blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
281
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
57
license_type
stringclasses
2 values
repo_name
stringlengths
6
116
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
313 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
18.2k
668M
star_events_count
int64
0
102k
fork_events_count
int64
0
38.2k
gha_license_id
stringclasses
17 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
107 values
src_encoding
stringclasses
20 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
4
6.02M
extension
stringclasses
78 values
content
stringlengths
2
6.02M
authors
sequencelengths
1
1
author
stringlengths
0
175
98e60fc6389398e16d76d7de6e665ef79eac8947
dcc36a7744d657e15385803fcd13335685a595af
/quantdigger/demo/test_backtest.py
9500f1a4557b50deac1f9ee32fcf107612863f33
[]
no_license
timedcy/quantdigger
777c28ba96d7dba1cb491a634f46e3968f3232bb
bc492811c796caaad3801d379bb485c1986d4619
refs/heads/master
2021-01-22T01:27:52.102183
2015-11-08T04:35:37
2015-11-08T04:35:37
45,767,058
1
0
null
2015-11-08T04:36:13
2015-11-08T04:36:13
null
UTF-8
Python
false
false
2,362
py
# -*- coding: utf-8 -*- from quantdigger.engine.execute_unit import ExecuteUnit from quantdigger.indicators.common import MA, BOLL from quantdigger.engine.strategy import TradingStrategy from quantdigger.util import pcontract, stock from quantdigger.digger import deals import plotting #def average(series, n): #""" 一个可选的平均线函数 """ ### @todo plot element #sum_ = 0 #for i in range(0, n): #sum_ += series[i] #return sum_ / n class DemoStrategy(TradingStrategy): """ 策略实例 """ def __init__(self, exe): super(DemoStrategy, self).__init__(exe) print 'start: ', self.datetime[0] self.ma20 = MA(self, self.close, 20,'ma20', 'b', '1') self.ma10 = MA(self, self.close, 10,'ma10', 'y', '1') self.b_upper, self.b_middler, self.b_lower = BOLL(self, self.close, 10,'boll10', 'y', '1') #self.ma2 = NumberSeries(self) def on_bar(self): """ 策略函数,对每根Bar运行一次。""" #self.ma2.update(average(self.open, 10)) if self.ma10[1] < self.ma20[1] and self.ma10 > self.ma20: self.buy('long', self.open, 1, contract = 'IF000.SHFE') elif self.position() > 0 and self.ma10[1] > self.ma20[1] and self.ma10 < self.ma20: self.sell('long', self.open, 1) # 夸品种数据引用 #print self.position(), self.cash() #print self.datetime, self.b_upper, self.b_middler, self.b_lower #print self.datetime[0] if __name__ == '__main__': try: pcon = pcontract('BB.SHFE', '1.Minute') #begin_dt, end_dt = '2015-05-25', '2015-06-01' #pcon = stock('600848','10.Minute') # 通过tushare下载股票数据 simulator = ExecuteUnit([pcon, pcon]) algo = DemoStrategy(simulator) #algo1 = DemoStrategy(simulator) #algo2 = DemoStrategy(simulator) simulator.run() # 显示回测结果 from quantdigger.datastruct import TradeSide ping = 0 kai = 0 for t in algo.blotter.transactions: if t.side == TradeSide.PING: ping += t.quantity elif t.side == TradeSide.KAI: kai += t.quantity else: raise "error" print "ping: ", ping print "kai: ", kai assert kai >= ping
144e2902dff07ccc9008bdb81891c775c216b282
22ca9743aa05b70002276f37284e13c9ce614257
/nodemcu-uploader.py
041c15e601d52821ee82ade6466d5e9464a093d1
[ "MIT", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
Christoph-D/nodemcu-uploader
efe2d68aab12a220c8fe9496245e92bf3ecb2923
7c7026491a4a730965903d7eb848a47f4e628195
refs/heads/master
2020-07-12T04:11:27.443014
2016-03-09T21:20:57
2016-03-09T21:20:57
53,532,605
0
0
null
2016-03-09T21:19:45
2016-03-09T21:19:45
null
UTF-8
Python
false
false
172
py
# -*- coding: utf-8 -*- # Copyright (C) 2015-2016 Peter Magnusson <[email protected]> from nodemcu_uploader import main if __name__ == '__main__': main.main_func()
3a206f6d8e955b15bbd61988b40ea1f668583f18
8ef5a09d76a11c56963f18e6a08474a1a8bafe3c
/algorithm/dp_subset_sum.py
44580f16c302081909155ac156cefc69cf012378
[]
no_license
roiei/algo
32c4677649c7666db148f6183fbfbf66c8b1969f
ae8bb8bf4ae4026ccaf1dce323b4098547dd35ec
refs/heads/master
2022-04-01T19:21:27.768675
2022-02-19T06:15:29
2022-02-19T06:15:29
169,021,154
0
0
null
null
null
null
UTF-8
Python
false
false
1,898
py
nums = [34, 4, 12, 5, 2] target = 9 #target = 40 def dfs(nums, depth, n, target): if target == 0: return True if depth == n or target < 0: return False res = dfs(nums, depth + 1, n, target - nums[depth]), res += dfs(nums, depth + 1, n, target), return any(res) mem = {} def dfs_dp(nums, depth, n, target): if depth in mem: return mem[depth] if target == 0: return True if depth == n or target < 0: return False res = dfs(nums, depth+1, n, target - nums[depth]), res += dfs(nums, depth+1, n, target), mem[depth] = any(res) return mem[depth] def isSubsetSum(nums, n, target): subset = ([[False for i in range(target+1)] for i in range(n+1)]) for i in range(n+1): subset[i][0] = True for i in range(1, target+1): subset[0][i] = False for i in range(1, n+1): for j in range(1, target+1): if j < nums[i-1]: subset[i][j] = subset[i-1][j] else: subset[i][j] = (subset[i-1][j] or subset[i-1][j-nums[i-1]]) return subset[n][target] def is_subset_sum(nums, n, target): dp = [False]*(target+1) cmb = [True]*(target+1) for num in nums: if num <= target: print(f'num = {num}') dp[num] = True cmb[num] = False for i in range(1, target+1): if dp[i] == True and (i+num <= target): if i != num and cmb[i] == False: dp[i+num] = True return dp[target] # print(dfs(nums, 0, len(nums), target)) # print(dfs_dp(nums, 0, len(nums), target)) print(isSubsetSum(nums, len(nums), target)) print(is_subset_sum(nums, len(nums), target))
03dde1a263827b35b7aaa86f9f7835c933b700cc
48f73b5b78da81c388d76d685ec47bb6387eefdd
/scrapeHackerrankCode/codes/find-point.py
fc6157b3e72153e83bf8e16e66b00a8c13227285
[]
no_license
abidkhan484/hacerrankScraping
ad0ceda6c86d321d98768b169d63ea1ee7ccd861
487bbf115117bd5c293298e77f15ae810a50b82d
refs/heads/master
2021-09-18T19:27:52.173164
2018-07-18T12:12:51
2018-07-18T12:12:51
111,005,462
2
1
null
null
null
null
UTF-8
Python
false
false
251
py
# Accepted # Python 3 def find_point(x1, y1, x2, y2): print((2*x2-x1), (2*y2-y1)) for _ in range(int(input().strip())): x1, y1, x2, y2 = input().split() x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) find_point(x1, y1, x2, y2)
e51ccbd873a076784af7467c364a96aa7d2e3b3e
20f1d8b7fb5331d6df6e7bee796afa3beac7910d
/Practice_2/lab4/lab4_2.py
77487d2fa5253f9ce7a9232a51ca3c46fbd727ac
[]
no_license
ndtands/Algorithm_and_data_structer
e169c262445dffa132b297b55c50a2d769648f17
bb83e2185a2244ef311fb80584fd28b0c40f8329
refs/heads/master
2023-05-30T08:49:27.984870
2021-06-14T09:33:08
2021-06-14T09:33:08
376,193,072
2
0
null
null
null
null
UTF-8
Python
false
false
909
py
""" pesudocode: - weigh: from 0 to n-1 - W - value : nxW - O(nxW) Main: init value all = 0 for i from 0 to n-1: for m to 1 to W: value[m][i-1]; m < weigh[i] value[m][i]= max{value[m][i-1],value[m-weight[i]][i-1]+weigh[i]}; m>=weigh[i] return value[W][n-1] """ def Get_max_god(weigh,W): weigh=[0]+weigh n = len(weigh) value = [[0 for _ in range(n)] for _ in range(W+1)] for i in range(1,len(weigh)): for w in range(1,W+1): value[w][i] = value[w][i-1] if weigh[i] <= w: val = value[w-weigh[i]][i-1]+weigh[i] if value[w][i] <val: value[w][i] = val return value[W][len(weigh)-1] W,n = [int(i) for i in input("Nhap W,n: ").split(" ")] weigh = [int(i) for i in input().split(" ")] print(Get_max_god(weigh,W))
2c3d7af90245cf571a6c064aa837b69a7be5e9f3
b9123130de15cef57c4c10ed8fcccf2952151407
/djangoFamily/urls.py
5ada4539fcda65667d0ad20c30ed713277f71aa1
[]
no_license
ffpaiki/django-family
ad7f063af4100b7be8722a4372fb65097530d785
8b60d4bf7b68d25a9589bf246a3118b98bf9115a
refs/heads/master
2023-05-14T21:51:17.939068
2021-06-01T21:18:07
2021-06-01T21:18:07
372,964,025
0
0
null
null
null
null
UTF-8
Python
false
false
873
py
"""djangoFamily URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from person.views import person_view urlpatterns = [ path('family/', include('family.urls')), path('', person_view), path('admin/', admin.site.urls), ]
1e8294ec9b10630a7a9116f76fccd3992da630d5
a1ae8d7a75566dacafc46635d34314989d2ea3a1
/脚本/backup_ver1.py
1b483ce56621c6b3994e78cb5baa8ffa6745f918
[]
no_license
lianshitong/pylearn
a03cc9129be381d06f4223fa5e6bd81fae69f64c
caeb15a7ce55d8bd88be22b4942900925106b8d7
refs/heads/master
2021-01-19T04:38:12.569234
2017-04-06T03:54:48
2017-04-06T03:54:48
87,383,951
0
0
null
null
null
null
UTF-8
Python
false
false
3,019
py
#来源:www.open-open.com #编写一个Python脚本,实现为重要的文件或文件夹在指定的目录下创建备份。 #[设计思路] #[1] 将需要备份的文件和目录由一个列表指定,通过传入参数获得并保存到列表中。 #[2] 备份应该保存在主备份目录中。 #[3] 将文件备份成一个压缩文件。 #[4] 每一次备份都根据当前的日期在主备份目录中创建一个子文件夹,而所备份的文件命名为当期的时间保存在这个子文件夹中。 #[5] 压缩命令由本地用户决定。可以使用任何本地的存档压缩命令,只要它有命令行界面就可以了,那样就可以从脚本中传递参数给它。 # [参考] # [1] A Byte of Python, 2005 # [2] Python Manuals 2.6 #! /usr/bin/python # Filename: backup_ver1.py # 2010-7-12 wcdj import os import time import sys # 1, The files and directories to be backed up are specified in a list # source = ['/home/wcdj/my_prog', '/home/wcdj/local_installed'] # The following information is the debug used print '--------------------------------' source=[] print 'The command line arguments are: ' for i in sys.argv: print i if i == sys.argv[0]: continue source.append(i) print source print '--------------------------------' # check input, if error app exit if len(source) == 0: print '''''You should input the files or directories, like python backup_ver1.py /home/wcdj/myfile /home/wcdj/mydir ...''' exit() else: print 'Some files or directorier will be saved into .tar.gz format: ' print source # If you are using Windows, use # source=[r'c:/Documents', r'd:/work'] or # source=['c://Documents', 'd://work'] or # something like that # 2, The backup must be stored in a main backup directory # Remember to change this to what you will be using target_dir = '/home/wcdj/backup/' # 3, The files are backed up into a tar file # 4, The name of subdirectory and tar file today = target_dir + time.strftime('%Y%m%d') now = time.strftime('%H%M%S') # Take a comment from the user to create the name of the tar file comment = raw_input('Enter a comment: ') if len(comment) == 0:# check if a comment was entered target = today + os.sep + now + '.tar.gz' else: target = today + os.sep + now + '_' + / comment.replace(' ', '_') + '.tar.gz' #Create the subdirectory if it isn't already there if not os.path.exists(today): os.mkdir(today)# make directory print 'Successfully created directory', today # 5, We use the tar command(in Unix/Linux) to put the files in a tgz archive tar_command = "tar -zcf %s %s" % (target, ' '.join(source)) # Run the backup if os.system(tar_command) == 0: print 'Successful backup to', target else: print 'Backup failed' # end
4fd112924b7f8d61fe2121c3674b954118913501
2b74bc3a31e0fa01bdd080d59b02b7eea3e1d77f
/examples/rd_themis.py
0536a036e2031fdbfaf487852e853311f9c33f64
[ "Apache-2.0" ]
permissive
serious-company/rd_themis
4fc892ec49da16856061576a3ed6d18d1f70a980
de851123cfbb4fd941f969107844023d169febfd
refs/heads/master
2023-04-08T20:15:43.943249
2020-03-08T12:55:40
2020-03-08T12:55:40
234,794,002
0
1
Apache-2.0
2023-03-30T13:32:14
2020-01-18T20:31:42
C
UTF-8
Python
false
false
1,931
py
#!/usr/bin/python3.5 # # Copyright (c) 2016 Cossack Labs Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import redis from pythemis import scell import os r = redis.StrictRedis(host='localhost', port=6379, db=0) #load module r.execute_command("module load {}/../rd_themis.so".format(os.getcwd())) #scell set by rd_themis r.execute_command("rd_themis.cset {} {} {}".format("key", "password", "data")) #scell get by plain get data = r.execute_command("get {}".format("key")) enc = scell.scell_seal(b"password") data = enc.decrypt(data) print(data) #scell set plaint encrypted data data = enc.encrypt(b"data") r.execute_command("set {} {}".format("key", "".join(map(chr, data)))) #scell get data with rd_themis data = r.execute_command("rd_themis.cget {} {}".format("key", "password")) print(data) #smessage set r.execute_command("rd_themis.msset {} {} {}".format("key", "\x55\x45\x43\x32\x00\x00\x00\x2d\x6b\xbb\x79\x79\x03\xfa\xb7\x33\x3a\x4d\x6e\xb7\xc2\x59\xde\x78\x96\xfa\x69\xe6\x63\x86\x91\xc2\x65\xa0\x92\xf6\x5a\x22\x3c\xa9\x8e\xc9\xa7\x35\x42", "data")) #smessage get data = r.execute_command("rd_themis.msget {} {}".format("key", "\x52\x45\x43\x32\x00\x00\x00\x2d\xc7\xa8\xca\x7a\x00\xc3\xb5\xd1\xad\x51\x37\x30\x8f\x45\xe6\x5e\x54\xdf\x2b\x7a\x45\xbc\x85\x08\xe8\xcc\x3b\xc9\x48\x1b\x63\x1a\xe8\x12\x8b\x39\x74")) print(data) #unload module r.execute_command("module unload rd_themis".format(os.getcwd()))
ed9afc7e270d21655fb7f14fc7d36f3a8ad9427a
0ae43af4c1dde70faed80981cf807514031b8c6c
/Monte Carlo/mcmc.py
9530b1e8844b0182fdbfa7560735b1ad5b9f6776
[ "MIT" ]
permissive
pengyuan/mlnote
6a9043867a1540f4365f2923aa04610756c74744
d390ea5d95d63fa7ce43805a36de136b0d013688
refs/heads/master
2020-03-11T23:18:44.929694
2018-04-20T10:12:29
2018-04-20T10:12:29
130,318,015
1
0
null
null
null
null
UTF-8
Python
false
false
3,680
py
# coding: utf-8 from pylab import * """采样问题:分布->数据 计算机可以获得服从均匀分布的随机数(容易根据种子生成伪随机数)。 一般的采样问题,都可以理解成:有了均匀分布(简单分布)的采样,如何去获取复杂分布的采样。 """ """M-H采样 """ def mh(): mu = 3 sigma = 10 def qsample(): return np.random.normal(mu, sigma) def q(x): return exp(-(x - mu) ** 2 / (sigma ** 2)) def p(x): """目标分布""" return 0.3 * np.exp(-(x - 0.3) ** 2) + 0.7 * np.exp(-(x - 2.) ** 2 / 0.3) def hm(n=10000): sample = np.zeros(n) sample[0] = 0.5 for i in range(n - 1): q_s = qsample() u = np.random.rand() if u < min(1, (p(q_s) * q(sample[i])) / (p(sample[i]) * q(q_s))): sample[i + 1] = q_s else: sample[i + 1] = sample[i] return sample x = np.arange(0, 4, 0.1) realdata = p(x) N = 10000 sample = hm(N) plt.plot(x, realdata, 'g', lw=3) plt.plot(x, q(x), 'r') plt.hist(sample, bins=x, normed=1, fc='c') plt.show() def m(): # The Metropolis-Hastings algorithm def p(x): mu1 = 3 mu2 = 10 v1 = 10 v2 = 3 return 0.3 * exp(-(x - mu1) ** 2 / v1) + 0.7 * exp(-(x - mu2) ** 2 / v2) def q(x): mu = 5 sigma = 10 return exp(-(x - mu) ** 2 / (sigma ** 2)) stepsize = 0.5 x = arange(-10, 20, stepsize) px = zeros(shape(x)) for i in range(len(x)): px[i] = p(x[i]) N = 5000 # independence chain u = np.random.rand(N) mu = 5 sigma = 10 y = zeros(N) y[0] = np.random.normal(mu, sigma) for i in range(N - 1): ynew = np.random.normal(mu, sigma) alpha = min(1, p(ynew) * q(y[i]) / (p(y[i]) * q(ynew))) if u[i] < alpha: y[i + 1] = ynew else: y[i + 1] = y[i] # random walk chain u2 = np.random.rand(N) sigma = 10 y2 = zeros(N) y2[0] = np.random.normal(0, sigma) for i in range(N - 1): y2new = y2[i] + np.random.normal(0, sigma) alpha = min(1, p(y2new) / p(y2[i])) if u2[i] < alpha: y2[i + 1] = y2new else: y2[i + 1] = y2[i] figure(1) nbins = 30 hist(y, bins=x) plot(x, px * N / sum(px), color='g', linewidth=2) plot(x, q(x) * N / sum(px), color='r', linewidth=2) figure(2) nbins = 30 hist(y2, bins=x) plot(x, px * N / sum(px), color='g', linewidth=2) show() """Gibbs采样 """ def g(): def pXgivenY(y, m1, m2, s1, s2): return np.random.normal(m1 + (y - m2) / s2, s1) def pYgivenX(x, m1, m2, s1, s2): return np.random.normal(m2 + (x - m1) / s1, s2) def gibbs(N=5000): k = 20 x0 = np.zeros(N, dtype=float) m1 = 10 m2 = 20 s1 = 2 s2 = 3 for i in range(N): y = np.random.rand(1) # 每次采样需要迭代 k 次 for j in range(k): x = pXgivenY(y, m1, m2, s1, s2) y = pYgivenX(x, m1, m2, s1, s2) x0[i] = x return x0 def f(x): """目标分布""" return np.exp(-(x - 10) ** 2 / 10) # 画图 N = 10000 s = gibbs(N) x1 = np.arange(0, 17, 1) plt.hist(s, bins=x1, fc='c') x1 = np.arange(0, 17, 0.1) px1 = np.zeros(len(x1)) for i in range(len(x1)): px1[i] = f(x1[i]) plt.plot(x1, px1 * N * 10 / sum(px1), color='r', linewidth=3) plt.show() if __name__ == '__main__': m()
9aff07ad32360b10ae281e93532a2f1af7a967f5
7826681647933249c8949c00238392a0128b4a18
/cosypose/simulator/__init__.py
6242dfa1c761870f2a85f43957247c13b7b53277
[ "MIT" ]
permissive
imankgoyal/cosypose
b35678a32a6491bb15d645bc867f4b2e49bee6d2
fa494447d72777f1d3bd5bd134d79e5db0526009
refs/heads/master
2022-12-09T11:18:23.188868
2020-08-31T15:34:02
2020-08-31T15:34:02
291,834,596
2
0
MIT
2020-08-31T22:06:12
2020-08-31T22:06:11
null
UTF-8
Python
false
false
173
py
from .body import Body from .camera import Camera from .base_scene import BaseScene from .caching import BodyCache, TextureCache from .textures import apply_random_textures
422f1fd4ccf12e0a93f2d2fe7bbdebf8e36d78f2
e1c91b1d26183fdde27e1f4392cee6924f4ee085
/models.py
202755c4736ac2a363fa81ed2b392db41608fb28
[]
no_license
ArchipLab-LinfengZhang/Auxiliary-Training
8106e5a722db921085204df2fc08ef95a161521f
568dc11c5a397a12724f302a304da60e98e68a85
refs/heads/master
2021-04-20T06:43:39.756616
2020-10-13T11:53:35
2020-10-13T11:53:35
249,663,017
5
1
null
null
null
null
UTF-8
Python
false
false
11,632
py
import torch.nn as nn import torch.utils.model_zoo as model_zoo import torch import torch.nn.functional as F __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152'] model_urls = { 'resnet18': './pretrain/resnet18-5c106cde.pth', 'resnet34': './pretrain/resnet34-333f7ec4.pth', 'resnet50': './pretrain/resnet50-19c8e357.pth', 'resnet101': './pretrain/resnet101-5d3b4d8f.pth', 'resnet152': './pretrain/resnet152-b121ed2d.pth', } def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = conv1x1(inplanes, planes) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = conv3x3(planes, planes, stride) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = conv1x1(planes, planes * self.expansion) self.bn3 = nn.BatchNorm2d(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class MainClassifier(nn.Module): def __init__(self, channel, num_classes=100): super(MainClassifier, self).__init__() self.pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Linear(channel, num_classes) def forward(self, x): x = self.pool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x class AuxiliaryClassifier(nn.Module): # Auxiliary classifier, including first an attention layer, then a bottlecneck layer, # and final a fully connected layer def __init__(self, channel, num_classes=100): super(AuxiliaryClassifier, self).__init__() self.attention_layer = self._make_attention_layer(channel) self.bottleneck_layer = self._make_bottleneck_layer(channel) self.fc = nn.Linear(channel, num_classes) self.pool = nn.AdaptiveAvgPool2d(1) def _make_attention_layer(self, channel): # parameter <stride=1> indicates the stride of bottleneck layers # for CIFAR datasets, stride=1 is advised return nn.Sequential( nn.Conv2d(in_channels=channel, out_channels=channel, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(channel), nn.ReLU(inplace=True), nn.ConvTranspose2d(kernel_size=3, padding=1, stride=1, in_channels=channel, out_channels=channel, bias=False), nn.BatchNorm2d(channel), nn.Sigmoid() ) def _make_bottleneck_layer(self, channel): return nn.Sequential( nn.Conv2d(channel, channel // 2, kernel_size=1, stride=1), nn.BatchNorm2d(channel // 2), nn.ReLU(inplace=True), nn.Conv2d(channel // 2, channel // 2, kernel_size=3, stride=1), nn.BatchNorm2d(channel // 2), nn.ReLU(inplace=True), nn.Conv2d(channel // 2, channel, kernel_size=1, stride=1), nn.BatchNorm2d(channel), nn.ReLU(inplace=True), nn.AdaptiveAvgPool2d(1) ) def forward(self, x): x = self.bottleneck_layer(self.attention_layer(x) * x) x = x.view(x.size(0), -1) x = self.fc(x) return x class ResNet(nn.Module): def __init__(self, block, layers, num_classes=100, zero_init_residual=False): super(ResNet, self).__init__() print("num_class: ", num_classes) self.inplanes = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) # self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) # remove maxplooing in cifar datasets self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.bn_means, self.bn_vars = [], [] self.auxiliary_classifiers_list = nn.ModuleList([ MainClassifier(channel=512 * block.expansion, num_classes=num_classes), AuxiliaryClassifier(channel=512 * block.expansion, num_classes=num_classes), AuxiliaryClassifier(channel=512 * block.expansion, num_classes=num_classes), AuxiliaryClassifier(channel=512 * block.expansion, num_classes=num_classes), AuxiliaryClassifier(channel=512 * block.expansion, num_classes=num_classes) ]) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): nn.init.constant_(m.bn3.weight, 0) elif isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0) def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def close_bn(self): for m in self.modules(): if isinstance(m, nn.BatchNorm2d): m.track_running_stats = False def record_bn(self): for m in self.modules(): if isinstance(m, nn.BatchNorm2d): self.bn_means.append(m.running_mean.clone()) self.bn_vars.append(m.running_var.clone()) def open_bn(self): for m in self.modules(): if isinstance(m, nn.BatchNorm2d): m.track_running_stats = True def reset_bn(self): self.bn_means = [] self.bn_vars = [] def load_bn(self): index = 0 for m in self.modules(): if isinstance(m, nn.BatchNorm2d): m.running_mean.data = self.bn_means[index].clone() m.running_var.data = self.bn_vars[index].clone() # self.bn_means.append(m.running_mean) # self.bn_vars.append(m.running_var) index += 1 self.bn_vars = [] self.bn_means = [] def print_bn(self): for m in self.layer1.modules(): if isinstance(m, nn.BatchNorm2d): print(m.running_var[0]) print(m.running_mean[0]) def forward(self, inputs): out_list = [] for index in range(len(inputs)): # print(index) x = inputs[index] out = self.conv1(x) out = self.bn1(out) layer1_out = self.layer1(out) layer2_out = self.layer2(layer1_out) layer3_out = self.layer3(layer2_out) layer4_out = self.layer4(layer3_out) out_list.append(self.auxiliary_classifiers_list[index](layer4_out)) if index == 0: #return layer4_out self.record_bn() self.load_bn() return out_list def resnet18(pretrained=False, **kwargs): """Constructs a ResNet-18 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet18'])) return model def resnet34(pretrained=False, **kwargs): """Constructs a ResNet-34 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet34'])) return model def resnet50(pretrained=False, **kwargs): """Constructs a ResNet-50 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet50'])) return model def resnet101(pretrained=False, **kwargs): """Constructs a ResNet-101 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet101'])) return model def resnet152(pretrained=False, **kwargs): """Constructs a ResNet-152 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet152'])) return model
a85f691e07272e37e184d43b23232623c6d4c14b
1567d96d6874b2f86096eaccafbaa59ed95f726c
/laywer_in_touch/project/api/migrations/0003_auto_20190420_2108.py
124fd350b6cbd3fa1d2ff5fd33f25c63f71f2876
[]
no_license
nativanando/lawyer-in-touch
b11ff78cbcaabb292e94e7ec861eb7359300d471
771afd742c44408140c4c3d672e1dabda3fa5fab
refs/heads/master
2021-10-28T03:46:02.559506
2019-04-21T18:29:05
2019-04-21T18:29:05
182,430,472
1
0
null
null
null
null
UTF-8
Python
false
false
509
py
# Generated by Django 2.2 on 2019-04-20 21:08 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('api', '0002_auto_20190420_2107'), ] operations = [ migrations.RenameField( model_name='contract', old_name='customer', new_name='id_customer', ), migrations.RenameField( model_name='contract', old_name='lawyer', new_name='id_lawyer', ), ]
abf3cc2733f9ecf9e321e886fbfc782dc581e43e
741f7d43d5e5d20d15d975ec8153d7ccdec19f3f
/se/task2/migrations/0002_auto_20200810_2213.py
cb4e261f57f6870e83f6dadbf6cda02f40e43b07
[]
no_license
krishnumkhodke/tasks
2ff20e3f4f6a10d962167380762b3171e845e3d8
1295c0422838c19c7ec859945863b785dd59c47f
refs/heads/master
2022-11-30T06:29:36.635311
2020-08-14T18:30:39
2020-08-14T18:30:39
287,596,927
0
0
null
null
null
null
UTF-8
Python
false
false
388
py
# Generated by Django 3.0 on 2020-08-10 16:43 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('task2', '0001_initial'), ] operations = [ migrations.AlterField( model_name='user_info', name='email', field=models.EmailField(max_length=254, unique=True), ), ]
dae2781054c223b7973d66222611a491d8b965b8
52407745c0d787e296de7877c6113daa814c9304
/zstp/py180320/classify_text.py
5fd2b3f92ffdd4df99496aae146c9804c7063f94
[]
no_license
moafmoar/hello
28bd378e1035dda1419a445e231601dd16a3ab15
a595c97f951591948797518f4a9d379f25d982c5
refs/heads/master
2021-09-10T17:36:40.647306
2018-03-30T06:45:25
2018-03-30T06:45:25
114,957,097
1
0
null
null
null
null
UTF-8
Python
false
false
4,680
py
""" 通过训练好的模型,对投诉进行分类 """ import pandas as pd import numpy as np import os from sklearn.externals import joblib as jl import time import jieba, re import jieba.posseg as pseg import sys, unicodedata from sklearn.feature_extraction.text import TfidfVectorizer from collections import Counter #数据和模型的存储地址 # main_path = os.path.abspath('.') main_path='E:\workspalce\python\hello\zstp\py180208' data_path = main_path+'\\data\\' #数据保存地址 # model_path=os.main_path+'\\model\\' def read_model(path=main_path): """ 加载已经训练好的模型 :param path: 文件路径 :return: 训练好的模型 """ t=jl.load(path+'\\tfidf.m') #tfidf模型 com_chi2=jl.load(path+'\\select_feature.m')#刷选变量模型 com_model=jl.load(path+'\\classify_svc.m')#分类模型 return t,com_chi2,com_model #读取数据 def read_data(path=main_path): """ 读取要处理的数据 :param path: 数据存储地址 :return: 返回读取的数据,数据框格式 """ headers = ['gd_id', 'description'] dataset=pd.read_csv(path+'\\ldata.csv',encoding='gbk') return dataset # dataset = pd.read_csv(data_path+'record_info.txt', header=None, encoding='utf8') # dataset.columns = headers #处理数据 def dis_data(dataset): """ 处理现有数据 :param dataset: 要处理的数据 :return: 处理好的数据 """ dataset = dataset[dataset['description'].notnull()] dataset.index=range(len(dataset)) #把投诉描述里面英文字母全部变成小写的 dataset['text'] = dataset['description'].str.lower() #处理一些转换错误的词、同义词/近义词 dict_path = main_path + '\\dict\\' f = open(dict_path + 'words_replace.txt', 'r', encoding='utf8') for line in f.readlines(): value = line.strip().replace('\n','').split(',') dataset['text'] = dataset['text'].str.replace(value[0], value[1]) #停用词 stopwords_path = dict_path+'stopwords.txt' stop_set = set([value.replace('\n','') for value in open(stopwords_path, 'r', encoding='utf8').readlines()]) userdict_path = dict_path+'word_dict.txt' jieba.load_userdict(userdict_path) flag_ls = ['a','ad','b','d','f','i','l','m','n','nrt','ns','nt','nz','v','vn','x'] def pseg_cut(text): words = pseg.cut(text) return ' '.join([w.word for w in words if w.flag in flag_ls and w.word not in stop_set and len(w.word)>=2]) dataset['cut'] = dataset['text'].map(pseg_cut) # 清洗用的正则表达式 res = re.compile(r'\s+') red = re.compile(r'^(\d+)$') # 清洗标点符号等异常字符 todel = dict.fromkeys(i for i in range(sys.maxunicode) if unicodedata.category(chr(i)) not in ('Lu', 'Ll', 'Lt', 'Lo', 'Nd', 'Nl', 'Zs')) # 清洗分词结果的方法 def cleantext(text): # try: # text = unicode(text) # except: # pass if text != '': return re.sub(res, ' ', ' '.join(map(lambda x: re.sub(red, '', x), text.translate(todel).split(' ')))).strip() else: return text # 对分词结果进行清洗 dataset['cut_clean'] = dataset['cut'].map(cleantext) return dataset def model_fit(dataset,t,con_chi2,com_model): """ 预测结果 :param dataset: 数据 :param t: tfidf的模型 :param con_chi2: 刷选变量的文件 :param com_model: 分类模型 :return: 预测分类结果 """ features = t.transform(dataset['cut_clean']) features_chi2 = com_chi2.transform(features) predict_id = com_model.predict(features_chi2) return predict_id def dict_df(array_df): """" 将数据框装换成字典形式,表示每个投诉类型的个数。 Arguments: array_df --Series格式数据 returns: 返回字典形式的 """ df_count=array_df.value_counts() dict_count={} i=len(df_count) for i in range(i): dict_count[i]={'name':df_count.index[i],'value':df_count[i]} return dict_count if __name__=='__main__': dataset=read_data()#加载数据 t,com_chi2,com_model=read_model()#加载模型 dataset=dis_data(dataset) #处理数据 predict_id=model_fit(dataset,t,com_chi2,com_model)#预测问题分类 dataset['predict_label'] = predict_id#预测标签列 #for i in range(len(dataset)):#打印预测结果 # print('%s 投诉的是 %s 问题' % (dataset['gd_id'][i], dataset['predict_label'][i])) dict_freq=dict_df(dataset['predict_label']) #返回字典形式的投诉类别的种类 print(dict_freq)
c3988bcfd867b120960050f68e13953610bb01d2
4ceb794a6f7951ba17b64f4d25c3780883156bbe
/codes/model.py
d64e126eeda0455f1afb72c79581194cbc9f8284
[]
no_license
TimmyWang/time_series_anomaly_detection
37ceb35198aee93788fd92c14b59cdb1d6a717e6
068ac33c695a2607658dc9dc2f8b34e5f970cf68
refs/heads/master
2022-12-06T06:58:36.256626
2020-08-23T10:36:36
2020-08-23T10:36:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,267
py
import os os.environ['KMP_DUPLICATE_LIB_OK']='True' from keras.models import Model from keras.layers import Input from keras.layers import Conv1D, Dense #from keras.layers import LSTM, TimeDistributed from keras.layers import Flatten#, Reshape, Concatenate import numpy as np import matplotlib.pyplot as plt def get_model(seq_len): seq_input = Input(shape=(seq_len,1)) h_layer = Conv1D(3, 10,activation="relu")(seq_input) h_layer = Flatten()(h_layer) h_layer = Dense(5,activation="relu")(h_layer) output = Dense(1)(h_layer) return Model(seq_input, output) class AnomalyDetector: def __init__(self, model, x, y): self.model = model self.x = x self.y = y self.time_steps = np.array([i for i in range(len(x))]) self.values = np.squeeze(y) self.loss = self._calculate_loss() def _calculate_loss(self): loss = [] for i, x in enumerate(self.x): inputt = np.expand_dims(x,axis=0) output = np.expand_dims(self.y[i],axis=-1) a_loss = self.model.evaluate(inputt,output,verbose=0) loss.append(a_loss) return loss def plot(self,threshold,size): col = ['r' if l > threshold else 'b' for l in self.loss] plt.figure(figsize=(15,7)) plt.scatter(self.time_steps, self.values, c=col,alpha=0.5, s=size)
9f3e8d0c12df00c8e7512f2dd31e83eb5a13fe01
7c04c5c8c8330b4e2babffb96f7d8c88f1a39e7f
/flow/db/instdata/admin.py
cf54ff28c1ccbc770364837b67e80f9342cc97e8
[ "BSD-3-Clause" ]
permissive
OspreyX/flow
d200a07e21a90e0ff621a7d0012754d6559cd538
20cdcd6b128defe57649d6e20a5fec60488fd0d2
refs/heads/master
2020-12-27T21:22:22.863762
2013-05-20T06:11:39
2013-05-20T06:11:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,082
py
from django.contrib import admin from django.contrib.admin import helpers from django import http from django.template import loader from django.utils.safestring import mark_safe from django.contrib.admin.util import unquote from django.forms.models import modelform_factory from django.utils import simplejson as json from models import * from utils import ctids, dbmodels from forms import DataIdForm #_______________________________________ INLINES class VendorIdInline(admin.TabularInline): model = VendorId class BondIssuerInline(admin.TabularInline): model = BondIssuer #_______________________________________ ADMINS class DataIdAdmin(admin.ModelAdmin): list_display = ('code', 'name', 'live', 'get_country', 'curncy', 'content_type', 'firm_code', 'isin', 'tags') form = DataIdForm inlines = [VendorIdInline] search_fields = ('code', 'name', 'description', 'isin', 'tags') list_filter = ('content_type',) save_on_top = True def change_content(self, request, obj = None): form = self.get_form(request, obj = obj) data = request.POST or request.GET form = form(initial = dict(data.items()), instance = obj) html = self.render_content_form(request, form.content_form) data = {'header':'htmls', 'body': [{'identifier': '.data-id-instrument', 'html': html}] } return http.HttpResponse(json.dumps(data), mimetype='application/javascript') def render_content_form(self, request, content_form): if content_form: model = content_form._meta.model content_admin = self.admin_site._instruments.get(model,None) form = helpers.AdminForm(content_form, list(content_admin.get_fieldsets(request)), content_admin.prepopulated_fields, content_admin.get_readonly_fields(request), model_admin=content_admin) return loader.render_to_string('admin/instdata/dataid/instrument_form.html',{'adminform':form}) else: return '' def add_view(self, request, **kwargs): if request.is_ajax(): return self.change_content(request) else: return super(DataIdAdmin,self).add_view(request, **kwargs) def change_view(self, request, object_id, **kwargs): if request.is_ajax(): return self.change_content(request, self.get_object(request, unquote(object_id))) else: return super(DataIdAdmin,self).change_view(request, object_id, **kwargs) def render_change_form(self, request, context, **kwargs): content_form = context['adminform'].form.content_form context['instform'] = self.render_content_form(request, content_form) return super(DataIdAdmin,self).render_change_form(request, context, **kwargs) def formfield_for_foreignkey(self, db_field, request, **kwargs): if db_field.name == "content_type": kwargs["queryset"] = ctids() return db_field.formfield(**kwargs) return super(DataIdAdmin, self).formfield_for_foreignkey(db_field, request, **kwargs) class VendorAdmin(admin.ModelAdmin): list_display = ('code', 'name', 'summary') prepopulated_fields = {'name': ('code',)} class DataFieldAdmin(admin.ModelAdmin): list_display = ('code', 'description', 'format') class VendorDataFieldAdmin(admin.ModelAdmin): list_display = ('vendor', 'field', 'code') class VendorIdAdmin(admin.ModelAdmin): list_display = ('ticker', 'vendor', 'dataid',) class ExchangeAdmin(admin.ModelAdmin): list_display = ('code','name',) class BondMaturityTypeAdmin(admin.ModelAdmin): list_display = ('code','description',) class CouponTypeAdmin(admin.ModelAdmin): list_display = ('code','month_frequency','day_count','description') ordering = ('code','month_frequency','day_count') class FutureContractAdmin(admin.ModelAdmin): list_display = ('code','description','type','curncy','country','index','exchange') class BondClassAdmin(admin.ModelAdmin): list_display = ('code','bondcode','description','curncy','country','issuer','sovereign','convertible') search_fields = ('bondcode',) list_filter = ('sovereign','convertible','curncy', 'country') inlines = [BondIssuerInline] class BondIssuerAdmin(admin.ModelAdmin): list_display = ('bond_class','issuer','ccy','dt') search_fields = ('bond_class__code',) class CollateralTypeAdmin(admin.ModelAdmin): list_display = ('name','order') class FundTypeAdmin(admin.ModelAdmin): list_display = ('code','name','openended','description') class FundManagerAdmin(admin.ModelAdmin): list_display = ('code','name','description','website') class IcAdmin(admin.ModelAdmin): list_display = ('code','firm_code','instype','ccy','data_id') search_fields = ('code','firm_code') class BondAdmin(admin.ModelAdmin): list_display = ('code','bond_class','ISIN','coupon','maturity_date') search_fields = ('ISIN',) class InstDecompAdmin(admin.ModelAdmin): list_display = ('code','dataid','dt','composition') ordering = ('code','-dt') class MktDataAdmin(admin.ModelAdmin): list_display = ('vendor_id','field','dt','mkt_value') search_fields = ('vendor_id__ticker',) ordering = ('-dt',) class IndustryCodeAdmin(admin.ModelAdmin): list_display = ('id' , 'code' , 'description' , 'parent') #_______________________________________ REGISTERING admin.site.register(Vendor,VendorAdmin) admin.site.register(VendorDataField,VendorDataFieldAdmin) admin.site.register(VendorId,VendorIdAdmin) admin.site.register(DataField,DataFieldAdmin) admin.site.register(DataId,DataIdAdmin) admin.site.register(Exchange,ExchangeAdmin) admin.site.register(BondMaturityType,BondMaturityTypeAdmin) admin.site.register(FutureContract,FutureContractAdmin) admin.site.register(BondClass,BondClassAdmin) admin.site.register(BondIssuer,BondIssuerAdmin) admin.site.register(CollateralType,CollateralTypeAdmin) admin.site.register(FundManager,FundManagerAdmin) admin.site.register(FundType,FundTypeAdmin) admin.site.register(InstDecomp,InstDecompAdmin) admin.site.register(IndustryCode,IndustryCodeAdmin) ###admin.site.register(InstrumentCode,IcAdmin) ###admin.site.register(Cash3, list_display = ('id','code','curncy','type','extended')) ###admin.site.register(FwdCash, list_display = ('id','code','curncy','value_date')) ###admin.site.register(MktData,MktDataAdmin) admin.site._instruments = {} for inst in dbmodels(): admin.site.register(inst) inst_admin = admin.site._registry.pop(inst) admin.site._instruments[inst] = inst_admin
49254eb20c5905f20020b227a913eea9b9007358
457c673c8c8d704ec150322e4eeee2fde4f827ca
/Programming Basic/First_Steps_in_coding_lab/07_Projects_Creation.py
ccf04b1496f502d612f560496cd25f03a08b4d0e
[]
no_license
xMrShadyx/SoftUni
13c08d56108bf8b1ff56d17bb2a4b804381e0d4e
ce4adcd6e8425134d138fd8f4b6101d4eb1c520b
refs/heads/master
2023-08-02T03:10:16.205251
2021-06-20T05:52:15
2021-06-20T05:52:15
276,562,926
5
1
null
2021-09-22T19:35:25
2020-07-02T06:07:35
Python
UTF-8
Python
false
false
191
py
architect = input() amount_projects = int(input()) total_time = amount_projects * 3 print(f'The architect {architect} will need {total_time} hours to complete {amount_projects} project/s.')
f5b3338d64bfd8747d4e1c0534c8191e3607e991
a9e09d4de8c0d012877aaf8db40331bea5bf1462
/examples/bert_cls_pooling.py
a5193dab4a9d22802ca5f2311441b93305ab60e1
[ "BSD-3-Clause" ]
permissive
amenityllc/SentEval
24dabcaf1e0784a14774c52414f9c28141eb2d95
8b6b4528820dbe06869c39829512785b2f56189d
refs/heads/master
2020-04-28T09:32:17.943065
2019-03-18T15:08:32
2019-03-18T15:08:32
175,170,273
0
0
NOASSERTION
2019-03-12T08:47:29
2019-03-12T08:47:00
Python
UTF-8
Python
false
false
594
py
# from examples.bert_embeddings import BertEmbeddings, AbstractBertPooller from bert_embeddings import BertEmbeddings, AbstractBertPooller import numpy as np class CLSPooller(AbstractBertPooller): def __init__(self): super().__init__() def get_name(self): return 'cls_pooler' def pool(self, results): embeddings = [result['embedding'] for result in results] return np.array([np.array(sentence_vectors[0]) for sentence_vectors in embeddings]) if __name__ == "__main__": bert_embeddings = BertEmbeddings(CLSPooller) bert_embeddings.run()
0d2b450afa4215b6663f3662b252963b05493a13
7e2d802a17e42d50974af29e4c9b658d5da6471b
/IC/21-Missing-drone.py
addde9d1910b7c9628616aee6fecb212e90f64fb
[]
no_license
siddharthadtt1/Leet
a46290bacdf569f69d523413c0129676727cb20e
1d8b96257f94e16d0c1ccf8d8e8cd3cbd9bdabce
refs/heads/master
2020-06-20T16:21:15.915761
2017-05-15T22:35:42
2017-05-15T22:35:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
28
py
# see Leet 136 single number
6924472770c9b64625e91f5425599c76f151c774
e3946d91dc5fe71989c2f4b6390232865fcb5d1b
/fjord/flags/spicedham_utils.py
2e87b27ba33d4e350010c6253dd663f313cda103
[ "LicenseRef-scancode-unknown-license-reference", "BSD-3-Clause" ]
permissive
zeusintuivo/fjord
61b632fd6df0e1b3508e628fe4f682a937cc0244
3bd227004d369df1fdc39f06acff12ebc8f0fe34
refs/heads/master
2021-01-16T18:28:52.564638
2014-09-24T21:02:51
2014-09-24T21:02:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,166
py
import json import os import re import threading from spicedham import Spicedham from spicedham.backend import BaseBackend from fjord.flags.models import Store class FjordBackend(BaseBackend): def __init__(self, config): pass def reset(self): Store.objects.all().delete() def get_key(self, classifier, key, default=None): try: obj = Store.objects.filter(classifier=classifier, key=key)[0] value = json.loads(obj.value) except (IndexError, Store.DoesNotExist): value = default return value def set_key(self, classifier, key, value): value = json.dumps(value) try: obj = Store.objects.filter(classifier=classifier, key=key)[0] obj.value = value except (IndexError, Store.DoesNotExist): obj = Store.objects.create( classifier=classifier, key=key, value=value) obj.save() def set_key_list(self, classifier, key_value_tuples): for key, value in key_value_tuples: self.set_key(classifier, key, value) TOKEN_RE = re.compile(r'\W') def tokenize(text): """Takes a piece of text and tokenizes it into train/classify tokens""" # FIXME: This is a shite tokenizer and doesn't handle urls # well. (We should handle urls well.) tokens = TOKEN_RE.split(text) return [token.lower() for token in tokens if token] _cached_spicedham = threading.local() def get_spicedham(): """Retrieve a Spicedham object These objects are cached threadlocal. """ sham = getattr(_cached_spicedham, 'sham', None) if sham is None: config = { 'backend': 'FjordBackend' } sham = Spicedham(config) _cached_spicedham.sham = sham return sham def train_cmd(path, classification): """Recreates training data using datafiles in path""" path = os.path.abspath(path) if not os.path.exists(path): raise ValueError('path "%s" does not exist' % path) sham = get_spicedham() # Wipe existing training data. print 'Wiping existing data...' sham.backend.reset() # Load all data for when classifier=True true_path = os.path.join(path, classification) print 'Loading classifier=True data from %s...' % true_path files = [os.path.join(true_path, fn) for fn in os.listdir(true_path) if fn.endswith('.json')] print ' %s records...' % len(files) for fn in files: print ' - ' + fn with open(fn, 'r') as fp: data = json.load(fp) sham.train(tokenize(data['description']), match=True) # Load all data for when classifier=False false_path = os.path.join(path, 'not_' + classification) print 'Loading classifier=False data from %s...' % false_path files = [os.path.join(false_path, fn) for fn in os.listdir(false_path) if fn.endswith('.json')] print ' %s records...' % len(files) for fn in files: print ' - ' + fn with open(fn, 'r') as fp: data = json.load(fp) sham.train(tokenize(data['description']), match=False) print 'Done!'
