blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
17c928e3cafbcf5f45ca353e1f379ba1e9e04da5
01c3ff1d74e754e0d4ce0fb7f8a8b329ec3766e1
/python_exercises/19others/fun4.py
6f9ac6e1fda53a3f6312dd5622e67ea3388ae8c9
[]
no_license
vineel2014/Pythonfiles
5ad0a2b824b5fd18289d21aa8306099aea22c202
0d653cb9659fe750cf676a70035ab67176179905
refs/heads/master
2020-04-28T03:56:22.713558
2019-03-11T08:38:54
2019-03-11T08:38:54
123,681,939
1
0
null
null
null
null
UTF-8
Python
false
false
190
py
def product(numbers): sum_so_far=1 for number in numbers: sum_so_far*=number return sum_so_far print(product([1,2,3])) print(product([7,-4,1,6,0])) print(product([]))
aaef040f57542efbf767c69d734449770a943986
8cdc63b549f5a7f1aca7b476a5a918e5c05e38c5
/app/adm/tests/test_view_permission.py
ff2d71f4af8b26e48e27a3ff79c8e1c2b6854ac7
[ "MIT" ]
permissive
rogeriopaulos/gep
984e3bcd8bd4569031577e1d28a8c47c6aace91f
e56fd0450bdb8f572e2e35cc59a74ab0f0b372e2
refs/heads/main
2023-08-14T08:41:19.558899
2021-09-15T02:51:46
2021-09-15T02:51:46
402,270,601
0
1
null
null
null
null
UTF-8
Python
false
false
12,575
py
from account.tests.factories import ProfileFactory from adm.tests.factories import AdministrativoFactory from adm.tests.utils import SetUpTestViewAtoData from core.permissions import GRUPO_ADMINISTRATIVO from django.contrib.auth.models import Group from django.test import TestCase from django.urls import reverse from guardian.shortcuts import assign_perm class SelectUserPermissionAdmViewTestCase(SetUpTestViewAtoData, TestCase): def setUp(cls): cls.processo = AdministrativoFactory(orgao_processo=cls.orgao, autor=cls.normal_user, arquivar=False) cls.url = reverse('adm:select_user_adm', kwargs={'pk': cls.processo.pk}) cls.batch = ProfileFactory.create_batch(10, orgao_link=cls.orgao) cls.context = { 'usuarios': [f'{profile.user.pk}' for profile in cls.batch] } cls.response_unlogged = 'componentes/singles/core/Home.html', 200 cls.response_without_perm_GET = '403.html', 403 cls.response_without_perm_POST = '403.html', 403 cls.response_policial_GET = '403.html', 403 cls.response_policial_POST = '403.html', 403 cls.response_superior_GET = 'componentes/shares/SelectUserPerm.html', 200 cls.response_superior_POST = 'componentes/shares/PermForUser.html', 200 assign_perm('adm.view_administrativo', cls.group_superior) assign_perm('adm.view_administrativo', cls.normal_user) assign_perm('adm.add_administrativo', cls.group_superior) assign_perm('adm.add_administrativo', cls.normal_user, cls.processo) cls.group = Group(name=GRUPO_ADMINISTRATIVO) cls.group.save() for profile in cls.batch: profile.user.groups.add(cls.group) def test_unlogged_GET(self): response = self.client.get(self.url, follow=True) self.assertEqual(response.status_code, self.response_unlogged[1]) self.assertTemplateUsed(response, self.response_unlogged[0]) def test_unlogged_POST(self): response = self.client.post(self.url, self.context, follow=True) self.assertEqual(response.status_code, self.response_unlogged[1]) self.assertTemplateUsed(response, self.response_unlogged[0]) def test_logged_without_permission_GET(self): self.client.login(username=self.usuario.username, password=self.password) response = self.client.get(self.url, follow=True) self.assertEqual(response.status_code, self.response_without_perm_GET[1]) self.assertTemplateUsed(response, self.response_without_perm_GET[0]) def test_logged_without_permission_POST(self): self.client.login(username=self.usuario.username, password=self.password) response = self.client.post(self.url, self.context, follow=True) self.assertEqual(response.status_code, self.response_without_perm_POST[1]) self.assertTemplateUsed(response, self.response_without_perm_POST[0]) def test_logged_with_policial_permission_GET(self): self.client.login(username=self.normal_user.username, password=self.password) response = self.client.get(self.url, follow=True) self.assertEqual(response.status_code, self.response_policial_GET[1]) self.assertTemplateUsed(response, self.response_policial_GET[0]) def test_logged_with_policial_permission_POST(self): self.client.login(username=self.normal_user.username, password=self.password) response = self.client.post(self.url, self.context, follow=True) self.assertEqual(response.status_code, self.response_policial_POST[1]) self.assertTemplateUsed(response, self.response_policial_POST[0]) def test_logged_with_superior_permission_GET(self): self.client.login(username=self.superior.username, password=self.password) response = self.client.get(self.url, follow=True) self.assertEqual(response.status_code, self.response_superior_GET[1]) self.assertTemplateUsed(response, self.response_superior_GET[0]) def test_logged_with_superior_permission_POST(self): self.client.login(username=self.superior.username, password=self.password) response = self.client.post(self.url, self.context, follow=True) self.assertEqual(response.status_code, self.response_superior_POST[1]) self.assertTemplateUsed(response, self.response_superior_POST[0]) class SelectUserOrgaoExternoAdmViewTestCase(SetUpTestViewAtoData, TestCase): def setUp(cls): cls.processo = AdministrativoFactory(orgao_processo=cls.orgao, autor=cls.normal_user, arquivar=False) cls.url = reverse('adm:add_external_users_adm', kwargs={'pk': cls.processo.pk}) cls.batch = ProfileFactory.create_batch(10) cls.context = { 'usuarios': [f'{profile.user.pk}' for profile in cls.batch] } cls.response_unlogged = 'componentes/singles/core/Home.html', 200 cls.response_without_perm_GET = '403.html', 403 cls.response_without_perm_POST = '403.html', 403 cls.response_policial_GET = '403.html', 403 cls.response_policial_POST = '403.html', 403 cls.response_superior_GET = 'componentes/shares/SelectUserPerm.html', 200 cls.response_superior_POST = 'componentes/shares/PermForUser.html', 200 assign_perm('adm.view_administrativo', cls.group_superior) assign_perm('adm.view_administrativo', cls.normal_user) assign_perm('adm.add_administrativo', cls.group_superior) assign_perm('adm.add_administrativo', cls.normal_user, cls.processo) cls.group = Group(name=GRUPO_ADMINISTRATIVO) cls.group.save() for profile in cls.batch: profile.user.groups.add(cls.group) def test_unlogged_GET(self): response = self.client.get(self.url, follow=True) self.assertEqual(response.status_code, self.response_unlogged[1]) self.assertTemplateUsed(response, self.response_unlogged[0]) def test_unlogged_POST(self): response = self.client.post(self.url, self.context, follow=True) self.assertEqual(response.status_code, self.response_unlogged[1]) self.assertTemplateUsed(response, self.response_unlogged[0]) def test_logged_without_permission_GET(self): self.client.login(username=self.usuario.username, password=self.password) response = self.client.get(self.url, follow=True) self.assertEqual(response.status_code, self.response_without_perm_GET[1]) self.assertTemplateUsed(response, self.response_without_perm_GET[0]) def test_logged_without_permission_POST(self): self.client.login(username=self.usuario.username, password=self.password) response = self.client.post(self.url, self.context, follow=True) self.assertEqual(response.status_code, self.response_without_perm_POST[1]) self.assertTemplateUsed(response, self.response_without_perm_POST[0]) def test_logged_with_policial_permission_GET(self): self.client.login(username=self.normal_user.username, password=self.password) response = self.client.get(self.url, follow=True) self.assertEqual(response.status_code, self.response_policial_GET[1]) self.assertTemplateUsed(response, self.response_policial_GET[0]) def test_logged_with_policial_permission_POST(self): self.client.login(username=self.normal_user.username, password=self.password) response = self.client.post(self.url, self.context, follow=True) self.assertEqual(response.status_code, self.response_policial_POST[1]) self.assertTemplateUsed(response, self.response_policial_POST[0]) def test_logged_with_superior_permission_GET(self): self.client.login(username=self.superior.username, password=self.password) response = self.client.get(self.url, follow=True) self.assertEqual(response.status_code, self.response_superior_GET[1]) self.assertTemplateUsed(response, self.response_superior_GET[0]) def test_logged_with_superior_permission_POST(self): self.client.login(username=self.superior.username, password=self.password) response = self.client.post(self.url, self.context, follow=True) self.assertEqual(response.status_code, self.response_superior_POST[1]) self.assertTemplateUsed(response, self.response_superior_POST[0]) class PermissionAdmViewTestCase(SetUpTestViewAtoData, TestCase): def setUp(cls): cls.processo = AdministrativoFactory(orgao_processo=cls.orgao, autor=cls.normal_user, arquivar=False) cls.url = reverse('adm:select_perm_adm', kwargs={'pk': cls.processo.pk}) cls.batch = ProfileFactory.create_batch(2, orgao_link=cls.orgao) cls.context = { 'form-TOTAL_FORMS': '2', 'form-INITIAL_FORMS': '0', 'form-MIN_NUM_FORMS': '0', 'form-MAX_NUM_FORMS': '1000', 'form-0-username': cls.batch[0].user.username, 'form-1-username': cls.batch[1].user.username, } cls.response_unlogged = 'componentes/singles/core/Home.html', 200 cls.response_without_perm_GET = '403.html', 403 cls.response_without_perm_POST = '403.html', 403 cls.response_policial_GET = '403.html', 403 cls.response_policial_POST = '403.html', 403 cls.response_superior_GET = 'componentes/shares/PermForUser.html', 200 cls.response_superior_POST = 'componentes/singles/processos/adm/detalhes/_DetalheGeral.html', 200 assign_perm('adm.view_administrativo', cls.group_superior) assign_perm('adm.view_administrativo', cls.normal_user) assign_perm('adm.add_administrativo', cls.group_superior) assign_perm('adm.add_administrativo', cls.normal_user, cls.processo) cls.group = Group(name=GRUPO_ADMINISTRATIVO) cls.group.save() for profile in cls.batch: profile.user.groups.add(cls.group) def test_unlogged_GET(self): response = self.client.get(self.url, follow=True) self.assertEqual(response.status_code, self.response_unlogged[1]) self.assertTemplateUsed(response, self.response_unlogged[0]) def test_unlogged_POST(self): response = self.client.post(self.url, self.context, follow=True) self.assertEqual(response.status_code, self.response_unlogged[1]) self.assertTemplateUsed(response, self.response_unlogged[0]) def test_logged_without_permission_GET(self): self.client.login(username=self.usuario.username, password=self.password) response = self.client.get(self.url, follow=True) self.assertEqual(response.status_code, self.response_without_perm_GET[1]) self.assertTemplateUsed(response, self.response_without_perm_GET[0]) def test_logged_without_permission_POST(self): self.client.login(username=self.usuario.username, password=self.password) response = self.client.post(self.url, self.context, follow=True) self.assertEqual(response.status_code, self.response_without_perm_POST[1]) self.assertTemplateUsed(response, self.response_without_perm_POST[0]) def test_logged_with_policial_permission_GET(self): self.client.login(username=self.normal_user.username, password=self.password) response = self.client.get(self.url, follow=True) self.assertEqual(response.status_code, self.response_policial_GET[1]) self.assertTemplateUsed(response, self.response_policial_GET[0]) def test_logged_with_policial_permission_POST(self): self.client.login(username=self.normal_user.username, password=self.password) response = self.client.post(self.url, self.context, follow=True) self.assertEqual(response.status_code, self.response_policial_POST[1]) self.assertTemplateUsed(response, self.response_policial_POST[0]) def test_logged_with_superior_permission_GET(self): self.client.login(username=self.superior.username, password=self.password) response = self.client.get(self.url, follow=True) self.assertEqual(response.status_code, self.response_superior_GET[1]) self.assertTemplateUsed(response, self.response_superior_GET[0]) def test_logged_with_superior_permission_POST(self): self.client.login(username=self.superior.username, password=self.password) response = self.client.post(self.url, self.context, follow=True) self.assertEqual(response.status_code, self.response_superior_POST[1]) self.assertTemplateUsed(response, self.response_superior_POST[0])
d4d95744592b24613ab6bfde2b48befb4f83d4c9
2e6309c8f2126a6196adf9288c31162e6a949c1d
/backend/djabgoBlog-master/blog/subscribe/forms.py
90898d74a085347109f8f89fa6ee3117df4562b4
[]
no_license
triest/codeExample2
7ff87908caed3c4f58ff1609187a5af78ce11663
6d8a20fdd710d1560a3dbc2dfb4455fcc4d862b1
refs/heads/master
2020-04-02T03:12:21.027401
2018-10-21T11:22:14
2018-10-21T11:22:14
153,951,115
0
0
null
null
null
null
UTF-8
Python
false
false
460
py
from django.contrib.auth.decorators import login_required from django.shortcuts import render from inspect import getmembers from pprint import pprint from django.forms import modelform_factory from django import forms from django.contrib.auth.models import User; from . import models #from blog.articles.models import Subscribe as Subscribe1 class SunscribeForm(forms.ModelForm): class Meta: model = models.Subscribe fields = ['name']
1913f94db48508d534a35b09a05eec732f312e5f
2be43fdc9f328895b949c92ec4e7602fbbbf2ca3
/tests/test_feeds.py
20932f520aba76a42d6876c404625f2a4259e97f
[]
no_license
gjxlu/feedhq
418a75ef68de759e7f85cf8b14f827b3fd5e5f27
3027b192e2c6f35ebb7f821c6d64e8eca49e4c44
refs/heads/master
2020-12-25T02:01:24.035251
2013-07-16T21:20:01
2013-07-16T21:36:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
35,214
py
# -*- coding: utf-8 -*- import feedparser import json from datetime import timedelta from django.core.cache import cache from django.core.urlresolvers import reverse from django.utils import timezone from django_push.subscriber.signals import updated from django_webtest import WebTest from httplib2 import Response from mock import patch from rache import schedule_job from feedhq.feeds.models import Category, Feed, Entry, UniqueFeed from feedhq.feeds.tasks import update_feed from feedhq.feeds.templatetags.feeds_tags import smart_date from feedhq.feeds.utils import USER_AGENT from feedhq.profiles.models import User from feedhq.wsgi import application # noqa from .factories import UserFactory, CategoryFactory, FeedFactory, EntryFactory from . import test_file, responses class WebBaseTests(WebTest): @patch('requests.get') def test_welcome_page(self, get): get.return_value = responses(304) self.user = User.objects.create_user('testuser', '[email protected]', 'pass') user = UserFactory.create() url = reverse('feeds:home') response = self.app.get(url, user=user) self.assertContains(response, 'Getting started') FeedFactory.create(category__user=user, user=user) response = self.app.get(url) self.assertNotContains(response, 'Getting started') def test_login_required(self): url = reverse('feeds:home') response = self.app.get(url, headers={'Accept': 'text/*'}) self.assertEqual(response.status_code, 200) def test_homepage(self): """The homepage from a logged in user""" user = UserFactory.create() response = self.app.get(reverse('feeds:home'), user=user) self.assertContains(response, 'Home') self.assertContains(response, user.username) def test_unauth_homepage(self): """The home page from a logged-out user""" response = self.app.get(reverse('feeds:home')) self.assertContains(response, 'Sign in') # login required def test_paginator(self): user = UserFactory.create() response = self.app.get(reverse('feeds:home', args=[5]), user=user) self.assertContains(response, 'Home') def test_category(self): user = UserFactory.create() CategoryFactory.create(user=user, name=u'Cat yo') url = reverse('feeds:category', args=['cat-yo']) response = self.app.get(url, user=user) self.assertContains(response, 'Cat yo') @patch("requests.get") def test_only_unread(self, get): get.return_value = responses(304) user = UserFactory.create() category = CategoryFactory.create(user=user) FeedFactory.create(category=category, user=user) url = reverse('feeds:unread_category', args=[category.slug]) response = self.app.get(url, user=user) self.assertContains(response, category.name) self.assertContains(response, 'all <span class="ct">') def test_add_category(self): user = UserFactory.create() url = reverse('feeds:add_category') response = self.app.get(url, user=user) form = response.forms['category'] response = form.submit() self.assertFormError(response, 'form', 'name', ['This field is required.']) form['name'] = 'New Name' form['color'] = 'red' response = form.submit() self.assertRedirects(response, '/manage/') # Re-submitting the same name fails response = form.submit() self.assertFormError(response, 'form', 'name', ['A category with this name already exists.']) # Adding a category with a name generating the same slug. # The slug will be different form['name'] = 'New Name' response = form.submit() user.categories.get(slug='new-name-1') self.assertRedirects(response, '/manage/') # Now we add a category named 'add', which is a conflicting URL form['name'] = 'add' response = form.submit() user.categories.get(slug='add-1') self.assertRedirects(response, '/manage/') # Add a category with non-ASCII names, slugify should cope form['name'] = u'北京' response = form.submit() user.categories.get(slug='unknown') self.assertRedirects(response, '/manage/') form['name'] = u'北' response = form.submit() user.categories.get(slug='unknown-1') self.assertRedirects(response, '/manage/') form['name'] = u'京' response = form.submit() user.categories.get(slug='unknown-2') self.assertRedirects(response, '/manage/') def test_delete_category(self): user = UserFactory.create() category = CategoryFactory.create(user=user) url = reverse('feeds:delete_category', args=[category.slug]) response = self.app.get(url, user=user) self.assertEqual(response.status_code, 200) self.assertEqual(Category.objects.count(), 1) form = response.forms['delete'] response = form.submit().follow() self.assertEqual(Category.objects.count(), 0) @patch("requests.get") def test_feed(self, get): get.return_value = responses(304) user = UserFactory.create() feed = FeedFactory.create(category__user=user, user=user) url = reverse('feeds:feed', args=[feed.pk]) response = self.app.get(url, user=user) expected = ( '<a href="{0}unread/">unread <span class="ct">0</span></a>' ).format(feed.get_absolute_url()) self.assertContains(response, expected) def test_edit_category(self): user = UserFactory.create() category = CategoryFactory.create(user=user) url = reverse('feeds:edit_category', args=[category.slug]) response = self.app.get(url, user=user) self.assertContains(response, u'Edit {0}'.format(category.name)) form = response.forms['category'] form['name'] = 'New Name' form['color'] = 'blue' response = form.submit().follow() self.assertContains(response, 'New Name has been successfully updated') @patch('requests.get') def test_add_feed(self, get): get.return_value = responses(304) user = UserFactory.create() category = CategoryFactory.create(user=user) url = reverse('feeds:add_feed') response = self.app.get(url, user=user) self.assertContains(response, 'Add a feed') form = response.forms['feed'] form['name'] = 'Lulz' response = form.submit() # there is no URL self.assertFormError(response, 'form', 'url', ['This field is required.']) form['name'] = 'Bobby' form['url'] = 'http://example.com/feed.xml' form['category'] = category.pk response = form.submit() self.assertFormError(response, 'form', 'url', [ "Invalid response code from URL: HTTP 304.", ]) get.return_value = responses(200, 'categories.opml') response = form.submit() self.assertFormError(response, 'form', 'url', [ "This URL doesn't seem to be a valid feed.", ]) get.return_value = responses(200, 'bruno.im.png') response = form.submit() self.assertFormError(response, 'form', 'url', [ "This URL doesn't seem to be a valid feed.", ]) cache_key = "lock:feed_check:{0}".format(user.pk) cache._client.set(cache_key, user.pk) response = form.submit() self.assertFormError(response, 'form', 'url', [ "This action can only be done one at a time.", ]) cache._client.delete(cache_key) get.return_value = responses(200, 'brutasse.atom') response = form.submit() self.assertRedirects(response, '/manage/') response.follow() response = form.submit() self.assertFormError( response, 'form', 'url', ["It seems you're already subscribed to this feed."]) # Provide initial params via ?feed=foo&name=bar response = self.app.get(url, {'feed': 'https://example.com/blog/atom', 'name': 'Some Example Blog'}) self.assertContains(response, 'value="https://example.com/blog/atom"') self.assertContains(response, 'value="Some Example Blog"') get.side_effect = ValueError user.feeds.all().delete() response = form.submit() self.assertFormError(response, 'form', 'url', ['Error fetching the feed.']) def test_feed_url_validation(self): user = UserFactory.create() category = CategoryFactory.create(user=user) url = reverse('feeds:add_feed') response = self.app.get(url, user=user) form = response.forms['feed'] form['name'] = 'Test' form['url'] = 'ftp://example.com' form['category'] = category.pk response = form.submit() self.assertFormError( response, 'form', 'url', "Invalid URL scheme: 'ftp'. Only HTTP and HTTPS are supported.", ) for invalid_url in ['http://localhost:8000', 'http://localhost', 'http://127.0.0.1']: form['url'] = invalid_url response = form.submit() self.assertFormError(response, 'form', 'url', "Invalid URL.") @patch("requests.get") def test_edit_feed(self, get): get.return_value = responses(304) user = UserFactory.create() feed = FeedFactory.create(user=user) url = reverse('feeds:edit_feed', args=[feed.pk]) response = self.app.get(url, user=user) self.assertContains(response, feed.name) form = response.forms['feed'] form['name'] = 'New Name' form['url'] = 'http://example.com/newfeed.xml' get.return_value = responses(200, 'brutasse.atom') response = form.submit().follow() self.assertContains(response, 'New Name has been successfully updated') cat = CategoryFactory.create(user=user) response = self.app.get(url, user=user) form = response.forms['feed'] form['category'] = cat.pk response = form.submit().follow() self.assertContains(response, 'New Name has been successfully updated') self.assertEqual(Feed.objects.get().category_id, cat.pk) @patch("requests.get") def test_delete_feed(self, get): get.return_value = responses(304) user = UserFactory.create() feed = FeedFactory.create(category__user=user, user=user) url = reverse('feeds:delete_feed', args=[feed.pk]) response = self.app.get(url, user=user) self.assertContains(response, 'Delete') self.assertContains(response, feed.name) self.assertEqual(Feed.objects.count(), 1) response = response.forms['delete'].submit() self.assertEqual(response.status_code, 302) self.assertEqual(Feed.objects.count(), 0) # Redirects to home so useless to test @patch("requests.get") def test_invalid_page(self, get): get.return_value = responses(304) # We need more than 25 entries user = UserFactory.create() FeedFactory.create(category__user=user, user=user) url = reverse('feeds:home', args=[12000]) # that page doesn't exist response = self.app.get(url, user=user) self.assertContains(response, '<a href="/" class="current">') # This is called by other tests def _test_entry(self, from_url, user): self.assertEqual(self.app.get( from_url, user=user).status_code, 200) e = Entry.objects.get(title="jacobian's django-deployment-workshop") url = reverse('feeds:item', args=[e.pk]) response = self.app.get(url, user=user) self.assertContains(response, "jacobian's django-deployment-workshop") @patch('requests.get') def test_entry(self, get): user = UserFactory.create() get.return_value = responses(200, 'sw-all.xml') feed = FeedFactory.create(category__user=user, user=user) url = reverse('feeds:home') self._test_entry(url, user) url = reverse('feeds:unread') self._test_entry(url, user) url = reverse('feeds:stars') self._test_entry(url, user) url = reverse('feeds:category', args=[feed.category.slug]) self._test_entry(url, user) url = reverse('feeds:unread_category', args=[feed.category.slug]) self._test_entry(url, user) url = reverse('feeds:feed', args=[feed.pk]) self._test_entry(url, user) url = reverse('feeds:unread_feed', args=[feed.pk]) self._test_entry(url, user) feed.category = None feed.save() self._test_entry(url, user) @patch('requests.get') def test_custom_ordering(self, get): user = UserFactory.create() get.return_value = responses(200, 'sw-all.xml') FeedFactory.create(user=user, category__user=user) url = reverse('feeds:unread') response = self.app.get(url, user=user) first_title = response.context['entries'].object_list[0].title last_title = response.context['entries'].object_list[-1].title user.oldest_first = True user.save() response = self.app.get(url, user=user) self.assertEqual(response.context['entries'].object_list[0].title, last_title) self.assertEqual(response.context['entries'].object_list[-1].title, first_title) @patch('requests.get') def test_last_entry(self, get): user = UserFactory.create() get.return_value = responses(200, 'sw-all.xml') feed = FeedFactory.create(category__user=user, user=user) with self.assertNumQueries(2): update_feed(feed.url) self.assertEqual(Feed.objects.get().unread_count, user.entries.filter(read=False).count()) last_item = user.entries.order_by('date')[0] url = reverse('feeds:item', args=[last_item.pk]) response = self.app.get(url, user=user) self.assertNotContains(response, 'Next →') def test_not_mocked(self): with self.assertRaises(ValueError): FeedFactory.create() @patch("requests.get") def test_img(self, get): get.return_value = responses(304) user = UserFactory.create() feed = FeedFactory.create(category__user=user, url='http://exmpl.com', user=user) entry = Entry.objects.create( feed=feed, title="Random title", subtitle='<img src="/favicon.png">', link='http://example.com', date=timezone.now(), user=user, ) url = reverse('feeds:item', args=[entry.pk]) response = self.app.get(url, user=user) self.assertContains(response, 'External media is hidden') self.assertNotContains(response, '<img src="http://exmpl.com/favicon.png">') self.assertEqual(Feed.objects.get(pk=feed.pk).media_safe, False) form = response.forms['images'] response = form.submit(name='once') self.assertContains(response, 'Always display external media') self.assertContains(response, '<img src="http://exmpl.com/favicon.png">') self.assertEqual(Feed.objects.get(pk=feed.pk).media_safe, False) form = response.forms['images'] response = form.submit(name='always') self.assertContains(response, 'Disable external media') self.assertContains(response, '<img src="http://exmpl.com/favicon.png">') self.assertEqual(Feed.objects.get(pk=feed.pk).media_safe, True) form = response.forms['images'] response = form.submit(name='never') self.assertNotContains(response, 'Disable external media') self.assertEqual(Feed.objects.get(pk=feed.pk).media_safe, False) user.allow_media = True user.save(update_fields=['allow_media']) response = form.submit(name='never') self.assertFalse('images' in response.forms) self.assertContains(response, '<img src="http://exmpl.com/favicon.png">') @patch("requests.get") def test_actions(self, get): get.return_value = responses(304) user = UserFactory.create() feed = FeedFactory.create(category__user=user, url='http://exmpl.com', user=user) entry = Entry.objects.create( feed=feed, title="Random title", subtitle='Foo bar content', link='http://example.com', date=timezone.now(), user=user, ) url = reverse('feeds:item', args=[entry.pk]) response = self.app.get(url, user=user) token = response.forms['unread'].fields['csrfmiddlewaretoken'][0].value response = self.app.post(url, {'action': 'invalid', 'csrfmiddlewaretoken': token}, user=user) form = response.forms['star'] response = form.submit() self.assertTrue(Entry.objects.get().starred) form = response.forms['star'] response = form.submit() self.assertFalse(Entry.objects.get().starred) user.oldest_first = True user.save(update_fields=['oldest_first']) form = response.forms['unread'] response = form.submit() self.assertFalse(Entry.objects.get().read) @patch('requests.get') def test_opml_import(self, get): user = UserFactory.create() url = reverse('feeds:import_feeds') response = self.app.get(url, user=user) get.return_value = responses(304) form = response.forms['import'] with open(test_file('sample.opml'), 'r') as opml_file: form['file'] = 'sample.opml', opml_file.read() response = form.submit().follow() self.assertContains(response, '2 feeds have been imported') # Re-import with open(test_file('sample.opml'), 'r') as opml_file: form['file'] = 'sample.opml', opml_file.read() response = form.submit().follow() self.assertContains(response, '0 feeds have been imported') # Import an invalid thing form['file'] = 'invalid', "foobar" response = form.submit() self.assertFormError(response, 'form', 'file', [ "This file doesn't seem to be a valid OPML file." ]) # Empty file form['file'] = 'name', "" response = form.submit() self.assertFormError(response, 'form', 'file', [ "The submitted file is empty." ]) @patch('requests.get') def test_greader_opml_import(self, get): user = UserFactory.create() url = reverse('feeds:import_feeds') response = self.app.get(url, user=user) get.return_value = responses(304) form = response.forms['import'] with open(test_file('google-reader-subscriptions.xml'), 'r') as opml_file: form['file'] = 'sample.opml', opml_file.read() response = form.submit().follow() self.assertContains(response, '1 feed has been imported') self.assertEqual(Category.objects.count(), 0) @patch('requests.get') def test_categories_in_opml(self, get): user = UserFactory.create() url = reverse('feeds:import_feeds') response = self.app.get(url, user=user) self.assertEqual(response.status_code, 200) get.return_value = responses(304) form = response.forms["import"] with open(test_file('categories.opml'), 'r') as opml_file: form['file'] = 'categories.opml', opml_file.read() response = form.submit().follow() self.assertContains(response, '20 feeds have been imported') self.assertEqual(user.categories.count(), 6) with self.assertRaises(Category.DoesNotExist): user.categories.get(name='Imported') with self.assertRaises(Feed.DoesNotExist): Feed.objects.get( category__in=user.categories.all(), name='No title', ) for c in Category.objects.all(): c.get_absolute_url() @patch('requests.get') def test_dashboard(self, get): get.return_value = responses(304) user = UserFactory.create() url = reverse('feeds:dashboard') FeedFactory.create(category=None, user=user) for i in range(5): FeedFactory.create(category__user=user, user=user) response = self.app.get(url, user=user) self.assertContains(response, 'Dashboard') @patch('requests.get') def test_unread_count(self, get): """Unread feed count everywhere""" user = UserFactory.create() url = reverse('profile') response = self.app.get(url, user=user) self.assertContains( response, '<a class="unread" title="Unread entries" href="/unread/">0</a>' ) get.return_value = responses(200, 'sw-all.xml') FeedFactory.create(category__user=user, user=user) response = self.app.get(url, user=user) self.assertContains( response, '<a class="unread" title="Unread entries" href="/unread/">30</a>' ) @patch('requests.get') def test_mark_as_read(self, get): get.return_value = responses(304) user = UserFactory.create() feed = FeedFactory.create(category__user=user, user=user) url = reverse('feeds:unread') response = self.app.get(url, user=user) self.assertNotContains(response, '"Mark all as read"') get.return_value = responses(200, 'sw-all.xml') update_feed(feed.url) response = self.app.get(url, user=user) self.assertContains(response, '"Mark all as read"') form = response.forms['read'] response = form.submit() self.assertRedirects(response, url) response = response.follow() self.assertContains(response, '30 entries have been marked as read') self.assertEqual(user.entries.filter(read=False).count(), 0) self.assertEqual(user.entries.filter(read=True).count(), 30) form = response.forms['undo'] response = form.submit() self.assertRedirects(response, url) response = response.follow() self.assertContains(response, "30 entries have been marked as unread") self.assertEqual(user.entries.filter(read=False).count(), 30) self.assertEqual(user.entries.filter(read=True).count(), 0) @patch('requests.get') def test_promote_html_content_type(self, get): get.return_value = responses(200, 'content-description.xml') feed = FeedFactory.create() self.assertEqual( len(feed.entries.all()[0].content.split('F&#233;vrier 1953')), 2) @patch('requests.get') @patch('oauth2.Client') def test_add_to_readability(self, Client, get): # noqa client = Client.return_value r = Response({ 'status': 202, 'reason': 'Accepted', 'location': '/api/rest/v1/bookmarks/119', 'x-article-location': '/api/rest/v1/articles/xj28dwkx', }) value = json.dumps({'article': {'id': 'foo'}}) client.request.return_value = [r, value] user = UserFactory.create( read_later='readability', read_later_credentials=json.dumps({ 'oauth_token': 'token', 'oauth_token_secret': 'token secret', }), ) get.return_value = responses(200, 'sw-all.xml') feed = FeedFactory.create(category__user=user, user=user) get.assert_called_with( feed.url, headers={'User-Agent': USER_AGENT % '1 subscriber', 'Accept': feedparser.ACCEPT_HEADER}, timeout=10) entry_pk = Entry.objects.all()[0].pk url = reverse('feeds:item', args=[entry_pk]) response = self.app.get(url, user=user) self.assertContains(response, "Add to Readability") form = response.forms['read-later'] response = form.submit() client.request.assert_called_with('/api/rest/v1/bookmarks/119', method='GET') self.assertEqual(Entry.objects.get(pk=entry_pk).read_later_url, 'https://www.readability.com/articles/foo') response = self.app.get(url, user=user) self.assertNotContains(response, "Add to Instapaper") @patch("requests.get") @patch('oauth2.Client') def test_add_to_instapaper(self, Client, get): # noqa client = Client.return_value r = Response({'status': 200}) client.request.return_value = [ r, json.dumps([{'type': 'bookmark', 'bookmark_id': 12345, 'title': 'Some bookmark', 'url': 'http://example.com/some-bookmark'}]) ] user = UserFactory.create( read_later='instapaper', read_later_credentials=json.dumps({ 'oauth_token': 'token', 'oauth_token_secret': 'token secret', }), ) get.return_value = responses(304) feed = FeedFactory.create(category__user=user, user=user) get.return_value = responses(200, 'sw-all.xml') update_feed(feed.url) get.assert_called_with( feed.url, headers={'User-Agent': USER_AGENT % '1 subscriber', 'Accept': feedparser.ACCEPT_HEADER}, timeout=10) entry_pk = Entry.objects.all()[0].pk url = reverse('feeds:item', args=[entry_pk]) response = self.app.get(url, user=user) self.assertContains(response, "Add to Instapaper") form = response.forms['read-later'] response = form.submit() body = 'url=http%3A%2F%2Fsimonwillison.net%2F2010%2FMar%2F12%2Fre2%2F' client.request.assert_called_with( 'https://www.instapaper.com/api/1/bookmarks/add', body=body, method='POST', ) self.assertEqual(Entry.objects.get(pk=entry_pk).read_later_url, 'https://www.instapaper.com/read/12345') response = self.app.get(url, user=user) self.assertNotContains(response, "Add to Instapaper") @patch('requests.get') @patch('requests.post') def test_add_to_readitlaterlist(self, post, get): user = UserFactory.create( read_later='readitlater', read_later_credentials=json.dumps({'username': 'foo', 'password': 'bar'}), ) get.return_value = responses(200, 'sw-all.xml') feed = FeedFactory.create(category__user=user, user=user) get.assert_called_with( feed.url, headers={'User-Agent': USER_AGENT % '1 subscriber', 'Accept': feedparser.ACCEPT_HEADER}, timeout=10) url = reverse('feeds:item', args=[Entry.objects.all()[0].pk]) response = self.app.get(url, user=user) self.assertContains(response, 'Add to Read it later') form = response.forms['read-later'] response = form.submit() # Read it Later doesn't provide the article URL so we can't display a # useful link self.assertContains(response, "added to your reading list") post.assert_called_with( 'https://readitlaterlist.com/v2/add', data={u'username': u'foo', 'url': u'http://simonwillison.net/2010/Mar/12/re2/', 'apikey': 'test read it later API key', u'password': u'bar', 'title': (u'RE2: a principled approach to regular ' u'expression matching')}, ) @patch('requests.get') def test_pubsubhubbub_handling(self, get): user = UserFactory.create() url = 'http://bruno.im/atom/tag/django-community/' get.return_value = responses(304) feed = FeedFactory.create(url=url, category__user=user, user=user) get.assert_called_with( url, headers={'User-Agent': USER_AGENT % '1 subscriber', 'Accept': feedparser.ACCEPT_HEADER}, timeout=10) self.assertEqual(feed.entries.count(), 0) path = test_file('bruno.im.atom') with open(path, 'r') as f: data = f.read() updated.send(sender=None, notification=data, request=None, links=None) self.assertEqual(feed.entries.count(), 5) # Check content handling for entry in feed.entries.all(): self.assertTrue(len(entry.subtitle) > 2400) # Check date handling self.assertEqual(feed.entries.filter(date__year=2011).count(), 3) self.assertEqual(feed.entries.filter(date__year=2012).count(), 2) @patch('requests.get') def test_missing_links(self, get): path = test_file('no-rel.atom') with open(path, 'r') as f: data = f.read() updated.send(sender=None, notification=data, request=None, links=None) @patch('requests.get') def test_link_headers(self, get): user = UserFactory.create() url = 'foo' get.return_value = responses(304) feed = FeedFactory.create(url=url, category__user=user, user=user) path = test_file('no-rel.atom') with open(path, 'r') as f: data = f.read() updated.send(sender=None, notification=data, request=None, links=[{'url': 'foo', 'rel': 'self'}]) self.assertEqual(feed.entries.count(), 1) @patch('requests.get') def test_subscribe_url(self, get): get.return_value = responses(304) user = UserFactory.create() c = CategoryFactory.create(user=user) url = reverse('feeds:subscribe') response = self.app.get(url, {'feeds': "http://bruno.im/atom/latest/"}, user=user) self.assertContains(response, 'value="http://bruno.im/atom/latest/"') form = response.forms['subscribe'] response = form.submit() self.assertContains(response, 'This field is required.', 1) form['form-0-name'] = "Bruno's awesome blog" form['form-0-category'] = c.pk self.assertEqual(Feed.objects.count(), 0) response = form.submit().follow() self.assertEqual(Feed.objects.count(), 1) form['form-0-name'] = "" form['form-0-category'] = "" form['form-0-subscribe'] = False response = form.submit().follow() self.assertContains(response, '0 feeds have been added') form['form-0-name'] = 'Foo' form['form-0-category'] = c.pk form['form-0-subscribe'] = True response = form.submit() self.assertContains(response, "already subscribed") UniqueFeed.objects.create(url='http://example.com/feed', title='Awesome') response = self.app.get( url, {'feeds': ",".join(['http://bruno.im/atom/latest/', 'http://example.com/feed'])}) form = response.forms['subscribe'] self.assertEqual(form['form-0-name'].value, 'Awesome') response = form.submit().follow() self.assertEqual(Feed.objects.count(), 2) def test_bookmarklet_no_feed(self): user = UserFactory.create() url = reverse('feeds:subscribe') response = self.app.get(url, {'url': 'http://isitbeeroclock.com/'}, user=user) self.assertContains( response, ('it looks like there are no feeds available on ' '<a href="http://isitbeeroclock.com/">')) @patch("requests.get") def test_relative_links(self, get): get.return_value = responses(200, path='brutasse.atom') user = UserFactory.create() FeedFactory.create(category__user=user, user=user, url='https://github.com/brutasse.atom') entry = user.entries.all()[0] self.assertTrue('<a href="/brutasse"' in entry.subtitle) self.assertFalse('<a href="/brutasse"' in entry.content) self.assertTrue( '<a href="https://github.com/brutasse"' in entry.content) feed = Feed(url='http://standblog.org/blog/feed/rss2') e = Entry(feed=feed, subtitle=( ' <p><img alt=":-)" class="smiley"' 'src="/dotclear2/themes/default/smilies/smile.png" /> . </p>' )) self.assertTrue(('src="http://standblog.org/dotclear2/themes/' 'default/smilies/smile.png"') in e.content) @patch('requests.get') def test_empty_subtitle(self, get): get.return_value = responses(304) user = UserFactory.create() entry = EntryFactory(user=user, feed__category__user=user, subtitle='') url = reverse('feeds:item', args=[entry.pk]) self.app.get(url, user=user) def test_smart_date(self): now = timezone.now() self.assertEqual(len(smart_date(now)), 5) if now.day != 1 and now.month != 1: # Can't test this on Jan 1st :) now = now - timedelta(days=1) self.assertEqual(len(smart_date(now)), 6) now = now - timedelta(days=366) self.assertEqual(len(smart_date(now)), 12) @patch('requests.get') def test_manage_feed(self, get): get.return_value = responses(304) user = UserFactory.create() url = reverse('feeds:manage') response = self.app.get(url, user=user) self.assertContains(response, 'Manage feeds') FeedFactory.create(user=user, category=None) FeedFactory.create(user=user, category=None) FeedFactory.create(user=user, category=None) unique = UniqueFeed.objects.all()[0] schedule_job(unique.url, schedule_in=0, backoff_factor=10, error=UniqueFeed.NOT_A_FEED) response = self.app.get(url, user=user) self.assertContains(response, 'Not a valid RSS/Atom feed') schedule_job(unique.url, schedule_in=0, error='blah') response = self.app.get(url, user=user) self.assertContains(response, 'Error') unique.muted = True unique.save() response = self.app.get(url, user=user) self.assertContains(response, 'Error')
884b687ae12296554a2ae41f29b26bf4382a86c2
e2230f57dd5bb508b5c0f7bf4df6af8ae7b36f83
/sympycore/matrices/__init__.py
95ab7a348b3211d44be60bb7007659916c36a1b0
[ "Apache-2.0" ]
permissive
wenyifdu/pymaclab
2fd40192d9dff4fda488f3f9a61e584c1adafd49
e5100ad4201bdf59c01dd600ac7e8865664075c3
refs/heads/master
2021-09-16T11:16:00.680933
2018-06-20T07:29:29
2018-06-20T07:29:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
193
py
""" Provides matrix support. """ __docformat__ = "restructuredtext" from .algebra import Matrix, MatrixBase from .functions import eye, concatenate, jacobian from .polyhedra import Polyhedron
854d50100ce45aef6d69f163a46a0fc3b8619b8c
b65d3777372d25402f11814288d992e6cb29c0a5
/tools/Ui_couput.py
986eea054ca7ed3f9226970215929d3410e40c05
[]
no_license
JoeChen999/tools
082ee56982650b0fee9e26aea9baa7c762a0ceed
090215568c41beabd6f1fa6b2d0cf253a29ba913
refs/heads/master
2020-05-25T14:58:51.564658
2016-09-22T06:31:30
2016-09-22T06:31:30
68,891,625
0
0
null
null
null
null
UTF-8
Python
false
false
1,448
py
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file '/Users/chenbiao/Documents/workspaces/tools/couput.ui' # # Created: Thu Sep 5 15:37:23 2013 # by: PyQt4 UI code generator 4.10.2 # # WARNING! All changes made in this file will be lost! from PyQt4 import QtCore, QtGui try: _fromUtf8 = QtCore.QString.fromUtf8 except AttributeError: def _fromUtf8(s): return s try: _encoding = QtGui.QApplication.UnicodeUTF8 def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig, _encoding) except AttributeError: def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig) class Ui_Dialog(object): def setupUi(self, Dialog): Dialog.setObjectName(_fromUtf8("Dialog")) Dialog.resize(702, 527) self.textBrowser = QtGui.QTextBrowser(Dialog) self.textBrowser.setGeometry(QtCore.QRect(0, 0, 701, 531)) self.textBrowser.setObjectName(_fromUtf8("textBrowser")) self.retranslateUi(Dialog) QtCore.QMetaObject.connectSlotsByName(Dialog) def retranslateUi(self, Dialog): Dialog.setWindowTitle(_translate("Dialog", "Dialog", None)) if __name__ == "__main__": import sys app = QtGui.QApplication(sys.argv) Dialog = QtGui.QDialog() ui = Ui_Dialog() ui.setupUi(Dialog) Dialog.show() sys.exit(app.exec_())
20c80bd801a815a348f93512423abbf0ad984c81
82228ee4e8941d67bb71020a2917706ba6962989
/tests/utils/test_constants.py
aa54516e4bb5f8c500795b241090fda9839c7b05
[ "MIT" ]
permissive
haoziyeung/puzzle
2daccf618347e29980daf4ef7fd25ca431d86ca5
9476f05b416d3a5135d25492cb31411fdf831c58
refs/heads/master
2021-06-17T13:07:27.916154
2017-05-17T13:03:10
2017-05-17T13:03:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
327
py
from puzzle.utils.constants import HGNC_TO_OMIM, SEVERITY_DICT def test_HGNC_TO_OMIM(): assert HGNC_TO_OMIM['CACNA1F'].get('mim_nr') == 300110 assert HGNC_TO_OMIM['ADK'].get('mim_nr') == 102750 def test_SEVERITY_DICT(): assert SEVERITY_DICT['transcript_ablation'] == 0 assert SEVERITY_DICT['start_lost'] == 6
5267ef629b697a6f0f4684057928eb7df6bedada
1c4de938e068c8967288ae06e15d1ea148d92ace
/Python_parallel/lu_mpi.py
8701770bf65cd8e545e449987031ca7b2c78b8e4
[ "MIT" ]
permissive
610yilingliu/LU_Decomposition_MPIVersion
3d5ddd578dc703ea830c35a421aab89d9ae614d2
0bd8af0e86b5fcc36970bea7bb045c129fdd2238
refs/heads/master
2023-01-07T22:25:57.883027
2020-10-16T08:28:27
2020-10-16T08:28:27
297,609,839
0
0
null
null
null
null
UTF-8
Python
false
false
1,484
py
import mpy4py import random def generate(sz, rg, sl): """ :type int sz: size of square matrix(sz * sz) :type int rg, int sl: range and scale of data. For example if the value field will be [-0.2, 0.2], than rg = 2, sl = 10 :rtype: (matrix List[List[float]], vector List[float]), float in Python equal to double in C Way for generate matrix in parallel is already shown in C version, I will not do that again in Python """ random.seed(0) matrix = [] vector = [] for _ in range(sz): ls = [] for i in range(sz): ele = (-rg + random.random() * 2 * rg) / sl ls.append(ele) matrix.append(ls) vector.append((-rg + random.random() * 2 * rg) / sl) return matrix, vector def re_arrange(M, V): """ :type M: List[List[float]] generated matrix :type V: Lists[float] generated vector. len(vector) == len(matrix) :rtype (M List[List[float]], V List[float]) rearranged matrix and vector. Ax = b => PAx = Pb """ def find_mx(col): mx = 0 idx = 0 for i in range(col, len(M)): cur = abs(M[i][col]) if cur > mx: mx = cur idx = i if mx == 0: print("Invalid Matrix") exit(0) return idx for i in range(M): target = find_mx(i) M[i], M[target] = M[target], M[i] V[i], V[target] = V[target], V[i] return M, V def lu(M):
999644e397b32cffa2e52edc374bbe9efd5e6866
bc8ebbdb5d67658387be1d65a9f00a927664ac1c
/backend/new_18912/settings.py
6eaf60be047de7422162e25b7eda34eaa1b9676d
[]
no_license
crowdbotics-apps/new-18912
3b499157a967673dc12ad7e5c9ee4a7b8bfb9ddc
b9aa5b270bbc72718b98ccc68257ef17448359c9
refs/heads/master
2022-11-18T00:47:55.053181
2020-07-15T04:00:56
2020-07-15T04:00:56
279,758,892
0
0
null
null
null
null
UTF-8
Python
false
false
4,722
py
""" Django settings for new_18912 project. Generated by 'django-admin startproject' using Django 1.11.16. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os import environ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ env = environ.Env() environ.Env.read_env(os.path.join(BASE_DIR, '.env')) # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = env.str('SECRET_KEY') # SECURITY WARNING: don't run with debug turned on in production! DEBUG = env.bool('DEBUG', default=True) ALLOWED_HOSTS = ['*'] SITE_ID = 1 # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.sites' ] LOCAL_APPS = [ 'home', ] THIRD_PARTY_APPS = [ 'rest_framework', 'rest_framework.authtoken', 'bootstrap4', 'allauth', 'allauth.account', 'allauth.socialaccount', 'allauth.socialaccount.providers.google', ] INSTALLED_APPS += LOCAL_APPS + THIRD_PARTY_APPS MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'whitenoise.middleware.WhiteNoiseMiddleware', ] ROOT_URLCONF = 'new_18912.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates'), ], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'new_18912.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': 'new_18912', 'USER': 'new_18912', 'PASSWORD': 'new_18912', 'HOST': 'localhost', 'PORT': '5432', } } if env.str('DATABASE_URL', default=None): DATABASES = { 'default': env.db() } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'staticfiles') STATICFILES_DIRS = [ os.path.join(BASE_DIR, 'static') ] STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage' AUTHENTICATION_BACKENDS = ( 'django.contrib.auth.backends.ModelBackend', 'allauth.account.auth_backends.AuthenticationBackend' ) # allauth ACCOUNT_EMAIL_REQUIRED = True ACCOUNT_AUTHENTICATION_METHOD = 'email' ACCOUNT_USERNAME_REQUIRED = False ACCOUNT_EMAIL_VERIFICATION = None LOGIN_REDIRECT_URL = '/' if DEBUG: # output email to console instead of sending EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend' EMAIL_HOST = 'smtp.sendgrid.net' EMAIL_HOST_USER = env.str('SENDGRID_USERNAME', '') EMAIL_HOST_PASSWORD = env.str('SENDGRID_PASSWORD', '') EMAIL_PORT = 587 EMAIL_USE_TLS = True # Import local settings try: from .local_settings import * INSTALLED_APPS += DEBUG_APPS except: pass
55d046dd1d43409f967db43d069619a1b9a92d5f
d8b5aba2a1f53fbf3fcfc388c26e547afa76b13f
/modules/app_email/lib/delphi.py
d6e8461d29ca1decad1b18441f6a42b08596eed7
[ "Apache-2.0" ]
permissive
dfrc-korea/carpe
e88b4e3bcb536355e2a64d00e807bccd631f8c93
f9299b8ad0cb2a6bbbd5e65f01d2ba06406c70ac
refs/heads/master
2023-04-28T01:12:49.138443
2023-04-18T07:37:39
2023-04-18T07:37:39
169,518,336
75
38
Apache-2.0
2023-02-08T00:42:41
2019-02-07T04:21:23
Python
UTF-8
Python
false
false
1,235
