blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
d7796aa004c50f361ca9e8a8a0b3f4ef051ceb67
d9b672fd2096b9e91dda9c82a4ae47d628f023e4
/settings.py
a0655b84c59756eff3b37f60615c035fa474b8bd
[ "Apache-2.0" ]
permissive
homepods/silver-payu
3f314be0b1cd2409b80a79ad1519b0b881506d69
6d2ad761d5972f4b92928c12dde97959939d2786
refs/heads/master
2020-06-22T06:15:20.522288
2018-10-01T09:24:13
2018-10-01T09:24:13
197,654,966
1
0
null
2019-07-18T20:50:09
2019-07-18T20:50:09
null
UTF-8
Python
false
false
3,602
py
# Copyright (c) 2015 Presslabs SRL # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from silver import HOOK_EVENTS as _HOOK_EVENTS from django.utils.log import DEFAULT_LOGGING as LOGGING """ These settings are used by the ``manage.py`` command. """ import os DEBUG = False SITE_ID = 1 USE_TZ = True TIME_ZONE = 'UTC' DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': 'db.sqlite', } } EXTERNAL_APPS = [ # Django core apps # 'django_admin_bootstrapped', 'django.contrib.admin', 'django.contrib.admindocs', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.messages', 'django.contrib.sessions', 'django.contrib.staticfiles', ] INSTALLED_APPS = EXTERNAL_APPS ROOT_URLCONF = 'silver.urls' PROJECT_ROOT = os.path.dirname(__file__) FIXTURE_DIRS = ( PROJECT_ROOT, PROJECT_ROOT + '/silver/' ) TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'APP_DIRS': True, 'DIRS': [ PROJECT_ROOT + '/payment_processors/templates/', PROJECT_ROOT + '/templates/', PROJECT_ROOT + '/silver/templates/', ], 'OPTIONS': { 'context_processors': ( "django.contrib.auth.context_processors.auth", "django.template.context_processors.debug", "django.template.context_processors.i18n", "django.template.context_processors.media", "django.template.context_processors.static", "django.template.context_processors.tz", "django.contrib.messages.context_processors.messages" ) } } ] MEDIA_ROOT = PROJECT_ROOT + '/app_media/' MEDIA_URL = '/app_media/' STATIC_ROOT = PROJECT_ROOT + '/app_static/' STATIC_URL = '/app_static/' MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) SECRET_KEY = 'secret' REST_FRAMEWORK = { 'DEFAULT_PAGINATION_CLASS': 'silver.api.pagination.LinkHeaderPagination' } LOGGING['loggers']['xhtml2pdf'] = { 'level': 'DEBUG', 'handlers': ['console'] } LOGGING['loggers']['pisa'] = { 'level': 'DEBUG', 'handlers': ['console'] } LOGGING['loggers']['django'] = { 'level': 'DEBUG', 'handlers': ['console'] } LOGGING['loggers']['django.security'] = { 'level': 'DEBUG', 'handlers': ['console'] } LOGGING['formatters'] = {} LOGGING['formatters']['verbose'] = { 'format': "[%(asctime)s] %(levelname)s [%(name)s:%(lineno)s] %(message)s", 'datefmt': "%d/%b/%Y %H:%M:%S" } CACHES = { 'default': { 'BACKEND': 'django.core.cache.backends.locmem.LocMemCache', 'LOCATION': 'unique-snowflake', } } EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend'
c74db58ad4e08ae2ba7fae4dcad8d34e14650f04
f719dc32c437a15c0eb7a229adc2848e4646a172
/billy/api/customer/forms.py
fd102c147046aae78bf8ff40db5b2ac935fa24db
[ "MIT", "BSD-3-Clause", "BSD-2-Clause", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
grang5/billy
db3a88b650962f25b8bdea80a81c5efa5d80dec0
a723c3aca18f817829ae088f469fabc5bea9d538
refs/heads/master
2021-04-18T19:36:05.586549
2014-06-16T21:47:37
2014-06-16T21:47:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
263
py
from __future__ import unicode_literals from wtforms import Form from wtforms import TextField from wtforms import validators class CustomerCreateForm(Form): processor_uri = TextField('URI of customer in processor', [ validators.Optional(), ])
b25403fc53f5f5969f36e94ee28d051866d5f2e6
5983ea8a59cd0b9763e0eb0dfc7f26dfd2ba5e60
/2019102962刘铎/刘铎-2019102962/DQN-First/maze_env.py
33157255db41910b66f0e97841906122112ce32f
[]
no_license
wanghan79/2020_Master_Python
0d8bdcff719a4b3917caa76ae318e3f8134fa83a
b3f6f3825b66b93ec6c54ed6187f6c0edcad6010
refs/heads/master
2021-01-26T13:29:09.439023
2020-06-23T02:17:52
2020-06-23T02:17:52
243,442,589
11
6
null
2020-03-29T05:59:29
2020-02-27T05:55:52
Python
UTF-8
Python
false
false
4,088
py
""" Reinforcement learning maze example. Red rectangle: explorer. Black rectangles: hells [reward = -1]. Yellow bin circle: paradise [reward = +1]. All other states: ground [reward = 0]. This script is the environment part of this example. The RL is in RL_brain.py. """ import numpy as np import time import sys if sys.version_info.major == 2: import Tkinter as tk else: import tkinter as tk UNIT = 40 # pixels MAZE_H = 4 # grid height MAZE_W = 4 # grid width class Maze(tk.Tk, object): def __init__(self): super(Maze, self).__init__() self.action_space = ['u', 'd', 'l', 'r'] self.n_actions = len(self.action_space) self.n_features = 2 self.title('maze') self.geometry('{0}x{1}'.format(MAZE_H * UNIT, MAZE_H * UNIT)) self._build_maze() def _build_maze(self): self.canvas = tk.Canvas(self, bg='white', height=MAZE_H * UNIT, width=MAZE_W * UNIT) # create grids for c in range(0, MAZE_W * UNIT, UNIT): x0, y0, x1, y1 = c, 0, c, MAZE_H * UNIT self.canvas.create_line(x0, y0, x1, y1) for r in range(0, MAZE_H * UNIT, UNIT): x0, y0, x1, y1 = 0, r, MAZE_W * UNIT, r self.canvas.create_line(x0, y0, x1, y1) # create origin origin = np.array([20, 20]) # hell hell1_center = origin + np.array([UNIT * 2, UNIT]) self.hell1 = self.canvas.create_rectangle( hell1_center[0] - 15, hell1_center[1] - 15, hell1_center[0] + 15, hell1_center[1] + 15, fill='black') # hell # hell2_center = origin + np.array([UNIT, UNIT * 2]) # self.hell2 = self.canvas.create_rectangle( # hell2_center[0] - 15, hell2_center[1] - 15, # hell2_center[0] + 15, hell2_center[1] + 15, # fill='black') # create oval oval_center = origin + UNIT * 2 self.oval = self.canvas.create_oval( oval_center[0] - 15, oval_center[1] - 15, oval_center[0] + 15, oval_center[1] + 15, fill='yellow') # create red rect self.rect = self.canvas.create_rectangle( origin[0] - 15, origin[1] - 15, origin[0] + 15, origin[1] + 15, fill='red') # pack all self.canvas.pack() def reset(self): self.update() time.sleep(0.1) self.canvas.delete(self.rect) origin = np.array([20, 20]) self.rect = self.canvas.create_rectangle( origin[0] - 15, origin[1] - 15, origin[0] + 15, origin[1] + 15, fill='red') # return observation return (np.array(self.canvas.coords(self.rect)[:2]) - np.array(self.canvas.coords(self.oval)[:2]))/(MAZE_H*UNIT) def step(self, action): s = self.canvas.coords(self.rect) base_action = np.array([0, 0]) if action == 0: # up if s[1] > UNIT: base_action[1] -= UNIT elif action == 1: # down if s[1] < (MAZE_H - 1) * UNIT: base_action[1] += UNIT elif action == 2: # right if s[0] < (MAZE_W - 1) * UNIT: base_action[0] += UNIT elif action == 3: # left if s[0] > UNIT: base_action[0] -= UNIT self.canvas.move(self.rect, base_action[0], base_action[1]) # move agent next_coords = self.canvas.coords(self.rect) # next state # reward function if next_coords == self.canvas.coords(self.oval): reward = 1 done = True elif next_coords in [self.canvas.coords(self.hell1)]: reward = -1 done = True else: reward = 0 done = False s_ = (np.array(next_coords[:2]) - np.array(self.canvas.coords(self.oval)[:2]))/(MAZE_H*UNIT) return s_, reward, done def render(self): # time.sleep(0.01) self.update()
878bd7c77267774dbcacd5ed1f887c9c3b26ddb7
c5294a8e9a6aa7da37850443d3a5d366ee4b5c35
/build/spencer_people_tracking/launch/spencer_people_tracking_launch/catkin_generated/pkg.installspace.context.pc.py
0e8b747bde57ae825f82cfdacbb221758a0acfbb
[]
no_license
scutDavid/ros_gradution_project
6eab9a5776ae090ae8999d31e840a12a99020c79
fbbd83ada5aa223809615d55a48e632699afd4b5
refs/heads/master
2020-03-07T18:39:24.084619
2018-04-25T13:41:04
2018-04-25T13:41:04
127,647,113
1
0
null
null
null
null
UTF-8
Python
false
false
385
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "".split(';') if "" != "" else [] PROJECT_CATKIN_DEPENDS = "".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "spencer_people_tracking_launch" PROJECT_SPACE_DIR = "/home/wwh/qqq/install" PROJECT_VERSION = "1.0.8"
cede0e482d3ea3a08d161be9ba8ae74f9c9f82fa
7dc05dc9ba548cc97ebe96ed1f0dab8dfe8d8b81
/trunk/pida/utils/pgd/debugsession.py
6e0c5d6df92cc9f56a44188a64b2d6b59d10bc26
[]
no_license
BackupTheBerlios/pida-svn
b68da6689fa482a42f5dee93e2bcffb167a83b83
739147ed21a23cab23c2bba98f1c54108f8c2516
refs/heads/master
2020-05-31T17:28:47.927074
2006-05-18T21:42:32
2006-05-18T21:42:32
40,817,392
1
0
null
null
null
null
UTF-8
Python
false
false
5,589
py
# -*- coding: utf-8 -*- # vim:set shiftwidth=4 tabstop=4 expandtab textwidth=79: # Copyright (c) 2006 Ali Afshar #Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is #furnished to do so, subject to the following conditions: #The above copyright notice and this permission notice shall be included in #all copies or substantial portions of the Software. #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR #IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, #FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE #AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER #LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, #OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE #SOFTWARE. import os import sys from winpdb import rpdb2 from console import Terminal def get_debugee_script_path(): import pkg_resources req = pkg_resources.Requirement.parse('pgd') try: sfile = pkg_resources.resource_filename(req, 'pgd/winpdb/rpdb2.py') except pkg_resources.DistributionNotFound: sfile = os.path.join( os.path.dirname(__file__), 'winpdb', 'rpdb2.py') if sfile.endswith('c'): sfile = sfile[:-1] return sfile class SessionManagerInternal(rpdb2.CSessionManagerInternal): def _spawn_server(self, fchdir, ExpandedFilename, args, rid): """ Start an OS console to act as server. What it does is to start rpdb again in a new console in server only mode. """ debugger = get_debugee_script_path() baseargs = ['python', debugger, '--debugee', '--rid=%s' % rid] if fchdir: baseargs.append('--chdir') if self.m_fAllowUnencrypted: baseargs.append('--plaintext') if self.m_fRemote: baseargs.append('--remote') if os.name == 'nt': baseargs.append('--pwd=%s' % self.m_pwd) if 'PGD_DEBUG' in os.environ: baseargs.append('--debug') baseargs.append(ExpandedFilename) cmdargs = baseargs + args.split() python_exec = sys.executable self.terminal.fork_command(python_exec, cmdargs) class SessionManager(rpdb2.CSessionManager): def __init__(self, app): self.app = app self.options = app.options self.main_window = app.main_window self.delegate = self._create_view() self._CSessionManager__smi = self._create_smi() def _create_smi(self): smi = SessionManagerInternal( self.options.pwd, self.options.allow_unencrypted, self.options.remote, self.options.host) smi.terminal = self return smi def _create_view(self): view = Terminal(self.app) self.main_window.attach_slave('outterm_holder', view) return view def fork_command(self, *args, **kw): self.delegate.terminal.fork_command(*args, **kw) def launch_filename(self, filename): self.app.launch(filename) class RunningOptions(object): def set_options(self, command_line, fAttach, fchdir, pwd, fAllowUnencrypted, fRemote, host): self.command_line = command_line self.attach = fAttach self.pwd = pwd self.allow_unencrypted = fAllowUnencrypted self.remote = fRemote self.host = host def connect_events(self): event_type_dict = {rpdb2.CEventState: {}} self.session_manager.register_callback(self.update_state, event_type_dict, fSingleUse = False) event_type_dict = {rpdb2.CEventStackFrameChange: {}} self.session_manager.register_callback(self.update_frame, event_type_dict, fSingleUse = False) event_type_dict = {rpdb2.CEventThreads: {}} self.session_manager.register_callback(self.update_threads, event_type_dict, fSingleUse = False) event_type_dict = {rpdb2.CEventNoThreads: {}} self.session_manager.register_callback(self.update_no_threads, event_type_dict, fSingleUse = False) event_type_dict = {rpdb2.CEventNamespace: {}} self.session_manager.register_callback(self.update_namespace, event_type_dict, fSingleUse = False) event_type_dict = {rpdb2.CEventThreadBroken: {}} self.session_manager.register_callback(self.update_thread_broken, event_type_dict, fSingleUse = False) event_type_dict = {rpdb2.CEventStack: {}} self.session_manager.register_callback(self.update_stack, event_type_dict, fSingleUse = False) event_type_dict = {rpdb2.CEventBreakpoint: {}} self.session_manager.register_callback(self.update_bp, event_type_dict, fSingleUse = False) def start(command_line, fAttach, fchdir, pwd, fAllowUnencrypted, fRemote, host): options= RunningOptions() options.set_options(command_line, fAttach, fchdir, pwd, fAllowUnencrypted, fRemote, host) return options def main(start): rpdb2.main(start) def start_as_cl(): rpdb2.main() if __name__ == '__main__': start_as_cl()
[ "aafshar@ef0b12da-61f9-0310-ba38-b2629ec279a7" ]
aafshar@ef0b12da-61f9-0310-ba38-b2629ec279a7
47abd26109c9522bd177dbbf0cd330a30d2b38c2
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03998/s861110715.py
06ced3f35c4b4debbacf590c69b46eaf81a9942e
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
424
py
A = list(input()) B = list(input()) C = list(input()) n = A[0] del A[0] while True: if n == "a": if A == []: print("A") break n = A[0] del A[0] elif n == "b": if B == []: print("B") break n = B[0] del B[0] else: if C == []: print("C") break n = C[0] del C[0]
c041ce36c31bab982df6a4db67cbb9e648902b4e
d88e4152c0540c4c3c0a93c997ed8666d6ede863
/daeUSB.py
299f7ae439ebaf4837641b8975188e5fef04d3c2
[]
no_license
mahongquan/word_auto
2ad36383a435a0b020c3939e1efafec13a64a59f
552ecb5dc43fdd71785f6e188de7cd0df66345ac
refs/heads/master
2020-03-21T17:28:03.633892
2018-07-22T02:38:31
2018-07-22T02:38:31
138,833,600
0
0
null
null
null
null
UTF-8
Python
false
false
3,815
py
# -*- coding: utf-8 -*- #安装USB2COM驱动 import pywinauto import pywintypes from pywinauto import findwindows,handleprops import os import _thread import traceback from threading import Thread,Event import time def runUSB(): #cmd=r"start c:\9111\PCIS-DASK\PCIS-DASK.exe" cmd="start c:\\CS3000备份\\CDM21216_Setup.exe" os.system(cmd) class Program(object): """example for AutoResetEvent""" def main(self): _thread.start_new_thread(runUSB,())#start program wind=EastWind(self.mre) wind.start() self.mre.wait()#wait install finish def __init__(self): super(Program, self).__init__() self.mre=Event() class EastWind(Thread): """dmretring for EastWind""" def __init__(self, mreV): super(EastWind, self).__init__() self.mre=mreV def run(self): lookupWindow()#installing self.mre.set()#install finish def treatadlink(h): try: d=pywinauto.controls.hwndwrapper.DialogWrapper(h) #print(dir(d)) cs=d.children() d.set_focus() for c in cs: bt=c.window_text() if c.class_name()=="Button" and "Extract" in bt: c.set_focus() c.click_input() if c.class_name()=="Button" and "下一步" in bt: c.set_focus() c.click_input() if c.class_name()=="Button" and "Finish" in bt: c.set_focus() c.click_input() if c.class_name()=="Button" and "No" in bt: c.set_focus() c.click_input() except pywintypes.error as e: print(e) pass except TypeError as e: print(e) return True def treatQudong(h): try: d=pywinauto.controls.hwndwrapper.DialogWrapper(h) #print(dir(d)) cs=d.children() d.set_focus() for c in cs: bt=c.window_text() if(bt!=None): if c.class_name()=="Button" and "我接受" in bt: c.set_focus() c.click_input() if c.class_name()=="Button" and "下一步" in bt: c.set_focus() c.click_input() # if c.class_name()=="Button" and "完成" in bt: # c.set_focus() # c.click_input() # if c.class_name()=="Button" and "No" in bt: # c.set_focus() # c.click_input() except pywintypes.error as e: print(e) pass return True def lookupWindow(): idle=0 while(True): print("=================") try: wins=findwindows.find_windows() for win in wins: try: title=handleprops.text(win) print(title) if title!=None: if "FTDI" in title: print("--------------------find:"+title) if treatadlink(win): idle=0 elif "设备驱动程序" in title: print("、、、、、、、、、、、find:"+title) if treatQudong(win): idle=0 except UnicodeEncodeError as e: print(e) pass time.sleep(1)#每秒检查一次 idle+=1 if idle>5 :#连续五秒没有查找到窗口则退出 break except: traceback.print_exc() a=input("except") def main(): program=Program() program.main() if __name__=="__main__": lookupWindow()
132e5c34952c72f35e089c726777abaa59399bcd