832974b9068a90cd72f7987a17131faae3924d37
f3bd271bf00325881fb5b2533b9ef7f7448a75ec
/xcp2k/classes/_cell3.py
c1150112a0c843de3db8f2c0d137662bf75a7671
[]
no_license
obaica/xcp2k
7f99fc9d494859e16b9b0ea8e217b0493f4b2f59
6e15c2c95658f545102595dc1783f5e03a9e6916
refs/heads/master
2020-07-15T17:27:43.378835
2019-02-11T16:32:24
2019-02-11T16:32:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,148
py
from xcp2k.inputsection import InputSection from _cell_ref1 import _cell_ref1 class _cell3(InputSection): def __init__(self): InputSection.__init__(self) self.A = None self.B = None self.C = None self.Abc = None self.Alpha_beta_gamma = None self.Cell_file_name = None self.Cell_file_format = None self.Periodic = None self.Multiple_unit_cell = None self.Symmetry = None self.CELL_REF = _cell_ref1() self._name = "CELL" self._keywords = {'A': 'A', 'Cell_file_format': 'CELL_FILE_FORMAT', 'C': 'C', 'B': 'B', 'Symmetry': 'SYMMETRY', 'Alpha_beta_gamma': 'ALPHA_BETA_GAMMA', 'Multiple_unit_cell': 'MULTIPLE_UNIT_CELL', 'Periodic': 'PERIODIC', 'Abc': 'ABC', 'Cell_file_name': 'CELL_FILE_NAME'} self._subsections = {'CELL_REF': 'CELL_REF'} self._aliases = {'Angles': 'Alpha_beta_gamma'} @property def Angles(self): """ See documentation for Alpha_beta_gamma """ return self.Alpha_beta_gamma @Angles.setter def Angles(self, value): self.Alpha_beta_gamma = value
a056eed4886e7ab503371a8658a267813fb8a067
dc7632da4f04385142ea86e4a63c8537eaa2edeb
/django_app/config/urls.py
a7a6a32944ca6639e025c365d8c4507f1ca55a53
[]
no_license
jmnghn/0621_test
bf4ecd4cc4ce56e06f4f07922d53e4dfb7471bab
9cb3930d24644897074a336c998759a6a86b656a
refs/heads/master
2022-10-11T17:53:34.715991
2017-06-22T05:03:39
2017-06-22T05:03:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
819
py
"""test_project URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url, include from django.contrib import admin urlpatterns = [ url(r'^admin/', admin.site.urls), url(r'^post/', include('post.urls')) ]
0103d51ce865761ed13bd38499675fd2c9ebd607
e865222c08dbd64758e70d67b97cf954334f1cf1
/find_refs.py
80baad3c7b1fad0cbf5e0fa732fa0c625d134add
[]
no_license
gbroques/fc-scripts
83f9313eab02fc2f38fbe7f5f4ad8119f1ff8e3b
283bbed243718e261a9f52deb436378162b53a8e
refs/heads/master
2023-06-26T06:27:20.529426
2021-07-26T01:44:04
2021-07-26T01:44:04
380,091,819
1
0
null
null
null
null
UTF-8
Python
false
false
12,366
py
import argparse import glob import os import re import zipfile from pathlib import Path from typing import Callable, Dict, List from xml.etree import ElementTree from xml.etree.ElementTree import Element class Reference: """Represents a reference to the property of an object in another document.""" def __init__(self, document: str, object_name: str, property_name: str) -> None: self.document = document self.object_name = object_name self.property_name = property_name def __str__(self): return self._to_string() def __repr__(self): return self._to_string() def _to_string(self): return '{}#{}.{}'.format(self.document, self.object_name, self.property_name) class Match: """Represents a match to a reference.""" def __init__(self, document: str, object_name: str, property_name: str, location: str) -> None: self.document = document self.object_name = object_name self.property_name = property_name self.location = location def __str__(self): return self._to_string() def __repr__(self): return self._to_string() def _to_string(self): return '{} {}.{} ({})'.format( self.document, self.object_name, self.location, self.property_name) def parse_document_xml(document: str) -> Element: archive = zipfile.ZipFile(document, 'r') document_xml = archive.read('Document.xml') return ElementTree.fromstring(document_xml) def find_root_by_document_path(cwd: str) -> Dict[str, Element]: """Returns a dictionary where keys are document filepaths, and values are document xml root elements. """ root_by_document = {} pattern = Path(cwd).joinpath('**', '*.FCStd').as_posix() documents = glob.glob(pattern, recursive=True) for document in documents: root = parse_document_xml(document) root_by_document[document] = root return root_by_document def make_find_references_in_property(child_element_name: str, reference_attribute: str, location_attribute: str, reference: Reference) -> Callable[[Element], List[str]]: """ XML Examples:: <Cell address="B1" content="=Main#Spreadsheet.Value" alias="Value1" /> <Expression path="Radius" expression="Main#Spreadsheet.Value"/> +--------------------+---------------------+--------------------+ | child_element_name | reference_attribute | location_attribute | +====================+=====================+====================+ | Cell | content | address | +--------------------+---------------------+--------------------+ | Expression | expression | path | +--------------------+---------------------+--------------------+ """ def find_references_in_property(property: Element) -> List[str]: locations = [] for child_element in property.findall(child_element_name): content = child_element.attrib[reference_attribute] pattern = re.compile(str(reference)) match = pattern.search(content) if match: locations.append(child_element.attrib[location_attribute]) return locations return find_references_in_property def make_find_references_in_cells(reference: Reference) -> Callable[[Element], List[str]]: return make_find_references_in_property('Cell', 'content', 'address', reference) def make_find_references_in_expression_engine(reference: Reference) -> Callable[[Element], List[str]]: return make_find_references_in_property('Expression', 'expression', 'path', reference) def find_references_in_root(document_path: str, root: Element, reference: Reference) -> List[Match]: matches = [] object_data = root.find('ObjectData') for object in object_data: properties = object.find('Properties') object_name = object.attrib['name'] for property in properties.findall('Property'): property_name = property.attrib['name'] find_locations = make_find_locations(property) locations = find_locations(reference) for location in locations: matches.append( Match(document_path, object_name, property_name, location)) return matches class Property: """Represents a property with a potential external or cross-document reference.""" def __init__(self, property_element: Element, nested_element_name: str, make_find_references: Callable[[Reference], Callable[[Element], List[str]]]) -> None: self.property_element = property_element self.nested_element_name = nested_element_name self.make_find_references = make_find_references def find_locations(self, reference: Reference) -> List[str]: find_references = self.make_find_references(reference) nested_element = self.property_element.find(self.nested_element_name) return find_references(nested_element) def make_find_locations(property_element: Element) -> Callable[[Reference], List[str]]: def find_locations(reference: Reference) -> List[str]: property_name = property_element.attrib['name'] properties_with_references = {'cells', 'ExpressionEngine'} if property_name in properties_with_references: property = create_property(property_element) return property.find_locations(reference) else: return [] return find_locations def create_property(property_element: Element) -> Property: """ XML Examples:: <Property name="cells" type="Spreadsheet::PropertySheet" status="67108864"> <Cells Count="4" xlink="1"> ... </Cells> </Property> <Property name="ExpressionEngine" type="App::PropertyExpressionEngine" status="67108864"> <ExpressionEngine count="2" xlink="1"> ... </ExpressionEngine> </Property> +--------------------+---------------------+ | property_name | nested_element_name | +====================+=====================+ | cells | Cells | +--------------------+---------------------+ | ExpressionEngine | ExpressionEngine | +--------------------+---------------------+ FreeCAD Source: * `Property <https://github.com/FreeCAD/FreeCAD/blob/0.19.2/src/App/PropertyContainer.cpp#L221-L310>`_ * `Cells <https://github.com/FreeCAD/FreeCAD/blob/0.19.2/src/Mod/Spreadsheet/App/PropertySheet.cpp#L277-L304>`_ * `Expression Engine <https://github.com/FreeCAD/FreeCAD/blob/0.19.2/src/App/PropertyExpressionEngine.cpp#L163-L185>`_ """ property_name = property_element.attrib['name'] if property_name == 'cells': return Property(property_element, 'Cells', make_find_references_in_cells) elif property_name == 'ExpressionEngine': return Property(property_element, 'ExpressionEngine', make_find_references_in_expression_engine) return None def find_references(cwd: str, reference: Reference) -> List[Match]: matches = [] root_by_document_path = find_root_by_document_path(cwd) for document_path, root in root_by_document_path.items(): matches_in_document = find_references_in_root( document_path, root, reference) matches.extend(matches_in_document) return matches def rename_references(from_reference: Reference, to_reference: Reference) -> Dict[str, Element]: """ TODO: 1) Find from document If not label (not surrounded by << >>), Find file named 'XXX.FCStd'. Else Go through every document looking for the one wit the label 2) Then find object with name or label. <Object name="Spreadsheet"> <Properties Count="7" TransientCount="0"> <Property name="Label" type="App::PropertyString" status="134217728"> <String value="Spreadsheet"/> </Property> 3) Then find cell with alias. <Property name="cells" type="Spreadsheet::PropertySheet" status="67108864"> <Cells Count="2" xlink="1"> <XLinks count="0"> </XLinks> <Cell address="A1" content="Test" /> <Cell address="B1" content="5" alias="Test" /> </Cells> </Property> 4) Output new XML depending upon to_reference (change alias, spreadsheet name or label). """ pass def remove_external_links(document: str) -> Dict[str, Element]: """ https://github.com/FreeCAD/FreeCAD/blob/0.19.2/src/App/PropertyLinks.cpp#L4473-L4510 https://github.com/FreeCAD/FreeCAD/blob/0.19.2/src/App/PropertyLinks.cpp#L3155-L3249 EMPTY ===== <Cells Count="2" xlink="1"> <XLinks count="0"> </XLinks> <Cell address="A1" content="Test" /> <Cell address="B1" content="5" alias="Test" /> </Cells> <Property name="ExpressionEngine" type="App::PropertyExpressionEngine" status="67108864"> <ExpressionEngine count="0"> </ExpressionEngine> </Property> XLINKS ====== <Cells Count="4" xlink="1"> <XLinks count="1" docs="1"> <DocMap name="Master" label="Master" index="0"/> <XLink file="Master.FCStd" stamp="2021-07-25T18:40:15Z" name="Spreadsheet"/> </XLinks> <Cell address="A1" content="Value" /> <Cell address="B1" content="=Master#Spreadsheet.Value" alias="Value1" /> <Cell address="D8" content="Value" /> <Cell address="E8" content="=&lt;&lt;Master&gt;&gt;#&lt;&lt;Spreadsheet&gt;&gt;.Value" alias="Value2" /> </Cells> <ExpressionEngine count="2" xlink="1"> <XLinks count="2" docs="2"> <DocMap name="Master" label="Master" index="1"/> <DocMap name="Cube" label="Cube" index="0"/> <XLink file="Cube.FCStd" stamp="2021-07-25T20:03:03Z" name="Box"/> <XLink file="Master.FCStd" stamp="2021-07-25T18:40:15Z" name="Spreadsheet"/> </XLinks> <Expression path="Height" expression="Cube#Box.Height"/> <Expression path="Radius" expression="Master#Spreadsheet.Value"/> </ExpressionEngine> """ pass if __name__ == '__main__': cwd = os.getcwd() parser = argparse.ArgumentParser( description='Find cross-document spreadsheet references.') parser.add_argument( 'document', help='Document where spreadsheet is located.') parser.add_argument('spreadsheet', help='Spreadsheet name or label.') parser.add_argument('alias', help='Alias name.') args = parser.parse_args() ref = Reference(args.document, args.spreadsheet, args.alias) matches = find_references(cwd, ref) def format_match(match: Match) -> str: beginning_path = cwd + os.path.sep return str(match).replace(beginning_path, '') if matches: num_matches = len(matches) word = 'reference' if num_matches == 1 else 'references' print('{} {} to {} found:'.format(num_matches, word, ref)) print(' ' + '\n '.join(map(format_match, matches))) else: print('No references to {} found.'.format(ref))
fdfe2da15ad67c8b189985f392c4c6bf45bfc155
2df04f6354647440618f87acc9fe8eee480ab11a
/ex036.py
962783fa2bc74fa6a18e3385a7b4ea2fc071d8fc
[ "MIT" ]
permissive
zWillsz/exsvscode
de6a3d79d73178e6168088a2851bfc4bf9cc9985
ba507dca6de748e3c82c306731137bb5f6f0c918
refs/heads/main
2023-03-22T00:39:58.021276
2021-03-11T00:48:17
2021-03-11T00:48:17
345,176,629
0
0
null
null
null
null
UTF-8
Python
false
false
285
py
n1 = float(input('Digite um número: ')) n2 = float(input('Digite outro número: ')) n3 = float(input('Digite outro número: ')) if n1 < n2 + n3 and n2 < n1 + n3 and n3 < n1 + n2: print('É possível fazer um triângulo.') else: print('Não é possível fazer um triângulo.')
e959abd5bcb09d4400358e2b64740608947477ad
990aeac794d108927157ba0e13e85dad622f9970
/LAB/SourceCodes/EchoServer/client.py
21d343d05f481df640fa401b06f284ba9c001f96
[]
no_license
darwinsubramaniam/UDTECH
af07f0690bbe4304670d4d98a71caeeaaaadbc97
6f6151845a20c3dd456b70aab361ce7e1bb9eeec
refs/heads/master
2021-01-17T05:34:57.104956
2015-11-14T15:48:40
2015-11-14T15:48:40
42,150,764
0
1
null
2015-10-16T18:13:58
2015-09-09T02:18:46
HTML
UTF-8
Python
false
false
847
py
__author__ = 'darwin' import socket import sys #create a TCP/IP socket sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # Connect the socket to the port where the server is listening ser_address = ("192.168.1.19", 10000) print(sys.stderr, 'connection to %s port %s' % ser_address) sock.connect(ser_address) try: # Send data message = 'This is the message . It will be repeated.' print(sys.stderr, 'sending "%s" ' % message) sock.sendall(bytes(message, 'utf8')) #Look for the response amount_recieved = 0 amount_expected = len(message) while amount_recieved < amount_expected: bytedata = sock.recv(16) data = bytedata.encode('utf8') amount_recieved += len(data) print(sys.stderr,'recieved "%s" ' % data) finally: print(sys.stderr, 'closing socket') sock.close()
7b6adfe3e2a7b0b6f0a1ad95b1f71cfddbc311ea
7e583b67f1a3e73d7ed10a63372bcba70c3d4432
/sim_db/src_command_line_tool/commands/delete_sim.py
892e06e181d106043458784238a0db352c606780
[ "MIT" ]
permissive
task123/sim_db
6edd9e502186b13eec19ae1a02edbf8ccd6c09d7
892934693fc166640f6cbf7af905a2c0d48ea99b
refs/heads/master
2021-07-20T02:19:10.764670
2020-05-07T10:00:08
2020-05-07T10:00:08
153,098,309
0
0
null
null
null
null
UTF-8
Python
false
false
4,091
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """Delete a row in the sim.db. One must either provide a list of ID's or a condition to delete sets of simulation parameters (rows) from the database. Usage: python delete_sim.py --id 'ID' python delete_sim.py --where 'CONDITION' """ # Copyright (C) 2017-2019 Håkon Austlid Taskén <[email protected]> # Licenced under the MIT License. if __name__ == '__main__': import add_package_root_to_path import sim_db.src_command_line_tool.commands.delete_results_dir as delete_results_dir import sim_db.src_command_line_tool.commands.helpers as helpers import sqlite3 import argparse import sys import os.path def command_line_arguments_parser(name_command_line_tool="sim_db", name_command="delete_sim"): parser = argparse.ArgumentParser( description='Delete simulations from sim.db.', prog="{0} {1}".format(name_command_line_tool, name_command)) parser.add_argument( '--id', '-i', type=int, nargs='+', default=[], help="ID's of runs to delete.") parser.add_argument( '--where', '-w', type=str, default=None, help= ("Condition for which entries should be deleted. Must be a " "valid SQL (sqlite3) command when added after WHERE in a DELETE " "command.")) parser.add_argument( '--all', action="store_true", help="Delete all simulation from database.") parser.add_argument( '--no_checks', action='store_true', help=("No questions are asked about wheter you really want to " "delete simulation or the 'results_dir' of the simulation.")) return parser def delete_sim(name_command_line_tool="sim_db", name_command="delete_sim", argv=None): db = helpers.connect_sim_db() db_cursor = db.cursor() args = command_line_arguments_parser(name_command_line_tool, name_command).parse_args(argv) if args.all: args.where = "id > -1" answer = 'n' if len(args.id) == 0 and args.where == None: print("--id 'ID' or --where 'CONDITION' must be passed to the " "program.") elif len(args.id) > 0 and not args.no_checks: print("Do you really want to delete simulations with following ID's:") for delete_id in args.id: print(delete_id) answer = helpers.user_input("? (y/n)") elif args.where != None and not args.no_checks: print("Do you really want to delete simulations with following " "condition:") print(args.where) answer = helpers.user_input("? (y/n)") if (answer == 'y' or answer == 'Y' or answer == 'yes' or answer == 'Yes' or args.no_checks): if len(args.id) > 0: if args.no_checks: delete_results_dir_params = ['--no_checks', '--id'] else: delete_results_dir_params = ['--id'] for delete_id in args.id: delete_results_dir_params.append(str(delete_id)) delete_results_dir.delete_results_dir( argv=delete_results_dir_params) for delete_id in args.id: db_cursor.execute( "DELETE FROM runs WHERE id = {0}".format(delete_id)) elif args.where: if args.no_checks: delete_results_dir.delete_results_dir( argv=["--no_checks", "--where", args.where]) else: delete_results_dir.delete_results_dir( argv=["--where", args.where]) db_cursor.execute("DELETE FROM runs WHERE {0}".format(args.where)) else: print("No simulations were deleted.") db.commit() db_cursor.close() db.close() if __name__ == '__main__': delete_sim("", sys.argv[0], sys.argv[1:])
73ebe4706416324038c098bffa8ff1673ac13aab
96a08c181df0873ed61645c63cbb2870b713ec56
/lane.py
65c5343077343eeb0669dafd3d2ffb52b11db41a
[]
no_license
KnightFoxii/Lane-Detection-system
fe33cff4ba5a9b5c9a8c1a77a88633437b1a5555
5991e2b57fe9cf42cc4b7ce3f859ee5dbd7ca3bd
refs/heads/master
2022-12-01T22:16:59.298843
2020-08-20T15:59:58
2020-08-20T15:59:58
289,047,663
0
0
null
null
null
null
UTF-8
Python
false
false
2,940
py
# Import the required libraries import cv2 import numpy as np import matplotlib.pyplot as plt def canny_edge_detector(image): # Convert the image color to grayscale gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) # Reduce noise from the image blur = cv2.GaussianBlur(gray_image, (5, 5), 0) canny = cv2.Canny(blur, 50, 150) return canny def region_of_interest(image): height = image.shape[0] polygons = np.array([ [(200, height), (1100, height), (550, 250)] ]) mask = np.zeros_like(image) # Fill poly-function deals with multiple polygon cv2.fillPoly(mask, polygons, 255) # Bitwise operation between canny image and mask image masked_image = cv2.bitwise_and(image, mask) return masked_image def create_coordinates(image, line_parameters): slope, intercept = line_parameters y1 = image.shape[0] y2 = int(y1 * (3 / 5)) x1 = int((y1 - intercept) / slope) x2 = int((y2 - intercept) / slope) return np.array([x1, y1, x2, y2]) def average_slope_intercept(image, lines): left_fit = [] right_fit = [] for line in lines: x1, y1, x2, y2 = line.reshape(4) # It will fit the polynomial and the intercept and slope parameters = np.polyfit((x1, x2), (y1, y2), 1) slope = parameters[0] intercept = parameters[1] if slope < 0: left_fit.append((slope, intercept)) else: right_fit.append((slope, intercept)) left_fit_average = np.average(left_fit, axis = 0) right_fit_average = np.average(right_fit, axis = 0) left_line = create_coordinates(image, left_fit_average) right_line = create_coordinates(image, right_fit_average) return np.array([left_line, right_line]) def display_lines(image, lines): line_image = np.zeros_like(image) if lines is not None: for x1, y1, x2, y2 in lines: cv2.line(line_image, (x1, y1), (x2, y2), (255, 0, 0), 10) return line_image # Path of dataset directory cap = cv2.VideoCapture("datasets\test2.mp4") while(cap.isOpened()): _, frame = cap.read() canny_image = canny_edge_detector(frame) cropped_image = region_of_interest(canny_image) lines = cv2.HoughLinesP(cropped_image, 2, np.pi / 180, 100, np.array([]), minLineLength = 40, maxLineGap = 5) averaged_lines = average_slope_intercept(frame, lines) line_image = display_lines(frame, averaged_lines) combo_image = cv2.addWeighted(frame, 0.8, line_image, 1, 1) cv2.imshow("results", combo_image) # When the below two will be true and will press the 'q' on # our keyboard, we will break out from the loop # # wait 0 will wait for infinitely between each frames. # 1ms will wait for the specified time only between each frames if cv2.waitKey(1) & 0xFF == ord('q'): break # close the video file cap.release() # destroy all the windows that is currently on cv2.destroyAllWindows()
98f971dc88967fb06d38b0ee5fa5d6a36c736e0f
0b078aec6ff439aa7a59152913d88cd617d6bdd1
/main.py
3cd15d07c4494a73774edf5bc597542a3f7ddb54
[]
no_license
RahulAnand442001/ColorgramPy
0f2fc7a70376c32e72625365ecef8b618441dc72
11c829f985a4b399703964d7a7e83b6f59e2a7da
refs/heads/master
2023-02-05T09:22:16.726583
2020-12-17T07:42:11
2020-12-17T07:42:11
322,218,526
0
0
null
null
null
null
UTF-8
Python
false
false
1,364
py
# import colorgram # colors = colorgram.extract("image.jpg", 30) # for col in colors: # red = col.rgb.r # blue = col.rgb.b # green = col.rgb.g # color = (red, green, blue) # rgb_colors.append(color) # print(rgb_colors) import turtle import random color_list = [(202, 12, 30), (238, 244, 250), (35, 91, 186), (232, 229, 4), (232, 149, 48), (197, 68, 22), (212, 13, 9), (35, 31, 152), (49, 220, 60), (241, 46, 151), (20, 22, 53), (14, 208, 224), (75, 9, 53), (17, 154, 18), (55, 26, 13), (80, 193, 223), (219, 23, 116), (232, 159, 8), (241, 64, 24), (221, 138, 191), (96, 75, 10), (247, 11, 9), (83, 238, 162), (11, 96, 63), (5, 35, 33), (89, 208, 147)] turtle.colormode(255) my_turtle = turtle.Turtle() my_turtle.shape("turtle") my_turtle.speed("fastest") my_turtle.penup() my_turtle.hideturtle() my_turtle.setheading(225) my_turtle.forward(300) my_turtle.setheading(0) number_of_dots = 100 for dot_count in range(1, number_of_dots + 1): my_turtle.dot(20, random.choice(color_list)) my_turtle.penup() my_turtle.forward(50) if dot_count % 10 == 0: my_turtle.setheading(90) my_turtle.forward(50) my_turtle.setheading(180) my_turtle.forward(500) my_turtle.setheading(0) screen = turtle.Screen() screen.exitonclick()
51faeca946587f96b7b9dd94f87c793737f1948a
2bcafd5b76b68956489c2e9f9df0e44ec18b3b95
/HardExamples.py
4808338ebb8470b25fa17335a869087da74fe312
[]
no_license
pekkar/hog-cell-detection-framework
45439c893ca63b77fa192d3e206e442a89df4f50
1299799245bd3a537d57704ee2d5c356259abbe8
refs/heads/master
2021-01-22T21:12:08.158648
2015-09-29T18:02:55
2015-09-29T18:02:55
43,384,354
0
0
null
2015-09-29T17:52:20
2015-09-29T17:52:20
null
UTF-8
Python
false
false
13,923
py
# -*- coding: utf-8 -*- # Libraries import os import glob import time import datetime import numpy as np import cv2 import scipy import uuid # Files import SVM import DetectionProcess import Filters import MeasurePerformance # ---------------------------------------------------------------- # Returns a list of paths to subfolders def Listdirs(folder): return [ d for d in (os.path.join(folder, d1) for d1 in os.listdir(folder)) if os.path.isdir(d) ] # ---------------------------------------------------------------- def Search(hog, trainData, trainClasses, labels, groundTruth, amountToInitialTraining=1.0, saveImagesWithDetections=False, saveHardExampleImages=True, maxIters=1000, maxHardExamples=200000, calculateROC=False, ROCforThisManyFirstIters=5): # Initialize dictionary of lists where resutls will be saved ROCResults = {} ROCResults["FPR"] = [] # False Positive Rate ROCResults["TPR"] = [] # True Positive Rate ROCResults["AUC"] = [] # Area Under ROC ROCResults["iter"] = [] ROCResults["nrOfIterHE"] = [] ROCResults["F1"] = [] totalHardExamples = [] totalHardExampleLabels = [] # find hard examples using smaller amount of data. # else, use all the data. if amountToInitialTraining != 1.0: negExRowIndices = np.where(trainClasses==0)[0] posExRowIndices = np.where(trainClasses==1)[0] tDNegInd = negExRowIndices[:int(amountToInitialTraining*len(negExRowIndices))] tDPosInd = posExRowIndices[:int(amountToInitialTraining*len(posExRowIndices))] trainData = np.concatenate((trainData[tDNegInd],trainData[tDPosInd])) trainClasses = np.concatenate((trainClasses[tDNegInd],trainClasses[tDPosInd])) labels = np.concatenate((labels[tDNegInd],labels[tDPosInd])) if saveHardExampleImages or saveImagesWithDetections: # Output folder name parentFolder = "hardExamples_" + \ datetime.datetime.fromtimestamp(time.time()). \ strftime('%Y-%m-%d_%H-%M-%S') # Create parent output folder if does not exist yet if not os.path.exists(parentFolder): os.makedirs(parentFolder) if calculateROC: ROCResults, cost = ROC(trainData, trainClasses, labels, ROCResults) ROCResults["iter"].append(1) # First iteration ROCResults["nrOfIterHE"].append(0) # Zero hard examples for i in np.arange(2,maxIters,1): iterHardExamples = [] iterHardExampleLabels = [] # Search and build SVM model. # If ROC was calculated last on last iteration, we already have # cross-validated cost. if calculateROC and i<=ROCforThisManyFirstIters: model = SVM.Train(trainData, trainClasses, cost=cost) else: # Else, cross-validate new cost value cost = 10.0**(np.arange(-2,3,1)) model = SVM.Train(trainData, trainClasses, cost=cost, CVtype="lolo", labels=labels) # Use the model to detect cells from already seen images # and compare them to ground truth in order to find false positives w = model.coef_[0] hog.setSVMDetector( w ) searchMethod = "detectMultiScale" params = dict( hitThreshold = -model.intercept_[0], winStride = (2,2), # IMPORTANT! if same as blockStride, no detections will be produced padding = (0,0), # IMPORTANT! if bigger than (0,0), detections can have minus values which cropping does not like scale = 1.05, finalThreshold = 2, useMeanshiftGrouping = False ) # Input folder location and possible image types listOfDayDirs = Listdirs(r".\trainWithThese") fileTypes = ["bmp", 'jpg', 'png'] # Loop through input folders (days) for ii, directory in enumerate(listOfDayDirs): # Search hard examples only from images from these days, # because subsequent day images are not annotated 100% correctly # and thus "false positives" might be actual positives if not "day1" in directory and \ not "day2" in directory and \ not "day3" in directory: continue # Get list of images in the folder imageList = [] for fileType in fileTypes: imageList = imageList + glob.glob(directory + "\*." + fileType) # Loop through images for j,imFileName in enumerate(imageList): # Image name without file type extension imName = imFileName[imFileName.rfind("\\")+1 : \ imFileName.rfind(".")] print "\nProcessing " + directory[directory.rfind("\\")+1 : ] + \ " image " + str(j+1) + "/" + str(len(imageList)) + "..." # Open current image img = cv2.imread(imFileName, cv2.CV_LOAD_IMAGE_GRAYSCALE) # Second copy that remains untouched for cropping imgOrig = cv2.imread(imFileName, cv2.CV_LOAD_IMAGE_GRAYSCALE) # Detect found, timeTaken, w = DetectionProcess.SlidingWindow(hog, img, \ searchMethod, params, filterDetections=False) if saveHardExampleImages: # Create the folder if it does not exist already childFolder = parentFolder + "\\" + "hardExamples_iter" + str(i) if not os.path.exists(childFolder): os.makedirs(childFolder) # Find hard examples for ri,r in enumerate(found): for qi,q in enumerate(groundTruth[directory][imName]["positiveExamples"]): # True if overlaps at least x %... if Filters.Overlap(r, q) > 0.0000001: break # This example is false positive if it overlaps # less than x % with any of the true positives elif (qi == len(groundTruth[directory][imName]["positiveExamples"])-1): # You can set minimum weight/confidence threshold # for hard examples here. if w[ri] > 0.0: cropped = imgOrig[ r[1]:r[1]+r[3], r[0]:r[0]+r[2] ] # Crop & resize cropped = cv2.resize(cropped, hog.winSize) # Generate feature feature = hog.compute(cropped)[:,0] iterHardExamples.append(feature) iterHardExampleLabels.append(ii) # Save the image if saveHardExampleImages: cv2.imwrite(childFolder + "\\" + imName + "_" + \ str(uuid.uuid4().fields[-1])[:5] + ".png", cropped) # Save the results in .INI. # Create the folder where at least detections.INI files will # be saved. Images with detections will be saved over there # as well later, if input argument of this function says so. childFolder = parentFolder + "\\" + \ directory[directory.rfind("\\")+1 : ] + "_imagesWithDetections" # Create the folder if it does not exist already if not os.path.exists(childFolder): os.makedirs(childFolder) pathToDetectionsIni = childFolder+"\\"+imName+"_iter" + str(i)+".ini" DetectionProcess.SaveIni(found, pathToDetectionsIni, searchMethod, imFileName, hog) # Analyze the results, build confusion matrix pathToTruthIni = imFileName[:imFileName.rfind(".")]+"_annotations.ini" TP, FP, FN, TPR, FPR, F1, F05, F09, nrOfCellsTruth, imWithDetections = \ MeasurePerformance.Measure \ (pathToDetectionsIni, pathToTruthIni, imFileName) ROCResults["F1"].append(F1) if saveImagesWithDetections: # Save the image with detections scipy.misc.imsave(childFolder + "\\" + \ imFileName[imFileName.rfind("\\")+1 : imFileName.rfind(".")] \ + "_iter" + str(i) + ".png", imWithDetections) # If no hard examples were found, draw ROC for the last time and exit if len(iterHardExamples) == 0: ROCResults, cost = ROC(trainData, trainClasses, labels, ROCResults) ROCResults["iter"].append(i) ROCResults["nrOfIterHE"].append(0) break # Concatenate totalHardExamples = totalHardExamples + iterHardExamples totalHardExampleLabels = totalHardExampleLabels + iterHardExampleLabels # List to array iterHardExampleLabels = np.asarray(iterHardExampleLabels) iterHardExamples = np.asarray(iterHardExamples) # Append trainData = np.concatenate((trainData,iterHardExamples)) trainClasses = np.concatenate((trainClasses,([0] * iterHardExamples.shape[0]))) labels = np.concatenate((labels, iterHardExampleLabels)) # Save the number of hard examples on first iteration if i == 2: nrOfHeFirstIter = iterHardExamples.shape[0] # If the search is not complete, print number of HE and calculate # ROC if needed if iterHardExamples.shape[0] >= (0.05 * nrOfHeFirstIter): print "\nHard examples found: " + str(iterHardExamples.shape[0]) + "\n" if calculateROC and i < ROCforThisManyFirstIters: ROCResults, cost = ROC(trainData, trainClasses, labels, ROCResults) ROCResults["iter"].append(i) ROCResults["nrOfIterHE"].append(iterHardExamples.shape[0]) # Search is complete, calculate ROC for the last time if needed and # exit the search else: print "\n|--------------------------------------------------" print "| < 5 % hard examples found from the initial amount!" print "| Exiting the search..." print "|--------------------------------------------------" if calculateROC: ROCResults, cost = ROC(trainData, trainClasses, labels, ROCResults) ROCResults["iter"].append(i) ROCResults["nrOfIterHE"].append(iterHardExamples.shape[0]) break totalHardExamples = np.asarray(totalHardExamples) totalHardExampleLabels = np.asarray(totalHardExampleLabels) return (totalHardExamples, totalHardExampleLabels, ROCResults) def ROC(trainData, trainClasses, labels, ROCResults): # Shuffle and maintain the same order in every array np.random.seed(666) #222 shuffledOrder = range(trainData.shape[0]) np.random.shuffle(shuffledOrder) trainData = np.asarray( [trainData[zz,:] for zz in shuffledOrder] ) trainClasses = np.asarray( [trainClasses[zz] for zz in shuffledOrder] ) labels = np.asarray( [labels[zz] for zz in shuffledOrder] ) # Find pos & neg indices posExRowIndices = np.where(trainClasses==1)[0] negExRowIndices = np.where(trainClasses==0)[0] # Take 75 % for training and 25 % for testing forTrainingPos = np.int(0.75 * len(posExRowIndices)) forTestingPos = len(posExRowIndices) - forTrainingPos forTrainingNeg = np.int(0.75 * len(negExRowIndices)) forTestingNeg = len(negExRowIndices) - forTrainingNeg # Partition the data trainD, trainC, trainL, testD, testC = [],[],[],[],[] testD = np.concatenate((trainData[posExRowIndices[-forTestingPos:]], trainData[negExRowIndices[-forTestingNeg:]])) trainD = np.concatenate((trainData[posExRowIndices[0:forTrainingPos]], trainData[negExRowIndices[0:forTrainingNeg]])) trainL = np.concatenate((labels[posExRowIndices[0:forTrainingPos]], labels[negExRowIndices[0:forTrainingNeg]])) testC = np.concatenate((trainClasses[posExRowIndices[-forTestingPos:]], trainClasses[negExRowIndices[-forTestingNeg:]])) trainC = np.concatenate((trainClasses[posExRowIndices[0:forTrainingPos]], trainClasses[negExRowIndices[0:forTrainingNeg]])) # Determine best C cost = 10.0**(np.arange(-2,3,1)) model = SVM.Train(trainD, trainC, cost=cost, CVtype="lolo", labels=trainL) # Calculate ROC with the best C fpr, tpr, roc_auc = SVM.ROC(model, trainD, trainC, testD, testC) # Save results ROCResults["FPR"].append(fpr) ROCResults["TPR"].append(tpr) ROCResults["AUC"].append(roc_auc) return (ROCResults, model.C)
58e37c32308bc62287cb206420482f9b9601e669
0bb040ccd488f83655bd7f20305dd3e66b5b5bed
/stuff5e/forum/migrations/0016_auto_20210103_2318.py
f8d2f2376f4e1604e0c8579df47110db076f79a8
[]
no_license
kozakusek/bd_proj
75bc4bfc17708f850d13fe4f798ccbdb89a711dc
bd11a3a5ef17fd3ac08469a798b44f8dda1b4215
refs/heads/master
2023-03-04T00:03:59.783426
2021-02-18T20:10:22
2021-02-18T20:10:22
326,291,648
0
0
null
null
null
null
UTF-8
Python
false
false
503
py
# Generated by Django 3.0.5 on 2021-01-03 22:18 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('forum', '0015_auto_20210103_2212'), ] operations = [ migrations.AlterField( model_name='bonus', name='name', field=models.CharField(choices=[('STR', 'STR'), ('DEX', 'DEX'), ('CON', 'CON'), ('INT', 'INT'), ('WIS', 'WIS'), ('CHA', 'CHA'), ('ANY', 'ANY')], max_length=10), ), ]
541cb69c75260157173f8624d237328916435f77
cfd374b34a6b1a6ae16b5d23f633a0c47ae471e1
/generated_python_code/ball_collector/ballcollector/scripts/subsystem_camera.py
2b5a8a3131b05aa8935b5914b541fe7ed40ab212
[ "BSD-3-Clause" ]
permissive
mfigat/public_rshpn_tool
dd91d12e28d31a9c97c878b4d6e0a482a9bddfb6
3555cb8f1eb35ef12441b9aef63dae8f578c2aa7
refs/heads/master
2021-11-05T23:47:08.904506
2021-11-02T12:26:29
2021-11-02T12:26:29
207,675,046
0
0
null
null
null
null
UTF-8
Python
false
false
26,765
py
#!/usr/bin/env python ''' Copyright (c) 2019, Robot Control and Pattern Recognition Group, Warsaw University of Technology All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the Warsaw University of Technology nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL <COPYright HOLDER> BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Author: Maksym Figat ''' # Import other scripts # from auxiliary_functions import * from auxiliary_agent_ballcollector import * from auxiliary_subsystem_camera import * # Temporary definitions # IS_LOG = False # Flag determining if logs are shown in the terminal # IS_PRINT = True # Flag indicating if debug information for developer are shown in the terminal # class camera: ##### Subsystem camera constructor ##### def __init__(self): self.log("__init__ function") rospy.init_node("camera") self._subsystemName="camera" self._subsystemFrequency=10; self._currentSubsystemBehaviour="Behaviour_initBehaviour"; self._subsystemIterations=0 self._behaviourIterations=0 self.initialiseCommunicationModel() self.auxiliaryFunctions = AuxiliaryFunctions(self._subsystemFrequency) # initialize all input flags # initialize all output flags self._out_flag_cameraInfo=False self._out_flag_detectedBalls=False self._out_flag_rpiCamera=False pass ##### Start subsystem ##### def startSubsystem(self): self.log("startSubsystem") try: while self.auxiliaryFunctions.isSubsystemOK(): ''' Execute behaviour associated with _currentSubsystemBehaviour -- choose appropriate state based on _currentSubsystemBehaviour ''' if self._currentSubsystemBehaviour=="Behaviour_initBehaviour": self.log("_currentSubsystemBehaviour==Behaviour_initBehaviour") self.subsystemBehaviour_initBehaviour() continue if self._currentSubsystemBehaviour=="Behaviour_idleBehaviour": self.log("_currentSubsystemBehaviour==Behaviour_idleBehaviour") self.subsystemBehaviour_idleBehaviour() continue except Exception as e: print e self.error("Error found in function startSubsystem -- file subsystem_camera.py!") pass ##### Initialise communication model ##### def initialiseCommunicationModel(self): self.log("initialiseCommunicationModel") self.initialiseSendChannel() self.initialiseSendChannelForDiagnostics() self.initialiseReceiveChannel() pass ##### Initialise send channel ##### def initialiseSendChannel(self): self.log("initialiseSendChannel") # Buffer name=cameraInfo - Sender using NON-BLOCKING mode, receiver using NON-BLOCKING mode self._sender_cameraInfo=rospy.Publisher("cameraInfoChannel", CameraMessage, queue_size=CHANNEL_SIZE) # Buffer name=detectedBalls - Sender using NON-BLOCKING mode, receiver using NON-BLOCKING mode self._sender_detectedBalls=rospy.Publisher("detectedBallsChannel", Image, queue_size=CHANNEL_SIZE) # Buffer name=rpiCamera - Sender using NON-BLOCKING mode, receiver using NON-BLOCKING mode self._sender_rpiCamera=rospy.Publisher("rpiCameraChannel", Image, queue_size=CHANNEL_SIZE) pass ##### Initialise send channel for diagnostics ##### def initialiseSendChannelForDiagnostics(self): self.log("initialiseSendChannelForDiagnostics") self._vectorOfSenderDiagnostics=[] self._vectorOfSenderDiagnostics.append(rospy.Publisher('camera/_currentSubsystemBehaviour', String, queue_size=CHANNEL_SIZE)) self._vectorOfSenderDiagnostics.append(rospy.Publisher('camera/_subsystemFrequency', Float64, queue_size=CHANNEL_SIZE)) self._vectorOfSenderDiagnostics.append(rospy.Publisher('camera/_subsystemName', String, queue_size=CHANNEL_SIZE)) self._vectorOfSenderDiagnostics.append(rospy.Publisher('camera/_subsystemIterations', Int64, queue_size=CHANNEL_SIZE)) self._vectorOfSenderDiagnostics.append(rospy.Publisher('camera/_behaviourIterations', Int64, queue_size=CHANNEL_SIZE)) self._vectorOfSenderDiagnostics.append(rospy.Publisher('camera/_out_flag_cameraInfo', Bool, queue_size=CHANNEL_SIZE)) self._vectorOfSenderDiagnostics.append(rospy.Publisher('camera/_out_flag_detectedBalls', Bool, queue_size=CHANNEL_SIZE)) self._vectorOfSenderDiagnostics.append(rospy.Publisher('camera/_out_flag_rpiCamera', Bool, queue_size=CHANNEL_SIZE)) pass ##### Initialise receive channel based on input buffers ##### def initialiseReceiveChannel(self): self.log("initialiseReceiveChannel") pass ##### Wait for all messages ##### def waitForAllMessages(self): self.log("waitForAllMessages") pass ##### Publish on topics diagnostic data concerning the subsystem state ##### def sendDataForDiagnostics(self): self._vectorOfSenderDiagnostics[0].publish(self._currentSubsystemBehaviour) self._vectorOfSenderDiagnostics[1].publish(self._subsystemFrequency) self._vectorOfSenderDiagnostics[2].publish(self._subsystemName) self._vectorOfSenderDiagnostics[3].publish(self._subsystemIterations) self._vectorOfSenderDiagnostics[4].publish(self._behaviourIterations) ###### internal state ##### if(7 < len(self._vectorOfSenderDiagnostics) ): self._vectorOfSenderDiagnostics[5].publish(self._out_flag_cameraInfo) self._vectorOfSenderDiagnostics[6].publish(self._out_flag_detectedBalls) self._vectorOfSenderDiagnostics[7].publish(self._out_flag_rpiCamera) pass ##### Behaviour definitions ##### ##### Behaviour initBehaviour ##### ##### Terminal condition ##### def terminalCondition_initBehaviour(self): # std_msgs::Bool _out_flag_cameraInfo, std_msgs::Bool _out_flag_detectedBalls, std_msgs::Bool _out_flag_rpiCamera # self.log("[Behaviour initBehaviour] -- Checking Terminal Condition") return True pass ##### Error condition ##### def errorCondition_initBehaviour(self): # std_msgs::Bool _out_flag_cameraInfo, std_msgs::Bool _out_flag_detectedBalls, std_msgs::Bool _out_flag_rpiCamera # self.log("[Behaviour initBehaviour] -- Checking Error Condition") return False pass ##### Transition function ##### def transitionFunction_initBehaviour(self): self.log("[Behaviour initBehaviour] -- Calculating Transition Function") # Transition function # self.log("TRANSITION FUNCTION - initBehaviour consists of the following partial transition functions (decomposition based on output buffers)") # Partial transition function call: fun1 self.transitionFunction_initBehaviour_fun1() # Partial transition function call: set_buffer_flags_function self.transitionFunction_initBehaviour_set_buffer_flags_function() pass ##### Decomposition of partial transition function based on input buffers ##### def transitionFunction_initBehaviour_fun1(self): self.log("[Behaviour initBehaviour] -- Calculating Partial Transition Function fun1") # Partial Transition Function - the first layer # self.log("PARTIAL TRANSITION FUNCTION - FIRST LAYER - initBehaviour consists of the following partial transition functions (decomposition based on input buffers)") if True: self.transitionFunction_initBehaviour_fun1_0() pass ##### Partial transition function: fun1_0 based on input buffers True ##### def transitionFunction_initBehaviour_fun1_0(self): self.log("[Behaviour initBehaviour] -- Calculating Partial Transition Function fun1_0") # Partial Transition Function - the second layer # self.log("PARTIAL TRANSITION FUNCTION - SECOND LAYER - initBehaviour consists of the following partial transition functions (decomposition based on input buffers)") # Begin - Partial Transition Function Code print("[VR - camera] -- initBehaviour") # Change the current directory # get user path home = os.path.expanduser("~") # set path where the image will be saved: directory=home+"/git/robot_pi/ros/generated_python/data/img" print(directory) # set directory as a current path os.chdir(directory) self.detectedBalls=Image() self.rpiCamera=Image() self.camera=PiCamera() self.camera.resolution=(IMAGE_X_SIZE,IMAGE_Y_SIZE) self.camera.framerate=32 self.cameraInfo=CameraMessage() # End - Partial Transition Function Code pass ##### Decomposition of partial transition function based on input buffers ##### def transitionFunction_initBehaviour_set_buffer_flags_function(self): self.log("[Behaviour initBehaviour] -- Calculating Partial Transition Function set_buffer_flags_function") # Partial Transition Function - the first layer # self.log("PARTIAL TRANSITION FUNCTION - FIRST LAYER - initBehaviour consists of the following partial transition functions (decomposition based on input buffers)") if True: self.transitionFunction_initBehaviour_set_buffer_flags_function_0() pass ##### Partial transition function: set_buffer_flags_function_0 based on input buffers True ##### def transitionFunction_initBehaviour_set_buffer_flags_function_0(self): self.log("[Behaviour initBehaviour] -- Calculating Partial Transition Function set_buffer_flags_function_0") # Partial Transition Function - the second layer # self.log("PARTIAL TRANSITION FUNCTION - SECOND LAYER - initBehaviour consists of the following partial transition functions (decomposition based on input buffers)") # Begin - Partial Transition Function Code # End - Partial Transition Function Code pass ##### End of transition function ##### ##### Send data to other subsystems ##### def sendData_initBehaviour(self): self.log("[Behaviour initBehaviour] -- Sending Data") # DIAGNOSTICS SEND # self.sendDataForDiagnostics() # END OF DIAGNOSTICS SEND # # TYPICAL SEND CALL # # check if output buffer cameraInfo has new data - i.e. is ready to send new data if( self._out_flag_cameraInfo ): # send data from output buffer cameraInfo # Buffer cameraInfo - NON-BLOCKING Sender mode - NON-BLOCKING Receiver mode self._sender_cameraInfo.publish(self.cameraInfo) # sending data from output buffer cameraInfo # # indicate that data was sent and now the output buffer cameraInfo is empty self._out_flag_cameraInfo=False # check if output buffer detectedBalls has new data - i.e. is ready to send new data if( self._out_flag_detectedBalls ): # send data from output buffer detectedBalls # Buffer detectedBalls - NON-BLOCKING Sender mode - NON-BLOCKING Receiver mode self._sender_detectedBalls.publish(self.detectedBalls) # sending data from output buffer detectedBalls # # indicate that data was sent and now the output buffer detectedBalls is empty self._out_flag_detectedBalls=False # check if output buffer rpiCamera has new data - i.e. is ready to send new data if( self._out_flag_rpiCamera ): # send data from output buffer rpiCamera # Buffer rpiCamera - NON-BLOCKING Sender mode - NON-BLOCKING Receiver mode self._sender_rpiCamera.publish(self.rpiCamera) # sending data from output buffer rpiCamera # # indicate that data was sent and now the output buffer rpiCamera is empty self._out_flag_rpiCamera=False # END OF TYPICAL SEND CALL # # BEGIN OF BODY SEND CALL # # END OF BODY SEND CALL # pass ##### Receive data from other subsystems ##### def receiveData_initBehaviour(self): self.log("[Behaviour initBehaviour] -- Receiving Data") # TYPICAL RECEIVE CALL # self.waitForAllMessages() # # END OF TYPICAL RECEIVE CALL # # BEGIN OF RECEIVE BODY CALL # # END OF RECEIVE BODY CALL # pass ##### Execute behaviour initBehaviour ##### def executeBehaviour_initBehaviour(self): self.log("[Behaviour initBehaviour] -- Executing