py
# # delphi.py, 200611 # import os import errno def CreateDir(dir): try: if not os.path.isdir(dir): os.makedirs(os.path.join(dir)) return True except OSError as e: if e.errno != errno.EEXIST: raise return False def DirectoryExists(dir): return os.path.isdir(dir) def ExtractFilePath(fn): v = os.path.dirname(fn) return v if v == '' else v + PathDelimiter def ExtractFileDir(fn): return os.path.dirname(fn) def ExtractFileName(fn): return os.path.basename(fn) def ExtractFileExt(fn): p = fn.rfind('.') return fn[p:] if p > fn.rfind('=') else '' def ChangeFileExt(fn, ext): p = fn.rfind('.') if p == -1: return '' return fn[:p] + ext def FileExists(fn): return os.path.isfile(fn) def StrToIntDef(v, default): try: return int(v) except: return default def IncludeTrailingBackslash(v): return os.path.join(v, '') def ExcludeTrailingBackslash(v): return v.rstrip(PathDelimiter) IncludeTrailingPathDelimiter = IncludeTrailingBackslash ExcludeTrailingPathDelimiter = ExcludeTrailingBackslash PathDelimiter = '\\' _NonPathDelimiter = '/' if os.path.join('_', '').find(PathDelimiter) == -1: PathDelimiter = '/' _NonPathDelimiter = '\\'
8ba102ebdd7f92dc9a0e9dc574bebbf7da51e6a9
058ed13ab33e8af7f5c7f6cfb985edcc1f0075b8
/.history/application/controllers/sinhvien_20201006230934.py
c35efabcab728dece922a76da4e6ab65c34212a1
[]
no_license
thinhpayer123/learning-python-vinacomi
e89a0b5302fbc42d1998aea82bba8ebea594eee6
f4d11998911360e25f68c2c6c0336d32a8c25c65
refs/heads/master
2023-03-27T08:57:48.600710
2020-12-13T15:43:53
2020-12-13T15:43:53
353,254,388
0
0
null
null
null
null
UTF-8
Python
false
false
5,765
py
from application.extensions import apimanager from application.models.model import QRUser, User, UserWallet from application.extensions import auth from application.database import db from gatco.exceptions import ServerError from sqlalchemy import create_engine import os import random import string import aiofiles import time from gatco.response import json from application.server import app from application.config import Config import psycopg2 config = Config() import pandas as pd import xlrd import qrcode import shutil import asyncio import datetime import ujson def auth_func(request=None, **kw): #uid = auth.current_user(request) #if uid is None: # raise ServerError("abc") pass @app.route('/api/v1/file/upload', methods=['GET', 'POST']) async def file_load(request): path = request.args.get("path", None) ret = None # url_qr = config.QR_SERVICE_URL # url = config.FILE_SERVICE_URL fsroot = config.FS_ROOT if request.method == 'POST': file = request.files.get('file', None) if file: extname = request.files.get('file').name if not os.path.exists(fsroot): os.makedirs(fsroot) subPath = "" if path is not None: subPath = path + "/" if not os.path.exists(fsroot + subPath): os.makedirs(fsroot + subPath) async with aiofiles.open(fsroot + subPath + extname, 'wb+') as f: await f.write(file.body) link_local = fsroot + subPath + extname print(link_local) data = pd.read_excel(link_local) print(data) df = pd.DataFrame(data, columns=['student_school_year', 'student_class', 'student_id', 'student_name', 'birthday', 'gender','email']) # print('122112'+df) # company_id = request.args.get("company_id") company_id = 'TEST' # print(company_id) # result = [] a =df.get(["student_school_year", "student_class", "student_id",'student_name','birthday','gender','email']) result = df.to_json(orient='records') result_ujson = ujson.loads(result) item_result = [] for item in result_ujson: user_no = item.get("student_id",{}) extra_data = item new_entry = UserWallet(user_no=user_no, company_id=company_id, extra_data=extra_data) item_result.append(new_entry) db.session.add_all(item_result) db.session.commit() # print(result) # q = db.session.query(User).with_for_update(nowait=Tre, of=User) # user_name = # full_name # email # companyid # alchemyEngine = create_engine('postgresql://icangteen_user:123456abcA@localhost:5432/icangteen', pool_recycle=3600); # postgreSQLConnection = alchemyEngine.connect(); # postgreSQLTable = 'student'; # df.to_sql(postgreSQLTable, alchemyEngine, if_exists='append', index=False) # # ret = { "notify":"upload file success ", # "id": id } return json(ret) @app.route('/api/v1/Genqr', methods=['GET' , 'POST']) async def genqr(request): fsroot = config.FS_ROOT url = config.FILE_SERVICE_URL qr = config.QR_ARCHIVE # userWallets =[] # print(id) if request.method == 'POST': path = request.args.get('') userWallets = UserWallet.query.order_by(UserWallet.id).all() for users in userWallets: # format_data = ujson.loads info_user = users.extra_data student_id = info_user['student_id'] student_school_year = info_user['student_school_year'] student_class = info_user['student_class'] student_name = info_user['student_name'] birthday = info_user['birthday'] company_id = request.args.get('comapny_id') company_no = request.args.get('comapny_no') company_type = request.args.get('comapny_type') current_user = request.args.get('user') current_user_no = request.args.get('id') # print(company_id) # print(',..........'+ str(current_user)) img = qrcode.make(student_school_year + '-' + student_class + '-' + student_id + '-' + student_name + '-' + birthday) name_img = student_class + '-' + student_id + '-' + student_name + '.png' link_img = fsroot + 'qrcode/' + name_img img.save(link_img) user_wallet = UserWallet() user_wallet.company_id = company_id user_wallet.company_no = company_no user_wallet.company_type = company_type user_wallet.user_id = current_user user_wallet.user_no = user_wallet.created_at = user_wallet.created_at user_wallet. user_wallet.nameqr = student_class + '-' + student_id + '-' + student_name user_wallet.saveDirectory = link_img db.session.add(qr) db.session.commit() zipfile = shutil.make_archive(fsroot, 'zip', fsroot, 'qrcode/') ret = { "link": url } return json(ret) # apimanager.create_api(collection_name='qrworker', model=QRworker, # methods=['GET', 'POST', 'DELETE', 'PUT'], # url_prefix='/api/v1', # preprocess=dict(GET_SINGLE=[auth_func], GET_MANY=[auth_func], POST=[auth_func], PUT_SINGLE=[auth_func]), # )
987f92a7554c420a41bb61e75372a9b7d318c61d
a7ed4da896faab105ff08259a82ae822548d1c2c
/6/6_1.py
7ed377a9d8fe394412cc185b039795c97bc0a055
[]
no_license
nemesmarci/Advent-of-Code-2019
e8e59d89be8ed43ce046fd7854b1c9b779a8930e
251dc4dc62777a7c0daf7a74d832c0be3d75140e
refs/heads/master
2021-12-31T10:53:35.924253
2019-12-27T17:17:06
2021-12-29T19:17:13
225,252,265
0
0
null
null
null
null
UTF-8
Python
false
false
257
py
from space import read_data objects = read_data() root = objects['COM'] def traverse(current, level=1): n = len(current.orbiters) * level for child in current.orbiters: n += traverse(child, level + 1) return n print(traverse(root))
6db39aefe0474c81e6a6a24d7b3c79f3ab7553e7
456ca4570118e2944eb46c439b9d8090750af1b1
/Lab8/smtp_master.py
2fdf64fc00e0f49fd1a6ecce04ec52e53ab84898
[]
no_license
goreckinj/Network-Protocols-Labs
e34bb5c7b44d5dc43e5580c09830ec891740ca36
9c5e2185e6a298a6eca3c01b3ae1d69d529ca869
refs/heads/master
2020-04-25T05:26:54.197232
2019-02-25T16:38:45
2019-02-25T16:38:45
172,543,520
0
0
null
null
null
null
UTF-8
Python
false
false
11,136
py
""" - CS2911 - 0NN - Fall 2017 - Lab N - Names: - Jason Gao - Nick Gorecki - Alex A simple email sending program. Thanks to Trip Horbinski from the Fall 2015 class for providing the password-entering functionality. """ # GUI library for password entry import tkinter as tk # Socket library import socket # SSL/TLS library import ssl # base-64 encode/decode import base64 # Python date/time and timezone modules import datetime import time import pytz import tzlocal # Module for reading password from console without echoing it import getpass # Modules for some file operations import os import mimetypes # Extraneous # Host name for MSOE (hosted) SMTP server SMTP_SERVER = 'smtp.office365.com' # The default port for STARTTLS SMTP servers is 587 SMTP_PORT = 587 # SMTP domain name SMTP_DOMAINNAME = 'msoe.edu' def main(): """Main test method to send an SMTP email message. Modify data as needed/desired to test your code, but keep the same interface for the smtp_send method. """ (username, password) = login_gui() message_info = {} message_info['To'] = '[email protected]' message_info['From'] = username message_info['Subject'] = 'SMTP Email' message_info['Date'] = get_formatted_date() print("message_info =", message_info) message_text = 'Test message_info number 6\r\n\r\nAnother line.' smtp_send(password, message_info, message_text) def login_gui(): """ Creates a graphical user interface for secure user authorization. :return: (email_value, password_value) email_value -- The email address as a string. password_value -- The password as a string. :author: Tripp Horbinski """ gui = tk.Tk() gui.title("MSOE Email Client") center_gui_on_screen(gui, 370, 120) tk.Label(gui, text="Please enter your MSOE credentials below:") \ .grid(row=0, columnspan=2) tk.Label(gui, text="Email Address: ").grid(row=1) tk.Label(gui, text="Password: ").grid(row=2) email = tk.StringVar() email_input = tk.Entry(gui, textvariable=email) email_input.grid(row=1, column=1) password = tk.StringVar() password_input = tk.Entry(gui, textvariable=password, show='*') password_input.grid(row=2, column=1) auth_button = tk.Button(gui, text="Authenticate", width=25, command=gui.destroy) auth_button.grid(row=3, column=1) gui.mainloop() email_value = email.get() password_value = password.get() return email_value, password_value def center_gui_on_screen(gui, gui_width, gui_height): """Centers the graphical user interface on the screen. :param gui: The graphical user interface to be centered. :param gui_width: The width of the graphical user interface. :param gui_height: The height of the graphical user interface. :return: The graphical user interface coordinates for the center of the screen. :author: Tripp Horbinski """ screen_width = gui.winfo_screenwidth() screen_height = gui.winfo_screenheight() x_coord = (screen_width / 2) - (gui_width / 2) y_coord = (screen_height / 2) - (gui_height / 2) return gui.geometry('%dx%d+%d+%d' % (gui_width, gui_height, x_coord, y_coord)) # *** Do not modify code above this line *** def smtp_send(password, message_info, message_text): """Send a message via SMTP. :author: gaoj, gorecki, alex :param password: String containing user password. :param message_info: Dictionary with string values for the following keys: 'To': Recipient address (only one recipient required) 'From': Sender address 'Date': Date string for current date/time in SMTP format 'Subject': Email subject Other keys can be added to support other email headers, etc. """ status_354 = b'354' status_334 = b'334' status_250 = b'250' status_235 = b'235' status_221 = b'221' status_220 = b'220' tcp_socket = None wrapped_socket = None try: # connect socket tcp_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) tcp_socket.connect((SMTP_SERVER, SMTP_PORT)) # get reply from server read_response(tcp_socket, status_220) # send ehlo send_reply(tcp_socket, b'EHLO ' + SMTP_DOMAINNAME.encode() + b'\r\n') # read status/header responses read_response(tcp_socket, status_250) # send starttls send_reply(tcp_socket, b'STARTTLS\r\n') # get server ready response read_response(tcp_socket, status_220) # create wrapped socket context = ssl.create_default_context() wrapped_socket = context.wrap_socket(tcp_socket, server_hostname=SMTP_SERVER) # send ehlo send_reply(wrapped_socket, b'EHLO ' + SMTP_DOMAINNAME.encode() + b'\r\n') # read status/header responses read_response(wrapped_socket, status_250) # send auth login w/ username b64 send_reply(wrapped_socket, b'AUTH LOGIN ' + base64.b64encode(message_info['From'].encode()) + b'\r\n') # read password request read_response(wrapped_socket, status_334) # send password b64 send_reply(wrapped_socket, base64.b64encode(password.encode()) + b'\r\n') # read authentication reply read_response(wrapped_socket, status_235) # Send over header lines + data [e.g.: MAIL FROM: ~~~ . . . DATA . . .] send_reply(wrapped_socket, b'MAIL FROM: <' + message_info['From'].encode() + b'>\r\n') read_response(wrapped_socket, status_250) send_reply(wrapped_socket, b'RCPT TO: <' + message_info['To'].encode() + b'>\r\n') read_response(wrapped_socket, status_250) send_reply(wrapped_socket, b'DATA\r\n') read_response(wrapped_socket, status_354) send_reply(wrapped_socket, create_data(message_info, message_text)) read_response(wrapped_socket, status_250) # quit send_reply(wrapped_socket, b'QUIT\r\n') read_response(wrapped_socket, status_221) except RuntimeError as e: print(e) print('NOTICE: Force-Closing Connection') if tcp_socket is not None: tcp_socket.close() if wrapped_socket is not None: wrapped_socket.close() if tcp_socket is not None: tcp_socket.close() if wrapped_socket is not None: wrapped_socket.close() def create_data(message_info, message_text): """ Created the data message to send :author: gaoj, gorecki, alex :param message_info: Dictionary containing the message info :param message_text: The message to send :return: bytes """ data = b'Content-Transfer-Encoding: 7bit\r\n' \ + b'Content-Type: text/plain; charset="us-ascii"\r\n' \ + b'Subject: ' + message_info['Subject'].encode() + b'\r\n' \ + b'To: <' + message_info['To'].encode() + b'>\r\n' \ + b'MIME-Version: 1.0\r\n' \ + b'From: <' + message_info['From'].encode() + b'>\r\n' \ + b'Date: ' + message_info['Date'].encode() + b'\r\n\r\n' \ + message_text.encode() + b'\r\n.\r\n' return data def read_response(data_socket, comparator): """ Reads the response from the data_socket :author: gaoj, goreckinj, alex :param data_socket: The socket to pull bytes from :param comparator: the comparator to compare the status_code with :return: bytes[] """ response = [] # get response lines line = b'' while line[3:4] != b' ' or line[-2:] != b'\r\n': line += next_byte(data_socket, 1) if line[-2:] == b'\r\n': response.append(line) if line[3:4] != b' ': line = b'' # print response lines for lin in response: print(b'response: ' + lin) # get status code status_code = response[-1][:3] # check status code if status_code != comparator: raise RuntimeError('ERROR:\n\tExpected Status: ' + comparator.decode() + '\n\tActual Status: ' + status_code.decode() + '\n\tMessage: ' + response[-1][4:].decode()) def send_reply(data_socket, message): """ Sends a reply to the server :author: :param data_socket: The socket to pull bytes from :param message: The message to send :return: None """ print(b'reply: ' + message) data_socket.sendall(message) def next_byte(data_socket, buffer_size): """ Gets the next byte from the data socket :author: goreckinj :param data_socket: The data socket to pull bytes from :param buffer_size: The amount of bytes to pull :return: bytes - The bytes received """ bytez = data_socket.recv(buffer_size) while len(bytez) != buffer_size: bytez += data_socket.recv(buffer_size - len(bytez)) return bytez def get_formatted_date(): """Get the current date and time, in a format suitable for an email date header. The constant TIMEZONE_NAME should be one of the standard pytz timezone names. If you really want to see them all, call the print_all_timezones function. tzlocal suggested by http://stackoverflow.com/a/3168394/1048186 See RFC 5322 for details about what the timezone should be https://tools.ietf.org/html/rfc5322 :return: Formatted current date/time value, as a string. """ zone = tzlocal.get_localzone() print("zone =", zone) timestamp = datetime.datetime.now(zone) timestring = timestamp.strftime('%a, %d %b %Y %H:%M:%S %z') # Sun, 06 Nov 1994 08:49:37 +0000 return timestring def print_all_timezones(): """ Print all pytz timezone strings. """ for tz in pytz.all_timezones: print(tz) # You probably won't need the following methods, unless you decide to # try to handle email attachments or send multi-part messages. # These advanced capabilities are not required for the lab assignment. def get_mime_type(file_path): """Try to guess the MIME type of a file (resource), given its path (primarily its file extension) :param file_path: String containing path to (resource) file, such as './abc.jpg' :return: If successful in guessing the MIME type, a string representing the content type, such as 'image/jpeg' Otherwise, None :rtype: int or None """ mime_type_and_encoding = mimetypes.guess_type(file_path) mime_type = mime_type_and_encoding[0] return mime_type def get_file_size(file_path): """Try to get the size of a file (resource) in bytes, given its path :param file_path: String containing path to (resource) file, such as './abc.html' :return: If file_path designates a normal file, an integer value representing the the file size in bytes Otherwise (no such file, or path is not a file), None :rtype: int or None """ # Initially, assume file does not exist file_size = None if os.path.isfile(file_path): file_size = os.stat(file_path).st_size return file_size main()
[ "=" ]
=
0ad05c0dfd6e48742b121e8c44fddf8a92224af1
dd770e697daddab20e09fbf8ce199c97ee540c37
/bigtop-packages/src/charm/spark/layer-spark/tests/10-test-ha.py
99c604f9ffd781c069a3d253e4eb43d243ba046e
[ "Apache-2.0", "FreeBSD-DOC", "MIT", "DOC" ]
permissive
PKConsul/bigtop
0e7b5133be17a2093c0d5279b000c60b67072a16
2f8311b184bf0c5d25756b098895e43b1dbc3c2e
refs/heads/master
2021-01-20T02:08:29.012667
2017-04-22T17:44:30
2017-04-23T06:27:13
89,379,381
1
0
null
2017-04-25T15:53:29
2017-04-25T15:53:29
null
UTF-8
Python
false
false
3,718
py
#!/usr/bin/python3 # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import amulet import requests import time import unittest class TestDeployment(unittest.TestCase): """ Test scaling of Apache Spark in HA mode. """ @classmethod def setUpClass(cls): cls.d = amulet.Deployment(series='xenial') cls.d.add('spark-test-ha', 'cs:xenial/spark', units=3) cls.d.add('zk-test', 'cs:xenial/zookeeper') cls.d.relate('zk-test:zookeeper', 'spark-test-ha:zookeeper') cls.d.expose('spark-test-ha') cls.d.setup(timeout=3600) cls.d.sentry.wait(timeout=3600) @classmethod def tearDownClass(cls): # NB: seems to be a remove_service issue with amulet. However, the # unit does still get removed. Pass OSError for now: # OSError: juju command failed ['remove-application', 'zk-test']: # ERROR allocation for service ...zk-test... owned by ... not found try: cls.d.remove_service('spark-test-ha', 'zk-test') except OSError as e: print("IGNORE: Amulet remove_service failed: {}".format(e)) pass def test_master_selected(self): """ Wait for all three spark-test-ha units to agree on a master leader. Remove the leader unit. Check that a new leader is elected. """ self.d.sentry.wait_for_messages({"spark-test-ha": ["ready (standalone - HA)", "ready (standalone - HA)", "ready (standalone - HA)"]}, timeout=900) print("Waiting for units to agree on master.") time.sleep(120) master = '' masters_count = 0 for unit in self.d.sentry['spark-test-ha']: ip = unit.info['public-address'] url = 'http://{}:8080'.format(ip) homepage = requests.get(url) if 'ALIVE' in homepage.text: masters_count += 1 master = unit.info['unit_name'] else: assert 'STANDBY' in homepage.text assert masters_count == 1 print("Removing master: {} ".format(master)) self.d.remove_unit(master) time.sleep(120) self.d.sentry.wait_for_messages({"spark-test-ha": ["ready (standalone - HA)", "ready (standalone - HA)"]}, timeout=900) masters_count = 0 for unit in self.d.sentry['spark-test-ha']: ip = unit.info['public-address'] url = 'http://{}:8080'.format(ip) homepage = requests.get(url) if 'ALIVE' in homepage.text: print("New master is {}".format(unit.info['unit_name'])) masters_count += 1 else: assert 'STANDBY' in homepage.text assert masters_count == 1 if __name__ == '__main__': unittest.main()
fc3ef945c17fc0a2cc07ebc2bd0847622a35d8e1
778a420262c8d1547cbcbbe3143cd73a94d9cff6
/test/test_common.py
bea1a3d8c600fa0d2718f9889976a7f6782f3467
[ "Apache-2.0" ]
permissive
ddierkes/bdbag
a59ef7c4a7207dd9a90374a021c682b0b4642c54
bc35ddcb544f7fa923d4649835ad99a15a778bce
refs/heads/master
2020-03-17T22:06:22.942490
2018-05-03T11:05:57
2018-05-03T11:05:57
133,989,136
0
0
null
2018-05-18T18:14:03
2018-05-18T18:14:03
null
UTF-8
Python
false
false
4,281
py
import os import gc import sys import shutil import tempfile import unittest class BaseTest(unittest.TestCase): def setUp(self): if sys.version_info < (3,): self.assertRaisesRegex = self.assertRaisesRegexp self.tmpdir = tempfile.mkdtemp(prefix="bdbag_test_") shutil.copytree(os.path.abspath(os.path.join('test', 'test-data')), os.path.join(self.tmpdir, 'test-data')) self.test_data_dir = os.path.join(self.tmpdir, 'test-data', 'test-dir') self.assertTrue(os.path.isdir(self.test_data_dir)) self.test_archive_dir = os.path.join(self.tmpdir, 'test-data', 'test-archives') self.assertTrue(os.path.isdir(self.test_archive_dir)) self.test_config_dir = os.path.join(self.tmpdir, 'test-data', 'test-config') self.assertTrue(os.path.isdir(self.test_config_dir)) self.test_http_dir = os.path.join(self.tmpdir, 'test-data', 'test-http') self.assertTrue(os.path.isdir(self.test_http_dir)) self.test_bag_dir = os.path.join(self.tmpdir, 'test-data', 'test-bag') self.assertTrue(os.path.isdir(self.test_bag_dir)) self.test_bag_incomplete_dir = os.path.join(self.tmpdir, 'test-data', 'test-bag-incomplete') self.assertTrue(os.path.isdir(self.test_bag_incomplete_dir)) self.test_bag_fetch_http_dir = os.path.join(self.tmpdir, 'test-data', 'test-bag-fetch-http') self.assertTrue(os.path.isdir(self.test_bag_fetch_http_dir)) self.test_bag_fetch_ark_dir = os.path.join(self.tmpdir, 'test-data', 'test-bag-fetch-ark') self.assertTrue(os.path.isdir(self.test_bag_fetch_ark_dir)) self.test_bag_fetch_minid_dir = os.path.join(self.tmpdir, 'test-data', 'test-bag-fetch-minid') self.assertTrue(os.path.isdir(self.test_bag_fetch_minid_dir)) self.test_bag_fetch_ftp_dir = os.path.join(self.tmpdir, 'test-data', 'test-bag-fetch-ftp') self.assertTrue(os.path.isdir(self.test_bag_fetch_ftp_dir)) self.test_bag_invalid_structure_manifest_dir = os.path.join( self.tmpdir, 'test-data', 'test-bag-invalid-structure-manifest') self.assertTrue(os.path.isdir(self.test_bag_invalid_structure_manifest_dir)) self.test_bag_invalid_structure_filesystem_dir = os.path.join( self.tmpdir, 'test-data', 'test-bag-invalid-structure-filesystem') self.assertTrue(os.path.isdir(self.test_bag_invalid_structure_filesystem_dir)) self.test_bag_invalid_structure_fetch_dir = os.path.join( self.tmpdir, 'test-data', 'test-bag-invalid-structure-fetch') self.assertTrue(os.path.isdir(self.test_bag_invalid_structure_fetch_dir)) self.test_bag_invalid_state_manifest_fetch_dir = os.path.join( self.tmpdir, 'test-data', 'test-bag-invalid-state-manifest-fetch') self.assertTrue(os.path.isdir(self.test_bag_invalid_state_manifest_fetch_dir)) self.test_bag_invalid_state_fetch_filesize_dir = os.path.join( self.tmpdir, 'test-data', 'test-bag-invalid-state-fetch-filesize') self.assertTrue(os.path.isdir(self.test_bag_invalid_state_fetch_filesize_dir)) self.test_bag_update_invalid_fetch_dir = os.path.join( self.tmpdir, 'test-data', 'test-bag-update-invalid-fetch') self.assertTrue(os.path.isdir(self.test_bag_update_invalid_fetch_dir)) self.test_bag_invalid_state_duplicate_manifest_fetch_dir = os.path.join( self.tmpdir, 'test-data', 'test-bag-invalid-state-duplicate-manifest-fetch') self.assertTrue(os.path.isdir(self.test_bag_invalid_state_duplicate_manifest_fetch_dir)) def tearDown(self): if os.path.isdir(self.tmpdir): shutil.rmtree(self.tmpdir) gc.collect() def assertExpectedMessages(self, messages, output): for expected in messages: self.assertIn(expected, output, "Expected \'%s\' in output string." % expected) def assertUnexpectedMessages(self, messages, output): for unexpected in messages: self.assertNotIn(unexpected, output, "Unexpected \'%s\' in output string." % unexpected) def getTestHeader(self, desc, args=None): return str('\n\n[%s: %s]\n%s') % (self.__class__.__name__, desc, (' '.join(args) + '\n') if args else "")
e209a95d690abfd4189adb9be07986331f77a9b4
f889bc01147869459c0a516382e7b95221295a7b
/test/test_customer_data_customer_search_results_interface.py
edf62d3b5d9ee180f4386a1c633555c9f563ed2b
[]
no_license
wildatheart/magento2-api-client
249a86f5c0289743f8df5b0324ccabd76f326512
e6a707f85b37c6c3e4ef3ff78507a7deb8f71427
refs/heads/master
2021-07-14T16:01:17.644472
2017-10-18T13:33:08
2017-10-18T13:33:08
107,412,121
1
1
null
null
null
null
UTF-8
Python
false
false
1,167
py
# coding: utf-8 """ Magento Community No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: 2.2 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import os import sys import unittest import swagger_client from swagger_client.rest import ApiException from swagger_client.models.customer_data_customer_search_results_interface import CustomerDataCustomerSearchResultsInterface class TestCustomerDataCustomerSearchResultsInterface(unittest.TestCase): """ CustomerDataCustomerSearchResultsInterface unit test stubs """ def setUp(self): pass def tearDown(self): pass def testCustomerDataCustomerSearchResultsInterface(self): """ Test CustomerDataCustomerSearchResultsInterface """ # FIXME: construct object with mandatory attributes with example values #model = swagger_client.models.customer_data_customer_search_results_interface.CustomerDataCustomerSearchResultsInterface() pass if __name__ == '__main__': unittest.main()
26a913ad3667d31c973daeb7828df81b0f4ab511
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_199/134.py
085bae10457bf1468888eded9f5f112884ecf5f6
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
398
py
import numpy as np def mainFunc(S, K): ret = 0 for i in range(len(S)-K+1): if S[i]=="-": ret+=1 for j in range(K): if S[i+j]=='-': S[i+j]='+' else: S[i+j]='-' for i in range(K): if S[len(S)-1-i]=='-': return "IMPOSSIBLE" return str(ret) T = int(raw_input()) for t in range(T): P = raw_input().split(' ') print 'Case #' + str(t+1) + ': ' + mainFunc(list(P[0]), int(P[1]))
2dbd39a7be367e0af9174da5b1b0cbfe9ed4b588
8d30f2d627eb15bf0a3ff541812af3a289fffcfc
/backend/yfkyfkfu_1352/settings.py
bed71fd8664c0a8b11e6d92e1c95522d7680c020
[]
no_license
crowdbotics-apps/yfkyfkfu-1352
2eda6d948adf2fd9fcace7997d606ff057168e03
fd53b7f60397737ad99e7cae6e81c1b91c4ae22c
refs/heads/master
2022-12-15T03:23:19.526405
2019-03-13T18:48:22
2019-03-13T18:48:22
175,480,158
0
0
null
2022-12-06T15:10:19
2019-03-13T18:48:19
JavaScript
UTF-8
Python
false
false
4,746
py
""" Django settings for yfkyfkfu_1352 project. Generated by 'django-admin startproject' using Django 1.11.16. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os import environ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ env = environ.Env() environ.Env.read_env(os.path.join(BASE_DIR, '.env')) # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = env.str('SECRET_KEY') # SECURITY WARNING: don't run with debug turned on in production! DEBUG = env.bool('DEBUG', default=True) ALLOWED_HOSTS = ['*'] SITE_ID = 1 # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.sites' ] LOCAL_APPS = [ 'home', ] THIRD_PARTY_APPS = [ 'rest_framework', 'rest_framework.authtoken', 'bootstrap4', 'allauth', 'allauth.account', 'allauth.socialaccount', 'allauth.socialaccount.providers.google', ] INSTALLED_APPS += LOCAL_APPS + THIRD_PARTY_APPS MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'whitenoise.middleware.WhiteNoiseMiddleware', ] ROOT_URLCONF = 'yfkyfkfu_1352.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates'), ], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'yfkyfkfu_1352.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': 'yfkyfkfu_1352', 'USER': 'yfkyfkfu_1352', 'PASSWORD': 'yfkyfkfu_1352', 'HOST': 'localhost', 'PORT': '5432', } } if env.str('DATABASE_URL', default=None): DATABASES = { 'default': env.db() } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'staticfiles') STATICFILES_DIRS = [ os.path.join(BASE_DIR, 'static') ] STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage' AUTHENTICATION_BACKENDS = ( 'django.contrib.auth.backends.ModelBackend', 'allauth.account.auth_backends.AuthenticationBackend' ) # allauth ACCOUNT_EMAIL_REQUIRED = True ACCOUNT_AUTHENTICATION_METHOD = 'email' ACCOUNT_USERNAME_REQUIRED = False ACCOUNT_EMAIL_VERIFICATION = None LOGIN_REDIRECT_URL = '/' if DEBUG: # output email to console instead of sending EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend' EMAIL_HOST = 'smtp.sendgrid.net' EMAIL_HOST_USER = env.str('SENDGRID_USERNAME', '') EMAIL_HOST_PASSWORD = env.str('SENDGRID_PASSWORD', '') EMAIL_PORT = 587 EMAIL_USE_TLS = True # Import local settings try: from .local_settings import * INSTALLED_APPS += DEBUG_APPS except: pass
f3234921e0a1cd9eaf4c40340a44f85a9b4c646b
74c8f10bfc82e762d83db424e5d4f4b3681ffba0
/venv/Lib/site-packages/winrt/windows/security/cryptography/certificates/__init__.py
df6f418b8fd0c94949f27c7b4d23e5ac4cb7a211
[]
no_license
meghnaraswan/HEARTLabHapticSleeveProject
1e7bd0710c26dad6588f73f6b1f0741c8e31334d
6c2c9a227aaacf34b2205bcb1a856cc70ceccd55
refs/heads/main
2023-07-04T01:51:01.462007
2021-08-17T13:34:43
2021-08-17T13:34:43
390,823,593
0
0
null
null
null
null
UTF-8
Python
false
false
2,949
py
# WARNING: Please don't edit this file. It was generated by Python/WinRT v0.9.210202.1 import typing, winrt import enum _ns_module = winrt._import_ns_module("Windows.Security.Cryptography.Certificates") try: import winrt.windows.foundation except: pass try: import winrt.windows.foundation.collections except: pass try: import winrt.windows.networking except: pass try: import winrt.windows.storage.streams except: pass class CertificateChainPolicy(enum.IntEnum): BASE = 0 SSL = 1 N_T_AUTHENTICATION = 2 MICROSOFT_ROOT = 3 class ChainValidationResult(enum.IntEnum): SUCCESS = 0 UNTRUSTED = 1 REVOKED = 2 EXPIRED = 3 INCOMPLETE_CHAIN = 4 INVALID_SIGNATURE = 5 WRONG_USAGE = 6 INVALID_NAME = 7 INVALID_CERTIFICATE_AUTHORITY_POLICY = 8 BASIC_CONSTRAINTS_ERROR = 9 UNKNOWN_CRITICAL_EXTENSION = 10 REVOCATION_INFORMATION_MISSING = 11 REVOCATION_FAILURE = 12 OTHER_ERRORS = 13 class EnrollKeyUsages(enum.IntFlag): NONE = 0 DECRYPTION = 0x1 SIGNING = 0x2 KEY_AGREEMENT = 0x4 ALL = 0xffffff class ExportOption(enum.IntEnum): NOT_EXPORTABLE = 0 EXPORTABLE = 1 class InstallOptions(enum.IntFlag): NONE = 0 DELETE_EXPIRED = 0x1 class KeyProtectionLevel(enum.IntEnum): NO_CONSENT = 0 CONSENT_ONLY = 1 CONSENT_WITH_PASSWORD = 2 CONSENT_WITH_FINGERPRINT = 3 class KeySize(enum.IntEnum): INVALID = 0 RSA2048 = 2048 RSA4096 = 4096 class SignatureValidationResult(enum.IntEnum): SUCCESS = 0 INVALID_PARAMETER = 1 BAD_MESSAGE = 2 INVALID_SIGNATURE = 3 OTHER_ERRORS = 4 Certificate = _ns_module.Certificate CertificateChain = _ns_module.CertificateChain CertificateEnrollmentManager = _ns_module.CertificateEnrollmentManager CertificateExtension = _ns_module.CertificateExtension CertificateKeyUsages = _ns_module.CertificateKeyUsages CertificateQuery = _ns_module.CertificateQuery CertificateRequestProperties = _ns_module.CertificateRequestProperties CertificateStore = _ns_module.CertificateStore CertificateStores = _ns_module.CertificateStores ChainBuildingParameters = _ns_module.ChainBuildingParameters ChainValidationParameters = _ns_module.ChainValidationParameters CmsAttachedSignature = _ns_module.CmsAttachedSignature CmsDetachedSignature = _ns_module.CmsDetachedSignature CmsSignerInfo = _ns_module.CmsSignerInfo CmsTimestampInfo = _ns_module.CmsTimestampInfo KeyAlgorithmNames = _ns_module.KeyAlgorithmNames KeyAttestationHelper = _ns_module.KeyAttestationHelper KeyStorageProviderNames = _ns_module.KeyStorageProviderNames PfxImportParameters = _ns_module.PfxImportParameters StandardCertificateStoreNames = _ns_module.StandardCertificateStoreNames SubjectAlternativeNameInfo = _ns_module.SubjectAlternativeNameInfo UserCertificateEnrollmentManager = _ns_module.UserCertificateEnrollmentManager UserCertificateStore = _ns_module.UserCertificateStore
f7ad37c473eb788222d0d0e5934e021dc5afeffc
238e46a903cf7fac4f83fa8681094bf3c417d22d
/VTK/vtk_7.1.1_x64_Release/lib/python2.7/site-packages/twisted/lore/_version.py
c81adaac2b5e3ff5d0fc8545fdf68c50dfda705d
[ "LicenseRef-scancode-unknown-license-reference", "MIT", "BSD-3-Clause" ]
permissive
baojunli/FastCAE
da1277f90e584084d461590a3699b941d8c4030b
a3f99f6402da564df87fcef30674ce5f44379962
refs/heads/master
2023-02-25T20:25:31.815729
2021-02-01T03:17:33
2021-02-01T03:17:33
268,390,180
1
0
BSD-3-Clause
2020-06-01T00:39:31
2020-06-01T00:39:31
null
UTF-8
Python
false
false
271
py
# Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. # This is an auto-generated file. Do not edit it. """ Provides Twisted version information. """ from twisted.python import versions version = versions.Version('twisted.lore', 14, 0, 0)
[ "l”[email protected]“" ]
cd4d183ad4e4c95ed4724893de2871e7b5527640
f26ea24cebb60b8b6176ee4d3ecbec477be9b7c6
/native_tags/contrib/mapreduce.py
50346ee6e3655e78113e5d8117322daf7447de1a
[ "BSD-3-Clause" ]
permissive
lukaszb/django-native-tags
994fcc0e382ebfd8dfed868a4caeeb33aa78aee5
e1987497b652b1939d152cbc6bc281daf727b34c
refs/heads/master
2021-01-09T06:13:18.485447
2010-05-04T20:08:15
2010-05-04T20:09:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,172
py
from native_tags.decorators import function def get_func(func_name, op=True): import operator from native_tags.registry import register try: return register['function'][func_name] except KeyError: pass if func_name in __builtins__: return __builtins__[func_name] elif hasattr(operator, func_name): return getattr(operator, func_name) return lambda: None def do_map(func_name, *sequence): """ Return a list of the results of applying the function to the items of the argument sequence(s). Functions may be registered with ``native_tags`` or can be ``builtins`` or from the ``operator`` module If more than one sequence is given, the function is called with an argument list consisting of the corresponding item of each sequence, substituting None for missing values when not all sequences have the same length. If the function is None, return a list of the items of the sequence (or a list of tuples if more than one sequence). Syntax:: {% map [function] [sequence] %} {% map [function] [item1 item2 ...] %} For example:: {% map sha1 hello world %} calculates:: [sha1(hello), sha1(world)] """ if len(sequence)==1: sequence = sequence[0] return map(get_func(func_name, False), sequence) do_map = function(do_map, name='map') def do_reduce(func_name, *sequence): """ Apply a function of two arguments cumulatively to the items of a sequence, from left to right, so as to reduce the sequence to a single value. Functions may be registered with ``native_tags`` or can be ``builtins`` or from the ``operator`` module Syntax:: {% reduce [function] [sequence] %} {% reduce [function] [item1 item2 ...] %} For example:: {% reduce add 1 2 3 4 5 %} calculates:: ((((1+2)+3)+4)+5) = 15 """ if len(sequence)==1: sequence = sequence[0] return reduce(get_func(func_name), sequence) do_reduce = function(do_reduce, name='reduce')
e0222454928efa8bc1dbb30a24c6055737fc0f20
9a7550dc49afa11b1bb900b8e22752cfb9e941ed
/oauth/urls.py
92ffdbb5ec9cbb586ee9683ea9d549b451ee25c1
[]
no_license
SunmoonSan/MapleBlog
862c4e3631a07ab4e6edb1fd934a4f4768ddd1f3
bc61d42f3927016f7e9e7fb86534639c70cb6479
refs/heads/master
2020-03-22T08:46:52.563003
2018-07-05T03:29:48
2018-07-05T03:29:48
139,790,441
1
0
null
null
null
null
UTF-8
Python
false
false
897
py
"""sunmoon URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from . import views app_name = 'oauth' urlpatterns = [ path('github_login/', views.github_login, name='github_login'), path('github_check/', views.github_check, name='github_check'), ]
808cf496a8bf650c2d81d9c2043e69ea1f1164d0
974d04d2ea27b1bba1c01015a98112d2afb78fe5
/test/legacy_test/test_dataset_cifar.py
1fca233d3be786b2a42f7dea6aed8dae58d6c25b
[ "Apache-2.0" ]
permissive
PaddlePaddle/Paddle
b3d2583119082c8e4b74331dacc4d39ed4d7cff0
22a11a60e0e3d10a3cf610077a3d9942a6f964cb
refs/heads/develop
2023-08-17T21:27:30.568889
2023-08-17T12:38:22
2023-08-17T12:38:22
65,711,522
20,414
5,891
Apache-2.0
2023-09-14T19:20:51
2016-08-15T06:59:08
C++
UTF-8
Python
false
false
4,284
py
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from paddle.vision.datasets import Cifar10, Cifar100 class TestCifar10Train(unittest.TestCase): def test_main(self): cifar = Cifar10(mode='train') self.assertTrue(len(cifar) == 50000) # traversal whole dataset may cost a # long time, randomly check 1 sample idx = np.random.randint(0, 50000) data, label = cifar[idx] data = np.array(data) self.assertTrue(len(data.shape) == 3) self.assertTrue(data.shape[2] == 3) self.assertTrue(data.shape[1] == 32) self.assertTrue(data.shape[0] == 32) self.assertTrue(0 <= int(label) <= 9) class TestCifar10Test(unittest.TestCase): def test_main(self): cifar = Cifar10(mode='test') self.assertTrue(len(cifar) == 10000) # traversal whole dataset may cost a # long time, randomly check 1 sample idx = np.random.randint(0, 10000) data, label = cifar[idx] data = np.array(data) self.assertTrue(len(data.shape) == 3) self.assertTrue(data.shape[2] == 3) self.assertTrue(data.shape[1] == 32) self.assertTrue(data.shape[0] == 32) self.assertTrue(0 <= int(label) <= 9) # test cv2 backend cifar = Cifar10(mode='test', backend='cv2') self.assertTrue(len(cifar) == 10000) # traversal whole dataset may cost a # long time, randomly check 1 sample idx = np.random.randint(0, 10000) data, label = cifar[idx] self.assertTrue(len(data.shape) == 3) self.assertTrue(data.shape[2] == 3) self.assertTrue(data.shape[1] == 32) self.assertTrue(data.shape[0] == 32) self.assertTrue(0 <= int(label) <= 99) with self.assertRaises(ValueError): cifar = Cifar10(mode='test', backend=1) class TestCifar100Train(unittest.TestCase): def test_main(self): cifar = Cifar100(mode='train') self.assertTrue(len(cifar) == 50000) # traversal whole dataset may cost a # long time, randomly check 1 sample idx = np.random.randint(0, 50000) data, label = cifar[idx] data = np.array(data) self.assertTrue(len(data.shape) == 3) self.assertTrue(data.shape[2] == 3) self.assertTrue(data.shape[1] == 32) self.assertTrue(data.shape[0] == 32) self.assertTrue(0 <= int(label) <= 99) class TestCifar100Test(unittest.TestCase): def test_main(self): cifar = Cifar100(mode='test') self.assertTrue(len(cifar) == 10000) # traversal whole dataset may cost a # long time, randomly check 1 sample idx = np.random.randint(0, 10000) data, label = cifar[idx] data = np.array(data) self.assertTrue(len(data.shape) == 3) self.assertTrue(data.shape[2] == 3) self.assertTrue(data.shape[1] == 32) self.assertTrue(data.shape[0] == 32) self.assertTrue(0 <= int(label) <= 99) # test cv2 backend cifar = Cifar100(mode='test', backend='cv2') self.assertTrue(len(cifar) == 10000) # traversal whole dataset may cost a # long time, randomly check 1 sample idx = np.random.randint(0, 10000) data, label = cifar[idx] self.assertTrue(len(data.shape) == 3) self.assertTrue(data.shape[2] == 3) self.assertTrue(data.shape[1] == 32) self.assertTrue(data.shape[0] == 32) self.assertTrue(0 <= int(label) <= 99) with self.assertRaises(ValueError): cifar = Cifar100(mode='test', backend=1) if __name__ == '__main__': unittest.main()
cf0672b04e3ad7d5240dff6351e4a75134aff575
a66460a46611483dfbdc94c7996893f427e60d97
/ansible/my_env/lib/python2.7/site-packages/ansible/modules/cloud/amazon/aws_direct_connect_connection.py
40aede0d048137aeaccca9bd1a9ea0bc41ad91cc
[ "MIT" ]
permissive
otus-devops-2019-02/yyashkin_infra
06b57807dde26f94f501828c07503d6bf1d70816
0cd0c003884155ac922e3e301305ac202de7028c
refs/heads/master
2020-04-29T02:42:22.056724
2019-05-15T16:24:35
2019-05-15T16:24:35
175,780,718
0
0
MIT
2019-05-15T16:24:36
2019-03-15T08:37:35
HCL
UTF-8
Python
false
false
12,050
py
#!/usr/bin/python # Copyright (c) 2017 Ansible Project # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = """ --- module: aws_direct_connect_connection short_description: Creates, deletes, modifies a DirectConnect connection description: - Create, update, or delete a Direct Connect connection between a network and a specific AWS Direct Connect location. Upon creation the connection may be added to a link aggregation group or established as a standalone connection. The connection may later be associated or disassociated with a link aggregation group. version_added: "2.4" author: "Sloane Hertel (@s-hertel)" extends_documentation_fragment: - aws - ec2 requirements: - boto3 - botocore options: state: description: - The state of the Direct Connect connection. choices: - present - absent name: description: - The name of the Direct Connect connection. This is required to create a new connection. To recreate or delete a connection I(name) or I(connection_id) is required. connection_id: description: - The ID of the Direct Connect connection. I(name) or I(connection_id) is required to recreate or delete a connection. Modifying attributes of a connection with I(forced_update) will result in a new Direct Connect connection ID. location: description: - Where the Direct Connect connection is located. Required when I(state=present). bandwidth: description: - The bandwidth of the Direct Connect connection. Required when I(state=present). choices: - 1Gbps - 10Gbps link_aggregation_group: description: - The ID of the link aggregation group you want to associate with the connection. This is optional in case a stand-alone connection is desired. forced_update: description: - To modify bandwidth or location the connection will need to be deleted and recreated. By default this will not happen - this option must be set to True. type: bool """ EXAMPLES = """ # create a Direct Connect connection - aws_direct_connect_connection: name: ansible-test-connection state: present location: EqDC2 link_aggregation_group: dxlag-xxxxxxxx bandwidth: 1Gbps register: dc # disassociate the LAG from the connection - aws_direct_connect_connection: state: present connection_id: dc.connection.connection_id location: EqDC2 bandwidth: 1Gbps # replace the connection with one with more bandwidth - aws_direct_connect_connection: state: present name: ansible-test-connection location: EqDC2 bandwidth: 10Gbps forced_update: True # delete the connection - aws_direct_connect_connection: state: absent name: ansible-test-connection """ RETURN = """ connection: description: The attributes of the direct connect connection. type: complex returned: I(state=present) contains: aws_device: description: The endpoint which the physical connection terminates on. returned: when the requested state is no longer 'requested' type: string sample: EqDC2-12pmo7hemtz1z bandwidth: description: The bandwidth of the connection. returned: always type: string sample: 1Gbps connection_id: description: The ID of the connection. returned: always type: string sample: dxcon-ffy9ywed connection_name: description: The name of the connection. returned: always type: string sample: ansible-test-connection connection_state: description: The state of the connection. returned: always type: string sample: pending loa_issue_time: description: The issue time of the connection's Letter of Authorization - Connecting Facility Assignment. returned: when the LOA-CFA has been issued (the connection state will no longer be 'requested') type: string sample: '2018-03-20T17:36:26-04:00' location: description: The location of the connection. returned: always type: string sample: EqDC2 owner_account: description: The account that owns the direct connect connection. returned: always type: string sample: '123456789012' region: description: The region in which the connection exists. returned: always type: string sample: us-east-1 """ import traceback from ansible.module_utils.aws.core import AnsibleAWSModule from ansible.module_utils.ec2 import (camel_dict_to_snake_dict, AWSRetry) from ansible.module_utils.aws.direct_connect import (DirectConnectError, delete_connection, associate_connection_and_lag, disassociate_connection_and_lag) try: from botocore.exceptions import BotoCoreError, ClientError except: pass # handled by imported AnsibleAWSModule retry_params = {"tries": 10, "delay": 5, "backoff": 1.2, "catch_extra_error_codes": ["DirectConnectClientException"]} def connection_status(client, connection_id): return connection_exists(client, connection_id=connection_id, connection_name=None, verify=False) def connection_exists(client, connection_id=None, connection_name=None, verify=True): params = {} if connection_id: params['connectionId'] = connection_id try: response = AWSRetry.backoff(**retry_params)(client.describe_connections)(**params) except (BotoCoreError, ClientError) as e: if connection_id: msg = "Failed to describe DirectConnect ID {0}".format(connection_id) else: msg = "Failed to describe DirectConnect connections" raise DirectConnectError(msg=msg, last_traceback=traceback.format_exc(), exception=e) match = [] connection = [] # look for matching connections if len(response.get('connections', [])) == 1 and connection_id: if response['connections'][0]['connectionState'] != 'deleted': match.append(response['connections'][0]['connectionId']) connection.extend(response['connections']) for conn in response.get('connections', []): if connection_name == conn['connectionName'] and conn['connectionState'] != 'deleted': match.append(conn['connectionId']) connection.append(conn) # verifying if the connections exists; if true, return connection identifier, otherwise return False if verify and len(match) == 1: return match[0] elif verify: return False # not verifying if the connection exists; just return current connection info elif len(connection) == 1: return {'connection': connection[0]} return {'connection': {}} def create_connection(client, location, bandwidth, name, lag_id): if not name: raise DirectConnectError(msg="Failed to create a Direct Connect connection: name required.") params = { 'location': location, 'bandwidth': bandwidth, 'connectionName': name, } if lag_id: params['lagId'] = lag_id try: connection = AWSRetry.backoff(**retry_params)(client.create_connection)(**params) except (BotoCoreError, ClientError) as e: raise DirectConnectError(msg="Failed to create DirectConnect connection {0}".format(name), last_traceback=traceback.format_exc(), exception=e) return connection['connectionId'] def changed_properties(current_status, location, bandwidth): current_bandwidth = current_status['bandwidth'] current_location = current_status['location'] return current_bandwidth != bandwidth or current_location != location @AWSRetry.backoff(**retry_params) def update_associations(client, latest_state, connection_id, lag_id): changed = False if 'lagId' in latest_state and lag_id != latest_state['lagId']: disassociate_connection_and_lag(client, connection_id, lag_id=latest_state['lagId']) changed = True if (changed and lag_id) or (lag_id and 'lagId' not in latest_state): associate_connection_and_lag(client, connection_id, lag_id) changed = True return changed def ensure_present(client, connection_id, connection_name, location, bandwidth, lag_id, forced_update): # the connection is found; get the latest state and see if it needs to be updated if connection_id: latest_state = connection_status(client, connection_id=connection_id)['connection'] if changed_properties(latest_state, location, bandwidth) and forced_update: ensure_absent(client, connection_id) return ensure_present(client=client, connection_id=None, connection_name=connection_name, location=location, bandwidth=bandwidth, lag_id=lag_id, forced_update=forced_update) elif update_associations(client, latest_state, connection_id, lag_id): return True, connection_id # no connection found; create a new one else: return True, create_connection(client, location, bandwidth, connection_name, lag_id) return False, connection_id @AWSRetry.backoff(**retry_params) def ensure_absent(client, connection_id): changed = False if connection_id: delete_connection(client, connection_id) changed = True return changed def main(): argument_spec = dict( state=dict(required=True, choices=['present', 'absent']), name=dict(), location=dict(), bandwidth=dict(choices=['1Gbps', '10Gbps']), link_aggregation_group=dict(), connection_id=dict(), forced_update=dict(type='bool', default=False) ) module = AnsibleAWSModule( argument_spec=argument_spec, required_one_of=[('connection_id', 'name')], required_if=[('state', 'present', ('location', 'bandwidth'))] ) connection = module.client('directconnect') state = module.params.get('state') try: connection_id = connection_exists( connection, connection_id=module.params.get('connection_id'), connection_name=module.params.get('name') ) if not connection_id and module.params.get('connection_id'): module.fail_json(msg="The Direct Connect connection {0} does not exist.".format(module.params.get('connection_id'))) if state == 'present': changed, connection_id = ensure_present(connection, connection_id=connection_id, connection_name=module.params.get('name'), location=module.params.get('location'), bandwidth=module.params.get('bandwidth'), lag_id=module.params.get('link_aggregation_group'), forced_update=module.params.get('forced_update')) response = connection_status(connection, connection_id) elif state == 'absent': changed = ensure_absent(connection, connection_id) response = {} except DirectConnectError as e: if e.last_traceback: module.fail_json(msg=e.msg, exception=e.last_traceback, **camel_dict_to_snake_dict(e.exception.response)) else: module.fail_json(msg=e.msg) module.exit_json(changed=changed, **camel_dict_to_snake_dict(response)) if __name__ == '__main__': main()