daca4a0604a21e4dcdab501369704db24741938e
/webdriver/tests/sessions/new_session/invalid_capabilities.py
8452bfb11e908be7a06fd65f6138f6f0c3958cd8
[ "W3C", "LicenseRef-scancode-unknown-license-reference", "LicenseRef-scancode-w3c-03-bsd-license", "BSD-3-Clause" ]
permissive
Spec-Ops/web-platform-tests
4ac91a784d5d363d261bfe92e251e6efd74b6b01
c07a244ceef0d0833f61f2efa227bc1c65371c9c
refs/heads/master
2020-12-11T06:08:52.141843
2017-10-20T11:55:15
2017-10-20T12:56:55
54,023,228
3
4
null
2016-09-06T21:01:15
2016-03-16T10:39:23
HTML
UTF-8
Python
false
false
3,428
py
#META: timeout=long import pytest from webdriver import error from conftest import product, flatten @pytest.mark.parametrize("value", [None, 1, "{}", []]) def test_invalid_capabilites(new_session, value): with pytest.raises(error.InvalidArgumentException): new_session({"capabilities": value}) @pytest.mark.parametrize("value", [None, 1, "{}", []]) def test_invalid_always_match(new_session, value): with pytest.raises(error.InvalidArgumentException): new_session({"capabilities": {"alwaysMatch": value}}) @pytest.mark.parametrize("value", [None, 1, "[]", {}]) def test_invalid_first_match(new_session, value): with pytest.raises(error.InvalidArgumentException): new_session({"capabilities": {"firstMatch": value}}) invalid_data = [ ("acceptInsecureCerts", [1, [], {}, "false"]), ("browserName", [1, [], {}, False]), ("browserVersion", [1, [], {}, False]), ("platformName", [1, [], {}, False]), ("pageLoadStrategy", [1, [], {}, False, "invalid", "NONE", "Eager", "eagerblah", "interactive", " eager", "eager "]), ("proxy", [1, [], "{}", {"proxyType": "SYSTEM"}, {"proxyType": "systemSomething"}, {"proxy type": "pac"}, {"proxy-Type": "system"}, {"proxy_type": "system"}, {"proxytype": "system"}, {"PROXYTYPE": "system"}, {"proxyType": None}, {"proxyType": 1}, {"proxyType": []}, {"proxyType": {"value": "system"}}, {" proxyType": "system"}, {"proxyType ": "system"}, {"proxyType ": " system"}, {"proxyType": "system "}]), ("timeouts", [1, [], "{}", {}, False, {"pageLOAD": 10}, {"page load": 10}, {"page load": 10}, {"pageLoad": "10"}, {"pageLoad": {"value": 10}}, {"invalid": 10}, {"pageLoad": -1}, {"pageLoad": 2**64}, {"pageLoad": None}, {"pageLoad": 1.1}, {"pageLoad": 10, "invalid": 10}, {" pageLoad": 10}, {"pageLoad ": 10}]), ("unhandledPromptBehavior", [1, [], {}, False, "DISMISS", "dismissABC", "Accept", " dismiss", "dismiss "]) ] @pytest.mark.parametrize("body", [lambda key, value: {"alwaysMatch": {key: value}}, lambda key, value: {"firstMatch": [{key: value}]}]) @pytest.mark.parametrize("key,value", flatten(product(*item) for item in invalid_data)) def test_invalid_values(new_session, body, key, value): with pytest.raises(error.InvalidArgumentException): resp = new_session({"capabilities": body(key, value)}) invalid_extensions = [ "firefox", "firefox_binary", "firefoxOptions", "chromeOptions", "automaticInspection", "automaticProfiling", "platform", "version", "browser", "platformVersion", "javascriptEnabled", "nativeEvents", "seleniumProtocol", "profile", "trustAllSSLCertificates", "initialBrowserUrl", "requireWindowFocus", "logFile", "logLevel", "safari.options", "ensureCleanSession", ] @pytest.mark.parametrize("body", [lambda key, value: {"alwaysMatch": {key: value}}, lambda key, value: {"firstMatch": [{key: value}]}]) @pytest.mark.parametrize("key", invalid_extensions) def test_invalid_extensions(new_session, body, key): with pytest.raises(error.InvalidArgumentException): resp = new_session({"capabilities": body(key, {})})
ecc937959d6a50bec48eee0e0c39cad9bc0593a0
3ff9821b1984417a83a75c7d186da9228e13ead9
/2020_August_Leetcode_30_days_challenge/Week_2_Excel Sheet Column Number/by_recursion_and_base_conversion.py
8614066d3ca3b81874534ab1c3be1896d784e563
[ "MIT" ]
permissive
brianchiang-tw/leetcode
fd4df1917daef403c48cb5a3f5834579526ad0c2
6978acfb8cb767002cb953d02be68999845425f3
refs/heads/master
2023-06-11T00:44:01.423772
2023-06-01T03:52:00
2023-06-01T03:52:00
222,939,709
41
12
null
null
null
null
UTF-8
Python
false
false
1,450
py
''' Description: Given a column title as appear in an Excel sheet, return its corresponding column number. For example: A -> 1 B -> 2 C -> 3 ... Z -> 26 AA -> 27 AB -> 28 ... Example 1: Input: "A" Output: 1 Example 2: Input: "AB" Output: 28 Example 3: Input: "ZY" Output: 701 Constraints: 1 <= s.length <= 7 s consists only of uppercase English letters. s is between "A" and "FXSHRXW". ''' class Solution: def titleToNumber(self, s: str) -> int: if len(s) == 1: # base case return ord(s) - ord('A') + 1 else: # general case return 26*self.titleToNumber( s[:-1] ) + self.titleToNumber( s[-1] ) # n : the length of string, s ## Time Complexity: O( n ) # # The overhead in time is the cost of recusion depth, which is of O( n ). ## Space Comeplexity: O( n ) # # The overhead in space is the storage for recursion call stack, which is of O( n ). import unittest class Testing( unittest.TestCase ): def test_case_1( self ): result = Solution().titleToNumber( s='A' ) self.assertEqual(result, 1) def test_case_2( self ): result = Solution().titleToNumber( s='AB' ) self.assertEqual(result, 28) def test_case_3( self ): result = Solution().titleToNumber( s='ZY' ) self.assertEqual(result, 701) if __name__ == '__main__': unittest.main()
181242534741172deff30d1570b6c1e64b1d1641
6daaf3cecb19f95265188adc9afc97e640ede23c
/python_design/pythonprogram_design/Ch5/5-3-E60.py
cae23228ee53270139ad9d77e1371e78ac0da7f0
[]
no_license
guoweifeng216/python
723f1b29610d9f536a061243a64cf68e28a249be
658de396ba13f80d7cb3ebd3785d32dabe4b611d
refs/heads/master
2021-01-20T13:11:47.393514
2019-12-04T02:23:36
2019-12-04T02:23:36
90,457,862
0
0
null
null
null
null
UTF-8
Python
false
false
682
py
import pickle def main(): ## Display the large cities in a specified state. largeCities = createDictionaryFromBinaryFile("LargeCitiesDict.dat") state = input("Enter the name of a state: ") getCities(state, largeCities) def createDictionaryFromBinaryFile(fileName): # Assume pickle module has been imported. infile = open(fileName, 'rb') dictionaryName = pickle.load(infile) infile.close() return dictionaryName def getCities(state, dictionaryName): if dictionaryName[state] != []: print("Large cities:", " ".join(dictionaryName[state])) else: print("There are no large cities in", state + '.') main()
9f9de4a0ce359c148f01dc85de77fe73c15d295b
06a38963f22f8a74cc129033f8f1cac7f114cf5d
/problem_set_1/.history/src/p03d_poisson_20210517220103.py
6c67a7f7ecde98d6ae3463c6f27704f0d07843ae
[]
no_license
lulugai/CS229
47e59bcefe9dccbb83c6d903682eb6ddca3a24b5
4dd77b2895559689e875afe749360c3751a12cf1
refs/heads/main
2023-05-09T17:39:45.336695
2021-06-01T09:15:25
2021-06-01T09:15:25
372,768,960
0
0
null
null
null
null
UTF-8
Python
false
false
2,462
py
import numpy as np import util from linear_model import LinearModel def main(lr, train_path, eval_path, pred_path): """Problem 3(d): Poisson regression with gradient ascent. Args: lr: Learning rate for gradient ascent. train_path: Path to CSV file containing dataset for training. eval_path: Path to CSV file containing dataset for evaluation. pred_path: Path to save predictions. """ # Load training set x_train, y_train = util.load_dataset(train_path, add_intercept=True) # *** START CODE HERE *** # Fit a Poisson Regression model # Run on the validation set, and use np.savetxt to save outputs to pred_path x_val, y_val = util.load_dataset(eval_path, add_intercept=True) logreg = PoissonRegression() logreg.fit(x_train, y_train) print("Theta is: ", logreg.theta) print("The accuracy on training set is: ", np.mean(logreg.predict(x_train) == y_train)) print("The accuracy on valid set is: ", np.mean(logreg.predict(x_val) == y_val)) np.savetxt(pred_path, logreg.predict(x_val)) # *** END CODE HERE *** class PoissonRegression(LinearModel): """Poisson Regression. Example usage: > clf = PoissonRegression(step_size=lr) > clf.fit(x_train, y_train) > clf.predict(x_eval) """ def h(self, theta, x): return np.exp(x @ theta) def fit(self, x, y): """Run gradient ascent to maximize likelihood for Poisson regression. Args: x: Training example inputs. Shape (m, n). y: Training example labels. Shape (m,). """ # *** START CODE HERE *** m, n = x.shape if self.theta is None: self.theta = np.zeros(n) theta = self.theta next_theta = theta + self.step_size / m * x.T @ (y - self.h(theta, x)) print(next_theta) while np.linalg.norm(self.step_size / m * x.T @ (y - self.h(theta, x)), 1) >= self.eps: theta = next_theta next_theta = theta + self.step_size / m * x.T @ (y - self.h(theta, x)) self.theta = theta # *** END CODE HERE *** def predict(self, x): """Make a prediction given inputs x. Args: x: Inputs of shape (m, n). Returns: Floating-point prediction for each input, shape (m,). """ # *** START CODE HERE *** return self.h(self.theta, x) # *** END CODE HERE ***
ec7aa8ec3045bb0672f893db968f532ab7ae139d
aef6e68ccb00c423ebfad39101c1913c68253c83
/saramin/parser.py
ca99d8976a02a2ae8ac2f0f0c92607724ebb452b
[]
no_license
plzprayme/work-scholarship-tools
76dd39f037d774111927a316cdd8c88ed854aec9
df8004c90a8a3b33e5c858c7d544a0e35ef7ce19
refs/heads/main
2023-02-13T05:24:35.673243
2021-01-15T07:47:18
2021-01-15T07:47:18
306,560,615
1
1
null
null
null
null
UTF-8
Python
false
false
12,233
py
from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from bs4 import BeautifulSoup as bs4 from datetime import datetime, date from time import sleep import pandas as pd def filter_by_condition(rows): result = [] for row in rows: location_condition = row.find_element_by_css_selector("p.work_place").text career_condition = row.find_element_by_css_selector(".career").text deadline = row.find_element_by_css_selector('.deadlines').text url = row.find_element_by_css_selector( '.str_tit').get_attribute('href') try: if is_deadline_over_ten_days(deadline) \ and "대전" in location_condition \ and ("신입" in career_condition or "경력무관" in career_condition): print("=====FILTERED ROW=====") print("LOCATION CONDITION", location_condition) print("CAREER CONDITION", career_condition) print("DEADLINE CONDITIOn", deadline) print("=====END FILTERED=====") result.append(url) else: print("=====UNFILTERED ROW=====") print("LOCATION CONDITION", location_condition) print("CAREER CONDITION", career_condition) print("DEADLINE CONDITIOn", deadline) print("=====END UNFILTERED=====") except: print("UNFILTERED DEADLINE ROW", deadline) return result def is_deadline_over_ten_days(deadline): today = date.today() iso_format = get_deadline_for_iso(deadline) deadline_date = date.fromisoformat(iso_format) deadline = (deadline_date - today).days return deadline >= 10 def get_deadline_for_iso(deadline): iso_format = [str(date.today().year)] a = deadline.split(" ") b = a[1].split("(") c = b[0].split("/") d = iso_format + c return "-".join(d) def get_column_value(soup, selector, parser_function): try: value = parser_function(soup, selector) return value except: return "" def default_parser(soup, selector): return soup.select(selector)[0].text.strip() def replace_wrap_parser(soup, selector): target = soup.select(selector)[0] result = target.text if target.select(".toolTipWrap"): result = result.replace(target.select(".toolTipWrap")[0].text, "") return result.strip() def deadline_parser(soup, selector): deadline = soup.select(selector)[0].text # YYYY.MM.DD tt:mm return deadline.split(" ")[0] # YYYY.MM.DD def href_parser(soup, selector): return soup.select(selector)[0].attrs["href"] def benefit_parser(soup, selector): # 버튼이 있는지 없는지 살펴보기 # 있으면 버튼 클릭하기 # option: 복리후생이 있는 곳 까지 스크롤 내리기 # row가져오고 col 단위로 접근하기 result = [] parent = soup.select(selector)[0] button = parent.find('button') if button is not None: driver.find_element_by_css_selector('.jv_benefit > div.cont > button').click() columns = parent.select('.col') for column in columns[:-2]: title = column.dt.text value = column.dd.text.strip() result.append(title) result.append(value) result.append("\n") return "\n".join(result) def get_next_page_url(base_url, page): url = base_url.split("?") url[1] = f"page={page}&" + url[1] return "?".join(url) with webdriver.Chrome("./chromedriver") as driver: wait = WebDriverWait(driver, 10) company_name_list = [] content_list = [] aa_list = [] recruitment_number_list = [] task_list = [] work_location_list = [] url_list = [] deadline_list = [] imployee_list = [] sales_list = [] gender_list = [] find_who_list = [] income_list = [] work_time_list = [] benefit_list = [] resume_format_list = [] # print("*" * 35) # print("*" + " " * 33 + "*") # print("* 한남대학교 취업전략개발팀 *") # print("* 근로장학생 업무 자동화 프로젝트 *") # print("* 사람인 채용공고 크롤러 *") # print("*" + " " * 33 + "*") # print("*********CREATED BY PRAYME*********") # print() # print() # print() # print(">> 데이터를 수집할 URL을 입력해주세요 ") target_url = "http://www.saramin.co.kr/zf_user/jobs/list/domestic?loc_mcd=105000&cat_cd=404%2C407%2C402%2C417%2C411%2C315%2C309%2C302%2C308%2C314&panel_type=&search_optional_item=n&search_done=y&panel_count=y" driver.get(target_url) print(">> 수집을 시작합니다....") rows = driver.find_elements_by_css_selector("#default_list_wrap > section > div.list_body > .list_item") print(">> 대전 지역, 10일 이상, 신입 조건 채용공고 필터링 시작....") rows = filter_by_condition(rows) page = 1 while len(rows) <= 40: page += 1 next_page = get_next_page_url(target_url, page) driver.get(next_page) elements = driver.find_elements_by_css_selector("#default_list_wrap > section > div.list_body > .list_item") rows += filter_by_condition(elements) rows = set(rows) rows = list(rows) print(">> 필터링 완료. 총 {}개의 채용공고 수집을 시작합니다....".format(len(rows))) for i, row in enumerate(rows): print(">> {}/{}번째 채용공고 수집 시작".format(i, len(rows))) # print("ROW", row) # row에서 해결할 수 있는 것들 # 아이템 페이지로 이동하기 driver.get(row) # DOM 로딩 기다리기 # wait.until(presence_of_element_located( # (By.CSS_SELECTOR, ".info_period > dd:nth-child(4)") # )) sleep(5) # HTML 얻기 html = driver.page_source soup = bs4(html, 'html.parser') # # 각 아이템의 회사 이름 가져오기 company_name = get_column_value(soup, ".company_name", default_parser) print("COMPANY NAME", company_name) ############# 여기까지 완료 ################# # # # 각 아이템의 근무 주소 가져오기 work_location = get_column_value( soup, "#map_0 > div > address > span", default_parser) print("WORK LOCATION", work_location) # # # 각 아이템의 이력서 제출 형식 가져오기 # resume_submission_format = get_column_value( # soup, '.template', default_parser) resume_submission_format = get_column_value( soup, '.template', replace_wrap_parser) print("RESUME SUBMISSION FORMAT", resume_submission_format) # # 각 아이템의 모집 마감 날짜 가져오기 deadline = get_column_value( soup, '.info_period > dd:nth-child(4)', deadline_parser) print("DEADLINE", deadline) # # # 각 아이템의 복리후생 가져오기 benefit = get_column_value(soup, '.jv_benefit', benefit_parser) print("BENEFIT", benefit) income = "" work_time = "" find_who = "" try: cont = soup.select(".cont")[0] for column in cont: for dl in column.select("dl"): title = dl.dt.text content = dl.dd.text tooltip = dl.select(".toolTipWrap") if "급여" == title: print("급여", content) if tooltip: content = content.replace(tooltip[0].text, "").strip() income = content print("급여", income) elif "근무일시" == title: print("근무일시", content) if tooltip: content = content.replace(tooltip[0].text, "").strip() work_time = content print("근무일시", work_time) elif "우대사항" == title: result = [] for item in dl.select(".toolTipTxt > li"): result.append(item.text.strip()) print("우대사항", "\n".join(result)) find_who = "\n".join(result) except: print("ERROR") recruitment_number = get_column_value(soup, ".recruit_division_0 #template_divisions_work_dept_nm_0", default_parser) print("RECRUIT_NUMBER", recruitment_number) task = get_column_value(soup, ".recruit_division_0 #template_divisions_assign_task_nm_0 > tbody > tr:nth-child(2) > td", default_parser) print("TASK", task) # 사업내용 가져오기 company_detail = get_column_value( soup, '.jv_header > a.company', href_parser) print("COMPANY_DETAIL", company_detail) sleep(5) driver.get("http://www.saramin.co.kr" + company_detail) sleep(5) # wait.until(presence_of_element_located( # (By.CSS_SELECTOR, "#company_info_introduce") # )) company_detail_html = driver.page_source company_detail_soup = bs4(company_detail_html, 'html.parser') # document.querySelector("#company_info_introduce").textContent.trim()[116:] content = "" imployee = "" sales = "" gender = "무관" try: detail = company_detail_soup.select(".summary > li") for li in detail: title = li.span.text body = li.strong.text if "사원수" == title: imployee = body elif "매출액" == title: sales = body print(f"사원수: {imployee}, 매출액: {sales}") data_title = company_detail_soup.select(".info > dt") data_content = company_detail_soup.select(".info > dd") position = 0 for i, title in enumerate(data_title): if "업종" == title.text or "사업내용" == title.text: content = data_content[i].text print(f"사업내용: {content}") except: print("사업내용 쪽 에러 남") company_name_list.append(company_name) content_list.append(content) aa_list.append("") recruitment_number_list.append(recruitment_number) task_list.append(task) work_location_list.append(work_location) url_list.append(row) deadline_list.append(deadline) imployee_list.append(imployee) sales_list.append(sales) gender_list.append(gender) find_who_list.append(find_who) income_list.append(income) work_time_list.append(work_time) benefit_list.append(benefit) resume_format_list.append(resume_submission_format) print(">> Excel 파일로 저장을 시작합니다.") df = pd.DataFrame({ "사업장명(회사이름)": company_name_list, "사업내용": content_list, "모집직종": aa_list, "모집인원": recruitment_number, "직무내용": task_list, "근무지주소": work_location_list, "소재지주소": work_location_list, "공지사이트": url_list, "서류마감": deadline_list, "근로자 수": imployee_list, "매출액": sales_list, "성별": gender_list, "우대조건": find_who_list, "임금액": income_list, "근무시간": work_time_list, "복리후생": benefit_list, "제출서류": resume_format_list }) save_time = datetime.now().strftime("%Y_%m_%d_%H시%M분") name = '{}_채용공고.csv' df.to_csv('{}utf_채용공고.csv'.format(save_time), encoding='utf-8-sig') # df.to_csv(name.format(save_time), encoding='euc-kr') print(">> Excel 파일로 저장을 완료했습니다.")
