blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
0d03f4997dff14b4117c84cbf186adcb19848f23
75ed4fe365819c9cb64522bd2bcb1590295dd4a8
/login/jwt_practice.py
5a325c3daf7ee8c0583f4b3065523263105acef1
[]
no_license
thals7/web
2aaa36fecf44851d65031dd0c9f9062748bfb3f5
f2c9aca7b3cf0116985fe17190a1274264bdd2c1
refs/heads/master
2023-02-26T08:30:49.663381
2021-01-29T00:48:50
2021-01-29T00:48:50
298,844,661
0
0
null
null
null
null
UTF-8
Python
false
false
294
py
# https://pyjwt.readthedocs.io/en/latest/usage.html#encoding-decoding-tokens-with-rs256-rsa import jwt key = "thisissecret" encoded = jwt.encode({"some": "payload","like":"user_id"}, key, algorithm="HS256") print(encoded) decoded = jwt.decode(encoded, key, algorithms="HS256") print(decoded)
8c208878ff29e2333826cf8bd74f0aa5d3bb8157
70f5f279e051360310f95be895320d8fa6cd8d93
/extraPackages/matplotlib-3.0.2/tutorials/introductory/sample_plots.py
f1a1542ebec6b0b538466dedce1c4d478568158b
[ "BSD-3-Clause" ]
permissive
spacetime314/python3_ios
4b16ab3e81c31213b3db1e1eb00230621b0a7dc8
e149f1bc2e50046c8810f83dae7739a8dea939ee
refs/heads/master
2020-05-09T20:39:14.980041
2019-04-08T15:07:53
2019-04-08T15:07:53
181,415,024
2
0
BSD-3-Clause
2019-04-15T05:00:14
2019-04-15T05:00:12
null
UTF-8
Python
false
false
12,052
py
""" ========================== Sample plots in Matplotlib ========================== Here you'll find a host of example plots with the code that generated them. .. _matplotlibscreenshots: Line Plot ========= Here's how to create a line plot with text labels using :func:`~matplotlib.pyplot.plot`. .. figure:: ../../gallery/lines_bars_and_markers/images/sphx_glr_simple_plot_001.png :target: ../../gallery/lines_bars_and_markers/simple_plot.html :align: center :scale: 50 Simple Plot .. _screenshots_subplot_demo: Multiple subplots in one figure =============================== Multiple axes (i.e. subplots) are created with the :func:`~matplotlib.pyplot.subplot` function: .. figure:: ../../gallery/subplots_axes_and_figures/images/sphx_glr_subplot_001.png :target: ../../gallery/subplots_axes_and_figures/subplot.html :align: center :scale: 50 Subplot .. _screenshots_images_demo: Images ====== Matplotlib can display images (assuming equally spaced horizontal dimensions) using the :func:`~matplotlib.pyplot.imshow` function. .. figure:: ../../gallery/images_contours_and_fields/images/sphx_glr_image_demo_003.png :target: ../../gallery/images_contours_and_fields/image_demo.html :align: center :scale: 50 Example of using :func:`~matplotlib.pyplot.imshow` to display a CT scan .. _screenshots_pcolormesh_demo: Contouring and pseudocolor ========================== The :func:`~matplotlib.pyplot.pcolormesh` function can make a colored representation of a two-dimensional array, even if the horizontal dimensions are unevenly spaced. The :func:`~matplotlib.pyplot.contour` function is another way to represent the same data: .. figure:: ../../gallery/images_contours_and_fields/images/sphx_glr_pcolormesh_levels_001.png :target: ../../gallery/images_contours_and_fields/pcolormesh_levels.html :align: center :scale: 50 Example comparing :func:`~matplotlib.pyplot.pcolormesh` and :func:`~matplotlib.pyplot.contour` for plotting two-dimensional data .. _screenshots_histogram_demo: Histograms ========== The :func:`~matplotlib.pyplot.hist` function automatically generates histograms and returns the bin counts or probabilities: .. figure:: ../../gallery/statistics/images/sphx_glr_histogram_features_001.png :target: ../../gallery/statistics/histogram_features.html :align: center :scale: 50 Histogram Features .. _screenshots_path_demo: Paths ===== You can add arbitrary paths in Matplotlib using the :mod:`matplotlib.path` module: .. figure:: ../../gallery/shapes_and_collections/images/sphx_glr_path_patch_001.png :target: ../../gallery/shapes_and_collections/path_patch.html :align: center :scale: 50 Path Patch .. _screenshots_mplot3d_surface: Three-dimensional plotting ========================== The mplot3d toolkit (see :ref:`toolkit_mplot3d-tutorial` and :ref:`mplot3d-examples-index`) has support for simple 3d graphs including surface, wireframe, scatter, and bar charts. .. figure:: ../../gallery/mplot3d/images/sphx_glr_surface3d_001.png :target: ../../gallery/mplot3d/surface3d.html :align: center :scale: 50 Surface3d Thanks to John Porter, Jonathon Taylor, Reinier Heeres, and Ben Root for the `mplot3d` toolkit. This toolkit is included with all standard Matplotlib installs. .. _screenshots_ellipse_demo: Streamplot ========== The :meth:`~matplotlib.pyplot.streamplot` function plots the streamlines of a vector field. In addition to simply plotting the streamlines, it allows you to map the colors and/or line widths of streamlines to a separate parameter, such as the speed or local intensity of the vector field. .. figure:: ../../gallery/images_contours_and_fields/images/sphx_glr_plot_streamplot_001.png :target: ../../gallery/images_contours_and_fields/plot_streamplot.html :align: center :scale: 50 Streamplot with various plotting options. This feature complements the :meth:`~matplotlib.pyplot.quiver` function for plotting vector fields. Thanks to Tom Flannaghan and Tony Yu for adding the streamplot function. Ellipses ======== In support of the `Phoenix <http://www.jpl.nasa.gov/news/phoenix/main.php>`_ mission to Mars (which used Matplotlib to display ground tracking of spacecraft), Michael Droettboom built on work by Charlie Moad to provide an extremely accurate 8-spline approximation to elliptical arcs (see :class:`~matplotlib.patches.Arc`), which are insensitive to zoom level. .. figure:: ../../gallery/shapes_and_collections/images/sphx_glr_ellipse_demo_001.png :target: ../../gallery/shapes_and_collections/ellipse_demo.html :align: center :scale: 50 Ellipse Demo .. _screenshots_barchart_demo: Bar charts ========== Use the :func:`~matplotlib.pyplot.bar` function to make bar charts, which includes customizations such as error bars: .. figure:: ../../gallery/statistics/images/sphx_glr_barchart_demo_001.png :target: ../../gallery/statistics/barchart_demo.html :align: center :scale: 50 Barchart Demo You can also create stacked bars (`bar_stacked.py <../../gallery/lines_bars_and_markers/bar_stacked.html>`_), or horizontal bar charts (`barh.py <../../gallery/lines_bars_and_markers/barh.html>`_). .. _screenshots_pie_demo: Pie charts ========== The :func:`~matplotlib.pyplot.pie` function allows you to create pie charts. Optional features include auto-labeling the percentage of area, exploding one or more wedges from the center of the pie, and a shadow effect. Take a close look at the attached code, which generates this figure in just a few lines of code. .. figure:: ../../gallery/pie_and_polar_charts/images/sphx_glr_pie_features_001.png :target: ../../gallery/pie_and_polar_charts/pie_features.html :align: center :scale: 50 Pie Features .. _screenshots_table_demo: Tables ====== The :func:`~matplotlib.pyplot.table` function adds a text table to an axes. .. figure:: ../../gallery/misc/images/sphx_glr_table_demo_001.png :target: ../../gallery/misc/table_demo.html :align: center :scale: 50 Table Demo .. _screenshots_scatter_demo: Scatter plots ============= The :func:`~matplotlib.pyplot.scatter` function makes a scatter plot with (optional) size and color arguments. This example plots changes in Google's stock price, with marker sizes reflecting the trading volume and colors varying with time. Here, the alpha attribute is used to make semitransparent circle markers. .. figure:: ../../gallery/lines_bars_and_markers/images/sphx_glr_scatter_demo2_001.png :target: ../../gallery/lines_bars_and_markers/scatter_demo2.html :align: center :scale: 50 Scatter Demo2 .. _screenshots_slider_demo: GUI widgets =========== Matplotlib has basic GUI widgets that are independent of the graphical user interface you are using, allowing you to write cross GUI figures and widgets. See :mod:`matplotlib.widgets` and the `widget examples <../../gallery/index.html>`_. .. figure:: ../../gallery/widgets/images/sphx_glr_slider_demo_001.png :target: ../../gallery/widgets/slider_demo.html :align: center :scale: 50 Slider and radio-button GUI. .. _screenshots_fill_demo: Filled curves ============= The :func:`~matplotlib.pyplot.fill` function lets you plot filled curves and polygons: .. figure:: ../../gallery/lines_bars_and_markers/images/sphx_glr_fill_001.png :target: ../../gallery/lines_bars_and_markers/fill.html :align: center :scale: 50 Fill Thanks to Andrew Straw for adding this function. .. _screenshots_date_demo: Date handling ============= You can plot timeseries data with major and minor ticks and custom tick formatters for both. .. figure:: ../../gallery/text_labels_and_annotations/images/sphx_glr_date_001.png :target: ../../gallery/text_labels_and_annotations/date.html :align: center :scale: 50 Date See :mod:`matplotlib.ticker` and :mod:`matplotlib.dates` for details and usage. .. _screenshots_log_demo: Log plots ========= The :func:`~matplotlib.pyplot.semilogx`, :func:`~matplotlib.pyplot.semilogy` and :func:`~matplotlib.pyplot.loglog` functions simplify the creation of logarithmic plots. .. figure:: ../../gallery/scales/images/sphx_glr_log_demo_001.png :target: ../../gallery/scales/log_demo.html :align: center :scale: 50 Log Demo Thanks to Andrew Straw, Darren Dale and Gregory Lielens for contributions log-scaling infrastructure. .. _screenshots_polar_demo: Polar plots =========== The :func:`~matplotlib.pyplot.polar` function generates polar plots. .. figure:: ../../gallery/pie_and_polar_charts/images/sphx_glr_polar_demo_001.png :target: ../../gallery/pie_and_polar_charts/polar_demo.html :align: center :scale: 50 Polar Demo .. _screenshots_legend_demo: Legends ======= The :func:`~matplotlib.pyplot.legend` function automatically generates figure legends, with MATLAB-compatible legend-placement functions. .. figure:: ../../gallery/text_labels_and_annotations/images/sphx_glr_legend_001.png :target: ../../gallery/text_labels_and_annotations/legend.html :align: center :scale: 50 Legend Thanks to Charles Twardy for input on the legend function. .. _screenshots_mathtext_examples_demo: TeX-notation for text objects ============================= Below is a sampling of the many TeX expressions now supported by Matplotlib's internal mathtext engine. The mathtext module provides TeX style mathematical expressions using `FreeType <https://www.freetype.org/>`_ and the DejaVu, BaKoMa computer modern, or `STIX <http://www.stixfonts.org>`_ fonts. See the :mod:`matplotlib.mathtext` module for additional details. .. figure:: ../../gallery/text_labels_and_annotations/images/sphx_glr_mathtext_examples_001.png :target: ../../gallery/text_labels_and_annotations/mathtext_examples.html :align: center :scale: 50 Mathtext Examples Matplotlib's mathtext infrastructure is an independent implementation and does not require TeX or any external packages installed on your computer. See the tutorial at :doc:`/tutorials/text/mathtext`. .. _screenshots_tex_demo: Native TeX rendering ==================== Although Matplotlib's internal math rendering engine is quite powerful, sometimes you need TeX. Matplotlib supports external TeX rendering of strings with the *usetex* option. .. figure:: ../../gallery/text_labels_and_annotations/images/sphx_glr_tex_demo_001.png :target: ../../gallery/text_labels_and_annotations/tex_demo.html :align: center :scale: 50 Tex Demo .. _screenshots_eeg_demo: EEG GUI ======= You can embed Matplotlib into pygtk, wx, Tk, or Qt applications. Here is a screenshot of an EEG viewer called `pbrain <https://github.com/nipy/pbrain>`__. .. image:: ../../_static/eeg_small.png The lower axes uses :func:`~matplotlib.pyplot.specgram` to plot the spectrogram of one of the EEG channels. For examples of how to embed Matplotlib in different toolkits, see: * :doc:`/gallery/user_interfaces/embedding_in_gtk3_sgskip` * :doc:`/gallery/user_interfaces/embedding_in_wx2_sgskip` * :doc:`/gallery/user_interfaces/mpl_with_glade3_sgskip` * :doc:`/gallery/user_interfaces/embedding_in_qt_sgskip` * :doc:`/gallery/user_interfaces/embedding_in_tk_sgskip` XKCD-style sketch plots ======================= Just for fun, Matplotlib supports plotting in the style of `xkcd <http://www.xkcd.com/>`. .. figure:: ../../gallery/showcase/images/sphx_glr_xkcd_001.png :target: ../../gallery/showcase/xkcd.html :align: center :scale: 50 Xkcd """ ################################################################### # Subplot example # =============== # # Many plot types can be combined in one figure to create # powerful and flexible representations of data. # import matplotlib.pyplot as plt import numpy as np np.random.seed(19680801) data = np.random.randn(2, 100) fig, axs = plt.subplots(2, 2, figsize=(5, 5)) axs[0, 0].hist(data[0]) axs[1, 0].scatter(data[0], data[1]) axs[0, 1].plot(data[0], data[1]) axs[1, 1].hist2d(data[0], data[1]) plt.show()
cabda38c0a0fe289c78c7072a6bd20d7cfacf53c
968aedcc9e58d718bb3895f89de5292d8caabe52
/leetcode/Hash-Table/valid-sudoku.py
0a49bd177048dcb0d60662a3ac173ff7e1202e64
[]
no_license
iCodeIN/competitive-programming-5
0729c9f09f12543455121fc633b051eb68529152
30bfafb6a7727c9305b22933b63d9d645182c633
refs/heads/master
2022-04-14T08:50:19.568207
2019-09-26T14:49:56
2019-09-26T14:49:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,208
py
class Solution: def isValidSudoku(self, board): """ https://leetcode.com/problems/valid-sudoku/description/ :type board: List[List[str]] :rtype: bool """ num = {"1":0,"2":0,"3":0,"4":0,"5":0,"6":0,"7":0,"8":0,"9":0,".":0} for i in board: num = {"1":0,"2":0,"3":0,"4":0,"5":0,"6":0,"7":0,"8":0,"9":0,".":0} for j in i: if num[j] == 0: num[j] += 1 elif j != ".": return False for i in range(9): num = {"1":0,"2":0,"3":0,"4":0,"5":0,"6":0,"7":0,"8":0,"9":0,".":0} for j in board: if num[j[i]] == 0: num[j[i]] += 1 elif j[i] != ".": return False l = [ [board[0][0],board[0][1],board[0][2],board[1][0],board[1][1],board[1][2],board[2][0],board[2][1],board[2][2]], [board[0][3],board[0][4],board[0][5],board[1][3],board[1][4],board[1][5],board[2][3],board[2][4],board[2][5]], [board[0][6],board[0][7],board[0][8],board[1][6],board[1][7],board[1][8],board[2][6],board[2][7],board[2][8]], [board[3][0],board[3][1],board[3][2],board[4][0],board[4][1],board[4][2],board[5][0],board[5][1],board[5][2]], [board[3][3],board[3][4],board[3][5],board[4][3],board[4][4],board[4][5],board[5][3],board[5][4],board[5][5]], [board[3][6],board[3][7],board[3][8],board[4][6],board[4][7],board[4][8],board[5][6],board[5][7],board[5][8]], [board[6][0],board[6][1],board[6][2],board[7][0],board[7][1],board[7][2],board[8][0],board[8][1],board[8][2]], [board[6][3],board[6][4],board[6][5],board[7][3],board[7][4],board[7][5],board[8][3],board[8][4],board[8][5]], [board[6][6],board[6][7],board[6][8],board[7][6],board[7][7],board[7][8],board[8][6],board[8][7],board[8][8]] ] for i in l: num = {"1":0,"2":0,"3":0,"4":0,"5":0,"6":0,"7":0,"8":0,"9":0,".":0} for j in i: if num[j] == 0: num[j] += 1 elif j != ".": return False return True
db7c4a0b79b27d1685be085bd88b35cdddf098b6
35f163f0db45094ea44e6e698750e5780b8f1a79
/aiortc/rtcsctptransport.py
40a7178eca033abaac30e6921e02a2854cdbc32d
[ "BSD-3-Clause" ]
permissive
royfu/aiortc
886ac442a56af93e8771d9be0aa15702b0635fb4
4a781e15e061176470f8b2c7d30ab2e64d71da9e
refs/heads/master
2020-04-15T01:43:00.905480
2019-01-04T16:06:29
2019-01-04T16:06:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
55,614
py
import asyncio import enum import hmac import logging import math import os import time import warnings from struct import pack, unpack, unpack_from import attr import crcmod.predefined from pyee import EventEmitter from .exceptions import InvalidStateError from .rtcdatachannel import RTCDataChannel, RTCDataChannelParameters from .utils import random32, uint16_add, uint16_gt try: import crcmod._crcfunext except ImportError: # pragma: no cover warnings.warn('crcmod C extension was not found, datachannel performance will be reduced') crc32c = crcmod.predefined.mkPredefinedCrcFun('crc-32c') logger = logging.getLogger('sctp') # local constants COOKIE_LENGTH = 24 COOKIE_LIFETIME = 60 MAX_OUTBOUND_QUEUE = 100 MAX_STREAMS = 65535 USERDATA_MAX_LENGTH = 1200 # protocol constants SCTP_CAUSE_INVALID_STREAM = 0x0001 SCTP_CAUSE_STALE_COOKIE = 0x0003 SCTP_DATA_LAST_FRAG = 0x01 SCTP_DATA_FIRST_FRAG = 0x02 SCTP_DATA_UNORDERED = 0x04 SCTP_MAX_ASSOCIATION_RETRANS = 10 SCTP_MAX_BURST = 4 SCTP_MAX_INIT_RETRANS = 8 SCTP_RTO_ALPHA = 1 / 8 SCTP_RTO_BETA = 1 / 4 SCTP_RTO_INITIAL = 3 SCTP_RTO_MIN = 1 SCTP_RTO_MAX = 60 SCTP_TSN_MODULO = 2 ** 32 RECONFIG_CHUNK = 130 RECONFIG_MAX_STREAMS = 135 FORWARD_TSN_CHUNK = 192 # parameters SCTP_STATE_COOKIE = 0x0007 SCTP_STR_RESET_OUT_REQUEST = 0x000d SCTP_STR_RESET_RESPONSE = 0x0010 SCTP_STR_RESET_ADD_OUT_STREAMS = 0x0011 SCTP_SUPPORTED_CHUNK_EXT = 0x8008 SCTP_PRSCTP_SUPPORTED = 0xc000 # data channel constants DATA_CHANNEL_ACK = 2 DATA_CHANNEL_OPEN = 3 DATA_CHANNEL_RELIABLE = 0x00 DATA_CHANNEL_PARTIAL_RELIABLE_REXMIT = 0x01 DATA_CHANNEL_PARTIAL_RELIABLE_TIMED = 0x02 DATA_CHANNEL_RELIABLE_UNORDERED = 0x80 DATA_CHANNEL_PARTIAL_RELIABLE_REXMIT_UNORDERED = 0x81 DATA_CHANNEL_PARTIAL_RELIABLE_TIMED_UNORDERED = 0x82 WEBRTC_DCEP = 50 WEBRTC_STRING = 51 WEBRTC_BINARY = 53 WEBRTC_STRING_EMPTY = 56 WEBRTC_BINARY_EMPTY = 57 def chunk_type(chunk): return chunk.__class__.__name__ def decode_params(body): params = [] pos = 0 while pos <= len(body) - 4: param_type, param_length = unpack('!HH', body[pos:pos + 4]) params.append((param_type, body[pos + 4:pos + param_length])) pos += param_length + padl(param_length) return params def encode_params(params): body = b'' padding = b'' for param_type, param_value in params: param_length = len(param_value) + 4 body += padding body += pack('!HH', param_type, param_length) + param_value padding = b'\x00' * padl(param_length) return body def padl(l): return 4 * ((l + 3) // 4) - l def swapl(i): return unpack("<I", pack(">I", i))[0] def tsn_gt(a, b): """ Return True if tsn a is greater than b. """ half_mod = (1 << 31) return (((a < b) and ((b - a) > half_mod)) or ((a > b) and ((a - b) < half_mod))) def tsn_gte(a, b): """ Return True if tsn a is greater than or equal to b. """ return (a == b) or tsn_gt(a, b) def tsn_minus_one(a): return (a - 1) % SCTP_TSN_MODULO def tsn_plus_one(a): return (a + 1) % SCTP_TSN_MODULO class Chunk: def __init__(self, flags=0, body=b''): self.flags = flags self.body = body def __bytes__(self): body = self.body data = pack('!BBH', self.type, self.flags, len(body) + 4) + body data += b'\x00' * padl(len(body)) return data def __repr__(self): return '%s(flags=%d)' % (chunk_type(self), self.flags) @property def type(self): for k, cls in CHUNK_TYPES.items(): if isinstance(self, cls): return k class BaseParamsChunk(Chunk): def __init__(self, flags=0, body=b''): self.flags = flags if body: self.params = decode_params(body) else: self.params = [] @property def body(self): return encode_params(self.params) class AbortChunk(BaseParamsChunk): pass class CookieAckChunk(Chunk): pass class CookieEchoChunk(Chunk): pass class DataChunk(Chunk): def __init__(self, flags=0, body=b''): self.flags = flags if body: (self.tsn, self.stream_id, self.stream_seq, self.protocol) = unpack('!LHHL', body[0:12]) self.user_data = body[12:] else: self.tsn = 0 self.stream_id = 0 self.stream_seq = 0 self.protocol = 0 self.user_data = b'' @property def body(self): body = pack('!LHHL', self.tsn, self.stream_id, self.stream_seq, self.protocol) body += self.user_data return body def __repr__(self): return 'DataChunk(flags=%d, tsn=%d, stream_id=%d, stream_seq=%d)' % ( self.flags, self.tsn, self.stream_id, self.stream_seq) class ErrorChunk(BaseParamsChunk): pass class ForwardTsnChunk(Chunk): def __init__(self, flags=0, body=b''): self.flags = flags self.streams = [] if body: self.cumulative_tsn = unpack_from('!L', body, 0)[0] pos = 4 while pos < len(body): self.streams.append(unpack_from('!HH', body, pos)) pos += 4 else: self.cumulative_tsn = 0 @property def body(self): body = pack('!L', self.cumulative_tsn) for stream_id, stream_seq in self.streams: body += pack('!HH', stream_id, stream_seq) return body def __repr__(self): return 'ForwardTsnChunk(cumulative_tsn=%d, streams=%s)' % ( self.cumulative_tsn, self.streams) class HeartbeatChunk(BaseParamsChunk): pass class HeartbeatAckChunk(BaseParamsChunk): pass class BaseInitChunk(Chunk): def __init__(self, flags=0, body=b''): self.flags = flags if body: (self.initiate_tag, self.advertised_rwnd, self.outbound_streams, self.inbound_streams, self.initial_tsn) = unpack('!LLHHL', body[0:16]) self.params = decode_params(body[16:]) else: self.initiate_tag = 0 self.advertised_rwnd = 0 self.outbound_streams = 0 self.inbound_streams = 0 self.initial_tsn = 0 self.params = [] @property def body(self): body = pack( '!LLHHL', self.initiate_tag, self.advertised_rwnd, self.outbound_streams, self.inbound_streams, self.initial_tsn) body += encode_params(self.params) return body class InitChunk(BaseInitChunk): pass class InitAckChunk(BaseInitChunk): pass class ReconfigChunk(BaseParamsChunk): pass class SackChunk(Chunk): def __init__(self, flags=0, body=b''): self.flags = flags self.gaps = [] self.duplicates = [] if body: self.cumulative_tsn, self.advertised_rwnd, nb_gaps, nb_duplicates = unpack( '!LLHH', body[0:12]) pos = 12 for i in range(nb_gaps): self.gaps.append(unpack('!HH', body[pos:pos + 4])) pos += 4 for i in range(nb_duplicates): self.duplicates.append(unpack('!L', body[pos:pos + 4])[0]) pos += 4 else: self.cumulative_tsn = 0 self.advertised_rwnd = 0 @property def body(self): body = pack('!LLHH', self.cumulative_tsn, self.advertised_rwnd, len(self.gaps), len(self.duplicates)) for gap in self.gaps: body += pack('!HH', *gap) for tsn in self.duplicates: body += pack('!L', tsn) return body def __repr__(self): return 'SackChunk(flags=%d, advertised_rwnd=%d, cumulative_tsn=%d, gaps=%s)' % ( self.flags, self.advertised_rwnd, self.cumulative_tsn, self.gaps) class ShutdownChunk(Chunk): def __init__(self, flags=0, body=b''): self.flags = flags if body: self.cumulative_tsn = unpack('!L', body[0:4])[0] else: self.cumulative_tsn = 0 @property def body(self): return pack('!L', self.cumulative_tsn) def __repr__(self): return 'ShutdownChunk(flags=%d, cumulative_tsn=%d)' % ( self.flags, self.cumulative_tsn) class ShutdownAckChunk(Chunk): pass class ShutdownCompleteChunk(Chunk): pass CHUNK_TYPES = { 0: DataChunk, 1: InitChunk, 2: InitAckChunk, 3: SackChunk, 4: HeartbeatChunk, 5: HeartbeatAckChunk, 6: AbortChunk, 7: ShutdownChunk, 8: ShutdownAckChunk, 9: ErrorChunk, 10: CookieEchoChunk, 11: CookieAckChunk, 14: ShutdownCompleteChunk, 130: ReconfigChunk, 192: ForwardTsnChunk, } class Packet: def __init__(self, source_port, destination_port, verification_tag, chunks): self.source_port = source_port self.destination_port = destination_port self.verification_tag = verification_tag self.chunks = chunks def __bytes__(self): checksum = 0 data = pack( '!HHLL', self.source_port, self.destination_port, self.verification_tag, checksum) for chunk in self.chunks: data += bytes(chunk) # calculate checksum checksum = swapl(crc32c(data)) return data[0:8] + pack('!L', checksum) + data[12:] @classmethod def parse(cls, data): if len(data) < 12: raise ValueError('SCTP packet length is less than 12 bytes') source_port, destination_port, verification_tag, checksum = unpack( '!HHLL', data[0:12]) # verify checksum check_data = data[0:8] + b'\x00\x00\x00\x00' + data[12:] if checksum != swapl(crc32c(check_data)): raise ValueError('SCTP packet has invalid checksum') packet = cls( source_port=source_port, destination_port=destination_port, verification_tag=verification_tag, chunks=[]) pos = 12 while pos <= len(data) - 4: chunk_type, chunk_flags, chunk_length = unpack('!BBH', data[pos:pos + 4]) chunk_body = data[pos + 4:pos + chunk_length] chunk_cls = CHUNK_TYPES.get(chunk_type) if chunk_cls: packet.chunks.append(chunk_cls( flags=chunk_flags, body=chunk_body)) pos += chunk_length + padl(chunk_length) return packet # RFC 6525 @attr.s class StreamResetOutgoingParam: request_sequence = attr.ib() response_sequence = attr.ib() last_tsn = attr.ib() streams = attr.ib(default=attr.Factory(list)) def __bytes__(self): data = pack( '!LLL', self.request_sequence, self.response_sequence, self.last_tsn) for stream in self.streams: data += pack('!H', stream) return data @classmethod def parse(cls, data): request_sequence, response_sequence, last_tsn = unpack('!LLL', data[0:12]) streams = [] for pos in range(12, len(data), 2): streams.append(unpack('!H', data[pos:pos + 2])[0]) return cls( request_sequence=request_sequence, response_sequence=response_sequence, last_tsn=last_tsn, streams=streams) @attr.s class StreamAddOutgoingParam: request_sequence = attr.ib() new_streams = attr.ib() def __bytes__(self): data = pack( '!LHH', self.request_sequence, self.new_streams, 0) return data @classmethod def parse(cls, data): request_sequence, new_streams, reserved = unpack('!LHH', data[0:8]) return cls( request_sequence=request_sequence, new_streams=new_streams) @attr.s class StreamResetResponseParam: response_sequence = attr.ib() result = attr.ib() def __bytes__(self): return pack('!LL', self.response_sequence, self.result) @classmethod def parse(cls, data): response_sequence, result = unpack('!LL', data[0:8]) return cls(response_sequence=response_sequence, result=result) RECONFIG_PARAM_TYPES = { 13: StreamResetOutgoingParam, 16: StreamResetResponseParam, 17: StreamAddOutgoingParam } class InboundStream: def __init__(self): self.reassembly = [] self.sequence_number = 0 def add_chunk(self, chunk): if not self.reassembly or tsn_gt(chunk.tsn, self.reassembly[-1].tsn): self.reassembly.append(chunk) return for i, rchunk in enumerate(self.reassembly): # should never happen, the chunk should have been eliminated # as a duplicate when _mark_received() is called assert rchunk.tsn != chunk.tsn, 'duplicate chunk in reassembly' if tsn_gt(rchunk.tsn, chunk.tsn): self.reassembly.insert(i, chunk) break def pop_messages(self): pos = 0 start_pos = None while pos < len(self.reassembly): chunk = self.reassembly[pos] if start_pos is None: ordered = not (chunk.flags & SCTP_DATA_UNORDERED) if not (chunk.flags & SCTP_DATA_FIRST_FRAG): if ordered: break else: pos += 1 continue if ordered and uint16_gt(chunk.stream_seq, self.sequence_number): break expected_tsn = chunk.tsn start_pos = pos elif chunk.tsn != expected_tsn: if ordered: break else: start_pos = None pos += 1 continue if (chunk.flags & SCTP_DATA_LAST_FRAG): user_data = b''.join([c.user_data for c in self.reassembly[start_pos:pos + 1]]) self.reassembly = self.reassembly[:start_pos] + self.reassembly[pos + 1:] if ordered and chunk.stream_seq == self.sequence_number: self.sequence_number = uint16_add(self.sequence_number, 1) pos = start_pos yield (chunk.stream_id, chunk.protocol, user_data) else: pos += 1 expected_tsn = tsn_plus_one(expected_tsn) def prune_chunks(self, tsn): """ Prune chunks up to the given TSN. """ pos = -1 size = 0 for i, chunk in enumerate(self.reassembly): if tsn_gte(tsn, chunk.tsn): pos = i size += len(chunk.user_data) else: break self.reassembly = self.reassembly[pos + 1:] return size @attr.s class RTCSctpCapabilities: """ The :class:`RTCSctpCapabilities` dictionary provides information about the capabilities of the :class:`RTCSctpTransport`. """ maxMessageSize = attr.ib() """ The maximum size of data that the implementation can send or 0 if the implementation can handle messages of any size. """ class RTCSctpTransport(EventEmitter): """ The :class:`RTCSctpTransport` interface includes information relating to Stream Control Transmission Protocol (SCTP) transport. :param: transport: An :class:`RTCDtlsTransport`. """ def __init__(self, transport, port=5000): if transport.state == 'closed': raise InvalidStateError super().__init__() self._association_state = self.State.CLOSED self.__transport = transport self._started = False self.__state = 'new' self._loop = asyncio.get_event_loop() self._hmac_key = os.urandom(16) self._local_partial_reliability = True self._local_port = port self._local_verification_tag = random32() self._remote_extensions = [] self._remote_partial_reliability = False self._remote_port = None self._remote_verification_tag = 0 # inbound self._advertised_rwnd = 1024 * 1024 self._inbound_streams = {} self._inbound_streams_count = 0 self._inbound_streams_max = MAX_STREAMS self._last_received_tsn = None self._sack_duplicates = [] self._sack_misordered = set() self._sack_needed = False # outbound self._cwnd = 3 * USERDATA_MAX_LENGTH self._fast_recovery_exit = None self._fast_recovery_transmit = False self._forward_tsn_chunk = None self._flight_size = 0 self._local_tsn = random32() self._last_sacked_tsn = tsn_minus_one(self._local_tsn) self._advanced_peer_ack_tsn = tsn_minus_one(self._local_tsn) self._outbound_queue = [] self._outbound_queue_pos = 0 self._outbound_stream_seq = {} self._outbound_streams_count = MAX_STREAMS self._partial_bytes_acked = 0 # reconfiguration self._reconfig_queue = [] self._reconfig_request = None self._reconfig_request_seq = self._local_tsn self._reconfig_response_seq = 0 # rtt calculation self._srtt = None self._rttvar = None # timers self._rto = SCTP_RTO_INITIAL self._t1_handle = None self._t2_handle = None self._t3_handle = None # data channels self._data_channel_id = None self._data_channel_queue = [] self._data_channels = {} @property def is_server(self): return self.transport.transport.role != 'controlling' @property def port(self): """ The local SCTP port number used for data channels. """ return self._local_port @property def state(self): """ The current state of the SCTP transport. """ return self.__state @property def transport(self): """ The :class:`RTCDtlsTransport` over which SCTP data is transmitted. """ return self.__transport @classmethod def getCapabilities(cls): """ Retrieve the capabilities of the transport. :rtype: RTCSctpCapabilities """ return RTCSctpCapabilities(maxMessageSize=65536) def setTransport(self, transport): self.__transport = transport async def start(self, remoteCaps, remotePort): """ Start the transport. """ if not self._started: self._started = True self.__state = 'connecting' self._remote_port = remotePort # initialise local channel ID counter if self.is_server: self._data_channel_id = 0 else: self._data_channel_id = 1 self.__transport._register_data_receiver(self) if not self.is_server: await self._init() async def stop(self): """ Stop the transport. """ if self._association_state != self.State.CLOSED: await self._abort() self.__transport._unregister_data_receiver(self) self._set_state(self.State.CLOSED) async def _abort(self): """ Abort the association. """ chunk = AbortChunk() try: await self._send_chunk(chunk) except ConnectionError: pass async def _init(self): """ Initialize the association. """ chunk = InitChunk() chunk.initiate_tag = self._local_verification_tag chunk.advertised_rwnd = self._advertised_rwnd chunk.outbound_streams = self._outbound_streams_count chunk.inbound_streams = self._inbound_streams_max chunk.initial_tsn = self._local_tsn self._set_extensions(chunk.params) await self._send_chunk(chunk) # start T1 timer and enter COOKIE-WAIT state self._t1_start(chunk) self._set_state(self.State.COOKIE_WAIT) def _flight_size_decrease(self, chunk): self._flight_size = max(0, self._flight_size - chunk._book_size) def _flight_size_increase(self, chunk): self._flight_size += chunk._book_size def _get_extensions(self, params): """ Gets what extensions are supported by the remote party. """ for k, v in params: if k == SCTP_PRSCTP_SUPPORTED: self._remote_partial_reliability = True elif k == SCTP_SUPPORTED_CHUNK_EXT: self._remote_extensions = list(v) def _set_extensions(self, params): """ Sets what extensions are supported by the local party. """ extensions = [] if self._local_partial_reliability: params.append((SCTP_PRSCTP_SUPPORTED, b'')) extensions.append(FORWARD_TSN_CHUNK) extensions.append(RECONFIG_CHUNK) params.append((SCTP_SUPPORTED_CHUNK_EXT, bytes(extensions))) def _get_inbound_stream(self, stream_id): """ Get or create the inbound stream with the specified ID. """ if stream_id not in self._inbound_streams: self._inbound_streams[stream_id] = InboundStream() return self._inbound_streams[stream_id] def _get_timestamp(self): return int(time.time()) async def _handle_data(self, data): """ Handle data received from the network. """ try: packet = Packet.parse(data) except ValueError: return # is this an init? init_chunk = len([x for x in packet.chunks if isinstance(x, InitChunk)]) if init_chunk: assert len(packet.chunks) == 1 expected_tag = 0 else: expected_tag = self._local_verification_tag # verify tag if packet.verification_tag != expected_tag: self.__log_debug('Bad verification tag %d vs %d', packet.verification_tag, expected_tag) return # handle chunks for chunk in packet.chunks: await self._receive_chunk(chunk) # send SACK if needed if self._sack_needed: await self._send_sack() def _maybe_abandon(self, chunk): """ Determine if a chunk needs to be marked as abandoned. If it does, it marks the chunk and any other chunk belong to the same message as abandoned. """ if chunk._abandoned: return True abandon = ( (chunk._max_retransmits is not None and chunk._sent_count > chunk._max_retransmits) or (chunk._expiry is not None and chunk._expiry < time.time()) ) if not abandon: return False chunk_pos = self._outbound_queue.index(chunk) for pos in range(chunk_pos, -1, -1): ochunk = self._outbound_queue[pos] ochunk._abandoned = True ochunk._retransmit = False if (ochunk.flags & SCTP_DATA_FIRST_FRAG): break for pos in range(chunk_pos, len(self._outbound_queue)): ochunk = self._outbound_queue[pos] ochunk._abandoned = True ochunk._retransmit = False if (ochunk.flags & SCTP_DATA_LAST_FRAG): break return True def _mark_received(self, tsn): """ Mark an incoming data TSN as received. """ # it's a duplicate if tsn_gte(self._last_received_tsn, tsn) or tsn in self._sack_misordered: self._sack_duplicates.append(tsn) return True # consolidate misordered entries self._sack_misordered.add(tsn) for tsn in sorted(self._sack_misordered): if tsn == tsn_plus_one(self._last_received_tsn): self._last_received_tsn = tsn else: break # filter out obsolete entries def is_obsolete(x): return tsn_gt(x, self._last_received_tsn) self._sack_duplicates = list(filter(is_obsolete, self._sack_duplicates)) self._sack_misordered = set(filter(is_obsolete, self._sack_misordered)) async def _receive(self, stream_id, pp_id, data): """ Receive data stream -> ULP. """ await self._data_channel_receive(stream_id, pp_id, data) async def _receive_chunk(self, chunk): """ Handle an incoming chunk. """ self.__log_debug('< %s', chunk) # server if isinstance(chunk, InitChunk) and self.is_server: self._last_received_tsn = tsn_minus_one(chunk.initial_tsn) self._reconfig_response_seq = tsn_minus_one(chunk.initial_tsn) self._remote_verification_tag = chunk.initiate_tag self._ssthresh = chunk.advertised_rwnd self._get_extensions(chunk.params) self.__log_debug('- Peer supports %d outbound streams, %d max inbound streams', chunk.outbound_streams, chunk.inbound_streams) self._inbound_streams_count = min(chunk.outbound_streams, self._inbound_streams_max) self._outbound_streams_count = min(self._outbound_streams_count, chunk.inbound_streams) ack = InitAckChunk() ack.initiate_tag = self._local_verification_tag ack.advertised_rwnd = self._advertised_rwnd ack.outbound_streams = self._outbound_streams_count ack.inbound_streams = self._inbound_streams_max ack.initial_tsn = self._local_tsn self._set_extensions(ack.params) # generate state cookie cookie = pack('!L', self._get_timestamp()) cookie += hmac.new(self._hmac_key, cookie, 'sha1').digest() ack.params.append((SCTP_STATE_COOKIE, cookie)) await self._send_chunk(ack) elif isinstance(chunk, CookieEchoChunk) and self.is_server: # check state cookie MAC cookie = chunk.body if (len(cookie) != COOKIE_LENGTH or hmac.new(self._hmac_key, cookie[0:4], 'sha1').digest() != cookie[4:]): self.__log_debug('x State cookie is invalid') return # check state cookie lifetime now = self._get_timestamp() stamp = unpack('!L', cookie[0:4])[0] if stamp < now - COOKIE_LIFETIME or stamp > now: self.__log_debug('x State cookie has expired') error = ErrorChunk() error.params.append((SCTP_CAUSE_STALE_COOKIE, b'\x00' * 8)) await self._send_chunk(error) return ack = CookieAckChunk() await self._send_chunk(ack) self._set_state(self.State.ESTABLISHED) # client elif isinstance(chunk, InitAckChunk) and self._association_state == self.State.COOKIE_WAIT: # cancel T1 timer and process chunk self._t1_cancel() self._last_received_tsn = tsn_minus_one(chunk.initial_tsn) self._reconfig_response_seq = tsn_minus_one(chunk.initial_tsn) self._remote_verification_tag = chunk.initiate_tag self._ssthresh = chunk.advertised_rwnd self._get_extensions(chunk.params) self.__log_debug('- Peer supports %d outbound streams, %d max inbound streams', chunk.outbound_streams, chunk.inbound_streams) self._inbound_streams_count = min(chunk.outbound_streams, self._inbound_streams_max) self._outbound_streams_count = min(self._outbound_streams_count, chunk.inbound_streams) echo = CookieEchoChunk() for k, v in chunk.params: if k == SCTP_STATE_COOKIE: echo.body = v break await self._send_chunk(echo) # start T1 timer and enter COOKIE-ECHOED state self._t1_start(echo) self._set_state(self.State.COOKIE_ECHOED) elif (isinstance(chunk, CookieAckChunk) and self._association_state == self.State.COOKIE_ECHOED): # cancel T1 timer and enter ESTABLISHED state self._t1_cancel() self._set_state(self.State.ESTABLISHED) elif (isinstance(chunk, ErrorChunk) and self._association_state in [self.State.COOKIE_WAIT, self.State.COOKIE_ECHOED]): self._t1_cancel() self._set_state(self.State.CLOSED) self.__log_debug('x Could not establish association') return # common elif isinstance(chunk, DataChunk): await self._receive_data_chunk(chunk) elif isinstance(chunk, SackChunk): await self._receive_sack_chunk(chunk) elif isinstance(chunk, HeartbeatChunk): ack = HeartbeatAckChunk() ack.params = chunk.params await self._send_chunk(ack) elif isinstance(chunk, AbortChunk): self.__log_debug('x Association was aborted by remote party') self._set_state(self.State.CLOSED) elif isinstance(chunk, ShutdownChunk): self._t2_cancel() self._set_state(self.State.SHUTDOWN_RECEIVED) ack = ShutdownAckChunk() await self._send_chunk(ack) self._t2_start(ack) self._set_state(self.State.SHUTDOWN_ACK_SENT) elif (isinstance(chunk, ShutdownCompleteChunk) and self._association_state == self.State.SHUTDOWN_ACK_SENT): self._t2_cancel() self._set_state(self.State.CLOSED) elif (isinstance(chunk, ReconfigChunk) and self._association_state == self.State.ESTABLISHED): for param in chunk.params: cls = RECONFIG_PARAM_TYPES.get(param[0]) if cls: await self._receive_reconfig_param(cls.parse(param[1])) elif isinstance(chunk, ForwardTsnChunk): await self._receive_forward_tsn_chunk(chunk) async def _receive_data_chunk(self, chunk): """ Handle a DATA chunk. """ self._sack_needed = True # mark as received if self._mark_received(chunk.tsn): return # find stream inbound_stream = self._get_inbound_stream(chunk.stream_id) # defragment data inbound_stream.add_chunk(chunk) self._advertised_rwnd -= len(chunk.user_data) for message in inbound_stream.pop_messages(): self._advertised_rwnd += len(message[2]) await self._receive(*message) async def _receive_forward_tsn_chunk(self, chunk): """ Handle a FORWARD TSN chunk. """ self._sack_needed = True # it's a duplicate if tsn_gte(self._last_received_tsn, chunk.cumulative_tsn): return def is_obsolete(x): return tsn_gt(x, self._last_received_tsn) # advance cumulative TSN self._last_received_tsn = chunk.cumulative_tsn self._sack_misordered = set(filter(is_obsolete, self._sack_misordered)) for tsn in sorted(self._sack_misordered): if tsn == tsn_plus_one(self._last_received_tsn): self._last_received_tsn = tsn else: break # filter out obsolete entries self._sack_duplicates = list(filter(is_obsolete, self._sack_duplicates)) self._sack_misordered = set(filter(is_obsolete, self._sack_misordered)) # update reassembly for stream_id, stream_seq in chunk.streams: inbound_stream = self._get_inbound_stream(stream_id) # advance sequence number and perform delivery inbound_stream.sequence_number = uint16_add(stream_seq, 1) for message in inbound_stream.pop_messages(): self._advertised_rwnd += len(message[2]) await self._receive(*message) # prune obsolete chunks for stream_id, inbound_stream in self._inbound_streams.items(): self._advertised_rwnd += inbound_stream.prune_chunks(self._last_received_tsn) async def _receive_sack_chunk(self, chunk): """ Handle a SACK chunk. """ if tsn_gt(self._last_sacked_tsn, chunk.cumulative_tsn): return received_time = time.time() self._last_sacked_tsn = chunk.cumulative_tsn done = 0 done_bytes = 0 restart_t3 = False # handle acknowledged data for i in range(len(self._outbound_queue)): schunk = self._outbound_queue[i] if tsn_gt(schunk.tsn, self._last_sacked_tsn): break done += 1 if not schunk._acked: done_bytes += schunk._book_size self._flight_size_decrease(schunk) # update RTO estimate if done == 1 and schunk._sent_count == 1: self._update_rto(received_time - schunk._sent_time) # handle gap blocks loss = False if chunk.gaps: highest_seen_tsn = (chunk.cumulative_tsn + chunk.gaps[-1][1]) % SCTP_TSN_MODULO seen = set() for gap in chunk.gaps: for pos in range(gap[0], gap[1] + 1): tsn = (chunk.cumulative_tsn + pos) % SCTP_TSN_MODULO seen.add(tsn) for i in range(done, len(self._outbound_queue)): schunk = self._outbound_queue[i] if tsn_gt(schunk.tsn, highest_seen_tsn): break if schunk.tsn not in seen: schunk._misses += 1 if schunk._misses == 3: schunk._misses = 0 if not self._maybe_abandon(schunk): schunk._retransmit = True schunk._acked = False self._flight_size_decrease(schunk) loss = True if i == done: restart_t3 = True elif not schunk._acked: done_bytes += schunk._book_size schunk._acked = True self._flight_size_decrease(schunk) # discard acknowledged data if done: self._outbound_queue = self._outbound_queue[done:] self._outbound_queue_pos = max(0, self._outbound_queue_pos - done) restart_t3 = True # adjust congestion window if self._fast_recovery_exit is None: if done: if self._cwnd <= self._ssthresh: # slow start self._cwnd += min(done_bytes, USERDATA_MAX_LENGTH) else: # congestion avoidance self._partial_bytes_acked += done_bytes if self._partial_bytes_acked >= self._cwnd: self._partial_bytes_acked -= self._cwnd self._cwnd += USERDATA_MAX_LENGTH if loss: self._ssthresh = max(self._cwnd // 2, 4 * USERDATA_MAX_LENGTH) self._cwnd = self._ssthresh self._partial_bytes_acked = 0 self._fast_recovery_exit = highest_seen_tsn self._fast_recovery_transmit = True elif tsn_gte(chunk.cumulative_tsn, self._fast_recovery_exit): self._fast_recovery_exit = None if not len(self._outbound_queue): # there is no outstanding data, stop T3 self._t3_cancel() elif restart_t3: # the earliest outstanding chunk was acknowledged, restart T3 self._t3_handle.cancel() self._t3_handle = None self._t3_start() self._update_advanced_peer_ack_point() await self._data_channel_flush() await self._transmit() async def _receive_reconfig_param(self, param): """ Handle a RE-CONFIG parameter. """ self.__log_debug('<< %s', param) if isinstance(param, StreamResetOutgoingParam): # mark closed inbound streams for stream_id in param.streams: self._inbound_streams.pop(stream_id, None) # close data channel channel = self._data_channels.get(stream_id) if channel: self._data_channel_close(channel) # send response response_param = StreamResetResponseParam( response_sequence=param.request_sequence, result=1) self._reconfig_response_seq = param.request_sequence await self._send_reconfig_param(response_param) elif isinstance(param, StreamAddOutgoingParam): # increase inbound streams self._inbound_streams_count += param.new_streams # send response response_param = StreamResetResponseParam( response_sequence=param.request_sequence, result=1) self._reconfig_response_seq = param.request_sequence await self._send_reconfig_param(response_param) elif isinstance(param, StreamResetResponseParam): if (self._reconfig_request and param.response_sequence == self._reconfig_request.request_sequence): # mark closed streams for stream_id in self._reconfig_request.streams: self._outbound_stream_seq.pop(stream_id, None) self._data_channel_closed(stream_id) self._reconfig_request = None await self._transmit_reconfig() async def _send(self, stream_id, pp_id, user_data, expiry=None, max_retransmits=None, ordered=True): """ Send data ULP -> stream. """ if ordered: stream_seq = self._outbound_stream_seq.get(stream_id, 0) else: stream_seq = 0 fragments = math.ceil(len(user_data) / USERDATA_MAX_LENGTH) pos = 0 for fragment in range(0, fragments): chunk = DataChunk() chunk.flags = 0 if not ordered: chunk.flags = SCTP_DATA_UNORDERED if fragment == 0: chunk.flags |= SCTP_DATA_FIRST_FRAG if fragment == fragments - 1: chunk.flags |= SCTP_DATA_LAST_FRAG chunk.tsn = self._local_tsn chunk.stream_id = stream_id chunk.stream_seq = stream_seq chunk.protocol = pp_id chunk.user_data = user_data[pos:pos + USERDATA_MAX_LENGTH] # initialize counters chunk._abandoned = False chunk._acked = False chunk._book_size = len(chunk.user_data) chunk._expiry = expiry chunk._max_retransmits = max_retransmits chunk._misses = 0 chunk._retransmit = False chunk._sent_count = 0 chunk._sent_time = None pos += USERDATA_MAX_LENGTH self._local_tsn = tsn_plus_one(self._local_tsn) self._outbound_queue.append(chunk) if ordered: self._outbound_stream_seq[stream_id] = uint16_add(stream_seq, 1) # transmit outbound data if not self._t3_handle: await self._transmit() async def _send_chunk(self, chunk): """ Transmit a chunk (no bundling for now). """ self.__log_debug('> %s', chunk) packet = Packet( source_port=self._local_port, destination_port=self._remote_port, verification_tag=self._remote_verification_tag, chunks=[chunk]) await self.transport._send_data(bytes(packet)) async def _send_reconfig_param(self, param): chunk = ReconfigChunk() for k, cls in RECONFIG_PARAM_TYPES.items(): if isinstance(param, cls): param_type = k break chunk.params.append((param_type, bytes(param))) self.__log_debug('>> %s', param) await self._send_chunk(chunk) async def _send_sack(self): """ Build and send a selective acknowledgement (SACK) chunk. """ gaps = [] gap_next = None for tsn in sorted(self._sack_misordered): pos = (tsn - self._last_received_tsn) % SCTP_TSN_MODULO if tsn == gap_next: gaps[-1][1] = pos else: gaps.append([pos, pos]) gap_next = tsn_plus_one(tsn) sack = SackChunk() sack.cumulative_tsn = self._last_received_tsn sack.advertised_rwnd = max(0, self._advertised_rwnd) sack.duplicates = self._sack_duplicates[:] sack.gaps = [tuple(x) for x in gaps] await self._send_chunk(sack) self._sack_duplicates.clear() self._sack_needed = False def _set_state(self, state): """ Transition the SCTP association to a new state. """ if state != self._association_state: self.__log_debug('- %s -> %s', self._association_state, state) self._association_state = state if state == self.State.ESTABLISHED: self.__state = 'connected' asyncio.ensure_future(self._data_channel_flush()) elif state == self.State.CLOSED: self._t1_cancel() self._t2_cancel() self._t3_cancel() self.__state = 'closed' # close data channels for stream_id in list(self._data_channels.keys()): self._data_channel_closed(stream_id) # no more events will be emitted, so remove all event listeners # to facilitate garbage collection. self.remove_all_listeners() # timers def _t1_cancel(self): if self._t1_handle is not None: self.__log_debug('- T1(%s) cancel', chunk_type(self._t1_chunk)) self._t1_handle.cancel() self._t1_handle = None self._t1_chunk = None def _t1_expired(self): self._t1_failures += 1 self._t1_handle = None self.__log_debug('x T1(%s) expired %d', chunk_type(self._t1_chunk), self._t1_failures) if self._t1_failures > SCTP_MAX_INIT_RETRANS: self._set_state(self.State.CLOSED) else: asyncio.ensure_future(self._send_chunk(self._t1_chunk)) self._t1_handle = self._loop.call_later(self._rto, self._t1_expired) def _t1_start(self, chunk): assert self._t1_handle is None self._t1_chunk = chunk self._t1_failures = 0 self.__log_debug('- T1(%s) start', chunk_type(self._t1_chunk)) self._t1_handle = self._loop.call_later(self._rto, self._t1_expired) def _t2_cancel(self): if self._t2_handle is not None: self.__log_debug('- T2(%s) cancel', chunk_type(self._t2_chunk)) self._t2_handle.cancel() self._t2_handle = None self._t2_chunk = None def _t2_expired(self): self._t2_failures += 1 self._t2_handle = None self.__log_debug('x T2(%s) expired %d', chunk_type(self._t2_chunk), self._t2_failures) if self._t2_failures > SCTP_MAX_ASSOCIATION_RETRANS: self._set_state(self.State.CLOSED) else: asyncio.ensure_future(self._send_chunk(self._t2_chunk)) self._t2_handle = self._loop.call_later(self._rto, self._t2_expired) def _t2_start(self, chunk): assert self._t2_handle is None self._t2_chunk = chunk self._t2_failures = 0 self.__log_debug('- T2(%s) start', chunk_type(self._t2_chunk)) self._t2_handle = self._loop.call_later(self._rto, self._t2_expired) def _t3_expired(self): self._t3_handle = None self.__log_debug('x T3 expired') # clear retransmit flag, mark abandoned chunks for pos in range(self._outbound_queue_pos): chunk = self._outbound_queue[pos] chunk._retransmit = False self._maybe_abandon(chunk) self._update_advanced_peer_ack_point() # retransmit self._flight_size = 0 self._outbound_queue_pos = 0 self._partial_bytes_acked = 0 self._ssthresh = max(self._cwnd // 2, 4 * USERDATA_MAX_LENGTH) self._cwnd = USERDATA_MAX_LENGTH asyncio.ensure_future(self._transmit()) def _t3_start(self): assert self._t3_handle is None self.__log_debug('- T3 start') self._t3_handle = self._loop.call_later(self._rto, self._t3_expired) def _t3_cancel(self): if self._t3_handle is not None: self.__log_debug('- T3 cancel') self._t3_handle.cancel() self._t3_handle = None async def _transmit(self): """ Transmit outbound data. """ # send FORWARD TSN if self._forward_tsn_chunk is not None: await self._send_chunk(self._forward_tsn_chunk) self._forward_tsn_chunk = None # ensure T3 is running if not self._t3_handle: self._t3_start() # retransmit for pos in range(self._outbound_queue_pos): chunk = self._outbound_queue[pos] if chunk._retransmit: if self._fast_recovery_transmit: self._fast_recovery_transmit = False elif self._flight_size + chunk._book_size > self._cwnd: return self._flight_size_increase(chunk) chunk._retransmit = False chunk._sent_count += 1 await self._send_chunk(chunk) while self._outbound_queue_pos < len(self._outbound_queue): chunk = self._outbound_queue[self._outbound_queue_pos] if self._flight_size + chunk._book_size > self._cwnd: break self._flight_size_increase(chunk) # update counters chunk._sent_count += 1 chunk._sent_time = time.time() await self._send_chunk(chunk) if not self._t3_handle: self._t3_start() self._outbound_queue_pos += 1 async def _transmit_reconfig(self): if self._reconfig_queue and not self._reconfig_request: streams = self._reconfig_queue[0:RECONFIG_MAX_STREAMS] self._reconfig_queue = self._reconfig_queue[RECONFIG_MAX_STREAMS:] param = StreamResetOutgoingParam( request_sequence=self._reconfig_request_seq, response_sequence=self._reconfig_response_seq, last_tsn=tsn_minus_one(self._local_tsn), streams=streams, ) self._reconfig_request = param self._reconfig_request_seq = tsn_plus_one(self._reconfig_request_seq) await self._send_reconfig_param(param) def _update_advanced_peer_ack_point(self): """ Try to advance "Advanced.Peer.Ack.Point" according to RFC 3758. """ if tsn_gt(self._last_sacked_tsn, self._advanced_peer_ack_tsn): self._advanced_peer_ack_tsn = self._last_sacked_tsn done = 0 streams = {} for pos in range(self._outbound_queue_pos): chunk = self._outbound_queue[pos] if chunk._abandoned: self._advanced_peer_ack_tsn = chunk.tsn done += 1 if not (chunk.flags & SCTP_DATA_UNORDERED): streams[chunk.stream_id] = chunk.stream_seq else: break if done: # build FORWARD TSN self._forward_tsn_chunk = ForwardTsnChunk() self._forward_tsn_chunk.cumulative_tsn = self._advanced_peer_ack_tsn self._forward_tsn_chunk.streams = list(streams.items()) # drop data self._outbound_queue = self._outbound_queue[done:] self._outbound_queue_pos = max(0, self._outbound_queue_pos - done) def _update_rto(self, R): """ Update RTO given a new roundtrip measurement R. """ if self._srtt is None: self._rttvar = R / 2 self._srtt = R else: self._rttvar = (1 - SCTP_RTO_BETA) * self._rttvar + SCTP_RTO_BETA * abs(self._srtt - R) self._srtt = (1 - SCTP_RTO_ALPHA) * self._srtt + SCTP_RTO_ALPHA * R self._rto = max(SCTP_RTO_MIN, min(self._srtt + 4 * self._rttvar, SCTP_RTO_MAX)) def _data_channel_close(self, channel, transmit=True): """ Request closing the datachannel by sending an Outgoing Stream Reset Request. """ if channel.readyState not in ['closing', 'closed']: channel._setReadyState('closing') self._reconfig_queue.append(channel.id) if len(self._reconfig_queue) == 1: asyncio.ensure_future(self._transmit_reconfig()) def _data_channel_closed(self, stream_id): channel = self._data_channels.pop(stream_id) channel._setReadyState('closed') async def _data_channel_flush(self): """ Try to flush buffered data to the SCTP layer. We wait until the association is established, as we need to know whether we are a client or a server to correctly assign an odd/even ID to the data channels. """ if self._association_state != self.State.ESTABLISHED: return while len(self._outbound_queue) < MAX_OUTBOUND_QUEUE and self._data_channel_queue: channel, protocol, user_data = self._data_channel_queue.pop(0) # register channel if necessary stream_id = channel.id if stream_id is None: stream_id = self._data_channel_id self._data_channels[stream_id] = channel self._data_channel_id += 2 channel._setId(stream_id) # send data if protocol == WEBRTC_DCEP: await self._send(stream_id, protocol, user_data) else: if channel.maxPacketLifeTime: expiry = time.time() + (channel.maxPacketLifeTime / 1000) else: expiry = None await self._send(stream_id, protocol, user_data, expiry=expiry, max_retransmits=channel.maxRetransmits, ordered=channel.ordered) channel._addBufferedAmount(-len(user_data)) def _data_channel_open(self, channel): channel_type = DATA_CHANNEL_RELIABLE priority = 0 reliability = 0 if not channel.ordered: channel_type |= 0x80 if channel.maxRetransmits is not None: channel_type |= 1 reliability = channel.maxRetransmits elif channel.maxPacketLifeTime is not None: channel_type |= 2 reliability = channel.maxPacketLifeTime data = pack('!BBHLHH', DATA_CHANNEL_OPEN, channel_type, priority, reliability, len(channel.label), len(channel.protocol)) data += channel.label.encode('utf8') data += channel.protocol.encode('utf8') self._data_channel_queue.append((channel, WEBRTC_DCEP, data)) asyncio.ensure_future(self._data_channel_flush()) async def _data_channel_receive(self, stream_id, pp_id, data): if pp_id == WEBRTC_DCEP and len(data): msg_type = unpack('!B', data[0:1])[0] if msg_type == DATA_CHANNEL_OPEN and len(data) >= 12: # we should not receive an open for an existing channel assert stream_id not in self._data_channels # one side should be using even IDs, the other odd IDs assert (stream_id % 2) != (self._data_channel_id % 2) (msg_type, channel_type, priority, reliability, label_length, protocol_length) = unpack('!BBHLHH', data[0:12]) pos = 12 label = data[pos:pos + label_length].decode('utf8') pos += label_length protocol = data[pos:pos + protocol_length].decode('utf8') # check channel type maxPacketLifeTime = None maxRetransmits = None if (channel_type & 0x03) == 1: maxRetransmits = reliability elif (channel_type & 0x03) == 2: maxPacketLifeTime = reliability # register channel parameters = RTCDataChannelParameters( label=label, ordered=(channel_type & 0x80) == 0, maxPacketLifeTime=maxPacketLifeTime, maxRetransmits=maxRetransmits, protocol=protocol) channel = RTCDataChannel(self, parameters, id=stream_id) channel._setReadyState('open') self._data_channels[stream_id] = channel # send ack self._data_channel_queue.append( (channel, WEBRTC_DCEP, pack('!B', DATA_CHANNEL_ACK))) await self._data_channel_flush() # emit channel self.emit('datachannel', channel) elif msg_type == DATA_CHANNEL_ACK: assert stream_id in self._data_channels channel = self._data_channels[stream_id] channel._setReadyState('open') elif pp_id == WEBRTC_STRING and stream_id in self._data_channels: # emit message self._data_channels[stream_id].emit('message', data.decode('utf8')) elif pp_id == WEBRTC_STRING_EMPTY and stream_id in self._data_channels: # emit message self._data_channels[stream_id].emit('message', '') elif pp_id == WEBRTC_BINARY and stream_id in self._data_channels: # emit message self._data_channels[stream_id].emit('message', data) elif pp_id == WEBRTC_BINARY_EMPTY and stream_id in self._data_channels: # emit message self._data_channels[stream_id].emit('message', b'') def _data_channel_send(self, channel, data): if data == '': pp_id, user_data = WEBRTC_STRING_EMPTY, b'\x00' elif isinstance(data, str): pp_id, user_data = WEBRTC_STRING, data.encode('utf8') elif data == b'': pp_id, user_data = WEBRTC_BINARY_EMPTY, b'\x00' else: pp_id, user_data = WEBRTC_BINARY, data channel._addBufferedAmount(len(user_data)) self._data_channel_queue.append((channel, pp_id, user_data)) asyncio.ensure_future(self._data_channel_flush()) def __log_debug(self, msg, *args): role = self.is_server and 'server' or 'client' logger.debug(role + ' ' + msg, *args) class State(enum.Enum): CLOSED = 1 COOKIE_WAIT = 2 COOKIE_ECHOED = 3 ESTABLISHED = 4 SHUTDOWN_PENDING = 5 SHUTDOWN_SENT = 6 SHUTDOWN_RECEIVED = 7 SHUTDOWN_ACK_SENT = 8
a7d2a235ea6e49e5cb3cfec57704cd6952825467
84c9a6fb5e18741f14a55d0d737e2a556383770d
/venv/Lib/site-packages/w3af/core/data/misc/response_cache_key.py
14d57dbdfc5945b3463fb0df2398082606620c5c
[]
no_license
AravindChan96/Vulcan
638a1db2f84df08bc50dd76c7f142014d529fbec
5548a6f36f04108ac1a6ed8e707930f9821f0bd9
refs/heads/master
2022-11-05T15:05:54.224578
2020-06-19T20:44:14
2020-06-19T20:44:14
273,396,348
1
1
null
null
null
null
UTF-8
Python
false
false
4,841
py
""" response_cache_key.py Copyright 2019 Andres Riancho This file is part of w3af, http://w3af.org/ . w3af is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation version 2 of the License. w3af is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with w3af; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA """ import zlib # pylint: disable=E0401 from darts.lib.utils.lru import SynchronizedLRUDict # pylint: enable=E0401 from w3af.core.controllers.core_helpers.not_found.response import FourOhFourResponse from w3af.core.data.misc.xml_bones import get_xml_bones from w3af.core.data.misc.encoding import smart_str_ignore def get_response_cache_key(http_response, clean_response=None, headers=None): """ Note: query.body has been cleaned by get_clean_body() :param http_response: The HTTP response we want to get a cache key for :param clean_response: The FourOhFourResponse associated with the HTTPResponse passed as parameter (optional, will be calculated if not provided) :param headers: A string containing the HTTP response headers that have to be used to calculate the hash :return: Hash of the HTTP response body """ headers = '' or headers # # Only some HTTP responses benefit from the XML-bones signature # if _should_use_xml_bones(http_response): body = get_xml_bones(http_response.get_body()) normalized_path = FourOhFourResponse.normalize_path(http_response.get_uri()) else: # # Get a clean_response if it was not provided # if clean_response is None: clean_response = FourOhFourResponse.from_http_response(http_response) body = clean_response.body normalized_path = clean_response.normalized_path # # Calculate the hash using all the captured information # key = ''.join([str(http_response.get_code()), smart_str_ignore(normalized_path), str(headers), smart_str_ignore(body)]) return quick_hash(key) def _should_use_xml_bones(http_response): # Ignore small responses (the bones for this document is not so # representative) if len(http_response.get_body()) < 256: return False # Ignore large responses (might break lxml parser) if len(http_response.get_body()) > 1024 * 1024: return False # Check that this document is xml / html has_expected_content_type = False for content_type in ('xml', 'html'): if content_type in http_response.content_type: has_expected_content_type = True if not has_expected_content_type: return False # Check that it actually has tags if http_response.get_body().count('<') < 20: return False return True def quick_hash(text): text = smart_str_ignore(text) return '%s%s' % (hash(text), zlib.adler32(text)) class ResponseCacheKeyCache(object): # # The memory impact of having a large number of items in this cache is # really low, both the keys and the values are short strings (the result of # quick_hash) # MAX_SIZE = 2000 def __init__(self): self._cache = SynchronizedLRUDict(self.MAX_SIZE) def get_response_cache_key(self, http_response, clean_response=None, headers=None): # When the clean response is available, use that body to calculate the # cache key. It has been cleaned (removed request paths and QS parameters) # so it has a higher chance of being equal to other responses / being # already in the cache if clean_response is not None: body = clean_response.body else: body = http_response.body cache_key = '%s%s' % (smart_str_ignore(body), headers) cache_key = quick_hash(cache_key) result = self._cache.get(cache_key, None) if result is not None: return result result = get_response_cache_key(http_response, clean_response=clean_response, headers=headers) self._cache[cache_key] = result return result def clear_cache(self): self._cache.clear()
1e1ef944556644234b01de801bc01eac0e0e4c2e
48637665afeacae58d99e5203524ed8f2313d649
/drawBot/context/gifContext.py
2beff8238f2b3c31daaab1128958396ab581b1af
[ "BSD-3-Clause", "BSD-2-Clause" ]
permissive
bitforks/drawbot
35853a63d2d685cda7789d2dc3ca812bad0cc6d0
e66f12cf1a4fdd412d27d3b9f36092112b6cbd4f
refs/heads/master
2021-01-20T16:44:45.084558
2015-09-17T14:40:19
2015-09-17T14:40:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,383
py