a108c73292745efbb8c63a7021a928c423ba5f28
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_136/3242.py
f20b77deb7902b6a054756552bf203772edf07d0
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,299
py
#!/usr/bin/python def solve_n(case, C, F, X): t = 0.0 # Time stamp cc = 0.0 # Number of cookies cookie_rate = 2.0 solved = False while not solved: time_to_next_event = C / cookie_rate ## Will I solve in this round time_to_solve = t + (X - cc) / cookie_rate if cc + cookie_rate * time_to_next_event >= X: t += (X - cc)/cookie_rate break cc += cookie_rate * time_to_next_event t += time_to_next_event buy_cookie = True ## Should I buy a cookie? # print "Before Buy cookies: %0.7f at t: %0.7f" % (cc, t) if buy_cookie: cc -= C cookie_rate += F # print "After Buy cookies: %f at t: %0.7f, rate: %0.7f" % (cc, t, cookie_rate) new_time_to_solve = t + (X - cc) / cookie_rate # print time_to_solve, new_time_to_solve if new_time_to_solve > time_to_solve: t = time_to_solve break print "Case #%d: %0.7f" % (case, t) def solve(ip): count = int(ip.readline()) # solve_n(-1, 500, 4.0, 2000.0) for case in range(count): C, F, X = map(float, ip.readline().split()) solve_n(case + 1, C, F, X) if __name__ == "__main__": import sys solve(open(sys.argv[1], "r"))
b270e0997d1a0890099ab916b7ac8762bc7f9c20
3fa27b3ad1c1ca90f2bcf311d89fe8c2ca241cb4
/Stores/migrations/0002_auto_20201004_2348.py
9df9d2685983fb78f3531d6d90e5557aaf8fa728
[]
no_license
emperorDuke/django-backend-for-ecommerce
717e15d7be899abcd5a4b7a7d2203c612f001aeb
83c1ca4d016d876a5c8711ac5cdc448d5a4a533d
refs/heads/master
2023-02-10T08:57:17.852721
2021-01-02T15:49:07
2021-01-02T15:49:07
271,039,012
0
0
null
null
null
null
UTF-8
Python
false
false
1,066
py
# Generated by Django 2.2.7 on 2020-10-04 22:48 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('Users', '0001_initial'), ('Stores', '0001_initial'), migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.AddField( model_name='store', name='address', field=models.OneToOneField(null=True, on_delete=django.db.models.deletion.SET_NULL, to='Users.Address'), ), migrations.AddField( model_name='store', name='merchant', field=models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='advert', name='store', field=models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to='Stores.Store', verbose_name='store'), ), ]
9b71bfc82bf69157a0a2f7f8ecb174d1811970bd
f5d4863b6a62ef19ffc98e4f94f6ade1bc8810d3
/Hash Table/274_H-Index.py
76ba54016e28d234d66981f9499e284a2c30bef6
[]
no_license
xiaomojie/LeetCode
138808eb83938f9bd3c2e8a755d908509dff0fd3
eedf73b5f167025a97f0905d3718b6eab2ee3e09
refs/heads/master
2021-06-12T09:26:01.257348
2019-10-23T10:41:06
2019-10-23T10:41:06
76,184,467
0
0
null
null
null
null
UTF-8
Python
false
false
1,410
py
""" Given an array of citations (each citation is a non-negative integer) of a researcher, write a function to compute the researcher's h-index. According to the definition of h-index on Wikipedia: "A scientist has index h if h of his/her N papers have at least h citations each, and the other N − h papers have no more than h citations each." Example: Input: citations = [3,0,6,1,5] Output: 3 Explanation: [3,0,6,1,5] means the researcher has 5 papers in total and each of them had received 3, 0, 6, 1, 5 citations respectively. Since the researcher has 3 papers with at least 3 citations each and the remaining two with no more than 3 citations each, her h-index is 3. Note: If there are several possible values for h, the maximum one is taken as the h-index. """ class Solution(object): # 法一 def hIndex1(self, citations): """ :type citations: List[int] :rtype: int """ h = 0 citations.sort() for i in range(len(citations)): # if len(citations) - i >= citations[i]: h = max(h, min(citations[i], len(citations) - i)) return h def hIndex(self, citations): h = len(citations) citations.sort() for i in range(len(citations)): if citations[i] >= len(citations) - i: return len(citations) - i return 0
77a18bf8239b47b8f953066ffb358acd3967a8d0
129e65b23a172ea686f220868c923eb4b08493c7
/game/PyGame/Others/memorypuzzle_buggy4.py
0d3542bc9379b6b5f7d4f9b764be8fc0b21c0128
[]
no_license
urstkj/Python
8dcf434858f9eb171204e064237bb10d76fe7f16
5a41df7c57c1975e0d335f59b528e28ba63cab85
refs/heads/master
2023-01-01T14:15:42.833144
2020-10-12T15:00:55
2020-10-12T15:00:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,234
py
#!/usr/local/bin/python #-*- coding: utf-8 -*- # This version of the game has a bug in it. See if you can figure out how to fix it. # http://inventwithpython.com/pygame/buggy # Bug Description: Icons don't show up # Memory Puzzle # By Al Sweigart [email protected] # http://inventwithpython.com/pygame # Released under a "Simplified BSD" license import pygame from pygame.locals import * import random import sys FPS = 30 # frames per second, the general speed of the program WINDOWWIDTH = 640 # size of window's width in pixels WINDOWHEIGHT = 480 # size of windows' height in pixels REVEALSPEED = 8 # speed boxes' sliding reveals and covers BOXSIZE = 40 # size of box height & width in pixels GAPSIZE = 10 # size of gap between boxes in pixels BOARDWIDTH = 10 # number of columns of icons BOARDHEIGHT = 7 # number of rows of icons assert (BOARDWIDTH * BOARDHEIGHT) % 2 == 0, 'Board needs to have an even number of boxes for pairs of matches.' XMARGIN = int((WINDOWWIDTH - (BOARDWIDTH * (BOXSIZE + GAPSIZE))) / 2) YMARGIN = int((WINDOWHEIGHT - (BOARDHEIGHT * (BOXSIZE + GAPSIZE))) / 2) # R G B GRAY = (100, 100, 100) NAVYBLUE = (60, 60, 100) WHITE = (255, 255, 255) RED = (255, 0, 0) GREEN = (0, 255, 0) BLUE = (0, 0, 255) YELLOW = (255, 255, 0) ORANGE = (255, 128, 0) PURPLE = (255, 0, 255) CYAN = (0, 255, 255) BGCOLOR = NAVYBLUE LIGHTBGCOLOR = GRAY BOXCOLOR = WHITE HIGHLIGHTCOLOR = BLUE DONUT = 'donut' SQUARE = 'square' DIAMOND = 'diamond' LINES = 'lines' OVAL = 'oval' ALLCOLORS = (RED, GREEN, BLUE, YELLOW, ORANGE, PURPLE, CYAN) ALLSHAPES = (DONUT, SQUARE, DIAMOND, LINES, OVAL) assert len(ALLCOLORS) * len(ALLSHAPES) * 2 >= BOARDWIDTH * BOARDHEIGHT, "Board is too big for the number of shapes/colors defined." def main(): global FPSCLOCK, DISPLAYSURF pygame.init() FPSCLOCK = pygame.time.Clock() DISPLAYSURF = pygame.display.set_mode((WINDOWWIDTH, WINDOWHEIGHT)) mousex = 0 # used to store x coordinate of mouse event mousey = 0 # used to store y coordinate of mouse event pygame.display.set_caption('Memory Game') mainBoard = getRandomizedBoard() revealedBoxes = generateRevealedBoxesData(False) firstSelection = None # stores the (x, y) of the first box clicked. DISPLAYSURF.fill(BGCOLOR) startGameAnimation(mainBoard) while True: # main game loop mouseClicked = False DISPLAYSURF.fill(BGCOLOR) # drawing the window drawBoard(mainBoard, revealedBoxes) for event in pygame.event.get(): # event handling loop if event.type == QUIT or (event.type == KEYUP and event.key == K_ESCAPE): pygame.quit() sys.exit() elif event.type == MOUSEMOTION: mousex, mousey = event.pos elif event.type == MOUSEBUTTONUP: mousex, mousey = event.pos mouseClicked = True boxx, boxy = getBoxAtPixel(mousex, mousey) if boxx != None and boxy != None: # The mouse is currently over a box. if not revealedBoxes[boxx][boxy]: drawHighlightBox(boxx, boxy) if not revealedBoxes[boxx][boxy] and mouseClicked: revealBoxesAnimation(mainBoard, [(boxx, boxy)]) revealedBoxes[boxx][boxy] = True # set the box as "revealed" if firstSelection == None: # the current box was the first box clicked firstSelection = (boxx, boxy) else: # the current box was the second box clicked # Check if there is a match between the two icons. icon1shape, icon1color = getShapeAndColor(mainBoard, firstSelection[0], firstSelection[1]) icon2shape, icon2color = getShapeAndColor(mainBoard, boxx, boxy) if icon1shape != icon2shape or icon1color != icon2color: # Icons don't match. Re-cover up both selections. pygame.time.wait(1000) # 1000 milliseconds = 1 sec coverBoxesAnimation(mainBoard, [(firstSelection[0], firstSelection[1]), (boxx, boxy)]) revealedBoxes[firstSelection[0]][firstSelection[1]] = False revealedBoxes[boxx][boxy] = False elif hasWon(revealedBoxes): # check if all pairs found gameWonAnimation(mainBoard) pygame.time.wait(2000) # Reset the board mainBoard = getRandomizedBoard() revealedBoxes = generateRevealedBoxesData(False) # Show the fully unrevealed board for a second. drawBoard(mainBoard, revealedBoxes) pygame.display.update() pygame.time.wait(1000) # Replay the start game animation. startGameAnimation(mainBoard) firstSelection = None # reset firstSelection variable # Redraw the screen and wait a clock tick. pygame.display.update() FPSCLOCK.tick(FPS) def generateRevealedBoxesData(val): revealedBoxes = [] for i in range(BOARDWIDTH): revealedBoxes.append([val] * BOARDHEIGHT) return revealedBoxes def getRandomizedBoard(): # Get a list of every possible shape in every possible color. icons = [] for color in ALLCOLORS: for shape in ALLSHAPES: icons.append((shape, color)) random.shuffle(icons) # randomize the order of the icons list numIconsUsed = int(BOARDWIDTH * BOARDHEIGHT / 2) # calculate how many icons are needed icons = icons[:numIconsUsed] * 2 # make two of each random.shuffle(icons) # Create the board data structure, with randomly placed icons. board = [] for x in range(BOARDWIDTH): column = [] for y in range(BOARDHEIGHT): column.append(icons[0]) del icons[0] # remove the icons as we assign them board.append(column) return board def splitIntoGroupsOf(groupSize, theList): # splits a list into a list of lists, where the inner lists have at # most groupSize number of items. result = [] for i in range(0, len(theList), groupSize): result.append(theList[i:i + groupSize]) return result def leftTopCoordsOfBox(boxx, boxy): # Convert board coordinates to pixel coordinates left = boxx * (BOXSIZE + GAPSIZE) + XMARGIN top = boxy * (BOXSIZE + GAPSIZE) + YMARGIN return (left, top) def getBoxAtPixel(x, y): for boxx in range(BOARDWIDTH): for boxy in range(BOARDHEIGHT): left, top = leftTopCoordsOfBox(boxx, boxy) boxRect = pygame.Rect(left, top, BOXSIZE, BOXSIZE) if boxRect.collidepoint(x, y): return (boxx, boxy) return (None, None) def drawIcon(shape, color, boxx, boxy): quarter = int(BOXSIZE * 0.25) # syntactic sugar half = int(BOXSIZE * 0.5) # syntactic sugar left, top = leftTopCoordsOfBox(boxx, boxy) # get pixel coords from board coords # Draw the shapes if shape == DONUT: pygame.draw.circle(DISPLAYSURF, color, (left + half, top + half), half - 5) pygame.draw.circle(DISPLAYSURF, BGCOLOR, (left + half, top + half), quarter - 5) elif shape == SQUARE: pygame.draw.rect(DISPLAYSURF, color, (left + quarter, top + quarter, BOXSIZE - half, BOXSIZE - half)) elif shape == DIAMOND: pygame.draw.polygon(DISPLAYSURF, color, ((left + half, top), (left + BOXSIZE - 1, top + half), (left + half, top + BOXSIZE - 1), (left, top + half))) elif shape == LINES: for i in range(0, BOXSIZE, 4): pygame.draw.line(DISPLAYSURF, color, (left, top + i), (left + i, top)) pygame.draw.line(DISPLAYSURF, color, (left + i, top + BOXSIZE - 1), (left + BOXSIZE - 1, top + i)) elif shape == OVAL: pygame.draw.ellipse(DISPLAYSURF, color, (left, top + quarter, BOXSIZE, half)) def getShapeAndColor(board, boxx, boxy): # shape value for x, y spot is stored in board[x][y][0] # color value for x, y spot is stored in board[x][y][1] return board[boxx][boxy][1], board[boxx][boxy][0] def drawBoxCovers(board, boxes, coverage): # Draws boxes being covered/revealed. "boxes" is a list # of two-item lists, which have the x & y spot of the box. for box in boxes: left, top = leftTopCoordsOfBox(box[0], box[1]) pygame.draw.rect(DISPLAYSURF, BGCOLOR, (left, top, BOXSIZE, BOXSIZE)) shape, color = getShapeAndColor(board, box[0], box[1]) drawIcon(shape, color, box[0], box[1]) if coverage > 0: # only draw the cover if there is an coverage pygame.draw.rect(DISPLAYSURF, BOXCOLOR, (left, top, coverage, BOXSIZE)) pygame.display.update() FPSCLOCK.tick(FPS) def revealBoxesAnimation(board, boxesToReveal): # Do the "box reveal" animation. for coverage in range(BOXSIZE, (-REVEALSPEED) - 1, -REVEALSPEED): drawBoxCovers(board, boxesToReveal, coverage) def coverBoxesAnimation(board, boxesToCover): # Do the "box cover" animation. for coverage in range(0, BOXSIZE + REVEALSPEED, REVEALSPEED): drawBoxCovers(board, boxesToCover, coverage) def drawBoard(board, revealed): # Draws all of the boxes in their covered or revealed state. for boxx in range(BOARDWIDTH): for boxy in range(BOARDHEIGHT): left, top = leftTopCoordsOfBox(boxx, boxy) if not revealed[boxx][boxy]: # Draw a covered box. pygame.draw.rect(DISPLAYSURF, BOXCOLOR, (left, top, BOXSIZE, BOXSIZE)) else: # Draw the (revealed) icon. shape, color = getShapeAndColor(board, boxx, boxy) drawIcon(shape, color, boxx, boxy) def drawHighlightBox(boxx, boxy): left, top = leftTopCoordsOfBox(boxx, boxy) pygame.draw.rect(DISPLAYSURF, HIGHLIGHTCOLOR, (left - 5, top - 5, BOXSIZE + 10, BOXSIZE + 10), 4) def startGameAnimation(board): # Randomly reveal the boxes 8 at a time. coveredBoxes = generateRevealedBoxesData(False) boxes = [] for x in range(BOARDWIDTH): for y in range(BOARDHEIGHT): boxes.append((x, y)) random.shuffle(boxes) boxGroups = splitIntoGroupsOf(8, boxes) drawBoard(board, coveredBoxes) for boxGroup in boxGroups: revealBoxesAnimation(board, boxGroup) coverBoxesAnimation(board, boxGroup) def gameWonAnimation(board): # flash the background color when the player has won coveredBoxes = generateRevealedBoxesData(True) color1 = LIGHTBGCOLOR color2 = BGCOLOR for i in range(13): color1, color2 = color2, color1 # swap colors DISPLAYSURF.fill(color1) drawBoard(board, coveredBoxes) pygame.display.update() pygame.time.wait(300) def hasWon(revealedBoxes): # Returns True if all the boxes have been revealed, otherwise False for i in revealedBoxes: if False in i: return False # return False if any boxes are covered. return True if __name__ == '__main__': main()
8ae50cd6b83ea1fc1e05b6127155a800c38eb5e1
a3f1e80179c23d9202d72b75dd37a49b44785f45
/api/client/swagger_client/models/api_model_script.py
a86fc78a1cbbdf8bc28909ede0b049bcda2e34cf
[ "Apache-2.0" ]
permissive
pvaneck/mlx
b1e82fae5ac8aaa1dddac23aaa38c46f6e6cfc27
6edaa0bd77787c56b737322a0c875ae30de6cd49
refs/heads/main
2023-05-14T06:08:38.404133
2021-05-04T01:41:11
2021-05-04T01:41:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,189
py
# Copyright 2021 IBM Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding: utf-8 """ MLX API MLX API Extension for Kubeflow Pipelines # noqa: E501 OpenAPI spec version: 0.1.25-related-assets Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class ApiModelScript(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'pipeline_stage': 'str', 'execution_platform': 'str', 'script_code': 'str' } attribute_map = { 'pipeline_stage': 'pipeline_stage', 'execution_platform': 'execution_platform', 'script_code': 'script_code' } def __init__(self, pipeline_stage=None, execution_platform=None, script_code=None): # noqa: E501 """ApiModelScript - a model defined in Swagger""" # noqa: E501 self._pipeline_stage = None self._execution_platform = None self._script_code = None self.discriminator = None self.pipeline_stage = pipeline_stage self.execution_platform = execution_platform self.script_code = script_code @property def pipeline_stage(self): """Gets the pipeline_stage of this ApiModelScript. # noqa: E501 pipeline stage that this code sample applies to, either 'train' or 'serve' # noqa: E501 :return: The pipeline_stage of this ApiModelScript. # noqa: E501 :rtype: str """ return self._pipeline_stage @pipeline_stage.setter def pipeline_stage(self, pipeline_stage): """Sets the pipeline_stage of this ApiModelScript. pipeline stage that this code sample applies to, either 'train' or 'serve' # noqa: E501 :param pipeline_stage: The pipeline_stage of this ApiModelScript. # noqa: E501 :type: str """ if pipeline_stage is None: raise ValueError("Invalid value for `pipeline_stage`, must not be `None`") # noqa: E501 self._pipeline_stage = pipeline_stage @property def execution_platform(self): """Gets the execution_platform of this ApiModelScript. # noqa: E501 execution platform that this code sample applies to, i.e. 'kubernetes', 'knative' # noqa: E501 :return: The execution_platform of this ApiModelScript. # noqa: E501 :rtype: str """ return self._execution_platform @execution_platform.setter def execution_platform(self, execution_platform): """Sets the execution_platform of this ApiModelScript. execution platform that this code sample applies to, i.e. 'kubernetes', 'knative' # noqa: E501 :param execution_platform: The execution_platform of this ApiModelScript. # noqa: E501 :type: str """ if execution_platform is None: raise ValueError("Invalid value for `execution_platform`, must not be `None`") # noqa: E501 self._execution_platform = execution_platform @property def script_code(self): """Gets the script_code of this ApiModelScript. # noqa: E501 the source code to run the model in a pipeline stage # noqa: E501 :return: The script_code of this ApiModelScript. # noqa: E501 :rtype: str """ return self._script_code @script_code.setter def script_code(self, script_code): """Sets the script_code of this ApiModelScript. the source code to run the model in a pipeline stage # noqa: E501 :param script_code: The script_code of this ApiModelScript. # noqa: E501 :type: str """ if script_code is None: raise ValueError("Invalid value for `script_code`, must not be `None`") # noqa: E501 self._script_code = script_code def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(ApiModelScript, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ApiModelScript): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
7c432b6ff53b6f2d2ff8f063dc48ade3a4c92cd1
e2e08d7c97398a42e6554f913ee27340226994d9
/pyautoTest-master(ICF-7.5.0)/test_case/scg/scg_Administrator/test_c139330.py
0952f34469d1beb7cbb7b7a29b6cc088aec4bbac
[]
no_license
lizhuoya1111/Automated_testing_practice
88e7be512e831d279324ad710946232377fb4c01
b3a532d33ddeb8d01fff315bcd59b451befdef23
refs/heads/master
2022-12-04T08:19:29.806445
2020-08-14T03:51:20
2020-08-14T03:51:20
287,426,498
0
0
null
null
null
null
UTF-8
Python
false
false
1,662
py
import pytest import time import sys from os.path import dirname, abspath sys.path.insert(0, dirname(dirname(abspath(__file__)))) from page_obj.scg.scg_def_sys import * from page_obj.scg.scg_def import * from page_obj.scg.scg_button import * from page_obj.scg.scg_def_log import * from page_obj.common.rail import * from page_obj.scg.scg_def_ifname_OEM import * from page_obj.scg.scg_dev import * test_id = 139330 def test_c139330(browser): try: login_web(browser, url=dev1) configuer(browser) time.sleep(2) loginfo = get_log(browser, 管理日志) browser.switch_to.default_content() # print(loginfo) delete_all_admin_list_jyl(browser) time.sleep(1) delete_all_admin_profile_jyl(browser) time.sleep(1) try: assert "添加管理员帐户成功" in loginfo rail_pass(test_run_id, test_id) except: rail_fail(test_run_id, test_id) assert "添加管理员帐户失败" in loginfo except Exception as err: # 如果上面的步骤有报错,重新设备,恢复配置 reload(hostip=dev1) print(err) rail_fail(test_run_id, test_id) assert False def configuer(browser): add_admin_profile(browser, profile_name='aaa', desc="aaa权限", cfg="读写", report="读写") time.sleep(2) add_admin_remote_jyl(browser, admin_name="bob", auth_database="remote", temp="log_profile", https="yes", telent="yes", ssh="yes", console="yes", status="enable", interface=interface_name_6, online_num="3", ip1="0.0.0.0/0", ip2="3.3.3.0/24", ) if __name__ == '__main__': pytest.main(["-v", "-s", "test_c" + str(test_id) + ".py"])
fc28ed8f4facbaccd5cc5e51818b7b8af618bc45
cedfdd1398b947b15eccf4473e9bbaddccb878d7
/SDK/openstack/tests/unit/cloud/test_flavors.py
6f44544b37e1975cbe596bede8bcf381013844f4
[]
no_license
Doctor-DC/CMP-Recycle
36fb1fdcf7c3a396bfef89d03948bd0ce626b053
e3e6421f0b5dc28a075bc5bf91be9a45bcbe97c6
refs/heads/dev
2022-12-15T06:28:12.695868
2019-02-26T06:22:21
2019-02-26T06:22:21
142,127,512
0
0
null
2022-12-08T02:29:44
2018-07-24T08:18:46
Python
UTF-8
Python
false
false
11,881
py
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import SDK.openstack.cloud from SDK.openstack.tests import fakes from SDK.openstack.tests.unit import base class TestFlavors(base.TestCase): def test_create_flavor(self): self.register_uris([ dict(method='POST', uri='{endpoint}/flavors'.format( endpoint=fakes.COMPUTE_ENDPOINT), json={'flavor': fakes.FAKE_FLAVOR}, validate=dict( json={ 'flavor': { "name": "vanilla", "ram": 65536, "vcpus": 24, "swap": 0, "os-flavor-access:is_public": True, "rxtx_factor": 1.0, "OS-FLV-EXT-DATA:ephemeral": 0, "disk": 1600, "id": None}}))]) self.cloud.create_flavor( 'vanilla', ram=65536, disk=1600, vcpus=24, ) self.assert_calls() def test_delete_flavor(self): self.register_uris([ dict(method='GET', uri='{endpoint}/flavors/detail?is_public=None'.format( endpoint=fakes.COMPUTE_ENDPOINT), json={'flavors': fakes.FAKE_FLAVOR_LIST}), dict(method='DELETE', uri='{endpoint}/flavors/{id}'.format( endpoint=fakes.COMPUTE_ENDPOINT, id=fakes.FLAVOR_ID))]) self.assertTrue(self.cloud.delete_flavor('vanilla')) self.assert_calls() def test_delete_flavor_not_found(self): self.register_uris([ dict(method='GET', uri='{endpoint}/flavors/detail?is_public=None'.format( endpoint=fakes.COMPUTE_ENDPOINT), json={'flavors': fakes.FAKE_FLAVOR_LIST})]) self.assertFalse(self.cloud.delete_flavor('invalid')) self.assert_calls() def test_delete_flavor_exception(self): self.register_uris([ dict(method='GET', uri='{endpoint}/flavors/detail?is_public=None'.format( endpoint=fakes.COMPUTE_ENDPOINT), json={'flavors': fakes.FAKE_FLAVOR_LIST}), dict(method='DELETE', uri='{endpoint}/flavors/{id}'.format( endpoint=fakes.COMPUTE_ENDPOINT, id=fakes.FLAVOR_ID), status_code=503)]) self.assertRaises(SDK.openstack.cloud.OpenStackCloudException, self.cloud.delete_flavor, 'vanilla') def test_list_flavors(self): uris_to_mock = [ dict(method='GET', uri='{endpoint}/flavors/detail?is_public=None'.format( endpoint=fakes.COMPUTE_ENDPOINT), json={'flavors': fakes.FAKE_FLAVOR_LIST}), ] self.register_uris(uris_to_mock) flavors = self.cloud.list_flavors() # test that new flavor is created correctly found = False for flavor in flavors: if flavor['name'] == 'vanilla': found = True break self.assertTrue(found) needed_keys = {'name', 'ram', 'vcpus', 'id', 'is_public', 'disk'} if found: # check flavor content self.assertTrue(needed_keys.issubset(flavor.keys())) self.assert_calls() def test_list_flavors_with_extra(self): uris_to_mock = [ dict(method='GET', uri='{endpoint}/flavors/detail?is_public=None'.format( endpoint=fakes.COMPUTE_ENDPOINT), json={'flavors': fakes.FAKE_FLAVOR_LIST}), ] uris_to_mock.extend([ dict(method='GET', uri='{endpoint}/flavors/{id}/os-extra_specs'.format( endpoint=fakes.COMPUTE_ENDPOINT, id=flavor['id']), json={'extra_specs': {}}) for flavor in fakes.FAKE_FLAVOR_LIST]) self.register_uris(uris_to_mock) flavors = self.cloud.list_flavors(get_extra=True) # test that new flavor is created correctly found = False for flavor in flavors: if flavor['name'] == 'vanilla': found = True break self.assertTrue(found) needed_keys = {'name', 'ram', 'vcpus', 'id', 'is_public', 'disk'} if found: # check flavor content self.assertTrue(needed_keys.issubset(flavor.keys())) self.assert_calls() def test_get_flavor_by_ram(self): uris_to_mock = [ dict(method='GET', uri='{endpoint}/flavors/detail?is_public=None'.format( endpoint=fakes.COMPUTE_ENDPOINT), json={'flavors': fakes.FAKE_FLAVOR_LIST}), ] uris_to_mock.extend([ dict(method='GET', uri='{endpoint}/flavors/{id}/os-extra_specs'.format( endpoint=fakes.COMPUTE_ENDPOINT, id=flavor['id']), json={'extra_specs': {}}) for flavor in fakes.FAKE_FLAVOR_LIST]) self.register_uris(uris_to_mock) flavor = self.cloud.get_flavor_by_ram(ram=250) self.assertEqual(fakes.STRAWBERRY_FLAVOR_ID, flavor['id']) def test_get_flavor_by_ram_and_include(self): uris_to_mock = [ dict(method='GET', uri='{endpoint}/flavors/detail?is_public=None'.format( endpoint=fakes.COMPUTE_ENDPOINT), json={'flavors': fakes.FAKE_FLAVOR_LIST}), ] uris_to_mock.extend([ dict(method='GET', uri='{endpoint}/flavors/{id}/os-extra_specs'.format( endpoint=fakes.COMPUTE_ENDPOINT, id=flavor['id']), json={'extra_specs': {}}) for flavor in fakes.FAKE_FLAVOR_LIST]) self.register_uris(uris_to_mock) flavor = self.cloud.get_flavor_by_ram(ram=150, include='strawberry') self.assertEqual(fakes.STRAWBERRY_FLAVOR_ID, flavor['id']) def test_get_flavor_by_ram_not_found(self): self.register_uris([ dict(method='GET', uri='{endpoint}/flavors/detail?is_public=None'.format( endpoint=fakes.COMPUTE_ENDPOINT), json={'flavors': []})]) self.assertRaises( SDK.openstack.cloud.OpenStackCloudException, self.cloud.get_flavor_by_ram, ram=100) def test_get_flavor_string_and_int(self): flavor_list_uri = '{endpoint}/flavors/detail?is_public=None'.format( endpoint=fakes.COMPUTE_ENDPOINT) flavor_resource_uri = '{endpoint}/flavors/1/os-extra_specs'.format( endpoint=fakes.COMPUTE_ENDPOINT) flavor_list_json = {'flavors': [fakes.make_fake_flavor( '1', 'vanilla')]} flavor_json = {'extra_specs': {}} self.register_uris([ dict(method='GET', uri=flavor_list_uri, json=flavor_list_json), dict(method='GET', uri=flavor_resource_uri, json=flavor_json), dict(method='GET', uri=flavor_list_uri, json=flavor_list_json), dict(method='GET', uri=flavor_resource_uri, json=flavor_json)]) flavor1 = self.cloud.get_flavor('1') self.assertEqual('1', flavor1['id']) flavor2 = self.cloud.get_flavor(1) self.assertEqual('1', flavor2['id']) def test_set_flavor_specs(self): extra_specs = dict(key1='value1') self.register_uris([ dict(method='POST', uri='{endpoint}/flavors/{id}/os-extra_specs'.format( endpoint=fakes.COMPUTE_ENDPOINT, id=1), json=dict(extra_specs=extra_specs))]) self.cloud.set_flavor_specs(1, extra_specs) self.assert_calls() def test_unset_flavor_specs(self): keys = ['key1', 'key2'] self.register_uris([ dict(method='DELETE', uri='{endpoint}/flavors/{id}/os-extra_specs/{key}'.format( endpoint=fakes.COMPUTE_ENDPOINT, id=1, key=key)) for key in keys]) self.cloud.unset_flavor_specs(1, keys) self.assert_calls() def test_add_flavor_access(self): self.register_uris([ dict(method='POST', uri='{endpoint}/flavors/{id}/action'.format( endpoint=fakes.COMPUTE_ENDPOINT, id='flavor_id'), json={ 'flavor_access': [{ 'flavor_id': 'flavor_id', 'tenant_id': 'tenant_id'}]}, validate=dict( json={'addTenantAccess': {'tenant': 'tenant_id'}}))]) self.cloud.add_flavor_access('flavor_id', 'tenant_id') self.assert_calls() def test_remove_flavor_access(self): self.register_uris([ dict(method='POST', uri='{endpoint}/flavors/{id}/action'.format( endpoint=fakes.COMPUTE_ENDPOINT, id='flavor_id'), json={'flavor_access': []}, validate=dict( json={'removeTenantAccess': {'tenant': 'tenant_id'}}))]) self.cloud.remove_flavor_access('flavor_id', 'tenant_id') self.assert_calls() def test_list_flavor_access(self): self.register_uris([ dict(method='GET', uri='{endpoint}/flavors/vanilla/os-flavor-access'.format( endpoint=fakes.COMPUTE_ENDPOINT), json={ 'flavor_access': [ {'flavor_id': 'vanilla', 'tenant_id': 'tenant_id'}]}) ]) self.cloud.list_flavor_access('vanilla') self.assert_calls() def test_get_flavor_by_id(self): flavor_uri = '{endpoint}/flavors/1'.format( endpoint=fakes.COMPUTE_ENDPOINT) flavor_json = {'flavor': fakes.make_fake_flavor('1', 'vanilla')} self.register_uris([ dict(method='GET', uri=flavor_uri, json=flavor_json), ]) flavor1 = self.cloud.get_flavor_by_id('1') self.assertEqual('1', flavor1['id']) self.assertEqual({}, flavor1.extra_specs) flavor2 = self.cloud.get_flavor_by_id('1') self.assertEqual('1', flavor2['id']) self.assertEqual({}, flavor2.extra_specs) def test_get_flavor_with_extra_specs(self): flavor_uri = '{endpoint}/flavors/1'.format( endpoint=fakes.COMPUTE_ENDPOINT) flavor_extra_uri = '{endpoint}/flavors/1/os-extra_specs'.format( endpoint=fakes.COMPUTE_ENDPOINT) flavor_json = {'flavor': fakes.make_fake_flavor('1', 'vanilla')} flavor_extra_json = {'extra_specs': {'name': 'test'}} self.register_uris([ dict(method='GET', uri=flavor_uri, json=flavor_json), dict(method='GET', uri=flavor_extra_uri, json=flavor_extra_json), ]) flavor1 = self.cloud.get_flavor_by_id('1', get_extra=True) self.assertEqual('1', flavor1['id']) self.assertEqual({'name': 'test'}, flavor1.extra_specs) flavor2 = self.cloud.get_flavor_by_id('1', get_extra=False) self.assertEqual('1', flavor2['id']) self.assertEqual({}, flavor2.extra_specs)
d330833cb9b420e93029ecd1df3e12af203a3a9d
ee05d803ee01c939d7324db8e8ff2b8990877d69
/e_单词规律/290.py
f5edbac5e8f0297cffaf85541074befd5136adb1
[]
no_license
Nostalogicwh/Leetcode
7660153ffe56b1a348d2bb145bbd77c9c46a5525
5004d6b7157dc6a21666c7f79a38e95fa0ca092f
refs/heads/master
2023-02-26T10:23:26.575572
2021-02-01T09:05:04
2021-02-01T09:05:04
295,983,019
2
0
null
null
null
null
UTF-8
Python
false
false
498
py
class Solution: def wordPattern(self, pattern: str, s: str) -> bool: t = s.split() if len(pattern) != len(t): return False dct = {} for i in range(len(pattern)): if pattern[i] not in dct: if t[i] in dct.values(): return False dct[pattern[i]] = t[i] else: if dct[pattern[i]] != t[i]: return False print(dct) return True
e13b84b29a8d28f05463a7eab4ee596dc1714cae
5b7af6548668085da9a6ab86f564538ee73c4865
/build/scripts/slave/recipe_modules/luci_config/example.py
ddbd1f0ab8890cf00a7b52766c5d291be3d044b2
[ "BSD-3-Clause" ]
permissive
elastos/Elastos.APP.Android.ShiJiuTV
463a986450a915f7b3066e6a03aca903cf56f69b
f77189a2b8df86028adc68105988710d16ce012b
refs/heads/master
2023-03-18T03:11:58.337349
2018-03-12T08:50:57
2018-03-13T11:10:27
124,007,751
0
1
null
2022-10-03T03:30:29
2018-03-06T02:21:25
null
UTF-8
Python
false
false
1,504
py
# Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from recipe_engine.recipe_api import Property DEPS = [ 'luci_config', 'recipe_engine/properties', 'recipe_engine/step' ] PROPERTIES = { 'auth_token': Property(default=None), 'protobuf': Property(default=None), } def RunSteps(api, auth_token, protobuf): if auth_token: api.luci_config.c.auth_token = auth_token if protobuf: result = api.luci_config.parse_textproto(api.luci_config.get_project_config( 'build', 'recipes.cfg')['content'].split('\n')) api.step('checkit', ['echo', str(result)]) return api.luci_config.get_project_config('build', 'recipes.cfg') api.luci_config.get_project_metadata('build') def GenTests(api): yield ( api.test('basic') + api.luci_config.get_projects(['build']) + api.luci_config.get_project_config('build', 'recipes.cfg', 'testcontent') ) yield ( api.test('auth_token') + api.properties(auth_token='ya2930948320948203480=') + api.luci_config.get_projects(['build']) + api.luci_config.get_project_config('build', 'recipes.cfg', 'testcontent') ) protobuf_lines = """ foo: 1 bar: "hi" baz { the_thing: "hi" } """ yield ( api.test('protobuf') + api.luci_config.get_project_config( 'build', 'recipes.cfg', protobuf_lines) + api.properties(protobuf=True) )
e9fac787cd491026568ab5aa63c583c3cc349c1c
78ea634c53a3b52cbc379b5509d99f6729e1644b
/user/forms.py
04c395cf518eb98c1946fa41c4eb578ee10656ab
[]
no_license
TapanManu/Todo-Backend
56a2999a8139a967e1f59d346d22b902f5ed151a
4ed02cbbf2c843fc248edb4a4027e3491fa800c9
refs/heads/master
2022-03-30T10:21:49.165029
2020-02-02T18:45:39
2020-02-02T18:45:39
226,716,615
1
0
null
null
null
null
UTF-8
Python
false
false
666
py
from django import forms from .models import UserProfile from django.contrib.auth.models import User class UserForm(forms.ModelForm): username=forms.CharField(label=("Username"),widget=forms.TextInput( attrs={'placeholder': ('Username'), 'autofocus': 'autofocus','required':'true'})) password=forms.CharField(widget=forms.PasswordInput(attrs={'placeholder':('password')})) email = forms.EmailField(max_length=254) class Meta: model=User fields=('username','email','password') class UserProfileForm(forms.ModelForm): class Meta: model=UserProfile fields=('website',)
2109b2bc169fb2b076bbf069f2ef187f1e7baab8
df328969e8d61a02603374c0cb3450556a51c184
/tests/runtests.py
f0f367a3d3e63c7eff09f034e8fdb67b71a9796e
[ "BSD-2-Clause" ]
permissive
samuderapase/django-comments-xtd
c5dd8641e8ca6933a124ae91377f003dd1dfc7a6
5ac29f5269c18acb1709a35b30de3decff7a59fe
refs/heads/master
2020-12-24T23:49:33.382692
2012-10-17T20:07:09
2012-10-17T20:07:09
6,543,617
1
0
null
null
null
null
UTF-8
Python
false
false
610
py
import os import sys def setup_django_settings(): os.chdir(os.path.join(os.path.dirname(__file__), "..")) sys.path.insert(0, os.getcwd()) os.environ["DJANGO_SETTINGS_MODULE"] = "tests.settings" def run_tests(): if not os.environ.get("DJANGO_SETTINGS_MODULE", False): setup_django_settings() from django.conf import settings from django.test.utils import get_runner TestRunner = get_runner(settings) test_suite = TestRunner(verbosity=2, interactive=True, failfast=False) test_suite.run_tests(["django_comments_xtd"]) if __name__ == "__main__": run_tests()
1b002ff27e79f71f469b0ebe1a940084049bd552
52c8d7594de49e3ba47573c50c95bd112c3c8828
/cycles.py
67f8843f2dd44172c7166fbadb936912a45fed0f
[]
no_license
vitroid/LiqChemSummerSchool2014
bcf592be419bccb6e972c11ffff95a7eff355213
23a29acbc13548c702518448f52f0f8336b167e2
refs/heads/master
2021-06-03T10:29:56.428479
2021-02-15T05:34:56
2021-02-15T05:34:56
21,470,973
0
0
null
null
null
null
UTF-8
Python
false
false
3,020
py
#!/usr/bin/env python # coding: utf-8 ############# functions ############################################### #cycles def all_cycles(graph, maxc=6): #local functions def self_avoiding_cycle(graph,vertex_list): #迷走して経路長が長くなりすぎた時は if len(vertex_list) == maxc+1: #あきらめる。(結果なし) return [] last = vertex_list[-1] results = [] #last頂点に隣接する頂点それぞれについて for next in graph[last]: #もしnextが経路の最初の頂点に戻ってきて、しかも経路長が3以上なら、 if next == vertex_list[0]: if len(vertex_list) >= 3: #帰ってきた! #vertex_listを、結果に加える results.append(vertex_list) else: continue #経路の途中に交わってしまったら elif next in vertex_list: continue else: #再帰的にwalkを延ばす results += self_avoiding_cycle(graph,vertex_list + [next,]) return results #end of local functions cycles = [] graph_size = len(graph) #すべての頂点を順番に始点として、 for v in range(graph_size): #self-avoiding pathをさがす cycles += self_avoiding_cycle(graph, [v,]) #重複(始点が違うだけ、逆回りなどすべて)を含むすべてのサイクルを返す。 return cycles def unique_cycles(graph, maxc=6): cycles = all_cycles(graph, maxc) #重複するサイクルを省く。 #重複のないリスト uniquecycles = [] #重複のない集合 uniqueset = set() for cycle in cycles: #cycleに含まれる頂点を集合にする。 fs = frozenset(cycle) #その集合が、既出でなければ if not fs in uniqueset: #集合の集合に追加する uniqueset.add(fs) #リストにも追加する uniquecycles.append(cycle) #リストのほうを返り値とする return uniquecycles ############# end of functions ######################################## from distance_matrix import * #test case if __name__ == "__main__": #グラフは、辺の集合(set)で表現する。 #頂点のラベルは0からの連番とする。 #辺は無向とし、2頂点のラベル(小さい順)のタプルで表す。 #大きなグラフ(立方体グラフ) edges = set([(0,1),(1,2),(2,3),(0,3), (0,4),(1,5),(2,6),(3,7), (4,5),(5,6),(6,7),(4,7)]) size = 8 #連結な頂点から頂点へたどっていきやすいように、隣接関係をリストで表現する。 graph = adjacency_table(edges, size) #cycleのリスト(最大サイズは6歩) print unique_cycles(graph,6)
e062c0a4d1a6c48d574c1f5205d0a19e1c11e9be
6fff0893ef43f1018d65f2e8e1bf27d9f8accf5b
/pw_package/py/pw_package/package_manager.py
1254121126b21ce292b55127abe72651f6f4487a
[ "Apache-2.0" ]
permissive
isabella232/pigweed
eeb68a4eda6f0a9b5ef0b8145d0204bc9f85bfdc
53c2f3e2569d7e582d3dd3056ceb9b2c3b8197b2
refs/heads/main
2023-06-03T10:32:29.498066
2021-06-17T06:38:15
2021-06-17T20:44:55
378,165,913
0
0
Apache-2.0
2021-06-18T13:54:37
2021-06-18T13:53:40
null
UTF-8
Python
false
false
6,156
py
# Copyright 2020 The Pigweed Authors # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. """Install and remove optional packages.""" import argparse import dataclasses import logging import os import pathlib import shutil from typing import Dict, List, Sequence, Tuple _LOG: logging.Logger = logging.getLogger(__name__) class Package: """Package to be installed. Subclass this to implement installation of a specific package. """ def __init__(self, name): self._name = name @property def name(self): return self._name def install(self, path: pathlib.Path) -> None: # pylint: disable=no-self-use """Install the package at path. Install the package in path. Cannot assume this directory is empty—it may need to be deleted or updated. """ def remove(self, path: pathlib.Path) -> None: # pylint: disable=no-self-use """Remove the package from path. Removes the directory containing the package. For most packages this should be sufficient to remove the package, and subclasses should not need to override this package. """ if os.path.exists(path): shutil.rmtree(path) def status(self, path: pathlib.Path) -> bool: # pylint: disable=no-self-use """Returns if package is installed at path and current. This method will be skipped if the directory does not exist. """ def info(self, path: pathlib.Path) -> Sequence[str]: # pylint: disable=no-self-use """Returns a short string explaining how to enable the package.""" _PACKAGES: Dict[str, Package] = {} def register(package_class: type, *args, **kwargs) -> None: obj = package_class(*args, **kwargs) _PACKAGES[obj.name] = obj @dataclasses.dataclass class Packages: all: Tuple[str, ...] installed: Tuple[str, ...] available: Tuple[str, ...] class PackageManager: """Install and remove optional packages.""" def __init__(self, root: pathlib.Path): self._pkg_root = root os.makedirs(root, exist_ok=True) def install(self, package: str, force: bool = False) -> None: pkg = _PACKAGES[package] if force: self.remove(package) pkg.install(self._pkg_root / pkg.name) def remove(self, package: str) -> None: pkg = _PACKAGES[package] pkg.remove(self._pkg_root / pkg.name) def status(self, package: str) -> bool: pkg = _PACKAGES[package] path = self._pkg_root / pkg.name return os.path.isdir(path) and pkg.status(path) def list(self) -> Packages: installed = [] available = [] for package in sorted(_PACKAGES.keys()): pkg = _PACKAGES[package] if pkg.status(self._pkg_root / pkg.name): installed.append(pkg.name) else: available.append(pkg.name) return Packages( all=tuple(_PACKAGES.keys()), installed=tuple(installed), available=tuple(available), ) def info(self, package: str) -> Sequence[str]: pkg = _PACKAGES[package] return pkg.info(self._pkg_root / pkg.name) class PackageManagerCLI: """Command-line interface to PackageManager.""" def __init__(self): self._mgr: PackageManager = None def install(self, package: str, force: bool = False) -> int: _LOG.info('Installing %s...', package) self._mgr.install(package, force) _LOG.info('Installing %s...done.', package) for line in self._mgr.info(package): _LOG.info('%s', line) return 0 def remove(self, package: str) -> int: _LOG.info('Removing %s...', package) self._mgr.remove(package) _LOG.info('Removing %s...done.', package) return 0 def status(self, package: str) -> int: if self._mgr.status(package): _LOG.info('%s is installed.', package) for line in self._mgr.info(package): _LOG.info('%s', line) return 0 _LOG.info('%s is not installed.', package) return -1 def list(self) -> int: packages = self._mgr.list() _LOG.info('Installed packages:') for package in packages.installed: _LOG.info(' %s', package) for line in self._mgr.info(package): _LOG.info(' %s', line) _LOG.info('') _LOG.info('Available packages:') for package in packages.available: _LOG.info(' %s', package) _LOG.info('') return 0 def run(self, command: str, pkg_root: pathlib.Path, **kwargs) -> int: self._mgr = PackageManager(pkg_root.resolve()) return getattr(self, command)(**kwargs) def parse_args(argv: List[str] = None) -> argparse.Namespace: parser = argparse.ArgumentParser("Manage packages.") parser.add_argument( '--package-root', '-e', dest='pkg_root', type=pathlib.Path, default=(pathlib.Path(os.environ['_PW_ACTUAL_ENVIRONMENT_ROOT']) / 'packages'), ) subparsers = parser.add_subparsers(dest='command', required=True) install = subparsers.add_parser('install') install.add_argument('--force', '-f', action='store_true') remove = subparsers.add_parser('remove') status = subparsers.add_parser('status') for cmd in (install, remove, status): cmd.add_argument('package', choices=_PACKAGES.keys()) _ = subparsers.add_parser('list') return parser.parse_args(argv) def run(**kwargs): return PackageManagerCLI().run(**kwargs)
54c9a65d15786c181c4f835eedac784926e7b84a
ce745254ee1c55f06c90b2c0739a4db29efa9913
/src/test/python/cpython-3f944f44ee41/Lib/warnings.py
a427e3510ecaaa6dadeb2a4e957bb6d4880576c7
[ "MIT" ]
permissive
bkiers/python3-parser
5deb0c681e42b07d459758d864fd0689bf26dbad
5a7e097f2dba8d38fa41ebfc95c8bdf4da3042dd
refs/heads/master
2022-10-31T22:02:07.484767
2021-11-17T09:31:49
2021-11-17T09:31:49
20,738,250
39
25
MIT
2022-12-13T08:42:28
2014-06-11T19:34:28
Python
UTF-8
Python
false
false
13,725
py
"""Python part of the warnings subsystem.""" import sys __all__ = ["warn", "showwarning", "formatwarning", "filterwarnings", "resetwarnings", "catch_warnings"] def showwarning(message, category, filename, lineno, file=None, line=None): """Hook to write a warning to a file; replace if you like.""" if file is None: file = sys.stderr try: file.write(formatwarning(message, category, filename, lineno, line)) except OSError: pass # the file (probably stderr) is invalid - this warning gets lost. def formatwarning(message, category, filename, lineno, line=None): """Function to format a warning the standard way.""" import linecache s = "%s:%s: %s: %s\n" % (filename, lineno, category.__name__, message) line = linecache.getline(filename, lineno) if line is None else line if line: line = line.strip() s += " %s\n" % line return s def filterwarnings(action, message="", category=Warning, module="", lineno=0, append=False): """Insert an entry into the list of warnings filters (at the front). 'action' -- one of "error", "ignore", "always", "default", "module", or "once" 'message' -- a regex that the warning message must match 'category' -- a class that the warning must be a subclass of 'module' -- a regex that the module name must match 'lineno' -- an integer line number, 0 matches all warnings 'append' -- if true, append to the list of filters """ import re assert action in ("error", "ignore", "always", "default", "module", "once"), "invalid action: %r" % (action,) assert isinstance(message, str), "message must be a string" assert isinstance(category, type), "category must be a class" assert issubclass(category, Warning), "category must be a Warning subclass" assert isinstance(module, str), "module must be a string" assert isinstance(lineno, int) and lineno >= 0, \ "lineno must be an int >= 0" item = (action, re.compile(message, re.I), category, re.compile(module), lineno) if append: filters.append(item) else: filters.insert(0, item) def simplefilter(action, category=Warning, lineno=0, append=False): """Insert a simple entry into the list of warnings filters (at the front). A simple filter matches all modules and messages. 'action' -- one of "error", "ignore", "always", "default", "module", or "once" 'category' -- a class that the warning must be a subclass of 'lineno' -- an integer line number, 0 matches all warnings 'append' -- if true, append to the list of filters """ assert action in ("error", "ignore", "always", "default", "module", "once"), "invalid action: %r" % (action,) assert isinstance(lineno, int) and lineno >= 0, \ "lineno must be an int >= 0" item = (action, None, category, None, lineno) if append: filters.append(item) else: filters.insert(0, item) def resetwarnings(): """Clear the list of warning filters, so that no filters are active.""" filters[:] = [] class _OptionError(Exception): """Exception used by option processing helpers.""" pass # Helper to process -W options passed via sys.warnoptions def _processoptions(args): for arg in args: try: _setoption(arg) except _OptionError as msg: print("Invalid -W option ignored:", msg, file=sys.stderr) # Helper for _processoptions() def _setoption(arg): import re parts = arg.split(':') if len(parts) > 5: raise _OptionError("too many fields (max 5): %r" % (arg,)) while len(parts) < 5: parts.append('') action, message, category, module, lineno = [s.strip() for s in parts] action = _getaction(action) message = re.escape(message) category = _getcategory(category) module = re.escape(module) if module: module = module + '$' if lineno: try: lineno = int(lineno) if lineno < 0: raise ValueError except (ValueError, OverflowError): raise _OptionError("invalid lineno %r" % (lineno,)) else: lineno = 0 filterwarnings(action, message, category, module, lineno) # Helper for _setoption() def _getaction(action): if not action: return "default" if action == "all": return "always" # Alias for a in ('default', 'always', 'ignore', 'module', 'once', 'error'): if a.startswith(action): return a raise _OptionError("invalid action: %r" % (action,)) # Helper for _setoption() def _getcategory(category): import re if not category: return Warning if re.match("^[a-zA-Z0-9_]+$", category): try: cat = eval(category) except NameError: raise _OptionError("unknown warning category: %r" % (category,)) else: i = category.rfind(".") module = category[:i] klass = category[i+1:] try: m = __import__(module, None, None, [klass]) except ImportError: raise _OptionError("invalid module name: %r" % (module,)) try: cat = getattr(m, klass) except AttributeError: raise _OptionError("unknown warning category: %r" % (category,)) if not issubclass(cat, Warning): raise _OptionError("invalid warning category: %r" % (category,)) return cat # Code typically replaced by _warnings def warn(message, category=None, stacklevel=1): """Issue a warning, or maybe ignore it or raise an exception.""" # Check if message is already a Warning object if isinstance(message, Warning): category = message.__class__ # Check category argument if category is None: category = UserWarning assert issubclass(category, Warning) # Get context information try: caller = sys._getframe(stacklevel) except ValueError: globals = sys.__dict__ lineno = 1 else: globals = caller.f_globals lineno = caller.f_lineno if '__name__' in globals: module = globals['__name__'] else: module = "<string>" filename = globals.get('__file__') if filename: fnl = filename.lower() if fnl.endswith((".pyc", ".pyo")): filename = filename[:-1] else: if module == "__main__": try: filename = sys.argv[0] except AttributeError: # embedded interpreters don't have sys.argv, see bug #839151 filename = '__main__' if not filename: filename = module registry = globals.setdefault("__warningregistry__", {}) warn_explicit(message, category, filename, lineno, module, registry, globals) def warn_explicit(message, category, filename, lineno, module=None, registry=None, module_globals=None): lineno = int(lineno) if module is None: module = filename or "<unknown>" if module[-3:].lower() == ".py": module = module[:-3] # XXX What about leading pathname? if registry is None: registry = {} if isinstance(message, Warning): text = str(message) category = message.__class__ else: text = message message = category(message) key = (text, category, lineno) # Quick test for common case if registry.get(key): return # Search the filters for item in filters: action, msg, cat, mod, ln = item if ((msg is None or msg.match(text)) and issubclass(category, cat) and (mod is None or mod.match(module)) and (ln == 0 or lineno == ln)): break else: action = defaultaction # Early exit actions if action == "ignore": registry[key] = 1 return # Prime the linecache for formatting, in case the # "file" is actually in a zipfile or something. import linecache linecache.getlines(filename, module_globals) if action == "error": raise message # Other actions if action == "once": registry[key] = 1 oncekey = (text, category) if onceregistry.get(oncekey): return onceregistry[oncekey] = 1 elif action == "always": pass elif action == "module": registry[key] = 1 altkey = (text, category, 0) if registry.get(altkey): return registry[altkey] = 1 elif action == "default": registry[key] = 1 else: # Unrecognized actions are errors raise RuntimeError( "Unrecognized action (%r) in warnings.filters:\n %s" % (action, item)) if not callable(showwarning): raise TypeError("warnings.showwarning() must be set to a " "function or method") # Print message and context showwarning(message, category, filename, lineno) class WarningMessage(object): """Holds the result of a single showwarning() call.""" _WARNING_DETAILS = ("message", "category", "filename", "lineno", "file", "line") def __init__(self, message, category, filename, lineno, file=None, line=None): local_values = locals() for attr in self._WARNING_DETAILS: setattr(self, attr, local_values[attr]) self._category_name = category.__name__ if category else None def __str__(self): return ("{message : %r, category : %r, filename : %r, lineno : %s, " "line : %r}" % (self.message, self._category_name, self.filename, self.lineno, self.line)) class catch_warnings(object): """A context manager that copies and restores the warnings filter upon exiting the context. The 'record' argument specifies whether warnings should be captured by a custom implementation of warnings.showwarning() and be appended to a list returned by the context manager. Otherwise None is returned by the context manager. The objects appended to the list are arguments whose attributes mirror the arguments to showwarning(). The 'module' argument is to specify an alternative module to the module named 'warnings' and imported under that name. This argument is only useful when testing the warnings module itself. """ def __init__(self, *, record=False, module=None): """Specify whether to record warnings and if an alternative module should be used other than sys.modules['warnings']. For compatibility with Python 3.0, please consider all arguments to be keyword-only. """ self._record = record self._module = sys.modules['warnings'] if module is None else module self._entered = False def __repr__(self): args = [] if self._record: args.append("record=True") if self._module is not sys.modules['warnings']: args.append("module=%r" % self._module) name = type(self).__name__ return "%s(%s)" % (name, ", ".join(args)) def __enter__(self): if self._entered: raise RuntimeError("Cannot enter %r twice" % self) self._entered = True self._filters = self._module.filters self._module.filters = self._filters[:] self._showwarning = self._module.showwarning if self._record: log = [] def showwarning(*args, **kwargs): log.append(WarningMessage(*args, **kwargs)) self._module.showwarning = showwarning return log else: return None def __exit__(self, *exc_info): if not self._entered: raise RuntimeError("Cannot exit %r without entering first" % self) self._module.filters = self._filters self._module.showwarning = self._showwarning # filters contains a sequence of filter 5-tuples # The components of the 5-tuple are: # - an action: error, ignore, always, default, module, or once # - a compiled regex that must match the warning message # - a class representing the warning category # - a compiled regex that must match the module that is being warned # - a line number for the line being warning, or 0 to mean any line # If either if the compiled regexs are None, match anything. _warnings_defaults = False try: from _warnings import (filters, _defaultaction, _onceregistry, warn, warn_explicit) defaultaction = _defaultaction onceregistry = _onceregistry _warnings_defaults = True except ImportError: filters = [] defaultaction = "default" onceregistry = {} # Module initialization _processoptions(sys.warnoptions) if not _warnings_defaults: silence = [ImportWarning, PendingDeprecationWarning] silence.append(DeprecationWarning) for cls in silence: simplefilter("ignore", category=cls) bytes_warning = sys.flags.bytes_warning if bytes_warning > 1: bytes_action = "error" elif bytes_warning: bytes_action = "default" else: bytes_action = "ignore" simplefilter(bytes_action, category=BytesWarning, append=1) # resource usage warnings are enabled by default in pydebug mode if hasattr(sys, 'gettotalrefcount'): resource_action = "always" else: resource_action = "ignore" simplefilter(resource_action, category=ResourceWarning, append=1) del _warnings_defaults
