blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
1ea9b9d12aa2d29c8695d3633efd804228328fd3
498fcf34fa4482be5c9fefc488666e60edcf46c7
/math/0x00-linear_algebra/100-slice_like_a_ninja.py
528b04754521035294e7fdf6a8121f20db0302c4
[]
no_license
MansourKef/holbertonschool-machine_learning
7dbc465def04c311c1afb0e8b8903cbe34c72ad3
19f78fc09f0ebeb9f27f3f76b98e7a0e9212fd22
refs/heads/main
2023-03-12T16:18:08.919099
2021-03-05T09:42:09
2021-03-05T09:42:09
317,303,125
0
0
null
null
null
null
UTF-8
Python
false
false
435
py
#!/usr/bin/env python3 """ np_slice. """ def np_slice(matrix, axes={}): """Slices a matrix.""" len_dic = len(axes) args = [] list_axes = [] max_val = max(axes.keys()) for j in range(max_val + 1): list_axes.append(j) for i in list_axes: if i in axes.keys(): sl = slice(*axes[i]) else: sl = slice(None) args.append(sl) return matrix[tuple(args)]
cb036973b6b10d9a97cf5c01c03aa9f66500336d
77de000e7d9f11a5c00ec8f6a9502c9c772bbe65
/paying_for_college/admin.py
c20f0c8dd6e545bd09c7cbbdf82b523da4dd7fad
[ "CC0-1.0" ]
permissive
mistergone/college-costs
5081ceedfd2bb560adfb6ac412471d79dc3e4b80
7fcb9155d23f363d7d1a22da4df8887996c4b8a6
refs/heads/master
2021-01-17T07:52:45.351978
2016-05-27T18:21:01
2016-05-27T18:21:01
45,491,267
0
0
null
2015-11-03T19:45:04
2015-11-03T19:45:04
null
UTF-8
Python
false
false
1,661
py
#!/usr/bin/env python from __future__ import absolute_import from django.contrib import admin from .models import School, Program, Alias, Nickname, Contact, Disclosure from .models import BAHRate, Feedback, Worksheet, ConstantRate, ConstantCap class DisclosureAdmin(admin.ModelAdmin): list_display = ('name', 'institution', 'text') class ConstantRateAdmin(admin.ModelAdmin): list_display = ('name', 'slug', 'value', 'updated') list_editable = ['value'] class ConstantCapAdmin(admin.ModelAdmin): list_display = ('name', 'slug', 'value', 'updated') list_editable = ['value'] class SchoolAdmin(admin.ModelAdmin): list_display = ('primary_alias', 'school_id', 'city', 'state', 'settlement_school') list_filter = ('settlement_school', 'state') list_editable = ('settlement_school',) search_fields = ['school_id', 'city', 'state'] ordering = ['state'] class AliasAdmin(admin.ModelAdmin): list_display = ('alias', 'institution', 'is_primary') search_fields = ['alias'] class NicknameAdmin(admin.ModelAdmin): list_display = ('nickname', 'institution', 'is_female') search_fields = ['nickname'] admin.site.register(Disclosure, DisclosureAdmin) admin.site.register(ConstantRate, ConstantRateAdmin) admin.site.register(ConstantCap, ConstantCapAdmin) admin.site.register(School, SchoolAdmin) admin.site.register(Alias, AliasAdmin) admin.site.register(BAHRate) admin.site.register(Feedback) admin.site.register(Worksheet) admin.site.register(Contact) admin.site.register(Nickname, NicknameAdmin) admin.site.register(Program)
5666f9c55f3024b927bcbc8e0fdb60ceb72db8de
12485bb945ab8af6ff6a5f3d9d4c542a7bcf95f8
/server/src/uds/services/Xen/xen_client/__init__.py
8c47e66b14c2d59e66552db5c9142effdefdc5b3
[]
no_license
morfeuj/openuds
6ef0c4bed624def0090efa6abdd2600b9be81a8b
26e429019e5fe5b01ee1a476c879d8f8333b0ab0
refs/heads/master
2020-12-15T15:11:33.598430
2020-01-20T16:42:33
2020-01-20T16:42:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
20,495
py
# -*- coding: utf-8 -*- # # Copyright (c) 2014-2019 Virtual Cable S.L. # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of Virtual Cable S.L. nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import ssl import enum import xmlrpc.client import logging import typing from . import XenAPI logger = logging.getLogger(__name__) TAG_TEMPLATE = "uds-template" TAG_MACHINE = "uds-machine" class XenFault(Exception): pass class XenFailure(XenAPI.Failure, XenFault): exBadVmPowerState = 'VM_BAD_POWER_STATE' exVmMissingPVDrivers = 'VM_MISSING_PV_DRIVERS' exHandleInvalid = 'HANDLE_INVALID' exHostIsSlave = 'HOST_IS_SLAVE' exSRError = 'SR_BACKEND_FAILURE_44' def __init__(self, details: typing.Optional[typing.List] = None): details = [] if details is None else details super(XenFailure, self).__init__(details) def isHandleInvalid(self) -> bool: return self.details[0] == XenFailure.exHandleInvalid def needsXenTools(self) -> bool: return self.details[0] == XenFailure.exVmMissingPVDrivers def badPowerState(self) -> bool: return self.details[0] == XenFailure.exBadVmPowerState def isSlave(self) -> bool: return self.details[0] == XenFailure.exHostIsSlave def asHumanReadable(self) -> str: try: errList = { XenFailure.exBadVmPowerState: 'Machine state is invalid for requested operation (needs {2} and state is {3})', XenFailure.exVmMissingPVDrivers: 'Machine needs Xen Server Tools to allow requested operation', XenFailure.exHostIsSlave: 'The connected host is an slave, try to connect to {1}', XenFailure.exSRError: 'Error on SR: {2}', XenFailure.exHandleInvalid: 'Invalid reference to {1}', } err = errList.get(self.details[0], 'Error {0}') return err.format(*self.details) except Exception: return 'Unknown exception: {0}'.format(self.details) def __str__(self) -> str: return self.asHumanReadable() class XenException(XenFault): def __init__(self, message: typing.Any): XenFault.__init__(self, message) logger.debug('Exception create: %s', message) class XenPowerState: # pylint: disable=too-few-public-methods halted: str = 'Halted' running: str = 'Running' suspended: str = 'Suspended' paused: str = 'Paused' class XenServer: # pylint: disable=too-many-public-methods _originalHost: str _host: str _port: str _useSSL: bool _verifySSL: bool _protocol: str _url: str _loggedIn: bool _username: str _password: str _session: typing.Any _poolName: str _apiVersion: str def __init__(self, host: str, port: int, username: str, password: str, useSSL: bool = False, verifySSL: bool = False): self._originalHost = self._host = host self._port = str(port) self._useSSL = bool(useSSL) self._verifySSL = bool(verifySSL) self._protocol = 'http' + ('s' if self._useSSL else '') + '://' self._url = '' self._loggedIn = False self._username = username self._password = password self._session = None self._poolName = self._apiVersion = '' @staticmethod def toMb(number: typing.Union[str, int]) -> int: return int(number) // (1024 * 1024) def checkLogin(self) -> bool: if not self._loggedIn: self.login() return self._loggedIn def getXenapiProperty(self, prop: str) -> typing.Any: if not self.checkLogin(): raise Exception("Can't log in") return getattr(self._session.xenapi, prop) # Properties to fast access XenApi classes Async = property(lambda self: self.getXenapiProperty('Async')) task = property(lambda self: self.getXenapiProperty('task')) VM = property(lambda self: self.getXenapiProperty('VM')) SR = property(lambda self: self.getXenapiProperty('SR')) pool = property(lambda self: self.getXenapiProperty('pool')) host = property(lambda self: self.getXenapiProperty('host')) network = property(lambda self: self.getXenapiProperty('network')) VIF = property(lambda self: self.getXenapiProperty('VIF')) # Virtual Interface VDI = property(lambda self: self.getXenapiProperty('VDI')) # Virtual Disk Image VBD = property(lambda self: self.getXenapiProperty('VBD')) # Virtual Block Device # Properties to access private vars poolName = property(lambda self: self.checkLogin() and self._poolName) hasPool = property(lambda self: self.checkLogin() and self._poolName != '') def getPoolName(self) -> str: pool = self.pool.get_all()[0] return self.pool.get_name_label(pool) # Login/Logout def login(self, switchToMaster: bool = False) -> None: try: # We recalculate here url, because we can "switch host" on any moment self._url = self._protocol + self._host + ':' + self._port transport = None if self._useSSL: context = ssl.SSLContext(ssl.PROTOCOL_TLS) if self._verifySSL is False: context.verify_mode = ssl.CERT_NONE else: context.verify_mode = ssl.CERT_REQUIRED context.check_hostname = True transport = xmlrpc.client.SafeTransport(context=context) logger.debug('Transport: %s', transport) self._session = XenAPI.Session(self._url, transport=transport) self._session.xenapi.login_with_password(self._username, self._password) self._loggedIn = True self._apiVersion = self._session.API_version self._poolName = str(self.getPoolName()) except XenAPI.Failure as e: # XenAPI.Failure: ['HOST_IS_SLAVE', '172.27.0.29'] indicates that this host is an slave of 172.27.0.29, connect to it... if switchToMaster and e.details[0] == 'HOST_IS_SLAVE': logger.info('%s is an Slave, connecting to master at %s cause switchToMaster is True', self._host, e.details[1]) self._host = e.details[1] self.login() else: raise XenFailure(e.details) except Exception as e: logger.exception('Unrecognized xenapi exception') raise def test(self) -> None: self.login(False) def logout(self) -> None: self._session.logout() self._loggedIn = False self._session = None self._poolName = self._apiVersion = '' def getHost(self) -> str: return self._host def setHost(self, host: str) -> None: self._host = host def getTaskInfo(self, task: str) -> typing.MutableMapping[str, typing.Any]: progress = 0 result = None destroyTask = False try: status = self.task.get_status(task) logger.debug('Task %s in state %s', task, status) if status == 'pending': status = 'running' progress = int(self.task.get_progress(task) * 100) elif status == 'success': result = self.task.get_result(task) destroyTask = True elif status == 'failure': result = XenFailure(self.task.get_error_info(task)) destroyTask = True except XenAPI.Failure as e: logger.debug('XenServer Failure: %s', e.details[0]) if e.details[0] == 'HANDLE_INVALID': result = None status = 'unknown' progress = 0 else: destroyTask = True result = e.details[0] status = 'failure' except Exception as e: logger.exception('Unexpected exception!') result = str(e) status = 'failure' # Removes <value></value> if present if result and not isinstance(result, XenFailure) and result.startswith('<value>'): result = result[7:-8] if destroyTask: try: self.task.destroy(task) except Exception as e: logger.warning('Destroy task %s returned error %s', task, str(e)) return {'result': result, 'progress': progress, 'status':str(status)} def getSRs(self) -> typing.Iterable[typing.MutableMapping[str, typing.Any]]: for srId in self.SR.get_all(): # Only valid SR shared, non iso name_label = self.SR.get_name_label(srId) if self.SR.get_content_type(srId) == 'iso' or \ self.SR.get_shared(srId) is False or \ name_label == '': continue valid = True allowed_ops = self.SR.get_allowed_operations(srId) for v in ['vdi_create', 'vdi_clone', 'vdi_snapshot', 'vdi_destroy']: if v not in allowed_ops: valid = False if not valid: return yield { 'id': srId, 'name': name_label, 'size': XenServer.toMb(self.SR.get_physical_size(srId)), 'used': XenServer.toMb(self.SR.get_physical_utilisation(srId)) } def getSRInfo(self, srId: str) -> typing.MutableMapping[str, typing.Any]: return { 'id': srId, 'name': self.SR.get_name_label(srId), 'size': XenServer.toMb(self.SR.get_physical_size(srId)), 'used': XenServer.toMb(self.SR.get_physical_utilisation(srId)) } def getNetworks(self) -> typing.Iterable[typing.MutableMapping[str, typing.Any]]: for netId in self.network.get_all(): if self.network.get_other_config(netId).get('is_host_internal_management_network', False) is False: yield { 'id': netId, 'name': self.network.get_name_label(netId), } def getNetworkInfo(self, netId: str) -> typing.MutableMapping[str, typing.Any]: return { 'id': netId, 'name': self.network.get_name_label(netId) } def getVMs(self) -> typing.Iterable[typing.MutableMapping[str, typing.Any]]: try: vms = self.VM.get_all() for vm in vms: # if self.VM.get_is_a_template(vm): # Sample set_tags, easy.. # self.VM.set_tags(vm, ['template']) # continue if self.VM.get_is_control_domain(vm) or \ self.VM.get_is_a_template(vm): continue yield {'id': vm, 'name': self.VM.get_name_label(vm)} except XenAPI.Failure as e: raise XenFailure(e.details) except Exception as e: raise XenException(str(e)) def getVMPowerState(self, vmId: str) -> str: try: power_state = self.VM.get_power_state(vmId) logger.debug('Power state of %s: %s', vmId, power_state) return power_state except XenAPI.Failure as e: raise XenFailure(e.details) def getVMInfo(self, vmId: str) -> typing.Any: try: return self.VM.get_record(vmId) except XenAPI.Failure as e: raise XenFailure(e.details) def startVM(self, vmId: str, asnc: bool = True) -> typing.Optional[str]: vmState = self.getVMPowerState(vmId) if vmState == XenPowerState.running: return None # Already powered on if vmState == XenPowerState.suspended: return self.resumeVM(vmId, asnc) if asnc: return self.Async.VM.start(vmId, False, False) return self.VM.start(vmId, False, False) def stopVM(self, vmId: str, asnc: bool = True) -> typing.Optional[str]: vmState = self.getVMPowerState(vmId) if vmState in (XenPowerState.suspended, XenPowerState.halted): return None # Already powered off if asnc: return self.Async.VM.hard_shutdown(vmId) return self.VM.hard_shutdown(vmId) def resetVM(self, vmId, asnc=True) -> typing.Optional[str]: vmState = self.getVMPowerState(vmId) if vmState in (XenPowerState.suspended, XenPowerState.halted): return None # Already powered off, cannot reboot if asnc: return self.Async.VM.hard_reboot(vmId) return self.VM.hard_reboot(vmId) def canSuspendVM(self, vmId: str) -> bool: operations = self.VM.get_allowed_operations(vmId) logger.debug('Operations: %s', operations) return 'suspend' in operations def suspendVM(self, vmId: str, asnc: bool = True) -> typing.Optional[str]: vmState = self.getVMPowerState(vmId) if vmState == XenPowerState.suspended: return None if asnc: return self.Async.VM.suspend(vmId) return self.VM.suspend(vmId) def resumeVM(self, vmId: str, asnc: bool = True) -> typing.Optional[str]: vmState = self.getVMPowerState(vmId) if vmState != XenPowerState.suspended: return None if asnc: return self.Async.VM.resume(vmId, False, False) return self.VM.resume(vmId, False, False) def cloneVM(self, vmId: str, targetName: str, targetSR: typing.Optional[str] = None) -> str: """ If targetSR is NONE: Clones the specified VM, making a new VM. Clone automatically exploits the capabilities of the underlying storage repository in which the VM's disk images are stored (e.g. Copy on Write). Else: Copied the specified VM, making a new VM. Unlike clone, copy does not exploits the capabilities of the underlying storage repository in which the VM's disk images are stored. Instead, copy guarantees that the disk images of the newly created VM will be 'full disks' - i.e. not part of a CoW chain. This function can only be called when the VM is in the Halted State. """ logger.debug('Cloning VM %s to %s on sr %s', vmId, targetName, targetSR) operations = self.VM.get_allowed_operations(vmId) logger.debug('Allowed operations: %s', operations) try: if targetSR: if 'copy' not in operations: raise XenException('Copy is not supported for this machine') task = self.Async.VM.copy(vmId, targetName, targetSR) else: if 'clone' not in operations: raise XenException('Clone is not supported for this machine') task = self.Async.VM.clone(vmId, targetName) return task except XenAPI.Failure as e: raise XenFailure(e.details) def removeVM(self, vmId: str) -> None: logger.debug('Removing machine') vdisToDelete = [] for vdb in self.VM.get_VBDs(vmId): vdi = None try: vdi = self.VBD.get_VDI(vdb) if vdi == 'OpaqueRef:NULL': logger.debug('VDB without VDI') continue logger.debug('VDI: %s', vdi) except Exception: logger.exception('Exception getting VDI from VDB') if self.VDI.get_read_only(vdi) is True: logger.debug('%s is read only, skipping', vdi) continue logger.debug('VDI to delete: %s', vdi) vdisToDelete.append(vdi) self.VM.destroy(vmId) for vdi in vdisToDelete: self.VDI.destroy(vdi) def configureVM(self, vmId: str, **kwargs): """ Optional args: mac = { 'network': netId, 'mac': mac } memory = MEM in MB, minimal is 128 Mac address should be in the range 02:xx:xx:xx:xx (recommended, but not a "have to") """ mac: typing.Optional[typing.Dict[str, str]] = kwargs.get('mac', None) memory: typing.Optional[typing.Union[str, int]] = kwargs.get('memory', None) # If requested mac address change try: if mac is not None: for vifId in self.VM.get_VIFs(vmId): vif = self.VIF.get_record(vifId) if vif['network'] == mac['network']: logger.debug('Found VIF: %s', vif['network']) self.VIF.destroy(vifId) # for k in ['status_code', 'status_detail', 'uuid']: # try: # del vif[k] # except: # logger.exception('Erasing property {0}'.format(k)) vif['MAC'] = mac['mac'] vif['MAC_autogenerated'] = False self.VIF.create(vif) # If requested memory change if memory: logger.debug('Setting up memory to %s MB', memory) # Convert memory to MB memory = str(int(memory) * 1024 * 1024) self.VM.set_memory_limits(vmId, memory, memory, memory, memory) except XenAPI.Failure as e: raise XenFailure(e.details) def provisionVM(self, vmId: str, **kwargs): tags = self.VM.get_tags(vmId) try: del tags[tags.index(TAG_TEMPLATE)] except Exception: pass tags.append(TAG_MACHINE) self.VM.set_tags(vmId, tags) if kwargs.get('asnc', True) is True: return self.Async.VM.provision(vmId) return self.VM.provision(vmId) def convertToTemplate(self, vmId: str, shadowMultiplier: int = 4) -> None: try: operations = self.VM.get_allowed_operations(vmId) logger.debug('Allowed operations: %s', operations) if 'make_into_template' not in operations: raise XenException('Convert in template is not supported for this machine') self.VM.set_is_a_template(vmId, True) # Apply that is an "UDS Template" taggint it tags = self.VM.get_tags(vmId) try: del tags[tags.index(TAG_MACHINE)] except Exception: pass tags.append(TAG_TEMPLATE) self.VM.set_tags(vmId, tags) # Set multiplier try: self.VM.set_HVM_shadow_multiplier(vmId, float(shadowMultiplier)) except Exception: pass # Can't set shadowMultiplier, nothing happens except XenAPI.Failure as e: raise XenFailure(e.details) def removeTemplate(self, templateId: str) -> None: self.removeVM(templateId) def cloneTemplate(self, templateId: str, targetName: str) -> str: """ After cloning template, we must deploy the VM so it's a full usable VM """ return self.cloneVM(templateId, targetName)
efa9169a5663a0c34cd035eaf9a6c8eb588d6625
0485a490f466bd1d02eaae96d277888781208c0e
/tests/single_instruction_translation_validation/mcsema/register-variants/xaddb_r8_r8/Output/test-z3.py
0f72e6bf891b173f5c8d4ce6b1ee4ac725000960
[ "LicenseRef-scancode-unknown-license-reference", "NCSA" ]
permissive
Mthandazo42/validating-binary-decompilation
c0e2d54cd79e609bfa35802975bddfa52e646fad
c0fcd6f099e38195dcbbac9e8c13a825865c5cb5
refs/heads/master
2022-11-11T13:18:13.033044
2020-06-25T05:49:01
2020-06-25T05:49:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
24,327
py
############################################# ######## Auto Generated Proof Scripts ####### ############################################# import z3 import sys status=True test_name="UnK" if(len(sys.argv) > 1): test_name = sys.argv[1] def solve(msg, lvar, xvar, s): global status s.set("timeout", 60000) res = s.check() if(z3.unknown == res): print(test_name + "::" + msg + "::unk") status = "Unknown" if(z3.sat == res): if("UNDEF" in xvar.sexpr()): print(test_name + "::" + msg + "::undef-sat") else: m = s.model() print(test_name + "::" + msg + "::sat") print("\n") print("query", s) print("\n") print("model", m) print("\n") print("xvar =", m.evaluate(xvar)) print("lvar =", m.evaluate(lvar)) print("\n") status = False ############################## ## X86 specific variables #### ############################## ### GPRs VX_RAX = z3.BitVec('VX_RAX',64) VX_RBX = z3.BitVec('VX_RBX',64) VX_RCX = z3.BitVec('VX_RCX',64) VX_RDX = z3.BitVec('VX_RDX',64) VX_RSI = z3.BitVec('VX_RSI',64) VX_RDI = z3.BitVec('VX_RDI',64) ### Flags VX_CF = z3.BitVec('VX_CF',1) VX_PF = z3.BitVec('VX_PF',1) VX_ZF = z3.BitVec('VX_ZF',1) VX_SF = z3.BitVec('VX_SF',1) VX_AF = z3.BitVec('VX_AF',1) VX_OF = z3.BitVec('VX_OF',1) ### YMM Registers VX_YMM1 = z3.BitVec('VX_YMM1', 256) VX_YMM2 = z3.BitVec('VX_YMM2', 256) ## Undef VX_UNDEF_1 = z3.BitVec('VX_UNDEF_1', 1) VX_UNDEF_BOOL = z3.Bool('VX_UNDEF_BOOL') ############################## ## X86 specific variables #### ############################## ### GPRs VL_RAX = z3.BitVec('VL_RAX',64) VL_RBX = z3.BitVec('VL_RBX',64) VL_RCX = z3.BitVec('VL_RCX',64) VL_RDX = z3.BitVec('VL_RDX',64) VL_RSI = z3.BitVec('VL_RSI',64) VL_RDI = z3.BitVec('VL_RDI',64) ### Flags VL_CF = z3.BitVec('VL_CF',8) VL_PF = z3.BitVec('VL_PF',8) VL_ZF = z3.BitVec('VL_ZF',8) VL_SF = z3.BitVec('VL_SF',8) VL_AF = z3.BitVec('VL_AF',8) VL_OF = z3.BitVec('VL_OF',8) ### YMM Registers VL_YMM1_0 = z3.BitVec('VL_YMM1_0', 64) VL_YMM1_1 = z3.BitVec('VL_YMM1_1', 64) VL_YMM1_2 = z3.BitVec('VL_YMM1_2', 64) VL_YMM1_3 = z3.BitVec('VL_YMM1_3', 64) VL_YMM2_0 = z3.BitVec('VL_YMM2_0', 64) VL_YMM2_1 = z3.BitVec('VL_YMM2_1', 64) VL_YMM2_2 = z3.BitVec('VL_YMM2_2', 64) VL_YMM2_3 = z3.BitVec('VL_YMM2_3', 64) ############################## ## Proof variables ########### ############################## V_R = z3.BitVec('V_R',64) V_F = z3.BitVec('V_F',1) V_Y = z3.BitVec('V_Y',256) ## Solver instance s = z3.Solver() ############################## ## Default constraints ####### ############################## ### GPRs s.add(VX_RAX == VL_RAX) s.add(VX_RBX == VL_RBX) s.add(VX_RCX == VL_RCX) s.add(VX_RDX == VL_RDX) s.add(VX_RDI == VL_RDI) s.add(VX_RSI == VL_RSI) ### Flags s.add(z3.Or(VL_CF == 0, VL_CF == 1)) s.add(z3.Or(VL_ZF == 0, VL_ZF == 1)) s.add(z3.Or(VL_PF == 0, VL_PF == 1)) s.add(z3.Or(VL_SF == 0, VL_SF == 1)) s.add(z3.Or(VL_AF == 0, VL_AF == 1)) s.add(z3.Or(VL_OF == 0, VL_OF == 1)) s.add(z3.Extract(0,0, VL_CF) == VX_CF) s.add(z3.Extract(0,0, VL_SF) == VX_SF) s.add(z3.Extract(0,0, VL_ZF) == VX_ZF) s.add(z3.Extract(0,0, VL_PF) == VX_PF) s.add(z3.Extract(0,0, VL_AF) == VX_AF) s.add(z3.Extract(0,0, VL_OF) == VX_OF) ### Ymms s.add(z3.Concat(VL_YMM1_3, VL_YMM1_2, VL_YMM1_1, VL_YMM1_0) == VX_YMM1) s.add(z3.Concat(VL_YMM2_3, VL_YMM2_2, VL_YMM2_1, VL_YMM2_0) == VX_YMM2) ## =******= AF =******= s.push() lvar = (V_F == z3.Extract(0, 0, z3.Extract(7, 0, (((z3.LShR(((((z3.Concat(z3.BitVecVal( 0, 56), z3.Extract(7, 0, VL_RBX)) ^ (z3.Concat(z3.BitVecVal(0, 56), z3.Extract(7, 0, VL_RCX)) & z3.BitVecVal(256 - 1, 64))) & z3.BitVecVal(256 - 1, 64)) ^ ((z3.Concat(z3.BitVecVal( 0, 56), z3.Extract(7, 0, VL_RBX)) + (z3.Concat(z3.BitVecVal(0, 56), z3.Extract(7, 0, VL_RCX)) & z3.BitVecVal(256 - 1, 64))) & z3.BitVecVal(256 - 1, 64))) & z3.BitVecVal(256 - 1, 64)), z3.BitVecVal(4, 64)) & z3.BitVecVal(256 - 1, 64)) & z3.BitVecVal(1, 64)) & z3.BitVecVal(256 - 1, 64))))) xvar = (V_F == ((z3.Extract(4, 4, VX_RCX) ^ z3.Extract(4, 4, VX_RBX)) ^ z3.Extract(4, 4, (z3.Concat(z3.BitVecVal(0, 1), z3.Extract(7, 0, VX_RCX)) + z3.Concat(z3.BitVecVal(0, 1), z3.Extract(7, 0, VX_RBX)))))) s.add(lvar != xvar) solve("AF", lvar, xvar, s) s.pop() ## =******= CF =******= s.push() lvar = (V_F == z3.Extract(0, 0, z3.Extract(7, 0, z3.Concat(z3.BitVecVal(0, 7), z3.Extract(0, 0, ((z3.If(z3.ULT(((z3.Concat(z3.BitVecVal( 0, 56), z3.Extract(7, 0, VL_RBX)) + (z3.Concat(z3.BitVecVal(0, 56), z3.Extract(7, 0, VL_RCX)) & z3.BitVecVal(256 - 1, 64))) & z3.BitVecVal(256 - 1, 64)), (z3.Concat(z3.BitVecVal(0, 56), z3.Extract(7, 0, VL_RCX)) & z3.BitVecVal(256 - 1, 64))), z3.BitVecVal(1, 8), z3.BitVecVal(0, 8)) | z3.If(z3.ULT(((z3.Concat(z3.BitVecVal( 0, 56), z3.Extract(7, 0, VL_RBX)) + (z3.Concat(z3.BitVecVal(0, 56), z3.Extract(7, 0, VL_RCX)) & z3.BitVecVal(256 - 1, 64))) & z3.BitVecVal(256 - 1, 64)), z3.Concat(z3.BitVecVal( 0, 56), z3.Extract(7, 0, VL_RBX))), z3.BitVecVal(1, 8), z3.BitVecVal(0, 8))) & z3.BitVecVal(2 - 1, 8))))))) xvar = (V_F == z3.Extract(8, 8, (z3.Concat(z3.BitVecVal(0, 1), z3.Extract(7, 0, VX_RCX)) + z3.Concat(z3.BitVecVal(0, 1), z3.Extract(7, 0, VX_RBX))))) s.add(lvar != xvar) solve("CF", lvar, xvar, s) s.pop() ## =******= OF =******= s.push() lvar = (V_F == z3.Extract(0, 0, z3.Extract(7, 0, z3.Concat(z3.BitVecVal(0, 7), z3.Extract(0, 0, z3.If(((((((z3.LShR(((z3.Concat(z3.BitVecVal( 0, 56), z3.Extract(7, 0, VL_RBX)) + (z3.Concat(z3.BitVecVal(0, 56), z3.Extract(7, 0, VL_RCX)) & z3.BitVecVal(256 - 1, 64))) & z3.BitVecVal(256 - 1, 64)), z3.BitVecVal(7, 64)) & z3.BitVecVal(256 - 1, 64)) ^ (z3.LShR((z3.Concat(z3.BitVecVal(0, 56), z3.Extract(7, 0, VL_RCX)) & z3.BitVecVal(256 - 1, 64)), z3.BitVecVal(7, 64)) & z3.BitVecVal(256 - 1, 64))) & z3.BitVecVal(256 - 1, 64)) + (((z3.LShR(((z3.Concat(z3.BitVecVal( 0, 56), z3.Extract(7, 0, VL_RBX)) + (z3.Concat(z3.BitVecVal(0, 56), z3.Extract(7, 0, VL_RCX)) & z3.BitVecVal(256 - 1, 64))) & z3.BitVecVal(256 - 1, 64)), z3.BitVecVal(7, 64)) & z3.BitVecVal(256 - 1, 64)) ^ z3.Concat(z3.BitVecVal( 0, 56), (z3.LShR(z3.Extract(7, 0, VL_RBX), z3.BitVecVal(7, 8)) & z3.BitVecVal(256 - 1, 8)))) & z3.BitVecVal(256 - 1, 64))) & z3.BitVecVal(256 - 1, 64)) == z3.BitVecVal(2, 64)), z3.BitVecVal(1, 8), z3.BitVecVal(0, 8))))))) xvar = (V_F == z3.If(z3.And(((z3.Extract(7, 7, VX_RCX) == z3.BitVecVal(1, 1)) == (z3.Extract(7, 7, VX_RBX) == z3.BitVecVal(1, 1))), z3.Not(((z3.Extract(7, 7, VX_RCX) == z3.BitVecVal(1, 1)) == (z3.Extract(7, 7, (z3.Concat(z3.BitVecVal(0, 1), z3.Extract(7, 0, VX_RCX)) + z3.Concat(z3.BitVecVal(0, 1), z3.Extract(7, 0, VX_RBX)))) == z3.BitVecVal(1, 1))))), z3.BitVecVal(1, 1), z3.BitVecVal(0, 1))) s.add(lvar != xvar) solve("OF", lvar, xvar, s) s.pop() ## =******= PF =******= s.push() lvar = (V_F == z3.Extract(0, 0, z3.Extract(7, 0, ((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((z3.LShR(z3.Concat(z3.BitVecVal(0, 24), z3.Extract(7, 0, ((z3.Concat(z3.BitVecVal( 0, 56), z3.Extract(7, 0, VL_RBX)) + (z3.Concat(z3.BitVecVal(0, 56), z3.Extract(7, 0, VL_RCX)) & z3.BitVecVal(256 - 1, 64))) & z3.BitVecVal(256 - 1, 64)))), z3.BitVecVal(31, 32)) & z3.BitVecVal(4294967296 - 1, 32)) + ((z3.Concat(z3.BitVecVal(0, 24), z3.Extract(7, 0, ((z3.Concat(z3.BitVecVal( 0, 56), z3.Extract(7, 0, VL_RBX)) + (z3.Concat(z3.BitVecVal(0, 56), z3.Extract(7, 0, VL_RCX)) & z3.BitVecVal(256 - 1, 64))) & z3.BitVecVal(256 - 1, 64)))) & z3.BitVecVal(1, 32)) & z3.BitVecVal(4294967296 - 1, 32))) & z3.BitVecVal(4294967296 - 1, 32)) + (((z3.LShR(z3.Concat(z3.BitVecVal(0, 24), z3.Extract(7, 0, ((z3.Concat(z3.BitVecVal( 0, 56), z3.Extract(7, 0, VL_RBX)) + (z3.Concat(z3.BitVecVal(0, 56), z3.Extract(7, 0, VL_RCX)) & z3.BitVecVal(256 - 1, 64))) & z3.BitVecVal(256 - 1, 64)))), z3.BitVecVal(1, 32)) & z3.BitVecVal(4294967296 - 1, 32)) & z3.BitVecVal(1, 32)) & z3.BitVecVal(4294967296 - 1, 32))) & z3.BitVecVal(4294967296 - 1, 32)) + (((z3.LShR(z3.Concat(z3.BitVecVal(0, 24), z3.Extract(7, 0, ((z3.Concat(z3.BitVecVal( 0, 56), z3.Extract(7, 0, VL_RBX)) + (z3.Concat(z3.BitVecVal(0, 56), z3.Extract(7, 0, VL_RCX)) & z3.BitVecVal(256 - 1, 64))) & z3.BitVecVal(256 - 1, 64)))), z3.BitVecVal(2, 32)) & z3.BitVecVal(4294967296 - 1, 32)) & z3.BitVecVal(1, 32)) & z3.BitVecVal(4294967296 - 1, 32))) & z3.BitVecVal(4294967296 - 1, 32)) + (((z3.LShR(z3.Concat(z3.BitVecVal(0, 24), z3.Extract(7, 0, ((z3.Concat(z3.BitVecVal( 0, 56), z3.Extract(7, 0, VL_RBX)) + (z3.Concat(z3.BitVecVal(0, 56), z3.Extract(7, 0, VL_RCX)) & z3.BitVecVal(256 - 1, 64))) & z3.BitVecVal(256 - 1, 64)))), z3.BitVecVal(3, 32)) & z3.BitVecVal(4294967296 - 1, 32)) & z3.BitVecVal(1, 32)) & z3.BitVecVal(4294967296 - 1, 32))) & z3.BitVecVal(4294967296 - 1, 32)) + (((z3.LShR(z3.Concat(z3.BitVecVal(0, 24), z3.Extract(7, 0, ((z3.Concat(z3.BitVecVal( 0, 56), z3.Extract(7, 0, VL_RBX)) + (z3.Concat(z3.BitVecVal(0, 56), z3.Extract(7, 0, VL_RCX)) & z3.BitVecVal(256 - 1, 64))) & z3.BitVecVal(256 - 1, 64)))), z3.BitVecVal(4, 32)) & z3.BitVecVal(4294967296 - 1, 32)) & z3.BitVecVal(1, 32)) & z3.BitVecVal(4294967296 - 1, 32))) & z3.BitVecVal(4294967296 - 1, 32)) + (((z3.LShR(z3.Concat(z3.BitVecVal(0, 24), z3.Extract(7, 0, ((z3.Concat(z3.BitVecVal( 0, 56), z3.Extract(7, 0, VL_RBX)) + (z3.Concat(z3.BitVecVal(0, 56), z3.Extract(7, 0, VL_RCX)) & z3.BitVecVal(256 - 1, 64))) & z3.BitVecVal(256 - 1, 64)))), z3.BitVecVal(5, 32)) & z3.BitVecVal(4294967296 - 1, 32)) & z3.BitVecVal(1, 32)) & z3.BitVecVal(4294967296 - 1, 32))) & z3.BitVecVal(4294967296 - 1, 32)) + (((z3.LShR(z3.Concat(z3.BitVecVal(0, 24), z3.Extract(7, 0, ((z3.Concat(z3.BitVecVal( 0, 56), z3.Extract(7, 0, VL_RBX)) + (z3.Concat(z3.BitVecVal(0, 56), z3.Extract(7, 0, VL_RCX)) & z3.BitVecVal(256 - 1, 64))) & z3.BitVecVal(256 - 1, 64)))), z3.BitVecVal(6, 32)) & z3.BitVecVal(4294967296 - 1, 32)) & z3.BitVecVal(1, 32)) & z3.BitVecVal(4294967296 - 1, 32))) & z3.BitVecVal(4294967296 - 1, 32)) + (((z3.LShR(z3.Concat(z3.BitVecVal(0, 24), z3.Extract(7, 0, ((z3.Concat(z3.BitVecVal( 0, 56), z3.Extract(7, 0, VL_RBX)) + (z3.Concat(z3.BitVecVal(0, 56), z3.Extract(7, 0, VL_RCX)) & z3.BitVecVal(256 - 1, 64))) & z3.BitVecVal(256 - 1, 64)))), z3.BitVecVal(7, 32)) & z3.BitVecVal(4294967296 - 1, 32)) & z3.BitVecVal(1, 32)) & z3.BitVecVal(4294967296 - 1, 32))) & z3.BitVecVal(4294967296 - 1, 32)) + (((z3.LShR(z3.Concat(z3.BitVecVal(0, 24), z3.Extract(7, 0, ((z3.Concat(z3.BitVecVal( 0, 56), z3.Extract(7, 0, VL_RBX)) + (z3.Concat(z3.BitVecVal(0, 56), z3.Extract(7, 0, VL_RCX)) & z3.BitVecVal(256 - 1, 64))) & z3.BitVecVal(256 - 1, 64)))), z3.BitVecVal(8, 32)) & z3.BitVecVal(4294967296 - 1, 32)) & z3.BitVecVal(1, 32)) & z3.BitVecVal(4294967296 - 1, 32))) & z3.BitVecVal(4294967296 - 1, 32)) + (((z3.LShR(z3.Concat(z3.BitVecVal(0, 24), z3.Extract(7, 0, ((z3.Concat(z3.BitVecVal( 0, 56), z3.Extract(7, 0, VL_RBX)) + (z3.Concat(z3.BitVecVal(0, 56), z3.Extract(7, 0, VL_RCX)) & z3.BitVecVal(256 - 1, 64))) & z3.BitVecVal(256 - 1, 64)))), z3.BitVecVal(9, 32)) & z3.BitVecVal(4294967296 - 1, 32)) & z3.BitVecVal(1, 32)) & z3.BitVecVal(4294967296 - 1, 32))) & z3.BitVecVal(4294967296 - 1, 32)) + (((z3.LShR(z3.Concat(z3.BitVecVal(0, 24), z3.Extract(7, 0, ((z3.Concat(z3.BitVecVal( 0, 56), z3.Extract(7, 0, VL_RBX)) + (z3.Concat(z3.BitVecVal(0, 56), z3.Extract(7, 0, VL_RCX)) & z3.BitVecVal(256 - 1, 64))) & z3.BitVecVal(256 - 1, 64)))), z3.BitVecVal(10, 32)) & z3.BitVecVal(4294967296 - 1, 32)) & z3.BitVecVal(1, 32)) & z3.BitVecVal(4294967296 - 1, 32))) & z3.BitVecVal(4294967296 - 1, 32)) + (((z3.LShR(z3.Concat(z3.BitVecVal(0, 24), z3.Extract(7, 0, ((z3.Concat(z3.BitVecVal( 0, 56), z3.Extract(7, 0, VL_RBX)) + (z3.Concat(z3.BitVecVal(0, 56), z3.Extract(7, 0, VL_RCX)) & z3.BitVecVal(256 - 1, 64))) & z3.BitVecVal(256 - 1, 64)))), z3.BitVecVal(11, 32)) & z3.BitVecVal(4294967296 - 1, 32)) & z3.BitVecVal(1, 32)) & z3.BitVecVal(4294967296 - 1, 32))) & z3.BitVecVal(4294967296 - 1, 32)) + (((z3.LShR(z3.Concat(z3.BitVecVal(0, 24), z3.Extract(7, 0, ((z3.Concat(z3.BitVecVal( 0, 56), z3.Extract(7, 0, VL_RBX)) + (z3.Concat(z3.BitVecVal(0, 56), z3.Extract(7, 0, VL_RCX)) & z3.BitVecVal(256 - 1, 64))) & z3.BitVecVal(256 - 1, 64)))), z3.BitVecVal(12, 32)) & z3.BitVecVal(4294967296 - 1, 32)) & z3.BitVecVal(1, 32)) & z3.BitVecVal(4294967296 - 1, 32))) & z3.BitVecVal(4294967296 - 1, 32)) + (((z3.LShR(z3.Concat(z3.BitVecVal(0, 24), z3.Extract(7, 0, ((z3.Concat(z3.BitVecVal( 0, 56), z3.Extract(7, 0, VL_RBX)) + (z3.Concat(z3.BitVecVal(0, 56), z3.Extract(7, 0, VL_RCX)) & z3.BitVecVal(256 - 1, 64))) & z3.BitVecVal(256 - 1, 64)))), z3.BitVecVal(13, 32)) & z3.BitVecVal(4294967296 - 1, 32)) & z3.BitVecVal(1, 32)) & z3.BitVecVal(4294967296 - 1, 32))) & z3.BitVecVal(4294967296 - 1, 32)) + (((z3.LShR(z3.Concat(z3.BitVecVal(0, 24), z3.Extract(7, 0, ((z3.Concat(z3.BitVecVal( 0, 56), z3.Extract(7, 0, VL_RBX)) + (z3.Concat(z3.BitVecVal(0, 56), z3.Extract(7, 0, VL_RCX)) & z3.BitVecVal(256 - 1, 64))) & z3.BitVecVal(256 - 1, 64)))), z3.BitVecVal(14, 32)) & z3.BitVecVal(4294967296 - 1, 32)) & z3.BitVecVal(1, 32)) & z3.BitVecVal(4294967296 - 1, 32))) & z3.BitVecVal(4294967296 - 1, 32)) + (((z3.LShR(z3.Concat(z3.BitVecVal(0, 24), z3.Extract(7, 0, ((z3.Concat(z3.BitVecVal( 0, 56), z3.Extract(7, 0, VL_RBX)) + (z3.Concat(z3.BitVecVal(0, 56), z3.Extract(7, 0, VL_RCX)) & z3.BitVecVal(256 - 1, 64))) & z3.BitVecVal(256 - 1, 64)))), z3.BitVecVal(15, 32)) & z3.BitVecVal(4294967296 - 1, 32)) & z3.BitVecVal(1, 32)) & z3.BitVecVal(4294967296 - 1, 32))) & z3.BitVecVal(4294967296 - 1, 32)) + (((z3.LShR(z3.Concat(z3.BitVecVal(0, 24), z3.Extract(7, 0, ((z3.Concat(z3.BitVecVal( 0, 56), z3.Extract(7, 0, VL_RBX)) + (z3.Concat(z3.BitVecVal(0, 56), z3.Extract(7, 0, VL_RCX)) & z3.BitVecVal(256 - 1, 64))) & z3.BitVecVal(256 - 1, 64)))), z3.BitVecVal(16, 32)) & z3.BitVecVal(4294967296 - 1, 32)) & z3.BitVecVal(1, 32)) & z3.BitVecVal(4294967296 - 1, 32))) & z3.BitVecVal(4294967296 - 1, 32)) + (((z3.LShR(z3.Concat(z3.BitVecVal(0, 24), z3.Extract(7, 0, ((z3.Concat(z3.BitVecVal( 0, 56), z3.Extract(7, 0, VL_RBX)) + (z3.Concat(z3.BitVecVal(0, 56), z3.Extract(7, 0, VL_RCX)) & z3.BitVecVal(256 - 1, 64))) & z3.BitVecVal(256 - 1, 64)))), z3.BitVecVal(17, 32)) & z3.BitVecVal(4294967296 - 1, 32)) & z3.BitVecVal(1, 32)) & z3.BitVecVal(4294967296 - 1, 32))) & z3.BitVecVal(4294967296 - 1, 32)) + (((z3.LShR(z3.Concat(z3.BitVecVal(0, 24), z3.Extract(7, 0, ((z3.Concat(z3.BitVecVal( 0, 56), z3.Extract(7, 0, VL_RBX)) + (z3.Concat(z3.BitVecVal(0, 56), z3.Extract(7, 0, VL_RCX)) & z3.BitVecVal(256 - 1, 64))) & z3.BitVecVal(256 - 1, 64)))), z3.BitVecVal(18, 32)) & z3.BitVecVal(4294967296 - 1, 32)) & z3.BitVecVal(1, 32)) & z3.BitVecVal(4294967296 - 1, 32))) & z3.BitVecVal(4294967296 - 1, 32)) + (((z3.LShR(z3.Concat(z3.BitVecVal(0, 24), z3.Extract(7, 0, ((z3.Concat(z3.BitVecVal( 0, 56), z3.Extract(7, 0, VL_RBX)) + (z3.Concat(z3.BitVecVal(0, 56), z3.Extract(7, 0, VL_RCX)) & z3.BitVecVal(256 - 1, 64))) & z3.BitVecVal(256 - 1, 64)))), z3.BitVecVal(19, 32)) & z3.BitVecVal(4294967296 - 1, 32)) & z3.BitVecVal(1, 32)) & z3.BitVecVal(4294967296 - 1, 32))) & z3.BitVecVal(4294967296 - 1, 32)) + (((z3.LShR(z3.Concat(z3.BitVecVal(0, 24), z3.Extract(7, 0, ((z3.Concat(z3.BitVecVal( 0, 56), z3.Extract(7, 0, VL_RBX)) + (z3.Concat(z3.BitVecVal(0, 56), z3.Extract(7, 0, VL_RCX)) & z3.BitVecVal(256 - 1, 64))) & z3.BitVecVal(256 - 1, 64)))), z3.BitVecVal(20, 32)) & z3.BitVecVal(4294967296 - 1, 32)) & z3.BitVecVal(1, 32)) & z3.BitVecVal(4294967296 - 1, 32))) & z3.BitVecVal(4294967296 - 1, 32)) + (((z3.LShR(z3.Concat(z3.BitVecVal(0, 24), z3.Extract(7, 0, ((z3.Concat(z3.BitVecVal( 0, 56), z3.Extract(7, 0, VL_RBX)) + (z3.Concat(z3.BitVecVal(0, 56), z3.Extract(7, 0, VL_RCX)) & z3.BitVecVal(256 - 1, 64))) & z3.BitVecVal(256 - 1, 64)))), z3.BitVecVal(21, 32)) & z3.BitVecVal(4294967296 - 1, 32)) & z3.BitVecVal(1, 32)) & z3.BitVecVal(4294967296 - 1, 32))) & z3.BitVecVal(4294967296 - 1, 32)) + (((z3.LShR(z3.Concat(z3.BitVecVal(0, 24), z3.Extract(7, 0, ((z3.Concat(z3.BitVecVal( 0, 56), z3.Extract(7, 0, VL_RBX)) + (z3.Concat(z3.BitVecVal(0, 56), z3.Extract(7, 0, VL_RCX)) & z3.BitVecVal(256 - 1, 64))) & z3.BitVecVal(256 - 1, 64)))), z3.BitVecVal(22, 32)) & z3.BitVecVal(4294967296 - 1, 32)) & z3.BitVecVal(1, 32)) & z3.BitVecVal(4294967296 - 1, 32))) & z3.BitVecVal(4294967296 - 1, 32)) + (((z3.LShR(z3.Concat(z3.BitVecVal(0, 24), z3.Extract(7, 0, ((z3.Concat(z3.BitVecVal( 0, 56), z3.Extract(7, 0, VL_RBX)) + (z3.Concat(z3.BitVecVal(0, 56), z3.Extract(7, 0, VL_RCX)) & z3.BitVecVal(256 - 1, 64))) & z3.BitVecVal(256 - 1, 64)))), z3.BitVecVal(23, 32)) & z3.BitVecVal(4294967296 - 1, 32)) & z3.BitVecVal(1, 32)) & z3.BitVecVal(4294967296 - 1, 32))) & z3.BitVecVal(4294967296 - 1, 32)) + (((z3.LShR(z3.Concat(z3.BitVecVal(0, 24), z3.Extract(7, 0, ((z3.Concat(z3.BitVecVal( 0, 56), z3.Extract(7, 0, VL_RBX)) + (z3.Concat(z3.BitVecVal(0, 56), z3.Extract(7, 0, VL_RCX)) & z3.BitVecVal(256 - 1, 64))) & z3.BitVecVal(256 - 1, 64)))), z3.BitVecVal(24, 32)) & z3.BitVecVal(4294967296 - 1, 32)) & z3.BitVecVal(1, 32)) & z3.BitVecVal(4294967296 - 1, 32))) & z3.BitVecVal(4294967296 - 1, 32)) + (((z3.LShR(z3.Concat(z3.BitVecVal(0, 24), z3.Extract(7, 0, ((z3.Concat(z3.BitVecVal( 0, 56), z3.Extract(7, 0, VL_RBX)) + (z3.Concat(z3.BitVecVal(0, 56), z3.Extract(7, 0, VL_RCX)) & z3.BitVecVal(256 - 1, 64))) & z3.BitVecVal(256 - 1, 64)))), z3.BitVecVal(25, 32)) & z3.BitVecVal(4294967296 - 1, 32)) & z3.BitVecVal(1, 32)) & z3.BitVecVal(4294967296 - 1, 32))) & z3.BitVecVal(4294967296 - 1, 32)) + (((z3.LShR(z3.Concat(z3.BitVecVal(0, 24), z3.Extract(7, 0, ((z3.Concat(z3.BitVecVal( 0, 56), z3.Extract(7, 0, VL_RBX)) + (z3.Concat(z3.BitVecVal(0, 56), z3.Extract(7, 0, VL_RCX)) & z3.BitVecVal(256 - 1, 64))) & z3.BitVecVal(256 - 1, 64)))), z3.BitVecVal(26, 32)) & z3.BitVecVal(4294967296 - 1, 32)) & z3.BitVecVal(1, 32)) & z3.BitVecVal(4294967296 - 1, 32))) & z3.BitVecVal(4294967296 - 1, 32)) + (((z3.LShR(z3.Concat(z3.BitVecVal(0, 24), z3.Extract(7, 0, ((z3.Concat(z3.BitVecVal( 0, 56), z3.Extract(7, 0, VL_RBX)) + (z3.Concat(z3.BitVecVal(0, 56), z3.Extract(7, 0, VL_RCX)) & z3.BitVecVal(256 - 1, 64))) & z3.BitVecVal(256 - 1, 64)))), z3.BitVecVal(27, 32)) & z3.BitVecVal(4294967296 - 1, 32)) & z3.BitVecVal(1, 32)) & z3.BitVecVal(4294967296 - 1, 32))) & z3.BitVecVal(4294967296 - 1, 32)) + (((z3.LShR(z3.Concat(z3.BitVecVal(0, 24), z3.Extract(7, 0, ((z3.Concat(z3.BitVecVal( 0, 56), z3.Extract(7, 0, VL_RBX)) + (z3.Concat(z3.BitVecVal(0, 56), z3.Extract(7, 0, VL_RCX)) & z3.BitVecVal(256 - 1, 64))) & z3.BitVecVal(256 - 1, 64)))), z3.BitVecVal(28, 32)) & z3.BitVecVal(4294967296 - 1, 32)) & z3.BitVecVal(1, 32)) & z3.BitVecVal(4294967296 - 1, 32))) & z3.BitVecVal(4294967296 - 1, 32)) + (((z3.LShR(z3.Concat(z3.BitVecVal(0, 24), z3.Extract(7, 0, ((z3.Concat(z3.BitVecVal( 0, 56), z3.Extract(7, 0, VL_RBX)) + (z3.Concat(z3.BitVecVal(0, 56), z3.Extract(7, 0, VL_RCX)) & z3.BitVecVal(256 - 1, 64))) & z3.BitVecVal(256 - 1, 64)))), z3.BitVecVal(29, 32)) & z3.BitVecVal(4294967296 - 1, 32)) & z3.BitVecVal(1, 32)) & z3.BitVecVal(4294967296 - 1, 32))) & z3.BitVecVal(4294967296 - 1, 32)) + (((z3.LShR(z3.Concat(z3.BitVecVal(0, 24), z3.Extract(7, 0, ((z3.Concat(z3.BitVecVal( 0, 56), z3.Extract(7, 0, VL_RBX)) + (z3.Concat(z3.BitVecVal(0, 56), z3.Extract(7, 0, VL_RCX)) & z3.BitVecVal(256 - 1, 64))) & z3.BitVecVal(256 - 1, 64)))), z3.BitVecVal(30, 32)) & z3.BitVecVal(4294967296 - 1, 32)) & z3.BitVecVal(1, 32)) & z3.BitVecVal(4294967296 - 1, 32))) & z3.BitVecVal(4294967296 - 1, 32)) & z3.BitVecVal(256 - 1, 32)) & z3.BitVecVal(1, 32)) & z3.BitVecVal(256 - 1, 32)) ^ z3.BitVecVal(1, 32)) & z3.BitVecVal(256 - 1, 32))))) xvar = (V_F == z3.If(z3.Not(z3.Xor(z3.Xor(z3.Xor(z3.Xor(z3.Xor(z3.Xor(z3.Xor((z3.Extract(0, 0, (z3.Concat(z3.BitVecVal(0, 1), z3.Extract(7, 0, VX_RCX)) + z3.Concat(z3.BitVecVal(0, 1), z3.Extract(7, 0, VX_RBX)))) == z3.BitVecVal(1, 1)), (z3.Extract(1, 1, (z3.Concat(z3.BitVecVal(0, 1), z3.Extract(7, 0, VX_RCX)) + z3.Concat(z3.BitVecVal(0, 1), z3.Extract(7, 0, VX_RBX)))) == z3.BitVecVal(1, 1))), (z3.Extract(2, 2, (z3.Concat(z3.BitVecVal(0, 1), z3.Extract(7, 0, VX_RCX)) + z3.Concat(z3.BitVecVal(0, 1), z3.Extract(7, 0, VX_RBX)))) == z3.BitVecVal(1, 1))), (z3.Extract(3, 3, (z3.Concat(z3.BitVecVal(0, 1), z3.Extract(7, 0, VX_RCX)) + z3.Concat(z3.BitVecVal(0, 1), z3.Extract(7, 0, VX_RBX)))) == z3.BitVecVal(1, 1))), (z3.Extract(4, 4, (z3.Concat(z3.BitVecVal(0, 1), z3.Extract(7, 0, VX_RCX)) + z3.Concat(z3.BitVecVal(0, 1), z3.Extract(7, 0, VX_RBX)))) == z3.BitVecVal(1, 1))), (z3.Extract(5, 5, (z3.Concat(z3.BitVecVal(0, 1), z3.Extract(7, 0, VX_RCX)) + z3.Concat(z3.BitVecVal(0, 1), z3.Extract(7, 0, VX_RBX)))) == z3.BitVecVal(1, 1))), (z3.Extract(6, 6, (z3.Concat(z3.BitVecVal(0, 1), z3.Extract(7, 0, VX_RCX)) + z3.Concat(z3.BitVecVal(0, 1), z3.Extract(7, 0, VX_RBX)))) == z3.BitVecVal(1, 1))), (z3.Extract(7, 7, (z3.Concat(z3.BitVecVal(0, 1), z3.Extract(7, 0, VX_RCX)) + z3.Concat(z3.BitVecVal(0, 1), z3.Extract(7, 0, VX_RBX)))) == z3.BitVecVal(1, 1)))), z3.BitVecVal(1, 1), z3.BitVecVal(0, 1))) s.add(lvar != xvar) solve("PF", lvar, xvar, s) s.pop() ## =******= RAX =******= s.push() lvar = (V_R == z3.Concat(z3.Extract(63, 56, VL_RAX), z3.Extract(55, 48, VL_RAX), z3.Extract(47, 40, VL_RAX), z3.Extract(39, 32, VL_RAX), z3.Extract(31, 24, VL_RAX), z3.Extract(23, 16, VL_RAX), z3.Extract(15, 8, VL_RAX), z3.Extract(7, 0, VL_RAX))) xvar = (V_R == VX_RAX) s.add(lvar != xvar) solve("RAX", lvar, xvar, s) s.pop() ## =******= RBX =******= s.push() lvar = (V_R == z3.Concat(z3.Extract(63, 56, VL_RBX), z3.Extract(55, 48, VL_RBX), z3.Extract(47, 40, VL_RBX), z3.Extract(39, 32, VL_RBX), z3.Extract(31, 24, VL_RBX), z3.Extract(23, 16, VL_RBX), z3.Extract(15, 8, VL_RBX), z3.Extract(7, 0, ((z3.Concat(z3.BitVecVal( 0, 56), z3.Extract(7, 0, VL_RBX)) + (z3.Concat(z3.BitVecVal(0, 56), z3.Extract(7, 0, VL_RCX)) & z3.BitVecVal(256 - 1, 64))) & z3.BitVecVal(256 - 1, 64))))) xvar = (V_R == z3.Concat(z3.Extract(63, 8, VX_RBX), z3.Extract(7, 0, (z3.Concat(z3.BitVecVal(0, 1), z3.Extract(7, 0, VX_RCX)) + z3.Concat(z3.BitVecVal(0, 1), z3.Extract(7, 0, VX_RBX)))))) s.add(lvar != xvar) solve("RBX", lvar, xvar, s) s.pop() ## =******= RCX =******= s.push() lvar = (V_R == z3.Concat(z3.Extract(63, 56, VL_RCX), z3.Extract(55, 48, VL_RCX), z3.Extract(47, 40, VL_RCX), z3.Extract(39, 32, VL_RCX), z3.Extract(31, 24, VL_RCX), z3.Extract(23, 16, VL_RCX), z3.Extract(15, 8, VL_RCX), z3.Extract(7, 0, z3.Extract(7, 0, VL_RBX)))) xvar = (V_R == z3.Concat(z3.Extract(63, 8, VX_RCX), z3.Extract(7, 0, VX_RBX))) s.add(lvar != xvar) solve("RCX", lvar, xvar, s) s.pop() ## =******= RDX =******= s.push() lvar = (V_R == z3.Concat(z3.Extract(63, 56, VL_RDX), z3.Extract(55, 48, VL_RDX), z3.Extract(47, 40, VL_RDX), z3.Extract(39, 32, VL_RDX), z3.Extract(31, 24, VL_RDX), z3.Extract(23, 16, VL_RDX), z3.Extract(15, 8, VL_RDX), z3.Extract(7, 0, VL_RDX))) xvar = (V_R == VX_RDX) s.add(lvar != xvar) solve("RDX", lvar, xvar, s) s.pop() ## =******= SF =******= s.push() lvar = (V_F == z3.Extract(0, 0, z3.Extract(7, 0, (z3.LShR(((z3.Concat(z3.BitVecVal( 0, 56), z3.Extract(7, 0, VL_RBX)) + (z3.Concat(z3.BitVecVal(0, 56), z3.Extract(7, 0, VL_RCX)) & z3.BitVecVal(256 - 1, 64))) & z3.BitVecVal(256 - 1, 64)), z3.BitVecVal(7, 64)) & z3.BitVecVal(256 - 1, 64))))) xvar = (V_F == z3.Extract(7, 7, (z3.Concat(z3.BitVecVal(0, 1), z3.Extract(7, 0, VX_RCX)) + z3.Concat(z3.BitVecVal(0, 1), z3.Extract(7, 0, VX_RBX))))) s.add(lvar != xvar) solve("SF", lvar, xvar, s) s.pop() ## =******= ZF =******= s.push() lvar = (V_F == z3.Extract(0, 0, z3.Extract(7, 0, z3.Concat(z3.BitVecVal(0, 7), z3.Extract(0, 0, z3.If((((z3.Concat(z3.BitVecVal( 0, 56), z3.Extract(7, 0, VL_RBX)) + (z3.Concat(z3.BitVecVal(0, 56), z3.Extract(7, 0, VL_RCX)) & z3.BitVecVal(256 - 1, 64))) & z3.BitVecVal(256 - 1, 64)) == z3.BitVecVal(0, 64)), z3.BitVecVal(1, 8), z3.BitVecVal(0, 8))))))) xvar = (V_F == z3.If((z3.Extract(7, 0, (z3.Concat(z3.BitVecVal(0, 1), z3.Extract(7, 0, VX_RCX)) + z3.Concat(z3.BitVecVal(0, 1), z3.Extract(7, 0, VX_RBX)))) == z3.BitVecVal(0, 8)), z3.BitVecVal(1, 1), z3.BitVecVal(0, 1))) s.add(lvar != xvar) solve("ZF", lvar, xvar, s) s.pop() if(status == True): print('' + 'Test-Pass: ' + '' + test_name) else: if(status == False): print('' + 'Test-Fail: ' + '' + test_name) else: print('' + 'Test-Unk: ' + '' + test_name)
f4bfb83c2408bd57b3ce899378717e5b6fe39407
5552380060fd8be832a61d1cc4020c16dde40452
/home/migrations/0004_bank_branch_file.py
244237a150562d68ccb2eac9f7f5cf4d1998f799
[]
no_license
rayhancse08/LawChamber
a1f4121a911d92cdf7cd4c885767b2080fa5fbb0
40f2306d50bc9c2d2b7c08b44e527ab45a7dc756
refs/heads/master
2021-09-10T06:32:48.473590
2018-03-21T16:12:58
2018-03-21T16:12:58
125,860,987
0
0
null
null
null
null
UTF-8
Python
false
false
2,087
py
# Generated by Django 2.0.3 on 2018-03-19 13:31 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('home', '0003_contact'), ] operations = [ migrations.CreateModel( name='Bank', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(help_text='Enter a Bank name (e.g. Brack,DutchBangla)', max_length=200)), ], ), migrations.CreateModel( name='Branch', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(help_text='Enter branch name', max_length=200, verbose_name='Branch Name')), ('address', models.CharField(help_text='Enter branch address', max_length=200, verbose_name='Branch Address')), ('bank', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='home.Bank')), ], ), migrations.CreateModel( name='File', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(help_text='Enter File Name', max_length=200, verbose_name='File Name')), ('bill', models.CharField(help_text='Enter Bill Amount', max_length=200, verbose_name='Bill Amount')), ('account_no', models.CharField(help_text='Enter Account No', max_length=200, verbose_name='Account No')), ('file', models.FileField(default=False, help_text='Upload File', upload_to='')), ('bank', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='home.Bank')), ('branch', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='home.Branch')), ], ), ]
5ca7bb44464eb2b8bc4a97eed49157497214cee6
aced407b41f6669f69e9eb8bd599260d50c0bd3f
/server/libs/top/api/rest/TaobaokeItemsDetailGetRequest.py
13b1b69b497043b5f31870c254d245496fe97a64
[]
no_license
alswl/music_sofa
42f7d15431f11b97bf67b604cfde0a0e9e3860cc
c4e5425ef6c80c3e57c91ba568f7cbfe63faa378
refs/heads/master
2016-09-12T18:37:34.357510
2016-05-20T11:49:52
2016-05-20T11:49:52
58,946,171
1
1
null
null
null
null
UTF-8
Python
false
false
472
py
''' Created by auto_sdk on 2013-11-07 12:53:22 ''' from top.api.base import RestApi class TaobaokeItemsDetailGetRequest(RestApi): def __init__(self,domain='gw.api.taobao.com',port=80): RestApi.__init__(self,domain, port) self.fields = None self.is_mobile = None self.nick = None self.num_iids = None self.outer_code = None self.pid = None self.refer_type = None self.track_iids = None def getapiname(self): return 'taobao.taobaoke.items.detail.get'
93d70c998b5ffa9aa7583bfab766cfc5b0a7927b
bc82de9237a6aa28fd7623a27b35c02ae8416702
/allennlp/modules/seq2seq_decoders/decoder_net.py
aa73863dd2f546fc9ee2b7c5a40ada2af3ff2e00
[ "Apache-2.0" ]
permissive
Snnzhao/GrailQA
78190a8a5bae934c07f4035786f658ef4764c510
e89e66380402e51bac56f59c7d24d4400bcd11b6
refs/heads/main
2023-04-26T19:49:21.683922
2021-04-11T09:40:34
2021-04-11T09:40:34
370,937,323
1
0
Apache-2.0
2021-05-26T07:00:21
2021-05-26T07:00:20
null
UTF-8
Python
false
false
4,117
py
from typing import Tuple, Dict, Optional import torch from allennlp.common import Registrable class DecoderNet(torch.nn.Module, Registrable): # pylint: disable=abstract-method """ This class abstracts the neural architectures for decoding the encoded states and embedded previous step prediction vectors into a new sequence of output vectors. The implementations of ``DecoderNet`` is used by implementations of ``allennlp.modules.seq2seq_decoders.seq_decoder.SeqDecoder`` such as ``allennlp.modules.seq2seq_decoders.seq_decoder.auto_regressive_seq_decoder.AutoRegressiveSeqDecoder``. The outputs of this module would be likely used by ``allennlp.modules.seq2seq_decoders.seq_decoder.SeqDecoder`` to apply the final output feedforward layer and softmax. Parameters ---------- decoding_dim : ``int``, required Defines dimensionality of output vectors. target_embedding_dim : ``int``, required Defines dimensionality of target embeddings. Since this model takes it's output on a previous step as input of following step, this is also an input dimensionality. decodes_parallel : ``bool``, required Defines whether the decoder generates multiple next step predictions at in a single `forward`. """ def __init__(self, decoding_dim: int, target_embedding_dim: int, decodes_parallel: bool) -> None: super().__init__() self.target_embedding_dim = target_embedding_dim self.decoding_dim = decoding_dim self.decodes_parallel = decodes_parallel def get_output_dim(self) -> int: """ Returns the dimension of each vector in the sequence output by this ``DecoderNet``. This is `not` the shape of the returned tensor, but the last element of that shape. """ return self.decoding_dim def init_decoder_state(self, encoder_out: Dict[str, torch.LongTensor]) -> Dict[str, torch.Tensor]: """ Initialize the encoded state to be passed to the first decoding time step. Parameters ---------- batch_size : ``int`` Size of batch final_encoder_output : ``torch.Tensor`` Last state of the Encoder Returns ------- ``Dict[str, torch.Tensor]`` Initial state """ raise NotImplementedError() def forward(self, previous_state: Dict[str, torch.Tensor], encoder_outputs: torch.Tensor, source_mask: torch.Tensor, previous_steps_predictions: torch.Tensor, previous_steps_mask: Optional[torch.Tensor] = None) -> Tuple[Dict[str, torch.Tensor], torch.Tensor]: # pylint: disable=arguments-differ """ Performs a decoding step, and returns dictionary with decoder hidden state or cache and the decoder output. The decoder output is a 3d tensor (group_size, steps_count, decoder_output_dim) if `self.decodes_parallel` is True, else it is a 2d tensor with (group_size, decoder_output_dim). Parameters ---------- previous_steps_predictions : ``torch.Tensor``, required Embeddings of predictions on previous step. Shape: (group_size, steps_count, decoder_output_dim) encoder_outputs : ``torch.Tensor``, required Vectors of all encoder outputs. Shape: (group_size, max_input_sequence_length, encoder_output_dim) source_mask : ``torch.Tensor``, required This tensor contains mask for each input sequence. Shape: (group_size, max_input_sequence_length) previous_state : ``Dict[str, torch.Tensor]``, required previous state of decoder Returns ------- Tuple[Dict[str, torch.Tensor], torch.Tensor] Tuple of new decoder state and decoder output. Output should be used to generate out sequence elements """ raise NotImplementedError()
9ca6d92b19008f566d7bad5323b3263b78cd3d47
09e0efb05c9cd29c7aa4301cec7fb95d24d2bdc2
/nionui_app/nionui_examples/ui_demo/StatusBar.py
99f1fd1396a4fbf0ae59bae7916bfa90a1e1e115
[ "Apache-2.0" ]
permissive
AEljarrat/nionui
4c452037f7e3ee6710c19b18afeb45e35e9ec361
3714a54d56f472a8a0f7b9f8a8240103ca790374
refs/heads/master
2022-11-30T19:54:10.714060
2020-08-06T21:37:47
2020-08-06T21:37:47
286,014,692
0
0
NOASSERTION
2020-08-08T09:40:31
2020-08-08T09:40:30
null
UTF-8
Python
false
false
686
py
from nion.utils import Model class Handler: slider_value_model = Model.PropertyModel(50) def reset(self, widget): self.slider_value_model.value = 50 def construct_ui(ui): label = ui.create_label(text="@binding(slider_value_model.value)") button = ui.create_push_button(text="Reset to 50", on_clicked="reset") content = ui.create_column(label, button, spacing=8) left = ui.create_label(text="LEFT") right = ui.create_label(text="RIGHT") group_row = ui.create_row(left, ui.create_stretch(), right, spacing=8) status_bar = ui.create_group(group_row) return ui.create_column(content, ui.create_stretch(), status_bar, spacing=8)
fa40c9f5c291d466245994d71e3b05bde8d0668f
976230c7d6270f9fbec052e01f9799e13059f79c
/tests/spatio_temporal/test_daily.py
0c473f4a8bf1f201c13a2cf6200948d00b171507
[ "MIT" ]
permissive
amet123/jyotisha
01cd60884f729814e6757d2a7186a6a4e3941a1f
83930880ca74d6ddc95cc72f7026ef63a2e1c3be
refs/heads/master
2020-03-16T09:44:13.310195
2018-02-10T02:43:19
2018-02-10T02:43:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,037
py
import logging from jyotisha.panchangam.spatio_temporal import City logging.basicConfig( level=logging.DEBUG, format="%(levelname)s: %(asctime)s {%(filename)s:%(lineno)d}: %(message)s " ) def test_solar_day(): from jyotisha.panchangam.spatio_temporal import daily panchangam = daily.Panchangam(city=City('Chennai', '13:05:24', '80:16:12', 'Asia/Calcutta'), julian_day=2457023.27) panchangam.compute_solar_day() logging.debug(str(panchangam)) assert panchangam.solar_month_day == 17 assert panchangam.solar_month == 9 def test_tb_muhuurta(): from jyotisha.panchangam.spatio_temporal import daily panchangam = daily.Panchangam(city=City('Chennai', '13:05:24', '80:16:12', 'Asia/Calcutta'), julian_day=2457023.27) panchangam.compute_tb_muhuurtas() logging.debug(str(panchangam)) assert len(panchangam.tb_muhuurtas) == 15 assert panchangam.tb_muhuurtas[0].jd_start == panchangam.jd_sunrise import numpy.testing numpy.testing.assert_approx_equal(panchangam.tb_muhuurtas[14].jd_end, panchangam.jd_sunrise)
c1c2f08f213c1883d5c0d7e36a037127caeebd14
29ab920cf5c02ca6351e1c98824b8ebdb08933b0
/src/core/models.py
d6b1641b0977a3f01e92bd8e2d76097fcb2dff09
[ "MIT" ]
permissive
yordan-marinov/su_dj_todo_app
237c8a14c17d349a75a437ab810c396269d3b571
34adcf3c17fcda30e57d76099780d0cf5f3f0fe6
refs/heads/main
2023-05-15T12:05:08.948196
2021-06-16T08:01:03
2021-06-16T08:01:03
375,369,149
0
0
null
null
null
null
UTF-8
Python
false
false
531
py
from django.db import models from django.contrib.auth.models import User # Create your models here. class Task(models.Model): user = models.ForeignKey(User, on_delete=models.CASCADE, null=True, blank=True) title = models.CharField(max_length=120) description = models.TextField(null=True, blank=True) complete = models.BooleanField(default=False) created_on = models.DateTimeField(auto_now_add=True) class Meta: ordering = ['complete'] def __str__(self): return self.title
47eccdae8acbd25874bd94626617616ed0ee61fe
5fdcf15f818eb2d0c7b5dd39443064d5bc42aff9
/lc_reorganizing_string.py
8ab639672dbe010d9b0fc8e9842a0ca17c1438dc
[]
no_license
vincentt117/coding_challenge
acf3664034a71ffd70c5f1ac0f6a66768e097a6e
5deff070bb9f6b19a1cfc0a6086ac155496fbb78
refs/heads/master
2021-07-02T05:43:08.007851
2020-08-27T02:16:19
2020-08-27T02:16:19
146,027,883
1
0
null
null
null
null
UTF-8
Python
false
false
886
py
# Optimal solution retrieved from Leetcode - https://leetcode.com/problems/reorganize-string/ class Solution: def reorganizeString(self, S: str) -> str: pq = [(-S.count(x), x) for x in set(S)] heapq.heapify(pq) if any(-nc > (len(S) + 1) / 2 for nc, x in pq): return "" ans = [] while len(pq) >= 2: nct1, ch1 = heapq.heappop(pq) nct2, ch2 = heapq.heappop(pq) #This code turns out to be superfluous, but explains what is happening #if not ans or ch1 != ans[-1]: # ans.extend([ch1, ch2]) #else: # ans.extend([ch2, ch1]) ans.extend([ch1, ch2]) if nct1 + 1: heapq.heappush(pq, (nct1 + 1, ch1)) if nct2 + 1: heapq.heappush(pq, (nct2 + 1, ch2)) return "".join(ans) + (pq[0][1] if pq else '')
97c63ac9e665a2d66342e42e241c92b0489a2ee3
18d51ac0a6ca14c8221c26f0dacd8d3721ca28e9
/73_hun.py
5a18a272bbd749e2a12f95c01d715dc788f4067d
[]
no_license
mahakalai/mahak
05f96d52880ed7b2e5eb70dd1dbf14fc533236e8
613be9df7743ef59b1f0e07b7df987d29bb23ec7
refs/heads/master
2020-04-15T05:01:58.541930
2019-07-15T16:28:32
2019-07-15T16:28:32
164,406,486
0
2
null
null
null
null
UTF-8
Python
false
false
176
py
s=input() s1=input() l=[] if s==s1: print(s) else: for i in range(0,len(s)): for j in range(i+1,len(s)): k=s1[i:j] if k in s: l.append(k) print(max(l, key=len))
21e0a4a5c520b5364f7115b1ed1387993123f14b
bea2c1ad58a1d45705ba8f9e4527e4ffac4969cb
/sfepy/discrete/parse_regions.py
c0b71f0ee8b1d0bc7fd05dcd16232c367e61ac0b
[ "BSD-3-Clause" ]
permissive
fethio/sfepy
8423e9083e3144e1fd97d24c31eda1646167ff5b
78efe51d6038dc92f5bfeac4c57614746fe28117
refs/heads/master
2021-01-16T20:59:29.459626
2016-07-01T15:06:11
2016-07-01T15:06:11
61,715,917
1
1
null
2016-07-01T15:06:11
2016-06-22T12:06:07
Python
UTF-8
Python
false
false
6,738
py
""" Grammar for selecting regions of a domain. Regions serve for selection of certain parts of the computational domain represented as a finite element mesh. They are used to define the boundary conditions, the domains of terms and materials etc. Notes ----- History: pre-git versions already from from 13.06.2006. """ from pyparsing import Literal, CaselessLiteral, Word, delimitedList,\ Group, Optional, ZeroOrMore, nums, alphas, alphanums,\ Combine, StringStart, StringEnd, Forward, oneOf, ParseException ParseException # Needed for importing elsewhere. op_codes = ['OA_SubV', 'OA_SubE', 'OA_SubF', 'OA_SubC', 'OA_SubS', 'OA_AddV', 'OA_AddE', 'OA_AddF', 'OA_AddC', 'OA_AddS', 'OA_IntersectV', 'OA_IntersectE', 'OA_IntersectF', 'OA_IntersectC', 'OA_IntersectS'] eval_codes = ['E_VIR', 'E_VOS', 'E_VBF', 'E_VOG', 'E_OVIR', 'E_VI', 'E_VOSET', 'E_CBF', 'E_COG', 'E_CI', 'E_COSET'] kw_codes = ['KW_All', 'KW_Region'] def to_stack(stack): def push_first(str, loc, toks): if toks: stack.append(toks[0]) return toks return push_first def replace(what, keep=False): def _replace(str, loc, toks): ret = {'token' : what, 'orig' : []} if keep: ret['orig'] = list(toks[0]) return ret return _replace def replace_with_region(what, r_index): def _replace(str, loc, toks): ret = {'token' : what, 'orig' : []} orig = toks[0] r_orig = orig[r_index] if isinstance(r_orig, dict) and (r_orig['token'] == 'KW_Region'): orig = list(orig[:r_index]) + r_orig['orig'] ret['orig'] = orig return ret return _replace def join_tokens(str, loc, toks): return [" ".join(toks[0])] def visit_stack(stack, op_visitor, leaf_visitor): def visit(stack, level): op = stack.pop() token = op['token'] if token in op_codes: res2 = visit(stack, level + 1) res1 = visit(stack, level + 1) return op_visitor(level, op, res1, res2) elif token in eval_codes: return leaf_visitor(level, op) elif token in kw_codes: return leaf_visitor(level, op) else: raise ValueError, token return visit(stack, 0) def print_op(level, op, item1, item2): print level * ' ' + (': %s' % op) def print_leaf(level, op): print level * ' ' + ('< %s' % op) def print_stack(stack): visit_stack(stack, print_op, print_leaf) def create_bnf(stack): point = Literal(".") e = CaselessLiteral("E") inumber = Word(nums) fnumber = Combine(Word("+-"+nums, nums) + Optional(point + Optional(Word(nums))) + Optional(e + Word("+-"+nums, nums))) _of = Literal('of') _in = Literal('in') _by = Literal('by') _copy = Literal('copy') _mv = Literal('-v').setParseAction(replace('OA_SubV')) _me = Literal('-e').setParseAction(replace('OA_SubE')) _mf = Literal('-f').setParseAction(replace('OA_SubF')) _mc = Literal('-c').setParseAction(replace('OA_SubC')) _ms = Literal('-s').setParseAction(replace('OA_SubS')) _pv = Literal('+v').setParseAction(replace('OA_AddV')) _pe = Literal('+e').setParseAction(replace('OA_AddE')) _pf = Literal('+f').setParseAction(replace('OA_AddF')) _pc = Literal('+c').setParseAction(replace('OA_AddC')) _ps = Literal('+s').setParseAction(replace('OA_AddS')) _inv = Literal('*v').setParseAction(replace('OA_IntersectV')) _ine = Literal('*e').setParseAction(replace('OA_IntersectE')) _inf = Literal('*f').setParseAction(replace('OA_IntersectF')) _inc = Literal('*c').setParseAction(replace('OA_IntersectC')) _ins = Literal('*s').setParseAction(replace('OA_IntersectS')) regop = (_mv | _me | _mf | _mc | _ms | _pv | _pe | _pf | _pc | _ps | _inv | _ine | _inf | _inc | _ins) lpar = Literal("(").suppress() rpar = Literal(")").suppress() _all = Literal('all').setParseAction(replace('KW_All')) vertex = Literal('vertex') vertices = Literal('vertices') cell = Literal('cell') cells = Literal('cells') group = Literal('group') _set = Literal('set') surface = Literal('surface') ident = Word(alphas + '_.', alphanums + '_.') set_name = Word(nums) | ident function = Word(alphas + '_', alphanums + '_') function = Group(function).setParseAction(join_tokens) region = Combine(Literal('r.') + Word(alphas + '_', '_' + alphas + nums + '.')) region = Group(Optional(_copy, default='nocopy') + region) region.setParseAction(replace('KW_Region', keep=True)) coor = oneOf('x y z') boolop = oneOf('& |') relop = oneOf('< > <= >= != ==') bool_term = (ZeroOrMore('(') + (coor | fnumber) + relop + (coor | fnumber) + ZeroOrMore(')')) relation = Forward() relation << (ZeroOrMore('(') + bool_term + ZeroOrMore(boolop + relation) + ZeroOrMore(')')) relation = Group(relation).setParseAction(join_tokens) nos = Group(vertices + _of + surface).setParseAction(replace('E_VOS')) nir = Group(vertices + _in + relation).setParseAction( replace('E_VIR', keep=True)) nbf = Group(vertices + _by + function).setParseAction( replace('E_VBF', keep=True)) ebf = Group(cells + _by + function).setParseAction( replace('E_CBF', keep=True)) eog = Group(cells + _of + group + Word(nums)).setParseAction( replace('E_COG', keep=True)) nog = Group(vertices + _of + group + Word(nums)).setParseAction( replace('E_VOG', keep=True)) onir = Group(vertex + _in + region).setParseAction( replace_with_region('E_OVIR', 2)) ni = Group(vertex + delimitedList(inumber)).setParseAction( replace('E_VI', keep=True)) ei = Group(cell + delimitedList(inumber)).setParseAction( replace('E_CI', keep=True)) noset = Group(vertices + _of + _set + set_name).setParseAction( replace('E_VOSET', keep=True)) eoset = Group(cells + _of + _set + set_name).setParseAction( replace('E_COSET', keep=True)) region_expression = Forward() atom1 = (_all | region | ni | onir | nos | nir | nbf | ei | ebf | eog | nog | noset | eoset) atom1.setParseAction(to_stack(stack)) atom2 = (lpar + region_expression.suppress() + rpar) atom = (atom1 | atom2) aux = (regop + region_expression) aux.setParseAction(to_stack(stack)) region_expression << atom + ZeroOrMore(aux) region_expression = StringStart() + region_expression + StringEnd() return region_expression
e678647f567f69e613f9801f9ae2ac7ac80e1659
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/63/usersdata/185/30193/submittedfiles/swamee.py
cf9c5669d5d51a92ee3a60133f07bc131b3da0cc
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
352
py
# -*- coding: utf-8 -*- import math #COMECE SEU CÓDIGO AQUI f=float(input('digite f:')) L=float(input('digite L:')) Q=float(input('digite Q:')) DeltaH=float(input('digite DeltaH:')) V=float(input('digite V:')) g=9.81 E=0.000002 D=((8*f*L*(Q*Q))/((math.pi**2)*g*DeltaH))**1/5 Rey=(4*Q)/(math.pi*D*V) K=0.25/(math.log10((E/(3.7*D))+(5.74/(Rey**0.9)))**2
1d1b706b79d817045a4458163d9e0a30057bb120
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/adjectives/_nets.py
9595b4e462c02417b87f949ef703a5e57f707413
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
227
py
from xai.brain.wordbase.adjectives._net import _NET #calss header class _NETS(_NET, ): def __init__(self,): _NET.__init__(self) self.name = "NETS" self.specie = 'adjectives' self.basic = "net" self.jsondata = {}
dcb8464506d3eb9dc51cf3f6fac3227e35f31256
932c30383a5a3b8f70f182fb160e172826531b2c
/tools/sapp/sapp/ui/tests/interactive_test.py
88e66ed924672725b2e7e540da16bcbba6688a25
[ "MIT" ]
permissive
fylux/pyre-check
78581f8ed68764bb46be6f686d74cbbc25828556
a675dc272a973972544e595c567bf432993c2b3a
refs/heads/master
2023-01-01T23:38:11.453527
2020-10-24T17:14:28
2020-10-24T17:14:28
298,233,128
0
1
null
2020-09-24T09:36:45
2020-09-24T09:36:45
null
UTF-8
Python
false
false
84,132