initBehaviour Behaviour") stopBehaviourIteration=False # Execution of a single iteration of a behaviour initBehaviour # _behaviourIterations=0 # Starts execution! # while True: # Sleep is a method from class AuxiliaryFunctions which executes sleep from ROS # self.auxiliaryFunctions.sleep() # Calculates transition function -- output and internal buffers can only be modified by this function! # self.transitionFunction_initBehaviour() # Sends data! # self.sendData_initBehaviour() # Updates index! -- i.e. i:i+1 -- increment number of behaviour iterations and number of subsystem iterations # self._behaviourIterations=self._behaviourIterations+1 # Receives data! # self.receiveData_initBehaviour() # Check both conditions, i.e. terminal condition and error condition # stopBehaviourIteration = self.terminalCondition_initBehaviour() or self.errorCondition_initBehaviour() if stopBehaviourIteration or not self.auxiliaryFunctions.isSubsystemOK(): ''' Iterate within the while loop until stopBehaviourIteration is set true, i.e. one of error and terminal condition is fulfilled and isSubsystemOK is true. Otherwise subsystem must have been switched to another state or SIGINT was sent ''' break # Stops execution! # pass ##### Behaviour idleBehaviour ##### ##### Terminal condition ##### def terminalCondition_idleBehaviour(self): # std_msgs::Bool _out_flag_cameraInfo, std_msgs::Bool _out_flag_detectedBalls, std_msgs::Bool _out_flag_rpiCamera # self.log("[Behaviour idleBehaviour] -- Checking Terminal Condition") return False pass ##### Error condition ##### def errorCondition_idleBehaviour(self): # std_msgs::Bool _out_flag_cameraInfo, std_msgs::Bool _out_flag_detectedBalls, std_msgs::Bool _out_flag_rpiCamera # self.log("[Behaviour idleBehaviour] -- Checking Error Condition") return False pass ##### Transition function ##### def transitionFunction_idleBehaviour(self): self.log("[Behaviour idleBehaviour] -- Calculating Transition Function") # Transition function # self.log("TRANSITION FUNCTION - idleBehaviour consists of the following partial transition functions (decomposition based on output buffers)") # Partial transition function call: fun1 self.transitionFunction_idleBehaviour_fun1() # Partial transition function call: set_buffer_flags_function self.transitionFunction_idleBehaviour_set_buffer_flags_function() pass ##### Decomposition of partial transition function based on input buffers ##### def transitionFunction_idleBehaviour_fun1(self): self.log("[Behaviour idleBehaviour] -- Calculating Partial Transition Function fun1") # Partial Transition Function - the first layer # self.log("PARTIAL TRANSITION FUNCTION - FIRST LAYER - idleBehaviour consists of the following partial transition functions (decomposition based on input buffers)") if True: self.transitionFunction_idleBehaviour_fun1_0() pass ##### Partial transition function: fun1_0 based on input buffers True ##### def transitionFunction_idleBehaviour_fun1_0(self): self.log("[Behaviour idleBehaviour] -- Calculating Partial Transition Function fun1_0") # Partial Transition Function - the second layer # self.log("PARTIAL TRANSITION FUNCTION - SECOND LAYER - idleBehaviour consists of the following partial transition functions (decomposition based on input buffers)") # Begin - Partial Transition Function Code self._out_flag_cameraInfo=True self._out_flag_detectedBalls=True self._out_flag_rpiCamera=True print("[VR - camera] -- idleBehaviour") print("A 1") rawCapture = PiRGBArray(self.camera,size=(IMAGE_X_SIZE,IMAGE_Y_SIZE)) print("A 2") time.sleep(0.1) self.camera.capture(rawCapture, format="bgr") print("A 3") image=rawCapture.array print("A 4") # resize image dim = (IMAGE_X_SIZE, IMAGE_Y_SIZE) # img=cv2.resize(image, dim, interpolation = cv2.INTER_AREA) img=cv2.resize(image, dim) self.rpiCamera=bridge.cv2_to_imgmsg(img,"bgr8") return ############################# OLD VERSION try: print("B") print("C") hsvLow = tuple(rospy.get_param("/hsvLowPi")) hsvHigh = tuple(rospy.get_param("/hsvHighPi")) minCirclePi =rospy.get_param("/minCirclePi") param1Pi = rospy.get_param("/param1Pi") param2Pi =rospy.get_param("/param2Pi") minRadiusPi =rospy.get_param("/minRadiusPi") maxRadiusPi =rospy.get_param("/maxRadiusPi") print("D") print("E") except rospy.ROSException: print("F") print("Could not get param name") self._out_flag_detectedBalls=False self._out_flag_rpiCamera=False self._out_flag_cameraInfo=False return except Exception as e: print("F") print("Could not get param name") self._out_flag_detectedBalls=False self._out_flag_rpiCamera=False self._out_flag_cameraInfo=False hsvLow = (0, 39, 167) hsvHigh = (179, 130,255) minCirclePi =32 param1Pi = 35 param2Pi = 15 minRadiusPi =14 maxRadiusPi =36 return print("H") print("J") # blur image img2 = cv2.medianBlur(img,5) print("K") # change image to hsv space hsv = cv2.cvtColor(img2,cv2.COLOR_BGR2HSV) # set HSV mask mask = cv2.inRange(hsv,hsvLow, hsvHigh) # erode image mask = cv2.erode(mask, None, iterations=3) # dilate image mask = cv2.dilate(mask, None, iterations=3) # bitwise and img2=cv2.bitwise_and(img2,img2,mask=mask) # change to gray scale: cimg = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY) # find cirles: circles = cv2.HoughCircles(cimg,cv2.HOUGH_GRADIENT,1,minCirclePi, param1=param1Pi,param2=param2Pi ,minRadius=minRadiusPi,maxRadius=maxRadiusPi) flag=False # check if balls were found: if circles is not None: circles = np.uint16(np.around(circles)) self.cameraInfo.ballVisible.data=True ( self.cameraInfo.ballPosition.x, self.cameraInfo.ballPosition.y , self.cameraInfo.ballPosition.z) = getBestBall(circles) img2=drawCircle(img2,circles) img2=drawSelectedCircle(img2, self.cameraInfo.ballPosition.x, self.cameraInfo.ballPosition.y , self.cameraInfo.ballPosition.z) else: self.cameraInfo.ballVisible.data=False # set new value within detectedBalls self.detectedBalls=bridge.cv2_to_imgmsg(img2,"bgr8") self.rpiCamera=bridge.cv2_to_imgmsg(img,"bgr8") # save image to file cv2.imwrite('ballDetected_new.jpg', img) rawCapture.truncate() # End - Partial Transition Function Code pass ##### Decomposition of partial transition function based on input buffers ##### def transitionFunction_idleBehaviour_set_buffer_flags_function(self): self.log("[Behaviour idleBehaviour] -- Calculating Partial Transition Function set_buffer_flags_function") # Partial Transition Function - the first layer # self.log("PARTIAL TRANSITION FUNCTION - FIRST LAYER - idleBehaviour consists of the following partial transition functions (decomposition based on input buffers)") if True: self.transitionFunction_idleBehaviour_set_buffer_flags_function_0() pass ##### Partial transition function: set_buffer_flags_function_0 based on input buffers True ##### def transitionFunction_idleBehaviour_set_buffer_flags_function_0(self): self.log("[Behaviour idleBehaviour] -- Calculating Partial Transition Function set_buffer_flags_function_0") # Partial Transition Function - the second layer # self.log("PARTIAL TRANSITION FUNCTION - SECOND LAYER - idleBehaviour consists of the following partial transition functions (decomposition based on input buffers)") # Begin - Partial Transition Function Code # End - Partial Transition Function Code pass ##### End of transition function ##### ##### Send data to other subsystems ##### def sendData_idleBehaviour(self): self.log("[Behaviour idleBehaviour] -- Sending Data") # DIAGNOSTICS SEND # self.sendDataForDiagnostics() # END OF DIAGNOSTICS SEND # # TYPICAL SEND CALL # # check if output buffer cameraInfo has new data - i.e. is ready to send new data if( self._out_flag_cameraInfo ): # send data from output buffer cameraInfo # Buffer cameraInfo - NON-BLOCKING Sender mode - NON-BLOCKING Receiver mode self._sender_cameraInfo.publish(self.cameraInfo) # sending data from output buffer cameraInfo # # indicate that data was sent and now the output buffer cameraInfo is empty self._out_flag_cameraInfo=False # check if output buffer detectedBalls has new data - i.e. is ready to send new data if( self._out_flag_detectedBalls ): # send data from output buffer detectedBalls # Buffer detectedBalls - NON-BLOCKING Sender mode - NON-BLOCKING Receiver mode self._sender_detectedBalls.publish(self.detectedBalls) # sending data from output buffer detectedBalls # # indicate that data was sent and now the output buffer detectedBalls is empty self._out_flag_detectedBalls=False # check if output buffer rpiCamera has new data - i.e. is ready to send new data if( self._out_flag_rpiCamera ): # send data from output buffer rpiCamera # Buffer rpiCamera - NON-BLOCKING Sender mode - NON-BLOCKING Receiver mode self._sender_rpiCamera.publish(self.rpiCamera) # sending data from output buffer rpiCamera # # indicate that data was sent and now the output buffer rpiCamera is empty self._out_flag_rpiCamera=False # END OF TYPICAL SEND CALL # # BEGIN OF BODY SEND CALL # # END OF BODY SEND CALL # pass ##### Receive data from other subsystems ##### def receiveData_idleBehaviour(self): self.log("[Behaviour idleBehaviour] -- Receiving Data") # TYPICAL RECEIVE CALL # self.waitForAllMessages() # # END OF TYPICAL RECEIVE CALL # # BEGIN OF RECEIVE BODY CALL # # END OF RECEIVE BODY CALL # pass ##### Execute behaviour idleBehaviour ##### def executeBehaviour_idleBehaviour(self): self.log("[Behaviour idleBehaviour] -- Executing idleBehaviour Behaviour") stopBehaviourIteration=False # Execution of a single iteration of a behaviour idleBehaviour # _behaviourIterations=0 # Starts execution! # while True: # Sleep is a method from class AuxiliaryFunctions which executes sleep from ROS # self.auxiliaryFunctions.sleep() # Calculates transition function -- output and internal buffers can only be modified by this function! # self.transitionFunction_idleBehaviour() # Sends data! # self.sendData_idleBehaviour() # Updates index! -- i.e. i:i+1 -- increment number of behaviour iterations and number of subsystem iterations # self._behaviourIterations=self._behaviourIterations+1 # Receives data! # self.receiveData_idleBehaviour() # Check both conditions, i.e. terminal condition and error condition # stopBehaviourIteration = self.terminalCondition_idleBehaviour() or self.errorCondition_idleBehaviour() if stopBehaviourIteration or not self.auxiliaryFunctions.isSubsystemOK(): ''' Iterate within the while loop until stopBehaviourIteration is set true, i.e. one of error and terminal condition is fulfilled and isSubsystemOK is true. Otherwise subsystem must have been switched to another state or SIGINT was sent ''' break # Stops execution! # pass ##### Definition of functions responsible for switching subsystem camera between states : Behaviour_initBehaviour Behaviour_idleBehaviour ##### # Behaviour initBehaviour: # def subsystemBehaviour_initBehaviour(self): self.log("subsystemBehaviour_initBehaviour") # Executing behaviour initBehaviour # self.executeBehaviour_initBehaviour() # Behaviour has been terminated # # Checking initial condition for behaviour initBehaviour: switching to behaviour idleBehaviour # if self.initialCondition_From_Behaviour_initBehaviour_To_Behaviour_idleBehaviour(): # incrementing the number determining how many times subsystem has switched between behaviours # self._subsystemIterations=self._subsystemIterations+1 self._currentSubsystemBehaviour="Behaviour_idleBehaviour" pass # Behaviour idleBehaviour: # def subsystemBehaviour_idleBehaviour(self): self.log("subsystemBehaviour_idleBehaviour") # Executing behaviour idleBehaviour # self.executeBehaviour_idleBehaviour() # Behaviour has been terminated # pass ##### Initial condition for behaviour initBehaviour: switching to behaviour idleBehaviour ##### def initialCondition_From_Behaviour_initBehaviour_To_Behaviour_idleBehaviour(self): # Initial condition specified by user # return True ##### Function indicating basic log/debug message ##### def log(self, str): if(IS_LOG): rospy.loginfo("[SUBSYSTEM camera] -- LOG -- "+str) if(IS_PRINT): print "[SUBSYSTEM camera] -- LOG -- " + str pass ##### Function indicating basic error message ##### def error(self, str): sys.stderr.write("[SUBSYSTEM camera] -- ERROR -- " + str) if(IS_LOG): rospy.loginfo("[SUBSYSTEM camera] -- ERROR -- "+str) sys.exit() pass ##### MAIN FUNCTION FOR SUBSYSTEM camera ##### if __name__ == '__main__': try: subsystem_camera = camera() subsystem_camera.startSubsystem() except rospy.ROSInterruptException: pass
ac56f7c3e781f8956edb58ef1d5a1467891a3fb5
dd47f3cbdc1ca987dd30275d6612f34f7cd69885
/lesson_4/lesson_4_5.py
b8f646bdcbb679847cf5b0c7b1319063ca071a1d
[]
no_license
ek01012020/python_base
3c7a6db6dc5039b07e504eae4b78e171989d3e61
67ba00581361322bae151e61cf9e41bcaa3aa456
refs/heads/master
2023-01-20T02:33:43.434356
2020-11-20T10:14:07
2020-11-20T10:14:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
576
py
'''Реализовать формирование списка, используя функцию range() и возможности генератора. В список должны войти четные числа от 100 до 1000 (включая границы). Необходимо получить результат вычисления произведения всех элементов списка.''' from functools import reduce def my_func(pre_el, el): return pre_el * el my_list = [el for el in range(100, 1001, 2)] print(reduce(my_func,my_list))
dd1abf4c54ae75cafa0a93d25b9b6d4ff5540e44
56e37f0a0dd73fd544853bbbeb41e4ec2906b157
/setup.py
b83d5a13b9f28ef178588c5e0caae4a7e720af29
[ "Apache-2.0" ]
permissive
gsjurseth/aws-api-gateway-developer-portal
575a7a4a83a073f48e2bc41691fd3bc00f0b1ade
69c5c13dc9d70b74ef1f8eaf77153b88348aad43
refs/heads/master
2021-01-19T05:50:02.994606
2017-10-30T09:59:49
2017-10-30T09:59:49
100,585,005
0
1
null
2017-08-17T09:14:27
2017-08-17T09:14:27
null
UTF-8
Python
false
false
1,460
py
#!/usr/bin/python import logging import os import sys from golem.build_utils import build_gradle, get_arguments args = get_arguments() logging.basicConfig(level='DEBUG'); logger = logging.getLogger('setup') env_vars = { "cco-dev" : { "eu-west-1": { "CUSTOM_DOMAIN_NAME": "apigw.ebuilder.io", "LOGLEVEL": "DEBUG", "ENVIRONMENT": "development" } }, "cco-dev-test" : { "ap-northeast-1": { "CUSTOM_DOMAIN_NAME": "api-test-ap-northeast-1.ebuilder.io", "LOGLEVEL": "DEBUG", "ENVIRONMENT": "test" }, "eu-west-1": { "CUSTOM_DOMAIN_NAME": "apigw-test.ebuilder.io", "LOGLEVEL": "DEBUG", "ENVIRONMENT": "test" } }, "cco-prod-eu-west" : { "eu-west-1": { "CUSTOM_DOMAIN_NAME": "apigw-skutt.ebuilder.io", "LOGLEVEL": "INFO", "ENVIRONMENT": "production" } } } if len(sys.argv) != 2: logger.error('Required: A single argument with a base64-encoded dictionary with system information.') sys.exit(1) if args['account'] not in env_vars: print 'No configuration data for the account "%s" is configured.'%args['account'] sys.exit(1) if args['region'] not in env_vars[args['account']]: print 'No configuration data for the region "%s" is configured for this account.'%args['region'] sys.exit(1) for key in env_vars[args['account']][args['region']]: print ':ENVIRONMENT:%s:%s:'%( key, env_vars[args['account']][args['region']][key])
84e38d5ffdb27a5283e46d446abbd1e8d4a947e3
655c6b2500bd72d8f84e9197b534afc9e336917e
/doubanCrawl/settings.py
1110333a19d991838a68affdef8f8637f832ac7b
[]
no_license
hackingwu/doubanCrawl
da66d3c51d5d77d79627a6c7e25fa4d255dfa22b
e8005409238a515eedc2630e6c01acd6f1eda846
refs/heads/master
2021-01-10T11:04:31.156443
2015-11-30T13:28:15
2015-11-30T13:28:15
47,086,483
0
0
null
null
null
null
UTF-8
Python
false
false
3,130
py
# -*- coding: utf-8 -*- # Scrapy settings for doubanCrawl project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # http://doc.scrapy.org/en/latest/topics/settings.html # http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html # http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html BOT_NAME = 'doubanCrawl' SPIDER_MODULES = ['doubanCrawl.spiders'] NEWSPIDER_MODULE = 'doubanCrawl.spiders' # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'doubanCrawl (+http://www.yourdomain.com)' # Configure maximum concurrent requests performed by Scrapy (default: 16) #CONCURRENT_REQUESTS=32 # Configure a delay for requests for the same website (default: 0) # See http://scrapy.readthedocs.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs DOWNLOAD_DELAY=1 # The download delay setting will honor only one of: #CONCURRENT_REQUESTS_PER_DOMAIN=16 CONCURRENT_REQUESTS_PER_IP=2 # Disable cookies (enabled by default) #COOKIES_ENABLED=False # Disable Telnet Console (enabled by default) #TELNETCONSOLE_ENABLED=False # Override the default request headers: #DEFAULT_REQUEST_HEADERS = { # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', # 'Accept-Language': 'en', #} # Enable or disable spider middlewares # See http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html #SPIDER_MIDDLEWARES = { # 'doubanCrawl.middlewares.MyCustomSpiderMiddleware': 543, #} # Enable or disable downloader middlewares # See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html #DOWNLOADER_MIDDLEWARES = { # 'doubanCrawl.middlewares.MyCustomDownloaderMiddleware': 543, #} # Enable or disable extensions # See http://scrapy.readthedocs.org/en/latest/topics/extensions.html #EXTENSIONS = { # 'scrapy.telnet.TelnetConsole': None, #} # Configure item pipelines # See http://scrapy.readthedocs.org/en/latest/topics/item-pipeline.html ITEM_PIPELINES = { 'doubanCrawl.pipelines.DoubancrawlPipeline': 300, } # Enable and configure the AutoThrottle extension (disabled by default) # See http://doc.scrapy.org/en/latest/topics/autothrottle.html # NOTE: AutoThrottle will honour the standard settings for concurrency and delay #AUTOTHROTTLE_ENABLED=True # The initial download delay #AUTOTHROTTLE_START_DELAY=5 # The maximum download delay to be set in case of high latencies #AUTOTHROTTLE_MAX_DELAY=60 # Enable showing throttling stats for every response received: #AUTOTHROTTLE_DEBUG=False # Enable and configure HTTP caching (disabled by default) # See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings #HTTPCACHE_ENABLED=True #HTTPCACHE_EXPIRATION_SECS=0 #HTTPCACHE_DIR='httpcache' #HTTPCACHE_IGNORE_HTTP_CODES=[] #HTTPCACHE_STORAGE='scrapy.extensions.httpcache.FilesystemCacheStorage' MONGODB_URI='mongodb://hackingwu:[email protected]:27017/douban?authMechanism=SCRAM_SHA-1' DEPTH_LIMIT=10
9944cc9c11328eb7a6c0cf0d9b7bbb05684f89f3
0c84329f5d1e4e9070cece982ac827644d8a1893
/venv/bin/python-config
66e81ac48125aa0cbe7cfce2392c3aba8a368cf7
[]
no_license
Tiyas-13/LC
955deece0ecf1fc42e6a5d5fcc287ff0fca63679
ef45b44198532173c37793b9b0e8905ad7739f57
refs/heads/master
2020-06-09T16:30:02.176987
2019-07-02T22:10:50
2019-07-02T22:10:50
193,467,920
0
0
null
2019-07-02T22:10:51
2019-06-24T08:44:05
Python
UTF-8
Python
false
false
2,334
#!/home/hp/LC/venv/bin/python import sys import getopt import sysconfig valid_opts = ['prefix', 'exec-prefix', 'includes', 'libs', 'cflags', 'ldflags', 'help'] if sys.version_info >= (3, 2): valid_opts.insert(-1, 'extension-suffix') valid_opts.append('abiflags') if sys.version_info >= (3, 3): valid_opts.append('configdir') def exit_with_usage(code=1): sys.stderr.write("Usage: {0} [{1}]\n".format( sys.argv[0], '|'.join('--'+opt for opt in valid_opts))) sys.exit(code) try: opts, args = getopt.getopt(sys.argv[1:], '', valid_opts) except getopt.error: exit_with_usage() if not opts: exit_with_usage() pyver = sysconfig.get_config_var('VERSION') getvar = sysconfig.get_config_var opt_flags = [flag for (flag, val) in opts] if '--help' in opt_flags: exit_with_usage(code=0) for opt in opt_flags: if opt == '--prefix': print(sysconfig.get_config_var('prefix')) elif opt == '--exec-prefix': print(sysconfig.get_config_var('exec_prefix')) elif opt in ('--includes', '--cflags'): flags = ['-I' + sysconfig.get_path('include'), '-I' + sysconfig.get_path('platinclude')] if opt == '--cflags': flags.extend(getvar('CFLAGS').split()) print(' '.join(flags)) elif opt in ('--libs', '--ldflags'): abiflags = getattr(sys, 'abiflags', '') libs = ['-lpython' + pyver + abiflags] libs += getvar('LIBS').split() libs += getvar('SYSLIBS').split() # add the prefix/lib/pythonX.Y/config dir, but only if there is no # shared library in prefix/lib/. if opt == '--ldflags': if not getvar('Py_ENABLE_SHARED'): libs.insert(0, '-L' + getvar('LIBPL')) if not getvar('PYTHONFRAMEWORK'): libs.extend(getvar('LINKFORSHARED').split()) print(' '.join(libs)) elif opt == '--extension-suffix': ext_suffix = sysconfig.get_config_var('EXT_SUFFIX') if ext_suffix is None: ext_suffix = sysconfig.get_config_var('SO') print(ext_suffix) elif opt == '--abiflags': if not getattr(sys, 'abiflags', None): exit_with_usage() print(sys.abiflags) elif opt == '--configdir': print(sysconfig.get_config_var('LIBPL'))
36e17c4801a1e696dbc5f9a0ef3cebb947a956f4
667a8604914d8137d0e667924a54ebc708090646
/buildpack/databroker/config_generator/scripts/config_env_whitelist.py
b1f89b3ed4b734986709a5fadcc04059b0c0c685
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
mendix/cf-mendix-buildpack
ec3df05165760d716263c50923fca69bc699aee7
bd5df58da5bc106f6d864304bb8d55371d40cbc5
refs/heads/master
2023-07-26T18:37:41.970004
2023-07-13T12:42:03
2023-07-13T12:42:03
19,174,281
41
155
Apache-2.0
2023-09-14T11:52:35
2014-04-26T09:53:49
Python
UTF-8
Python
false
false
415
py
# This is list of allowed ENV VARS that will be converted into configuration from buildpack.databroker.config_generator.scripts.constants import ( ENV_VAR_BROKER_PREFIX, NODE_COUNT_KEY, ) whitelist = [ "MXRUNTIME_DatabaseType", "MXRUNTIME_DatabaseHost", "MXRUNTIME_DatabaseName", "MXRUNTIME_DatabaseUserName", "MXRUNTIME_DatabasePassword", ENV_VAR_BROKER_PREFIX + NODE_COUNT_KEY, ]
7414ad7eafe29973d4611d6f86ba80c8f4db9c97
6944f0aa994045e04d01445c70667f25184736de
/softmax.py
3e3448b10d5387abd321f6d71d0bf74275f9fc2e
[]
no_license
sumantsaxena/ML_Projects
af5918b01238977433cbe0d13587ec5b196924f6
37847f4c828be65392423f43196543f2f1769252
refs/heads/main
2023-07-17T23:58:50.442728
2021-09-05T18:26:29
2021-09-05T18:26:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,539
py
import numpy as np from scipy.special import softmax from scipy.special import log_softmax data = np.genfromtxt("HamiltonCases.csv", delimiter=',') X = data[:, 0:4] y = data[:, 4] z0 = (y < X.min(axis=1)).astype(int) z2 = (y > X.max(axis=1)).astype(int) z1 = ((z0 == 0) & (z2 == 0)).astype(int) y = np.concatenate([z0[:, np.newaxis], z1[:, np.newaxis], z2[:, np.newaxis]], axis=1) X = np.concatenate([X, np.ones(len(X))[:, np.newaxis]], axis=1) m = 200 Xtrain = X[0:m, :] ytrain = y[0:m, :] target = np.argmax(ytrain, axis=1) theta = np.random.randn(5, 3) o = np.matmul(Xtrain, theta) predict = np.argmax(o, axis=1) before = np.sum(predict == target) eta = 0.001 n_iterations = 1000 for i in range(n_iterations): # o= x.Θ o = np.matmul(Xtrain, theta) # y~ =softmax(o) p = softmax(o, axis=1) # NLL =-log(y~) -> -log(softmax(o,axis=1)) -> log_softmax(o) NLL = -log_softmax(o, axis=1) # L= y*(-log(y^)) # =- y*(NLL) L = np.tensordot(NLL, ytrain, axes=[[0, 1], [0, 1]]) / m print(L) # # (y^ - y).x = Xtrain.(p-ytrain) gradient = np.matmul(Xtrain.T, (p - ytrain)) / m """ theta = theta -eta * gradient """ theta = theta - eta * gradient print(theta) o = np.matmul(Xtrain, theta) predict = np.argmax(o, axis=1) print(before, np.sum(predict == target)) Xtest = X[m:, :] ytest = y[m:, :] o = np.matmul(Xtest, theta) predict = np.argmax(o, axis=1) act = np.argmax(ytest, axis=1) print(np.sum(predict == act), np.sum(predict != act))
164503ed62c9543f52af60bfa4c3b9c71832e65c
e5fe7c3b4f2ede48cf32353e70c74961c726a026
/server/rest/main/rest_controller.py
1cae2712a858e226bae38f189916503c2f67273d
[ "MIT" ]
permissive
lazykyama/ClusteringVisualize
871e971a6839f2d34d5ba023ff40981d3b8c5983
5ce366bf05474ab91ef8eec78bc217168f893dc2
refs/heads/master
2021-01-23T08:43:34.323670
2013-05-03T11:59:11
2013-05-03T11:59:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,797
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys, traceback from kmeans_rest_controller import * from http_response_wrapper import * class RestController: # コマンドとクエリをサブコントローラに渡して実行させる def execute_with_subcontroller(self, command, query): # 本当はこのへんでメッセージキューを利用したほうがいいと思いますが、 # 簡易実装ということでひとつ。。。 response = '' try: subcontroller = RestSubControllerFactory.create_subcontroller(command) response = subcontroller.execute(query) except Exception, detail: # http://melpystudio.blog82.fc2.com/blog-entry-87.htmlから # エラーの情報をsysモジュールから取得 info = sys.exc_info() # tracebackモジュールのformat_tbメソッドで特定の書式に変換 tbinfo = traceback.format_tb(info[2]) # 収集した情報を読みやすいように整形して出力する error_msg_header = 'internal server error:' DELIMITER_LENGTH = 40 print error_msg_header.ljust(DELIMITER_LENGTH, '=') for tbi in tbinfo: print tbi print ' %s' % str(info[1]) print '\n'.rjust(DELIMITER_LENGTH, '=') # 例外発生時は500エラー response = HttpResponseWrapper.create_internal_server_error() finally: return response class RestSubControllerFactory: @staticmethod def create_subcontroller(command): if command == 'kmeans_result': return KMeansRestController() else: raise TypeError('Unknown command: ' + command)
2a976cf99191a3f8e6e31bfa00a10abbbf4117fb
3099c7efd083e4bab488912134a2694e0492bc34
/ch09/regularization.py
15b840b14b4954f602185896c7971a36d418984d
[]
no_license
lkhoho/DL4CV_Starter
54d948b4771fef38c2ad8302b0a6396f46eca917
fdc296bce4146f18d140e03fdc4da3170287eddc
refs/heads/master
2022-02-03T22:06:47.679246
2022-01-25T09:46:28
2022-01-25T09:46:28
131,102,142
1
1
null
null
null
null
UTF-8
Python
false
false
1,578
py
import argparse from imutils import paths from sklearn.linear_model import SGDClassifier from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from pyimagesearch.datasets.simple_dataset_loader import SimpleDatasetLoader from pyimagesearch.preprocessing.simple_preprocessor import SimplePreprocessor ap = argparse.ArgumentParser() ap.add_argument('-d', '--dataset', required=True, help='Path to input dataset') ap.add_argument('-j', '--jobs', type=int, default=-1, help='# of jobs for k-NN distance (-1 uses all available cores)') args = vars(ap.parse_args()) print('[INFO] loading images...') imagePaths = list(paths.list_images(args['dataset'])) sp = SimplePreprocessor(32, 32) sdl = SimpleDatasetLoader(preprocessors=[sp]) (data, labels) = sdl.load(imagePaths, verbose=500) data = data.reshape((data.shape[0], 32 * 32 * 3)) le = LabelEncoder() labels = le.fit_transform(labels) (trainX, testX, trainY, testY) = train_test_split(data, labels, test_size=0.25, random_state=5) # apply different types of regularization terms for r in (None, 'l1', 'l2'): # train the SGD classifier using a softmax loss function and the specified regularization function for 10 epochs print('[INFO] training model with \'{}\' penalty'.format(r)) model = SGDClassifier(loss='log', penalty=r, max_iter=10, learning_rate='constant', eta0=0.01, random_state=42) model.fit(trainX, trainY) # evaluate the classifier acc = model.score(testX, testY) print('[INFO] \'{}\' penalty accuracy: {:.2f}%'.format(r, acc * 100))
d06ae631edf4627719568c2fa0175e50fd4988cf
05172b2f9ac3cc2dc925631fcb49513b3e02ea2c
/_PythonDataStrutures/DynamicArray.py
89bad60ce24f861f5bcb6e1d810f71816fdb0a35
[]
no_license
KickItAndCode/Algorithms
cbe1ea95c1e655cbfa0b829d3bd2a2a78d7d862f
d41e8a2262cede3154bc5b48c43fb60ac098e385
refs/heads/master
2020-04-26T07:08:37.127285
2019-12-17T03:46:10
2019-12-17T03:46:10
173,385,735
2
0
null
null
null
null
UTF-8
Python
false
false
908
py
import ctypes class DynamicArray(object): def __init__(self): self.n = 0 self.capacity = 1 self.A = self.make_array(self.capacity) def __len__(self): return self.n def __getitem__(self, k): if not 0 <= k < self.n: return IndexError('K is out of bounds!') return self.A[k] def append(self, ele): if self.n == self.capacity: self._resize(2 * self.capacity) # 2x if capacity isn't enough self.A[self.n] = ele self.n += 1 def _resize(self, new_cap): B = self.make_array(new_cap) for k in range(self.n): B[k] = self.A[k] self.A = B self.capacity = new_cap def make_array(self, new_cap): return (new_cap * ctypes.py_object)() arr = DynamicArray() arr.append(1) print(arr.capacity) print(len(arr)) arr.append(22) print(arr[1])
c8df08cd076940f234c738d05d98284b04845a7d
0921aa5e3e6084ea391bcfd690ecb03025cbdacc
/job_import.py
3f226e8d5369b36505488bdeb3c1ce9883d94798
[]
no_license
h-parekh/jenkins_utils
aebc5b6cabcacde475e8e3442de6862fe2fe639c
9f7f037f84dfd74b5d551662389ce903aa3e1c2c
refs/heads/master
2020-03-21T01:13:31.930866
2018-06-19T18:37:23
2018-06-19T18:37:23
137,930,604
0
0
null
null
null
null
UTF-8
Python
false
false
732
py
import jenkins import xml.etree.ElementTree as ET import os url = os.environ['JENKINS_URL'] username = os.environ['JENKINS_USERNAME'] password = os.environ['JENKINS_PASSWORD'] path_to_config_file = os.environ['JENKINS_JOB_CONFIG_FILE_PATH'] job_name = os.environ['JENKINS_JOB_NAME'] def convert_xml_file_to_str(): tree = ET.parse(path_to_config_file) root = tree.getroot() return ET.tostring(root, encoding='utf8', method='xml').decode() def main(): target_server = jenkins.Jenkins(url, username=username, password=password) config = convert_xml_file_to_str() # @see http://python-jenkins.readthedocs.io/en/latest/api.html#jenkins.Jenkins.create_job target_server.create_job(job_name, config) main()
f717b3d1730d62889162b5e26f197a781a601552
2a04091dcb63cc2b8bc803d3ec497e6e775a0e61
/tests/providers/audio/test_youtube.py
4efc445139c8a2cd7f488ae7fa61ca819039bece
[ "MIT" ]
permissive
vaginessa/Spotify-Downloader
3f4655e5004b7c9e50f89d657597bcffc94f7d91
d1d1223e196891d26825cbfe38e44eef8057c908
refs/heads/master
2023-08-05T09:32:12.341299
2023-01-24T07:12:35
2023-01-24T07:12:35
78,599,970
0
0
MIT
2023-07-25T22:24:21
2017-01-11T03:41:44
Python
UTF-8
Python
false
false
1,559
py
import pytest from spotdl.providers.audio.youtube import YouTube from spotdl.types.song import Song @pytest.mark.vcr() def test_yt_search(): provider = YouTube() assert ( provider.search( Song.from_dict( { "name": "Nobody Else", "artists": ["Abstrakt"], "artist": "Abstrakt", "album_name": "Nobody Else", "album_artist": "Abstrakt", "genres": [], "disc_number": 1, "disc_count": 1, "duration": 162.406, "year": 2022, "date": "2022-03-17", "track_number": 1, "tracks_count": 1, "isrc": "GB2LD2210007", "song_id": "0kx3ml8bdAYrQtcIwvkhp8", "cover_url": "https://i.scdn.co/image/ab67616d0000b27345f5ba253b9825efc88bc236", "explicit": False, "publisher": "NCS", "url": "https://open.spotify.com/track/0kx3ml8bdAYrQtcIwvkhp8", "copyright_text": "2022 NCS", "download_url": None, "song_list": None, } ) ) == "https://youtube.com/watch?v=bNXMlIogpXc" ) @pytest.mark.vcr() def test_yt_get_results(): provider = YouTube() results = provider.get_results("Lost Identities Moments") assert results and len(results) > 5
433413195ed7c45b3676f07608e167a1fde9eec0
3be14950c61913576e1ee695ec05fc7ceed3b78e
/pecs/migrations/0004_auto_20210214_2048.py
02ff45b8e9bba5318a83bf2f80e75be795c0ea7c
[]
no_license
roquemike/binder2
8c991262553ede3e929c378dadbb9786fac6e97f
7917f863c34ade5646a9d334255a82cd710e919e
refs/heads/main
2023-03-11T15:50:46.317606
2021-02-26T07:06:54
2021-02-26T07:06:54
342,656,659
0
0
null
null
null
null
UTF-8
Python
false
false
915
py
# Generated by Django 3.1.5 on 2021-02-15 01:48 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('pecs', '0003_auto_20210123_0057'), ] operations = [ migrations.AlterField( model_name='image', name='description', field=models.CharField(max_length=10), ), migrations.CreateModel( name='Favorite', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('pecs', models.ManyToManyField(related_name='favorite', to='pecs.Image')), ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, related_name='favorite', to=settings.AUTH_USER_MODEL)), ], ), ]
ae5b5e91cf43266b95ffaeb5f1795e03a00655ff
f445450ac693b466ca20b42f1ac82071d32dd991
/generated_tempdir_2019_09_15_163300/generated_part003803.py
26d534cc630c79581554130b81c7f37de6f38777
[]
no_license
Upabjojr/rubi_generated
76e43cbafe70b4e1516fb761cabd9e5257691374
cd35e9e51722b04fb159ada3d5811d62a423e429
refs/heads/master
2020-07-25T17:26:19.227918
2019-09-15T15:41:48
2019-09-15T15:41:48
208,357,412
4
1
null
null
null
null
UTF-8
Python
false
false
5,094
py
from sympy.abc import * from matchpy.matching.many_to_one import CommutativeMatcher from matchpy import * from matchpy.utils import VariableWithCount from collections import deque from multiset import Multiset from sympy.integrals.rubi.constraints import * from sympy.integrals.rubi.utility_function import * from sympy.integrals.rubi.rules.miscellaneous_integration import * from sympy import * class CommutativeMatcher62345(CommutativeMatcher): _instance = None patterns = { 0: (0, Multiset({0: 1}), [ (VariableWithCount('i2.2.2.0', 1, 1, S(0)), Add) ]), 1: (1, Multiset({1: 1}), [ (VariableWithCount('i2.2.3.0', 1, 1, S(0)), Add) ]), 2: (2, Multiset({2: 1}), [ (VariableWithCount('i2.2.1.2.0', 1, 1, S(0)), Add) ]) } subjects = {} subjects_by_id = {} bipartite = BipartiteGraph() associative = Add max_optional_count = 1 anonymous_patterns = set() def __init__(self): self.add_subject(None) @staticmethod def get(): if CommutativeMatcher62345._instance is None: CommutativeMatcher62345._instance = CommutativeMatcher62345() return CommutativeMatcher62345._instance @staticmethod def get_match_iter(subject): subjects = deque([subject]) if subject is not None else deque() subst0 = Substitution() # State 62344 subst1 = Substitution(subst0) try: subst1.try_add_variable('i2.2.2.1.0_1', S(1)) except ValueError: pass else: pass # State 62346 if len(subjects) >= 1: tmp2 = subjects.popleft() subst2 = Substitution(subst1) try: subst2.try_add_variable('i2.2.2.1.0', tmp2) except ValueError: pass else: pass # State 62347 if len(subjects) == 0: pass # 0: x*f yield 0, subst2 subjects.appendleft(tmp2) subst1 = Substitution(subst0) try: subst1.try_add_variable('i2.2.3.1.0_1', S(1)) except ValueError: pass else: pass # State 63479 if len(subjects) >= 1: tmp5 = subjects.popleft() subst2 = Substitution(subst1) try: subst2.try_add_variable('i2.2.3.1.0', tmp5) except ValueError: pass else: pass # State 63480 if len(subjects) == 0: pass # 1: x*f yield 1, subst2 subjects.appendleft(tmp5) subst1 = Substitution(subst0) try: subst1.try_add_variable('i2.2.1.2.1.0_1', S(1)) except ValueError: pass else: pass # State 65481 if len(subjects) >= 1: tmp8 = subjects.popleft() subst2 = Substitution(subst1) try: subst2.try_add_variable('i2.2.1.2.1.0', tmp8) except ValueError: pass else: pass # State 65482 if len(subjects) == 0: pass # 2: x*d yield 2, subst2 subjects.appendleft(tmp8) if len(subjects) >= 1 and isinstance(subjects[0], Mul): tmp10 = subjects.popleft() associative1 = tmp10 associative_type1 = type(tmp10) subjects11 = deque(tmp10._args) matcher = CommutativeMatcher62349.get() tmp12 = subjects11 subjects11 = [] for s in tmp12: matcher.add_subject(s) for pattern_index, subst1 in matcher.match(tmp12, subst0): pass if pattern_index == 0: pass # State 62350 if len(subjects) == 0: pass # 0: x*f yield 0, subst1 if pattern_index == 1: pass # State 63481 if len(subjects) == 0: pass # 1: x*f yield 1, subst1 if pattern_index == 2: pass # State 65483 if len(subjects) == 0: pass # 2: x*d yield 2, subst1 subjects.appendleft(tmp10) return yield from matchpy.matching.many_to_one import CommutativeMatcher from .generated_part003804 import * from collections import deque from matchpy.utils import VariableWithCount from multiset import Multiset
46b9a9f729ed98e272f6501feadb2762b71b8590
7bafe264cb4ac6eff7b7e1edb6ddca267cc7e0ae
/sell_your_phone/accounts/signals.py
32f55b33a83385f254215d41afe9894ed45d9888
[]
no_license
Valentin2333/Sell-Your-Phone
6bd55acb3121ce79345b26b016db75b192d34650
e8e64e6a41826e48f8fa28af345938202d785ce4
refs/heads/master
2023-07-01T19:46:48.767568
2021-08-13T19:41:59
2021-08-13T19:41:59
394,266,053
0
0
null
null
null
null
UTF-8
Python
false
false
416
py
from django.contrib.auth import get_user_model from django.db.models.signals import post_save from django.dispatch import receiver from sell_your_phone.accounts.models import Profile UserModel = get_user_model() @receiver(post_save, sender=UserModel) def user_created(sender, instance, created, **kwargs): if created: profile = Profile( user = instance, ) profile.save()
b9a35d9b23d72056681ea97f3befda8018e6c7fd
6611fc8f80e9d2ba6879ce6fae3069a66d34cc82
/python-39 objectoriented.py
83c9d8af9aa6bb896ec4c3fe127660d05ea1ac38
[]
no_license
mass234/broPython12hoursTutorials
6feae46e7f6a934b264e15e15dca1f6616958136
7d908752f4709519a9fc6885f25e8433434710ce
refs/heads/main
2023-07-09T04:16:43.939355
2021-08-16T08:04:03
2021-08-16T08:04:03
396,685,248
0
0
null
null
null
null
UTF-8
Python
false
false
383
py
from car import Car car_1 = Car("Chevy","Corvette",2021,"blue") car_2 = Car("Ford","Mustang",2022,"red") # print(car_1.make) # print(car_1.model) # print(car_1.year) # print(car_1.color) car_1.drive() car_1.stop() # print(car_2.make) # print(car_2.model) # print(car_2.year) # print(car_2.color) car_2.drive() car_2.stop() Car.wheels = 2 print(Car.wheels)
ca948906b190235d198874d255c25307202a2b12
bee57d5be5e4d249275b6709b6f2582591b72036
/Dummy K_means.py
45f26929301c1d897515fe61aa784e2a3a9caa65
[]
no_license
0zymandias11/ML
a6b3d30cd5f469b817b51b0f1bf13657cde1b423
76f6d99549becc15f914595aaec210105fea7495
refs/heads/master
2023-03-19T15:26:22.291801
2019-02-10T21:41:03
2019-02-10T21:41:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,673
py
# -*- coding: utf-8 -*- """ Created on Sun Jan 6 00:59:29 2019 @author: priya """ import numpy as np import random import matplotlib.pyplot as plt l=[] for i in range(50): l.append([]) for j in range(2): l[i].append(random.randint(1,100)) X=np.array(l) plt.scatter(X[:,0], X[:,1], s=150) print("initial plot") plt.show() colors = 50*["g","r","c","b","k"] class K_means: def __init__(self, k=3, tol=0.0001, max_iter=300): self.k = k self.tol = tol self.max_iter = max_iter def fit(self,data): self.centroids ={} for i in range(self.k): self.centroids[i]=data[i] for i in range(self.max_iter): self.classifications={} for i in range(self.k): self.classifications[i]=[] for features in X: distances =[np.linalg.norm(features -self.centroids[i]) for i in self.centroids] i=distances.index(min(distances)) self.classifications[i].append(features) prev_centroids =dict(self.centroids) for i in self.classifications: self.centroids[i]=np.average(self.classifications[i],axis=0) optimized=True for i in self.centroids: original_centroid=prev_centroids[i] current_centroid=self.centroids[i] if np.sum((current_centroid-original_centroid)/original_centroid*100.0) > self.tol: optimized = False if optimized: break def predict(self,data): classifications=[] for features in data: distances =[np.linalg.norm(features -self.centroids[i]) for i in self.centroids] i=distances.index(min(distances)) classifications.append(i) return np.array(classifications) clf = K_means() clf.fit(X) y_pred=clf.predict(X) for centroid in clf.centroids: plt.scatter(clf.centroids[centroid][0], clf.centroids[centroid][1], marker="o", color="y", s=150, linewidths=5) for classification in clf.classifications: color = colors[classification] for featureset in clf.classifications[classification]: plt.scatter(featureset[0], featureset[1], marker="+", color=color, s=150, linewidths=5) plt.show()
e66c08b871e76eeaf4e11f234bb1968803b42de1
3b6074316cbce6eebb13407f221759b2a47b5548
/othellologic.py
e3789b9576c01f332829ee97f13a364a700fcd97
[]
no_license
asiddiq1/Othello
a240b0eebbc883778e8537a584268da50f77f4b1
e9638149f3d95e8db130367a3461b83b37e31315
refs/heads/master
2021-09-11T16:51:08.945852
2018-04-10T00:45:48
2018-04-10T00:45:48
107,196,174
0
0
null
null
null
null
UTF-8
Python
false
false
6,408
py
#Aisha Siddiq 81047072 Project 4 class InvalidMoveError(Exception): '''Raises an error whenever an invalid move is made ''' pass class OthelloGame: #Public Functions def __init__(self, row, column, turn, top_player_piece, bottom_player_piece): '''Initializes all objects inserted by the user ''' self.Black = 'B' self.White = 'W' self.NONE = '.' self.Tie = 'NONE' self._row = row self._column = column self._turn = turn self._topcorner = top_player_piece self._bottomcorner = bottom_player_piece def create_board(self): '''Create the board with the four pieces in the middle ''' self.game_board = [] for row in range(self._row): self.game_board.append([self.NONE] * self._column) self.game_board[int(self._row/2) -1][int(self._column/2)-1] = self._topcorner self.game_board[int(self._row/2) -1][int(self._column/2)] = self._bottomcorner self.game_board[int(self._row/2)][int(self._column/2) -1] = self._bottomcorner self.game_board[int(self._row/2)][int(self._column/2)] = self._topcorner def make_move(self, row, col): '''The user inputs the row/col and if the move is valid, update the board if invalid then raise an error ''' if self._valid_move(row,col): self._flip_pieces(row,col) self._turn = self._switch_color() self.player_score() else: raise InvalidMoveError() def player_score(self): '''Counts the score of each player ''' self.total_white = 0 self.total_black = 0 for row in self.game_board: for col in row: if col == self.Black: self.total_black += 1 elif col == self.White: self.total_white += 1 def winning_player(self)->bool: '''Returns false if there is a move on the board that is valid, if there isn't then it checks if the other player has a valid move. If both players don't have a valid move available then there is a winning player(true)''' for row in range(self._row): for col in range(self._column): if self._valid_move(row, col): return False self._turn = self._switch_color() for row in range(self._row): for col in range(self._column): if self._valid_move(row, col): return False return True def winner_most_points(self): '''Winning option (player with the most points) ''' if self.winning_player(): if self.total_black > self.total_white: return self.Black elif self.total_white > self.total_black: return self.White else: return self.Tie def winner_least_points(self): '''Winning option (player with the least points) ''' if self.winning_player(): if self.total_black > self.total_white: return self.White elif self.total_white > self.total_black: return self.White else: return self.Tie #Private functions def _switch_color(self): '''Switches the color of the players ''' if self._turn == self.Black: return self.White elif self._turn == self.White: return self.Black def _check_valid(self, row, col, rowdelta, coldelta)->bool: '''Returns true if the row/col selected is a valid position on the board ''' starting_point = self.game_board[row][col] seen_opposite_color = False if starting_point != self.NONE: return False else: for i in range(1, max(self._row, self._column)): if self._valid_column_number(col + coldelta * i) and self._valid_row_number(row + rowdelta * i): current_point = self.game_board[row + rowdelta * i][col + coldelta * i] if current_point == self._switch_color(): seen_opposite_color = True continue elif current_point == self._turn and seen_opposite_color: return True else: return False return False def _valid_move(self, row, col)->bool: '''Returns true/false if there is a move on the board that is valid ''' return self._check_valid(row, col, 0, 1)\ or self._check_valid(row, col, 1, 1)\ or self._check_valid(row, col, 1, 0)\ or self._check_valid(row, col, 1, -1)\ or self._check_valid(row, col, 0, -1)\ or self._check_valid(row, col, -1, -1)\ or self._check_valid(row, col, -1, 0)\ or self._check_valid(row, col, -1, 1) def _flip_pieces(self, row, col): '''If the position selected is valid flip the pieces on the board ''' delta = [(0,1), (1,1), (1, 0), (1, -1), (0, -1), (-1, -1), (-1, 0), (-1, 1)] for rowdelta, coldelta in delta: if self._check_valid(row, col, rowdelta, coldelta): for i in range(1, max(self._row, self._column)): current_point = self.game_board[row + rowdelta * i][col + coldelta * i] if current_point == self._switch_color(): self.game_board[row + rowdelta * i][col + coldelta * i] = self._turn continue else: break self.game_board[row][col] = self._turn def _valid_column_number(self, valid_column)->bool: '''Checks to see if the piece is in a valid column ''' return 0 <= valid_column < self._column def _valid_row_number(self, valid_row)->bool: '''Checks to see if the piece is in a valid row ''' return 0 <= valid_row < self._row
882029deae2d3a31649ea48615af00792b932715
49406aa32e049ef52903777b5f7598c28348aa6f
/TankPy/test.py
6bf824f6eb375529c98bd8fa7e6b0b36872a1255
[ "MIT" ]
permissive
kmcgill88/TankPy
1beb3b728d153b8da6d2e576dd4b5b7deeb2216d
5c214eb452dce6669fd64e0c17b04c02d8709e88
refs/heads/master
2021-01-12T12:12:43.159641
2016-10-30T17:51:59
2016-10-30T17:51:59
72,364,951
0
0
null
null
null
null
UTF-8
Python
false
false
140
py
import datetime from dateutil import tz on_off = "OFF" now = datetime.now(tz=tz.gettz('America/Chicago')) print "%s: %s" % (now, on_off)
e95625894d5cba62471ce44e67b02160ea805c8f
487ce91881032c1de16e35ed8bc187d6034205f7
/codes/CodeJamCrawler/16_0_3/shangtai/codejamC.py
be3aad06742fb467f6074f6d0a440327d6d7dc65
[]
no_license
DaHuO/Supergraph
9cd26d8c5a081803015d93cf5f2674009e92ef7e
c88059dc66297af577ad2b8afa4e0ac0ad622915
refs/heads/master
2021-06-14T16:07:52.405091
2016-08-21T13:39:13
2016-08-21T13:39:13
49,829,508
2