f0e7c0414602a99eb49b99e2deeb7a13c9cef635
1b2a1f807b98034567e936b9b5c76c2fc89b908a
/adj_stf/experimental/classification/multi_label_classification_model.py
6cb7fefe4e9aa02a3c55a5373d8693d745ffdb73
[]
no_license
Adreambottle/Transformer2GP
48c955d8eb155caef4c24a3c03ee3aa9ab0bd3da
5ba1a5005c2ad21066304cdeb1d7c2587c8191da
refs/heads/main
2023-07-07T14:17:51.673437
2021-08-17T14:14:56
2021-08-17T14:14:56
397,279,894
0
0
null
null
null
null
UTF-8
Python
false
false
6,051
py
from multiprocessing import cpu_count import torch from adj_tf import ( WEIGHTS_NAME, AlbertConfig, AlbertTokenizer, BertConfig, BertTokenizer, DistilBertConfig, DistilBertTokenizer, RobertaConfig, RobertaTokenizer, XLMConfig, XLMTokenizer, XLNetConfig, XLNetTokenizer, ) from adj_stf.classification import ClassificationModel from adj_stf.custom_models.models import ( AlbertForMultiLabelSequenceClassification, BertForMultiLabelSequenceClassification, DistilBertForMultiLabelSequenceClassification, RobertaForMultiLabelSequenceClassification, XLMForMultiLabelSequenceClassification, XLNetForMultiLabelSequenceClassification, ) class MultiLabelClassificationModel(ClassificationModel): def __init__(self, model_type, model_name, num_labels=None, pos_weight=None, args=None, use_cuda=True): """ Initializes a MultiLabelClassification model. Args: model_type: The type of model (bert, roberta) model_name: Default Transformer model name or path to a directory containing Transformer model file (pytorch_nodel.bin). num_labels (optional): The number of labels or classes in the dataset. pos_weight (optional): A list of length num_labels containing the weights to assign to each label for loss calculation. args (optional): Default args will be used if this parameter is not provided. If provided, it should be a dict containing the args that should be changed in the default args. use_cuda (optional): Use GPU if available. Setting to False will force model to use CPU only. """ MODEL_CLASSES = { "bert": (BertConfig, BertForMultiLabelSequenceClassification, BertTokenizer), "roberta": (RobertaConfig, RobertaForMultiLabelSequenceClassification, RobertaTokenizer), "xlnet": (XLNetConfig, XLNetForMultiLabelSequenceClassification, XLNetTokenizer), "xlm": (XLMConfig, XLMForMultiLabelSequenceClassification, XLMTokenizer), "distilbert": (DistilBertConfig, DistilBertForMultiLabelSequenceClassification, DistilBertTokenizer), "albert": (AlbertConfig, AlbertForMultiLabelSequenceClassification, AlbertTokenizer), } config_class, model_class, tokenizer_class = MODEL_CLASSES[model_type] if num_labels: self.config = config_class.from_pretrained(model_name, num_labels=num_labels) self.num_labels = num_labels else: self.config = config_class.from_pretrained(model_name) self.num_labels = self.config.num_labels self.tokenizer = tokenizer_class.from_pretrained(model_name) self.tokenizer = tokenizer_class.from_pretrained(model_name) self.num_labels = num_labels self.pos_weight = pos_weight self.sliding_window = False if use_cuda: if torch.cuda.is_available(): self.device = torch.device("cuda") else: raise ValueError( "'use_cuda' set to True when cuda is unavailable. Make sure CUDA is available or set use_cuda=False." ) else: self.device = "cpu" if self.pos_weight: self.model = model_class.from_pretrained( model_name, config=self.config, pos_weight=torch.Tensor(self.pos_weight).to(self.device) ) else: self.model = model_class.from_pretrained(model_name, config=self.config) self.results = {} self.args = { "output_dir": "outputs/", "cache_dir": "cache_dir/", "fp16": False, "max_seq_length": 128, "train_batch_size": 8, "gradient_accumulation_steps": 1, "eval_batch_size": 8, "num_train_epochs": 1, "weight_decay": 0, "learning_rate": 4e-5, "adam_epsilon": 1e-8, "warmup_ratio": 0.06, "warmup_steps": 0, "max_grad_norm": 1.0, "stride": False, "logging_steps": 50, "save_steps": 2000, "evaluate_during_training": False, "overwrite_output_dir": False, "reprocess_input_data": False, "process_count": cpu_count() - 2 if cpu_count() > 2 else 1, "n_gpu": 1, "use_multiprocessing": True, "silent": False, "threshold": 0.5, } if not use_cuda: self.args["fp16"] = False if args: self.args.update(args) self.args["model_name"] = model_name self.args["model_type"] = model_type def train_model( self, train_df, multi_label=True, eval_df=None, output_dir=None, show_running_loss=True, args=None ): return super().train_model( train_df, multi_label=multi_label, eval_df=eval_df, output_dir=output_dir, show_running_loss=show_running_loss, args=args, ) def eval_model(self, eval_df, multi_label=True, output_dir=None, verbose=False, **kwargs): return super().eval_model(eval_df, output_dir=output_dir, multi_label=multi_label, verbose=verbose, **kwargs) def evaluate(self, eval_df, output_dir, multi_label=True, prefix="", **kwargs): return super().evaluate(eval_df, output_dir, multi_label=multi_label, prefix=prefix, **kwargs) def load_and_cache_examples(self, examples, evaluate=False, no_cache=False, multi_label=True): return super().load_and_cache_examples(examples, evaluate=evaluate, no_cache=no_cache, multi_label=multi_label) def compute_metrics(self, preds, labels, eval_examples, multi_label=True, **kwargs): return super().compute_metrics(preds, labels, eval_examples, multi_label=multi_label, **kwargs) def predict(self, to_predict, multi_label=True): return super().predict(to_predict, multi_label=multi_label)
1657f47f0d775612c12560663e94a60de071eab1
7d096568677660790479d87c22b47aae838ef96b
/stubs-legacy/System/Diagnostics/__init___parts/DebuggerBrowsableState.py
43d462d3dfbd7bf6c6f0f09f2a3384a2c0254e67
[ "MIT" ]
permissive
NISystemsEngineering/rfmx-pythonnet
30adbdd5660b0d755957f35b68a4c2f60065800c
cd4f90a88a37ed043df880972cb55dfe18883bb7
refs/heads/master
2023-02-04T00:39:41.107043
2023-02-01T21:58:50
2023-02-01T21:58:50
191,603,578
7
5
MIT
2023-02-01T21:58:52
2019-06-12T16:02:32
Python
UTF-8
Python
false
false
999
py
class DebuggerBrowsableState(Enum,IComparable,IFormattable,IConvertible): """ Provides display instructions for the debugger. enum DebuggerBrowsableState,values: Collapsed (2),Never (0),RootHidden (3) """ def __eq__(self,*args): """ x.__eq__(y) <==> x==yx.__eq__(y) <==> x==yx.__eq__(y) <==> x==y """ pass def __format__(self,*args): """ __format__(formattable: IFormattable,format: str) -> str """ pass def __ge__(self,*args): pass def __gt__(self,*args): pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass def __le__(self,*args): pass def __lt__(self,*args): pass def __ne__(self,*args): pass def __reduce_ex__(self,*args): pass def __str__(self,*args): pass Collapsed=None Never=None RootHidden=None value__=None
ba1dcb17a6e7d524f9f07edc2b67b588720faaad
c25a17f0f82c2eebca55bbe180f4c2ccbbf00292
/01_Jump_to_python/Chap06/6장_practice/practice4_메모장.py
786b7b2f7c82951b7ad1f09ccb24176b86c390b9
[]
no_license
superbeom97/jumpjump
a0a4da6f0df0483ef0cef9833b5fe0402ec63c9c
fc45efce2a2b00c614aa5aa54b36be1572ed40ce
refs/heads/master
2021-09-15T09:35:16.903857
2018-05-30T00:00:59
2018-05-30T00:00:59
111,883,402
0
0
null
null
null
null
UTF-8
Python
false
false
1,901
py
import sys args = sys.argv args_one = args[1] args_two = args[2:] if args_one == "-a": try: f = open("memo.txt", 'r') f = open("memo.txt", 'a') f.write(" ".join(args_two)) f.write("\n") f.close() except: number = int(input("memo.txt 파일이 없습니다. 아래 중 선택하세요\n1. memo.txt 파일을 새로 생성하시겠습니까?\n2. 파일 경로를 입력하시겠습니까?\n: ")) if number == 1: f = open("memo.txt", 'w') f.write(" ".join(args_two)) f.write("\n") print("memo.txt 파일을 생성했습니다. 감사합니다.") f.close() elif number == 2: address = str(input("파일 경로를 입력하세요: ")) f = open(address, 'a') f.write(" ".join(args_two)) f.write("\n") f.close() print("정상 처리되었습니다. 감사합니다.") else: print("1번과 2번 중에 선택해라잉 확 마") elif args_one == "-au": for i in args_two: f = open("memo.txt", 'a') b = "".join(i) f.write(b.upper()) f.write("\n") f.close elif args_one == "-v": try: f = open("memo.txt", 'r') data = f.read() print(data) except FileNotFoundError: number = int(input("memo.txt 파일이 없습니다. 아래 중 선택하세요\n1. 종료하시겠습니까?\n2. 파일 경로를 입력하시겠습니까?\n: ")) if number == 1: print("이용해 주셔서 감사합니다.") # break elif number == 2: address = str(input("파일 경로를 입력하세요: ")) f = open(address, 'r') data = f.read() print(data) else: print("1번과 2번 중에 선택해라잉 확 마")
e67af2421558b2a196f0c5584ac66fb0e1dd4252
8f0fc0f4ac44e85e87ade78ac3f8d3b1996587e5
/Model_1.py
ae103fcd74ce05a1803a2d225dbbde006b88ee19
[]
no_license
Data-drone/Kaggle_Allstate
91bc9d2400866f58813f4ba6f04009647d90fd0a
70b7f63eefea55ec9f0c8da6217b7f9ee8f12e76
refs/heads/master
2021-06-30T09:57:59.864482
2017-09-21T17:48:43
2017-09-21T17:48:43
74,899,326
0
0
null
null
null
null
UTF-8
Python
false
false
3,111
py
# -*- coding: utf-8 -*- """ Created on Tue Nov 29 23:23:27 2016 @author: Brian """ """ Build model 1 script """ import os import pandas as pd import numpy as np """ feat table_1 """ #### standard functions def Find_Low_Var(frame): sizes = [] low_var_col = [] for column in frame: data_sets = frame[column] uniques = data_sets.unique() # note the brackets # print the pivot to show distributions # will error if (column != 'id'): pd_Table = pd.pivot_table(train, values = 'id', index=column, aggfunc='count').apply(lambda x: np.round(np.float(x)/len(train)*100, 2)) #print (pd_Table ) if max(pd_Table) > 99: low_var_col.append(column) #variance = np.var(data_sets) #print(uniques.size) #print(column) sizes.append(uniques.size) #print(len(uniques)) return(sizes, low_var_col) data_path = 'Data' os.listdir('./Data/') train = pd.read_csv('./Data/train.csv') ### 2 tyoes if columns the continuous and the categorical # lets separate these cate_cols = [col for col in train.columns if 'cat' in col] continuous_cols = [col for col in train.columns if 'cont' in col] categorical = train[cate_cols] sizes, low_var_cols_to_drop = Find_Low_Var(categorical) categorical_to_keep = categorical.drop(low_var_cols_to_drop, axis = 1) ### check how big the one hot is first OneHot = pd.get_dummies(categorical_to_keep) ## try feature hasher again from sklearn.feature_extraction import FeatureHasher FH = FeatureHasher(n_features = 1000, input_type = 'dict') hashed_Feat = FH.transform(categorical_to_keep.to_dict(orient='records')) #dense_Feat = hashed_Feat.todense() ### make into categories continuous = train[continuous_cols] ## id and target columns id_target = train[['id', 'loss']] ## quick test 1 frame = [continuous, OneHot] merge = pd.concat(frame, axis = 1) """ train test splitting """ from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split( merge, np.log(id_target.loss), test_size=0.4, random_state=0) assert X_train.shape[0] + X_test.shape[0] == continuous.shape[0] # model 1 # like # 8917348 RMSE for log # 8116237 for normal #from sklearn import linear_model #reg = linear_model.RidgeCV(alphas=[0.1, 1.0, 10.0]) #reg.fit(X_train, y_train) #result = reg.predict(X_test) # model 2 # 9069687 rmse for 100 regressors # with one hots vars 4332759 rmse #from sklearn.ensemble import RandomForestRegressor #clf = RandomForestRegressor(n_estimators = 400, criterion='mse', verbose = 1, n_jobs = 7) #clf.fit(X_train, y_train) #result = clf.predict(X_test) # model 3 # default xgb was 4389784 import xgboost as xgb from xgboost.sklearn import XGBRegressor xgb_mod = XGBRegressor(max_depth = 10, learning_rate = 0.25, n_estimators = 150) xgb_mod.fit(X_train, y_train) result = xgb_mod.predict(X_test) # score from sklearn.metrics import mean_squared_error mean_squared_error(np.exp(y_test), np.exp(result) ) import matplotlib.pyplot as plt y_test.hist() plt.hist(result, bins='auto')
ad0646d8b6725f5fb875510a1944d2a4c900e23d
c89e59b4d018e8a2d7dc0dbc3bb7a3768024f849
/before2021/python/문제풀이/day5/3_숫자카운팅.py
a21ba81101844a7fb5f88a171cfd12bc1c5fbafa
[]
no_license
leeiopd/algorithm
ff32103a43e467a5a091257cc07cf35365ecbf91
e41647d3918c3099110d97f455c5ebf9a38d571e
refs/heads/master
2023-03-08T23:46:34.919991
2023-02-22T09:39:46
2023-02-22T09:39:46
166,131,885
0
0
null
null
null
null
UTF-8
Python
false
false
1,375
py
import sys sys.stdin = open("3_input.txt") ''' 첫째 줄에 N 이 입력된다. (1≤N≤200,000) 둘째 줄에 배열에 저장 되어있는 N개의 숫자가 순서대로 공백으로 구분되어 입력된다. 셋째 줄에 M 이 입력된다. (1≤M≤200,000) 넷째 줄에 M개의 탐색할 숫자가 순서대로 공백으로 구분되어 입력된다. (이 숫자는 정렬 되어있지 않다) 입력 넷째 줄에서 주어진 탐색할 숫자의 배열 내 저장된 개수를 차례대로 출력한다. ''' N = int(input()) arr = list(map(int, input().split())) M = int(input()) find = list(map(int, input().split())) def lowerSearch(s, e, where): global arr while s < e: # e = N-1 # s = 0 m = (s+e)//2 # mid # if where == arr[m]: return m+1 if where > arr[m] : s = m + 1 else: e = m return e def upperSearch(s, e, where): global arr while s < e: # e = N-1 # s = 0 m = (s+e)//2 # mid # if where == arr[m]: return m+1 if where >= arr[m] : s = m + 1 else: e = m return e for i in range(M): low = lowerSearch(0, N, find[i]) up = upperSearch(0, N, find[i]) if low != up: # 찾았을 경우에만 오른쪽 끝 탐색 print(up-low, end=' ') else: print(0,end=' ')
9c7e0ec9ac281a7e422bfd1d6657a9deae3fdd71
5b9035dbfe0750e9933728f9631ad7a183dd3429
/18/01/Pool.py
370cc9e9856dfee8cce0818fc689057d3fd7a977
[ "CC0-1.0" ]
permissive
pylangstudy/201709
271efbd4f337d912d0ca958a621eb2a040091528
53d868786d7327a83bfa7f4149549c6f9855a6c6
refs/heads/master
2021-01-21T12:16:21.950493
2017-09-30T00:02:34
2017-09-30T00:02:34
102,058,300
0
0
null
null
null
null
UTF-8
Python
false
false
1,791
py
import weakref import csv class ConstMeta(type): class ConstError(TypeError): pass def __init__(self, name, bases, dict): super(ConstMeta, self).__init__(name, bases, dict) import sys sys.modules[name]=self()#ConstMetaを継承したクラスのモジュールに、そのクラスのインスタンスを代入する def __setattr__(self, name, value): if name in self.__dict__.keys(): raise self.ConstError('readonly。再代入禁止です。') super(ConstMeta, self).__setattr__(name, value) class Pool: def __new__(cls): cls.__Pool = {} cls.__WeakPool = weakref.WeakValueDictionary(cls.__Pool) print(dir(cls)) return super().__new__(cls) @classmethod def Get(cls, _id): if _id in cls.__WeakPool: return cls.__WeakPool[_id] else: target = cls.__Read(_id) if None is target: raise ValueError('指定したidのデータが存在しませんでした。: _id={_id}') cls.__Pool[target.Id] = target return cls.__WeakPool[_id] @classmethod def Release(cls, _id): if _id in cls.__Pool: del cls.__Pool[_id] @classmethod def __Read(cls, _id): with csv.read('Humans.csv') as f: reader = csv.reader(f) header = next(reader) # ヘッダーを読み飛ばしたい時 print(header) Human = collections.namedtuple('Humans', header) for row in reader: if 0 == len(row.strip()): continue # print row # 1行づつ取得できる if row[0] == _id: return Human(','.split(row)) return None if __name__ == '__main__': h0 = Pool.Get(0) print(h0)
07b293d229357fb7a30af429f26cc27c3258bcc2
a7fd2ed77661ed0e32d75678bdfbb448a4b1a38d
/ABC/ABC169/E.py
83299df85f453d27cbba2a130895d08c020b6e77
[]
no_license
Rikuo-git/AtCoder
218a976a96f961371f4c1f4a8bf0e4ef7a78e09c
e7fe5db837acba11aed890181d429517c0f4bedc
refs/heads/master
2023-03-03T10:07:09.825074
2021-02-15T11:37:10
2021-02-15T11:37:10
266,530,674
0
0
null
null
null
null
UTF-8
Python
false
false
438
py
# my solution import numpy as np (n,),*l = [[*map(int,i.split())]for i in open(0)] a,b = np.median(l,axis=0) if n%2>0: print(int(b-a+1)) else: print(int(b*2-a*2)+1) # 奇数の時は中央値の間、偶数の時は中央値の間かける2倍 # shortest fsdshn 数学的にやっていることは同じ n,*l=map(int,open(0).read().split()) m,M=sorted(l[::2]),sorted(l[1::2]) d=n//2 print(M[d]-m[d]+1+(M[d-1]+-m[d-1])*(n%2^1))
43d4c7d2d7bb6f1ecbf5e63561d6f9a6cec1f7ee
b891b6f5f51750a95c4b4ad5766cc63431ad2799
/config.py
0618a3ed2bdd25bc6efb6da48cbc927c5bb0eb49
[ "MIT" ]
permissive
dennisnyamweya/pitching
b12a75f5681289ee70cab65eeb19da5c35c7e718
9c338d3f496f9855b0a9233579f9aa4d3c0d6464
refs/heads/master
2022-09-26T13:55:22.784323
2019-08-06T04:27:52
2019-08-06T04:27:52
200,616,118
0
0
MIT
2022-09-16T18:07:47
2019-08-05T08:36:44
Python
UTF-8
Python
false
false
821
py
import os class Config: """Main configurations class""" SQLALCHEMY_TRACK_MODIFICATIONS = False SQLALCHEMY_DATABASE_URI = 'postgresql+psycopg2://moringa:123@localhost/pitchy' SECRET_KEY = "try harder" UPLOADED_PHOTOS_DEST = 'app/static/photos' MAIL_SERVER = 'smtp.gmail.com' MAIL_PORT = 587 MAIL_USE_TLS = True MAIL_USERNAME = os.environ.get("MAIL_USERNAME") MAIL_PASSWORD = os.environ.get("MAIL_PASSWORD") class ProdConfig(Config): """Production configuration class that inherits from the main configurations class""" SQLALCHEMY_DATABASE_URI = os.environ.get("DATABASE_URL") class DevConfig(Config): """Configuration class for development stage of the app""" DEBUG = True config_options = { 'development': DevConfig, 'production': ProdConfig }
c0f84c701d6083a055c56a3db2f06fafc53a65f1
19ec1116024bebfe16d099f273bd3997b212f594
/FinancePython/strategy_tester/ResultsAnalyser.py
c5e023ef831ce5f75993d87f3206530e38a5596c
[]
no_license
GBelzoni/BigGits
6058f3e89016ad8d39dfe4de339c76e547529032
daa538eca30459bd38a6d7332a27a3b38fac5875
refs/heads/master
2016-09-05T16:06:33.263000
2014-05-10T17:54:19
2014-05-10T17:54:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,357
py
''' Created on Jun 23, 2013 @author: phcostello ''' import pandas as pd import numpy as np class ResultsAnalyser(object): ''' This class analyses fitted trade strategy object ''' def __init__(self, data, valueIndex = 'Value', referenceIndex = None): ''' Takes a pandas dataframe object with a 'Date' index which should be of type date or datetime valueIndex column which is timeseries of portfolio value 'Signal' which is the trade signal ''' self.valueIndex = valueIndex self.result = data if referenceIndex != None: self.refIndex = data[referenceIndex] else: self.refIndex = None self.result_date_range = [ data.index[0], data.index[-1]] self.result_subset = self.result.loc[self.result_date_range[0]:self.result_date_range[-1]].copy() def set_results_range(self, tstart, tend, make_positive=False): ''' Sets the range for which the results will be calculated for given run strategy make_positive adds min over range so returns, etc make sense ''' self.result_date_range = [ tstart, tend] self.result_subset = self.result.loc[self.result_date_range[0]:self.result_date_range[-1]].copy() if make_positive: if min(self.result_subset[self.valueIndex]) <= 0: #make the series >= 100 so that returns calc ok self.result_subset[self.valueIndex] += np.abs(min(self.result_subset[self.valueIndex])) + 100 def reset_range_to_dafault(self): self.result_date_range = [ self.result.index[0], self.result.index[-1]] def get_result(self): return self.result_subset.loc[self.result_date_range[0]:self.result_date_range[1]] def get_returns(self,annualing_factor=1,useReference=False): ''' Calcs returns vs above referenceIndex, if None type then usual returns ''' value = self.result_subset[self.valueIndex] #data = self.result[self.valueIndex][self.result[self.valueIndex].notnull()] #Horrible line, but is just filtering out notnull values retsPort = pd.DataFrame(value.pct_change()) #retsPort = (1+retsPort)**cumperiods-1 #For annualising if useReference == True: if self.refIndex is None: raise ValueError('No reference index set') retsRef = pd.DataFrame(self.refIndex.pct_change()) rets = pd.merge(retsPort,retsRef, how='inner',left_index=True,right_index=True) else: rets = retsPort rets['Reference'] = 0 rets.columns = ['Portfolio','Reference'] #Annualising factor rets *= annualing_factor return rets def get_cumulative_return(self,cumperiods=1,useReference = False): rets = self.get_returns(1, useReference) #get 1period returns rets_abv_ref = pd.DataFrame(rets['Portfolio']-rets['Reference']) cumrets = (1+rets_abv_ref).cumprod()-1 #cumulate cumrets = (cumrets-1)**cumperiods + 1 #Apply annualising factor return cumrets def get_volatility(self, annualising_scalar = 1, returns = False): '''Get volatility of portfolio value or returns''' if not(returns): value = self.result_subset[self.valueIndex] return value.std() else: rets = self.get_returns(annualising_scalar, False) #get 1period returns return rets['Portfolio'].std() def sharpe_ratio(self, useMarketRef=False, annualising_factor = 252): ''' Calcs sharpe ratio vs marketRef, if useMarketRef = None then riskfree rate assumed to be 0 annualising_factor - scales sr by sqrt of AF. Default is daily returns to annual with 252 trading days ''' rets = self.get_returns(useReference=useMarketRef) if useMarketRef: retsOverRef = rets['Portfolio'] - rets['Reference'] else: retsOverRef = rets['Portfolio'] sr = np.sqrt(annualising_factor) * retsOverRef.mean(skipna=True)/retsOverRef.std(skipna = True) return sr def sortino_ratio(self, useMarketRef= False, benchmarkRate = None ): ''' Calcs sortino ratio vs benchmark if False useMarketRef then refrate assumed to be be 0 if no benchmark is None the benchmark target is zero ''' rets = self.get_returns(useReference=useMarketRef) retsOverRef = rets['Portfolio'] - rets['Reference'] if benchmarkRate == None: benchmarkRate = 0.0 benchmarkSeries = benchmarkRate*np.zeros(len(retsOverRef)) benchmarkSeries = pd.DataFrame(benchmarkSeries, index = retsOverRef.index) retsOverBenchMark = retsOverRef - benchmarkSeries #Calc numerator in sortino ratio numerator = retsOverBenchMark.mean() #Calc denominator in sortino, ie std for only returns over benchmark denominator = (retsOverBenchMark.abs() + retsOverBenchMark)/2.0 #Gives max(value,0) denominator = denominator**2 #Square values denominator = denominator.mean() #get mean denominator = np.sqrt(denominator) sortinor = numerator/denominator return sortinor[0] def draw_downs(self, percent = False): '''Calcs timeseries of current percentage drawdown''' #Calculate percentag Drawdowns value = self.result_subset[self.valueIndex] startt= value.index[0] Max = value[startt] dd = 0 startDd = startt endDd = startt lengthDd = 0 result = [[startt,Max,dd, startDd, endDd, lengthDd]] for t in value.index: Max = max(Max,value[t]) if Max == value[t]: startDd = t dd = 0 if percent: thisDd = (Max - value[t])/Max else: thisDd = (Max - value[t]) dd = max(dd, thisDd ) if not(Max == value[t]): endDd = t lengthDd = startDd - endDd thisResult = [t,Max,dd, startDd, endDd, lengthDd] result.append(thisResult) #Format results to dataframe columns = ['Time','MaxVal','Drawdown','StartDD','EndDD','LengthDD'] result = pd.DataFrame(data=result, columns=columns) result.set_index('Time', inplace=True) return result def max_draw_down_magnitude(self, percent = False): '''Calcs max drawdown''' dd = self.draw_downs(percent) maxDD = max(dd['Drawdown']) maxDDr = dd[dd['Drawdown'] == maxDD] return maxDDr.iloc[0] def max_draw_down_timelength(self, percent = False): '''Calcs max drawdown''' dd = self.draw_downs(percent) thisDD = dd.iloc[2:] #get rid of non types at start of series maxDD = min(thisDD['LengthDD']) maxDDr = thisDD[thisDD['LengthDD'] == maxDD] return maxDDr.transpose() def var(self, percentile = 0.05): '''Value at Risk''' #subset on range and then diff diffs = value = self.result_subset[self.valueIndex].diff() return diffs.quantile(percentile) def etl(self, percentile = 0.05): '''Expected Tail Loss''' diffs = value = self.result_subset[self.valueIndex].diff() #sort is in place diffs.sort() #Calcing var as as quantile of percentile length = len(diffs) vindex = np.floor(percentile*length) vindex = int(vindex) #etl etl = np.average(diffs.iloc[0:vindex].values) return etl def summary(self): '''Calcs summary of Sharpe and max drawdown''' print "Sharpe Ratio", self.sharpe_ratio() print "Value At Risk 0.05, 0.10" print self.var(0.05), self.var(0.05) print "Expected Tail Loss 0.05, 0.10" print self.etl(0.05), self.etl(0.05) print "MaxDrawDown (level)" print self.max_draw_down_magnitude() print "" print "MaxDrawDown (percent)" print self.max_draw_down_magnitude(percent = True) print "" print "MaxDrawDown time (level)" print self.max_draw_down_timelength() print "" print "MaxDrawDown time (percent)" print self.max_draw_down_timelength(percent = True) class PairTradeAnalyser(ResultsAnalyser): ''' This class analyses fitted trade strategy object ''' def __init__(self, strategy, referenceIndex): ''' Constructor ''' ResultsAnalyser.__init__(self,strategy, referenceIndex) self.yscaling = strategy.market_data.results.params[0] self.adfPvalue= strategy.market_data.adfResids()[1] def summary(self): print "Summary for Pair Trade Strategy" print "Scaling", self.yscaling print "Adf p-value", self.adfPvalue print "Sharpe Ratio", self.sharpe_ratio() print "Value At Risk 0.05, 0.10" print self.var(0.05), self.var(0.10) print "Expected Tail Loss 0.05, 0.10" print self.etl(0.05), self.etl(0.10) print "" print "MaxDrawDown (level)" print self.max_draw_down_magnitude() print "" print "MaxDrawDown (percent)" print self.max_draw_down_magnitude(percent = True) print "" print "MaxDrawDown time (level)" print self.max_draw_down_timelength().loc['LengthDD'] print "" print "MaxDrawDown time (percent)" print self.max_draw_down_timelength(percent = True).loc['LengthDD']
da2d02b896509df95c30e65c5bf1e3d25ed7b51d
96dcea595e7c16cec07b3f649afd65f3660a0bad
/homeassistant/components/watttime/config_flow.py
4f4206da6ec6ff93b3340a48f97d4137be234a68
[ "Apache-2.0" ]
permissive
home-assistant/core
3455eac2e9d925c92d30178643b1aaccf3a6484f
80caeafcb5b6e2f9da192d0ea6dd1a5b8244b743
refs/heads/dev
2023-08-31T15:41:06.299469
2023-08-31T14:50:53
2023-08-31T14:50:53
12,888,993
35,501
20,617
Apache-2.0
2023-09-14T21:50:15
2013-09-17T07:29:48
Python
UTF-8
Python
false
false
8,742
py
"""Config flow for WattTime integration.""" from __future__ import annotations from collections.abc import Mapping from typing import TYPE_CHECKING, Any from aiowatttime import Client from aiowatttime.errors import CoordinatesNotFoundError, InvalidCredentialsError import voluptuous as vol from homeassistant import config_entries from homeassistant.config_entries import ConfigEntry, OptionsFlow from homeassistant.const import ( CONF_LATITUDE, CONF_LONGITUDE, CONF_PASSWORD, CONF_USERNAME, ) from homeassistant.core import callback from homeassistant.data_entry_flow import FlowResult from homeassistant.helpers import aiohttp_client, config_validation as cv from .const import ( CONF_BALANCING_AUTHORITY, CONF_BALANCING_AUTHORITY_ABBREV, CONF_SHOW_ON_MAP, DOMAIN, LOGGER, ) CONF_LOCATION_TYPE = "location_type" LOCATION_TYPE_COORDINATES = "Specify coordinates" LOCATION_TYPE_HOME = "Use home location" STEP_COORDINATES_DATA_SCHEMA = vol.Schema( { vol.Required(CONF_LATITUDE): cv.latitude, vol.Required(CONF_LONGITUDE): cv.longitude, } ) STEP_LOCATION_DATA_SCHEMA = vol.Schema( { vol.Required(CONF_LOCATION_TYPE): vol.In( [LOCATION_TYPE_HOME, LOCATION_TYPE_COORDINATES] ), } ) STEP_REAUTH_CONFIRM_DATA_SCHEMA = vol.Schema( { vol.Required(CONF_PASSWORD): str, } ) STEP_USER_DATA_SCHEMA = vol.Schema( { vol.Required(CONF_USERNAME): str, vol.Required(CONF_PASSWORD): str, } ) @callback def get_unique_id(data: dict[str, Any]) -> str: """Get a unique ID from a data payload.""" return f"{data[CONF_LATITUDE]}, {data[CONF_LONGITUDE]}" class ConfigFlow(config_entries.ConfigFlow, domain=DOMAIN): """Handle a config flow for WattTime.""" VERSION = 1 def __init__(self) -> None: """Initialize.""" self._client: Client | None = None self._data: dict[str, Any] = {} async def _async_validate_credentials( self, username: str, password: str, error_step_id: str, error_schema: vol.Schema ) -> FlowResult: """Validate input credentials and proceed accordingly.""" session = aiohttp_client.async_get_clientsession(self.hass) try: self._client = await Client.async_login(username, password, session=session) except InvalidCredentialsError: return self.async_show_form( step_id=error_step_id, data_schema=error_schema, errors={"base": "invalid_auth"}, description_placeholders={CONF_USERNAME: username}, ) except Exception as err: # pylint: disable=broad-except LOGGER.exception("Unexpected exception while logging in: %s", err) return self.async_show_form( step_id=error_step_id, data_schema=error_schema, errors={"base": "unknown"}, description_placeholders={CONF_USERNAME: username}, ) if CONF_LATITUDE in self._data: # If coordinates already exist at this stage, we're in an existing flow and # should reauth: entry_unique_id = get_unique_id(self._data) if existing_entry := await self.async_set_unique_id(entry_unique_id): self.hass.config_entries.async_update_entry( existing_entry, data=self._data ) self.hass.async_create_task( self.hass.config_entries.async_reload(existing_entry.entry_id) ) return self.async_abort(reason="reauth_successful") # ...otherwise, we're in a new flow: self._data[CONF_USERNAME] = username self._data[CONF_PASSWORD] = password return await self.async_step_location() @staticmethod @callback def async_get_options_flow(config_entry: ConfigEntry) -> OptionsFlow: """Define the config flow to handle options.""" return WattTimeOptionsFlowHandler(config_entry) async def async_step_coordinates( self, user_input: dict[str, Any] | None = None ) -> FlowResult: """Handle the coordinates step.""" if not user_input: return self.async_show_form( step_id="coordinates", data_schema=STEP_COORDINATES_DATA_SCHEMA ) if TYPE_CHECKING: assert self._client unique_id = get_unique_id(user_input) await self.async_set_unique_id(unique_id) self._abort_if_unique_id_configured() try: grid_region = await self._client.emissions.async_get_grid_region( user_input[CONF_LATITUDE], user_input[CONF_LONGITUDE] ) except CoordinatesNotFoundError: return self.async_show_form( step_id="coordinates", data_schema=STEP_COORDINATES_DATA_SCHEMA, errors={CONF_LATITUDE: "unknown_coordinates"}, ) except Exception as err: # pylint: disable=broad-except LOGGER.exception("Unexpected exception while getting region: %s", err) return self.async_show_form( step_id="coordinates", data_schema=STEP_COORDINATES_DATA_SCHEMA, errors={"base": "unknown"}, ) return self.async_create_entry( title=unique_id, data={ CONF_USERNAME: self._data[CONF_USERNAME], CONF_PASSWORD: self._data[CONF_PASSWORD], CONF_LATITUDE: user_input[CONF_LATITUDE], CONF_LONGITUDE: user_input[CONF_LONGITUDE], CONF_BALANCING_AUTHORITY: grid_region["name"], CONF_BALANCING_AUTHORITY_ABBREV: grid_region["abbrev"], }, ) async def async_step_location( self, user_input: dict[str, Any] | None = None ) -> FlowResult: """Handle the "pick a location" step.""" if not user_input: return self.async_show_form( step_id="location", data_schema=STEP_LOCATION_DATA_SCHEMA ) if user_input[CONF_LOCATION_TYPE] == LOCATION_TYPE_HOME: return await self.async_step_coordinates( { CONF_LATITUDE: self.hass.config.latitude, CONF_LONGITUDE: self.hass.config.longitude, } ) return await self.async_step_coordinates() async def async_step_reauth(self, entry_data: Mapping[str, Any]) -> FlowResult: """Handle configuration by re-auth.""" self._data = {**entry_data} return await self.async_step_reauth_confirm() async def async_step_reauth_confirm( self, user_input: dict[str, Any] | None = None ) -> FlowResult: """Handle re-auth completion.""" if not user_input: return self.async_show_form( step_id="reauth_confirm", data_schema=STEP_REAUTH_CONFIRM_DATA_SCHEMA, description_placeholders={CONF_USERNAME: self._data[CONF_USERNAME]}, ) self._data[CONF_PASSWORD] = user_input[CONF_PASSWORD] return await self._async_validate_credentials( self._data[CONF_USERNAME], self._data[CONF_PASSWORD], "reauth_confirm", STEP_REAUTH_CONFIRM_DATA_SCHEMA, ) async def async_step_user( self, user_input: dict[str, Any] | None = None ) -> FlowResult: """Handle the initial step.""" if not user_input: return self.async_show_form( step_id="user", data_schema=STEP_USER_DATA_SCHEMA ) return await self._async_validate_credentials( user_input[CONF_USERNAME], user_input[CONF_PASSWORD], "user", STEP_USER_DATA_SCHEMA, ) class WattTimeOptionsFlowHandler(config_entries.OptionsFlow): """Handle a WattTime options flow.""" def __init__(self, entry: ConfigEntry) -> None: """Initialize.""" self.entry = entry async def async_step_init( self, user_input: dict[str, Any] | None = None ) -> FlowResult: """Manage the options.""" if user_input is not None: return self.async_create_entry(data=user_input) return self.async_show_form( step_id="init", data_schema=vol.Schema( { vol.Required( CONF_SHOW_ON_MAP, default=self.entry.options.get(CONF_SHOW_ON_MAP, True), ): bool } ), )
4bb5fe491298503041491de635624ead25c64fe4
55fb8b448831a0aee6b7f5ff050616da3eee9f8d
/network/AI_net.py
110b24c5fd1cf3bd76cffdc1aacbb1cd8d08ede8
[]
no_license
xsir317/Renju-AI
0f502ab9bab278e0601377004513c8596a465223
92350f0a99a9adcfb4617ebc872c9120a3f02569
refs/heads/master
2021-05-31T17:42:44.153725
2016-06-29T13:12:45
2016-06-29T13:12:45
114,357,155
0
1
null
2017-12-15T10:12:54
2017-12-15T10:12:54
null
UTF-8
Python
false
false
13,424
py
#!/usr/bin/python # -*- coding: utf-8 -*- # author: <[email protected]> import os import re import simplejson as json import tensorflow as tf TOWER_NAME = "tower" def weight_variable(shape, stddev=1.0, name=None): initial = tf.truncated_normal(shape, stddev=stddev) return tf.Variable(initial, name=name) def weight_variable_v2(shape, stddev=1.0, name=None): initial = tf.random_normal(shape, stddev=stddev) return tf.Variable(initial, name=name) def bias_variable(shape, name=None): initial = tf.constant(0.01, shape=shape) return tf.Variable(initial, name=name) def bias_variable_v2(shape, stddev=1.0, name=None): initial = tf.random_normal(shape, stddev=stddev) return tf.Variable(initial, name=name) def conv2d(x, W, stride): return tf.nn.conv2d(x, W, strides=[1, stride, stride, 1], padding="SAME") def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME") def get_variable_name(prefix=None, var_num=0): if prefix is not None: return "%s_%d" % (prefix, var_num), var_num + 1 else: return None, var_num def create_policy_network(_input, planes, filters=192, board_size=15, layers=5): # first conv1 conv1 = conv2d(_input, (8, 8, planes, filters), "conv_1", stride=1) # norm1 norm1 = tf.nn.lrn(conv1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm_1') # conv2 ~ conv_k pre_layer = norm1 for i in xrange(layers): conv_k = conv2d(pre_layer, (5, 5, filters, filters), "conv_%d" % (i + 2), stride=1) norm2 = tf.nn.lrn(conv_k, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm_%d' % (i + 2)) pre_layer = norm2 # last layer conv_n = conv2d(pre_layer, (3, 3, filters, 32), "conv_n", stride=1) norm_n = tf.nn.lrn(conv_n, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm_n') reshape = tf.reshape(norm_n, [-1, board_size * board_size * 32]) # dim = reshape.get_shape()[1].value fc1 = full_connect(reshape, (board_size * board_size * 32, 1024), "fc_1") with tf.variable_scope("out") as scope: weights = _variable_with_weight_decay('weights', shape=(1024, board_size * board_size), stddev=0.04, wd=0.004) biases = _variable_on_cpu('biases', [board_size * board_size], tf.constant_initializer(0.1)) softmax_linear = tf.add(tf.matmul(fc1, weights), biases, name=scope.name) _activation_summary(softmax_linear) return softmax_linear def create_value_network(planes, ps_device, worker_device, filters=192, board_size=15, layers=5, name_prefix=None): variable_num = 0 with tf.device(ps_device): var_name, variable_num = get_variable_name(name_prefix, variable_num) W_conv1 = weight_variable((5, 5, planes, filters), stddev=0.1, name=var_name) var_name, variable_num = get_variable_name(name_prefix, variable_num) b_conv1 = bias_variable([filters], name=var_name) W_conv_k, b_conv_k = [], [] for _ in range(layers): var_name, variable_num = get_variable_name(name_prefix, variable_num) W_conv_k.append(weight_variable((3, 3, filters, filters), stddev=0.1, name=var_name)) var_name, variable_num = get_variable_name(name_prefix, variable_num) b_conv_k.append(bias_variable([filters])) var_name, variable_num = get_variable_name(name_prefix, variable_num) W_conv_n = weight_variable((1, 1, filters, 1), stddev=0.1, name=var_name) var_name, variable_num = get_variable_name(name_prefix, variable_num) b_conv_n = bias_variable([1]) var_name, variable_num = get_variable_name(name_prefix, variable_num) W_fc1 = weight_variable([board_size * board_size, 256], stddev=0.1, name=var_name) var_name, variable_num = get_variable_name(name_prefix, variable_num) b_fc1 = bias_variable([256], name=var_name) var_name, variable_num = get_variable_name(name_prefix, variable_num) W_fc2 = weight_variable([256, 3], stddev=0.1, name=var_name) var_name, variable_num = get_variable_name(name_prefix, variable_num) b_fc2 = bias_variable([3], name=var_name) # input _input = tf.placeholder("float", [None, board_size, board_size, planes]) with tf.device(worker_device): # first cnn layer h_conv1 = tf.nn.relu(conv2d(_input, W_conv1, stride=1) + b_conv1) # middle cnn layers pre_input = h_conv1 for i in range(layers): h_conv_k = tf.nn.relu(conv2d(pre_input, W_conv_k[i], stride=1) + b_conv_k[i]) pre_input = h_conv_k # last cnn layers h_conv_n = tf.nn.relu(conv2d(h_conv_k, W_conv_n, stride=1) + b_conv_n) # softmax h_flat1 = tf.reshape(h_conv_n, [-1, board_size * board_size]) h_fc1 = tf.nn.relu(tf.matmul(h_flat1, W_fc1) + b_fc1) # _output = tf.tanh(tf.matmul(h_fc1, W_fc2) + b_fc2) _output = tf.matmul(h_fc1, W_fc2) + b_fc2 return _input, _output def create_rollout_network(_input, planes, board_size=15): fc1 = full_connect(_input, (15*15*planes, 15*15*planes), "fc_1") with tf.variable_scope("out") as scope: weights = _variable_with_weight_decay('weights', shape=(15*15*planes, board_size * board_size), stddev=0.04, wd=0.004) biases = _variable_on_cpu('biases', [board_size * board_size], tf.constant_initializer(0.1)) softmax_linear = tf.add(tf.matmul(fc1, weights), biases, name=scope.name) _activation_summary(softmax_linear) return softmax_linear class SuperNetwork(object): def __init__(self, model_dir=""): # set session # self.session = tf.Session(config=tf.ConfigProto(log_device_placement=True, allow_soft_placement=True)) # load model if exist self.model_dir = model_dir if not os.path.isdir(self.model_dir): os.makedirs(self.model_dir) self.saver = tf.train.Saver(max_to_keep=None) # self.restore_model(model_file=model_file) self.param_file = "%s/params.json" % self.model_dir self.session = None def set_session(self, sess): self.session = sess def close(self): # frees all resources associated with the session self.session.close() def param_serierlize(self, param_dict): open(self.param_file, "w").write(json.dumps(param_dict)) def param_unserierlize(self, init_params=None): if os.path.exists(self.param_file): jd = json.loads(open(self.param_file, 'r').read()) else: jd = init_params return jd def restore_model(self, model_file=None): if model_file is not None: model_file_path = "%s/%s" % (self.model_dir, model_file) self.saver.restore(self.session, model_file_path) print("Successfully loaded:", model_file_path) return True else: checkpoint = tf.train.get_checkpoint_state(self.model_dir) if checkpoint and checkpoint.model_checkpoint_path: self.saver.restore(self.session, checkpoint.model_checkpoint_path) print("Successfully loaded:", checkpoint.model_checkpoint_path) return True else: print("Could not find old network weights") return False def save_model(self, prefix, global_step=None): checkpoint_filename = self.saver.save(self.session, self.model_dir + "/" + prefix, global_step=global_step) return checkpoint_filename def _activation_summary(x): # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training # session. This helps the clarity of presentation on tensorboard. tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name) tf.histogram_summary(tensor_name + '/activations', x) tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x)) def _variable_with_weight_decay(name, shape, stddev, wd): var = _variable_on_cpu(name, shape, tf.truncated_normal_initializer(stddev=stddev)) if wd is not None: weight_decay = tf.mul(tf.nn.l2_loss(var), wd, name='weight_loss') tf.add_to_collection('losses', weight_decay) return var def _variable_on_cpu(name, shape, initializer): with tf.device('/cpu:0'): var = tf.get_variable(name, shape, initializer=initializer) return var def conv2d(x, kernel_shape, variable_scope, stride=1, stddev=1e-2, padding="SAME"): with tf.variable_scope(variable_scope) as scope: kernel = _variable_with_weight_decay('weights', shape=kernel_shape, stddev=stddev, wd=0.0) conv = tf.nn.conv2d(x, kernel, strides=[1, stride, stride, 1], padding=padding) biases = _variable_on_cpu('biases', [kernel_shape[-1]], tf.constant_initializer(0.0)) bias = tf.nn.bias_add(conv, biases) conv = tf.nn.relu(bias, name=scope.name) _activation_summary(conv) return conv def full_connect(x, W_shape, variable_scope, stddev=0.04): with tf.variable_scope(variable_scope) as scope: weights = _variable_with_weight_decay('weights', shape=W_shape, stddev=stddev, wd=0.004) biases = _variable_on_cpu('biases', [W_shape[-1]], tf.constant_initializer(0.1)) fc = tf.nn.relu(tf.matmul(x, weights) + biases, name=scope.name) _activation_summary(fc) return fc def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME") def loss(logits, labels): # Calculate the average cross entropy loss across the batch. labels = tf.cast(labels, tf.int64) cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits( logits, labels, name='cross_entropy_per_example') cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy') tf.add_to_collection('losses', cross_entropy_mean) # accuracy accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(logits, 1), labels), tf.float32)) tf.add_to_collection('accuracy', accuracy) # The total loss is defined as the cross entropy loss plus all of the weight # decay terms (L2 loss). return tf.add_n(tf.get_collection('losses'), name='total_loss') def tower_loss(scope, inference, states, labels): # Build inference Graph. logits = inference(states) tf.add_to_collection('logits', logits) # Build the portion of the Graph calculating the losses. Note that we will # assemble the total_loss using a custom function below. _ = loss(logits, labels) # Assemble all of the losses for the current tower only. losses = tf.get_collection('losses', scope) # Calculate the total loss for the current tower. total_loss = tf.add_n(losses, name='total_loss') # Compute the moving average of all individual losses and the total loss. loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg') loss_averages_op = loss_averages.apply(losses + [total_loss]) # Attach a scalar summary to all individual losses and the total loss; do the # same for the averaged version of the losses. for l in losses + [total_loss]: # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training # session. This helps the clarity of presentation on tensorboard. loss_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', l.op.name) # Name each loss as '(raw)' and name the moving average version of the loss # as the original loss name. tf.scalar_summary(loss_name + ' (raw)', l) tf.scalar_summary(loss_name, loss_averages.average(l)) with tf.control_dependencies([loss_averages_op]): total_loss = tf.identity(total_loss) return total_loss def average_gradients(tower_grads): """Calculate the average gradient for each shared variable across all towers. Note that this function provides a synchronization point across all towers. Args: tower_grads: List of lists of (gradient, variable) tuples. The outer list is over individual gradients. The inner list is over the gradient calculation for each tower. Returns: List of pairs of (gradient, variable) where the gradient has been averaged across all towers. """ average_grads = [] for grad_and_vars in zip(*tower_grads): # Note that each grad_and_vars looks like the following: # ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN)) grads = [] for g, _ in grad_and_vars: # Add 0 dimension to the gradients to represent the tower. expanded_g = tf.expand_dims(g, 0) # Append on a 'tower' dimension which we will average over below. grads.append(expanded_g) # Average over the 'tower' dimension. grad = tf.concat(0, grads) grad = tf.reduce_mean(grad, 0) # Keep in mind that the Variables are redundant because they are shared # across towers. So .. we will just return the first tower's pointer to # the Variable. v = grad_and_vars[0][1] grad_and_var = (grad, v) average_grads.append(grad_and_var) return average_grads
431b96040b15421c2067d65fcbc5cc24243089f3
3929d28489c8cf53b7d828998ba48e618ee08d08
/example_django_react_templatetags/runtests.py
89cce13f9e26c82c47c886b3fc007c977217adc1
[ "MIT" ]
permissive
EriSilver/django-react-templatetags
89e0c08ff54a1a4b5cf96e4848a44fd173172072
b11dd2f1802015589621c3c173850355969c88cf
refs/heads/main
2023-05-27T04:07:29.710783
2021-05-25T19:22:06
2021-05-25T19:22:06
386,394,693
1
0
MIT
2021-07-15T18:52:56
2021-07-15T18:52:55
null
UTF-8
Python
false
false
392
py
import os import sys import argparse from django.core.management import execute_from_command_line os.environ["DJANGO_SETTINGS_MODULE"] = "django_react_templatetags.tests.demosite.settings" def runtests(): args, rest = argparse.ArgumentParser().parse_known_args() argv = [sys.argv[0], "test"] + rest execute_from_command_line(argv) if __name__ == "__main__": runtests()
6aba396a479895a42694694b4f4d0f13154ed4bc
da687718aa8ce62974090af63d25e057262e9dfe
/cap18-Interface-GUI-Tkinter/extras/02_tutopoint/08_listBox.py
2d5af720f62d7bbd09ee2a26784e198af2b8b98a
[]
no_license
frclasso/revisao_Python_modulo1
77928fa4409c97d49cc7deccdf291f44c337d290
1e83d0ef9657440db46a8e84b136ac5f9a7c556e
refs/heads/master
2020-06-25T05:37:28.768343
2019-07-27T22:23:58
2019-07-27T22:23:58
199,217,969
1
0
null
null
null
null
UTF-8
Python
false
false
236
py
#!/usr/bin/env python3 from tkinter import * top = Tk() Lb1 = Listbox(top) Lb1.insert(1, "Python") Lb1.insert(2, "Perl") Lb1.insert(3, "C") Lb1.insert(4, "Julia") Lb1.insert(5, "Djago") Lb1.insert(6, "Go") Lb1.pack() top.mainloop()
521b4bf3657fd33b18f0dd8c026ee69df493d283
f9d564f1aa83eca45872dab7fbaa26dd48210d08
/huaweicloud-sdk-vpc/huaweicloudsdkvpc/v2/model/batch_create_subnet_tags_request.py
9c6ab367a7d382993a6806837feaf9a13b280a97
[ "Apache-2.0" ]
permissive
huaweicloud/huaweicloud-sdk-python-v3
cde6d849ce5b1de05ac5ebfd6153f27803837d84
f69344c1dadb79067746ddf9bfde4bddc18d5ecf
refs/heads/master
2023-09-01T19:29:43.013318
2023-08-31T08:28:59
2023-08-31T08:28:59
262,207,814
103
44
NOASSERTION
2023-06-22T14:50:48
2020-05-08T02:28:43
Python
UTF-8
Python
false
false
4,003
py
