuadraticProgramToIsing() _ = conv.encode(op) def test_optimizationproblem_to_ising_deprecated(self): """ Test optimization problem to operators""" op = QuadraticProgram() for i in range(4): op.binary_var(name='x{}'.format(i)) linear = {} for x in op.variables: linear[x.name] = 1 op.maximize(0, linear, {}) linear = {} for i, x in enumerate(op.variables): linear[x.name] = i + 1 op.linear_constraint(linear, Constraint.Sense.EQ, 3, 'sum1') penalize = LinearEqualityToPenalty(penalty=1e5) op2ope = QuadraticProgramToIsing() op2 = penalize.encode(op) qubitop, offset = op2ope.encode(op2) self.assertEqual(qubitop, QUBIT_OP_MAXIMIZE_SAMPLE) self.assertEqual(offset, OFFSET_MAXIMIZE_SAMPLE) def test_ising_to_quadraticprogram_linear_deprecated(self): """ Test optimization problem to operators with linear=True""" op = QUBIT_OP_MAXIMIZE_SAMPLE offset = OFFSET_MAXIMIZE_SAMPLE op2qp = IsingToQuadraticProgram(linear=True) quadratic = op2qp.encode(op, offset) self.assertEqual(len(quadratic.variables), 4) self.assertEqual(len(quadratic.linear_constraints), 0) self.assertEqual(len(quadratic.quadratic_constraints), 0) self.assertEqual(quadratic.objective.sense, quadratic.objective.Sense.MINIMIZE) self.assertAlmostEqual(quadratic.objective.constant, 900000) linear_matrix = np.zeros((1, 4)) linear_matrix[0, 0] = -500001 linear_matrix[0, 1] = -800001 linear_matrix[0, 2] = -900001 linear_matrix[0, 3] = -800001 quadratic_matrix = np.zeros((4, 4)) quadratic_matrix[0, 1] = 400000 quadratic_matrix[0, 2] = 600000 quadratic_matrix[1, 2] = 1200000 quadratic_matrix[0, 3] = 800000 quadratic_matrix[1, 3] = 1600000 quadratic_matrix[2, 3] = 2400000 np.testing.assert_array_almost_equal( quadratic.objective.linear.coefficients.toarray(), linear_matrix ) np.testing.assert_array_almost_equal( quadratic.objective.quadratic.coefficients.toarray(), quadratic_matrix ) def test_ising_to_quadraticprogram_quadratic_deprecated(self): """ Test optimization problem to operators with linear=False""" op = QUBIT_OP_MAXIMIZE_SAMPLE offset = OFFSET_MAXIMIZE_SAMPLE op2qp = IsingToQuadraticProgram(linear=False) quadratic = op2qp.encode(op, offset) self.assertEqual(len(quadratic.variables), 4) self.assertEqual(len(quadratic.linear_constraints), 0) self.assertEqual(len(quadratic.quadratic_constraints), 0) self.assertEqual(quadratic.objective.sense, quadratic.objective.Sense.MINIMIZE) self.assertAlmostEqual(quadratic.objective.constant, 900000) quadratic_matrix = np.zeros((4, 4)) quadratic_matrix[0, 0] = -500001 quadratic_matrix[0, 1] = 400000 quadratic_matrix[0, 2] = 600000 quadratic_matrix[0, 3] = 800000 quadratic_matrix[1, 1] = -800001 quadratic_matrix[1, 2] = 1200000 quadratic_matrix[1, 3] = 1600000 quadratic_matrix[2, 2] = -900001 quadratic_matrix[2, 3] = 2400000 quadratic_matrix[3, 3] = -800001 np.testing.assert_array_almost_equal( quadratic.objective.quadratic.coefficients.toarray(), quadratic_matrix ) if __name__ == '__main__': unittest.main()
393fd65ff6acb3f16a103c6786941faa450a1e7f
293720158f0836140cb7a417980f04272445a787
/day22.py
d04ac87c99c95d0c09412aa66fba62fcc4f5958f
[]
no_license
Chicken-Bones/AdventOfCode2020
cc01c7136a1b19fbbcbb367dd7a3d4dc8f82466a
62c82002a9f99c960407e70552028fce2755e666
refs/heads/master
2023-02-06T07:20:11.493262
2020-12-24T06:20:57
2020-12-24T06:20:57
318,743,462
0
0
null
null
null
null
UTF-8
Python
false
false
1,503
py
import re if __name__ == "__main__": with open("input/day22.txt") as file: p1, p2 = file.read().split("\n\n") p1 = [int(s) for s in p1.strip().split("\n")[1:]] p2 = [int(s) for s in p2.strip().split("\n")[1:]] while p1 and p2: a, b = p1[0], p2[0] if a > b: p1 += [a, b] else: p2 += [b, a] p1 = p1[1:] p2 = p2[1:] win = p1 if p1 else p2 print(sum((i+1)*c for i, c in enumerate(win[::-1]))) with open("input/day22.txt") as file: p1, p2 = file.read().split("\n\n") p1 = [int(s) for s in p1.strip().split("\n")[1:]] p2 = [int(s) for s in p2.strip().split("\n")[1:]] def play(decks): seen = set() while all(decks): key = tuple(tuple(d) for d in decks) if key in seen: return 0, None seen.add(key) cards = [d[0] for d in decks] decks = [d[1:] for d in decks] if all(c < len(d) for c, d in zip(cards, decks)): win, _ = play([d[:c] for c, d in zip(cards, decks)]) else: win = 0 if cards[0] > cards[1] else 1 decks[win] += [cards[win], cards[win^1]] return next((i, d) for i, d in enumerate(decks) if d) _, deck = play([p1, p2]) print(sum((i+1)*c for i, c in enumerate(deck[::-1])))
6447b4421e3a2256c272226eb874c95411fda479
8dffff5ff7f2645a50fd9846198e12e4c96a91da
/18-letter-count.py
ab86a66578554a66e0cb43fd008cdfbc21744bb6
[]
no_license
akshaypawar2508/Coderbyte-pythonSol
b233c5ee0c34e0413a26b24b423dae45342b9ade
5c7d2028fe09fd02aad7808f88abc40fdea0f81e
refs/heads/master
2022-01-03T09:44:18.635060
2014-07-31T13:32:08
2014-07-31T13:32:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
274
py
def LetterCountI(str): for word in str.split(): for i in range(len(word)): if word[i] in word[i+1:]: return word return -1 # keep this function call here # to see how to enter arguments in Python scroll down print LetterCountI(raw_input())
7bfaa576b5ff7ed6b4637b78badfbcb70b512d1f
78edacedb86c5ed0570849839825be35f394a954
/python/DS_Academy/DS_Academy_Num01.py
c94ec9694164c91405d7f5e8969fb944653f21a4
[]
no_license
jihunsuk/ACMICPC
c0540a6f77d2d8ce835ba3c67d63e0c81b283e48
66849944be19b8614f9708e81e4674c26f3b94e6
refs/heads/master
2020-03-15T04:34:02.382779
2019-01-08T12:19:05
2019-01-08T12:19:05
131,968,665
0
0
null
2019-01-08T12:19:06
2018-05-03T08:57:53
Java
UTF-8
Python
false
false
2,657
py
def bfs(list, start_Node, End_Node): if start_Node == End_Node: return True else: index = list.__len__() Edge = [[0] * 100 for i in range(100)] for i in range(0, list.__len__(), 2): Edge[list[i]][list[i + 1]] = 1 visited = [start_Node] Queue = [start_Node] while Queue.__len__() is not 0: node = Queue.pop(0) for i in range(1, list.__len__(), 2): if list[i] in visited or Edge[node][list[i]] == 0: continue visited.append(list[i]) Queue.append(list[i]) if list[i] == End_Node: return True return False def is_tree(tree_candidate): check_tree = [] for i in range(0, tree_candidate.__len__()): root_Node = 0 isTree = True if tree_candidate[i].__len__() == 0: check_tree.append([root_Node, True]) elif tree_candidate[i].__len__() % 2 == 1: check_tree.append([root_Node, False]) else: NodeCount = {} anslist = [] for j in range(1, tree_candidate[i].__len__(), 2): if tree_candidate[i][j] in NodeCount.keys(): NodeCount[tree_candidate[i][j]] += 1 else: NodeCount[tree_candidate[i][j]] = 1 for j in range(0, tree_candidate[i].__len__(), 2): if NodeCount[tree_candidate[i][j+1]] >= 2: isTree = False if tree_candidate[i][j] not in NodeCount.keys(): if root_Node == 0: root_Node = tree_candidate[i][j] elif root_Node != tree_candidate[i][j]: isTree = False if isTree is True: for j in NodeCount.keys(): isTree = bfs(tree_candidate[i], root_Node, j) if isTree is False: anslist.append(0) else: anslist.append(root_Node) anslist.append(isTree) check_tree.append(anslist) return check_tree # 아래 부분은 함수의 호출과 출력을 위한 부분입니다. 수정하지 마세요 def read_inputs(): tree_candidate = [] while True: a = input() if a == '-1': break else: candidate = list(int(x) for x in a.split()) tree_candidate.append(candidate) return tree_candidate def main(): tree_candidate = read_inputs() ans = is_tree(tree_candidate) print(ans) if __name__ == "__main__": main()
dce48e066e8527b6a473d65b0a855e2f56d76723
c70c8bded973de280235a86290684eac8ecf296a
/cgi-bin/rsp_survey.py
6efe2112b2e554526c36dc3d911ede77e6dc2a52
[]
no_license
LewB/Surveyor
85fe9233258dea4304ba939f30dd6b21df88ca04
bf8d390922198e223b86eabce46f86afbea5fe14
refs/heads/master
2021-01-13T02:16:58.772874
2015-06-08T23:36:07
2015-06-08T23:36:07
32,690,111
0
3
null
2015-04-01T16:45:31
2015-03-22T18:57:07
JavaScript
UTF-8
Python
false
false
11,880
py
#!/usr/bin/env python """ This Program returns the Data for the Header and Body Elements of a Dynamically Generated HTML Survey Called by index.html""" # -*- coding: UTF-8 -*- import os # use the cgi library import cgi # enable debugging #import cgitb #cgitb.enable() # use JSON encoding import json # use python sqlite3 database import sqlite3 #from _sqlite3 import Row #Define Main Function def main(): fs = cgi.FieldStorage() #svCode = fs.getvalue("SURVEY") svPart = fs.getvalue("SVPART") svMode = fs.getvalue("SVMODE") svData = fs.getvalue("SVDATA") if svPart == None or svMode == None or svData == None: print "Content-Type: text/plain" print print "Invalid Parameter Passed to rsp_survey." return #svCode = "SVR0003" #svPart = "HEADER" #svMode = "UPD" #svData = '[{"SH_CODE":"SVR0003","SH_OWNER":"Bond","SH_STATUS":"ready","SH_TYPE":"default","SH_NAME":"RT1","SH_DESC":"Raw Test One","SH_SKIN":"default"}]' dbg = "OK" try: # connect to the database dbc = sqlite3.connect("data/rsp-survey.db") dbc.row_factory = sqlite3.Row # Unpack DATA into JSON jrows = json.loads(svData) # ****** DEL MODE ********* if svMode == "DEL": # ID Should Exist - go ahead and try to delete it if svPart == "HEADER": try: dbc.execute("DELETE FROM SURVEY_HDR WHERE ROWID=" + jrows[0]['SH_ROWID'] + ";") csr = dbc.cursor() csr.execute("SELECT ROWID FROM SURVEY_BDY WHERE ROWID=" + jrows[0]['SH_ROWID'] + ";") # Delete only if records found chkrow = csr.fetchone() if chkrow != None: dbc.execute("DELETE FROM SURVEY_BDY WHERE SB_HDR=" + jrows[0]['SH_ROWID'] + ";") dbc.commit() except (sqlite3.Error): dbg = "Failed to DELETE Survey Header Or Detail For: " + jrows[0]['SH_CODE'] raise else: # Remove Survey Database Too - If it Exists dbPath = "data/" + jrows[0]['SH_CODE'] + ".db" try: if os.access(dbPath, os.W_OK) == True: os.remove(dbPath) except OSError, e: dbg = "Error Removing DB File: " + dbPath dbg += "\nOSerr: " + e.args[1] elif svPart == "BODY": try: dbc.execute("DELETE FROM SURVEY_BDY WHERE ROWID=" + jrows[0]['SB_ROWID'] + ";") dbc.commit() except (sqlite3.Error): dbg = "Failed to DELETE Survey Detail For: " + jrows[0]['SH_CODE'] raise else: # ****** ADD OR CHANGE MODE ************************* csr = dbc.cursor() svHDR = None for row in jrows: if svPart == "BODY" and svHDR != row['SB_HDR']: # Delete Body Detail Records to Avoid Duplicate Conflicts in SB_HDR/SB_SEQ Key try: dbc.execute("DELETE FROM SURVEY_BDY WHERE SB_HDR=" + row['SB_HDR'] + ";") dbc.commit() except (sqlite3.Error): dbg = "Failed to DELETE Survey Detail For SB_HDR: " + row['SH_HDR'] raise # Set svHDR to Current Value svHDR = row['SB_HDR'] if svPart == "HEADER": # execute SQL SELECT on CGI values csr.execute("SELECT ROWID FROM SURVEY_HDR WHERE ROWID=" + row['SH_ROWID'] + ";") # get first DB table row from cursor after select chkrow = csr.fetchone() if chkrow == None: # No record Exists - go ahead and try to ADD it try: dbc.execute("INSERT INTO SURVEY_HDR \ (SH_CODE, SH_OWNER, SH_STATUS, SH_TYPE, \ SH_NAME, SH_DESC, SH_SKIN) \ VALUES ('" + row['SH_CODE'] + "', '" \ + row['SH_OWNER'] + "', '" \ + row['SH_STATUS'] + "', '" \ + row['SH_TYPE'] + "', '" \ + row['SH_NAME'] + "', '" \ + row['SH_DESC'] + "', '" \ + row['SH_SKIN'] + "');") dbc.commit() # Perform a Data Load to Establish ROWID after fresh Add except (sqlite3.Error): # check for hard coded initial values to create and access database table try: dbc.execute('''CREATE TABLE IF NOT EXISTS 'SURVEY_HDR' ('SH_CODE' TEXT PRIMARY KEY NOT NULL UNIQUE, 'SH_OWNER' TEXT NOT NULL, 'SH_STATUS' TEXT, 'SH_TYPE' TEXT, 'SH_NAME' TEXT, 'SH_DESC' TEXT, 'SH_SKIN' TEXT);''') # Also assume body detail table does not exist. dbc.execute('''CREATE TABLE IF NOT EXISTS SURVEY_BDY `SB_HDR` INTEGER NOT NULL, `SB_SEQ` INTEGER NOT NULL, `SB_TYPE` TEXT NOT NULL DEFAULT 'default', `SB_TITLE` TEXT NOT NULL, `SB_DESC` TEXT, `SB_LABEL` TEXT, `SB_MIN` INTEGER DEFAULT 1, `SB_MAX` INTEGER DEFAULT 5, `SB_BTN_1` TEXT DEFAULT 'Submit', `SB_BTN_2` TEXT, `SB_BTN_3` TEXT, PRIMARY KEY(SB_HDR,SB_SEQ);''') dbc.execute("INSERT INTO SURVEY_HDR \ (SH_CODE, SH_OWNER, SH_STATUS, SH_TYPE, \ SH_NAME, SH_DESC, SH_SKIN) \ VALUES ('" + row['SH_CODE'] + "', '" \ + row['SH_OWNER'] + "', '" \ + row['SH_STATUS'] + "', '" \ + row['SH_TYPE'] + "', '" \ + row['SH_NAME'] + "', '" \ + row['SH_DESC'] + "', '" \ + row['SH_SKIN'] + "');") dbc.commit() except (sqlite3.Error): dbg = "ERR:Failed to Create Initial DB Tables: " + e.args[0] raise else: # Have a record match so Change it. try: dbc.execute("UPDATE SURVEY_HDR SET " \ + "SH_CODE='" + row['SH_CODE'] + "'," \ + "SH_OWNER='" + row['SH_OWNER'] + "'," \ + "SH_STATUS='" + row['SH_STATUS'] + "'," \ + "SH_TYPE='" + row['SH_TYPE'] + "'," \ + "SH_NAME='" + row['SH_NAME'] + "'," \ + "SH_DESC='" + row['SH_DESC'] + "'," \ + "SH_SKIN='" + row['SH_SKIN'] + "' " \ + "WHERE ROWID=" + row['SH_ROWID'] + ";") dbc.commit() except (sqlite3.Error): dbg = "Failed to CHANGE Survey: " + row['SH_CODE'] + " in DB SURVEY_HDR Table." raise elif svPart == "BODY": #csr.execute("SELECT SB_HDR, SB_SEQ FROM SURVEY_BDY WHERE (ROWID=" + row['SB_ROWID'] + ");") # get first DB table row from cursor after select #chkrow = csr.fetchone() #if chkrow == None: # No record Exists - go ahead and try to ADD it try: # All Records for that Header were Deleted, So Insert All New Records # To Avoid SB_HDR/SB_SEQ Key Conflicts dbc.execute("INSERT INTO SURVEY_BDY \ (SB_HDR, SB_SEQ, SB_TYPE, SB_TITLE, SB_DESC, SB_LABEL, SB_MIN, \ SB_MAX, SB_BTN_1, SB_BTN_2, SB_BTN_3) \ VALUES (" + row['SB_HDR'] + ", " \ + row['SB_SEQ'] + ", '" \ + row['SB_TYPE'] + "', '" \ + row['SB_TITLE'] + "', '" \ + row['SB_DESC'] + "', '" \ + row['SB_LABEL'] + "', " \ + row['SB_MIN'] + ", " \ + row['SB_MAX'] + ", '" \ + row['SB_BTN_1'] + "', '" \ + row['SB_BTN_2'] + "', '" \ + row['SB_BTN_3'] + "');") dbc.commit() except (sqlite3.Error): dbg = "Failed to ADD Survey Detail to DB SURVEY_BDY Table." raise #else: # Have a record match so Change it. # try: # dbc.execute("UPDATE SURVEY_BDY SET " \ # + "SB_HDR=" + row['SB_HDR'] + "," \ # + "SB_SEQ=" + row['SB_SEQ'] + "," \ # + "SB_TYPE='" + row['SB_TYPE'] + "'," \ # + "SB_TITLE='" + row['SB_TITLE'] + "'," \ # + "SB_DESC='" + row['SB_DESC'] + "'," \ # + "SB_LABEL='" + row['SB_LABEL'] + "'," \ # + "SB_MIN=" + row['SB_MIN'] + "," \ # + "SB_MAX=" + row['SB_MAX'] + "," \ # + "SB_BTN_1='" + row['SB_BTN_1'] + "'," \ # + "SB_BTN_2='" + row['SB_BTN_2'] + "'," \ # + "SB_BTN_3='" + row['SB_BTN_3'] + "'" \ # + "WHERE (ROWID=" + row['SB_ROWID'] + ");") # dbc.commit() # except (sqlite3.Error): # dbg = "Failed to CHANGE Survey Detail in DB SURVEY_BDY Table." # raise except sqlite3.Error, e: # Handle Exceptions if dbc: dbc.rollback() dbg += "\nDB Err: " + e.args[0] finally: if dbc: dbc.close() # # Print HTTP Response text: "OK" if no errors, else error string. # Variable "dbg" will be set to either condition. # print "Content-Type: text/plain" print print dbg # Run The Program main()
b1a8ca498ec8f78dd664b8dbd97f237e390a7b1c
499a6a8f078dc337f109f84142d1c16b8b613415
/1. poglavlje/5.py
6811ace14eee6a0be36f840b6d22e628a4a38906
[]
no_license
renatasokol/Srce-D460
ff92a80eaf63bdd69465e5a2d11888b58040b707
6ab9f0373885d968dcd2a008f02f46e79d8099d3
refs/heads/master
2020-08-18T11:39:31.657164
2019-09-02T16:04:41
2019-09-02T16:04:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
107
py
broj = input("Unesite broj: ") broj = int(broj) print("Paran!") if (broj % 2 == 0) else print("Neparan!")
b14e46e32da98ddb6e1b28c189f1bf4d9b85ba5c
017f49596bba7f16c2e35a34c5b5c0546ca3eb8f
/AutoNav/autonav.py
f081bcd48e97ada88572207240beba7cce26229c
[]
no_license
MichaelCStrauss/ECE4078_Lab
f349b4f47abdd0bd2b5fa3b43feeef342f59b5de
43bc39e34c5ffef9cb91da2ff35c459bf556269b
refs/heads/master
2023-01-11T03:41:35.615187
2020-11-08T10:49:14
2020-11-08T10:49:14
286,386,837
0
0
null
2020-08-10T05:45:08
2020-08-10T05:45:07
null
UTF-8
Python
false
false
25,835
py
# Manually drive the robot inside the arena and perform SLAM using ARUCO markers # TODO: # - increase turning speed greatly # - maybe increase forward speed (calibration) # - add to readme that we don't use FPS and use real time instead # - maybe investigate glitching?? # Import packages import numpy as np import matplotlib.pyplot as plt import os, sys import json import math # Import keyboard teleoperation components import penguinPiC import keyboardControlStarter as Keyboard # Import SLAM components sys.path.insert(0, "{}/slam".format(os.getcwd())) import slam.Slam as Slam import slam.Robot as Robot import slam.aruco_detector as aruco import cv2 import cv2.aruco as cv2_aruco import slam.Measurements as Measurements import time from yolo import YoloV5 import warnings warnings.filterwarnings("ignore") # camera calibration parameters (from M2: SLAM) camera_matrix = np.loadtxt( "calibration/camera_calibration/intrinsic.txt", delimiter="," ) dist_coeffs = np.loadtxt("calibration/camera_calibration/distCoeffs.txt", delimiter=",") marker_length = 0.1 # wheel calibration parameters (from M2: SLAM) wheels_scale = np.loadtxt("calibration/wheel_calibration/scale.txt", delimiter=",") wheels_width = np.loadtxt("calibration/wheel_calibration/baseline.txt", delimiter=",") # display window for visulisation cv2.namedWindow("video", cv2.WINDOW_NORMAL) cv2.setWindowProperty("video", cv2.WND_PROP_AUTOSIZE, cv2.WINDOW_AUTOSIZE) # font display options font = cv2.FONT_HERSHEY_SIMPLEX location = (0, 0) font_scale = 1 font_col = (255, 255, 255) line_type = 2 ip = [(None, 3), (17, 5)] skip_survey = [] # Manual SLAM class Operate: def __init__(self, datadir, ppi): # Initialise self.ppi = ppi self.ppi.set_velocity(0, 0) self.img = np.zeros([240, 320, 3], dtype=np.uint8) self.aruco_img = np.zeros([240, 320, 3], dtype=np.uint8) # Keyboard teleoperation components self.keyboard = Keyboard.Keyboard(self.ppi) # Get camera / wheel calibration info for SLAM camera_matrix, dist_coeffs, scale, baseline = self.getCalibParams(datadir) # SLAM components self.pibot = Robot.Robot(baseline, scale, camera_matrix, dist_coeffs) self.aruco_det = aruco.aruco_detector(self.pibot, marker_length=0.1) self.slam = Slam.Slam(self.pibot) self.markers_travelled_to = [] self.paths = [] self.current_marker = None self.spinning = True self.frames = 0 self.markers_seen_at_step = [] self.yolo = YoloV5("./weights.pt", "cuda") # TODO: Fix device self.run_start = time.time() self.keyboard_controlled = False self.manual = False # def __del__(self): # self.ppi.set_velocity(0, 0) def getCalibParams(self, datadir): # Imports camera / wheel calibration parameters fileK = "{}camera_calibration/intrinsic.txt".format(datadir) camera_matrix = np.loadtxt(fileK, delimiter=",") fileD = "{}camera_calibration/distCoeffs.txt".format(datadir) dist_coeffs = np.loadtxt(fileD, delimiter=",") fileS = "{}wheel_calibration/scale.txt".format(datadir) scale = np.loadtxt(fileS, delimiter=",") fileB = "{}wheel_calibration/baseline.txt".format(datadir) baseline = np.loadtxt(fileB, delimiter=",") return camera_matrix, dist_coeffs, scale, baseline def get_camera(self): # get current frame curr = self.ppi.get_image() # visualise ARUCO marker detection annotations aruco_params = cv2_aruco.DetectorParameters_create() aruco_params.minDistanceToBorder = 0 aruco_params.adaptiveThreshWinSizeMax = 1000 aruco_dict = cv2_aruco.Dictionary_get(cv2.aruco.DICT_4X4_100) corners, ids, rejected = cv2_aruco.detectMarkers( curr, aruco_dict, parameters=aruco_params ) rvecs, tvecs, _ = cv2.aruco.estimatePoseSingleMarkers( corners, marker_length, camera_matrix, dist_coeffs ) return corners, ids, rejected, rvecs, tvecs def pause(self, pause_time=0.5, speeds=None): time_start = time.time() self.time_prev = time.time() real_time_factor = 0.5 if speeds is not None: self.ppi.set_velocity(speeds[0], speeds[1]) while time.time() - time_start < pause_time: time_now = time.time() dt = time_now - self.time_prev dt *= real_time_factor self.time_prev = time_now self.ppi.set_velocity(0, 0) self.step(0, 0, dt) def rotate(self, model_theta, pause_theta, spin_direction=1): wheel_vel = 30 d_theta = abs(model_theta - pause_theta) lv, rv = -wheel_vel, wheel_vel k = 60 break_at = 24 * math.pi / 12 reduction = k if d_theta > break_at else 0 b_l = -(wheel_vel - reduction) b_r = -b_l b_l, b_r = int(b_l), int(b_r) k2 = 10 k3 = 0 y_int = 7 y_int2 = wheel_vel model_vel = ( y_int + k2 * d_theta if d_theta < math.pi / 2 else y_int2 - k3 * d_theta ) m_l = -1 * min(wheel_vel / 2, model_vel) m_r = -m_l m_l, m_r = int(m_l), int(m_r) b_l *= spin_direction b_r *= spin_direction m_l *= spin_direction m_r *= spin_direction return m_l, m_r, b_l, b_r def spinOneRotation(self): # spinning and looking for markers at each step wheel_vel = 50 self.frames += 1 spin = True spin_time = 5 fps = 30 measurements = [] seen_ids = set() moved_past_first = False real_time_factor = 0.5 self.time_prev = time.time() initial_theta = self.slam.get_state_vector()[2] pause_theta = initial_theta while spin: time_now = time.time() dt = time_now - self.time_prev dt *= real_time_factor self.time_prev = time_now model_theta = self.slam.get_state_vector()[2] m_l, m_r, b_l, b_r = self.rotate(model_theta, pause_theta) # print(f"{seen_ids=}") corners, ids, rejected, rvecs, tvecs = self.get_camera() if ids is not None: ids_in_view = [ids[i, 0] for i in range(len(ids))] for id in ids_in_view: seen_ids.add(id) self.step(m_l, m_r, dt, bot_input=(b_l, b_r)) image = self.ppi.get_image() objects = self.yolo.get_relative_locations(image) for class_id, local_x, local_y in objects: world_x, world_y = self.slam.transform_local_world_space(local_x, local_y) tag_id = self.slam.get_tag_of_object(class_id, world_x, world_y) if tag_id is None: continue seen_ids.add(tag_id) if model_theta - pause_theta > 2*math.pi: self.pause(3) pause_theta = model_theta if model_theta - initial_theta > 2 * math.pi: spin = False kboard_info = self.keyboard.get_drive_signal() if kboard_info[3] == True: spin = False self.pause() return seen_ids def get_marker_location(self, marker_id): x_list, y_list = self.slam.markers.tolist() idx = self.slam.taglist.index(marker_id) return x_list[idx], y_list[idx] def spin_to_marker(self, goal_marker_id): real_time_factor = 0.5 self.time_prev = time.time() model_theta = self.slam.get_state_vector()[2] while model_theta > math.pi: model_theta -= 2 * math.pi while model_theta < -math.pi: model_theta += 2 * math.pi try: marker_pos = self.get_marker_location(goal_marker_id) robot_pos = self.slam.robot.state[0:2] relative_angle = math.atan2( marker_pos[1] - robot_pos[1], marker_pos[0] - robot_pos[0] ) delta = relative_angle - model_theta spin_direction = 1 if delta > 0 else -1 except Exception as e: print(e) spin_direction = 1 pause_theta = model_theta while True: time_now = time.time() dt = time_now - self.time_prev dt *= real_time_factor self.time_prev = time_now print(f"turning to target {goal_marker_id}") model_theta = self.slam.get_state_vector()[2] m_l, m_r, b_l, b_r = self.rotate(model_theta, pause_theta, spin_direction) self.step(m_l, m_r, dt, bot_input=(b_l, b_r)) if abs(model_theta - pause_theta) > 2*math.pi: self.pause(2) pause_theta = model_theta if goal_marker_id > 0: # Get the ids in view corners, ids, rejected, rvecs, tvecs = self.get_camera() print(ids) if ids is None: continue ids_in_view = [ids[i, 0] for i in range(len(ids))] print(ids_in_view) if goal_marker_id in ids_in_view: break else: image = self.ppi.get_image() objects = self.yolo.get_relative_locations(image) print(objects) found = False for class_id, local_x, local_y in objects: world_x, world_y = self.slam.transform_local_world_space(local_x, local_y) tag_id = self.slam.get_tag_of_object(class_id, world_x, world_y) if tag_id == goal_marker_id: found = True break if found: break self.pause(2) adjusting = True adjusting_ticks = 0 while adjusting and adjusting_ticks < 30: time_now = time.time() dt = time_now - self.time_prev dt *= real_time_factor self.time_prev = time_now wheel_vel = 30 print(f"adjusting to target {goal_marker_id}") lv, rv = 0, 0 if goal_marker_id > 0: corners, ids, rejected, rvecs, tvecs = self.get_camera() if ids is not None: for i in range(len(ids)): idi = ids[i, 0] # Some markers appear multiple times but should only be handled once. if idi == goal_marker_id: avg_x = corners[i][0, :, 0].mean() diff_from_center = avg_x - 320 print(f"{diff_from_center}") k = 0.4 lv, rv = ( diff_from_center * k, -diff_from_center * k, ) lv, rv = int(lv), int(rv) lv = np.clip(lv, -wheel_vel, wheel_vel) rv = np.clip(rv, -wheel_vel, wheel_vel) if abs(diff_from_center) < 10: adjusting = False else: image = self.ppi.get_image() preds = self.yolo.forward(image) target_class = 0 if -10 < goal_marker_id <= -1 else 1 if preds is not None: for prediction in preds: if prediction[5] != target_class: continue diff_from_center = float(prediction[2] + prediction[0]) / 2 - 320 print(f"{diff_from_center}") k = 0.4 lv, rv = ( diff_from_center * k, -diff_from_center * k, ) lv, rv = int(lv), int(rv) lv = np.clip(lv, -wheel_vel, wheel_vel) rv = np.clip(rv, -wheel_vel, wheel_vel) if abs(diff_from_center) < 10: adjusting = False self.step(lv / 4, rv / 4, dt, bot_input=(lv, rv)) adjusting_ticks += 1 for _ in range(10): self.vision() print(self.slam.taglist) def drive_to_marker(self, goal_marker_id): real_time_factor = 0.5 prev_dist = 1e6 self.time_prev = time.time() target_location = self.get_marker_location(goal_marker_id) driving = True while driving: time_now = time.time() dt = time_now - self.time_prev dt *= real_time_factor self.time_prev = time_now wheel_vel = 65 print(f"driving to target {goal_marker_id}") lv, rv = wheel_vel, wheel_vel b_lv, b_rv = lv, rv corners, ids, rejected, rvecs, tvecs = self.get_camera() position = self.slam.robot.state[0:2] dist = (target_location[0] - position[0]) ** 2 + ( target_location[1] - position[1] ) ** 2 dist = dist ** 0.5 print(f"{dist} {ids}") threshold = 1.5 if dist < threshold or dist > prev_dist: driving = False elif dist > 1: b_lv = 75 prev_dist = dist kboard_data = self.keyboard.get_drive_signal() stop_signal = kboard_data[3] if stop_signal: break # elif dist < 1.2: # if ids is None: # driving = False # else: # ids_in_view = [ids[i, 0] for i in range(len(ids))] # if goal_marker_id not in ids_in_view: # driving = False self.step(lv, rv, dt, bot_input=(b_lv, b_rv)) self.current_marker = goal_marker_id def get_next_untravelled_marker(self, ids_in_view, mode="closes", filter=False): x_list, y_list = self.slam.markers.tolist() position = self.slam.robot.state[0:2] min_dist = 1e9 min_marker = None max_dist = -1e9 max_marker = None top_y = -1e9 top_y_marker = None for idx, (marker_x, marker_y) in enumerate(zip(x_list, y_list)): marker = self.slam.taglist[idx] if marker in self.markers_travelled_to or marker not in ids_in_view: continue if filter: f = False for marker_set in self.markers_seen_at_step: if marker in marker_set: f = True if f: continue if (self.current_marker, marker) in ip: continue dist = (marker_x - position[0]) ** 2 + (marker_y - position[1]) ** 2 dist = dist ** 0.5 dist = float(dist) if dist < min_dist: min_dist = dist min_marker = marker if dist > max_dist: max_dist = dist max_marker = marker if marker_y > top_y: top_y = marker_y top_y_marker = marker print(f"{min_marker}, {min_dist}") print(f"{max_marker}, {max_dist}") if mode == "closest": return min_marker, min_dist elif mode == "furthest": return max_marker, max_dist elif mode == "top_y": return top_y_marker, top_y def get_next_marker_up(self, ids_in_view): x_list, y_list = self.slam.markers.tolist() position = self.slam.robot.state[0:2] top_y = -1e9 top_y_marker = None for idx, (marker_x, marker_y) in enumerate(zip(x_list, y_list)): marker = self.slam.taglist[idx] if marker in self.markers_travelled_to or marker not in ids_in_view: continue if (self.current_marker, marker) in ip: continue if marker_y < position[1]: continue dist = (marker_x - position[0]) ** 2 + (marker_y - position[1]) ** 2 dist = dist ** 0.5 dist = float(dist) if marker_y > top_y: top_y = marker_y top_y_marker = marker return top_y_marker, top_y def spin_radians(self, radians): real_time_factor = 0.5 self.time_prev = time.time() model_theta = self.slam.get_state_vector()[2] spin_direction = 1 if radians > 0 else -1 start_theta = model_theta pause_theta = model_theta while True: time_now = time.time() dt = time_now - self.time_prev dt *= real_time_factor self.time_prev = time_now model_theta = self.slam.get_state_vector()[2] m_l, m_r, b_l, b_r = self.rotate(model_theta, pause_theta, spin_direction) self.step(m_l, m_r, dt, bot_input=(b_l, b_r)) if abs(model_theta - pause_theta) > math.pi: self.pause(2) pause_theta = model_theta if abs(model_theta - start_theta) > abs(radians): self.pause(2) break def control(self, lv, rv, dt, bot_input=None): # Import teleoperation control signals drive_meas = Measurements.DriveMeasurement(lv, rv, dt=dt) self.slam.predict(drive_meas) if bot_input is not None: lv = bot_input[0] rv = bot_input[1] self.ppi.set_velocity(lv, rv) def vision(self): # Import camera input and ARUCO marker info self.img = self.ppi.get_image() lms, aruco_image = self.aruco_det.detect_marker_positions(self.img) objects = self.yolo.get_relative_locations(self.img) self.slam.add_landmarks(lms, objects) # print(f'{self.slam.taglist=}, {self.slam.markers=}') self.slam.update(lms, objects) def display(self, fig, ax): # Visualize SLAM ax[0].cla() self.slam.draw_slam_state(ax[0]) ax[1].cla() ax[1].imshow(self.img[:, :, -1::-1]) plt.pause(0.01) def adjust(self): directions, move = self.keyboard.get_key_status() if not move: return current_pos = self.slam.robot.state dt = time.time() - self.time_prev speed = 0.5 * dt current_pos[0] += np.clip((directions[3] - directions[2]) * speed, -0.3, 0.3) current_pos[1] += np.clip((directions[0] - directions[1]) * speed, -0.3, 0.3) self.slam.robot.state = current_pos def step(self, lv, rv, dt, bot_input=None): print(self.slam.robot.state) print(self.slam.taglist) if not self.manual: keyboard_l, keyboard_r, adjustment, _ = self.keyboard.get_drive_signal() if adjustment: lv += int(keyboard_l / 1.5) rv += int(keyboard_r / 1.5) else: if keyboard_l != 0 or keyboard_r != 0: lv, rv, b_lv, b_rv = self.convert_keyboard_to_slam_bot(keyboard_l, keyboard_r) bot_input = b_lv, b_rv self.adjust() self.control(lv, rv, dt, bot_input) self.vision() # Save SLAM map self.write_map(self.slam) # Output visualisation self.display(self.fig, self.ax) def write_map(self, slam): map_f = "map.txt" marker_list = sorted(self.slam.taglist) with open(map_f, "w") as f: f.write("id, x, y\n") x_list, y_list = self.slam.markers.tolist() position = self.slam.robot.state[0:2] min_dist = 1e9 min_marker = None lines = [] num_sheep = 0 num_coke = 0 for idx, (marker_x, marker_y) in enumerate(zip(x_list, y_list)): marker = self.slam.taglist[idx] if marker > 0: marker = f"Marker{marker}" elif -10 < marker <= -1: num_sheep += 1 marker = f"sheep{num_sheep}" elif marker <= -10: num_coke += 1 marker = f"Coke{num_coke}" lines.append(f"{marker}, {round(marker_x, 4)}, {round(marker_y, 4)}\n") lines = sorted(lines) f.writelines(lines) return lines # f.write("\ncurrent id, accessible id, distance\n") # for path in self.paths: # line = ", ".join(path) # f.write(line + "\n") # f.close() def drive_distance(self, distance=1): # spinning and looking for markers at each step wheel_vel = 65 start = self.slam.get_state_vector()[0:2] drive = True real_time_factor = 0.5 self.time_prev = time.time() while drive: time_now = time.time() dt = time_now - self.time_prev dt *= real_time_factor self.time_prev = time_now current = self.slam.get_state_vector()[0:2] dist = (current[0] - start[0]) ** 2 + (current[1] - start[1]) ** 2 dist = dist ** 0.5 lv, rv = wheel_vel, wheel_vel b_lv, b_rv = lv + 5, rv if dist > distance: drive = False self.step(lv, rv, dt, bot_input=(b_lv, b_rv)) def check_early_exit(self): if len(self.paths) > 12 and len(self.slam.taglist) == 8: return True else: return False def run_one_iteration(self): self.seen_ids = self.spinOneRotation() manual = False target = None while True: print("Current Map:") print("".join(self.write_map(self.slam))) seen_string = "\n" for m_id in sorted(self.seen_ids): seen_string += f'{m_id} ' if m_id <= -10: seen_string += "coke " elif m_id < 0: seen_string += "sheep " try: pos = self.get_marker_location(m_id) seen_string += f"({round(pos[0], 1)}, {round(pos[1], 1)})" except ValueError: seen_string += f"(unknown)" seen_string += " || " print("Seen IDs: " + seen_string) print("Enter ID to drive to, or 'drive'") command = input() if command == "drive": manual = True break try: if int(command) in self.seen_ids: target = int(command) break except: continue if manual: self.manual_control() else: self.spin_to_marker(target) self.drive_to_marker(target) def convert_keyboard_to_slam_bot(self, lv, rv): b_lv, b_rv = lv, rv if lv == 0 or rv == 0: pass elif lv / rv > 0: lv = int(lv / 2.1) rv = int(rv / 2.1) b_lv += 15 elif lv / rv < 0: lv = int(lv / 5) rv = int(rv / 5) return lv, rv, b_lv, b_rv def manual_control(self): self.manual = True self.time_prev = time.time() while True: time_now = time.time() dt = time_now - self.time_prev lv, rv, adjust, stop = self.keyboard.get_drive_signal() if stop: break lv, rv, b_lv, b_rv = self.convert_keyboard_to_slam_bot(lv, rv) if adjust: b_lv, b_rv = 0, 0 self.step(lv, rv, dt, bot_input=(b_lv, b_rv)) self.time_prev = time_now self.manual = False def process(self): # Show SLAM and camera feed side by side self.yolo.setup() self.fig, self.ax = plt.subplots(1, 2) img_artist = self.ax[1].imshow(self.img) self.times_no_marker = 0 # Run our code while True: # self.manual_control() self.run_one_iteration() if __name__ == "__main__": # Location of the calibration files currentDir = os.getcwd() datadir = "{}/calibration/".format(currentDir) # connect to the robot ppi = penguinPiC.PenguinPi() kb = False if len(sys.argv) > 1 and sys.argv[1] == 'keyboard': print("Using keyboard!") kb = True # Perform Manual SLAM operate = Operate(datadir, ppi) operate.keyboard_controlled = kb try: operate.process() except KeyboardInterrupt: operate.ppi.set_velocity(0, 0)
0b3eeb02095fbf2030db653bc03576071c4a956a
9672fa478478085b69c7ef8f02eaa7fa0bc7767b
/symphony/cli/pyinventory/graphql/fragment/service_endpoint.py
f22a4f54006c151f24a0aaab059869fd9813ff4f
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