0
null
2021-03-19T21:55:46
2016-01-17T18:23:00
Python
UTF-8
Python
false
false
999
py
T = int(raw_input()) N, J = map(int, raw_input().split()) def is_prime(n): if n == 2 or n == 3: return True if n < 2 or n%2 == 0: return False if n < 9: return True if n%3 == 0: return False r = int(n**0.5) f = 5 while f <= r: if n%f == 0: return False if n%(f+2) == 0: return False f +=6 return True def primefactors(x): loop=2 while loop<=x: if x%loop==0: x/=loop return loop else: loop+=1 print "Case #1:" j=0 for candidate in xrange(2**(N-2)): candidate=candidate<<1 candidate+=(1+(1<<(N-1))) candidate="{0:b}".format(candidate) factorlist=[candidate] for base in xrange(2,11): candidatebase=int(candidate,base) if is_prime(candidatebase): break else: factorlist.append(primefactors(candidatebase)) if len(factorlist)==10: j+=1 for i in factorlist: print i, print if j==J: break
85ef2d4e488b8bb8cc6f70bb01e7d115d50ceea6
dee7b7fd962bb940f63e27da2e1e7823821e0444
/test/core_tests.py
5532b9b98c926c5a07d182d1e667fb25a810fc36
[]
no_license
russellchristensen/mesh
841fd104f6ad858b7c68837442d574a06a0a63c9
20c69366ac874e1f33f26ad02ed6a5da9a354378
refs/heads/master
2021-01-18T05:54:40.243461
2013-07-15T17:13:38
2013-07-15T17:13:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
18,824
py
# This file is part of Mesh. # Mesh is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # Mesh is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with Mesh. If not, see <http://www.gnu.org/licenses/>. import glob, os, sys, subprocess, tempfile, time, unittest from distutils import version global gpl_header gpl_header = """# This file is part of Mesh. # Mesh is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # Mesh is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with Mesh. If not, see <http://www.gnu.org/licenses/>.""" # We've got to find the root directory of the project to run tests! global project_root_dir project_root_dir = None curr_root_dir = __file__ while not project_root_dir: curr_root_dir, last_element = os.path.split(curr_root_dir) if os.path.isfile(os.path.join(curr_root_dir, 'mesh')): project_root_dir = curr_root_dir break if not last_element: break if not project_root_dir: print "Error, couldn't find the project root directory. :-(" sys.exit(1) # Found the project root directory! Make it available for the rest of the tests... sys.path.append(os.path.join(project_root_dir, 'src')) sys.path.append(os.path.join(project_root_dir, 'test')) class Test00Dependencies(unittest.TestCase): def test_00banner(self): "[DEPENDENCY TESTS]" def test_01os(self): "OS is supported" if sys.platform not in ['darwin', 'linux2']: self.fail("Unsupported OS: %s" % sys.platform) def test_03python_version(self): "Python >= 2.6 is present" supported_version = version.StrictVersion('2.6') this_version = version.StrictVersion(str(sys.version_info[0]) + '.' + str(sys.version_info[1])) self.assertTrue(this_version >= supported_version) def test_09m2crypto(self): "M2Crypto >= 0.20.2 is present" import M2Crypto supported_version = version.StrictVersion('0.20.2') this_version = version.StrictVersion(M2Crypto.version) self.assertTrue(this_version >= supported_version) def test_12zmq(self): "ZeroMQ >= 2.0.10 is present" import zmq supported_version = version.LooseVersion('2.0.10') this_version = version.LooseVersion(zmq.__version__) self.assertTrue(this_version >= supported_version) def test_15psutil(self): "psutil >= 0.2.0 is present" import psutil supported_version = version.StrictVersion('0.2.0') this_version = version.StrictVersion(".".join([str(x) for x in psutil.version_info])) self.assertTrue(this_version >= supported_version) class Test01Code(unittest.TestCase): def test_00banner(self): "[CODE TESTS]" def test_03license(self): "GPL 3 Compliance" global project_root_dir # Iterate through the python files and check for compliance source_files = [os.path.join(project_root_dir, 'mesh')] + glob.glob(os.path.join(project_root_dir, 'test', '*.py')) + glob.glob(os.path.join(project_root_dir, 'src', '*.py')) failures = [] for fname in source_files: header = open(os.path.join(project_root_dir, fname), 'r').read(1024) if not gpl_header in header: failures.append("The source file '%s' has a malformed or missing GPL header." % fname) if failures: self.fail('\n'+'\n'.join(failures)) class Test02Syntax(unittest.TestCase): def test_00banner(self): "[SYNTAX TESTS]" def test_03import(self): "No syntax errors are encountered in main project files" import communicator, master, meshlib, port_assigner, port_requestor, pull_proxy class Test02zmq(unittest.TestCase): def test_00banner(self): "[MESSAGING TESTS]" def test_01pubsub(self): "ZMQ Publish/Subscribe pattern works over ipc" global project_root_dir # Subscriber subprocess sub_command = ('/usr/bin/env', 'python', os.path.join(project_root_dir, 'test/zmq_sub.py'),) sub_process = subprocess.Popen(sub_command) # Publisher subprocess pub_command = ('/usr/bin/env', 'python', os.path.join(project_root_dir, 'test/zmq_pub.py'),) pub_process = subprocess.Popen(pub_command) # Watch only the subscriber, publisher obviously works if the subscriber successfully gets the message sub_retcode = sub_process.poll() for i in range(100): if (sub_retcode != None): break time.sleep(.05) sub_retcode = sub_process.poll() sub_retcode = sub_process.poll() if sub_retcode == 0: return else: self.fail("ZMQ Publish/Subscribe pattern failed with retcodes %s/%s" % (str(sub_retcode), str(pub_retcode))) def test_03reqrep(self): "ZMQ Request/Reply pattern works over ipc" global project_root_dir # Reply subprocess rep_command = ('/usr/bin/env', 'python', os.path.join(project_root_dir, 'test/zmq_rep.py'),) rep_process = subprocess.Popen(rep_command) # Request subprocess req_command = ('/usr/bin/env', 'python', os.path.join(project_root_dir, 'test/zmq_req.py'),) req_process = subprocess.Popen(req_command) # Make sure both process exit successfully rep_retcode = rep_process.poll() req_retcode = req_process.poll() while (rep_retcode == None) or (req_retcode == None): time.sleep(.05) rep_retcode = rep_process.poll() req_retcode = req_process.poll() if (rep_retcode == 0) and (req_retcode == 0): return else: self.fail("ZMQ Request/Reply pattern failed with with retcodes %s/%s" % (str(rep_retcode), str(req_retcode))) class Test03meshlib(unittest.TestCase): def setUp(self): import M2Crypto self.alice_key = M2Crypto.RSA.load_key(os.path.join(project_root_dir, 'test', 'certs', 'alice.key')) self.alice_cert = M2Crypto.X509.load_cert(os.path.join(project_root_dir, 'test', 'certs', 'alice.cert')) self.bob_key = M2Crypto.RSA.load_key(os.path.join(project_root_dir, 'test', 'certs', 'bob.key')) self.bob_cert = M2Crypto.X509.load_cert(os.path.join(project_root_dir, 'test', 'certs', 'bob.cert')) self.ca_cert = M2Crypto.X509.load_cert(os.path.join(project_root_dir, 'test', 'certs', 'test-ca-cert.pem')) def test_00banner(self): "[MESHLIB]" import meshlib def test_03verifycert(self): "(CLI or M2Crypto) SSL certificates signed by the CA get verified correctly" import meshlib global project_root_dir # This certificate should be valid if not meshlib.verify_cert(cafile=os.path.join(project_root_dir, 'test', 'certs', 'test-ca-cert.pem'), certfile=os.path.join(project_root_dir, 'test', 'certs', 'alice.cert')): self.fail("A certificate that should be valid could not be verified. Note that you can ignore this failure if the same test via the M2Crypto method succeeded.") def test_04verifycert_fail(self): "(CLI or M2Crypto) Self-signed SSL certificates do not get verified" import meshlib global project_root_dir # This certificate should not be valid if meshlib.verify_cert(cafile=os.path.join(project_root_dir, 'test', 'certs', 'test-ca-cert.pem'), certfile=os.path.join(project_root_dir, 'test', 'certs', 'test-self-sign.cert')): self.fail("A certificate that should not be valid was verified. Note that you can ignore this failure if the same test via the M2Crypto method succeeded.") def test_06encrypt(self): "Encrypting a string using a public key seems to work" import meshlib, M2Crypto, os global project_root_dir data = 'Confidential data!' cryptogram = meshlib.encrypt(data, self.alice_cert) if cryptogram == data: self.fail('Encryption failed spectacularly') def test_09decrypt_known(self): "Decrypt a known pre-encrypted string" import meshlib, M2Crypto, os global project_root_dir cryptogram = """bvzkTmVVWmLfw6lvJtdrXIaXFTHoI8U+AWE906c9FC4ca7dfDiLB5TOOxhy6thDkhUw+J9AnrEoh FFsRRoGACYRufjm84bBDqOHMkK0rjyRFvU2uttphOTjdgqHPZJnA7iWrV7mHTBHogiaM6MpJWLQO uNSdEHxKxqpjg9BR1xj/cYm+iqD0OFfONz7BqFgao3NDTg4a5qpS8i9m4mqFcIuAIRkZG2mC+uBN h3JvaGQ7Opua72ninJI79Hr2X2VWBXtA4eOQM1BsxxbHWxiLspHplStM34zvXkaUgwUdvHZjvwo5 Tp7tERNH08s4Wb7hvIj6p/EloWtb/CA01EfQwA== """ message = meshlib.decrypt(cryptogram, self.alice_key) if message != 'Confidential data!': self.fail('Failed to decrypt an encrypted string.') def test_12encrypt_decrypt(self): "Encrypt and then decrypt a random string" import meshlib, M2Crypto, os, random, string # Generate a random string of 32 letters and numbers message = ''.join([random.choice(string.ascii_letters + string.digits) for x in range(32)]) cryptogram = meshlib.encrypt(message, self.bob_cert) decrypted_message = meshlib.decrypt(cryptogram, self.bob_key) if message != decrypted_message: self.fail('Input string came back differently when decrypted: "%s" != "%s"' % (message, decrypted_message)) def test_15socket_url(self): "Function socket_url works" import meshlib, zmq zmq_context = zmq.Context() push = zmq_context.socket(zmq.PUSH) pull = zmq_context.socket(zmq.PULL) url = meshlib.socket_url('ipc') push.connect(url) pull.bind(url) msg = "This is a test message" push.send(msg) output = pull.recv() if msg != output: self.fail("We weren't able to send/receive a message with a url created by socket_url.") def test_18is_socket_url(self): "Function is_socket_url works" import meshlib for i in xrange(10): url = meshlib.socket_url('ipc') if not meshlib.is_socket_url(url): self.fail("is_socket_url failed on '%s' created by socket_url('ipc')" % url) url = 'ipc:///tmp/goodurl.ipc' if not meshlib.is_socket_url(url): self.fail("is_socket_url failed on a known good url '%s'" % url) badurl = 'paosidfsadfsdfhncv' if meshlib.is_socket_url(badurl): self.fail("is_socket_url didn't detect bad url %s" % badurl) def test_21load_config(self): "Function load_config() works with a non-existent config file (defaults will be used)" import meshlib meshlib.load_config('/tmp/does_not_exist.conf') def test_24load_config(self): "Function load_config() works with default config file (defaults will be used if it doesn't exist)" import meshlib meshlib.load_config() def test_27load_config(self): "Function load_config() works with a real custom-provided config file" global project_root_dir import meshlib meshlib.load_config(os.path.join(project_root_dir, 'test', 'mesh_b.conf')) self.assertTrue(meshlib.get_config(None, 'port_assigner_port', None) == '5200') def test_30get_config(self): "Function get_config() works properly" import meshlib meshlib.load_config(os.path.join(project_root_dir, 'test', 'mesh_b.conf')) # Global options that aren't there return the default value self.assertTrue(meshlib.get_config(None, 'fake_option', 'the default value') == 'the default value') # Global options that are there return the real value self.assertTrue(meshlib.get_config(None, 'next_push_port', None) == '5205') # Plugin options that aren't there return the default value self.assertTrue(meshlib.get_config('fake_plugin', 'another_fake_option', 'the default value') == 'the default value') # Plugin options that are there return the real value self.assertTrue(meshlib.get_config('p_template', 'banana_threshold', None) == '1') # Plugin option overrides global options self.assertTrue(meshlib.get_config('p_template', 'duplicate_option', None) == 'plugin_value') # Missing plugin option falls back to global option self.assertTrue(meshlib.get_config('p_template', 'inbound_pull_proxy_port', None) == '5201') def test_33get_identifer(self): "Function get_identifier() returns something." import meshlib meshlib.load_config() self.assertTrue(meshlib.get_identifier()) def test_36tail(self): "Function tail() can tail a file" import meshlib tempfilething = tempfile.NamedTemporaryFile() filename = tempfilething.name echo_process = subprocess.Popen(('bash', '-c', 'while echo testing >> %s ; do sleep .1 ; done' % filename)) for line in meshlib.tail(filename): if line.strip() != 'testing': self.fail("Tailing is working correctly") echo_process.kill() del tempfilething else: break echo_process.kill() del tempfilething class Test04master(unittest.TestCase): def setUp(self): pass def test_00banner(self): "[MASTER]" import master def test_06create_zmq_context(self): "ZMQ context was created" import master, zmq self.assertTrue(type(master.zmq_context) == zmq.core.context.Context) def test_09create_push_communicator(self): "Function create_push_communicator() works" import master, zmq master.create_push_communicator() if type(master.push_communicator) != zmq.core.socket.Socket: self.fail("push_communicator socket is wrong type: %s" % str(type(master.push_communicator))) def test_12create_pull(self): "Function create_pull() works" import master, zmq master.create_pull() if type(master.pull) != zmq.core.socket.Socket: self.fail("pull socket is wrong type: %s" % str(type(master.pull))) # def test_15start_port_assigner(self): # "Function start_port_assigner works" # import master # master.start_port_assigner() # def test_18start_communicator(self): # "Function start_communicator works" # import master # master.start_communicator() # def test_21start_inbound_pull_proxy(self): # "Function start_inbound_pull_proxy works" # import master # master.start_inbound_pull_proxy() # def test_24start_outbound_pull_proxy(self): # "Function start_outbound_pull_proxy works" # import master # master.start_outbound_pull_proxy('test') # def test_27process_message(self): # "Function process_message works" class Test05communicator(unittest.TestCase): def test_00banner(self): "[COMMUNICATOR]" import communicator template_header = """ import meshlib, sys, unittest if __name__ == '__main__': zmq_context, push_master = meshlib.init_plugin(sys.argv) """ class Test06plugins(unittest.TestCase): def test_00banner(self): "[PLUGINS]" def test_02template_header(self): "All plugins have the template header" import glob global project_root_dir failures = [] for plugin_file in glob.glob(os.path.join(project_root_dir, 'src', 'p_*py')): plugin = os.path.split(plugin_file)[1][:-3] plugin_contents = open(plugin_file).read() if template_header not in plugin_contents: failures.append("Plugin '%s' has a missing or malformed template section." % plugin) if failures: self.fail('\n'+'\n'.join(failures)) def test_03supported_os(self): "All plugins define supported_os" import glob global project_root_dir failures = [] for plugin_file in glob.glob(os.path.join(project_root_dir, 'src', 'p_*py')): plugin = os.path.split(plugin_file)[1][:-3] module = __import__(plugin) supported_os = getattr(module, 'supported_os', None) if supported_os == None: failures.append("Plugin '%s' does not define supported_os." % plugin) elif type(supported_os) != list: failures.append("Plugin '%s' defined supported_os as a '%s' instead of a list!" % (plugin, type(supported_os))) if failures: self.fail('\n'+'\n'.join(failures)) def test_06description(self): "All plugins define a description with summary and threshold" import glob global project_root_dir failures = [] for plugin_file in glob.glob(os.path.join(project_root_dir, 'src', 'p_*py')): plugin = os.path.split(plugin_file)[1][:-3] module = __import__(plugin) description = getattr(module, 'description', None) if description == None: failures.append("Plugin '%s' does not define description." % plugin) continue if type(description) != str: failures.append("Plugin '%s' defined description as a '%s' instead of a string!" % (plugin, type(description))) continue desc_lines = description.strip().split('\n') if len(desc_lines) > 1: if desc_lines[1].strip(): failures.append("Plugin '%s' does not have an empty second line in the description." % plugin) if 'threshold' not in description.lower(): failures.append("Plugin '%s' does not describe the threshold conditions" % plugin) if failures: self.fail('\n'+'\n'.join(failures)) def test_09configured(self): "All plugins define a configured function" import glob global project_root_dir failures = [] for plugin_file in glob.glob(os.path.join(project_root_dir, 'src', 'p_*py')): plugin = os.path.split(plugin_file)[1][:-3] module = __import__(plugin) configured = getattr(module, 'configured', None) if configured == None: failures.append("Plugin '%s' does not define configured." % plugin) continue if type(configured) != type(lambda x: x): failures.append("Plugin '%s' defined configured as a '%s' instead of a function!" % (plugin, type(configured))) continue if failures: self.fail('\n'+'\n'.join(failures))
0b1abe5fdb7987e0b580bb34afc4c2743ed01d20
e84c5b51e672f687ea4bbf74114c2cf5079188a9
/Hamonsoft_project01/urls.py
09eb94bf091d6643d5e07db5fb4010a9173c789e
[]
no_license
jisuuuu/Hamonsoft_project01
8620af8d3996cddec206d0d228cf0954fbdd4a45
13a1b9438efd30f5890da0994fc22d90ac920507
refs/heads/master
2021-05-17T00:39:15.591854
2020-03-27T14:06:23
2020-03-27T14:06:23
250,540,214
0
0
null
null
null
null
UTF-8
Python
false
false
1,134
py
"""project_1 URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from django.conf.urls import include, url from django.conf import settings from . import views from django.conf.urls.static import static app_name = 'project_1' urlpatterns = [ url(r'^$', views.Project_main.as_view(), name='project_1'), url(r'^[0-9]+/dblist$', views.Show_list.as_view(), name='dblist'), path('main', views.main, name='main'), ] urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
44b33e99e4d184d47d2dff12c7aa8a5883e26fff
b09147b584d6f19b4bb60fef782783ed3cd90648
/ipconfig/ipvalid.py
126474efd5f32f20d6dbdb47d7fb4bf1304ed2ba
[]
no_license
xiaobabyLu/myspider
9d442f06262acb2e43d92df96a75d2684820a2eb
dc8300bf31dcb249112698875f99ca0df512da77
refs/heads/master
2021-07-01T13:40:02.512194
2017-09-22T03:20:38
2017-09-22T03:20:38
104,065,879
0
0
null
null
null
null
UTF-8
Python
false
false
2,949
py
# -*- coding : utf-8 -*- import urllib2 import time from bs4 import BeautifulSoup import sys reload(sys) sys.setdefaultencoding('utf-8') print sys.getdefaultencoding() xici_headers = { 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8', 'Accept-Language': 'zh-CN,zh;q=0.8', 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.113 Safari/537.36', 'Hosts': 'hm.baidu.com', 'Referer': 'http://www.xicidaili.com/nn', 'Connection': 'keep-alive' } baidu_header = {'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.113 Safari/537.36', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8', 'Connection':'keep-alive', 'Referer':'https://www.baidu.com/', 'Accept-Encoding':'gzip, deflate, br', 'Accept-Language':'zh-CN,zh;q=0.8' # 'Accept-Charset':'ISO-8859-1,utf-8;q=0.7,*;q=0.3' } req_timeout = 5 testUrl = 'https://www.douban.com/' testStr = 'douban' cookies = urllib2.HTTPCookieProcessor() checked_num =0 grasp_num =0 file = open(r'douban_proxy.txt','a') for page in range(1,10): req = urllib2.Request('http://www.xici.net.co/nn/'+str(page),None,xici_headers) html_doc = urllib2.urlopen(req,timeout=req_timeout).read() soup = BeautifulSoup(html_doc,'html.parser') trs = soup.find('table',id = 'ip_list').find_all('tr') # print trs[1:] for tr in trs[1:]: tds = tr.find_all('td') ip = tds[1].text.strip() port = tds[2].text.strip() location = tds[3].text.strip() ishidden = tds[4].text.strip() protocol = tds[5].text.strip() if protocol =='HTTP' or protocol == 'HTTPS': print '%s = %s : %s' % (protocol,ip,port) grasp_num += 1 proxyHandler = urllib2.ProxyHandler({'http':r'http://%s:%s' % (ip,port)}) opener = urllib2.build_opener(cookies,proxyHandler) opener.addheaders = [('User-Agent','Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.113 Safari/537.36')] try: print 1111 req = opener.open(testUrl,timeout=req_timeout) print 2222 result = req.read() print 3333 print result pos = result.find(testStr) if pos>1: file.write(protocol+'\t'+ip+'\t'+port+'\n') file.flush() checked_num += 1 print checked_num,grasp_num else: print 'forbbidon' continue except Exception as e: continue file.close() print checked_num,grasp_num
566f030c732e651fcf0627d3621b4e3301bb19d1
0263a4863b56d7b35f3d0b948dd946ff104083b6
/part03/list_factory.py
844aaa01ecdf996c8c006656bda68acc9cd712c7
[]
no_license
who-you-me/design_pattern
79208bf7de5b8d516b04c651d9d61a53f03beec2
338421901d21870be7a4c791e59cd495e38aff83
refs/heads/master
2021-01-15T23:30:43.311710
2015-02-11T14:50:45
2015-02-11T14:50:45
28,767,439
1
0
null
null
null
null
UTF-8
Python
false
false
1,226
py
# coding: utf-8 from factory import Factory, Link, Tray, Page class ListFactory(Factory): def create_link(caption, url): return ListLink(caption, url) def create_tray(caption): return ListTray(caption) def create_page(title, author): return ListPage(title, author) class ListLink(Link): def make_html(self): return ' <li><a href="' + self._url + '">' + self._caption + '</a></li>\n' class ListTray(Tray): def make_html(self): buffer = "" buffer += "<li>\n" buffer += self._caption + "\n" buffer += "<ul>\n" for item in self._tray: buffer += item.make_html() buffer += "</ul>\n" buffer += "</li>\n" return buffer class ListPage(Page): def make_html(self): buffer = "" buffer += "<html><head><title>" + self._title + "</title></head>\n" buffer += "<body>\n" buffer += "<h1>" + self._title + "</h1>\n" buffer += "<ul>\n" for item in self._content: buffer += item.make_html() buffer += "</ul>\n" buffer += "<hr><address>" + self._author + "</address>\n" buffer += "</body></html>\n" return buffer
81ae8ada7fd81464e17d0959e6d5cd34aea1928c
c69422b3b24928cb7f1bec375edf0edbb0eca791
/test/rbdefects/rbdefects/resources.py
15dc68bf1a2ca9186ee62de69cab36c3e2edf2a7
[]
no_license
pcr/reviewboard_git_hooks
aff0101167fa343790a6235c8b50327db4abdce5
2e38cf3303f6699fb2653c492169da213059d719
refs/heads/master
2016-09-10T23:10:54.240772
2014-02-20T02:47:54
2014-02-20T02:47:54
15,449,656
1
0
null
null
null
null
UTF-8
Python
false
false
59
py
from reviewboard.webapi.resources import WebAPIResource
1c7f22e097b3a2d83172781b98634e53be397dc9
5a19bcfbdf57eff9863d3e958fd00674022c9065
/Meritt_Josh_Midterm/Part_2/Meritt_Josh_Midterm_part_2.py
613e1ee38d6e5c0d6b72c27a2a2ce5cf74246237
[]
no_license
M3ritt/ISC_215
06f57109f284d805a11406fb0792a5b20c3358a9
06d68c9cf88d264f65e5af7e8e8e04c3a68dbf10
refs/heads/main
2023-03-19T23:38:49.096647
2021-03-11T21:28:03
2021-03-11T21:28:03
340,162,873
0
0
null
null
null
null
UTF-8
Python
false
false
2,110
py
""" @Authors Josh Meritt : 805157393 Midterm part 2: Simple Linear Regression """ import os import numpy as np import matplotlib.pyplot as plt import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression def get_file(): cwd = os.getcwd() file = 'Salary_Education_Data.csv' path = cwd + "\\" + file while True: try: dataset = pd.read_csv(path) read_data(dataset) return except FileNotFoundError: file = input("[Error] File was not found. Please enter a correct file: ") def read_data(dataset): x = dataset.iloc[:,:-1].values y = dataset.iloc[:,-1].values creating_sets(x,y) def creating_sets(x, y): x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.20, random_state = 0) #print(x_train, x_test, y_train, y_test) regressor = LinearRegression() regressor.fit(x_train, y_train) y_predictions = regressor.predict(x_test) print("[Y_prediction]:", y_predictions) print("[Y_test]:", y_test) create_training_set(x_train, y_train, regressor) plt.clf() #Need to clear current plot or will be combined when plotting test set create_test_set(x_test, y_test, x_train, regressor) def create_training_set(x_train, y_train, regressor): plt.scatter(x_train, y_train, color = 'red') plt.plot(x_train, regressor.predict(x_train), color = 'blue') plt.xlabel('Years of Education (Training set)') plt.ylabel('Salary') plt.savefig('TrainingSet.png') plt.show() print('[Process complete] TrainingSet.png') def create_test_set(x_test, y_test, x_train, regressor): plt.scatter(x_test, y_test, color = 'green') plt.plot(x_train, regressor.predict(x_train), color = 'blue') plt.xlabel('Years of Education (Test set)') plt.ylabel('Salary') plt.savefig('TestSet.png') plt.show() print('[Process complete] TestSet.png') if __name__ == '__main__': get_file(); print("[Exiting program]")
9bc07e7f9b6af02f91aaf4a8526b71f89cb6eee9
76711371a37406353e8ddad84f234a1527013e1b
/SuperResolution/main.py
0cc35a3337a17df64104228517440b7fa3131aa3
[]
no_license
oosky9/MachineLearning
b3ac9349ee15bd18a9dc23e8128de276f3858881
e89ab8a86ae59a2aee6ad5f1683be340e15daf29
refs/heads/master
2023-04-16T17:38:57.110069
2020-05-23T07:47:58
2020-05-23T07:47:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,452
py
import torch import torchvision from torch import nn from torch.utils.tensorboard import SummaryWriter from srgan import Generator, Discriminator, GeneratorLoss, DiscriminatorLoss from utils import load_datasets, psnr, ssim from tqdm import tqdm import statistics import os import argparse def get_psnr(fake, real): cpu = torch.device("cpu") psnr_list = [] for i in range(len(fake)): np_fake = fake[i].to(cpu).detach().clone().numpy().transpose([1, 2, 0]) np_real = real[i].to(cpu).detach().clone().numpy().transpose([1, 2, 0]) psnr_list.append(psnr(np_fake, np_real)) return statistics.mean(psnr_list) def get_ssim(fake, real): cpu = torch.device("cpu") ssim_list = [] for i in range(len(fake)): np_fake = fake[i].to(cpu).detach().clone().numpy().transpose([1, 2, 0]) np_real = real[i].to(cpu).detach().clone().numpy().transpose([1, 2, 0]) ssim_list.append(ssim(np_fake, np_real)) return statistics.mean(ssim_list) def pre_train(x_train, x_test, pre_epochs, upscale_factor, device, save_image_path, save_model_path): writer = SummaryWriter() model_G = Generator(upscale_factor).to(device) optimizer_G = torch.optim.Adam(model_G.parameters(), lr=0.0002, betas=(0.5, 0.999)) mae_loss = nn.L1Loss() best_loss = 99999 best_model_name = '' result = {} result["pre_train/l1_loss_G"] = [] result["pre_test/l1_loss_G"] = [] result["pre_test/psnr"] = [] result["pre_test/ssim"] = [] for epoch in range(pre_epochs): print("train step: epoch {}".format(epoch)) train_loss_G = [] for (input_img, real_img), _ in tqdm(x_train): input_img, real_img = input_img.to(device), real_img.to(device) optimizer_G.zero_grad() fake_img = model_G(input_img) g_loss = mae_loss(real_img, fake_img) g_loss.backward() optimizer_G.step() train_loss_G.append(g_loss.item()) result["pre_train/l1_loss_G"].append(statistics.mean(train_loss_G)) writer.add_scalar('pre_train/l1_loss_G', result["pre_train/l1_loss_G"][-1], epoch) if epoch % 5 == 0 or epoch == pre_epochs - 1: with torch.no_grad(): print("test step") test_loss_G = [] test_psnr = [] test_ssim = [] for (input_img, real_img), _ in tqdm(x_test): input_img, real_img = input_img.to(device), real_img.to(device) fake_img = model_G(input_img) g_loss = mae_loss(real_img, fake_img) test_loss_G.append(g_loss.item()) test_psnr.append(get_psnr(fake_img, real_img)) test_ssim.append(get_ssim(fake_img, real_img)) total_test_loss_G = statistics.mean(test_loss_G) result["pre_test/l1_loss_G"].append(total_test_loss_G) writer.add_scalar('pre_test/l1_loss_G', result["pre_test/l1_loss_G"][-1], epoch) result["pre_test/psnr"].append(statistics.mean(test_psnr)) result["pre_test/ssim"].append(statistics.mean(test_ssim)) writer.add_scalar('pre_test/psnr', result["pre_test/psnr"][-1], epoch) writer.add_scalar('pre_test/ssim', result["pre_test/ssim"][-1], epoch) torchvision.utils.save_image(fake_img[:32], os.path.join(save_image_path, f"fake_epoch_{epoch:03}.png"), range=(-1.0, 1.0), normalize=True) torchvision.utils.save_image(real_img[:32], os.path.join(save_image_path, f"real_epoch_{epoch:03}.png"), range=(-1.0, 1.0), normalize=True) if best_loss > total_test_loss_G: best_loss = total_test_loss_G best_model_name = os.path.join(save_model_path, f"pre_gen_{epoch:03}.pytorch") print("save model ==>> {}".format(best_model_name)) torch.save(model_G.state_dict(), best_model_name) writer.close() return best_model_name def train(x_train, x_test, epochs, upscale_factor, device, pre_model, save_image_path, save_model_path): writer = SummaryWriter() model_G = Generator(upscale_factor) model_G.load_state_dict(torch.load(pre_model)) model_G = model_G.to(device) optimizer_G = torch.optim.Adam(model_G.parameters(), lr=0.0002, betas=(0.5, 0.999)) model_D = Discriminator() model_D = model_D.to(device) optimizer_D = torch.optim.Adam(model_D.parameters(), lr=0.0002, betas=(0.5, 0.999)) loss_G = GeneratorLoss().to(device) loss_D = DiscriminatorLoss().to(device) result = {} result["train/loss_G"] = [] result["train/loss_D"] = [] result["test/loss_G"] = [] result["test/loss_D"] = [] result["test/psnr"] = [] result["test/ssim"] = [] for epoch in range(epochs): print("train step: epoch {}".format(epoch)) train_loss_G, train_loss_D = [], [] for (input_img, real_img), _ in tqdm(x_train): input_img, real_img = input_img.to(device), real_img.to(device) fake_img = model_G(input_img) fake_img_tensor = fake_img.detach() # Update D optimizer_D.zero_grad() D_out_real = model_D(real_img) D_out_fake = model_D(fake_img_tensor) d_loss = loss_D(D_out_real, D_out_fake) d_loss.backward(retain_graph=True) optimizer_D.step() train_loss_D.append(d_loss.item()) # Update G optimizer_G.zero_grad() g_loss = loss_G(D_out_fake, real_img, fake_img) g_loss.backward(retain_graph=True) optimizer_G.step() train_loss_G.append(g_loss.item()) result["train/loss_G"].append(statistics.mean(train_loss_G)) result["train/loss_D"].append(statistics.mean(train_loss_D)) writer.add_scalar('train/loss_G', result["train/loss_G"][-1], epoch) writer.add_scalar('train/loss_D', result["train/loss_D"][-1], epoch) if epoch % 5 == 0 or epoch == epochs - 1: with torch.no_grad(): print("test step") test_loss_G, test_loss_D = [], [] test_psnr, test_ssim = [], [] for (input_img, real_img), _ in tqdm(x_test): input_img, real_img = input_img.to(device), real_img.to(device) fake_img = model_G(input_img) D_out_real = model_D(real_img) D_out_fake = model_D(fake_img) d_loss = loss_D(D_out_real, D_out_fake) test_loss_D.append(d_loss.item()) g_loss = loss_G(D_out_fake, real_img, fake_img) test_loss_G.append(g_loss.item()) test_psnr.append(get_psnr(fake_img, real_img)) test_ssim.append(get_ssim(fake_img, real_img)) result["test/loss_G"].append(statistics.mean(test_loss_G)) result["test/loss_D"].append(statistics.mean(test_loss_D)) result["test/psnr"].append(statistics.mean(test_psnr)) result["test/ssim"].append(statistics.mean(test_ssim)) writer.add_scalar('test/loss_G', result["test/loss_G"][-1], epoch) writer.add_scalar('test/loss_D', result["test/loss_D"][-1], epoch) writer.add_scalar('test/psnr', result["test/psnr"][-1], epoch) writer.add_scalar('test/ssim', result["test/ssim"][-1], epoch) torchvision.utils.save_image(fake_img[:32], os.path.join(save_image_path, f"fake_epoch_{epoch:03}.png"), range=(-1.0, 1.0), normalize=True) torchvision.utils.save_image(real_img[:32], os.path.join(save_image_path, f"real_epoch_{epoch:03}.png"), range=(-1.0, 1.0), normalize=True) if epoch % 10 == 0 or epoch == epochs - 1: torch.save(model_G.state_dict(), os.path.join(save_model_path, f"gen_{epoch:03}.pytorch")) torch.save(model_D.state_dict(), os.path.join(save_model_path, f"dis_{epoch:03}.pytorch")) writer.close() def check_dir(p): if not os.path.isdir(p): os.makedirs(p) def arg_parser(): parser = argparse.ArgumentParser() parser.add_argument('--pre_model_path', type=str, default="sr_rnn/model") parser.add_argument('--pre_image_path', type=str, default="sr_rnn/images") parser.add_argument('--model_path', type=str, default="sr_gan/model") parser.add_argument('--image_path', type=str, default="sr_gan/images") parser.add_argument('--pre_epochs', type=int, default=50) parser.add_argument('--epochs', type=int, default=50) parser.add_argument('--upscale_factor', type=int, default=4) parser.add_argument('--batch_size', type=int, default=64) args = parser.parse_args() return args def main(args): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") x_train, x_test = load_datasets(args.upscale_factor, args.batch_size) check_dir(args.pre_image_path) check_dir(args.pre_model_path) pre_model_name = pre_train( x_train=x_train, x_test=x_test, pre_epochs=args.pre_epochs, upscale_factor=args.upscale_factor, device=device, save_image_path=args.pre_image_path, save_model_path=args.pre_model_path, ) check_dir(args.image_path) check_dir(args.model_path) train( x_train=x_train, x_test=x_test, epochs=args.epochs, upscale_factor=args.upscale_factor, device=device, pre_model=pre_model_name, save_image_path=args.image_path, save_model_path=args.model_path, ) if __name__ == '__main__': args = arg_parser() main(args)
a508f1b21eb0f6780f7e25f0848a5d2a51ae29ab
1edd52cf197e5ae67b5939a3beb3e70761334e62
/Udemy/python/Session-1&2-Intro-print-indentation-comments/using_indent.py
dce3afaf2ce37572dcc99994e37f4ba78baff000
[]
no_license
sandeepmchary/Devops_wordpress_Notes
bdcd85d526780d03c494ecb93e714e7ffe0a4d58
ffd2092162073e1e7342c6066d023d04e6ca8c1c
refs/heads/master
2022-06-18T21:33:02.471025
2022-06-12T11:14:47
2022-06-12T11:14:47
154,679,658
1
4
null
2022-05-19T16:59:57
2018-10-25T13:51:40
HTML
UTF-8
Python
false
false
117
py
print("this is for indentation") if 3 > 1: print("using if condition") print("we are comparing 3 with 1")
8a9561159e82907417c9e0b374b3f8f11bf078ac
72e11a80587342b3f278d4df18406cd4ce7531e8
/pip-10.0.0.dev0-py3.6.egg/pip/_internal/index.py
7c1c210b697a85f199e819826dd94ed5eab4da72
[]
no_license
EnjoyLifeFund/Debian_py36_packages
740666f290cef73a4f634558ccf3fd4926addeda
1985d4c73fabd5f08f54b922e73a9306e09c77a5
refs/heads/master
2021-08-24T02:17:24.349195
2017-12-06T06:18:35
2017-12-06T06:18:35
113,167,612
1
0
null
null
null
null
UTF-8
Python
false
false
40,528
py
"""Routines related to PyPI, indexes""" from __future__ import absolute_import import cgi import itertools import logging import mimetypes import os import posixpath import re import sys import warnings from collections import namedtuple from pip._vendor import html5lib, requests, six from pip._vendor.distlib.compat import unescape from pip._vendor.packaging import specifiers from pip._vendor.packaging.utils import canonicalize_name from pip._vendor.packaging.version import parse as parse_version from pip._vendor.requests.exceptions import SSLError from pip._vendor.six.moves.urllib import parse as urllib_parse from pip._vendor.six.moves.urllib import request as urllib_request from pip._internal.compat import ipaddress from pip._internal.download import HAS_TLS, is_url, path_to_url, url_to_path from pip._internal.exceptions import ( BestVersionAlreadyInstalled, DistributionNotFound, InvalidWheelFilename, UnsupportedWheel, ) from pip._internal.models import PyPI from pip._internal.pep425tags import get_supported from pip._internal.utils.deprecation import RemovedInPip11Warning from pip._internal.utils.logging import indent_log from pip._internal.utils.misc import ( ARCHIVE_EXTENSIONS, SUPPORTED_EXTENSIONS, cached_property, normalize_path, splitext, ) from pip._internal.utils.packaging import check_requires_python from pip._internal.wheel import Wheel, wheel_ext __all__ = ['FormatControl', 'fmt_ctl_handle_mutual_exclude', 'PackageFinder'] SECURE_ORIGINS = [ # protocol, hostname, port # Taken from Chrome's list of secure origins (See: http://bit.ly/1qrySKC) ("https", "*", "*"), ("*", "localhost", "*"), ("*", "127.0.0.0/8", "*"), ("*", "::1/128", "*"), ("file", "*", None), # ssh is always secure. ("ssh", "*", "*"), ] logger = logging.getLogger(__name__) class InstallationCandidate(object): def __init__(self, project, version, location): self.project = project self.version = parse_version(version) self.location = location self._key = (self.project, self.version, self.location) def __repr__(self): return "<InstallationCandidate({0!r}, {1!r}, {2!r})>".format( self.project, self.version, self.location, ) def __hash__(self): return hash(self._key) def __lt__(self, other): return self._compare(other, lambda s, o: s < o) def __le__(self, other): return self._compare(other, lambda s, o: s <= o) def __eq__(self, other): return self._compare(other, lambda s, o: s == o) def __ge__(self, other): return self._compare(other, lambda s, o: s >= o) def __gt__(self, other): return self._compare(other, lambda s, o: s > o) def __ne__(self, other): return self._compare(other, lambda s, o: s != o) def _compare(self, other, method): if not isinstance(other, InstallationCandidate): return NotImplemented return method(self._key, other._key) class PackageFinder(object): """This finds packages. This is meant to match easy_install's technique for looking for packages, by reading pages and looking for appropriate links. """ def __init__(self, find_links, index_urls, allow_all_prereleases=False, trusted_hosts=None, process_dependency_links=False, session=None, format_control=None, platform=None, versions=None, abi=None, implementation=None): """Create a PackageFinder. :param format_control: A FormatControl object or None. Used to control the selection of source packages / binary packages when consulting the index and links. :param platform: A string or None. If None, searches for packages that are supported by the current system. Otherwise, will find packages that can be built on the platform passed in. These packages will only be downloaded for distribution: they will not be built locally. :param versions: A list of strings or None. This is passed directly to pep425tags.py in the get_supported() method. :param abi: A string or None. This is passed directly to pep425tags.py in the get_supported() method. :param implementation: A string or None. This is passed directly to pep425tags.py in the get_supported() method. """ if session is None: raise TypeError( "PackageFinder() missing 1 required keyword argument: " "'session'" ) # Build find_links. If an argument starts with ~, it may be # a local file relative to a home directory. So try normalizing # it and if it exists, use the normalized version. # This is deliberately conservative - it might be fine just to # blindly normalize anything starting with a ~... self.find_links = [] for link in find_links: if link.startswith('~'): new_link = normalize_path(link) if os.path.exists(new_link): link = new_link self.find_links.append(link) self.index_urls = index_urls self.dependency_links = [] # These are boring links that have already been logged somehow: self.logged_links = set() self.format_control = format_control or FormatControl(set(), set()) # Domains that we won't emit warnings for when not using HTTPS self.secure_origins = [ ("*", host, "*") for host in (trusted_hosts if trusted_hosts else []) ] # Do we want to allow _all_ pre-releases? self.allow_all_prereleases = allow_all_prereleases # Do we process dependency links? self.process_dependency_links = process_dependency_links # The Session we'll use to make requests self.session = session # The valid tags to check potential found wheel candidates against self.valid_tags = get_supported( versions=versions, platform=platform, abi=abi, impl=implementation, ) # If we don't have TLS enabled, then WARN if anyplace we're looking # relies on TLS. if not HAS_TLS: for link in itertools.chain(self.index_urls, self.find_links): parsed = urllib_parse.urlparse(link) if parsed.scheme == "https": logger.warning( "pip is configured with locations that require " "TLS/SSL, however the ssl module in Python is not " "available." ) break def get_formatted_locations(self): lines = [] if self.index_urls and self.index_urls != [PyPI.simple_url]: lines.append( "Looking in indexes: {}".format(", ".join(self.index_urls)) ) if self.find_links: lines.append( "Looking in links: {}".format(", ".join(self.find_links)) ) return "\n".join(lines) def add_dependency_links(self, links): # # FIXME: this shouldn't be global list this, it should only # # apply to requirements of the package that specifies the # # dependency_links value # # FIXME: also, we should track comes_from (i.e., use Link) if self.process_dependency_links: warnings.warn( "Dependency Links processing has been deprecated and will be " "removed in a future release.", RemovedInPip11Warning, ) self.dependency_links.extend(links) @staticmethod def _sort_locations(locations, expand_dir=False): """ Sort locations into "files" (archives) and "urls", and return a pair of lists (files,urls) """ files = [] urls = [] # puts the url for the given file path into the appropriate list def sort_path(path): url = path_to_url(path) if mimetypes.guess_type(url, strict=False)[0] == 'text/html': urls.append(url) else: files.append(url) for url in locations: is_local_path = os.path.exists(url) is_file_url = url.startswith('file:') if is_local_path or is_file_url: if is_local_path: path = url else: path = url_to_path(url) if os.path.isdir(path): if expand_dir: path = os.path.realpath(path) for item in os.listdir(path): sort_path(os.path.join(path, item)) elif is_file_url: urls.append(url) elif os.path.isfile(path): sort_path(path) else: logger.warning( "Url '%s' is ignored: it is neither a file " "nor a directory.", url) elif is_url(url): # Only add url with clear scheme urls.append(url) else: logger.warning( "Url '%s' is ignored. It is either a non-existing " "path or lacks a specific scheme.", url) return files, urls def _candidate_sort_key(self, candidate): """ Function used to generate link sort key for link tuples. The greater the return value, the more preferred it is. If not finding wheels, then sorted by version only. If finding wheels, then the sort order is by version, then: 1. existing installs 2. wheels ordered via Wheel.support_index_min(self.valid_tags) 3. source archives Note: it was considered to embed this logic into the Link comparison operators, but then different sdist links with the same version, would have to be considered equal """ support_num = len(self.valid_tags) build_tag = tuple() if candidate.location.is_wheel: # can raise InvalidWheelFilename wheel = Wheel(candidate.location.filename) if not wheel.supported(self.valid_tags): raise UnsupportedWheel( "%s is not a supported wheel for this platform. It " "can't be sorted." % wheel.filename ) pri = -(wheel.support_index_min(self.valid_tags)) if wheel.build_tag is not None: match = re.match(r'^(\d+)(.