acf5d4b77fd234775af80508e3a4688f0811f179
37e53bb1d47004e956119e7e7047b8194b3142f5
/grok/recursion_ver_3.py
1d12fa0694653459fa11a17525f97743ce815aa0
[]
no_license
fortredux/py_miscellaneous
eea82f900434ef23d98769f9057c87c97b278e45
7aee7c8bc0ddda1e137e4cb7e88eed78dbdb98d8
refs/heads/master
2020-12-21T21:03:28.897746
2020-04-05T20:44:55
2020-04-05T20:44:55
236,560,060
0
0
null
null
null
null
UTF-8
Python
false
false
278
py
def check(i): i = int(i) if i == 0: print('0') return False else: return True def countdown(num): x = check(num) while x is True: num = int(num) print(num) return countdown(num-1) countdown('15')
9092164cade33e786253089e178044d0156653f7
71d4fafdf7261a7da96404f294feed13f6c771a0
/mainwebsiteenv/lib/python2.7/site-packages/phonenumbers/shortdata/region_SK.py
fdc7ed9e7dd3d18546d0c1cdbe188f1eb3101d50
[]
no_license
avravikiran/mainwebsite
53f80108caf6fb536ba598967d417395aa2d9604
65bb5e85618aed89bfc1ee2719bd86d0ba0c8acd
refs/heads/master
2021-09-17T02:26:09.689217
2018-06-26T16:09:57
2018-06-26T16:09:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
756
py
"""Auto-generated file, do not edit by hand. SK metadata""" from ..phonemetadata import NumberFormat, PhoneNumberDesc, PhoneMetadata PHONE_METADATA_SK = PhoneMetadata(id='SK', country_code=None, international_prefix=None, general_desc=PhoneNumberDesc(national_number_pattern='1\\d{2,5}', possible_length=(3, 4, 5, 6)), toll_free=PhoneNumberDesc(national_number_pattern='116\\d{3}', example_number='116000', possible_length=(6,)), emergency=PhoneNumberDesc(national_number_pattern='1(?:12|5[058])', example_number='112', possible_length=(3,)), short_code=PhoneNumberDesc(national_number_pattern='1(?:1(?:2|6(?:000|111)|8[0-8])|[24]\\d{3}|5[0589]|8\\d{3})', example_number='112', possible_length=(3, 4, 5, 6)), short_data=True)
4301d8ddb5bac52d283851cc404947a820b5da05
362224f8a23387e8b369b02a6ff8690c200a2bce
/django/django_intro/dojosurveyRev/manage.py
925c756178ebae644969e9b503f6ded8d97f2cb8
[]
no_license
Helenyixuanwang/python_stack
ac94c7c532655bf47592a8453738daac10f220ad
97fbc77e3971b5df1fe3e79652b294facf8d6cee
refs/heads/main
2023-06-11T02:17:27.277551
2021-06-21T17:01:09
2021-06-21T17:01:09
364,336,066
0
0
null
null
null
null
UTF-8
Python
false
false
633
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'dojosurveyRev.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
e3ccc17dad2cce4bc4775644166167b2526d35eb
6c5ce1e621e0bd140d127527bf13be2093f4a016
/ex044/exercicio044.py
290134b8ab1da627fa43d612670b1700cc3f8065
[ "MIT" ]
permissive
ArthurAlesi/Python-Exercicios-CursoEmVideo
124e2ee82c3476a5a49baafed657788591a232c1
ed0f0086ddbc0092df9d16ec2d8fdbabcb480cdd
refs/heads/master
2022-12-31T13:21:30.001538
2020-09-24T02:09:23
2020-09-24T02:09:23
268,917,509
0
0
null
null
null
null
UTF-8
Python
false
false
796
py
# Elabore um programa que calcule o valor a ser pago por um produto # considerando o preço normal e condição de pagamento # a vista dinheiro 10% de desconto # a vista cartao 5% de desconto # 2x cartao preço normal # 3x ou mais compra = float(input("Informe o preço das compras")) print("Escolha a forma de pagamento") print("1 - vista dinheiro/cheque") print("2 - vista cartao") print("3 - 2x cartao") print("4 - 3x ou + cartao") entrada = int(input()) if entrada == 1: total = compra * 0.9 print("Voce pagara ", total) elif entrada == 2: total = compra * 0.95 print("Voce pagara ", total) elif entrada == 3: parcela = compra / 2 print("2 parcelas de ", parcela) elif entrada ==4: total = compra * 1.2 parcela = total / 3 print("3 parcelas de ", parcela)
a2669f6f3cf2be4424ef7db7edfd60b48effbd05
187a6558f3c7cb6234164677a2bda2e73c26eaaf
/jdcloud_sdk/services/logs/apis/TestMetricTaskRequest.py
8e2bba6c9cb8119d77246c48816fc0632e6a8191
[ "Apache-2.0" ]
permissive
jdcloud-api/jdcloud-sdk-python
4d2db584acc2620b7a866af82d21658cdd7cc227
3d1c50ed9117304d3b77a21babe899f939ae91cd
refs/heads/master
2023-09-04T02:51:08.335168
2023-08-30T12:00:25
2023-08-30T12:00:25
126,276,169
18
36
Apache-2.0
2023-09-07T06:54:49
2018-03-22T03:47:02
Python
UTF-8
Python
false
false
3,730
py
# coding=utf8 # Copyright 2018 JDCLOUD.COM # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # NOTE: This class is auto generated by the jdcloud code generator program. from jdcloud_sdk.core.jdcloudrequest import JDCloudRequest class TestMetricTaskRequest(JDCloudRequest): """ 日志测试,根据用户输入的日志筛选条件以及监控指标设置进行模拟监控统计 """ def __init__(self, parameters, header=None, version="v1"): super(TestMetricTaskRequest, self).__init__( '/regions/{regionId}/logsets/{logsetUID}/logtopics/{logtopicUID}/metrictaskTest', 'POST', header, version) self.parameters = parameters class TestMetricTaskParameters(object): def __init__(self, regionId,logsetUID,logtopicUID,content, ): """ :param regionId: 地域 Id :param logsetUID: 日志集 UID :param logtopicUID: 日志主题 UID :param content: 测试内容 """ self.regionId = regionId self.logsetUID = logsetUID self.logtopicUID = logtopicUID self.aggregate = None self.content = content self.dataField = None self.filterContent = None self.filterOpen = None self.filterType = None self.metric = None self.settingType = None self.sqlSpec = None def setAggregate(self, aggregate): """ :param aggregate: (Optional) 聚合函数,支持 count sum max min avg; 配置方式(SettingType) 为 空或visual 时,必填; """ self.aggregate = aggregate def setDataField(self, dataField): """ :param dataField: (Optional) 查询字段,支持 英文字母 数字 下划线 中划线 点(中文日志原文和各产品线的key); 配置方式(SettingType) 为 空或visual 时,必填; """ self.dataField = dataField def setFilterContent(self, filterContent): """ :param filterContent: (Optional) 过滤语法,可以为空 """ self.filterContent = filterContent def setFilterOpen(self, filterOpen): """ :param filterOpen: (Optional) 是否打开过滤; 配置方式(SettingType) 为 空或visual 时,必填; """ self.filterOpen = filterOpen def setFilterType(self, filterType): """ :param filterType: (Optional) 过滤类型,只能是fulltext和 advance; 配置方式(SettingType) 为 空或visual 时,必填; """ self.filterType = filterType def setMetric(self, metric): """ :param metric: (Optional) 监控项 , 支持大小写英文字母 下划线 数字 点,且不超过255byte(不支持中划线); 配置方式(SettingType) 为 空或visual 时,必填; """ self.metric = metric def setSettingType(self, settingType): """ :param settingType: (Optional) 配置方式: 可选参数;枚举值 visual,sql;分别代表可视化配置及sql配置方式,传空表示可视化配置; """ self.settingType = settingType def setSqlSpec(self, sqlSpec): """ :param sqlSpec: (Optional) """ self.sqlSpec = sqlSpec
5aa6d0190c71dff4c9372596cae52cfd9393b80b
08a93de4813e0efb5cf40ac490eb0502266ca8ba
/settings/urls.py
c64f4a4821b4b9656b8e0cfa43d8ede15897236c
[ "BSD-2-Clause" ]
permissive
hunglethanh9/modelchimp
eaf3a8c6c73a3ed4c942fa361d8b661bf5d92a87
cdb8162cdb554aa5ef00999f390138bd8325f472
refs/heads/master
2020-06-06T00:09:33.447383
2019-06-18T13:02:03
2019-06-18T13:02:03
192,582,892
1
0
null
2019-06-18T17:14:47
2019-06-18T17:14:47
null
UTF-8
Python
false
false
1,188
py
from django.conf.urls import include, url from django.contrib import admin from django.conf import settings from django.conf.urls.static import static from django.contrib.auth.views import ( PasswordResetView, PasswordResetConfirmView, PasswordResetDoneView, PasswordResetCompleteView, ) urlpatterns = [ url(r'^api/', include('settings.api_urls')), url(r'^api/v2/', include('settings.api_urls_v2')), url(r'^hq/', admin.site.urls), # Password reset views url(r'^password_reset/$', PasswordResetView.as_view(), name='password_reset'), url(r'^password_reset/done/$', PasswordResetDoneView.as_view(), name='password_reset_done'), url(r'^reset/(?P<uidb64>[0-9A-Za-z_\-]+)/(?P<token>[0-9A-Za-z]{1,13}-[0-9A-Za-z]{1,20})/$', PasswordResetConfirmView.as_view(), name='password_reset_confirm'), url(r'^reset/done/$', PasswordResetCompleteView.as_view(),name='password_reset_complete'), ] urlpatterns = urlpatterns + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) urlpatterns = urlpatterns + static(settings.STATIC_URL, document_root=settings.STATIC_ROOT)
d7c759cbcfcbf99821bb0d3e66eb3e9796632e2b
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/nouns/_hires.py
55de384efb494e1deadbf5e334722a21e472f366
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
224
py
from xai.brain.wordbase.nouns._hire import _HIRE #calss header class _HIRES(_HIRE, ): def __init__(self,): _HIRE.__init__(self) self.name = "HIRES" self.specie = 'nouns' self.basic = "hire" self.jsondata = {}
0df41ae40a0375dbac1794c5a5d7bb4a19941e27
0e6311674ad4637031ff4c7e0f522a7fac65973d
/akshare/futures/futures_daily_bar.py
adc6d5c6f6e66a3584b8960a5602b1284331c185
[ "MIT" ]
permissive
waruanfou/akshare
26b064e305c05b4b4d1bf297fe73ab61e465bb06
b240109eae08d6bb5eee2df3edeac680c9176430
refs/heads/master
2023-06-23T08:32:42.035038
2021-07-18T11:26:29
2021-07-18T11:26:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
21,312
py
# -*- coding:utf-8 -*- # /usr/bin/env python """ Date: 2021/5/4 15:58 Desc: 交易所网站获取期货日线行情 """ import datetime import json import re import warnings import zipfile from io import BytesIO, StringIO import numpy as np import pandas as pd import requests from akshare.futures import cons from akshare.futures.requests_fun import requests_link calendar = cons.get_calendar() def get_cffex_daily(date: str = "20100401") -> pd.DataFrame: """ 中国金融期货交易所日交易数据 http://www.cffex.com.cn/rtj/ :param date: 日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象; 为空时为当天 :return: pandas.DataFrame 中国金融期货交易所日: symbol 合约代码 date 日期 open 开盘价 high 最高价 low 最低价 close 收盘价 volume 成交量 open_interest 持仓量 turnover 成交额 settle 结算价 pre_settle 前结算价 variety 合约类别 或 None(给定日期没有交易数据) """ day = cons.convert_date(date) if date is not None else datetime.date.today() if day.strftime("%Y%m%d") not in calendar: warnings.warn("%s非交易日" % day.strftime("%Y%m%d")) return None url = f"http://www.cffex.com.cn/sj/historysj/{date[:-2]}/zip/{date[:-2]}.zip" r = requests.get(url) try: with zipfile.ZipFile(BytesIO(r.content)) as file: with file.open(f"{date}_1.csv") as my_file: data = my_file.read().decode("gb2312") data_df = pd.read_csv(StringIO(data)) except: return None data_df = data_df[data_df["合约代码"] != "小计"] data_df = data_df[data_df["合约代码"] != "合计"] data_df = data_df[~data_df["合约代码"].str.contains("IO")] data_df.reset_index(inplace=True, drop=True) data_df["合约代码"] = data_df["合约代码"].str.strip() symbol_list = data_df["合约代码"].to_list() variety_list = [re.compile(r"[a-zA-Z_]+").findall(item)[0] for item in symbol_list] if data_df.shape[1] == 15: data_df.columns = ["symbol", "open", "high", "low", "volume", "turnover", "open_interest", "_", "close", "settle", "pre_settle", "_", "_", "_", "_"] else: data_df.columns = ["symbol", "open", "high", "low", "volume", "turnover", "open_interest", "_", "close", "settle", "pre_settle", "_", "_", "_"] data_df["date"] = date data_df["variety"] = variety_list data_df = data_df[ ["symbol", "date", "open", "high", "low", "close", "volume", "open_interest", "turnover", "settle", "pre_settle", "variety"]] return data_df def get_ine_daily(date: str = "20200106") -> pd.DataFrame: """ 上海国际能源交易中心-日频率-量价数据 上海国际能源交易中心: 原油期货(上市时间: 20180326); 20号胶期货(上市时间: 20190812) trade_price: http://www.ine.cn/statements/daily/?paramid=kx trade_note: http://www.ine.cn/data/datanote.dat :param date: 日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象,默认为当前交易日 :type date: str or datetime.date :return: 上海国际能源交易中心-日频率-量价数据 :rtype: pandas.DataFrame or None """ day = cons.convert_date(date) if date is not None else datetime.date.today() if day.strftime("%Y%m%d") not in calendar: warnings.warn(f"{day.strftime('%Y%m%d')}非交易日") return None url = f"http://www.ine.cn/data/dailydata/kx/kx{day.strftime('%Y%m%d')}.dat" r = requests.get(url) result_df = pd.DataFrame() try: data_json = r.json() except: return None temp_df = pd.DataFrame(data_json["o_curinstrument"]).iloc[:-1, :] temp_df = temp_df[temp_df["DELIVERYMONTH"] != "小计"] temp_df = temp_df[~temp_df["PRODUCTNAME"].str.contains("总计")] try: result_df["symbol"] = temp_df["PRODUCTGROUPID"].str.upper().str.strip() + temp_df["DELIVERYMONTH"] except: result_df["symbol"] = temp_df["PRODUCTID"].str.upper().str.strip().str.split("_", expand=True).iloc[:, 0] + temp_df["DELIVERYMONTH"] result_df["date"] = day.strftime("%Y%m%d") result_df["open"] = temp_df["OPENPRICE"] result_df["high"] = temp_df["HIGHESTPRICE"] result_df["low"] = temp_df["LOWESTPRICE"] result_df["close"] = temp_df["CLOSEPRICE"] result_df["volume"] = temp_df["VOLUME"] result_df["open_interest"] = temp_df["OPENINTEREST"] result_df["turnover"] = 0 result_df["settle"] = temp_df["SETTLEMENTPRICE"] result_df["pre_settle"] = temp_df["PRESETTLEMENTPRICE"] try: result_df["variety"] = temp_df["PRODUCTGROUPID"].str.upper().str.strip() except: result_df["variety"] = temp_df["PRODUCTID"].str.upper().str.strip().str.split("_", expand=True).iloc[:, 0] result_df = result_df[result_df["symbol"] != "总计"] result_df = result_df[~result_df["symbol"].str.contains("efp")] return result_df def get_czce_daily(date: str = "20050525") -> pd.DataFrame: """ 郑州商品交易所-日频率-量价数据 :param date: 日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象,默认为当前交易日; 日期需要大于 20100824 :type date: str or datetime.date :return: 郑州商品交易所-日频率-量价数据 :rtype: pandas.DataFrame or None """ day = cons.convert_date(date) if date is not None else datetime.date.today() if day.strftime("%Y%m%d") not in calendar: warnings.warn(f"{day.strftime('%Y%m%d')}非交易日") return None if day > datetime.date(2010, 8, 24): if day > datetime.date(2015, 9, 19): u = cons.CZCE_DAILY_URL_3 url = u % (day.strftime("%Y"), day.strftime("%Y%m%d")) elif day < datetime.date(2015, 9, 19): u = cons.CZCE_DAILY_URL_2 url = u % (day.strftime("%Y"), day.strftime("%Y%m%d")) listed_columns = cons.CZCE_COLUMNS output_columns = cons.OUTPUT_COLUMNS try: r = requests.get(url) html = r.text except requests.exceptions.HTTPError as reason: if reason.response.status_code != 404: print( cons.CZCE_DAILY_URL_3 % (day.strftime("%Y"), day.strftime("%Y%m%d")), reason, ) return if html.find("您的访问出错了") >= 0 or html.find("无期权每日行情交易记录") >= 0: return html = [ i.replace(" ", "").split("|") for