julianchr/magma
437a1d86490ff5f1d279cf2cd3243bbd3f22f715
f0b2ed7e08314208133cf722921d6e6ab7853825
refs/heads/master
2022-09-21T21:45:14.678593
2020-05-28T22:47:52
2020-05-28T22:49:52
267,723,888
0
0
NOASSERTION
2020-05-29T00:07:02
2020-05-29T00:07:01
null
UTF-8
Python
false
false
1,352
py
#!/usr/bin/env python3 # @generated AUTOGENERATED file. Do not Change! from dataclasses import dataclass from datetime import datetime from gql.gql.datetime_utils import DATETIME_FIELD from gql.gql.graphql_client import GraphqlClient from gql.gql.client import OperationException from gql.gql.reporter import FailedOperationException from functools import partial from numbers import Number from typing import Any, Callable, List, Mapping, Optional from time import perf_counter from dataclasses_json import DataClassJsonMixin from ..fragment.equipment_port import EquipmentPortFragment, QUERY as EquipmentPortFragmentQuery from ..fragment.service_endpoint_definition import ServiceEndpointDefinitionFragment, QUERY as ServiceEndpointDefinitionFragmentQuery QUERY: List[str] = EquipmentPortFragmentQuery + ServiceEndpointDefinitionFragmentQuery + [""" fragment ServiceEndpointFragment on ServiceEndpoint { id port { ...EquipmentPortFragment } definition { ...ServiceEndpointDefinitionFragment } } """] @dataclass class ServiceEndpointFragment(DataClassJsonMixin): @dataclass class EquipmentPort(EquipmentPortFragment): pass @dataclass class ServiceEndpointDefinition(ServiceEndpointDefinitionFragment): pass id: str definition: ServiceEndpointDefinition port: Optional[EquipmentPort]
a3919176104aa7e4ed4715c1d81b7406891c3a72
21e1c5f2065b8be5589e9b5c98881a23dc0964fc
/src/account/forms.py
045a71275e8f6960fd9ce95535d9b84bdccea21c
[]
no_license
ognanshissi/vgc-stock
1f6e898e0dcbbfe77df5589f055bb98bb7503d60
a97ede4718688c2adc4328eeacd6d1282b473be2
refs/heads/master
2020-03-11T19:00:17.344933
2018-04-19T09:49:33
2018-04-19T09:49:33
130,194,207
0
0
null
null
null
null
UTF-8
Python
false
false
3,378
py
from django import forms from django.contrib.auth import get_user_model, authenticate, password_validation from django.contrib.auth.forms import ReadOnlyPasswordHashField from django.utils.translation import ugettext as _ from django.utils.text import capfirst User = get_user_model() class AccountLoginForm(forms.Form): error_messages = { 'invalid_login': _( "Please enter a correct %(username)s and password. Note that both " "fields may be case-sensitive." ), 'inactive': _("This account is inactive."), 'access_denied': _("Votre compte n'est pas autorisé") } username = forms.CharField( required=True, label=_('Nom d\'utilisateur'), widget=forms.TextInput(attrs={ 'class': 'form-control', 'placeholder': 'Entrez votre nom d\'utilisateur', 'autofocus': True })) password = forms.CharField(label=_('Mot de passe'), required=True, widget=forms.PasswordInput(attrs={ 'class': 'form-control', 'placeholder': 'Votre mot de passe' })) def __init__(self, request=None, *args, **kwargs): """ The 'request' parameter is set for custom auth use by subclasses. The form data comes in via the standard 'data' kwarg. """ self.request = request self.user_cache = None super(AccountLoginForm, self).__init__(*args, **kwargs) # Set the label for the "username" field. self.username_field = User._meta.get_field(User.USERNAME_FIELD) # if self.fields['username'].label is None: # self.fields['username'].label = capfirst(self.username_field.verbose_name) def clean(self, *args, **kwargs): username = self.cleaned_data.get('username') password = self.cleaned_data.get('password') if username is not None and password: self.user_cache = authenticate(username=username, password=password) if self.user_cache is None: raise forms.ValidationError( self.error_messages['invalid_login'], code='invalid_login', params={'username': self.username_field.verbose_name}, ) else: self.confirm_login_allowed(self.user_cache) return self.cleaned_data def confirm_login_allowed(self, user): """ Controls whether the given User may log in. This is a policy setting, independent of end-user authentication. This default behavior is to allow login by active users, and reject login by inactive users. If the given user cannot log in, this method should raise a ``forms.ValidationError``. If the given user may log in, this method should return None. """ if not user.is_active: raise forms.ValidationError( self.error_messages['inactive'], code='inactive', ) else: if not user.is_staff: raise forms.ValidationError( self.error_messages['access_denied'], code='access_denied', ) def get_user_id(self): if self.user_cache: return self.user_cache.id return None def get_user(self): return self.user_cache
a8457deb62460f59eaaa8c13dd0a6738551e24f2
cdb2160523b3742ea058ab5c22ebf6e44cb7f87d
/Python/boj/boj11866.py
65d12b9f021991c749ccadce75963e33fb24b098
[]
no_license
ryul99/algorithm-study
68193471264a8bb249e047c922c2f66144eed6a7
d64c388ca7d0c3b01e8e8a480f5fc435772f154b
refs/heads/master
2023-03-06T14:44:24.498487
2023-02-23T21:16:35
2023-02-23T21:16:35
149,987,036
1
0
null
null
null
null
UTF-8
Python
false
false
378
py
N, K = map(int, input().split(' ')) idx = 0 people = list(range(1, N+1)) print('<', end='') while len(people) > 0: idx += 1 tmp = people[0] if idx == K: people = people[1:] idx = 0 print(tmp, end='') if len(people) > 0: print(', ', end='') continue people = people[1:] people.append(tmp) print('>', end='')
c0b7851ecfde2f392ff517edc359887e19ed383e
58e53ecfc5c58259e27d91cc1307c0477d47f1f1
/build/global_planner/catkin_generated/pkg.develspace.context.pc.py
7256f45fd0d85eb13ec52021c39744000bca24f4
[]
no_license
Abdu-lybot/AdvanDiptera_VIO
3f0deb7b749b558f08a7d7c8b9f99e3a012d9fbd
8aee5b9de6af4288b2c4489bc00dc1d4894c33cc
refs/heads/master
2023-07-17T00:31:53.680172
2021-09-06T18:14:05
2021-09-06T18:14:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
798
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "/home/lybot/AdvanDiptera_VIO/devel/.private/global_planner/include;/home/lybot/AdvanDiptera_VIO/src/navigation/global_planner/include".split(';') if "/home/lybot/AdvanDiptera_VIO/devel/.private/global_planner/include;/home/lybot/AdvanDiptera_VIO/src/navigation/global_planner/include" != "" else [] PROJECT_CATKIN_DEPENDS = "costmap_2d;dynamic_reconfigure;geometry_msgs;nav_core;navfn;nav_msgs;pluginlib;roscpp;tf2_ros".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "-lglobal_planner".split(';') if "-lglobal_planner" != "" else [] PROJECT_NAME = "global_planner" PROJECT_SPACE_DIR = "/home/lybot/AdvanDiptera_VIO/devel/.private/global_planner" PROJECT_VERSION = "1.17.1"
4ab7a3b3bff2c4d4dabc96b292f269a32f107769
25bd9825dddab4b1d8b03dfa665d5705f8574e23
/config/settings/base.py
044092a877cfabc01088822eebe2ece7a4666412
[ "BSD-3-Clause" ]
permissive
rasmus-storjohann-PG/pathways-backend
7466e99c8fcc5effbb008b909d16e5a650d4124e
524ba43cb85adbc000e4317c9b3e238001ed591b
refs/heads/master
2021-05-16T12:47:36.045957
2017-12-21T17:41:19
2017-12-21T17:41:19
105,317,742
0
0
null
2017-09-29T21:14:37
2017-09-29T21:14:37
null
UTF-8
Python
false
false
6,132
py
import environ # Three levels up from pathways-backend/config/settings/base.py gives pathways-backend/ ROOT_DIR = environ.Path(__file__) - 3 APPS_DIR = ROOT_DIR.path('main') env = environ.Env() READ_DOT_ENV_FILE = env.bool('DJANGO_READ_DOT_ENV_FILE', default=False) if READ_DOT_ENV_FILE: # Operating System Environment variables have precedence over variables defined in # the .env file, that is to say variables from the .env files will only be used if # not defined as environment variables. env_file = str(ROOT_DIR.path('.env')) print('Loading : {}'.format(env_file)) env.read_env(env_file) print('The .env file has been loaded. See base.py for more information') DJANGO_APPS = [ 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.admin', ] THIRD_PARTY_APPS = [ 'crispy_forms', # Form layouts 'allauth', # registration 'allauth.account', # registration 'allauth.socialaccount', # registration 'corsheaders', 'rest_framework', 'behave_django', 'parler', ] LOCAL_APPS = [ 'polls.apps.PollsConfig', 'locations.apps.LocationsConfig', 'organizations.apps.OrganizationsConfig', 'search.apps.SearchConfig', 'users.apps.UsersConfig', ] INSTALLED_APPS = DJANGO_APPS + THIRD_PARTY_APPS + LOCAL_APPS MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'corsheaders.middleware.CorsMiddleware', 'django.middleware.locale.LocaleMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] MIGRATION_MODULES = { 'sites': 'main.contrib.sites.migrations' } DEBUG = env.bool('DJANGO_DEBUG', False) CORS_ORIGIN_ALLOW_ALL = True FIXTURE_DIRS = ( str(APPS_DIR.path('fixtures')), ) EMAIL_BACKEND = env('DJANGO_EMAIL_BACKEND', default='django.core.mail.backends.smtp.EmailBackend') ADMINS = [ ("""PeaceGeeks""", '[email protected]'), ] MANAGERS = ADMINS TIME_ZONE = 'UTC' LANGUAGE_CODE = 'en-us' SITE_ID = 1 USE_I18N = True USE_L10N = True USE_TZ = True TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [ str(APPS_DIR.path('templates')), ], 'OPTIONS': { 'debug': DEBUG, 'loaders': [ 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', ], 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.template.context_processors.i18n', 'django.template.context_processors.media', 'django.template.context_processors.static', 'django.template.context_processors.tz', 'django.contrib.messages.context_processors.messages', ], }, }, ] STATIC_ROOT = str(ROOT_DIR('staticfiles')) STATIC_URL = '/static/' STATICFILES_DIRS = [ str(APPS_DIR.path('static')), ] STATICFILES_FINDERS = [ 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', ] MEDIA_ROOT = str(APPS_DIR('media')) MEDIA_URL = '/media/' ROOT_URLCONF = 'config.urls' LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'formatters': { 'verbose-format': { 'format': '%(levelname)s %(module)s %(message)s' }, }, 'handlers': { 'console': { 'class': 'logging.StreamHandler', }, 'verbose-console': { 'class': 'logging.StreamHandler', 'formatter': 'verbose-format' }, }, 'loggers': { 'django': { 'handlers': ['console'], 'level': 'INFO', }, 'bc211': { 'handlers': ['verbose-console'], 'level': 'DEBUG', }, 'polls': { 'handlers': ['verbose-console'], 'level': 'DEBUG', }, }, } PARLER_DEFAULT_LANGUAGE_CODE = 'en' PARLER_LANGUAGES = { 1: ( {'code': 'en',}, {'code': 'fr',}, {'code': 'nl',}, ), 'default': { 'fallbacks': ['en'], 'hide_untranslated': False, } } WSGI_APPLICATION = 'config.wsgi.application' PASSWORD_HASHERS = [ 'django.contrib.auth.hashers.Argon2PasswordHasher', 'django.contrib.auth.hashers.PBKDF2PasswordHasher', 'django.contrib.auth.hashers.PBKDF2SHA1PasswordHasher', 'django.contrib.auth.hashers.BCryptSHA256PasswordHasher', 'django.contrib.auth.hashers.BCryptPasswordHasher', ] AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] AUTHENTICATION_BACKENDS = [ 'django.contrib.auth.backends.ModelBackend', 'allauth.account.auth_backends.AuthenticationBackend', ] ACCOUNT_AUTHENTICATION_METHOD = 'username' ACCOUNT_EMAIL_REQUIRED = True ACCOUNT_EMAIL_VERIFICATION = 'mandatory' ACCOUNT_ALLOW_REGISTRATION = env.bool('DJANGO_ACCOUNT_ALLOW_REGISTRATION', True) ACCOUNT_ADAPTER = 'users.adapters.AccountAdapter' SOCIALACCOUNT_ADAPTER = 'users.adapters.SocialAccountAdapter' AUTH_USER_MODEL = 'users.User' LOGIN_REDIRECT_URL = 'users:redirect' LOGIN_URL = 'account_login' AUTOSLUG_SLUGIFY_FUNCTION = 'slugify.slugify' ADMIN_URL = r'^admin/'
1d26fc16271d8e9c4e023fb8d0548a2c7769d925
3adfa973d3c61b4f5c8ffb2e9cf7e2e7b95fe171
/1/4/9/1.4.9.py
03fe3ae71c3bfbddf9d2a4803cce1ccb1f18292a
[]
no_license
bletzacker/alyra
12b173c218a4f4d399055e2aa39e841d932169fc
30990fa823720d3555d44a0719cd46f944cc4efe
refs/heads/master
2020-04-19T12:30:04.869363
2019-03-16T12:31:37
2019-03-16T12:31:37
168,193,078
0
0
null
null
null
null
UTF-8
Python
false
false
608
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Utilisation de l'API de https://blockchain.info/ # pip install blockchain from blockchain import blockexplorer import time now = time.strftime('%Y-%m-%d %H:%M:%S UTC', time.gmtime()) height_latest_block = blockexplorer.get_latest_block().height print("Nous pouvons calculer précisément la taille de l’ensemble des en-têtes.") print("Nous multiplions la taille d'une en-tête (80 octets) par le nombre de blocs à ce jour : ",height_latest_block) print("Taille de l’ensemble des en-têtes le ", now, ": ", 80 * (height_latest_block + 1) / 1e6, "Mo")
fe09defdd2aac833ad3b706a687edfb9fd1caf69
6603c222871b2dd4df4cad5522cd1ffb764d7276
/scripts/test_params_train-1-svc_testing_kernels.py
24d8c400d6201e17dc6e7c5d23376f1f986e044a
[]
no_license
Sandman1705/Relevant-Images-in-HTML
5264c9fa078c37e2ef69b3898460f251453e9c4c
75c441f6d4262e224af38e870aaf8df7a13284b9
refs/heads/master
2020-03-16T02:09:31.330421
2018-10-04T16:21:34
2018-10-04T16:21:34
132,458,190
0
0
null
null
null
null
UTF-8
Python
false
false
548
py
import sys sys.path.insert(0, '../src') import os dir_name = os.path.dirname(sys.argv[0]) if(len(dir_name)!=0): os.chdir(os.path.dirname(sys.argv[0])) from svc_models import kernel_test import pandas as pd def main(): data = pd.read_csv("../data/imgdata_train.csv", index_col='page') results, best_params, (f1_score, acc_score) = kernel_test(data) #print("Best parameters:", best_params) #print("F1:", f1_score, "Accuracy:", acc_score) results.to_csv("results_train_1-svc_testing_kernels.csv") #if __name__ == "__main__": # main() main()
e13ddc0768f370a0fc0c229b13b9ff5493444676
9ba7138ce81f6ceb2581cb8868ebb102e4c1b31a
/other_dependency/test/test_module.py
dc18758bf81df9812dc53a45058d4560d03173fa
[]
no_license
syev/dependency
a787e0de4901872e2ae34fbb3256e6218e63b49e
38e92d198fe0cf60d7ae57b5ef631e00a083ae32
refs/heads/master
2020-04-02T03:19:22.769554
2016-07-15T15:47:23
2016-07-15T15:47:23
62,855,140
0
0
null
null
null
null
UTF-8
Python
false
false
203
py
"""Unit tests""" import unittest import other_dependency.depmodule class TestModule(unittest.TestCase): def test_something(self): self.assertEqual(other_dependency.depmodule.function(), 1)
39de5d7854f8fa71836130cc2bb246841e7677be
7ba87be3b62ebd3647762984d7190d4c0abc4aa1
/primeall.py
0e1daa4c7aeedd3b04f650688f14317ba82fc2dc
[]
no_license
pradeepdevloper1/Learn_Python_CN
7ca0d70e2cb5050bff2e090ec08cf97e4c38da2e
cf2978f52c68511cb93c03922aecae570ae9b009
refs/heads/main
2023-02-03T23:39:17.738748
2020-12-22T18:29:58
2020-12-22T18:29:58
323,703,894
0
0
null
null
null
null
UTF-8
Python
false
false
175
py
n=int(input()) k=2 while k<=n: Flag =False; d=2; while d<k: if k%d==0: Flag=True d+=1; if not(Flag): print(k) k+=1;
f5d319d69486e544284d5a391d18304dd20f00fe
d29fd8ac20bf53f366821892bf5a80005a9cef36
/tests/apps/pages_directory.py
2d096f87c51ae88ef0ebd1ac72dc6772f44a26cb
[ "MIT" ]
permissive
T4rk1n/dazzler
d325ff664c6e310374f08cea84bd53aa1ca2ca43
69c49422dc19c910445ab265b1d3481041de8f43
refs/heads/master
2023-02-11T02:39:08.423597
2021-12-06T03:16:49
2021-12-06T03:34:25
191,060,792
19
7
MIT
2023-01-23T11:02:57
2019-06-09T22:16:59
Python
UTF-8
Python
false
false
146
py
from dazzler import Dazzler app = Dazzler(__name__) app.config.pages_directory = 'page_dir' if __name__ == '__main__': app.start('--debug')
837a50e4b9f8e97ec8f304adc9d057df7917293e
dad67bd2b3bcd2e5d7db630d5ded744e57b9b57e
/algorithms/compression.py
0225e69ec47035893bde0ef98eb2fbd65804f4a8
[ "MIT" ]
permissive
jcarreiro/jmc-python
1affb26757b8df530a345c8995e6c758e7c3e2af
979c67ca489d4e80e6be96d23f8bcecacabbee59
refs/heads/master
2021-06-06T17:58:39.311612
2019-05-17T14:13:11
2019-05-17T14:13:11
14,427,501
0
0
null
null
null
null
UTF-8
Python
false
false
835
py
############################################################################## # Basic compression algorithms ############################################################################## # Prefix Codes # # 1. Every message is a leaf in a binary tree. # # 2. The code is encoded in the path from the root to the leaf (left = 0, # right = 1) # # As a result, no code is a prefix of another code. # # The average length of a code, assuming a probability distribution on the # symbols, is l = \sum_{i} p_{i} l_{i}, where p_i is the probability of the # i-th symbol, and l_i is the length of its code (the depth of the leaf). # # Source: Algorithms in the Real World lecture notes. def prefix_code(s): # build a tree with len(s) leaf nodes # now just assign symbols from s to the leaf nodes until we run out pass
14f38006d15d26343d7b1e21b00a34643f5619b1
db12d20e1e9329503af280104929de63a622b6bd
/photos/admin.py
e20da248833c7b00555a7ef4613382e20cf9c81b
[ "MIT" ]
permissive
dorothymuhonja/Gallery
61b5aee21859f563f24736d38bc8ca20df737a75
422b760fe64b6ff91398fe92edfc240817a0bce4
refs/heads/master
2023-03-29T11:11:15.572123
2021-03-24T11:37:25
2021-03-24T11:37:25
349,353,113
0
0
null
null
null
null
UTF-8
Python
false
false
167
py
from django.contrib import admin from .models import Category, Location, Image admin.site.register(Category) admin.site.register(Location) admin.site.register(Image)
18a0227d98d52769dace79cf55d75fa631b7d570
9e7c04bd4543261e4427b9f3cfa383c22ec59598
/Vistas/migrations/0008_auto_20201028_1947.py
95a4b134318d4ec39a7f25bb456855b0feb2d0c0
[]
no_license
GustavoJimenezV/PythonERP
0325a3292c65380be3ed997063a1eb64598201b8
b31e55ad5f5867debe65a0cb3dd7753289bda5d5
refs/heads/master
2023-01-10T14:26:05.040550
2020-11-05T06:19:02
2020-11-05T06:19:02
301,633,475
0
0
null
null
null
null
UTF-8
Python
false
false
1,505
py
# Generated by Django 3.1.1 on 2020-10-29 01:47 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('Vistas', '0007_auto_20201028_0207'), ] operations = [ migrations.AlterModelOptions( name='mobiliario', options={'ordering': ['Nombre'], 'verbose_name': 'Mobiliario', 'verbose_name_plural': 'Mobiliarios'}, ), migrations.AlterModelOptions( name='pago', options={'ordering': ['IdEmpleado'], 'verbose_name': 'Pago', 'verbose_name_plural': 'Pagos'}, ), migrations.AlterModelOptions( name='pedido', options={'ordering': ['Fecha'], 'verbose_name': 'Pedido', 'verbose_name_plural': 'Pedidos'}, ), migrations.AlterModelOptions( name='producto', options={'ordering': ['Nombre'], 'verbose_name': 'Producto', 'verbose_name_plural': 'Productos'}, ), migrations.AlterModelOptions( name='proveedor', options={'ordering': ['Nombre'], 'verbose_name': 'Proveedor', 'verbose_name_plural': 'Proveedores'}, ), migrations.AlterModelOptions( name='remplazo', options={'ordering': ['Descripcion'], 'verbose_name': 'Remplazo', 'verbose_name_plural': 'Remplazos'}, ), migrations.RenameField( model_name='materiaprima', old_name='Existencias', new_name='Existencia', ), ]
f2c72470a67ccb4f7257c63cbb56e7e57a4e2ecd
655b5d91011e5ac6361441b32c8b6c893815cf28
/Trees/getting_started/Level_Order_Binary_Tree_Traversal.py
4cf1707af6b06daf7cb31082bd7f6a7fde921ca8
[ "MIT" ]
permissive
abhaydhiman/Pyalgo
1bdc02d6326022ac832e20c581700d7875638380
69efdd937041548234bf67a2bd0b962b6e60a556
refs/heads/main
2023-05-10T17:56:06.005156
2021-05-19T16:38:22
2021-05-19T16:38:22
318,769,620
1
0
null
null
null
null
UTF-8
Python
false
false
888
py
class Node: def __init__(self, key) -> None: self.val = key self.left = None self.right = None def height(node): if node is None: return 0 else: lheight = height(node.left) rheight = height(node.right) if lheight > rheight: return lheight + 1 else: return rheight + 1 def printGivenLevel(node, level): if node is None: return if level == 1: print(node.val, end=' ') elif level > 1: printGivenLevel(node.left, level - 1) printGivenLevel(node.right, level - 1) def printLevelOrder(node): h = height(node) for i in range(1, h + 1): printGivenLevel(node, i) root = Node(1) root.left = Node(2) root.right = Node(3) root.left.left = Node(4) root.left.right = Node(5) # print(height(root)) printLevelOrder(root)
947d1a396be059afdf7d383c3ba8875ac7652ea0
e6342576193fd70937ab1cead8d9504f5a1a0b9b
/basic_api/admin.py
55af462e17a4184687dafcbebc6dba0b8735234e
[]
no_license
shubham1560/Django-rest-angular-frontend
41acfad812d522c12b2f2c70931bbf882e1f5f85
306151ebf772b036204bb709096b0eaea0a8d552
refs/heads/master
2020-07-15T22:08:16.271011
2019-09-19T18:40:41
2019-09-19T18:40:41
205,658,813
2
0
null
null
null
null
UTF-8
Python
false
false
121
py
from django.contrib import admin from .models import Summary # Register your models here. admin.site.register(Summary)
d32785f5251c57ca8aae7287da6d07c3ebf1e6d8
4dc686e8c2584585d7aaf9e27f82a77fb9177f40
/meetups/migrations/0003_rename_participant_meetup_participants.py
984c88b6e35497fcaccbd8b15eb156dfb2d79da4
[]
no_license
AhmedElashmawi/DevOps-Task
d7f0cc6564de265d70259d0599e7f31415ef40d4
0f56104c21f71be2fa289f43ce031618e1a5fd41
refs/heads/master
2023-07-27T02:07:09.011033
2021-09-09T23:38:28
2021-09-09T23:38:28
404,090,439
0
0
null
null
null
null
UTF-8
Python
false
false
376
py
# Generated by Django 3.2.6 on 2021-08-25 20:33 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('meetups', '0002_remove_emolyees_slug'), ] operations = [ migrations.RenameField( model_name='meetup', old_name='participant', new_name='participants', ), ]
76abc4ed71db0aea0bfe5dd5c7b26debda40e245
b0b6f5e9c5af597c1f0943d60aef49dd3b52dd3d
/videos/decorators.py
6b1d82b5cc36fcb4737cb469cd5e5eb356b54ac6
[]
no_license
dan214/Elimisha
1c917f0b3c123bcf8e328083281c035478cf4467
2c179a0bb503d3ee00fb1179444abf140d3c28cf
refs/heads/master
2021-09-26T05:15:25.566148
2021-09-16T20:40:05
2021-09-16T20:40:05
139,483,721
0
0
null
null
null
null
UTF-8
Python
false
false
1,101
py
from django.contrib.auth import REDIRECT_FIELD_NAME from django.contrib.auth.decorators import user_passes_test def student_required(function=None, redirect_field_name=REDIRECT_FIELD_NAME, login_url='login'): ''' Decorator for views that checks that the logged in user is a student, redirects to the log-in page if necessary. ''' actual_decorator = user_passes_test( lambda u: u.is_active and u.is_student, login_url=login_url, redirect_field_name=redirect_field_name ) if function: return actual_decorator(function) return actual_decorator def speaker_required(function=None, redirect_field_name=REDIRECT_FIELD_NAME, login_url='login'): ''' Decorator for views that checks that the logged in user is a teacher, redirects to the log-in page if necessary. ''' actual_decorator = user_passes_test( lambda u: u.is_active and u.is_teacher, login_url=login_url, redirect_field_name=redirect_field_name ) if function: return actual_decorator(function) return actual_decorator
fab2693211dbd0c2a860cc76f9c6560b088a2410
3486e643dc826b68fd3c7d895a8d3216492c5b66
/Tests/test_context_menu.py
9dc01ebb6e256d08e176ec392b6833319ddf2b6b
[]
no_license
maheshkafle/The-Internet-Example-Solution
773d29eee5ef62c800780c7b54608766cdb701f2
298794dbb843aeee8709aeb87bd672da5ccce51a
refs/heads/main
2023-06-16T12:09:40.729174
2021-07-17T21:08:36
2021-07-17T21:08:36
383,881,268
0
0
null
2021-07-17T21:08:36
2021-07-07T17:49:03
Python
UTF-8
Python
false
false
587
py
from selenium import webdriver from webdriver_manager.chrome import ChromeDriverManager from selenium.webdriver import ActionChains from selenium.webdriver.common.by import By """ Test Context Click Menu or Right Click Menu """ URL = "https://the-internet.herokuapp.com/context_menu" driver = webdriver.Chrome(ChromeDriverManager().install()) driver.get(URL) action_chain = ActionChains(driver) context_click_element = driver.find_element(By.ID, 'hot-spot') action_chain.context_click(context_click_element).perform() alert = driver.switch_to.alert print(alert.text) alert.accept()
c77de50c1bc3274824ecd3f3cc23faa27d6840d7
4c3dd270440c48a0a8e87d1937844371476f7cef
/resource_wrangler/scripts/download_mods.py
cb42130c64e1983371fe8880c460d6c88f9945b7
[]
no_license
Soartex-Modded/Resource-Wrangler
f84726bf5ffb246d8562149fb6cc0a613a4f4043
36c6f7059bb876e034c99d5e02fca1cf81888dac
refs/heads/master
2023-01-25T00:34:22.900581
2020-11-29T23:00:35
2020-11-29T23:00:35
309,116,894
2
1
null
null
null
null
UTF-8
Python
false
false
6,085
py
import json import math import os import requests from sqlalchemy import Table, Column, Integer, String, MetaData from sqlalchemy import create_engine from sqlalchemy.sql import select def download_mods(mods_dirs, database_path, mod_limit=100): """ Collect the top mods from CurseForge into mods_dirs :param mods_dirs: {[minor_version]: [path to mods folder]} :param database_path: path to .db file with download history (will be created if not exists) :param mod_limit: maximum number of mods to collect """ mods_dirs = {k: os.path.expanduser(v) for k, v in mods_dirs.items()} database_path = os.path.expanduser(database_path) patch_info = {} for minor_version in mods_dirs: patch_info[minor_version] = {} os.makedirs(mods_dirs[minor_version], exist_ok=True) os.makedirs(os.path.dirname(database_path), exist_ok=True) engine = create_engine('sqlite:///' + database_path) metadata = MetaData() mod_files = Table('mod_files', metadata, Column('id', Integer, primary_key=True), Column('file_name', String(250)), Column('mod_id', Integer), Column('vanilla_minor_version', Integer)) metadata.create_all(engine) headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/56.0.2924.76 Safari/537.36', } page_size = 50 mod_count = 0 # download sets of mod information at a time for page_index in range(math.ceil(mod_limit / page_size)): mods = requests.get( "https://addons-ecs.forgesvc.net/api/v2/addon/search/", params={ 'gameId': 432, 'index': page_index * page_size, 'pageSize': page_size, 'sort': 'TotalDownloads', 'sortDescending': True }, headers=headers).json() for mod_meta in mods: mod_count += 1 if mod_count > mod_limit: return if mod_meta['categorySection']['name'] != 'Mods': continue versioned_mod_files = {} for mod_file_meta in mod_meta['gameVersionLatestFiles']: tokens = mod_file_meta['gameVersion'].split('.') minor_version = int(tokens[1]) patch_version = 0 if len(tokens) == 2 else int(tokens[2]) # find latest mod files if minor_version in versioned_mod_files: if versioned_mod_files[minor_version]['patch_version'] > patch_version: continue prior_file_id = versioned_mod_files.get(minor_version, {}).get('value', {}).get('projectFileId', 0) if mod_file_meta['projectFileId'] > prior_file_id: versioned_mod_files[minor_version] = { 'patch_version': patch_version, 'value': mod_file_meta } for minor_version in versioned_mod_files: if str(minor_version) not in mods_dirs: continue mod_file_meta = versioned_mod_files[minor_version]['value'] patch_info[str(minor_version)][mod_file_meta["projectFileName"]] = { "mod_id": mod_meta['slug'], "mod_name": mod_meta['name'], # typically contains the mod version inside somewhere "mod_filename": mod_file_meta['projectFileName'], "mc_version": mod_file_meta['gameVersion'], "mod_authors": [auth['name'] for auth in mod_meta['authors']], "url_website": mod_meta['websiteUrl'], "description": mod_meta.get('summary') } available_file_name = mod_file_meta['projectFileName'] stored_file_name = engine.execute(select([mod_files.c.file_name]).where( (mod_files.c.mod_id == mod_meta['id']) & (mod_files.c.vanilla_minor_version == minor_version)) ).scalar() if stored_file_name == available_file_name: # file is already current # print(f'Skipping {mod_meta["name"]} for 1.{minor_version}') continue mod_path = os.path.join(mods_dirs[str(minor_version)], mod_file_meta['projectFileName']) if os.path.exists(mod_path): engine.execute(mod_files.insert(), file_name=available_file_name, mod_id=mod_meta['id'], vanilla_minor_version=minor_version) continue download_url = requests.get( f"https://addons-ecs.forgesvc.net/api/v2/addon/{mod_meta['id']}/file/{mod_file_meta['projectFileId']}/download-url", headers=headers).text print(f'Downloading {mod_meta["name"]} for 1.{minor_version}') with open(mod_path, 'wb') as mod_file: mod_file.write(requests.get(download_url, headers=headers).content) if stored_file_name is None: engine.execute(mod_files.insert(), file_name=available_file_name, mod_id=mod_meta['id'], vanilla_minor_version=minor_version) else: engine.execute(mod_files.update() .where((mod_files.c.mod_id == mod_meta['id']) & (mod_files.c.vanilla_minor_version == minor_version)) .values(file_name=available_file_name)) for minor_version in patch_info: with open(os.path.join(mods_dirs[str(minor_version)], "patch_info.json"), 'w') as patch_info_file: json.dump(patch_info[minor_version], patch_info_file, indent=4)
c72e3c3dcb8a88238fa6b42cb63e1df026e8c669
d2d6bbb76fd92ad596b0476b37ac8dd5cf08df14
/1.9 LISTAS.py
a97405df71a8abca906f6bf2d182f2441b9b24db
[]
no_license
edneyefs/curso_python
b917d8f2c405173af901287dab86264ff937aaa6
2c862ad62223b7c3bd0ea7d7410a9b69c38d814d
refs/heads/master
2022-12-14T21:29:59.875637
2020-08-21T12:42:07
2020-08-21T12:42:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
571
py
lista = [] print(type(lista)) print(dir(lista)) print(help(lista)) print(len(lista))#contador lista.append(1) lista.append(5) print(len(lista)) nova_lista = [1, 4, 'Ana', 'Bia'] #print(nova_lista) nova_lista.remove(4) #print(nova_lista) nova_lista.reverse() print(nova_lista) lista = [1, 5, 'Rebeca', 'Guilherme', 3.1415] print(lista.index(1)) print(lista[2]) print(lista[-1]) lista = ['Ana', 'Lia', 'Rui', 'Paulo', 'Dani'] print(lista[1:3]) print(lista[1:-1]) print(lista[1:]) print(lista[::2]) print(lista[::-1]) del lista[2] print(lista) del lista[1:] print(lista)
e2543c1d836b4e07c2c56809cb5ccd62c0e46a2c
6c7412abde7b4e65b751b6862f7ea66f0a24b9f0
/pf_tests.py
d91a5b790db378d1db5539cfddc47cc9b53e97a2
[]
no_license
SundropFuels/project-finance
c030112b015a6c2c82d74b8c78b4ba37d773383b
5a49c7c9885f453828b5e43cd27564e3f4c95b23
refs/heads/master
2021-01-20T10:56:37.159616
2015-04-25T19:59:04
2015-04-25T19:59:04
10,133,253
0
0
null
null
null
null
UTF-8
Python
false
false
117
py
import unittest from capex_tests import * from loan_tests import * if __name__ == "__main__": unittest.main()
311b92c0e6dd038422f4fe578243ed511d7603e1
3d5e26af890495bf1ed137af789dc61e4a61442f
/prestamo/migrations/0001_initial.py
4c71cb423e43354399e55e3bea08d8f036310492
[]
no_license
andchaves/recursos
187ba4bfa5ced1531526c763eea2a72f9b70d3d6
6f98cc83a1b0e8524e516a28e65d94cb903608fd
refs/heads/master
2021-08-20T09:22:07.303926
2017-11-28T19:16:43
2017-11-28T19:16:43
112,377,851
0
0
null
null
null
null
UTF-8
Python
false
false
1,761
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.5 on 2017-11-25 20:55 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Cliente', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('nombre', models.CharField(max_length=50)), ('apellido', models.CharField(max_length=50)), ], ), migrations.CreateModel( name='Formulario', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('conceptoPrestamo', models.CharField(max_length=1000)), ('fechaPrestamo', models.DateTimeField()), ('fechaDevolucion', models.DateTimeField()), ('nombreCliente', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='prestamo.Cliente')), ], ), migrations.CreateModel( name='Recurso', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('nombre_recurso', models.CharField(max_length=50)), ('cantidad', models.IntegerField()), ], ), migrations.AddField( model_name='formulario', name='nombreRecurso', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='prestamo.Recurso'), ), ]
c009a684dee20066dc3b9eb52828169dc7772e13
908bd9a40dd34c788595643586e7231c5aa32d76
/learning_logs/migrations/0010_auto_20190326_2207.py
3a0dab48978800b18290417c835523c568088bf5
[]
no_license
tpchencn/myweb
625257541ec3c874ff9839c370e274f5887987ad
8915857873d6a52b0803cbb19fe5fe7e123b366a
refs/heads/master
2020-05-01T15:23:58.271045
2019-04-28T14:14:58
2019-04-28T14:14:58
177,545,361
0
0
null
null
null
null
UTF-8
Python
false
false
905
py
# Generated by Django 2.1.7 on 2019-03-26 14:07 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('learning_logs', '0009_remove_entry_text'), ] operations = [ migrations.CreateModel( name='Books', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('text', models.CharField(max_length=200)), ('date_added', models.DateTimeField(auto_now_add=True)), ], ), migrations.AlterModelOptions( name='readnote', options={'verbose_name_plural': 'Books'}, ), migrations.AlterField( model_name='readnote', name='topic', field=models.ForeignKey(on_delete=True, to='learning_logs.Books'), ), ]
d469fbea7eb9b0326c4fae0374ee749cb83bf42b
8adea6649ec3d5b62477db4b65367fca889cc650
/hello.py
2fb572ac053d7628b1ed6e2f1a32631a28a18f74
[]
no_license
hshar94/devopssol
ad0d0c95d62281f30cab4b81afcafb5bcd61f400
2903101220a9c170c925ad5659d1156f3b8ab330
refs/heads/master
2023-05-22T21:44:31.283234
2021-06-13T10:29:03
2021-06-13T10:29:03
375,890,896
0
0
null
null
null
null
UTF-8
Python
false
false
333
py
from flask import Flask from flask import render_template from flask import request app = Flask(__name__) @app.route("/", methods=['GET', 'POST']) def hello_world(): return "<h1>HHHello World from intellipaat!!@@ from Kubernetes from github!</h1>" if __name__ == '__main__': app.run(host='0.0.0.0', port=80, debug=True)
548980782c09a047bbcc43b0e12a6dae822cdcc6
ed1d841dbd836f5a02a8b2c22bcc92380f28d11b
/seed.py
9b08aa64301e4ced1c79ad9d8a6e7a7e4658118c
[]
no_license
GraceDurham/ratings
b063389f368f0b3994f0771ca4cac46555a04a10
2e628c2a824ca5a10879a15282cd60e21695322b
refs/heads/master
2020-05-23T07:59:29.310561
2017-02-03T02:00:36
2017-02-03T02:00:36
80,483,352
0
0
null
null
null
null
UTF-8
Python
false
false
3,894
py