import AppKit import Quartz import os import tempfile import subprocess from imageContext import ImageContext gifsiclePath = os.path.join(os.path.dirname(__file__), "tools", "gifsicle") if not os.path.exists(gifsiclePath): gifsiclePath = os.path.join(os.getcwd(), "tools", "gifsicle") class GifContext(ImageContext): _saveImageFileTypes = { "gif": AppKit.NSGIFFileType, } fileExtensions = _saveImageFileTypes.keys() _delay = 10 def __init__(self): super(GifContext, self).__init__() self._delayData = [] def _frameDuration(self, seconds): # gifsicle -h: Set frame delay to TIME (in 1/100sec). self._delayData[-1] = int(seconds * 100) def _newPage(self, width, height): super(GifContext, self)._newPage(width, height) self._delayData.append(self._delay) def _writeDataToFile(self, data, path, multipage): pdfDocument = Quartz.PDFDocument.alloc().initWithData_(data) pageCount = pdfDocument.pageCount() shouldBeAnimated = pageCount > 1 tempPath = path if shouldBeAnimated: tempPath = tempfile.mkstemp(suffix=".gif")[1] inputPaths = super(GifContext, self)._writeDataToFile(data, tempPath, shouldBeAnimated) if shouldBeAnimated: cmds = [ # gifsicle path gifsiclePath, # optimize level # "-O3", # force to 256 colors "--colors", "256", # make it loop "--loop", ] # add source paths with delay for each frame for i, inputPath in enumerate(inputPaths): cmds += [ # add the frame duration "--delay", "%i" % self._delayData[i], # add the input gif for each frame inputPath ] cmds += [ # output path "--output", path ] # make a string of escaped commands cmds = subprocess.list2cmdline(cmds) # go popen = subprocess.Popen(cmds, shell=True) popen.wait() # remove the temp input gifs for inputPath in inputPaths: os.remove(inputPath)
bda72a45c56ce6b1c4ea927d9a8567f2951fdb18
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/otherforms/_sobers.py
86f6f5f194a353070e1f9fe678676c2bc8cd808f
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
218
py
#calss header class _SOBERS(): def __init__(self,): self.name = "SOBERS" self.definitions = sober self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.basic = ['sober']
e8e3d8de20abef556139aa2fe44ad71d69297b8a
ba3231b25c60b73ca504cd788efa40d92cf9c037
/nitro-python-13.0.36/nssrc/com/citrix/netscaler/nitro/resource/config/lb/lbvserver_dospolicy_binding.py
c16c8f0e9fb625627902597e36abce766c98e1f5
[ "Apache-2.0", "Python-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
zhuweigh/vpx13
f6d559ae85341e56472e3592cbc67062dac34b93
b36caa3729d3ca5515fa725f2d91aeaabdb2daa9
refs/heads/master
2020-07-04T22:15:16.595728
2019-09-20T00:19:56
2019-09-20T00:19:56
202,435,307
0
0
null
null
null
null
UTF-8
Python
false
false
6,292
py
# # Copyright (c) 2008-2019 Citrix Systems, Inc. # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from nssrc.com.citrix.netscaler.nitro.resource.base.base_resource import base_resource from nssrc.com.citrix.netscaler.nitro.resource.base.base_resource import base_response from nssrc.com.citrix.netscaler.nitro.service.options import options from nssrc.com.citrix.netscaler.nitro.exception.nitro_exception import nitro_exception from nssrc.com.citrix.netscaler.nitro.util.nitro_util import nitro_util class lbvserver_dospolicy_binding(base_resource) : """ Binding class showing the dospolicy that can be bound to lbvserver. """ def __init__(self) : self._policyname = None self._priority = None self._name = None self.___count = None @property def priority(self) : r"""Priority. """ try : return self._priority except Exception as e: raise e @priority.setter def priority(self, priority) : r"""Priority. """ try : self._priority = priority except Exception as e: raise e @property def policyname(self) : r"""Name of the policy bound to the LB vserver. """ try : return self._policyname except Exception as e: raise e @policyname.setter def policyname(self, policyname) : r"""Name of the policy bound to the LB vserver. """ try : self._policyname = policyname except Exception as e: raise e @property def name(self) : r"""Name for the virtual server. Must begin with an ASCII alphanumeric or underscore (_) character, and must contain only ASCII alphanumeric, underscore, hash (#), period (.), space, colon (:), at sign (@), equal sign (=), and hyphen (-) characters. Can be changed after the virtual server is created. CLI Users: If the name includes one or more spaces, enclose the name in double or single quotation marks (for example, "my vserver" or 'my vserver'). .<br/>Minimum length = 1. """ try : return self._name except Exception as e: raise e @name.setter def name(self, name) : r"""Name for the virtual server. Must begin with an ASCII alphanumeric or underscore (_) character, and must contain only ASCII alphanumeric, underscore, hash (#), period (.), space, colon (:), at sign (@), equal sign (=), and hyphen (-) characters. Can be changed after the virtual server is created. CLI Users: If the name includes one or more spaces, enclose the name in double or single quotation marks (for example, "my vserver" or 'my vserver'). .<br/>Minimum length = 1 """ try : self._name = name except Exception as e: raise e def _get_nitro_response(self, service, response) : r""" converts nitro response into object and returns the object array in case of get request. """ try : result = service.payload_formatter.string_to_resource(lbvserver_dospolicy_binding_response, response, self.__class__.__name__) if(result.errorcode != 0) : if (result.errorcode == 444) : service.clear_session(self) if result.severity : if (result.severity == "ERROR") : raise nitro_exception(result.errorcode, str(result.message), str(result.severity)) else : raise nitro_exception(result.errorcode, str(result.message), str(result.severity)) return result.lbvserver_dospolicy_binding except Exception as e : raise e def _get_object_name(self) : r""" Returns the value of object identifier argument """ try : if self.name is not None : return str(self.name) return None except Exception as e : raise e @classmethod def get(cls, service, name="", option_="") : r""" Use this API to fetch lbvserver_dospolicy_binding resources. """ try : if not name : obj = lbvserver_dospolicy_binding() response = obj.get_resources(service, option_) else : obj = lbvserver_dospolicy_binding() obj.name = name response = obj.get_resources(service) return response except Exception as e: raise e @classmethod def get_filtered(cls, service, name, filter_) : r""" Use this API to fetch filtered set of lbvserver_dospolicy_binding resources. Filter string should be in JSON format.eg: "port:80,servicetype:HTTP". """ try : obj = lbvserver_dospolicy_binding() obj.name = name option_ = options() option_.filter = filter_ response = obj.getfiltered(service, option_) return response except Exception as e: raise e @classmethod def count(cls, service, name) : r""" Use this API to count lbvserver_dospolicy_binding resources configued on NetScaler. """ try : obj = lbvserver_dospolicy_binding() obj.name = name option_ = options() option_.count = True response = obj.get_resources(service, option_) if response : return response[0].__dict__['___count'] return 0 except Exception as e: raise e @classmethod def count_filtered(cls, service, name, filter_) : r""" Use this API to count the filtered set of lbvserver_dospolicy_binding resources. Filter string should be in JSON format.eg: "port:80,servicetype:HTTP". """ try : obj = lbvserver_dospolicy_binding() obj.name = name option_ = options() option_.count = True option_.filter = filter_ response = obj.getfiltered(service, option_) if response : return response[0].__dict__['___count'] return 0 except Exception as e: raise e class Bindpoint: REQUEST = "REQUEST" RESPONSE = "RESPONSE" class Labeltype: reqvserver = "reqvserver" resvserver = "resvserver" policylabel = "policylabel" class lbvserver_dospolicy_binding_response(base_response) : def __init__(self, length=1) : self.lbvserver_dospolicy_binding = [] self.errorcode = 0 self.message = "" self.severity = "" self.sessionid = "" self.lbvserver_dospolicy_binding = [lbvserver_dospolicy_binding() for _ in range(length)]
e4eb072d8f1eeaaa4cdf7f001effd5d4efd96d64
3f84f51751c4191bb81c9df7094578461fb12a2d
/AtcoderProblems/ABC/ABC063/C.py
a0d1edc24569a3ff1337dee5f6488331c804eeb4
[]
no_license
rikukawamura/atcoder
7ff49f1bd8534b99d87fe81ef950e1ba77eee8b8
09c0cfe3ce25be56d338614a29e996f4106117cd
refs/heads/master
2023-08-13T21:21:19.058219
2021-09-28T10:02:42
2021-09-28T10:02:42
329,206,601
0
0
null
null
null
null
UTF-8
Python
false
false
661
py
import pdb import itertools N = int(input()) S = sorted([int(input()) for _ in range(N)], reverse=False) non_ten = [] ten = [] for s in S: if s % 10 == 0: ten.append(s) else: non_ten.append(s) ten = sorted(ten) non_ten = sorted(non_ten) total = sum(ten)+sum(non_ten) ''' 1. 総合点が10の倍数且つ,10の倍数でない問題がある場合 2. 総合点が10の倍数且つ,10の倍数でない問題がない場合 3. 総合点が10の倍数でない の三つに場合分け ''' if total % 10 == 0 and non_ten != []: print(total-non_ten[0]) elif total % 10 == 0 and non_ten == []: print(0) else: print(total)
5ca637eb2ebfb7ed1a6f2ba5d043a4f944c62dc9
8ff12c53e31f134b9f39f59b9a6f7d4f9142cea7
/src/if.py
e048368b8880f8521d2dce9ee91380e173b38b8e
[]
no_license
quhuohuo/python
5b0a80dbec7d22a0b274e4a32d269e85d254718c
5732c5974519da8e8919dab42b36ab0ab2c99b37
refs/heads/master
2021-06-13T11:41:12.356329
2017-04-07T08:58:05
2017-04-07T08:58:05
75,054,981
0
0
null
null
null
null
UTF-8
Python
false
false
94
py
#!/usr/bin/python #coding=utf-8 #简单的if语句 a = input() if a > 0: print "a > 0"
50899501d48aefbf8069736a20d4adf832d5c014
195f19578f3eea3f8c3e3a780655ce2f8dd009d0
/caixa_racional/views.py
11f834c7fb9fdce95b8fa501e59832eee8e6a44b
[]
no_license
osmarsalesjr/TheBeeFreshTeam
5b68c26d413940badc0814fb5c4cfc953b4fb695
9ca839083d903236054a813b265b0d09f34cb288
refs/heads/master
2022-12-17T11:22:30.482340
2019-07-14T00:11:50
2019-07-14T00:11:50
194,682,998
0
0
null
2022-12-08T01:47:50
2019-07-01T13:57:06
Python
UTF-8
Python
false
false
1,240
py
from rest_framework.response import Response from rest_framework.reverse import reverse from rest_framework import generics from caixa_racional.models import Temperatura, BaseDeDados from caixa_racional.serializers import TemperaturaSerializer, BaseDeDadosSerializer class TemperaturaList(generics.ListCreateAPIView): queryset = Temperatura.objects.order_by('-tempo') serializer_class = TemperaturaSerializer name = 'temperatura-list' class TemperaturaDetail(generics.RetrieveUpdateDestroyAPIView): queryset = Temperatura.objects.all() serializer_class = TemperaturaSerializer name = 'temperatura-detail' class BaseDeDadosList(generics.ListCreateAPIView): queryset = BaseDeDados.objects.all() serializer_class = BaseDeDadosSerializer name = 'base-de-dados-list' class BaseDeDadosDetail(generics.RetrieveUpdateDestroyAPIView): queryset = BaseDeDados.objects.all() serializer_class = BaseDeDadosSerializer name = 'base-de-dados-detail' # Create your views here. class ApiRoot(generics.GenericAPIView): name = 'api-root' def get(self, request, *args, **kwargs): return Response({ 'temperaturas': reverse(TemperaturaList.name, request=request), })
e0069151847d0d09f9ad60a5a5d0b65200219968
7364f67ec30af26e02cf894124a60478fdb56df7
/make_plot.py
1a6f1bf02180fc24f9f1df327b547b1d9b144f93
[]
no_license
RaymondSimons/clear_local
b5430bbaf198654b190f7e41f261337389b6a209
dd5dfbabd0149ef8323750a887640407dc6d1477
refs/heads/master
2021-06-15T08:14:42.452049
2021-02-24T15:47:00
2021-02-24T15:47:00
147,576,608
0
0
null
null
null
null
UTF-8
Python
false
false
13,208
py
import numpy as np from matplotlib.backends.backend_pdf import PdfPages from astropy.io import fits, ascii from astropy.coordinates import SkyCoord import astropy.units as u import matplotlib as mpl from astropy.cosmology import Planck15 as cosmo import matplotlib.pyplot as plt from numpy import * import glob from glob import glob plt.rcParams['xtick.labelsize']=14 plt.rcParams['ytick.labelsize']=14 plt.ioff() plt.close('all') mpl.rcParams['text.usetex'] = True mpl.rcParams['text.latex.preamble'] = [r'\usepackage{amsmath}'] cat = np.loadtxt('/Users/rsimons/Desktop/clear/Catalogs/z_r_O32.cat',dtype = 'str') fls = glob('/Users/rsimons/Desktop/clear/izi_metal_profiles/fits/*npy') ma_cat = np.loadtxt('/Users/rsimons/Dropbox/rcs_clear/catalogs/ma17.cat') wang_cat = np.loadtxt('/Users/rsimons/Dropbox/rcs_clear/catalogs/wang17.cat') wang18_cat = np.loadtxt('/Users/rsimons/Dropbox/rcs_clear/catalogs/wang18.cat') jones_cat = np.loadtxt('/Users/rsimons/Dropbox/rcs_clear/catalogs/jones+13.cat') swinbank_cat = np.loadtxt('/Users/rsimons/Dropbox/rcs_clear/catalogs/swinbank12.cat') #GN1_physcat = np.loadtxt('/Users/rsimons/Desktop/clear/Catalogs/GN1_physcat.cat') #GN2_physcat = np.loadtxt('/Users/rsimons/Desktop/clear/Catalogs/GN2_physcat.cat') #GN3_physcat = np.loadtxt('/Users/rsimons/Desktop/clear/Catalogs/GN3_physcat.cat') #gs_fout = fits.open('/Users/rsimons/Desktop/clear/Catalogs/goodss_3dhst.v4.4.fout.FITS') #gn_fout = fits.open('/Users/rsimons/Desktop/clear/Catalogs/goodsn_3dhst.v4.4.fout.FITS') #gn_cat = fits.open('/Users/rsimons/Desktop/clear/Catalogs/goodsn_3dhst.v4.4.cats/Catalog/goodsn_3dhst.v4.4.cat.FITS') #gs_cat = fits.open('/Users/rsimons/Desktop/clear/Catalogs/goodss_3dhst.v4.4.cats/Catalog/goodss_3dhst.v4.4.cat.FITS') count_all = 0 count_flat = 0 count_falling = 0 count_rising = 0 if False: gn_cat = fits.open('/Users/rsimons/Desktop/clear/Catalogs/goodsn_3dhst.v4.4.zout.fits') gs_cat = fits.open('/Users/rsimons/Desktop/clear/Catalogs/goodss_3dhst.v4.4.zout.fits') x_gds = ascii.read('/Users/rsimons/Desktop/clear/Catalogs/clear_gdsxray.dat') x_gdn = ascii.read('/Users/rsimons/Desktop/clear/Catalogs/clear_gdnxray.dat') gf_gds = ascii.read('/Users/rsimons/Desktop/clear/Catalogs/allfields/goodss/goodss_3dhst.v4.1_f160w.galfit') gf_gdn = ascii.read('/Users/rsimons/Desktop/clear/Catalogs/allfields/goodsn/goodsn_3dhst.v4.1_f160w.galfit') re_arr = [] ms_arr = [] fit_types = array(['', '_S', '_EC', '_S_EC']) if True: for ft, fit_type in enumerate(fit_types): with PdfPages('/Users/rsimons/Desktop/clear/figures/izi_z_radius%s.pdf'%fit_type) as pdf: ms = 5 fig, ax = plt.subplots(1,1, figsize = (9, 4)) if False: ax.errorbar(wang_cat[:,5], wang_cat[:,3], yerr =wang_cat[:,4], fmt = 'o', ms = ms,color = 'blue', label = 'Wang+ 17', zorder = 1) ax.errorbar(wang18_cat[:,3], wang18_cat[:,1], yerr =wang18_cat[:,2], fmt = 'o', ms = ms,color = 'darkblue', label = 'Wang+ 18', zorder = 1) ax.errorbar(jones_cat[:,0], jones_cat[:,1], yerr =jones_cat[:,2], fmt = 'o', ms = ms,color = 'skyblue', label = 'Jones+ 13', zorder = 1) ax.errorbar(swinbank_cat[:,0], swinbank_cat[:,1], yerr =swinbank_cat[:,2], ms = ms,fmt = 'o', color = 'darkgreen', label = 'Swinbank+ 12', zorder = 1) ax.errorbar(log10(ma_cat[:,1]), ma_cat[:,7], yerr =ma_cat[:,8], fmt = 's', ms = ms,markeredgecolor = 'black', markerfacecolor = "None", color = 'black', label = 'Ma+ 17; simulations', zorder = 1) wuyts_x = linspace(10.0, 11.5, 100) wuyts_y = -0.017*(wuyts_x - 10) + 0.0 ax.errorbar(-99, -1, yerr = 1., fmt = mrker, color = 'red', markeredgecolor = 'black', ms = 6, alpha = 1.0, label = 'Simons+ in prep') ax.plot(wuyts_x, wuyts_y, '--', linewidth = 3, color = 'midnightblue', label = 'Wuyts+ 16', zorder = 1) ax.axhline(y = 0, linestyle = '-', color = 'grey', alpha = 0.4, linewidth = 2, zorder = 0) to_pl = [] for fl in fls: fld = fl.split('/')[-1].split('_')[0] di = fl.split('/')[-1].split('_')[1] if 'N' in fld: ct = gn_cat xcat = x_gdn gcat = gf_gdn elif 'S' in fld: ct = gs_cat xcat = x_gds gcat = gf_gds match_cat = where(int(di) == ct[1].data['id'])[0][0] match_xcat = where(int(di) == xcat['ID'])[0] match_gcat = where(int(di) == gcat['NUMBER'])[0] if len(match_xcat) > 0: match_xcat = match_xcat[0] xclass = xcat['Xclass'][match_xcat] ra_c = ct[1].data['ra'][match_cat] dec_c = ct[1].data['dec'][match_cat] z = ct[1].data['z500'][match_cat] re = gcat['re'][match_cat] re_kpc = re/cosmo.arcsec_per_kpc_proper(z).value mrker = 'o' mstar = np.log10(ct[1].data['mass'][match_cat]) ft = np.load(fl, allow_pickle = True)[()] if xclass != 'AGN': kpc_per_pix = 0.1 / cosmo.arcsec_per_kpc_proper(z).value try: crit1 = ft['p%s'%fit_type][0]/kpc_per_pix + 2*max(float(sqrt(ft['V%s'%fit_type][0,0])/kpc_per_pix), 0.03) < 0.0 crit2 = ft['p%s'%fit_type][0]/kpc_per_pix - 2*max(float(sqrt(ft['V%s'%fit_type][0,0])/kpc_per_pix), 0.03) > 0.0 if crit1 | crit2: pass else: count_flat+=1 alp = 1.0 if False: if crit1: count_falling+=1 alp = 1.0 if False: if crit2: count_rising+=1 alp = 1.0 ax.errorbar(mstar, float(ft['p%s'%fit_type][0]/kpc_per_pix), yerr = float(sqrt(ft['V%s'%fit_type][0,0])/kpc_per_pix), fmt = mrker, color = 'red', markeredgecolor = 'black', ms = 5, alpha = alp) #ax.errorbar(mstar, float(ft['p_S_EC'][0]/kpc_per_pix*re_kpc), yerr = 0., fmt = mrker, color = 'red', markeredgecolor = 'black', ms = 5, alpha = alp) re_arr.append(ft['p%s'%fit_type][0]/kpc_per_pix*re_kpc) ms_arr.append(mstar) count_all+=1 except: pass #ax.errorbar(-99, -1, yerr = 0.01, fmt = 's', color = 'red', fillstyle = 'none', markeredgecolor = 'red', label = 'CLEAR, (N = 112)', zorder = 10) #ax.errorbar(9.25, 0.0246, xerr = 0.25, yerr = 0.003, fmt = 'o', color = 'red', markeredgecolor = 'black', ms = 10, label = 'CLEAR, STACK', zorder = 10) #ax.errorbar(9.75, 0.0163, xerr = 0.25, yerr = 0.003, fmt = 'o', color = 'red', markeredgecolor = 'black', ms = 10, zorder = 10) #ax.errorbar(10.25, 0.0121, xerr = 0.25, yerr = 0.004, fmt = 'o', color = 'red', markeredgecolor = 'black', ms = 10, zorder = 10) #ax.errorbar(10.75, 0.0055, xerr = 0.25, yerr = 0.008, fmt = 'o', color = 'red', markeredgecolor = 'black', ms = 10, zorder = 10) ax.annotate(r'$0.7 < z < 2.0$', (0.55, 0.85), xycoords = 'axes fraction', fontsize = 25, fontweight = 'bold') ax.set_xlabel(r'$\log$ M$_{*}$ (M$_{\odot}$)', fontsize = 20) ax.set_ylabel(r'$\frac{\Delta \log(O/H)}{\Delta R}$ (dex kpc$^{-1}$)', rotation = 90, fontsize = 20) ax.legend(bbox_to_anchor=(1.0, 1.05), frameon = False, fontsize = 18) ax.set_ylim(-0.33, 0.5) ax.set_xlim(8.2, 11.5) fig.subplots_adjust(bottom = 0.20, left = 0.15, right = 0.65, top = 0.95) pdf.savefig() res = np.load('test.npy', allow_pickle = True)[()] re_arr = res['re_arr'] ms_arr = res['mstar'] if False: with PdfPages('/Users/rsimons/Desktop/clear/figures/izi_z_effradius.pdf') as pdf: ms = 5 fig, ax = plt.subplots(1,1, figsize = (9, 4)) ax.axhline(y = 0, linestyle = '-', color = 'grey', alpha = 0.4, linewidth = 2, zorder = 0) bins = np.arange(9, 10.50, 0.25) for b, bn in enumerate(bins): gd = where((ms_arr > bn) & (ms_arr < bn+0.25) & (abs(re_arr) < 0.5))[0] re_bin = re_arr[gd] med = np.median(re_bin) d = np.abs(re_bin - med) mdev = np.median(d) mean_mstar = bn + 0.25/2. mrker = 'D' alp = 1.0 med = np.mean(re_bin) #mdev = np.std(re_bin)/np.sqrt(len(re_bin)) print (med) ax.errorbar(mean_mstar, med, yerr = mdev, fmt = mrker, color = 'red', markeredgecolor = 'black', ms = 10., alpha = alp) #eyeballed from figure 11 belfiore_re = np.array([0.020, -0.04, -0.045, -0.08, -0.13, -0.14]) belfiore_ere = np.array([0.022, 0.01, 0.05, 0.05, 0.02, 0.02]) belfiore_mass = np.arange(9, 10.5, 0.25) ax.errorbar(belfiore_mass, belfiore_re, yerr = belfiore_ere, fmt = mrker, color = 'black', markeredgecolor = 'black', ms = 10., alpha = alp) #ax.annotate(r'$0.7 < z < 2.0$', (0.55, 0.85), xycoords = 'axes fraction', fontsize = 25, fontweight = 'bold') ax.set_xlabel(r'$\log$ M$_{*}$ (M$_{\odot}$)', fontsize = 20) ax.set_ylabel(r'$\frac{\Delta \log(O/H)}{\Delta R}$ (dex R$_{\text{eff}}$$^{-1}$)', rotation = 90, fontsize = 20) ax.legend(bbox_to_anchor=(1.0, 1.05), frameon = False, fontsize = 18) ax.set_ylim(-0.2, 0.15) ax.set_xlim(8.7, 10.8) ax.set_xticks(arange(9, 11, 0.5)) ax.set_yticks(arange(-0.2, 0.2, 0.1)) fig.subplots_adjust(bottom = 0.20, left = 0.15, right = 0.65, top = 0.95) pdf.savefig() if False: with PdfPages('/Users/rsimons/Dropbox/rcs_clear/z_radius_plots/mstar_sfr.pdf') as pdf: fig, ax = plt.subplots(1,1, figsize = (6.5, 3)) for c in cat: fld = c[0] if fld == 'GN1': physcat = GN1_physcat if fld == 'GN2': physcat = GN2_physcat if fld == 'GN3': physcat = GN3_physcat #mstar = physcat[where(physcat[:,0] == int(c[1]))[0][0],1] mstar = float(c[-5]) print (mstar) sfr = float(c[4]) ax.plot(mstar, sfr, color = 'red', marker = 'o', zorder = 10, markeredgecolor = 'black', markersize = 10) #ax.plot(-99, -99, color = 'red', marker = 'o', zorder = 10, markeredgecolor = 'black', label = 'CLEAR G102\n+ archival G141\n(2 of 10 pointings)') whitaker_all = np.loadtxt('/Users/rsimons/Downloads/goodsn_3dhst_v4.1.5_catalogs/goodsn_3dhst.v4.1.5.zbest.sfr') fast_all = fits.open('/Users/rsimons/Desktop/clear/Catalogs/goodsn_3dhst.v4.1.cats/Fast/goodsn_3dhst.v4.1.fout.FITS') whit = [] for i in arange(len(whitaker_all)): good = where(fast_all[1].data['id'] == whitaker_all[i,0])[0][0] whit.append([fast_all[1].data['lmass'][good], whitaker_all[i,1], fast_all[1].data['z'][good]]) whit_sfr = array([[8.8 , -0.03, 0.13], [9.1 , 0.17, 0.08], [9.3 , 0.38, 0.05], [9.5 , 0.64, 0.02], [9.7 , 0.81, 0.02], [9.9 , 1.02, 0.03], [10.1, 1.18, 0.04], [10.3, 1.35, 0.04], [10.5, 1.47, 0.05], [10.7, 1.58, 0.05], [10.9, 1.69, 0.08], [11.1, 1.74, 0.13], [11.3, 1.81, 0.11]]) whit = array(whit) ax.errorbar(whit_sfr[:,0], 10**whit_sfr[:,1], yerr = 10.**whit_sfr[:,2], fmt = 'o', color = 'grey', zorder = 1, label = 'GDN (medians)') gz = where((whit[:,2] > 1.0) & (whit[:,2] < 1.5))[0] ax.plot(whit[gz,0], whit[gz,1], marker = '.', linewidth = 0., color = 'grey', markersize = 1, zorder = 0, alpha = 0.4, label = 'GDN (all)') M_whit = linspace(9, 12, 1000) sfr = -24 + 4.17*M_whit - 0.16*M_whit**2. ax.set_xlabel(r'$\log$ M$_{*}$ (M$_{\odot}$) [FAST]', fontsize = 15) ax.set_ylabel(r'SFR$_{UV+IR}$ (M$_{\odot}$ yr$^{-1}$)', rotation = 90, fontsize = 15) ax.legend(bbox_to_anchor=(1.0, 1.05), frameon = False) ax.set_xlim(8.0, 11.5) ax.set_ylim(0.1, 300) ax.set_yscale('log') ax.legend(bbox_to_anchor=(0.99, 0.95), frameon = False) fig.subplots_adjust(bottom = 0.20, left = 0.18, right = 0.70, top = 0.95) pdf.savefig()
c44e31915ea2575dc522eb49e10a41f4cfbe1772
308d75172c81bddb45c82429e4ddb3e09a3d220e
/01-OpencvPythonTutorial/ch22/06-hist-normalized.py
2040ee82d34de1984caff9ba18df6ac7a162de4c
[]
no_license
Damon0626/OpenCV3ForBeigner
956f2163249b5a3d1426089e3650695467a0427f
b3e8c5c201b6adabe067c9f2d1f614d93dcef447
refs/heads/master
2020-04-04T16:49:32.806739
2019-02-21T13:54:12
2019-02-21T13:54:12
156,095,139
1
1
null
null
null
null
UTF-8
Python
false
false
533
py
# -*-coding:utf-8-*- # @Author: Damon0626 # @Time : 18-12-16 下午11:25 # @Email : [email protected] # @Software: PyCharm import cv2 import numpy as np import matplotlib.pyplot as plt image = cv2.imread('contrast75.png') hist, bins = np.histogram(image.flatten(), 256, [0, 256]) cdf = hist.cumsum() # 累积分布 cdf_mormalized = cdf*hist.max()/cdf.max() plt.plot(cdf_mormalized, color='b') plt.hist(image.flatten(), 256, [0, 256], color='r') plt.xlim([0, 256]) plt.legend(['cdf', 'histogram'], loc='upper left') plt.show()
85e05e3c33ca86dc0280e5c8edbaa2ac143212c9
6930e9d3372e83cf43a47ae8ad165f83a218aee2
/capture/noworkflow/now/utils/bytecode/f_trace.py
93e8b89a211b8519aa8d55ca65e360e7e73c8d43
[ "MIT" ]
permissive
hugobowne/noworkflow
02ab47a8b3377ee56f1e7c4552a8dbcb3d15e5f0
333cbe274348428f1a9514fe81406f8416036845
refs/heads/master
2021-01-17T20:27:16.524245
2015-11-18T23:53:28
2015-11-18T23:53:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,164
py
# Copyright (c) 2015 Universidade Federal Fluminense (UFF) # Copyright (c) 2015 Polytechnic Institute of New York University. # This file is part of noWorkflow. # Please, consult the license terms in the LICENSE file. """ Define f_trace related interpreters and functions """ # pylint: disable=R0902 from __future__ import (absolute_import, print_function, division, unicode_literals) import sys from .code_interpreter import CodeInterpreter, PyInterpreter class AlmostReadOnlyDict(dict): """ Use it to avoid changes on the original dict """ def __init__(self, *args, **kwargs): super(AlmostReadOnlyDict, self).__init__(*args, **kwargs) self.other = {} def __getitem__(self, item): if item in self.other: return self.other[item] return super(AlmostReadOnlyDict, self).__getitem__(item) def __setitem__(self, item, value): self.other[item] = value def __delitem__(self, item): if item in self.other: del self.other[item] class FindFTrace(CodeInterpreter): """ Find <expr>.f_trace attribution """ def __init__(self, *args, **kwargs): # Disable operations that may cause effect # Default # self.store_fast = self.nop self.store_subscr = self.nop # self.store_name = self.nop self.store_global = self.nop # self.delete_fast = self.nop self.delete_subscr = self.nop # self.delete_name = self.nop self.delete_attr = self.nop self.delete_global = self.nop self.print_expr = self.nop # Python 2 self.store_slice__0 = self.nop self.store_slice__0 = self.nop self.store_slice__1 = self.nop self.store_slice__2 = self.nop self.store_slice__3 = self.nop self.delete_slice__0 = self.nop self.delete_slice__1 = self.nop self.delete_slice__2 = self.nop self.delete_slice__3 = self.nop super(FindFTrace, self).__init__(*args, **kwargs) self._locals = AlmostReadOnlyDict(self._locals) self._globals = AlmostReadOnlyDict(self._globals) def store_attr(self): """ STORE_ATTR opcode """ if self.names[self.oparg] == 'f_trace': self._stop = True self.result = self.stack.pop() if self.stack else True f_trace_name = u'FTraceExe' if sys.version_info >= (3, 0) else b'FTraceExe' FTraceExe = type(f_trace_name, (FindFTrace, PyInterpreter), {}) def get_f_trace(code, loc, glob): """ Get frame from frame.f_trace attribution """ interpreter = FTraceExe(code, loc, glob) interpreter.execute() return interpreter.result def find_f_trace(code, loc, glob, lasti): """ Check if code has frame.f_trace attribution """ if 'f_trace' not in code.co_names: return False interpreter = FindFTrace(code, loc, glob) interpreter.execute() if not interpreter.result: return False last_offset = 0 for offset in interpreter.linestarts: if offset >= interpreter.opi: return lasti == last_offset last_offset = offset return False
84272d0c64a8128d488da1959bb8af7afbd979c7
b580fd482147e54b1ca4f58b647fab016efa3855
/host_im/mount/malware-classification-master/samples/not/sample_good807.py
55e1c22bfa14474792c197d5bc8d4af90bf8e645
[]
no_license
Barnsa/Dissertation
1079c8d8d2c660253543452d4c32799b6081cfc5
b7df70abb3f38dfd446795a0a40cf5426e27130e
refs/heads/master
2022-05-28T12:35:28.406674
2020-05-05T08:37:16
2020-05-05T08:37:16
138,386,344
0
0
null
null
null
null
UTF-8
Python
false
false
410
py
import stringprep import difflib import math import array import textwrap import datetime import readline import random nterms = 618 n1, n2 = 0, 1 if nterms <= 0: print("Please provide a positive integer.") elif nterms == 1: print("Fibonacci sequence upto", nterms, ":") print(n1) else: print("Fibonacci sequence:") count = 0 while 618 > 0: print(n1) nth = n1 + n2 n1 = n2 n2 = nth count -= -1
7012967cb00baae4f581bb049013311b240da290
61bc53ec90d92aece91753ec5ec9d25e0879a1e2
/content/pythia/pythia/tasks/vqa/textvqa/dataset.py
c4bc2ee38892409d39789dc107a8a061951eb380
[ "BSD-3-Clause" ]
permissive
aluka1994/textvqa
08a16c9b21ea9c5eca05f5d4d1763c190d2d7275
694cb2be08def519ba73be78e34664afa2c607b5
refs/heads/master
2021-05-26T23:44:21.973827
2020-04-08T22:05:58
2020-04-08T22:05:58
254,190,630
0
0
MIT
2020-04-08T20:14:11
2020-04-08T20:14:10
null
UTF-8
Python
false
false
1,047
py
# Copyright (c) Facebook, Inc. and its affiliates. from pythia.tasks.vqa.vizwiz import VizWizDataset from pythia.utils.text_utils import word_tokenize class TextVQADataset(VizWizDataset): def __init__(self, dataset_type, imdb_file_index, config, *args, **kwargs): super().__init__(dataset_type, imdb_file_index, config, *args, **kwargs) self._name = "textvqa" def format_for_evalai(self, report): answers = report.scores.argmax(dim=1) predictions = [] answer_space_size = self.answer_processor.get_true_vocab_size() for idx, question_id in enumerate(report.question_id): answer_id = answers[idx].item() if answer_id >= answer_space_size: answer_id -= answer_space_size answer = word_tokenize(report.context_tokens[idx][answer_id]) else: answer = self.answer_processor.idx2word(answer_id) predictions.append({"question_id": question_id.item(), "answer": answer}) return predictions
a355eeec111864ef7af555c51e8460f11f29c365
0581988cad7e0ea62a638d551548e409af1e5dc1
/20200529/UI_PPT2PDF/myUI_ppt2pdf.py
cc3732bbc0196e33f92063a50d906881b836f73f
[]
no_license
Aimee888/python-20200513
7c1dff7d7f0fdea08e12735efeb2e889fedeee10
578c388be5582dc7f1556f95168adf0399b7ea1f
refs/heads/master
2023-01-06T10:21:35.014780
2020-11-03T01:07:04
2020-11-03T01:07:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
801
py
#!/usr/bin/env python # _*_ coding: UTF-8 _*_ """================================================= @Project -> File : six-dialog_design -> myUI_ppt2pdf.py @IDE : PyCharm @Author : Aimee @Date : 2020/5/29 17:11 @Desc : =================================================""" import sys from PyQt5.QtWidgets import QApplication, QMainWindow from PyQt5.QtGui import QPainter, QPixmap from ui_ppt2pdf import Ui_MainWindow class QmyMainWindow(QMainWindow): def __init__(self, parent=None): super().__init__(parent) # 调用父类构造函数 self.ui = Ui_MainWindow() # 创建UI对象 self.ui.setupUi(self) # 构造UI if __name__ == '__main__': app = QApplication(sys.argv) # 创建app form = QmyMainWindow() form.show() sys.exit(app.exec_())
673df8917fcffa493359510bf3037a32df3e67b3
70bc77336e4544031ad7d7d29a2e964ef2626076
/ui/RepositoryTreeObject.py
981473acc6c301a58ddafa660cc03bbf33b220b2
[]
no_license
DronMDF/vanadis
9af7a8c9281bf0eb17df593f5c9fc9345e474612
de692207bbd127c5a9952e3144653492a0ba969f
refs/heads/master
2020-04-17T08:11:18.411429
2016-12-21T20:50:05
2016-12-21T20:50:05
66,539,179
1
0
null
2016-12-21T20:50:06
2016-08-25T08:20:03
Python
UTF-8
Python
false
false
532
py
from pathlib import Path from ui import RepositoryId class RepositoryTreeObject: ''' This is a tree object (blob or tree) ''' def __init__(self, entry, prefix, repo=None): self.entry = entry self.prefix = prefix self.repo = repo def id(self): return RepositoryId(self.entry.id) def path(self): return str(Path(self.prefix, self.entry.name)) def name(self): return self.entry.name def is_dir(self): return self.entry.type == 'tree' def content(self): return self.repo[self.entry.id].data.decode('utf8')
8be2f70f024036be4e4f7cc27126fd302cb87bd6
a4fd9f5d765351fb771455db18290e48affc3747
/password_generator/migrations/0001_initial.py
6cba7dcf9ebd26fb59d017987760ec2b182b24db
[ "MIT" ]
permissive
rwgeaston/django-password-generator
a7aa9627c721b8a0f5ba66149d681c333f79da59
62607905bafc111802c61223a1c3c34aa927c9fc
refs/heads/master
2020-03-28T18:50:35.512795
2018-09-15T22:03:23
2018-09-15T22:03:23
148,917,872
0
0
null
null
null
null
UTF-8
Python
false
false
1,189
py
# Generated by Django 2.0.6 on 2018-09-15 15:00 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Word', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('word', models.CharField(max_length=15)), ('word_length', models.IntegerField(db_index=True)), ('count', models.IntegerField(db_index=True, default=0)), ], ), migrations.CreateModel( name='Wordset', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=30, unique=True)), ], ), migrations.AddField( model_name='word', name='wordset', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='words', to='password_generator.Wordset'), ), ]
0a87c613070041cd6ca47ab39268421df5ed335a
f06680ed95c01f50f0b484ffa81a5baea022282d
/data/parse_wiki.py
80f18cd87ef5eb7edc85c99419d97b5428901daf
[ "MIT" ]
permissive
mohit1997/DeepZip
d3980935517b311b06d39a429546de9f024a73e5
8c35502397a1488c89fa282ed033cc9d5fd4b4dc
refs/heads/master
2022-03-16T02:17:55.479656
2022-03-04T22:09:48
2022-03-04T22:09:48
141,168,415
126
28
null
2019-04-23T23:42:20
2018-07-16T17:03:11
Python
UTF-8
Python
false
false
1,190
py
import io import sys import numpy as np import json import argparse parser = argparse.ArgumentParser(description='Input') parser.add_argument('-param_file', action='store', dest='param_file', help='param file file', default='params.json') parser.add_argument('-input', action='store', dest='input_file_path', help='input file path', default='enwik8') parser.add_argument('-output', action='store',dest='output_file_path', help='output file path', default='npwik8') args = parser.parse_args() f = io.open(args.input_file_path, mode="r", encoding="utf-8") data = f.read() print(len(data)) vals = list(set(data)) char2id_dict = {c: i for (i,c) in enumerate(vals)} id2char_dict = {i: c for (i,c) in enumerate(vals)} params = {'char2id_dict':char2id_dict, 'id2char_dict':id2char_dict} with open(args.param_file, 'w') as f: json.dump(params, f, indent=4) print(char2id_dict) print(id2char_dict) out = [char2id_dict[c] for c in data] integer_encoded = np.array(out) integer_encoded = integer_encoded.reshape(len(integer_encoded), 1) print(integer_encoded[:10]) print(data[:10]) np.save(args.output_file_path, integer_encoded)
bd88a28726322d9e402e7e14401d7b7c2c0e8786
109ac2891c5af60cc0a5c9e988048315314014b3
/Data Structure ZJU/printN2.py
719f3203bd1e631382a9a080b659424415e69ebe
[]
no_license
francislinking/PTA-codes
485c6019a458fa1705dde6f84a69b33c0bd7de81
fea40800c6813300fe56f8b14f159d971b745a6b
refs/heads/master
2021-07-10T14:50:16.643802
2021-05-02T02:16:35
2021-05-02T02:16:35
244,085,168
0
0
null
null
null
null
UTF-8
Python
false
false
224
py
# -*- coding: utf-8 -*- """ Created on Fri Feb 21 18:48:24 2020 @author: Deng Jie """ def printN( N ): if N == 1: print(1) else: printN( N-1 ) print(N) n = eval(input()) printN(n)
fd3e9d3a74cc896ead349afb4520114128eef17e
fa81f1c5039da7554277a87d334cbee675e91995
/yelp/migrations/0002_userreview.py
7f9ee9895e7e1142e55b6537075c7be7a23e96e6
[]
no_license
hldai/labelel
b5eaaac5cef73ccf6941ffed474e8b544c76a944
87c36972d1d7f4c1b146c185bcdee5207c030b8d
refs/heads/master
2020-12-30T13:39:45.673434
2017-07-09T06:20:32
2017-07-09T06:20:32
91,239,809
0
0
null
null
null
null
UTF-8
Python
false
false
636
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.7 on 2017-05-17 08:28 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('yelp', '0001_initial'), ] operations = [ migrations.CreateModel( name='UserReview', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('username', models.CharField(max_length=64)), ('review_id', models.CharField(max_length=64)), ], ), ]
b49482817895ed4364111760e2e669ad95ba46db
999879f8d18e041d7fa313132408b252aded47f8
/01-codes/scipy-master/scipy/cluster/tests/test_hierarchy.py
84de6b3e57d6f535499c88e97ebd502ab81d922a
[ "MIT" ]
permissive
QPanProjects/Surrogate-Model
ebcaf05728e82dcbcd924c2edca1b490ab085173
848c7128201218b0819c9665e2cec72e3b1d29ac
refs/heads/master
2022-10-11T19:03:55.224257
2020-06-09T14:37:35
2020-06-09T14:37:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
40,971
py
#! /usr/bin/env python # # Author: Damian Eads # Date: April 17, 2008 # # Copyright (C) 2008 Damian Eads # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other 00-courses provided # with the distribution. # # 3. The name of the author may not be used to endorse or promote # products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS # OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE # GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from __future__ import division, print_function, absolute_import import hierarchy_test_data import numpy as np import scipy.cluster.hierarchy from numpy.testing import (TestCase, run_module_suite, dec, assert_raises, assert_allclose, assert_equal, assert_, assert_warns) from scipy._lib.six import xrange, u from scipy.cluster._hierarchy import Heap from scipy.cluster.hierarchy import ( ClusterWarning, linkage, from_mlab_linkage, to_mlab_linkage, num_obs_linkage, inconsistent, cophenet, fclusterdata, fcluster, is_isomorphic, single, leaders, correspond, is_monotonic, maxdists, maxinconsts, maxRstat, is_valid_linkage, is_valid_im, to_tree, leaves_list, dendrogram, set_link_color_palette, cut_tree, _order_cluster_tree, _hierarchy, _LINKAGE_METHODS) from scipy.spatial.distance import pdist # Matplotlib is not a scipy dependency but is optionally used in dendrogram, so # check if it's available try: import matplotlib # and set the backend to be Agg (no gui) matplotlib.use('Agg') # before importing pyplot import matplotlib.pyplot as plt have_matplotlib = True except: have_matplotlib = False class TestLinkage(object): def test_linkage_non_finite_elements_in_distance_matrix(self): # Tests linkage(Y) where Y contains a non-finite element (e.g. NaN or Inf). # Exception expected. y = np.zeros((6,)) y[0] = np.nan assert_raises(ValueError, linkage, y) def test_linkage_empty_distance_matrix(self): # Tests linkage(Y) where Y is a 0x4 linkage matrix. Exception expected. y = np.zeros((0,)) assert_raises(ValueError, linkage, y) def test_linkage_tdist(self): for method in ['single', 'complete', 'average', 'weighted', u('single')]: yield self.check_linkage_tdist, method def check_linkage_tdist(self, method): # Tests linkage(Y, method) on the tdist data set. Z = linkage(hierarchy_test_data.ytdist, method) expectedZ = getattr(hierarchy_test_data, 'linkage_ytdist_' + method) assert_allclose(Z, expectedZ, atol=1e-10) def test_linkage_X(self): for method in ['centroid', 'median', 'ward']: yield self.check_linkage_q, method def check_linkage_q(self, method): # Tests linkage(Y, method) on the Q data set. Z = linkage(hierarchy_test_data.X, method) expectedZ = getattr(hierarchy_test_data, 'linkage_X_' + method) assert_allclose(Z, expectedZ, atol=1e-06) y = scipy.spatial.distance.pdist(hierarchy_test_data.X, metric="euclidean") Z = linkage(y, method) assert_allclose(Z, expectedZ, atol=1e-06) def test_compare_with_trivial(self): rng = np.random.RandomState(0) n = 20 X = rng.rand(n, 2) d = pdist(X) for method, code in _LINKAGE_METHODS.items(): Z_trivial = _hierarchy.linkage(d, n, code) Z = linkage(d, method) assert_allclose(Z_trivial, Z, rtol=1e-14, atol=1e-15) class TestLinkageTies(object): _expectations = { 'single': np.array([[0, 1, 1.41421356, 2], [2, 3, 1.41421356, 3]]), 'complete': np.array([[0, 1, 1.41421356, 2], [2, 3, 2.82842712, 3]]), 'average': np.array([[0, 1, 1.41421356, 2], [2, 3, 2.12132034, 3]]), 'weighted': np.array([[0, 1, 1.41421356, 2], [2, 3, 2.12132034, 3]]), 'centroid': np.array([[0, 1, 1.41421356, 2], [2, 3, 2.12132034, 3]]), 'median': np.array([[0, 1, 1.41421356, 2], [2, 3, 2.12132034, 3]]), 'ward': np.array([[0, 1, 1.41421356, 2], [2, 3, 2.44948974, 3]]), } def test_linkage_ties(self): for method in ['single', 'complete', 'average', 'weighted', 'centroid', 'median', 'ward']: yield self.check_linkage_ties, method def check_linkage_ties(self, method): X = np.array([[-1, -1], [0, 0], [1, 1]]) Z = linkage(X, method=method) expectedZ = self._expectations[method] assert_allclose(Z, expectedZ, atol=1e-06) class TestInconsistent(object): def test_inconsistent_tdist(self): for depth in hierarchy_test_data.inconsistent_ytdist: yield self.check_inconsistent_tdist, depth def check_inconsistent_tdist(self, depth): Z = hierarchy_test_data.linkage_ytdist_single assert_allclose(inconsistent(Z, depth), hierarchy_test_data.inconsistent_ytdist[depth]) class TestCopheneticDistance(object): def test_linkage_cophenet_tdist_Z(self): # Tests cophenet(Z) on tdist data set. expectedM = np.array([268, 295, 255, 255, 295, 295, 268, 268, 295, 295, 295, 138, 219, 295, 295]) Z = hierarchy_test_data.linkage_ytdist_single M = cophenet(Z) assert_allclose(M, expectedM, atol=1e-10) def test_linkage_cophenet_tdist_Z_Y(self): # Tests cophenet(Z, Y) on tdist data set. Z = hierarchy_test_data.linkage_ytdist_single (c, M) = cophenet(Z, hierarchy_test_data.ytdist) expectedM = np.array([268, 295, 255, 255, 295, 295, 268, 268, 295, 295, 295, 138, 219, 295, 295]) expectedc = 0.639931296433393415057366837573 assert_allclose(c, expectedc, atol=1e-10) assert_allclose(M, expectedM, atol=1e-10) class TestMLabLinkageConversion(object): def test_mlab_linkage_conversion_empty(self): # Tests from/to_mlab_linkage on empty linkage array. X = np.asarray([]) assert_equal(from_mlab_linkage([]), X) assert_equal(to_mlab_linkage([]), X) def test_mlab_linkage_conversion_single_row(self): # Tests from/to_mlab_linkage on linkage array with single row. Z = np.asarray([[0., 1., 3., 2.]]) Zm = [[1, 2, 3]] assert_equal(from_mlab_linkage(Zm), Z) assert_equal(to_mlab_linkage(Z), Zm) def test_mlab_linkage_conversion_multiple_rows(self): # Tests from/to_mlab_linkage on linkage array with multiple rows. Zm = np.asarray([[3, 6, 138], [4, 5, 219], [1, 8, 255], [2, 9, 268], [7, 10, 295]]) Z = np.array([[2., 5., 138., 2.], [3., 4., 219., 2.], [0., 7., 255., 3.], [1., 8., 268., 4.], [6., 9., 295., 6.]], dtype=np.double) assert_equal(from_mlab_linkage(Zm), Z) assert_equal(to_mlab_linkage(Z), Zm) class TestFcluster(object): def test_fclusterdata(self): for t in hierarchy_test_data.fcluster_inconsistent: yield self.check_fclusterdata, t, 'inconsistent' for t in hierarchy_test_data.fcluster_distance: yield self.check_fclusterdata, t, 'distance' for t in hierarchy_test_data.fcluster_maxclust: yield self.check_fclusterdata, t, 'maxclust' def check_fclusterdata(self, t, criterion): # Tests fclusterdata(X, criterion=criterion, t=t) on a random 3-cluster data set. expectedT = getattr(hierarchy_test_data, 'fcluster_' + criterion)[t] X = hierarchy_test_data.Q_X T = fclusterdata(X, criterion=criterion, t=t) assert_(is_isomorphic(T, expectedT)) def test_fcluster(self): for t in hierarchy_test_data.fcluster_inconsistent: yield self.check_fcluster, t, 'inconsistent' for t in hierarchy_test_data.fcluster_distance: yield self.check_fcluster, t, 'distance' for t in hierarchy_test_data.fcluster_maxclust: yield self.check_fcluster, t, 'maxclust' def check_fcluster(self, t, criterion): # Tests fcluster(Z, criterion=criterion, t=t) on a random 3-cluster data set. expectedT = getattr(hierarchy_test_data, 'fcluster_' + criterion)[t] Z = single(hierarchy_test_data.Q_X) T = fcluster(Z, criterion=criterion, t=t) assert_(is_isomorphic(T, expectedT)) def test_fcluster_monocrit(self): for t in hierarchy_test_data.fcluster_distance: yield self.check_fcluster_monocrit, t for t in hierarchy_test_data.fcluster_maxclust: yield self.check_fcluster_maxclust_monocrit, t def check_fcluster_monocrit(self, t): expectedT = hierarchy_test_data.fcluster_distance[t] Z = single(hierarchy_test_data.Q_X) T = fcluster(Z, t, criterion='monocrit', monocrit=maxdists(Z)) assert_(is_isomorphic(T, expectedT)) def check_fcluster_maxclust_monocrit(self, t): expectedT = hierarchy_test_data.fcluster_maxclust[t] Z = single(hierarchy_test_data.Q_X) T = fcluster(Z, t, criterion='maxclust_monocrit', monocrit=maxdists(Z)) assert_(is_isomorphic(T, expectedT)) class TestLeaders(object): def test_leaders_single(self): # Tests leaders using a flat clustering generated by single linkage. X = hierarchy_test_data.Q_X Y = pdist(X) Z = linkage(Y) T = fcluster(Z, criterion='maxclust', t=3) Lright = (np.array([53, 55, 56]), np.array([2, 3, 1])) L = leaders(Z, T) assert_equal(L, Lright) class TestIsIsomorphic(object): def test_is_isomorphic_1(self): # Tests is_isomorphic on test case #1 (one flat cluster, different labellings) a = [1, 1, 1] b = [2, 2, 2] assert_(is_isomorphic(a, b)) assert_(is_isomorphic(b, a)) def test_is_isomorphic_2(self): # Tests is_isomorphic on test case #2 (two flat clusters, different labelings) a = [1, 7, 1] b = [2, 3, 2] assert_(is_isomorphic(a, b)) assert_(is_isomorphic(b, a)) def test_is_isomorphic_3(self): # Tests is_isomorphic on test case #3 (no flat clusters) a = [] b = [] assert_(is_isomorphic(a, b)) def test_is_isomorphic_4A(self): # Tests is_isomorphic on test case #4A (3 flat clusters, different labelings, isomorphic) a = [1, 2, 3] b = [1, 3, 2] assert_(is_isomorphic(a, b)) assert_(is_isomorphic(b, a)) def test_is_isomorphic_4B(self): # Tests is_isomorphic on test case #4B (3 flat clusters, different labelings, nonisomorphic) a = [1, 2, 3, 3] b = [1, 3, 2, 3] assert_(is_isomorphic(a, b) == False) assert_(is_isomorphic(b, a) == False) def test_is_isomorphic_4C(self): # Tests is_isomorphic on test case #4C (3 flat clusters, different labelings, isomorphic) a = [7, 2, 3] b = [6, 3, 2] assert_(is_isomorphic(a, b)) assert_(is_isomorphic(b, a)) def test_is_isomorphic_5(self): # Tests is_isomorphic on test case #5 (1000 observations, 2/3/5 random # clusters, random permutation of the labeling). for nc in [2, 3, 5]: yield self.help_is_isomorphic_randperm, 1000, nc def test_is_isomorphic_6(self): # Tests is_isomorphic on test case #5A (1000 observations, 2/3/5 random # clusters, random permutation of the labeling, slightly # nonisomorphic.) for nc in [2, 3, 5]: yield self.help_is_isomorphic_randperm, 1000, nc, True, 5 def test_is_isomorphic_7(self): # Regression test for gh-6271 assert_(not is_isomorphic([1, 2, 3], [1, 1, 1])) def help_is_isomorphic_randperm(self, nobs, nclusters, noniso=False, nerrors=0): for k in range(3): a = np.int_(np.random.rand(nobs) * nclusters) b = np.zeros(a.size, dtype=np.int_) P = np.random.permutation(nclusters) for i in xrange(0, a.shape[0]): b[i] = P[a[i]] if noniso: Q = np.random.permutation(nobs) b[Q[0:nerrors]] += 1 b[Q[0:nerrors]] %= nclusters assert_(is_isomorphic(a, b) == (not noniso)) assert_(is_isomorphic(b, a) == (not noniso)) class TestIsValidLinkage(object): def test_is_valid_linkage_various_size(self): for nrow, ncol, valid in [(2, 5, False), (2, 3, False), (1, 4, True), (2, 4, True)]: yield self.check_is_valid_linkage_various_size, nrow, ncol, valid def check_is_valid_linkage_various_size(self, nrow, ncol, valid): # Tests is_valid_linkage(Z) with linkage matrics of various sizes Z = np.asarray([[0, 1, 3.0, 2, 5], [3, 2, 4.0, 3, 3]], dtype=np.double) Z = Z[:nrow, :ncol] assert_(is_valid_linkage(Z) == valid) if not valid: assert_raises(ValueError, is_valid_linkage, Z, throw=True) def test_is_valid_linkage_int_type(self): # Tests is_valid_linkage(Z) with integer type. Z = np.asarray([[0, 1, 3.0, 2], [3, 2, 4.0, 3]], dtype=int) assert_(is_valid_linkage(Z) == False) assert_raises(TypeError, is_valid_linkage, Z, throw=True) def test_is_valid_linkage_empty(self): # Tests is_valid_linkage(Z) with empty linkage. Z = np.zeros((0, 4), dtype=np.double) assert_(is_valid_linkage(Z) == False) assert_raises(ValueError, is_valid_linkage, Z, throw=True) def test_is_valid_linkage_4_and_up(self): # Tests is_valid_linkage(Z) on linkage on observation sets between # sizes 4 and 15 (step size 3). for i in xrange(4, 15, 3): y = np.random.rand(i * (i - 1) // 2) Z = linkage(y) assert_(is_valid_linkage(Z) == True) def test_is_valid_linkage_4_and_up_neg_index_left(self): # Tests is_valid_linkage(Z) on linkage on observation sets between # sizes 4 and 15 (step size 3) with negative indices (left). for i in xrange(4, 15, 3): y = np.random.rand(i * (i - 1) // 2) Z = linkage(y) Z[i // 2, 0] = -2 assert_(is_valid_linkage(Z) == False) assert_raises(ValueError, is_valid_linkage, Z, throw=True) def test_is_valid_linkage_4_and_up_neg_index_right(self): # Tests is_valid_linkage(Z) on linkage on observation sets between # sizes 4 and 15 (step size 3) with negative indices (right). for i in xrange(4, 15, 3): y = np.random.rand(i * (i - 1) // 2) Z = linkage(y) Z[i // 2, 1] = -2 assert_(is_valid_linkage(Z) == False) assert_raises(ValueError, is_valid_linkage, Z, throw=True) def test_is_valid_linkage_4_and_up_neg_dist(self): # Tests is_valid_linkage(Z) on linkage on observation sets between # sizes 4 and 15 (step size 3) with negative distances. for i in xrange(4, 15, 3): y = np.random.rand(i * (i - 1) // 2) Z = linkage(y) Z[i // 2, 2] = -0.5 assert_(is_valid_linkage(Z) == False) assert_raises(ValueError, is_valid_linkage, Z, throw=True) def test_is_valid_linkage_4_and_up_neg_counts(self): # Tests is_valid_linkage(Z) on linkage on observation sets between # sizes 4 and 15 (step size 3) with negative counts. for i in xrange(4, 15, 3): y = np.random.rand(i * (i - 1) // 2) Z = linkage(y) Z[i // 2, 3] = -2 assert_(is_valid_linkage(Z) == False) assert_raises(ValueError, is_valid_linkage, Z, throw=True) class TestIsValidInconsistent(object): def test_is_valid_im_int_type(self): # Tests is_valid_im(R) with integer type. R = np.asarray([[0, 1, 3.0, 2], [3, 2, 4.0, 3]], dtype=int) assert_(is_valid_im(R) == False) assert_raises(TypeError, is_valid_im, R, throw=True) def test_is_valid_im_various_size(self): for nrow, ncol, valid in [(2, 5, False), (2, 3, False), (1, 4, True), (2, 4, True)]: yield self.check_is_valid_im_various_size, nrow, ncol, valid def check_is_valid_im_various_size(self, nrow, ncol, valid): # Tests is_valid_im(R) with linkage matrics of various sizes R = np.asarray([[0, 1, 3.0, 2, 5], [3, 2, 4.0, 3, 3]], dtype=np.double) R = R[:nrow, :ncol] assert_(is_valid_im(R) == valid) if not valid: assert_raises(ValueError, is_valid_im, R, throw=True) def test_is_valid_im_empty(self): # Tests is_valid_im(R) with empty inconsistency matrix. R = np.zeros((0, 4), dtype=np.double) assert_(is_valid_im(R) == False) assert_raises(ValueError, is_valid_im, R, throw=True) def test_is_valid_im_4_and_up(self): # Tests is_valid_im(R) on im on observation sets between sizes 4 and 15 # (step size 3). for i in xrange(4, 15, 3): y = np.random.rand(i * (i - 1) // 2) Z = linkage(y) R = inconsistent(Z) assert_(is_valid_im(R) == True) def test_is_valid_im_4_and_up_neg_index_left(self): # Tests is_valid_im(R) on im on observation sets between sizes 4 and 15 # (step size 3) with negative link height means. for i in xrange(4, 15, 3): y = np.random.rand(i * (i - 1) // 2) Z = linkage(y) R = inconsistent(Z) R[i // 2, 0] = -2.0 assert_(is_valid_im(R) == False) assert_raises(ValueError, is_valid_im, R, throw=True) def test_is_valid_im_4_and_up_neg_index_right(self): # Tests is_valid_im(R) on im on observation sets between sizes 4 and 15 # (step size 3) with negative link height standard deviations. for i in xrange(4, 15, 3): y = np.random.rand(i * (i - 1) // 2) Z = linkage(y) R = inconsistent(Z) R[i // 2, 1] = -2.0 assert_(is_valid_im(R) == False) assert_raises(ValueError, is_valid_im, R, throw=True) def test_is_valid_im_4_and_up_neg_dist(self): # Tests is_valid_im(R) on im on observation sets between sizes 4 and 15 # (step size 3) with negative link counts. for i in xrange(4, 15, 3): y = np.random.rand(i * (i - 1) // 2) Z = linkage(y) R = inconsistent(Z) R[i // 2, 2] = -0.5 assert_(is_valid_im(R) == False) assert_raises(ValueError, is_valid_im, R, throw=True) class TestNumObsLinkage(TestCase): def test_num_obs_linkage_empty(self): # Tests num_obs_linkage(Z) with empty linkage. Z = np.zeros((0, 4), dtype=np.double) assert_raises(ValueError, num_obs_linkage, Z) def test_num_obs_linkage_1x4(self): # Tests num_obs_linkage(Z) on linkage over 2 observations. Z = np.asarray([[0, 1, 3.0, 2]], dtype=np.double) assert_equal(num_obs_linkage(Z), 2) def test_num_obs_linkage_2x4(self): # Tests num_obs_linkage(Z) on linkage over 3 observations. Z = np.asarray([[0, 1, 3.0, 2], [3, 2, 4.0, 3]], dtype=np.double) assert_equal(num_obs_linkage(Z), 3) def test_num_obs_linkage_4_and_up(self): # Tests num_obs_linkage(Z) on linkage on observation sets between sizes # 4 and 15 (step size 3). for i in xrange(4, 15, 3): y = np.random.rand(i * (i - 1) // 2) Z = linkage(y) assert_equal(num_obs_linkage(Z), i) class TestLeavesList(object): def test_leaves_list_1x4(self): # Tests leaves_list(Z) on a 1x4 linkage. Z = np.asarray([[0, 1, 3.0, 2]], dtype=np.double) to_tree(Z) assert_equal(leaves_list(Z), [0, 1]) def test_leaves_list_2x4(self): # Tests leaves_list(Z) on a 2x4 linkage. Z = np.asarray([[0, 1, 3.0, 2], [3, 2, 4.0, 3]], dtype=np.double) to_tree(Z) assert_equal(leaves_list(Z), [0, 1, 2]) def test_leaves_list_Q(self): for method in ['single', 'complete', 'average', 'weighted', 'centroid', 'median', 'ward']: yield self.check_leaves_list_Q, method def check_leaves_list_Q(self, method): # Tests leaves_list(Z) on the Q data set X = hierarchy_test_data.Q_X Z = linkage(X, method) node = to_tree(Z) assert_equal(node.pre_order(), leaves_list(Z)) def test_Q_subtree_pre_order(self): # Tests that pre_order() works when called on sub-trees. X = hierarchy_test_data.Q_X Z = linkage(X, 'single') node = to_tree(Z) assert_equal(node.pre_order(), (node.get_left().pre_order() + node.get_right().pre_order())) class TestCorrespond(TestCase): def test_correspond_empty(self): # Tests correspond(Z, y) with empty linkage and condensed distance matrix. y = np.zeros((0,)) Z = np.zeros((0, 4)) assert_raises(ValueError, correspond, Z, y) def test_correspond_2_and_up(self): # Tests correspond(Z, y) on linkage and CDMs over observation sets of # different sizes. for i in xrange(2, 4): y = np.random.rand(i * (i - 1) // 2) Z = linkage(y) assert_(correspond(Z, y)) for i in xrange(4, 15, 3): y = np.random.rand(i * (i - 1) // 2) Z = linkage(y) assert_(correspond(Z, y)) def test_correspond_4_and_up(self): # Tests correspond(Z, y) on linkage and CDMs over observation sets of # different sizes. Correspondance should be false. for (i, j) in (list(zip(list(range(2, 4)), list(range(3, 5)))) + list(zip(list(range(3, 5)), list(range(2, 4))))): y = np.random.rand(i * (i - 1) // 2) y2 = np.random.rand(j * (j - 1) // 2) Z = linkage(y) Z2 = linkage(y2) assert_equal(correspond(Z, y2), False) assert_equal(correspond(Z2, y), False) def test_correspond_4_and_up_2(self): # Tests correspond(Z, y) on linkage and CDMs over observation sets of # different sizes. Correspondance should be false. for (i, j) in (list(zip(list(range(2, 7)), list(range(16, 21)))) + list(zip(list(range(2, 7)), list(range(16, 21))))): y = np.random.rand(i * (i - 1) // 2) y2 = np.random.rand(j * (j - 1) // 2) Z = linkage(y) Z2 = linkage(y2) assert_equal(correspond(Z, y2), False) assert_equal(correspond(Z2, y), False) def test_num_obs_linkage_multi_matrix(self): # Tests num_obs_linkage with observation matrices of multiple sizes. for n in xrange(2, 10): X = np.random.rand(n, 4) Y = pdist(X) Z = linkage(Y) assert_equal(num_obs_linkage(Z), n) class TestIsMonotonic(TestCase): def test_is_monotonic_empty(self): # Tests is_monotonic(Z) on an empty linkage. Z = np.zeros((0, 4)) assert_raises(ValueError, is_monotonic, Z) def test_is_monotonic_1x4(self): # Tests is_monotonic(Z) on 1x4 linkage. Expecting True. Z = np.asarray([[0, 1, 0.3, 2]], dtype=np.double) assert_equal(is_monotonic(Z), True) def test_is_monotonic_2x4_T(self): # Tests is_monotonic(Z) on 2x4 linkage. Expecting True. Z = np.asarray([[0, 1, 0.3, 2], [2, 3, 0.4, 3]], dtype=np.double) assert_equal(is_monotonic(Z), True) def test_is_monotonic_2x4_F(self): # Tests is_monotonic(Z) on 2x4 linkage. Expecting False. Z = np.asarray([[0, 1, 0.4, 2], [2, 3, 0.3, 3]], dtype=np.double) assert_equal(is_monotonic(Z), False) def test_is_monotonic_3x4_T(self): # Tests is_monotonic(Z) on 3x4 linkage. Expecting True. Z = np.asarray([[0, 1, 0.3, 2], [2, 3, 0.4, 2], [4, 5, 0.6, 4]], dtype=np.double) assert_equal(is_monotonic(Z), True) def test_is_monotonic_3x4_F1(self): # Tests is_monotonic(Z) on 3x4 linkage (case 1). Expecting False. Z = np.asarray([[0, 1, 0.3, 2], [2, 3, 0.2, 2], [4, 5, 0.6, 4]], dtype=np.double) assert_equal(is_monotonic(Z), False) def test_is_monotonic_3x4_F2(self): # Tests is_monotonic(Z) on 3x4 linkage (case 2). Expecting False. Z = np.asarray([[0, 1, 0.8, 2], [2, 3, 0.4, 2], [4, 5, 0.6, 4]], dtype=np.double) assert_equal(is_monotonic(Z), False) def test_is_monotonic_3x4_F3(self): # Tests is_monotonic(Z) on 3x4 linkage (case 3). Expecting False Z = np.asarray([[0, 1, 0.3, 2], [2, 3, 0.4, 2], [4, 5, 0.2, 4]], dtype=np.double) assert_equal(is_monotonic(Z), False) def test_is_monotonic_tdist_linkage1(self): # Tests is_monotonic(Z) on clustering generated by single linkage on # tdist data set. Expecting True. Z = linkage(hierarchy_test_data.ytdist, 'single') assert_equal(is_monotonic(Z), True) def test_is_monotonic_tdist_linkage2(self): # Tests is_monotonic(Z) on clustering generated by single linkage on # tdist data set. Perturbing. Expecting False. Z = linkage(hierarchy_test_data.ytdist, 'single') Z[2, 2] = 0.0 assert_equal(is_monotonic(Z), False) def test_is_monotonic_Q_linkage(self): # Tests is_monotonic(Z) on clustering generated by single linkage on # Q data set. Expecting True. X = hierarchy_test_data.Q_X Z = linkage(X, 'single') assert_equal(is_monotonic(Z), True) class TestMaxDists(object): def test_maxdists_empty_linkage(self): # Tests maxdists(Z) on empty linkage. Expecting exception. Z = np.zeros((0, 4), dtype=np.double) assert_raises(ValueError, maxdists, Z) def test_maxdists_one_cluster_linkage(self): # Tests maxdists(Z) on linkage with one cluster. Z = np.asarray([[0, 1, 0.3, 4]], dtype=np.double) MD = maxdists(Z) expectedMD = calculate_maximum_distances(Z) assert_allclose(MD, expectedMD, atol=1e-15) def test_maxdists_Q_linkage(self): for method in ['single', 'complete', 'ward', 'centroid', 'median']: yield self.check_maxdists_Q_linkage, method def check_maxdists_Q_linkage(self, method): # Tests maxdists(Z) on the Q data set X = hierarchy_test_data.Q_X Z = linkage(X, method) MD = maxdists(Z) expectedMD = calculate_maximum_distances(Z) assert_allclose(MD, expectedMD, atol=1e-15) class TestMaxInconsts(object): def test_maxinconsts_empty_linkage(self): # Tests maxinconsts(Z, R) on empty linkage. Expecting exception. Z = np.zeros((0, 4), dtype=np.double) R = np.zeros((0, 4), dtype=np.double) assert_raises(ValueError, maxinconsts, Z, R) def test_maxinconsts_difrow_linkage(self): # Tests maxinconsts(Z, R) on linkage and inconsistency matrices with # different numbers of clusters. Expecting exception. Z = np.asarray([[0, 1, 0.3, 4]], dtype=np.double) R = np.random.rand(2, 4) assert_raises(ValueError, maxinconsts, Z, R) def test_maxinconsts_one_cluster_linkage(self): # Tests maxinconsts(Z, R) on linkage with one cluster. Z = np.asarray([[0, 1, 0.3, 4]], dtype=np.double) R = np.asarray([[0, 0, 0, 0.3]], dtype=np.double) MD = maxinconsts(Z, R) expectedMD = calculate_maximum_inconsistencies(Z, R) assert_allclose(MD, expectedMD, atol=1e-15) def test_maxinconsts_Q_linkage(self): for method in ['single', 'complete', 'ward', 'centroid', 'median']: yield self.check_maxinconsts_Q_linkage, method def check_maxinconsts_Q_linkage(self, method): # Tests maxinconsts(Z, R) on the Q data set X = hierarchy_test_data.Q_X Z = linkage(X, method) R = inconsistent(Z) MD = maxinconsts(Z, R) expectedMD = calculate_maximum_inconsistencies(Z, R) assert_allclose(MD, expectedMD, atol=1e-15) class TestMaxRStat(object): def test_maxRstat_invalid_index(self): for i in [3.3, -1, 4]: yield self.check_maxRstat_invalid_index, i def check_maxRstat_invalid_index(self, i): # Tests maxRstat(Z, R, i). Expecting exception. Z = np.asarray([[0, 1, 0.3, 4]], dtype=np.double) R = np.asarray([[0, 0, 0, 0.3]], dtype=np.double) if isinstance(i, int): assert_raises(ValueError, maxRstat, Z, R, i) else: assert_raises(TypeError, maxRstat, Z, R, i) def test_maxRstat_empty_linkage(self): for i in range(4): yield self.check_maxRstat_empty_linkage, i def check_maxRstat_empty_linkage(self, i): # Tests maxRstat(Z, R, i) on empty linkage. Expecting exception. Z = np.zeros((0, 4), dtype=np.double) R = np.zeros((0, 4), dtype=np.double) assert_raises(ValueError, maxRstat, Z, R, i) def test_maxRstat_difrow_linkage(self): for i in range(4): yield self.check_maxRstat_difrow_linkage, i def check_maxRstat_difrow_linkage(self, i): # Tests maxRstat(Z, R, i) on linkage and inconsistency matrices with # different numbers of clusters. Expecting exception. Z = np.asarray([[0, 1, 0.3, 4]], dtype=np.double) R = np.random.rand(2, 4) assert_raises(ValueError, maxRstat, Z, R, i) def test_maxRstat_one_cluster_linkage(self): for i in range(4): yield self.check_maxRstat_one_cluster_linkage, i def check_maxRstat_one_cluster_linkage(self, i): # Tests maxRstat(Z, R, i) on linkage with one cluster. Z = np.asarray([[0, 1, 0.3, 4]], dtype=np.double) R = np.asarray([[0, 0, 0, 0.3]], dtype=np.double) MD = maxRstat(Z, R, 1) expectedMD = calculate_maximum_inconsistencies(Z, R, 1) assert_allclose(MD, expectedMD, atol=1e-15) def test_maxRstat_Q_linkage(self): for method in ['single', 'complete', 'ward', 'centroid', 'median']: for i in range(4): yield self.check_maxRstat_Q_linkage, method, i def check_maxRstat_Q_linkage(self, method, i): # Tests maxRstat(Z, R, i) on the Q data set X = hierarchy_test_data.Q_X Z = linkage(X, method) R = inconsistent(Z) MD = maxRstat(Z, R, 1) expectedMD = calculate_maximum_inconsistencies(Z, R, 1) assert_allclose(MD, expectedMD, atol=1e-15) class TestDendrogram(object): def test_dendrogram_single_linkage_tdist(self): # Tests dendrogram calculation on single linkage of the tdist data set. Z = linkage(hierarchy_test_data.ytdist, 'single') R = dendrogram(Z, no_plot=True) leaves = R["leaves"] assert_equal(leaves, [2, 5, 1, 0, 3, 4]) def test_valid_orientation(self): Z = linkage(hierarchy_test_data.ytdist, 'single') assert_raises(ValueError, dendrogram, Z, orientation="foo") @dec.skipif(not have_matplotlib) def test_dendrogram_plot(self): for orientation in ['top', 'bottom', 'left', 'right']: yield self.check_dendrogram_plot, orientation def check_dendrogram_plot(self, orientation): # Tests dendrogram plotting. Z = linkage(hierarchy_test_data.ytdist, 'single') expected = {'color_list': ['g', 'b', 'b', 'b', 'b'], 'dcoord': [[0.0, 138.0, 138.0, 0.0], [0.0, 219.0, 219.0, 0.0], [0.0, 255.0, 255.0, 219.0], [0.0, 268.0, 268.0, 255.0], [138.0, 295.0, 295.0, 268.0]], 'icoord': [[5.0, 5.0, 15.0, 15.0], [45.0, 45.0, 55.0, 55.0], [35.0, 35.0, 50.0, 50.0], [25.0, 25.0, 42.5, 42.5], [10.0, 10.0, 33.75, 33.75]], 'ivl': ['2', '5', '1', '0', '3', '4'], 'leaves': [2, 5, 1, 0, 3, 4]} fig = plt.figure() ax = fig.add_subplot(221) # test that dendrogram accepts ax keyword R1 = dendrogram(Z, ax=ax, orientation=orientation) assert_equal(R1, expected) # test that dendrogram accepts and handle the leaf_font_size and # leaf_rotation keywords R1a = dendrogram(Z, ax=ax, orientation=orientation, leaf_font_size=20, leaf_rotation=90) testlabel = ( ax.get_xticklabels()[0] if orientation in ['top', 'bottom'] else ax.get_yticklabels()[0] ) assert_equal(testlabel.get_rotation(), 90) assert_equal(testlabel.get_size(), 20) R1a = dendrogram(Z, ax=ax, orientation=orientation, leaf_rotation=90) testlabel = ( ax.get_xticklabels()[0] if orientation in ['top', 'bottom'] else ax.get_yticklabels()[0] ) assert_equal(testlabel.get_rotation(), 90) R1a = dendrogram(Z, ax=ax, orientation=orientation, leaf_font_size=20) testlabel = ( ax.get_xticklabels()[0] if orientation in ['top', 'bottom'] else ax.get_yticklabels()[0] ) assert_equal(testlabel.get_size(), 20) plt.close() # test plotting to gca (will import pylab) R2 = dendrogram(Z, orientation=orientation) plt.close() assert_equal(R2, expected) @dec.skipif(not have_matplotlib) def test_dendrogram_truncate_mode(self): Z = linkage(hierarchy_test_data.ytdist, 'single') R = dendrogram(Z, 2, 'lastp', show_contracted=True) plt.close() assert_equal(R, {'color_list': ['b'], 'dcoord': [[0.0, 295.0, 295.0, 0.0]], 'icoord': [[5.0, 5.0, 15.0, 15.0]], 'ivl': ['(2)', '(4)'], 'leaves': [6, 9]}) R = dendrogram(Z, 2, 'mtica', show_contracted=True) plt.close() assert_equal(R, {'color_list': ['g', 'b', 'b', 'b'], 'dcoord': [[0.0, 138.0, 138.0, 0.0], [0.0, 255.0, 255.0, 0.0], [0.0, 268.0, 268.0, 255.0], [138.0, 295.0, 295.0, 268.0]], 'icoord': [[5.0, 5.0, 15.0, 15.0], [35.0, 35.0, 45.0, 45.0], [25.0, 25.0, 40.0, 40.0], [10.0, 10.0, 32.5, 32.5]], 'ivl': ['2', '5', '1', '0', '(2)'], 'leaves': [2, 5, 1, 0, 7]}) def test_dendrogram_colors(self): # Tests dendrogram plots with alternate colors Z = linkage(hierarchy_test_data.ytdist, 'single') set_link_color_palette(['c', 'm', 'y', 'k']) R = dendrogram(Z, no_plot=True, above_threshold_color='g', color_threshold=250) set_link_color_palette(['g', 'r', 'c', 'm', 'y', 'k']) color_list = R['color_list'] assert_equal(color_list, ['c', 'm', 'g', 'g', 'g']) # reset color palette (global list) set_link_color_palette(None) def calculate_maximum_distances(Z): # Used for testing correctness of maxdists. n = Z.shape[0] + 1 B = np.zeros((n - 1,)) q = np.zeros((3,)) for i in xrange(0, n - 1): q[:] = 0.0 left = Z[i, 0] right = Z[i, 1] if left >= n: q[0] = B[int(left) - n] if right >= n: q[1] = B[int(right) - n] q[2] = Z[i, 2] B[i] = q.max() return B def calculate_maximum_inconsistencies(Z, R, k=3): # Used for testing correctness of maxinconsts. n = Z.shape[0] + 1 B = np.zeros((n - 1,)) q = np.zeros((3,)) for i in xrange(0, n - 1): q[:] = 0.0 left = Z[i, 0] right = Z[i, 1] if left >= n: q[0] = B[int(left) - n] if right >= n: q[1] = B[int(right) - n] q[2] = R[i, k] B[i] = q.max() return B def within_tol(a, b, tol): return np.abs(a - b).max() < tol def test_unsupported_uncondensed_distance_matrix_linkage_warning(): assert_warns(ClusterWarning, linkage, [[0, 1], [1, 0]]) def test_euclidean_linkage_value_error(): for method in scipy.cluster.hierarchy._EUCLIDEAN_METHODS: assert_raises(ValueError, linkage, [[1, 1], [1, 1]], method=method, metric='cityblock') def test_2x2_linkage(): Z1 = linkage([1], method='single', metric='euclidean') Z2 = linkage([[0, 1], [0, 0]], method='single', metric='euclidean') assert_allclose(Z1, Z2) def test_node_compare(): np.random.seed(23) nobs = 50 X = np.random.randn(nobs, 4) Z = scipy.cluster.hierarchy.ward(X) tree = to_tree(Z) assert_(tree > tree.get_left()) assert_(tree.get_right() > tree.get_left()) assert_(tree.get_right() == tree.get_right()) assert_(tree.get_right() != tree.get_left()) def test_cut_tree(): np.random.seed(23) nobs = 50 X = np.random.randn(nobs, 4) Z = scipy.cluster.hierarchy.ward(X) cutree = cut_tree(Z) assert_equal(cutree[:, 0], np.arange(nobs)) assert_equal(cutree[:, -1], np.zeros(nobs)) assert_equal(cutree.max(0), np.arange(nobs - 1, -1, -1)) assert_equal(cutree[:, [-5]], cut_tree(Z, n_clusters=5)) assert_equal(cutree[:, [-5, -10]], cut_tree(Z, n_clusters=[5, 10])) assert_equal(cutree[:, [-10, -5]], cut_tree(Z, n_clusters=[10, 5])) nodes = _order_cluster_tree(Z) heights = np.array([node.dist for node in nodes]) assert_equal(cutree[:, np.searchsorted(heights, [5])], cut_tree(Z, height=5)) assert_equal(cutree[:, np.searchsorted(heights, [5, 10])], cut_tree(Z, height=[5, 10])) assert_equal(cutree[:, np.searchsorted(heights, [10, 5])], cut_tree(Z, height=[10, 5])) def test_Heap(): values = np.array([2, -1, 0, -1.5, 3]) heap = Heap(values) pair = heap.get_min() assert_equal(pair['key'], 3) assert_equal(pair['value'], -1.5) heap.remove_min() pair = heap.get_min() assert_equal(pair['key'], 1) assert_equal(pair['value'], -1) heap.change_value(1, 2.5) pair = heap.get_min() assert_equal(pair['key'], 2) assert_equal(pair['value'], 0) heap.remove_min() heap.remove_min() heap.change_value(1, 10) pair = heap.get_min() assert_equal(pair['key'], 4) assert_equal(pair['value'], 3) heap.remove_min() pair = heap.get_min() assert_equal(pair['key'], 1) assert_equal(pair['value'], 10) if __name__ == "__main__": run_module_suite()