# coding: utf-8 import six from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class BatchCreateSubnetTagsRequest: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'subnet_id': 'str', 'body': 'BatchCreateSubnetTagsRequestBody' } attribute_map = { 'subnet_id': 'subnet_id', 'body': 'body' } def __init__(self, subnet_id=None, body=None): """BatchCreateSubnetTagsRequest The model defined in huaweicloud sdk :param subnet_id: 子网ID :type subnet_id: str :param body: Body of the BatchCreateSubnetTagsRequest :type body: :class:`huaweicloudsdkvpc.v2.BatchCreateSubnetTagsRequestBody` """ self._subnet_id = None self._body = None self.discriminator = None self.subnet_id = subnet_id if body is not None: self.body = body @property def subnet_id(self): """Gets the subnet_id of this BatchCreateSubnetTagsRequest. 子网ID :return: The subnet_id of this BatchCreateSubnetTagsRequest. :rtype: str """ return self._subnet_id @subnet_id.setter def subnet_id(self, subnet_id): """Sets the subnet_id of this BatchCreateSubnetTagsRequest. 子网ID :param subnet_id: The subnet_id of this BatchCreateSubnetTagsRequest. :type subnet_id: str """ self._subnet_id = subnet_id @property def body(self): """Gets the body of this BatchCreateSubnetTagsRequest. :return: The body of this BatchCreateSubnetTagsRequest. :rtype: :class:`huaweicloudsdkvpc.v2.BatchCreateSubnetTagsRequestBody` """ return self._body @body.setter def body(self, body): """Sets the body of this BatchCreateSubnetTagsRequest. :param body: The body of this BatchCreateSubnetTagsRequest. :type body: :class:`huaweicloudsdkvpc.v2.BatchCreateSubnetTagsRequestBody` """ self._body = body def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, BatchCreateSubnetTagsRequest): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
e6790effcd437b560f2f787aba0b6d9062b9e38e
6437a3a4a31ab9ad233d6b2d985beb50ed50de23
/PythonistaAppTemplate/PythonistaKit.framework/pylib/site-packages/paramiko/sftp.py
075e6e9b4e62c0ecd9c3279fdf58e28f5b90d4e0
[]
no_license
sreyemnayr/jss-lost-mode-app
03ddc472decde3c17a11294d8ee48b02f83b71e7
3ff4ba6fb13f4f3a4a98bfc824eace137f6aabaa
refs/heads/master
2021-05-02T08:50:10.580091
2018-02-08T20:32:29
2018-02-08T20:32:29
120,813,623
1
0
null
null
null
null
UTF-8
Python
false
false
13,534
py
#\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo # Copyright (C) 2003-2007 Robey Pointer <[email protected]> # # This file is part of paramiko. # # Paramiko is free software; you can redistribute it and/or modify it under the # terms of the GNU Lesser General Public License as published by the Free # Software Foundation; either version 2.1 of the License, or (at your option) # any later version. # # Paramiko is distributed in the hope that it will be useful, but WITHOUT ANY # WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR # A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more # details. # # You should have received a copy of the GNU Lesser General Public License # along with Paramiko; if not, write to the Free Software Foundation, Inc., # 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. import select import socket import struct from paramiko import util from paramiko.common import asbytes, DEBUG from paramiko.message import Message from paramiko.py3compat import byte_chr, byte_ord CMD_INIT, CMD_VERSION, CMD_OPEN, CMD_CLOSE, CMD_READ, CMD_WRITE, CMD_LSTAT, CMD_FSTAT, \ CMD_SETSTAT, CMD_FSETSTAT, CMD_OPENDIR, CMD_READDIR, CMD_REMOVE, CMD_MKDIR, \ CMD_RMDIR, CMD_REALPATH, CMD_STAT, CMD_RENAME, CMD_READLINK, CMD_SYMLINK = range(1, 21) CMD_STATUS, CMD_HANDLE, CMD_DATA, CMD_NAME, CMD_ATTRS = range(101, 106) CMD_EXTENDED, CMD_EXTENDED_REPLY = range(200, 202) SFTP_OK = 0 SFTP_EOF, SFTP_NO_SUCH_FILE, SFTP_PERMISSION_DENIED, SFTP_FAILURE, SFTP_BAD_MESSAGE, \ SFTP_NO_CONNECTION, SFTP_CONNECTION_LOST, SFTP_OP_UNSUPPORTED = range(1, 9) SFTP_DESC = ['Success', 'End of file', 'No such file', 'Permission denied', 'Failure', 'Bad message', 'No connection', 'Connection lost', 'Operation unsupported'] SFTP_FLAG_READ = 0x1 SFTP_FLAG_WRITE = 0x2 SFTP_FLAG_APPEND = 0x4 SFTP_FLAG_CREATE = 0x8 SFTP_FLAG_TRUNC = 0x10 SFTP_FLAG_EXCL = 0x20 _VERSION = 3 # for debugging CMD_NAMES = { CMD_INIT: 'init', CMD_VERSION: 'version', CMD_OPEN: 'open', CMD_CLOSE: 'close', CMD_READ: 'read', CMD_WRITE: 'write', CMD_LSTAT: 'lstat', CMD_FSTAT: 'fstat', CMD_SETSTAT: 'setstat', CMD_FSETSTAT: 'fsetstat', CMD_OPENDIR: 'opendir', CMD_READDIR: 'readdir', CMD_REMOVE: 'remove', CMD_MKDIR: 'mkdir', CMD_RMDIR: 'rmdir', CMD_REALPATH: 'realpath', CMD_STAT: 'stat', CMD_RENAME: 'rename', CMD_READLINK: 'readlink', CMD_SYMLINK: 'symlink', CMD_STATUS: 'status', CMD_HANDLE: 'handle', CMD_DATA: 'data', CMD_NAME: 'name', CMD_ATTRS: 'attrs', CMD_EXTENDED: 'extended', CMD_EXTENDED_REPLY: 'extended_reply' } class SFTPError (Exception): pass class BaseSFTP (object): def __init__(self): self.logger = util.get_logger('paramiko.sftp') self.sock = None self.ultra_debug = False ### internals... def _send_version(self): self._send_packet(CMD_INIT, struct.pack('>I', _VERSION)) t, data = self._read_packet() if t != CMD_VERSION: raise SFTPError('Incompatible sftp protocol') version = struct.unpack('>I', data[:4])[0] # if version != _VERSION: # raise SFTPError('Incompatible sftp protocol') return version def _send_server_version(self): # winscp will freak out if the server sends version info before the # client finishes sending INIT. t, data = self._read_packet() if t != CMD_INIT: raise SFTPError('Incompatible sftp protocol') version = struct.unpack('>I', data[:4])[0] # advertise that we support "check-file" extension_pairs = ['check-file', 'md5,sha1'] msg = Message() msg.add_int(_VERSION) msg.add(*extension_pairs) self._send_packet(CMD_VERSION, msg) return version def _log(self, level, msg, *args): self.logger.log(level, msg, *args) def _write_all(self, out): while len(out) > 0: n = self.sock.send(out) if n <= 0: raise EOFError() if n == len(out): return out = out[n:] return def _read_all(self, n): out = bytes() while n > 0: if isinstance(self.sock, socket.socket): # sometimes sftp is used directly over a socket instead of # through a paramiko channel. in this case, check periodically # if the socket is closed. (for some reason, recv() won't ever # return or raise an exception, but calling select on a closed # socket will.) while True: read, write, err = select.select([self.sock], [], [], 0.1) if len(read) > 0: x = self.sock.recv(n) break else: x = self.sock.recv(n) if len(x) == 0: raise EOFError() out += x n -= len(x) return out def _send_packet(self, t, packet): #self._log(DEBUG2, 'write: %s (len=%d)' % (CMD_NAMES.get(t, '0x%02x' % t), len(packet))) packet = asbytes(packet) out = struct.pack('>I', len(packet) + 1) + byte_chr(t) + packet if self.ultra_debug: self._log(DEBUG, util.format_binary(out, 'OUT: ')) self._write_all(out) def _read_packet(self): x = self._read_all(4) # most sftp servers won't accept packets larger than about 32k, so # anything with the high byte set (> 16MB) is just garbage. if byte_ord(x[0]): raise SFTPError('Garbage packet received') size = struct.unpack('>I', x)[0] data = self._read_all(size) if self.ultra_debug: self._log(DEBUG, util.format_binary(data, 'IN: ')) if size > 0: t = byte_ord(data[0]) #self._log(DEBUG2, 'read: %s (len=%d)' % (CMD_NAMES.get(t), '0x%02x' % t, len(data)-1)) return t, data[1:] return 0, bytes()
cffe50dd97a932ebc3250fdbf9a6349b509f3431
f576f0ea3725d54bd2551883901b25b863fe6688
/sdk/powerbidedicated/azure-mgmt-powerbidedicated/generated_samples/create_auto_scale_vcore.py
67ad65f12c53cbe937f4d46b56b858ef521762f8
[ "LicenseRef-scancode-generic-cla", "MIT", "LGPL-2.1-or-later" ]
permissive
Azure/azure-sdk-for-python
02e3838e53a33d8ba27e9bcc22bd84e790e4ca7c
c2ca191e736bb06bfbbbc9493e8325763ba990bb
refs/heads/main
2023-09-06T09:30:13.135012
2023-09-06T01:08:06
2023-09-06T01:08:06
4,127,088
4,046
2,755
MIT
2023-09-14T21:48:49
2012-04-24T16:46:12
Python
UTF-8
Python
false
false
1,885
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from azure.identity import DefaultAzureCredential from azure.mgmt.powerbidedicated import PowerBIDedicated """ # PREREQUISITES pip install azure-identity pip install azure-mgmt-powerbidedicated # USAGE python create_auto_scale_vcore.py Before run the sample, please set the values of the client ID, tenant ID and client secret of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, AZURE_CLIENT_SECRET. For more info about how to get the value, please see: https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal """ def main(): client = PowerBIDedicated( credential=DefaultAzureCredential(), subscription_id="613192d7-503f-477a-9cfe-4efc3ee2bd60", ) response = client.auto_scale_vcores.create( resource_group_name="TestRG", vcore_name="testvcore", v_core_parameters={ "location": "West US", "properties": {"capacityLimit": 10, "capacityObjectId": "a28f00bd-5330-4572-88f1-fa883e074785"}, "sku": {"capacity": 0, "name": "AutoScale", "tier": "AutoScale"}, "tags": {"testKey": "testValue"}, }, ) print(response) # x-ms-original-file: specification/powerbidedicated/resource-manager/Microsoft.PowerBIdedicated/stable/2021-01-01/examples/createAutoScaleVCore.json if __name__ == "__main__": main()
3739f0b84f86b376235cade51f9071d7d62c8b18
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/eraBhwF8HkJDAa2pS_7.py
4d28a63e1772e975610e4ed6a58348f01d38c9a7
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
1,759
py
""" A group of pirates each have a distribution of gold coins, which can be represented as a list: [3, 9, 4, 5, 5] # Pirate 1 has 3 gold, Pirate 2 has 9 gold, etc. The difference between each pirate's share of gold and that of the richest pirate is represented as: [6, 0, 5, 4, 4] # Since 6 = 9 - 3, 0 = 9 - 9, 4 = 9 - 5, etc. Pirates have a keen sense of fairness, and a pirate will kill the others if he deems his share to be too little. Each pirate has a **unique inequality threshold** \- the maximum difference he is willing to tolerate before he kills his comrades. Using the above gold distribution: [5, 0, 5, 5, 5] # Pirates killed, since 5 < 6. # 5 is Pirate 1's inequality distribution and 6 is his gold difference. [7, 0, 5, 5, 5] # Pirate 1 is satisfied, since 7 > 6. # All other pirates are satisfied as well. Given a distribution of coins and a list of inequality thresholds, create a function that returns `True` if any pirates are killed, or `False` otherwise. ### Examples pirates_killed([3, 5, 8, 3, 4], [10, 4, 2, 5, 5]) ➞ False pirates_killed([3, 5, 8, 3, 4], [10, 4, 2, 5, 1]) ➞ True pirates_killed([3, 3, 10], [7, 7, 0]) ➞ False pirates_killed([3, 3, 10], [6, 6, 0]) ➞ True ### Notes * A pirate kills if the difference in his share of gold from the riches pirate is **strictly greater** than his **inequality threshold**. * Gold and inequality distribution lists are both ordered the same. (e.g. Pirate 1 is index 0 for both lists, Pirate 2 is index 1 for both lists, etc). """ def pirates_killed(gold, tolerance): m=max(gold) a=len(gold) for i in range(0,a): if(m-gold[i]>tolerance[i]): return True return False
412354dd10998bf72bc427f1882857eed5d7345a
b4b95c1e3ab70b332596bda4f008cd077fda6b66
/week4/day4/hero_project/hero_project/settings.py
21c5ca234a53139ed25c0c958d84d8c99e7dc311
[]
no_license
johnjdailey/wf-2020-11-15
863952f0267a90191d0cf36869d870746530545f
2f4f6789914be8f5ae2e107c8b2d3762c8330b01
refs/heads/main
2023-03-20T19:14:31.403918
2021-02-24T08:08:10
2021-02-24T08:08:10
364,556,774
1
0
null
2021-05-05T11:40:07
2021-05-05T11:40:07
null
UTF-8
Python
false
false
3,123
py
""" Django settings for hero_project project. Generated by 'django-admin startproject' using Django 3.0.2. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '=iyixn3&mdrg+x5#s$*79s8nm428p(rfo#kyf6nn82@=lh1&a6' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'power_app', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'hero_project.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'hero_project.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_URL = '/static/'
1a7a445a0183da5b57d25a858acc8af2e8320d0d
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02833/s059211372.py
ed4bbbaccfabc03d67edc5bcf26aebe9e1659cf8
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
316
py
n = input() m = len(n) n = int(n) if n%2==1: print(0) else: if m==1: print(0) else: ans = 0 i = 1 while True: ans_plus=n//(2*5**i) if ans_plus==0: break ans += ans_plus i += 1 print(ans)
ee7358a3297e1b86ffe16f03447bbb5fa211b7df
b99b32fb0b4597bee94809ebd3b2ddae43064bee
/landmark_detection/menpofit/math/correlationfilter.py
2b80d9e1b419f80ff46311e072543bc34e8aa2a5
[]
no_license
HongwenZhang/ECT-FaceAlignment
c0129dc2aa20bc2bdba03a9ed1cabebcd5e5d848
e94b446db73fca5ba751d6d9a81d42633208f228
refs/heads/master
2023-01-29T14:25:19.502350
2020-12-13T09:18:55
2020-12-13T09:18:55
111,511,579
31
19
null
null
null
null
UTF-8
Python
false
false
14,354
py
import numpy as np from numpy.fft import fft2, ifft2, ifftshift from scipy.sparse import spdiags, eye as speye from scipy.sparse.linalg import spsolve from menpofit.math.fft_utils import pad, crop def mosse(X, y, l=0.01, boundary='constant', crop_filter=True): r""" Minimum Output Sum of Squared Errors (MOSSE) filter. Parameters ---------- X : ``(n_images, n_channels, image_h, image_w)`` `ndarray` The training images. y : ``(1, response_h, response_w)`` `ndarray` The desired response. l : `float`, optional Regularization parameter. boundary : ``{'constant', 'symmetric'}``, optional Determines how the image is padded. crop_filter : `bool`, optional If ``True``, the shape of the MOSSE filter is the same as the shape of the desired response. If ``False``, the filter's shape is equal to: ``X[0].shape + y.shape - 1`` Returns ------- f : ``(1, response_h, response_w)`` `ndarray` Minimum Output Sum od Squared Errors (MOSSE) filter associated to the training images. sXY : ``(N,)`` `ndarray` The auto-correlation array, where ``N = (image_h+response_h-1) * (image_w+response_w-1) * n_channels``. sXX : ``(N, N)`` `ndarray` The cross-correlation array, where ``N = (image_h+response_h-1) * (image_w+response_w-1) * n_channels``. References ---------- .. [1] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui. "Visual Object Tracking using Adaptive Correlation Filters", IEEE Proceedings of International Conference on Computer Vision and Pattern Recognition (CVPR), 2010. """ # number of images, number of channels, height and width n, k, hx, wx = X.shape # height and width of desired responses _, hy, wy = y.shape y_shape = (hy, wy) # extended shape ext_h = hx + hy - 1 ext_w = wx + wy - 1 ext_shape = (ext_h, ext_w) # extend desired response ext_y = pad(y, ext_shape) # fft of extended desired response fft_ext_y = fft2(ext_y) # auto and cross spectral energy matrices sXX = 0 sXY = 0 # for each training image and desired response for x in X: # extend image ext_x = pad(x, ext_shape, boundary=boundary) # fft of extended image fft_ext_x = fft2(ext_x) # update auto and cross spectral energy matrices sXX += fft_ext_x.conj() * fft_ext_x sXY += fft_ext_x.conj() * fft_ext_y # compute desired correlation filter fft_ext_f = sXY / (sXX + l) # reshape extended filter to extended image shape fft_ext_f = fft_ext_f.reshape((k, ext_h, ext_w)) # compute extended filter inverse fft f = np.real(ifftshift(ifft2(fft_ext_f), axes=(-2, -1))) if crop_filter: # crop extended filter to match desired response shape f = crop(f, y_shape) return f, sXY, sXX def imosse(A, B, n_ab, X, y, l=0.01, boundary='constant', crop_filter=True, f=1.0): r""" Incremental Minimum Output Sum of Squared Errors (iMOSSE) filter. Parameters ---------- A : ``(N,)`` `ndarray` The current auto-correlation array, where ``N = (patch_h+response_h-1) * (patch_w+response_w-1) * n_channels``. B : ``(N, N)`` `ndarray` The current cross-correlation array, where ``N = (patch_h+response_h-1) * (patch_w+response_w-1) * n_channels``. n_ab : `int` The current number of images. X : ``(n_images, n_channels, image_h, image_w)`` `ndarray` The training images (patches). y : ``(1, response_h, response_w)`` `ndarray` The desired response. l : `float`, optional Regularization parameter. boundary : ``{'constant', 'symmetric'}``, optional Determines how the image is padded. crop_filter : `bool`, optional If ``True``, the shape of the MOSSE filter is the same as the shape of the desired response. If ``False``, the filter's shape is equal to: ``X[0].shape + y.shape - 1`` f : ``[0, 1]`` `float`, optional Forgetting factor that weights the relative contribution of new samples vs old samples. If ``1.0``, all samples are weighted equally. If ``<1.0``, more emphasis is put on the new samples. Returns ------- f : ``(1, response_h, response_w)`` `ndarray` Minimum Output Sum od Squared Errors (MOSSE) filter associated to the training images. sXY : ``(N,)`` `ndarray` The auto-correlation array, where ``N = (image_h+response_h-1) * (image_w+response_w-1) * n_channels``. sXX : ``(N, N)`` `ndarray` The cross-correlation array, where ``N = (image_h+response_h-1) * (image_w+response_w-1) * n_channels``. References ---------- .. [1] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui. "Visual Object Tracking using Adaptive Correlation Filters", IEEE Proceedings of International Conference on Computer Vision and Pattern Recognition (CVPR), 2010. """ # number of images; number of channels, height and width n_x, k, hz, wz = X.shape # height and width of desired responses _, hy, wy = y.shape y_shape = (hy, wy) # multiply the number of samples used to produce the auto and cross # spectral energy matrices A and B by forgetting factor n_ab *= f # total number of samples n = n_ab + n_x # compute weighting factors nu_ab = n_ab / n nu_x = n_x / n # extended shape ext_h = hz + hy - 1 ext_w = wz + wy - 1 ext_shape = (ext_h, ext_w) # extend desired response ext_y = pad(y, ext_shape) # fft of extended desired response fft_ext_y = fft2(ext_y) # extend images ext_X = pad(X, ext_shape, boundary=boundary) # auto and cross spectral energy matrices sXX = 0 sXY = 0 # for each training image and desired response for ext_x in ext_X: # fft of extended image fft_ext_x = fft2(ext_x) # update auto and cross spectral energy matrices sXX += fft_ext_x.conj() * fft_ext_x sXY += fft_ext_x.conj() * fft_ext_y # combine old and new auto and cross spectral energy matrices sXY = nu_ab * A + nu_x * sXY sXX = nu_ab * B + nu_x * sXX # compute desired correlation filter fft_ext_f = sXY / (sXX + l) # reshape extended filter to extended image shape fft_ext_f = fft_ext_f.reshape((k, ext_h, ext_w)) # compute filter inverse fft f = np.real(ifftshift(ifft2(fft_ext_f), axes=(-2, -1))) if crop_filter: # crop extended filter to match desired response shape f = crop(f, y_shape) return f, sXY, sXX def mccf(X, y, l=0.01, boundary='constant', crop_filter=True): r""" Multi-Channel Correlation Filter (MCCF). Parameters ---------- X : ``(n_images, n_channels, image_h, image_w)`` `ndarray` The training images. y : ``(1, response_h, response_w)`` `ndarray` The desired response. l : `float`, optional Regularization parameter. boundary : ``{'constant', 'symmetric'}``, optional Determines how the image is padded. crop_filter : `bool`, optional If ``True``, the shape of the MOSSE filter is the same as the shape of the desired response. If ``False``, the filter's shape is equal to: ``X[0].shape + y.shape - 1`` Returns ------- f : ``(1, response_h, response_w)`` `ndarray` Multi-Channel Correlation Filter (MCCF) filter associated to the training images. sXY : ``(N,)`` `ndarray` The auto-correlation array, where ``N = (image_h+response_h-1) * (image_w+response_w-1) * n_channels``. sXX : ``(N, N)`` `ndarray` The cross-correlation array, where ``N = (image_h+response_h-1) * (image_w+response_w-1) * n_channels``. References ---------- .. [1] H. K. Galoogahi, T. Sim, and Simon Lucey. "Multi-Channel Correlation Filters". IEEE Proceedings of International Conference on Computer Vision (ICCV), 2013. """ # number of images; number of channels, height and width n, k, hx, wx = X.shape # height and width of desired responses _, hy, wy = y.shape y_shape = (hy, wy) # extended shape ext_h = hx + hy - 1 ext_w = wx + wy - 1 ext_shape = (ext_h, ext_w) # extended dimensionality ext_d = ext_h * ext_w # extend desired response ext_y = pad(y, ext_shape) # fft of extended desired response fft_ext_y = fft2(ext_y) # extend images ext_X = pad(X, ext_shape, boundary=boundary) # auto and cross spectral energy matrices sXX = 0 sXY = 0 # for each training image and desired response for ext_x in ext_X: # fft of extended image fft_ext_x = fft2(ext_x) # store extended image fft as sparse diagonal matrix diag_fft_x = spdiags(fft_ext_x.reshape((k, -1)), -np.arange(0, k) * ext_d, ext_d * k, ext_d).T # vectorize extended desired response fft diag_fft_y = fft_ext_y.ravel() # update auto and cross spectral energy matrices sXX += diag_fft_x.conj().T.dot(diag_fft_x) sXY += diag_fft_x.conj().T.dot(diag_fft_y) # solve ext_d independent k x k linear systems (with regularization) # to obtain desired extended multi-channel correlation filter fft_ext_f = spsolve(sXX + l * speye(sXX.shape[-1]), sXY) # reshape extended filter to extended image shape fft_ext_f = fft_ext_f.reshape((k, ext_h, ext_w)) # compute filter inverse fft f = np.real(ifftshift(ifft2(fft_ext_f), axes=(-2, -1))) if crop_filter: # crop extended filter to match desired response shape f = crop(f, y_shape) return f, sXY, sXX def imccf(A, B, n_ab, X, y, l=0.01, boundary='constant', crop_filter=True, f=1.0): r""" Incremental Multi-Channel Correlation Filter (MCCF) Parameters ---------- A : ``(N,)`` `ndarray` The current auto-correlation array, where ``N = (patch_h+response_h-1) * (patch_w+response_w-1) * n_channels``. B : ``(N, N)`` `ndarray` The current cross-correlation array, where ``N = (patch_h+response_h-1) * (patch_w+response_w-1) * n_channels``. n_ab : `int` The current number of images. X : ``(n_images, n_channels, image_h, image_w)`` `ndarray` The training images (patches). y : ``(1, response_h, response_w)`` `ndarray` The desired response. l : `float`, optional Regularization parameter. boundary : ``{'constant', 'symmetric'}``, optional Determines how the image is padded. crop_filter : `bool`, optional If ``True``, the shape of the MOSSE filter is the same as the shape of the desired response. If ``False``, the filter's shape is equal to: ``X[0].shape + y.shape - 1`` f : ``[0, 1]`` `float`, optional Forgetting factor that weights the relative contribution of new samples vs old samples. If ``1.0``, all samples are weighted equally. If ``<1.0``, more emphasis is put on the new samples. Returns ------- f : ``(1, response_h, response_w)`` `ndarray` Multi-Channel Correlation Filter (MCCF) filter associated to the training images. sXY : ``(N,)`` `ndarray` The auto-correlation array, where ``N = (image_h+response_h-1) * (image_w+response_w-1) * n_channels``. sXX : ``(N, N)`` `ndarray` The cross-correlation array, where ``N = (image_h+response_h-1) * (image_w+response_w-1) * n_channels``. References ---------- .. [1] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui. "Visual Object Tracking using Adaptive Correlation Filters", IEEE Proceedings of International Conference on Computer Vision and Pattern Recognition (CVPR), 2010. .. [2] H. K. Galoogahi, T. Sim, and Simon Lucey. "Multi-Channel Correlation Filters". IEEE Proceedings of International Conference on Computer Vision (ICCV), 2013. """ # number of images; number of channels, height and width n_x, k, hz, wz = X.shape # height and width of desired responses _, hy, wy = y.shape y_shape = (hy, wy) # multiply the number of samples used to produce the auto and cross # spectral energy matrices A and B by forgetting factor n_ab *= f # total number of samples n = n_ab + n_x # compute weighting factors nu_ab = n_ab / n nu_x = n_x / n # extended shape ext_h = hz + hy - 1 ext_w = wz + wy - 1 ext_shape = (ext_h, ext_w) # extended dimensionality ext_d = ext_h * ext_w # extend desired response ext_y = pad(y, ext_shape) # fft of extended desired response fft_ext_y = fft2(ext_y) # extend images ext_X = pad(X, ext_shape, boundary=boundary) # auto and cross spectral energy matrices sXX = 0 sXY = 0 # for each training image and desired response for ext_x in ext_X: # fft of extended image fft_ext_x = fft2(ext_x) # store extended image fft as sparse diagonal matrix diag_fft_x = spdiags(fft_ext_x.reshape((k, -1)), -np.arange(0, k) * ext_d, ext_d * k, ext_d).T # vectorize extended desired response fft diag_fft_y = fft_ext_y.ravel() # update auto and cross spectral energy matrices sXX += diag_fft_x.conj().T.dot(diag_fft_x) sXY += diag_fft_x.conj().T.dot(diag_fft_y) # combine old and new auto and cross spectral energy matrices sXY = nu_ab * A + nu_x * sXY sXX = nu_ab * B + nu_x * sXX # solve ext_d independent k x k linear systems (with regularization) # to obtain desired extended multi-channel correlation filter fft_ext_f = spsolve(sXX + l * speye(sXX.shape[-1]), sXY) # reshape extended filter to extended image shape fft_ext_f = fft_ext_f.reshape((k, ext_h, ext_w)) # compute filter inverse fft f = np.real(ifftshift(ifft2(fft_ext_f), axes=(-2, -1))) if crop_filter: # crop extended filter to match desired response shape f = crop(f, y_shape) return f, sXY, sXX
896dfb5f50363046d705420cf1d4635764de6422
b1c271e8c69c5dad361ddf4b9415a0818db061ea
/Brain-Tumor-Segmentation-3D-UNet-CNN-master/create_predictions.py
7777d835a1742a3e1ce6a456d8f788c922f4ccab
[]
no_license
ssh6189/2020.05.12
105e9947d9a6f340120d90aae5edf7c90de44379
a12fab4c477c54ee11a1b58fa207b548ad5e310d
refs/heads/master
2022-07-23T13:07:18.240311
2020-05-14T12:34:19
2020-05-14T12:34:19
263,185,804
0
0
null
null
null
null
UTF-8
Python
false
false
8,663
py
import pickle import numpy as np import copy import nibabel as nib from tifffile import imsave from unet_utils import crop_img, weights_dir, data_dir, pred_dir, DataGenerator, create_model from keras.models import load_model from keras import backend as K from keras.engine import Model K.tensorflow_backend.set_image_dim_ordering('tf') K.set_image_data_format('channels_first') # doesn't look like I kept using these: # from libtiff import TIFF # from skimage.io._plugins import freeimage_plugin as fi def predict_unet(num_outputs, load_weights_filepath): train_val_test_dict = pickle.load(open( "train_val_test_dict.pkl", "rb" ) ) # this has the test/train ID matches # pickle.dump( results.history, open( weights_dir / f"history_{num_outputs}_pred.pkl", "wb" ) ) # This isn't an ideal way to do things. # I need to find a simpler way around the issue of having custom layers (ValueError: Unknown layer: InstanceNormalization) model = create_model(input_shape=(4, 160, 192, 160), n_base_filters=12, depth=5, dropout_rate=0.3, n_segmentation_levels=3, n_labels=3, num_outputs=num_outputs, optimizer='adam', learning_rate=1e-2, activation_name="sigmoid") model.load_weights(load_weights_filepath, by_name=True) # by_name=True allows you to use a different architecture and bring in the weights from the matching layers # Turned shuffle off so that we can match the values in the dictionary to the predictions. # This way we can compare the predictions side-by-side with the ground truth. params = {'dim': (160,192,160), 'batch_size': 1, 'n_classes': 3, 'n_channels': 4, 'shuffle': False, 'num_outputs': num_outputs} validation_generator = DataGenerator(train_val_test_dict['test'], **params) # # load model # model = load_model(model_path, custom_objects={'InstanceNormalization':unet_utils.InstanceNormalization}) # keras_contrib.layers.normalization.instancenormalization import InstanceNormalization predictions = model.predict_generator(generator=validation_generator) for i, prediction in enumerate(predictions): pickle.dump( prediction, open( pred_dir / f"predictions_{num_outputs}_pred_{i}.pkl", "wb" ) ) def create_tiffs_from_predictions(num_outputs): train_val_test_dict = pickle.load(open( "train_val_test_dict.pkl", "rb" ) ) # this has the test/train ID matches # access the test list: testIDlist = train_val_test_dict['test'] # ID = testIDlist[i] for i in range(len(testIDlist)): # for i in range(2): print("current image:", i) ID = testIDlist[i] img1 = data_dir / f'{ID}_flair.nii.gz' img2 = data_dir / f'{ID}_t1.nii.gz' img3 = data_dir / f'{ID}_t1ce.nii.gz' img4 = data_dir / f'{ID}_t2.nii.gz' img5 = data_dir / f'{ID}_seg.nii.gz' img_list = [str(x) for x in [img1, img2, img3, img4, img5]] newimage = nib.concat_images(img_list) # # nibabel uses .lower on the filepath, which requires the filepath to be string, not the posixpath type from pathlib # newimage = nib.concat_images([img1, img2, img3, img4, img5]) cropped = crop_img(newimage) img_array = np.array(cropped.dataobj) z = np.rollaxis(img_array, 3, 0) padded_image = np.zeros((5, 160, 192, 160)) padded_image[:z.shape[0], :z.shape[1], :z.shape[2], :z.shape[3]] = z a, b, c, d, seg_mask = np.split(padded_image, 5, axis=0) images = np.concatenate([a, b, c, d], axis=0) # print("images shape:", images.shape, "images values:", np.unique(images.astype(int))) # split the channels: # seg_mask_1 = copy.deepcopy(seg_mask.astype(int)) seg_mask_1 = np.zeros((1, 160, 192, 160)) seg_mask_1[seg_mask.astype(int) > 0] = 1 seg_mask_2 = np.zeros((1, 160, 192, 160)) seg_mask_2[seg_mask.astype(int) > 1] = 1 seg_mask_3 = np.zeros((1, 160, 192, 160)) seg_mask_3[seg_mask.astype(int) > 2] = 1 seg_mask_3ch = np.concatenate( [seg_mask_1, seg_mask_2, seg_mask_3], axis=0).astype(int) # def scale_image(image_array): # image_array = image_array.astype(float) # image_array *= 255.0/image_array.max() # convert to 8-bit pixel values # image_array = image_array.astype(int) # return image_array # img_array_list = [a,seg_mask_1,seg_mask_2,seg_mask_3] # for img_array in img_array_list: # img_array = scale_image(img_array) a = a.astype(float) a *= 255.0/a.max() # convert to 8-bit pixel values a = np.rollaxis(a, 0, 2) # cxyz -> xycz for imagej a = np.rollaxis(a, 0, 3) # switching x and z a = a.astype('uint8') # print("unique flair values:", np.unique(a)) seg_mask_1 = seg_mask_1.astype(float) seg_mask_1 *= 255.0/seg_mask_1.max() # convert to 8-bit pixel values seg_mask_1 = np.rollaxis(seg_mask_1, 0, 2) # cxyz -> xycz for imagej seg_mask_1 = np.rollaxis(seg_mask_1, 0, 3) # switching x and z seg_mask_1 = seg_mask_1.astype('uint8') # print("unique segment mask values:", np.unique(seg_mask_1)) seg_mask_2 = seg_mask_2.astype(float) seg_mask_2 *= 255.0/seg_mask_2.max() # convert to 8-bit pixel values seg_mask_2 = np.rollaxis(seg_mask_2, 0, 2) # cxyz -> xycz for imagej seg_mask_2 = np.rollaxis(seg_mask_2, 0, 3) # switching x and z seg_mask_2 = seg_mask_2.astype('uint8') seg_mask_3 = seg_mask_3.astype(float) seg_mask_3 *= 255.0/seg_mask_3.max() # convert to 8-bit pixel values seg_mask_3 = np.rollaxis(seg_mask_3, 0, 2) # cxyz -> xycz for imagej seg_mask_3 = np.rollaxis(seg_mask_3, 0, 3) # switching x and z seg_mask_3 = seg_mask_3.astype('uint8') # ground_truth = np.concatenate( # [a, seg_mask_1, seg_mask_2, seg_mask_3], axis=0).astype('uint8') # print("unique flair + segment mask values:", np.unique(ground_truth)) # shape.ground_truth # flairimg = flairimg.astype(float) # flairimg *= 255.0/flairimg.max() # convert to 8-bit pixel values # flairimg = flairimg.astype(int) # print(np.unique(flairimg)) # print("final image shape:", ground_truth.shape) # imsave("./channel_split/"+testIDlist[i]+"ground_truth.tif", ground_truth, 'imagej') imsave(pred_dir / f"{ID}_flair.tif", a, 'imagej') imsave(pred_dir / f"{ID}_ground_truth_1.tif", seg_mask_1, 'imagej') imsave(pred_dir / f"{ID}_ground_truth_2.tif", seg_mask_2, 'imagej') imsave(pred_dir / f"{ID}_ground_truth_3.tif", seg_mask_3, 'imagej') imarray = pickle.load(open( pred_dir / f"predictions_{num_outputs}_pred_{i}.pkl", "rb" ) ) prediction_thresh = copy.deepcopy(imarray) prediction_thresh[prediction_thresh < 0.5] = 0. prediction_thresh[prediction_thresh >= 0.5] = 1. prediction_thresh = prediction_thresh print(np.unique(prediction_thresh)) prediction_thresh *= 255.0/prediction_thresh.max() # convert to 8-bit pixel values prediction_thresh = prediction_thresh.astype('uint8') prediction_thresh = np.rollaxis(prediction_thresh, 1, 3) # switching x and z; c will be taken care of in split print(np.unique(prediction_thresh)) print(prediction_thresh.shape) pred1, pred2, pred3 = np.split(prediction_thresh, 3, axis=0) imsave(pred_dir / f"{ID}_predicted_1.tif", pred1, 'imagej') imsave(pred_dir / f"{ID}_predicted_2.tif", pred2, 'imagej') imsave(pred_dir / f"{ID}_predicted_3.tif", pred3, 'imagej') # print("images shape:", images.shape, "images values:", np.unique(images.astype(int))) # split the channels: # seg_mask_1 = copy.deepcopy(seg_mask.astype(int)) # seg_mask_3ch = np.concatenate( # [seg_mask_1, seg_mask_2, seg_mask_3], axis=0).astype(int) # imarray *= 255.0/imarray.max() # imsave("./channel_split/"+testIDlist[i]+"ground_truth_1.tif", seg_mask_1, 'imagej') # imsave("./channel_split/"+testIDlist[i]+"ground_truth_2.tif", seg_mask_2, 'imagej') # imsave("./channel_split/"+testIDlist[i]+"ground_truth_3.tif", seg_mask_3, 'imagej') if __name__ == "__main__": num_outputs = 1 predict_unet(num_outputs, './weights/model_weights_3_outputs.h5') create_tiffs_from_predictions(num_outputs)
f76e2a9511e5d7f982695f3e4c56ae5960b336e7
771d7c30e9984eb07ba88f0feb2a52c0ee510549
/备份/1804爬虫/爬虫文件/第三天 (1)/mzcookie_opener.py
c7d9dc7b5c5721f122a7802a30b94c735c19698d
[]
no_license
1615961606/-test
5eae5cab4e82136ecf8f4cbdb9990c3bb9e4839f
81a822d303a07310dafe2af612f932d9f34503c3
refs/heads/master
2020-03-19T01:07:01.851584
2019-04-08T10:54:35
2019-04-08T10:54:35
135,523,902
0
0
null
null
null
null
UTF-8
Python
false
false
739
py
#有时候我们需要将获取到的cookie保存在本地文件中, # 我们需要使用到MozillaCookieJar from http import cookiejar from urllib import request #1设置一个文件名,将cookie保存在这个文件下 filename = 'cookie.txt' #2.创建一个cookiejar对象,用来管理和存储cookie mz_cookiejar = cookiejar.MozillaCookieJar(filename) #3.创建一个HTTPCookieprocessor处理器对象,管理cookiejar handler = request.HTTPCookieProcessor(mz_cookiejar) #自定义一个opener opener = request.build_opener(handler) #使用opener对象发起请求 req = request.Request('http://www.baidu.com/') response = opener.open(req) print(response.status) #使用save方法,保存cookie mz_cookiejar.save()
0e26073101df751e8d715c82ccaac37a322f3dc8
43ec1c06825a39c31b976906f7bded21c19b6019
/google/cloud/talent_v4beta1/services/company_service/transports/grpc_asyncio.py
32721d7b8b24d7c2b9346e0eda6240b2ea168341
[ "Apache-2.0" ]
permissive
renovate-bot/python-talent
b70b036c9d5a6b2887ef428fca853940df067c4b
0413f5114256b8a8c2c157b33aa0cbc1eb9feca5
refs/heads/master
2023-06-07T05:27:59.879356
2021-08-30T16:12:17
2021-08-30T16:12:17
238,039,237
0
0
Apache-2.0
2020-02-03T19:01:22
2020-02-03T19:01:22
null
UTF-8
Python
false
false
16,345
py
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import warnings from typing import Awaitable, Callable, Dict, Optional, Sequence, Tuple, Union from google.api_core import gapic_v1 # type: ignore from google.api_core import grpc_helpers_async # type: ignore from google.auth import credentials as ga_credentials # type: ignore from google.auth.transport.grpc import SslCredentials # type: ignore import packaging.version import grpc # type: ignore from grpc.experimental import aio # type: ignore from google.cloud.talent_v4beta1.types import company from google.cloud.talent_v4beta1.types import company as gct_company from google.cloud.talent_v4beta1.types import company_service from google.protobuf import empty_pb2 # type: ignore from .base import CompanyServiceTransport, DEFAULT_CLIENT_INFO from .grpc import CompanyServiceGrpcTransport class CompanyServiceGrpcAsyncIOTransport(CompanyServiceTransport): """gRPC AsyncIO backend transport for CompanyService. A service that handles company management, including CRUD and enumeration. This class defines the same methods as the primary client, so the primary client can load the underlying transport implementation and call it. It sends protocol buffers over the wire using gRPC (which is built on top of HTTP/2); the ``grpcio`` package must be installed. """ _grpc_channel: aio.Channel _stubs: Dict[str, Callable] = {} @classmethod def create_channel( cls, host: str = "jobs.googleapis.com", credentials: ga_credentials.Credentials = None, credentials_file: Optional[str] = None, scopes: Optional[Sequence[str]] = None, quota_project_id: Optional[str] = None, **kwargs, ) -> aio.Channel: """Create and return a gRPC AsyncIO channel object. Args: host (Optional[str]): The host for the channel to use. credentials (Optional[~.Credentials]): The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is ignored if ``channel`` is provided. scopes (Optional[Sequence[str]]): A optional list of scopes needed for this service. These are only used when credentials are not specified and are passed to :func:`google.auth.default`. quota_project_id (Optional[str]): An optional project to use for billing and quota. kwargs (Optional[dict]): Keyword arguments, which are passed to the channel creation. Returns: aio.Channel: A gRPC AsyncIO channel object. """ return grpc_helpers_async.create_channel( host, credentials=credentials, credentials_file=credentials_file, quota_project_id=quota_project_id, default_scopes=cls.AUTH_SCOPES, scopes=scopes, default_host=cls.DEFAULT_HOST, **kwargs, ) def __init__( self, *, host: str = "jobs.googleapis.com", credentials: ga_credentials.Credentials = None, credentials_file: Optional[str] = None, scopes: Optional[Sequence[str]] = None, channel: aio.Channel = None, api_mtls_endpoint: str = None, client_cert_source: Callable[[], Tuple[bytes, bytes]] = None, ssl_channel_credentials: grpc.ChannelCredentials = None, client_cert_source_for_mtls: Callable[[], Tuple[bytes, bytes]] = None, quota_project_id=None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, always_use_jwt_access: Optional[bool] = False, ) -> None: """Instantiate the transport. Args: host (Optional[str]): The hostname to connect to. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. This argument is ignored if ``channel`` is provided. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is ignored if ``channel`` is provided. scopes (Optional[Sequence[str]]): A optional list of scopes needed for this service. These are only used when credentials are not specified and are passed to :func:`google.auth.default`. channel (Optional[aio.Channel]): A ``Channel`` instance through which to make calls. api_mtls_endpoint (Optional[str]): Deprecated. The mutual TLS endpoint. If provided, it overrides the ``host`` argument and tries to create a mutual TLS channel with client SSL credentials from ``client_cert_source`` or applicatin default SSL credentials. client_cert_source (Optional[Callable[[], Tuple[bytes, bytes]]]): Deprecated. A callback to provide client SSL certificate bytes and private key bytes, both in PEM format. It is ignored if ``api_mtls_endpoint`` is None. ssl_channel_credentials (grpc.ChannelCredentials): SSL credentials for grpc channel. It is ignored if ``channel`` is provided. client_cert_source_for_mtls (Optional[Callable[[], Tuple[bytes, bytes]]]): A callback to provide client certificate bytes and private key bytes, both in PEM format. It is used to configure mutual TLS channel. It is ignored if ``channel`` or ``ssl_channel_credentials`` is provided. quota_project_id (Optional[str]): An optional project to use for billing and quota. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. always_use_jwt_access (Optional[bool]): Whether self signed JWT should be used for service account credentials. Raises: google.auth.exceptions.MutualTlsChannelError: If mutual TLS transport creation failed for any reason. google.api_core.exceptions.DuplicateCredentialArgs: If both ``credentials`` and ``credentials_file`` are passed. """ self._grpc_channel = None self._ssl_channel_credentials = ssl_channel_credentials self._stubs: Dict[str, Callable] = {} if api_mtls_endpoint: warnings.warn("api_mtls_endpoint is deprecated", DeprecationWarning) if client_cert_source: warnings.warn("client_cert_source is deprecated", DeprecationWarning) if channel: # Ignore credentials if a channel was passed. credentials = False # If a channel was explicitly provided, set it. self._grpc_channel = channel self._ssl_channel_credentials = None else: if api_mtls_endpoint: host = api_mtls_endpoint # Create SSL credentials with client_cert_source or application # default SSL credentials. if client_cert_source: cert, key = client_cert_source() self._ssl_channel_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) else: self._ssl_channel_credentials = SslCredentials().ssl_credentials else: if client_cert_source_for_mtls and not ssl_channel_credentials: cert, key = client_cert_source_for_mtls() self._ssl_channel_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) # The base transport sets the host, credentials and scopes super().__init__( host=host, credentials=credentials, credentials_file=credentials_file, scopes=scopes, quota_project_id=quota_project_id, client_info=client_info, always_use_jwt_access=always_use_jwt_access, ) if not self._grpc_channel: self._grpc_channel = type(self).create_channel( self._host, credentials=self._credentials, credentials_file=credentials_file, scopes=self._scopes, ssl_credentials=self._ssl_channel_credentials, quota_project_id=quota_project_id, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) # Wrap messages. This must be done after self._grpc_channel exists self._prep_wrapped_messages(client_info) @property def grpc_channel(self) -> aio.Channel: """Create the channel designed to connect to this service. This property caches on the instance; repeated calls return the same channel. """ # Return the channel from cache. return self._grpc_channel @property def create_company( self, ) -> Callable[ [company_service.CreateCompanyRequest], Awaitable[gct_company.Company] ]: r"""Return a callable for the create company method over gRPC. Creates a new company entity. Returns: Callable[[~.CreateCompanyRequest], Awaitable[~.Company]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "create_company" not in self._stubs: self._stubs["create_company"] = self.grpc_channel.unary_unary( "/google.cloud.talent.v4beta1.CompanyService/CreateCompany", request_serializer=company_service.CreateCompanyRequest.serialize, response_deserializer=gct_company.Company.deserialize, ) return self._stubs["create_company"] @property def get_company( self, ) -> Callable[[company_service.GetCompanyRequest], Awaitable[company.Company]]: r"""Return a callable for the get company method over gRPC. Retrieves specified company. Returns: Callable[[~.GetCompanyRequest], Awaitable[~.Company]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "get_company" not in self._stubs: self._stubs["get_company"] = self.grpc_channel.unary_unary( "/google.cloud.talent.v4beta1.CompanyService/GetCompany", request_serializer=company_service.GetCompanyRequest.serialize, response_deserializer=company.Company.deserialize, ) return self._stubs["get_company"] @property def update_company( self, ) -> Callable[ [company_service.UpdateCompanyRequest], Awaitable[gct_company.Company] ]: r"""Return a callable for the update company method over gRPC. Updates specified company. Returns: Callable[[~.UpdateCompanyRequest], Awaitable[~.Company]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "update_company" not in self._stubs: self._stubs["update_company"] = self.grpc_channel.unary_unary( "/google.cloud.talent.v4beta1.CompanyService/UpdateCompany", request_serializer=company_service.UpdateCompanyRequest.serialize, response_deserializer=gct_company.Company.deserialize, ) return self._stubs["update_company"] @property def delete_company( self, ) -> Callable[[company_service.DeleteCompanyRequest], Awaitable[empty_pb2.Empty]]: r"""Return a callable for the delete company method over gRPC. Deletes specified company. Prerequisite: The company has no jobs associated with it. Returns: Callable[[~.DeleteCompanyRequest], Awaitable[~.Empty]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "delete_company" not in self._stubs: self._stubs["delete_company"] = self.grpc_channel.unary_unary( "/google.cloud.talent.v4beta1.CompanyService/DeleteCompany", request_serializer=company_service.DeleteCompanyRequest.serialize, response_deserializer=empty_pb2.Empty.FromString, ) return self._stubs["delete_company"] @property def list_companies( self, ) -> Callable[ [company_service.ListCompaniesRequest], Awaitable[company_service.ListCompaniesResponse], ]: r"""Return a callable for the list companies method over gRPC. Lists all companies associated with the project. Returns: Callable[[~.ListCompaniesRequest], Awaitable[~.ListCompaniesResponse]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "list_companies" not in self._stubs: self._stubs["list_companies"] = self.grpc_channel.unary_unary( "/google.cloud.talent.v4beta1.CompanyService/ListCompanies", request_serializer=company_service.ListCompaniesRequest.serialize, response_deserializer=company_service.ListCompaniesResponse.deserialize, ) return self._stubs["list_companies"] __all__ = ("CompanyServiceGrpcAsyncIOTransport",)
d76568dec057241b650414033a7585fd422344b3
549317bc0a7230ec163914c75f75dd008900c57b
/pyroomacoustics/tests/test_room_is_insided.py
3d49962456b8076f646ddc7bbaee2b7887245503
[ "MIT" ]
permissive
oucxlw/pyroomacoustics
0bb633427cd7ce3e93392cdc9d0bc3afc5f2dbf3
0adc91579c9c6daf1b73d2c4863a9fc66b308dbb
refs/heads/master
2023-06-17T17:43:49.743201
2021-07-21T05:36:46
2021-07-21T05:36:46
288,884,904
1
0
MIT
2021-07-21T05:36:47
2020-08-20T02:22:54
Python
UTF-8
Python
false
false
2,248
py
import numpy as np import pyroomacoustics as pra def test_room_is_inside(): # fix the seed for repeatable testing np.random.seed(0) # This was a problematic case # if the source is placed at the same height as one of the corners # the test would fail, even though the source is in the room floorplan = [ [0, 6, 6, 2, 0], [0, 0, 5, 5, 3] ] source_loc = [ 2, 3 ] # same y-coordinate as the corner at [0, 3] room = pra.Room.from_corners(floorplan) room.add_source(source_loc) for i in range(100): # because the test is randomized, let's check many times assert room.is_inside([0,0], include_borders=True) assert not room.is_inside([0,0], include_borders=False) assert room.is_inside([3,0], include_borders=True) assert not room.is_inside([3,0], include_borders=False) assert room.is_inside([1,4], include_borders=True) assert not room.is_inside([1,4], include_borders=False) assert room.is_inside([0,1], include_borders=True) assert not room.is_inside([0,1], include_borders=False) assert not room.is_inside([0.5,4], include_borders=False) # now test in 3D room.extrude(4.) for i in range(100): # because the test is randomized, let's check many times assert room.is_inside([2, 3, 1.7]) assert not room.is_inside([0.5, 4, 1.8]) assert not room.is_inside([0.5, 4, 1.8]) assert room.is_inside([0,0,0], include_borders=True) assert not room.is_inside([0,0,0], include_borders=False) assert room.is_inside([3,0,0], include_borders=True) assert not room.is_inside([3,0,0], include_borders=False) assert room.is_inside([0,1,0], include_borders=True) assert not room.is_inside([0,1,0], include_borders=False) assert room.is_inside([3,2,0], include_borders=True) assert not room.is_inside([3,2,0], include_borders=False) assert room.is_inside([1,4,3], include_borders=True) assert not room.is_inside([1,4,3], include_borders=False) assert not room.is_inside([2,2,7]) assert not room.is_inside([2,2,-7]) if __name__ == '__main__': test_room_is_inside()
f832f81e49e1c70f75a87ad822f0a71408bcd878
dc221edce0ad617aac3b9ad8f4f347ff84f56bf9
/.history/env/sim_20200805143251.py
242268c2da33aec8fc7e1b122fd06d49cdc6e028
[]
no_license
zlm05170/cacontroller
310014c83ecf130643230eba87990e635fe1575f
e76d2eb5d58d6adfe7823e0dcd0059027c52b6bc
refs/heads/master
2022-12-21T08:05:58.315017
2020-09-23T11:45:07
2020-09-23T11:45:07
284,527,141
1
0
null
null
null
null
UTF-8
Python
false
false
332
py
class Sim(): def __init__(self): self.running = True self.actor_list = [] def isRunning(self): return self.running def update(self): for actor in self.actor_list: actor.update() def add_actor(self): print(0) sim = Sim() while sim.isRunning(): sim.update()
e35f76e578a9be895bc6fe5bd17d24525b6c2d83
5ae01ab82fcdedbdd70707b825313c40fb373fa3
/scripts/charonInterpreter/parsers/MaterialBlock/IncompleteIonizationDonor/charonLineParserIonizationEnergy.py
2ef6d351a57e960f50d56e19dfefba626502aca9
[]
no_license
worthenmanufacturing/tcad-charon
efc19f770252656ecf0850e7bc4e78fa4d62cf9e
37f103306952a08d0e769767fe9391716246a83d
refs/heads/main
2023-08-23T02:39:38.472864
2021-10-29T20:15:15
2021-10-29T20:15:15
488,068,897
0
0
null
2022-05-03T03:44:45
2022-05-03T03:44:45
null
UTF-8
Python
false
false
5,602
py