py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # pyre-unsafe import os import sys from datetime import datetime from io import StringIO from typing import List from unittest import TestCase from unittest.mock import mock_open, patch from sqlalchemy.orm import Session from ...db import DB, DBType from ...decorators import UserError from ...models import ( DBID, Issue, IssueInstance, IssueInstanceSharedTextAssoc, IssueInstanceTraceFrameAssoc, Run, RunStatus, SharedText, SharedTextKind, SourceLocation, TraceFrame, TraceFrameLeafAssoc, TraceKind, create as create_models, ) from ...pipeline.pysa_taint_parser import Parser from ...tests.fake_object_generator import FakeObjectGenerator from ..interactive import ( Interactive, IssueQueryResult, TraceFrameQueryResult, TraceTuple, ) class InteractiveTest(TestCase): def setUp(self) -> None: self.db = DB(DBType.MEMORY) create_models(self.db) self.interactive = Interactive( database=self.db, repository_directory="", parser_class=Parser ) self.stdout = StringIO() self.stderr = StringIO() sys.stdout = self.stdout # redirect output sys.stderr = self.stderr # redirect output self.fakes = FakeObjectGenerator() def tearDown(self) -> None: sys.stdout = sys.__stdout__ # reset redirect sys.stderr = sys.__stderr__ # reset redirect def _clear_stdout(self): self.stdout = StringIO() sys.stdout = self.stdout def _add_to_session(self, session, data): if not isinstance(data, list): session.add(data) return for row in data: session.add(row) def _frame_to_query_result( self, session: Session, trace_frame: TraceFrame ) -> TraceFrameQueryResult: caller = ( session.query(SharedText.contents) .filter(SharedText.id == trace_frame.caller_id) .scalar() ) callee = ( session.query(SharedText.contents) .filter(SharedText.id == trace_frame.callee_id) .scalar() ) filename = ( session.query(SharedText.contents) .filter(SharedText.id == trace_frame.filename_id) .scalar() ) return TraceFrameQueryResult( id=trace_frame.id, caller=caller, caller_port=trace_frame.caller_port, callee=callee, callee_port=trace_frame.callee_port, caller_id=trace_frame.caller_id, callee_id=trace_frame.callee_id, callee_location=trace_frame.callee_location, kind=trace_frame.kind, filename=filename, ) def testState(self): self.interactive.current_run_id = 1 self.interactive.current_issue_instance_id = 2 self.interactive.current_frame_id = 3 self.interactive.sources = {1} self.interactive.sinks = {2} self.interactive.state() output = self.stdout.getvalue() self.assertIn("Database: memory:sapp.db", output) self.assertIn("Repository directory: ", output) self.assertIn("Current run: 1", output) self.assertIn("Current issue instance: 2", output) self.assertIn("Current trace frame: 3", output) self.assertIn("Sources filter: {1}", output) self.assertIn("Sinks filter: {2}", output) def testListIssuesBasic(self): run = self.fakes.run() self.fakes.issue() self.fakes.instance( message="message1", filename="file.py", callable="module.function1" ) self.fakes.save_all(self.db) with self.db.make_session() as session: session.add(run) session.commit() self.interactive.setup() self.interactive.issues() output = self.stdout.getvalue().strip() self.assertIn("Issue 1", output) self.assertIn("Code: 6016", output) self.assertIn("Message: message1", output) self.assertIn("Callable: module.function1", output) self.assertIn("Location: file.py:6|7|8", output) def testListIssuesFromLatestRun(self): self.fakes.issue() run1 = self.fakes.run() self.fakes.instance() # part of run1 self.fakes.save_all(self.db) # early flush to resolve DBID's run2 = self.fakes.run() self.fakes.instance() # part of run2 self.fakes.save_all(self.db) with self.db.make_session() as session: session.add(run1) session.add(run2) session.commit() self.interactive.setup() self.interactive.issues() output = self.stdout.getvalue().strip() self.assertNotIn("Issue 1", output) self.assertIn("Issue 2", output) def _list_issues_filter_setup(self): run = self.fakes.run() issue1 = self.fakes.issue() self.fakes.instance( issue_id=issue1.id, callable="module.sub.function1", filename="module/sub.py", min_trace_length_to_sources=1, min_trace_length_to_sinks=1, ) self.fakes.save_all(self.db) issue2 = self.fakes.issue() self.fakes.instance( issue_id=issue2.id, callable="module.sub.function2", filename="module/sub.py", min_trace_length_to_sources=2, min_trace_length_to_sinks=2, ) self.fakes.save_all(self.db) issue3 = self.fakes.issue() self.fakes.instance( issue_id=issue3.id, callable="module.function3", filename="module/__init__.py", min_trace_length_to_sources=3, min_trace_length_to_sinks=3, ) self.fakes.save_all(self.db) with self.db.make_session() as session: session.add(run) session.commit() def testListIssuesFilterCodes(self): self._list_issues_filter_setup() self.interactive.setup() self.interactive.issues(codes="a string") stderr = self.stderr.getvalue().strip() self.assertIn("'codes' should be", stderr) self.interactive.issues(codes=6016) output = self.stdout.getvalue().strip() self.assertIn("Issue 1", output) self.assertNotIn("Issue 2", output) self.assertNotIn("Issue 3", output) self._clear_stdout() self.interactive.issues(codes=[6017, 6018]) output = self.stdout.getvalue().strip() self.assertNotIn("Issue 1", output) self.assertIn("Issue 2", output) self.assertIn("Issue 3", output) def testListIssuesFilterCallables(self): self._list_issues_filter_setup() self.interactive.setup() self.interactive.issues(callables=1234) stderr = self.stderr.getvalue().strip() self.assertIn("'callables' should be", stderr) self.interactive.issues(callables="%sub%") output = self.stdout.getvalue().strip() self.assertIn("Issue 1", output) self.assertIn("Issue 2", output) self.assertNotIn("Issue 3", output) self._clear_stdout() self.interactive.issues(callables=["%function3"]) output = self.stdout.getvalue().strip() self.assertNotIn("Issue 1", output) self.assertNotIn("Issue 2", output) self.assertIn("Issue 3", output) def testListIssuesFilterFilenames(self): self._list_issues_filter_setup() self.interactive.setup() self.interactive.issues(filenames=1234) stderr = self.stderr.getvalue().strip() self.assertIn("'filenames' should be", stderr) self.interactive.issues(filenames="module/s%") output = self.stdout.getvalue().strip() self.assertIn("Issue 1", output) self.assertIn("Issue 2", output) self.assertNotIn("Issue 3", output) self._clear_stdout() self.interactive.issues(filenames=["%__init__.py"]) output = self.stdout.getvalue().strip() self.assertNotIn("Issue 1", output) self.assertNotIn("Issue 2", output) self.assertIn("Issue 3", output) def testListIssuesFilterMinTraceLength(self): self._list_issues_filter_setup() self.interactive.setup() self.interactive.issues(exact_trace_length_to_sources="1") stderr = self.stderr.getvalue().strip() self.assertIn("'exact_trace_length_to_sources' should be", stderr) self._clear_stdout() self.interactive.issues(exact_trace_length_to_sinks="1") stderr = self.stderr.getvalue().strip() self.assertIn("'exact_trace_length_to_sinks' should be", stderr) self._clear_stdout() self.interactive.issues(max_trace_length_to_sources="1") stderr = self.stderr.getvalue().strip() self.assertIn("'max_trace_length_to_sources' should be", stderr) self._clear_stdout() self.interactive.issues(max_trace_length_to_sinks="1") stderr = self.stderr.getvalue().strip() self.assertIn("'max_trace_length_to_sinks' should be", stderr) self._clear_stdout() self.interactive.issues( exact_trace_length_to_sources=1, max_trace_length_to_sources=1 ) stderr = self.stderr.getvalue().strip() self.assertIn("can't be set together", stderr) self._clear_stdout() self.interactive.issues( exact_trace_length_to_sinks=1, max_trace_length_to_sinks=1 ) stderr = self.stderr.getvalue().strip() self.assertIn("can't be set together", stderr) self._clear_stdout() self.interactive.issues(exact_trace_length_to_sources=1) output = self.stdout.getvalue().strip() self.assertIn("Issue 1", output) self.assertNotIn("Issue 2", output) self.assertNotIn("Issue 3", output) self._clear_stdout() self.interactive.issues(exact_trace_length_to_sinks=1) output = self.stdout.getvalue().strip() self.assertIn("Issue 1", output) self.assertNotIn("Issue 2", output) self.assertNotIn("Issue 3", output) self._clear_stdout() self.interactive.issues(max_trace_length_to_sources=1) output = self.stdout.getvalue().strip() self.assertIn("Issue 1", output) self.assertNotIn("Issue 2", output) self.assertNotIn("Issue 3", output) self._clear_stdout() self.interactive.issues(max_trace_length_to_sinks=1) output = self.stdout.getvalue().strip() self.assertIn("Issue 1", output) self.assertNotIn("Issue 2", output) self.assertNotIn("Issue 3", output) self._clear_stdout() self.interactive.issues(max_trace_length_to_sources=2) output = self.stdout.getvalue().strip() self.assertIn("Issue 1", output) self.assertIn("Issue 2", output) self.assertNotIn("Issue 3", output) self._clear_stdout() self.interactive.issues(max_trace_length_to_sinks=2) output = self.stdout.getvalue().strip() self.assertIn("Issue 1", output) self.assertIn("Issue 2", output) self.assertNotIn("Issue 3", output) self._clear_stdout() self.interactive.issues( max_trace_length_to_sources=1, max_trace_length_to_sinks=1 ) output = self.stdout.getvalue().strip() self.assertIn("Issue 1", output) self.assertNotIn("Issue 2", output) self.assertNotIn("Issue 3", output) self._clear_stdout() self.interactive.issues( max_trace_length_to_sources=1, max_trace_length_to_sinks=2 ) output = self.stdout.getvalue().strip() self.assertIn("Issue 1", output) self.assertNotIn("Issue 2", output) self.assertNotIn("Issue 3", output) self._clear_stdout() def testListIssuesFilterAllFeature(self): self._list_issues_filter_setup() self.fakes.instance() feature1 = self.fakes.feature("via:feature1") feature2 = self.fakes.feature("via:feature2") self.fakes.feature("via:feature3") self.fakes.save_all(self.db) assocs = [ IssueInstanceSharedTextAssoc( shared_text_id=feature1.id, issue_instance_id=1 ), IssueInstanceSharedTextAssoc( shared_text_id=feature2.id, issue_instance_id=1 ), ] with self.db.make_session() as session: self._add_to_session(session, assocs) session.commit() self.interactive.setup() self.interactive.issues(all_features="via:feature1") output = self.stdout.getvalue().strip() self.assertIn("Issue 1", output) self._clear_stdout() self.interactive.issues(all_features=["via:feature1", "via:feature2"]) output = self.stdout.getvalue().strip() self.assertIn("Issue 1", output) self._clear_stdout() self.interactive.issues(all_features=["via:feature3"]) output = self.stdout.getvalue().strip() self.assertNotIn("Issue 1", output) self._clear_stdout() self.interactive.issues(all_features=["via:feature1", "via:feature3"]) output = self.stdout.getvalue().strip() self.assertNotIn("Issue 1", output) def testListIssuesFilterAnyFeature(self): self._list_issues_filter_setup() self.fakes.instance() feature1 = self.fakes.feature("via:feature1") feature2 = self.fakes.feature("via:feature2") self.fakes.feature("via:feature3") self.fakes.save_all(self.db) assocs = [ IssueInstanceSharedTextAssoc( shared_text_id=feature1.id, issue_instance_id=1 ), IssueInstanceSharedTextAssoc( shared_text_id=feature2.id, issue_instance_id=1 ), ] with self.db.make_session() as session: self._add_to_session(session, assocs) session.commit() self.interactive.setup() self.interactive.issues(any_features="via:feature1") output = self.stdout.getvalue().strip() self.assertIn("Issue 1", output) self._clear_stdout() self.interactive.issues(any_features=["via:feature1", "via:feature2"]) output = self.stdout.getvalue().strip() self.assertIn("Issue 1", output) self._clear_stdout() self.interactive.issues(any_features=["via:feature1", "via:feature3"]) output = self.stdout.getvalue().strip() self.assertIn("Issue 1", output) self._clear_stdout() self.interactive.issues(any_features=["via:feature3"]) output = self.stdout.getvalue().strip() self.assertNotIn("Issue 1", output) def testListIssuesFilterExcludeFeature(self): self._list_issues_filter_setup() self.fakes.instance() feature1 = self.fakes.feature("via:feature1") feature2 = self.fakes.feature("via:feature2") self.fakes.feature("via:feature3") self.fakes.save_all(self.db) assocs = [ IssueInstanceSharedTextAssoc( shared_text_id=feature1.id, issue_instance_id=1 ), IssueInstanceSharedTextAssoc( shared_text_id=feature2.id, issue_instance_id=1 ), ] with self.db.make_session() as session: self._add_to_session(session, assocs) session.commit() self.interactive.setup() self.interactive.issues(exclude_features="via:feature1") output = self.stdout.getvalue().strip() self.assertNotIn("Issue 1", output) self._clear_stdout() self.interactive.issues(exclude_features=["via:feature1", "via:feature2"]) output = self.stdout.getvalue().strip() self.assertNotIn("Issue 1", output) self._clear_stdout() self.interactive.issues(exclude_features=["via:feature1", "via:feature3"]) output = self.stdout.getvalue().strip() self.assertNotIn("Issue 1", output) self._clear_stdout() self.interactive.issues(exclude_features=["via:feature3"]) output = self.stdout.getvalue().strip() self.assertIn("Issue 1", output) def testListIssuesFilterAllFeatureAndAnyFeature(self): self._list_issues_filter_setup() feature1 = self.fakes.feature("via:feature1") feature2 = self.fakes.feature("via:feature2") feature3 = self.fakes.feature("via:feature3") self.fakes.save_all(self.db) with self.db.make_session() as session: self._add_to_session( session, [ IssueInstanceSharedTextAssoc( shared_text_id=feature1.id, issue_instance_id=1 ), IssueInstanceSharedTextAssoc( shared_text_id=feature2.id, issue_instance_id=1 ), IssueInstanceSharedTextAssoc( shared_text_id=feature3.id, issue_instance_id=1 ), IssueInstanceSharedTextAssoc( shared_text_id=feature1.id, issue_instance_id=2 ), IssueInstanceSharedTextAssoc( shared_text_id=feature2.id, issue_instance_id=2 ), ], ) session.commit() self.interactive.setup() self.interactive.issues( any_features=["via:feature2", "via:feature3"], all_features="via:feature1", ) output = self.stdout.getvalue().strip() self.assertIn("Issue 1", output) self.assertIn("Issue 2", output) def testNoRunsFound(self): self.interactive.setup() stderr = self.stderr.getvalue().strip() self.assertIn("No runs found.", stderr) def testListRuns(self): runs = [ Run(id=1, date=datetime.now(), status=RunStatus.FINISHED), Run(id=2, date=datetime.now(), status=RunStatus.INCOMPLETE), Run(id=3, date=datetime.now(), status=RunStatus.FINISHED), ] with self.db.make_session() as session: self._add_to_session(session, runs) session.commit() self.interactive.setup() self.interactive.runs() output = self.stdout.getvalue().strip() self.assertIn("Run 1", output) self.assertNotIn("Run 2", output) self.assertIn("Run 3", output) def testSetRun(self): self.fakes.issue() run1 = self.fakes.run() self.fakes.instance(message="Issue message") self.fakes.save_all(self.db) run2 = self.fakes.run() self.fakes.instance(message="Issue message") self.fakes.save_all(self.db) with self.db.make_session() as session: session.add(run1) session.add(run2) session.commit() self.interactive.setup() self.interactive.run(1) self.interactive.issues() output = self.stdout.getvalue().strip() self.assertIn("Issue 1", output) self.assertNotIn("Issue 2", output) def testSetRunNonExistent(self): runs = [ Run(id=1, date=datetime.now(), status=RunStatus.FINISHED), Run(id=2, date=datetime.now(), status=RunStatus.INCOMPLETE), ] with self.db.make_session() as session: self._add_to_session(session, runs) session.commit() self.interactive.setup() self.interactive.run(2) self.interactive.run(3) stderr = self.stderr.getvalue().strip() self.assertIn("Run 2 doesn't exist", stderr) self.assertIn("Run 3 doesn't exist", stderr) def testSetLatestRun(self): runs = [ Run(id=1, date=datetime.now(), status=RunStatus.FINISHED, kind="a"), Run(id=2, date=datetime.now(), status=RunStatus.FINISHED, kind="a"), Run(id=3, date=datetime.now(), status=RunStatus.FINISHED, kind="a"), Run(id=4, date=datetime.now(), status=RunStatus.FINISHED, kind="b"), Run(id=5, date=datetime.now(), status=RunStatus.FINISHED, kind="b"), Run(id=6, date=datetime.now(), status=RunStatus.FINISHED, kind="c"), ] with self.db.make_session() as session: self._add_to_session(session, runs) session.commit() self.interactive.latest_run("c") self.assertEqual(self.interactive.current_run_id, 6) self.interactive.latest_run("b") self.assertEqual(self.interactive.current_run_id, 5) self.interactive.latest_run("a") self.assertEqual(self.interactive.current_run_id, 3) self.interactive.latest_run("d") self.assertEqual(self.interactive.current_run_id, 3) self.assertIn("No runs with kind 'd'", self.stderr.getvalue()) def testSetIssue(self): run = self.fakes.run() self.fakes.issue() self.fakes.instance(message="Issue message") self.fakes.instance(message="Issue message") self.fakes.instance(message="Issue message") self.fakes.save_all(self.db) with self.db.make_session() as session: session.add(run) session.commit() self.interactive.setup() self.interactive.issue(2) self.assertEqual(self.interactive.current_issue_instance_id, 2) stdout = self.stdout.getvalue().strip() self.assertNotIn("Issue 1", stdout) self.assertIn("Issue 2", stdout) self.assertNotIn("Issue 3", stdout) self.interactive.issue(1) self.assertEqual(self.interactive.current_issue_instance_id, 1) stdout = self.stdout.getvalue().strip() self.assertIn("Issue 1", stdout) self.assertNotIn("Issue 3", stdout) def testSetIssueNonExistent(self): run = self.fakes.run() with self.db.make_session() as session: session.add(run) session.commit() self.interactive.setup() self.interactive.issue(1) stderr = self.stderr.getvalue().strip() self.assertIn("Issue 1 doesn't exist", stderr) def testSetIssueUpdatesRun(self): self.fakes.issue() run1 = self.fakes.run() self.fakes.instance() self.fakes.save_all(self.db) run2 = self.fakes.run() self.fakes.instance() self.fakes.save_all(self.db) with self.db.make_session() as session: session.add(run1) session.add(run2) session.commit() self.interactive.setup() self.assertEqual(int(self.interactive.current_run_id), 2) self.interactive.issue(1) self.assertEqual(int(self.interactive.current_run_id), 1) def testGetSources(self): self.fakes.instance() source1 = self.fakes.source("source1") source2 = self.fakes.source("source2") self.fakes.source("source3") self.fakes.save_all(self.db) assocs = [ IssueInstanceSharedTextAssoc( shared_text_id=source1.id, issue_instance_id=1 ), IssueInstanceSharedTextAssoc( shared_text_id=source2.id, issue_instance_id=1 ), ] with self.db.make_session() as session: self._add_to_session(session, assocs) session.commit() self.interactive.setup() sources = self.interactive._get_leaves_issue_instance( session, 1, SharedTextKind.SOURCE ) self.assertEqual(len(sources), 2) self.assertIn("source1", sources) self.assertIn("source2", sources) def testGetSinks(self): self.fakes.instance() sink1 = self.fakes.sink("sink1") sink2 = self.fakes.sink("sink2") self.fakes.sink("sink3") self.fakes.save_all(self.db) assocs = [ IssueInstanceSharedTextAssoc(shared_text_id=sink1.id, issue_instance_id=1), IssueInstanceSharedTextAssoc(shared_text_id=sink2.id, issue_instance_id=1), ] with self.db.make_session() as session: self._add_to_session(session, assocs) session.commit() self.interactive.setup() sinks = self.interactive._get_leaves_issue_instance( session, 1, SharedTextKind.SINK ) self.assertEqual(len(sinks), 2) self.assertIn("sink1", sinks) self.assertIn("sink2", sinks) def testGetFeatures(self): self.fakes.instance() feature1 = self.fakes.feature("via:feature1") feature2 = self.fakes.feature("via:feature2") self.fakes.feature("via:feature3") self.fakes.save_all(self.db) assocs = [ IssueInstanceSharedTextAssoc( shared_text_id=feature1.id, issue_instance_id=1 ), IssueInstanceSharedTextAssoc( shared_text_id=feature2.id, issue_instance_id=1 ), ] with self.db.make_session() as session: self._add_to_session(session, assocs) session.commit() self.interactive.setup() features = self.interactive._get_leaves_issue_instance( session, 1, SharedTextKind.FEATURE ) self.assertEqual(len(features), 2) self.assertIn("via:feature1", features) self.assertIn("via:feature2", features) def _basic_trace_frames(self): return [ self.fakes.precondition( caller="call1", caller_port="root", callee="call2", callee_port="param0", location=(1, 1, 1), ), self.fakes.precondition( caller="call2", caller_port="param0", callee="leaf", callee_port="sink", location=(1, 2, 1), ), ] def testCreateTraceTuples(self): # reverse order postcondition_traces = [ ( TraceFrameQueryResult( id=DBID(1), callee="call3", callee_port="result", filename="file3.py", callee_location=SourceLocation(1, 1, 3), caller="main", caller_port="root", ), 1, ), ( TraceFrameQueryResult( id=DBID(2), callee="call2", callee_port="result", caller="dummy caller", caller_port="dummy caller", filename="file2.py", callee_location=SourceLocation(1, 1, 2), ), 2, ), ( TraceFrameQueryResult( id=DBID(3), callee="leaf", callee_port="source", caller="dummy caller", caller_port="dummy caller", filename="file1.py", callee_location=SourceLocation(1, 1, 1), ), 3, ), ] trace_tuples = self.interactive._create_trace_tuples(postcondition_traces) self.assertEqual(len(trace_tuples), 3) self.assertEqual( trace_tuples, [ TraceTuple(postcondition_traces[0][0], 1), TraceTuple(postcondition_traces[1][0], 2), TraceTuple(postcondition_traces[2][0], 3), ], ) def testOutputTraceTuples(self): trace_tuples = [ TraceTuple( trace_frame=TraceFrameQueryResult( id=DBID(1), caller="unused", caller_port="unused", callee="leaf", callee_port="source", filename="file1.py", callee_location=SourceLocation(1, 1, 1), ) ), TraceTuple( trace_frame=TraceFrameQueryResult( id=DBID(2), caller="unused", caller_port="unused", callee="call2", callee_port="result", filename="file2.py", callee_location=SourceLocation(1, 1, 2), ) ), TraceTuple( trace_frame=TraceFrameQueryResult( id=DBID(3), caller="unused", caller_port="unused", callee="call3", callee_port="result", filename="file3.py", callee_location=SourceLocation(1, 1, 3), ) ), TraceTuple( trace_frame=TraceFrameQueryResult( id=DBID(4), caller="unused", caller_port="unused", callee="main", callee_port="root", filename="file4.py", callee_location=SourceLocation(1, 1, 4), ) ), TraceTuple( trace_frame=TraceFrameQueryResult( id=DBID(5), caller="unused", caller_port="unused", callee="call4", callee_port="param0", filename="file4.py", callee_location=SourceLocation(1, 1, 4), ) ), TraceTuple( trace_frame=TraceFrameQueryResult( id=DBID(6), caller="unused", caller_port="unused", callee="call5", callee_port="param1", filename="file5.py", callee_location=SourceLocation(1, 1, 5), ) ), TraceTuple( trace_frame=TraceFrameQueryResult( id=DBID(7), caller="unused", caller_port="unused", callee="leaf", callee_port="sink", filename="file6.py", callee_location=SourceLocation(1, 1, 6), ) ), ] self.interactive.current_trace_frame_index = 1 self.interactive._output_trace_tuples(trace_tuples) output = self.stdout.getvalue() self.assertEqual( output.split("\n"), [ " # ⎇ [callable] [port] [location]", " 1 leaf source file1.py:1|1|1", " --> 2 call2 result file2.py:1|1|2", " 3 call3 result file3.py:1|1|3", " 4 main root file4.py:1|1|4", " 5 call4 param0 file4.py:1|1|4", " 6 call5 param1 file5.py:1|1|5", " 7 leaf sink file6.py:1|1|6", "", ], ) self._clear_stdout() self.interactive.current_trace_frame_index = 4 self.interactive._output_trace_tuples(trace_tuples) output = self.stdout.getvalue() self.assertEqual( output.split("\n"), [ " # ⎇ [callable] [port] [location]", " 1 leaf source file1.py:1|1|1", " 2 call2 result file2.py:1|1|2", " 3 call3 result file3.py:1|1|3", " 4 main root file4.py:1|1|4", " --> 5 call4 param0 file4.py:1|1|4", " 6 call5 param1 file5.py:1|1|5", " 7 leaf sink file6.py:1|1|6", "", ], ) def testTraceFromIssue(self): run = self.fakes.run() self.fakes.issue() instance = self.fakes.instance() source = self.fakes.source() frames = [ self.fakes.postcondition( caller="call1", caller_port="root", callee="leaf", callee_port="source", location=(1, 1, 1), ), self.fakes.precondition( caller="call1", caller_port="root", callee="leaf", callee_port="sink", location=(1, 1, 2), ), ] self.fakes.saver.add_all( [ IssueInstanceTraceFrameAssoc.Record( trace_frame_id=frames[0].id, issue_instance_id=instance.id ), IssueInstanceTraceFrameAssoc.Record( trace_frame_id=frames[1].id, issue_instance_id=instance.id ), ] ) self.fakes.saver.add_all( [ TraceFrameLeafAssoc.Record( trace_frame_id=frames[0].id, leaf_id=source.id, trace_length=0 ), TraceFrameLeafAssoc.Record( trace_frame_id=frames[1].id, leaf_id=source.id, trace_length=0 ), ] ) self.fakes.save_all(self.db) with self.db.make_session() as session: session.add(run) session.commit() self.interactive.setup() self.interactive.trace() stderr = self.stderr.getvalue().strip() self.assertIn("Use 'issue ID' or 'frame ID'", stderr) self.interactive.issue(1) self._clear_stdout() self.interactive.trace() self.assertEqual( self.stdout.getvalue().split("\n"), [ " # ⎇ [callable] [port] [location]", " 1 leaf source lib/server/posts/response.py:1|1|1", " --> 2 Foo.barMethod root /r/some/filename.py:6|7|8", " 3 leaf sink lib/server/posts/request.py:1|1|2", "", ], ) def testTraceFromFrame(self): run = self.fakes.run() frames = self._basic_trace_frames() sink = self.fakes.sink("sink") self.fakes.saver.add_all( [ TraceFrameLeafAssoc.Record( trace_frame_id=frames[0].id, leaf_id=sink.id, trace_length=1 ), TraceFrameLeafAssoc.Record( trace_frame_id=frames[1].id, leaf_id=sink.id, trace_length=0 ), ] ) self.fakes.save_all(self.db) with self.db.make_session() as session: session.add(run) session.commit() self.interactive.setup() self.interactive.frame(int(frames[0].id)) self._clear_stdout() self.interactive.trace() self.assertEqual(self.interactive.sinks, {"sink"}) self.assertEqual( self.stdout.getvalue().split("\n"), [ " # ⎇ [callable] [port] [location]", " --> 1 call1 root lib/server/posts/request.py:1|1|1", " 2 call2 param0 lib/server/posts/request.py:1|1|1", " 3 leaf sink lib/server/posts/request.py:1|2|1", "", ], ) def testTraceMissingFrames(self): run = self.fakes.run() self.fakes.issue() instance = self.fakes.instance() source = self.fakes.source() frames = [ self.fakes.postcondition( caller="call1", caller_port="root", callee="leaf", callee_port="source", location=(1, 1, 1), ), self.fakes.precondition( caller="call1", caller_port="root", callee="call2", callee_port="param0", location=(1, 1, 1), ), ] self.fakes.saver.add_all( [ IssueInstanceTraceFrameAssoc.Record( trace_frame_id=frames[0].id, issue_instance_id=instance.id ), IssueInstanceTraceFrameAssoc.Record( trace_frame_id=frames[1].id, issue_instance_id=instance.id ), ] ) self.fakes.saver.add_all( [ TraceFrameLeafAssoc.Record( trace_frame_id=frames[0].id, leaf_id=source.id, trace_length=0 ), TraceFrameLeafAssoc.Record( trace_frame_id=frames[1].id, leaf_id=source.id, trace_length=0 ), ] ) self.fakes.save_all(self.db) with self.db.make_session() as session: session.add(run) session.commit() self.interactive.setup() self.interactive.issue(1) self.interactive.trace() stdout = self.stdout.getvalue().strip() self.assertIn("Missing trace frame: call2:param0", stdout) def testTraceCursorLocation(self): run = self.fakes.run() self.fakes.issue() instance = self.fakes.instance(callable="Issue callable") source = self.fakes.source() frames = [ self.fakes.postcondition( caller="call1", caller_port="root", callee="leaf", callee_port="source", location=(1, 1, 1), ), self.fakes.precondition( caller="call1", caller_port="root", callee="leaf", callee_port="sink", location=(1, 2, 1), ), ] self.fakes.saver.add_all( [ IssueInstanceTraceFrameAssoc.Record( trace_frame_id=frames[0].id, issue_instance_id=instance.id ), IssueInstanceTraceFrameAssoc.Record( trace_frame_id=frames[1].id, issue_instance_id=instance.id ), ] ) self.fakes.saver.add_all( [ TraceFrameLeafAssoc.Record( trace_frame_id=frames[0].id, leaf_id=source.id, trace_length=0 ), TraceFrameLeafAssoc.Record( trace_frame_id=frames[1].id, leaf_id=source.id, trace_length=0 ), ] ) self.fakes.save_all(self.db) with self.db.make_session() as session: session.add(run) session.commit() self.interactive.setup() self.assertIsNone(self.interactive.callable()) self.interactive.issue(1) self.assertEqual(self.interactive.callable(), "Issue callable") self.assertEqual(self.interactive.current_trace_frame_index, 1) self.interactive.next_cursor_location() self.assertEqual(self.interactive.current_trace_frame_index, 2) self.assertEqual(self.interactive.callable(), "leaf") self.interactive.next_cursor_location() self.assertEqual(self.interactive.current_trace_frame_index, 2) self.interactive.prev_cursor_location() self.assertEqual(self.interactive.current_trace_frame_index, 1) self.interactive.prev_cursor_location() self.assertEqual(self.interactive.current_trace_frame_index, 0) self.interactive.prev_cursor_location() self.assertEqual(self.interactive.current_trace_frame_index, 0) def testJumpToLocation(self): run = self.fakes.run() self.fakes.issue() instance = self.fakes.instance() source = self.fakes.source() frames = [ self.fakes.postcondition( caller="call1", caller_port="root", callee="leaf", callee_port="source" ), self.fakes.precondition( caller="call1", caller_port="root", callee="leaf", callee_port="sink" ), ] self.fakes.saver.add_all( [ IssueInstanceTraceFrameAssoc.Record( trace_frame_id=frames[0].id, issue_instance_id=instance.id ), IssueInstanceTraceFrameAssoc.Record( trace_frame_id=frames[1].id, issue_instance_id=instance.id ), ] ) self.fakes.saver.add_all( [ TraceFrameLeafAssoc.Record( trace_frame_id=frames[0].id, leaf_id=source.id, trace_length=0 ), TraceFrameLeafAssoc.Record( trace_frame_id=frames[1].id, leaf_id=source.id, trace_length=0 ), ] ) self.fakes.save_all(self.db) with self.db.make_session() as session: session.add(run) session.commit() self.interactive.setup() self.interactive.issue(1) self.assertEqual(self.interactive.current_trace_frame_index, 1) self.interactive.jump(1) self.assertEqual(self.interactive.current_trace_frame_index, 0) self.interactive.jump(3) self.assertEqual(self.interactive.current_trace_frame_index, 2) self.interactive.jump(4) self.assertEqual(self.interactive.current_trace_frame_index, 2) self.interactive.jump(0) self.assertEqual(self.interactive.current_trace_frame_index, 2) def testTraceNoSinks(self): run = self.fakes.run() self.fakes.issue() instance = self.fakes.instance() source = self.fakes.source("source1") frame = self.fakes.postcondition( caller="call1", caller_port="root", callee="leaf", callee_port="source" ) self.fakes.saver.add( IssueInstanceTraceFrameAssoc.Record( trace_frame_id=frame.id, issue_instance_id=instance.id ) ) self.fakes.saver.add( TraceFrameLeafAssoc.Record( trace_frame_id=frame.id, leaf_id=source.id, trace_length=0 ) ) self.fakes.save_all(self.db) with self.db.make_session() as session: session.add(run) session.commit() self.interactive.setup() self.interactive.sources = {"source1"} self.interactive.issue(1) self._clear_stdout() self.interactive.trace() self.assertEqual( self.stdout.getvalue().split("\n"), [ " # ⎇ [callable] [port] [location]", " 1 leaf source lib/server/posts/response.py:4|5|6", " --> 2 Foo.barMethod root /r/some/filename.py:6|7|8", "", ], ) def _set_up_branched_trace(self) -> List[TraceFrame]: run = self.fakes.run() self.fakes.issue() instance = self.fakes.instance() source = self.fakes.source("source1") sink = self.fakes.sink("sink1") self.fakes.saver.add_all( [ IssueInstanceSharedTextAssoc.Record( issue_instance_id=instance.id, shared_text_id=source.id ), IssueInstanceSharedTextAssoc.Record( issue_instance_id=instance.id, shared_text_id=sink.id ), ] ) frames = [] for i in range(6): if i < 2: # 2 postconditions frames.append( self.fakes.postcondition( caller="call1", caller_port="root", callee="leaf", callee_port="source", location=(i, i, i), ) ) self.fakes.saver.add( TraceFrameLeafAssoc.Record( trace_frame_id=frames[-1].id, leaf_id=source.id, trace_length=i ) ) self.fakes.saver.add( IssueInstanceTraceFrameAssoc.Record( trace_frame_id=frames[-1].id, issue_instance_id=instance.id ) ) elif i < 4: frames.append( self.fakes.precondition( caller="call1", caller_port="root", callee="call2", callee_port="param2", location=(i, i, i), ) ) self.fakes.saver.add( TraceFrameLeafAssoc.Record( trace_frame_id=frames[-1].id, leaf_id=sink.id, trace_length=i ) ) self.fakes.saver.add( IssueInstanceTraceFrameAssoc.Record( trace_frame_id=frames[-1].id, issue_instance_id=instance.id ) ) else: frames.append( self.fakes.precondition( caller="call2", caller_port="param2", callee="leaf", callee_port="sink", location=(i, i, i), ) ) self.fakes.saver.add( TraceFrameLeafAssoc.Record( trace_frame_id=frames[-1].id, leaf_id=sink.id, trace_length=5 - i, ) ) self.fakes.save_all(self.db) with self.db.make_session() as session: session.add(run) session.commit() return frames def testTraceBranchNumber(self): self._set_up_branched_trace() self.interactive.setup() self.interactive.issue(1) self.assertEqual(self.interactive.sources, {"source1"}) self.assertEqual(self.interactive.sinks, {"sink1"}) self._clear_stdout() self.interactive.trace() self.assertEqual( self.stdout.getvalue().split("\n"), [ " # ⎇ [callable] [port] [location]", " 1 +2 leaf source lib/server/posts/response.py:0|0|0", " --> 2 Foo.barMethod root /r/some/filename.py:6|7|8", " 3 +2 call2 param2 lib/server/posts/request.py:2|2|2", " 4 +2 leaf sink lib/server/posts/request.py:5|5|5", "", ], ) def testShowBranches(self): self._set_up_branched_trace() self.interactive.setup() self.interactive.issue(1) # Parent at root self.interactive.prev_cursor_location() with patch("click.prompt", return_value=0): self.interactive.branch() output = self.stdout.getvalue().strip() self.assertIn( "[*] leaf : source\n" " [0 hops: source1]\n" " [lib/server/posts/response.py:0|0|0]", output, ) self.assertIn( "[2] leaf : source\n" " [1 hops: source1]\n" " [lib/server/posts/response.py:1|1|1]", output, ) self._clear_stdout() # Move to call2:param2 self.interactive.next_cursor_location() self.interactive.next_cursor_location() with patch("click.prompt", return_value=0): self.interactive.branch() output = self.stdout.getvalue().strip() self.assertIn( "[*] call2 : param2\n" " [2 hops: sink1]\n" " [lib/server/posts/request.py:2|2|2]", output, ) self.assertIn( "[2] call2 : param2\n" " [3 hops: sink1]\n" " [lib/server/posts/request.py:3|3|3]", output, ) self._clear_stdout() # Move to leaf:sink self.interactive.next_cursor_location() with patch("click.prompt", return_value=0): self.interactive.branch() output = self.stdout.getvalue().strip() self.assertIn( "[*] leaf : sink\n" " [0 hops: sink1]\n" " [lib/server/posts/request.py:5|5|5]", output, ) self.assertIn( "[2] leaf : sink\n" " [1 hops: sink1]\n" " [lib/server/posts/request.py:4|4|4]", output, ) def testGetTraceFrameBranches(self): frames = self._set_up_branched_trace() self.interactive.setup() self.interactive.issue(1) # Parent at root self.interactive.prev_cursor_location() with self.db.make_session() as session: branches = self.interactive._get_trace_frame_branches(session) self.assertEqual(len(branches), 2) self.assertEqual(int(branches[0].id), int(frames[0].id)) self.assertEqual(int(branches[1].id), int(frames[1].id)) # Parent is no longer root self.interactive.next_cursor_location() self.interactive.next_cursor_location() self.interactive.next_cursor_location() branches = self.interactive._get_trace_frame_branches(session) self.assertEqual(len(branches), 2) self.assertEqual(int(branches[0].id), int(frames[5].id)) self.assertEqual(int(branches[1].id), int(frames[4].id)) def testBranch(self): self._set_up_branched_trace() self.interactive.setup() self.interactive.issue(1) self.interactive.prev_cursor_location() # We are testing for the source location, which differs between branches self._clear_stdout() self.interactive.branch(2) # location 0|0|0 -> 1|1|1 output = self.stdout.getvalue().strip() self.assertIn( " --> 1 +2 leaf source lib/server/posts/response.py:1|1|1", output ) self._clear_stdout() self.interactive.branch(1) # location 1|1|1 -> 0|0|0 output = self.stdout.getvalue().strip() self.assertIn( " --> 1 +2 leaf source lib/server/posts/response.py:0|0|0", output ) self.interactive.next_cursor_location() self.interactive.next_cursor_location() self._clear_stdout() self.interactive.branch(2) # location 2|2|2 -> 3|3|3 output = self.stdout.getvalue().strip() self.assertIn( " --> 3 +2 call2 param2 lib/server/posts/request.py:3|3|3", output ) self.interactive.next_cursor_location() self._clear_stdout() self.interactive.branch(2) # location 4|4|4 -> 5|5|5 output = self.stdout.getvalue().strip() self.assertIn( " 3 +2 call2 param2 lib/server/posts/request.py:3|3|3", output ) self.assertIn( " --> 4 +2 leaf sink lib/server/posts/request.py:4|4|4", output ) self.interactive.branch(3) # location 4|4|4 -> 5|5|5 stderr = self.stderr.getvalue().strip() self.assertIn("Branch number invalid", stderr) def testBranchPrefixLengthChanges(self): run = self.fakes.run() self.fakes.issue() instance = self.fakes.instance() source = self.fakes.source("source1") sink = self.fakes.sink("sink1") frames = [ self.fakes.postcondition( caller="call1", caller_port="root", callee="leaf", callee_port="source" ), self.fakes.postcondition( caller="call1", caller_port="root", callee="prev_call", callee_port="result", ), self.fakes.postcondition( caller="prev_call", caller_port="result", callee="leaf", callee_port="source", ), self.fakes.precondition( caller="call1", caller_port="root", callee="leaf", callee_port="sink" ), ] self.fakes.saver.add_all( [ IssueInstanceSharedTextAssoc.Record( issue_instance_id=instance.id, shared_text_id=source.id ), IssueInstanceSharedTextAssoc.Record( issue_instance_id=instance.id, shared_text_id=sink.id ), ] ) self.fakes.saver.add_all( [ IssueInstanceTraceFrameAssoc.Record( issue_instance_id=instance.id, trace_frame_id=frames[0].id ), IssueInstanceTraceFrameAssoc.Record( issue_instance_id=instance.id, trace_frame_id=frames[1].id ), IssueInstanceTraceFrameAssoc.Record( issue_instance_id=instance.id, trace_frame_id=frames[3].id ), ] ) self.fakes.saver.add_all( [ TraceFrameLeafAssoc.Record( trace_frame_id=frames[0].id, leaf_id=source.id, trace_length=0 ), TraceFrameLeafAssoc.Record( trace_frame_id=frames[1].id, leaf_id=source.id, trace_length=1 ), TraceFrameLeafAssoc.Record( trace_frame_id=frames[2].id, leaf_id=source.id, trace_length=0 ), TraceFrameLeafAssoc.Record( trace_frame_id=frames[3].id, leaf_id=sink.id, trace_length=0 ), ] ) self.fakes.save_all(self.db) with self.db.make_session() as session: session.add(run) session.commit() self.interactive.setup() self.interactive.issue(1) self._clear_stdout() self.interactive.prev_cursor_location() self.assertEqual( self.stdout.getvalue().split("\n"), [ " # ⎇ [callable] [port] [location]", " --> 1 +2 leaf source lib/server/posts/response.py:4|5|6", " 2 Foo.barMethod root /r/some/filename.py:6|7|8", " 3 leaf sink lib/server/posts/request.py:4|5|6", "", ], ) self._clear_stdout() self.interactive.branch(2) self.assertEqual( self.stdout.getvalue().split("\n"), [ " # ⎇ [callable] [port] [location]", " 1 leaf source lib/server/posts/response.py:4|5|6", " --> 2 +2 prev_call result lib/server/posts/response.py:4|5|6", " 3 Foo.barMethod root /r/some/filename.py:6|7|8", " 4 leaf sink lib/server/posts/request.py:4|5|6", "", ], ) self._clear_stdout() with patch("click.prompt", return_value=0): self.interactive.branch() output = self.stdout.getvalue().strip() self.assertIn("[*] prev_call : result", output) self.assertIn(" [1 hops: source1]", output) def testCurrentBranchIndex(self): trace_frames = [TraceFrame(id=1), TraceFrame(id=2), TraceFrame(id=3)] self.interactive.current_trace_frame_index = 0 self.interactive.trace_tuples = [TraceTuple(trace_frame=TraceFrame(id=1))] self.assertEqual(0, self.interactive._current_branch_index(trace_frames)) self.interactive.trace_tuples[0].trace_frame.id = 2 self.assertEqual(1, self.interactive._current_branch_index(trace_frames)) self.interactive.trace_tuples[0].trace_frame.id = 3 self.assertEqual(2, self.interactive._current_branch_index(trace_frames)) self.interactive.trace_tuples[0].trace_frame.id = 4 self.assertEqual(-1, self.interactive._current_branch_index(trace_frames)) def testVerifyEntrypointSelected(self): self.interactive.current_issue_instance_id = -1 self.interactive.current_frame_id = -1 with self.assertRaises(UserError): self.interactive._verify_entrypoint_selected() self.interactive.current_issue_instance_id = 1 try: self.interactive._verify_entrypoint_selected() except UserError: self.fail("Unexpected UserError") self.interactive.current_issue_instance_id = -1 self.interactive.current_frame_id = 1 try: self.interactive._verify_entrypoint_selected() except UserError: self.fail("Unexpected UserError") self.interactive.current_issue_instance_id = 1 with self.assertRaises(AssertionError): self.interactive._verify_entrypoint_selected() def testVerifyMultipleBranches(self): self.interactive.current_trace_frame_index = 0 self.interactive.trace_tuples = [ TraceTuple(trace_frame=TraceFrame(id=1), branches=1), TraceTuple(trace_frame=TraceFrame(id=2), branches=2), ] with self.assertRaises(UserError): self.interactive._verify_multiple_branches() self.interactive.current_trace_frame_index = 1 try: self.interactive._verify_multiple_branches() except UserError: self.fail("Unexpected UserError") def testAddListOrElementFilterErrors(self): with self.assertRaises(UserError): self.interactive._add_list_or_element_filter_to_query( "not a list", None, None, "arg0", int ) with self.assertRaises(UserError): self.interactive._add_list_or_element_filter_to_query( [], None, None, "arg0", str ) def testAddListOrStringFilterToQuery(self): shared_texts = [ SharedText(id=1, contents="prefix"), SharedText(id=2, contents="suffix"), SharedText(id=3, contents="prefix_suffix"), SharedText(id=4, contents="fix"), ] with self.db.make_session() as session: self._add_to_session(session, shared_texts) session.commit() query = session.query(SharedText.contents) self.assertEqual( self.interactive._add_list_or_string_filter_to_query( ["prefix", "suffix"], query, SharedText.contents, "contents" ).all(), [("prefix",), ("suffix",)], ) self.assertEqual( self.interactive._add_list_or_string_filter_to_query( ["%prefix%"], query, SharedText.contents, "contents" ).all(), [("prefix",), ("prefix_suffix",)], ) self.assertEqual( self.interactive._add_list_or_string_filter_to_query( ["%fix%"], query, SharedText.contents, "contents" ).all(), [("prefix",), ("suffix",), ("prefix_suffix",), ("fix",)], ) def testCreateIssueOutputStringNoSourcesNoSinks(self): issue = IssueQueryResult( id=1, filename="module.py", location=SourceLocation(1, 2, 3), code=1000, callable="module.function1", message="root", min_trace_length_to_sources=1, min_trace_length_to_sinks=1, ) sources = [] sinks = ["sink1", "sink2"] features = [] result = self.interactive._create_issue_output_string( issue, sources, sinks, features ) self.assertIn("Sources: No sources", result) self.assertIn("Sinks: sink1", result) sources = ["source1", "source2"] sinks = [] result = self.interactive._create_issue_output_string( issue, sources, sinks, features ) self.assertIn("Sources: source1", result) self.assertIn("Sinks: No sinks", result) def testCreateIssueOutputStringNoFeatures(self): issue = IssueQueryResult( id=1, filename="module.py", location=SourceLocation(1, 2, 3), code=1000, callable="module.function1", message="root", min_trace_length_to_sources=1, min_trace_length_to_sinks=1, ) sources = [] sinks = ["sink1"] features = [] result = self.interactive._create_issue_output_string( issue, sources, sinks, features ) self.assertIn("Features: No features", result) sources = [] sinks = ["sink1"] features = ["via:feature1"] result = self.interactive._create_issue_output_string( issue, sources, sinks, features ) self.assertIn("Features: via:feature1", result) def testCreateIssueOutputStringTraceLength(self): issue1 = IssueQueryResult( id=1, filename="module.py", location=SourceLocation(1, 2, 3), code=1000, callable="module.function1", message="root", min_trace_length_to_sources=0, min_trace_length_to_sinks=6, ) sources = [] sinks = ["sink1", "sink2"] features = [] result = self.interactive._create_issue_output_string( issue1, sources, sinks, features ) self.assertIn("Min Trace Length: Source (0) | Sink (6)", result) issue2 = IssueQueryResult( id=1, filename="module.py", location=SourceLocation(1, 2, 3), code=1000, callable="module.function1", message="root", min_trace_length_to_sources=3, min_trace_length_to_sinks=1, ) sources = [] sinks = ["sink1", "sink2"] result = self.interactive._create_issue_output_string( issue2, sources, sinks, features ) self.assertIn("Min Trace Length: Source (3) | Sink (1)", result) def testListSourceCode(self): mock_data = """if this_is_true: print("This was true") else: print("This was false") """ self.interactive.setup() self.interactive.current_issue_instance_id = 1 self.interactive.current_trace_frame_index = 0 self.interactive.trace_tuples = [ TraceTuple( trace_frame=TraceFrameQueryResult( id=DBID(0), filename="file.py", caller="", caller_port="", callee="callee", callee_port="", callee_location=SourceLocation(2, 10, 25), ), placeholder=True, ) ] with patch("builtins.open", mock_open(read_data=mock_data)) as mock_file: self._clear_stdout() self.interactive.list_source_code(2) mock_file.assert_called_once_with(f"{os.getcwd()}/file.py", "r") output = self.stdout.getvalue() self.assertEqual( output.split("\n"), [ "In callee [file.py:2|10|25]", " 1 if this_is_true:", ' --> 2 print("This was true")', " ^^^^^^^^^^^^^^^", " 3 else:", ' 4 print("This was false")', "", ], ) mock_file.reset_mock() self._clear_stdout() self.interactive.list_source_code(1) mock_file.assert_called_once_with(f"{os.getcwd()}/file.py", "r") output = self.stdout.getvalue() self.assertEqual( output.split("\n"), [ "In callee [file.py:2|10|25]", " 1 if this_is_true:", ' --> 2 print("This was true")', " ^^^^^^^^^^^^^^^", " 3 else:", "", ], ) def testListSourceCodeFileNotFound(self): self.interactive.setup() self.interactive.current_issue_instance_id = 1 self.interactive.current_trace_frame_index = 0 self.interactive.trace_tuples = [ TraceTuple( trace_frame=TraceFrameQueryResult( id=DBID(0), caller="", caller_port="", callee="", callee_port="", filename="file.py", callee_location=SourceLocation(2, 1, 1), ) ) ] with patch("builtins.open", mock_open(read_data="not read")) as mock_file: mock_file.side_effect = FileNotFoundError() self.interactive.list_source_code() self.assertIn("Couldn't open", self.stderr.getvalue()) self.assertNotIn("file.py", self.stdout.getvalue()) def testGroupTraceFrames(self): trace_frames = [ TraceFrameQueryResult( id=DBID(1), caller="caller1", caller_port="port1", callee="", callee_port="", ), TraceFrameQueryResult( id=DBID(2), caller="caller1", caller_port="port1", callee="", callee_port="", ), TraceFrameQueryResult( id=DBID(3), caller="caller2", caller_port="port2", callee="", callee_port="", ), TraceFrameQueryResult( id=DBID(4), caller="caller2", caller_port="port2", callee="", callee_port="", ), TraceFrameQueryResult( id=DBID(5), caller="caller2", caller_port="port3", callee="", callee_port="", ), ] buckets = self.interactive._group_trace_frames(trace_frames, 5) self.assertEqual(3, len(buckets.keys())) self.assertIn(("caller1", "port1"), buckets.keys()) self.assertIn(("caller2", "port2"), buckets.keys()) self.assertIn(("caller2", "port3"), buckets.keys()) self.assertEqual( [1, 2], [int(frame.id) for frame in buckets[("caller1", "port1")]] ) self.assertEqual( [3, 4], [int(frame.id) for frame in buckets[("caller2", "port2")]] ) self.assertEqual( [5], [int(frame.id) for frame in buckets[("caller2", "port3")]] ) def testListTracesBasic(self): self.fakes.run() post1 = self.fakes.postcondition( caller="caller1", caller_port="port1", callee="callee1", callee_port="port1" ) post2 = self.fakes.postcondition( caller="caller1", caller_port="port1", callee="callee2", callee_port="port2" ) post3 = self.fakes.postcondition( caller="caller2", caller_port="port2", callee="callee3", callee_port="port3" ) post4 = self.fakes.postcondition( caller="caller2", caller_port="port2", callee="callee4", callee_port="port4" ) post5 = self.fakes.postcondition( caller="caller2", caller_port="port3", callee="callee5", callee_port="port5" ) self.fakes.save_all(self.db) self.interactive.current_run_id = 1 self._clear_stdout() self.interactive.frames(kind=TraceKind.POSTCONDITION) self.assertEqual( self.stdout.getvalue().split("\n"), [ "[id] [caller:caller_port -> callee:callee_port]", "---- caller1:port1 ->", f"{post1.id} callee1:port1", f"{post2.id} callee2:port2", "---- caller2:port2 ->", f"{post3.id} callee3:port3", f"{post4.id} callee4:port4", "---- caller2:port3 ->", f"{post5.id} callee5:port5", "", ], ) self._clear_stdout() self.interactive.frames(kind=TraceKind.PRECONDITION) self.assertEqual(self.stdout.getvalue().strip(), "No trace frames found.") def testListTracesFilterCallersCallees(self): run = self.fakes.run() frames = self._basic_trace_frames() self.fakes.save_all(self.db) with self.db.make_session() as session: session.add(run) session.commit() self.interactive.current_run_id = 1 self._clear_stdout() self.interactive.frames(callers=["call2"]) self.assertEqual( self.stdout.getvalue().split("\n"), [ "[id] [caller:caller_port -> callee:callee_port]", "---- call2:param0 ->", f"{frames[1].id} leaf:sink", "", ], ) self._clear_stdout() self.interactive.frames(callees=["call2"]) self.assertEqual( self.stdout.getvalue().split("\n"), [ "[id] [caller:caller_port -> callee:callee_port]", "---- call1:root ->", f"{frames[0].id} call2:param0", "", ], ) def testListFramesWithLimit(self): frames = self._set_up_branched_trace() self.interactive.run(1) self._clear_stdout() self.interactive.frames(limit=3) self.assertEqual( self.stdout.getvalue().split("\n"), [ "[id] [caller:caller_port -> callee:callee_port]", "---- call1:root ->", f"{frames[3].id} call2:param2", f"{frames[2].id} call2:param2", f"{frames[1].id} leaf:source", "...", "Showing 3/6 matching frames. To see more, call 'frames' with " "the 'limit' argument.", "", ], ) def testSetFrame(self): frames = self._basic_trace_frames() sink = self.fakes.sink("sink") self.fakes.saver.add_all( [ TraceFrameLeafAssoc.Record( trace_frame_id=frames[0].id, leaf_id=sink.id, trace_length=1 ), TraceFrameLeafAssoc.Record( trace_frame_id=frames[1].id, leaf_id=sink.id, trace_length=0 ), ] ) self.fakes.save_all(self.db) self.interactive.setup() self.interactive.frame(0) self.assertIn("Trace frame 0 doesn't exist.", self.stderr.getvalue()) self._clear_stdout() self.interactive.frame(1) self.assertIn("Trace frame 1", self.stdout.getvalue()) self.assertNotIn("Trace frame 2", self.stdout.getvalue()) self._clear_stdout() self.interactive.frame(2) self.assertNotIn("Trace frame 1", self.stdout.getvalue()) self.assertIn("Trace frame 2", self.stdout.getvalue()) def testSetFrameUpdatesRun(self): run1 = self.fakes.run() frames = [ self.fakes.precondition( caller="call1", caller_port="root", callee="call2", callee_port="param0", location=(1, 1, 1), ), self.fakes.precondition( caller="call2", caller_port="param1", callee="call3", callee_port="param2", location=(1, 1, 1), ), ] run2 = self.fakes.run() sink = self.fakes.sink("sink1") self.fakes.saver.add_all( [ TraceFrameLeafAssoc.Record( trace_frame_id=frames[0].id, leaf_id=sink.id, trace_length=1 ), TraceFrameLeafAssoc.Record( trace_frame_id=frames[1].id, leaf_id=sink.id, trace_length=0 ), ] ) self.fakes.save_all(self.db) with self.db.make_session() as session: session.add(run1) session.add(run2) session.commit() self.interactive.setup() self.assertEqual(int(self.interactive.current_run_id), 2) self.interactive.frame(int(frames[0].id)) self.assertEqual(int(self.interactive.current_run_id), 1) def testIsBeforeRoot(self): self.interactive.trace_tuples = [ TraceTuple(trace_frame=TraceFrame(kind=TraceKind.POSTCONDITION)), TraceTuple(trace_frame=TraceFrame(kind=TraceKind.PRECONDITION)), ] self.interactive.current_trace_frame_index = 0 self.assertTrue(self.interactive._is_before_root()) self.interactive.current_trace_frame_index = 1 self.assertFalse(self.interactive._is_before_root()) def testIsRootTraceTuple(self): trace_tuple = TraceTuple(trace_frame=TraceFrame(callee_port="root")) self.assertTrue(self.interactive._is_root_trace_tuple(trace_tuple)) trace_tuple = TraceTuple(trace_frame=TraceFrame(callee_port="not_root")) self.assertFalse(self.interactive._is_root_trace_tuple(trace_tuple)) def testParents(self): self._set_up_branched_trace() self.interactive.setup() self.interactive.frame(3) self.interactive.current_trace_frame_index = 1 self._clear_stdout() with patch("click.prompt", return_value=0): self.interactive.parents() self.assertEqual( self.stdout.getvalue().split("\n"), ["[1] call1 : root", "[2] call1 : root", ""], ) self._clear_stdout() self.interactive.current_trace_frame_index = 0 self.interactive.parents() self.assertIn("No parents calling", self.stdout.getvalue()) self.interactive.current_trace_frame_index = 2 self.interactive.parents() self.assertIn("Try running from a non-leaf node", self.stderr.getvalue()) def testParentsSelectParent(self): self._set_up_branched_trace() self.interactive.setup() self.interactive.frame(3) self.interactive.current_trace_frame_index = 1 self._clear_stdout() with patch("click.prompt", return_value=1): self.interactive.parents() self.assertEqual( self.stdout.getvalue().split("\n"), [ "[1] call1 : root", "[2] call1 : root", "", " # ⎇ [callable] [port] [location]", " --> 1 call1 root lib/server/posts/request.py:2|2|2", " 2 call2 param2 lib/server/posts/request.py:2|2|2", " 3 +2 leaf sink lib/server/posts/request.py:5|5|5", "", ], ) def testUpdateTraceTuplesNewParent(self): frames = [ self.fakes.postcondition(callee="A"), self.fakes.postcondition(callee="B"), self.fakes.postcondition(callee="C"), self.fakes.postcondition(callee="D"), self.fakes.postcondition(callee="E"), ] self.fakes.save_all(self.db) self.interactive.setup() # Test postcondition self.interactive.current_trace_frame_index = 2 with self.db.make_session() as session: self.interactive.trace_tuples = [ TraceTuple(trace_frame=self._frame_to_query_result(session, frames[0])), TraceTuple(trace_frame=self._frame_to_query_result(session, frames[1])), TraceTuple(trace_frame=self._frame_to_query_result(session, frames[2])), TraceTuple(trace_frame=self._frame_to_query_result(session, frames[3])), TraceTuple(trace_frame=self._frame_to_query_result(session, frames[4])), ] trace_frame = TraceFrameQueryResult( id=DBID(0), caller="caller", caller_port="caller_port", callee="F", callee_port="callee_port", filename="file.py", callee_location=SourceLocation(1, 1, 1), kind=TraceKind.POSTCONDITION, ) self.interactive._update_trace_tuples_new_parent(trace_frame) self.assertEqual(self.interactive.current_trace_frame_index, 3) self.assertEqual( [ self.interactive._get_callable_from_trace_tuple(trace_tuple)[0] for trace_tuple in self.interactive.trace_tuples ], ["A", "B", "F", "caller"], ) self.assertTrue(self.interactive.trace_tuples[-1].placeholder) # Test precondition self.interactive.current_trace_frame_index = 2 with self.db.make_session() as session: self.interactive.trace_tuples = [ TraceTuple(trace_frame=self._frame_to_query_result(session, frames[0])), TraceTuple(trace_frame=self._frame_to_query_result(session, frames[1])), TraceTuple(trace_frame=self._frame_to_query_result(session, frames[2])), TraceTuple(trace_frame=self._frame_to_query_result(session, frames[3])), TraceTuple(trace_frame=self._frame_to_query_result(session, frames[4])), ] trace_frame = TraceFrameQueryResult( id=DBID(0), caller="caller", caller_port="caller_port", callee="F", callee_port="callee_port", filename="file.py", callee_location=SourceLocation(1, 1, 1), kind=TraceKind.PRECONDITION, ) self.interactive._update_trace_tuples_new_parent(trace_frame) self.assertEqual(self.interactive.current_trace_frame_index, 0) self.assertEqual( [ self.interactive._get_callable_from_trace_tuple(trace_tuple)[0] for trace_tuple in self.interactive.trace_tuples ], ["caller", "F", "D", "E"], ) self.assertTrue(self.interactive.trace_tuples[0].placeholder) def testAllLeavesByKind(self): shared_texts = [ SharedText(id=1, contents="source1", kind=SharedTextKind.SOURCE), SharedText(id=2, contents="source2", kind=SharedTextKind.SOURCE), SharedText(id=3, contents="source3", kind=SharedTextKind.SOURCE), SharedText(id=4, contents="sink4", kind=SharedTextKind.SINK), SharedText(id=5, contents="sink5", kind=SharedTextKind.SINK), ] with self.db.make_session() as session: self._add_to_session(session, shared_texts) session.commit() self.assertEqual( self.interactive._all_leaves_by_kind(session, SharedTextKind.SOURCE), {1: "source1", 2: "source2", 3: "source3"}, ) self.assertEqual( self.interactive._all_leaves_by_kind(session, SharedTextKind.SINK), {4: "sink4", 5: "sink5"}, ) def testDetails(self): run = self.fakes.run() frames = [ self.fakes.precondition( caller="call1", caller_port="root", callee="call2", callee_port="param0", location=(1, 1, 1), ), self.fakes.precondition( caller="call2", caller_port="param1", callee="call3", callee_port="param2", location=(1, 1, 1), ), ] issues = [self.fakes.issue(), self.fakes.issue(), self.fakes.issue()] self.fakes.instance(issue_id=issues[0].id, callable="call2"), self.fakes.instance(issue_id=issues[1].id, callable="call3"), self.fakes.instance(issue_id=issues[2].id, callable="call2"), self.fakes.save_all(self.db) with self.db.make_session(expire_on_commit=False) as session: session.add(run) session.commit() self.interactive.setup() with self.db.make_session() as session: self.interactive.trace_tuples = [ TraceTuple(trace_frame=self._frame_to_query_result(session, frames[0])) ] self.interactive.current_issue_instance_id = 1 self.interactive.current_trace_frame_index = 0 self._clear_stdout() self.interactive.details() self.assertEqual( self.stdout.getvalue().split("\n"), [ f"Trace frame {frames[0].id}", " Caller: call1 : root", " Callee: call2 : param0", " Kind: TraceKind.precondition", " Sinks: ", " Location: lib/server/posts/request.py:1|1|1", "", "Issues in callable (call2): 2", "", "Postconditions with caller (call2):", "No trace frames found.", "", "Preconditions with caller (call2):", "[id] [caller:caller_port -> callee:callee_port]", "---- call2:param1 ->", f"{frames[1].id} call3:param2", "", ], ) def mock_pager(self, output_string): self.pager_calls += 1 def testPager(self): run = self.fakes.run() self.fakes.issue() self.fakes.instance() self.fakes.save_all(self.db) with self.db.make_session() as session: session.add(run) session.commit() # Default is no pager in tests self.pager_calls = 0 with patch("IPython.core.page.page", self.mock_pager): self.interactive.setup() self.interactive.issues(use_pager=False) self.interactive.runs(use_pager=False) self.assertEqual(self.pager_calls, 0) self.pager_calls = 0 with patch("IPython.core.page.page", self.mock_pager): self.interactive.setup() self.interactive.issues(use_pager=True) self.interactive.runs(use_pager=True) self.assertEqual(self.pager_calls, 2)
7967013853faa251a7c164a1774ad60bcab38057
84a240d463a7c286a4ff3b0c344a0e80e681ce38
/src/chap03/10_time_dependencies/test.py
1ae0ad5dbbf3e72fb61a6fcfb782ede2deaa843d
[]
no_license
perillaroc/ecflow-tutorial-code
87f12b11f942b2323e45f8f8c205f665ceaeca7f
e00d0556a161a4c221b854f99dbbd0898ee14762
refs/heads/master
2021-09-06T04:30:48.812500
2018-02-02T06:48:41
2018-02-02T06:48:41
119,969,899
0
0
null
null
null
null
UTF-8
Python
false
false
1,034
py
import os from pathlib import Path from ecflow import Defs, Suite, Task, Family, Edit, Trigger, Event, Complete, Meter, Time, Day, Date def create_family_f1(): return Family( "f1", Edit(SLEEP=20), Task("t1", Time("03:00 23:00 00:30")), Task("t2", Day("sunday")), Task("t3", Date("1.*.*"), Time("12:00") ), Task("t4", Time("+00:02")), Task("t5", Time("00:02")) ) print("Creating suite definition") home = os.path.abspath(Path(Path(__file__).parent, "../../../build/course")) defs = Defs( Suite('test', Edit(ECF_INCLUDE=home, ECF_HOME=home), create_family_f1())) print(defs) print("Checking job creation: .ecf -> .job0") print(defs.check_job_creation()) print("Saving definition to file 'test.def'") defs.save_as_defs(str(Path(home, "test.def"))) # To restore the definition from file 'test.def' we can use: # restored_defs = ecflow.Defs("test.def")
befb49d4dbdb7cb938cabe95b0ce64fc371134a3
93a10a77cfed19f6f43987d5f7333c7599990ab1
/vpy27/Lib/site-packages/cms/cms_toolbars.py
963e7378c772e5cbb3cd448e37d3d387bf6db174
[]
no_license
zfanai/vpy27
8cd00a49cadccd462276f685dfa30d51cfdfe3d6
57ae83d393c569cb632b1ad0bb093a13851e10ed
refs/heads/master
2021-07-15T20:25:41.383490
2017-10-21T02:18:50
2017-10-21T02:18:50
107,623,345
1
0
null
null
null
null
UTF-8
Python
false
false
27,153
py