i in html.split("\n")[:-4] if i[0][0] != "小" ] if day > datetime.date(2015, 9, 19): if html[1][0] not in ["品种月份", "品种代码", "合约代码"]: return dict_data = list() day_const = int(day.strftime("%Y%m%d")) for row in html[2:]: m = cons.FUTURES_SYMBOL_PATTERN.match(row[0]) if not m: continue row_dict = {"date": day_const, "symbol": row[0], "variety": m.group(1)} for i, field in enumerate(listed_columns): if row[i + 1] == "\r" or row[i + 1] == '': row_dict[field] = 0.0 elif field in [ "volume", "open_interest", "oi_chg", "exercise_volume", ]: row[i + 1] = row[i + 1].replace(",", "") row_dict[field] = int(row[i + 1]) else: row[i + 1] = row[i + 1].replace(",", "") row_dict[field] = float(row[i + 1]) dict_data.append(row_dict) return pd.DataFrame(dict_data)[output_columns] elif day < datetime.date(2015, 9, 19): dict_data = list() day_const = int(day.strftime("%Y%m%d")) for row in html[1:]: row = row[0].split(",") m = cons.FUTURES_SYMBOL_PATTERN.match(row[0]) if not m: continue row_dict = {"date": day_const, "symbol": row[0], "variety": m.group(1)} for i, field in enumerate(listed_columns): if row[i + 1] == "\r": row_dict[field] = 0.0 elif field in [ "volume", "open_interest", "oi_chg", "exercise_volume", ]: row_dict[field] = int(float(row[i + 1])) else: row_dict[field] = float(row[i + 1]) dict_data.append(row_dict) return pd.DataFrame(dict_data)[output_columns] if day <= datetime.date(2010, 8, 24): u = cons.CZCE_DAILY_URL_1 url = u % day.strftime("%Y%m%d") listed_columns = cons.CZCE_COLUMNS_2 output_columns = cons.OUTPUT_COLUMNS df = pd.read_html(url)[1].dropna(how="any") dict_data = list() day_const = int(day.strftime("%Y%m%d")) for row in df.to_dict(orient="records"): row = list(row.values()) m = cons.FUTURES_SYMBOL_PATTERN.match(row[0]) if not m: continue row_dict = {"date": day_const, "symbol": row[0], "variety": m.group(1)} for i, field in enumerate(listed_columns): if row[i + 1] == "\r": row_dict[field] = 0.0 elif field in ["volume", "open_interest", "oi_chg", "exercise_volume"]: row_dict[field] = int(row[i + 1]) else: row_dict[field] = float(row[i + 1]) dict_data.append(row_dict) return pd.DataFrame(dict_data)[output_columns] def get_shfe_v_wap(date: str = "20131017") -> pd.DataFrame: """ 获取上期所日成交均价数据 Parameters ------ date: 日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 Return ------- DataFrame 郑商所日交易数据(DataFrame): symbol 合约代码 date 日期 time_range v_wap时段,分09:00-10:15和09:00-15:00两类 v_wap 加权平均成交均价 或 None(给定日期没有数据) """ day = cons.convert_date(date) if date is not None else datetime.date.today() if day.strftime("%Y%m%d") not in calendar: warnings.warn("%s非交易日" % day.strftime("%Y%m%d")) return None try: json_data = json.loads( requests_link( cons.SHFE_V_WAP_URL % (day.strftime("%Y%m%d")), headers=cons.headers, encoding="utf-8", ).text ) except: return None if len(json_data["o_currefprice"]) == 0: return None try: df = pd.DataFrame(json_data["o_currefprice"]) df["INSTRUMENTID"] = df["INSTRUMENTID"].str.strip() df[":B1"].astype("int16") return df.rename(columns=cons.SHFE_V_WAP_COLUMNS)[ list(cons.SHFE_V_WAP_COLUMNS.values()) ] except: return None def get_shfe_daily(date: str = "20160104") -> pd.DataFrame: """ 上海期货交易所-日频率-量价数据 http://www.shfe.com.cn/statements/dataview.html?paramid=kx :param date: 日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象, 默认为当前交易日 :type date: str or datetime.date :return: 上海期货交易所-日频率-量价数据 :rtype: pandas.DataFrame or None 上期所日交易数据(DataFrame): symbol 合约代码 date 日期 open 开盘价 high 最高价 low 最低价 close 收盘价 volume 成交量 open_interest 持仓量 turnover 成交额 settle 结算价 pre_settle 前结算价 variety 合约类别 或 None(给定交易日没有交易数据) """ day = cons.convert_date(date) if date is not None else datetime.date.today() if day.strftime("%Y%m%d") not in calendar: warnings.warn("%s非交易日" % day.strftime("%Y%m%d")) return None try: json_data = json.loads( requests_link( cons.SHFE_DAILY_URL % (day.strftime("%Y%m%d")), headers=cons.shfe_headers, ).text ) except requests.HTTPError as reason: if reason.response != 404: print(cons.SHFE_DAILY_URL % (day.strftime("%Y%m%d")), reason) return if len(json_data["o_curinstrument"]) == 0: return df = pd.DataFrame( [ row for row in json_data["o_curinstrument"] if row["DELIVERYMONTH"] not in ["小计", "合计"] and row["DELIVERYMONTH"] != "" ] ) try: df["variety"] = df["PRODUCTGROUPID"].str.upper().str.strip() except KeyError as e: df["variety"] = df["PRODUCTID"].str.upper().str.split('_', expand=True).iloc[:, 0].str.strip() df["symbol"] = df["variety"] + df["DELIVERYMONTH"] df["date"] = day.strftime("%Y%m%d") v_wap_df = get_shfe_v_wap(day) if v_wap_df is not None: df = pd.merge( df, v_wap_df[v_wap_df.time_range == "9:00-15:00"], on=["date", "symbol"], how="left", ) df["turnover"] = df.v_wap * df.VOLUME else: df["VOLUME"] = df["VOLUME"].apply(lambda x: 0 if x == "" else x) df["turnover"] = df["VOLUME"] * df["SETTLEMENTPRICE"] df.rename(columns=cons.SHFE_COLUMNS, inplace=True) df = df[~df["symbol"].str.contains("efp")] return df[cons.OUTPUT_COLUMNS] def get_dce_daily(date: str = "20030115") -> pd.DataFrame: """ 大连商品交易所日交易数据 http://www.dce.com.cn/dalianshangpin/xqsj/tjsj26/rtj/rxq/index.html :param date: 交易日, e.g., 20200416 :type date: str :return: 具体交易日的个品种行情数据 :rtype: pandas.DataFrame """ day = cons.convert_date(date) if date is not None else datetime.date.today() if day.strftime("%Y%m%d") not in calendar: warnings.warn("%s非交易日" % day.strftime("%Y%m%d")) return None url = "http://www.dce.com.cn/publicweb/quotesdata/exportDayQuotesChData.html" headers = { "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8", "Cache-Control": "no-cache", "Connection": "keep-alive", "Content-Length": "86", "Content-Type": "application/x-www-form-urlencoded", "Host": "www.dce.com.cn", "Origin": "http://www.dce.com.cn", "Pragma": "no-cache", "Referer": "http://www.dce.com.cn/publicweb/quotesdata/dayQuotesCh.html", "Upgrade-Insecure-Requests": "1", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.105 Safari/537.36", } params = { "dayQuotes.variety": "all", "dayQuotes.trade_type": "0", "year": date[:4], "month": str(int(date[4:6]) - 1), "day": date[6:], "exportFlag": "excel", } r = requests.post(url, data=params, headers=headers) data_df = pd.read_excel(BytesIO(r.content)) data_df = data_df[~data_df["商品名称"].str.contains("小计")] data_df = data_df[~data_df["商品名称"].str.contains("总计")] data_df["variety"] = data_df["商品名称"].map(lambda x: cons.DCE_MAP[x]) data_df["symbol"] = data_df["variety"] + data_df["交割月份"].astype(int).astype(str) del data_df["商品名称"] del data_df["交割月份"] data_df.columns = ["open", "high", "low", "close", "pre_settle", "settle", "_", "_", "volume", "open_interest", "_", "turnover", "variety", "symbol"] data_df["date"] = date data_df = data_df[ ["symbol", "date", "open", "high", "low", "close", "volume", "open_interest", "turnover", "settle", "pre_settle", "variety"]] data_df = data_df.applymap(lambda x: x.replace(",", "")) data_df = data_df.astype({"open": "float", "high": "float", "low": "float", "close": "float", "volume": "float", "open_interest": "float", "turnover": "float", "settle": "float", "pre_settle": "float", }) return data_df def get_futures_daily(start_date: str = "20210421", end_date: str = "20210426", market: str = "INE", index_bar: bool = False) -> pd.DataFrame: """ 交易所日交易数据 :param start_date: 开始日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :type start_date: str :param end_date: 结束数据 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :type end_date: str :param market: 'CFFEX' 中金所, 'CZCE' 郑商所, 'SHFE' 上期所, 'DCE' 大商所 之一, 'INE' 上海国际能源交易中心。默认为中金所 :type market: str :param index_bar: 是否合成指数K线, 默认为 False 否则影响 roll_yield 的计算 :type index_bar: bool :return: 交易所日交易数据 :rtype: pandas.DataFrame """ if market.upper() == "CFFEX": f = get_cffex_daily elif market.upper() == "CZCE": f = get_czce_daily elif market.upper() == "SHFE": f = get_shfe_daily elif market.upper() == "DCE": f = get_dce_daily elif market.upper() == "INE": f = get_ine_daily else: print("Invalid Market Symbol") return None start_date = ( cons.convert_date(start_date) if start_date is not None else datetime.date.today() ) end_date = ( cons.convert_date(end_date) if end_date is not None else cons.convert_date(cons.get_latest_data_date(datetime.datetime.now())) ) df_list = list() while start_date <= end_date: df = f(date=str(start_date).replace("-", "")) if df is not None: df_list.append(df) if index_bar: df_list.append(get_futures_index(df)) start_date += datetime.timedelta(days=1) if len(df_list) > 0: temp_df = pd.concat(df_list).reset_index(drop=True) temp_df = temp_df[~temp_df['symbol'].str.contains("efp")] return temp_df def get_futures_index(df: pd.DataFrame) -> pd.DataFrame: """ 指数日交易数据, 指数合成 :param df: 爬到的原始合约日线行情 :type df: pandas.DataFrame :return: 持仓量加权指数日线行情 :rtype: pandas.DataFrame """ index_dfs = [] for var in set(df["variety"]): df_cut = df[df["variety"] == var] df_cut = df_cut[df_cut["open_interest"] != 0] df_cut = df_cut[df_cut["close"] != np.nan] df_cut = df_cut[df_cut["volume"] != int(0)] if len(df_cut.index) > 0: index_df = pd.Series(index=df_cut.columns, dtype="object") index_df[["volume", "open_interest", "turnover"]] = df_cut[ ["volume", "open_interest", "turnover"] ].sum() if "efp" in df_cut.iloc[-1, 0]: df_cut = df_cut.iloc[:-1, :] df_cut.replace("", 0, inplace=True) # 20201026 部分数据开盘价空缺 index_df[["open", "high", "low", "close", "settle", "pre_settle"]] = np.dot( np.array( df_cut[["open", "high", "low", "close", "settle", "pre_settle"]] ).T, np.array((df_cut["open_interest"].astype(float))), ) / np.sum(df_cut["open_interest"].astype(float)) index_df[["date", "variety"]] = df_cut[["date", "variety"]].iloc[0, :] index_df["symbol"] = index_df["variety"] + "99" index_dfs.append(index_df) return pd.concat(index_dfs, axis=1).T if __name__ == "__main__": get_futures_daily_df = get_futures_daily(start_date='20200105', end_date='20200201', market="INE", index_bar=False) print(get_futures_daily_df) get_dce_daily_df = get_dce_daily(date="20210427") print(get_dce_daily_df) get_cffex_daily_df = get_cffex_daily(date="20101101") print(get_cffex_daily_df) get_ine_daily_df = get_ine_daily(date="20210426") print(get_ine_daily_df) get_czce_daily_df = get_czce_daily(date="20210416") print(get_czce_daily_df) get_shfe_daily_df = get_shfe_daily(date="20160104") print(get_shfe_daily_df)
55366e829303d9641699634cc44569e2d2923a81
52b5773617a1b972a905de4d692540d26ff74926
/.history/bubble_20200722092444.py
5beeb7c609804901133743187b10d997aa2b27bc
[]
no_license
MaryanneNjeri/pythonModules
56f54bf098ae58ea069bf33f11ae94fa8eedcabc
f4e56b1e4dda2349267af634a46f6b9df6686020
refs/heads/master
2022-12-16T02:59:19.896129
2020-09-11T12:05:22
2020-09-11T12:05:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
109
py
def bubble(data): # TODO: start with the array leneght and decrement each time for i in range(len())
e3609abff0757e33f926d3770d5d1e1febb9b6ab
b007d88e6726452ffa8fe80300614f311ae5b318
/LeetCode/facebook/arrays_and_strings/merge_sorted_array.py
3713e9ba76233fd84aca0a38b42724a3074bffa4
[]
no_license
jinurajan/Datastructures
ec332b12b8395f42cb769e771da3642f25ba7e7f
647fea5d2c8122468a1c018c6829b1c08717d86a
refs/heads/master
2023-07-06T14:42:55.168795
2023-07-04T13:23:22
2023-07-04T13:23:22
76,943,162
0
0
null
null
null
null
UTF-8
Python
false
false
1,082
py
""" Merge Sorted Array Given two sorted integer arrays nums1 and nums2, merge nums2 into nums1 as one sorted array. The number of elements initialized in nums1 and nums2 are m and n respectively. You may assume that nums1 has a size equal to m + n such that it has enough space to hold additional elements from nums2. Input: nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3 Output: [1,2,2,3,5,6] Input: nums1 = [1], m = 1, nums2 = [], n = 0 Output: [1] Constraints: nums1.length == m + n nums2.length == n 0 <= m, n <= 200 1 <= m + n <= 200 -109 <= nums1[i], nums2[i] <= 109 """ class Solution: def merge(self, nums1: List[int], m: int, nums2: List[int], n: int) -> None: """ Do not return anything, modify nums1 in-place instead. """ while m-1 >=0 and n-1 >= 0: if nums1[m-1] > nums2[n-1]: nums1[m+n-1] = nums1[m-1] m -= 1 else: nums1[m+n-1] = nums2[n-1] n -= 1 if m - 1 < 0: # nums 1 is empty nums1[:n] = nums2[:n]
9b97c3e7ea9e41ffbc45b8c498367f691295fa0e
58cd392c642ac9408349f03dc72927db6abcce55
/team2/src/Without_Doubt_Project/venv/lib/python3.6/site-packages/earlgrey/patterns/rpc/client_async.py
a94df1e4d861d470e4928d8f5d3ed96175e519b9
[]
no_license
icon-hackathons/201902-dapp-competition-bu
161226eb792425078351c790b8795a0fe5550735
f3898d31a20f0a85637f150d6187285514528d53
refs/heads/master
2020-04-24T07:48:18.891646
2019-04-18T01:47:21
2019-04-18T01:47:21
171,809,810
3
11
null
2019-04-18T01:47:23
2019-02-21T06:01:04
Python
UTF-8
Python
false
false
4,824
py
# Copyright 2017 theloop Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # The original codes exist in aio_pika.patterns.rpc import asyncio import logging import time from concurrent import futures from aio_pika.exchange import ExchangeType from aio_pika.channel import Channel from aio_pika.exceptions import UnroutableError from aio_pika.message import Message, IncomingMessage, DeliveryMode, ReturnedMessage from aio_pika.tools import create_future from aio_pika.patterns.base import Base class ClientAsync(Base): DLX_NAME = 'rpc.dlx' def __init__(self, channel: Channel, queue_name): self.channel = channel self.queue_name = queue_name self.queue = None self.result_queue = None self.async_futures = {} self.concurrent_futures = {} self.func_names = {} self.routes = {} self.dlx_exchange = None @asyncio.coroutine def initialize_exchange(self): self.dlx_exchange = yield from self.channel.declare_exchange( self.DLX_NAME, type=ExchangeType.HEADERS, auto_delete=True, ) @asyncio.coroutine def initialize_queue(self, **kwargs): arguments = kwargs.pop('arguments', {}).update({ 'x-dead-letter-exchange': self.DLX_NAME, }) kwargs['arguments'] = arguments self.queue = yield from self.channel.declare_queue(name=self.queue_name, **kwargs) self.result_queue = yield from self.channel.declare_queue(None, exclusive=True, auto_delete=True) yield from self.result_queue.bind( self.dlx_exchange, "", arguments={ "From": self.result_queue.name, 'x-match': 'any', } ) yield from self.result_queue.consume( self._on_result_message, no_ack=True ) self.channel.add_on_return_callback(self._on_message_returned) def _on_message_returned(self, message: ReturnedMessage): correlation_id = int(message.correlation_id) if message.correlation_id else None future = self.async_futures.pop(correlation_id, None) or self.concurrent_futures.pop(correlation_id, None) if future and future.done(): logging.warning("Unknown message was returned: %r", message) else: future.set_exception(UnroutableError([message])) @asyncio.coroutine def _on_result_message(self, message: IncomingMessage): correlation_id = int(message.correlation_id) if message.correlation_id else None try: future = self.async_futures[correlation_id] # type: asyncio.Future except KeyError: pass else: payload = self.deserialize(message.body) if message.type == 'result': future.set_result(payload) elif message.type == 'error': future.set_exception(payload) elif message.type == 'call': future.set_exception(asyncio.TimeoutError("Message timed-out", message)) else: future.set_exception(RuntimeError("Unknown message type %r" % message.type)) @asyncio.coroutine def call(self, func_name, kwargs: dict=None, *, expiration: int=None, priority: int=128, delivery_mode: DeliveryMode=DeliveryMode.NOT_PERSISTENT): future = self._create_future() message = Message( body=self.serialize(kwargs or {}), type='call', timestamp=time.time(), expiration=expiration, priority=priority, correlation_id=id(future), delivery_mode=delivery_mode, reply_to=self.result_queue.name, headers={ 'From': self.result_queue.name, 'FuncName': func_name }, ) yield from self.channel.default_exchange.publish( message, routing_key=self.queue_name, mandatory=True ) return (yield from future) def _create_future(self) -> asyncio.Future: future = create_future(loop=self.channel.loop) future_id = id(future) self.async_futures[future_id] = future future.add_done_callback(lambda f: self.async_futures.pop(future_id, None)) return future
62cbc2bc1f0553ebc160c9187f62311a93b9fbf8