"""Utility file to seed ratings database from MovieLens data in seed_data/""" from sqlalchemy import func from model import User from model import Rating from model import Movie from datetime import datetime from model import connect_to_db, db from server import app def load_users(): """Load users from u.user into database.""" print "Users" # Delete all rows in table, so if we need to run this a second time, # we won't be trying to add duplicate users User.query.delete() # Read u.user file and insert data for row in open("seed_data/u.user"): row = row.rstrip() user_id, age, gender, occupation, zipcode = row.split("|") user = User(user_id=user_id, age=age, zipcode=zipcode) # We need to add to the session or it won't ever be stored db.session.add(user) # Once we're done, we should commit our work db.session.commit() def load_movies(): """Load movies from u.item into database.""" print "Movies" # Delete all rows in table, so if we need to run this a second time, # we won't be trying to add duplicate users Movie.query.delete() # Read u.user file and insert data for row in open("seed_data/u.item"): # striped the whitespace row = row.rstrip() # print "each row!", row # we took the row and split it on the pipe row_split = row.split("|") # print "it's splitted!!", row_split # sliced the giant list into only 0-4 index first_five = row_split[:5] # print "this is our short list", first_five # unpacked the first five items from the u.item list movie_id, title, released_at, empty, imdb_url = first_five # print first_five #Boolean if released at is not an empty string evaluates true #set string to datetime object # else make datetime equal none if no value is present in release at if released_at: released_at = datetime.strptime(released_at, "%d-%b-%Y") else: released_at = None title = title[:-7] # (year) ==7 movie = Movie(movie_id=movie_id, title=title, released_at=released_at, imdb_url=imdb_url) # We need to add to the session or it won't ever be stored db.session.add(movie) # Once we're done, we should commit our work db.session.commit() def load_ratings(): """Load ratings from u.data into database.""" print "Ratings" # Delete all rows in table, so if we need to run this a second time, # we won't be trying to add duplicate users Rating.query.delete() # Read u.user file and insert data for row in open("seed_data/u.data"): row = row.strip().split() user_id, movie_id, score, time_stamp = row # print row rating = Rating( user_id=int(user_id), movie_id=int(movie_id), score=int(score)) # We need to add to the session or it won't ever be stored db.session.add(rating) # Once we're done, we should commit our work db.session.commit() def set_val_user_id(): """Set value for the next user_id after seeding database""" # Get the Max user_id in the database result = db.session.query(func.max(User.user_id)).one() max_id = int(result[0]) # Set the value for the next user_id to be max_id + 1 query = "SELECT setval('users_user_id_seq', :new_id)" db.session.execute(query, {'new_id': max_id + 1}) db.session.commit() if __name__ == "__main__": connect_to_db(app) # In case tables haven't been created, create them db.create_all() # Import different types of data load_users() load_movies() load_ratings() set_val_user_id()
ce74869dfba1ac197d3fa552de5a0282de7b1254
53f8d420057b7f7d403b29e7f1f827df9d422b6b
/Solver.py
df2fdc813406b58432dad9f76aec07f90861e100
[]
no_license
won2930015/PyCharm_test2
3fc403fef278d5a5e8168cba5cdc8c32f0788f2e
11ec6f8ef103d6be63e7090f9003f58778616024
refs/heads/master
2020-04-09T22:29:36.792077
2018-12-19T03:33:36
2018-12-19T03:33:36
160,629,898
0
0
null
null
null
null
UTF-8
Python
false
false
587
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import math class Solver(object): # <editor-fold desc="Description"> def demo(self, a, b, c): # a = int(input('a:')) # b = int(input('b:')) # c = int(input('c:')) d = b ** 2 - 4 * a * c if d >= 0: disc=math.sqrt(d) root3 = (-b + disc) / (2 * a) root2 = (-b - disc) / (2 * a) print(root3, root2) else: raise Exception # print('error') print('ok') Solver().demo(2, 1, 0) # 注释 # # Solver.calculate123()
f613a28a68ddb2b2e13f560c935d205ae1a933bc
e124468b63af504f0a52d8c23a7b4d5441104c21
/ecommerce/store/views.py
c1765c582c3640559d8662a9e7797f49fff52cae
[]
no_license
arpitgupta30/Ecommerce-Website
568d1fe6c7a089686b5796e4b84a5bbf8f2d147b
39777cf843dab375765e5a646e44afea2af349a7
refs/heads/master
2022-11-05T02:04:15.249516
2020-06-18T10:27:17
2020-06-18T10:27:17
269,936,954
0
0
null
null
null
null
UTF-8
Python
false
false
2,836
py
from django.shortcuts import render from django.http import JsonResponse from .models import * import json import datetime from . utils import cookieCart, cartData, guestOrder # Create your views here. def store(request): products = Product.objects.all() data = cartData(request) items = data['items'] order = data['order'] cart_total = data['cart_total'] context = {'products': products, 'cart_total': cart_total} return render(request, 'store/store.html', context) def cart(request): data = cartData(request) items = data['items'] order = data['order'] cart_total = data['cart_total'] context = {'items': items, 'order': order, 'cart_total':cart_total } return render(request, 'store/cart.html', context) def checkout(request): data = cartData(request) items = data['items'] order = data['order'] cart_total = data['cart_total'] context = {'items': items, 'order': order, 'cart_total': cart_total, } return render(request, 'store/checkout.html', context) def updateItem(request): data = json.loads(request.body) productId = data['productId'] action = data['action'] customer = request.user.customer product = Product.objects.get(id = productId) order, created = Order.objects.get_or_create(customer = customer, complete = False) orderItem, created = OrderItem.objects.get_or_create(order = order, product = product) if action == 'add': orderItem.quantity = orderItem.quantity+1 elif action == 'remove': orderItem.quantity = orderItem.quantity-1 orderItem.save() if orderItem.quantity<=0: orderItem.delete() return JsonResponse("Data was added", safe=False) def processOrder(request): transaction_id = datetime.datetime.now().timestamp() data = json.loads(request.body) if request.user.is_authenticated: customer = request.user.customer order, created = Order.objects.get_or_create(customer = customer, complete = False) else: customer, order = guestOrder(request, data) total = float(data['form']['total']) order.transaction_id = transaction_id if(total == order.get_total_price): order.complete = True order.save() if order.shipping == True: ShippingAddress.objects.create( customer= customer, order= order, address= data['shipping']['address'], city= data['shipping']['city'], state= data['shipping']['state'], zipcode = data['shipping']['zipcode'] ) return JsonResponse("Payment was completed", safe = False)
6ceb6080895456a03be17937d08324d6464f3e4f
f15f4e4ae7861e8a854c6bc10a47c4c0aaebe712
/scripts/dist-git/pkgdb_gen_gitolite_conf.py
255ad05146ffd01bf524d2d10c2af8fd8161deee
[]
no_license
asamalik/dist-git
825c5e225e714ec89737ac4cacbb574fecfd95c5
71fea916ab829d19f6c11fcfe49a8cd31f813ccb
refs/heads/master
2020-12-25T19:15:14.620146
2015-04-27T18:48:29
2015-04-27T18:48:29
32,317,420
1
0
null
null
null
null
UTF-8
Python
false
false
4,244
py
#!/usr/bin/python -t # # Create an /etc/gitolog/conf/getolog.conf file with acls for dist-git # # Takes no arguments! # import grp import sys import requests from ConfigParser import ConfigParser def _get_conf(cp, section, option, default): if cp.has_section(section) and cp.has_option(section, option): return cp.get(section, option) return default if __name__ == '__main__': config = ConfigParser() config.read("/etc/dist-git/dist-git.conf") user_groups = _get_conf(config, "acls", "user_groups", "").split(",") admin_groups = _get_conf(config, "acls", "admin_groups", "").split(",") ACTIVE = _get_conf(config, "acls", "active_branches", "").split(",") RESERVED = _get_conf(config, "acls", "reserved_branches", "").split(",") pkgdb_acls_url = _get_conf(config, "acls", "pkgdb_acls_url", "") pkgdb_groups_url = _get_conf(config, "acls", "pkgdb_groups_url", "") # Read the ACL information from the packageDB data = requests.get(pkgdb_acls_url).json() # Get a list of all the packages acls = data['packageAcls'] pkglist = data['packageAcls'].keys() pkglist.sort() # sanity check #if len(pkglist) < 2500: # sys.exit(1) # get the list of all groups pkgdb_groups = requests.get(pkgdb_groups_url).json() # print out our user groups for group in user_groups + pkgdb_groups["groups"]: print "@{0} = {1}".format(group, " ".join(grp.getgrnam(group)[3])) # Give a little space before moving onto the permissions print '' # print our default permissions print 'repo @all' print ' - VREF/update-block-push-origin = @all' if admin_groups: print ' RWC = @{}'.format(" @".join(admin_groups)) print ' R = @all' #print ' RW private- = @all' # dont' enable the above until we prevent building for real from private- for pkg in pkglist: branchAcls = {} # Check whether we need to set separate per branch acls buffer = [] # Buffer the output per package masters = [] # Folks that have commit to master writers = [] # Anybody that has write access # Examine each branch in the package branches = acls[pkg].keys() branches.sort() for branch in branches: if not branch in ACTIVE: continue if 'packager' in acls[pkg][branch]['commit']['groups']: # If the packager group is defined, everyone has access buffer.append(' RWC %s = @all' % (branch)) branchAcls.setdefault('@all', []).append((pkg, branch)) if branch == 'master': masters.append('@all') if '@all' not in writers: writers.append('@all') else: # Extract the owners committers = [] owners = acls[pkg][branch]['commit']['people'] owners.sort() for owner in owners: committers.append(owner) for group in acls[pkg][branch]['commit']['groups']: committers.append('@%s' % group) if branch == 'master': masters.extend(committers) # add all the committers to the top writers list for committer in committers: if not committer in writers: writers.append(committer) # Print the committers to the acl for this package-branch committers = ' '.join(committers) buffer.append(' RWC %s = %s' % (branch, committers)) branchAcls.setdefault(committers, []).append((pkg, branch)) print print 'repo %s' % pkg #if len(branchAcls.keys()) == 1: # acl = branchAcls.keys()[0] # print ' RW = %s' % acl #else: print '\n'.join(buffer) for reserved in RESERVED: print ' - %s = @all' % reserved print ' RWC refs/tags/ = %s' % ' '.join(writers) if masters: print ' RWC = %s' % ' '.join(masters) sys.exit(0)
b36df7b0192a1496fa338fe4bd31bcf8c9822f46
d60e23026d717942466dd363e4822da7b00f6320
/web/tests/apps/partner/test_views.py
52cd9892c46eb5eeb0d9cd68330792801dddae95
[ "BSD-3-Clause" ]
permissive
sidneijp/zedev
190f59d9b5551137eabe948d0bf816c32fcb7782
75d6a83d08febb795f862627811925ea18f89fca
refs/heads/master
2023-01-01T20:59:41.942026
2020-10-23T23:01:12
2020-10-23T23:01:12
303,247,331
0
0
null
null
null
null
UTF-8
Python
false
false
3,777
py
import json from django.contrib.gis.geos import Point, GEOSGeometry from django.urls import reverse import pytest from apps.partner import factories, views, models class TestViews: def setup(self): self.point = Point(15.0, 10.0, srid=4326) self.coverageArea = GEOSGeometry(json.dumps({ "type": "MultiPolygon", "coordinates": [ [ [ [30.0, 20.0], [45.0, 40.0], [10.0, 40.0], [30.0, 20.0] ] ], [ [ [15.0, 5.0], [40.0, 10.0], [10.0, 20.0], [5.0, 10.0], [15.0, 5.0] ] ] ] })) self.another_coverageArea = GEOSGeometry(json.dumps({ "type": "MultiPolygon", "coordinates": [ [ [ [-30.0, -20.0], [-45.0, -40.0], [-10.0, -40.0], [-30.0, -20.0] ] ], [ [ [-15.0, -5.0], [-40.0, -10.0], [-10.0, -20.0], [-5.0, -10.0], [-15.0, -5.0] ] ] ] })) self.view = views.PartnerViewSet() self.view.kwargs = {'coordinates': f'{self.point.x},{self.point.y}'} @pytest.mark.unittest def test_get_point_from_lookup(self): expected = self.point point = self.view.get_point_from_lookup() assert point == expected @pytest.mark.integration @pytest.mark.django_db def test_get_nearest(self, client): instance = factories.PartnerFactory.create( address=self.point, coverageArea=self.coverageArea ) url = reverse('partner-nearest-detail', kwargs=self.view.kwargs) response = client.get(url) data = response.json() assert data.get('id') == instance.pk @pytest.mark.integration @pytest.mark.django_db def test_get_partner(self, client): instance = factories.PartnerFactory.create( address=self.point, coverageArea=self.coverageArea ) url = reverse('partner-detail', kwargs={'pk': instance.pk}) response = client.get(url) data = response.json() assert data.get('id') == instance.pk @pytest.mark.integration @pytest.mark.django_db def test_list_partners(self, client): expected = 5 factories.PartnerFactory.create_batch( expected, address=self.point, coverageArea=self.coverageArea ) url = reverse('partner-list') response = client.get(url) data = response.json() assert len(data) == expected @pytest.mark.integration @pytest.mark.django_db def test_list_nearest_partners(self, client): expected = 5 factories.PartnerFactory.create_batch( expected, address=self.point, coverageArea=self.coverageArea ) factories.PartnerFactory.create_batch( expected, address=self.point, coverageArea=self.another_coverageArea ) url = reverse('partner-list') url = url + '?address={ "type": "Point", "coordinates": [15, 10] }' response = client.get(url) data = response.json() assert len(data) == expected
38af83d170297d348201ba84ec024ff6782f1b88
e6dab5aa1754ff13755a1f74a28a201681ab7e1c
/.parts/lib/django-1.4/tests/regressiontests/admin_custom_urls/urls.py
12f440e54206905c1883af69161ca4715a9ff7be
[]
no_license
ronkagan/Euler_1
67679203a9510147320f7c6513eefd391630703e
022633cc298475c4f3fd0c6e2bde4f4728713995
refs/heads/master
2021-01-06T20:45:52.901025
2014-09-06T22:34:16
2014-09-06T22:34:16
23,744,842
0
1
null
null
null
null
UTF-8
Python
false
false
113
py
/home/action/.parts/packages/googleappengine/1.9.4/lib/django-1.4/tests/regressiontests/admin_custom_urls/urls.py
ca016bd689fb246e19dc877a574e00c0cd0e1ec1
2b6e1b7bd7065229054b4cdecd40daa5e251c22d
/src/models/dqn.py
4195fc5933776981002b4d8d68a69c1ac3b934bb
[]
no_license
raufer/deep-q-learning
b9be99c41829e8d62cd350cd279e5ddc135e7809
c31b8803a45bcf1f22f1c4552daf48b9a284dd5c
refs/heads/main
2023-06-19T06:01:49.867163
2021-07-20T13:35:30
2021-07-20T13:35:30
379,271,213
0
0
null
null
null
null
UTF-8
Python
false
false
3,506
py
import torch import torch.nn as nn import torch.nn.functional as F from src.config import config class DQN(nn.Module): """ Assumption: the environment is deterministic so all equations presented here are also formulated deterministically for the sake of simplicity. In the reinforcement learning literature, they would also contain expectations over stochastic transitions in the environment. Our aim is to train a policy that tries to maximize the discounter, cumulative reward R = sum_{t=t0}^{inf} 𝛾^t * r_t The discount, 𝛾 , should be a constant between 0 and 1 that ensures the sum converges. It makes rewards from the uncertain, far future, less important for our agent than the ones in the near future that it can be more confident about The main idea behind Q-learning is: If we had a function Q* :: (S, A) -> R (scalar) that could tell us the real return of taking an action A at the state S, then we could easily construct an optimal policy: policy*(s) = argmax {a} Q*(S, a) This policy would always maximize our rewards However, we dont know everything about the world, so we do not have direct access to Q* Nevertheless, We can use function approximation techniques to approximate Q* For the training update rule, we'll use the fact that every function Q for some policy obeys the Bellman Equation: Q_pi(s, a) = r + gamma * max {a'} Q_pi(s', a') The difference between the two sides of the equality is known as the temporal difference error delta = Q(s,a) - (r + gamma max {a} Q(s', a)) To minimize this error, we'll use the Hubber loss: * MSE when the error is small (< 1) * MAE when the error is large (> 1) (more robust to outliers) This error is calculated over a batch of transitions B sampled from the replay memory L = 1 / |B| * sum {(s, a, s', r) in B} L(delta) with L(delta) = 1/2 delta**2 for |delta| < 1 |delta| - 1/2 otherwise Q-network Our model is a convolutional neural network that takes as input the different between the current and previous screen patches. It has two outputs representing Q(s, left) and Q(s, right), where s is the input to the network. In effect, the network is trying to predict the quality/value of taking each action given the current input """ def __init__(self, h, w, outputs): super(DQN, self).__init__() self.conv1 = nn.Conv2d(3, 16, kernel_size=5, stride=2) self.bn1 = nn.BatchNorm2d(16) self.conv2 = nn.Conv2d(16, 32, kernel_size=5, stride=2) self.bn2 = nn.BatchNorm2d(32) self.conv3 = nn.Conv2d(32, 32, kernel_size=5, stride=2) self.bn3 = nn.BatchNorm2d(32) # Number of Linear input connections depends on output of conv2d layers # and therefore the input image size, so compute it. def conv2d_size_out(size, kernel_size=5, stride=2): return (size - (kernel_size - 1) - 1) // stride + 1 convw = conv2d_size_out(conv2d_size_out(conv2d_size_out(w))) convh = conv2d_size_out(conv2d_size_out(conv2d_size_out(h))) linear_input_size = convw * convh * 32 self.head = nn.Linear(linear_input_size, outputs) def forward(self, x): x = F.relu(self.bn1(self.conv1(x))) x = F.relu(self.bn2(self.conv2(x))) x = F.relu(self.bn3(self.conv3(x))) return self.head(x.view(x.size(0), -1))
0c7ea9ab5c864e9b66250d7cbbd2983cbb8b51a7
6b9e271dd425396c9cbc617e47f5065de2d1fef1
/tmplr/__init__.py
60519e68d78e107bd2776ea0e455ec007229936f
[ "MIT" ]
permissive
joshleejosh/tmplr
0cb236f185a82abad28380f0c5ddd0cc02fdb731
19209bb43ce40a307eecf2faf6dae8ccc8b0c9db
refs/heads/master
2020-04-04T09:48:05.418311
2019-01-06T18:14:34
2019-01-06T18:14:34
42,019,077
0
0
null
null
null
null
UTF-8
Python
false
false
67
py
# -*- coding: utf-8 -*- """ Yet another static site generator. """
814dd18821eebcb7889c382aedbef546353c54a2
b1ebf9c399477b6aa15627208a31b39cf673ffe4
/testes/cadastro2.py
8baf70ab154ea3236492fdd78d7462c31cd86f78
[]
no_license
srclayton/Python-uDemy
170a0ca88e4251abe2105fe4b2a797f0e33e353b
cff915da30edfc61647588431d52d32cf08c22bc
refs/heads/main
2023-01-21T17:23:33.581235
2020-11-28T14:32:34
2020-11-28T14:32:34
308,778,698
0
0
null
null
null
null
UTF-8
Python
false
false
693
py
# -*- coding: utf-8 -*- arquivo_original = open("cadastros.txt", "r") arquivo_copia = open("cadastros2.txt", "a") #for linha in arquivo_original: # valores = linha.split() # count=0 # while count < 11: # arquivo_copia.write(valores[count] + " ") # count+=1 # arquivo_copia.write("\n") arquivo_2 = open("cadastros2.txt" , "r") nome = input("Digite o nome:") for i in arquivo_2: valores = i.split() if valores[0] == nome: print(valores[0] + " ACHEI \n") print(valores[0]) print("Nome não encontrado!") chose= input("Deseja cadastrar um novo nome? y/n") if chose == "y" or chose =="Y": arquivo_copia.write(nome + " ") arquivo_copia.close() arquivo_original.close() arquivo_2.close()
f7c2105bdadbd86b2600eff80773427f74aa8d3b
525f39ec2fe53bcd65ff13b87c7a900358e30c1c
/Lab3B/1C.py
a539436e5493292aab72694f459c7520aa9e2d66
[]
no_license
abdullah2808/ENGR_102
fc2cbda672c407d8cf24c14238c2354516c8d7d7
6b3080e01c162e16b207df0099427368ab231af9
refs/heads/master
2022-12-14T23:49:56.090186
2020-09-13T21:31:12
2020-09-13T21:31:12
295,239,783
0
0
null
null
null
null
UTF-8
Python
false
false
719
py
# By submitting this assignment, I agree to the following: # “Aggies do not lie, cheat, or steal, or tolerate those who do” # “I have not given or received any unauthorized aid on this assignment” # # Name: ABDULLAH AHMAD # Section: 518 # Assignment: LAB 3B - 1C # Date: 13/9/18 Days = int(input("Please enter the amount of days of production: ")) Initial = int(input("Please enter the initial production of the well: ")) Decline = int(input("Please enter the decline rate of the well: " )) HyperCons = .8 Arps = (Initial/((1 + (HyperCons * Decline * Days ))**(1/HyperCons ))) print ("The production of a well after", Days, "days and with a hyperbolic constant of .8 is", Arps) # ARPS EQUATION
bd22959ea01a76d8407594d4c290cda432b2a95e
e5b902979133b8bbc9abcec53d0b8486518a15cd
/test.py
1ee5ef72813f59f202037bda85b34a129ab2b0e0
[]
no_license
fly2016git/MyBot
51838b37d0fcf81547b1e3a6a31b6bf8dbd107b1
66aad51dadda9d054159822ba58b57dded3eb272
refs/heads/master
2021-01-19T09:03:15.621776
2017-05-17T14:53:24
2017-05-17T14:53:24
87,713,252
0
0
null
null
null
null
UTF-8
Python
false
false
108
py
''' Created on 2017年4月9日 @author: zpf_s ''' ls = [1,2,3,4,5,6] for _ in range(5): print(_)
[ "zpf_s@DESKTOP-L2STAU4" ]
zpf_s@DESKTOP-L2STAU4
b4838aea4ebb660fe5f294da900b8d93a5ba1f09
2a671de9ff13e2d82de0abbffa1712000a5c53e6
/selenium/Website/testcase/model/testutil.py
f1f3b0daca07106b384c17d22f00e0307a46e3fb
[]
no_license
asdf27901/auto_selenium
eddb28ed60cb8238bc5f742f66ddd972e0a518d0
f669a222e102c1737966d8863e4a74650403e379
refs/heads/main
2023-03-27T01:08:07.695555
2021-03-14T18:31:40
2021-03-14T18:31:40
347,719,423
1
0
null
null
null
null
UTF-8
Python
false
false
350
py
import unittest from driver.driver import * from Website.config.data_config import * class SetStartAndEnd(unittest.TestCase): def setUp(self) -> None: self.driver = get_driver() self.driver.maximize_window() self.driver.implicitly_wait(timeout) def tearDown(self) -> None: self.driver.quit()
c885620223bab7b3b759d52fbf738145d6690444
3c000380cbb7e8deb6abf9c6f3e29e8e89784830
/venv/Lib/site-packages/cobra/modelimpl/rtctrl/setrtmetricdef.py
f5d55b1458f3e0a5d0f447271471db818060c777
[]
no_license
bkhoward/aciDOM
91b0406f00da7aac413a81c8db2129b4bfc5497b
f2674456ecb19cf7299ef0c5a0887560b8b315d0
refs/heads/master
2023-03-27T23:37:02.836904
2021-03-26T22:07:54
2021-03-26T22:07:54
351,855,399
0
0
null
null
null
null
UTF-8
Python
false
false
5,969
py
# coding=UTF-8 # ********************************************************************** # Copyright (c) 2013-2020 Cisco Systems, Inc. All rights reserved # written by zen warriors, do not modify! # ********************************************************************** from cobra.mit.meta import ClassMeta from cobra.mit.meta import StatsClassMeta from cobra.mit.meta import CounterMeta from cobra.mit.meta import PropMeta from cobra.mit.meta import Category from cobra.mit.meta import SourceRelationMeta from cobra.mit.meta import NamedSourceRelationMeta from cobra.mit.meta import TargetRelationMeta from cobra.mit.meta import DeploymentPathMeta, DeploymentCategory from cobra.model.category import MoCategory, PropCategory, CounterCategory from cobra.mit.mo import Mo # ################################################## class SetRtMetricDef(Mo): """ The set route metric definition. """ meta = ClassMeta("cobra.model.rtctrl.SetRtMetricDef") meta.moClassName = "rtctrlSetRtMetricDef" meta.rnFormat = "smetric" meta.category = MoCategory.REGULAR meta.label = "None" meta.writeAccessMask = 0x1000001 meta.readAccessMask = 0x1000001 meta.isDomainable = False meta.isReadOnly = True meta.isConfigurable = False meta.isDeletable = False meta.isContextRoot = False meta.childClasses.add("cobra.model.fault.Delegate") meta.childNamesAndRnPrefix.append(("cobra.model.fault.Delegate", "fd-")) meta.parentClasses.add("cobra.model.rtctrl.AttrDef") meta.superClasses.add("cobra.model.pol.Comp") meta.superClasses.add("cobra.model.rtctrl.ASetRule") meta.superClasses.add("cobra.model.fabric.L3ProtoComp") meta.superClasses.add("cobra.model.fabric.ProtoComp") meta.superClasses.add("cobra.model.pol.Obj") meta.superClasses.add("cobra.model.naming.NamedObject") meta.superClasses.add("cobra.model.rtctrl.ASetRtMetric") meta.rnPrefixes = [ ('smetric', False), ] prop = PropMeta("str", "childAction", "childAction", 4, PropCategory.CHILD_ACTION) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("deleteAll", "deleteall", 16384) prop._addConstant("deleteNonPresent", "deletenonpresent", 8192) prop._addConstant("ignore", "ignore", 4096) meta.props.add("childAction", prop) prop = PropMeta("str", "descr", "descr", 5582, PropCategory.REGULAR) prop.label = "Description" prop.isConfig = True prop.isAdmin = True prop.range = [(0, 128)] prop.regex = ['[a-zA-Z0-9\\!#$%()*,-./:;@ _{|}~?&+]+'] meta.props.add("descr", prop) prop = PropMeta("str", "dn", "dn", 1, PropCategory.DN) prop.label = "None" prop.isDn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("dn", prop) prop = PropMeta("str", "lcOwn", "lcOwn", 9, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "local" prop._addConstant("implicit", "implicit", 4) prop._addConstant("local", "local", 0) prop._addConstant("policy", "policy", 1) prop._addConstant("replica", "replica", 2) prop._addConstant("resolveOnBehalf", "resolvedonbehalf", 3) meta.props.add("lcOwn", prop) prop = PropMeta("str", "metric", "metric", 795, PropCategory.REGULAR) prop.label = "None" prop.isConfig = True prop.isAdmin = True prop.range = [(1, 4294967295)] meta.props.add("metric", prop) prop = PropMeta("str", "modTs", "modTs", 7, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "never" prop._addConstant("never", "never", 0) meta.props.add("modTs", prop) prop = PropMeta("str", "name", "name", 4991, PropCategory.REGULAR) prop.label = "Name" prop.isConfig = True prop.isAdmin = True prop.range = [(0, 64)] prop.regex = ['[a-zA-Z0-9_.:-]+'] meta.props.add("name", prop) prop = PropMeta("str", "nameAlias", "nameAlias", 28417, PropCategory.REGULAR) prop.label = "Name alias" prop.isConfig = True prop.isAdmin = True prop.range = [(0, 63)] prop.regex = ['[a-zA-Z0-9_.-]+'] meta.props.add("nameAlias", prop) prop = PropMeta("str", "rn", "rn", 2, PropCategory.RN) prop.label = "None" prop.isRn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("rn", prop) prop = PropMeta("str", "status", "status", 3, PropCategory.STATUS) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("created", "created", 2) prop._addConstant("deleted", "deleted", 8) prop._addConstant("modified", "modified", 4) meta.props.add("status", prop) prop = PropMeta("str", "type", "type", 794, PropCategory.REGULAR) prop.label = "None" prop.isConfig = True prop.isAdmin = True prop.defaultValue = 5 prop.defaultValueStr = "metric" prop._addConstant("as-path", "as-path", 11) prop._addConstant("community", "community", 1) prop._addConstant("dampening-pol", "dampening-type", 10) prop._addConstant("ip-nh", "ip-nexthop", 8) prop._addConstant("local-pref", "local-preference", 4) prop._addConstant("metric", "metric", 5) prop._addConstant("metric-type", "metric-type", 9) prop._addConstant("ospf-fwd-addr", "ospf-fowarding-address", 7) prop._addConstant("ospf-nssa", "ospf-nssa-area", 6) prop._addConstant("rt-tag", "route-tag", 2) prop._addConstant("rt-weight", "route-weight", 3) meta.props.add("type", prop) def __init__(self, parentMoOrDn, markDirty=True, **creationProps): namingVals = [] Mo.__init__(self, parentMoOrDn, markDirty, *namingVals, **creationProps) # End of package file # ##################################################
4c2f407d9154816cb619874628717ae82b0805bf
300cc8404005086b5a576f3e5572dbafd0cfe362
/Dashboard/urls.py
aca2dafd68b55b94d38abbb071d9ef81158f3b7e
[]
no_license
TabaPesaMc/Blocks-Management-System
4a92f64fbfaa0940146edf9ef5427c575583ea54
35d966fac0623b56c7674c6a1c837491276b5725
refs/heads/main
2023-04-29T21:15:19.106450
2021-05-12T06:22:45
2021-05-12T06:22:45
366,617,545
0
0
null
null
null
null
UTF-8
Python
false
false
841
py
"""STOCK_MANAGEMENT_PROJECT URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.urls import path from . import views urlpatterns = [ path('', views.dashboard_with_pivot, name='dashboard_with_pivot'), path('data', views.pivot_data, name='pivot_data'), ]
5a7acb02c1f18590c52ef7d5b38a3033044bf2a1
366ad2700f4b5627fdd7ade2696a4901b3ec74bf
/A2/src/Load.py
8d740e599aeda93b748eea6be541285be307acdf
[]
no_license
HaoyuanFu/qualifiedAssignments
f9f4f3dbaf72228ae3e30cdb7a5361e415a75bdc
834715694956073e082c690be6ba3ef2e3f56b41
refs/heads/master
2020-04-24T04:53:14.390586
2019-02-24T00:49:22
2019-02-24T00:49:22
171,718,332
0
1
null
null
null
null
UTF-8
Python
false
false
906
py
## @file Load.py # @author Harry Fu # @brief Provides the Plotting methods # @details Provides the Plotting methods with the assumption: # The input file will match the given specification. # @date 2/14/2018 from Data import Data from CurveADT import CurveT ## @brief Reads data from file # @param s The filename of file def Load(s): Data.init() with open(s, 'r') as f: row = next(f) row = list(map(float, row.split(','))) Z = row n = len(Z) row = next(f) row = list(map(int, row.split(','))) O = row X_Y = [[] for _ in range(n + n)] for row in f: row = [e.strip() for e in row.split(',')] for i, e in enumerate(row): if e: X_Y[i].append(float(e)) for i, o in enumerate(O): Data.add(CurveT(X_Y[i + i], X_Y[i + i + 1], o), Z[i])
2d886b361371b93476368c2a749027b3942e7f7d
9dd5d19773720756e57b8f14bf92e848fca3f8ec
/TP5/makedatabase.py
18a130683ffeaaa9ea726351a736ecced56e4774
[]
no_license
JermanKell/TPs_Python
12afd2c9817705d6d419d38285d3045a4197e3f4
ed4bb958230d181146f08f6936586feffbd2bf15
refs/heads/master
2020-03-29T09:25:36.313313
2018-11-25T18:42:05
2018-11-25T18:42:05
149,757,774
0
0
null
null
null
null
UTF-8
Python
false
false
4,979
py
import sqlite3 def create_database(nom_db): conn = sqlite3.connect(nom_db) c = conn.cursor() c.execute('''CREATE TABLE if not exists Communes (code_dpt text, code_com text, nom_com text, pop_tot integer)''') c.execute('''CREATE TABLE if not exists Departements (code_dpt text, nom_dpt text, code_reg text)''') c.execute('''CREATE TABLE if not exists Region (code_reg text, nom_reg text)''') conn.commit() conn.close() def fill_database(nom_db): conn = sqlite3.connect(nom_db) c = conn.cursor() file_name = '''bdd/communes.csv''' file = open(file_name, "rt") file_content = file.read() file_content = file_content.split("\n") del file_content[0:8] del file_content[len(file_content)-1] for line in file_content: if len(line) > 0: data_array = line.split(";") if len(data_array[0]) > 0: c.execute("insert into Communes values (?, ?, ?, ?)", (data_array[2], data_array[5], data_array[6], int(data_array[9].replace(" ", "")))) file.close() file_name = '''bdd/departements.csv''' file = open(file_name, "rt") file_content = file.read() file_content = file_content.split("\n") del file_content[0:8] del file_content[len(file_content)-1] for line in file_content: if len(line) > 0: data_array = line.split(";") if len(data_array[0]) > 0: c.execute("insert into Departements values (?, ?, ?)", (data_array[2], data_array[3], data_array[1])) file.close() file_name = '''bdd/departements.csv''' file = open(file_name, "rt") file_content = file.read() file_content = file_content.split("\n") del file_content[0:8] del file_content[len(file_content)-1] for line in file_content: if len(line) > 0: data_array = line.split(";") if len(data_array[0]) > 0: c.execute("insert into Region values (?, ?)", (data_array[0], data_array[1])) file.close() conn.commit() conn.close() def sum_total_pop_department(): conn = sqlite3.connect('database.db') c = conn.cursor() c.execute('SELECT code_dpt, SUM(pop_tot) FROM Communes GROUP BY code_dpt') for row in c: print(row) c.close() conn.close() def sum_total_pop_region(): conn = sqlite3.connect('database.db') c = conn.cursor() c.execute('SELECT code_reg, SUM(pop_tot) FROM Communes INNER JOIN Departements on Departements.code_dpt = Communes.code_dpt GROUP BY code_reg') for row in c: print(row) c.close() conn.close() def list_department_com(): conn = sqlite3.connect('database.db') c = conn.cursor() c.execute('SELECT nom_com, code_dpt FROM Communes WHERE nom_com IN (SELECT nom_com FROM Communes GROUP BY nom_com HAVING COUNT(*) > 1) ORDER BY nom_com ASC') for row in c: print(row) c.close() conn.close() def modify_database(nom_db): conn = sqlite3.connect(nom_db) c = conn.cursor() c.execute('''CREATE TABLE if not exists NouvellesRegions (code_nouv_reg integer, lib_geo text)''') file_name = '''bdd/zones-2016.csv''' file = open(file_name, "rt") file_content = file.read() file_content = file_content.split("\n") #Récupère uniquement les lignes REG du fichier for line in file_content: if len(line) > 0: data_array = line.split(";") if len(data_array[0]) > 0: if data_array[0].__eq__('REG'): print(data_array[1], data_array[2]) c.execute("insert into NouvellesRegions values (?, ?)", (data_array[1], data_array[2])) file.close() c.execute('ALTER TABLE Departements ADD COLUMN code_nouv_reg interger') file_name = '''bdd/communes-2016.csv''' file = open(file_name, "rt") file_content = file.read() file_content = file_content.split("\n") del file_content[0:7] departements_updated = [] for line in file_content: if len(line) > 0: data_array = line.split(";") if len(data_array[0]) > 0: if not data_array[2] in departements_updated: c.execute('update Departements set code_nouv_reg = ' + data_array[3] + ' where code_dpt = \'' + data_array[2] + '\'') departements_updated.append(data_array[2]) file.close() conn.commit() conn.close() def new_sum_pop(): conn = sqlite3.connect('database2.db') c = conn.cursor() c.execute('SELECT NouvellesRegions.code_nouv_reg, lib_geo, SUM(pop_tot) FROM NouvellesRegions ' 'INNER JOIN Departements on Departements.code_nouv_reg = NouvellesRegions.code_nouv_reg ' 'INNER JOIN Communes on Communes.code_dpt = Departements.code_dpt GROUP BY NouvellesRegions.code_nouv_reg') for row in c: print(row) c.close() conn.close()
22cc35da3867ed7a1af79ff958254f07c2be73d2
8a4e89fb0c84b2303b2835c1bd9cd258ea587278
/model.py
559b16ed3aa304efbfb4d5633b96e0c47e7c5141
[]
no_license
zhangyipin/bi-lstm-crf-ner-tf2.0
8b1135c1b02ec419ec1f69884e29b80dee3321d5
375dd59c9883a7cdcdf1d9cdd70877d709b3c95c
refs/heads/master
2020-12-10T06:53:28.896139
2019-12-05T13:17:03
2019-12-05T13:17:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,650
py
# !/usr/bin/env python # -*- coding:utf-8 -*- # @Time : 2019/12/3 7:15 下午 # @Author: wuchenglong import tensorflow as tf import tensorflow_addons as tf_ad class NerModel(tf.keras.Model): def __init__(self, hidden_num, vocab_size, label_size, embedding_size): super(NerModel, self).__init__() self.num_hidden = hidden_num self.vocab_size = vocab_size self.label_size = label_size self.transition_params = None self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_size) self.biLSTM = tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(hidden_num, return_sequences=True)) self.dense = tf.keras.layers.Dense(label_size) self.transition_params = tf.Variable(tf.random.uniform(shape=(label_size, label_size)), trainable=False) self.dropout = tf.keras.layers.Dropout(0.5) def call(self, text,labels=None,training=None): text_lens = tf.math.reduce_sum(tf.cast(tf.math.not_equal(text, -1), dtype=tf.int32), axis=-1) # -1 change 0 inputs = self.embedding(text) inputs = self.dropout(inputs, training) logits = self.dense(self.biLSTM(inputs)) if labels is not None: label_sequences = tf.convert_to_tensor(labels, dtype=tf.int32) log_likelihood, self.transition_params = tf_ad.text.crf_log_likelihood(logits, label_sequences, text_lens) self.transition_params = tf.Variable(self.transition_params, trainable=False) return logits, text_lens, log_likelihood else: return logits, text_lens
ad308c53f59ee98a390a36b7b4555d40025649d2