# -*- coding: utf-8 -*- from classytags.utils import flatten_context from django.conf import settings from django.contrib import admin from django.contrib.auth import get_permission_codename, get_user_model from django.contrib.auth.models import AnonymousUser from django.contrib.sites.models import Site from django.core.urlresolvers import reverse, NoReverseMatch, resolve, Resolver404 from django.template.loader import render_to_string from django.utils.safestring import mark_safe from django.utils.translation import ugettext_lazy as _ from cms.api import get_page_draft, can_change_page from cms.constants import TEMPLATE_INHERITANCE_MAGIC, PUBLISHER_STATE_PENDING from cms.models import CMSPlugin, Title, Page from cms.toolbar.items import TemplateItem, REFRESH_PAGE from cms.toolbar_base import CMSToolbar from cms.toolbar_pool import toolbar_pool from cms.utils.i18n import get_language_tuple, force_language, get_language_dict from cms.utils.compat.dj import is_installed from cms.utils import get_cms_setting from cms.utils.permissions import ( get_user_sites_queryset, has_auth_page_permission, ) from cms.utils.urlutils import add_url_parameters, admin_reverse from menus.utils import DefaultLanguageChanger # Identifiers for search ADMIN_MENU_IDENTIFIER = 'admin-menu' LANGUAGE_MENU_IDENTIFIER = 'language-menu' TEMPLATE_MENU_BREAK = 'Template Menu Break' PAGE_MENU_IDENTIFIER = 'page' PAGE_MENU_ADD_IDENTIFIER = 'add_page' PAGE_MENU_FIRST_BREAK = 'Page Menu First Break' PAGE_MENU_SECOND_BREAK = 'Page Menu Second Break' PAGE_MENU_THIRD_BREAK = 'Page Menu Third Break' PAGE_MENU_FOURTH_BREAK = 'Page Menu Fourth Break' PAGE_MENU_LAST_BREAK = 'Page Menu Last Break' HISTORY_MENU_IDENTIFIER = 'history' HISTORY_MENU_BREAK = 'History Menu Break' MANAGE_PAGES_BREAK = 'Manage Pages Break' ADMIN_SITES_BREAK = 'Admin Sites Break' ADMINISTRATION_BREAK = 'Administration Break' CLIPBOARD_BREAK = 'Clipboard Break' USER_SETTINGS_BREAK = 'User Settings Break' ADD_PAGE_LANGUAGE_BREAK = "Add page language Break" REMOVE_PAGE_LANGUAGE_BREAK = "Remove page language Break" COPY_PAGE_LANGUAGE_BREAK = "Copy page language Break" TOOLBAR_DISABLE_BREAK = 'Toolbar disable Break' @toolbar_pool.register class PlaceholderToolbar(CMSToolbar): """ Adds placeholder edit buttons if placeholders or static placeholders are detected in the template """ def init_from_request(self): self.page = get_page_draft(self.request.current_page) def init_placeholders_from_request(self): self.placeholders = getattr(self.request, 'placeholders', []) self.statics = getattr(self.request, 'static_placeholders', []) def populate(self): self.init_from_request() def post_template_populate(self): self.init_placeholders_from_request() self.add_wizard_button() self.add_structure_mode() def add_structure_mode(self): if self.page and not self.page.application_urls: if self.page.has_change_permission(self.request): return self.add_structure_mode_item() elif self.placeholders: return self.add_structure_mode_item() for sp in self.statics: if sp.has_change_permission(self.request): return self.add_structure_mode_item() def add_structure_mode_item(self, extra_classes=('cms-toolbar-item-cms-mode-switcher',)): build_mode = self.toolbar.build_mode build_url = '?%s' % get_cms_setting('CMS_TOOLBAR_URL__BUILD') edit_url = '?%s' % get_cms_setting('CMS_TOOLBAR_URL__EDIT_ON') if self.request.user.has_perm("cms.use_structure"): switcher = self.toolbar.add_button_list('Mode Switcher', side=self.toolbar.RIGHT, extra_classes=extra_classes) switcher.add_button(_('Structure'), build_url, active=build_mode, disabled=False) switcher.add_button(_('Content'), edit_url, active=not build_mode, disabled=False) def add_wizard_button(self): from cms.wizards.wizard_pool import entry_choices title = _("Create") try: page_pk = self.page.pk except AttributeError: page_pk = '' user = getattr(self.request, "user", None) disabled = user and hasattr(self, "page") and len( list(entry_choices(user, self.page))) == 0 url = '{url}?page={page}&edit'.format( url=reverse("cms_wizard_create"), page=page_pk ) self.toolbar.add_modal_button(title, url, side=self.toolbar.RIGHT, disabled=disabled, on_close=REFRESH_PAGE) @toolbar_pool.register class BasicToolbar(CMSToolbar): """ Basic Toolbar for site and languages menu """ page = None _language_menu = None _admin_menu = None def init_from_request(self): self.page = get_page_draft(self.request.current_page) def populate(self): if not self.page: self.init_from_request() user_settings = self.request.toolbar.get_user_settings() self.clipboard = user_settings.clipboard self.add_admin_menu() self.add_language_menu() def add_admin_menu(self): if not self._admin_menu: self._admin_menu = self.toolbar.get_or_create_menu(ADMIN_MENU_IDENTIFIER, self.current_site.name) # Users button self.add_users_button(self._admin_menu) # sites menu if get_cms_setting('PERMISSION'): sites_queryset = get_user_sites_queryset(self.request.user) else: sites_queryset = Site.objects.all() if len(sites_queryset) > 1: sites_menu = self._admin_menu.get_or_create_menu('sites', _('Sites')) sites_menu.add_sideframe_item(_('Admin Sites'), url=admin_reverse('sites_site_changelist')) sites_menu.add_break(ADMIN_SITES_BREAK) for site in sites_queryset: sites_menu.add_link_item(site.name, url='http://%s' % site.domain, active=site.pk == self.current_site.pk) # admin self._admin_menu.add_sideframe_item(_('Administration'), url=admin_reverse('index')) self._admin_menu.add_break(ADMINISTRATION_BREAK) # cms users settings self._admin_menu.add_sideframe_item(_('User settings'), url=admin_reverse('cms_usersettings_change')) self._admin_menu.add_break(USER_SETTINGS_BREAK) # clipboard if self.toolbar.edit_mode or self.toolbar.build_mode: # True if the clipboard exists and there's plugins in it. clipboard_is_bound = self.get_clipboard_plugins().exists() self._admin_menu.add_link_item(_('Clipboard...'), url='#', extra_classes=['cms-clipboard-trigger'], disabled=not clipboard_is_bound) self._admin_menu.add_link_item(_('Clear clipboard'), url='#', extra_classes=['cms-clipboard-empty'], disabled=not clipboard_is_bound) self._admin_menu.add_break(CLIPBOARD_BREAK) # Disable toolbar self._admin_menu.add_link_item(_('Disable toolbar'), url='?%s' % get_cms_setting('CMS_TOOLBAR_URL__DISABLE')) self._admin_menu.add_break(TOOLBAR_DISABLE_BREAK) # logout self.add_logout_button(self._admin_menu) def add_users_button(self, parent): User = get_user_model() if User in admin.site._registry: opts = User._meta if self.request.user.has_perm('%s.%s' % (opts.app_label, get_permission_codename('change', opts))): user_changelist_url = admin_reverse('%s_%s_changelist' % (opts.app_label, opts.model_name)) parent.add_sideframe_item(_('Users'), url=user_changelist_url) def add_logout_button(self, parent): # If current page is not published or has view restrictions user is redirected to the home page: # * published page: no redirect # * unpublished page: redirect to the home page # * published page with login_required: redirect to the home page # * published page with view permissions: redirect to the home page if (self.page and self.page.is_published(self.current_lang) and not self.page.login_required and self.page.has_view_permission(self.request, AnonymousUser())): on_success = self.toolbar.REFRESH_PAGE else: on_success = '/' # We'll show "Logout Joe Bloggs" if the name fields in auth.User are completed, else "Logout jbloggs". If # anything goes wrong, it'll just be "Logout". user_name = self.get_username() logout_menu_text = _('Logout %s') % user_name if user_name else _('Logout') parent.add_ajax_item(logout_menu_text, action=admin_reverse('logout'), active=True, on_success=on_success) def add_language_menu(self): if settings.USE_I18N and not self._language_menu: self._language_menu = self.toolbar.get_or_create_menu(LANGUAGE_MENU_IDENTIFIER, _('Language')) language_changer = getattr(self.request, '_language_changer', DefaultLanguageChanger(self.request)) for code, name in get_language_tuple(self.current_site.pk): try: url = language_changer(code) except NoReverseMatch: url = DefaultLanguageChanger(self.request)(code) self._language_menu.add_link_item(name, url=url, active=self.current_lang == code) def get_username(self, user=None, default=''): user = user or self.request.user try: name = user.get_full_name() if name: return name else: return user.get_username() except (AttributeError, NotImplementedError): return default def get_clipboard_plugins(self): self.populate() if not hasattr(self, "clipboard"): return CMSPlugin.objects.none() return self.clipboard.get_plugins() def render_addons(self, context): context.push() context['local_toolbar'] = self clipboard = mark_safe(render_to_string('cms/toolbar/clipboard.html', flatten_context(context))) context.pop() return [clipboard] @toolbar_pool.register class PageToolbar(CMSToolbar): _changed_admin_menu = None watch_models = [Page] # Helpers def init_from_request(self): self.page = get_page_draft(self.request.current_page) self.title = self.get_title() self.permissions_activated = get_cms_setting('PERMISSION') def init_placeholders_from_request(self): self.placeholders = getattr(self.request, 'placeholders', []) self.statics = getattr(self.request, 'static_placeholders', []) self.dirty_statics = [sp for sp in self.statics if sp.dirty] def get_title(self): try: return Title.objects.get(page=self.page, language=self.current_lang, publisher_is_draft=True) except Title.DoesNotExist: return None def has_publish_permission(self): if not hasattr(self, 'publish_permission'): publish_permission = bool(self.page or self.statics) if self.page: publish_permission = self.page.has_publish_permission(self.request) if self.statics: publish_permission &= all(sp.has_publish_permission(self.request) for sp in self.dirty_statics) self.publish_permission = publish_permission return self.publish_permission def has_page_change_permission(self): if not hasattr(self, 'page_change_permission'): if not self.page and not get_cms_setting('PERMISSION'): # We can't check permissions for an individual page # and can't check global cms permissions because # user opted out of them. # So just check django auth permissions. user = self.request.user can_change = has_auth_page_permission(user, action='change') else: can_change = can_change_page(self.request) self.page_change_permission = can_change return self.page_change_permission def page_is_pending(self, page, language): return (page.publisher_public_id and page.publisher_public.get_publisher_state(language) == PUBLISHER_STATE_PENDING) def in_apphook(self): with force_language(self.toolbar.language): try: resolver = resolve(self.request.path_info) except Resolver404: return False else: from cms.views import details return resolver.func != details def get_on_delete_redirect_url(self): parent, language = self.page.parent, self.current_lang # if the current page has a parent in the request's current language redirect to it if parent and language in parent.get_languages(): with force_language(language): return parent.get_absolute_url(language=language) # else redirect to root, do not redirect to Page.objects.get_home() because user could have deleted the last # page, if DEBUG == False this could cause a 404 return reverse('pages-root') # Populate def populate(self): self.init_from_request() self.change_admin_menu() self.add_page_menu() self.add_history_menu() self.change_language_menu() def post_template_populate(self): self.init_placeholders_from_request() self.add_draft_live() self.add_publish_button() # Buttons def add_publish_button(self, classes=('cms-btn-action', 'cms-btn-publish',)): # only do dirty lookups if publish permission is granted else button isn't added anyway if self.toolbar.edit_mode and self.has_publish_permission(): classes = list(classes or []) pk = self.page.pk if self.page else 0 dirty = (bool(self.dirty_statics) or (self.page and (self.page.is_dirty(self.current_lang) or self.page_is_pending(self.page, self.current_lang)))) if dirty: classes.append('cms-btn-publish-active') if self.dirty_statics or (self.page and self.page.is_published(self.current_lang)): title = _('Publish changes') else: title = _('Publish page now') classes.append('cms-publish-page') params = {} if self.dirty_statics: params['statics'] = ','.join(str(sp.pk) for sp in self.dirty_statics) if self.in_apphook(): params['redirect'] = self.request.path_info with force_language(self.current_lang): url = admin_reverse('cms_page_publish_page', args=(pk, self.current_lang)) url = add_url_parameters(url, params) self.toolbar.add_button(title, url=url, extra_classes=classes, side=self.toolbar.RIGHT, disabled=not dirty) def add_draft_live(self): if self.page: if self.toolbar.edit_mode and not self.title: self.add_page_settings_button() if self.page.has_change_permission(self.request) and self.page.is_published(self.current_lang): return self.add_draft_live_item() elif self.placeholders: return self.add_draft_live_item() for sp in self.statics: if sp.has_change_permission(self.request): return self.add_draft_live_item() def add_draft_live_item(self, template='cms/toolbar/items/live_draft.html', extra_context=None): context = {'request': self.request} context.update(extra_context or {}) pos = len(self.toolbar.right_items) self.toolbar.add_item(TemplateItem(template, extra_context=context, side=self.toolbar.RIGHT), position=pos) def add_page_settings_button(self, extra_classes=('cms-btn-action',)): url = '%s?language=%s' % (admin_reverse('cms_page_change', args=[self.page.pk]), self.toolbar.language) self.toolbar.add_modal_button(_('Page settings'), url, side=self.toolbar.RIGHT, extra_classes=extra_classes) # Menus def change_language_menu(self): if self.toolbar.edit_mode and self.page: language_menu = self.toolbar.get_menu(LANGUAGE_MENU_IDENTIFIER) if not language_menu: return None languages = get_language_dict(self.current_site.pk) remove = [(code, languages.get(code, code)) for code in self.page.get_languages() if code in languages] add = [l for l in languages.items() if l not in remove] copy = [(code, name) for code, name in languages.items() if code != self.current_lang and (code, name) in remove] if add: language_menu.add_break(ADD_PAGE_LANGUAGE_BREAK) page_change_url = admin_reverse('cms_page_change', args=(self.page.pk,)) title = _('Add %(language)s Translation') for code, name in add: url = add_url_parameters(page_change_url, language=code) language_menu.add_modal_item(title % {'language': name}, url=url) if remove: language_menu.add_break(REMOVE_PAGE_LANGUAGE_BREAK) translation_delete_url = admin_reverse('cms_page_delete_translation', args=(self.page.pk,)) title = _('Delete %(language)s Translation') disabled = len(remove) == 1 for code, name in remove: url = add_url_parameters(translation_delete_url, language=code) language_menu.add_modal_item(title % {'language': name}, url=url, disabled=disabled) if copy: language_menu.add_break(COPY_PAGE_LANGUAGE_BREAK) page_copy_url = admin_reverse('cms_page_copy_language', args=(self.page.pk,)) title = _('Copy all plugins from %s') question = _('Are you sure you want copy all plugins from %s?') for code, name in copy: language_menu.add_ajax_item(title % name, action=page_copy_url, data={'source_language': code, 'target_language': self.current_lang}, question=question % name, on_success=self.toolbar.REFRESH_PAGE) def change_admin_menu(self): if not self._changed_admin_menu and self.has_page_change_permission(): admin_menu = self.toolbar.get_or_create_menu(ADMIN_MENU_IDENTIFIER) url = admin_reverse('cms_page_changelist') # cms page admin params = {'language': self.toolbar.language} if self.page: params['page_id'] = self.page.pk url = add_url_parameters(url, params) admin_menu.add_sideframe_item(_('Pages'), url=url, position=0) # Used to prevent duplicates self._changed_admin_menu = True def add_page_menu(self): if self.page and self.has_page_change_permission(): edit_mode = self.toolbar.edit_mode refresh = self.toolbar.REFRESH_PAGE # menu for current page current_page_menu = self.toolbar.get_or_create_menu(PAGE_MENU_IDENTIFIER, _('Page'), position=1) # page operations menu add_page_menu = current_page_menu.get_or_create_menu(PAGE_MENU_ADD_IDENTIFIER, _('Add Page')) app_page_url = admin_reverse('cms_page_add') add_page_menu_modal_items = ( (_('New Page'), {'edit': 1, 'position': 'last-child', 'target': self.page.parent_id or ''}), (_('New Sub Page'), {'edit': 1, 'position': 'last-child', 'target': self.page.pk}), (_('Duplicate this Page'), {'copy_target': self.page.pk}) ) for title, params in add_page_menu_modal_items: params.update(language=self.toolbar.language) add_page_menu.add_modal_item(title, url=add_url_parameters(app_page_url, params)) # first break current_page_menu.add_break(PAGE_MENU_FIRST_BREAK) # page edit page_edit_url = '?%s' % get_cms_setting('CMS_TOOLBAR_URL__EDIT_ON') current_page_menu.add_link_item(_('Edit this Page'), disabled=edit_mode, url=page_edit_url) # page settings page_settings_url = admin_reverse('cms_page_change', args=(self.page.pk,)) page_settings_url = add_url_parameters(page_settings_url, language=self.toolbar.language) current_page_menu.add_modal_item(_('Page settings'), url=page_settings_url, disabled=not edit_mode, on_close=refresh) # templates menu if self.toolbar.build_mode or edit_mode: templates_menu = current_page_menu.get_or_create_menu('templates', _('Templates')) action = admin_reverse('cms_page_change_template', args=(self.page.pk,)) for path, name in get_cms_setting('TEMPLATES'): active = self.page.template == path if path == TEMPLATE_INHERITANCE_MAGIC: templates_menu.add_break(TEMPLATE_MENU_BREAK) templates_menu.add_ajax_item(name, action=action, data={'template': path}, active=active, on_success=refresh) # second break current_page_menu.add_break(PAGE_MENU_SECOND_BREAK) # advanced settings advanced_url = admin_reverse('cms_page_advanced', args=(self.page.pk,)) advanced_url = add_url_parameters(advanced_url, language=self.toolbar.language) advanced_disabled = not self.page.has_advanced_settings_permission(self.request) or not edit_mode current_page_menu.add_modal_item(_('Advanced settings'), url=advanced_url, disabled=advanced_disabled) # permissions if self.permissions_activated: permissions_url = admin_reverse('cms_page_permissions', args=(self.page.pk,)) permission_disabled = not edit_mode or not self.page.has_change_permissions_permission(self.request) current_page_menu.add_modal_item(_('Permissions'), url=permissions_url, disabled=permission_disabled) # dates settings dates_url = admin_reverse('cms_page_dates', args=(self.page.pk,)) current_page_menu.add_modal_item(_('Publishing dates'), url=dates_url, disabled=not edit_mode) # third break current_page_menu.add_break(PAGE_MENU_THIRD_BREAK) # navigation toggle nav_title = _('Hide in navigation') if self.page.in_navigation else _('Display in navigation') nav_action = admin_reverse('cms_page_change_innavigation', args=(self.page.pk,)) current_page_menu.add_ajax_item(nav_title, action=nav_action, disabled=not edit_mode, on_success=refresh) # publisher if self.title: if self.title.published: publish_title = _('Unpublish page') publish_url = admin_reverse('cms_page_unpublish', args=(self.page.pk, self.current_lang)) else: publish_title = _('Publish page') publish_url = admin_reverse('cms_page_publish_page', args=(self.page.pk, self.current_lang)) current_page_menu.add_ajax_item(publish_title, action=publish_url, disabled=not edit_mode, on_success=refresh) # fourth break current_page_menu.add_break(PAGE_MENU_FOURTH_BREAK) # delete delete_url = admin_reverse('cms_page_delete', args=(self.page.pk,)) on_delete_redirect_url = self.get_on_delete_redirect_url() current_page_menu.add_modal_item(_('Delete page'), url=delete_url, on_close=on_delete_redirect_url, disabled=not edit_mode) # last break current_page_menu.add_break(PAGE_MENU_LAST_BREAK) # page type page_type_url = admin_reverse('cms_page_add_page_type') page_type_url = add_url_parameters(page_type_url, copy_target=self.page.pk, language=self.toolbar.language) current_page_menu.add_modal_item(_('Save as Page Type'), page_type_url, disabled=not edit_mode) def add_history_menu(self): if self.toolbar.edit_mode and self.page: refresh = self.toolbar.REFRESH_PAGE history_menu = self.toolbar.get_or_create_menu(HISTORY_MENU_IDENTIFIER, _('History'), position=2) if is_installed('reversion'): from cms.utils.reversion_hacks import reversion, Revision versions = reversion.get_for_object(self.page) if self.page.revision_id: current_revision = Revision.objects.get(pk=self.page.revision_id) has_undo = versions.filter(revision__pk__lt=current_revision.pk).exists() has_redo = versions.filter(revision__pk__gt=current_revision.pk).exists() else: has_redo = False has_undo = versions.count() > 1 undo_action = admin_reverse('cms_page_undo', args=(self.page.pk,)) redo_action = admin_reverse('cms_page_redo', args=(self.page.pk,)) history_menu.add_ajax_item(_('Undo'), action=undo_action, disabled=not has_undo, on_success=refresh) history_menu.add_ajax_item(_('Redo'), action=redo_action, disabled=not has_redo, on_success=refresh) history_menu.add_break(HISTORY_MENU_BREAK) revert_action = admin_reverse('cms_page_revert_page', args=(self.page.pk, self.current_lang)) revert_question = _('Are you sure you want to revert to live?') is_enabled = self.page.is_dirty(self.current_lang) and self.page.publisher_public history_menu.add_ajax_item(_('Revert to live'), action=revert_action, question=revert_question, disabled=not is_enabled, on_success=refresh, extra_classes=('cms-toolbar-revert',)) history_menu.add_modal_item(_('View history'), url=admin_reverse('cms_page_history', args=(self.page.pk,)))
b8993aa7ccaea8513fd07124d6005cdbd77c5068
dd6cf539f20a0143acbdda1ed3f64b18b08a29b5
/whiteList_v5/Config/2019第一季度脚本/config_fangtoo.py
8af88ee3c64feb458b58b8f158acd47a212eef70
[ "MIT" ]
permissive
myirelias/white_list
eec6a900cc3eea0f227425327ab55a6b46ba873d
2bf344d2dc8f5cb3afbde71e248c019651ee3a7a
refs/heads/master
2020-04-15T11:10:44.850942
2019-11-05T01:51:41
2019-11-05T01:51:41
164,618,155
0
1
null
null
null
null
UTF-8
Python
false
false
2,178
py
# 房途网 TASK_NAME = 'fangtoo' # 起始URL START_URL = 'http://www.fangtoo.com/' # 控制域,必须为list格式 DOMAIN = ['fangtoo'] # 请求头 HEADERS = { 'Host': 'www.fangtoo.com', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:53.0) Gecko/20100101 Firefox/53.0', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', 'Accept-Language': 'zh-CN,zh;q=0.8,en-US;q=0.5,en;q=0.3', 'Accept-Encoding': 'gzip, deflate', 'Connection': 'keep-alive', 'Upgrade-Insecure-Requests': '1', 'If-Modified-Since': 'Tue, 26 Feb 2019 06:20:30 GMT', 'Cache-Control': 'max-age=0', } # xpath规则 XPATHER_HREF = ".//*/@href" # 字段模版 # { # "title": "", # "news_date": "", # "source": "", # "author": "", # "navigation": "", # "content": "", # "editor": "", # "tags": "" # }, XPATHER_NEWS_LIST = [ { "title": "normalize-space(.//*[@class='main-text-cnt']/h1)", "news_date": "substring(normalize-space(.//*[contains(@class,'time-source')]),1,20)", "source": "substring-before(substring-after(normalize-space(.//*[contains(@class,'time-source')]),'来源:'),'编辑')", "author": "", "navigation": "normalize-space(.//*[@class='urhere'])", "content": ".//*[@class='main-text']/descendant::text()", "editor": "substring-after(normalize-space(.//*[contains(@class,'time-source')]),'编辑:')", "tags": ".//*[@name='keywords']/@content" }, { "title": "normalize-space(.//*[@class='title'])", "news_date": "normalize-space(.//*[@class='info']/span[1])", "source": "normalize-space(.//*[@class='info']/span[3])", "author": "", "navigation": "normalize-space(.//*[@class='channel-name'])", "content": ".//article/descendant::p/text()", "editor": "substring-after(normalize-space(.//*[@class='info']/span[2]),'编辑:')", "tags": ".//*[@name='keywords']/@content" }, ] # 正则匹配规则,此处为静态页面url的正则表达式,匹配以下的规则的网址将抓取其中新闻内容 REGEX_URL = r'/\d*-\d*-\w*\d*\.[s]*htm[l]*'
7e143995d7e137dcb1934363b26de9cf57999bab
62e58c051128baef9452e7e0eb0b5a83367add26
/x12/5040/404005040.py
9579f1c988fb1681ddca7d2da3451a5a5e882284
[]
no_license
dougvanhorn/bots-grammars
2eb6c0a6b5231c14a6faf194b932aa614809076c
09db18d9d9bd9d92cefbf00f1c0de1c590fe3d0d
refs/heads/master
2021-05-16T12:55:58.022904
2019-05-17T15:22:23
2019-05-17T15:22:23
105,274,633
0
0
null
2017-09-29T13:21:21
2017-09-29T13:21:21
null
UTF-8
Python
false
false
3,935
py
from bots.botsconfig import * from records005040 import recorddefs syntax = { 'version': '00504', 'functionalgroup': 'SR', } structure = [ {ID: 'ST', MIN: 1, MAX: 1, LEVEL: [ {ID: 'ZC1', MIN: 0, MAX: 1}, {ID: 'BX', MIN: 0, MAX: 1}, {ID: 'BNX', MIN: 0, MAX: 1}, {ID: 'M3', MIN: 1, MAX: 1}, {ID: 'N9', MIN: 1, MAX: 30}, {ID: 'CM', MIN: 0, MAX: 2}, {ID: 'M1', MIN: 0, MAX: 1}, {ID: 'DTM', MIN: 0, MAX: 5}, {ID: 'N7', MIN: 1, MAX: 500, LEVEL: [ {ID: 'EM', MIN: 0, MAX: 1}, {ID: 'VC', MIN: 0, MAX: 36, LEVEL: [ {ID: 'N1', MIN: 0, MAX: 2, LEVEL: [ {ID: 'N3', MIN: 0, MAX: 2}, {ID: 'N4', MIN: 0, MAX: 1}, {ID: 'H3', MIN: 0, MAX: 1}, ]}, ]}, {ID: 'M7', MIN: 0, MAX: 5}, {ID: 'N5', MIN: 0, MAX: 1}, {ID: 'IC', MIN: 0, MAX: 1}, {ID: 'IM', MIN: 0, MAX: 1}, {ID: 'M12', MIN: 0, MAX: 2}, {ID: 'E1', MIN: 0, MAX: 2, LEVEL: [ {ID: 'E4', MIN: 0, MAX: 1}, {ID: 'E5', MIN: 0, MAX: 13}, {ID: 'PI', MIN: 0, MAX: 1}, ]}, {ID: 'GA', MIN: 0, MAX: 15}, {ID: 'REF', MIN: 0, MAX: 99, LEVEL: [ {ID: 'N9', MIN: 0, MAX: 10}, {ID: 'N10', MIN: 0, MAX: 15}, {ID: 'N1', MIN: 0, MAX: 5, LEVEL: [ {ID: 'N3', MIN: 0, MAX: 1}, {ID: 'N4', MIN: 0, MAX: 1}, ]}, ]}, ]}, {ID: 'NA', MIN: 0, MAX: 10}, {ID: 'F9', MIN: 1, MAX: 1}, {ID: 'D9', MIN: 1, MAX: 1}, {ID: 'N1', MIN: 1, MAX: 15, LEVEL: [ {ID: 'N2', MIN: 0, MAX: 2}, {ID: 'N3', MIN: 0, MAX: 2}, {ID: 'N4', MIN: 0, MAX: 1}, {ID: 'REF', MIN: 0, MAX: 2}, {ID: 'PER', MIN: 0, MAX: 2}, {ID: 'BL', MIN: 0, MAX: 12}, ]}, {ID: 'S1', MIN: 0, MAX: 12, LEVEL: [ {ID: 'S2', MIN: 0, MAX: 2}, {ID: 'S9', MIN: 0, MAX: 1}, {ID: 'N1', MIN: 0, MAX: 1}, {ID: 'N2', MIN: 0, MAX: 1}, {ID: 'N3', MIN: 0, MAX: 1}, {ID: 'N4', MIN: 0, MAX: 1}, {ID: 'PER', MIN: 0, MAX: 1}, ]}, {ID: 'R2', MIN: 1, MAX: 13}, {ID: 'R9', MIN: 0, MAX: 1}, {ID: 'E1', MIN: 0, MAX: 2, LEVEL: [ {ID: 'E4', MIN: 0, MAX: 1}, {ID: 'E5', MIN: 0, MAX: 13}, {ID: 'PI', MIN: 0, MAX: 1}, ]}, {ID: 'H3', MIN: 0, MAX: 20}, {ID: 'PS', MIN: 0, MAX: 5}, {ID: 'LX', MIN: 1, MAX: 25, LEVEL: [ {ID: 'L5', MIN: 1, MAX: 15}, {ID: 'L0', MIN: 0, MAX: 25, LEVEL: [ {ID: 'MEA', MIN: 0, MAX: 3}, {ID: 'L1', MIN: 0, MAX: 10}, {ID: 'PI', MIN: 0, MAX: 30, LEVEL: [ {ID: 'CD', MIN: 0, MAX: 10}, ]}, ]}, {ID: 'X1', MIN: 0, MAX: 6}, ]}, {ID: 'T1', MIN: 0, MAX: 64, LEVEL: [ {ID: 'T2', MIN: 0, MAX: 30}, {ID: 'T3', MIN: 0, MAX: 12}, {ID: 'T6', MIN: 0, MAX: 1}, {ID: 'T8', MIN: 0, MAX: 99}, ]}, {ID: 'L3', MIN: 0, MAX: 1}, {ID: 'LS', MIN: 0, MAX: 1, LEVEL: [ {ID: 'LH1', MIN: 1, MAX: 1000, LEVEL: [ {ID: 'LH2', MIN: 0, MAX: 4}, {ID: 'LH3', MIN: 0, MAX: 10}, {ID: 'LFH', MIN: 0, MAX: 20}, {ID: 'LEP', MIN: 0, MAX: 3}, {ID: 'LH4', MIN: 0, MAX: 4}, {ID: 'LHT', MIN: 0, MAX: 3}, {ID: 'LHR', MIN: 0, MAX: 5}, {ID: 'PER', MIN: 0, MAX: 5}, {ID: 'N1', MIN: 0, MAX: 10, LEVEL: [ {ID: 'N3', MIN: 0, MAX: 2}, {ID: 'N4', MIN: 0, MAX: 1}, {ID: 'PER', MIN: 0, MAX: 2}, ]}, ]}, {ID: 'LE', MIN: 1, MAX: 1}, ]}, {ID: 'PER', MIN: 0, MAX: 5}, {ID: 'LH2', MIN: 0, MAX: 6}, {ID: 'LHR', MIN: 0, MAX: 1}, {ID: 'LH6', MIN: 0, MAX: 5}, {ID: 'XH', MIN: 0, MAX: 1}, {ID: 'X7', MIN: 0, MAX: 10}, {ID: 'SE', MIN: 1, MAX: 1}, ]} ]
451b171eedc679c5013c736a0918b085ca36b46c
fbea3e5d1ecab07b15887b321cd650349f22df95
/peterklepec_webpage/cms/dashboard.py
4df6b11b0df775c579e8ece440fb36e4e21e822a
[]
no_license
simonrakovic/peterklepec
2e2004c04450898107da61314ec2ba03ee93bbe7
58114cfbd4f85d08a4749aa34492f52e11a9925e
refs/heads/master
2021-01-21T07:53:35.429724
2016-09-21T12:34:52
2016-09-21T12:34:52
24,656,406
0
0
null
null
null
null
UTF-8
Python
false
false
3,632
py
""" This file was generated with the customdashboard management command and contains the class for the main dashboard. To activate your index dashboard add the following to your settings.py:: GRAPPELLI_INDEX_DASHBOARD = 'peterklepec_webpage.dashboard.CustomIndexDashboard' """ from django.utils.translation import ugettext_lazy as _ from django.core.urlresolvers import reverse from grappelli.dashboard import modules, Dashboard from grappelli.dashboard.utils import get_admin_site_name class CustomIndexDashboard(Dashboard): """ Custom index dashboard for www. """ def init_with_context(self, context): site_name = get_admin_site_name(context) # append a group for "Administration" & "Applications" self.children.append(modules.Group( _('Group: Administration & Applications'), column=1, collapsible=True, children = [ modules.AppList( _('Administration'), column=1, collapsible=False, models=('django.contrib.*',), ), modules.AppList( _('Applications'), column=1, css_classes=('collapse closed',), exclude=('django.contrib.*',), ) ] )) # append an app list module for "Applications" self.children.append(modules.AppList( _('AppList: Applications'), collapsible=True, column=1, css_classes=('collapse closed',), exclude=('django.contrib.*',), )) # append an app list module for "Administration" self.children.append(modules.ModelList( _('ModelList: Administration'), column=1, collapsible=False, models=('django.contrib.*',), )) # append another link list module for "support". self.children.append(modules.LinkList( _('Media Management'), column=2, children=[ { 'title': _('FileBrowser'), 'url': '/admin/filebrowser/browse/', 'external': False, }, ] )) # append another link list module for "support". self.children.append(modules.LinkList( _('Support'), column=2, children=[ { 'title': _('Django Documentation'), 'url': 'http://docs.djangoproject.com/', 'external': True, }, { 'title': _('Grappelli Documentation'), 'url': 'http://packages.python.org/django-grappelli/', 'external': True, }, { 'title': _('Grappelli Google-Code'), 'url': 'http://code.google.com/p/django-grappelli/', 'external': True, }, ] )) # append a feed module self.children.append(modules.Feed( _('Latest Django News'), column=2, feed_url='http://www.djangoproject.com/rss/weblog/', limit=5 )) # append a recent actions module self.children.append(modules.RecentActions( _('Recent Actions'), limit=5, collapsible=False, column=3, ))
9500c48e7a7fbda723ca05e82f6932e50a80cc2a
53ba1c29d6122b8afeb6578f1a338621c61f507d
/FCCeeAnalyses/ZH_Zmumu/dataframe/plots.py
1478a35a3cf293e86dc3db7e5dd11aed9830304d
[]
no_license
selvaggi/FCChhAnalyses
dd420f5bdba60147322cc16b49479ca200e8a54c
8f397c77229c68ad87947e6912466da4b0a6654b
refs/heads/master
2021-04-27T17:08:28.824726
2020-05-21T07:42:43
2020-05-21T07:42:43
136,484,120
1
0
null
2019-05-02T13:12:39
2018-06-07T13:49:23
Python
UTF-8
Python
false
false
1,547
py
import ROOT # global parameters intLumi = 5.0e+06 #in pb-1 ana_tex = "e^{+}e^{-} #rightarrow ZH #rightarrow #mu^{+}#mu^{-} + X" delphesVersion = "3.4.2" energy = 240.0 collider = "FCC-ee" inputDir = "Outputs/FCCee/ZH_Zmumu/" formats = ['png','pdf'] yaxis = ['lin','log'] stacksig = ['stack','nostack'] outdir = 'Outputs/FCCee/ZH_Zmumu/plots/' variables = ['mz','mz_zoom','nbjets','leptonic_recoil_m','leptonic_recoil_m_zoom'] ###Dictonnary with the analysis name as a key, and the list of selections to be plotted for this analysis. The name of the selections should be the same than in the final selection selections = {} selections['ZH'] = ["sel0","sel1","sel2"] selections['ZH_2'] = ["sel0","sel2"] extralabel = {} extralabel['sel0'] = "Selection: N_{Z} = 1" extralabel['sel1'] = "Selection: N_{Z} = 1; 80 GeV < m_{Z} < 100 GeV" extralabel['sel2'] = "Selection: N_{Z} = 1; 80 GeV < m_{Z} < 100 GeV; N_{b} = 2" colors = {} colors['ZH'] = ROOT.kRed colors['WW'] = ROOT.kBlue+1 colors['ZZ'] = ROOT.kGreen+2 colors['VV'] = ROOT.kGreen+3 plots = {} plots['ZH'] = {'signal':{'ZH':['p8_ee_ZH_ecm240']}, 'backgrounds':{'WW':['p8_ee_WW_ecm240'], 'ZZ':['p8_ee_ZZ_ecm240']} } plots['ZH_2'] = {'signal':{'ZH':['p8_ee_ZH_ecm240']}, 'backgrounds':{'VV':['p8_ee_WW_ecm240','p8_ee_ZZ_ecm240']} } legend = {} legend['ZH'] = 'ZH' legend['WW'] = 'WW' legend['ZZ'] = 'ZZ' legend['VV'] = 'VV boson'
51cf6cb246c8fc7206420f5ca0b4ca38daf503b7
9a2413b572c0f89b1f80899a10237657d9393bd6
/sdk/python/pulumi_keycloak/generic_client_role_mapper.py
7482298398ca25d54904f73e31411f577ced592b
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference", "MIT" ]
permissive
jaxxstorm/pulumi-keycloak
5c25363ece6af49dad40bd693ce07b1fa0dedd74
2fc7b1060b725a40d2ada745aa0d10130243a0b5
refs/heads/master
2022-10-10T13:11:04.290703
2020-06-05T19:11:19
2020-06-05T19:11:19
270,870,883
0
0
NOASSERTION
2020-06-09T01:08:56
2020-06-09T01:08:55
null
UTF-8
Python
false
false
4,797
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import json import warnings import pulumi import pulumi.runtime from typing import Union from . import utilities, tables class GenericClientRoleMapper(pulumi.CustomResource): client_id: pulumi.Output[str] """ The destination client of the client role. Cannot be used at the same time as client_scope_id. """ client_scope_id: pulumi.Output[str] """ The destination client scope of the client role. Cannot be used at the same time as client_id. """ realm_id: pulumi.Output[str] """ The realm id where the associated client or client scope exists. """ role_id: pulumi.Output[str] """ Id of the role to assign """ def __init__(__self__, resource_name, opts=None, client_id=None, client_scope_id=None, realm_id=None, role_id=None, __props__=None, __name__=None, __opts__=None): """ Create a GenericClientRoleMapper resource with the given unique name, props, and options. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] client_id: The destination client of the client role. Cannot be used at the same time as client_scope_id. :param pulumi.Input[str] client_scope_id: The destination client scope of the client role. Cannot be used at the same time as client_id. :param pulumi.Input[str] realm_id: The realm id where the associated client or client scope exists. :param pulumi.Input[str] role_id: Id of the role to assign """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['client_id'] = client_id __props__['client_scope_id'] = client_scope_id if realm_id is None: raise TypeError("Missing required property 'realm_id'") __props__['realm_id'] = realm_id if role_id is None: raise TypeError("Missing required property 'role_id'") __props__['role_id'] = role_id super(GenericClientRoleMapper, __self__).__init__( 'keycloak:index/genericClientRoleMapper:GenericClientRoleMapper', resource_name, __props__, opts) @staticmethod def get(resource_name, id, opts=None, client_id=None, client_scope_id=None, realm_id=None, role_id=None): """ Get an existing GenericClientRoleMapper resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param str id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] client_id: The destination client of the client role. Cannot be used at the same time as client_scope_id. :param pulumi.Input[str] client_scope_id: The destination client scope of the client role. Cannot be used at the same time as client_id. :param pulumi.Input[str] realm_id: The realm id where the associated client or client scope exists. :param pulumi.Input[str] role_id: Id of the role to assign """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["client_id"] = client_id __props__["client_scope_id"] = client_scope_id __props__["realm_id"] = realm_id __props__["role_id"] = role_id return GenericClientRoleMapper(resource_name, opts=opts, __props__=__props__) def translate_output_property(self, prop): return tables._CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return tables._SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
4c10cbd3c907d2b700a4587d67043ec7b66c5280
f098c361ee79bb8b7a8402fcf20b37f17fb36983
/Back-End/Python/Basics/Part -3- Hash Maps/04- Serialization and Deserialization/_04_JSON_singledispatch.py
5bac467735833efd499c104e8e24e933427f5fe3
[ "MIT", "Apache-2.0", "LicenseRef-scancode-public-domain" ]
permissive
rnsdoodi/Programming-CookBook
4d619537a6875ffbcb42cbdaf01d80db1feba9b4
9bd9c105fdd823aea1c3f391f5018fd1f8f37182
refs/heads/master
2023-09-05T22:09:08.282385
2021-10-31T11:57:40
2021-10-31T11:57:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,389
py
import json from datetime import datetime log_record = { 'time': datetime.utcnow(), 'message': 'Testing...', 'other': {'a', 'b', 'c'} } def custom_json_formatter(arg): if isinstance(arg, datetime): return arg.isoformat() elif isinstance(arg, set): return list(arg) print(json.dumps(log_record, default=custom_json_formatter)) #{"time": "2020-11-06T03:10:44.482803", "message": "Testing...", "other": ["a", "b", "c"]} class Person: def __init__(self, name, age): self.name = name self.age = age self.create_dt = datetime.utcnow() def __repr__(self): return f'Person(name={self.name}, age={self.age})' def toJSON(self): return { 'name': self.name, 'age': self.age, 'create_dt': self.create_dt.isoformat() } p = Person('John', 82) print(p) print(p.toJSON()) # {"time": "2020-11-06T03:11:08.677000", "message": "Testing...", "other": ["b", "a", "c"]} # Person(name=John, age=82) # {'name': 'John', 'age': 82, 'create_dt': '2020-11-06T03:11:08.677000'} def custom_json_formatter(arg): if isinstance(arg, datetime): return arg.isoformat() elif isinstance(arg, set): return list(arg) elif isinstance(arg, Person): return arg.toJSON() log_record = dict(time=datetime.utcnow(), message='Created new person record', person=p) print(json.dumps(log_record, default=custom_json_formatter, indent=2)) # { # "time": "2020-11-06T03:12:12.624757", # "message": "Created new person record", # "person": { # "name": "John", # "age": 82, # "create_dt": "2020-11-06T03:12:12.624757" # } # } class Person: def __init__(self, name, age): self.name = name self.age = age self.create_dt = datetime.utcnow() def __repr__(self): return f'Person(name={self.name}, age={self.age})' def toJSON(self): return { 'name': self.name, 'age': self.age, 'create_dt': self.create_dt } p = Person('Monty', 100) log_record = dict(time=datetime.utcnow(), message='Created new person record', person=p) print(json.dumps(log_record, default=custom_json_formatter, indent=2)) # { # "time": "2020-11-06T03:13:01.412670", # "message": "Created new person record", # "person": { # "name": "Monty", # "age": 100, # "create_dt": "2020-11-06T03:13:01.412670" # } # } class Person: def __init__(self, name, age): self.name = name self.age = age self.create_dt = datetime.utcnow() def __repr__(self): return f'Person(name={self.name}, age={self.age})' def toJSON(self): return vars(self) p = Person('Python', 27) print(p.toJSON()) # {'name': 'Python', 'age': 27, 'create_dt': datetime.datetime(2020, 11, 6, 3, 13, 34, 452006)} log_record['person'] = p print(log_record) #{'time': datetime.datetime(2020, 11, 6, 3, 14, 6, 399677), 'message': 'Created new person record', 'person': Person(name=Python, age=27)} print(json.dumps(log_record, default=custom_json_formatter, indent=2)) # { # "time": "2020-11-06T03:14:19.885341", # "message": "Created new person record", # "person": { # "name": "Python", # "age": 27, # "create_dt": "2020-11-06T03:14:19.885341" # } # } def custom_json_formatter(arg): if isinstance(arg, datetime): return arg.isoformat() elif isinstance(arg, set): return list(arg) else: try: return arg.toJSON() except AttributeError: try: return vars(arg) except TypeError: return str(arg) class Point: def __init__(self, x, y): self.x = x self.y = y def __repr__(self): return f'Point(x={self.x}, y={self.y})' pt1 = Point(10, 10) log_record = dict(time=datetime.utcnow(), message='Created new point', point=pt1, created_by=p) print(json.dumps(log_record, default=custom_json_formatter, indent=2)) # { # "time": "2020-11-06T03:18:39.272100", # "message": "Created new point", # "point": { # "x": 10, # "y": 10 # }, # "created_by": { # "name": "Python", # "age": 27, # "create_dt": "2020-11-06T03:18:39.272100" # } # }
cee671906f006b2298a9e9071b8bf2c43320fd39
5c7b6f96aef9a2c605c8e16eb0e3f6e2ab958947
/settings.py
454c3f98b426329036c61e8949009c6ba0b54d30
[]
no_license
chapkovski/progressbaracrossrounds
0137ce4a552edf9027eb092f1d9e0abde5cc6e8e
62905f17d456fc6a7a57fa1fe91b510593740518
refs/heads/master
2021-07-03T20:53:58.758511
2020-09-03T22:19:49
2020-09-03T22:19:49
87,289,409
0
0
null
2021-06-10T20:38:02
2017-04-05T09:07:49
Python
UTF-8
Python
false
false
1,797
py
import os from os import environ import dj_database_url from boto.mturk import qualification import otree.settings BASE_DIR = os.path.dirname(os.path.abspath(__file__)) # the environment variable OTREE_PRODUCTION controls whether Django runs in # DEBUG mode. If OTREE_PRODUCTION==1, then DEBUG=False if environ.get('OTREE_PRODUCTION') not in {None, '', '0'}: DEBUG = False else: DEBUG = True ADMIN_USERNAME = 'admin' # for security, best to set admin password in an environment variable ADMIN_PASSWORD = environ.get('OTREE_ADMIN_PASSWORD') AUTH_LEVEL = environ.get('OTREE_AUTH_LEVEL') # e.g. EUR, CAD, GBP, CHF, CNY, JPY REAL_WORLD_CURRENCY_CODE = 'USD' USE_POINTS = True POINTS_DECIMAL_PLACES = 2 # e.g. en, de, fr, it, ja, zh-hans # see: https://docs.djangoproject.com/en/1.9/topics/i18n/#term-language-code LANGUAGE_CODE = 'en' # if an app is included in SESSION_CONFIGS, you don't need to list it here INSTALLED_APPS = ['otree', ] DEMO_PAGE_INTRO_TEXT = """ oTree games """ # from here on are qualifications requirements for workers # see description for requirements on Amazon Mechanical Turk website: # http://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_QualificationRequirementDataStructureArticle.html # and also in docs for boto: # https://boto.readthedocs.org/en/latest/ref/mturk.html?highlight=mturk#module-boto.mturk.qualification SESSION_CONFIG_DEFAULTS = { 'real_world_currency_per_point': 0.000, 'participation_fee': 0.00, 'doc': "", } SESSION_CONFIGS = [ { 'name': 'bigfive', 'display_name': 'Progress bar across rounds', 'num_demo_participants': 1, 'app_sequence': ['bigfive'], }, ] SECRET_KEY = 'whatever'
6372a17f6b0d06d1112a8594098c1279fd098c30
6eb58e32b469c37428185ab4456184905a5b4fb5
/analysis_code/newdata_dataread_BP_MHTSTRATEGY_v2_hacktemp.py
c830e7ec48f7165d32ca2acd9803182abd11b3b1
[]
no_license
rchenmit/mht_analysis
0b8bfff7730df835975c7c41d65f007ad269e3a9
678d4419bdaed9ed9d0041df3a2cd8638074590f
refs/heads/master
2020-04-06T03:40:41.577209
2015-01-12T00:14:48
2015-01-12T00:14:48
19,548,658
1
0
null
null
null
null
UTF-8
Python
false
false
7,094
py
## Robert Chen ## Monday 3/12/2014 ## ## trying to parse this in python ## import os import sys if os.name == 'nt': #'nt' = windows sys.path.append('C:\\anaconda\\lib\\site-packages') #in windows, alot of modules were installed with Anaconda import pandas as pd import numpy as np import math import copy import csv import scipy as s import openpyxl from openpyxl import load_workbook import matplotlib.pyplot as plt import matplotlib from datetime import datetime from dateutil import parser from collections import Counter #import pickle if sys.version_info.major == 3: import pickle else: import cPickle as pickle ## ENTER import files ########################################################################################################## datadir = '../../data/new_data_20140416/Data_20140409/' filename = datadir + 'Meds_DD_04082014.csv' file_classes = datadir + 'MedClasses.xlsx' file_BP_clinician = datadir + 'mht_strategy_20140407.txt' file_BP_record = datadir + 'BP_04082014.csv' file_eGFR_record = datadir + 'EGFR_04082014.csv' pickle_dir = '../analysis_output/pickle/' if not os.path.exists(pickle_dir): os.makedirs(pickle_dir) #pickle with open(pickle_dir + "df_bp_clinician.pickle", "wb") as output_file: pickle.dump(df_bp_clinician, output_file) output_file.close() with open(pickle_dir + "df_bp_record.pickle", "wb") as output_file: pickle.dump(df_bp_record, output_file) output_file.close() with open(pickle_dir + "df_egfr_record.pickle", "wb") as output_file: pickle.dump(df_egfr_record, output_file) output_file.close() ## analyze recorded BP's: using BP.txt (reported numbers)################################################################################# list_ruid = list(set(df_bp_clinician.index.values)) #list of floats #earliest and latest possible date : for throwing out bad data early_date = datetime(1990,1,1) late_date = datetime.today() #make dictionary of BP's key'd by RUID d_bp_record = dict() cnt = 0 print("bulding dictionary of recorded BP's (346K lines total)-----------------\n") for i in range(len(df_bp_record)): cnt+=1 if (cnt % 10000 == 0): print(cnt) key = df_bp_record.index[i] indexes_for_df = np.array([]) data = [] this_date = parser.parse(df_bp_record.iloc[i]['MEASURE_DATE']) ##PARSE THE DATE OUT! bool_this_date_good = this_date > early_date and this_date < late_date indexes_for_df = np.append(indexes_for_df, this_date) if df_bp_record.iloc[i]['SYSTOLIC'].isdigit() and df_bp_record.iloc[i]['DIASTOLIC'].isdigit() and bool_this_date_good: data.append([int(df_bp_record.iloc[i]['SYSTOLIC']), int(df_bp_record.iloc[i]['DIASTOLIC'])]) #CAST ELEMENTS AS INTEGERS!!!! if key in d_bp_record: #then append d_bp_record[key] = d_bp_record[key].append(pd.DataFrame(data, index = indexes_for_df, columns = ['SYSTOLIC', 'DIASTOLIC'])) else: #then initialize d_bp_record[key] = pd.DataFrame(data, index = indexes_for_df, columns = ['SYSTOLIC', 'DIASTOLIC']) #add in status at each time point print("calculating BP control status from recorded numbers: \n") for key in d_bp_record: #loop thru the keys in dictionary d_bp_record[key]['STATUS'] = 0 bool_condition_systolic = d_bp_record[key]['SYSTOLIC'] < 140 #in control if SYSTOLIC < 140 bool_condition_diastolic = d_bp_record[key]['DIASTOLIC'] < 90 #in control if DIASTOLIC < 90 bool_condition_INCONTROL = bool_condition_systolic & bool_condition_diastolic d_bp_record[key].loc[bool_condition_INCONTROL, 'STATUS'] = 1 #-1 => IN CONTROL d_bp_record[key].loc[~bool_condition_INCONTROL, 'STATUS'] = -1 #1 => OUT OF CONTROL #make dictionary of BP Control Status (at the patient level, ie mostly in control or out of control) print("calculating intervals of in control vs out of control from recorded numbers: \n") d_bp_status_pt_level = dict() for key in d_bp_record: d_days_in_out = {-1: 0, 1:0} ts_status_this_pt = d_bp_record[key]['STATUS'].sort_index() last_status = ts_status_this_pt[0] last_timestamp = ts_status_this_pt.index[0] if len(ts_status_this_pt) > 1 and (max(ts_status_this_pt.index) - min(ts_status_this_pt.index)).days > 1: #if there are more than 1 entry, and more than 1 day's worth (if theres more than one entry and they're not all on the same day) #loop thru the timeSeries of status for this patient for timestamp in ts_status_this_pt.index: time_delta = (timestamp - last_timestamp).days d_days_in_out[last_status] += time_delta #add the time that has passed if ts_status_this_pt[timestamp].size > 1: status_at_this_timestamp = ts_status_this_pt[timestamp][-1] #pick the last recorded status for this timestamp if status_at_this_timestamp != last_status: #if the status changed last_status = status_at_this_timestamp else: status_at_this_timestamp = ts_status_this_pt[timestamp] if status_at_this_timestamp != last_status: #if the status changed last_status = status_at_this_timestamp #then change last_status to reflect this so that you add to the right status for the next timestamp last_timestamp = timestamp #now count how many days in /out and detemrine if mostly in or mostly out or mixed num_in = d_days_in_out[1] num_out = d_days_in_out[-1] else: #if only one BP measurement was taken for the patient if last_status == 1: num_in = 1 num_out = 0 else: num_in = 0 num_out = 1 if num_in == 0 and num_out == 0: print("ERROR 0: no days in or out! " + str(key)) d_bp_status_pt_level[key] = 0 elif num_out == 0: if num_in > num_out: d_bp_status_pt_level[key] = 1 else: print("ERROR1 - check!") elif num_in == 0: if num_out > num_in: d_bp_status_pt_level[key] = -1 else: print("ERROR2 - check!") elif num_in > num_out and num_out == 0: d_bp_status_pt_level[key] = 1 elif num_out > num_in and num_in == 0: d_bp_status_pt_level[key] = -1 elif num_in / float(num_out) > 1.5: d_bp_status_pt_level[key] = 1 elif num_out / float(num_in) > 1.5: d_bp_status_pt_level[key] = -1 else: d_bp_status_pt_level[key] = 0 #print counts print("number patients with each control class (from numbers: ") counter_control_status = Counter(val for val in d_bp_status_pt_level.values()) print(counter_control_status) #pickle: with open(pickle_dir + "d_bp_record.pickle", "wb") as output_file: pickle.dump(d_bp_record, output_file) output_file.close() with open(pickle_dir + "d_bp_status_pt_level.pickle", "wb") as output_file: pickle.dump(d_bp_status_pt_level, output_file) output_file.close() with open(pickle_dir + "list_ruid.pickle", "wb") as output_file: pickle.dump(list_ruid, output_file) output_file.close()
e410730572e9364ca72db41147389438c4725f12
38c10c01007624cd2056884f25e0d6ab85442194
/extensions/extensions.gypi
d7306813a707108e1338e08175390f6649ec65d3
[ "BSD-3-Clause" ]
permissive
zenoalbisser/chromium
6ecf37b6c030c84f1b26282bc4ef95769c62a9b2
e71f21b9b4b9b839f5093301974a45545dad2691
refs/heads/master
2022-12-25T14:23:18.568575
2016-07-14T21:49:52
2016-07-23T08:02:51
63,980,627
0
2
BSD-3-Clause
2022-12-12T12:43:41
2016-07-22T20:14:04
null
UTF-8
Python
false
false
51,840
gypi
# Copyright 2015 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. { 'variables': { 'extensions_common_constants_sources': [ 'common/constants.cc', 'common/constants.h', ], 'extensions_common_mojo_sources': [ 'common/mojo/keep_alive.mojom', 'common/mojo/stash.mojom', ], 'extensions_common_sources': [ 'common/api/bluetooth/bluetooth_manifest_data.cc', 'common/api/bluetooth/bluetooth_manifest_data.h', 'common/api/bluetooth/bluetooth_manifest_handler.cc', 'common/api/bluetooth/bluetooth_manifest_handler.h', 'common/api/bluetooth/bluetooth_manifest_permission.cc', 'common/api/bluetooth/bluetooth_manifest_permission.h', 'common/api/declarative/declarative_manifest_data.cc', 'common/api/declarative/declarative_manifest_data.h', 'common/api/declarative/declarative_manifest_handler.cc', 'common/api/declarative/declarative_manifest_handler.h', 'common/api/messaging/message.h', 'common/api/printer_provider/usb_printer_manifest_data.cc', 'common/api/printer_provider/usb_printer_manifest_data.h', 'common/api/printer_provider/usb_printer_manifest_handler.cc', 'common/api/printer_provider/usb_printer_manifest_handler.h', 'common/api/sockets/sockets_manifest_data.cc', 'common/api/sockets/sockets_manifest_data.h', 'common/api/sockets/sockets_manifest_handler.cc', 'common/api/sockets/sockets_manifest_handler.h', 'common/api/sockets/sockets_manifest_permission.cc', 'common/api/sockets/sockets_manifest_permission.h', 'common/cast/cast_cert_validator.cc', 'common/cast/cast_cert_validator.h', 'common/common_manifest_handlers.cc', 'common/common_manifest_handlers.h', 'common/csp_validator.cc', 'common/csp_validator.h', 'common/dom_action_types.h', 'common/draggable_region.cc', 'common/draggable_region.h', 'common/error_utils.cc', 'common/error_utils.h', 'common/event_filter.cc', 'common/event_filter.h', 'common/event_filtering_info.cc', 'common/event_filtering_info.h', 'common/event_matcher.cc', 'common/event_matcher.h', 'common/extension.cc', 'common/extension.h', 'common/extension_api.cc', 'common/extension_api.h', 'common/extension_icon_set.cc', 'common/extension_icon_set.h', 'common/extension_l10n_util.cc', 'common/extension_l10n_util.h', 'common/extension_message_generator.cc', 'common/extension_message_generator.h', 'common/extension_messages.cc', 'common/extension_messages.h', 'common/extension_paths.cc', 'common/extension_paths.h', 'common/extension_resource.cc', 'common/extension_resource.h', 'common/extension_set.cc', 'common/extension_set.h', 'common/extension_urls.cc', 'common/extension_urls.h', 'common/extension_utility_messages.h', 'common/extensions_client.cc', 'common/extensions_client.h', 'common/feature_switch.cc', 'common/feature_switch.h', 'common/features/api_feature.cc', 'common/features/api_feature.h', 'common/features/base_feature_provider.cc', 'common/features/base_feature_provider.h', 'common/features/behavior_feature.cc', 'common/features/behavior_feature.h', 'common/features/complex_feature.cc', 'common/features/complex_feature.h', 'common/features/feature.cc', 'common/features/feature.h', 'common/features/feature_provider.cc', 'common/features/feature_provider.h', 'common/features/feature_util.h', 'common/features/json_feature_provider_source.cc', 'common/features/json_feature_provider_source.h', 'common/features/manifest_feature.cc', 'common/features/manifest_feature.h', 'common/features/permission_feature.cc', 'common/features/permission_feature.h', 'common/features/simple_feature.cc', 'common/features/simple_feature.h', 'common/features/simple_feature_filter.cc', 'common/features/simple_feature_filter.h', 'common/file_util.cc', 'common/file_util.h', 'common/guest_view/extensions_guest_view_messages.h', 'common/host_id.cc', 'common/host_id.h', 'common/image_util.cc', 'common/image_util.h', 'common/install_warning.cc', 'common/install_warning.h', 'common/manifest.cc', 'common/manifest.h', 'common/manifest_constants.cc', 'common/manifest_constants.h', 'common/manifest_handler.cc', 'common/manifest_handler.h', 'common/manifest_handler_helpers.cc', 'common/manifest_handler_helpers.h', 'common/manifest_handlers/app_isolation_info.cc', 'common/manifest_handlers/app_isolation_info.h', 'common/manifest_handlers/background_info.cc', 'common/manifest_handlers/background_info.h', 'common/manifest_handlers/content_capabilities_handler.cc', 'common/manifest_handlers/content_capabilities_handler.h', 'common/manifest_handlers/csp_info.cc', 'common/manifest_handlers/csp_info.h', 'common/manifest_handlers/default_locale_handler.cc', 'common/manifest_handlers/default_locale_handler.h', 'common/manifest_handlers/externally_connectable.cc', 'common/manifest_handlers/externally_connectable.h', 'common/manifest_handlers/file_handler_info.cc', 'common/manifest_handlers/file_handler_info.h', 'common/manifest_handlers/icons_handler.cc', 'common/manifest_handlers/icons_handler.h', 'common/manifest_handlers/incognito_info.cc', 'common/manifest_handlers/incognito_info.h', 'common/manifest_handlers/kiosk_mode_info.cc', 'common/manifest_handlers/kiosk_mode_info.h', 'common/manifest_handlers/launcher_page_info.cc', 'common/manifest_handlers/launcher_page_info.h', 'common/manifest_handlers/mime_types_handler.cc', 'common/manifest_handlers/mime_types_handler.h', 'common/manifest_handlers/oauth2_manifest_handler.cc', 'common/manifest_handlers/oauth2_manifest_handler.h', 'common/manifest_handlers/offline_enabled_info.cc', 'common/manifest_handlers/offline_enabled_info.h', 'common/manifest_handlers/options_page_info.cc', 'common/manifest_handlers/options_page_info.h', 'common/manifest_handlers/permissions_parser.cc', 'common/manifest_handlers/permissions_parser.h', 'common/manifest_handlers/requirements_info.cc', 'common/manifest_handlers/requirements_info.h', 'common/manifest_handlers/sandboxed_page_info.cc', 'common/manifest_handlers/sandboxed_page_info.h', 'common/manifest_handlers/shared_module_info.cc', 'common/manifest_handlers/shared_module_info.h', 'common/manifest_handlers/web_accessible_resources_info.cc', 'common/manifest_handlers/web_accessible_resources_info.h', 'common/manifest_handlers/webview_info.cc', 'common/manifest_handlers/webview_info.h', 'common/manifest_url_handlers.cc', 'common/manifest_url_handlers.h', 'common/message_bundle.cc', 'common/message_bundle.h', 'common/one_shot_event.cc', 'common/one_shot_event.h', 'common/permissions/api_permission.cc', 'common/permissions/api_permission.h', 'common/permissions/api_permission_set.cc', 'common/permissions/api_permission_set.h', 'common/permissions/base_set_operators.h', 'common/permissions/extensions_api_permissions.cc', 'common/permissions/extensions_api_permissions.h', 'common/permissions/manifest_permission.cc', 'common/permissions/manifest_permission.h', 'common/permissions/manifest_permission_set.cc', 'common/permissions/manifest_permission_set.h', 'common/permissions/media_galleries_permission.cc', 'common/permissions/media_galleries_permission.h', 'common/permissions/media_galleries_permission_data.cc', 'common/permissions/media_galleries_permission_data.h', 'common/permissions/permission_message.cc', 'common/permissions/permission_message.h', 'common/permissions/permission_message_provider.cc', 'common/permissions/permission_message_provider.h', 'common/permissions/permission_message_util.cc', 'common/permissions/permission_message_util.h', 'common/permissions/permission_set.cc', 'common/permissions/permission_set.h', 'common/permissions/permissions_data.cc', 'common/permissions/permissions_data.h', 'common/permissions/permissions_info.cc', 'common/permissions/permissions_info.h', 'common/permissions/permissions_provider.h', 'common/permissions/set_disjunction_permission.h', 'common/permissions/settings_override_permission.cc', 'common/permissions/settings_override_permission.h', 'common/permissions/socket_permission.cc', 'common/permissions/socket_permission.h', 'common/permissions/socket_permission_data.cc', 'common/permissions/socket_permission_data.h', 'common/permissions/socket_permission_entry.cc', 'common/permissions/socket_permission_entry.h', 'common/permissions/usb_device_permission.cc', 'common/permissions/usb_device_permission.h', 'common/permissions/usb_device_permission_data.cc', 'common/permissions/usb_device_permission_data.h', 'common/stack_frame.cc', 'common/stack_frame.h', 'common/switches.cc', 'common/switches.h', 'common/update_manifest.cc', 'common/update_manifest.h', 'common/url_pattern.cc', 'common/url_pattern.h', 'common/url_pattern_set.cc', 'common/url_pattern_set.h', 'common/user_script.cc', 'common/user_script.h', 'common/value_builder.cc', 'common/value_builder.h', 'common/value_counter.cc', 'common/value_counter.h', 'common/view_type.cc', 'common/view_type.h', ], 'extensions_common_sources_nacl': [ 'common/manifest_handlers/nacl_modules_handler.cc', 'common/manifest_handlers/nacl_modules_handler.h', ], 'extensions_browser_sources': [ # NOTE: When moving an API out of Chrome be sure to verify that the # Android build still compiles. See conditions below. 'browser/api/activity_log/web_request_constants.cc', 'browser/api/activity_log/web_request_constants.h', 'browser/api/alarms/alarm_manager.cc', 'browser/api/alarms/alarm_manager.h', 'browser/api/alarms/alarms_api.cc', 'browser/api/alarms/alarms_api.h', 'browser/api/api_resource.cc', 'browser/api/api_resource.h', 'browser/api/api_resource_manager.h', 'browser/api/app_current_window_internal/app_current_window_internal_api.cc', 'browser/api/app_current_window_internal/app_current_window_internal_api.h', 'browser/api/app_runtime/app_runtime_api.cc', 'browser/api/app_runtime/app_runtime_api.h', 'browser/api/app_window/app_window_api.cc', 'browser/api/app_window/app_window_api.h', 'browser/api/async_api_function.cc', 'browser/api/async_api_function.h', 'browser/api/audio/audio_api.cc', 'browser/api/audio/audio_api.h', 'browser/api/audio/audio_service.h', 'browser/api/bluetooth/bluetooth_api.cc', 'browser/api/bluetooth/bluetooth_api.h', 'browser/api/bluetooth/bluetooth_api_pairing_delegate.cc', 'browser/api/bluetooth/bluetooth_api_pairing_delegate.h', 'browser/api/bluetooth/bluetooth_api_utils.cc', 'browser/api/bluetooth/bluetooth_api_utils.h', 'browser/api/bluetooth/bluetooth_event_router.cc', 'browser/api/bluetooth/bluetooth_event_router.h', 'browser/api/bluetooth/bluetooth_extension_function.cc', 'browser/api/bluetooth/bluetooth_extension_function.h', 'browser/api/bluetooth/bluetooth_private_api.cc', 'browser/api/bluetooth/bluetooth_private_api.h', 'browser/api/bluetooth_socket/bluetooth_api_socket.cc', 'browser/api/bluetooth_socket/bluetooth_api_socket.h', 'browser/api/bluetooth_socket/bluetooth_socket_api.cc', 'browser/api/bluetooth_socket/bluetooth_socket_api.h', 'browser/api/bluetooth_socket/bluetooth_socket_event_dispatcher.cc', 'browser/api/bluetooth_socket/bluetooth_socket_event_dispatcher.h', 'browser/api/capture_web_contents_function.cc', 'browser/api/capture_web_contents_function.h', 'browser/api/cast_channel/cast_auth_ica.cc', 'browser/api/cast_channel/cast_auth_ica.h', 'browser/api/cast_channel/cast_auth_util.cc', 'browser/api/cast_channel/cast_auth_util.h', 'browser/api/cast_channel/cast_channel_api.cc', 'browser/api/cast_channel/cast_channel_api.h', 'browser/api/cast_channel/cast_framer.cc', 'browser/api/cast_channel/cast_framer.h', 'browser/api/cast_channel/cast_message_util.cc', 'browser/api/cast_channel/cast_message_util.h', 'browser/api/cast_channel/cast_socket.cc', 'browser/api/cast_channel/cast_socket.h', 'browser/api/cast_channel/cast_transport.cc', 'browser/api/cast_channel/cast_transport.h', 'browser/api/cast_channel/keep_alive_delegate.cc', 'browser/api/cast_channel/keep_alive_delegate.h', 'browser/api/cast_channel/logger.cc', 'browser/api/cast_channel/logger.h', 'browser/api/cast_channel/logger_util.cc', 'browser/api/cast_channel/logger_util.h', 'browser/api/declarative/declarative_api.cc', 'browser/api/declarative/declarative_api.h', 'browser/api/declarative/declarative_rule.h', 'browser/api/declarative/deduping_factory.h', 'browser/api/declarative/rules_cache_delegate.cc', 'browser/api/declarative/rules_cache_delegate.h', 'browser/api/declarative/rules_registry.cc', 'browser/api/declarative/rules_registry.h', 'browser/api/declarative/rules_registry_service.cc', 'browser/api/declarative/rules_registry_service.h', 'browser/api/declarative/test_rules_registry.cc', 'browser/api/declarative/test_rules_registry.h', 'browser/api/declarative_content/content_rules_registry.h', 'browser/api/declarative_webrequest/request_stage.cc', 'browser/api/declarative_webrequest/request_stage.h', 'browser/api/declarative_webrequest/webrequest_action.cc', 'browser/api/declarative_webrequest/webrequest_action.h', 'browser/api/declarative_webrequest/webrequest_condition.cc', 'browser/api/declarative_webrequest/webrequest_condition.h', 'browser/api/declarative_webrequest/webrequest_condition_attribute.cc', 'browser/api/declarative_webrequest/webrequest_condition_attribute.h', 'browser/api/declarative_webrequest/webrequest_constants.cc', 'browser/api/declarative_webrequest/webrequest_constants.h', 'browser/api/declarative_webrequest/webrequest_rules_registry.cc', 'browser/api/declarative_webrequest/webrequest_rules_registry.h', 'browser/api/device_permissions_manager.cc', 'browser/api/device_permissions_manager.h', 'browser/api/device_permissions_prompt.cc', 'browser/api/device_permissions_prompt.h', 'browser/api/dns/dns_api.cc', 'browser/api/dns/dns_api.h', 'browser/api/dns/host_resolver_wrapper.cc', 'browser/api/dns/host_resolver_wrapper.h', 'browser/api/document_scan/document_scan_api.cc', 'browser/api/document_scan/document_scan_api.h', 'browser/api/document_scan/document_scan_interface.cc', 'browser/api/document_scan/document_scan_interface.h', 'browser/api/document_scan/document_scan_interface_chromeos.cc', 'browser/api/execute_code_function.cc', 'browser/api/execute_code_function.h', 'browser/api/extensions_api_client.cc', 'browser/api/extensions_api_client.h', 'browser/api/guest_view/app_view/app_view_guest_internal_api.cc', 'browser/api/guest_view/app_view/app_view_guest_internal_api.h', 'browser/api/guest_view/extension_view/extension_view_internal_api.cc', 'browser/api/guest_view/extension_view/extension_view_internal_api.h', 'browser/api/guest_view/guest_view_internal_api.cc', 'browser/api/guest_view/guest_view_internal_api.h', 'browser/api/guest_view/web_view/web_view_internal_api.cc', 'browser/api/guest_view/web_view/web_view_internal_api.h', 'browser/api/hid/hid_api.cc', 'browser/api/hid/hid_api.h', 'browser/api/hid/hid_connection_resource.cc', 'browser/api/hid/hid_connection_resource.h', 'browser/api/hid/hid_device_manager.cc', 'browser/api/hid/hid_device_manager.h', 'browser/api/idle/idle_api.cc', 'browser/api/idle/idle_api.h', 'browser/api/idle/idle_api_constants.cc', 'browser/api/idle/idle_api_constants.h', 'browser/api/idle/idle_manager.cc', 'browser/api/idle/idle_manager.h', 'browser/api/idle/idle_manager_factory.cc', 'browser/api/idle/idle_manager_factory.h', 'browser/api/management/management_api.cc', 'browser/api/management/management_api.h', 'browser/api/management/management_api_constants.cc', 'browser/api/management/management_api_constants.h', 'browser/api/management/management_api_delegate.h', 'browser/api/messaging/native_message_host.cc', 'browser/api/mime_handler_private/mime_handler_private.cc', 'browser/api/mime_handler_private/mime_handler_private.h', 'browser/api/networking_private/networking_private_api.cc', 'browser/api/networking_private/networking_private_api.h', 'browser/api/networking_private/networking_private_chromeos.cc', 'browser/api/networking_private/networking_private_chromeos.h', 'browser/api/networking_private/networking_private_delegate.cc', 'browser/api/networking_private/networking_private_delegate.h', 'browser/api/networking_private/networking_private_delegate_factory.cc', 'browser/api/networking_private/networking_private_delegate_factory.h', 'browser/api/networking_private/networking_private_delegate_observer.h', 'browser/api/networking_private/networking_private_event_router.h', 'browser/api/networking_private/networking_private_event_router_chromeos.cc', 'browser/api/networking_private/networking_private_event_router_factory.cc', 'browser/api/networking_private/networking_private_event_router_factory.h', 'browser/api/power/power_api.cc', 'browser/api/power/power_api.h', 'browser/api/printer_provider/printer_provider_api.cc', 'browser/api/printer_provider/printer_provider_api.h', 'browser/api/printer_provider/printer_provider_api_factory.cc', 'browser/api/printer_provider/printer_provider_api_factory.h', 'browser/api/printer_provider/printer_provider_print_job.cc', 'browser/api/printer_provider/printer_provider_print_job.h', 'browser/api/printer_provider_internal/printer_provider_internal_api.cc', 'browser/api/printer_provider_internal/printer_provider_internal_api.h', 'browser/api/printer_provider_internal/printer_provider_internal_api_observer.h', 'browser/api/runtime/runtime_api.cc', 'browser/api/runtime/runtime_api.h', 'browser/api/runtime/runtime_api_delegate.cc', 'browser/api/runtime/runtime_api_delegate.h', 'browser/api/serial/serial_api.cc', 'browser/api/serial/serial_api.h', 'browser/api/serial/serial_connection.cc', 'browser/api/serial/serial_connection.h', 'browser/api/serial/serial_event_dispatcher.cc', 'browser/api/serial/serial_event_dispatcher.h', 'browser/api/serial/serial_service_factory.cc', 'browser/api/serial/serial_service_factory.h', 'browser/api/socket/socket.cc', 'browser/api/socket/socket.h', 'browser/api/socket/socket_api.cc', 'browser/api/socket/socket_api.h', 'browser/api/socket/tcp_socket.cc', 'browser/api/socket/tcp_socket.h', 'browser/api/socket/tls_socket.cc', 'browser/api/socket/tls_socket.h', 'browser/api/socket/udp_socket.cc', 'browser/api/socket/udp_socket.h', 'browser/api/sockets_tcp/sockets_tcp_api.cc', 'browser/api/sockets_tcp/sockets_tcp_api.h', 'browser/api/sockets_tcp/tcp_socket_event_dispatcher.cc', 'browser/api/sockets_tcp/tcp_socket_event_dispatcher.h', 'browser/api/sockets_tcp_server/sockets_tcp_server_api.cc', 'browser/api/sockets_tcp_server/sockets_tcp_server_api.h', 'browser/api/sockets_tcp_server/tcp_server_socket_event_dispatcher.cc', 'browser/api/sockets_tcp_server/tcp_server_socket_event_dispatcher.h', 'browser/api/sockets_udp/sockets_udp_api.cc', 'browser/api/sockets_udp/sockets_udp_api.h', 'browser/api/sockets_udp/udp_socket_event_dispatcher.cc', 'browser/api/sockets_udp/udp_socket_event_dispatcher.h', 'browser/api/storage/leveldb_settings_storage_factory.cc', 'browser/api/storage/leveldb_settings_storage_factory.h', 'browser/api/storage/local_value_store_cache.cc', 'browser/api/storage/local_value_store_cache.h', 