blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
8ad6704531f11096b6c1d2f7cda086784124487a
789a9373f6198e158822706d6c243ed45e487f87
/test/backward_compatibility/check_backward_compatibility.py
6ba9ff66de293a14c2278e0df011e83144cde989
[ "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "Apache-2.0", "BSD-2-Clause" ]
permissive
JakobHavtorn/pytorch
98bc88e46a6acc7c77f9ec34810cd93b74e9aceb
6de7a4a2818fbdd9fd763ad171bdb4c7514990fe
refs/heads/master
2021-01-02T02:58:39.819315
2020-10-01T08:17:22
2020-10-01T08:17:22
239,460,735
0
0
NOASSERTION
2020-02-10T08:20:40
2020-02-10T08:20:39
null
UTF-8
Python
false
false
8,892
py
import argparse import datetime import re import sys from collections import defaultdict import torch from torch._C import parse_schema # The date specifies how long the allowlist exclusion should apply to. # # - If we NEVER give BC guarantee for an operator, you can put the # date arbitrarily far in the future. # - Otherwise, pick a date that is far enough in the future that you # believe you can land your diff before then. # # Allowlist entries can be removed after the date listed on them passes. # # Allowlist item format: # [ # 0: function name regex # 1: date until which the allowlist entry is valid # 2: (optional) function argument regex # ] # # NB: function name DOES NOT include overload name! allow_list = [ ("c10_experimental", datetime.date(2222, 1, 1)), # Internal ("static", datetime.date(9999, 1, 1)), # Internal, profiler-specific ops ("profiler::_call_end_callbacks_on_jit_fut*", datetime.date(9999, 1, 1)), ("profiler::_record_function_enter", datetime.date(9999, 1, 1)), ("tensorexpr::Group", datetime.date(2020, 9, 9)), ("aten::append*", datetime.date(2020, 4, 15)), ("aten::_min", datetime.date(2020, 9, 9)), ("aten::_max", datetime.date(2020, 9, 9)), ("aten::amax", datetime.date(2020, 10, 9)), ("aten::amin", datetime.date(2020, 10, 9)), ("aten::min_values", datetime.date(2020, 10, 9)), ("aten::max_values", datetime.date(2020, 10, 9)), ("aten::split_with_sizes", datetime.date(2020, 7, 29)), ("aten::eq", datetime.date(2020, 7, 30)), ("aten::log", datetime.date(2020, 7, 30)), ("aten::__and__", datetime.date(2020, 7, 30)), ("aten::__or__", datetime.date(2020, 7, 30)), ("aten::__xor__", datetime.date(2020, 7, 30)), ("aten::add", datetime.date(2020, 7, 30)), ("aten::__upsample_bilinear", datetime.date(2020, 7, 30)), ("aten::hash", datetime.date(2020, 7, 30)), ("aten::divmod", datetime.date(2020, 7, 30)), ("aten::sorted", datetime.date(2020, 8, 30)), ("aten::__contains__", datetime.date(2020, 7, 30)), ("aten::ne", datetime.date(2020, 7, 30)), ("aten::index", datetime.date(2020, 7, 30)), ("aten::isnan", datetime.date(2020, 7, 30)), ("aten::pow", datetime.date(2020, 7, 30)), ("aten::atan2", datetime.date(2020, 7, 30)), ("aten::copy_", datetime.date(2020, 7, 30)), ("aten::sort", datetime.date(2020, 7, 30)), ("aten::_convolution", datetime.date(2020, 10, 15)), ("aten::cudnn_convolution", datetime.date(2020, 10, 15)), ("aten::cudnn_convolution_transpose", datetime.date(2020, 10, 15)), ("aten::_convolution_double_backward", datetime.date(2020, 10, 15)), ("aten::cudnn_convolution_backward_input", datetime.date(2020, 10, 15)), ("aten::cudnn_convolution_backward", datetime.date(2020, 10, 15)), ("aten::cudnn_convolution_backward_weight", datetime.date(2020, 10, 15)), ("aten::cudnn_convolution_transpose_backward", datetime.date(2020, 10, 15)), ("aten::cudnn_convolution_transpose_backward_input", datetime.date(2020, 10, 15)), ("aten::cudnn_convolution_transpose_backward_weight", datetime.date(2020, 10, 15)), ("aten::_cudnn_init_dropout_state", datetime.date(2020, 7, 30)), ("aten::sparse_coo_tensor", datetime.date(2020, 7, 30)), ("aten::_sparse_coo_tensor_with_dims", datetime.date(2020, 7, 30)), ("aten::_sparse_coo_tensor_with_dims_and_tensors", datetime.date(2020, 7, 30)), ("aten::__lshift__", datetime.date(2020, 7, 30)), ("aten::__rshift__", datetime.date(2020, 7, 30)), ("aten::__round_to_zero_floordiv", datetime.date(2020, 7, 30)), ("aten::gcd", datetime.date(2020, 7, 30)), ("aten::unflatten", datetime.date(2020, 8, 14)), ("aten::linalg_outer", datetime.date(2020, 8, 30)), # WARNING: overload name here doesn't do anything ("aten::linalg_outer.out", datetime.date(2020, 8, 30)), ("aten::linalg_norm", datetime.date(2020, 9, 30)), ("aten::linalg_norm.ord_str", datetime.date(2020, 9, 30)), ("aten::linalg_norm.out", datetime.date(2020, 9, 30)), ("aten::linalg_norm.ord_str_out", datetime.date(2020, 9, 30)), ("aten::_compute_linear_combination", datetime.date(2020, 9, 1)), ("aten::linspace", datetime.date(2020, 9, 30)), ("aten::linspace.out", datetime.date(2020, 9, 30)), ("aten::logspace", datetime.date(2020, 9, 30)), ("aten::logspace.out", datetime.date(2020, 9, 30)), ("__getstate__", datetime.date(2020, 9, 11), "Conv[23]dPackedParams"), ("_caffe2::LearningRate", datetime.date(2020, 10, 1)), ("aten::_var", datetime.date(2020, 10, 1)), ("aten::_std", datetime.date(2020, 10, 1)), ("aten::_foreach_add_", datetime.date(2020, 10, 1)), ("aten::stft", datetime.date(2020, 10, 1)), ("aten::istft", datetime.date(2020, 10, 1)), ("prim::MakeTestTensor", datetime.date(2020, 10, 1)), ("preprocess", datetime.date(2020, 10, 1)), ("compile", datetime.date(2020, 10, 1)), ("execute", datetime.date(2020, 10, 1)), ("aten::_addr", datetime.date(2020, 10, 31)), ("aten::_addr_", datetime.date(2020, 10, 31)), ("aten::_addr.out", datetime.date(2020, 10, 31)), ("aten::_foreach_add", datetime.date(2020, 10, 1)), ("aten::_foreach_sub_", datetime.date(2020, 10, 1)), ("aten::_foreach_div", datetime.date(2020, 10, 1)), ("aten::_foreach_sub", datetime.date(2020, 10, 1)), ("aten::choose_qparams_optimized", datetime.date(2020, 10, 5)), ] def allow_listed(schema, allow_list): for item in allow_list: if item[1] < datetime.date.today(): continue regexp = re.compile(item[0]) if regexp.search(schema.name): if len(item) > 2: # if arguments regex is present, use it regexp_args = re.compile(item[2]) return bool(regexp_args.search(str(schema))) return True return False # The nightly will fail to parse newly added syntax to schema declarations # Add new schemas that will fail the nightly here dont_parse_list = [ ("_TorchScriptTesting.*", datetime.date(2099, 9, 17)), ("test_backend", datetime.date(2099, 9, 17)), ] def dont_parse(schema_line): for item in dont_parse_list: if item[1] < datetime.date.today(): continue regexp = re.compile(item[0]) if regexp.search(schema_line): return True return False def check_bc(existing_schemas): new_schemas = torch._C._jit_get_all_schemas() new_schemas += torch._C._jit_get_custom_class_schemas() new_schema_dict = defaultdict(list) for s in new_schemas: new_schema_dict[s.name].append(s) is_bc = True broken_ops = [] for existing_schema in existing_schemas: if allow_listed(existing_schema, allow_list): print("schema: ", str(existing_schema), " found on allowlist, skipping") continue print("processing existing schema: ", str(existing_schema)) matching_new_schemas = new_schema_dict.get(existing_schema.name, []) found = False for matching_new_schema in matching_new_schemas: if matching_new_schema.is_backward_compatible_with(existing_schema): found = True break if not found: print( "Can NOT find backward compatible schemas after changes " "for schema {} from the following candidates:\n[\n{}\n]".format( str(existing_schema), "\n\t".join(str(s) for s in matching_new_schemas), ) ) # TODO Print out more details about why candidates don't match. broken_ops.append(str(existing_schema)) is_bc = False if is_bc: print("Found backward compatible schemas for all existing schemas") else: print( "The PR is introducing backward incompatible changes to the " "operator library. Please contact PyTorch team to confirm " "whether this change is wanted or not. \n\nBroken ops: " "[\n\t{}\n]".format("\n\t".join(broken_ops)) ) return is_bc if __name__ == "__main__": parser = argparse.ArgumentParser(description="Process some integers.") parser.add_argument( "--existing-schemas", help="filename to load existing schemas", type=str, default="schemas.txt", ) args = parser.parse_args() existing_schema_dict = dict() slist = [] with open(args.existing_schemas, "r") as f: while True: line = f.readline() if not line: break if dont_parse(line.strip()): print("Not parsing schema line: ", line.strip()) continue s = parse_schema(line.strip()) slist.append(s) if not check_bc(slist): sys.exit(1)
73766be87c861a771f5ae7e6784f2aa71dfca856
f954729a6941d5309f02865b5313b8524e9e6f53
/resources/genomes.py
d4d95ae8aa3d7389867fd4d1f1a5fe88474820de
[]
no_license
bnbowman/NoAmpTools
5f597adec6f49ab8422f443dfdd234b7a9a1dd8d
b59800c675c764ba8b5aee734c3ed79e4ac8e9a5
refs/heads/master
2018-12-18T18:58:27.201236
2018-09-14T19:33:04
2018-09-14T19:34:23
107,060,977
2
0
null
null
null
null
UTF-8
Python
false
false
4,330
py
#! /usr/bin/env python from collections import defaultdict import matplotlib.cm as cm class Genome(object): def labels(self): return self._labels def sizes(self): return self._sizes def size(self, key): return self._sizes[key] def targets(self): return self._targets def targetDictionary(self): pass def colors(self, N): colors = {} for i, n in enumerate( sorted(self._sizes.keys()) ): color = cm.gist_rainbow(i%(N+1) / float(N)) colors[i] = color colors[n] = color return colors class HG19(Genome): _labels = ["chr{0}".format(l) for l in range(1,23) + ['M', 'X', 'Y']] _sizes = {"chr1": 249250621, "chr2": 243199373, "chr3": 198022430, "chr4": 191154276, "chr5": 180915260, "chr6": 171115067, "chr7": 159138663, "chr8": 146364022, "chr9": 141213431, "chr10": 135534747, "chr11": 135006516, "chr12": 133851895, "chr13": 115169878, "chr14": 107349540, "chr15": 102531392, "chr16": 90354753, "chr17": 81195210, "chr18": 78077248, "chr19": 59128983, "chr20": 63025520, "chr21": 48129895, "chr22": 51304566, "chrM": 16571, "chrX": 155270560, "chrY": 59373566} ## Locus,ChrName,ChrIdx,GeneStart,RegionStart,RegionEnd,GeneEnd _targets = [["HTT", "chr4", 4, 3075691, 3076603, 3076661, 3076815], ["FMR1", "chrX", 23, 146993123, 146993568, 146993629, 146994131], ["ALS", "chr9", 9, 27572985, 27573522, 27573541, 27574014], ["FUCHS", "chr18", 18, 53251995, 53253386, 53253458, 53253577], ["SCA10", "chr22", 22, 46190744, 46191234, 46191305, 46191756], ["EWINGS_Chr20", "chr20", 20, 21553989, 21556922, 21557001, 21557036], ["EWINGS_ChrX", "chrX", 23, 30325813, 30328875, 30328976, 30329062]] def __init__(self): # Update the size dictionary so we can index by index as well as name for i, c in enumerate(self._labels): self._sizes[i] = self._sizes[c] def targetDictionary(self): tDict = defaultdict(list) for t in self.targets(): if t[2] <= 22: target_tId = t[2]-1 else: target_tId = t[2] tDict[target_tId].append( t ) return tDict class GRC38(Genome): _labels = ["chr{0}".format(l) for l in range(1,23) + ['X', 'Y', 'M']] _sizes = {"chr1": 248956422, "chr2": 242193529, "chr3": 198295559, "chr4": 190214555, "chr5": 181538259, "chr6": 170805979, "chr7": 159345973, "chr8": 145138636, "chr9": 138394717, "chr10": 133797422, "chr11": 135086622, "chr12": 133275309, "chr13": 114364328, "chr14": 107043718, "chr15": 101991189, "chr16": 90338345, "chr17": 83257441, "chr18": 80373285, "chr19": 58617616 , "chr20": 64444167, "chr21": 46709983, "chr22": 50818468, "chrX": 156040895, "chrY": 57227415, "chrM": 16569} ## Locus,ChrName,ChrIdx,GeneStart,RegionStart,RegionEnd,GeneEnd _targets = [["HTT", "chr4", 3, 3072621, 3074866, 3074949, 3075351], ["ALS", "chr9", 8, 27571412, 27573474, 27573556, 27574248], ["FUCHS", "chr18", 17, 55584764, 55586145, 55586237, 55586346], ["EWINGS_Chr20", "chr20", 19, 21573351, 21576271, 21576374, 21576399], ["SCA10", "chr22", 21, 45793649, 45795344, 45795434, 45796093], ["EWINGS_ChrX", "chrX", 22, 30307696, 30310741, 30310899, 30310946], ["FMR1", "chrX", 22, 147911603, 147912040, 147912120, 147914564]] def __init__(self): # Update the size dictionary so we can index by index as well as name for i, c in enumerate(self._labels): self._sizes[i] = self._sizes[c] def targetDictionary(self): tDict = defaultdict(list) for t in self.targets(): tDict[t[2]].append( t ) return tDict def decodeGenome(genome): """ """ if genome.lower() == "hg19": return HG19() elif genome.lower() == "grc38": return GRC38() else: raise ValueError("Invalid genome: specified genome must be HG19 or GHC38")
7e5a0a4b2e4b83568dafc54541a561cc3404b48e
04b71cef66a039196a2965dfab0ff56b0793fe32
/python/run/brian_2_xgb.py
231a8c822d29764c92ace11f0ede645217b21be4
[]
no_license
gviejo/Prediction_xgb_head_direction
69d57b7d7a2f366f2c96a6e6e933d0978592718f
6fbe724f92c15afcc634c84383f57bbeedff7d24
refs/heads/master
2021-11-05T09:10:48.067439
2021-11-05T01:15:17
2021-11-05T01:15:17
93,687,438
0
0
null
null
null
null
UTF-8
Python
false
false
4,386
py
import scipy.io import sys,os import numpy as np from matplotlib.pyplot import * import pandas as pd import xgboost as xgb store = pd.HDFStore("../data/spikes_brian.h5") data = store['data'] store.close() adn_neuron = [n for n in data.keys() if 'ADn' in n] pos_neuron = [n for n in data.keys() if 'Pos' in n] bin_size = 25 bin_length = 500 def extract_tree_threshold(trees): n = len(trees.get_dump()) thr = {} for t in xrange(n): gv = xgb.to_graphviz(trees, num_trees=t) body = gv.body for i in xrange(len(body)): for l in body[i].split('"'): if 'f' in l and '<' in l: tmp = l.split("<") if thr.has_key(tmp[0]): thr[tmp[0]].append(float(tmp[1])) else: thr[tmp[0]] = [float(tmp[1])] for k in thr.iterkeys(): thr[k] = np.sort(np.array(thr[k])) return thr ########################################################################################### # create shifted spiking activity from -500 to 500 ms with index 0 to 40 (20 for t = 0 ms) for all ADn_neuron # remove 20 points at the beginning and 20 points at the end ########################################################################################### nb_bins = bin_length/bin_size duration = len(data) time_shifted = np.zeros(( duration-nb_bins, len(adn_neuron), nb_bins+1)) for n,i in zip(adn_neuron, range(len(adn_neuron))): tmp = data[n] for j in range(0,nb_bins+1): # time_shifted[:,i,j] = tmp[40-j:duration-j] time_shifted[:,i,j] = tmp[j:duration-nb_bins+j] combination = {} for k in pos_neuron: combination[k] = { 'features' : adn_neuron, 'targets' : k, } ##################################################################### # LEARNING XGB ##################################################################### bsts = {i:{} for i in combination.iterkeys()} # to keep the boosted tree params = {'objective': "count:poisson", #for poisson output 'eval_metric': "logloss", #loglikelihood loss 'seed': 2925, #for reproducibility 'silent': 1, 'learning_rate': 0.1, 'min_child_weight': 2, 'n_estimators': 580, 'subsample': 0.6, 'max_depth': 5, 'gamma': 0.4} num_round = 90 time_shifted = time_shifted.reshape(time_shifted.shape[0],time_shifted.shape[1]*time_shifted.shape[2]) for k in combination.keys(): print(k) features = combination[k]['features'] targets = combination[k]['targets'] Yall = data[targets].values # need to cut Yall Yall = Yall[nb_bins//2:-nb_bins//2] print(time_shifted.shape) print(Yall.shape) dtrain = xgb.DMatrix(time_shifted, label=Yall) bst = xgb.train(params, dtrain, num_round) bsts[k] = bst ##################################################################### # EXTRACT TREE STRUCTURE ##################################################################### thresholds = {} for i in bsts.iterkeys(): thresholds[i] = extract_tree_threshold(bsts[i]) ##################################################################### # EXTRACT GAIN VALUE ##################################################################### gain = {} for i in bsts.iterkeys(): gain[i] = bsts[i].get_score(importance_type = 'gain') ##################################################################### # CONVERT TO TIMING OF SPLIT POSITION ##################################################################### time_count = np.zeros((len(pos_neuron), len(adn_neuron), nb_bins+1)) index = np.repeat(np.arange(len(adn_neuron)), nb_bins+1) for n in thresholds.iterkeys(): splits = thresholds[n] for s in splits.keys(): time_count[int(n.split(".")[1]), index[int(s[1:])], int(s[1:])%(nb_bins+1)] = len(splits[s]) time_count = time_count.sum(1) gain_value = np.zeros((len(pos_neuron), len(adn_neuron), nb_bins+1)) index = np.repeat(np.arange(len(adn_neuron)), nb_bins+1) for n in gain.iterkeys(): g = gain[n] for s in g.keys(): gain_value[int(n.split(".")[1]), index[int(s[1:])], int(s[1:])%(nb_bins+1)] = g[s] # gain_value = gain_value.reshape(len(pos_neuron)*len(adn_neuron), 41) gain_value = gain_value.sum(1) time = np.arange(-(bin_length/2), (bin_length/2)+bin_size, bin_size) xgb_peaks = pd.DataFrame(index = time, data = (time_count*gain_value).transpose()) ##################################################################### # PLOT ##################################################################### plot(time, xgb_peaks.mean(1)) title("XGB") show()
d86242cd87dd8323bb6214deb9dacb2b9f552040
2b3817fb9e4078e912fe1df2e964a68dcd48d053
/code/pgms/can-sum.py
021e88ad56ffd0af0b5efa8652465910059432a6
[ "MIT" ]
permissive
souradeepta/PythonPractice
350a130b341efec7b22ebd061c3d89036603587f
fa956ca4b87a0eb92fee21fa78e59757ce665770
refs/heads/master
2023-08-08T03:46:01.238861
2021-09-23T02:37:13
2021-09-23T02:37:13
256,668,632
1
0
MIT
2021-09-22T18:54:17
2020-04-18T04:22:25
Python
UTF-8
Python
false
false
1,810
py
from typing import List def canSumRepeat(target: int, input: List, memo: dict) -> bool: """Can the sum of input number lead to the target value Args: target (int): target input (List): list of numbers Returns: bool: True or False """ if not input: return None if target == 0: return True if target < 0: return False if target in memo: return memo[target] for elem in input: remainder = target - elem if(canSumRepeat(remainder, input, memo)): memo[target] = True return True memo[target] = False return False def canSumRepeatList(target: int, input: List, output: List, memo) -> List: """Can the sum of input number lead to the target value Args: target (int): target input (List): list of numbers output (List): list of numbers which sum to target Returns: List: List of elements """ if not input: return None if target == 0: return output if target < 0: return None if target in memo: return memo[target] for elem in input: remainder = target - elem output.append(elem) if(canSumRepeatList(remainder, input, output, {})): memo[target] = output return output memo[target] = None return None print(canSumRepeat(7, [2, 3], {})) # true print(canSumRepeat(7, [5, 3, 4, 7], {})) # true print(canSumRepeat(8, [2, 3, 5], {})) # false print(canSumRepeat(300, [7, 14], {})) # true print(canSumRepeatList(7, [2, 3], [], {})) # true print(canSumRepeatList(7, [5, 3, 4, 7], [], {})) # true print(canSumRepeatList(8, [2, 3, 5], [], {})) # false print(canSumRepeatList(300, [7, 14], [], {})) # true
3b7dbaa8d490c3da4756ccad3b0ccf36d205d1c9
a34ec07c3464369a88e68c9006fa1115f5b61e5f
/C_LinkList/Swap/L2_24_Swap_Nodes_in_Pairs.py
875e98e38bc4183aafaf3c32d8ccd3bd631735f4
[]
no_license
824zzy/Leetcode
9220f2fb13e03d601d2b471b5cfa0c2364dbdf41
93b7f4448a366a709214c271a570c3399f5fc4d3
refs/heads/master
2023-06-27T02:53:51.812177
2023-06-16T16:25:39
2023-06-16T16:25:39
69,733,624
14
3
null
2022-05-25T06:48:38
2016-10-01T10:56:07
Python
UTF-8
Python
false
false
526
py
""" https://leetcode.com/problems/swap-nodes-in-pairs/ from dba: https://leetcode.com/problems/swap-nodes-in-pairs/discuss/984392/Python-O(n)-solution-explained """ from header import * class Solution: def swapPairs(self, head: Optional[ListNode]) -> Optional[ListNode]: ans = pre = ListNode(next=head) while pre.next and pre.next.next: a = pre.next b = a.next # 132 -> 213 pre.next, b.next, a.next = b, a, b.next pre = a return ans.next
ed329fe829585a042a59d6c01959272c9d3ee31e
cdc48931cb3adb62c5e4963e43aeaf3cbc5080c4
/Scripts/Read_omi_data.py
c977f0e3517d4bf8d1888816d3f96f6023bdb222
[]
no_license
giovannilopez9808/SEDEMA_2000_2019
ce8f1955b7d0f760485e2a984f36e72141867a0f
857be19c0acd9587904107ecd470b94a6a7d93b3
refs/heads/main
2023-06-25T10:32:06.536548
2021-08-04T19:55:16
2021-08-04T19:55:16
382,178,614
0
0
null
null
null
null
UTF-8
Python
false
false
1,969
py
import matplotlib.pyplot as plt import pandas as pd def date_format(data): data["Date"] = data["Datetime"].str[0:4]+"-" + \ data["Datetime"].str[4:6]+"-"+data["Datetime"].str[6:8] data["Date"] = pd.to_datetime(data["Date"]) data.index = data["Date"] data = data.drop(["Date", "Datetime"], 1) return data def clean_data(data, columns): for column in data.columns: if not column in columns: data = data.drop(column, 1) return data def obtain_data_in_period(data, date_i, date_f): data = data[data.index >= date_i] data = data[data.index <= date_f] return data def drop_data_useless(data, columns, limit): for column in columns: data = data[data[column] < limit] return data inputs = { "path data": "../Data/", "file data": "Data_OMI_", "product": "OMUVB", "skiprows": 50, "UVI limit": 18, "UVIcolumns": ["CSUVindex", "UVindex"], "file results": "UVI_", "day initial": "2005-01-01", "day final": "2019-12-31", } data = pd.read_fwf(inputs["path data"]+inputs["file data"]+inputs["product"]+".dat", skiprows=inputs["skiprows"]) data = date_format(data) data = clean_data(data, inputs["UVIcolumns"]) data = obtain_data_in_period(data, inputs["day initial"], inputs["day final"]) data = drop_data_useless(data, inputs["UVIcolumns"], inputs["UVI limit"]) print(data.max()) for uvicolumn in inputs["UVIcolumns"]: print("Creando archivo {}".format(uvicolumn)) data_UVI = data[uvicolumn] print(data_UVI.count()) data_UVI.to_csv("{}{}{}.csv".format(inputs["path data"], inputs["file results"], uvicolumn), float_format='%.4f')
7d382bee63d4ab632c33c235b382848e1693243a
09fd456a6552f42c124c148978289fae1af2d5c3
/Graph/733.py
5ae87bd51e724a76ced10a0220dd9ab5401483da
[]
no_license
hoang-ng/LeetCode
60b4e68cbcf54cbe763d1f98a70f52e628ab32fb
5407c6d858bfa43325363503c31134e560522be3
refs/heads/master
2021-04-10T11:34:35.310374
2020-07-28T10:22:05
2020-07-28T10:22:05
248,932,393
0
0
null
null
null
null
UTF-8
Python
false
false
2,084
py
# 733. Flood Fill # An image is represented by a 2-D array of integers, each integer representing the pixel value of the image (from 0 to 65535). # Given a coordinate (sr, sc) representing the starting pixel (row and column) of the flood fill, and a pixel value newColor, "flood fill" the image. # To perform a "flood fill", consider the starting pixel, plus any pixels connected 4-directionally to the starting pixel of the same color as the starting pixel, plus any pixels connected 4-directionally to those pixels (also with the same color as the starting pixel), and so on. Replace the color of all of the aforementioned pixels with the newColor. # At the end, return the modified image. # Example 1: # Input: # image = [[1,1,1],[1,1,0],[1,0,1]] # sr = 1, sc = 1, newColor = 2 # Output: [[2,2,2],[2,2,0],[2,0,1]] # Explanation: # From the center of the image (with position (sr, sc) = (1, 1)), all pixels connected # by a path of the same color as the starting pixel are colored with the new color. # Note the bottom corner is not colored 2, because it is not 4-directionally connected # to the starting pixel. # Note: # The length of image and image[0] will be in the range [1, 50]. # The given starting pixel will satisfy 0 <= sr < image.length and 0 <= sc < image[0].length. # The value of each color in image[i][j] and newColor will be an integer in [0, 65535]. class Solution(object): def floodFill(self, image, sr, sc, newColor): oldColor = image[sr][sc] if oldColor != newColor: self.dfs(image, sr, sc, oldColor, newColor) return image def dfs(self, image, i, j, oldColor, newColor): if i < 0 or j < 0 or i >= len(image) or j >= len(image[i]) or image[i][j] != oldColor: return image[i][j] = newColor self.dfs(image, i + 1, j, oldColor, newColor) self.dfs(image, i - 1, j, oldColor, newColor) self.dfs(image, i, j + 1, oldColor, newColor) self.dfs(image, i, j - 1, oldColor, newColor) sol = Solution() sol.floodFill([[0,0,0],[0,1,1]], 1, 1, 1)
36c8aa5f1334f81fcdcf3cffaf6fe2f5836d7abe
951fc0da7384b961726999e5451a10e2783462c4
/script.module.exodusscrapers/lib/exodusscrapers/sources_placenta/en_placenta-1.7.8/ororo.py
da4be034f81d870663f7cf7dbc21eacd06fa0f60
[ "Beerware" ]
permissive
vphuc81/MyRepository
eaf7b8531b2362f0e0de997a67b889bc114cd7c2
9bf8aca6de07fcd91bcec573f438f29e520eb87a
refs/heads/master
2022-01-02T15:07:35.821826
2021-12-24T05:57:58
2021-12-24T05:57:58
37,680,232
6
10
null
null
null
null
UTF-8
Python
false
false
4,444
py
# -*- coding: UTF-8 -*- ####################################################################### # ---------------------------------------------------------------------------- # "THE BEER-WARE LICENSE" (Revision 42): # @Daddy_Blamo wrote this file. As long as you retain this notice you # can do whatever you want with this stuff. If we meet some day, and you think # this stuff is worth it, you can buy me a beer in return. - Muad'Dib # ---------------------------------------------------------------------------- ####################################################################### # Addon Name: Exodus # Addon id: plugin.video.exodus # Addon Provider: Exodus import re,urlparse,json,base64 from resources.lib.modules import cache from resources.lib.modules import control from resources.lib.modules import client class source: def __init__(self): self.priority = 1 self.language = ['en'] self.domains = ['ororo.tv'] self.base_link = 'https://ororo.tv' self.moviesearch_link = '/api/v2/movies' self.tvsearch_link = '/api/v2/shows' self.movie_link = '/api/v2/movies/%s' self.show_link = '/api/v2/shows/%s' self.episode_link = '/api/v2/episodes/%s' self.user = control.setting('ororo.user') self.password = control.setting('ororo.pass') self.headers = { 'Authorization': 'Basic %s' % base64.b64encode('%s:%s' % (self.user, self.password)), 'User-Agent': 'Exodus for Kodi' } def movie(self, imdb, title, localtitle, aliases, year): try: if (self.user == '' or self.password == ''): raise Exception() url = cache.get(self.ororo_moviecache, 60, self.user) url = [i[0] for i in url if imdb == i[1]][0] url= self.movie_link % url return url except: return def tvshow(self, imdb, tvdb, tvshowtitle, localtvshowtitle, aliases, year): try: if (self.user == '' or self.password == ''): raise Exception() url = cache.get(self.ororo_tvcache, 120, self.user) url = [i[0] for i in url if imdb == i[1]][0] url= self.show_link % url return url except: return def episode(self, url, imdb, tvdb, title, premiered, season, episode): try: if (self.user == '' or self.password == ''): raise Exception() if url == None: return url = urlparse.urljoin(self.base_link, url) r = client.request(url, headers=self.headers) r = json.loads(r)['episodes'] r = [(str(i['id']), str(i['season']), str(i['number']), str(i['airdate'])) for i in r] url = [i for i in r if season == '%01d' % int(i[1]) and episode == '%01d' % int(i[2])] url += [i for i in r if premiered == i[3]] url= self.episode_link % url[0][0] return url except: return def ororo_moviecache(self, user): try: url = urlparse.urljoin(self.base_link, self.moviesearch_link) r = client.request(url, headers=self.headers) r = json.loads(r)['movies'] r = [(str(i['id']), str(i['imdb_id'])) for i in r] r = [(i[0], 'tt' + re.sub('[^0-9]', '', i[1])) for i in r] return r except: return def ororo_tvcache(self, user): try: url = urlparse.urljoin(self.base_link, self.tvsearch_link) r = client.request(url, headers=self.headers) r = json.loads(r)['shows'] r = [(str(i['id']), str(i['imdb_id'])) for i in r] r = [(i[0], 'tt' + re.sub('[^0-9]', '', i[1])) for i in r] return r except: return def sources(self, url, hostDict, hostprDict): try: sources = [] if url == None: return sources if (self.user == '' or self.password == ''): raise Exception() url = urlparse.urljoin(self.base_link, url) url = client.request(url, headers=self.headers) url = json.loads(url)['url'] sources.append({'source': 'ororo', 'quality': 'HD', 'language': 'en', 'url': url, 'direct': True, 'debridonly': False}) return sources except: return sources def resolve(self, url): return url
0e4ea3b20b875aa0d0f525b5688b469b1ae1cd07
242f1dafae18d3c597b51067e2a8622c600d6df2
/src/1300-1399/1389.create.target.array.in.given.order.py
fbf27d7eff98adccaa487419a2b2644f45f97e17
[]
no_license
gyang274/leetcode
a873adaa083270eb05ddcdd3db225025533e0dfe
6043134736452a6f4704b62857d0aed2e9571164
refs/heads/master
2021-08-07T15:15:01.885679
2020-12-22T20:57:19
2020-12-22T20:57:19
233,179,192
1
0
null
null
null
null
UTF-8
Python
false
false
503
py
from typing import List class Solution: def createTargetArray(self, nums: List[int], index: List[int]) -> List[int]: ans = [] for i, x in zip(index, nums): ans.insert(i, x) return ans if __name__ == '__main__': solver = Solution() cases = [ ([1], [0]), ([0,1,2,3,4], [0,1,2,2,1]), ([1,2,3,4,0], [0,1,2,3,0]), ] rslts = [solver.createTargetArray(nums, index) for nums, index in cases] for cs, rs in zip(cases, rslts): print(f"case: {cs} | solution: {rs}")
aa680423f2958a393e449a990b4747fc8f1b6e0a
7b5828edda7751700ca7002b40a214e39e5f48a8
/EA/simulation/gsi_handlers/business_handlers.py
37908330768a0f86bd61914ae6d9ee428b3c28f5
[]
no_license
daniela-venuta/Sims-4-Python-Script-Workspace
54c33dac02f84daed66f46b7307f222fede0fa62
f408b28fb34626b2e3b2953152343d591a328d66
refs/heads/main
2023-03-29T18:08:39.202803
2021-03-30T19:00:42
2021-03-30T19:00:42
353,111,243
1
0
null
null
null
null
UTF-8
Python
false
false
8,223
py
from business.business_enums import BusinessType, BusinessEmployeeType from gsi_handlers.gameplay_archiver import GameplayArchiver from sims4.gsi.dispatcher import GsiHandler from sims4.gsi.schema import GsiGridSchema, GsiFieldVisualizers import services business_managers_schema = GsiGridSchema(label='Business Managers') business_managers_schema.add_field('household_id', label='Household Id', width=1, unique_field=True) business_managers_schema.add_field('household_name', label='Household Name') business_managers_schema.add_field('business_type', label='BusinessType', width=1.5) business_managers_schema.add_field('zone_id', label='ZoneID') business_managers_schema.add_field('is_open', label='Open', width=0.5) business_managers_schema.add_field('time_since_open', label='Time Since Open', width=0.5) business_managers_schema.add_field('star_rating_value', label='Star Value', type=GsiFieldVisualizers.FLOAT, width=0.5) business_managers_schema.add_field('star_rating', label='Star', type=GsiFieldVisualizers.INT, width=0.5) business_managers_schema.add_field('funds', label='Funds', type=GsiFieldVisualizers.FLOAT, width=0.5) business_managers_schema.add_field('daily_revenue', label='Daily Revenue', type=GsiFieldVisualizers.FLOAT, width=0.5) with business_managers_schema.add_has_many('other_data', GsiGridSchema) as sub_schema: sub_schema.add_field('key', label='Data Name', width=0.5) sub_schema.add_field('value', label='Data Value') with business_managers_schema.add_has_many('customer_data', GsiGridSchema) as sub_schema: sub_schema.add_field('sim_id', label='SimID', width=0.5) sub_schema.add_field('sim_name', label='SimName', width=0.5) sub_schema.add_field('star_rating_value', label='StarValue', type=GsiFieldVisualizers.FLOAT, width=0.5) sub_schema.add_field('star_rating', label='Stars', type=GsiFieldVisualizers.INT, width=0.5) sub_schema.add_field('buff_bucket_totals', label='Buff Bucket', width=2) with business_managers_schema.add_has_many('employee_data', GsiGridSchema) as sub_schema: sub_schema.add_field('employee_sim_id', label='SimID', width=0.6) sub_schema.add_field('employee_sim_name', label='SimName', width=0.5) sub_schema.add_field('employee_type', label='EmployeeType', width=1) sub_schema.add_field('career_level_buff', label='CareerBuff', width=0.5) sub_schema.add_field('daily_employee_wages', label='DailyWages', type=GsiFieldVisualizers.INT, width=0.5) sub_schema.add_field('clocked_in_time', label='ClockInTime', width=0.5) sub_schema.add_field('payroll_data', label='Payroll_data') @GsiHandler('business_managers', business_managers_schema) def generate_business_service_data(zone_id:int=None): business_service = services.business_service() business_manager_data = [] sim_info_manager = services.sim_info_manager() def _construct_business_manager_gsi_data(zone_id, business_manager, business_tracker=None): household = business_tracker._get_owner_household() if business_tracker is not None else None business_manager_entry = {'household_id': str(household.id) if household is not None else 'N/A', 'household_name': household.name if household is not None and household.name else '<Unnamed Household>', 'business_type': str(BusinessType(business_manager.business_type)), 'zone_id': str(hex(zone_id)), 'is_open': 'x' if business_manager.is_open else '', 'time_since_open': str(business_manager.minutes_open), 'star_rating_value': business_manager._star_rating_value, 'star_rating': business_manager.get_star_rating(), 'funds': str(business_manager.funds.money), 'daily_revenue': business_manager._daily_revenue} other_data = [] other_data.append({'key': 'daily_items_sold', 'value': str(business_manager._daily_items_sold)}) other_data.append({'key': 'markup_multiplier', 'value': str(business_manager._markup_multiplier)}) other_data.append({'key': 'advertising_type', 'value': business_manager.get_advertising_type_for_gsi()}) other_data.append({'key': 'quality_setting', 'value': business_manager.quality_setting.name}) other_data.append({'key': 'session_customers_served', 'value': str(business_manager._customer_manager.session_customers_served)}) other_data.append({'key': 'lifetime_customers_served', 'value': str(business_manager._customer_manager.lifetime_customers_served)}) other_data.append({'key': 'funds_category_tracker', 'value': str(business_manager._funds_category_tracker)}) other_data.append({'key': 'buff_bucket_totals', 'value': str(business_manager._buff_bucket_totals)}) other_data.append({'key': 'open_time', 'value': str(business_manager._open_time)}) if business_tracker is not None: other_data.append({'key': 'additional_employee_slots (tracker data)', 'value': str(business_tracker._additional_employee_slots)}) other_data.append({'key': 'additional_markup_multiplier(tracker data)', 'value': business_tracker.additional_markup_multiplier}) other_data.append({'key': 'additional_customer_count(tracker data)', 'value': business_tracker.addtitional_customer_count}) business_manager_entry['other_data'] = other_data employee_gsi_data = [] employee_manager = business_manager._employee_manager for (sim_id, employee_data) in employee_manager._employees.items(): (clock_in_time, payroll_data) = employee_manager._employee_payroll.get(sim_id, (None, None)) sim_info = sim_info_manager.get(sim_id) entry = {'employee_sim_id': str(sim_id), 'employee_sim_name': str(sim_info), 'employee_type': str(BusinessEmployeeType(employee_data.employee_type)), 'daily_employee_wages': employee_manager._daily_employee_wages, 'clocked_in_time': str(clock_in_time), 'payroll_data': str(payroll_data)} buff_type = sim_info.get_buff_type(employee_data._career_level_buff_handle) entry['career_level_buff'] = str(buff_type.__name__) if buff_type is not None else '' employee_gsi_data.append(entry) business_manager_entry['employee_data'] = employee_gsi_data customer_data = [] for (sim_id, business_customer_data) in business_manager._customer_manager._customers.items(): entry = {'sim_id': str(sim_id), 'sim_name': str(sim_info_manager.get(sim_id)), 'star_rating_value': business_customer_data.get_star_rating_stat_value(), 'star_rating': business_customer_data.get_star_rating(), 'buff_bucket_totals': str(business_customer_data.buff_bucket_totals)} customer_data.append(entry) business_manager_entry['customer_data'] = customer_data return business_manager_entry zone_business_manager = services.business_service().get_business_manager_for_zone(zone_id) if zone_business_manager is not None and zone_business_manager.is_owned_by_npc: business_manager_data.append(_construct_business_manager_gsi_data(zone_id, zone_business_manager)) for (_, business_trackers) in business_service._business_trackers.items(): for business_tracker in business_trackers: for (zone_id, business_manager) in business_tracker.business_managers.items(): business_manager_data.append(_construct_business_manager_gsi_data(zone_id, business_manager, business_tracker=business_tracker)) return business_manager_data business_archiver_schema = GsiGridSchema(label='Business Archive') business_archiver_schema.add_field('event_from', label='EventFrom', width=0.5) business_archiver_schema.add_field('sim_id', label='SimID', width=1) business_archiver_schema.add_field('sim_name', label='SimName', width=1) business_archiver_schema.add_field('event_description', label='Reason', width=2) business_archiver = GameplayArchiver('business_archiver', business_archiver_schema) def archive_business_event(event_from, sim, event_description, sim_id=None): entry = {'event_from': event_from, 'sim_id': str(sim.id) if sim is not None else str(sim_id), 'sim_name': sim.full_name if sim is not None else '', 'event_description': event_description} business_archiver.archive(data=entry)
668a65b4b0b55b74b317267172130bd341836dc6
0e1e643e864bcb96cf06f14f4cb559b034e114d0
/Exps_6_mask_unet/mask_5_3a_sobel_k5/sobel_k5_s001_6l/step10_a_mask_5_3_sobel_k5_s001_6l.py
11a26e1fd09e420e7e64ad4554eaaf5af90295e7
[]
no_license
KongBOy/kong_model2
33a94a9d2be5b0f28f9d479b3744e1d0e0ebd307
1af20b168ffccf0d5293a393a40a9fa9519410b2
refs/heads/master
2022-10-14T03:09:22.543998
2022-10-06T11:33:42
2022-10-06T11:33:42
242,080,692
3
0
null
null
null
null
UTF-8
Python
false
false
16,254
py