11ddf56093b5a821a080249f6fc2e50e34f8970d
/opennsa/backends/dud.py
ad776c4f171d702c54f71fa839ea79587c1479fa
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
igable/opennsa
067d0043d324e32cebb6967023fbcc0df9ec836c
5db943d50310345d18113dbfbe2251bb2a1a63f0
refs/heads/master
2021-01-15T08:36:33.998695
2014-02-11T11:49:53
2014-02-13T13:28:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,800
py
""" NRM backends which just logs actions performed. Author: Henrik Thostrup Jensen <[email protected]> Copyright: NORDUnet (2011) """ import string import random from twisted.python import log from twisted.internet import defer from opennsa.backends.common import genericbackend def DUDNSIBackend(network_name, network_topology, parent_requester, port_map, configuration): name = 'DUD NRM %s' % network_name cm = DUDConnectionManager(name, port_map) return genericbackend.GenericBackend(network_name, network_topology, cm, parent_requester, name) class DUDConnectionManager: def __init__(self, log_system, port_map): self.log_system = log_system self.port_map = port_map def getResource(self, port, label_type, label_value): return self.port_map[port] def getTarget(self, port, label_type, label_value): return self.port_map[port] + '#' + label_value def createConnectionId(self, source_target, dest_target): return 'DUD-' + ''.join( [ random.choice(string.hexdigits[:16]) for _ in range(8) ] ) def canSwapLabel(self, label_type): #return True return False def setupLink(self, connection_id, source_target, dest_target, bandwidth): log.msg('Link %s -> %s up' % (source_target, dest_target), system=self.log_system) return defer.succeed(None) #from opennsa import error #return defer.fail(error.InternalNRMError('Link setup failed')) def teardownLink(self, connection_id, source_target, dest_target, bandwidth): log.msg('Link %s -> %s down' % (source_target, dest_target), system=self.log_system) return defer.succeed(None) #from opennsa import error #return defer.fail(error.InternalNRMError('Link teardown failed'))
b4490bd15f0a948e14d1137f93d740488ef938cb
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/synthetic/coverage-big-2264.py
cd5238d534bb618b3c7d6f7cfcdb66b9da278905
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
13,351
py
count:int = 0 count2:int = 0 count3:int = 0 count4:int = 0 count5:int = 0 def foo(s: str) -> int: return len(s) def foo2(s: str, s2: str) -> int: return len(s) def foo3(s: str, s2: str, s3: str) -> int: return len(s) def foo4(s: str, s2: str, s3: str, s4: str) -> int: return len(s) def foo5(s: str, s2: str, s3: str, s4: str, s5: str) -> int: return len(s) class bar(object): p: bool = True def baz(self:"bar", xx: [int]) -> str: global count x:int = 0 y:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" class bar2(object): p: bool = True p2: bool = True def baz(self:"bar2", xx: [int]) -> str: global count x:int = 0 y:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz2(self:"bar2", xx: [int], xx2: [int]) -> str: global count x:int = 0 x2:int = 0 y:int = 1 y2:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" class bar3(object): p: bool = True p2: bool = True p3: bool = True def baz(self:"bar3", xx: [int]) -> str: global count x:int = 0 y:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz2(self:"bar3", xx: [int], xx2: [int]) -> str: global count x:int = 0 x2:int = 0 y:int = 1 y2:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz3(self:"bar3", xx: [int], xx2: [int], xx3: [int]) -> str: global count x:int = 0 x2:int = 0 x3:int = 0 y:int = 1 y2:int = 1 y3:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 def qux3(y: int, y2: int, y3: int) -> object: nonlocal x nonlocal x2 nonlocal x3 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" class bar4(object): p: bool = True p2: bool = True p3: bool = True p4: bool = True def baz(self:"bar4", xx: [int]) -> str: global count x:int = 0 y:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz2(self:"bar4", xx: [int], xx2: [int]) -> str: global count x:int = 0 x2:int = 0 y:int = 1 y2:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > $Exp: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz3(self:"bar4", xx: [int], xx2: [int], xx3: [int]) -> str: global count x:int = 0 x2:int = 0 x3:int = 0 y:int = 1 y2:int = 1 y3:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 def qux3(y: int, y2: int, y3: int) -> object: nonlocal x nonlocal x2 nonlocal x3 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz4(self:"bar4", xx: [int], xx2: [int], xx3: [int], xx4: [int]) -> str: global count x:int = 0 x2:int = 0 x3:int = 0 x4:int = 0 y:int = 1 y2:int = 1 y3:int = 1 y4:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 def qux3(y: int, y2: int, y3: int) -> object: nonlocal x nonlocal x2 nonlocal x3 if x > y: x = -1 def qux4(y: int, y2: int, y3: int, y4: int) -> object: nonlocal x nonlocal x2 nonlocal x3 nonlocal x4 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" class bar5(object): p: bool = True p2: bool = True p3: bool = True p4: bool = True p5: bool = True def baz(self:"bar5", xx: [int]) -> str: global count x:int = 0 y:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz2(self:"bar5", xx: [int], xx2: [int]) -> str: global count x:int = 0 x2:int = 0 y:int = 1 y2:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz3(self:"bar5", xx: [int], xx2: [int], xx3: [int]) -> str: global count x:int = 0 x2:int = 0 x3:int = 0 y:int = 1 y2:int = 1 y3:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 def qux3(y: int, y2: int, y3: int) -> object: nonlocal x nonlocal x2 nonlocal x3 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz4(self:"bar5", xx: [int], xx2: [int], xx3: [int], xx4: [int]) -> str: global count x:int = 0 x2:int = 0 x3:int = 0 x4:int = 0 y:int = 1 y2:int = 1 y3:int = 1 y4:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 def qux3(y: int, y2: int, y3: int) -> object: nonlocal x nonlocal x2 nonlocal x3 if x > y: x = -1 def qux4(y: int, y2: int, y3: int, y4: int) -> object: nonlocal x nonlocal x2 nonlocal x3 nonlocal x4 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz5(self:"bar5", xx: [int], xx2: [int], xx3: [int], xx4: [int], xx5: [int]) -> str: global count x:int = 0 x2:int = 0 x3:int = 0 x4:int = 0 x5:int = 0 y:int = 1 y2:int = 1 y3:int = 1 y4:int = 1 y5:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 def qux3(y: int, y2: int, y3: int) -> object: nonlocal x nonlocal x2 nonlocal x3 if x > y: x = -1 def qux4(y: int, y2: int, y3: int, y4: int) -> object: nonlocal x nonlocal x2 nonlocal x3 nonlocal x4 if x > y: x = -1 def qux5(y: int, y2: int, y3: int, y4: int, y5: int) -> object: nonlocal x nonlocal x2 nonlocal x3 nonlocal x4 nonlocal x5 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" print(bar().baz([1,2]))
1f2eeaf30554fc2b63cc3c041524f636236bf967
2e927b6e4fbb4347f1753f80e9d43c7d01b9cba5
/Section 20 - Lamba Functions/lambdas.py
2d5e9687c5496af858166dab6f7b8ab7af2a3de4
[]
no_license
tielushko/The-Modern-Python-3-Bootcamp
ec3d60d1f2e887d693efec1385a6dbcec4aa8b9a
17b3156f256275fdba204d514d914731f7038ea5
refs/heads/master
2023-01-22T01:04:31.918693
2020-12-04T02:41:29
2020-12-04T02:41:29
262,424,068
0
0
null
null
null
null
UTF-8
Python
false
false
1,097
py
def square(num): return num*num #syntax - lambda parameter: code in one line without return - you usually don't store that in variable square2 = lambda num: num * num add = lambda num: num + num print(square2(3)) print(square2.__name__) #use case - passing in a function as a parameter into another function. short and sweet, single expression #map - accepts at least two arguments, a function and an "iterable" """ It runs the lambda for each value in the iterable and returns a map object that can be converted into a different data structure""" nums = [2,4,6,8,10] doubles = map(lambda x: x*2, nums) # returns map object people = ["Darcy", 'Anabel', 'Dana', 'Christina'] peeps = map(lambda name: name.upper(), people) print(list(peeps)) #Exercise 1: Decrement each element in list by one def decrement_list(l_for_list): return list(map(lambda x: x - 1, l_for_list)) #filter - there is a lambda for each value in the iterable """ returns filter object, contains only objects that return true to lambda """ l = [1,2,3,4] evens = list(filter(lambda x: x % 2 == 0, l)) print(evens)
575abf06c7f23652b3a2ac3b595778e90ab5e287
663c108dca9c4a30b7dfdc825a8f147ba873da52
/venv/functions/38GlobalKeywordDeclareAssignError.py
1dd186e5658999379d9e336cc39512ba1c6f8a73
[]
no_license
ksrntheja/08-Python-Core
54c5a1e6e42548c10914f747ef64e61335e5f428
b5fe25eead8a0fcbab0757b118d15eba09b891ba
refs/heads/master
2022-10-02T04:11:07.845269
2020-06-02T15:23:18
2020-06-02T15:23:18
261,644,116
0
0
null
null
null
null
UTF-8
Python
false
false
225
py
def f01(): global a = 10 print(a) def f02(): print(a) f01() f02() # File "/Code/venv/functions/38GlobalKeywordDeclareAssignError", line <> # global a = 10 # ^ # SyntaxError: invalid syntax
4ddb5fd6cb5cb9f52754f3743df130f969867b20
c2f92d75d235ff5ed7b213c02c4a0657545ba02f
/newchama_web/2/newchama/member_message/migrations/0006_auto__chg_field_message_add_time__add_field_favorites_receiver__add_fi.py
6ac54ad252be403a32024e11e3ce0f1817ed4167
[]
no_license
cash2one/tstpthon
fab6112691eb15a8a26bd168af3f179913e0c4e0
fc5c42c024065c7b42bea2b9de1e3874a794a30d
refs/heads/master
2021-01-20T01:52:06.519021
2017-04-14T09:50:55
2017-04-14T09:50:55
89,338,193
0
1
null
2017-04-25T08:46:06
2017-04-25T08:46:06
null
UTF-8
Python
false
false
39,290
py
# -*- coding: utf-8 -*- from south.utils import datetime_utils as datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Changing field 'Message.add_time' db.alter_column('member_message', 'add_time', self.gf('django.db.models.fields.DateTimeField')(auto_now_add=True)) # Adding field 'Favorites.receiver' def backwards(self, orm): # Changing field 'Message.add_time' db.alter_column('member_message', 'add_time', self.gf('django.db.models.fields.DateTimeField')()) # Deleting field 'Favorites.company' db.delete_column('member_favorites', 'company_id') # Deleting field 'Favorites.news' db.delete_column('member_favorites', 'news_id') # Deleting field 'Favorites.data' db.delete_column('member_favorites', 'data_id') # Changing field 'Favorites.add_time' db.alter_column('member_favorites', 'add_time', self.gf('django.db.models.fields.DateTimeField')(auto_now=True)) models = { u'adminuser.adminuser': { 'Meta': {'object_name': 'AdminUser'}, 'email': ('django.db.models.fields.EmailField', [], {'max_length': '255'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'isactive': ('django.db.models.fields.CharField', [], {'max_length': '1'}), 'mobile': ('django.db.models.fields.CharField', [], {'max_length': '20'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'realname': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'role': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['adminuser.Role']", 'symmetrical': 'False'}), 'username': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, u'adminuser.role': { 'Meta': {'object_name': 'Role'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'permission': ('django.db.models.fields.CharField', [], {'max_length': '255'}) }, u'area.city': { 'Meta': {'object_name': 'City'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name_cn': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'name_en': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'province': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['area.Province']"}) }, u'area.continent': { 'Meta': {'object_name': 'Continent'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name_cn': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'name_en': ('django.db.models.fields.CharField', [], {'max_length': '255'}) }, u'area.country': { 'Meta': {'object_name': 'Country'}, 'continent': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['area.Continent']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'intel_code': ('django.db.models.fields.CharField', [], {'max_length': '10', 'null': 'True'}), 'name_cn': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'name_en': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'sort': ('django.db.models.fields.IntegerField', [], {'default': '0'}) }, u'area.province': { 'Meta': {'object_name': 'Province'}, 'country': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['area.Country']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name_cn': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'name_en': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'sort': ('django.db.models.fields.IntegerField', [], {'default': '0'}) }, u'deal.deal': { 'Meta': {'object_name': 'Deal', 'db_table': "'cvsource_deals'"}, 'add_time': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2015, 5, 29, 0, 0)', 'auto_now': 'True', 'blank': 'True'}), 'amount': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '19', 'decimal_places': '6'}), 'amount_usd': ('django.db.models.fields.BigIntegerField', [], {'null': 'True', 'blank': 'True'}), 'city_id': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'content': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'country_id': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'currency': ('django.db.models.fields.CharField', [], {'max_length': '20', 'null': 'True', 'blank': 'True'}), 'cv1': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'cv2': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'cv3': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'deal_type': ('django.db.models.fields.IntegerField', [], {'default': '2'}), 'equity': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'happen_date': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'market_value': ('django.db.models.fields.BigIntegerField', [], {'null': 'True', 'blank': 'True'}), 'province_id': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'target_company': ('django.db.models.fields.CharField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '400', 'null': 'True', 'blank': 'True'}), 'update_time': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}) }, u'demand.demand': { 'Meta': {'object_name': 'Demand'}, 'add_time': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'audit_status': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'business_cn': ('django.db.models.fields.TextField', [], {'null': 'True'}), 'business_en': ('django.db.models.fields.TextField', [], {'null': 'True'}), 'company_cities': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': u"orm['area.City']", 'null': 'True', 'blank': 'True'}), 'company_countries': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': u"orm['area.Country']", 'null': 'True', 'blank': 'True'}), 'company_industries': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'demand_target_company_industries'", 'null': 'True', 'symmetrical': 'False', 'to': u"orm['industry.Industry']"}), 'company_name': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True'}), 'company_provinces': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': u"orm['area.Province']", 'null': 'True', 'blank': 'True'}), 'company_stock_symbol': ('django.db.models.fields.CharField', [], {'max_length': '20', 'null': 'True'}), 'company_symbol': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}), 'currency_type_financial': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'deal_size': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'deal_size_enter': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '16', 'decimal_places': '2', 'blank': 'True'}), 'ebitda': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '16', 'decimal_places': '2', 'blank': 'True'}), 'employees_count_type': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'expected_enterprice_value': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'expected_enterprice_value_enter': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '16', 