d26db268212730243e31afef9dac80f44edda814
d7ccb4225f623139995a7039f0981e89bf6365a4
/.history/store/views_20211010181824.py
5404e2083299cd5fa19e695dd5bbf5bc15364268
[]
no_license
tonnymuchui/django-mall
64fd4abc3725c1bd0a3dcf20b93b490fe9307b37
55c083d8433be3c77adc61939cd197902de4ce76
refs/heads/master
2023-08-23T04:59:20.418732
2021-10-13T15:59:37
2021-10-13T15:59:37
415,668,388
1
0
null
null
null
null
UTF-8
Python
false
false
495
py
from django.shortcuts import get_object_or_404, render from store.models import Product from cate import member # Create your views here. def store(request, category_slug=None): categories = get_object_or_404(Category, slug=category_slug) products = Product.objects.all().filter(is_available=True) products_count = products.count() content = { 'products': products, 'products_count': products_count, } return render(request, 'store/store.html', content)
a7e1a5f16a4ea6519e2f6f5df35e23b32f5345ba
9a486a87e028303a551fbd0d1e1b6b650387ea14
/parse_tlog/guide_flow.py
2cebc5bd734a8a21dc044b2fbc02dd903521f052
[]
no_license
shanlihou/pythonFunc
7b8e7064fddd4522e492c915c086cc6c5abc6eec
646920256551ccd8335446dd4fe11aa4b9916f64
refs/heads/master
2022-08-24T20:33:12.287464
2022-07-21T12:00:10
2022-07-21T12:00:10
24,311,639
3
0
null
null
null
null
UTF-8
Python
false
false
1,067
py
# coding:utf-8 import utils import const import LogOne import csv_output def guide_flow(): fname = utils.filter_from_origin('GuideFlow') id_dic = {} avatar_count = utils.get_avatar_count() with utils.utf8_open(fname) as fr: for line in fr: lo = LogOne.get_log_from_line(line) if not lo: continue id_dic.setdefault(lo.guide_id, set()) id_dic[lo.guide_id].add(lo.gbid) rets = [(int(k), len(v)) for k, v in id_dic.items()] rets.sort(key=lambda x: x[0]) csv = csv_output.CSVOutPut() csv.set(0, 0, '节点') csv.set(0, 1, '创角数') csv.set(0, 2, '节点通过人数') csv.set(0, 3, '节点通过率') idx = 1 for key, num in rets: csv.set(idx, 0, key) csv.set(idx, 1, avatar_count) csv.set(idx, 2, num) csv.set(idx, 3, num / avatar_count) idx += 1 out_name = utils.get_out_name('out', 'guide_flow.csv') csv.output(out_name) if __name__ == '__main__': guide_flow()
4d2f1b947c37bea509fec0603fec028f2816c5f7
2bdedcda705f6dcf45a1e9a090377f892bcb58bb
/src/main/output/level_head/aws_company_right_program.py
a269a3cf60adfad0ae305533decf4c19f884f035
[]
no_license
matkosoric/GenericNameTesting
860a22af1098dda9ea9e24a1fc681bb728aa2d69
03f4a38229c28bc6d83258e5a84fce4b189d5f00
refs/heads/master
2021-01-08T22:35:20.022350
2020-02-21T11:28:21
2020-02-21T11:28:21
242,123,053
1
0
null
null
null
null
UTF-8
Python
false
false
570
py
import srt_translate as st #must use python 3 #import os #subdirec = 'home/ben/test' #os.chdir(test) # Replace the subscriptionKey string value with your valid subscription key. subscriptionKey = 'a3487bf0249992cc26cd5aaf14d5f0b0' # Language codes and names: # English: en # Greek: el # More: http://www.emreakkas.com/internationalization/microsoft-translator-api-languages-list-language-codes-and-names inputfile='test.srt' outputfile='test_result.srt' fromlang = 'en' tolang = 'el' st.convert_srt_file(inputfile, outputfile, subscriptionKey, tolang)#, fromlang)
06e1f9b50cd4203f4526aa2af52be37ed254a692
f82757475ea13965581c2147ff57123b361c5d62
/gi-stubs/repository/GnomeDesktop/RRScreen.py
4092b6b1843f0804d1cbd81498ddbc29582ae5d0
[]
no_license
ttys3/pygobject-stubs
9b15d1b473db06f47e5ffba5ad0a31d6d1becb57
d0e6e93399212aada4386d2ce80344eb9a31db48
refs/heads/master
2022-09-23T12:58:44.526554
2020-06-06T04:15:00
2020-06-06T04:15:00
269,693,287
8
2
null
2020-06-05T15:57:54
2020-06-05T15:57:54
null
UTF-8
Python
false
false
19,400
py
# encoding: utf-8 # module gi.repository.GnomeDesktop # from /usr/lib64/girepository-1.0/GnomeDesktop-3.0.typelib # by generator 1.147 """ An object which wraps an introspection typelib. This wrapping creates a python module like representation of the typelib using gi repository as a foundation. Accessing attributes of the module will dynamically pull them in and create wrappers for the members. These members are then cached on this introspection module. """ # imports import gi as __gi import gi.overrides.GObject as __gi_overrides_GObject import gi.repository.Gio as __gi_repository_Gio import gobject as __gobject class RRScreen(__gi_overrides_GObject.Object, __gi_repository_Gio.AsyncInitable, __gi_repository_Gio.Initable): """ :Constructors: :: RRScreen(**properties) new(screen:Gdk.Screen) -> GnomeDesktop.RRScreen new_finish(result:Gio.AsyncResult) -> GnomeDesktop.RRScreen """ def bind_property(self, *args, **kwargs): # real signature unknown pass def bind_property_full(self, *args, **kargs): # reliably restored by inspect # no doc pass def chain(self, *args, **kwargs): # real signature unknown pass def compat_control(self, *args, **kargs): # reliably restored by inspect # no doc pass def connect(self, *args, **kwargs): # real signature unknown pass def connect_after(self, *args, **kwargs): # real signature unknown pass def connect_data(self, detailed_signal, handler, *data, **kwargs): # reliably restored by inspect """ Connect a callback to the given signal with optional user data. :param str detailed_signal: A detailed signal to connect to. :param callable handler: Callback handler to connect to the signal. :param *data: Variable data which is passed through to the signal handler. :param GObject.ConnectFlags connect_flags: Flags used for connection options. :returns: A signal id which can be used with disconnect. """ pass def connect_object(self, *args, **kwargs): # real signature unknown pass def connect_object_after(self, *args, **kwargs): # real signature unknown pass def disconnect(*args, **kwargs): # reliably restored by inspect """ signal_handler_disconnect(instance:GObject.Object, handler_id:int) """ pass def disconnect_by_func(self, *args, **kwargs): # real signature unknown pass def do_changed(self, *args, **kwargs): # real signature unknown """ changed(self) """ pass def do_output_connected(self, *args, **kwargs): # real signature unknown """ output_connected(self, output:GnomeDesktop.RROutput) """ pass def do_output_disconnected(self, *args, **kwargs): # real signature unknown """ output_disconnected(self, output:GnomeDesktop.RROutput) """ pass def emit(self, *args, **kwargs): # real signature unknown pass def emit_stop_by_name(self, detailed_signal): # reliably restored by inspect """ Deprecated, please use stop_emission_by_name. """ pass def find_property(self, property_name): # real signature unknown; restored from __doc__ """ find_property(self, property_name:str) -> GObject.ParamSpec """ pass def force_floating(self, *args, **kargs): # reliably restored by inspect # no doc pass def freeze_notify(self): # reliably restored by inspect """ Freezes the object's property-changed notification queue. :returns: A context manager which optionally can be used to automatically thaw notifications. This will freeze the object so that "notify" signals are blocked until the thaw_notify() method is called. .. code-block:: python with obj.freeze_notify(): pass """ pass def getv(self, names, values): # real signature unknown; restored from __doc__ """ getv(self, names:list, values:list) """ pass def get_crtc_by_id(self, id): # real signature unknown; restored from __doc__ """ get_crtc_by_id(self, id:int) -> GnomeDesktop.RRCrtc """ pass def get_data(self, *args, **kargs): # reliably restored by inspect # no doc pass def get_dpms_mode(self): # real signature unknown; restored from __doc__ """ get_dpms_mode(self) -> bool, mode:GnomeDesktop.RRDpmsMode """ return False def get_output_by_id(self, id): # real signature unknown; restored from __doc__ """ get_output_by_id(self, id:int) -> GnomeDesktop.RROutput """ pass def get_output_by_name(self, name): # real signature unknown; restored from __doc__ """ get_output_by_name(self, name:str) -> GnomeDesktop.RROutput """ pass def get_properties(self, *args, **kwargs): # real signature unknown pass def get_property(self, *args, **kwargs): # real signature unknown pass def get_qdata(self, *args, **kargs): # reliably restored by inspect # no doc pass def get_ranges(self): # real signature unknown; restored from __doc__ """ get_ranges(self) -> min_width:int, max_width:int, min_height:int, max_height:int """ pass def handler_block(obj, handler_id): # reliably restored by inspect """ Blocks the signal handler from being invoked until handler_unblock() is called. :param GObject.Object obj: Object instance to block handlers for. :param int handler_id: Id of signal to block. :returns: A context manager which optionally can be used to automatically unblock the handler: .. code-block:: python with GObject.signal_handler_block(obj, id): pass """ pass def handler_block_by_func(self, *args, **kwargs): # real signature unknown pass def handler_disconnect(*args, **kwargs): # reliably restored by inspect """ signal_handler_disconnect(instance:GObject.Object, handler_id:int) """ pass def handler_is_connected(*args, **kwargs): # reliably restored by inspect """ signal_handler_is_connected(instance:GObject.Object, handler_id:int) -> bool """ pass def handler_unblock(*args, **kwargs): # reliably restored by inspect """ signal_handler_unblock(instance:GObject.Object, handler_id:int) """ pass def handler_unblock_by_func(self, *args, **kwargs): # real signature unknown pass def init(self, cancellable=None): # real signature unknown; restored from __doc__ """ init(self, cancellable:Gio.Cancellable=None) -> bool """ return False def init_async(self, io_priority, cancellable=None, callback=None, user_data=None): # real signature unknown; restored from __doc__ """ init_async(self, io_priority:int, cancellable:Gio.Cancellable=None, callback:Gio.AsyncReadyCallback=None, user_data=None) """ pass def init_finish(self, res): # real signature unknown; restored from __doc__ """ init_finish(self, res:Gio.AsyncResult) -> bool """ return False def install_properties(self, pspecs): # real signature unknown; restored from __doc__ """ install_properties(self, pspecs:list) """ pass def install_property(self, property_id, pspec): # real signature unknown; restored from __doc__ """ install_property(self, property_id:int, pspec:GObject.ParamSpec) """ pass def interface_find_property(self, *args, **kargs): # reliably restored by inspect # no doc pass def interface_install_property(self, *args, **kargs): # reliably restored by inspect # no doc pass def interface_list_properties(self, *args, **kargs): # reliably restored by inspect # no doc pass def is_floating(self): # real signature unknown; restored from __doc__ """ is_floating(self) -> bool """ return False def list_clone_modes(self): # real signature unknown; restored from __doc__ """ list_clone_modes(self) -> list """ return [] def list_crtcs(self): # real signature unknown; restored from __doc__ """ list_crtcs(self) -> list """ return [] def list_modes(self): # real signature unknown; restored from __doc__ """ list_modes(self) -> list """ return [] def list_outputs(self): # real signature unknown; restored from __doc__ """ list_outputs(self) -> list """ return [] def list_properties(self): # real signature unknown; restored from __doc__ """ list_properties(self) -> list, n_properties:int """ return [] def new(self, screen): # real signature unknown; restored from __doc__ """ new(screen:Gdk.Screen) -> GnomeDesktop.RRScreen """ pass def newv(self, object_type, parameters): # real signature unknown; restored from __doc__ """ newv(object_type:GType, parameters:list) -> GObject.Object """ pass def newv_async(self, object_type, n_parameters, parameters, io_priority, cancellable=None, callback=None, user_data=None): # real signature unknown; restored from __doc__ """ newv_async(object_type:GType, n_parameters:int, parameters:GObject.Parameter, io_priority:int, cancellable:Gio.Cancellable=None, callback:Gio.AsyncReadyCallback=None, user_data=None) """ pass def new_async(self, screen, callback=None, user_data=None): # real signature unknown; restored from __doc__ """ new_async(screen:Gdk.Screen, callback:Gio.AsyncReadyCallback=None, user_data=None) """ pass def new_finish(self, result): # real signature unknown; restored from __doc__ """ new_finish(result:Gio.AsyncResult) -> GnomeDesktop.RRScreen """ pass def notify(self, property_name): # real signature unknown; restored from __doc__ """ notify(self, property_name:str) """ pass def notify_by_pspec(self, *args, **kargs): # reliably restored by inspect # no doc pass def override_property(self, property_id, name): # real signature unknown; restored from __doc__ """ override_property(self, property_id:int, name:str) """ pass def ref(self, *args, **kargs): # reliably restored by inspect # no doc pass def refresh(self): # real signature unknown; restored from __doc__ """ refresh(self) -> bool """ return False def ref_sink(self, *args, **kargs): # reliably restored by inspect # no doc pass def replace_data(self, *args, **kargs): # reliably restored by inspect # no doc pass def replace_qdata(self, *args, **kargs): # reliably restored by inspect # no doc pass def run_dispose(self, *args, **kargs): # reliably restored by inspect # no doc pass def set_data(self, *args, **kargs): # reliably restored by inspect # no doc pass def set_dpms_mode(self, mode): # real signature unknown; restored from __doc__ """ set_dpms_mode(self, mode:GnomeDesktop.RRDpmsMode) -> bool """ return False def set_properties(self, *args, **kwargs): # real signature unknown pass def set_property(self, *args, **kwargs): # real signature unknown pass def steal_data(self, *args, **kargs): # reliably restored by inspect # no doc pass def steal_qdata(self, *args, **kargs): # reliably restored by inspect # no doc pass def stop_emission(self, detailed_signal): # reliably restored by inspect """ Deprecated, please use stop_emission_by_name. """ pass def stop_emission_by_name(*args, **kwargs): # reliably restored by inspect """ signal_stop_emission_by_name(instance:GObject.Object, detailed_signal:str) """ pass def thaw_notify(self): # real signature unknown; restored from __doc__ """ thaw_notify(self) """ pass def unref(self, *args, **kargs): # reliably restored by inspect # no doc pass def watch_closure(self, *args, **kargs): # reliably restored by inspect # no doc pass def weak_ref(self, *args, **kwargs): # real signature unknown pass def _force_floating(self, *args, **kwargs): # real signature unknown """ force_floating(self) """ pass def _ref(self, *args, **kwargs): # real signature unknown """ ref(self) -> GObject.Object """ pass def _ref_sink(self, *args, **kwargs): # real signature unknown """ ref_sink(self) -> GObject.Object """ pass def _unref(self, *args, **kwargs): # real signature unknown """ unref(self) """ pass def _unsupported_data_method(self, *args, **kargs): # reliably restored by inspect # no doc pass def _unsupported_method(self, *args, **kargs): # reliably restored by inspect # no doc pass def __copy__(self, *args, **kwargs): # real signature unknown pass def __deepcopy__(self, *args, **kwargs): # real signature unknown pass def __delattr__(self, *args, **kwargs): # real signature unknown """ Implement delattr(self, name). """ pass def __dir__(self, *args, **kwargs): # real signature unknown """ Default dir() implementation. """ pass def __eq__(self, *args, **kwargs): # real signature unknown """ Return self==value. """ pass def __format__(self, *args, **kwargs): # real signature unknown """ Default object formatter. """ pass def __getattribute__(self, *args, **kwargs): # real signature unknown """ Return getattr(self, name). """ pass def __ge__(self, *args, **kwargs): # real signature unknown """ Return self>=value. """ pass def __gt__(self, *args, **kwargs): # real signature unknown """ Return self>value. """ pass def __hash__(self, *args, **kwargs): # real signature unknown """ Return hash(self). """ pass def __init_subclass__(self, *args, **kwargs): # real signature unknown """ This method is called when a class is subclassed. The default implementation does nothing. It may be overridden to extend subclasses. """ pass def __init__(self, **properties): # real signature unknown; restored from __doc__ pass def __le__(self, *args, **kwargs): # real signature unknown """ Return self<=value. """ pass def __lt__(self, *args, **kwargs): # real signature unknown """ Return self<value. """ pass @staticmethod # known case of __new__ def __new__(*args, **kwargs): # real signature unknown """ Create and return a new object. See help(type) for accurate signature. """ pass def __ne__(self, *args, **kwargs): # real signature unknown """ Return self!=value. """ pass def __reduce_ex__(self, *args, **kwargs): # real signature unknown """ Helper for pickle. """ pass def __reduce__(self, *args, **kwargs): # real signature unknown """ Helper for pickle. """ pass def __repr__(self, *args, **kwargs): # real signature unknown """ Return repr(self). """ pass def __setattr__(self, *args, **kwargs): # real signature unknown """ Implement setattr(self, name, value). """ pass def __sizeof__(self, *args, **kwargs): # real signature unknown """ Size of object in memory, in bytes. """ pass def __str__(self, *args, **kwargs): # real signature unknown """ Return str(self). """ pass def __subclasshook__(self, *args, **kwargs): # real signature unknown """ Abstract classes can override this to customize issubclass(). This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached). """ pass def __weakref__(self, *args, **kwargs): # real signature unknown pass g_type_instance = property(lambda self: object(), lambda self, v: None, lambda self: None) # default parent = property(lambda self: object(), lambda self, v: None, lambda self: None) # default priv = property(lambda self: object(), lambda self, v: None, lambda self: None) # default qdata = property(lambda self: object(), lambda self, v: None, lambda self: None) # default ref_count = property(lambda self: object(), lambda self, v: None, lambda self: None) # default __gpointer__ = property(lambda self: object(), lambda self, v: None, lambda self: None) # default __grefcount__ = property(lambda self: object(), lambda self, v: None, lambda self: None) # default props = None # (!) real value is '<gi._gi.GProps object at 0x7fc62d5a7700>' __class__ = None # (!) real value is "<class 'gi.types.GObjectMeta'>" __dict__ = None # (!) real value is "mappingproxy({'__info__': ObjectInfo(RRScreen), '__module__': 'gi.repository.GnomeDesktop', '__gtype__': <GType GnomeRRScreen (93939703625120)>, '__doc__': None, '__gsignals__': {}, 'new': gi.FunctionInfo(new), 'new_finish': gi.FunctionInfo(new_finish), 'new_async': gi.FunctionInfo(new_async), 'get_crtc_by_id': gi.FunctionInfo(get_crtc_by_id), 'get_dpms_mode': gi.FunctionInfo(get_dpms_mode), 'get_output_by_id': gi.FunctionInfo(get_output_by_id), 'get_output_by_name': gi.FunctionInfo(get_output_by_name), 'get_ranges': gi.FunctionInfo(get_ranges), 'list_clone_modes': gi.FunctionInfo(list_clone_modes), 'list_crtcs': gi.FunctionInfo(list_crtcs), 'list_modes': gi.FunctionInfo(list_modes), 'list_outputs': gi.FunctionInfo(list_outputs), 'refresh': gi.FunctionInfo(refresh), 'set_dpms_mode': gi.FunctionInfo(set_dpms_mode), 'do_changed': gi.VFuncInfo(changed), 'do_output_connected': gi.VFuncInfo(output_connected), 'do_output_disconnected': gi.VFuncInfo(output_disconnected), 'parent': <property object at 0x7fc62d5a54f0>, 'priv': <property object at 0x7fc62d5a5680>})" __gdoc__ = 'Object GnomeRRScreen\n\nSignals from GnomeRRScreen:\n changed ()\n output-connected (gpointer)\n output-disconnected (gpointer)\n\nProperties from GnomeRRScreen:\n gdk-screen -> GdkScreen: GDK Screen\n The GDK Screen represented by this GnomeRRScreen\n dpms-mode -> GnomeRRDpmsModeType: DPMS Mode\n The DPMS mode for this GnomeRRScreen\n\nSignals from GObject:\n notify (GParam)\n\n' __gsignals__ = {} __gtype__ = None # (!) real value is '<GType GnomeRRScreen (93939703625120)>' __info__ = ObjectInfo(RRScreen)
4dd01610b4147862288e32fff7184a7315c42ec7
5d0edf31b17c5375faf6126c1a7be8e79bfe2ab8
/buildout-cache/eggs/Products.Archetypes-1.9.11-py2.7.egg/Products/Archetypes/tests/test_utils.py
7c7df642c1f4a38a6ef5e21daf0932724c758cb4
[]
no_license
renansfs/Plone_SP
27cba32ebd9fc03dae3941ec23cf1bf0a7b6667a
8a7bdbdb98c3f9fc1073c6061cd2d3a0ec80caf5
refs/heads/master
2021-01-15T15:32:43.138965
2016-08-24T15:30:19
2016-08-24T15:30:19
65,313,812
0
3
null
null
null
null
UTF-8
Python
false
false
12,246
py
# -*- coding: utf-8 -*- ################################################################################ # # Copyright (c) 2002-2005, Benjamin Saller <[email protected]>, and # the respective authors. All rights reserved. # For a list of Archetypes contributors see docs/CREDITS.txt. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of the author nor the names of its contributors may be used # to endorse or promote products derived from this software without specific # prior written permission. # # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ################################################################################ """ """ from Products.Archetypes.tests.attestcase import ATTestCase from Products.Archetypes.utils import DisplayList from Products.Archetypes.utils import IntDisplayList from Products.Archetypes.utils import Vocabulary from Products.Archetypes.utils import make_uuid class UidGeneratorTest(ATTestCase): """Some ppl have reported problems with uids. This test isn't mathematical correct but should show the issue on plattform. I suspect it's Windows :| """ def test_uuid(self): uids = {} loop_length = 10 ** 5 # about 1.5 seconds on a fast cpu for i in xrange(loop_length): uid = make_uuid() uids[uid] = 1 self.assertEqual(len(uids), loop_length) class DisplayListTest(ATTestCase): def test_cmp(self): ta = ('a', 'b', 'c') tb = ('a', 'c', 'b') td = ('c', 'b', 'a') self.assertTrue(DisplayList(zip(ta, ta)) == DisplayList(zip(ta, ta))) self.assertFalse(DisplayList(zip(ta, ta)) == DisplayList(zip(ta, tb))) self.assertTrue(DisplayList(zip(ta, ta)) == DisplayList(zip(td, td))) self.assertTrue(DisplayList(zip(tb, ta)) == DisplayList(zip(tb, ta))) self.assertRaises(TypeError, cmp, DisplayList(), '') def test_slice(self): ta = ('a', 'b', 'c') l = zip(ta, ta) sub = l[1:] self.assertTrue(DisplayList(l)[1:] == sub) def test_item(self): ta = ('a', 'b', 'c') l = zip(ta, ta) for i in range(0, 2): item = ta[i] self.assertTrue(DisplayList(l)[i] == item) def test_add(self): ta = ('a', 'b', 'c') l = zip(ta, ta) dl = DisplayList(l)[:] self.assertTrue(dl == l) l.append(('d', 'd')) dl.append(('d', 'd')) self.assertTrue(dl == l) def test_len(self): ta = ('a', 'b', 'c') l = zip(ta, ta) dl = DisplayList(l) self.assertTrue(len(dl) == len(l)) def test_keys(self): ta = ('a', 'b', 'c') l = zip(ta, ta) dl = DisplayList(l) self.assertTrue(tuple(dl.keys()) == ta) def test_values(self): ta = ('a', 'b', 'c') l = zip(ta, ta) dl = DisplayList(l) self.assertTrue(tuple(dl.values()) == ta) def test_items(self): ta = ('a', 'b', 'c') l = zip(ta, ta) dl = DisplayList(l) self.assertTrue(dl.items() == tuple(l)) def test_repr(self): ta = ('a', 'b', 'c') l = zip(ta, ta) dl = DisplayList(l) self.assertTrue(repr(dl).find(str(l))) def test_str(self): ta = ('a', 'b', 'c') l = zip(ta, ta) dl = DisplayList(l) self.assertTrue(str(dl) == str(l)) def test_call(self): ta = ('a', 'b', 'c') l = zip(ta, ta) dl = DisplayList(l) self.assertTrue(dl == dl) self.assertTrue(dl() == dl()) self.assertTrue(dl[:] == l) self.assertTrue(dl()[:] == l) def test_sort(self): a = (('a', 'a',), ('b', 'b'), ('c', 'c')) b = (('z', 'Z',), ('y', 'Y'), ('x', 'X')) c = (('a', 'Z',), ('c', 'Y'), ('b', 'X')) dla = DisplayList(a) dlb = DisplayList(b) dlc = DisplayList(c) assert dla.values() == ['a', 'b', 'c'] dlb_s = dlb.sortedByValue() assert dlb_s.values() == ['X', 'Y', 'Z'] dlc_s = dlc.sortedByKey() assert dlc_s.values() == ['Z', 'X', 'Y'] def test_getValue(self): a = (('a', 'A',), ('b', '\xc3\xab'), ('c', u'xeb'), ('d', 42)) dla = DisplayList(a) self.assertEqual(dla.getValue('a'), 'A') self.assertEqual(dla.getValue('b'), '\xc3\xab') self.assertEqual(dla.getValue('c'), u'xeb') self.assertEqual(dla.getValue('d'), 42) self.assertEqual(dla.getValue('e'), None) self.assertEqual(dla.getValue('e', 'default'), 'default') # Switch the keys and values around. b = (('A', 'a',), ('\xc3\xab', 'b'), (u'xeb', 'c')) dlb = DisplayList(b) self.assertEqual(dlb.getValue('A'), 'a') self.assertEqual(dlb.getValue('\xc3\xab'), 'b') self.assertEqual(dlb.getValue(u'xeb'), 'c') self.assertEqual(dlb.getValue('e'), None) self.assertEqual(dlb.getValue('e', 'default'), 'default') class IntDisplayListTest(ATTestCase): def test_cmp(self): ta = (1, 2, 3) tb = (1, 3, 2) td = (3, 2, 1) self.assertTrue(IntDisplayList(zip(ta, ta)) == IntDisplayList(zip(ta, ta))) self.assertFalse(IntDisplayList(zip(ta, ta)) == IntDisplayList(zip(ta, tb))) self.assertTrue(IntDisplayList(zip(ta, ta)) == IntDisplayList(zip(td, td))) self.assertTrue(IntDisplayList(zip(tb, ta)) == IntDisplayList(zip(tb, ta))) self.assertRaises(TypeError, cmp, IntDisplayList(), '') def test_slice(self): ta = (1, 2, 3) l = zip(ta, ta) sub = l[1:] self.assertTrue(IntDisplayList(l)[1:] == sub) def test_item(self): ta = (1, 2, 3) l = zip(ta, ta) for i in range(0, 2): item = ta[i] self.assertTrue(IntDisplayList(l)[i] == item) def test_add(self): ta = (1, 2, 3) l = zip(ta, ta) dl = IntDisplayList(l)[:] self.assertTrue(dl == l) l.append((4, 4)) dl.append((4, 4)) self.assertTrue(dl == l) def test_len(self): ta = (1, 2, 3) l = zip(ta, ta) dl = IntDisplayList(l) self.assertTrue(len(dl) == len(l)) def test_keys(self): ta = (1, 2, 3) l = zip(ta, ta) dl = IntDisplayList(l) self.assertTrue(tuple(dl.keys()) == ta) def test_values(self): ta = (1, 2, 3) l = zip(ta, ta) dl = IntDisplayList(l) self.assertTrue(tuple(dl.values()) == ta) def test_items(self): ta = (1, 2, 3) l = zip(ta, ta) dl = IntDisplayList(l) self.assertTrue(dl.items() == tuple(l)) def test_repr(self): ta = (1, 2, 3) l = zip(ta, ta) dl = IntDisplayList(l) self.assertTrue(repr(dl).find(str(l))) def test_str(self): ta = (1, 2, 3) l = zip(ta, ta) dl = IntDisplayList(l) self.assertTrue(str(dl) == str(l)) def test_call(self): ta = (1, 2, 3) l = zip(ta, ta) dl = IntDisplayList(l) self.assertTrue(dl == dl) self.assertTrue(dl() == dl()) self.assertTrue(dl[:] == l) self.assertTrue(dl()[:] == l) def test_sort(self): a = ((1, 'a',), (2, 'b'), (3, 'c')) b = ((10, 'Z',), (9, 'Y'), (8, 'X')) c = ((1, 'Z',), (3, 'Y'), (2, 'X')) dla = IntDisplayList(a) dlb = IntDisplayList(b) dlc = IntDisplayList(c) assert dla.values() == ['a', 'b', 'c'] dlb_s = dlb.sortedByValue() assert dlb_s.values() == ['X', 'Y', 'Z'] dlc_s = dlc.sortedByKey() assert dlc_s.values() == ['Z', 'X', 'Y'] def test_getValue(self): a = ((1, 'A',), (2, '\xc3\xab'), (3, u'xeb'), (4, 42)) dla = IntDisplayList(a) self.assertEqual(dla.getValue(1), 'A') self.assertEqual(dla.getValue(2), '\xc3\xab') self.assertEqual(dla.getValue(3), u'xeb') self.assertEqual(dla.getValue(4), 42) self.assertEqual(dla.getValue(5), None) self.assertEqual(dla.getValue(5, 'default'), 'default') class VocabularyTest(ATTestCase): def test_getValue(self): a = (('a', 'A',), ('b', '\xc3\xab'), ('c', u'xeb'), ('d', 42)) dla = DisplayList(a) va = Vocabulary(dla, instance=None, i18n_domain=None) self.assertEqual(va.getValue('a'), 'A') self.assertEqual(va.getValue('b'), '\xc3\xab') self.assertEqual(va.getValue('c'), u'xeb') self.assertEqual(va.getValue('d'), 42) self.assertEqual(va.getValue('e'), None) self.assertEqual(va.getValue('e', 'default'), 'default') b = (('A', 'a',), ('\xc3\xab', 'b'), (u'xeb', 'c')) dlb = DisplayList(b) vb = Vocabulary(dlb, instance=None, i18n_domain=None) self.assertEqual(vb.getValue('A'), 'a') self.assertEqual(vb.getValue('\xc3\xab'), 'b') self.assertEqual(vb.getValue(u'xeb'), 'c') self.assertEqual(vb.getValue('e'), None) self.assertEqual(vb.getValue('e', 'default'), 'default') c = ((1, 'A',), (2, '\xc3\xab'), (3, u'xeb'), (4, 42)) dlc = IntDisplayList(c) vb = Vocabulary(dlc, instance=None, i18n_domain=None) self.assertEqual(dlc.getValue(1), 'A') self.assertEqual(dlc.getValue(2), '\xc3\xab') self.assertEqual(dlc.getValue(3), u'xeb') self.assertEqual(dlc.getValue(4), 42) self.assertEqual(dlc.getValue(5), None) self.assertEqual(dlc.getValue(5, 'default'), 'default') def test_translating_getValue(self): # We use the same base displaylists as above (hopefully), but # now we pass an instance and an i18n_domain. The instance is # expected to be an Archetypes object, but currently it only # needs to have a True boolean value. a = (('a', 'A',), ('b', '\xc3\xab'), ('c', u'xeb'), ('d', 42)) dla = DisplayList(a) va = Vocabulary(dla, instance=object(), i18n_domain='plone') self.assertEqual(va.getValue('a'), 'A') self.assertEqual(va.getValue('b'), '\xc3\xab'.decode('utf-8')) self.assertEqual(va.getValue('c'), u'xeb') self.assertEqual(va.getValue('d'), 42) self.assertEqual(va.getValue('e'), None) self.assertEqual(va.getValue('e', 'default'), 'default') b = (('A', 'a',), ('\xc3\xab', 'b'), (u'xeb', 'c')) dlb = DisplayList(b) vb = Vocabulary(dlb, instance=object(), i18n_domain='plone') self.assertEqual(vb.getValue('A'), 'a') self.assertEqual(vb.getValue('\xc3\xab'), 'b') self.assertEqual(vb.getValue(u'xeb'), 'c') self.assertEqual(vb.getValue('e'), None) self.assertEqual(vb.getValue('e', 'default'), 'default') c = ((1, 'A',), (2, '\xc3\xab'), (3, u'xeb'), (4, 42)) dlc = IntDisplayList(c) vb = Vocabulary(dlc, instance=object(), i18n_domain='plone') self.assertEqual(dlc.getValue(1), 'A') self.assertEqual(dlc.getValue(2), '\xc3\xab') self.assertEqual(dlc.getValue(3), u'xeb') self.assertEqual(dlc.getValue(4), 42) self.assertEqual(dlc.getValue(5), None) self.assertEqual(dlc.getValue(5, 'default'), 'default') def test_suite(): from unittest import TestSuite, makeSuite suite = TestSuite() suite.addTest(makeSuite(VocabularyTest)) suite.addTest(makeSuite(DisplayListTest)) suite.addTest(makeSuite(IntDisplayListTest)) suite.addTest(makeSuite(UidGeneratorTest)) return suite
1ff640fe7e36b1fa053268a8444e4d290cd90c50
f514f2746c69726ac38f8e8679eb2b646d11ec91
/dota2_stats/views/matches.py
857690b007094ca61e06f0758e261b316c1b1ecb
[]
no_license
bobbyrward/dota2_stats
871b99ca6550496acc95ff44947a23566708861f
b3d2e7fbe4712dcb08f75e3a15b358a8388711a3
refs/heads/master
2021-01-19T03:23:54.158490
2013-02-15T22:56:08
2013-02-15T22:56:08
8,169,782
1
0
null
null
null
null
UTF-8
Python
false
false
770
py
from pyramid.view import view_config from dota2_stats.models import DBSession from dota2_stats.models import Match from dota2_stats.models import PlayerMatch from dota2_stats.models import Player from dota2_stats.models import Hero from dota2_stats.views.common import template_params @view_config(route_name='recent_matches', renderer='templates/recent_matches.jinja2') def recent_matches(request): matches = DBSession.query(Match).order_by(Match.start_time.desc()).limit(25).all() return template_params(request, matches=matches) @view_config(route_name='match_details', renderer='templates/match_details.jinja2') def match_details(request): match = DBSession.query(Match).get(request.matchdict['id']) return template_params(request, match=match)
93f9ff7f0c20a17eac24bdb842d09cdd06d72f77
94bfb1346a9ce4cf6ca8bfeeb5194b7a467731a6
/aclark/db/migrations/0031_siteconfiguration_company.py
d98d10bc777b9bace6f33643961cd5d7281078eb
[ "MIT" ]
permissive
aclark4life/aclarknet-best-pro
4006cad37c2eec166a98a73e988b9b490a10e5cb
e256bfdd63ad4445bf0a75ef0b91f6e1fd2479ea
refs/heads/master
2023-03-01T09:10:04.041913
2020-12-01T18:40:07
2020-12-01T18:40:07
140,634,961
0
0
MIT
2021-02-10T01:57:38
2018-07-11T22:49:33
CSS
UTF-8
Python
false
false
598
py
# Generated by Django 2.2.3 on 2019-07-30 18:22 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [("db", "0030_company")] operations = [ migrations.AddField( model_name="siteconfiguration", name="company", field=models.ForeignKey( blank=True, limit_choices_to={"active": True}, null=True, on_delete=django.db.models.deletion.CASCADE, to="db.Company", ), ) ]
5cb5f6b8ccf26d58cbd0363a37d076f1d55c436f
16ac02b8f427bd622af1564f1236e4913ed63521
/Codes/Version 1.8.6/geometry_def_DEP.py
7c22289e317f50fec51f1ba4fa4e82052a6f6a8e
[ "MIT" ]
permissive
gharib85/Brownian-dynamics-in-a-time-varying-force-field
20660665747310e1201e8ca7d404acc15ec7a3bd
1dce268fcc4f27e066be0ec0b511178cbc1437c5
refs/heads/main
2023-08-16T03:47:51.957137
2021-10-23T19:09:50
2021-10-23T19:09:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,523
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat May 8 13:18:12 2021 @author: Mohammad Asif Zaman Date: May 15, 2021 This code defines geoemtrical elements by a set of points. It also calculates the normal vector for each surface of that geometry. Definition parameters: - In geo_pointsX() functions, the point array set p_wall[] contains the edge point of each geometry element - All numbers in the geo_pointsX() functions are in microns (um) Outputs: - n_vector_set: Normal vectors for all the walls n = (a,b,c), n_vector_set = [(a1,b1,c1), (a2,b2,c2)....]. Size = (Nwalls,3) - d_set : Set of d coefficients defining the wall planes ax + by + cz = d. Size (Nwalls,) - p_lim_set : x,y,z limist for each wall. p_lim_1 = [xlow_1, xhigh_1, ylow_1, yhigh_1, zlow_1, zhigh_1], p_lim_set = [p_lim_1,p_lim_2....]. Size (Nwalls,6) - Here, Nwalls = number of walls - May 17, 2021: - Added different geometry segment types (rectangular, triangular etc.) - Implemented call function by string - Functionalized different parts """ import numpy as np # This function states which elements are present in the definition of the geometry def geo_element_types(): # Types of geometrical elements used # 4 = rectangular geometry segments (geo_points4() function must exist) # 3 = triangular geometry segments (geo_points3() function must exist) # .... and so on return np.array([]) # return empty array (no walls defined). Only the default z = 0 reflecting wall will be considered. # # Triangular geometry segments # def geo_points3(): # # Points defining the geometry. Format # # [ [ [x1,y1], [x2,y2], [x3,y3], [x4,y4] ] # first geometry segment # # [ [X1,Y1], [X2,Y2], [X3,Y3], [X4,Y4] ] # second geometry segment # # [ ] # .... (so on) # # ] # p_wall = [ [ [0,30], [70,30], [70,60] ], # [ [-60,-30], [-40,-30], [-40,-50] ], # ] # # z range of each of the points # z_wall = [ [0,140], # [0,140], # ] # p_wall = np.array(p_wall) # return p_wall, z_wall # Calculates normal vector,d coeff and limits of x,y,z for a specific geometry set (example: geo_points4() ) def normal_v(pset,zset): n_vector = [[]] # Set of normal vectors for each reflecting surface. Each element: n = (a,b,c) d_coeff = [] # Corresponding d coefficient for ax + by + cz = d plane equation p_lims =[[]] # x,y,z extent/limit of the wall. Format: [xlow, xhigh, ylow, yhigh, zlow, zhigh] Nw = pset.shape[0] # Number of walls for q in range(Nw): # goes through every wall geometry ps = pset[q] # Select one geometry segment. ps contains all points defining that geometry segment. zs = zset[q] M = ps.shape[0] # Number of points in that geometry segment.For rectangle, it's 4 points. i2 = 0 for m in range(M): # goes through all the points in qth wall geometry # indices for pair of points i1 = m i2 = m + 1 if i2 < M-1 else 0 # for the last point, select i2 = 0 as the index of the second point # making 3d coordiantes from 2d using z = 0 value for p1, p2 and z = 1 value for p3 # 3 points are defined p1 = np.append(ps[i1],zs[0]) p2 = np.append(ps[i2],zs[1]) p3 = np.append(ps[i2],zs[0]) # a third arbitrary point at a different z value # min-max limit of the three points # format: xmin, xmax, ymin, ymax, zmin, zmax temp = [min(p1[0],p2[0],p3[0]),max(p1[0],p2[0],p3[0]), min(p1[1],p2[1],p3[1]),max(p1[1],p2[1],p3[1]), min(p1[2],p2[2],p3[2]),max(p1[2],p2[2],p3[2])] # Note: We are assuming that the geoemtry segments are uniform in the z direction (they extrude up from the xy plane in the z direction) # For generalized case, the z points should be defined within the definition of the points. However, for most LOC microfluidic devices, # there are no variations along the z direction and this assumption holds. nv = np.cross(p3-p2,p2-p1) # normal vector to the plane containing the three points d = np.dot(nv,p1) # corresponding d coefficient d = d/np.linalg.norm(nv) nv = nv/np.linalg.norm(nv) n_vector = np.append(n_vector,[nv], axis = 1) if m+q == 0 else np.append(n_vector,[nv], axis = 0) p_lims = np.append(p_lims,[temp], axis = 1) if m+q == 0 else np.append(p_lims,[temp], axis = 0) # Note for n_vector if statement: When appending the first element within the empty # n_vector, the axis is 1. For other cases, axis = 0. This ensures that the data structure is # correct and the array of arrays don't blend into a 1D array. The first element occurs at # q = 0 and m = 0 (thus, when m+q = 0). d_coeff = np.append(d_coeff,d) # print(n_vector) return n_vector,d_coeff, p_lims # return ps # Calculate normal vectors, d coeff and (x,y,z) limits for all geometries (combines results for diff type of geometries) # Main function that will return normal vectors for all the geometry segments, d coefficients and (x,y,z) limits def geo_define(): el_type = geo_element_types() # Array containing types of geometries used n_vector_set = np.array([[0,0,1]]) # List for storing normal vectors with z = 0 plane inputted as the 0th wall (substrate) d_set = np.array([0]) # List for storing d coefficient with z = 0 plane inputted as the 0th wall p_lim_set =np.array([[-np.inf, np.inf, -np.inf, np.inf, -np.inf, np.inf]]) # List for storing the limits/extent of each wall with an infinite z = 0 substrate already inputted # # Use these empty list initialization if z = 0 substrate is not present # n_vector_set = [[]] # List for storing normal vectors # d_set = [] # List for storing d coefficient # p_lim_set =[[]] # List for storing the limits/extent of each wall for m in range(el_type.shape[0]): # looping over all geometry element types fname = 'geo_points' + str(el_type[m]) + '()' # name of the corresponding geometry function # Evaluate geo_points*()function by string name p_w1,z_w1 = eval(fname) nv,d,pp = normal_v(p_w1, z_w1) n_vector_set = np.append(n_vector_set,nv, axis = 0) d_set = np.append(d_set,d) p_lim_set = np.append(p_lim_set,pp, axis = 0) # # Use the following if you wish to initialize with an empty list instead of z = 0 default plane # n_vector_set = nv if m == 0 else np.append(n_vector_set,nv, axis = 0) # d_set = d if m == 0 else np.append(d_set,d) # p_lim_set = pp if m == 0 else np.append(p_lim_set,pp, axis = 0) return n_vector_set, d_set, p_lim_set # Particle parameters (number and raidus array) def time_pos_ax_limits(): # Particle parameters (number and raidus array) Np = 3 # Number of particles # ro = np.zeros((Np,1)) + 10e-6 ro = np.zeros(Np) + 10e-6 # ro[0] = 5e-6 # ro[1] = 8e-6 # Time parameters tfinal = 38 # Axes parameters (in microns) x_lim = [-250, 250] y_lim = [-250, 250] z_lim = [-20, 150] # Limit of initial particle positions xi_lim = [-80e-6, 80e-6] yi_lim = [-80e-6, 80e-6] zi_lim = [max(ro)*1.5, 80e-6] return Np, ro, tfinal, x_lim, y_lim, z_lim, xi_lim, yi_lim, zi_lim # Electrode array geometry parameters (units in um) elec_width = 15 elec_spacing = 50 # ============================================================================= # n_vector_set, d_set, p_lim_set = geo_define() # print(n_vector_set) # print(d_set) # print(p_lim_set)
87ef5d8ed682d518f47eb6e1e03850066d251895
ff268c31f10cbd3e1c44261ca65a45c88ed3dae5
/Transfer Learning/Code/classify.py
2670af12d79b9e3e4f9dd6f648aa8ad8c6399325
[ "MIT" ]
permissive
gyani91/Machine-Learning
6642c65359ed48b212a0f4296f5ce908ed6e95e3
2fabaa6386d3be24e56aaa9a19d58cd19d225198
refs/heads/master
2023-05-27T10:25:55.222053
2023-05-15T18:12:45
2023-05-15T18:12:45
114,811,646
2
2
null
null
null
null
UTF-8
Python
false
false
1,485
py
import tensorflow as tf from resize import * from convert import * #IMAGE_PATH = "Classify/panda.jpg" TRAINED_GRAPH = "sets_graph.pb" LABELS = "label.txt" FINAL_TENSOR_NAME = "final_tensor" def classify(IMAGE_PATH): # Convert the image to JPEG converted_image = convert(IMAGE_PATH) # Resize the image resized_image = resize(converted_image) # Read the input_image input_image = tf.gfile.FastGFile(resized_image, 'rb').read() # Load labels class_labels = [line.rstrip() for line in tf.gfile.GFile(LABELS)] #Load the trained model with tf.gfile.FastGFile(TRAINED_GRAPH, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) _ = tf.import_graph_def(graph_def, name='') init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) # Feed the input_image to the graph and get the prediction softmax_tensor = sess.graph.get_tensor_by_name(FINAL_TENSOR_NAME+':0') predictions = sess.run(softmax_tensor, {'DecodeJpeg/contents:0': input_image}) # Sort the labels of the prediction in order of confidence sorted_labels = predictions[0].argsort()[-len(predictions[0]):][::-1] print('Classification:') for index in sorted_labels: class_label = class_labels[index] percentage = predictions[0][index]*100 print(('%s (%.2f' % (class_label, percentage))+'%)')
851e188926412577b670edf374b8128bec3b8f91
773dc03117f8b0d51f7a10e2a4577229c8be6ba3
/alttprbot_discord/util/alttpr_discord.py
b109cfd6aa74d9845a9daf9414c8e7910803208f
[ "LicenseRef-scancode-unknown-license-reference", "MIT" ]
permissive
tcprescott/sahasrahbot
382cdff058d63feb5f42dbbd7729eb4b08c4d1bd
64a125d948873d0faa5ea3f2d306075ad9e013be
refs/heads/master
2023-08-31T15:33:01.533206
2023-08-31T01:58:48
2023-08-31T01:58:48
178,310,225
22
43
MIT
2023-09-01T08:45:52
2019-03-29T01:34:45
Python
UTF-8
Python
false
false
17,139
py
import datetime import os import aiohttp import discord import html2markdown from pyz3r import ALTTPR emoji_code_map = { 'Bow': 'Bow', 'Boomerang': 'BestBoomerang', 'Hookshot': 'Hookshot', 'Bombs': 'Blowup', 'Mushroom': 'Mushroom', 'Magic Powder': 'Powder', 'Ice Rod': 'IceRod', 'Pendant': 'PendantOfCourage', 'Bombos': 'Bombos', 'Ether': 'Ether', 'Quake': 'Quake', 'Lamp': 'Lamp', 'Hammer': 'MCHammer', 'Shovel': 'shovel', 'Flute': 'Flute', 'Bugnet': 'BugNet', 'Book': 'Mudora', 'Empty Bottle': 'EmptyBottle', 'Green Potion': 'GreenPotion', 'Somaria': 'somaria', 'Cape': 'Cape', 'Mirror': 'mirror', 'Boots': 'GoFast', 'Gloves': 'PowerGlove', 'Flippers': 'Flippers', 'Moon Pearl': 'MoonPearl', 'Shield': 'MirrorShield', 'Tunic': 'GreenTunic', 'Heart': 'ALotOfLove', 'Map': 'DungeonMap', 'Compass': 'DungeonCompass', 'Big Key': 'BigKey' } class ALTTPRDiscord(ALTTPR): def __init__(self, *args, **kwargs): super(ALTTPRDiscord, self).__init__(*args, **kwargs) if 'baseurl' not in kwargs: self.baseurl = os.environ.get("ALTTPR_BASEURL", 'https://alttpr.com') username = os.environ.get("ALTTPR_USERNAME", None) password = os.environ.get("ALTTPR_PASSWORD", None) self.auth = aiohttp.BasicAuth(login=username, password=password) if username and password else None @property def generated_goal(self): settings_list = [] meta = self.data['spoiler'].get('meta', {}) if meta.get('spoilers', 'off') == 'mystery': return 'mystery' settings = { 'mode': meta.get('mode', 'open'), 'weapons': meta.get('weapons', 'randomized'), 'goal': meta.get('goal', 'ganon'), 'logic': meta.get('logic', 'NoGlitches'), 'shuffle': meta.get('shuffle', 'none'), 'item_pool': meta.get('item_pool', 'normal'), 'dungeon_items': meta.get('dungeon_items', 'standard'), 'item_functionality': meta.get('item_functionality', 'normal'), 'entry_crystals_ganon': meta.get('entry_crystals_ganon', '7'), 'entry_crystals_tower': meta.get('entry_crystals_tower', '7'), 'enemizer.boss_shuffle': meta.get('enemizer.boss_shuffle', 'none'), 'enemizer.enemy_damage': meta.get('enemizer.enemy_damage', 'default'), 'enemizer.enemy_health': meta.get('enemizer.enemy_health', 'default'), 'enemizer.enemy_shuffle': meta.get('enemizer.enemy_shuffle', 'none'), } if not settings['item_pool'] in ['easy', 'normal'] or not settings['item_functionality'] in ['easy', 'normal']: settings_list.append('hard') elif settings['dungeon_items'] == 'full' and not settings['goal'] == 'dungeons': settings_list.append('normal') if is_enemizer(settings): settings_list.append("enemizer") if settings['weapons'] == 'swordless': settings_list.append('swordless') if not (settings['dungeon_items'] == 'full' and settings['goal'] == 'dungeons'): if settings['mode'] == 'open': if settings['shuffle'] == 'none' and not is_enemizer(settings) and (settings['item_pool'] == 'normal' and settings['item_functionality'] == 'normal') and not settings['weapons'] == 'swordless': settings_list.append('casual') settings_list.append('open') elif settings['mode'] == 'standard' and settings['weapons'] == 'randomized': settings_list.append('standard') elif settings['mode'] == 'standard' and settings['weapons'] == 'assured' and (settings['item_pool'] == 'normal' and settings['item_functionality'] == 'normal'): settings_list.append('casual') elif settings['mode'] == 'inverted': settings_list.append('inverted') elif settings['mode'] == 'retro': settings_list.append('retro') if settings['goal'] == 'OverworldGlitches': settings_list.append("overworld glitches") elif settings['goal'] == 'MajorGlitches': settings_list.append("major glitches") elif settings['goal'] == 'NoLogic': settings_list.append("no logic") if not settings['entry_crystals_tower'] == '7' or not settings['entry_crystals_ganon'] == '7': settings_list.append( f"{settings['entry_crystals_tower']}/{settings['entry_crystals_ganon']}") if settings['goal'] == 'ganon' and settings['shuffle'] != 'none': settings_list.append("defeat ganon") elif settings['goal'] == 'fast_ganon' and settings['shuffle'] == 'none': settings_list.append("fast ganon") elif settings['goal'] == 'dungeons': settings_list.append("all dungeons") elif settings['goal'] == 'triforce-hunt': settings_list.append("triforce hunt") elif settings['goal'] == 'pedestal': settings_list.append("pedestal") if settings['dungeon_items'] == 'mc': settings_list.append("mc") elif settings['dungeon_items'] == 'mcs': settings_list.append("mcs") elif settings['dungeon_items'] == 'full': settings_list.append("keysanity") if not settings['shuffle'] == 'none': settings_list.append("+ entrance shuffle") if meta.get('difficulty', None) == 'custom': settings_list.append("(customizer)") return " ".join(settings_list) async def embed(self, emojis=False, name=False, notes=False, include_settings=True): settings_map = await self.randomizer_settings() meta = self.data['spoiler'].get('meta', {}) embed = discord.Embed( title=meta.get('name', 'Requested Seed') if not name else name, description=html2markdown.convert( meta.get('notes', '')) if not notes else notes, color=discord.Colour.dark_red(), timestamp=datetime.datetime.fromisoformat(self.data['generated']) ) if include_settings: if meta.get('spoilers', 'off') == "mystery": embed.add_field( name='Mystery Game', value="No meta information is available for this game.", inline=False) embed.add_field( name='Item Placement', value=f"**Glitches Required:** {meta['logic']}", inline=True) else: if meta.get('special', False): embed.add_field( name='Festive Randomizer', value="This game is a festive randomizer. Spooky!", inline=False) embed.add_field( name='Settings', value=(f"**Item Placement:** {settings_map['item_placement'][meta['item_placement']]}\n" f"**Dungeon Items:** {settings_map['dungeon_items'][meta['dungeon_items']]}\n" f"**Accessibility:** {settings_map['accessibility'][meta['accessibility']]}\n" f"**World State:** {settings_map['world_state'][meta['mode']]}\n" f"**Hints:** {meta['hints']}\n" f"**Swords:** {settings_map['weapons'][meta['weapons']]}\n" f"**Item Pool:** {settings_map['item_pool'][meta['item_pool']]}\n" f"**Item Functionality:** {settings_map['item_functionality'][meta['item_functionality']]}" ), inline=False ) else: embed.add_field( name='Item Placement', value="**Glitches Required:** {logic}\n**Item Placement:** {item_placement}\n**Dungeon Items:** {dungeon_items}\n**Accessibility:** {accessibility}".format( logic=meta['logic'], item_placement=settings_map['item_placement'][meta['item_placement']], dungeon_items=settings_map['dungeon_items'][meta['dungeon_items']], accessibility=settings_map['accessibility'][meta['accessibility']], ), inline=True) embed.add_field( name='Goal', value="**Goal:** {goal}\n**Open Tower:** {tower}\n**Ganon Vulnerable:** {ganon}".format( goal=settings_map['goals'][meta['goal']], tower=meta.get( 'entry_crystals_tower', 'unknown'), ganon=meta.get( 'entry_crystals_ganon', 'unknown'), ), inline=True) embed.add_field( name='Gameplay', value="**World State:** {mode}\n**Entrance Shuffle:** {entrance}\n**Boss Shuffle:** {boss}\n**Enemy Shuffle:** {enemy}\n**Pot Shuffle:** {pot}\n**Hints:** {hints}".format( mode=settings_map['world_state'][meta['mode']], entrance=settings_map['entrance_shuffle'][meta['shuffle'] ] if 'shuffle' in meta else "None", boss=settings_map['boss_shuffle'][meta['enemizer.boss_shuffle']], enemy=settings_map['enemy_shuffle'][meta['enemizer.enemy_shuffle']], pot=meta.get('enemizer.pot_shuffle', 'off'), hints=meta['hints'] ), inline=True) embed.add_field( name='Difficulty', value="**Swords:** {weapons}\n**Item Pool:** {pool}\n**Item Functionality:** {functionality}\n**Enemy Damage:** {damage}\n**Enemy Health:** {health}".format( weapons=settings_map['weapons'][meta['weapons']], pool=settings_map['item_pool'][meta['item_pool']], functionality=settings_map['item_functionality'][meta['item_functionality']], damage=settings_map['enemy_damage'][meta['enemizer.enemy_damage']], health=settings_map['enemy_health'][meta['enemizer.enemy_health']], ), inline=True) embed.add_field(name='File Select Code', value=self.build_file_select_code( emojis=emojis), inline=False) embed.add_field(name='Permalink', value=self.url, inline=False) embed.set_footer(text="Generated", icon_url=discord.utils.get( emojis, name="SahasrahBot").url) return embed async def tournament_embed(self, emojis=False, name=False, notes=False, include_settings=True): settings_map = await self.randomizer_settings() meta = self.data['spoiler'].get('meta', {}) embed = discord.Embed( title=meta.get('name', 'Requested Seed') if not name else name, description=html2markdown.convert( meta.get('notes', '')) if not notes else notes, color=discord.Colour.dark_gold(), timestamp=datetime.datetime.fromisoformat(self.data['generated']) ) if include_settings: if meta.get('spoilers', 'off') == "mystery": embed.add_field( name='Mystery Game', value="No meta information is available for this game.", inline=False) embed.add_field( name='Item Placement', value=f"**Glitches Required:** {meta['logic']}", inline=True) else: if meta.get('special', False): embed.add_field( name='Festive Randomizer', value="This game is a festive randomizer. Spooky!", inline=False) embed.add_field( name='Settings', value=(f"**Item Placement:** {settings_map['item_placement'][meta['item_placement']]}\n" f"**Dungeon Items:** {settings_map['dungeon_items'][meta['dungeon_items']]}\n" f"**Accessibility:** {settings_map['accessibility'][meta['accessibility']]}\n" f"**World State:** {settings_map['world_state'][meta['mode']]}\n" f"**Hints:** {meta['hints']}\n" f"**Swords:** {settings_map['weapons'][meta['weapons']]}\n" f"**Item Pool:** {settings_map['item_pool'][meta['item_pool']]}\n" f"**Item Functionality:** {settings_map['item_functionality'][meta['item_functionality']]}" ), inline=False ) else: embed.add_field( name='Item Placement', value="**Glitches Required:** {logic}\n**Item Placement:** {item_placement}\n**Dungeon Items:** {dungeon_items}\n**Accessibility:** {accessibility}".format( logic=meta['logic'], item_placement=settings_map['item_placement'][meta['item_placement']], dungeon_items=settings_map['dungeon_items'][meta['dungeon_items']], accessibility=settings_map['accessibility'][meta['accessibility']], ), inline=True) embed.add_field( name='Goal', value="**Goal:** {goal}\n**Open Tower:** {tower}\n**Ganon Vulnerable:** {ganon}".format( goal=settings_map['goals'][meta['goal']], tower=meta.get( 'entry_crystals_tower', 'unknown'), ganon=meta.get( 'entry_crystals_ganon', 'unknown'), ), inline=True) embed.add_field( name='Gameplay', value="**World State:** {mode}\n**Entrance Shuffle:** {entrance}\n**Boss Shuffle:** {boss}\n**Enemy Shuffle:** {enemy}\n**Pot Shuffle:** {pot}\n**Hints:** {hints}".format( mode=settings_map['world_state'][meta['mode']], entrance=settings_map['entrance_shuffle'][meta['shuffle'] ] if 'shuffle' in meta else "None", boss=settings_map['boss_shuffle'][meta['enemizer.boss_shuffle']], enemy=settings_map['enemy_shuffle'][meta['enemizer.enemy_shuffle']], pot=meta.get('enemizer.pot_shuffle', 'off'), hints=meta['hints'] ), inline=True) embed.add_field( name='Difficulty', value="**Swords:** {weapons}\n**Item Pool:** {pool}\n**Item Functionality:** {functionality}\n**Enemy Damage:** {damage}\n**Enemy Health:** {health}".format( weapons=settings_map['weapons'][meta['weapons']], pool=settings_map['item_pool'][meta['item_pool']], functionality=settings_map['item_functionality'][meta['item_functionality']], damage=settings_map['enemy_damage'][meta['enemizer.enemy_damage']], health=settings_map['enemy_health'][meta['enemizer.enemy_health']], ), inline=True) embed.add_field(name='File Select Code', value=self.build_file_select_code( emojis=emojis), inline=False) embed.set_footer(text="Generated", icon_url=discord.utils.get( emojis, name="SahasrahBot").url) return embed def build_file_select_code(self, emojis=None): if emojis: emoji_list = list(map(lambda x: str(discord.utils.get( emojis, name=emoji_code_map[x])), self.code)) return ' '.join(emoji_list) + ' (' + '/'.join(self.code) + ')' else: return '/'.join(self.code) def is_enemizer(settings): return settings['enemizer.boss_shuffle'] != 'none' or settings['enemizer.enemy_shuffle'] != 'none' or settings['enemizer.enemy_damage'] != 'default' or settings['enemizer.enemy_health'] != 'default'
61d21cd5046836892b809cc0fc7f1a977605c227
5c2824ff58eb8a57d71b3c24873c4695c7c3a2ba
/Fundamentals_Final_Exam/03.Problem_Three.py
1e7d798f28b43c1d3e3e8e862cdef755df0fecb0
[]
no_license
svetoslavastoyanova/Python_Fundamentals_Mid_and_Final_Exams
e7ff6677bc762b24262019a0ebb0ed6a5952c50d
781e03fd5f540d55b41fbe6ef1d722d39ed62176
refs/heads/main
2023-04-17T17:35:38.894988
2021-05-02T12:28:26
2021-05-02T12:28:26
349,411,531
0
0
null
null
null
null
UTF-8
Python
false
false
389
py
line = input() minutes = int(input()) seconds = int(input()) total_time = 0 text = "" while line != "Finish": total_time = minutes*60 + seconds if total_time < 55: text = "Gold" elif 55 <= total_time <= 85: text = "Silver" elif 85 < total_time <= 120: text = "Bronze" line = input() minutes = int(input()) seconds = int(input())
16a3a8560d14738c480e32368a3b4c2b7f240037
fd474c0c0df7de6c09f802586068a2069222aadd
/reviewboard/reviews/evolutions/file_attachment_comment_extra_data.py
86e3d2fc9eb496b260de4b12d19e98ab74fb6221
[ "MIT" ]
permissive
pombredanne/reviewboard
a2970fa18cfff4b15adfe65fd0098287d73c650e
15f1d7236ec7a5cb4778ebfeb8b45d13a46ac71d
refs/heads/master
2022-03-09T22:24:19.951964
2022-02-09T07:12:23
2022-02-09T07:12:23
2,324,135
0
0
null
null
null
null
UTF-8
Python
false
false
180
py
from django_evolution.mutations import AddField from djblets.db.fields import JSONField MUTATIONS = [ AddField('FileAttachmentComment', 'extra_data', JSONField, null=True) ]
ec8da544cd59eff81c89e4f327ad9a081c8125d6
b45d33675b38fd3bd15fb2f73a29851a3cc4037d
/0x01-python-if_else_loops_functions/1-last_digit.py
6fd126b08396c288541339756d823b1a022c70f4
[]
no_license
angelah1994/holbertonschool-higher_level_programming-1
38b8ca1859af2ec08aa50a862ecf37cabf993b46
61ab83696ed45686456317c485f7adb7220654ff
refs/heads/master
2023-03-16T04:08:44.868909
2020-05-15T15:40:50
2020-05-15T15:40:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
429
py
#!/usr/bin/python3 import random number = random.randint(-10000, 10000) last = abs(number) % 10 if number < 10: last = last * -1 if last > 5: print('Last digit of {} is {} and is greater than 5'. format(number, last)) elif last < 6 and last != 0: str = 'Last digit of {} is {} and is less than 6 and not 0' print(str. format(number, last)) else: print('Last digit of {} is {} and is 0'. format(number, last))
e5ec7d80a9bd8ec0d31e8695546aa7bfb197c39d
209a7a4023a9a79693ec1f6e8045646496d1ea71
/COMP0016_2020_21_Team12-datasetsExperimentsAna/pwa/FADapp/pythonScripts/venv/Lib/site-packages/pandas/tests/arrays/boolean/test_reduction.py
7ac6c13a933d640f3b303c790f7220a60ada525b
[ "MIT" ]
permissive
anzhao920/MicrosoftProject15_Invictus
5e2347015411bbffbdf0ceb059df854661fb240c
15f44eebb09561acbbe7b6730dfadf141e4c166d
refs/heads/main
2023-04-16T13:24:39.332492
2021-04-27T00:47:13
2021-04-27T00:47:13
361,913,170
0
0
MIT
2021-04-26T22:41:56
2021-04-26T22:41:55
null
UTF-8
Python
false
false
2,077
py
import numpy as np import pytest import pandas as pd @pytest.fixture def data(): return pd.array( [True, False] * 4 + [np.nan] + [True, False] * 44 + [np.nan] + [True, False], dtype="boolean", ) @pytest.mark.parametrize( "values, exp_any, exp_all, exp_any_noskip, exp_all_noskip", [ ([True, pd.NA], True, True, True, pd.NA), ([False, pd.NA], False, False, pd.NA, False), ([pd.NA], False, True, pd.NA, pd.NA), ([], False, True, False, True), # GH-33253: all True / all False values buggy with skipna=False ([True, True], True, True, True, True), ([False, False], False, False, False, False), ], ) def test_any_all(values, exp_any, exp_all, exp_any_noskip, exp_all_noskip): # the methods return numpy scalars exp_any = pd.NA if exp_any is pd.NA else np.bool_(exp_any) exp_all = pd.NA if exp_all is pd.NA else np.bool_(exp_all) exp_any_noskip = pd.NA if exp_any_noskip is pd.NA else np.bool_(exp_any_noskip) exp_all_noskip = pd.NA if exp_all_noskip is pd.NA else np.bool_(exp_all_noskip) for con in [pd.array, pd.Series]: a = con(values, dtype="boolean") assert a.any() is exp_any assert a.all() is exp_all assert a.any(skipna=False) is exp_any_noskip assert a.all(skipna=False) is exp_all_noskip assert np.any(a.any()) is exp_any assert np.all(a.all()) is exp_all @pytest.mark.parametrize("dropna", [True, False]) def test_reductions_return_types(dropna, data, all_numeric_reductions): op = all_numeric_reductions s = pd.Series(data) if dropna: s = s.dropna() if op == "sum": assert isinstance(getattr(s, op)(), np.int_) elif op == "prod": assert isinstance(getattr(s, op)(), np.int_) elif op in ("min", "max"): assert isinstance(getattr(s, op)(), np.bool_) else: # "mean", "std", "var", "median", "kurt", "skew" assert isinstance(getattr(s, op)(), np.float64)
1029307e17ff37e33f2b89833d70f7879f9f5e45
60dbecafad0eb3baf67265ebda5c6230dfc99088
/old_plotter_files/CLUSTER_PLOT_NEW.py
d4f5332e0882a5300eb2ffad687c5550409349dd
[]
no_license
shanto268/NaSch_CA_Traffic_Flow_Analysis_Software
fbddadd70a70458b96a9a12c5a1c731d29266e34
d9065df9b8288790aa688bf5bf4c30750ba2889c
refs/heads/master
2020-09-20T01:47:41.301182
2020-05-17T03:28:20
2020-05-17T03:28:20
224,346,779
14
1
null
null
null
null
UTF-8
Python
false
false
3,044
py