from __future__ import print_function import copy class charonLineParserIonizationEnergy: "IonizationEnergy parser" def __init__(self): # Register the parsing keys self.parserName = "IonizationEnergy" self.parsingKey = "ionization energy" self.parsingKeyOptional = [] self.interpreterHelpLine = "ionization energy = {valueIonizationEnergy} " self.interpreterQuickHelp = "Specify incomplete ionization energy for donor dopant type." self.interpreterLongHelp = "Specify incomplete ionization energy for donor dopant type." # Register the xml required lines self.xmlRequiredLines = [] self.xmlRequiredLinePriority = [] self.xmlRequiredLines.append("Charon->Closure Models->{MaterialBlockName}->Incomplete Ionized Donor->Model,Ionization Energy,double,{valueIonizationEnergy}") self.xmlRequiredLinePriority.append(2) self.xmlNewRequiredLines = [] # Register the xml required arguments and their indexes self.xmlRequiredArgument = [] self.xmlRequiredArgument.append("{valueIonizationEnergy}") self.xmlRequiredArgumentIndexes = [] self.xmlRequiredArgumentIndexes.append("3") # Register the xml optional lines self.xmlOptionalLines = [[]] self.xmlOptionalLinePriority = [[]] # Register the xml optional arguments and their indexes self.xmlOptionalArgument = [] self.xmlOptionalArgumentIndexes = [] # Register the xml default lines self.xmlDefaultLines = [] self.xmlDefaultLinePriority = [] self.xmlReturned = [] self.xmlPriorityCode = [] def isThisMe(self,tokenizer,line): # Tokenize the line lineTokens = tokenizer.tokenize(line) # Tokenize the parsing key parsingTokens = self.parsingKey.split() returnType = True for itoken in range(len(parsingTokens)): if itoken+1 > len(lineTokens): return False if lineTokens[itoken].lower() != parsingTokens[itoken].lower(): returnType = False return returnType def getName(self): # Return parser name return self.parserName def getHelp(self,verbosity): # Return help content if verbosity.lower() == "long": return (self.interpreterHelpLine,self.interpreterLongHelp) else: return (self.interpreterHelpLine,self.interpreterQuickHelp) def generateXML(self,tokenizer,line): # Tokenize the line lineTokens = tokenizer.tokenize(line) self.xmlNewRequiredLines[:] = [] for xL in self.xmlRequiredLines: self.xmlNewRequiredLines.append(xL) for ipar in range(len(self.xmlRequiredArgument)): line.replace(self.xmlRequiredArgument[ipar],lineTokens[int(self.xmlRequiredArgumentIndexes[ipar])]) for iRLine in range(len(self.xmlRequiredLines)): self.xmlNewRequiredLines[iRLine]=self.xmlNewRequiredLines[iRLine].replace(self.xmlRequiredArgument[ipar],lineTokens[int(self.xmlRequiredArgumentIndexes[ipar])]) for index,xmlLine in enumerate(self.xmlNewRequiredLines): self.xmlReturned.append(xmlLine) self.xmlPriorityCode.append(self.xmlRequiredLinePriority[index]) #required lines have priority code 2 # Look over input line to see if any options are called out. optCounter = 0 optIndex = 0 for optKey in self.parsingKeyOptional: # Tokenize the opt keys foundOptionalKey = False optKeyTokens = optKey.split() for iLT in range(len(lineTokens)): if lineTokens[iLT].lower() == optKeyTokens[0]: if len(optKeyTokens) == 1: optIndex = iLT foundOptionalKey = True else: for iPK in range(len(optKeyTokens)-1): optIndex = iLT if iLT+iPK+1 > len(lineTokens)-1: continue if optKeyTokens[iPK+1] == lineTokens[iLT+iPK+1].lower(): if iPK+2 == len(optKeyTokens): foundOptionalKey = True else: continue #Found the key, now create the xml line if foundOptionalKey == True: self.Returned=copy.deepcopy(self.xmlOptionalLines[optCounter]) for iopt in range(len(self.xmlOptionalLines[optCounter])): for ipar in range(len(self.xmlOptionalArgument[optCounter])): self.Returned[iopt] = self.Returned[iopt].replace(self.xmlOptionalArgument[optCounter][ipar],lineTokens[optIndex+int(self.xmlOptionalArgumentIndexes[optCounter][ipar])]) for ipar in range(len(self.xmlRequiredArgument)): self.Returned[iopt] = self.Returned[iopt].replace(self.xmlRequiredArgument[ipar],lineTokens[int(self.xmlRequiredArgumentIndexes[ipar])]) self.xmlReturned.append(self.Returned[iopt]) self.xmlPriorityCode.append(2) #optional lines have priority code 2 optCounter += 1 for xmlLine in self.xmlDefaultLines: self.xmlReturned.append(xmlLine) self.xmlPriorityCode.append(1) #optional lines have priority code 1 return (self.xmlReturned,self.xmlPriorityCode)
a50c8907cabee913bacdeff6e3fb16fbd0d147ca
47b49ee4d14254cea00a839123fe5d68f0938959
/notifierlib/channels/jabber.py
109b7df750b2db4e45884d0d3509212e97fcd8d8
[ "MIT" ]
permissive
wefner/notifierlib
35d8b9c754803821462e647239bfd0be564c0a40
0eeec7aef278f66262b1dceab296b5f115e372c3
refs/heads/master
2021-06-30T22:27:06.147554
2017-09-19T13:14:37
2017-09-19T13:14:37
104,245,027
0
0
null
2017-09-20T17:12:26
2017-09-20T17:12:26
null
UTF-8
Python
false
false
6,372
py
#!/usr/bin/env python # -*- coding: UTF-8 -*- # File: jabber.py import sleekxmpp import logging from notifierlib.notifierlib import Channel __author__ = '''Costas Tyfoxylos <[email protected]>, Argiris Gounaris <[email protected]>''' __docformat__ = 'plaintext' __date__ = '''19-09-2017''' class XmppClient(sleekxmpp.ClientXMPP): """A basic SleekXMPP bot, logs in, sends message, logs out.""" def __init__(self, user_id, password, recipient, message, server, port, tls=False, ssl=True, reattempt=False): super(XmppClient, self).__init__(user_id, password) self._logger = logging.getLogger(self.__class__.__name__) self.recipient = recipient self.message = message self.server = server self.port = port self.tls = tls self.ssl = ssl self.reattempt = reattempt self.add_event_handler('session_start', self.start) self.register_plugin('xep_0030') # Service Discovery self.register_plugin('xep_0199') # XMPP Ping # Connect to the XMPP server and start processing XMPP stanzas. if not self.connect((self.server, self.port), use_tls=self.tls, use_ssl=self.ssl, reattempt=self.reattempt): message = ('Could not connect to ' '{server}:{port}').format(server=self.server, port=self.port) self._logger.error(message) raise SyntaxError(message) self.process(block=True) def start(self, event): _ = event # noqa self.send_message(mto=self.recipient, mbody=self.message, mtype='chat') self.disconnect(wait=True) class XmppGroupClient(sleekxmpp.ClientXMPP): """A basic SleekXMPP bot, logs in, sends message, logs out.""" def __init__(self, user_id, password, room, nickname, message, server, port, room_password=None, tls=False, ssl=True, reattempt=False): super(XmppGroupClient, self).__init__(user_id, password) self._logger = logging.getLogger(self.__class__.__name__) self.room = room self.room_password = room_password self.nickname = nickname self.message = message self.server = server self.port = port self.tls = tls self.ssl = ssl self.reattempt = reattempt self.add_event_handler('session_start', self.start) self.register_plugin('xep_0030') # Service Discovery self.register_plugin('xep_0045') # Multi-User Chat self.register_plugin('xep_0199') # XMPP Ping # Connect to the XMPP server and start processing XMPP stanzas. if not self.connect((self.server, self.port), use_tls=self.tls, use_ssl=self.ssl, reattempt=self.reattempt): message = ('Could not connect to ' '{server}:{port}').format(server=self.server, port=self.port) self._logger.error(message) raise SyntaxError(message) self.process(block=True) def start(self, event): _ = event # noqa self.plugin['xep_0045'].joinMUC(self.room, self.nickname, # If a room password is needed, use: password=self.room_password, wait=True) self.send_message(mto=self.room, mbody=self.message, mtype='groupchat') self.disconnect(wait=True) class Jabber(Channel): def __init__(self, name, user_id, password, recipient_id, server, port, tls=False, ssl=True, reattempt=False): super(Jabber, self).__init__(name) self.user = user_id self.password = password self.server = server self.recipient = recipient_id self.port = port self.tls = tls self.ssl = ssl self.reattempt = reattempt def notify(self, **kwargs): message = kwargs.get('message') _ = XmppClient(self.user, # noqa self.password, self.recipient, message, self.server, self.port, self.tls, self.ssl, self.reattempt) return True class JabberGroup(Channel): def __init__(self, name, user_id, password, room, nickname, server, port, room_password=None, tls=False, ssl=True, reattempt=False): super(JabberGroup, self).__init__(name) self.user = user_id self.password = password self.nickname = nickname self.room = room self.room_password = room_password self.server = server self.port = port self.tls = tls self.ssl = ssl self.reattempt = reattempt def notify(self, **kwargs): message = kwargs.get('message') _ = XmppGroupClient(self.user, # noqa self.password, self.room, self.nickname, message, self.server, self.port, self.room_password, self.tls, self.ssl, self.reattempt) return True
d8458f6e25f605602bc2ada1071b2c5365b26943
54c08823016949aa23ff1d372cf70778e6f88758
/raylab/policy/model_based/sampling_mixin.py
bea9c129c44620da8d861320dda315db82a141cb
[ "MIT" ]
permissive
jCrompton/raylab
b4d41c446bc4d8d9ea42ebfdfad59c61956bfe98
9773d6fb942c06c65fe5297a8275f86649966abd
refs/heads/master
2022-11-05T21:59:06.704075
2020-06-08T15:36:20
2020-06-08T15:36:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,338
py
"""Environment model handling mixins for TorchPolicy.""" from dataclasses import dataclass from typing import List import numpy as np import torch from dataclasses_json import DataClassJsonMixin from numpy.random import Generator from ray.rllib import SampleBatch from torch.nn import Module @dataclass(frozen=True) class SamplingSpec(DataClassJsonMixin): """Specifications for sampling from the model. Attributes: num_elites: Use this number of best performing models to sample transitions rollout_length: Lenght of model-based rollouts from each initial state extracted from input sample batch """ num_elites: int = 1 rollout_length: int = 1 def __post_init__(self): assert self.num_elites > 0, "Must have at least one elite model to sample from" assert ( self.rollout_length > 0 ), "Length of model-based rollouts must be positive" class ModelSamplingMixin: """Adds model sampling behavior to a TorchPolicy class. Expects: * A `self.reward_fn` callable that computes the reward tensors for a batch of transitions * A `self.termination_fn` callable that computes the termination tensors for a batch of transitions * A `models` attribute in `self.module` * A `self.config` dict attribute * A `model_sampling` dict in `self.config` * A `seed` int in `self.config` Attributes: model_sampling_spec: Specifications for model training and sampling elite_models: Sequence of the `num_elites` best models sorted by performance. Initially set using the policy's model order. rng: Random number generator for choosing from the elite models for sampling. """ model_sampling_spec: SamplingSpec elite_models: List[Module] rng: Generator def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.model_sampling_spec = SamplingSpec.from_dict(self.config["model_sampling"]) models = self.module.models num_elites = self.model_sampling_spec.num_elites assert num_elites <= len(models), "Cannot have more elites than models" self.elite_models = list(models[:num_elites]) self.rng = np.random.default_rng(self.config["seed"]) def setup_sampling_models(self, losses: List[float]): """Update the elite models based on model losses. Args: losses: list of model losses following the order of the ensemble """ models = self.module.models self.elite_models = [models[i] for i in np.argsort(losses)] @torch.no_grad() def generate_virtual_sample_batch(self, samples: SampleBatch) -> SampleBatch: """Rollout model with latest policy. Produces samples for populating the virtual buffer, hence no gradient information is retained. If a transition is terminal, the next transition, if any, is generated from the initial state passed through `samples`. Args: samples: the transitions to extract initial states from Returns: A batch of transitions sampled from the model """ virtual_samples = [] obs = init_obs = self.convert_to_tensor(samples[SampleBatch.CUR_OBS]) for _ in range(self.model_sampling_spec.rollout_length): model = self.rng.choice(self.elite_models) action, _ = self.module.actor.sample(obs) next_obs, _ = model.sample(obs, action) reward = self.reward_fn(obs, action, next_obs) done = self.termination_fn(obs, action, next_obs) transition = { SampleBatch.CUR_OBS: obs, SampleBatch.ACTIONS: action, SampleBatch.NEXT_OBS: next_obs, SampleBatch.REWARDS: reward, SampleBatch.DONES: done, } virtual_samples += [ SampleBatch({k: v.numpy() for k, v in transition.items()}) ] obs = torch.where(done.unsqueeze(-1), init_obs, next_obs) return SampleBatch.concat_samples(virtual_samples) @staticmethod def model_sampling_defaults(): """The default configuration dict for model sampling.""" return SamplingSpec().to_dict()
88c81310c694092a2f288b858519b4dc9d54fdca
0b38b3d237044b605a519e1aadb298e254c96a6a
/app.py
98eaa7437e240c19d9f07fb20498e32121e58693
[]
no_license
imapex/boilerplate
100355bec3414bd0874fc47e5ff8cdad4464b054
810a2de2ceb6120dd57a64324c6b8581113d348f
refs/heads/master
2023-02-03T19:54:25.074233
2019-08-22T15:13:21
2019-08-22T15:13:21
64,156,013
2
4
null
2023-02-02T06:13:08
2016-07-25T17:53:14
HTML
UTF-8
Python
false
false
862
py
from flask import Flask, render_template, request from flask_restful import Api from views.topology import topology from views.dashboard import dashboard from views.device import device_list from views.patterns import patterns from api.device import Device from api.topology import Topology app = Flask(__name__) api = Api(app) @app.route('/') def index(): return render_template('index.html') api.add_resource(Device, '/api/device') api.add_resource(Topology, '/api/topology') app.add_url_rule('/topology', endpoint='topology-view', view_func=topology) app.add_url_rule('/device', endpoint='device-list', view_func=device_list) app.add_url_rule('/dashboard', endpoint='dashboard', view_func=dashboard) app.add_url_rule('/patterns', endpoint='patterns', view_func=patterns) if __name__ == '__main__': app.run(host='127.0.0.1', port=5000, debug=True)
84442f858cf23a277156002041062239855c2fd2
b8fe7c1769a274964d289d05c1594f2d9f702560
/devel/lib/python2.7/dist-packages/mavros_msgs/msg/_Param.py
f381bb69fd314372e108aa5a3242a0ff31759278
[]
no_license
amilearning/mavros_ws
f3f19c98562cb6fab00e3735b5798dc8fc65652f
b822676abb0a36fe34f7e4064a162db0ddd75fe5
refs/heads/master
2023-06-30T08:27:45.134723
2021-07-16T06:52:35
2021-07-16T06:52:35
386,538,954
0
0
null
null
null
null
UTF-8
Python
false
false
119
py
/home/hojin/drone_ws/ethz_ws/mavros_ws/devel/.private/mavros_msgs/lib/python2.7/dist-packages/mavros_msgs/msg/_Param.py
7d41b30ed78b8b2b0274008e2dd827b812ad3c4b
69e6c93e5d9cc0ad3fcc8d595aff95c71609f13e
/tests/test_nh_32bit.py
2fe18a2a1d465780ee3c2bc08a8405deba44d4fa
[ "GPL-2.0-only", "BSD-2-Clause", "BSD-3-Clause" ]
permissive
atsgen/tf-vrouter
2d27e233774bc5116e964c403f3332df7633afc7
c95daa24744bdeb4839f63ebd057552f18404171
refs/heads/master
2023-02-16T15:37:58.986288
2021-01-15T06:45:23
2021-01-15T06:45:23
290,211,517
0
0
BSD-2-Clause
2020-08-25T12:40:00
2020-08-25T12:39:59
null
UTF-8
Python
false
false
3,288
py
#!/usr/bin/python import os import sys sys.path.append(os.getcwd()) sys.path.append(os.getcwd() + '/lib/') from imports import * # noqa # anything with *test* will be assumed by pytest as a test class TestNh32(unittest.TestCase): @classmethod def setup_class(cls): ObjectBase.setUpClass() ObjectBase.set_auto_features(cleanup=True) @classmethod def teardown_class(cls): ObjectBase.tearDownClass() def setup_method(self, method): ObjectBase.setUp(method) def teardown_method(self, method): ObjectBase.tearDown() # tc to add, del nh with nhid > 65k def test1_nh32(self): # Add a Vif interface vif = VirtualVif( name="tap_1", ipv4_str="1.1.1.10", mac_str="de:ad:be:ef:00:02", idx=1, flags=None, nh_idx=494949, ipv6_str="571:3896:c427:3738:30c4:fd9f:720e:fefe") vif.sync() # Query the vif back vif_get = VirtualVif( name="tap_1", ipv4_str="1.1.1.10", mac_str="fe:ad:be:ef:00:02", idx=1, flags=None, h_op=constants.SANDESH_OPER_GET) vif_get.sync() self.assertEqual(494949, vif_get.get_vif_nh_id()) # Add NH encap_nh = EncapNextHop( encap_oif_id=vif.idx(), encap="de ad be ef 01 02 de ad be ef 00 01 08 00", nh_idx=490496, nh_family=constants.AF_BRIDGE) encap_nh.sync() # Get the same NH back nh_get = EncapNextHop( encap_oif_id=vif.idx(), encap=None, nh_idx=490496, nh_family=constants.AF_BRIDGE, h_op=constants.SANDESH_OPER_GET) nh_get.sync() self.assertEqual(490496, nh_get.get_nh_idx()) self.assertEqual(constants.AF_BRIDGE, nh_get.get_nh_family()) self.assertEqual(constants.NH_TYPE_ENCAP, nh_get.get_nh_type()) # tc to add, del flow with nhid > 65k def test2_nh32(self): # Add vif - 10.1.1.1 vif1 = VirtualVif( name="tap_1", ipv4_str="10.1.1.1", mac_str="de:ad:be:ef:00:02", idx=1, nh_idx=494949, flags=None) vif1.sync() # Add 2nd vif - 10.1.1.2 vif2 = VirtualVif( name="tap_2", ipv4_str="10.1.1.2", mac_str="ed:da:eb:fe:00:03", nh_idx=474747, flags=None, idx=2) vif2.sync() # Add NH encap_nh = EncapNextHop( encap_oif_id=vif2.idx(), encap="de ad be ef 01 02 de ad be ef 00 01 08 00", nh_idx=474747, nh_family=constants.AF_BRIDGE) encap_nh.sync() # Add route which points to the NH rt = BridgeRoute( vrf=0, mac_str="de:ad:be:ef:02:02", nh_idx=474747) rt.sync() # Add flow flow = InetFlow( sip='1.1.1.1', dip='2.2.2.2', sport=31, dport=31, proto=17, action=2, src_nh_idx=494949, flow_nh_idx=594949) flow.sync(resp_required=True) flow.delete()
37b53d420486df7030ee6727a9bb4e5d031b98de
d5463d1efdf17941ca3fd79ef106a3db9be48fbc
/booktest/admin.py
61b22a340409278043c70630021506ed840b0214
[]
no_license
holyzhang1314/test11
8d81a408f67bbd010c15429eecfe70ce82ab60c8
24f927a87d4e96a0a5632e73408c9c5abce5c8ab
refs/heads/master
2020-03-19T00:13:35.110758
2018-05-30T15:39:18
2018-05-30T15:39:18
135,464,185
0
0
null
null
null
null
UTF-8
Python
false
false
385
py
from django.contrib import admin from booktest.models import BookInfo,HeroInfo # Register your models here. class BookInfoAdmin(admin.ModelAdmin): list_display = ['id','btitle','bpub_date'] class HeroInfoAdmin(admin.ModelAdmin): list_display = ['id','hname','hgender','hcomment'] admin.site.register(BookInfo,BookInfoAdmin) admin.site.register(HeroInfo,HeroInfoAdmin)
fa3a1c7dc5841b9a1f6b5f0dc876c827ea15a115
9e84a433007ed4f6b2f9fc40f17a6fc5deb8603c
/frontbackend/Polaris/migrations_bak/0032_auto_20190514_1130.py
5143de7c52d0c09775f5fb48da2b2e4d6aa5af9b
[]
no_license
wellwang1993/glbs
8a654bcd2b5e06a823112b6f07f324753f8a1034
a96cd8a949bfae06026c2b9f9fa2ec0230997932
refs/heads/master
2020-05-16T04:56:07.019399
2019-07-26T11:22:21
2019-07-26T11:22:21
182,794,117
0
1
null
null
null
null
UTF-8
Python
false
false
425
py
# Generated by Django 2.1.2 on 2019-05-14 11:30 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('Polaris', '0031_tb_fact_dnszone_info'), ] operations = [ migrations.RemoveField( model_name='tb_fact_view_info', name='view_type', ), migrations.DeleteModel( name='tb_fact_view_info', ), ]
[ "root@localhost" ]
root@localhost
141cdf073eba87447e04afe683e7d304141d170d
10920b11a22a20f9a7f63157818327f3c4e41888
/Final_Project_BIR/Robot_arm/demo_002.py
1a17f31ef610acdfaaa212131cad6479e3b77a34
[]
no_license
dsall/computerv
e331b3d025c8cec0119b789107d1fef18d08f02a
40671d618c31ad9d9b20fc902a218a8e281098bc
refs/heads/master
2021-09-15T09:33:08.495580
2018-05-29T23:41:42
2018-05-29T23:41:42
135,363,332
0
0
null
null
null
null
UTF-8
Python
false
false
461
py
import numpy from arm import Arm from board import Board a = Arm.connect() b = Board.connect(verbose=True) while 1: pot = b.get_pot() pho = b.get_photo() fx = round(numpy.interp(pot, [0, 1], [190, 210])) fy = round(numpy.interp(pot, [0, 1], [-200, 200])) fz = round(numpy.interp(pot, [0, 0.5, 1], [50, 300, 50])) print(pot, fx, fy, fz) a.goto(fx, fy, fz, wait=True) if pho > 0.8: a.grab(False) if pho < 0.8: a.grab(True)
c6aabf9bb04b6c5f151ac01e844bdefdc7b49cb2
6a2a4f97009e31e53340f1b4408e775f3051e498
/Iniciante/p2139.py
4fe3e0111f40176ba65920fe08df23ba24da9d0c
[]
no_license
rafacasa/OnlineJudgePythonCodes
34c31f325cccb325f074492b40591ad880175816
030c18f9020898fdc4f672f9cc17723236e1271d
refs/heads/master
2023-07-15T12:09:45.534873
2023-06-27T00:24:03
2023-06-27T00:24:03
250,595,994
0
0
null
null
null
null
UTF-8
Python
false
false
609
py
from datetime import datetime while True: try: mes, dia = map(int, input().split()) data = datetime(day=dia, month=mes, year=2016) natal = datetime(day=25, month=12, year=2016) if data > natal: print('Ja passou!') continue if data == natal: print('E natal!') continue diferenca = natal - data dias = diferenca.days if dias == 1: print('E vespera de natal!') else: print('Faltam {:d} dias para o natal!'.format(dias)) except EOFError: break
f85638ba486b3870c34ad06f582151b51107b7b2
56470dbd199578f73f9c5b676d19b4774960a68d
/src/CNVRepeat/main.py
af7442c4e6be8f0a2d80549918df51ca5b995614
[ "MIT" ]
permissive
bioCKO/CNVRepeat
a646fa729db6f2b8cca718b0a1dc78b5b848b149
e6b9b90599bf973f523a879ad66f836f82a45bf2
refs/heads/master
2021-03-12T01:26:51.315608
2017-09-15T22:56:20
2017-09-15T22:56:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,856
py
#the package use modules from grocsvs (https://github.com/grocsvs/grocsvs) as basis for designing the pipeline. from __future__ import print_function import argparse import collections import json import logging import sys import os from CNVRepeat import log from CNVRepeat import options as opts from CNVRepeat import pipeline from CNVRepeat import analysis def load_config(config_path): try: config = json.load(open(config_path)) except ValueError as err: print("Error parsing configuration file '{}': '{}'\n Check that this is a properly formatted JSON file!".format(config_path, err)) sys.exit(1) options = opts.Options.deserialize(config, config_path) return options def run(options): analysis_steps = prepare_analysis(options) runner = pipeline.Runner(options) print("Running") for analysis_name, analysis_step in analysis_steps.items(): print ('Running analysis: "{}"'.format(analysis_name)) runner.run_stage(analysis_step, analysis_name) def prepare_analysis(options): analysis_steps = collections.OrderedDict() if options.method == 'single_copy_exon': if not os.path.exists(options.bed) or not os.path.splitext(options.bed)[1] == '.bed': analysis_steps["Single Copy Exon"] = analysis.single_copy_exon.SingleCopyExonStep analysis_steps["Genome Coverage Estimator"] = analysis.estimate_genome_coverage_bed.EstimateGenomeCoverageStep analysis_steps["Genome Coverage Merger"] = analysis.estimate_genome_coverage_bed.CombineGenomeCoverageStep elif options.method == 'single_copy_exon': if not os.path.exists(options.bed) or not os.path.splitext(options.bed)[1] == '.bed': analysis_steps["Random Region"] = analysis.single_copy_exon.RandomRegionStep analysis_steps["Genome Coverage Estimator"] = analysis.estimate_genome_coverage_bed.EstimateGenomeCoverageStep analysis_steps["Genome Coverage Merger"] = analysis.estimate_genome_coverage_bed.CombineGenomeCoverageStep elif options.method == 'goleft': analysis_steps["Genome Coverage Estimator Goleft"] = analysis.estimate_genome_coverage_bed.EstimateGenomeCoverageGoleftStep analysis_steps["Repaet Coverage Estimator"] = analysis.estimate_repeat_coverage.EstimateRepeatCoverageStep analysis_steps["Repeat Copy Number"] = analysis.estimate_repeat_copy_number.EstimateRepeatCopyNumberStep return analysis_steps def main(): parser = argparse.ArgumentParser(description="CNVRepeat: estimate copy number of repeat sequence in the genome") parser.add_argument("--config", help="Path to configuration.json file") parser.add_argument("--local", action="store_true", help="run job locally in multiprocess mode") parser.add_argument("--scheduler", help="run job using scheduler, SLURM, SGE, PBS/Torque") parser.add_argument("--cpu", default=1, help="number of cpu") parser.add_argument("--method", default='goleft', help="method for estimation of genome coverage: goleft, single_copy_exon, random_region") parser.add_argument("--random_dna_length", default=1000, help="length of DNA for random selection of method random_region") parser.add_argument("--random_dna_number", default=100000, help="number of DNA for random selection of method random_region") parser.add_argument("--debug", action="store_true", help="run in debug mode") args = parser.parse_args() if len(sys.argv) <= 1: parser.print_help() sys.exit(1) options = load_config(args.config) options.debug = args.debug options.method = args.method options.random_dna_length = args.random_dna_length options.random_dna_number = args.random_dna_number log.log_command(options, sys.argv) run(options) if __name__ == '__main__': main()
95de5df7a22b6a56135887f66ed343865118bf9f
ea2b40a2b2209db1c363833e33d77086e1a4b023
/tests/robust/test_min_param_perturbation.py
aeed86f73b1fcb5e15fcf33cf1dd469ca4ea4944
[ "BSD-3-Clause" ]
permissive
kopalgarg/captum
3ecb8de09c2a0e0efa487c67638abb0bb7870d1f
67a3ddcb627f008cf0c23df7b10bc50d75324efe
refs/heads/master
2023-06-15T18:00:54.449011
2021-07-04T21:45:58
2021-07-04T21:46:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,092
py
#!/usr/bin/env python3 from typing import List import torch from torch import Tensor from captum.robust import MinParamPerturbation from tests.helpers.basic import BaseTest, assertTensorAlmostEqual from tests.helpers.basic_models import BasicModel, BasicModel_MultiLayer def inp_subtract(inp: Tensor, ind: int = 0, add_arg: int = 0) -> Tensor: inp_repeat = 1.0 * inp inp_repeat[0][ind] -= add_arg return inp_repeat def add_char(inp: List[str], ind: int = 0, char_val: int = 0) -> List[str]: list_copy = list(inp) list_copy[ind] = chr(122 - char_val) + list_copy[ind] return list_copy def add_char_batch(inp: List[List[str]], ind: int, char_val: int) -> List[List[str]]: return [add_char(elem, ind, char_val) for elem in inp] def text_preproc_fn(inp: List[str]) -> Tensor: return torch.tensor([float(ord(elem[0])) for elem in inp]).unsqueeze(0) def batch_text_preproc_fn(inp: List[List[str]]) -> Tensor: return torch.cat([text_preproc_fn(elem) for elem in inp]) def alt_correct_fn(model_out: Tensor, target: int, threshold: float) -> bool: if all(model_out[:, target] > threshold): return True return False class Test(BaseTest): def test_minimal_pert_basic_linear(self) -> None: model = BasicModel() inp = torch.tensor([[2.0, -9.0, 9.0, 1.0, -3.0]]) minimal_pert = MinParamPerturbation( forward_func=lambda x: model(x) + torch.tensor([[0.000001, 0.0, 0.0, 0.0, 0.0]]), attack=inp_subtract, arg_name="add_arg", arg_min=0.0, arg_max=1000.0, arg_step=1.0, ) target_inp, pert = minimal_pert.evaluate( inp, target=0, attack_kwargs={"ind": 0} ) self.assertAlmostEqual(pert, 2.0) assertTensorAlmostEqual( self, target_inp, torch.tensor([[0.0, -9.0, 9.0, 1.0, -3.0]]) ) def test_minimal_pert_basic_binary(self) -> None: model = BasicModel() inp = torch.tensor([[2.0, -9.0, 9.0, 1.0, -3.0]]) minimal_pert = MinParamPerturbation( forward_func=lambda x: model(x) + torch.tensor([[0.000001, 0.0, 0.0, 0.0, 0.0]]), attack=inp_subtract, arg_name="add_arg", arg_min=0.0, arg_max=1000.0, arg_step=1.0, mode="binary", ) target_inp, pert = minimal_pert.evaluate( inp, target=0, attack_kwargs={"ind": 0}, perturbations_per_eval=10, ) self.assertAlmostEqual(pert, 2.0) assertTensorAlmostEqual( self, target_inp, torch.tensor([[0.0, -9.0, 9.0, 1.0, -3.0]]) ) def test_minimal_pert_preproc(self) -> None: model = BasicModel_MultiLayer() text_inp = ["abc", "zyd", "ghi"] minimal_pert = MinParamPerturbation( forward_func=model, attack=add_char, arg_name="char_val", arg_min=0, arg_max=26, arg_step=1, preproc_fn=text_preproc_fn, apply_before_preproc=True, ) target_inp, pert = minimal_pert.evaluate( text_inp, target=1, attack_kwargs={"ind": 1} ) self.assertEqual(pert, None) self.assertEqual(target_inp, None) def test_minimal_pert_alt_correct(self) -> None: model = BasicModel_MultiLayer() text_inp = ["abc", "zyd", "ghi"] minimal_pert = MinParamPerturbation( forward_func=model, attack=add_char, arg_name="char_val", arg_min=0, arg_max=26, arg_step=1, preproc_fn=text_preproc_fn, apply_before_preproc=True, correct_fn=alt_correct_fn, num_attempts=5, ) expected_list = ["abc", "ezyd", "ghi"] target_inp, pert = minimal_pert.evaluate( text_inp, target=1, attack_kwargs={"ind": 1}, correct_fn_kwargs={"threshold": 1200}, perturbations_per_eval=5, ) self.assertEqual(pert, 21) self.assertListEqual(target_inp, expected_list) target_inp_single, pert_single = minimal_pert.evaluate( text_inp, target=1, attack_kwargs={"ind": 1}, correct_fn_kwargs={"threshold": 1200}, ) self.assertEqual(pert_single, 21) self.assertListEqual(target_inp_single, expected_list) def test_minimal_pert_additional_forward_args(self) -> None: model = BasicModel_MultiLayer() text_inp = [["abc", "zyd", "ghi"], ["abc", "uyd", "ghi"]] additional_forward_args = torch.ones((2, 3)) * -97 model = BasicModel_MultiLayer() minimal_pert = MinParamPerturbation( forward_func=model, attack=add_char_batch, arg_name="char_val", arg_min=0, arg_max=26, arg_step=1, preproc_fn=batch_text_preproc_fn, apply_before_preproc=True, correct_fn=alt_correct_fn, ) expected_list = [["abc", "uzyd", "ghi"], ["abc", "uuyd", "ghi"]] target_inp, pert = minimal_pert.evaluate( text_inp, target=1, attack_kwargs={"ind": 1}, correct_fn_kwargs={"threshold": 100}, perturbations_per_eval=15, additional_forward_args=(additional_forward_args,), ) self.assertEqual(pert, 5) self.assertListEqual(target_inp, expected_list) target_inp_single, pert_single = minimal_pert.evaluate( text_inp, target=1, attack_kwargs={"ind": 1}, correct_fn_kwargs={"threshold": 100}, additional_forward_args=(additional_forward_args,), ) self.assertEqual(pert_single, 5) self.assertListEqual(target_inp_single, expected_list) def test_minimal_pert_tuple_test(self) -> None: model = BasicModel_MultiLayer() text_inp = ( [["abc", "zyd", "ghi"], ["abc", "uyd", "ghi"]], torch.ones((2, 3)) * -97, ) model = BasicModel_MultiLayer() minimal_pert = MinParamPerturbation( forward_func=lambda x: model(*x), attack=lambda x, ind, char_val: (add_char_batch(x[0], ind, char_val), x[1]), arg_name="char_val", arg_min=0, arg_max=26, arg_step=1, preproc_fn=lambda x: (batch_text_preproc_fn(x[0]), x[1]), apply_before_preproc=True, correct_fn=alt_correct_fn, ) expected_list = [["abc", "uzyd", "ghi"], ["abc", "uuyd", "ghi"]] target_inp, pert = minimal_pert.evaluate( text_inp, target=1, attack_kwargs={"ind": 1}, correct_fn_kwargs={"threshold": 100}, perturbations_per_eval=15, ) self.assertEqual(pert, 5) self.assertListEqual(target_inp[0], expected_list)
b7ab6b965d93d7f35c0afff80685ffb4a1e42305
f115984d89ee91e1fefa7bd0546f60db251dfee6
/herg-real-data/fit-full2vclinleak.py
4acedcf938ceadc4884a65115c703c0a6b52626b
[ "BSD-3-Clause" ]
permissive
CardiacModelling/VoltageClampModel
f483fc3ad2129f75e377df210b9b91b1cdcb7565
f30271da75e3c70526e53fb51dc12b317ab3b714
refs/heads/master
2023-07-05T10:07:59.771334
2021-03-03T11:05:35
2021-03-03T11:05:35
227,666,074
3
0
BSD-3-Clause
2021-03-03T11:04:46
2019-12-12T17:58:13
Python
UTF-8
Python
false
false
8,270
py
#!/usr/bin/env python2 from __future__ import print_function import sys sys.path.append('../lib/') import os import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import pints import model as m from parameters import full2vc from parameters import full2vc_fix, full2vc_fix_typical_values from parameters import full2vc_typical_values import parametertransform from priors import IKrLogPrior, VoltageClampLogPrior from protocols import leak_staircase as protocol_def """ Run fit for single experiment data """ try: file_name = sys.argv[1] cell = sys.argv[2] except: print('Usage: python %s [str:file_name]' % os.path.basename(__file__) + ' [str:cell_id] --optional [N_repeats]') sys.exit() file_dir = '../data' file_list = [ 'herg25oc1', 'herg27oc1', 'herg27oc2', 'herg30oc1', 'herg30oc2', 'herg33oc1', 'herg33oc2', 'herg37oc3', ] temperatures = [25.0, 27.0, 27.0, 30.0, 30.0, 33.0, 33.0, 37.0] useFilterCap = False if file_name not in file_list: raise ValueError('Input `file_name` must be in `file_list`') temperature = temperatures[file_list.index(file_name)] savedir = './out/' + file_name + '-full2vclinleak' if not os.path.isdir(savedir): os.makedirs(savedir) data_file_name = file_name + '-staircaseramp-' + cell + '.csv' time_file_name = file_name + '-staircaseramp-times.csv' print('Fitting to ', data_file_name) print('Temperature: ', temperature) saveas = data_file_name[:-4] # Control fitting seed --> OR DONT # fit_seed = np.random.randint(0, 2**30) fit_seed = 542811797 print('Fit seed: ', fit_seed) np.random.seed(fit_seed) # Set parameter transformation transform_to_ikr = parametertransform.log_transform_to_ikr transform_from_ikr = parametertransform.log_transform_from_ikr transform_to_vc = parametertransform.log_transform_to_vc transform_from_vc = parametertransform.log_transform_from_vc transform_to_leak = parametertransform.donothing transform_from_leak = parametertransform.donothing n_ikr_parameters = IKrLogPrior(None, None).n_parameters() n_vc_parameters = VoltageClampLogPrior(None, None).n_parameters() transform_to_ikr_vc = parametertransform.ComposeTransformation( transform_to_ikr, transform_to_vc, n_ikr_parameters) transform_from_ikr_vc = parametertransform.ComposeTransformation( transform_from_ikr, transform_from_vc, n_ikr_parameters) transform_to_model_param = parametertransform.ComposeTransformation( transform_to_ikr_vc, transform_to_leak, n_ikr_parameters + n_vc_parameters) transform_from_model_param = parametertransform.ComposeTransformation( transform_from_ikr_vc, transform_from_leak, n_ikr_parameters + n_vc_parameters) # Model model = m.Model('../mmt-model-files/full2-voltage-clamp-ikr-linleak.mmt', protocol_def=protocol_def, temperature=273.15 + temperature, # K transform=transform_to_model_param, useFilterCap=useFilterCap) # ignore capacitive spike model.set_parameters(full2vc + ['voltageclamp.gLeak']) fix_p = {} for i, j in zip(full2vc_fix, full2vc_fix_typical_values): fix_p[i] = j model.set_fix_parameters(fix_p) # Load data data = np.loadtxt(file_dir + '/' + data_file_name, delimiter=',', skiprows=1) # headers times = np.loadtxt(file_dir + '/' + time_file_name, delimiter=',', skiprows=1) # headers times = times * 1e3 # s -> ms noise_sigma = np.std(data[:500]) print('Estimated noise level: ', noise_sigma) if useFilterCap: # Apply capacitance filter to data data = data * model.cap_filter(times) # # Fit # # Create Pints stuffs problem = pints.SingleOutputProblem(model, times, data) loglikelihood = pints.GaussianKnownSigmaLogLikelihood(problem, noise_sigma) ikr_prior = IKrLogPrior(transform_to_ikr, transform_from_ikr) vc_prior = VoltageClampLogPrior(transform_to_vc, transform_from_vc) ileak_prior = pints.UniformLogPrior([transform_from_leak(-1e3)], [transform_from_leak(1e3)]) logprior = pints.ComposedLogPrior(ikr_prior, vc_prior, ileak_prior) logposterior = pints.LogPosterior(loglikelihood, logprior) # Check logposterior is working fine priorparams = np.append(np.copy(full2vc_typical_values), 0) transform_priorparams = transform_from_model_param(priorparams) print('Score at prior parameters: ', logposterior(transform_priorparams)) for _ in range(10): assert(logposterior(transform_priorparams) ==\ logposterior(transform_priorparams)) # Run try: N = int(sys.argv[3]) except IndexError: N = 3 params, logposteriors = [], [] for i in range(N): for _ in range(100): try: if i == 0: # OK for real data x0 = transform_priorparams else: # Randomly pick a starting point x0 = logprior.sample()[0] logposterior(x0) except ValueError: continue break print('Starting point: ', x0) # Create optimiser print('Starting logposterior: ', logposterior(x0)) opt = pints.OptimisationController(logposterior, x0.T, method=pints.CMAES) opt.set_max_iterations(None) opt.set_parallel(False) # Run optimisation try: with np.errstate(all='ignore'): # Tell numpy not to issue warnings p, s = opt.run() p = transform_to_model_param(p) params.append(p) logposteriors.append(s) print('Found solution: Prior parameters:' ) for k, x in enumerate(p): print(pints.strfloat(x) + ' ' + \ pints.strfloat(priorparams[k])) except ValueError: import traceback traceback.print_exc() # # Done # # Order from best to worst order = np.argsort(logposteriors)[::-1] # (use [::-1] for LL) logposteriors = np.asarray(logposteriors)[order] params = np.asarray(params)[order] # Show results bestn = min(3, N) print('Best %d logposteriors:' % bestn) for i in range(bestn): print(logposteriors[i]) print('Mean & std of logposterior:') print(np.mean(logposteriors)) print(np.std(logposteriors)) print('Worst logposterior:') print(logposteriors[-1]) # Extract best 3 obtained_logposterior0 = logposteriors[0] obtained_parameters0 = params[0] obtained_logposterior1 = logposteriors[1] obtained_parameters1 = params[1] obtained_logposterior2 = logposteriors[2] obtained_parameters2 = params[2] # Show results print('Found solution: Prior parameters:' ) # Store output with open('%s/%s-solution-%s.txt' % (savedir, saveas, fit_seed), 'w') as f: for k, x in enumerate(obtained_parameters0): print(pints.strfloat(x) + ' ' + pints.strfloat(priorparams[k])) f.write(pints.strfloat(x) + '\n') print('Found solution: Prior parameters:' ) # Store output with open('%s/%s-solution-%s-2.txt' % (savedir, saveas, fit_seed), 'w') as f: for k, x in enumerate(obtained_parameters1): print(pints.strfloat(x) + ' ' + pints.strfloat(priorparams[k])) f.write(pints.strfloat(x) + '\n') print('Found solution: Prior parameters:' ) # Store output with open('%s/%s-solution-%s-3.txt' % (savedir, saveas, fit_seed), 'w') as f: for k, x in enumerate(obtained_parameters2): print(pints.strfloat(x) + ' ' + pints.strfloat(priorparams[k])) f.write(pints.strfloat(x) + '\n') fig, axes = plt.subplots(2, 1, sharex=True, figsize=(8, 6)) sol0 = problem.evaluate(transform_from_model_param(obtained_parameters0)) sol1 = problem.evaluate(transform_from_model_param(obtained_parameters1)) sol2 = problem.evaluate(transform_from_model_param(obtained_parameters2)) vol = model.voltage(times) axes[0].plot(times, vol, c='#7f7f7f') axes[0].set_ylabel('Voltage [mV]') axes[1].plot(times, data, alpha=0.5, label='data') axes[1].plot(times, sol0, label='found solution') axes[1].plot(times, sol1, label='found solution') axes[1].plot(times, sol2, label='found solution') axes[1].legend() axes[1].set_ylabel('Current [pA]') axes[1].set_xlabel('Time [ms]') plt.subplots_adjust(hspace=0) plt.savefig('%s/%s-solution-%s.png' % (savedir, saveas, fit_seed), bbox_inches='tight') plt.close()
4517a2973ced5a7f7821ef8b9c39134321bf76b9
24e7e0dfaaeaca8f911b40fcc2937342a0f278fd
/venv/Lib/site-packages/pandas/tests/frame/methods/test_replace.py
83dfd42ae2a6ee2db8dd44070761be1616e746d0
[ "MIT" ]
permissive
BimiLevi/Covid19
90e234c639192d62bb87364ef96d6a46d8268fa0
5f07a9a4609383c02597373d76d6b6485d47936e
refs/heads/master
2023-08-04T13:13:44.480700
2023-08-01T08:36:36
2023-08-01T08:36:36
288,455,446
1
0
MIT
2021-01-22T19:36:26
2020-08-18T12:53:43
HTML
UTF-8
Python
false
false
58,773
py
from datetime import datetime from io import StringIO import re from typing import Dict, List, Union import numpy as np import pytest import pandas as pd from pandas import DataFrame, Index, Series, Timestamp, date_range import pandas._testing as tm @pytest.fixture def mix_ab() -> Dict[str, List[Union[int, str]]]: return {"a": list(range(4)), "b": list("ab..")} @pytest.fixture def mix_abc() -> Dict[str, List[Union[float, str]]]: return {"a": list(range(4)), "b": list("ab.."), "c": ["a", "b", np.nan, "d"]} class TestDataFrameReplace: def test_replace_inplace(self, datetime_frame, float_string_frame): datetime_frame["A"][:5] = np.nan datetime_frame["A"][-5:] = np.nan tsframe = datetime_frame.copy() return_value = tsframe.replace(np.nan, 0, inplace=True) assert return_value is None tm.assert_frame_equal(tsframe, datetime_frame.fillna(0)) # mixed type mf = float_string_frame mf.iloc[5:20, mf.columns.get_loc("foo")] = np.nan mf.iloc[-10:, mf.columns.get_loc("A")] = np.nan result = float_string_frame.replace(np.nan, 0) expected = float_string_frame.fillna(value=0) tm.assert_frame_equal(result, expected) tsframe = datetime_frame.copy() return_value = tsframe.replace([np.nan], [0], inplace=True) assert return_value is None tm.assert_frame_equal(tsframe, datetime_frame.fillna(0)) def test_regex_replace_scalar(self, mix_ab): obj = {"a": list("ab.."), "b": list("efgh")} dfobj = DataFrame(obj) dfmix = DataFrame(mix_ab) # simplest cases # regex -> value # obj frame res = dfobj.replace(r"\s*\.\s*", np.nan, regex=True) tm.assert_frame_equal(dfobj, res.fillna(".")) # mixed res = dfmix.replace(r"\s*\.\s*", np.nan, regex=True) tm.assert_frame_equal(dfmix, res.fillna(".")) # regex -> regex # obj frame res = dfobj.replace(r"\s*(\.)\s*", r"\1\1\1", regex=True) objc = obj.copy() objc["a"] = ["a", "b", "...", "..."] expec = DataFrame(objc) tm.assert_frame_equal(res, expec) # with mixed res = dfmix.replace(r"\s*(\.)\s*", r"\1\1\1", regex=True) mixc = mix_ab.copy() mixc["b"] = ["a", "b", "...", "..."] expec = DataFrame(mixc) tm.assert_frame_equal(res, expec) # everything with compiled regexs as well res = dfobj.replace(re.compile(r"\s*\.\s*"), np.nan, regex=True) tm.assert_frame_equal(dfobj, res.fillna(".")) # mixed res = dfmix.replace(re.compile(r"\s*\.\s*"), np.nan, regex=True) tm.assert_frame_equal(dfmix, res.fillna(".")) # regex -> regex # obj frame res = dfobj.replace(re.compile(r"\s*(\.)\s*"), r"\1\1\1") objc = obj.copy() objc["a"] = ["a", "b", "...", "..."] expec = DataFrame(objc) tm.assert_frame_equal(res, expec) # with mixed res = dfmix.replace(re.compile(r"\s*(\.)\s*"), r"\1\1\1") mixc = mix_ab.copy() mixc["b"] = ["a", "b", "...", "..."] expec = DataFrame(mixc) tm.assert_frame_equal(res, expec) res = dfmix.replace(regex=re.compile(r"\s*(\.)\s*"), value=r"\1\1\1") mixc = mix_ab.copy() mixc["b"] = ["a", "b", "...", "..."] expec = DataFrame(mixc) tm.assert_frame_equal(res, expec) res = dfmix.replace(regex=r"\s*(\.)\s*", value=r"\1\1\1") mixc = mix_ab.copy() mixc["b"] = ["a", "b", "...", "..."] expec = DataFrame(mixc) tm.assert_frame_equal(res, expec) def test_regex_replace_scalar_inplace(self, mix_ab): obj = {"a": list("ab.."), "b": list("efgh")} dfobj = DataFrame(obj) dfmix = DataFrame(mix_ab) # simplest cases # regex -> value # obj frame res = dfobj.copy() return_value = res.replace(r"\s*\.\s*", np.nan, regex=True, inplace=True) assert return_value is None tm.assert_frame_equal(dfobj, res.fillna(".")) # mixed res = dfmix.copy() return_value = res.replace(r"\s*\.\s*", np.nan, regex=True, inplace=True) assert return_value is None tm.assert_frame_equal(dfmix, res.fillna(".")) # regex -> regex # obj frame res = dfobj.copy() return_value = res.replace(r"\s*(\.)\s*", r"\1\1\1", regex=True, inplace=True) assert return_value is None objc = obj.copy() objc["a"] = ["a", "b", "...", "..."] expec = DataFrame(objc) tm.assert_frame_equal(res, expec) # with mixed res = dfmix.copy() return_value = res.replace(r"\s*(\.)\s*", r"\1\1\1", regex=True, inplace=True) assert return_value is None mixc = mix_ab.copy() mixc["b"] = ["a", "b", "...", "..."] expec = DataFrame(mixc) tm.assert_frame_equal(res, expec) # everything with compiled regexs as well res = dfobj.copy() return_value = res.replace( re.compile(r"\s*\.\s*"), np.nan, regex=True, inplace=True ) assert return_value is None tm.assert_frame_equal(dfobj, res.fillna(".")) # mixed res = dfmix.copy() return_value = res.replace( re.compile(r"\s*\.\s*"), np.nan, regex=True, inplace=True ) assert return_value is None tm.assert_frame_equal(dfmix, res.fillna(".")) # regex -> regex # obj frame res = dfobj.copy() return_value = res.replace( re.compile(r"\s*(\.)\s*"), r"\1\1\1", regex=True, inplace=True ) assert return_value is None objc = obj.copy() objc["a"] = ["a", "b", "...", "..."] expec = DataFrame(objc) tm.assert_frame_equal(res, expec) # with mixed res = dfmix.copy() return_value = res.replace( re.compile(r"\s*(\.)\s*"), r"\1\1\1", regex=True, inplace=True ) assert return_value is None mixc = mix_ab.copy() mixc["b"] = ["a", "b", "...", "..."] expec = DataFrame(mixc) tm.assert_frame_equal(res, expec) res = dfobj.copy() return_value = res.replace(regex=r"\s*\.\s*", value=np.nan, inplace=True) assert return_value is None tm.assert_frame_equal(dfobj, res.fillna(".")) # mixed res = dfmix.copy() return_value = res.replace(regex=r"\s*\.\s*", value=np.nan, inplace=True) assert return_value is None tm.assert_frame_equal(dfmix, res.fillna(".")) # regex -> regex # obj frame res = dfobj.copy() return_value = res.replace(regex=r"\s*(\.)\s*", value=r"\1\1\1", inplace=True) assert return_value is None objc = obj.copy() objc["a"] = ["a", "b", "...", "..."] expec = DataFrame(objc) tm.assert_frame_equal(res, expec) # with mixed res = dfmix.copy() return_value = res.replace(regex=r"\s*(\.)\s*", value=r"\1\1\1", inplace=True) assert return_value is None mixc = mix_ab.copy() mixc["b"] = ["a", "b", "...", "..."] expec = DataFrame(mixc) tm.assert_frame_equal(res, expec) # everything with compiled regexs as well res = dfobj.copy() return_value = res.replace( regex=re.compile(r"\s*\.\s*"), value=np.nan, inplace=True ) assert return_value is None tm.assert_frame_equal(dfobj, res.fillna(".")) # mixed res = dfmix.copy() return_value = res.replace( regex=re.compile(r"\s*\.\s*"), value=np.nan, inplace=True ) assert return_value is None tm.assert_frame_equal(dfmix, res.fillna(".")) # regex -> regex # obj frame res = dfobj.copy() return_value = res.replace( regex=re.compile(r"\s*(\.)\s*"), value=r"\1\1\1", inplace=True ) assert return_value is None objc = obj.copy() objc["a"] = ["a", "b", "...", "..."] expec = DataFrame(objc) tm.assert_frame_equal(res, expec) # with mixed res = dfmix.copy() return_value = res.replace( regex=re.compile(r"\s*(\.)\s*"), value=r"\1\1\1", inplace=True ) assert return_value is None mixc = mix_ab.copy() mixc["b"] = ["a", "b", "...", "..."] expec = DataFrame(mixc) tm.assert_frame_equal(res, expec) def test_regex_replace_list_obj(self): obj = {"a": list("ab.."), "b": list("efgh"), "c": list("helo")} dfobj = DataFrame(obj) # lists of regexes and values # list of [re1, re2, ..., reN] -> [v1, v2, ..., vN] to_replace_res = [r"\s*\.\s*", r"e|f|g"] values = [np.nan, "crap"] res = dfobj.replace(to_replace_res, values, regex=True) expec = DataFrame( { "a": ["a", "b", np.nan, np.nan], "b": ["crap"] * 3 + ["h"], "c": ["h", "crap", "l", "o"], } ) tm.assert_frame_equal(res, expec) # list of [re1, re2, ..., reN] -> [re1, re2, .., reN] to_replace_res = [r"\s*(\.)\s*", r"(e|f|g)"] values = [r"\1\1", r"\1_crap"] res = dfobj.replace(to_replace_res, values, regex=True) expec = DataFrame( { "a": ["a", "b", "..", ".."], "b": ["e_crap", "f_crap", "g_crap", "h"], "c": ["h", "e_crap", "l", "o"], } ) tm.assert_frame_equal(res, expec) # list of [re1, re2, ..., reN] -> [(re1 or v1), (re2 or v2), ..., (reN # or vN)] to_replace_res = [r"\s*(\.)\s*", r"e"] values = [r"\1\1", r"crap"] res = dfobj.replace(to_replace_res, values, regex=True) expec = DataFrame( { "a": ["a", "b", "..", ".."], "b": ["crap", "f", "g", "h"], "c": ["h", "crap", "l", "o"], } ) tm.assert_frame_equal(res, expec) to_replace_res = [r"\s*(\.)\s*", r"e"] values = [r"\1\1", r"crap"] res = dfobj.replace(value=values, regex=to_replace_res) expec = DataFrame( { "a": ["a", "b", "..", ".."], "b": ["crap", "f", "g", "h"], "c": ["h", "crap", "l", "o"], } ) tm.assert_frame_equal(res, expec) def test_regex_replace_list_obj_inplace(self): # same as above with inplace=True # lists of regexes and values obj = {"a": list("ab.."), "b": list("efgh"), "c": list("helo")} dfobj = DataFrame(obj) # lists of regexes and values # list of [re1, re2, ..., reN] -> [v1, v2, ..., vN] to_replace_res = [r"\s*\.\s*", r"e|f|g"] values = [np.nan, "crap"] res = dfobj.copy() return_value = res.replace(to_replace_res, values, inplace=True, regex=True) assert return_value is None expec = DataFrame( { "a": ["a", "b", np.nan, np.nan], "b": ["crap"] * 3 + ["h"], "c": ["h", "crap", "l", "o"], } ) tm.assert_frame_equal(res, expec) # list of [re1, re2, ..., reN] -> [re1, re2, .., reN] to_replace_res = [r"\s*(\.)\s*", r"(e|f|g)"] values = [r"\1\1", r"\1_crap"] res = dfobj.copy() return_value = res.replace(to_replace_res, values, inplace=True, regex=True) assert return_value is None expec = DataFrame( { "a": ["a", "b", "..", ".."], "b": ["e_crap", "f_crap", "g_crap", "h"], "c": ["h", "e_crap", "l", "o"], } ) tm.assert_frame_equal(res, expec) # list of [re1, re2, ..., reN] -> [(re1 or v1), (re2 or v2), ..., (reN # or vN)] to_replace_res = [r"\s*(\.)\s*", r"e"] values = [r"\1\1", r"crap"] res = dfobj.copy() return_value = res.replace(to_replace_res, values, inplace=True, regex=True) assert return_value is None expec = DataFrame( { "a": ["a", "b", "..", ".."], "b": ["crap", "f", "g", "h"], "c": ["h", "crap", "l", "o"], } ) tm.assert_frame_equal(res, expec) to_replace_res = [r"\s*(\.)\s*", r"e"] values = [r"\1\1", r"crap"] res = dfobj.copy() return_value = res.replace(value=values, regex=to_replace_res, inplace=True) assert return_value is None expec = DataFrame( { "a": ["a", "b", "..", ".."], "b": ["crap", "f", "g", "h"], "c": ["h", "crap", "l", "o"], } ) tm.assert_frame_equal(res, expec) def test_regex_replace_list_mixed(self, mix_ab): # mixed frame to make sure this doesn't break things dfmix = DataFrame(mix_ab) # lists of regexes and values # list of [re1, re2, ..., reN] -> [v1, v2, ..., vN] to_replace_res = [r"\s*\.\s*", r"a"] values = [np.nan, "crap"] mix2 = {"a": list(range(4)), "b": list("ab.."), "c": list("halo")} dfmix2 = DataFrame(mix2) res = dfmix2.replace(to_replace_res, values, regex=True) expec = DataFrame( { "a": mix2["a"], "b": ["crap", "b", np.nan, np.nan], "c": ["h", "crap", "l", "o"], } ) tm.assert_frame_equal(res, expec) # list of [re1, re2, ..., reN] -> [re1, re2, .., reN] to_replace_res = [r"\s*(\.)