f15aa508749bc7c7f89221f40eee4fba9a7e22cb
/tests/test/test_server.py
3f23339e62a4c551bb22db5196a76a0ee9535a83
[ "WTFPL" ]
permissive
kamilion/StarryPy3k
275064b82f2ad617915b6a6c69330ab43429b37d
0440fa86886618035345628bb4f2315a0b0e3e6c
refs/heads/master
2021-01-18T10:32:02.592891
2015-02-05T07:35:25
2015-02-05T07:35:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
465
py
import asyncio from server import ServerFactory def start_server(): serverf = ServerFactory() yield from asyncio.start_server(serverf, '127.0.0.1', 21025) class TestServer: def setUp(self): self.loop = asyncio.get_event_loop() def tearDown(self): self.loop.stop() def testTest(self): asyncio.Task(self.beep()) @asyncio.coroutine def beep(self): x = yield from (lambda _: True)("") return x
5f77a760ce54a8b9ecb7cd4edda181f8739a0f38
608ff19dabe0cac3eb13839fc3ec094766ccfed2
/domainmodel/author.py
bbac8ff433a5b28d665f17592dc43d8a6fb4c19c
[]
no_license
cko780/235_A1
e2fb35ee113ec803f483a26f997632c84f30afec
639ee42cd3d7d56ac015da11185a6bc60f959183
refs/heads/master
2023-07-06T09:02:14.035983
2021-08-16T21:33:51
2021-08-16T21:33:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,424
py
class Author: def __init__(self, author_id: int, author_name: str): if not isinstance(author_id, int) or author_id < 0 or not isinstance(author_name, str) or author_name.strip() == "": raise ValueError self.__author_id = author_id self.__author_name = author_name.strip() self.__coauthors = [] @property def full_name(self): return self.__author_name @full_name.setter def full_name(self, author_name: str): if not isinstance(author_name, str) or author_name.strip() == "": raise ValueError self.__author_name = author_name.strip() @property def unique_id(self): return self.__author_id def __repr__(self): return f'<Author {self.__author_name}, author id = {self.__author_id}>' def __eq__(self, other): if not isinstance(other, Author): return False return self.__author_id == other.unique_id def __lt__ (self, other): if not isinstance(other, Author): return False return self.__author_id < other.unique_id def __hash__(self): return hash(self.__author_id) def add_coauthor(self, coauthor): if not isinstance(coauthor, Author): return False self.__coauthors.append(coauthor) def check_if_this_author_coauthored_with(self, author): return author in self.__coauthors
326c83debde341e94a5a0e096d92b9a3d2265ca5
aa47269c81411b60778fcec4b541f794d34bf8fe
/python_scripts/extract_by_attributes_and_mask.py
8b0af96c414d7dc825554d26ce42613a2540f99a
[]
no_license
arhwiegman/SpatialTools
a1c525d97689874d0f10dcbd02087c737c8172f8
9693de55c3e9813b4c84856fbb9350af4c5fc2dd
refs/heads/master
2022-06-15T00:02:59.854343
2022-06-02T16:43:13
2022-06-02T16:43:13
118,836,486
0
0
null
null
null
null
UTF-8
Python
false
false
11,181
py
# This script selects raster pixels by attribute value and then extracts another raster by the selected values as a mask # Requirements: Spatial Analyst Extension, Numpy, os, glob def main(interactive=False): ''' # SETUP --- # Loading modules and setting up directories ''' dirs = setup_workspace(interactive) wd = dirs[0] # working directory ''' # MAIN PROGRAM ---- # 1. EXTRACT RASTER BY ATTRIBUTE BASED ON LAND USE HISTORY # - Get areas that were forested or wetland in 1992 # - Get areas that were farms as of 2001 ''' #S1_extract_land_use_classes() ''' # 2. EXTRACT DEPTH RASTER BASED ON PERCENTILES # - analyze depth percentiles # - get new rasters from depth selected percentiles for otter creek ''' #S2_extract_depth_percentiles() ''' # 3. EXTRACT RASTER BY MASK (LOCATION) # get raster of conservation easements that were restored prior to 2017 # (2012 is the year that the LiDAR data for Addison county was flown in VTRANS HEC-RAS model) ''' S3_extract_all_by_inundation_boundary() #LASKJDJF*@F(_@$*F(@*$F@ #START HERE USE GDAL_MERGE.py to make a raster stack then analyze data in arcgis ''' arcpy_ExtractByMask() # 4. extract DEPTH data by mask for areas of different land use arcpy_ExtractByMask() # 3. ANALYSE RASTER DATA ''' ''' arcpy_ResampleFromTemplate(inRast, inRast=u'Z:\GeoData\Temp\Agriculture2001_0p7.tif', outRast=u'Z:\GeoData\Temp\Agriculture2001.tif', method='NEAREST') outfile=u'Z:\GeoData\Temp\depth_agriculture2001.tif' infile = u'Z:\GeoData\Trueheart\Depth (Max).bathymetry029.tif' mask = u'Z:\GeoData\Temp\Agriculture2001.tif' outfile=u'Z:\GeoData\Temp\depth_forestsWetlands1992.tif' arcpy_ExtractByMask(infile,mask,outfile,deleteAfter=False) infile = u'Z:\GeoData\Trueheart\Depth (Max).bathymetry029.tif' mask = u'Z:\GeoData\Temp\Agriculture2001.tif' outfile=u'Z:\GeoData\Temp\depth_agriculture2001.tif' arcpy_ExtractByMask(infile,mask,outfile,deleteAfter=False) ''' def S4_resample_landuse_to_0p7m(): # re-sample landuse input = 'masked_Agriculture2001.tif' arcpy_ResampleFromTemplate(inRast=input, template='Z:/GeoData/Trueheart/Depth (Max).bathymetry029.tif', outRast="resampled_"+input) input = 'masked_ForestWaterWetland1992.tif' arcpy_ResampleFromTemplate(inRast=input, template='Z:/GeoData/Trueheart/Depth (Max).bathymetry029.tif', outRast="resampled_"+input) def S3_extract_all_by_inundation_boundary(): # reduce file size by masking by inundation boundary infiles = [ #'Z:/GeoData/Trueheart/Depth (Max).bathymetry029.tif', 'Z:/GeoData/Temp/Agriculture2001.tif', 'Z:/GeoData/Temp/ForestWaterWetland1992.tif', #'Z:/GeoData/LCB/NAIP/outputs/mosaic_ndvi_2016_0p6m.tif'] outfiles = [ #'masked_depth.tif', 'masked_Agriculture2001.tif', 'masked_ForestWaterWetland1992.tif', #'masked_mosaic_ndvi_2016_0p6m.tif'] mask = 'Z:/GeoData/Trueheart/Inundation Boundary (Max Value_0).shp' for i in range(len(infiles)): arcpy_ExtractByMask(infiles[i],mask,outfiles[i],deleteAfter=False,clip=True,resample=True) def S2_extract_depth_percentiles(): # set input file and destination paths infile = u'Z:\GeoData\Trueheart\Depth (Max).bathymetry029.tif' dst = u'Z:\GeoData\Trueheart' # destination path # calculate percentiles pct = arcpy_CalculatePercentileFromRaster(inRaster=infile, nbins=10, omitValue=-9999.0, trimMinMax=True, min=0, max=2.25) ''' depth percentiles {'0.0%': 0.0009994507, '10.0%': 0.27291107, '20.0%': 0.46861267, '30.0%': 0.62002563, '40.0%': 0.7600937, '50.0%': 0.899498, '60.0%': 1.0399399, '70.0%': 1.2348328, '80.0%': 1.4948654, '90.0%': 1.8216858, '100.0%': 2.25} ''' # select dictionary keys for lower and higher bounds of depth lower = ['0.0%','20.0%','40.0%','60.0%','80.0%'] higher = ['20.0%','40.0%','60.0%','80.0%','100.0%'] # for each range for i in range(len(lower)): low = pct[lower[i]] high = pct[higher[i]] outfile = dst+'/depth_pct_{0:4.2f}-{1:4.2f}m.tif'.format(low,high) SQL = '{0} > {1} AND {0} < {2}'.format('VALUE',low,high) print('extracting file: {}'.format(o)) arcpy_ExtractByAttributes(infile,SQL,outfile) def S1_extract_land_use_classes(): # A. get raster of areas that have been forested since 1942, 1971, and 2001 respectively # 1992 and 2001 land use codes: agriculture = 2 brush = 3 forest = 4 water = 5 wetland = 6 # set SQL conditions and format string (<> not equal to) conditions = " {0} = {1} AND {0} = {2} AND {0} = {3} " SQL = conditions.format('VALUE',forest,water,wetland) i=u"Z:\GeoData\LCB\LCLULCB92\lclulcb92" o="ForestWaterWetland1992.tif" arcpy_ExtractByAttributes(inRaster=i,inSQL=SQL,outRaster=o) # B. get raster of areas that were farms in 2001 conditions = " {0} <> {1}" SQL = conditions.format('VALUE',agriculture) i=u"Z:\GeoData\LCB\LCLULCB01\lclulcb01" o="Agriculture2001.tif" arcpy_ExtractByAttributes(inRaster=i,inSQL=SQL,outRaster=o) def arcpy_ResampleFromTemplate(inRast,template,outRast,method='NEAREST'): Y = arcpy.GetRasterProperties_management(template,'CELLSIZEY') X = arcpy.GetRasterProperties_management(template,'CELLSIZEX') arcpy.Resample_management(inRast, outRast, "{} {}".format(X,Y), method) return() def arcpy_SelectFeatureByAttribute(inFeature,inSQL,outFeature): arcpy.MakeFeatureLayer_management(inFeature, 'lyr') # Write the selected features to a new featureclass # Within selected features, further select only those cities which have a population > 10,000 arcpy.SelectLayerByAttribute_management('lyr', 'NEW_SELECTION', inSQL) arcpy.CopyFeatures_management('lyr', outFeature) def arcpy_ExtractByAttributes(inRaster,inSQL="VALUE > 1000",outRaster="extracted",deleteAfter=True): # Description: Extracts the cells of a raster based on a logical query. # Requirements: Spatial Analyst Extension # Check out the ArcGIS Spatial Analyst extension license # Execute ExtractByAttributes print("extracting ",inSQL," from ",inRaster, "\n...") attExtract = arcpy.sa.ExtractByAttributes(inRaster, inSQL) # Save the output print("success! Saving file: ",outRaster) attExtract.save(outRaster) if deleteAfter: del attExtract return() def arcpy_CalculatePercentileFromRaster(inRaster, nbins=10, omitValue=None, trimMinMax=False, min=None, max=None): # requires arcpy and numpy array = arcpy.RasterToNumPyArray(inRaster) #remove no data values, in this case zeroes, returning a flattened array print ('removing no data values and flattening array.....' ) if omitValue is not None: flatArray = array[array != omitValue] if trimMinMax is not None: print('trimming min and max values...') flatArray = numpy.clip(flatArray,min,max) print ('sorting array....' ) flatArray = numpy.sort(flatArray) numpy.histogram(flatArray,nbins) #report some summary stats print('n = ', numpy.sum(flatArray) ) print('min = ', numpy.min(flatArray) ) print('median = ', flatArray[int(numpy.size(flatArray) * 0.50)] ) print('max = ', numpy.max(flatArray) ) percentiles = [None]*nbins percentiles[0] = numpy.min(flatArray) # add percentile values in steps to the list of percentiles print('populating list with percentile values...') for i in range(1,nbins): percentiles[i] = flatArray[int(numpy.size(flatArray)*i/nbins)] percentiles.append(numpy.max(flatArray)) pkeys = [str(k/nbins*100)+'%' for k in range(nbins+1)] pdict = dict(zip(pkeys,percentiles)) print(pdict) return(pdict) def arcpy_NormalizeRasterValues(inRaster,outRaster,maxValue=1,deleteAfter=False): # note that zonal statistics already calculates this so it may be faster to # use http://help.arcgis.com/En/Arcgisdesktop/10.0/Help/index.html#//0017000000m7000000 # load data, convert to array # requires arcpy and numpy orig_raster = arcpy.Raster(inRaster) array = arcpy.RasterToNumPyArray(inRaster) # do your math normalized_array = (array - array.min()) / (array.max() - array.min()) * maxValue # back to a raster normalized_raster = arcpy.NumPyArrayToRaster( in_array=normalized_array, lower_left_corner=inRaster.extent.lowerLeft, x_cell_size=inRaster.meanCellWidth, y_cell_size=inRaster.meanCellHeight) # and scene normalized_raster.save(outRaster) if deleteAfter: del normalized_raster return() def arcpy_ExtractByMask(inRaster,inMask,outRaster,deleteAfter=False,clip=True,resample=True): #takes either a raster or a shapefile and extracts data from inRaster inside mask # requires spatial analyst extension if clip: try: e = arcpy.Describe(inMask).extent # create object of extent description extent = ("{} {} {} {}").format(e.XMin,e.YMin,e.XMax,e.YMax) except: print("oops something went wrong",traceback.print_exc()) print('clipping ',inRaster,'to extent:\n',extent) inRaster = arcpy.Clip_management(inRaster,extent) if resample: inMask = arcpy_ResampleFromTemplate(inMask,inRaster) print("extracting by mask...") masked = arcpy.sa.ExtractByMask(inRaster,inMask) masked.save(outRaster) if deleteAfter: del masked def load_modules(): # arcpy doesn't # Loads modules and links directory paths import os import glob import numpy import arcpy from arcpy import env arcpy.CheckOutExtension("Spatial") return() def print_dir_contents(dir): print("Directory:\n", os.getcwd()) print("-"*15,"contents","-"*15,"\n",os.listdir()) return() def setup_workspace(interactive): # set local variables import os import glob import numpy import arcpy from arcpy import env arcpy.CheckOutExtension("Spatial") import os print("Current environment workspace:\n", os.getcwd()) if interactive: wd = env.workspace = input("copy environment workspace path below\n(e.g. ' Z:/awiegman/GeoData ')\n>>>") dirs = [wd] more = input("(A) press enter continue\n(B) press any other key then enter to link more directories)") while len(more)>0: dirs[len(dirs)+1] = input("copy environment workspace path below\n(e.g. ' Z:/awiegman/GeoData ')\n>>>") print_dir_contents() more = input("(A) press enter continue\n(B) press any other key then enter to link more directories)") return(dirs) else: wd = env.workspace = 'Z:/awiegman/GeoData/Temp' print("New environment workspace: ",wd) return([wd]) if __name__ == '__main__': main(interactive=False)
b012ab34e45cf798f99a340e8c758fb3f8756f97
d7e3d78e5eee5454e06e0eab3798a7ce94128267
/Pfundamental Lab/Lab 5/Task 2.py
02670ec88701aa661dfecfd6eb067d6f3c90c69a
[]
no_license
AbdulMoizChishti/python-practice
f1f001cdeb63112025703650cb72f8471733de38
379d117f66abee5e8b619e38a59533138aaaa1e7
refs/heads/master
2023-02-04T08:32:37.162350
2020-12-19T15:29:03
2020-12-19T15:29:03
322,878,014
1
0
null
null
null
null
UTF-8
Python
false
false
64
py
num = 18 for i in range(1, 11): print(num, "x", i,"=",num*i)
a14be52f4c558465de5d6ef552c0bc3dfa7a71eb
c96f48986c2bb993458f9081860326756ddfe7d9
/django_db2charts/urls.py
4a4cd0d8a9354ced049c6eed30ef15622c1e5daf
[ "MIT" ]
permissive
Alfredx/django-db2charts
86aabd5ea32cad74e056fdf9eca00292d68ed0a9
436f9bf54cc022eda821a9679b3431c2ea16eb6f
refs/heads/master
2021-01-20T20:53:44.501410
2016-06-28T07:52:47
2016-06-28T07:52:47
60,136,697
3
3
null
null
null
null
UTF-8
Python
false
false
805
py
"""django_db2charts URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.8/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import include, url from django.contrib import admin from db2charts import urls as db2charts_urls urlpatterns = [ url(r'^admin/', include(admin.site.urls)), url(r'^db2charts/', include(db2charts_urls)), ]
1bd7a906e3ae3f165ff81b9124b97e9187f5bcc5
e5202e0f36c15b8898920a461a866168fa059947
/clirad/n2o_3.2e-07/band_3/atmpro_mls/cliradlw_1013f91/param.py
33924bb8f70d78d9230fd85569d18e1186ba5363
[]
no_license
qAp/analysis_-_new_kdist_param
653c9873751646f6fa9481544e98ed6065a16155
272dc3667030cdb18664108d0bd78fee03736144
refs/heads/master
2021-06-11T04:21:35.105924
2019-08-04T13:13:07
2019-08-04T13:13:07
136,108,828
0
0
null
null
null
null
UTF-8
Python
false
false
534
py
PARAM = {'commitnumber': '1013f91', 'band': [3], 'molecule': {'n2o': 3.2e-07}, 'atmpro': 'mls', 'tsfc': 294} PARAM_LBLNEW = {'atmpro': 'mls', 'band': '3a', 'commitnumber': '5014a19', 'conc': 3.2e-07, 'dv': 0.001, 'klin': 2.22e-20, 'molecule': 'n2o', 'ng_adju': [0, 0], 'ng_refs': [1, 2], 'nv': 1000, 'option_compute_btable': 0, 'option_compute_ktable': 0, 'option_wgt_flux': 1, 'option_wgt_k': 1, 'ref_pts': [[1, 250], [500, 250]], 'tsfc': 294, 'vmax': 620, 'vmin': 540, 'w_diffuse': [[1.8], [1.66, 1.8]], 'wgt': [[0.9], [0.5, 0.95]]}
682a746c86f697e0d7d40584dfe744687ff6f502
934475e24c0262013a000dc0bc86fbec5e82bec2
/jemm/transcript.py
42be4605fbe756cc827030788351af85a5ae9b99
[]
no_license
zhanglab-aim/JEMM
05e2cf93b6aab4cca94d4caa23bacd5445b21ccd
9d1d00bfe71fdb61b1f610b72a9561933d32d303
refs/heads/main
2023-07-25T07:56:51.173370
2023-07-05T18:59:31
2023-07-05T18:59:31
572,681,258
0
0
null
null
null
null
UTF-8
Python
false
false
9,645
py
""" This module handles reading and writing related tasks for transcript-based exon measure """ # Author : zzjfrank # Date : Aug 24, 2020 import os import pandas as pd import numpy as np from collections import OrderedDict import pickle from multiprocessing import Pool, cpu_count from tqdm import tqdm from .data_table import DataTable, Measure from .suppa_helper import read_suppa_index, convert_tpm_to_psi, get_min_sanity_checker from . import kallisto_helper from .utils import logit class TranscriptMeasure(Measure): def __init__(self, event_id, sample_id, est_psi, bs_psi=None, var_psi=None, var_logit_psi=None, *args, **kwargs): super().__init__(event_id, sample_id, est_psi, var_logit_psi, *args, **kwargs) self.event_id = event_id self.sample_id = sample_id self.__psi = est_psi self.__logit_psi = logit(self.__psi) if np.isnan(self.__psi): self.__var_psi = np.nan self.__var_logit_psi = np.nan else: if bs_psi is not None: valid_bs = np.where(~np.isnan(bs_psi))[0] if len(valid_bs) <= 3: self.__var_psi = np.nan self.__var_logit_psi = np.nan else: self.__var_psi = np.var(bs_psi[valid_bs]) self.__var_logit_psi = np.var(logit(bs_psi[valid_bs])) else: self.__var_psi = var_psi self.__var_logit_psi = var_logit_psi @property def psi(self): return self.__psi @property def logit_psi(self): return self.__logit_psi @property def var_logit_psi(self): return self.__var_logit_psi def to_plaintext(self): s = "%.3f;%.3f,%.3f" % (self.psi, self.var_psi, self.var_logit_psi) return s @staticmethod def from_plaintext(s): # first assume the presence of variance terms try: psi, vares = s.split(";") var, logit_var = vares.split(",") return TranscriptMeasure(event_id=None, sample_id=None, est_psi=float(psi), var_psi=float(var), var_logit_psi=float(logit_var)) # otherwise, just load PSI except (ValueError, AttributeError): psi = s return float(psi) #return TranscriptMeasure(event_id=None, sample_id=None, est_psi=float(psi), # var_psi=None, var_logit_psi=None) @staticmethod def from_rsem(s): psi = float(s) return TranscriptMeasure(event_id=None, sample_id=None, est_psi=psi, var_psi=0, var_logit_psi=0) class TranscriptMeasureTable(DataTable): def __init__(self, wd=None, index_file=None, input_type=None, event_type="SE", lazy_init=False, plaintext=False): """This class provides easy access to TranscriptMeasure across large datasets Parameters ---------- wd : str index_file : str input_type : str event_type : str lazy_init : bool Attributes ---------- plaintext : bool data : pandas.DataFrame Examples -------- Initialize a TranscriptMeasureTable from Kallisto bootstrapping results:: >>> from jemm.transcript import TranscriptMeasureTable >>> tmt = TranscriptMeasureTable(wd="./data/jemm/kallisto/", >>> index_file="./data/jemm/suppa_index/suppa_gencodev34_SE_strict.ioe", input_type="kallisto") >>> tmt.data.head() >>> tmt.save("./data/jemm/tmt.pkl") """ self._wd = wd self._input_type = input_type self._index_file = index_file self._event_type = event_type self.data = None self.plaintext = plaintext if lazy_init is False: assert os.path.isdir(self._wd) assert os.path.isfile(self._index_file) if self._input_type == "kallisto": self.from_kallisto_hdf5(wd=self._wd, event_type=self._event_type, index_file=self._index_file, tmt=self) elif self._input_type == "plaintext": self.from_plaintext(filepath=wd, tmt=self) elif self._input_type == "rsem": self.from_rsem_table(filepath=wd, tmt=self) else: raise ValueError("Input type not understood: %s" % self._input_type) def save(self, fp, mode="auto"): if mode == "auto": if fp.endswith(".pkl"): mode = "pickle" elif fp.endswith(".h5"): mode = "hdf5" elif fp.endswith(".txt") or fp.endswith(".gz"): mode = "txt" else: raise ValueError("Cannot determine mode for given filepath") if mode == "pickle": pickle.dump(self, open(fp, "wb")) elif mode == "hdf5": self.data.to_hdf(fp, key="data", mode="w") elif mode == "txt": self.data.to_csv(fp, sep="\t") @staticmethod def _worker_reader(args): """worker reader for kallisto hdf5 to enable multiprocessing """ sn, fp, exon_index= args event_ids = [e for e in exon_index[0]] if type(fp) is str: res = kallisto_helper.read_kallisto_h5(fname=fp) else: res = fp est_psi = convert_tpm_to_psi(target_id=res['target_id'], tpm=res['tpm'], exon_index=exon_index).flatten() bs_psi = convert_tpm_to_psi(target_id=res['target_id'], tpm=res['bs_samples'], exon_index=exon_index) sample_tm = [ TranscriptMeasure(sample_id=sn, event_id=event_ids[j], est_psi=est_psi[j], bs_psi=bs_psi[j]) for j in range(len(est_psi)) ] return sn, sample_tm @staticmethod def from_plaintext(filepath, tmt=None): data = pd.read_table(filepath, index_col=0) data = data.applymap(lambda x: TranscriptMeasure.from_plaintext(x)) if tmt is None: tmt = TranscriptMeasureTable(input_type="plaintext", lazy_init=True) tmt.data = data return tmt @staticmethod def from_rsem_table(filepath, tmt=None): data = pd.read_table(filepath, index_col=0) data = data.applymap(lambda x: TranscriptMeasure.from_rsem(x)) if tmt is None: tmt = TranscriptMeasureTable(input_type="rsem", lazy_init=True) tmt.data = data return tmt @staticmethod def from_kallisto_hdf5(wd, index_file, event_type, sample_name_getter=None, tmt=None, nthreads=None, strip_tx_version=False, minimum_sanity_checker=None): """read kallisto transcript estimates Parameters ---------- wd : str or dict if is string, expects the filepath to a folder of kallisto results; if dict, expects a mapping from sample name to hdf5 estimates index_file : str event_type : str sample_name_getter : callable, or None tmt : jemm.TranscriptMeasureTable nthreads : int or None """ if nthreads is None: nthreads = min(32, cpu_count()) print("Using n=%i threads automatically.."%nthreads) exon_index = read_suppa_index(fp=index_file, event_type=event_type, convert_id_to_darts=True, strip_tx_version=strip_tx_version) event_ids = [e for e in exon_index[0]] if type(wd) is str: fp_list = [os.path.join(wd, x, "abundance.h5") for x in os.listdir(wd) if os.path.isfile(os.path.join(wd, x, "abundance.h5"))] if sample_name_getter is None: sample_name_getter = lambda x: x.split("/")[-2] else: assert callable(sample_name_getter) is True sample_names = [sample_name_getter(x) for x in fp_list] elif type(wd) is dict: sample_names = list(wd.keys()) fp_list = [wd[s] for s in sample_names] else: raise TypeError('Non-supported wd type: %s' % type(wd)) measure_dict = {} if nthreads == 1: for sn, fp in tqdm(zip(sample_names, fp_list), total=len(fp_list)): _, sample_tm = TranscriptMeasureTable._worker_reader((sn, fp, exon_index)) measure_dict[sn] = sample_tm else: with Pool(nthreads) as pool: pool_args = [(sn, fp, exon_index) for sn, fp in zip(sample_names, fp_list)] pbar = tqdm(total=len(fp_list)) def pbar_update(*args): pbar.update() holders = [pool.apply_async(TranscriptMeasureTable._worker_reader, args=(pool_args[i],), callback=pbar_update) for i in range(pbar.total)] res_list = [res.get() for res in holders] for res in res_list: sn, sample_tm = res measure_dict[sn] = sample_tm measure_df = pd.DataFrame.from_dict(measure_dict, orient="columns") measure_df.index = np.array(event_ids, dtype="str") if minimum_sanity_checker is not None: eids = [] for eid in measure_df.index: if minimum_sanity_checker(measure_df.loc[eid]): eids.append(eid) measure_df = measure_df.loc[eids] if tmt is None: tmt = TranscriptMeasureTable(wd=wd, index_file=index_file, input_type="kallisto", lazy_init=True) else: if tmt.plaintext is True: measure_df = measure_df.applymap(lambda x: x.to_plaintext()) tmt.data = measure_df return tmt
07b9d9814ac9cfa9eebb4569b73e71272a56cdc7
1b862f34c125ce200244dd79e4fda4b5b605ce2e
/.history/AC_Well_U18_20210720193949.py
d1bd37fe1285363db73ceec0bfe193a13e06ef95
[]
no_license
edwino26/CoreImages
26085a49cf1cb79442ae563a88354b2fdceace87
6bf6e68cac8ab36c87b1e6ea702bfe6882b0f40e
refs/heads/master
2023-06-22T12:53:37.344895
2021-07-21T04:31:44
2021-07-21T04:31:44
309,553,247
0
4
null
2021-04-29T23:23:15
2020-11-03T02:45:07
Lasso
UTF-8
Python
false
false
11,089
py
# To add a new cell, type '# %%' # To add a new markdown cell, type '# %% [markdown]' # %% import numpy as np import pandas as pd import math import lasio from scipy import interpolate import matplotlib.pyplot as plt # GRAPHS import glob from matplotlib import rcParams # %% las1= lasio.read('./LAS/U18/U18_GR.las') df1= las1.df() df1.reset_index(inplace=True) df1 = df1[['GR_EDTC', 'TDEP']] las2 = lasio.read('./LAS/U18/U18_AT90_NPHI.las') df2 = las2.df() df2.reset_index(inplace=True) df2 = df2[['AT90','NPHI','TDEP',]] las3 = lasio.read('./LAS/U18/U18_DTCO.las') df3= las3.df() df3.reset_index(inplace=True) df3 = df3[['DTCO', 'TDEP']] U18_xl =pd.read_excel('./Excel_Files/U18_test.xls',sheet_name = 'U18_data') df4=U18_xl[['DEPTH','RHOZ']] #MERGE> to combine the LAS files into 1 df result = pd.merge(df1,df2, on= 'TDEP',how='left') result.set_index('TDEP', inplace=True) df5=pd.merge(result,df3,on= 'TDEP',how='left') df5.set_index('TDEP', inplace=True) # %% # array con nueva tabla para TDEP (prof) con paso de 0.5 dep= np.arange(200,1350,0.5) f = interpolate.interp1d(df4['DEPTH'], df4['RHOZ']) RHOZ_new = f(dep) plt.plot(df4['DEPTH'], df4['RHOZ'], 'o', dep, RHOZ_new, '-') plt.show() df6= pd.DataFrame(RHOZ_new,dep, columns=['RHOZ']) df=pd.DataFrame(df5.join(df6,how='inner',on='TDEP')) # %% TDEP= df.index top=650 bottom=1200 temp=((0.0198*TDEP)+ 26.921) v= 400000 b=0.88 tsup = 25 #F WS=18000 RWs= (v/tsup/WS)**b tf=temp Kt1=6.77 df['RW']=(RWs*(tsup+Kt1))/(temp+Kt1) df['Vsh'] = (df.GR_EDTC - 10) / (156 - 10) df['Vclay']=((0.65)*df.Vsh) mud_density=1.13835 #en g/cc rhoss=2.70 # g/cc rhosh=2.75 df['grain_density']=((df.Vsh*rhosh)+(1-df.Vsh)*rhoss) df['porosity']=(df.grain_density-(df.RHOZ))/(df.grain_density-mud_density) # %% CORE =pd.read_excel('./CORE/CORE.xlsx',sheet_name='XRD') mask = CORE.Well.isin(['U18']) U18_Core = CORE[mask] prof=U18_Core['Depth'] clays=U18_Core['Clays'] xls1 = pd.read_excel ('./CORE/CORE.xlsx', sheet_name='Saturation') mask = xls1.Well.isin(['U18']) U18_sat = xls1[mask] long=U18_sat ['Depth'] poro=U18_sat ['PHIT'] grain=U18_sat ['RHOG'] sw_core=U18_sat ['Sw'] klinkenberg =U18_sat ['K'] minimo=grain.min() maximo=grain.max() c=2.65 d=2.75 norm=(((grain-minimo)*(d-c)/(maximo-minimo))+c) xls2 = pd.read_excel ('./CORE/CORE.xlsx', sheet_name='Gamma') mask = xls2.Well.isin(['U18']) U18_GR = xls2[mask] h=U18_GR['Depth'] cg1=U18_GR['GR_Scaled'] plt.hist(clays,bins=50,facecolor='y',alpha=0.75,ec='black', label="Vclay") plt.title('Histogram-Vclay') plt.xlabel('%Vclay') plt.ylabel('Frecuency') plt.legend() # %% dt = 200 bt= 1350 plt.figure(figsize=(15,9)) plt.subplot(171) plt.plot(df.GR_EDTC,TDEP,'g',lw=0.5) plt.title('$GR$') plt.axis([20, 130, dt,bt]) plt.xlabel('Gamma Ray ') plt.gca().invert_yaxis() plt.grid(True) plt.subplot(172) plt.plot(df.AT90,TDEP,lw=0.5) plt.axis([10, 800, dt,bt]) plt.title('$AT90$') plt.xlabel('Resistivity') plt.gca().invert_yaxis() plt.xscale('log') plt.gca().yaxis.set_visible(False) plt.grid(True) plt.subplot(173) plt.plot(df.RHOZ,TDEP,'red',lw=0.5) plt.axis([2.25, 2.65, dt,bt]) plt.title('$RHOZ$') plt.xlabel('Standard \n Resolution \n Formation \n Density') plt.gca().invert_yaxis() plt.gca().yaxis.set_visible(False) plt.grid(True) plt.subplot(174) plt.plot(df.NPHI,TDEP,'purple',lw=0.5) plt.axis([0.6, 0.1, dt,bt]) plt.title('$NPHI$') plt.xlabel('Thermal \n Neutron \n Porosity',fontsize=8) plt.gca().invert_yaxis() plt.gca().yaxis.set_visible(False) plt.grid(True) plt.subplot(175) plt.plot(df.DTCO,TDEP,'r',lw=0.5) plt.title('$DTCO$') plt.xlabel('Delta-T \n Compressional ') plt.axis([60,125, dt,bt]) plt.gca().invert_yaxis() plt.gca().yaxis.set_visible(False) plt.grid(True) plt.subplot(176) plt.plot(temp,TDEP,'c') plt.axis([20, 65, dt,bt]) plt.gca().invert_yaxis() plt.title('$TEMP$') plt.xlabel('Temperature') plt.gca().yaxis.set_visible(False) plt.grid(True) plt.subplot(177) plt.plot(df.RW,TDEP,'blue',lw=0.5) plt.title('$RW$') plt.axis([0.4, 0.85, dt,bt]) plt.xlabel('Water \n Resistivity') plt.gca().invert_yaxis() plt.gca().yaxis.set_visible(False) plt.grid(True) plt.suptitle('U18_WELL LOGS_') plt.show() # %% ## SW_Archie ## SW=((a*Rw)/(Rt*(Por)^m))^(1/n) a=1 m=2 n=2 Rw=df.RW Rt=df.AT90 Phi=df.porosity F = (a / (Phi**m)) df['Sw_a'] = (F *Rw/Rt)**(1/n) df['Sw_a1']= df['Sw_a'].apply(lambda x: 1 if x>1 else x) df['Sw_a1'] = df['Sw_a1'].replace(np.nan, 1) dfSh = df[df['Vsh']>0.5] Rsh = 50 #Sw_Poupon # TERM1= 1/RT - VSH/RSH term1=(1/df.AT90)-(df.Vsh/Rsh) ## TERM2 = F*RW term2=(F*df.RW) ## TERM3 = (1-vsh) term3=(1-df.Vsh) ## SW_POUPON = ((TERM1*TERM2)/TERM3))^(1/N) df['Sw_p']=((term1*term2)/term3)**(1/n) df['Sw_p1']= df['Sw_p'].apply(lambda x: 1 if x >1 else x) df['Sw_p1'] = df['Sw_p1'].replace(np.nan, 1) # %% # WAXMAN-SMITS CEC method (does not require VCL) but requires core measurements of CEC TempC = (temp-32)/1.8 df['SwWS'] = df['Sw_p1'] CEC_av = 5 # ===== Waxman Smits Iterations. Reference: Well Logging for Earth Scientists, Page 663-667 for i in range(len(Rt)): error = 1000 count1 = 0 phit = Phi.iloc[i] if math.isnan(phit): df['SwWS'][i] = 1 else: Qv = rhosh*(1-phit)*CEC_av/phit/100 # Old Method Bcond = 3.83*(1-0.83*np.exp(-0.5/Rw.iloc[i])) # Waxman and Thomas, 1974 BQv = Qv*Bcond E = (phit**m)/a Ct = 1/Rt.iloc[i] Cw = 1/Rw.iloc[i] x0 = df.iloc[i]['Sw_a1'] Swguess = x0 while count1 <= 100 and error > 0.0001: count1 = count1+1 g = E*Cw*(Swguess**n) + E*BQv*(Swguess**(n-1)) - Ct error = g gp = n*E*Cw*(Swguess**(n-1)) + (n-1)*E*BQv*(Swguess**(n-2)) # print(df_1['SwWS'][i-1]) df['SwWS'].iloc[i] = Swguess-g/gp Swguess = df['SwWS'].iloc[i] # %% # SIMANDOUX (1963) for shaly-sandy formations, used with saline fm waters Equation solved for n=2 # Input parameters: #Rw - water resistivity #Rt - true resistivity #Phi - porosity #Rsh - shale resistivity # a - tortuosity factor # m - cementation exponent # n - saturation exponent # Vsh - Volume of shale df['Swsim']=((a*Rw)/(2*(Phi**m)))*(((df.Vsh/Rsh)**2+((4*Phi**m)/(a*Rw*Rt)))**(1/2)-(df.Vsh/Rsh)) df['Swsim1'] = df['Swsim'].replace(np.nan, 1) df.head(2000) # %% plt.figure(figsize=(15,9)) plt.subplot(191) plt.plot (df.GR_EDTC,TDEP,'g',cg1,h,'c.',lw=0.5) plt.title('$GR/ Core.GR $') plt.axis([20, 130, top,bottom]) plt.xlabel('Gamma Ray ') plt.gca().invert_yaxis() plt.grid(True) plt.subplot(192) plt.title('Vsh') plt.plot (df.Vsh,TDEP,'black',lw=0.5) plt.axis([0,1, top,bottom]) plt.gca().invert_yaxis() plt.gca().yaxis.set_visible(False) plt.grid(True) plt.subplot(193) plt.title('$Vclay/Vclay Core$') plt.plot (df.Vclay,TDEP,'m',clays,prof,'ro',lw=0.5) plt.axis([0,1, top,bottom]) plt.gca().invert_yaxis() plt.gca().yaxis.set_visible(False) plt.grid(True) plt.subplot(194) plt.title('Porosity \n Core Por.') plt.plot (df.porosity,TDEP,'m',poro,long,'c*',lw=0.5) plt.axis([0, 0.3, top,bottom]) plt.gca().invert_yaxis() plt.gca().invert_xaxis() plt.gca().yaxis.set_visible(False) plt.grid(True) plt.subplot(195) plt.title('Grain density \n Core GD') plt.plot (df.grain_density,TDEP,'y',norm,long,'g>',lw=0.5) plt.axis([2.64, 2.76, top,bottom]) plt.gca().invert_yaxis() plt.gca().yaxis.set_visible(False) plt.grid(True) #Basic Archie plt.subplot(196) plt.plot (df.Sw_a1,TDEP,'c',sw_core,long,'m.',lw=0.5) plt.title('$SW_A$') plt.axis([0,1.1,top,bottom]) plt.xlabel('Water \n Saturation_A') plt.gca().invert_yaxis() plt.gca().invert_xaxis() plt.gca().yaxis.set_visible(False) plt.grid(True) plt.xlim(1, 0) #Poupon Laminated Model plt.subplot(197) plt.plot (df.Sw_p1,TDEP,'r',sw_core,long,'m.',lw=0.5) plt.title('$SW_P$') plt.axis([0,1.5,top,bottom]) plt.xlabel('Water \n Saturation_P') plt.gca().invert_yaxis() plt.gca().invert_xaxis() plt.gca().yaxis.set_visible(False) plt.grid(True) plt.xlim(1, 0) #Waxman-Smits plt.subplot(198) plt.plot (df.SwWS,TDEP,'g',sw_core,long,'m.',lw=0.5) plt.title('$SW_W$') plt.axis([0,1,top,bottom]) plt.xlabel('Water \n Saturation_Waxman') plt.gca().invert_yaxis() plt.gca().invert_xaxis() plt.gca().yaxis.set_visible(False) plt.grid(True) plt.xlim(1, 0) #Simandoux plt.subplot(199) plt.plot (df.Swsim1,TDEP,'y',sw_core,long,'m.',lw=0.5) plt.title('$SW_S$') plt.axis([0,1,top,bottom]) plt.xlabel('Water \n Saturation_Sim') plt.gca().invert_yaxis() plt.gca().invert_xaxis() plt.gca().yaxis.set_visible(False) plt.grid(True) plt.xlim(1, 0) plt.show() # %% corte=0.5 df['PAY_archie']=df.Sw_a1.apply(lambda x: 1 if x<corte else 0) df['PAY_poupon']=df.Sw_p1.apply(lambda x: 1 if x<corte else 0) df['PAY_waxman']=df.SwWS.apply(lambda x: 1 if x<corte else 0) df['PAY_simandoux']=df.Swsim1.apply(lambda x: 1 if x<corte else 0) plt.figure(figsize=(15,9)) plt.subplot(191) #Basic Archie plt.plot (df.Sw_a1,TDEP,'c',lw=0.5) plt.title('$SW_A$') plt.axis([0,1,top,bottom]) plt.xlabel('Sw_Archie') plt.gca().invert_yaxis() plt.gca().invert_xaxis() plt.xlim(1, 0) plt.subplot(192) plt.plot (df.PAY_archie,TDEP,'c',lw=0.5) plt.title('$PAY_A$') plt.fill_between(df.PAY_archie,TDEP, color='c', alpha=0.8) plt.axis([0,0.001,top,bottom]) plt.gca().invert_yaxis() plt.gca().xaxis.set_visible(False) plt.gca().yaxis.set_visible(False) plt.grid(True) #Poupon Laminated Model plt.subplot(193) plt.plot (df.Sw_p1,TDEP,'r',lw=0.5) plt.title('$SW_P$') plt.axis([0,1.5,top,bottom]) plt.xlabel('Sw_Poupon') plt.gca().invert_yaxis() plt.gca().invert_xaxis() plt.gca().yaxis.set_visible(False) plt.xlim(1, 0) plt.subplot(194) plt.plot (df.PAY_poupon,TDEP,'r',lw=0.5) plt.title('$PAY_P$') plt.fill_between(df.PAY_poupon,TDEP, color='r', alpha=0.8) plt.axis([0,0.001,top,bottom]) plt.gca().invert_yaxis() plt.gca().xaxis.set_visible(False) plt.gca().yaxis.set_visible(False) plt.grid(True) #Waxman-Smits plt.subplot(195) plt.plot (df.SwWS,TDEP,'g',lw=0.5) plt.title('$SW_W$') plt.axis([0,5,top,bottom]) plt.xlabel('Sw_Waxman') plt.gca().invert_yaxis() plt.gca().invert_xaxis() plt.gca().yaxis.set_visible(False) plt.xlim(1, 0) plt.subplot(196) plt.plot (df.PAY_waxman,TDEP,'g',lw=0.5) plt.title('$PAY_W$') plt.fill_between(df.PAY_waxman,TDEP, color='g', alpha=0.8) plt.axis([0,0.001,top,bottom]) plt.gca().invert_yaxis() plt.gca().xaxis.set_visible(False) plt.gca().yaxis.set_visible(False) plt.grid(True) #Simandoux plt.subplot(197) plt.plot (df.Swsim1,TDEP,'y',lw=0.5) plt.title('$SW_S$') plt.axis([0,2,top,bottom]) plt.xlabel('Sw_Simandoux') plt.gca().invert_yaxis() plt.gca().invert_xaxis() plt.gca().yaxis.set_visible(False) plt.xlim(1, 0) plt.subplot(198) plt.plot (df.PAY_simandoux,TDEP,'y',lw=0.5) plt.title('$PAY_S$') plt.fill_between(df.PAY_simandoux,TDEP, color='y', alpha=0.8) plt.axis([0,0.001,top,bottom]) plt.gca().invert_yaxis() plt.gca().xaxis.set_visible(False) plt.gca().yaxis.set_visible(False) plt.grid(True) plt.show() # %% df.insert(21, "WELL", 'U18') df.head() with pd.ExcelWriter('U18.xlsx') as writer: df.to_excel(writer, sheet_name='U18_data')
d4b8f5989466780e1f4819d54a8447935d821ed3