# -*- coding: utf-8 -*- """ Created on Wed Sep 4 15:13:35 2019 @author: Owner """ import matplotlib.pyplot as plt import csv def plot1(fname): fn = fname nn = fn.split('.') fr = 'processed_' + str(fname) + '.txt' #dnewdata = "0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, " dnewdata = "dnew line" with open(fn, 'r') as f: lines = f.read().split('\n') #to delete line use "del lines[4]" #to replace line: for i in range(0,len(lines)): if (i % 100) == 0 or (i % 100) < 19 and i > 0: #or (i % 4) == 1 : lines[i] = dnewdata with open(fr,'w') as f: f.write('\n'.join(lines)) with open(fr, "r") as f: lines = f.readlines() with open(fr, "w") as f: for line in lines: if line.strip("\n") != "dnew line": f.write(line) with open(fn, "r+") as f: #fr change a = f.read() # with open(fr, "w+") as f: #fr change # f.write("0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n" + a) density = [] flow = [] updates = [] densityrv = [] flowrv = [] densityav = [] flowav = [] clnum = [] avgclsize = [] # clsize = [] with open(fr,'r') as csvfile: plots = csv.reader(csvfile, delimiter=',') for row in plots: density.append(float(row[0])) flow.append(float(row[1])) updates.append(float(row[2])) densityrv.append(float(row[3])) flowrv.append(float(row[4])) densityav.append(float(row[5])) flowav.append(float(row[6])) clnum.append(int(row[13])) avgclsize.append(float(row[14])) # clsize.append(float(row[11])) plt.plot(updates, clnum,':' ,linewidth =1, ) plt.xlabel("Timesteps") plt.ylabel("Number of Clusters") plt.title("Number of Clusters over time") plt.savefig("final/new/cluster_num_"+str(nn[0])+".pdf") plt.show() plt.plot(updates, avgclsize ,linewidth =1,) plt.xlabel("Timesteps") plt.ylabel("Average Size of Clusters") plt.title("Average Size of Clusters over time") plt.savefig("final/new/cluster_size_"+str(nn[0])+".pdf") plt.show() #r1m1 = plot1('type_aware_crit_density.txt') #r1m2 = plot1('type_unaware_crit_density.txt') #r2m1 = plot1('control_crit_density.txt') r = plot1('type_unaware_low_density_same_vf.txt') #show histograms: #cluster numbers at each time period #average size at each time period #size #combined graphs:
1f36a514482352b15f26407d72ee9ba6027dac94
781e2692049e87a4256320c76e82a19be257a05d
/all_data/exercism_data/python/anagram/09ab13ac53e54a21819b45d33c272459.py
30c00dfe1a41d1c24e13263850e15a2fbd439762
[]
no_license
itsolutionscorp/AutoStyle-Clustering
54bde86fe6dbad35b568b38cfcb14c5ffaab51b0
be0e2f635a7558f56c61bc0b36c6146b01d1e6e6
refs/heads/master
2020-12-11T07:27:19.291038
2016-03-16T03:18:00
2016-03-16T03:18:42
59,454,921
4
0
null
2016-05-23T05:40:56
2016-05-23T05:40:56
null
UTF-8
Python
false
false
394
py
def detect_anagrams(src, words): ret = [] t1 = sort_string(src) for wd in words: t2 = sort_string(wd) if t1 == t2 and src.lower() != wd.lower(): ret.append(wd) return ret def sort_string(st): ls = [] ret = '' for c in range(len(st)): ls.append((st[c]).lower()) ls.sort() for c in ls: ret += c return ret
92b8cb7b47b9ee887f6ae8c34067590019668fc1
77ec9edf40b34b48477a627d149b6c2054b98a93
/abc_188_d.py
07fb56df0536dddc7d23de1cb381a788cdc223e9
[]
no_license
junkhp/atcorder
fa4eeb204e3a4ac713001ab89c205039703abc88
028ddf7a39534d5907232c4576a03af79feb6073
refs/heads/main
2023-04-11T02:15:10.088883
2021-04-22T07:06:06
2021-04-22T07:06:06
313,284,147
0
0
null
null
null
null
UTF-8
Python
false
false
1,127
py
# -*- coding: utf-8 -*- def main(): n, C = map(int, input().split()) abc_list = [list(map(int, input().split())) for i in range(n)] keikaku_dict = {} day_set = set() for i, abc in enumerate(abc_list): a = abc[0] b = abc[1] + 1 if a in day_set: keikaku_dict[a].append([i, True]) else: keikaku_dict[a] = [[i, True]] day_set.add(a) if b in day_set: keikaku_dict[b].append([i, False]) else: keikaku_dict[b] = [[i, False]] day_set.add(b) day_set = sorted(day_set) day_cost = 0 day_cost_dict = {} for day in day_set: for xxx in keikaku_dict[day]: service = xxx[0] is_in = xxx[1] if is_in: day_cost += abc_list[service][2] else: day_cost -= abc_list[service][2] day_cost_dict[day] = day_cost ans = 0 for i in range(len(day_set) - 1): ans += min(C, day_cost_dict[day_set[i]]) * (day_set[i + 1] - day_set[i]) print(ans) if __name__ == '__main__': main()
0827574c78dbf6f8411927ec8c2f368c165aded5
135254b8c00935efd0efd33c708ce69470e23741
/Hard/335. Self Crossing.py
84c1eaf99e013d78a368297707b298a1dacf7618
[]
no_license
MinecraftDawn/LeetCode
4974e6f96612f01e4774ecd5c30bc42dfff79467
0404bcce27ff363430e6ab71dbc27a69055fd261
refs/heads/master
2021-06-19T05:50:08.000396
2021-06-14T05:57:09
2021-06-14T05:57:09
188,446,485
1
0
null
null
null
null
UTF-8
Python
false
false
689
py
# Reference: https://leetcode.com/problems/self-crossing/discuss/386087/Python-simple-case-easy-to-read class Solution: def isSelfCrossing(self, edge: list) -> bool: if len(edge) < 4: return False for i in range(3, len(edge)): if edge[i-1] <= edge[i-3] and edge[i] >= edge[i-2]: return True if i >= 4 and edge[i-1] == edge[i-3] and edge[i] + edge[i-4] >= edge[i-2]: return True if i >= 5 and edge[i-1] <= edge[i-3] and edge[i-3] <= edge[i-1] + edge[i-5] and edge[i] + edge[i-4] >= edge[i-2] and edge[i-4] <= edge[i-2]: return True return False
72603bc959fdf19473817fce9d1ad0b71955d359
650076fb94a086e15bdaa5bd2f51ce72df42dce4
/test/functional/test_framework/messages.py
49710adae056fb25980006084a7696e53a066492
[ "MIT" ]
permissive
c0de0x/ErosCore
548075fe85c46e2bb3946f94361689dbad692da8
a71767f7ee7105dc83973aac8ac60903b69459c9
refs/heads/master
2022-11-25T14:35:59.091923
2020-07-30T14:38:39
2020-07-30T14:38:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
39,420
py
#!/usr/bin/env python3 # Copyright (c) 2010 ArtForz -- public domain half-a-node # Copyright (c) 2012 Jeff Garzik # Copyright (c) 2010-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Bitcoin test framework primitive and message strcutures CBlock, CTransaction, CBlockHeader, CTxIn, CTxOut, etc....: data structures that should map to corresponding structures in bitcoin/primitives msg_block, msg_tx, msg_headers, etc.: data structures that represent network messages ser_*, deser_*: functions that handle serialization/deserialization.""" from codecs import encode import copy import hashlib from io import BytesIO import random import socket import struct import time from test_framework.siphash import siphash256 from test_framework.util import hex_str_to_bytes, bytes_to_hex_str MIN_VERSION_SUPPORTED = 60001 MY_VERSION = 70918 MY_SUBVERSION = b"/python-mininode-tester:0.0.3/" MY_RELAY = 1 # from version 70001 onwards, fRelay should be appended to version messages (BIP37) MAX_INV_SZ = 50000 MAX_BLOCK_BASE_SIZE = 1000000 COIN = 100000000 # 1 btc in satoshis NODE_NETWORK = (1 << 0) # NODE_GETUTXO = (1 << 1) NODE_BLOOM = (1 << 2) # Serialization/deserialization tools def sha256(s): return hashlib.new('sha256', s).digest() def ripemd160(s): return hashlib.new('ripemd160', s).digest() def hash256(s): return sha256(sha256(s)) def ser_compact_size(l): r = b"" if l < 253: r = struct.pack("B", l) elif l < 0x10000: r = struct.pack("<BH", 253, l) elif l < 0x100000000: r = struct.pack("<BI", 254, l) else: r = struct.pack("<BQ", 255, l) return r def deser_compact_size(f): nit = struct.unpack("<B", f.read(1))[0] if nit == 253: nit = struct.unpack("<H", f.read(2))[0] elif nit == 254: nit = struct.unpack("<I", f.read(4))[0] elif nit == 255: nit = struct.unpack("<Q", f.read(8))[0] return nit def deser_string(f): nit = deser_compact_size(f) return f.read(nit) def ser_string(s): return ser_compact_size(len(s)) + s def deser_uint256(f): r = 0 for i in range(8): t = struct.unpack("<I", f.read(4))[0] r += t << (i * 32) return r def ser_uint256(u): rs = b"" for i in range(8): rs += struct.pack("<I", u & 0xFFFFFFFF) u >>= 32 return rs def ser_uint64(u): rs = b"" for i in range(2): rs += struct.pack("<I", u & 0xFFFFFFFF) u >>= 32 return rs def uint256_from_str(s): r = 0 t = struct.unpack("<IIIIIIII", s[:32]) for i in range(8): r += t[i] << (i * 32) return r def uint256_from_compact(c): nbytes = (c >> 24) & 0xFF v = (c & 0xFFFFFF) << (8 * (nbytes - 3)) return v def deser_vector(f, c): nit = deser_compact_size(f) r = [] for i in range(nit): t = c() t.deserialize(f) r.append(t) return r # ser_function_name: Allow for an alternate serialization function on the # entries in the vector (we use this for serializing the vector of transactions # for a witness block). def ser_vector(l, ser_function_name=None): r = ser_compact_size(len(l)) for i in l: if ser_function_name: r += getattr(i, ser_function_name)() else: r += i.serialize() return r def deser_uint256_vector(f): nit = deser_compact_size(f) r = [] for i in range(nit): t = deser_uint256(f) r.append(t) return r def ser_uint256_vector(l): r = ser_compact_size(len(l)) for i in l: r += ser_uint256(i) return r def deser_string_vector(f): nit = deser_compact_size(f) r = [] for i in range(nit): t = deser_string(f) r.append(t) return r def ser_string_vector(l): r = ser_compact_size(len(l)) for sv in l: r += ser_string(sv) return r # Deserialize from a hex string representation (eg from RPC) def FromHex(obj, hex_string): obj.deserialize(BytesIO(hex_str_to_bytes(hex_string))) return obj # Convert a binary-serializable object to hex (eg for submission via RPC) def ToHex(obj): return bytes_to_hex_str(obj.serialize()) # Objects that map to bitcoind objects, which can be serialized/deserialized class CAddress(): def __init__(self): self.nServices = 1 self.pchReserved = b"\x00" * 10 + b"\xff" * 2 self.ip = "0.0.0.0" self.port = 0 def deserialize(self, f): self.nServices = struct.unpack("<Q", f.read(8))[0] self.pchReserved = f.read(12) self.ip = socket.inet_ntoa(f.read(4)) self.port = struct.unpack(">H", f.read(2))[0] def serialize(self): r = b"" r += struct.pack("<Q", self.nServices) r += self.pchReserved r += socket.inet_aton(self.ip) r += struct.pack(">H", self.port) return r def __repr__(self): return "CAddress(nServices=%i ip=%s port=%i)" % (self.nServices, self.ip, self.port) class CInv(): typemap = { 0: "MSG_ERROR", 1: "MSG_TX", 2: "MSG_BLOCK", 3: "MSG_FILTERED_BLOCK", 4: "MSG_TXLOCK_REQUEST", 5: "MSG_TXLOCK_VOTE", 6: "MSG_SPORK", 7: "MSG_MASTERNODE_WINNER", 8: "MSG_MASTERNODE_SCANNING_ERROR", 9: "MSG_BUDGET_VOTE", 10: "MSG_BUDGET_PROPOSAL", 11: "MSG_BUDGET_FINALIZED", 12: "MSG_BUDGET_FINALIZED_VOTE", 13: "MSG_MASTERNODE_QUORUM", 14: "MSG_MASTERNODE_QUORUM", 15: "MSG_MASTERNODE_ANNOUNCE", 16: "MSG_MASTERNODE_PING", 17: "MSG_DSTX", 18: "MSG_PUBCOINS", 19: "MSG_GENWIT", 20: "MSG_ACC_VALUE" } def __init__(self, t=0, h=0): self.type = t self.hash = h def deserialize(self, f): self.type = struct.unpack("<i", f.read(4))[0] self.hash = deser_uint256(f) def serialize(self): r = b"" r += struct.pack("<i", self.type) r += ser_uint256(self.hash) return r def __repr__(self): return "CInv(type=%s hash=%064x)" \ % (self.typemap[self.type], self.hash) class CBlockLocator(): def __init__(self): self.nVersion = MY_VERSION self.vHave = [] def deserialize(self, f): self.nVersion = struct.unpack("<i", f.read(4))[0] self.vHave = deser_uint256_vector(f) def serialize(self): r = b"" r += struct.pack("<i", self.nVersion) r += ser_uint256_vector(self.vHave) return r def __repr__(self): return "CBlockLocator(nVersion=%i vHave=%s)" \ % (self.nVersion, repr(self.vHave)) class COutPoint(): def __init__(self, hash=0, n=0): self.hash = hash self.n = n def deserialize(self, f): self.hash = deser_uint256(f) self.n = struct.unpack("<I", f.read(4))[0] def serialize(self): r = b"" r += ser_uint256(self.hash) r += struct.pack("<I", self.n) return r def __repr__(self): return "COutPoint(hash=%064x n=%i)" % (self.hash, self.n) class CTxIn(): def __init__(self, outpoint=None, scriptSig=b"", nSequence=0): if outpoint is None: self.prevout = COutPoint() else: self.prevout = outpoint self.scriptSig = scriptSig self.nSequence = nSequence def deserialize(self, f): self.prevout = COutPoint() self.prevout.deserialize(f) self.scriptSig = deser_string(f) self.nSequence = struct.unpack("<I", f.read(4))[0] def serialize(self): r = b"" r += self.prevout.serialize() r += ser_string(self.scriptSig) r += struct.pack("<I", self.nSequence) return r def __repr__(self): return "CTxIn(prevout=%s scriptSig=%s nSequence=%i)" \ % (repr(self.prevout), bytes_to_hex_str(self.scriptSig), self.nSequence) class CTxOut(): def __init__(self, nValue=0, scriptPubKey=b""): self.nValue = nValue self.scriptPubKey = scriptPubKey def deserialize(self, f): self.nValue = struct.unpack("<q", f.read(8))[0] self.scriptPubKey = deser_string(f) def serialize(self): r = b"" r += struct.pack("<q", self.nValue) r += ser_string(self.scriptPubKey) return r def __repr__(self): return "CTxOut(nValue=%i.%08i scriptPubKey=%s)" \ % (self.nValue // COIN, self.nValue % COIN, bytes_to_hex_str(self.scriptPubKey)) class CTransaction(): def __init__(self, tx=None): if tx is None: self.nVersion = 1 self.vin = [] self.vout = [] self.nLockTime = 0 self.sha256 = None self.hash = None else: self.nVersion = tx.nVersion self.vin = copy.deepcopy(tx.vin) self.vout = copy.deepcopy(tx.vout) self.nLockTime = tx.nLockTime self.sha256 = tx.sha256 self.hash = tx.hash def deserialize(self, f): self.nVersion = struct.unpack("<i", f.read(4))[0] self.vin = deser_vector(f, CTxIn) flags = 0 if len(self.vin) == 0: flags = struct.unpack("<B", f.read(1))[0] # Not sure why flags can't be zero, but this # matches the implementation in bitcoind if (flags != 0): self.vin = deser_vector(f, CTxIn) self.vout = deser_vector(f, CTxOut) else: self.vout = deser_vector(f, CTxOut) self.nLockTime = struct.unpack("<I", f.read(4))[0] self.sha256 = None self.hash = None def serialize_without_witness(self): r = b"" r += struct.pack("<i", self.nVersion) r += ser_vector(self.vin) r += ser_vector(self.vout) r += struct.pack("<I", self.nLockTime) return r # Regular serialization is with witness -- must explicitly # call serialize_without_witness to exclude witness data. def serialize(self): return self.serialize_without_witness() # Recalculate the txid (transaction hash without witness) def rehash(self): self.sha256 = None self.calc_sha256() # We will only cache the serialization without witness in # self.sha256 and self.hash -- those are expected to be the txid. def calc_sha256(self, with_witness=False): if self.sha256 is None: self.sha256 = uint256_from_str(hash256(self.serialize_without_witness())) self.hash = encode(hash256(self.serialize_without_witness())[::-1], 'hex_codec').decode('ascii') def is_valid(self): self.calc_sha256() for tout in self.vout: if tout.nValue < 0 or tout.nValue > 21000000 * COIN: return False return True def __repr__(self): return "CTransaction(nVersion=%i vin=%s vout=%s nLockTime=%i)" \ % (self.nVersion, repr(self.vin), repr(self.vout), self.nLockTime) class CBlockHeader(): def __init__(self, header=None): if header is None: self.set_null() else: self.nVersion = header.nVersion self.hashPrevBlock = header.hashPrevBlock self.hashMerkleRoot = header.hashMerkleRoot self.nTime = header.nTime self.nBits = header.nBits self.nNonce = header.nNonce self.nAccumulatorCheckpoint = header.nAccumulatorCheckpoint self.sha256 = header.sha256 self.hash = header.hash self.calc_sha256() def set_null(self): self.nVersion = 4 self.hashPrevBlock = 0 self.hashMerkleRoot = 0 self.nTime = 0 self.nBits = 0 self.nNonce = 0 self.nAccumulatorCheckpoint = 0 self.sha256 = None self.hash = None def deserialize(self, f): self.nVersion = struct.unpack("<i", f.read(4))[0] self.hashPrevBlock = deser_uint256(f) self.hashMerkleRoot = deser_uint256(f) self.nTime = struct.unpack("<I", f.read(4))[0] self.nBits = struct.unpack("<I", f.read(4))[0] self.nNonce = struct.unpack("<I", f.read(4))[0] self.nAccumulatorCheckpoint = deser_uint256(f) self.sha256 = None self.hash = None def serialize(self): r = b"" r += struct.pack("<i", self.nVersion) r += ser_uint256(self.hashPrevBlock) r += ser_uint256(self.hashMerkleRoot) r += struct.pack("<I", self.nTime) r += struct.pack("<I", self.nBits) r += struct.pack("<I", self.nNonce) r += ser_uint256(self.nAccumulatorCheckpoint) return r def calc_sha256(self): if self.sha256 is None: r = b"" r += struct.pack("<i", self.nVersion) r += ser_uint256(self.hashPrevBlock) r += ser_uint256(self.hashMerkleRoot) r += struct.pack("<I", self.nTime) r += struct.pack("<I", self.nBits) r += struct.pack("<I", self.nNonce) r += ser_uint256(self.nAccumulatorCheckpoint) self.sha256 = uint256_from_str(hash256(r)) self.hash = encode(hash256(r)[::-1], 'hex_codec').decode('ascii') def rehash(self): self.sha256 = None self.calc_sha256() return self.sha256 # ERS Uniqueness def get_uniqueness(self, prevout): r = b"" r += struct.pack("<I", prevout.n) r += ser_uint256(prevout.hash) return r def solve_stake(self, prevouts, isModifierV2=False): target0 = uint256_from_compact(self.nBits) loop = True while loop: for prevout in prevouts: nvalue, txBlockTime, hashStake = prevouts[prevout] target = int(target0 * nvalue / 100) % 2**256 data = b"" if isModifierV2: data += ser_uint256(0) else: data += ser_uint64(0) #data += ser_uint64(stakeModifier) data += struct.pack("<I", txBlockTime) # prevout for zPoS is serial hashes hex strings if isinstance(prevout, COutPoint): data += self.get_uniqueness(prevout) else: data += ser_uint256(uint256_from_str(bytes.fromhex(hashStake)[::-1])) data += struct.pack("<I", self.nTime) posHash = uint256_from_str(hash256(data)) if posHash <= target: self.prevoutStake = prevout loop = False break if loop: self.nTime += 1 return True def __repr__(self): return "CBlockHeader(nVersion=%i hashPrevBlock=%064x hashMerkleRoot=%064x nTime=%s nBits=%08x nNonce=%08x)" \ % (self.nVersion, self.hashPrevBlock, self.hashMerkleRoot, time.ctime(self.nTime), self.nBits, self.nNonce) class CBlock(CBlockHeader): def __init__(self, header=None): super(CBlock, self).__init__(header) self.vtx = [] def deserialize(self, f): super(CBlock, self).deserialize(f) self.vtx = deser_vector(f, CTransaction) def serialize(self, with_witness=False): r = b"" r += super(CBlock, self).serialize() if with_witness: r += ser_vector(self.vtx, "serialize_with_witness") else: r += ser_vector(self.vtx, "serialize_without_witness") if hasattr(self, 'vchBlockSig'): r += ser_string(self.vchBlockSig) return r # Calculate the merkle root given a vector of transaction hashes @classmethod def get_merkle_root(cls, hashes): while len(hashes) > 1: newhashes = [] for i in range(0, len(hashes), 2): i2 = min(i+1, len(hashes)-1) newhashes.append(hash256(hashes[i] + hashes[i2])) hashes = newhashes return uint256_from_str(hashes[0]) def calc_merkle_root(self): hashes = [] for tx in self.vtx: tx.calc_sha256() hashes.append(ser_uint256(tx.sha256)) return self.get_merkle_root(hashes) def calc_witness_merkle_root(self): # For witness root purposes, the hash of the # coinbase, with witness, is defined to be 0...0 hashes = [ser_uint256(0)] for tx in self.vtx[1:]: # Calculate the hashes with witness data hashes.append(ser_uint256(tx.calc_sha256(True))) return self.get_merkle_root(hashes) def is_valid(self): self.calc_sha256() target = uint256_from_compact(self.nBits) if self.sha256 > target: return False for tx in self.vtx: if not tx.is_valid(): return False if self.calc_merkle_root() != self.hashMerkleRoot: return False return True def solve(self): self.rehash() target = uint256_from_compact(self.nBits) while self.sha256 > target: self.nNonce += 1 self.rehash() def sign_block(self, key, low_s=True): data = b"" data += struct.pack("<i", self.nVersion) data += ser_uint256(self.hashPrevBlock) data += ser_uint256(self.hashMerkleRoot) data += struct.pack("<I", self.nTime) data += struct.pack("<I", self.nBits) data += struct.pack("<I", self.nNonce) data += ser_uint256(self.nAccumulatorCheckpoint) sha256NoSig = hash256(data) self.vchBlockSig = key.sign(sha256NoSig, low_s=low_s) def __repr__(self): return "CBlock(nVersion=%i hashPrevBlock=%064x hashMerkleRoot=%064x nTime=%s nBits=%08x nNonce=%08x vtx=%s)" \ % (self.nVersion, self.hashPrevBlock, self.hashMerkleRoot, time.ctime(self.nTime), self.nBits, self.nNonce, repr(self.vtx)) class PrefilledTransaction(): def __init__(self, index=0, tx = None): self.index = index self.tx = tx def deserialize(self, f): self.index = deser_compact_size(f) self.tx = CTransaction() self.tx.deserialize(f) def serialize(self, with_witness=True): r = b"" r += ser_compact_size(self.index) if with_witness: r += self.tx.serialize_with_witness() else: r += self.tx.serialize_without_witness() return r def serialize_without_witness(self): return self.serialize(with_witness=False) def serialize_with_witness(self): return self.serialize(with_witness=True) def __repr__(self): return "PrefilledTransaction(index=%d, tx=%s)" % (self.index, repr(self.tx)) # This is what we send on the wire, in a cmpctblock message. class P2PHeaderAndShortIDs(): def __init__(self): self.header = CBlockHeader() self.nonce = 0 self.shortids_length = 0 self.shortids = [] self.prefilled_txn_length = 0 self.prefilled_txn = [] def deserialize(self, f): self.header.deserialize(f) self.nonce = struct.unpack("<Q", f.read(8))[0] self.shortids_length = deser_compact_size(f) for i in range(self.shortids_length): # shortids are defined to be 6 bytes in the spec, so append # two zero bytes and read it in as an 8-byte number self.shortids.append(struct.unpack("<Q", f.read(6) + b'\x00\x00')[0]) self.prefilled_txn = deser_vector(f, PrefilledTransaction) self.prefilled_txn_length = len(self.prefilled_txn) # When using version 2 compact blocks, we must serialize with_witness. def serialize(self, with_witness=False): r = b"" r += self.header.serialize() r += struct.pack("<Q", self.nonce) r += ser_compact_size(self.shortids_length) for x in self.shortids: # We only want the first 6 bytes r += struct.pack("<Q", x)[0:6] if with_witness: r += ser_vector(self.prefilled_txn, "serialize_with_witness") else: r += ser_vector(self.prefilled_txn, "serialize_without_witness") return r def __repr__(self): return "P2PHeaderAndShortIDs(header=%s, nonce=%d, shortids_length=%d, shortids=%s, prefilled_txn_length=%d, prefilledtxn=%s" % (repr(self.header), self.nonce, self.shortids_length, repr(self.shortids), self.prefilled_txn_length, repr(self.prefilled_txn)) # P2P version of the above that will use witness serialization (for compact # block version 2) class P2PHeaderAndShortWitnessIDs(P2PHeaderAndShortIDs): def serialize(self): return super(P2PHeaderAndShortWitnessIDs, self).serialize(with_witness=True) # Calculate the BIP 152-compact blocks shortid for a given transaction hash def calculate_shortid(k0, k1, tx_hash): expected_shortid = siphash256(k0, k1, tx_hash) expected_shortid &= 0x0000ffffffffffff return expected_shortid # This version gets rid of the array lengths, and reinterprets the differential # encoding into indices that can be used for lookup. class HeaderAndShortIDs(): def __init__(self, p2pheaders_and_shortids = None): self.header = CBlockHeader() self.nonce = 0 self.shortids = [] self.prefilled_txn = [] self.use_witness = False if p2pheaders_and_shortids != None: self.header = p2pheaders_and_shortids.header self.nonce = p2pheaders_and_shortids.nonce self.shortids = p2pheaders_and_shortids.shortids last_index = -1 for x in p2pheaders_and_shortids.prefilled_txn: self.prefilled_txn.append(PrefilledTransaction(x.index + last_index + 1, x.tx)) last_index = self.prefilled_txn[-1].index def to_p2p(self): if self.use_witness: ret = P2PHeaderAndShortWitnessIDs() else: ret = P2PHeaderAndShortIDs() ret.header = self.header ret.nonce = self.nonce ret.shortids_length = len(self.shortids) ret.shortids = self.shortids ret.prefilled_txn_length = len(self.prefilled_txn) ret.prefilled_txn = [] last_index = -1 for x in self.prefilled_txn: ret.prefilled_txn.append(PrefilledTransaction(x.index - last_index - 1, x.tx)) last_index = x.index return ret def get_siphash_keys(self): header_nonce = self.header.serialize() header_nonce += struct.pack("<Q", self.nonce) hash_header_nonce_as_str = sha256(header_nonce) key0 = struct.unpack("<Q", hash_header_nonce_as_str[0:8])[0] key1 = struct.unpack("<Q", hash_header_nonce_as_str[8:16])[0] return [ key0, key1 ] # Version 2 compact blocks use wtxid in shortids (rather than txid) def initialize_from_block(self, block, nonce=0, prefill_list = [0], use_witness = False): self.header = CBlockHeader(block) self.nonce = nonce self.prefilled_txn = [ PrefilledTransaction(i, block.vtx[i]) for i in prefill_list ] self.shortids = [] self.use_witness = use_witness [k0, k1] = self.get_siphash_keys() for i in range(len(block.vtx)): if i not in prefill_list: tx_hash = block.vtx[i].sha256 if use_witness: tx_hash = block.vtx[i].calc_sha256(with_witness=True) self.shortids.append(calculate_shortid(k0, k1, tx_hash)) def __repr__(self): return "HeaderAndShortIDs(header=%s, nonce=%d, shortids=%s, prefilledtxn=%s" % (repr(self.header), self.nonce, repr(self.shortids), repr(self.prefilled_txn)) class BlockTransactionsRequest(): def __init__(self, blockhash=0, indexes = None): self.blockhash = blockhash self.indexes = indexes if indexes != None else [] def deserialize(self, f): self.blockhash = deser_uint256(f) indexes_length = deser_compact_size(f) for i in range(indexes_length): self.indexes.append(deser_compact_size(f)) def serialize(self): r = b"" r += ser_uint256(self.blockhash) r += ser_compact_size(len(self.indexes)) for x in self.indexes: r += ser_compact_size(x) return r # helper to set the differentially encoded indexes from absolute ones def from_absolute(self, absolute_indexes): self.indexes = [] last_index = -1 for x in absolute_indexes: self.indexes.append(x-last_index-1) last_index = x def to_absolute(self): absolute_indexes = [] last_index = -1 for x in self.indexes: absolute_indexes.append(x+last_index+1) last_index = absolute_indexes[-1] return absolute_indexes def __repr__(self): return "BlockTransactionsRequest(hash=%064x indexes=%s)" % (self.blockhash, repr(self.indexes)) class BlockTransactions(): def __init__(self, blockhash=0, transactions = None): self.blockhash = blockhash self.transactions = transactions if transactions != None else [] def deserialize(self, f): self.blockhash = deser_uint256(f) self.transactions = deser_vector(f, CTransaction) def serialize(self, with_witness=True): r = b"" r += ser_uint256(self.blockhash) if with_witness: r += ser_vector(self.transactions, "serialize_with_witness") else: r += ser_vector(self.transactions, "serialize_without_witness") return r def __repr__(self): return "BlockTransactions(hash=%064x transactions=%s)" % (self.blockhash, repr(self.transactions)) class CPartialMerkleTree(): def __init__(self): self.nTransactions = 0 self.vHash = [] self.vBits = [] self.fBad = False def deserialize(self, f): self.nTransactions = struct.unpack("<i", f.read(4))[0] self.vHash = deser_uint256_vector(f) vBytes = deser_string(f) self.vBits = [] for i in range(len(vBytes) * 8): self.vBits.append(vBytes[i//8] & (1 << (i % 8)) != 0) def serialize(self): r = b"" r += struct.pack("<i", self.nTransactions) r += ser_uint256_vector(self.vHash) vBytesArray = bytearray([0x00] * ((len(self.vBits) + 7)//8)) for i in range(len(self.vBits)): vBytesArray[i // 8] |= self.vBits[i] << (i % 8) r += ser_string(bytes(vBytesArray)) return r def __repr__(self): return "CPartialMerkleTree(nTransactions=%d, vHash=%s, vBits=%s)" % (self.nTransactions, repr(self.vHash), repr(self.vBits)) class CMerkleBlock(): def __init__(self): self.header = CBlockHeader() self.txn = CPartialMerkleTree() def deserialize(self, f): self.header.deserialize(f) self.txn.deserialize(f) def serialize(self): r = b"" r += self.header.serialize() r += self.txn.serialize() return r def __repr__(self): return "CMerkleBlock(header=%s, txn=%s)" % (repr(self.header), repr(self.txn)) # Objects that correspond to messages on the wire class msg_version(): command = b"version" def __init__(self): self.nVersion = MY_VERSION self.nServices = NODE_NETWORK self.nTime = int(time.time()) self.addrTo = CAddress() self.addrFrom = CAddress() self.nNonce = random.getrandbits(64) self.strSubVer = MY_SUBVERSION self.nStartingHeight = -1 self.nRelay = MY_RELAY def deserialize(self, f): self.nVersion = struct.unpack("<i", f.read(4))[0] if self.nVersion == 10300: self.nVersion = 300 self.nServices = struct.unpack("<Q", f.read(8))[0] self.nTime = struct.unpack("<q", f.read(8))[0] self.addrTo = CAddress() self.addrTo.deserialize(f) if self.nVersion >= 106: self.addrFrom = CAddress() self.addrFrom.deserialize(f) self.nNonce = struct.unpack("<Q", f.read(8))[0] self.strSubVer = deser_string(f) else: self.addrFrom = None self.nNonce = None self.strSubVer = None self.nStartingHeight = None if self.nVersion >= 209: self.nStartingHeight = struct.unpack("<i", f.read(4))[0] else: self.nStartingHeight = None if self.nVersion >= 70001: # Relay field is optional for version 70001 onwards try: self.nRelay = struct.unpack("<b", f.read(1))[0] except: self.nRelay = 0 else: self.nRelay = 0 def serialize(self): r = b"" r += struct.pack("<i", self.nVersion) r += struct.pack("<Q", self.nServices) r += struct.pack("<q", self.nTime) r += self.addrTo.serialize() r += self.addrFrom.serialize() r += struct.pack("<Q", self.nNonce) r += ser_string(self.strSubVer) r += struct.pack("<i", self.nStartingHeight) r += struct.pack("<b", self.nRelay) return r def __repr__(self): return 'msg_version(nVersion=%i nServices=%i nTime=%s addrTo=%s addrFrom=%s nNonce=0x%016X strSubVer=%s nStartingHeight=%i nRelay=%i)' \ % (self.nVersion, self.nServices, time.ctime(self.nTime), repr(self.addrTo), repr(self.addrFrom), self.nNonce, self.strSubVer, self.nStartingHeight, self.nRelay) class msg_verack(): command = b"verack" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return b"" def __repr__(self): return "msg_verack()" class msg_addr(): command = b"addr" def __init__(self): self.addrs = [] def deserialize(self, f): self.addrs = deser_vector(f, CAddress) def serialize(self): return ser_vector(self.addrs) def __repr__(self): return "msg_addr(addrs=%s)" % (repr(self.addrs)) class msg_inv(): command = b"inv" def __init__(self, inv=None): if inv is None: self.inv = [] else: self.inv = inv def deserialize(self, f): self.inv = deser_vector(f, CInv) def serialize(self): return ser_vector(self.inv) def __repr__(self): return "msg_inv(inv=%s)" % (repr(self.inv)) class msg_getdata(): command = b"getdata" def __init__(self, inv=None): self.inv = inv if inv != None else [] def deserialize(self, f): self.inv = deser_vector(f, CInv) def serialize(self): return ser_vector(self.inv) def __repr__(self): return "msg_getdata(inv=%s)" % (repr(self.inv)) class msg_getblocks(): command = b"getblocks" def __init__(self): self.locator = CBlockLocator() self.hashstop = 0 def deserialize(self, f): self.locator = CBlockLocator() self.locator.deserialize(f) self.hashstop = deser_uint256(f) def serialize(self): r = b"" r += self.locator.serialize() r += ser_uint256(self.hashstop) return r def __repr__(self): return "msg_getblocks(locator=%s hashstop=%064x)" \ % (repr(self.locator), self.hashstop) class msg_tx(): command = b"tx" def __init__(self, tx=CTransaction()): self.tx = tx def deserialize(self, f): self.tx.deserialize(f) def serialize(self): return self.tx.serialize_without_witness() def __repr__(self): return "msg_tx(tx=%s)" % (repr(self.tx)) class msg_witness_tx(msg_tx): def serialize(self): return self.tx.serialize_with_witness() class msg_block(): command = b"block" def __init__(self, block=None): if block is None: self.block = CBlock() else: self.block = block def deserialize(self, f): self.block.deserialize(f) def serialize(self): return self.block.serialize(with_witness=False) def __repr__(self): return "msg_block(block=%s)" % (repr(self.block)) # for cases where a user needs tighter control over what is sent over the wire # note that the user must supply the name of the command, and the data class msg_generic(): def __init__(self, command, data=None): self.command = command self.data = data def serialize(self): return self.data def __repr__(self): return "msg_generic()" class msg_witness_block(msg_block): def serialize(self): r = self.block.serialize(with_witness=True) return r class msg_getaddr(): command = b"getaddr" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return b"" def __repr__(self): return "msg_getaddr()" class msg_ping(): command = b"ping" def __init__(self, nonce=0): self.nonce = nonce def deserialize(self, f): self.nonce = struct.unpack("<Q", f.read(8))[0] def serialize(self): r = b"" r += struct.pack("<Q", self.nonce) return r def __repr__(self): return "msg_ping(nonce=%08x)" % self.nonce class msg_pong(): command = b"pong" def __init__(self, nonce=0): self.nonce = nonce def deserialize(self, f): self.nonce = struct.unpack("<Q", f.read(8))[0] def serialize(self): r = b"" r += struct.pack("<Q", self.nonce) return r def __repr__(self): return "msg_pong(nonce=%08x)" % self.nonce class msg_mempool(): command = b"mempool" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return b"" def __repr__(self): return "msg_mempool()" class msg_sendheaders(): command = b"sendheaders" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return b"" def __repr__(self): return "msg_sendheaders()" # getheaders message has # number of entries # vector of hashes # hash_stop (hash of last desired block header, 0 to get as many as possible) class msg_getheaders(): command = b"getheaders" def __init__(self): self.locator = CBlockLocator() self.hashstop = 0 def deserialize(self, f): self.locator = CBlockLocator() self.locator.deserialize(f) self.hashstop = deser_uint256(f) def serialize(self): r = b"" r += self.locator.serialize() r += ser_uint256(self.hashstop) return r def __repr__(self): return "msg_getheaders(locator=%s, stop=%064x)" \ % (repr(self.locator), self.hashstop) # headers message has # <count> <vector of block headers> class msg_headers(): command = b"headers" def __init__(self, headers=None): self.headers = headers if headers is not None else [] def deserialize(self, f): # comment in bitcoind indicates these should be deserialized as blocks blocks = deser_vector(f, CBlock) for x in blocks: self.headers.append(CBlockHeader(x)) def serialize(self): blocks = [CBlock(x) for x in self.headers] return ser_vector(blocks) def __repr__(self): return "msg_headers(headers=%s)" % repr(self.headers) class msg_reject(): command = b"reject" REJECT_MALFORMED = 1 def __init__(self): self.message = b"" self.code = 0 self.reason = b"" self.data = 0 def deserialize(self, f): self.message = deser_string(f) self.code = struct.unpack("<B", f.read(1))[0] self.reason = deser_string(f) if (self.code != self.REJECT_MALFORMED and (self.message == b"block" or self.message == b"tx")): self.data = deser_uint256(f) def serialize(self): r = ser_string(self.message) r += struct.pack("<B", self.code) r += ser_string(self.reason) if (self.code != self.REJECT_MALFORMED and (self.message == b"block" or self.message == b"tx")): r += ser_uint256(self.data) return r def __repr__(self): return "msg_reject: %s %d %s [%064x]" \ % (self.message, self.code, self.reason, self.data) class msg_feefilter(): command = b"feefilter" def __init__(self, feerate=0): self.feerate = feerate def deserialize(self, f): self.feerate = struct.unpack("<Q", f.read(8))[0] def serialize(self): r = b"" r += struct.pack("<Q", self.feerate) return r def __repr__(self): return "msg_feefilter(feerate=%08x)" % self.feerate class msg_sendcmpct(): command = b"sendcmpct" def __init__(self): self.announce = False self.version = 1 def deserialize(self, f): self.announce = struct.unpack("<?", f.read(1))[0] self.version = struct.unpack("<Q", f.read(8))[0] def serialize(self): r = b"" r += struct.pack("<?", self.announce) r += struct.pack("<Q", self.version) return r def __repr__(self): return "msg_sendcmpct(announce=%s, version=%lu)" % (self.announce, self.version) class msg_cmpctblock(): command = b"cmpctblock" def __init__(self, header_and_shortids = None): self.header_and_shortids = header_and_shortids def deserialize(self, f): self.header_and_shortids = P2PHeaderAndShortIDs() self.header_and_shortids.deserialize(f) def serialize(self): r = b"" r += self.header_and_shortids.serialize() return r def __repr__(self): return "msg_cmpctblock(HeaderAndShortIDs=%s)" % repr(self.header_and_shortids) class msg_getblocktxn(): command = b"getblocktxn" def __init__(self): self.block_txn_request = None def deserialize(self, f): self.block_txn_request = BlockTransactionsRequest() self.block_txn_request.deserialize(f) def serialize(self): r = b"" r += self.block_txn_request.serialize() return r def __repr__(self): return "msg_getblocktxn(block_txn_request=%s)" % (repr(self.block_txn_request)) class msg_blocktxn(): command = b"blocktxn" def __init__(self): self.block_transactions = BlockTransactions() def deserialize(self, f): self.block_transactions.deserialize(f) def serialize(self): r = b"" r += self.block_transactions.serialize(with_witness=False) return r def __repr__(self): return "msg_blocktxn(block_transactions=%s)" % (repr(self.block_transactions)) class msg_witness_blocktxn(msg_blocktxn): def serialize(self): r = b"" r += self.block_transactions.serialize(with_witness=True) return r
10f7e3c347eb30004151f1556f490b053246fe90
d42b771f64bc2185a8c0dca0f5bcfa5a2e13c5ed
/users/migrations/0004_auto_20210401_1122.py
c6031beb0bb860b42025e95c43890b7f126098f1
[]
no_license
bgy1060/Daily_Project
4b38de59c09f5e3f82211a9860e1f32a8ef46b37
bcc955bddd9941f2bc54f7577c26c1ddc6b36a48
refs/heads/main
2023-05-15T17:26:56.858438
2021-06-17T05:59:10
2021-06-17T05:59:10
353,864,798
1
1
null
null
null
null
UTF-8
Python
false
false
446
py
# Generated by Django 3.1.7 on 2021-04-01 02:22 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('users', '0003_customuser_username'), ] operations = [ migrations.RemoveField( model_name='customuser', name='is_staff', ), migrations.RemoveField( model_name='customuser', name='is_superuser', ), ]
6b0e78d50451bb8ccc11aab0a05214bf732c8bdb
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2479/60586/261474.py
a9f57d33b28f100b2c88c064fd239af6152dd305
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
369
py
def exam4(): t=int(input()) res=[] for i in range(t): a=list(input()) b=list(input()) for item in a: if b.count(item)==0: res.append(item) for item in b: if a.count(item)==0: res.append(item) res.sort() res=list(set(res)) s="".join(res) print(s) exam4()
210c32bffdfcbe2fea8b31746088ce7e6896645f
2a39fe8bd203531c9bcdb470d19b80beac665eae
/read_best.py
380979ab3e9af8575ef0e733e5486bb67e30d4e4
[]
no_license
davidharvey1986/lenstoolTools
7bf11af1a38700503a731c6fe7e83fdc92bf58c1
85bcf729603d34341f5f41c57c4e233b08055baa
refs/heads/master
2021-09-08T14:29:52.695461
2018-03-10T13:54:50
2018-03-10T13:54:50
124,657,727
0
0
null
null
null
null
UTF-8
Python
false
false
7,896
py
from lensing.lenstool import potentiels from write_par import * import csv as csv import ipdb as pdb def read_best( filename='best.par', pot_type='AUTO', verbose=False, return_limits=False, return_image=False): ''' Read the input into lenstool, the .par file and read it into a python class It assumes that the input file is best.par however this can be changed with the keyword RETURNS : 2 Rec arrays - run_mode : contains the reference position of the halo - potentiel_list : a n halo list of the potentiels found in the recon For more information on these rec arrays see write_par.py and potentiels.py BUGS: It does require the output best.par to be in a paticular order (the one output from lenstool) UDPATE : CAN NOW READ INPUT PAR FILES (25/05/2016) DRH ''' best_obj = open( filename, "rb") run_mode = runmode() mode = 'Comment' pot = -1 ind=0 iLine=0 comment_flag = 0 limit_list = [] limit_flag = 0 z_m_limit = [] for iline in best_obj: line = iline.splitlines()[0].split('\t') if verbose: print line if (line[0] != 'runmode') & (comment_flag ==0): continue #if the length of the line is 1 then it is a key word if line[0] == 'runmode': mode='runmode' comment_flag = 1 if line[0] == 'grille': mode='grille' if line[0] == 'image': mode='image' ret_image = image() if (len(line) == 1): if line[0].strip()[0] == '#': if verbose: print 'SKIPPING',line continue if line[0].split()[0] == 'potentiel': mode='potentiel' pot +=1 pot_name = line[0].split()[1] if line[0].split()[0] == 'limit': mode='limit' limit_list.append(limits.get_limit( potentiel_list[pot]['profil']['int'] )) limit_flag = 1 if len(line) > 1: if line[1].strip()[0] == '#': if verbose: print 'SKIPPING ',line continue if line[1].strip() != 'end': if (mode == 'runmode') : option=line[1].split() keys = run_mode[option[0]].dtype.names for iKey in xrange(len(keys)): if iKey < len(option): run_mode[option[0]][keys[iKey]] = option[iKey] else: continue if (mode == 'grille'): option=line[1].split() #If the filename is the best.par then #the number of lenses is the nlentille #if the input par file then tihs is the nlens_opt if (option[0] == 'nlentille') | (option[0] == 'nlens'): nlens = np.int(option[1]) #If I assume pot is NFW use this #otherwise get the potentiel type automatically if pot_type == 'NFW': potentiel_list = [ potentiels.nfw() for i in xrange( nlens ) ] else: if pot_type == 'AUTO': potentiel_list = get_potential_list( best_file = filename ) if (mode == 'image'): option=line[1].split() if option[0] == 'sigposArcsec': option[0] = 'sigpos_arcsec' if (option[0] == 'z_m_limit'): dtype = [('name', object), ('im_label', float), ('int', np.int), ('lo', float), ('hi', float), ('res', float)] iz_m_limit = np.array(('z_m_limit '+str(option[1]), option[2],option[3], option[4], option[5], option[6]), dtype=dtype) ret_image[ 'z_m_limit '+str(option[1]) ] = \ iz_m_limit else: image_keys = ret_image[option[0]].dtype.names for i in xrange( 1, len(image_keys) ): ret_image[ option[0] ][image_keys[i]] = option[i] if (mode == 'potentiel'): if pot >= nlens: continue option = line[1].split() try: data_type = potentiel_list[pot][option[0]].dtype.names[1] potentiel_list[pot][option[0]][data_type] = \ np.array(option[1]).astype(data_type) except: if verbose == True: print option[0],' does not exist in potentiel' else: pass ra_halo = run_mode['reference']['ra'] - \ potentiel_list[pot]['x_centre']['float']/3600./\ np.cos(run_mode['reference']['dec']*np.pi/180.) dec_halo = run_mode['reference']['dec'] + \ potentiel_list[pot]['y_centre']['float']/3600. potentiel_list[pot]['ra'] = \ np.array(('ra', ra_halo), dtype=[('name', object), ('float', float)]) potentiel_list[pot]['dec'] = \ np.array(('dec', dec_halo), dtype=[('name', object), ('float', float)]) potentiel_list[pot]['identity'] =\ np.array(('identity', pot_name), dtype=[('name', object), ('str', object)]) if (mode == 'limit'): option = line[1].split() try: data_type = limit_list[pot][option[0]].dtype.names[1] limit_list[pot][option[0]][data_type] = \ np.array(option[1]).astype(data_type) except: if verbose == True: print option[0],' does not exist in potentiel' else: pass else: mode = 'end' if return_limits: if limit_flag == 1: return run_mode, potentiel_list, limit_list else: print 'NO LIMIT SECTION > IS THIS A BEST.PAR?' return 0 elif return_image: return ret_image else: return run_mode, potentiel_list def get_potential_list( best_file='best.par', verbose=False ): ''' Run this script to get the list of potentials which may not be necessarily NFW Currently only valid for NFW or PIEMD since these are the only ones in limit.py and potentiels.py ''' run_mode, pots = read_best( best_file, pot_type='NFW', verbose=verbose ) return [ potentiels.get_profile(iPot['profil']['int']) for iPot in pots ] def get_limit_list( pots ): return [ limits.get_limit( iPot['profil']['int']) for iPot in pots ]
d952e3aa3f2702ee77fba5e59c2ae950a3d54637
9f5fcff2513f2d78f27e5313698dcc47fce1e754
/Experiment/RL_EA_search/graphnas/rl_trainer.py
98698e1f65a8d86c9fc924e46fecd052d959f4cb
[ "Apache-2.0" ]
permissive
ncucjm/notebook
c2495f790e9fc2ca55c1c29a8eaa2dc1bfe7463f
7271a0d1b10cdd6298e223c7ff150d4df031aa76
refs/heads/master
2023-07-20T05:55:48.946687
2021-01-27T09:12:19
2021-01-27T09:12:19
202,633,012
0
0
null
2023-07-06T21:28:29
2019-08-16T00:58:45
Jupyter Notebook
UTF-8
Python
false
false
14,605
py
from collections import deque import os import glob import torch import numpy as np import scipy.signal import graphnas.utils.tensor_utils as utils from graphnas_variants.macro_graphnas.pyg.pyg_gnn_model_manager import GeoCitationManager import time logger = utils.get_logger() def discount(x, amount): return scipy.signal.lfilter([1], [1, -amount], x[::-1], axis=0)[::-1] history = [] def scale(value, last_k=10, scale_value=1): ''' scale value into [-scale_value, scale_value], according last_k history ''' max_reward = np.max(history[-last_k:]) if max_reward == 0: return value return scale_value / max_reward * value def _get_optimizer(name): if name.lower() == 'sgd': optim = torch.optim.SGD elif name.lower() == 'adam': optim = torch.optim.Adam return optim def experiment_data_save(name,time_list,acc_list): path = path_get()[1] with open(path+"/"+name, "w") as f: f.write(str(time_list)) f.write("\n"+str(acc_list)) print("the ", name, " have written") def path_get(): # 当前文件目录 current_path = os.path.abspath('') # 当前文件夹父目录 father_path = os.path.abspath(os.path.dirname(current_path)) # corpus_path = os.path.join(father_path, corpus) return father_path, current_path class RL_Trainer(object): def __init__(self, args): self.args = args self.controller_step = 0 # counter for controller self.cuda = args.cuda self.epoch = 0 self.start_epoch = 0 self.max_length = self.args.shared_rnn_max_length self.with_retrain = False self.submodel_manager = None self.controller = None self.build_model() # build controller and sub-model self.RL_train_time = [] self.RL_search_time = [] self.RL_train_acc = [] self.RL_search_acc = [] controller_optimizer = _get_optimizer(self.args.controller_optim) self.controller_optim = controller_optimizer(self.controller.parameters(), lr=self.args.controller_lr) if self.args.mode == "derive": self.load_model() def build_model(self): self.args.share_param = False self.with_retrain = True self.args.shared_initial_step = 0 if self.args.search_mode == "macro": # generate model description in macro way (generate entire network description) from graphnas.search_space import MacroSearchSpace search_space_cls = MacroSearchSpace() self.search_space = search_space_cls.get_search_space() self.action_list = search_space_cls.generate_action_list(self.args.layers_of_child_model) # build RNN controller from graphnas.graphnas_controller import SimpleNASController self.controller = SimpleNASController(self.args, action_list=self.action_list, search_space=self.search_space, cuda=self.args.cuda) if self.args.dataset in ["Cora", "Citeseer", "Pubmed"]: # implements based on pyg self.submodel_manager = GeoCitationManager(self.args) if self.cuda: self.controller.cuda() def form_gnn_info(self, gnn): if self.args.search_mode == "micro": actual_action = {} if self.args.predict_hyper: actual_action["action"] = gnn[:-4] actual_action["hyper_param"] = gnn[-4:] else: actual_action["action"] = gnn actual_action["hyper_param"] = [0.005, 0.8, 5e-5, 128] return actual_action return gnn def train(self, action_list): model_path = "/home/jerry/experiment/RL_nas/graphnas/Citeseer" # Training the controller if not os.listdir(model_path):# 判断保存controler模型的文件夹是否为空,为空返回False,反之为Ture self.train_controller() print("*" * 35, "using controller search the initialize population", "*" * 35) populations, accuracies = self.derive(self.args.population_size, action_list) print("*" * 35, "the search DONE", "*" * 35) self.save_model() else: self.load_model() # 每次加载step序号最大controler模型search print("*" * 35, "using controller search the initialize population", "*" * 35) populations, accuracies = self.derive(self.args.population_size, action_list) print("*" * 35, "the search DONE", "*" * 35) return populations, accuracies def derive(self, sample_num, action_list): if sample_num is None and self.args.derive_from_history: return self.derive_from_history() else: if sample_num is None: sample_num = self.args.derive_num_sample gnn_list, _, entropies = self.controller.sample(sample_num, with_details=True) accuracies = [] epoch = 0 for action in gnn_list: once_RL_search_start_time = time.time() gnn = self.form_gnn_info(action) reward = self.submodel_manager.test_with_param(gnn, format=self.args.format, with_retrain=self.with_retrain) acc_score = reward[1] accuracies.append(acc_score) once_RL_search_end_time = time.time() print("the", epoch, "epcoh controller train time: ", once_RL_search_end_time - once_RL_search_start_time, 's') if epoch == 0: self.RL_search_time.append(once_RL_search_start_time) self.RL_search_time.append(once_RL_search_end_time) self.RL_search_acc.append(acc_score) else: self.RL_search_time.append(once_RL_search_end_time) self.RL_search_acc.append(acc_score) epoch += 1 father_path = path_get()[0] experiment_data_save("controler_search.txt", self.RL_search_time, self.RL_search_acc) print("all RL search time list: ", self.RL_search_time) print("all RL search acc list: ", self.RL_search_acc) for individual, ind_acc in zip(gnn_list, accuracies): print("individual:", individual, " val_score:", ind_acc) # gnn_structure 基因编码 population = [] for gnn_structure in gnn_list: i = 0 single = [] for operator, action_name in zip(gnn_structure, action_list): if i == 9: operator = 8 i += 1 single.append(self.search_space[action_name].index(operator)) population.append(single) return population, accuracies def save_model(self): torch.save(self.controller.state_dict(), self.controller_path) torch.save(self.controller_optim.state_dict(), self.controller_optimizer_path) logger.info(f'[*] SAVED: {self.controller_path}') epochs, shared_steps, controller_steps = self.get_saved_models_info() for epoch in epochs[:-self.args.max_save_num]: paths = glob.glob( os.path.join(self.args.dataset, f'*_epoch{epoch}_*.pth')) for path in paths: utils.remove_file(path) def load_model(self): epochs, shared_steps, controller_steps = self.get_saved_models_info() if len(epochs) == 0: logger.info(f'[!] No checkpoint found in {self.args.dataset}...') return self.epoch = self.start_epoch = max(epochs) self.controller_step = max(controller_steps) self.controller.load_state_dict( torch.load(self.controller_path)) self.controller_optim.load_state_dict( torch.load(self.controller_optimizer_path)) logger.info(f'[*] LOADED: {self.controller_path}') def get_reward(self, gnn_list, entropies, hidden): """ Computes the reward of a single sampled model on validation data. """ if not isinstance(entropies, np.ndarray): entropies = entropies.data.cpu().numpy() if isinstance(gnn_list, dict): gnn_list = [gnn_list] if isinstance(gnn_list[0], list) or isinstance(gnn_list[0], dict): pass else: gnn_list = [gnn_list] # when structure_list is one structure reward_list = [] for gnn in gnn_list: gnn = self.form_gnn_info(gnn) reward = self.submodel_manager.test_with_param(gnn, format=self.args.format, with_retrain=self.with_retrain) if reward is None: # cuda error hanppened reward = 0 else: rewards = reward[0]#奖励计算正确 reward_list.append(rewards) acc_validation = reward[1] if self.args.entropy_mode == 'reward': rewards = reward_list + self.args.entropy_coeff * entropies elif self.args.entropy_mode == 'regularizer': rewards = reward_list * np.ones_like(entropies) else: raise NotImplementedError(f'Unkown entropy mode: {self.args.entropy_mode}') return rewards, hidden, acc_validation def train_controller(self): """ Train controller to find better structure. """ print("*" * 35, "training controller", "*" * 35) model = self.controller model.train() baseline = None adv_history = [] entropy_history = [] reward_history = [] hidden = self.controller.init_hidden(self.args.batch_size) total_loss = 0 for step in range(self.args.controller_max_step): #contraller训练一次的时间 once_controller_train_start_time = time.time() # sample graphnas structure_list, log_probs, entropies = self.controller.sample(with_details=True) # calculate reward np_entropies = entropies.data.cpu().numpy() results = self.get_reward(structure_list, np_entropies, hidden) torch.cuda.empty_cache() if results: # has reward rewards, hidden, acc = results else: continue # discount if 1 > self.args.discount > 0: rewards = discount(rewards, self.args.discount) reward_history.extend(rewards) entropy_history.extend(np_entropies) # moving average baseline if baseline is None: baseline = rewards else: decay = self.args.ema_baseline_decay baseline = decay * baseline + (1 - decay) * rewards adv = rewards - baseline history.append(adv) adv = scale(adv, scale_value=0.5) adv_history.extend(adv) adv = utils.get_variable(adv, self.cuda, requires_grad=False) # policy loss loss = -log_probs * adv if self.args.entropy_mode == 'regularizer': loss -= self.args.entropy_coeff * entropies loss = loss.sum() # or loss.mean() # update self.controller_optim.zero_grad() loss.backward() if self.args.controller_grad_clip > 0: torch.nn.utils.clip_grad_norm(model.parameters(), self.args.controller_grad_clip) self.controller_optim.step() total_loss += utils.to_item(loss.data) self.controller_step += 1 torch.cuda.empty_cache() once_controller_train_end_time = time.time() print("the", step, "epcoh controller train time: ", once_controller_train_end_time-once_controller_train_start_time, "s") if step == 0: self.RL_train_time.append(once_controller_train_start_time) self.RL_train_time.append(once_controller_train_end_time) self.RL_train_acc.append(acc) else: self.RL_train_time.append(once_controller_train_end_time) self.RL_train_acc.append(acc) print("all RL train time list: ", self.RL_train_time) print("all RL train acc list: ", self.RL_train_acc) print("*" * 35, "training controller over", "*" * 35) experiment_data_save("controler_train.txt", self.RL_train_time, self.RL_train_acc) def evaluate(self, gnn): """ Evaluate a structure on the validation set. """ self.controller.eval() gnn = self.form_gnn_info(gnn) results = self.submodel_manager.retrain(gnn, format=self.args.format) if results: reward, scores = results else: return logger.info(f'eval | {gnn} | reward: {reward:8.2f} | scores: {scores:8.2f}') @property def model_info_filename(self): return f"{self.args.dataset}_{self.args.search_mode}_{self.args.format}_results.txt" @property def controller_path(self): return f'{self.args.dataset}/controller_epoch{self.epoch}_step{self.controller_step}.pth' @property def controller_optimizer_path(self): return f'{self.args.dataset}/controller_epoch{self.epoch}_step{self.controller_step}_optimizer.pth' def get_saved_models_info(self): paths = glob.glob(os.path.join(self.args.dataset, '*.pth')) paths.sort() def get_numbers(items, delimiter, idx, replace_word, must_contain=''): return list(set([int( name.split(delimiter)[idx].replace(replace_word, '')) for name in items if must_contain in name])) basenames = [os.path.basename(path.rsplit('.', 1)[0]) for path in paths] epochs = get_numbers(basenames, '_', 1, 'epoch') shared_steps = get_numbers(basenames, '_', 2, 'step', 'shared') controller_steps = get_numbers(basenames, '_', 2, 'step', 'controller') epochs.sort() shared_steps.sort() controller_steps.sort() return epochs, shared_steps, controller_steps
b61968dae81932acb65d39767e1e265e0cacf305
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_167/ch50_2019_06_11_13_14_47_474417.py
72022271fba4966682e6c89d23ed329447de3c78
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
193
py
def numero_no_indice (lista): l=[] i=0 posicao=0 while i < len(lista): if i[lista]==posicao: i+=1 posicao+=1 x.append(i) return l
52aaa46352ec022d7349aab054fec390a4a8e785
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03359/s399632677.py
4b9e4ef5080c28b6522f683bf717ce679011d8cb
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
411
py
import sys read = sys.stdin.read readline = sys.stdin.readline readlines = sys.stdin.readlines sys.setrecursionlimit(10 ** 9) INF = 1 << 60 MOD = 1000000007 def main(): a, b = map(int, readline().split()) ans = 0 for i in range(1, 13): if i < a: ans += 1 elif i == a and i <= b: ans += 1 print(ans) return if __name__ == '__main__': main()
a51a38a2e71d34f8aa6a2e82026c584eeacddb12
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03363/s286998192.py
091f166035f13606310d3cb4f31a2b7bd57a4859
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
297
py
from collections import defaultdict n = int(input()) li_a = list(map(int, input().split())) s = [0] * (n+1) dd = defaultdict(lambda:0) for i in range(n): s[i+1] += s[i] + li_a[i] for i in range(n+1): dd[s[i]] += 1 ans = 0 for key in dd: ans += (dd[key]*dd[key] - dd[key])//2 print(ans)
cc2fb3795c9dafa0f738c912004965c3b7b25f9a
ab4f0df599159b2c3929c24b12e2766718efdacb
/pyplan_engine/classes/CustomImports.py
e28736de5115b4624154fca75a5693ce79bf591c
[ "MIT" ]
permissive
jorgedouglas71/pyplan-ide
f01ec438f727ee0dea01b0d265155b49a26ccdb8
5ad0e4a2592b5f2716ff680018f717c65de140f5
refs/heads/master
2020-09-25T03:10:01.201707
2019-12-04T15:39:55
2019-12-04T15:39:55
225,904,173
0
0
MIT
2019-12-04T15:57:06
2019-12-04T15:57:05
null
UTF-8
Python
false
false
1,083
py
custom = { } defaults = { "abs": abs, "range": range, "abs": abs, "dict": dict, "min": min, "all": all, "hex": hex, "next": next, "slice": slice, "any": any, "divmod": divmod, "object": object, "sorted": sorted, "ascii": ascii, "enumerate": enumerate, "input": input, "oct": oct, "bin": bin, "int": int, "str": str, "bool": bool, "isinstance": isinstance, "ord": ord, "sum": sum, "bytearray": bytearray, "filter": filter, "issubclass": issubclass, "pow": pow, "bytes": bytes, "float": float, "iter": iter, "tuple": tuple, "callable": callable, "format": format, "len": len, "property": property, "type": type, "chr": chr, "frozenset": frozenset, "list": list, "range": range, "locals": locals, "repr": repr, "zip": zip, "map": map, "reversed": reversed, "complex": complex, "max": max, "round": round } imports = {**custom, **defaults} # bypass for tests imports["bypass"] = True
991ef0d671ac96b7e9c8992788bc4c9aaefb75ee
eb7b84b70b335e913aa7d6bf9effba3034810e27
/FirstApp_Flask/employeeInfo.py
73e6fe9ffb1ca4a70d0a2d3879854a6a22310f0c
[]
no_license
chavhanpunamchand/flask
ccc27c9909799bcc4fa9208b49c478942d569eb4
840c7299eb5cfc708f8a6cbefe8955115af9b179
refs/heads/master
2023-02-21T13:57:43.012794
2021-01-28T11:09:41
2021-01-28T11:09:41
326,448,594
0
0
null
null
null
null
UTF-8
Python
false
false
1,008
py
class Employee: def __init__(self,eid,ename,eage,egen,ecity,esalary,email,erole,eskil,ehobs): self.empid=eid self.empName=ename self.empAge=eage self.eGender=egen self.empCity=ecity self.empSalary=esalary self.empEmail=email self.empRole=erole self.empSkill=eskil self.emphobs=ehobs def __str__(self): return f" EmpId : {self.empid} " \ f" Name :{self.empName} " \ f" Age :{self.eGender}" \ f" City :{self.empCity}" \ f" Salary:{self.empSalary}" \ f" Role:{self.empRole} " \ f" Email:{self.empEmail}" \ f" Skill:{self.empSkill}" \ f" Hobies:{self.emphobs} " def __repr__(self): return self # if __name__ == '__main__': # s1=Employee(101,'Punamchand',27,'M','Pune',25000,'[email protected]','SSE','Python,Java','Cricket,Hocky') # print(s1)
4834fd49bfc14729688e48ddef0a083f66fbdcb8
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02659/s688514282.py
9e2ccbf9b9d040bce71fcaff7dcf3be04de6d05d
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
104
py
import math from decimal import * a,b=map(str,input().split()) ans=(Decimal(a)*Decimal(b))//1 print(ans)
54d596a8f7abeaa708ce12829210e4b01ed2cd1c
9b5d0b7d7c9cdaef2851b675292e5eef651ab257
/database/compiled_templates/root/history_common.mako.py
10318451f22158193738b9a03b46af42ae5c7016
[ "CC-BY-2.5", "MIT" ]
permissive
msGenDev/Yeps-EURAC
392fd497a6891a5a22204b236c26dcd133793f21
7b679ea17ba294893cc560354d759cfd61c0b450
refs/heads/master
2021-01-16T21:49:26.499975
2010-04-05T17:52:50
2010-04-05T17:52:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
14,425
py