*)$', wheel.build_tag) build_tag_groups = match.groups() build_tag = (int(build_tag_groups[0]), build_tag_groups[1]) else: # sdist pri = -(support_num) return (candidate.version, build_tag, pri) def _validate_secure_origin(self, logger, location): # Determine if this url used a secure transport mechanism parsed = urllib_parse.urlparse(str(location)) origin = (parsed.scheme, parsed.hostname, parsed.port) # The protocol to use to see if the protocol matches. # Don't count the repository type as part of the protocol: in # cases such as "git+ssh", only use "ssh". (I.e., Only verify against # the last scheme.) protocol = origin[0].rsplit('+', 1)[-1] # Determine if our origin is a secure origin by looking through our # hardcoded list of secure origins, as well as any additional ones # configured on this PackageFinder instance. for secure_origin in (SECURE_ORIGINS + self.secure_origins): if protocol != secure_origin[0] and secure_origin[0] != "*": continue try: # We need to do this decode dance to ensure that we have a # unicode object, even on Python 2.x. addr = ipaddress.ip_address( origin[1] if ( isinstance(origin[1], six.text_type) or origin[1] is None ) else origin[1].decode("utf8") ) network = ipaddress.ip_network( secure_origin[1] if isinstance(secure_origin[1], six.text_type) else secure_origin[1].decode("utf8") ) except ValueError: # We don't have both a valid address or a valid network, so # we'll check this origin against hostnames. if (origin[1] and origin[1].lower() != secure_origin[1].lower() and secure_origin[1] != "*"): continue else: # We have a valid address and network, so see if the address # is contained within the network. if addr not in network: continue # Check to see if the port patches if (origin[2] != secure_origin[2] and secure_origin[2] != "*" and secure_origin[2] is not None): continue # If we've gotten here, then this origin matches the current # secure origin and we should return True return True # If we've gotten to this point, then the origin isn't secure and we # will not accept it as a valid location to search. We will however # log a warning that we are ignoring it. logger.warning( "The repository located at %s is not a trusted or secure host and " "is being ignored. If this repository is available via HTTPS we " "recommend you use HTTPS instead, otherwise you may silence " "this warning and allow it anyway with '--trusted-host %s'.", parsed.hostname, parsed.hostname, ) return False def _get_index_urls_locations(self, project_name): """Returns the locations found via self.index_urls Checks the url_name on the main (first in the list) index and use this url_name to produce all locations """ def mkurl_pypi_url(url): loc = posixpath.join( url, urllib_parse.quote(canonicalize_name(project_name))) # For maximum compatibility with easy_install, ensure the path # ends in a trailing slash. Although this isn't in the spec # (and PyPI can handle it without the slash) some other index # implementations might break if they relied on easy_install's # behavior. if not loc.endswith('/'): loc = loc + '/' return loc return [mkurl_pypi_url(url) for url in self.index_urls] def find_all_candidates(self, project_name): """Find all available InstallationCandidate for project_name This checks index_urls, find_links and dependency_links. All versions found are returned as an InstallationCandidate list. See _link_package_versions for details on which files are accepted """ index_locations = self._get_index_urls_locations(project_name) index_file_loc, index_url_loc = self._sort_locations(index_locations) fl_file_loc, fl_url_loc = self._sort_locations( self.find_links, expand_dir=True) dep_file_loc, dep_url_loc = self._sort_locations(self.dependency_links) file_locations = ( Link(url) for url in itertools.chain( index_file_loc, fl_file_loc, dep_file_loc) ) # We trust every url that the user has given us whether it was given # via --index-url or --find-links # We explicitly do not trust links that came from dependency_links # We want to filter out any thing which does not have a secure origin. url_locations = [ link for link in itertools.chain( (Link(url) for url in index_url_loc), (Link(url) for url in fl_url_loc), (Link(url) for url in dep_url_loc), ) if self._validate_secure_origin(logger, link) ] logger.debug('%d location(s) to search for versions of %s:', len(url_locations), project_name) for location in url_locations: logger.debug('* %s', location) canonical_name = canonicalize_name(project_name) formats = fmt_ctl_formats(self.format_control, canonical_name) search = Search(project_name, canonical_name, formats) find_links_versions = self._package_versions( # We trust every directly linked archive in find_links (Link(url, '-f') for url in self.find_links), search ) page_versions = [] for page in self._get_pages(url_locations, project_name): logger.debug('Analyzing links from page %s', page.url) with indent_log(): page_versions.extend( self._package_versions(page.links, search) ) dependency_versions = self._package_versions( (Link(url) for url in self.dependency_links), search ) if dependency_versions: logger.debug( 'dependency_links found: %s', ', '.join([ version.location.url for version in dependency_versions ]) ) file_versions = self._package_versions(file_locations, search) if file_versions: file_versions.sort(reverse=True) logger.debug( 'Local files found: %s', ', '.join([ url_to_path(candidate.location.url) for candidate in file_versions ]) ) # This is an intentional priority ordering return ( file_versions + find_links_versions + page_versions + dependency_versions ) def find_requirement(self, req, upgrade): """Try to find a Link matching req Expects req, an InstallRequirement and upgrade, a boolean Returns a Link if found, Raises DistributionNotFound or BestVersionAlreadyInstalled otherwise """ all_candidates = self.find_all_candidates(req.name) # Filter out anything which doesn't match our specifier compatible_versions = set( req.specifier.filter( # We turn the version object into a str here because otherwise # when we're debundled but setuptools isn't, Python will see # packaging.version.Version and # pkg_resources._vendor.packaging.version.Version as different # types. This way we'll use a str as a common data interchange # format. If we stop using the pkg_resources provided specifier # and start using our own, we can drop the cast to str(). [str(c.version) for c in all_candidates], prereleases=( self.allow_all_prereleases if self.allow_all_prereleases else None ), ) ) applicable_candidates = [ # Again, converting to str to deal with debundling. c for c in all_candidates if str(c.version) in compatible_versions ] if applicable_candidates: best_candidate = max(applicable_candidates, key=self._candidate_sort_key) else: best_candidate = None if req.satisfied_by is not None: installed_version = parse_version(req.satisfied_by.version) else: installed_version = None if installed_version is None and best_candidate is None: logger.critical( 'Could not find a version that satisfies the requirement %s ' '(from versions: %s)', req, ', '.join( sorted( set(str(c.version) for c in all_candidates), key=parse_version, ) ) ) raise DistributionNotFound( 'No matching distribution found for %s' % req ) best_installed = False if installed_version and ( best_candidate is None or best_candidate.version <= installed_version): best_installed = True if not upgrade and installed_version is not None: if best_installed: logger.debug( 'Existing installed version (%s) is most up-to-date and ' 'satisfies requirement', installed_version, ) else: logger.debug( 'Existing installed version (%s) satisfies requirement ' '(most up-to-date version is %s)', installed_version, best_candidate.version, ) return None if best_installed: # We have an existing version, and its the best version logger.debug( 'Installed version (%s) is most up-to-date (past versions: ' '%s)', installed_version, ', '.join(sorted(compatible_versions, key=parse_version)) or "none", ) raise BestVersionAlreadyInstalled logger.debug( 'Using version %s (newest of versions: %s)', best_candidate.version, ', '.join(sorted(compatible_versions, key=parse_version)) ) return best_candidate.location def _get_pages(self, locations, project_name): """ Yields (page, page_url) from the given locations, skipping locations that have errors. """ seen = set() for location in locations: if location in seen: continue seen.add(location) page = self._get_page(location) if page is None: continue yield page _py_version_re = re.compile(r'-py([123]\.?[0-9]?)$') def _sort_links(self, links): """ Returns elements of links in order, non-egg links first, egg links second, while eliminating duplicates """ eggs, no_eggs = [], [] seen = set() for link in links: if link not in seen: seen.add(link) if link.egg_fragment: eggs.append(link) else: no_eggs.append(link) return no_eggs + eggs def _package_versions(self, links, search): result = [] for link in self._sort_links(links): v = self._link_package_versions(link, search) if v is not None: result.append(v) return result def _log_skipped_link(self, link, reason): if link not in self.logged_links: logger.debug('Skipping link %s; %s', link, reason) self.logged_links.add(link) def _link_package_versions(self, link, search): """Return an InstallationCandidate or None""" version = None if link.egg_fragment: egg_info = link.egg_fragment ext = link.ext else: egg_info, ext = link.splitext() if not ext: self._log_skipped_link(link, 'not a file') return if ext not in SUPPORTED_EXTENSIONS: self._log_skipped_link( link, 'unsupported archive format: %s' % ext) return if "binary" not in search.formats and ext == wheel_ext: self._log_skipped_link( link, 'No binaries permitted for %s' % search.supplied) return if "macosx10" in link.path and ext == '.zip': self._log_skipped_link(link, 'macosx10 one') return if ext == wheel_ext: try: wheel = Wheel(link.filename) except InvalidWheelFilename: self._log_skipped_link(link, 'invalid wheel filename') return if canonicalize_name(wheel.name) != search.canonical: self._log_skipped_link( link, 'wrong project name (not %s)' % search.supplied) return if not wheel.supported(self.valid_tags): self._log_skipped_link( link, 'it is not compatible with this Python') return version = wheel.version # This should be up by the search.ok_binary check, but see issue 2700. if "source" not in search.formats and ext != wheel_ext: self._log_skipped_link( link, 'No sources permitted for %s' % search.supplied) return if not version: version = egg_info_matches(egg_info, search.supplied, link) if version is None: self._log_skipped_link( link, 'wrong project name (not %s)' % search.supplied) return match = self._py_version_re.search(version) if match: version = version[:match.start()] py_version = match.group(1) if py_version != sys.version[:3]: self._log_skipped_link( link, 'Python version is incorrect') return try: support_this_python = check_requires_python(link.requires_python) except specifiers.InvalidSpecifier: logger.debug("Package %s has an invalid Requires-Python entry: %s", link.filename, link.requires_python) support_this_python = True if not support_this_python: logger.debug("The package %s is incompatible with the python" "version in use. Acceptable python versions are:%s", link, link.requires_python) return logger.debug('Found link %s, version: %s', link, version) return InstallationCandidate(search.supplied, version, link) def _get_page(self, link): return HTMLPage.get_page(link, session=self.session) def egg_info_matches( egg_info, search_name, link, _egg_info_re=re.compile(r'([a-z0-9_.]+)-([a-z0-9_.!+-]+)', re.I)): """Pull the version part out of a string. :param egg_info: The string to parse. E.g. foo-2.1 :param search_name: The name of the package this belongs to. None to infer the name. Note that this cannot unambiguously parse strings like foo-2-2 which might be foo, 2-2 or foo-2, 2. :param link: The link the string came from, for logging on failure. """ match = _egg_info_re.search(egg_info) if not match: logger.debug('Could not parse version from link: %s', link) return None if search_name is None: full_match = match.group(0) return full_match[full_match.index('-'):] name = match.group(0).lower() # To match the "safe" name that pkg_resources creates: name = name.replace('_', '-') # project name and version must be separated by a dash look_for = search_name.lower() + "-" if name.startswith(look_for): return match.group(0)[len(look_for):] else: return None class HTMLPage(object): """Represents one page, along with its URL""" def __init__(self, content, url, headers=None): # Determine if we have any encoding information in our headers encoding = None if headers and "Content-Type" in headers: content_type, params = cgi.parse_header(headers["Content-Type"]) if "charset" in params: encoding = params['charset'] self.content = content self.parsed = html5lib.parse( self.content, transport_encoding=encoding, namespaceHTMLElements=False, ) self.url = url self.headers = headers def __str__(self): return self.url @classmethod def get_page(cls, link, skip_archives=True, session=None): if session is None: raise TypeError( "get_page() missing 1 required keyword argument: 'session'" ) url = link.url url = url.split('#', 1)[0] # Check for VCS schemes that do not support lookup as web pages. from pip._internal.vcs import VcsSupport for scheme in VcsSupport.schemes: if url.lower().startswith(scheme) and url[len(scheme)] in '+:': logger.debug('Cannot look at %s URL %s', scheme, link) return None try: if skip_archives: filename = link.filename for bad_ext in ARCHIVE_EXTENSIONS: if filename.endswith(bad_ext): content_type = cls._get_content_type( url, session=session, ) if content_type.lower().startswith('text/html'): break else: logger.debug( 'Skipping page %s because of Content-Type: %s', link, content_type, ) return logger.debug('Getting page %s', url) # Tack index.html onto file:// URLs that point to directories (scheme, netloc, path, params, query, fragment) = \ urllib_parse.urlparse(url) if (scheme == 'file' and os.path.isdir(urllib_request.url2pathname(path))): # add trailing slash if not present so urljoin doesn't trim # final segment if not url.endswith('/'): url += '/' url = urllib_parse.urljoin(url, 'index.html') logger.debug(' file: URL is directory, getting %s', url) resp = session.get( url, headers={ "Accept": "text/html", "Cache-Control": "max-age=600", }, ) resp.raise_for_status() # The check for archives above only works if the url ends with # something that looks like an archive. However that is not a # requirement of an url. Unless we issue a HEAD request on every # url we cannot know ahead of time for sure if something is HTML # or not. However we can check after we've downloaded it. content_type = resp.headers.get('Content-Type', 'unknown') if not content_type.lower().startswith("text/html"): logger.debug( 'Skipping page %s because of Content-Type: %s', link, content_type, ) return inst = cls(resp.content, resp.url, resp.headers) except requests.HTTPError as exc: cls._handle_fail(link, exc, url) except SSLError as exc: reason = ("There was a problem confirming the ssl certificate: " "%s" % exc) cls._handle_fail(link, reason, url, meth=logger.info) except requests.ConnectionError as exc: cls._handle_fail(link, "connection error: %s" % exc, url) except requests.Timeout: cls._handle_fail(link, "timed out", url) else: return inst @staticmethod def _handle_fail(link, reason, url, meth=None): if meth is None: meth = logger.debug meth("Could not fetch URL %s: %s - skipping", link, reason) @staticmethod def _get_content_type(url, session): """Get the Content-Type of the given url, using a HEAD request""" scheme, netloc, path, query, fragment = urllib_parse.urlsplit(url) if scheme not in {'http', 'https'}: # FIXME: some warning or something? # assertion error? return '' resp = session.head(url, allow_redirects=True) resp.raise_for_status() return resp.headers.get("Content-Type", "") @cached_property def base_url(self): bases = [ x for x in self.parsed.findall(".//base") if x.get("href") is not None ] if bases and bases[0].get("href"): return bases[0].get("href") else: return self.url @property def links(self): """Yields all links in the page""" for anchor in self.parsed.findall(".//a"): if anchor.get("href"): href = anchor.get("href") url = self.clean_link( urllib_parse.urljoin(self.base_url, href) ) pyrequire = anchor.get('data-requires-python') pyrequire = unescape(pyrequire) if pyrequire else None yield Link(url, self, requires_python=pyrequire) _clean_re = re.compile(r'[^a-z0-9$&+,/:;=?@.#%_\\|-]', re.I) def clean_link(self, url): """Makes sure a link is fully encoded. That is, if a ' ' shows up in the link, it will be rewritten to %20 (while not over-quoting % or other characters).""" return self._clean_re.sub( lambda match: '%%%2x' % ord(match.group(0)), url) class Link(object): def __init__(self, url, comes_from=None, requires_python=None): """ Object representing a parsed link from https://pypi.python.org/simple/* url: url of the resource pointed to (href of the link) comes_from: instance of HTMLPage where the link was found, or string. requires_python: String containing the `Requires-Python` metadata field, specified in PEP 345. This may be specified by a data-requires-python attribute in the HTML link tag, as described in PEP 503. """ # url can be a UNC windows share if url.startswith('\\\\'): url = path_to_url(url) self.url = url self.comes_from = comes_from self.requires_python = requires_python if requires_python else None def __str__(self): if self.requires_python: rp = ' (requires-python:%s)' % self.requires_python else: rp = '' if self.comes_from: return '%s (from %s)%s' % (self.url, self.comes_from, rp) else: return str(self.url) def __repr__(self): return '<Link %s>' % self def __eq__(self, other): if not isinstance(other, Link): return NotImplemented return self.url == other.url def __ne__(self, other): if not isinstance(other, Link): return NotImplemented return self.url != other.url def __lt__(self, other): if not isinstance(other, Link): return NotImplemented return self.url < other.url def __le__(self, other): if not isinstance(other, Link): return NotImplemented return self.url <= other.url def __gt__(self, other): if not isinstance(other, Link): return NotImplemented return self.url > other.url def __ge__(self, other): if not isinstance(other, Link): return NotImplemented return self.url >= other.url def __hash__(self): return hash(self.url) @property def filename(self): _, netloc, path, _, _ = urllib_parse.urlsplit(self.url) name = posixpath.basename(path.rstrip('/')) or netloc name = urllib_parse.unquote(name) assert name, ('URL %r produced no filename' % self.url) return name @property def scheme(self): return urllib_parse.urlsplit(self.url)[0] @property def netloc(self): return urllib_parse.urlsplit(self.url)[1] @property def path(self): return urllib_parse.unquote(urllib_parse.urlsplit(self.url)[2]) def splitext(self): return splitext(posixpath.basename(self.path.rstrip('/'))) @property def ext(self): return self.splitext()[1] @property def url_without_fragment(self): scheme, netloc, path, query, fragment = urllib_parse.urlsplit(self.url) return urllib_parse.urlunsplit((scheme, netloc, path, query, None)) _egg_fragment_re = re.compile(r'[#&]egg=([^&]*)') @property def egg_fragment(self): match = self._egg_fragment_re.search(self.url) if not match: return None return match.group(1) _subdirectory_fragment_re = re.compile(r'[#&]subdirectory=([^&]*)') @property def subdirectory_fragment(self): match = self._subdirectory_fragment_re.search(self.url) if not match: return None return match.group(1) _hash_re = re.compile( r'(sha1|sha224|sha384|sha256|sha512|md5)=([a-f0-9]+)' ) @property def hash(self): match = self._hash_re.search(self.url) if match: return match.group(2) return None @property def hash_name(self): match = self._hash_re.search(self.url) if match: return match.group(1) return None @property def show_url(self): return posixpath.basename(self.url.split('#', 1)[0].split('?', 1)[0]) @property def is_wheel(self): return self.ext == wheel_ext @property def is_artifact(self): """ Determines if this points to an actual artifact (e.g. a tarball) or if it points to an "abstract" thing like a path or a VCS location. """ from pip._internal.vcs import vcs if self.scheme in vcs.all_schemes: return False return True FormatControl = namedtuple('FormatControl', 'no_binary only_binary') """This object has two fields, no_binary and only_binary. If a field is falsy, it isn't set. If it is {':all:'}, it should match all packages except those listed in the other field. Only one field can be set to {':all:'} at a time. The rest of the time exact package name matches are listed, with any given package only showing up in one field at a time. """ def fmt_ctl_handle_mutual_exclude(value, target, other): new = value.split(',') while ':all:' in new: other.clear() target.clear() target.add(':all:') del new[:new.index(':all:') + 1] if ':none:' not in new: # Without a none, we want to discard everything as :all: covers it return for name in new: if name == ':none:': target.clear() continue name = canonicalize_name(name) other.discard(name) target.add(name) def fmt_ctl_formats(fmt_ctl, canonical_name): result = {"binary", "source"} if canonical_name in fmt_ctl.only_binary: result.discard('source') elif canonical_name in fmt_ctl.no_binary: result.discard('binary') elif ':all:' in fmt_ctl.only_binary: result.discard('source') elif ':all:' in fmt_ctl.no_binary: result.discard('binary') return frozenset(result) def fmt_ctl_no_binary(fmt_ctl): fmt_ctl_handle_mutual_exclude( ':all:', fmt_ctl.no_binary, fmt_ctl.only_binary) Search = namedtuple('Search', 'supplied canonical formats') """Capture key aspects of a search. :attribute supplied: The user supplied package. :attribute canonical: The canonical package name. :attribute formats: The formats allowed for this package. Should be a set with 'binary' or 'source' or both in it. """
4161ab8e5b053e034447ffc09fd26f16745bd00c
a52c74a91f2de9ecf08559b1a4e6e8e07b34702d
/2_Loops_and_Lists/1_word_loop.py
7791bd34c847def50c2d35dd772884270974bb3c
[]
no_license
Demdillypickles/Python_Demos
63d5624817031437dba950d22e6a9149e0ae294d
899c25d14a1310bca227057d77713cc93c2356b3
refs/heads/main
2023-04-15T13:30:35.095365
2021-04-22T12:56:10
2021-04-22T12:56:10
360,518,026
0
0
null
null
null
null
UTF-8
Python
false
false
262
py
from time import sleep separator = "#---------------#\n\n" word = input("Give me a word!\n>>> ") for x in word: print(x) sleep(0.5) print('\n' + separator) for i in range(0, 20): print(word[0: i % len(word) + 1]) sleep(0.5)
2b2ecf4b17dd2b31fbfbf57f46f019b2b1eb04ec
c903382b1c2d170ca5a00a4482ee23be94da76d8
/quokka/core/admin/views.py
b7dff6308251262454ea8aa0e2499378eaebf24c
[ "MIT" ]
permissive
alyoung/quokka
63c74ff913fe3d3b5ebdef38d9d267b149a6c9c1
a38749379f01c01cc887838999efa364dea5de04
refs/heads/master
2021-01-17T22:56:34.760694
2013-11-22T21:42:50
2013-11-22T21:42:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,499
py
# Create customized index view class from flask import current_app from quokka.core.models import Content from quokka.utils.routing import expose from quokka.core.widgets import TextEditor, PrepopulatedText from .ajax import AjaxModelLoader from .models import BaseIndexView, BaseView, ModelAdmin, BaseContentAdmin class IndexView(BaseIndexView): roles_accepted = ('admin', 'editor', 'moderator', 'writer', 'staff') @expose('/') def index(self): return self.render('admin/index.html') class InspectorView(BaseView): roles_accepted = ('admin',) @expose('/') def index(self): context = { "app": current_app } return self.render('admin/inspector.html', **context) ############################################################### # Admin model views ############################################################### class LinkAdmin(BaseContentAdmin): roles_accepted = ('admin', 'editor', 'writer', 'moderator') column_list = ('title', 'channel', 'slug', 'published') form_columns = ('title', 'slug', 'channel', 'link', 'content_format', 'summary', 'contents', 'values', 'available_at', 'available_until', 'published') form_args = { 'summary': {'widget': TextEditor()} } class ConfigAdmin(ModelAdmin): roles_accepted = ('admin', 'developer') column_list = ("group", "description", "published", "created_at", "updated_at") column_filters = ("group", "description") form_columns = ("group", "description", "published", "values") class SubContentPurposeAdmin(ModelAdmin): roles_accepted = ('admin', 'editor') class ChannelTypeAdmin(ModelAdmin): roles_accepted = ('admin', 'editor') class ContentTemplateTypeAdmin(ModelAdmin): roles_accepted = ('admin', 'editor') class ChannelAdmin(ModelAdmin): roles_accepted = ('admin', 'editor') column_list = ('title', 'long_slug', 'is_homepage', 'channel_type', 'created_at', 'available_at', 'published', 'view_on_site') column_filters = ['published', 'is_homepage', 'include_in_rss', 'show_in_menu', 'indexable'] column_searchable_list = ('title', 'description') form_columns = ['title', 'slug', 'content_format', 'description', 'parent', 'is_homepage', 'include_in_rss', 'indexable', 'show_in_menu', 'order', 'per_page', 'tags', 'published', 'canonical_url', 'values', 'channel_type', 'inherit_parent', 'content_filters', 'available_at', 'available_until', 'render_content', 'redirect_url'] column_formatters = { 'view_on_site': ModelAdmin.formatters.get('view_on_site'), 'created_at': ModelAdmin.formatters.get('datetime'), 'available_at': ModelAdmin.formatters.get('datetime') } form_subdocuments = {} form_widget_args = { 'title': {'style': 'width: 400px'}, 'slug': {'style': 'width: 400px'}, } form_args = { 'description': {'widget': TextEditor()}, 'slug': {'widget': PrepopulatedText(master='title')} } form_ajax_refs = { 'render_content': AjaxModelLoader('render_content', Content, fields=['title', 'slug']), 'parent': {'fields': ['title', 'slug', 'long_slug']}, }
1dea255ed37b2dc4dc02999793cf9f877ff42627
f5c7b5ccee346fa60fd3da4aa296de58b7a0cf2a
/catalyst_mlcomp/executors/valid.py
0aea9d4e86c42a63be7207562706c6a505bb4314
[]
no_license
CozyDoomer/steel-defect-detection
8a1df7a418c68c1dea0446ba67178cdd87a06305
bb1b803cde34cc5dbb5cae819791be00a62d5ad0
refs/heads/master
2022-02-25T08:49:46.693357
2019-10-21T18:18:39
2019-10-21T18:18:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,567
py
from collections import OrderedDict from copy import deepcopy import cv2 import numpy as np from tqdm import tqdm from mlcomp.contrib.dataset.segment import ImageWithMaskDataset from mlcomp.contrib.metrics.dice import dice_numpy from mlcomp.worker.executors import Executor from mlcomp.worker.executors.valid import Valid from mlcomp.worker.reports.segmenation import SegmentationReportBuilder from catalyst_segment import Experiment from utils.executor_mixin import ExecutorMixin @Executor.register class ValidSeverstal(Valid, ExecutorMixin): def __init__(self, **kwargs): cache_names = ['y', 'y_segment'] super().__init__( layout='img_segment', cache_names=cache_names, **kwargs ) self.x_source = ImageWithMaskDataset( img_folder='data/train_images', mask_folder='data/train_masks', fold_csv='data/masks.csv', fold_number=self.fold_number, is_test=True, transforms=Experiment.prepare_test_transforms(), num_classes=4, max_count=self.max_count ) self.builder = None self.x = None self.dices = [] def create_base(self): colors = [ (255, 255, 0), # yellow (0, 155, 191), # light blue (148, 0, 211), # purple (255, 0, 0) # red ] self.builder = SegmentationReportBuilder( session=self.session, layout=self.layout, task=self.task, name=self.name, colors=colors, plot_count=self.plot_count ) if self.layout else None def adjust_part(self, part): self.x = deepcopy(self.x_source) self.x.data = self.x.data[part[0]:part[1]] def count(self): return len(self.x_source) def score(self, preds): dices_by_photo = [] for i, img_pred in tqdm(enumerate(preds)): dice_by_photo = [] for j, c in enumerate(img_pred): target = self.x[i]['targets'][j] score = dice_numpy(target, c, empty_one=True) self.dices.append(score) dice_by_photo.append(score) dices_by_photo.append(np.mean(dice_by_photo)) return {'dice': dices_by_photo} def score_final(self): return np.mean(self.dices) def _plot_main(self, preds, scores): imgs = [] attrs = [] targets = [] self.x.transforms = None for i, img_pred in tqdm(enumerate(preds)): if i >= self.builder.plot_count: break row = self.x[i] attr = {} for j, c in enumerate(img_pred): contours, _ = cv2.findContours( c, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE ) attr[f'attr{i + 1}'] = len(contours) imgs.append(row['features']) targets.append(row['targets'].astype(np.uint8)) attr['attr5'] = sum(attr.values()) attrs.append(attr) preds = OrderedDict({'y': preds}) if 'y_segment' in self.cache: preds['y_segment'] = self.cache['y_segment'] self.builder.process_pred( imgs=imgs, preds=preds, targets=targets, attrs=attrs, scores=scores ) def plot(self, preds, scores): self._plot_main(preds, scores) def plot_final(self, score): self.builder.process_scores({'dice': score})
b76a0dfa887b2f0159fd967b61e4c40f5431f2a8
6729079d2ed02ebbca05adbb165d321dd37966a7
/courses/tests.py
353141a1272890080377ed5dc42f7c2dfdc29162
[]
no_license
ivanprytula/yps_test_task
0df9064d76cf9acfa9613da729d7ce531de35d75
6b6bf5ea8bb29b187bbbfc2ab8582a38906e4f72
refs/heads/main
2023-04-15T12:16:34.237140
2021-04-26T23:17:41
2021-04-26T23:17:41
361,918,949
0
0
null
null
null
null
UTF-8
Python
false
false
1,961
py
import datetime from http import HTTPStatus from django.test import TestCase, Client from .models import Course class ModelTestCase(TestCase): """This class defines the test suite for the Course model.""" def setUp(self): self.course_name = "Yalantis Python course" self.start_date = datetime.datetime.now() self.end_date = self.start_date + datetime.timedelta(days=30) self.lectures_quantity = 1 self.course = Course(name=self.course_name, start_date=self.start_date, end_date=self.end_date, lectures_quantity=self.lectures_quantity) def test_model_can_create_a_course(self): """Test the Course model can create a course/instance.""" old_count = Course.objects.count() self.course.save() new_count = Course.objects.count() self.assertNotEqual(old_count, new_count) class APIViewTestCase(TestCase): """Test suite for the api views.""" def setUp(self): """Define the test client and other test variables.""" self.client = Client() self.course_data = { 'id': '1', 'name': 'Python course', 'start_date': '2021-05-01', 'end_date': '2021-07-01', 'lectures_quantity': '20', } self.response = self.client.post( '/api/courses/create/', self.course_data, content_type='application/json', format='json') def test_api_can_create_a_course(self): """Test the API has course creation capability.""" self.assertEqual(self.response.status_code, HTTPStatus.CREATED) def test_api_can_retrieve_courses_list(self): """Test the API has courses list retrieving capability.""" response = self.client.get('/api/courses/', format='json') self.assertEqual(response.status_code, HTTPStatus.OK)
6665c52b545bfa40ef7b723af971b5ab3734efa2
d58f9e650c4d8f1fe0379bb5c0a8d2f58ae697ec
/thorvald_penetrometer/scripts/penetrometer_driver.py
5116ed52841c9316380b945b56beff444f675d8b
[]
no_license
mfkiwl/lcas_hardware-gnss-imu
41a02418c3895463b0e22e36eb9669560d516e8a
2aaed0601e2fd165cfb1f2a58b7c19df3b55ed2d
refs/heads/master
2021-09-28T20:33:53.096301
2018-11-20T09:21:55
2018-11-20T09:21:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,844
py
#!/usr/bin/env python import rospy import actionlib import serial import threading import yaml import std_srvs.srv #import actionlib_msgs.msg import dynamic_reconfigure.server # import Server from thorvald_penetrometer.cfg import PenetrometerConfig import std_msgs.msg #import String import thorvald_penetrometer.msg class PenetrometerServer(object): """ Class for Penetrometer Control """ _feedback = thorvald_penetrometer.msg.ProbeSoilFeedback() _result = thorvald_penetrometer.msg.ProbeSoilResult() _config_commands={ "ground_level":'g', "speed":'s', "top_speed":'t', "home_speed":'k', "acceleration":'a', "deceleration":'d', "probe_depth":'l', "dist_per_reading": 'q', "lfd_tolerance":'r', "max_force":'m', "min_force":'n', "max_force_delta":'x', "min_force_delta":'y',"force_delta_abs":'v',"safe_disconnect":'o'} _decimilimiters_configs=['ground_level','probe_depth','dist_per_reading'] _centiseconds_configs=['lfd_tolerance'] def __init__(self, name): """ Initialization for Class """ self.cancelled = False self.running=True self.reply_buf=[] self.last_response = '' self.config={} self.serial_port = rospy.get_param('~serial_port', '/dev/ttyACM0') rospy.loginfo("opening serial port") self.ser = serial.Serial(self.serial_port, 57600, timeout=0, parity=serial.PARITY_NONE) thread = threading.Thread(target=self.read_from_port)#, args=(serial_port,)) thread.start() self.input_pub = rospy.Publisher('/penetrometer_raw_data', std_msgs.msg.String, queue_size=0) #Creating Action Server rospy.loginfo("Creating action server.") self._as = actionlib.SimpleActionServer(name, thorvald_penetrometer.msg.ProbeSoilAction, execute_cb = self.executeCallback, auto_start = False) self._as.register_preempt_callback(self.preemptCallback) rospy.loginfo(" ...starting") self._as.start() rospy.loginfo(" ...done") rospy.loginfo("Creating services") sname=name+'/save_params' s = rospy.Service(sname, std_srvs.srv.Trigger, self.save_params) sname=name+'/clear_errors' s1 = rospy.Service(sname, std_srvs.srv.Trigger, self.clear_errors_req) rospy.loginfo("initialising device done ...") self.initialise_penetrometer() self.clear_errors() self.set_e_stop(False) self.set_power_enable(True) #Creating Dyn reconf server rospy.loginfo("Creating dynamic reconfigure server.") self.dynsrv = dynamic_reconfigure.server.Server(PenetrometerConfig, self.dyn_reconf_callback) self.send_home() rospy.loginfo("ROS init done ...") rospy.loginfo("ALL done ...") rospy.spin() #self.write_config_to_file() self.running=False self.ser.close() def clear_errors_req(self, req): self.clear_errors() return True, "Errors cleared" def save_params(self, req): self.write_config_to_file() return True, "saved to params.yaml" def write_config_to_file(self): config = dict(self.config) del config['groups'] yml = yaml.safe_dump(config, default_flow_style=False) fh = open("params.yaml", "w") s_output = str(yml) fh.write(s_output) fh.close() def read_from_port(self): serial_buffer=[] #response=[] while self.running: if (self.ser.inWaiting()>0): #if incoming bytes are waiting to be read from the serial input buffer data_str = self.ser.read(self.ser.inWaiting())#.decode('ascii') #read the bytes and convert from binary array to ASCII print "|"+data_str+"|" for i in data_str: serial_buffer.append(i) while '\n' in serial_buffer: #print "end found" nind= serial_buffer.index('\n') self.reply_buf.append(serial_buffer[0:nind]) pen_data = ''.join(serial_buffer[0:nind]) self.input_pub.publish(pen_data) for i in reversed(range(nind+1)): serial_buffer.pop(i) print serial_buffer # if len(self.reply_buf)>0: # print(self.reply_buf) rospy.sleep(0.001) # Optional: sleep 10 ms (0.01 sec) once per loop to let other threads on your PC run def dyn_reconf_callback(self, config, level): #rospy.loginfo("""Reconfigure Request: {counts}""".format(**config)) #self.max_counts = config['counts'] #print "reconfigure ", config if self.config: changed_dict = {x: self.config[x] != config[x] for x in self.config if x in config} lk = [key for (key, value) in changed_dict.items() if value] #print "config changed ", lk, config[lk[0]] self.set_config(lk[0], config[lk[0]]) self.config = config else: #print "First config: ", config.items() self.config = config for i in config.items(): self.set_config(i[0], i[1]) rospy.sleep(0.1) return config def set_config(self, field, value): if field in self._config_commands.keys(): print field, value if isinstance(value,bool): value=int(value) if field in self._decimilimiters_configs: value=int(value*10) if field in self._centiseconds_configs: value=int(value/10) command = self._config_commands[field]+str(value) reply = self._config_commands[field].capitalize()+str(value) print command, reply self.send_command(command) response = self.wait_for_reply(reply) if response: rospy.loginfo("%s set at %d" %(field, value)) else: rospy.logerr("Something failed when setting %s set at %d, response code (%s)" %(field,value,self.last_response)) rospy.loginfo("Maybe, try again?") def send_command(self, command): for i in command: self.ser.write(i) rospy.sleep(0.001) self.ser.write('\n') def clear_reply_buf(self): self.reply_buf=[] def wait_for_reply(self, expected, timeout=10): time_count=0 response='' replied=False while not replied and time_count<= (timeout*20) : if len(self.reply_buf)>0: response = self.reply_buf.pop(0) replied = True else: rospy.sleep(0.05) time_count+=1 self.last_response = ''.join(response) if self.last_response == expected: return True else: if time_count > (timeout*20): self.last_response = 'timeout' return False def initialise_penetrometer(self, retries=3): self.clear_reply_buf() self.send_command('@') rospy.loginfo("waiting for initialisation confirmation") response = self.wait_for_reply("@1") if response: rospy.loginfo("initialisation correct!") else: if retries > 0: rospy.logwarn("wrong response try again") self.initialise_penetrometer(retries=retries-1) else: rospy.logerr("too many fails!!") def clear_errors(self): self.clear_reply_buf() self.send_command('f0') rospy.loginfo("clearing errors") response = self.wait_for_reply('F0 ') if response: rospy.loginfo("Errors cleared") else: rospy.logerr("Something failed, response code (%s)" %self.last_response) rospy.loginfo("Maybe, try clear error service again?") def set_e_stop(self, enable): self.clear_reply_buf() if enable: command = 'e1' reply = 'E1' else: command = 'e0' reply = 'E0' self.send_command(command) rospy.loginfo("clearing estop") response = self.wait_for_reply(reply) if response: rospy.loginfo("estop reset") else: rospy.logerr("Something failed, response code (%s)" %self.last_response) rospy.loginfo("Maybe, try set estop service again?") def set_power_enable(self, enable): self.clear_reply_buf() if enable: command = 'p1' reply = 'P1' else: command = 'p0' reply = 'P0' self.send_command(command) rospy.loginfo("Enabling") response = self.wait_for_reply(reply) if response: rospy.loginfo("Enabled") else: rospy.logerr("Something failed, response code (%s)" %self.last_response) rospy.loginfo("Maybe, try set power service again?") def send_home(self): self.clear_reply_buf() self.send_command('z') rospy.loginfo("Homing") response = self.wait_for_reply('Z1', timeout=120) if response: rospy.loginfo("Homed") else: rospy.logerr("Something failed, response code (%s)" %self.last_response) rospy.loginfo("Maybe, try send home service again?") def get_data(self, timeout=10): print "." time_count=0 response='' replied=False while (not replied) and time_count <= (timeout*20) : #print (self.reply_buf) if len(self.reply_buf)>0: response = self.reply_buf.pop(0) response = ''.join(response) #print "data in ->", response replied = True else: rospy.sleep(0.05) time_count+=1 if time_count > (timeout*20): #print "timed out" return None else: return response def executeCallback(self, goal): self.cancelled=False finished=False self.depth_data=[] self.force_data=[] self.clear_reply_buf() rospy.loginfo("Probing") self.send_command('!1') while not self.cancelled and not finished: print "++" data_str = self.get_data(timeout=15) print data_str if data_str: if data_str == '!1': finished=True else: print "appending" cd=data_str.lstrip('*').split(',') self.depth_data.append(int(cd[0])) self.force_data.append(int(cd[1])) else: self.cancelled=True rospy.loginfo("Probe finished") self.send_home() if not self.cancelled: self._result.result = True self._result.depth = self.depth_data self._result.force = self.force_data rospy.loginfo('Succeeded') self._as.set_succeeded(self._result) else: self._as.set_preempted() def preemptCallback(self): self.cancelled=True if __name__ == '__main__': rospy.init_node('thorvald_penetrometer') server = PenetrometerServer(rospy.get_name())
0b1fe5dd3b5144549478b281e02f43cbacf5bb45
ae6622afe8364de9fe7464d20228dff80f1f13d5
/cours_POO/Projet/Plateau.py~
b7e6bccdadb4433065a5b4cf603e8175e3a4254d
[]
no_license
porigonop/code_v2
eafb2adcbbb2d88dc607fb54d87ef301faeca776
147773cc8871d74f1ec1d6bd03e3cce95e9490d1
refs/heads/master
2021-06-25T20:39:37.819172
2021-01-11T13:31:45
2021-01-11T13:31:45
97,024,626
0
0
null
null
null
null
UTF-8
Python
false
false
874
#!/usr/bin/env python3 from Moteur import Moteur class Plateau: def __init__(self, max_x, max_y): """constructeur du plateau, demande les maximum ou i peux se déplacer """ self.moteur_x = Moteur(0, max_x) self.moteur_y = Moteur(0, max_y) def deplace_x(x): x_init = self.moteur_x.position() if x_init < x: if self.moteur_x.direction(): self.moteur_x.avance(x - x_init) else: self.moteur_x.change_direction() self.moteur_x.avance(x - x_init) else: if not self.moteur_x.direction(): self.moteur_x.avance(x_init - x) def aller_a(self, x, y): x_init = self.moteur_x.position() y_init = self.moteur_y.porition()
[ "Antoine Lievre" ]
Antoine Lievre
1f4cbb30733a343b0ca5263a94e3f50c0079b49c
6f9c652eda2a9fad43031d3321e3b77add8737fd
/app/api/views/version.py
eaa2aa610592940a5ea6a1fd823ba829eff73204
[]
no_license
Y16v/intelect
eddd6a8f47d71226287d0c27f63995468950929a
0542ae3a7300c366d77284fcb1a991dd0316f97a
refs/heads/main
2023-08-15T17:05:33.627560
2021-10-14T16:16:49
2021-10-14T16:16:49
417,198,567
0
0
null
null
null
null
UTF-8
Python
false
false
407
py
from django.http import JsonResponse import os from intelect_kg.settings import FRONTEND_DIR def get_version(request): try: version_path = os.path.join(os.path.dirname(FRONTEND_DIR), 'version') version_file = open(version_path, 'r') version = version_file.readline() except FileNotFoundError: version = "" return JsonResponse({ 'version': version })
39c5075ed44cd2213f1a886f5908e0a89c393c13
f886c00fa022cc997f18e8d1228510624e274af8
/BlackJack.py
6ee9eda15954c7ceb8a820b76fecc59a6746e41f
[]
no_license
manugangadhar/Python-Bootcamp-Zero-to-Hero
9eaecfd557dca62c404cd9ed0e83fcf77d2ee58b
d7d75bc4789e20c4e655100257422f7bd9bd4183
refs/heads/master
2020-04-16T23:35:16.007948
2019-02-18T10:23:03
2019-02-18T10:23:03
166,017,373
0
0
null
null
null
null
UTF-8
Python
false
false
17,056
py