'browser/api/storage/settings_namespace.cc', 'browser/api/storage/settings_namespace.h', 'browser/api/storage/settings_observer.h', 'browser/api/storage/settings_storage_factory.h', 'browser/api/storage/settings_storage_quota_enforcer.cc', 'browser/api/storage/settings_storage_quota_enforcer.h', 'browser/api/storage/storage_api.cc', 'browser/api/storage/storage_api.h', 'browser/api/storage/storage_frontend.cc', 'browser/api/storage/storage_frontend.h', 'browser/api/storage/value_store_cache.cc', 'browser/api/storage/value_store_cache.h', 'browser/api/storage/weak_unlimited_settings_storage.cc', 'browser/api/storage/weak_unlimited_settings_storage.h', 'browser/api/system_cpu/cpu_info_provider.cc', 'browser/api/system_cpu/cpu_info_provider.h', 'browser/api/system_cpu/cpu_info_provider_linux.cc', 'browser/api/system_cpu/cpu_info_provider_mac.cc', 'browser/api/system_cpu/cpu_info_provider_win.cc', 'browser/api/system_cpu/system_cpu_api.cc', 'browser/api/system_cpu/system_cpu_api.h', 'browser/api/system_display/display_info_provider.cc', 'browser/api/system_display/display_info_provider.h', 'browser/api/system_display/system_display_api.cc', 'browser/api/system_display/system_display_api.h', 'browser/api/system_info/system_info_api.cc', 'browser/api/system_info/system_info_api.h', 'browser/api/system_info/system_info_provider.cc', 'browser/api/system_info/system_info_provider.h', 'browser/api/system_memory/memory_info_provider.cc', 'browser/api/system_memory/memory_info_provider.h', 'browser/api/system_memory/system_memory_api.cc', 'browser/api/system_memory/system_memory_api.h', 'browser/api/system_network/system_network_api.cc', 'browser/api/system_network/system_network_api.h', 'browser/api/system_storage/storage_info_provider.cc', 'browser/api/system_storage/storage_info_provider.h', 'browser/api/system_storage/system_storage_api.cc', 'browser/api/system_storage/system_storage_api.h', 'browser/api/test/test_api.cc', 'browser/api/test/test_api.h', 'browser/api/usb/usb_api.cc', 'browser/api/usb/usb_api.h', 'browser/api/usb/usb_device_resource.cc', 'browser/api/usb/usb_device_resource.h', 'browser/api/usb/usb_event_router.cc', 'browser/api/usb/usb_event_router.h', 'browser/api/usb/usb_guid_map.cc', 'browser/api/usb/usb_guid_map.h', 'browser/api/virtual_keyboard_private/virtual_keyboard_delegate.h', 'browser/api/virtual_keyboard_private/virtual_keyboard_private_api.cc', 'browser/api/virtual_keyboard_private/virtual_keyboard_private_api.h', 'browser/api/web_request/form_data_parser.cc', 'browser/api/web_request/form_data_parser.h', 'browser/api/web_request/upload_data_presenter.cc', 'browser/api/web_request/upload_data_presenter.h', 'browser/api/web_request/web_request_api.cc', 'browser/api/web_request/web_request_api.h', 'browser/api/web_request/web_request_api_constants.cc', 'browser/api/web_request/web_request_api_constants.h', 'browser/api/web_request/web_request_api_helpers.cc', 'browser/api/web_request/web_request_api_helpers.h', 'browser/api/web_request/web_request_event_router_delegate.cc', 'browser/api/web_request/web_request_event_router_delegate.h', 'browser/api/web_request/web_request_permissions.cc', 'browser/api/web_request/web_request_permissions.h', 'browser/api/web_request/web_request_time_tracker.cc', 'browser/api/web_request/web_request_time_tracker.h', 'browser/api_activity_monitor.h', 'browser/app_sorting.h', 'browser/app_window/app_delegate.h', 'browser/app_window/app_web_contents_helper.cc', 'browser/app_window/app_web_contents_helper.h', 'browser/app_window/app_window.cc', 'browser/app_window/app_window.h', 'browser/app_window/app_window_client.cc', 'browser/app_window/app_window_client.h', 'browser/app_window/app_window_contents.cc', 'browser/app_window/app_window_contents.h', 'browser/app_window/app_window_geometry_cache.cc', 'browser/app_window/app_window_geometry_cache.h', 'browser/app_window/app_window_registry.cc', 'browser/app_window/app_window_registry.h', 'browser/app_window/native_app_window.h', 'browser/app_window/size_constraints.cc', 'browser/app_window/size_constraints.h', 'browser/bad_message.cc', 'browser/bad_message.h', 'browser/blacklist_state.h', 'browser/blob_holder.cc', 'browser/blob_holder.h', 'browser/browser_context_keyed_api_factory.h', 'browser/browser_context_keyed_service_factories.cc', 'browser/browser_context_keyed_service_factories.h', 'browser/component_extension_resource_manager.h', 'browser/computed_hashes.cc', 'browser/computed_hashes.h', 'browser/content_hash_fetcher.cc', 'browser/content_hash_fetcher.h', 'browser/content_hash_reader.cc', 'browser/content_hash_reader.h', 'browser/content_hash_tree.cc', 'browser/content_hash_tree.h', 'browser/content_verifier.cc', 'browser/content_verifier.h', 'browser/content_verifier_delegate.h', 'browser/content_verifier_io_data.cc', 'browser/content_verifier_io_data.h', 'browser/content_verify_job.cc', 'browser/content_verify_job.h', 'browser/crx_file_info.cc', 'browser/crx_file_info.h', 'browser/declarative_user_script_manager.cc', 'browser/declarative_user_script_manager.h', 'browser/declarative_user_script_manager_factory.cc', 'browser/declarative_user_script_manager_factory.h', 'browser/declarative_user_script_master.cc', 'browser/declarative_user_script_master.h', 'browser/deferred_start_render_host.h', 'browser/deferred_start_render_host_observer.h', 'browser/error_map.cc', 'browser/error_map.h', 'browser/event_listener_map.cc', 'browser/event_listener_map.h', 'browser/event_page_tracker.h', 'browser/event_router.cc', 'browser/event_router.h', 'browser/event_router_factory.cc', 'browser/event_router_factory.h', 'browser/extension_dialog_auto_confirm.cc', 'browser/extension_dialog_auto_confirm.h', 'browser/extension_error.cc', 'browser/extension_error.h', 'browser/extension_function.cc', 'browser/extension_function.h', 'browser/extension_function_dispatcher.cc', 'browser/extension_function_dispatcher.h', 'browser/extension_function_registry.cc', 'browser/extension_function_registry.h', 'browser/extension_function_util.cc', 'browser/extension_function_util.h', 'browser/extension_host.cc', 'browser/extension_host.h', 'browser/extension_host_delegate.h', 'browser/extension_host_observer.h', 'browser/extension_host_queue.h', 'browser/extension_icon_image.cc', 'browser/extension_icon_image.h', 'browser/extension_icon_placeholder.cc', 'browser/extension_icon_placeholder.h', 'browser/extension_message_filter.cc', 'browser/extension_message_filter.h', 'browser/extension_pref_store.cc', 'browser/extension_pref_store.h', 'browser/extension_pref_value_map.cc', 'browser/extension_pref_value_map.h', 'browser/extension_pref_value_map_factory.cc', 'browser/extension_pref_value_map_factory.h', 'browser/extension_prefs.cc', 'browser/extension_prefs.h', 'browser/extension_prefs_factory.cc', 'browser/extension_prefs_factory.h', 'browser/extension_prefs_observer.h', 'browser/extension_prefs_scope.h', 'browser/extension_protocols.cc', 'browser/extension_protocols.h', 'browser/extension_registry.cc', 'browser/extension_registry.h', 'browser/extension_registry_factory.cc', 'browser/extension_registry_factory.h', 'browser/extension_registry_observer.h', 'browser/extension_request_limiting_throttle.cc', 'browser/extension_request_limiting_throttle.h', 'browser/extension_scoped_prefs.h', 'browser/extension_system.cc', 'browser/extension_system.h', 'browser/extension_system_provider.cc', 'browser/extension_system_provider.h', 'browser/extension_throttle_entry.cc', 'browser/extension_throttle_entry.h', 'browser/extension_throttle_entry_interface.h', 'browser/extension_throttle_manager.cc', 'browser/extension_throttle_manager.h', 'browser/extension_user_script_loader.cc', 'browser/extension_user_script_loader.h', 'browser/extension_util.cc', 'browser/extension_util.h', 'browser/extension_web_contents_observer.cc', 'browser/extension_web_contents_observer.h', 'browser/extension_zoom_request_client.cc', 'browser/extension_zoom_request_client.h', 'browser/extensions_browser_client.cc', 'browser/extensions_browser_client.h', 'browser/external_provider_interface.h', 'browser/file_highlighter.cc', 'browser/file_highlighter.h', 'browser/file_reader.cc', 'browser/file_reader.h', 'browser/granted_file_entry.cc', 'browser/granted_file_entry.h', 'browser/guest_view/app_view/app_view_constants.cc', 'browser/guest_view/app_view/app_view_constants.h', 'browser/guest_view/app_view/app_view_guest.cc', 'browser/guest_view/app_view/app_view_guest.h', 'browser/guest_view/app_view/app_view_guest_delegate.cc', 'browser/guest_view/app_view/app_view_guest_delegate.h', 'browser/guest_view/extension_options/extension_options_constants.cc', 'browser/guest_view/extension_options/extension_options_constants.h', 'browser/guest_view/extension_options/extension_options_guest.cc', 'browser/guest_view/extension_options/extension_options_guest.h', 'browser/guest_view/extension_options/extension_options_guest_delegate.cc', 'browser/guest_view/extension_options/extension_options_guest_delegate.h', 'browser/guest_view/extension_view/extension_view_constants.cc', 'browser/guest_view/extension_view/extension_view_constants.h', 'browser/guest_view/extension_view/extension_view_guest.cc', 'browser/guest_view/extension_view/extension_view_guest.h', 'browser/guest_view/extensions_guest_view_manager_delegate.cc', 'browser/guest_view/extensions_guest_view_manager_delegate.h', 'browser/guest_view/extensions_guest_view_message_filter.cc', 'browser/guest_view/extensions_guest_view_message_filter.h', 'browser/guest_view/guest_view_events.cc', 'browser/guest_view/guest_view_events.h', 'browser/guest_view/mime_handler_view/mime_handler_stream_manager.cc', 'browser/guest_view/mime_handler_view/mime_handler_stream_manager.h', 'browser/guest_view/mime_handler_view/mime_handler_view_constants.cc', 'browser/guest_view/mime_handler_view/mime_handler_view_constants.h', 'browser/guest_view/mime_handler_view/mime_handler_view_guest.cc', 'browser/guest_view/mime_handler_view/mime_handler_view_guest.h', 'browser/guest_view/mime_handler_view/mime_handler_view_guest_delegate.cc', 'browser/guest_view/mime_handler_view/mime_handler_view_guest_delegate.h', 'browser/guest_view/web_view/javascript_dialog_helper.cc', 'browser/guest_view/web_view/javascript_dialog_helper.h', 'browser/guest_view/web_view/web_ui/web_ui_url_fetcher.cc', 'browser/guest_view/web_view/web_ui/web_ui_url_fetcher.h', 'browser/guest_view/web_view/web_view_constants.cc', 'browser/guest_view/web_view/web_view_constants.h', 'browser/guest_view/web_view/web_view_content_script_manager.cc', 'browser/guest_view/web_view/web_view_content_script_manager.h', 'browser/guest_view/web_view/web_view_find_helper.cc', 'browser/guest_view/web_view/web_view_find_helper.h', 'browser/guest_view/web_view/web_view_guest.cc', 'browser/guest_view/web_view/web_view_guest.h', 'browser/guest_view/web_view/web_view_guest_delegate.h', 'browser/guest_view/web_view/web_view_permission_helper.cc', 'browser/guest_view/web_view/web_view_permission_helper.h', 'browser/guest_view/web_view/web_view_permission_helper_delegate.cc', 'browser/guest_view/web_view/web_view_permission_helper_delegate.h', 'browser/guest_view/web_view/web_view_permission_types.h', 'browser/guest_view/web_view/web_view_renderer_state.cc', 'browser/guest_view/web_view/web_view_renderer_state.h', 'browser/image_loader.cc', 'browser/image_loader.h', 'browser/image_loader_factory.cc', 'browser/image_loader_factory.h', 'browser/info_map.cc', 'browser/info_map.h', 'browser/install/crx_install_error.h', 'browser/install/extension_install_ui.cc', 'browser/install/extension_install_ui.h', 'browser/install_flag.h', 'browser/io_thread_extension_message_filter.cc', 'browser/io_thread_extension_message_filter.h', 'browser/lazy_background_task_queue.cc', 'browser/lazy_background_task_queue.h', 'browser/lazy_background_task_queue_factory.cc', 'browser/lazy_background_task_queue_factory.h', 'browser/load_monitoring_extension_host_queue.cc', 'browser/load_monitoring_extension_host_queue.h', 'browser/management_policy.cc', 'browser/management_policy.h', 'browser/mojo/keep_alive_impl.cc', 'browser/mojo/keep_alive_impl.h', 'browser/mojo/service_registration.cc', 'browser/mojo/service_registration.h', 'browser/mojo/stash_backend.cc', 'browser/mojo/stash_backend.h', 'browser/notification_types.cc', 'browser/notification_types.h', 'browser/null_app_sorting.cc', 'browser/null_app_sorting.h', 'browser/pref_names.cc', 'browser/pref_names.h', 'browser/process_manager.cc', 'browser/process_manager.h', 'browser/process_manager_delegate.h', 'browser/process_manager_factory.cc', 'browser/process_manager_factory.h', 'browser/process_manager_observer.h', 'browser/process_map.cc', 'browser/process_map.h', 'browser/process_map_factory.cc', 'browser/process_map_factory.h', 'browser/quota_service.cc', 'browser/quota_service.h', 'browser/renderer_startup_helper.cc', 'browser/renderer_startup_helper.h', 'browser/requirements_checker.h', 'browser/runtime_data.cc', 'browser/runtime_data.h', 'browser/sandboxed_unpacker.cc', 'browser/sandboxed_unpacker.h', 'browser/script_execution_observer.h', 'browser/script_executor.cc', 'browser/script_executor.h', 'browser/serial_extension_host_queue.cc', 'browser/serial_extension_host_queue.h', 'browser/service_worker_manager.cc', 'browser/service_worker_manager.h', 'browser/state_store.cc', 'browser/state_store.h', 'browser/suggest_permission_util.cc', 'browser/suggest_permission_util.h', 'browser/uninstall_reason.h', 'browser/update_observer.h', 'browser/updater/extension_cache.h', 'browser/updater/extension_downloader.cc', 'browser/updater/extension_downloader.h', 'browser/updater/extension_downloader_delegate.cc', 'browser/updater/extension_downloader_delegate.h', 'browser/updater/manifest_fetch_data.cc', 'browser/updater/manifest_fetch_data.h', 'browser/updater/null_extension_cache.cc', 'browser/updater/null_extension_cache.h', 'browser/updater/request_queue.h', 'browser/updater/request_queue_impl.h', 'browser/updater/safe_manifest_parser.cc', 'browser/updater/safe_manifest_parser.h', 'browser/updater/update_client_config.cc', 'browser/updater/update_client_config.h', 'browser/updater/update_data_provider.cc', 'browser/updater/update_data_provider.h', 'browser/updater/update_install_shim.cc', 'browser/updater/update_install_shim.h', 'browser/updater/update_service.cc', 'browser/updater/update_service.h', 'browser/updater/update_service_factory.cc', 'browser/updater/update_service_factory.h', 'browser/url_request_util.cc', 'browser/url_request_util.h', 'browser/user_script_loader.cc', 'browser/user_script_loader.h', 'browser/value_store/leveldb_value_store.cc', 'browser/value_store/leveldb_value_store.h', 'browser/value_store/testing_value_store.cc', 'browser/value_store/testing_value_store.h', 'browser/value_store/value_store.cc', 'browser/value_store/value_store.h', 'browser/value_store/value_store_change.cc', 'browser/value_store/value_store_change.h', 'browser/value_store/value_store_frontend.cc', 'browser/value_store/value_store_frontend.h', 'browser/value_store/value_store_util.cc', 'browser/value_store/value_store_util.h', 'browser/verified_contents.cc', 'browser/verified_contents.h', 'browser/view_type_utils.cc', 'browser/view_type_utils.h', 'browser/warning_service.cc', 'browser/warning_service.h', 'browser/warning_service_factory.cc', 'browser/warning_service_factory.h', 'browser/warning_set.cc', 'browser/warning_set.h', 'browser/web_ui_user_script_loader.cc', 'browser/web_ui_user_script_loader.h', ], 'extensions_browser_sources_chromeos': [ 'browser/api/audio/audio_service_chromeos.cc', 'browser/api/diagnostics/diagnostics_api.cc', 'browser/api/diagnostics/diagnostics_api.h', 'browser/api/diagnostics/diagnostics_api_chromeos.cc', 'browser/api/networking_config/networking_config_api.cc', 'browser/api/networking_config/networking_config_api.h', 'browser/api/networking_config/networking_config_service.cc', 'browser/api/networking_config/networking_config_service.h', 'browser/api/networking_config/networking_config_service_factory.cc', 'browser/api/networking_config/networking_config_service_factory.h', 'browser/api/socket/app_firewall_hole_manager.cc', 'browser/api/socket/app_firewall_hole_manager.h', 'browser/api/vpn_provider/vpn_provider_api.cc', 'browser/api/vpn_provider/vpn_provider_api.h', 'browser/api/vpn_provider/vpn_service.cc', 'browser/api/vpn_provider/vpn_service.h', 'browser/api/vpn_provider/vpn_service_factory.h', 'browser/api/webcam_private/v4l2_webcam.cc', 'browser/api/webcam_private/v4l2_webcam.h', 'browser/api/webcam_private/visca_webcam.cc', 'browser/api/webcam_private/visca_webcam.h', 'browser/api/webcam_private/webcam.cc', 'browser/api/webcam_private/webcam.h', 'browser/api/webcam_private/webcam_private_api.h', 'browser/api/webcam_private/webcam_private_api_chromeos.cc', ], 'extensions_browser_sources_nonchromeos': [ 'browser/api/audio/audio_service.cc', 'browser/api/document_scan/document_scan_interface_nonchromeos.cc', ], 'extensions_browser_sources_win_or_mac': [ 'browser/api/networking_private/networking_private_event_router_nonchromeos.cc', 'browser/api/networking_private/networking_private_service_client.cc', 'browser/api/networking_private/networking_private_service_client.h', ], 'extensions_browser_sources_linux_nonchromeos': [ 'browser/api/networking_private/network_config_dbus_constants_linux.cc', 'browser/api/networking_private/network_config_dbus_constants_linux.h', 'browser/api/networking_private/networking_private_event_router_nonchromeos.cc', 'browser/api/networking_private/networking_private_linux.cc', 'browser/api/networking_private/networking_private_linux.h', ], 'extensions_renderer_sources': [ 'renderer/activity_log_converter_strategy.cc', 'renderer/activity_log_converter_strategy.h', 'renderer/api/automation/automation_api_helper.cc', 'renderer/api/automation/automation_api_helper.h', 'renderer/api_activity_logger.cc', 'renderer/api_activity_logger.h', 'renderer/api_definitions_natives.cc', 'renderer/api_definitions_natives.h', 'renderer/app_window_custom_bindings.cc', 'renderer/app_window_custom_bindings.h', 'renderer/binding_generating_native_handler.cc', 'renderer/binding_generating_native_handler.h', 'renderer/blob_native_handler.cc', 'renderer/blob_native_handler.h', 'renderer/console.cc', 'renderer/console.h', 'renderer/content_watcher.cc', 'renderer/content_watcher.h', 'renderer/context_menus_custom_bindings.cc', 'renderer/context_menus_custom_bindings.h', 'renderer/css_native_handler.cc', 'renderer/css_native_handler.h', 'renderer/dispatcher.cc', 'renderer/dispatcher.h', 'renderer/dispatcher_delegate.h', 'renderer/document_custom_bindings.cc', 'renderer/document_custom_bindings.h', 'renderer/dom_activity_logger.cc', 'renderer/dom_activity_logger.h', 'renderer/event_bindings.cc', 'renderer/event_bindings.h', 'renderer/extension_frame_helper.cc', 'renderer/extension_frame_helper.h', 'renderer/extension_groups.h', 'renderer/extension_helper.cc', 'renderer/extension_helper.h', 'renderer/extension_injection_host.cc', 'renderer/extension_injection_host.h', 'renderer/extensions_render_frame_observer.cc', 'renderer/extensions_render_frame_observer.h', 'renderer/extensions_renderer_client.cc', 'renderer/extensions_renderer_client.h', 'renderer/file_system_natives.cc', 'renderer/file_system_natives.h', 'renderer/gc_callback.cc', 'renderer/gc_callback.h', 'renderer/guest_view/extensions_guest_view_container.cc', 'renderer/guest_view/extensions_guest_view_container.h', 'renderer/guest_view/extensions_guest_view_container_dispatcher.cc', 'renderer/guest_view/extensions_guest_view_container_dispatcher.h', 'renderer/guest_view/guest_view_internal_custom_bindings.cc', 'renderer/guest_view/guest_view_internal_custom_bindings.h', 'renderer/guest_view/mime_handler_view/mime_handler_view_container.cc', 'renderer/guest_view/mime_handler_view/mime_handler_view_container.h', 'renderer/i18n_custom_bindings.cc', 'renderer/i18n_custom_bindings.h', 'renderer/id_generator_custom_bindings.cc', 'renderer/id_generator_custom_bindings.h', 'renderer/injection_host.cc', 'renderer/injection_host.h', 'renderer/lazy_background_page_native_handler.cc', 'renderer/lazy_background_page_native_handler.h', 'renderer/logging_native_handler.cc', 'renderer/logging_native_handler.h', 'renderer/messaging_bindings.cc', 'renderer/messaging_bindings.h', 'renderer/module_system.cc', 'renderer/module_system.h', 'renderer/native_handler.cc', 'renderer/native_handler.h', 'renderer/object_backed_native_handler.cc', 'renderer/object_backed_native_handler.h', 'renderer/print_native_handler.cc', 'renderer/print_native_handler.h', 'renderer/process_info_native_handler.cc', 'renderer/process_info_native_handler.h', 'renderer/programmatic_script_injector.cc', 'renderer/programmatic_script_injector.h', 'renderer/render_frame_observer_natives.cc', 'renderer/renderer_extension_registry.cc', 'renderer/renderer_extension_registry.h', 'renderer/request_sender.cc', 'renderer/request_sender.h', 'renderer/resource_bundle_source_map.cc', 'renderer/resource_bundle_source_map.h', 'renderer/resources/app_runtime_custom_bindings.js', 'renderer/resources/app_window_custom_bindings.js', 'renderer/resources/binding.js', 'renderer/resources/context_menus_custom_bindings.js', 'renderer/resources/declarative_webrequest_custom_bindings.js', 'renderer/resources/entry_id_manager.js', 'renderer/resources/event.js', 'renderer/resources/extension.css', 'renderer/resources/extension_custom_bindings.js', 'renderer/resources/extension_fonts.css', 'renderer/resources/greasemonkey_api.js', 'renderer/resources/i18n_custom_bindings.js', 'renderer/resources/image_util.js', 'renderer/resources/json_schema.js', 'renderer/resources/last_error.js', 'renderer/resources/messaging.js', 'renderer/resources/messaging_utils.js', 'renderer/resources/permissions_custom_bindings.js', 'renderer/resources/platform_app.css', 'renderer/resources/platform_app.js', 'renderer/resources/runtime_custom_bindings.js', 'renderer/resources/schema_utils.js', 'renderer/resources/send_request.js', 'renderer/resources/set_icon.js', 'renderer/resources/storage_area.js', 'renderer/resources/test_custom_bindings.js', 'renderer/resources/uncaught_exception_handler.js', 'renderer/resources/utils.js', 'renderer/resources/guest_view/app_view/app_view.js', 'renderer/resources/guest_view/extension_options/extension_options.js', 'renderer/resources/guest_view/extension_view/extension_view.js', 'renderer/resources/guest_view/web_view/web_view.js', 'renderer/resources/guest_view/web_view/web_view_events.js', 'renderer/resources/guest_view/web_view/web_view_iframe.js', 'renderer/resources/web_request_custom_bindings.js', 'renderer/resources/web_request_internal_custom_bindings.js', 'renderer/runtime_custom_bindings.cc', 'renderer/runtime_custom_bindings.h', 'renderer/safe_builtins.cc', 'renderer/safe_builtins.h', 'renderer/script_context.cc', 'renderer/script_context.h', 'renderer/script_context_set.cc', 'renderer/script_context_set.h', 'renderer/script_injection.cc', 'renderer/script_injection.h', 'renderer/script_injection_callback.cc', 'renderer/script_injection_callback.h', 'renderer/script_injection_manager.cc', 'renderer/script_injection_manager.h', 'renderer/script_injector.h', 'renderer/scripts_run_info.cc', 'renderer/scripts_run_info.h', 'renderer/send_request_natives.cc', 'renderer/send_request_natives.h', 'renderer/set_icon_natives.cc', 'renderer/set_icon_natives.h', 'renderer/static_v8_external_one_byte_string_resource.cc', 'renderer/static_v8_external_one_byte_string_resource.h', 'renderer/test_features_native_handler.cc', 'renderer/test_features_native_handler.h', 'renderer/test_native_handler.cc', 'renderer/test_native_handler.h', 'renderer/user_gestures_native_handler.cc', 'renderer/user_gestures_native_handler.h', 'renderer/user_script_injector.cc', 'renderer/user_script_injector.h', 'renderer/user_script_set.cc', 'renderer/user_script_set.h', 'renderer/user_script_set_manager.cc', 'renderer/user_script_set_manager.h', 'renderer/utils_native_handler.cc', 'renderer/utils_native_handler.h', 'renderer/v8_context_native_handler.cc', 'renderer/v8_context_native_handler.h', 'renderer/v8_helpers.h', 'renderer/v8_schema_registry.cc', 'renderer/v8_schema_registry.h', 'renderer/wake_event_page.cc', 'renderer/wake_event_page.h', 'renderer/web_ui_injection_host.cc', 'renderer/web_ui_injection_host.h', 'renderer/worker_script_context_set.cc', 'renderer/worker_script_context_set.h', ], 'extensions_utility_sources': [ 'utility/unpacker.cc', 'utility/unpacker.h', 'utility/utility_handler.cc', 'utility/utility_handler.h', ], 'extensions_test_support_sources': [ 'browser/api/cast_channel/cast_test_util.cc', 'browser/api/cast_channel/cast_test_util.h', 'browser/api/dns/mock_host_resolver_creator.cc', 'browser/api/dns/mock_host_resolver_creator.h', 'browser/api/storage/settings_test_util.cc', 'browser/api/storage/settings_test_util.h', 'browser/api_test_utils.cc', 'browser/api_test_utils.h', 'browser/api_unittest.cc', 'browser/api_unittest.h', 'browser/app_window/test_app_window_contents.cc', 'browser/app_window/test_app_window_contents.h', 'browser/extension_error_test_util.cc', 'browser/extension_error_test_util.h', 'browser/extensions_test.cc', 'browser/extensions_test.h', 'browser/guest_view/mime_handler_view/test_mime_handler_view_guest.cc', 'browser/guest_view/mime_handler_view/test_mime_handler_view_guest.h', 'browser/mock_extension_system.cc', 'browser/mock_extension_system.h', 'browser/test_extension_registry_observer.cc', 'browser/test_extension_registry_observer.h', 'browser/test_extensions_browser_client.cc', 'browser/test_extensions_browser_client.h', 'browser/test_image_loader.cc', 'browser/test_image_loader.h', 'browser/test_management_policy.cc', 'browser/test_management_policy.h', 'browser/test_runtime_api_delegate.cc', 'browser/test_runtime_api_delegate.h', 'common/extension_builder.cc', 'common/extension_builder.h', 'common/manifest_test.cc', 'common/manifest_test.h', 'common/permissions/permission_message_test_util.cc', 'common/permissions/permission_message_test_util.h', 'common/test_util.cc', 'common/test_util.h', 'renderer/test_extensions_renderer_client.cc', 'renderer/test_extensions_renderer_client.h', 'test/background_page_watcher.cc', 'test/background_page_watcher.h', 'test/extension_test_message_listener.cc', 'test/extension_test_message_listener.h', 'test/result_catcher.cc', 'test/result_catcher.h', 'test/test_content_utility_client.cc', 'test/test_content_utility_client.h', 'test/test_extensions_client.cc', 'test/test_extensions_client.h', 'test/test_permission_message_provider.cc', 'test/test_permission_message_provider.h', ], }, }
b19d4c48e98253f0c798e34a47492d4728a86040
440e4f13d6b3939f0290931bcd984591f191f9f9
/demo/XmlResourceSubclass.py
3ffb043f8b415e55275f9873d23bd8a36a423eb2
[]
no_license
AlfiyaZi/Phoenix
b445e6906eb61d037c83957ce601d731dc04acfa
c524ed1a3794ec4d2baaba6b12d6d7ef37aa7695
refs/heads/master
2020-06-16T18:04:42.696173
2016-11-24T18:39:47
2016-11-24T18:39:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,717
py
#!/usr/bin/env python import wx import wx.xrc as xrc #---------------------------------------------------------------------- resourceText = br'''<?xml version="1.0"?> <resource> <!-- Notice that the class IS a standard wx class, and a custom subclass is specified as "moduleName.ClassName" Try changing the classname to one that does not exist and see what happens --> <object class="wxPanel" subclass="XmlResourceSubclass.MyCustomPanel" name="MyPanel"> <size>200,100</size> <object class="wxStaticText" name="label1"> <label>This panel is a custom class derived from wx.Panel,\nand is loaded by a custom XmlResourceHandler.</label> <pos>10,10</pos> </object> </object> </resource> ''' #---------------------------------------------------------------------- class MyCustomPanel(wx.Panel): def __init__(self): wx.Panel.__init__(self) # the Create step is done by XRC. self.Bind(wx.EVT_WINDOW_CREATE, self.OnCreate) self.Bind(wx.EVT_SIZE, self.OnSize) def OnCreate(self, evt): # This is the little bit of customization that we do for this # silly example. It could just as easily have been done in # the resource. We do it in the EVT_WINDOW_CREATE handler # because the window doesn't really exist yet in the __init__. if self is evt.GetEventObject(): t = wx.StaticText(self, -1, "MyCustomPanel") f = t.GetFont() f.SetWeight(wx.FONTWEIGHT_BOLD) f.SetPointSize(f.GetPointSize()+2) t.SetFont(f) self.t = t # On OSX the EVT_SIZE happens before EVT_WINDOW_CREATE !?! # so give it another kick wx.CallAfter(self.OnSize, None) evt.Skip() def OnSize(self, evt): if hasattr(self, 't'): sz = self.GetSize() w, h = self.t.GetTextExtent(self.t.GetLabel()) self.t.SetPosition(((sz.width-w)/2, (sz.height-h)/2)) #---------------------------------------------------------------------- class TestPanel(wx.Panel): def __init__(self, parent, log): self.log = log wx.Panel.__init__(self, parent, -1) # make the components label = wx.StaticText(self, -1, "The lower panel was built from this XML:") label.SetFont(wx.Font(12, wx.FONTFAMILY_SWISS, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_BOLD)) text = wx.TextCtrl(self, -1, resourceText, style=wx.TE_READONLY|wx.TE_MULTILINE) text.SetInsertionPoint(0) line = wx.StaticLine(self, -1) # Load the resource res = xrc.XmlResource() res.LoadFromBuffer(resourceText) # Now create a panel from the resource data panel = res.LoadPanel(self, "MyPanel") # and do the layout sizer = wx.BoxSizer(wx.VERTICAL) sizer.Add(label, 0, wx.EXPAND|wx.TOP|wx.LEFT, 5) sizer.Add(text, 1, wx.EXPAND|wx.ALL, 5) sizer.Add(line, 0, wx.EXPAND) sizer.Add(panel, 1, wx.EXPAND|wx.ALL, 5) self.SetSizer(sizer) #---------------------------------------------------------------------- def runTest(frame, nb, log): win = TestPanel(nb, log) return win #---------------------------------------------------------------------- overview = """<html><body> <h2><center>wx.XmlResourceSubclass</center></h2> Sometimes it is necessary to use custom classes, but you still want them to be created from XRC. The subclass XRC attribute allows you to do that. </body></html> """ if __name__ == '__main__': import sys,os import run run.main(['', os.path.basename(sys.argv[0])] + sys.argv[1:])
d72b7ab5be64ba723348d6436a369f88a256597d
bce29ac8dccfc51983dcc00c433287866e9d63e7
/1222-5223.py
2fd13043ddeebbd63a8be746dccad6b295a1017f
[]
no_license
aiifabbf/leetcode-memo
b2c3f110073367b4b6db95722e96a794b5fe0453
5be09b4a804cb600e61e24617b9b2a1cc78fab3f
refs/heads/master
2021-06-11T18:41:16.550017
2021-04-20T15:15:50
2021-04-20T15:15:50
175,244,504
10
2
null
null
null
null
UTF-8
Python
false
false
2,916
py
""" 给一个8x8的棋盘、皇后的位置、国王的位置,问哪些皇后可以吃掉国王。 很简单,从国王开始往8个方向(上、下、左、右、上左、上右、下左、下右)分别搜索,每个方向遇到的第一个皇后就是能吃掉国王的皇后。注意如果出现国王和皇后之间隔了另一个皇后,比如 :: 王 后1 后2 后2是没办法吃掉国王的。 但是要写的好看挺难的……我写了8个for循环。 """ from typing import * class Solution: def queensAttacktheKing(self, queens: List[List[int]], king: List[int]) -> List[List[int]]: queens = set(map(tuple, queens)) # 把皇后的位置转换成tuple再放到set里,这样判断某个皇后是否存在的复杂度就是O(1) res = [] for delta in range(1, 9): # 往右看 temp = (king[0] + delta, king[1]) if temp in queens: # 遇到的第一个皇后 res.append(temp) # 放到结果里 break # 然后就不用看下去了,因为反正被第一个皇后挡住了,吃不到国王了 for delta in range(1, 9): # 往下看 temp = (king[0], king[1] + delta) if temp in queens: res.append(temp) break for delta in range(1, 9): # 往右下看 temp = (king[0] + delta, king[1] + delta) if temp in queens: res.append(temp) break for delta in range(1, 9): # 往左看 temp = (king[0] - delta, king[1]) if temp in queens: res.append(temp) break for delta in range(1, 9): # 往上看 temp = (king[0], king[1] - delta) if temp in queens: res.append(temp) break for delta in range(1, 9): # 往左上看 temp = (king[0] - delta, king[1] - delta) if temp in queens: res.append(temp) break for delta in range(1, 9): # 往右上看 temp = (king[0] + delta, king[1] - delta) if temp in queens: res.append(temp) break for delta in range(1, 9): # 往左下看 temp = (king[0] - delta, king[1] + delta) if temp in queens: res.append(temp) break return list(map(list, res)) # s = Solution() # print(s.queensAttacktheKing(queens = [[0,1],[1,0],[4,0],[0,4],[3,3],[2,4]], king = [0,0])) # print(s.queensAttacktheKing(queens = [[0,0],[1,1],[2,2],[3,4],[3,5],[4,4],[4,5]], king = [3,3])) # print(s.queensAttacktheKing(queens = [[5,6],[7,7],[2,1],[0,7],[1,6],[5,1],[3,7],[0,3],[4,0],[1,2],[6,3],[5,0],[0,4],[2,2],[1,1],[6,4],[5,4],[0,0],[2,6],[4,5],[5,2],[1,4],[7,5],[2,3],[0,5],[4,2],[1,0],[2,7],[0,1],[4,6],[6,1],[0,6],[4,3],[1,7]], king = [3,4]))
4d3e25f526d32e3c523a613ec868b4d3bf6994d0
3e9856fd60d797f35dc54a4e0092ceb611f5f1da
/train_gnn_s8_nodp01.py
d0562884ca0c8af89d85da494252ac13c1dc36cf
[]
no_license
yougoforward/parse2
d18a7f5654c10edbb716dda3ae9615b10d289d8e
2d21b6f0968b6b05e6c2453bbf46a7cebbd69220
refs/heads/master
2021-05-22T23:23:18.046316
2020-12-22T09:47:37
2020-12-22T09:47:37
253,138,404
0
0
null
null
null
null
UTF-8
Python
false
false
14,236
py
import argparse import os import random import sys import time import torch.backends.cudnn as cudnn import torch.optim as optim import torchvision from tensorboardX import SummaryWriter from torch.nn import functional as F from torch.nn.parallel.scatter_gather import gather from torch.utils import data from dataset.data_pascal import DataGenerator # from dataset.datasets import DatasetGenerator from network.gnn_s8_nodp01 import get_model # from network.abrnet import get_model from progress.bar import Bar from utils.gnn_loss import gnn_loss_noatt as ABRLovaszLoss from utils.metric import * from utils.parallel import DataParallelModel, DataParallelCriterion from utils.visualize import inv_preprocess, decode_predictions def parse_args(): parser = argparse.ArgumentParser(description='PyTorch Segmentation') parser.add_argument('--method', type=str, default='abr') # Datasets parser.add_argument('--root', default='./data/Person', type=str) parser.add_argument('--val-root', default='./data/Person', type=str) parser.add_argument('--lst', default='./dataset/Pascal/train_id.txt', type=str) parser.add_argument('--val-lst', default='./dataset/Pascal/val_id.txt', type=str) parser.add_argument('--crop-size', type=int, default=473) parser.add_argument('--num-classes', type=int, default=7) parser.add_argument('--hbody-cls', type=int, default=3) parser.add_argument('--fbody-cls', type=int, default=2) # Optimization options parser.add_argument('--epochs', default=150, type=int) parser.add_argument('--batch-size', default=20, type=int) parser.add_argument('--learning-rate', default=1e-2, type=float) parser.add_argument('--lr-mode', type=str, default='poly') parser.add_argument('--ignore-label', type=int, default=255) # Checkpoints # parser.add_argument('--restore-from', default='./checkpoints/init/resnet152_stem.pth', type=str) parser.add_argument('--restore-from', default='./checkpoints/init/resnet101_stem.pth', type=str) # parser.add_argument('--restore-from', default='./checkpoints/init/resnet50_stem.pth', type=str) parser.add_argument('--snapshot_dir', type=str, default='./checkpoints/exp/') parser.add_argument('--log-dir', type=str, default='./runs/') parser.add_argument('--init', action="store_true") parser.add_argument('--save-num', type=int, default=2) # Misc parser.add_argument('--seed', type=int, default=123) args = parser.parse_args() return args def adjust_learning_rate(optimizer, epoch, i_iter, iters_per_epoch, method='poly'): if method == 'poly': current_step = epoch * iters_per_epoch + i_iter max_step = args.epochs * iters_per_epoch lr = args.learning_rate * ((1 - current_step / max_step) ** 0.9) else: lr = args.learning_rate optimizer.param_groups[0]['lr'] = lr return lr def main(args): # initialization print("Input arguments:") for key, val in vars(args).items(): print("{:16} {}".format(key, val)) if not os.path.exists(args.snapshot_dir): os.makedirs(args.snapshot_dir) writer = SummaryWriter(log_dir=os.path.join(args.log_dir, args.method)) random.seed(args.seed) torch.manual_seed(args.seed) cudnn.enabled = True cudnn.benchmark = True # conduct seg network seg_model = get_model(num_classes=args.num_classes) saved_state_dict = torch.load(args.restore_from) new_params = seg_model.state_dict().copy() if args.init: for i in saved_state_dict: i_parts = i.split('.') if not i_parts[0] == 'fc': new_params['encoder.' + '.'.join(i_parts[:])] = saved_state_dict[i] seg_model.load_state_dict(new_params) print('loading params w/o fc') else: seg_model.load_state_dict(saved_state_dict) print('loading params all') model = DataParallelModel(seg_model) model.float() model.cuda() # define dataloader train_loader = data.DataLoader(DataGenerator(root=args.root, list_path=args.lst, crop_size=args.crop_size, training=True), batch_size=args.batch_size, shuffle=True, num_workers=4, pin_memory=True, drop_last=True) val_loader = data.DataLoader(DataGenerator(root=args.val_root, list_path=args.val_lst, crop_size=args.crop_size, training=False), batch_size=args.batch_size, shuffle=False, num_workers=4, pin_memory=True) # define criterion & optimizer criterion = ABRLovaszLoss(adj_matrix = torch.tensor( [[0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 0], [0, 0, 1, 0, 0, 0], [0, 1, 0, 0, 0, 1], [0, 0, 0, 0, 1, 0]]), ignore_index=args.ignore_label, only_present=True, upper_part_list=[1, 2, 3, 4], lower_part_list=[5, 6], cls_p= args.num_classes, cls_h= args.hbody_cls, cls_f= args.fbody_cls) criterion = DataParallelCriterion(criterion).cuda() optimizer = optim.SGD( [{'params': filter(lambda p: p.requires_grad, seg_model.parameters()), 'lr': args.learning_rate}], lr=args.learning_rate, momentum=0.9, weight_decay=5e-4) # key points best_val_mIoU = 0 best_val_pixAcc = 0 start = time.time() for epoch in range(0, args.epochs): print('\n{} | {}'.format(epoch, args.epochs - 1)) # training _ = train(model, train_loader, epoch, criterion, optimizer, writer) # validation if epoch %10 ==0 or epoch > args.epochs-10: # val_pixacc0, val_miou0 = validation0(model, val_loader, epoch, writer) val_pixacc, val_miou = validation(model, val_loader, epoch, writer) # save model if val_pixacc > best_val_pixAcc: best_val_pixAcc = val_pixacc if val_miou > best_val_mIoU: best_val_mIoU = val_miou model_dir = os.path.join(args.snapshot_dir, args.method + '_miou.pth') torch.save(seg_model.state_dict(), model_dir) print('Model saved to %s' % model_dir) os.rename(model_dir, os.path.join(args.snapshot_dir, args.method + '_miou'+str(best_val_mIoU)+'.pth')) print('Complete using', time.time() - start, 'seconds') print('Best pixAcc: {} | Best mIoU: {}'.format(best_val_pixAcc, best_val_mIoU)) def train(model, train_loader, epoch, criterion, optimizer, writer): # set training mode model.train() train_loss = 0.0 iter_num = 0 # Iterate over data. # bar = Bar('Processing | {}'.format('train'), max=len(train_loader)) # bar.check_tty = False from tqdm import tqdm tbar = tqdm(train_loader) for i_iter, batch in enumerate(tbar): sys.stdout.flush() start_time = time.time() iter_num += 1 # adjust learning rate iters_per_epoch = len(train_loader) lr = adjust_learning_rate(optimizer, epoch, i_iter, iters_per_epoch, method=args.lr_mode) # print("\n=>epoch %d, learning_rate = %f" % (epoch, lr)) image, label, hlabel, flabel, _ = batch images, labels, hlabel, flabel = image.cuda(), label.long().cuda(), hlabel.cuda(), flabel.cuda() torch.set_grad_enabled(True) # zero the parameter gradients optimizer.zero_grad() # compute output loss preds = model(images) loss = criterion(preds, [labels, hlabel, flabel]) # batch mean train_loss += loss.item() # compute gradient and do SGD step loss.backward() optimizer.step() if i_iter % 10 == 0: writer.add_scalar('learning_rate', lr, iter_num + epoch * len(train_loader)) writer.add_scalar('train_loss', train_loss / iter_num, iter_num + epoch * len(train_loader)) batch_time = time.time() - start_time # plot progress tbar.set_description('{} / {} | Time: {batch_time:.4f} | Loss: {loss:.4f}'.format(iter_num, len(train_loader), batch_time=batch_time, loss=train_loss / iter_num)) # bar.suffix = '{} / {} | Time: {batch_time:.4f} | Loss: {loss:.4f}'.format(iter_num, len(train_loader), # batch_time=batch_time, # loss=train_loss / iter_num) # bar.next() epoch_loss = train_loss / iter_num writer.add_scalar('train_epoch_loss', epoch_loss, epoch) tbar.close() # bar.finish() return epoch_loss def validation(model, val_loader, epoch, writer): # set evaluate mode model.eval() total_correct, total_label = 0, 0 total_correct_hb, total_label_hb = 0, 0 total_correct_fb, total_label_fb = 0, 0 hist = np.zeros((args.num_classes, args.num_classes)) hist_hb = np.zeros((args.hbody_cls, args.hbody_cls)) hist_fb = np.zeros((args.fbody_cls, args.fbody_cls)) # Iterate over data. from tqdm import tqdm tbar = tqdm(val_loader) for idx, batch in enumerate(tbar): image, target, hlabel, flabel, _ = batch image, target, hlabel, flabel = image.cuda(), target.cuda(), hlabel.cuda(), flabel.cuda() with torch.no_grad(): h, w = target.size(1), target.size(2) outputs = model(image) outputs = gather(outputs, 0, dim=0) preds = F.interpolate(input=outputs[0][-1], size=(h, w), mode='bilinear', align_corners=True) preds_hb = F.interpolate(input=outputs[1][-1], size=(h, w), mode='bilinear', align_corners=True) preds_fb = F.interpolate(input=outputs[2][-1], size=(h, w), mode='bilinear', align_corners=True) # pixelAcc correct, labeled = batch_pix_accuracy(preds.data, target) correct_hb, labeled_hb = batch_pix_accuracy(preds_hb.data, hlabel) correct_fb, labeled_fb = batch_pix_accuracy(preds_fb.data, flabel) # mIoU hist += fast_hist(preds, target, args.num_classes) hist_hb += fast_hist(preds_hb, hlabel, args.hbody_cls) hist_fb += fast_hist(preds_fb, flabel, args.fbody_cls) total_correct += correct total_correct_hb += correct_hb total_correct_fb += correct_fb total_label += labeled total_label_hb += labeled_hb total_label_fb += labeled_fb pixAcc = 1.0 * total_correct / (np.spacing(1) + total_label) IoU = round(np.nanmean(per_class_iu(hist)) * 100, 2) pixAcc_hb = 1.0 * total_correct_hb / (np.spacing(1) + total_label_hb) IoU_hb = round(np.nanmean(per_class_iu(hist_hb)) * 100, 2) pixAcc_fb = 1.0 * total_correct_fb / (np.spacing(1) + total_label_fb) IoU_fb = round(np.nanmean(per_class_iu(hist_fb)) * 100, 2) # plot progress tbar.set_description('{} / {} | {pixAcc:.4f}, {IoU:.4f} |' \ '{pixAcc_hb:.4f}, {IoU_hb:.4f} |' \ '{pixAcc_fb:.4f}, {IoU_fb:.4f}'.format(idx + 1, len(val_loader), pixAcc=pixAcc, IoU=IoU,pixAcc_hb=pixAcc_hb, IoU_hb=IoU_hb,pixAcc_fb=pixAcc_fb, IoU_fb=IoU_fb)) tbar.close() return pixAcc, IoU def validation0(model, val_loader, epoch, writer): # set evaluate mode model.eval() total_correct, total_label = 0, 0 total_correct_hb, total_label_hb = 0, 0 total_correct_fb, total_label_fb = 0, 0 hist = np.zeros((args.num_classes, args.num_classes)) hist_hb = np.zeros((args.hbody_cls, args.hbody_cls)) hist_fb = np.zeros((args.fbody_cls, args.fbody_cls)) # Iterate over data. from tqdm import tqdm tbar = tqdm(val_loader) for idx, batch in enumerate(tbar): image, target, hlabel, flabel, _ = batch image, target, hlabel, flabel = image.cuda(), target.cuda(), hlabel.cuda(), flabel.cuda() with torch.no_grad(): h, w = target.size(1), target.size(2) outputs = model(image) outputs = gather(outputs, 0, dim=0) preds = F.interpolate(input=outputs[0][0], size=(h, w), mode='bilinear', align_corners=True) preds_hb = F.interpolate(input=outputs[1][0], size=(h, w), mode='bilinear', align_corners=True) preds_fb = F.interpolate(input=outputs[2][0], size=(h, w), mode='bilinear', align_corners=True) # pixelAcc correct, labeled = batch_pix_accuracy(preds.data, target) correct_hb, labeled_hb = batch_pix_accuracy(preds_hb.data, hlabel) correct_fb, labeled_fb = batch_pix_accuracy(preds_fb.data, flabel) # mIoU hist += fast_hist(preds, target, args.num_classes) hist_hb += fast_hist(preds_hb, hlabel, args.hbody_cls) hist_fb += fast_hist(preds_fb, flabel, args.fbody_cls) total_correct += correct total_correct_hb += correct_hb total_correct_fb += correct_fb total_label += labeled total_label_hb += labeled_hb total_label_fb += labeled_fb pixAcc = 1.0 * total_correct / (np.spacing(1) + total_label) IoU = round(np.nanmean(per_class_iu(hist)) * 100, 2) pixAcc_hb = 1.0 * total_correct_hb / (np.spacing(1) + total_label_hb) IoU_hb = round(np.nanmean(per_class_iu(hist_hb)) * 100, 2) pixAcc_fb = 1.0 * total_correct_fb / (np.spacing(1) + total_label_fb) IoU_fb = round(np.nanmean(per_class_iu(hist_fb)) * 100, 2) # plot progress tbar.set_description('{} / {} | {pixAcc:.4f}, {IoU:.4f} |' \ '{pixAcc_hb:.4f}, {IoU_hb:.4f} |' \ '{pixAcc_fb:.4f}, {IoU_fb:.4f}'.format(idx + 1, len(val_loader), pixAcc=pixAcc, IoU=IoU,pixAcc_hb=pixAcc_hb, IoU_hb=IoU_hb,pixAcc_fb=pixAcc_fb, IoU_fb=IoU_fb)) tbar.close() return pixAcc, IoU if __name__ == '__main__': args = parse_args() main(args)
36820395946cd35b82cf0890ad00f03f16354844
906b3df6f4cb2141910c19dbe8e29fe493205ed2
/contracts.py
b39f4cb339e5a70daf16f74cbf15b0b6b99822c0
[]
no_license
webclinic017/IB_to_XCEL_Python
6af80ed3855e97664f38c50a945554678cc1f834
66dfefdb047d373486434e065324e676a9f7618e
refs/heads/main
2023-06-18T20:38:33.784478
2021-07-15T15:29:31
2021-07-15T15:29:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,991
py
from ibapi.contract import Contract july_vixFuture_contract = Contract() july_vixFuture_contract.symbol = 'VXK1' july_vixFuture_contract.secType = 'FUT' july_vixFuture_contract.tradingClass = 'VX' july_vixFuture_contract.exchange = 'CFE' july_vixFuture_contract.currency = 'USD' july_vixFuture_contract.lastTradeDateOrContractMonth = '20210721' #Create August VIX future object august_vixFuture_contract = Contract() august_vixFuture_contract.symbol = 'VXK1' august_vixFuture_contract.secType = 'FUT' august_vixFuture_contract.tradingClass = 'VX' august_vixFuture_contract.exchange = 'CFE' august_vixFuture_contract.currency = 'USD' august_vixFuture_contract.lastTradeDateOrContractMonth = '20210818' #Create Septmeber VIX future object september_vixFuture_contract = Contract() september_vixFuture_contract.symbol = 'VXK1' september_vixFuture_contract.secType = 'FUT' september_vixFuture_contract.tradingClass = 'VX' september_vixFuture_contract.exchange = 'CFE' september_vixFuture_contract.currency = 'USD' september_vixFuture_contract.lastTradeDateOrContractMonth = '20210915' #Ocotber VIX Contract Object october_vixFuture_contract = Contract() october_vixFuture_contract.symbol = 'VXK1' october_vixFuture_contract.secType = 'FUT' october_vixFuture_contract.tradingClass = 'VX' october_vixFuture_contract.exchange = 'CFE' october_vixFuture_contract.currency = 'USD' october_vixFuture_contract.lastTradeDateOrContractMonth = '20211020' november_vixFuture_contract = Contract() november_vixFuture_contract.symbol = 'VXK1' november_vixFuture_contract.secType = 'FUT' november_vixFuture_contract.tradingClass = 'VX' november_vixFuture_contract.exchange = 'CFE' november_vixFuture_contract.currency = 'USD' november_vixFuture_contract.lastTradeDateOrContractMonth = '20211117' contract_list = [july_vixFuture_contract, august_vixFuture_contract, september_vixFuture_contract, october_vixFuture_contract, november_vixFuture_contract]
8a221e3053dcc8502c46d16f04827b083c3b5bd0
8159c2c650d53fb188a26b508dfff524296707d1
/lore/deities/alki_l.py
905ce33ad3e1bc0fadf8acc8293b6ce5991ca540
[]
no_license
Teifion/Rob3
501663bf5077da0c28a7db4960c74c4477dd11bf
81fc2f9930434b5a4de52b75eb6a8d78dd708f77
refs/heads/master
2021-01-16T19:20:29.666426
2011-05-30T13:34:17
2011-05-30T13:34:17
1,819,452
1
0
null
null
null
null
UTF-8
Python
false
false
278
py
data = { "cat": "deities", "page": "alki", } blocks = [ { "id": "summary", "text": "Summary text" }, { "id": "Backstory", "text": """""" }, { "level": "secret", "text": "Secret info" }, { "id": "gm_notes", "level": "gm", "text": "GM info" } ]
37f6724585a71b87339e498274d17d2f828f55ce
e29faa10be00e8c839bf909922ace176b05826bb
/misc/metric_loss_ops.py
272388b01a7837eecc308939289b84d6c1ef0bac
[]
no_license
weiyinfu/learnTensorflow
666e46259da435c19c06f3abbaa8a00ae37431ce
98cb7a978dd682ec8f651f9da57e2f23d47c21a4
refs/heads/master
2022-01-01T08:10:40.215554
2021-12-26T06:24:40
2021-12-26T06:24:40
145,659,381
0
0
null
null
null
null
UTF-8
Python
false
false
41,466
py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Implements various metric learning losses.""" from __future__ import absolute_import from __future__ import division from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import logging_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn from tensorflow.python.ops import script_ops from tensorflow.python.ops import sparse_ops from tensorflow.python.summary import summary try: # pylint: disable=g-import-not-at-top from sklearn import metrics HAS_SKLEARN = True except ImportError: HAS_SKLEARN = False def pairwise_distance(feature, squared=False): """Computes the pairwise distance matrix with numerical stability. output[i, j] = || feature[i, :] - feature[j, :] ||_2 Args: feature: 2-D Tensor of size [number of data, feature dimension]. squared: Boolean, whether or not to square the pairwise distances. Returns: pairwise_distances: 2-D Tensor of size [number of data, number of data]. """ pairwise_distances_squared = math_ops.add( math_ops.reduce_sum(math_ops.square(feature), axis=[1], keepdims=True), math_ops.reduce_sum( math_ops.square(array_ops.transpose(feature)), axis=[0], keepdims=True)) - 2.0 * math_ops.matmul(feature, array_ops.transpose(feature)) # Deal with numerical inaccuracies. Set small negatives to zero. pairwise_distances_squared = math_ops.maximum(pairwise_distances_squared, 0.0) # Get the mask where the zero distances are at. error_mask = math_ops.less_equal(pairwise_distances_squared, 0.0) # Optionally take the sqrt. if squared: pairwise_distances = pairwise_distances_squared else: pairwise_distances = math_ops.sqrt( pairwise_distances_squared + math_ops.to_float(error_mask) * 1e-16) # Undo conditionally adding 1e-16. pairwise_distances = math_ops.multiply( pairwise_distances, math_ops.to_float(math_ops.logical_not(error_mask))) num_data = array_ops.shape(feature)[0] # Explicitly set diagonals to zero. mask_offdiagonals = array_ops.ones_like(pairwise_distances) - array_ops.diag( array_ops.ones([num_data])) pairwise_distances = math_ops.multiply(pairwise_distances, mask_offdiagonals) return pairwise_distances def contrastive_loss(labels, embeddings_anchor, embeddings_positive, margin=1.0): """Computes the contrastive loss. This loss encourages the embedding to be close to each other for the samples of the same label and the embedding to be far apart at least by the margin constant for the samples of different labels. See: http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf Args: labels: 1-D tf.int32 `Tensor` with shape [batch_size] of binary labels indicating positive vs negative pair. embeddings_anchor: 2-D float `Tensor` of embedding vectors for the anchor images. Embeddings should be l2 normalized. embeddings_positive: 2-D float `Tensor` of embedding vectors for the positive images. Embeddings should be l2 normalized. margin: margin term in the loss definition. Returns: contrastive_loss: tf.float32 scalar. """ # Get per pair distances distances = math_ops.sqrt( math_ops.reduce_sum( math_ops.square(embeddings_anchor - embeddings_positive), 1)) # Add contrastive loss for the siamese network. # label here is {0,1} for neg, pos. return math_ops.reduce_mean( math_ops.to_float(labels) * math_ops.square(distances) + (1. - math_ops.to_float(labels)) * math_ops.square(math_ops.maximum(margin - distances, 0.)), name='contrastive_loss') def masked_maximum(data, mask, dim=1): """Computes the axis wise maximum over chosen elements. Args: data: 2-D float `Tensor` of size [n, m]. mask: 2-D Boolean `Tensor` of size [n, m]. dim: The dimension over which to compute the maximum. Returns: masked_maximums: N-D `Tensor`. The maximized dimension is of size 1 after the operation. """ axis_minimums = math_ops.reduce_min(data, dim, keepdims=True) masked_maximums = math_ops.reduce_max( math_ops.multiply(data - axis_minimums, mask), dim, keepdims=True) + axis_minimums return masked_maximums def masked_minimum(data, mask, dim=1): """Computes the axis wise minimum over chosen elements. Args: data: 2-D float `Tensor` of size [n, m]. mask: 2-D Boolean `Tensor` of size [n, m]. dim: The dimension over which to compute the minimum. Returns: masked_minimums: N-D `Tensor`. The minimized dimension is of size 1 after the operation. """ axis_maximums = math_ops.reduce_max(data, dim, keepdims=True) masked_minimums = math_ops.reduce_min( math_ops.multiply(data - axis_maximums, mask), dim, keepdims=True) + axis_maximums return masked_minimums def triplet_semihard_loss(labels, embeddings, margin=1.0): """Computes the triplet loss with semi-hard negative mining. The loss encourages the positive distances (between a pair of embeddings with the same labels) to be smaller than the minimum negative distance among which are at least greater than the positive distance plus the margin constant (called semi-hard negative) in the mini-batch. If no such negative exists, uses the largest negative distance instead. See: https://arxiv.org/abs/1503.03832. Args: labels: 1-D tf.int32 `Tensor` with shape [batch_size] of multiclass integer labels. embeddings: 2-D float `Tensor` of embedding vectors. Embeddings should be l2 normalized. margin: Float, margin term in the loss definition. Returns: triplet_loss: tf.float32 scalar. """ # Reshape [batch_size] label tensor to a [batch_size, 1] label tensor. lshape = array_ops.shape(labels) assert lshape.shape == 1 labels = array_ops.reshape(labels, [lshape[0], 1]) # Build pairwise squared distance matrix. pdist_matrix = pairwise_distance(embeddings, squared=True) # Build pairwise binary adjacency matrix. adjacency = math_ops.equal(labels, array_ops.transpose(labels)) # Invert so we can select negatives only. adjacency_not = math_ops.logical_not(adjacency) batch_size = array_ops.size(labels) # Compute the mask. pdist_matrix_tile = array_ops.tile(pdist_matrix, [batch_size, 1]) mask = math_ops.logical_and( array_ops.tile(adjacency_not, [batch_size, 1]), math_ops.greater( pdist_matrix_tile, array_ops.reshape( array_ops.transpose(pdist_matrix), [-1, 1]))) mask_final = array_ops.reshape( math_ops.greater( math_ops.reduce_sum( math_ops.cast(mask, dtype=dtypes.float32), 1, keepdims=True), 0.0), [batch_size, batch_size]) mask_final = array_ops.transpose(mask_final) adjacency_not = math_ops.cast(adjacency_not, dtype=dtypes.float32) mask = math_ops.cast(mask, dtype=dtypes.float32) # negatives_outside: smallest D_an where D_an > D_ap. negatives_outside = array_ops.reshape( masked_minimum(pdist_matrix_tile, mask), [batch_size, batch_size]) negatives_outside = array_ops.transpose(negatives_outside) # negatives_inside: largest D_an. negatives_inside = array_ops.tile( masked_maximum(pdist_matrix, adjacency_not), [1, batch_size]) semi_hard_negatives = array_ops.where( mask_final, negatives_outside, negatives_inside) loss_mat = math_ops.add(margin, pdist_matrix - semi_hard_negatives) mask_positives = math_ops.cast( adjacency, dtype=dtypes.float32) - array_ops.diag( array_ops.ones([batch_size])) # In lifted-struct, the authors multiply 0.5 for upper triangular # in semihard, they take all positive pairs except the diagonal. num_positives = math_ops.reduce_sum(mask_positives) triplet_loss = math_ops.truediv( math_ops.reduce_sum( math_ops.maximum( math_ops.multiply(loss_mat, mask_positives), 0.0)), num_positives, name='triplet_semihard_loss') return triplet_loss # pylint: disable=line-too-long def npairs_loss(labels, embeddings_anchor, embeddings_positive, reg_lambda=0.002, print_losses=False): """Computes the npairs loss. Npairs loss expects paired data where a pair is composed of samples from the same labels and each pairs in the minibatch have different labels. The loss has two components. The first component is the L2 regularizer on the embedding vectors. The second component is the sum of cross entropy loss which takes each row of the pair-wise similarity matrix as logits and the remapped one-hot labels as labels. See: http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf Args: labels: 1-D tf.int32 `Tensor` of shape [batch_size/2]. embeddings_anchor: 2-D Tensor of shape [batch_size/2, embedding_dim] for the embedding vectors for the anchor images. Embeddings should not be l2 normalized. embeddings_positive: 2-D Tensor of shape [batch_size/2, embedding_dim] for the embedding vectors for the positive images. Embeddings should not be l2 normalized. reg_lambda: Float. L2 regularization term on the embedding vectors. print_losses: Boolean. Option to print the xent and l2loss. Returns: npairs_loss: tf.float32 scalar. """ # pylint: enable=line-too-long # Add the regularizer on the embedding. reg_anchor = math_ops.reduce_mean( math_ops.reduce_sum(math_ops.square(embeddings_anchor), 1)) reg_positive = math_ops.reduce_mean( math_ops.reduce_sum(math_ops.square(embeddings_positive), 1)) l2loss = math_ops.multiply( 0.25 * reg_lambda, reg_anchor + reg_positive, name='l2loss') # Get per pair similarities. similarity_matrix = math_ops.matmul( embeddings_anchor, embeddings_positive, transpose_a=False, transpose_b=True) # Reshape [batch_size] label tensor to a [batch_size, 1] label tensor. lshape = array_ops.shape(labels) assert lshape.shape == 1 labels = array_ops.reshape(labels, [lshape[0], 1]) labels_remapped = math_ops.to_float( math_ops.equal(labels, array_ops.transpose(labels))) labels_remapped /= math_ops.reduce_sum(labels_remapped, 1, keepdims=True) # Add the softmax loss. xent_loss = nn.softmax_cross_entropy_with_logits( logits=similarity_matrix, labels=labels_remapped) xent_loss = math_ops.reduce_mean(xent_loss, name='xentropy') if print_losses: xent_loss = logging_ops.Print( xent_loss, ['cross entropy:', xent_loss, 'l2loss:', l2loss]) return l2loss + xent_loss def _build_multilabel_adjacency(sparse_labels): """Builds multilabel adjacency matrix. As of March 14th, 2017, there's no op for the dot product between two sparse tensors in TF. However, there is `sparse_minimum` op which is equivalent to an AND op between two sparse boolean tensors. This computes the dot product between two sparse boolean inputs. Args: sparse_labels: List of 1-D boolean sparse tensors. Returns: adjacency_matrix: 2-D dense `Tensor`. """ num_pairs = len(sparse_labels) adjacency_matrix = array_ops.zeros([num_pairs, num_pairs]) for i in range(num_pairs): for j in range(num_pairs): sparse_dot_product = math_ops.to_float( sparse_ops.sparse_reduce_sum(sparse_ops.sparse_minimum( sparse_labels[i], sparse_labels[j]))) sparse_dot_product = array_ops.expand_dims(sparse_dot_product, 0) sparse_dot_product = array_ops.expand_dims(sparse_dot_product, 1) one_hot_matrix = array_ops.pad(sparse_dot_product, [[i, num_pairs-i-1], [j, num_pairs-j-1]], 'CONSTANT') adjacency_matrix += one_hot_matrix return adjacency_matrix def npairs_loss_multilabel(sparse_labels, embeddings_anchor, embeddings_positive, reg_lambda=0.002, print_losses=False): r"""Computes the npairs loss with multilabel data. Npairs loss expects paired data where a pair is composed of samples from the same labels and each pairs in the minibatch have different labels. The loss has two components. The first component is the L2 regularizer on the embedding vectors. The second component is the sum of cross entropy loss which takes each row of the pair-wise similarity matrix as logits and the remapped one-hot labels as labels. Here, the similarity is defined by the dot product between two embedding vectors. S_{i,j} = f(x_i)^T f(x_j) To deal with multilabel inputs, we use the count of label intersection i.e. L_{i,j} = | set_of_labels_for(i) \cap set_of_labels_for(j) | Then we normalize each rows of the count based label matrix so that each row sums to one. Args: sparse_labels: List of 1-D Boolean `SparseTensor` of dense_shape [batch_size/2, num_classes] labels for the anchor-pos pairs. embeddings_anchor: 2-D `Tensor` of shape [batch_size/2, embedding_dim] for the embedding vectors for the anchor images. Embeddings should not be l2 normalized. embeddings_positive: 2-D `Tensor` of shape [batch_size/2, embedding_dim] for the embedding vectors for the positive images. Embeddings should not be l2 normalized. reg_lambda: Float. L2 regularization term on the embedding vectors. print_losses: Boolean. Option to print the xent and l2loss. Returns: npairs_loss: tf.float32 scalar. Raises: TypeError: When the specified sparse_labels is not a `SparseTensor`. """ if False in [isinstance( l, sparse_tensor.SparseTensor) for l in sparse_labels]: raise TypeError( 'sparse_labels must be a list of SparseTensors, but got %s' % str( sparse_labels)) with ops.name_scope('NpairsLossMultiLabel'): # Add the regularizer on the embedding. reg_anchor = math_ops.reduce_mean( math_ops.reduce_sum(math_ops.square(embeddings_anchor), 1)) reg_positive = math_ops.reduce_mean( math_ops.reduce_sum(math_ops.square(embeddings_positive), 1)) l2loss = math_ops.multiply(0.25 * reg_lambda, reg_anchor + reg_positive, name='l2loss') # Get per pair similarities. similarity_matrix = math_ops.matmul( embeddings_anchor, embeddings_positive, transpose_a=False, transpose_b=True) # TODO(coreylynch): need to check the sparse values # TODO(coreylynch): are composed only of 0's and 1's. multilabel_adjacency_matrix = _build_multilabel_adjacency(sparse_labels) labels_remapped = math_ops.to_float(multilabel_adjacency_matrix) labels_remapped /= math_ops.reduce_sum(labels_remapped, 1, keepdims=True) # Add the softmax loss. xent_loss = nn.softmax_cross_entropy_with_logits( logits=similarity_matrix, labels=labels_remapped) xent_loss = math_ops.reduce_mean(xent_loss, name='xentropy') if print_losses: xent_loss = logging_ops.Print( xent_loss, ['cross entropy:', xent_loss, 'l2loss:', l2loss]) return l2loss + xent_loss def lifted_struct_loss(labels, embeddings, margin=1.0): """Computes the lifted structured loss. The loss encourages the positive distances (between a pair of embeddings with the same labels) to be smaller than any negative distances (between a pair of embeddings with different labels) in the mini-batch in a way that is differentiable with respect to the embedding vectors. See: https://arxiv.org/abs/1511.06452. Args: labels: 1-D tf.int32 `Tensor` with shape [batch_size] of multiclass integer labels. embeddings: 2-D float `Tensor` of embedding vectors. Embeddings should not be l2 normalized. margin: Float, margin term in the loss definition. Returns: lifted_loss: tf.float32 scalar. """ # Reshape [batch_size] label tensor to a [batch_size, 1] label tensor. lshape = array_ops.shape(labels) assert lshape.shape == 1 labels = array_ops.reshape(labels, [lshape[0], 1]) # Build pairwise squared distance matrix. pairwise_distances = pairwise_distance(embeddings) # Build pairwise binary adjacency matrix. adjacency = math_ops.equal(labels, array_ops.transpose(labels)) # Invert so we can select negatives only. adjacency_not = math_ops.logical_not(adjacency) batch_size = array_ops.size(labels) diff = margin - pairwise_distances mask = math_ops.cast(adjacency_not, dtype=dtypes.float32) # Safe maximum: Temporarily shift negative distances # above zero before taking max. # this is to take the max only among negatives. row_minimums = math_ops.reduce_min(diff, 1, keepdims=True) row_negative_maximums = math_ops.reduce_max( math_ops.multiply(diff - row_minimums, mask), 1, keepdims=True) + row_minimums # Compute the loss. # Keep track of matrix of maximums where M_ij = max(m_i, m_j) # where m_i is the max of alpha - negative D_i's. # This matches the