from mako import runtime, filters, cache UNDEFINED = runtime.UNDEFINED __M_dict_builtin = dict __M_locals_builtin = locals _magic_number = 5 _modified_time = 1262455474.7263279 _template_filename=u'templates/root/history_common.mako' _template_uri=u'root/history_common.mako' _template_cache=cache.Cache(__name__, _modified_time) _source_encoding=None _exports = ['render_dataset'] def render_body(context,**pageargs): context.caller_stack._push_frame() try: __M_locals = __M_dict_builtin(pageargs=pageargs) n_ = context.get('n_', UNDEFINED) __M_writer = context.writer() # SOURCE LINE 1 _=n_ __M_locals.update(__M_dict_builtin([(__M_key, __M_locals_builtin()[__M_key]) for __M_key in ['_'] if __M_key in __M_locals_builtin()])) __M_writer(u'\n') # SOURCE LINE 136 __M_writer(u'\n') return '' finally: context.caller_stack._pop_frame() def render_render_dataset(context,data,hid,show_deleted_on_refresh=False,user_owns_dataset=True): context.caller_stack._push_frame() try: h = context.get('h', UNDEFINED) app = context.get('app', UNDEFINED) def render_dataset(data,hid,show_deleted_on_refresh=False,user_owns_dataset=True): return render_render_dataset(context,data,hid,show_deleted_on_refresh,user_owns_dataset) request = context.get('request', UNDEFINED) len = context.get('len', UNDEFINED) enumerate = context.get('enumerate', UNDEFINED) trans = context.get('trans', UNDEFINED) _ = context.get('_', UNDEFINED) __M_writer = context.writer() # SOURCE LINE 3 __M_writer(u'\n <a name="') # SOURCE LINE 4 __M_writer(unicode(trans.security.encode_id( data.id ))) __M_writer(u'"></a>\n ') # SOURCE LINE 5 if data.state in ['no state','',None]: data_state = "queued" else: data_state = data.state user, roles = trans.get_user_and_roles() # SOURCE LINE 11 __M_writer(u'\n') # SOURCE LINE 12 if not trans.user_is_admin() and not trans.app.security_agent.can_access_dataset( roles, data.dataset ): # SOURCE LINE 13 __M_writer(u' <div class="historyItemWrapper historyItem historyItem-') __M_writer(unicode(data_state)) __M_writer(u' historyItem-noPermission" id="historyItem-') __M_writer(unicode(data.id)) __M_writer(u'">\n') # SOURCE LINE 14 else: # SOURCE LINE 15 __M_writer(u' <div class="historyItemWrapper historyItem historyItem-') __M_writer(unicode(data_state)) __M_writer(u'" id="historyItem-') __M_writer(unicode(data.id)) __M_writer(u'">\n') # SOURCE LINE 17 __M_writer(u' \n') # SOURCE LINE 18 if data.deleted: # SOURCE LINE 19 __M_writer(u' <div class="warningmessagesmall">\n <strong>This dataset has been deleted. Click <a href="') # SOURCE LINE 20 __M_writer(unicode(h.url_for( controller='dataset', action='undelete', id=data.id ))) __M_writer(u'" class="historyItemUndelete" id="historyItemUndeleter-') __M_writer(unicode(data.id)) __M_writer(u'" target="galaxy_history">here</a> to undelete.</strong>\n </div>\n') # SOURCE LINE 23 __M_writer(u'\n') # SOURCE LINE 25 __M_writer(u'\t<div style="overflow: hidden;" class="historyItemTitleBar">\t\t\n\t <div class="historyItemButtons">\n') # SOURCE LINE 27 if data_state == "upload": # SOURCE LINE 31 __M_writer(u' \t <img src="') __M_writer(unicode(h.url_for('/static/images/eye_icon_grey.png'))) __M_writer(u'" width=\'16\' height=\'16\' alt=\'display data\' title=\'display data\' class=\'button display\' border=\'0\'>\n') # SOURCE LINE 32 if user_owns_dataset: # SOURCE LINE 33 __M_writer(u' \t <img src="') __M_writer(unicode(h.url_for('/static/images/pencil_icon_grey.png'))) __M_writer(u'" width=\'16\' height=\'16\' alt=\'edit attributes\' title=\'edit attributes\' class=\'button edit\' border=\'0\'>\n') # SOURCE LINE 35 else: # SOURCE LINE 36 __M_writer(u' \t <a class="icon-button display" title="display data" href="') __M_writer(unicode(h.url_for( controller='dataset', action='display', dataset_id=trans.security.encode_id( data.id ), preview=True, filename='' ))) __M_writer(u'" target="galaxy_main"></a>\n') # SOURCE LINE 37 if user_owns_dataset: # SOURCE LINE 38 __M_writer(u' \t <a class="icon-button edit" title="edit attributes" href="') __M_writer(unicode(h.url_for( controller='root', action='edit', id=data.id ))) __M_writer(u'" target="galaxy_main"></a>\n') # SOURCE LINE 41 if user_owns_dataset: # SOURCE LINE 42 __M_writer(u'\t <a class="icon-button delete" title="delete" href="') __M_writer(unicode(h.url_for( action='delete', id=data.id, show_deleted_on_refresh=show_deleted_on_refresh ))) __M_writer(u'" id="historyItemDeleter-') __M_writer(unicode(data.id)) __M_writer(u'"></a>\n') # SOURCE LINE 44 __M_writer(u'\t </div>\n\t <span class="state-icon"></span>\n\t <span class="historyItemTitle"><b>') # SOURCE LINE 46 __M_writer(unicode(hid)) __M_writer(u': ') __M_writer(unicode(data.display_name())) __M_writer(u'</b></span>\n\t</div>\n \n') # SOURCE LINE 50 __M_writer(u' \n <div id="info') # SOURCE LINE 51 __M_writer(unicode(data.id)) __M_writer(u'" class="historyItemBody">\n') # SOURCE LINE 52 if not trans.user_is_admin() and not trans.app.security_agent.can_access_dataset( roles, data.dataset ): # SOURCE LINE 53 __M_writer(u' <div>You do not have permission to view this dataset.</div>\n') # SOURCE LINE 54 elif data_state == "upload": # SOURCE LINE 55 __M_writer(u' <div>Dataset is uploading</div>\n') # SOURCE LINE 56 elif data_state == "queued": # SOURCE LINE 57 __M_writer(u' <div>') __M_writer(unicode(_('Job is waiting to run'))) __M_writer(u'</div>\n') # SOURCE LINE 58 elif data_state == "running": # SOURCE LINE 59 __M_writer(u' <div>') __M_writer(unicode(_('Job is currently running'))) __M_writer(u'</div>\n') # SOURCE LINE 60 elif data_state == "error": # SOURCE LINE 61 __M_writer(u' <div>\n An error occurred running this job: <i>') # SOURCE LINE 62 __M_writer(unicode(data.display_info().strip())) __M_writer(u'</i>\n </div>\n\t\t<div>\n\t\t <a href="') # SOURCE LINE 65 __M_writer(unicode(h.url_for( controller='dataset', action='errors', id=data.id ))) __M_writer(u'" target="galaxy_main">report this error</a>\n\t\t | <a href="') # SOURCE LINE 66 __M_writer(unicode(h.url_for( controller='tool_runner', action='rerun', id=data.id ))) __M_writer(u'" target="galaxy_main">rerun</a>\n\t\t</div>\n') # SOURCE LINE 68 elif data_state == "discarded": # SOURCE LINE 69 __M_writer(u' <div>\n The job creating this dataset was cancelled before completion.\n </div>\n') # SOURCE LINE 72 elif data_state == 'setting_metadata': # SOURCE LINE 73 __M_writer(u' <div>') __M_writer(unicode(_('Metadata is being Auto-Detected.'))) __M_writer(u'</div>\n') # SOURCE LINE 74 elif data_state == "empty": # SOURCE LINE 75 __M_writer(u' <div>') __M_writer(unicode(_('No data: '))) __M_writer(u'<i>') __M_writer(unicode(data.display_info())) __M_writer(u'</i></div>\n') # SOURCE LINE 76 elif data_state == "ok": # SOURCE LINE 77 __M_writer(u' <div>\n ') # SOURCE LINE 78 __M_writer(unicode(data.blurb)) __M_writer(u',\n format: <span class="') # SOURCE LINE 79 __M_writer(unicode(data.ext)) __M_writer(u'">') __M_writer(unicode(data.ext)) __M_writer(u'</span>, \n database:\n') # SOURCE LINE 81 if data.dbkey == '?': # SOURCE LINE 82 __M_writer(u' <a href="') __M_writer(unicode(h.url_for( controller='root', action='edit', id=data.id ))) __M_writer(u'" target="galaxy_main">') __M_writer(unicode(_(data.dbkey))) __M_writer(u'</a>\n') # SOURCE LINE 83 else: # SOURCE LINE 84 __M_writer(u' <span class="') __M_writer(unicode(data.dbkey)) __M_writer(u'">') __M_writer(unicode(_(data.dbkey))) __M_writer(u'</span>\n') # SOURCE LINE 86 __M_writer(u' </div>\n <div class="info">') # SOURCE LINE 87 __M_writer(unicode(_('Info: '))) __M_writer(unicode(data.display_info())) __M_writer(u'</div>\n <div> \n') # SOURCE LINE 89 if data.has_data: # SOURCE LINE 90 __M_writer(u' <a href="') __M_writer(unicode(h.url_for( controller='dataset', action='display', dataset_id=trans.security.encode_id( data.id ), to_ext=data.ext ))) __M_writer(u'">save</a>\n') # SOURCE LINE 91 if user_owns_dataset: # SOURCE LINE 92 __M_writer(u'\t\t\t | <a href="') __M_writer(unicode(h.url_for( controller='tool_runner', action='rerun', id=data.id ))) __M_writer(u'" target="galaxy_main">rerun</a>\n') # SOURCE LINE 94 for display_app in data.datatype.get_display_types(): # SOURCE LINE 95 __M_writer(u' ') target_frame, display_links = data.datatype.get_display_links( data, display_app, app, request.base ) __M_writer(u'\n') # SOURCE LINE 96 if len( display_links ) > 0: # SOURCE LINE 97 __M_writer(u' | ') __M_writer(unicode(data.datatype.get_display_label(display_app))) __M_writer(u'\n') # SOURCE LINE 98 for display_name, display_link in display_links: # SOURCE LINE 99 __M_writer(u'\t\t\t\t <a target="') __M_writer(unicode(target_frame)) __M_writer(u'" href="') __M_writer(unicode(display_link)) __M_writer(u'">') __M_writer(unicode(_(display_name))) __M_writer(u'</a> \n') # SOURCE LINE 104 __M_writer(u' </div>\n') # SOURCE LINE 105 if data.peek != "no peek": # SOURCE LINE 106 __M_writer(u' <div><pre id="peek') __M_writer(unicode(data.id)) __M_writer(u'" class="peek">') __M_writer(unicode(_(data.display_peek()))) __M_writer(u'</pre></div>\n') # SOURCE LINE 108 else: # SOURCE LINE 109 __M_writer(u'\t\t<div>') __M_writer(unicode(_('Error: unknown dataset state "%s".') % data_state)) __M_writer(u'</div>\n') # SOURCE LINE 111 __M_writer(u' \n') # SOURCE LINE 113 __M_writer(u' \n') # SOURCE LINE 114 if len( data.children ) > 0: # SOURCE LINE 117 __M_writer(u' ') children = [] for child in data.children: if child.visible: children.append( child ) # SOURCE LINE 122 __M_writer(u'\n') # SOURCE LINE 123 if len( children ) > 0: # SOURCE LINE 124 __M_writer(u' <div>\n There are ') # SOURCE LINE 125 __M_writer(unicode(len( children ))) __M_writer(u' secondary datasets.\n') # SOURCE LINE 126 for idx, child in enumerate(children): # SOURCE LINE 127 __M_writer(u' ') __M_writer(unicode(render_dataset( child, idx + 1, show_deleted_on_refresh = show_deleted_on_refresh ))) __M_writer(u'\n') # SOURCE LINE 129 __M_writer(u' </div>\n') # SOURCE LINE 132 __M_writer(u'\n </div>\n </div>\n\n') return '' finally: context.caller_stack._pop_frame()
c6283b432e7cc517ab49d5868cb8608925fc9ed8
60eec837687166288bed41aa406fb92ff8b63f1b
/model/tensorflow/examples/tfdnnc/tfdnnc.py
d764e5f63f5b4c9824f4e993163d0e65ed8a9156
[ "MIT", "LicenseRef-scancode-generic-export-compliance" ]
permissive
shivam-bit/dffml
1c5ca75e946fddec78fd3943bdcb6cf5650bcd89
4c1e7870dba12c298d5a7f4740a23af634cacb7e
refs/heads/master
2022-06-19T22:28:10.396364
2020-05-08T21:53:53
2020-05-08T21:53:53
262,698,152
0
0
MIT
2020-05-10T02:36:10
2020-05-10T02:36:09
null
UTF-8
Python
false
false
1,128
py
from dffml import CSVSource, Features, DefFeature from dffml.noasync import train, accuracy, predict from dffml_model_tensorflow.dnnc import DNNClassifierModel model = DNNClassifierModel( features=Features( DefFeature("SepalLength", float, 1), DefFeature("SepalWidth", float, 1), DefFeature("PetalLength", float, 1), DefFeature("PetalWidth", float, 1), ), predict=DefFeature("classification", int, 1), epochs=3000, steps=20000, classifications=[0, 1, 2], clstype=int, ) # Train the model train(model, "iris_training.csv") # Assess accuracy (alternate way of specifying data source) print("Accuracy:", accuracy(model, CSVSource(filename="iris_test.csv"))) # Make prediction for i, features, prediction in predict( model, { "PetalLength": 4.2, "PetalWidth": 1.5, "SepalLength": 5.9, "SepalWidth": 3.0, }, { "PetalLength": 5.4, "PetalWidth": 2.1, "SepalLength": 6.9, "SepalWidth": 3.1, }, ): features["classification"] = prediction["classification"]["value"] print(features)
bb74ddac0a7bc8a9c141488aea6f2faa98c9f820
8fb1d41797595550418ecfc0e7558f38254b4606
/django/contrib/flatpages/tests/forms.py
7282f009c9dc86d398bb8e67aa09a2233c66ef42
[ "MIT" ]
permissive
hunch/hunch-gift-app
2aad70a9f18124bf0de02d7a125fa93c765da008
8c7cad24cc0d9900deb4175e6b768c64a3d7adcf
refs/heads/master
2016-09-06T03:13:52.153974
2012-03-26T18:11:59
2012-03-26T18:11:59
1,191,221
6
3
null
null
null
null
UTF-8
Python
false
false
1,245
py
from django.contrib.flatpages.admin import FlatpageForm from django.test import TestCase class FlatpageAdminFormTests(TestCase): def setUp(self): self.form_data = { 'title': "A test page", 'content': "This is a test", 'sites': [1], } def test_flatpage_admin_form_url_validation(self): "The flatpage admin form validates correctly validates urls" self.assertTrue(FlatpageForm(data=dict(url='/new_flatpage/', **self.form_data)).is_valid()) self.assertTrue(FlatpageForm(data=dict(url='/some.special~chars/', **self.form_data)).is_valid()) self.assertTrue(FlatpageForm(data=dict(url='/some.very_special~chars-here/', **self.form_data)).is_valid()) self.assertFalse(FlatpageForm(data=dict(url='/a space/', **self.form_data)).is_valid()) self.assertFalse(FlatpageForm(data=dict(url='/a % char/', **self.form_data)).is_valid()) self.assertFalse(FlatpageForm(data=dict(url='/a ! char/', **self.form_data)).is_valid()) self.assertFalse(FlatpageForm(data=dict(url='/a & char/', **self.form_data)).is_valid()) self.assertFalse(FlatpageForm(data=dict(url='/a ? char/', **self.form_data)).is_valid())
5bf881452b66fca7b77a5d8014fa09f19fdeb494
87163acf1614292be250754f28114f89013f73a3
/Codechef/COLOR.py
bb42d808690439dedd343a0a5262394440066d8d
[]
no_license
khush-01/Python-codes
742a9d9966d2ceb3ad2e7c78e34ef88e55df955a
da3cae8df0aafe763399066eefc9b786538fdb35
refs/heads/main
2023-03-20T04:37:14.020134
2021-03-12T04:56:30
2021-03-12T04:56:30
346,941,048
2
0
null
null
null
null
UTF-8
Python
false
false
151
py
for _ in range(int(input())): n = int(input()) s = input() a = {'R': 0, 'G': 0, 'B': 0} for x in s: a[x] += 1 print(n - max(a.values()))
e11e7f157bd594146ba4dff9987c8483968a3046
1d75146a66245dc046dc216bb602129208e00733
/closed/GIGABYTE/code/rnnt/tensorrt/preprocessing/parts/features.py
20935e8f677b7c52a9c49336f23ad6259ef4b8b6
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
georgelyuan/inference_results_v1.1
febf287bd5967bf7f087355a81f06a2bd298cbfe
3196a5587887c39203ee3ac246fa5dbe789d9085
refs/heads/main
2023-08-16T08:49:45.274284
2021-09-23T20:57:17
2021-09-23T20:57:17
409,773,141
0
0
NOASSERTION
2021-09-23T23:36:37
2021-09-23T23:36:37
null
UTF-8
Python
false
false
13,634
py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # Copyright (c) 2019, Myrtle Software Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn import math import librosa from .perturb import AudioAugmentor from .segment import AudioSegment from apex import amp def audio_from_file(file_path, offset=0, duration=0, trim=False, target_sr=16000): audio = AudioSegment.from_file(file_path, target_sr=target_sr, int_values=False, offset=offset, duration=duration, trim=trim) samples = torch.tensor(audio.samples, dtype=torch.float).cuda() num_samples = torch.tensor(samples.shape[0]).int().cuda() return (samples.unsqueeze(0), num_samples.unsqueeze(0)) class WaveformFeaturizer(object): def __init__(self, input_cfg, augmentor=None): self.augmentor = augmentor if augmentor is not None else AudioAugmentor() self.cfg = input_cfg def max_augmentation_length(self, length): return self.augmentor.max_augmentation_length(length) def process(self, file_path, offset=0, duration=0, trim=False): audio = AudioSegment.from_file(file_path, target_sr=self.cfg['sample_rate'], int_values=self.cfg.get('int_values', False), offset=offset, duration=duration, trim=trim) return self.process_segment(audio) def process_segment(self, audio_segment): self.augmentor.perturb(audio_segment) return torch.tensor(audio_segment.samples, dtype=torch.float) @classmethod def from_config(cls, input_config, perturbation_configs=None): if perturbation_configs is not None: aa = AudioAugmentor.from_config(perturbation_configs) else: aa = None return cls(input_config, augmentor=aa) constant = 1e-5 def normalize_batch(x, seq_len, normalize_type): if normalize_type == "per_feature": x_mean = torch.zeros((seq_len.shape[0], x.shape[1]), dtype=x.dtype, device=x.device) x_std = torch.zeros((seq_len.shape[0], x.shape[1]), dtype=x.dtype, device=x.device) for i in range(x.shape[0]): x_mean[i, :] = x[i, :, :seq_len[i]].mean(dim=1) x_std[i, :] = x[i, :, :seq_len[i]].std(dim=1) # make sure x_std is not zero x_std += constant return (x - x_mean.unsqueeze(2)) / x_std.unsqueeze(2) elif normalize_type == "all_features": x_mean = torch.zeros(seq_len.shape, dtype=x.dtype, device=x.device) x_std = torch.zeros(seq_len.shape, dtype=x.dtype, device=x.device) for i in range(x.shape[0]): x_mean[i] = x[i, :, :seq_len[i].item()].mean() x_std[i] = x[i, :, :seq_len[i].item()].std() # make sure x_std is not zero x_std += constant return (x - x_mean.view(-1, 1, 1)) / x_std.view(-1, 1, 1) else: return x def splice_frames(x, frame_splicing): """ Stacks frames together across feature dim input is batch_size, feature_dim, num_frames output is batch_size, feature_dim*frame_splicing, num_frames """ seq = [x] for n in range(1, frame_splicing): tmp = torch.zeros_like(x) tmp[:, :, :-n] = x[:, :, n:] seq.append(tmp) return torch.cat(seq, dim=1)[:, :, ::frame_splicing] class SpectrogramFeatures(nn.Module): def __init__(self, sample_rate=8000, window_size=0.02, window_stride=0.01, n_fft=None, window="hamming", normalize="per_feature", log=True, center=True, dither=constant, pad_to=8, max_duration=16.7, frame_splicing=1): super(SpectrogramFeatures, self).__init__() torch_windows = { 'hann': torch.hann_window, 'hamming': torch.hamming_window, 'blackman': torch.blackman_window, 'bartlett': torch.bartlett_window, 'none': None, } self.win_length = int(sample_rate * window_size) self.hop_length = int(sample_rate * window_stride) self.n_fft = n_fft or 2 ** math.ceil(math.log2(self.win_length)) window_fn = torch_windows.get(window, None) window_tensor = window_fn(self.win_length, periodic=False) if window_fn else None self.window = window_tensor self.normalize = normalize self.log = log self.center = center self.dither = dither self.pad_to = pad_to self.frame_splicing = frame_splicing max_length = 1 + math.ceil( (max_duration * sample_rate - self.win_length) / self.hop_length ) max_pad = 16 - (max_length % 16) self.max_length = max_length + max_pad def get_seq_len(self, seq_len): x = torch.ceil(seq_len.to(dtype=torch.float) / self.hop_length).to( dtype=torch.int) if self.frame_splicing > 1: x = torch.ceil(x.float() / self.frame_splicing).to(dtype=torch.int) return x @torch.no_grad() def forward(self, inp): x, seq_len = inp dtype = x.dtype seq_len = self.get_seq_len(seq_len) # dither if self.dither > 0: x += self.dither * torch.randn_like(x) # do preemphasis if hasattr(self, 'preemph') and self.preemph is not None: x = torch.cat((x[:, 0].unsqueeze(1), x[:, 1:] - self.preemph * x[:, :-1]), dim=1) # get spectrogram x = torch.stft(x, n_fft=self.n_fft, hop_length=self.hop_length, win_length=self.win_length, center=self.center, window=self.window.to(torch.float)) x = torch.sqrt(x.pow(2).sum(-1)) # log features if required if self.log: x = torch.log(x + 1e-20) # frame splicing if required if self.frame_splicing > 1: x = splice_frames(x, self.frame_splicing) # normalize if required if self.normalize: x = normalize_batch(x, seq_len, normalize_type=self.normalize) # mask to zero any values beyond seq_len in batch, pad to multiple of `pad_to` (for efficiency) #max_len = x.size(-1) #mask = torch.arange(max_len).to(seq_len.dtype).to(seq_len.device).expand(x.size(0), max_len) >= seq_len.unsqueeze(1) #x = x.masked_fill(mask.unsqueeze(1).to(device=x.device), 0) #del mask x = x[:, :, :seq_len.max()] # rnnt loss requires lengths to match pad_to = self.pad_to if pad_to != 0: raise NotImplementedError() # if pad_to == "max": # x = nn.functional.pad(x, (0, self.max_length - x.size(-1))) # elif pad_to > 0: # pad_amt = x.size(-1) % pad_to # if pad_amt != 0: # x = nn.functional.pad(x, (0, pad_to - pad_amt)) return x.to(dtype) @classmethod def from_config(cls, cfg, log=False): return cls(sample_rate=cfg['sample_rate'], window_size=cfg['window_size'], window_stride=cfg['window_stride'], n_fft=cfg['n_fft'], window=cfg['window'], normalize=cfg['normalize'], max_duration=cfg.get('max_duration', 16.7), dither=cfg.get('dither', 1e-5), pad_to=cfg.get("pad_to", 0), frame_splicing=cfg.get("frame_splicing", 1), log=log) class FilterbankFeatures(nn.Module): def __init__(self, sample_rate=8000, window_size=0.02, window_stride=0.01, window="hamming", normalize="per_feature", n_fft=None, preemph=0.97, nfilt=64, lowfreq=0, highfreq=None, log=True, dither=constant, pad_to=8, max_duration=16.7, frame_splicing=1): super(FilterbankFeatures, self).__init__() # print("PADDING: {}".format(pad_to)) torch_windows = { 'hann': torch.hann_window, 'hamming': torch.hamming_window, 'blackman': torch.blackman_window, 'bartlett': torch.bartlett_window, 'none': None, } self.win_length = int(sample_rate * window_size) # frame size self.hop_length = int(sample_rate * window_stride) self.n_fft = n_fft or 2 ** math.ceil(math.log2(self.win_length)) self.normalize = normalize self.log = log self.dither = dither self.frame_splicing = frame_splicing self.nfilt = nfilt self.preemph = preemph self.pad_to = pad_to highfreq = highfreq or sample_rate / 2 window_fn = torch_windows.get(window, None) window_tensor = window_fn(self.win_length, periodic=False) if window_fn else None filterbanks = torch.tensor( librosa.filters.mel(sample_rate, self.n_fft, n_mels=nfilt, fmin=lowfreq, fmax=highfreq), dtype=torch.float).unsqueeze(0) # self.fb = filterbanks # self.window = window_tensor self.register_buffer("fb", filterbanks) self.register_buffer("window", window_tensor) # Calculate maximum sequence length (# frames) max_length = 1 + math.ceil( (max_duration * sample_rate - self.win_length) / self.hop_length ) max_pad = 16 - (max_length % 16) self.max_length = max_length + max_pad def get_seq_len(self, seq_len): x = torch.ceil(seq_len.to(dtype=torch.float) / self.hop_length).to( dtype=torch.int) # dtype=torch.long) if self.frame_splicing > 1: x = torch.ceil(x.float() / self.frame_splicing).to(dtype=torch.int) return x @torch.no_grad() def forward(self, inp): x, seq_len = inp dtype = x.dtype seq_len = self.get_seq_len(seq_len) # dither if self.dither > 0: x += self.dither * torch.randn_like(x) # do preemphasis if self.preemph is not None: x = torch.cat((x[:, 0].unsqueeze(1), x[:, 1:] - self.preemph * x[:, :-1]), dim=1) # do stft x = torch.stft(x, n_fft=self.n_fft, hop_length=self.hop_length, win_length=self.win_length, center=True, window=self.window.to(dtype=torch.float)) # get power spectrum x = x.pow(2).sum(-1) # dot with filterbank energies x = torch.matmul(self.fb.to(x.dtype), x) # log features if required if self.log: x = torch.log(x + 1e-20) # frame splicing if required if self.frame_splicing > 1: x = splice_frames(x, self.frame_splicing) # normalize if required if self.normalize: x = normalize_batch(x, seq_len, normalize_type=self.normalize) # mask to zero any values beyond seq_len in batch, pad to multiple of `pad_to` (for efficiency) #max_len = x.size(-1) x = x[:, :, :seq_len.max()] # rnnt loss requires lengths to match # mask = torch.arange(max_len).to(seq_len.dtype).to(x.device).expand(x.size(0), # max_len) >= seq_len.unsqueeze(1) #x = x.masked_fill(mask.unsqueeze(1).to(device=x.device), 0) pad_to = self.pad_to if pad_to != 0: raise NotImplementedError() # if pad_to == "max": # x = nn.functional.pad(x, (0, self.max_length - x.size(-1))) # elif pad_to > 0: # pad_amt = x.size(-1) % pad_to # if pad_amt != 0: # x = nn.functional.pad(x, (0, pad_to - pad_amt)) return x.to(dtype) @classmethod def from_config(cls, cfg, log=False): return cls(sample_rate=cfg['sample_rate'], window_size=cfg['window_size'], window_stride=cfg['window_stride'], n_fft=cfg['n_fft'], nfilt=cfg['features'], window=cfg['window'], normalize=cfg['normalize'], max_duration=cfg.get('max_duration', 16.7), dither=cfg['dither'], pad_to=cfg.get("pad_to", 0), frame_splicing=cfg.get("frame_splicing", 1), log=log) class FeatureFactory(object): featurizers = { "logfbank": FilterbankFeatures, "fbank": FilterbankFeatures, "stft": SpectrogramFeatures, "logspect": SpectrogramFeatures, "logstft": SpectrogramFeatures } def __init__(self): pass @classmethod def from_config(cls, cfg): feat_type = cfg.get('feat_type', "logspect") featurizer = cls.featurizers[feat_type] # return featurizer.from_config(cfg, log="log" in cfg['feat_type']) return featurizer.from_config(cfg, log="log" in feat_type)
6200af4f551c8e6534b8a3a0ca176346d8b54d3e
dfff816642f4e1afeab268f441906a6d811d3fb4
/polling_stations/apps/data_collection/management/commands/import_swale.py
1450c85e75893e03f2e966075e02b5698e14b4c4
[]
permissive
mtravis/UK-Polling-Stations
2c07e03d03959492c7312e5a4bfbb71e12320432
26e0331dc29253dc436a0462ffaa01e974c5dc52
refs/heads/master
2020-05-14T18:36:31.501346
2019-04-17T12:54:57
2019-04-17T12:54:57
181,912,382
0
0
BSD-3-Clause
2019-04-17T14:48:26
2019-04-17T14:48:26
null
UTF-8
Python
false
false
3,327
py
from django.contrib.gis.geos import Point from data_collection.management.commands import BaseHalaroseCsvImporter class Command(BaseHalaroseCsvImporter): council_id = "E07000113" addresses_name = ( "local.2019-05-02/Version 1/polling_station_export-2019-02-28Swle.csv" ) stations_name = ( "local.2019-05-02/Version 1/polling_station_export-2019-02-28Swle.csv" ) elections = ["local.2019-05-02"] def address_record_to_dict(self, record): rec = super().address_record_to_dict(record) uprn = record.uprn.strip().lstrip("0") if uprn in [ "200001875126", # ME122HP -> ME122LZ : Morland House Augustine Road, Minster-on-Sea, Sheerness, Kent "100061078702", # ME122LE -> ME122LA : Uppal Villa Minster Drive, Minster-on-Sea, Sheerness, Kent "100061081138", # ME122LS -> ME122LX : 150 Scarborough Drive, Minster-on-Sea, Sheerness, Kent "10023197317", # ME122SG -> ME122SH : 1A Baldwin Cottage Baldwin Road, Minster-on-Sea, Sheerness, Kent "10023197934", # ME122LT -> ME122LX : 152 Scarborough Drive, Minster-on-Sea, Sheerness, Kent "100061080835", # ME123JE -> ME123HT : 1A Rosemary Avenue, Minster-on-Sea, Sheerness, Kent "10023200030", # ME103TU -> ME123TU : 28 Petunia Avenue, Minster-on-Sea, Sheerness, Kent "10035061220", # ME121AG -> ME122AG : 178 Invicta Road, Sheerness, Kent "10093083738", # ME124JB -> ME101QA : Flat Above Marinos Fish Bar 212 London Road, Sittingbourne, Kent "100061078990", # ME123PA -> ME123NZ : 382B Minster Road, Minster-on-Sea, Sheerness, Kent "100061083074", # ME122SG -> ME122SD : Llamedos The Glen, Minster-on-Sea, Sheerness, Kent "100062379223", # ME124JA -> ME124JB : Sheringham Bell Farm Lane, Minster-on-Sea, Sheerness, Kent "100061073637", # ME124JA -> ME124JB : The Laurels Bell Farm Lane, Minster-on-Sea, Sheerness, Kent "100061073623", # ME124JA -> ME124JB : Merry Moments Bell Farm Lane, Minster-on-Sea, Sheerness, Kent "200002539987", # ME101NL -> ME101NS : Flat L 94 London Road, Sittingbourne, Kent ]: rec["accept_suggestion"] = True if uprn in [ "100062087806", # ME121TP -> ME122RT : Flat 2 36A Broadway, Sheerness, Kent "100062087803", # ME121TP -> ME122RT : Flat 1 36A Broadway, Sheerness, Kent "200002535746", # ME121NX -> ME102RD : 45A High Street, Sheerness, Kent "10013741961", # ME130SG -> ME104ES : Winterbourne Cottage Annexe Rushett Lane, Norton, Faversham, Kent "10023196555", # ME122DH -> ME121AG : 3 The Crescent Parklands Village The Broadway, Minster-on-Sea, Sheerness, Kent "10023196556", # ME122DH -> ME121AG : 1 The Crescent Parklands Village The Broadway, Minster-on-Sea, Sheerness, Kent "10023200723", # ME137JG -> ME98XF : 23 West Street, Faversham, Kent ]: rec["accept_suggestion"] = False return rec def station_record_to_dict(self, record): rec = super().station_record_to_dict(record) if record.pollingstationnumber in ["113", "114"]: rec["location"] = Point(0.735912, 51.337309, srid=4326) return rec
efbce9c46c5c14d023e8afee6f5fd7be1921c7d8
4c252eb68446d5fd050e28a6b5ba1a7879b70b0a
/pyuavcan/transport/can/media/socketcan/__init__.py
c6ee7989569c0ca65d99e412f740125f7b1a788f
[ "MIT" ]
permissive
jxltom/pyuavcan
ce2cdf3a95ba4c6f3a0fd8aae24b341e46481fae
42063b65ee2af431ab485f228d1ed5465a576449
refs/heads/master
2021-01-16T15:09:48.547764
2020-05-26T09:31:25
2020-05-26T09:31:25
243,163,363
0
0
MIT
2020-02-26T03:53:47
2020-02-26T03:53:46
null
UTF-8
Python
false
false
901
py
# # Copyright (c) 2019 UAVCAN Development Team # This software is distributed under the terms of the MIT License. # Author: Pavel Kirienko <[email protected]> # """ The module is always importable but is functional only on GNU/Linux. For testing or experimentation on a local machine it is often convenient to use a virtual CAN bus instead of a real one. Using SocketCAN, one can set up a virtual CAN bus interface as follows:: modprobe can modprobe can_raw modprobe vcan ip link add dev vcan0 type vcan ip link set vcan0 mtu 72 # Enable CAN FD by configuring the MTU of 64+8 ip link set up vcan0 Where ``vcan0`` can be replaced with any other valid interface name. Please read the SocketCAN documentation for more information. """ from sys import platform as _platform if _platform == 'linux': from ._socketcan import SocketCANMedia as SocketCANMedia
9a0550f2cdac6a2e0d0f2070fccd45e0531db9ea
7add1f8fc31b09bb79efd2b25cc15e23666c1d1d
/tfx/orchestration/kubeflow/v2/test_utils.py
4431711f7007e93516012675c192b8ae8b27b24d
[ "Apache-2.0" ]
permissive
twitter-forks/tfx
b867e9fee9533029ca799c4a4c5d1c5430ba05fe
cb3561224c54a5dad4d5679165d5b3bafc8b451b
refs/heads/master
2021-11-19T18:45:09.157744
2021-10-19T00:02:34
2021-10-19T00:02:34
205,426,993
2
1
Apache-2.0
2021-10-18T21:03:50
2019-08-30T17:21:03
Python
UTF-8
Python
false
false
21,046
py
# Copyright 2020 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test utilities for kubeflow v2 runner.""" import os from typing import List from kfp.pipeline_spec import pipeline_spec_pb2 as pipeline_pb2 import tensorflow_model_analysis as tfma from tfx import v1 as tfx from tfx.components.trainer.executor import Executor from tfx.dsl.component.experimental import executor_specs from tfx.dsl.component.experimental import placeholders from tfx.dsl.components.base import base_component from tfx.dsl.components.base import base_executor from tfx.dsl.components.base import base_node from tfx.dsl.components.base import executor_spec from tfx.dsl.experimental.conditionals import conditional from tfx.types import channel_utils from tfx.types import component_spec from tfx.types.experimental import simple_artifacts from google.protobuf import message _TEST_TWO_STEP_PIPELINE_NAME = 'two-step-pipeline' _TEST_FULL_PIPELINE_NAME = 'full-taxi-pipeline' _TEST_PIPELINE_ROOT = 'path/to/my/root' _TEST_INPUT_DATA = 'path/to/my/data' _TEST_MODULE_FILE_LOCATION = 'path/to/my/module_utils.py' TEST_RUNTIME_CONFIG = pipeline_pb2.PipelineJob.RuntimeConfig( gcs_output_directory=_TEST_PIPELINE_ROOT, parameters={ 'string_param': pipeline_pb2.Value(string_value='test-string'), 'int_param': pipeline_pb2.Value(int_value=42), 'float_param': pipeline_pb2.Value(double_value=3.14) }) # TODO(b/158245564): Reevaluate whether to keep this test helper function def two_step_pipeline() -> tfx.dsl.Pipeline: """Returns a simple 2-step pipeline under test.""" example_gen = tfx.extensions.google_cloud_big_query.BigQueryExampleGen( query='SELECT * FROM TABLE').with_beam_pipeline_args([ '--runner=DataflowRunner', ]) statistics_gen = tfx.components.StatisticsGen( examples=example_gen.outputs['examples']) return tfx.dsl.Pipeline( pipeline_name=_TEST_TWO_STEP_PIPELINE_NAME, pipeline_root=_TEST_PIPELINE_ROOT, components=[example_gen, statistics_gen], # Needs to set GCP project because BQ is used. beam_pipeline_args=[ '--project=my-gcp-project', ]) def create_pipeline_components( pipeline_root: str, transform_module: str, trainer_module: str, bigquery_query: str = '', csv_input_location: str = '', ) -> List[base_node.BaseNode]: """Creates components for a simple Chicago Taxi TFX pipeline for testing. Args: pipeline_root: The root of the pipeline output. transform_module: The location of the transform module file. trainer_module: The location of the trainer module file. bigquery_query: The query to get input data from BigQuery. If not empty, BigQueryExampleGen will be used. csv_input_location: The location of the input data directory. Returns: A list of TFX components that constitutes an end-to-end test pipeline. """ if bool(bigquery_query) == bool(csv_input_location): raise ValueError( 'Exactly one example gen is expected. ', 'Please provide either bigquery_query or csv_input_location.') if bigquery_query: example_gen = tfx.extensions.google_cloud_big_query.BigQueryExampleGen( query=bigquery_query) else: example_gen = tfx.components.CsvExampleGen(input_base=csv_input_location) statistics_gen = tfx.components.StatisticsGen( examples=example_gen.outputs['examples']) schema_gen = tfx.components.SchemaGen( statistics=statistics_gen.outputs['statistics'], infer_feature_shape=False) example_validator = tfx.components.ExampleValidator( statistics=statistics_gen.outputs['statistics'], schema=schema_gen.outputs['schema']) transform = tfx.components.Transform( examples=example_gen.outputs['examples'], schema=schema_gen.outputs['schema'], module_file=transform_module) latest_model_resolver = tfx.dsl.Resolver( strategy_class=tfx.dsl.experimental.LatestArtifactStrategy, model=tfx.dsl.Channel(type=tfx.types.standard_artifacts.Model)).with_id( 'Resolver.latest_model_resolver') trainer = tfx.components.Trainer( custom_executor_spec=executor_spec.ExecutorClassSpec(Executor), examples=transform.outputs['transformed_examples'], schema=schema_gen.outputs['schema'], base_model=latest_model_resolver.outputs['model'], transform_graph=transform.outputs['transform_graph'], train_args=tfx.proto.TrainArgs(num_steps=10), eval_args=tfx.proto.EvalArgs(num_steps=5), module_file=trainer_module, ) # Get the latest blessed model for model validation. model_resolver = tfx.dsl.Resolver( strategy_class=tfx.dsl.experimental.LatestBlessedModelStrategy, model=tfx.dsl.Channel(type=tfx.types.standard_artifacts.Model), model_blessing=tfx.dsl.Channel( type=tfx.types.standard_artifacts.ModelBlessing)).with_id( 'Resolver.latest_blessed_model_resolver') # Set the TFMA config for Model Evaluation and Validation. eval_config = tfma.EvalConfig( model_specs=[tfma.ModelSpec(signature_name='eval')], metrics_specs=[ tfma.MetricsSpec( metrics=[tfma.MetricConfig(class_name='ExampleCount')], thresholds={ 'binary_accuracy': tfma.MetricThreshold( value_threshold=tfma.GenericValueThreshold( lower_bound={'value': 0.5}), change_threshold=tfma.GenericChangeThreshold( direction=tfma.MetricDirection.HIGHER_IS_BETTER, absolute={'value': -1e-10})) }) ], slicing_specs=[ tfma.SlicingSpec(), tfma.SlicingSpec(feature_keys=['trip_start_hour']) ]) evaluator = tfx.components.Evaluator( examples=example_gen.outputs['examples'], model=trainer.outputs['model'], baseline_model=model_resolver.outputs['model'], eval_config=eval_config) with conditional.Cond(evaluator.outputs['blessing'].future() [0].custom_property('blessed') == 1): pusher = tfx.components.Pusher( model=trainer.outputs['model'], push_destination=tfx.proto.PushDestination( filesystem=tfx.proto.PushDestination.Filesystem( base_directory=os.path.join(pipeline_root, 'model_serving')))) return [ example_gen, statistics_gen, schema_gen, example_validator, transform, latest_model_resolver, trainer, model_resolver, evaluator, pusher ] # TODO(b/158245564): Reevaluate whether to keep this test helper function def full_taxi_pipeline() -> tfx.dsl.Pipeline: """Returns a full taxi pipeline under test.""" pipeline_components = create_pipeline_components( pipeline_root=_TEST_PIPELINE_ROOT, transform_module=_TEST_MODULE_FILE_LOCATION, trainer_module=_TEST_MODULE_FILE_LOCATION, csv_input_location=_TEST_INPUT_DATA) return tfx.dsl.Pipeline( pipeline_name=_TEST_FULL_PIPELINE_NAME, pipeline_root=_TEST_PIPELINE_ROOT, components=pipeline_components) class TransformerSpec(component_spec.ComponentSpec): """ComponentSpec for a dummy container component.""" INPUTS = { 'input1': component_spec.ChannelParameter( type=tfx.types.standard_artifacts.Model), } OUTPUTS = { 'output1': component_spec.ChannelParameter( type=tfx.types.standard_artifacts.Model), } PARAMETERS = { 'param1': component_spec.ExecutionParameter(type=str), } class ProducerSpec(component_spec.ComponentSpec): INPUTS = {} OUTPUTS = { 'output1': component_spec.ChannelParameter( type=tfx.types.standard_artifacts.Model), } PARAMETERS = { 'param1': component_spec.ExecutionParameter(type=str), } class DummyContainerSpecComponent(base_component.BaseComponent): """Dummy ContainerSpec component.""" SPEC_CLASS = TransformerSpec EXECUTOR_SPEC = executor_specs.TemplatedExecutorContainerSpec( image='dummy/transformer', command=[ 'transformer', '--input1', placeholders.InputUriPlaceholder('input1'), '--output1', placeholders.OutputUriPlaceholder('output1'), '--param1', placeholders.InputValuePlaceholder('param1'), ]) def __init__(self, input1, param1, output1, instance_name=None): spec = TransformerSpec( input1=input1, output1=output1, param1=param1, ) super().__init__(spec=spec) if instance_name: self._id = '{}.{}'.format(self.__class__.__name__, instance_name) else: self._id = self.__class__.__name__ class DummyProducerComponent(base_component.BaseComponent): """Dummy producer component.""" SPEC_CLASS = ProducerSpec EXECUTOR_SPEC = executor_specs.TemplatedExecutorContainerSpec( image='dummy/producer', command=[ 'producer', '--output1', placeholders.OutputUriPlaceholder('output1'), '--param1', placeholders.InputValuePlaceholder('param1'), '--wrapped-param', placeholders.ConcatPlaceholder([ 'prefix-', placeholders.InputValuePlaceholder('param1'), '-suffix', ]), ]) def __init__(self, param1, output1, instance_name=None): spec = ProducerSpec( output1=output1, param1=param1, ) super().__init__(spec=spec) if instance_name: self._id = '{}.{}'.format(self.__class__.__name__, instance_name) else: self._id = self.__class__.__name__ dummy_transformer_component = tfx.dsl.experimental.create_container_component( name='DummyContainerSpecComponent', inputs={ 'input1': tfx.types.standard_artifacts.Model, }, outputs={ 'output1': tfx.types.standard_artifacts.Model, }, parameters={ 'param1': str, }, image='dummy/transformer', command=[ 'transformer', '--input1', placeholders.InputUriPlaceholder('input1'), '--output1', placeholders.OutputUriPlaceholder('output1'), '--param1', placeholders.InputValuePlaceholder('param1'), ], ) dummy_producer_component = tfx.dsl.experimental.create_container_component( name='DummyProducerComponent', outputs={ 'output1': tfx.types.standard_artifacts.Model, }, parameters={ 'param1': str, }, image='dummy/producer', command=[ 'producer', '--output1', placeholders.OutputUriPlaceholder('output1'), '--param1', placeholders.InputValuePlaceholder('param1'), '--wrapped-param', placeholders.ConcatPlaceholder([ 'prefix-', placeholders.InputValuePlaceholder('param1'), '-suffix', ]), ], ) dummy_producer_component_2 = tfx.dsl.experimental.create_container_component( name='DummyProducerComponent2', outputs={ 'output1': tfx.types.standard_artifacts.Model, }, parameters={ 'param1': str, }, image='dummy/producer', command=[ 'producer', ], ) dummy_consumer_component = tfx.dsl.experimental.create_container_component( name='DummyConsumerComponent', inputs={ 'input1': tfx.types.standard_artifacts.Model, }, outputs={ 'output1': tfx.types.standard_artifacts.Model, }, parameters={ 'param1': int, }, image='dummy/consumer', command=[ 'consumer', ], ) def pipeline_with_one_container_spec_component() -> tfx.dsl.Pipeline: """Pipeline with container.""" importer_task = tfx.dsl.Importer( source_uri='some-uri', artifact_type=tfx.types.standard_artifacts.Model, ).with_id('my_importer') container_task = DummyContainerSpecComponent( input1=importer_task.outputs['result'], output1=channel_utils.as_channel([tfx.types.standard_artifacts.Model()]), param1='value1', ) return tfx.dsl.Pipeline( pipeline_name='pipeline-with-container', pipeline_root=_TEST_PIPELINE_ROOT, components=[importer_task, container_task], ) def pipeline_with_two_container_spec_components() -> tfx.dsl.Pipeline: """Pipeline with container.""" container1_task = DummyProducerComponent( output1=channel_utils.as_channel([tfx.types.standard_artifacts.Model()]), param1='value1', ) container2_task = DummyContainerSpecComponent( input1=container1_task.outputs['output1'], output1=channel_utils.as_channel([tfx.types.standard_artifacts.Model()]), param1='value2', ) return tfx.dsl.Pipeline( pipeline_name='pipeline-with-container', pipeline_root=_TEST_PIPELINE_ROOT, components=[container1_task, container2_task], ) def pipeline_with_two_container_spec_components_2() -> tfx.dsl.Pipeline: """Pipeline with container.""" container1_task = dummy_producer_component( output1=channel_utils.as_channel([tfx.types.standard_artifacts.Model()]), param1='value1', ) container2_task = dummy_transformer_component( input1=container1_task.outputs['output1'], output1=channel_utils.as_channel([tfx.types.standard_artifacts.Model()]), param1='value2', ) return tfx.dsl.Pipeline( pipeline_name='pipeline-with-container', pipeline_root=_TEST_PIPELINE_ROOT, components=[container1_task, container2_task], ) def get_proto_from_test_data(filename: str, pb_message: message.Message) -> message.Message: """Helper function that gets proto from testdata.""" filepath = os.path.join(os.path.dirname(__file__), 'testdata', filename) return tfx.utils.parse_pbtxt_file(filepath, pb_message) def get_text_from_test_data(filename: str) -> str: """Helper function that gets raw string from testdata.""" filepath = os.path.join(os.path.dirname(__file__), 'testdata', filename) return tfx.dsl.io.fileio.open(filepath, 'rb').read().decode('utf-8') class _ProducerComponentSpec(component_spec.ComponentSpec): """Test component spec using AI Platform simple artifact types.""" INPUTS = {} OUTPUTS = { 'examples': component_spec.ChannelParameter(type=simple_artifacts.Dataset), 'external_data': component_spec.ChannelParameter(type=simple_artifacts.File), } PARAMETERS = {} class _ConsumerComponentSpec(component_spec.ComponentSpec): """Test component spec using AI Platform simple artifact types.""" INPUTS = { 'examples': component_spec.ChannelParameter(type=simple_artifacts.Dataset), 'external_data': component_spec.ChannelParameter(type=simple_artifacts.File), } OUTPUTS = { 'stats': component_spec.ChannelParameter(type=simple_artifacts.Statistics), 'metrics': component_spec.ChannelParameter(type=simple_artifacts.Metrics) } PARAMETERS = {} class ProducerComponent(base_component.BaseComponent): """Test component used in step 1 of a 2-step pipeline testing AI Platform simple artifact types.""" SPEC_CLASS = _ProducerComponentSpec EXECUTOR_SPEC = executor_spec.ExecutorClassSpec( executor_class=base_executor.EmptyExecutor) def __init__(self): examples_channel = channel_utils.as_channel([simple_artifacts.Dataset()]) external_data_channel = channel_utils.as_channel([simple_artifacts.File()]) super().__init__( _ProducerComponentSpec( examples=examples_channel, external_data=external_data_channel)) class ConsumerComponent(base_component.BaseComponent): """Test component used in step 2 of a 2-step pipeline testing AI Platform simple artifact types.""" SPEC_CLASS = _ConsumerComponentSpec EXECUTOR_SPEC = executor_spec.ExecutorClassSpec( executor_class=base_executor.EmptyExecutor) def __init__(self, examples: tfx.dsl.Channel, external_data: tfx.dsl.Channel): stats_output_channel = channel_utils.as_channel( [simple_artifacts.Statistics()]) metrics_output_channel = channel_utils.as_channel( [simple_artifacts.Metrics()]) super().__init__( _ConsumerComponentSpec( examples=examples, external_data=external_data, stats=stats_output_channel, metrics=metrics_output_channel)) def two_step_kubeflow_artifacts_pipeline() -> tfx.dsl.Pipeline: """Builds 2-Step pipeline to test AI Platform simple artifact types.""" step1 = ProducerComponent() step2 = ConsumerComponent( examples=step1.outputs['examples'], external_data=step1.outputs['external_data']) return tfx.dsl.Pipeline( pipeline_name='two-step-kubeflow-artifacts-pipeline', pipeline_root=_TEST_PIPELINE_ROOT, components=[step1, step2], beam_pipeline_args=[ '--project=my-gcp-project', ]) def two_step_pipeline_with_task_only_dependency() -> tfx.dsl.Pipeline: """Returns a simple 2-step pipeline with task only dependency between them.""" step_1 = tfx.dsl.experimental.create_container_component( name='Step 1', inputs={}, outputs={}, parameters={}, image='step-1-image', command=['run', 'step-1'])() step_2 = tfx.dsl.experimental.create_container_component( name='Step 2', inputs={}, outputs={}, parameters={}, image='step-2-image', command=['run', 'step-2'])() step_2.add_upstream_node(step_1) return tfx.dsl.Pipeline( pipeline_name='two-step-task-only-dependency-pipeline', pipeline_root=_TEST_PIPELINE_ROOT, components=[step_1, step_2], ) primitive_producer_component = tfx.dsl.experimental.create_container_component( name='ProducePrimitives', outputs={ 'output_string': tfx.types.standard_artifacts.String, 'output_int': tfx.types.standard_artifacts.Integer, 'output_float': tfx.types.standard_artifacts.Float, }, image='busybox', command=[ 'produce', placeholders.OutputUriPlaceholder('output_string'), placeholders.OutputUriPlaceholder('output_int'), placeholders.OutputUriPlaceholder('output_float'), ], ) primitive_consumer_component = tfx.dsl.experimental.create_container_component( name='ConsumeByValue', inputs={ 'input_string': tfx.types.standard_artifacts.String, 'input_int': tfx.types.standard_artifacts.Integer, 'input_float': tfx.types.standard_artifacts.Float, }, parameters={ 'param_string': str, 'param_int': int, 'param_float': float, }, image='busybox', command=[ 'consume', placeholders.InputValuePlaceholder('input_string'), placeholders.InputValuePlaceholder('input_int'), placeholders.InputValuePlaceholder('input_float'), placeholders.InputValuePlaceholder('param_string'), placeholders.InputValuePlaceholder('param_int'), placeholders.InputValuePlaceholder('param_float'), ], ) def consume_primitive_artifacts_by_value_pipeline() -> tfx.dsl.Pipeline: """Pipeline which features consuming artifacts by value.""" producer_task = primitive_producer_component() consumer_task = primitive_consumer_component( input_string=producer_task.outputs['output_string'], input_int=producer_task.outputs['output_int'], input_float=producer_task.outputs['output_float'], param_string='string value', param_int=42, param_float=3.14, ) return tfx.dsl.Pipeline( pipeline_name='consume-primitive-artifacts-by-value-pipeline', pipeline_root=_TEST_PIPELINE_ROOT, components=[producer_task, consumer_task], ) def pipeline_with_runtime_parameter() -> tfx.dsl.Pipeline: """Pipeline which contains a runtime parameter.""" producer_task = primitive_producer_component() consumer_task = primitive_consumer_component( input_string=producer_task.outputs['output_string'], input_int=producer_task.outputs['output_int'], input_float=producer_task.outputs['output_float'], param_string=tfx.dsl.experimental.RuntimeParameter( ptype=str, name='string_param', default='string value'), param_int=42, param_float=3.14, ) return tfx.dsl.Pipeline( pipeline_name='pipeline-with-runtime-parameter', pipeline_root=_TEST_PIPELINE_ROOT, components=[producer_task, consumer_task], )
7e17aef7c234a83dd5f625f3f79766cdd0c89a88
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02689/s473246876.py
934535d4b4972167937a8498aa36c123addb4e8b
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
374
py
n, m = map(int, input().split()) h = list(map(int, input().split())) ab = [list(map(int, input().split())) for _ in range(m)] ans = [1]*n for i in range(m): if h[ab[i][0]-1] == h[ab[i][1]-1]: ans[ab[i][0]-1] = 0 ans[ab[i][1]-1] = 0 elif h[ab[i][0]-1] > h[ab[i][1]-1]: ans[ab[i][1]-1] = 0 else: ans[ab[i][0]-1] = 0 print(sum(ans))
1058bf0e58b27114ec41ce159f6a6412a3122981
2e3430eefb94fe6bc6ea8256ceadaf25bbf34e76
/puma/helpers/testing/mixin/__init__.py
e5d5031dc92b6e294d4d8a37e566046b3bcab595
[ "Apache-2.0" ]
permissive
gift-surg/puma
33e08b464fe4241da512fefcab5e8909e6f1d768
58beae3459a0c8d96adfe9af323e26868428df4d
refs/heads/master
2022-11-27T11:26:25.557773
2020-06-04T11:21:38
2020-06-04T11:21:38
198,999,143
1
0
Apache-2.0
2020-07-29T16:36:50
2019-07-26T10:38:46
Python
UTF-8
Python
false
false
173
py
from puma.helpers.testing.mixin.not_a_test_case import NotATestCase # noqa: F401 from puma.helpers.testing.mixin.not_a_test_case_enum import NotATestCaseEnum # noqa: F401
aeba0cf66cd6b63cc2cd690e704544f6c0591260
8541f4118c6093c84e78d768285e7007ee5f6a6c
/apps/inventory/migrations/0009_auto_20151220_1554.py
e2b8366a29c48b68bbe2d712b6d251b066c4ba96
[]
no_license
iraycd/awecounting
c81a8ca6b7a4a942e63cf6b7d723f9883e57a107
388df4de63146e0a9a211afa522ec50e0f3df443
refs/heads/master
2021-01-15T23:30:27.439759
2016-03-16T10:34:40
2016-03-16T10:34:40
57,046,467
1
0
null
2016-04-25T14:03:40
2016-04-25T14:03:40
null
UTF-8
Python
false
false
444
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import njango.fields class Migration(migrations.Migration): dependencies = [ ('inventory', '0008_auto_20151219_1547'), ] operations = [ migrations.AlterField( model_name='sale', name='date', field=njango.fields.BSDateField(default=njango.fields.today), ), ]
9399c9273cd93034db22b32eba2127b884c75e9e
4869c5e4d4b5ba6af434b62a2369ed58891c4eb0
/addons/plugin.video.fen/resources/lib/indexers/dialogs.py
806f73f4a98af300d972b66eed68208ef5f003b4
[]
no_license
JohnnyBlackwater/Zephyr-mod
1bd73a04549da83965a0979a1957ab4f98b03a6d
2e9472793b45287b1114221f5dd1674ce886bca1
refs/heads/master
2023-08-31T22:54:47.827433
2021-11-15T03:01:01
2021-11-15T03:01:01
428,104,158
0
0
null
null
null
null
UTF-8
Python
false
false
35,327
py
# -*- coding: utf-8 -*- import json import metadata from windows import open_window from modules import kodi_utils from modules import settings from modules.source_utils import clear_and_rescrape, clear_scrapers_cache, rescrape_with_disabled, scrape_with_custom_values from modules.nav_utils import open_settings, clear_cache, refresh_cached_data from modules.settings_reader import get_setting, set_setting # from modules.kodi_utils import logger ls = kodi_utils.local_string build_url = kodi_utils.build_url icon = kodi_utils.translate_path('special://home/addons/plugin.video.fen/icon.png') fanart = kodi_utils.translate_path('special://home/addons/plugin.video.fen/fanart.png') icon_directory = 'special://home/addons/script.tikiart/resources/media/%s' def trailer_choice(db_type, poster, tmdb_id, trailer_url, all_trailers=[]): if settings.get_language() != 'en' and not trailer_url and not all_trailers: from apis.tmdb_api import tmdb_media_videos try: all_trailers = tmdb_media_videos(db_type, tmdb_id)['results'] except: pass if all_trailers: from modules.utils import clean_file_name, to_utf8 if len(all_trailers) == 1: video_id = all_trailers[0].get('key') else: items = [{'line': clean_file_name(i['name']), 'function': i['key']} for i in all_trailers] video_id = open_window(['windows.extras', 'ShowSelectMedia'], 'select_media.xml', items=items, poster=poster) if video_id == None: return 'canceled' trailer_url = 'plugin://plugin.video.youtube/play/?video_id=%s' % video_id return trailer_url def genres_choice(db_type, genres, poster, return_genres=False): from modules.meta_lists import movie_genres, tvshow_genres def _process_dicts(genre_str, _dict): final_genres_list = [] append = final_genres_list.append for key, value in _dict.items(): if key in genre_str: append({'genre': key, 'value': value}) return final_genres_list if db_type in ('movie', 'movies'): genre_action, meta_type, action = movie_genres, 'movie', 'tmdb_movies_genres' else: genre_action, meta_type, action = tvshow_genres, 'tvshow', 'tmdb_tv_genres' genre_list = _process_dicts(genres, genre_action()) if return_genres: return genre_list if len(genre_list) == 0: kodi_utils.notification(32760, 2500) return None mode = 'build_%s_list' % meta_type items = [{'line': item['genre'], 'function': json.dumps({'mode': mode, 'action': action, 'genre_id': item['value'][0]})} for item in genre_list] return open_window(['windows.extras', 'ShowSelectMedia'], 'select_media.xml', items=items, poster=poster) def imdb_keywords_choice(db_type, imdb_id, poster): from apis.imdb_api import imdb_keywords def _builder(): for item in keywords_info: obj = {'line': item, 'function': json.dumps({'mode': mode, 'action': 'imdb_keywords_list_contents', 'list_id': item, 'iconImage': 'imdb.png'})} yield obj kodi_utils.show_busy_dialog() keywords_info = imdb_keywords(imdb_id) if len(keywords_info) == 0: kodi_utils.hide_busy_dialog() kodi_utils.notification(32760, 2500) return None meta_type = 'movie' if db_type == 'movies' else 'tvshow' mode = 'build_%s_list' % meta_type items = list(_builder()) kodi_utils.hide_busy_dialog() return open_window(['windows.extras', 'ShowSelectMedia'], 'select_media.xml', items=items, poster=poster, context_active_action='keywords') def imdb_videos_choice(videos, poster, media=True): try: videos = json.loads(videos) except: pass videos.sort(key=lambda x: x['quality_rank']) if media: items = [{'line': i['quality'], 'function': i['url']} for i in videos] choice = open_window(['windows.extras', 'ShowSelectMedia'], 'select_media.xml', items=items, poster=poster) else: dl = [i['quality'] for i in videos] fl = [i['url'] for i in videos] list_items = [{'line1': item, 'icon': poster} for item in dl] kwargs = {'items': json.dumps(list_items), 'heading': 'Fen', 'enumerate': 'false', 'multi_choice': 'false', 'multi_line': 'false'} choice = kodi_utils.select_dialog(fl, **kwargs) return choice def trakt_manager_choice(params): if not get_setting('trakt_user', ''): return kodi_utils.notification(32760, 3500) icon = kodi_utils.translate_path('special://home/addons/script.tikiart/resources/media/trakt.png') choices = [('%s %s...' % (ls(32602), ls(32199)), 'Add'), ('%s %s...' % (ls(32603), ls(32199)), 'Remove')] list_items = [{'line1': item[0], 'icon': icon} for item in choices] kwargs = {'items': json.dumps(list_items), 'heading': ls(32198).replace('[B]', '').replace('[/B]', ''), 'enumerate': 'false', 'multi_choice': 'false', 'multi_line': 'false'} choice = kodi_utils.select_dialog([i[1] for i in choices], **kwargs) if choice == None: return if choice == 'Add': from apis.trakt_api import trakt_add_to_list trakt_add_to_list(params) else: from apis.trakt_api import trakt_remove_from_list trakt_remove_from_list(params) def playback_choice(content, meta): items = [{'line': ls(32014), 'function': 'clear_and_rescrape'}, {'line': ls(32006), 'function': 'rescrape_with_disabled'}, {'line': ls(32135), 'function': 'scrape_with_custom_values'}] choice = open_window(['windows.extras', 'ShowSelectMedia'], 'select_media.xml', items=items, rootname=meta['rootname'], poster=meta['poster']) if choice == None: return from modules.source_utils import clear_and_rescrape, rescrape_with_disabled, scrape_with_custom_values if choice == 'clear_and_rescrape': clear_and_rescrape(content, meta) elif choice == 'rescrape_with_disabled': rescrape_with_disabled(content, meta) else: scrape_with_custom_values(content, meta) def set_quality_choice(quality_setting): include = ls(32188) dl = ['%s SD' % include, '%s 720p' % include, '%s 1080p' % include, '%s 4K' % include] fl = ['SD', '720p', '1080p', '4K'] try: preselect = [fl.index(i) for i in get_setting(quality_setting).split(', ')] except: preselect = [] list_items = [{'line1': item} for item in dl] kwargs = {'items': json.dumps(list_items), 'heading': 'Fen', 'enumerate': 'false', 'multi_choice': 'true', 'multi_line': 'false', 'preselect': preselect} choice = kodi_utils.select_dialog(fl, **kwargs) if choice is None: return if choice == []: kodi_utils.ok_dialog(text=32574, top_space=True) return set_quality_choice(quality_setting) set_setting(quality_setting, ', '.join(choice)) def extras_lists_choice(): screenshots_directory = 'special://home/addons/script.tikiart/resources/screenshots/extras/%s' fl = [2051, 2052, 2053, 2054, 2055, 2056, 2057, 2058, 2059, 2060, 2061, 2062] dl = [{'name': ls(32503), 'image': kodi_utils.translate_path(screenshots_directory % '001_recommended.jpg')}, {'name': ls(32607), 'image': kodi_utils.translate_path(screenshots_directory % '002_reviews.jpg')}, {'name': ls(32984), 'image': kodi_utils.translate_path(screenshots_directory % '003_trivia.jpg')}, {'name': ls(32986), 'image': kodi_utils.translate_path(screenshots_directory % '004_blunders.jpg')}, {'name': ls(32989), 'image': kodi_utils.translate_path(screenshots_directory % '005_parentalguide.jpg')}, {'name': ls(33032), 'image': kodi_utils.translate_path(screenshots_directory % '006_videos.jpg')}, {'name': ls(32616), 'image': kodi_utils.translate_path(screenshots_directory % '007_posters.jpg')}, {'name': ls(32617), 'image': kodi_utils.translate_path(screenshots_directory % '008_fanart.jpg')}, {'name': '%s %s' % (ls(32612), ls(32543)), 'image': kodi_utils.translate_path(screenshots_directory % '009_morefromyear.jpg')}, {'name': '%s %s' % (ls(32612), ls(32470)), 'image': kodi_utils.translate_path(screenshots_directory % '010_morefromgenres.jpg')}, {'name': '%s %s' % (ls(32612), ls(32480)), 'image': kodi_utils.translate_path(screenshots_directory % '011_morefromnetwork.jpg')}, {'name': '%s %s' % (ls(32612), ls(32499)), 'image': kodi_utils.translate_path(screenshots_directory % '012_collection.jpg')}] try: preselect = [fl.index(i) for i in settings.extras_enabled_lists()] except: preselect = [] kwargs = {'items': json.dumps(dl), 'preselect': preselect} selection = open_window(('windows.extras', 'ExtrasChooser'), 'extras_chooser.xml', **kwargs) if selection == []: return set_setting('extras.enabled_lists', 'noop') elif selection == None: return selection = [str(fl[i]) for i in selection] set_setting('extras.enabled_lists', ','.join(selection)) def set_language_filter_choice(filter_setting): from modules.meta_lists import language_choices lang_choices = language_choices() lang_choices.pop('None') dl = list(lang_choices.keys()) fl = list(lang_choices.values()) try: preselect = [fl.index(i) for i in get_setting(filter_setting).split(', ')] except: preselect = [] list_items = [{'line1': item} for item in dl] kwargs = {'items': json.dumps(list_items), 'heading': 'Fen', 'enumerate': 'false', 'multi_choice': 'true', 'multi_line': 'false', 'preselect': preselect} choice = kodi_utils.select_dialog(fl, **kwargs) if choice == None: return if choice == []: return set_setting(filter_setting, 'eng') set_setting(filter_setting, ', '.join(choice)) def enable_scrapers_choice(): scrapers = ['external', 'furk', 'easynews', 'rd-cloud', 'pm-cloud', 'ad-cloud', 'folders'] cloud_scrapers = {'rd-cloud': 'rd.enabled', 'pm-cloud': 'pm.enabled', 'ad-cloud': 'ad.enabled'} scraper_names = [ls(32118).upper(), ls(32069).upper(), ls(32070).upper(), ls(32098).upper(), ls(32097).upper(), ls(32099).upper(), ls(32108).upper()] preselect = [scrapers.index(i) for i in settings.active_scrapers(group_folders=True)] list_items = [{'line1': item} for item in scraper_names] kwargs = {'items': json.dumps(list_items), 'heading': 'Fen', 'enumerate': 'false', 'multi_choice': 'true', 'multi_line': 'false', 'preselect': preselect} choice = kodi_utils.select_dialog(scrapers, **kwargs) if choice is None: return for i in scrapers: set_setting('provider.