import random card_types = ['s', 'h', 'd', 'c'] global players_list players_list = {} global dealer_cards dealer_cards = [] global fiftytwo_cards fiftytwo_cards = set() class Blackjack: def __init__(self, name, bet, player_cards, gain_loss): self.name = name self.bet = bet self.player_cards = player_cards self.gain_loss = gain_loss def card_distribute(self, set_of_cards): self.player_cards.append(set_of_cards.pop()) def player_stand(self): pass def player_hit(self, set_of_cards): print(f"*****Player {self.name} will take a hit*****") self.player_cards.append(set_of_cards.pop()) def player_split(self): pass def calculate_wins(self): self.gain_loss = self.gain_loss + self.bet return self.gain_loss def calculate_loss(self): self.gain_loss = self.gain_loss - self.bet return self.gain_loss def value_of_cards(self, player_cards): card_values = [] for i in player_cards: if i[1:] in ['J','Q','K']: card_values.append(10) elif i[1:] in ['1','2','3','4','5','6','7','8','9','10']: card_values.append(int(i[1:])) else: if (21 - sum(card_values)) >= 11: card_values.append(11) else: card_values.append(1) return sum(card_values) def show_cards(self, player_cards): for i in self.player_cards: if i[0] == 's': print('------------') print(f'|{i[1:]} |') print('| |') print('| Spade - |') print('| |') print(f'| {i[1:]}|') print('------------') if i[0] == 'h': print('------------') print(f'|{i[1:]} |') print('| |') print('| Heart - |') print('| |') print(f'| {i[1:]}|') print('------------') if i[0] == 'd': print('------------') print(f'|{i[1:]} |') print('| |') print('| Diamond -|') print('| |') print(f'| {i[1:]}|') print('------------') if i[0] == 'c': print('------------') print(f'|{i[1:]} |') print('| |') print('| clubs - |') print('| |') print(f'| {i[1:]}|') print('------------') def card_suffle(fiftytwo_cards): random.shuffle(fiftytwo_cards) random.shuffle(fiftytwo_cards) return fiftytwo_cards def card_distribute_dealer(set_cards): global set_of_cards dealer_cards.append(set_of_cards.pop()) def show_cards_dealer(dealer_cards): for i in dealer_cards: if i[0] == 's': print('------------') print(f'|{i[1:]} |') print('| |') print('| Spade - |') print('| |') print(f'| {i[1:]}|') print('------------') if i[0] == 'h': print('------------') print(f'|{i[1:]} |') print('| |') print('| Heart - |') print('| |') print(f'| {i[1:]}|') print('------------') if i[0] == 'd': print('------------') print(f'|{i[1:]} |') print('| |') print('| Diamond -|') print('| |') print(f'| {i[1:]}|') print('------------') if i[0] == 'c': print('------------') print(f'|{i[1:]} |') print('| |') print('| clubs - |') print('| |') print(f'| {i[1:]}|') print('------------') def check_value_of_dealercards(dealer_cards): card_values = [] for i in dealer_cards: if i[1:] in ['J', 'Q', 'K']: card_values.append(10) elif i[1:] in ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10']: card_values.append(int(i[1:])) else: if (21 - sum(card_values)) >= 11: card_values.append(11) else: card_values.append(1) return sum(card_values) def populate_cards(card_types): cards_fiftytwo = [] for i in card_types: for j in range(1, 11): if j == 1: cards_fiftytwo.append(i + 'A') else: cards_fiftytwo.append(i+str(j)) cards_fiftytwo.append(i+'J') cards_fiftytwo.append(i+'Q') cards_fiftytwo.append(i+'K') return cards_fiftytwo def card_distribution(players_list, set_of_cards): for i in players_list.values(): i.card_distribute(set_of_cards) card_distribute_dealer(set_of_cards) for i in players_list.values(): i.card_distribute(set_of_cards) print("#######################################") print("#Player {} cards are displayed below#".format(i.name)) print("#######################################") i.show_cards(i.player_cards) print("Total value of your cards is {}".format(i.value_of_cards(i.player_cards))) card_distribute_dealer(set_of_cards) print("#######################################") print("#Dealer first card is displayed below#") print("#######################################") show_cards_dealer([dealer_cards[0]]) temp_cards = populate_cards(card_types) set_of_cards = card_suffle(temp_cards) print(set_of_cards) set_of_cards.reverse() number_players = int(input("Choose number of players who wish to play BlackJack\n")) for i in range(1, number_players + 1): name = input("Enter Player+{} name: ".format(str(i))) bet = int(input("Enter your betting amount: ")) player_cards = [] players_list[str(i)] = Blackjack(name, bet, player_cards,0) while 1: card_distribution(players_list, set_of_cards) if check_value_of_dealercards(dealer_cards) == 21: print("JackPot for Dealer he got 21") print("#######################################") print("#Dealer cards are displayed below#") print("#######################################") show_cards_dealer(dealer_cards) for i in players_list.values(): print(f"Player {i.name} loss or gain is {i.calculate_loss()}") if int(input("Do you wish to continue? Enter 0 or 1")): dealers_cards = [] for i in players_list.values(): i.player_cards = [] continue else: print("*********Bye***** Bye*****") quit() else: print("Dealer doesn't have 21") count_number_players_greater_21 = 0 players_on_stay = [] for i in players_list.values(): while 1: if i.value_of_cards(i.player_cards) == 21: print(f"Jackpot for player {i.name}") print("#######################################") print("#Player {} cards are displayed below#".format(i.name)) print("#######################################") i.show_cards(i.player_cards) print(f"Player {i.name} Total gains or loss is {i.calculate_wins()}") i.player_cards = [] break if i.value_of_cards(i.player_cards) < 21: hit_stand_split = int(input(f"Player {i.name}, press 1 for hit, press 2 for stand, press 3 for split")) if hit_stand_split == 1: i.card_distribute(set_of_cards) print("#######################################") print("#Player {} cards are displayed below#".format(i.name)) print("#######################################") i.show_cards(i.player_cards) print("Total value of your cards is {}".format(i.value_of_cards(i.player_cards))) continue if hit_stand_split == 2: players_on_stay.append(i) print(f"Player {i.name} has opted for stay on value {i.value_of_cards(i.player_cards)}") print("#######################################") print("#Player {} cards are displayed below#".format(i.name)) print("#######################################") i.show_cards(i.player_cards) break if hit_stand_split == 3: pass if i.value_of_cards(i.player_cards) > 21: count_number_players_greater_21 = count_number_players_greater_21 + 1 print(f"Player {i.name} cards value is more than 21") print("#######################################") print("#Player {} cards are displayed below#".format(i.name)) print("#######################################") i.show_cards(i.player_cards) print(f"Player {i.name} Total gains or loss is {i.calculate_loss()}") i.player_cards = [] break if count_number_players_greater_21 == number_players: print("All players lost and Dealer Won") dealers_cards = [] for i in players_list.values(): i.player_cards = [] if int(input("Do you wish to continue? Enter 0 or 1")): continue else: print("*********Bye***** Bye*****") quit() else: print("#######################################") print("#Dealer cards are displayed below######") print("#######################################") show_cards_dealer(dealer_cards) while 1: if check_value_of_dealercards(dealer_cards) > 21: print("Dealer lost the game") print("#######################################") print("#Dealer cards are displayed below######") print("#######################################") show_cards_dealer(dealer_cards) for i in players_on_stay: print(f"Player {i.name} Total Gains or Loss is {i.calculate_wins()}") i.player_cards = [] players_on_stay = [] dealers_cards = [] if int(input("Do you wish to continue? Enter 0 or 1")): break else: print("*********Bye***** Bye*****") quit() if check_value_of_dealercards(dealer_cards) == 21: print("JackPot for Dealer he got 21") print("#######################################") print("#Dealer cards are displayed below#") print("#######################################") show_cards_dealer(dealer_cards) dealers_cards = [] for i in players_on_stay: print(f"Player {i.name} loss or gain is {i.calculate_loss()}") i.player_cards = [] players_on_stay = [] if int(input("Do you wish to continue? Enter 0 or 1")): break else: print("*********Bye***** Bye*****") quit() if check_value_of_dealercards(dealer_cards) < 21: count_negative = 0 count_positive = 0 for i in players_on_stay: if check_value_of_dealercards(dealer_cards) - i.value_of_cards(i.player_cards) < 0: count_negative = count_negative + 1 if check_value_of_dealercards(dealer_cards) - i.value_of_cards(i.player_cards) > 0: count_positive = count_positive + 1 if (count_positive < count_negative) and (21 - check_value_of_dealercards(dealer_cards)) >= 6: card_distribute_dealer(set_of_cards) print("Dealer went for hit as he is having less than 21") print("#######################################") print("#Dealer cards are displayed below#") print("#######################################") show_cards_dealer(dealer_cards) continue if (count_positive < count_negative) and (21 - check_value_of_dealercards(dealer_cards)) < 6: print("Dealer decided to stay and no more hits") for i in players_on_stay: if i.value_of_cards(i.player_cards) > check_value_of_dealercards(dealers_cards): print(f"Player {i.name} loss or gain is {i.calculate_win()}") elif i.value_of_cards(i.player_cards) == check_value_of_dealercards(dealers_cards): print(f"No Loss or Gain for player {i.name}") else: print(f"Player {i.name} loss or gain is {i.calculate_loss()}") dealers_cards = [] for i in players_on_stay: print(f"Player {i.name} loss or gain is {i.calculate_loss()}") i.player_cards = [] players_on_stay = [] if int(input("Do you wish to continue? Enter 0 or 1")): break else: print("*********Bye***** Bye*****") quit() if (count_positive > count_negative) and (21 - check_value_of_dealercards(dealer_cards)) < 6: print("Dealer decided to stay and no more hits") for i in players_on_stay: if i.value_of_cards(i.player_cards) > check_value_of_dealercards(dealers_cards): print(f"Player {i.name} loss or gain is {i.calculate_win()}") elif i.value_of_cards(i.player_cards) == check_value_of_dealercards(dealers_cards): print(f"No Loss or Gain for player {i.name}") else: print(f"Player {i.name} loss or gain is {i.calculate_loss()}") dealers_cards = [] for i in players_on_stay: print(f"Player {i.name} loss or gain is {i.calculate_loss()}") i.player_cards = [] players_on_stay = [] if int(input("Do you wish to continue? Enter 0 or 1")): break else: print("*********Bye***** Bye*****") quit() if count_positive > count_negative and (21 - check_value_of_dealercards(dealer_cards)) >= 6: card_distribute_dealer(set_of_cards) print("Dealer went for hit as he is having less than 21") print("#######################################") print("#Dealer cards are displayed below#") print("#######################################") show_cards_dealer(dealer_cards) continue if count_positive == count_negative and (21 - check_value_of_dealercards(dealer_cards)) >= 6: card_distribute_dealer(set_of_cards) print("Dealer went for hit as he is having less than 21") print("#######################################") print("#Dealer cards are displayed below#") print("#######################################") show_cards_dealer(dealer_cards) continue if count_positive == count_negative and (21 - check_value_of_dealercards(dealer_cards)) < 6: print("Dealer decided to stay and no loss no gain for rest of the players") print(f"No Loss or Gain for player {i.name}") dealers_cards = [] for i in players_on_stay: i.player_cards = [] players_on_stay = [] if int(input("Do you wish to continue? Enter 0 or 1")): break else: print("*********Bye***** Bye*****") quit()
eae25c446f1476173e50c81ee59f60f158f41104
c6ceceb555759b7aa59599fbd46adadc73f5ae2d
/forms.py
4342b181de359bc477eb83a9955a385009244c0a
[]
no_license
DruSerkes/Adopt-a-Pet
989ca9db1b152b5964aab651581465ac37628886
91120ef0c3b34a670d2108925fe10884e78cc660
refs/heads/master
2023-05-11T04:47:31.502430
2023-05-02T12:04:03
2023-05-02T12:04:03
270,837,220
0
0
null
2023-05-02T12:05:08
2020-06-08T21:45:23
HTML
UTF-8
Python
false
false
1,070
py
from flask_wtf import FlaskForm from wtforms import StringField, FloatField, BooleanField, IntegerField, RadioField, SelectField from wtforms.fields.html5 import URLField from wtforms.validators import InputRequired, Optional, AnyOf, NumberRange, DataRequired class PetForm(FlaskForm): """ Form for Pet data """ name = StringField("Pet Name", validators=[ DataRequired(message="Enter a name for your pet")]) species = StringField("Species", validators=[ DataRequired(message="Enter a species for your pet"), AnyOf(['Dog', 'Cat', 'Porcupine'], message="Species must be either 'Dog' 'Cat' or 'Porcupine'")]) photo_url = URLField('Image URL', validators=[Optional()]) age = IntegerField("Pet Age", validators=[NumberRange( min=0, max=30, message="Age must be between 0 and 30"), Optional()]) notes = StringField("Anything else we should know?", validators=[Optional()]) available = BooleanField( "Is this pet available for adoption?", default='checked')
5c958bbe5102f43324270833aeb0498212e1dfa1
d05cd4d5963de73323cb5e86b7a832992649091d
/python/Lab13/Lab13_6.py
928b539d47b2c8e2d5f08aa6dc9489648fe8d09f
[]
no_license
bhelga/university
c46eeed000f08b8faa9e5e7556816b5ee3deb67e
0169d245e9b9b459de2dfb4433653e609cb1e927
refs/heads/main
2023-07-02T20:22:18.372432
2021-08-04T16:03:41
2021-08-04T16:03:41
343,385,090
0
0
null
null
null
null
UTF-8
Python
false
false
1,476
py
from collections import namedtuple import random def good_insurers(insurers): avarage = 0.0 for i in insurers: avarage += i.number_of_agreements avarage /= 7 ary = [] print("Страховики", end=" ") for i in insurers: if i.number_of_agreements > avarage: ary.append(i) print(i.last_name, end=", ") print(" в цьому місяці найкращі!") Insurer = namedtuple('Insurer', 'last_name mobile_phone address number_of_agreements') insurer1 = Insurer("Melnuk", "0685453956", "6 Beatty Rise", 15) insurer2 = Insurer("Shevchencko", "0539563407", "Fuglsangshaven 19, 1. sal. th.", 20) insurer3 = Insurer("Voiko", "0995674967", "Kjeldsen Vej 55", 13) insurer4 = Insurer("Kovalenko", "0675754965", "Kaivolakaarto 7", 18) insurer5 = Insurer("Bondarenko", "0985354956", "12454 Dwight Keys", 10) insurer6 = Insurer("Tkachenko", "0976754978", "696 Pete Avenue Apt. 151", 17) insurer7 = Insurer("Oliynuk", "0986768967", "18572 Wunsch Keys", 9) insurers = [insurer1, insurer2, insurer3, insurer4, insurer5, insurer6, insurer7] good_insurers(insurers) new = [] #temp = list(insurers) for i in insurers: new.append(i._replace(number_of_agreements=random.randint(1, 30))) # insurers[i]._replace(number_of_agreements=random.randint(1, 30)) print(*i, sep="\n", end="\n\n") #insurers.__add__(i._replace(number_of_agreements=random.randint(1, 30))) print(*insurers) good_insurers(new)
2b2b7d8dae3230411d0c99c98d1108263429d8e4
720c106a3e5e13b58154070e530574f110b1c138
/01.tictactoe/sample.py
e077c485cf0a90b2eb073131d4283bdd8ce374a5
[]
no_license
thanpolas/hackerrank
37c8be4b3f0f96ed4211e6a93eab043828a7e347
7aaf3805c8e1811b912dee849b304f1e1d46c892
refs/heads/master
2020-12-24T13:36:07.891519
2013-01-09T17:50:07
2013-01-09T17:50:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
440
py
#!/bin/python import random # Complete the function below to print 2 integers separated by a single space which will be your next move def nextMove(player,board): print (1, 0) #If player is X, I'm the first player. #If player is O, I'm the second player. player = raw_input() #Read the board now. The board is a 3x3 array filled with X, O or _. board = [] for i in xrange(0, 3): board.append(raw_input()) nextMove(player,board)
5046ab134fa58280291b52068b117f161cc3c023
69cc3a2d036f5a7d26844913a8ae6167a26c33c4
/univ_softplus.py
ad4aeb9711d3d7f39805910a2f127a9e0ee39323
[]
no_license
JakeSigwart/Curve_fitting
c6758ce69b1e22973940418f4ccc5333046038f8
67adbd2d51aff023379143e17fe154cb7e21b6ce
refs/heads/master
2020-03-22T01:59:03.302925
2018-07-01T15:57:29
2018-07-01T15:57:29
139,342,405
0
0
null
null
null
null
UTF-8
Python
false
false
2,591
py
#The purpose of this program is to show that a neural network is a universal approximator #In order to be a univaersal approximator, the network must have non-linearities i.e. softplus function #I am training the network to approximate sin x on [-2*pi, 2*pi] #Results: import os import math import time import random import numpy as np import matplotlib.pyplot as plt import tensorflow as tf path = os.path.dirname(__file__) save_path = path + "\\univ_softplus\\classifier.ckpt" sess = tf.Session() inputs = tf.placeholder(tf.float32, shape=[None, 1], name='inputs') labels = tf.placeholder(tf.float32, shape=[None, 1], name='labels') inputs_1 = tf.map_fn(lambda x_val: tf.fill([64], 1.000)*x_val, inputs) W_1 = tf.Variable(tf.truncated_normal([64, 64],mean=0.0,stddev=0.088), name='W_1') b_1 = tf.Variable(tf.constant(0.0005, shape=[64]), name='b_1') h_1 = tf.matmul(inputs_1, W_1) + b_1 W_2 = tf.Variable(tf.truncated_normal([64, 64],mean=0.0,stddev=0.088), name='W_2') b_2 = tf.Variable(tf.constant(0.0005, shape=[64]), name='b_2') h_2 = tf.matmul(h_1, W_2) + b_2 h_actv_2 = tf.nn.softplus(h_2, name='h_actv_2') W_3 = tf.Variable(tf.truncated_normal([64, 64],mean=0.0,stddev=0.088), name='W_3') b_3 = tf.Variable(tf.constant(0.0005, shape=[64]), name='b_3') h_3 = tf.matmul(h_actv_2, W_3) + b_3 h_actv_3 = tf.nn.softplus(h_3, name='h_actv_3') W_4 = tf.Variable(tf.truncated_normal([64,1],mean=0.0,stddev=0.088), name='W_4') h_output = tf.matmul(h_actv_3, W_4) loss = tf.reduce_mean(tf.square(h_output - labels)) Optimize = tf.train.AdamOptimizer(5e-3).minimize(loss) saver = tf.train.Saver() sess.run(tf.global_variables_initializer()) if os.path.isfile(path + "\\univ_softplus\\checkpoint"): saver.restore(sess, save_path) print("Model restored.") else: print('Building new model...') #TRAINING## num_batches = 1024 batch_size = 1024 for i in range(num_batches): #get random sine values x = 4*math.pi*np.random.sample(batch_size) - 2*math.pi x = x.reshape([batch_size,1]) y = np.zeros(shape=[batch_size, 1], dtype=float) #y = sin of x[] for index in range(batch_size): y[index,0] = math.sin(x[index]) gradients, loss_out, output = sess.run([Optimize, loss, h_output], feed_dict={inputs: x, labels: y}) print(str(x[0]) + ', ' + str(output[0])) print("Batch: " + str(i) + " Cross Entropy: " + str(loss_out)) save_path = saver.save(sess, path + "\\univ_softplus\\classifier.ckpt") plt.scatter(x, output) plt.xlabel('Independant Var x') plt.ylabel('NN Aproximation of sin(x)') plt.show()
e1e6b4a1acf4098929d38b140640b4ebe4c39c3d
c5447b9d51b8135a79b39bdb9f19806de860cf00
/quick_train.py
dc7ee4799629ad278cb2b0a14c7f15bd9aff8247
[ "MIT" ]
permissive
HarlanHW/My_YOLOv3
d85c75a9e6eb02277b8923c09d28adbfe14cb4e4
03ebdd564f77dd42cb389460efba111df3c516ea
refs/heads/master
2020-05-02T05:38:19.455680
2019-03-26T12:11:39
2019-03-26T12:11:39
177,774,370
0
0
null
null
null
null
UTF-8
Python
false
false
4,402
py
#! /usr/bin/env python # coding=utf-8 #================================================================ # Copyright (C) 2019 * Ltd. All rights reserved. # # Editor : VIM # File name : quick_train.py # Author : YunYang1994 # Created date: 2019-01-21 14:46:26 # Description : # #================================================================ import tensorflow as tf from core import utils, yolov3 from core.dataset import dataset, Parser sess = tf.Session() IMAGE_H, IMAGE_W = 416, 416 #图形大小 BATCH_SIZE = 8 #批尺寸 EPOCHS = 20 LR = 0.001 #学习率 if Nan, set 0.0005, 0.0001 DECAY_STEPS = 100 DECAY_RATE = 0.9 SHUFFLE_SIZE = 200 CLASSES = utils.read_coco_names('./data/raccoon.names') #类别名称 ANCHORS = utils.get_anchors('./data/raccoon_anchors.txt', IMAGE_H, IMAGE_W) #锚框数据 NUM_CLASSES = len(CLASSES) #类别数量 EVAL_INTERNAL = 100 SAVE_INTERNAL = 500 train_tfrecord = "./raccoon_dataset/raccoon_train.tfrecords" test_tfrecord = "./raccoon_dataset/raccoon_test.tfrecords" parser = Parser(IMAGE_H, IMAGE_W, ANCHORS, NUM_CLASSES) trainset = dataset(parser, train_tfrecord, BATCH_SIZE, shuffle=SHUFFLE_SIZE) testset = dataset(parser, test_tfrecord , BATCH_SIZE, shuffle=None) is_training = tf.placeholder(tf.bool) example = tf.cond(is_training, lambda: trainset.get_next(), lambda: testset.get_next()) images, *y_true = example model = yolov3.yolov3(NUM_CLASSES, ANCHORS) with tf.variable_scope('yolov3'): pred_feature_map = model.forward(images, is_training=is_training) loss = model.compute_loss(pred_feature_map, y_true) y_pred = model.predict(pred_feature_map) tf.summary.scalar("loss/coord_loss", loss[1]) tf.summary.scalar("loss/sizes_loss", loss[2]) tf.summary.scalar("loss/confs_loss", loss[3]) tf.summary.scalar("loss/class_loss", loss[4]) global_step = tf.Variable(0, trainable=False, collections=[tf.GraphKeys.LOCAL_VARIABLES]) write_op = tf.summary.merge_all() writer_train = tf.summary.FileWriter("./data/train") writer_test = tf.summary.FileWriter("./data/test") saver_to_restore = tf.train.Saver(var_list=tf.contrib.framework.get_variables_to_restore(include=["yolov3/darknet-53"])) update_vars = tf.contrib.framework.get_variables_to_restore(include=["yolov3/yolo-v3"]) learning_rate = tf.train.exponential_decay(LR, global_step, decay_steps=DECAY_STEPS, decay_rate=DECAY_RATE, staircase=True) optimizer = tf.train.AdamOptimizer(learning_rate) # set dependencies for BN ops update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): train_op = optimizer.minimize(loss[0], var_list=update_vars, global_step=global_step) sess.run([tf.global_variables_initializer(), tf.local_variables_initializer()]) saver_to_restore.restore(sess, "./checkpoint/yolov3.ckpt") saver = tf.train.Saver(max_to_keep=2) for epoch in range(EPOCHS): run_items = sess.run([train_op, write_op, y_pred, y_true] + loss, feed_dict={is_training:True}) if (epoch+1) % EVAL_INTERNAL == 0: train_rec_value, train_prec_value = utils.evaluate(run_items[2], run_items[3]) writer_train.add_summary(run_items[1], global_step=epoch) writer_train.flush() # Flushes the event file to disk if (epoch+1) % SAVE_INTERNAL == 0: saver.save(sess, save_path="./checkpoint/yolov3.ckpt", global_step=epoch+1) print("=> EPOCH %10d [TRAIN]:\tloss_xy:%7.4f \tloss_wh:%7.4f \tloss_conf:%7.4f \tloss_class:%7.4f" %(epoch+1, run_items[5], run_items[6], run_items[7], run_items[8])) run_items = sess.run([write_op, y_pred, y_true] + loss, feed_dict={is_training:False}) if (epoch+1) % EVAL_INTERNAL == 0: test_rec_value, test_prec_value = utils.evaluate(run_items[1], run_items[2]) print("\n=======================> evaluation result <================================\n") print("=> EPOCH %10d [TRAIN]:\trecall:%7.4f \tprecision:%7.4f" %(epoch+1, train_rec_value, train_prec_value)) print("=> EPOCH %10d [VALID]:\trecall:%7.4f \tprecision:%7.4f" %(epoch+1, test_rec_value, test_prec_value)) print("\n=======================> evaluation result <================================\n") writer_test.add_summary(run_items[0], global_step=epoch) writer_test.flush() # Flushes the event file to disk
fc309d02b0fd046fac2d2d289f27fba3c46c9ed1
766865913811b66ff8b3cfd2b1d1588a0b34cd52
/app.py
695e2b6fbe3adee25787a9a17bd3810dead6bc4b
[]
no_license
waizhen/Recruitment_Scam_Prediction
a80e0428128a648bb0ad5fe6ef953a015700f7b2
ff0bb7554945797f11063254fbb35cdc784bf185
refs/heads/main
2023-06-27T08:37:44.706868
2021-07-19T14:52:15
2021-07-19T14:52:15
387,481,272
2
0
null
null
null
null
UTF-8
Python
false
false
14,571
py
#!/usr/bin/env python # coding: utf-8 # In[2]: import gradio as gr import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import joblib import lightgbm as lgb from lightgbm import LGBMClassifier # Create a country abbreviation dict country_dict = { 'United States': 'US', 'New Zealand': 'NZ', 'Germany': 'DE', 'Great Britain': 'GB', 'Australia': 'AU', 'Singapore': 'SG', 'Israel': 'IL', 'United Arab Emirates': 'AE', 'Canada': 'CA', 'India': 'IN', 'Egypt': 'EG', 'Poland': 'PL', 'Greece': 'GR', 'Undefined': 'Undefined', 'Pakistan': 'PK', 'Belgium': 'BE', 'Brazil': 'BR', 'Saudi Arabia': 'SA', 'Denmark': 'DK', 'Russia': 'RU', 'South Africa': 'ZA', 'Cyprus': 'CY', 'Hong Kong': 'HK', 'Turkey': 'TR', 'Ireland': 'IE', 'Lithuania': 'LT', 'Japan': 'JP', 'Netherlands': 'NL', 'Austria': 'AT', 'South Korea': 'KR', 'France': 'FR', 'Estonia': 'ES', 'Thailand': 'TH', 'Panama': 'PA', 'Kenya': 'KE', 'Mauritius': 'MU', 'Mexico': 'MX', 'Romania': 'RO', 'Malaysia': 'MY', 'Finland': 'FI', 'China': 'CN', 'Spain': 'ES', 'Sweden': 'SE', 'Chile': 'CL', 'Ukraine': 'UA', 'Qatar': 'QA', 'Italy': 'IT', 'Latvia': 'LV', 'Iraq': 'IQ', 'Bulgaria': 'BG', 'Philippines': 'PH', 'Czech Republic': 'CZ', 'U.S. Virgin Islands': 'VI', 'Malta': 'MT', 'Hungary': 'HU', 'Non-US countries': 'Non-US', 'Bangladesh': 'BD', 'Kuwait': 'KW', 'Luxembourg': 'LU', 'Nigeria': 'NG', 'Serbia': 'RS', 'Belarus': 'BY', 'Vietnam': 'VN', 'Indonesia': 'ID', 'Zambia': 'ZM', 'Norway': 'NO', 'Bahrain': 'BH', 'Uganda': 'UG', 'Switzerland': 'CH', 'U.S. & Other countries': 'US+other', 'Trinidad & Tobago': 'TT', 'Sudan': 'SD', 'Slovakia': 'SK', 'Argentina': 'AR', 'Taiwan': 'TW', 'Portugal': 'PT', 'Peru': 'PE', 'Colombia': 'CO', 'Iceland': 'IS', 'Slovenia': 'SI', 'Morocco': 'MA', 'Armenia': 'AM', 'Tunisia': 'TN', 'Ghana': 'GH', 'Albania': 'AL', 'Croatia': 'HR', 'Cameroon': 'CM', 'El Salvador': 'SV', 'Nicaragua': 'NI', 'Sri Lanka': 'LK', 'Jamaica': 'JM', 'Kazakhstan': 'KZ', 'Cambodia': 'KH' } # Create feature list feature_list = [ "telecommuting", "has_company_logo", "has_questions", "raw_word_count", "employment_type_Contract", "employment_type_Full-time", "employment_type_Full-time & Part-time", "employment_type_Other", "employment_type_Part-time", "employment_type_Temporary", "required_experience_Associate", "required_experience_Director", "required_experience_Entry level", "required_experience_Executive", "required_experience_Internship", "required_experience_Mid-Senior level", "required_experience_Not Applicable", "required_education_Associate Degree", "required_education_Bachelor's Degree", "required_education_Certification", "required_education_Doctorate", "required_education_Empty requirements", "required_education_High School or equivalent", "required_education_Master's Degree", "required_education_Professional", "required_education_Some College Coursework Completed", "required_education_Some High School Coursework", "required_education_Unspecified", "required_education_Vocational", "required_education_Vocational - Degree", "required_education_Vocational - HS Diploma", "function_Accounting/Auditing", "function_Administrative", "function_Advertising", "function_Art/Creative", "function_Business Analyst", "function_Business Development", "function_Consulting", "function_Customer Service", "function_Data Analyst", "function_Design", "function_Distribution", "function_Education", "function_Engineering", "function_Finance", "function_Financial Analyst", "function_General Business", "function_Health Care Provider", "function_Human Resources", "function_Information Technology", "function_Legal", "function_Management", "function_Manufacturing", "function_Marketing", "function_Other", "function_Product Management", "function_Production", "function_Project Management", "function_Public Relations", "function_Purchasing", "function_Quality Assurance", "function_Research", "function_Sales", "function_Science", "function_Strategy/Planning", "function_Supply Chain", "function_Training", "function_Writing/Editing", "country_AE", "country_AL", "country_AM", "country_AR", "country_AT", "country_AU", "country_BD", "country_BE", "country_BG", "country_BH", "country_BR", "country_BY", "country_CA", "country_CH", "country_CL", "country_CM", "country_CN", "country_CO", "country_CY", "country_CZ", "country_DE", "country_DK", "country_EE", "country_EG", "country_ES", "country_FI", "country_FR", "country_GB", "country_GH", "country_GR", "country_HK", "country_HR", "country_HU", "country_ID", "country_IE", "country_IL", "country_IN", "country_IQ", "country_IS", "country_IT", "country_JM", "country_JP", "country_KE", "country_KH", "country_KR", "country_KW", "country_KZ", "country_LK", "country_LT", "country_LU", "country_LV", "country_MA", "country_MT", "country_MU", "country_MX", "country_MY", "country_NG", "country_NI", "country_NL", "country_NO", "country_NZ", "country_Non-US", "country_PA", "country_PE", "country_PH", "country_PK", "country_PL", "country_PT", "country_QA", "country_RO", "country_RS", "country_RU", "country_SA", "country_SD", "country_SE", "country_SG", "country_SI", "country_SK", "country_SV", "country_TH", "country_TN", "country_TR", "country_TT", "country_TW", "country_UA", "country_UG", "country_US", "country_US+other", "country_Undefined", "country_VI", "country_VN", "country_ZA", "country_ZM" ] # Create a predict function with input parameters from user inputs def predict(job_title, employment_type, required_experience, required_education, function, country, telecommuting, has_company_logo, has_questions, location, company_profile, job_description, requirements, benefits, plot_option): # Convert country to 2 letter abbrieviation country = country_dict[country] # Create structured df with all int zeros df_structured = pd.DataFrame(int(0), index=np.arange(1), columns=feature_list) # Fill the features accordingly to structured df df_structured.loc[0, 'telecommuting'] = int(np.where(telecommuting == 'Yes', 1, 0)) df_structured.loc[0, 'has_company_logo'] = int(np.where(has_company_logo == 'Yes', 1, 0)) df_structured.loc[0, 'has_questions'] = int(np.where(has_questions == 'Yes', 1, 0)) df_structured.loc[0, 'employment_type' + '_' + str(employment_type)] = 1 df_structured.loc[0, 'required_experience' + '_' + str(required_experience)] = 1 df_structured.loc[0, 'required_education' + '_' + str(required_education)] = 1 df_structured.loc[0, 'function' + '_' + str(function)] = 1 df_structured.loc[0, 'country' + '_' + str(country)] = 1 # Text df df_text = pd.DataFrame({ 'text': [job_title + ' ' + location + ' ' + company_profile + ' ' + job_description + ' ' + \ requirements + ' ' + benefits] }) # Get the raw word count df_structured['raw_word_count'] = df_text['text'].apply(lambda x: len(x.split())) # For plotting filtered_val = '' if plot_option == 'function': filtered_val = function elif plot_option == 'country': filtered_val = country df_plot = pd.read_csv("recruitment_plotting.csv") df_plotted = df_plot[ df_plot[str(plot_option)] == str(filtered_val) ].groupby('fraudulent').size().reset_index().rename(columns={0: 'count'}) df_plotted['percentage_count'] = df_plotted['count'] / df_plotted['count'].sum() * 100 # Plot graph based on user input (function or country, count or percent count) fig = plt.figure(figsize=(9.5, 7)) sns.set(font_scale=1) ax = sns.barplot(data=df_plotted, x='fraudulent', y='percentage_count', palette='Oranges_r') plt.title('Percentage count of real and fraud jobs from ' + str(plot_option) + ' ' + str(filtered_val), fontsize=13) if (len(df_plotted) == 1) & (df_plotted['fraudulent'][0] == 0): ax.set_xticklabels(['Real job']) elif (len(df_plotted) == 1) & (df_plotted['fraudulent'][0] == 1): ax.set_xticklabels(['Fraud job']) elif len(df_plotted) > 1: ax.set_xticklabels(['Real job', 'Fraud job']) plt.ylabel("Percentage count", fontsize=12.25) plt.xlabel("Fraudulent", fontsize=12.25) plt.close() model = joblib.load('RS_lgbm_over_55-45_18072021.pkl') X = df_structured.values pred = model.predict(X)[0] prob = model.predict_proba(X)[0] message = str(np.where(pred == 1, '\nThe model identifies the job post as a fraud employment posting.\nBe careful of this job!\n ', "\nThe model identifies the job post as a real employment posting.\nYou can proceed with the job!\n ")) return {'Real Job Post': prob[0], 'Fraud Job Post': prob[1]}, message, fig # Define input variables job_title = gr.inputs.Textbox(placeholder="Enter job title here", label='Job Title') employment_type = gr.inputs.Radio(['Full-time', 'Part-time', 'Contract', 'Temporary', 'Full-time & Part-time', 'Other'], label="Employment Type", default='Full-time') required_experience = gr.inputs.Dropdown(['Internship', 'Entry level', 'Associate', 'Mid-Senior level', 'Executive', 'Director', 'Not Applicable'], label="Required Experience Category", default = 'Entry level') required_education = gr.inputs.Dropdown([ "Bachelor's Degree", "Master's Degree", 'High School or equivalent', 'Empty requirements', 'Associate Degree', 'Some College Coursework Completed', 'Vocational', 'Certification', 'Doctorate', 'Professional', 'Some High School Coursework', 'Vocational - Degree', 'Vocational - HS Diploma', 'Unspecified' ], label="Required Education", default="Bachelor's Degree") function = gr.inputs.Dropdown(sorted([ 'Marketing', 'Customer Service', 'Administrative', 'Sales', 'Health Care Provider', 'Management', 'Information Technology', 'Human Resources', 'Other', 'Engineering', 'Design', 'Education', 'Production', 'Supply Chain', 'Business Development', 'Product Management', 'Financial Analyst', 'Consulting', 'Project Management', 'Manufacturing', 'Public Relations', 'Writing/Editing', 'Strategy/Planning', 'General Business', 'Advertising', 'Finance', 'Research', 'Accounting/Auditing', 'Art/Creative', 'Quality Assurance', 'Training', 'Data Analyst', 'Business Analyst', 'Distribution', 'Legal', 'Science', 'Purchasing' ]), label="Job Function") country = gr.inputs.Dropdown(sorted([ 'United States', 'New Zealand', 'Germany', 'Great Britain', 'Australia', 'Singapore', 'Israel', 'United Arab Emirates', 'Canada', 'India', 'Egypt', 'Poland', 'Greece', 'Undefined', 'Pakistan', 'Belgium', 'Brazil', 'Saudi Arabia', 'Denmark', 'Russia', 'South Africa', 'Cyprus', 'Hong Kong', 'Turkey', 'Ireland', 'Lithuania', 'Japan', 'Netherlands', 'Austria', 'South Korea', 'France', 'Estonia', 'Thailand', 'Panama', 'Kenya', 'Mauritius', 'Mexico', 'Romania', 'Malaysia', 'Finland', 'China', 'Spain', 'Sweden', 'Chile', 'Ukraine', 'Qatar', 'Italy', 'Latvia', 'Iraq', 'Bulgaria', 'Philippines', 'Czech Republic', 'U.S. Virgin Islands', 'Malta', 'Hungary', 'Non-US countries', 'Bangladesh', 'Kuwait', 'Luxembourg', 'Nigeria', 'Serbia', 'Belarus', 'Vietnam', 'Indonesia', 'Zambia', 'Norway', 'Bahrain', 'Uganda', 'Switzerland', 'U.S. & Other countries', 'Trinidad & Tobago', 'Sudan', 'Slovakia', 'Argentina', 'Taiwan', 'Portugal', 'Peru', 'Colombia', 'Iceland', 'Slovenia', 'Morocco', 'Armenia', 'Tunisia', 'Ghana', 'Albania', 'Croatia', 'Cameroon', 'El Salvador', 'Nicaragua', 'Sri Lanka', 'Jamaica', 'Kazakhstan', 'Cambodia' ]), label="Country of Job Post", default="United States") telecommuting = gr.inputs.Radio(['Yes', 'No'], label='Are there any telecommuting options available?') has_company_logo = gr.inputs.Radio(['Yes', 'No'], label='Does the company have any company logo?') has_questions = gr.inputs.Radio(['Yes', 'No'], label='Does the job post contain any questions?') location = gr.inputs.Textbox(placeholder="Enter location here: eg. US, CA, Los Angeles", label='Location in the form of country, state, city') company_profile = gr.inputs.Textbox(lines=4, placeholder="Enter company profile here", label='Company Profile (if any)') job_description = gr.inputs.Textbox(lines=4, placeholder="Enter job description here", label='Full Job Description') requirements = gr.inputs.Textbox(lines=4, placeholder="Enter job requirements here", label='Full Job Requirements (if any)') benefits = gr.inputs.Textbox(lines=4, placeholder="Enter job benefits here", label='Benefits of the Job (if any)') plot_option = gr.inputs.Radio(['function', 'country'], label='Statistical plotting option') # Output textbox output_label = gr.outputs.Label(num_top_classes=2, label="Predicted Label") output_text = gr.outputs.Textbox(label="Output Message") output_plot = gr.outputs.Image(plot=True, label="Statistical Plot", type='plot') # Combine the inputs and outputs into Interface function io = gr.Interface(predict, [ job_title, employment_type, required_experience, required_education, function, country, telecommuting, has_company_logo, has_questions, location, company_profile, job_description, requirements, benefits, plot_option ], [output_label, output_text, output_plot], verbose=True, theme='default', title="Job Posting Fraud Prediction Web App", layout = "unaligned", description=""" This is a simple web app that helps users to detect if the job posting is real or fraud, please fill up the inputs and enjoy exploring the app! """, article=""" Nowadays, job scams are on the rise due to the advancement of technology and internet. There have been many reported crimes on victims getting scammed by fake jobs that claimed to offer attractive salaries and bright futures. Thus, in order to counter the issue, we adopt data science and machine learning to create a web app that enables users to screen job postings and identify potential fraud jobs. Data source: Employment Scam Aegean Dataset (EMSCAD) """) if __name__ == "__main__": io.launch()
11f252b09bcb7de7f6dbdee53b3882b0b0a61b75
f200822cc6d970ad5b1bfc17cd0a01c4104719ac
/functions/greet_users.py
104e1499d255e049c2bd985bf7752577607e6837
[]
no_license
iepisas/python-crash-course
5da7b48d96e4a73f9f9675bb241bd0e1f1d54f96
cf20911ea5c4c2ae47c314f2900f483ab86c4bd1
refs/heads/master
2022-11-23T04:17:47.089911
2020-07-25T16:04:52
2020-07-25T16:04:52
280,761,466
0
0
null
null
null
null
UTF-8
Python
false
false
284
py
def greet_users(names): for name in names: if type(name) == str: msg = f"Hello,{name.title()}" print(msg) else: msg = f"Hello,{name}" print(msg) usernames = ['adhfa','adf','qw','awe',12,45,33] greet_users(usernames)
36811db9fc562b21f2ab8e14d862f543801cf47e
56ca3845607c8fed8fac81a07cdfa4d48139b7ef
/deep_translator/google_trans.py
89f6ed38a37dcc5beeb0414d583a0fd7af889b30
[ "MIT" ]
permissive
trucnguyenlam/deep-translator
0db420de6d2de699db8aa26d5f32e4d0d41fc187
6cfdf620c7e27a839183ea854b52b01c51687d65
refs/heads/master
2023-03-20T16:52:09.878932
2021-03-08T18:08:08
2021-03-08T18:08:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,303
py
""" google translator API """ from deep_translator.constants import BASE_URLS, GOOGLE_LANGUAGES_TO_CODES from deep_translator.exceptions import TooManyRequests, LanguageNotSupportedException, TranslationNotFound, NotValidPayload, RequestError from deep_translator.parent import BaseTranslator from bs4 import BeautifulSoup import requests from time import sleep import warnings import logging class GoogleTranslator(BaseTranslator): """ class that wraps functions, which use google translate under the hood to translate text(s) """ _languages = GOOGLE_LANGUAGES_TO_CODES supported_languages = list(_languages.keys()) def __init__(self, source="auto", target="en"): """ @param source: source language to translate from @param target: target language to translate to """ self.__base_url = BASE_URLS.get("GOOGLE_TRANSLATE") if self.is_language_supported(source, target): self._source, self._target = self._map_language_to_code(source.lower(), target.lower()) super(GoogleTranslator, self).__init__(base_url=self.__base_url, source=self._source, target=self._target, element_tag='div', element_query={"class": "t0"}, payload_key='q', # key of text in the url hl=self._target, sl=self._source) self._alt_element_query = {"class": "result-container"} @staticmethod def get_supported_languages(as_dict=False): """ return the supported languages by the google translator @param as_dict: if True, the languages will be returned as a dictionary mapping languages to their abbreviations @return: list or dict """ return GoogleTranslator.supported_languages if not as_dict else GoogleTranslator._languages def _map_language_to_code(self, *languages): """ map language to its corresponding code (abbreviation) if the language was passed by its full name by the user @param languages: list of languages @return: mapped value of the language or raise an exception if the language is not supported """ for language in languages: if language in self._languages.values() or language == 'auto': yield language elif language in self._languages.keys(): yield self._languages[language] else: raise LanguageNotSupportedException(language) def is_language_supported(self, *languages): """ check if the language is supported by the translator @param languages: list of languages @return: bool or raise an Exception """ for lang in languages: if lang != 'auto' and lang not in self._languages.keys(): if lang != 'auto' and lang not in self._languages.values(): raise LanguageNotSupportedException(lang) return True def translate(self, text, **kwargs): """ function that uses google translate to translate a text @param text: desired text to translate @return: str: translated text """ if self._validate_payload(text): text = text.strip() if self.payload_key: self._url_params[self.payload_key] = text response = requests.get(self.__base_url, params=self._url_params, headers ={'User-agent': 'your bot 0.1'}) if response.status_code == 429: raise TooManyRequests() if response.status_code != 200: raise RequestError() soup = BeautifulSoup(response.text, 'html.parser') element = soup.find(self._element_tag, self._element_query) if not element: element = soup.find(self._element_tag, self._alt_element_query) if not element: raise TranslationNotFound(text) if element.get_text(strip=True) == text.strip(): to_translate_alpha = ''.join(ch for ch in text.strip() if ch.isalnum()) translated_alpha = ''.join(ch for ch in element.get_text(strip=True) if ch.isalnum()) if to_translate_alpha and translated_alpha and to_translate_alpha == translated_alpha: self._url_params["tl"] = self._target if "hl" not in self._url_params: return text.strip() del self._url_params["hl"] return self.translate(text) else: return element.get_text(strip=True) def translate_file(self, path, **kwargs): """ translate directly from file @param path: path to the target file @type path: str @param kwargs: additional args @return: str """ try: with open(path) as f: text = f.read().strip() return self.translate(text) except Exception as e: raise e def translate_sentences(self, sentences=None, **kwargs): """ translate many sentences together. This makes sense if you have sentences with different languages and you want to translate all to unified language. This is handy because it detects automatically the language of each sentence and then translate it. @param sentences: list of sentences to translate @return: list of all translated sentences """ warnings.warn("deprecated. Use the translate_batch function instead", DeprecationWarning, stacklevel=2) logging.warning("deprecated. Use the translate_batch function instead") if not sentences: raise NotValidPayload(sentences) translated_sentences = [] try: for sentence in sentences: translated = self.translate(text=sentence) translated_sentences.append(translated) return translated_sentences except Exception as e: raise e def translate_batch(self, batch=None): """ translate a list of texts @param batch: list of texts you want to translate @return: list of translations """ if not batch: raise Exception("Enter your text list that you want to translate") print("Please wait.. This may take a couple of seconds because deep_translator sleeps " "for two seconds after each request in order to not spam the google server.") arr = [] for i, text in enumerate(batch): translated = self.translate(text) arr.append(translated) print("sentence number ", i+1, " has been translated successfully") sleep(2) return arr # if __name__ == '__main__': # batch = ["tude", "fleck", "incongruous"] # text = GoogleTranslator(source="en", target="de").translate_batch(batch) # print(text)
32cce0cbf7ef28210c580969ba28b3dc75ae60e1
15353c80ea6e594ea0a994f634bdc0731b8908dd
/env/bin/fixup_firestore_v1_keywords.py
0e25ae65b410682c50fb128f4cb178cec38ad785
[]
no_license
Yasinymous/CoronaMap-py-vue
45294c88bf5ead536fc7d6da81bc7b3b76da74b6
62abd84e4ef799217e5ebb0112ee749fd8d9dc91
refs/heads/main
2023-04-22T17:37:59.368803
2021-05-08T03:06:31
2021-05-08T03:06:31
364,439,543
1
0
null
null
null
null
UTF-8
Python
false
false
7,273
py
#!/Users/yasinymous/Desktop/Projects/CmapQuasar/Cmap/env/bin/python3 # -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import argparse import os try: import libcst as cst except ImportError: raise ImportError('Run `python -m pip install "libcst >= 0.2.5"` to install libcst.') import pathlib import sys from typing import (Any, Callable, Dict, List, Sequence, Tuple) def partition( predicate: Callable[[Any], bool], iterator: Sequence[Any] ) -> Tuple[List[Any], List[Any]]: """A stable, out-of-place partition.""" results = ([], []) for i in iterator: results[int(predicate(i))].append(i) # Returns trueList, falseList return results[1], results[0] class firestoreCallTransformer(cst.CSTTransformer): CTRL_PARAMS: Tuple[str] = ('retry', 'timeout', 'metadata') METHOD_TO_PARAMS: Dict[str, Tuple[str]] = { 'batch_get_documents': ('database', 'documents', 'mask', 'transaction', 'new_transaction', 'read_time', ), 'batch_write': ('database', 'writes', 'labels', ), 'begin_transaction': ('database', 'options', ), 'commit': ('database', 'writes', 'transaction', ), 'create_document': ('parent', 'collection_id', 'document', 'document_id', 'mask', ), 'delete_document': ('name', 'current_document', ), 'get_document': ('name', 'mask', 'transaction', 'read_time', ), 'list_collection_ids': ('parent', 'page_size', 'page_token', ), 'list_documents': ('parent', 'collection_id', 'page_size', 'page_token', 'order_by', 'mask', 'transaction', 'read_time', 'show_missing', ), 'listen': ('database', 'add_target', 'remove_target', 'labels', ), 'partition_query': ('parent', 'structured_query', 'partition_count', 'page_token', 'page_size', ), 'rollback': ('database', 'transaction', ), 'run_query': ('parent', 'structured_query', 'transaction', 'new_transaction', 'read_time', ), 'update_document': ('document', 'update_mask', 'mask', 'current_document', ), 'write': ('database', 'stream_id', 'writes', 'stream_token', 'labels', ), } def leave_Call(self, original: cst.Call, updated: cst.Call) -> cst.CSTNode: try: key = original.func.attr.value kword_params = self.METHOD_TO_PARAMS[key] except (AttributeError, KeyError): # Either not a method from the API or too convoluted to be sure. return updated # If the existing code is valid, keyword args come after positional args. # Therefore, all positional args must map to the first parameters. args, kwargs = partition(lambda a: not bool(a.keyword), updated.args) if any(k.keyword.value == "request" for k in kwargs): # We've already fixed this file, don't fix it again. return updated kwargs, ctrl_kwargs = partition( lambda a: not a.keyword.value in self.CTRL_PARAMS, kwargs ) args, ctrl_args = args[:len(kword_params)], args[len(kword_params):] ctrl_kwargs.extend(cst.Arg(value=a.value, keyword=cst.Name(value=ctrl)) for a, ctrl in zip(ctrl_args, self.CTRL_PARAMS)) request_arg = cst.Arg( value=cst.Dict([ cst.DictElement( cst.SimpleString("'{}'".format(name)), cst.Element(value=arg.value) ) # Note: the args + kwargs looks silly, but keep in mind that # the control parameters had to be stripped out, and that # those could have been passed positionally or by keyword. for name, arg in zip(kword_params, args + kwargs)]), keyword=cst.Name("request") ) return updated.with_changes( args=[request_arg] + ctrl_kwargs ) def fix_files( in_dir: pathlib.Path, out_dir: pathlib.Path, *, transformer=firestoreCallTransformer(), ): """Duplicate the input dir to the output dir, fixing file method calls. Preconditions: * in_dir is a real directory * out_dir is a real, empty directory """ pyfile_gen = ( pathlib.Path(os.path.join(root, f)) for root, _, files in os.walk(in_dir) for f in files if os.path.splitext(f)[1] == ".py" ) for fpath in pyfile_gen: with open(fpath, 'r') as f: src = f.read() # Parse the code and insert method call fixes. tree = cst.parse_module(src) updated = tree.visit(transformer) # Create the path and directory structure for the new file. updated_path = out_dir.joinpath(fpath.relative_to(in_dir)) updated_path.parent.mkdir(parents=True, exist_ok=True) # Generate the updated source file at the corresponding path. with open(updated_path, 'w') as f: f.write(updated.code) if __name__ == '__main__': parser = argparse.ArgumentParser( description="""Fix up source that uses the firestore client library. The existing sources are NOT overwritten but are copied to output_dir with changes made. Note: This tool operates at a best-effort level at converting positional parameters in client method calls to keyword based parameters. Cases where it WILL FAIL include A) * or ** expansion in a method call. B) Calls via function or method alias (includes free function calls) C) Indirect or dispatched calls (e.g. the method is looked up dynamically) These all constitute false negatives. The tool will also detect false positives when an API method shares a name with another method. """) parser.add_argument( '-d', '--input-directory', required=True, dest='input_dir', help='the input directory to walk for python files to fix up', ) parser.add_argument( '-o', '--output-directory', required=True, dest='output_dir', help='the directory to output files fixed via un-flattening', ) args = parser.parse_args() input_dir = pathlib.Path(args.input_dir) output_dir = pathlib.Path(args.output_dir) if not input_dir.is_dir(): print( f"input directory '{input_dir}' does not exist or is not a directory", file=sys.stderr, ) sys.exit(-1) if not output_dir.is_dir(): print( f"output directory '{output_dir}' does not exist or is not a directory", file=sys.stderr, ) sys.exit(-1) if os.listdir(output_dir): print( f"output directory '{output_dir}' is not empty", file=sys.stderr, ) sys.exit(-1) fix_files(input_dir, output_dir)
3a19230ff45e21637cf52aff6917cd3099d7b236
08aa57ca17363db0b73e4703d835564ecdbef7e8
/Django/finalproject/finalproject/settings.py
d469e817213ef58a4defaa6694d8893ea69d2d07
[]
no_license
y2k6302/ITskillMaster
3009b7b165c2fe271fe6f930689ec4c05317c5f9
50f4678ed2cc739163a92e0c40f157b0412f90d7
refs/heads/master
2020-05-26T00:35:45.946567
2016-03-22T16:46:51
2016-03-22T16:46:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,831