############################################################################################################################################################################################################# ############################################################################################################################################################################################################# ### 把 kong_model2 加入 sys.path import os code_exe_path = os.path.realpath(__file__) ### 目前執行 step10_b.py 的 path code_exe_path_element = code_exe_path.split("\\") ### 把 path 切分 等等 要找出 kong_model 在第幾層 kong_layer = code_exe_path_element.index("kong_model2") ### 找出 kong_model2 在第幾層 kong_model2_dir = "\\".join(code_exe_path_element[:kong_layer + 1]) ### 定位出 kong_model2 的 dir import sys ### 把 kong_model2 加入 sys.path sys.path.append(kong_model2_dir) # print(__file__.split("\\")[-1]) # print(" code_exe_path:", code_exe_path) # print(" code_exe_path_element:", code_exe_path_element) # print(" kong_layer:", kong_layer) # print(" kong_model2_dir:", kong_model2_dir) ############################################################################################################################################################################################################# kong_to_py_layer = len(code_exe_path_element) - 1 - kong_layer ### 中間 -1 是為了長度轉index # print(" kong_to_py_layer:", kong_to_py_layer) if (kong_to_py_layer == 0): template_dir = "" elif(kong_to_py_layer == 2): template_dir = code_exe_path_element[kong_layer + 1][0:] ### [7:] 是為了去掉 step1x_, 後來覺得好像改有意義的名字不去掉也行所以 改 0 elif(kong_to_py_layer == 3): template_dir = code_exe_path_element[kong_layer + 1][0:] + "/" + code_exe_path_element[kong_layer + 2][0:] ### [5:] 是為了去掉 mask_ ,前面的 mask_ 是為了python 的 module 不能 數字開頭, 隨便加的這樣子, 後來覺得 自動排的順序也可以接受, 所以 改0 elif(kong_to_py_layer > 3): template_dir = code_exe_path_element[kong_layer + 1][0:] + "/" + code_exe_path_element[kong_layer + 2][0:] + "/" + "/".join(code_exe_path_element[kong_layer + 3: -1]) # print(" template_dir:", template_dir) ### 舉例: template_dir: 7_mask_unet/5_os_book_and_paper_have_dtd_hdr_mix_bg_tv_s04_mae ############################################################################################################################################################################################################# exp_dir = template_dir ############################################################################################################################################################################################################# from step06_a_datas_obj import * from step09_e2_mask_unet2_obj import * from step10_a2_loss_info_obj import * from step10_b2_exp_builder import Exp_builder rm_paths = [path for path in sys.path if code_dir in path] for rm_path in rm_paths: sys.path.remove(rm_path) rm_moduless = [module for module in sys.modules if "step09" in module] for rm_module in rm_moduless: del sys.modules[rm_module] ############################################################################################################################################################################################################# ''' exp_dir 是 決定 result_dir 的 "上一層"資料夾 名字喔! exp_dir要巢狀也沒問題~ 比如:exp_dir = "6_mask_unet/自己命的名字",那 result_dir 就都在: 6_mask_unet/自己命的名字/result_a 6_mask_unet/自己命的名字/result_b 6_mask_unet/自己命的名字/... ''' use_db_obj = type9_mask_flow_have_bg_dtd_hdr_mix_and_paper ############################ have_bg ################################# ### 1a. ch mask_h_bg_ch128_sig_L6_ep060 = Exp_builder().set_basic("train", use_db_obj, mask_unet_ch128_sig_L6, G_sobel_k5_loss_info_builder, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_mid="6_1_1", describe_end="mask_h_bg_ch128_sig_sobel_k5_6l_ep060") .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="type8_blender_os_book-6_1_1-flow_unet-mask_h_bg_ch128_sig_sobel_k5_6l_ep060-20211016_115331") #.change_result_name_v1_to_v2() mask_h_bg_ch064_sig_L6_ep060 = Exp_builder().set_basic("train", use_db_obj, mask_unet_ch064_sig_L6, G_sobel_k5_loss_info_builder, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_mid="6_1_2", describe_end="mask_h_bg_ch064_sig_sobel_k5_6l_ep060") .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="type8_blender_os_book-6_1_2-flow_unet-mask_h_bg_ch064_sig_sobel_k5_6l_ep060-20211016_155014") #.change_result_name_v1_to_v2() mask_h_bg_ch032_sig_L6_ep060 = Exp_builder().set_basic("train", use_db_obj, mask_unet_ch032_sig_L6, G_sobel_k5_loss_info_builder, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_mid="6_1_3", describe_end="mask_h_bg_ch032_sig_sobel_k5_6l_ep060") .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="type8_blender_os_book-6_1_3-flow_unet-mask_h_bg_ch032_sig_sobel_k5_6l_ep060-20211016_151755") #.change_result_name_v1_to_v2() mask_h_bg_ch016_sig_L6_ep060 = Exp_builder().set_basic("train", use_db_obj, mask_unet_ch016_sig_L6, G_sobel_k5_loss_info_builder, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_mid="6_1_4", describe_end="mask_h_bg_ch016_sig_sobel_k5_6l_ep060") .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="type8_blender_os_book-6_1_4-flow_unet-mask_h_bg_ch016_sig_sobel_k5_6l_ep060-20211016_144809") #.change_result_name_v1_to_v2() mask_h_bg_ch008_sig_L6_ep060 = Exp_builder().set_basic("train", use_db_obj, mask_unet_ch008_sig_L6, G_sobel_k5_loss_info_builder, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_mid="6_1_5", describe_end="mask_h_bg_ch008_sig_sobel_k5_6l_ep060") .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="type8_blender_os_book-6_1_5-flow_unet-mask_h_bg_ch008_sig_sobel_k5_6l_ep060-20211016_141912") #.change_result_name_v1_to_v2() mask_h_bg_ch004_sig_L6_ep060 = Exp_builder().set_basic("train", use_db_obj, mask_unet_ch004_sig_L6, G_sobel_k5_loss_info_builder, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_mid="6_1_6", describe_end="mask_h_bg_ch004_sig_sobel_k5_6l_ep060") .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="type8_blender_os_book-6_1_6-flow_unet-mask_h_bg_ch004_sig_sobel_k5_6l_ep060-20211016_135029") #.change_result_name_v1_to_v2() mask_h_bg_ch002_sig_L6_ep060 = Exp_builder().set_basic("train", use_db_obj, mask_unet_ch002_sig_L6, G_sobel_k5_loss_info_builder, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_mid="6_1_7", describe_end="mask_h_bg_ch002_sig_sobel_k5_6l_ep060") .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="type8_blender_os_book-6_1_7-flow_unet-mask_h_bg_ch002_sig_sobel_k5_6l_ep060-20211016_132143") #.change_result_name_v1_to_v2() mask_h_bg_ch001_sig_L6_ep060 = Exp_builder().set_basic("train", use_db_obj, mask_unet_ch001_sig_L6, G_sobel_k5_loss_info_builder, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_mid="6_1_8", describe_end="mask_h_bg_ch001_sig_sobel_k5_6l_ep060") .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="type8_blender_os_book-6_1_8-flow_unet-mask_h_bg_ch001_sig_sobel_k5_6l_ep060-20211018_113827") #.change_result_name_v1_to_v2() ### 1b. ch and epoch_6l mask_h_bg_ch128_sig_L6_ep200 = Exp_builder().set_basic("train", use_db_obj, mask_unet_ch128_sig_L6, G_sobel_k5_loss_info_builder, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_mid="6_1b_1", describe_end="mask_h_bg_ch128_sig_sobel_k5_6l_ep200") .set_train_args(epochs=200).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="type8_blender_os_book-6_1b_1-flow_unet-mask_h_bg_ch128_sig_sobel_k5_6l_ep200-20211017_052816") #.change_result_name_v1_to_v2() mask_h_bg_ch064_sig_L6_ep200 = Exp_builder().set_basic("train", use_db_obj, mask_unet_ch064_sig_L6, G_sobel_k5_loss_info_builder, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_mid="6_1b_2", describe_end="mask_h_bg_ch064_sig_sobel_k5_6l_ep200") .set_train_args(epochs=200).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="type8_blender_os_book-6_1b_2-flow_unet-mask_h_bg_ch064_sig_sobel_k5_6l_ep200-20211017_025215") #.change_result_name_v1_to_v2() mask_h_bg_ch032_sig_L6_ep200 = Exp_builder().set_basic("train", use_db_obj, mask_unet_ch032_sig_L6, G_sobel_k5_loss_info_builder, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_mid="6_1b_3", describe_end="mask_h_bg_ch032_sig_sobel_k5_6l_ep200") .set_train_args(epochs=200).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="type8_blender_os_book-6_1b_3-flow_unet-mask_h_bg_ch032_sig_sobel_k5_6l_ep200-20211017_010424") #.change_result_name_v1_to_v2() mask_h_bg_ch016_sig_L6_ep200 = Exp_builder().set_basic("train", use_db_obj, mask_unet_ch016_sig_L6, G_sobel_k5_loss_info_builder, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_mid="6_1b_4", describe_end="mask_h_bg_ch016_sig_sobel_k5_6l_ep200") .set_train_args(epochs=200).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="type8_blender_os_book-6_1b_4-flow_unet-mask_h_bg_ch016_sig_sobel_k5_6l_ep200-20211016_232511") #.change_result_name_v1_to_v2() mask_h_bg_ch008_sig_L6_ep200 = Exp_builder().set_basic("train", use_db_obj, mask_unet_ch008_sig_L6, G_sobel_k5_loss_info_builder, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_mid="6_1b_5", describe_end="mask_h_bg_ch008_sig_sobel_k5_6l_ep200") .set_train_args(epochs=200).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="type8_blender_os_book-6_1b_5-flow_unet-mask_h_bg_ch008_sig_sobel_k5_6l_ep200-20211016_214914") #.change_result_name_v1_to_v2() mask_h_bg_ch004_sig_L6_ep200 = Exp_builder().set_basic("train", use_db_obj, mask_unet_ch004_sig_L6, G_sobel_k5_loss_info_builder, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_mid="6_1b_6", describe_end="mask_h_bg_ch004_sig_sobel_k5_6l_ep200") .set_train_args(epochs=200).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="type8_blender_os_book-6_1b_6-flow_unet-mask_h_bg_ch004_sig_sobel_k5_6l_ep200-20211016_205639") #.change_result_name_v1_to_v2() mask_h_bg_ch002_sig_L6_ep200 = Exp_builder().set_basic("train", use_db_obj, mask_unet_ch002_sig_L6, G_sobel_k5_loss_info_builder, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_mid="6_1b_7", describe_end="mask_h_bg_ch002_sig_sobel_k5_6l_ep200") .set_train_args(epochs=200).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="type8_blender_os_book-6_1b_7-flow_unet-mask_h_bg_ch002_sig_sobel_k5_6l_ep200-20211016_192121") #.change_result_name_v1_to_v2() mask_h_bg_ch001_sig_L6_ep200 = Exp_builder().set_basic("train", use_db_obj, mask_unet_ch001_sig_L6, G_sobel_k5_loss_info_builder, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_mid="6_1b_8", describe_end="mask_h_bg_ch001_sig_sobel_k5_6l_ep200") .set_train_args(epochs=200).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="type8_blender_os_book-6_1b_8-flow_unet-mask_h_bg_ch001_sig_sobel_k5_6l_ep200-20211016_174548") #.change_result_name_v1_to_v2() ### 3. no-concat mask_h_bg_ch032_L6_2to2noC_sig_ep060 = Exp_builder().set_basic("train", use_db_obj, mask_unet_IN_L6_ch32_2to2noC_sig, G_sobel_k5_loss_info_builder, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_mid="6_3_1", describe_end="mask_h_bg_ch032_6l_2to2noC_sig_sobel_k5_ep060") .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="type8_blender_os_book-6_3_1-flow_unet-mask_h_bg_ch032_6l_2to2noC_sig_sobel_k5_ep060-20211017_102259") #.change_result_name_v1_to_v2() mask_h_bg_ch032_L6_2to3noC_sig_ep060 = Exp_builder().set_basic("train", use_db_obj, mask_unet_IN_L6_ch32_2to3noC_sig, G_sobel_k5_loss_info_builder, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_mid="6_3_2", describe_end="mask_h_bg_ch032_6l_2to3noC_sig_sobel_k5_ep060") .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="type8_blender_os_book-6_3_2-flow_unet-mask_h_bg_ch032_6l_2to3noC_sig_sobel_k5_ep060-20211017_105549") #.change_result_name_v1_to_v2() mask_h_bg_ch032_L6_2to4noC_sig_ep060 = Exp_builder().set_basic("train", use_db_obj, mask_unet_IN_L6_ch32_2to4noC_sig, G_sobel_k5_loss_info_builder, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_mid="6_3_3", describe_end="mask_h_bg_ch032_6l_2to4noC_sig_sobel_k5_ep060") .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="type8_blender_os_book-6_3_3-flow_unet-mask_h_bg_ch032_6l_2to4noC_sig_sobel_k5_ep060-20211017_112834") #.change_result_name_v1_to_v2() mask_h_bg_ch032_L6_2to5noC_sig_ep060 = Exp_builder().set_basic("train", use_db_obj, mask_unet_IN_L6_ch32_2to5noC_sig, G_sobel_k5_loss_info_builder, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_mid="6_3_4", describe_end="mask_h_bg_ch032_6l_2to5noC_sig_sobel_k5_ep060") .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="type8_blender_os_book-6_3_4-flow_unet-mask_h_bg_ch032_6l_2to5noC_sig_sobel_k5_ep060-20211017_120111") #.change_result_name_v1_to_v2() mask_h_bg_ch032_L6_2to6noC_sig_ep060 = Exp_builder().set_basic("train", use_db_obj, mask_unet_IN_L6_ch32_2to6noC_sig, G_sobel_k5_loss_info_builder, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_mid="6_3_5", describe_end="mask_h_bg_ch032_6l_2to6noC_sig_sobel_k5_ep060") .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="type8_blender_os_book-6_3_5-flow_unet-mask_h_bg_ch032_6l_2to6noC_sig_sobel_k5_ep060-20211017_123334") #.change_result_name_v1_to_v2() ### 4. skip use add mask_h_bg_ch032_L6_skipAdd_sig_ep060 = Exp_builder().set_basic("train", use_db_obj, mask_unet_L6_skip_use_add_sig, G_sobel_k5_loss_info_builder, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_mid="6_4_5", describe_end="mask_h_bg_ch032_6l_skipAdd_sig_sobel_k5_ep060") .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="type8_blender_os_book-6_4_5-flow_unet-mask_h_bg_ch032_6l_skipAdd_sig_sobel_k5_ep060-20211017_130546") #.change_result_name_v1_to_v2() if(__name__ == "__main__"): print("build exps cost time:", time.time() - start_time) if len(sys.argv) < 2: ############################################################################################################ ### 直接按 F5 或打 python step10_b1_exp_obj_load_and_train_and_test.py,後面沒有接東西喔!才不會跑到下面給 step10_b_subprocss.py 用的程式碼~~~ mask_h_bg_ch128_sig_L6_ep060.build().run() # print('no argument') sys.exit() ### 以下是給 step10_b_subprocess.py 用的,相當於cmd打 python step10_b1_exp_obj_load_and_train_and_test.py 某個exp.build().run() eval(sys.argv[1])
7c7a13988c1414c47d5397c1e6f97e7be4e23afa
90b95ac525ee731ec5ba7d5da5c9038396ac4c3d
/zoom_data/migrations/0032_auto_20180129_1556.py
852054a2c4f744955572c6156d903d4e86f2e8a1
[]
no_license
5klynna5/zoom_c
33364146915611917ae0e6e0fd49233370424929
59c39eece1dd0ad5e7e210f4f03d8bb64df44b98
refs/heads/master
2021-05-12T04:06:39.031130
2018-08-04T23:52:19
2018-08-04T23:52:19
117,153,062
0
0
null
null
null
null
UTF-8
Python
false
false
2,542
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('zoom_data', '0031_auto_20180129_1151'), ] operations = [ migrations.AlterField( model_name='annual', name='annual_income', field=models.SmallIntegerField(help_text='in U.S. dollars', blank=True), ), migrations.AlterField( model_name='annual', name='employment_status', field=models.CharField(choices=[('Yes', 'YES'), ('No', 'NO')], null=True, max_length=3, blank=True), ), migrations.AlterField( model_name='annual', name='student_status', field=models.CharField(choices=[('Yes', 'YES'), ('No', 'NO')], null=True, max_length=3, blank=True), ), migrations.AlterField( model_name='contact', name='contact_pref', field=models.CharField(choices=[('Email', 'EMAIL'), ('Call', 'CALL'), ('Text', 'TEXT'), ('Mail', 'MAIL'), ('Facebook', 'FACEBOOK')], null=True, max_length=8, blank=True), ), migrations.AlterField( model_name='contact', name='permission_call', field=models.CharField(choices=[('Yes', 'YES'), ('No', 'NO')], null=True, max_length=3, blank=True), ), migrations.AlterField( model_name='contact', name='permission_email', field=models.CharField(choices=[('Yes', 'YES'), ('No', 'NO')], null=True, max_length=3, blank=True), ), migrations.AlterField( model_name='contact', name='permission_facebook', field=models.CharField(choices=[('Yes', 'YES'), ('No', 'NO')], null=True, max_length=3, blank=True), ), migrations.AlterField( model_name='contact', name='permission_mail', field=models.CharField(choices=[('Yes', 'YES'), ('No', 'NO')], null=True, max_length=3, blank=True), ), migrations.AlterField( model_name='contact', name='permission_photo', field=models.CharField(choices=[('Yes', 'YES'), ('No', 'NO')], null=True, max_length=3, blank=True), ), migrations.AlterField( model_name='contact', name='permission_text', field=models.CharField(choices=[('Yes', 'YES'), ('No', 'NO')], null=True, max_length=3, blank=True), ), ]
10b42b9c096fb19446e043163c9cfb3ae6a2ed9d
098f80474295aa024657330b8f0813eca7d015c2
/UnrealPythonLibrary/PythonLibraries/PythonHelpers.py
9614830514ae6520ef42d4429675bed7ed05a765
[]
no_license
sniler/UnrealScript
e4c4387caa6402a61b4bf0ba8952faf598e4464e
a4587d578366551b2470862f18b33c42439c5cdd
refs/heads/master
2023-04-01T18:45:37.803690
2021-04-13T11:25:13
2021-04-13T11:25:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
929
py
# unreal._ObjectBase # https://api.unrealengine.com/INT/PythonAPI/class/_ObjectBase.html import unreal # object_to_cast: obj unreal.Object : The object you want to cast # object_class: obj unreal.Class : The class you want to cast the object into def cast(object_to_cast=None, object_class=None): try: return object_class.cast(object_to_cast) except: return None # Cpp ######################################################################################################################################################################################## # Note: Also work using the command : help(unreal.StaticMesh) # unreal_class: obj : The class you want to know the properties # return: str List : The available properties (formatted the way you can directly use them to get their values) def getAllProperties(unreal_class=None): return unreal.CppLib.get_all_properties(unreal_class)
ff61f9d12ceebe86532e622aaecb819f0c39eb8f
e7b7505c084e2c2608cbda472bc193d4a0153248
/LeetcodeNew/python/LC_573.py
a585295ef01ebf47f30590d98f2feb1f45f6657f
[]
no_license
Taoge123/OptimizedLeetcode
8e5c1cd07904dfce1248bc3e3f960d2f48057a5d
3e50f6a936b98ad75c47d7c1719e69163c648235
refs/heads/master
2023-02-27T21:13:40.450089
2023-02-07T04:11:09
2023-02-07T04:11:09
170,044,224
9
3
null
null
null
null
UTF-8
Python
false
false
1,263
py
""" There's a tree, a squirrel, and several nuts. Positions are represented by the cells in a 2D grid. Your goal is to find the minimal distance for the squirrel to collect all the nuts and put them under the tree one by one. The squirrel can only take at most one nut at one time and can move in four directions - up, down, left and right, to the adjacent cell. The distance is represented by the number of moves. Example 1: Input: Height : 5 Width : 7 Tree position : [2,2] Squirrel : [4,4] Nuts : [[3,0], [2,5]] Output: 12 Explanation: ​​​​​ Note: All given positions won't overlap. The squirrel can take at most one nut at one time. The given positions of nuts have no order. Height and width are positive integers. 3 <= height * width <= 10,000. The given positions contain at least one nut, only one tree and one squirrel. """ class Solution: def minDistance(self, height: int, width: int, tree, squirrel, nuts) -> int: total = 0 dis = float('-inf') for nut in nuts: total += self.distance(nut, tree) * 2 dis = max(dis, self.distance(nut, tree) - self.distance(nut, squirrel)) return total - dis def distance(self, a, b): return abs(a[0] - b[0]) + abs(a[1] - b[1])
56113bdeea081fbc16893e7fdd670b1aea96fa36
4cdd73fe38027d41bda2959f940fc8a2a6c4ca78
/l10n_ve_islr_report/__openerp__.py
437bf359edf4cb159557ab769dca6e3d5272dd75
[]
no_license
adrt271988/l10n_ve
af408fcc0bd2c87475beccd5ec92ee180d35a0d8
0a762490f4ee0a4257fb75dc5ea5607dec91d3bd
refs/heads/master
2020-04-05T14:04:14.374612
2016-09-05T22:19:54
2016-09-05T22:19:54
53,200,710
0
0
null
null
null
null
UTF-8
Python
false
false
1,654
py
# -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # Copyright (C) 2004-2010 Tiny SPRL (<http://tiny.be>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## { 'name': 'Formato Comprobante ISLR Venezuela', 'category': 'Account', 'version': '1.0', 'description': """ Formato Comprobante ISLR Venezuela ==================================================== * Adaptación Qweb del formato del Comprobante de Retencion ISLR """, 'author': 'Alexander Rodriguez <[email protected]>', 'website': '', 'depends': ['l10n_ve_withholding_islr','report'], 'data': [ 'report/islr_wh_doc_report.xml', 'account_report.xml', ], 'demo': [], 'test': [], 'installable': True, 'auto_install': False, } # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
f49db6663ec0211a03497fae9b0a7d5b4a7ae930
e5f1befb7c7ca0072747b33086fc6569a6befd01
/old/videos/02.py
18f9ca234fd808ffb6c7a2703c07f80bf5cdd3a6
[]
no_license
nepomnyashchii/TestGit
ae08d8bb1b7d2ab9389a309fd1dc9e24729b019c
c7abf4ab08ee3c2f3ea1fb09a1938bff7a3e0e5c
refs/heads/master
2020-04-28T23:41:51.053547
2020-01-24T12:22:40
2020-01-24T12:22:40
175,666,093
0
1
null
2019-03-15T13:44:03
2019-03-14T17:08:58
null
UTF-8
Python
false
false
472
py
import random from random import randint import math # from random import * from math import sqrt from math import sqrt as my_sqrt for element in range (10): print(random.randint(1, 10)) #random object (randint function as method and 1,10 are arguments) num =10 print(math.sqrt(num)) print(sqrt(num)) print(randint (1,10)) def sqrt(): print("my function") # sqrt() print(my_sqrt(25)) # STL # standard library of python # PyPi
abf24deb33aa929ed64e1f57511d697e2db26a85
e1436eb68e51dcd1becb7e0f8671b51eb4b23ec0
/desktop/kde/applications/parley/actions.py
4ecd82fc5604b7c01eeb26036ad05c7448cec256
[]
no_license
SulinOS/SulinKDE
bef0ebbecafa6082ad7599f377c95573468827fb
9984e0f40a5a011e59d439a24856bde78deea1c2
refs/heads/master
2020-09-16T05:34:20.333558
2020-06-10T08:10:53
2020-06-10T08:10:53
223,669,603
0
0
null
null
null
null
UTF-8
Python
false
false
386
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Licensed under the GNU General Public License, version 3. # See the file http://www.gnu.org/licenses/gpl.txt from inary.actionsapi import inarytools from inary.actionsapi import kde def setup(): kde.configure() def build(): kde.make() def install(): kde.install() inarytools.dodoc("AUTHORS", "COPYING*", "TODO*")
cf29657646e6dc10ca79da4d4d8f025b52a0bdd1
7416056e689dfc94391c4b108652cea02d59a31a
/reservation/migrations/0009_auto_20200128_0154.py
ee59b4e4dcefa53f8ef69cf34200507a3c15f18a
[]
no_license
zshanabek/house-booking-app
0ea29fb8113671eb164ead8d335a986b850898a1
cca5225f40b8a055a2db78810258325f2ba7ded1
refs/heads/master
2022-11-28T00:20:12.789534
2020-08-14T09:16:40
2020-08-14T09:16:40
225,791,244
1
0
null
null
null
null
UTF-8
Python
false
false
532
py
# Generated by Django 2.2.7 on 2020-01-27 19:54 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('reservation', '0008_auto_20200125_2102'), ] operations = [ migrations.AlterField( model_name='reservation', name='check_in', field=models.DateField(), ), migrations.AlterField( model_name='reservation', name='check_out', field=models.DateField(), ), ]
f662e13a92f620780fa576c53bfe5eaaf4dc40d3
5dfbfa153f22b3f58f8138f62edaeef30bad46d3
/ros_ws/build/baxter_examples/catkin_generated/pkg.develspace.context.pc.py
ce6228515fedb8113370e7fdd69d2285856a9049
[]
no_license
adubredu/rascapp_robot
f09e67626bd5a617a569c9a049504285cecdee98
29ace46657dd3a0a6736e086ff09daa29e9cf10f
refs/heads/master
2022-01-19T07:52:58.511741
2019-04-01T19:22:48
2019-04-01T19:22:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
587
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "/home/bill/bill_ros/ros_ws/devel/include".split(';') if "/home/bill/bill_ros/ros_ws/devel/include" != "" else [] PROJECT_CATKIN_DEPENDS = "rospy;xacro;actionlib;sensor_msgs;control_msgs;trajectory_msgs;cv_bridge;dynamic_reconfigure;baxter_core_msgs;baxter_interface".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "baxter_examples" PROJECT_SPACE_DIR = "/home/bill/bill_ros/ros_ws/devel" PROJECT_VERSION = "1.2.0"
5b7b08cc64f27b668429b60c89c6dfff39a1be47
3e2ec14daf3e246334e175719bc38adcf15cee5a
/challenges/graphs/black_shapes.py
711d0422815e2bd4f14aaa3777a4b3ce9f1aaf6a
[ "CC0-1.0" ]
permissive
lukasmartinelli/sharpen
a616ee981d81efb2c844c5106ce30bd97f36e034
6f314fc2aa17990ede04055e7c3ac9394a6c12c0
refs/heads/master
2021-01-20T12:11:25.452306
2019-06-08T21:06:12
2019-06-08T21:06:12
58,558,368
13
2
null
null
null
null
UTF-8
Python
false
false
1,670
py
import collections def adjacent_black_fields(matrix, row_idx, col_idx): adjacent = [(row_idx + 1, col_idx), (row_idx - 1, col_idx), (row_idx, col_idx + 1), (row_idx, col_idx - 1)] def is_within_matrix(row_idx, col_idx): row_count = len(matrix) col_count = len(matrix[0]) return 0 <= row_idx < row_count and 0 <= col_idx < col_count def is_black(row_idx, col_idx): return matrix[row_idx][col_idx] == 'X' return [f for f in adjacent if is_within_matrix(f[0], f[1]) and is_black(f[0], f[1])] def find_black_fields(matrix): for row_idx, row in enumerate(matrix): for col_idx, field in enumerate(row): if field == 'X': yield (row_idx, col_idx) def count_black_shapes(matrix): part_of_shape = {} def is_part_of_shape(row_idx, col_idx): return (row_idx, col_idx) in part_of_shape def mark_shape(row_idx, col_idx): part_of_shape[(row_idx, col_idx)] = True for row_idx, col_idx in adjacent_black_fields(matrix, row_idx, col_idx): if not is_part_of_shape(row_idx, col_idx): mark_shape(row_idx, col_idx) shape_count = 0 for row_idx, col_idx in find_black_fields(matrix): if not is_part_of_shape(row_idx, col_idx): shape_count += 1 mark_shape(row_idx, col_idx) return shape_count def test_single_black_shape(): matrix = ['XXX', 'XXX', 'XXX'] assert count_black_shapes(matrix) == 1 def test_multipel_black_shape(): matrix = ['OOOXOOO', 'OOXXOXO', 'OXOOOXO'] assert count_black_shapes(matrix) == 3
83f67eb1126eb3952caf34740d621467f28863e0
3a19c1b17f553b6d54e5c345d550ca494c3593e1
/td1-problem22.py
4130c59d812ac8cfd5ae3a90bfb24b370ea9992d
[]
no_license
mines-nancy-tcss5ac-2018/td1-TomLaville
95faf73aca9375fe7ba990043e9c371713524eaa
4967cda4594b7706d8edcdaf99a7945ea90ad8e3
refs/heads/master
2020-03-31T00:16:54.328127
2018-10-07T19:05:42
2018-10-07T19:05:42
151,733,523
0
0
null
null
null
null
IBM852
Python
false
false
876
py
values = ["\"","A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M","N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z"] def scoreName(nom): s = 0 for char in nom: s+= values.index(char) return s def solve(): noms = [] ##liste qui contient tous les noms ##liste utile pour le score ##converti le fichier txt en liste de noms f = open('p022_names.txt', 'r') for l in f: noms += l.split(',') ##lis le fichier et sÚpare les noms par les ',' ##on a donc toujours les "" ##tri noms_tries = sorted(noms, reverse = False) ##calcul du score score_tot = 0 for i in range(len(noms_tries)): score_tot += (i+1)*scoreName(noms_tries[i]) return score_tot print(solve())
5388aa37ce371ef5f7f6cb2f18770e3a8791d1bd
8afb5afd38548c631f6f9536846039ef6cb297b9
/MY_REPOS/misc-experiments/_FIREBFIRE/grpc-SwiftPM/tools/run_tests/run_microbenchmark.py
4b9cd4bc8e85661f9a9cfeefbcc310b227710f5d
[ "MIT", "Apache-2.0" ]
permissive
bgoonz/UsefulResourceRepo2.0
d87588ffd668bb498f7787b896cc7b20d83ce0ad
2cb4b45dd14a230aa0e800042e893f8dfb23beda
refs/heads/master
2023-03-17T01:22:05.254751
2022-08-11T03:18:22
2022-08-11T03:18:22
382,628,698
10
12
MIT
2022-10-10T14:13:54
2021-07-03T13:58:52
null
UTF-8
Python
false
false
9,289
py
#!/usr/bin/env python # Copyright 2017 gRPC authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import cgi import multiprocessing import os import subprocess import sys import argparse import python_utils.jobset as jobset import python_utils.start_port_server as start_port_server sys.path.append( os.path.join(os.path.dirname(sys.argv[0]), '..', 'profiling', 'microbenchmarks', 'bm_diff')) import bm_constants flamegraph_dir = os.path.join(os.path.expanduser('~'), 'FlameGraph') os.chdir(os.path.join(os.path.dirname(sys.argv[0]), '../..')) if not os.path.exists('reports'): os.makedirs('reports') start_port_server.start_port_server() def fnize(s): out = '' for c in s: if c in '<>, /': if len(out) and out[-1] == '_': continue out += '_' else: out += c return out # index html index_html = """ <html> <head> <title>Microbenchmark Results</title> </head> <body> """ def heading(name): global index_html index_html += "<h1>%s</h1>\n" % name def link(txt, tgt): global index_html index_html += "<p><a href=\"%s\">%s</a></p>\n" % (cgi.escape( tgt, quote=True), cgi.escape(txt)) def text(txt): global index_html index_html += "<p><pre>%s</pre></p>\n" % cgi.escape(txt) def collect_latency(bm_name, args): """generate latency profiles""" benchmarks = [] profile_analysis = [] cleanup = [] heading('Latency Profiles: %s' % bm_name) subprocess.check_call([ 'make', bm_name, 'CONFIG=basicprof', '-j', '%d' % multiprocessing.cpu_count() ]) for line in subprocess.check_output( ['bins/basicprof/%s' % bm_name, '--benchmark_list_tests']).splitlines(): link(line, '%s.txt' % fnize(line)) benchmarks.append( jobset.JobSpec([ 'bins/basicprof/%s' % bm_name, '--benchmark_filter=^%s$' % line, '--benchmark_min_time=0.05' ], environ={ 'GRPC_LATENCY_TRACE': '%s.trace' % fnize(line) }, shortname='profile-%s' % fnize(line))) profile_analysis.append( jobset.JobSpec([ sys.executable, 'tools/profiling/latency_profile/profile_analyzer.py', '--source', '%s.trace' % fnize(line), '--fmt', 'simple', '--out', 'reports/%s.txt' % fnize(line) ], timeout_seconds=20 * 60, shortname='analyze-%s' % fnize(line))) cleanup.append(jobset.JobSpec(['rm', '%s.trace' % fnize(line)])) # periodically flush out the list of jobs: profile_analysis jobs at least # consume upwards of five gigabytes of ram in some cases, and so analysing # hundreds of them at once is impractical -- but we want at least some # concurrency or the work takes too long if len(benchmarks) >= min(16, multiprocessing.cpu_count()): # run up to half the cpu count: each benchmark can use up to two cores # (one for the microbenchmark, one for the data flush) jobset.run(benchmarks, maxjobs=max(1, multiprocessing.cpu_count() / 2)) jobset.run(profile_analysis, maxjobs=multiprocessing.cpu_count()) jobset.run(cleanup, maxjobs=multiprocessing.cpu_count()) benchmarks = [] profile_analysis = [] cleanup = [] # run the remaining benchmarks that weren't flushed if len(benchmarks): jobset.run(benchmarks, maxjobs=max(1, multiprocessing.cpu_count() / 2)) jobset.run(profile_analysis, maxjobs=multiprocessing.cpu_count()) jobset.run(cleanup, maxjobs=multiprocessing.cpu_count()) def collect_perf(bm_name, args): """generate flamegraphs""" heading('Flamegraphs: %s' % bm_name) subprocess.check_call([ 'make', bm_name, 'CONFIG=mutrace', '-j', '%d' % multiprocessing.cpu_count() ]) benchmarks = [] profile_analysis = [] cleanup = [] for line in subprocess.check_output( ['bins/mutrace/%s' % bm_name, '--benchmark_list_tests']).splitlines(): link(line, '%s.svg' % fnize(line)) benchmarks.append( jobset.JobSpec([ 'perf', 'record', '-o', '%s-perf.data' % fnize(line), '-g', '-F', '997', 'bins/mutrace/%s' % bm_name, '--benchmark_filter=^%s$' % line, '--benchmark_min_time=10' ], shortname='perf-%s' % fnize(line))) profile_analysis.append( jobset.JobSpec( [ 'tools/run_tests/performance/process_local_perf_flamegraphs.sh' ], environ={ 'PERF_BASE_NAME': fnize(line), 'OUTPUT_DIR': 'reports', 'OUTPUT_FILENAME': fnize(line), }, shortname='flame-%s' % fnize(line))) cleanup.append(jobset.JobSpec(['rm', '%s-perf.data' % fnize(line)])) cleanup.append(jobset.JobSpec(['rm', '%s-out.perf' % fnize(line)])) # periodically flush out the list of jobs: temporary space required for this # processing is large if len(benchmarks) >= 20: # run up to half the cpu count: each benchmark can use up to two cores # (one for the microbenchmark, one for the data flush) jobset.run(benchmarks, maxjobs=1) jobset.run(profile_analysis, maxjobs=multiprocessing.cpu_count()) jobset.run(cleanup, maxjobs=multiprocessing.cpu_count()) benchmarks = [] profile_analysis = [] cleanup = [] # run the remaining benchmarks that weren't flushed if len(benchmarks): jobset.run(benchmarks, maxjobs=1) jobset.run(profile_analysis, maxjobs=multiprocessing.cpu_count()) jobset.run(cleanup, maxjobs=multiprocessing.cpu_count()) def run_summary(bm_name, cfg, base_json_name): subprocess.check_call([ 'make', bm_name, 'CONFIG=%s' % cfg, '-j', '%d' % multiprocessing.cpu_count() ]) cmd = [ 'bins/%s/%s' % (cfg, bm_name), '--benchmark_out=%s.%s.json' % (base_json_name, cfg), '--benchmark_out_format=json' ] if args.summary_time is not None: cmd += ['--benchmark_min_time=%d' % args.summary_time] return subprocess.check_output(cmd) def collect_summary(bm_name, args): heading('Summary: %s [no counters]' % bm_name) text(run_summary(bm_name, 'opt', bm_name)) heading('Summary: %s [with counters]' % bm_name) text(run_summary(bm_name, 'counters', bm_name)) if args.bigquery_upload: with open('%s.csv' % bm_name, 'w') as f: f.write( subprocess.check_output([ 'tools/profiling/microbenchmarks/bm2bq.py', '%s.counters.json' % bm_name, '%s.opt.json' % bm_name ])) subprocess.check_call([ 'bq', 'load', 'microbenchmarks.microbenchmarks', '%s.csv' % bm_name ]) collectors = { 'latency': collect_latency, 'perf': collect_perf, 'summary': collect_summary, } argp = argparse.ArgumentParser(description='Collect data from microbenchmarks') argp.add_argument('-c', '--collect', choices=sorted(collectors.keys()), nargs='*', default=sorted(collectors.keys()), help='Which collectors should be run against each benchmark') argp.add_argument('-b', '--benchmarks', choices=bm_constants._AVAILABLE_BENCHMARK_TESTS, default=bm_constants._AVAILABLE_BENCHMARK_TESTS, nargs='+', type=str, help='Which microbenchmarks should be run') argp.add_argument('--bigquery_upload', default=False, action='store_const', const=True, help='Upload results from summary collection to bigquery') argp.add_argument( '--summary_time', default=None, type=int, help='Minimum time to run benchmarks for the summary collection') args = argp.parse_args() try: for collect in args.collect: for bm_name in args.benchmarks: collectors[collect](bm_name, args) finally: if not os.path.exists('reports'): os.makedirs('reports') index_html += "</body>\n</html>\n" with open('reports/index.html', 'w') as f: f.write(index_html)
7acffc09af312c4cf50348b8c11ac1c2f7a9299c
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/16/usersdata/134/7136/submittedfiles/triangulo.py
ed25ffd7bbcc72ababe8bfa8ba20892f52ef7ec7
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
260
py
# -*- coding: utf-8 -*- from __future__ import division import math a = input('Digite o valor de a:') b = input('Digite o valor de b:') c = input('Digite o valor de c:') if a>=b>=c and a<(b+c) : print ('S') if (a**2)==((b**2)+(c**2)): print
0880e3a123ede3bcf2211f08a1ccf3132ed4b202
27f7ab32a865f4ae6b62d0b2a6a890352fea0cba
/ifmo_certs/courses/x0009_02/__init__.py
c0c67542929f42b7691098b602532d6a2ddb5444
[]
no_license
defance/edx-ifmo-mod
38b84381814b103e5cbf07419b1e1e142bc61a70
1b86a85a32c06322ab429d323f2ff2be84d0a1cc
refs/heads/master
2021-01-22T20:59:42.575809
2015-10-28T12:57:43
2015-10-28T12:57:43
21,855,589
0
0
null
null
null
null
UTF-8
Python
false
false
60
py
__author__ = 'd.ivanyushin' from .x0009_02 import X0009_02
05947191f7a5ddb2a9ff5e8e0385d1616f07bd04
82b946da326148a3c1c1f687f96c0da165bb2c15
/sdk/python/pulumi_azure_native/machinelearningservices/v20210301preview/get_job.py
e9a9f325635bdf8571c3b2144867f1b62d2a343b
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
morrell/pulumi-azure-native
3916e978382366607f3df0a669f24cb16293ff5e
cd3ba4b9cb08c5e1df7674c1c71695b80e443f08
refs/heads/master
2023-06-20T19:37:05.414924
2021-07-19T20:57:53
2021-07-19T20:57:53
387,815,163
0
0
Apache-2.0
2021-07-20T14:18:29
2021-07-20T14:18:28
null
UTF-8
Python
false
false
4,080
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs __all__ = [ 'GetJobResult', 'AwaitableGetJobResult', 'get_job', ] @pulumi.output_type class GetJobResult: """ Azure Resource Manager resource envelope. """ def __init__(__self__, id=None, name=None, properties=None, system_data=None, type=None): if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if properties and not isinstance(properties, dict): raise TypeError("Expected argument 'properties' to be a dict") pulumi.set(__self__, "properties", properties) if system_data and not isinstance(system_data, dict): raise TypeError("Expected argument 'system_data' to be a dict") pulumi.set(__self__, "system_data", system_data) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) @property @pulumi.getter def id(self) -> str: """ Fully qualified resource ID for the resource. Ex - /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName} """ return pulumi.get(self, "id") @property @pulumi.getter def name(self) -> str: """ The name of the resource """ return pulumi.get(self, "name") @property @pulumi.getter def properties(self) -> Any: """ Additional attributes of the entity. """ return pulumi.get(self, "properties") @property @pulumi.getter(name="systemData") def system_data(self) -> 'outputs.SystemDataResponse': """ System data associated with resource provider """ return pulumi.get(self, "system_data") @property @pulumi.getter def type(self) -> str: """ The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or "Microsoft.Storage/storageAccounts" """ return pulumi.get(self, "type") class AwaitableGetJobResult(GetJobResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetJobResult( id=self.id, name=self.name, properties=self.properties, system_data=self.system_data, type=self.type) def get_job(id: Optional[str] = None, resource_group_name: Optional[str] = None, workspace_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetJobResult: """ Azure Resource Manager resource envelope. :param str id: The name and identifier for the Job. :param str resource_group_name: The name of the resource group. The name is case insensitive. :param str workspace_name: Name of Azure Machine Learning workspace. """ __args__ = dict() __args__['id'] = id __args__['resourceGroupName'] = resource_group_name __args__['workspaceName'] = workspace_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-native:machinelearningservices/v20210301preview:getJob', __args__, opts=opts, typ=GetJobResult).value return AwaitableGetJobResult( id=__ret__.id, name=__ret__.name, properties=__ret__.properties, system_data=__ret__.system_data, type=__ret__.type)
69291f4bb7b082fcb63d8d0a0ab580ce63b63c2a
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/GX3pQxvbTJApWYgRJ_22.py
ea51d20994790e177a6d6bdea78c3a0e36e6bd7b
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
1,291
py
""" A Kaprekar Number is a positive integer that is equal to a number formed by first squaring, then splitting and summing its two lexicographical parts: * If the quantity of digits of the squared number is even, the left and right parts will have the same length. * If the quantity of digits of the squared number is odd, then the right part will be the longer half, with the left part being the shorter or equal to zero if the quantity of digits is equal to 1. Given a positive integer `n` implement a function that returns `True` if it's a Kaprekar number, and `False` if it's not. ### Examples is_kaprekar(3) ➞ False # n² = "9" # Left + Right = 0 + 9 = 9 ➞ 9 != 3 is_kaprekar(5) ➞ False # n² = "25" # Left + Right = 2 + 5 = 7 ➞ 7 != 5 is_kaprekar(297) ➞ True # n² = "88209" # Left + Right = 88 + 209 = 297 ➞ 297 == 297 ### Notes Trivially, 0 and 1 are Kaprekar Numbers being the only two numbers equal to their square. Any number formed only by digits equal to _9_ will always be a Kaprekar Number. """ def is_kaprekar(n): if n in [0,1]: return True test = str(n**2) if len(test) == 1: return False left = test[:len(test)//2] right = test[len(test)//2:] return int(left) + int(right) == n
a56febed6885c0b35f0a30ddce4934f5b6836066
53396d12d606bebea71c149aed0150af7b17b6f5
/array/medium/221-maximal-square-1.py
b3885e1f68c33ae2c1dc19434984e2ec1137c8ff
[]
no_license
superggn/myleetcode
4c623bd9ad3892d826df73ad3b2c122e08aaa9e9
40ca33aefbf0cf746a2d0b7e7f52643ae39591be
refs/heads/master
2023-02-02T11:06:35.163570
2020-12-19T10:36:45
2020-12-19T10:36:45
322,821,962
0
0
null
null
null
null
UTF-8
Python
false
false
837
py
""" dp https://leetcode-cn.com/problems/maximal-square/solution/zui-da-zheng-fang-xing-by-leetcode-solution/ """ from typing import List class Solution: def maximalSquare(self, matrix: List[List[str]]) -> int: if len(matrix) == 0 or len(matrix[0]) == 0: return 0 maxSide = 0 rows, columns = len(matrix), len(matrix[0]) dp = [[0] * columns for _ in range(rows)] for i in range(rows): for j in range(columns): if matrix[i][j] == '1': if i == 0 or j == 0: dp[i][j] = 1 else: dp[i][j] = min(dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1]) + 1 maxSide = max(maxSide, dp[i][j]) maxSquare = maxSide * maxSide return maxSquare
33dc808475234978f454c5997f1ea1bd3996a31e
05ace4491b97699333057e35f7e9225864f7130d
/dygraphsex/urls.py
689201cc230eb577bc30387699482d5ada5e4179
[]
no_license
scott858/dajs
b6878123748f563550fa2f5e59b1d5dcd4fdcaa5
bc6b23d0e24be038e278490e34422d69b06d6543
refs/heads/master
2021-01-01T16:12:43.477340
2015-09-18T01:04:55
2015-09-18T01:04:55
41,645,401
0
0
null
null
null
null
UTF-8
Python
false
false
203
py
from django.conf.urls import patterns, url from . import views urlpatterns = patterns( '', url(r'^$', views.example_app_view, name='main'), url(r'^plot/$', views.plot_view, name='plot'), )
08482fe6214b2752de4f244241d1bee84840b9a8
47243c719bc929eef1475f0f70752667b9455675
/bungeni.main/branches/oauth/bungeni/alchemist/type_info.py
2d6b1645d913fc2122f0e3dbcb9f1f7071449eff
[]
no_license
malangalanga/bungeni-portal
bbf72ce6d69415b11287a8796b81d4eb6520f03a
5cf0ba31dfbff8d2c1b4aa8ab6f69c7a0ae9870d
refs/heads/master
2021-01-19T15:31:42.943315
2014-11-18T09:03:00
2014-11-18T09:03:00
32,453,405
0
0
null
null
null
null
UTF-8
Python
false
false
12,806
py