b368f0dd09a4eed97a350ca01ac170bb44347f8d
/python/oneflow/framework/tensor_str.py
10ecfbbc8c30e7196b4c34f79684cca7d94e273f
[ "Apache-2.0" ]
permissive
opencici2006/oneflow
bb67d3475e5b85d88f7f627733af75859e431759
7c3b42fa5ae95823d195c077565f0c190d98e7ad
refs/heads/master
2023-08-01T14:22:33.745620
2021-09-09T02:52:54
2021-09-09T02:52:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,715
py
""" Copyright 2020 The OneFlow Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ """ This file is mostly referenced from PyTorch v1.8.1 torch/_tensor_str.py """ import numpy as np import math from typing import Optional import oneflow as flow class __PrinterOptions(object): precision: int = 4 threshold: float = 1000 edgeitems: int = 3 linewidth: int = 80 sci_mode: Optional[bool] = None PRINT_OPTS = __PrinterOptions() def _try_convert_to_local_tensor(tensor): if tensor.is_consistent: tensor = tensor.to_consistent( placement=tensor.placement, sbp=flow.sbp.broadcast ).to_local() return tensor class _Formatter(object): def __init__(self, tensor): self.floating_dtype = tensor.dtype.is_floating_point self.int_mode = True self.sci_mode = False self.max_width = 1 self.random_sample_num = 50 tensor = _try_convert_to_local_tensor(tensor) with flow.no_grad(): tensor_view = tensor.reshape(-1) if not self.floating_dtype: for value in tensor_view: value_str = "{}".format(value) self.max_width = max(self.max_width, len(value_str)) else: nonzero_finite_vals = flow.masked_select(tensor_view, tensor_view.ne(0)) if nonzero_finite_vals.numel() == 0: # no valid number, do nothing return nonzero_finite_abs = nonzero_finite_vals.abs() nonzero_finite_min = nonzero_finite_abs.min().numpy().astype(np.float64) nonzero_finite_max = nonzero_finite_abs.max().numpy().astype(np.float64) for value in nonzero_finite_abs.numpy(): if value != np.ceil(value): self.int_mode = False break if self.int_mode: # Check if scientific representation should be used. if ( nonzero_finite_max / nonzero_finite_min > 1000.0 or nonzero_finite_max > 1.0e8 ): self.sci_mode = True for value in nonzero_finite_vals: value_str = ( ("{{:.{}e}}").format(PRINT_OPTS.precision).format(value) ) self.max_width = max(self.max_width, len(value_str)) else: for value in nonzero_finite_vals: value_str = ("{:.0f}").format(value) self.max_width = max(self.max_width, len(value_str) + 1) else: if ( nonzero_finite_max / nonzero_finite_min > 1000.0 or nonzero_finite_max > 1.0e8 or nonzero_finite_min < 1.0e-4 ): self.sci_mode = True for value in nonzero_finite_vals: value_str = ( ("{{:.{}e}}").format(PRINT_OPTS.precision).format(value) ) self.max_width = max(self.max_width, len(value_str)) else: for value in nonzero_finite_vals: value_str = ( ("{{:.{}f}}").format(PRINT_OPTS.precision).format(value) ) self.max_width = max(self.max_width, len(value_str)) if PRINT_OPTS.sci_mode is not None: self.sci_mode = PRINT_OPTS.sci_mode def width(self): return self.max_width def format(self, value): if self.floating_dtype: if self.sci_mode: ret = ( ("{{:{}.{}e}}") .format(self.max_width, PRINT_OPTS.precision) .format(value) ) elif self.int_mode: ret = "{:.0f}".format(value) if not (math.isinf(value) or math.isnan(value)): ret += "." else: ret = ("{{:.{}f}}").format(PRINT_OPTS.precision).format(value) else: ret = "{}".format(value) return (self.max_width - len(ret)) * " " + ret def _scalar_str(self, formatter1): return formatter1.format(_try_convert_to_local_tensor(self).tolist()) def _vector_str(self, indent, summarize, formatter1): # length includes spaces and comma between elements element_length = formatter1.width() + 2 elements_per_line = max( 1, int(math.floor((PRINT_OPTS.linewidth - indent) / (element_length))) ) char_per_line = element_length * elements_per_line def _val_formatter(val, formatter1=formatter1): return formatter1.format(val) if summarize and self.size(0) > 2 * PRINT_OPTS.edgeitems: left_values = _try_convert_to_local_tensor( self[: PRINT_OPTS.edgeitems] ).tolist() right_values = _try_convert_to_local_tensor( self[-PRINT_OPTS.edgeitems :] ).tolist() data = ( [_val_formatter(val) for val in left_values] + [" ..."] + [_val_formatter(val) for val in right_values] ) else: values = _try_convert_to_local_tensor(self).tolist() data = [_val_formatter(val) for val in values] data_lines = [ data[i : i + elements_per_line] for i in range(0, len(data), elements_per_line) ] lines = [", ".join(line) for line in data_lines] return "[" + ("," + "\n" + " " * (indent + 1)).join(lines) + "]" def _tensor_str_with_formatter(self, indent, summarize, formatter1): dim = self.dim() if dim == 0: return _scalar_str(self, formatter1) if dim == 1: return _vector_str(self, indent, summarize, formatter1) if summarize and self.size(0) > 2 * PRINT_OPTS.edgeitems: slices = ( [ _tensor_str_with_formatter(self[i], indent + 1, summarize, formatter1) for i in range(0, PRINT_OPTS.edgeitems) ] + ["..."] + [ _tensor_str_with_formatter(self[i], indent + 1, summarize, formatter1) for i in range(self.shape[0] - PRINT_OPTS.edgeitems, self.shape[0]) ] ) else: slices = [ _tensor_str_with_formatter(self[i], indent + 1, summarize, formatter1) for i in range(0, self.size(0)) ] tensor_str = ("," + "\n" * (dim - 1) + " " * (indent + 1)).join(slices) return "[" + tensor_str + "]" def _tensor_str(self, indent): summarize = self.numel() > PRINT_OPTS.threshold if self.dtype is flow.float16: self = self.float() # TODO: not support flow.sbp.split(x) but flow.sbp.split(0). def _cannot_print(sbp): return ( sbp != flow.sbp.partial_sum and sbp != flow.sbp.broadcast and sbp != flow.sbp.split(0) ) # TODO: delete it when boxing on "CPU" and s1->b on "GPU" are ready if self.is_consistent: self = self.to("cuda") if all(_cannot_print(sbp) for sbp in self.sbp): return "[...]" with flow.no_grad(): formatter = _Formatter(get_summarized_data(self) if summarize else self) return _tensor_str_with_formatter(self, indent, summarize, formatter) def _add_suffixes(tensor_str, suffixes, indent): tensor_strs = [tensor_str] last_line_len = len(tensor_str) - tensor_str.rfind("\n") + 1 for suffix in suffixes: suffix_len = len(suffix) if last_line_len + suffix_len + 2 > PRINT_OPTS.linewidth: tensor_strs.append(",\n" + " " * indent + suffix) last_line_len = indent + suffix_len else: tensor_strs.append(", " + suffix) last_line_len += suffix_len + 2 tensor_strs.append(")") return "".join(tensor_strs) def get_summarized_data(self): dim = self.dim() if dim == 0: return self if dim == 1: if self.size(0) > 2 * PRINT_OPTS.edgeitems: return flow.cat( (self[: PRINT_OPTS.edgeitems], self[-PRINT_OPTS.edgeitems :]) ) else: return self if self.size(0) > 2 * PRINT_OPTS.edgeitems: start = [self[i] for i in range(0, PRINT_OPTS.edgeitems)] end = [ self[i] for i in range(self.shape[0] - PRINT_OPTS.edgeitems, self.shape[0]) ] return flow.stack([get_summarized_data(x) for x in (start + end)]) else: return flow.stack([get_summarized_data(x) for x in self]) def _gen_tensor_str_template(tensor, is_meta): is_meta = is_meta or tensor.is_lazy prefix = "tensor(" indent = len(prefix) suffixes = [] # tensor is local or consistent if tensor.is_consistent: suffixes.append(f"placement={str(tensor.placement)}") suffixes.append(f"sbp={str(tensor.sbp)}") elif tensor.device.type == "cuda" or tensor.device.type == "gpu": suffixes.append("device='" + str(tensor.device) + "'") elif tensor.device.type != "cpu": raise RunTimeError("unknow device type") if tensor.is_lazy: suffixes.append("is_lazy='True'") # tensor is empty, meta or normal if tensor.numel() == 0: # Explicitly print the shape if it is not (0,), to match NumPy behavior if tensor.dim() != 1: suffixes.append("size=" + str(tuple(tensor.shape))) tensor_str = "[]" elif is_meta: tensor_str = "..." suffixes.append("size=" + str(tuple(tensor.shape))) else: tensor_str = _tensor_str(tensor, indent) suffixes.append("dtype=" + str(tensor.dtype)) if tensor.grad_fn is not None: name = tensor.grad_fn.name() suffixes.append("grad_fn=<{}>".format(name)) elif tensor.requires_grad: suffixes.append("requires_grad=True") return _add_suffixes(prefix + tensor_str, suffixes, indent) def _gen_tensor_str(tensor): return _gen_tensor_str_template(tensor, False) def _gen_tensor_meta_str(tensor): # meta return _gen_tensor_str_template(tensor, True)
e52168c2053ab542fa265c652cd8e6681ca39760
3061e43d2d90bae124e6ee32d41b9db4f9275805
/task_based_analysis/fmri_fsl_noSmooth.py
376726d29f8e6745cca096f41393ff7c91450997
[]
no_license
orduek/kpe_task
cfc1a904944c79270d3a41aa9c78e0c616e7bccf
5c84ff8963980ea7940d99cec7e45c63e1b18483
refs/heads/master
2021-06-22T06:33:31.669078
2021-02-18T09:23:05
2021-02-18T09:23:05
188,063,421
1
1
null
2020-12-06T10:04:46
2019-05-22T15:13:36
Jupyter Notebook
UTF-8
Python
false
false
8,728
py
#!/usr/bin/env python # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: """ Created on Wed Dec 4 14:29:06 2019 @author: Or Duek 1st level analysis using FSL output In this one we smooth using SUSAN, which takes longer. """ #%% from __future__ import print_function from __future__ import division from builtins import str from builtins import range import os # system functions import nipype.interfaces.io as nio # Data i/o import nipype.interfaces.fsl as fsl # fsl import nipype.interfaces.utility as util # utility import nipype.pipeline.engine as pe # pypeline engine import nipype.algorithms.modelgen as model # model generation #import nipype.algorithms.rapidart as ra # artifact detection from nipype.workflows.fmri.fsl.preprocess import create_susan_smooth from nipype.interfaces.utility import Function fsl.FSLCommand.set_default_output_type('NIFTI_GZ') """ Setting up workflows -------------------- In this tutorial we will be setting up a hierarchical workflow for fsl analysis. This will demonstrate how pre-defined workflows can be setup and shared across users, projects and labs. """ #%% data_dir = '/home/oad4/scratch60/kpe' output_dir = '/home/oad4/scratch60/work/fsl_analysis_ses2_Nosmooth' removeTR = 4 fwhm = 0 tr = 1 session = '2' # choose session #%% Methods def _bids2nipypeinfo(in_file, events_file, regressors_file, regressors_names=None, motion_columns=None, decimals=3, amplitude=1.0, removeTR=4): from pathlib import Path import numpy as np import pandas as pd from nipype.interfaces.base.support import Bunch # Process the events file events = pd.read_csv(events_file, sep=r'\s+') bunch_fields = ['onsets', 'durations', 'amplitudes'] if not motion_columns: from itertools import product motion_columns = ['_'.join(v) for v in product(('trans', 'rot'), 'xyz')] out_motion = Path('motion.par').resolve() regress_data = pd.read_csv(regressors_file, sep=r'\s+') np.savetxt(out_motion, regress_data[motion_columns].values[removeTR:,], '%g') if regressors_names is None: regressors_names = sorted(set(regress_data.columns) - set(motion_columns)) if regressors_names: bunch_fields += ['regressor_names'] bunch_fields += ['regressors'] runinfo = Bunch( scans=in_file, conditions=list(set(events.trial_type_30.values)), **{k: [] for k in bunch_fields}) for condition in runinfo.conditions: event = events[events.trial_type_30.str.match(condition)] runinfo.onsets.append(np.round(event.onset.values-removeTR, 3).tolist()) # added -removeTR to align to the onsets after removing X number of TRs from the scan runinfo.durations.append(np.round(event.duration.values, 3).tolist()) if 'amplitudes' in events.columns: runinfo.amplitudes.append(np.round(event.amplitudes.values, 3).tolist()) else: runinfo.amplitudes.append([amplitude] * len(event)) if 'regressor_names' in bunch_fields: runinfo.regressor_names = regressors_names runinfo.regressors = regress_data[regressors_names].fillna(0.0).values[removeTR:,].T.tolist() # adding removeTR to cut the first rows return [runinfo], str(out_motion) #%% subject_list = ['1468']#['1351'] #['008', '1223','1253','1263','1293','1307','1315','1322','1339','1343','1351','1356','1364','1369','1387','1390','1403' #,'1464','1468' '1480','1499', '1561'] # Map field names to individual subject runs. infosource = pe.Node(util.IdentityInterface(fields=['subject_id' ], ), name="infosource") infosource.iterables = [('subject_id', subject_list)] # SelectFiles - to grab the data (alternativ to DataGrabber) templates = {'func': data_dir + '/fmriprep/sub-{subject_id}/ses-' + session + '/func/sub-{subject_id}_ses-' + session + '_task-Memory_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz', 'mask': data_dir + '/fmriprep/sub-{subject_id}/ses-' + session + '/func/sub-{subject_id}_ses-' + session + '_task-Memory_space-MNI152NLin2009cAsym_desc-brain_mask.nii.gz', 'regressors': data_dir + '/fmriprep/sub-{subject_id}/ses-' + session + '/func/sub-{subject_id}_ses-' + session + '_task-Memory_desc-confounds_regressors.tsv', 'events': data_dir + '/condition_files/withNumbers/sub-{subject_id}_ses-' + session + '_30sec_window' + '.csv'} selectfiles = pe.Node(nio.SelectFiles(templates, ), name="selectfiles") #%% # Extract motion parameters from regressors file runinfo = pe.Node(util.Function( input_names=['in_file', 'events_file', 'regressors_file', 'regressors_names', 'removeTR'], function=_bids2nipypeinfo, output_names=['info', 'realign_file']), name='runinfo') runinfo.inputs.removeTR = removeTR # Set the column names to be used from the confounds file runinfo.inputs.regressors_names = ['dvars', 'framewise_displacement'] + \ ['a_comp_cor_%02d' % i for i in range(6)] + ['cosine%02d' % i for i in range(4)] #%% skip = pe.Node(interface=fsl.ExtractROI(), name = 'skip') skip.inputs.t_min = removeTR skip.inputs.t_size = -1 #%% # susan = pe.Node(interface=fsl.SUSAN(), name = 'susan') #create_susan_smooth() # susan.inputs.fwhm = fwhm # susan.inputs.brightness_threshold = 1000.0 #%% modelfit = pe.Workflow(name='modelfit_ses_' + session, base_dir= output_dir) """ Use :class:`nipype.algorithms.modelgen.SpecifyModel` to generate design information. """ modelspec = pe.Node(interface=model.SpecifyModel(), name="modelspec") modelspec.inputs.input_units = 'secs' modelspec.inputs.time_repetition = tr modelspec.inputs.high_pass_filter_cutoff= 120 """ Use :class:`nipype.interfaces.fsl.Level1Design` to generate a run specific fsf file for analysis """ ## Building contrasts level1design = pe.Node(interface=fsl.Level1Design(), name="level1design") cont1 = ['Trauma1_0>Sad1_0', 'T', ['trauma1_0', 'sad1_0'], [1, -1]] cont2 = ['Trauma1_0>Relax1_0', 'T', ['trauma1_0', 'relax1_0'], [1, -1]] cont3 = ['Sad1_0>Relax1_0', 'T', ['sad1_0', 'relax1_0'], [1, -1]] cont4 = ['trauma1_0 > trauma2_0', 'T', ['trauma1_0', 'trauma2_0'], [1, -1]] cont5 = ['Trauma1_0>Trauma1_2_3', 'T', ['trauma1_0', 'trauma1_2','trauma1_3'], [1, -0.5, -0.5]] cont6 = ['Trauma1 > Trauma2', 'T', ['trauma1_0', 'trauma1_1', 'trauma1_2', 'trauma1_3', 'trauma2_0', 'trauma2_1', 'trauma2_2', 'trauma2_3'], [0.25, 0.25, 0.25, 0.25, -0.25, -0.25, -0.25, -0.25 ]] contrasts = [cont1, cont2, cont3, cont4, cont5, cont6] level1design.inputs.interscan_interval = tr level1design.inputs.bases = {'dgamma': {'derivs': False}} level1design.inputs.contrasts = contrasts level1design.inputs.model_serial_correlations = True """ Use :class:`nipype.interfaces.fsl.FEATModel` to generate a run specific mat file for use by FILMGLS """ modelgen = pe.MapNode( interface=fsl.FEATModel(), name='modelgen', iterfield=['fsf_file', 'ev_files']) """ Use :class:`nipype.interfaces.fsl.FILMGLS` to estimate a model specified by a mat file and a functional run """ mask = pe.Node(interface= fsl.maths.ApplyMask(), name = 'mask') modelestimate = pe.MapNode( interface=fsl.FILMGLS(smooth_autocorr=True, mask_size=5, threshold=1000), name='modelestimate', iterfield=['design_file', 'in_file', 'tcon_file']) """ Use :class:`nipype.interfaces.fsl.ContrastMgr` to generate contrast estimates """ #%% modelfit.connect([ (infosource, selectfiles, [('subject_id', 'subject_id')]), (selectfiles, runinfo, [('events','events_file'),('regressors','regressors_file')]), (selectfiles, skip,[('func','in_file')]), (skip,runinfo,[('roi_file','in_file')]), # (selectfiles, susan, [('mask','mask_file')]), # (susan, runinfo, [('smoothed_file', 'in_file')]), (skip, modelspec, [('roi_file', 'functional_runs')]), (runinfo, modelspec, [('info', 'subject_info'), ('realign_file', 'realignment_parameters')]), (modelspec, level1design, [('session_info', 'session_info')]), (level1design, modelgen, [('fsf_files', 'fsf_file'), ('ev_files', 'ev_files')]), (skip, mask, [('roi_file', 'in_file')]), (selectfiles, mask, [('mask', 'mask_file')]), (mask, modelestimate, [('out_file','in_file')]), (modelgen, modelestimate, [('design_file', 'design_file'),('con_file', 'tcon_file'),('fcon_file','fcon_file')]), ]) #%% modelfit.run('MultiProc', plugin_args={'n_procs': 5}) # %%
31cd84d71b99be36816d823a9e04178b834ca8b0
a13153cb5a915c760586e8a45db338a08901028b
/shangchengxitong.py
810d4e891c718a9535ebb69c4de6150fa5511e01
[]
no_license
18730325640/store
092627e5e5e94276e54033004ae95da1c5f7d2aa
086c847f4a91fd67eedaa221e36ef4a9b3874842
refs/heads/master
2023-06-01T07:19:00.504648
2021-06-25T08:13:28
2021-06-25T08:13:28
378,825,566
0
0
null
null
null
null
UTF-8
Python
false
false
2,898
py
print("hello world!") print("-日期 服装名称 价格/件 库存数量 销售量/每日-") print("-1号 羽绒服 253.6 500 10 -") print("-2号 牛仔裤 86.3 600 60 -") print("-3号 风衣 96.8 335 43 -") print("-4号 皮草 135.9 855 63 -") print("-5号 T恤 65.8 632 63 -") print("-6号 衬衫 49.3 562 120 -") print("-7号 牛仔裤 86.3 600 72 -") print("-8号 羽绒服 253.6 500 69 -") print("-9号 牛仔裤 86.3 600 35 -") print("-10号 羽绒服 253.6 500 140 -") print("-11号 牛仔裤 86.3 600 90 -") print("-12号 皮草 135.9 855 24 -") print("-13号 T恤 65.8 632 45 -") print("-14号 风衣 96.8 335 25 -") print("-15号 牛仔裤 86.3 600 60 -") print("-16号 T恤 65.8 632 129 -") print("-17号 羽绒服 253.6 500 10 -") print("-18号 风衣 96.8 335 43 -") print("-19号 T恤 65.8 632 63 -") print("-20号 牛仔裤 86.3 600 60 -") print("-21号 皮草 135.9 855 63 -") print("-22号 风衣 96.8 335 60 -") print("-23号 T恤 65.8 632 58 -") print("-24号 牛仔裤 86.3 600 140 -") print("-25号 T恤 65.8 632 48 -") print("-26号 风衣 96.8 335 43 -") print("-27号 皮草 135.9 855 57 -") print("-28号 羽绒服 253.6 500 10 -") print("-29号 T恤 65.8 632 63 -") print("-30号 风衣 96.8 335 78 -") print("总金额:¥",(253.6*10+86.3*60+96.8*43+135.9*63+65.8*63+49.3*120+86.3*72+253.6*69+86.3*35+253.6*140+86.3*90+135.9*24+65.8*45+96.8*25+86.3*60+65.8*129+253.6*10+96.8*43+65.8*63+86.3*60+135.9*63+96.8*60+65.8*58+86.3*140+65.8*48+96.8*43+135.9*57+96.8*78+253.6*10+65.8*63)) print("羽绒服销售额占比:%.2f%%"%(253.6*(10+69+140+10+10)/198400.60)) print("牛仔裤销售额占比:%.2f%%"%(86.3*(60+72+35+90+60+60+140)/198400.60)) print("风衣销售额占比:%.2f%%"%(96.8*(43+25+43+60+43+78)/198400.60)) print("皮草销售额占比:%.2f%%"%(135.9*(63+24+63+57)/198400.60)) print("T恤销售额占比:%.2f%%"%(65.8*(63+45+129+63+58+48+63)/198400.60)) print("衬衫销售额占比:%.2f%%"%(49.3*120/198400.60))
0248493f86a691fd2dad48155858dec716040d67
2018b20688fcedc6a4f274ca77d71e03b54da609
/user/models.py
48875f6448257414a52afcea22a8aaf4c666514d
[]
no_license
harshithpabbati/django-graphql
968ef28c9045e6db87a38383c00d0427ba336723
3b98528f805339035e841a178d56c48cdee0442d
refs/heads/master
2022-06-16T01:59:12.207097
2021-07-21T13:42:01
2021-07-21T13:42:01
229,286,190
3
0
null
2022-05-25T02:56:43
2019-12-20T15:09:25
Python
UTF-8
Python
false
false
825
py
from django.db import models from django.contrib.auth.models import AbstractUser from framework.utils.cornflakes.decorators import model_config @model_config() class User(AbstractUser): # id of the user, generated by cornflakes id = models.AutoField(primary_key=True, null=False) # email to communicate with the user email = models.EmailField(unique=True, null=False, blank=False) # boolean, whether email address is verified isEmailVerified = models.BooleanField(default=False) # varchar(255), stores user's first name first_name = models.CharField(max_length=255, default='', blank=True, verbose_name='First Name') # varchar(255), stores user's last name last_name = models.CharField(max_length=255, default='', blank=True, verbose_name='Last Name') __all__ = [ 'User', ]
d6421366ead0444f243530ea7171288c4fd74f01
3f85a2b5ebaf040d295bd5d98c49b59e9ea82643
/extract_delf.py
d8911a4ee35ad704974c37e18e3ef631c5868f09
[ "Apache-2.0" ]
permissive
vcg-uvic/image-matching-benchmark-baselines
6b69d0db384c4af90b431f421077aa0f8e1ec04f
01510c4d2c07cad89727013241a359bb22689a1b
refs/heads/master
2021-01-04T00:35:04.375020
2020-10-01T17:19:54
2020-10-01T17:19:54
292,169,250
19
1
Apache-2.0
2020-10-01T17:19:56
2020-09-02T03:29:45
null
UTF-8
Python
false
false
9,403
py
# Copyright 2017 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # Forked from: # https://github.com/tensorflow/models/blob/master/research/delf/delf/python/examples/extract_features.py """Extracts DELF features from a list of images, saving them to file. The images must be in JPG format. The program checks if descriptors already exist, and skips computation for those. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os import sys import time import json import numpy as np import h5py import tensorflow as tf from google.protobuf import text_format from tensorflow.python.platform import app from delf import delf_config_pb2 from delf import feature_extractor from delf import feature_io cmd_args = None # Extension of feature files. _DELF_EXT = '.h5' # Pace to report extraction log. _STATUS_CHECK_ITERATIONS = 100 def _ReadImageList(list_path): """Helper function to read image paths. Args: list_path: Path to list of images, one image path per line. Returns: image_paths: List of image paths. """ with tf.gfile.GFile(list_path, 'r') as f: image_paths = f.readlines() image_paths = [entry.rstrip() for entry in image_paths] return image_paths def MakeExtractor(sess, config, import_scope=None): """Creates a function to extract features from an image. Args: sess: TensorFlow session to use. config: DelfConfig proto containing the model configuration. import_scope: Optional scope to use for model. Returns: Function that receives an image and returns features. """ tf.saved_model.loader.load( sess, [tf.saved_model.tag_constants.SERVING], config.model_path, import_scope=import_scope) import_scope_prefix = import_scope + '/' if import_scope is not None else '' input_image = sess.graph.get_tensor_by_name('%sinput_image:0' % import_scope_prefix) input_score_threshold = sess.graph.get_tensor_by_name( '%sinput_abs_thres:0' % import_scope_prefix) input_image_scales = sess.graph.get_tensor_by_name('%sinput_scales:0' % import_scope_prefix) input_max_feature_num = sess.graph.get_tensor_by_name( '%sinput_max_feature_num:0' % import_scope_prefix) boxes = sess.graph.get_tensor_by_name('%sboxes:0' % import_scope_prefix) raw_descriptors = sess.graph.get_tensor_by_name('%sfeatures:0' % import_scope_prefix) feature_scales = sess.graph.get_tensor_by_name('%sscales:0' % import_scope_prefix) attention_with_extra_dim = sess.graph.get_tensor_by_name( '%sscores:0' % import_scope_prefix) attention = tf.reshape(attention_with_extra_dim, [tf.shape(attention_with_extra_dim)[0]]) locations, descriptors = feature_extractor.DelfFeaturePostProcessing( boxes, raw_descriptors, config) def ExtractorFn(image): """Receives an image and returns DELF features. Args: image: Uint8 array with shape (height, width 3) containing the RGB image. Returns: Tuple (locations, descriptors, feature_scales, attention) """ return sess.run([locations, descriptors, feature_scales, attention], feed_dict={ input_image: image, input_score_threshold: config.delf_local_config.score_threshold, input_image_scales: list(config.image_scales), input_max_feature_num: config.delf_local_config.max_feature_num }) return ExtractorFn def main(unused_argv): tf.logging.set_verbosity(tf.logging.INFO) # Read list of images. tf.logging.info('Reading list of images...') image_paths = _ReadImageList(cmd_args.list_images_path) num_images = len(image_paths) tf.logging.info('done! Found %d images', num_images) # Parse DelfConfig proto. config = delf_config_pb2.DelfConfig() with tf.gfile.FastGFile(cmd_args.config_path, 'r') as f: text_format.Merge(f.read(), config) # Create output directory if necessary. if not os.path.exists(cmd_args.output_dir): os.makedirs(cmd_args.output_dir) # Tell TensorFlow that the model will be built into the default Graph. with tf.Graph().as_default(): # Reading list of images. filename_queue = tf.train.string_input_producer( image_paths, shuffle=False) reader = tf.WholeFileReader() _, value = reader.read(filename_queue) image_tf = tf.image.decode_jpeg(value, channels=3) with tf.Session() as sess: init_op = tf.global_variables_initializer() sess.run(init_op) extractor_fn = MakeExtractor(sess, config) # Start input enqueue threads. coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) start = time.clock() with h5py.File(os.path.join(cmd_args.output_dir, 'keypoints.h5'), 'w') as h5_kp, \ h5py.File(os.path.join(cmd_args.output_dir, 'descriptors.h5'), 'w') as h5_desc, \ h5py.File(os.path.join(cmd_args.output_dir, 'scores.h5'), 'w') as h5_score, \ h5py.File(os.path.join(cmd_args.output_dir, 'scales.h5'), 'w') as h5_scale: for i in range(num_images): key = os.path.splitext(os.path.basename(image_paths[i]))[0] print('Processing "{}"'.format(key)) # Write to log-info once in a while. if i == 0: tf.logging.info( 'Starting to extract DELF features from images...') elif i % _STATUS_CHECK_ITERATIONS == 0: elapsed = (time.clock() - start) tf.logging.info( 'Processing image %d out of %d, last %d ' 'images took %f seconds', i, num_images, _STATUS_CHECK_ITERATIONS, elapsed) start = time.clock() # # Get next image. im = sess.run(image_tf) # If descriptor already exists, skip its computation. # out_desc_filename = os.path.splitext(os.path.basename( # image_paths[i]))[0] + _DELF_EXT # out_desc_fullpath = os.path.join(cmd_args.output_dir, out_desc_filename) # if tf.gfile.Exists(out_desc_fullpath): # tf.logging.info('Skipping %s', image_paths[i]) # continue # Extract and save features. (locations_out, descriptors_out, feature_scales_out, attention_out) = extractor_fn(im) # np.savez('{}.npz'.format(config.delf_local_config.max_feature_num), keypoints=locations_out) # feature_io.WriteToFile(out_desc_fullpath, locations_out, # feature_scales_out, descriptors_out, # attention_out) h5_kp[key] = locations_out[:, ::-1] h5_desc[key] = descriptors_out h5_scale[key] = feature_scales_out h5_score[key] = attention_out # Finalize enqueue threads. coord.request_stop() coord.join(threads) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.register('type', 'bool', lambda v: v.lower() == 'true') parser.add_argument( '--config_path', type=str, default='misc/delf/delf_config_example.pbtxt', help=""" Path to DelfConfig proto text file with configuration to be used for DELF extraction. """) parser.add_argument( '--list_images_path', type=str, help=""" Path to list of images whose DELF features will be extracted. """) parser.add_argument( '--output_dir', type=str, default='../benchmark-features/delf', help=""" Directory where DELF features will be written to. Each image's features will be written to a file with same name, and extension replaced by .delf. """) cmd_args, unparsed = parser.parse_known_args() app.run(main=main, argv=[sys.argv[0]] + unparsed)
98eb6a81f0078231ee88127e1e12dcc23b2cec74
c17b2e12ce50446b3be07a218781475c8cc79825
/constants.py
db7d619f0a0c6136f4173936ac737bc33b01d820
[]
no_license
miscott/3G-AMP
33e94bd5e020d608deb186014f39819a847a7b0f
97a1b3277d32a4e0973476b1b0b688c3ca6018f3
refs/heads/master
2020-06-13T18:20:15.968666
2019-06-17T04:55:42
2019-06-24T04:55:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
744
py
# Some constants used for reading layers and layer properties from CFG file LAYER_CONVOLUTIONAL = 'convolutional' LAYER_UPSAMPLE = 'upsample' LAYER_ROUTE = 'route' LAYER_SHORTCUT = 'shortcut' LAYER_MAX_POOL = 'maxpool' LAYER_YOLO = 'yolo' LAYER_NET = 'net' LAYER_LEAKY = 'leaky' LAYER_RELU = 'relu' LAYER_LINEAR = 'linear' LPROP_ACTIVATION = 'activation' LPROP_STRIDE = 'stride' LPROP_TYPE = 'type' LPROP_BATCH_NORMALIZE = 'batch_normalize' LPROP_FILTERS = 'filters' LPROP_PAD = 'pad' LPROP_LAYERS = 'layers' LPROP_SIZE = 'size' LPROP_ANCHORS = 'anchors' LPROP_FROM = 'from' LPROP_MASK = 'mask' LPROP_HEIGHT = 'height' LPROP_CLASSES = 'classes' # some constants for reading the data config file CONF_CLASSES = 'classes' CONF_NAMES = 'names'
c0066fdbc9fdf711682287e1178d71f95464a27c
68ebfad0c7968a27fc22b0fa1ec493dd7090cf7d
/ats_log_parser/__init__.py
a4a96f7b3aa4426f223570f26fc1fd9b03a733d2
[ "Apache-2.0" ]
permissive
hong142101/ats_log_parser
1697c398046c61fc0846732a1386c1d303a0b754
bb91138fb670698568cd9dd28c4977e8cc0ba09c
refs/heads/master
2021-01-25T06:49:20.518355
2017-07-13T08:39:11
2017-07-13T08:39:11
95,871,760
1
0
null
null
null
null
UTF-8
Python
false
false
6,448
py
import datetime import logging from .log_analyst.settle_process import SettleInformation from .log_analyst.settle_process import __get_position_csv_name from .log_analyst.settle_process import push_positions_and_trades_into_database from .log_analyst.settle_process import summary_daily_trades from .check_and_settle.check_position import check_position from .check_and_settle.holding_profit_qxy import holding_position_mysql_profit from .check_and_settle.record_account_balance import record_account_balance from .profit_data_daily.get_profit_data import get_profit_data DEFAULT_TAR_DATE = datetime.date.today() GUIDE_DESCRIPTION00 = ''' input settle date, eg. 2016-04-20 default: %s settle date: ''' % str(DEFAULT_TAR_DATE) GUIDE_DESCRIPTION01 = ''' input closed date, eg. 2016-04-20 default: %s closed date: ''' % str(DEFAULT_TAR_DATE) GUIDE_DESCRIPTION1 = ''' settle daytime trades or nighttime? options: daytime / nighttime / none input: ''' GUIDE_DESCRIPTION2 = ''' =============================================== ##### trading settlement process ###### <task types> parse :: append ats log into positions settle :: update positions&trades into database =============================================== select working:''' def print_settle_info(settle_info, accounts): info_str = ('>>>>>>' 'settle settings\n' 'account : %s\n' 'position date : %s\n' 'settle date : %s\n' 'closed date : %s\n' 'settle daytime : %s\n' '--\n' 'datebase : %s\n' 'db_user : %s\n' '--\n' 'log path : %s\n' 'position path : %s\n' '>>>>>>' % (str(settle_info.account_name), str(settle_info.position_date), str(settle_info.settle_date), str(settle_info.closed_date), str(settle_info.is_daytime), str(settle_info.database_name), str(settle_info.dbase_acc), str(settle_info.log_file_folder), str(settle_info.position_csv_folder)) ) print(info_str) print('\naccounts: ', str(accounts)) return # # 根据策略配置文件生成分策略持仓,并和交易log分析文件的持仓做对比 # def check_position(settle_info): # position_csv_path = __get_position_csv_name(settle_info) # strategy_positions = parse_strategy_config(settle_info) # csv_positions = parse_position_csv(position_csv_path) # # if csv_positions == strategy_positions: # logging.info("mysql_positions == strategy_positions") # return True # else: # logging.info('strategy_positions') # for i in strategy_positions: # logging.info(str(i)) # logging.info('holding_csv_position') # for i in csv_positions: # logging.info(str(i)) # logging.info("mysql_positions != strategy_positions") # return False def _run_settle_process_on_account(accounts, settle_info): # 结算日期 s_date = input(GUIDE_DESCRIPTION00) if not s_date: settle_info.settle_date = DEFAULT_TAR_DATE else: settle_info.settle_date = datetime.datetime.strptime(s_date, '%Y-%m-%d').date() # 收盘价日期 s_date = input(GUIDE_DESCRIPTION01) if not s_date: settle_info.closed_date = DEFAULT_TAR_DATE else: settle_info.closed_date = datetime.datetime.strptime(s_date, '%Y-%m-%d').date() # 结算阶段(日盘/夜盘/全天) s_section = input(GUIDE_DESCRIPTION1) if not s_section or s_section.lower() == 'none': settle_info.is_daytime = None elif s_section.lower() == 'daytime': settle_info.is_daytime = True elif s_section.lower() == 'nighttime': settle_info.is_daytime = False else: raise Exception('unrecognized intraday section parameter') # print info setting details print_settle_info(settle_info, accounts) print('\n') for acc in accounts: logging.info('\n#--------------------#\naccount: %s\n' % acc) settle_info.account_name = acc # 分析交易日志 if settle_info.parse_log is True: if summary_daily_trades(settle_info, write_unfilled_signals=False) is True: logging.info('\nsummary_daily_trades SUCCESSFULLY!') else: logging.info('\nsummary_daily_trades Failed!') # 检查策略.strat的持仓与未载入数据库的持仓 if settle_info.check_position is True: result = check_position(settle_info) else: result = True input() if result is False: continue if settle_info.push_into_database is True: if push_positions_and_trades_into_database(settle_info) is True: logging.info('\npush_positions_and_trades SUCCESSFULLY!') else: logging.info('\npush_positions_and_trades Failed!') # 生成持仓收益文件 if settle_info.holding_position_profit is True: if holding_position_mysql_profit(settle_info): logging.info('\nholding_position_mysql_profit SUCCESSFULLY!') else: logging.info('\nholding_position_mysql_profit Failed!') # 按日生成账户当日理论权益 if settle_info.profit_data is True: if get_profit_data(settle_info): logging.info('\nget_profit_data SUCCESSFULLY!') else: logging.info('\nget_profit_data Failed!') # 记录账户当期实际权益 if settle_info.record_account_balance is True: record_account_balance(settle_info) return def run_settlement(accounts, settle_info): # sinfo = SettleInformation() # sinfo.settle_date = None # sinfo.account_name = 'ly_jinqu_1' # sinfo.database_name = 'trade_records' # sinfo.dbase_ip = '172.18.93.153' # sinfo.dbase_acc = 'qxy' # sinfo.dbase_pw = '' # sinfo.log_file_folder = r'.\trade_logs' # sinfo.position_csv_folder = r'.\positions' try: _run_settle_process_on_account(accounts, settle_info) except Exception as e: logging.fatal(str(e)) input('press enter to quit ...')