'decimal_places': '2', 'blank': 'True'}), 'expire_date': ('django.db.models.fields.DateField', [], {'null': 'True'}), 'financial_audit_company_is_must_default': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'financial_audit_company_name': ('django.db.models.fields.CharField', [], {'default': 'None', 'max_length': '255', 'null': 'True'}), 'financial_is_must_audit': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'financial_year': ('django.db.models.fields.IntegerField', [], {'default': '2015'}), 'growth_three_year': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '16', 'decimal_places': '2'}), 'has_attach': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'income': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'income_enter': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '16', 'decimal_places': '2', 'blank': 'True'}), 'income_last_phase': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'income_last_phase_enter': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '16', 'decimal_places': '2', 'blank': 'True'}), 'integrity': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'integrity_en': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'intro_cn': ('django.db.models.fields.TextField', [], {'null': 'True'}), 'intro_en': ('django.db.models.fields.TextField', [], {'null': 'True'}), 'is_anonymous': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_list_company': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_recommend': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_suitor': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_top': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'member': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'member_demand_publisher'", 'to': u"orm['member.Member']"}), 'name_cn': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'name_en': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'name_project_cn': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'name_project_en': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'net_assets': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'pay_currency': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'pay_way': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'process': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'profit': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'profit_enter': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '16', 'decimal_places': '2', 'blank': 'True'}), 'profit_last_phase': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'profit_last_phase_enter': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '16', 'decimal_places': '2', 'blank': 'True'}), 'project_relation': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'project_stage': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'pv': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'registered_capital': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'remark_cn': ('django.db.models.fields.TextField', [], {'null': 'True'}), 'remark_en': ('django.db.models.fields.TextField', [], {'null': 'True'}), 'service_type': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'status': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'stock_percent': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '6', 'decimal_places': '2', 'blank': 'True'}), 'stock_structure_percentage_type_institutional': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'stock_structure_percentage_type_management': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'stock_structure_percentage_type_private': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'target_companies': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'project_target_companies'", 'symmetrical': 'False', 'to': u"orm['member.Company']"}), 'target_industries': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'demand_push_target_industries'", 'symmetrical': 'False', 'to': u"orm['industry.Industry']"}), 'target_members': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'demand_push_target_members'", 'symmetrical': 'False', 'to': u"orm['member.Member']"}), 'total_assets': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '16', 'decimal_places': '2', 'blank': 'True'}), 'total_assets_last_phase': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'total_profit': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '16', 'decimal_places': '2', 'blank': 'True'}), 'update_time': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2015, 5, 29, 0, 0)', 'auto_now': 'True', 'blank': 'True'}), 'valid_day': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}) }, u'industry.industry': { 'Meta': {'object_name': 'Industry'}, 'code': ('django.db.models.fields.CharField', [], {'max_length': '10'}), 'father': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['industry.Industry']", 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_display': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'level': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'name_cn': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'name_en': ('django.db.models.fields.CharField', [], {'max_length': '255'}) }, u'member.company': { 'Meta': {'object_name': 'Company'}, 'add_time': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'address_cn': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'address_en': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'capital_type': ('django.db.models.fields.IntegerField', [], {'default': '1'}), 'city': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['area.City']", 'null': 'True', 'blank': 'True'}), 'country': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['area.Country']", 'null': 'True', 'blank': 'True'}), 'data_source': ('django.db.models.fields.CharField', [], {'max_length': '20', 'null': 'True', 'blank': 'True'}), 'fax': ('django.db.models.fields.CharField', [], {'max_length': '20', 'null': 'True', 'blank': 'True'}), 'found_time': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'industry': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['industry.Industry']", 'null': 'True', 'blank': 'True'}), 'intro_cn': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'intro_en': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'intro_file': ('django.db.models.fields.files.FileField', [], {'default': "''", 'max_length': '100', 'blank': 'True'}), 'investment_experience_cn': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'investment_experience_en': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'logo': ('django.db.models.fields.files.ImageField', [], {'default': "''", 'max_length': '100', 'blank': 'True'}), 'memo': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'name_cn': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'name_en': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'parent_company': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['member.Company']", 'null': 'True', 'blank': 'True'}), 'postcode': ('django.db.models.fields.CharField', [], {'max_length': '20', 'null': 'True', 'blank': 'True'}), 'province': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['area.Province']", 'null': 'True', 'blank': 'True'}), 'short_name_cn': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'short_name_en': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'status': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'tel': ('django.db.models.fields.CharField', [], {'max_length': '20', 'null': 'True', 'blank': 'True'}), 'type': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'updated': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2015, 5, 29, 0, 0)', 'auto_now': 'True', 'blank': 'True'}), 'website': ('django.db.models.fields.URLField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}) }, u'member.member': { 'Meta': {'object_name': 'Member'}, 'activecode': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True', 'blank': 'True'}), 'add_time': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'avatar': ('django.db.models.fields.files.ImageField', [], {'default': "'default.jpg'", 'max_length': '100', 'blank': 'True'}), 'company': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['member.Company']"}), 'creator': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'creator'", 'null': 'True', 'to': u"orm['adminuser.AdminUser']"}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75'}), 'expire_date': ('django.db.models.fields.DateField', [], {'default': 'None', 'null': 'True', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'focus_aspect': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['industry.Industry']", 'symmetrical': 'False'}), 'gender': ('django.db.models.fields.IntegerField', [], {'default': '0'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'intro_cn': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'intro_en': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'invite_code': ('django.db.models.fields.CharField', [], {'max_length': '20', 'blank': 'True'}), 'invite_user': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['member.Member']", 'null': 'True', 'blank': 'True'}), 'last_login_time': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'linkedin': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'linkedin'", 'null': 'True', 'to': u"orm['member.OtherLogin']"}), 'login_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'mobile': ('django.db.models.fields.CharField', [], {'max_length': '20', 'blank': 'True'}), 'mobile_intel': ('django.db.models.fields.CharField', [], {'max_length': '10', 'blank': 'True'}), 'owner': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'owner'", 'null': 'True', 'to': u"orm['adminuser.AdminUser']"}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'position_cn': ('django.db.models.fields.CharField', [], {'max_length': '20', 'blank': 'True'}), 'position_en': ('django.db.models.fields.CharField', [], {'max_length': '50', 'blank': 'True'}), 'status': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'tel': ('django.db.models.fields.CharField', [], {'max_length': '20', 'blank': 'True'}), 'tel_intel': ('django.db.models.fields.CharField', [], {'max_length': '10', 'blank': 'True'}), 'type': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'weibo': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'weibo'", 'null': 'True', 'to': u"orm['member.OtherLogin']"}), 'weixin': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'weixin'", 'null': 'True', 'to': u"orm['member.OtherLogin']"}) }, u'member.otherlogin': { 'Meta': {'object_name': 'OtherLogin', 'db_table': "'other_login'"}, 'access_token': ('django.db.models.fields.CharField', [], {'max_length': '50', 'blank': 'True'}), 'add_time': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'expires_in': ('django.db.models.fields.BigIntegerField', [], {'default': '0'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'login_type': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'uid': ('django.db.models.fields.BigIntegerField', [], {'default': '0'}) }, u'member_message.favorites': { 'Meta': {'object_name': 'Favorites', 'db_table': "'member_favorites'"}, 'add_time': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'company': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['member.Company']", 'null': 'True', 'blank': 'True'}), 'data': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['deal.Deal']", 'null': 'True', 'blank': 'True'}), 'demand': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['demand.Demand']", 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'member': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['member.Member']"}), 'news': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['news.News']", 'null': 'True', 'blank': 'True'}), 'project': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['project.Project']", 'null': 'True', 'blank': 'True'}), 'receiver': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'member_receiver_favorite'", 'null': 'True', 'to': u"orm['member.Member']"}), 'type_relation': ('django.db.models.fields.IntegerField', [], {'default': '0'}) }, u'member_message.message': { 'Meta': {'object_name': 'Message', 'db_table': "'member_message'"}, 'add_time': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'content': ('django.db.models.fields.TextField', [], {}), 'demand': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['demand.Demand']", 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_delete': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'is_read': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'project': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['project.Project']", 'null': 'True', 'blank': 'True'}), 'receiver': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'member_message_receiver'", 'to': u"orm['member.Member']"}), 'sender': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'member_message_sender'", 'to': u"orm['member.Member']"}), 'type_relation': ('django.db.models.fields.IntegerField', [], {'default': '0'}) }, u'news.news': { 'Meta': {'object_name': 'News', 'db_table': "'cvsource_news'"}, 'add_time': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'content': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'tag': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'time': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}) }, u'project.project': { 'Meta': {'object_name': 'Project'}, 'add_time': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'audit_status': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'audit_status_2': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'audit_status_3': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'company_cities': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['area.City']", 'null': 'True', 'blank': 'True'}), 'company_country': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['area.Country']", 'null': 'True', 'blank': 'True'}), 'company_industry': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'project_company_industry'", 'null': 'True', 'to': u"orm['industry.Industry']"}), 'company_industry_intro_cn': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'company_industry_intro_en': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'company_intro_cn': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'company_intro_en': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'company_name_cn': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True'}), 'company_name_en': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True'}), 'company_province': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['area.Province']", 'null': 'True', 'blank': 'True'}), 'company_stock_exchange': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['repository.StockExchange']", 'null': 'True', 'blank': 'True'}), 'company_stock_symbol': ('django.db.models.fields.CharField', [], {'max_length': '20', 'null': 'True'}), 'company_symbol_cn': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}), 'company_symbol_en': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}), 'currency_type_financial': ('django.db.models.fields.IntegerField', [], {'default': '1'}), 'currency_type_service': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'cv1': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'cv2': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'cv3': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'deal_size': ('django.db.models.fields.BigIntegerField', [], {'null': 'True', 'blank': 'True'}), 'ebitda': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '16', 'decimal_places': '2', 'blank': 'True'}), 'ebitda_2': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '16', 'decimal_places': '2', 'blank': 'True'}), 'ebitda_3': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '16', 'decimal_places': '2', 'blank': 'True'}), 'employees_count_type': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'expected_enterprice_value': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '16', 