# Bungeni Parliamentary Information System - http://www.bungeni.org/ # Copyright (C) 2010 - Africa i-Parliaments - http://www.parliaments.info/ # Licensed under GNU GPL v2 - http://www.gnu.org/licenses/gpl-2.0.txt """Aggregation of information about loaded domain types. No public methods here -- all available methods from this are those exposed via bungeni.capi. $Id$ """ log = __import__("logging").getLogger("bungeni.alchemist.type_info") from zope.interface.interfaces import IInterface from zope.security.proxy import removeSecurityProxy from zope.dottedname.resolve import resolve from bungeni.alchemist.interfaces import IModelDescriptor, IIModelInterface from bungeni.alchemist.model import ( new_custom_domain_interface, new_custom_domain_model, ) from bungeni.alchemist.catalyst import ( INTERFACE_MODULE, MODEL_MODULE ) from bungeni.models import interfaces from bungeni.models import domain from bungeni.core.workflow.interfaces import IWorkflow from bungeni.utils import naming __all__ = [] # acessors exposed via capi def _iter(): """Return iterator on all (key, TypeInfo) entries in TYPE_REGISTRY. Usage: capi.iter_type_info() """ for type_key, ti in TYPE_REGISTRY: yield type_key, ti def _get(discriminator): """Get the TypeInfo instance for discriminator, that may be any of: type_key: str (the lowercase underscore-separated of domain cls name) workflow: an instance of Workflow, provides IWorkflow interface: provides IInterface domain model: provides IBungeniContent domain model instance: type provides IBungeniContent descriptor: provides IModelDescriptor Raise KeyError if no entry matched. Usage: capi.get_type_info(discriminator) """ if discriminator is None: m = "type_info._get discriminator is None" log.error(m) raise ValueError(m) discri = removeSecurityProxy(discriminator) getter = None # !+IALCHEMISTCONTENT normalize trickier discriminator cases to type_key if IIModelInterface.providedBy(discri): discri = naming.type_key("table_schema_interface_name", discri.__name__) elif IInterface.providedBy(discri): discri = naming.type_key("model_interface_name", discri.__name__) elif type(discri) is type and issubclass(discri, domain.Entity): discri = naming.polymorphic_identity(discri) elif isinstance(discri, domain.Entity): discri = naming.polymorphic_identity(type(discri)) if isinstance(discri, basestring): getter = _get_by_type_key #elif IInterface.providedBy(discri): # getter = _get_by_interface #!+elif interfaces.IBungeniContent.implementedBy(discri): #elif issubclass(discri, domain.Entity): # getter = _get_by_model #!+elif interfaces.IBungeniContent.providedBy(discri): #elif isinstance(discri, domain.Entity): # getter = _get_by_instance elif IWorkflow.providedBy(discri): getter = _get_by_workflow elif IModelDescriptor.implementedBy(discri): getter = _get_by_descriptor_model if getter is not None: ti = getter(discri) if ti is not None: return ti else: m = "No type registered for discriminator: %r" % (discriminator) else: m = "Invalid type info lookup discriminator: %r" % (discriminator) from bungeni.ui.utils import debug log.debug(debug.interfaces(discriminator)) log.debug(m) raise KeyError(m) # following getters return "first matching" TypeInfo instance in registry def _get_by_type_key(key): for type_key, ti in _iter(): if type_key == key: return ti #def _get_by_interface(iface): ''' !+IALCHEMISTCONTENT fails on different interfaces with same name! (Pdb) ti.interface <InterfaceClass bungeni.models.interfaces.ISession> (Pdb) ti.interface.__bases__ (<InterfaceClass ore.alchemist.interfaces.ITableSchema>, <InterfaceClass ore.alchemist.interfaces.IAlchemistContent>) (Pdb) iface <InterfaceClass bungeni.models.interfaces.ISession> (Pdb) iface.__bases__ (<InterfaceClass zope.interface.Interface>,) ''' # for type_key, ti in _iter(): # if iface is ti.interface: #!+issubclass(iface, ti.interface)? # return ti def _get_by_model(model): for type_key, ti in _iter(): if model is ti.domain_model: #!+issubclass(model, ti.domain_model)? return ti def _get_by_instance(instance): return _get_by_model(type(instance)) def _get_by_workflow(wf): for type_key, ti in _iter(): if wf is ti.workflow: return ti def _get_by_descriptor_model(descriptor_model): for type_key, ti in _iter(): if descriptor_model is ti.descriptor_model: return ti # class TI(object): """TypeInfo, associates together the following attributes for a given type: workflow_key the workflow file name defaults to the type_key for workflowed types that DO NOT specify is None for non-workflowed types workflow same workflow insatnce may be used by multiple types is None for non-workflowed types interface the manually applied application-dedicated model interface (if any) for the type derived_table_schema auto-generated db schema interface, provides IIModelInterface domain_model the domain class descriptor_model the descriptor model for UI views for the type container_class container class for domain_model container_interface interface for the container class for domain_model """ def __init__(self, workflow_key, iface, domain_model=None): self.workflow_key = workflow_key self.interface = iface self.derived_table_schema = None # provides IIModelInterface self.workflow = None self.domain_model = domain_model self.descriptor_model = None self.container_class = None self.container_interface = None self.custom = False # type loaded from custom configuration # NOTE: only needed temporarily (until descriptor_model is set), # then ti.custom not be inconsistent descriptor_model.scope i.e. #if self.custom: assert self.descriptor_model.scope == "custom" # !+ archetype_key? def __str__(self): return str(self.__dict__) @property def scope(self): # !+CUSTOM_TYPE_DESCRIPTOR the self.custom check below MUST precede the # check on self.descriptor_model.scope as otherwise the "in-transit" # custom types will not be picked up as custom types -- as during # loading the descriptors for all custom types may not yet have been # autogenerated (and would therefore correctly have # descriptor_model.scope="custom" set). if self.custom: return "custom" if self.descriptor_model is not None: return self.descriptor_model.scope @property def permission_type_key(self): if self.custom: # custom types ALWAYS have a type_key-bound workflow instance - that # may therefore have a different name than workflow_key e.g. Office # uses the "group" workflow, that is type-relative reloaded as the # "office" workflow instance. return self.workflow.name # system types ALWAYS use workflow_key - even if multiple types use the # same workflow e.g. UserAddress & GroupAddress. # if no workflow, compute type_key from domain_model # #!+REDUNDANT(mb, 2012) This type key is already known during type # setup i.e. TYPE_REGISTRY return (self.workflow_key or naming.type_key("model_name", self.domain_model.__name__) ) ''' !+TYPE_REGISTRY externalize further to bungeni_custom, currently: - association of type key and dedicated interface are hard-wired here - ti.workflow/ti.domain_model/ti.descriptor are added dynamically when loading workflows and descriptors - type_key IS the underscore-separated lowercase of the domain cls name i.e. utils.naming.polymorphic_identity(domain_model) - !+ ti.workflow_key SHOULD always be equal to type_key - !+ corresponding Container/Version/X interfaces should ALWAYS be auto-generated - !+ dedicated interfaces for archetype incantations should be auto-generated, from specific workflow name/attr... e.g. via: zope.interface.interface.InterfaceClass(iname, bases, __module__) - !+ should ti.interface be automatically generated also for system types? Usage: from bungeni.capi import capi capi.get_type_info(discriminator) -> TypeInfo capi.iter_type_info() -> iterator of all registered (key, TypeInfo) ''' TYPE_REGISTRY = [ # (key, ti) # - the type key, unique for each type, is the underscore-separated # lowercase name of the domain_model (the domain class) # - order is relevant (dictates workflow loading order) # feature "support" types, system types, required # workflowed ("user_address", TI("address", interfaces.IUserAddress)), ("group_address", TI("address", interfaces.IGroupAddress)), # !+Attachment (mr, jul-2011) # a) must be loaded before any other type that *may* support attachments! # b) MUST support versions ("attachment", TI("attachment", interfaces.IAttachment)), ("event", TI("event", interfaces.IEvent)), ("sitting", TI("sitting", interfaces.ISitting)), ("heading", TI("heading", interfaces.IHeading)), ("user", TI("user", interfaces.IBungeniUser)), ("signatory", TI("signatory", interfaces.ISignatory)), # !+NAMING: member-related -> Group name + "Member" (no + "ship") ("group", TI("group", interfaces.IBungeniGroup)), ("group_membership", TI("group_membership", interfaces.IBungeniGroupMembership)), ("group_document_assignment", TI("group_assignment", interfaces.IGroupDocumentAssignment)), ("debate_record", TI("debate_record", interfaces.IDebateRecord)), # non-workflowed ("o_auth_application", TI(None, interfaces.IOAuthApplication)), ("debate_media", TI(None, interfaces.IDebateMedia)), ("user_delegation", TI(None, interfaces.IUserDelegation)), ("title_type", TI(None, interfaces.ITitleType)), ("member_title", TI(None, interfaces.IMemberTitle)), ("change", TI(None, interfaces.IChange)), ("doc", TI(None, interfaces.IDoc)), ("doc_version", TI(None, None)), #interfaces.IDocVersion)), #!+IVERSION ("attachment_version", TI(None, None)), #interfaces.IAttachmentVersion)), #!+IVERSION ("venue", TI(None, interfaces.IVenue)), ("session", TI(None, interfaces.ISession)), ("sitting_attendance", TI(None, interfaces.ISittingAttendance)), ("country", TI(None, interfaces.ICountry)), ("item_schedule", TI(None, interfaces.IItemSchedule)), ("item_schedule_discussion", TI(None, interfaces.IItemScheduleDiscussion)), ("item_schedule_vote", TI(None, interfaces.IItemScheduleVote)), ("editorial_note", TI(None, interfaces.IEditorialNote)), ("sitting_report", TI(None, interfaces.ISittingReport)), ("group_membership_role", TI(None, interfaces.IGroupMembershipRole)), # additional custom types are loaded dynamically from bungeni_custom/types.xml ] # register custom types def register_new_custom_type(type_key, workflow_key, archetype_key): """Retrieve (create if needed) a domain interface and model for type_key, and register as new entry on TYPE_REGISTER. """ # generate custom domain interface domain_iface_name = naming.model_interface_name(type_key) try: domain_iface = resolve("%s.%s" % (INTERFACE_MODULE.__name__, domain_iface_name)) log.warn("Custom interface ALREADY EXISTS: %s" % (domain_iface)) except ImportError: domain_iface = new_custom_domain_interface(type_key, domain_iface_name) # generate custom domain_model domain_model_name = naming.model_name(type_key) try: domain_model = resolve("%s.%s" % (MODEL_MODULE.__name__, domain_model_name)) log.warn("Custom domain model ALREADY EXISTS: %s" % (domain_model)) except ImportError: domain_model = new_custom_domain_model(type_key, domain_iface, archetype_key) # type_info entry ti = TI(workflow_key, domain_iface, domain_model) ti.custom = True TYPE_REGISTRY.append((type_key, ti)) log.info("Registered custom type [%s]: %s" % (archetype_key, type_key)) return type_key, ti
[ "mianonjoka@fc5d704a-7d24-0410-8c4a-57ddeba10ffc" ]
mianonjoka@fc5d704a-7d24-0410-8c4a-57ddeba10ffc
8de4c818ca766df5a345ae0b90065e5d770de5b1
bc4656f6f74911f114626538294e0e275105c703
/tests/dat/test_dar_packet.py
b02d91483b4179221c025a2cbc331f1950d03916
[ "LicenseRef-scancode-unknown-license-reference", "BSD-3-Clause", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
AdrianCano-01/spsdk
d8679ae58fc67c6369bceff4b31db658d9ad6bc4
4a31fb091f95fb035bc66241ee4e02dabb580072
refs/heads/master
2023-03-15T00:37:07.419191
2021-03-05T16:33:50
2021-03-05T16:33:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,839
py
#!/usr/bin/env python # -*- coding: UTF-8 -*- # # Copyright 2020 NXP # # SPDX-License-Identifier: BSD-3-Clause """Tests with Debug Authentication Packet (DAR) Packet.""" import os import pytest import yaml from spsdk.dat.dar_packet import DebugAuthenticateResponse from spsdk.dat import DebugAuthenticationChallenge as DAC from spsdk.dat.debug_credential import DebugCredential as DC from spsdk.utils.misc import load_binary, use_working_directory @pytest.mark.parametrize( "yml_file_name, dac_bin_file, version, dck_key_file, expected_length", [ ('new_dck_rsa2048.yml', 'sample_dac.bin', '1.0', 'new_dck_2048.pem', 1200), ('new_dck_secp256.yml', 'sample_dac_ecc.bin', '2.0', 'new_dck_secp256r1.pem', 968) ] ) def test_dar_packet_rsa(tmpdir, data_dir, yml_file_name, version, dck_key_file, expected_length, dac_bin_file): with use_working_directory(data_dir): dac_bytes = load_binary(os.path.join(data_dir, dac_bin_file)) with open(os.path.join(data_dir, yml_file_name), 'r') as f: yaml_config = yaml.safe_load(f) dc = DC.create_from_yaml_config(version=version, yaml_config=yaml_config) dc.sign() assert dc.VERSION == DAC.parse(dac_bytes).version, "Version of DC and DAC are different." dar = DebugAuthenticateResponse.create(version=version, socc=dc.socc, dc=dc, auth_beacon=0, dac=DAC.parse(dac_bytes), dck=os.path.join(data_dir, dck_key_file)) dar_bytes = dar.export() assert len(dar_bytes) == expected_length assert isinstance(dar_bytes, bytes) assert 'Authentication Beacon' in dar.info() @pytest.mark.parametrize( "yml_file_name, version, file_key, expected_length", [ ('new_dck_secp256_N4A.yml', '2.0', 'new_dck_secp256r1.pem', 316), ('new_dck_secp384_N4A.yml', '2.1', 'new_dck_secp384r1.pem', 444) ] ) def test_dar_packet_4_analog_256(tmpdir, data_dir, yml_file_name, version, file_key, expected_length): with use_working_directory(data_dir): dac_bytes = load_binary(os.path.join(data_dir, 'sample_dac_analog.bin')) with open(os.path.join(data_dir, yml_file_name), 'r') as f: yaml_config = yaml.safe_load(f) dc = DC.create_from_yaml_config(version=version, yaml_config=yaml_config) dc.sign() dar = DebugAuthenticateResponse.create(version=version, socc=dc.socc, dc=dc, auth_beacon=0, dac=DAC.parse(dac_bytes), dck=os.path.join(data_dir, file_key)) dar_bytes = dar.export() assert len(dar_bytes) == expected_length assert isinstance(dar_bytes, bytes) assert 'Authentication Beacon' in dar.info()
ef1d77c3ead5c963da4bda0a6758391542a24536
234b581de16f0eebfe3db5281d2920d50e3a3631
/src/com/dtmilano/android/adb/dumpsys.py
efd9d4962f5cb6e26555547c6475bd84fb789c06
[ "Apache-2.0" ]
permissive
jili0503/AndroidViewClient
3d453884d68b508fe4d5d28f5bcea0db0cad6062
c1c38e6fa53dc09697eadb9c1670d6bef8587ab6
refs/heads/master
2020-03-06T21:07:33.744022
2018-03-22T04:15:50
2018-03-22T04:15:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,612
py
''' Copyright (C) 2012-2018 Diego Torres Milano Created on Dec 1, 2012 Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. @author: Diego Torres Milano ''' from __future__ import print_function import re import sys from _warnings import warn __version__ = '14.0.0' DEBUG = False class Dumpsys: FRAMESTATS = 'framestats' GFXINFO = 'gfxinfo' MEMINFO = 'meminfo' RESET = 'reset' ACTIVITIES = 'activities' TOTAL = 'total' VIEW_ROOT_IMPL = 'viewRootImpl' VIEWS = 'views' FLAGS = 0 INTENDED_VSYNC = 1 FRAME_COMPLETED = 13 def __init__(self, adbclient, subcommand, *args): self.nativeHeap = -1 self.dalvikHeap = -1 self.total = 0 self.views = -1 self.activities = -1 self.appContexts = -1 self.viewRootImpl = -1 self.gfxProfileData = [] self.framestats = [] if args: args_str = ' '.join(args) else: args_str = '' if adbclient: cmd = 'dumpsys ' + subcommand + (' ' + args_str if args_str else '') self.parse(adbclient.shell(cmd), subcommand, *args) else: warn('No adbclient specified') @staticmethod def listSubCommands(adbclient): return Dumpsys(adbclient, '-l') @staticmethod def meminfo(adbclient, args=None): return Dumpsys(adbclient, Dumpsys.MEMINFO, args) def get(self, name): return getattr(self, name) def parse(self, out, subcommand, *args): if subcommand == Dumpsys.MEMINFO: self.parseMeminfo(out) elif subcommand == Dumpsys.GFXINFO: if Dumpsys.RESET in args: # Actually, reset does not need to parse anything pass elif Dumpsys.FRAMESTATS in args: self.parseGfxinfoFramestats(out) else: self.parseGfxinfo(out) elif '-l': # list dumpsys subcommands return out else: pass def parseMeminfo(self, out): m = re.search('Native Heap[ \t]*(\d+)', out, re.MULTILINE) if m: self.nativeHeap = int(m.group(1)) m = re.search('Dalvik Heap[ \t]*(\d+)', out, re.MULTILINE) if m: self.dalvikHeap = int(m.group(1)) m = re.search('Views:[ \t]*(\d+)', out, re.MULTILINE) if m: self.views = int(m.group(1)) m = re.search('Activities:[ \t]*(\d+)', out, re.MULTILINE) if m: self.activities = int(m.group(1)) m = re.search('AppContexts:[ \t]*(\d+)', out, re.MULTILINE) if m: self.appContexts = int(m.group(1)) m = re.search('ViewRootImpl:[ \t]*(\d+)', out, re.MULTILINE) if m: self.viewRootImpl = int(m.group(1)) m = re.search('TOTAL[ \t]*(\d+)', out, re.MULTILINE) if m: self.total = int(m.group(1)) else: raise RuntimeError('Cannot find TOTAL in "' + out + '"') def parseGfxinfo(self, out): pass def parseGfxinfoFramestats(self, out): pd = '---PROFILEDATA---' l = re.findall(r'%s.*?%s' % (pd, pd), out, re.DOTALL) if l: s = '' for e in l: if not e: continue sl = e.splitlines() for s in sl: if s == pd: continue pda = s.split(',') if pda[Dumpsys.FLAGS] == 'Flags': if pda[Dumpsys.INTENDED_VSYNC] != 'IntendedVsync' and pda[ Dumpsys.FRAME_COMPLETED] != 'FrameCompleted': raise RuntimeError('Unsupported gfxinfo version') continue if pda[Dumpsys.FLAGS] == '0': # Only keep lines with Flags=0 # If this is non-zero the row should be ignored, as the frame has been determined as being an # outlier from normal performance, where it is expected that layout & draw take longer than # 16ms. # See https://developer.android.com/training/testing/performance.html#timing-info for details # on format if DEBUG: print('pda={}'.format(pda), file=sys.stderr) self.gfxProfileData.append(pda[:-1]) # All done! The total time spent working on this frame can be computed by doing # FRAME_COMPLETED - INTENDED_VSYNC. self.framestats.append( (int(pda[Dumpsys.FRAME_COMPLETED]) - int(pda[Dumpsys.INTENDED_VSYNC])) / 10 ** 6) else: raise RuntimeError('No profile data found') @staticmethod def gfxinfo(adbclient, *args): return Dumpsys(adbclient, Dumpsys.GFXINFO, *args) @staticmethod def resetGfxinfo(adbclient, pkg): return Dumpsys(adbclient, Dumpsys.GFXINFO, pkg, Dumpsys.RESET)
1e8d16b806a47a308758f7e5980e7257ffc52afe
a8c0867109974ff7586597fe2c58521277ab9d4d
/LC645.py
199b710d2450fe19fc854e94ce08adbfb1a3b352
[]
no_license
Qiao-Liang/LeetCode
1491b01d2ddf11495fbc23a65bb6ecb74ac1cee2
dbdb227e12f329e4ca064b338f1fbdca42f3a848
refs/heads/master
2023-05-06T15:00:58.939626
2021-04-21T06:30:33
2021-04-21T06:30:33
82,885,950
0
0
null
null
null
null
UTF-8
Python
false
false
1,222
py
class Solution(object): def findErrorNums(self, nums): """ :type nums: List[int] :rtype: List[int] """ xor = xor0 = xor1 = 0 for num in range(1, len(nums) + 1): xor ^= num for num in nums: xor ^= num rightmost_bit = xor & -xor for num in range(1, len(nums) + 1): if num & rightmost_bit: xor1 ^= num else: xor0 ^= num for num in nums: if num & rightmost_bit: xor1 ^= num else: xor0 ^= num for num in nums: if num == xor0: return [xor0, xor1] return [xor1, xor0] # if not nums: # return None # stat = [0] * (len(nums) + 1) # result = [0, 0] # for n in nums: # stat[n] += 1 # for idx in range(1, len(stat)): # if stat[idx] == 0: # result[1] = idx # if stat[idx] == 2: # result[0] = idx # return result sol = Solution() nums = [1,2,2,4] # nums = [1,3,3] # nums = [8,7,3,5,3,6,1,4] print(sol.findErrorNums(nums))
70ba21f2461cde284f5558daadde2b7a79b1ce76
781e2692049e87a4256320c76e82a19be257a05d
/assignments/python/wc/src/442.py
0e9c48707a834d8dbb3976c1a62d17af127fe5a1
[]
no_license
itsolutionscorp/AutoStyle-Clustering
54bde86fe6dbad35b568b38cfcb14c5ffaab51b0
be0e2f635a7558f56c61bc0b36c6146b01d1e6e6
refs/heads/master
2020-12-11T07:27:19.291038
2016-03-16T03:18:00
2016-03-16T03:18:42
59,454,921
4
0
null
2016-05-23T05:40:56
2016-05-23T05:40:56
null
UTF-8
Python
false
false
341
py
""" wordcount """ def word_count(text): """ Return a dictionary of words and their word counds :param text: :return: """ words = {} text = ' '.join(text.split()) for word in text.split(" "): if word in words: words[word] += 1 else: words[word] = 1 return words
b16e3e2cc0d11fee303d0c099065faad2ac767bd
9e549ee54faa8b037f90eac8ecb36f853e460e5e
/venv/lib/python3.6/site-packages/wtforms/ext/django/templatetags/wtforms.py
33a60e3feffb231cb81bf5a196b76d008f86ba12
[ "MIT" ]
permissive
aitoehigie/britecore_flask
e8df68e71dd0eac980a7de8c0f20b5a5a16979fe
eef1873dbe6b2cc21f770bc6dec783007ae4493b
refs/heads/master
2022-12-09T22:07:45.930238
2019-05-15T04:10:37
2019-05-15T04:10:37
177,354,667
0
0
MIT
2022-12-08T04:54:09
2019-03-24T00:38:20
Python
UTF-8
Python
false
false
2,878
py
""" Template tags for easy WTForms access in Django templates. """ from __future__ import unicode_literals import re from django import template from django.conf import settings from django.template import Variable from ....compat import iteritems register = template.Library() class FormFieldNode(template.Node): def __init__(self, field_var, html_attrs): self.field_var = field_var self.html_attrs = html_attrs def render(self, context): try: if "." in self.field_var: base, field_name = self.field_var.rsplit(".", 1) field = getattr(Variable(base).resolve(context), field_name) else: field = context[self.field_var] except (template.VariableDoesNotExist, KeyError, AttributeError): return settings.TEMPLATE_STRING_IF_INVALID h_attrs = {} for k, v in iteritems(self.html_attrs): try: h_attrs[k] = v.resolve(context) except template.VariableDoesNotExist: h_attrs[k] = settings.TEMPLATE_STRING_IF_INVALID return field(**h_attrs) @register.tag(name="form_field") def do_form_field(parser, token): """ Render a WTForms form field allowing optional HTML attributes. Invocation looks like this: {% form_field form.username class="big_text" onclick="alert('hello')" %} where form.username is the path to the field value we want. Any number of key="value" arguments are supported. Unquoted values are resolved as template variables. """ parts = token.contents.split(" ", 2) if len(parts) < 2: error_text = '%r tag must have the form field name as the first value, followed by optional key="value" attributes.' raise template.TemplateSyntaxError(error_text % parts[0]) html_attrs = {} if len(parts) == 3: raw_args = list(args_split(parts[2])) if (len(raw_args) % 2) != 0: raise template.TemplateSyntaxError( "%r tag received the incorrect number of key=value arguments." % parts[0] ) for x in range(0, len(raw_args), 2): html_attrs[str(raw_args[x])] = Variable(raw_args[x + 1]) return FormFieldNode(parts[1], html_attrs) args_split_re = re.compile( r"""("(?:[^"\\]*(?:\\.[^"\\]*)*)"|'(?:[^'\\]*(?:\\.[^'\\]*)*)'|[^\s=]+)""" ) def args_split(text): """ Split space-separated key=value arguments. Keeps quoted strings intact. """ for bit in args_split_re.finditer(text): bit = bit.group(0) if bit[0] == '"' and bit[-1] == '"': yield '"' + bit[1:-1].replace('\\"', '"').replace("\\\\", "\\") + '"' elif bit[0] == "'" and bit[-1] == "'": yield "'" + bit[1:-1].replace("\\'", "'").replace("\\\\", "\\") + "'" else: yield bit
6d306b1850726a9a38b7a78a8b1bdffe4758ef5c
b6dd7ffc68957f381ae27b9e2a324f555793f238
/part-1-basics/ch_10/write_message.py
ac1958c6899a46aaa6a517519f733af594560396
[]
no_license
lopezjronald/Python-Crash-Course
0a1100a1888238053f4865f8987cbc023d159d38
b6add3fc70b0d09b4b5dab9b06a02be2ae94b9da
refs/heads/master
2022-12-26T21:31:37.286430
2020-09-30T04:12:22
2020-09-30T04:12:22
298,722,235
0
0
null
null
null
null
UTF-8
Python
false
false
540
py
filename = 'guest.txt' # with open(filename, 'w') as file_object: # file_object.write("Guest List\n") # with open(filename, 'a') as file_object: # response = True # while response: # file_object.write(input("Please enter the name of your guest: ")) # file_object.write('\n') # continue_app = input("Continue? ('q' to quit): ") # if continue_app.lower() == 'q': # response = False with open('guest.txt') as file_object: for content in file_object: print(content.strip())
87baa53650db2e62d3ac7b05f529fe8fc7792281
ec8fef96af2a6b6610d298637f05bcdfe67cba2b
/long_range_compare/multicut_solvers.py
74311cc71aac426c617f2c912f4507dab3e459ec
[]
no_license
abailoni/longRangeAgglo
8b98aca75b17d177cb5e408460f95ff20f411aeb
260b452e106125722ae3824755584ce7bfd5b81c
refs/heads/master
2021-06-25T14:14:57.150233
2020-11-06T11:14:52
2020-11-06T11:14:52
150,707,062
0
0
null
null
null
null
UTF-8
Python
false
false
5,522
py
import time import numpy as np import sys # ------------------- # MULTICUT SOLVERS: # ------------------- def solve_multicut(graph, edge_costs, p=None, solver_type="exact_solver", proposal_generator_type='WS', fusion_moves_kwargs=None, proposal_gener_WS_kwargs=None, proposal_gener_HC_kwargs=None, KL_kwargs=None, HC_kwargs=None): """ Accepted options: :param solver_type: exact_solver, KL, HC, HC-KL, HC-KL-fusionMoves :param proposal_generator_type: WS, HC """ if fusion_moves_kwargs is None: fusion_moves_kwargs = {'numberOfIterations': 100, # Max number of iterations 'stopIfNoImprovement': 10, # If no improvements, I stop earlier 'numberOfThreads': 1 # Parallel solutions of the fusionMove } if proposal_gener_WS_kwargs is None: proposal_gener_WS_kwargs = {'sigma': 2.0, # Amount of noise added 'numberOfSeeds': 0.009, # Fractions of nodes that are randomly selected as seeds 'seedingStrategie': "SEED_FROM_NEGATIVE" } if proposal_gener_HC_kwargs is None: proposal_gener_HC_kwargs = {'sigma':1.5, 'weightStopCond':0.0, 'nodeNumStopCond':-1.0 } if HC_kwargs is None: HC_kwargs = {'weightStopCond': 0.0, # Stop aggl. when this weight is reached 'nodeNumStopCond': -1.0, # Stop aggl. when this nb. of nodes is found 'visitNth': 100 # How often to print } if KL_kwargs is None: KL_kwargs = {'numberOfInnerIterations': sys.maxsize, 'numberOfOuterIterations': 100, 'epsilon': 1e-6 } # Costs to the power of p: if p is None or p==1: p = 1 exp_costs = edge_costs.copy() else: neg_weights = edge_costs < 0. exp_costs = np.abs(edge_costs)**p exp_costs[neg_weights] *= -1 mc_obj = graph.MulticutObjective(graph=graph, weights=exp_costs) tick = time.time() if solver_type == "exact_solver": log_visitor = mc_obj.loggingVisitor(verbose=True) solverFactory = mc_obj.multicutIlpFactory() solver = solverFactory.create(mc_obj) final_node_labels = solver.optimize(visitor=log_visitor) elif solver_type == "KL": log_visitor = mc_obj.loggingVisitor(verbose=True) solverFactory = mc_obj.kernighanLinFactory(**KL_kwargs) solver = solverFactory.create(mc_obj) final_node_labels = solver.optimize(visitor=log_visitor) elif solver_type == "HC": log_visitor = mc_obj.loggingVisitor(verbose=True, visitNth=100) solverFactory = mc_obj.greedyAdditiveFactory(**HC_kwargs) solver = solverFactory.create(mc_obj) final_node_labels = solver.optimize(visitor=log_visitor) elif solver_type == "HC-KL": log_visitor = mc_obj.loggingVisitor(verbose=False) solverFactory = mc_obj.greedyAdditiveFactory(**HC_kwargs) solver = solverFactory.create(mc_obj) node_labels = solver.optimize(visitor=log_visitor) # 2. Use a second better warm-up solver to get a better solution: log_visitor = mc_obj.loggingVisitor(verbose=True) solverFactory = mc_obj.kernighanLinFactory(**KL_kwargs) solver = solverFactory.create(mc_obj) final_node_labels = solver.optimize(visitor=log_visitor, nodeLabels=node_labels) elif solver_type == "HC-KL-fusionMoves": log_visitor = mc_obj.loggingVisitor(verbose=False) # 1. Initialize a warm-up solver and run optimization solverFactory = mc_obj.greedyAdditiveFactory(**HC_kwargs) solver = solverFactory.create(mc_obj) node_labels = solver.optimize(visitor=log_visitor) # 2. Use a second better warm-up solver to get a better solution: log_visitor = mc_obj.loggingVisitor(verbose=True) solverFactory = mc_obj.kernighanLinFactory(**KL_kwargs) solver = solverFactory.create(mc_obj) new_node_labels = solver.optimize(visitor=log_visitor, nodeLabels=node_labels) # 4. Run the funsionMuves solver if proposal_generator_type == "WS": pgen = mc_obj.watershedCcProposals(**proposal_gener_WS_kwargs) elif proposal_generator_type == "HC": pgen = mc_obj.greedyAdditiveCcProposals(**proposal_gener_HC_kwargs) else: raise ValueError("Passed type of proposal generator is not implemented") # fsMoveSett = mc_obj.fusionMoveSettings(mc_obj.cgcFactory(doCutPhase=True, doGlueAndCutPhase=True, mincutFactory=None, # multicutFactory=None, # doBetterCutPhase=False, nodeNumStopCond=0.1, sizeRegularizer=1.0)) solverFactory = mc_obj.ccFusionMoveBasedFactory(proposalGenerator=pgen, **fusion_moves_kwargs) solver = solverFactory.create(mc_obj) final_node_labels = solver.optimize(visitor=log_visitor, nodeLabels=new_node_labels) else: raise ValueError("Passed type of solver is not implemented") tock = time.time() final_edge_labels = graph.nodesLabelsToEdgeLabels(final_node_labels) energy = (edge_costs * final_edge_labels).sum() return energy, final_node_labels, final_edge_labels, log_visitor, tock-tick
d07b700b026672f3fe65d2438f6c08a22556f2df
34474048ec5c4850623cf0fea993b43de76fada4
/Tests/unittest/code_gen/tac_o1/local_chars.tac
e00797894280d102fd4d8b3938dc5cdb5c77ad11
[]
no_license
imsure/C--
69a80e152936e31b14319ab16c2317d2cacc9165
9991e7135d6ebc8f6f08f46f37b82bfe353ec17f
refs/heads/master
2021-01-13T02:04:07.295401
2015-05-01T01:26:07
2015-05-01T01:26:07
30,732,455
0
0
null
null
null
null
UTF-8
Python
false
false
312
tac
main: Enter main 16 x = 'A' y = 'B' z = 'C' Param x Call print_int 1 _tstr0 = "\n" Param _tstr0 Call print_string 1 Param y Call print_int 1 _tstr1 = "\n" Param _tstr1 Call print_string 1 Param z Call print_int 1 _tstr2 = "\n" Param _tstr2 Call print_string 1 Return
1f9a65ac787ca5726e2ee5f3e366eecd9624af55
3eb22fd5a85676d928cd8b3cfbd69f9c9f70429a
/torch/fx/experimental/accelerator_partitioner.py
c16ba8c097957043b65e57185fdee04c86c3bd01
[ "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "BSL-1.0", "Apache-2.0", "BSD-2-Clause" ]
permissive
SanBingYouYong/pytorch
b7f03e3c8dbb5e66b6a7218f7d81d893f5cfa8f6
469f0e42d6e2b3cd8c78b224b97d45be2dc7d0ee
refs/heads/master
2023-05-30T20:53:59.389479
2021-06-16T01:18:33
2021-06-16T01:19:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
43,635
py
import operator from typing import Dict, List, Set, NamedTuple, Tuple import torch from torch.fx.experimental.graph_manipulation import get_size_of_all_nodes from torch.fx.experimental.partitioner_utils import ( Partition, Device, PartitionerConfig, get_partition_to_latency_mapping, get_latency_of_partitioned_graph, NodeLatency, get_extra_size_of, PartitionMode, ) from torch.fx.graph_module import GraphModule from torch.fx.node import Node, map_arg from torch.fx.passes.split_module import split_module class DAGNode: """DAGNode class maintains useful information for a partition (submodule), and its input submodules and output submodules. """ def __init__( self, submodule_node: Node, input_nodes: List[Node], output_nodes: List[Node], logical_device_ids: List[int], size_bytes: int, ) -> None: self.submodule_node: Node = submodule_node self.input_nodes: List[Node] = input_nodes self.output_nodes: List[Node] = output_nodes self.logical_device_ids: List[int] = logical_device_ids self.size_bytes = size_bytes def __str__(self) -> str: return str(self.submodule_node) class DAG: """DAG class contains all the DAG nodes""" def __init__(self) -> None: self.nodes: List[DAGNode] = [] def create_node( self, submodule_node: Node, input_nodes: List[Node], output_nodes: List[Node], logical_devices: List[int], size_bytes: int, ) -> None: node = DAGNode( submodule_node, input_nodes, output_nodes, logical_devices, size_bytes ) self.nodes.append(node) class PartitionResult(NamedTuple): """NameTuple used for returning DAG and a new fx module""" dag: DAG module_with_submodules: GraphModule """Followings are some helper functions for partition manipulation""" def reset_partition_device(partitions): for partition in partitions: partition.logical_device_ids = [] def combine_two_partitions( partition_0: Partition, partition_1: Partition, partitions: List[Partition] ) -> None: """Given a list of partitions and its two partitions, combine these two partitions into a new one appending to the partitions and remove the previous two partitions from the list of partitions """ partition = Partition(len(partitions)) partition.nodes = partition_0.nodes.union(partition_1.nodes) partition.recalculate_mem_size() partitions.append(partition) partitions.remove(partition_0) partitions.remove(partition_1) reorganize_partitions(partitions) return def set_parents_and_children(partitions: List[Partition]) -> None: """Given a list of partitions, mark parents and children for each partition""" # Go through all nodes in a partition. # If a node's user is in other partition, # then the other partition is this partition's children. # This partition is the other partition's parent for partition in partitions: partition.children = set() partition.parents = set() for partition in partitions: for node in partition.nodes: # For each node in the current partition, find its users users = node.users for n in users: # Find which the partition the user node belongs to. # Note that if the node itself is also belongs to that partition, # that partition is not the child of the current partition for p in partitions: if p != partition and n in p.nodes and node not in p.nodes: partition.children.add(p) p.parents.add(partition) return def reorganize_partitions(partitions: List[Partition]) -> None: """Given a list of partitions, reorganzie partiton id, its parents and its children for each partition """ # Rearrange partition ids for i, partition in enumerate(partitions): partition.partition_id = i set_parents_and_children(partitions) return def get_bfs_level_partition(partitions: List[Partition]) -> None: """Given a list of partitions, mark the bfs level for each partition """ current_level: Set[Partition] = set() visited: Set[Partition] = set() for partition in partitions: # If a partition has no parent, it should be in root level if len(partition.parents) == 0: current_level.add(partition) next_level: Set[Partition] = set() level = 0 # bfs while current_level: partition = current_level.pop() partition.bfs_level = level visited.add(partition) children = partition.children for child in children: if child not in next_level: next_level.add(child) if not current_level: current_level = next_level.copy() next_level = set() level += 1 return def get_node_to_partition_mapping(partitions: List[Partition]) -> Dict[Node, int]: """Given a list of partitions,return node to partition mapping""" node_to_partition: Dict[Node, int] = {} for partition in partitions: for node in partition.nodes: node_to_partition[node] = partition.partition_id return node_to_partition def get_device_to_partitions_mapping( partitions: List[Partition], devices: List[Device] ): """Given a list of partitions and a list of devices, map each partition into a device. """ def calculate_extra_mem_bytes_needed_for( partition: Partition, partitions: List[Partition] ): all_nodes: Set[Node] = set() for p in partitions: all_nodes = all_nodes.union(p.nodes) if len(all_nodes) == 0: return partition.used_mem_bytes all_nodes = all_nodes.union(partition.nodes) extra_size_needed = 0 for node in partition.nodes: extra_size_needed += get_extra_size_of(node, all_nodes) return extra_size_needed def find_device_for(partition: Partition): """Given a partition, find a logical device for the partition The algorithm is to put the partition on the device that has just enough mem left for that partition. device_to_left_mem_bytes is a dictionary between device and its left mem size sorted by its left mem size """ for d in device_to_left_mem_bytes: extra_size_needed = calculate_extra_mem_bytes_needed_for( partition, device_to_partitions[d] ) if extra_size_needed < device_to_left_mem_bytes[d]: device_to_partitions[d].append(partition) partition.logical_device_ids.append(d.logical_id) device_to_left_mem_bytes[d] -= extra_size_needed return True return False # logical id to device logical_id_to_device: Dict[int, Device] = {} # Track partitions on device device_to_partitions: Dict[Device, List[Partition]] = {} # Track device's left mem size device_to_left_mem_bytes: Dict[Device, int] = {} for d in devices: logical_id_to_device[d.logical_id] = d device_to_partitions[d] = [] device_to_left_mem_bytes[d] = d.available_mem_bytes # Deal with the partitions that already have a device # and also collect all partitions without a device (no_device_partitions) no_device_partitions = [] for partition in partitions: if partition.logical_device_ids != []: logical_id = partition.logical_device_ids[0] device = logical_id_to_device[logical_id] device_to_partitions[device] = [partition] device_to_left_mem_bytes[device] = ( d.available_mem_bytes - partition.used_mem_bytes ) else: no_device_partitions.append(partition) # Find devices for all the partitions without a device found_device = True for partition in no_device_partitions: device_to_left_mem_bytes = { d: left_mem_bytes for d, left_mem_bytes in sorted( device_to_left_mem_bytes.items(), key=lambda item: item[1] ) } found_device = find_device_for(partition) if not found_device: break return found_device def check_dependency(partition): """Given a partition,check if there is a circular dependency on this partition using bfs """ visited: Set[Partition] = set([partition]) queue: List[Partition] = [partition] while queue: p = queue.pop(0) for child in p.children: if child == partition: return True else: if child not in visited: visited.add(child) queue.append(child) return False class Partitioner: """A fx module may not fit into one device. Partitioner class helps partition one fx module into submodules (partitions), so that the submodules can be executed crossing different accelerators. The main function of this class is self.partition_graph. It partitions the fx module based on the scheme specified in partition_config A DAG structure is returned along with a new fx module with submodule nodes. """ def __init__(self) -> None: self.partitions: List[Partition] = [] self.node_to_partition: Dict[Node, int] = {} self.devices: List[Device] = [] def partition_graph( self, fx_module: GraphModule, torch_module: torch.nn.Module, partitioner_config: PartitionerConfig, ) -> PartitionResult: """Given the fx module, torch module and partitioner_config, find the partitions, do the partitions, and then return a DAG and a new fx module with submodule nodes (partitions) """ self.graph_module = fx_module self.torch_module = torch_module self.devices = partitioner_config.devices if len(self.devices) == 0: raise RuntimeError("No devices") # Tag the size in bytes to all nodes in the graph_module. get_size_of_all_nodes(self.graph_module) # Check if there are op nodes in the fx module nodes = self.graph_module.graph.nodes if all(node.op in {"placeholder", "get_attr", "output"} for node in nodes): raise RuntimeError("No Partition since no operations in the module") # Calculate total size of the fx module total_size_of_graph = 0 for node in nodes: if node.op == "output": break total_size_of_graph += node.size_bytes.total_size # Find the device with the max mem size device_with_max_mem = max(self.devices, key=lambda d: d.available_mem_bytes) # AOT based partition if partitioner_config.mode == PartitionMode.aot_based: self.aot_based_partition( partitioner_config.node_to_partition_mapping, partitioner_config.partition_to_logical_device_mapping, ) # Single partition if the whole module can be fit into one device elif total_size_of_graph <= device_with_max_mem.available_mem_bytes: self.find_single_partition(total_size_of_graph) elif total_size_of_graph > sum([d.available_mem_bytes for d in self.devices]): raise RuntimeError("Devices have no enough memory for the module") else: # Sparse nn based partition if partitioner_config.mode == PartitionMode.sparse_nn: available_mem_bytes = self.devices[0].available_mem_bytes if not all( device.available_mem_bytes == available_mem_bytes for device in self.devices ): raise RuntimeError("All devices must have same memory size!") # sparse_nn_partition only support same memory size # TODO: add different size support for sparse_nn_partition self.sparse_nn_partition(available_mem_bytes) # Cost aware partition elif partitioner_config.mode == PartitionMode.cost_aware: self.cost_aware_partition( partitioner_config.transfer_rate_bytes_per_sec, partitioner_config.node_to_latency_mapping, ) # KL based partition elif partitioner_config.mode == PartitionMode.kl_based: self.kl_based_partition( partitioner_config.transfer_rate_bytes_per_sec, partitioner_config.node_to_latency_mapping, ) else: self.size_based_partition() module_with_submodules = self.do_partition() # The DAG contains DAGNodes with info of each partition's input nodes, output nodes # and how partitions are connected. dag = self.dump_dag(module_with_submodules) ret = PartitionResult(dag, module_with_submodules) return ret def find_single_partition(self, total_size_of_graph) -> None: """Fit the whole fx module into one device""" partition_0 = self.create_partition() for node in self.graph_module.graph.nodes: if node.op == "output": break partition_0.nodes.add(node) partition_0.used_mem_bytes = total_size_of_graph partition_0.logical_device_ids = [0] # Get the node to partition mapping self.node_to_partition = get_node_to_partition_mapping(self.partitions) return def size_based_partition(self) -> None: """This method is to partition the fx module based on memory size. It uses greedy approach. The result may not be the best. The basic idea is: Step 1: Find a device which has enough memory to fit the current node, create a empty partition with the size of that device. Then keep adding the following nodes into the partition until the partition is full. Step 2: Repeat Step 1 until no device left Step 3: If some nodes are left, create a partition for each left node (single node partition). and then try to map those partitions into logical devices with enough mem left. """ def find_device_based_on_size(node) -> Device: """Given a node, this function is to find a logical device that could fit the node. """ mem_size_needed = get_extra_size_of(node, set()) device = Device("", -1, -1) for d in self.devices: if ( d not in occupied_devices and d.available_mem_bytes >= mem_size_needed ): device = d break if device.available_mem_bytes < 0: raise RuntimeError(str(node) + "is too large to fit any device") occupied_devices.append(device) return device # Track partition and its left mem size partition_to_left_mem_bytes: Dict[Partition, int] = {} # Track all the devices that have been used occupied_devices: List[Device] = [] partition = self.create_partition() for node in self.graph_module.graph.nodes: if node.op in {"call_module", "call_method", "call_function"}: # Check if there are devices left if len(self.partitions) <= len(self.devices): total_size_of_input_nodes = get_extra_size_of(node, partition.nodes) # Check if the current partition is the very first partition if partition.used_mem_bytes == 0: # Find a device to fit the first node, return available mem size device = find_device_based_on_size(node) occupied_devices.append(device) # Update partition and its left mem size partition_to_left_mem_bytes[ partition ] = device.available_mem_bytes # Update available mem for the current partitio partition.logical_device_ids.append(device.logical_id) else: # The current partition is not the first partition # Check if the current node can fit into current partition if ( partition_to_left_mem_bytes[partition] < total_size_of_input_nodes ): # Check if no device is left if len(self.partitions) == len(self.devices): # No device is left # Put the previous partitions into a list (non_single_node_partitions) non_single_node_partitions = self.partitions[:] # Create the first single node partition for the current node self.create_single_node_partition(node) continue # Some devices are still left # Create a new partition with a mem size that is enough for the current node device = find_device_based_on_size(node) partition = self.create_partition() total_size_of_input_nodes = get_extra_size_of( node, partition.nodes ) partition_to_left_mem_bytes[ partition ] = device.available_mem_bytes partition.logical_device_ids.append(device.logical_id) partition.add_node(node) partition_to_left_mem_bytes[partition] -= total_size_of_input_nodes # Create single node partitions if no device is left else: self.create_single_node_partition(node) reorganize_partitions(self.partitions) # Get the node to partition mapping self.node_to_partition = get_node_to_partition_mapping(self.partitions) # Mapping all partitions into device found_partition_to_device_mapping = get_device_to_partitions_mapping( self.partitions, self.devices ) if not found_partition_to_device_mapping: raise RuntimeError("Cannot Get a Valid Partition to Logical Device Mapping") return def do_partition(self) -> GraphModule: """Return a new fx module with submodule nodes (partitions).""" module_with_submodules = split_module( self.graph_module, self.torch_module, lambda node: self.node_to_partition[node], ) return module_with_submodules def dump_dag(self, module_with_submodules: GraphModule) -> DAG: """Return the dag structure and the new fx module with submodules""" dag = DAG() for node in module_with_submodules.graph.nodes: if node.op == "output": break if node.op in {"placeholder", "get_attr"}: continue if node.target == operator.