py
""" Django settings for finalproject project. Generated by 'django-admin startproject' using Django 1.8.1. For more information on this file, see https://docs.djangoproject.com/en/1.8/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.8/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.8/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'l3kvr=r085#3i24fmk&%_q@#0lic6ug9fatl_=4%h-o3#gmppr' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'jobs', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'django.middleware.security.SecurityMiddleware', ) ROOT_URLCONF = 'finalproject.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'finalproject.wsgi.application' # Database # https://docs.djangoproject.com/en/1.8/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'project', 'USER': 'root', 'PASSWORD': 'chunyi', 'HOST':'', 'PORT':'3306', } } # Internationalization # https://docs.djangoproject.com/en/1.8/topics/i18n/ LANGUAGE_CODE = 'zh-TW' TIME_ZONE = 'Asia/Taipei' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.8/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = ( os.path.join(BASE_DIR, "static"), './static/', )
[ "Jimmy Yang" ]
Jimmy Yang
371cc9f0dc52fef0024cbd20662008e67b8ba5b3
fbaef3fca70c200316583f4ec1247995604efeab
/venv/bin/waitress-serve
6b0f25bd844f966a21ee8cfc50439b30efa8a21c
[]
no_license
thevivotran/flask_tutorial
aedffa7ea8ae968f978110b7fc5152656037360d
9820ae544a9e98295ee2f051fe10f91ba8e021ff
refs/heads/master
2023-01-01T16:17:28.861590
2020-10-25T04:26:07
2020-10-25T04:26:07
306,787,294
0
0
null
null
null
null
UTF-8
Python
false
false
242
#!/home/vivo/flask_tutorial/venv/bin/python3 # -*- coding: utf-8 -*- import re import sys from waitress.runner import run if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(run())
1208b40ce0c798e530cea20672f8b392f0158c00
5821d864fb40417184cd37a3ee3c889895d39efb
/src/ch6/3-caricature/mesh.py
1dad28a1503f6e6857e5eb6ebcdb79d0a699128d
[ "WTFPL" ]
permissive
ssloy/least-squares-course
9c86d8c54894248440fba78206ce253559f4257b
13692cdfd40a8005893fd33887d6cc743c5f01ec
refs/heads/master
2022-08-18T15:53:15.313071
2021-12-01T12:44:59
2021-12-01T12:44:59
222,901,933
162
18
WTFPL
2022-07-28T21:16:03
2019-11-20T09:38:37
TeX
UTF-8
Python
false
false
3,119
py
import numpy as np class Mesh(): def __init__(self, filename): # parse the .obj file V, T = [], [] with open(filename) as f: for line in f.readlines(): if line.startswith('#'): continue values = line.split() if not values: continue if values[0] == 'v': V.append([float(x) for x in values[1:4]]) elif values[0] == 'f': T.append([int(x) for x in values[1:4]]) self.V, self.T = np.array(V), np.array(T)-1 # compute the adjacency self.v2c = np.array([-1]*self.nverts) # vertex-to-corner map self.c2c = np.array([-1]*self.ncorners) # corner-to-corner unordered circular lists for c in range(self.ncorners): v = self.T[c//3][c%3] self.v2c[v] = c for c in range(self.ncorners): v = self.T[c//3][c%3] self.c2c[c] = self.v2c[v] self.v2c[v] = c # speed up the computations: precompute the opposites and the boundary flags self.opp = np.array([-1]*self.ncorners) for c in range(self.ncorners): c_org = self.T[c//3][c%3] c_dst = self.T[c//3][(c+1)%3] cir = c opp = -1 while True: cand = (cir//3)*3 + (cir+2)%3 cand_org = self.T[cand//3][cand%3] cand_dst = self.T[cand//3][(cand+1)%3] if (cand_org == c_dst and cand_dst == c_org): opp = cand # we suppose manifold input cir = self.c2c[cir] if (cir==c): break self.opp[c] = opp self.boundary = np.array([False]*self.nverts) for v in range(self.nverts): cir = self.v2c[v] if cir<0: continue while (True): if self.opp[cir]<0: self.boundary[v] = True break cir = self.c2c[cir] if (cir==self.v2c[v]): break @property def nverts(self): return len(self.V) @property def ntriangles(self): return len(self.T) @property def ncorners(self): return self.ntriangles*3; def org(self, c): return self.T[c//3][c%3] def dst(self, c): return self.T[c//3][(c+1)%3] def prev(self, c): return (c//3)*3 + (c+2)%3 def opposite(self, c): return self.opp[c] def on_border(self, v): return self.boundary[v] def neighbors(self,v): out = [] cir = self.v2c[v] if cir<0: return [] cnt = 0 while True: neigh = self.T[cir//3][(cir+1)%3] out.append(neigh) cir = self.c2c[cir] if (cir==self.v2c[v]): break cnt = cnt + 1 return out def __str__(self): ret = "" for v in self.V: ret = ret + ("v %f %f %f\n" % (v[0], v[1], v[2])) for t in self.T: ret = ret + ("f %d %d %d\n" % (t[0]+1, t[1]+1, t[2]+1)) return ret
bc3fb289dd1d8667dc0ee7fdf9dabd0bcf56c95e
bb80b2d1d7b51f50d000294df4b68cde053fe288
/proyectos/10/src/jack_listener.py
a6c18a2c319f3cfeac257e4684586bae1bd03da8
[]
no_license
imurielr/Computer-Achitecture
f76f44a700f5da6ac847de0b23192710f55c060b
cd941f725b328a3f9bac85b7fc6f73c932d7129f
refs/heads/master
2021-01-15T05:44:28.559781
2020-02-25T02:46:53
2020-02-25T02:46:53
242,893,428
0
0
null
null
null
null
UTF-8
Python
false
false
3,851
py
""" Module containing Listener class which inherit from the JackListener class generated by Antlr """ from JackListener import JackListener from JackParser import JackParser class Listener(JackListener): keyword = ["class","constructor","function","method","field","static","var","int","char","boolean","void","true","false","null","this","let","do","if","else","while","return"] symbol = ['{', '}', '(', ')', '[', ']', '.', ',', ';', '+', '-', '*', '/', '&', '|', '<', '>', '=', '~'] non_terminals = ['class', 'classVarDec', 'subroutineDec', 'parameterList', 'subroutineBody', 'varDec', 'statements', 'whileStatement', 'ifStatement', 'returnStatement', 'letStatement', 'doStatement', 'expression', 'term', 'expressionList'] def __init__(self, parser, output_file): """ Set the parser and the output file. Count the ident for each line """ self.parser = parser self.output_file = open(output_file, 'w') self.ident = " " self.num_ident = 0 def __del__(self): """ Closes the output file """ self.output_file.close() def enterEveryRule(self, ctx): """ Enter each rule and write the open tag if the rule name is in the non-terminals list """ open_tag = "{}<{}>\n".format(self.get_current_ident(), self.parser.ruleNames[ctx.getRuleIndex()][:-2]) # Remove the last 2 letters from the rule name (NT) if self.parser.ruleNames[ctx.getRuleIndex()][:-2] in Listener.non_terminals: self.output_file.write(open_tag) self.increase_ident() return super().enterEveryRule(ctx) def exitEveryRule(self, ctx): """ Exit each rule and write the closing tag if the rule name is in the non-terminals list """ close_tag = "{}</{}>\n".format(self.get_current_ident(), self.parser.ruleNames[ctx.getRuleIndex()][:-2]) # Remove the last 2 letters from the rule name (NT) if self.parser.ruleNames[ctx.getRuleIndex()][:-2] in Listener.non_terminals: self.decrease_ident() self.output_file.write(close_tag) return super().exitEveryRule(ctx) def visitTerminal(self, node): """ Get the value for each terminal and check if it is a keyword, symbol, interge constant, string constant or identifier """ terminal_value = node.getText() if terminal_value in Listener.keyword: terminal = "keyword" elif terminal_value in Listener.symbol: terminal = "symbol" # If the symbol is '<', '>', '"' or '&' change its value so that the xml file doesn't have syntax errors if terminal_value == '<': terminal_value = "&lt;" elif terminal_value == '>': terminal_value = "&gt;" elif terminal_value == '"': terminal_value = "&quot;" elif terminal_value == '&': terminal_value = "&amp;" elif terminal_value.isdigit(): terminal = "integerConstant" elif '"' in terminal_value: terminal = "stringConstant" terminal_value = terminal_value.strip('"') # Remove the quotes from the string else: terminal = "identifier" # Write the tag on the output file depending on the terminal value and its class self.output_file.write("{}<{}> {} </{}>\n".format(self.get_current_ident(), terminal, terminal_value, terminal)) return super().visitTerminal(node) def get_current_ident(self): """ Get the ident for the current line in the xml file """ return self.num_ident * self.ident def increase_ident(self): """ Increase the ident in the xml file """ self.num_ident += 1 def decrease_ident(self): """ Decrease the ident in the xml file """ self.num_ident -= 1
43904990078a40f1f4a6b35bf7f6e392a966f1e9
1bb0690ab2750aae7485a011d6a176fca100bf31
/openacademy/model/openacademy_course.py
1ca2c294fd9501abc778e7c683d0a8db050c99d7
[ "Apache-2.0" ]
permissive
gylmargarcia/openacademy-project
5a4d3a619c8d06ec36e2e97ae06051d4a268f021
3657080f929a380df66063d6b522cd8d8ddbc917
refs/heads/master
2020-05-25T09:26:59.605268
2014-12-12T05:54:15
2014-12-12T05:54:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
321
py
from openerp import models, fields, api class Course(models.Model): ''' This class create model of course ''' _name = 'openacademy.course' #Model odooname name = fields.Char(string='Title', required=True) #Fields reserved to identify name record description = fields.Text(string='Description')
5ba3eb2c99cb4886c0d71494e016a22abad98aee
acbe6bd6cefaf8b12070d7258dab30e4f7fcebed
/ui/style.py
c5b1d5ee83c7a5fb029f0f3becf8dba8c57a3b3b
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
RogueScholar/debreate
02c98c5a78d33041798410f0e3b99e80fda65d00
dfe9bcac7333a53082b3a2ae169806cf604d59f6
refs/heads/master
2023-06-07T11:49:03.821969
2023-04-28T02:14:25
2023-04-28T02:14:25
253,707,766
0
0
MIT
2023-05-28T15:24:17
2020-04-07T06:34:47
Python
UTF-8
Python
false
false
1,267
py
# ****************************************************** # * Copyright © 2016-2023 - Jordan Irwin (AntumDeluge) * # ****************************************************** # * This software is licensed under the MIT license. * # * See: LICENSE.txt for details. * # ****************************************************** ## @module ui.style import wx # FIXME: legacy wx version no longer supported if wx.MAJOR_VERSION > 2: PANEL_BORDER = wx.BORDER_THEME else: PANEL_BORDER = wx.BORDER_MASK ## Layout styles for sizers. class layout: ALGN_T = wx.ALIGN_TOP ALGN_B = wx.ALIGN_BOTTOM ALGN_L = wx.ALIGN_LEFT ALGN_LT = ALGN_L|ALGN_T ALGN_LB = ALGN_L|ALGN_B ALGN_R = wx.ALIGN_RIGHT ALGN_RT = ALGN_R|ALGN_T ALGN_RB = ALGN_R|ALGN_B ALGN_C = wx.ALIGN_CENTER ALGN_CH = wx.ALIGN_CENTER_HORIZONTAL ALGN_CV = wx.ALIGN_CENTER_VERTICAL ALGN_CL = ALGN_CV|ALGN_L ALGN_CR = ALGN_CV|ALGN_R ALGN_CT = ALGN_CH|ALGN_T ALGN_CB = ALGN_CH|ALGN_B PAD_LT = wx.LEFT|wx.TOP PAD_LB = wx.LEFT|wx.BOTTOM PAD_LTB = PAD_LT|wx.BOTTOM PAD_RT = wx.RIGHT|wx.TOP PAD_RB = wx.RIGHT|wx.BOTTOM PAD_RTB = PAD_RT|wx.BOTTOM PAD_LR = wx.LEFT|wx.RIGHT PAD_LRB = PAD_LR|wx.BOTTOM PAD_LRT = PAD_LR|wx.TOP PAD_TB = wx.TOP|wx.BOTTOM
c140e474ec324763c62376fce310ab79a289d686
7bf0becb36d56808e7d2ee0d278325ec86e2a465
/PyLibrary/BinarySearch/binarySearchIterative.py
4d88ba408b4f0d13673ee16ef3aaa0b5324f02b3
[]
no_license
adrianna/DSandA
afb49225b7f910c6c98b9bbe809563efa1a484c9
0087dcfd02f4b9617f3eb05e7f1ce73fc3ca386e
refs/heads/master
2020-05-22T02:07:21.811682
2019-08-31T19:19:33
2019-08-31T19:19:33
186,191,976
4
0
null
null
null
null
UTF-8
Python
false
false
2,142
py
#!/usr/bin/env python # coding: utf-8 # # Binary search practice # # Let's get some practice doing binary search on an array of integers. We'll solve the problem two different ways— # both iteratively and resursively. # # Here is a reminder of how the algorithm works: # # 1. Find the center of the list (try setting an upper and lower bound to find the center) # 2. Check to see if the element at the center is your target. # 3. If it is, return the index. # 4. If not, is the target greater or less than that element? # 5. If greater, move the lower bound to just above the current center # 6. If less, move the upper bound to just below the current center # 7. Repeat steps 1-6 until you find the target or until the bounds are the same or cross (the upper bound is less # than the lower bound). # # # ## Problem statement: # Given a sorted array of integers, and a target value, find the index of the target value in the array. If the # target value is not present in the array, return -1. # ## Iterative solution def binary_search(array, target): start_index = 0 end_index = len(array) - 1 while start_index <= end_index: mid_index = (start_index + end_index)//2 # integer division in Python 3 mid_element = array[mid_index] if target == mid_element: # we have found the element return mid_index elif target < mid_element: # the target is less than mid element end_index = mid_index - 1 # we will only search in the left half else: # the target is greater than mid element start_index = mid_element + 1 # we will search only in the right half return -1 def test_function(test_case): answer = binary_search(test_case[0], test_case[1]) if answer == test_case[2]: print("Pass!") else: print("Fail!") ## Test array = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] target = 6 index = 6 test_case = [array, target, index] test_function(test_case)
6439b3fa39579b18cc7fe52d0293ff002b66b28e
5da5415e27383731e3d141430a051d9a99c97c78
/ex_11/ex_11_01.py
509683e7fa6722a431b29c102ed6329e5a211e7b
[]
no_license
Harshith-S/Python-4-Everybody
ea89cda84d117168ebfc9a8da0f668eb7c3f355e
6a62da9f5c0159e7a8a3eb46c42562380fe6df85
refs/heads/master
2020-05-19T12:24:08.873275
2019-05-05T10:05:09
2019-05-05T10:05:09
184,626,400
0
0
null
null
null
null
UTF-8
Python
false
false
1,028
py
""" Finding Numbers in a Haystack In this assignment you will read through and parse a file with text and numbers. You will extract all the numbers in the file and compute the sum of the numbers. Data Files We provide two files for this assignment. One is a sample file where we give you the sum for your testing and the other is the actual data you need to process for the assignment. Sample data: http://py4e-data.dr-chuck.net/regex_sum_42.txt (There are 90 values with a sum=445833) Actual data: http://py4e-data.dr-chuck.net/regex_sum_208835.txt (There are 94 values and the sum ends with 448) """ import re name = input("Enter the file : ") handle = open(name) result=list() #Empty list(Because the result of findall() is a list, it'll be easy to add) for line in handle: number=re.findall('[0-9]+',line) #Extract the numbers from file and store it in numbers result=result+number #append the numbers found using the regex in this list sum=0 for i in result: sum=sum+int(i) #find the sum print(sum)
5d831e4185fbab06635d9f25266e662f0c8d44d7
a178885065966a14eebd0ab1ff4f9e9ca6598987
/cdf/practice/a1.py
fd8cf688833c7e258c6800091fd67425813fffdc
[]
no_license
Abhik1998/CP
34fa16330a408007d5643adf7830e17e08a2e4f8
c836a96d8275e7e756f9d18153174c215b1263f9
refs/heads/master
2023-01-02T14:11:59.370497
2020-10-12T19:21:13
2020-10-12T19:21:13
292,824,072
1
0
null
null
null
null
UTF-8
Python
false
false
445
py
MOD = 998244353 p = [1] * 200005 for i in range(1, 200005): p[i] = (p[i - 1] * 10) % MOD n = int(input()) for i in range(1, n): res = 2 * 10 * 9 * p[n - i - 1] res += (n - 1 - i) * 10 * 9 * 9 * p[n - i - 2] print(res % MOD, end = ' ') print(10) rt[]\
ba623f7039cb4e93da77833f6adaa48a96c55ae1
21c2c8d3a71328f8aabf95b492e1907b7aff2608
/testerapp/views.py
c3f937695cf3695083530089cfbc956876ef1c0f
[]
no_license
kushalp13/Issue-Management-System
89891b31b684f1873b863feb67c1f6fe65b39b99
3aa5d239a47a4a69869625ac647587f61f95c657
refs/heads/master
2022-11-29T00:48:43.644523
2020-08-05T11:17:14
2020-08-05T11:17:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,347
py
from django.shortcuts import render from .models import BugInfo # Create your views here. def reportBug(request): return(render(request,'loginapp/report_bug.html')) def fixedBug(request): appName = request.POST["username"] password = request.POST["password"] usertype = request.POST["usertype"] return(render(request,'loginapp/fixed_bug.html')) def addBugInfo(request): appName = request.POST["application_name"] moduleName = request.POST["modulename"] bugID = appName + "@" + moduleName bugDesc = request.POST["debug_info"] currBuild = request.POST["current_build"] dateRaised = request.POST["dateRaised"] detectedBy = request.POST["testerID"] bugPriority = request.POST["bug_severity"] bugInfo = BugInfo( bugId=appName + "@" + moduleName , bugDesc=bugDesc , bugStatus="ACTIVE" , currBuild=currBuild , dateRaised=dateRaised , appName=appName , detectedBy=detectedBy , bugPriority=bugPriority ) bugInfo.save() return(render(request,'testerapp/reportedBug.html',{'bugID':bugID})) def viewBug(request): allbug = BugInfo.objects.all() return(render(request,'testerapp/viewBug.html',{'allbug':allbug})) def fixedBug(request): allbug = BugInfo.objects.all() return(render(request,'testerapp/fixedBug.html',{'allbug':allbug}))
6d66a2db8f11ffd28ada75f1f0b889f531bb5f03
c223a73c09f9f384ff964012be51873b8f997c8f
/manticora/controllers/modules/register.py
ad408f6e6eebc18a102675f4d40f99aaecc92537
[]
no_license
WhiteSummeRK/manticora
c4d2a9c6a71ad6e96009887b0ee892662aaf0ce6
b0e44f3b02451030d7f282102a60872d1153b1e0
refs/heads/master
2020-03-24T19:01:57.457597
2019-04-22T22:57:35
2019-04-22T22:57:35
142,907,269
2
0
null
null
null
null
UTF-8
Python
false
false
2,696
py
from manticora.models.database_functions.usuario import ( insert_new_user_account, check_for_existing_mail, check_for_existing_name, update_user_from_db ) from manticora.models.database_functions.restaurante import ( insert_new_rest, get_actual_rest, update_rest_from_db ) from manticora.models.database.tables import db from datetime import datetime def register_user(nome, senha, email, bairro, cidade, rua, numero, comp, is_adm=False, return_entity=False): """Faz as verificações adequadas e insere os dados no banco.""" if check_for_existing_name(nome): return 'Esse nome já existe.' if check_for_existing_mail(email): return 'Esse email já existe.' try: act = insert_new_user_account(nome, senha, email, bairro, cidade, rua, numero, comp, is_adm) except Exception: return 'Algo deu errado, tente novamente.' if return_entity: return act return 'Usuário inserido com sucesso.' def register_rest(phone, num_phone, img, open, closed, adm): """Faz as verificações e insere novo adm.""" openned = datetime.strptime(open, '%H:%M').time() closed = datetime.strptime(closed, '%H:%M').time() if openned == closed: db.session.rollback() db.session.remove() return "Desculpe, não é possivel utilizar um estabelecimento 24hrs" try: insert_new_rest(phone, num_phone, img, openned, closed, adm) except Exception: db.session.rollback() db.session.remove() return 'Algo deu errado, tente novamente.' return 'ok' def update_user(city, neigh, street, num, complement, current_user): try: update_user_from_db(city, neigh, street, num, complement, current_user) return "ok" except Exception: return "Algo deu errado, tente novamente." def update_rest(phone, hora_aber, hora_fech, current_user): rest = get_actual_rest(current_user) db_hora_aber = datetime.strptime(hora_aber, "%H:%M").time() db_hora_fech = datetime.strptime(hora_fech, "%H:%M").time() try: update_rest_from_db(phone, db_hora_aber, db_hora_fech, None, rest) return "ok" except Exception: return "Algo deu errado, tente novamente." def update_rest_img(imagem, current_user): rest = get_actual_rest(current_user) try: update_rest_from_db(False, False, False, imagem, rest) return "ok" except Exception: return "Algo deu errado, tente novamente."
e892918ab46f8e39c2e19115b98da50e402eff2c
72b8cedcfeb3b98abf2965efa5f5ba7b02563647
/train.py
4d917ecf1f2ae99e6a3d49be9bd8166ed2c77d53
[]
no_license
18205097282/DBFC-Net
48f0c1139d719c3769658dec16303a1bfafe5702
5166ffe45651595eb81fee6be0879173e12cec9b
refs/heads/master
2022-11-27T03:11:33.487739
2020-07-12T14:20:29
2020-07-12T14:20:29
260,202,702
0
0
null
null
null
null
UTF-8
Python
false
false
5,738
py
import os import time import torch from torch.autograd import Variable from util import AverageMeter, Log from rankingloss import * def train(train_loader, train_loader1, train_loader2, train_loader3, args, model, criterion, center_loss, optimizer, epoch, num_epochs): print(len(train_loader), len(train_loader1), len(train_loader2), len(train_loader3)) """ (图片)1499 (视频)1499 (音频)1500 (文本文档)1000""" count = 0 since = time.time() running_loss0 = AverageMeter() running_loss1 = AverageMeter() running_loss2 = AverageMeter() running_loss3 = AverageMeter() running_loss4 = AverageMeter() running_loss5 = AverageMeter() running_loss6 = AverageMeter() running_loss7 = AverageMeter() running_loss = AverageMeter() log = Log() model.train() image_acc = 0 text_acc = 0 video_acc = 0 audio_acc = 0 for (i, (input, target)), (j, (input1, target1)), (k, (input2, target2)), (p, (input3, target3)) in zip( enumerate(train_loader), enumerate(train_loader1), enumerate(train_loader2), enumerate(train_loader3)): """(i,j,k,p) 是 (n,n,n,n) n从0到999结束,故,共只迭代1000次! 有问题!""" input_var = Variable(input.cuda()) input_var1 = Variable(input1.cuda()) input_var2 = Variable(input2.cuda()) input_var3 = Variable(input3.cuda()) targets = torch.cat((target, target1, target2, target3), 0) targets = Variable(targets.cuda()) target_var = Variable(target.cuda()) target_var1 = Variable(target1.cuda()) target_var2 = Variable(target2.cuda()) target_var3 = Variable(target3.cuda()) outputs, feature = model(input_var, input_var1, input_var2, input_var3) size = int(outputs.size(0) / 4) img = outputs.narrow(0, 0, size) vid = outputs.narrow(0, size, size) aud = outputs.narrow(0, 2 * size, size) txt = outputs.narrow(0, 3 * size, size) _, predict1 = torch.max(img, 1) # 0是按列找,1是按行找 _, predict2 = torch.max(vid, 1) # 0是按列找,1是按行找 _, predict3 = torch.max(txt, 1) # 0是按列找,1是按行找 _, predict4 = torch.max(aud, 1) # 0是按列找,1是按行找 image_acc += torch.sum(torch.squeeze(predict1.float() == target_var.float())).item() / float( target_var.size()[0]) video_acc += torch.sum(torch.squeeze(predict2.float() == target_var1.float())).item() / float( target_var1.size()[0]) audio_acc += torch.sum(torch.squeeze(predict4.float() == target_var2.float())).item() / float( target_var2.size()[0]) text_acc += torch.sum(torch.squeeze(predict3.float() == target_var3.float())).item() / float( target_var3.size()[0]) loss0 = criterion(img, target_var) loss1 = criterion(vid, target_var1) loss2 = criterion(aud, target_var2) loss3 = criterion(txt, target_var3) loss4 = loss0 + loss1 + loss2 + loss3 loss5 = center_loss(feature, targets) * 0.001 if (args.loss_choose == 'r'): loss6, _ = ranking_loss(targets, feature, margin=1, margin2=0.5, squared=False) loss6 = loss6 * 0.1 else: loss6 = 0.0 loss = loss4 + loss5 + loss6 # +loss7 # print(loss) batchsize = input_var.size(0) running_loss0.update(loss0.item(), batchsize) running_loss1.update(loss1.item(), batchsize) running_loss2.update(loss2.item(), batchsize) running_loss3.update(loss3.item(), batchsize) running_loss4.update(loss4.item(), batchsize) running_loss5.update(loss5.item(), batchsize) # running_loss7.update(loss7.item(), batchsize) if (args.loss_choose == 'r'): running_loss6.update(loss6.item(), batchsize) running_loss.update(loss.item(), batchsize) optimizer.zero_grad() loss.backward() for param in center_loss.parameters(): param.grad.data *= (1. / 0.001) optimizer.step() count += 1 if (i % args.print_freq == 0): print('-' * 20) print('Epoch [{0}/{1}][{2}/{3}]'.format(epoch, num_epochs, i, len(train_loader))) print('Image Loss: {loss.avg:.5f}'.format(loss=running_loss0)) print('Video Loss: {loss.avg:.5f}'.format(loss=running_loss1)) print('Audio Loss: {loss.avg:.5f}'.format(loss=running_loss2)) print('Text Loss: {loss.avg:.5f}'.format(loss=running_loss3)) print('AllMedia Loss: {loss.avg:.5f}'.format(loss=running_loss4)) print('Center Loss: {loss.avg:.5f}'.format(loss=running_loss5)) # print('separate Loss: {loss.avg:.5f}'.format(loss=running_loss7)) if (args.loss_choose == 'r'): print('Ranking Loss: {loss.avg:.5f}'.format(loss=running_loss6)) print('All Loss: {loss.avg:.5f}'.format(loss=running_loss)) # log.save_train_info(epoch, i, len(train_loader), running_loss) print("训练第%d个epoch:" % epoch) print("image:", image_acc / len(train_loader3)) print("text:", text_acc / len(train_loader3)) print("video:", video_acc / len(train_loader3)) print("audio:", audio_acc / len(train_loader3)) time_elapsed = time.time() - since print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60), "训练了%d个batch" % count)
e0e16019e1c7c31f775be698bcb15dd511f10ebe
1cd3177c88a9b15264aec1b3738c55b28cbc88e6
/lib/pirates.py
b855410bf86a75ff45537329c9de59694c01bbab
[ "MIT" ]
permissive
maurogaravello/pirati
3685f7d7ac164dd3ea6baf97ba434761a2b38993
27c07a368f026a43efc1cd5df9368004689bb04a
refs/heads/master
2020-05-21T20:08:46.711754
2017-02-07T09:46:46
2017-02-07T09:46:46
64,026,411
0
0
null
null
null
null
UTF-8
Python
false
false
9,926
py
#!/usr/bin/env python ### pirates.py ### class containing all the relevant data import numpy as np import logging class pirates(object): def __init__(self, x_1, x_2, y_1, y_2, n_x, n_y, M, tMax, d_o, InitialDatum_rho, InitialDatum_A, speed_ships, nu, DirName, mathcal_K, cut_off_C_pirates, kappa, a, cut_off_C_ships, cut_off_C_police, controls, pictures = 90): """ Initializatium function for the class. :param x_1: float. Lower bound for x-coordinate of the domain :param x_2: float. Upper bound for x-coordinate of the domain :param y_1: float. Lower bound for y-coordinate of the domain :param y_2: float. Upper bound for y-coordinate of the domain :param n_x: int. Number of points for the discretization of the x-component of the domain. :param n_y: int. Number of points for the discretization of the y-component of the domain. :param M: int. Number of police vessels. :param tMax: float. Time of the simulation :param d_o: tuple of lenght M. Each element is a tuple of 2 floats, describing the initial position of the police vessels :param InitialDatum_rho: function. It gives the initial density of the pirates. :param InitialDatum_A: function. It gives the initial density of the commercial ships. :param speed_ships: function. It gives the speed of ship when density is A :param nu: tuple of two functions. They give the geometrical direction of the ships. :param DirName: string. It gives the name of the working directory, i.e. of the directory containing the simulation :param mathcal_K: function describing the kernel in the equation for pirates :param cut_off_C_pirates: function describing the kernel in the equation for pirates :param kappa: function. It gives the normalization for the direction in the equation for pirates :param cut_off_C_ships: function describing the kernel in the equation for ships :param cut_off_C_police: function describing the kernel in the equation for police :param a: array of floats. Coefficients a in the source term f for the eq :param controls: function giving a list of controls. :param pictures: int. Approximate number of pictures. """ # 2d domains self.x_1 = x_1 self.x_2 = x_2 self.y_1 = y_1 self.y_2 = y_2 self.domain = ((x_1, x_2), (y_1, y_2)) self.n_x = n_x self.n_y = n_y self.check_domain() self.create_mesh() self.create_initial_datum(InitialDatum_rho, InitialDatum_A) # police self.police_vessels = M self.police_initial_positions = d_o self.check_positions() self.controls = controls # ships' velocity self.ships_speed = speed_ships self.ships_direction = nu self.ships_direction_mesh = nu(self.x, self.y) # time self.time_of_simulation = tMax self.create_time_mesh() # printing mesh self.pictures = pictures self.create_print_mesh() # base directory self.base_directory = DirName # kernels and cut-off self.mathcal_K = mathcal_K # self.cut_off_C = cut_off_C self.cut_off_C_pirates = cut_off_C_pirates self.cut_off_C_ships = cut_off_C_ships self.cut_off_C_police = cut_off_C_police self.create_kernels() # normalization function kappa self.kappa = kappa # coefficient a for the source term f in the equation for pirates self.a = a # # Function for creating the space mesh # def create_mesh(self): """ This function creates the grid for the domain Omega. self.x = numpy vector starting from self.x_1, ending to self.x_2, with self.n_x points, i.e. its length = self.n_x self.dx = the horizontal step self.y = numpy vector starting from self.y_1, ending to self.y_2, with self.n_y points, i.e. its length = self.n_y self.dy = the vertical step self.x_mesh and self.y_mesh are the corresponding meshgrids. Their shape is (self.n_y, self.n_x) """ (self.x, self.dx) = np.linspace(self.x_1, self.x_2, self.n_x, retstep=True) (self.y, self.dy) = np.linspace(self.y_1, self.y_2, self.n_y, retstep=True) self.x_mesh, self.y_mesh = np.meshgrid(self.x, self.y) # # Function for creating the time mesh # def create_time_mesh(self): """ This function creates the time mesh. self.time = numpy vector starting from 0, ending to self.time_of_simulation self.dt = the time step """ dxy = min(self.dx, self.dy) dt = 0.25* min(dxy**2, dxy/self.ships_speed(0)) N = 2 + int(self.time_of_simulation / dt) (self.time, self.dt) = np.linspace(0., self.time_of_simulation, N, retstep = True) assert (self.dt <= dt) # # Function for creating the printing mesh # def create_print_mesh(self): """ This function creates the print mesh. self.time = numpy vector starting from 0, ending to self.time_of_simulation self.dt = the time step """ K = int(float(len(self.time))/self.pictures) + 1 self.printing = np.zeros_like(self.time, dtype= bool) self.printing[::K] = True self.printing[-1] = True # # Function for creating the kernels # def create_kernels(self): """ This function creates 2d vectors for the kernels self.kernel_x = numpy vector centered at x=0 with same size as self.x and mesh size self.dx self.kernel_y = numpy vector centered at x=0 with same size as self.y and mesh size self.dy self.kernel_mathcal_K = numpy 2d vector generated by the function self.mathcal_K """ self.kernel_x = self.x - (self.x_1 + self.x_2)/2. self.kernel_y = self.y - (self.y_1 + self.y_2)/2. self.kernel_mathcal_K = self.mathcal_K(self.kernel_x, self.kernel_y) # # Function for creating 2d vectors for intial data # def create_initial_datum(self, InitialDatum_rho, InitialDatum_A): """ This function creates two 2d-arrays for the initial data for ship and pirates. :param InitialDatum_rho: function. It gives the initial datum for pirates. :param InitialDatum_A: function. It gives the initial datum for ships. It creates self.initial_density_pirates and self.initial_density_ships. They are two 2d-numpy array of shapes (n_y, n_x) """ self.initial_density_pirates = InitialDatum_rho(self.x_mesh, self.y_mesh) self.initial_density_ships = InitialDatum_A(self.x_mesh, self.y_mesh) # # Projection into the domain # def project(self, position_police): new_pos = [] for i in xrange(len(position_police)): position_x = min(max(position_police[i][0], self.x_1), self.x_2) position_y = min(max(position_police[i][1], self.y_1), self.y_2) new_pos.append((position_x, position_y)) return new_pos # # Function for checking the domain is feasible. # def check_domain(self): if self.x_1 >= self.x_2: print 'Error: x_1 should be less than x_2' logging.info('Error: x_1 should be less than x_2') exit() if self.y_1 >= self.y_2: print 'Error: y_1 should be less than y_2' logging.info('Error: y_1 should be less than y_2') exit() if not isinstance(self.n_x, int) or not isinstance(self.n_y, int): print 'Error: both n_x and n_y should be integers' logging.info('Error: both n_x and n_y should be integers') exit() if self.n_x == 0 or self.n_y == 0: print 'Error: both n_x and n_y should be strictly positive' logging.info('Error: both n_x and n_y should be strictly positive') exit() # # Function for checking the initial position of the police vessels. def check_positions(self): if not isinstance(self.police_vessels, int): print 'Error: the number M of vessels should be integer' logging.info('Error: the number M of vessels should be integer') exit() if len(self.police_initial_positions) != self.police_vessels: print 'Error: the number of police vessels does not coincide with their initial position' logging.info('Error: the number of police vessels does not coincide with their initial position') exit() for i in xrange(len(self.police_initial_positions)): if self.police_initial_positions[i][0] < self.x_1 or self.police_initial_positions[i][0] > self.x_2: print 'Error: the x position of the ' + str(i+1) + '-th vessel is not correct' logging.info('Error: the x position of the ' + str(i+1) + '-th vessel is not correct') exit() if self.police_initial_positions[i][1] < self.y_1 or self.police_initial_positions[i][1] > self.y_2: print 'Error: the y position of the ' + str(i+1) + '-th vessel is not correct' logging.info('Error: the y position of the ' + str(i+1) + '-th vessel is not correct') exit()
00584c9346dc4deaf86a7dc7b1447a77f268d162
370985396544a6c2601300b7802b16082017cc97
/TULER/RNN/rnn_model.py
b84cf3b5e5f2ba2289d9a45bcc9374ea1b89e411
[]
no_license
runnerxin/Paper-Reproduce
038d6e3ea33d373bfea2bc28fc40110fbdfbc3dd
2ad45ca791e45e8e0fe4d34e3bae10b05e0267b6
refs/heads/master
2020-03-31T05:19:03.456280
2018-12-11T10:40:12
2018-12-11T10:40:12
151,941,391
2
0
null
null
null
null
UTF-8
Python
false
false
2,246
py
# ============================================= # @Author : runnerxin # @File : rnn_model.py # @Software : PyCharm # @Time : 2018/11/22 14:43 # ============================================= # !/usr/bin/env python # -*- coding: utf-8 -*- from RNN.model import RNN from RNN.data_read import Data import torch from torch import nn import numpy as np def run(): data = Data() model = RNN() # print(model) optimizer = torch.optim.Adam(model.parameters(), lr=0.001) loss_func = nn.MSELoss() for epoch in range(200): for sentence in data.sentences: x = np.array(sentence[:-1], dtype=np.float32) y = np.array(sentence[1:], dtype=np.float32) x = torch.from_numpy(x[:, np.newaxis, np.newaxis]) # shape (time_step, batch, input_size) y = torch.from_numpy(y[:, np.newaxis, np.newaxis]) prediction, state = model(x) # rnn output # print(prediction.shape) # print(prediction.shape) # print(h_n.shape) # print(h_c.shape) loss = loss_func(prediction, y) # calculate loss print(loss) optimizer.zero_grad() # clear gradients for this training step loss.backward() # back propagation, compute gradients optimizer.step() # apply gradients torch.save(model, 'model.pkl') # y = np.array([4, 5, 6], dtype=np.float32) # y = torch.from_numpy(y[:, np.newaxis, np.newaxis]) # shape (time_step, batch, input_size) # loss = loss_func(prediction, y) # print(loss) # print(prediction) def test(): model = torch.load('model.pkl') x = np.array([3, 4, 5], dtype=np.float32) x = torch.from_numpy(x[:, np.newaxis, np.newaxis]) # shape (time_step, batch, input_size) prediction, state = model(x) print(prediction) for i in range(3): in_x = prediction[-1, :, :] in_x = in_x.view(-1, in_x.size(0), in_x.size(1)) # state = (state[0].data, state[1].data) prediction, state = model(in_x, state) print(prediction) if __name__ == "__main__": # run() test()
dd50d872377ade072ed8611c0266bc038e3ffa75
bf418efc6dfa4a1702b6360265607c4f008f399d
/rgb/train_rgb.py
6d7d5d47024f37538ad2cf4538a316aa616fc508
[]
no_license
klnavaneet/differ
4775f390e8f62755d23fb1a70315dc9e24b54d73
3aba1bd8fa58a8e3b1b8cc22abeb95cb6c65ea7e
refs/heads/master
2020-05-20T06:16:36.673477
2019-05-09T19:38:36
2019-05-09T19:38:36
185,425,397
8
2
null
2019-05-09T19:38:37
2019-05-07T15:03:56
Python
UTF-8
Python
false
false
16,499
py
############################################################################### # Training code for reconstructing colored point clouds # Use run_train_rgb.sh for running the code ############################################################################### import os, sys sys.path.append('../src') from train_utils import * from utils_train import * # to hide scipy deprecation warnings while saving outputs def warn(*args, **kwargs): pass import warnings warnings.warn = warn category_id = shapenet_category_to_id[args.category] def create_feed_dict(models, indices, models_pcl, b, args): batch = get_feed_dict(models, indices, models_pcl, b, args) batch_ip, batch_gt_rgb, batch_gt_mask, batch_pcl_gt, batch_x, batch_y, batch_names = batch feed_dict = {img_inp: batch_ip, proj_gt_mask: batch_gt_mask, proj_gt_rgb: batch_gt_rgb, pcl_gt: batch_pcl_gt, view_x:batch_x, view_y: batch_y} return feed_dict, batch_names def get_epoch_loss(models, indices, models_pcl, args): batches = len(indices)/VAL_BATCH_SIZE val_loss, val_fwd, val_bwd = [0.]*3 L_rgb_val, L_bce_val, L_fwd_val, L_bwd_val = [0.]*4 for b in xrange(0,batches,10): feed_dict, _ = create_feed_dict(models, indices, models_pcl, b, args) L,F,B,_L_rgb_val, _L_bce_val,_L_fwd_val,_L_bwd_val = sess.run([chamfer_distance_scaled, dists_forward_scaled, dists_backward_scaled, loss_rgb, loss_bce, loss_fwd, loss_bwd], feed_dict) val_loss += L/batches val_fwd += F/batches val_bwd += B/batches batch_out = [_L_rgb_val, _L_bce_val, _L_fwd_val, _L_bwd_val] L_rgb_val, L_bce_val, L_fwd_val, L_bwd_val = get_average_from_dict(batch_out) return val_loss[0], val_fwd[0], val_bwd[0], L_rgb_val, L_bce_val, L_fwd_val, L_bwd_val def save_outputs(models, pair_indices, models_pcl, global_step, args): sample_pair_indices = pair_indices[:10] out_dir_imgs = join(proj_images_folder, str(global_step)) out_dir_pcl = join(proj_pcl_folder, str(global_step)) create_folder([out_dir_imgs, out_dir_pcl]) batches = len(sample_pair_indices)//VAL_BATCH_SIZE for b in xrange(batches): fd, model_names = create_feed_dict(models, pair_indices, models_pcl, b, args) # save projections _proj_mask, _proj_rgb = sess.run([proj_pred_mask, proj_pred_rgb], feed_dict=fd) for k in range(1): # view num for l in range(1): # batch num _proj_mask[k][l][_proj_mask[k][l]>=0.5] = 1. _proj_mask[k][l][_proj_mask[k][l]<0.5] = 0. sc.imsave('%s/%s_%s_input.png'%(out_dir_imgs,model_names[l],k), fd[img_inp][l]) sc.imsave('%s/%s_%s_gt_mask.png'%(out_dir_imgs,model_names[l],k), fd[proj_gt_mask][l][k]) sc.imsave('%s/%s_%s_pred_mask.png'%(out_dir_imgs,model_names[l],k), _proj_mask[k][l]) batch_gt_rgb = (fd[proj_gt_rgb][k][l]*255.).astype(np.uint8) batch_gt_rgb = cv2.cvtColor(batch_gt_rgb, cv2.COLOR_RGB2BGR) batch_pred_rgb = (_proj_rgb[k][l]*255.).astype(np.uint8) batch_pred_rgb = cv2.cvtColor(batch_pred_rgb, cv2.COLOR_RGB2BGR) cv2.imwrite('%s/%s_%s_gt_rgb.png'%(out_dir_imgs,model_names[l],k), batch_gt_rgb) cv2.imwrite('%s/%s_%s_pred_rgb.png'%(out_dir_imgs,model_names[l],k), batch_pred_rgb) if args.save_pcl: # save pointclouds _pcl_out = sess.run(pcl_out, feed_dict=feed_dict) for k in range(1): #range(len(_pcl_out)): np.savetxt('%s/%s_%s_pred.xyz'%(out_dir_pcl,model_names[k],k),_pcl_out[k]) np.savetxt('%s/%s_%s_gt.xyz'%(out_dir_pcl,model_names[k],k),batch_pcl_gt[k]) if __name__=='__main__': EXP_DIR = args.exp create_folder([EXP_DIR]) filename = basename(__file__) os.system('cp %s %s'%(filename, EXP_DIR)) # Define Logs Directories snapshot_folder = join(EXP_DIR, 'snapshots') best_folder = join(EXP_DIR, 'best') logs_folder = join(EXP_DIR, 'logs') log_file = join(EXP_DIR, 'logs.txt') proj_images_folder = join(EXP_DIR, 'log_proj_images') proj_pcl_folder = join(EXP_DIR, 'log_proj_pcl') # Create log directories create_folder([snapshot_folder, logs_folder, best_folder, proj_images_folder, proj_pcl_folder, join(snapshot_folder,'best')]) args_file = join(logs_folder, 'args.json') with open(args_file, 'w') as f: json.dump(vars(args), f, ensure_ascii=False, indent=2, sort_keys=True) train_models, val_models, train_pair_indices, val_pair_indices = get_shapenet_drc_models(data_dir, categs=[category_id]) train_models_pcl, val_models_pcl, _, _ = get_shapenet_drc_models(data_dir_pcl, categs=[category_id]) random.shuffle(val_pair_indices) batches = len(train_pair_indices) / args.batch_size # Create placeholders img_inp = tf.placeholder(tf.float32, shape=(args.batch_size, args.IMG_H, args.IMG_W, 3), name='img_inp') proj_gt_mask = tf.placeholder(tf.float32, shape=(args.batch_size, args.N_VIEWS, args.IMG_H, args.IMG_W), name='proj_gt_mask') proj_gt_rgb = tf.placeholder(tf.float32, shape=(args.batch_size, args.N_VIEWS, args.IMG_H, args.IMG_W, 3), name='proj_gt_rgb') pcl_gt = tf.placeholder(tf.float32, shape=(args.batch_size, args.N_PTS, 3), name='pcl_gt_2K') view_x = tf.placeholder(tf.float32, shape=(args.batch_size,args.N_VIEWS), name='view_x') view_y = tf.placeholder(tf.float32, shape=(args.batch_size,args.N_VIEWS), name='view_y') # Tensorboard summary placeholders train_loss_summ = [] loss_names = ['loss_total', 'loss_rgb', 'loss_bce', 'loss_aff_fwd', 'loss_aff_bwd'] for idx, name in enumerate(loss_names): train_loss_summ.append(tf.placeholder(tf.float32, shape=(), name=name)) val_loss_summ = [] val_loss_names = ['chamfer_dist', 'val_loss_rgb', 'val_loss_bce', 'val_aff_fwd', 'val_aff_bwd', 'chamf_fwd', 'chamf_bwd'] for idx, name in enumerate(val_loss_names): val_loss_summ.append(tf.placeholder(tf.float32, shape=(), name=name)) # Build graph with tf.variable_scope('recon_net'): if args.skipconn: out = recon_net_rgb_skipconn(img_inp, args) # (B,N,3+C) else: out = recon_net_rgb(img_inp, args) # (B,N,3+C) pcl_out = out[:,:,:3] # (B,N,3) rgb_out = out[:,:,3:] # (B,N,3) ''' pcl_out_rot --> dict of camera coordinate rotated pcls {(B,N,3)} pcl_out_persp --> dict of pcls after perspective_transform {(B,N,3)} proj_pred_mask --> dict of silhouette projection maps {(B,64,64)} proj_pred_rgb --> dict of rgb projection maps {(B,C,64,64)} proj_gt --> depth projection, placeholder of shape (B,V,64,64) proj_gt_mask --> mask projection, placeholder of shape (B,V,64,64) proj_gt_rgb --> placeholder of shape (B,V,64,64,3) loss --> final loss to optimize on loss_depth --> {V:(B,64,64)} --> l1 map for depth maps loss_bce --> {V:(B,64,64)} --> bce map for silhouette mask loss_rgb --> {V:(B,64,64)} --> bce map for rgb maps fwd --> {V:(B,64,64)} --> affinity loss fwd bwd --> {V:(B,64,64)} --> affinity loss bwd loss_fwd --> {()} --> reduce_mean values for each view loss_bwd --> {()} --> reduce_mean values for each view ''' pcl_out_rot = {}; proj_pred_mask={}; proj_pred_rgb={}; pcl_out_persp = {}; loss = 0.; loss_bce = {}; fwd = {}; bwd = {}; loss_rgb = {}; prob = {}; prob_mask = {}; loss_fwd = {}; loss_bwd = {}; grid_dist_tensor = grid_dist(args.grid_h, args.grid_w) for idx in range(0,args.N_VIEWS): # 3D to 2D Projection pcl_out_rot[idx] = world2cam(pcl_out, view_x[:,idx], view_y[:,idx], args.batch_size) ### for batch size 1 pcl_out_persp[idx] = perspective_transform(pcl_out_rot[idx], args.batch_size) proj_pred_mask[idx] = cont_proj(pcl_out_persp[idx], args.IMG_H, args.IMG_W, args.SIGMA_SQ_MASK) proj_pred_rgb[idx], prob[idx], prob_mask[idx] = rgb_cont_proj(pcl_out_persp[idx], rgb_out, args.N_PTS, args.IMG_H, args.IMG_W, args.WELL_RADIUS, args.BETA, 'rgb') # Loss # mask loss_bce[idx], fwd[idx], bwd[idx] = get_loss_proj(proj_pred_mask[idx], proj_gt_mask[:,idx], 'bce_prob', 1.0, True, grid_dist_tensor) loss_bce[idx] = tf.reduce_mean(loss_bce[idx]) loss_fwd[idx] = 1e-4*tf.reduce_mean(fwd[idx]) loss_bwd[idx] = 1e-4*tf.reduce_mean(bwd[idx]) loss += args.wt_bce*loss_bce[idx] # add mask loss to main loss # add affinity loss if necessary loss += (args.wt_aff_fwd * loss_fwd[idx]) + \ (args.wt_aff_bwd * loss_bwd[idx]) # RGB reconstruction loss loss_rgb[idx], _, _ = get_loss_proj(proj_pred_rgb[idx], proj_gt_rgb[:,idx], 'l2_sq') loss_rgb[idx] = tf.reduce_mean(loss_rgb[idx]) loss += args.wt_rgb*tf.reduce_mean(loss_rgb[idx]) loss = (loss / args.N_VIEWS) pcl_out_scaled, pcl_gt_scaled = scale(pcl_gt, pcl_out) dists_forward_scaled, dists_backward_scaled, chamfer_distance_scaled = get_chamfer_metrics(pcl_gt_scaled, pcl_out_scaled) train_vars = [var for var in tf.global_variables() if 'recon_net' in var.name] load_vars = [var for var in tf.global_variables() if 'Variable' not in var.name] # Optimizer opt = tf.train.AdamOptimizer(args.lr, beta1=0.9) optim = opt.minimize(loss, var_list=train_vars) # Training params start_epoch = 0 max_epoch = args.max_epoch # Define savers to load and store models saver = tf.train.Saver(max_to_keep=2) saver_load = tf.train.Saver(load_vars) # Add Tensorboard summaries loss_summ = [] for idx, name in enumerate(loss_names): loss_summ.append(tf.summary.scalar(name, train_loss_summ[idx])) train_summ = tf.summary.merge(loss_summ) # Add Tensorboard summaries loss_summ_val = [] for idx, name in enumerate(val_loss_names): loss_summ_val.append(tf.summary.scalar(name, val_loss_summ[idx])) val_summ = tf.summary.merge(loss_summ_val) # GPU configurations config = tf.ConfigProto() config.gpu_options.allow_growth = True # Run session with tf.Session(config=config) as sess: print 'Session started' train_writer = tf.summary.FileWriter(logs_folder+'/train', sess.graph_def) val_writer = tf.summary.FileWriter(logs_folder+'/val', sess.graph_def) print 'running initializer' sess.run(tf.global_variables_initializer()) print 'done' # Load previous checkpoint init_flag = True ckpt = tf.train.get_checkpoint_state(snapshot_folder) if ckpt is not None: print ('loading '+os.path.abspath(ckpt.model_checkpoint_path) + ' ....') saver_load.restore(sess, os.path.abspath(ckpt.model_checkpoint_path)) st_iters = int(re.match('.*-(\d*)$', ckpt.model_checkpoint_path).group(1)) start_epoch = int(st_iters/batches) st_batches = st_iters % batches init_flag = False since = time.time() print '*'*30,'\n','Training Started !!!\n', '*'*30 if start_epoch == 0: with open(log_file, 'w') as f: f.write(' '.join(['Epoch','Train_loss','Val_loss','Minutes','Seconds','\n'])) train_loss_N, L_rgb_N, L_bce_N, L_fwd_N, L_bwd_N = [0.]*5 batch_out_mean = [0.]*5 epoch_out = [0.]*5 best_val_loss = 1e5 for i in xrange(start_epoch, max_epoch+1): random.shuffle(train_pair_indices) train_epoch_loss, train_epoch_rgb, train_epoch_bce, train_epoch_fwd, train_epoch_bwd = [0.]*5 if init_flag: st_batches = 0 for b in xrange(st_batches, batches): global_step = i*batches + b + 1 if global_step >= args.N_ITERS: sys.exit('Finished Training') # Load data feed_dict, _ = create_feed_dict(train_models, train_pair_indices, train_models_pcl, b, args) # Calculate loss and run optimizer L, _L_rgb, _L_bce, _L_fwd, _L_bwd, _ = sess.run([loss, loss_rgb, loss_bce, loss_fwd, loss_bwd, optim], feed_dict) L_rgb, L_bce, L_fwd, L_bwd = get_average_from_dict([_L_rgb, _L_bce, _L_fwd, _L_bwd]) batch_out = [L, L_rgb, L_bce, L_fwd, L_bwd] # Use loss values averaged over N batches for logging batch_out_mean = average_stats(batch_out_mean, batch_out, b%args.print_n) train_loss_N, L_rgb_N, L_bce_N, L_fwd_N, L_bwd_N = batch_out_mean epoch_out = average_stats(epoch_out, batch_out, global_step%batches) if global_step % args.print_n == 0: feed_dict_summ = {} for idx, item in enumerate(batch_out_mean): feed_dict_summ[train_loss_summ[idx]] = item _summ = sess.run(train_summ, feed_dict_summ) # Add to tensorboard summary train_writer.add_summary(_summ, global_step) time_elapsed = time.time() - since _pcl_out = sess.run(pcl_out, feed_dict) print 'Iter = {} Loss = {:.5f} RGB = {:.5f} BCE = {:.5f} FWD = {:.5f} BWD = {:.5f} Time = {:.0f}m {:.0f}s'.format(global_step, train_loss_N, L_rgb_N, L_bce_N, L_fwd_N, L_bwd_N, time_elapsed//60, time_elapsed%60) if (global_step-1) % args.save_n == 0: save_outputs(val_models, val_pair_indices, val_models_pcl, global_step, args) if global_step % args.save_model_n == 0 and i != -1: print 'Saving Model ....................' saver.save(sess, join(snapshot_folder, 'model'), global_step=global_step) print '..................... Model Saved' # Val metrics if global_step % args.save_n == 0: val_t_st = time.time() val_out = get_epoch_loss(val_models, val_pair_indices, val_models_pcl, args) feed_dict_summ = {} for idx, item in enumerate(val_out): feed_dict_summ[val_loss_summ[idx]] = item _summ = sess.run(val_summ, feed_dict_summ) val_epoch_loss = val_out[0] val_writer.add_summary(_summ, global_step) val_t_sp = time.time() print 'Val Epoch Loss: {:.4f}'.format(val_epoch_loss*10000) # Update best model if necessary if (val_epoch_loss < best_val_loss): saver.save(sess, join(snapshot_folder, 'best', 'best')) os.system('cp %s %s'%(join(snapshot_folder, 'best/*'), best_folder)) best_val_loss = val_epoch_loss print 'Best model at iter %s saved, loss = %.4f' %(global_step, best_val_loss*10000) time_elapsed = time.time() - since with open(log_file, 'a') as f: epoch_str = '{} {:.6f} {:.6f} {:.6f} {:.6f} {:.6f} {:.0f} {:.0f}'.format(i, train_epoch_loss, train_epoch_rgb, train_epoch_bce, train_epoch_fwd, train_epoch_bwd, time_elapsed//60, time_elapsed%60) f.write(epoch_str+'\n') print '-'*65 + ' EPOCH ' + str(i) + ' ' + '-'*65 epoch_str = 'TRAIN Loss: {:.6f} RGB: {:.6f} BCE: {:.6f} FWD: {:.6f} BWD: {:.6f} Time:{:.0f}m {:.0f}s'.format(\ train_epoch_loss, train_epoch_rgb, train_epoch_bce, train_epoch_fwd, train_epoch_bwd, time_elapsed//60, time_elapsed%60) print epoch_str print '-'*140 print