\s*", r"(a|b)"] values = [r"\1\1", r"\1_crap"] res = dfmix.replace(to_replace_res, values, regex=True) expec = DataFrame({"a": mix_ab["a"], "b": ["a_crap", "b_crap", "..", ".."]}) tm.assert_frame_equal(res, expec) # list of [re1, re2, ..., reN] -> [(re1 or v1), (re2 or v2), ..., (reN # or vN)] to_replace_res = [r"\s*(\.)\s*", r"a", r"(b)"] values = [r"\1\1", r"crap", r"\1_crap"] res = dfmix.replace(to_replace_res, values, regex=True) expec = DataFrame({"a": mix_ab["a"], "b": ["crap", "b_crap", "..", ".."]}) tm.assert_frame_equal(res, expec) to_replace_res = [r"\s*(\.)\s*", r"a", r"(b)"] values = [r"\1\1", r"crap", r"\1_crap"] res = dfmix.replace(regex=to_replace_res, value=values) expec = DataFrame({"a": mix_ab["a"], "b": ["crap", "b_crap", "..", ".."]}) tm.assert_frame_equal(res, expec) def test_regex_replace_list_mixed_inplace(self, mix_ab): dfmix = DataFrame(mix_ab) # the same inplace # lists of regexes and values # list of [re1, re2, ..., reN] -> [v1, v2, ..., vN] to_replace_res = [r"\s*\.\s*", r"a"] values = [np.nan, "crap"] res = dfmix.copy() return_value = res.replace(to_replace_res, values, inplace=True, regex=True) assert return_value is None expec = DataFrame({"a": mix_ab["a"], "b": ["crap", "b", np.nan, np.nan]}) tm.assert_frame_equal(res, expec) # list of [re1, re2, ..., reN] -> [re1, re2, .., reN] to_replace_res = [r"\s*(\.)\s*", r"(a|b)"] values = [r"\1\1", r"\1_crap"] res = dfmix.copy() return_value = res.replace(to_replace_res, values, inplace=True, regex=True) assert return_value is None expec = DataFrame({"a": mix_ab["a"], "b": ["a_crap", "b_crap", "..", ".."]}) tm.assert_frame_equal(res, expec) # list of [re1, re2, ..., reN] -> [(re1 or v1), (re2 or v2), ..., (reN # or vN)] to_replace_res = [r"\s*(\.)\s*", r"a", r"(b)"] values = [r"\1\1", r"crap", r"\1_crap"] res = dfmix.copy() return_value = res.replace(to_replace_res, values, inplace=True, regex=True) assert return_value is None expec = DataFrame({"a": mix_ab["a"], "b": ["crap", "b_crap", "..", ".."]}) tm.assert_frame_equal(res, expec) to_replace_res = [r"\s*(\.)\s*", r"a", r"(b)"] values = [r"\1\1", r"crap", r"\1_crap"] res = dfmix.copy() return_value = res.replace(regex=to_replace_res, value=values, inplace=True) assert return_value is None expec = DataFrame({"a": mix_ab["a"], "b": ["crap", "b_crap", "..", ".."]}) tm.assert_frame_equal(res, expec) def test_regex_replace_dict_mixed(self, mix_abc): dfmix = DataFrame(mix_abc) # dicts # single dict {re1: v1}, search the whole frame # need test for this... # list of dicts {re1: v1, re2: v2, ..., re3: v3}, search the whole # frame res = dfmix.replace({"b": r"\s*\.\s*"}, {"b": np.nan}, regex=True) res2 = dfmix.copy() return_value = res2.replace( {"b": r"\s*\.\s*"}, {"b": np.nan}, inplace=True, regex=True ) assert return_value is None expec = DataFrame( {"a": mix_abc["a"], "b": ["a", "b", np.nan, np.nan], "c": mix_abc["c"]} ) tm.assert_frame_equal(res, expec) tm.assert_frame_equal(res2, expec) # list of dicts {re1: re11, re2: re12, ..., reN: re1N}, search the # whole frame res = dfmix.replace({"b": r"\s*(\.)\s*"}, {"b": r"\1ty"}, regex=True) res2 = dfmix.copy() return_value = res2.replace( {"b": r"\s*(\.)\s*"}, {"b": r"\1ty"}, inplace=True, regex=True ) assert return_value is None expec = DataFrame( {"a": mix_abc["a"], "b": ["a", "b", ".ty", ".ty"], "c": mix_abc["c"]} ) tm.assert_frame_equal(res, expec) tm.assert_frame_equal(res2, expec) res = dfmix.replace(regex={"b": r"\s*(\.)\s*"}, value={"b": r"\1ty"}) res2 = dfmix.copy() return_value = res2.replace( regex={"b": r"\s*(\.)\s*"}, value={"b": r"\1ty"}, inplace=True ) assert return_value is None expec = DataFrame( {"a": mix_abc["a"], "b": ["a", "b", ".ty", ".ty"], "c": mix_abc["c"]} ) tm.assert_frame_equal(res, expec) tm.assert_frame_equal(res2, expec) # scalar -> dict # to_replace regex, {value: value} expec = DataFrame( {"a": mix_abc["a"], "b": [np.nan, "b", ".", "."], "c": mix_abc["c"]} ) res = dfmix.replace("a", {"b": np.nan}, regex=True) res2 = dfmix.copy() return_value = res2.replace("a", {"b": np.nan}, regex=True, inplace=True) assert return_value is None tm.assert_frame_equal(res, expec) tm.assert_frame_equal(res2, expec) res = dfmix.replace("a", {"b": np.nan}, regex=True) res2 = dfmix.copy() return_value = res2.replace(regex="a", value={"b": np.nan}, inplace=True) assert return_value is None expec = DataFrame( {"a": mix_abc["a"], "b": [np.nan, "b", ".", "."], "c": mix_abc["c"]} ) tm.assert_frame_equal(res, expec) tm.assert_frame_equal(res2, expec) def test_regex_replace_dict_nested(self, mix_abc): # nested dicts will not work until this is implemented for Series dfmix = DataFrame(mix_abc) res = dfmix.replace({"b": {r"\s*\.\s*": np.nan}}, regex=True) res2 = dfmix.copy() res4 = dfmix.copy() return_value = res2.replace( {"b": {r"\s*\.\s*": np.nan}}, inplace=True, regex=True ) assert return_value is None res3 = dfmix.replace(regex={"b": {r"\s*\.\s*": np.nan}}) return_value = res4.replace(regex={"b": {r"\s*\.\s*": np.nan}}, inplace=True) assert return_value is None expec = DataFrame( {"a": mix_abc["a"], "b": ["a", "b", np.nan, np.nan], "c": mix_abc["c"]} ) tm.assert_frame_equal(res, expec) tm.assert_frame_equal(res2, expec) tm.assert_frame_equal(res3, expec) tm.assert_frame_equal(res4, expec) def test_regex_replace_dict_nested_non_first_character(self): # GH 25259 df = pd.DataFrame({"first": ["abc", "bca", "cab"]}) expected = pd.DataFrame({"first": [".bc", "bc.", "c.b"]}) result = df.replace({"a": "."}, regex=True) tm.assert_frame_equal(result, expected) def test_regex_replace_dict_nested_gh4115(self): df = pd.DataFrame({"Type": ["Q", "T", "Q", "Q", "T"], "tmp": 2}) expected = DataFrame({"Type": [0, 1, 0, 0, 1], "tmp": 2}) result = df.replace({"Type": {"Q": 0, "T": 1}}) tm.assert_frame_equal(result, expected) def test_regex_replace_list_to_scalar(self, mix_abc): df = DataFrame(mix_abc) expec = DataFrame( { "a": mix_abc["a"], "b": np.array([np.nan] * 4), "c": [np.nan, np.nan, np.nan, "d"], } ) res = df.replace([r"\s*\.\s*", "a|b"], np.nan, regex=True) res2 = df.copy() res3 = df.copy() return_value = res2.replace( [r"\s*\.\s*", "a|b"], np.nan, regex=True, inplace=True ) assert return_value is None return_value = res3.replace( regex=[r"\s*\.\s*", "a|b"], value=np.nan, inplace=True ) assert return_value is None tm.assert_frame_equal(res, expec) tm.assert_frame_equal(res2, expec) tm.assert_frame_equal(res3, expec) def test_regex_replace_str_to_numeric(self, mix_abc): # what happens when you try to replace a numeric value with a regex? df = DataFrame(mix_abc) res = df.replace(r"\s*\.\s*", 0, regex=True) res2 = df.copy() return_value = res2.replace(r"\s*\.\s*", 0, inplace=True, regex=True) assert return_value is None res3 = df.copy() return_value = res3.replace(regex=r"\s*\.\s*", value=0, inplace=True) assert return_value is None expec = DataFrame({"a": mix_abc["a"], "b": ["a", "b", 0, 0], "c": mix_abc["c"]}) tm.assert_frame_equal(res, expec) tm.assert_frame_equal(res2, expec) tm.assert_frame_equal(res3, expec) def test_regex_replace_regex_list_to_numeric(self, mix_abc): df = DataFrame(mix_abc) res = df.replace([r"\s*\.\s*", "b"], 0, regex=True) res2 = df.copy() return_value = res2.replace([r"\s*\.\s*", "b"], 0, regex=True, inplace=True) assert return_value is None res3 = df.copy() return_value = res3.replace(regex=[r"\s*\.\s*", "b"], value=0, inplace=True) assert return_value is None expec = DataFrame( {"a": mix_abc["a"], "b": ["a", 0, 0, 0], "c": ["a", 0, np.nan, "d"]} ) tm.assert_frame_equal(res, expec) tm.assert_frame_equal(res2, expec) tm.assert_frame_equal(res3, expec) def test_regex_replace_series_of_regexes(self, mix_abc): df = DataFrame(mix_abc) s1 = Series({"b": r"\s*\.\s*"}) s2 = Series({"b": np.nan}) res = df.replace(s1, s2, regex=True) res2 = df.copy() return_value = res2.replace(s1, s2, inplace=True, regex=True) assert return_value is None res3 = df.copy() return_value = res3.replace(regex=s1, value=s2, inplace=True) assert return_value is None expec = DataFrame( {"a": mix_abc["a"], "b": ["a", "b", np.nan, np.nan], "c": mix_abc["c"]} ) tm.assert_frame_equal(res, expec) tm.assert_frame_equal(res2, expec) tm.assert_frame_equal(res3, expec) def test_regex_replace_numeric_to_object_conversion(self, mix_abc): df = DataFrame(mix_abc) expec = DataFrame({"a": ["a", 1, 2, 3], "b": mix_abc["b"], "c": mix_abc["c"]}) res = df.replace(0, "a") tm.assert_frame_equal(res, expec) assert res.a.dtype == np.object_ @pytest.mark.parametrize("metachar", ["[]", "()", r"\d", r"\w", r"\s"]) def test_replace_regex_metachar(self, metachar): df = DataFrame({"a": [metachar, "else"]}) result = df.replace({"a": {metachar: "paren"}}) expected = DataFrame({"a": ["paren", "else"]}) tm.assert_frame_equal(result, expected) def test_replace(self, datetime_frame): datetime_frame["A"][:5] = np.nan datetime_frame["A"][-5:] = np.nan zero_filled = datetime_frame.replace(np.nan, -1e8) tm.assert_frame_equal(zero_filled, datetime_frame.fillna(-1e8)) tm.assert_frame_equal(zero_filled.replace(-1e8, np.nan), datetime_frame) datetime_frame["A"][:5] = np.nan datetime_frame["A"][-5:] = np.nan datetime_frame["B"][:5] = -1e8 # empty df = DataFrame(index=["a", "b"]) tm.assert_frame_equal(df, df.replace(5, 7)) # GH 11698 # test for mixed data types. df = pd.DataFrame( [("-", pd.to_datetime("20150101")), ("a", pd.to_datetime("20150102"))] ) df1 = df.replace("-", np.nan) expected_df = pd.DataFrame( [(np.nan, pd.to_datetime("20150101")), ("a", pd.to_datetime("20150102"))] ) tm.assert_frame_equal(df1, expected_df) def test_replace_list(self): obj = {"a": list("ab.."), "b": list("efgh"), "c": list("helo")} dfobj = DataFrame(obj) # lists of regexes and values # list of [v1, v2, ..., vN] -> [v1, v2, ..., vN] to_replace_res = [r".", r"e"] values = [np.nan, "crap"] res = dfobj.replace(to_replace_res, values) expec = DataFrame( { "a": ["a", "b", np.nan, np.nan], "b": ["crap", "f", "g", "h"], "c": ["h", "crap", "l", "o"], } ) tm.assert_frame_equal(res, expec) # list of [v1, v2, ..., vN] -> [v1, v2, .., vN] to_replace_res = [r".", r"f"] values = [r"..", r"crap"] res = dfobj.replace(to_replace_res, values) expec = DataFrame( { "a": ["a", "b", "..", ".."], "b": ["e", "crap", "g", "h"], "c": ["h", "e", "l", "o"], } ) tm.assert_frame_equal(res, expec) def test_replace_with_empty_list(self): # GH 21977 s = pd.Series([["a", "b"], [], np.nan, [1]]) df = pd.DataFrame({"col": s}) expected = df result = df.replace([], np.nan) tm.assert_frame_equal(result, expected) # GH 19266 with pytest.raises(ValueError, match="cannot assign mismatch"): df.replace({np.nan: []}) with pytest.raises(ValueError, match="cannot assign mismatch"): df.replace({np.nan: ["dummy", "alt"]}) def test_replace_series_dict(self): # from GH 3064 df = DataFrame({"zero": {"a": 0.0, "b": 1}, "one": {"a": 2.0, "b": 0}}) result = df.replace(0, {"zero": 0.5, "one": 1.0}) expected = DataFrame({"zero": {"a": 0.5, "b": 1}, "one": {"a": 2.0, "b": 1.0}}) tm.assert_frame_equal(result, expected) result = df.replace(0, df.mean()) tm.assert_frame_equal(result, expected) # series to series/dict df = DataFrame({"zero": {"a": 0.0, "b": 1}, "one": {"a": 2.0, "b": 0}}) s = Series({"zero": 0.0, "one": 2.0}) result = df.replace(s, {"zero": 0.5, "one": 1.0}) expected = DataFrame({"zero": {"a": 0.5, "b": 1}, "one": {"a": 1.0, "b": 0.0}}) tm.assert_frame_equal(result, expected) result = df.replace(s, df.mean()) tm.assert_frame_equal(result, expected) def test_replace_convert(self): # gh 3907 df = DataFrame([["foo", "bar", "bah"], ["bar", "foo", "bah"]]) m = {"foo": 1, "bar": 2, "bah": 3} rep = df.replace(m) expec = Series([np.int64] * 3) res = rep.dtypes tm.assert_series_equal(expec, res) def test_replace_mixed(self, float_string_frame): mf = float_string_frame mf.iloc[5:20, mf.columns.get_loc("foo")] = np.nan mf.iloc[-10:, mf.columns.get_loc("A")] = np.nan result = float_string_frame.replace(np.nan, -18) expected = float_string_frame.fillna(value=-18) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result.replace(-18, np.nan), float_string_frame) result = float_string_frame.replace(np.nan, -1e8) expected = float_string_frame.fillna(value=-1e8) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result.replace(-1e8, np.nan), float_string_frame) # int block upcasting df = DataFrame( { "A": Series([1.0, 2.0], dtype="float64"), "B": Series([0, 1], dtype="int64"), } ) expected = DataFrame( { "A": Series([1.0, 2.0], dtype="float64"), "B": Series([0.5, 1], dtype="float64"), } ) result = df.replace(0, 0.5) tm.assert_frame_equal(result, expected) return_value = df.replace(0, 0.5, inplace=True) assert return_value is None tm.assert_frame_equal(df, expected) # int block splitting df = DataFrame( { "A": Series([1.0, 2.0], dtype="float64"), "B": Series([0, 1], dtype="int64"), "C": Series([1, 2], dtype="int64"), } ) expected = DataFrame( { "A": Series([1.0, 2.0], dtype="float64"), "B": Series([0.5, 1], dtype="float64"), "C": Series([1, 2], dtype="int64"), } ) result = df.replace(0, 0.5) tm.assert_frame_equal(result, expected) # to object block upcasting df = DataFrame( { "A": Series([1.0, 2.0], dtype="float64"), "B": Series([0, 1], dtype="int64"), } ) expected = DataFrame( { "A": Series([1, "foo"], dtype="object"), "B": Series([0, 1], dtype="int64"), } ) result = df.replace(2, "foo") tm.assert_frame_equal(result, expected) expected = DataFrame( { "A": Series(["foo", "bar"], dtype="object"), "B": Series([0, "foo"], dtype="object"), } ) result = df.replace([1, 2], ["foo", "bar"]) tm.assert_frame_equal(result, expected) # test case from df = DataFrame( {"A": Series([3, 0], dtype="int64"), "B": Series([0, 3], dtype="int64")} ) result = df.replace(3, df.mean().to_dict()) expected = df.copy().astype("float64") m = df.mean() expected.iloc[0, 0] = m[0] expected.iloc[1, 1] = m[1] tm.assert_frame_equal(result, expected) def test_replace_simple_nested_dict(self): df = DataFrame({"col": range(1, 5)}) expected = DataFrame({"col": ["a", 2, 3, "b"]}) result = df.replace({"col": {1: "a", 4: "b"}}) tm.assert_frame_equal(expected, result) # in this case, should be the same as the not nested version result = df.replace({1: "a", 4: "b"}) tm.assert_frame_equal(expected, result) def test_replace_simple_nested_dict_with_nonexistent_value(self): df = DataFrame({"col": range(1, 5)}) expected = DataFrame({"col": ["a", 2, 3, "b"]}) result = df.replace({-1: "-", 1: "a", 4: "b"}) tm.assert_frame_equal(expected, result) result = df.replace({"col": {-1: "-", 1: "a", 4: "b"}}) tm.assert_frame_equal(expected, result) def test_replace_value_is_none(self, datetime_frame): orig_value = datetime_frame.iloc[0, 0] orig2 = datetime_frame.iloc[1, 0] datetime_frame.iloc[0, 0] = np.nan datetime_frame.iloc[1, 0] = 1 result = datetime_frame.replace(to_replace={np.nan: 0}) expected = datetime_frame.T.replace(to_replace={np.nan: 0}).T tm.assert_frame_equal(result, expected) result = datetime_frame.replace(to_replace={np.nan: 0, 1: -1e8}) tsframe = datetime_frame.copy() tsframe.iloc[0, 0] = 0 tsframe.iloc[1, 0] = -1e8 expected = tsframe tm.assert_frame_equal(expected, result) datetime_frame.iloc[0, 0] = orig_value datetime_frame.iloc[1, 0] = orig2 def test_replace_for_new_dtypes(self, datetime_frame): # dtypes tsframe = datetime_frame.copy().astype(np.float32) tsframe["A"][:5] = np.nan tsframe["A"][-5:] = np.nan zero_filled = tsframe.replace(np.nan, -1e8) tm.assert_frame_equal(zero_filled, tsframe.fillna(-1e8)) tm.assert_frame_equal(zero_filled.replace(-1e8, np.nan), tsframe) tsframe["A"][:5] = np.nan tsframe["A"][-5:] = np.nan tsframe["B"][:5] = -1e8 b = tsframe["B"] b[b == -1e8] = np.nan tsframe["B"] = b result = tsframe.fillna(method="bfill") tm.assert_frame_equal(result, tsframe.fillna(method="bfill")) @pytest.mark.parametrize( "frame, to_replace, value, expected", [ (DataFrame({"ints": [1, 2, 3]}), 1, 0, DataFrame({"ints": [0, 2, 3]})), ( DataFrame({"ints": [1, 2, 3]}, dtype=np.int32), 1, 0, DataFrame({"ints": [0, 2, 3]}, dtype=np.int32), ), ( DataFrame({"ints": [1, 2, 3]}, dtype=np.int16), 1, 0, DataFrame({"ints": [0, 2, 3]}, dtype=np.int16), ), ( DataFrame({"bools": [True, False, True]}), False, True, DataFrame({"bools": [True, True, True]}), ), ( DataFrame({"complex": [1j, 2j, 3j]}), 1j, 0, DataFrame({"complex": [0j, 2j, 3j]}), ), ( DataFrame( { "datetime64": Index( [ datetime(2018, 5, 28), datetime(2018, 7, 28), datetime(2018, 5, 28), ] ) } ), datetime(2018, 5, 28), datetime(2018, 7, 28), DataFrame({"datetime64": Index([datetime(2018, 7, 28)] * 3)}), ), # GH 20380 ( DataFrame({"dt": [datetime(3017, 12, 20)], "str": ["foo"]}), "foo", "bar", DataFrame({"dt": [datetime(3017, 12, 20)], "str": ["bar"]}), ), ( DataFrame( { "A": date_range("20130101", periods=3, tz="US/Eastern"), "B": [0, np.nan, 2], } ), Timestamp("20130102", tz="US/Eastern"), Timestamp("20130104", tz="US/Eastern"), DataFrame( { "A": [ Timestamp("20130101", tz="US/Eastern"), Timestamp("20130104", tz="US/Eastern"), Timestamp("20130103", tz="US/Eastern"), ], "B": [0, np.nan, 2], } ), ), ], ) def test_replace_dtypes(self, frame, to_replace, value, expected): result = getattr(frame, "replace")(to_replace, value) tm.assert_frame_equal(result, expected) def test_replace_input_formats_listlike(self): # both dicts to_rep = {"A": np.nan, "B": 0, "C": ""} values = {"A": 0, "B": -1, "C": "missing"} df = DataFrame( {"A": [np.nan, 0, np.inf], "B": [0, 2, 5], "C": ["", "asdf", "fd"]} ) filled = df.replace(to_rep, values) expected = {k: v.replace(to_rep[k], values[k]) for k, v in df.items()} tm.assert_frame_equal(filled, DataFrame(expected)) result = df.replace([0, 2, 5], [5, 2, 0]) expected = DataFrame( {"A": [np.nan, 5, np.inf], "B": [5, 2, 0], "C": ["", "asdf", "fd"]} ) tm.assert_frame_equal(result, expected) # scalar to dict values = {"A": 0, "B": -1, "C": "missing"} df = DataFrame( {"A": [np.nan, 0, np.nan], "B": [0, 2, 5], "C": ["", "asdf", "fd"]} ) filled = df.replace(np.nan, values) expected = {k: v.replace(np.nan, values[k]) for k, v in df.items()} tm.assert_frame_equal(filled, DataFrame(expected)) # list to list to_rep = [np.nan, 0, ""] values = [-2, -1, "missing"] result = df.replace(to_rep, values) expected = df.copy() for i in range(len(to_rep)): return_value = expected.replace(to_rep[i], values[i], inplace=True) assert return_value is None tm.assert_frame_equal(result, expected) msg = r"Replacement lists must match in length\. Expecting 3 got 2" with pytest.raises(ValueError, match=msg): df.replace(to_rep, values[1:]) def test_replace_input_formats_scalar(self): df = DataFrame( {"A": [np.nan, 0, np.inf], "B": [0, 2, 5], "C": ["", "asdf", "fd"]} ) # dict to scalar to_rep = {"A": np.nan, "B": 0, "C": ""} filled = df.replace(to_rep, 0) expected = {k: v.replace(to_rep[k], 0) for k, v in df.items()} tm.assert_frame_equal(filled, DataFrame(expected)) msg = "value argument must be scalar, dict, or Series" with pytest.raises(TypeError, match=msg): df.replace(to_rep, [np.nan, 0, ""]) # list to scalar to_rep = [np.nan, 0, ""] result = df.replace(to_rep, -1) expected = df.copy() for i in range(len(to_rep)): return_value = expected.replace(to_rep[i], -1, inplace=True) assert return_value is None tm.assert_frame_equal(result, expected) def test_replace_limit(self): pass def test_replace_dict_no_regex(self): answer = Series( { 0: "Strongly Agree", 1: "Agree", 2: "Neutral", 3: "Disagree", 4: "Strongly Disagree", } ) weights = { "Agree": 4, "Disagree": 2, "Neutral": 3, "Strongly Agree": 5, "Strongly Disagree": 1, } expected = Series({0: 5, 1: 4, 2: 3, 3: 2, 4: 1}) result = answer.replace(weights) tm.assert_series_equal(result, expected) def test_replace_series_no_regex(self): answer = Series( { 0: "Strongly Agree", 1: "Agree", 2: "Neutral", 3: "Disagree", 4: "Strongly Disagree", } ) weights = Series( { "Agree": 4, "Disagree": 2, "Neutral": 3, "Strongly Agree": 5, "Strongly Disagree": 1, } ) expected = Series({0: 5, 1: 4, 2: 3, 3: 2, 4: 1}) result = answer.replace(weights) tm.assert_series_equal(result, expected) def test_replace_dict_tuple_list_ordering_remains_the_same(self): df = DataFrame(dict(A=[np.nan, 1])) res1 = df.replace(to_replace={np.nan: 0, 1: -1e8}) res2 = df.replace(to_replace=(1, np.nan), value=[-1e8, 0]) res3 = df.replace(to_replace=[1, np.nan], value=[-1e8, 0]) expected = DataFrame({"A": [0, -1e8]}) tm.assert_frame_equal(res1, res2) tm.assert_frame_equal(res2, res3) tm.assert_frame_equal(res3, expected) def test_replace_doesnt_replace_without_regex(self): raw = """fol T_opp T_Dir T_Enh 0 1 0 0 vo 1 2 vr 0 0 2 2 0 0 0 3 3 0 bt 0""" df = pd.read_csv(StringIO(raw), sep=r"\s+") res = df.replace({r"\D": 1}) tm.assert_frame_equal(df, res) def test_replace_bool_with_string(self): df = DataFrame({"a": [True, False], "b": list("ab")}) result = df.replace(True, "a") expected = DataFrame({"a": ["a", False], "b": df.b}) tm.assert_frame_equal(result, expected) def test_replace_pure_bool_with_string_no_op(self): df = DataFrame(np.random.rand(2, 2) > 0.5) result = df.replace("asdf", "fdsa") tm.assert_frame_equal(df, result) def test_replace_bool_with_bool(self): df = DataFrame(np.random.rand(2, 2) > 0.5) result = df.replace(False, True) expected = DataFrame(np.ones((2, 2), dtype=bool)) tm.assert_frame_equal(result, expected) def test_replace_with_dict_with_bool_keys(self): df = DataFrame({0: [True, False], 1: [False, True]}) with pytest.raises(TypeError, match="Cannot compare types .+"): df.replace({"asdf": "asdb", True: "yes"}) def test_replace_truthy(self): df = DataFrame({"a": [True, True]}) r = df.replace([np.inf, -np.inf], np.nan) e = df tm.assert_frame_equal(r, e) def test_nested_dict_overlapping_keys_replace_int(self): # GH 27660 keep behaviour consistent for simple dictionary and # nested dictionary replacement df = DataFrame({"a": list(range(1, 5))}) result = df.replace({"a": dict(zip(range(1, 5), range(2, 6)))}) expected = df.replace(dict(zip(range(1, 5), range(2, 6)))) tm.assert_frame_equal(result, expected) def test_nested_dict_overlapping_keys_replace_str(self): # GH 27660 a = np.arange(1, 5) astr = a.astype(str) bstr = np.arange(2, 6).astype(str) df = DataFrame({"a": astr}) result = df.replace(dict(zip(astr, bstr))) expected = df.replace({"a": dict(zip(astr, bstr))}) tm.assert_frame_equal(result, expected) def test_replace_swapping_bug(self): df = pd.DataFrame({"a": [True, False, True]}) res = df.replace({"a": {True: "Y", False: "N"}}) expect = pd.DataFrame({"a": ["Y", "N", "Y"]}) tm.assert_frame_equal(res, expect) df = pd.DataFrame({"a": [0, 1, 0]}) res = df.replace({"a": {0: "Y", 1: "N"}}) expect = pd.DataFrame({"a": ["Y", "N", "Y"]}) tm.assert_frame_equal(res, expect) def test_replace_period(self): d = { "fname": { "out_augmented_AUG_2011.json": pd.Period(year=2011, month=8, freq="M"), "out_augmented_JAN_2011.json": pd.Period(year=2011, month=1, freq="M"), "out_augmented_MAY_2012.json": pd.Period(year=2012, month=5, freq="M"), "out_augmented_SUBSIDY_WEEK.json": pd.Period( year=2011, month=4, freq="M" ), "out_augmented_AUG_2012.json": pd.Period(year=2012, month=8, freq="M"), "out_augmented_MAY_2011.json": pd.Period(year=2011, month=5, freq="M"), "out_augmented_SEP_2013.json": pd.Period(year=2013, month=9, freq="M"), } } df = pd.DataFrame( [ "out_augmented_AUG_2012.json", "out_augmented_SEP_2013.json", "out_augmented_SUBSIDY_WEEK.json", "out_augmented_MAY_2012.json", "out_augmented_MAY_2011.json", "out_augmented_AUG_2011.json", "out_augmented_JAN_2011.json", ], columns=["fname"], ) assert set(df.fname.values) == set(d["fname"].keys()) # We don't support converting object -> specialized EA in # replace yet. expected = DataFrame( {"fname": [d["fname"][k] for k in df.fname.values]}, dtype=object ) result = df.replace(d) tm.assert_frame_equal(result, expected) def test_replace_datetime(self): d = { "fname": { "out_augmented_AUG_2011.json": pd.Timestamp("2011-08"), "out_augmented_JAN_2011.json": pd.Timestamp("2011-01"), "out_augmented_MAY_2012.json": pd.Timestamp("2012-05"), "out_augmented_SUBSIDY_WEEK.json": pd.Timestamp("2011-04"), "out_augmented_AUG_2012.json": pd.Timestamp("2012-08"), "out_augmented_MAY_2011.json": pd.Timestamp("2011-05"), "out_augmented_SEP_2013.json": pd.Timestamp("2013-09"), } } df = pd.DataFrame( [ "out_augmented_AUG_2012.json", "out_augmented_SEP_2013.json", "out_augmented_SUBSIDY_WEEK.json", "out_augmented_MAY_2012.json", "out_augmented_MAY_2011.json", "out_augmented_AUG_2011.json", "out_augmented_JAN_2011.json", ], columns=["fname"], ) assert set(df.fname.values) == set(d["fname"].keys()) expected = DataFrame({"fname": [d["fname"][k] for k in df.fname.values]}) result = df.replace(d) tm.assert_frame_equal(result, expected) def test_replace_datetimetz(self): # GH 11326 # behaving poorly when presented with a datetime64[ns, tz] df = DataFrame( { "A": date_range("20130101", periods=3, tz="US/Eastern"), "B": [0, np.nan, 2], } ) result = df.replace(np.nan, 1) expected = DataFrame( { "A": date_range("20130101", periods=3, tz="US/Eastern"), "B": Series([0, 1, 2], dtype="float64"), } ) tm.assert_frame_equal(result, expected) result = df.fillna(1) tm.assert_frame_equal(result, expected) result = df.replace(0, np.nan) expected = DataFrame( { "A": date_range("20130101", periods=3, tz="US/Eastern"), "B": [np.nan, np.nan, 2], } ) tm.assert_frame_equal(result, expected) result = df.replace( Timestamp("20130102", tz="US/Eastern"), Timestamp("20130104", tz="US/Eastern"), ) expected = DataFrame( { "A": [ Timestamp("20130101", tz="US/Eastern"), Timestamp("20130104", tz="US/Eastern"), Timestamp("20130103", tz="US/Eastern"), ], "B": [0, np.nan, 2], } ) tm.assert_frame_equal(result, expected) result = df.copy() result.iloc[1, 0] = np.nan result = result.replace({"A": pd.NaT}, Timestamp("20130104", tz="US/Eastern")) tm.assert_frame_equal(result, expected) # coerce to object result = df.copy() result.iloc[1, 0] = np.nan result = result.replace({"A": pd.NaT}, Timestamp("20130104", tz="US/Pacific")) expected = DataFrame( { "A": [ Timestamp("20130101", tz="US/Eastern"), Timestamp("20130104", tz="US/Pacific"), Timestamp("20130103", tz="US/Eastern"), ], "B": [0, np.nan, 2], } ) tm.assert_frame_equal(result, expected) result = df.copy() result.iloc[1, 0] = np.nan result = result.replace({"A": np.nan}, Timestamp("20130104")) expected = DataFrame( { "A": [ Timestamp("20130101", tz="US/Eastern"), Timestamp("20130104"), Timestamp("20130103", tz="US/Eastern"), ], "B": [0, np.nan, 2], } ) tm.assert_frame_equal(result, expected) def test_replace_with_empty_dictlike(self, mix_abc): # GH 15289 df = DataFrame(mix_abc) tm.assert_frame_equal(df, df.replace({})) tm.assert_frame_equal(df, df.replace(Series([], dtype=object))) tm.assert_frame_equal(df, df.replace({"b": {}})) tm.assert_frame_equal(df, df.replace(Series({"b": {}}))) @pytest.mark.parametrize( "to_replace, method, expected", [ (0, "bfill", {"A": [1, 1, 2], "B": [5, np.nan, 7], "C": ["a", "b", "c"]}), ( np.nan, "bfill", {"A": [0, 1, 2], "B": [5.0, 7.0, 7.0], "C": ["a", "b", "c"]}, ), ("d", "ffill", {"A": [0, 1, 2], "B": [5, np.nan, 7], "C": ["a", "b", "c"]}), ( [0, 2], "bfill", {"A": [1, 1, 2], "B": [5, np.nan, 7], "C": ["a", "b", "c"]}, ), ( [1, 2], "pad", {"A": [0, 0, 0], "B": [5, np.nan, 7], "C": ["a", "b", "c"]}, ), ( (1, 2), "bfill", {"A": [0, 2, 2], "B": [5, np.nan, 7], "C": ["a", "b", "c"]}, ), ( ["b", "c"], "ffill", {"A": [0, 1, 2], "B": [5, np.nan, 7], "C": ["a", "a", "a"]}, ), ], ) def test_replace_method(self, to_replace, method, expected): # GH 19632 df = DataFrame({"A": [0, 1, 2], "B": [5, np.nan, 7], "C": ["a", "b", "c"]}) result = df.replace(to_replace=to_replace, value=None, method=method) expected = DataFrame(expected) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "replace_dict, final_data", [({"a": 1, "b": 1}, [[3, 3], [2, 2]]), ({"a": 1, "b": 2}, [[3, 1], [2, 3]])], ) def test_categorical_replace_with_dict(self, replace_dict, final_data): # GH 26988 df = DataFrame([[1, 1], [2, 2]], columns=["a", "b"], dtype="category") final_data = np.array(final_data) a = pd.Categorical(final_data[:, 0], categories=[3, 2]) excat = [3, 2] if replace_dict["b"] == 1 else [1, 3] b = pd.Categorical(final_data[:, 1], categories=excat) expected = DataFrame({"a": a, "b": b}) result = df.replace(replace_dict, 3) tm.assert_frame_equal(result, expected) msg = ( r"Attributes of DataFrame.iloc\[:, 0\] \(column name=\"a\"\) are " "different" ) with pytest.raises(AssertionError, match=msg): # ensure non-inplace call does not affect original tm.assert_frame_equal(df, expected) return_value = df.replace(replace_dict, 3, inplace=True) assert return_value is None tm.assert_frame_equal(df, expected) @pytest.mark.parametrize( "df, to_replace, exp", [ ( {"col1": [1, 2, 3], "col2": [4, 5, 6]}, {4: 5, 5: 6, 6: 7}, {"col1": [1, 2, 3], "col2": [5, 6, 7]}, ), ( {"col1": [1, 2, 3], "col2": ["4", "5", "6"]}, {"4": "5", "5": "6", "6": "7"}, {"col1": [1, 2, 3], "col2": ["5", "6", "7"]}, ), ], ) def test_replace_commutative(self, df, to_replace, exp): # GH 16051 # DataFrame.replace() overwrites when values are non-numeric # also added to data frame whilst issue was for series df = pd.DataFrame(df) expected = pd.DataFrame(exp) result = df.replace(to_replace) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "replacer", [ pd.Timestamp("20170827"), np.int8(1), np.int16(1), np.float32(1), np.float64(1), ], ) def test_replace_replacer_dtype(self, replacer): # GH26632 df = pd.DataFrame(["a"]) result = df.replace({"a": replacer, "b": replacer}) expected = pd.DataFrame([replacer]) tm.assert_frame_equal(result, expected) def test_replace_after_convert_dtypes(self): # GH31517 df = pd.DataFrame({"grp": [1, 2, 3, 4, 5]}, dtype="Int64") result = df.replace(1, 10) expected = pd.DataFrame({"grp": [10, 2, 3, 4, 5]}, dtype="Int64") tm.assert_frame_equal(result, expected) def test_replace_invalid_to_replace(self): # GH 18634 # API: replace() should raise an exception if invalid argument is given df = pd.DataFrame({"one": ["a", "b ", "c"], "two": ["d ", "e ", "f "]}) msg = ( r"Expecting 'to_replace' to be either a scalar, array-like, " r"dict or None, got invalid type.*" ) with pytest.raises(TypeError, match=msg): df.replace(lambda x: x.strip()) @pytest.mark.parametrize("dtype", ["float", "float64", "int64", "Int64", "boolean"]) @pytest.mark.parametrize("value", [np.nan, pd.NA]) def test_replace_no_replacement_dtypes(self, dtype, value): # https://github.com/pandas-dev/pandas/issues/32988 df = pd.DataFrame(np.eye(2), dtype=dtype) result = df.replace(to_replace=[None, -np.inf, np.inf], value=value) tm.assert_frame_equal(result, df) @pytest.mark.parametrize("replacement", [np.nan, 5]) def test_replace_with_duplicate_columns(self, replacement): # GH 24798 result = pd.DataFrame({"A": [1, 2, 3], "A1": [4, 5, 6], "B": [7, 8, 9]}) result.columns = list("AAB") expected = pd.DataFrame( {"A": [1, 2, 3], "A1": [4, 5, 6], "B": [replacement, 8, 9]} ) expected.columns = list("AAB") result["B"] = result["B"].replace(7, replacement) tm.assert_frame_equal(result, expected) @pytest.mark.xfail( reason="replace() changes dtype from period to object, see GH34871", strict=True ) def test_replace_period_ignore_float(self): """ Regression test for GH#34871: if df.replace(1.0, 0.0) is called on a df with a Period column the old, faulty behavior is to raise TypeError. """ df = pd.DataFrame({"Per": [pd.Period("2020-01")] * 3}) result = df.replace(1.0, 0.0) expected = pd.DataFrame({"Per": [pd.Period("2020-01")] * 3}) tm.assert_frame_equal(expected, result) def test_replace_value_category_type(self): """ Test for #23305: to ensure category dtypes are maintained after replace with direct values """ # create input data input_dict = { "col1": [1, 2, 3, 4], "col2": ["a", "b", "c", "d"], "col3": [1.5, 2.5, 3.5, 4.5], "col4": ["cat1", "cat2", "cat3", "cat4"], "col5": ["obj1", "obj2", "obj3", "obj4"], } # explicitly cast columns as category and order them input_df = pd.DataFrame(data=input_dict).astype( {"col2": "category", "col4": "category"} ) input_df["col2"] = input_df["col2"].cat.reorder_categories( ["a", "b", "c", "d"], ordered=True ) input_df["col4"] = input_df["col4"].cat.reorder_categories( ["cat1", "cat2", "cat3", "cat4"], ordered=True ) # create expected dataframe expected_dict = { "col1": [1, 2, 3, 4], "col2": ["a", "b", "c", "z"], "col3": [1.5, 2.5, 3.5, 4.5], "col4": ["cat1", "catX", "cat3", "cat4"], "col5": ["obj9", "obj2", "obj3", "obj4"], } # explicitly cast columns as category and order them expected = pd.DataFrame(data=expected_dict).astype( {"col2": "category", "col4": "category"} ) expected["col2"] = expected["col2"].cat.reorder_categories( ["a", "b", "c", "z"], ordered=True ) expected["col4"] = expected["col4"].cat.reorder_categories( ["cat1", "catX", "cat3", "cat4"], ordered=True ) # replace values in input dataframe input_df = input_df.replace("d", "z") input_df = input_df.replace("obj1", "obj9") result = input_df.replace("cat2", "catX") tm.assert_frame_equal(result, expected) @pytest.mark.xfail( reason="category dtype gets changed to object type after replace, see #35268", strict=True, ) def test_replace_dict_category_type(self, input_category_df, expected_category_df): """ Test to ensure category dtypes are maintained after replace with dict values """ # create input dataframe input_dict = {"col1": ["a"], "col2": ["obj1"], "col3": ["cat1"]} # explicitly cast columns as category input_df = pd.DataFrame(data=input_dict).astype( {"col1": "category", "col2": "category", "col3": "category"} ) # create expected dataframe expected_dict = {"col1": ["z"], "col2": ["obj9"], "col3": ["catX"]} # explicitly cast columns as category expected = pd.DataFrame(data=expected_dict).astype( {"col1": "category", "col2": "category", "col3": "category"} ) # replace values in input dataframe using a dict result = input_df.replace({"a": "z", "obj1": "obj9", "cat1": "catX"}) tm.assert_frame_equal(result, expected) def test_replace_with_compiled_regex(self): # https://github.com/pandas-dev/pandas/issues/35680 df = pd.DataFrame(["a", "b", "c"]) regex = re.compile("^a$") result = df.replace({regex: "z"}, regex=True) expected = pd.DataFrame(["z", "b", "c"]) tm.assert_frame_equal(result, expected) def test_replace_intervals(self): # https://github.com/pandas-dev/pandas/issues/35931 df = pd.DataFrame({"a": [pd.Interval(0, 1), pd.Interval(0, 1)]}) result = df.replace({"a": {pd.Interval(0, 1): "x"}}) expected = pd.DataFrame({"a": ["x", "x"]}) tm.assert_frame_equal(result, expected)
17ab9fad59ece529f0f67bb4d297210e473db480
c2f92d75d235ff5ed7b213c02c4a0657545ba02f
/newchama_web/2/newchama/repository/migrations/0020_auto__add_field_keyword_is_delete.py
14c0317f746a4890034163cc993cdb2a38deb7d8
[]
no_license
cash2one/tstpthon
fab6112691eb15a8a26bd168af3f179913e0c4e0
fc5c42c024065c7b42bea2b9de1e3874a794a30d
refs/heads/master
2021-01-20T01:52:06.519021
2017-04-14T09:50:55
2017-04-14T09:50:55
89,338,193
0
1
null
2017-04-25T08:46:06
2017-04-25T08:46:06
null
UTF-8
Python
false
false
10,751
py
# -*- coding: utf-8 -*- from south.utils import datetime_utils as datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'Keyword.is_delete' db.add_column('repository_keyword', 'is_delete', self.gf('django.db.models.fields.IntegerField')(default=0), keep_default=False) def backwards(self, orm): # Deleting field 'Keyword.is_delete' db.delete_column('repository_keyword', 'is_delete') models = { u'area.city': { 'Meta': {'object_name': 'City'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name_cn': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'name_en': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'province': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['area.Province']"}) }, u'area.continent': { 'Meta': {'object_name': 'Continent'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name_cn': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'name_en': ('django.db.models.fields.CharField', [], {'max_length': '255'}) }, u'area.country': { 'Meta': {'object_name': 'Country'}, 'continent': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['area.Continent']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name_cn': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'name_en': ('django.db.models.fields.CharField', [], {'max_length': '255'}) }, u'area.province': { 'Meta': {'object_name': 'Province'}, 'country': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['area.Country']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name_cn': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'name_en': ('django.db.models.fields.CharField', [], {'max_length': '255'}) }, u'industry.industry': { 'Meta': {'object_name': 'Industry'}, 'code': ('django.db.models.fields.CharField', [], {'max_length': '10'}), 'father': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['industry.Industry']", 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'level': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'name_cn': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'name_en': ('django.db.models.fields.CharField', [], {'max_length': '255'}) }, u'repository.accountingfirm': { 'Meta': {'object_name': 'AccountingFirm'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_default': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'name_cn': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'name_en': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'short_name_cn': ('django.db.models.fields.CharField', [], {'max_length': '20', 'blank': 'True'}), 'short_name_en': ('django.db.models.fields.CharField', [], {'max_length': '20', 'blank': 'True'}) }, u'repository.investmentcompany': { 'Meta': {'object_name': 'InvestmentCompany'}, 'address_cn': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'address_en': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'capital_type': ('django.db.models.fields.IntegerField', [], {'default': '1'}), 'city': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['area.City']", 'null': 'True', 'blank': 'True'}), 'country': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['area.Country']", 'null': 'True', 'blank': 'True'}), 'found_time': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'intro_cn': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'intro_en': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'name_cn': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'name_en': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'province': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['area.Province']", 'null': 'True', 'blank': 'True'}), 'short_name_cn': ('django.db.models.fields.CharField', [], {'max_length': '50', 'blank': 'True'}), 'short_name_en': ('django.db.models.fields.CharField', [], {'max_length': '50', 'blank': 'True'}), 'stock_exchange': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['repository.StockExchange']", 'null': 'True', 'blank': 'True'}), 'stock_symbol': ('django.db.models.fields.CharField', [], {'max_length': '20', 'null': 'True', 'blank': 'True'}), 'stock_symbol_no_pre': ('django.db.models.fields.CharField', [], {'max_length': '20', 'null': 'True', 'blank': 'True'}), 'website': ('django.db.models.fields.URLField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}) }, u'repository.investmenthistory': { 'Meta': {'object_name': 'InvestmentHistory'}, 'company': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['repository.InvestmentCompany']"}), 'content': ('django.db.models.fields.TextField', [], {}), 'happen_date': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'type': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True', 'blank': 'True'}) }, u'repository.keyword': { 'Meta': {'object_name': 'Keyword'}, 'add_time': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'count_preference': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'count_project': ('django.db.models.fields.IntegerField', [], {'default': '0'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_delete': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'name': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '255', 'null': 'True'}), 'update_time': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'auto_now': 'True', 'blank': 'True'}) }, u'repository.listedcompany': { 'Meta': {'object_name': 'ListedCompany'}, 'address_cn': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'address_en': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'city': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['area.City']", 'null': 'True', 'blank': 'True'}), 'country': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['area.Country']", 'null': 'True', 'blank': 'True'}), 'fax': ('django.db.models.fields.CharField', [], {'max_length': '20', 'null': 'True', 'blank': 'True'}), 'found_time': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'industry': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['industry.Industry']", 'null': 'True', 'blank': 'True'}), 'intro_cn': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'intro_en': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'name_cn': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'name_en': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'postcode': ('django.db.models.fields.CharField', [], {'max_length': '20', 'null': 'True', 'blank': 'True'}), 'province': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['area.Province']", 'null': 'True', 'blank': 'True'}), 'short_name_cn': ('django.db.models.fields.CharField', [], {'max_length': '50', 'blank': 'True'}), 'short_name_en': ('django.db.models.fields.CharField', [], {'max_length': '50', 'blank': 'True'}), 'stock_exchange': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['repository.StockExchange']"}), 'stock_name': ('django.db.models.fields.CharField', [], {'max_length': '20'}), 'stock_symbol': ('django.db.models.fields.CharField', [], {'max_length': '20'}), 'stock_symbol_no_pre': ('django.db.models.fields.CharField', [], {'max_length': '20'}), 'tel': ('django.db.models.fields.CharField', [], {'max_length': '20', 'null': 'True', 'blank': 'True'}), 'website': ('django.db.models.fields.URLField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}) }, u'repository.stockexchange': { 'Meta': {'object_name': 'StockExchange'}, 'code': ('django.db.models.fields.CharField', [], {'max_length': '20'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name_cn': ('django.db.models.fields.CharField', [], {'max_length': '50', 'blank': 'True'}), 'name_en': ('django.db.models.fields.CharField', [], {'max_length': '50', 'blank': 'True'}), 'short_name_cn': ('django.db.models.fields.CharField', [], {'max_length': '50', 'blank': 'True'}), 'short_name_en': ('django.db.models.fields.CharField', [], {'max_length': '50', 'blank': 'True'}) } } complete_apps = ['repository']
151f7484ec7c130b4403dd08c90830b52368805d
4202a7c678e0ec25ab2065c4c2804b0296f94480
/MOMI_FCS2/momi_priorset_8_stoch_asym.py
9d14d73e818b29893f66b4c9d5195a512cecadac
[]
no_license
kaiyaprovost/whole_genome_pipeline
f1c479536560c5b8c68fe3a5ba0917140fbb0793
8e605d855c9f0cd6e11e1b73a97260e0d4aa3fae
refs/heads/master
2023-04-22T20:51:01.344297
2023-04-06T19:12:11
2023-04-06T19:12:11
237,044,399
0
0
null
null
null
null
UTF-8
Python
false
false
4,387
py
import momi ## momi2 analysis import logging ## create log file import numpy as np import datetime print("-----\n-----\n-----") now = datetime.datetime.now() print("start logging\n") logging.basicConfig(level=logging.INFO, filename="momi_log_priorset_8_stoch_asym.txt") print("load sfs\n") sfspath = "/home/kprovost/nas1/momi2/cardcard16_sfs_filtered_changelength_monomorphic.txt" ## this is a two-population sfs with monomorphic sites included in "length" sfs = momi.Sfs.load(sfspath) print("Avg pairwise heterozygosity", sfs.avg_pairwise_hets[:5]) print("populations", sfs.populations) print("percent missing data per population", sfs.p_missing) ## set up two-population model with parameters ## use Pure Isolation model as base for all of the models ## because only looking at this particular split, elected to change ranges to get print("\nPRIORS") print("MUT RATE: 2.21e-9") mutrate=2.21e-9 print("GEN TIME: 1") gentime=1 print("ANCESTRAL NE: 300,000") ancne=300000 print("DIV TIME RANGE: 500,000 to 1,000,000") divtimelow=500000 divtimehigh=1000000 print("NE RANGE: 500,000 to 2,000,000") nelow=500000 nehigh=2000000 print("MIGRATION RANGE: 0 to 0.1") migratelow=0 migratehigh=0.1 print("MIGRATION DATE RANGE: 25,000 to 250,000\n\n") migtimelow=25000 migtimehigh=250000 print("begin setting up models\n") ##### PURE ISOLATION MODEL ##### print("\nPure Isolation model (base model)") pure_isolation_model = momi.DemographicModel(N_e=ancne,muts_per_gen=mutrate,gen_time=gentime) ## why tho -- can you give it something? pure_isolation_model.set_data(sfs) ## set up divergence times pure_isolation_model.add_time_param("tdiv_sc",lower=divtimelow,upper=divtimehigh) ## set up effective population size pure_isolation_model.add_size_param("ne_s",lower=nelow,upper=nehigh) ## this is from Brian's paper on cardinals pure_isolation_model.add_size_param("ne_c",lower=nelow,upper=nehigh) ## set up populations and phylogeny pure_isolation_model.add_leaf("Son",N="ne_s") pure_isolation_model.add_leaf("Chi",N="ne_c") pure_isolation_model.move_lineages("Son", "Chi", t="tdiv_sc") ## randomize parameters and check them #pure_isolation_model.set_params(randomize=True) #print(pure_isolation_model.get_params()) ## set up the rest of the models ##### ASYMMETRIC MIGRATION ##### print("\nAsymmetric model (c2s as base)") asym_model = pure_isolation_model.copy() ## copy isol asym_model.add_pulse_param("mig_s2c",lower=migratelow,upper=migratehigh) asym_model.add_pulse_param("mig_c2s",lower=migratelow,upper=migratehigh) asym_model.add_time_param("tmig_asym",lower=migtimelow,upper=migtimehigh,upper_constraints=["tdiv_sc"]) asym_model.move_lineages("Chi","Son",t="tmig_asym",p="mig_s2c") asym_model.move_lineages("Son","Chi",t="tmig_asym",p="mig_c2s") ## randomize and check parameters asym_model.set_params(randomize=True) print(asym_model.get_params()) ## optimize each model once print("#####") models = [asym_model] model_names = ["ASYM"] AICs = [] count = 0 for model in models: now = datetime.datetime.now() name = str(model_names[count]) print("Stochastic optimizing "+name+" model: "+str(now)) model.stochastic_optimize(num_iters=10, n_minibatches=5, save_to_checkpoint="momi_checkpoint_priorset8_stoch_asym.txt", svrg_epoch=-1) now = datetime.datetime.now() print("Finished stochastic optimizing "+name+": "+str(now)) print(model.get_params()) print("Starting AIC likelihood for stochastic "+name) lik = model.log_likelihood() nparams = len(model.get_params()) aic = 2*nparams - 2*lik print("AIC {}".format(aic)) AICs.append(aic) count += 1 print("-----") count = 0 for model in models: now = datetime.datetime.now() print("Fully optimizing "+name+" model: "+str(now)) model.optimize(method="L-BFGS-B") now = datetime.datetime.now() print("Finished fully optimizing "+name+": "+str(now)) print(model.get_params()) print("Starting AIC likelihood for full "+name) lik = model.log_likelihood() nparams = len(model.get_params()) aic = 2*nparams - 2*lik print("AIC {}".format(aic)) AICs.append(aic) count += 1 print("-----") minv = np.min(AICs) delta_aic = np.array(AICs) - minv print("Delta AIC per model: ", delta_aic) print("AIC weight per model: ", np.exp(-0.5 * delta_aic)) ## TODO: add searching multiple times ## TODO: add bootstrapping
7eee6af617335a2d6c8c407680e67b2cc2e81dea
55f6a9b8f90ae308a90739fd8f77f4e7cd10ff19
/spacy/tests/lang/sk/test_tokenizer.py
247847284ad16613d04423f16cb12d3f7d98d573
[ "MIT" ]
permissive
explosion/spaCy
cce07ee403aa398de7ba8941a2c11d22aea68021
3e4264899c3b12f8eabc5cd700146177a34824d0
refs/heads/master
2023-08-31T07:18:13.598768
2023-08-30T09:58:14
2023-08-30T09:58:14
21,467,110
26,348
4,983
MIT
2023-09-13T17:56:22
2014-07-03T15:15:40
Python
UTF-8
Python
false
false
453
py
import pytest SK_BASIC_TOKENIZATION_TESTS = [ ( "Kedy sa narodil Andrej Kiska?", ["Kedy", "sa", "narodil", "Andrej", "Kiska", "?"], ), ] @pytest.mark.parametrize("text,expected_tokens", SK_BASIC_TOKENIZATION_TESTS) def test_sk_tokenizer_basic(sk_tokenizer, text, expected_tokens): tokens = sk_tokenizer(text) token_list = [token.text for token in tokens if not token.is_space] assert expected_tokens == token_list
f16f5035356d1ce85a7038be04e25800a6524e58
12d05a7f65e6ca8ffa701670ed1bec209af77a51
/capsule_biblosa/models/biblosa/nn_utils/integration_func.py
aa4c5160c77aa2c81ae964a4097d76df63f6a1d5
[]
no_license
Bobby-Han/text-classification
ec8015e6bb438fceb8d7b61117519e2d6469c57d
2fa6d3ed4f3b9288ff7fb385c9cced44daf522ca
refs/heads/master
2023-02-24T13:27:36.761439
2021-02-01T06:27:53
2021-02-01T06:27:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,921
py