__getitem__: continue input_nodes: Dict[Node, None] = {} map_arg(node.args, lambda n: input_nodes.setdefault(n)) map_arg(node.kwargs, lambda n: input_nodes.setdefault(n)) # When a node has two or more output nodes, # it outputs its result to 'getitem' nodes. # Those 'getitem' nodes are the output node for this node. # Otherwise, the output node is this node itself. if len(node.users) > 1: output_nodes = list(node.users) else: output_nodes = [node] partition_id = int(node.name.rsplit("_", 1)[-1]) device_ids = self.partitions[partition_id].logical_device_ids size_bytes = self.partitions[partition_id].used_mem_bytes dag.create_node( node, list(input_nodes), output_nodes, device_ids, size_bytes ) return dag def create_partition(self) -> Partition: """Create a partition and append it to self.partitions.""" partition_id = len(self.partitions) partition = Partition(partition_id) self.partitions.append(partition) return partition def create_single_node_partition(self, node): """Create a partition for a single node""" partition = self.create_partition() partition.add_node(node) return def sparse_nn_partition(self, available_mem_bytes: int) -> None: """This method partition a sparse nn module. It is size based partition but different from size_based_partition, it only works when all the devices have same memory size (available_mem_bytes). In the future, devices with different mem sizes will be supported like size_based_partition. It first traverse all the nodes and do the partitions based on the same memory size. If the current partition has no enough memory left for a new op node (call_module, call_method, call_function), a new partition is created. When crossing the boundary between non-embedding nodes and embedding nodes, a new partition is created regardlessly. For example, if the current node is a non-embedding node but the next node is an embedding node, a new partition is created for the next node. After the partition, the partitions are combined as much as possible. The rule is that a non-embedding partition only combines with another non-embedding one. So as the embedding partitions. """ def combine_partitions_based_on_size( partitions: List[Partition], available_mem_bytes: int ) -> None: """Combining small partitions together to keep as less partitions as possible. Here is an example of the algorithm to do this: Assume some partitions, we first sort them based on partiiton used memory size. [(partition_4, 1), (partition_3, 1), (partition_2, 2), (partition_1, 7), (partition_0, 9)] The available memory is 10. step 1: self.find_partition_to_combine_based_on_size() First, mark bfs level for each partition Second, look the smallest partition, partition_4: 10 - 1 = 9 It means any partition has a used memory equal or less than 9 could combine this partition We go from the largest and selection partition_0. Check the bfs level for two partitions, if the level difference is less than 2, it can be combined. step 2: repeat step 1 until no partitions can be combined """ find_combination = True while find_combination: # Sort partitions based on memory size sorted_partitions = sorted(partitions, key=lambda p: p.used_mem_bytes) # Mark bfs level get_bfs_level_partition(self.partitions) find_combination, partitions = find_partition_to_combine_based_on_size( sorted_partitions, available_mem_bytes, partitions ) return def calculate_mem_bytes_needed(p1, p2): """Given two partitions, calculate how many mem bytes are needed if two partitions are combined """ nodes = p1.nodes.union(p2.nodes) mem_bytes_needed = 0 for node in nodes: mem_bytes_needed += get_extra_size_of(node, nodes) return mem_bytes_needed def find_partition_to_combine_based_on_size( sorted_partitions: List[Partition], available_mem_bytes: int, partitions: List[Partition], ) -> Tuple[bool, List[Partition]]: """step 1 in combine_partition_based_on_size()""" find_combination = False smallest_partition = sorted_partitions.pop(0) for p in sorted_partitions[::-1]: if abs(smallest_partition.bfs_level - p.bfs_level) <= 1: # Calculate how many bytes needed if combined mem_bytes_needed = calculate_mem_bytes_needed(p, smallest_partition) if mem_bytes_needed <= available_mem_bytes: combine_two_partitions(p, smallest_partition, self.partitions) partitions.remove(smallest_partition) partitions.remove(p) partitions.append(self.partitions[-1]) find_combination = True break return find_combination, partitions def reset_partition_in_sparse_nn(partition, new_partition=True): """If crossing the boudary between non-embedding nodes and embedding nodes, create a new partition """ if in_embedding_region: embedding_partitions.append(partition) else: non_embedding_partitions.append(partition) if new_partition: partition = self.create_partition() partition.left_mem_bytes = available_mem_bytes return partition return None def is_embedding_node(node: Node) -> bool: """Check if a node is an embedding node""" if node.op == "call_module": submodule = self.graph_module for atom in str(node.target).split("."): if not hasattr(submodule, atom): raise RuntimeError( f"Module {submodule} has no attribute {atom}" ) submodule = getattr(submodule, atom) if "Embedding" in str(submodule): return True return False # Track embedding partitons and non-embedding partitions separately embedding_partitions: List[Partition] = [] non_embedding_partitions: List[Partition] = [] # A Flag to check the boundary in_embedding_region: bool = False partition = self.create_partition() for node in self.graph_module.graph.nodes: if node.op in {"call_module", "call_method", "call_function"}: # Check if crossing the boundary between embedding nodes and non embedding nodes if is_embedding_node(node) != in_embedding_region: # Crossing the boundary # Check if the current partition is an empty partition if partition.used_mem_bytes != 0: # The current partition isn't an empty partition. Create a new one. partition = reset_partition_in_sparse_nn(partition) in_embedding_region = not in_embedding_region total_size_of_input_nodes = get_extra_size_of(node, partition.nodes) if ( total_size_of_input_nodes + partition.used_mem_bytes > available_mem_bytes ): partition = reset_partition_in_sparse_nn(partition) total_size_of_input_nodes = get_extra_size_of(node, partition.nodes) if total_size_of_input_nodes > available_mem_bytes: raise RuntimeError( node.target + "is too large to fit into a device" ) partition.add_node(node) reset_partition_in_sparse_nn(partition, new_partition=False) # Set parents and children for partitions set_parents_and_children(self.partitions) # Combining non-embedding partitions combine_partitions_based_on_size(non_embedding_partitions, available_mem_bytes) # Combining embedding partitions combine_partitions_based_on_size(embedding_partitions, available_mem_bytes) total_size_of_non_embedding_partitions = 0 for partition in non_embedding_partitions: total_size_of_non_embedding_partitions += partition.used_mem_bytes # Check if devices are enough for all partitions if len(embedding_partitions) > len(self.devices): msg = ( "Need " + str(len(embedding_partitions)) + " devices, but only " + str(len(self.devices)) + " provided" ) raise RuntimeError(msg) occupied_devices = [] for i, partition in enumerate(embedding_partitions): # Check if all non-embedding partitions can fit into embedding partition devices if ( total_size_of_non_embedding_partitions + partition.used_mem_bytes > available_mem_bytes ): raise RuntimeError( "partition_" + str(partition.partition_id) + "(embedding partition) and non embedding partitions can not fit into one device" ) else: # Add logical device to the partition partition.logical_device_ids = [self.devices[i].logical_id] occupied_devices.append(self.devices[i].logical_id) # Add logical devices to the non_embedding_partitions for partition in non_embedding_partitions: partition.logical_device_ids = occupied_devices # Get the node to partition mapping self.node_to_partition = get_node_to_partition_mapping(self.partitions) return def cost_aware_partition( self, transfer_rate_bytes_per_sec: float, node_to_latency_mapping: Dict[Node, NodeLatency], ) -> None: """This method is to partition the fx module based on the cost. The cost is the total latency of running the whole fx module. In partitioner_utils.py, the cost model is built. The cost aware partition algorithm is: #1. At every begining, each node is a partition. Then we map all the partitions to the devices and calculate the cost #2. Then try to pre-combine any two of the partitions if the two partitions can be combined. (the bfs level is less than 2 or two partitions are connected and can find partition to device mapping) See if any partition pair could reduce the current cost. Choose the pair that shows the minimum cost and then combine them #3. Repeat #2 until the cost cannot be reduced. """ def try_combining_partitions(p0_index, p1_index, partitions) -> float: """Given two partitions and a list of partitions, combine these two partitions and see what is the cost of the modified partition list """ p0 = partitions[p0_index] p1 = partitions[p1_index] """If two partitions' bfs level are less than 2 or two partitions are connected to each other, then they can be combined """ if ( (abs(p0.bfs_level - p1.bfs_level) <= 1) or (p0 in p1.parents) or p0 in (p1.children) ): combine_two_partitions(p0, p1, partitions) # Check if a circular dependency exists after combining if check_dependency(partitions[-1]): return float("inf") # Check if the modified partition list can be mapped to devices after combination reset_partition_device(partitions) found_deivce = get_device_to_partitions_mapping( partitions, self.devices ) if not found_deivce: return float("inf") # Calculate the new cost partition_to_latency_mapping = get_partition_to_latency_mapping( partitions, node_to_latency_mapping ) cost = get_latency_of_partitioned_graph( partitions, partition_to_latency_mapping, transfer_rate_bytes_per_sec, ) return cost # If two partition can not be combined, the cost is inf return float("inf") def search_combination( transfer_rate_bytes_per_sec, node_to_latency_mapping ) -> bool: """Given transfer rate between partitions and each node's latency, find two partitions to combine so the cost of the partitions can be reduced. The algorithm is : 1. Go through all the partition pairs and see if any pair of partitions can be combined. 2. Calculate the cost after the combination. 3. Select the minimum cost and combine its cooresponding partition pair. """ partition_to_latency_mapping = get_partition_to_latency_mapping( self.partitions, node_to_latency_mapping ) cost = get_latency_of_partitioned_graph( self.partitions, partition_to_latency_mapping, transfer_rate_bytes_per_sec, ) if len(self.partitions) == 1: return False partition_pair: List[int] = [] for i in range(len(self.partitions) - 1): for j in range(i + 1, len(self.partitions)): # Try to combine the partition pair # and see the new cost after combination new_cost = try_combining_partitions(i, j, self.partitions[:]) if new_cost <= cost: partition_pair = [i, j] cost = new_cost reorganize_partitions(self.partitions) # If a partition pair is found, combine them if len(partition_pair) != 0: p0 = self.partitions[partition_pair[0]] p1 = self.partitions[partition_pair[1]] combine_two_partitions(p0, p1, self.partitions) get_bfs_level_partition(self.partitions) reset_partition_device(self.partitions) get_device_to_partitions_mapping(self.partitions, self.devices) return len(partition_pair) != 0 for node in self.graph_module.graph.nodes: if node.op not in {"placeholder", "get_attr", "output"}: self.create_single_node_partition(node) # Set up parent partitions and children partitions for each partition set_parents_and_children(self.partitions) # Get bfs level for each partition get_bfs_level_partition(self.partitions) find_combination = True while find_combination: # Search for a pair partition to generate the minimum new cost, # then combine them find_combination = search_combination( transfer_rate_bytes_per_sec, node_to_latency_mapping ) # Make sure all partitions are set up correctly reorganize_partitions(self.partitions) # Set up node to partition mapping self.node_to_partition = get_node_to_partition_mapping(self.partitions) return def kl_based_partition( self, transfer_rate_bytes_per_sec: float, node_to_latency_mapping: Dict[Node, NodeLatency], ) -> None: """This function is a cost aware partition based on Kernighan-Lin algorithm. First, the graph is partitioned using size_based_partition. Then, each node is swapped with any other node in a different partition, and at the same time, the cost is estimated after the swapping. For example, we have nodes n0, n1, n2, n3 and n4. Using size_based_partition, n0 and n1 are in Partition p0. n2, n3 and n4 in Partition p1. The current cost is esimated. We first tried using n0 to swap with n2 from the other partiton. Then we see that swapping n0 and n2 shows a lower cost than the current cost and it is the minimum among other pairs like (n0, None)(This means moving n0 to Partition without swapping other nodes), (n0, n3) and (n0, n4). We swap n0 and n2 and set the new cost as the current cost. Then We repeat this process for all the other nodes until all swapping pairs are tried. """ def swap_nodes(n0, n1, p0, p1): # Either n0 or n1 could be None # That means we simply move the node # to another partition if n0 is not None: p0.remove_node(n0) p1.add_node(n0) if n1 is not None: p0.add_node(n1) p1.remove_node(n1) def try_swap_nodes( n0, n1, p0, p1, node_to_latency_mapping, transfer_rate_per_sec ): cost = float("inf") swap_nodes(n0, n1, p0, p1) # Reorganize partitions after swapping reorganize_partitions(self.partitions) # Check if there is a circular dependency after swapping if (not check_dependency(p0)) and (not check_dependency(p1)): reset_partition_device(self.partitions) partition_to_latency_mapping = get_partition_to_latency_mapping( self.partitions, node_to_latency_mapping ) # Check if all partitions can be mapped to logical devices after swapping found_device = get_device_to_partitions_mapping( self.partitions, self.devices ) if not found_device: cost = float("inf") else: cost = get_latency_of_partitioned_graph( self.partitions, partition_to_latency_mapping, transfer_rate_bytes_per_sec, ) # Swap back and reset all partitions back to original swap_nodes(n1, n0, p0, p1) reorganize_partitions(self.partitions) reset_partition_device(self.partitions) get_device_to_partitions_mapping(self.partitions, self.devices) return cost def swap_node_to_partition( node, p0, p1, node_to_latency_mapping, transfer_rate_per_sec ): """This function helps to swap one node from partition p0 with all the nodes in another partition p1 """ p1_nodes = list(p1.nodes) + [None] min_cost = float("inf") node_pair: List[Node] = [] for n1 in p1_nodes: # Ignore the node if it is not a op node if n1 is not None and n1.op in {"placeholder", "get_attr"}: continue # Try swapping node in p0 with n1 in p1 cost = try_swap_nodes( node, n1, p0, p1, node_to_latency_mapping, transfer_rate_per_sec ) if cost < min_cost: node_pair = [node, n1] min_cost = cost return cost, node_pair # First use size_base_partition self.size_based_partition() partition_to_latency_mapping = get_partition_to_latency_mapping( self.partitions, node_to_latency_mapping ) # Calculate the cost of the partitions cost = get_latency_of_partitioned_graph( self.partitions, partition_to_latency_mapping, transfer_rate_bytes_per_sec ) # Keep tracking the node pair that shows the better cost node_pair: List[Node] = [] # Keep tracking the partition pair of node pair partition_pair: List[Partition] = [] # Collect all the op nodes from the graph op_nodes = [] for n in self.graph_module.graph.nodes: if n.op not in {"placeholder", "get_attr", "output"}: op_nodes.append(n) for node in op_nodes: # Find which partition the current node belongs p0_index = self.node_to_partition[node] p0 = self.partitions[p0_index] # Go through all the other partitions to swap # with other nodes from those partitions for p1_index, _ in enumerate(self.partitions): if p0_index != p1_index: p1 = self.partitions[p1_index] new_cost, new_node_pair = swap_node_to_partition( node, p0, p1, node_to_latency_mapping, transfer_rate_bytes_per_sec, ) # Update the cost # Track the swapped node pair and their partitions if new_cost < cost: cost = new_cost node_pair = new_node_pair partition_pair = [p0, p1] # Do the swapping after trying all the nodes from a partition if len(node_pair) != 0: swap_nodes( node_pair[0], node_pair[1], partition_pair[0], partition_pair[1] ) reorganize_partitions(self.partitions) get_device_to_partitions_mapping(self.partitions, self.devices) reorganize_partitions(self.partitions) # Mapping the device to the partition get_device_to_partitions_mapping(self.partitions, self.devices) return def aot_based_partition( self, node_to_partition_mapping, partition_to_logical_device_mapping ): """This function helps to rebuild the partitions given the nodes and its corresponding partition id """ partition_id_to_partition_mapping: Dict[int, Partition] = {} self.node_to_partition = node_to_partition_mapping for node in self.node_to_partition: partition_id = self.node_to_partition[node] # If the requested partition has not been created, create the partition if partition_id not in partition_id_to_partition_mapping: partition = Partition(partition_id) self.partitions.append(partition) partition_id_to_partition_mapping[partition_id] = partition partition.logical_device_ids = partition_to_logical_device_mapping[ partition_id ] else: partition = partition_id_to_partition_mapping[ self.node_to_partition[node] ] # Add the current node into the partition partition.add_node(node)
7f91b5fa338e5d6f010bd2a91a2b4428dc2e61f6
c3db4c42360c47471635a97568bfc9c21bc14c06
/pdfmerge/migrations/0002_auto_20190616_1800.py
8708c2ce97d9ded4162bf6eb11e98c10d8063689
[ "MIT" ]
permissive
rupin/pdfmerger
3ede9aa9f1f374eba9b1ea2c33b6920403a8f4ad
fee19523e88362d215f1a29cdab0d140f4c9385c
refs/heads/master
2020-04-07T20:37:56.821730
2019-07-18T16:58:01
2019-07-18T16:58:01
158,696,989
0
0
null
null
null
null
UTF-8
Python
false
false
2,440
py
# Generated by Django 2.1.3 on 2019-06-16 12:30 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('pdfmerge', '0001_initial'), ] operations = [ migrations.AddField( model_name='formfield', name='field_page_number', field=models.IntegerField(default=0), ), migrations.AddField( model_name='formfield', name='field_type', field=models.IntegerField(default=0), ), migrations.AddField( model_name='formfield', name='field_x', field=models.DecimalField(decimal_places=2, default=0, max_digits=6), ), migrations.AddField( model_name='formfield', name='field_x_increment', field=models.DecimalField(decimal_places=2, default=0, max_digits=6), ), migrations.AddField( model_name='formfield', name='field_y', field=models.DecimalField(decimal_places=2, default=0, max_digits=6), ), migrations.AddField( model_name='formfield', name='fk_pdf_id', field=models.ForeignKey(default=0, on_delete=django.db.models.deletion.CASCADE, to='pdfmerge.PDFForm'), ), migrations.AddField( model_name='pdfform', name='file_path', field=models.FileField(default='', upload_to=''), ), migrations.AddField( model_name='pdfform', name='pdf_name', field=models.CharField(default='', max_length=100), ), migrations.AddField( model_name='pdfform', name='pdf_type', field=models.IntegerField(default=0), ), migrations.AddField( model_name='userdata', name='field_text', field=models.CharField(default='', max_length=200), ), migrations.AddField( model_name='userdata', name='field_type', field=models.IntegerField(default=0), ), migrations.AddField( model_name='userdata', name='fk_user_id', field=models.ForeignKey(default=0, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL), ), ]
3d6e519d8173a542b6493ac848758d22a09e11a6
c513008cacf5592e645e7da3652d90d12a11a988
/program/niuke-python/Sprial_2.py
3a59db5855032d2ff2e365c91cdbded357e65f20
[]
no_license
PiKaChu-R/code-learn
f17cb5ad95d4e8b698320d23e472eb1687576bdc
b94814ac3c72da4c840758569005b7ac6589586a
refs/heads/master
2020-07-01T02:42:40.235753
2019-09-17T13:06:50
2019-09-17T13:06:50
201,021,677
0
0
null
null
null
null
UTF-8
Python
false
false
2,116
py
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' @File : Sprial_2.py @Time : 2019/04/22 17:09:47 @Author : R. @Version : 2.0 @Contact : [email protected] @Desc : None ''' ''' Sprial.py:可实现方法 ''' # here put the import lib import itertools def spiral(init): status = itertools.cycle(['right', 'down', 'left', 'up']) # 用于状态周期性的切换 movemap = { 'right': (1, 0), 'down': (0, 1), 'left': (-1, 0), 'up': (0, -1), } # 初始化二维数组 position_map = dict.fromkeys( [(x, y) for x in range(init) for y in range(init)]) # 初始化当前位置以及当前方向 positon = (0, 0) new_status = next(status) for i in range(4*init+1, init * (init+4) + 1): old_positon = positon # print(list( zip(positon, movemap[new_status]))) # print('22') # print(list(map(sum, zip(positon, movemap[new_status])))) # 根据状态进行移动 positon = tuple(map(sum, zip(positon, movemap[new_status]))) # 如果超过范围或者碰到已经有值的位置则切换方向 if (positon not in position_map) or (position_map[positon]): new_status = next(status) positon = tuple(map(sum, zip(old_positon, movemap[new_status]))) position_map[old_positon] = i # 构造输出信息 print("When:init = {}".format(init)) # 打印第一行 for i in range(1, init+1): if i < init: print("{}".format(i), end='\t') else: print("{}".format(i)) # 构造中心螺旋结构 for i in range(init): print("{}".format(4 * init - i), end='\t') for j in range(init): print((str(position_map[(j, i)])), end='\t') print("{}".format(i + init + 1)) # 添加最后一行 for i in range(init*3, init*2, -1): # 打印第一行 print("{}".format(i), end='\t') if i == init: print("{}".format(i)) if __name__ == "__main__": # 参数为init值 spiral(3)
672a44ccb8cf352f213782f10b1bd23f6a7814e5
c2e1b17001357f2c13f6b8287e2b6ee0956c955b
/sweetpea/metrics.py
18f7356dec88fa61c916c2db35377da7329030b3
[ "MIT" ]
permissive
musslick/sweetpea-py
e0c9fec35c571fbf846808cbdeec58f68c405d4c
b0d9769025022936d57d71a501c9ab5f51b4a4ef
refs/heads/master
2023-03-21T01:50:51.045650
2021-03-24T19:37:18
2021-03-24T19:37:18
293,494,087
1
0
null
2020-09-07T10:20:12
2020-09-07T10:20:12
null
UTF-8
Python
false
false
1,005
py
import operator as op from functools import reduce from math import factorial from typing import Dict from sweetpea.blocks import Block from sweetpea.constraints import ExactlyKInARow, AtMostKInARow from sweetpea import __generate_cnf """ Given a block, this function will collect various metrics pertaining to the block and return them in a dictionary. """ def collect_design_metrics(block: Block) -> Dict: backend_request = block.build_backend_request() dimacs_header = __generate_cnf(block).split('\n')[0].split(' ') return { 'full_factor_count': len(block.design), 'crossing_factor_count': len(block.crossing), 'constraint_count': len(block.constraints), 'block_length': block.trials_per_sample(), 'block_length_factorial': factorial(block.trials_per_sample()), 'low_level_request_count': len(backend_request.ll_requests), 'cnf_total_variables': int(dimacs_header[2]), 'cnf_total_clauses': int(dimacs_header[3]) }
61e3b909ab1ca70f4077a1f193cd2795edb13b58
7d2f933ed3c54e128ecaec3a771817c4260a8458
/venv/Lib/site-packages/pandas/tests/indexing/multiindex/test_slice.py
4bb71a3f58da28d68cb9bb93aa526aeaf087d7eb
[]
no_license
danielmoreira12/BAProject
c61dfb1d0521eb5a28eef9531a00e744bfb0e26a
859f588305d826a35cc8f7d64c432f54a0a2e031
refs/heads/master
2021-01-02T07:17:39.267278
2020-02-25T22:27:43
2020-02-25T22:27:43
239,541,177
0
0
null
null
null
null
UTF-8
Python
false
false
24,866
py
import numpy as np import pandas as pd import pandas._testing as tm import pytest from pandas import DataFrame, Index, MultiIndex, Series, Timestamp from pandas.core.indexing import _non_reducing_slice from pandas.errors import UnsortedIndexError from pandas.tests.indexing.common import _mklbl class TestMultiIndexSlicers: def test_per_axis_per_level_getitem(self): # GH6134 # example test case ix = MultiIndex.from_product( [_mklbl("A", 5), _mklbl("B", 7), _mklbl("C", 4), _mklbl("D", 2)] ) df = DataFrame(np.arange(len(ix.to_numpy())), index=ix) result = df.loc[(slice("A1", "A3"), slice(None), ["C1", "C3"]), :] expected = df.loc[ [ tuple([a, b, c, d]) for a, b, c, d in df.index.values if (a == "A1" or a == "A2" or a == "A3") and (c == "C1" or c == "C3") ] ] tm.assert_frame_equal(result, expected) expected = df.loc[ [ tuple([a, b, c, d]) for a, b, c, d in df.index.values if (a == "A1" or a == "A2" or a == "A3") and (c == "C1" or c == "C2" or c == "C3") ] ] result = df.loc[(slice("A1", "A3"), slice(None), slice("C1", "C3")), :] tm.assert_frame_equal(result, expected) # test multi-index slicing with per axis and per index controls index = MultiIndex.from_tuples( [("A", 1), ("A", 2), ("A", 3), ("B", 1)], names=["one", "two"] ) columns = MultiIndex.from_tuples( [("a", "foo"), ("a", "bar"), ("b", "foo"), ("b", "bah")], names=["lvl0", "lvl1"], ) df = DataFrame( np.arange(16, dtype="int64").reshape(4, 4), index=index, columns=columns ) df = df.sort_index(axis=0).sort_index(axis=1) # identity result = df.loc[(slice(None), slice(None)), :] tm.assert_frame_equal(result, df) result = df.loc[(slice(None), slice(None)), (slice(None), slice(None))] tm.assert_frame_equal(result, df) result = df.loc[:, (slice(None), slice(None))] tm.assert_frame_equal(result, df) # index result = df.loc[(slice(None), [1]), :] expected = df.iloc[[0, 3]] tm.assert_frame_equal(result, expected) result = df.loc[(slice(None), 1), :] expected = df.iloc[[0, 3]] tm.assert_frame_equal(result, expected) # columns result = df.loc[:, (slice(None), ["foo"])] expected = df.iloc[:, [1, 3]] tm.assert_frame_equal(result, expected) # both result = df.loc[(slice(None), 1), (slice(None), ["foo"])] expected = df.iloc[[0, 3], [1, 3]] tm.assert_frame_equal(result, expected) result = df.loc["A", "a"] expected = DataFrame( dict(bar=[1, 5, 9], foo=[0, 4, 8]), index=Index([1, 2, 3], name="two"), columns=Index(["bar", "foo"], name="lvl1"), ) tm.assert_frame_equal(result, expected) result = df.loc[(slice(None), [1, 2]), :] expected = df.iloc[[0, 1, 3]] tm.assert_frame_equal(result, expected) # multi-level series s = Series(np.arange(len(ix.to_numpy())), index=ix) result = s.loc["A1":"A3", :, ["C1", "C3"]] expected = s.loc[ [ tuple([a, b, c, d]) for a, b, c, d in s.index.values if (a == "A1" or a == "A2" or a == "A3") and (c == "C1" or c == "C3") ] ] tm.assert_series_equal(result, expected) # boolean indexers result = df.loc[(slice(None), df.loc[:, ("a", "bar")] > 5), :] expected = df.iloc[[2, 3]] tm.assert_frame_equal(result, expected) with pytest.raises(ValueError): df.loc[(slice(None), np.array([True, False])), :] # ambiguous notation # this is interpreted as slicing on both axes (GH #16396) result = df.loc[slice(None), [1]] expected = df.iloc[:, []] tm.assert_frame_equal(result, expected) result = df.loc[(slice(None), [1]), :] expected = df.iloc[[0, 3]] tm.assert_frame_equal(result, expected) # not lexsorted assert df.index.lexsort_depth == 2 df = df.sort_index(level=1, axis=0) assert df.index.lexsort_depth == 0 msg = ( "MultiIndex slicing requires the index to be " r"lexsorted: slicing on levels \[1\], lexsort depth 0" ) with pytest.raises(UnsortedIndexError, match=msg): df.loc[(slice(None), slice("bar")), :] # GH 16734: not sorted, but no real slicing result = df.loc[(slice(None), df.loc[:, ("a", "bar")] > 5), :] tm.assert_frame_equal(result, df.iloc[[1, 3], :]) def test_multiindex_slicers_non_unique(self): # GH 7106 # non-unique mi index support df = ( DataFrame( dict( A=["foo", "foo", "foo", "foo"], B=["a", "a", "a", "a"], C=[1, 2, 1, 3], D=[1, 2, 3, 4], ) ) .set_index(["A", "B", "C"]) .sort_index() ) assert not df.index.is_unique expected = ( DataFrame(dict(A=["foo", "foo"], B=["a", "a"], C=[1, 1], D=[1, 3])) .set_index(["A", "B", "C"]) .sort_index() ) result = df.loc[(slice(None), slice(None), 1), :] tm.assert_frame_equal(result, expected) # this is equivalent of an xs expression result = df.xs(1, level=2, drop_level=False) tm.assert_frame_equal(result, expected) df = ( DataFrame( dict( A=["foo", "foo", "foo", "foo"], B=["a", "a", "a", "a"], C=[1, 2, 1, 2], D=[1, 2, 3, 4], ) ) .set_index(["A", "B", "C"]) .sort_index() ) assert not df.index.is_unique expected = ( DataFrame(dict(A=["foo", "foo"], B=["a", "a"], C=[1, 1], D=[1, 3])) .set_index(["A", "B", "C"]) .sort_index() ) result = df.loc[(slice(None), slice(None), 1), :] assert not result.index.is_unique tm.assert_frame_equal(result, expected) # GH12896 # numpy-implementation dependent bug ints = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 12, 13, 14, 14, 16, 17, 18, 19, 200000, 200000, ] n = len(ints) idx = MultiIndex.from_arrays([["a"] * n, ints]) result = Series([1] * n, index=idx) result = result.sort_index() result = result.loc[(slice(None), slice(100000))] expected = Series([1] * (n - 2), index=idx[:-2]).sort_index() tm.assert_series_equal(result, expected) def test_multiindex_slicers_datetimelike(self): # GH 7429 # buggy/inconsistent behavior when slicing with datetime-like import datetime dates = [ datetime.datetime(2012, 1, 1, 12, 12, 12) + datetime.timedelta(days=i) for i in range(6) ] freq = [1, 2] index = MultiIndex.from_product([dates, freq], names=["date", "frequency"]) df = DataFrame( np.arange(6 * 2 * 4, dtype="int64").reshape(-1, 4), index=index, columns=list("ABCD"), ) # multi-axis slicing idx = pd.IndexSlice expected = df.iloc[[0, 2, 4], [0, 1]] result = df.loc[ ( slice( Timestamp("2012-01-01 12:12:12"), Timestamp("2012-01-03 12:12:12") ), slice(1, 1), ), slice("A", "B"), ] tm.assert_frame_equal(result, expected) result = df.loc[ ( idx[ Timestamp("2012-01-01 12:12:12") : Timestamp("2012-01-03 12:12:12") ], idx[1:1], ), slice("A", "B"), ] tm.assert_frame_equal(result, expected) result = df.loc[ ( slice( Timestamp("2012-01-01 12:12:12"), Timestamp("2012-01-03 12:12:12") ), 1, ), slice("A", "B"), ] tm.assert_frame_equal(result, expected) # with strings result = df.loc[ (slice("2012-01-01 12:12:12", "2012-01-03 12:12:12"), slice(1, 1)), slice("A", "B"), ] tm.assert_frame_equal(result, expected) result = df.loc[ (idx["2012-01-01 12:12:12":"2012-01-03 12:12:12"], 1), idx["A", "B"] ] tm.assert_frame_equal(result, expected) def test_multiindex_slicers_edges(self): # GH 8132 # various edge cases df = DataFrame( { "A": ["A0"] * 5 + ["A1"] * 5 + ["A2"] * 5, "B": ["B0", "B0", "B1", "B1", "B2"] * 3, "DATE": [ "2013-06-11", "2013-07-02", "2013-07-09", "2013-07-30", "2013-08-06", "2013-06-11", "2013-07-02", "2013-07-09", "2013-07-30", "2013-08-06", "2013-09-03", "2013-10-01", "2013-07-09", "2013-08-06", "2013-09-03", ], "VALUES": [22, 35, 14, 9, 4, 40, 18, 4, 2, 5, 1, 2, 3, 4, 2], } ) df["DATE"] = pd.to_datetime(df["DATE"]) df1 = df.set_index(["A", "B", "DATE"]) df1 = df1.sort_index() # A1 - Get all values under "A0" and "A1" result = df1.loc[(slice("A1")), :] expected = df1.iloc[0:10] tm.assert_frame_equal(result, expected) # A2 - Get all values from the start to "A2" result = df1.loc[(slice("A2")), :] expected = df1 tm.assert_frame_equal(result, expected) # A3 - Get all values under "B1" or "B2" result = df1.loc[(slice(None), slice("B1", "B2")), :] expected = df1.iloc[[2, 3, 4, 7, 8, 9, 12, 13, 14]] tm.assert_frame_equal(result, expected) # A4 - Get all values between 2013-07-02 and 2013-07-09 result = df1.loc[(slice(None), slice(None), slice("20130702", "20130709")), :] expected = df1.iloc[[1, 2, 6, 7, 12]] tm.assert_frame_equal(result, expected) # B1 - Get all values in B0 that are also under A0, A1 and A2 result = df1.loc[(slice("A2"), slice("B0")), :] expected = df1.iloc[[0, 1, 5, 6, 10, 11]] tm.assert_frame_equal(result, expected) # B2 - Get all values in B0, B1 and B2 (similar to what #2 is doing for # the As) result = df1.loc[(slice(None), slice("B2")), :] expected = df1 tm.assert_frame_equal(result, expected) # B3 - Get all values from B1 to B2 and up to 2013-08-06 result = df1.loc[(slice(None), slice("B1", "B2"), slice("2013-08-06")), :] expected = df1.iloc[[2, 3, 4, 7, 8, 9, 12, 13]] tm.assert_frame_equal(result, expected) # B4 - Same as A4 but the start of the date slice is not a key. # shows indexing on a partial selection slice result = df1.loc[(slice(None), slice(None), slice("20130701", "20130709")), :] expected = df1.iloc[[1, 2, 6, 7, 12]] tm.assert_frame_equal(result, expected) def test_per_axis_per_level_doc_examples(self): # test index maker idx = pd.IndexSlice # from indexing.rst / advanced index = MultiIndex.from_product( [_mklbl("A", 4), _mklbl("B", 2), _mklbl("C", 4), _mklbl("D", 2)] ) columns = MultiIndex.from_tuples( [("a", "foo"), ("a", "bar"), ("b", "foo"), ("b", "bah")], names=["lvl0", "lvl1"], ) df = DataFrame( np.arange(len(index) * len(columns), dtype="int64").reshape( (len(index), len(columns)) ), index=index, columns=columns, ) result = df.loc[(slice("A1", "A3"), slice(None), ["C1", "C3"]), :] expected = df.loc[ [ tuple([a, b, c, d]) for a, b, c, d in df.index.values if (a == "A1" or a == "A2" or a == "A3") and (c == "C1" or c == "C3") ] ] tm.assert_frame_equal(result, expected) result = df.loc[idx["A1":"A3", :, ["C1", "C3"]], :] tm.assert_frame_equal(result, expected) result = df.loc[(slice(None), slice(None), ["C1", "C3"]), :] expected = df.loc[ [ tuple([a, b, c, d]) for a, b, c, d in df.index.values if (c == "C1" or c == "C3") ] ] tm.assert_frame_equal(result, expected) result = df.loc[idx[:, :, ["C1", "C3"]], :] tm.assert_frame_equal(result, expected) # not sorted with pytest.raises(UnsortedIndexError): df.loc["A1", ("a", slice("foo"))] # GH 16734: not sorted, but no real slicing tm.assert_frame_equal( df.loc["A1", (slice(None), "foo")], df.loc["A1"].iloc[:, [0, 2]] ) df = df.sort_index(axis=1) # slicing df.loc["A1", (slice(None), "foo")] df.loc[(slice(None), slice(None), ["C1", "C3"]), (slice(None), "foo")] # setitem df.loc(axis=0)[:, :, ["C1", "C3"]] = -10 def test_loc_axis_arguments(self): index = MultiIndex.from_product( [_mklbl("A", 4), _mklbl("B", 2), _mklbl("C", 4), _mklbl("D", 2)] ) columns = MultiIndex.from_tuples( [("a", "foo"), ("a", "bar"), ("b", "foo"), ("b", "bah")], names=["lvl0", "lvl1"], ) df = ( DataFrame( np.arange(len(index) * len(columns), dtype="int64").reshape( (len(index), len(columns)) ), index=index, columns=columns, ) .sort_index() .sort_index(axis=1) ) # axis 0 result = df.loc(axis=0)["A1":"A3", :, ["C1", "C3"]] expected = df.loc[ [ tuple([a, b, c, d]) for a, b, c, d in df.index.values if (a == "A1" or a == "A2" or a == "A3") and (c == "C1" or c == "C3") ] ] tm.assert_frame_equal(result, expected) result = df.loc(axis="index")[:, :, ["C1", "C3"]] expected = df.loc[ [ tuple([a, b, c, d]) for a, b, c, d in df.index.values if (c == "C1" or c == "C3") ] ] tm.assert_frame_equal(result, expected) # axis 1 result = df.loc(axis=1)[:, "foo"] expected = df.loc[:, (slice(None), "foo")] tm.assert_frame_equal(result, expected) result = df.loc(axis="columns")[:, "foo"] expected = df.loc[:, (slice(None), "foo")] tm.assert_frame_equal(result, expected) # invalid axis with pytest.raises(ValueError): df.loc(axis=-1)[:, :, ["C1", "C3"]] with