Caffe loss layer implementation at: # https://github.com/rksltnl/Caffe-Deep-Metric-Learning-CVPR16/blob/0efd7544a9846f58df923c8b992198ba5c355454/src/caffe/layers/lifted_struct_similarity_softmax_layer.cpp # pylint: disable=line-too-long max_elements = math_ops.maximum( row_negative_maximums, array_ops.transpose(row_negative_maximums)) diff_tiled = array_ops.tile(diff, [batch_size, 1]) mask_tiled = array_ops.tile(mask, [batch_size, 1]) max_elements_vect = array_ops.reshape( array_ops.transpose(max_elements), [-1, 1]) loss_exp_left = array_ops.reshape( math_ops.reduce_sum( math_ops.multiply( math_ops.exp(diff_tiled - max_elements_vect), mask_tiled), 1, keepdims=True), [batch_size, batch_size]) loss_mat = max_elements + math_ops.log( loss_exp_left + array_ops.transpose(loss_exp_left)) # Add the positive distance. loss_mat += pairwise_distances mask_positives = math_ops.cast( adjacency, dtype=dtypes.float32) - array_ops.diag( array_ops.ones([batch_size])) # *0.5 for upper triangular, and another *0.5 for 1/2 factor for loss^2. num_positives = math_ops.reduce_sum(mask_positives) / 2.0 lifted_loss = math_ops.truediv( 0.25 * math_ops.reduce_sum( math_ops.square( math_ops.maximum( math_ops.multiply(loss_mat, mask_positives), 0.0))), num_positives, name='liftedstruct_loss') return lifted_loss def update_1d_tensor(y, index, value): """Updates 1d tensor y so that y[index] = value. Args: y: 1-D Tensor. index: index of y to modify. value: new value to write at y[index]. Returns: y_mod: 1-D Tensor. Tensor y after the update. """ value = array_ops.squeeze(value) # modify the 1D tensor x at index with value. # ex) chosen_ids = update_1D_tensor(chosen_ids, cluster_idx, best_medoid) y_before = array_ops.slice(y, [0], [index]) y_after = array_ops.slice(y, [index + 1], [-1]) y_mod = array_ops.concat([y_before, [value], y_after], 0) return y_mod def get_cluster_assignment(pairwise_distances, centroid_ids): """Assign data points to the neareset centroids. Tensorflow has numerical instability and doesn't always choose the data point with theoretically zero distance as it's nearest neighbor. Thus, for each centroid in centroid_ids, explicitly assign the centroid itself as the nearest centroid. This is done through the mask tensor and the constraint_vect tensor. Args: pairwise_distances: 2-D Tensor of pairwise distances. centroid_ids: 1-D Tensor of centroid indices. Returns: y_fixed: 1-D tensor of cluster assignment. """ predictions = math_ops.argmin( array_ops.gather(pairwise_distances, centroid_ids), dimension=0) batch_size = array_ops.shape(pairwise_distances)[0] # Deal with numerical instability mask = math_ops.reduce_any(array_ops.one_hot( centroid_ids, batch_size, True, False, axis=-1, dtype=dtypes.bool), axis=0) constraint_one_hot = math_ops.multiply( array_ops.one_hot(centroid_ids, batch_size, array_ops.constant(1, dtype=dtypes.int64), array_ops.constant(0, dtype=dtypes.int64), axis=0, dtype=dtypes.int64), math_ops.to_int64(math_ops.range(array_ops.shape(centroid_ids)[0]))) constraint_vect = math_ops.reduce_sum( array_ops.transpose(constraint_one_hot), axis=0) y_fixed = array_ops.where(mask, constraint_vect, predictions) return y_fixed def compute_facility_energy(pairwise_distances, centroid_ids): """Compute the average travel distance to the assigned centroid. Args: pairwise_distances: 2-D Tensor of pairwise distances. centroid_ids: 1-D Tensor of indices. Returns: facility_energy: dtypes.float32 scalar. """ return -1.0 * math_ops.reduce_sum( math_ops.reduce_min( array_ops.gather(pairwise_distances, centroid_ids), axis=0)) def compute_clustering_score(labels, predictions, margin_type): """Computes the clustering score via sklearn.metrics functions. There are various ways to compute the clustering score. Intuitively, we want to measure the agreement of two clustering assignments (labels vs predictions) ignoring the permutations and output a score from zero to one. (where the values close to one indicate significant agreement). This code supports following scoring functions: nmi: normalized mutual information ami: adjusted mutual information ari: adjusted random index vmeasure: v-measure const: indicator checking whether the two clusterings are the same. See http://scikit-learn.org/stable/modules/classes.html#clustering-metrics for the detailed descriptions. Args: labels: 1-D Tensor. ground truth cluster assignment. predictions: 1-D Tensor. predicted cluster assignment. margin_type: Type of structured margin to use. Default is nmi. Returns: clustering_score: dtypes.float32 scalar. The possible valid values are from zero to one. Zero means the worst clustering and one means the perfect clustering. Raises: ValueError: margin_type is not recognized. """ margin_type_to_func = { 'nmi': _compute_nmi_score, 'ami': _compute_ami_score, 'ari': _compute_ari_score, 'vmeasure': _compute_vmeasure_score, 'const': _compute_zeroone_score } if margin_type not in margin_type_to_func: raise ValueError('Unrecognized margin_type: %s' % margin_type) clustering_score_fn = margin_type_to_func[margin_type] return array_ops.squeeze(clustering_score_fn(labels, predictions)) def _compute_nmi_score(labels, predictions): return math_ops.to_float( script_ops.py_func( metrics.normalized_mutual_info_score, [labels, predictions], [dtypes.float64], name='nmi')) def _compute_ami_score(labels, predictions): ami_score = math_ops.to_float( script_ops.py_func( metrics.adjusted_mutual_info_score, [labels, predictions], [dtypes.float64], name='ami')) return math_ops.maximum(0.0, ami_score) def _compute_ari_score(labels, predictions): ari_score = math_ops.to_float( script_ops.py_func( metrics.adjusted_rand_score, [labels, predictions], [dtypes.float64], name='ari')) # ari score can go below 0 # http://scikit-learn.org/stable/modules/clustering.html#adjusted-rand-score return math_ops.maximum(0.0, ari_score) def _compute_vmeasure_score(labels, predictions): vmeasure_score = math_ops.to_float( script_ops.py_func( metrics.v_measure_score, [labels, predictions], [dtypes.float64], name='vmeasure')) return math_ops.maximum(0.0, vmeasure_score) def _compute_zeroone_score(labels, predictions): zeroone_score = math_ops.to_float( math_ops.equal( math_ops.reduce_sum( math_ops.to_int32(math_ops.equal(labels, predictions))), array_ops.shape(labels)[0])) return zeroone_score def _find_loss_augmented_facility_idx(pairwise_distances, labels, chosen_ids, candidate_ids, margin_multiplier, margin_type): """Find the next centroid that maximizes the loss augmented inference. This function is a subroutine called from compute_augmented_facility_locations Args: pairwise_distances: 2-D Tensor of pairwise distances. labels: 1-D Tensor of ground truth cluster assignment. chosen_ids: 1-D Tensor of current centroid indices. candidate_ids: 1-D Tensor of candidate indices. margin_multiplier: multiplication constant. margin_type: Type of structured margin to use. Default is nmi. Returns: integer index. """ num_candidates = array_ops.shape(candidate_ids)[0] pairwise_distances_chosen = array_ops.gather(pairwise_distances, chosen_ids) pairwise_distances_candidate = array_ops.gather( pairwise_distances, candidate_ids) pairwise_distances_chosen_tile = array_ops.tile( pairwise_distances_chosen, [1, num_candidates]) candidate_scores = -1.0 * math_ops.reduce_sum( array_ops.reshape( math_ops.reduce_min( array_ops.concat([ pairwise_distances_chosen_tile, array_ops.reshape(pairwise_distances_candidate, [1, -1]) ], 0), axis=0, keepdims=True), [num_candidates, -1]), axis=1) nmi_scores = array_ops.zeros([num_candidates]) iteration = array_ops.constant(0) def func_cond(iteration, nmi_scores): del nmi_scores # Unused in func_cond() return iteration < num_candidates def func_body(iteration, nmi_scores): predictions = get_cluster_assignment( pairwise_distances, array_ops.concat([chosen_ids, [candidate_ids[iteration]]], 0)) nmi_score_i = compute_clustering_score(labels, predictions, margin_type) pad_before = array_ops.zeros([iteration]) pad_after = array_ops.zeros([num_candidates - 1 - iteration]) # return 1 - NMI score as the structured loss. # because NMI is higher the better [0,1]. return iteration + 1, nmi_scores + array_ops.concat( [pad_before, [1.0 - nmi_score_i], pad_after], 0) _, nmi_scores = control_flow_ops.while_loop( func_cond, func_body, [iteration, nmi_scores]) candidate_scores = math_ops.add( candidate_scores, margin_multiplier * nmi_scores) argmax_index = math_ops.to_int32( math_ops.argmax(candidate_scores, axis=0)) return candidate_ids[argmax_index] def compute_augmented_facility_locations(pairwise_distances, labels, all_ids, margin_multiplier, margin_type): """Computes the centroid locations. Args: pairwise_distances: 2-D Tensor of pairwise distances. labels: 1-D Tensor of ground truth cluster assignment. all_ids: 1-D Tensor of all data indices. margin_multiplier: multiplication constant. margin_type: Type of structured margin to use. Default is nmi. Returns: chosen_ids: 1-D Tensor of chosen centroid indices. """ def func_cond_augmented(iteration, chosen_ids): del chosen_ids # Unused argument in func_cond_augmented. return iteration < num_classes def func_body_augmented(iteration, chosen_ids): # find a new facility location to add # based on the clustering score and the NMI score candidate_ids = array_ops.setdiff1d(all_ids, chosen_ids)[0] new_chosen_idx = _find_loss_augmented_facility_idx(pairwise_distances, labels, chosen_ids, candidate_ids, margin_multiplier, margin_type) chosen_ids = array_ops.concat([chosen_ids, [new_chosen_idx]], 0) return iteration + 1, chosen_ids num_classes = array_ops.size(array_ops.unique(labels)[0]) chosen_ids = array_ops.constant(0, dtype=dtypes.int32, shape=[0]) # num_classes get determined at run time based on the sampled batch. iteration = array_ops.constant(0) _, chosen_ids = control_flow_ops.while_loop( func_cond_augmented, func_body_augmented, [iteration, chosen_ids], shape_invariants=[iteration.get_shape(), tensor_shape.TensorShape( [None])]) return chosen_ids def update_medoid_per_cluster(pairwise_distances, pairwise_distances_subset, labels, chosen_ids, cluster_member_ids, cluster_idx, margin_multiplier, margin_type): """Updates the cluster medoid per cluster. Args: pairwise_distances: 2-D Tensor of pairwise distances. pairwise_distances_subset: 2-D Tensor of pairwise distances for one cluster. labels: 1-D Tensor of ground truth cluster assignment. chosen_ids: 1-D Tensor of cluster centroid indices. cluster_member_ids: 1-D Tensor of cluster member indices for one cluster. cluster_idx: Index of this one cluster. margin_multiplier: multiplication constant. margin_type: Type of structured margin to use. Default is nmi. Returns: chosen_ids: Updated 1-D Tensor of cluster centroid indices. """ def func_cond(iteration, scores_margin): del scores_margin # Unused variable scores_margin. return iteration < num_candidates def func_body(iteration, scores_margin): # swap the current medoid with the candidate cluster member candidate_medoid = math_ops.to_int32(cluster_member_ids[iteration]) tmp_chosen_ids = update_1d_tensor(chosen_ids, cluster_idx, candidate_medoid) predictions = get_cluster_assignment(pairwise_distances, tmp_chosen_ids) metric_score = compute_clustering_score(labels, predictions, margin_type) pad_before = array_ops.zeros([iteration]) pad_after = array_ops.zeros([num_candidates - 1 - iteration]) return iteration + 1, scores_margin + array_ops.concat( [pad_before, [1.0 - metric_score], pad_after], 0) # pairwise_distances_subset is of size [p, 1, 1, p], # the intermediate dummy dimensions at # [1, 2] makes this code work in the edge case where p=1. # this happens if the cluster size is one. scores_fac = -1.0 * math_ops.reduce_sum( array_ops.squeeze(pairwise_distances_subset, [1, 2]), axis=0) iteration = array_ops.constant(0) num_candidates = array_ops.size(cluster_member_ids) scores_margin = array_ops.zeros([num_candidates]) _, scores_margin = control_flow_ops.while_loop(func_cond, func_body, [iteration, scores_margin]) candidate_scores = math_ops.add(scores_fac, margin_multiplier * scores_margin) argmax_index = math_ops.to_int32( math_ops.argmax(candidate_scores, axis=0)) best_medoid = math_ops.to_int32(cluster_member_ids[argmax_index]) chosen_ids = update_1d_tensor(chosen_ids, cluster_idx, best_medoid) return chosen_ids def update_all_medoids(pairwise_distances, predictions, labels, chosen_ids, margin_multiplier, margin_type): """Updates all cluster medoids a cluster at a time. Args: pairwise_distances: 2-D Tensor of pairwise distances. predictions: 1-D Tensor of predicted cluster assignment. labels: 1-D Tensor of ground truth cluster assignment. chosen_ids: 1-D Tensor of cluster centroid indices. margin_multiplier: multiplication constant. margin_type: Type of structured margin to use. Default is nmi. Returns: chosen_ids: Updated 1-D Tensor of cluster centroid indices. """ def func_cond_augmented_pam(iteration, chosen_ids): del chosen_ids # Unused argument. return iteration < num_classes def func_body_augmented_pam(iteration, chosen_ids): """Call the update_medoid_per_cluster subroutine.""" mask = math_ops.equal( math_ops.to_int64(predictions), math_ops.to_int64(iteration)) this_cluster_ids = array_ops.where(mask) pairwise_distances_subset = array_ops.transpose( array_ops.gather( array_ops.transpose( array_ops.gather(pairwise_distances, this_cluster_ids)), this_cluster_ids)) chosen_ids = update_medoid_per_cluster(pairwise_distances, pairwise_distances_subset, labels, chosen_ids, this_cluster_ids, iteration, margin_multiplier, margin_type) return iteration + 1, chosen_ids unique_class_ids = array_ops.unique(labels)[0] num_classes = array_ops.size(unique_class_ids) iteration = array_ops.constant(0) _, chosen_ids = control_flow_ops.while_loop( func_cond_augmented_pam, func_body_augmented_pam, [iteration, chosen_ids]) return chosen_ids def compute_augmented_facility_locations_pam(pairwise_distances, labels, margin_multiplier, margin_type, chosen_ids, pam_max_iter=5): """Refine the cluster centroids with PAM local search. For fixed iterations, alternate between updating the cluster assignment and updating cluster medoids. Args: pairwise_distances: 2-D Tensor of pairwise distances. labels: 1-D Tensor of ground truth cluster assignment. margin_multiplier: multiplication constant. margin_type: Type of structured margin to use. Default is nmi. chosen_ids: 1-D Tensor of initial estimate of cluster centroids. pam_max_iter: Number of refinement iterations. Returns: chosen_ids: Updated 1-D Tensor of cluster centroid indices. """ for _ in range(pam_max_iter): # update the cluster assignment given the chosen_ids (S_pred) predictions = get_cluster_assignment(pairwise_distances, chosen_ids) # update the medoids per each cluster chosen_ids = update_all_medoids(pairwise_distances, predictions, labels, chosen_ids, margin_multiplier, margin_type) return chosen_ids def compute_gt_cluster_score(pairwise_distances, labels): """Compute ground truth facility location score. Loop over each unique classes and compute average travel distances. Args: pairwise_distances: 2-D Tensor of pairwise distances. labels: 1-D Tensor of ground truth cluster assignment. Returns: gt_cluster_score: dtypes.float32 score. """ unique_class_ids = array_ops.unique(labels)[0] num_classes = array_ops.size(unique_class_ids) iteration = array_ops.constant(0) gt_cluster_score = array_ops.constant(0.0, dtype=dtypes.float32) def func_cond(iteration, gt_cluster_score): del gt_cluster_score # Unused argument. return iteration < num_classes def func_body(iteration, gt_cluster_score): """Per each cluster, compute the average travel distance.""" mask = math_ops.equal(labels, unique_class_ids[iteration]) this_cluster_ids = array_ops.where(mask) pairwise_distances_subset = array_ops.transpose( array_ops.gather( array_ops.transpose( array_ops.gather(pairwise_distances, this_cluster_ids)), this_cluster_ids)) this_cluster_score = -1.0 * math_ops.reduce_min( math_ops.reduce_sum( pairwise_distances_subset, axis=0)) return iteration + 1, gt_cluster_score + this_cluster_score _, gt_cluster_score = control_flow_ops.while_loop( func_cond, func_body, [iteration, gt_cluster_score]) return gt_cluster_score def cluster_loss(labels, embeddings, margin_multiplier, enable_pam_finetuning=True, margin_type='nmi', print_losses=False): """Computes the clustering loss. The following structured margins are supported: nmi: normalized mutual information ami: adjusted mutual information ari: adjusted random index vmeasure: v-measure const: indicator checking whether the two clusterings are the same. Args: labels: 2-D Tensor of labels of shape [batch size, 1] embeddings: 2-D Tensor of embeddings of shape [batch size, embedding dimension]. Embeddings should be l2 normalized. margin_multiplier: float32 scalar. multiplier on the structured margin term See section 3.2 of paper for discussion. enable_pam_finetuning: Boolean, Whether to run local pam refinement. See section 3.4 of paper for discussion. margin_type: Type of structured margin to use. See section 3.2 of paper for discussion. Can be 'nmi', 'ami', 'ari', 'vmeasure', 'const'. print_losses: Boolean. Option to print the loss. Paper: https://arxiv.org/abs/1612.01213. Returns: clustering_loss: A float32 scalar `Tensor`. Raises: ImportError: If sklearn dependency is not installed. """ if not HAS_SKLEARN: raise ImportError('Cluster loss depends on sklearn.') pairwise_distances = pairwise_distance(embeddings) labels = array_ops.squeeze(labels) all_ids = math_ops.range(array_ops.shape(embeddings)[0]) # Compute the loss augmented inference and get the cluster centroids. chosen_ids = compute_augmented_facility_locations(pairwise_distances, labels, all_ids, margin_multiplier, margin_type) # Given the predicted centroids, compute the clustering score. score_pred = compute_facility_energy(pairwise_distances, chosen_ids) # Branch whether to use PAM finetuning. if enable_pam_finetuning: # Initialize with augmented facility solution. chosen_ids = compute_augmented_facility_locations_pam(pairwise_distances, labels, margin_multiplier, margin_type, chosen_ids) score_pred = compute_facility_energy(pairwise_distances, chosen_ids) # Given the predicted centroids, compute the cluster assignments. predictions = get_cluster_assignment(pairwise_distances, chosen_ids) # Compute the clustering (i.e. NMI) score between the two assignments. clustering_score_pred = compute_clustering_score(labels, predictions, margin_type) # Compute the clustering score from labels. score_gt = compute_gt_cluster_score(pairwise_distances, labels) # Compute the hinge loss. clustering_loss = math_ops.maximum( score_pred + margin_multiplier * (1.0 - clustering_score_pred) - score_gt, 0.0, name='clustering_loss') clustering_loss.set_shape([]) if print_losses: clustering_loss = logging_ops.Print( clustering_loss, ['clustering_loss: ', clustering_loss, array_ops.shape( clustering_loss)]) # Clustering specific summary. summary.scalar('losses/score_pred', score_pred) summary.scalar('losses/' + margin_type, clustering_score_pred) summary.scalar('losses/score_gt', score_gt) return clustering_loss
770d33e367fca4988fdf64c78ac4aef27d69ca8f
9682dab1ce9e00e11708872fa26febc847d4d18c
/pycorrector/seq2seq/corpus_reader.py
46822ab4f180f6abb8baed21724debbfb98f1cc9
[ "Apache-2.0" ]
permissive
fireflycsq/pycorrector
1ed2a6df9ec05bb9055b2052f92301212ebab235
d1096e4cee99ba95bb4df945707bbd2b8972717a
refs/heads/master
2020-03-21T15:43:51.228521
2018-06-12T07:34:44
2018-06-12T07:34:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,961
py
# -*- coding: utf-8 -*- # Author: XuMing <[email protected]> # Brief: Corpus for model import random from pycorrector.seq2seq.reader import Reader, PAD_TOKEN, EOS_TOKEN, GO_TOKEN class FCEReader(Reader): """ Read FCE data set """ UNKNOWN_TOKEN = 'UNK' DROPOUT_TOKENS = {"a", "an", "the", "'ll", "'s", "'m", "'ve"} REPLACEMENTS = {"there": "their", "their": "there", "then": "than", "than": "then"} def __init__(self, config, train_path=None, token_2_id=None, dropout_prob=0.25, replacement_prob=0.25, dataset_copies=2): super(FCEReader, self).__init__( config, train_path=train_path, token_2_id=token_2_id, special_tokens=[PAD_TOKEN, GO_TOKEN, EOS_TOKEN, FCEReader.UNKNOWN_TOKEN], dataset_copies=dataset_copies) self.dropout_prob = dropout_prob self.replacement_prob = replacement_prob self.UNKNOWN_ID = self.token_2_id[FCEReader.UNKNOWN_TOKEN] def read_samples_by_string(self, path): with open(path, 'r', encoding='utf-8') as f: while True: line_src = f.readline() line_dst = f.readline() if not line_src or len(line_src) < 5: break source = line_src.lower()[5:].strip().split() target = line_dst.lower()[5:].strip().split() if self.config.enable_special_error: new_source = [] for token in source: # Random dropout words from the input dropout_token = (token in FCEReader.DROPOUT_TOKENS and random.random() < self.dropout_prob) replace_token = (token in FCEReader.REPLACEMENTS and random.random() < self.replacement_prob) if replace_token: new_source.append(FCEReader.REPLACEMENTS[source]) elif not dropout_token: new_source.append(token) source = new_source yield source, target def unknown_token(self): return FCEReader.UNKNOWN_TOKEN def read_tokens(self, path): i = 0 with open(path, 'r', encoding='utf-8') as f: for line in f: # Input the correct text, which start with 0 if i % 2 == 1: if line and len(line) > 5: yield line.lower()[5:].strip().split() i += 1 class CGEDReader(Reader): """ Read CGED data set """ UNKNOWN_TOKEN = 'UNK' def __init__(self, config, train_path=None, token_2_id=None, dataset_copies=2): super(CGEDReader, self).__init__( config, train_path=train_path, token_2_id=token_2_id, special_tokens=[PAD_TOKEN, GO_TOKEN, EOS_TOKEN, CGEDReader.UNKNOWN_TOKEN], dataset_copies=dataset_copies) self.UNKNOWN_ID = self.token_2_id[CGEDReader.UNKNOWN_TOKEN] def read_samples_by_string(self, path): with open(path, 'r', encoding='utf-8') as f: while True: line_src = f.readline() line_dst = f.readline() if not line_src or len(line_src) < 5: break source = line_src.lower()[5:].strip().split() target = line_dst.lower()[5:].strip().split() yield source, target def unknown_token(self): return CGEDReader.UNKNOWN_TOKEN def read_tokens(self, path, is_infer=False): i = 0 with open(path, 'r', encoding='utf-8') as f: for line in f: # Input the correct text, which start with 0 if i % 2 == 1: if line and len(line) > 5: yield line.lower()[5:].strip().split() i += 1
4a810f7029a6f0806c1dc6e4f8679c877af55d4b
2bb90b620f86d0d49f19f01593e1a4cc3c2e7ba8
/pardus/tags/2007.2/kernel/drivers/eciadsl/actions.py
77a821cb1f94a9b37fd3943be25d766c74b060e7
[]
no_license
aligulle1/kuller
bda0d59ce8400aa3c7ba9c7e19589f27313492f7
7f98de19be27d7a517fe19a37c814748f7e18ba6
refs/heads/master
2021-01-20T02:22:09.451356
2013-07-23T17:57:58
2013-07-23T17:57:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
665
py
#!/usr/bin/python # -*- coding: utf-8 -*- # # Copyright 2005, 2006 TUBITAK/UEKAE # Licensed under the GNU General Public License, version 2. # See the file http://www.gnu.org/copyleft/gpl.txt. from pisi.actionsapi import autotools from pisi.actionsapi import pisitools from pisi.actionsapi import get WorkDir = "eciadsl-usermode-0.11" def setup(): pisitools.dosed("eciadsl-config.tk", "set BIN_DIR \"/usr/local/bin\"", "set BIN_DIR \"/usr/bin\"") autotools.configure() def build(): autotools.make() def install(): autotools.rawInstall("DESTDIR=%s" % get.installDIR()) pisitools.dodoc("README", "INSTALL", "BUGS", "TODO", "TROUBLESHOOTING")
8c657e2a7939065498bf9e9e9abba7751a7b2714
cc3ded8dc35ec9f52e7cee6a840fb6d3c92b3185
/transformers_repo/tests/test_modeling_ctrl.py
3d1a1cb2dc728952f1ef36f667b59ccf7af1a48b
[ "MIT", "Apache-2.0" ]
permissive
see--/natural-question-answering
04e3a38022dcb78a20f1632749cb82bb40a3d8aa
9d31c8dee0ff799d190a2a351f4857224788a5ca
refs/heads/master
2023-08-17T00:10:17.594705
2020-03-12T21:38:56
2020-03-12T21:38:56
234,064,034
90
24
MIT
2023-09-06T17:32:48
2020-01-15T11:19:50
Python
UTF-8
Python
false
false
8,330
py
# coding=utf-8 # Copyright 2018 Salesforce and HuggingFace Inc. team. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import is_torch_available from .test_configuration_common import ConfigTester from .test_modeling_common import ModelTesterMixin, ids_tensor from .utils import CACHE_DIR, require_torch, slow, torch_device if is_torch_available(): from transformers import CTRLConfig, CTRLModel, CTRL_PRETRAINED_MODEL_ARCHIVE_MAP, CTRLLMHeadModel @require_torch class CTRLModelTest(ModelTesterMixin, unittest.TestCase): all_model_classes = (CTRLModel, CTRLLMHeadModel) if is_torch_available() else () test_pruning = False test_torchscript = False test_resize_embeddings = False test_head_masking = False class CTRLModelTester(object): def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_token_type_ids=True, use_input_mask=True, use_labels=True, use_mc_token_ids=True, vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_token_type_ids = use_token_type_ids self.use_input_mask = use_input_mask self.use_labels = use_labels self.use_mc_token_ids = use_mc_token_ids self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) mc_token_ids = None if self.use_mc_token_ids: mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = CTRLConfig( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, # intermediate_size=self.intermediate_size, # hidden_act=self.hidden_act, # hidden_dropout_prob=self.hidden_dropout_prob, # attention_probs_dropout_prob=self.attention_probs_dropout_prob, n_positions=self.max_position_embeddings, n_ctx=self.max_position_embeddings # type_vocab_size=self.type_vocab_size, # initializer_range=self.initializer_range ) head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def check_loss_output(self, result): self.parent.assertListEqual(list(result["loss"].size()), []) def create_and_check_ctrl_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = CTRLModel(config=config) model.to(torch_device) model.eval() model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask) model(input_ids, token_type_ids=token_type_ids) sequence_output, presents = model(input_ids) result = { "sequence_output": sequence_output, "presents": presents, } self.parent.assertListEqual( list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size] ) self.parent.assertEqual(len(result["presents"]), config.n_layer) def create_and_check_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = CTRLLMHeadModel(config) model.to(torch_device) model.eval() loss, lm_logits, _ = model(input_ids, token_type_ids=token_type_ids, labels=input_ids) result = {"loss": loss, "lm_logits": lm_logits} self.parent.assertListEqual(list(result["loss"].size()), []) self.parent.assertListEqual( list(result["lm_logits"].size()), [self.batch_size, self.seq_length, self.vocab_size] ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask} return config, inputs_dict def setUp(self): self.model_tester = CTRLModelTest.CTRLModelTester(self) self.config_tester = ConfigTester(self, config_class=CTRLConfig, n_embd=37) def test_config(self): self.config_tester.run_common_tests() def test_ctrl_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*config_and_inputs) def test_ctrl_lm_head_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in list(CTRL_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]: model = CTRLModel.from_pretrained(model_name, cache_dir=CACHE_DIR) self.assertIsNotNone(model)
03bcad2f49a796e50d41e05a57f6c096d03928b1
642e8d6d8cd8d08a73bdcf82ae9689a09284025c
/celery/tests/test_pickle.py
bf2f4ccc4968b6c53b399fa9e10f0ffbaf43368d
[ "BSD-3-Clause" ]
permissive
abecciu/celery
941f29c033b54b766166f17aa8c5e4be05df08b9
f0c399e34d56c7a2a14cb42bfb2b6455c68ef0c0
refs/heads/master
2021-01-14T12:57:11.230199
2009-09-10T13:44:51
2009-09-10T13:44:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,631
py
import unittest from celery.serialization import pickle class RegularException(Exception): pass class ArgOverrideException(Exception): def __init__(self, message, status_code=10): self.status_code = status_code super(ArgOverrideException, self).__init__(message, status_code) class TestPickle(unittest.TestCase): # See: http://www.reddit.com/r/django/comments/8gdwi/ # celery_distributed_task_queue_for_django/c097hr1 def test_pickle_regular_exception(self): e = None try: raise RegularException("RegularException raised") except RegularException, e: pass pickled = pickle.dumps({"exception": e}) unpickled = pickle.loads(pickled) exception = unpickled.get("exception") self.assertTrue(exception) self.assertTrue(isinstance(exception, RegularException)) self.assertEquals(exception.args, ("RegularException raised", )) def test_pickle_arg_override_exception(self): e = None try: raise ArgOverrideException("ArgOverrideException raised", status_code=100) except ArgOverrideException, e: pass pickled = pickle.dumps({"exception": e}) unpickled = pickle.loads(pickled) exception = unpickled.get("exception") self.assertTrue(exception) self.assertTrue(isinstance(exception, ArgOverrideException)) self.assertEquals(exception.args, ("ArgOverrideException raised", 100)) self.assertEquals(exception.status_code, 100)
ee8fcb6113dfdf4554705e7c1cf7fe5e5b3c6017
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03253/s028075824.py
5a75ef3726225d5282ae0dd3a1b8e2323b4d2dfd
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
1,029
py
import sys import math sys.setrecursionlimit(1000000) # 再帰上限を増やす def calc_combi(n, m, mod=1000000007): """ nCmの組み合わせ数を数える """ if n - m < m: return calc_combi(n, n - m) ans_mull, ans_div = 1, 1 for i in range(m): ans_mull *= (n - i) ans_div *= (i + 1) ans_mull %= mod ans_div %= mod ans = ans_mull * pow(ans_div, mod - 2, mod) % mod return ans def main(): input = sys.stdin.readline # 文字列に対してinputした場合は、rstripするのを忘れずに! N, M = map(int, input().rstrip().split()) mod = 1000000007 ans = 1 for i in range(2, math.ceil(math.sqrt(M))): if M % i == 0: count = 0 while M % i == 0: M /= i count += 1 ans *= calc_combi(count + N - 1, N - 1, mod) ans %= mod if M != 1: ans *= calc_combi(N, 1, mod) ans %= mod print(ans) if __name__ == '__main__': main()
d7d22bee196dd88cf02a813ed99e658a7a9134a1
d0758e0ca004226cec8ad8b26c9565c98534a8b8
/11-videogames/Julio/3 - Moscas/game.py
91460a45758ba15d812fa0b32ac1bfb74b85c7e4
[]
no_license
pythoncanarias/eoi
334d64a96afc76ac1fa10282378f291b6d8c94b3
349367254f85e3e4273cede067ca950913a1332c
refs/heads/master
2023-07-06T08:00:11.366345
2023-06-30T15:19:33
2023-06-30T15:19:33
222,742,870
26
19
null
2023-06-25T16:03:46
2019-11-19T16:41:25
Jupyter Notebook
UTF-8
Python
false
false
1,274
py
import pygame import math from settings import * from sprites import Player class Game: def __init__(self): pygame.init() self.screen = pygame.display.set_mode([WIDTH, HEIGHT]) pygame.display.set_caption(TITLE) self.clock = pygame.time.Clock() self.all_sprites = pygame.sprite.Group() for _ in range(32): Player(self, 10, 10) def run(self): self.playing = True while self.playing: self.dt = self.clock.tick(FPS) self.events() self.update() self.draw() def events(self): for event in pygame.event.get(): if event.type == pygame.QUIT: self.playing = False def update(self): self.all_sprites.update() def draw(self): self.screen.fill(BLACK) for x in range(0, WIDTH, TILESIZE): pygame.draw.line(self.screen, LIGHTGREY, (x, 0), (x, HEIGHT)) for y in range(0, HEIGHT, TILESIZE): pygame.draw.line(self.screen, LIGHTGREY, (0, y), (WIDTH, y)) self.all_sprites.draw(self.screen) # Nothing else to draw, let's show it! pygame.display.flip() game = Game() game.run()
531328a7203522f625b1e1d7157e9d0d3de657c3
ab40571d5051ad53c0f205fa797ba36eac516d06
/language/serene/wiki_index.py
d3f3722d348a60910e695ac044d8e3a711095a05
[ "Apache-2.0", "LicenseRef-scancode-generic-cla" ]
permissive
google-research/language
e941b1a92ab46d40d8d03bb0c314905cb6902ce2
ac9447064195e06de48cc91ff642f7fffa28ffe8
refs/heads/master
2023-08-24T23:10:13.207294
2023-05-25T20:47:18
2023-05-25T22:29:27
153,201,352
1,567
371
Apache-2.0
2023-07-06T23:03:15
2018-10-16T00:58:14
Python
UTF-8
Python
false
false
14,914
py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=line-too-long r"""Build index from wikipedia embeddings from model and save to disk. """ # pylint: enable=line-too-long from concurrent import futures import os import time from absl import app from absl import flags from absl import logging import dataclasses from fever_scorer.scorer import fever_score from language.serene import config from language.serene import constants from language.serene import util import numpy as np import tensorflow.compat.v2 as tf import tqdm FLAGS = flags.FLAGS flags.DEFINE_string('wiki_embedding_dir', None, 'Directory for embedding files.') flags.DEFINE_string('claim_id_path', None, 'File for claim ids') flags.DEFINE_string('claim_embedding_path', None, 'File for claim embeddings') flags.DEFINE_integer('n_shards', None, 'Number of shards in embedding_dir.') flags.DEFINE_string('out_path', None, 'Output location for predictions.') flags.DEFINE_bool('l2_norm', False, 'Whether to apply L2 Norm to embeddings') flags.DEFINE_bool('copy_to_tmp', False, 'Whether to copy embeddings to tmp before reading them.') flags.DEFINE_string('device', '/CPU:0', 'TF Device') flags.DEFINE_integer('batch_size', 256, 'batch size for matrix ops') @dataclasses.dataclass(frozen=True, eq=True) class IndexKey: wikipedia_url: Text sentence_id: int def copy_file_to_tmp(path_pair): orig_path, tmp_path = path_pair with util.log_time(f'Copy: {orig_path} To: {tmp_path}'): util.safe_copy(orig_path, tmp_path) class ShardedEmbPaths: """Utility class for managing sharded embedding paths.""" def __init__(self, *, embedding_dir, n_shards): """Initialize sharded paths. Args: embedding_dir: Directory of embeddings n_shards: Number of shards in directory """ self._embedding_dir = embedding_dir self._n_shards = n_shards self._tmp_dir = os.path.join('/tmp', util.random_string(prefix='embedding-tmp')) def files(self, tmp = False): """Return the files for the sharded embeddings. Args: tmp: Whether to return paths in /tmp or not Returns: Paths of all sharded files. """ sharded_files = [] for shard in range(self._n_shards): sharded_files.extend(self.shard_files(shard, tmp=tmp)) return sharded_files def orig_tmp_file_pairs(self): """Creates a list of tuples of (original_path, tmp_path). Returns: A list of tuples where first path is original and second is tmp location """ pairs = [] for shard in range(self._n_shards): orig_paths = self.shard_files(shard, tmp=False) tmp_paths = self.shard_files(shard, tmp=True) pairs.extend(list(zip(orig_paths, tmp_paths))) return pairs def shard_files(self, shard, tmp = False): """Return file paths that correspond to the given shard. Args: shard: Shard to make paths for tmp: Whether to return tmp version or not Returns: A list of files for the shard """ return [ self.shard_emb(shard, tmp=tmp), self.shard_urls(shard, tmp=tmp), self.shard_sentence_ids(shard, tmp=tmp), ] def _file_dir(self, tmp): if tmp: return self._tmp_dir else: return self._embedding_dir def shard_emb(self, shard, tmp = False): """Get the path for the sharded embedding. Args: shard: Shard to get embedding path for tmp: Whether to return /tmp version of path Returns: Path to embedding for given shard """ return os.path.join( self._file_dir(tmp), f'embeddings_{shard}_{self._n_shards}.npy') def shard_urls(self, shard, tmp = False): """Get the path for the sharded urls. Args: shard: Shard to get urls path for tmp: Whether to return /tmp version of path Returns: Path to urls for given shard """ return os.path.join( self._file_dir(tmp), f'urls_{shard}_{self._n_shards}.npy') def shard_sentence_ids(self, shard, tmp = False): """Get the path for the sharded sentence_ids. Args: shard: Shard to get sentence_ids path for tmp: Whether to return /tmp version of path Returns: Path to sentence_ids for given shard """ return os.path.join( self._file_dir(tmp), f'sentence_ids_{shard}_{self._n_shards}.npy') def to_tmp(self): path_pairs = self.orig_tmp_file_pairs() with futures.ThreadPoolExecutor(max_workers=len(path_pairs)) as executor: list(tqdm.tqdm(executor.map(copy_file_to_tmp, path_pairs))) def read_examples( *, embedding_dir, n_shards, copy_to_tmp): """Read and yield examples from embeddings in directory. Args: embedding_dir: The directory of .npy embedding files n_shards: Number of shards used to create the data copy_to_tmp: Whether to copy embeddings to /tmp before reading, this can significantly improve throughput compared to remote filesystem reads Yields: Tuples of an integer identifier, wikipedia_url, sentence_id, and embedding """ idx = 0 sharded_paths = ShardedEmbPaths( embedding_dir=embedding_dir, n_shards=n_shards) logging.info('Copying files to tmp') if copy_to_tmp: sharded_paths.to_tmp() logging.info('Starting example read') for shard in tqdm.trange(n_shards): emb_path = sharded_paths.shard_emb(shard, tmp=copy_to_tmp) urls_path = sharded_paths.shard_urls(shard, tmp=copy_to_tmp) sentence_ids_path = sharded_paths.shard_sentence_ids(shard, tmp=copy_to_tmp) logging.info('Emb path: %s', emb_path) logging.info('Urls path: %s', urls_path) logging.info('Sent path: %s', sentence_ids_path) with \ util.safe_open(emb_path, 'rb') as emb_f,\ util.safe_open(urls_path, 'rb') as url_f,\ util.safe_open(sentence_ids_path, 'rb') as sid_f: load_start = time.time() embeddings = np.load(emb_f) wikipedia_urls = np.load(url_f) sentence_ids = np.load(sid_f) load_end = time.time() logging.info('Reading shard %s, Seconds: %s', shard, load_end - load_start) for wiki_url, sid, emb in zip(wikipedia_urls, sentence_ids, embeddings): yield idx, wiki_url, sid, emb idx += 1 class Index: """Index that can be used for brute for neighbor search.""" def __init__(self, *, claim_embedding_path, claim_id_path, wiki_embedding_dir, n_shards, copy_to_tmp, device = '/CPU:0', batch_size = 256, l2_norm=False): """Configure index. Claim ids and embeddings are related through their position (eg, first embedding corresponds to first id). Args: claim_embedding_path: Path to claim embeddings claim_id_path: Path to claim ids wiki_embedding_dir: Directory of .npy embedding files n_shards: Number of shards to read copy_to_tmp: Whether to copy embeddings to tmp (eg, maybe they are on slow network file system) device: Tensorflow device to use for batched matrix multiplies batch_size: Batch size for batched matrix multiplies l2_norm: Whether to impose the L2 norm on vectors """ self._claim_embedding_path = claim_embedding_path self._claim_id_path = claim_id_path self._wiki_embedding_dir = wiki_embedding_dir self._n_shards = n_shards self._batch_size = batch_size self._l2_norm = l2_norm self._copy_to_tmp = copy_to_tmp self._device = device self._wiki_embeddings: Optional[tf.Tensor] = None self._key_to_idx: Optional[Dict[IndexKey, int]] = None self._idx_to_key: Optional[Dict[int, IndexKey]] = None self._claim_embeddings: Optional[tf.Tensor] = None self._claim_ids: Optional[tf.Tensor] = None self._claim_id_to_idx: Optional[Dict[int, int]] = None def build(self, load_wiki=True, load_fever=True): """Build the index in memory. Args: load_wiki: Whether to load wiki embeddings load_fever: Whether to load fever claim embeddings """ if load_wiki: self._load_wiki_embeddings() if load_fever: self._load_fever_embeddings() def _load_fever_embeddings(self): """Load fever claim embeddings and ids.""" with util.safe_open(self._claim_embedding_path, 'rb') as f: claim_embeddings = np.load(f) with util.safe_open(self._claim_id_path, 'rb') as f: claim_ids = np.load(f) self._claim_embeddings = tf.convert_to_tensor(claim_embeddings) if self._l2_norm: self._claim_embeddings = tf.math.l2_normalize( self._claim_embeddings, axis=-1) self._claim_ids = claim_ids self._claim_id_to_idx = {} for idx, claim_id in enumerate(self._claim_ids): self._claim_id_to_idx[claim_id] = idx def _load_wiki_embeddings(self): """Build an index from embeddings.""" logging.info('Read: %s', self._wiki_embedding_dir) logging.info('N Shards: %s', self._n_shards) examples = read_examples( embedding_dir=self._wiki_embedding_dir, n_shards=self._n_shards, copy_to_tmp=self._copy_to_tmp, ) logging.info('Starting indexing') embeddings = [] self._key_to_idx = {} self._idx_to_key = {} for idx, wiki_url, sid, emb in tqdm.tqdm(examples, mininterval=10): embeddings.append(emb) self._key_to_idx[IndexKey(wiki_url, sid)] = idx self._idx_to_key[idx] = IndexKey(wiki_url, sid) self._wiki_embeddings = tf.convert_to_tensor(np.vstack(embeddings)) if self._l2_norm: self._wiki_embeddings = tf.math.l2_normalize( self._wiki_embeddings, axis=-1) logging.info('Embedding Shape: %s', self._wiki_embeddings.shape) def score_claim_to_wiki(self, n = 5): """Score all claims to wikipedia and return the predictions. Args: n: Number of predictions to make per claim Returns: Top ranked wikipedia sentences per claim """ logging.info('TF Initializing') with tf.device(self._device): idx = 0 top_idx = [] top_scores = [] bar = tqdm.tqdm(total=self._claim_embeddings.shape[0]) # batch_size: over n_claims while idx < self._claim_embeddings.shape[0]: # (batch_size, emb_dim) batch = self._claim_embeddings[idx:idx + self._batch_size, :] # (n_wiki_embeddings, batch_size) batch_scores = tf.linalg.matmul( # wiki_embeddings: (n_wiki_embeddings, emb_dim) self._wiki_embeddings, batch, transpose_b=True) # <float>(batch_size, n_wiki_embeddings) batch_scores = tf.transpose(batch_scores) # <float>(batch_size, n), <long>(batch_size, n) batch_top_scores, batch_top_idx = tf.nn.top_k(batch_scores, k=n) top_idx.append(batch_top_idx.numpy()) top_scores.append(batch_top_scores.numpy()) idx += self._batch_size bar.update(self._batch_size) bar.close() top_idx = np.vstack(top_idx) top_scores = np.vstack(top_scores) claim_id_to_scored_keys = {} for claim_index in range(top_idx.shape[0]): row = top_idx[claim_index] wiki_keys = [] for idx in row: wiki_keys.append(self._idx_to_key[idx]) claim_id = self._claim_ids[claim_index] claim_id_to_scored_keys[claim_id] = { 'wiki_keys': wiki_keys, 'scores': top_scores[claim_index] } return claim_id_to_scored_keys def main(_): flags.mark_flag_as_required('out_path') flags.mark_flag_as_required('wiki_embedding_dir') flags.mark_flag_as_required('claim_id_path') flags.mark_flag_as_required('claim_embedding_path') flags.mark_flag_as_required('n_shards') tf.enable_v2_behavior() conf = config.Config() logging.info('wiki_embedding_dir: %s', FLAGS.wiki_embedding_dir) logging.info('n_shards: %s', FLAGS.n_shards) logging.info('l2_norm: %s', FLAGS.l2_norm) logging.info('claim_id_path: %s', FLAGS.claim_id_path) logging.info('claim_embedding_path: %s', FLAGS.claim_embedding_path) logging.info('copy_to_tmp: %s', FLAGS.copy_to_tmp) logging.info('batch_size: %s', FLAGS.batch_size) with util.log_time('Building index'): index = Index( wiki_embedding_dir=FLAGS.wiki_embedding_dir, n_shards=FLAGS.n_shards, l2_norm=FLAGS.l2_norm, claim_id_path=FLAGS.claim_id_path, claim_embedding_path=FLAGS.claim_embedding_path, copy_to_tmp=FLAGS.copy_to_tmp, batch_size=FLAGS.batch_size, device=FLAGS.device, ) index.build() logging.info('Reading claims from: %s', conf.fever_dev) dev = [ c for c in util.read_jsonlines(conf.fever_dev) if c['label'] != constants.NOT_ENOUGH_INFO ] logging.info('Making predictions') claim_id_to_scored_keys = index.score_claim_to_wiki(n=5) formatted_predictions = [] actual = [] for claim in tqdm.tqdm(dev): claim_id = claim['id'] predicted_evidence = [] scored_keys = claim_id_to_scored_keys[claim_id] for index_key in scored_keys['wiki_keys']: # sentence_id is a numpy int, and fever scoring script only # accepts python int. predicted_evidence.append([ index_key.wikipedia_url, int(index_key.sentence_id)]) formatted_predictions.append({ 'id': claim_id, 'predicted_label': constants.SUPPORTS, 'predicted_evidence': predicted_evidence, }) actual.append({'evidence': claim['evidence'], 'label': claim['label']}) logging.info('FEVER Metrics') strict_score, accuracy_score, precision, recall, f1 = fever_score( formatted_predictions, actual) logging.info('Strict Score: %s', strict_score) logging.info('Accuracy Score: %s', accuracy_score) logging.info('Precision: %s', precision) logging.info('Recall: %s', recall) logging.info('F1: %s', f1) logging.info('Saving predictions and metrics to: %s', FLAGS.out_path) util.write_json( { 'predictions': formatted_predictions, 'metrics': { 'strict_score': strict_score, 'accuracy_score': accuracy_score, 'precision': precision, 'recall': recall, 'f1': f1, } }, FLAGS.out_path) if __name__ == '__main__': app.run(main)
5b666edc2f564f9e62ca32f883d55c4dc29f7449
567eac942e94c653dda710d52c1eb6db0847a075
/0x0B-python-input_output/100-append_after.py
c1d85581606a8e1587723e9fb8ea9451eb415a89
[]
no_license
mecomontes/Higher-Level-Programming
beeb4a410ff99fa062a86bd0a7f4d87a39889283
3a78f6eeedc70e2f447c49ccaf0838f5878f651c
refs/heads/main
2023-06-26T18:02:29.046302
2021-07-13T14:58:24
2021-07-13T14:58:24
385,641,861
0
0
null
null
null
null
UTF-8
Python
false
false
751
py
#!/usr/bin/python3 # -*- coding: utf-8 -*- """ Created on Tru Jun 3 15:13:37 2020 @author: Robinson Montes """ def append_after(filename="", search_string="", new_string=""): """ Inserts a line after each line containing a specific string Arguments: filename (str): The name of the file search_string (str): The string to math new_string (str): The string to insert after matching """ with open(filename, 'r', encoding='utf-8') as file: lines = file.readlines() for i in range(len(lines)): if search_string in lines[i]: lines.insert(i + 1, new_string) with open(filename, 'w', encoding='utf-8') as file: content = "".join(lines) file.write(content)
9e16773835ce51e64709f46cb6093b668958019f
2bf6bf2eeb72b9eb4b8a41f36fb56585e140a611
/pickle_to_tex.py
82080a24d542ddb03dc447346c6cdf65cb6965bc
[ "MIT" ]
permissive
Daniel-Bu/exposure
0fcff9177764cc85bb46298cfcdfaf5aeb29b6ec
74549ac75822fba41125cb0a086905a51db49d7b
refs/heads/master
2020-09-27T07:34:49.726377
2019-12-07T07:06:34
2019-12-07T07:06:34
226,464,955
0
0
MIT
2019-12-07T06:12:36
2019-12-07T06:12:35
null
UTF-8
Python
false
false
5,295
py
# This script converts output pickle to step-by-step latex figures import numpy as np import os import pickle as pickle import shutil NUM_STEPS = 5 CURVE_STEPS = 8 files = [] filters = [ 'Expo.', 'Gam.', 'W.B.', 'Satu.', 'Tone', 'Cst.', 'BW', 'Color', ] def visualize_detail(name, param, pos): def map_pos(x, y): return '(%f,%f)' % (pos[0] + x * 0.8, pos[1] - 1.1 + y * 0.8) if name == 'Expo.': return '{Exposure $%+.2f$};' % param[0] elif name == 'Gam.': return '{Gamma $1/%.2f$};' % (1 / param[0]) elif name == 'Satu.': return '{Saturation $+%.2f$};' % param[0] elif name == 'Cst.': return '{Contrast $%+.2f$};' % param[0] elif name == 'BW': return '{$%+.2f$};' % (param[0]) elif name == 'W.B.': scaling = 1 / (1e-5 + 0.27 * param[0] + 0.67 * param[1] + 0.06 * param[2]) r, g, b = [int(255 * x * scaling) for x in param] color = r'{\definecolor{tempcolor}{RGB}{%d,%d,%d}};' % (r, g, b) return color + '\n' + r'\tikz \fill[tempcolor] (0,0) rectangle (4 ex, 2 ex);' elif name == 'Tone': s = '{Tone\quad\quad\quad\quad};\n' s += r'\draw[<->] %s -- %s -- %s;' % (map_pos(0, 1.1), map_pos(0, 0), map_pos(1.1, 0)) s += '\n' for i in range(1): values = np.array([0] + list(param[0][0][i])) values /= sum(values) + 1e-30 scale = 1 values *= scale for j in range(0, CURVE_STEPS): values[j + 1] += values[j] for j in range(CURVE_STEPS): p1 = (1.0 / CURVE_STEPS * j, values[j]) p2 = (1.0 / CURVE_STEPS * (j + 1), values[j + 1]) s += r'\draw[-] %s -- %s;' % (map_pos(*p1), map_pos(*p2)) if j != CURVE_STEPS - 1: s += '\n' return s elif name == 'Color': s = '{Color\quad\quad\quad\quad};\n' s += r'\draw[<->] %s -- %s -- %s;' % (map_pos(0, 1.1), map_pos(0, 0), map_pos(1.1, 0)) s += '\n' c = ['red', 'green', 'blue'] for i in range(3): #print(param) values = np.array([0] + list(param[0][0][i])) values /= sum(values) + 1e-30 scale = 1 values *= scale for j in range(0, CURVE_STEPS): values[j + 1] += values[j] for j in range(CURVE_STEPS): p1 = (1.0 / CURVE_STEPS * j, values[j]) p2 = (1.0 / CURVE_STEPS * (j + 1), values[j + 1]) s += r'\draw[%s,-] %s -- %s;' % (c[i], map_pos(*p1), map_pos(*p2)) if j != CURVE_STEPS - 1: s += '\n' return s else: assert False def visualize_step(debug_info, step_name, position): pdf = debug_info['pdf'] filter_id = debug_info['selected_filter_id'] s = '' s += r'\node[draw, rectangle, thick,minimum height=7em,minimum width=7em](%s) at (%f,%f) {};' % ( step_name, position[0], position[1]) s += '\n' s += r'\node (%ss) at ([yshift=1.4em]%s.center) {' % (step_name, step_name) s += '\n' s += r' \scalebox{0.7}{' s += '\n' s += r' \begin{tabular}{|p{0.5cm}p{0.2cm}p{0.5cm}p{0.2cm}|}' s += '\n' s += r' \hline' s += '\n' def bar(i): return '\pdfbarSelected' if i == filter_id else '\pdfbar' for i in range(4): f1 = filters[i] b1 = r'%s{%.3f}' % (bar(i), pdf[i] * 3) f2 = filters[i + 4] b2 = r'%s{%.3f}' % (bar(i + 4), pdf[i + 4] * 3) s += r' %s & %s & %s & %s \\' % (f1, b1, f2, b2) s += '\n' s += r' \hline' s += '\n' s += r' \end{tabular}' s += '\n' s += r' }' s += '\n' s += r'};' s += '\n' s += r'\node (%sd) at ([yshift=-2.0em]%s.center)' % (step_name, step_name) s += '\n' s += visualize_detail( filters[filter_id], debug_info['filter_debug_info'][filter_id]['filter_parameters'], position) s += '\n' return s def process_dog(): f = 'dog04/a0694.tif_debug.pkl' debug_info_list = pickle.load(open(f, 'r')) for i in range(NUM_STEPS): debug_info = debug_info_list[i] print(visualize_step(debug_info, 'agent%d' % (i + 1), (4, i * -3)), end=' ') def process(filename, id, src): pkl_fn = os.path.join(src, filename) debug_info_list = pickle.load(open(pkl_fn, 'rb')) filename = filename[:-10] target_dir = 'export/{}'.format(id) os.makedirs(target_dir, exist_ok=True) for i in range(NUM_STEPS - 1): shutil.copy(os.path.join(src, filename + '.intermediate%02d.png' % i), os.path.join(target_dir, 'step%d.png' % (i + 1))) shutil.copy(os.path.join(src, filename + '.retouched.png'), os.path.join(target_dir, 'final.png')) shutil.copy(os.path.join(src, filename + '.linear.png'), os.path.join(target_dir, 'input.png')) with open(target_dir + '/steps.tex', 'w') as f: for i in range(NUM_STEPS): debug_info = debug_info_list[i] print( visualize_step(debug_info, 'agent%d' % (i + 1), (4, i * -3)), end=' ', file=f) print('##########################################') print('Note: Please make sure you have pdflatex.') print('##########################################') print() for input_dir in ['outputs']: for f in os.listdir(input_dir): if not f.endswith('pkl'): continue id = f.split('.')[0] print('Generating pdf operating sequences for image {}...'.format(id)) process(f, id, src=input_dir)
e0c71dc714a97faaca6e6a3978e34959b43481c4
03b6e62060ae8db13bfe1ace9b2ee108d96f785b
/functions/box_utils.py
e7aa8a3a01eff392c2ff53b00e0b58ab115d65cb
[]
no_license
pyaf/ssd
d5321cf2bce62a24c37c8f23ba5a326c61ea4dff
0e8cf8bbc6fdeb57acd7ceb4fffab647921d3018
refs/heads/master
2022-03-08T09:18:32.243214
2018-10-29T12:02:31
2018-10-29T12:02:31
151,805,775
0
0
null
null
null
null
UTF-8
Python
false
false
9,420
py
# -*- coding: utf-8 -*- import torch def point_form(boxes): """ Convert prior_boxes to (xmin, ymin, xmax, ymax) representation for comparison to point form ground truth data. Args: boxes: (tensor) center-size default boxes from priorbox layers. Return: boxes: (tensor) Converted xmin, ymin, xmax, ymax form of boxes. """ return torch.cat((boxes[:, :2] - boxes[:, 2:]/2, # xmin, ymin boxes[:, :2] + boxes[:, 2:]/2), 1) # xmax, ymax def center_size(boxes): """ Convert prior_boxes to (cx, cy, w, h) representation for comparison to center-size form ground truth data. Args: boxes: (tensor) point_form boxes Return: boxes: (tensor) Converted xmin, ymin, xmax, ymax form of boxes. """ return torch.cat((boxes[:, 2:] + boxes[:, :2])/2, # cx, cy boxes[:, 2:] - boxes[:, :2], 1) # w, h def intersect(box_a, box_b): """ We resize both tensors to [A,B,2] without new malloc: [A,2] -> [A,1,2] -> [A,B,2] [B,2] -> [1,B,2] -> [A,B,2] Then we compute the area of intersect between box_a and box_b. Args: box_a: (tensor) bounding boxes, Shape: [A,4]. box_b: (tensor) bounding boxes, Shape: [B,4]. Return: (tensor) intersection area, Shape: [A,B]. """ A = box_a.size(0) B = box_b.size(0) max_xy = torch.min(box_a[:, 2:].unsqueeze(1).expand(A, B, 2), box_b[:, 2:].unsqueeze(0).expand(A, B, 2)) min_xy = torch.max(box_a[:, :2].unsqueeze(1).expand(A, B, 2), box_b[:, :2].unsqueeze(0).expand(A, B, 2)) inter = torch.clamp((max_xy - min_xy), min=0) return inter[:, :, 0] * inter[:, :, 1] def jaccard(box_a, box_b): """Compute the jaccard overlap of two sets of boxes. The jaccard overlap is simply the intersection over union of two boxes. Here we operate on ground truth boxes and default boxes. E.g.: A ∩ B / A ∪ B = A ∩ B / (area(A) + area(B) - A ∩ B) Args: box_a: (tensor) Ground truth bounding boxes, Shape: [num_objects,4] box_b: (tensor) Prior boxes from priorbox layers, Shape: [num_priors,4] Return: jaccard overlap: (tensor) Shape: [box_a.size(0), box_b.size(0)] """ inter = intersect(box_a, box_b) area_a = ((box_a[:, 2]-box_a[:, 0]) * (box_a[:, 3]-box_a[:, 1])).unsqueeze(1).expand_as(inter) # [A,B] area_b = ((box_b[:, 2]-box_b[:, 0]) * (box_b[:, 3]-box_b[:, 1])).unsqueeze(0).expand_as(inter) # [A,B] union = area_a + area_b - inter return inter / union # [A,B] def match(threshold, truths, priors, variances, labels, loc_t, conf_t): """Match each prior box with the ground truth box of the highest jaccard overlap, encode the bounding boxes, then return the matched indices corresponding to both confidence and location preds. Args: threshold: (float) The overlap threshold used when mathing boxes. truths: (tensor) Ground truth boxes, Shape: [num_obj, num_priors]. priors: (tensor) Prior boxes from priorbox layers, Shape: [n_priors,4]. variances: (tensor) Variances corresponding to each prior coord, Shape: [num_priors, 4]. labels: (tensor) All the class labels for the image, Shape: [num_obj]. loc_t: (tensor) Tensor to be filled w/ endcoded location targets. conf_t: (tensor) Tensor to be filled w/ matched indices for conf preds. Return: The matched indices corresponding to 1)location and 2)confidence preds. """ # jaccard index overlaps = jaccard( truths, point_form(priors) ) # (Bipartite Matching) # [1,num_objects] best prior for each ground truth best_prior_overlap, best_prior_idx = overlaps.max(1, keepdim=True) # [1,num_priors] best ground truth for each prior best_truth_overlap, best_truth_idx = overlaps.max(0, keepdim=True) best_truth_idx.squeeze_(0) best_truth_overlap.squeeze_(0) best_prior_idx.squeeze_(1) best_prior_overlap.squeeze_(1) best_truth_overlap.index_fill_(0, best_prior_idx, 2) # ensure best prior # TODO refactor: index best_prior_idx with long tensor # ensure every gt matches with its prior of max overlap for j in range(best_prior_idx.size(0)): best_truth_idx[best_prior_idx[j]] = j matches = truths[best_truth_idx] # Shape: [num_priors,4] conf = labels[best_truth_idx] + 1 # Shape: [num_priors] conf[best_truth_overlap < threshold] = 0 # label as background loc = encode(matches, priors, variances) # loc_t[idx] = loc # [num_priors,4] encoded offsets to learn # conf_t[idx] = conf # [num_priors] top class label for each prior return loc, conf def encode(matched, priors, variances): """Encode the variances from the priorbox layers into the ground truth boxes we have matched (based on jaccard overlap) with the prior boxes. Args: matched: (tensor) Coords of ground truth for each prior in point-form Shape: [num_priors, 4]. priors: (tensor) Prior boxes in center-offset form Shape: [num_priors,4]. variances: (list[float]) Variances of priorboxes Return: encoded boxes (tensor), Shape: [num_priors, 4] """ # dist b/t match center and prior's center g_cxcy = (matched[:, :2] + matched[:, 2:])/2 - priors[:, :2] # encode variance g_cxcy /= (variances[0] * priors[:, 2:]) # match wh / prior wh g_wh = (matched[:, 2:] - matched[:, :2]) / priors[:, 2:] g_wh = torch.log(g_wh) / variances[1] # return target for smooth_l1_loss return torch.cat([g_cxcy, g_wh], 1) # [num_priors,4] # Adapted from https://github.com/Hakuyume/chainer-ssd def decode(loc, priors, variances): """Decode locations from predictions using priors to undo the encoding we did for offset regression at train time. Args: loc (tensor): location predictions for loc layers, Shape: [num_priors,4] priors (tensor): Prior boxes in center-offset form. Shape: [num_priors,4]. variances: (list[float]) Variances of priorboxes Return: decoded bounding box predictions """ boxes = torch.cat(( priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:], priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])), 1) boxes[:, :2] -= boxes[:, 2:] / 2 boxes[:, 2:] += boxes[:, :2] return boxes def log_sum_exp(x): """Utility function for computing log_sum_exp while determining This will be used to determine unaveraged confidence loss across all examples in a batch. Args: x (Variable(tensor)): conf_preds from conf layers """ x_max = x.data.max() return torch.log(torch.sum(torch.exp(x-x_max), dim=1, keepdim=True)) + x_max # Original author: Francisco Massa: # https://github.com/fmassa/object-detection.torch # Ported to PyTorch by Max deGroot (02/01/2017) def nms(boxes, scores, overlap=0.5, top_k=200): """Apply non-maximum suppression at test time to avoid detecting too many overlapping bounding boxes for a given object. Args: boxes: (tensor) The location preds for the img, Shape: [num_priors,4]. scores: (tensor) The class predscores for the img, Shape:[num_priors]. overlap: (float) The overlap thresh for suppressing unnecessary boxes. top_k: (int) The Maximum number of box preds to consider. Return: The indices of the kept boxes with respect to num_priors. """ keep = scores.new(scores.size(0)).zero_().long() if boxes.numel() == 0: return keep x1 = boxes[:, 0] y1 = boxes[:, 1] x2 = boxes[:, 2] y2 = boxes[:, 3] area = torch.mul(x2 - x1, y2 - y1) v, idx = scores.sort(0) # sort in ascending order # I = I[v >= 0.01] idx = idx[-top_k:] # indices of the top-k largest vals xx1 = boxes.new() yy1 = boxes.new() xx2 = boxes.new() yy2 = boxes.new() w = boxes.new() h = boxes.new() # keep = torch.Tensor() count = 0 while idx.numel() > 0: i = idx[-1] # index of current largest val # keep.append(i) keep[count] = i count += 1 if idx.size(0) == 1: break idx = idx[:-1] # remove kept element from view # load bboxes of next highest vals torch.index_select(x1, 0, idx, out=xx1) torch.index_select(y1, 0, idx, out=yy1) torch.index_select(x2, 0, idx, out=xx2) torch.index_select(y2, 0, idx, out=yy2) # store element-wise max with next highest score xx1 = torch.clamp(xx1, min=x1[i]) yy1 = torch.clamp(yy1, min=y1[i]) xx2 = torch.clamp(xx2, max=x2[i]) yy2 = torch.clamp(yy2, max=y2[i]) w.resize_as_(xx2) h.resize_as_(yy2) w = xx2 - xx1 h = yy2 - yy1 # check sizes of xx1 and xx2.. after each iteration w = torch.clamp(w, min=0.0) h = torch.clamp(h, min=0.0) inter = w*h # IoU = i / (area(a) + area(b) - i) rem_areas = torch.index_select(area, 0, idx) # load remaining areas) union = (rem_areas - inter) + area[i] IoU = inter/union # store result in iou # keep only elements with an IoU <= overlap idx = idx[IoU.le(overlap)] return keep, count
c5b30f8b5cad9ac276560858501ff8ed4aa8a8b1
0a7b77367cde1a64d95d1aab53b6a4f344056a9c
/mcod/organizations/views.py
685347e8b0ddc6c20caa3f4d05cff315812b5080
[]
no_license
kaglowka/danyzespolapi
529c2c7fc5d35c630498c8438e59dbcc3c00c437
0b3c07c68cf61faa81756822af9eec7c497bba2f
refs/heads/master
2023-01-13T19:11:40.247512
2018-10-28T12:36:47
2018-10-28T12:36:47
154,993,674
0
0
null
2022-12-26T20:44:19
2018-10-27T17:57:34
CSS
UTF-8
Python
false
false
2,487
py
# -*- coding: utf-8 -*- import falcon from dal import autocomplete from django.apps import apps from elasticsearch_dsl import Q from mcod.datasets.documents import DatasetsDoc from mcod.datasets.schemas import DatasetsList from mcod.datasets.serializers import DatasetSerializer, DatasetsMeta from mcod.lib.handlers import SearchHandler, RetrieveOneHandler from mcod.lib.triggers import LoginOptional from mcod.lib.views import SearchView, RetrieveOneView from mcod.organizations.documents import InstitutionDoc from mcod.organizations.models import Organization from mcod.organizations.schemas import InstitutionsList from mcod.organizations.serializers import InstitutionsSerializer, InstitutionsMeta class InstitutionsView(SearchView): class GET(SearchHandler): meta_serializer = InstitutionsMeta() request_schema = InstitutionsList() response_serializer = InstitutionsSerializer(many=True) search_document = InstitutionDoc() class InstitutionView(RetrieveOneView): class GET(RetrieveOneHandler): database_model = apps.get_model('organizations', 'Organization') response_serializer = InstitutionsSerializer(many=False, include_data=('datasets',)) triggers = [LoginOptional(), ] def resource_clean(self, request, id, *args, **kwargs): model = self.database_model try: return model.objects.get(pk=id, status="published") except model.DoesNotExist: raise falcon.HTTPNotFound class InstitutionDatasetsView(SearchView): class GET(SearchHandler): meta_serializer = DatasetsMeta() request_schema = DatasetsList() response_serializer = DatasetSerializer(many=True) search_document = DatasetsDoc() def _queryset(self, cleaned, *args, **kwargs): qs = super()._queryset(cleaned, *args, **kwargs) if 'id' in kwargs: qs = qs.query("nested", path="institution", query=Q("term", **{'institution.id': kwargs['id']})) return qs class OrganizationAutocomplete(autocomplete.Select2QuerySetView): def get_queryset(self): # Don't forget to filter out results depending on the visitor ! if not self.request.user.is_authenticated: return Organization.objects.none() qs = Organization.objects.all() if self.q: qs = qs.filter(title__icontains=self.q) return qs
1821ffa05b0f39dd18622808d4a83cb6c4da538e
c3132612a7ac311e501e432e1a4c7592bbd7a713
/day16/code/08_爬虫.py
f5ee39d962d3e580dd54293573568a861feddcd3
[]
no_license
everqiujuan/python
7b8e169107012c3d7829d4ebd9860482fc0d8fec
b0a98de943217e24da60f79dec4fe8ebf4f1c713
refs/heads/master
2020-06-21T16:57:22.260311
2019-07-18T05:58:44
2019-07-18T05:58:44
184,990,635
0
0
null
null
null
null
UTF-8
Python
false
false
990
py
# # 爬虫: 蜘蛛Spider # # requests import requests import re # pip 第三方包管理 # pip install requests 安装包 # pip uninstall requests 卸载包 # pip freeze 显示自己安装的包 # pip list 显示所有包 # pip -V 查看版本 # pip show requests 查看包详情 url = 'https://search.51job.com/list/040000,000000,0000,00,9,99,python,2,1.html?lang=c&stype=&postchannel=0000&workyear=99&cotype=99&degreefrom=99&jobterm=99&companysize=99&providesalary=99&lonlat=0%2C0&radius=-1&ord_field=0&confirmdate=9&fromType=&dibiaoid=0&address=&line=&specialarea=00&from=&welfare=' res = requests.get(url) string = res.content.decode('gbk') # print(string) pattern = '<div class="rt">(.*?)</div>' res = re.findall(pattern, string, re.S) # print(res) string2 = res[0] # print(string2) # 取数字 # string2 = string2.strip() # print(string2) res2 = re.findall('(\d+)', string2) print(res2) print(res2[0])
305d43af585283a2419fc1f458c295e373db6e69
ebd5c4632bb5f85c9e3311fd70f6f1bf92fae53f
/Sourcem8/otp/uberdog/OtpAvatarManagerAI.py
fe784b18b21426dfb9dc945b89ef2a60b8896819
[]
no_license
BrandonAlex/Pirates-Online-Retribution
7f881a64ec74e595aaf62e78a39375d2d51f4d2e
980b7448f798e255eecfb6bd2ebb67b299b27dd7
refs/heads/master
2020-04-02T14:22:28.626453
2018-10-24T15:33:17
2018-10-24T15:33:17
154,521,816
2
1
null
null
null
null
UTF-8
Python
false
false
1,377
py