%s' % i, ('true' if i in choice else 'false')) if i in cloud_scrapers and i in choice: set_setting(cloud_scrapers[i], 'true') def folder_scraper_manager_choice(folder_info=None): def _get_property(setting_id): return kodi_utils.window.getProperty('fen_%s' % setting_id) or get_setting(setting_id) def _set_property(setting_id, setting_value): kodi_utils.window.setProperty('fen_%s' % setting_id, setting_value) def _clear_property(setting_id): kodi_utils.window.clearProperty(setting_id) def _exit_save_settings(): for folder_no in range(1,6): set_setting(name_setting % folder_no, _get_property(name_setting % folder_no)) set_setting(movie_dir_setting % folder_no, _get_property(movie_dir_setting % folder_no)) set_setting(tvshow_dir_setting % folder_no, _get_property(tvshow_dir_setting % folder_no)) _clear_property('fen_%s' % name_setting % folder_no) _clear_property('fen_%s' % movie_dir_setting % folder_no) _clear_property('fen_%s' % tvshow_dir_setting % folder_no) def _return(passed_folder_info): return folder_scraper_manager_choice(passed_folder_info) def _make_folders(): return [{'number': folder_no, 'name': folder_names[folder_no], 'display_setting': name_setting % folder_no, 'movie_setting': movie_dir_setting % folder_no, 'tvshow_setting': tvshow_dir_setting % folder_no, 'display': _get_property(name_setting % folder_no), 'movie_dir': _get_property(movie_dir_setting % folder_no), 'tvshow_dir': _get_property(tvshow_dir_setting % folder_no)} \ for folder_no in range(1,6)] def _update_folder_info(): folder_info.update({'display': _get_property(name_setting % folder_info['number']), 'movie_dir': _get_property(movie_dir_setting % folder_info['number']), 'tvshow_dir': _get_property(tvshow_dir_setting % folder_info['number'])}) def _make_listing(): return [('[B]%s[/B]: [I]%s[/I]' % (folder_name_str, folder_info['display']), folder_info['display_setting']), ('[B]%s[/B]: [I]%s[/I]' % (movie_dir_str, folder_info['movie_dir']), folder_info['movie_setting']), ('[B]%s[/B]: [I]%s[/I]' % (tv_dir_str, folder_info['tvshow_dir']), folder_info['tvshow_setting'])] def _process_setting(): if setting == None: _return(None) if 'display_name' in setting: _set_display() else: _set_folder_path() def _set_display(): default = folder_info['display'] folder_title = kodi_utils.dialog.input(folder_name_str, defaultt=default) if not folder_title: folder_title = 'None' _set_property(folder_info['display_setting'], folder_title) _return(folder_info) def _set_folder_path(): if _get_property(setting) not in ('', 'None'): list_items = [{'line1': item} for item in [ls(32682), ls(32683)]] kwargs = {'items': json.dumps(list_items), 'heading': 'Fen', 'enumerate': 'false', 'multi_choice': 'false', 'multi_line': 'false'} action = kodi_utils.select_dialog([1, 2], **kwargs) if action == None: _return(folder_info) if action == 1: _set_property(setting, 'None') _return(folder_info) else: folder = kodi_utils.dialog.browse(0, 'Fen', '') if not folder: folder = 'None' _set_property(setting, folder) _return(folder_info) else: folder = kodi_utils.dialog.browse(0, 'Fen', '') if not folder: folder = 'None' _set_property(setting, folder) _return(folder_info) try: choose_folder_str, folder_name_str, movie_dir_str, tv_dir_str = ls(32109), ls(32115), ls(32116), ls(32117) name_setting, movie_dir_setting, tvshow_dir_setting = 'folder%d.display_name', 'folder%d.movies_directory', 'folder%d.tv_shows_directory' folder_names = {1: ls(32110), 2: ls(32111), 3: ls(32112), 4: ls(32113), 5: ls(32114)} if not folder_info: folders = _make_folders() list_items = [{'line1': '%s: [I]%s[/I]' % (item['name'], item['display'])} for item in folders] kwargs = {'items': json.dumps(list_items), 'heading': choose_folder_str, 'enumerate': 'false', 'multi_choice': 'false', 'multi_line': 'false'} folder_info = kodi_utils.select_dialog(folders, **kwargs) if folder_info == None: return _exit_save_settings() else: _update_folder_info() listing = _make_listing() list_items = [{'line1': item[0]} for item in listing] kwargs = {'items': json.dumps(list_items), 'heading': 'Fen', 'enumerate': 'false', 'multi_choice': 'false', 'multi_line': 'false'} setting = kodi_utils.select_dialog([i[1] for i in listing], **kwargs) _process_setting() except Exception as e: return def results_sorting_choice(): quality, provider, size = ls(32241), ls(32583), ls(32584) choices = [('%s, %s, %s' % (quality, provider, size), '0'), ('%s, %s, %s' % (quality, size, provider), '1'), ('%s, %s, %s' % (provider, quality, size), '2'), ('%s, %s, %s' % (provider, size, quality), '3'), ('%s, %s, %s' % (size, quality, provider), '4'), ('%s, %s, %s' % (size, provider, quality), '5')] list_items = [{'line1': item[0]} for item in choices] kwargs = {'items': json.dumps(list_items), 'heading': 'Fen', 'enumerate': 'false', 'multi_choice': 'false', 'multi_line': 'false'} choice = kodi_utils.select_dialog(choices, **kwargs) if choice: set_setting('results.sort_order_display', choice[0]) set_setting('results.sort_order', choice[1]) def results_highlights_choice(): choices = ((ls(32240), '0'), (ls(32583), '1'), (ls(32241), '2')) list_items = [{'line1': item[0]} for item in choices] kwargs = {'items': json.dumps(list_items), 'heading': 'Fen', 'enumerate': 'false', 'multi_choice': 'false', 'multi_line': 'false'} choice = kodi_utils.select_dialog([i[1] for i in choices], **kwargs) if choice: return set_setting('highlight.type', choice) def results_layout_choice(): screenshots_directory = 'special://home/addons/script.tikiart/resources/screenshots/results/%s' xml_choices = [ ('List Default', kodi_utils.translate_path(screenshots_directory % 'source_results_list.default.jpg')), ('List Contrast Default', kodi_utils.translate_path(screenshots_directory % 'source_results_list.contrast.default.jpg')), ('List Details', kodi_utils.translate_path(screenshots_directory % 'source_results_list.details.jpg')), ('List Contrast Details', kodi_utils.translate_path(screenshots_directory % 'source_results_list.contrast.details.jpg')), ('InfoList Default', kodi_utils.translate_path(screenshots_directory % 'source_results_infolist.default.jpg')), ('InfoList Contrast Default', kodi_utils.translate_path(screenshots_directory % 'source_results_infolist.contrast.default.jpg')), ('InfoList Details', kodi_utils.translate_path(screenshots_directory % 'source_results_infolist.details.jpg')), ('InfoList Contrast Details', kodi_utils.translate_path(screenshots_directory % 'source_results_infolist.contrast.details.jpg')), ('Shift Default', kodi_utils.translate_path(screenshots_directory % 'source_results_shift.default.jpg')), ('Shift Contrast Default', kodi_utils.translate_path(screenshots_directory % 'source_results_shift.contrast.default.jpg')), ('Shift Details', kodi_utils.translate_path(screenshots_directory % 'source_results_shift.details.jpg')), ('Shift Contrast Details', kodi_utils.translate_path(screenshots_directory % 'source_results_shift.contrast.details.jpg')), ('Thumb Default', kodi_utils.translate_path(screenshots_directory % 'source_results_thumb.default.jpg')), ('Thumb Contrast Default', kodi_utils.translate_path(screenshots_directory % 'source_results_thumb.contrast.default.jpg')), ('Thumb Details', kodi_utils.translate_path(screenshots_directory % 'source_results_thumb.details.jpg')), ('Thumb Contrast Details', kodi_utils.translate_path(screenshots_directory % 'source_results_thumb.contrast.details.jpg')) ] choice = open_window(['windows.sources', 'SourceResultsChooser'], 'sources_chooser.xml', xml_choices=xml_choices) if choice: set_setting('results.xml_style', choice) def set_subtitle_choice(): choices = ((ls(32192), '0'), (ls(32193), '1'), (ls(32027), '2')) list_items = [{'line1': item[0]} for item in choices] kwargs = {'items': json.dumps(list_items), 'heading': 'Fen', 'enumerate': 'false', 'multi_choice': 'false', 'multi_line': 'false'} choice = kodi_utils.select_dialog([i[1] for i in choices], **kwargs) if choice: return set_setting('subtitles.subs_action', choice) def scraper_dialog_color_choice(setting): setting ='int_dialog_highlight' if setting == 'internal' else 'ext_dialog_highlight' chosen_color = color_chooser('Fen') if chosen_color: set_setting(setting, chosen_color) def scraper_quality_color_choice(setting): chosen_color = color_chooser('Fen') if chosen_color: set_setting(setting, chosen_color) def scraper_color_choice(setting): choices = [('furk', 'provider.furk_colour'), ('easynews', 'provider.easynews_colour'), ('debrid_cloud', 'provider.debrid_cloud_colour'), ('folders', 'provider.folders_colour'), ('hoster', 'hoster.identify'), ('torrent', 'torrent.identify'), ('rd', 'provider.rd_colour'), ('pm', 'provider.pm_colour'), ('ad', 'provider.ad_colour'), ('free', 'provider.free_colour')] setting = [i[1] for i in choices if i[0] == setting][0] chosen_color = color_chooser('Fen') if chosen_color: set_setting(setting, chosen_color) def external_scrapers_manager(): icon = kodi_utils.ext_addon('script.module.fenomscrapers').getAddonInfo('icon') all_color, hosters_color, torrent_color = 'mediumvioletred', get_setting('hoster.identify'), get_setting('torrent.identify') enable_string, disable_string, specific_string, all_string = ls(32055), ls(32024), ls(32536), ls(32525) scrapers_string, hosters_string, torrent_string = ls(32533), ls(33031), ls(32535) fs_default_string = ls(32137) all_scrapers_string = '%s %s' % (all_string, scrapers_string) hosters_scrapers_string = '%s %s' % (hosters_string, scrapers_string) torrent_scrapers_string = '%s %s' % (torrent_string, scrapers_string) enable_string_base = '%s %s %s %s' % (enable_string, all_string, '%s', scrapers_string) disable_string_base = '%s %s %s %s' % (disable_string, all_string, '%s', scrapers_string) enable_disable_string_base = '%s/%s %s %s %s' % (enable_string, disable_string, specific_string, '%s', scrapers_string) all_scrapers_base = '[COLOR %s]%s [/COLOR]' % (all_color, all_scrapers_string.upper()) debrid_scrapers_base = '[COLOR %s]%s [/COLOR]' % (hosters_color, hosters_scrapers_string.upper()) torrent_scrapers_base = '[COLOR %s]%s [/COLOR]' % (torrent_color, torrent_scrapers_string.upper()) tools_menu = \ [(all_scrapers_base, fs_default_string, {'mode': 'set_default_scrapers'}), (all_scrapers_base, enable_string_base % '', {'mode': 'toggle_all', 'folder': 'all', 'setting': 'true'}), (all_scrapers_base, disable_string_base % '', {'mode': 'toggle_all', 'folder': 'all', 'setting': 'false'}), (all_scrapers_base, enable_disable_string_base % '',{'mode': 'enable_disable_specific_all', 'folder': 'all'}), (debrid_scrapers_base, enable_string_base % hosters_string, {'mode': 'toggle_all', 'folder': 'hosters', 'setting': 'true'}), (debrid_scrapers_base, disable_string_base % hosters_string, {'mode': 'toggle_all', 'folder': 'hosters', 'setting': 'false'}), (debrid_scrapers_base, enable_disable_string_base % hosters_string, {'mode': 'enable_disable_specific_all', 'folder': 'hosters'}), (torrent_scrapers_base, enable_string_base % torrent_string, {'mode': 'toggle_all', 'folder': 'torrents', 'setting': 'true'}), (torrent_scrapers_base, disable_string_base % torrent_string, {'mode': 'toggle_all', 'folder': 'torrents', 'setting': 'false'}), (torrent_scrapers_base, enable_disable_string_base % torrent_string, {'mode': 'enable_disable_specific_all', 'folder': 'torrents'})] list_items = [{'line1': item[0], 'line2': item[1], 'icon': icon} for item in tools_menu] kwargs = {'items': json.dumps(list_items), 'heading': 'Fen', 'enumerate': 'false', 'multi_choice': 'false', 'multi_line': 'true'} chosen_tool = kodi_utils.select_dialog(tools_menu, **kwargs) if chosen_tool == None: return from modules import source_utils params = chosen_tool[2] mode = params['mode'] if mode == 'toggle_all': source_utils.toggle_all(params['folder'], params['setting']) elif mode == 'enable_disable_specific_all': source_utils.enable_disable_specific_all(params['folder']) elif mode == 'set_default_scrapers': source_utils.set_default_scrapers() kodi_utils.sleep(350) return external_scrapers_manager() def meta_language_choice(): from modules.meta_lists import meta_lang_choices langs = meta_lang_choices() list_items = [{'line1': i['name']} for i in langs] kwargs = {'items': json.dumps(list_items), 'heading': ls(32145), 'enumerate': 'false', 'multi_choice': 'false', 'multi_line': 'false'} list_choose = kodi_utils.select_dialog(langs, **kwargs) if list_choose == None: return None from caches.meta_cache import delete_meta_cache chosen_language = list_choose['iso'] chosen_language_display = list_choose['name'] set_setting('meta_language', chosen_language) set_setting('meta_language_display', chosen_language_display) delete_meta_cache(silent=True) def favorites_choice(params): from modules.favourites import Favourites favourites = Favourites(params) db_type = params['db_type'] tmdb_id = params['tmdb_id'] title = params['title'] current_favourites = favourites.get_favourites(db_type) if any(i['tmdb_id'] == tmdb_id for i in current_favourites): action = favourites.remove_from_favourites text = '%s Fen %s?' % (ls(32603), ls(32453)) else: action = favourites.add_to_favourites text = '%s Fen %s?' % (ls(32602), ls(32453)) if not kodi_utils.confirm_dialog(heading='Fen - %s' % title, text=text, top_space=True): return action() def options_menu(params, meta=None): def _builder(): for item in listing: line2 = item[1] if line2 == '': line2 = item[0] yield {'line1': item[0], 'line2': line2} content = params.get('content', None) if not content: content = kodi_utils.container_content()[:-1] season = params.get('season', None) episode = params.get('episode', None) if not meta: function = metadata.movie_meta if content == 'movie' else metadata.tvshow_meta meta_user_info = metadata.retrieve_user_info() meta = function('tmdb_id', params['tmdb_id'], meta_user_info) watched_indicators = settings.watched_indicators() on_str, off_str, currently_str, open_str, settings_str = ls(32090), ls(32027), ls(32598), ls(32641), ls(32247) autoplay_status, autoplay_toggle, quality_setting = (on_str, 'false', 'autoplay_quality_%s' % content) if settings.auto_play(content) \ else (off_str, 'true', 'results_quality_%s' % content) quality_filter_setting = 'autoplay_quality_%s' % content if autoplay_status == on_str else 'results_quality_%s' % content autoplay_next_status, autoplay_next_toggle = (on_str, 'false') if settings.autoplay_next_episode() else (off_str, 'true') results_xml_style_status = get_setting('results.xml_style', 'Default') results_filter_ignore_status, results_filter_ignore_toggle = (on_str, 'false') if settings.ignore_results_filter() else (off_str, 'true') results_sorting_status = get_setting('results.sort_order_display').replace('$ADDON[plugin.video.fen 32582]', ls(32582)) current_results_highlights_action = get_setting('highlight.type') results_highlights_status = ls(32240) if current_results_highlights_action == '0' else ls(32583) if current_results_highlights_action == '1' else ls(32241) current_subs_action = get_setting('subtitles.subs_action') current_subs_action_status = 'Auto' if current_subs_action == '0' else ls(32193) if current_subs_action == '1' else off_str active_scrapers = [i.replace('-', '') for i in settings.active_scrapers(group_folders=True)] current_scrapers_status = ', '.join([i for i in active_scrapers]) if len(active_scrapers) > 0 else 'N/A' current_quality_status = ', '.join(settings.quality_filter(quality_setting)) uncached_torrents_status, uncached_torrents_toggle = (on_str, 'false') if settings.display_uncached_torrents() else (off_str, 'true') listing = [] base_str1 = '%s%s' base_str2 = '%s: [B]%s[/B]' % (currently_str, '%s') if content in ('movie', 'episode'): multi_line = 'true' listing += [(ls(32014), '', 'clear_and_rescrape')] listing += [(ls(32006), '', 'rescrape_with_disabled')] listing += [(ls(32135), '', 'scrape_with_custom_values')] listing += [(base_str1 % (ls(32175), ' (%s)' % content), base_str2 % autoplay_status, 'toggle_autoplay')] if autoplay_status == on_str and content == 'episode': listing += [(base_str1 % (ls(32178), ''), base_str2 % autoplay_next_status, 'toggle_autoplay_next')] listing += [(base_str1 % (ls(32105), ' (%s)' % content), base_str2 % current_quality_status, 'set_quality')] listing += [(base_str1 % ('', '%s %s' % (ls(32055), ls(32533))), base_str2 % current_scrapers_status, 'enable_scrapers')] if autoplay_status == off_str: listing += [(base_str1 % ('', ls(32140)), base_str2 % results_xml_style_status, 'set_results_xml_display')] listing += [(base_str1 % ('', ls(32151)), base_str2 % results_sorting_status, 'set_results_sorting')] listing += [(base_str1 % ('', ls(32138)), base_str2 % results_highlights_status, 'set_results_highlights')] listing += [(base_str1 % ('', ls(32686)), base_str2 % results_filter_ignore_status, 'set_results_filter_ignore')] listing += [(base_str1 % ('', ls(32183)), base_str2 % current_subs_action_status, 'set_subs_action')] if 'external' in active_scrapers: listing += [(base_str1 % ('', ls(32160)), base_str2 % uncached_torrents_status, 'toggle_torrents_display_uncached')] else: multi_line = 'false' listing += [(ls(32046), '', 'extras_lists_choice')] if content in ('movie', 'tvshow') and meta: listing += [(ls(32604) % (ls(32028) if meta['mediatype'] == 'movie' else ls(32029)), '', 'clear_media_cache')] if watched_indicators == 1: listing += [((ls(32497) % ls(32037)), 'Clear Trakt Cache', 'clear_trakt_cache')] if content in ('movie', 'episode'): listing += [(ls(32637), '', 'clear_scrapers_cache')] listing += [('%s %s' % (ls(32118), ls(32513)), '', 'open_external_scrapers_manager')] listing += [('%s %s %s' % (open_str, ls(32522), settings_str), '', 'open_scraper_settings')] listing += [('%s %s %s' % (open_str, ls(32036), settings_str), '', 'open_fen_settings')] listing += [(ls(32640), '', 'save_and_exit')] list_items = list(_builder()) heading = ls(32646).replace('[B]', '').replace('[/B]', '') kwargs = {'items': json.dumps(list_items), 'heading': heading, 'enumerate': 'false', 'multi_choice': 'false', 'multi_line': multi_line} choice = kodi_utils.select_dialog([i[2] for i in listing], **kwargs) if choice in (None, 'save_and_exit'): return elif choice == 'clear_and_rescrape': return clear_and_rescrape(content, meta, season, episode) elif choice == 'rescrape_with_disabled': return rescrape_with_disabled(content, meta, season, episode) elif choice == 'scrape_with_custom_values': return scrape_with_custom_values(content, meta, season, episode) elif choice == 'toggle_autoplay': set_setting('auto_play_%s' % content, autoplay_toggle) elif choice == 'toggle_autoplay_next': set_setting('autoplay_next_episode', autoplay_next_toggle) elif choice == 'enable_scrapers': enable_scrapers_choice() elif choice == 'set_results_xml_display': results_layout_choice() elif choice == 'set_results_sorting': results_sorting_choice() elif choice == 'set_results_filter_ignore': set_setting('ignore_results_filter', results_filter_ignore_toggle) elif choice == 'set_results_highlights': results_highlights_choice() elif choice == 'set_quality': set_quality_choice(quality_filter_setting) elif choice == 'set_subs_action': set_subtitle_choice() elif choice == 'extras_lists_choice': extras_lists_choice() elif choice == 'clear_media_cache': return refresh_cached_data(meta['mediatype'], 'tmdb_id', meta['tmdb_id'], meta['tvdb_id'], settings.get_language()) elif choice == 'toggle_torrents_display_uncached': set_setting('torrent.display.uncached', uncached_torrents_toggle) elif choice == 'clear_trakt_cache': return clear_cache('trakt') elif choice == 'clear_scrapers_cache': return clear_scrapers_cache() elif choice == 'open_external_scrapers_manager': return external_scrapers_manager() elif choice == 'open_scraper_settings': return kodi_utils.execute_builtin('Addon.OpenSettings(script.module.fenomscrapers)') elif choice == 'open_fen_settings': return open_settings('0.0') if choice == 'clear_trakt_cache' and content in ('movie', 'tvshow', 'season', 'episode'): kodi_utils.execute_builtin('Container.Refresh') kodi_utils.show_busy_dialog() kodi_utils.sleep(200) kodi_utils.hide_busy_dialog() options_menu(params, meta=meta) def extras_menu(params): function = metadata.movie_meta if params['db_type'] == 'movie' else metadata.tvshow_meta meta_user_info = metadata.retrieve_user_info(kodi_utils.window) meta = function('tmdb_id', params['tmdb_id'], meta_user_info) open_window(['windows.extras', 'Extras'], 'extras.xml', meta=meta, is_widget=params.get('is_widget', 'false'), is_home=params.get('is_home', 'false')) def media_extra_info(media_type, meta): extra_info = meta.get('extra_info', None) body = [] append = body.append tagline_str, premiered_str, rating_str, votes_str, runtime_str = ls(32619), ls(32620), ls(32621), ls(32623), ls(32622) genres_str, budget_str, revenue_str, director_str, writer_str = ls(32624), ls(32625), ls(32626), ls(32627), ls(32628) studio_str, collection_str, homepage_str, status_str, type_str, classification_str = ls(32615), ls(32499), ls(32629), ls(32630), ls(32631), ls(32632) network_str, created_by_str, last_aired_str, next_aired_str, seasons_str, episodes_str = ls(32480), ls(32633), ls(32634), ls(32635), ls(32636), ls(32506) try: if media_type == 'movie': if 'tagline' in meta and meta['tagline']: append('[B]%s:[/B] %s' % (tagline_str, meta['tagline'])) if 'alternative_titles' in meta and meta['alternative_titles']: append('[B]%s:[/B] %s' % ('Aliases', ', '.join(meta['alternative_titles']))) if 'status' in extra_info: append('[B]%s:[/B] %s' % (status_str, extra_info['status'])) append('[B]%s:[/B] %s' % (premiered_str, meta['premiered'])) append('[B]%s:[/B] %s (%s %s)' % (rating_str, meta['rating'], meta['votes'], votes_str)) append('[B]%s:[/B] %d mins' % (runtime_str, int(float(meta['duration'])/60))) append('[B]%s:[/B] %s' % (genres_str, meta['genre'])) if 'budget' in extra_info: append('[B]%s:[/B] %s' % (budget_str, extra_info['budget'])) if 'revenue' in extra_info: append('[B]%s:[/B] %s' % (revenue_str, extra_info['revenue'])) append('[B]%s:[/B] %s' % (director_str, meta['director'])) append('[B]%s:[/B] %s' % (writer_str, meta['writer'] or 'N/A')) append('[B]%s:[/B] %s' % (studio_str, meta['studio'] or 'N/A')) if extra_info.get('collection_name'): append('[B]%s:[/B] %s' % (collection_str, extra_info['collection_name'])) if extra_info.get('homepage'): append('[B]%s:[/B] %s' % (homepage_str, extra_info['homepage'])) else: if 'type' in extra_info: append('[B]%s:[/B] %s' % (type_str, extra_info['type'])) if 'alternative_titles' in meta and meta['alternative_titles']: append('[B]%s:[/B] %s' % ('Aliases', ', '.join(meta['alternative_titles']))) if 'status' in extra_info: append('[B]%s:[/B] %s' % (status_str, extra_info['status'])) append('[B]%s:[/B] %s' % (premiered_str, meta['premiered'])) append('[B]%s:[/B] %s (%s %s)' % (rating_str, meta['rating'], meta['votes'], votes_str)) append('[B]%s:[/B] %d mins' % (runtime_str, int(float(meta['duration'])/60))) append('[B]%s:[/B] %s' % (classification_str, meta['mpaa'])) append('[B]%s:[/B] %s' % (genres_str, meta['genre'])) append('[B]%s:[/B] %s' % (network_str, meta['studio'])) if 'created_by' in extra_info: append('[B]%s:[/B] %s' % (created_by_str, extra_info['created_by'])) if extra_info.get('last_episode_to_air', False): last_ep = extra_info['last_episode_to_air'] lastep_str = '[%s] S%.2dE%.2d - %s' % (last_ep['air_date'], last_ep['season_number'], last_ep['episode_number'], last_ep['name']) append('[B]%s:[/B] %s' % (last_aired_str, lastep_str)) if extra_info.get('next_episode_to_air', False): next_ep = extra_info['next_episode_to_air'] nextep_str = '[%s] S%.2dE%.2d - %s' % (next_ep['air_date'], next_ep['season_number'], next_ep['episode_number'], next_ep['name']) append('[B]%s:[/B] %s' % (next_aired_str, nextep_str)) append('[B]%s:[/B] %s' % (seasons_str, meta['total_seasons'])) append('[B]%s:[/B] %s' % (episodes_str, meta['total_aired_eps'])) if 'homepage' in extra_info: append('[B]%s:[/B] %s' % (homepage_str, extra_info['homepage'])) except: return kodi_utils.notification(32574, 2000) return '\n\n'.join(body) def color_chooser(msg_dialog, no_color=False): from modules.meta_lists import meta_color_choices color_chart = meta_color_choices() color_display = ['[COLOR=%s]%s[/COLOR]' % (i, i.capitalize()) for i in color_chart] if no_color: color_chart.insert(0, 'No Color') color_display.insert(0, 'No Color') list_items = [{'line1': item} for item in color_display] kwargs = {'items': json.dumps(list_items), 'heading': 'Fen', 'enumerate': 'false', 'multi_choice': 'false', 'multi_line': 'false'} choice = kodi_utils.select_dialog(color_chart, **kwargs) if choice == None: return return choice
5b5451db8c50ff61a68abf0e926e2717d703c310
5e381364c2ab31ff3618369085afffba6caa8edb
/recipes/ghc-filesystem/all/conanfile.py
a6f41d56f7d61a30937802fdd0e2b28998c42def
[ "MIT" ]
permissive
CAMOBAP/conan-center-index
16aea68a6d22da22831ba985773125e8eda08f00
67d57532bdad549fef3fa6cb8fcdfa86bc55e4f1
refs/heads/master
2023-07-30T08:58:57.285571
2021-10-02T14:57:54
2021-10-02T14:57:54
323,262,699
1
0
MIT
2021-05-29T13:37:04
2020-12-21T07:30:02
Python
UTF-8
Python
false
false
1,846
py
import os from conans import ConanFile, CMake, tools class GhcFilesystemRecipe(ConanFile): name = "ghc-filesystem" description = "A header-only single-file std::filesystem compatible helper library" topics = ("conan", "ghc-filesystem", "header-only", "filesystem") homepage = "https://github.com/gulrak/filesystem" url = "https://github.com/conan-io/conan-center-index" license = "MIT" generators = "cmake" no_copy_source = True _cmake = None @property def _source_subfolder(self): return "source_subfolder" def source(self): tools.get(**self.conan_data["sources"][self.version]) extracted_dir = "filesystem-" + self.version os.rename(extracted_dir, self._source_subfolder) def _configure_cmake(self): if self._cmake: return self._cmake self._cmake = CMake(self) self._cmake.definitions["GHC_FILESYSTEM_BUILD_TESTING"] = False self._cmake.definitions["GHC_FILESYSTEM_BUILD_EXAMPLES"] = False self._cmake.definitions["GHC_FILESYSTEM_WITH_INSTALL"] = True self._cmake.configure(source_folder=self._source_subfolder) return self._cmake def package(self): self.copy(pattern="LICENSE", dst="licenses", src=self._source_subfolder) cmake = self._configure_cmake() cmake.install() tools.rmdir(os.path.join(self.package_folder, "lib")) def package_id(self): self.info.header_only() def package_info(self): self.cpp_info.names["cmake_find_package"] = "ghcFilesystem" self.cpp_info.names["cmake_find_package_multi"] = "ghcFilesystem" self.cpp_info.components["filesystem"].names["cmake_find_package"] = "ghc_filesystem" self.cpp_info.components["filesystem"].names["cmake_find_package_multi"] = "ghc_filesystem"
183611ac29eb22fef0ace8fc886bf34f6a42b118
6923f79f1eaaba0ab28b25337ba6cb56be97d32d
/Non_Linear_Finite_Element_Analysis_of_Solids_and_Structures_Borst/pyfem-1.0/pyfem/solvers/Solver.py
2f5f42f519614cbfcae51e0f61b1ad62fe84b778
[]
no_license
burakbayramli/books
9fe7ba0cabf06e113eb125d62fe16d4946f4a4f0
5e9a0e03aa7ddf5e5ddf89943ccc68d94b539e95
refs/heads/master
2023-08-17T05:31:08.885134
2023-08-14T10:05:37
2023-08-14T10:05:37
72,460,321
223
174
null
2022-10-24T12:15:06
2016-10-31T17:24:00
Jupyter Notebook
UTF-8
Python
false
false
2,684
py
############################################################################ # This Python file is part of PyFEM-1.0, released on Aug. 29, 2012. # # The PyFEM code accompanies the book: # # # # 'Non-Linear Finite Element Analysis of Solids and Structures' # # R. de Borst, M.A. Crisfield, J.J.C. Remmers and C.V. Verhoosel # # John Wiley and Sons, 2012, ISBN 978-0470666449 # # # # The code is written by J.J.C. Remmers, C.V. Verhoosel and R. de Borst. # # Comments and suggestions can be sent to: # # [email protected] # # # # The latest version can be downloaded from the web-site: # # http://www.wiley.com/go/deborst # # # # The code is open source and intended for educational and scientific # # purposes only. If you use PyFEM in your research, the developers would # # be grateful if you could cite the book. # # # # Disclaimer: # # The authors reserve all rights but do not guarantee that the code is # # free from errors. Furthermore, the authors shall not be liable in any # # event caused by the use of the program. # ############################################################################ #------------------------------------------------------------------------------ # #------------------------------------------------------------------------------ class Solver: def __init__( self , props , globdat ): solverProps = getattr( props, "solver" ) solverType = solverProps.type exec "from pyfem.solvers."+solverType+" import "+solverType props.currentModule = "solver" self.solver = eval(solverType+"( props , globdat )") #------------------------------------------------------------------------------ # #------------------------------------------------------------------------------ def run( self , props , globdat ): self.solver.run( props , globdat )
5b80fd002f0f429389f82658da7f4196dab59f60
9640f0b9a51ead702e1fc70c2571c116893f5046
/products/migrations/0004_auto_20201006_2154.py
04bb2798e01b633ba64b7ddc57eb2292697db4c1
[]
no_license
CODE-Easyy/optic-backend
d7f46194d91fa25e1d54c4a9cb88faac9ca57ba9
ed885265125b9d95be9467d95308964d25551230
refs/heads/main
2023-01-07T04:10:00.746112
2020-10-31T01:00:13
2020-10-31T01:00:13
302,156,695
0
0
null
null
null
null
UTF-8
Python
false
false
1,255
py
# Generated by Django 3.1.2 on 2020-10-06 21:54 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('products', '0003_auto_20201006_2115'), ] operations = [ migrations.RemoveField( model_name='brand', name='cat', ), migrations.RemoveField( model_name='brand', name='subcat', ), migrations.RemoveField( model_name='material', name='cat', ), migrations.RemoveField( model_name='material', name='subcat', ), migrations.RemoveField( model_name='opticalpower', name='cat', ), migrations.RemoveField( model_name='opticalpower', name='subcat', ), migrations.RemoveField( model_name='radius', name='cat', ), migrations.RemoveField( model_name='radius', name='subcat', ), migrations.RemoveField( model_name='volume', name='cat', ), migrations.RemoveField( model_name='volume', name='subcat', ), ]
646d4b249fae7d33c288ffbadc7669cfe7b0b787
aa265e03e73f718d4008cfe30ada7ee32c852eec
/ABC_B/ABC158_B.py
72d7ebebec13e3477adb87e193dac338d8e588da
[ "MIT" ]
permissive
ryosuke0825/atcoder_python
4fb9de9733cd9ef41c2ad9ad38b3f190f49d3ad5
52d037d0bc9ef2c721bf2958c1c2ead558cb0cf5
refs/heads/master
2023-03-11T22:47:56.963089
2023-03-05T01:21:06
2023-03-05T01:21:06
181,768,029
0
0
null
null
null
null
UTF-8
Python
false
false
114
py
n, a, b = map(int, input().split()) ans = n//(a+b)*a amari = n-(a+b)*(n//(a+b)) ans += min(amari, a) print(ans)
2ed9c19851b9bc62ae4c409439f33728ff16f76a
8692807f1dfa8c18c61df07cfafbbd27d4e66fba
/previous_problems/BEGINNER/CHN09.sol.py
a30740f15472fbe4e2738dd1ba776740691bc28d
[]
no_license
sharmakajal0/codechef_problems
00381e9bf1996b859e46f087c2ffafd9d7a10ef1
0b979029e0a821f47fbdd6f9c624daee785a02e7
refs/heads/master
2020-05-29T15:04:40.459979
2020-03-29T08:44:53
2020-03-29T08:44:53
189,212,028
0
0
null
null
null
null
UTF-8
Python
false
false
326
py
#!/usr/bin/env python for _ in range(int(input())): s = str(input()) amber = 0 brass = 0 for i in s: if i == 'a': amber += 1 elif i == 'b': brass += 1 if amber > brass: print(brass) elif brass > amber: print(amber) else: print(amber)
11a635d63cb3cc6ec4f23bc2d39a60be2dea79e2
e37f5df6d380e9395e2433558be05090c2e2cd72
/tspec_mapping/make_index_from_field.py
8384803f596600e08a0ab8f71024bd3eefc7a835
[]
no_license
keflavich/tspec_mapping
c8bcff914095cb3bc2bfc9dccdcbe7897e5399c7
b61e561235a5c3c104cb3a59e016fc252dbd5845
refs/heads/master
2021-01-18T14:15:14.241892
2015-02-13T06:22:29
2015-02-13T06:22:29
7,315,394
0
0
null
2013-09-28T15:54:17
2012-12-25T07:32:22
Python
UTF-8
Python
false
false
5,970
py
import astroquery.irsa import astrometry import astropy.io.fits import numpy as np import atpy import os def make_index_from_table(table,fieldname,fov=None,clobber=False,**kwargs): """ Given a table with RA and Dec columns (case-sensitive!), build an astrometry.net quad index Parameters ---------- table : Table astropy.io.table or atpy.table instance (recarrays require different cleaning operations) fieldname : str Seed name for the output catalog file and index file clobber : bool Overwrite existing fits files / indices? kwargs : Are passed to astrometry.build_index """ #fitstable = astropy.io.fits.BinTableHDU(data=table) newtable = atpy.Table(name=fieldname) for colname in table.dtype.names: newtable.add_column(colname, table[colname]) # sanitize fieldname fieldname = fieldname.replace(" ","_") # what other chars should I be careful of? #fitstable.writeto(fieldname+".fits",clobber=clobber) newtable.write(fieldname+".fits",overwrite=clobber) if fov is None: # guess the FOV... sort of rarange = (np.max(table['RA']) - np.min(table['RA']))*3600 decrange = (np.max(table['Dec'])-np.min(table['Dec']))*3600 fov = (rarange+decrange)/2. return make_index_from_fitstable(fieldname+'.fits',fieldname,fov=fov,**kwargs) def make_index_from_fitstable(fitstablename, fieldname=None, fov=None, preset_list=None, **kwargs): """ Build an index from a FITS table already on disk (very thin wrapper of build_index) Parameters ---------- fitstablename : str Full path to a .fits table with the 2nd header being a BinTableHDU for astrometry's build-index to parse preset_list : list List of presets, in the range -5 to 21, to build indices for fov : int field of view in arcseconds fieldname : str output prefix for the index file. If not specified, will use the root string of the fitsfilename """ if fov is None and 'scale_number' not in kwargs and preset_list is None: raise ValueError("Must specify a preset or a FOV") elif 'scale_number' in kwargs: presets = [kwargs.pop('scale_number')] elif preset_list is not None: presets = preset_list else: # determine appropriate "presets" to use preset = astrometry.get_closest_preset(fov/60.) if preset > -4: presets = [preset-2, preset-1,preset,preset+1] elif preset > -5: presets = [preset-1,preset,preset+1] else: presets = [preset,preset+1] if fieldname is None: fieldname = os.path.split( os.path.splitext(fitstablename)[0] )[1] stdout,stderr = "","" for preset in presets: _stdout,_stderr = astrometry.build_index(fieldname+".fits",scale_number=preset,**kwargs) stdout += _stdout stderr += _stderr return stdout,stderr def make_index_from_field_2MASS(coords, fieldname, fov=900, clobber=False, quality_exclude="UX", **kwargs): """ Create an index file. The input should be IRSA-parseable coordinates, e.g. a name, ra/dec, or glon/glat coords Parameters ---------- coords : str IRSA-parseable coordinates or SIMBAD-readable filename fieldname : str Prefix string for output file name fov : int Field of view to include in arcseconds (Circular) clobber : bool Overwrite existing data files? quality_exclude : str Entries in the catalog with these characters will be excluded Example ------- >>> make_index_from_field_2MASS('Sgr C','Sgr C',300,scan_catalog=True,clobber=True) >>> make_index_from_field_2MASS('266.1512 -29.4703','Sgr C',300,scan_catalog=True,clobber=True) >>> make_index_from_field_2MASS('359.4288 -00.0898 gal','Sgr C',300,scan_catalog=True,clobber=True) """ fieldname = fieldname.replace(" ","_") # what other chars should I be careful of? table = astroquery.irsa.query_gator_box('pt_src_cat',coords,fov) table.rename_column('ra','RA') table.rename_column('dec','Dec') table = table[table['extd_flg']==0] # don't use extended sources; they're bad for astrometry cleantable = _clean_table(table) return make_index_from_table(cleantable,fieldname,fov=fov,clobber=clobber,**kwargs) def make_index_from_field_UKIDSS(glon,glat,fieldname,catalog='GPS',fov=900,clobber=False,**kwargs): """ Create an index file. The input should be UKIDSS-parseable coordinates, e.g. glon,glat (so far, only a galactic lon/lat query tool is implemented Example ------- >>> make_index_from_field_UKIDSS(359.4288,-00.0898,'Sgr C',fov=300,scan_catalog=True,clobber=True) """ fieldname = fieldname.replace(" ","_") # what other chars should I be careful of? ukquery = astroquery.ukidss.UKIDSSQuery() ukquery.programmeID = catalog uktable = ukquery.get_catalog_gal(glon,glat,radius=fov/60.)[0] uktable.writeto(fieldname+".fits",clobber=clobber) #bintab = table[0][1] #bintab.data = bintab.data.astype(newtype) #table.rename_column('ra','RA') #table.rename_column('dec','Dec') #cleantable = _clean_table(table) return make_index_from_fitstable(fieldname+".fits",fieldname=fieldname,fov=fov,**kwargs) def _clean_table(table): """ Hack to convert a table to a FITS-friendly numpy ndarray; this will become obsolete when astropy's table includes a FITS writer """ float_types = [np.float, np.float128, np.float16, np.float32, np.float64, np.float_, np.floating] new_fields = [(k,np.dtype('S8')) if v[0].type == np.object_ else (k,np.float64) if v[0].type in float_types else (k,v[0]) for (k,v) in table._data.dtype.fields.iteritems()] new_array = np.array(table._data, dtype=new_fields) return new_array
c423aa3aae2fbf9cab46298e451c9a089326366a
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/vcFgGJHxhTwRiLK5d_14.py
4a507ff87ec2b6c51b89dc31487dd6f18bceb1b8
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
149
py
from fractions import gcd ​ def smallest(n): lcm = 1 for i in range(1, n+1): lcm = (lcm * i)//(gcd(int(lcm), i)) return int(lcm)
463cf524dbd01e72dbb67f1b1b24dff9c7398279
8bbb508b2efd88beff28e072b6ba3ad5ad86f9c7
/Config_ipython_import/ipython/import_here.py
f079107a00955301b1fb74660f6674d951bf3ce6
[]
no_license
wubinbai/2019
1f31a96d49c3383e696f208358347341783f6141
5f1e191a037b793abb97120f4e13185782c64a2c
refs/heads/master
2021-06-30T11:48:16.230757
2020-09-25T09:09:01
2020-09-25T09:09:01
162,510,722
0
2
null
null
null
null
UTF-8
Python
false
false
1,467
py
import numpy as np import sys #np.set_printoptions(threshold=sys.maxsize) np.set_printoptions(threshold=100) import pandas as pd import matplotlib.pyplot as plt plt.ion() import seaborn as sns from tqdm import tqdm def plot_whole(df): with pd.option_context('display.max_rows', None, 'display.max_columns', None): print(df) h = help # Better help function he(): def he(): global ar ar = input('Enter the function name for help:') help(eval(ar)) # for . operation of dir # use eval(repr(xxx.i)) from pandas import read_csv as pdrc # for ipython to display all results in the jupyter notebook: from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = "all" def my_plot(data_array): plt.figure() plt.plot(data_array) plt.grid() def my_plotas(data_array): plt.figure() plt.plot(data_array) plt.plot(data_array,'b*') plt.grid() def save_model_keras(model,save_path): from keras.utils import plot_model plot_model(model,show_shapes=True,to_file=save_path) def torchviz_pdf(model,input_tensor): from torchviz import make_dot vis_graph = make_dot(model(input_tensor), params=dict(model.named_parameters())) vis_graph.view() # 会在当前目录下保存一个“Digraph.gv.pdf”文件,并在默认浏览器中打开 def torch_summary(model,input_size): from torchsummary import summary summary(model.cuda(), input_size=input_size)
3df683e8903138ebdc951f06fbbd6c3e9bf2ff7b
d664f6cdcd280d7575dd1f6082a2ad8bdabed14c
/test/functional/interface_rest.py
6fd897edac33a30478a179e7b4ae8e5bfb1c91d5
[ "MIT" ]
permissive
minblock/motherofweeddaycoin
22c287cac9c925f03a5aa1f36243ce51f89ebd80
eeb0625c0f2f35412b3a69da50bc55f6acd6806d
refs/heads/master
2022-04-26T05:10:07.935378
2020-04-28T23:11:46
2020-04-28T23:11:46
259,339,910
0
0
null
null
null
null
UTF-8
Python
false
false
14,715
py
#!/usr/bin/env python3 # Copyright (c) 2014-2018 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the REST API.""" import binascii from decimal import Decimal from enum import Enum from io import BytesIO import json from struct import pack, unpack import http.client import urllib.parse from test_framework.test_framework import BitcoinTestFramework from test_framework.util import ( assert_equal, assert_greater_than, assert_greater_than_or_equal, hex_str_to_bytes, ) from test_framework.messages import BLOCK_HEADER_SIZE class ReqType(Enum): JSON = 1 BIN = 2 HEX = 3 class RetType(Enum): OBJ = 1 BYTES = 2 JSON = 3 def filter_output_indices_by_value(vouts, value): for vout in vouts: if vout['value'] == value: yield vout['n'] class RESTTest (BitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 2 self.extra_args = [["-rest"], []] def skip_test_if_missing_module(self): self.skip_if_no_wallet() def test_rest_request(self, uri, http_method='GET', req_type=ReqType.JSON, body='', status=200, ret_type=RetType.JSON): rest_uri = '/rest' + uri if req_type == ReqType.JSON: rest_uri += '.json' elif req_type == ReqType.BIN: rest_uri += '.bin' elif req_type == ReqType.HEX: rest_uri += '.hex' conn = http.client.HTTPConnection(self.url.hostname, self.url.port) self.log.debug('%s %s %s', http_method, rest_uri, body) if http_method == 'GET': conn.request('GET', rest_uri) elif http_method == 'POST': conn.request('POST', rest_uri, body) resp = conn.getresponse() assert_equal(resp.status, status) if ret_type == RetType.OBJ: return resp elif ret_type == RetType.BYTES: return resp.read() elif ret_type == RetType.JSON: return json.loads(resp.read().decode('utf-8'), parse_float=Decimal) def run_test(self): self.url = urllib.parse.urlparse(self.nodes[0].url) self.log.info("Mine blocks and send Motherofweeddaycoin to node 1") # Random address so node1's balance doesn't increase not_related_address = "2MxqoHEdNQTyYeX1mHcbrrpzgojbosTpCvJ" self.nodes[0].generate(1) self.sync_all() self.nodes[1].generatetoaddress(100, not_related_address) self.sync_all() assert_equal(self.nodes[0].getbalance(), 50) txid = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 0.1) self.sync_all() self.log.info("Test the /tx URI") json_obj = self.test_rest_request("/tx/{}".format(txid)) assert_equal(json_obj['txid'], txid) # Check hex format response hex_response = self.test_rest_request("/tx/{}".format(txid), req_type=ReqType.HEX, ret_type=RetType.OBJ) assert_greater_than_or_equal(int(hex_response.getheader('content-length')), json_obj['size']*2) spent = (json_obj['vin'][0]['txid'], json_obj['vin'][0]['vout']) # get the vin to later check for utxo (should be spent by then) # get n of 0.1 outpoint n, = filter_output_indices_by_value(json_obj['vout'], Decimal('0.1')) spending = (txid, n) self.log.info("Query an unspent TXO using the /getutxos URI") self.nodes[1].generatetoaddress(1, not_related_address) self.sync_all() bb_hash = self.nodes[0].getbestblockhash() assert_equal(self.nodes[1].getbalance(), Decimal("0.1")) # Check chainTip response json_obj = self.test_rest_request("/getutxos/{}-{}".format(*spending)) assert_equal(json_obj['chaintipHash'], bb_hash) # Make sure there is one utxo assert_equal(len(json_obj['utxos']), 1) assert_equal(json_obj['utxos'][0]['value'], Decimal('0.1')) self.log.info("Query a spent TXO using the /getutxos URI") json_obj = self.test_rest_request("/getutxos/{}-{}".format(*spent)) # Check chainTip response assert_equal(json_obj['chaintipHash'], bb_hash) # Make sure there is no utxo in the response because this outpoint has been spent assert_equal(len(json_obj['utxos']), 0) # Check bitmap assert_equal(json_obj['bitmap'], "0") self.log.info("Query two TXOs using the /getutxos URI") json_obj = self.test_rest_request("/getutxos/{}-{}/{}-{}".format(*(spending + spent))) assert_equal(len(json_obj['utxos']), 1) assert_equal(json_obj['bitmap'], "10") self.log.info("Query the TXOs using the /getutxos URI with a binary response") bin_request = b'\x01\x02' for txid, n in [spending, spent]: bin_request += hex_str_to_bytes(txid) bin_request += pack("i", n) bin_response = self.test_rest_request("/getutxos", http_method='POST', req_type=ReqType.BIN, body=bin_request, ret_type=RetType.BYTES) output = BytesIO(bin_response) chain_height, = unpack("i", output.read(4)) response_hash = binascii.hexlify(output.read(32)[::-1]).decode('ascii') assert_equal(bb_hash, response_hash) # check if getutxo's chaintip during calculation was fine assert_equal(chain_height, 102) # chain height must be 102 self.log.info("Test the /getutxos URI with and without /checkmempool") # Create a transaction, check that it's found with /checkmempool, but # not found without. Then confirm the transaction and check that it's # found with or without /checkmempool. # do a tx and don't sync txid = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 0.1) json_obj = self.test_rest_request("/tx/{}".format(txid)) # get the spent output to later check for utxo (should be spent by then) spent = (json_obj['vin'][0]['txid'], json_obj['vin'][0]['vout']) # get n of 0.1 outpoint n, = filter_output_indices_by_value(json_obj['vout'], Decimal('0.1')) spending = (txid, n) json_obj = self.test_rest_request("/getutxos/{}-{}".format(*spending)) assert_equal(len(json_obj['utxos']), 0) json_obj = self.test_rest_request("/getutxos/checkmempool/{}-{}".format(*spending)) assert_equal(len(json_obj['utxos']), 1) json_obj = self.test_rest_request("/getutxos/{}-{}".format(*spent)) assert_equal(len(json_obj['utxos']), 1) json_obj = self.test_rest_request("/getutxos/checkmempool/{}-{}".format(*spent)) assert_equal(len(json_obj['utxos']), 0) self.nodes[0].generate(1) self.sync_all() json_obj = self.test_rest_request("/getutxos/{}-{}".format(*spending)) assert_equal(len(json_obj['utxos']), 1) json_obj = self.test_rest_request("/getutxos/checkmempool/{}-{}".format(*spending)) assert_equal(len(json_obj['utxos']), 1) # Do some invalid requests self.test_rest_request("/getutxos", http_method='POST', req_type=ReqType.JSON, body='{"checkmempool', status=400, ret_type=RetType.OBJ) self.test_rest_request("/getutxos", http_method='POST', req_type=ReqType.BIN, body='{"checkmempool', status=400, ret_type=RetType.OBJ) self.test_rest_request("/getutxos/checkmempool", http_method='POST', req_type=ReqType.JSON, status=400, ret_type=RetType.OBJ) # Test limits long_uri = '/'.join(["{}-{}".format(txid, n_) for n_ in range(20)]) self.test_rest_request("/getutxos/checkmempool/{}".format(long_uri), http_method='POST', status=400, ret_type=RetType.OBJ) long_uri = '/'.join(['{}-{}'.format(txid, n_) for n_ in range(15)]) self.test_rest_request("/getutxos/checkmempool/{}".format(long_uri), http_method='POST', status=200) self.nodes[0].generate(1) # generate block to not affect upcoming tests self.sync_all() self.log.info("Test the /block, /blockhashbyheight and /headers URIs") bb_hash = self.nodes[0].getbestblockhash() # Check result if block does not exists assert_equal(self.test_rest_request('/headers/1/0000000000000000000000000000000000000000000000000000000000000000'), []) self.test_rest_request('/block/0000000000000000000000000000000000000000000000000000000000000000', status=404, ret_type=RetType.OBJ) # Check result if block is not in the active chain self.nodes[0].invalidateblock(bb_hash) assert_equal(self.test_rest_request('/headers/1/{}'.format(bb_hash)), []) self.test_rest_request('/block/{}'.format(bb_hash)) self.nodes[0].reconsiderblock(bb_hash) # Check binary format response = self.test_rest_request("/block/{}".format(bb_hash), req_type=ReqType.BIN, ret_type=RetType.OBJ) assert_greater_than(int(response.getheader('content-length')), BLOCK_HEADER_SIZE) response_bytes = response.read() # Compare with block header response_header = self.test_rest_request("/headers/1/{}".format(bb_hash), req_type=ReqType.BIN, ret_type=RetType.OBJ) assert_equal(int(response_header.getheader('content-length')), BLOCK_HEADER_SIZE) response_header_bytes = response_header.read() assert_equal(response_bytes[:BLOCK_HEADER_SIZE], response_header_bytes) # Check block hex format response_hex = self.test_rest_request("/block/{}".format(bb_hash), req_type=ReqType.HEX, ret_type=RetType.OBJ) assert_greater_than(int(response_hex.getheader('content-length')), BLOCK_HEADER_SIZE*2) response_hex_bytes = response_hex.read().strip(b'\n') assert_equal(binascii.hexlify(response_bytes), response_hex_bytes) # Compare with hex block header response_header_hex = self.test_rest_request("/headers/1/{}".format(bb_hash), req_type=ReqType.HEX, ret_type=RetType.OBJ) assert_greater_than(int(response_header_hex.getheader('content-length')), BLOCK_HEADER_SIZE*2) response_header_hex_bytes = response_header_hex.read(BLOCK_HEADER_SIZE*2) assert_equal(binascii.hexlify(response_bytes[:BLOCK_HEADER_SIZE]), response_header_hex_bytes) # Check json format block_json_obj = self.test_rest_request("/block/{}".format(bb_hash)) assert_equal(block_json_obj['hash'], bb_hash) assert_equal(self.test_rest_request("/blockhashbyheight/{}".format(block_json_obj['height']))['blockhash'], bb_hash) # Check hex/bin format resp_hex = self.test_rest_request("/blockhashbyheight/{}".format(block_json_obj['height']), req_type=ReqType.HEX, ret_type=RetType.OBJ) assert_equal(resp_hex.read().decode('utf-8').rstrip(), bb_hash) resp_bytes = self.test_rest_request("/blockhashbyheight/{}".format(block_json_obj['height']), req_type=ReqType.BIN, ret_type=RetType.BYTES) blockhash = binascii.hexlify(resp_bytes[::-1]).decode('utf-8') assert_equal(blockhash, bb_hash) # Check invalid blockhashbyheight requests resp = self.test_rest_request("/blockhashbyheight/abc", ret_type=RetType.OBJ, status=400) assert_equal(resp.read().decode('utf-8').rstrip(), "Invalid height: abc") resp = self.test_rest_request("/blockhashbyheight/1000000", ret_type=RetType.OBJ, status=404) assert_equal(resp.read().decode('utf-8').rstrip(), "Block height out of range") resp = self.test_rest_request("/blockhashbyheight/-1", ret_type=RetType.OBJ, status=400) assert_equal(resp.read().decode('utf-8').rstrip(), "Invalid height: -1") self.test_rest_request("/blockhashbyheight/", ret_type=RetType.OBJ, status=400) # Compare with json block header json_obj = self.test_rest_request("/headers/1/{}".format(bb_hash)) assert_equal(len(json_obj), 1) # ensure that there is one header in the json response assert_equal(json_obj[0]['hash'], bb_hash) # request/response hash should be the same # Compare with normal RPC block response rpc_block_json = self.nodes[0].getblock(bb_hash) for key in ['hash', 'confirmations', 'height', 'version', 'merkleroot', 'time', 'nonce', 'bits', 'difficulty', 'chainwork', 'previousblockhash']: assert_equal(json_obj[0][key], rpc_block_json[key]) # See if we can get 5 headers in one response self.nodes[1].generate(5) self.sync_all() json_obj = self.test_rest_request("/headers/5/{}".format(bb_hash)) assert_equal(len(json_obj), 5) # now we should have 5 header objects self.log.info("Test tx inclusion in the /mempool and /block URIs") # Make 3 tx and mine them on node 1 txs = [] txs.append(self.nodes[0].sendtoaddress(not_related_address, 11)) txs.append(self.nodes[0].sendtoaddress(not_related_address, 11)) txs.append(self.nodes[0].sendtoaddress(not_related_address, 11)) self.sync_all() # Check that there are exactly 3 transactions in the TX memory pool before generating the block json_obj = self.test_rest_request("/mempool/info") assert_equal(json_obj['size'], 3) # the size of the memory pool should be greater than 3x ~100 bytes assert_greater_than(json_obj['bytes'], 300) # Check that there are our submitted transactions in the TX memory pool json_obj = self.test_rest_request("/mempool/contents") for i, tx in enumerate(txs): assert tx in json_obj assert_equal(json_obj[tx]['spentby'], txs[i + 1:i + 2]) assert_equal(json_obj[tx]['depends'], txs[i - 1:i]) # Now mine the transactions newblockhash = self.nodes[1].generate(1) self.sync_all() # Check if the 3 tx show up in the new block json_obj = self.test_rest_request("/block/{}".format(newblockhash[0])) non_coinbase_txs = {tx['txid'] for tx in json_obj['tx'] if 'coinbase' not in tx['vin'][0]} assert_equal(non_coinbase_txs, set(txs)) # Check the same but without tx details json_obj = self.test_rest_request("/block/notxdetails/{}".format(newblockhash[0])) for tx in txs: assert tx in json_obj['tx'] self.log.info("Test the /chaininfo URI") bb_hash = self.nodes[0].getbestblockhash() json_obj = self.test_rest_request("/chaininfo") assert_equal(json_obj['bestblockhash'], bb_hash) if __name__ == '__main__': RESTTest().main()
d9b120c6b3b4f2a5ecffddf3d0f51f0bbf07cc85
401f783a202949adbf144b5780bcd87a6daf2299
/code/python/Day-89/SumNested.py
790c9104c096a14e9c9ead74bef4561443cec9d7
[]
no_license
TalatWaheed/100-days-code
1934c8113e6e7be86ca86ea66c518d2f2cedf82a
b8fd92d4ddb6adc4089d38ac7ccd2184f9c47919
refs/heads/master
2021-07-04T14:28:45.363798
2019-03-05T13:49:55
2019-03-05T13:49:55
140,101,486
0
1
null
null
null
null
UTF-8
Python
false
false
240
py
def sum1(lst): total = 0 for element in lst: if (type(element) == type([])): total = total + sum1(element) else: total = total + element return total print( "Sum is:",sum1([[1,2],[3,4]]))
7258c482e8ee9b88d64784f4b8132d59778a383d
6c721f3cfce6dc88396cd3b5f6a59d65a2ea5033
/some_learn/Data_Set_handle/Caltech-Dateset/test/caltech_generate_xml/generate_xml.py
5252a995b10a61e6a84100101e23d4a81ac98bc2
[ "MIT" ]
permissive
unicoe/PycharmProjects
20a3dabe88c7874da54451c7bb16999afc0eee35
23ff314eb5ac9bfa01a8278089d722b5d0061751
refs/heads/master
2020-03-23T09:16:25.907188
2019-12-21T03:10:49
2019-12-21T03:10:49
141,377,686
4
1
null
null
null
null
UTF-8
Python
false
false
6,550
py
#!/usr/bin/env python # coding:utf-8 #from xml.etree.ElementTree import Element, SubElement, tostring from lxml.etree import Element, SubElement, tostring import pprint from xml.dom.minidom import parseString import os def mkdir(path): import os path = path.strip() path = path.rstrip("\\") isExists = os.path.exists(path) if not isExists: os.makedirs(path) print path + 'ok' return True else: print path + 'failed!' return False def generate_xml(file_info, obj): node_root = Element('annotation') node_folder = SubElement(node_root, 'folder') node_folder.text = file_info[0] node_filename = SubElement(node_root, 'filename') node_filename.text = file_info[1] node_size = SubElement(node_root, 'size') node_width = SubElement(node_size, 'width') node_width.text = '640' node_height = SubElement(node_size, 'height') node_height.text = '480' node_depth = SubElement(node_size, 'depth') node_depth.text = '3' for obj_i in obj: print obj_i node_object = SubElement(node_root, 'object') node_name = SubElement(node_object, 'name') #node_name.text = 'mouse' node_name.text = 'person' node_name = SubElement(node_object, 'difficult') # node_name.text = 'mouse' node_name.text = '0' node_bndbox = SubElement(node_object, 'bndbox') node_xmin = SubElement(node_bndbox, 'xmin') #node_xmin.text = '99' node_xmin.text = obj_i['xmin'] node_ymin = SubElement(node_bndbox, 'ymin') #node_ymin.text = '358' node_ymin.text = obj_i['ymin'] node_xmax = SubElement(node_bndbox, 'xmax') #node_xmax.text = '135' node_xmax.text = obj_i['xmax'] node_ymax = SubElement(node_bndbox, 'ymax') #node_ymax.text = '375' node_ymax.text = obj_i['ymax'] xml = tostring(node_root, pretty_print=True) #格式化显示,该换行的换行 dom = parseString(xml) #file_root = '/home/user/Downloads/caltech_data_set/data_train/' file_root = '/home/user/Downloads/caltech_data_set/data_reasonable_3_19/' file_name = file_root + file_info[0]; mkdir (file_name) fw = open(file_name+"/"+file_info[1].split('.')[0]+".xml", 'a+') fw.write(xml) print "xml _ ok" fw.close() #for debug #print xml def printPath(level, path): global allFileNum ''''' 打印一个目录下的所有文件夹和文件 ''' # 所有文件夹,第一个字段是次目录的级别 dirList = [] # 所有文件 fileList = [] # 返回一个列表,其中包含在目录条目的名称(google翻译) files = os.listdir(path) # 先添加目录级别 dirList.append(str(level)) for f in files: if(os.path.isdir(path + '/' + f)): # 排除隐藏文件夹。因为隐藏文件夹过多 if(f[0] == '.'): pass else: # 添加非隐藏文件夹 dirList.append(f) if(os.path.isfile(path + '/' + f)): # 添加文件 fileList.append(f) # 当一个标志使用,文件夹列表第一个级别不打印 i_dl = 0 for dl in dirList: if(i_dl == 0): i_dl = i_dl + 1 else: # 打印至控制台,不是第一个的目录 print '-' * (int(dirList[0])), dl # 打印目录下的所有文件夹和文件,目录级别+1 printPath((int(dirList[0]) + 1), path + '/' + dl) print fileList for fl in fileList: # 打印文件 #print '-' * (int(dirList[0])), fl # 随便计算一下有多少个文件 #allFileNum = allFileNum + 1 """ 操作文件进行读写 """ print fl[12:17],fl[17:21] file_info = [] file_info.append(fl[12:17]+'/'+fl[17:21]) print file_info print path file_name = path+"/"+fl fw = open(file_name, 'r'); line_content = fw.readlines() fw.close() print line_content tmp = -1 obj = [] con_len = len(line_content) try: string = line_content[0].split(" ") tmp = int(string[0]) except Exception: continue file_info.append(str(tmp) + '.jpg') xmin = str(int(float(string[1]))) ymin = str(int(float(string[2]))) xmax = str(int(float(string[1]) + float(string[3]))) ymax = str(int(float(string[2]) + float(string[4]))) dict1 = {} dict1["xmin"] = xmin dict1["ymin"] = ymin dict1["xmax"] = xmax dict1["ymax"] = ymax obj.append(dict1) for con_i in xrange(1, con_len): string = line_content[con_i].split(" ") tmp1 = int(string[0]) if tmp == tmp1: xmin = str(int(float(string[1]))) ymin = str(int(float(string[2]))) xmax = str(int(float(string[1]) + float(string[3]))) ymax = str(int(float(string[2]) + float(string[4]))) dict1 = {} dict1["xmin"] = xmin dict1["ymin"] = ymin dict1["xmax"] = xmax dict1["ymax"] = ymax obj.append(dict1) elif tmp1 > 0: generate_xml(file_info, obj) obj = [] tmp = tmp1 file_info[1] = str(tmp1) + ".jpg" xmin = str(int(float(string[1]))) ymin = str(int(float(string[2]))) xmax = str(int(float(string[1]) + float(string[3]))) ymax = str(int(float(string[2]) + float(string[4]))) dict1 = {} dict1["xmin"] = xmin dict1["ymin"] = ymin dict1["xmax"] = xmax dict1["ymax"] = ymax obj.append(dict1) continue def read_annotations_generate_fileinfo_obj(file_path): pass if __name__=="__main__": # # file_info = ['set00/V000', '1.jpg'] # # obj = [] # obj1 = {"xmin":"1", "ymin":"1", "xmax":"5", "ymax":"5"} # obj2 = {"xmin":"2", "ymin":"2", "xmax":"6", "ymax":"6"} # obj.append(obj1) # obj.append(obj2) # # generate_xml(file_info, obj) # printPath(1, "/home/user/Downloads/caltech_data_set/data_reasonable_3_19") #printPath(1, "/home/user/Downloads/caltech_data_set/data_reasonable_train")
c91effaaaa7685813f70b6e5719bd5298048a24f
f714db4463dd37fc33382364dc4b1963a9053e49
/src/sentry/integrations/msteams/utils.py
3dd201dde1ca3bb9f4e5d09390e9154ffa859fb7
[ "BUSL-1.1", "Apache-2.0" ]
permissive
macher91/sentry
92171c2ad23564bf52627fcd711855685b138cbd
dd94d574403c95eaea6d4ccf93526577f3d9261b
refs/heads/master
2021-07-07T08:23:53.339912
2020-07-21T08:03:55
2020-07-21T08:03:55
140,079,930
0
0
BSD-3-Clause
2020-05-13T11:28:35
2018-07-07T11:50:48
Python
UTF-8
Python
false
false
1,755
py
from __future__ import absolute_import from sentry.models import Integration from sentry.utils.compat import filter from .client import MsTeamsClient MSTEAMS_MAX_ITERS = 100 def channel_filter(channel, name): # the general channel has no name in the list # retrieved from the REST API call if channel.get("name"): return name == channel.get("name") else: return name == "General" def get_channel_id(organization, integration_id, name): try: integration = Integration.objects.get( provider="msteams", organizations=organization, id=integration_id ) except Integration.DoesNotExist: return None team_id = integration.external_id client = MsTeamsClient(integration) # handle searching for channels first channel_list = client.get_channel_list(team_id) filtered_channels = list(filter(lambda x: channel_filter(x, name), channel_list)) if len(filtered_channels) > 0: return filtered_channels[0].get("id") # handle searching for users members = client.get_member_list(team_id, None) for i in range(MSTEAMS_MAX_ITERS): member_list = members.get("members") continuation_token = members.get("continuationToken") filtered_members = list(filter(lambda x: x.get("name") == name, member_list)) if len(filtered_members) > 0: # TODO: handle duplicate username case user_id = filtered_members[0].get("id") tenant_id = filtered_members[0].get("tenantId") return client.get_user_conversation_id(user_id, tenant_id) if not continuation_token: return None members = client.get_member_list(team_id, continuation_token) return None
15b4273440bb14b4e5c6be697d42d8398d30d59e
6034b74d0d31997aa46f669d3d77bb46e199a430
/tests/test_dataset_processor.py
6cae4a56b6cba92bb31d6fa50efab979b3b32076
[ "Apache-2.0" ]
permissive
bupt-nlp/sequence-labeling-models
5ea641eec4fad1f470bdb7f3dd64ef0b892ba557
75bb8c24098ad9f307605fad61d811bcd299cfcc
refs/heads/master
2023-06-01T00:59:56.753952
2021-06-19T11:28:13
2021-06-19T11:28:13
287,694,702
2
2
Apache-2.0
2020-08-15T07:07:06
2020-08-15T06:54:35
null
UTF-8
Python
false
false
5,152
py
from __future__ import annotations import os from typing import List, Tuple from allennlp.data import Vocabulary, Instance from allennlp.data.data_loaders import SimpleDataLoader, DataLoader from allennlp.data.token_indexers.pretrained_transformer_indexer import PretrainedTransformerIndexer from allennlp.data.dataset_readers.sequence_tagging import SequenceTaggingDatasetReader from allennlp.models.model import Model from allennlp.models.simple_tagger import SimpleTagger from allennlp.modules.text_field_embedders.basic_text_field_embedder import BasicTextFieldEmbedder from allennlp.modules.token_embedders.pretrained_transformer_embedder import PretrainedTransformerEmbedder from allennlp.modules.seq2seq_encoders import PassThroughEncoder from allennlp.training.trainer import Trainer from allennlp.training import GradientDescentTrainer import torch from allennlp.data import ( DataLoader, DatasetReader, Instance, Vocabulary, TextFieldTensors, ) from allennlp.data.data_loaders import SimpleDataLoader from allennlp.models import Model from allennlp.modules.text_field_embedders import BasicTextFieldEmbedder from allennlp.training.optimizers import AdamOptimizer from utils.dataset_processor import read_line, convert_bmes_to_sequence_tagging, convert_two_array_to_text_classification_corpus def test_read_line(): line = '我爱 O' tokens, labels = read_line(line) assert tokens == ['我', '爱'] assert labels == ['O', 'O'] line = '吴京 PER' tokens, labels = read_line(line) assert tokens == ['吴', '京'] assert labels == ['B-PER', 'E-PER'] line = '吴京京 PER' tokens, labels = read_line(line) assert tokens == ['吴', '京', '京'] assert labels == ['B-PER', 'M-PER', 'E-PER'] def test_bmes_converter(): base_dir = './data/weibo' for file in os.listdir(base_dir): if not file.endswith('.txt'): continue input_file = os.path.join(base_dir, file) output_file = os.path.join(base_dir, file.replace('txt', 'corpus')) convert_bmes_to_sequence_tagging(input_file, output_file) def test_sequence_tagging_reader(): model_name = 'bert-base-chinese' bert_token_indexers = PretrainedTransformerIndexer(model_name=model_name) reader = SequenceTaggingDatasetReader(token_indexers={"tokens": bert_token_indexers}) train_file = './data/weibo/train.corpus' dev_file = './data/weibo/dev.corpus' test_file = './data/weibo/dev.corpus' train_instances = list(reader.read(train_file)) dev_instances = list(reader.read(dev_file)) test_instances = list(reader.read(test_file)) vocab: Vocabulary = Vocabulary.from_instances(train_instances) assert vocab.get_namespaces() is not None bert_text_field_embedder = PretrainedTransformerEmbedder(model_name=model_name) tagger = SimpleTagger( vocab=vocab, text_field_embedder=BasicTextFieldEmbedder( token_embedders={ 'tokens': bert_text_field_embedder } ), encoder=PassThroughEncoder(bert_text_field_embedder.get_output_dim()), calculate_span_f1=True, label_encoding="BMES", # verbose_metrics=True ) train_data_loader, dev_data_loader = build_data_loaders(train_instances, dev_instances) train_data_loader.index_with(vocab) dev_data_loader.index_with(vocab) trainer = build_trainer(model=tagger, serialization_dir='./output', train_loader=train_data_loader, dev_loader=dev_data_loader) print("Starting training") trainer.train() print("Finished training") def build_data_loaders( train_data: List[Instance], dev_data: List[Instance], ) -> Tuple[DataLoader, DataLoader]: train_loader = SimpleDataLoader(train_data, 8, shuffle=True) dev_loader = SimpleDataLoader(dev_data, 8, shuffle=False) return train_loader, dev_loader def build_trainer( model: Model, serialization_dir: str, train_loader: DataLoader, dev_loader: DataLoader, ) -> Trainer: parameters = [(n, p) for n, p in model.named_parameters() if p.requires_grad] optimizer = AdamOptimizer(parameters) # type: ignore trainer = GradientDescentTrainer( model=model, serialization_dir=serialization_dir, data_loader=train_loader, validation_data_loader=dev_loader, num_epochs=5, optimizer=optimizer, ) return trainer def test_ask_ubuntu_corpus(): base_dirs = [ './data/ask_ubuntu/intent-classification', './data/banking/intent-classification', './data/chatbot/intent-classification', './data/clinc/intent-classification', './data/hwu/intent-classification', './data/web_applications/intent-classification', ] for base_dir in base_dirs: for file in os.listdir(base_dir): if file.endswith('.corpus'): continue file_path = os.path.join(base_dir, file) convert_two_array_to_text_classification_corpus( file_path ) if __name__ == "__main__": test_sequence_tagging_reader()
f98f2e83b1096b53c66e15f0fbf035ddc93c1d8e
197420c1f28ccb98059888dff214c9fd7226e743
/happy_pythoning_cource_2_prodv/3.1 Bool/3.1. bool.py
be2e6728722c29ced0d3c7440e63523df6444bf2
[]
no_license
Vovanuch/python-basics-1
fc10b6f745defff31364b66c65a704a9cf05d076
a29affec12e8b80a1d3beda3a50cde4867b1dee2
refs/heads/master
2023-07-06T17:10:46.341121
2021-08-06T05:38:19
2021-08-06T05:38:19
267,504,364
0
0
null
null
null
null
UTF-8
Python
false
false
283
py
''' Что будет выведено на экран в результате выполнения следующей программы? ''' numbers = [-6, -8, 0, 1, 3, 8, -7, 12, 17, 24, 25, 3, 5, 1] res = 0 for num in numbers: res += (num % 2 == 1) and (num > 1) print(res)
cfcc64c2dd2a5398b2f9b30038ba8ada47ef3178
31023b59e743b5bef1c2c935dc1f2b26e8e10e9b
/线程进程/进程间通信/数据共享.py
ef96b8051c960f8e1af50dca4856fa31d9922af5
[]
no_license
hsyy673150343/PythonLearning
417650d8ab5dbafbede08ef40223b29e82738443
817c6bd4c2ecba2549fa0be9f0c41337fe5acfdf
refs/heads/master
2020-05-18T06:36:25.648709
2019-05-23T13:40:59
2019-05-23T13:40:59
184,239,403
3
0
null
null
null
null
UTF-8
Python
false
false
600
py
#!/usr/bin/env python # -*- coding:utf8 -*- # @TIME :2019/3/20 19:33 # @Author : 洪松 # @File : 数据共享.py from multiprocessing import Process, Manager def f(d, l,n): d[n] = n d["name"] ="alvin" l.append(n) if __name__ == '__main__': with Manager() as manager: d = manager.dict() l = manager.list(range(5)) p_list = [] for i in range(10): p = Process(target=f, args=(d,l,i)) p.start() p_list.append(p) for res in p_list: res.join() print(d) print(l)
4d4d16b4c0f08b20c039e19a68cbe44848bc592a
e9a210d6e58bd0450197dfb4bbbc03f66788a297
/eventplus/talks/migrations/0005_auto_20171031_0209.py
3d87473b034b28fb35cd41f7b8916e329532208b
[]
no_license
werberth/EventPlus
3895587c8f4b2b6cc03507d10badd3c3cd2c28c9
d80c2ab5ec30fa83950380567195514df1cc9892
refs/heads/master
2021-08-28T17:00:21.363698
2017-12-12T21:10:16
2017-12-12T21:10:16
108,935,215
0
0
null
null
null
null
UTF-8
Python
false
false
449
py
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2017-10-31 05:09 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('talks', '0004_auto_20171029_2142'), ] operations = [ migrations.AlterField( model_name='talk', name='date', field=models.DateField(verbose_name='Date'), ), ]
3548555fe01d146e2f03abab2eaebe86099355ba
71e49ae86e6398f3278a031edaeebee2218c8b9b
/todo_django/todo_django/settings.py
6abb1e168465164fa89608d6d98a73a2d985b19f
[]
no_license
swestphal/todo
38558688063089b30e0ac1ca4906ef1f2d816ad8
97ef67696abd4e46fcc5a61270d6ad60596de321
refs/heads/main
2023-05-13T11:25:26.614616
2021-05-28T15:26:19
2021-05-28T15:26:19
371,403,392
0
0
null
null
null
null
UTF-8
Python
false
false
3,405
py
""" Django settings for todo_django project. Generated by 'django-admin startproject' using Django 3.2.3. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'django-insecure-6zj_#s34n7qjx$z739po7=4kl&a7i^*%t2w=w$n4986h+y4#x7' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['localhost', '127.0.0.1'] CORS_ORIGIN_ALLOW_ALL = True # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', 'corsheaders', 'task' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'corsheaders.middleware.CorsMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'todo_django.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'todo_django.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/static/' # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'
bc638535aa88eb0734da8bea69ec47da930a0515
472f531c32b63a39ed76c2d95517bae3342a9c09
/lib/config/config.py
a45ecff4c1583df9226bd3d4fb918a0c772693e0
[ "Apache-2.0" ]
permissive
TrendingTechnology/PyAnomaly
90cc3a2d05ea6ecfd0ab5c3768c67ccd4c45b77d
8e9bf7564ab0a39e251f439dfaa3d55ba053f3a9
refs/heads/master
2022-11-06T09:29:06.034245
2020-06-12T04:34:22
2020-06-12T04:34:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,904
py