pytest.raises(ValueError): df.loc(axis=2)[:, :, ["C1", "C3"]] with pytest.raises(ValueError): df.loc(axis="foo")[:, :, ["C1", "C3"]] def test_loc_axis_single_level_multi_col_indexing_multiindex_col_df(self): # GH29519 df = pd.DataFrame( np.arange(27).reshape(3, 9), columns=pd.MultiIndex.from_product( [["a1", "a2", "a3"], ["b1", "b2", "b3"]] ), ) result = df.loc(axis=1)["a1":"a2"] expected = df.iloc[:, :-3] tm.assert_frame_equal(result, expected) def test_loc_axis_single_level_single_col_indexing_multiindex_col_df(self): # GH29519 df = pd.DataFrame( np.arange(27).reshape(3, 9), columns=pd.MultiIndex.from_product( [["a1", "a2", "a3"], ["b1", "b2", "b3"]] ), ) result = df.loc(axis=1)["a1"] expected = df.iloc[:, :3] expected.columns = ["b1", "b2", "b3"] tm.assert_frame_equal(result, expected) def test_loc_ax_single_level_indexer_simple_df(self): # GH29519 # test single level indexing on single index column data frame df = pd.DataFrame(np.arange(9).reshape(3, 3), columns=["a", "b", "c"]) result = df.loc(axis=1)["a"] expected = pd.Series(np.array([0, 3, 6]), name="a") tm.assert_series_equal(result, expected) def test_per_axis_per_level_setitem(self): # test index maker idx = pd.IndexSlice # test multi-index slicing with per axis and per index controls index = MultiIndex.from_tuples( [("A", 1), ("A", 2), ("A", 3), ("B", 1)], names=["one", "two"] ) columns = MultiIndex.from_tuples( [("a", "foo"), ("a", "bar"), ("b", "foo"), ("b", "bah")], names=["lvl0", "lvl1"], ) df_orig = DataFrame( np.arange(16, dtype="int64").reshape(4, 4), index=index, columns=columns ) df_orig = df_orig.sort_index(axis=0).sort_index(axis=1) # identity df = df_orig.copy() df.loc[(slice(None), slice(None)), :] = 100 expected = df_orig.copy() expected.iloc[:, :] = 100 tm.assert_frame_equal(df, expected) df = df_orig.copy() df.loc(axis=0)[:, :] = 100 expected = df_orig.copy() expected.iloc[:, :] = 100 tm.assert_frame_equal(df, expected) df = df_orig.copy() df.loc[(slice(None), slice(None)), (slice(None), slice(None))] = 100 expected = df_orig.copy() expected.iloc[:, :] = 100 tm.assert_frame_equal(df, expected) df = df_orig.copy() df.loc[:, (slice(None), slice(None))] = 100 expected = df_orig.copy() expected.iloc[:, :] = 100 tm.assert_frame_equal(df, expected) # index df = df_orig.copy() df.loc[(slice(None), [1]), :] = 100 expected = df_orig.copy() expected.iloc[[0, 3]] = 100 tm.assert_frame_equal(df, expected) df = df_orig.copy() df.loc[(slice(None), 1), :] = 100 expected = df_orig.copy() expected.iloc[[0, 3]] = 100 tm.assert_frame_equal(df, expected) df = df_orig.copy() df.loc(axis=0)[:, 1] = 100 expected = df_orig.copy() expected.iloc[[0, 3]] = 100 tm.assert_frame_equal(df, expected) # columns df = df_orig.copy() df.loc[:, (slice(None), ["foo"])] = 100 expected = df_orig.copy() expected.iloc[:, [1, 3]] = 100 tm.assert_frame_equal(df, expected) # both df = df_orig.copy() df.loc[(slice(None), 1), (slice(None), ["foo"])] = 100 expected = df_orig.copy() expected.iloc[[0, 3], [1, 3]] = 100 tm.assert_frame_equal(df, expected) df = df_orig.copy() df.loc[idx[:, 1], idx[:, ["foo"]]] = 100 expected = df_orig.copy() expected.iloc[[0, 3], [1, 3]] = 100 tm.assert_frame_equal(df, expected) df = df_orig.copy() df.loc["A", "a"] = 100 expected = df_orig.copy() expected.iloc[0:3, 0:2] = 100 tm.assert_frame_equal(df, expected) # setting with a list-like df = df_orig.copy() df.loc[(slice(None), 1), (slice(None), ["foo"])] = np.array( [[100, 100], [100, 100]], dtype="int64" ) expected = df_orig.copy() expected.iloc[[0, 3], [1, 3]] = 100 tm.assert_frame_equal(df, expected) # not enough values df = df_orig.copy() with pytest.raises(ValueError): df.loc[(slice(None), 1), (slice(None), ["foo"])] = np.array( [[100], [100, 100]], dtype="int64" ) with pytest.raises(ValueError): df.loc[(slice(None), 1), (slice(None), ["foo"])] = np.array( [100, 100, 100, 100], dtype="int64" ) # with an alignable rhs df = df_orig.copy() df.loc[(slice(None), 1), (slice(None), ["foo"])] = ( df.loc[(slice(None), 1), (slice(None), ["foo"])] * 5 ) expected = df_orig.copy() expected.iloc[[0, 3], [1, 3]] = expected.iloc[[0, 3], [1, 3]] * 5 tm.assert_frame_equal(df, expected) df = df_orig.copy() df.loc[(slice(None), 1), (slice(None), ["foo"])] *= df.loc[ (slice(None), 1), (slice(None), ["foo"]) ] expected = df_orig.copy() expected.iloc[[0, 3], [1, 3]] *= expected.iloc[[0, 3], [1, 3]] tm.assert_frame_equal(df, expected) rhs = df_orig.loc[(slice(None), 1), (slice(None), ["foo"])].copy() rhs.loc[:, ("c", "bah")] = 10 df = df_orig.copy() df.loc[(slice(None), 1), (slice(None), ["foo"])] *= rhs expected = df_orig.copy() expected.iloc[[0, 3], [1, 3]] *= expected.iloc[[0, 3], [1, 3]] tm.assert_frame_equal(df, expected) def test_multiindex_label_slicing_with_negative_step(self): s = Series( np.arange(20), MultiIndex.from_product([list("abcde"), np.arange(4)]) ) SLC = pd.IndexSlice def assert_slices_equivalent(l_slc, i_slc): tm.assert_series_equal(s.loc[l_slc], s.iloc[i_slc]) tm.assert_series_equal(s[l_slc], s.iloc[i_slc]) assert_slices_equivalent(SLC[::-1], SLC[::-1]) assert_slices_equivalent(SLC["d"::-1], SLC[15::-1]) assert_slices_equivalent(SLC[("d",)::-1], SLC[15::-1]) assert_slices_equivalent(SLC[:"d":-1], SLC[:11:-1]) assert_slices_equivalent(SLC[:("d",):-1], SLC[:11:-1]) assert_slices_equivalent(SLC["d":"b":-1], SLC[15:3:-1]) assert_slices_equivalent(SLC[("d",):"b":-1], SLC[15:3:-1]) assert_slices_equivalent(SLC["d":("b",):-1], SLC[15:3:-1]) assert_slices_equivalent(SLC[("d",):("b",):-1], SLC[15:3:-1]) assert_slices_equivalent(SLC["b":"d":-1], SLC[:0]) assert_slices_equivalent(SLC[("c", 2)::-1], SLC[10::-1]) assert_slices_equivalent(SLC[:("c", 2):-1], SLC[:9:-1]) assert_slices_equivalent(SLC[("e", 0):("c", 2):-1], SLC[16:9:-1]) def test_multiindex_slice_first_level(self): # GH 12697 freq = ["a", "b", "c", "d"] idx = MultiIndex.from_product([freq, np.arange(500)]) df = DataFrame(list(range(2000)), index=idx, columns=["Test"]) df_slice = df.loc[pd.IndexSlice[:, 30:70], :] result = df_slice.loc["a"] expected = DataFrame(list(range(30, 71)), columns=["Test"], index=range(30, 71)) tm.assert_frame_equal(result, expected) result = df_slice.loc["d"] expected = DataFrame( list(range(1530, 1571)), columns=["Test"], index=range(30, 71) ) tm.assert_frame_equal(result, expected) def test_int_series_slicing(self, multiindex_year_month_day_dataframe_random_data): ymd = multiindex_year_month_day_dataframe_random_data s = ymd["A"] result = s[5:] expected = s.reindex(s.index[5:]) tm.assert_series_equal(result, expected) exp = ymd["A"].copy() s[5:] = 0 exp.values[5:] = 0 tm.assert_numpy_array_equal(s.values, exp.values) result = ymd[5:] expected = ymd.reindex(s.index[5:]) tm.assert_frame_equal(result, expected) def test_non_reducing_slice_on_multiindex(self): # GH 19861 dic = { ("a", "d"): [1, 4], ("a", "c"): [2, 3], ("b", "c"): [3, 2], ("b", "d"): [4, 1], } df = pd.DataFrame(dic, index=[0, 1]) idx = pd.IndexSlice slice_ = idx[:, idx["b", "d"]] tslice_ = _non_reducing_slice(slice_) result = df.loc[tslice_] expected = pd.DataFrame({("b", "d"): [4, 1]}) tm.assert_frame_equal(result, expected)
1ec71b82893c3f64ed495e2bf6673385d2f01c5a
c7d91529db199322e39e54fe4051a75704ea843e
/chaper01_list/t1.12.py
52c5131518690d49becba7d34818301aad263a2f
[]
no_license
2226171237/Algorithmpractice
fc786fd47aced5cd6d96c45f8e728c1e9d1160b7
837957ea22aa07ce28a6c23ea0419bd2011e1f88
refs/heads/master
2020-12-26T07:20:37.226443
2020-09-13T13:31:05
2020-09-13T13:31:05
237,431,164
0
0
null
null
null
null
UTF-8
Python
false
false
2,342
py
#-*- coding=utf-8 -*- ''' 给定一个有序链表,其中每个节点也表示一个有序链表, 实现flatten()函数,该函数将联保扁平化成一个单链表,扁平化后也是有序的链表 ''' class LNode: def __init__(self,x,right=None,down=None): self._data=x self.right=right self.down=down class LList: def __init__(self,data=[]): self.head=None if data: data=list(data) for d in data: self.push(d) def is_empty(self): return self.head is None def push(self,x): new_node=LNode(x) if not isinstance(x,LList) else x.head if self.is_empty(): self.head=new_node else: if isinstance(x,LList): node=self.head while node.right: node=node.right node.right=new_node else: node=self.head while node.down: node=node.down node.down=LNode(x) def visit(self): if self.is_empty(): return print('head') node=self.head while node: childnode = node while childnode: print(childnode._data,end='->') childnode=childnode.down print('end') node=node.right print('end') def merge(self,a,b): ''' 合并有序链表,归并排序中的合并 :param a: :param b: :return: ''' if a is None: return b if b is None: return a if a._data<b._data: result=a result.down=self.merge(a.down,b) else: result=b result.down=self.merge(a,b.down) return result def flatten(self,head): if head is None or head.right is None: return head head.right=self.flatten(head.right) head=self.merge(head,head.right) return head if __name__ == '__main__': L1=LList([3,6,8,31]) L2=LList([11,21]) L3=LList([15,22,50]) L4=LList([30,39,40,55]) L=LList([L1,L2,L3,L4]) L.visit() head=L.flatten(L.head) node=head while node: print(node._data,end='->') node=node.down
97b3a57cfd6020fc40c236296004864bb838d3b5
a00f703ac6561ac99066c7220075dd4a420bb3ff
/goiteens/models/post_manager.py
34947ba95b09a3a68bd37065db233d762cdb45c5
[]
no_license
volodymyrhusak/goiteens_docker
9c3e56091218f3e7633dc5d94816959254f5c8ca
618722fce82e85fe13f8c60ee76216fbf13338a7
refs/heads/master
2022-12-22T02:01:43.589833
2018-03-14T20:55:26
2018-03-14T20:55:26
125,272,517
0
0
null
2022-11-04T19:17:52
2018-03-14T20:55:58
Python
UTF-8
Python
false
false
1,172
py
from models.model import PostModel ,UserModel ,CommentsModel from models.base_manager import SNBaseManager from models.user_manager import UserManager class PostManager(SNBaseManager): def __init__(self): class_model = PostModel super(PostManager, self).__init__(class_model) def get_posts(self,user): self.select().And([('user','=',user.object.id)]).run() def save_post(self,form, user): self.object.title = form.get('title', '') self.object.photos = form.get('photos', '') self.object.text = form.get('text', '') self.object.user = user.object self.save() def _get_post_id(self, id): self.select().And([('id', '=', str(id))]).run() def add_comment(self,comment,user,post): if not isinstance(post, PostModel): post = self.get_post(post) if not isinstance(user, UserModel): user = UserManager().get_user(user) comment_manager = SNBaseManager(CommentsModel) comment_manager.object.text = comment comment_manager.object.post = post comment_manager.object.user = user comment_manager.save()
b6cf62297f6f5a18d8098fd663d50ceed6d2fb6a
2bb90b620f86d0d49f19f01593e1a4cc3c2e7ba8
/pardus/playground/mnurolcay/2009/network/chat/gyachi/actions.py
27982a32850ab05a787bda82f499cce34b776942
[]
no_license
aligulle1/kuller
bda0d59ce8400aa3c7ba9c7e19589f27313492f7
7f98de19be27d7a517fe19a37c814748f7e18ba6
refs/heads/master
2021-01-20T02:22:09.451356
2013-07-23T17:57:58
2013-07-23T17:57:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,444
py
#!/usr/bin/python # -*- coding: utf-8 -*- # # Licensed under the GNU General Public License, version 2. # See the file http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt from pisi.actionsapi import autotools from pisi.actionsapi import get from pisi.actionsapi import pisitools from pisi.actionsapi import shelltools def setup(): shelltools.system("sh autogen.sh") autotools.configure("--enable-plugin_pulseaudio \ --enable-plugin_blowfish \ --enable-plugin_mcrypt \ --enable-gtkspell \ --enable-wine \ --enable-plugin_gpgme \ --disable-plugin_xmms \ --disable-rpath \ --disable-esd") def build(): autotools.make() def install(): autotools.rawInstall("DESTDIR=%s" % get.installDIR()) pisitools.insinto("/usr/share/pixmaps", "themes/gyachi-classic/gyach-icon_48.png", "gyachi.png") pisitools.insinto("/usr/share/icons/hicolor/32x32/apps/gyachi", "themes/gyachi-classic/gyach-icon_32.png", "gyachi.png") pisitools.insinto("/usr/share/icons/hicolor/48x48/apps/gyachi", "themes/gyachi-classic/gyach-icon_48.png", "gyachi.png") pisitools.dodoc("ChangeLog", "VERSION", "doc/*.txt", "doc/txt/COPYING", "doc/txt/README", "doc/txt/webcams.txt", "doc/txt/gyachi-help-short.txt") pisitools.dohtml("doc/html/*")
32de413aeb5cf0e0c6a5e8ba621fb4d62f92ef03
e872e1136887cd6753ae292939e4656130c8f7d9
/api/urls.py
f68962bb645e1c84bfe889e90658576f6e1b915b
[ "MIT" ]
permissive
florimondmanca/personal-api
92e9d3ba8e3b16466ba54f5e9ea0493030e9cf95
6300f965d3f51d1bf5f10cf1eb15d673bd627631
refs/heads/master
2020-03-22T14:48:06.087822
2019-11-16T15:31:05
2019-11-16T15:31:05
140,206,398
4
1
MIT
2019-10-21T19:24:44
2018-07-08T22:16:47
Python
UTF-8
Python
false
false
423
py
"""API URLs.""" from django.urls import path from rest_framework.routers import DefaultRouter import blog.views from .views import obtain_auth_token # Enable view names as 'api:...' app_name = "api" router = DefaultRouter() # Blog endpoints router.register("posts", blog.views.PostViewSet) router.register("popular-tags", blog.views.PopularTagViewSet) urlpatterns = router.urls + [path("login/", obtain_auth_token)]
641cf3b122ff8250505462e1748406e61cd668ae
cd052f960846ea33e22abdded3106fb492f16c31
/爬虫项目/spider/spiders/pdd_scroll_activity_v1.py
d403d0e6762fc4b10a4003e7d587fa88ba3abacb
[]
no_license
byst4nder/his_spider
2d96457b70894c36506e8061d8a3201ac337a5d0
a51e31acff41292e568ac22b0e213e6cb48218fa
refs/heads/master
2020-07-21T12:06:28.952083
2019-09-06T14:25:58
2019-09-06T14:25:58
206,857,595
1
0
null
2019-09-06T19:04:02
2019-09-06T19:04:02
null
UTF-8
Python
false
false
13,470
py
# -*- coding: utf-8 -*- # 首页滚动栏活动信息 import logging import os import scrapy import json, time, sys, random, urllib, pyssdb, re from spider.items import CategoryItem from urllib import parse as urlparse ##import mq.mq as mq ##import ssdb.ssdbapi class PddScrollActivityNewSpider(scrapy.Spider): name = 'pdd_scroll_activity_v1' custom_settings = { # 'DOWNLOADER_MIDDLEWARES': {'spider.middlewares.ProxyMiddleware': 100}, # 'LOG_FILE':'', # 'LOG_LEVEL':'DEBUG', # 'LOG_ENABLED':True, 'DOWNLOAD_TIMEOUT': 5, 'RETRY_TIMES': 10, } def start_requests(self): headers = self.make_headers() yield scrapy.Request(url="https://mobile.yangkeduo.com/", headers=headers) def parse(self, response): """ 获取首页活动信息""" body = response.body.decode("utf-8") result = re.search(r'{"props".*?344]}', body).group() result = json.loads(result) # 首页固定分类活动 active_list = self.dict_get(result, 'quickEntrances', None) if len(active_list) > 0: list_subject = [] for i in active_list: if i["id"] in [36, 134, 162, 115, 41]: list_subject.append(i) for i in list_subject: subject_id = i["id"] path = i["title"] link_url = i['link'] headers = self.make_headers() url = "https://mobile.yangkeduo.com/" + link_url function = '' meta = {'path_id': [subject_id], 'path': [path]} if subject_id == 36: # 限时秒杀活动 subject_list = [] subject_dic = {"ongoing": '100', "future": '101', "more": '102', "brand_top": '103'} # 100代表正在抢购,101代表马上抢购,102代表明日预告,103品牌秒杀 for name, subject_id in subject_dic.items(): subject = self.build_subject_info(subject_id, name, name, subject_id, 11) subject_list.append(subject) meta = {'subject_list': subject_list, 'path_id': [103], 'path': ["brand_top"]} url = "https://mobile.yangkeduo.com/luxury_spike.html?refer_page_name=seckill&refer_page_id=10025_1556522752181_6xi8f7UAgH&refer_page_sn=10025" # 品牌秒杀 function = self.kill_parse_subject elif subject_id == 134: # 断码清仓 function = self.short_parse_subject elif subject_id == 162: # 品牌馆 function = self.brand_parse_subject elif subject_id == 115: # 9块9特卖 function = self.special_parse_subject elif subject_id == 41: # 爱逛街 url = "https://api.pinduoduo.com/api/gentian/7/resource_tabs?without_mix=1&platform=1&pdduid=0" function = self.shopping_parse_subject yield scrapy.Request(url, meta=meta, callback=function, headers=headers) def brand_parse_subject(self, response): """ 品牌馆 """ body = response.body.decode() path = response.meta["path"] path_id = response.meta["path_id"] result = re.search(r'{"props".*?"https://cdn.yangkeduo.com"}', body).group() if result: subject_list = [] result = json.loads(result) tabList = self.dict_get(result, 'tabList', None) if tabList and len(tabList) > 0: for i in tabList: subject_id = str(i["web_url"]) subject_id = re.search(r"\d+", subject_id).group() str_i = str(i) name = re.search(r"'tab_name': '\w+'", str_i).group() name = re.sub("'tab_name': ", "", name) subject_info = self.build_subject_info(subject_id, name, path + [name], path_id + [subject_id], 31) subject_list.append(subject_info) self.save_log(json.dumps({"subject_info_brand": subject_info})) item = CategoryItem() logging.debug(json.dumps({'subject_list_brand': subject_list})) self.save_log(json.dumps({'subject_list_brand': subject_list})) item['cat_list'] = subject_list yield item def special_parse_subject(self, response): """ 9块9特卖 """ subject_list = [] path = response.meta["path"] path_id = response.meta["path_id"] body = response.body.decode() result = re.search(r'{"props".*?"https://cdn.yangkeduo.com"}', body).group() if result: result = json.loads(result) tab_list = self.dict_get(result, 'tabList', None) if tab_list: for i in tab_list: subject_id = i["tab_id"] name = i["subject"] subject_info = self.build_subject_info(subject_id, name, path + [name], path_id + [subject_id], 41) subject_list.append(subject_info) self.save_log(json.dumps({"subject_info_special": subject_info})) item = CategoryItem() logging.debug(json.dumps({'subject_list_special': subject_list})) self.save_log(json.dumps({'subject_list_special': subject_list})) item['cat_list'] = subject_list yield item def shopping_parse_subject(self, response): """ 爱逛街 """ subject_list = [] path = response.meta["path"] path_id = response.meta["path_id"] body = response.body.decode('utf-8') result = json.loads(body) logging.debug(result) list_subject = self.dict_get(result, 'list', None) if list_subject: for i in list_subject: subject_id = i["tab_id"] name = i["subject"] subject_info = self.build_subject_info(subject_id, name, path + [name], path_id + [subject_id], 51) subject_list.append(subject_info) self.save_log(json.dumps({"subject_info_shopping": subject_info})) item = CategoryItem() logging.debug(json.dumps({'subject_list_shopping': subject_list})) self.save_log(json.dumps({'subject_list_shopping': subject_list})) item['cat_list'] = subject_list yield item def short_parse_subject(self, response): """ 断码清仓""" path = response.meta["path"] path_id = response.meta["path_id"] body = response.body.decode() result = re.search(r'{"props".*?"https://cdn.yangkeduo.com"}', body).group() logging.debug(result) if result: result = json.loads(result) result = self.dict_get(result, 'filterTabList', None) subject_list = [] if result and len(result) > 0: for i in result: subject_id = i["id"] str_i = str(i) d = re.search(r"'brand_name': '\w+'", str_i).group() name = re.sub(r"'brand_name':", '', d) subject_info = self.build_subject_info(subject_id, name, path + [name], path_id + [subject_id], 21) subject_list.append(subject_info) self.save_log(json.dumps({"subject_info_short": subject_info})) item = CategoryItem() logging.debug(json.dumps({'subject_list_short': subject_list})) self.save_log(json.dumps({'subject_list_short': subject_list})) item['cat_list'] = subject_list yield item def kill_parse_subject(self, response): """ 限时秒杀""" path = response.meta["path"] path_id = response.meta["path_id"] subject_list = response.meta["subject_list"] self.save_log(json.dumps({"kill_subject_list": subject_list})) body = response.body.decode() result = re.search(r'{"props".*?"https://cdn.yangkeduo.com"}', body).group() logging.debug(result) if result: result = json.loads(result) result = self.dict_get(result, 'brandList', None) if result: for i in result: subject_id = i["data"]["id"] name = i["data"]["name"] subject_info = self.build_subject_info(subject_id, name, path + [name], path_id + [subject_id], 14) subject_list.append(subject_info) self.save_log(json.dumps({"subject_info_kill": subject_info})) item = CategoryItem() logging.debug(json.dumps({'subject_list_kill': subject_list})) self.save_log(json.dumps({'subject_list_kill': subject_list})) item['cat_list'] = subject_list yield item '''通过url获取subject_id''' def get_subject_id(self, link_url): url_arr = urlparse.urlparse(link_url) url_arr = urlparse.parse_qs(url_arr.query) if url_arr: keys = url_arr.keys() if "id" in keys: subject_id = int(url_arr['id'][0]) elif "subject_id" in keys: subject_id = int(url_arr['subject_id'][0]) else: return False else: return False return {'subject_id': subject_id} '''生成活动信息''' def build_subject_info(self, subject_id, title, path, path_id, api_type, subjectType=1, activity_type=2): info = {'subject_id': subject_id, 'name': title, 'path': path, 'type': subjectType, "api_type": api_type, 'activity_type': activity_type, 'path_id': path_id} return info def build_subject_goods_info(self, subject_id, title, path, path_id, api_type, goods_id_str, subjectType=1, activity_type=2): info = {'subject_id': subject_id, 'name': title, 'path': path, 'type': subjectType, "api_type": api_type, 'activity_type': activity_type, 'path_id': path_id, 'goods_id_str': goods_id_str} return info '''生成headers头信息''' def make_headers(self): chrome_version = str(random.randint(59, 63)) + '.0.' + str(random.randint(1000, 3200)) + '.94' headers = { "Host": "mobile.yangkeduo.com", "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8", "Accept-Encoding": "gzip, deflate", "Referer": "http://yangkeduo.com/goods.html?goods_id=442573047&from_subject_id=935&is_spike=0&refer_page_name=subject&refer_page_id=subject_1515726808272_1M143fWqjQ&refer_page_sn=10026", "Connection": "keep-alive", 'cookie': 'api_uid=rBQ5vlzBpOVVmAXVEzAbAg==; ua=Mozilla%2F5.0%20(Windows%20NT%2010.0%3B%20Win64%3B%20x64)%20AppleWebKit%2F537.36%20(KHTML%2C%20like%20Gecko)%20Chrome%2F72.0.3626.109%20Safari%2F537.36; webp=1; _nano_fp=Xpdyn5gbn0T8l0Tbn9_wNR__G8~FgcKa0lATgz4y; msec=1800000; rec_list_mall_bottom=rec_list_mall_bottom_1MX53n; goods_detail=goods_detail_V2l30O; goods_detail_mall=goods_detail_mall_3vdTRG; JSESSIONID=ED2FEBAC94D04AA54FC09EBEFBF0F58C; promotion_subject=promotion_subject_x0psf8; rec_list_index=rec_list_index_pDVkjB', "Upgrade-Insecure-Requests": 1, 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/' + chrome_version + ' Safari/537.36', } ip = str(random.randint(100, 200)) + '.' + str(random.randint(1, 255)) + '.' + str( random.randint(1, 255)) + '.' + str(random.randint(1, 255)) headers['CLIENT-IP'] = ip headers['X-FORWARDED-FOR'] = ip return headers def errback_httpbin(self, failure): request = failure.request response = failure.value.response if response.status == 403: return # headers = self.make_headers() # meta = {'proxy':self.proxy} meta = request.meta yield scrapy.Request(request.url, meta=meta, callback=self.parse, headers=request.headers, dont_filter=True, errback=self.errback_httpbin) def dict_get(self, dict, objkey, default): tmp = dict for k, v in tmp.items(): if k == objkey: return v else: if (type(v).__name__ == 'dict'): ret = self.dict_get(v, objkey, default) if ret is not default: return ret return default def save_log(self, content): date = time.strftime('%Y-%m-%d') file_path = '/data/spider/logs/activity_scroll_log' if not os.path.exists(file_path): os.makedirs(file_path) content = content + "," file_name = file_path + '/' + date + ".log" with open(file_name, 'a+') as f: f.write(content + "\r\n")
0071f6d25357b403c468cee9f14e317f1172b23f
a0488ed86f297f5f18864bf3f317dbed48b3b00d
/setup.py
1dafa036d3e90c0bcceec24674af2c2720c35ab2
[ "MIT" ]
permissive
DamianArado/moya-techblog
7aefeea5bb74fa410e7cf896a83c0af0f4b0d25c
4f7d606b22773db40850b742945e83e328c63bb7
refs/heads/master
2021-12-22T02:53:40.535675
2017-10-09T14:07:59
2017-10-09T14:07:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
427
py
from setuptools import setuptools VERSION = "0.1.0" setup( name='techblog', version=VERSION, description="Blog for Coders and Photographers", zip_safe=False, license="MIT", author="Will McGugan", author_email="[email protected]", url="https://github.com/moyaproject/moya-techblog", entry_points={ "console_scripts": [ 'techblog = techblog:main' ] } )
01fa6bacbb73a2d447e30cf4b8e4920c7f051557
50a6f90c46ee83e667de08be9c74acbaa792dbc5
/python/timeseries.py
70d73e0ca869e4e62d52871ce0b2a56e246504b9
[ "MIT" ]
permissive
cpausmit/Kraken
e8f51a46e5d181e855bb9d2276b66c67e5842888
e79a19f6a4570e10ae52e543a5af9b2a3414c965
refs/heads/master
2023-08-16T21:36:54.426014
2023-08-15T14:11:08
2023-08-15T14:11:08
75,231,636
0
2
MIT
2018-02-08T14:25:53
2016-11-30T22:09:47
Python
UTF-8
Python
false
false
9,050
py
import os import datetime,time import numpy as np import matplotlib.pyplot as plt import matplotlib as mlp from optparse import OptionParser import jsum BASE = "%s/moni"%(os.getenv('KRAKEN_WORK')) EXT = "moni" NOW = datetime.datetime.now().strftime("%m/%d/%y, %H:%M") class Timeseries: "Time series of job summaries." def __init__(self,key): self.key = key self.times = [] self.jsums = [] def get_totals(self): totals = [] for time,jsum in zip(self.times,self.jsums): totals.append(jsum.n_total) return totals def get_dones(self): dones = [] for time,jsum in zip(self.times,self.jsums): dones.append(jsum.n_done) return dones def get_nocatalogs(self): nocatalogs = [] for time,jsum in zip(self.times,self.jsums): nocatalogs.append(jsum.n_nocatalog) return nocatalogs def get_batches(self): batches = [] for time,jsum in zip(self.times,self.jsums): batches.append(jsum.n_batch) return batches def get_idles(self): idles = [] for time,jsum in zip(self.times,self.jsums): idles.append(jsum.n_idle) return idles def get_runnings(self): runnings = [] for time,jsum in zip(self.times,self.jsums): runnings.append(jsum.n_running) return runnings def get_helds(self): helds = [] for time,jsum in zip(self.times,self.jsums): helds.append(jsum.n_held) return helds def add(self,time,jsum): if len(self.times) == 0 or time>self.times[-1]: self.times.append() else: print("ERROR - time is attached out of order (last: %d, this: %d)"%(times[-1],time)) return -1 self.jsums.append(jsum) def read(self): with open("%s/%s.%s"%(BASE,self.key,EXT),"r") as file: data = file.read() # go through each row for line in data.split("\n"): f = line.split(',') # use a comma to separate columns if len(f)>1 and len(line)>0 and line[0] != '#': # protect against not well formatted lines self.times.append(int(f[0])) self.jsums.append(jsum.Jsum(f[1:])) def write(self): filename = "%s/%s.%s"%(BASE,self.key,EXT) print(" Write file: %s"%(filename)) with open(filename,"w") as f: for time,jsum in zip(self.times,self.jsums): f.write("%d,%s\n"%(time,jsum.string())) def show(self): print(" Key - %s"%(self.key)) for time,jsum in zip(self.times,self.jsums): print("%d,%s"%(time,jsum.string())) def drop(self,times): new_times = [] new_jsums = [] for time,jsum in zip(self.times,self.jsums): if time not in times: new_times.append(time) new_jsums.append(jsum) else: print(" Dropping time: %d"%(time)) self.times = new_times self.jsums = new_jsums return def merge(self,key,ts): if len(self.times) != len(ts.times): print(" ERROR - time series have different length (this %d vs added %d)"%(len(self.times),len(ts.times))) #return 1 i = 0 drop_times = [] for time,jsum in zip(self.times,self.jsums): if time != ts.times[i]: print(" ERROR - (%s,%s)"%(self.key,ts.key)) print(" time series out of sync (this %d vs added %d)"%(time,ts.times[i])) while (time>ts.times[i]): print(" WARNING - Ignore new record (%d)."%(ts.times[i])) i += 1 if i>len(ts.times)-1: break if (time<ts.times[i]): print(" WARNING - Drop existing record (%d)."%(time)) drop_times.append(time) # keep record of what needs to be dropped continue jsum.merge(ts.jsums[i]) i += 1 self.drop(drop_times) # last update the key self.key = key return 0 def find_droptimes(self,ts,remove=True): #if len(self.times) != len(ts.times): # print(" WARNING - time series have different length (this %d vs added %d)"%(len(self.times),len(ts.times))) i = 0 drop_times = [] for time,jsum in zip(self.times,self.jsums): if i>=len(ts.times): print(" WARNING - Drop existing record (%d)."%(time)) drop_times.append(time) i += 1 continue if time != ts.times[i]: #print(" ERROR - (%s,%s)"%(self.key,ts.key)) #print(" time series out of sync (this %d vs added %d)"%(time,ts.times[i])) while (time>ts.times[i]): print(" WARNING - Ignore new record (%d)."%(ts.times[i])) drop_times.append(ts.times[i]) # keep record of what needs to be dropped i += 1 if i>len(ts.times)-1: print("STOP") break if (time<ts.times[i]): print(" WARNING - Drop existing record (%d)."%(time)) drop_times.append(time) # keep record of what needs to be dropped continue i += 1 if remove: self.drop(drop_times) ts.drop(drop_times) return drop_times def plot(self,options,figure="total",last='not-defined'): # define the figure plt.figure(options.name+'_'+figure) if figure == "total": plt.plot(self.times,self.get_totals(),marker="",ls='dashed',linewidth=1,label='total') plt.plot(self.times,self.get_dones(),marker="o",ls='solid',linewidth=2,label='done') plt.plot(self.times,self.get_nocatalogs(),marker="o",ls='solid',linewidth=1,label='no catalog') plt.plot(self.times,self.get_batches(),marker="o",ls='solid',linewidth=1,label='in batch') elif figure == "batch": plt.figure(options.name+'_'+figure) plt.plot(self.times,self.get_nocatalogs(),marker="o",ls='dashed',linewidth=1,label='no catalog') plt.plot(self.times,self.get_batches(),marker="o",ls='solid',linewidth=1,label='in batch') plt.plot(self.times,self.get_idles(),marker="o",ls='solid',linewidth=1,label='idle') plt.plot(self.times,self.get_runnings(),marker="o",ls='solid',linewidth=1,label='running') plt.plot(self.times,self.get_helds(),marker="o",ls='solid',linewidth=1,label='held') plt.legend(frameon=False) plt.legend(title='ends: '+last) ax = plt.gca() ax.annotate(NOW, xy=(-0.13,0),xycoords=('axes fraction','figure fraction'), size=10, ha='left', va='bottom') #ax.annotate('ends: '+last, xy=(0.99,0.01), xycoords=('axes fraction','axes fraction'), # size=10, ha='right', va='bottom') # make plot nicer plt.xlabel(options.xtitle, fontsize=18) plt.ylabel(figure+' '+options.ytitle, fontsize=18) # make axis tick numbers larger plt.xticks(fontsize=14) plt.yticks(fontsize=14) # make sure to noe have too much white space around the plot plt.subplots_adjust(top=0.99, right=0.99, bottom=0.13, left=0.12) # save plot for later viewing plt.savefig(options.name+'_'+figure+".png",bbox_inches='tight',dpi=400) return # # define and get all command line arguments # parser = OptionParser() # parser.add_option("-n","--name",dest="name",default='graph_xy',help="name of input file") # parser.add_option("-q","--quiet",action="store_true",dest="quiet",default=False,help="no plot show") # parser.add_option("-x","--xtitle",dest="xtitle",default='Default x title',help="x axis title") # parser.add_option("-y","--ytitle",dest="ytitle",default='Default y title',help="y axis title") # (options, args) = parser.parse_args() # # ts1 = Timeseries("nanoao/518/BcToJPsiMuMu_inclusive_TuneCP5_13TeV-bcvegpy2-pythia8-evtgen+RunIISummer20UL16MiniAOD-106X_mcRun2_asymptotic_v13-v3+MINIAODSIM") # ts1.read() # ts1.show() # # ts2 = Timeseries("nanoao/518/BcToJPsiMuMu_inclusive_TuneCP5_13TeV-bcvegpy2-pythia8-evtgen+RunIISummer20UL17MiniAOD-106X_mc2017_realistic_v6-v3+MINIAODSIM") # ts2.read() # ts2.show() # # ts3 = Timeseries("nanoao/518/BsToMuMu_SoftQCDnonD_TuneCP5_BsLifetime1p45_13TeV-pythia8-evtgen+RunIISummer20UL18MiniAOD-106X_upgrade2018_realistic_v11_L1v1-v1+MINIAODSIM") # ts3.read() # ts3.show() # # ts1.merge("nanoao/518",ts2) # ts1.merge("nanoao/518",ts3) # ts1.show() # ts1.write() # # ts1.plot(options)
1161c88b6f97450eb92ecddc96a9913d4b4cdca6
6609c26b4ed72c156104ce282c3cf88c6aac59f6
/chapter09/example02.py
65652c91aa68ad1a2e42702ecbcabdda16ed64fc
[ "MIT" ]
permissive
yordanivh/intro_to_cs_w_python
4ab9dbbc2963b285b22cacb6648d1300fded18ce
eebbb8efd7ef0d07be9bc45b6b1e8f20737ce01a
refs/heads/master
2020-09-06T12:25:23.362118
2020-02-14T14:07:07
2020-02-14T14:07:07
220,423,698
0
0
MIT
2020-02-14T14:07:08
2019-11-08T08:41:25
Python
UTF-8
Python
false
false
179
py
#variable holding the last value of the loop speed = 2 velocities = [0.0, 9.81, 19.62, 29.43] for speed in velocities: print('Metric',speed, 'm/sec') print('Final:', speed)
8d506e901341ca9f597b8e0d69a411d5cffd3adc
fdb950317e348baa10975a4b0fff55e4e39eb040
/htdocs/plotting/auto/scripts100/p125.py
a7b5022c90e03c56ab1ff9b6ce200b8bfb8a8e1a
[ "MIT" ]
permissive
MediaPlex/iem
5d4938f14d0c1b5c1ea4f46f8e05c84a88727fed
b6bcb1c0cedc8a75740b78f830742a765e21ab8b
refs/heads/main
2023-04-26T10:40:50.786980
2021-05-30T11:43:28
2021-05-30T11:43:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,361
py
"""Maps of averages""" import calendar from collections import OrderedDict import datetime import numpy as np from pandas.io.sql import read_sql from pyiem.plot import MapPlot, get_cmap from pyiem.util import get_autoplot_context, get_dbconn from pyiem.exceptions import NoDataFound import cartopy.crs as ccrs PDICT = { "state": "State Level Maps (select state)", "cornbelt": "Corn Belt", "midwest": "Midwest Map", } PDICT2 = { "both": "Show both contour and values", "values": "Show just the values", "contour": "Show just the contour", } PDICT3 = OrderedDict( [ ("avg_temp", "Average Temperature"), ("avg_high", "Average High Temperature"), ("avg_low", "Average Low Temperature"), ("total_cdd65", "Total Cooling Degree Days (base=65)"), ("total_gdd32", "Total Growing Degree Days (base=32)"), ("total_gdd41", "Total Growing Degree Days (base=41)"), ("total_gdd46", "Total Growing Degree Days (base=46)"), ("total_gdd48", "Total Growing Degree Days (base=48)"), ("total_gdd50", "Total Growing Degree Days (base=50)"), ("total_gdd51", "Total Growing Degree Days (base=51)"), ("total_gdd52", "Total Growing Degree Days (base=52)"), ("total_hdd65", "Total Heating Degree Days (base=65)"), ("total_sdd86", "Total Stress Degree Days (base=86)"), ("total_precip", "Total Precipitation"), ] ) PDICT5 = { "climate": "Period of Record Climatology", "climate51": "1951-Present Climatology", "climate71": "1971-Present Climatology", "climate81": "1981-Present Climatology", "ncdc_climate71": "NCEI 1971-2000 Climatology", "ncdc_climate81": "NCEI 1981-2010 Climatology", "ncei_climate91": "NCEI 1991-2020 Climatology", } UNITS = {"total_precip": "inch"} PRECISION = { "total_precip": 2, "total_gdd50": 0, "total_gdd32": 0, "total_gdd41": 0, "total_gdd46": 0, "total_gdd48": 0, "total_gdd51": 0, "total_gdd52": 0, "total_cdd65": 0, "total_hdd65": 0, } MDICT = OrderedDict( [ ("all", "No Month/Time Limit"), ("spring", "Spring (MAM)"), ("mjj", "May/June/July"), ("gs", "May thru Sep"), ("fall", "Fall (SON)"), ("winter", "Winter (DJF)"), ("summer", "Summer (JJA)"), ("jan", "January"), ("feb", "February"), ("mar", "March"), ("apr", "April"), ("may", "May"), ("jun", "June"), ("jul", "July"), ("aug", "August"), ("sep", "September"), ("oct", "October"), ("nov", "November"), ("dec", "December"), ] ) def get_description(): """Return a dict describing how to call this plotter""" desc = dict() desc["data"] = True desc[ "description" ] = """This application produces map analysis of climatological averages. The IEM maintains a number of different climatologies based on period of record and source. If you pick the NCEI Climatology, only basic temperature and precipitation variables are available at this time.""" desc["arguments"] = [ dict( type="select", name="month", default="all", label="Month Limiter", options=MDICT, ), dict( type="select", name="sector", default="state", options=PDICT, label="Select Map Region", ), dict( type="select", name="src", default="ncei_climate91", options=PDICT5, label=( "Select Climatology Source to Use " "(limits available variables)" ), ), dict( type="state", name="state", default="IA", label="Select State to Plot (when appropriate)", ), dict( type="select", name="opt", options=PDICT2, default="both", label="Map Plot/Contour View Option", ), dict( type="select", name="var", options=PDICT3, default="total_precip", label="Which Variable to Plot", ), dict(type="cmap", name="cmap", default="jet", label="Color Ramp:"), ] return desc def plotter(fdict): """Go""" pgconn = get_dbconn("coop") ctx = get_autoplot_context(fdict, get_description()) state = ctx["state"][:2] varname = ctx["var"] sector = ctx["sector"] opt = ctx["opt"] month = ctx["month"] if month == "all": months = range(1, 13) elif month == "fall": months = [9, 10, 11] elif month == "winter": months = [12, 1, 2] elif month == "spring": months = [3, 4, 5] elif month == "mjj": months = [5, 6, 7] elif month == "gs": months = [5, 6, 7, 8, 9] elif month == "summer": months = [6, 7, 8] else: ts = datetime.datetime.strptime("2000-" + month + "-01", "%Y-%b-%d") # make sure it is length two for the trick below in SQL months = [ts.month] if len(months) == 1: title = "%s %s" % (calendar.month_name[months[0]], PDICT3[varname]) else: title = "%s" % (MDICT[month],) mp = MapPlot( sector=sector, state=state, axisbg="white", title="%s %s for %s" % (PDICT5[ctx["src"]], PDICT3[varname], title), nocaption=True, ) bnds = mp.ax.get_extent(crs=ccrs.PlateCarree()) joincol = "id" if ctx["src"] == "ncdc_climate81": joincol = "ncdc81" elif ctx["src"] == "ncei_climate91": joincol = "ncei91" extra = "" if not ctx["src"].startswith("ncdc_"): extra = """, sum(cdd65) as total_cdd65, sum(hdd65) as total_hdd65, sum(gdd32) as total_gdd32, sum(gdd41) as total_gdd41, sum(gdd46) as total_gdd46, sum(gdd48) as total_gdd48, sum(gdd50) as total_gdd50, sum(gdd51) as total_gdd51, sum(gdd52) as total_gdd52 """ df = read_sql( """ WITH mystations as ( select """ + joincol + """ as myid, max(ST_x(geom)) as lon, max(ST_y(geom)) as lat from stations where network ~* 'CLIMATE' and ST_Contains(ST_MakeEnvelope(%s, %s, %s, %s, 4326), geom) GROUP by myid ) SELECT station, extract(month from valid) as month, max(lon) as lon, min(lat) as lat, sum(precip) as total_precip, avg(high) as avg_high, avg(low) as avg_low, avg((high+low)/2.) as avg_temp """ + extra + """ from """ + ctx["src"] + """ c JOIN mystations t on (c.station = t.myid) WHERE extract(month from valid) in %s GROUP by station, month """, pgconn, params=(bnds[0], bnds[2], bnds[1], bnds[3], tuple(months)), index_col=["station", "month"], ) if df.empty: raise NoDataFound("No data was found for query, sorry.") if len(months) == 1: df2 = df else: if varname.startswith("total"): df2 = df.sum(axis=0, level="station") else: df2 = df.mean(axis=0, level="station") df2["lat"] = df["lat"].mean(axis=0, level="station") df2["lon"] = df["lon"].mean(axis=0, level="station") levels = np.linspace(df2[varname].min(), df2[varname].max(), 10) levels = [round(x, PRECISION.get(varname, 1)) for x in levels] if opt in ["both", "contour"]: mp.contourf( df2["lon"].values, df2["lat"].values, df2[varname].values, levels, units=UNITS.get(varname, "F"), cmap=get_cmap(ctx["cmap"]), clip_on=False, ) if sector == "state": mp.drawcounties() if opt in ["both", "values"]: mp.plot_values( df2["lon"].values, df2["lat"].values, df2[varname].values, fmt="%%.%if" % (PRECISION.get(varname, 1),), labelbuffer=5, ) return mp.fig, df if __name__ == "__main__": plotter(dict(month="gs", var="total_gdd50", src="climate51"))
a193ad9d8cf0b7edb6fea29bdc621f469c12e0ba
9653d2c933c95f6a7e956751814a38a935fabf14
/source/code/menu_addFontGuideline.py
c211b008a1cac518efa7bbec3cc9d5b7c1ee2e90
[ "MIT" ]
permissive
benkiel/guidetool
f98863c72920bbddc9fb355852a42c1e441f02ea
ee6f4fce8f472622ab20a3b09bf4594f5631be25
refs/heads/main
2023-06-18T21:39:24.269399
2021-07-15T00:41:33
2021-07-15T00:41:33
387,886,590
0
0
MIT
2021-07-20T18:54:21
2021-07-20T18:54:20
null
UTF-8
Python
false
false
690
py
import AppKit from fontParts.world import CurrentGlyph from mojo.UI import getDefault, CurrentGlyphWindow from guideTool.guess import guessPositionAndAngleFromSelectedPoints from guideTool.editor import GuidelineEditorController def run(): glyph = CurrentGlyph() if glyph is None: return font = glyph.font editor = CurrentGlyphWindow() data = guessPositionAndAngleFromSelectedPoints(glyph) if data is None: AppKit.NSBeep() return font.prepareUndo("Add Guide") guideline = font.appendGuideline(**data) font.performUndo() GuidelineEditorController(guideline, glyph, editor.getGlyphView()) if __name__ == "__main__": run()