cda6fe910843971d4f9e396af4d64eb51229db8a
9dc245909c30483263f68ad21e32ff0ab558bbcb
/api/serializers/students.py
1de45c0ffffc2280f4e26e5083b0d92e88d9b827
[]
no_license
katsos/ems-pgp
36c8f521957d1b809c717be90eff80f8b5fc24ec
687017f60f68133e677252efaab31d847587ea69
refs/heads/master
2023-02-09T22:34:29.358937
2020-09-04T15:45:22
2020-09-04T15:45:22
138,284,866
0
0
null
2023-01-26T01:18:54
2018-06-22T09:40:14
JavaScript
UTF-8
Python
false
false
499
py
from rest_framework.serializers import ModelSerializer from api.models import Student from .payments_shallow import PaymentSerializerShallow from .circles_shallow import CirclesSerializerShallow class StudentsSerializer(ModelSerializer): circle = CirclesSerializerShallow(read_only=True) payments = PaymentSerializerShallow(read_only=True, many=True) class Meta: model = Student fields = ('id', 'id_university', 'name', 'surname', 'full_time', 'circle', 'payments')
135f69897b740742d615a59e60256e99b761d86d
1346ea1f255d3586442c8fc1afc0405794206e26
/알고리즘/day24/babygincompare.py
0506c4570d0fcac76a84ab75a16604fe95dd74ec
[]
no_license
Yun-Jongwon/TIL
737b634b6e75723ac0043cda9c4f9acbc2a24686
a3fc624ec340643cdbf98974bf6e6144eb06a42f
refs/heads/master
2020-04-12T00:41:03.985080
2019-05-01T07:55:25
2019-05-01T07:55:25
162,208,477
0
0
null
null
null
null
UTF-8
Python
false
false
1,649
py
def player1babygin(): for i in range(len(player1_data)-2): for j in range(i+1,len(player1_data)-1): for k in range(j+1,len(player1_data)): candi=sorted([player1_data[i],player1_data[j],player1_data[k]]) if (candi[1]-1==candi[0] and candi[1]+1== candi[2]) or (candi[0]==candi[1] and candi[1]==candi[2]): # print(candi) return 1 return 0 def player2babygin(): for i in range(len(player2_data)-2): for j in range(i+1,len(player2_data)-1): for k in range(j+1,len(player2_data)): candi=sorted([player2_data[i],player2_data[j],player2_data[k]]) if (candi[1]-1==candi[0] and candi[1]+1== candi[2]) or (candi[0]==candi[1] and candi[1]==candi[2]): return 2 return 0 T=int(input()) for t in range(T): data=list(map(int,input().split())) player1_data=[] player2_data=[] player1=0 player2=0 result=0 for d in range(len(data)): if d%2==0: player1_data.append(data[d]) # print(player1_data) else: player2_data.append(data[d]) # print(player2_data) if d>=4: if len(player2_data)>=3: player1=player1babygin() player2=player2babygin() else: player1babygin() if player1==1 and (player2==0 or player2==2): result=1 break elif player1==0 and player2==2: result=2 break print('#{} {}'.format(t+1,result))
df113094854ba04a033632a46969612a2810a824
aef40813a1b92cec0ea4fc25ec1d4a273f9bfad4
/Q03__/04_Range_Sum_Query_2D_Immutable/Solution.py
5a36350496b38c5b518c880e49d6cd71aaf91e13
[ "Apache-2.0" ]
permissive
hsclinical/leetcode
e9d0e522e249a24b28ab00ddf8d514ec855110d7
48a57f6a5d5745199c5685cd2c8f5c4fa293e54a
refs/heads/main
2023-06-14T11:28:59.458901
2021-07-09T18:57:44
2021-07-09T18:57:44
319,078,569
0
0
null
null
null
null
UTF-8
Python
false
false
699
py
from typing import List class NumMatrix: def __init__(self, matrix: List[List[int]]): self.matrix = matrix self.n = len(matrix) if self.n != 0: self.m = len(matrix[0]) else: self.n = 0 def sumRegion(self, row1: int, col1: int, row2: int, col2: int) -> int: if self.n != 0: middleList = [] for i in range(row1, row2+1): middleList.append(sum(self.matrix[i][col1:(col2+1)])) return(sum(middleList)) else: return(0) # Your NumMatrix object will be instantiated and called as such: # obj = NumMatrix(matrix) # param_1 = obj.sumRegion(row1,col1,row2,col2)
53fc8b0f4b4edd08561c3807270f46137ef31875
fdedcfc5242a375bb08e0ec7e206d5560ce36f65
/mmctools/windtools/windtools/SOWFA6/postProcessing/probeSets.py
a56818c48f189c242a32d90f566f12115d14a425
[ "Apache-2.0" ]
permissive
DriesAllaerts/mmctools
2069fe02e0c7417cfbf6762d2db6646deb43123c
b5f88556c1df3935d1d36260c59e375423df6f1d
refs/heads/master
2022-12-01T13:56:32.192494
2022-09-14T03:10:21
2022-09-14T03:10:21
187,232,582
0
0
Apache-2.0
2019-05-29T20:19:52
2019-05-17T14:40:10
null
UTF-8
Python
false
false
12,448
py
# Copyright 2020 NREL # Licensed under the Apache License, Version 2.0 (the "License"); you may not use # this file except in compliance with the License. You may obtain a copy of the # License at http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software distributed # under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR # CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. """ Class for reading in `set` type of OpenFOAM sampling 'probes' written by Regis Thedin ([email protected]) """ from __future__ import print_function import os import pandas as pd import numpy as np from .reader import Reader class ProbeSets(Reader): """Stores a time array (t), and field arrays as attributes. The fields have shape: (Nt, N[, Nd]) where N is the number of probes and Nt is the number of samples. Vectors have an additional dimension to denote vector components. Symmetric tensors have an additional dimension to denote tensor components (xx, xy, xz, yy, yz, zz). The `set`-type of probe is used when large number of data points need to be saved. Therefore, this class differs from `Probe` and is tailored for the specification of many sets and looping through the files with ease. The inputs of this class were created to make it easy to accomodate very large datasets, or only read a subset of the saved data. If the need of using `set` arises, chances are the naming of the probes will be complex and likely inlcude a sweep of a variable in its name. Due to that, the user can specify the name of the probes split into prefix, suffix, variable sweep, and variables to save. It is also possible to specify a sub-domain in which data is needed. It is assumed that all sets have the same points. Sample usage: from windtools.SOWFA6.postProcessing.probeSets import ProbeSets # read all times, all variables probeData = ProbeSet('path/to/case/postProcessing/probeName') # read specified fields probeData = ProbeSet('path/to/case/PostProcessing/probeName', varList['U','T']) # read specified sub-domain probeData = ProbeSet('path/to/case/postProcessing/probeName', xi=-2500, xf=2500, yi=-2500, yf=2500) # read all and account for added perturbation on the sampling points probeData = ProbeSet('path/to/case/postProcessing/probeName', posPert=-0.01) # read specified time dirs probeData = ProbeSet('path/to/case/postProcessing/probeName', tstart=30000, tend=30100) # read certain files following complex naming convention # e.g. if the probes are specified as ``` probeName { type sets; name pointcloud; // other settings... fields ( U T ); sets ( vmasts_h10 { type points; // ... } vmasts_h20 { // ... } // ... ) } ``` # and the user wishes to read to vmasts_h{10,50}_{T,U}.xy, then: probeData = ProbeSet('path/to/case/postProcessing/probeName', fprefix='vmasts_h', fparam=['10','50'], varList=['T','U'], fsuffix='.xy') Notes: - If `varList` is not specified, then all the probes are read, ignoring prefix, sufix, and parameters - Pandas/dataframe is used internally even though the final object is of `Reader` type. """ def __init__(self, dpath=None, tstart=None, tend=None, varList='all', posPert=0.0, xi=None, xf=None, yi=None, yf=None, fprefix=None, fparam=None, fsuffix=None, **kwargs): self.xi = xi self.xf = xf self.yi = yi self.yf = yf self.fprefix = fprefix self.fparam = fparam self.fsuffix = fsuffix self.posPert = posPert self.tstart = tstart self.tend = tend self.varList = varList self._allVars = {'U','UMean','T','TMean','TPrimeUPrimeMean','UPrime2Mean','p_rgh'} super().__init__(dpath,includeDt=True,**kwargs) def _trimtimes(self,tdirList, tstart=None,tend=None): if (tstart is not None) or (tend is not None): if tstart is None: tstart = 0.0 if tend is None: tend = 9e9 selected = [ (t >= tstart) & (t <= tend) for t in self.times ] self.filelist = [tdirList[i] for i,b in enumerate(selected) if b ] self.times = [self.times[i] for i,b in enumerate(selected) if b ] self.Ntimes = len(self.times) try: tdirList = [tdirList[i] for i,b in enumerate(selected) if b ] except AttributeError: pass return tdirList def _processdirs(self, tdirList, trimOverlap=False, **kwargs): print('Probe data saved:',len(self.simStartTimes), 'time steps, from', \ self.simStartTimes[0],'s to',self.simStartTimes[-1],'s') # make varList iterable if not already a list varList = [self.varList] if not isinstance(self.varList, (list)) else self.varList # Create a list of all the probe files that will be processed if varList[0].lower()=='all': print('No varList given. Reading all probes.') outputs = [ fname for fname in os.listdir(tdirList[0]) if os.path.isfile(tdirList[0]+os.sep+fname) ] else: # Make values iterable if not specified list fprefix = [self.fprefix] if not isinstance(self.fprefix, (list)) else self.fprefix fparam = [self.fparam] if not isinstance(self.fparam, (list)) else self.fparam fsuffix = [self.fsuffix] if not isinstance(self.fsuffix, (list)) else self.fsuffix # create a varList that contains all the files names fileList = [] for var in varList: for prefix in fprefix: for param in fparam: for suffix in fsuffix: fileList.append( prefix + param + '_' + var + suffix ) outputs = fileList # Get list of times and trim the data self.times = [float(os.path.basename(p)) for p in self.simTimeDirs] tdirList = self._trimtimes(tdirList,self.tstart,self.tend) try: print('Probe data requested:',len(tdirList), 'time steps, from', \ float(os.path.basename(tdirList[0])),'s to', \ float(os.path.basename(tdirList[-1])),'s') except IndexError: raise ValueError('End time needs to be greater than the start time') # Raise an error if list is empty if not tdirList: raise ValueError('No time directories found') # Process all data for field in outputs: arrays = [ self._read_data( tdir,field ) for tdir in tdirList ] # combine into a single array and trim end of time series arrays = np.concatenate(arrays)[:self.imax,:] # parse the name to create the right variable param, var = self._parseProbeName(field) # add the zagl to the array arrays = np.hstack((arrays[:,:4], \ np.full((arrays.shape[0],1),param), \ arrays[:,4:])) # append to (or create) a variable attribute try: setattr(self,var,np.concatenate((getattr(self,var),arrays))) except AttributeError: setattr( self, var, arrays ) if not var in self._processed: self._processed.append(var) print(' read',field) self.t = np.unique(arrays[:,0]) self.Nt = len(self.t) # sort times for var in self._allVars: try: self.var = self.var[np.argsort(self.var[:,0])] except AttributeError: pass def _parseProbeName(self, field): # Example: get 'vmasts_50mGrid_h30_T.xy' and return param=30, var='T' # Remove the prefix from the full field name f = field.replace(self.fprefix,'') # Substitude the first underscore with a dot and split array f = f.replace('_','.',1).split('.') for i in set(f).intersection(self._allVars): var = i param = int(f[-3]) return param, var def _read_data(self, dpath, fname): fpath = dpath + os.sep + fname currentTime = float(os.path.basename(dpath)) with open(fpath) as f: try: # read the actual data from probes array = self._read_probe_posAndData(f) # add current time step info to first column array = np.c_[np.full(array.shape[0],currentTime), array] except IOError: print('unable to read '+ fpath) return array def _read_probe_posAndData(self,f): out = [] # Pandas is a LOT faster than reading the file line by line out = pd.read_csv(f.name,header=None,comment='#',sep='\t') # Add position perturbation to x, y, zabs out[[0,1,2]] = out[[0,1,2]].add(self.posPert) # clip spatial data out = self._trimpositions(out, self.xi, self.xf, self.yi, self.yf) out = out.to_numpy(dtype=float) self.N = len(out) return out def _trimpositions(self, df, xi=None,xf=None, yi=None, yf=None): if (xi is not None) and (xf is not None): df = df.loc[ (df[0]>=xi) & (df[0]<=xf) ] elif xi is not None: df = df.loc[ df[0]>=xi ] elif xf is not None: df = df.loc[ df[0]<=xf ] if (yi is not None) and (yf is not None): df = df.loc[ (df[1]>=yi) & (df[1]<=yf) ] elif yi is not None: df = df.loc[ df[1]>=yi ] elif yf is not None: df = df.loc[ df[1]<=yf ] return df #============================================================================ # # DATA I/O # #============================================================================ def to_pandas(self,itime=None,fields=None,dtype=None): #output all vars if fields is None: fields = self._processed # select time range if itime is None: tindices = range(len(self.t)) else: try: iter(itime) except TypeError: # specified single time index tindices = [itime] else: # specified list of indices tindices = itime # create dataframes for each field print('Creating dataframe ...') data = {} for var in fields: print('processing', var) F = getattr(self,var) # Fill in data data['time'] = F[:,0] data['x'] = F[:,1] data['y'] = F[:,2] data['zabs'] = F[:,3] data['zagl'] = F[:,4] if F.shape[1]==6: # scalar data[var] = F[:,5:].flatten() elif F.shape[1]==8: # vector for j,name in enumerate(['x','y','z']): data[var+name] = F[:,5+j].flatten() elif F.shape[1]==11: # symmetric tensor for j,name in enumerate(['xx','xy','xz','yy','yz','zz']): data[var+name] = F[:,5+j].flatten() df = pd.DataFrame(data=data,dtype=dtype) return df.sort_values(['time','x','y','zabs','zagl']).set_index(['time','x','y','zagl']) def to_netcdf(self,fname,fieldDescriptions={},fieldUnits={}): raise NotImplementedError('Not available for ProbeSet class.')
92d365a4e83436e037e955767a5d9e4ff75eb574
8de1d184bfe93977d394531c17e7ad6828e4fec6
/pythoncode/continue.py
0c343caf173a97f6f3348e325ce898cf4da76be5
[]
no_license
sabeethaB/python
ae3d88fec4fb93e948e9a8d975bd30d33ca2768a
e9f1c6929e116031510ecffa7743308b70b37f59
refs/heads/master
2020-03-29T01:35:00.038536
2018-09-19T05:21:38
2018-09-19T05:21:38
149,395,951
0
0
null
null
null
null
UTF-8
Python
false
false
70
py
i=1 while i < 6: i+=1 if i==3 : continue print(i)
35db51cf348a96de0146b863044a28316676b0a6
d972aa228eaea8c2ec938f6402c8a4238f846e5d
/rl/utils/general.py
274b3d31177240a2b75bfc6aacd980e31c6329a8
[]
no_license
austospumanto/ateam-project
33243df80d045fde2895d2917b123f204d04214c
2a1e13f462e904750da09dd54fc1e3b3248cd52e
refs/heads/master
2020-12-30T13:27:50.127193
2017-06-10T05:13:57
2017-06-10T05:13:57
91,215,463
5
2
null
2017-06-01T01:36:13
2017-05-14T02:42:32
Python
UTF-8
Python
false
false
5,476
py
import time import sys import logging import numpy as np from collections import deque import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt def export_plot(ys, ylabel, filename): """ Export a plot in filename Args: ys: (list) of float / int to plot filename: (string) directory """ plt.figure() plt.plot(range(len(ys)), ys) plt.xlabel("Epoch") plt.ylabel(ylabel) plt.savefig(filename) plt.close() def get_logger(filename, logger_name='logger'): """ Return a logger instance to a file """ logger = logging.getLogger(logger_name) logger.setLevel(logging.DEBUG) logging.basicConfig(format='%(message)s', level=logging.DEBUG) handler = logging.FileHandler(filename) handler.setLevel(logging.DEBUG) handler.setFormatter(logging.Formatter('%(asctime)s:%(levelname)s: %(message)s')) logging.getLogger().addHandler(handler) return logger class Progbar(object): """Progbar class copied from keras (https://github.com/fchollet/keras/) Displays a progress bar. Small edit : added strict arg to update # Arguments target: Total number of steps expected. interval: Minimum visual progress update interval (in seconds). """ def __init__(self, target, width=30, verbose=1, discount=0.9): self.width = width self.target = target self.sum_values = {} self.exp_avg = {} self.unique_values = [] self.start = time.time() self.total_width = 0 self.seen_so_far = 0 self.verbose = verbose self.discount = discount def update(self, current, values=[], exact=[], strict=[], exp_avg=[]): """ Updates the progress bar. # Arguments current: Index of current step. values: List of tuples (name, value_for_last_step). The progress bar will display averages for these values. exact: List of tuples (name, value_for_last_step). The progress bar will display these values directly. """ for k, v in values: if k not in self.sum_values: self.sum_values[k] = [v * (current - self.seen_so_far), current - self.seen_so_far] self.unique_values.append(k) else: self.sum_values[k][0] += v * (current - self.seen_so_far) self.sum_values[k][1] += (current - self.seen_so_far) for k, v in exact: if k not in self.sum_values: self.unique_values.append(k) self.sum_values[k] = [v, 1] for k, v in strict: if k not in self.sum_values: self.unique_values.append(k) self.sum_values[k] = v for k, v in exp_avg: if k not in self.exp_avg: self.exp_avg[k] = v else: self.exp_avg[k] *= self.discount self.exp_avg[k] += (1-self.discount)*v self.seen_so_far = current now = time.time() if self.verbose == 1: prev_total_width = self.total_width sys.stdout.write("\b" * prev_total_width) sys.stdout.write("\r") numdigits = int(np.floor(np.log10(self.target))) + 1 barstr = '%%%dd/%%%dd [' % (numdigits, numdigits) bar = barstr % (current, self.target) prog = float(current)/self.target prog_width = int(self.width*prog) if prog_width > 0: bar += ('='*(prog_width-1)) if current < self.target: bar += '>' else: bar += '=' bar += ('.'*(self.width-prog_width)) bar += ']' sys.stdout.write(bar) self.total_width = len(bar) if current: time_per_unit = (now - self.start) / current else: time_per_unit = 0 eta = time_per_unit*(self.target - current) info = '' if current < self.target: info += ' - ETA: %ds' % eta else: info += ' - %ds' % (now - self.start) for k in self.unique_values: if type(self.sum_values[k]) is list: info += ' - %s: %.4f' % (k, self.sum_values[k][0] / max(1, self.sum_values[k][1])) else: info += ' - %s: %s' % (k, self.sum_values[k]) for k, v in self.exp_avg.iteritems(): info += ' - %s: %.4f' % (k, v) self.total_width += len(info) if prev_total_width > self.total_width: info += ((prev_total_width-self.total_width) * " ") sys.stdout.write(info) sys.stdout.flush() if current >= self.target: sys.stdout.write("\n") if self.verbose == 2: if current >= self.target: info = '%ds' % (now - self.start) for k in self.unique_values: info += ' - %s: %.4f' % (k, self.sum_values[k][0] / max(1, self.sum_values[k][1])) sys.stdout.write(info + "\n") def add(self, n, values=[]): self.update(self.seen_so_far+n, values)
a9e9db890f03852b409988c69a8c137775b9b5b9
b164b758ef009926a9c864259111476a98f3d289
/utils.py
ce49c7684349c44515166e4b0ba065272eaf920f
[]
no_license
FireBrother/ai_challenger_caption
297e4cb176ebe737ac790d230c352d302558c019
459a3047f04b67a8d052377491655a453a22109f
refs/heads/master
2021-06-26T22:22:36.735266
2017-09-17T09:06:25
2017-09-17T09:06:25
103,229,515
1
0
null
null
null
null
UTF-8
Python
false
false
1,035
py
import time import numpy as np import redis global_redis = redis.Redis(host='162.105.86.208', port=6379, db=1) def timeit(method): def timed(*args, **kw): ts = time.time() result = method(*args, **kw) te = time.time() print '%r %2.2f sec' % \ (method.__name__, te - ts) return result return timed @timeit def load_challenger_ai_data(path='./', split='train'): valid_split = ['train'] if split not in valid_split: raise ValueError('split should be in %r, but %r got.' % (valid_split, split)) def get_feture_by_id(image_id): value = global_redis.get('image_feature:{}:value'.format(image_id)) info = global_redis.get('image_feature:{}:info'.format(image_id)) d_type = info.split('|')[0] size = [int(x) for x in info.split('|')[1:]] return np.fromstring(value, d_type).reshape(size) if __name__ == '__main__': # load_challenger_ai_data(split='train') print get_feture_by_id('8f00f3d0f1008e085ab660e70dffced16a8259f6.jpg')
1c25fdc3c71bd1c13e880d528341cc4b0e788efd
f54d702c1289b2b78f423850d7fedba6c9378126
/Mathematics/Fundamentals/handshake.py
b505905cd0327f05e06069e006057674fa76dc6a
[ "MIT" ]
permissive
ekant1999/HackerRank
81e6ac5bec8307bca2bd1debb169f2acdf239b66
084d4550b4eaf130837ab26a4efdbcaf8b667cdc
refs/heads/master
2020-05-02T09:19:10.102144
2016-10-27T04:10:28
2016-10-27T04:10:28
177,868,424
0
0
MIT
2019-03-26T21:04:17
2019-03-26T21:04:17
null
UTF-8
Python
false
false
243
py
# Python 2 # Enter your code here. Read input from STDIN. Print output to STDOUT t = int(raw_input()) for i in range(t): n = int(raw_input()) handshakes = n*(n-1)/2 # Note this is nC2 i.e. n "choose" 2 print handshakes
0ffe61f0c5fc6dd5c9c0e340692739b892566dc0
85a9ffeccb64f6159adbd164ff98edf4ac315e33
/pysnmp-with-texts/Juniper-TSM-CONF.py
71fad16c3643ce9206c5564ee369544ce182b392
[ "Apache-2.0", "LicenseRef-scancode-warranty-disclaimer", "LicenseRef-scancode-proprietary-license", "LicenseRef-scancode-unknown-license-reference" ]
permissive
agustinhenze/mibs.snmplabs.com
5d7d5d4da84424c5f5a1ed2752f5043ae00019fb
1fc5c07860542b89212f4c8ab807057d9a9206c7
refs/heads/master
2020-12-26T12:41:41.132395
2019-08-16T15:51:41
2019-08-16T15:53:57
237,512,469
0
0
Apache-2.0
2020-01-31T20:41:36
2020-01-31T20:41:35
null
UTF-8
Python
false
false
3,237
py
# # PySNMP MIB module Juniper-TSM-CONF (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/Juniper-TSM-CONF # Produced by pysmi-0.3.4 at Wed May 1 14:04:34 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, ObjectIdentifier, Integer = mibBuilder.importSymbols("ASN1", "OctetString", "ObjectIdentifier", "Integer") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsIntersection, ValueSizeConstraint, SingleValueConstraint, ValueRangeConstraint, ConstraintsUnion = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsIntersection", "ValueSizeConstraint", "SingleValueConstraint", "ValueRangeConstraint", "ConstraintsUnion") juniAgents, = mibBuilder.importSymbols("Juniper-Agents", "juniAgents") AgentCapabilities, NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "AgentCapabilities", "NotificationGroup", "ModuleCompliance") ObjectIdentity, MibIdentifier, TimeTicks, NotificationType, IpAddress, MibScalar, MibTable, MibTableRow, MibTableColumn, ModuleIdentity, Counter32, Integer32, Gauge32, Unsigned32, Counter64, Bits, iso = mibBuilder.importSymbols("SNMPv2-SMI", "ObjectIdentity", "MibIdentifier", "TimeTicks", "NotificationType", "IpAddress", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "ModuleIdentity", "Counter32", "Integer32", "Gauge32", "Unsigned32", "Counter64", "Bits", "iso") TextualConvention, DisplayString = mibBuilder.importSymbols("SNMPv2-TC", "TextualConvention", "DisplayString") juniTsmAgent = ModuleIdentity((1, 3, 6, 1, 4, 1, 4874, 5, 2, 67)) juniTsmAgent.setRevisions(('2003-10-27 22:50',)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): if mibBuilder.loadTexts: juniTsmAgent.setRevisionsDescriptions(('The initial release of this management information module.',)) if mibBuilder.loadTexts: juniTsmAgent.setLastUpdated('200310272250Z') if mibBuilder.loadTexts: juniTsmAgent.setOrganization('Juniper Networks, Inc.') if mibBuilder.loadTexts: juniTsmAgent.setContactInfo(' Juniper Networks, Inc. Postal: 10 Technology Park Drive Westford, MA 01886-3146 USA Tel: +1 978 589 5800 E-mail: [email protected]') if mibBuilder.loadTexts: juniTsmAgent.setDescription('The agent capabilities definitions for the Terminal Server Management (TSM) component of the SNMP agent in the Juniper E-series family of products.') juniTsmAgentV1 = AgentCapabilities((1, 3, 6, 1, 4, 1, 4874, 5, 2, 67, 1)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): juniTsmAgentV1 = juniTsmAgentV1.setProductRelease('Version 1 of the Terminal Server Management (TSM) component of the\n JUNOSe SNMP agent. This version of the TSM component is supported in\n JUNOSe 5.3 and subsequent system releases.') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): juniTsmAgentV1 = juniTsmAgentV1.setStatus('current') if mibBuilder.loadTexts: juniTsmAgentV1.setDescription('The MIB supported by the JUNOSe SNMP agent for the TSM application.') mibBuilder.exportSymbols("Juniper-TSM-CONF", PYSNMP_MODULE_ID=juniTsmAgent, juniTsmAgent=juniTsmAgent, juniTsmAgentV1=juniTsmAgentV1)
64ec13558b432a040fa4e609ba98721aafdcbb3f
5baa6fd1d751efdd80eaaf1675e17fd15ae674a1
/demo_dot_matrix_phat2.py
2cbefd08cfc8882c5eeadf68dd43d6cc031d1be2
[ "MIT" ]
permissive
gexpander/demo-py-examples
2bd7d9aa98b050eeef1977f4c248d5babdd530af
9f6f2eb198c2329cba5a957e51dc50294555c17c
refs/heads/master
2020-03-20T20:56:54.592936
2018-06-18T05:57:09
2018-06-18T05:57:09
137,715,774
0
0
null
null
null
null
UTF-8
Python
false
false
4,799
py
#!/bin/env python3 import random import gex import time # This is an adaptation of the micro dot phat library # - the only change needed was replacing the smbus class with the GEX unit driver ADDR = 0x61 MODE = 0b00011000 OPTS = 0b00001110 # 1110 = 35mA, 0000 = 40mA CMD_BRIGHTNESS = 0x19 CMD_MODE = 0x00 CMD_UPDATE = 0x0C CMD_OPTIONS = 0x0D CMD_MATRIX_1 = 0x01 CMD_MATRIX_2 = 0x0E MATRIX_1 = 0 MATRIX_2 = 1 class NanoMatrix: ''' _BUF_MATRIX_1 = [ # Green #Col 1 2 3 4 5 0b00000000, # Row 1 0b00000000, # Row 2 0b00000000, # Row 3 0b00000000, # Row 4 0b00000000, # Row 5 0b00000000, # Row 6 0b10000000, # Row 7, bit 8 = decimal place 0b00000000 ] _BUF_MATRIX_2 = [ # Red #Row 8 7 6 5 4 3 2 1 0b01111111, # Col 1, bottom to top 0b01111111, # Col 2 0b01111111, # Col 3 0b01111111, # Col 4 0b01111111, # Col 5 0b00000000, 0b00000000, 0b01000000 # bit 7, decimal place ] _BUF_MATRIX_1 = [0] * 8 _BUF_MATRIX_2 = [0] * 8 ''' def __init__(self, bus:gex.I2C, address=ADDR): self.address = address self._brightness = 127 self.bus = bus self.bus.write_byte_data(self.address, CMD_MODE, MODE) self.bus.write_byte_data(self.address, CMD_OPTIONS, OPTS) self.bus.write_byte_data(self.address, CMD_BRIGHTNESS, self._brightness) self._BUF_MATRIX_1 = [0] * 8 self._BUF_MATRIX_2 = [0] * 8 def set_brightness(self, brightness): self._brightness = int(brightness * 127) if self._brightness > 127: self._brightness = 127 self.bus.write_byte_data(self.address, CMD_BRIGHTNESS, self._brightness) def set_decimal(self, m, c): if m == MATRIX_1: if c == 1: self._BUF_MATRIX_1[6] |= 0b10000000 else: self._BUF_MATRIX_1[6] &= 0b01111111 elif m == MATRIX_2: if c == 1: self._BUF_MATRIX_2[7] |= 0b01000000 else: self._BUF_MATRIX_2[7] &= 0b10111111 #self.update() def set(self, m, data): for y in range(7): self.set_row(m, y, data[y]) def set_row(self, m, r, data): for x in range(5): self.set_pixel(m, x, r, (data & (1 << (4-x))) > 0) def set_col(self, m, c, data): for y in range(7): self.set_pixel(m, c, y, (data & (1 << y)) > 0) def set_pixel(self, m, x, y, c): if m == MATRIX_1: if c == 1: self._BUF_MATRIX_1[y] |= (0b1 << x) else: self._BUF_MATRIX_1[y] &= ~(0b1 << x) elif m == MATRIX_2: if c == 1: self._BUF_MATRIX_2[x] |= (0b1 << y) else: self._BUF_MATRIX_2[x] &= ~(0b1 << y) #self.update() def clear(self, m): if m == MATRIX_1: self._BUF_MATRIX_1 = [0] * 8 elif m == MATRIX_2: self._BUF_MATRIX_2 = [0] * 8 self.update() def update(self): for x in range(10): try: self.bus.write_i2c_block_data(self.address, CMD_MATRIX_1, self._BUF_MATRIX_1) self.bus.write_i2c_block_data(self.address, CMD_MATRIX_2, self._BUF_MATRIX_2) self.bus.write_byte_data(self.address, CMD_UPDATE, 0x01) break except IOError: print("IO Error") with gex.Client(gex.TrxRawUSB()) as client: bus = gex.I2C(client, 'i2c') n1 = NanoMatrix(bus, 0x61) n2 = NanoMatrix(bus, 0x62) n3 = NanoMatrix(bus, 0x63) n1.set_pixel(0, 0, 0, 1) n1.set_pixel(0, 4, 0, 1) n1.set_pixel(0, 0, 6, 1) n1.set_pixel(0, 4, 6, 1) n1.set_pixel(1, 0, 0, 1) n1.set_pixel(1, 4, 0, 1) n1.set_pixel(1, 0, 3, 1) n1.set_pixel(1, 4, 3, 1) n2.set_pixel(0, 0, 2, 1) n2.set_pixel(0, 4, 2, 1) n2.set_pixel(0, 0, 5, 1) n2.set_pixel(0, 4, 5, 1) n2.set_pixel(1, 0, 0, 1) n2.set_pixel(1, 4, 0, 1) n2.set_pixel(1, 0, 6, 1) n2.set_pixel(1, 4, 6, 1) n3.set_pixel(0, 1, 0, 1) n3.set_pixel(0, 3, 0, 1) n3.set_pixel(0, 1, 6, 1) n3.set_pixel(0, 3, 6, 1) n3.set_pixel(1, 1, 1, 1) n3.set_pixel(1, 3, 1, 1) n3.set_pixel(1, 1, 5, 1) n3.set_pixel(1, 3, 5, 1) n1.update() n2.update() n3.update() b1 = 64 b2 = 64 b3 = 64 while True: b1 += random.randint(-20, 15) b2 += random.randint(-20, 18) b3 += random.randint(-15, 13) if b1 < 0: b1 = 0 if b2 < 0: b2 = 0 if b3 < 0: b3 = 0 if b1 > 127: b1 = 127 if b2 > 127: b2 = 127 if b3 > 127: b3 = 127 n1.set_brightness(b1) n2.set_brightness(b2) n3.set_brightness(b3) time.sleep(0.05)
0454b62193300ff28a1bdd135773765f3d05fb2d
85fe1f98bc12739ab87b8474c284d65ce96d32bd
/src/paquerette_0.py
3b162a8b2dbcbf18328de5516352cab40e029771
[]
no_license
nojhan/aapssfc
d7405e883d907c29ce32b3ff38a1515d58de5458
dfd9c869d525d71bd2d38e461559cbfdf3c2d757
refs/heads/master
2016-09-06T01:32:05.657091
2015-03-03T14:56:44
2015-03-03T14:56:44
3,401,502
3
1
null
null
null
null
UTF-8
Python
false
false
6,922
py