from yacs.config import CfgNode as CN __all__ = ['update_config'] config = CN() # configure the system related matters, such as gpus, cudnn and so on config.SYSTEM = CN() config.SYSTEM.multigpus = False # to determine whether use multi gpus to train or test(data parallel) config.SYSTEM.num_gpus = 1 # decide the num_gpus and config.SYSTEM.gpus = [0] config.SYSTEM.cudnn = CN() config.SYSTEM.cudnn.benchmark = True config.SYSTEM.cudnn.deterministic = False config.SYSTEM.cudnn.enable = True # about use the distributed config.SYSTEM.distributed = CN() config.SYSTEM.distributed.use = False # configure the log things config.LOG = CN() config.LOG.log_output_dir = '' config.LOG.tb_output_dir = '' # tensorboard log output dir config.LOG.vis_dir = './output/vis' # configure the dataset config.DATASET = CN() config.DATASET.name = '' config.DATASET.seed = 2020 config.DATASET.read_format = 'opencv' config.DATASET.channel_num = 3 # 1: grayscale image | 2: optical flow | 3: RGB or other 3 channel image config.DATASET.channel_name = 'rgb' # 'gray' | 'uv' | 'rgb' | .... config.DATASET.train_path = '' config.DATASET.train_clip_length = 5 # the total clip length, including frames not be sampled config.DATASET.train_frame_step = 1 # frame sample frequency config.DATASET.train_clip_step = 1 # clip sample frequency config.DATASET.test_path = '' config.DATASET.test_clip_length = 5 config.DATASET.test_frame_step = 1 config.DATASET.test_clip_step = 1 config.DATASET.gt_path = '' config.DATASET.number_of_class = 1 # use in changing the label to one hot config.DATASET.score_normalize = True config.DATASET.score_type = 'normal' # 'normal' | 'abnormal' config.DATASET.decidable_idx = 1 config.DATASET.smooth = CN() config.DATASET.smooth.guassian = True config.DATASET.smooth.guassian_sigma = 10 config.DATASET.mini_dataset = CN() config.DATASET.mini_dataset.samples = 2 config.DATASET.evaluate_function_type = 'compute_auc_score' # ****************configure the argument of the data************************* config.ARGUMENT = CN() #========================Train Augment=================== config.ARGUMENT.train = CN() config.ARGUMENT.train.use = False config.ARGUMENT.train.resize = CN() config.ARGUMENT.train.resize.use = False config.ARGUMENT.train.resize.height = 32 config.ARGUMENT.train.resize.width = 32 config.ARGUMENT.train.grayscale = CN() config.ARGUMENT.train.grayscale.use = False config.ARGUMENT.train.fliplr = CN() config.ARGUMENT.train.fliplr.use = False config.ARGUMENT.train.fliplr.p = 1.0 config.ARGUMENT.train.flipud = CN() config.ARGUMENT.train.flipud.use = False config.ARGUMENT.train.flipud.p = 1.0 config.ARGUMENT.train.rote = CN() config.ARGUMENT.train.rote.use = False config.ARGUMENT.train.rote.degrees = [0,0] config.ARGUMENT.train.JpegCompression = CN() config.ARGUMENT.train.JpegCompression.use = False config.ARGUMENT.train.JpegCompression.high = 100 config.ARGUMENT.train.JpegCompression.low = 80 config.ARGUMENT.train.GaussianBlur = CN() config.ARGUMENT.train.GaussianBlur.use = False config.ARGUMENT.train.GaussianBlur.high = 0.3 config.ARGUMENT.train.GaussianBlur.low = 0.03 config.ARGUMENT.train.CropToFixedSize = CN() config.ARGUMENT.train.CropToFixedSize.use = False config.ARGUMENT.train.CropToFixedSize.height = 256 config.ARGUMENT.train.CropToFixedSize.width = 256 config.ARGUMENT.train.CropToFixedSize.position = 'center' # uniform | normal | center | ... #-------------------Normal------------------------ config.ARGUMENT.train.normal = CN() config.ARGUMENT.train.normal.use = False config.ARGUMENT.train.normal.mean = [0.485, 0.456, 0.406] config.ARGUMENT.train.normal.std = [0.229, 0.224, 0.225] #========================Val Augment=================== config.ARGUMENT.val = CN() config.ARGUMENT.val.use = False config.ARGUMENT.val.resize = CN() config.ARGUMENT.val.resize.use = False config.ARGUMENT.val.resize.height = 32 config.ARGUMENT.val.resize.width = 32 config.ARGUMENT.val.grayscale = CN() config.ARGUMENT.val.grayscale.use = False config.ARGUMENT.val.fliplr = CN() config.ARGUMENT.val.fliplr.use = False config.ARGUMENT.val.fliplr.p = 1.0 config.ARGUMENT.val.flipud = CN() config.ARGUMENT.val.flipud.use = False config.ARGUMENT.val.flipud.p = 1.0 config.ARGUMENT.val.rote = CN() config.ARGUMENT.val.rote.use = False config.ARGUMENT.val.rote.degrees = [0,0] config.ARGUMENT.val.JpegCompression = CN() config.ARGUMENT.val.JpegCompression.use = False config.ARGUMENT.val.JpegCompression.high = 100 config.ARGUMENT.val.JpegCompression.low = 80 config.ARGUMENT.val.GaussianBlur = CN() config.ARGUMENT.val.GaussianBlur.use = False config.ARGUMENT.val.GaussianBlur.high = 0.3 config.ARGUMENT.val.GaussianBlur.low = 0.03 config.ARGUMENT.val.CropToFixedSize = CN() config.ARGUMENT.val.CropToFixedSize.use = False config.ARGUMENT.val.CropToFixedSize.height = 256 config.ARGUMENT.val.CropToFixedSize.width = 256 config.ARGUMENT.val.CropToFixedSize.position = 'center' # uniform | normal | center | ... #-------------------Normal------------------------ config.ARGUMENT.val.normal = CN() config.ARGUMENT.val.normal.use = False config.ARGUMENT.val.normal.mean = [0.485, 0.456, 0.406] config.ARGUMENT.val.normal.std = [0.229, 0.224, 0.225] # ************************************************************************* # configure the model related things config.MODEL = CN() config.MODEL.name = '' # the name of the network, such as resnet config.MODEL.type = '' # the type of the network, such as resnet50, resnet101 or resnet152 config.MODEL.hooks = CN() # determine the hooks use in the training config.MODEL.hooks.train = [] # determine the hooks use in the training config.MODEL.hooks.val = [] # determine the hooks use in the training config.MODEL.flow_model_path = '' config.MODEL.discriminator_channels = [] config.MODEL.pretrain_model = '' config.MODEL.detector_config = '' config.MODEL.detector_model_path = '' # configure the resume config.RESUME = CN() config.RESUME.flag = False config.RESUME.checkpoint_path = '' # configure the freezing layers config.FINETUNE = CN() config.FINETUNE.flag = False config.FINETUNE.layer_list = [] # configure the training process #-----------------basic----------------- config.TRAIN = CN() config.TRAIN.batch_size = 2 config.TRAIN.start_step = 0 config.TRAIN.max_steps = 20000 # epoch * len(dataset) config.TRAIN.log_step = 5 # the step to print the info config.TRAIN.vis_step = 100 # the step to vis of the training results config.TRAIN.mini_eval_step = 10 # the step to exec the light-weight eval config.TRAIN.eval_step = 100 # the step to use the evaluate function config.TRAIN.save_step = 500 # the step to save the model config.TRAIN.epochs = 1 config.TRAIN.loss = ['mse', 'cross'] config.TRAIN.loss_coefficients = [0.5, 0.5] # the len must pair with the loss config.TRAIN.mode = 'general' # general | adversarial | .... #===============General Mode Settings============== config.TRAIN.general = CN() #---------------Optimizer configure--------------- config.TRAIN.general.optimizer = CN() config.TRAIN.general.optimizer.include = ['A', 'B', 'C'] config.TRAIN.general.optimizer.name = 'adam' config.TRAIN.general.optimizer.lr = 1e-3 config.TRAIN.general.optimizer.momentum = 0.9 config.TRAIN.general.optimizer.weight_decay = 0.0001 config.TRAIN.general.optimizer.nesterov = False config.TRAIN.general.optimizer.output_name = ['optimizer_abc'] #-----------------Scheduler configure-------------- config.TRAIN.general.scheduler = CN() config.TRAIN.general.scheduler.use = True config.TRAIN.general.scheduler.name = 'none' config.TRAIN.general.scheduler.step_size = 30 # the numebr of the iter, should be len(dataset) * want_epochs config.TRAIN.general.scheduler.steps = [10000, 20000] # the numebr of the iter, should be len(dataset) * want_epochs config.TRAIN.general.scheduler.gamma = 0.1 config.TRAIN.general.scheduler.T_max = 300 # use ine the cosine annealing LR config.TRAIN.general.scheduler.eta_min = 0 config.TRAIN.general.scheduler.warmup_factor = 0.001 config.TRAIN.general.scheduler.warmup_iters = 1000 config.TRAIN.general.scheduler.warmup_method = 'linear' # 'linear' | 'constant' #==================Adversarial Mode Setting================== config.TRAIN.adversarial = CN() #---------------Optimizer configure--------------- config.TRAIN.adversarial.optimizer = CN() config.TRAIN.adversarial.optimizer.include = ['Generator', 'Discriminator'] config.TRAIN.adversarial.optimizer.name = 'adam' config.TRAIN.adversarial.optimizer.g_lr = 1e-2 config.TRAIN.adversarial.optimizer.d_lr = 1e-2 config.TRAIN.adversarial.optimizer.weight_decay = 0.0001 config.TRAIN.adversarial.optimizer.output_name = ['optimizer_g', 'optimizer_d'] #-----------------Scheduler configure-------------- config.TRAIN.adversarial.scheduler = CN() config.TRAIN.adversarial.scheduler.use = True config.TRAIN.adversarial.scheduler.name = 'none' config.TRAIN.adversarial.scheduler.step_size = 30 # the numebr of the iter, should be len(dataset) * want_epochs config.TRAIN.adversarial.scheduler.steps = [1000,2000] # the numebr of the iter, should be len(dataset) * want_epochs config.TRAIN.adversarial.scheduler.gamma = 0.1 config.TRAIN.adversarial.scheduler.T_max = 300 # use ine the cosine annealing LR config.TRAIN.adversarial.scheduler.eta_min = 0 config.TRAIN.adversarial.scheduler.warmup_factor = 0.001 config.TRAIN.adversarial.scheduler.warmup_iters = 5000 config.TRAIN.adversarial.scheduler.warmup_method = 'linear' # 'linear' | 'constant' #----------------Train save configure------------ config.TRAIN.split = '' config.TRAIN.model_output = '' # use save the final model config.TRAIN.checkpoint_output = '' # use to save the intermediate results, including lr, optimizer, state_dict... config.TRAIN.pusedo_data_path = '' #-------------------cluster setting-------------- config.TRAIN.cluster = CN() config.TRAIN.cluster.k = 10 # configure the val process config.VAL = CN() config.VAL.name = '' config.VAL.path = '' # if not use the data in the TRAIN.test_path config.VAL.batch_size = 2 # configure the test process config.TEST = CN() config.TEST.name = '' config.TEST.path = '' # if not use the data in the TRAIN.test_path config.TEST.model_file = '' config.TEST.result_output = '' config.TEST.label_folder = '' def _get_cfg_defaults(): ''' Get the config template NOT USE IN OTHER FILES!! ''' return config.clone() def update_config(yaml_path, opts): ''' Make the template update based on the yaml file ''' print('=>Merge the config with {}\t'.format(yaml_path)) cfg = _get_cfg_defaults() cfg.merge_from_file(yaml_path) cfg.merge_from_list(opts) cfg.freeze() return cfg
e5715062db6a8e7bb894b4f5bd2d275d98e604be
0fb505765604b586c3a46e608fc23930f8501db5
/venv/lib/python2.7/site-packages/django/contrib/messages/apps.py
1a9189383ef26083e87cbc3f46cf61eaad518797
[ "MIT" ]
permissive
domenicosolazzo/practice-django
b05edecc302d97c97b7ce1de809ea46d59e2f0e6
44e74c973384c38bd71e7c8a1aacd1e10d6a6893
refs/heads/master
2021-08-19T15:36:22.732954
2015-01-22T18:42:14
2015-01-22T18:42:14
25,118,384
0
0
MIT
2021-06-10T19:50:51
2014-10-12T12:08:47
Python
UTF-8
Python
false
false
196
py
from django.apps import AppConfig from django.utils.translation import ugettext_lazy as _ class MessagesConfig(AppConfig): name = 'django.contrib.messages' verbose_name = _("Messages")
7f847a8a75b0bd5215fc381713b860453fc20803
d05a59feee839a4af352b7ed2fd6cf10a288a3cb
/xlsxwriter/test/comparison/test_chart_format24.py
017038f19ec35b57c30a8bd3b6c3821087c59443
[ "BSD-2-Clause-Views" ]
permissive
elessarelfstone/XlsxWriter
0d958afd593643f990373bd4d8a32bafc0966534
bb7b7881c7a93c89d6eaac25f12dda08d58d3046
refs/heads/master
2020-09-24T06:17:20.840848
2019-11-24T23:43:01
2019-11-24T23:43:01
225,685,272
1
0
NOASSERTION
2019-12-03T18:09:06
2019-12-03T18:09:05
null
UTF-8
Python
false
false
1,555
py
############################################################################### # # Tests for XlsxWriter. # # Copyright (c), 2013-2019, John McNamara, [email protected] # from ..excel_comparsion_test import ExcelComparisonTest from ...workbook import Workbook class TestCompareXLSXFiles(ExcelComparisonTest): """ Test file created by XlsxWriter against a file created by Excel. """ def setUp(self): self.set_filename('chart_format24.xlsx') def test_create_file(self): """Test the creation of an XlsxWriter file with chart formatting.""" workbook = Workbook(self.got_filename) worksheet = workbook.add_worksheet() chart = workbook.add_chart({'type': 'column'}) chart.axis_ids = [115374720, 115389568] data = [ [1, 2, 3, 4, 5], [2, 4, 6, 8, 10], [3, 6, 9, 12, 15], ] worksheet.write_column('A1', data[0]) worksheet.write_column('B1', data[1]) worksheet.write_column('C1', data[2]) chart.add_series({ 'categories': '=Sheet1!$A$1:$A$5', 'values': '=Sheet1!$B$1:$B$5', }) chart.add_series({ 'categories': '=Sheet1!$A$1:$A$5', 'values': '=Sheet1!$C$1:$C$5', }) chart.set_chartarea({'fill': {'color': 'yellow', 'transparency': 75}}) chart.set_plotarea({'fill': {'color': 'red', 'transparency': 25}}) worksheet.insert_chart('E9', chart) workbook.close() self.assertExcelEqual()
ec9733d55c01eb7e99f50e9f9fa51fd0cb38aaf4
6662aa37e6a5df5ef72359f5e52ba74a77ef00b6
/sensors/gps_2.py
886adcf175323e317a3326910e154dad195e52be
[]
no_license
rice-eclipse/RTR-PocketBeagle
b3f4a7536a28d5e412e7184dc8399558264f0e78
11939281355204c08f32da316ee35061def254f0
refs/heads/master
2023-01-01T18:28:53.201874
2020-10-24T18:48:15
2020-10-24T18:48:15
295,223,021
0
1
null
null
null
null
UTF-8
Python
false
false
3,667
py
# Simple GPS module demonstration. # Will print NMEA sentences received from the GPS, great for testing connection # Uses the GPS to send some commands, then reads directly from the GPS import time import board #import busio import adafruit_gps import digitalio # Create a serial connection for the GPS connection using default speed and # a slightly higher timeout (GPS modules typically update once a second). # These are the defaults you should use for the GPS FeatherWing. # For other boards set RX = GPS module TX, and TX = GPS module RX pins. #uart = busio.UART(board.TX, board.RX, baudrate=9600, timeout=10) # for a computer, use the pyserial library for uart access import serial import os permission_command = "sudo chmod 777 /dev/ttyO0" sudoPassword = "temppwd" os.system('echo %s|sudo -S %s' % (sudoPassword, permission_command)) reset = digitalio.DigitalInOut(board.P1_31) reset.direction = digitalio.Direction.OUTPUT standby = digitalio.DigitalInOut(board.P1_35) standby.direction = digitalio.Direction.OUTPUT fix = digitalio.DigitalInOut(board.P1_34) fix.direction = digitalio.Direction.INPUT reset.value = True #set reset pin to high, pin is active low standby.value = True #set standby pin to high, pin is active low uart = serial.Serial("/dev/ttyO0", baudrate=9600, timeout=1) # If using I2C, we'll create an I2C interface to talk to using default pins # i2c = board.I2C() # Create a GPS module instance. gps = adafruit_gps.GPS(uart) # Use UART/pyserial # gps = adafruit_gps.GPS_GtopI2C(i2c) # Use I2C interface # Initialize the GPS module by changing what data it sends and at what rate. # These are NMEA extensions for PMTK_314_SET_NMEA_OUTPUT and # PMTK_220_SET_NMEA_UPDATERATE but you can send anything from here to adjust # the GPS module behavior: # https://cdn-shop.adafruit.com/datasheets/PMTK_A11.pdf # Turn on the basic GGA and RMC info (what you typically want) # gps.send_command(b"PMTK314,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0") # Turn on just minimum info (RMC only, location): # gps.send_command(b'PMTK314,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0') # Turn off everything: # gps.send_command(b'PMTK314,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0') # Tuen on everything (not all of it is parsed!) gps.send_command(b'PMTK314,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0') # Set update rate to once a second (1hz) which is what you typically want. gps.send_command(b"PMTK220,1000") # Or decrease to once every two seconds by doubling the millisecond value. # Be sure to also increase your UART timeout above! # gps.send_command(b'PMTK220,2000') # You can also speed up the rate, but don't go too fast or else you can lose # data during parsing. This would be twice a second (2hz, 500ms delay): # gps.send_command(b'PMTK220,500') # Main loop runs forever printing data as it comes in timestamp = time.monotonic() while True: #os.system('echo %s|sudo -S %s' % (sudoPassword, permission_command)) if uart.inWaiting: print("in waiting") else: print("not in waiting") if fix.value: print("fix pin is HIGH") else: print("fix pin is LOW") try: data = gps.read(32) # read up to 32 bytes print(data) # this is a bytearray type if data is not None: # convert bytearray to string data_string = "".join([chr(b) for b in data]) print(data_string, end="") if time.monotonic() - timestamp > 5: # every 5 seconds... gps.send_command(b"PMTK605") # request firmware version timestamp = time.monotonic() except Exception as e: print("Exception Caught: " + str(e))
317316afc2eda10a2c3dfedce7768855c411e93a
6aa36fee3f4fcc9ac8f5509e51ea6bd8fc05b39b
/virtualenv-flask/lib/python2.7/site-packages/cybox/helper.py
f65d1b9819c9e719d461e09d6c1d1c63d37795f0
[]
no_license
syn-ack-zack/msg-stix-parser
8c46c4d897d579162f224360a077ac42f28ffe89
1edb7c3b6d60f76f24b91830a1ae7076d46ede14
refs/heads/master
2021-03-27T15:01:07.344754
2016-09-30T16:43:22
2016-09-30T16:43:22
69,684,161
0
0
null
null
null
null
UTF-8
Python
false
false
2,178
py
#!/usr/bin/env python # Copyright (c) 2013, The MITRE Corporation. All rights reserved. # See LICENSE.txt for complete terms. ''' CybOX Common Indicator API An api for creating observables for common indicators: ipv4 addresses, domain names, file hashes, and urls. ''' import sys import uuid from cybox.core import Observables, Observable, Object from cybox.common import Hash from cybox.objects.address_object import Address from cybox.objects.file_object import File from cybox.objects.uri_object import URI def create_ipv4_observable(ipv4_address): '''Create a CybOX Observable representing an IPv4 address''' ipv4_object = Address.from_dict({'address_value': ipv4_address, 'category': Address.CAT_IPV4}) return Observable(ipv4_object) def create_ipv4_list_observables(list_ipv4_addresses): '''Create a list of CybOX Observables, each representing an IPv4 address''' ipv4_objects = [] list_observables = [] for ipv4_address in list_ipv4_addresses: ipv4_object = create_ipv4_object(ipv4_address) observable = Observable(ipv4_object) list_observables.append(observable) return list_observables def create_email_address_observable(email_address): '''Create a CybOX Observable representing an IPv4 address''' email_address_object = Address.from_dict({'address_value': email_address, 'category': Address.CAT_EMAIL}) return Observable(email_address_object) def create_domain_name_observable(domain_name): '''Create a CybOX Observable representing a domain name.''' domain_name_object = URI.from_dict({'value': domain_name, 'type': URI.TYPE_DOMAIN}) return Observable(domain_name_object) def create_file_hash_observable(fn, hash_value): '''Create a CybOX Observable representing a file hash.''' hash_ = Hash(hash_value) file_ = File() file_.file_name = fn file_.add_hash(hash_) return Observable(file_) def create_url_observable(url): url_object = URI.from_dict({'value': url, 'type': URI.TYPE_URL}) return Observable(url_object)
7197e5b320ce581df451038b10cf2e2ca4b3c204
e28009b0a4584e8d128ed6fbd4ba84a1db11d1b9
/824.Goat Latin/824.Goat Latin.py
9a074961d672b68bff7b9d3ae8faee89d99a8b11
[]
no_license
jerrylance/LeetCode
509d16e4285296167feb51a80d6c382b3833405e
06ed3e9b27a3f1c0c517710d57fbbd794fd83e45
refs/heads/master
2020-12-02T23:10:27.382142
2020-08-02T02:03:54
2020-08-02T02:03:54
231,141,551
3
0
null
null
null
null
UTF-8
Python
false
false
906
py
# LeetCode Solution # Zeyu Liu # 2019.6.12 # 824.Goat Latin from typing import List # method 1 straight forward class Solution: def toGoatLatin(self, S: str) -> str: vowel = ['a', 'e', 'i', 'o', 'u', 'A', 'E', 'I', 'O', 'U'] res = [] S = S.split() for i,v in enumerate(S): if v[0] in vowel: v += 'ma' else: v = v[1:] + v[0] v += 'ma' v += 'a' * (i + 1) res.append(v) return " ".join(res) # transfer method solve = Solution() print(solve.toGoatLatin("I speak Goat Latin")) # method 2 one-line class Solution: def toGoatLatin(self, S: str) -> str: return ' '.join((w if w[0].lower() in 'aeiou' else w[1:] + w[0]) + 'ma' + 'a' * (i + 1) for i, w in enumerate(S.split())) # transfer method solve = Solution() print(solve.toGoatLatin("I speak Goat Latin"))
5948942590110adf43f925fd248d417aae92946d
ea88fac1da1b02e77180c2e20e1fd49b919eecf5
/installer/core/providers/aws/boto3/rds.py
30e547edc215610260da165de7c20d672e56f79c
[ "Apache-2.0" ]
permissive
jacob-kinzer/pacbot
7eeb667505e0ddfd333f6e423b51b8199b481692
d78605e9e3fd8c34435636495cd6d51c677754e3
refs/heads/master
2020-04-23T21:46:42.251948
2019-02-06T20:47:08
2019-02-06T20:47:08
171,480,569
0
0
null
2019-02-19T13:41:01
2019-02-19T13:41:00
null
UTF-8
Python
false
false
1,610
py
import boto3 def get_rds_client(access_key, secret_key, region): return boto3.client( 'rds', region_name=region, aws_access_key_id=access_key, aws_secret_access_key=secret_key) def check_rds_instance_exists(instance_identifier, access_key, secret_key, region): client = get_rds_client(access_key, secret_key, region) try: response = client.describe_db_instances( DBInstanceIdentifier=instance_identifier ) return True if len(response['DBInstances']) else False except: return False def check_rds_option_group_exists(name, access_key, secret_key, region): client = get_rds_client(access_key, secret_key, region) try: response = client.describe_option_groups( OptionGroupName=name ) return True if len(response['OptionGroupsList']) else False except: return False def check_rds_parameter_group_exists(name, access_key, secret_key, region): client = get_rds_client(access_key, secret_key, region) try: response = client.describe_db_parameter_groups( DBParameterGroupName=name ) return True if len(response['DBParameterGroups']) else False except: return False def check_rds_subnet_group_exists(name, access_key, secret_key, region): client = get_rds_client(access_key, secret_key, region) try: response = client.describe_db_subnet_groups( DBSubnetGroupName=name ) return True if len(response['DBSubnetGroups']) else False except: return False
d2c259f4c791b27708cdc4496151cd77b169c2a2
82b946da326148a3c1c1f687f96c0da165bb2c15
/sdk/python/pulumi_azure_native/network/v20210201/get_virtual_network_tap.py
974801dd5908402ca2d9bf972ee8e210857e8afc
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
morrell/pulumi-azure-native
3916e978382366607f3df0a669f24cb16293ff5e
cd3ba4b9cb08c5e1df7674c1c71695b80e443f08
refs/heads/master
2023-06-20T19:37:05.414924
2021-07-19T20:57:53
2021-07-19T20:57:53
387,815,163
0
0
Apache-2.0
2021-07-20T14:18:29
2021-07-20T14:18:28
null
UTF-8
Python
false
false
8,952
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs __all__ = [ 'GetVirtualNetworkTapResult', 'AwaitableGetVirtualNetworkTapResult', 'get_virtual_network_tap', ] @pulumi.output_type class GetVirtualNetworkTapResult: """ Virtual Network Tap resource. """ def __init__(__self__, destination_load_balancer_front_end_ip_configuration=None, destination_network_interface_ip_configuration=None, destination_port=None, etag=None, id=None, location=None, name=None, network_interface_tap_configurations=None, provisioning_state=None, resource_guid=None, tags=None, type=None): if destination_load_balancer_front_end_ip_configuration and not isinstance(destination_load_balancer_front_end_ip_configuration, dict): raise TypeError("Expected argument 'destination_load_balancer_front_end_ip_configuration' to be a dict") pulumi.set(__self__, "destination_load_balancer_front_end_ip_configuration", destination_load_balancer_front_end_ip_configuration) if destination_network_interface_ip_configuration and not isinstance(destination_network_interface_ip_configuration, dict): raise TypeError("Expected argument 'destination_network_interface_ip_configuration' to be a dict") pulumi.set(__self__, "destination_network_interface_ip_configuration", destination_network_interface_ip_configuration) if destination_port and not isinstance(destination_port, int): raise TypeError("Expected argument 'destination_port' to be a int") pulumi.set(__self__, "destination_port", destination_port) if etag and not isinstance(etag, str): raise TypeError("Expected argument 'etag' to be a str") pulumi.set(__self__, "etag", etag) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if location and not isinstance(location, str): raise TypeError("Expected argument 'location' to be a str") pulumi.set(__self__, "location", location) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if network_interface_tap_configurations and not isinstance(network_interface_tap_configurations, list): raise TypeError("Expected argument 'network_interface_tap_configurations' to be a list") pulumi.set(__self__, "network_interface_tap_configurations", network_interface_tap_configurations) if provisioning_state and not isinstance(provisioning_state, str): raise TypeError("Expected argument 'provisioning_state' to be a str") pulumi.set(__self__, "provisioning_state", provisioning_state) if resource_guid and not isinstance(resource_guid, str): raise TypeError("Expected argument 'resource_guid' to be a str") pulumi.set(__self__, "resource_guid", resource_guid) if tags and not isinstance(tags, dict): raise TypeError("Expected argument 'tags' to be a dict") pulumi.set(__self__, "tags", tags) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) @property @pulumi.getter(name="destinationLoadBalancerFrontEndIPConfiguration") def destination_load_balancer_front_end_ip_configuration(self) -> Optional['outputs.FrontendIPConfigurationResponse']: """ The reference to the private IP address on the internal Load Balancer that will receive the tap. """ return pulumi.get(self, "destination_load_balancer_front_end_ip_configuration") @property @pulumi.getter(name="destinationNetworkInterfaceIPConfiguration") def destination_network_interface_ip_configuration(self) -> Optional['outputs.NetworkInterfaceIPConfigurationResponse']: """ The reference to the private IP Address of the collector nic that will receive the tap. """ return pulumi.get(self, "destination_network_interface_ip_configuration") @property @pulumi.getter(name="destinationPort") def destination_port(self) -> Optional[int]: """ The VXLAN destination port that will receive the tapped traffic. """ return pulumi.get(self, "destination_port") @property @pulumi.getter def etag(self) -> str: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter def id(self) -> Optional[str]: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter def location(self) -> Optional[str]: """ Resource location. """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> str: """ Resource name. """ return pulumi.get(self, "name") @property @pulumi.getter(name="networkInterfaceTapConfigurations") def network_interface_tap_configurations(self) -> Sequence['outputs.NetworkInterfaceTapConfigurationResponse']: """ Specifies the list of resource IDs for the network interface IP configuration that needs to be tapped. """ return pulumi.get(self, "network_interface_tap_configurations") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> str: """ The provisioning state of the virtual network tap resource. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="resourceGuid") def resource_guid(self) -> str: """ The resource GUID property of the virtual network tap resource. """ return pulumi.get(self, "resource_guid") @property @pulumi.getter def tags(self) -> Optional[Mapping[str, str]]: """ Resource tags. """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> str: """ Resource type. """ return pulumi.get(self, "type") class AwaitableGetVirtualNetworkTapResult(GetVirtualNetworkTapResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetVirtualNetworkTapResult( destination_load_balancer_front_end_ip_configuration=self.destination_load_balancer_front_end_ip_configuration, destination_network_interface_ip_configuration=self.destination_network_interface_ip_configuration, destination_port=self.destination_port, etag=self.etag, id=self.id, location=self.location, name=self.name, network_interface_tap_configurations=self.network_interface_tap_configurations, provisioning_state=self.provisioning_state, resource_guid=self.resource_guid, tags=self.tags, type=self.type) def get_virtual_network_tap(resource_group_name: Optional[str] = None, tap_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetVirtualNetworkTapResult: """ Virtual Network Tap resource. :param str resource_group_name: The name of the resource group. :param str tap_name: The name of virtual network tap. """ __args__ = dict() __args__['resourceGroupName'] = resource_group_name __args__['tapName'] = tap_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-native:network/v20210201:getVirtualNetworkTap', __args__, opts=opts, typ=GetVirtualNetworkTapResult).value return AwaitableGetVirtualNetworkTapResult( destination_load_balancer_front_end_ip_configuration=__ret__.destination_load_balancer_front_end_ip_configuration, destination_network_interface_ip_configuration=__ret__.destination_network_interface_ip_configuration, destination_port=__ret__.destination_port, etag=__ret__.etag, id=__ret__.id, location=__ret__.location, name=__ret__.name, network_interface_tap_configurations=__ret__.network_interface_tap_configurations, provisioning_state=__ret__.provisioning_state, resource_guid=__ret__.resource_guid, tags=__ret__.tags, type=__ret__.type)
929c23a9620adf2f1c003ec9135e45ad81261b01
010c5fbc97731286be00028ff33fc981d943bca3
/primal/src/system/bin-data/lift_over.py
a2fcb668400bd441d0a7b9f2cd1b78e1afe870a1
[]
no_license
orenlivne/ober
6ce41e0f75d3a8baebc53e28d7f6ae4aeb645f30
810b16b2611f32c191182042240851152784edea
refs/heads/master
2021-01-23T13:48:49.172653
2014-04-03T13:57:44
2014-04-03T13:57:44
6,902,212
7
1
null
null
null
null
UTF-8
Python
false
false
1,139
py
#!/usr/bin/env python ''' ============================================================ Convert coordinates read from stdin from one human genome build to another. Usage: lift_over.py <from-build> <to-build> stdin line format: chrom bp_in_from_build stdout line format: bp_in_to_build, or '-' if not found Created on February 19, 2014 @author: Oren Livne <[email protected]> ============================================================ ''' import sys, traceback, util from pyliftover import LiftOver if __name__ == '__main__': try: src, target = sys.argv[1:3] if src == target: for _, bp in (line.strip().split(' ') for line in sys.stdin): print '%d %d' % (int(bp), int(bp)) else: lo = LiftOver(src, target) for chrom, bp in (line.strip().split(' ') for line in sys.stdin): out = lo.convert_coordinate('chr' + chrom, int(bp)) if not out: print '-' else: print '%d' % (out[0][1],) except: traceback.print_exc(file=sys.stdout) sys.exit(util.EXIT_FAILURE)
414bc115ae17b2308119de2eb29319cb4b453588
8e6005ff82a6b37b8c4e2a2fed5791323837d316
/HighMassAnalysis/Analysis/vbf_muTau_LS.py
3d44fab3699a7b0094d4520d2f6e8f035c7b18ee
[]
no_license
CMSRA2Tau/gurrola-sl5-on-sl6
633050a5ec5fd1a81a15c2e1dcf6b4952b718a9e
f56a99cd7121bcbdf301c2bea9fe397a6b9ef6a1
refs/heads/master
2020-04-15T06:13:09.462508
2014-12-17T17:57:01
2014-12-17T17:57:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
76,430
py
import FWCore.ParameterSet.Config as cms import copy process = cms.Process('HiMassTau') process.load('Configuration.StandardSequences.Services_cff') process.load('Configuration.StandardSequences.FrontierConditions_GlobalTag_cff') process.GlobalTag.globaltag = 'START53_V7F::All' process.load('JetMETCorrections.Configuration.JetCorrectionServices_cff') process.load('CommonTools/RecoAlgos/HBHENoiseFilter_cfi') process.load('FWCore.MessageService.MessageLogger_cfi') process.MessageLogger.cerr.FwkReport.reportEvery = 100 process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(-1) ) process.source = cms.Source("PoolSource", skipEvents = cms.untracked.uint32(0), fileNames = cms.untracked.vstring( 'file:skimPat_100_1_Smw.root', 'file:skimPat_101_1_Gyx.root', 'file:skimPat_102_1_eQH.root', 'file:skimPat_104_1_v5d.root', ) ) process.TFileService = cms.Service("TFileService", fileName = cms.string("analysis.root") ) process.analyzeHiMassTau = cms.EDAnalyzer('HiMassTauAnalysis') process.analyzeHiMassTau.DoMSUGRApoint = cms.bool(False) process.analyzeHiMassTau.Prefix = cms.string('susyScan') process.analyzeHiMassTau.Suffix = cms.string('') process.analyzeHiMassTau.ScanFormat = cms.string(r"# model msugra_(\\d*)_(\\d*)_(m?\\d*)_(m?\\d*)_(m?\\d)\\s") process.analyzeHiMassTau.ScanParameters = cms.vstring('M0', 'M12', 'tanbeta', 'A0', 'Mu') process.analyzeHiMassTau.DoSMpoint = cms.bool(False) process.analyzeHiMassTau.mLSP = cms.double(425.) process.analyzeHiMassTau.mGL = cms.double(1150.) #----- Fill histos? process.analyzeHiMassTau.FillRecoVertexHists = cms.bool(True) process.analyzeHiMassTau.FillGenTauHists = cms.bool(True) process.analyzeHiMassTau.FillRecoTauHists = cms.bool(True) process.analyzeHiMassTau.FillRecoMuonHists = cms.bool(True) process.analyzeHiMassTau.FillRecoElectronHists = cms.bool(True) process.analyzeHiMassTau.FillRecoJetHists = cms.bool(True) process.analyzeHiMassTau.FillTopologyHists = cms.bool(True) #-----Generator level Inputs process.analyzeHiMassTau.GenParticleSource = cms.untracked.InputTag('genParticles') process.analyzeHiMassTau.GenTauPtMinCut = cms.double(0.) process.analyzeHiMassTau.GenTauPtMaxCut = cms.double(9999.) process.analyzeHiMassTau.GenTauEtaMaxCut = cms.double(999.) process.analyzeHiMassTau.SelectSusyScanPoint = cms.bool(False) process.analyzeHiMassTau.M0 = cms.double(400.) process.analyzeHiMassTau.M12 = cms.double(360.) #-----Reco Tau Inputs process.analyzeHiMassTau.RecoTauSource = cms.InputTag('patTaus') process.analyzeHiMassTau.RecoTau1EtaCut = cms.double(2.1) process.analyzeHiMassTau.RecoTau1PtMinCut = cms.double(20.) process.analyzeHiMassTau.RecoTau1PtMaxCut = cms.double(9999.) process.analyzeHiMassTau.DoRecoTau1DiscrByLeadTrack = cms.bool(False) process.analyzeHiMassTau.UseRecoTau1DiscrByLeadTrackFlag = cms.bool(True) process.analyzeHiMassTau.RecoTau1DiscrByLeadTrack = cms.untracked.string('leadingPionPtCut') process.analyzeHiMassTau.DoRecoTau1DiscrByLeadTrackNhits = cms.bool(False) process.analyzeHiMassTau.RecoTau1LeadTrackMinHits = cms.int32(12) process.analyzeHiMassTau.DoRecoTau1DiscrByH3x3OverP = cms.bool(False) process.analyzeHiMassTau.RecoTau1H3x3OverP = cms.double(0.03) process.analyzeHiMassTau.DoRecoTau1DiscrByIsolation = cms.bool(True) process.analyzeHiMassTau.UseRecoTau1DiscrByIsolationFlag = cms.bool(True) process.analyzeHiMassTau.RecoTau1DiscrByIsolation = cms.untracked.string('byTightIsolationMVA3newDMwLT') process.analyzeHiMassTau.UseRecoTau1IsoSumPtInsteadOfNiso = cms.bool(False) process.analyzeHiMassTau.UseRecoTau1EllipseForEcalIso = cms.bool(False) process.analyzeHiMassTau.RecoTau1EcalIsoRphiForEllipse = cms.double(0.15) process.analyzeHiMassTau.RecoTau1EcalIsoRetaForEllipse = cms.double(0.07) process.analyzeHiMassTau.RecoTau1TrackNisoMax = cms.int32(0) process.analyzeHiMassTau.RecoTau1EcalNisoMax = cms.int32(0) process.analyzeHiMassTau.RecoTau1TrackIsoSumPtMaxCutValue = cms.double(1.0) process.analyzeHiMassTau.RecoTau1TrackIsoSumPtMinCutValue = cms.double(0.0) process.analyzeHiMassTau.RecoTau1EcalIsoSumPtMaxCutValue = cms.double(1.0) process.analyzeHiMassTau.RecoTau1EcalIsoSumPtMinCutValue = cms.double(0.0) process.analyzeHiMassTau.RecoTau1DiscrByProngType = cms.string('1or3hps') process.analyzeHiMassTau.RecoTau1LeadTrackThreshold = cms.double(5.0) process.analyzeHiMassTau.RecoTau1SigGamThreshold = cms.double(1.0) process.analyzeHiMassTau.RecoTau1IsoDeltaRCone = cms.double(0.5) process.analyzeHiMassTau.RecoTau1TrackIsoTrkThreshold = cms.double(0.8) process.analyzeHiMassTau.RecoTau1GammaIsoGamThreshold = cms.double(0.8) process.analyzeHiMassTau.DoRecoTau1DiscrAgainstElectron = cms.bool(True) process.analyzeHiMassTau.RecoTau1DiscrAgainstElectron = cms.untracked.string('againstElectronLooseMVA5') process.analyzeHiMassTau.DoRecoTau1DiscrByCrackCut = cms.bool(False) process.analyzeHiMassTau.DoRecoTau1DiscrAgainstMuon = cms.bool(True) process.analyzeHiMassTau.RecoTau1DiscrAgainstMuon = cms.untracked.string('againstMuonTight3') process.analyzeHiMassTau.SelectTau1sThatAreMuons = cms.bool(False) process.analyzeHiMassTau.SelectTau1sThatAreElectrons = cms.bool(False) process.analyzeHiMassTau.RemoveTau1OverlapWithMuon1s = cms.bool(True) process.analyzeHiMassTau.Tau1Muon1MatchingDeltaR = cms.double(0.3) process.analyzeHiMassTau.RemoveTau1OverlapWithElectron1s = cms.bool(False) process.analyzeHiMassTau.Tau1Electron1MatchingDeltaR = cms.double(0.3) process.analyzeHiMassTau.RemoveTau1OverlapWithMuon2s = cms.bool(False) process.analyzeHiMassTau.Tau1Muon2MatchingDeltaR = cms.double(0.3) process.analyzeHiMassTau.RemoveTau1OverlapWithElectron2s = cms.bool(False) process.analyzeHiMassTau.Tau1Electron2MatchingDeltaR = cms.double(0.3) process.analyzeHiMassTau.RecoTau2EtaCut = cms.double(2.1) process.analyzeHiMassTau.RecoTau2PtMinCut = cms.double(20.) process.analyzeHiMassTau.RecoTau2PtMaxCut = cms.double(9999.) process.analyzeHiMassTau.DoRecoTau2DiscrByLeadTrack = cms.bool(False) process.analyzeHiMassTau.UseRecoTau2DiscrByLeadTrackFlag = cms.bool(True) process.analyzeHiMassTau.RecoTau2DiscrByLeadTrack = cms.untracked.string('leadingPionPtCut') process.analyzeHiMassTau.DoRecoTau2DiscrByLeadTrackNhits = cms.bool(False) process.analyzeHiMassTau.RecoTau2LeadTrackMinHits = cms.int32(12) process.analyzeHiMassTau.DoRecoTau2DiscrByH3x3OverP = cms.bool(False) process.analyzeHiMassTau.RecoTau2H3x3OverP = cms.double(0.03) process.analyzeHiMassTau.DoRecoTau2DiscrByIsolation = cms.bool(True) process.analyzeHiMassTau.UseRecoTau2DiscrByIsolationFlag = cms.bool(True) process.analyzeHiMassTau.RecoTau2DiscrByIsolation = cms.untracked.string('byTightIsolationMVA3newDMwLT') process.analyzeHiMassTau.UseRecoTau2IsoSumPtInsteadOfNiso = cms.bool(False) process.analyzeHiMassTau.UseRecoTau2EllipseForEcalIso = cms.bool(False) process.analyzeHiMassTau.RecoTau2EcalIsoRphiForEllipse = cms.double(0.15) process.analyzeHiMassTau.RecoTau2EcalIsoRetaForEllipse = cms.double(0.07) process.analyzeHiMassTau.RecoTau2TrackNisoMax = cms.int32(0) process.analyzeHiMassTau.RecoTau2EcalNisoMax = cms.int32(0) process.analyzeHiMassTau.RecoTau2TrackIsoSumPtMaxCutValue = cms.double(1.0) process.analyzeHiMassTau.RecoTau2TrackIsoSumPtMinCutValue = cms.double(0.0) process.analyzeHiMassTau.RecoTau2EcalIsoSumPtMaxCutValue = cms.double(1.0) process.analyzeHiMassTau.RecoTau2EcalIsoSumPtMinCutValue = cms.double(0.0) process.analyzeHiMassTau.RecoTau2DiscrByProngType = cms.string('1or3hps') process.analyzeHiMassTau.RecoTau2LeadTrackThreshold = cms.double(5.0) process.analyzeHiMassTau.RecoTau2SigGamThreshold = cms.double(1.0) process.analyzeHiMassTau.RecoTau2IsoDeltaRCone = cms.double(0.5) process.analyzeHiMassTau.RecoTau2TrackIsoTrkThreshold = cms.double(0.8) process.analyzeHiMassTau.RecoTau2GammaIsoGamThreshold = cms.double(0.8) process.analyzeHiMassTau.DoRecoTau2DiscrAgainstElectron = cms.bool(True) process.analyzeHiMassTau.RecoTau2DiscrAgainstElectron = cms.untracked.string('againstElectronLooseMVA5') process.analyzeHiMassTau.DoRecoTau2DiscrByCrackCut = cms.bool(False) process.analyzeHiMassTau.DoRecoTau2DiscrAgainstMuon = cms.bool(True) process.analyzeHiMassTau.RecoTau2DiscrAgainstMuon = cms.untracked.string('againstMuonTight3') process.analyzeHiMassTau.SelectTau2sThatAreMuons = cms.bool(False) process.analyzeHiMassTau.SelectTau2sThatAreElectrons = cms.bool(False) process.analyzeHiMassTau.RemoveTau2OverlapWithMuon1s = cms.bool(False) process.analyzeHiMassTau.Tau2Muon1MatchingDeltaR = cms.double(0.3) process.analyzeHiMassTau.RemoveTau2OverlapWithElectron1s = cms.bool(False) process.analyzeHiMassTau.Tau2Electron1MatchingDeltaR = cms.double(0.3) process.analyzeHiMassTau.RemoveTau2OverlapWithMuon2s = cms.bool(False) process.analyzeHiMassTau.Tau2Muon2MatchingDeltaR = cms.double(0.3) process.analyzeHiMassTau.RemoveTau2OverlapWithElectron2s = cms.bool(False) process.analyzeHiMassTau.Tau2Electron2MatchingDeltaR = cms.double(0.3) #-----Reco Muon Inputs process.analyzeHiMassTau.RecoMuonSource = cms.InputTag('patMuons') process.analyzeHiMassTau.UseTuneP = cms.bool(False) process.analyzeHiMassTau.RecoMuon1EtaCut = cms.double(2.1) process.analyzeHiMassTau.RecoMuon1PtMinCut = cms.double(30.) process.analyzeHiMassTau.RecoMuon1PtMaxCut = cms.double(9999.) process.analyzeHiMassTau.DoRecoMuon1DiscrByGlobal = cms.bool(True) process.analyzeHiMassTau.DoRecoMuon1DiscrByIsolation = cms.bool(True) process.analyzeHiMassTau.RecoMuon1IsoSumPtMaxCutValue = cms.double(0.2) process.analyzeHiMassTau.RecoMuon1IsoSumPtMinCutValue = cms.double(0.0) process.analyzeHiMassTau.RecoMuon1IsoDeltaRCone = cms.double(0.4) process.analyzeHiMassTau.RecoMuon1TrackIsoTrkThreshold = cms.double(1.0) process.analyzeHiMassTau.RecoMuon1EcalIsoRecHitThreshold = cms.double(1.0) process.analyzeHiMassTau.DoRecoMuon1DiscrByIp = cms.bool(True) process.analyzeHiMassTau.RecoMuon1IpCut = cms.double(0.2) process.analyzeHiMassTau.RecoMuon1dzCut = cms.double(0.5) process.analyzeHiMassTau.DoRecoMuon1DiscrByPionVeto = cms.bool(False) process.analyzeHiMassTau.RecoMuon1CaloCompCoefficient = cms.double(0.8) process.analyzeHiMassTau.RecoMuon1SegmCompCoefficient = cms.double(1.2) process.analyzeHiMassTau.RecoMuon1AntiPionCut = cms.double(1.0) process.analyzeHiMassTau.DoRecoMuon1DiscrByNormalizedChi2 = cms.bool(False) process.analyzeHiMassTau.RecoMuon1NormalizedChi2MaxCut = cms.int32(10) process.analyzeHiMassTau.DoRecoMuon1DiscrByChamberHits = cms.bool(True) process.analyzeHiMassTau.RecoMuon1ChamberHitsMinCut = cms.int32(0) process.analyzeHiMassTau.DoRecoMuon1DiscrByMatchedStations = cms.bool(True) process.analyzeHiMassTau.RecoMuon1MatchedStationsMinCut = cms.int32(1) process.analyzeHiMassTau.DoRecoMuon1DiscrByPixelHits = cms.bool(True) process.analyzeHiMassTau.RecoMuon1PixelHitsMinCut = cms.int32(0) process.analyzeHiMassTau.DoRecoMuon1DiscrByTrackerLayerWithHits = cms.bool(True) process.analyzeHiMassTau.RecoMuon1TrackerLayerWithHitsMinCut = cms.int32(5) process.analyzeHiMassTau.DoRecoMuon1DiscrByDptOpt = cms.bool(False) process.analyzeHiMassTau.RecoMuon1DptOptMaxCut = cms.double(0.3) process.analyzeHiMassTau.RecoMuon2EtaCut = cms.double(2.1) process.analyzeHiMassTau.RecoMuon2PtMinCut = cms.double(10.) process.analyzeHiMassTau.RecoMuon2PtMaxCut = cms.double(9999.) process.analyzeHiMassTau.DoRecoMuon2DiscrByGlobal = cms.bool(True) process.analyzeHiMassTau.DoRecoMuon2DiscrByIsolation = cms.bool(True) process.analyzeHiMassTau.RecoMuon2IsoSumPtMaxCutValue = cms.double(0.2) process.analyzeHiMassTau.RecoMuon2IsoSumPtMinCutValue = cms.double(0.0) process.analyzeHiMassTau.RecoMuon2IsoDeltaRCone = cms.double(0.4) process.analyzeHiMassTau.RecoMuon2TrackIsoTrkThreshold = cms.double(1.0) process.analyzeHiMassTau.RecoMuon2EcalIsoRecHitThreshold = cms.double(1.0) process.analyzeHiMassTau.DoRecoMuon2DiscrByIp = cms.bool(True) process.analyzeHiMassTau.RecoMuon2IpCut = cms.double(0.2) process.analyzeHiMassTau.RecoMuon2dzCut = cms.double(0.5) process.analyzeHiMassTau.DoRecoMuon2DiscrByPionVeto = cms.bool(False) process.analyzeHiMassTau.RecoMuon2CaloCompCoefficient = cms.double(0.8) process.analyzeHiMassTau.RecoMuon2SegmCompCoefficient = cms.double(1.2) process.analyzeHiMassTau.RecoMuon2AntiPionCut = cms.double(1.0) process.analyzeHiMassTau.DoRecoMuon2DiscrByNormalizedChi2 = cms.bool(False) process.analyzeHiMassTau.RecoMuon2NormalizedChi2MaxCut = cms.int32(10) process.analyzeHiMassTau.DoRecoMuon2DiscrByChamberHits = cms.bool(True) process.analyzeHiMassTau.RecoMuon2ChamberHitsMinCut = cms.int32(0) process.analyzeHiMassTau.DoRecoMuon2DiscrByMatchedStations = cms.bool(True) process.analyzeHiMassTau.RecoMuon2MatchedStationsMinCut = cms.int32(1) process.analyzeHiMassTau.DoRecoMuon2DiscrByPixelHits = cms.bool(True) process.analyzeHiMassTau.RecoMuon2PixelHitsMinCut = cms.int32(0) process.analyzeHiMassTau.DoRecoMuon2DiscrByTrackerLayerWithHits = cms.bool(True) process.analyzeHiMassTau.RecoMuon2TrackerLayerWithHitsMinCut = cms.int32(5) process.analyzeHiMassTau.DoRecoMuon2DiscrByDptOpt = cms.bool(False) process.analyzeHiMassTau.RecoMuon2DptOptMaxCut = cms.double(0.3) #-----Reco Electron Inputs process.analyzeHiMassTau.RecoElectronSource = cms.InputTag('heepPatElectrons') process.analyzeHiMassTau.IsoValElec = cms.VInputTag(cms.InputTag('elPFIsoValueCharged03PFIdPFIso'), cms.InputTag('elPFIsoValueNeutral03PFIdPFIso'), cms.InputTag('elPFIsoValueGamma03NoPFIdPFIso'), cms.InputTag('elPFIsoValuePU03NoPFIdPFIso')) process.analyzeHiMassTau.UseHeepInfo = cms.bool(False) process.analyzeHiMassTau.RecoElectron1EtaCut = cms.double(2.1) process.analyzeHiMassTau.RecoElectron1PtMinCut = cms.double(30.) process.analyzeHiMassTau.RecoElectron1PtMaxCut = cms.double(9999.) process.analyzeHiMassTau.DoRecoElectron1DiscrByIsolation = cms.bool(True) process.analyzeHiMassTau.RecoElectron1IsolationCone = cms.string('dR03') process.analyzeHiMassTau.RecoElectron1IsoSumPtMaxCutValue = cms.double(0.15) process.analyzeHiMassTau.RecoElectron1IsoSumPtMinCutValue = cms.double(0.0) process.analyzeHiMassTau.DoRecoElectron1DiscrByIp = cms.bool(True) process.analyzeHiMassTau.RecoElectron1IpCut = cms.double(0.02) process.analyzeHiMassTau.RecoElectron1dzCut = cms.double(0.1) process.analyzeHiMassTau.DoRecoElectron1DiscrByEoverP = cms.bool(True) process.analyzeHiMassTau.RecoElectron1EoverPMax = cms.double(0.05) process.analyzeHiMassTau.RecoElectron1EoverPMin = cms.double(0.0) process.analyzeHiMassTau.DoRecoElectron1DiscrByHoverEm = cms.bool(True) process.analyzeHiMassTau.RecoElectron1EEHoverEmCut = cms.double(0.10) process.analyzeHiMassTau.RecoElectron1EBHoverEmCut = cms.double(0.12) process.analyzeHiMassTau.DoRecoElectron1DiscrBySigmaIEtaIEta = cms.bool(True) process.analyzeHiMassTau.RecoElectron1EESigmaIEtaIEta = cms.double(0.03) process.analyzeHiMassTau.RecoElectron1EBSigmaIEtaIEta = cms.double(0.01) process.analyzeHiMassTau.DoRecoElectron1DiscrByDEtaIn = cms.bool(True) process.analyzeHiMassTau.RecoElectron1EEDEtaIn = cms.double(0.007) process.analyzeHiMassTau.RecoElectron1EBDEtaIn = cms.double(0.004) process.analyzeHiMassTau.DoRecoElectron1DiscrByDPhiIn = cms.bool(True) process.analyzeHiMassTau.RecoElectron1EEDPhiIn = cms.double(0.03) process.analyzeHiMassTau.RecoElectron1EBDPhiIn = cms.double(0.06) process.analyzeHiMassTau.DoRecoElectron1DiscrBySCE2by5Over5by5 = cms.bool(False) process.analyzeHiMassTau.RecoElectron1EBscE1by5Over5by5 = cms.double(0.83) process.analyzeHiMassTau.RecoElectron1EBscE2by5Over5by5 = cms.double(0.94) process.analyzeHiMassTau.DoRecoElectron1DiscrByMissingHits = cms.bool(True) process.analyzeHiMassTau.RecoElectron1MissingHits = cms.int32(1) process.analyzeHiMassTau.DoRecoElectron1DiscrByEcalDrivenSeed = cms.bool(False) process.analyzeHiMassTau.DoRecoElectron1DiscrByTrackerDrivenSeed = cms.bool(False) process.analyzeHiMassTau.RecoElectron2EtaCut = cms.double(2.1) process.analyzeHiMassTau.RecoElectron2PtMinCut = cms.double(10.) process.analyzeHiMassTau.RecoElectron2PtMaxCut = cms.double(9999.) process.analyzeHiMassTau.DoRecoElectron2DiscrByIsolation = cms.bool(True) process.analyzeHiMassTau.RecoElectron2IsolationCone = cms.string('dR03') process.analyzeHiMassTau.RecoElectron2IsoSumPtMaxCutValue = cms.double(0.15) process.analyzeHiMassTau.RecoElectron2IsoSumPtMinCutValue = cms.double(0.0) process.analyzeHiMassTau.DoRecoElectron2DiscrByIp = cms.bool(True) process.analyzeHiMassTau.RecoElectron2IpCut = cms.double(0.02) process.analyzeHiMassTau.RecoElectron2dzCut = cms.double(0.1) process.analyzeHiMassTau.DoRecoElectron2DiscrByEoverP = cms.bool(True) process.analyzeHiMassTau.RecoElectron2EoverPMax = cms.double(0.05) process.analyzeHiMassTau.RecoElectron2EoverPMin = cms.double(0.0) process.analyzeHiMassTau.DoRecoElectron2DiscrByHoverEm = cms.bool(True) process.analyzeHiMassTau.RecoElectron2EEHoverEmCut = cms.double(0.10) process.analyzeHiMassTau.RecoElectron2EBHoverEmCut = cms.double(0.12) process.analyzeHiMassTau.DoRecoElectron2DiscrBySigmaIEtaIEta = cms.bool(True) process.analyzeHiMassTau.RecoElectron2EESigmaIEtaIEta = cms.double(0.03) process.analyzeHiMassTau.RecoElectron2EBSigmaIEtaIEta = cms.double(0.01) process.analyzeHiMassTau.DoRecoElectron2DiscrByDEtaIn = cms.bool(True) process.analyzeHiMassTau.RecoElectron2EEDEtaIn = cms.double(0.007) process.analyzeHiMassTau.RecoElectron2EBDEtaIn = cms.double(0.004) process.analyzeHiMassTau.DoRecoElectron2DiscrByDPhiIn = cms.bool(True) process.analyzeHiMassTau.RecoElectron2EEDPhiIn = cms.double(0.03) process.analyzeHiMassTau.RecoElectron2EBDPhiIn = cms.double(0.06) process.analyzeHiMassTau.DoRecoElectron2DiscrBySCE2by5Over5by5 = cms.bool(False) process.analyzeHiMassTau.RecoElectron2EBscE1by5Over5by5 = cms.double(0.83) process.analyzeHiMassTau.RecoElectron2EBscE2by5Over5by5 = cms.double(0.94) process.analyzeHiMassTau.DoRecoElectron2DiscrByMissingHits = cms.bool(True) process.analyzeHiMassTau.RecoElectron2MissingHits = cms.int32(1) process.analyzeHiMassTau.DoRecoElectron2DiscrByEcalDrivenSeed = cms.bool(False) process.analyzeHiMassTau.DoRecoElectron2DiscrByTrackerDrivenSeed = cms.bool(False) #-----Reco Jet Inputs process.analyzeHiMassTau.RecoJetSource = cms.InputTag('selectedPatJets') process.analyzeHiMassTau.puJetIdwp = cms.untracked.string('puJetIdLoose') # puJetIdLoose puJetIdMedim puJetIdTight process.analyzeHiMassTau.UseCorrectedJet = cms.bool(True) process.analyzeHiMassTau.RecoJet1EtaMinCut = cms.double(0.0) process.analyzeHiMassTau.RecoJet1EtaMaxCut = cms.double(5.0) process.analyzeHiMassTau.RecoJet1PtCut = cms.double(30.0) process.analyzeHiMassTau.ApplyJet1LooseID = cms.bool(True) process.analyzeHiMassTau.ApplyJet1PileupID = cms.bool(False) process.analyzeHiMassTau.RemoveJet1OverlapWithMuon1s = cms.bool(True) process.analyzeHiMassTau.Jet1Muon1MatchingDeltaR = cms.double(0.3) process.analyzeHiMassTau.RemoveJet1OverlapWithElectron1s = cms.bool(False) process.analyzeHiMassTau.Jet1Electron1MatchingDeltaR = cms.double(0.3) process.analyzeHiMassTau.RemoveJet1OverlapWithTau1s = cms.bool(True) process.analyzeHiMassTau.Jet1Tau1MatchingDeltaR = cms.double(0.3) process.analyzeHiMassTau.RemoveJet1OverlapWithMuon2s = cms.bool(False) process.analyzeHiMassTau.Jet1Muon2MatchingDeltaR = cms.double(0.3) process.analyzeHiMassTau.RemoveJet1OverlapWithElectron2s = cms.bool(False) process.analyzeHiMassTau.Jet1Electron2MatchingDeltaR = cms.double(0.3) process.analyzeHiMassTau.RemoveJet1OverlapWithTau2s = cms.bool(False) process.analyzeHiMassTau.Jet1Tau2MatchingDeltaR = cms.double(0.3) process.analyzeHiMassTau.RecoJet2EtaMinCut = cms.double(0.0) process.analyzeHiMassTau.RecoJet2EtaMaxCut = cms.double(5.0) process.analyzeHiMassTau.RecoJet2PtCut = cms.double(30.0) process.analyzeHiMassTau.ApplyJet2LooseID = cms.bool(True) process.analyzeHiMassTau.ApplyJet2PileupID = cms.bool(False) process.analyzeHiMassTau.RemoveJet2OverlapWithMuon1s = cms.bool(True) process.analyzeHiMassTau.Jet2Muon1MatchingDeltaR = cms.double(0.3) process.analyzeHiMassTau.RemoveJet2OverlapWithElectron1s = cms.bool(False) process.analyzeHiMassTau.Jet2Electron1MatchingDeltaR = cms.double(0.3) process.analyzeHiMassTau.RemoveJet2OverlapWithTau1s = cms.bool(True) process.analyzeHiMassTau.Jet2Tau1MatchingDeltaR = cms.double(0.3) process.analyzeHiMassTau.RemoveJet2OverlapWithMuon2s = cms.bool(False) process.analyzeHiMassTau.Jet2Muon2MatchingDeltaR = cms.double(0.3) process.analyzeHiMassTau.RemoveJet2OverlapWithElectron2s = cms.bool(False) process.analyzeHiMassTau.Jet2Electron2MatchingDeltaR = cms.double(0.3) process.analyzeHiMassTau.RemoveJet2OverlapWithTau2s = cms.bool(False) process.analyzeHiMassTau.Jet2Tau2MatchingDeltaR = cms.double(0.3) process.analyzeHiMassTau.RecoCentralJetPtCut = cms.double(30.0) process.analyzeHiMassTau.ApplyCentralJetLooseID = cms.bool(True) process.analyzeHiMassTau.ApplyCentralJetPileupID = cms.bool(False) process.analyzeHiMassTau.RemoveCentralJetOverlapWithMuon1s = cms.bool(True) process.analyzeHiMassTau.CentralJetMuon1MatchingDeltaR = cms.double(0.3) process.analyzeHiMassTau.RemoveCentralJetOverlapWithElectron1s = cms.bool(False) process.analyzeHiMassTau.CentralJetElectron1MatchingDeltaR = cms.double(0.3) process.analyzeHiMassTau.RemoveCentralJetOverlapWithTau1s = cms.bool(True) process.analyzeHiMassTau.CentralJetTau1MatchingDeltaR = cms.double(0.3) process.analyzeHiMassTau.RemoveCentralJetOverlapWithMuon2s = cms.bool(False) process.analyzeHiMassTau.CentralJetMuon2MatchingDeltaR = cms.double(0.3) process.analyzeHiMassTau.RemoveCentralJetOverlapWithElectron2s = cms.bool(False) process.analyzeHiMassTau.CentralJetElectron2MatchingDeltaR = cms.double(0.3) process.analyzeHiMassTau.RemoveCentralJetOverlapWithTau2s = cms.bool(False) process.analyzeHiMassTau.CentralJetTau2MatchingDeltaR = cms.double(0.3) process.analyzeHiMassTau.ApplyLeadingJetsLooseID = cms.bool(True) process.analyzeHiMassTau.ApplyLeadingJetsPileupID = cms.bool(False) process.analyzeHiMassTau.DoDiscrByFirstLeadingJet = cms.bool(True) process.analyzeHiMassTau.RecoFirstLeadingJetPt = cms.double(30.0) process.analyzeHiMassTau.RecoFirstLeadingJetEtaMinCut = cms.double(0.0) process.analyzeHiMassTau.RecoFirstLeadingJetEtaMaxCut = cms.double(5.0) process.analyzeHiMassTau.DoDiscrBySecondLeadingJet = cms.bool(True) process.analyzeHiMassTau.RecoSecondLeadingJetPt = cms.double(30.0) process.analyzeHiMassTau.RecoSecondLeadingJetEtaMinCut = cms.double(0.0) process.analyzeHiMassTau.RecoSecondLeadingJetEtaMaxCut = cms.double(5.0) process.analyzeHiMassTau.RemoveFirstLeadingJetOverlapWithMuon1s = cms.bool(True) process.analyzeHiMassTau.FirstLeadingJetMuon1MatchingDeltaR = cms.double(0.3) process.analyzeHiMassTau.RemoveFirstLeadingJetOverlapWithElectron1s = cms.bool(False) process.analyzeHiMassTau.FirstLeadingJetElectron1MatchingDeltaR = cms.double(0.3) process.analyzeHiMassTau.RemoveFirstLeadingJetOverlapWithTau1s = cms.bool(True) process.analyzeHiMassTau.FirstLeadingJetTau1MatchingDeltaR = cms.double(0.3) process.analyzeHiMassTau.RemoveSecondLeadingJetOverlapWithMuon1s = cms.bool(True) process.analyzeHiMassTau.SecondLeadingJetMuon1MatchingDeltaR = cms.double(0.3) process.analyzeHiMassTau.RemoveSecondLeadingJetOverlapWithElectron1s = cms.bool(False) process.analyzeHiMassTau.SecondLeadingJetElectron1MatchingDeltaR = cms.double(0.3) process.analyzeHiMassTau.RemoveSecondLeadingJetOverlapWithTau1s = cms.bool(True) process.analyzeHiMassTau.SecondLeadingJetTau1MatchingDeltaR = cms.double(0.3) process.analyzeHiMassTau.RemoveFirstLeadingJetOverlapWithMuon2s = cms.bool(False) process.analyzeHiMassTau.FirstLeadingJetMuon2MatchingDeltaR = cms.double(0.3) process.analyzeHiMassTau.RemoveFirstLeadingJetOverlapWithElectron2s = cms.bool(False) process.analyzeHiMassTau.FirstLeadingJetElectron2MatchingDeltaR = cms.double(0.3) process.analyzeHiMassTau.RemoveFirstLeadingJetOverlapWithTau2s = cms.bool(False) process.analyzeHiMassTau.FirstLeadingJetTau2MatchingDeltaR = cms.double(0.3) process.analyzeHiMassTau.RemoveSecondLeadingJetOverlapWithMuon2s = cms.bool(False) process.analyzeHiMassTau.SecondLeadingJetMuon2MatchingDeltaR = cms.double(0.3) process.analyzeHiMassTau.RemoveSecondLeadingJetOverlapWithElectron2s = cms.bool(False) process.analyzeHiMassTau.SecondLeadingJetElectron2MatchingDeltaR = cms.double(0.3) process.analyzeHiMassTau.RemoveSecondLeadingJetOverlapWithTau2s = cms.bool(False) process.analyzeHiMassTau.SecondLeadingJetTau2MatchingDeltaR = cms.double(0.3) #-----Reco b-Jet Inputs process.analyzeHiMassTau.RecoBJetEtaMinCut = cms.double(0.0) process.analyzeHiMassTau.RecoBJetEtaMaxCut = cms.double(2.5) process.analyzeHiMassTau.RecoBJetPtCut = cms.double(20.0) process.analyzeHiMassTau.RemoveBJetOverlapWithMuon1s = cms.bool(True) process.analyzeHiMassTau.BJetMuon1MatchingDeltaR = cms.double(0.3) process.analyzeHiMassTau.RemoveBJetOverlapWithElectron1s = cms.bool(False) process.analyzeHiMassTau.BJetElectron1MatchingDeltaR = cms.double(0.3) process.analyzeHiMassTau.RemoveBJetOverlapWithTau1s = cms.bool(True) process.analyzeHiMassTau.BJetTau1MatchingDeltaR = cms.double(0.3) process.analyzeHiMassTau.RemoveBJetOverlapWithMuon2s = cms.bool(False) process.analyzeHiMassTau.BJetMuon2MatchingDeltaR = cms.double(0.3) process.analyzeHiMassTau.RemoveBJetOverlapWithElectron2s = cms.bool(False) process.analyzeHiMassTau.BJetElectron2MatchingDeltaR = cms.double(0.3) process.analyzeHiMassTau.RemoveBJetOverlapWithTau2s = cms.bool(False) process.analyzeHiMassTau.BJetTau2MatchingDeltaR = cms.double(0.3) process.analyzeHiMassTau.ApplyJetBTagging = cms.bool(True) process.analyzeHiMassTau.bTagger = cms.untracked.string('combinedSecondaryVertexBJetTags') process.analyzeHiMassTau.JetBTaggingCut = cms.double(0.244) # CVSL=0.244, CSVM=0.679, CSVT=0.898 #-----Vertex Inputs process.analyzeHiMassTau.RecoVertexSource = cms.InputTag('offlinePrimaryVertices') # vertex collection process.analyzeHiMassTau.RecoVertexMaxZposition = cms.double(20.0) # vertex |z| < X process.analyzeHiMassTau.RecoVertexMinTracks = cms.int32(2) # vertex must have >= 2 "good" tracks used to reconstruct it process.analyzeHiMassTau.RecoVertexTrackWeight = cms.double(0.5) # weight used to define "good" tracks used to reconstruct vertex #-----Trigger Inputs process.analyzeHiMassTau.RecoTriggerSource = cms.InputTag("TriggerResults","","HLT") # trigger collection process.analyzeHiMassTau.Trigger1Requirements = cms.vstring('HLT_IsoMu24_eta2p1_v') # trigger path name process.analyzeHiMassTau.Trigger2Requirements = cms.vstring('HLT_IsoMu24_eta2p1_v') # trigger path name #-----Susy Topology Inputs process.analyzeHiMassTau.JetPtForMhtAndHt = cms.double(30.0) process.analyzeHiMassTau.JetEtaForMhtAndHt = cms.double(5.0) process.analyzeHiMassTau.ApplyJetLooseIDforMhtAndHt = cms.bool(True) process.analyzeHiMassTau.ApplyJetPileupIDforMhtAndHt = cms.bool(False) process.analyzeHiMassTau.DoSUSYDiscrByMHT = cms.bool(False) process.analyzeHiMassTau.MhtCut = cms.double(250.0) process.analyzeHiMassTau.DoSUSYDiscrByHT = cms.bool(False) process.analyzeHiMassTau.HtCut = cms.double(250.0) process.analyzeHiMassTau.DoSUSYDiscrByR1 = cms.bool(False) process.analyzeHiMassTau.R1MinCut = cms.double(0.85) process.analyzeHiMassTau.R1MaxCut = cms.double(999.0) process.analyzeHiMassTau.DoSUSYDiscrByR2 = cms.bool(False) process.analyzeHiMassTau.R2MinCut = cms.double(0.0) process.analyzeHiMassTau.R2MaxCut = cms.double(3.6) process.analyzeHiMassTau.DoSUSYDiscrByAlpha = cms.bool(False) process.analyzeHiMassTau.AlphaMinCut = cms.double(0.5) process.analyzeHiMassTau.AlphaMaxCut = cms.double(9999999999.9) process.analyzeHiMassTau.DoSUSYDiscrByDphi1 = cms.bool(False) process.analyzeHiMassTau.Dphi1MinCut = cms.double(0.9) process.analyzeHiMassTau.Dphi1MaxCut = cms.double(999.9) process.analyzeHiMassTau.DoSUSYDiscrByDphi2 = cms.bool(False) process.analyzeHiMassTau.Dphi2MinCut = cms.double(0.5) process.analyzeHiMassTau.Dphi2MaxCut = cms.double(9999.5) process.analyzeHiMassTau.DoSUSYDiscrByLeadDiJetMass = cms.bool(False) process.analyzeHiMassTau.LeadDiJetMinMassCut = cms.double(650.0) process.analyzeHiMassTau.LeadDiJetMaxMassCut = cms.double(9999.0) process.analyzeHiMassTau.DoSUSYDiscrByLeadDiJetPt = cms.bool(False) process.analyzeHiMassTau.LeadDiJetMinPtCut = cms.double(0.5) process.analyzeHiMassTau.LeadDiJetMaxPtCut = cms.double(0.5) process.analyzeHiMassTau.DoSUSYDiscrByLeadDiJetDeltaEta = cms.bool(False) process.analyzeHiMassTau.LeadDiJetMinDeltaEtaCut = cms.double(4.2) process.analyzeHiMassTau.LeadDiJetMaxDeltaEtaCut = cms.double(9999.0) process.analyzeHiMassTau.DoSUSYDiscrByLeadDiJetDeltaPhi = cms.bool(False) process.analyzeHiMassTau.LeadDiJetMinDeltaPhiCut = cms.double(4.2) process.analyzeHiMassTau.LeadDiJetMaxDeltaPhiCut = cms.double(9999.0) process.analyzeHiMassTau.DoSUSYDiscrByLeadDiJetOSEta = cms.bool(False) #-----Topology Inputs process.analyzeHiMassTau.RecoMetSource = cms.InputTag('patPfMetT0pcT1Txy') process.analyzeHiMassTau.DoDiscrByMet = cms.bool(True) process.analyzeHiMassTau.TreatMuonsAsNeutrinos = cms.bool(False) process.analyzeHiMassTau.RecoMetCut = cms.double(75.0) process.analyzeHiMassTau.DoDiJetDiscrByDeltaR = cms.bool(True) process.analyzeHiMassTau.DiJetDeltaRCut = cms.double(0.3) process.analyzeHiMassTau.DoDiJetDiscrByDeltaEta = cms.bool(True) process.analyzeHiMassTau.DiJetMinDeltaEtaCut = cms.double(4.2) process.analyzeHiMassTau.DiJetMaxDeltaEtaCut = cms.double(999.9) process.analyzeHiMassTau.DoDiJetDiscrByDeltaPhi = cms.bool(False) process.analyzeHiMassTau.DiJetMinDeltaPhiCut = cms.double(0.0) process.analyzeHiMassTau.DiJetMaxDeltaPhiCut = cms.double(2.5) process.analyzeHiMassTau.DoDiJetDiscrByCosDphi = cms.bool(False) process.analyzeHiMassTau.DiJetCosDphiMaxCut = cms.double(-0.95) process.analyzeHiMassTau.DiJetCosDphiMinCut = cms.double(-1.00) process.analyzeHiMassTau.DoDiscrByDiJetMassReco = cms.bool(False) process.analyzeHiMassTau.DiJetMassMinCut = cms.double(1000.0) process.analyzeHiMassTau.DiJetMassMaxCut = cms.double(9999.0) process.analyzeHiMassTau.DoDiJetDiscrByOSEta = cms.bool(True) process.analyzeHiMassTau.DoDiMuonDiscrByDeltaR = cms.bool(True) process.analyzeHiMassTau.DiMuonDeltaRCut = cms.double(0.3) process.analyzeHiMassTau.DiMuonDiscrByOSLSType = cms.string('NONE') process.analyzeHiMassTau.DoDiMuonDiscrByCosDphi = cms.bool(False) process.analyzeHiMassTau.DiMuonCosDphiMaxCut = cms.double(-0.95) process.analyzeHiMassTau.DiMuonCosDphiMinCut = cms.double(-1.00) process.analyzeHiMassTau.DoDiscrByDiMuonMassReco = cms.bool(False) process.analyzeHiMassTau.UseVectorSumOfDiMuonProductsAndMetMassReco = cms.bool(False) process.analyzeHiMassTau.UseCollinerApproxDiMuonMassReco = cms.bool(False) process.analyzeHiMassTau.DiMuonMassMinCut = cms.double(60.0) process.analyzeHiMassTau.DiMuonMassMaxCut = cms.double(120.0) process.analyzeHiMassTau.DoDiMuonDiscrByCDFzeta2D = cms.bool(False) process.analyzeHiMassTau.DiMuonPZetaCutCoefficient = cms.double(1.0) process.analyzeHiMassTau.DiMuonPZetaVisCutCoefficient = cms.double(-0.875) process.analyzeHiMassTau.DiMuonCDFzeta2DCutValue = cms.double(-7.00) process.analyzeHiMassTau.DoDiMuonDiscrByDeltaPtDivSumPt = cms.bool(False) process.analyzeHiMassTau.DiMuonDeltaPtDivSumPtMinCutValue = cms.double(0.1) process.analyzeHiMassTau.DiMuonDeltaPtDivSumPtMaxCutValue = cms.double(1.0) process.analyzeHiMassTau.DoDiMuonDiscrByDeltaPt = cms.bool(False) process.analyzeHiMassTau.DiMuonDeltaPtMinCutValue = cms.double(30.0) process.analyzeHiMassTau.DiMuonDeltaPtMaxCutValue = cms.double(9999.0) process.analyzeHiMassTau.DoDiTauDiscrByDeltaR = cms.bool(True) process.analyzeHiMassTau.DiTauDeltaRCut = cms.double(0.3) process.analyzeHiMassTau.DiTauDiscrByOSLSType = cms.string('NONE') process.analyzeHiMassTau.UseTauSeedTrackForDiTauDiscrByOSLS = cms.bool(False) process.analyzeHiMassTau.DoDiTauDiscrByCosDphi = cms.bool(False) process.analyzeHiMassTau.DiTauCosDphiMaxCut = cms.double(-0.95) process.analyzeHiMassTau.DiTauCosDphiMinCut = cms.double(-1.00) process.analyzeHiMassTau.DoDiscrByDiTauMassReco = cms.bool(False) process.analyzeHiMassTau.UseVectorSumOfDiTauProductsAndMetMassReco = cms.bool(False) process.analyzeHiMassTau.UseCollinerApproxDiTauMassReco = cms.bool(False) process.analyzeHiMassTau.DiTauMassMinCut = cms.double(150.0) process.analyzeHiMassTau.DiTauMassMaxCut = cms.double(1000.0) process.analyzeHiMassTau.DoDiTauDiscrByCDFzeta2D = cms.bool(False) process.analyzeHiMassTau.DiTauPZetaCutCoefficient = cms.double(1.0) process.analyzeHiMassTau.DiTauPZetaVisCutCoefficient = cms.double(-0.875) process.analyzeHiMassTau.DiTauCDFzeta2DCutValue = cms.double(-7.00) process.analyzeHiMassTau.DoDiTauDiscrByDeltaPtDivSumPt = cms.bool(False) process.analyzeHiMassTau.DiTauDeltaPtDivSumPtMinCutValue = cms.double(0.1) process.analyzeHiMassTau.DiTauDeltaPtDivSumPtMaxCutValue = cms.double(1.0) process.analyzeHiMassTau.DoDiTauDiscrByDeltaPt = cms.bool(False) process.analyzeHiMassTau.DiTauDeltaPtMinCutValue = cms.double(30.0) process.analyzeHiMassTau.DiTauDeltaPtMaxCutValue = cms.double(9999.0) process.analyzeHiMassTau.DoDiElectronDiscrByDeltaR = cms.bool(True) process.analyzeHiMassTau.DiElectronDeltaRCut = cms.double(0.3) process.analyzeHiMassTau.DiElectronDiscrByOSLSType = cms.string('NONE') process.analyzeHiMassTau.DoDiElectronDiscrByCosDphi = cms.bool(False) process.analyzeHiMassTau.DiElectronCosDphiMaxCut = cms.double(-0.95) process.analyzeHiMassTau.DiElectronCosDphiMinCut = cms.double(-1.00) process.analyzeHiMassTau.DoDiscrByDiElectronMassReco = cms.bool(False) process.analyzeHiMassTau.UseVectorSumOfDiElectronProductsAndMetMassReco = cms.bool(False) process.analyzeHiMassTau.UseCollinerApproxDiElectronMassReco = cms.bool(False) process.analyzeHiMassTau.DiElectronMassMinCut = cms.double(150.0) process.analyzeHiMassTau.DiElectronMassMaxCut = cms.double(1000.0) process.analyzeHiMassTau.DoDiElectronDiscrByCDFzeta2D = cms.bool(False) process.analyzeHiMassTau.DiElectronPZetaCutCoefficient = cms.double(1.0) process.analyzeHiMassTau.DiElectronPZetaVisCutCoefficient = cms.double(-0.875) process.analyzeHiMassTau.DiElectronCDFzeta2DCutValue = cms.double(-7.00) process.analyzeHiMassTau.DoDiElectronDiscrByDeltaPtDivSumPt = cms.bool(False) process.analyzeHiMassTau.DiElectronDeltaPtDivSumPtMinCutValue = cms.double(0.1) process.analyzeHiMassTau.DiElectronDeltaPtDivSumPtMaxCutValue = cms.double(1.0) process.analyzeHiMassTau.DoDiElectronDiscrByDeltaPt = cms.bool(False) process.analyzeHiMassTau.DiElectronDeltaPtMinCutValue = cms.double(30.0) process.analyzeHiMassTau.DiElectronDeltaPtMaxCutValue = cms.double(9999.0) process.analyzeHiMassTau.DoMuon1Tau1DiscrByDeltaR = cms.bool(True) process.analyzeHiMassTau.Muon1Tau1DeltaRCut = cms.double(0.3) process.analyzeHiMassTau.Muon1Tau1DiscrByOSLSType = cms.string('LS') process.analyzeHiMassTau.UseTauSeedTrackForMuon1Tau1DiscrByOSLS = cms.bool(False) process.analyzeHiMassTau.DoMuon1Tau1DiscrByCosDphi = cms.bool(False) process.analyzeHiMassTau.Muon1Tau1CosDphiMaxCut = cms.double(-0.95) process.analyzeHiMassTau.Muon1Tau1CosDphiMinCut = cms.double(-1.00) process.analyzeHiMassTau.DoDiscrByMuon1Tau1MassReco = cms.bool(False) process.analyzeHiMassTau.UseVectorSumOfMuon1Tau1ProductsAndMetMassReco = cms.bool(False) process.analyzeHiMassTau.UseCollinerApproxMuon1Tau1MassReco = cms.bool(False) process.analyzeHiMassTau.Muon1Tau1MassMinCut = cms.double(150.0) process.analyzeHiMassTau.Muon1Tau1MassMaxCut = cms.double(1000.0) process.analyzeHiMassTau.DoMuon1Tau1DiscrByCDFzeta2D = cms.bool(False) process.analyzeHiMassTau.Muon1Tau1PZetaCutCoefficient = cms.double(1.0) process.analyzeHiMassTau.Muon1Tau1PZetaVisCutCoefficient = cms.double(-0.875) process.analyzeHiMassTau.Muon1Tau1CDFzeta2DCutValue = cms.double(-7.00) process.analyzeHiMassTau.DoMuon1Tau1DiscrByDeltaPtDivSumPt = cms.bool(False) process.analyzeHiMassTau.Muon1Tau1DeltaPtDivSumPtMinCutValue = cms.double(0.1) process.analyzeHiMassTau.Muon1Tau1DeltaPtDivSumPtMaxCutValue = cms.double(1.0) process.analyzeHiMassTau.DoMuon1Tau1DiscrByDeltaPt = cms.bool(False) process.analyzeHiMassTau.Muon1Tau1DeltaPtMinCutValue = cms.double(30.0) process.analyzeHiMassTau.Muon1Tau1DeltaPtMaxCutValue = cms.double(9999.0) process.analyzeHiMassTau.DoMuon1Tau2DiscrByDeltaR = cms.bool(True) process.analyzeHiMassTau.Muon1Tau2DeltaRCut = cms.double(0.3) process.analyzeHiMassTau.Muon1Tau2DiscrByOSLSType = cms.string('NONE') process.analyzeHiMassTau.UseTauSeedTrackForMuon1Tau2DiscrByOSLS = cms.bool(False) process.analyzeHiMassTau.DoMuon1Tau2DiscrByCosDphi = cms.bool(False) process.analyzeHiMassTau.Muon1Tau2CosDphiMaxCut = cms.double(-0.95) process.analyzeHiMassTau.Muon1Tau2CosDphiMinCut = cms.double(-1.00) process.analyzeHiMassTau.DoDiscrByMuon1Tau2MassReco = cms.bool(False) process.analyzeHiMassTau.UseVectorSumOfMuon1Tau2ProductsAndMetMassReco = cms.bool(False) process.analyzeHiMassTau.UseCollinerApproxMuon1Tau2MassReco = cms.bool(False) process.analyzeHiMassTau.Muon1Tau2MassMinCut = cms.double(150.0) process.analyzeHiMassTau.Muon1Tau2MassMaxCut = cms.double(1000.0) process.analyzeHiMassTau.DoMuon1Tau2DiscrByCDFzeta2D = cms.bool(False) process.analyzeHiMassTau.Muon1Tau2PZetaCutCoefficient = cms.double(1.0) process.analyzeHiMassTau.Muon1Tau2PZetaVisCutCoefficient = cms.double(-0.875) process.analyzeHiMassTau.Muon1Tau2CDFzeta2DCutValue = cms.double(-7.00) process.analyzeHiMassTau.DoMuon1Tau2DiscrByDeltaPtDivSumPt = cms.bool(False) process.analyzeHiMassTau.Muon1Tau2DeltaPtDivSumPtMinCutValue = cms.double(0.1) process.analyzeHiMassTau.Muon1Tau2DeltaPtDivSumPtMaxCutValue = cms.double(1.0) process.analyzeHiMassTau.DoMuon1Tau2DiscrByDeltaPt = cms.bool(False) process.analyzeHiMassTau.Muon1Tau2DeltaPtMinCutValue = cms.double(30.0) process.analyzeHiMassTau.Muon1Tau2DeltaPtMaxCutValue = cms.double(9999.0) process.analyzeHiMassTau.DoMuon2Tau1DiscrByDeltaR = cms.bool(True) process.analyzeHiMassTau.Muon2Tau1DeltaRCut = cms.double(0.3) process.analyzeHiMassTau.Muon2Tau1DiscrByOSLSType = cms.string('NONE') process.analyzeHiMassTau.UseTauSeedTrackForMuon2Tau1DiscrByOSLS = cms.bool(False) process.analyzeHiMassTau.DoMuon2Tau1DiscrByCosDphi = cms.bool(False) process.analyzeHiMassTau.Muon2Tau1CosDphiMaxCut = cms.double(-0.95) process.analyzeHiMassTau.Muon2Tau1CosDphiMinCut = cms.double(-1.00) process.analyzeHiMassTau.DoDiscrByMuon2Tau1MassReco = cms.bool(False) process.analyzeHiMassTau.UseVectorSumOfMuon2Tau1ProductsAndMetMassReco = cms.bool(False) process.analyzeHiMassTau.UseCollinerApproxMuon2Tau1MassReco = cms.bool(False) process.analyzeHiMassTau.Muon2Tau1MassMinCut = cms.double(150.0) process.analyzeHiMassTau.Muon2Tau1MassMaxCut = cms.double(1000.0) process.analyzeHiMassTau.DoMuon2Tau1DiscrByCDFzeta2D = cms.bool(False) process.analyzeHiMassTau.Muon2Tau1PZetaCutCoefficient = cms.double(1.0) process.analyzeHiMassTau.Muon2Tau1PZetaVisCutCoefficient = cms.double(-0.875) process.analyzeHiMassTau.Muon2Tau1CDFzeta2DCutValue = cms.double(-7.00) process.analyzeHiMassTau.DoMuon2Tau1DiscrByDeltaPtDivSumPt = cms.bool(False) process.analyzeHiMassTau.Muon2Tau1DeltaPtDivSumPtMinCutValue = cms.double(0.1) process.analyzeHiMassTau.Muon2Tau1DeltaPtDivSumPtMaxCutValue = cms.double(1.0) process.analyzeHiMassTau.DoMuon2Tau1DiscrByDeltaPt = cms.bool(False) process.analyzeHiMassTau.Muon2Tau1DeltaPtMinCutValue = cms.double(30.0) process.analyzeHiMassTau.Muon2Tau1DeltaPtMaxCutValue = cms.double(9999.0) process.analyzeHiMassTau.DoMuon2Tau2DiscrByDeltaR = cms.bool(True) process.analyzeHiMassTau.Muon2Tau2DeltaRCut = cms.double(0.3) process.analyzeHiMassTau.Muon2Tau2DiscrByOSLSType = cms.string('NONE') process.analyzeHiMassTau.UseTauSeedTrackForMuon2Tau2DiscrByOSLS = cms.bool(False) process.analyzeHiMassTau.DoMuon2Tau2DiscrByCosDphi = cms.bool(False) process.analyzeHiMassTau.Muon2Tau2CosDphiMaxCut = cms.double(-0.95) process.analyzeHiMassTau.Muon2Tau2CosDphiMinCut = cms.double(-1.00) process.analyzeHiMassTau.DoDiscrByMuon2Tau2MassReco = cms.bool(False) process.analyzeHiMassTau.UseVectorSumOfMuon2Tau2ProductsAndMetMassReco = cms.bool(False) process.analyzeHiMassTau.UseCollinerApproxMuon2Tau2MassReco = cms.bool(False) process.analyzeHiMassTau.Muon2Tau2MassMinCut = cms.double(150.0) process.analyzeHiMassTau.Muon2Tau2MassMaxCut = cms.double(1000.0) process.analyzeHiMassTau.DoMuon2Tau2DiscrByCDFzeta2D = cms.bool(False) process.analyzeHiMassTau.Muon2Tau2PZetaCutCoefficient = cms.double(1.0) process.analyzeHiMassTau.Muon2Tau2PZetaVisCutCoefficient = cms.double(-0.875) process.analyzeHiMassTau.Muon2Tau2CDFzeta2DCutValue = cms.double(-7.00) process.analyzeHiMassTau.DoMuon2Tau2DiscrByDeltaPtDivSumPt = cms.bool(False) process.analyzeHiMassTau.Muon2Tau2DeltaPtDivSumPtMinCutValue = cms.double(0.1) process.analyzeHiMassTau.Muon2Tau2DeltaPtDivSumPtMaxCutValue = cms.double(1.0) process.analyzeHiMassTau.DoMuon2Tau2DiscrByDeltaPt = cms.bool(False) process.analyzeHiMassTau.Muon2Tau2DeltaPtMinCutValue = cms.double(30.0) process.analyzeHiMassTau.Muon2Tau2DeltaPtMaxCutValue = cms.double(9999.0) process.analyzeHiMassTau.DoElectron1Tau1DiscrByDeltaR = cms.bool(True) process.analyzeHiMassTau.Electron1Tau1DeltaRCut = cms.double(0.7) process.analyzeHiMassTau.Electron1Tau1DiscrByOSLSType = cms.string('NONE') process.analyzeHiMassTau.UseTauSeedTrackForElectron1Tau1DiscrByOSLS = cms.bool(False) process.analyzeHiMassTau.DoElectron1Tau1DiscrByCosDphi = cms.bool(False) process.analyzeHiMassTau.Electron1Tau1CosDphiMaxCut = cms.double(-0.95) process.analyzeHiMassTau.Electron1Tau1CosDphiMinCut = cms.double(-1.00) process.analyzeHiMassTau.DoDiscrByElectron1Tau1MassReco = cms.bool(False) process.analyzeHiMassTau.UseVectorSumOfElectron1Tau1ProductsAndMetMassReco = cms.bool(False) process.analyzeHiMassTau.UseCollinerApproxElectron1Tau1MassReco = cms.bool(False) process.analyzeHiMassTau.Electron1Tau1MassMinCut = cms.double(150.0) process.analyzeHiMassTau.Electron1Tau1MassMaxCut = cms.double(1000.0) process.analyzeHiMassTau.DoElectron1Tau1DiscrByCDFzeta2D = cms.bool(False) process.analyzeHiMassTau.Electron1Tau1PZetaCutCoefficient = cms.double(1.0) process.analyzeHiMassTau.Electron1Tau1PZetaVisCutCoefficient = cms.double(-0.875) process.analyzeHiMassTau.Electron1Tau1CDFzeta2DCutValue = cms.double(-7.00) process.analyzeHiMassTau.DoElectron1Tau1DiscrByDeltaPtDivSumPt = cms.bool(False) process.analyzeHiMassTau.Electron1Tau1DeltaPtDivSumPtMinCutValue = cms.double(0.1) process.analyzeHiMassTau.Electron1Tau1DeltaPtDivSumPtMaxCutValue = cms.double(1.0) process.analyzeHiMassTau.DoElectron1Tau1DiscrByDeltaPt = cms.bool(False) process.analyzeHiMassTau.Electron1Tau1DeltaPtMinCutValue = cms.double(30.0) process.analyzeHiMassTau.Electron1Tau1DeltaPtMaxCutValue = cms.double(9999.0) process.analyzeHiMassTau.DoElectron1Tau2DiscrByDeltaR = cms.bool(True) process.analyzeHiMassTau.Electron1Tau2DeltaRCut = cms.double(0.3) process.analyzeHiMassTau.Electron1Tau2DiscrByOSLSType = cms.string('NONE') process.analyzeHiMassTau.UseTauSeedTrackForElectron1Tau2DiscrByOSLS = cms.bool(False) process.analyzeHiMassTau.DoElectron1Tau2DiscrByCosDphi = cms.bool(False) process.analyzeHiMassTau.Electron1Tau2CosDphiMaxCut = cms.double(-0.95) process.analyzeHiMassTau.Electron1Tau2CosDphiMinCut = cms.double(-1.00) process.analyzeHiMassTau.DoDiscrByElectron1Tau2MassReco = cms.bool(False) process.analyzeHiMassTau.UseVectorSumOfElectron1Tau2ProductsAndMetMassReco = cms.bool(False) process.analyzeHiMassTau.UseCollinerApproxElectron1Tau2MassReco = cms.bool(False) process.analyzeHiMassTau.Electron1Tau2MassMinCut = cms.double(150.0) process.analyzeHiMassTau.Electron1Tau2MassMaxCut = cms.double(1000.0) process.analyzeHiMassTau.DoElectron1Tau2DiscrByCDFzeta2D = cms.bool(False) process.analyzeHiMassTau.Electron1Tau2PZetaCutCoefficient = cms.double(1.0) process.analyzeHiMassTau.Electron1Tau2PZetaVisCutCoefficient = cms.double(-0.875) process.analyzeHiMassTau.Electron1Tau2CDFzeta2DCutValue = cms.double(-7.00) process.analyzeHiMassTau.DoElectron1Tau2DiscrByDeltaPtDivSumPt = cms.bool(False) process.analyzeHiMassTau.Electron1Tau2DeltaPtDivSumPtMinCutValue = cms.double(0.1) process.analyzeHiMassTau.Electron1Tau2DeltaPtDivSumPtMaxCutValue = cms.double(1.0) process.analyzeHiMassTau.DoElectron1Tau2DiscrByDeltaPt = cms.bool(False) process.analyzeHiMassTau.Electron1Tau2DeltaPtMinCutValue = cms.double(30.0) process.analyzeHiMassTau.Electron1Tau2DeltaPtMaxCutValue = cms.double(9999.0) process.analyzeHiMassTau.DoElectron2Tau1DiscrByDeltaR = cms.bool(True) process.analyzeHiMassTau.Electron2Tau1DeltaRCut = cms.double(0.3) process.analyzeHiMassTau.Electron2Tau1DiscrByOSLSType = cms.string('NONE') process.analyzeHiMassTau.UseTauSeedTrackForElectron2Tau1DiscrByOSLS = cms.bool(False) process.analyzeHiMassTau.DoElectron2Tau1DiscrByCosDphi = cms.bool(False) process.analyzeHiMassTau.Electron2Tau1CosDphiMaxCut = cms.double(-0.95) process.analyzeHiMassTau.Electron2Tau1CosDphiMinCut = cms.double(-1.00) process.analyzeHiMassTau.DoDiscrByElectron2Tau1MassReco = cms.bool(False) process.analyzeHiMassTau.UseVectorSumOfElectron2Tau1ProductsAndMetMassReco = cms.bool(False) process.analyzeHiMassTau.UseCollinerApproxElectron2Tau1MassReco = cms.bool(False) process.analyzeHiMassTau.Electron2Tau1MassMinCut = cms.double(150.0) process.analyzeHiMassTau.Electron2Tau1MassMaxCut = cms.double(1000.0) process.analyzeHiMassTau.DoElectron2Tau1DiscrByCDFzeta2D = cms.bool(False) process.analyzeHiMassTau.Electron2Tau1PZetaCutCoefficient = cms.double(1.0) process.analyzeHiMassTau.Electron2Tau1PZetaVisCutCoefficient = cms.double(-0.875) process.analyzeHiMassTau.Electron2Tau1CDFzeta2DCutValue = cms.double(-7.00) process.analyzeHiMassTau.DoElectron2Tau1DiscrByDeltaPtDivSumPt = cms.bool(False) process.analyzeHiMassTau.Electron2Tau1DeltaPtDivSumPtMinCutValue = cms.double(0.1) process.analyzeHiMassTau.Electron2Tau1DeltaPtDivSumPtMaxCutValue = cms.double(1.0) process.analyzeHiMassTau.DoElectron2Tau1DiscrByDeltaPt = cms.bool(False) process.analyzeHiMassTau.Electron2Tau1DeltaPtMinCutValue = cms.double(30.0) process.analyzeHiMassTau.Electron2Tau1DeltaPtMaxCutValue = cms.double(9999.0) process.analyzeHiMassTau.DoElectron2Tau2DiscrByDeltaR = cms.bool(True) process.analyzeHiMassTau.Electron2Tau2DeltaRCut = cms.double(0.3) process.analyzeHiMassTau.Electron2Tau2DiscrByOSLSType = cms.string('NONE') process.analyzeHiMassTau.UseTauSeedTrackForElectron2Tau2DiscrByOSLS = cms.bool(False) process.analyzeHiMassTau.DoElectron2Tau2DiscrByCosDphi = cms.bool(False) process.analyzeHiMassTau.Electron2Tau2CosDphiMaxCut = cms.double(-0.95) process.analyzeHiMassTau.Electron2Tau2CosDphiMinCut = cms.double(-1.00) process.analyzeHiMassTau.DoDiscrByElectron2Tau2MassReco = cms.bool(False) process.analyzeHiMassTau.UseVectorSumOfElectron2Tau2ProductsAndMetMassReco = cms.bool(False) process.analyzeHiMassTau.UseCollinerApproxElectron2Tau2MassReco = cms.bool(False) process.analyzeHiMassTau.Electron2Tau2MassMinCut = cms.double(150.0) process.analyzeHiMassTau.Electron2Tau2MassMaxCut = cms.double(1000.0) process.analyzeHiMassTau.DoElectron2Tau2DiscrByCDFzeta2D = cms.bool(False) process.analyzeHiMassTau.Electron2Tau2PZetaCutCoefficient = cms.double(1.0) process.analyzeHiMassTau.Electron2Tau2PZetaVisCutCoefficient = cms.double(-0.875) process.analyzeHiMassTau.Electron2Tau2CDFzeta2DCutValue = cms.double(-7.00) process.analyzeHiMassTau.DoElectron2Tau2DiscrByDeltaPtDivSumPt = cms.bool(False) process.analyzeHiMassTau.Electron2Tau2DeltaPtDivSumPtMinCutValue = cms.double(0.1) process.analyzeHiMassTau.Electron2Tau2DeltaPtDivSumPtMaxCutValue = cms.double(1.0) process.analyzeHiMassTau.DoElectron2Tau2DiscrByDeltaPt = cms.bool(False) process.analyzeHiMassTau.Electron2Tau2DeltaPtMinCutValue = cms.double(30.0) process.analyzeHiMassTau.Electron2Tau2DeltaPtMaxCutValue = cms.double(9999.0) process.analyzeHiMassTau.DoElectron1Muon1DiscrByDeltaR = cms.bool(True) process.analyzeHiMassTau.Electron1Muon1DeltaRCut = cms.double(0.3) process.analyzeHiMassTau.Electron1Muon1DiscrByOSLSType = cms.string('NONE') process.analyzeHiMassTau.DoElectron1Muon1DiscrByCosDphi = cms.bool(False) process.analyzeHiMassTau.Electron1Muon1CosDphiMaxCut = cms.double(-0.95) process.analyzeHiMassTau.Electron1Muon1CosDphiMinCut = cms.double(-1.00) process.analyzeHiMassTau.DoDiscrByElectron1Muon1MassReco = cms.bool(False) process.analyzeHiMassTau.UseVectorSumOfElectron1Muon1ProductsAndMetMassReco = cms.bool(False) process.analyzeHiMassTau.UseCollinerApproxElectron1Muon1MassReco = cms.bool(False) process.analyzeHiMassTau.Electron1Muon1MassMinCut = cms.double(150.0) process.analyzeHiMassTau.Electron1Muon1MassMaxCut = cms.double(1000.0) process.analyzeHiMassTau.DoElectron1Muon1DiscrByCDFzeta2D = cms.bool(False) process.analyzeHiMassTau.Electron1Muon1PZetaCutCoefficient = cms.double(1.0) process.analyzeHiMassTau.Electron1Muon1PZetaVisCutCoefficient = cms.double(-0.875) process.analyzeHiMassTau.Electron1Muon1CDFzeta2DCutValue = cms.double(-7.00) process.analyzeHiMassTau.DoElectron1Muon1DiscrByDeltaPtDivSumPt = cms.bool(False) process.analyzeHiMassTau.Electron1Muon1DeltaPtDivSumPtMinCutValue = cms.double(0.1) process.analyzeHiMassTau.Electron1Muon1DeltaPtDivSumPtMaxCutValue = cms.double(1.0) process.analyzeHiMassTau.DoElectron1Muon1DiscrByDeltaPt = cms.bool(False) process.analyzeHiMassTau.Electron1Muon1DeltaPtMinCutValue = cms.double(30.0) process.analyzeHiMassTau.Electron1Muon1DeltaPtMaxCutValue = cms.double(9999.0) process.analyzeHiMassTau.DoElectron1Muon2DiscrByDeltaR = cms.bool(True) process.analyzeHiMassTau.Electron1Muon2DeltaRCut = cms.double(0.3) process.analyzeHiMassTau.Electron1Muon2DiscrByOSLSType = cms.string('NONE') process.analyzeHiMassTau.DoElectron1Muon2DiscrByCosDphi = cms.bool(False) process.analyzeHiMassTau.Electron1Muon2CosDphiMaxCut = cms.double(-0.95) process.analyzeHiMassTau.Electron1Muon2CosDphiMinCut = cms.double(-1.00) process.analyzeHiMassTau.DoDiscrByElectron1Muon2MassReco = cms.bool(False) process.analyzeHiMassTau.UseVectorSumOfElectron1Muon2ProductsAndMetMassReco = cms.bool(False) process.analyzeHiMassTau.UseCollinerApproxElectron1Muon2MassReco = cms.bool(False) process.analyzeHiMassTau.Electron1Muon2MassMinCut = cms.double(150.0) process.analyzeHiMassTau.Electron1Muon2MassMaxCut = cms.double(1000.0) process.analyzeHiMassTau.DoElectron1Muon2DiscrByCDFzeta2D = cms.bool(False) process.analyzeHiMassTau.Electron1Muon2PZetaCutCoefficient = cms.double(1.0) process.analyzeHiMassTau.Electron1Muon2PZetaVisCutCoefficient = cms.double(-0.875) process.analyzeHiMassTau.Electron1Muon2CDFzeta2DCutValue = cms.double(-7.00) process.analyzeHiMassTau.DoElectron1Muon2DiscrByDeltaPtDivSumPt = cms.bool(False) process.analyzeHiMassTau.Electron1Muon2DeltaPtDivSumPtMinCutValue = cms.double(0.1) process.analyzeHiMassTau.Electron1Muon2DeltaPtDivSumPtMaxCutValue = cms.double(1.0) process.analyzeHiMassTau.DoElectron1Muon2DiscrByDeltaPt = cms.bool(False) process.analyzeHiMassTau.Electron1Muon2DeltaPtMinCutValue = cms.double(30.0) process.analyzeHiMassTau.Electron1Muon2DeltaPtMaxCutValue = cms.double(9999.0) process.analyzeHiMassTau.DoElectron2Muon1DiscrByDeltaR = cms.bool(True) process.analyzeHiMassTau.Electron2Muon1DeltaRCut = cms.double(0.3) process.analyzeHiMassTau.Electron2Muon1DiscrByOSLSType = cms.string('NONE') process.analyzeHiMassTau.DoElectron2Muon1DiscrByCosDphi = cms.bool(False) process.analyzeHiMassTau.Electron2Muon1CosDphiMaxCut = cms.double(-0.95) process.analyzeHiMassTau.Electron2Muon1CosDphiMinCut = cms.double(-1.00) process.analyzeHiMassTau.DoDiscrByElectron2Muon1MassReco = cms.bool(False) process.analyzeHiMassTau.UseVectorSumOfElectron2Muon1ProductsAndMetMassReco = cms.bool(False) process.analyzeHiMassTau.UseCollinerApproxElectron2Muon1MassReco = cms.bool(False) process.analyzeHiMassTau.Electron2Muon1MassMinCut = cms.double(150.0) process.analyzeHiMassTau.Electron2Muon1MassMaxCut = cms.double(1000.0) process.analyzeHiMassTau.DoElectron2Muon1DiscrByCDFzeta2D = cms.bool(False) process.analyzeHiMassTau.Electron2Muon1PZetaCutCoefficient = cms.double(1.0) process.analyzeHiMassTau.Electron2Muon1PZetaVisCutCoefficient = cms.double(-0.875) process.analyzeHiMassTau.Electron2Muon1CDFzeta2DCutValue = cms.double(-7.00) process.analyzeHiMassTau.DoElectron2Muon1DiscrByDeltaPtDivSumPt = cms.bool(False) process.analyzeHiMassTau.Electron2Muon1DeltaPtDivSumPtMinCutValue = cms.double(0.1) process.analyzeHiMassTau.Electron2Muon1DeltaPtDivSumPtMaxCutValue = cms.double(1.0) process.analyzeHiMassTau.DoElectron2Muon1DiscrByDeltaPt = cms.bool(False) process.analyzeHiMassTau.Electron2Muon1DeltaPtMinCutValue = cms.double(30.0) process.analyzeHiMassTau.Electron2Muon1DeltaPtMaxCutValue = cms.double(9999.0) process.analyzeHiMassTau.DoElectron2Muon2DiscrByDeltaR = cms.bool(True) process.analyzeHiMassTau.Electron2Muon2DeltaRCut = cms.double(0.3) process.analyzeHiMassTau.Electron2Muon2DiscrByOSLSType = cms.string('NONE') process.analyzeHiMassTau.DoElectron2Muon2DiscrByCosDphi = cms.bool(False) process.analyzeHiMassTau.Electron2Muon2CosDphiMaxCut = cms.double(-0.95) process.analyzeHiMassTau.Electron2Muon2CosDphiMinCut = cms.double(-1.00) process.analyzeHiMassTau.DoDiscrByElectron2Muon2MassReco = cms.bool(False) process.analyzeHiMassTau.UseVectorSumOfElectron2Muon2ProductsAndMetMassReco = cms.bool(False) process.analyzeHiMassTau.UseCollinerApproxElectron2Muon2MassReco = cms.bool(False) process.analyzeHiMassTau.Electron2Muon2MassMinCut = cms.double(150.0) process.analyzeHiMassTau.Electron2Muon2MassMaxCut = cms.double(1000.0) process.analyzeHiMassTau.DoElectron2Muon2DiscrByCDFzeta2D = cms.bool(False) process.analyzeHiMassTau.Electron2Muon2PZetaCutCoefficient = cms.double(1.0) process.analyzeHiMassTau.Electron2Muon2PZetaVisCutCoefficient = cms.double(-0.875) process.analyzeHiMassTau.Electron2Muon2CDFzeta2DCutValue = cms.double(-7.00) process.analyzeHiMassTau.DoElectron2Muon2DiscrByDeltaPtDivSumPt = cms.bool(False) process.analyzeHiMassTau.Electron2Muon2DeltaPtDivSumPtMinCutValue = cms.double(0.1) process.analyzeHiMassTau.Electron2Muon2DeltaPtDivSumPtMaxCutValue = cms.double(1.0) process.analyzeHiMassTau.DoElectron2Muon2DiscrByDeltaPt = cms.bool(False) process.analyzeHiMassTau.Electron2Muon2DeltaPtMinCutValue = cms.double(30.0) process.analyzeHiMassTau.Electron2Muon2DeltaPtMaxCutValue = cms.double(9999.0) process.analyzeHiMassTau.DoDiscrByMuon1MetDphi = cms.bool(False) process.analyzeHiMassTau.Muon1MetDphiMinCut = cms.double(1.30) process.analyzeHiMassTau.Muon1MetDphiMaxCut = cms.double(3.15) process.analyzeHiMassTau.DoDiscrByMuon2MetDphi = cms.bool(False) process.analyzeHiMassTau.Muon2MetDphiMinCut = cms.double(1.30) process.analyzeHiMassTau.Muon2MetDphiMaxCut = cms.double(3.15) process.analyzeHiMassTau.DoDiscrByElectron1MetDphi = cms.bool(False) process.analyzeHiMassTau.Electron1MetDphiMinCut = cms.double(1.30) process.analyzeHiMassTau.Electron1MetDphiMaxCut = cms.double(3.15) process.analyzeHiMassTau.DoDiscrByElectron2MetDphi = cms.bool(False) process.analyzeHiMassTau.Electron2MetDphiMinCut = cms.double(1.30) process.analyzeHiMassTau.Electron2MetDphiMaxCut = cms.double(3.15) process.analyzeHiMassTau.DoDiscrByTau1MetDphi = cms.bool(False) process.analyzeHiMassTau.Tau1MetDphiMinCut = cms.double(1.30) process.analyzeHiMassTau.Tau1MetDphiMaxCut = cms.double(3.15) process.analyzeHiMassTau.DoDiscrByTau2MetDphi = cms.bool(False) process.analyzeHiMassTau.Tau2MetDphiMinCut = cms.double(1.30) process.analyzeHiMassTau.Tau2MetDphiMaxCut = cms.double(3.15) process.analyzeHiMassTau.DoDiscrByMuon1MetMt = cms.bool(False) process.analyzeHiMassTau.Muon1MetMtMinCut = cms.double(0.0) process.analyzeHiMassTau.Muon1MetMtMaxCut = cms.double(40.0) process.analyzeHiMassTau.DoDiscrByMuon2MetMt = cms.bool(False) process.analyzeHiMassTau.Muon2MetMtMinCut = cms.double(0.0) process.analyzeHiMassTau.Muon2MetMtMaxCut = cms.double(99999.9) process.analyzeHiMassTau.DoDiscrByElectron1MetMt = cms.bool(False) process.analyzeHiMassTau.Electron1MetMtMinCut = cms.double(50.0) process.analyzeHiMassTau.Electron1MetMtMaxCut = cms.double(100.0) process.analyzeHiMassTau.DoDiscrByElectron2MetMt = cms.bool(False) process.analyzeHiMassTau.Electron2MetMtMinCut = cms.double(0.0) process.analyzeHiMassTau.Electron2MetMtMaxCut = cms.double(99999.9) process.analyzeHiMassTau.DoDiscrByTau1MetMt = cms.bool(False) process.analyzeHiMassTau.Tau1MetMtMinCut = cms.double(50.0) process.analyzeHiMassTau.Tau1MetMtMaxCut = cms.double(100.0) process.analyzeHiMassTau.DoDiscrByTau2MetMt = cms.bool(False) process.analyzeHiMassTau.Tau2MetMtMinCut = cms.double(0.0) process.analyzeHiMassTau.Tau2MetMtMaxCut = cms.double(99999.9) process.analyzeHiMassTau.DoMuon1DiscrByIsZllCut = cms.bool(False) process.analyzeHiMassTau.DoMuon2DiscrByIsZllCut = cms.bool(False) process.analyzeHiMassTau.DoElectron1DiscrByIsZllCut = cms.bool(False) process.analyzeHiMassTau.DoElectron2DiscrByIsZllCut = cms.bool(False) #-----do matching to gen? process.analyzeHiMassTau.MatchBToGen = cms.bool(False) process.analyzeHiMassTau.MatchLeptonToGen = cms.bool(False) process.analyzeHiMassTau.UseLeptonMotherId = cms.bool(False) process.analyzeHiMassTau.UseLeptonGrandMotherId = cms.bool(False) process.analyzeHiMassTau.LeptonMotherId = cms.int32(24) process.analyzeHiMassTau.LeptonGrandMotherId = cms.int32(32) process.analyzeHiMassTau.MatchTauToGen = cms.bool(False) process.analyzeHiMassTau.UseTauMotherId = cms.bool(False) process.analyzeHiMassTau.UseTauGrandMotherId = cms.bool(False) process.analyzeHiMassTau.TauMotherId = cms.int32(25) process.analyzeHiMassTau.TauGrandMotherId = cms.int32(1) process.analyzeHiMassTau.TauToGenMatchingDeltaR = cms.double(0.25) process.analyzeHiMassTau.TauDecayModeType = cms.vstring('1','2','3','4','5','6','7') #1 = rho1prong #2 = a1prong #3 = a3prong #4 = noresonance1prong0pizero #5 = noresonance1prongGte1pizero #6 = noresonance3prong0pizero #7 = noresonance3prongGte1pizero #-----Create the Ntuple? process.analyzeHiMassTau.DoProduceNtuple = cms.bool(False) #-----Event Sequence inputs process.analyzeHiMassTau.GenTauNmin = cms.int32(0) process.analyzeHiMassTau.GenTauNmax = cms.int32(10000) process.analyzeHiMassTau.GenTopNmin = cms.int32(0) process.analyzeHiMassTau.GenTopNmax = cms.int32(10000) process.analyzeHiMassTau.GenElectronNmin = cms.int32(0) process.analyzeHiMassTau.GenElectronNmax = cms.int32(10000) process.analyzeHiMassTau.GenMuonNmin = cms.int32(0) process.analyzeHiMassTau.GenMuonNmax = cms.int32(10000) process.analyzeHiMassTau.GenZNmin = cms.int32(0) process.analyzeHiMassTau.GenZNmax = cms.int32(10000) process.analyzeHiMassTau.GenWNmin = cms.int32(0) process.analyzeHiMassTau.GenWNmax = cms.int32(10000) process.analyzeHiMassTau.GenSMHiggsNmin = cms.int32(0) process.analyzeHiMassTau.GenSMHiggsNmax = cms.int32(10000) process.analyzeHiMassTau.RecoVertexNmin = cms.int32(0) # require event to have >=X vertices passing specified cuts process.analyzeHiMassTau.RecoVertexNmax = cms.int32(10000) # require event to have <=X vertices passing specified cuts process.analyzeHiMassTau.RecoTriggers1Nmin = cms.int32(0) # require event to pass >=X trigger paths defined above process.analyzeHiMassTau.RecoMuon1Nmin = cms.int32(1) process.analyzeHiMassTau.RecoMuon1Nmax = cms.int32(10000) process.analyzeHiMassTau.RecoMuon2Nmin = cms.int32(0) process.analyzeHiMassTau.RecoMuon2Nmax = cms.int32(10000) process.analyzeHiMassTau.RecoElectron1Nmin = cms.int32(0) process.analyzeHiMassTau.RecoElectron1Nmax = cms.int32(10000) process.analyzeHiMassTau.RecoElectron2Nmin = cms.int32(0) process.analyzeHiMassTau.RecoElectron2Nmax = cms.int32(10000) process.analyzeHiMassTau.RecoTau1Nmin = cms.int32(1) process.analyzeHiMassTau.RecoTau1Nmax = cms.int32(10000) process.analyzeHiMassTau.RecoTau2Nmin = cms.int32(0) process.analyzeHiMassTau.RecoTau2Nmax = cms.int32(10000) process.analyzeHiMassTau.RecoJet1Nmin = cms.int32(2) process.analyzeHiMassTau.RecoJet1Nmax = cms.int32(10000) process.analyzeHiMassTau.RecoJet2Nmin = cms.int32(2) process.analyzeHiMassTau.RecoJet2Nmax = cms.int32(10000) process.analyzeHiMassTau.RecoCentralJetNmin = cms.int32(0) process.analyzeHiMassTau.RecoCentralJetNmax = cms.int32(1000) process.analyzeHiMassTau.RecoFirstLeadingJetNmin = cms.int32(1) process.analyzeHiMassTau.RecoSecondLeadingJetNmin = cms.int32(1) process.analyzeHiMassTau.RecoBJetNmin = cms.int32(0) # require event to have >=X "jets" passing specified cuts process.analyzeHiMassTau.RecoBJetNmax = cms.int32(0) # require event to have <=X "jets" passing specified cuts process.analyzeHiMassTau.SusyCombinationsNmin = cms.int32(1) process.analyzeHiMassTau.RecoMuon1MetTopologyNmin = cms.int32(0) process.analyzeHiMassTau.RecoMuon1MetTopologyNmax = cms.int32(1000) process.analyzeHiMassTau.RecoMuon2MetTopologyNmin = cms.int32(0) process.analyzeHiMassTau.RecoMuon2MetTopologyNmax = cms.int32(1000) process.analyzeHiMassTau.RecoElectron1MetTopologyNmin = cms.int32(0) process.analyzeHiMassTau.RecoElectron1MetTopologyNmax = cms.int32(1000) process.analyzeHiMassTau.RecoElectron2MetTopologyNmin = cms.int32(0) process.analyzeHiMassTau.RecoElectron2MetTopologyNmax = cms.int32(1000) process.analyzeHiMassTau.RecoTau1MetTopologyNmin = cms.int32(0) process.analyzeHiMassTau.RecoTau1MetTopologyNmax = cms.int32(1000) process.analyzeHiMassTau.RecoTau2MetTopologyNmin = cms.int32(0) process.analyzeHiMassTau.RecoTau2MetTopologyNmax = cms.int32(1000) process.analyzeHiMassTau.DiMuonCombinationsNmin = cms.int32(0) process.analyzeHiMassTau.DiMuonCombinationsNmax = cms.int32(10000) process.analyzeHiMassTau.DiElectronCombinationsNmin = cms.int32(0) process.analyzeHiMassTau.DiElectronCombinationsNmax = cms.int32(10000) process.analyzeHiMassTau.DiTauCombinationsNmin = cms.int32(0) process.analyzeHiMassTau.DiTauCombinationsNmax = cms.int32(10000) process.analyzeHiMassTau.DiJetCombinationsNmin = cms.int32(1) process.analyzeHiMassTau.DiJetCombinationsNmax = cms.int32(10000) process.analyzeHiMassTau.Muon1Tau1CombinationsNmin = cms.int32(1) process.analyzeHiMassTau.Muon1Tau1CombinationsNmax = cms.int32(10000) process.analyzeHiMassTau.Muon1Tau2CombinationsNmin = cms.int32(0) process.analyzeHiMassTau.Muon1Tau2CombinationsNmax = cms.int32(10000) process.analyzeHiMassTau.Muon2Tau1CombinationsNmin = cms.int32(0) process.analyzeHiMassTau.Muon2Tau1CombinationsNmax = cms.int32(10000) process.analyzeHiMassTau.Muon2Tau2CombinationsNmin = cms.int32(0) process.analyzeHiMassTau.Muon2Tau2CombinationsNmax = cms.int32(10000) process.analyzeHiMassTau.Electron1Tau1CombinationsNmin = cms.int32(0) process.analyzeHiMassTau.Electron1Tau1CombinationsNmax = cms.int32(10000) process.analyzeHiMassTau.Electron1Tau2CombinationsNmin = cms.int32(0) process.analyzeHiMassTau.Electron1Tau2CombinationsNmax = cms.int32(10000) process.analyzeHiMassTau.Electron2Tau1CombinationsNmin = cms.int32(0) process.analyzeHiMassTau.Electron2Tau1CombinationsNmax = cms.int32(10000) process.analyzeHiMassTau.Electron2Tau2CombinationsNmin = cms.int32(0) process.analyzeHiMassTau.Electron2Tau2CombinationsNmax = cms.int32(10000) process.analyzeHiMassTau.Electron1Muon1CombinationsNmin = cms.int32(0) process.analyzeHiMassTau.Electron1Muon1CombinationsNmax = cms.int32(10000) process.analyzeHiMassTau.Electron1Muon2CombinationsNmin = cms.int32(0) process.analyzeHiMassTau.Electron1Muon2CombinationsNmax = cms.int32(10000) process.analyzeHiMassTau.Electron2Muon1CombinationsNmin = cms.int32(0) process.analyzeHiMassTau.Electron2Muon1CombinationsNmax = cms.int32(10000) process.analyzeHiMassTau.Electron2Muon2CombinationsNmin = cms.int32(0) process.analyzeHiMassTau.Electron2Muon2CombinationsNmax = cms.int32(10000) process.analyzeHiMassTau.RecoTriggers2Nmin = cms.int32(1) process.analyzeHiMassTau.TopologicalSelectionSequence = cms.vstring('RecoTriggers1Nmin' 'RecoMuon1Nmax', 'RecoTau1Nmax', 'RecoSecondLeadingJetNmin', 'RecoBJetNmax', 'SusyCombinationsNmin', 'DiJetCombinationsNmax', 'Muon1Tau1CombinationsNmax', 'RecoTriggers2Nmin', ) process.analyzeHiMassTau.EventSelectionSequence = cms.vstring('GenTauNmin','GenTauNmax', 'GenTopNmin','GenTopNmax', 'GenElectronNmin','GenElectronNmax', 'GenMuonNmin','GenMuonNmax', 'GenZNmin','GenZNmax', 'GenWNmin','GenWNmax', 'GenSMHiggsNmin','GenSMHiggsNmax', 'RecoVertexNmin','RecoVertexNmax', 'RecoTriggers1Nmin', 'RecoMuon1Nmin','RecoMuon1Nmax', 'RecoMuon2Nmin','RecoMuon2Nmax', 'RecoElectron1Nmin','RecoElectron1Nmax', 'RecoElectron2Nmin','RecoElectron2Nmax', 'RecoTau1Nmin','RecoTau1Nmax', 'RecoTau2Nmin','RecoTau2Nmax', 'RecoJet1Nmin','RecoJet1Nmax', 'RecoJet2Nmin','RecoJet2Nmax', 'RecoCentralJetNmin','RecoCentralJetNmax', 'RecoFirstLeadingJetNmin','RecoSecondLeadingJetNmin', 'RecoBJetNmin','RecoBJetNmax','SusyCombinationsNmin', 'RecoMuon1MetTopologyNmin','RecoMuon1MetTopologyNmax', 'RecoMuon2MetTopologyNmin','RecoMuon2MetTopologyNmax', 'RecoElectron1MetTopologyNmin','RecoElectron1MetTopologyNmax', 'RecoElectron2MetTopologyNmin','RecoElectron2MetTopologyNmax', 'RecoTau1MetTopologyNmin','RecoTau1MetTopologyNmax', 'RecoTau2MetTopologyNmin','RecoTau2MetTopologyNmax', 'DiMuonCombinationsNmin','DiMuonCombinationsNmax', 'DiElectronCombinationsNmin','DiElectronCombinationsNmax', 'DiTauCombinationsNmin','DiTauCombinationsNmax', 'DiJetCombinationsNmin','DiJetCombinationsNmax', 'Muon1Tau1CombinationsNmin','Muon1Tau1CombinationsNmax', 'Muon1Tau2CombinationsNmin','Muon1Tau2CombinationsNmax', 'Muon2Tau1CombinationsNmin','Muon2Tau1CombinationsNmax', 'Muon2Tau2CombinationsNmin','Muon2Tau2CombinationsNmax', 'Electron1Tau1CombinationsNmin','Electron1Tau1CombinationsNmax', 'Electron1Tau2CombinationsNmin','Electron1Tau2CombinationsNmax', 'Electron2Tau1CombinationsNmin','Electron2Tau1CombinationsNmax', 'Electron2Tau2CombinationsNmin','Electron2Tau2CombinationsNmax', 'Electron1Muon1CombinationsNmin','Electron1Muon1CombinationsNmax', 'Electron1Muon2CombinationsNmin','Electron1Muon2CombinationsNmax', 'Electron2Muon1CombinationsNmin','Electron2Muon1CombinationsNmax', 'Electron2Muon2CombinationsNmin','Electron2Muon2CombinationsNmax', 'RecoTriggers2Nmin', ) #-----Inputs for systematic uncertainties process.analyzeHiMassTau.CalculatePdfSystematicUncertanties = cms.bool(False) # if true, pdf systematic uncertanties will be calculated process.analyzeHiMassTau.PdfWeightTags = cms.untracked.VInputTag("cteq65PdfWeights") # collection of weights for systematic uncertanties process.analyzeHiMassTau.CalculateFSRSystematics = cms.bool(False) process.analyzeHiMassTau.CalculateISRGluonSystematics = cms.bool(False) process.analyzeHiMassTau.CalculateISRGammaSystematics = cms.bool(False) process.analyzeHiMassTau.SmearTheMuon = cms.bool(False) process.analyzeHiMassTau.MuonPtScaleOffset = cms.double(1.0) process.analyzeHiMassTau.MuonPtSigmaOffset = cms.double(1.0) process.analyzeHiMassTau.MuonEtaScaleOffset = cms.double(1.0) process.analyzeHiMassTau.MuonEtaSigmaOffset = cms.double(1.0) process.analyzeHiMassTau.MuonPhiScaleOffset = cms.double(1.0) process.analyzeHiMassTau.MuonPhiSigmaOffset = cms.double(1.0) process.analyzeHiMassTau.SmearTheElectron = cms.bool(False) process.analyzeHiMassTau.ElectronPtScaleOffset = cms.double(1.0) process.analyzeHiMassTau.ElectronPtSigmaOffset = cms.double(1.0) process.analyzeHiMassTau.ElectronEtaScaleOffset = cms.double(1.0) process.analyzeHiMassTau.ElectronEtaSigmaOffset = cms.double(1.0) process.analyzeHiMassTau.ElectronPhiScaleOffset = cms.double(1.0) process.analyzeHiMassTau.ElectronPhiSigmaOffset = cms.double(1.0) process.analyzeHiMassTau.SmearTheTau = cms.bool(False) process.analyzeHiMassTau.TauPtScaleOffset = cms.double(1.0) process.analyzeHiMassTau.TauPtSigmaOffset = cms.double(1.0) process.analyzeHiMassTau.TauEtaScaleOffset = cms.double(1.0) process.analyzeHiMassTau.TauEtaSigmaOffset = cms.double(1.0) process.analyzeHiMassTau.TauPhiScaleOffset = cms.double(1.0) process.analyzeHiMassTau.TauPhiSigmaOffset = cms.double(1.0) process.analyzeHiMassTau.SmearTheJet = cms.bool(False) process.analyzeHiMassTau.UseDataBaseForJEC = cms.bool(True) process.analyzeHiMassTau.JES_UpOrDown = cms.double(1.0) process.analyzeHiMassTau.JetEnergyScaleOffset = cms.double(1.0) process.analyzeHiMassTau.SmearThePt = cms.bool(False) process.analyzeHiMassTau.SmearTheEta = cms.bool(False) process.analyzeHiMassTau.SmearThePhi = cms.bool(False) process.analyzeHiMassTau.CalculatePUSystematics = cms.bool(False) process.analyzeHiMassTau.DataHistos = cms.string("DataPUFile_22Jan2013ReReco_Run2012.root") process.analyzeHiMassTau.MCHistos = cms.string("S10MC_PUFile.root") process.p = cms.Path( process.analyzeHiMassTau )
4ac2d30029f1696f61dc06f4ed732f1df62f1975
5ce393ca7d50b35c41f65188dfe8423646b2fcbc
/flask_with_spark/utilities/decorators.py
eef1b78e8690d55b6feb452f294174d73054c5b1
[ "MIT" ]
permissive
todhm/have_you_read_this_book
0c7894319705ed4f047a6b936ab80ea239e5509c
905cb1934bafc987b76b6e57dbc63285f491ac88
refs/heads/master
2022-11-24T07:36:12.514646
2018-08-07T05:00:33
2018-08-07T05:00:33
141,091,550
2
0
MIT
2022-11-11T07:26:01
2018-07-16T05:42:52
JavaScript
UTF-8
Python
false
false
750
py
from functools import wraps from flask import session,request,redirect,url_for, abort def login_required(f): @wraps(f) def decorated_function(*args,**kwargs): if session.get('email') is None: return redirect(url_for('user_app.login',next=request.url)) if session.get('userIntId') is None : return redirect(url_for('user_app.login',next=request.url)) return f(*args,**kwargs) return decorated_function def logout_required(f): @wraps(f) def decorated_function(*args, **kwargs): if session.get('email') or session.get('userIntId'): return redirect(url_for('shopping_app.homepage',next=request.url)) return f(*args,**kwargs) return decorated_function
4defe82f22c6b83db3cff78f6e922aefcdaf6ec9
f569978afb27e72bf6a88438aa622b8c50cbc61b
/douyin_open/VideoListVideoList/models/inline_response200_data.py
84ccfc29afdb3da81d954674bb7beb2eca74eec5
[]
no_license
strangebank/swagger-petstore-perl
4834409d6225b8a09b8195128d74a9b10ef1484a
49dfc229e2e897cdb15cbf969121713162154f28
refs/heads/master
2023-01-05T10:21:33.518937
2020-11-05T04:33:16
2020-11-05T04:33:16
310,189,316
1
0
null
null
null
null
UTF-8
Python
false
false
6,561
py
# coding: utf-8 """ No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) # noqa: E501 OpenAPI spec version: 1.0.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class InlineResponse200Data(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'error_code': 'ErrorCode', 'description': 'Description', 'cursor': 'Cursor', 'has_more': 'HasMore', 'list': 'list[Video]' } attribute_map = { 'error_code': 'error_code', 'description': 'description', 'cursor': 'cursor', 'has_more': 'has_more', 'list': 'list' } def __init__(self, error_code=None, description=None, cursor=None, has_more=None, list=None): # noqa: E501 """InlineResponse200Data - a model defined in Swagger""" # noqa: E501 self._error_code = None self._description = None self._cursor = None self._has_more = None self._list = None self.discriminator = None self.error_code = error_code self.description = description self.cursor = cursor self.has_more = has_more if list is not None: self.list = list @property def error_code(self): """Gets the error_code of this InlineResponse200Data. # noqa: E501 :return: The error_code of this InlineResponse200Data. # noqa: E501 :rtype: ErrorCode """ return self._error_code @error_code.setter def error_code(self, error_code): """Sets the error_code of this InlineResponse200Data. :param error_code: The error_code of this InlineResponse200Data. # noqa: E501 :type: ErrorCode """ if error_code is None: raise ValueError("Invalid value for `error_code`, must not be `None`") # noqa: E501 self._error_code = error_code @property def description(self): """Gets the description of this InlineResponse200Data. # noqa: E501 :return: The description of this InlineResponse200Data. # noqa: E501 :rtype: Description """ return self._description @description.setter def description(self, description): """Sets the description of this InlineResponse200Data. :param description: The description of this InlineResponse200Data. # noqa: E501 :type: Description """ if description is None: raise ValueError("Invalid value for `description`, must not be `None`") # noqa: E501 self._description = description @property def cursor(self): """Gets the cursor of this InlineResponse200Data. # noqa: E501 :return: The cursor of this InlineResponse200Data. # noqa: E501 :rtype: Cursor """ return self._cursor @cursor.setter def cursor(self, cursor): """Sets the cursor of this InlineResponse200Data. :param cursor: The cursor of this InlineResponse200Data. # noqa: E501 :type: Cursor """ if cursor is None: raise ValueError("Invalid value for `cursor`, must not be `None`") # noqa: E501 self._cursor = cursor @property def has_more(self): """Gets the has_more of this InlineResponse200Data. # noqa: E501 :return: The has_more of this InlineResponse200Data. # noqa: E501 :rtype: HasMore """ return self._has_more @has_more.setter def has_more(self, has_more): """Sets the has_more of this InlineResponse200Data. :param has_more: The has_more of this InlineResponse200Data. # noqa: E501 :type: HasMore """ if has_more is None: raise ValueError("Invalid value for `has_more`, must not be `None`") # noqa: E501 self._has_more = has_more @property def list(self): """Gets the list of this InlineResponse200Data. # noqa: E501 由于置顶的原因, list长度可能比count指定的数量多一些或少一些。 # noqa: E501 :return: The list of this InlineResponse200Data. # noqa: E501 :rtype: list[Video] """ return self._list @list.setter def list(self, list): """Sets the list of this InlineResponse200Data. 由于置顶的原因, list长度可能比count指定的数量多一些或少一些。 # noqa: E501 :param list: The list of this InlineResponse200Data. # noqa: E501 :type: list[Video] """ self._list = list def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(InlineResponse200Data, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, InlineResponse200Data): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
0955c0d21f9a00b48526ba7a9c1c612b49f3afa2
a0eea3e416a050168aba0876c33a8fddf310868a
/src/eavatar.x.hub/eavatar/hub/avatar.py
db30881d9fe987bf3e1717de9e5f9638a4226eeb
[]
no_license
eavatar/exchange-hub
a0dee945da6922408773a8d5bd1b9029fcf55dd6
c78cdc6aa357442001c76c0daaca3597cd8b4adf
refs/heads/master
2021-01-13T14:28:29.968008
2015-03-05T13:47:18
2015-03-05T13:47:18
30,749,051
0
0
null
2015-03-05T13:47:19
2015-02-13T09:16:04
Python
UTF-8
Python
false
false
3,307
py
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function, unicode_literals """ Avatar-specific functionality. """ import json import time import logging import falcon from datetime import datetime, timedelta from cqlengine import columns from cqlengine.models import Model from eavatar.hub.app import api from eavatar.hub import views from eavatar.hub import managers from eavatar.hub.hooks import check_authentication from eavatar.hub.util import crypto, codecs logger = logging.getLogger(__name__) def _default_expired_at(): return datetime.utcnow() + timedelta(seconds=86400) # models # class Avatar(Model): """ Represents anything with an identity that can send or receive messages. """ xid = columns.Text(primary_key=True, partition_key=True) owner_xid = columns.Text(default=None) created_at = columns.DateTime(default=datetime.utcnow) modified_at = columns.DateTime(default=datetime.utcnow) expired_at = columns.DateTime(default=_default_expired_at) # properties = columns.Map(columns.Text, columns.Text) # links = columns.Set(columns.Text) # aliases = columns.Set(columns.Text) class Possession(Model): """ Represents relationship between an avatar and its possessions. """ owner_xid = columns.Text(primary_key=True) avatar_xid = columns.Text(primary_key=True, clustering_order="ASC") @staticmethod def find_possessions(owner_xid): return Possession.objects(owner_xid=owner_xid) # managers # class AvatarManager(managers.BaseManager): model = Avatar def __init__(self): super(AvatarManager, self).__init__(self.model) # views # @falcon.before(check_authentication) class AvatarCollection(views.ResourceBase): def on_get(self, req, resp): """ Gets avatars belongs to the client. :param req: :param resp: :return: """ owner_xid = req.context['client_xid'] qs = Possession.find_possessions(owner_xid) resp.body = views.EMPTY_LIST resp.status = falcon.HTTP_200 def on_put(self, req, resp): try: data = json.load(req.stream) avatar = Avatar(xid=data.get('xid'), kind=data.get('kind')) avatar.save() resp.body = views.RESULT_OK resp.status = falcon.HTTP_200 except Exception, e: logger.error(e) raise @falcon.before(check_authentication) class AvatarResource(views.ResourceBase): def on_get(self, req, resp, avatar_xid): if 'self' == avatar_xid: avatar_xid = req.context['client_xid'] self_link = { "rel": "self", "href": "%s" % (req.uri,) } messages_link = { "rel": "messages", "href": "%s/messages" % (req.uri,), } result = dict( subject="%s" % (req.uri,), aliases=["avatar:%s" % avatar_xid], links=[self_link, messages_link], ) resp.content_type = b"application/jrd+json" resp.data = json.dumps(result) resp.status = falcon.HTTP_200 # routes logger.debug("Binding routes for Avatar module.") _avatar_resource = AvatarResource() api.add_route("/{avatar_xid}", _avatar_resource)
f3dd5b4353dff6f6cef8c9eb4092d47fdf047aaa
80b545522375b2b8bbfdff0f540b1172e53b140c
/djecommerce/settings/development.py
3911c6f54c156da5237c8b83486eff63c55810d2
[]
no_license
DuncanMoyo/django-ecommerce-website
18e1e8dcf358de6758ad7974a703145ed5cab4db
21783c3d4159adffabbfc522099cf9c55346bed8
refs/heads/master
2022-12-11T15:14:51.039929
2019-08-31T20:48:59
2019-08-31T20:48:59
196,033,607
0
0
null
2022-12-08T05:51:59
2019-07-09T15:14:11
JavaScript
UTF-8
Python
false
false
1,244
py
from .base import * DEBUG = True ALLOWED_HOSTS = ['127.0.0.1'] INSTALLED_APPS += [ 'debug_toolbar' ] MIDDLEWARE += ['debug_toolbar.middleware.DebugToolbarMiddleware',] # DEBUG TOOLBAR SETTINGS DEBUG_TOOLBAR_PANELS = [ 'debug_toolbar.panels.versions.VersionsPanel', 'debug_toolbar.panels.timer.TimerPanel', 'debug_toolbar.panels.settings.SettingsPanel', 'debug_toolbar.panels.headers.HeadersPanel', 'debug_toolbar.panels.request.RequestPanel', 'debug_toolbar.panels.sql.SQLPanel', 'debug_toolbar.panels.staticfiles.StaticFilesPanel', 'debug_toolbar.panels.templates.TemplatesPanel', 'debug_toolbar.panels.cache.CachePanel', 'debug_toolbar.panels.signals.SignalsPanel', 'debug_toolbar.panels.logging.LoggingPanel', 'debug_toolbar.panels.redirects.RedirectsPanel', ] def show_toolbar(request): return True DEBUG_TOOLBAR_CONFIG = { 'INTERCEPT_REDIRECTS': False, 'SHOW_TOOLBAR_CALLBACK': show_toolbar } DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } STRIPE_PUBLIC_KEY = 'pk_test_tx8uE8Va8yN3YmRlRZ0fZULC00RLAevl8q' STRIPE_SECRET_KEY = 'sk_test_M6hBTe1EWdJqZplNq23kn54Q00HcSnrNNZ'
691d6cbe2f9a10ae712c4829e33e1f99b6e87147
f1e7f6c34316828eb541d76e160c43e2e61743c8
/ate/main.py
7b19cea3a56cefb0c8e9b9d5baa47c7a1d9d312e
[ "MIT" ]
permissive
luochun3731/ApiTestEngine
216fc95b8e1d5423cc24083ffac22d119f4a789e
b75e17e7c7a73047660fe13accab4653aa0fa5fb
refs/heads/master
2021-01-01T15:47:26.516079
2017-07-18T04:24:51
2017-07-18T04:24:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,597
py
import os import argparse import logging import unittest import HtmlTestRunner from ate import runner, utils class ApiTestCase(unittest.TestCase): """ create a testcase. """ def __init__(self, test_runner, testcase): super(ApiTestCase, self).__init__() self.test_runner = test_runner self.testcase = testcase def runTest(self): """ run testcase and check result. """ result = self.test_runner.run_test(self.testcase) self.assertEqual(result, (True, [])) def create_suite(testset): """ create test suite with a testset, it may include one or several testcases. each suite should initialize a seperate Runner() with testset config. """ suite = unittest.TestSuite() test_runner = runner.Runner() config_dict = testset.get("config", {}) test_runner.init_config(config_dict, level="testset") testcases = testset.get("testcases", []) for testcase in testcases: if utils.PYTHON_VERSION == 3: ApiTestCase.runTest.__doc__ = testcase['name'] else: ApiTestCase.runTest.__func__.__doc__ = testcase['name'] test = ApiTestCase(test_runner, testcase) suite.addTest(test) return suite def create_task(testcase_path): """ create test task suite with specified testcase path. each task suite may include one or several test suite. """ task_suite = unittest.TestSuite() testsets = utils.load_testcases_by_path(testcase_path) for testset in testsets: suite = create_suite(testset) task_suite.addTest(suite) return task_suite def main(): """ parse command line options and run commands. """ parser = argparse.ArgumentParser( description='Api Test Engine.') parser.add_argument( '--testcase-path', default='testcases', help="testcase file path") parser.add_argument( '--log-level', default='INFO', help="Specify logging level, default is INFO.") parser.add_argument( '--report-name', help="Specify report name, default is generated time.") args = parser.parse_args() log_level = getattr(logging, args.log_level.upper()) logging.basicConfig(level=log_level) testcase_path = args.testcase_path.rstrip('/') task_suite = create_task(testcase_path) output_folder_name = os.path.basename(os.path.splitext(testcase_path)[0]) kwargs = { "output": output_folder_name, "report_name": args.report_name } HtmlTestRunner.HTMLTestRunner(**kwargs).run(task_suite)
70141887bb0e0c852255ad1ce9359dbad564f6f4
5d1e737816e53cdb0056031f49267467b0a8de77
/visualize_cspace_and_workspace.py
aa42f09da550cf0bb13d9c643deee5e32f830a16
[]
no_license
aorthey/configuration-space-visualizer
ab4fe297b586d0e7acb2bc58c14b09253da47fec
e839cc839be37de98c6f34ff5ca6347173fc8e45
refs/heads/master
2020-06-01T09:56:01.209503
2020-04-28T10:43:27
2020-04-28T10:43:27
190,740,072
2
3
null
2019-07-25T11:20:53
2019-06-07T12:30:03
Python
UTF-8
Python
false
false
2,745
py
import sys import numpy as np from src.cspace_visualizer import * import os if not os.path.exists("images"): os.makedirs("images") from worlds import manipulator_2dof as World from matplotlib.ticker import MaxNLocator world = World.Manipulator2dof() worldName = world.getName() N = 200 c1 = (0.9,0.9,0.9) c2 = (0.7,0.7,0.7) c3 = (0.5,0.5,0.5) q1 = np.linspace(-np.pi,np.pi,N) q2 = np.linspace(-np.pi,np.pi,N) P1 = [] P2 = [] M = np.zeros((q1.shape[0], q2.shape[0])) for i in range(q1.shape[0]): for j in range(q2.shape[0]): q = np.array((q1[i],q2[j])) if not world.isFeasible(q): M[i,j] = 1 P1 = np.append(P1,q1[i]) P2 = np.append(P2,q2[j]) infeasibleColumns = np.sum(M,axis=1)>=N Q1 = [] Q2 = [] for i in range(q1.shape[0]): for j in range(q2.shape[0]): q = np.array((q1[i],q2[j])) if infeasibleColumns[i]: Q1 = np.append(Q1,q1[i]) Q2 = np.append(Q2,q2[j]) font_size = 25 offset = 0.5 p1 = np.array([0.5,2.57]) p2 = np.array([-1.57,-0.9]) p3 = np.array([2.5,-1.2]) symbol='x' greyshade = 0.75 x1loc= (p1[0]-offset,p1[1]-offset) x2loc= (p2[0]-offset,p2[1]-offset) x3loc= (p3[0]-offset,p3[1]-offset) ########################################################### fig = plt.figure(0) fig.patch.set_facecolor('white') ax = fig.gca() ax.set_xlabel(r'x',fontsize=font_size) ax.set_ylabel(r'y',rotation=1.57,fontsize=font_size) ax.tick_params(axis='both', which='major', pad=15) lim=1.1 plt.axis([-lim,lim,-lim,lim]) world.COLOR = c1 world.plotRobotAtConfig(ax,p1) world.COLOR = c2 world.plotRobotAtConfig(ax,p2) world.COLOR = c3 world.plotRobotAtConfig(ax,p3) w1 = world.getEndeffectorPositions(p1) w2 = world.getEndeffectorPositions(p2) w3 = world.getEndeffectorPositions(p3) yoffset = np.array((0.0,0.1)) xoffset = np.array((0.1,0.0)) ax.annotate(r''+symbol+'_1', w1+yoffset) ax.annotate(r''+symbol+'_2', w2-2*yoffset-2*xoffset) ax.annotate(r''+symbol+'_3', w3+yoffset) world.plotObstacles(ax) plt.savefig("images/"+worldName+"_workspace.png", bbox_inches='tight') ############################################################ fig = plt.figure(1) fig.patch.set_facecolor('white') ax = fig.gca() ax.set_xlabel(r'\theta_1',fontsize=font_size) ax.set_ylabel(r'\theta_2',rotation=1.57,fontsize=font_size) ax.tick_params(axis='both', which='major', pad=15) lim=3.14 plt.axis([-lim,lim,-lim,lim]) ax.annotate(r''+symbol+'_1', x1loc) ax.annotate(r''+symbol+'_2', x2loc) ax.annotate(r''+symbol+'_3', x3loc) plt.plot(p1[0],p1[1],'o',color='black',markersize=10) plt.plot(p2[0],p2[1],'o',color='black',markersize=10) plt.plot(p3[0],p3[1],'o',color='black',markersize=10) plotCSpaceDelaunayGrey(P1,P2,0.15) plt.savefig("images/"+worldName+"_configuration_space.png", bbox_inches='tight') plt.show()
b1d35b14319ee88f737697a4ff38b5548b64a8e8
cd4bbecc3f713b0c25508d0c5674d9e103db5df4
/toontown/fishing/DistributedFishingTarget.py
69a3ef13a7dc66adb05d96a2986dc55852deddf6
[]
no_license
peppythegod/ToontownOnline
dce0351cfa1ad8c476e035aa3947fdf53de916a6
2e5a106f3027714d301f284721382cb956cd87a0
refs/heads/master
2020-04-20T05:05:22.934339
2020-01-02T18:05:28
2020-01-02T18:05:28
168,646,608
11
2
null
null
null
null
UTF-8
Python
false
false
2,803
py
from pandac.PandaModules import * from direct.distributed.ClockDelta import * from direct.interval.IntervalGlobal import * from direct.directnotify import DirectNotifyGlobal from direct.distributed import DistributedNode from direct.fsm import ClassicFSM from direct.fsm import State from direct.directutil import Mopath from toontown.toonbase import ToontownGlobals from direct.actor import Actor import FishingTargetGlobals import random import math from toontown.effects import Bubbles class DistributedFishingTarget(DistributedNode.DistributedNode): notify = DirectNotifyGlobal.directNotify.newCategory( 'DistributedFishingTarget') radius = 2.5 def __init__(self, cr): DistributedNode.DistributedNode.__init__(self, cr) NodePath.__init__(self) self.pond = None self.centerPoint = (0, 0, 0) self.maxRadius = 1.0 self.track = None def generate(self): self.assign(render.attachNewNode('DistributedFishingTarget')) shadow = loader.loadModel('phase_3/models/props/drop_shadow') shadow.setPos(0, 0, -0.10000000000000001) shadow.setScale(0.33000000000000002) shadow.setColorScale(1, 1, 1, 0.75) shadow.reparentTo(self) self.bubbles = Bubbles.Bubbles(self, render) self.bubbles.renderParent.setDepthWrite(0) self.bubbles.start() DistributedNode.DistributedNode.generate(self) def disable(self): if self.track: self.track.finish() self.track = None self.bubbles.destroy() del self.bubbles self.pond.removeTarget(self) self.pond = None DistributedNode.DistributedNode.disable(self) def delete(self): del self.pond DistributedNode.DistributedNode.delete(self) def setPondDoId(self, pondDoId): self.pond = base.cr.doId2do[pondDoId] self.pond.addTarget(self) self.centerPoint = FishingTargetGlobals.getTargetCenter( self.pond.getArea()) self.maxRadius = FishingTargetGlobals.getTargetRadius( self.pond.getArea()) def getDestPos(self, angle, radius): x = radius * math.cos(angle) + self.centerPoint[0] y = radius * math.sin(angle) + self.centerPoint[1] z = self.centerPoint[2] return (x, y, z) def setState(self, stateIndex, angle, radius, time, timeStamp): ts = globalClockDelta.localElapsedTime(timeStamp) pos = self.getDestPos(angle, radius) if self.track and self.track.isPlaying(): self.track.finish() self.track = Sequence( LerpPosInterval( self, time - ts, Point3(*pos), blendType='easeInOut')) self.track.start() def getRadius(self): return self.radius
92d2540caa11631b2211b05ce1cd8a3ec146552b
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/otherforms/_currycombs.py
697fc9498aafda38d96c4b64c23d5633a1a39751
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
234
py
#calss header class _CURRYCOMBS(): def __init__(self,): self.name = "CURRYCOMBS" self.definitions = currycomb self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.basic = ['currycomb']
f064a7e6a09a8181c698703b8a964957bcf9ab3a
5d9bab690aab86ba8d8e9ee315e68e6028fe8048
/flumine/execution/betfairexecution.py
f3da633c30a1edbd5dbfdb73c982c771be4162f4
[ "MIT" ]
permissive
chrlanct/flumine
888b2e83a26930c7d1f17b7815fddccd036fc276
3728274bce91cf3d56f42da67b43d116bc2f860e
refs/heads/master
2022-12-23T09:41:21.744645
2020-09-21T09:07:34
2020-09-21T09:07:34
297,768,368
0
0
null
2020-09-22T20:47:18
2020-09-22T20:47:17
null
UTF-8
Python
false
false
9,802
py
import logging import requests from typing import Callable from betfairlightweight import BetfairError from .baseexecution import BaseExecution from ..clients.clients import ExchangeType from ..order.orderpackage import BaseOrderPackage, OrderPackageType from ..exceptions import OrderExecutionError logger = logging.getLogger(__name__) class BetfairExecution(BaseExecution): EXCHANGE = ExchangeType.BETFAIR def execute_place( self, order_package: BaseOrderPackage, http_session: requests.Session ) -> None: response = self._execution_helper(self.place, order_package, http_session) if response: for (order, instruction_report) in zip( order_package, response.place_instruction_reports ): with order.trade: self._order_logger( order, instruction_report, OrderPackageType.PLACE ) if instruction_report.status == "SUCCESS": order.executable() elif instruction_report.status == "FAILURE": order.lapsed() # todo correct? elif instruction_report.status == "TIMEOUT": # https://docs.developer.betfair.com/display/1smk3cen4v3lu3yomq5qye0ni/Betting+Enums#BettingEnums-ExecutionReportStatus pass def place(self, order_package: OrderPackageType, session: requests.Session): return order_package.client.betting_client.betting.place_orders( market_id=order_package.market_id, instructions=order_package.place_instructions, customer_ref=order_package.id.hex, market_version=order_package.market_version, customer_strategy_ref=order_package.customer_strategy_ref, async_=order_package.async_, session=session, ) def execute_cancel( self, order_package: BaseOrderPackage, http_session: requests.Session ) -> None: response = self._execution_helper(self.cancel, order_package, http_session) if response: order_lookup = {o.bet_id: o for o in order_package} for instruction_report in response.cancel_instruction_reports: # get order (can't rely on the order they are returned) order = order_lookup.pop(instruction_report.instruction.bet_id) with order.trade: self._order_logger( order, instruction_report, OrderPackageType.CANCEL ) if instruction_report.status == "SUCCESS": if ( instruction_report.size_cancelled == order.size_remaining ): # todo what if? order.execution_complete() else: order.executable() elif instruction_report.status == "FAILURE": order.executable() elif instruction_report.status == "TIMEOUT": order.executable() # reset any not returned so that they can be picked back up for order in order_lookup.values(): with order.trade: order.executable() def cancel(self, order_package: OrderPackageType, session: requests.Session): # temp copy to prevent an empty list of instructions sent # this can occur if order is matched during the execution # cycle, resulting in all orders being cancelled! cancel_instructions = list(order_package.cancel_instructions) if not cancel_instructions: logger.warning("Empty cancel_instructions", extra=order_package.info) raise OrderExecutionError() return order_package.client.betting_client.betting.cancel_orders( market_id=order_package.market_id, instructions=cancel_instructions, customer_ref=order_package.id.hex, session=session, ) def execute_update( self, order_package: BaseOrderPackage, http_session: requests.Session ) -> None: response = self._execution_helper(self.update, order_package, http_session) if response: for (order, instruction_report) in zip( order_package, response.update_instruction_reports ): with order.trade: self._order_logger( order, instruction_report, OrderPackageType.UPDATE ) if instruction_report.status == "SUCCESS": order.executable() elif instruction_report.status == "FAILURE": order.executable() elif instruction_report.status == "TIMEOUT": order.executable() def update(self, order_package: OrderPackageType, session: requests.Session): return order_package.client.betting_client.betting.update_orders( market_id=order_package.market_id, instructions=order_package.update_instructions, customer_ref=order_package.id.hex, session=session, ) def execute_replace( self, order_package: BaseOrderPackage, http_session: requests.Session ) -> None: response = self._execution_helper(self.replace, order_package, http_session) if response: for (order, instruction_report) in zip( order_package, response.replace_instruction_reports ): with order.trade: # process cancel response if ( instruction_report.cancel_instruction_reports.status == "SUCCESS" ): self._order_logger( order, instruction_report.cancel_instruction_reports, OrderPackageType.CANCEL, ) order.execution_complete() elif ( instruction_report.cancel_instruction_reports.status == "FAILURE" ): order.executable() elif ( instruction_report.cancel_instruction_reports.status == "TIMEOUT" ): order.executable() # process place response if instruction_report.place_instruction_reports.status == "SUCCESS": # create new order replacement_order = order.trade.create_order_replacement( order, instruction_report.place_instruction_reports.instruction.limit_order.price, ) self._order_logger( replacement_order, instruction_report.place_instruction_reports, OrderPackageType.REPLACE, ) # add to blotter order_package.market.place_order( replacement_order, execute=False ) replacement_order.executable() elif ( instruction_report.place_instruction_reports.status == "FAILURE" ): pass # todo elif ( instruction_report.place_instruction_reports.status == "TIMEOUT" ): pass # todo def replace(self, order_package: OrderPackageType, session: requests.Session): return order_package.client.betting_client.betting.replace_orders( market_id=order_package.market_id, instructions=order_package.replace_instructions, customer_ref=order_package.id.hex, market_version=order_package.market_version, async_=order_package.async_, session=session, ) def _execution_helper( self, trading_function: Callable, order_package: BaseOrderPackage, http_session: requests.Session, ): if order_package.orders: try: response = trading_function(order_package, http_session) except BetfairError as e: logger.error( "Execution error", extra={ "trading_function": trading_function.__name__, "response": e, "order_package": order_package.info, }, exc_info=True, ) if order_package.retry(): self.handler_queue.put(order_package) self._return_http_session(http_session, err=True) return logger.info( "execute_%s" % trading_function.__name__, extra={ "trading_function": trading_function.__name__, "elapsed_time": response.elapsed_time, "response": response._data, "order_package": order_package.info, }, ) self._return_http_session(http_session) return response else: logger.warning("Empty package, not executing", extra=order_package.info) self._return_http_session(http_session)