from direct.directnotify import DirectNotifyGlobal from direct.distributed.DistributedObjectAI import DistributedObjectAI class OtpAvatarManagerAI(DistributedObjectAI): notify = DirectNotifyGlobal.directNotify.newCategory("OtpAvatarManagerAI") def online(self): pass def requestAvatarList(self, todo0): pass def rejectAvatarList(self, todo0): pass def avatarListResponse(self, todo0): pass def requestAvatarSlot(self, todo0, todo1, todo2): pass def rejectAvatarSlot(self, todo0, todo1, todo2): pass def avatarSlotResponse(self, todo0, todo1): pass def requestPlayAvatar(self, todo0, todo1, todo2): pass def rejectPlayAvatar(self, todo0, todo1): pass def playAvatarResponse(self, todo0, todo1, todo2, todo3): pass def rejectCreateAvatar(self, todo0): pass def createAvatarResponse(self, todo0, todo1, todo2, todo3): pass def requestRemoveAvatar(self, todo0, todo1, todo2, todo3): pass def rejectRemoveAvatar(self, todo0): pass def removeAvatarResponse(self, todo0, todo1): pass def requestShareAvatar(self, todo0, todo1, todo2, todo3): pass def rejectShareAvatar(self, todo0): pass def shareAvatarResponse(self, todo0, todo1, todo2): pass
71f5c1ce2364f53f0df7d090799750a7ae5ef7d2
6cc9adf9c0d840139d70a51f9e05731c4f26fe4c
/Programmers/8.py
5bbe6b7fd4a2d2760dfc09ee32bdb38a7e843cb8
[]
no_license
y2sec/Algorithm
2e05447d401c8c8d0c183c73fb1ce94d26080382
712d572bedfbf36dc27e1cc1272143e2b3b73b7f
refs/heads/master
2023-07-08T00:38:46.809836
2021-09-04T06:23:54
2021-09-04T06:23:54
317,202,541
0
0
null
null
null
null
UTF-8
Python
false
false
550
py
# 문자열 압축 def solution(s): answer = len(s) for i in range(1, len(s) // 2 + 1): start = 0 cnt = 1 change = '' while start < len(s): if s[start:start + i] == s[start + i:start + i + i]: cnt += 1 elif cnt >= 2: change += str(cnt) + s[start:start + i] cnt = 1 else: change += s[start:start + i] start += i answer = min(answer, len(change)) return answer print(solution('a'))
d43a0031adc40a69d9b2814a1c978c8cd490e873
910463f16caddc5a4e06d6ca362d62af20910dba
/CH_14_multithreading_and_multiprocessing/T_15_thread_local.py
5e4a0a8ab9363c44c745791a81890bf00047fd8a
[ "MIT" ]
permissive
AniketS-cpu/Mastering-Python-Second-Edition-test
3621ac06fc2cff577992396cd924fe09a349d52e
84de81c355d7ca21a1849eed04a15b722538f521
refs/heads/master
2023-06-09T12:42:53.963075
2021-07-04T14:54:18
2021-07-04T20:43:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
588
py
import threading import concurrent.futures context = threading.local() def init_counter(): context.counter = 10 def increment(name): current_value = context.counter print(f'{name} value before increment: {current_value}') context.counter = current_value + 1 print(f'{name} value after increment: {context.counter}') init_counter() print(f'Before thread start: {context.counter}') with concurrent.futures.ThreadPoolExecutor( initializer=init_counter) as executor: executor.map(increment, range(5)) print(f'After thread finish: {context.counter}')
a518889814eb5ff4f08fee145ec9852d16126a23
2f418a0f2fcca40f84ec0863b31ff974b574350c
/scripts/addons_extern/BrickTricks-master/uv_map_diamond_addin.py
540c658a13709a5eda3aba03ac9e4a6bac45fe6e
[ "Zlib" ]
permissive
JT-a/blenderpython279
57a81b55564218f3b1417c2ffa97f5161897ec79
04846c82f794c22f87d677d9eb8cec1d05c48cda
refs/heads/master
2021-06-25T06:58:07.670613
2017-09-11T11:14:36
2017-09-11T11:14:36
103,723,697
4
2
null
2017-09-16T04:09:31
2017-09-16T04:09:31
null
UTF-8
Python
false
false
47,127
py
import bpy class ShaderNodeuv_map_diamond(bpy.types.NodeCustomGroup): bl_name='ShaderNodeuv_map_diamond' bl_label='uv_map_diamond' bl_icon='NONE' def init(self, context): self.getNodetree(self.name + '_node_tree_v013') self.inputs['Vector'].default_value=[0,0,0] self.inputs['HAS_Vector'].default_value=0 self.inputs['HAS_Vector'].hide=True self.inputs['scale'].default_value=1 self.inputs['diamond_size'].default_value=0.2 self.inputs['brick_width'].default_value=1 self.inputs['brick_height'].default_value=1 self.inputs['feather'].default_value=0.1 self.inputs['border'].default_value=0.050000001 def update(self): if self.inputs['Vector'].is_linked: self.inputs['HAS_Vector'].default_value=1 else: self.inputs['HAS_Vector'].default_value=0 pass def value_set(self, obj, path, value): if '.' in path: path_prop, path_attr = path.rsplit('.', 1) prop = obj.path_resolve(path_prop) else: prop = obj path_attr = path setattr(prop, path_attr, value) def createNodetree(self, name) : self.node_tree = bpy.data.node_groups.new(name, 'ShaderNodeTree') #Nodes self.addNode('NodeGroupInput', { 'name':'GroupInput' }) self.addNode('NodeGroupOutput', { 'name':'GroupOutput' }) self.addNode('ShaderNodeTexCoord', { 'name':'Node0' }) self.addNode('ShaderNodeMixRGB', { 'name':'Node1' }) self.addNode('ShaderNodeCombineRGB', { 'name':'Node2' ,'inputs[0].default_value':0 ,'inputs[1].default_value':0 ,'inputs[2].default_value':0 }) self.addNode('ShaderNodeValue', { 'name':'Node5' ,'outputs[0].default_value':0 }) self.addNode('ShaderNodeValue', { 'name':'Node9' ,'outputs[0].default_value':2 }) self.addNode('ShaderNodeValue', { 'name':'Node10' ,'outputs[0].default_value':0 }) self.addNode('ShaderNodeValue', { 'name':'Node11' ,'outputs[0].default_value':1 }) self.addNode('ShaderNodeValue', { 'name':'Node13' ,'outputs[0].default_value':0.5 }) self.addNode('ShaderNodeValue', { 'name':'Node14' ,'outputs[0].default_value':0 }) self.addNode('ShaderNodeValue', { 'name':'Node15' ,'outputs[0].default_value':1.5 }) self.addNode('ShaderNodeValue', { 'name':'Node16' ,'outputs[0].default_value':-0.5 }) self.addNode('ShaderNodeValue', { 'name':'Node18' ,'outputs[0].default_value':1 }) self.addNode('ShaderNodeMath', { 'name':'Node19' ,'operation':'MINIMUM' }) self.addNode('ShaderNodeMath', { 'name':'Node20' ,'operation':'DIVIDE' }) self.addNode('ShaderNodeMath', { 'name':'Node21' ,'operation':'MINIMUM' }) self.addNode('ShaderNodeMath', { 'name':'Node22' ,'operation':'DIVIDE' }) self.addNode('ShaderNodeMath', { 'name':'Node23' ,'operation':'DIVIDE' }) self.addNode('ShaderNodeSeparateXYZ', { 'name':'Node24' }) self.addNode('ShaderNodeMath', { 'name':'Node25' ,'operation':'MULTIPLY' }) self.addNode('ShaderNodeMath', { 'name':'Node26' ,'operation':'DIVIDE' }) self.addNode('ShaderNodeMath', { 'name':'Node27' ,'inputs[1].default_value':0.5 ,'operation':'SUBTRACT' }) self.addNode('ShaderNodeMath', { 'name':'Node28' ,'operation':'ROUND' }) self.addNode('ShaderNodeSeparateXYZ', { 'name':'Node29' }) self.addNode('ShaderNodeMath', { 'name':'Node30' ,'operation':'MULTIPLY' }) self.addNode('ShaderNodeMath', { 'name':'Node31' ,'operation':'DIVIDE' }) self.addNode('ShaderNodeMath', { 'name':'Node32' ,'inputs[1].default_value':0.5 ,'operation':'SUBTRACT' }) self.addNode('ShaderNodeMath', { 'name':'Node33' ,'operation':'ROUND' }) self.addNode('ShaderNodeSeparateXYZ', { 'name':'Node34' }) self.addNode('ShaderNodeMath', { 'name':'Node35' ,'operation':'MULTIPLY' }) self.addNode('ShaderNodeMath', { 'name':'Node36' ,'operation':'MODULO' }) self.addNode('ShaderNodeMath', { 'name':'Node37' ,'operation':'LESS_THAN' }) self.addNode('ShaderNodeMath', { 'name':'Node38' ,'operation':'ADD' }) self.addNode('ShaderNodeMixRGB', { 'name':'Node39' }) self.addNode('ShaderNodeSeparateXYZ', { 'name':'Node40' }) self.addNode('ShaderNodeMath', { 'name':'Node41' ,'operation':'MULTIPLY' }) self.addNode('ShaderNodeMath', { 'name':'Node42' ,'operation':'MODULO' }) self.addNode('ShaderNodeMath', { 'name':'Node43' ,'operation':'LESS_THAN' }) self.addNode('ShaderNodeMath', { 'name':'Node44' ,'operation':'ADD' }) self.addNode('ShaderNodeMixRGB', { 'name':'Node45' }) self.addNode('ShaderNodeMath', { 'name':'Node46' ,'operation':'SUBTRACT' }) self.addNode('ShaderNodeMath', { 'name':'Node47' ,'operation':'MINIMUM' }) self.addNode('ShaderNodeMath', { 'name':'Node48' ,'operation':'SUBTRACT' }) self.addNode('ShaderNodeMath', { 'name':'Node49' ,'operation':'MINIMUM' }) self.addNode('ShaderNodeMath', { 'name':'Node50' ,'operation':'ADD' }) self.addNode('ShaderNodeMath', { 'name':'Node51' ,'operation':'LESS_THAN' }) self.addNode('ShaderNodeMath', { 'name':'Node52' ,'operation':'MULTIPLY' }) self.addNode('ShaderNodeMath', { 'name':'Node53' ,'operation':'GREATER_THAN' }) self.addNode('ShaderNodeMath', { 'name':'Node54' ,'operation':'SUBTRACT' }) self.addNode('ShaderNodeMath', { 'name':'Node55' ,'operation':'ABSOLUTE' }) self.addNode('ShaderNodeMath', { 'name':'Node56' ,'inputs[1].default_value':0.000001 ,'operation':'GREATER_THAN' }) self.addNode('ShaderNodeMath', { 'name':'Node57' ,'operation':'LESS_THAN' }) self.addNode('ShaderNodeMath', { 'name':'Node58' ,'operation':'SUBTRACT' }) self.addNode('ShaderNodeMath', { 'name':'Node59' ,'operation':'ABSOLUTE' }) self.addNode('ShaderNodeMath', { 'name':'Node60' ,'inputs[1].default_value':0.000001 ,'operation':'GREATER_THAN' }) self.addNode('ShaderNodeMixRGB', { 'name':'Node61' }) self.addNode('ShaderNodeMath', { 'name':'Node62' ,'operation':'SUBTRACT' }) self.addNode('ShaderNodeMath', { 'name':'Node63' ,'operation':'SUBTRACT' }) self.addNode('ShaderNodeMath', { 'name':'Node64' ,'operation':'SUBTRACT' }) self.addNode('ShaderNodeMath', { 'name':'Node65' ,'operation':'SUBTRACT' }) self.addNode('ShaderNodeCombineXYZ', { 'name':'Node66' }) self.addNode('ShaderNodeMixRGB', { 'name':'Node67' }) self.addNode('ShaderNodeMixRGB', { 'name':'Node68' }) self.addNode('ShaderNodeMixRGB', { 'name':'Node69' }) self.addNode('ShaderNodeMath', { 'name':'Node70' ,'operation':'GREATER_THAN' }) self.addNode('ShaderNodeMath', { 'name':'Node71' ,'operation':'SUBTRACT' }) self.addNode('ShaderNodeMath', { 'name':'Node72' ,'operation':'ABSOLUTE' }) self.addNode('ShaderNodeMath', { 'name':'Node73' ,'inputs[1].default_value':0.000001 ,'operation':'GREATER_THAN' }) self.addNode('ShaderNodeMath', { 'name':'Node74' ,'operation':'GREATER_THAN' }) self.addNode('ShaderNodeMath', { 'name':'Node75' ,'operation':'SUBTRACT' }) self.addNode('ShaderNodeMath', { 'name':'Node76' ,'operation':'ABSOLUTE' }) self.addNode('ShaderNodeMath', { 'name':'Node77' ,'inputs[1].default_value':0.000001 ,'operation':'GREATER_THAN' }) self.addNode('ShaderNodeMixRGB', { 'name':'Node78' }) self.addNode('ShaderNodeMath', { 'name':'Node79' ,'operation':'SUBTRACT' }) self.addNode('ShaderNodeMath', { 'name':'Node80' ,'operation':'SUBTRACT' }) self.addNode('ShaderNodeMath', { 'name':'Node81' ,'operation':'SUBTRACT' }) self.addNode('ShaderNodeMath', { 'name':'Node82' ,'operation':'SUBTRACT' }) self.addNode('ShaderNodeCombineXYZ', { 'name':'Node83' }) self.addNode('ShaderNodeMixRGB', { 'name':'Node84' }) self.addNode('ShaderNodeMixRGB', { 'name':'Node85' }) self.addNode('ShaderNodeMixRGB', { 'name':'Node86' }) self.addNode('ShaderNodeMath', { 'name':'Node87' ,'operation':'LESS_THAN' }) self.addNode('ShaderNodeMath', { 'name':'Node88' ,'operation':'SUBTRACT' }) self.addNode('ShaderNodeMath', { 'name':'Node89' ,'operation':'ABSOLUTE' }) self.addNode('ShaderNodeMath', { 'name':'Node90' ,'inputs[1].default_value':0.000001 ,'operation':'GREATER_THAN' }) self.addNode('ShaderNodeMath', { 'name':'Node91' ,'operation':'GREATER_THAN' }) self.addNode('ShaderNodeMath', { 'name':'Node92' ,'operation':'SUBTRACT' }) self.addNode('ShaderNodeMath', { 'name':'Node93' ,'operation':'ABSOLUTE' }) self.addNode('ShaderNodeMath', { 'name':'Node94' ,'inputs[1].default_value':0.000001 ,'operation':'GREATER_THAN' }) self.addNode('ShaderNodeMixRGB', { 'name':'Node95' }) self.addNode('ShaderNodeMath', { 'name':'Node96' ,'operation':'ADD' }) self.addNode('ShaderNodeMath', { 'name':'Node97' ,'operation':'ADD' }) self.addNode('ShaderNodeMath', { 'name':'Node98' ,'operation':'SUBTRACT' }) self.addNode('ShaderNodeMath', { 'name':'Node99' ,'operation':'SUBTRACT' }) self.addNode('ShaderNodeCombineXYZ', { 'name':'Node100' }) self.addNode('ShaderNodeMixRGB', { 'name':'Node101' }) self.addNode('ShaderNodeMixRGB', { 'name':'Node102' }) self.addNode('ShaderNodeMixRGB', { 'name':'Node103' }) self.addNode('ShaderNodeMath', { 'name':'Node104' ,'operation':'LESS_THAN' }) self.addNode('ShaderNodeMath', { 'name':'Node105' ,'operation':'SUBTRACT' }) self.addNode('ShaderNodeMath', { 'name':'Node106' ,'operation':'ABSOLUTE' }) self.addNode('ShaderNodeMath', { 'name':'Node107' ,'inputs[1].default_value':0.000001 ,'operation':'GREATER_THAN' }) self.addNode('ShaderNodeMath', { 'name':'Node108' ,'operation':'LESS_THAN' }) self.addNode('ShaderNodeMath', { 'name':'Node109' ,'operation':'SUBTRACT' }) self.addNode('ShaderNodeMath', { 'name':'Node110' ,'operation':'ABSOLUTE' }) self.addNode('ShaderNodeMath', { 'name':'Node111' ,'inputs[1].default_value':0.000001 ,'operation':'GREATER_THAN' }) self.addNode('ShaderNodeMixRGB', { 'name':'Node112' }) self.addNode('ShaderNodeMath', { 'name':'Node113' ,'operation':'ADD' }) self.addNode('ShaderNodeMath', { 'name':'Node114' ,'operation':'SUBTRACT' }) self.addNode('ShaderNodeMath', { 'name':'Node115' ,'operation':'ADD' }) self.addNode('ShaderNodeMath', { 'name':'Node116' ,'operation':'ADD' }) self.addNode('ShaderNodeCombineXYZ', { 'name':'Node117' }) self.addNode('ShaderNodeMixRGB', { 'name':'Node118' }) self.addNode('ShaderNodeMixRGB', { 'name':'Node119' }) self.addNode('ShaderNodeMixRGB', { 'name':'Node120' }) self.addNode('ShaderNodeMath', { 'name':'Node121' ,'operation':'ADD' }) self.addNode('ShaderNodeMath', { 'name':'Node122' ,'operation':'ADD' }) self.addNode('ShaderNodeCombineXYZ', { 'name':'Node123' }) self.addNode('ShaderNodeMath', { 'name':'Node124' ,'operation':'SUBTRACT' }) self.addNode('ShaderNodeMath', { 'name':'Node125' ,'operation':'SUBTRACT' }) self.addNode('ShaderNodeMath', { 'name':'Node126' ,'operation':'ADD' }) self.addNode('ShaderNodeMath', { 'name':'Node127' ,'operation':'SUBTRACT' }) self.addNode('ShaderNodeMath', { 'name':'Node128' ,'operation':'MINIMUM' }) self.addNode('ShaderNodeMath', { 'name':'Node129' ,'operation':'LESS_THAN' }) self.addNode('ShaderNodeMath', { 'name':'Node130' ,'operation':'SUBTRACT' }) self.addNode('ShaderNodeMath', { 'name':'Node131' ,'operation':'MULTIPLY' }) self.addNode('ShaderNodeMath', { 'name':'Node132' ,'operation':'ADD' }) self.addNode('ShaderNodeMath', { 'name':'Node133' ,'operation':'LESS_THAN' }) self.addNode('ShaderNodeMath', { 'name':'Node134' ,'operation':'SUBTRACT' }) self.addNode('ShaderNodeMath', { 'name':'Node135' ,'operation':'ABSOLUTE' }) self.addNode('ShaderNodeMath', { 'name':'Node136' ,'inputs[1].default_value':0.000001 ,'operation':'LESS_THAN' }) self.addNode('ShaderNodeMath', { 'name':'Node137' ,'operation':'GREATER_THAN' }) self.addNode('ShaderNodeMath', { 'name':'Node138' ,'operation':'ADD' }) self.addNode('ShaderNodeMath', { 'name':'Node139' ,'inputs[1].default_value':0.999 ,'operation':'GREATER_THAN' }) self.addNode('ShaderNodeMath', { 'name':'Node140' ,'operation':'SUBTRACT' }) self.addNode('ShaderNodeMath', { 'name':'Node141' ,'operation':'SUBTRACT' }) self.addNode('ShaderNodeMath', { 'name':'Node142' ,'operation':'DIVIDE' }) self.addNode('ShaderNodeMixRGB', { 'name':'Node143' }) self.addNode('ShaderNodeMixRGB', { 'name':'Node144' }) self.addNode('ShaderNodeCombineXYZ', { 'name':'Node145' }) self.addNode('ShaderNodeCombineXYZ', { 'name':'Node146' }) self.addNode('ShaderNodeMath', { 'name':'Node147' ,'operation':'LESS_THAN' }) self.addNode('ShaderNodeMath', { 'name':'Node148' ,'operation':'SUBTRACT' }) self.addNode('ShaderNodeMath', { 'name':'Node149' ,'operation':'SUBTRACT' }) self.addNode('ShaderNodeMath', { 'name':'Node150' ,'operation':'MINIMUM' }) self.addNode('ShaderNodeMath', { 'name':'Node151' ,'operation':'SUBTRACT' }) self.addNode('ShaderNodeMath', { 'name':'Node152' ,'operation':'GREATER_THAN' }) self.addNode('ShaderNodeMath', { 'name':'Node153' ,'operation':'SUBTRACT' }) self.addNode('ShaderNodeMath', { 'name':'Node154' ,'operation':'SUBTRACT' }) self.addNode('ShaderNodeMath', { 'name':'Node155' ,'operation':'MINIMUM' }) self.addNode('ShaderNodeMath', { 'name':'Node156' ,'operation':'MINIMUM' }) self.addNode('ShaderNodeMixRGB', { 'name':'Node157' }) self.addNode('ShaderNodeMixRGB', { 'name':'Node158' }) self.addNode('ShaderNodeMath', { 'name':'Node159' ,'operation':'LESS_THAN' }) self.addNode('ShaderNodeMath', { 'name':'Node160' ,'operation':'MINIMUM' }) self.addNode('ShaderNodeMath', { 'name':'Node161' ,'operation':'SUBTRACT' }) self.addNode('ShaderNodeMath', { 'name':'Node162' ,'operation':'MULTIPLY' }) self.addNode('ShaderNodeMath', { 'name':'Node163' ,'operation':'ADD' }) self.addNode('ShaderNodeMath', { 'name':'Node164' ,'operation':'LESS_THAN' }) self.addNode('ShaderNodeMath', { 'name':'Node165' ,'operation':'SUBTRACT' }) self.addNode('ShaderNodeMath', { 'name':'Node166' ,'operation':'ABSOLUTE' }) self.addNode('ShaderNodeMath', { 'name':'Node167' ,'inputs[1].default_value':0.000001 ,'operation':'LESS_THAN' }) self.addNode('ShaderNodeMath', { 'name':'Node168' ,'operation':'GREATER_THAN' }) self.addNode('ShaderNodeMath', { 'name':'Node169' ,'operation':'ADD' }) self.addNode('ShaderNodeMath', { 'name':'Node170' ,'inputs[1].default_value':0.999 ,'operation':'GREATER_THAN' }) self.addNode('ShaderNodeMath', { 'name':'Node171' ,'operation':'SUBTRACT' }) self.addNode('ShaderNodeMath', { 'name':'Node172' ,'operation':'SUBTRACT' }) self.addNode('ShaderNodeMath', { 'name':'Node173' ,'operation':'DIVIDE' }) self.addNode('ShaderNodeMixRGB', { 'name':'Node174' }) self.addNode('ShaderNodeMixRGB', { 'name':'Node175' }) self.addNode('ShaderNodeMixRGB', { 'name':'Node176' }) self.addNode('ShaderNodeMixRGB', { 'name':'Node177' }) self.addNode('ShaderNodeMixRGB', { 'name':'Node178' }) self.addNode('ShaderNodeMixRGB', { 'name':'Node179' }) self.addNode('ShaderNodeMixRGB', { 'name':'Node180' }) self.addNode('ShaderNodeMixRGB', { 'name':'Node181' }) self.addNode('ShaderNodeMixRGB', { 'name':'Node182' }) #Sockets self.addSocket(False, 'NodeSocketVector', 'Vector') self.addSocket(False, 'NodeSocketFloatFactor', 'HAS_Vector') self.addSocket(False, 'NodeSocketFloat', 'scale') self.addSocket(False, 'NodeSocketFloat', 'diamond_size') self.addSocket(False, 'NodeSocketFloat', 'brick_width') self.addSocket(False, 'NodeSocketFloat', 'brick_height') self.addSocket(False, 'NodeSocketFloat', 'feather') self.addSocket(False, 'NodeSocketFloat', 'border') self.addSocket(True, 'NodeSocketVector', 'UV') self.addSocket(True, 'NodeSocketVector', 'CellID') self.addSocket(True, 'NodeSocketFloat', 'Height') self.addSocket(True, 'NodeSocketFloat', 'TileMask') self.addSocket(True, 'NodeSocketFloat', 'BorderMask') self.addSocket(True, 'NodeSocketFloat', 'BrickWidth') self.addSocket(True, 'NodeSocketFloat', 'BrickHeight') #Links self.innerLink('nodes["GroupInput"].outputs[1]', 'nodes["Node1"].inputs[0]') self.innerLink('nodes["Node0"].outputs[3]', 'nodes["Node1"].inputs[1]') self.innerLink('nodes["GroupInput"].outputs[0]', 'nodes["Node1"].inputs[2]') self.innerLink('nodes["GroupInput"].outputs[4]', 'nodes["Node19"].inputs[0]') self.innerLink('nodes["GroupInput"].outputs[5]', 'nodes["Node19"].inputs[1]') self.innerLink('nodes["Node19"].outputs[0]', 'nodes["Node20"].inputs[0]') self.innerLink('nodes["Node9"].outputs[0]', 'nodes["Node20"].inputs[1]') self.innerLink('nodes["GroupInput"].outputs[3]', 'nodes["Node21"].inputs[0]') self.innerLink('nodes["Node20"].outputs[0]', 'nodes["Node21"].inputs[1]') self.innerLink('nodes["GroupInput"].outputs[7]', 'nodes["Node22"].inputs[0]') self.innerLink('nodes["Node9"].outputs[0]', 'nodes["Node22"].inputs[1]') self.innerLink('nodes["GroupInput"].outputs[6]', 'nodes["Node23"].inputs[0]') self.innerLink('nodes["Node9"].outputs[0]', 'nodes["Node23"].inputs[1]') self.innerLink('nodes["Node1"].outputs[0]', 'nodes["Node24"].inputs[0]') self.innerLink('nodes["Node24"].outputs[0]', 'nodes["Node25"].inputs[0]') self.innerLink('nodes["GroupInput"].outputs[2]', 'nodes["Node25"].inputs[1]') self.innerLink('nodes["Node25"].outputs[0]', 'nodes["Node26"].inputs[0]') self.innerLink('nodes["GroupInput"].outputs[4]', 'nodes["Node26"].inputs[1]') self.innerLink('nodes["Node26"].outputs[0]', 'nodes["Node27"].inputs[0]') self.innerLink('nodes["Node27"].outputs[0]', 'nodes["Node28"].inputs[0]') self.innerLink('nodes["Node1"].outputs[0]', 'nodes["Node29"].inputs[0]') self.innerLink('nodes["Node29"].outputs[1]', 'nodes["Node30"].inputs[0]') self.innerLink('nodes["GroupInput"].outputs[2]', 'nodes["Node30"].inputs[1]') self.innerLink('nodes["Node30"].outputs[0]', 'nodes["Node31"].inputs[0]') self.innerLink('nodes["GroupInput"].outputs[5]', 'nodes["Node31"].inputs[1]') self.innerLink('nodes["Node31"].outputs[0]', 'nodes["Node32"].inputs[0]') self.innerLink('nodes["Node32"].outputs[0]', 'nodes["Node33"].inputs[0]') self.innerLink('nodes["Node1"].outputs[0]', 'nodes["Node34"].inputs[0]') self.innerLink('nodes["Node34"].outputs[0]', 'nodes["Node35"].inputs[0]') self.innerLink('nodes["GroupInput"].outputs[2]', 'nodes["Node35"].inputs[1]') self.innerLink('nodes["Node35"].outputs[0]', 'nodes["Node36"].inputs[0]') self.innerLink('nodes["GroupInput"].outputs[4]', 'nodes["Node36"].inputs[1]') self.innerLink('nodes["Node36"].outputs[0]', 'nodes["Node37"].inputs[0]') self.innerLink('nodes["Node10"].outputs[0]', 'nodes["Node37"].inputs[1]') self.innerLink('nodes["GroupInput"].outputs[4]', 'nodes["Node38"].inputs[0]') self.innerLink('nodes["Node36"].outputs[0]', 'nodes["Node38"].inputs[1]') self.innerLink('nodes["Node37"].outputs[0]', 'nodes["Node39"].inputs[0]') self.innerLink('nodes["Node36"].outputs[0]', 'nodes["Node39"].inputs[1]') self.innerLink('nodes["Node38"].outputs[0]', 'nodes["Node39"].inputs[2]') self.innerLink('nodes["Node1"].outputs[0]', 'nodes["Node40"].inputs[0]') self.innerLink('nodes["Node40"].outputs[1]', 'nodes["Node41"].inputs[0]') self.innerLink('nodes["GroupInput"].outputs[2]', 'nodes["Node41"].inputs[1]') self.innerLink('nodes["Node41"].outputs[0]', 'nodes["Node42"].inputs[0]') self.innerLink('nodes["GroupInput"].outputs[5]', 'nodes["Node42"].inputs[1]') self.innerLink('nodes["Node42"].outputs[0]', 'nodes["Node43"].inputs[0]') self.innerLink('nodes["Node10"].outputs[0]', 'nodes["Node43"].inputs[1]') self.innerLink('nodes["GroupInput"].outputs[5]', 'nodes["Node44"].inputs[0]') self.innerLink('nodes["Node42"].outputs[0]', 'nodes["Node44"].inputs[1]') self.innerLink('nodes["Node43"].outputs[0]', 'nodes["Node45"].inputs[0]') self.innerLink('nodes["Node42"].outputs[0]', 'nodes["Node45"].inputs[1]') self.innerLink('nodes["Node44"].outputs[0]', 'nodes["Node45"].inputs[2]') self.innerLink('nodes["GroupInput"].outputs[4]', 'nodes["Node46"].inputs[0]') self.innerLink('nodes["Node39"].outputs[0]', 'nodes["Node46"].inputs[1]') self.innerLink('nodes["Node39"].outputs[0]', 'nodes["Node47"].inputs[0]') self.innerLink('nodes["Node46"].outputs[0]', 'nodes["Node47"].inputs[1]') self.innerLink('nodes["GroupInput"].outputs[5]', 'nodes["Node48"].inputs[0]') self.innerLink('nodes["Node45"].outputs[0]', 'nodes["Node48"].inputs[1]') self.innerLink('nodes["Node45"].outputs[0]', 'nodes["Node49"].inputs[0]') self.innerLink('nodes["Node48"].outputs[0]', 'nodes["Node49"].inputs[1]') self.innerLink('nodes["Node47"].outputs[0]', 'nodes["Node50"].inputs[0]') self.innerLink('nodes["Node49"].outputs[0]', 'nodes["Node50"].inputs[1]') self.innerLink('nodes["Node50"].outputs[0]', 'nodes["Node51"].inputs[0]') self.innerLink('nodes["Node21"].outputs[0]', 'nodes["Node51"].inputs[1]') self.innerLink('nodes["Node21"].outputs[0]', 'nodes["Node52"].inputs[0]') self.innerLink('nodes["Node9"].outputs[0]', 'nodes["Node52"].inputs[1]') self.innerLink('nodes["Node39"].outputs[0]', 'nodes["Node53"].inputs[0]') self.innerLink('nodes["Node21"].outputs[0]', 'nodes["Node53"].inputs[1]') self.innerLink('nodes["Node53"].outputs[0]', 'nodes["Node54"].inputs[0]') self.innerLink('nodes["Node10"].outputs[0]', 'nodes["Node54"].inputs[1]') self.innerLink('nodes["Node54"].outputs[0]', 'nodes["Node55"].inputs[0]') self.innerLink('nodes["Node55"].outputs[0]', 'nodes["Node56"].inputs[0]') self.innerLink('nodes["Node45"].outputs[0]', 'nodes["Node57"].inputs[0]') self.innerLink('nodes["Node21"].outputs[0]', 'nodes["Node57"].inputs[1]') self.innerLink('nodes["Node57"].outputs[0]', 'nodes["Node58"].inputs[0]') self.innerLink('nodes["Node10"].outputs[0]', 'nodes["Node58"].inputs[1]') self.innerLink('nodes["Node58"].outputs[0]', 'nodes["Node59"].inputs[0]') self.innerLink('nodes["Node59"].outputs[0]', 'nodes["Node60"].inputs[0]') self.innerLink('nodes["Node56"].outputs[0]', 'nodes["Node61"].inputs[0]') self.innerLink('nodes["Node56"].outputs[0]', 'nodes["Node61"].inputs[1]') self.innerLink('nodes["Node60"].outputs[0]', 'nodes["Node61"].inputs[2]') self.innerLink('nodes["Node21"].outputs[0]', 'nodes["Node62"].inputs[0]') self.innerLink('nodes["Node47"].outputs[0]', 'nodes["Node62"].inputs[1]') self.innerLink('nodes["Node62"].outputs[0]', 'nodes["Node63"].inputs[0]') self.innerLink('nodes["Node49"].outputs[0]', 'nodes["Node63"].inputs[1]') self.innerLink('nodes["Node47"].outputs[0]', 'nodes["Node64"].inputs[0]') self.innerLink('nodes["Node49"].outputs[0]', 'nodes["Node64"].inputs[1]') self.innerLink('nodes["Node21"].outputs[0]', 'nodes["Node65"].inputs[0]') self.innerLink('nodes["Node64"].outputs[0]', 'nodes["Node65"].inputs[1]') self.innerLink('nodes["Node63"].outputs[0]', 'nodes["Node66"].inputs[0]') self.innerLink('nodes["Node65"].outputs[0]', 'nodes["Node66"].inputs[1]') self.innerLink('nodes["Node14"].outputs[0]', 'nodes["Node66"].inputs[2]') self.innerLink('nodes["Node61"].outputs[0]', 'nodes["Node67"].inputs[0]') self.innerLink('nodes["Node2"].outputs[0]', 'nodes["Node67"].inputs[1]') self.innerLink('nodes["Node66"].outputs[0]', 'nodes["Node67"].inputs[2]') self.innerLink('nodes["Node61"].outputs[0]', 'nodes["Node68"].inputs[0]') self.innerLink('nodes["Node10"].outputs[0]', 'nodes["Node68"].inputs[1]') self.innerLink('nodes["Node13"].outputs[0]', 'nodes["Node68"].inputs[2]') self.innerLink('nodes["Node61"].outputs[0]', 'nodes["Node69"].inputs[0]') self.innerLink('nodes["Node10"].outputs[0]', 'nodes["Node69"].inputs[1]') self.innerLink('nodes["Node13"].outputs[0]', 'nodes["Node69"].inputs[2]') self.innerLink('nodes["Node39"].outputs[0]', 'nodes["Node70"].inputs[0]') self.innerLink('nodes["Node21"].outputs[0]', 'nodes["Node70"].inputs[1]') self.innerLink('nodes["Node70"].outputs[0]', 'nodes["Node71"].inputs[0]') self.innerLink('nodes["Node10"].outputs[0]', 'nodes["Node71"].inputs[1]') self.innerLink('nodes["Node71"].outputs[0]', 'nodes["Node72"].inputs[0]') self.innerLink('nodes["Node72"].outputs[0]', 'nodes["Node73"].inputs[0]') self.innerLink('nodes["Node45"].outputs[0]', 'nodes["Node74"].inputs[0]') self.innerLink('nodes["Node21"].outputs[0]', 'nodes["Node74"].inputs[1]') self.innerLink('nodes["Node74"].outputs[0]', 'nodes["Node75"].inputs[0]') self.innerLink('nodes["Node10"].outputs[0]', 'nodes["Node75"].inputs[1]') self.innerLink('nodes["Node75"].outputs[0]', 'nodes["Node76"].inputs[0]') self.innerLink('nodes["Node76"].outputs[0]', 'nodes["Node77"].inputs[0]') self.innerLink('nodes["Node73"].outputs[0]', 'nodes["Node78"].inputs[0]') self.innerLink('nodes["Node73"].outputs[0]', 'nodes["Node78"].inputs[1]') self.innerLink('nodes["Node77"].outputs[0]', 'nodes["Node78"].inputs[2]') self.innerLink('nodes["Node47"].outputs[0]', 'nodes["Node79"].inputs[0]') self.innerLink('nodes["Node49"].outputs[0]', 'nodes["Node79"].inputs[1]') self.innerLink('nodes["Node21"].outputs[0]', 'nodes["Node80"].inputs[0]') self.innerLink('nodes["Node79"].outputs[0]', 'nodes["Node80"].inputs[1]') self.innerLink('nodes["Node21"].outputs[0]', 'nodes["Node81"].inputs[0]') self.innerLink('nodes["Node47"].outputs[0]', 'nodes["Node81"].inputs[1]') self.innerLink('nodes["Node81"].outputs[0]', 'nodes["Node82"].inputs[0]') self.innerLink('nodes["Node49"].outputs[0]', 'nodes["Node82"].inputs[1]') self.innerLink('nodes["Node80"].outputs[0]', 'nodes["Node83"].inputs[0]') self.innerLink('nodes["Node82"].outputs[0]', 'nodes["Node83"].inputs[1]') self.innerLink('nodes["Node14"].outputs[0]', 'nodes["Node83"].inputs[2]') self.innerLink('nodes["Node78"].outputs[0]', 'nodes["Node84"].inputs[0]') self.innerLink('nodes["Node67"].outputs[0]', 'nodes["Node84"].inputs[1]') self.innerLink('nodes["Node83"].outputs[0]', 'nodes["Node84"].inputs[2]') self.innerLink('nodes["Node78"].outputs[0]', 'nodes["Node85"].inputs[0]') self.innerLink('nodes["Node68"].outputs[0]', 'nodes["Node85"].inputs[1]') self.innerLink('nodes["Node13"].outputs[0]', 'nodes["Node85"].inputs[2]') self.innerLink('nodes["Node78"].outputs[0]', 'nodes["Node86"].inputs[0]') self.innerLink('nodes["Node69"].outputs[0]', 'nodes["Node86"].inputs[1]') self.innerLink('nodes["Node15"].outputs[0]', 'nodes["Node86"].inputs[2]') self.innerLink('nodes["Node39"].outputs[0]', 'nodes["Node87"].inputs[0]') self.innerLink('nodes["Node21"].outputs[0]', 'nodes["Node87"].inputs[1]') self.innerLink('nodes["Node87"].outputs[0]', 'nodes["Node88"].inputs[0]') self.innerLink('nodes["Node10"].outputs[0]', 'nodes["Node88"].inputs[1]') self.innerLink('nodes["Node88"].outputs[0]', 'nodes["Node89"].inputs[0]') self.innerLink('nodes["Node89"].outputs[0]', 'nodes["Node90"].inputs[0]') self.innerLink('nodes["Node45"].outputs[0]', 'nodes["Node91"].inputs[0]') self.innerLink('nodes["Node21"].outputs[0]', 'nodes["Node91"].inputs[1]') self.innerLink('nodes["Node91"].outputs[0]', 'nodes["Node92"].inputs[0]') self.innerLink('nodes["Node10"].outputs[0]', 'nodes["Node92"].inputs[1]') self.innerLink('nodes["Node92"].outputs[0]', 'nodes["Node93"].inputs[0]') self.innerLink('nodes["Node93"].outputs[0]', 'nodes["Node94"].inputs[0]') self.innerLink('nodes["Node90"].outputs[0]', 'nodes["Node95"].inputs[0]') self.innerLink('nodes["Node90"].outputs[0]', 'nodes["Node95"].inputs[1]') self.innerLink('nodes["Node94"].outputs[0]', 'nodes["Node95"].inputs[2]') self.innerLink('nodes["Node21"].outputs[0]', 'nodes["Node96"].inputs[0]') self.innerLink('nodes["Node49"].outputs[0]', 'nodes["Node96"].inputs[1]') self.innerLink('nodes["Node96"].outputs[0]', 'nodes["Node97"].inputs[0]') self.innerLink('nodes["Node47"].outputs[0]', 'nodes["Node97"].inputs[1]') self.innerLink('nodes["Node49"].outputs[0]', 'nodes["Node98"].inputs[0]') self.innerLink('nodes["Node47"].outputs[0]', 'nodes["Node98"].inputs[1]') self.innerLink('nodes["Node21"].outputs[0]', 'nodes["Node99"].inputs[0]') self.innerLink('nodes["Node98"].outputs[0]', 'nodes["Node99"].inputs[1]') self.innerLink('nodes["Node97"].outputs[0]', 'nodes["Node100"].inputs[0]') self.innerLink('nodes["Node99"].outputs[0]', 'nodes["Node100"].inputs[1]') self.innerLink('nodes["Node14"].outputs[0]', 'nodes["Node100"].inputs[2]') self.innerLink('nodes["Node95"].outputs[0]', 'nodes["Node101"].inputs[0]') self.innerLink('nodes["Node84"].outputs[0]', 'nodes["Node101"].inputs[1]') self.innerLink('nodes["Node100"].outputs[0]', 'nodes["Node101"].inputs[2]') self.innerLink('nodes["Node95"].outputs[0]', 'nodes["Node102"].inputs[0]') self.innerLink('nodes["Node85"].outputs[0]', 'nodes["Node102"].inputs[1]') self.innerLink('nodes["Node16"].outputs[0]', 'nodes["Node102"].inputs[2]') self.innerLink('nodes["Node95"].outputs[0]', 'nodes["Node103"].inputs[0]') self.innerLink('nodes["Node86"].outputs[0]', 'nodes["Node103"].inputs[1]') self.innerLink('nodes["Node15"].outputs[0]', 'nodes["Node103"].inputs[2]') self.innerLink('nodes["Node39"].outputs[0]', 'nodes["Node104"].inputs[0]') self.innerLink('nodes["Node21"].outputs[0]', 'nodes["Node104"].inputs[1]') self.innerLink('nodes["Node104"].outputs[0]', 'nodes["Node105"].inputs[0]') self.innerLink('nodes["Node10"].outputs[0]', 'nodes["Node105"].inputs[1]') self.innerLink('nodes["Node105"].outputs[0]', 'nodes["Node106"].inputs[0]') self.innerLink('nodes["Node106"].outputs[0]', 'nodes["Node107"].inputs[0]') self.innerLink('nodes["Node45"].outputs[0]', 'nodes["Node108"].inputs[0]') self.innerLink('nodes["Node21"].outputs[0]', 'nodes["Node108"].inputs[1]') self.innerLink('nodes["Node108"].outputs[0]', 'nodes["Node109"].inputs[0]') self.innerLink('nodes["Node10"].outputs[0]', 'nodes["Node109"].inputs[1]') self.innerLink('nodes["Node109"].outputs[0]', 'nodes["Node110"].inputs[0]') self.innerLink('nodes["Node110"].outputs[0]', 'nodes["Node111"].inputs[0]') self.innerLink('nodes["Node107"].outputs[0]', 'nodes["Node112"].inputs[0]') self.innerLink('nodes["Node107"].outputs[0]', 'nodes["Node112"].inputs[1]') self.innerLink('nodes["Node111"].outputs[0]', 'nodes["Node112"].inputs[2]') self.innerLink('nodes["Node47"].outputs[0]', 'nodes["Node113"].inputs[0]') self.innerLink('nodes["Node21"].outputs[0]', 'nodes["Node113"].inputs[1]') self.innerLink('nodes["Node113"].outputs[0]', 'nodes["Node114"].inputs[0]') self.innerLink('nodes["Node49"].outputs[0]', 'nodes["Node114"].inputs[1]') self.innerLink('nodes["Node21"].outputs[0]', 'nodes["Node115"].inputs[0]') self.innerLink('nodes["Node49"].outputs[0]', 'nodes["Node115"].inputs[1]') self.innerLink('nodes["Node115"].outputs[0]', 'nodes["Node116"].inputs[0]') self.innerLink('nodes["Node47"].outputs[0]', 'nodes["Node116"].inputs[1]') self.innerLink('nodes["Node114"].outputs[0]', 'nodes["Node117"].inputs[0]') self.innerLink('nodes["Node116"].outputs[0]', 'nodes["Node117"].inputs[1]') self.innerLink('nodes["Node14"].outputs[0]', 'nodes["Node117"].inputs[2]') self.innerLink('nodes["Node112"].outputs[0]', 'nodes["Node118"].inputs[0]') self.innerLink('nodes["Node101"].outputs[0]', 'nodes["Node118"].inputs[1]') self.innerLink('nodes["Node117"].outputs[0]', 'nodes["Node118"].inputs[2]') self.innerLink('nodes["Node112"].outputs[0]', 'nodes["Node119"].inputs[0]') self.innerLink('nodes["Node102"].outputs[0]', 'nodes["Node119"].inputs[1]') self.innerLink('nodes["Node16"].outputs[0]', 'nodes["Node119"].inputs[2]') self.innerLink('nodes["Node112"].outputs[0]', 'nodes["Node120"].inputs[0]') self.innerLink('nodes["Node103"].outputs[0]', 'nodes["Node120"].inputs[1]') self.innerLink('nodes["Node13"].outputs[0]', 'nodes["Node120"].inputs[2]') self.innerLink('nodes["Node28"].outputs[0]', 'nodes["Node121"].inputs[0]') self.innerLink('nodes["Node119"].outputs[0]', 'nodes["Node121"].inputs[1]') self.innerLink('nodes["Node33"].outputs[0]', 'nodes["Node122"].inputs[0]') self.innerLink('nodes["Node120"].outputs[0]', 'nodes["Node122"].inputs[1]') self.innerLink('nodes["Node121"].outputs[0]', 'nodes["Node123"].inputs[0]') self.innerLink('nodes["Node122"].outputs[0]', 'nodes["Node123"].inputs[1]') self.innerLink('nodes["Node14"].outputs[0]', 'nodes["Node123"].inputs[2]') self.innerLink('nodes["Node47"].outputs[0]', 'nodes["Node124"].inputs[0]') self.innerLink('nodes["Node49"].outputs[0]', 'nodes["Node124"].inputs[1]') self.innerLink('nodes["Node21"].outputs[0]', 'nodes["Node125"].inputs[0]') self.innerLink('nodes["Node124"].outputs[0]', 'nodes["Node125"].inputs[1]') self.innerLink('nodes["Node49"].outputs[0]', 'nodes["Node126"].inputs[0]') self.innerLink('nodes["Node47"].outputs[0]', 'nodes["Node126"].inputs[1]') self.innerLink('nodes["Node21"].outputs[0]', 'nodes["Node127"].inputs[0]') self.innerLink('nodes["Node126"].outputs[0]', 'nodes["Node127"].inputs[1]') self.innerLink('nodes["Node125"].outputs[0]', 'nodes["Node128"].inputs[0]') self.innerLink('nodes["Node127"].outputs[0]', 'nodes["Node128"].inputs[1]') self.innerLink('nodes["Node128"].outputs[0]', 'nodes["Node129"].inputs[0]') self.innerLink('nodes["Node22"].outputs[0]', 'nodes["Node129"].inputs[1]') self.innerLink('nodes["Node52"].outputs[0]', 'nodes["Node130"].inputs[0]') self.innerLink('nodes["Node22"].outputs[0]', 'nodes["Node130"].inputs[1]') self.innerLink('nodes["Node23"].outputs[0]', 'nodes["Node131"].inputs[0]') self.innerLink('nodes["Node130"].outputs[0]', 'nodes["Node131"].inputs[1]') self.innerLink('nodes["Node22"].outputs[0]', 'nodes["Node132"].inputs[0]') self.innerLink('nodes["Node131"].outputs[0]', 'nodes["Node132"].inputs[1]') self.innerLink('nodes["Node128"].outputs[0]', 'nodes["Node133"].inputs[0]') self.innerLink('nodes["Node22"].outputs[0]', 'nodes["Node133"].inputs[1]') self.innerLink('nodes["Node128"].outputs[0]', 'nodes["Node134"].inputs[0]') self.innerLink('nodes["Node132"].outputs[0]', 'nodes["Node134"].inputs[1]') self.innerLink('nodes["Node134"].outputs[0]', 'nodes["Node135"].inputs[0]') self.innerLink('nodes["Node135"].outputs[0]', 'nodes["Node136"].inputs[0]') self.innerLink('nodes["Node128"].outputs[0]', 'nodes["Node137"].inputs[0]') self.innerLink('nodes["Node132"].outputs[0]', 'nodes["Node137"].inputs[1]') self.innerLink('nodes["Node136"].outputs[0]', 'nodes["Node138"].inputs[0]') self.innerLink('nodes["Node137"].outputs[0]', 'nodes["Node138"].inputs[1]') self.innerLink('nodes["Node138"].outputs[0]', 'nodes["Node139"].inputs[0]') self.innerLink('nodes["Node128"].outputs[0]', 'nodes["Node140"].inputs[0]') self.innerLink('nodes["Node22"].outputs[0]', 'nodes["Node140"].inputs[1]') self.innerLink('nodes["Node132"].outputs[0]', 'nodes["Node141"].inputs[0]') self.innerLink('nodes["Node22"].outputs[0]', 'nodes["Node141"].inputs[1]') self.innerLink('nodes["Node140"].outputs[0]', 'nodes["Node142"].inputs[0]') self.innerLink('nodes["Node141"].outputs[0]', 'nodes["Node142"].inputs[1]') self.innerLink('nodes["Node139"].outputs[0]', 'nodes["Node143"].inputs[0]') self.innerLink('nodes["Node142"].outputs[0]', 'nodes["Node143"].inputs[1]') self.innerLink('nodes["Node18"].outputs[0]', 'nodes["Node143"].inputs[2]') self.innerLink('nodes["Node133"].outputs[0]', 'nodes["Node144"].inputs[0]') self.innerLink('nodes["Node143"].outputs[0]', 'nodes["Node144"].inputs[1]') self.innerLink('nodes["Node14"].outputs[0]', 'nodes["Node144"].inputs[2]') self.innerLink('nodes["Node28"].outputs[0]', 'nodes["Node145"].inputs[0]') self.innerLink('nodes["Node33"].outputs[0]', 'nodes["Node145"].inputs[1]') self.innerLink('nodes["Node14"].outputs[0]', 'nodes["Node145"].inputs[2]') self.innerLink('nodes["Node39"].outputs[0]', 'nodes["Node146"].inputs[0]') self.innerLink('nodes["Node45"].outputs[0]', 'nodes["Node146"].inputs[1]') self.innerLink('nodes["Node14"].outputs[0]', 'nodes["Node146"].inputs[2]') self.innerLink('nodes["Node45"].outputs[0]', 'nodes["Node147"].inputs[0]') self.innerLink('nodes["Node21"].outputs[0]', 'nodes["Node147"].inputs[1]') self.innerLink('nodes["Node21"].outputs[0]', 'nodes["Node148"].inputs[0]') self.innerLink('nodes["Node49"].outputs[0]', 'nodes["Node148"].inputs[1]') self.innerLink('nodes["Node47"].outputs[0]', 'nodes["Node149"].inputs[0]') self.innerLink('nodes["Node148"].outputs[0]', 'nodes["Node149"].inputs[1]') self.innerLink('nodes["Node149"].outputs[0]', 'nodes["Node150"].inputs[0]') self.innerLink('nodes["Node49"].outputs[0]', 'nodes["Node150"].inputs[1]') self.innerLink('nodes["GroupInput"].outputs[5]', 'nodes["Node151"].inputs[0]') self.innerLink('nodes["Node21"].outputs[0]', 'nodes["Node151"].inputs[1]') self.innerLink('nodes["Node45"].outputs[0]', 'nodes["Node152"].inputs[0]') self.innerLink('nodes["Node151"].outputs[0]', 'nodes["Node152"].inputs[1]') self.innerLink('nodes["Node21"].outputs[0]', 'nodes["Node153"].inputs[0]') self.innerLink('nodes["Node49"].outputs[0]', 'nodes["Node153"].inputs[1]') self.innerLink('nodes["Node47"].outputs[0]', 'nodes["Node154"].inputs[0]') self.innerLink('nodes["Node153"].outputs[0]', 'nodes["Node154"].inputs[1]') self.innerLink('nodes["Node154"].outputs[0]', 'nodes["Node155"].inputs[0]') self.innerLink('nodes["Node49"].outputs[0]', 'nodes["Node155"].inputs[1]') self.innerLink('nodes["Node47"].outputs[0]', 'nodes["Node156"].inputs[0]') self.innerLink('nodes["Node49"].outputs[0]', 'nodes["Node156"].inputs[1]') self.innerLink('nodes["Node152"].outputs[0]', 'nodes["Node157"].inputs[0]') self.innerLink('nodes["Node156"].outputs[0]', 'nodes["Node157"].inputs[1]') self.innerLink('nodes["Node155"].outputs[0]', 'nodes["Node157"].inputs[2]') self.innerLink('nodes["Node147"].outputs[0]', 'nodes["Node158"].inputs[0]') self.innerLink('nodes["Node157"].outputs[0]', 'nodes["Node158"].inputs[1]') self.innerLink('nodes["Node150"].outputs[0]', 'nodes["Node158"].inputs[2]') self.innerLink('nodes["Node158"].outputs[0]', 'nodes["Node159"].inputs[0]') self.innerLink('nodes["Node22"].outputs[0]', 'nodes["Node159"].inputs[1]') self.innerLink('nodes["GroupInput"].outputs[4]', 'nodes["Node160"].inputs[0]') self.innerLink('nodes["GroupInput"].outputs[5]', 'nodes["Node160"].inputs[1]') self.innerLink('nodes["Node160"].outputs[0]', 'nodes["Node161"].inputs[0]') self.innerLink('nodes["Node22"].outputs[0]', 'nodes["Node161"].inputs[1]') self.innerLink('nodes["Node23"].outputs[0]', 'nodes["Node162"].inputs[0]') self.innerLink('nodes["Node161"].outputs[0]', 'nodes["Node162"].inputs[1]') self.innerLink('nodes["Node22"].outputs[0]', 'nodes["Node163"].inputs[0]') self.innerLink('nodes["Node162"].outputs[0]', 'nodes["Node163"].inputs[1]') self.innerLink('nodes["Node158"].outputs[0]', 'nodes["Node164"].inputs[0]') self.innerLink('nodes["Node22"].outputs[0]', 'nodes["Node164"].inputs[1]') self.innerLink('nodes["Node158"].outputs[0]', 'nodes["Node165"].inputs[0]') self.innerLink('nodes["Node163"].outputs[0]', 'nodes["Node165"].inputs[1]') self.innerLink('nodes["Node165"].outputs[0]', 'nodes["Node166"].inputs[0]') self.innerLink('nodes["Node166"].outputs[0]', 'nodes["Node167"].inputs[0]') self.innerLink('nodes["Node158"].outputs[0]', 'nodes["Node168"].inputs[0]') self.innerLink('nodes["Node163"].outputs[0]', 'nodes["Node168"].inputs[1]') self.innerLink('nodes["Node167"].outputs[0]', 'nodes["Node169"].inputs[0]') self.innerLink('nodes["Node168"].outputs[0]', 'nodes["Node169"].inputs[1]') self.innerLink('nodes["Node169"].outputs[0]', 'nodes["Node170"].inputs[0]') self.innerLink('nodes["Node158"].outputs[0]', 'nodes["Node171"].inputs[0]') self.innerLink('nodes["Node22"].outputs[0]', 'nodes["Node171"].inputs[1]') self.innerLink('nodes["Node163"].outputs[0]', 'nodes["Node172"].inputs[0]') self.innerLink('nodes["Node22"].outputs[0]', 'nodes["Node172"].inputs[1]') self.innerLink('nodes["Node171"].outputs[0]', 'nodes["Node173"].inputs[0]') self.innerLink('nodes["Node172"].outputs[0]', 'nodes["Node173"].inputs[1]') self.innerLink('nodes["Node170"].outputs[0]', 'nodes["Node174"].inputs[0]') self.innerLink('nodes["Node173"].outputs[0]', 'nodes["Node174"].inputs[1]') self.innerLink('nodes["Node18"].outputs[0]', 'nodes["Node174"].inputs[2]') self.innerLink('nodes["Node164"].outputs[0]', 'nodes["Node175"].inputs[0]') self.innerLink('nodes["Node174"].outputs[0]', 'nodes["Node175"].inputs[1]') self.innerLink('nodes["Node14"].outputs[0]', 'nodes["Node175"].inputs[2]') self.innerLink('nodes["Node51"].outputs[0]', 'nodes["Node176"].inputs[0]') self.innerLink('nodes["Node159"].outputs[0]', 'nodes["Node176"].inputs[1]') self.innerLink('nodes["Node129"].outputs[0]', 'nodes["Node176"].inputs[2]') self.innerLink('nodes["Node51"].outputs[0]', 'nodes["Node177"].inputs[0]') self.innerLink('nodes["GroupInput"].outputs[5]', 'nodes["Node177"].inputs[1]') self.innerLink('nodes["Node52"].outputs[0]', 'nodes["Node177"].inputs[2]') self.innerLink('nodes["Node51"].outputs[0]', 'nodes["Node178"].inputs[0]') self.innerLink('nodes["GroupInput"].outputs[4]', 'nodes["Node178"].inputs[1]') self.innerLink('nodes["Node52"].outputs[0]', 'nodes["Node178"].inputs[2]') self.innerLink('nodes["Node51"].outputs[0]', 'nodes["Node179"].inputs[0]') self.innerLink('nodes["Node145"].outputs[0]', 'nodes["Node179"].inputs[1]') self.innerLink('nodes["Node123"].outputs[0]', 'nodes["Node179"].inputs[2]') self.innerLink('nodes["Node51"].outputs[0]', 'nodes["Node180"].inputs[0]') self.innerLink('nodes["Node175"].outputs[0]', 'nodes["Node180"].inputs[1]') self.innerLink('nodes["Node144"].outputs[0]', 'nodes["Node180"].inputs[2]') self.innerLink('nodes["Node51"].outputs[0]', 'nodes["Node181"].inputs[0]') self.innerLink('nodes["Node5"].outputs[0]', 'nodes["Node181"].inputs[1]') self.innerLink('nodes["Node11"].outputs[0]', 'nodes["Node181"].inputs[2]') self.innerLink('nodes["Node51"].outputs[0]', 'nodes["Node182"].inputs[0]') self.innerLink('nodes["Node146"].outputs[0]', 'nodes["Node182"].inputs[1]') self.innerLink('nodes["Node118"].outputs[0]', 'nodes["Node182"].inputs[2]') self.innerLink('nodes["Node182"].outputs[0]', 'nodes["GroupOutput"].inputs[0]') self.innerLink('nodes["Node179"].outputs[0]', 'nodes["GroupOutput"].inputs[1]') self.innerLink('nodes["Node180"].outputs[0]', 'nodes["GroupOutput"].inputs[2]') self.innerLink('nodes["Node181"].outputs[0]', 'nodes["GroupOutput"].inputs[3]') self.innerLink('nodes["Node176"].outputs[0]', 'nodes["GroupOutput"].inputs[4]') self.innerLink('nodes["Node178"].outputs[0]', 'nodes["GroupOutput"].inputs[5]') self.innerLink('nodes["Node177"].outputs[0]', 'nodes["GroupOutput"].inputs[6]') def getNodetree(self, name): if bpy.data.node_groups.find(name)==-1: self.createNodetree(name) else: self.node_tree=bpy.data.node_groups[name] def addSocket(self, is_output, sockettype, name): #for now duplicated socket names are not allowed if is_output==True: if self.node_tree.nodes['GroupOutput'].inputs.find(name)==-1: socket=self.node_tree.outputs.new(sockettype, name) elif is_output==False: if self.node_tree.nodes['GroupInput'].outputs.find(name)==-1: socket=self.node_tree.inputs.new(sockettype, name) return socket def addNode(self, nodetype, attrs): node=self.node_tree.nodes.new(nodetype) for attr in attrs: self.value_set(node, attr, attrs[attr]) return node def getNode(self, nodename): if self.node_tree.nodes.find(nodename)>-1: return self.node_tree.nodes[nodename] return None def innerLink(self, socketin, socketout): SI=self.node_tree.path_resolve(socketin) SO=self.node_tree.path_resolve(socketout) self.node_tree.links.new(SI, SO) def free(self): if self.node_tree.users==1: bpy.data.node_groups.remove(self.node_tree, do_unlink=True)
a613d147df8ad21434ac4cf9eead8e054bb3143b
b71c43b7f7785ca6718d74aff762557f5591758d
/Python/Week1/CodingDojo_Python/Django_Projects/email_validation/apps/emails/urls.py
5f6c9ebfc8cb14cc19aa4e6250f72d24b019c58b
[]
no_license
jqchang/DojoAssignments
4be9db6039763905eada2253873997ba5bfd1058
3c5a8b351879ccc380af9ce3b5267ca26ea62681
refs/heads/master
2021-01-13T15:28:45.189452
2017-04-15T23:31:58
2017-04-15T23:31:58
79,868,706
0
0
null
null
null
null
UTF-8
Python
false
false
259
py
from django.conf.urls import url from . import views # from django.contrib import admin urlpatterns = [ url(r'^$', views.index), url(r'^process$', views.process), url(r'^success$', views.success), url(r'^delete/(?P<id>\d+)$', views.delete) ]
2412d1167b7c0b04015b6e4b11532237a2e2543d
2b0eab74af8d23244ff11699830f9bb10fbd717a
/energies/migrations/0007_energyvector_data.py
e945aa4ab0b6a070aaa73901fa7bf9c5246097dd
[]
no_license
alexandrenorman/mixeur
c7e25cd20b03c78b361cb40e3e359a6dc5d9b06b
95d21cd6036a99c5f399b700a5426e9e2e17e878
refs/heads/main
2023-03-13T23:50:11.800627
2021-03-07T15:49:15
2021-03-07T15:49:15
345,384,858
0
0
null
null
null
null
UTF-8
Python
false
false
3,103
py
# Generated by Django 2.2 on 2019-05-02 14:54 from decimal import Decimal from django.db import migrations def load_data(apps, schema_editor): EnergyVector = apps.get_model("energies", "EnergyVector") Energy = apps.get_model("energies", "Energy") energies = {energy.identifier: energy for energy in Energy.objects.all()} EnergyVector.objects.bulk_create([ EnergyVector(vector='oil_kg', buying_unit='kg de fioul', pci=Decimal("11.8"), unit="kWh / kg", energy=energies['oil'], order=10), EnergyVector(vector='oil_l', buying_unit='L de fioul', pci=Decimal("10.384"), unit="kWh / L", energy=energies['oil'], order=20), EnergyVector(vector='oil_kwh', buying_unit='kWh', pci=Decimal("1"), unit="kWh", energy=energies['oil'], order=30), EnergyVector(vector='propane_kg', buying_unit='kg de propane', pci=Decimal("12.88"), unit="kWh / kg", energy=energies['gaz_b1'], order=40), EnergyVector(vector='propane_m3', buying_unit='m3 de propane', pci=Decimal("7728"), unit="kWh / m³", energy=energies['gaz_b1'], order=50), EnergyVector(vector='propane_bottles', buying_unit='Bouteilles de 13 kg de propane', pci=Decimal("167"), unit="kWh / bouteilles de 13 kg", energy=energies['propane'], order=60), EnergyVector(vector='propane_kwh', buying_unit='kWh', pci=Decimal("1"), unit="kWh", energy=energies['propane'], order=70), EnergyVector(vector='natural_gaz_m3', buying_unit='m3 de gaz naturel', pci=Decimal("10"), unit="kWh / m³", energy=energies['gaz_b1'], order=80), EnergyVector(vector='natural_gaz_kwh', buying_unit='kWh', pci=Decimal("1"), unit="kWh", energy=energies['gaz_b1'], order=90), EnergyVector(vector='electricity_kwh', buying_unit='kWh', pci=Decimal("1"), unit="kWh", energy=energies['electricity'], order=100), EnergyVector(vector='rcu_kwh', buying_unit='kWh', pci=Decimal("1"), unit="kWh", energy=energies['network'], order=110), EnergyVector(vector='wood_logs_stere', buying_unit='stères de bois', pci=Decimal("1700"), unit="kWh / stère", energy=energies['wood'], order=120), EnergyVector(vector='granules_t', buying_unit='tonne', pci=Decimal("4700"), unit="kWh / t", energy=energies['bulk_granules'], order=130), EnergyVector(vector='granules_bag', buying_unit='nombres de sacs de granulés', pci=Decimal("70.5"), unit="kWh/sac de granulés", energy=energies['bag_granules'], order=140), EnergyVector(vector='shredded_wood_t', buying_unit='tonne', pci=Decimal("3500"), unit="kWh / t", energy=energies['shredded_wood'], order=150), EnergyVector(vector='shredded_wood_map', buying_unit='MAP', pci=Decimal("875"), unit="kWh / MAP", energy=energies['shredded_wood'], order=160), EnergyVector(vector='shredded_wood_kwh', buying_unit='kWh', pci=Decimal("1"), unit="kWh", energy=energies['shredded_wood'], order=170), ]) class Migration(migrations.Migration): dependencies = [ ('energies', '0006_energyvector'), ] operations = [ migrations.RunPython(load_data, reverse_code=migrations.RunPython.noop), ]
b3b2a6a978e363f8f53a0106b14af35f54d5c484
e23a4f57ce5474d468258e5e63b9e23fb6011188
/125_algorithms/_examples/_algorithms_challenges/pybites/advanced/98/grid.py
0b25292e5ce34d129230783fd6a21739685074b5
[]
no_license
syurskyi/Python_Topics
52851ecce000cb751a3b986408efe32f0b4c0835
be331826b490b73f0a176e6abed86ef68ff2dd2b
refs/heads/master
2023-06-08T19:29:16.214395
2023-05-29T17:09:11
2023-05-29T17:09:11
220,583,118
3
2
null
2023-02-16T03:08:10
2019-11-09T02:58:47
Python
UTF-8
Python
false
false
2,104
py
import re DOWN, UP, LEFT, RIGHT = '⇓', '⇑', '⇐', '⇒' START_VALUE = 1 def print_sequence_route(grid, start_coordinates=None): """Receive grid string, convert to 2D matrix of ints, find the START_VALUE coordinates and move through the numbers in order printing them. Each time you turn append the grid with its corresponding symbol (DOWN / UP / LEFT / RIGHT). See the TESTS for more info.""" matrix = [] for i,line in enumerate(grid.splitlines()): if i % 2 == 1: values = list(map(int,re.split(r'\D+',line))) if START_VALUE in values: start_row = len(matrix) start_col = values.index(START_VALUE) matrix.append(values) length = len(matrix) goal = length**2 current_row,current_col = start_row,start_col current_value = START_VALUE previous_direction = None print(current_value,end=' ') while current_value != goal: directions = ((current_row + 1,current_col,DOWN),(current_row - 1,current_col,UP),(current_row,current_col + 1,RIGHT),(current_row,current_col -1,LEFT)) for neighbor_x,neighbor_y,direction in directions: if 0 <= neighbor_x < length and 0 <= neighbor_y < length: if matrix[neighbor_x][neighbor_y] == current_value + 1: if previous_direction is not None and direction != previous_direction: print(direction) previous_direction = direction elif previous_direction is None: previous_direction = direction print(current_value + 1,end=' ') break current_row,current_col = neighbor_x,neighbor_y current_value += 1 if __name__ == "__main__": small_grid = """ 21 - 22 - 23 - 24 - 25 | 20 7 - 8 - 9 - 10 | | | 19 6 1 - 2 11 | | | | 18 5 - 4 - 3 12 | | 17 - 16 - 15 - 14 - 13""" print_sequence_route(small_grid)
1ce34e71483a21a7ca0f0f0bf8d2cc6bb9f71ef7
2d0bada349646b801a69c542407279cc7bc25013
/src/vai_quantizer/vai_q_pytorch/nndct_shared/base/key_names.py
1cf30c4715f21302ea8f0965e4a1eab9d78f66b6
[ "Apache-2.0", "BSD-2-Clause", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "BSD-3-Clause-Open-MPI", "LicenseRef-scancode-free-unknown", "Libtool-exception", "GCC-exception-3.1", "LicenseRef-scancode-mit-old-style", "OFL-1.1", "JSON", "LGPL-2.1-only", "LGPL-2.0-or-later", "ICU", "LicenseRef-scancode-other-permissive", "GPL-2.0-or-later", "GPL-3.0-only", "LicenseRef-scancode-issl-2018", "MIT", "LGPL-2.1-or-later", "LicenseRef-scancode-unicode", "LGPL-3.0-only", "LicenseRef-scancode-warranty-disclaimer", "GPL-3.0-or-later", "Zlib", "BSD-Source-Code", "ClArtistic", "LicenseRef-scancode-unknown-license-reference", "ISC", "NCSA", "LicenseRef-scancode-proprietary-license", "GPL-2.0-only", "CC-BY-4.0", "FSFULLR", "Minpack", "Unlicense", "BSL-1.0", "NAIST-2003", "LicenseRef-scancode-protobuf", "LicenseRef-scancode-public-domain", "Libpng", "Spencer-94", "Intel", "GPL-1.0-or-later", "MPL-2.0" ]
permissive
Xilinx/Vitis-AI
31e664f7adff0958bb7d149883ab9c231efb3541
f74ddc6ed086ba949b791626638717e21505dba2
refs/heads/master
2023-08-31T02:44:51.029166
2023-07-27T06:50:28
2023-07-27T06:50:28
215,649,623
1,283
683
Apache-2.0
2023-08-17T09:24:55
2019-10-16T21:41:54
Python
UTF-8
Python
false
false
11,018
py
# Copyright 2019 Xilinx Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys class GlobalMap(object): globalmap = {} def set_map(self, key, value): self.globalmap[key] = value def set(self, **keys): try: for key_, value_ in keys.items(): self.globalmap[key_] = str(value_) print(key_ + ":" + str(value_)) except BaseException as msg: print(msg) raise msg def del_map(self, key): try: del self.globalmap[key] return self.globalmap except KeyError: pass #print("key:'" + str(key) + "' not found!") def get_ele(self, key): if key in self.globalmap: return self.globalmap[key] return None def get(self, *args): try: dic = {} for key in args: if len(args) == 1: dic = self.globalmap[key] print(key + ":" + str(dic)) elif len(args) == 1 and args[0] == 'all': dic = self.globalmap else: dic[key] = self.globalmap[key] return dic except KeyError: print("key:'" + str(key) + "' not found!") return 'Null_' class NNDCT_KEYS(object): #basic names INFO_FLAG = "NNDCT_NOTE" WARN_FLAG = "NNDCT_WARN" DEBUG_FLAG = "NNDCT_DEBUG" ERROR_FLAG = "NNDCT_ERROR" VERBOSE_LEVEL = 'nndct_verbose_lvl' LOG_LEVEL = 'nndct_log_lvl' LOGGER = 'nndct_logger' SUFFIX_CONNECT = 'SUFFIX' #for debug COMPILER = 'nndct_compiler' OUTPUT_TO_NODE_MAP = 'output_to_node_map' NODE_TO_OUTPUT_MAP = 'node_to_output_map' #for Xgraph & Xnode XMODEL_SUFFIX = '.xmodel' XMODEL_IMAGE_SUFFIX = '.svg' XPARAM_SUFFIX = '.xparams' XPATTERN_SUFFIX = '.xpattern' XBLOBS_SUFFIX = '.xblobs' #for parsing/exporting TORCH_REFLECT_OPS_MAP = 'torch_reflect_ops_map' TORCH_PARSER_MAP = 'torch_parser_map' TORCH_SUPPORT_OPS_MAP = 'torch_support_ops_map' TORCH_PARAM_MAP = 'torch_parameters_name_map' TORCH_IR_ATTRS_MAP = 'torch_ir_attrs_map' TORCH_SCHEMA_OP_TABLE = 'torch_schema_op_table' NODE_CALLER_MAP = 'node_caller_map' CUSTOM_OP_ATTRS_MAP = 'custom_op_attrs_map' CUSTOM_TO_XIR_LIST = 'custom_to_xir_list' DEVICE = 'device' TORCH_SCRIPT_MODEL = 'torch_script_model' #for quantization module: QUANT_MODE = "quant_mode" QUANTIZER = "nndct_quantizer" QUANT_SUFFIX = '_quant.json' QUANT_DEVICE = "quant_device" QUANT_CONFIG = "quant_config" PARAM_SCAN_SCOPE = "ParamScan" BLOB_SCAN_SCOPE = "BlobScan" QUANT_PARAMSCAN_OPS_COLLECTION = "qaunt_paramscan_ops_collection" BLOB_PREFFIX = "Blob" MAX_SCAN_SUFFIX = SUFFIX_CONNECT + "maxscan" MIN_SCAN_SUFFIX = SUFFIX_CONNECT + "minscan" DIFFS_SCAN_SUFFIX = SUFFIX_CONNECT + "diffs" QUANTTABLE_VAR_SUFFIX = SUFFIX_CONNECT + "QuantTableVar" #for load module NNDCT_LOADER = 'nndct_loader' LOAD_FLAG = 'load_flag' ORGVARS_SUFFIX = '_OrgVars.json' ORGKERASMODEL_SUFFIX = '_OrgKerasModel.json' #for modification process MODIFIER = 'nndct_modifier' TRANS_SCOPE = 'TransScp' #for graph export IR_GRAPH = 'nndct_ir_graph' IR_NAME = 'nndct_ir_name' IR_EXPORT_TYPE = 'ir_export_type' #for training and controlling NRS_COLLECTION = "non_restorable_collection" NGTS_COLLECTION = "non_grad_tensor_collection" DEBUG_COLLECTION = "nndct_debug_collection" #for compile PARAMETER_FILE = 'NndctParameter' ISTRUCTION_FILE = 'NndctInstruction' WORKSPACE_PATH = 'NndctWorkspace' INPUT_FILE = 'NndctInput' DEVOP_PREFFIX = 'fpga_op_' FIX_OP_SUFFIX = '_fix' PRE_FIX_OP_SUFFIX = '_pre_fix' TRANSPOSE_OP_SUFFIX = '_t' #deploy DEPLOY_CHECK_DATA_FOLDER = 'deploy_check_data' #dynamo WEGO_DYNAMO_SCRIPTER = 'wego_dynamo_scripter' GRAPH_COUNTER = 'graph_counter' class NNDCT_OP(object): ADAPTIVEAVGPOOL2D = 'nndct_adaptive_avg_pool2d' ADD = 'nndct_elemwise_add' ADDMM = 'nndct_addmm' ANGLE = 'nndct_angle' ARANGE = 'nndct_arange' ARGMAX = 'nndct_argmax_no_dim' ARGMAX_DIM = 'nndct_argmax_dim' AVG_POOL = 'nndct_avgpool' BASIC_GRU = 'nndct_basic_gru' BASIC_LSTM = 'nndct_basic_lstm' BATCH_NORM = 'nndct_batch_norm' BATCH_TO_SPACE_ND = 'nndct_batch_to_space_nd' BIAS_ADD = 'nndct_bias_add' BIDIRECTIONAL_RNN = 'nndct_bidirectional_rnn' BMM = 'nndct_bmm' BUFFER_GET_NEXT = 'nndct_buffer_get_next' BLOCK = 'nndct_block' CAST = 'nndct_cast' CALL_FUNCTION = "nndct_call_function" CALL_MODULE = "nndct_call_module" CALL_METHOD = "nndct_call_method" CEIL = 'nndct_ceil' CHANNEL_SCALE = 'nndct_channel_scale' CORRELATION1D_ELEMWISE = 'nndct_correlation1d_elemwise' CORRELATION2D_ELEMWISE = 'nndct_correlation2d_elemwise' COST_VOLUME = 'nndct_cost_volume' CHUNK = 'nndct_chunk' CLAMP = 'nndct_clamp' COMPLEX_ABS = 'nndct_complex_abs' CONCAT = 'nndct_concat' CONSTANT_WITH_RESHAPE = "constant_with_reshape" CONST = 'nndct_const' CONTIGUOUS = 'nndct_contiguous' CONV1D = 'nndct_conv1d' CONV2D = 'nndct_conv2d' CONV3D = 'nndct_conv3d' CONVTRANSPOSE2D = 'nndct_conv_transpose_2d' CONVTRANSPOSE3D = 'nndct_conv_transpose_3d' DENSE = 'nndct_dense' DEPTHWISE_CONV1D = 'nndct_depthwise_conv1d' DEPTHWISE_CONV2D = 'nndct_depthwise_conv2d' DEPTHWISE_CONV3D = 'nndct_depthwise_conv3d' DEPTHWISE_CONVTRANSPOSE2D = 'nndct_depthwise_conv_transpose_2d' DEPTHWISE_CONVTRANSPOSE3D = 'nndct_depthwise_conv_transpose_3d' DEQUANT_STUB = 'nndct_dequant_stub' DERIVE_LOOP_INDEX = 'nndct_derive_loop_index' DETACH = 'nndct_detach' DEVICE = 'nndct_device' DTYPE = 'nndct_dtype' DIV = 'nndct_elemwise_div' DROPOUT = 'nndct_dropout' ELU = 'nndct_elu' EMBEDDING = 'nndct_embedding' EMBEDDING_BAG = 'nndct_embedding_bag' EMPTY = 'nndct_empty' EQUAL = 'nndct_equal' EXP = 'nndct_elemwise_exp' EXPAND = 'nndct_expand' EXPAND_AS = 'nndct_expand_as' EXPONENTIAL = 'nndct_exponential' FLATTEN = 'nndct_flatten' FLOOR = 'nndct_floor' FLOOR_DIV = 'nndct_floor_divide' FIX = 'nndct_fix' FPGA_OP = 'nndct_fpga_op' GATHER = 'nndct_gather' GELU = 'nndct_GELU' GENERIC = 'nndct_generic' GRID_SAMPLE = 'nndct_grid_sample' GROUP_NORM = 'nndct_group_norm' GRU = 'nndct_gru' HARDTANH = 'nndct_hardtanh' HSIGMOID = 'nndct_hsigmoid' HSWISH = 'nndct_hswish' IDENTITY = 'nndct_identity' IF = 'nndct_if' INDEX = 'nndct_index' INDEX_INPUT_INPLACE = 'nndct_index_put_inplace' INPLACE_COPY = 'nndct_copy_' INPUT = 'nndct_input' INPUT_WITH_DEFAULT = 'nndct_input_with_default' INSTANCE_NORM = 'nndct_instance_norm' INT = 'nndct_int' INTERPOLATE = 'nndct_interpolate' IRFFT = 'nndct_irfft' ITER_GET_NEXT = 'nndct_iter_get_next' LAYER_NORM = 'nndct_layer_norm' LEAKY_RELU = 'nndct_leaky_relu' LENGTH = 'nndct_len' LINEAR = 'nndct_linear' LINEAR = 'nndct_linear' LIST = 'nndct_list' LIST_ADD = 'nndct_list_add' LOG = 'nndct_log' LOG_SOFTMAX = 'nndct_log_softmax' LOOP = 'nndct_loop' LSTM = 'nndct_lstm' LSTM_CELL = 'nndct_lstm_cell' MATMUL = 'nndct_matmul' MAX = 'nndct_max' MAX_POOL = 'nndct_maxpool' MAX_POOL1D = 'nndct_maxpool1d' MEAN = 'nndct_mean' MERGE = 'nndct_merge' MIN = 'nndct_min' MISH = 'nndct_mish' # e.g tf.math.multiply x * y, y can be a num or a tensor with same shape with x MULTIPLY = 'nndct_elemwise_mul' # e.g tf.keras.layers.multiply # Takes a list of tensors, all of the same shape, and returns a single tensor (same shape). MULTIPLYLAYER = 'nndct_multiply_layer' NANQUANTILE = 'nndct_nanquantile' NEG = 'nndct_neg' NOOP = 'nndct_noop' NORM = 'nndct_normalize' NOT_EQUAL = 'nndct_not_equal' NON_TENSOR_SUB = 'nndct_non_tensor_sub' ONE_HOT = 'nndct_one_hot' PACK = 'nndct_pack' PAD = 'nndct_pad' PAD_ND = "nndct_pad_nd" PERMUTE = 'nndct_permute' PIXEL_SHUFFLE = 'nndct_pixel_shuffle' PIXEL_UNSHUFFLE = 'nndct_pixel_unshuffle' PLACEHOLDER = 'nndct_placeholder' PRELU = 'nndct_prelu' QUANT_NEURON = 'nndct_quant_neuron' QUANT_STUB = 'nndct_quant_stub' QUANTILE = 'nndct_quantile' RANDOM_UNIFORM = 'nndct_random_uniform' RANGE = 'nndct_range' REALDIV = 'nndct_real_div' RELU = 'nndct_relu' RELU6 = 'nndct_relu6' RELUK = 'nndct_reluk' REORG = 'nndct_reorg' REPEAT = 'nndct_repeat' RESHAPE = 'nndct_reshape' RESCALING = 'nndct_rescaling' RESIZE = 'nndct_resize' RESIZE_3D = 'nndct_resize_3d' RESIZE_NEAREST_3D = 'nndct_resize_nearest_3d' RETURN = 'nndct_return' RFFT = 'nndct_rfft' RNN = 'nndct_rnn' RNN_LAYER = 'nndct_rnn_layer' RSQRT = 'nndct_rsqrt' RSUB = 'nndct_rsub' REMAINDER = 'nndct_remainder' SCALAR_ADD = 'nndct_add' SCALAR_EQUAL = 'nndct_scalar_equal' SCALAR_LESS_THAN = 'nndct_scalar_lt' SCALAR_MUL = 'nndct_mul' SCALAR_SUB = 'nndct_sub' SCALAR_REMAINDER = 'nndct_scalar_remainder' SELECT = 'nndct_select' SELU = 'nndct_selu' SEPARABLECONV2D = 'nndct_separableconv2D' SHAPE = 'nndct_shape' SHAPE_AS_TENSOR = 'nndct_shape_as_tensor' SIGMOID = 'nndct_sigmoid' SIMPLE_RNN = 'nndct_simple_rnn' SLICE = 'nndct_slice' SLICE_TENSOR_INPLACE_COPY = 'nndct_slice_tensor_inplace_copy' SOFTMAX = 'nndct_softmax' SOFTPLUS = 'nndct_softplus' SOFTSIGN = 'nndct_softsign' SPACE_TO_BATCH_ND = 'nndct_space_to_batch_nd' SPARSE_SOFTMAX_CROSS_ENTROPY = 'nndct_sparse_softmax_cross_entropy_with_logits' SPLIT = 'nndct_split' SQRT = 'nndct_sqrt' SQUARE = 'nndct_square' SQUEEZE = 'nndct_squeeze' STACK = 'nndct_stack' STACKED_RNN_CELLS = 'nndct_stacked_rnn_cells' STFT = 'nndct_stft' STRIDED_SLICE = 'nndct_strided_slice' STRIDED_SLICE_INPLACE_COPY = 'nndct_strided_slice_inplace_copy' SUB = 'nndct_elementwise_sub' SUM = 'nndct_sum' SWISH = 'nndct_swish' TANH = 'nndct_tanh' TENSOR = 'nndct_tensor' TENSOR_ARRAY_GATHER = 'nndct_tensor_array_gather' TENSOR_TO_SCALAR = 'nndct_tensor_to_scalar' THRESHOLD = 'nndct_threshold' TILE = 'nndct_tile' TRANSPOSE = 'nndct_transpose' TUPLE = 'nndct_tuple' TUPLE_INPUT = 'nndct_tuple_input' TUPLE_INDEX = 'nndct_tuple_index' TUPLE_UNPACK = 'nndct_tuple_unpack' UNSQUEEZE = 'nndct_unsqueeze' UP_SAMPLING = 'nndct_up_sampling' ZEROS = 'nndct_zeros' UNIQUE_DIM = 'nndct_unique_dim' _UNIQUE2 = 'nndct_unique2' _UNIQUE = 'nndct_unique' class NNDCT_PARAM(object): WEIGHT = 'weights' BIAS = 'bias' GAMMA = 'gamma' BETA = 'beta' VAR = 'var' MEAN = 'mean' class FrameworkType(object): # Frontend types TORCH = 'torch' CAFFE = 'caffe' TENSORFLOW = 'tensorflow' TF_KERAS = 'tf_keras' # NNDCT as a bridge NNDCT = 'nndct' class NNDCT_CONSTANT(object): INT_MAX = 2 ** 31 - 1
4d7a13431523e52f557cb9288ca2df2918ca4592
6e9d6a682f20054e13d3764e95b8bd3b7b64fabf
/dailychallenge794.py
480c50e622ac834ef1ded759d169a5654425fa0f
[]
no_license
SeanyDcode/codechallenges
30a271e04bc2b360bca923ae868be65a9533c8db
947cf3034911b381afaf777794d22d2af06aa5ba
refs/heads/master
2022-11-07T21:22:56.927863
2022-10-18T23:33:13
2022-10-18T23:33:13
154,498,776
1
0
null
2022-10-18T23:02:05
2018-10-24T12:38:45
Python
UTF-8
Python
false
false
515
py
# from dailycodingproblem.com # # Daily Challenge #794 # Implement a stack that has the following methods: # # push(val), which pushes an element onto the stack # pop(), which pops off and returns the topmost element of the stack. If there are no elements in the stack, then # it should throw an error or return null. # max(), which returns the maximum value in the stack currently. If there are no elements in the stack, then it should # throw an error or return null. # Each method should run in constant time.