#encoding: utf-8 import math import Image import ImageDraw import ImageColor # Propriétés de la scène width = 500 perspective = width # Déformation due à la perspective cameraZ = -width # Recul de la caméra zBuffer = {} # « Calque » pour gérer les points superposés # Création d'un objet image vide où dessiner im = Image.new("RGB", (width,width) ) draw = ImageDraw.Draw(im) ####################### # Fonctions de dessin # ####################### # Le système de coordonnées utilisé est choisi du point de vue de la caméra : # z # / # +-- x # | # y def sphere(a, b, radius): """Prend des coordonnées 2D ("a" et "b") entre 0 et 1 et les déforment de manière à les placer dans un cercle de rayon "radius". Ajoute de la profondeur le long de l'axe b et un gradient de couleur jaune.""" # Angle en radian (pi/2 = 180°) angle = a * math.pi * 2 # Centre du cercle x0 = radius*2 y0 = radius*2 return {"x":math.cos(angle) * radius * b + x0, # projection de a vers x "y":math.sin(angle) * radius * b + y0 ,# projection de b vers y "z": b * radius - radius / 2, # profondeur le long de b "r": 50 + math.floor((1 - b**2) * 300),# gradient de couleur rouge "g": 50 + math.floor((1 - b**2) * 200),# gradient de couleur verte "b": 0, # pas de couleur bleue } def petal(a,b,radius): """Prends des coordonnées 2D dans [0,1], les déforment dans un cercle de rayon "radius" et ne renvoie que les points compris dans une troncature de ce cercle. Ajoute de la profondeur et un gradient de couleur blanche.""" # Projection de a et b dans x et y x = a * radius*2 y = b * radius*2 # Centre du cercle x0 = radius y0 = radius # Si la distance entre le centre rayon et le point dessiné est inférieure à la taille du rayon if math.sqrt((x - x0) * (x - x0) + (y - y0) * (y - y0)) < radius: return {"x": x, "y": y * (1 + b) / 2, # y de plus en plus petit vers le bas "z": b * radius - radius / 2, # Profondeur sphérique "r": 100 + math.floor((1 - b) * 155),# Gradient blanc : "g": 100 + math.floor((1 - b) * 155),# toutes les composantes… "b": 100 + math.floor((1 - b) * 155) # … évoluent en fonction de b. } else: # Sinon, on ne veut pas dessiner de point : on ne renvoie rien return None def cylinder( a,b, radius=100, length=400 ): """Déforme des coordonnées dans [0,1] en un cylindre de rayon "radius" et de longueur "length". Ajoute une profondeur sur b et un gradient vert.""" angle = a * 2*math.pi return {"x": math.cos(angle) * radius, "y": math.sin(angle) * radius, "z": b * length - length / 2, # le cylindre est centré "r": 0, "g": math.floor(b*255), "b": 0 } ############################################ # Fonctions de manipulation de coordonnées # ############################################ # Les fonctions "rotate_*" déplacent toutes un point "d" selon une rotation d'angle "a", # autour d'un axe donné. # Les « points » sont ici des dictionnaires disposant de clefs "x","y" et "z". def rotate_x( d, a ): """Rotation du point d d'un angle a autour de l'axe x.""" # Si l'objet "d" existe (c'est à dire s'il n'est pas "None") if d: # Rotation d["y"] = d["y"] * math.cos(a) - d["z"] * math.sin(a) d["z"] = d["y"] * math.sin(a) + d["z"] * math.cos(a) return d else: return None def rotate_y( d, a ): """Rotation du point d d'un angle a autour de l'axe y.""" if d: d["z"] = d["z"] * math.cos(a) - d["x"] * math.sin(a) d["x"] = d["z"] * math.sin(a) + d["x"] * math.cos(a) return d else: return None def rotate_z( d, a ): """Rotation du point d d'un angle a autour de l'axe z.""" if d: d["x"] = d["x"] * math.cos(a) - d["y"] * math.sin(a) d["y"] = d["x"] * math.sin(a) + d["y"] * math.cos(a) return d else: return None def move( d, dx, dy, dz ): """Déplace un point "d" selon des distances données par "dx", "dy" et "dz".""" if d: # les "d*" peuvent être positifs ou négatifs d["x"] = d["x"] + dx d["y"] = d["y"] + dy d["z"] = d["z"] + dz return d else: return None def draw_point( point ): """Projette un point donné en coordonnées 3D sur une image (2D, par définition).""" # Si le point n'est pas en dehors de la forme (ce qui peut arriver si on dessine un pétale). if point: # Calcul le projetté de la coordonné "x" selon la perspective et le recul de la caméra. # Notez que l'axe "z" est utilisé dans les deux calculs, au profit de "x" et "y". pX = math.floor( (point["x"] * perspective) / (point["z"] - cameraZ) + width/2 ) pY = math.floor( (point["y"] * perspective) / (point["z"] - cameraZ) + width/2 ) # Coordonnées du pixel dans le calque de superposition. zbi = (pY,pX) # Si le pixel n'a jamais été dessiné OU si c'est le cas… # … mais que sa coordonnée "z" est inférieur au pixel déjà dessiné # (et est donc plus proche de la caméra). if not zBuffer.has_key(zbi) or point["z"] < zBuffer[zbi]: # On garde en mémoire le pixel dessiné dans le calque de superposition. zBuffer[zbi] = point["z"] # Dessine le pixel dans l'image. fill = ( int(point["r"]), int(point["g"]), int(point["b"]) ) draw.point( (int(pX),int(pY)), fill ) import random # Nombres de points à dessiner for i in range(90000): # Valeurs dans [0,1[ a = random.random() b = random.random() # Rayons du cœur et des pétals r_heart = 25 r_petal = 50 # coeur draw_point( sphere( a, b, r_heart ) ) # pétale du haut # Les valeurs des déplacements sont arbitraires et dépendent de ce que vous souhaitez faire. draw_point( move( petal( a,b, r_petal ), 0, -70, 0 ) ) # De même pour les rotations. # pétale du bas draw_point( move( rotate_x( petal( a,b, r_petal ), 1.15*math.pi ), -2, 141, -10 ) ) # pétale de gauche draw_point( move( rotate_z( rotate_x( petal( a,b, r_petal ), -0.3*math.pi ), math.pi/6 ), -50, 10, 25 ) ) # pétale de droite draw_point( move( rotate_z( rotate_x( petal( a,b, r_petal ), -0.3*math.pi ), -math.pi/6 ), 60, 55, 25 ) ) # tige draw_point( move( rotate_x( cylinder( a,b, r_heart/4, 400 ), math.pi/2 ), 55, 250, 250 ) ) # Écris l'image dans un fichier au format « Portable Network Graphics », compressé sans perte. im.save("paquerette.png", "PNG")
621037ff80da3805acd5ade5aed482567c5cf97d
ffa402b321ad11b79ba977149b563c73f5c141a9
/examples/taint/spec.py
c9c8de368b1ada24b77fe905c6e055b93c12779f
[]
no_license
uw-unsat/nickel
151bfa76ba0e75fbc710eed68cbed830f9dbad85
8439aedd75b48ebf9b5344eebfc2a0c70b4eb73d
refs/heads/master
2021-07-23T11:08:50.663555
2020-03-16T23:53:14
2020-03-17T05:29:51
247,836,078
2
0
null
2021-04-20T19:26:43
2020-03-16T23:24:37
C
UTF-8
Python
false
false
1,517
py
import z3 import errno import libirpy.util as util import datatypes as dt def sys_get(old): cond = util.Cases( default=old.procs[old.current].value ) return cond, old def sys_get_level(old): cond = util.Cases( default=util.If(old.procs[old.current].level == dt.TAINTED, util.i64(1), util.i64(0)) ) return cond, old def sys_send(old, dst, value): src = old.current cond = util.Cases( # a real system should validate dst # removing this check will break NI (z3.And(old.procs[src].level == dt.TAINTED, old.procs[dst].level == dt.UNTAINTED), -errno.EINVAL), default=util.i64(0), ) new = old.copy() new.procs[dst].value = value return cond, util.If(cond.cond(), old, new) def sys_send_floating(old, dst, value): src = old.current cond = util.Cases( default=util.i64(0), ) new = old.copy() new.procs[dst].value = value # bump dst level to tainted from untainted if current is tainted new.procs[dst].level = util.If( z3.And( old.procs[src].level == dt.TAINTED, old.procs[dst].level == dt.UNTAINTED ), dt.TAINTED, old.procs[dst].level ) return cond, util.If(cond.cond(), old, new) def sys_raise(old): cond = util.Cases( default=util.i64(0) ) new = old.copy() # change to dt.UNTAINTED will break NI new.procs[new.current].level = dt.TAINTED return cond, new
3fda8b094dee0a7b6f1190ab84ed0c644134fbe0
f96f6b0a833699eecdfce07d28ae680532e49dc4
/train.py
f98b6777dbab7c7b088137ea90061755f25d8c53
[]
no_license
wangyan841331749/Cats_vs_Dogs
cdfb234605a4493a085b6bc251159e55f37b2b57
4d77a4f34d2667e2d678acfea1ab62c5ac12704e
refs/heads/master
2022-01-17T11:36:19.965026
2019-07-18T07:08:51
2019-07-18T07:08:51
197,531,871
0
1
null
null
null
null
UTF-8
Python
false
false
2,066
py
import time from load_data import * from model import * # 训练模型 def training(): N_CLASSES = 2 IMG_SIZE = 208 BATCH_SIZE = 10 CAPACITY = 200 MAX_STEP = 10000 LEARNING_RATE = 1e-4 # 测试图片读取 image_dir = 'data/train' logs_dir = 'logs_1' # 检查点保存路径 sess = tf.Session() train_list = get_all_files(image_dir, True) image_train_batch, label_train_batch = get_batch(train_list, IMG_SIZE, BATCH_SIZE, CAPACITY, True) train_logits = inference(image_train_batch, N_CLASSES) train_loss = losses(train_logits, label_train_batch) train_acc = evaluation(train_logits, label_train_batch) train_op = tf.train.AdamOptimizer(LEARNING_RATE).minimize(train_loss) var_list = tf.trainable_variables() paras_count = tf.reduce_sum([tf.reduce_prod(v.shape) for v in var_list]) print('参数数目:%d' % sess.run(paras_count), end='\n\n') saver = tf.train.Saver() sess.run(tf.global_variables_initializer()) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) s_t = time.time() try: for step in range(MAX_STEP): if coord.should_stop(): break _, loss, acc = sess.run([train_op, train_loss, train_acc]) if step % 100 == 0: # 实时记录训练过程并显示 runtime = time.time() - s_t print('Step: %6d, loss: %.8f, accuracy: %.2f%%, time:%.2fs, time left: %.2fhours' % (step, loss, acc * 100, runtime, (MAX_STEP - step) * runtime / 360000)) s_t = time.time() if step % 1000 == 0 or step == MAX_STEP - 1: # 保存检查点 checkpoint_path = os.path.join(logs_dir, 'model.ckpt') saver.save(sess, checkpoint_path, global_step=step) except tf.errors.OutOfRangeError: print('Done.') finally: coord.request_stop() coord.join(threads=threads) sess.close() if __name__ == '__main__': training()
b7d52baf5895acc3d0840eb2a3c78d0501ff2381
d328c348fa5c4d14272a4fc7be0ead9c74704d41
/Petrinetze/excercisedolly.py
4782d86a5a9ca10d06ae12baaa77f0dbf6918619
[]
no_license
Patminton/Projektarbeit
5ab00222442ea30592105754010f63cbaeca5f09
51c413cddd8c377132663cec6a251d6325a55fa2
refs/heads/main
2023-05-28T18:03:07.477089
2021-06-11T16:17:45
2021-06-11T16:17:45
332,723,449
0
0
null
null
null
null
UTF-8
Python
false
false
1,629
py
import snakes.plugins from snakes.nets import * snakes.plugins.load("gv", "snakes.nets", "nets") n = PetriNet("N") n.add_place(Place("Bestellung", [3])) n.add_place(Place("Kran", [1])) n.add_place(Place("Bauteile", [2])) n.add_place(Place("freie Dollys")) n.add_place(Place("volle Dollys")) n.add_place(Place("Dolly in Presse", [2])) n.add_place(Place("Kapazität Presse", [1])) bestuecken = Transition("bestuecken") dolly_entladen = Transition("Dolly Entladen") in_presse_fahren = Transition("In Presse fahren") n.add_transition(bestuecken) n.add_transition(dolly_entladen) n.add_transition(in_presse_fahren) n.add_input("Bestellung", "bestuecken", Variable("x")) n.add_input("Bauteile", "bestuecken", Variable("t")) n.add_input("freie Dollys", "bestuecken", Variable("d")) n.add_input("Kran", "bestuecken", Variable("k")) n.add_input("Kran", "Dolly Entladen", Variable("k")) n.add_input("volle Dollys", "In Presse fahren", Variable("d")) n.add_input("Dolly in Presse", "Dolly Entladen", Variable("d")) n.add_input("Kapazität Presse", "In Presse fahren", Variable("kapazitat")) n.add_output("Kran", "bestuecken", Expression("k")) n.add_output("volle Dollys", "bestuecken", Expression("d")) n.add_output("Kran", "Dolly Entladen", Expression("k")) n.add_output("freie Dollys", "Dolly Entladen", Expression("d")) n.add_output("Kapazität Presse", "In Presse fahren", Variable("kapazitat")) n.add_output("Dolly in Presse", "In Presse fahren", Variable("d")) for engine in ("neato", "dot", "circo", "twopi", "fdp"): n.draw('_test-gv-%s.png' % engine, engine=engine) s = StateGraph(n) s.build() s.draw('_test-gv-graph.png')
0bc13510485468d6d5279a6f4ad60543485096c0
99ed9567e6308022389f882304ceda5f31e18b86
/study-note/python相关学习记录/pickle-test.py
2ecfad985f60435ad9810b516f79dabb344ac288
[]
no_license
Lsn800/Paper
d700f8be5e1a4971440184bb76973dd94309dd23
e564f3e1fbf216b6e73892b4021c1130dc1f7015
refs/heads/master
2023-03-21T00:14:53.504885
2020-03-17T10:48:12
2020-03-17T10:48:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
446
py
# -*- coding: utf-8 -*- import pickle def p():#将字典转换为pickle存储 sss = {'1':'a','2':'b','3':'c'} #使用dump()将数据序列化到文件中 fw = open('dataFile.txt','wb') pickle.dump(sss,fw) fw.close() def ss():#将pickle文件中存储的数据还原出来 fr = open('dataFile.txt','rb') data = pickle.load(fr) print(data) if __name__ == "__main__": p() #pickel 化 ss() #逆 pickle 化
b917646bb432dc0d2a45523b30c766eda00a592f
84dde7692f4a7155c28d2517ea9ee3342263856d
/utils/dataset.py
c7079978217f004fa0b56d3735e78bb14cecd90d
[]
no_license
cyins/YOLOv5-SGBM
c4e26db1e66865909cd6a4f05857d24428518a52
8280136ca7357a37aa52be511cf1603050ea59f1
refs/heads/master
2023-08-22T02:39:32.767267
2021-07-26T01:38:39
2021-07-26T01:38:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,612
py
''' Author : Noah Date : 20210408 function: Load data to input to the model ''' import os,sys,logging,glob,time,queue from pathlib import Path from itertools import repeat from multiprocessing.pool import ThreadPool from threading import Thread import threading import numpy as np from utils.general import confirm_dir,timethis,calib_type import cv2 img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng', 'webp'] # acceptable image suffixes vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] # acceptable video suffixes class DATASET_NAMES(): """ @description :pre define the object class name for object detection --------- @function : None ------- """ voc_names = ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'] coco_names = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'] masks_names = ['mask','nomask'] voc_split_names = ['bottle','chair','diningtable','person','pottedplant','sofa','tvmonitor'] coco_split_names = ['person','sports ball','bottle','cup','chair','potted plant','cell phone', 'book'] name_color = [[246, 252, 48],[38, 9, 129],[235, 204, 85],[51, 148, 36],[68, 154, 71],[77, 204, 64],[142, 183, 11], [76, 224, 194],[62, 211, 108],[87, 182, 84],[217, 236, 51],[83, 160, 30],[136, 38, 28],[157, 71, 128], [166, 144, 72],[142, 82, 203],[161, 110, 0],[179, 75, 107],[241, 31, 58],[188, 179, 151],[6, 141, 72], [34, 65, 134],[248, 200, 119],[98, 14, 74],[108, 42, 45],[65, 253, 19],[41, 70, 255],[72, 54, 7], [86, 8, 97],[106, 129, 218],[59, 147, 175],[234, 40, 195],[92, 42, 230],[236, 173, 62],[144, 190, 177], [18, 181, 241],[247, 59, 100],[212, 181, 95],[143, 117, 204],[30, 46, 171],[86, 254, 78],[82, 124, 249], [142, 236, 83],[193, 223, 226],[198, 202, 19],[101, 171, 24],[212, 147, 16],[55, 73, 49],[104, 91, 136], [205, 89, 132],[42, 103, 28],[109, 60, 150],[250, 216, 158],[211, 132, 120],[188, 40, 169],[92, 12, 162], [107, 64, 221],[149, 174, 193],[126, 54, 154],[88, 107, 46],[115, 128, 33],[73, 202, 252],[1, 224, 125], [9, 55, 163],[66, 145, 204],[61, 248, 181],[220, 238, 17],[53, 26, 250],[162, 156, 200],[240, 117, 64], [53, 65, 194],[17, 146, 93],[197, 199, 158],[64, 54, 35],[188, 183, 177],[206, 17, 174],[34, 155, 144], [142, 123, 110],[211, 17, 89],[54, 38, 67]] class pipeline: """ @description : a data pipeline shared by multiple threads --------- @function : send images, timestamps and valid signal ------- """ def __init__(self,width=2560,height=960): self.timestamp=0. self.frame=0 self.valid = False self.lock = threading.Lock() def put(self,timestamp,img0,frame): with self.lock: self.timestamp = timestamp self.frame = frame self.image = img0 self.valid = True def get(self): with self.lock: timestamp=self.timestamp img0=self.image frame = self.frame valid = self.valid self.valid = False return timestamp,img0,frame,valid class loadfiles: """ @description : load iamge or video file(s) and create a iterator --------- @function : ------- """ def __init__(self, path='', img_size=640, save_path=''): p = str(Path(path).absolute()) # os-agnostic absolute path if '*' in p: files = sorted(glob.glob(p, recursive=True)) # glob elif os.path.isdir(p): try: files = sorted(glob.glob(os.path.join(p, '*.*')), key=lambda x: int(os.path.basename(x).split('.')[0])) # dir except: files = sorted(glob.glob(os.path.join(p, '*.*'))) # dir elif os.path.isfile(p): files = [p] # files else: raise Exception('ERROR: %s does not exist'%p) #cp3.5 images = [x for x in files if x.split('.')[-1].lower() in img_formats] videos = [x for x in files if x.split('.')[-1].lower() in vid_formats] ni, nv = len(images), len(videos) self.img_size = img_size self.files = images + videos self.vid_file_path = os.path.join(save_path,'video') self.nf = ni + nv # number of files self.video_flag = [False] * ni + [True] * nv self.mode = 'image' self.writer = None #debug function self.file_name = 'Orign' if any(videos): self.new_video(videos[0]) # new video else: self.cap = None assert self.nf > 0, 'Supported formats are:\nimages: %s\nvideos: %s'%(img_formats,vid_formats) #cp3.5 # 'Supported formats are:\nimages: {img_formats}\nvideos: {vid_formats}' #cp3.6 def __iter__(self): self.count = 0 return self def __next__(self): if self.count == self.nf: raise StopIteration path = self.files[self.count] if self.video_flag[self.count]: # Read video self.mode = 'video' ret_val, img0 = self.cap.read() if not ret_val: self.count += 1 self.cap.release() if isinstance(self.writer, cv2.VideoWriter): self.writer.release() if self.count == self.nf: # last video raise StopIteration else: path = self.files[self.count] self.new_video(path) ret_val, img0 = self.cap.read() self.file_name = path+'_'+self.frame self.frame += 1 # print('video %d/%d (%d/%d) %s: '%(self.count + 1,self.nf,self.frame,self.nframes,path), end='') #cp3.5 else: # Read image self.count += 1 self.mode = 'image' img0 = cv2.imread(path) # BGR self.file_name = os.path.split(path)[-1] assert img0 is not None, 'Image Not Found ' + path # print('========================new image========================') # print('image %d/%d %s: '%(self.count, self.nf, path), end='\n') #cp3.5 # Padded resize TimeStamp = str(time.time()).split('.') if len(TimeStamp[1])<9: for i in range(9-len(TimeStamp[1])): TimeStamp[1] += '0' h = img0.shape[0] w = img0.shape[1] w1 = round(w/2) img0_left = img0[:,:w1,:] img0_right = img0[:,w1:,:] return path, img0_left, img0_right, (h,w1), TimeStamp, self.cap def get_vid_dir(self,path): self.vid_file_path = path def new_video(self, path): self.frame = 0 self.cap = cv2.VideoCapture(path) # self.file_path = '/home/bynav/AI_SGBM/runs/detect/exp/video' if not os.path.isdir(self.vid_file_path): os.mkdir(self.vid_file_path) save_path = os.path.join(self.vid_file_path, str(path.split('/')[-1].split('.')[0])+'.avi') fps = self.cap.get(cv2.CAP_PROP_FPS) fourcc = 'mp4v' # output video codec w = int(self.cap.get(cv2.CAP_PROP_FRAME_WIDTH)/2) h = int(self.cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) self.writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h)) self.nframes = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT)) def __len__(self): return self.nf # number of files class loadcam: """ @description : load real-time webcam data and create a iterator --------- @function : --------- """ # @timethis def __init__(self, pipe='4', cam_freq=5, img_size=640, save_path='', debug=False, cam_mode=1): self.img_size = img_size if pipe.isnumeric(): pipe = eval(pipe) # local camera # pipe = 'rtsp://192.168.1.64/1' # IP camera # pipe = 'rtsp://username:[email protected]/1' # IP camera with login # pipe = 'http://wmccpinetop.axiscam.net/mjpg/video.mjpg' # IP golf camera self.debug = debug self.pipe = pipe self.time = 0 self.writer = None self.cap = cv2.VideoCapture(pipe) # video capture object if cam_mode == calib_type.AR0135_1280_960.value or cam_mode == calib_type.AR0135_416_416.value or cam_mode == calib_type.AR0135_640_640.value: self.cap.set(cv2.CAP_PROP_FRAME_WIDTH,2560) self.cap.set(cv2.CAP_PROP_FRAME_HEIGHT,960) #AR0135 elif cam_mode == calib_type.AR0135_640_480.value: self.cap.set(cv2.CAP_PROP_FRAME_WIDTH,1280) self.cap.set(cv2.CAP_PROP_FRAME_HEIGHT,480) #AR0135 else: self.cap.set(cv2.CAP_PROP_FRAME_WIDTH,2560) self.cap.set(cv2.CAP_PROP_FRAME_HEIGHT,720) #OV9714 self.pipeline = pipeline(int(self.cap.get(cv2.CAP_PROP_FRAME_WIDTH)),int(self.cap.get(cv2.CAP_PROP_FRAME_HEIGHT))) self.cam_freq = cam_freq self.fps = self.cap.get(cv2.CAP_PROP_FPS) self.size = (self.cap.get(cv2.CAP_PROP_FRAME_WIDTH),self.cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # self.queue = queue.LifoQueue(maxsize=self.fps) bufsize = 1 self.cap.set(cv2.CAP_PROP_BUFFERSIZE, bufsize) # set buffer size print('Camera run under %s and %s fps'%(str(self.size),str(self.fps))) self.vid_file_path = confirm_dir(save_path,'webcam') self.img_file_path = confirm_dir(save_path,'webimg') self.new_video('test.avi') self.mode = 'webcam' self.count = 0 self.frame = 0 self.real_frame = 0 self.valid = False self.start = False self.thread = Thread(target=self._update,args=[],daemon=True) self.thread.start() def _update(self): while True: self.real_frame += 1 TimeStamp = time.time()-0.044 #cv2.cap.read() average latency is 290ms # Read frame if self.pipe in [0,1,2,3,4,5]: # local camera ret_val, img0 = self.cap.read() # self.valid = True # img0 = cv2.flip(img0, 1) # flip left-right else: # IP camera n = 0 while True: n += 1 self.cap.grab() if n % 30 == 0: # skip frames ret_val, img0 = self.cap.retrieve() if ret_val: break assert ret_val, 'Camera Error %d'%self.pipe #cp3.5 self.pipeline.put(TimeStamp,img0,self.real_frame) self.start = True def __iter__(self): return self # @timethis def __next__(self): runtime = time.time() - self.time if runtime < 1/self.cam_freq: time.sleep(round(1/self.cam_freq-runtime,3)) while True: if self.start: TimeStamp,img0,self.frame,self.valid = self.pipeline.get() if self.valid: break # print('========================= webcam %d ======================='%self.frame,end='\r') #cp3.5 TimeStamp = str(TimeStamp).split('.') if len(TimeStamp[1])<9: for i in range(9-len(TimeStamp[1])): TimeStamp[1] += '0' w = img0.shape[1] w1 = int(w/2) if self.debug: save_file = os.path.join(self.img_file_path,(str(self.frame)+'.bmp')) cv2.imwrite(save_file,img0) imgl = img0[:,:w1,:] imgr = img0[:,w1:,:] self.count += 1 img_path = 'webcam.jpg' self.time = time.time() return img_path, imgl, imgr, None, TimeStamp, None def get_vid_dir(self,path): self.vid_file_path = path def new_video(self, path): if isinstance(self.writer, cv2.VideoWriter): self.writer.release() fps = self.cap.get(cv2.CAP_PROP_FPS) fourcc = 'mp4v' # output video codec w = int(self.cap.get(cv2.CAP_PROP_FRAME_WIDTH)/2) h = int(self.cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) save_path = os.path.join(self.vid_file_path, path) self.writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h)) def __len__(self): return 0
501ce999fd6452c28544240627deb50e62312876
fce83f1b55b8894afab9eb58ae8b4ba2e26eb86b
/examples/GAN/DCGAN.py
e9df6b36319476aea07fd240e26005c998a75385
[ "Apache-2.0" ]
permissive
PeisenZhao/tensorpack
b65d451f6d4a7fe1af1e183bdc921c912f087586
6ca57de47e4a76b57c8aa2f0dad87c1059c13ac0
refs/heads/master
2021-05-05T01:46:05.209522
2018-01-31T05:29:37
2018-01-31T05:29:37
119,641,372
1
0
null
2018-01-31T05:52:07
2018-01-31T05:52:06
null
UTF-8
Python
false
false
5,554
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # File: DCGAN.py # Author: Yuxin Wu <[email protected]> import glob import numpy as np import os import argparse from tensorpack import * from tensorpack.utils.viz import stack_patches from tensorpack.tfutils.scope_utils import auto_reuse_variable_scope from tensorpack.utils.globvars import globalns as opt import tensorflow as tf from GAN import GANTrainer, RandomZData, GANModelDesc """ 1. Download the 'aligned&cropped' version of CelebA dataset from http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html 2. Start training: ./DCGAN-CelebA.py --data /path/to/img_align_celeba/ --crop-size 140 Generated samples will be available through tensorboard 3. Visualize samples with an existing model: ./DCGAN-CelebA.py --load path/to/model --sample You can also train on other images (just use any directory of jpg files in `--data`). But you may need to change the preprocessing. A pretrained model on CelebA is at http://models.tensorpack.com/GAN/ """ # global vars opt.SHAPE = 64 opt.BATCH = 128 opt.Z_DIM = 100 class Model(GANModelDesc): def _get_inputs(self): return [InputDesc(tf.float32, (None, opt.SHAPE, opt.SHAPE, 3), 'input')] def generator(self, z): """ return an image generated from z""" nf = 64 l = FullyConnected('fc0', z, nf * 8 * 4 * 4, nl=tf.identity) l = tf.reshape(l, [-1, 4, 4, nf * 8]) l = BNReLU(l) with argscope(Deconv2D, nl=BNReLU, kernel_shape=4, stride=2): l = Deconv2D('deconv1', l, nf * 4) l = Deconv2D('deconv2', l, nf * 2) l = Deconv2D('deconv3', l, nf) l = Deconv2D('deconv4', l, 3, nl=tf.identity) l = tf.tanh(l, name='gen') return l @auto_reuse_variable_scope def discriminator(self, imgs): """ return a (b, 1) logits""" nf = 64 with argscope(Conv2D, nl=tf.identity, kernel_shape=4, stride=2): l = (LinearWrap(imgs) .Conv2D('conv0', nf, nl=tf.nn.leaky_relu) .Conv2D('conv1', nf * 2) .BatchNorm('bn1') .tf.nn.leaky_relu() .Conv2D('conv2', nf * 4) .BatchNorm('bn2') .tf.nn.leaky_relu() .Conv2D('conv3', nf * 8) .BatchNorm('bn3') .tf.nn.leaky_relu() .FullyConnected('fct', 1, nl=tf.identity)()) return l def _build_graph(self, inputs): image_pos = inputs[0] image_pos = image_pos / 128.0 - 1 z = tf.random_uniform([opt.BATCH, opt.Z_DIM], -1, 1, name='z_train') z = tf.placeholder_with_default(z, [None, opt.Z_DIM], name='z') with argscope([Conv2D, Deconv2D, FullyConnected], W_init=tf.truncated_normal_initializer(stddev=0.02)): with tf.variable_scope('gen'): image_gen = self.generator(z) tf.summary.image('generated-samples', image_gen, max_outputs=30) with tf.variable_scope('discrim'): vecpos = self.discriminator(image_pos) vecneg = self.discriminator(image_gen) self.build_losses(vecpos, vecneg) self.collect_variables() def _get_optimizer(self): lr = tf.get_variable('learning_rate', initializer=2e-4, trainable=False) return tf.train.AdamOptimizer(lr, beta1=0.5, epsilon=1e-3) def get_augmentors(): augs = [] if opt.load_size: augs.append(imgaug.Resize(opt.load_size)) if opt.crop_size: augs.append(imgaug.CenterCrop(opt.crop_size)) augs.append(imgaug.Resize(opt.SHAPE)) return augs def get_data(datadir): imgs = glob.glob(datadir + '/*.jpg') ds = ImageFromFile(imgs, channel=3, shuffle=True) ds = AugmentImageComponent(ds, get_augmentors()) ds = BatchData(ds, opt.BATCH) ds = PrefetchDataZMQ(ds, 5) return ds def sample(model, model_path, output_name='gen/gen'): pred = PredictConfig( session_init=get_model_loader(model_path), model=model, input_names=['z'], output_names=[output_name, 'z']) pred = SimpleDatasetPredictor(pred, RandomZData((100, opt.Z_DIM))) for o in pred.get_result(): o = o[0] + 1 o = o * 128.0 o = np.clip(o, 0, 255) o = o[:, :, :, ::-1] stack_patches(o, nr_row=10, nr_col=10, viz=True) def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.') parser.add_argument('--load', help='load model') parser.add_argument('--sample', action='store_true', help='view generated examples') parser.add_argument('--data', help='a jpeg directory') parser.add_argument('--load-size', help='size to load the original images', type=int) parser.add_argument('--crop-size', help='crop the original images', type=int) args = parser.parse_args() opt.use_argument(args) if args.gpu: os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu return args if __name__ == '__main__': args = get_args() if args.sample: sample(Model(), args.load) else: assert args.data logger.auto_set_dir() GANTrainer( input=QueueInput(get_data(args.data)), model=Model()).train_with_defaults( callbacks=[ModelSaver()], steps_per_epoch=300, max_epoch=200, session_init=SaverRestore(args.load) if args.load else None )
cbba52bd311c263ff7f9db112294be548e2b79a3
5a5067ef89e0d0e618fa00cbf037eda29df64135
/env/bin/python-config
3f06b82c5f1dff2454094cb77d79598e225c80c9
[]
no_license
leandrovaladao/TddTraining
8bee73480000305afd21053d0cde633d557b6183
268a69495430642a676ec12f58596e14ca9f0004
refs/heads/master
2020-03-20T06:40:04.839541
2018-06-13T18:38:04
2018-06-13T18:38:04
137,256,107
0
0
null
null
null
null
UTF-8
Python
false
false
2,347
#!/home/ezvoice/TddTraining/env/bin/python import sys import getopt import sysconfig valid_opts = ['prefix', 'exec-prefix', 'includes', 'libs', 'cflags', 'ldflags', 'help'] if sys.version_info >= (3, 2): valid_opts.insert(-1, 'extension-suffix') valid_opts.append('abiflags') if sys.version_info >= (3, 3): valid_opts.append('configdir') def exit_with_usage(code=1): sys.stderr.write("Usage: {0} [{1}]\n".format( sys.argv[0], '|'.join('--'+opt for opt in valid_opts))) sys.exit(code) try: opts, args = getopt.getopt(sys.argv[1:], '', valid_opts) except getopt.error: exit_with_usage() if not opts: exit_with_usage() pyver = sysconfig.get_config_var('VERSION') getvar = sysconfig.get_config_var opt_flags = [flag for (flag, val) in opts] if '--help' in opt_flags: exit_with_usage(code=0) for opt in opt_flags: if opt == '--prefix': print(sysconfig.get_config_var('prefix')) elif opt == '--exec-prefix': print(sysconfig.get_config_var('exec_prefix')) elif opt in ('--includes', '--cflags'): flags = ['-I' + sysconfig.get_path('include'), '-I' + sysconfig.get_path('platinclude')] if opt == '--cflags': flags.extend(getvar('CFLAGS').split()) print(' '.join(flags)) elif opt in ('--libs', '--ldflags'): abiflags = getattr(sys, 'abiflags', '') libs = ['-lpython' + pyver + abiflags] libs += getvar('LIBS').split() libs += getvar('SYSLIBS').split() # add the prefix/lib/pythonX.Y/config dir, but only if there is no # shared library in prefix/lib/. if opt == '--ldflags': if not getvar('Py_ENABLE_SHARED'): libs.insert(0, '-L' + getvar('LIBPL')) if not getvar('PYTHONFRAMEWORK'): libs.extend(getvar('LINKFORSHARED').split()) print(' '.join(libs)) elif opt == '--extension-suffix': ext_suffix = sysconfig.get_config_var('EXT_SUFFIX') if ext_suffix is None: ext_suffix = sysconfig.get_config_var('SO') print(ext_suffix) elif opt == '--abiflags': if not getattr(sys, 'abiflags', None): exit_with_usage() print(sys.abiflags) elif opt == '--configdir': print(sysconfig.get_config_var('LIBPL'))
483db4217063a3ca57b15543b683ac4c80e5c4ee
d47ed9550468b360a54a4fe8e3cfe63bf15c1ddb
/ProgrammingPython/Preview/initdata.py
c53957abef9ca1ef665ef5ac0b238760cdf7d094
[]
no_license
yuzuqiang/learnPython
880bb1e5d40a7a4d928068ae892e9b85f84ec355
490c8ccf3a61b967641ec47e2f549574fe9a2fa0
refs/heads/master
2021-01-13T03:47:36.611964
2017-01-01T18:24:23
2017-01-01T18:24:23
77,197,546
0
0
null
null
null
null
UTF-8
Python
false
false
356
py
#Record bob = {'name': 'Bob Smith', 'age': 42, 'pay': 30000, 'job': 'dev'} sue = {'name': 'Sue Jones', 'age': 45, 'pay': 40000, 'job': 'hdw'} tom = {'name': 'Tom', 'age': 50, 'pay': 0, 'job': None} #Database db = {} db['bob'] = bob db['sue'] = sue db['tom'] = tom #As shell run if __name__=='__main__': for key in db: print(key, '=>\n', db[key])
c11fb072314ba1347f7220d63fc2c4cb07bfa3ed
6e808ac510567907cb1069bd85bbebdcb2ed3c05
/old/breed.py
19c979abfe71a1cf3e13c9643deb4c50cebeee34
[ "MIT" ]
permissive
lesterwilliam/neural
ba0c30fde27ed9800f37f71f32611990919a349c
a9fd081fee0c969359476d447015712a60529187
refs/heads/master
2020-04-11T13:25:28.537273
2019-01-23T13:11:34
2019-01-23T13:11:34
161,815,388
0
0
null
null
null
null
UTF-8
Python
false
false
573
py
# prototype import random import numpy as np # test data #parentA = [0,0,9,0,0,0,0,0,1,5,8,7,9,5] #parentB = [1,1,1,1,1,1,1,1,5,9,4,8,5,5] # Mixes genes from parents and returns created child def breedChild(parentA, parentB): if len(parentA) != len(parentB): return 0 child = np.zeros((len(parentA),1)) for item in range(len(parentA)): if (int(100 * random.random()) < 50): child[item] = parentA[item] else: child[item] = parentB[item] return child def breedChildren(parents, number_of_child): nextPopulation = [] #print (breedChild(parentA, parentB))
0949cfa4f0046cc18f1408130d1843880b0d6b73
47bc9db111566405c916683c9de9dd81ab905dc6
/app/forms.py
a2834252f84c7d50cb183d7427d6e5369ea101c7
[]
no_license
fjb930822/blogs
18786578ca160a3fb415c53984cad40360ec4caf
198b1e0c0814a74f65036398e57a2489e2bb2439
refs/heads/master
2023-02-18T14:54:18.468594
2021-01-22T07:57:32
2021-01-22T07:57:32
327,336,394
0
0
null
null
null
null
UTF-8
Python
false
false
484
py
# coding: utf-8 # Author: [email protected] # Creadted Time: 2021/1/6 17:54 from flask_wtf import FlaskForm from wtforms import StringField, PasswordField, BooleanField, SubmitField from wtforms.validators import DataRequired class LoginForm(FlaskForm): username = StringField("Username", validators=[DataRequired()]) passworde =PasswordField("Password", validators=[DataRequired()]) remember_me = BooleanField("Remeber Me") submit = SubmitField("Sign in")
86c2d4bce79ae370a56b5625bbf3d57ab84635f1
e508cf8db6bc3626ee412f8bbbac20aee4103def
/mysite/settings.py
ccecb5befde17aa93032b49dd00c92678f3d53a7
[]
no_license
dennis-zhong/my-first-blog
53829fb04927ff766154541af21b0eaf1fc69975
80f62359b7c75b3841883059affc345b6073de57
refs/heads/master
2023-06-16T17:35:51.072793
2021-07-14T00:48:59
2021-07-14T00:48:59
383,627,645
0
0
null
null
null
null
UTF-8
Python
false
false
3,191
py
""" Django settings for mysite project. Generated by 'django-admin startproject' using Django 2.2.24. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '6)b-=*!9py2*l1k3izs(r4rpprwwwgg$#g)o@$4e+ciyakl!!l' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['127.0.0.1'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'blog.apps.BlogConfig', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'mysite.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'mysite.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'America/Los_Angeles' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'static')