1f750de145ff1d1760c2e589a0d0a0c59f1a2da7
4f0b846a4cfb36803690480e78104072d28bcf9e
/week6Python/pset6/readability/readability.py
863e53525facf8c895a95cd8cc9be39ffe469368
[]
no_license
Jordhan-Carvalho/cs50-examples
0c6f1b2b5b7f9078d827f1ee417713b1c9840681
2b51b805f89c325744d553aa9acab63e8c9a6d6f
refs/heads/master
2022-10-06T10:48:23.114773
2020-04-03T14:03:53
2020-04-03T14:03:53
245,007,357
0
0
null
null
null
null
UTF-8
Python
false
false
673
py
from cs50 import get_string text = get_string("Text: ") countWords = len(text.split()) # create a list of characters and remove the non alphanumerics and get the length countLetter = len(list(filter(lambda x: x.isalpha(), list(text)))) countSentences = 0 for c in text: if c == "." or c == "!" or c == "?": countSentences += 1 # TO DO Find the average of lettters and setences per 100 words L = (countLetter * 100) / countWords S = (countSentences * 100) / countWords colemanIndex = 0.0588 * L - 0.296 * S - 15.8 if colemanIndex < 1: print("Before Grade 1") elif colemanIndex > 16: print("Grade 16+") else: print(f"Grade {round(colemanIndex)}")
baeac5bf1cea541d8480d0f20f6e5a423da871c2
409625b6cff358da4074b9c095f663bee9c027e4
/01-Introductions/02-While_loops/syntax.py
ed972146c32f0b620a3a8f9247e948f930aa965b
[ "MIT" ]
permissive
francisrod01/udacity_python_foundations
f610b683d85eaffa211ca07010187ebb1a0df62e
2a384cf35ce7eff547c88097cdc45cc4e8fc6041
refs/heads/master
2021-01-24T06:42:26.181582
2017-07-29T18:52:44
2017-07-29T18:52:44
93,314,658
0
0
null
null
null
null
UTF-8
Python
false
false
125
py
#!/usr/bin/python3.4 count = 0 while count < 9: print("The count is: ", count) count = count + 1 print("Good bye")
0464801decb99dbb953fb042822a2cbb7de6d889
5e6af0801f40e2dfd8dddff100236822ecca2093
/Calculations/separationArm.py
3a5f9a01fa335f2f2f3bb1bd646241b643763301
[]
no_license
jcchin/ANGEL
40430afeff50aaaa51ce954b1840ac2804300442
3b9deca878f05b82216862b71601fbe95b747f51
refs/heads/master
2021-01-02T08:19:26.142272
2015-11-15T04:15:26
2015-11-15T04:15:26
22,022,686
1
0
null
null
null
null
UTF-8
Python
false
false
7,598
py
import time import numpy as np from scipy.interpolate import interp1d from math import log, pi, sqrt, sin, cos from numpy import arctan #from matplotlib import pylab as plt #from matplotlib import mlab as mlab from openmdao.main.api import Assembly, Component from openmdao.lib.datatypes.api import Float, Bool, Str from openmdao.lib.drivers.api import CaseIteratorDriver, BroydenSolver, NewtonSolver from openmdao.lib.casehandlers.api import BSONCaseRecorder, CaseDataset class pendulum(Component): """ Calculate final angular velocity and tilt after t_diff """ #--Inputs-- bfs_height = Float(0.3556, units='m', iotype='in', desc="BFS height (y direction, pin to bottom of BFS)") bfs_width = Float(0.635, units='m', iotype='in', desc="BFS width (x direction)") # inputs t_diff = Float( units='s', iotype='in', desc="time between pin releases") g = Float(9.81, units='m/s**2', iotype='in', desc="gravity") n = Float(10000, iotype='in', desc="number of time steps") t_0 = Float(0, iotype='in', desc="number of time steps") alpha_0 = Float(0, units='rad/s**2', iotype='in', desc="initial angular acceleration") omega_0 = Float(0, units='rad/s**2', iotype='in', desc="initial angular velocity") # outputs inertia = Float(units='m**2',iotype='out',desc="moment of inertia divided by mass in kg") theta_0 = Float(units='rad', iotype='out', desc="initial angle", low=0, high=pi) R_pendulum = Float(units='m', iotype='out', desc="distance from CG to sep pin", low=0, high=4) t_step = Float(iotype='out', desc='time interval', low=0, high=0.1) alpha = Float(units='rad/s**2', iotype='out', desc="release angular acceleration") omega = Float(units='rad/s**2', iotype='out', desc="release angular velocity") theta = Float(units='rad', iotype='out', desc="release angle", low=-pi, high=pi) def execute(self): """Calculate Various Paramters""" #geom calcs self.theta_0 = arctan((self.bfs_width/2.)/self.bfs_height) self.R_pendulum = sqrt(self.bfs_width/2**2+self.bfs_height**2) #pythag theorem #dynamics calcs #self.inertia = self.R_pendulum**2 #idealized pendulum #self.inertia = ((self.bfs_width**2 + self.bfs_height**2)/12) + ((self.bfs_width/2)+self.bfs_height) #rough calc self.inertia = 0.25 #see Tom Cressman's excel spreadsheet self.alpha = self.alpha_0 #initial conditions = 0 self.omega = self.omega_0 #initial conditions = 0 self.theta = self.theta_0 #initial conditions = 0 self.t_step = (self.t_diff - self.t_0)/self.n #crude time marching, rather than RK4, 10000 time steps. while(self.t_0 < self.t_diff): #march slowly in time. alpha = (-gR/I)sin(theta) self.omega = self.omega + self.t_step*(-self.g*self.R_pendulum/self.inertia)*sin(self.theta) # update velocity self.theta = self.theta + self.omega*self.t_step # update position self.t_0 = self.t_0 + self.t_step # update time class swing(Component): #geometry agu_height = Float(0.4826, units='m', iotype='in', desc="AGU Height (y direction, pin to top of drogue)") agu_width = Float(0.4064, units='m', iotype='in', desc="AGU width (x direction)") #sep_length = Float(0.0381, units='m', iotype='in', desc="x-distance from pin to AGU") bfs_width = Float(0.635, units='m', iotype='in', desc="BFS width (x direction)") #dynamic omega = Float(units='rad/s**2', iotype='in', desc="release angular velocity") theta = Float(units='rad', iotype='in', desc="release angle") R_pendulum = Float(units='m', iotype='in', desc="distance from CG to sep pin") g = Float(9.81, units='m/s**2', iotype='in', desc="gravity") theta_0 = Float(pi/4, units='rad', iotype='in', desc="initial angle") #outputs y_margin = Float(units='m', iotype='out', desc="y distance from drogue corner to sep at pin release", low=0, high=10) x_margin = Float(units='m', iotype='out', desc="x distance from drogue corner to sep at pin release", low=-1, high=1) k_theta_0 = Float(units='rad', iotype='out', desc="initial top angle", low=0, high=pi) k = Float(units='m', iotype='out', desc="x distance from drogue corner to pivot point",low=0, high=10) k_theta = Float(units='rad', iotype='out', desc="rotated top angle", low=-pi, high=pi) velocity = Float(units='m/s', iotype='out', desc="tangential velocity") x_veloc = Float( units='m/s', iotype='out', desc="tangential velocity") t_drop = Float(units='s', iotype='out', desc="time to fully clear Y height (with just Y movement)") x_dist = Float(units='m', iotype='out', desc="x distance from drogue corner to sep at clearance point") def execute(self): """Calculate Various Paramters""" self.velocity = self.omega * self.R_pendulum self.x_veloc = self.velocity * sin(self.theta) self.y_veloc = self.velocity * cos(self.theta) v = self.y_veloc #vertical velocity #distance BFS pivot corner to opposite drogue corner #recalulate corner point relative to separation arm self.k_theta_0 = arctan(((self.bfs_width/2) + (self.agu_width/2)) / self.agu_height) self.k = sqrt(((self.bfs_width/2) + (self.agu_width/2))**2 + (self.agu_height**2)) self.k_theta = self.k_theta_0 + (self.theta_0-self.theta) self.x_margin = self.bfs_width - self.k*sin(self.k_theta) self.y_margin = self.k*cos(self.k_theta) # free fall h = 1/2*g*t^2 + v_0t, solve for t, quadratic formula #self.t_drop = v-sqrt(v**2-(2*self.g*self.y_margin)/self.g) self.t_drop = sqrt(2*self.y_margin/self.g) self.x_dist = (self.x_veloc * self.t_drop) + self.x_margin class system(Assembly): #not currently used, could be used if we exand the calcs... def configure(self): #Add Components self.add('swing', swing()) self.add('pendulum', pendulum()) driver = self.add('driver', BroydenSolver()) #driver.add_parameter('pendulum.t_diff',low=0.,high=10.) #driver.add_constraint('swing.x_dist=0') driver.workflow.add(['pendulum', 'swing']) #Boundary Input Connections self.connect('pendulum.theta_0','swing.theta_0') self.connect('pendulum.theta','swing.theta') self.connect('pendulum.omega','swing.omega') #self.connect('pendulum.alpha','swing.alpha') self.connect('pendulum.R_pendulum','swing.R_pendulum') if __name__ == '__main__' and __package__ is None: #top = system() pen = pendulum() pen.t_diff = 0.3 #modify here 0.068 original bfs_width = 0.635 #modify here 0.635 original pen.bfs_width = bfs_width #initial run to converge things pen.run() print "------- -------" print "t_diff: ", pen.t_diff , "seconds" print "theta_0: ", pen.theta_0 , "rad" print "theta : ", pen.theta , "rad" print "omega : ", pen.omega , "rad/s" print "inertia/m:", pen.inertia sw = swing() #sw.sep_length = 0.03 sw.theta_0 = pen.theta_0 sw.theta = pen.theta sw.omega = pen.omega sw.R_pendulum = pen.R_pendulum sw.bfs_width = bfs_width sw.run() print "k_theta_0", sw.k_theta_0, 'rad' print "y_margin: ", sw.y_margin, 'm' print "x_margin: " , sw.x_margin, 'm' print "x_veloc: " , sw.x_veloc, 'm/s' print "t_drop: " , sw.t_drop, 's' print "x_Dist: " , sw.x_dist, 'm' actuator_speed = 0.00889 #m/s print print "pin margin: ", actuator_speed*pen.t_diff*1000, "mm"
ae796b3097dabfd106f7fd7c8273d327130a63dc
64181e8126bf77125e2a55df0d739643a8cc2ded
/transformada.py
15ef06690c9bc07eb6909c98aee5a60523d6e274
[]
no_license
pereznator/IPC2_Proyecto2_201900810
ddac37439713d09a3a5f66dfb1a2a539caad1ff8
92f9a955d8fc469380d71ad494475a277568f42b
refs/heads/master
2023-04-04T23:18:43.481296
2021-04-06T01:34:58
2021-04-06T01:34:58
352,747,982
0
0
null
null
null
null
UTF-8
Python
false
false
3,585
py
class Transformada: resultado = [] def __init__(self, matriz): self.matriz = matriz self.verMatriz() def verMatriz(self): self.arreglo = [] faux = self.matriz.listaFilas.primero for f in range(self.matriz.listaFilas.cuenta): caux = faux.primero fila = [] for c in range(faux.cuenta): fila.append({'dato': caux.dato, 'x': caux.x, 'y': caux.y}) caux = caux.siguiente self.arreglo.append(fila) faux = faux.siguiente def rotacionHorizontal(self): nuevaMatriz = [] for fila in self.arreglo: nuevaMatriz.append([]) i = len(nuevaMatriz) - 1 for fila in self.arreglo: nuevaMatriz[i] = fila i-=1 self.resultado = nuevaMatriz def rotacionVertical(self): nuevaMatriz = [] for fila in self.arreglo: arr = [] for celda in fila: arr.append({}) nuevaMatriz.append(arr) f = 0 for fila in self.arreglo: l = len(fila) - 1 for celda in fila: nuevaMatriz[f][l] = celda l-=1 f+=1 self.resultado = nuevaMatriz def transpuesta(self): columnas = [] for c in range(len(self.arreglo[0])): columnas.append([]) for f in self.arreglo: for c in f: columnas[c['x'] - 1].append(c) nuevaMatriz = [] for fila in self.arreglo: nuevaMatriz.append([]) f = 0 for fila in columnas: nuevaMatriz[f] = fila f+=1 self.resultado = nuevaMatriz def limpiarZona(self, coordenadas): for y in range(int(coordenadas['y1'])-1, int(coordenadas['y2'])): for x in range(int(coordenadas['x1'])-1, int(coordenadas['x2'])): self.arreglo[y][x]['dato'] = '-' self.resultado = self.arreglo def agregarHorizontal(self, datos): for dato in self.arreglo[int(datos['fila'])-1]: if int(datos['x1']) <= dato['x'] <= int(datos['x2']): dato['dato'] = '*' self.resultado = self.arreglo def agregarVertical(self, datos): f = 1 for fila in self.arreglo: if int(datos['y1']) <= f <= int(datos['y2']): for celda in fila: if celda['x'] == int(datos['columna']): celda['dato'] = '*' f+=1 self.resultado = self.arreglo def agregarRectangulo(self, datos): limy = datos['y'] + datos['filas'] limx = datos['x'] + datos['columnas'] celdas = [] for y in range(datos['y'], limy): for x in range(datos['x'], limx): celdas.append({'x': x-1, 'y': y-1}) for c in celdas: self.arreglo[c['y']][c['x']]['dato'] = '*' self.resultado = self.arreglo def agregarTriangulo(self, datos): limy = datos['y'] + datos['filas'] limx = datos['x'] + datos['columnas'] celdas = [] for y in range(datos['y'], limy): for x in range(datos['x'], limx): celdas.append({'x': x-1, 'y': y-1}) c = 1 triangulo = [] for x in range(datos['filas']): fila = [] for m in range(c): fila.append({}) triangulo.append(fila) c+=1 self.resultado = self.arreglo
b9a1445acb587e66c1aae0c2b015dd133b28be69
810d3856f8c1bb5364ea20917690a8f3b5e83e66
/other/实验报告/NCM/three_spline_interpolation.py
45541a7b6a9066d508a0503beb8f992a27f0b8b0
[]
no_license
Saber-f/code
6c36bff79a6590bf8eb4f740cf5c403d31ddb17e
9e8646a320d91c0019493854f879bd6aefa6521d
refs/heads/master
2021-07-15T21:53:54.440183
2019-05-20T07:18:37
2019-05-20T07:18:37
129,101,087
0
0
null
null
null
null
UTF-8
Python
false
false
3,677
py
'''三次样条插值,矩阵解''' from numpy import * import numpy as np import matplotlib.pyplot as plt # 将字符列表转换为浮点数列表 def str2float(L): i = 0; while i < len(L): L[i] = float(L[i]) i += 1 # 得到m x n 的零矩阵 def get_mat(m,n): A = [] i = 0 while i < m: j = 0 A.append([]) while j < n: A[i].append(0) j += 1 i += 1 A = mat(A) return A # 加入f(xi)=yi def F1(A, B, X, Y): i = 1 while i < len(X): A[2*i-2,4*i-4] = X[i-1]**3 A[2*i-2,4*i-3] = X[i-1]**2 A[2*i-2,4*i-2] = X[i-1] A[2*i-2,4*i-1] = 1 B[2*i-2,0] = Y[i-1] A[2*i-1,4*i-4] = X[i]**3 A[2*i-1,4*i-3] = X[i]**2 A[2*i-1,4*i-2] = X[i] A[2*i-1,4*i-1] = 1 B[2*i-1,0] = Y[i] i += 1 # 加入边界条件一二阶导数相等条件 def F2(A,X): i = 2*(len(X)-1) j = 1 while j < len(X) - 1: A[i,4*j-4] = 3*X[j]**2 A[i,4*j-3] = 2*X[j] A[i,4*j-2] = 1 A[i,4*j] = -3*X[j]**2 A[i,4*j+1] = -2*X[j] A[i,4*j+2] = -1 A[i+len(X)-2,4*j-4] = 6 * X[j] A[i+len(X)-2,4*j-3] = 2 A[i+len(X)-2,4*j] = -6 * X[j] A[i+len(X)-2,4*j+1] = -2 j += 1 i += 1 # 加入边界条件 def F3(A, B, X): print('边界条件::') f10 = input('f\'('+str(X[0])+') = ') f20 = input('f\'\'('+str(X[0])+') = ') f1n = input('f\'('+str(X[len(X)-1])+') = ') f2n = input('f\'\'('+str(X[len(X)-1])+') = ') i = 1; if f10 != '': A[len(A)-i,0] = 3*X[0]**2 A[len(A)-i,1] = 2*X[0] A[len(A)-i,2] = 1 B[len(A)-i,0] = f10 i += 1 if f1n != '': A[len(A)-i,len(A)-4] = 3*X[len(X)-1]**2 A[len(A)-i,len(A)-3] = 2*X[len(X)-1] A[len(A)-i,len(A)-2] = 1 B[len(A)-i,0] = f1n i += 1 if f20 != '' and i < 3: A[len(A)-i,0] = 6*X[0] A[len(A)-i,1] = 2 B[len(A)-i,0] = f20 i += 1 if f2n != '' and i < 3: A[len(A)-i,len(A)-4] = 6*X[len(X)-1] A[len(A)-i,len(A)-3] = 2 B[len(A)-i,0] = f2n i += 1 # 得到答案(系数矩阵) def get_ans(A, B): temp = A.I*B; ANS = [] i = 0 while i < len(B) / 4: ANS.append([]); ANS[i].append(temp[i*4,0]) ANS[i].append(temp[i*4+1,0]) ANS[i].append(temp[i*4+2,0]) ANS[i].append(temp[i*4+3,0]) i += 1 return mat(ANS) # 画图 def plot_ans(A,X): i = 1 while i < len(X): px = np.arange(min(X[i-1],X[i]),max(X[i-1],X[i])+abs(X[i]-X[i-1])/1000,abs(X[i]-X[i-1])/100) j = 0 py = [] while j < len(px): py.append(A[i-1,0]*px[j]**3+A[i-1,1]*px[j]**2+A[i-1,2]*px[j]+A[i-1,3]) j += 1 plt.plot(px,py) i += 1 plt.show() # 求导 def deriva(ANS): i = 0 while i < len(ANS): j = 3 while j > 0: ANS[i,j] = ANS[i,j-1]*(4-j) j -= 1 ANS[i,0] = 0; i += 1 while True: tX = input('请输入x::').split() tY = input('请输入y::').split() if len(tX) == len(tY): s = np.argsort(tX) X = [] Y = [] for t in s: X.append(tX[t]) Y.append(tY[t]) X = tX Y = tY break str2float(X) str2float(Y) A = get_mat(4*(len(X)-1),4*(len(X)-1)) B = get_mat(4*(len(X)-1),1) F1(A, B, X, Y) F2(A, X) F3(A, B, X) ANS = get_ans(A, B) print(ANS) plt.scatter(X,Y,marker = 'x') plot_ans(ANS,X) deriva(ANS) plot_ans(ANS,X) deriva(ANS) plot_ans(ANS,X) deriva(ANS) plot_ans(ANS,X)
9b655a2950c9d31a015a40bfc9dd87f0b5641102
9c47be5ddab07802e5812b8f1a2f6830b9323f10
/untitled/modules/arr_procedures.py
eef9193968c70b9d41514f0724e83fe31f4609c7
[]
no_license
hotriluc/pyth_diploma
db2c8d41dd20f69ac0028f8eb6dc08ab8efb9202
e2a92802487cd4d67d7ab05f3f19254e08ed746b
refs/heads/master
2021-07-10T06:05:34.582939
2020-10-30T20:24:04
2020-10-30T20:24:04
210,030,207
0
0
null
null
null
null
UTF-8
Python
false
false
12,223
py
import copy import itertools import pickle import numpy as np from modules.calculations import coprimes, printFullStat, getPair, getMax #==============================BASIC MANIPULATION WITH ARRAYS============================== # write string def writeListInFile(aList:list,filepath): f = open(filepath,"w") for i in range(0,len(aList)): f.write(str(i)+") "+str(aList[i])+"\n") f.close() # write binary mode def writeListInBinFile(aList:list,file_name): with open(file_name, 'wb') as F: # Dump the list to file pickle.dump(aList, F) F.close() def loadFromBinFile(file_name): with open(file_name, 'rb') as F: aList = pickle.load(F) F.close() return aList def print_2d_arr(aList): for row in aList: for item in row: print("{0:5d}".format(item), end="") print("") # print list of list(signals) def print_sig_in_list(aList): i = 0 for item in aList: print(i, ") ", item) i += 1 # using simple pop and insert we created Shifting list with zeroing def ShiftRight(aList: list, steps: int): # for negative steps if steps < 0: steps = abs(steps) for i in range(steps): # pop first element # everything is shifted to the left after we pop aList.pop(0) # adding to the end 0 aList.append(0) else: for i in range(steps): # insert zero to the 0 position aList.insert(0, 0) # poping last el # everything is shifted to right aList.pop() def CyclicShiftRight(aList: list, steps: int): # for negative steps if steps < 0: steps = abs(steps) for i in range(steps): # adding to the end popped 0th el aList.append(aList.pop(0)) else: for i in range(steps): # adding to the beginning popped(last) el aList.insert(0, aList.pop()) # def ShiftRight(aList:list,pos:int): # return aList[pos:len(aList):]*0 + aList[0:pos:] # for i in range(1,len(aList)-1): #============================== ADVANCED MANIPULATION WITH ARRAYS(SIGNALS============================== #============================== DECIMATION============================== def decimation(a_List: list, b_List: list, d: int): for i in range(0, len(a_List)): pos = (d + d * i) % len(a_List) b_List[i] = a_List[pos] # Getting all signals created with decimation # (number of signals = Euler totient function of signal length) def getDecimation(source_signal): #getting source singal length sig_len = len(source_signal) # Copy source signal (in order to not interfere source signal) sig1_ = copy.deepcopy(source_signal) # Creating list for storing signals decimation_list = list() #Geting coprimes of sign len e.g len= 256 coprimes = [1,3,5,7 ... 255] # index 1 because of coprimes method return tuple of 2element # (the number of total coprimes, and list of coprimes) # coprime_list = coprimes(sig_len)[1] # For each coprime of source signal length we will create a signal using decimation for i in range(len(coprime_list)): # tmp for signal we are going to get with decimation sig2_ = [0 for i in range(sig_len)] # creating rest signals with decimation decimation(sig1_, sig2_, coprime_list[i]) # appending decimation_list with list # that contains decimated sig and # decimation coefficient that used to create that sig decimation_list.append([sig2_, coprime_list[i]]) return decimation_list # decimation list consist lists that have elements signals and its decimtion coefficient def get_decimated_signals(decimation_list): only_decimated_signals = list() for i in range(0, len(decimation_list)): only_decimated_signals.append(decimation_list[i][0]) return only_decimated_signals #============================== DERIVATIVE SIGNALS FORMATION============================== # ansambles must contain same number of signals # USING WITH HADAMAR DISCRETE SIGNALS in order to get derivative signals def derivativeSig(ansamble_sig1: list, ansamble_sig2: list): der_sig_list = [] for i in range(0, len(ansamble_sig1)): tmp = np.array(ansamble_sig1[i]) * np.array(ansamble_sig2[i]) der_sig_list.append(tmp.tolist()) return der_sig_list def derivativeSigALL(ansamble_sig1: list, ansamble_sig2: list): der_sig_list = [] sig_comb_list = [] for i in range(0, len(ansamble_sig1)): for j in range(0, len(ansamble_sig2)): der_sig_list.append(np.multiply(ansamble_sig1[i], ansamble_sig2[j]).tolist()) sig_comb_list.append((i, j)) return der_sig_list, sig_comb_list # Same as above but used starting and ending point of inner cycle (from to) # of course you can used the first mentioned by passing slice of an array(list) # but if you do that index of your arrays will stat from 0 for slice # but this from to allows us to identify which exactly hadamar sinal was used to form # derivative def derivativeSigFromTo(ansamble_sig1: list, hadamar_sig: list,hadam_from,hadam_to): der_sig_list = [] sig_comb_list = [] for i in range(0, len(ansamble_sig1)): for j in range(hadam_from, hadam_to): der_sig_list.append(np.multiply(ansamble_sig1[i], hadamar_sig[j]).tolist()) sig_comb_list.append((i, j)) return der_sig_list, sig_comb_list # You should get combinations using function above (derivativeSigFromTo) # def print_derivative(dersig, combinations): for i in range(0, len(dersig)): print("CS#{0} and HADAMAR#{1}".format(combinations[i][0], combinations[i][1])) print(dersig[i]) #============================== CORRELATION============================== def calculate_correlation_coef(sig1_: list, sig2_: list): R = 0 for i in range(0, len(sig1_)): tmp = sig1_[i] * sig2_[i] R += tmp return R # source_sig - source signal is NOT SHIFTED shifted_sig - copy of the signal WILL BE SHIFTED ( for pereodic auto # correlation)/ other signal (for pereodic cross correlation) flag = true for APEREODIC correaltion # else default for PEREODIC def getCorellation(source_sig: list, shifted_sig: list, flag: bool = False): # Creating copy of shifted signal to not trasform array from main program(for further usage) # because in Python list contains not val but reference to objects tmp_shifted_sig = copy.deepcopy(shifted_sig) correl_list = list() r = calculate_correlation_coef(source_sig, tmp_shifted_sig) correl_list.append(r) for i in range(0, len(source_sig)): if flag == False: CyclicShiftRight(tmp_shifted_sig, 1) else: ShiftRight(tmp_shifted_sig, 1) r = calculate_correlation_coef(source_sig, tmp_shifted_sig) correl_list.append(r) return correl_list # for i in range(0,len(sig1_)): # E.g you have ansamble of signals and you want to know all cross-correlation between all possible pairs # for derivative signals(with HADAMAR) # ONLY TO GET CROSS CORRELATION def cross_corel_btwn_pairs(list_with_signals: list, mode_name): aList = list() for pair in itertools.combinations(list_with_signals, 2): a_sig, b_sig = pair # print(pair) if mode_name == "PFVK": r = getCorellation(a_sig, b_sig) if mode_name == "AFVK": r = getCorellation(a_sig, b_sig, True) aList.append(r) return aList # the same logic as above function # but here you passing list pair # this one without usin itertools def cross_corel_btwn_pairs2(list_with_signals: list, pair_list: list, mode_name): aList = list() for x, y in pair_list: # print(pair) if mode_name == "PFVK": r = getCorellation(list_with_signals[x], list_with_signals[y]) if mode_name == "AFVK": r = getCorellation(list_with_signals[x], list_with_signals[y], True) aList.append(r) return aList # Having list with signals # getting list of list with signals' pereodic/apereodic auto correlation function def auto_corel_all(list_with_signals: list, mode_name): aList = list() sig_num_list = list() for item in list_with_signals: if mode_name == "PFAK": r = getCorellation(item, item) if mode_name == "AFAK": r = getCorellation(item, item, True) aList.append(r) return aList # исходный сигнал с другими сигналами # getting list of correlations of all signals def corel_source_and_rest(source_sig, list_with_signals: list, mode_name): aList = list() for item in list_with_signals: if mode_name == "PFVK": r = getCorellation(source_sig, item) if mode_name == "AFVK": r = getCorellation(source_sig, item, True) if mode_name == "PFAK": r = getCorellation(item, item) if mode_name == "AFAK": r = getCorellation(item, item, True) # print(r) aList.append(r) return aList #============================== TESTING CORRELATION============================== # Used for testing ensemble of signals and printed their statistics # using closure to keep DRY def ansamble_correlation(mode): def fak_stat(ansamble_of_sig): print(mode) sig_len = len(ansamble_of_sig[0]) if len(ansamble_of_sig) > 0: asnsam_fak_list = auto_corel_all(ansamble_of_sig, mode) printFullStat(asnsam_fak_list, 1, sig_len - 1, True) printFullStat(asnsam_fak_list, 1, sig_len - 1) def fvk_stat(ansamble_of_sig): print(mode) sig_len = len(ansamble_of_sig[0]) if len(ansamble_of_sig) > 0: pair_list = getPair([i for i in range(0, len(ansamble_of_sig))]) # cross_correl_btwn_pairs you can use anothe method correl_source_and_rest fvk_sig_list = cross_corel_btwn_pairs(ansamble_of_sig, mode) printFullStat(fvk_sig_list, 0, sig_len, True, list_of_num=pair_list) printFullStat(fvk_sig_list, 0, sig_len, list_of_num=pair_list) if (mode == 'PFAK') or (mode =='AFAK'): return fak_stat elif (mode == 'PFVK') or (mode =='AFVK'): return fvk_stat else: print("Something wrong there is no mode like that") # FOR 1 SIGNAL def test_auto_correl (source_sig): print("Signal: ",source_sig) start_point = 1 finish_point = len(source_sig)-1 sig1_ = copy.deepcopy(source_sig) sig2_ = copy.deepcopy(source_sig) print("PFAK") pereodic_auto_corel_list = getCorellation(sig1_, sig2_) print("R = ", pereodic_auto_corel_list) print("Rmax = ", getMax(pereodic_auto_corel_list, start_point, finish_point , True)) print("AFAK") apereodic_auto_corel_list = getCorellation(sig1_, sig2_, True) print("R = ", apereodic_auto_corel_list) print("Rmax = ", getMax(apereodic_auto_corel_list, start_point, finish_point)) return pereodic_auto_corel_list, apereodic_auto_corel_list # 1 source singal with each from ansamble def test_cross_correl (source_sig, ansamble_of_sig): sig1_ = copy.deepcopy(source_sig) ansamble_of_pereodic_cross_corel_list = corel_source_and_rest(sig1_, ansamble_of_sig, "PFVK") print("\nPFVK") printFullStat(ansamble_of_pereodic_cross_corel_list, 0, len(source_sig), True) printFullStat(ansamble_of_pereodic_cross_corel_list, 0, len(source_sig)) ansamble_of_apereodic_cross_corel_list = corel_source_and_rest(sig1_, ansamble_of_sig, "AFVK") print("\nAFVK") printFullStat(ansamble_of_apereodic_cross_corel_list, 0, len(source_sig), True) printFullStat(ansamble_of_apereodic_cross_corel_list, 0, len(source_sig))
8e1ea6a797d71d000461aeffa863481bf30c15f0
f9364a60157f2d4eaaddb053980055d12ecf4c9e
/RL_routing/RL_ACRR.py
316eccfb49f5728af60cea07e8f7cdc5a8f4ba95
[ "MIT" ]
permissive
lorenzoviva/Tesi
de038a2d1b69076bc9e9f15b4c34a76d5e6e0c50
a8a439e32f1d7484ff6b0bf96a0cfe877001640c
refs/heads/master
2023-07-19T00:22:06.155791
2020-03-05T16:52:00
2020-03-05T16:52:00
245,185,242
0
0
null
2023-07-06T21:47:40
2020-03-05T14:31:28
Python
UTF-8
Python
false
false
6,408
py
import argparse import gym import numpy as np from itertools import count from collections import namedtuple import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.distributions import Categorical import matplotlib.pyplot as plt from models import * # Cart Pole parser = argparse.ArgumentParser(description='PyTorch actor-critic example') parser.add_argument('--gamma', type=float, default=0.99, metavar='G', help='discount factor (default: 0.99)') parser.add_argument('--seed', type=int, default=543, metavar='N', help='random seed (default: 543)') parser.add_argument('--render', action='store_true', help='render the environment') parser.add_argument('--log-interval', type=int, default=10, metavar='N', help='interval between training status logs (default: 10)') args = parser.parse_args() plt.ion() env = gym.make('CartPole-v0') env.seed(args.seed) torch.manual_seed(args.seed) SavedAction = namedtuple('SavedAction', ['log_prob', 'value']) class Policy(nn.Module): """ implements both actor and critic in one model """ def __init__(self): super(Policy, self).__init__() self.affine1 = nn.Linear(4, 128) # actor's layer self.action_head = nn.Linear(128, 128) # 1 # critic's layer self.value_head = nn.Linear(128, 32) # 1 self.state_action_routing = nn.Sequential( Routing(d_cov=1, d_inp=4, d_out=4, n_out=8), #8 Routing(d_cov=1, d_inp=4, d_out=2, n_inp=8, n_out=2), ) # action & reward buffer self.saved_actions = [] self.rewards = [] def forward(self, x): """ forward of both actor and critic """ x = F.relu(self.affine1(x)) # actor: choses action to take from state s_t # by returning probability of each action action_caps = self.action_head(x).view(x.shape[0],-1,1,4) # critic: evaluates being in the state s_t state_caps = self.value_head(x) for routing in self.state_action_routing: state_caps, action_caps, _ = routing(state_caps, action_caps) routed_state = state_caps.max(1) state_caps = routed_state[0] action_caps = action_caps[:,routed_state[1],:,:].squeeze() action_prob = F.softmax(action_caps, dim=-1) # return values for both actor and critic as a tupel of 2 values: # 1. a list with the probability of each action over the action space # 2. the value from state s_t return action_prob, state_caps model = Policy() optimizer = optim.Adam(model.parameters(), lr=3e-2) eps = np.finfo(np.float32).eps.item() def select_action(state): state = torch.from_numpy(state).float() probs, state_value = model(state.unsqueeze(0)) # create a categorical distribution over the list of probabilities of actions m = Categorical(probs) # and sample an action using the distribution action = m.sample() # save to action buffer model.saved_actions.append(SavedAction(m.log_prob(action), state_value)) # the action to take (left or right) return action.item() def finish_episode(): """ Training code. Calcultes actor and critic loss and performs backprop. """ R = 0 saved_actions = model.saved_actions policy_losses = [] # list to save actor (policy) loss value_losses = [] # list to save critic (value) loss returns = [] # list to save the true values # calculate the true value using rewards returned from the environment for r in model.rewards[::-1]: # calculate the discounted value R = r + args.gamma * R returns.insert(0, R) returns = torch.tensor(returns) returns = (returns - returns.mean()) / (returns.std() + eps) for (log_prob, value), R in zip(saved_actions, returns): advantage = R - value.item() # calculate actor (policy) loss policy_losses.append(-log_prob * advantage) # calculate critic (value) loss using L1 smooth loss value_losses.append(F.smooth_l1_loss(value, torch.tensor([R]))) # reset gradients optimizer.zero_grad() # sum up all the values of policy_losses and value_losses loss = torch.stack(policy_losses).sum() + torch.stack(value_losses).sum() # perform backprop loss.backward() optimizer.step() # reset rewards and action buffer del model.rewards[:] del model.saved_actions[:] def plot_durations(episode_durations): plt.figure(2) plt.clf() durations_t = torch.tensor(episode_durations, dtype=torch.float) plt.title('Training...') plt.xlabel('Episode') plt.ylabel('Duration') plt.plot(durations_t.numpy()) plt.show() plt.pause(0.001) def main(): running_reward = 10 # run inifinitely many episodes episode_durations = [] for i_episode in count(1): # reset environment and episode reward state = env.reset() ep_reward = 0 state_list = [] # for each episode, only run 9999 steps so that we don't # infinite loop while learning for t in range(1, 10000): state_list.append(state) # select action from policy action = select_action(state) # take the action state, reward, done, _ = env.step(action) if args.render: env.render() model.rewards.append(reward) ep_reward += reward if done: episode_durations.append(t) break # update cumulative reward running_reward = 0.05 * ep_reward + (1 - 0.05) * running_reward # perform backprop finish_episode() # log results if i_episode % args.log_interval == 0: print('Episode {}\tLast reward: {:.2f}\tAverage reward: {:.2f}'.format( i_episode, ep_reward, running_reward)) plot_durations(episode_durations) # check if we have "solved" the cart pole problem if running_reward > env.spec.reward_threshold: print("Solved! Running reward is now {} and " "the last episode runs to {} time steps!".format(running_reward, t)) break if __name__ == '__main__': main()
afec745bb4473e5a96a1af30aa862110d6309a68
db0633d8ec23937f087bfdccf53afe8d584906c2
/datasets/harem/harem.py
68ca465314e3be3910a1c30b445f013349cacf59
[ "Apache-2.0" ]
permissive
pranavnt/datasets
8b7d671c9f9a9a28097e361d43494b779dd2117b
f2439a743012055b4ad8d5c1b758658afe246f3e
refs/heads/master
2023-02-23T01:14:13.066679
2021-01-27T02:03:36
2021-01-27T02:03:36
318,725,185
1
0
Apache-2.0
2021-01-27T02:03:38
2020-12-05T07:05:31
null
UTF-8
Python
false
false
11,684
py
# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """HAREM dataset""" from __future__ import absolute_import, division, print_function import json import logging import unicodedata from typing import List, Tuple import datasets _CITATION = """ @inproceedings{santos2006harem, title={Harem: An advanced ner evaluation contest for portuguese}, author={Santos, Diana and Seco, Nuno and Cardoso, Nuno and Vilela, Rui}, booktitle={quot; In Nicoletta Calzolari; Khalid Choukri; Aldo Gangemi; Bente Maegaard; Joseph Mariani; Jan Odjik; Daniel Tapias (ed) Proceedings of the 5 th International Conference on Language Resources and Evaluation (LREC'2006)(Genoa Italy 22-28 May 2006)}, year={2006} } """ _DESCRIPTION = """ The HAREM is a Portuguese language corpus commonly used for Named Entity Recognition tasks. It includes about 93k words, from 129 different texts, from several genres, and language varieties. The split of this dataset version follows the division made by [1], where 7% HAREM documents are the validation set and the miniHAREM corpus (with about 65k words) is the test set. There are two versions of the dataset set, a version that has a total of 10 different named entity classes (Person, Organization, Location, Value, Date, Title, Thing, Event, Abstraction, and Other) and a "selective" version with only 5 classes (Person, Organization, Location, Value, and Date). It's important to note that the original version of the HAREM dataset has 2 levels of NER details, namely "Category" and "Sub-type". The dataset version processed here ONLY USE the "Category" level of the original dataset. [1] Souza, Fábio, Rodrigo Nogueira, and Roberto Lotufo. "BERTimbau: Pretrained BERT Models for Brazilian Portuguese." Brazilian Conference on Intelligent Systems. Springer, Cham, 2020. """ _HOMEPAGE = "https://www.linguateca.pt/primeiroHAREM/harem_coleccaodourada_en.html" _LICENSE = "" _URLs = { "default": { "train": "https://raw.githubusercontent.com/neuralmind-ai/portuguese-bert/master/ner_evaluation/data/FirstHAREM-total-train.json", "dev": "https://raw.githubusercontent.com/neuralmind-ai/portuguese-bert/master/ner_evaluation/data/FirstHAREM-total-dev.json", "test": "https://raw.githubusercontent.com/neuralmind-ai/portuguese-bert/master/ner_evaluation/data/MiniHAREM-total.json", }, "selective": { "train": "https://raw.githubusercontent.com/neuralmind-ai/portuguese-bert/master/ner_evaluation/data/FirstHAREM-selective-train.json", "dev": "https://raw.githubusercontent.com/neuralmind-ai/portuguese-bert/master/ner_evaluation/data/FirstHAREM-selective-dev.json", "test": "https://raw.githubusercontent.com/neuralmind-ai/portuguese-bert/master/ner_evaluation/data/MiniHAREM-selective.json", }, } # method extracted from https://github.com/huggingface/transformers/blob/master/src/transformers/tokenization_utils.py#L77-L89 def _is_punctuation(char): """Checks whether `char` is a punctuation character.""" cp = ord(char) # We treat all non-letter/number ASCII as punctuation. # Characters such as "^", "$", and "`" are not in the Unicode # Punctuation class but we treat them as punctuation anyways, for # consistency. if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True cat = unicodedata.category(char) if cat.startswith("P"): return True return False # method extracted from https://github.com/huggingface/transformers/blob/master/src/transformers/tokenization_utils.py#L53-L62 def _is_whitespace(char): """Checks whether `char` is a whitespace character.""" # \t, \n, and \r are technically control characters but we treat them # as whitespace since they are generally considered as such. if char == " " or char == "\t" or char == "\n" or char == "\r": return True cat = unicodedata.category(char) if cat == "Zs": return True return False class Token: """Info about a single token.""" def __init__(self, text: str, tail: str = ""): if not isinstance(text, str) or not text: raise TypeError("text should be a non-empty string.") self.text = text self.tail = tail def __len__(self): return len(self.text) + len(self.tail) def __add__(self, char): self.text += char return self def reconstruct_text_from_tokens(tokens: List[Token], include_last_tail: bool = False) -> str: """Concatenates the text of a sequence of tokens.""" def text_generator(tokens): for i, token in enumerate(tokens): yield token.text if i < len(tokens) - 1 or include_last_tail: yield token.tail return "".join(piece for piece in text_generator(tokens)) def tokenize(text: str) -> Tuple[List[Token], List[int]]: """ Perform whitespace and punctuation tokenization keeping track of char alignment""" doc_tokens = [] char_to_word_offset = [] new_word = True curr_token = None def begin_new_token(doc_tokens, text): token = Token(text=text) doc_tokens.append(token) return token for offset, c in enumerate(text): if _is_whitespace(c): new_word = True if curr_token: curr_token.tail += c else: if _is_punctuation(c): curr_token = begin_new_token(doc_tokens, c) new_word = True else: if new_word: curr_token = begin_new_token(doc_tokens, c) else: curr_token += c new_word = False # OBS: Whitespaces that appear before any tokens will have offset -1 # char_to_word_offset.append(len(doc_tokens) - 1) char_to_word_offset.append(max(0, len(doc_tokens) - 1)) return doc_tokens, char_to_word_offset class HAREM(datasets.GeneratorBasedBuilder): """HAREM dataset.""" VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ datasets.BuilderConfig( name="default", version=VERSION, description="All the tags (PESSOA, ORGANIZACAO, LOCAL, TEMPO, VALOR, ABSTRACCAO, ACONTECIMENTO, COISA, OBRA, OUTRO) will be used", ), datasets.BuilderConfig( name="selective", version=VERSION, description="Only a subset of the tags (PESSOA, ORGANIZACAO, LOCAL, TEMPO, VALOR) will be used", ), ] DEFAULT_CONFIG_NAME = "default" def _info(self): tags = [ "O", "B-PESSOA", "I-PESSOA", "B-ORGANIZACAO", "I-ORGANIZACAO", "B-LOCAL", "I-LOCAL", "B-TEMPO", "I-TEMPO", "B-VALOR", "I-VALOR", ] if self.config.name == "default": tags += [ "B-ABSTRACCAO", "I-ABSTRACCAO", "B-ACONTECIMENTO", "I-ACONTECIMENTO", "B-COISA", "I-COISA", "B-OBRA", "I-OBRA", "B-OUTRO", "I-OUTRO", ] features = datasets.Features( { "id": datasets.Value("string"), "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence(datasets.features.ClassLabel(names=tags)), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" my_urls = _URLs[self.config.name] data_dir = dl_manager.download_and_extract(my_urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_dir["train"], "split": "train"}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": data_dir["test"], "split": "test"}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_dir["dev"], "split": "dev"}, ), ] def _generate_examples(self, filepath, split): """ Yields examples. """ logging.info("⏳ Generating examples from = %s", filepath) with open(filepath, "r", encoding="utf-8") as f: input_data = json.load(f) id_ = 0 for document in input_data: doc_text = document["doc_text"] doc_id = document["doc_id"] doc_tokens, char_to_word_offset = tokenize(doc_text) tags = ["O"] * len(doc_tokens) def set_label(index, tag): if tags[index] != "O": logging.warning( "Overwriting tag %s at position %s to %s", tags[index], index, tag, ) tags[index] = tag for entity in document["entities"]: entity_text = entity["text"] entity_type = entity["label"] start_token = None end_token = None entity_start_offset = entity["start_offset"] entity_end_offset = entity["end_offset"] start_token = char_to_word_offset[entity_start_offset] # end_offset is NOT inclusive to the text, e.g., # entity_text == doc_text[start_offset:end_offset] end_token = char_to_word_offset[entity_end_offset - 1] assert start_token <= end_token, "End token cannot come before start token." reconstructed_text = reconstruct_text_from_tokens(doc_tokens[start_token : (end_token + 1)]) assert ( entity_text.strip() == reconstructed_text ), "Entity text and reconstructed text are not equal: %s != %s" % ( entity_text, reconstructed_text, ) for token_index in range(start_token, end_token + 1): if token_index == start_token: tag = "B-" + entity_type else: tag = "I-" + entity_type set_label(token_index, tag) yield id_, { "id": doc_id, "tokens": [x.text for x in doc_tokens], "ner_tags": tags, } id_ += 1
b31c59a0010e457b6542772a973b3e6da56bfc29
9cfd73a998d842d767071b26cefe0eb8efe39e90
/learning_rates.py
3b8df2efc6fd82922d321b26d58e4bf9e17144c4
[]
no_license
boyko11/LogReg-DLAI
829e9b4e6b8dd23d6f3b5f0f68550d83c080104d
d222f6501ec4f0ea427f42706bb98c28c832fdb8
refs/heads/master
2022-11-23T19:26:10.052482
2020-08-02T17:57:24
2020-08-02T17:57:24
284,513,600
0
0
null
null
null
null
UTF-8
Python
false
false
842
py
from logistic_regression import model import data_service import matplotlib.pyplot as plt import numpy as np train_set_x, train_set_y, test_set_x, test_set_y, _ = data_service.load_and_preprocess_data() learning_rates = [0.01, 0.001, 0.0001] models = {} for i in learning_rates: print ("learning rate is: " + str(i)) models[str(i)] = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 1500, learning_rate = i, print_cost = False) print ('\n' + "-------------------------------------------------------" + '\n') for i in learning_rates: plt.plot(np.squeeze(models[str(i)]["costs"]), label= str(models[str(i)]["learning_rate"])) plt.ylabel('cost') plt.xlabel('iterations (hundreds)') legend = plt.legend(loc='upper center', shadow=True) frame = legend.get_frame() frame.set_facecolor('0.90') plt.show()