# coding: utf-8 from models.biblosa.nn_utils.general import exp_mask_for_high_rank, mask_for_high_rank from models.biblosa.nn_utils.nn import linear, get_logits, softsel, dropout, bn_dense_layer from models.biblosa.nn_utils.rnn_cell import SwitchableDropoutWrapper from models.biblosa.nn_utils.rnn import bidirectional_dynamic_rnn import tensorflow as tf from models.biblosa.nn_utils.general import get_last_state, add_reg_without_bias def traditional_attention(rep_tensor, rep_mask, scope=None, keep_prob=1., is_train=None, wd=0., activation='elu', tensor_dict=None, name=None): bs, sl, vec = tf.shape(rep_tensor)[0], tf.shape(rep_tensor)[1], tf.shape(rep_tensor)[2] ivec = rep_tensor.get_shape()[2] with tf.variable_scope(scope or 'traditional_attention'): rep_tensor_map = bn_dense_layer(rep_tensor, ivec, True, 0., 'bn_dense_map', activation, False, wd, keep_prob, is_train) rep_tensor_logits = get_logits([rep_tensor_map], None, False, scope='self_attn_logits', mask=rep_mask, input_keep_prob=keep_prob, is_train=is_train) # bs,sl attn_res = softsel(rep_tensor, rep_tensor_logits, rep_mask) # bs,vec # save attn if tensor_dict is not None and name is not None: tensor_dict[name] = tf.nn.softmax(rep_tensor_logits) return attn_res def multi_dimensional_attention(rep_tensor, rep_mask, scope=None, keep_prob=1., is_train=None, wd=0., activation='elu', tensor_dict=None, name=None): bs, sl, vec = tf.shape(rep_tensor)[0], tf.shape(rep_tensor)[1], tf.shape(rep_tensor)[2] ivec = rep_tensor.get_shape()[2] with tf.variable_scope(scope or 'multi_dimensional_attention'): map1 = bn_dense_layer(rep_tensor, ivec, True, 0., 'bn_dense_map1', activation, False, wd, keep_prob, is_train) map2 = bn_dense_layer(map1, ivec, True, 0., 'bn_dense_map2', 'linear', False, wd, keep_prob, is_train) map2_masked = exp_mask_for_high_rank(map2, rep_mask) soft = tf.nn.softmax(map2_masked, 1) # bs,sl,vec attn_output = tf.reduce_sum(soft * rep_tensor, 1) # bs, vec # save attn if tensor_dict is not None and name is not None: tensor_dict[name] = soft return attn_output def directional_attention_with_dense(rep_tensor, rep_mask, direction=None, scope=None, keep_prob=1., is_train=None, wd=0., activation='elu', tensor_dict=None, name=None): def scaled_tanh(x, scale=5.): return scale * tf.nn.tanh(1./scale * x) bs, sl, vec = tf.shape(rep_tensor)[0], tf.shape(rep_tensor)[1], tf.shape(rep_tensor)[2] ivec = rep_tensor.get_shape()[2] with tf.variable_scope(scope or 'directional_attention_%s' % direction or 'diag'): # mask generation sl_indices = tf.range(sl, dtype=tf.int32) sl_col, sl_row = tf.meshgrid(sl_indices, sl_indices) if direction is None: direct_mask = tf.cast(tf.diag(- tf.ones([sl], tf.int32)) + 1, tf.bool) else: if direction == 'forward': direct_mask = tf.greater(sl_row, sl_col) else: direct_mask = tf.greater(sl_col, sl_row) direct_mask_tile = tf.tile(tf.expand_dims(direct_mask, 0), [bs, 1, 1]) # bs,sl,sl rep_mask_tile = tf.tile(tf.expand_dims(rep_mask, 1), [1, sl, 1]) # bs,sl,sl attn_mask = tf.logical_and(direct_mask_tile, rep_mask_tile) # bs,sl,sl # non-linear rep_map = bn_dense_layer(rep_tensor, ivec, True, 0., 'bn_dense_map', activation, False, wd, keep_prob, is_train) rep_map_tile = tf.tile(tf.expand_dims(rep_map, 1), [1, sl, 1, 1]) # bs,sl,sl,vec rep_map_dp = dropout(rep_map, keep_prob, is_train) # attention with tf.variable_scope('attention'): # bs,sl,sl,vec f_bias = tf.get_variable('f_bias',[ivec], tf.float64, tf.constant_initializer(0.)) dependent = linear(rep_map_dp, ivec, False, scope='linear_dependent') # bs,sl,vec dependent_etd = tf.expand_dims(dependent, 1) # bs,1,sl,vec head = linear(rep_map_dp, ivec, False, scope='linear_head') # bs,sl,vec head_etd = tf.expand_dims(head, 2) # bs,sl,1,vec logits = scaled_tanh(dependent_etd + head_etd + f_bias, 5.0) # bs,sl,sl,vec logits_masked = exp_mask_for_high_rank(logits, attn_mask) attn_score = tf.nn.softmax(logits_masked, 2) # bs,sl,sl,vec attn_score = mask_for_high_rank(attn_score, attn_mask) attn_result = tf.reduce_sum(attn_score * rep_map_tile, 2) # bs,sl,vec with tf.variable_scope('output'): o_bias = tf.get_variable('o_bias',[ivec], tf.float64, tf.constant_initializer(0.)) # input gate fusion_gate = tf.nn.sigmoid( linear(rep_map, ivec, True, 0., 'linear_fusion_i', False, wd, keep_prob, is_train) + linear(attn_result, ivec, True, 0., 'linear_fusion_a', False, wd, keep_prob, is_train) + o_bias) output = fusion_gate * rep_map + (1-fusion_gate) * attn_result output = mask_for_high_rank(output, rep_mask) # save attn if tensor_dict is not None and name is not None: tensor_dict[name + '_dependent'] = dependent tensor_dict[name + '_head'] = head tensor_dict[name] = attn_score tensor_dict[name + '_gate'] = fusion_gate return output # -------------- rnn -------------- def contextual_bi_rnn(tensor_rep, mask_rep, hn, cell_type, only_final=False, wd=0., keep_prob=1.,is_train=None, scope=None): """ fusing contextual information using bi-direction rnn :param tensor_rep: [..., sl, vec] :param mask_rep: [..., sl] :param hn: :param cell_type: 'gru', 'lstm', basic_lstm' and 'basic_rnn' :param only_final: True or False :param wd: :param keep_prob: :param is_train: :param scope: :return: """ with tf.variable_scope(scope or 'contextual_bi_rnn'): # correct reuse = None if not tf.get_variable_scope().reuse else True #print(reuse) if cell_type == 'gru': cell_fw = tf.contrib.rnn.GRUCell(hn, reuse=reuse) cell_bw = tf.contrib.rnn.GRUCell(hn, reuse=reuse) elif cell_type == 'lstm': cell_fw = tf.contrib.rnn.LSTMCell(hn, reuse=reuse) cell_bw = tf.contrib.rnn.LSTMCell(hn, reuse=reuse) elif cell_type == 'basic_lstm': cell_fw = tf.contrib.rnn.BasicLSTMCell(hn, reuse=reuse) cell_bw = tf.contrib.rnn.BasicLSTMCell(hn, reuse=reuse) elif cell_type == 'basic_rnn': cell_fw = tf.contrib.rnn.BasicRNNCell(hn, reuse=reuse) cell_bw = tf.contrib.rnn.BasicRNNCell(hn, reuse=reuse) else: raise AttributeError('no cell type \'%s\'' % cell_type) cell_dp_fw = SwitchableDropoutWrapper(cell_fw,is_train,keep_prob) cell_dp_bw = SwitchableDropoutWrapper(cell_bw,is_train,keep_prob) tensor_len = tf.reduce_sum(tf.cast(mask_rep, tf.int32), -1) # [bs] (outputs_fw, output_bw), _=bidirectional_dynamic_rnn( cell_dp_fw, cell_dp_bw, tensor_rep, tensor_len, dtype=tf.float32) rnn_outputs = tf.concat([outputs_fw,output_bw],-1) # [...,sl,2hn] if wd > 0: add_reg_without_bias() if not only_final: return rnn_outputs # [....,sl, 2hn] else: return get_last_state(rnn_outputs, mask_rep) # [...., 2hn] # -------------- emb mat-------------- def generate_embedding_mat(dict_size, emb_len, init_mat=None, extra_mat=None, extra_trainable=False, scope=None): """ generate embedding matrix for looking up :param dict_size: indices 0 and 1 corresponding to empty and unknown token :param emb_len: :param init_mat: init mat matching for [dict_size, emb_len] :param extra_mat: extra tensor [extra_dict_size, emb_len] :param extra_trainable: :param scope: :return: if extra_mat is None, return[dict_size+extra_dict_size,emb_len], else [dict_size,emb_len] """ with tf.variable_scope(scope or 'gene_emb_mat'): emb_mat_ept_and_unk = tf.constant(value=0, dtype=tf.float32, shape=[2, emb_len]) if init_mat is None: emb_mat_other = tf.get_variable('emb_mat',[dict_size - 2, emb_len], tf.float32) else: emb_mat_other = tf.get_variable("emb_mat",[dict_size - 2, emb_len], tf.float32, initializer=tf.constant_initializer(init_mat[2:], dtype=tf.float32, verify_shape=True)) emb_mat = tf.concat([emb_mat_ept_and_unk, emb_mat_other], 0) if extra_mat is not None: if extra_trainable: extra_mat_var = tf.get_variable("extra_emb_mat",extra_mat.shape, tf.float32, initializer=tf.constant_initializer(extra_mat, dtype=tf.float32, verify_shape=True)) return tf.concat([emb_mat, extra_mat_var], 0) else: #with tf.device('/cpu:0'): extra_mat_con = tf.constant(extra_mat, dtype=tf.float32) return tf.concat([emb_mat, extra_mat_con], 0) else: return emb_mat
92b74d7f6090a1d0b0e6e8984b12d6284c13a25c
2063a057c3ff7b78d93e7bcc041e65eaa05bd86d
/pyglet_utils/platformer/player.py
efcec024a90d637cc3827c79f01b82d2cf7ee8d0
[]
no_license
cm107/pyglet_utils
c45025237bc21bec6f8e0f0d6007428ed6cde559
c20dc6a7658a1f7de4784c3b6ab69bffe9f33a79
refs/heads/master
2022-11-19T20:07:21.326211
2020-07-24T15:09:14
2020-07-24T15:09:14
262,519,884
0
0
null
null
null
null
UTF-8
Python
false
false
10,291
py
from typing import List, cast from .resources import PlayerImages from .game_obj import GameObject from .frame import Frame from .render import RenderBox from .grid import Grid, GridObject from ..lib.exception_handler import Error from pyglet.graphics import Batch from pyglet.shapes import Circle, Rectangle from common_utils.check_utils import check_value class ArrowKeyBuffer: def __init__(self, buffer: List[str]=None): self.buffer = buffer if buffer is not None else [] self._valid_directions = ['left', 'right'] def press(self, direction: str): check_value(direction, valid_value_list=self._valid_directions) self.buffer.append(direction) def release(self, direction: str): check_value(direction, valid_value_list=self._valid_directions) while direction in self.buffer: idx = self.buffer.index(direction) del self.buffer[idx] @property def is_pressed(self) -> bool: return len(self.buffer) > 0 @property def is_released(self) -> bool: return len(self.buffer) == 0 class Player(GameObject): def __init__(self, x: int, y: int, frame: Frame, grid: Grid, renderbox: RenderBox, name: str='Player1', batch: Batch=None, debug: bool=False): # Player Sprite Select Related self.player_res_list = [PlayerImages.p1, PlayerImages.p2, PlayerImages.p3] self.player_select = 0 self.player_res = self.player_res_list[self.player_select] # Initialize Base Class super().__init__( x=x, y=y, res=self.player_res.jump_right, frame=frame, grid=grid, renderbox=renderbox, name=name, batch=batch, usage='dynamic', is_anchor_x_centered=True ) # Movement Related self.BASE_WALKING_SPEED = 200 self.BASE_JUMPING_SPEED = 300 self.vx = 0.0 self.vy = 0.0 self.facing = 'right' self.status = 'jumping' self.arrow_key_buffer = ArrowKeyBuffer() # Grid Related self.up_contact_obj_list = cast(List[GridObject], []) self.down_contact_obj_list = cast(List[GridObject], []) self.left_contact_obj_list = cast(List[GridObject], []) self.right_contact_obj_list = cast(List[GridObject], []) # Debug self.debug = debug self.ref_point = Circle(x=self.camera_x, y=self.camera_y, radius=5, color=(255,0,0)) self.ref_rect = Rectangle(x=self.camera_x, y=self.camera_y, width=self.width, height=self.height, color=(0,0,255)) self.ref_rect.anchor_x = self.ref_rect.width // 2 @property def x(self) -> int: return super().x @x.setter def x(self, x: int): super().x = x if self.debug: self.ref_point.x = self.camera_x self.ref_rect.x = self.camera_x @property def y(self) -> int: return super().y @y.setter def y(self, y: int): super().y = y if self.debug: self.ref_point.y = self.camera_y self.ref_rect.y = self.camera_y def change_player(self, idx: int): self.player_res = self.player_res_list[idx] self.player_select = idx self.update_sprite() def toggle_player(self): self.change_player((self.player_select+1) % len(self.player_res_list)) def toggle_debug(self): self.debug = not self.debug self.grid.show_contacts = not self.grid.show_contacts def change_sprite(self, image): self.sprite.image = image if self.debug: self.ref_rect.width = self.sprite.width self.ref_rect.height = self.sprite.height self.ref_rect.anchor_x = self.ref_rect.width // 2 def update_sprite(self): if self.status == 'idle': if self.facing == 'right': self.change_sprite(self.player_res.idle_right.img) elif self.facing == 'left': self.change_sprite(self.player_res.idle_left.img) else: raise Exception elif self.status == 'jumping': if self.facing == 'right': self.change_sprite(self.player_res.jump_right.img) elif self.facing == 'left': self.change_sprite(self.player_res.jump_left.img) else: raise Exception elif self.status == 'walking': if self.facing == 'right': self.change_sprite(self.player_res.walk_right_anim.animation) elif self.facing == 'left': self.change_sprite(self.player_res.walk_left_anim.animation) else: raise Exception else: raise Exception @property def is_idle(self) -> bool: return self.status == 'idle' @property def is_walking(self) -> bool: return self.status == 'walking' @property def is_jumping(self) -> bool: return self.status == 'jumping' def face(self, direction: str): if direction == 'right': self.facing = 'right' self.update_sprite() elif direction == 'left': self.facing = 'left' self.update_sprite() else: raise Exception def start_walking(self, direction: str): if direction == 'right': self.vx = self.BASE_WALKING_SPEED self.facing = 'right' self.status = 'walking' self.update_sprite() elif direction == 'left': self.vx = -self.BASE_WALKING_SPEED self.facing = 'left' self.status = 'walking' self.update_sprite() else: raise Exception def stop_walking(self): self.status = 'idle' self.vx = 0 self.update_sprite() def start_jumping(self): self.status = 'jumping' self.vy = self.BASE_JUMPING_SPEED self.update_sprite() def start_falling(self): self.status = 'jumping' self.update_sprite() def stop_jumping(self): self.status = 'idle' self.vy = 0 self.update_sprite() def draw(self): if self.debug: self.ref_point.draw() self.ref_rect.draw() super().draw() def move(self, dx: int, dy: int): player_grid_obj = self.grid.contained_obj_list.get_obj_from_name(self.name) other_renderable_objects = self.renderbox.get_all_renderable_objects(exclude_names=[self.name]) other_renderable_names = [other_renderable_object.name for other_renderable_object in other_renderable_objects] other_grid_objects = self.grid.contained_obj_list.get_objects(include_names=other_renderable_names) all_grid_objects = self.grid.contained_obj_list.get_objects() self.up_contact_obj_list = [] self.down_contact_obj_list = [] self.left_contact_obj_list = [] self.right_contact_obj_list = [] self.grid.reset_contacts() # Move X proposed_player_occupied_spaces = player_grid_obj.get_occupied_spaces(dx=dx) collision = False for proposed_player_occupied_space in proposed_player_occupied_spaces: for other_grid_object in other_grid_objects: if proposed_player_occupied_space in other_grid_object.occupied_spaces: other_grid_object.is_in_contact = True if dx > 0: self.right_contact_obj_list.append(other_grid_object) elif dx < 0: self.left_contact_obj_list.append(other_grid_object) else: raise Error(f'Player got stuck in object in x direction.') collision = True if not collision: self.set_x(x=self.x+dx, fix_camera=True) self.grid.move(dx=-dx) else: if len(self.left_contact_obj_list) > 0: dx_adjustment = self.left_contact_obj_list[0].x_right + 1 - self.x_left self.set_x(x=self.x+dx_adjustment, fix_camera=True) self.grid.move(dx=-dx_adjustment) elif len(self.right_contact_obj_list) > 0: dx_adjustment = self.right_contact_obj_list[0].x_left - self.x_right self.set_x(x=self.x+dx_adjustment, fix_camera=True) self.grid.move(dx=-dx_adjustment) else: raise Exception # Move Y proposed_player_occupied_spaces = player_grid_obj.get_occupied_spaces(dy=dy) collision = False for proposed_player_occupied_space in proposed_player_occupied_spaces: for other_grid_object in other_grid_objects: if proposed_player_occupied_space in other_grid_object.occupied_spaces: other_grid_object.is_in_contact = True if dy > 0: self.up_contact_obj_list.append(other_grid_object) elif dy < 0: self.down_contact_obj_list.append(other_grid_object) else: raise Error(f'Player got stuck in object in y direction.') collision = True if not collision: self.set_y(y=self.y+dy, fix_camera=True) self.grid.move(dy=-dy) self.start_falling() else: self.vy = 0 if len(self.down_contact_obj_list) > 0: dy_adjustment = self.down_contact_obj_list[0].y_top - self.y_bottom self.set_y(y=self.y+dy_adjustment, fix_camera=True) self.grid.move(dy=-dy_adjustment) if self.is_jumping: self.stop_jumping() if self.arrow_key_buffer.is_pressed: self.start_walking(direction=self.arrow_key_buffer.buffer[-1]) else: self.vx = 0 elif len(self.up_contact_obj_list) > 0: dy_adjustment = self.up_contact_obj_list[0].y_bottom - self.y_top self.set_y(y=self.y+dy_adjustment, fix_camera=True) self.grid.move(dy=-dy_adjustment) else: raise Exception
25a66089f805038eee267a2ad15f97dabe903290
ccdbe6e17022aae05e6bee60b37fd92a0b44a6d8
/python/kivyapp/clock.py
b938a8ed87cc8a63c2595f40e017430675c55b3f
[ "Apache-2.0" ]
permissive
bdastur/notes
e580c45ef38abd2b104dce3ec6898031e9c79f27
74341d8de88c8817c557af02c6e8bd470e56151f
refs/heads/master
2023-08-15T19:59:54.631621
2023-07-24T15:27:08
2023-07-24T15:27:08
92,065,482
4
1
Apache-2.0
2023-08-27T19:00:14
2017-05-22T14:52:34
JavaScript
UTF-8
Python
false
false
958
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import datetime from kivy.app import App from kivy.uix.label import Label from kivy.clock import Clock from kivy.uix.gridlayout import GridLayout class MyClock(GridLayout): def __init__(self, **kwargs): super(MyClock, self).__init__(**kwargs) self.cols = 1 self.myLabel = Label(text="Clock: ") self.add_widget(self.myLabel) Clock.schedule_once(self.clockCallback, 3) def clockCallback(self, duration): now = datetime.datetime.now() print("Duration: ", datetime.datetime.strftime(now, "%Y-%m-%d %H:%M:%S")) self.myLabel.text = "Clock: %s" % datetime.datetime.strftime(now, "%Y-%m-%d %H:%M:%S") class ClockApp(App): def build(self): myclock = MyClock() Clock.schedule_interval(myclock.clockCallback, 5) return myclock def main(): ClockApp().run() if __name__ == '__main__': main()
2adcff104db81c7a2defe60c9f677882631fe561
88ae8695987ada722184307301e221e1ba3cc2fa
/chrome/browser/ash/arc/PRESUBMIT.py
9b7c9a6ae4bf8c95ebee88233e1d5518e78f4fe7
[ "BSD-3-Clause" ]
permissive
iridium-browser/iridium-browser
71d9c5ff76e014e6900b825f67389ab0ccd01329
5ee297f53dc7f8e70183031cff62f37b0f19d25f
refs/heads/master
2023-08-03T16:44:16.844552
2023-07-20T15:17:00
2023-07-23T16:09:30
220,016,632
341
40
BSD-3-Clause
2021-08-13T13:54:45
2019-11-06T14:32:31
null
UTF-8
Python
false
false
535
py
# Copyright 2017 The Chromium Authors # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. USE_PYTHON3 = True def CheckChangeOnUpload(input_api, output_api): # Apply the same PRESUBMIT for components/arc. presubmit_path = ( input_api.change.RepositoryRoot() + '/components/arc/PRESUBMIT.py') presubmit_content = input_api.ReadFile(presubmit_path) global_vars = {} exec(presubmit_content, global_vars) return global_vars['CheckChangeOnUpload'](input_api, output_api)
c92082561955960009d752e4ffe94a930beeedb3
eeaf323a92254190195ecbb61c03171aae8f28ee
/accounts/migrations/0002_usercompanies_company_name.py
decf6fe96a53b78ea09b7794c2145c537e0264d5
[]
no_license
abdullakn/job-portal1
44295db5c1169494454fa407ad5716f119e6017b
c5d299acae4262eb9d02317f3358aaa6d4314b13
refs/heads/master
2023-07-18T07:45:54.610627
2021-09-04T11:37:36
2021-09-04T11:37:36
403,040,146
0
0
null
null
null
null
UTF-8
Python
false
false
411
py
# Generated by Django 3.2.5 on 2021-07-21 18:07 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('accounts', '0001_initial'), ] operations = [ migrations.AddField( model_name='usercompanies', name='company_name', field=models.CharField(blank=True, max_length=200, null=True), ), ]
7b7d347149ddda0cbc9c618459c6c1fa0741bc89
c50e7eb190802d7849c0d0cea02fb4d2f0021777
/src/virtual-wan/azext_vwan/vendored_sdks/v2018_08_01/v2018_08_01/aio/operations/_load_balancer_frontend_ip_configurations_operations.py
006f819fc5baa437f0da30dd80a00996d1cbf621
[ "LicenseRef-scancode-generic-cla", "MIT" ]
permissive
Azure/azure-cli-extensions
c1615b19930bba7166c282918f166cd40ff6609c
b8c2cf97e991adf0c0a207d810316b8f4686dc29
refs/heads/main
2023-08-24T12:40:15.528432
2023-08-24T09:17:25
2023-08-24T09:17:25
106,580,024
336
1,226
MIT
2023-09-14T10:48:57
2017-10-11T16:27:31
Python
UTF-8
Python
false
false
8,921
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class LoadBalancerFrontendIPConfigurationsOperations: """LoadBalancerFrontendIPConfigurationsOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2018_08_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list( self, resource_group_name: str, load_balancer_name: str, **kwargs ) -> AsyncIterable["_models.LoadBalancerFrontendIPConfigurationListResult"]: """Gets all the load balancer frontend IP configurations. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param load_balancer_name: The name of the load balancer. :type load_balancer_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either LoadBalancerFrontendIPConfigurationListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2018_08_01.models.LoadBalancerFrontendIPConfigurationListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.LoadBalancerFrontendIPConfigurationListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-08-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'loadBalancerName': self._serialize.url("load_balancer_name", load_balancer_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('LoadBalancerFrontendIPConfigurationListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/loadBalancers/{loadBalancerName}/frontendIPConfigurations'} # type: ignore async def get( self, resource_group_name: str, load_balancer_name: str, frontend_ip_configuration_name: str, **kwargs ) -> "_models.FrontendIPConfiguration": """Gets load balancer frontend IP configuration. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param load_balancer_name: The name of the load balancer. :type load_balancer_name: str :param frontend_ip_configuration_name: The name of the frontend IP configuration. :type frontend_ip_configuration_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: FrontendIPConfiguration, or the result of cls(response) :rtype: ~azure.mgmt.network.v2018_08_01.models.FrontendIPConfiguration :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.FrontendIPConfiguration"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-08-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'loadBalancerName': self._serialize.url("load_balancer_name", load_balancer_name, 'str'), 'frontendIPConfigurationName': self._serialize.url("frontend_ip_configuration_name", frontend_ip_configuration_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('FrontendIPConfiguration', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/loadBalancers/{loadBalancerName}/frontendIPConfigurations/{frontendIPConfigurationName}'} # type: ignore
821d5e38bb6bc7cd626ca8d67a825d1a4dc3d9fd
eb8b5cde971573668800146b3632e43ed6e493d2
/python/oneflow/nn/modules/random_ops.py
fb7503bc898688f8a370e6cae07c381d2f619987
[ "Apache-2.0" ]
permissive
big-data-ai/oneflow
16f167f7fb7fca2ce527d6e3383c577a90829e8a
b1c67df42fb9c5ab1335008441b0273272d7128d
refs/heads/master
2023-07-08T21:21:41.136387
2021-08-21T11:31:14
2021-08-21T11:31:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
12,176
py
""" Copyright 2020 The OneFlow Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from typing import Optional, Union import oneflow as flow from oneflow.nn.module import Module from oneflow.nn.modules.utils import _single def bernoulli(input, *, generator=None, out=None): """This operator returns a Tensor with binaray random numbers (0 / 1) from a Bernoulli distribution. Args: input(Tensor) - the input tensor of probability values for the Bernoulli distribution generator: (optional) – a pseudorandom number generator for sampling out (Tensor, optional) – the output tensor. Shape: - Input: :math:`(*)`. Input can be of any shape - Output: :math:`(*)`. Output is of the same shape as input For example: .. code-block:: python >>> import numpy as np >>> import oneflow as flow >>> arr = np.array( ... [ ... [1.0, 1.0, 1.0], ... [1.0, 1.0, 1.0], ... [1.0, 1.0, 1.0], ... ] ... ) >>> x = flow.Tensor(arr) >>> y = flow.bernoulli(x) >>> y tensor([[1., 1., 1.], [1., 1., 1.], [1., 1., 1.]], dtype=oneflow.float32) """ return flow.F.bernoulli(input, flow.float32, generator) def _rand_op_common_process( size, device=None, generator=None, placement=None, sbp=None ): assert size is not None, "shape must not be None!" assert isinstance( size, (int, tuple, list, flow.Size) ), "shape should be int or tuple int!" if isinstance(device, str): device = flow.device(device) size = _single(size) processed_sbp = sbp if generator is None: generator = flow.Generator() if placement is not None: assert isinstance(sbp, (flow.sbp.sbp, tuple, list)), "sbp: %s" % sbp if isinstance(processed_sbp, flow.sbp.sbp): processed_sbp = (processed_sbp,) else: for elem in sbp: assert isinstance(elem, flow.sbp.sbp), "sbp: %s" % sbp assert len(processed_sbp) == len(placement.hierarchy) else: assert sbp is None, "sbp: %s" % sbp return size, device, generator, placement, processed_sbp class Rand(Module): def __init__( self, size, generator=None, dtype=None, layout=None, device=None, placement=None, sbp=None, requires_grad=False, ) -> None: super().__init__() self.requires_grad = requires_grad ( self.size, self.device, self.generator, self.placement, self.sbp, ) = _rand_op_common_process(size, device, generator, placement, sbp) self.dtype = dtype def forward(self): if self.placement is not None: res = flow.F.consistent_rand( self.size, self.placement, self.sbp, self.dtype, self.generator ) else: res = flow.F.rand(self.size, self.dtype, self.device, self.generator) res.requires_grad = self.requires_grad return res def rand_op( *size, out=None, generator=None, dtype: Optional[flow.dtype] = None, layout=None, device: Union[flow.device, str, None] = None, placement: flow.placement = None, sbp: flow._oneflow_internal.sbp.sbp = None, requires_grad: bool = False ): """ Returns a tensor filled with random numbers from a uniform distribution on the interval [0, 1) The shape of the tensor is defined by the variable argument ``size``. Args: size (int... or flow.Size): Defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple or flow.Size. out (optional): The output tensor. dtype (flow.dtype, optional): The desired data type of returned tensor. Default: ``flow.float32``. layout (optional): The desired layout of returned Tensor. generator (flow.Generator, optional) – a pseudorandom number generator for sampling device (flow.device, optional): The desired device of returned local tensor. If None, uses the current device. placement (flow.placement, optional): The desired device of returned consistent tensor. If None, will construct local tensor. sbp (flow.sbp, optional): The desired sbp of returned consistent tensor. It must be equal with the numbers of placement. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: False. For example: .. code-block:: python >>> import oneflow as flow >>> x = flow.rand(3,3) >>> x.shape flow.Size([3, 3]) >>> x.is_consistent False >>> placement = flow.placement("cpu", {0: [0]}) >>> sbp = flow.sbp.broadcast >>> x = flow.rand(3, 3, placement=placement, sbp=sbp) >>> x.is_consistent True """ assert out is None, "out not supported yet" assert layout is None, "layout not supported yet" if generator is None: generator = flow.default_generator() return Rand(size, generator, dtype, layout, device, placement, sbp, requires_grad)() class RandN(Module): def __init__( self, size, generator=None, dtype=None, layout=None, device=None, placement=None, sbp=None, requires_grad=False, ) -> None: super().__init__() self.requires_grad = requires_grad ( self.size, self.device, self.generator, self.placement, self.sbp, ) = _rand_op_common_process(size, device, generator, placement, sbp) self.dtype = dtype def forward(self): if self.placement is not None: res = flow.F.consistent_randn( self.size, self.placement, self.sbp, self.dtype, self.generator ) else: res = flow.F.randn(self.size, self.dtype, self.device, self.generator) res.requires_grad = self.requires_grad return res def randn_op( *size, out=None, generator=None, dtype: Optional[flow.dtype] = None, layout=None, device: Union[flow.device, str, None] = None, placement: flow.placement = None, sbp: flow._oneflow_internal.sbp.sbp = None, requires_grad: bool = False ): """ Returns a tensor filled with random numbers from a normal distribution with mean 0 and variance 1 (also called the standard normal distribution). The shape of the tensor is defined by the variable argument ``size``. Args: size (int... or flow.Size): Defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple or flow.Size. out (optional): The output tensor. dtype (flow.dtype, optional): The desired data type of returned tensor. Default: ``flow.float32``. layout (optional): The desired layout of returned Tensor. generator (flow.Generator, optional) – a pseudorandom number generator for sampling device (flow.device, optional): The desired device of returned local tensor. If None, uses the current device. placement (flow.placement, optional): The desired device of returned consistent tensor. If None, will construct local tensor. sbp (flow.sbp, optional): The desired sbp of returned consistent tensor. It must be equal with the numbers of placement. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: False. For example: .. code-block:: python >>> import oneflow as flow >>> x = flow.randn(3,3) >>> x.shape flow.Size([3, 3]) >>> x.is_consistent False >>> placement = flow.placement("cpu", {0:[0]}) >>> sbp = flow.sbp.broadcast >>> x = flow.randn(3,3,placement=placement,sbp=sbp) >>> x.is_consistent True """ assert out is None, "out not supported yet" assert layout is None, "layout not supported yet" if generator is None: generator = flow.default_generator() return RandN( size, generator, dtype, layout, device, placement, sbp, requires_grad )() class Randperm(Module): def __init__( self, n, generator: flow.Generator = None, dtype: flow.dtype = flow.int32, layout=None, device: Union[flow.device, str, None] = None, placement: flow.placement = None, sbp: flow._oneflow_internal.sbp.sbp = None, requires_grad: bool = False, pin_memory: bool = False, ) -> None: super().__init__() assert n >= 0 self.n = n self.requires_grad = requires_grad ( self.size, self.device, self.generator, self.placement, self.sbp, ) = _rand_op_common_process(1, device, generator, placement, sbp) self.dtype = dtype def forward(self, out=None): if self.placement is not None: res = flow.F.consistent_randperm( self.n, self.placement, self.sbp, self.generator ) else: res = flow.F.randperm(self.n, self.device, self.generator) res.requires_grad = self.requires_grad return res.to(dtype=self.dtype) def randperm( n: flow.int32, generator: flow.Generator = None, out=None, dtype: flow.dtype = flow.int32, layout=None, device: Union[flow.device, str, None] = None, placement: flow.placement = None, sbp: flow._oneflow_internal.sbp.sbp = None, requires_grad: bool = False, pin_memory: bool = False, ): r""" Returns a random permutation of integers from ``0`` to ``n - 1``. Args: n (int): the upper bound (exclusive) Keyword args: generator(:class:`oneflow.Generator`, optional): a pseudorandom number generator for sampling out (Tensor, optional): output Tensor,not supported yet. dtype (:class:`oneflow.dtype`, optional): the desired data type of returned tensor. Default: ``oneflow.int32``. layout: layout is not supported yet. device: the desired device of returned tensor. Default: cpu. placement:(:class:`flow.placement`, optional): The desired device of returned consistent tensor. If None, will construct local tensor. sbp: (:class:`flow.sbp`, optional): The desired sbp of returned consistent tensor. It must be equal with the numbers of placement. requires_grad(bool, optional): If autograd should record operations on the returned tensor. Default: False. pin_memory(bool, optional):pin_memory is not supported yet. Example: .. code-block:: python >>> import oneflow as flow >>> generator = flow.Generator() >>> generator.manual_seed(0) >>> flow.randperm(5, generator=generator) tensor([2, 4, 3, 0, 1], dtype=oneflow.int32) """ assert out is None, "out not supported yet" assert layout is None, "layout not supported yet" if generator is None: generator = flow.default_generator() return Randperm( n, generator, dtype, layout, device, placement, sbp, requires_grad, pin_memory )(out) if __name__ == "__main__": import doctest doctest.testmod(raise_on_error=True)
16bd10b11e4d259ea0624fbef79cfa7bedb25b02
78c4ccb183a99ebaabcdc3a3a69f029e4aee0f5c
/AlgorithmStudy/백준/무지성 랜덤풀이/9월/9.19/1057 토너먼트.py
3ebf3c81fb50fc00a0a769e5763627af7126e159
[]
no_license
cladren123/study
ef2c45bc489fa658dbc9360fb0b0de53250500e5
241326e618f1f3bb1568d588bf6f53b78920587a
refs/heads/master
2023-09-02T02:21:24.560967
2021-11-05T12:20:06
2021-11-05T12:20:06
368,753,950
0
0
null
null
null
null
UTF-8
Python
false
false
333
py
""" 문제유형 : 수학 브루트포스 1 1 3 1 2 3 4 두 수를 2로 나눈 몫을 서로 같아질때까지 빼다보면 라운드 수가 나온다. """ import sys input = sys.stdin.readline n, p1, p2 = map(int, input().split()) count = 0 while p1 != p2 : p1 -= p1//2 p2 -= p2//2 count += 1 print(count)
0051f0b263c771d0d796d609592be3b693a8b0bf
446571f13b3c1604cdfbcee8fdc2f956568d7c8d
/geeksforgeeks/arrays/zero_flip.py
dfa147be96fa075eaaa1e5a24d01659937c19f41
[]
no_license
ssarangi/algorithms
2e8f0a4be6bf0f4a3d75b224ed993e1fb0ca0229
e151307f2706214cf8cefa6231290aeb2e5cfd82
refs/heads/master
2021-01-17T02:28:23.291588
2018-01-06T18:35:13
2018-01-06T18:35:13
51,458,833
1
1
null
null
null
null
UTF-8
Python
false
false
1,125
py
def flip_zeros(arr, m): current_not_flipped = m start = 0 max_till_now = 0 positions = [] best_positions = None cons_zero = 0 end_of_zeros = -1 while 0 <= start < len(arr): i = start while (i < len(arr)) and (current_not_flipped != 0 or arr[i] != 0): if arr[i] == 0: current_not_flipped -= 1 positions.append(i) if current_not_flipped == 0: end_of_zeros = i + 1 cons_zero += 1 i += 1 if cons_zero > max_till_now: best_positions = [p for p in positions] max_till_now = cons_zero positions.clear() cons_zero = 0 current_not_flipped = m start = end_of_zeros end_of_zeros = -1 return max_till_now, best_positions def main(): arr = [1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1] m = 2 print(flip_zeros(arr, m)) arr = [1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1] m = 1 print(flip_zeros(arr, m)) arr = [0, 0, 0, 1] m = 4 print(flip_zeros(arr, m)) if __name__ == "__main__": main()
6ca7f5d24c91b078fc989d351c41a011332afca9
099deeb2c308bdc00a2c423743e4b2aacdac866c
/week7/tuple/youngyun.py
890eaa5146674579d96aa1f65f6d9eff1b6cb958
[]
no_license
Joonsun-Hwang/coding-test-study-lamda
76fed2f18a3220f6731775984425dff49b4379eb
0632ec9dd60024203ed10ebeab07aa7da4782806
refs/heads/main
2023-05-01T21:31:48.174944
2021-05-05T09:48:23
2021-05-05T09:48:23
329,205,708
0
1
null
null
null
null
UTF-8
Python
false
false
317
py
import re def solution(s): s = eval(s[1:-1]) s = list(s) if len(s) > 1: s.sort(key=lambda x: len(x)) else: return list(s) answer = [] for sg in s: for ssg in sg: if ssg not in answer: answer.append(ssg) return answer
11b31f35dc668112d0124a59dd723b8cb872acea
535a4d3c3f57f5f67d36be3d7d54fdbf9fc30a92
/やってみよう_必修編/chapter09/9_10_imported_restaurant.py
5ef1486dd7e1b597ed37100f39228f9f6ac49553
[]
no_license
kyuugi/saitan-python
4d28c6ecacb4d0b846292ab94f54814dde1cbab0
8196a91a9aac5011bc29782381b93f143b0ae25a
refs/heads/master
2022-12-06T05:49:13.363864
2020-09-01T23:19:32
2020-09-01T23:19:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
159
py
from restaurant import Restaurant restaurant = Restaurant('malaychan', '東南アジア料理') restaurant.describe_restaurant() restaurant.open_restaurant()
be9c7f1407518d5042bb9f9141452c9827f5bc14
693c76bf548ad67232dba7951be51274a1d6e7d0
/CodeChef/forgotten language.py
eb4eaa2796a22da44e9b55467ed31e12f3533067
[]
no_license
Kartavya-verma/Competitive-Pratice
7958e3034e5e766d6e1186fee2f23562fac70a9b
8c684996410b376263082a7421d4a14a85cf624b
refs/heads/master
2022-12-22T10:38:37.981529
2020-09-14T12:22:50
2020-09-14T12:22:50
295,405,048
0
1
null
null
null
null
UTF-8
Python
false
false
288
py
for i in range(int(input())): n, k = map(int, input().split()) a = input().split() res = ['NO']*(n) for j in range(k): s = input().split() s = s[1:] for j in s: if j in a: res[a.index(j)] = 'YES' print(' '.join(res))
915c97efaf9ef352a967f2d1bed523eda5004a13
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02994/s580686016.py
a70a698f4cc8e26a206d2c2f0cdf4a1574d17b2c
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
206
py
n,k=map(int,input().split());a=[k+i for i in range(n)] sumA=sum(a);min_num=float('inf');result=0 for i in a: if min_num > abs(sumA-(sumA-i)): min_num=abs(sumA-(sumA-i)) result=sumA-i print(result)
48943f3f567ebfe249a08dc5ebe90c5e9841dd43
d68ca034018d66f73024223d4b2266b3c3c901d7
/prev/myworks/onelifefitness/chainxy/spiders/onelifefitness.py
446dae58b98362a5967083b62453bedc1b6f9e84
[]
no_license
GoodyIT/scrapy
caff30d26660f778008ad50532e364ab36aba4c2
5ae80cf83dc62c4e1bd2bfa11049ca39a3ca3488
refs/heads/master
2021-01-20T10:10:18.365194
2017-07-22T13:09:07
2017-07-22T13:09:07
90,330,210
4
0
null
null
null
null
UTF-8
Python
false
false
6,546
py
import scrapy import json import re import csv import requests from scrapy.spiders import Spider from scrapy.http import FormRequest from scrapy.http import Request from scrapy.selector import HtmlXPathSelector from chainxy.items import ChainItem import pdb import usaddress class Onelifefitness(scrapy.Spider): name = "onelifefitness" domain = "https://www.onelifefitness.com/" start_urls = ["https://www.onelifefitness.com"] store_id = [] def parse(self, response): parents = response.xpath('.//div[@id="hs_menu_wrapper_module_14652775546295339"]//ul/li[2]') for parent in parents: if parent.xpath('.//a/text()').extract_first().find('Locations') != -1: branch_list = parent.xpath('.//ul[contains(@class, "hs-menu-children-wrapper")]/li/a/@href').extract() for branch in branch_list: branch = branch.replace('https://www.onelifefitness.com', '') if branch.find('onelifekc') == -1: request = scrapy.Request(url="https://www.onelifefitness.com%s" % branch, callback=self.parse_clubs) else: request = scrapy.Request(url=branch, callback=self.parse_kensas) yield request def parse_kensas(self, response): item = ChainItem() item['store_number'] = '' item['coming_soon'] = "0" item['store_name'] = response.xpath('.//a[@class="standard-logo"]/img/@alt').extract_first() address = response.xpath('.//address/a[1]/text()').extract() address = [tp.strip().replace('\n', '') for tp in address if tp.strip() != ""] addr = usaddress.parse(" ".join(address)) city = state = zip_code = street = '' for temp in addr: if temp[1] == 'PlaceName': city += temp[0].replace(',','') + ' ' elif temp[1] == 'StateName': state = temp[0].replace(',','') elif temp[1] == 'ZipCode': zip_code = temp[0].replace(',','') else: street += temp[0].replace(',','') + ' ' item['address'] = street item['country'] = 'United States' item['city'] = city item['state'] = state item['zip_code'] = zip_code item['phone_number'] = response.xpath('.//address/a/text()').extract_first() item['latitude'] = '' item['longitude'] = '' item['store_hours'] = "" item['other_fields'] = "" yield item def parse_clubs(self, response): club_list = response.xpath('.//ul[contains(@class, "gym_locations")]/li') for club in club_list: request = scrapy.Request(url="https://www.onelifefitness.com%s" % club.xpath('.//a/@href').extract_first(), callback=self.parse_store) request.meta['lat'] = club.xpath('.//@data-lat').extract_first() request.meta['lng'] = club.xpath('.//@data-ln').extract_first() yield request def parse_store(self, response): # try: item = ChainItem() item['store_number'] = '' item['store_name'] = response.xpath('.//div[@class="banner-header"]/h1/text()').extract_first() item['address'] = response.xpath('.//span[@id="hs_cos_wrapper_module_14684752951104419"]/p/span[1]/text()').extract_first() address = '' # if item['store_name'].find('Windermere Gym') != -1: # pdb.set_trace() if item['address'] == None: item['address'] = response.xpath('.//span[@id="hs_cos_wrapper_module_14684752951104419"]/p[1]/text()').extract_first() if item['address'] == None: item['address'] = response.xpath('.//span[@id="hs_cos_wrapper_module_14684752951104419"]/text()').extract_first() address = response.xpath('.//span[@id="hs_cos_wrapper_module_14684752951104419"]/text()').extract()[1] else: address = response.xpath('.//span[@id="hs_cos_wrapper_module_14684752951104419"]/p/text()').extract()[1] else: address = response.xpath('.//span[@id="hs_cos_wrapper_module_14684752951104419"]/p/span[2]/text()').extract_first() if len(address.split(',')) == 2: item['city'] = address.split(',')[0].strip() item['state'] = address.split(',')[1].strip().split(' ')[0].strip() item['zip_code'] = address.split(',')[1].strip().split(' ')[1].strip() elif len(address.split(',')) == 3: item['city'] = address.split(',')[0].strip() item['state'] = address.split(',')[1].strip() item['zip_code'] = address.split(',')[2].strip() else: item['city'] = address.split(' ')[0].strip() item['state'] = address.split(' ')[1].strip() item['zip_code'] = address.split(' ')[2].strip() item['address2'] = '' item['country'] = 'United States' item['coming_soon'] = "0" item['latitude'] = response.meta['lat'] item['longitude'] = response.meta['lng'] item['other_fields'] = "" phone = response.xpath('.//span[@id="hs_cos_wrapper_module_14684754122179512"]/p/text()').extract_first() if phone == None: phone = response.xpath('.//span[@id="hs_cos_wrapper_module_14684754122179512"]/p/a/text()').extract_first() if phone == None: item['phone_number'] = '' elif phone.find('Coming Soon') == -1: item['phone_number'] = self.validate(phone) else: item['coming_soon'] = "1" item['store_hours'] = "" hours = response.xpath('.//span[@id="hs_cos_wrapper_module_14684754134419869"]/p/text()').extract_first() if hours != None and hours.find('Coming Soon') != -1: item['coming_soon'] = "1" else: try: item['store_hours'] = "; ".join(response.xpath('.//span[@id="hs_cos_wrapper_module_14684754134419869"]/p/text()').extract()).strip() item['store_hours'] = item['store_hours'][2:].strip() except: item['store_hours'] = "" # if item['store_name'].find('Crabapple Gym') != -1: # pdb.set_trace() item['store_hours'] = self.validate(item['store_hours']) # except: # pdb.set_trace() yield item def validate(self, value): return value.encode('utf8').replace('\xc2\xa0', ' ')
68fbb29c364a4f6b17cf269f611afac8fb2b7027
956f13e160b8381d3f8bbbb4b97bf66981ce0490
/index/migrations/0012_auto_20181119_1617.py
b89c05a472c13c4b6b1a52e677e55b53234dfbd9
[]
no_license
yzp0111/zyogo
e910d0ad029fb1a3f95beb8422336fee474c635a
b4807f4418d8cb1d195097f87e4e74637346cb6d
refs/heads/master
2020-04-07T23:46:44.946618
2018-11-23T11:43:50
2018-11-23T11:43:50
158,824,828
1
0
null
null
null
null
UTF-8
Python
false
false
798
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.8 on 2018-11-19 08:17 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('index', '0011_auto_20181119_0852'), ] operations = [ migrations.AlterField( model_name='goodsinfo', name='user', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='index.UserInfo', verbose_name='卖家'), ), migrations.AlterField( model_name='windows', name='goods', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='index.GoodsInfo', verbose_name='商品'), ), ]
cde2edf4a10c79aa2209df50159f375a1a6b8a53
3d37f595a8aaaa7c5723ddbd6758ecac5147dce2
/factorial-trailing-zeroes/factorial-trailing-zeroes.py
7087830bf6b61d0261c4e9cb1b2af12cdc58875f
[]
no_license
baggy2797/Leetcode
ec218b155ebb972cd793253f25c3e18117216703
469c1541579401768f7a1da55d504a9e8656b21e
refs/heads/main
2023-06-24T17:03:42.708935
2021-07-16T22:31:24
2021-07-16T22:31:24
342,979,700
1
0
null
null
null
null
UTF-8
Python
false
false
295
py
class Solution: def trailingZeroes(self, n: int) -> int: count = 0 for i in range(5,n+1,5): temp = 5 while i% temp == 0: count = count + 1 temp = temp * 5 return count
e82c5392a6049ce180717cc3145908adaa3f3fc4
01fdd206c8c825b30870bdd3f6e75f0aa113b849
/test/record/parser/test_response_whois_sgnic_sg_property_nameservers_schema_2.py
8a8146c2727ea7d9dd262c2deba6226bf92c8635
[ "MIT" ]
permissive
huyphan/pyyawhois
0fbc5a7d64a53ae6e3393fdc1c7ff0d0ac5f22b5
77fb2f73a9c67989f1d41d98f37037406a69d136
refs/heads/master
2021-01-23T22:42:55.989651
2015-09-19T16:40:06
2015-09-19T16:40:06
23,335,785
0
0
null
null
null
null
UTF-8
Python
false
false
1,408
py
# This file is autogenerated. Do not edit it manually. # If you want change the content of this file, edit # # spec/fixtures/responses/whois.sgnic.sg/property_nameservers_schema_2 # # and regenerate the tests with the following script # # $ scripts/generate_tests.py # from nose.tools import * from dateutil.parser import parse as time_parse import yawhois class TestWhoisSgnicSgPropertyNameserversSchema2(object): def setUp(self): fixture_path = "spec/fixtures/responses/whois.sgnic.sg/property_nameservers_schema_2.txt" host = "whois.sgnic.sg" part = yawhois.record.Part(open(fixture_path, "r").read(), host) self.record = yawhois.record.Record(None, [part]) def test_nameservers(self): eq_(self.record.nameservers.__class__.__name__, 'list') eq_(len(self.record.nameservers), 4) eq_(self.record.nameservers[0].__class__.__name__, 'Nameserver') eq_(self.record.nameservers[0].name, "ns1.google.com") eq_(self.record.nameservers[1].__class__.__name__, 'Nameserver') eq_(self.record.nameservers[1].name, "ns2.google.com") eq_(self.record.nameservers[2].__class__.__name__, 'Nameserver') eq_(self.record.nameservers[2].name, "ns3.google.com") eq_(self.record.nameservers[3].__class__.__name__, 'Nameserver') eq_(self.record.nameservers[3].name, "ns4.google.com")
9111ff6d364693b213af14c932a89fef59ae75aa
6b2a8dd202fdce77c971c412717e305e1caaac51
/solutions_5658571765186560_0/Python/Verum/D-OminousOmino.py
fc2ac8e040f5e876b4f9b9ae8a8a363707c04c6b
[]
no_license
alexandraback/datacollection
0bc67a9ace00abbc843f4912562f3a064992e0e9
076a7bc7693f3abf07bfdbdac838cb4ef65ccfcf
refs/heads/master
2021-01-24T18:27:24.417992
2017-05-23T09:23:38
2017-05-23T09:23:38
84,313,442
2
4
null
null
null
null
UTF-8
Python
false
false
1,118
py
#input_filename = "D-test.txt" #output_filename = "D-test-out.txt" input_filename = "D-small-attempt0.in" output_filename = "D-small-attempt0.out" #input_filename = "D-large.in" #output_filename = "D-large.out" def solve(x,r,c): r, c = min(r,c), max(r,c) if (r*c) % x != 0: return False elif x == 3 and r < 2: return False elif x == 4 and r < 3: return False elif x == 5 and r < 3: return False elif x == 5 and r == 3 and c < 10: return False elif x == 6 and r < 4: return False elif x > 6: return False else: return True with open(input_filename, "r") as ifile: with open(output_filename, "w") as ofile: T = int(ifile.readline()) for case in range(1, T+1): x, r, c = map(int, ifile.readline().split()) print("\nCase %d" % case) print("Task: %s" % str( (x,r,c) )) result = solve(x,r,c) result = "GABRIEL" if result else "RICHARD" ofile.write("Case #%d: %s\n" % (case, result)) print("Solve: %s" % result)
33fa2896293d944a73e801b87353e72d965ebd79
385c027fc4b9c09706a4d880bdb8aa5897d0ebca
/tests/greedy/test_transforms.py
b8189adbd88900a9f717953dc14be5efddba0e93
[ "MIT" ]
permissive
rodluger/starry
076d46324473a6ac634781a3382021d02a5f4fdd
b72dff08588532f96bd072f2f1005e227d8e4ed8
refs/heads/master
2023-05-23T16:37:07.835744
2022-07-14T15:38:11
2022-07-14T15:38:11
120,621,593
131
31
MIT
2021-11-16T16:48:10
2018-02-07T13:54:20
Python
UTF-8
Python
false
false
639
py
import numpy as np import starry def test_latlon_grid(): # Just check that these don't cause errors map = starry.Map(10) lat, lon = map.get_latlon_grid(projection="rect") lat, lon = map.get_latlon_grid(projection="ortho") lat, lon = map.get_latlon_grid(projection="moll") def test_pixel_transforms(): map = starry.Map(10) lat, lon, Y2P, P2Y, Dx, Dy = map.get_pixel_transforms() # Check that the back-and-forth transform is the identity (ish) assert np.max(np.abs(P2Y @ Y2P - np.eye(map.Ny))) < 1e-6 # Just check that the derivatives are finite assert not np.isnan(np.sum(Dx) + np.sum(Dy))
ee4c3fe497c236a93beff8da80c41af918eabd5c
1cd37c59751344c0f89fe9102e25121e50f4cdfa
/python/ZvvHbb13TeVmacros/launchFakeMET.py
8255ef80ffa75f80954f890b1646c569a6eb13c5
[]
no_license
jmduarte/Xbb
7bd2f919c320e4cda1306c0282f1d4c0df220b05
2f23c163b81c0d4d3f979369b86690ddfb7920fd
refs/heads/master
2021-01-12T16:57:59.009289
2016-06-15T09:43:41
2016-06-15T09:43:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,485
py
import sys from doFakeMET import * #from doFakeMETStupid import * try: fileNames = sys.argv[1] outName = sys.argv[2] print print "Launching doFakeMET with:" print "fileNames:", fileNames print "outName:", outName print except: print print "example:" print "python launchFakeMET.py tree_100_*.root newFile.root" print sys.argv print print "fileNames: ",fileNames from os import walk dirpath_ = "" dirnames_ = [] files_ = "" # filenames = [] inputFiles = [] folder_prefix = '' exit = False for (dirpath_, dirnames_, files_) in walk(fileNames): for filename_ in files_: print file if 'root' in filename_ and 'tree' in filename_ and not 'failed' in dirpath_: exit = True if exit: break if exit: break print dirpath_ path = dirpath_+'/'+ files_[0] path = path.split("tree_")[0] path = path + "tree_*.root" inputs = [] for file_ in files_: inputs.append((dirpath_+'/'+ file_,outName+'/'+file_)) quick = False function = None expoRatio = None if quick: firstFile = inputs[0][1] gROOT.ProcessLine(".x "+firstFile.replace(".root","_fit.C")) function = gDirectory.Get("histo") function = copy.copy(function) gROOT.ProcessLine(".x "+firstFile.replace(".root","_fit4.C")) expoRatio = f4.Get("c1").GetPrimitive("expoRatio") expoRatio = copy.copy(expoRatio) for (inpt,outpt) in inputs: function,expoRatio = doFile(inpt,outpt,function,expoRatio) # print inpt,outpt