55975b35d008f8b4dddbc1c5c47ae99ff5a4998d
04e1c60ac7864a0bdcdd41026a2336b1ff699613
/model/ll.py
f5098ecc5ce3319e31d675292eb699f307ed938b
[]
no_license
jianzhnie/RetinaNet_Pytorch
00ec318d2e57c6b646f193e4d3a066f9891762b3
03679766847757f28bb9410c31ddaf99adf524c8
refs/heads/master
2020-09-22T00:09:18.617565
2019-11-30T08:27:36
2019-11-30T08:27:36
224,981,680
1
0
null
null
null
null
UTF-8
Python
false
false
3,015
py
from __future__ import print_function import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable class FocalLoss(nn.Module): def __init__(self, num_classes): super(FocalLoss, self).__init__() self.num_classes = num_classes def _one_hot_embeding(self, labels): """Embeding labels to one-hot form. Args: labels(LongTensor): class labels num_classes(int): number of classes Returns: encoded labels, sized[N, #classes] """ y = torch.eye(self.num_classes+1) # [D, D] return y[labels] # [N, D] def focal_loss(self, x, y): """Focal loss Args: x(tensor): size [N, D] y(tensor): size [N, ] Returns: (tensor): focal loss """ alpha = 0.25 gamma = 2 t = self._one_hot_embeding(y.data.cpu()) # [N,21] t = t[:, 1:] # exclude background t = Variable(t).cuda() # [N,20] logit = F.softmax(x) logit = logit.clamp(1e-7, 1.-1e-7) conf_loss_tmp = -1 * t.float() * torch.log(logit) conf_loss_tmp = alpha * conf_loss_tmp * (1-logit)**gamma conf_loss = conf_loss_tmp.sum() return conf_loss def forward(self, loc_preds, loc_targets, cls_preds, cls_targets): """Compute loss between (loc_preds, loc_targets) and (cls_preds, cls_targets). Args: loc_preds(tensor): predicted locations, sized [batch_size, #anchors, 4]. loc_targets(tensor): encoded target locations, sized [batch_size, #anchors, 4]. cls_preds(tensor): predicted class confidences, sized [batch_size, #anchors, #classes]. cls_targets(tensor): encoded target labels, sized [batch_size, #anchors]. Returns: (tensor) loss = SmoothL1Loss(loc_preds, loc_targets) + FocalLoss(cls_preds, cls_targets). """ pos = cls_targets > 0 # [N,#anchors] num_pos = pos.data.long().sum() # loc_loss = SmoothL1Loss(pos_loc_preds, pos_loc_targets) mask = pos.unsqueeze(2).expand_as(loc_preds) # [N,#anchors,4] masked_loc_preds = loc_preds[mask].view(-1, 4) # [#pos,4] masked_loc_targets = loc_targets[mask].view(-1, 4) # [#pos,4] loc_loss = F.smooth_l1_loss(masked_loc_preds, masked_loc_targets, size_average=False) # cls_loss = FocalLoss(loc_preds, loc_targets) pos_neg = cls_targets > -1 # exclude ignored anchors # num_pos_neg = pos_neg.data.long().sum() mask = pos_neg.unsqueeze(2).expand_as(cls_preds) masked_cls_preds = cls_preds[mask].view(-1, self.num_classes) cls_loss = self.focal_loss(masked_cls_preds, cls_targets[pos_neg]) num_pos = max(1.0, num_pos.item()) print('loc_loss: %.3f | cls_loss: %.3f' % (loc_loss.item() / num_pos, cls_loss.item() / num_pos), end=' | ') loss = loc_loss / num_pos + cls_loss / num_pos return loss
f0ff4f0567586c4dc9dd54b5497b4819f77b2378
855416c669f765e4cd0f5a749e82c112641a9e11
/Interest.blog-1.1/utils/public.py
9cdb4342017ac3c51968c900609d649d1726535b
[ "MIT" ]
permissive
chenzhenpin/my_flask
a2f63422921d4b73c25a8e093ad09e6a48f8b568
0c101b7a1aa01283a0b8e3ef9b7555750ea03ecb
refs/heads/master
2022-11-28T20:16:35.854225
2018-11-27T16:04:29
2018-11-27T16:04:29
159,362,205
0
0
null
2022-11-22T01:37:36
2018-11-27T16:02:52
CSS
UTF-8
Python
false
false
5,254
py
# -*- coding:utf8 -*- import requests import hashlib import datetime import random import upyun from uuid import uuid4 from log import Syslog from config import SSO, MYSQL, PLUGINS from torndb import Connection from flask import g #Something public variable md5 = lambda pwd:hashlib.md5(pwd).hexdigest() today = lambda :datetime.datetime.now().strftime("%Y-%m-%d") logger = Syslog.getLogger() gen_requestId = lambda :str(uuid4()) gen_filename = lambda :"%s%s" %(datetime.datetime.now().strftime('%Y%m%d%H%M%S'), str(random.randrange(1000, 10000))) def timeChange(timestring): logger.debug("Change time, source time is %s" %timestring) startedat = timestring.replace('T', ' ')[:19] try: dt = datetime.datetime.strptime(startedat, "%Y-%m-%d %H:%M:%S") + datetime.timedelta(hours=8) res = dt.strftime("%Y-%m-%d %H:%M:%S") except Exception, e: logger.warn(e, exc_info=True) else: logger.debug("Change time, result time is %s" %res) return res def ParseMySQL(mysql, callback="dict"): try: protocol, dburl = mysql.split("://") if "?" in mysql: dbinfo, dbargs = dburl.split("?") else: dbinfo, dbargs = dburl, "charset=utf8&timezone=+8:00" host,port,user,password,database = dbinfo.split(":") charset, timezone = dbargs.split("&")[0].split("charset=")[-1] or "utf8", dbargs.split("&")[-1].split("timezone=")[-1] or "+8:00" if callback in ("list", "tuple"): return protocol,host,port,user,password,database,charset, timezone else: return {"Protocol": protocol, "Host": host, "Port": port, "Database": database, "User": user, "Password": password, "Charset": charset, "Timezone": timezone} except Exception,e: logger.warn(e, exc_info=True) if callback in ("list", "tuple"): return () else: return {} mysql = Connection( host = "%s:%s" %(ParseMySQL(MYSQL).get('Host'), ParseMySQL(MYSQL).get('Port', 3306)), database = ParseMySQL(MYSQL).get('Database'), user = ParseMySQL(MYSQL).get('User'), password = ParseMySQL(MYSQL).get('Password'), time_zone= ParseMySQL(MYSQL).get('Timezone','+8:00'), charset = ParseMySQL(MYSQL).get('Charset', 'utf8'), connect_timeout=3, max_idle_time=2) def ClickMysqlWrite(data): if isinstance(data, dict): if data.get("agent") and data.get("method") in ("GET", "POST", "PUT", "DELETE", "OPTIONS"): sql = "insert into clickLog set requestId=%s, url=%s, ip=%s, agent=%s, method=%s, status_code=%s, referer=%s" try: mysql.insert(sql, data.get("requestId"), data.get("url"), data.get("ip"), data.get("agent"), data.get("method"), data.get("status_code"), data.get("referer")) except Exception, e: logger.warn(e, exc_info=True) def isLogged_in(cookie_str): ''' To determine whether to log on with cookie ''' SSOURL = SSO.get("SSO.URL") if cookie_str and not cookie_str == '..': username, expires, sessionId = cookie_str.split('.') #success = Requests(SSOURL+"/sso/").post(data={"username": username, "time": expires, "sessionId": sessionId}).get("success", False) success = requests.post(SSOURL+"/sso/", data={"username": username, "time": expires, "sessionId": sessionId}, timeout=5, verify=False, headers={"User-Agent": SSO.get("SSO.PROJECT")}).json().get("success", False) logger.info("check login request, cookie_str: %s, success:%s" %(cookie_str, success)) return success else: logger.info("Not Logged in") return False def chunks(arr, n): """arr是被分割的list,n是每个chunk中含n元素。""" return [arr[i:i+n] for i in range(0, len(arr), n)] def isAdmin(username): AdminUsers = requests.get(g.apiurl + "/user/", params={"getadminuser": True}, timeout=5, verify=False, headers={"User-Agent": SSO.get("SSO.PROJECT")}).json().get("data") if username in AdminUsers: return True return False def UploadImage2Upyun(file, imgurl, kwargs=PLUGINS['UpYunStorage']): """ Upload image to Upyun Cloud with Api """ logger.info({"UploadFile": file, "imgurl": imgurl, "kwargs": kwargs}) up = upyun.UpYun(kwargs.get("bucket"), username=kwargs.get("username"), password=kwargs.get("password"), secret=kwargs.get("secret"), timeout=kwargs.get("timeout", 10)) formkw = { 'allow-file-type': kwargs.get('allow-file-type', 'jpg,jpeg,png,gif') } with open(file, "rb") as f: res = up.put(imgurl, f, checksum=True, need_resume=True, form=True, **formkw) return res def BaiduActivePush(pushUrl, original=True, callUrl=PLUGINS['BaiduActivePush']['callUrl']): """百度主动推送(实时)接口提交链接""" callUrl = callUrl + "&type=original" if original else callUrl res = requests.post(url=callUrl, data=pushUrl, timeout=3, headers={"User-Agent": "BaiduActivePush/www.saintic.com"}).json() logger.info("BaiduActivePush PushUrl is %s, Result is %s" % (pushUrl, res)) return res
2a7d09228483b3b7c912600fea60bd9f300653f9
6b10d7a745b70d3b8533ea91b7bf1052e43b7d70
/Week 4/Admin_page/main/migrations/0002_auto_20180930_2229.py
9e5cf7c3c18d3c670ba02c13dfc5ff2f2fa3db2a
[]
no_license
Ablay09/BFDjango
9701f6b1d36d54e6a2b511c57374e47ac0048d0e
c41423f5e86bad107769f518eeca2bfefd524919
refs/heads/master
2020-03-27T21:33:55.433951
2018-10-12T20:14:12
2018-10-12T20:14:12
147,101,564
0
0
null
null
null
null
UTF-8
Python
false
false
712
py
# Generated by Django 2.1.1 on 2018-09-30 16:29 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('main', '0001_initial'), ] operations = [ migrations.AlterField( model_name='task', name='created_date', field=models.DateTimeField(auto_now_add=True), ), migrations.AlterField( model_name='task', name='finished_date', field=models.DateTimeField(auto_now_add=True), ), migrations.AlterField( model_name='task_list', name='time', field=models.DateTimeField(auto_now_add=True), ), ]
1ba7ed3f3e6972ac5d2d780b49ba2a2b641a4ba6
d89290fd2ecc166287e065784ae290a516ca2cef
/archives/convert_framerates.py
83c83ead40072e2feef33d6b123b8c9ad4acad3f
[ "MIT" ]
permissive
rec/bbcprc
adc85ca3fd7a7b303c83323c2bdf63d44654112f
d4f4fee5f5c0beaf9c23af6e1655dbb49f3912e3
refs/heads/main
2023-02-08T20:18:38.763943
2023-01-30T12:47:21
2023-01-30T12:51:38
130,397,044
1
0
null
null
null
null
UTF-8
Python
false
false
1,066
py
from . import audio_io from . import constants from . import files from scipy import signal import json import numpy as np import os ERROR = 'fp.getframerate() != constants.FRAME_RATE: 48000' def get_framerate_error_files(): for f in sorted(files.with_suffix(constants.METADATA_DIR, '.json')): if json.load(open(f)).get('error') == ERROR: yield constants.source(os.path.basename(f)[:-5]) def resample_file(filename): if True: original = filename filename = filename + '.48KHz' else: original = filename + '.48KHz' os.rename(filename, original) fp, frames = audio_io.read_frames_and_fp(original) assert fp.getframerate() == 48000 samples = audio_io.from_frames(frames, fp.getnchannels()) resampled = np.stack([signal.resample_poly(s, 160, 147) for s in samples]) audio_io.write(filename, resampled) print('Resampled to', filename) if __name__ == '__main__': # resample_file(list(get_framerate_error_files())[ for f in get_framerate_error_files(): print(f)
c07b75d16c6a9d140e590d268b51632f6b7f93bc
c8e44c50bcc77c6ad5d95516dcec8dada7c284bd
/gidgethub/abc.py
444cf02043c0df46f44a1acc14c6f691ffc35f44
[ "Apache-2.0" ]
permissive
Lukasa/gidgethub
495510e276cd34f7b9c37431f3b3b011d02b0795
6b3dc032f1fcdf0fbf23dfb061f11588798c1e7e
refs/heads/master
2021-01-18T16:04:54.012847
2017-03-08T00:51:29
2017-03-08T00:51:29
84,348,121
0
0
null
2017-03-08T17:31:09
2017-03-08T17:31:09
null
UTF-8
Python
false
false
4,473
py
"""Provide an abstract base class for easier requests.""" import abc import datetime import json from typing import Any, AsyncIterable, Dict, Mapping, Optional, Tuple from . import sansio class GitHubAPI(abc.ABC): """Provide an idiomatic API for making calls to GitHub's API.""" def __init__(self, requester: str, *, oauth_token: str = None) -> None: self.requester = requester self.oauth_token = oauth_token self.rate_limit: sansio.RateLimit = None @abc.abstractmethod async def _request(self, method: str, url: str, headers: Mapping[str, str], body: bytes = b'') -> Tuple[int, Mapping[str, str], bytes]: """Make an HTTP request.""" @abc.abstractmethod async def _sleep(self, seconds: float) -> None: """Sleep for the specified number of seconds.""" async def _make_request(self, method: str, url: str, url_vars: Dict[str, str], data: Any, accept) -> Tuple[Any, str]: """Construct and make an HTTP request.""" # If the rate limit isn't known yet then assume there's enough quota. if self.rate_limit is not None: if self.rate_limit: # Proactively assume this request is counted by GitHub so as to # not have a race condition on the final request. self.rate_limit.remaining -= 1 else: # /rate_limit returns the current rate limit, # but the assumption is an async application won't be making multi-threaded calls with # the same oauth token so the last call will have set the rate_limit accurately. now = datetime.datetime.now(datetime.timezone.utc) wait = self.rate_limit.reset_datetime - now await self._sleep(wait.total_seconds()) filled_url = sansio.format_url(url, url_vars) request_headers = sansio.create_headers(self.requester, accept=accept, oauth_token=self.oauth_token) if data == "": body = b"" request_headers["content-length"] = "0" else: charset = "utf-8" body = json.dumps(data).encode(charset) request_headers['content-type'] = f"application/json; charset={charset}" request_headers['content-length'] = str(len(body)) response = await self._request(method, filled_url, request_headers, body) data, self.rate_limit, more = sansio.decipher_response(*response) return data, more async def getitem(self, url: str, url_vars: Dict[str, str] = {}, *, accept=sansio.accept_format()) -> Any: """Send a GET request for a single item to the specified endpoint.""" data, _ = await self._make_request("GET", url, url_vars, "", accept) return data async def getiter(self, url: str, url_vars: Dict[str, str] = {}, *, accept: str = sansio.accept_format()) -> AsyncIterable[Any]: """Return an async iterable for all the items at a specified endpoint.""" data, more = await self._make_request("GET", url, url_vars, "", accept) for item in data: yield item if more: # `yield from` is not supported in coroutines. async for item in self.getiter(more, url_vars, accept=accept): yield item async def post(self, url: str, url_vars: Dict[str, str] = {}, *, data: Any, accept: str = sansio.accept_format()) -> Any: data, _ = await self._make_request("POST", url, url_vars, data, accept) return data async def patch(self, url: str, url_vars: Dict[str, str] = {}, *, data: Any, accept: str = sansio.accept_format()) -> Any: data, _ = await self._make_request("PATCH", url, url_vars, data, accept) return data async def put(self, url: str, url_vars: Dict[str, str] = {}, *, data: Any = "", accept: str = sansio.accept_format()) -> Optional[Any]: data, _ = await self._make_request("PUT", url, url_vars, data, accept) return data async def delete(self, url: str, url_vars: Dict[str, str] = {}, *, accept: str = sansio.accept_format()) -> None: await self._make_request("DELETE", url, url_vars, "", accept)
56b4116fe0ba8840df5f463b6306c8fd733d774a
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02804/s286662068.py
0f0965086da8245027d2dedeb3044d4203c93284
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
622
py
n, k = map(int, input().split()) a = list(map(int, input().split())) a.sort() # prepare combs upto 10000 mod = 10**9 + 7 facts = [1] * 100001 for i in range(0, 100000): facts[i+1] = facts[i] * (i + 1) % mod ifacts = [1] * 100001 ifacts[100000] = pow(facts[100000], mod - 2, mod) for i in range(100000, 0, -1): ifacts[i-1] = ifacts[i] * i % mod def comb(n, k): return facts[n] * ifacts[n-k] % mod * ifacts[k] % mod ans = 0 for i in range(k-1, n): # take k-1 from i ans = (ans + a[i] * comb(i, k-1)) % mod for i in range(0, n-k+1): # take k-1 from n-i-1 ans = (ans - a[i] * comb(n-i-1, k-1)) % mod print(ans)
63508df4d0df451b9d0818de91691ffcd18a74bb
f5a53f0f2770e4d7b3fdace83486452ddcc996e1
/env3/lib/python3.6/site-packages/django_rq/workers.py
b6f23d91a3623ea4116dcd4691f19e56d13e2a11
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
fireman0865/PingBox
35e8fc9966b51320d571b63967e352a134022128
0f00eaf88b88e9441fffd5173a1501e56c13db03
refs/heads/master
2023-01-20T07:55:59.433046
2020-03-15T13:36:31
2020-03-15T13:36:31
247,466,832
1
0
Apache-2.0
2022-12-26T21:30:32
2020-03-15T12:59:16
Python
UTF-8
Python
false
false
1,796
py
from rq import Worker from rq.utils import import_attribute from django.conf import settings from .jobs import get_job_class from .queues import get_queues def get_exception_handlers(): """ Custom exception handlers could be defined in settings.py: RQ = { 'EXCEPTION_HANDLERS': ['path.to.handler'], } """ from .settings import EXCEPTION_HANDLERS return [import_attribute(path) for path in EXCEPTION_HANDLERS] def get_worker_class(worker_class=None): """ Return worker class from RQ settings, otherwise return Worker. If `worker_class` is not None, it is used as an override (can be python import path as string). """ RQ = getattr(settings, 'RQ', {}) if worker_class is None: worker_class = Worker if 'WORKER_CLASS' in RQ: worker_class = RQ.get('WORKER_CLASS') if isinstance(worker_class, str): worker_class = import_attribute(worker_class) return worker_class def get_worker(*queue_names, **kwargs): """ Returns a RQ worker for all queues or specified ones. """ job_class = get_job_class(kwargs.pop('job_class', None)) queue_class = kwargs.pop('queue_class', None) queues = get_queues(*queue_names, **{'job_class': job_class, 'queue_class': queue_class}) # normalize queue_class to what get_queues returns queue_class = queues[0].__class__ worker_class = get_worker_class(kwargs.pop('worker_class', None)) return worker_class(queues, connection=queues[0].connection, exception_handlers=get_exception_handlers() or None, job_class=job_class, queue_class=queue_class, **kwargs)
67790833485b01272a5d8f7ba10d549f6bc187e6
b7b8cac59c24c28efb3002f639865121d3b1f3e1
/hyperion/grid/yt3_wrappers.py
fe04e9f80b875a00a54282dfaeb5b72899b325bd
[ "BSD-2-Clause" ]
permissive
koepferl/hyperion
51a461f3cde30faa6dc82f63803b659a831273d1
d43e1d06889e8b649038b85ef6721c64dd269a4e
refs/heads/master
2020-04-01T19:11:18.373471
2015-01-14T13:31:36
2015-03-30T15:38:08
34,328,089
0
0
null
2015-04-21T13:17:41
2015-04-21T13:17:40
null
UTF-8
Python
false
false
6,366
py
from __future__ import print_function, division import numpy as np def almost_equal(a, b): return a / b < 1. + 1.e-4 and b / a < 1. + 1.e-4 def amr_grid_to_yt_stream(levels, dust_id=0): # Try and guess the refinement ratio - if it is not constant, then # we can't use yt if len(levels) == 0 or len(levels[0].grids) == 0: raise Exception("Need at least one level with one grid to convert to a yt object") elif len(levels) == 1: refine = 2 else: dx = [] dy = [] dz = [] for ilevel, level in enumerate(levels): for igrid, grid in enumerate(level.grids): gdx = (grid.xmax - grid.xmin) / float(grid.nx) gdy = (grid.ymax - grid.ymin) / float(grid.ny) gdz = (grid.zmax - grid.zmin) / float(grid.nz) if igrid == 0: dx.append(gdx) dy.append(gdy) dz.append(gdz) else: if not almost_equal(dx[-1], gdx): raise Exception("dx scale differs between grids in level %i (expected %g and got %g)" % (ilevel, dx[-1], gdx)) if not almost_equal(dy[-1], gdy): raise Exception("dy scale differs between grids in level %i (expected %g and got %g)" % (ilevel, dy[-1], gdy)) if not almost_equal(dz[-1], gdz): raise Exception("dz scale differs between grids in level %i (expected %g and got %g)" % (ilevel, dz[-1], gdz)) dx = np.array(dx) dy = np.array(dy) dz = np.array(dz) refine_x = dx[:-1] / dx[1:] refine_y = dy[:-1] / dy[1:] refine_z = dz[:-1] / dz[1:] for i in range(len(levels) - 1): if abs(refine_x[i] - round(refine_x[i])) > 1.e-5: raise Exception("refinement ratio is not an integer (%g)" % refine_x[i]) if abs(refine_y[i] - round(refine_y[i])) > 1.e-5: raise Exception("refinement ratio is not an integer (%g)" % refine_y[i]) if abs(refine_z[i] - round(refine_z[i])) > 1.e-5: raise Exception("refinement ratio is not an integer (%g)" % refine_z[i]) refine_x = np.round(refine_x).astype(int) refine_y = np.round(refine_y).astype(int) refine_z = np.round(refine_z).astype(int) if not np.all(np.hstack([refine_x, refine_y, refine_z]) == refine_x[0]): raise Exception("refinement ratio changes between levels and/or directions (x = %s, y = %s, z = %s)" % (str(refine_x), str(refine_y), str(refine_z))) refine = int(refine_x[0]) # TODO: generalize this once yt supports a custom refinement factor if refine != 2: raise ValueError("load_amr_grid only supports refine=2") xmin = ymin = zmin = +np.inf xmax = ymax = zmax = -np.inf grid_data = [] for ilevel, level in enumerate(levels): for grid in level.grids: grid_dict = {} grid_dict['left_edge'] = [grid.zmin, grid.ymin, grid.xmin] grid_dict['right_edge'] = [grid.zmax, grid.ymax, grid.xmax] grid_dict['dimensions'] = [grid.nz, grid.ny, grid.nx] grid_dict['level'] = ilevel for field in grid.quantities: grid_dict[('gas', field)] = grid.quantities[field][dust_id] grid_data.append(grid_dict) xmin = min(xmin, grid.xmin) xmax = max(xmax, grid.xmax) ymin = min(ymin, grid.ymin) ymax = max(ymax, grid.ymax) zmin = min(zmin, grid.zmin) zmax = max(zmax, grid.zmax) # Determine domain resolution grid0 = levels[0].grids[0] dx = (grid0.xmax - grid0.xmin) / float(grid0.nx) nx = int(round((xmax - xmin) / dx)) dy = (grid0.ymax - grid0.ymin) / float(grid0.ny) ny = int(round((ymax - ymin) / dy)) dz = (grid0.zmax - grid0.zmin) / float(grid0.nz) nz = int(round((zmax - zmin) / dz)) domain_dimensions = np.array([nz, ny, nx]) bbox = np.array([[xmin, xmax], [ymin, ymax], [zmin, zmax]]) from yt.mods import load_amr_grids spf = load_amr_grids(grid_data, domain_dimensions, bbox=bbox) return spf def find_order(refined): """ Find the index array to use to sort the ``refined`` and ``density`` arrays to swap the xyz <-> zyx order. """ order = np.zeros(refined.shape) if not refined[0]: return [0] def find_nested(i): cells = [i] for cell in range(8): i += 1 if refined[i]: parent = i i, sub_cells = find_nested(i) cells.append(sub_cells) else: cells.append(i) cells = [cells[j] for j in [0,1,5,3,7,2,6,4,8]] return i, np.hstack(cells) return find_nested(0)[1] def octree_grid_to_yt_stream(grid, dust_id=0): order = find_order(grid.refined) refined = grid.refined[order] xmin = grid.x - grid.dx xmax = grid.x + grid.dx ymin = grid.y - grid.dy ymax = grid.y + grid.dy zmin = grid.z - grid.dz zmax = grid.z + grid.dz from yt.mods import load_octree quantities = {} for field in grid.quantities: quantities[('gas', field)] = np.atleast_2d(grid.quantities[field][dust_id][order][~refined]).transpose() bbox = np.array([[xmin, xmax], [ymin, ymax], [zmin, zmax]]) octree_mask = refined.astype(np.uint8) * 8 spf = load_octree(octree_mask=octree_mask, data=quantities, bbox=bbox, over_refine_factor=0, partial_coverage=0) return spf def cartesian_grid_to_yt_stream(grid, xmin, xmax, ymin, ymax, zmin, zmax, dust_id=0): # TODO: only works for regular grids, need to catch non-uniform cases here # Make data dict which should contain (array, unit) tuples data = {} for field in grid.quantities: data[field] = (grid.quantities[field][dust_id], '') # Load cartesian grid into yt from yt.mods import load_uniform_grid spf = load_uniform_grid(data=data, domain_dimensions=np.array(grid.shape, dtype=np.int32), bbox=np.array([(xmin, xmax), (ymin, ymax), (zmin, zmax)])) return spf
67bd82c6736e3ac0503aaf31946a87f83b6a9bac
e3365bc8fa7da2753c248c2b8a5c5e16aef84d9f
/indices/nnschedul.py
2bda54c807c76dff011ebad9091ac3f000811ebe
[]
no_license
psdh/WhatsintheVector
e8aabacc054a88b4cb25303548980af9a10c12a8
a24168d068d9c69dc7a0fd13f606c080ae82e2a6
refs/heads/master
2021-01-25T10:34:22.651619
2015-09-23T11:54:06
2015-09-23T11:54:06
42,749,205
2
3
null
2015-09-23T11:54:07
2015-09-18T22:06:38
Python
UTF-8
Python
false
false
219
py
ii = [('CoolWHM2.py', 1), ('GodwWSL2.py', 1), ('AubePRP2.py', 1), ('PeckJNG.py', 2), ('LyttELD.py', 1), ('WadeJEB.py', 3), ('BachARE.py', 4), ('MereHHB3.py', 3), ('MereHHB.py', 2), ('ThomGLG.py', 1), ('MereHHB2.py', 1)]
5db77f5c0ccc08e6f16c479642688f934e405b8b
6757339759559cc741178ed4236b449ff27df221
/chrZ_make_seq_for_ldhelmet.py
5833cc08ecd26ce0740ee512fb400e2178dbabf0
[]
no_license
anandksrao/postdoc
18095f675cc5d67bc6e6a1b70bdc7dca29ac880d
a09e2d810bc4b562dc0e6de2999c063f5bd59cf8
refs/heads/master
2020-04-22T23:28:03.482966
2015-09-08T16:40:24
2015-09-08T16:40:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,695
py
import re import glob import sys import subprocess import os import copy import argparse import gzip import time def get_vcf_var(vcf_file, min_allele): site_freq = {} vcf_f = gzip.open(vcf_file, 'r') for l in vcf_f: if not re.search('^#', l): d = re.split('\t', l) allele1 = len(re.findall('\s0[\/|\:]', l)) + len(re.findall('\/0', l)) allele2 = len(re.findall('\s1[\/|\:]', l)) + len(re.findall('\/1', l)) min_ac = min(allele1, allele2) if min_ac <= min_allele: site_freq[int(d[1])] = 1 vcf_f.close() return site_freq def parse_male_haps(hap_file, site_freq, sites_file, chr): f = open(hap_file, 'r') var = {} sites = {} for l in f: d = re.split('\s+', l.rstrip()) if int(d[2]) not in site_freq: if int(d[2]) in sites: var.pop(int(d[2]), None) else: sites[int(d[2])] = 1 for ix, i in enumerate(d[5:len(d)]): if ix not in var: var[ix] = dict() if i == '0': var[ix][int(d[2]) - 1] = d[3] else: var[ix][int(d[2]) - 1] = d[4] f.close() sites_f = open(sites_file, 'w') for site in sorted(var[0].keys()): sites_f.write('%s,%s\n' % (chr, site + 1)) sites_f.close() return var def parse_female_haps(var, vcf_file): f = gzip.open(vcf_file) start_hap = max(var.keys()) + 1 for l in f: if not re.search('#', l): l = l.rstrip() d = re.split('\t', l) if (int(d[1]) - 1) in var[0]: fem_gens = [] for geno in d[9:]: if not re.search('\S\/', geno): allele = re.search('^(\S)', geno).group(1) fem_gens.append(allele) for ix, gen in enumerate(fem_gens): hapnum = start_hap + ix if hapnum not in var: var[hapnum] = {} if gen == '.': var[hapnum][int(d[1]) - 1] = 'N' elif gen == '1': var[hapnum][int(d[1]) - 1] = d[4] elif gen == '0': var[hapnum][int(d[1]) - 1] = d[3] f.close() return var def get_chromosome(genome, chr): outfile = genome + '_' + chr subprocess.call('~/bin/samtools-0.1.19/samtools faidx %s %s > %s' % (genome, chr, outfile), shell=True) out_f = open(outfile, 'r') chromosome = '' locus_name = out_f.next() for l in out_f: chromosome = chromosome + l.rstrip().upper() out_f.close() os.remove(outfile) return list(chromosome) def print_seq(var, chr_as_list, masked, out_file): out_f = open(out_file, 'w') for ind in var: out_f.write('>haplo%s\n' % ind) tmp_chr = list(chr_as_list) for pos, base in enumerate(masked): if base in ['4', '5', '6', '7']: tmp_chr[pos] = 'N' for pos in var[ind]: tmp_chr[pos] = var[ind][pos] for i in xrange(0, len(tmp_chr), 60): out_f.write(''.join(tmp_chr[i:i+60]) + '\n') out_f.close() def main(): parser = argparse.ArgumentParser() parser.add_argument("--sp", help="species for which to run analysis") args = parser.parse_args() sp = args.sp if sp == 'ZF': vcf_file = '/mnt/gluster/home/sonal.singhal1/ZF/after_vqsr/by_chr/all_vcf/for_shapeit/gatk.ug.finch19.chrZ.allfilters.recodedsex.recoded_biallelicSNPs.vcf.gz' hap_file = '/mnt/gluster/home/sonal.singhal1/ZF/phasing/PIR_approach/finch19/chrZ_haplotypes.haps' masked_genome = '/mnt/gluster/home/sonal.singhal1/ZF/masked_genome/ZF.masked_genome.repeat_masked.switch_masked.fa' if sp == 'LTF': vcf_file = '/mnt/gluster/home/sonal.singhal1/LTF/after_vqsr/by_chr/for_shapeit/gatk.ug.ltf.chrZ.allfilters.recodedsex.recoded_biallelicSNPs.vcf.gz' hap_file = '/mnt/gluster/home/sonal.singhal1/%s/phasing/PIR_approach/chrZ_haplotypes.haps' % sp masked_genome = '/mnt/gluster/home/sonal.singhal1/LTF/masked_genome/LTF.masked_genome.repeat_masked.fa' out_file = '/mnt/gluster/home/sonal.singhal1/%s/analysis/LDhelmet/chrZ_haplotypes.fasta' % sp site_file = '/mnt/gluster/home/sonal.singhal1/%s/analysis/LDhelmet/chrZ_sites.csv' % sp genome = '/mnt/gluster/home/sonal.singhal1/reference/taeGut1_60.bamorder.fasta' min_allele = 1 chr = 'chrZ' site_freq = get_vcf_var(vcf_file, min_allele) chr_as_list = get_chromosome(genome, chr) masked = get_chromosome(masked_genome, chr) var = parse_male_haps(hap_file, site_freq, site_file, chr) var = parse_female_haps(var, vcf_file) print_seq(var, chr_as_list, masked, out_file) if __name__ == "__main__": main()
40bfd6b2d53f43ebd7039a79a1d0df64f193dd3e
f96636810509786bd7afdfb1580fd276b930ade1
/client/sendDiagPopup.py
cbc672534de873b006ab10258fe7a3a4006185e6
[]
no_license
Bharathkumar-nb/SCSI-simulation
0b0d47fa2bce028e6214bf3e348c4be28cfaa118
c94041043793deaa1ac4a1298eca9685952ff1eb
refs/heads/master
2021-01-20T10:29:15.966464
2013-05-03T07:39:38
2013-05-03T07:39:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,734
py
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'send_diagnostic.ui' # # Created: Sat Apr 27 09:51:24 2013 # by: PyQt4 UI code generator 4.9.3 # # WARNING! All changes made in this file will be lost! from PyQt4 import QtCore, QtGui try: _fromUtf8 = QtCore.QString.fromUtf8 except AttributeError: _fromUtf8 = lambda s: s class Ui_send_diagnostic(object): def setupUi(self, send_diagnostic): send_diagnostic.setObjectName(_fromUtf8("send_diagnostic")) send_diagnostic.resize(632, 515) # send_diagnostic = QtGui.QWidget(send_diagnostic) # send_diagnostic.setObjectName(_fromUtf8("centralWidget")) self.label = QtGui.QLabel(send_diagnostic) self.label.setGeometry(QtCore.QRect(80, 40, 66, 17)) self.label.setText(_fromUtf8("")) self.label.setObjectName(_fromUtf8("label")) self.label_2 = QtGui.QLabel(send_diagnostic) self.label_2.setGeometry(QtCore.QRect(60, 40, 121, 17)) self.label_2.setObjectName(_fromUtf8("label_2")) self.label_3 = QtGui.QLabel(send_diagnostic) self.label_3.setGeometry(QtCore.QRect(70, 220, 111, 17)) self.label_3.setText(_fromUtf8("")) self.label_3.setObjectName(_fromUtf8("label_3")) self.label_4 = QtGui.QLabel(send_diagnostic) self.label_4.setGeometry(QtCore.QRect(60, 90, 211, 20)) self.label_4.setObjectName(_fromUtf8("label_4")) self.label_5 = QtGui.QLabel(send_diagnostic) self.label_5.setGeometry(QtCore.QRect(60, 160, 211, 17)) self.label_5.setObjectName(_fromUtf8("label_5")) self.pushButton = QtGui.QPushButton(send_diagnostic) self.pushButton.setGeometry(QtCore.QRect(320, 370, 101, 27)) self.pushButton.setObjectName(_fromUtf8("pushButton")) self.lineEdit = QtGui.QLineEdit(send_diagnostic) self.lineEdit.setGeometry(QtCore.QRect(350, 30, 111, 27)) self.lineEdit.setObjectName(_fromUtf8("lineEdit")) self.lineEdit_2 = QtGui.QLineEdit(send_diagnostic) self.lineEdit_2.setGeometry(QtCore.QRect(350, 150, 113, 27)) self.lineEdit_2.setObjectName(_fromUtf8("lineEdit_2")) self.lineEdit_3 = QtGui.QLineEdit(send_diagnostic) self.lineEdit_3.setGeometry(QtCore.QRect(350, 210, 113, 27)) self.lineEdit_3.setObjectName(_fromUtf8("lineEdit_3")) self.lineEdit_4 = QtGui.QLineEdit(send_diagnostic) self.lineEdit_4.setGeometry(QtCore.QRect(350, 90, 113, 27)) self.lineEdit_4.setObjectName(_fromUtf8("lineEdit_4")) self.label_6 = QtGui.QLabel(send_diagnostic) self.label_6.setGeometry(QtCore.QRect(60, 220, 121, 17)) self.label_6.setObjectName(_fromUtf8("label_6")) self.label_7 = QtGui.QLabel(send_diagnostic) self.label_7.setGeometry(QtCore.QRect(60, 240, 211, 17)) self.label_7.setObjectName(_fromUtf8("label_7")) # send_diagnostic.setCentralWidget(send_diagnostic) #self.menuBar = QtGui.QMenuBar(send_diagnostic) # self.menuBar.setGeometry(QtCore.QRect(0, 0, 632, 25)) # self.menuBar.setObjectName(_fromUtf8("menuBar")) # send_diagnostic.setMenuBar(self.menuBar) # self.mainToolBar = QtGui.QToolBar(send_diagnostic) #self.mainToolBar.setObjectName(_fromUtf8("mainToolBar")) #send_diagnostic.addToolBar(QtCore.Qt.TopToolBarArea, self.mainToolBar) #self.statusBar = QtGui.QStatusBar(send_diagnostic) #self.statusBar.setObjectName(_fromUtf8("statusBar")) #send_diagnostic.setStatusBar(self.statusBar) self.retranslateUi(send_diagnostic) QtCore.QMetaObject.connectSlotsByName(send_diagnostic) def retranslateUi(self, send_diagnostic): send_diagnostic.setWindowTitle(QtGui.QApplication.translate("send_diagnostic", "send_diagnostic", None, QtGui.QApplication.UnicodeUTF8)) self.label_2.setText(QtGui.QApplication.translate("send_diagnostic", "Self Test Bit (0/1)", None, QtGui.QApplication.UnicodeUTF8)) self.label_4.setText(QtGui.QApplication.translate("send_diagnostic", "DEVOFFL (Device Offline) (0/1)", None, QtGui.QApplication.UnicodeUTF8)) self.label_5.setText(QtGui.QApplication.translate("send_diagnostic", "UNITOFFL (Unit Offline) (0/1)", None, QtGui.QApplication.UnicodeUTF8)) self.pushButton.setText(QtGui.QApplication.translate("send_diagnostic", "OK", None, QtGui.QApplication.UnicodeUTF8)) self.label_6.setText(QtGui.QApplication.translate("send_diagnostic", "Self Test Code", None, QtGui.QApplication.UnicodeUTF8)) self.label_7.setText(QtGui.QApplication.translate("send_diagnostic", "(Value between 000 and 111)", None, QtGui.QApplication.UnicodeUTF8))
3a23b26701ccfc73af6fef97637eab76dab9b738
0a43afbcba776ed8ada0fef5425b1507aa4d51c1
/smartbook/smartbook/web/migrations/0016_auto__del_ownercompanyname__add_ownercompany.py
b443dac4b4ee2cee94af23d6f41f3b7c34b366fb
[]
no_license
geethusuresh/inventory-systems
c76d6d10429f483499594df8c8f34d780531f18c
fd4211d29042776fa47da92162cbbbe8220090cd
refs/heads/master
2021-01-02T08:51:31.278578
2014-09-28T07:35:54
2014-09-28T07:35:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,583
py
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Deleting model 'OwnerCompanyName' db.delete_table(u'web_ownercompanyname') # Adding model 'OwnerCompany' db.create_table(u'web_ownercompany', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('company_name', self.gf('django.db.models.fields.CharField')(max_length=100)), )) db.send_create_signal(u'web', ['OwnerCompany']) def backwards(self, orm): # Adding model 'OwnerCompanyName' db.create_table(u'web_ownercompanyname', ( ('company_name', self.gf('django.db.models.fields.CharField')(max_length=100)), (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), )) db.send_create_signal(u'web', ['OwnerCompanyName']) # Deleting model 'OwnerCompany' db.delete_table(u'web_ownercompany') models = { u'auth.group': { 'Meta': {'object_name': 'Group'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, u'auth.permission': { 'Meta': {'ordering': "(u'content_type__app_label', u'content_type__model', u'codename')", 'unique_together': "((u'content_type', u'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, u'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, u'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, u'web.customer': { 'Meta': {'object_name': 'Customer'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['auth.User']"}) }, u'web.designation': { 'Meta': {'object_name': 'Designation'}, 'description': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '50'}) }, u'web.ownercompany': { 'Meta': {'object_name': 'OwnerCompany'}, 'company_name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, u'web.staff': { 'Meta': {'object_name': 'Staff'}, 'designation': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['web.Designation']", 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['auth.User']"}) }, u'web.transportationcompany': { 'Meta': {'object_name': 'TransportationCompany'}, 'company_name': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, u'web.userprofile': { 'Meta': {'object_name': 'UserProfile'}, 'city': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True', 'blank': 'True'}), 'district': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True', 'blank': 'True'}), 'email_id': ('django.db.models.fields.CharField', [], {'max_length': '30'}), 'house_name': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'land_line': ('django.db.models.fields.CharField', [], {'max_length': '15', 'blank': 'True'}), 'mobile': ('django.db.models.fields.CharField', [], {'max_length': '15', 'null': 'True', 'blank': 'True'}), 'pin': ('django.db.models.fields.CharField', [], {'max_length': '10', 'null': 'True', 'blank': 'True'}), 'street': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True', 'blank': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['auth.User']"}), 'user_type': ('django.db.models.fields.CharField', [], {'max_length': '10'}) }, u'web.vendor': { 'Meta': {'object_name': 'Vendor'}, 'contact_person': ('django.db.models.fields.CharField', [], {'max_length': '50'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['auth.User']"}) } } complete_apps = ['web']
8b92d801b14bce7463cefb8954677a9b0694325a
415920616d5efccee4667126c4bb29f91f1d5321
/blood/donor/urls.py
f4eb33826ecb67e2f4cedf717f45045d210213b2
[]
no_license
ManogaranArumugam/blood
6c779b3bfe308a95d52cb730be65b25cb2c3eda6
bb6ef86bfeaf67ed70eafa97dcb6b6c1da0c9f4f
refs/heads/master
2020-03-25T22:43:31.004539
2018-08-09T12:43:50
2018-08-09T12:43:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
164
py
from django.conf.urls import url from blood.donor.views import DonorRegistrationView urlpatterns = [ url(r'^$', DonorRegistrationView.as_view(), name='home'), ]
6c340cf04b054bb75cdfb63b9fbdf78c10395714
fa93e53a9eee6cb476b8998d62067fce2fbcea13
/build/pal_statistics/catkin_generated/generate_cached_setup.py
91044b831264767383d53fe4fda54ceccbaa6122
[]
no_license
oyetripathi/ROS_conclusion_project
2947ee2f575ddf05480dabc69cf8af3c2df53f73
01e71350437d57d8112b6cec298f89fc8291fb5f
refs/heads/master
2023-06-30T00:38:29.711137
2021-08-05T09:17:54
2021-08-05T09:17:54
392,716,311
0
1
null
null
null
null
UTF-8
Python
false
false
1,355
py
# -*- coding: utf-8 -*- from __future__ import print_function import os import stat import sys # find the import for catkin's python package - either from source space or from an installed underlay if os.path.exists(os.path.join('/opt/ros/melodic/share/catkin/cmake', 'catkinConfig.cmake.in')): sys.path.insert(0, os.path.join('/opt/ros/melodic/share/catkin/cmake', '..', 'python')) try: from catkin.environment_cache import generate_environment_script except ImportError: # search for catkin package in all workspaces and prepend to path for workspace in '/home/sandeepan/tiago_public_ws/devel;/opt/ros/melodic'.split(';'): python_path = os.path.join(workspace, 'lib/python2.7/dist-packages') if os.path.isdir(os.path.join(python_path, 'catkin')): sys.path.insert(0, python_path) break from catkin.environment_cache import generate_environment_script code = generate_environment_script('/home/sandeepan/tiago_public_ws/devel/.private/pal_statistics/env.sh') output_filename = '/home/sandeepan/tiago_public_ws/build/pal_statistics/catkin_generated/setup_cached.sh' with open(output_filename, 'w') as f: # print('Generate script for cached setup "%s"' % output_filename) f.write('\n'.join(code)) mode = os.stat(output_filename).st_mode os.chmod(output_filename, mode | stat.S_IXUSR)
55565979bd9e9ceb8e3a4424587b82a4a4a0688a
b94ab99f9c1f8bbb99afd23e1bfcd2332060b4bd
/library/migrations/0012_auto_20170805_0851.py
050383e317e1d09ac7e3c45f3c1ea4e50db4dfca
[]
no_license
georgecai904/bookshelf
e54ccae00d4ee48e91ca1564a425ba4586b52d93
0002207dc8ca586ce1127d3ea98bb53102d043df
refs/heads/master
2021-01-02T22:52:26.046535
2017-08-05T15:32:13
2017-08-05T15:32:13
99,409,971
0
0
null
null
null
null
UTF-8
Python
false
false
597
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.2 on 2017-08-05 08:51 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('library', '0011_auto_20170805_0850'), ] operations = [ migrations.AlterField( model_name='book', name='pages', field=models.IntegerField(blank=True), ), migrations.AlterField( model_name='book', name='year', field=models.IntegerField(blank=True), ), ]
542650ec2698610417fd1074ecee715e3a7ecf4e
55d6de252e61c4b60688ebd8b1f637807acc1e7c
/sale_report/wizard/aged_customer_list.py
6bee3ea9ef1268815749ad4cfb0996f5175cc12b
[]
no_license
mosadiqit/eerna_erp_uslbd
b707a1d49a4fce7c1543b63e0120e8f9b77b26ce
73e3994a9e32df7809d244eb6592513162ab7853
refs/heads/main
2023-06-30T14:53:04.837197
2021-08-04T11:30:46
2021-08-04T11:30:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,133
py