a7bc599698af3f0f019d14651118a3707a859c85
4ef91a77e56428f8d9eed917270b165c150707b1
/unstable_learning_rates/adam/cifar10-6/cifar10.py
1d37fdb16c6513cf3fd1e981dc35eba1c8ab9280
[ "MIT" ]
permissive
Jeffrey-Ede/ALRC
e761ffc65a9dad44edf301dd30b766e46b6715b3
e5bf1d713b56af68c79413ae23e275d466121b90
refs/heads/master
2020-06-05T04:38:58.595922
2020-05-29T13:25:01
2020-05-29T13:25:01
192,315,914
3
2
null
2019-06-17T12:29:18
2019-06-17T09:25:07
Python
UTF-8
Python
false
false
18,726
py
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Builds the CIFAR-10 network. Summary of available functions: # Compute input images and labels for training. If you would like to run # evaluations, use inputs() instead. inputs, labels = distorted_inputs() # Compute inference on the model inputs to make a prediction. predictions = inference(inputs) # Compute the total loss of the prediction with respect to the labels. loss = loss(predictions, labels) # Create a graph to run one step of training with respect to the loss. train_op = train(loss, global_step) """ # pylint: disable=missing-docstring from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import re import sys import tarfile import numpy as np from six.moves import urllib import tensorflow as tf import cifar10_input FLAGS = tf.app.flags.FLAGS # Basic model parameters. tf.app.flags.DEFINE_integer('batch_size', 128, """Number of images to process in a batch.""") tf.app.flags.DEFINE_string('log_file', '//ads.warwick.ac.uk/shared/HCSS6/Shared305/Microscopy/Jeffrey-Ede/models/modified_losses/experiments2/tmp/cifar10_train/log.txt', 'File to record losses and other info.') tf.app.flags.DEFINE_string('data_dir', '//ads.warwick.ac.uk/shared/HCSS6/Shared305/Microscopy/Jeffrey-Ede/models/modified_losses/experiments2/tmp/cifar10_data', """Path to the CIFAR-10 data directory.""") tf.app.flags.DEFINE_boolean('use_fp16', False, """Train the model using fp16.""") tf.app.flags.DEFINE_float('num_stddev', 3., """Number of standard deviations error can be above mean without being clipped.""") tf.app.flags.DEFINE_float('initial_lr', 0.1/128, """Initial learning rate""") # Global constants describing the CIFAR-10 data set. IMAGE_SIZE = cifar10_input.IMAGE_SIZE NUM_CLASSES = cifar10_input.NUM_CLASSES NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = cifar10_input.NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = cifar10_input.NUM_EXAMPLES_PER_EPOCH_FOR_EVAL # Constants describing the training process. MOVING_AVERAGE_DECAY = 0.9999 # The decay to use for the moving average. NUM_EPOCHS_PER_DECAY = 350.0 # Epochs after which learning rate decays. LEARNING_RATE_DECAY_FACTOR = 0.1 # Learning rate decay factor. INITIAL_LEARNING_RATE = FLAGS.initial_lr # If a model is trained with multiple GPUs, prefix all Op names with tower_name # to differentiate the operations. Note that this prefix is removed from the # names of the summaries when visualizing a model. TOWER_NAME = 'tower' DATA_URL = 'https://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz' def _activation_summary(x): """Helper to create summaries for activations. Creates a summary that provides a histogram of activations. Creates a summary that measures the sparsity of activations. Args: x: Tensor Returns: nothing """ # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training # session. This helps the clarity of presentation on tensorboard. tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name) tf.summary.histogram(tensor_name + '/activations', x) tf.summary.scalar(tensor_name + '/sparsity', tf.nn.zero_fraction(x)) def _variable_on_cpu(name, shape, initializer): """Helper to create a Variable stored on CPU memory. Args: name: name of the variable shape: list of ints initializer: initializer for Variable Returns: Variable Tensor """ with tf.device('/cpu:0'): dtype = tf.float16 if FLAGS.use_fp16 else tf.float32 var = tf.get_variable(name, shape, initializer=initializer, dtype=dtype) return var def _variable_with_weight_decay(name, shape, stddev, wd): """Helper to create an initialized Variable with weight decay. Note that the Variable is initialized with a truncated normal distribution. A weight decay is added only if one is specified. Args: name: name of the variable shape: list of ints stddev: standard deviation of a truncated Gaussian wd: add L2Loss weight decay multiplied by this float. If None, weight decay is not added for this Variable. Returns: Variable Tensor """ dtype = tf.float16 if FLAGS.use_fp16 else tf.float32 var = _variable_on_cpu( name, shape, tf.truncated_normal_initializer(stddev=stddev, dtype=dtype)) if wd is not None: weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss') tf.add_to_collection('losses', weight_decay) return var def distorted_inputs(): """Construct distorted input for CIFAR training using the Reader ops. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. Raises: ValueError: If no data_dir """ if not FLAGS.data_dir: raise ValueError('Please supply a data_dir') data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin') images, labels = cifar10_input.distorted_inputs(data_dir=data_dir, batch_size=FLAGS.batch_size) if FLAGS.use_fp16: images = tf.cast(images, tf.float16) labels = tf.cast(labels, tf.float16) return images, labels def inputs(eval_data): """Construct input for CIFAR evaluation using the Reader ops. Args: eval_data: bool, indicating if one should use the train or eval data set. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. Raises: ValueError: If no data_dir """ if not FLAGS.data_dir: raise ValueError('Please supply a data_dir') data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin') images, labels = cifar10_input.inputs(eval_data=eval_data, data_dir=data_dir, batch_size=FLAGS.batch_size) if FLAGS.use_fp16: images = tf.cast(images, tf.float16) labels = tf.cast(labels, tf.float16) return images, labels def redistribute_loss(beta_ramp, beta_max, loss): """Redistribute loss by using its moments to estimate its CDF and mapping cumulative densities to cumulative densities on another distribution. Args: loss: Tensor to redistribute. beta_ramp: Number of iterations to increase decay factor for running means to its maximum value over. beta_max: Maximum value of decay factor - the value to ramp to. """ #Moments mu1 = tf.get_variable("mom1", initializer=tf.constant(0., dtype=tf.float32)) mu2 = tf.get_variable("mom2", initializer=tf.constant(0., dtype=tf.float32)) mu3 = tf.get_variable("mom3", initializer=tf.constant(0., dtype=tf.float32)) mu4 = tf.get_variable("mom4", initializer=tf.constant(0., dtype=tf.float32)) #Use running means to update moments with tf.control_dependencies([mu1.assign(beta*mu1+(1-beta)*loss), mu2.assign(beta*mu2+(1-beta)*loss), mu3.assign(beta*mu3+(1-beta)*loss), mu4.assign(beta*mu4+(1-beta)*loss)]): return loss def capper_fn(x): mu = tf.get_variable(f"mu", initializer=tf.constant(10, dtype=tf.float32)) mu2 = tf.get_variable(f"mu2", initializer=tf.constant(20**2, dtype=tf.float32)) def cap(x): sigma = tf.sqrt(mu2 - mu**2+0.001) capped_x = tf.where(x < mu+FLAGS.num_stddev*sigma, x, x/tf.stop_gradient(x/(mu+FLAGS.num_stddev*sigma))) return capped_x capped_x = cap(x) mean = tf.reduce_mean(capped_x) mean2 = tf.reduce_mean(capped_x**2) with tf.control_dependencies([mu.assign(0.997*mu+0.001*mean), mu2.assign(0.997*mu2+0.001*mean2)]): return tf.identity(capped_x) def inference(images): def conv2d(inputs, num_outputs, kernel_size=3, stride=1, actv_fn=tf.nn.relu, transpose=False): if transpose: return tf.contrib.layers.conv2d_transpose( inputs, num_outputs, kernel_size, stride, activation_fn=actv_fn) else: return tf.contrib.layers.conv2d( inputs, num_outputs, kernel_size, stride, data_format='NHWC', activation_fn=actv_fn) input = tf.image.resize_images(images, (16,16), align_corners=True) input = tf.image.resize_images(input, (32,32), align_corners=True) x = conv2d(input, num_outputs=64, kernel_size=5) x = conv2d(x, num_outputs=128, kernel_size=3) for _ in range(3): x0 = x x = conv2d(x, num_outputs=128, kernel_size=3) x = conv2d(x, num_outputs=128, kernel_size=3) x += x0 x = conv2d(x, num_outputs=64, kernel_size=3) x = conv2d(x, num_outputs=3, kernel_size=5, actv_fn=None) loss = 25 * tf.reduce_mean((images-x)**2, axis=[1,2,3]) tf.add_to_collection('unadjusted_loss', tf.reduce_mean(loss)) loss = tf.where(loss < 50, loss, tf.sqrt(loss)) return loss def _inference(images): """Build the CIFAR-10 model. Args: images: Images returned from distorted_inputs() or inputs(). Returns: Logits. """ # We instantiate all variables using tf.get_variable() instead of # tf.Variable() in order to share variables across multiple GPU training runs. # If we only ran this model on a single GPU, we could simplify this function # by replacing all instances of tf.get_variable() with tf.Variable(). # # conv1 with tf.variable_scope('conv1') as scope: kernel = _variable_with_weight_decay('weights', shape=[5, 5, 3, 64], stddev=5e-2, wd=None) conv = tf.nn.conv2d(images, kernel, [1, 1, 1, 1], padding='SAME') biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.0)) pre_activation = tf.nn.bias_add(conv, biases) conv1 = tf.nn.relu(pre_activation, name=scope.name) _activation_summary(conv1) # pool1 pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool1') # norm1 norm1 = tf.nn.lrn(pool1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm1') # conv2 with tf.variable_scope('conv2') as scope: kernel = _variable_with_weight_decay('weights', shape=[5, 5, 64, 64], stddev=5e-2, wd=None) conv = tf.nn.conv2d(norm1, kernel, [1, 1, 1, 1], padding='SAME') biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.1)) pre_activation = tf.nn.bias_add(conv, biases) conv2 = tf.nn.relu(pre_activation, name=scope.name) _activation_summary(conv2) # norm2 norm2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm2') # pool2 pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool2') # local3 with tf.variable_scope('local3') as scope: # Move everything into depth so we can perform a single matrix multiply. reshape = tf.reshape(pool2, [images.get_shape().as_list()[0], -1]) dim = reshape.get_shape()[1].value weights = _variable_with_weight_decay('weights', shape=[dim, 384], stddev=0.04, wd=0.004) biases = _variable_on_cpu('biases', [384], tf.constant_initializer(0.1)) local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name) _activation_summary(local3) # local4 with tf.variable_scope('local4') as scope: weights = _variable_with_weight_decay('weights', shape=[384, 192], stddev=0.04, wd=0.004) biases = _variable_on_cpu('biases', [192], tf.constant_initializer(0.1)) local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name=scope.name) _activation_summary(local4) # linear layer(WX + b), # We don't apply softmax here because # tf.nn.sparse_softmax_cross_entropy_with_logits accepts the unscaled logits # and performs the softmax internally for efficiency. with tf.variable_scope('softmax_linear') as scope: weights = _variable_with_weight_decay('weights', [192, NUM_CLASSES], stddev=1/192.0, wd=None) biases = _variable_on_cpu('biases', [NUM_CLASSES], tf.constant_initializer(0.0)) softmax_linear = tf.add(tf.matmul(local4, weights), biases, name=scope.name) _activation_summary(softmax_linear) return softmax_linear def loss(logits, labels): """Add L2Loss to all the trainable variables. Add summary for "Loss" and "Loss/avg". Args: logits: Logits from inference(). labels: Labels from distorted_inputs or inputs(). 1-D tensor of shape [batch_size] Returns: Loss tensor of type float. """ cross_entropy = logits #Clip error spikes if FLAGS.num_stddev: cross_entropy = capper_fn(logits) cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy') tf.add_to_collection('losses', cross_entropy_mean) # The total loss is defined as the cross entropy loss plus all of the weight # decay terms (L2 loss). return tf.add_n(tf.get_collection('losses'), name='total_loss') def _add_loss_summaries(total_loss): """Add summaries for losses in CIFAR-10 model. Generates moving average for all losses and associated summaries for visualizing the performance of the network. Args: total_loss: Total loss from loss(). Returns: loss_averages_op: op for generating moving averages of losses. """ # Compute the moving average of all individual losses and the total loss. loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg') losses = tf.get_collection('losses') loss_averages_op = loss_averages.apply(losses + [total_loss]) # Attach a scalar summary to all individual losses and the total loss; do the # same for the averaged version of the losses. for l in losses + [total_loss]: # Name each loss as '(raw)' and name the moving average version of the loss # as the original loss name. tf.summary.scalar(l.op.name + ' (raw)', l) tf.summary.scalar(l.op.name, loss_averages.average(l)) return loss_averages_op def train(total_loss, global_step): """Train CIFAR-10 model. Create an optimizer and apply to all trainable variables. Add moving average for all trainable variables. Args: total_loss: Total loss from loss(). global_step: Integer Variable counting the number of training steps processed. Returns: train_op: op for training. """ # Variables that affect learning rate. num_batches_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN / FLAGS.batch_size decay_steps = int(num_batches_per_epoch * NUM_EPOCHS_PER_DECAY) # Decay the learning rate exponentially based on the number of steps. lr = tf.train.exponential_decay(INITIAL_LEARNING_RATE, global_step, decay_steps, LEARNING_RATE_DECAY_FACTOR, staircase=True) tf.summary.scalar('learning_rate', lr) # Generate moving averages of all losses and associated summaries. loss_averages_op = _add_loss_summaries(total_loss) # Compute gradients. with tf.control_dependencies([loss_averages_op]): opt = tf.train.AdamOptimizer(lr) grads = opt.compute_gradients(total_loss) # Apply gradients. apply_gradient_op = opt.apply_gradients(grads, global_step=global_step) # Add histograms for trainable variables. for var in tf.trainable_variables(): tf.summary.histogram(var.op.name, var) # Add histograms for gradients. for grad, var in grads: if grad is not None: tf.summary.histogram(var.op.name + '/gradients', grad) # Track the moving averages of all trainable variables. variable_averages = tf.train.ExponentialMovingAverage( MOVING_AVERAGE_DECAY, global_step) with tf.control_dependencies([apply_gradient_op]): variables_averages_op = variable_averages.apply(tf.trainable_variables()) return variables_averages_op def maybe_download_and_extract(): """Download and extract the tarball from Alex's website.""" dest_directory = FLAGS.data_dir if not os.path.exists(dest_directory): os.makedirs(dest_directory) filename = DATA_URL.split('/')[-1] filepath = os.path.join(dest_directory, filename) if not os.path.exists(filepath): def _progress(count, block_size, total_size): sys.stdout.write('\r>> Downloading %s %.1f%%' % (filename, float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress) print() statinfo = os.stat(filepath) print('Successfully downloaded', filename, statinfo.st_size, 'bytes.') extracted_dir_path = os.path.join(dest_directory, 'cifar-10-batches-bin') if not os.path.exists(extracted_dir_path): tarfile.open(filepath, 'r:gz').extractall(dest_directory)
edaac70f667d8974a20ff95bebcd399de5484509
e62c135403c766497245dd4dc72e7431a023404d
/helloShikha.py
096873a704da900e7e19b3dbbfcafacf142d731e
[ "Apache-2.0" ]
permissive
ctsit/J.O.B-Training-Repo-1
3c437589e5c49749bbd2f97ce906cf01d000bad1
3455666557a23837ebcfe7e40de395a267689a6a
refs/heads/master
2023-03-15T20:45:43.991881
2023-03-06T15:11:15
2023-03-06T15:11:15
82,118,694
0
31
Apache-2.0
2023-08-24T15:52:05
2017-02-15T23:48:22
Python
UTF-8
Python
false
false
54
py
#This is my hello world program print 'Hello Shikha!'
cac5589c71a79b0bc92bda216d163e76b9777908
b4f0f536c721178a69128eba0afb39fde6f62ffb
/tests/e2e/redis_client.py
1a61fcb32ee7863df6606f0f932eb42ff2f39bfc
[ "MIT" ]
permissive
jeantardelli/architecture-patterns-with-python
c049257febc369c7d213428019387fe19d38998a
d48c7d6d4a44073b815c7e6770e44cf2e231e35b
refs/heads/main
2023-05-27T05:12:12.951919
2021-06-04T18:48:43
2021-06-04T18:48:43
355,638,599
1
0
MIT
2021-06-04T18:48:44
2021-04-07T18:03:08
Python
UTF-8
Python
false
false
390
py
import json import redis from allocation import config r = redis.Redis(**config.get_redis_host_and_port()) def subscribe_to(channel): pubsub = r.pubsub() pubsub.subscribe(channel) confirmation = pubsub.get_message(timeout=3) assert confirmation["type"] == "subscribe" return pubsub def publish_message(channel, message): r.publish(channel, json.dumps(message))
c54a4eef064dc72dd2b30f222d245099b69f7005
b1547d22520133f03c7529086f70d4ae83d24237
/script/conntect.py
adb439f4a913590a349ab9d91767eb1d6ecc3e6f
[]
no_license
wrwahut/flask_demo
913b6a3e4cd56fadb834895f559d25af742f1a7f
699beaa1a6c9f0f413147ff237bb6256c651e953
refs/heads/master
2020-03-29T22:03:54.659686
2019-01-03T07:48:38
2019-01-03T07:48:38
150,401,389
2
0
null
null
null
null
UTF-8
Python
false
false
917
py
# -*- coding:utf-8 -*- import requests from flask import request import json req_session = requests.session() class Caller(object): def __init__(self, url_fix,args={}): self.url = "http://localhost:10002/resource/user/" + url_fix self.args = args self.headers = { "content-type": "application/json", "accept": "application/json" } # self.cookie = { # "token": request.cookies.get("token", "None"), # "lang": request.cookies.get("lang", "zh-CN") # } def _res_data(self, response): res_data = response.json() if not res_data.get("data"): res_data["data"] = {} return res_data def post_req(self): payload = json.dumps(self.args, "utf-8") response = req_session.post(self.url, data=payload, headers=self.headers) return self._res_data(response)
00233f22e2e5ef66eb8018f58af6d447b2945cbb
dcbef06d5a00f07756339b9e62c684dec2fee425
/nuitka/code_generation/LoopCodes.py
b553f9f6b95a7db4207f65448e6f7735be2edebb
[ "Apache-2.0", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
Nuitka/Nuitka
f9543d8d95bfa0b81d4e60af0dfad99fb72893a4
d87faf2f7e1d6ed9bfe4cf8c1d648f34307e33f2
refs/heads/develop
2023-08-28T14:00:32.861328
2023-08-27T09:16:45
2023-08-27T09:16:45
9,626,741
8,573
599
Apache-2.0
2023-09-13T02:49:41
2013-04-23T15:40:33
Python
UTF-8
Python
false
false
3,141
py
# Copyright 2023, Kay Hayen, mailto:[email protected] # # Part of "Nuitka", an optimizing Python compiler that is compatible and # integrates with CPython, but also works on its own. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Loop codes. Code generation for loops, breaking them, or continuing them. In Nuitka, there are no for-loops or while-loops at this point. They have been re-formulated in a simpler loop without a condition, and statements there-in that break under certain conditions. See Developer Manual for how the CPython loops are mapped to these nodes. """ from .CodeHelpers import generateStatementSequenceCode from .ErrorCodes import getErrorExitBoolCode from .ExceptionCodes import getExceptionUnpublishedReleaseCode from .LabelCodes import getGotoCode, getLabelCode def generateLoopBreakCode(statement, emit, context): # Functions used for generation all accept statement, but this one does # not use it. pylint: disable=unused-argument getExceptionUnpublishedReleaseCode(emit, context) break_target = context.getLoopBreakTarget() getGotoCode(break_target, emit) def generateLoopContinueCode(statement, emit, context): # Functions used for generation all accept statement, but this one does # not use it. pylint: disable=unused-argument getExceptionUnpublishedReleaseCode(emit, context) continue_target = context.getLoopContinueTarget() getGotoCode(continue_target, emit) def generateLoopCode(statement, emit, context): loop_start_label = context.allocateLabel("loop_start") if not statement.isStatementAborting(): loop_end_label = context.allocateLabel("loop_end") else: loop_end_label = None getLabelCode(loop_start_label, emit) old_loop_break = context.setLoopBreakTarget(loop_end_label) old_loop_continue = context.setLoopContinueTarget(loop_start_label) generateStatementSequenceCode( statement_sequence=statement.subnode_loop_body, allow_none=True, emit=emit, context=context, ) context.setLoopBreakTarget(old_loop_break) context.setLoopContinueTarget(old_loop_continue) # Note: We are using the wrong line here, but it's an exception, it's unclear what line it would be anyway. with context.withCurrentSourceCodeReference(statement.getSourceReference()): getErrorExitBoolCode( condition="CONSIDER_THREADING(tstate) == false", emit=emit, context=context ) getGotoCode(loop_start_label, emit) if loop_end_label is not None: getLabelCode(loop_end_label, emit)
2db81d67ed5865facf874ae717b23430c8c420f3
4a06e7a07df377e224477c1d24cef620a4f98cc4
/httprunner/report.py
19d1581aa9841adcca9bf26388a5392d69109ae6
[ "Apache-2.0" ]
permissive
ovalike/HttpRunner
b1cbec8ac02a0835987429bf7d966e7e64e62e61
6b23edf44c9aa71eba2c6d5d2e6b3335243ac992
refs/heads/master
2021-08-02T15:18:01.568043
2021-04-26T15:28:23
2021-04-26T15:28:23
177,881,052
0
0
Apache-2.0
2019-03-26T22:58:20
2019-03-26T22:58:19
null
UTF-8
Python
false
false
11,724
py
# encoding: utf-8 import io import os import platform import time import unittest from base64 import b64encode from collections import Iterable from datetime import datetime import requests from httprunner import loader, logger from httprunner.__about__ import __version__ from httprunner.compat import basestring, bytes, json, numeric_types from jinja2 import Template, escape def get_platform(): return { "httprunner_version": __version__, "python_version": "{} {}".format( platform.python_implementation(), platform.python_version() ), "platform": platform.platform() } def get_summary(result): """ get summary from test result Args: result (instance): HtmlTestResult() instance Returns: dict: summary extracted from result. { "success": True, "stat": {}, "time": {}, "records": [] } """ summary = { "success": result.wasSuccessful(), "stat": { 'total': result.testsRun, 'failures': len(result.failures), 'errors': len(result.errors), 'skipped': len(result.skipped), 'expectedFailures': len(result.expectedFailures), 'unexpectedSuccesses': len(result.unexpectedSuccesses) } } summary["stat"]["successes"] = summary["stat"]["total"] \ - summary["stat"]["failures"] \ - summary["stat"]["errors"] \ - summary["stat"]["skipped"] \ - summary["stat"]["expectedFailures"] \ - summary["stat"]["unexpectedSuccesses"] summary["time"] = { 'start_at': result.start_at, 'duration': result.duration } summary["records"] = result.records return summary def aggregate_stat(origin_stat, new_stat): """ aggregate new_stat to origin_stat. Args: origin_stat (dict): origin stat dict, will be updated with new_stat dict. new_stat (dict): new stat dict. """ for key in new_stat: if key not in origin_stat: origin_stat[key] = new_stat[key] elif key == "start_at": # start datetime origin_stat[key] = min(origin_stat[key], new_stat[key]) else: origin_stat[key] += new_stat[key] def stringify_summary(summary): """ stringify summary, in order to dump json file and generate html report. """ for index, suite_summary in enumerate(summary["details"]): if not suite_summary.get("name"): suite_summary["name"] = "testcase {}".format(index) for record in suite_summary.get("records"): meta_datas = record['meta_datas'] __stringify_meta_datas(meta_datas) meta_datas_expanded = [] __expand_meta_datas(meta_datas, meta_datas_expanded) record["meta_datas_expanded"] = meta_datas_expanded record["response_time"] = __get_total_response_time(meta_datas_expanded) def __stringify_request(request_data): """ stringfy HTTP request data Args: request_data (dict): HTTP request data in dict. { "url": "http://127.0.0.1:5000/api/get-token", "method": "POST", "headers": { "User-Agent": "python-requests/2.20.0", "Accept-Encoding": "gzip, deflate", "Accept": "*/*", "Connection": "keep-alive", "user_agent": "iOS/10.3", "device_sn": "TESTCASE_CREATE_XXX", "os_platform": "ios", "app_version": "2.8.6", "Content-Type": "application/json", "Content-Length": "52" }, "json": { "sign": "cb9d60acd09080ea66c8e63a1c78c6459ea00168" }, "verify": false } """ for key, value in request_data.items(): if isinstance(value, list): value = json.dumps(value, indent=2, ensure_ascii=False) elif isinstance(value, bytes): try: encoding = "utf-8" value = escape(value.decode(encoding)) except UnicodeDecodeError: pass elif not isinstance(value, (basestring, numeric_types, Iterable)): # class instance, e.g. MultipartEncoder() value = repr(value) elif isinstance(value, requests.cookies.RequestsCookieJar): value = value.get_dict() request_data[key] = value def __stringify_response(response_data): """ stringfy HTTP response data Args: response_data (dict): { "status_code": 404, "headers": { "Content-Type": "application/json", "Content-Length": "30", "Server": "Werkzeug/0.14.1 Python/3.7.0", "Date": "Tue, 27 Nov 2018 06:19:27 GMT" }, "encoding": "None", "content_type": "application/json", "ok": false, "url": "http://127.0.0.1:5000/api/users/9001", "reason": "NOT FOUND", "cookies": {}, "json": { "success": false, "data": {} } } """ for key, value in response_data.items(): if isinstance(value, list): value = json.dumps(value, indent=2, ensure_ascii=False) elif isinstance(value, bytes): try: encoding = response_data.get("encoding") if not encoding or encoding == "None": encoding = "utf-8" if key == "content" and "image" in response_data["content_type"]: # display image value = "data:{};base64,{}".format( response_data["content_type"], b64encode(value).decode(encoding) ) else: value = escape(value.decode(encoding)) except UnicodeDecodeError: pass elif not isinstance(value, (basestring, numeric_types, Iterable)): # class instance, e.g. MultipartEncoder() value = repr(value) elif isinstance(value, requests.cookies.RequestsCookieJar): value = value.get_dict() response_data[key] = value def __expand_meta_datas(meta_datas, meta_datas_expanded): """ expand meta_datas to one level Args: meta_datas (dict/list): maybe in nested format Returns: list: expanded list in one level Examples: >>> meta_datas = [ [ dict1, dict2 ], dict3 ] >>> meta_datas_expanded = [] >>> __expand_meta_datas(meta_datas, meta_datas_expanded) >>> print(meta_datas_expanded) [dict1, dict2, dict3] """ if isinstance(meta_datas, dict): meta_datas_expanded.append(meta_datas) elif isinstance(meta_datas, list): for meta_data in meta_datas: __expand_meta_datas(meta_data, meta_datas_expanded) def __get_total_response_time(meta_datas_expanded): """ caculate total response time of all meta_datas """ try: response_time = 0 for meta_data in meta_datas_expanded: response_time += meta_data["stat"]["response_time_ms"] return "{:.2f}".format(response_time) except TypeError: # failure exists return "N/A" def __stringify_meta_datas(meta_datas): if isinstance(meta_datas, list): for _meta_data in meta_datas: __stringify_meta_datas(_meta_data) elif isinstance(meta_datas, dict): data_list = meta_datas["data"] for data in data_list: __stringify_request(data["request"]) __stringify_response(data["response"]) def render_html_report(summary, report_template=None, report_dir=None): """ render html report with specified report name and template Args: report_template (str): specify html report template path report_dir (str): specify html report save directory """ if not report_template: report_template = os.path.join( os.path.abspath(os.path.dirname(__file__)), "templates", "report_template.html" ) logger.log_debug("No html report template specified, use default.") else: logger.log_info("render with html report template: {}".format(report_template)) logger.log_info("Start to render Html report ...") report_dir = report_dir or os.path.join(os.getcwd(), "reports") if not os.path.isdir(report_dir): os.makedirs(report_dir) start_at_timestamp = int(summary["time"]["start_at"]) summary["time"]["start_datetime"] = datetime.fromtimestamp(start_at_timestamp).strftime('%Y-%m-%d %H:%M:%S') report_path = os.path.join(report_dir, "{}.html".format(start_at_timestamp)) with io.open(report_template, "r", encoding='utf-8') as fp_r: template_content = fp_r.read() with io.open(report_path, 'w', encoding='utf-8') as fp_w: rendered_content = Template( template_content, extensions=["jinja2.ext.loopcontrols"] ).render(summary) fp_w.write(rendered_content) logger.log_info("Generated Html report: {}".format(report_path)) return report_path class HtmlTestResult(unittest.TextTestResult): """ A html result class that can generate formatted html results. Used by TextTestRunner. """ def __init__(self, stream, descriptions, verbosity): super(HtmlTestResult, self).__init__(stream, descriptions, verbosity) self.records = [] def _record_test(self, test, status, attachment=''): data = { 'name': test.shortDescription(), 'status': status, 'attachment': attachment, "meta_datas": test.meta_datas } self.records.append(data) def startTestRun(self): self.start_at = time.time() def startTest(self, test): """ add start test time """ super(HtmlTestResult, self).startTest(test) logger.color_print(test.shortDescription(), "yellow") def addSuccess(self, test): super(HtmlTestResult, self).addSuccess(test) self._record_test(test, 'success') print("") def addError(self, test, err): super(HtmlTestResult, self).addError(test, err) self._record_test(test, 'error', self._exc_info_to_string(err, test)) print("") def addFailure(self, test, err): super(HtmlTestResult, self).addFailure(test, err) self._record_test(test, 'failure', self._exc_info_to_string(err, test)) print("") def addSkip(self, test, reason): super(HtmlTestResult, self).addSkip(test, reason) self._record_test(test, 'skipped', reason) print("") def addExpectedFailure(self, test, err): super(HtmlTestResult, self).addExpectedFailure(test, err) self._record_test(test, 'ExpectedFailure', self._exc_info_to_string(err, test)) print("") def addUnexpectedSuccess(self, test): super(HtmlTestResult, self).addUnexpectedSuccess(test) self._record_test(test, 'UnexpectedSuccess') print("") @property def duration(self): return time.time() - self.start_at
[ "httprunner" ]
httprunner
9770456866da2c0a4a7485ed4ccefca3170983b2
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02417/s513271588.py
dd2618394ee3a3fd9727f547170f17cf79edd3e4
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
285
py
import string from sys import stdin chs = dict([(ch, 0) for ch in string.ascii_lowercase]) for line in stdin: for ch in line: c = ch.lower() if c not in chs: continue chs[c] += 1 for ch in string.ascii_lowercase: print(ch, ':', chs[ch])
20c35fdc0ddd1e4481b51b2d8e0f88a9989398f7
df770e5961aa7a0790314da663c426c8b3a93092
/python/adult_sklearn.py
f344a98e3b820e08c867ac05917d704ba14a9690
[]
no_license
dengl11/CS315B-Project
be996d461582110e70c3f9e621d13d80ed78a160
0da493eb5f6030562d2d2d7546ac7c107f9d2879
refs/heads/master
2021-08-28T18:34:41.655923
2017-12-13T00:06:29
2017-12-13T00:06:29
108,506,314
0
0
null
null
null
null
UTF-8
Python
false
false
1,339
py
############################################################ # My Decision Tree Classification ############################################################ import numpy as np from sklearn.metrics import accuracy_score from sklearn.tree import DecisionTreeClassifier from my_decision_tree import * # param max_depth = 3 # max_depth = 6 def get_data(input): """return (X, y) for input Args: input: Return: """ mat = np.loadtxt(input, skiprows=2) y = mat[:, 0].astype(int) X = mat[:, 1:].astype(np.float) return (X, y) X_train, y_train = get_data("../data/adult/adult_train_tiny.tsv") X_test, y_test = get_data("../data/adult/adult_test_tiny.tsv") # X_train, y_train = get_data("../data/adult/adult_train.tsv") # X_test, y_test = get_data("../data/adult/adult_test.tsv") # construct estimator estimator = DecisionTreeClassifier(max_depth=max_depth , random_state=0) # train estimator.fit(X_train, y_train) # [pred_train, pred_test] predictions = [estimator.predict(x) for x in (X_train, X_test)] # [acc_train, acc_test] accuracys = [accuracy_score(p, y) for (p, y) in zip(predictions, (y_train, y_test))] print("------------------- Sklearn Decision Tree -------------------") print("Train Accuracy: {:.2f}".format(accuracys[0])) print("Test Accuracy : {:.2f}".format(accuracys[1]))
03733d50c66db99aab90d764c67c8102c1927d32
fdce456e2f0ea12f854e98583cfda95955b9a36b
/seekerbuilder/migrations/0016_auto_20210916_1303.py
ad0d13f013270eb5cd84ec0db637506231ce82d1
[]
no_license
atifasr/jobportal
e5fdc8058759311e8d4ca2c0291066ad86059fb6
3fe211598daa66f2a76c2b3d4d26d73459ac7457
refs/heads/master
2023-08-05T02:01:00.870360
2021-09-29T11:59:29
2021-09-29T11:59:29
388,807,519
0
0
null
null
null
null
UTF-8
Python
false
false
1,245
py
# Generated by Django 3.2.5 on 2021-09-16 07:33 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('job_management', '0019_auto_20210913_2147'), ('seekerbuilder', '0015_auto_20210914_1503'), ] operations = [ migrations.AlterModelOptions( name='educationdetail', options={'verbose_name_plural': "Seekers' education details"}, ), migrations.AlterModelOptions( name='experiencedetail', options={'verbose_name_plural': "Seekers' experience details"}, ), migrations.AlterModelOptions( name='seekerprofile', options={'verbose_name_plural': "Seekers' profile"}, ), migrations.AlterModelOptions( name='seekerskillset', options={'verbose_name': 'Seeker skill set', 'verbose_name_plural': "Seeker's skills"}, ), migrations.RemoveField( model_name='seekerskillset', name='skill_set', ), migrations.AddField( model_name='seekerskillset', name='skill_set', field=models.ManyToManyField(to='job_management.Skillset'), ), ]
781493f32e1e6751e010c4bfc68e52c0d2761f13
006341ca12525aa0979d6101600e78c4bd9532ab
/CMS/Zope-3.2.1/Dependencies/twisted-Zope-3.2.1/twisted/web/woven/model.py
30887f1e2ab52ec7730c05c3ce860bd0f79dc854
[ "LicenseRef-scancode-unknown-license-reference", "MIT", "ZPL-2.1", "Python-2.0", "ICU", "LicenseRef-scancode-public-domain", "BSD-3-Clause", "ZPL-2.0" ]
permissive
germanfriday/code-examples-sandbox
d0f29e20a3eed1f8430d06441ac2d33bac5e4253
4c538584703754c956ca66392fdcecf0a0ca2314
refs/heads/main
2023-05-30T22:21:57.918503
2021-06-15T15:06:47
2021-06-15T15:06:47
377,200,448
0
0
null
null
null
null
UTF-8
Python
false
false
16,065
py
# -*- test-case-name: twisted.web.test.test_woven -*- # Copyright (c) 2001-2004 Twisted Matrix Laboratories. # See LICENSE for details. __version__ = "$Revision: 1.53 $"[11:-2] import types import weakref import warnings from zope.interface import implements from twisted.python import components, reflect from twisted.internet import defer from twisted.web.woven import interfaces class _Nothing: pass def adaptToIModel(m, parent=None, submodel=None): adapted = components.getAdapter(m, interfaces.IModel, None, components.getAdapterClassWithInheritance) if adapted is None: adapted = Wrapper(m) adapted.parent = parent adapted.name = submodel return adapted class Model: """ A Model which keeps track of views which are looking at it in order to notify them when the model changes. """ implements(interfaces.IModel) def __init__(self, *args, **kwargs): if len(args): self.original = args[0] else: self.original = self self.name = '' self.parent = None self.views = [] self.subviews = {} self.submodels = {} self._getter = kwargs.get('getter') self._setter = kwargs.get('setter') self.cachedFor = None self.initialize(*args, **kwargs) def __getstate__(self): self.views = [] self.subviews = {} self.submodels = {} return self.__dict__ def invalidateCache(self): """Invalidate the cache for this object, so the next time getData is called, it's getter method is called again. """ self.cachedFor = None def initialize(self, *args, **kwargs): """ Hook for subclasses to initialize themselves without having to mess with the __init__ chain. """ pass def addView(self, view): """ Add a view for the model to keep track of. """ if view not in [ref() for ref in self.views]: self.views.append(weakref.ref(view)) def addSubview(self, name, subview): subviewList = self.subviews.get(name, []) subviewList.append(weakref.ref(subview)) self.subviews[name] = subviewList def removeView(self, view): """ Remove a view that the model no longer should keep track of. """ # AM: loop on a _copy_ of the list, since we're changing it!!! for weakref in list(self.views): ref = weakref() if ref is view or ref is None: self.views.remove(weakref) def setGetter(self, getter): self._getter = getter def setSetter(self, setter): self._setter = setter def notify(self, changed=None): """ Notify all views that something was changed on me. Passing a dictionary of {'attribute': 'new value'} in changed will pass this dictionary to the view for increased performance. If you don't want to do this, don't, and just use the traditional MVC paradigm of querying the model for things you're interested in. """ self.cachedFor = None if changed is None: changed = {} retVal = [] # AM: loop on a _copy_ of the list, since we're changing it!!! for view in list(self.views): ref = view() if ref is not None: retVal.append((ref, ref.modelChanged(changed))) else: self.views.remove(view) for key, value in self.subviews.items(): if value.wantsAllNotifications or changed.has_key(key): for item in list(value): ref = item() if ref is not None: retVal.append((ref, ref.modelChanged(changed))) else: value.remove(item) return retVal protected_names = ['initialize', 'addView', 'addSubview', 'removeView', 'notify', 'getSubmodel', 'setSubmodel', 'getData', 'setData'] allowed_names = [] def lookupSubmodel(self, request, submodelName): """ Look up a full submodel name. I will split on `/' and call L{getSubmodel} on each element in the 'path'. Override me if you don't want 'traversing'-style lookup, but would rather like to look up a model based on the entire model name specified. If you override me to return Deferreds, make sure I look up values in a cache (created by L{setSubmodel}) before doing a regular Deferred lookup. XXX: Move bits of this docstring to interfaces.py """ if not submodelName: return None # Special case: If the first character is / # Start at the bottom of the model stack currentModel = self if submodelName[0] == '/': while currentModel.parent is not None: currentModel = currentModel.parent submodelName = submodelName[1:] submodelList = submodelName.split('/') #[:-1] # print "submodelList", submodelList for element in submodelList: if element == '.' or element == '': continue elif element == '..': currentModel = currentModel.parent else: currentModel = currentModel.getSubmodel(request, element) if currentModel is None: return None return currentModel def submodelCheck(self, request, name): """Check if a submodel name is allowed. Subclass me to implement a name security policy. """ if self.allowed_names: return (name in self.allowed_names) else: return (name and name[0] != '_' and name not in self.protected_names) def submodelFactory(self, request, name): warnings.warn("Warning: default Model lookup strategy is changing:" "use either AttributeModel or MethodModel for now.", DeprecationWarning) if hasattr(self, name): return getattr(self, name) else: return None def getSubmodel(self, request, name): """ Get the submodel `name' of this model. If I ever return a Deferred, then I ought to check for cached values (created by L{setSubmodel}) before doing a regular Deferred lookup. """ if self.submodels.has_key(name): return self.submodels[name] if not self.submodelCheck(request, name): return None m = self.submodelFactory(request, name) if m is None: return None sm = adaptToIModel(m, self, name) self.submodels[name] = sm return sm def setSubmodel(self, request=None, name=None, value=None): """ Set a submodel on this model. If getSubmodel or lookupSubmodel ever return a Deferred, I ought to set this in a place that lookupSubmodel/getSubmodel know about, so they can use it as a cache. """ if self.submodelCheck(request, name): if self.submodels.has_key(name): del self.submodels[name] setattr(self, name, value) def dataWillChange(self): pass def getData(self, request): if self.cachedFor != id(request) and self._getter is not None: self.cachedFor = id(request) self.dataWillChange() self.orig = self.original = self._getter(request) return self.original def setData(self, request, data): if self._setter is not None: self.cachedFor = None return self._setter(request, data) else: if hasattr(self, 'parent') and self.parent: self.parent.setSubmodel(request, self.name, data) self.orig = self.original = data components.backwardsCompatImplements(Model) class MethodModel(Model): """Look up submodels with wmfactory_* methods. """ def submodelCheck(self, request, name): """Allow any submodel for which I have a submodel. """ return hasattr(self, "wmfactory_"+name) def submodelFactory(self, request, name): """Call a wmfactory_name method on this model. """ meth = getattr(self, "wmfactory_"+name) return meth(request) def getSubmodel(self, request=None, name=None): if name is None: warnings.warn("Warning! getSubmodel should now take the request as the first argument") name = request request = None cached = self.submodels.has_key(name) sm = Model.getSubmodel(self, request, name) if sm is not None: if not cached: sm.cachedFor = id(request) sm._getter = getattr(self, "wmfactory_"+name) return sm class AttributeModel(Model): """Look up submodels as attributes with hosts.allow/deny-style security. """ def submodelFactory(self, request, name): if hasattr(self, name): return getattr(self, name) else: return None #backwards compatibility WModel = Model class Wrapper(Model): """ I'm a generic wrapper to provide limited interaction with the Woven models and submodels. """ parent = None name = None def __init__(self, orig): Model.__init__(self) self.orig = self.original = orig def dataWillChange(self): pass def __repr__(self): myLongName = reflect.qual(self.__class__) return "<%s instance at 0x%x: wrapped data: %s>" % (myLongName, id(self), self.original) class ListModel(Wrapper): """ I wrap a Python list and allow it to interact with the Woven models and submodels. """ def dataWillChange(self): self.submodels = {} def getSubmodel(self, request=None, name=None): if name is None and type(request) is type(""): warnings.warn("Warning!") name = request request = None if self.submodels.has_key(name): return self.submodels[name] orig = self.original try: i = int(name) except: return None if i > len(orig): return None sm = adaptToIModel(orig[i], self, name) self.submodels[name] = sm return sm def setSubmodel(self, request=None, name=None, value=None): if value is None: warnings.warn("Warning!") value = name name = request request = None self.original[int(name)] = value def __len__(self): return len(self.original) def __getitem__(self, name): return self.getSubmodel(None, str(name)) def __setitem__(self, name, value): self.setSubmodel(None, str(name), value) def __repr__(self): myLongName = reflect.qual(self.__class__) return "<%s instance at 0x%x: wrapped data: %s>" % (myLongName, id(self), self.original) class StringModel(ListModel): """ I wrap a Python string and allow it to interact with the Woven models and submodels. """ def setSubmodel(self, request=None, name=None, value=None): raise ValueError("Strings are immutable.") # pyPgSQL returns "PgResultSet" instances instead of lists, which look, act # and breathe just like lists. pyPgSQL really shouldn't do this, but this works try: from pyPgSQL import PgSQL components.registerAdapter(ListModel, PgSQL.PgResultSet, interfaces.IModel) except: pass class DictionaryModel(Wrapper): """ I wrap a Python dictionary and allow it to interact with the Woven models and submodels. """ def dataWillChange(self): self.submodels = {} def getSubmodel(self, request=None, name=None): if name is None and type(request) is type(""): warnings.warn("getSubmodel must get a request argument now") name = request request = None if self.submodels.has_key(name): return self.submodels[name] orig = self.original if name not in orig: return None sm = adaptToIModel(orig[name], self, name) self.submodels[name] = sm return sm def setSubmodel(self, request=None, name=None, value=None): if value is None: warnings.warn("Warning!") value = name name = request request = None self.original[name] = value class AttributeWrapper(Wrapper): """ I wrap an attribute named "name" of the given parent object. """ def __init__(self, parent, name): self.original = None parent = ObjectWrapper(parent) Wrapper.__init__(self, parent.getSubmodel(None, name)) self.parent = parent self.name = name class ObjectWrapper(Wrapper): """ I may wrap an object and allow it to interact with the Woven models and submodels. By default, I am not registered for use with anything. """ def getSubmodel(self, request=None, name=None): if name is None and type(request) is type(""): warnings.warn("Warning!") name = request request = None if self.submodels.has_key(name): return self.submodels[name] sm = adaptToIModel(getattr(self.original, name), self, name) self.submodels[name] = sm return sm def setSubmodel(self, request=None, name=None, value=None): if value is None: warnings.warn("Warning!") value = name name = request request = None setattr(self.original, name, value) class UnsafeObjectWrapper(ObjectWrapper): """ I may wrap an object and allow it to interact with the Woven models and submodels. By default, I am not registered for use with anything. I am unsafe because I allow methods to be called. In fact, I am dangerously unsafe. Be wary or I will kill your security model! """ def getSubmodel(self, request=None, name=None): if name is None and type(request) is type(""): warnings.warn("Warning!") name = request request = None if self.submodels.has_key(name): return self.submodels[name] value = getattr(self.original, name) if callable(value): return value() sm = adaptToIModel(value, self, name) self.submodels = sm return sm class DeferredWrapper(Wrapper): def setData(self, request=None, data=_Nothing): if data is _Nothing: warnings.warn("setData should be called with request as first arg") data = request request = None if isinstance(data, defer.Deferred): self.original = data else: views, subviews = self.views, self.subviews new = adaptToIModel(data, self.parent, self.name) self.__class__ = new.__class__ self.__dict__ = new.__dict__ self.views, self.subviews = views, subviews class Link(AttributeModel): def __init__(self, href, text): AttributeModel.__init__(self) self.href = href self.text = text try: components.registerAdapter(StringModel, types.StringType, interfaces.IModel) components.registerAdapter(ListModel, types.ListType, interfaces.IModel) components.registerAdapter(ListModel, types.TupleType, interfaces.IModel) components.registerAdapter(DictionaryModel, types.DictionaryType, interfaces.IModel) components.registerAdapter(DeferredWrapper, defer.Deferred, interfaces.IModel) components.registerAdapter(DeferredWrapper, defer.DeferredList, interfaces.IModel) except ValueError: # The adapters were already registered pass
c81c481c4164984cc48621ac820341764eda0f70
eec9c673984da80f42d2a296ee2cb068639db169
/tods/tests/feature_analysis/test_StastiticalStd.py
e0e968bb983bc7b56792b66f46ebdad5e1844590
[ "Apache-2.0" ]
permissive
datamllab/tods
0766f48e7736fd2dca1cbc59fef019447039fed8
314dd6efc6ed3f8d25e100b08de4115edc636e14
refs/heads/master
2023-09-03T22:44:31.929096
2023-08-24T17:21:27
2023-08-24T17:21:27
293,719,013
1,094
175
Apache-2.0
2023-08-24T17:21:28
2020-09-08T06:18:12
Python
UTF-8
Python
false
false
5,434
py
import unittest from d3m import container, utils from d3m.metadata import base as metadata_base from tods.feature_analysis import StatisticalStd class StatisticalStdTestCase(unittest.TestCase): def test_basic(self): self.maxDiff=None main = container.DataFrame({'timestamp': [1, 3, 2, 5], 'values': [1.0, 2.0, 3.0, 4.0], 'b': [1.0, 4.0, 5.0, 6.0]}, columns=['timestamp', 'values', 'b'], generate_metadata=True) self.assertEqual(utils.to_json_structure(main.metadata.to_internal_simple_structure()), [{ 'selector': [], 'metadata': { # 'top_level': 'main', 'schema': metadata_base.CONTAINER_SCHEMA_VERSION, 'structural_type': 'd3m.container.pandas.DataFrame', 'semantic_types': ['https://metadata.datadrivendiscovery.org/types/Table'], 'dimension': { 'name': 'rows', 'semantic_types': ['https://metadata.datadrivendiscovery.org/types/TabularRow'], 'length': 4, }, }, }, { 'selector': ['__ALL_ELEMENTS__'], 'metadata': { 'dimension': { 'name': 'columns', 'semantic_types': ['https://metadata.datadrivendiscovery.org/types/TabularColumn'], 'length': 3, }, }, }, { 'selector': ['__ALL_ELEMENTS__', 0], 'metadata': {'structural_type': 'numpy.int64', 'name': 'timestamp'}, }, { 'selector': ['__ALL_ELEMENTS__', 1], 'metadata': {'structural_type': 'numpy.float64', 'name': 'values'}, }, { 'selector': ['__ALL_ELEMENTS__', 2], 'metadata': {'structural_type': 'numpy.float64', 'name': 'b'}, }]) hyperparams_class = StatisticalStd.StatisticalStdPrimitive.metadata.get_hyperparams() hp = hyperparams_class.defaults().replace({ 'use_columns': [1,2], 'use_semantic_types' : True, 'window_size':2 }) primitive = StatisticalStd.StatisticalStdPrimitive(hyperparams=hp) output_main = primitive._produce(inputs=main).value print(output_main) expected_output = container.DataFrame( {'timestamp': [1, 3, 2, 5], 'values': [1.0, 2.0, 3.0, 4.0], 'b': [1.0, 4.0, 5.0, 6.0], 'values_std': [0.5, 0.5, 0.5, 0.5], 'b_std': [1.5, 1.5, 0.5, 0.5]}, columns=['timestamp', 'values', 'b', 'values_std', 'b_std']) self.assertEqual(output_main[['timestamp', 'values', 'b', 'values_std', 'b_std']].values.tolist(), expected_output[ ['timestamp', 'values', 'b', 'values_std', 'b_std' ]].values.tolist()) self.assertEqual(utils.to_json_structure(output_main.metadata.to_internal_simple_structure()), [{'metadata': {'dimension': {'length': 4, 'name': 'rows', 'semantic_types': [ 'https://metadata.datadrivendiscovery.org/types/TabularRow']}, 'schema': 'https://metadata.datadrivendiscovery.org/schemas/v0/container.json', 'semantic_types': ['https://metadata.datadrivendiscovery.org/types/Table'], 'structural_type': 'd3m.container.pandas.DataFrame'}, 'selector': []}, {'metadata': {'dimension': {'length': 5, 'name': 'columns', 'semantic_types': [ 'https://metadata.datadrivendiscovery.org/types/TabularColumn']}}, 'selector': ['__ALL_ELEMENTS__']}, {'metadata': {'name': 'timestamp', 'structural_type': 'numpy.int64'}, 'selector': ['__ALL_ELEMENTS__', 0]}, {'metadata': {'name': 'values', 'structural_type': 'numpy.float64'}, 'selector': ['__ALL_ELEMENTS__', 1]}, {'metadata': {'name': 'b', 'structural_type': 'numpy.float64'}, 'selector': ['__ALL_ELEMENTS__', 2]}, {'metadata': {'name': 'values_std', 'semantic_types': ['https://metadata.datadrivendiscovery.org/types/Attribute'], 'structural_type': 'numpy.float64'}, 'selector': ['__ALL_ELEMENTS__', 3]}, {'metadata': {'name': 'b_std', 'semantic_types': ['https://metadata.datadrivendiscovery.org/types/Attribute'], 'structural_type': 'numpy.float64'}, 'selector': ['__ALL_ELEMENTS__', 4]}, ]) params = primitive.get_params() primitive.set_params(params=params) if __name__ == '__main__': unittest.main()
a28a37b7bb5df3b8e2d9c62214b8cdbe474acac8
35c8d28a6324d2425929c5aa43cf9d828c8977db
/favsinger/favsingerapp/admin.py
898788cbaeba2c06bb422217c3ef40ab79967ddf
[]
no_license
peanutyumyum/Likelion_8th
3bc9bb0414e0b5527ad6fbb4b86b90690e2f6111
c7d9510f42a5d12f6b6cd58b298abceaf6befa2e
refs/heads/master
2022-12-16T14:37:28.066275
2020-09-24T17:22:04
2020-09-24T17:22:04
275,782,380
0
0
null
null
null
null
UTF-8
Python
false
false
118
py
from django.contrib import admin from .models import singer # Register your models here. admin.site.register(singer)
110218098957e307e9f699349df924065f373b44
f4d0c26d3aa27c77a7c27d9002a08465a0638cbb
/csv_schema/migrations/0008_auto_20171025_1410.py
5a5a669d07a6928196bbb33dce2d54f89af67d33
[]
no_license
uk-gov-mirror/nhsengland.NCDR-reference-library
3afe0711f47dc1b5fa25646bc870a806b3512ce5
cac30ee0787e81fb9868731576c242c7ea3dbde8
refs/heads/master
2023-04-03T15:10:19.320708
2017-11-03T15:03:27
2017-11-03T15:03:27
356,799,453
0
0
null
null
null
null
UTF-8
Python
false
false
427
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.6 on 2017-10-25 14:10 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('csv_schema', '0007_auto_20171025_1119'), ] operations = [ migrations.AlterUniqueTogether( name='row', unique_together=set([('table', 'data_item')]), ), ]
6750c234e65cc1a9d0a5a6882b55fffe847f320d
781e2692049e87a4256320c76e82a19be257a05d
/assignments/python/wc/src/884.py
a8d74bc04bec198c408a24561663646aefed2414
[]
no_license
itsolutionscorp/AutoStyle-Clustering
54bde86fe6dbad35b568b38cfcb14c5ffaab51b0
be0e2f635a7558f56c61bc0b36c6146b01d1e6e6
refs/heads/master
2020-12-11T07:27:19.291038
2016-03-16T03:18:00
2016-03-16T03:18:42
59,454,921
4
0
null
2016-05-23T05:40:56
2016-05-23T05:40:56
null
UTF-8
Python
false
false
169
py
def word_count(phrase): phrase = phrase.split() occurences = {} for word in set(phrase): occurences[word] = phrase.count(word) return occurences
d313990cc102d01487a3785a466d81c1356d418e
d3dc1d50f683566c9d71722f218afc9340ed6ab5
/mql.tolog/tests/test_tolog_converter.py
c083f199c167dc39587fb81161ecaf545da5e0ec
[]
no_license
heuer/mappa
b20ec8a61979a75802af19803c54ee339e65807c
fc89cf32560d2e9ea6b380127b77fb3587bbd06c
refs/heads/master
2021-01-23T15:31:54.242393
2015-03-16T17:17:35
2015-03-16T17:17:35
32,339,134
5
0
null
null
null
null
UTF-8
Python
false
false
3,721
py
# -*- coding: utf-8 -*- # # Copyright (c) 2007 - 2014 -- Lars Heuer - Semagia <http://www.semagia.com/>. # All rights reserved. # # BSD license. # """\ Tests against the "back-to-tolog" stylesheet. :author: Lars Heuer (heuer[at]semagia.com) :organization: Semagia - <http://www.semagia.com/> :license: BSD License """ import os import io import json import glob from nose.tools import eq_ from mql import tolog from mql.tolog import xsl _IGNORE = ( 'fold-type-assoc.tl', 'tolog-tut-2-4_2.tl', 'topic-types.tl', 'topic-types2.tl', 'fold-scope-name.tl', 'fold-scope-occ.tl', 'create-dyn-occ3.tl', ) def fail(msg): raise AssertionError(msg) def test_tolog_plus(): base_dir = os.path.abspath('./xsltests/') with open(os.path.join(base_dir, 'query2optimizers.json'), 'rb') as f: query2optimizers = json.load(f) tolog_dir = os.path.abspath(os.path.join(base_dir, './in/')) found_files = set([os.path.basename(fn) for fn in glob.glob(tolog_dir + '/*.tl')]) baseline_dir = os.path.join(base_dir, './baseline/') for fn in query2optimizers: if fn in _IGNORE: continue found_files.remove(fn) optimizers = ['query-c14n'] optimizers.extend(query2optimizers[fn]) filename = os.path.join(tolog_dir, fn) f = open(filename, 'rb') # 1. Apply optimizers and return tolog+ tl = tolog.convert_to_tolog_plus(f, optimizers=optimizers) # 2. Parse created tolog+ try: tree = tolog.parse_to_etree(tl, iri='http://www.example.org/mql-tolog/', tolog_plus=True) except Exception, ex: fail('Error: %r in %s' % (ex, tl)) # 3. Apply optimizers to the newly parsed query res = xsl.apply_transformations(tree, optimizers) out = io.BytesIO() res.write_c14n(out) expected = io.open(os.path.join(baseline_dir, fn + '.c14n'), encoding='utf-8').read() yield eq_, expected, out.getvalue(), 't+: %s\n%s' % (fn, tl) for fn in _IGNORE: found_files.remove(fn) if found_files: raise Exception('Found more files in the directory: %r' % found_files) def test_tolog(): base_dir = os.path.abspath('./xsltests/') with open(os.path.join(base_dir, 'query2optimizers.json'), 'rb') as f: query2optimizers = json.load(f) tolog_dir = os.path.abspath(os.path.join(base_dir, './in/')) found_files = set([os.path.basename(fn) for fn in glob.glob(tolog_dir + '/*.tl')]) baseline_dir = os.path.join(base_dir, './baseline/') for fn in query2optimizers: if fn in _IGNORE: continue found_files.remove(fn) optimizers = ['query-c14n'] optimizers.extend(query2optimizers[fn]) filename = os.path.join(tolog_dir, fn) f = open(filename, 'rb') # 1. Apply optimizers and return tolog tl = tolog.convert_to_tolog(f, optimizers=optimizers) # 2. Parse created tolog+ try: tree = tolog.parse_to_etree(tl, iri='http://www.example.org/mql-tolog/', tolog_plus=False) except Exception, ex: fail('Error: %r in %s' % (ex, tl)) # 3. Apply optimizers to the newly parsed query res = xsl.apply_transformations(tree, optimizers) out = io.BytesIO() res.write_c14n(out) expected = io.open(os.path.join(baseline_dir, fn + '.c14n'), encoding='utf-8').read() yield eq_, expected, out.getvalue(), 't: %s' % fn for fn in _IGNORE: found_files.remove(fn) if found_files: raise Exception('Found more files in the directory: %r' % found_files) if __name__ == '__main__': import nose nose.core.runmodule()
[ "Lars@localhost" ]
Lars@localhost
87ea03bc8f13ab1d0b3226d73cc1dd151a73eb2f
e8f76b7162c9781a4457cd06f5405925a9a18593
/vbb_backend/users/admin.py
df843087d8aa089373a17f4662347cf93c4abe73
[ "MIT" ]
permissive
wasswarichard/backend-vbb-portal
bcb54d4cf63f91862704ef5f6e5953b76d8839e8
8e4deec8a6e71b17da3476b0a05dbfe73d547b55
refs/heads/master
2023-03-24T21:09:25.364768
2021-03-16T18:53:26
2021-03-16T18:53:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
438
py
from django.contrib import admin from vbb_backend.users.models import User, Mentor, Student, HeadMaster from django.contrib.auth.admin import UserAdmin class MyUserAdmin(UserAdmin): model = User fieldsets = UserAdmin.fieldsets + ( (None, {"fields": ("user_type", "external_id")}), ) admin.site.register(User, MyUserAdmin) admin.site.register(Mentor) admin.site.register(Student) admin.site.register(HeadMaster)
1fd18852d0cbcda793b74043c834504fd069e531
e296f0f3d7db598aba5658de3ff8c767634e533e
/zoo/migrations/069_add_columns_is_visible_and_moderated_by_and_moderated_at_to_photos_photo.py
c04134e45dbcd4f0f9271346ff9617625c56833f
[]
no_license
devfort/wildlifenearyou
b2ac05070aa6face60156d6e7c85f98f00013c25
8e618aea90bbcedc45a4e30199e31880ea9e6dca
refs/heads/master
2021-01-13T01:25:29.467549
2010-06-10T06:37:43
2010-06-10T06:37:43
7,874,317
1
0
null
null
null
null
UTF-8
Python
false
false
481
py
from django.conf import settings if settings.DATABASE_ENGINE == 'mysql': from dmigrations.mysql import migrations as m elif settings.DATABASE_ENGINE == 'sqlite3': from dmigrations.sqlite3 import migrations as m import datetime migration = m.Compound([ m.AddColumn('photos', 'photo', 'is_visible', 'bool NOT NULL'), m.AddColumn('photos', 'photo', 'moderated_at', 'datetime NULL'), m.AddColumn('photos', 'photo', 'moderated_by', 'integer NULL', 'auth_user'), ])
4886128779480e9bd970b67106abee8174e3da54
b0ef0b7b7752564b703b4438e2624a4645299006
/usedcar/userinfo/models.py
3e3221136a2010eb538098c2a6e27d5b90d3e2aa
[]
no_license
beantomemory/django
66f1ff3f7fbc72df18ee01e394e733b1135fb01c
1b588cf3888724a5f4d86df04d7ebc91d7f20000
refs/heads/master
2020-04-19T09:17:32.771039
2019-01-29T07:21:01
2019-01-29T07:21:01
168,105,733
0
0
null
null
null
null
UTF-8
Python
false
false
1,989
py
from django.db import models from django.contrib.auth.models import AbstractUser # Create your models here. sex_choice = ( (0, "男"), (1, "女"), ) role_choice = ( (0, "买家"), (1, "卖家"), (2, "平台"), ) bank_choice = ( (0, "中国工商银行"), (1, "中国建设银行"), (2, "中国农业银行"), (3, "招商银行"), (4, "北京银行"), (5, "我家银行"), ) class Userinfo(AbstractUser): # username = models.CharField(verbose_name="用户名", max_length=30, null=False) # password = models.CharField(verbose_name="密码", max_length=200, null = False) realname = models.CharField(verbose_name="真实姓名", max_length=30, null=False) iden = models.CharField(verbose_name="身份证号", max_length=18, null=False) ads = models.CharField(verbose_name="地址", max_length=200, null=False) uphone = models.CharField(verbose_name="手机号", max_length=20, null=False) sex = models.IntegerField(verbose_name="性别", choices=sex_choice, default=0) role = models.IntegerField(verbose_name="角色", choices=role_choice, default=0) isactive = models.BooleanField(verbose_name="是否激活", default = False) isban = models.BooleanField(verbose_name="是否禁用", default = False) def __str__(self): return self.username class Meta: db_table = "userinfo" verbose_name = "用户信息" verbose_name_plural = verbose_name class Bank(models.Model): cardno = models.CharField("卡号", max_length=30, null=False) user = models.ForeignKey(Userinfo) cpwd = models.CharField("交易密码", max_length=200, null=False) bank = models.IntegerField("开户银行", choices=bank_choice, default=0) isdelete = models.BooleanField("是否删除", default=False) def __str__(self): return self.bank class Meta: db_table = "bank" verbose_name = "银行卡" verbose_name_plural = verbose_name
72a1e8fbf7d997f06f2b6a1c01637a81067d34d5
e09b905a092bd324050e405e1caf1e8a5630cc1f
/pyscf/x2c/sfx2c1e_hess.py
3f553e32752db64b4fc050c0732c6e6e071cc884
[ "Apache-2.0" ]
permissive
yangcal/pyscf
09a2776e8d88b2118f1d00a810a9c90e7e214281
e833b9a4fd5fb24a061721e5807e92c44bb66d06
refs/heads/master
2021-06-18T11:45:57.808856
2021-03-18T04:58:53
2021-03-18T04:58:53
246,690,849
1
0
Apache-2.0
2020-03-11T22:17:28
2020-03-11T22:17:28
null
UTF-8
Python
false
false
16,868
py