9e6d61a3743d70fc652f40ee1dce7897a9019284
0000c8f4a481000676463f81d55c2ea21862cbd5
/not-yet-done-examples.py
d2d8e2a9c2d8f5293eea6153628712f8ddbc0858
[]
no_license
robertej19/813
b5ca9b51504e002189861bc0e1230bd43c5f6005
f1417f05e9d08d5693d6ecd8363d1dd7552d2e12
refs/heads/master
2022-12-18T14:36:26.644424
2020-09-21T13:58:06
2020-09-21T13:58:06
292,097,780
0
0
null
null
null
null
UTF-8
Python
false
false
363
py
Here is my code for doing the fit and plotting: 8:51 popt, pcov = curve_fit(gauss, xval, yval, sigma=yerror,p0 = [100, 3300, 140],absolute_sigma=False) xx = np.arange(xmin,xmax) plt.plot(xx, gauss(xx, *popt), label='fit') One line method to load a CSV data file into python with numpy import numpy as np data=[*zip(*np.genfromtxt('cubeData.csv',delimiter=','))]
8fe491ed92ae2422c3f08061149a7dfc244cc882
8848d3b74511e918a5d0c49480f500d4084197f6
/Pizzer/modulo_autenticacao/models.py
13f27ee077120b99a3f5ab52ee756aa60d8bf147
[]
no_license
giulyflash/mozzarella
6574bf776e602f36942cc7c430e4609835adb25c
7ab077895c32e0fa87c758489749e00eea36dacc
refs/heads/master
2021-01-10T11:21:31.780188
2010-06-09T01:49:45
2010-06-09T01:49:45
53,130,308
0
0
null
null
null
null
UTF-8
Python
false
false
1,937
py
# -*- coding: utf-8 -*- from django.contrib.auth.models import User, Group from django import forms from django.forms.widgets import PasswordInput class UserCreateForm(forms.ModelForm): password = forms.CharField(widget=PasswordInput) password_r = forms.CharField(widget=PasswordInput) class Meta: model = User fields = ('username', 'email') def clean(self): cleaned_data = self.cleaned_data username= cleaned_data.get('username') password = cleaned_data.get('password') password_r = cleaned_data.get('password_r') if password and password_r: if password != password_r: raise forms.ValidationError('A senha e a senha repetida estão diferentes.') if username: if User.objects.filter(username=username): raise forms.ValidationError('O nome de usuário escolhido não está disponível.') return cleaned_data class UserEditForm(forms.ModelForm): nova_senha = forms.CharField(max_length=15) class Meta: model = User fields = ('username', 'email', 'password') exclude = ['password'] class UserChangePassForm(forms.Form): password = forms.CharField(widget=PasswordInput) password_r = forms.CharField(widget=PasswordInput) def clean(self): cleaned_data = self.cleaned_data username= cleaned_data.get('username') password = cleaned_data.get('password') password_r = cleaned_data.get('password_r') if password and password_r: if password != password_r: raise forms.ValidationError('A senha e a senha repetida estão diferentes.') if username: if User.objects.filter(username=username): raise forms.ValidationError('O nome de usuário escolhido não está disponível.') return cleaned_data
[ "dmail07@8169190b-fedb-79aa-6a5a-a987b9c8a9c4" ]
dmail07@8169190b-fedb-79aa-6a5a-a987b9c8a9c4
18a1ef9adc1cffb62a94ab625de750a18568e630
ea544b339809095d2c383b542248f530990c31d5
/env/lib/python3.6/site-packages/pip/_vendor/html5lib/treewalkers/base.py
ba04ae2bb9cec5cf9fc1e3ea2a220624ca47aea1
[ "BSD-3-Clause" ]
permissive
724686158/NosqlEXP3
5fab1a9e131c6936b5b61e0f1c86eea2c889294a
e29f2807f075831377456b47cf8c9ce0c8d65c30
refs/heads/master
2020-04-09T01:40:54.370782
2019-01-25T13:04:04
2019-01-25T13:04:04
159,912,368
0
0
null
null
null
null
UTF-8
Python
false
false
7,476
py
from __future__ import absolute_import, division, unicode_literals from xml.dom import Node from ..constants import namespaces, voidElements, spaceCharacters __all__ = ["DOCUMENT", "DOCTYPE", "TEXT", "ELEMENT", "COMMENT", "ENTITY", "UNKNOWN", "TreeWalker", "NonRecursiveTreeWalker"] DOCUMENT = Node.DOCUMENT_NODE DOCTYPE = Node.DOCUMENT_TYPE_NODE TEXT = Node.TEXT_NODE ELEMENT = Node.ELEMENT_NODE COMMENT = Node.COMMENT_NODE ENTITY = Node.ENTITY_NODE UNKNOWN = "<#UNKNOWN#>" spaceCharacters = "".join(spaceCharacters) class TreeWalker(object): """Walks a tree yielding tokens Tokens are dicts that all have a ``type`` field specifying the type of the token. """ def __init__(self, tree): """Creates a TreeWalker :arg tree: the tree to walk """ self.tree = tree def __iter__(self): raise NotImplementedError def error(self, msg): """Generates an error token with the given message :arg msg: the error message :returns: SerializeError token """ return {"type": "SerializeError", "data": msg} def emptyTag(self, namespace, name, attrs, hasChildren=False): """Generates an EmptyTag token :arg namespace: the namespace of the token--can be ``None`` :arg name: the name of the element :arg attrs: the attributes of the element as a dict :arg hasChildren: whether or not to yield a SerializationError because this tag shouldn't have children :returns: EmptyTag token """ yield {"type": "EmptyTag", "name": name, "namespace": namespace, "data": attrs} if hasChildren: yield self.error("Void element has children") def startTag(self, namespace, name, attrs): """Generates a StartTag token :arg namespace: the namespace of the token--can be ``None`` :arg name: the name of the element :arg attrs: the attributes of the element as a dict :returns: StartTag token """ return {"type": "StartTag", "name": name, "namespace": namespace, "data": attrs} def endTag(self, namespace, name): """Generates an EndTag token :arg namespace: the namespace of the token--can be ``None`` :arg name: the name of the element :returns: EndTag token """ return {"type": "EndTag", "name": name, "namespace": namespace} def text(self, data): """Generates SpaceCharacters and Characters tokens Depending on what's in the data, this generates one or more ``SpaceCharacters`` and ``Characters`` tokens. For project: >>> from html5lib.treewalkers.base import TreeWalker >>> # Give it an empty tree just so it instantiates >>> walker = TreeWalker([]) >>> list(walker.text('')) [] >>> list(walker.text(' ')) [{u'data': ' ', u'type': u'SpaceCharacters'}] >>> list(walker.text(' abc ')) # doctest: +NORMALIZE_WHITESPACE [{u'data': ' ', u'type': u'SpaceCharacters'}, {u'data': u'abc', u'type': u'Characters'}, {u'data': u' ', u'type': u'SpaceCharacters'}] :arg data: the text data :returns: one or more ``SpaceCharacters`` and ``Characters`` tokens """ data = data middle = data.lstrip(spaceCharacters) left = data[:len(data) - len(middle)] if left: yield {"type": "SpaceCharacters", "data": left} data = middle middle = data.rstrip(spaceCharacters) right = data[len(middle):] if middle: yield {"type": "Characters", "data": middle} if right: yield {"type": "SpaceCharacters", "data": right} def comment(self, data): """Generates a Comment token :arg data: the comment :returns: Comment token """ return {"type": "Comment", "data": data} def doctype(self, name, publicId=None, systemId=None): """Generates a Doctype token :arg name: :arg publicId: :arg systemId: :returns: the Doctype token """ return {"type": "Doctype", "name": name, "publicId": publicId, "systemId": systemId} def entity(self, name): """Generates an Entity token :arg name: the entity name :returns: an Entity token """ return {"type": "Entity", "name": name} def unknown(self, nodeType): """Handles unknown node types""" return self.error("Unknown node type: " + nodeType) class NonRecursiveTreeWalker(TreeWalker): def getNodeDetails(self, node): raise NotImplementedError def getFirstChild(self, node): raise NotImplementedError def getNextSibling(self, node): raise NotImplementedError def getParentNode(self, node): raise NotImplementedError def __iter__(self): currentNode = self.tree while currentNode is not None: details = self.getNodeDetails(currentNode) type, details = details[0], details[1:] hasChildren = False if type == DOCTYPE: yield self.doctype(*details) elif type == TEXT: for token in self.text(*details): yield token elif type == ELEMENT: namespace, name, attributes, hasChildren = details if (not namespace or namespace == namespaces["html"]) and name in voidElements: for token in self.emptyTag(namespace, name, attributes, hasChildren): yield token hasChildren = False else: yield self.startTag(namespace, name, attributes) elif type == COMMENT: yield self.comment(details[0]) elif type == ENTITY: yield self.entity(details[0]) elif type == DOCUMENT: hasChildren = True else: yield self.unknown(details[0]) if hasChildren: firstChild = self.getFirstChild(currentNode) else: firstChild = None if firstChild is not None: currentNode = firstChild else: while currentNode is not None: details = self.getNodeDetails(currentNode) type, details = details[0], details[1:] if type == ELEMENT: namespace, name, attributes, hasChildren = details if (namespace and namespace != namespaces["html"]) or name not in voidElements: yield self.endTag(namespace, name) if self.tree is currentNode: currentNode = None break nextSibling = self.getNextSibling(currentNode) if nextSibling is not None: currentNode = nextSibling break else: currentNode = self.getParentNode(currentNode)
f619edee72bba9795ba459de6a8842ce400d1686
0e3dc8881b8412e2abc0ffa2b949c0890d9d77ef
/leetcode-notes/easy/DP/70_combining_stairs.py
0e6f7419bc97e84483717925826cf5a361ee7d9c
[]
no_license
kevinsu628/study-note
8d8ec55ef43eabc7221ebebb6684f4d42bc961be
674d8afde62a1cf690a6172dad677b284ba076df
refs/heads/master
2021-10-06T11:21:18.196879
2021-10-05T01:34:59
2021-10-05T01:34:59
207,233,734
0
0
null
null
null
null
UTF-8
Python
false
false
726
py
''' 70. Climbing Stairs Easy 2217 81 Favorite Share You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top? Note: Given n will be a positive integer. Example 1: Input: 2 Output: 2 Explanation: There are two ways to climb to the top. 1. 1 step + 1 step 2. 2 steps ''' class Solution(object): def climbStairs(self, n): """ :type n: int :rtype: int """ if n == 1: return 1 dp = [1, 2] # 1 start has 1 comb, 2 has 2 comb for i in range(2, n+1): dp.append(dp[i-1] + dp[i-2]) return dp[n-1]
19ab53b9fb8e8ae04ef27d28f4226bc9349430e4
3633d36e8fad6c661ad2db46da81f3bcc76c544f
/conandgen/convertors/forms.py
1d69cdbd9f8d127bc317e4fcc42fc28fc1c72269
[]
no_license
rpankaj853/Converters-generators
f6cb9ff9acd27ead72a9f6808e6ddee8f62df21c
caa422b6ba6246e89f7cae7fe7c06e8221108ddd
refs/heads/main
2023-03-10T03:33:31.914267
2021-03-04T07:19:12
2021-03-04T07:19:12
344,382,149
0
0
null
null
null
null
UTF-8
Python
false
false
972
py
from django import forms class Contactform(forms.Form): amount = forms.IntegerField() category1 = forms.ChoiceField(choices=[('INR','INR || INDIA'),('USD','USD || USA'),('EUR','EUR || EURO'),('JPY','JPY || JAPANESE'),('GBP','GBP || BRITISH POUND'),('AUD','AUD || AUSTRALIAN DOLLAR'),('CAD','CAD || CANADIAN DOLLAR'),('SGD','SGD || SINGAPORE DOLLAR'),('CHF','CHF || SWISS FRANC'),('CNY','CNY || CHINESE YUAN RENMINBI ')]) category2 = forms.ChoiceField(choices=[('INR','INR || INDIA'),('USD','USD || USA'),('EUR','EUR || EURO'),('JPY','JPY || JAPANESE'),('GBP','GBP || BRITISH POUND'),('AUD','AUD || AUSTRALIAN DOLLAR'),('CAD','CAD || CANADIAN DOLLAR'),('SGD','SGD || SINGAPORE DOLLAR'),('CHF','CHF || SWISS FRANC'),('CNY','CNY || CHINESE YUAN RENMINBI ')]) # widgets = { # amount : forms.TextInput(attrs={'class':'form-control'}), # category1 : forms.Select(attrs={'class':'form-control'}), # category2 : forms.Select(attrs={'class':'form-control'}), # }
93301ec1206f85f5ae49d4031fa40f3d41d273c6
6e6873e7081c72f03c22e059b05dd0127520dd2c
/spiral_order/spiral_order.py
9e2c6fe009dc3436bdafff0238a5e0d25a908576
[]
no_license
byd913/leetcode
53e20259bd9aab89dd0cfaf20bbb7463a079b273
4a686dc3507a8a500b774a6e94399101e82e3017
refs/heads/master
2020-12-24T18:42:24.933131
2019-01-21T15:15:58
2019-01-21T15:15:58
57,128,649
0
0
null
null
null
null
UTF-8
Python
false
false
1,451
py
class Solution(object): def spiralOrder(self, matrix): """ :type matrix: List[List[int]] :rtype: List[int] """ result_list = [] height = len(matrix) if height == 0: return result_list width = len(matrix[0]) min_w = min(width, height) half_w = min_w / 2 if min_w % 2 == 1: half_w += 1 for k in range(0, half_w): start_w = k end_w = width-1-k start_h = k end_h = height-1-k i = start_h for j in range(start_w, end_w): result_list.append(matrix[i][j]) j = end_w for i in range(start_h, end_h): result_list.append(matrix[i][j]) i = end_h if end_h > start_h: for j in range(end_w, start_w, -1): result_list.append(matrix[i][j]) else: result_list.append(matrix[i][end_w]) j = start_w if end_w > start_w: for i in range(end_h, start_h, -1): result_list.append(matrix[i][j]) elif end_h > start_h: result_list.append(matrix[end_h][j]) return result_list if __name__ == "__main__": matrix = [[1]] solution = Solution() print solution.spiralOrder(matrix)
0acd983de466d61f498fa59db7369e203f1b6137
54f97354744cf8a5e3b3fba11200d6c6a4ec16e0
/tests/ikpy_test.py
eedd0d07870b5a2701d90f7a8fbce5cee317767c
[]
no_license
mikevanis/ColourBodyTracker
3bdfaf9a0db0ce3e9228b16daf7fa8f74481b774
f257ff6e8a17e69424e50d34535e1bbf9b404ab2
refs/heads/master
2020-03-22T15:38:45.343334
2018-09-24T15:31:17
2018-09-24T15:31:17
140,266,650
0
0
null
null
null
null
UTF-8
Python
false
false
3,820
py
from ikpy.chain import Chain import ikpy.geometry_utils as geometry_utils import matplotlib.pyplot from mpl_toolkits.mplot3d import Axes3D from ikpy.link import OriginLink, URDFLink import numpy as np left_arm_chain = Chain(name='left_arm', links=[ OriginLink(), URDFLink( name="shoulder", translation_vector=[-0.59, 0, 0.44], orientation=[0, 0, 0], rotation=[0, 0, 0], ), URDFLink( name="elbow", translation_vector=[0, 0, -0.53], orientation=[0, 0, 0], rotation=[0, 0, 0], ), URDFLink( name="wrist", translation_vector=[0, 0, -0.74], orientation=[0, 0, 0], rotation=[0, 0, 0], )],active_links_mask=[False, True, True, True]) right_arm_chain = Chain(name='right_arm', links=[ OriginLink(), URDFLink( name="shoulder", translation_vector=[0.59, 0, 0.44], orientation=[0, 0, 0], rotation=[0, 0, 0], ), URDFLink( name="elbow", translation_vector=[0, 0, -0.53], orientation=[0, 0, 0], rotation=[0, 0, 0], ), URDFLink( name="wrist", translation_vector=[0, 0, -0.74], orientation=[0, 0, 0], rotation=[0, 0, 0], )],active_links_mask=[False, True, True, True]) head_chain = Chain(name='head', links=[ OriginLink(), URDFLink( name="neck", translation_vector=[0, 0, 1], orientation=[0, 0, 0], rotation=[0, 0, 0], ), URDFLink( name="face", translation_vector=[0, -0.2, 0], orientation=[0, 0, 0], rotation=[0, 0, 0], )], active_links_mask=[False, True, True]) left_leg_chain = Chain(name='left_leg', links=[ OriginLink(), URDFLink( name="hip", translation_vector=[0.26, 0, -1.07], orientation=[0, 0, 0], rotation=[0, 0, 0], ), URDFLink( name="knee", translation_vector=[0, 0, -0.98], orientation=[0, 0, 0], rotation=[0, 0, 0], ), URDFLink( name="ankle", translation_vector=[0, 0, -1.13], orientation=[0, 0, 0], rotation=[0, 0, 0], )],active_links_mask=[False, True, True, True]) right_leg_chain = Chain(name='right_leg', links=[ OriginLink(), URDFLink( name="hip", translation_vector=[-0.26, 0, -1.07], orientation=[0, 0, 0], rotation=[0, 0, 0], ), URDFLink( name="knee", translation_vector=[0, 0, -0.98], orientation=[0, 0, 0], rotation=[0, 0, 0], ), URDFLink( name="ankle", translation_vector=[0, 0, -1.13], orientation=[0, 0, 0], rotation=[0, 0, 0], )],active_links_mask=[False, True, True, True]) ax = matplotlib.pyplot.figure().add_subplot(111, projection='3d') target_vector = [ 0.1, -0.2, 0.1] l_wrist_matrix = geometry_utils.to_transformation_matrix(target_vector) target_frame = np.eye(4) target_frame[:3, 3] = target_vector left_arm_start_position = left_arm_chain.forward_kinematics([0] * 4) right_arm_start_position = right_arm_chain.forward_kinematics([0] * 4) head_start_position = head_chain.forward_kinematics([0] * 3) left_leg_start_position = left_leg_chain.forward_kinematics([0] * 4) right_leg_start_position = right_leg_chain.forward_kinematics([0] * 4) print(right_arm_start_position) left_arm_chain.plot(left_arm_chain.inverse_kinematics(l_wrist_matrix), ax, target=target_vector) right_arm_chain.plot(right_arm_chain.inverse_kinematics(right_arm_start_position), ax) head_chain.plot(head_chain.inverse_kinematics(head_start_position), ax) left_leg_chain.plot(left_leg_chain.inverse_kinematics(left_leg_start_position), ax) right_leg_chain.plot(right_leg_chain.inverse_kinematics(right_leg_start_position), ax) matplotlib.pyplot.show()
edcfc0d4e49299c92d30291e455d7e22103cd7dc
6903225919020d862e7403f94926ab241605083b
/OrderAux.py
c184f51c7b79ee1243bd84ec7271dc923decf3ef
[]
no_license
nandozanutto/TSP-With-restrictions
602eb0f4aeccdb457027815481994ed6db2c2a10
3b78f3af38e9d7eb852763cc713307d56757dc66
refs/heads/main
2023-02-10T22:06:08.718813
2021-01-02T23:50:49
2021-01-02T23:50:49
301,243,939
0
0
null
null
null
null
UTF-8
Python
false
false
235
py
def checkOrder(order): for item in order: for item2 in order: if(item == item2): continue if(item[0] == item2[1] and item[1] == item2[0]): return True return False
35889e57cfde9a2d0c586a094664618e9a1813af
1b23f77f8a615ff563e9b9b6ad0da93dfa3ad8d6
/afk.py
8cfe0868c82112813d7cbdacfa94a16983708b6a
[ "MIT" ]
permissive
Dark-PRINCESS/Dark-PRINCESS-
14a8d7fc81374bfbdc37241c72f7b87d97f32ad5
0ad9c67960c8f88745442d264fdcd113b9925807
refs/heads/main
2023-01-24T09:16:27.018838
2020-11-14T10:52:00
2020-11-14T10:52:00
306,575,918
1
0
null
null
null
null
UTF-8
Python
false
false
5,483
py
"""AFK Plugin for Friday Syntax: .afk REASON""" import asyncio import datetime from telethon import events from telethon.tl import functions, types from userbot.utils import admin_cmd global USER_AFK # pylint:disable=E0602 global afk_time # pylint:disable=E0602 global last_afk_message # pylint:disable=E0602 USER_AFK = {} afk_time = None last_afk_message = {} @borg.on(events.NewMessage(outgoing=True)) # pylint:disable=E0602 async def set_not_afk(event): global USER_AFK # pylint:disable=E0602 global afk_time # pylint:disable=E0602 global last_afk_message # pylint:disable=E0602 current_message = event.message.message if ".afk" not in current_message and "yes" in USER_AFK: # pylint:disable=E0602 try: await borg.send_message( # pylint:disable=E0602 Config.PLUGIN_CHANNEL, # pylint:disable=E0602 "#AfkLogger My Boss Went Afk" ) except Exception as e: # pylint:disable=C0103,W0703 await borg.send_message( # pylint:disable=E0602 event.chat_id, "Please set `PLUGIN_CHANNEL` " + \ "for the proper functioning of afk functionality " + \ "in @FridayOT\n\n `{}`".format(str(e)), reply_to=event.message.id, silent=True ) USER_AFK = {} # pylint:disable=E0602 afk_time = None # pylint:disable=E0602 @borg.on(admin_cmd(pattern=r"afk ?(.*)")) async def _(event): if event.fwd_from: return global USER_AFK # pylint:disable=E0602 global afk_time # pylint:disable=E0602 global last_afk_message # pylint:disable=E0602 global reason USER_AFK = {} afk_time = None last_afk_message = {} reason = event.pattern_match.group(1) if not USER_AFK: # pylint:disable=E0602 last_seen_status = await borg( # pylint:disable=E0602 functions.account.GetPrivacyRequest( types.InputPrivacyKeyStatusTimestamp() ) ) if isinstance(last_seen_status.rules, types.PrivacyValueAllowAll): afk_time = datetime.datetime.now() # pylint:disable=E0602 USER_AFK = f"yes: {reason}" # pylint:disable=E0602 if reason: await event.edit(f"My Mistress Is Going Afk ! And The Reason is {reason}") else: await event.edit(f"My Boss is Going") await asyncio.sleep(5) await event.delete() try: await borg.send_message( # pylint:disable=E0602 Config.PLUGIN_CHANNEL, # pylint:disable=E0602 f"#AfkLogger Reason : {reason}" ) except Exception as e: # pylint:disable=C0103,W0703 logger.warn(str(e)) # pylint:disable=E0602 @borg.on(events.NewMessage( # pylint:disable=E0602 incoming=True, func=lambda e: bool(e.mentioned or e.is_private) )) async def on_afk(event): if event.fwd_from: return global USER_AFK # pylint:disable=E0602 global afk_time # pylint:disable=E0602 global last_afk_message # pylint:disable=E0602 afk_since = "`a while ago`" current_message_text = event.message.message.lower() if "afk" in current_message_text: # userbot's should not reply to other userbot's # https://core.telegram.org/bots/faq#why-doesn-39t-my-bot-see-messages-from-other-bots return False if USER_AFK and not (await event.get_sender()).bot: # pylint:disable=E0602 if afk_time: # pylint:disable=E0602 now = datetime.datetime.now() datime_since_afk = now - afk_time # pylint:disable=E0602 time = float(datime_since_afk.seconds) days = time // (24 * 3600) time = time % (24 * 3600) hours = time // 3600 time %= 3600 minutes = time // 60 time %= 60 seconds = time if days == 1: afk_since = "**Yesterday**" elif days > 1: if days > 6: date = now + \ datetime.timedelta( days=-days, hours=-hours, minutes=-minutes) afk_since = date.strftime("%A, %Y %B %m, %H:%I") else: wday = now + datetime.timedelta(days=-days) afk_since = wday.strftime('%A') elif hours > 1: afk_since = f"`{int(hours)}h{int(minutes)}m` **ago**" elif minutes > 0: afk_since = f"`{int(minutes)}m{int(seconds)}s` **ago**" else: afk_since = f"`{int(seconds)}s` **ago**" msg = None message_to_reply = f"**My Boss is AFK** ! \n\n**Reason** : `{reason}` \n\n**Afk Since** : {afk_since}" + \ f"\n\n__Kindly Leave A Message__ ! \n`He Will Reply To You Soon !`" \ if reason \ else f"**Hello, Boss Is AFK Right Now And May Be Forgot List Reason ! Any Way He Will Come Back Soon !**" msg = await event.reply(message_to_reply) await asyncio.sleep(5) if event.chat_id in last_afk_message: # pylint:disable=E0602 await last_afk_message[event.chat_id].delete() # pylint:disable=E0602 last_afk_message[event.chat_id] = msg # pylint:disable=E0602
83744ea1d35b107112afb263efd99bc61cee11ff
7e75d3349bba67bdee36809c541a867272ccdaec
/pari_dispari.py
4788d31931dbe0719f90fd47e48826f9948ad72e
[]
no_license
Forz70043/script
a797a984c2b9b1d3592bfd9a24ed3f5b3b190aec
9352fc2108f219a54164edc961152d40df02ce9e
refs/heads/master
2021-06-20T07:51:24.973904
2021-04-15T10:15:12
2021-04-15T10:15:12
205,554,437
0
0
null
null
null
null
UTF-8
Python
false
false
129
py
n = int(input("Numero:")); if n % 2 == 0: print("Il numero", n, "e' pari") else: print("Il numero", n, "e' dispari")
356f5b9b375921b9d31feda5c0570ba11f5000e6
c85a3738bb121a63cb56164d2fb46373f63ff2c4
/employee_controller.py
0f2b228870cc249673964cd46faa640a6bd58c9e
[]
no_license
shiromabruno/Python_API_MYSQL
0f6497197cc7452c518803497e64b12f2ed8106a
ee3f14712bcfe2142152ca10b77fa389bda9b893
refs/heads/master
2023-06-22T23:12:29.562036
2021-07-20T01:07:57
2021-07-20T01:07:57
387,305,169
0
0
null
null
null
null
UTF-8
Python
false
false
8,104
py
from flask import Flask, request, jsonify import json import mysql.connector from mysql.connector import Error from datetime import datetime import database_service app = Flask(__name__) @app.route('/') def welcomed(): return "Welcome to API using MYSQL" def db_connection(): connection = None try: connection = mysql.connector.connect(host='localhost', database='python_company', user='root', password='') if connection.is_connected(): db_Info = connection.get_server_info() print("Connected to MySQL Server version ", db_Info) cursor = connection.cursor() cursor.execute("select database();") record = cursor.fetchone() print("You're connected to database: ", record) except Error as e: print("Error while connecting to MySQL", e) return connection # finally: # if connection.is_connected(): # cursor.close() # connection.close() # print("MySQL connection is closed") @app.route('/employee', methods=["GET", "POST"]) def employee(): connection = db_connection() cursor = connection.cursor() if request.method == "GET": try: cursor.execute("SELECT * FROM Employee") selectquery = [ dict(Id=row[0], Name=row[1], Address=row[2], Birth=row[3], Department=row[4], Email=row[5]) for row in cursor.fetchall() ] except Exception as e: retorno_error = { "Message: " : "Error during execution", "Exception: " : e } cursor.close() connection.close() print("GET NOK. MySQL connection is closed") return jsonify(retorno_error), 503 cursor.close() connection.close() print("GET OK. MySQL connection is closed") if selectquery is not None: return jsonify(selectquery), 200 if request.method == "POST": body = request.json if "name" not in body or "address" not in body or "birth" not in body or "department" not in body or "email" not in body: retorno_error = { "Message: " : "Must pass all fields: name, address, birth, department and email", } return jsonify(retorno_error), 400 new_name = body["name"] new_address = body["address"] new_birth_raw = body["birth"] new_birth = datetime.strptime(new_birth_raw, '%Y-%m-%d').date() new_department = body["department"] new_email = body["email"] try: sql_insert = ("INSERT INTO Employee " "(Id, Name,Address, Birth, Department, Email) " "VALUES (%s, %s, %s, %s, %s, %s)") tupla_user = (0, new_name, new_address, new_birth, new_department, new_email) cursor.execute(sql_insert, tupla_user) # cursor.execute(sql_insert, tupla_user) ---> dessa forma nao consegui fazer o last_id, dava objeto nonetype do lastrowid connection.commit() last_id = cursor.lastrowid except Exception as e: retorno_error = { "Message: " : "Error during execution", "Exception: " : e } cursor.close() connection.close() print("POST NOK. MySQL connection is closed") return jsonify(retorno_error), 503 cursor.close() connection.close() print("POST OK. MySQL connection is closed") retorno_json={ "Message": "Employee registered", "Employee_ID": last_id } return retorno_json, 201 @app.route("/employee/<int:id>", methods=["GET", "PUT", "DELETE"]) def employee_id(id): connection = db_connection() cursor = connection.cursor() if request.method == "GET": employee_result = None try: sql = "SELECT * FROM Employee WHERE id = %s" where = (id,) cursor.execute(sql, where) rows = cursor.fetchall() for r in rows: employee_result = r except Exception as e: retorno_error = { "Message: " : "Error during execution", "Exception: " : e } cursor.close() connection.close() print("GETID NOK. MySQL connection is closed") return jsonify(retorno_error), 503 if employee_result is not None: cursor.close() connection.close() print("GETID OK. MySQL connection is closed") return jsonify(employee_result), 200 else: retorno_json={ "Message": "Emloyee not found", "Employee_ID": id } cursor.close() connection.close() print("GETID OK. MySQL connection is closed") return retorno_json, 404 if request.method == "PUT": body = request.json if "name" not in body or "address" not in body or "birth" not in body or "department" not in body or "email" not in body: retorno_error = { "Message: " : "Must pass all fields: name, address, birth, department and email", } return jsonify(retorno_error), 400 old_id = id new_name = body["name"] new_address = body["address"] new_birth_raw = body["birth"] new_birth = datetime.strptime(new_birth_raw, '%Y-%m-%d').date() new_department = body["department"] new_email = body["email"] if database_service.employee_exist(id) == False: retorno_warning = { "Message: " : "Employee not found", "Employee ID" : id } return retorno_warning, 404 try: sql_update = ("UPDATE Employee SET Name = %s, Address = %s, Birth = %s, Department = %s, Email = %s WHERE Id = %s") tupla_user = (new_name, new_address, new_birth, new_department, new_email, old_id) cursor.execute(sql_update, tupla_user) connection.commit() current_id = old_id except Exception as e: retorno_error = { "Message: " : "Error during execution", "Exception: " : e } cursor.close() connection.close() print("PUTID NOK. MySQL connection is closed") return jsonify(retorno_error), 503 retorno_json={ "Message": "Employee updated", "Employee_ID": old_id, "Updated Fields" : body } cursor.close() connection.close() print("PUTID OK. MySQL connection is closed") return retorno_json, 200 if request.method == "DELETE": if database_service.employee_exist(id) == False: retorno_warning = { "Message: " : "Employee not found", "Employee ID" : id } return retorno_warning, 404 try: sql_delete = ("DELETE FROM Employee WHERE Id = %s") tupla_user = (id,) cursor.execute(sql_delete, tupla_user) connection.commit() except Exception as e: retorno_error = { "Message: " : "Error during execution", "Exception: " : e } cursor.close() connection.close() print("DELID NOK. MySQL connection is closed") return jsonify(retorno_error), 503 retorno_json={ "Message": "Employee deleted", "Employee_ID": id, } cursor.close() connection.close() print("DELID OK. MySQL connection is closed") return retorno_json, 200 if __name__ == "__main__": app.run(debug=True)
19b16de0ef065f3a8c63d1aa8b0c09605b54ea69
e44b2754d3cd9dbd7e419c44ca9f2a9efe00cb0b
/tictactoe.py
e93e54a52029b78dfc92ff4aa24629bfd543ef71
[]
no_license
litannalex/JetBrains-Academy-Projects
00126a4a9aef505fff79595c60fb9621e2dd74b9
896a38cfaee63bf5eaf7d7dcecef2fc1885f59b2
refs/heads/master
2022-11-11T09:19:04.019728
2020-06-27T00:09:19
2020-06-27T00:09:19
267,681,774
0
0
null
2020-06-29T17:45:19
2020-05-28T19:47:09
Python
UTF-8
Python
false
false
2,863
py
ROWS = 3 COLUMNS = 3 # takes 2 coordinates for a move, # returns corresponding 1 coordinate in the list def coordinate(c, r): new_c = c - 1 new_r = ROWS - r return new_r * COLUMNS + new_c # takes list with symbols, prints out the battlefield def print_field(l): print("---------") for i in range(ROWS): print("|", " ".join(l[i * ROWS:i * ROWS + COLUMNS]), "|") print("---------") # creates the nested list with three-in-a-row combinations def three_rows(l): rows = [l[i:COLUMNS*i] for i in range(COLUMNS)] columns = [l[0:7:3], l[1:8:3], l[2:9:3]] diagonals = [l[0:9:4], l[2:7:2]] three = [rows, columns, diagonals] return three # game set up: prints out empty fields, creates variable field_list = list(' ' * 9) print_field(field_list) move_counter = 0 game_finished = False while not game_finished: # prompts the user to give coordinates for a move until valid valid_input = False valid_numbers = ['1', '2', '3'] move = -1 while not valid_input: move_coordinates = input("Enter the coordinates: ").split() if len(move_coordinates) != 2: print("Enter exactly two numbers!") elif not move_coordinates[0].isnumeric() or not move_coordinates[1].isnumeric(): print("You should enter numbers!") elif move_coordinates[0] not in valid_numbers or move_coordinates[1] not in valid_numbers: print("Coordinates should be from 1 to 3!") else: col, row = [int(i) for i in move_coordinates] move = coordinate(col, row) if field_list[move] not in [' ', '_']: print("This cell is occupied! Choose another one!") else: valid_input = True move_counter += 1 # writes user's move into the field list and outputs new field if move_counter % 2 == 1: field_list[move] = 'X' else: field_list[move] = 'O' print_field(field_list) # generates three-in-a-row combinations three_in_a_row = three_rows(field_list) # checks if input contains empty cells empty_cells = False for symbol in field_list: if symbol in [' ', '_']: empty_cells = True # counts 3 in a row combinations for Xs and Os winning = [['X'] * 3, ['O'] * 3] x_three, o_three = 0, 0 for element in three_in_a_row: for i in element: if i == winning[0]: x_three += 1 if i == winning[1]: o_three += 1 # Prints game states if x_three > 0 and o_three == 0: print("X wins") game_finished = True elif o_three > 0 and x_three == 0: print("O wins") game_finished = True elif (x_three == 0 and o_three ==0) and not empty_cells: print("Draw") game_finished = True