# -*- coding: utf-8 -*- from odoo import models, fields, api from odoo.tools import DEFAULT_SERVER_DATE_FORMAT as DATE_FORMAT from odoo.tools import DEFAULT_SERVER_DATETIME_FORMAT as DATETIME_FORMAT, BytesIO, xlsxwriter, base64 class AgedCustomerReportWizard(models.TransientModel): _name = 'aged.customer.report.wizard' company_id = fields.Many2one('res.company', string='Company', domain=lambda self:self._get_companies(),default=lambda self: self.env.user.company_id,required=True) branch_ids = fields.Many2one( 'res.branch',string='Branch') date_start = fields.Date(string='Start Date', required=True, default=fields.Date.today) date_end = fields.Date(string='End Date', required=True, default=fields.Date.today) def _get_companies(self): query="""select * from res_company_users_rel where user_id={}""".format(self.env.user.id) self._cr.execute(query=query) allowed_companies=self._cr.fetchall() allowed_company=[] for company in allowed_companies: allowed_company.append(company[0]) return [('id', 'in', allowed_company)] def get_report(self): data = { 'model': self._name, 'ids': self.ids, 'form': { 'date_start': self.date_start, 'date_end': self.date_end,'company_id':self.company_id.id, 'branch_id': self.branch_ids.id, 'branch_name': self.branch_ids.name, }, } # ref `module_name.report_id` as reference. return self.env.ref('sale_report.aged_customer_list_report').report_action( self, data=data) class AreaWiseSalesReportView(models.AbstractModel): """ Abstract Model specially for report template. _name = Use prefix `report.` along with `module_name.report_name` """ _name = 'report.sale_report.aged_customer_list_view' @api.model def _get_report_values(self, docids, data=None): branch_id = data['form']['branch_id'] branch_name = data['form']['branch_name'] company_id=data['form']['company_id'] date_start = data['form']['date_start'] date_end = data['form']['date_end'] # query = """select (cast(date_trunc('month',current_date) as date)) startdate""" # self._cr.execute(query=query) # result = self._cr.fetchall() # date_start = result[0] # # query = """select (cast(date_trunc('month',current_date)-INTERVAL '90 day' as date)) todate""" # self._cr.execute(query=query) # result_1 = self._cr.fetchall() # date_end = result_1[0] if branch_id: branch_id = " m.branch_id = %s" % branch_id else: branch_id = "1=1" if company_id: company_id = " m.company_id = %s" % company_id else: company_id = "1=1" query = """select distinct p.id,p.name,ca.area_name,max(m.date) as last_trans_date,sum(ml.debit) as debit,sum(ml.credit) as credit, (sum(debit)-sum(credit)) as Balance from res_partner p left join account_move m on m.partner_id=p.id left join account_move_line ml on m.id=ml.move_id left join customer_area_setup ca on ca.id=p.customer_area where m.state='posted' --and and p.id not in (select distinct m.partner_id from account_move_line ml left join account_move m on m.id=ml.move_id where {} and m.date between '{}' and '{}' and {} and m.partner_id is not null) group by p.id,p.name,ca.area_name order by p.name,ca.area_name """.format(branch_id, date_start, date_end, company_id) self._cr.execute(query=query) query_result = self._cr.fetchall() return { 'date_start': date_start, 'date_end': date_end, 'branch': branch_name, 'idle_customer': query_result, }
4c0ac46f1d84771dc353dc57195fde968e23467e
630fe47bb5aa5e49b45ab101d87c2dd2c53d180f
/Bubble_soft_json.py
4670c4958ea3d09c64e4879c8e4c5913ea0222f9
[]
no_license
shrivastava-himanshu/Leetcode_practice
467497a58d82ff3ae2569d5e610dc6f27a1f31d6
4c59799947c2b17bfd22ca2a08707ef85e84a913
refs/heads/main
2023-06-12T13:14:45.381839
2021-07-05T04:09:05
2021-07-05T04:09:05
367,546,005
0
0
null
null
null
null
UTF-8
Python
false
false
856
py
def bubble_sort_json(elements,key='name'): size = len(elements) for i in range(size-1): swapped = False for j in range(size-1-i): a = elements[j][key] b = elements[j+1][key] if a > b: tmp = elements[j] elements[j] = elements[j+1] elements[j+1] = tmp swapped = True if not swapped: break if __name__ == '__main__': elements = [ {'name': 'mona', 'transaction_amount': 1000, 'device': 'iphone-10'}, {'name': 'dhaval', 'transaction_amount': 400, 'device': 'google pixel'}, {'name': 'kathy', 'transaction_amount': 200, 'device': 'vivo'}, {'name': 'aamir', 'transaction_amount': 800, 'device': 'iphone-8'}, ] bubble_sort_json(elements,key='device') print(elements)
5b52140b650b1eaf1fa06ca3369752b6bba03eb9
ef786be9b7c7145d63797cb8c351780059996873
/watchlist_app/migrations/0001_initial.py
76d570588a7802ab729017622b43b470dcd0ec1d
[]
no_license
nileshnagarwal/djangorest_course_sarda
31c27ab625139f632d1121296c981c108301de70
933d7b5330d7fda1b17c367d30cb903543eebb02
refs/heads/main
2023-07-17T11:49:43.562982
2021-08-27T07:19:57
2021-08-27T07:19:57
394,706,946
0
0
null
null
null
null
UTF-8
Python
false
false
617
py
# Generated by Django 3.2.6 on 2021-08-10 07:41 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Movie', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50)), ('description', models.CharField(max_length=200)), ('active', models.BooleanField(default=True)), ], ), ]
8aa8349d9f1213a364dd5a5713676193303f913c
159aed4755e47623d0aa7b652e178296be5c9604
/data/scripts/templates/object/draft_schematic/chemistry/shared_medpack_disease_action_a.py
20a75b8ac4bc4329cb51b260ec5349043fb09d4a
[ "MIT" ]
permissive
anhstudios/swganh
fb67d42776864b1371e95f769f6864d0784061a3
41c519f6cdef5a1c68b369e760781652ece7fec9
refs/heads/develop
2020-12-24T16:15:31.813207
2016-03-08T03:54:32
2016-03-08T03:54:32
1,380,891
33
44
null
2016-03-08T03:54:32
2011-02-18T02:32:45
Python
UTF-8
Python
false
false
463
py
#### NOTICE: THIS FILE IS AUTOGENERATED #### MODIFICATIONS MAY BE LOST IF DONE IMPROPERLY #### PLEASE SEE THE ONLINE DOCUMENTATION FOR EXAMPLES from swgpy.object import * def create(kernel): result = Intangible() result.template = "object/draft_schematic/chemistry/shared_medpack_disease_action_a.iff" result.attribute_template_id = -1 result.stfName("string_id_table","") #### BEGIN MODIFICATIONS #### #### END MODIFICATIONS #### return result
efaeae158142d783d0c4d3c5f624d9fbd08615b8
6f151b64427d47571ff8d02a24a98c9cbd8c68a5
/[leetcode-08]strings-to-integer-atoi.py
17245f772a1bae021abee1832c545d882e0b4cb2
[ "MIT" ]
permissive
Menah3m/leetcode-Python
50c0a0e518274cfa9a5ce939c37c075ce226dd04
212cae16ae868e5f031d3aeb8f614c539c1a27f1
refs/heads/master
2021-04-02T03:24:35.855185
2020-12-15T09:39:03
2020-12-15T09:39:03
248,238,533
0
0
null
2020-12-15T09:39:05
2020-03-18T13:25:55
Python
UTF-8
Python
false
false
2,470
py
""" 请你来实现一个 atoi 函数,使其能将字符串转换成整数。 首先,该函数会根据需要丢弃无用的开头空格字符,直到寻找到第一个非空格的字符为止。接下来的转化规则如下: 如果第一个非空字符为正或者负号时,则将该符号与之后面尽可能多的连续数字字符组合起来,形成一个有符号整数。 假如第一个非空字符是数字,则直接将其与之后连续的数字字符组合起来,形成一个整数。 该字符串在有效的整数部分之后也可能会存在多余的字符,那么这些字符可以被忽略,它们对函数不应该造成影响。 注意:假如该字符串中的第一个非空格字符不是一个有效整数字符、字符串为空或字符串仅包含空白字符时,则你的函数不需要进行转换,即无法进行有效转换。 在任何情况下,若函数不能进行有效的转换时,请返回 0 。 提示: 本题中的空白字符只包括空格字符 ' ' 。 假设我们的环境只能存储 32 位大小的有符号整数,那么其数值范围为 [−231,  231 − 1]。如果数值超过这个范围,请返回  INT_MAX (231 − 1) 或 INT_MIN (−231) 。   示例 1: 输入: "42" 输出: 42 示例 2: 输入: " -42" 输出: -42 解释: 第一个非空白字符为 '-', 它是一个负号。   我们尽可能将负号与后面所有连续出现的数字组合起来,最后得到 -42 。 示例 3: 输入: "4193 with words" 输出: 4193 解释: 转换截止于数字 '3' ,因为它的下一个字符不为数字。 示例 4: 输入: "words and 987" 输出: 0 解释: 第一个非空字符是 'w', 但它不是数字或正、负号。 因此无法执行有效的转换。 示例 5: 输入: "-91283472332" 输出: -2147483648 解释: 数字 "-91283472332" 超过 32 位有符号整数范围。   因此返回 INT_MIN (−231) 。 来源:LeetCode-08 链接:https://leetcode-cn.com/problems/string-to-integer-atoi """ class Solution: def myAtoi(self, str: str) -> int: str = str.lstrip() if len(str)==0 or (str[0].isdigit()==False and str[0] not in ["-", "+"]): return 0 res, i = str[0], 1 while i < len(str) and str[i].isdigit(): res += str[i] i += 1 try: res = int(res) return min(max(res, -2**31), 2**31-1) except: return 0
d046514180a9e37274ac16c00eabafba5f77c479
9a9fb43d866dc8fd829211d2b47328ef1f5ed428
/PI_ROS_WORKSPACES/ros_catkin_ws/build_isolated/rosboost_cfg/catkin_generated/pkg.develspace.context.pc.py
72b73d066877678ca5a5c6ee1ed6b3c0bdd104c5
[]
no_license
droter/auto_mow
326df42a54676079cac61fe63c40d5d04beb049b
3742cb2ef78bc06d2771ac4c679e5110909774f8
refs/heads/master
2022-05-19T20:18:33.409777
2020-04-29T00:42:24
2020-04-29T00:42:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
397
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "".split(';') if "" != "" else [] PROJECT_CATKIN_DEPENDS = "".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "rosboost_cfg" PROJECT_SPACE_DIR = "/home/pi/ros_catkin_ws/devel_isolated/rosboost_cfg" PROJECT_VERSION = "1.14.4"
26f1f046fbcc3e826fb8fa1f586db82a5eadc742
aea02d626c10396c2220d5ee642cb9c279e5bc37
/migrations/versions/34c8e6e836da_email_column.py
d039f076f6691862d68521cdf0df979072f894e7
[ "MIT" ]
permissive
Derrick-Nyongesa/Blog
5fb176575865a75a02658bc8622fed3b9e05c919
aff6b97aac958e6f626c934c57fffba1bb1f845d
refs/heads/main
2023-04-14T12:21:20.890964
2021-04-26T07:07:55
2021-04-26T07:07:55
360,806,456
0
0
null
null
null
null
UTF-8
Python
false
false
795
py
"""email column Revision ID: 34c8e6e836da Revises: 4fb50df0a785 Create Date: 2021-04-23 14:54:17.658067 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '34c8e6e836da' down_revision = '4fb50df0a785' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('users', sa.Column('email', sa.String(length=255), nullable=True)) op.create_index(op.f('ix_users_email'), 'users', ['email'], unique=True) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f('ix_users_email'), table_name='users') op.drop_column('users', 'email') # ### end Alembic commands ###
bd3b3d45311a3acf29007751bcf7d26209d85391
f445450ac693b466ca20b42f1ac82071d32dd991
/generated_tempdir_2019_09_15_163300/generated_part000492.py
7a98b03c8016f65306e467ddfb470f008a62508e
[]
no_license
Upabjojr/rubi_generated
76e43cbafe70b4e1516fb761cabd9e5257691374
cd35e9e51722b04fb159ada3d5811d62a423e429
refs/heads/master
2020-07-25T17:26:19.227918
2019-09-15T15:41:48
2019-09-15T15:41:48
208,357,412
4
1
null
null
null
null
UTF-8
Python
false
false
5,532
py
from sympy.abc import * from matchpy.matching.many_to_one import CommutativeMatcher from matchpy import * from matchpy.utils import VariableWithCount from collections import deque from multiset import Multiset from sympy.integrals.rubi.constraints import * from sympy.integrals.rubi.utility_function import * from sympy.integrals.rubi.rules.miscellaneous_integration import * from sympy import * class CommutativeMatcher43335(CommutativeMatcher): _instance = None patterns = { 0: (0, Multiset({0: 1, 1: 1}), [ (VariableWithCount('i2.2.1.2.2.2.0', 1, 1, S(0)), Add) ]), 1: (1, Multiset({2: 1}), [ (VariableWithCount('i2.2.1.2.2.2.0', 1, 1, S(0)), Add) ]) } subjects = {} subjects_by_id = {} bipartite = BipartiteGraph() associative = Add max_optional_count = 1 anonymous_patterns = set() def __init__(self): self.add_subject(None) @staticmethod def get(): if CommutativeMatcher43335._instance is None: CommutativeMatcher43335._instance = CommutativeMatcher43335() return CommutativeMatcher43335._instance @staticmethod def get_match_iter(subject): subjects = deque([subject]) if subject is not None else deque() subst0 = Substitution() # State 43334 subst1 = Substitution(subst0) try: subst1.try_add_variable('i2.2.1.2.2.2.1.0', S(1)) except ValueError: pass else: pass # State 43336 if len(subjects) >= 1 and isinstance(subjects[0], Pow): tmp2 = subjects.popleft() subjects3 = deque(tmp2._args) # State 43337 if len(subjects3) >= 1: tmp4 = subjects3.popleft() subst2 = Substitution(subst1) try: subst2.try_add_variable('i2.2.1.2.2.2.1.1', tmp4) except ValueError: pass else: pass # State 43338 if len(subjects3) >= 1 and subjects3[0] == Integer(2): tmp6 = subjects3.popleft() # State 43339 if len(subjects3) == 0: pass # State 43340 if len(subjects) == 0: pass # 0: g*x**2 yield 0, subst2 subjects3.appendleft(tmp6) subjects3.appendleft(tmp4) subjects.appendleft(tmp2) subst1 = Substitution(subst0) try: subst1.try_add_variable('i2.2.1.2.2.2.1.0_1', S(1)) except ValueError: pass else: pass # State 43348 if len(subjects) >= 1: tmp8 = subjects.popleft() subst2 = Substitution(subst1) try: subst2.try_add_variable('i2.2.1.2.2.2.1.1', tmp8) except ValueError: pass else: pass # State 43349 if len(subjects) == 0: pass # 1: f*x yield 1, subst2 subjects.appendleft(tmp8) if len(subjects) >= 1: tmp10 = subjects.popleft() subst2 = Substitution(subst1) try: subst2.try_add_variable('i2.2.1.2.2.2.1.0', tmp10) except ValueError: pass else: pass # State 55141 if len(subjects) == 0: pass # 2: x*f yield 2, subst2 subjects.appendleft(tmp10) if len(subjects) >= 1 and isinstance(subjects[0], Mul): tmp12 = subjects.popleft() associative1 = tmp12 associative_type1 = type(tmp12) subjects13 = deque(tmp12._args) matcher = CommutativeMatcher43342.get() tmp14 = subjects13 subjects13 = [] for s in tmp14: matcher.add_subject(s) for pattern_index, subst1 in matcher.match(tmp14, subst0): pass if pattern_index == 0: pass # State 43347 if len(subjects) == 0: pass # 0: g*x**2 yield 0, subst1 if pattern_index == 1: pass # State 43350 if len(subjects) == 0: pass # 1: f*x yield 1, subst1 if pattern_index == 2: pass # State 55142 if len(subjects) == 0: pass # 2: x*f yield 2, subst1 subjects.appendleft(tmp12) return yield from .generated_part000493 import * from matchpy.matching.many_to_one import CommutativeMatcher from collections import deque from matchpy.utils import VariableWithCount from multiset import Multiset
2347536eb37a719bc87f0edc137313e5e7eacfe6
5b9f9b4ea1494943e6f7f842df55909599ed1304
/python/onshape_client/oas/models/security_scheme.py
90cf4db87b065dc49b92d77bf05e8d217d9c5b3c
[]
no_license
jenniferyoung02/onshape-clients
f50534f033428027515b7fc0b801b1caab4d0aec
8ee31a17d7af32f105b851e45f69fd4a3006e1ba
refs/heads/master
2020-09-07T06:44:37.682545
2019-10-08T18:52:06
2019-10-08T18:52:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,638
py
# coding: utf-8 """ Onshape REST API The Onshape REST API consumed by all clients. # noqa: E501 The version of the OpenAPI document: 1.104 Contact: [email protected] Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six class SecurityScheme(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'type': 'str', 'description': 'str', 'name': 'str', 'getref': 'str', '_in': 'str', 'scheme': 'str', 'bearer_format': 'str', 'flows': 'OAuthFlows', 'open_id_connect_url': 'str', 'extensions': 'dict(str, object)' } attribute_map = { 'type': 'type', 'description': 'description', 'name': 'name', 'getref': 'get$ref', '_in': 'in', 'scheme': 'scheme', 'bearer_format': 'bearerFormat', 'flows': 'flows', 'open_id_connect_url': 'openIdConnectUrl', 'extensions': 'extensions' } def __init__(self, type=None, description=None, name=None, getref=None, _in=None, scheme=None, bearer_format=None, flows=None, open_id_connect_url=None, extensions=None): # noqa: E501 """SecurityScheme - a model defined in OpenAPI""" # noqa: E501 self._type = None self._description = None self._name = None self._getref = None self.__in = None self._scheme = None self._bearer_format = None self._flows = None self._open_id_connect_url = None self._extensions = None self.discriminator = None if type is not None: self.type = type if description is not None: self.description = description if name is not None: self.name = name if getref is not None: self.getref = getref if _in is not None: self._in = _in if scheme is not None: self.scheme = scheme if bearer_format is not None: self.bearer_format = bearer_format if flows is not None: self.flows = flows if open_id_connect_url is not None: self.open_id_connect_url = open_id_connect_url if extensions is not None: self.extensions = extensions @property def type(self): """Gets the type of this SecurityScheme. # noqa: E501 :return: The type of this SecurityScheme. # noqa: E501 :rtype: str """ return self._type @type.setter def type(self, type): """Sets the type of this SecurityScheme. :param type: The type of this SecurityScheme. # noqa: E501 :type: str """ allowed_values = ["apiKey", "http", "oauth2", "openIdConnect"] # noqa: E501 if type not in allowed_values: raise ValueError( "Invalid value for `type` ({0}), must be one of {1}" # noqa: E501 .format(type, allowed_values) ) self._type = type @property def description(self): """Gets the description of this SecurityScheme. # noqa: E501 :return: The description of this SecurityScheme. # noqa: E501 :rtype: str """ return self._description @description.setter def description(self, description): """Sets the description of this SecurityScheme. :param description: The description of this SecurityScheme. # noqa: E501 :type: str """ self._description = description @property def name(self): """Gets the name of this SecurityScheme. # noqa: E501 :return: The name of this SecurityScheme. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this SecurityScheme. :param name: The name of this SecurityScheme. # noqa: E501 :type: str """ self._name = name @property def getref(self): """Gets the getref of this SecurityScheme. # noqa: E501 :return: The getref of this SecurityScheme. # noqa: E501 :rtype: str """ return self._getref @getref.setter def getref(self, getref): """Sets the getref of this SecurityScheme. :param getref: The getref of this SecurityScheme. # noqa: E501 :type: str """ self._getref = getref @property def _in(self): """Gets the _in of this SecurityScheme. # noqa: E501 :return: The _in of this SecurityScheme. # noqa: E501 :rtype: str """ return self.__in @_in.setter def _in(self, _in): """Sets the _in of this SecurityScheme. :param _in: The _in of this SecurityScheme. # noqa: E501 :type: str """ allowed_values = ["cookie", "header", "query"] # noqa: E501 if _in not in allowed_values: raise ValueError( "Invalid value for `_in` ({0}), must be one of {1}" # noqa: E501 .format(_in, allowed_values) ) self.__in = _in @property def scheme(self): """Gets the scheme of this SecurityScheme. # noqa: E501 :return: The scheme of this SecurityScheme. # noqa: E501 :rtype: str """ return self._scheme @scheme.setter def scheme(self, scheme): """Sets the scheme of this SecurityScheme. :param scheme: The scheme of this SecurityScheme. # noqa: E501 :type: str """ self._scheme = scheme @property def bearer_format(self): """Gets the bearer_format of this SecurityScheme. # noqa: E501 :return: The bearer_format of this SecurityScheme. # noqa: E501 :rtype: str """ return self._bearer_format @bearer_format.setter def bearer_format(self, bearer_format): """Sets the bearer_format of this SecurityScheme. :param bearer_format: The bearer_format of this SecurityScheme. # noqa: E501 :type: str """ self._bearer_format = bearer_format @property def flows(self): """Gets the flows of this SecurityScheme. # noqa: E501 :return: The flows of this SecurityScheme. # noqa: E501 :rtype: OAuthFlows """ return self._flows @flows.setter def flows(self, flows): """Sets the flows of this SecurityScheme. :param flows: The flows of this SecurityScheme. # noqa: E501 :type: OAuthFlows """ self._flows = flows @property def open_id_connect_url(self): """Gets the open_id_connect_url of this SecurityScheme. # noqa: E501 :return: The open_id_connect_url of this SecurityScheme. # noqa: E501 :rtype: str """ return self._open_id_connect_url @open_id_connect_url.setter def open_id_connect_url(self, open_id_connect_url): """Sets the open_id_connect_url of this SecurityScheme. :param open_id_connect_url: The open_id_connect_url of this SecurityScheme. # noqa: E501 :type: str """ self._open_id_connect_url = open_id_connect_url @property def extensions(self): """Gets the extensions of this SecurityScheme. # noqa: E501 :return: The extensions of this SecurityScheme. # noqa: E501 :rtype: dict(str, object) """ return self._extensions @extensions.setter def extensions(self, extensions): """Sets the extensions of this SecurityScheme. :param extensions: The extensions of this SecurityScheme. # noqa: E501 :type: dict(str, object) """ self._extensions = extensions def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, SecurityScheme): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
843d08c826f8a29b84e9e209cbd7cf14df5aad5d
bcc199a7e71b97af6fbfd916d5a0e537369c04d9
/acmicpc/solved/2448_Draw_Stars/solution.py
bd9a9474145925faf28b5b29de95d694d48808eb
[]
no_license
sungminoh/algorithms
9c647e82472905a2c4e505c810b622b734d9d20d
1389a009a02e90e8700a7a00e0b7f797c129cdf4
refs/heads/master
2023-05-01T23:12:53.372060
2023-04-24T06:34:12
2023-04-24T06:34:12
87,406,513
0
0
null
null
null
null
UTF-8
Python
false
false
496
py
import math base = [' * ', ' * * ', '*****'] n = input() def get_k(n): return int(math.log(n/3., 2)) def concat1(a, b): return [x[0]+' '+x[1] for x in zip(a, b)] def concat2(a, b): return [x[0]+x[1] for x in zip(a, b)] def nth(i): if i == 0: return base else: child = nth(i-1) space = [' '*(2**(i-1)) for x in range(len(child))] return concat2(space, concat2(child, space)) + concat1(child, child) print '\n'.join(nth(get_k(n)))
d12b330c8a86dae7b2e3ff874faa4a0c84278ccd
d697c1d45e96bd440be9c17ab14243a5882b1f52
/hm/oop/Tool.py
bc86e8847c84a48bbaf2b70702747c4f2cdd6d05
[]
no_license
ithjl521/python
9eeda2e60dda97ee36e8764c06400eb12818689f
f4fe50799501c483cb64445fd05ee0f30f56576c
refs/heads/master
2020-07-12T23:10:53.608276
2019-11-08T08:59:35
2019-11-08T08:59:35
204,931,359
0
0
null
null
null
null
UTF-8
Python
false
false
215
py
class Tool(object): count = 0 def __init__(self,name): self.name = name Tool.count += 1 # self.count += 1 tool1= Tool('futou') tool2= Tool('maoie') tool3= Tool('fuzi') Tool.count = 99 print(Tool.count)
a6223c3a60b16697d235aa1eeeb4a1c5dda89b26
5c254373f6725107931b68704436c2dbcd39d877
/data_utils/FS_utils/eval_map.py
ff3f00e38f9b4ccfb4a4a595343df50faa23d6c3
[ "MIT" ]
permissive
JunLi-Galios/unsup_temp_embed_alternating
22330346094720ecba2e5af305febe586566b92f
1b054fd82aadcfe1aa219be17beb77c89efd974e
refs/heads/master
2023-03-21T04:06:16.044321
2021-03-20T06:06:06
2021-03-20T06:06:06
322,737,110
0
0
null
null
null
null
UTF-8
Python
false
false
1,472
py
#!/usr/bin/env python """Eval level activity """ __author__ = 'Anna Kukleva' __date__ = 'January 2019' import os from ute.utils.arg_pars import opt import data_utils.FS_utils.update_argpars as fs_utils fs_utils.update() actions = ['add_dressing', 'add_oil', 'add_pepper', 'cut', 'mix_dressing', 'mix_ingredients', 'peel_cucumber', 'place', 'serve_salad_onto_plate'] eval = {} eval['action_start'] = ['action_start'] eval['add_dressing'] = ['add_dressing'] eval['add_oil'] = ['add_oil'] eval['add_pepper'] = ['add_pepper'] eval['cut'] = ['cut_cucumber', 'cut_tomato', 'cut_cheese', 'cut_lettuce'] eval['mix_dressing'] = ['mix_dressing'] eval['mix_ingredients'] = ['mix_ingredients'] eval['peel_cucumber'] = ['peel_cucumber'] eval['place'] = ['place_cucumber_into_bowl', 'place_tomato_into_bowl', 'place_cheese_into_bowl', 'place_lettuce_into_bowl'] eval['serve_salad_onto_plate'] = ['serve_salad_onto_plate'] eval['null'] = ['add_salt', 'add_vinegar'] eval['action_end'] = ['action_end'] label2idx = {} idx2label = {} path = os.path.join(opt.dataset_root, opt.gt, 'mapping', 'mappingeval.txt') with open(path, 'w') as f: for idx, (high_act, mid_acts) in enumerate(eval.items()): for mid_act in mid_acts: f.write('%d %s\n' % (idx, mid_act))
07b1dc0344a5647316639af1cc3e0d015e5e107f
7a5c9962ee40996a9f24f5493c715d5553052cf7
/jobs/apps.py
659d18b194f99c3b388bbaea0e799ca23b237f8c
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
dymaxionlabs/satlomas-back
da6355d1fc90a2e9d4a7795b4751e3ebe043ffa6
f4568f6535755fd4a2432ecc661a264872206c6c
refs/heads/master
2023-07-17T17:07:43.037314
2021-08-28T15:54:21
2021-08-28T15:54:21
262,424,687
0
0
null
2020-05-08T20:42:49
2020-05-08T20:42:48
null
UTF-8
Python
false
false
132
py
from django.apps import AppConfig class JobsConfig(AppConfig): name = 'jobs' def ready(self): import jobs.signals
78befbcc094a1c019b67d6b56a7b35cf4e3d6b6b
a89c739589d0ee29ff6fff1a1508a426dfe4489a
/basics/assert.py
b7872ff4b51952a23919213ac3ad863af939f0fd
[]
no_license
macabdul9/python-learning
107e3533998e3f373b804d6b59152fc41938604b
f0d5e0e37cbed3d846684be80f0f92e5cbb9ceb5
refs/heads/master
2020-04-27T04:31:47.907486
2020-03-05T16:48:53
2020-03-05T16:48:53
174,057,604
0
0
null
null
null
null
UTF-8
Python
false
false
448
py
""" @author : macab (macab@debian) @file : assert @created : Sunday Mar 17, 2019 00:28:58 IST """ ''' Python provides the assert statement to check if a given logical expression is true or false. Program execution proceeds only if the expression is true and raises the AssertionError when it is false. The following code shows the usage of the assert statement.It is much like an if-else ''' x = int(input()) assert x >= 0 print(x)
7a6c254cbc7e0b5d94437a6f0cb3061191327052
5942e3e75ef7dc22a67b04fb1f12e14658a2093d
/documentation_files/platform.py
d83912b2d5f5be349492150ecc6894802fff344d
[]
no_license
the-factory/kdevelop-python
9e94d2a4d4906a31a4d2a8a08300766e02d41a59
1e91f2cb4c94d9455a2ee22fef13df680aeed1ab
refs/heads/master
2021-01-18T08:57:16.707711
2012-04-09T22:37:47
2012-04-09T22:37:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,818
py
#!/usr/bin/env python2.7 # -*- coding: utf-8 -*- """:synopsis: Retrieves as much platform identifying data as possible. """ def machine(): """ Returns the machine type, e.g. ``'i386'``. An empty string is returned if the value cannot be determined. """ pass def node(): """ Returns the computer's network name (may not be fully qualified!). An empty string is returned if the value cannot be determined. """ pass def platform(aliased=0,terse=0): """ Returns a single string identifying the underlying platform with as much useful information as possible. The output is intended to be *human readable* rather than machine parseable. It may look different on different platforms and this is intended. If *aliased* is true, the function will use aliases for various platforms that report system names which differ from their common names, for example SunOS will be reported as Solaris. The :func:`system_alias` function is used to implement this. Setting *terse* to true causes the function to return only the absolute minimum information needed to identify the platform. """ pass def processor(): """ Returns the (real) processor name, e.g. ``'amdk6'``. An empty string is returned if the value cannot be determined. Note that many platforms do not provide this information or simply return the same value as for :func:`machine`. NetBSD does this. """ pass def python_build(): """ Returns a tuple ``(buildno, builddate)`` stating the Python build number and date as strings. """ pass def python_compiler(): """ Returns a string identifying the compiler used for compiling Python. """ pass def python_branch(): """ Returns a string identifying the Python implementation SCM branch. """ pass def python_implementation(): """ Returns a string identifying the Python implementation. Possible return values are: 'CPython', 'IronPython', 'Jython', 'PyPy'. """ pass def python_revision(): """ Returns a string identifying the Python implementation SCM revision. """ pass def python_version(): """ Returns the Python version as string ``'major.minor.patchlevel'`` Note that unlike the Python ``sys.version``, the returned value will always include the patchlevel (it defaults to 0). """ pass def python_version_tuple(): """ Returns the Python version as tuple ``(major, minor, patchlevel)`` of strings. Note that unlike the Python ``sys.version``, the returned value will always include the patchlevel (it defaults to ``'0'``). """ pass def release(): """ Returns the system's release, e.g. ``'2.2.0'`` or ``'NT'`` An empty string is returned if the value cannot be determined. """ pass def system(): """ Returns the system/OS name, e.g. ``'Linux'``, ``'Windows'``, or ``'Java'``. An empty string is returned if the value cannot be determined. """ pass def system_alias(system,release,version): """ Returns ``(system, release, version)`` aliased to common marketing names used for some systems. It also does some reordering of the information in some cases where it would otherwise cause confusion. """ pass def version(): """ Returns the system's release version, e.g. ``'#3 on degas'``. An empty string is returned if the value cannot be determined. """ pass def uname(): """ Fairly portable uname interface. Returns a tuple of strings ``(system, node, release, version, machine, processor)`` identifying the underlying platform. Note that unlike the :func:`os.uname` function this also returns possible processor information as additional tuple entry. Entries which cannot be determined are set to ``''``. Java Platform ------------- """ pass def java_ver(release='',vendor='',vminfo=('','',''),osinfo=('','','')): """ Version interface for Jython. Returns a tuple ``(release, vendor, vminfo, osinfo)`` with *vminfo* being a tuple ``(vm_name, vm_release, vm_vendor)`` and *osinfo* being a tuple ``(os_name, os_version, os_arch)``. Values which cannot be determined are set to the defaults given as parameters (which all default to ``''``). Windows Platform ---------------- """ pass def win32_ver(release='',version='',csd='',ptype=''): """ Get additional version information from the Windows Registry and return a tuple ``(version, csd, ptype)`` referring to version number, CSD level and OS type (multi/single processor). As a hint: *ptype* is ``'Uniprocessor Free'`` on single processor NT machines and ``'Multiprocessor Free'`` on multi processor machines. The *'Free'* refers to the OS version being free of debugging code. It could also state *'Checked'* which means the OS version uses debugging code, i.e. code that checks arguments, ranges, etc. """ pass def popen(cmd,mode='r',bufsize=None): """ Portable :func:`popen` interface. Find a working popen implementation preferring :func:`win32pipe.popen`. On Windows NT, :func:`win32pipe.popen` should work; on Windows 9x it hangs due to bugs in the MS C library. Mac OS Platform --------------- """ pass def mac_ver(release='',versioninfo=('','',''),machine=''): """ Get Mac OS version information and return it as tuple ``(release, versioninfo, machine)`` with *versioninfo* being a tuple ``(version, dev_stage, non_release_version)``. Entries which cannot be determined are set to ``''``. All tuple entries are strings. Documentation for the underlying :cfunc:`gestalt` API is available online at http://www.rgaros.nl/gestalt/. Unix Platforms -------------- """ pass def dist(distname='',version='',id='',supported_dists=('SuSE','debian','redhat','mandrake',more)): """ This is an old version of the functionality now provided by :func:`linux_distribution`. For new code, please use the :func:`linux_distribution`. The only difference between the two is that ``dist()`` always returns the short name of the distribution taken from the ``supported_dists`` parameter. """ pass def linux_distribution(distname='',version='',id='',supported_dists=('SuSE','debian','redhat','mandrake',more),full_distribution_name=1): """ Tries to determine the name of the Linux OS distribution name. ``supported_dists`` may be given to define the set of Linux distributions to look for. It defaults to a list of currently supported Linux distributions identified by their release file name. If ``full_distribution_name`` is true (default), the full distribution read from the OS is returned. Otherwise the short name taken from ``supported_dists`` is used. Returns a tuple ``(distname,version,id)`` which defaults to the args given as parameters. ``id`` is the item in parentheses after the version number. It is usually the version codename. """ pass
428bd78c26371e93841a86cf15ea344b9b336399
50d39f7a91047c7498714fd68958156320efdf5f
/cwr/grammar/record/writer_territory.py
f2dcc1c3454b7d7ebcad3fc23a15bd1c95df4167
[ "MIT" ]
permissive
toddrimes/CWR-DataApi
a82784ec198e35ab311bf5576d31eefb9269939c
4d9f504d9032cf1aa1bd86db6efbe26042c6a6ae
refs/heads/master
2021-01-24T23:00:57.383927
2015-03-13T10:04:29
2015-03-13T10:04:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,830
py
# -*- coding: utf-8 -*- from data.accessor import CWRConfiguration from cwr.grammar.field import table as field_table from cwr.grammar.field import special as field_special from cwr.grammar.field import record as field_record from cwr.grammar.field import society as field_society from cwr.grammar.field import writer_territory as field_writer_territory from cwr.interested_party import IPTerritoryRecord """ CWR Writer Territory of Control (SWT) records grammar. """ __author__ = 'Bernardo Martínez Garrido' __license__ = 'MIT' __status__ = 'Development' # Acquires data sources _config = CWRConfiguration() """ General fields. """ """ Patterns. """ territory = field_special.lineStart + field_record.record_prefix( _config.record_type( 'writer_territory'), compulsory=True) + field_special.ip_n() + field_society.pr_share() + field_society.mr_share() + field_society.sr_share() + \ field_table.ie_indicator() + field_table.tis_code() + field_writer_territory.shares_change + field_writer_territory.sequence_n + field_special.lineEnd """ Parsing actions for the patterns. """ territory.setParseAction(lambda p: _to_writerterritory(p)) """ Parsing methods. These are the methods which transform nodes into instances of classes. """ def _to_writerterritory(parsed): """ Transforms the final parsing result into an IPTerritoryRecord instance. :param parsed: result of parsing the Territory record :return: an IPTerritoryRecord created from the parsed record """ return IPTerritoryRecord(parsed.record_type, parsed.transaction_sequence_n, parsed.record_sequence_n, parsed.ip_n, parsed.ie_indicator, parsed.tis_code, parsed.sequence_n, parsed.pr_share, parsed.mr_share, parsed.sr_share, parsed.shares_change)
b4528282c5d0f3c4f595fde399e3016578457b11
b2ff5ac2ef633e41ecec6ff7baae4b89254bf151
/Hello_World/src/mainapp/profiles/migrations/0005_auto_20201015_1938.py
aa9304e6331f9e2da41aa37edffbcfac7c8524bf
[]
no_license
r3bunker/Python-Projects
2bda2be348bc4e0aa530cadbf8c26a7f163bcd3f
e8742a9c5ed92424b5aeee0041e6e2267f26ccc6
refs/heads/master
2023-01-04T20:30:50.250655
2020-10-29T17:41:14
2020-10-29T17:41:14
300,012,282
1
0
null
null
null
null
UTF-8
Python
false
false
461
py
# Generated by Django 3.1.2 on 2020-10-16 01:38 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('profiles', '0004_auto_20201015_1913'), ] operations = [ migrations.AlterField( model_name='profiles', name='prefix', field=models.CharField(choices=[('Mrs.', 'Mrs.'), ('Mr.', 'Mr.'), ('Ms.', 'Ms.')], default='', max_length=20), ), ]
c0e8d2a4dd57f7f8365f36b333ff42431805e131
6300fcf67d4fcb5387a9f0f7370a8ffe8f4097d9
/AutoParts/Tests/account_auth/views/sign_out_test.py
958b55a8fb6505816eee2d92d73bf3c17334b56b
[]
no_license
Borislav-source/Final-Project
e34ac1cbb71e3a32ed490361d3583c2e1e8bfbc9
501b258d103c2e1b8947451f4bdf750709d040fd
refs/heads/master
2023-07-17T15:03:19.390774
2021-09-01T14:06:09
2021-09-01T14:06:09
393,977,540
0
0
null
null
null
null
UTF-8
Python
false
false
319
py
from django.urls import reverse from Tests.base.tests import AutoPartsTestCase class SignOutTest(AutoPartsTestCase): def test_sign_out__if_user_is_logged_out(self): self.client.force_login(self.user) self.assertTrue(self.user) self.client.logout() self.assertTrue(self.user)
11db259082bfba48cb8bd0c27e64e3d77bc28f6a
b87ea98bc166cade5c78d246aeb0e23c59183d56
/samples/openapi3/client/3_0_3_unit_test/python/unit_test_api/model/uniqueitems_false_validation.py
9a1260048babd250a0448eb1540cbf3fbb04e197
[ "Apache-2.0" ]
permissive
holisticon/openapi-generator
88f8e6a3d7bc059c8f56563c87f6d473694d94e5
6a67551ea54a1aa9a49eb48ee26b4e9bb7fb1272
refs/heads/master
2023-05-12T02:55:19.037397
2023-04-14T08:31:59
2023-04-14T08:31:59
450,034,139
1
0
Apache-2.0
2022-01-20T09:34:14
2022-01-20T09:34:13
null
UTF-8
Python
false
false
1,499
py
# coding: utf-8 """ openapi 3.0.3 sample spec sample spec for testing openapi functionality, built from json schema tests for draft6 # noqa: E501 The version of the OpenAPI document: 0.0.1 Generated by: https://openapi-generator.tech """ from datetime import date, datetime # noqa: F401 import decimal # noqa: F401 import functools # noqa: F401 import io # noqa: F401 import re # noqa: F401 import typing # noqa: F401 import typing_extensions # noqa: F401 import uuid # noqa: F401 import frozendict # noqa: F401 from unit_test_api import schemas # noqa: F401 class UniqueitemsFalseValidation( schemas.AnyTypeSchema, ): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ class MetaOapg: unique_items = False def __new__( cls, *_args: typing.Union[dict, frozendict.frozendict, str, date, datetime, uuid.UUID, int, float, decimal.Decimal, bool, None, list, tuple, bytes, io.FileIO, io.BufferedReader, ], _configuration: typing.Optional[schemas.Configuration] = None, **kwargs: typing.Union[schemas.AnyTypeSchema, dict, frozendict.frozendict, str, date, datetime, uuid.UUID, int, float, decimal.Decimal, None, list, tuple, bytes], ) -> 'UniqueitemsFalseValidation': return super().__new__( cls, *_args, _configuration=_configuration, **kwargs, )
ae132c35f9378954b35796886aca3491386db3b5
255e19ddc1bcde0d3d4fe70e01cec9bb724979c9
/all-gists/5804612/snippet.py
365ec99e3c6e1802b17ec70aaac6ebe7524850f5
[ "MIT" ]
permissive
gistable/gistable
26c1e909928ec463026811f69b61619b62f14721
665d39a2bd82543d5196555f0801ef8fd4a3ee48
refs/heads/master
2023-02-17T21:33:55.558398
2023-02-11T18:20:10
2023-02-11T18:20:10
119,861,038
76
19
null
2020-07-26T03:14:55
2018-02-01T16:19:24
Python
UTF-8
Python
false
false
4,333
py
#!/usr/bin/python # -*- coding: utf-8 -*- import curses from math import floor from datetime import datetime as date from subprocess import Popen as popen # Globals: screen = curses.initscr() last_width = 0 last_height = 0 alarm_hour = 0 alarm_minute = 0 alarm_state = False alarm = None glyph = { '0': [" ##### ", " ## ## ", "## ## ", "## ## ", "## ## ", " ## ## ", " ##### "], '1': [" ## ", " #### ", " ## ", " ## ", " ## ", " ## ", " ###### "], '2': [" ####### ", "## ## ", " ## ", " ####### ", "## ", "## ", "######### "], '3': [" ####### ", "## ## ", " ## ", " ####### ", " ## ", "## ## ", " ####### "], '4': ["## ", "## ## ", "## ## ", "## ## ", "######### ", " ## ", " ## "], '5': [" ######## ", " ## ", " ## ", " ####### ", " ## ", " ## ## ", " ###### "], '6': [" ####### ", "## ## ", "## ", "######## ", "## ## ", "## ## ", " ####### "], '7': [" ######## ", " ## ## ", " ## ", " ## ", " ## ", " ## ", " ## "], '8': [" ####### ", "## ## ", "## ## ", " ####### ", "## ## ", "## ## ", " ####### "], '9': [" ####### ", "## ## ", "## ## ", " ######## ", " ## ", "## ## ", " ####### "], ':': [" ", " ", " # ", " ", " # ", " ", " "] } def addstr(y, x, string, color): try: screen.addstr( origin_y + y, origin_x + x, string, color) screen.refresh() except: return def print_time(now): time_line = now.strftime("%I:%M:%S") time_array = ["" for i in range(0,7)] # Concat glyphs: for char in time_line: char_array = glyph[char] for row in range(0, len(char_array)): time_array[row] += char_array[row] # Print glyphs: for y in range(0, len(time_array)): for x in range(0, len(time_array[y])): char = time_array[y][x] color = 1 if char == " " else 3 addstr( y, x, " ", curses.color_pair(color)) # Add meridian: addstr( 6, len(time_array[0]), now.strftime("%p"), curses.color_pair(2) | curses.A_BOLD) def print_date(now): day_line = now.strftime("%A").center(11," ") date_line = now.strftime("%B %d, %Y") addstr(8, 0, day_line, curses.color_pair(3)) addstr(8, len(day_line) + 1, date_line, curses.color_pair(2) | curses.A_BOLD) def print_alarm(): minute = alarm_minute hour = alarm_hour - 12 if alarm_hour > 12 else (12 if not alarm_hour else alarm_hour) meridian = "AM" if alarm_hour < 12 else "PM" state = "ACT" if alarm_state else "OFF" time = " %02d:%02d %s " % (hour, minute, meridian) addstr(8, 46, state.center(5," "), curses.color_pair(3)) addstr(8, 52, " < ", curses.color_pair(3)) addstr(8, 55, time, curses.color_pair(2) | curses.A_BOLD) addstr(8, 65, " > ", curses.color_pair(3)) def step_alarm(direction): global alarm_minute, alarm_hour alarm_minute = (30 if alarm_minute == 0 else 0) if direction and alarm_minute == 0: alarm_hour = (alarm_hour + 1) % 24 elif not direction and alarm_minute == 30: alarm_hour = (alarm_hour - 1) % 24 def handle_mouse(): global alarm_state (i, x, y, z, bstate) = curses.getmouse() if y == origin_y + 8 and bstate == curses.BUTTON1_CLICKED: if x > origin_x + 51 and x < origin_x + 55: step_alarm(False) if x > origin_x + 64 and x < origin_x + 68: step_alarm(True) if x > origin_x + 45 and x < origin_x + 51: alarm_state = not alarm_state # Setup screen.keypad(1) curses.curs_set(0) curses.start_color() curses.init_pair(1, 0, 0) # BB curses.init_pair(2, 3, 0) # YB curses.init_pair(3, 0, 3) # BY curses.mousemask(curses.ALL_MOUSE_EVENTS) curses.noecho() curses.cbreak() # Main a = 0 while True: width = screen.getmaxyx()[1] height = screen.getmaxyx()[0] origin_x = floor(width / 2) - 34 origin_y = floor(height / 2) - 4 now = date.now() if width != last_width or height != last_height: screen.clear() last_width = width last_height = height print_time(now) print_date(now) print_alarm() if alarm_state and \ int(now.hour) == alarm_hour and \ int(now.minute) == alarm_minute and \ int(now.second) == 0: pass screen.timeout(30) char = screen.getch() if (char != -1): if char == curses.KEY_MOUSE: handle_mouse() elif char == 113: break # Cleanup: curses.endwin()