#!/usr/bin/env python # Copyright 2014-2020 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ''' Analytical nuclear hessian for 1-electron spin-free x2c method Ref. JCP 135, 244104 (2011); DOI:10.1063/1.3667202 JCTC 8, 2617 (2012); DOI:10.1021/ct300127e ''' from functools import reduce import numpy import scipy.linalg from pyscf import lib from pyscf import gto from pyscf.x2c import x2c from pyscf.x2c import sfx2c1e_grad def hcore_hess_generator(x2cobj, mol=None): '''nuclear gradients of 1-component X2c hcore Hamiltonian (spin-free part only) ''' if mol is None: mol = x2cobj.mol xmol, contr_coeff = x2cobj.get_xmol(mol) if x2cobj.basis is not None: s22 = xmol.intor_symmetric('int1e_ovlp') s21 = gto.intor_cross('int1e_ovlp', xmol, mol) contr_coeff = lib.cho_solve(s22, s21) get_h1_xmol = gen_sf_hfw(xmol, x2cobj.approx) def hcore_deriv(ia, ja): h1 = get_h1_xmol(ia, ja) if contr_coeff is not None: h1 = lib.einsum('pi,xypq,qj->xyij', contr_coeff, h1, contr_coeff) return numpy.asarray(h1) return hcore_deriv def gen_sf_hfw(mol, approx='1E'): approx = approx.upper() c = lib.param.LIGHT_SPEED h0, s0 = sfx2c1e_grad._get_h0_s0(mol) e0, c0 = scipy.linalg.eigh(h0, s0) c0[:,c0[1]<0] *= -1 aoslices = mol.aoslice_by_atom() nao = mol.nao_nr() if 'ATOM' in approx: x0 = numpy.zeros((nao,nao)) for ia in range(mol.natm): ish0, ish1, p0, p1 = aoslices[ia] shls_slice = (ish0, ish1, ish0, ish1) t1 = mol.intor('int1e_kin', shls_slice=shls_slice) s1 = mol.intor('int1e_ovlp', shls_slice=shls_slice) with mol.with_rinv_at_nucleus(ia): z = -mol.atom_charge(ia) v1 = z * mol.intor('int1e_rinv', shls_slice=shls_slice) w1 = z * mol.intor('int1e_prinvp', shls_slice=shls_slice) x0[p0:p1,p0:p1] = x2c._x2c1e_xmatrix(t1, v1, w1, s1, c) else: cl0 = c0[:nao,nao:] cs0 = c0[nao:,nao:] x0 = scipy.linalg.solve(cl0.T, cs0.T).T t0x0 = numpy.dot(s0[nao:,nao:], x0) s_nesc0 = s0[:nao,:nao] + numpy.dot(x0.T, t0x0) w_s, v_s = scipy.linalg.eigh(s0[:nao,:nao]) w_sqrt = numpy.sqrt(w_s) s_nesc0_vbas = reduce(numpy.dot, (v_s.T, s_nesc0, v_s)) R0_mid = numpy.einsum('i,ij,j->ij', 1./w_sqrt, s_nesc0_vbas, 1./w_sqrt) wr0, vr0 = scipy.linalg.eigh(R0_mid) wr0_sqrt = numpy.sqrt(wr0) # R0 in v_s basis R0 = numpy.dot(vr0/wr0_sqrt, vr0.T) R0 *= w_sqrt R0 /= w_sqrt[:,None] # Transform R0 back R0 = reduce(numpy.dot, (v_s, R0, v_s.T)) R0 = x2c._get_r(s0[:nao,:nao], s_nesc0) c_fw0 = numpy.vstack((R0, numpy.dot(x0, R0))) h0_fw_half = numpy.dot(h0, c_fw0) epq = e0[:,None] - e0 degen_mask = abs(epq) < 1e-7 epq[degen_mask] = 1e200 s2aa = mol.intor('int1e_ipipovlp', comp=9).reshape(3,3,nao,nao) t2aa = mol.intor('int1e_ipipkin', comp=9).reshape(3,3,nao,nao) v2aa = mol.intor('int1e_ipipnuc', comp=9).reshape(3,3,nao,nao) w2aa = mol.intor('int1e_ipippnucp', comp=9).reshape(3,3,nao,nao) s2ab = mol.intor('int1e_ipovlpip', comp=9).reshape(3,3,nao,nao) t2ab = mol.intor('int1e_ipkinip', comp=9).reshape(3,3,nao,nao) v2ab = mol.intor('int1e_ipnucip', comp=9).reshape(3,3,nao,nao) w2ab = mol.intor('int1e_ippnucpip', comp=9).reshape(3,3,nao,nao) n2 = nao * 2 h2ao = numpy.zeros((3,3,n2,n2), dtype=v2aa.dtype) s2ao = numpy.zeros((3,3,n2,n2), dtype=v2aa.dtype) get_h1_etc = sfx2c1e_grad._gen_first_order_quantities(mol, e0, c0, x0, approx) def hcore_deriv(ia, ja): ish0, ish1, i0, i1 = aoslices[ia] jsh0, jsh1, j0, j1 = aoslices[ja] s2cc = numpy.zeros_like(s2aa) t2cc = numpy.zeros_like(s2aa) v2cc = numpy.zeros_like(s2aa) w2cc = numpy.zeros_like(s2aa) if ia == ja: with mol.with_rinv_origin(mol.atom_coord(ia)): z = mol.atom_charge(ia) rinv2aa = z*mol.intor('int1e_ipiprinv', comp=9).reshape(3,3,nao,nao) rinv2ab = z*mol.intor('int1e_iprinvip', comp=9).reshape(3,3,nao,nao) prinvp2aa = z*mol.intor('int1e_ipipprinvp', comp=9).reshape(3,3,nao,nao) prinvp2ab = z*mol.intor('int1e_ipprinvpip', comp=9).reshape(3,3,nao,nao) s2cc[:,:,i0:i1 ] = s2aa[:,:,i0:i1 ] s2cc[:,:,i0:i1,j0:j1]+= s2ab[:,:,i0:i1,j0:j1] t2cc[:,:,i0:i1 ] = t2aa[:,:,i0:i1 ] t2cc[:,:,i0:i1,j0:j1]+= t2ab[:,:,i0:i1,j0:j1] v2cc -= rinv2aa + rinv2ab v2cc[:,:,i0:i1 ]+= v2aa[:,:,i0:i1 ] v2cc[:,:,i0:i1,j0:j1]+= v2ab[:,:,i0:i1,j0:j1] v2cc[:,:,i0:i1 ]+= rinv2aa[:,:,i0:i1] v2cc[:,:,i0:i1 ]+= rinv2ab[:,:,i0:i1] v2cc[:,:,: ,i0:i1]+= rinv2aa[:,:,i0:i1].transpose(0,1,3,2) v2cc[:,:,: ,i0:i1]+= rinv2ab[:,:,:,i0:i1] w2cc -= prinvp2aa + prinvp2ab w2cc[:,:,i0:i1 ]+= w2aa[:,:,i0:i1 ] w2cc[:,:,i0:i1,j0:j1]+= w2ab[:,:,i0:i1,j0:j1] w2cc[:,:,i0:i1 ]+= prinvp2aa[:,:,i0:i1] w2cc[:,:,i0:i1 ]+= prinvp2ab[:,:,i0:i1] w2cc[:,:,: ,i0:i1]+= prinvp2aa[:,:,i0:i1].transpose(0,1,3,2) w2cc[:,:,: ,i0:i1]+= prinvp2ab[:,:,:,i0:i1] else: s2cc[:,:,i0:i1,j0:j1] = s2ab[:,:,i0:i1,j0:j1] t2cc[:,:,i0:i1,j0:j1] = t2ab[:,:,i0:i1,j0:j1] v2cc[:,:,i0:i1,j0:j1] = v2ab[:,:,i0:i1,j0:j1] w2cc[:,:,i0:i1,j0:j1] = w2ab[:,:,i0:i1,j0:j1] zi = mol.atom_charge(ia) zj = mol.atom_charge(ja) with mol.with_rinv_at_nucleus(ia): shls_slice = (jsh0, jsh1, 0, mol.nbas) rinv2aa = mol.intor('int1e_ipiprinv', comp=9, shls_slice=shls_slice) rinv2ab = mol.intor('int1e_iprinvip', comp=9, shls_slice=shls_slice) prinvp2aa = mol.intor('int1e_ipipprinvp', comp=9, shls_slice=shls_slice) prinvp2ab = mol.intor('int1e_ipprinvpip', comp=9, shls_slice=shls_slice) rinv2aa = zi * rinv2aa.reshape(3,3,j1-j0,nao) rinv2ab = zi * rinv2ab.reshape(3,3,j1-j0,nao) prinvp2aa = zi * prinvp2aa.reshape(3,3,j1-j0,nao) prinvp2ab = zi * prinvp2ab.reshape(3,3,j1-j0,nao) v2cc[:,:,j0:j1] += rinv2aa v2cc[:,:,j0:j1] += rinv2ab.transpose(1,0,2,3) w2cc[:,:,j0:j1] += prinvp2aa w2cc[:,:,j0:j1] += prinvp2ab.transpose(1,0,2,3) with mol.with_rinv_at_nucleus(ja): shls_slice = (ish0, ish1, 0, mol.nbas) rinv2aa = mol.intor('int1e_ipiprinv', comp=9, shls_slice=shls_slice) rinv2ab = mol.intor('int1e_iprinvip', comp=9, shls_slice=shls_slice) prinvp2aa = mol.intor('int1e_ipipprinvp', comp=9, shls_slice=shls_slice) prinvp2ab = mol.intor('int1e_ipprinvpip', comp=9, shls_slice=shls_slice) rinv2aa = zj * rinv2aa.reshape(3,3,i1-i0,nao) rinv2ab = zj * rinv2ab.reshape(3,3,i1-i0,nao) prinvp2aa = zj * prinvp2aa.reshape(3,3,i1-i0,nao) prinvp2ab = zj * prinvp2ab.reshape(3,3,i1-i0,nao) v2cc[:,:,i0:i1] += rinv2aa v2cc[:,:,i0:i1] += rinv2ab w2cc[:,:,i0:i1] += prinvp2aa w2cc[:,:,i0:i1] += prinvp2ab s2cc = s2cc + s2cc.transpose(0,1,3,2) t2cc = t2cc + t2cc.transpose(0,1,3,2) v2cc = v2cc + v2cc.transpose(0,1,3,2) w2cc = w2cc + w2cc.transpose(0,1,3,2) h2ao[:,:,:nao,:nao] = v2cc h2ao[:,:,:nao,nao:] = t2cc h2ao[:,:,nao:,:nao] = t2cc h2ao[:,:,nao:,nao:] = w2cc * (.25/c**2) - t2cc s2ao[:,:,:nao,:nao] = s2cc s2ao[:,:,nao:,nao:] = t2cc * (.5/c**2) h1i, s1i, e1i, c1i, x1i, s_nesc1i, R1i, c_fw1i = get_h1_etc(ia) h1j, s1j, e1j, c1j, x1j, s_nesc1j, R1j, c_fw1j = get_h1_etc(ja) if 'ATOM' not in approx: f2 = lib.einsum('xypq,qj->xypj', h2ao, c0[:,nao:]) f2+= lib.einsum('xpq,yqj->xypj', h1i, c1j) f2+= lib.einsum('ypq,xqj->xypj', h1j, c1i) sc2 = lib.einsum('xypq,qj->xypj', s2ao, c0[:,nao:]) sc2+= lib.einsum('xpq,yqj->xypj', s1i, c1j) sc2+= lib.einsum('ypq,xqj->xypj', s1j, c1i) f2-= sc2 * e0[nao:] sc1i = lib.einsum('xpq,qj->xpj', s1i, c0[:,nao:]) sc1j = lib.einsum('xpq,qj->xpj', s1j, c0[:,nao:]) sc1i+= lib.einsum('pq,xqj->xpj', s0, c1i) sc1j+= lib.einsum('pq,xqj->xpj', s0, c1j) f2-= lib.einsum('xpq,yqj->xypj', sc1i, e1j) f2-= lib.einsum('ypq,xqj->xypj', sc1j, e1i) c2 = lib.einsum('pi,xypj->xyij', c0.conj(), f2) / -epq[:,nao:] c2_ao = lib.einsum('pq,xyqi->xypi', c0, c2) cl2 = c2_ao[:,:,:nao] cs2 = c2_ao[:,:,nao:] tmp = cs2 - lib.einsum('pq,xyqi->xypi', x0, cl2) tmp-= lib.einsum('xpq,yqi->xypi', x1i, c1j[:,:nao]) tmp-= lib.einsum('ypq,xqi->xypi', x1j, c1i[:,:nao]) x2 = scipy.linalg.solve(cl0.T, tmp.reshape(-1,nao).T).T.reshape(3,3,nao,nao) hfw2 = numpy.empty((3,3,nao,nao)) for i in range(3): for j in range(3): if 'ATOM' in approx: s_nesc2 = reduce(numpy.dot, (x0.T, s2ao[i,j,nao:,nao:], x0)) s_nesc2 += s2ao[i,j,:nao,:nao] R2 = _get_r2((w_sqrt,v_s), s_nesc0, s1i[i,:nao,:nao], s_nesc1i[i], s1j[j,:nao,:nao], s_nesc1j[j], s2ao[i,j,:nao,:nao], s_nesc2, (wr0_sqrt,vr0)) c_fw2 = numpy.vstack((R2, numpy.dot(x0, R2))) else: s_nesc2 = numpy.dot(x2[i,j].T, t0x0) s_nesc2 += reduce(numpy.dot, (x1i[i].T, s1j[j,nao:,nao:], x0)) s_nesc2 += reduce(numpy.dot, (x0.T, s1i[i,nao:,nao:], x1j[j])) s_nesc2 += reduce(numpy.dot, (x1i[i].T, s0[nao:,nao:], x1j[j])) s_nesc2 = s_nesc2 + s_nesc2.T s_nesc2 += reduce(numpy.dot, (x0.T, s2ao[i,j,nao:,nao:], x0)) s_nesc2 += s2ao[i,j,:nao,:nao] R2 = _get_r2((w_sqrt,v_s), s_nesc0, s1i[i,:nao,:nao], s_nesc1i[i], s1j[j,:nao,:nao], s_nesc1j[j], s2ao[i,j,:nao,:nao], s_nesc2, (wr0_sqrt,vr0)) c_fw_s = (numpy.dot(x0, R2) + numpy.dot(x1i[i], R1j[j]) + numpy.dot(x1j[j], R1i[i]) + numpy.dot(x2[i,j], R0)) c_fw2 = numpy.vstack((R2, c_fw_s)) tmp = numpy.dot(c_fw2.T, h0_fw_half) tmp += reduce(numpy.dot, (c_fw1i[i].T, h1j[j], c_fw0)) tmp += reduce(numpy.dot, (c_fw0.T, h1i[i], c_fw1j[j])) tmp += reduce(numpy.dot, (c_fw1i[i].T, h0, c_fw1j[j])) hfw2[i,j] = tmp + tmp.T hfw2[i,j]+= reduce(numpy.dot, (c_fw0.T, h2ao[i,j], c_fw0)) return hfw2 return hcore_deriv def _get_r2(s0_roots, sa0, s1i, sa1i, s1j, sa1j, s2, sa2, r0_roots): w_sqrt, v_s = s0_roots w_invsqrt = 1. / w_sqrt wr0_sqrt, vr0 = r0_roots wr0_invsqrt = 1. / wr0_sqrt sa0 = lib.einsum('pi,pq,qj->ij', v_s, sa0 , v_s) s1i = lib.einsum('pi,pq,qj->ij', v_s, s1i , v_s) s1j = lib.einsum('pi,pq,qj->ij', v_s, s1j , v_s) s2 = lib.einsum('pi,pq,qj->ij', v_s, s2 , v_s) sa1i = lib.einsum('pi,pq,qj->ij', v_s, sa1i, v_s) sa1j = lib.einsum('pi,pq,qj->ij', v_s, sa1j, v_s) sa2 = lib.einsum('pi,pq,qj->ij', v_s, sa2 , v_s) s1i_sqrt = s1i / (w_sqrt[:,None] + w_sqrt) s1i_invsqrt = (numpy.einsum('i,ij,j->ij', w_invsqrt**2, s1i, w_invsqrt**2) / -(w_invsqrt[:,None] + w_invsqrt)) s1j_sqrt = s1j / (w_sqrt[:,None] + w_sqrt) s1j_invsqrt = (numpy.einsum('i,ij,j->ij', w_invsqrt**2, s1j, w_invsqrt**2) / -(w_invsqrt[:,None] + w_invsqrt)) tmp = numpy.dot(s1i_sqrt, s1j_sqrt) s2_sqrt = (s2 - tmp - tmp.T) / (w_sqrt[:,None] + w_sqrt) tmp = numpy.dot(s1i*w_invsqrt**2, s1j) tmp = s2 - tmp - tmp.T tmp = -numpy.einsum('i,ij,j->ij', w_invsqrt**2, tmp, w_invsqrt**2) tmp1 = numpy.dot(s1i_invsqrt, s1j_invsqrt) s2_invsqrt = (tmp - tmp1 - tmp1.T) / (w_invsqrt[:,None] + w_invsqrt) R1i_mid = lib.einsum('ip,pj,j->ij', s1i_invsqrt, sa0, w_invsqrt) R1i_mid = R1i_mid + R1i_mid.T R1i_mid+= numpy.einsum('i,ij,j->ij', w_invsqrt, sa1i, w_invsqrt) R1i_mid = tmpi = lib.einsum('pi,pq,qj->ij', vr0, R1i_mid, vr0) R1i_mid = (numpy.einsum('i,ij,j->ij', wr0_invsqrt**2, R1i_mid, wr0_invsqrt**2) / -(wr0_invsqrt[:,None] + wr0_invsqrt)) R1j_mid = lib.einsum('ip,pj,j->ij', s1j_invsqrt, sa0, w_invsqrt) R1j_mid = R1j_mid + R1j_mid.T R1j_mid+= numpy.einsum('i,ij,j->ij', w_invsqrt, sa1j, w_invsqrt) R1j_mid = tmpj = lib.einsum('pi,pq,qj->ij', vr0, R1j_mid, vr0) R1j_mid = (numpy.einsum('i,ij,j->ij', wr0_invsqrt**2, R1j_mid, wr0_invsqrt**2) / -(wr0_invsqrt[:,None] + wr0_invsqrt)) # second derivative of (s_invsqrt * sa * s_invsqrt), 9 terms R2_mid = lib.einsum('ip,pj,j->ij', s2_invsqrt , sa0 , w_invsqrt) R2_mid+= lib.einsum('ip,pj,j->ij', s1i_invsqrt, sa1j, w_invsqrt) R2_mid+= lib.einsum('i,ip,pj->ij', w_invsqrt , sa1i, s1j_invsqrt) R2_mid+= lib.einsum('ip,pq,qj->ij', s1i_invsqrt, sa0 , s1j_invsqrt) R2_mid = R2_mid + R2_mid.T R2_mid+= numpy.einsum('i,ij,j->ij', w_invsqrt, sa2, w_invsqrt) R2_mid = lib.einsum('pi,pq,qj->ij', vr0, R2_mid, vr0) tmp = numpy.dot(tmpi*wr0_invsqrt**2, tmpj) tmp = R2_mid - tmp - tmp.T tmp = -numpy.einsum('i,ij,j->ij', wr0_invsqrt**2, tmp, wr0_invsqrt**2) tmp1 = numpy.dot(R1i_mid, R1j_mid) R2_mid = (tmp - tmp1 - tmp1.T) / (wr0_invsqrt[:,None] + wr0_invsqrt) R0_mid = numpy.dot(vr0*wr0_invsqrt, vr0.T) R1i_mid = reduce(numpy.dot, (vr0, R1i_mid, vr0.T)) R1j_mid = reduce(numpy.dot, (vr0, R1j_mid, vr0.T)) R2_mid = reduce(numpy.dot, (vr0, R2_mid, vr0.T)) R2 = lib.einsum('ip,pj,j->ij' , s2_invsqrt , R0_mid , w_sqrt) R2 += lib.einsum('ip,pj,j->ij' , s1i_invsqrt, R1j_mid, w_sqrt) R2 += lib.einsum('ip,pq,qj->ij', s1i_invsqrt, R0_mid , s1j_sqrt) R2 += lib.einsum('ip,pj,j->ij' , s1j_invsqrt, R1i_mid, w_sqrt) R2 += numpy.einsum('i,ij,j->ij', w_invsqrt , R2_mid , w_sqrt) R2 += lib.einsum('i,iq,qj->ij' , w_invsqrt , R1i_mid, s1j_sqrt) R2 += lib.einsum('ip,pq,qj->ij', s1j_invsqrt, R0_mid , s1i_sqrt) R2 += lib.einsum('i,iq,qj->ij' , w_invsqrt , R1j_mid, s1i_sqrt) R2 += lib.einsum('i,iq,qj->ij' , w_invsqrt , R0_mid , s2_sqrt) R2 = reduce(numpy.dot, (v_s, R2, v_s.T)) return R2 if __name__ == '__main__': bak = lib.param.LIGHT_SPEED lib.param.LIGHT_SPEED = 10 mol = gto.M( verbose = 0, atom = [["O" , (0. , 0. , 0.0001)], [1 , (0. , -0.757 , 0.587)], [1 , (0. , 0.757 , 0.587)]], basis = '3-21g', ) h1_deriv_1 = sfx2c1e_grad.gen_sf_hfw(mol, approx='1E') mol = gto.M( verbose = 0, atom = [["O" , (0. , 0. ,-0.0001)], [1 , (0. , -0.757 , 0.587)], [1 , (0. , 0.757 , 0.587)]], basis = '3-21g', ) h1_deriv_2 = sfx2c1e_grad.gen_sf_hfw(mol, approx='1E') mol = gto.M( verbose = 0, atom = [["O" , (0. , 0. , 0. )], [1 , (0. , -0.757 , 0.587)], [1 , (0. , 0.757 , 0.587)]], basis = '3-21g', ) h2_deriv = gen_sf_hfw(mol) h2 = h2_deriv(0,0) h2_ref = (h1_deriv_1(0)[2] - h1_deriv_2(0)[2]) / 0.0002 * lib.param.BOHR print(abs(h2[2,2]-h2_ref).max()) print(lib.finger(h2) - 33.71188112440316) h2 = h2_deriv(1,0) h2_ref = (h1_deriv_1(1)[2] - h1_deriv_2(1)[2]) / 0.0002 * lib.param.BOHR print(abs(h2[2,2]-h2_ref).max()) print(lib.finger(h2) - -23.609411428378138) lib.param.LIGHT_SPEED = bak
7554d991424a83b97388e0f2edccaa713a4db8e9
7f114a1fb511b816c116d5b9e67cb998e3e23956
/PyplayS31.py
c0da34dbd4a6b96011dfd4aadb0932634bbc90f4
[]
no_license
Bharanij27/bharanirep
90ac34eb28deaa7ec96d042de456de71b96866d7
982133a7939c889d433c178a601441fa087293d9
refs/heads/master
2021-08-07T20:22:36.244395
2020-06-05T04:58:10
2020-06-05T04:58:10
186,580,768
0
6
null
null
null
null
UTF-8
Python
false
false
136
py
n=list(input()) s=0 for i in range(0,len(n)): if n[i]=='(': s=s+1 elif n[i]==')': s=s-1 if s==0: print("yes") else: print("no")
704a4aee8b6f27bb5942d6c99ff9aad57ada94b8
d2f50124ff3bec70b9b3139ecb063b06e526781d
/biable/migrations/0030_auto_20170104_1540.py
e5309f4b5538cf1b5c001ee7667bcac85e3fe29f
[]
no_license
odecsarrollo/odecopack-componentes
e8d993f089bf53bbf3c53d1265e70ac5c06b59b8
b583a115fb30205d358d97644c38d66636b573ff
refs/heads/master
2022-12-12T00:33:02.874268
2020-08-13T18:45:01
2020-08-13T18:45:01
189,262,705
0
0
null
2022-12-08T11:23:46
2019-05-29T16:37:21
Python
UTF-8
Python
false
false
872
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.3 on 2017-01-04 20:40 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('biable', '0029_auto_20170104_1528'), ] operations = [ migrations.AlterField( model_name='vendedorbiable', name='colaborador', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.PROTECT, related_name='mi_vendedor_biable', to='usuarios.UserExtended'), ), migrations.AlterField( model_name='vendedorbiableuser', name='usuario', field=models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, related_name='mis_vendedores', to='usuarios.UserExtended'), ), ]
ef1d6fd47f5542551fbfe13739016b1565abc26b
1bddfbc901946b6cdef47e5325626d26a9865a51
/setup.py
c7120cb1461fa0651511e8b384ddc401e186d6a8
[]
no_license
kagesenshi/dkiscm.importer
ce56eccf70ac776692a0e1015d3e5bc311680979
c255bca2a755cd3681106c5d3ee2f917de359e2b
refs/heads/master
2016-09-11T00:58:54.109283
2013-10-01T20:05:23
2013-10-01T20:05:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,667
py
from setuptools import setup, find_packages import os version = '1.4.dev0' setup(name='dkiscm.importer', version=version, description="", long_description=open("README.rst").read() + "\n" + open(os.path.join("docs", "HISTORY.rst")).read(), # Get more strings from # http://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ "Framework :: Plone", "Programming Language :: Python", "Topic :: Software Development :: Libraries :: Python Modules", ], keywords='', author='Inigo Consulting', author_email='[email protected]', url='http://github.com/inigoconsulting/', license='gpl', packages=find_packages(), namespace_packages=['dkiscm'], include_package_data=True, zip_safe=False, install_requires=[ 'setuptools', 'plone.app.dexterity', 'plone.namedfile [blobs]', 'collective.grok', 'plone.app.referenceablebehavior', 'collective.dexteritytextindexer', 'plone.app.multilingual', 'plone.multilingualbehavior', # -*- Extra requirements: -*- ], extras_require={ 'test': [ 'plone.app.testing', ], }, entry_points=""" # -*- Entry points: -*- [z3c.autoinclude.plugin] target = plone """, # The next two lines may be deleted after you no longer need # addcontent support from paster and before you distribute # your package. setup_requires=["PasteScript"], paster_plugins=["templer.localcommands"], )
56702c50ea0061115156969d39cfedd65bcc9d30
63c0a3e5599be2a038bb713abc69584db42a3aae
/system_status.py
baf403826f3a9dc1bef32657a89548c790de8370
[]
no_license
dmitryduev/sserv-njs
6ccc98512547ba399e62dd83a99eef6ffe92c075
17e53069a2804506aca2a2b984ab465c5b5ff718
refs/heads/master
2020-05-22T04:39:53.115636
2018-04-11T06:44:43
2018-04-11T06:44:43
49,021,310
0
0
null
null
null
null
UTF-8
Python
false
false
2,005
py
from __future__ import print_function import time import psutil import datetime import json import traceback import argparse if __name__ == '__main__': ''' Create command line argument parser ''' parser = argparse.ArgumentParser(formatter_class=argparse.RawDescriptionHelpFormatter, description='Manage data archive for Robo-AO') parser.add_argument('config_file', metavar='config_file', action='store', help='path to config file.', type=str) args = parser.parse_args() # read in config with open(args.config_file) as cjson: config = json.load(cjson) # config must not be empty: if len(config) == 0: raise Exception('Failed to load config file') while 1: # construct line with telemetry try: # UTC running? start_time #_enqueued_tasks system_CPU_usage_% system_memory_usage_% _utc_now = datetime.datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S.%f')[:-3] _cpu_usage = psutil.cpu_percent(interval=None) _mem_usage = psutil.virtual_memory().percent _root = psutil.disk_usage('/').percent _data = psutil.disk_usage('/Data').percent _data_1 = psutil.disk_usage('/Data1').percent _data_2 = psutil.disk_usage('/Data2').percent _data_3 = psutil.disk_usage('/Data3').percent _data_4 = psutil.disk_usage('/Data4').percent _t = '{:s} {:.1f} {:.1f} {:.1f} {:.1f} {:.1f} {:.1f} {:.1f} {:.1f}\n'.format( _utc_now, _cpu_usage, _mem_usage, _root, _data, _data_1, _data_2, _data_3, _data_4) with open(config['status']['Control machine status']['data-file'], 'w') as _f: _f.write(_t) except Exception as _e: print(_e) traceback.print_exc() # take a nap time.sleep(0.95)
c6de41952c29d959461ae7ba8c7269444ef04189
2c20cd2b84b44f6711d53e02f681b455100d5bdc
/setup.py
e3f064e118ecf33fe25b41078bef36e51b3bfdde
[ "MIT" ]
permissive
YAtOff/s3rsync
a28c69c21a1091ee3d53362af8a9d40357d0469a
ebb36e47602491ef7dcb073bed9527f6243e317b
refs/heads/master
2023-05-12T04:05:19.950099
2020-01-10T10:57:28
2020-01-10T10:57:28
224,131,742
0
1
MIT
2023-05-01T21:17:12
2019-11-26T07:43:08
Python
UTF-8
Python
false
false
184
py
from setuptools import setup, find_packages setup( name="s3rsync", version="1.0.0", description="", packages=find_packages(exclude=("tests",)), zip_safe=False, )
35c2d0ab34307b215c50250f7de343a66666276a
9b5c995b247803b64895223fc51f407e9da2df45
/IQ/Files/create_file_and_write_data.py
2cc9b05c3f86d4e7f3dbc1997bc0e34c16dac890
[]
no_license
Shyam-Personal/python_repo
3453156ed73efaa91fa5e01dd15a1a0e664d3d22
1809de5afbecc1fd17cd70ae80a1eb4b9282d554
refs/heads/master
2021-01-25T14:10:30.394842
2019-09-23T13:26:47
2019-09-23T13:26:47
123,660,813
1
0
null
null
null
null
UTF-8
Python
false
false
418
py
""" Create 10 files of 1MB size each. """ def main(): try: #Solution 1 data = "A"*1024*1024 for i in range(10): filename = "Test_{:03d}".format(i) with open(filename, "w") as fh: fh.write(data) except Exception as e: print("Exception while executing program. Error details: {}".format(str(e))) if __name__ == "__main__": main()
272486de2b4247c949cc78cd8e0754d37480de58
b2913030cf1646310b08efaa57c2199bb08e37c9
/general/apero_updates/inprogress/is_night_obs.py
c5c6c4306f1de856f7212981e99d50db3911ae68
[ "MIT" ]
permissive
njcuk9999/apero-utils
6f5b5083537562a31573b5c4cc76908c5fe194b9
368d53182428ca8befcdd3e5c8ca054f61913711
refs/heads/master
2023-08-31T02:56:01.369406
2023-08-18T15:12:59
2023-08-18T15:12:59
238,777,509
3
5
MIT
2023-08-17T14:15:41
2020-02-06T20:24:49
Python
UTF-8
Python
false
false
2,454
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ # CODE NAME HERE # CODE DESCRIPTION HERE Created on 2023-01-31 at 11:24 @author: cook """ import numpy as np import matplotlib.pyplot as plt from astropy.io import fits from astropy.table import Table from astropy import units as u from tqdm import tqdm import warnings # ============================================================================= # Define variables # ============================================================================= # ----------------------------------------------------------------------------- # ============================================================================= # Define functions # ============================================================================= def function1(): return 0 # ============================================================================= # Start of code # ============================================================================= # Main code here if __name__ == "__main__": # ---------------------------------------------------------------------- from astropy.io import fits import astropy.coordinates as coord import astropy.units as u from astropy.coordinates import get_sun, AltAz from astropy.time import Time file = 'NIRPS_2023-01-20T08_49_12_510_pp_e2dsff_tcorr_A.fits' # get the header h = fits.getheader(file) lat = h['BC_LAT'] # latitude lon = h['BC_LONG'] # longitude mjd = h['MJD-OBS'] # Modified Julian day sun_time = Time(mjd, format='mjd') # UTC time loc = coord.EarthLocation(lon=lon * u.deg, lat=lat * u.deg) altaz = AltAz(obstime=sun_time, location=loc) sun_elevation = 90 - get_sun(sun_time).transform_to(altaz).zen.value # Leval definition of twilight angles CIV_TWIL = sun_elevation < (-6) # suggestion for Civil twilight keyword NAU_TWIL = sun_elevation < (-12) # suggestion for Nautical twilight keyword AST_TWIL = sun_elevation < (-18) # suggestion for Astronomical twilight keyword print('Civil twilight : {}\n' 'Nautical twilight : {}\n' 'Astron twilight : {}'.format(CIV_TWIL, NAU_TWIL, AST_TWIL)) print('Sun elevation : {:.1f} deg'.format(sun_elevation)) # ============================================================================= # End of code # =============================================================================
182247988bf376661723c18e69b7095523833c84
04eb5ed2afbd0b2a190e38a48f1c8b86f63b5497
/client/tests/mocks.py
c7f5fe1971df6068e73fca1512cc9aca0a5d54af
[ "MIT" ]
permissive
Playfloor/pyre-check
04d671c63ce882891f978c8d1f6540d236dd22ab
2e8b86fe7ed9fd84a026c188d08877a77b142309
refs/heads/main
2023-08-21T11:08:30.229589
2021-10-06T03:20:01
2021-10-06T03:21:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,028
py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # pyre-unsafe from pathlib import Path from typing import Optional from unittest.mock import MagicMock from .. import command_arguments, configuration as configuration_module from ..analysis_directory import AnalysisDirectory from ..commands.command import IncrementalStyle from ..commands.incremental import Incremental from ..configuration import SharedMemory def mock_arguments( debug: bool = False, changed_files_path=None, enable_profiling: bool = False, enable_memory_profiling: bool = False, features=None, load_initial_state_from=None, local_configuration=None, log_identifier: str = "", no_saved_state: bool = False, output: str = command_arguments.TEXT, save_initial_state_to=None, saved_state_project=None, sequential: bool = False, source_directories=None, targets=None, dot_pyre_directory: Optional[Path] = None, ) -> command_arguments.CommandArguments: return command_arguments.CommandArguments( local_configuration=local_configuration, version=False, debug=debug, sequential=sequential, strict=False, additional_checks=[], show_error_traces=False, output=output, enable_profiling=enable_profiling, enable_memory_profiling=enable_memory_profiling, noninteractive=True, logging_sections=None, log_identifier=log_identifier, logger=None, targets=targets or [], use_buck_builder=False, use_buck_source_database=False, source_directories=source_directories or [], filter_directory=None, buck_mode=None, no_saved_state=no_saved_state, search_path=["some_path"], binary="/foo/binary.exe", buck_builder_binary=None, exclude=[], typeshed="/typeshed", save_initial_state_to=save_initial_state_to, load_initial_state_from=load_initial_state_from, changed_files_path=changed_files_path, saved_state_project=saved_state_project, dot_pyre_directory=dot_pyre_directory or Path(".pyre"), features=features, python_version="3.6.0", shared_memory_heap_size=1024 * 1024 * 1024, ) def mock_configuration(version_hash=None, file_hash=None) -> MagicMock: configuration = MagicMock() configuration.project_root = "/root" configuration.local_root = None configuration.strict = False configuration.source_directories = ["."] configuration.logger = None configuration.get_number_of_workers = lambda: 5 configuration.search_path = [] configuration.taint_models_path = [] configuration.get_typeshed_respecting_override = lambda: "stub" configuration.get_version_hash_respecting_override = lambda: version_hash configuration.file_hash = file_hash configuration.local_root = None configuration.autocomplete = False configuration.dot_pyre_directory = Path(".pyre") configuration.relative_local_root = None configuration.log_directory = ".pyre" configuration.disabled = False configuration.get_python_version = lambda: configuration_module.PythonVersion( major=3, minor=6, micro=0 ) configuration.shared_memory = SharedMemory(heap_size=1024 * 1024 * 1024) return configuration def mock_incremental_command(cfg: configuration_module.Configuration) -> Incremental: arguments = mock_arguments() analysis_directory = AnalysisDirectory( configuration_module.SimpleSearchPathElement(".") ) return Incremental( arguments, original_directory="/original/directory", configuration=cfg, analysis_directory=analysis_directory, nonblocking=False, incremental_style=IncrementalStyle.FINE_GRAINED, no_start_server=False, no_watchman=False, )
7281a1d2b651d0b7b363e815d9c84fe19146565a
116aadef9866be33782c6cbd06901703728295cc
/tests/conftest.py
3b640c81e07bc3e0f36f219c27129fc10614ecc5
[ "Apache-2.0" ]
permissive
dracos/datasette-tiles
9c4cf6ca683a703f08e1f69cbc4def3694d7bcc3
f7aa1a49df23584445cf154ad0e3e6d750965b15
refs/heads/main
2023-02-28T22:33:08.331682
2021-02-03T22:21:57
2021-02-03T22:21:57
335,932,265
0
0
null
2021-02-04T11:24:40
2021-02-04T11:24:39
null
UTF-8
Python
false
false
2,211
py
import asyncio from datasette.app import Datasette from datasette.database import Database import pytest CREATE_TILES_TABLE = "CREATE TABLE tiles (zoom_level integer, tile_column integer, tile_row integer, tile_data blob)" CREATE_METADATA_TABLE = "CREATE TABLE metadata (name text, value text)" @pytest.fixture(scope="module") async def ds(): datasette = Datasette([], memory=True) await datasette.invoke_startup() return datasette # Needed because of https://stackoverflow.com/a/56238383 # to allow me to use scope="module" on the ds() fixture below @pytest.fixture(scope="module") def event_loop(): loop = asyncio.get_event_loop() yield loop loop.close() @pytest.fixture(scope="module") async def ds_tiles_stack(): return await ds_tiles() @pytest.fixture(scope="module") async def ds_tiles_stack_with_stack_order(): return await ds_tiles( { "plugins": { "datasette-tiles": {"tiles-stack-order": ["world", "country", "city2"]} } } ) async def ds_tiles(metadata=None): datasette = Datasette([], metadata=metadata or {}, memory=True) for db_name, tiles in ( ("world", [[1, 1, 1]]), ("country", [[1, 1, 2], [1, 2, 2]]), ("city1", [[1, 2, 2]]), ("city2", [[1, 3, 3]]), ): db = datasette.add_database(Database(datasette, memory_name=db_name)) # During test runs database tables may exist already if await db.table_exists("tiles"): continue await db.execute_write(CREATE_TILES_TABLE, block=True) await db.execute_write(CREATE_METADATA_TABLE, block=True) for pair in (("name", db_name), ("format", "png")): await db.execute_write( "insert into metadata (name, value) values (?, ?)", pair, block=True, ) for tile in tiles: await db.execute_write( "insert into tiles (zoom_level, tile_column, tile_row, tile_data) values (?, ?, ?, ?)", tile + [db_name + ":" + "/".join(map(str, tile))], block=True, ) await datasette.invoke_startup() return datasette
292b77898a0865b25cff82a3cada848553b42769
1e37cc605d52a8264329ba23e2bc7a74408b0f22
/chrome_from_url.py
11afc3ec2f015d2f264d0fd1b2ff6d06e5837a79
[]
no_license
maasano/download_file_from_web
7df45639a26f9911bb0ae42727d7a5acfb396659
fa6ce6d57f30c71e9ccd982a3e6f6e314187c8c6
refs/heads/master
2022-03-06T06:19:47.662728
2019-12-06T04:07:42
2019-12-06T04:07:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
558
py
# URL でダウンロード from selenium import webdriver import os import time import csv from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.by import By import urllib.request driver = webdriver.Chrome() url = "https://pythonchannel.com/media/codecamp/201908-/scrape-test.html" driver.get(url) file_url = driver.find_element_by_tag_name("a").get_attribute("href") urllib.request.urlretrieve(file_url, "□my_download.csv") time.sleep(3) #driver.close()
99613f69b3d7edc99a5dc7a75e483837ae852e7c
0fa00ecf2dd671515dc001d4b14049ec6a0c1f1c
/custom_components/spook/ectoplasms/repairs/services/create.py
6d46089ce9dab0e2aa31caa286d4f9116eebb2cd
[ "Unlicense" ]
permissive
bacco007/HomeAssistantConfig
d91a5368344f50abbea881bd1e6dfc57a0e456ca
8548d9999ddd54f13d6a307e013abcb8c897a74e
refs/heads/master
2023-08-30T07:07:33.571959
2023-08-29T20:00:00
2023-08-29T20:00:00
230,585,631
98
16
Unlicense
2023-09-09T08:28:39
2019-12-28T09:05:02
Python
UTF-8
Python
false
false
1,658
py
"""Spook - Not your homie.""" from __future__ import annotations from typing import TYPE_CHECKING import voluptuous as vol from homeassistant.components.repairs import DOMAIN as REPAIRS_DOMAIN from homeassistant.helpers import config_validation as cv, issue_registry as ir from homeassistant.util.ulid import ulid from ....const import DOMAIN from ....services import AbstractSpookService if TYPE_CHECKING: from homeassistant.core import ServiceCall class SpookService(AbstractSpookService): """Home Assistant Repairs service to create your own issues.""" domain = REPAIRS_DOMAIN service = "create" schema = { vol.Required("title"): cv.string, vol.Required("description"): cv.string, vol.Optional("issue_id", default=ulid): cv.string, vol.Optional("domain", default=DOMAIN): cv.string, vol.Optional("severity", default=ir.IssueSeverity.WARNING): vol.Coerce( ir.IssueSeverity, ), vol.Optional("persistent", default=False): cv.boolean, } async def async_handle_service(self, call: ServiceCall) -> None: """Handle the service call.""" ir.async_create_issue( self.hass, domain=DOMAIN, is_fixable=True, is_persistent=call.data["persistent"], issue_domain=call.data["domain"], issue_id=f"user_{call.data['issue_id']}", severity=call.data["severity"], translation_key="user_issue", translation_placeholders={ "title": call.data["title"], "description": call.data["description"], }, )
4057875c237527412532aabab219ffd580c79c80
25dda94672497e3287a7403e283fb279ad171b79
/boj/11286 절대값 힙.py
339ce72781b6d758e8e55eb60f6416475b82351b
[]
no_license
woorud/Algorithm
c94b844e8c96a446c5fdee5c0abb159bfee384d7
f5b8e3cf0aea7fc4400e6f5bb0c1531fad93e541
refs/heads/master
2023-02-23T13:53:28.645036
2021-01-29T12:24:23
2021-01-29T12:24:23
230,908,288
0
0
null
null
null
null
UTF-8
Python
false
false
310
py
import heapq, sys n = int(sys.stdin.readline()) absheap = [] heapq.heapify(absheap) for i in range(n): num = int(sys.stdin.readline()) if num != 0: heapq.heappush(absheap, (abs(num), num)) else: try: print(heapq.heappop(absheap)[1]) except: print(0)
cd8f4cd99721da1d6f5fef038c49ebdd3bbe34f1
1010e13cab98cb45a39f3db51d9ccb177fa8b87f
/tools/build_pytorch_libs.py
1c4f16670c04d5f79b9dd767f2d7be42b567ac63
[ "BSD-3-Clause", "BSD-2-Clause", "LicenseRef-scancode-generic-cla", "Apache-2.0" ]
permissive
junjun315/pytorch
2e7dbf60ae63da5e09bf5c8c9fea75f5fed4e940
35f1e28ba9b2f7b10198c2365c6437544de5acb8
refs/heads/master
2020-04-13T03:53:42.317924
2019-01-29T03:02:27
2019-01-29T03:02:27
162,945,027
0
0
NOASSERTION
2019-01-29T03:02:12
2018-12-24T03:18:09
C++
UTF-8
Python
false
false
11,686
py
from .setup_helpers.env import (IS_ARM, IS_DARWIN, IS_LINUX, IS_PPC, IS_WINDOWS, DEBUG, REL_WITH_DEB_INFO, USE_MKLDNN, check_env_flag, check_negative_env_flag, hotpatch_build_env_vars) import os import sys import distutils import distutils.sysconfig from distutils.file_util import copy_file from distutils.dir_util import copy_tree from subprocess import check_call, call, check_output from distutils.version import LooseVersion from .setup_helpers.cuda import USE_CUDA, CUDA_HOME from .setup_helpers.dist_check import USE_DISTRIBUTED, USE_GLOO_IBVERBS from .setup_helpers.nccl import USE_SYSTEM_NCCL, NCCL_INCLUDE_DIR, NCCL_ROOT_DIR, NCCL_SYSTEM_LIB from .setup_helpers.rocm import ROCM_HOME, ROCM_VERSION, USE_ROCM from .setup_helpers.nnpack import USE_NNPACK from .setup_helpers.qnnpack import USE_QNNPACK from .setup_helpers.cudnn import CUDNN_INCLUDE_DIR, CUDNN_LIB_DIR, CUDNN_LIBRARY, USE_CUDNN from pprint import pprint from glob import glob import multiprocessing import shutil def which(thefile): path = os.environ.get("PATH", os.defpath).split(os.pathsep) for dir in path: fname = os.path.join(dir, thefile) fnames = [fname] if IS_WINDOWS: exts = os.environ.get('PATHEXT', '').split(os.sep) fnames += [fname + ext for ext in exts] for name in fnames: if (os.path.exists(name) and os.access(name, os.F_OK | os.X_OK) and not os.path.isdir(name)): return name return None def cmake_version(cmd): for line in check_output([cmd, '--version']).decode('utf-8').split('\n'): if 'version' in line: return LooseVersion(line.strip().split(' ')[2]) raise Exception('no version found') def get_cmake_command(): cmake_command = 'cmake' if IS_WINDOWS: return cmake_command cmake3 = which('cmake3') if cmake3 is not None: cmake = which('cmake') if cmake is not None: bare_version = cmake_version(cmake) if bare_version < LooseVersion("3.5.0") and cmake_version(cmake3) > bare_version: cmake_command = 'cmake3' return cmake_command def cmake_defines(lst, **kwargs): for key in sorted(kwargs.keys()): value = kwargs[key] if value is not None: lst.append('-D{}={}'.format(key, value)) # Ninja try: import ninja USE_NINJA = True except ImportError: USE_NINJA = False base_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) torch_lib_dir = base_dir + "/torch/lib" install_dir = base_dir + "/torch/lib/tmp_install" build_type = "Release" if DEBUG: build_type = "Debug" elif REL_WITH_DEB_INFO: build_type = "RelWithDebInfo" def mkdir_p(dir): try: os.makedirs(dir) except OSError: pass def run_cmake(version, cmake_python_library, build_python, build_test, build_dir): cmake_args = [ get_cmake_command(), base_dir ] if USE_NINJA: cmake_args.append('-GNinja') try: import numpy as np NUMPY_INCLUDE_DIR = np.get_include() USE_NUMPY = True except ImportError: USE_NUMPY = False NUMPY_INCLUDE_DIR = None cflags = os.getenv('CFLAGS') or "" ldflags = os.getenv('LDFLAGS') or "" if IS_DARWIN: ldflags += " -Wl,-rpath,@loader_path" elif USE_ROCM: ldflags += " -Wl,-rpath,\\\\\\$ORIGIN" elif IS_WINDOWS: cflags += " /EHa" else: ldflags += " -Wl,-rpath,$ORIGIN" # XXX - our cmake file sometimes looks at the system environment # and not cmake flags! # you should NEVER add something to this list. It is bad practice to # have cmake read the environment my_env = os.environ.copy() my_env['PYTORCH_PYTHON'] = sys.executable if USE_CUDNN: my_env['CUDNN_LIBRARY'] = CUDNN_LIBRARY my_env['CUDNN_INCLUDE_DIR'] = CUDNN_INCLUDE_DIR if USE_CUDA: my_env['CUDA_BIN_PATH'] = CUDA_HOME mkdir_p(install_dir) mkdir_p(build_dir) cmake_defines( cmake_args, PYTHON_EXECUTABLE=escape_path(sys.executable), PYTHON_LIBRARY=escape_path(cmake_python_library), PYTHON_INCLUDE_DIR=escape_path(distutils.sysconfig.get_python_inc()), BUILDING_WITH_TORCH_LIBS="ON", TORCH_BUILD_VERSION=version, CMAKE_BUILD_TYPE=build_type, BUILD_TORCH="ON", BUILD_PYTHON=build_python, BUILD_SHARED_LIBS=os.getenv("BUILD_SHARED_LIBS") or "ON", BUILD_BINARY=check_env_flag('BUILD_BINARY'), BUILD_TEST=build_test, INSTALL_TEST=build_test, BUILD_CAFFE2_OPS=not check_negative_env_flag('BUILD_CAFFE2_OPS'), ONNX_NAMESPACE=os.getenv("ONNX_NAMESPACE") or "onnx_torch", USE_CUDA=USE_CUDA, USE_DISTRIBUTED=USE_DISTRIBUTED, USE_FBGEMM=not (check_env_flag('NO_FBGEMM') or check_negative_env_flag('USE_FBGEMM')), USE_NUMPY=USE_NUMPY, NUMPY_INCLUDE_DIR=escape_path(NUMPY_INCLUDE_DIR), USE_SYSTEM_NCCL=USE_SYSTEM_NCCL, NCCL_INCLUDE_DIR=NCCL_INCLUDE_DIR, NCCL_ROOT_DIR=NCCL_ROOT_DIR, NCCL_SYSTEM_LIB=NCCL_SYSTEM_LIB, CAFFE2_STATIC_LINK_CUDA=check_env_flag('USE_CUDA_STATIC_LINK'), USE_ROCM=USE_ROCM, USE_NNPACK=USE_NNPACK, USE_LEVELDB=check_env_flag('USE_LEVELDB'), USE_LMDB=check_env_flag('USE_LMDB'), USE_OPENCV=check_env_flag('USE_OPENCV'), USE_QNNPACK=USE_QNNPACK, USE_TENSORRT=check_env_flag('USE_TENSORRT'), USE_FFMPEG=check_env_flag('USE_FFMPEG'), USE_SYSTEM_EIGEN_INSTALL="OFF", USE_MKLDNN=USE_MKLDNN, NCCL_EXTERNAL=USE_CUDA, CMAKE_INSTALL_PREFIX=install_dir, CMAKE_C_FLAGS=cflags, CMAKE_CXX_FLAGS=cflags, CMAKE_EXE_LINKER_FLAGS=ldflags, CMAKE_SHARED_LINKER_FLAGS=ldflags, THD_SO_VERSION="1", CMAKE_PREFIX_PATH=os.getenv('CMAKE_PREFIX_PATH') or distutils.sysconfig.get_python_lib(), BLAS=os.getenv('BLAS'), CUDA_NVCC_EXECUTABLE=escape_path(os.getenv('CUDA_NVCC_EXECUTABLE')), USE_REDIS=os.getenv('USE_REDIS'), USE_GLOG=os.getenv('USE_GLOG'), USE_GFLAGS=os.getenv('USE_GFLAGS')) if USE_GLOO_IBVERBS: cmake_defines(cmake_args, USE_IBVERBS="1", USE_GLOO_IBVERBS="1") expected_wrapper = '/usr/local/opt/ccache/libexec' if IS_DARWIN and os.path.exists(expected_wrapper): cmake_defines(cmake_args, CMAKE_C_COMPILER="{}/gcc".format(expected_wrapper), CMAKE_CXX_COMPILER="{}/g++".format(expected_wrapper)) pprint(cmake_args) printenv() check_call(cmake_args, cwd=build_dir, env=my_env) def copy_files(build_test): def copy_all(pattern, dst): for file in glob(pattern): if os.path.isdir(file): copy_tree(file, dst, update=True) else: copy_file(file, dst, update=True) shutil.rmtree(install_dir + '/lib/cmake', ignore_errors=True) shutil.rmtree(install_dir + '/lib/python', ignore_errors=True) copy_all(install_dir + '/lib/*', torch_lib_dir) if os.path.exists(install_dir + '/lib64'): copy_all(install_dir + '/lib64/*', torch_lib_dir) copy_file(base_dir + '/aten/src/THNN/generic/THNN.h', torch_lib_dir, update=True) copy_file(base_dir + '/aten/src/THCUNN/generic/THCUNN.h', torch_lib_dir, update=True) copy_tree(install_dir + '/include', torch_lib_dir + '/include', update=True) if os.path.exists(install_dir + '/bin/'): copy_all(install_dir + '/bin/*', torch_lib_dir) if build_test: # Copy the test files to pytorch/caffe2 manually # They were built in pytorch/torch/lib/tmp_install/test # Why do we do this? So, setup.py has this section called 'package_data' which # you need to specify to include non-default files (usually .py files). # package_data takes a map from 'python package' to 'globs of files to # include'. By 'python package', it means a folder with an __init__.py file # that's not excluded in the find_packages call earlier in setup.py. So to # include our cpp_test into the site-packages folder in # site-packages/caffe2/cpp_test, we have to copy the cpp_test folder into the # root caffe2 folder and then tell setup.py to include them. Having another # folder like site-packages/caffe2_cpp_test would also be possible by adding a # caffe2_cpp_test folder to pytorch with an __init__.py in it. mkdir_p(base_dir + '/caffe2/cpp_test/') copy_tree(install_dir + '/test', base_dir + '/caffe2/cpp_test', update=True) def build_caffe2(version, cmake_python_library, build_python, rerun_cmake, build_dir): build_test = not check_negative_env_flag('BUILD_TEST') cmake_cache_file = 'build/CMakeCache.txt' if rerun_cmake and os.path.isfile(cmake_cache_file): os.remove(cmake_cache_file) if not os.path.exists(cmake_cache_file) or (USE_NINJA and not os.path.exists('build/build.ninja')): run_cmake(version, cmake_python_library, build_python, build_test, build_dir) if IS_WINDOWS: if USE_NINJA: # sccache will fail if all cores are used for compiling j = max(1, multiprocessing.cpu_count() - 1) check_call(['cmake', '--build', '.', '--target', 'install', '--config', build_type, '--', '-j', str(j)], cwd=build_dir) else: check_call(['msbuild', 'INSTALL.vcxproj', '/p:Configuration={}'.format(build_type)], cwd=build_dir) else: if USE_NINJA: check_call(['ninja', 'install'], cwd=build_dir) else: max_jobs = os.getenv('MAX_JOBS', str(multiprocessing.cpu_count())) check_call(['make', '-j', str(max_jobs), 'install'], cwd=build_dir) # in cmake, .cu compilation involves generating certain intermediates # such as .cu.o and .cu.depend, and these intermediates finally get compiled # into the final .so. # Ninja updates build.ninja's timestamp after all dependent files have been built, # and re-kicks cmake on incremental builds if any of the dependent files # have a timestamp newer than build.ninja's timestamp. # There is a cmake bug with the Ninja backend, where the .cu.depend files # are still compiling by the time the build.ninja timestamp is updated, # so the .cu.depend file's newer timestamp is screwing with ninja's incremental # build detector. # This line works around that bug by manually updating the build.ninja timestamp # after the entire build is finished. if os.path.exists('build/build.ninja'): os.utime('build/build.ninja', None) if build_python: for proto_file in glob('build/caffe2/proto/*.py'): if os.path.sep != '/': proto_file = proto_file.replace(os.path.sep, '/') if proto_file != 'build/caffe2/proto/__init__.py': shutil.copyfile(proto_file, "caffe2/proto/" + os.path.basename(proto_file)) copy_files(build_test) def printenv(): envs = map(lambda k, v: k + '=' + v + '\n', os.environ.keys(), os.environ.values()) print(''.join(envs)) def escape_path(path): if os.path.sep != '/' and path is not None: return path.replace(os.path.sep, '/') return path
30f9b23d261d536ea04bb46352a57de101437555
248793d43cd41e588fe343fe6f7dd82f667d2eb8
/num4ch.py
5a15eaf1bf1360318191d485c7cfb5cbe665d42b
[]
no_license
dongzeyuan/Algorithms
85dfe22abc0ef539f7d9ff4efa205810e80d70cc
a57bfe5a2887947419f5d6deb6988ce94917c286
refs/heads/master
2020-03-09T01:03:15.737335
2018-04-07T06:53:47
2018-04-07T06:53:47
128,503,857
0
0
null
null
null
null
UTF-8
Python
false
false
1,601
py
# coding=UTF-8 import wx class MyFrame(wx.Frame): '''这是个测试各种函数用法的框架''' def __init__(self): wx.Frame.__init__(self, None, -1, 'TestFrame', size=(400, 300)) panel = wx.Panel(self, -1) # 创建个文本框组件 # 4-04,这个组件定义,必须定义为self.的形式,下面回调函数才能使用该变量 self.num_txt = wx.TextCtrl(panel, -1, size=(150, 100), pos=(5, 5), style=wx.TE_MULTILINE | wx.TE_READONLY) # 试试SetValue方法 # 创建个按钮组件 self.num_button = wx.Button( panel, -1, "确定", size=(150, 100), pos=(5, 110)) # 绑定按钮事件,绑定on_click回调函数 self.num_button.Bind(wx.EVT_BUTTON, self.on_click) # 定义on_click回调函数,注意函数需要2个参数,self,event,但是这里我写的有问题 # 我本意是想写成每点击一次,i自增1,记录点击次数,但是这里每次调用都会重置i,导致每次调用都打印1 # 4-04,使用全局变量解决问题 # 4-04, 终于学到了如何改变显示数值的方法 def on_click(self, event): # 全局变量i。得这么写才能实现自增的功能 global i i += 1 # 清除上次传输的内容,如果不加Clear()方法,会导致逐行显示 self.num_txt.Clear() self.num_txt.AppendText('%d\n' % i) if __name__ == "__main__": # 初始化全局变量i i = 0 app = wx.App() MyFrame().Show(True) app.MainLoop()
418ab74777c51e9c75e706afd4e9ced9af142f16
f669b07bf4e1047c7fa4f36983f5d8d9f607a42c
/.metadata/.plugins/org.eclipse.core.resources/.history/c0/20134fb0049000161aace3ce0a3d140b
4ecac11caf1f115505b487e0511d733ae686192b
[]
no_license
tca85/python
d07b4453b38b5c5a024e2a6f8b8795dac6d928b1
436a23250539ef8055f817ada20cb21eab65cc42
refs/heads/master
2021-01-10T22:53:01.118480
2016-10-24T21:46:59
2016-10-24T21:46:59
70,340,585
1
0
null
null
null
null
ISO-8859-1
Python
false
false
1,233
#!/usr/bin/python # -*- coding: latin1 -*- ''' Created on Oct 5, 2016 @author: tca85 ''' # Para importar a classe é melhor utilizar os atalhos do Eclipse, # mas também segue o seguinte padrão: # from pacote + nome do arquivo import NomeClasse from pacote.Teste import Teste from pacote.Arquivo import Arquivo from pacote.DateTime import DateTime from pacote.Cadastro import Cadastro teste = Teste() lista = teste.multiplicar_range_por_dois(15) teste.testar_resto_igual_zero(lista, 3) teste.tamanho_palavra('lsdfjfkjsdfkjas') print teste.media(lista) print teste.nome_sistema_operacional() teste.exemplo_interpolacao() print teste.inverter_string('thiago') print teste.exemplo_string_template() teste.exemplo_argumentos('peso', 10, unidade='k') #----------------------------------------------------------------------------- arquivo = Arquivo() arquivo.criarArquivoTextoeEscrever('teste') arquivo.mostrarListaArquivoTamanho() arquivo.criarArquivoTemporario() arquivo.gravarTextoArquivoCompactado() #----------------------------------------------------------------------------- datetime = DateTime() datetime.testaClasseDateTime() #-----------------------------------------------------------------------------
be54f6e5681f2eb17e502fb6f64a2b06c1775e86
9b54e3d58447e917a238b85891020c392c4ac601
/codeup/1013.py
645162bf88e339a04cea6f30dd165cdc5e16443a
[ "MIT" ]
permissive
love-adela/algorithm-ps
ea0ebcd641a4c309348b389b8618daa83973f4b2
c92d105d8ad344def001160367115ecf99d81c0d
refs/heads/master
2023-05-11T03:37:11.750692
2023-04-30T17:31:30
2023-04-30T17:31:30
174,651,672
0
0
null
null
null
null
UTF-8
Python
false
false
46
py
a, b = map(int, input().split()) print(a, b)
db3a5e796dccbcd86c59c07f265a266fba9cb209
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_267/ch66_2020_06_21_19_51_02_942607.py
0e1afeb82048df4970ad1ba78a24fc6673a561ca
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
166
py
def lista_sufixos(string): lista_sufixos = [] while i < len(string): lista_sufixos.append(string(i+1:)) i+=1 return lista_sufixos
04fe48c86770c1775a8f336b73a22b73e71e8ae1
a9adab93602c472d90a327a466d2cb250bd47788
/angstromCTF2019/Paint/solve.py
ad3234a32bae12301d55be4a7c6ebefee124f02c
[]
no_license
minmin53/writeups
afc4586e6a9390d7185f2baf99e0aead47bc3ba4
4e05be5f0e5eb26a5ee398eb24245e1109ddc056
refs/heads/master
2022-05-20T06:58:36.780383
2020-04-27T05:06:36
2020-04-27T05:06:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,636
py
from Crypto.Util.number import * secret = 629921607003244034334739296597900783683872903809471621783318441724296155260647861566002145401774841786965516424821133148061140507283116747339148975177513485103967011207217568924993463569559551429141756952018711071204949930416859383037306197953684591391066287527469114753495090054370608519379326915615068308557735119497576999275516623932355604742058855833591651141407379343873413310424307672368844204423176033536465560324264458606570832918771689488513626547477988015235832957445514499444921298913651835294484177694907540420778298030233425343791552742606481998105977335541679798111463675261162481691943108104757462361 pallete = 32317006071311007300714876688669951960444102669715484032130345427524655138867890893197201411522913463688717960921898019494119559150490921095088152386448283120630877367300996091750197750389652106796057638384067568276792218642619756161838094338476170470581645852036305042887575891541065808607552399123930385521914333389668342420684974786564569494856176035326322058077805659331026192708460314150258592864177116725943603718461857357598351152301645904403697613233287231227125684710820209725157101726931323469678542580656697935045997268352998638215525166389437335543602135433229604645318478604952148193555853611059596230656 your_mix = 14317253516668543276504878316838097235650210449758621543536146016892160048656997634541093315774403078357942150970695487937570449270120625898199254439189104072891595263513437420116930684308702803055295267600790477195902538538739117809573391251939794413361184343367694928615752045687223262368136262534778688889202144260002584306527206705616186699377315031757095455954292951059462279988296369935635246644221722025457496936215039008069820514166063271894671978845634968761626636993374291118230179892722513818307254406450607168911057458141649111515924404215975886422961651958216688209696158879621701708955382424640000048217 painting = 17665922529512695488143524113273224470194093921285273353477875204196603230641896039854934719468650093602325707751566466034447988065494130102242572713515917910688574332104680867377750329904425039785453961697828887505197701127086732126907914324992806733394244034438537271953062873710421922341053639880387051921552573241651939698279628619278357238684137922164483956735128373164911380749908774512869223017256152942356111845682044048514917460601214157119487675633689081081818805777951203838578632029105960085810547586385599419736400861419214277678792284994133722491622512615732083564207280344459191773058670866354126043620 shared_mix = pow(your_mix, secret, pallete) print(long_to_bytes(shared_mix ^ painting))
bd0a4edb0505e032600598e3d09c283a811f850c
be0f3dfbaa2fa3d8bbe59229aef3212d032e7dd1
/Gauss_v45r10p1/Gen/DecFiles/options/51000001.py
7e66d0a6b9ad05613ad85688a4de506f6035643c
[]
no_license
Sally27/backup_cmtuser_full
34782102ed23c6335c48650a6eaa901137355d00
8924bebb935b96d438ce85b384cfc132d9af90f6
refs/heads/master
2020-05-21T09:27:04.370765
2018-12-12T14:41:07
2018-12-12T14:41:07
185,989,173
0
0
null
null
null
null
UTF-8
Python
false
false
961
py
# file /home/hep/ss4314/cmtuser/Gauss_v45r10p1/Gen/DecFiles/options/51000001.py generated: Wed, 25 Jan 2017 15:25:34 # # Event Type: 51000000 # # ASCII decay Descriptor: e- => ? # from Configurables import ParticleGun from Configurables import MomentumRange ParticleGun().addTool( MomentumRange ) from GaudiKernel import SystemOfUnits ParticleGun().MomentumRange.MomentumMin = 1*SystemOfUnits.GeV from GaudiKernel import SystemOfUnits ParticleGun().MomentumRange.MomentumMax = 1*SystemOfUnits.GeV ParticleGun().EventType = 51000001 ParticleGun().ParticleGunTool = "MomentumRange" ParticleGun().NumberOfParticlesTool = "FlatNParticles" ParticleGun().MomentumRange.PdgCodes = [ 11 ] from Configurables import ToolSvc from Configurables import EvtGenDecay ToolSvc().addTool( EvtGenDecay ) ToolSvc().EvtGenDecay.UserDecayFile = "$DECFILESROOT/dkfiles/e-,fixP=CaloAcc.dec" from Gaudi.Configuration import * importOptions( "$DECFILESROOT/options/CaloAcceptance.py" )
1402215de795362c3bf280285a432acd439ed1a3
ad13583673551857615498b9605d9dcab63bb2c3
/output/instances/nistData/atomic/byte/Schema+Instance/NISTXML-SV-IV-atomic-byte-minExclusive-4-3.py
546cd4d622222e004eb7c096b36aa268f39fa7a8
[ "MIT" ]
permissive
tefra/xsdata-w3c-tests
397180205a735b06170aa188f1f39451d2089815
081d0908382a0e0b29c8ee9caca6f1c0e36dd6db
refs/heads/main
2023-08-03T04:25:37.841917
2023-07-29T17:10:13
2023-07-30T12:11:13
239,622,251
2
0
MIT
2023-07-25T14:19:04
2020-02-10T21:59:47
Python
UTF-8
Python
false
false
259
py
from output.models.nist_data.atomic.byte.schema_instance.nistschema_sv_iv_atomic_byte_min_exclusive_4_xsd.nistschema_sv_iv_atomic_byte_min_exclusive_4 import NistschemaSvIvAtomicByteMinExclusive4 obj = NistschemaSvIvAtomicByteMinExclusive4( value=109 )
17e70d2e41bdd516debf650b514fe200ab485a25
bcc199a7e71b97af6fbfd916d5a0e537369c04d9
/leetcode/solved/43_Multiply_Strings/solution.py
90b9fe407e659af20688b1f0a37aefc2a67638f3
[]
no_license
sungminoh/algorithms
9c647e82472905a2c4e505c810b622b734d9d20d
1389a009a02e90e8700a7a00e0b7f797c129cdf4
refs/heads/master
2023-05-01T23:12:53.372060
2023-04-24T06:34:12
2023-04-24T06:34:12
87,406,513
0
0
null
null
null
null
UTF-8
Python
false
false
1,935
py
#! /usr/bin/env python # -*- coding: utf-8 -*- # vim:fenc=utf-8 # # Copyright © 2020 sungminoh <[email protected]> # # Distributed under terms of the MIT license. """ Given two non-negative integers num1 and num2 represented as strings, return the product of num1 and num2, also represented as a string. Note: You must not use any built-in BigInteger library or convert the inputs to integer directly. Example 1: Input: num1 = "2", num2 = "3" Output: "6" Example 2: Input: num1 = "123", num2 = "456" Output: "56088" Constraints: 1 <= num1.length, num2.length <= 200 num1 and num2 consist of digits only. Both num1 and num2 do not contain any leading zero, except the number 0 itself. """ import sys import itertools import pytest class Solution: def multiply(self, num1: str, num2: str) -> str: if num1 == '0' or num2 == '0': return '0' def mul(num, digit): d = int(digit) ret = '' c = 0 for a in reversed(num): c, n = divmod(int(a)*d + c, 10) ret += str(n) if c: ret += str(c) return ret[::-1] def plus(num1, num2): ret = '' c = 0 for a, b in itertools.zip_longest(reversed(num1), reversed(num2)): a = a or '0' b = b or '0' c, n = divmod(int(a)+int(b)+c, 10) ret += str(n) if c: ret += str(c) return ret[::-1] ret = '0' for i, d in enumerate(reversed(num2)): ret = plus(ret, mul(num1, d) + '0'*i) return ret @pytest.mark.parametrize('num1, num2, expected', [ ("2", "3", "6"), ("123", "456", "56088"), ]) def test(num1, num2, expected): assert expected == Solution().multiply(num1, num2) if __name__ == '__main__': sys.exit(pytest.main(["-s", "-v"] + sys.argv))
e7b70b9f8478cbe00449d124f054ef12ee82c03b
e27333261b8e579564016c71d2061cc33972a8b8
/.history/api/IR_engine_20210728234203.py
14e0af8534a9c7489e013618793835e8ca8fd7ab
[]
no_license
Dustyik/NewsTweet_InformationRetrieval
882e63dd20bc9101cbf48afa6c3302febf1989b1
d9a6d92b51c288f5bcd21ea1cc54772910fa58f7
refs/heads/master
2023-07-01T09:12:53.215563
2021-08-12T08:28:33
2021-08-12T08:28:33
382,780,359
0
0
null
null
null
null
UTF-8
Python
false
false
5,671
py
import pandas as pd import numpy as np from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity from sklearn.metrics.pairwise import euclidean_distances from nltk.stem import PorterStemmer from nltk.tokenize import word_tokenize from IPython.display import display ''' Functions to write: 1. tf-idf with cosine sim/Euclidean distance - represent terms in each document with its tf-idf weights, 2. VSM with cosine sim/Euclidean distance 3. BIM 4. BM25 5. BERT ''' titles_file_path = r"D:\Desktop\IR_term_8\IR-tweets---disaster-\article_titles_stemmed.csv" tweets_file_path = r"D:\Desktop\IR_term_8\IR-tweets---disaster-\tweets_data_stemmed.csv" SEARCH_MODELS = { "tfcs": "Tf-idf w Cosine Sim", "tfed": "Tf-idf w Euclidean Dist" } def returnTweetsBasedOnSearchModel(dataProcessor, articleId, searchModel): #accepts a search model, article title, and article id, returns n most relevant results if searchModel == SEARCH_MODELS["tfcs"]: return dataProcessor.cosineSimilarity.query(articleId, articleText) class DataProcessor: def __init__(self): self.titles_data = pd.read_csv(titles_file_path) self.tweets_data = pd.read_csv(tweets_file_path) self.titles_data = self.titles_data.dropna() self.tweets_data = self.tweets_data.dropna() self.cosineSimilarity = CosineSimilarity(self.titles_data, self.tweets_data) print ("Data Processor up and ready...") class CosineSimilarity: def __init__(self, titles, tweets, type='tfidf'): self.titles = titles #contains titles data self.tweets = tweets #contains tweets data self.vectorizer = self.change_matrix_type(type) def get_result(self, return_size): cos_sim = cosine_similarity(self.matrix, self.matrix) top_ind = np.flip(np.argsort(cos_sim[0]))[1:return_size+1] top_id = [list(self.matrix.index)[i] for i in top_ind] self.result = [] for i in top_id: filt = self.tweets[self.tweets.tweet==i] for ind, r in filt.iterrows(): rel = r['relevance_score'] text = r['tweet'] related = r['article_id'] score = 0 # if related==self.query_id and rel>0: # score = 1 # if related==self.query_id and rel==0: # score = -1 self.result.append({'tweet_id':i, 'text': text, 'related_article':related}) #'score': score}) def query(self, query_id, query_text, return_size=30): self.query_id = query_id term_doc = self.vectorizer.fit_transform([query_text]+list(self.tweets.clean_text)) #returns document term matrix ind = ["query"] + list(self.tweets.tweet) self.matrix = pd.DataFrame(term_doc.toarray(), columns=self.vectorizer.get_feature_names(), index=ind) #indexes are the tweets, columns is the entire vocab self.get_result(return_size) return pd.DataFrame(self.result) def change_matrix_type(self, type): if type == 'tfidf': return TfidfVectorizer() elif type == 'dt': return CountVectorizer() #transforms the entire word matrix into a set of vectors else: print('Type is invalid') def get_matrix(self): return self.matrix class EuclideanDistance: def __init__(self, data, type='tfidf'): self.data = data self.change_matrix_type(type) self.matrix = None def get_result(self, return_size): euclidean = euclidean_distances(self.matrix.values[1:], [self.matrix.values[0]]) top_ind = np.argsort(euclidean.T[0])[:return_size] top_id = [list(self.matrix.index)[i] for i in top_ind] # print(sorted(euclidean[:20]),top_10_ind ,top_10_id) self.result = [] for i in top_id: filt = self.data[self.data.document==i] for ind, r in filt.iterrows(): rel = r['rel'] text = r['text'] related = r['topic'] score = 0 if related==self.query_id and rel>0: score = 1 if related==self.query_id and rel==0: score = -1 self.result.append({'tweet_id':i, 'text': text, 'related_article':related,'score': score}) def query(self, query_id, query_text, return_size=10): self.query_id = query_id term_doc = self.vec.fit_transform([query_text]+list(self.data.clean_text)) ind = ['query'] + list(self.data.document) self.matrix = pd.DataFrame(term_doc.toarray(), columns=self.vec.get_feature_names(), index=ind) self.get_result(return_size) return pd.DataFrame(self.result) def change_matrix_type(self, type): if type == 'tfidf': self.vec = TfidfVectorizer() elif type == 'dt': self.vec = CountVectorizer() else: print('Type is invalid') def get_matrix(self): return self.matrix def getArticleId(dataProcessor, articleTitle): for row in dataProcessor.titles_data.iterrows(): print (row["title"]) if row.title == articleTitle: return row.id ''' sample_query_id = "f7ca322d-c3e8-40d2-841f-9d7250ac72ca" sample_query_text = "Worcester breakfast club for veterans gives hunger its marching orders" cosine_similarity_obj = CosineSimilarity(titles = titles, tweets = tweets) result = cosine_similarity_obj.query(sample_query_id, sample_query_text) print (display(result.head())) Test Titles: f7ca322d-c3e8-40d2-841f-9d7250ac72ca Worcester breakfast club for veterans gives hunger its marching orders 609772bc-0672-4db5-8516-4c025cfd54ca Jumpshot Gives Marketers Renewed Visibility Into Paid and Organic Keywords With Launch of Jumpshot Elite 1aa9d1b0-e6ba-4a48-ad0c-66552d896aac The Return Of The Nike Air Max Sensation Has 80’s Babies Hyped! 719699f9-47be-4bc7-969b-b53a881c95ae This New Dating App Will Ruin Your Internet Game '''
9c09d0d031676f69bb99df3784b5c7cc3a91d70e
00657ecc75e0529f5b77759112398bdb11e612bb
/Python3.6/264-Py3-M-Ugly Number II.py
8930b07936863fb50c031ac463f4cd020151073e
[]
no_license
Hidenver2016/Leetcode
da949cd17f8e29d6007b492719bbc97418ae9cb7
1379a6dc2400751ecf79ccd6ed401a1fb0d78046
refs/heads/master
2021-07-18T14:46:00.986614
2020-05-08T05:02:20
2020-05-08T05:02:20
152,190,601
1
0
null
null
null
null
UTF-8
Python
false
false
1,461
py
# -*- coding: utf-8 -*- """ Created on Mon Mar 18 22:41:55 2019 @author: hjiang """ """ Write a program to find the n-th ugly number. Ugly numbers are positive numbers whose prime factors only include 2, 3, 5. Example: Input: n = 10 Output: 12 Explanation: 1, 2, 3, 4, 5, 6, 8, 9, 10, 12 is the sequence of the first 10 ugly numbers. Note: 1 is typically treated as an ugly number. n does not exceed 1690. https://blog.csdn.net/fuxuemingzhu/article/details/49231615 所有的ugly number都是由1开始,乘以2/3/5生成的。 只要将这些生成的数排序即可获得,自动排序可以使用set 这样每次取出的第一个元素就是最小元素,由此再继续生成新的ugly number. 可以分成如下三组: (1) 1×2, 2×2, 3×2, 4×2, 5×2, … (2) 1×3, 2×3, 3×3, 4×3, 5×3, … (3) 1×5, 2×5, 3×5, 4×5, 5×5, … """ class Solution(object): def nthUglyNumber(self, n): """ :type n: int :rtype: int """ if n < 0: return 0 dp = [1] * n index2, index3, index5 = 0, 0, 0 for i in range(1, n):#一边计算一边排序,溜溜溜溜! dp[i] = min(2 * dp[index2], 3 * dp[index3], 5 * dp[index5]) if dp[i] == 2 * dp[index2]: index2 += 1 if dp[i] == 3 * dp[index3]: index3 += 1 if dp[i] == 5 * dp[index5]: index5 += 1 return dp[n - 1]
8143ad2895c961ddd4a0d4b7b09c61ab15f705df
799a8605e28118da863079f0924cd93974221c3c
/src/ralph/account/admin.py
341a44f6d5b3666c748d8458f48daf0ba7e4f22c
[ "Apache-2.0" ]
permissive
damjanek/ralph
31a2fae13e2608bcf9f13853199cfc00ba6db317
728e1c17ea8a70600928a59d5ec17a964063485d
refs/heads/master
2021-01-24T05:06:34.308524
2013-02-20T10:26:47
2013-02-20T10:26:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,980
py
# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from django.contrib import admin from django.contrib.auth.admin import UserAdmin, GroupAdmin from django.contrib.auth.models import User, Group from django.utils.translation import ugettext_lazy as _ from lck.django.activitylog.admin import IPInline, UserAgentInline from lck.django.common.admin import ForeignKeyAutocompleteTabularInline from lck.django.profile.admin import ProfileInlineFormSet from tastypie.models import ApiKey from ralph.account.models import BoundPerm, Profile class ProfileInline(admin.StackedInline): model = Profile readonly_fields = ('last_active',) max_num = 1 can_delete = False class ProfileBoundPermInline(ForeignKeyAutocompleteTabularInline): model = BoundPerm exclude = ['created', 'modified', 'created_by', 'modified_by', 'role', 'group'] related_search_fields = { 'venture': ['^name'], } formset = ProfileInlineFormSet def __init__(self, parent_model, admin_site): self.fk_name = 'profile' super(ProfileBoundPermInline, self).__init__(Profile, admin_site) class ProfileIPInline(IPInline): formset = ProfileInlineFormSet def __init__(self, parent_model, admin_site): self.fk_name = 'profile' super(ProfileIPInline, self).__init__(Profile, admin_site) class ProfileUserAgentInline(UserAgentInline): formset = ProfileInlineFormSet def __init__(self, parent_model, admin_site): self.fk_name = 'profile' super(ProfileUserAgentInline, self).__init__(Profile, admin_site) class ApiKeyInline(admin.StackedInline): model = ApiKey readonly_fields = ('created',) extra = 0 class ProfileAdmin(UserAdmin): def groups_show(self): return "<br> ".join([g.name for g in self.groups.order_by('name')]) groups_show.allow_tags = True groups_show.short_description = _("groups") inlines = [ ProfileInline, ProfileBoundPermInline, ApiKeyInline, ProfileIPInline, ProfileUserAgentInline, ] list_display = ('username', 'email', 'first_name', 'last_name', groups_show, 'is_staff', 'is_active') list_filter = ('is_staff', 'is_superuser', 'is_active', 'groups',) save_on_top = True search_fields = ('username', 'first_name', 'last_name', 'email', 'profile__nick') admin.site.unregister(User) admin.site.register(User, ProfileAdmin) class GroupBoundPermInline(ForeignKeyAutocompleteTabularInline): model = BoundPerm exclude = ['created', 'modified', 'created_by', 'modified_by', 'role', 'profile'] related_search_fields = { 'venture': ['^name'], } class CustomGroupAdmin(GroupAdmin): save_on_top = True inlines = [GroupBoundPermInline] admin.site.unregister(Group) admin.site.register(Group, CustomGroupAdmin)
e0a024431ad980f1924a8f5527c9a6124af8d894
a9c3e212f86acdbc84ba57357194e8f11c844535
/catalogue_management/migrations/0005_auto_20170805_1824.py
7f5911b81aa8bf4c4485c57fcc7aa45c5711b848
[]
no_license
bitapardaz/carwash
bde4635bda1f1fa51409c2454e27aca84c2bffa0
0a10954eae44df7341372b5f3def652e512538b0
refs/heads/master
2021-01-15T13:34:31.198300
2017-08-23T11:35:33
2017-08-23T11:35:33
99,678,532
0
0
null
null
null
null
UTF-8
Python
false
false
414
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('catalogue_management', '0004_auto_20170727_0856'), ] operations = [ migrations.AlterField( model_name='service', name='price', field=models.IntegerField(default=0), ), ]
9544cbbc6bb48a09e347d92844c17726d2e71c59
41e2cf24f0ff3a11a98bb00e03c598dde35452c4
/reportview/migrations/0011_auto_20180727_1857.py
1460d461da8f7a8e002282c032bb1794a19e8855
[]
no_license
anushamokashi/mob
f5dbedc729073092f94323feca6d95dee24087a2
37bc0eb033bc23d37e9d4fb9bb8b2b456553ff7f
refs/heads/master
2020-04-24T08:36:56.008212
2019-02-21T09:09:04
2019-02-21T09:09:04
171,810,613
0
0
null
null
null
null
UTF-8
Python
false
false
475
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.13 on 2018-07-27 13:27 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('reportview', '0010_auto_20180725_1515'), ] operations = [ migrations.RenameField( model_name='reportprintformataction', old_name='JasperFile', new_name='htmlfile', ), ]
9466b21de1d9b7a2824a0e619a7509c314f821cf
9edaf93c833ba90ae9a903aa3c44c407a7e55198
/bpmn/models/data_output_association.py
c0dd7b339bab9f4979a5cb5433bfb5f15dd78b02
[]
no_license
tefra/xsdata-samples
c50aab4828b8c7c4448dbdab9c67d1ebc519e292
ef027fe02e6a075d8ed676c86a80e9647d944571
refs/heads/main
2023-08-14T10:31:12.152696
2023-07-25T18:01:22
2023-07-25T18:01:22
222,543,692
6
1
null
2023-06-25T07:21:04
2019-11-18T21:00:37
Python
UTF-8
Python
false
false
346
py
from dataclasses import dataclass from .t_data_output_association import TDataOutputAssociation __NAMESPACE__ = "http://www.omg.org/spec/BPMN/20100524/MODEL" @dataclass class DataOutputAssociation(TDataOutputAssociation): class Meta: name = "dataOutputAssociation" namespace = "http://www.omg.org/spec/BPMN/20100524/MODEL"