288c2466e40aa160e37a43870d3d002aa2fb3ecd
6fb37fee016346120d4c14c4343516532304055a
/src/genie/libs/parser/iosxr/tests/test_show_lag.py
c6fd6cb76e151730fba4cb6d7f539f3f7ed993be
[ "Apache-2.0" ]
permissive
devbollinger/genieparser
011526ebbd747c6dcd767535ce4bd33167e15536
ad5ce7ba8f5153d1aeb9cffcfc4dde0871f3401c
refs/heads/master
2020-12-20T11:36:00.750128
2020-01-24T18:45:40
2020-01-24T18:45:40
236,061,155
0
0
Apache-2.0
2020-01-24T18:38:43
2020-01-24T18:38:42
null
UTF-8
Python
false
false
35,946
py
#!/bin/env python import unittest from unittest.mock import Mock from ats.topology import Device from genie.metaparser.util.exceptions import SchemaEmptyParserError, SchemaMissingKeyError from genie.libs.parser.iosxr.show_lag import ShowLacpSystemId, ShowBundle, ShowLacp ################################################### # unit test for show lacp system-id #################################################### class test_show_lacp_sysid(unittest.TestCase): """unit test for show lacp system-id""" device = Device(name='aDevice') empty_output = {'execute.return_value': ''} golden_parsed_output = { "system_priority": 100, "system_id_mac": "00-1b-0c-10-5a-26" } golden_output = {'execute.return_value': ''' RP/0/RP0/CPU0:iosxrv9000-1#show lacp system-id Tue Apr 3 20:33:23.108 UTC Priority MAC Address -------- ----------------- 0x0064 00-1b-0c-10-5a-26 '''} def test_empty(self): self.device = Mock(**self.empty_output) obj = ShowLacpSystemId(device=self.device) with self.assertRaises(SchemaEmptyParserError): parsed_output = obj.parse() def test_golden(self): self.maxDiff = None self.device = Mock(**self.golden_output) obj = ShowLacpSystemId(device=self.device) parsed_output = obj.parse() self.assertEqual(parsed_output, self.golden_parsed_output) ################################################### # unit test for show bundle #################################################### class test_show_bundle(unittest.TestCase): """unit test for show bundle""" device = Device(name='aDevice') empty_output = {'execute.return_value': ''} golden_parsed_output_1 = { "interfaces": { "Bundle-Ether1": { "name": "Bundle-Ether1", "bundle_id": 1, "oper_status": "up", "local_links": { "active": 2, "standby": 0, "configured": 2 }, "local_bandwidth_kbps": { "effective": 2000000, "available": 2000000 }, "mac_address": "001b.0c10.5a25", "mac_address_source": "Chassis pool", "inter_chassis_link": "No", "min_active_link": 1, "min_active_bw_kbps": 1, "max_active_link": 8, "wait_while_timer_ms": 2000, "load_balance": { "link_order_signaling": "Not configured", "hash_type": "Default", "locality_threshold": "None" }, "lacp": { "lacp": "Operational", "flap_suppression_timer": "Off", "cisco_extensions": "Disabled", "non_revertive": "Disabled" }, "mlacp": { "mlacp": "Not configured" }, "ipv4_bfd": { "ipv4_bfd": "Not configured" }, "ipv6_bfd": { "ipv6_bfd": "Not configured" }, "port": { "GigabitEthernet0/0/0/0": { "interface": "GigabitEthernet0/0/0/0", "device": "Local", "state": "Active", "port_id": "0x000a, 0x0001", "bw_kbps": 1000000, "link_state": "Active" }, "GigabitEthernet0/0/0/1": { "interface": "GigabitEthernet0/0/0/1", "device": "Local", "state": "Active", "port_id": "0x8000, 0x0002", "bw_kbps": 1000000, "link_state": "Active" } } }, "Bundle-Ether2": { "name": "Bundle-Ether2", "bundle_id": 2, "oper_status": "up", "local_links": { "active": 2, "standby": 1, "configured": 3 }, "local_bandwidth_kbps": { "effective": 2000000, "available": 2000000 }, "mac_address": "001b.0c10.5a24", "mac_address_source": "Chassis pool", "inter_chassis_link": "No", "min_active_link": 2, "min_active_bw_kbps": 1, "max_active_link": 2, "wait_while_timer_ms": 2000, "load_balance": { "link_order_signaling": "Not configured", "hash_type": "Default", "locality_threshold": "None" }, "lacp": { "lacp": "Operational", "flap_suppression_timer": "Off", "cisco_extensions": "Disabled", "non_revertive": "Disabled" }, "mlacp": { "mlacp": "Not configured" }, "ipv4_bfd": { "ipv4_bfd": "Not configured" }, "ipv6_bfd": { "ipv6_bfd": "Not configured" }, "port": { "GigabitEthernet0/0/0/2": { "interface": "GigabitEthernet0/0/0/2", "device": "Local", "state": "Standby", "port_id": "0x8000, 0x0005", "bw_kbps": 1000000, "link_state": "Standby due to maximum-active links configuration" }, "GigabitEthernet0/0/0/3": { "interface": "GigabitEthernet0/0/0/3", "device": "Local", "state": "Active", "port_id": "0x8000, 0x0004", "bw_kbps": 1000000, "link_state": "Active" }, "GigabitEthernet0/0/0/4": { "interface": "GigabitEthernet0/0/0/4", "device": "Local", "state": "Active", "port_id": "0x8000, 0x0003", "bw_kbps": 1000000, "link_state": "Active" } } } } } golden_output_1 = {'execute.return_value': ''' RP/0/RP0/CPU0:iosxrv9000-1#show bundle Tue Apr 3 20:30:23.603 UTC Bundle-Ether1 Status: Up Local links <active/standby/configured>: 2 / 0 / 2 Local bandwidth <effective/available>: 2000000 (2000000) kbps MAC address (source): 001b.0c10.5a25 (Chassis pool) Inter-chassis link: No Minimum active links / bandwidth: 1 / 1 kbps Maximum active links: 8 Wait while timer: 2000 ms Load balancing: Link order signaling: Not configured Hash type: Default Locality threshold: None LACP: Operational Flap suppression timer: Off Cisco extensions: Disabled Non-revertive: Disabled mLACP: Not configured IPv4 BFD: Not configured IPv6 BFD: Not configured Port Device State Port ID B/W, kbps -------------------- --------------- ----------- -------------- ---------- Gi0/0/0/0 Local Active 0x000a, 0x0001 1000000 Link is Active Gi0/0/0/1 Local Active 0x8000, 0x0002 1000000 Link is Active Bundle-Ether2 Status: Up Local links <active/standby/configured>: 2 / 1 / 3 Local bandwidth <effective/available>: 2000000 (2000000) kbps MAC address (source): 001b.0c10.5a24 (Chassis pool) Inter-chassis link: No Minimum active links / bandwidth: 2 / 1 kbps Maximum active links: 2 Wait while timer: 2000 ms Load balancing: Link order signaling: Not configured Hash type: Default Locality threshold: None LACP: Operational Flap suppression timer: Off Cisco extensions: Disabled Non-revertive: Disabled mLACP: Not configured IPv4 BFD: Not configured IPv6 BFD: Not configured Port Device State Port ID B/W, kbps -------------------- --------------- ----------- -------------- ---------- Gi0/0/0/2 Local Standby 0x8000, 0x0005 1000000 Link is Standby due to maximum-active links configuration Gi0/0/0/3 Local Active 0x8000, 0x0004 1000000 Link is Active Gi0/0/0/4 Local Active 0x8000, 0x0003 1000000 Link is Active '''} golden_parsed_output_2 = { "interfaces": { "Bundle-Ether 2": { "name": "Bundle-Ether 2", "bundle_id": 2, "oper_status": "up", "local_links": { "active": 1, "standby": 0, "configured": 1 }, "local_bandwidth_kbps": { "effective": 100000, "available": 100000 }, "mac_address": "1234.4321.1111", "mac_address_source": "GigabitEthernet0/0/0/1", "min_active_link": 1, "min_active_bw_kbps": 500, "max_active_link": 32, "wait_while_timer_ms": 2000, "load_balance": { "load_balance": "Default" }, "lacp": { "lacp": "Operational", "flap_suppression_timer": "2500 ms", "cisco_extensions": "Disabled" }, "mlacp": { "mlacp": "Operational", "iccp_group": "3", "foreign_links_active": 1, "foreign_links_configured": 1, "switchover_type": "Revertive", "recovery_delay": "300 s", "maximize_threshold": "2 links" }, "ipv4_bfd": { "ipv4_bfd": "Not operational", "state": "Off", "fast_detect": "Enabled", "start_timer": "Off", "neighbor_unconfigured_timer": "Off", "preferred_min_interval_ms": 150, "preferred_multiple": 3, "destination_address": "Not Configured" }, "port": { "GigabitEthernet0/0/0/1": { "interface": "GigabitEthernet0/0/0/1", "bw_kbps": 100000, "device": "Local", "state": "Active", "port_id": "0x8000, 0x0001" }, "MyFirstInterface": { "interface": "MyFirstInterface", "bw_kbps": 100000, "device": "10.10.10.123", "state": "Negotiating", "port_id": "0x8000, 0x0032" } } }, "Bundle-Ether 3": { "name": "Bundle-Ether 3", "bundle_id": 3, "oper_status": "up", "local_links": { "active": 1, "standby": 0, "configured": 1 }, "local_bandwidth_kbps": { "effective": 100000, "available": 100000 }, "mac_address": "1234.4321.2222", "mac_address_source": "chassis pool", "min_active_link": 1, "min_active_bw_kbps": 500, "max_active_link": 32, "wait_while_timer_ms": 100, "load_balance": { "link_order_signaling": "Operational", "hash_type": "Src-IP" }, "lacp": { "lacp": "Operational", "flap_suppression_timer": "120 s", "cisco_extensions": "Enabled" }, "mlacp": { "mlacp": "Not configured" }, "ipv4_bfd": { "ipv4_bfd": "Not operational" }, "port": { "GigabitEthernet0/0/0/2": { "interface": "GigabitEthernet0/0/0/2", "bw_kbps": 100000, "device": "Local", "state": "Active", "port_id": "0x8000, 0x0002" } } } } } golden_output_2 = {'execute.return_value': ''' RP/0/RSP0/CPU0:router# show bundle Bundle-Ether 2 Status: Up Local links <active/standby/configured>: 1 / 0 / 1 Local bandwidth <effective/available>: 100000 (100000) kbps MAC address (source): 1234.4321.1111 (Gi0/0/0/1) Minimum active links / bandwidth: 1 / 500 kbps Maximum active links: 32 Wait-while timer: 2000 ms Load-balancing: Default LACP: Operational Flap suppression timer: 2500 ms Cisco extensions: Disabled mLACP: Operational Interchassis group: 3 Foreign links <active/configured>: 1 / 1 Switchover type: Revertive Recovery delay: 300 s Maximize threshold: 2 links IPv4 BFD: Not operational State: Off Fast detect: Enabled Start timer: Off Neighbor-unconfigured timer: Off Preferred min interval: 150 ms Preferred multiple: 3 Destination address: Not Configured Port Device State Port ID B/W, kbps -------------------- --------------- ----------- -------------- ----------- Gi0/0/0/1 Local Active 0x8000, 0x0001 100000 MyFirstInterface 10.10.10.123 Negotiating 0x8000, 0x0032 100000 Bundle-Ether 3 Status: Up Local links <active/standby/configured>: 1 / 0 / 1 Local bandwidth <effective/available>: 100000 / 100000 kbps MAC address (source): 1234.4321.2222 (chassis pool) Minimum active links / bandwidth: 1 / 500 kbps Maximum active links: 32 (from partner) Wait-while timer: 100 ms Load-balancing: Link order signaling: Operational Hash type: Src-IP LACP: Operational Flap suppression timer: 120 s Cisco extensions: Enabled mLACP: Not configured IPv4 BFD: Not operational Port Device State Port ID B/W, kbps -------------------- --------------- ----------- -------------- ----------- Gi0/0/0/2 Local Active 0x8000, 0x0002 100000 '''} golden_parsed_output_3 = { "interfaces": { "Bundle-Ether1": { "name": "Bundle-Ether1", "bundle_id": 1, "oper_status": "up", "local_links": { "active": 1, "standby": 0, "configured": 1 }, "local_bandwidth_kbps": { "effective": 1000000, "available": 1000000 }, "mac_address": "0000.deaf.0000", "mac_address_source": "Configured", "min_active_link": 1, "min_active_bw_kbps": 1, "max_active_link": 64, "wait_while_timer_ms": 100, "lacp": { "lacp": "Operational", "flap_suppression_timer": "300 ms" }, "mlacp": { "mlacp": "Operational", "role": "Active", "foreign_links_active": 0, "foreign_links_configured": 1, "switchover_type": "Non-revertive", "recovery_delay": "300 s", "maximize_threshold": "Not configured" }, "ipv4_bfd": { "ipv4_bfd": "Not configured" }, "port": { "GigabitEthernet0/0/0/0": { "interface": "GigabitEthernet0/0/0/0", "bw_kbps": 1000000, "device": "10.81.3.2", "state": "Standby", "port_id": "0x8002, 0xa001", "link_state": "marked as Standby by mLACP peer" } } } } } golden_output_3 = {'execute.return_value': ''' RP/0/RSP0/CPU0:router# show bundle Bundle-Ether1 Status: Up Local links <active/standby/configured>: 1 / 0 / 1 Local bandwidth <effective/available>: 1000000 (1000000) kbps MAC address (source): 0000.deaf.0000 (Configured) Minimum active links / bandwidth: 1 / 1 kbps Maximum active links: 64 Wait while timer: 100 ms LACP: Operational Flap suppression timer: 300 ms mLACP: Operational ICCP Group: 1 Role: Active Foreign links <active/configured>: 0 / 1 Switchover type: Non-revertive Recovery delay: 300 s Maximize threshold: Not configured IPv4 BFD: Not configured Port Device State Port ID B/W, kbps -------------------- --------------- ----------- -------------- ---------- Gi0/0/0/0 Local Active 0x8001, 0x9001 1000000 Link is Active Gi0/0/0/0 10.81.3.2 Standby 0x8002, 0xa001 1000000 Link is marked as Standby by mLACP peer '''} golden_parsed_output_4 = { "interfaces": { "Bundle-Ether1": { "name": "Bundle-Ether1", "bundle_id": 1, "oper_status": "mlacp hot standby", "local_links": { "active": 0, "standby": 1, "configured": 1 }, "local_bandwidth_kbps": { "effective": 0, "available": 0 }, "mac_address": "0000.deaf.0000", "mac_address_source": "Configured", "min_active_link": 1, "min_active_bw_kbps": 1, "max_active_link": 64, "wait_while_timer_ms": 100, "lacp": { "lacp": "Operational", "flap_suppression_timer": "300 ms" }, "mlacp": { "mlacp": "Operational", "role": "Standby", "foreign_links_active": 1, "foreign_links_configured": 1, "switchover_type": "Non-revertive", "recovery_delay": "300 s", "maximize_threshold": "Not configured" }, "ipv4_bfd": { "ipv4_bfd": "Not configured" }, "port": { "GigabitEthernet0/0/0/0": { "interface": "GigabitEthernet0/0/0/0", "bw_kbps": 1000000, "device": "10.81.3.2", "state": "Active", "port_id": "0x8002, 0xa001", "link_state": "Active" } } } } } golden_output_4 = {'execute.return_value': ''' RP/0/0/CPU0:router#show bundle Mon Jun 7 06:04:17.778 PDT Bundle-Ether1 Status: mLACP hot standby Local links <active/standby/configured>: 0 / 1 / 1 Local bandwidth <effective/available>: 0 (0) kbps MAC address (source): 0000.deaf.0000 (Configured) Minimum active links / bandwidth: 1 / 1 kbps Maximum active links: 64 Wait while timer: 100 ms LACP: Operational Flap suppression timer: 300 ms mLACP: Operational ICCP Group: 1 Role: Standby Foreign links <active/configured>: 1 / 1 Switchover type: Non-revertive Recovery delay: 300 s Maximize threshold: Not configured IPv4 BFD: Not configured Port Device State Port ID B/W, kbps -------------------- --------------- ----------- -------------- ---------- Gi0/0/0/0 Local Standby 0x8003, 0x9001 1000000 mLACP peer is active Gi0/0/0/0 10.81.3.2 Active 0x8002, 0xa001 1000000 Link is Active RP/0/0/CPU0:router# '''} def test_empty(self): self.device = Mock(**self.empty_output) obj = ShowBundle(device=self.device) with self.assertRaises(SchemaEmptyParserError): parsed_output = obj.parse() def test_golden_1(self): self.maxDiff = None self.device = Mock(**self.golden_output_1) obj = ShowBundle(device=self.device) parsed_output = obj.parse() self.assertEqual(parsed_output, self.golden_parsed_output_1) def test_golden_2(self): self.maxDiff = None self.device = Mock(**self.golden_output_2) obj = ShowBundle(device=self.device) parsed_output = obj.parse() self.assertEqual(parsed_output, self.golden_parsed_output_2) def test_golden_3(self): self.maxDiff = None self.device = Mock(**self.golden_output_3) obj = ShowBundle(device=self.device) parsed_output = obj.parse() self.assertEqual(parsed_output, self.golden_parsed_output_3) def test_golden_4(self): self.maxDiff = None self.device = Mock(**self.golden_output_4) obj = ShowBundle(device=self.device) parsed_output = obj.parse() self.assertEqual(parsed_output, self.golden_parsed_output_4) ################################################### # unit test for show lacp #################################################### class test_show_lacp(unittest.TestCase): """unit test for show lacp""" device = Device(name='aDevice') empty_output = {'execute.return_value': ''} golden_parsed_output = { "interfaces": { "Bundle-Ether1": { "name": "Bundle-Ether1", "bundle_id": 1, "lacp_mode": "active", "port": { "GigabitEthernet0/0/0/0": { "interface": "GigabitEthernet0/0/0/0", "bundle_id": 1, "rate": 30, "state": "ascdA---", "port_id": "0x000a,0x0001", "key": "0x0001", "system_id": "0x0064,00-1b-0c-10-5a-26", "aggregatable": True, "synchronization": "in_sync", "collecting": True, "distributing": True, "partner": { "rate": 30, "state": "ascdA---", "port_id": "0x000a,0x0001", "key": "0x0001", "system_id": "0x8000,00-0c-86-5e-68-23", "aggregatable": True, "synchronization": "in_sync", "collecting": True, "distributing": True }, "receive": "Current", "period": "Slow", "selection": "Selected", "mux": "Distrib", "a_churn": "None", "p_churn": "None" }, "GigabitEthernet0/0/0/1": { "interface": "GigabitEthernet0/0/0/1", "bundle_id": 1, "rate": 30, "state": "ascdA---", "port_id": "0x8000,0x0002", "key": "0x0001", "system_id": "0x0064,00-1b-0c-10-5a-26", "aggregatable": True, "synchronization": "in_sync", "collecting": True, "distributing": True, "partner": { "rate": 30, "state": "ascdA---", "port_id": "0x8000,0x0005", "key": "0x0001", "system_id": "0x8000,00-0c-86-5e-68-23", "aggregatable": True, "synchronization": "in_sync", "collecting": True, "distributing": True }, "receive": "Current", "period": "Slow", "selection": "Selected", "mux": "Distrib", "a_churn": "None", "p_churn": "None" } } }, "Bundle-Ether2": { "name": "Bundle-Ether2", "bundle_id": 2, "lacp_mode": "active", "port": { "GigabitEthernet0/0/0/2": { "interface": "GigabitEthernet0/0/0/2", "bundle_id": 2, "rate": 30, "state": "a---A---", "port_id": "0x8000,0x0005", "key": "0x0002", "system_id": "0x0064,00-1b-0c-10-5a-26", "aggregatable": True, "synchronization": "out_sync", "collecting": False, "distributing": False, "partner": { "rate": 30, "state": "as--A---", "port_id": "0x8000,0x0004", "key": "0x0002", "system_id": "0x8000,00-0c-86-5e-68-23", "aggregatable": True, "synchronization": "in_sync", "collecting": False, "distributing": False }, "receive": "Current", "period": "Slow", "selection": "Standby", "mux": "Waiting", "a_churn": "Churn", "p_churn": "None" }, "GigabitEthernet0/0/0/3": { "interface": "GigabitEthernet0/0/0/3", "bundle_id": 2, "rate": 30, "state": "ascdA---", "port_id": "0x8000,0x0004", "key": "0x0002", "system_id": "0x0064,00-1b-0c-10-5a-26", "aggregatable": True, "synchronization": "in_sync", "collecting": True, "distributing": True, "partner": { "rate": 30, "state": "ascdA---", "port_id": "0x8000,0x0003", "key": "0x0002", "system_id": "0x8000,00-0c-86-5e-68-23", "aggregatable": True, "synchronization": "in_sync", "collecting": True, "distributing": True }, "receive": "Current", "period": "Slow", "selection": "Selected", "mux": "Distrib", "a_churn": "None", "p_churn": "None" }, "GigabitEthernet0/0/0/4": { "interface": "GigabitEthernet0/0/0/4", "bundle_id": 2, "rate": 30, "state": "ascdA---", "port_id": "0x8000,0x0003", "key": "0x0002", "system_id": "0x0064,00-1b-0c-10-5a-26", "aggregatable": True, "synchronization": "in_sync", "collecting": True, "distributing": True, "partner": { "rate": 30, "state": "ascdA---", "port_id": "0x8000,0x0002", "key": "0x0002", "system_id": "0x8000,00-0c-86-5e-68-23", "aggregatable": True, "synchronization": "in_sync", "collecting": True, "distributing": True }, "receive": "Current", "period": "Slow", "selection": "Selected", "mux": "Distrib", "a_churn": "None", "p_churn": "None" } } } } } golden_output = {'execute.return_value': ''' RP/0/RP0/CPU0:iosxrv9000-1#show lacp Tue Apr 3 20:32:49.966 UTC State: a - Port is marked as Aggregatable. s - Port is Synchronized with peer. c - Port is marked as Collecting. d - Port is marked as Distributing. A - Device is in Active mode. F - Device requests PDUs from the peer at fast rate. D - Port is using default values for partner information. E - Information about partner has expired. Bundle-Ether1 Port (rate) State Port ID Key System ID -------------------- -------- ------------- ------ ------------------------ Local Gi0/0/0/0 30s ascdA--- 0x000a,0x0001 0x0001 0x0064,00-1b-0c-10-5a-26 Partner 30s ascdA--- 0x000a,0x0001 0x0001 0x8000,00-0c-86-5e-68-23 Gi0/0/0/1 30s ascdA--- 0x8000,0x0002 0x0001 0x0064,00-1b-0c-10-5a-26 Partner 30s ascdA--- 0x8000,0x0005 0x0001 0x8000,00-0c-86-5e-68-23 Port Receive Period Selection Mux A Churn P Churn -------------------- ---------- ------ ---------- --------- ------- ------- Local Gi0/0/0/0 Current Slow Selected Distrib None None Gi0/0/0/1 Current Slow Selected Distrib None None Bundle-Ether2 Port (rate) State Port ID Key System ID -------------------- -------- ------------- ------ ------------------------ Local Gi0/0/0/2 30s a---A--- 0x8000,0x0005 0x0002 0x0064,00-1b-0c-10-5a-26 Partner 30s as--A--- 0x8000,0x0004 0x0002 0x8000,00-0c-86-5e-68-23 Gi0/0/0/3 30s ascdA--- 0x8000,0x0004 0x0002 0x0064,00-1b-0c-10-5a-26 Partner 30s ascdA--- 0x8000,0x0003 0x0002 0x8000,00-0c-86-5e-68-23 Gi0/0/0/4 30s ascdA--- 0x8000,0x0003 0x0002 0x0064,00-1b-0c-10-5a-26 Partner 30s ascdA--- 0x8000,0x0002 0x0002 0x8000,00-0c-86-5e-68-23 Port Receive Period Selection Mux A Churn P Churn -------------------- ---------- ------ ---------- --------- ------- ------- Local Gi0/0/0/2 Current Slow Standby Waiting Churn None Gi0/0/0/3 Current Slow Selected Distrib None None Gi0/0/0/4 Current Slow Selected Distrib None None '''} def test_empty(self): self.device = Mock(**self.empty_output) obj = ShowLacp(device=self.device) with self.assertRaises(SchemaEmptyParserError): parsed_output = obj.parse() def test_golden(self): self.maxDiff = None self.device = Mock(**self.golden_output) obj = ShowLacp(device=self.device) parsed_output = obj.parse() self.assertEqual(parsed_output, self.golden_parsed_output) if __name__ == '__main__': unittest.main()
d3ca685b9c2136a3c1c581a042146b3f9b4be186
4a0eb422dea8b3b911d56d4eae54137753cdefb0
/python-52-weeks/Device_classes/train_netmiko.py
aa215f6fdeb69e540b32f016fa3a73ddec8598dc
[]
no_license
aramidetosin/python-netmon
a52c85bf124c051ec4ffe9a252501520d0f7bb39
de6f935bfcb8134e769eb2be81c8ebc0abd3df1d
refs/heads/master
2023-03-27T17:01:56.080756
2021-03-28T12:57:45
2021-03-28T12:57:45
332,056,355
0
0
null
null
null
null
UTF-8
Python
false
false
2,577
py
import re from netmiko import Netmiko junos = { "hostname": "192.168.1.229", "username": "admin", "password": "juniper1", "device_type": "juniper", } connection = Netmiko( host=junos["hostname"], username=junos["username"], password=junos["password"], device_type=junos["device_type"], ) show_hostname_output = connection.send_command("show system information") show_uptime_output = connection.send_command("show system uptime") show_serial_output = connection.send_command("show chassis hardware") show_interface_output = connection.send_command("show interface terse") print(show_hostname_output) print(show_uptime_output) print(show_serial_output) print(show_interface_output) def junos_get_information(show_hostname_output): information = {} pattern = re.compile(r"Model: (.*)") model = pattern.search(show_hostname_output) if model: information['model'] = model.group(1) else: information['model'] = None pattern = re.compile(r"Junos: (.*)") model = pattern.search(show_hostname_output) if model: information['Version'] = model.group(1) else: information['Version'] = None pattern = re.compile(r"Hostname: (.*)") model = pattern.search(show_hostname_output) if model: information['Hostname'] = model.group(1) else: information['Hostname'] = None return information def junos_get_uptime_from_show(show_uptime_output): re_junos_uptime = re.compile(r'System booted: .*\((\d{2}:\d{2}:\d{2}) ago\)') junos_uptime_match = re_junos_uptime.search(show_uptime_output) if junos_uptime_match: uptime = junos_uptime_match.group(1) uptime_split = uptime.split(":") hours = int(uptime_split[0]) minutes = int(uptime_split[1]) seconds = int(uptime_split[2]) return hours * 3600 + minutes * 60 + seconds def junos_get_serial_number(show_serial_output): re_serial_number = re.compile(r"Chassis\s*(\w*)\s*") serial_number_match = re_serial_number.search(show_serial_output) if serial_number_match: return serial_number_match.group(1) print(junos_get_information(show_hostname_output)) print(junos_get_uptime_from_show(show_uptime_output)) print(junos_get_serial_number(show_serial_output)) line_show_interface_output = show_interface_output.splitlines() interfaces = [] for line in line_show_interface_output: xx = line.split(" ")[0] if xx != "Interface" and xx != '': if '.' not in xx: interfaces.append(xx) print(interfaces)
ccad155c93d1dc3713bc931ca59362dda019cbe3
aaf306b4117027bd66dfdbac80f2147a9b48a455
/Day66-75/code/example01.py
b1fee7aa04cbe05762d013ada68b220f217fb53c
[]
no_license
xiangsxuan/Python-100-Days
309da160fc4c85aa9699a0c522525e2b01e0421d
e86dece224b0a77103f6d6b734fecd9eef7dca97
refs/heads/master
2020-03-18T19:56:59.744032
2018-05-28T15:21:07
2018-05-28T15:21:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,467
py
from urllib.error import URLError from urllib.request import urlopen import re import pymysql import ssl from pymysql import Error def decode_page(page_bytes, charsets=('utf-8', )): page_html = None for charset in charsets: try: page_html = page_bytes.decode(charset) break except UnicodeDecodeError: pass # logging.error('Decode:', error) return page_html def get_page_html(seed_url, *, retry_times=3, charsets=('utf-8', )): page_html = None try: page_html = decode_page(urlopen(seed_url).read(), charsets) except URLError: # logging.error('URL:', error) if retry_times > 0: return get_page_html(seed_url, retry_times=retry_times - 1, charsets=charsets) return page_html def get_matched_parts(page_html, pattern_str, pattern_ignore_case=re.I): pattern_regex = re.compile(pattern_str, pattern_ignore_case) return pattern_regex.findall(page_html) if page_html else [] def start_crawl(seed_url, match_pattern): conn = pymysql.connect(host='localhost', port=3306, database='crawler', user='root', password='123456', charset='utf8') try: with conn.cursor() as cursor: url_list = [seed_url] while url_list: current_url = url_list.pop(0) page_html = get_page_html(current_url, charsets=('utf-8', 'gbk', 'gb2312')) links_list = get_matched_parts(page_html, match_pattern) url_list += links_list param_list = [] for link in links_list: page_html = get_page_html(link, charsets=('utf-8', 'gbk', 'gb2312')) headings = get_matched_parts(page_html, r'<h1>(.*)<span') if headings: param_list.append((headings[0], link)) cursor.executemany('insert into tb_result values (default, %s, %s)', param_list) conn.commit() except Error: pass # logging.error('SQL:', error) finally: conn.close() def main(): ssl._create_default_https_context = ssl._create_unverified_context start_crawl('http://sports.sohu.com/nba_a.shtml', r'<a[^>]+test=a\s[^>]*href=["\'](.*?)["\']') if __name__ == '__main__': main()
2dde9d6b6d7882fd2f8221971f5affeee6735fa2
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03072/s635930653.py
041f13523a4cc93f92b5e54f56ee442444872570
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
178
py
n = int(input()) h = list(map(int, input().split())) max = h[0] count = 0 for i in h: if max <= i: count += 1 max = i else: continue print(count)
87dec6ef073bd02fe7709d0c6b011cbfd0f6b878
7861798672463b239a3102b8407ec56c593c2811
/setup.py
0130f5685229a7217c8d3b52ceae52cde7687776
[]
no_license
nag92/strokeRehabSystem
33b38cb41de4a357e1a9c99cb30b5608d97932b7
f51752bd355c91e162f94c26b4078e7d7bcee744
refs/heads/master
2020-03-31T14:25:06.853916
2018-05-02T15:35:50
2018-05-02T15:35:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
314
py
## ! DO NOT MANUALLY INVOKE THIS setup.py, USE CATKIN INSTEAD from distutils.core import setup from catkin_pkg.python_setup import generate_distutils_setup # fetch values from package.xml setup_args = generate_distutils_setup( packages=['strokeRehabSystem'], package_dir={'': 'src'}) setup(**setup_args)
0224791ecdacf52585dc82bcf696f6feda3eb560
b0c02d7ca86c1ef84af18a8c701702e8bb212b64
/robotcar/robot_demo.py
d835d77755ccbeb16aa91e9b243d69dbd81e23e3
[]
no_license
flashypepo/myMicropython-Examples
24fa2f372e68742abe0f74913df000dfe64a9e55
b2b63df865b5ad471b351ca5f279135025859f5d
refs/heads/master
2021-09-24T18:52:18.083444
2018-10-13T11:59:19
2018-10-13T11:59:19
98,223,412
1
0
null
null
null
null
UTF-8
Python
false
false
846
py
import machine, motor, bot, time print('creating i2c and motors ...') i2c = machine.I2C(scl=machine.Pin(5), sda=machine.Pin(4)) motors = motor.DCMotors(i2c) #creates motors object LEFT=0 #M0 - left motor RIGHT=3 #M4 - right motor print('creating robot ...') robot = bot.Robot(motors, LEFT, RIGHT) # creates robot dt = 3 # duration in seconds print('robot moves ...') robot.left(2000, dt) #turn left time.sleep(0.3) robot.right(2000, dt) # turn right time.sleep(0.3) robot.forward(2000, dt) #forward time.sleep(0.3) robot.backward(2000, dt) #backwards time.sleep(0.3) print('robot demo ...') speed = 3000 #motorspeed for i in range(3): robot.left(speed, dt) time.sleep(0.3) robot.right(speed, dt) time.sleep(0.3) robot.forward(speed, dt) time.sleep(0.3) robot.backward(speed, dt) time.sleep(1.0) print('done')
6fa666ea6d1840544f96f471b1e3fa431e6625ce
2b468b1d22ecc5668529255676a1d43936829074
/codes/personal_backend/support/test/api/account/test_account_staff_api.py
77c65d5ee97fc600c4f0bfb8569cff2aaa68c41e
[]
no_license
MaseraTiGo/4U
5ac31b4cccc1093ab9a07d18218c3d8c0157dc9c
f572830aa996cfe619fc4dd8279972a2f567c94c
refs/heads/master
2023-07-26T09:44:21.014294
2023-07-13T03:43:34
2023-07-13T03:43:34
149,217,706
0
0
null
2020-06-05T20:38:16
2018-09-18T02:34:29
Python
UTF-8
Python
false
false
1,720
py
# coding=UTF-8 import json from support.common.testcase.api_test_case import APITestCase ''' class Add(APITestCase): def setUp(self): pass def tearDown(self): pass def test_account_staff_add(self): """test account staff to add""" flag = "user" api = "account.staff.add" user_info = json.dumps({ 'username': "fengshiyu002", 'name': "冯时宇002", 'birthday': "2018-04-16", 'phone': "15232626262", 'email': "[email protected]", 'gender': "man", 'number': "008", 'identity': "123456789", 'role_ids' :[1,17], 'department_ids' :[1,7], }) result = self.access_api(flag = flag, api = api, user_info = user_info) class UpdatePassword(APITestCase): def setUp(self): pass def tearDown(self): pass def test_account_staff_update_password(self): """test account staff to update password""" flag = "user" api = "account.staff.update.password" uid = 2 newpassword = "e10adc3949ba59abbe56e057f20f883e" oldpassword = "123456" result = self.access_api(flag = flag, api = api, oldpassword = oldpassword, \ newpassword = newpassword) ''' class Generate(APITestCase): def setUp(self): pass def tearDown(self): pass def test_account_staff_generate(self): """test account staff to generate""" flag = "user" api = "account.staff.generate" staff_id = 11 username = "fsy" result = self.access_api(flag = flag, api = api, staff_id = staff_id)
87b3c9e11b14cb7d689ba36d1587e35e28f58976
c97b9ae1bf06757ba61f90905e4d9b9dd6498700
/venv/Lib/site-packages/skimage/draw/draw_nd.py
03c268fb11faaef98beb8414071d9f7ed38a343a
[]
no_license
Rahulk1p/image-processor
f7ceee2e3f66d10b2889b937cdfd66a118df8b5d
385f172f7444bdbf361901108552a54979318a2d
refs/heads/main
2023-03-27T10:09:46.080935
2021-03-16T13:04:02
2021-03-16T13:04:02
348,115,443
0
0
null
null
null
null
UTF-8
Python
false
false
129
py
version https://git-lfs.github.com/spec/v1 oid sha256:c5e7f1c5ad5f275def9df43f330f4af4782e674274fb765bbb93af0c05902092 size 3841
86ce704f77b7c265463560e188583cbaa2aac01e
f29d69eea45f4383db37b1b6876be4bcfd286312
/user_portrait_0320/user_portrait/cron/network/cron_network.py
ed9c43bd9b965c0a28d58ca37f802ddade6ad69a
[]
no_license
xuzhiq/user_portrait_ending2
5ac9952cf275923677d6e2f575289236df4dde9b
f2978135ff672f58090e202e588f7321ed121477
refs/heads/master
2021-05-31T05:15:21.316687
2016-05-11T11:56:38
2016-05-11T11:56:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,804
py
# -*- coding:utf-8 -*- import tempfile import sys import json import time import tempfile reload(sys) sys.path.append('../../') from spam.pagerank_for_portrait import pagerank from time_utils import ts2datetime, datetime2ts, ts2date from keywords_utils import get_task_information, identify_task_exist,\ compute_network_task, write_tmp_file, save_task_results,\ push_task_information #use to read task information from queue def scan_network_keywords_task(): #step1: read task information from redis queue #step2: identify the task information is exist in es #step3: compute the network trend task while True: #read task informaiton from redis queue network_task_information = get_task_information() print network_task_information #when redis queue null - file break if not network_task_information: break #identify the task is exist in es exist_mark = identify_task_exist(network_task_information) print 'exist_mark:', exist_mark if exist_mark: print 'step 1: compute', ts2date(time.time()) results = compute_network_task(network_task_information) if results: tmp_file = tempfile.NamedTemporaryFile(delete=False) write_tmp_file(tmp_file, results) tmp_file.close() if not tmp_file: return input_tmp_path = tmp_file.name print input_tmp_path ITER_COUNT = 10 TOP_N = 50 print 'step 2: pagerank', ts2date(time.time()) all_uids_count, dg_sorted_uids, pr_sorted_uids = pagerank(ITER_COUNT, input_tmp_path, TOP_N, 'keywords') #save results print 'step 3: save', ts2date(time.time()) save_mark = save_task_results(dg_sorted_uids, pr_sorted_uids, network_task_information) print 'save done', ts2date(time.time()) #identify save status if not save_mark: #status fail: push task information to redis queue push_mark = push_task_information(network_task_information) if not push_mark: print 'error push task queue' else: #if no exist - pass pass if __name__=='__main__': log_time_ts = time.time() log_time_date = ts2date(log_time_ts) print 'cron/network/cron_network.py&start&' + log_time_date try: scan_network_keywords_task() except Exception, e: print e, '&error&', ts2date(time.time()) log_time_ts = time.time() log_time_date = ts2date(log_time_ts) print 'cron/network/cron_network.py&end&' + log_time_date
220d3da93147ba464b5fd1a2eeefdba19a37c65f
26552adb0d8889affd40e009d3c311e41a873e43
/Python_Solutions/9095.py
6b8aaf7f8f39b7b0b8e579984c319a8acee871ab
[]
no_license
Isaac-Lee/BOJ-Algorithm
3b9b64aba9ab3b48d15133cbf5ad122822e441d0
27f0339195c48f416e672390758e85305203b71a
refs/heads/main
2022-06-29T21:36:11.500158
2022-06-25T06:35:05
2022-06-25T06:35:05
203,349,860
4
0
null
null
null
null
UTF-8
Python
false
false
466
py
import sys def make123(n): if memo[n] > 0: return memo[n] if n == 1 or n == 0: memo[n] = 1 return memo[n] memo[n] += make123(n-1) if n-3 >= 0: memo[n] += make123(n-3) if n-2 >= 0: memo[n] += make123(n-2) return memo[n] if __name__ == "__main__": n = int(sys.stdin.readline()) for _ in range(n): k = int(sys.stdin.readline()) memo = [0] * (k + 1) print(make123(k))
c015abc83aad9d4d4eb62342b203ad222667c74b
24684138f7a74672e084511e2f0202680b318112
/lib/nmdc_metaassembly/nmdc_metaassemblyImpl.py
e0e0904a89147ec217adef5203a3d73a74881dd3
[ "MIT" ]
permissive
microbiomedata/nmdc_kbase_metaassembly
531abc003bace8ead6334966f90a8e925bd583ca
2cb091007e556933e90c7c342a3e800d931e15ca
refs/heads/master
2023-03-16T06:16:24.445768
2021-03-05T16:56:48
2021-03-05T16:56:48
341,439,883
0
2
MIT
2021-02-24T18:53:34
2021-02-23T05:31:18
Python
UTF-8
Python
false
false
2,579
py
# -*- coding: utf-8 -*- #BEGIN_HEADER import logging import os from installed_clients.KBaseReportClient import KBaseReport from nmdc_metaassembly.assemble import nmdc_mg_assembly #END_HEADER class nmdc_metaassembly: ''' Module Name: nmdc_metaassembly Module Description: A KBase module: nmdc_metaassembly ''' ######## WARNING FOR GEVENT USERS ####### noqa # Since asynchronous IO can lead to methods - even the same method - # interrupting each other, you must be *very* careful when using global # state. A method could easily clobber the state set by another while # the latter method is running. ######################################### noqa VERSION = "0.0.1" GIT_URL = "" GIT_COMMIT_HASH = "" #BEGIN_CLASS_HEADER #END_CLASS_HEADER # config contains contents of config file in a hash or None if it couldn't # be found def __init__(self, config): #BEGIN_CONSTRUCTOR self.callback_url = os.environ['SDK_CALLBACK_URL'] self.shared_folder = config['scratch'] logging.basicConfig(format='%(created)s %(levelname)s: %(message)s', level=logging.INFO) print(os.getcwd()) self.asu = nmdc_mg_assembly(self.callback_url, self.shared_folder) #END_CONSTRUCTOR pass def run_nmdc_metaassembly(self, ctx, params): """ This example function accepts any number of parameters and returns results in a KBaseReport :param params: instance of mapping from String to unspecified object :returns: instance of type "ReportResults" -> structure: parameter "report_name" of String, parameter "report_ref" of String """ # ctx is the context object # return variables are: output #BEGIN run_nmdc_metaassembly os.chdir(self.shared_folder) output = self.asu.assemble(params) #END run_nmdc_metaassembly # At some point might do deeper type checking... if not isinstance(output, dict): raise ValueError('Method run_nmdc_metaassembly return value ' + 'output is not type dict as required.') # return the results return [output] def status(self, ctx): #BEGIN_STATUS returnVal = {'state': "OK", 'message': "", 'version': self.VERSION, 'git_url': self.GIT_URL, 'git_commit_hash': self.GIT_COMMIT_HASH} #END_STATUS return [returnVal]
b07717ae965c5aa2e55fdbcbf027e893ba95b680
46ae8264edb9098c9875d2a0a508bc071201ec8b
/res/scripts/client/gui/scaleform/daapi/view/battlegas_attack.py
c45a4342116a35a23080122c5c705cc4d96ee7d0
[]
no_license
Difrex/wotsdk
1fc6156e07e3a5302e6f78eafdea9bec4c897cfb
510a34c67b8f4c02168a9830d23f5b00068d155b
refs/heads/master
2021-01-01T19:12:03.592888
2016-10-08T12:06:04
2016-10-08T12:06:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,223
py
# Embedded file name: scripts/client/gui/Scaleform/daapi/view/battle/gas_attack.py from gui.Scaleform.locale.FALLOUT import FALLOUT from gui.battle_control import g_sessionProvider from gui.shared.utils.plugins import IPlugin from gui import makeHtmlString from helpers import i18n class GasAttackPlugin(IPlugin): def start(self): super(GasAttackPlugin, self).start() self._parentObj.movie.falloutItems.as_loadGasItems(i18n.makeString(FALLOUT.SAFEZONE_MESSAGE), self.__getPanelText()) g_sessionProvider.getGasAttackCtrl().start(self._parentObj) def stop(self): g_sessionProvider.getGasAttackCtrl().stop() super(GasAttackPlugin, self).stop() def __getPanelText(self): infoStr = i18n.makeString(FALLOUT.GASATTACKPANEL_SAFEZONE_MESSAGE) return (FALLOUT.GASATTACKPANEL_START_TITLE, FALLOUT.GASATTACKPANEL_START_MESSAGE, FALLOUT.GASATTACKPANEL_GASATTACK_TITLE, FALLOUT.GASATTACKPANEL_GASATTACK_MESSAGE, FALLOUT.GASATTACKPANEL_INSIDE_TITLE, FALLOUT.GASATTACKPANEL_INSIDE_MESSAGE, FALLOUT.GASATTACKPANEL_SAFEZONE_TITLE, makeHtmlString('html_templates:battle/gasAtackPanel', 'safeZone', infoStr))
c0604ecc3e5fec3aa2883092810bbfee31e16a8e
f50368f3165c182a0adc914dec56f0cc03d9fb5a
/visual_mpc/envs/sawyer_robot/vanilla_sawyer_env.py
dc1c25c0a1aabdcacfee00d56d4d3d2dbb6b5243
[ "MIT" ]
permissive
anestisdotpy/visual_foresight
16ea71f938458a35892c1f557903ed885810dda3
957df706b4c7a11b7a0c9ba2de15853df62cd4ed
refs/heads/master
2020-06-22T05:59:10.578361
2019-07-18T20:23:51
2019-07-18T20:23:51
197,651,312
0
0
null
2019-07-18T20:17:26
2019-07-18T20:17:26
null
UTF-8
Python
false
false
487
py
from .base_sawyer_env import BaseSawyerEnv import copy class VanillaSawyerEnv(BaseSawyerEnv): def __init__(self, env_params, _=None): self._hyper = copy.deepcopy(env_params) BaseSawyerEnv.__init__(self, env_params) self._adim, self._sdim = self._base_adim, self._base_sdim def _next_qpos(self, action): assert action.shape[0] == self._base_adim, "Action should have shape (5,)" return self._previous_target_qpos * self.mode_rel + action