'decimal_places': '2', 'blank': 'True'}), 'expire_date': ('django.db.models.fields.DateField', [], {'null': 'True'}), 'features_cn': ('django.db.models.fields.TextField', [], {'null': 'True'}), 'features_en': ('django.db.models.fields.TextField', [], {'null': 'True'}), 'financial_audit_company_is_default': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'financial_audit_company_name': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True'}), 'financial_is_audit': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'financial_year': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'growth_three_year': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '16', 'decimal_places': '2'}), 'has_attach': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'income': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '16', 'decimal_places': '2', 'blank': 'True'}), 'income_last_phase': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '16', 'decimal_places': '2', 'blank': 'True'}), 'income_last_phase_2': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '16', 'decimal_places': '2', 'blank': 'True'}), 'income_last_phase_3': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '16', 'decimal_places': '2', 'blank': 'True'}), 'income_type': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'integrity': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'integrity_en': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'intro_cn': ('django.db.models.fields.TextField', [], {'null': 'True'}), 'intro_en': ('django.db.models.fields.TextField', [], {'null': 'True'}), 'is_agent_project': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_anonymous': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_follow': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_list_company': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_public': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_recommend': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_suitor': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_top': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'lock_date': ('django.db.models.fields.DateField', [], {'null': 'True'}), 'member': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'member_publisher'", 'to': u"orm['member.Member']"}), 'name_cn': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'name_en': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'pay_currency': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'price_max': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '16', 'decimal_places': '2', 'blank': 'True'}), 'price_min': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '16', 'decimal_places': '2', 'blank': 'True'}), 'process': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'profit': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '16', 'decimal_places': '2', 'blank': 'True'}), 'profit_last_phase': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '16', 'decimal_places': '2', 'blank': 'True'}), 'profit_last_phase_2': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '16', 'decimal_places': '2', 'blank': 'True'}), 'profit_last_phase_3': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '16', 'decimal_places': '2', 'blank': 'True'}), 'profit_type': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'project_relation': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'project_stage': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'pv': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'registered_capital': ('django.db.models.fields.BigIntegerField', [], {'null': 'True', 'blank': 'True'}), 'service_type': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'status': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'stock_percent': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '6', 'decimal_places': '2', 'blank': 'True'}), 'target_companies': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['member.Company']", 'symmetrical': 'False'}), 'target_industries': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['industry.Industry']", 'symmetrical': 'False'}), 'target_members': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['member.Member']", 'symmetrical': 'False'}), 'total_assets_last_phase': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '16', 'decimal_places': '2', 'blank': 'True'}), 'total_assets_last_phase_2': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '16', 'decimal_places': '2', 'blank': 'True'}), 'total_assets_last_phase_3': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '16', 'decimal_places': '2', 'blank': 'True'}), 'total_profit_last_phase': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '16', 'decimal_places': '2', 'blank': 'True'}), 'total_profit_last_phase_2': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '16', 'decimal_places': '2', 'blank': 'True'}), 'total_profit_last_phase_3': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '16', 'decimal_places': '2', 'blank': 'True'}), 'update_time': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2015, 5, 29, 0, 0)', 'auto_now': 'True', 'blank': 'True'}), 'upload_file': ('django.db.models.fields.files.FileField', [], {'default': "''", 'max_length': '100', 'blank': 'True'}), 'valid_day': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}) }, u'repository.stockexchange': { 'Meta': {'object_name': 'StockExchange'}, 'code': ('django.db.models.fields.CharField', [], {'max_length': '20'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name_cn': ('django.db.models.fields.CharField', [], {'max_length': '50', 'blank': 'True'}), 'name_en': ('django.db.models.fields.CharField', [], {'max_length': '50', 'blank': 'True'}), 'short_name_cn': ('django.db.models.fields.CharField', [], {'max_length': '50', 'blank': 'True'}), 'short_name_en': ('django.db.models.fields.CharField', [], {'max_length': '50', 'blank': 'True'}) } } complete_apps = ['member_message']
2415a47b98f58149d4981c714498f9eb67383b11
2baeb9965f64214e5a1478ab5139c53bb363ff50
/torch/fx/experimental/fx_acc/acc_ops.py
d4927d60e60152bd46115b814696ec9035e576b0
[ "BSD-2-Clause", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "BSL-1.0", "Apache-2.0" ]
permissive
Dithn/pytorch
b327d9a7434a0dbadb7bbf148b22cef7d2e4bc1c
86399d8e0cb72dfd1501fb9be870ac29af38e241
refs/heads/master
2023-04-26T12:01:26.043128
2021-11-16T19:54:14
2021-11-16T19:55:40
207,961,157
1
0
NOASSERTION
2021-11-17T02:14:51
2019-09-12T03:58:02
C++
UTF-8
Python
false
false
52,212
py
# encoding: utf-8 import operator import torch # isort:skip from typing import Sequence, Optional, List, cast import torch.fx.experimental.fx_acc.acc_utils as acc_utils import torch.nn as nn from torch.fx.experimental.fx_acc.acc_normalizer import ( register_acc_op, register_acc_op_mapping, register_custom_acc_mapper_fn, ) from torch.fx.experimental.fx_acc.acc_op_properties import ( AccOpProperty, register_acc_op_properties, ) from torch.fx.passes.shape_prop import _extract_tensor_metadata this_arg_is_optional = True move_to_qparams = True dont_move_to_qparams = False @register_acc_op_mapping(op_and_target=("call_function", nn.functional.linear)) @register_acc_op def linear(*, input, weight, bias): return nn.functional.linear(**locals()) @register_acc_op_properties(AccOpProperty.quantized) @register_acc_op def quantized_linear(*, input, weight, bias, acc_out_ty): qparams = acc_utils.get_field_from_acc_out_ty(acc_out_ty, "qparams") return nn.quantized.functional.linear( input, weight, bias, qparams["scale"], qparams["zero_point"], ) @register_acc_op_properties(AccOpProperty.unary) @register_acc_op_mapping( op_and_target=("call_method", "flatten"), arg_replacement_tuples=[ ("input", "input"), ("start_dim", "start_dim", this_arg_is_optional), ("end_dim", "end_dim", this_arg_is_optional), ], ) @register_acc_op_mapping(op_and_target=("call_function", torch.flatten)) @register_acc_op def flatten(*, input, start_dim=0, end_dim=-1): return torch.flatten(**locals()) @register_acc_op_properties(AccOpProperty.unary) @register_acc_op_mapping( op_and_target=("call_method", "squeeze"), arg_replacement_tuples=[ ("input", "input"), ("dim", "dim", this_arg_is_optional), ], ) @register_acc_op_mapping( op_and_target=("call_function", torch.squeeze), arg_replacement_tuples=[ ("input", "input"), ("dim", "dim", this_arg_is_optional), ], ) @register_acc_op def squeeze(*, input, dim=None): if dim is None: return input.squeeze() return input.squeeze(dim=dim) @register_acc_op_mapping(op_and_target=("call_function", nn.functional.max_pool2d)) @register_acc_op def max_pool2d( *, input, kernel_size, stride, padding, dilation, ceil_mode, return_indices ): return nn.functional.max_pool2d(**locals()) @register_acc_op_mapping( op_and_target=("call_function", nn.functional.adaptive_avg_pool2d) ) @register_acc_op def adaptive_avg_pool2d(*, input, output_size): return nn.functional.adaptive_avg_pool2d(**locals()) @register_acc_op_mapping(op_and_target=("call_function", nn.functional.avg_pool2d)) @register_acc_op def avg_pool2d( *, input, kernel_size, stride, padding, ceil_mode, count_include_pad, divisor_override, ): return nn.functional.avg_pool2d(**locals()) @register_acc_op_properties(AccOpProperty.pointwise, AccOpProperty.unary) @register_acc_op_mapping(op_and_target=("call_function", torch.sign)) @register_acc_op def sign(*, input): return torch.sign(input) @register_acc_op_properties(AccOpProperty.unary) @register_acc_op def size(*, input): return input.size() @register_custom_acc_mapper_fn( op_and_target=("call_function", getattr), arg_replacement_tuples=[], ) def custom_getattr_mapper(node: torch.fx.Node, _: nn.Module) -> torch.fx.Node: """ Custom function for mapping a call_function getattr to other ops. Currently only supports loading a getattr called on a torch.Tensor with attr name "shape", which is supported by mapping it to acc_ops.size(). """ # Have to use args here since getattr forces positional args. input_obj = node.args[0] attr_name = node.args[1] assert isinstance(input_obj, torch.fx.Node) assert ( input_obj.meta["type"] == torch.Tensor ), f"Expected torch.Tensor type for {input_obj.meta['type']}" assert ( attr_name == "shape" ), f"Only supporting shape getattr for now, not {attr_name}" with node.graph.inserting_before(node): size_node = node.graph.call_function(size, kwargs={"input": input_obj}) size_node.meta = node.meta.copy() return size_node @register_custom_acc_mapper_fn( op_and_target=("call_method", "size"), arg_replacement_tuples=[ ("input", "input"), ("dim", "dim", this_arg_is_optional), ], ) def tensor_size_mapper(node: torch.fx.Node, _: nn.Module) -> torch.fx.Node: """ Mapping from Tensor.size() to acc_ops.size. We map size() to acc_ops.size directly and map size(dim) to acc_ops.size + acc_ops.getitem. """ with node.graph.inserting_before(node): size_node = node.graph.call_function( size, kwargs={"input": node.kwargs["input"]} ) if "dim" not in node.kwargs: size_node.meta = node.meta.copy() return size_node size_node.meta["type"] = torch.Size getitem_node = node.graph.call_function( getitem, kwargs={"input": size_node, "idx": node.kwargs["dim"]} ) getitem_node.meta = node.meta.copy() return getitem_node @register_acc_op_properties(AccOpProperty.pointwise) @register_acc_op_mapping(op_and_target=("call_function", operator.add)) @register_acc_op_mapping(op_and_target=("call_method", "add")) @register_acc_op def add(*, input, other): return input + other @register_acc_op_properties(AccOpProperty.unary) @register_acc_op_mapping(op_and_target=("call_method", "unsqueeze")) @register_acc_op_mapping(op_and_target=("call_function", torch.unsqueeze)) @register_acc_op def unsqueeze(*, input, dim): return torch.unsqueeze(**locals()) @register_acc_op_properties(AccOpProperty.unary) @register_acc_op_mapping(op_and_target=("call_method", "tile")) @register_acc_op_mapping(op_and_target=("call_function", torch.tile)) @register_acc_op def tile(*, input, dims): return torch.tile(**locals()) @register_custom_acc_mapper_fn( op_and_target=("call_function", torch.stack), arg_replacement_tuples=[ ("tensors", "tensors"), ("dim", "dim"), ], ) def stack_mapper(node: torch.fx.Node, _: nn.Module) -> torch.fx.Node: """ Map torch.stack to unsqueeze + cat. """ with node.graph.inserting_before(node): inputs = node.kwargs["tensors"] unsqueeze_nodes = [] assert isinstance(inputs, Sequence) for i, t in enumerate(inputs): new_node = node.graph.create_node( "call_function", unsqueeze, kwargs={"input": t, "dim": node.kwargs["dim"]}, name=f"{node.name}_unsqueeze_{i}", ) new_node.meta["type"] = torch.Tensor unsqueeze_nodes.append(new_node) cat_node = node.graph.create_node( "call_function", cat, kwargs={"tensors": unsqueeze_nodes, "dim": node.kwargs["dim"]}, ) cat_node.meta = node.meta.copy() return cat_node @register_acc_op_properties(AccOpProperty.pointwise, AccOpProperty.unary) @register_acc_op_mapping(op_and_target=("call_function", torch.clamp)) @register_acc_op_mapping(op_and_target=("call_method", "clamp")) @register_acc_op def clamp(*, input, min=None, max=None): return torch.clamp(**locals()) @register_acc_op_properties(AccOpProperty.unary) @register_acc_op_mapping(op_and_target=("call_function", torch.cat)) @register_acc_op def cat(*, tensors, dim): return torch.cat(**locals()) @register_custom_acc_mapper_fn( op_and_target=("call_function", torch.transpose), arg_replacement_tuples=[ ("input", "input"), ("dim0", "dim0"), ("dim1", "dim1"), ], ) @register_custom_acc_mapper_fn( op_and_target=("call_method", "transpose"), arg_replacement_tuples=[ ("input", "input"), ("dim0", "dim0"), ("dim1", "dim1"), ], ) def transpose_mapper(node: torch.fx.Node, _: nn.Module) -> torch.fx.Node: # Get the dim-permutation/shuffle shape_as_list = node.meta["tensor_meta"].shape ranks = len(shape_as_list) shuffle = list(i for i in range(ranks)) dim0 = cast(int, node.kwargs["dim0"]) dim1 = cast(int, node.kwargs["dim1"]) shuffle[dim0] = dim1 shuffle[dim1] = dim0 # Create the new acc_ops.permute node. Update all uses of the transpose # node and then delete the transpose node. with node.graph.inserting_after(node): permute_node = node.graph.call_function( the_function=permute, kwargs={ "input": node.kwargs.get("input"), "permutation": shuffle, }, ) permute_node.meta = node.meta.copy() node.replace_all_uses_with(permute_node) permute_node.graph.erase_node(node) return permute_node @register_acc_op_properties(AccOpProperty.unary) @register_acc_op_mapping(op_and_target=("call_method", "contiguous")) @register_acc_op def contiguous(*, input): return input.contiguous() @register_acc_op_properties(AccOpProperty.unary) @register_acc_op_mapping(op_and_target=("call_function", torch.nn.functional.softmax)) @register_acc_op def softmax(*, input, dim, dtype): """ _stacklevel are ignored here. """ return torch.nn.functional.softmax(**locals()) @register_custom_acc_mapper_fn( op_and_target=("call_function", torch.addmm), arg_replacement_tuples=[ ("input", "input"), ("mat1", "mat1"), ("mat2", "mat2"), ("beta", "beta"), ("alpha", "alpha"), ], ) def addmm_mapper(node: torch.fx.Node, _: nn.Module) -> torch.fx.Node: """ Mapping from torch.addmm to acc_ops.mm -> acc_ops.add, if alpha or beta is not 1 then we also insert acc_ops.mul to the right place. """ with node.graph.inserting_before(node): mm_kwargs = {"input": node.kwargs["mat1"], "other": node.kwargs["mat2"]} mm_node = node.graph.create_node( "call_function", matmul, kwargs=mm_kwargs, name=f"{node.name}_mm" ) mm_node.meta = node.meta.copy() if node.kwargs["alpha"] != 1: mul_kwargs = {"input": mm_node, "other": node.kwargs["alpha"]} mm_node = node.graph.create_node( "call_function", mul, kwargs=mul_kwargs, name=f"{mm_node.name}_mul" ) mm_node.meta = node.meta.copy() input_node = node.kwargs["input"] if node.kwargs["beta"] != 1: mul_kwargs = {"input": input_node, "other": node.kwargs["beta"]} new_input_node = node.graph.create_node( "call_function", mul, kwargs=mul_kwargs, name=f"{node.name}_input_mul" ) assert isinstance(input_node, torch.fx.Node) new_input_node.meta = input_node.meta.copy() input_node = new_input_node add_kwargs = {"input": mm_node, "other": input_node} add_node = node.graph.create_node( "call_function", add, kwargs=add_kwargs, name=f"{node.name}_add" ) add_node.meta = node.meta.copy() return add_node @register_custom_acc_mapper_fn( op_and_target=("call_function", torch.t), arg_replacement_tuples=[ ("input", "input"), ], ) @register_custom_acc_mapper_fn( op_and_target=("call_method", "t"), arg_replacement_tuples=[ ("input", "input"), ], ) def t_mapper(node: torch.fx.Node, _: nn.Module): ranks = len(node.meta["tensor_meta"].shape) shuffle = [1, 0] if (ranks > 1) else [0] with node.graph.inserting_before(node): new_node = node.graph.create_node( "call_function", permute, kwargs={"input": node.kwargs["input"], "permutation": shuffle}, ) new_node.meta = node.meta.copy() return new_node @register_acc_op_properties(AccOpProperty.unary) @register_acc_op_mapping( op_and_target=("call_method", "permute"), arg_replacement_tuples=[ ("input", "input"), ("*", "permutation"), ], ) @register_acc_op def permute(*, input, permutation): return input.permute(*permutation) @register_custom_acc_mapper_fn( op_and_target=("call_function", torch.square), arg_replacement_tuples=[ ("input", "input"), ], ) def square_mapper(node: torch.fx.Node, _: nn.Module) -> torch.fx.Node: input_node = node.kwargs["input"] with node.graph.inserting_before(node): new_node = node.graph.call_function( mul, kwargs={"input": input_node, "other": input_node} ) new_node.meta = node.meta.copy() return new_node @register_acc_op_mapping( op_and_target=("call_function", torch.bmm), arg_replacement_tuples=[ ("input", "input"), ("mat2", "other"), ], ) @register_acc_op_mapping(op_and_target=("call_function", torch.matmul)) @register_acc_op def matmul(*, input, other): return torch.matmul(**locals()) @register_custom_acc_mapper_fn( op_and_target=("call_function", nn.functional.dropout), arg_replacement_tuples=[("input", "input")], ) @register_custom_acc_mapper_fn( op_and_target=("call_method", "detach"), arg_replacement_tuples=[("input", "input")] ) def dropout_mapper(node: torch.fx.Node, mod: nn.Module): """ Remove dropout node and directly map its input to output. """ return node.kwargs["input"] @register_acc_op_properties(AccOpProperty.pointwise, AccOpProperty.unary) @register_acc_op_mapping( op_and_target=("call_function", nn.functional.hardtanh), arg_replacement_tuples=[ ("input", "input"), ("min_val", "left"), ("max_val", "right"), ], ) @register_acc_op def hardtanh(*, input, left=-1.0, right=1.0): return nn.functional.hardtanh(input, min_val=left, max_val=right) @register_acc_op_properties(AccOpProperty.pointwise, AccOpProperty.unary) @register_acc_op_mapping(op_and_target=("call_function", nn.functional.hardsigmoid)) @register_acc_op def hardsigmoid(*, input): return nn.functional.hardsigmoid(input) @register_custom_acc_mapper_fn( op_and_target=("call_function", nn.functional.hardswish), arg_replacement_tuples=[ ("input", "input"), ], ) def hardswish_mapper(node: torch.fx.Node, _: nn.Module) -> torch.fx.Node: input_node = node.kwargs["input"] with node.graph.inserting_before(node): new_sigmoid_node = node.graph.call_function( hardsigmoid, kwargs={"input": input_node} ) new_sigmoid_node.meta = node.meta.copy() new_node = node.graph.call_function( mul, kwargs={"input": new_sigmoid_node, "other": input_node} ) new_node.meta = node.meta.copy() return new_node @register_acc_op_properties(AccOpProperty.quantized) @register_acc_op_mapping( op_and_target=("call_function", torch.ops.quantized.add), arg_replacement_tuples=[ ("qa", "input"), ("qb", "other"), ("scale", "scale"), ("zero_point", "zero_point"), ], kwargs_to_move_to_acc_out_ty=[ ("scale", "scale", move_to_qparams), ("zero_point", "zero_point", move_to_qparams), ], ) @register_acc_op def quantized_add(*, input, other, acc_out_ty): qparams = acc_utils.get_field_from_acc_out_ty(acc_out_ty, "qparams") return torch.ops.quantized.add( input, other, qparams["scale"], qparams["zero_point"], ) @register_acc_op_properties(AccOpProperty.quantized) @register_acc_op_mapping( op_and_target=("call_function", torch.ops.quantized.mul), arg_replacement_tuples=[ ("qa", "input"), ("qb", "other"), ("scale", "scale"), ("zero_point", "zero_point"), ], kwargs_to_move_to_acc_out_ty=[ ("scale", "scale", move_to_qparams), ("zero_point", "zero_point", move_to_qparams), ], ) @register_acc_op def quantized_mul(*, input, other, acc_out_ty): qparams = acc_utils.get_field_from_acc_out_ty(acc_out_ty, "qparams") return torch.ops.quantized.mul( input, other, qparams["scale"], qparams["zero_point"], ) @register_acc_op_properties(AccOpProperty.pointwise, AccOpProperty.unary) @register_acc_op_properties(AccOpProperty.quantized) @register_acc_op_mapping( op_and_target=("call_function", torch.quantize_per_tensor), arg_replacement_tuples=[ ("input", "input"), ("scale", "scale"), ("zero_point", "zero_point"), ("dtype", "dtype"), ], kwargs_to_move_to_acc_out_ty=[ ("scale", "scale", move_to_qparams), ("zero_point", "zero_point", move_to_qparams), ("dtype", "dtype", dont_move_to_qparams), ], ) @register_acc_op def quantize_per_tensor(*, input, acc_out_ty): qparams = acc_utils.get_field_from_acc_out_ty(acc_out_ty, "qparams") dtype = acc_utils.get_field_from_acc_out_ty(acc_out_ty, "dtype") return torch.quantize_per_tensor( input, qparams["scale"], qparams["zero_point"], dtype ) @register_acc_op_properties(AccOpProperty.unary) @register_acc_op_mapping( op_and_target=("call_function", torch.quantize_per_channel), arg_replacement_tuples=[ ("input", "input"), ("scales", "scales"), ("zero_points", "zero_points"), ("axis", "axis"), ("dtype", "dtype"), ], kwargs_to_move_to_acc_out_ty=[ ("scales", "scale", move_to_qparams), ("zero_points", "zero_point", move_to_qparams), ("axis", "axis", move_to_qparams), ("dtype", "dtype", dont_move_to_qparams), ], ) @register_acc_op def quantize_per_channel(*, input, acc_out_ty): qparams = acc_utils.get_field_from_acc_out_ty(acc_out_ty, "qparams") dtype = acc_utils.get_field_from_acc_out_ty(acc_out_ty, "dtype") return torch.quantize_per_channel( input, torch.tensor(qparams["scale"]), torch.tensor(qparams["zero_point"]), qparams["axis"], dtype, ) # type: ignore[call-overload] @register_acc_op_properties(AccOpProperty.pointwise, AccOpProperty.unary) @register_acc_op_mapping(op_and_target=("call_method", "dequantize")) @register_acc_op_mapping(op_and_target=("call_function", torch.dequantize)) @register_acc_op def dequantize(*, input): return torch.dequantize(input) @register_acc_op_properties(AccOpProperty.pointwise, AccOpProperty.unary, AccOpProperty.quantized) @register_acc_op def rescale_quantize_per_tensor(*, input, acc_out_ty): d = dequantize(input=input) return quantize_per_tensor(input=d, acc_out_ty=acc_out_ty) @register_acc_op_properties(AccOpProperty.unary, AccOpProperty.quantized) @register_acc_op def rescale_quantize_per_channel(*, input, acc_out_ty): d = dequantize(input=input) return quantize_per_channel(input=d, acc_out_ty=acc_out_ty) @register_acc_op_properties(AccOpProperty.pointwise) @register_acc_op_mapping(op_and_target=("call_function", operator.sub)) @register_acc_op def sub(*, input, other): return input - other @register_acc_op_properties(AccOpProperty.pointwise) @register_acc_op_mapping(op_and_target=("call_function", torch.mul)) @register_acc_op_mapping(op_and_target=("call_function", operator.mul)) @register_acc_op_mapping(op_and_target=("call_method", "mul")) @register_acc_op def mul(*, input, other): return input * other @register_acc_op_properties(AccOpProperty.pointwise) @register_acc_op_mapping(op_and_target=("call_function", operator.truediv)) @register_acc_op def div(*, input, other): return input / other @register_acc_op_properties(AccOpProperty.pointwise) @register_acc_op_mapping(op_and_target=("call_function", torch.pow)) @register_acc_op def pow(*, input, exponent): return torch.pow(input, exponent) @register_acc_op_properties(AccOpProperty.pointwise, AccOpProperty.unary) @register_acc_op_mapping(op_and_target=("call_function", nn.functional.relu)) @register_acc_op_mapping( op_and_target=("call_function", torch.relu), arg_replacement_tuples=[("input", "input")], ) @register_acc_op_mapping( op_and_target=("call_method", "relu"), arg_replacement_tuples=[("input", "input")], ) @register_acc_op def relu(*, input, inplace=False): return nn.functional.relu(**locals()) @register_custom_acc_mapper_fn( op_and_target=("call_function", torch.log1p), arg_replacement_tuples=[ ("input", "input"), ], ) def torch_log1p_mapper(node: torch.fx.Node, _: torch.nn.Module) -> torch.fx.Node: with node.graph.inserting_before(node): add_kwargs = {"input": node.kwargs["input"], "other": 1.0} add_node = node.graph.call_function(add, kwargs=add_kwargs) add_node.meta = node.meta.copy() log_kwargs = {"input": add_node} log_node = node.graph.call_function(log, kwargs=log_kwargs) log_node.meta = node.meta.copy() return log_node @register_acc_op_properties(AccOpProperty.unary) @register_custom_acc_mapper_fn( op_and_target=("call_method", "sum"), arg_replacement_tuples=[ ("input", "input"), ("dim", "dim", this_arg_is_optional), ("keepdim", "keepdim", this_arg_is_optional), ("dtype", "dtype", this_arg_is_optional), ], ) @register_custom_acc_mapper_fn( op_and_target=("call_function", torch.sum), arg_replacement_tuples=[ ("input", "input"), ("dim", "dim", this_arg_is_optional), ("keepdim", "keepdim", this_arg_is_optional), ("dtype", "dtype", this_arg_is_optional), ], ) def add_sum_mapper(node: torch.fx.Node, mod: torch.fx.GraphModule) -> torch.fx.Node: with node.graph.inserting_before(node): sum_kwargs = dict(node.kwargs) if "dim" in sum_kwargs and isinstance(sum_kwargs["dim"], int): sum_kwargs["dim"] = (sum_kwargs["dim"],) sum_node = node.graph.call_function(sum, kwargs=sum_kwargs) sum_node.meta = node.meta.copy() return sum_node @register_acc_op_properties(AccOpProperty.unary) @register_acc_op def sum(*, input, dim=None, keepdim=False, dtype=None): if dim is not None: return torch.sum(**locals()) else: return input.sum(dtype=dtype) @register_custom_acc_mapper_fn( op_and_target=("call_method", "max"), arg_replacement_tuples=[ ("input", "input"), (("dim", "other"), "dim_or_other", this_arg_is_optional), ("keepdim", "keepdim", this_arg_is_optional), ], ) @register_custom_acc_mapper_fn( op_and_target=("call_function", torch.max), arg_replacement_tuples=[ ("input", "input"), (("dim", "other"), "dim_or_other", this_arg_is_optional), ("keepdim", "keepdim", this_arg_is_optional), ], ) @register_custom_acc_mapper_fn( op_and_target=("call_method", "min"), arg_replacement_tuples=[ ("input", "input"), (("dim", "other"), "dim_or_other", this_arg_is_optional), ("keepdim", "keepdim", this_arg_is_optional), ], ) @register_custom_acc_mapper_fn( op_and_target=("call_function", torch.min), arg_replacement_tuples=[ ("input", "input"), (("dim", "other"), "dim_or_other", this_arg_is_optional), ("keepdim", "keepdim", this_arg_is_optional), ], ) def add_maximum_minimum_mapper( node: torch.fx.Node, mod: torch.fx.GraphModule ) -> torch.fx.Node: # there are effectively three versions of torch.max / torch.min # full reduce: torch.max(input) -> Tensor # dimensional reduce: torch.max(input, dim, keepdim=False, *, out=None) -> (Tensor, LongTensor) # elementwise: torch.max(input, other, *, out=None) -> Tensor # the mapper function is remapping for both min and max situations # this helper function makes the choices available clearer and provides an easier way # to lookup the right function def target_map(op, target): if (op, target) in (("call_method", "max"), ("call_function", torch.max)): return dict( full_reduce=max_full_reduce, dim_reduce=max_dim_reduce, elementwise=maximum, ) elif (op, target) in (("call_method", "min"), ("call_function", torch.min)): return dict( full_reduce=min_full_reduce, dim_reduce=min_dim_reduce, elementwise=minimum, ) with node.graph.inserting_before(node): new_targets = target_map(node.op, node.target) max_kwargs = dict() max_kwargs["input"] = node.kwargs["input"] if ("dim_or_other" not in node.kwargs) or (node.kwargs["dim_or_other"] is None): nt = new_targets["full_reduce"] max_node = node.graph.call_function(nt, kwargs=max_kwargs) elif isinstance(node.kwargs["dim_or_other"], int): nt = new_targets["dim_reduce"] dim = node.kwargs["dim_or_other"] max_kwargs["dim"] = dim max_kwargs["keepdim"] = node.kwargs.get("keepdim", False) max_node = node.graph.call_function(nt, kwargs=max_kwargs) else: other = node.kwargs["dim_or_other"] assert isinstance(other, torch.fx.Node) # Lowering path for when provided "other", where we do elem-wise max nt = new_targets["elementwise"] max_kwargs["other"] = other max_node = node.graph.call_function(nt, kwargs=max_kwargs) max_node.meta = node.meta.copy() return max_node @register_acc_op_properties(AccOpProperty.unary) @register_acc_op def max_full_reduce(*, input): return torch.max(**locals()) @register_acc_op_properties(AccOpProperty.unary) @register_acc_op def max_dim_reduce(*, input, dim=None, keepdim=False): return torch.max(**locals()) @register_acc_op_properties(AccOpProperty.pointwise) @register_acc_op_mapping(op_and_target=("call_function", torch.maximum)) @register_acc_op_mapping(op_and_target=("call_method", "maximum")) @register_acc_op def maximum(*, input, other): return torch.maximum(**locals()) @register_acc_op_properties(AccOpProperty.unary) @register_acc_op def min_full_reduce(*, input): return torch.min(input) @register_acc_op_properties(AccOpProperty.unary) @register_acc_op def min_dim_reduce(*, input, dim=None, keepdim=False): return torch.min(input, dim=dim, keepdim=keepdim) @register_acc_op_properties(AccOpProperty.pointwise) @register_acc_op_mapping(op_and_target=("call_function", torch.minimum)) @register_acc_op_mapping(op_and_target=("call_method", "minimum")) @register_acc_op def minimum(*, input, other): return torch.minimum(**locals()) @register_acc_op_properties(AccOpProperty.pointwise, AccOpProperty.unary) @register_acc_op_mapping(op_and_target=("call_function", torch.sigmoid)) @register_acc_op_mapping(op_and_target=("call_method", "sigmoid")) @register_acc_op def sigmoid(*, input): return torch.sigmoid(**locals()) @register_acc_op_properties(AccOpProperty.pointwise, AccOpProperty.unary) @register_acc_op_mapping(op_and_target=("call_function", torch.sinh)) @register_acc_op def sinh(*, input): return torch.sinh(**locals()) @register_acc_op_properties(AccOpProperty.pointwise, AccOpProperty.unary) @register_acc_op_mapping(op_and_target=("call_function", torch.cosh)) @register_acc_op def cosh(*, input): return torch.cosh(**locals()) @register_acc_op_properties(AccOpProperty.pointwise, AccOpProperty.unary) @register_acc_op_mapping(op_and_target=("call_function", torch.tanh)) @register_acc_op_mapping(op_and_target=("call_method", "tanh")) @register_acc_op def tanh(*, input): return torch.tanh(**locals()) @register_acc_op_properties(AccOpProperty.pointwise, AccOpProperty.unary) @register_acc_op_mapping(op_and_target=("call_function", torch.asin)) @register_acc_op def asin(*, input): return torch.asin(**locals()) @register_acc_op_properties(AccOpProperty.pointwise, AccOpProperty.unary) @register_acc_op_mapping(op_and_target=("call_function", torch.acos)) @register_acc_op def acos(*, input): return torch.acos(**locals()) @register_acc_op_properties(AccOpProperty.pointwise, AccOpProperty.unary) @register_acc_op_mapping(op_and_target=("call_function", torch.atan)) @register_acc_op def atan(*, input): return torch.atan(**locals()) @register_acc_op_properties(AccOpProperty.pointwise, AccOpProperty.unary) @register_acc_op_mapping(op_and_target=("call_function", torch.exp)) @register_acc_op def exp(*, input): return torch.exp(**locals()) @register_acc_op_properties(AccOpProperty.pointwise, AccOpProperty.unary) @register_acc_op_mapping(op_and_target=("call_function", torch.log)) @register_acc_op def log(*, input): return torch.log(**locals()) @register_acc_op_properties(AccOpProperty.pointwise, AccOpProperty.unary) @register_acc_op_mapping(op_and_target=("call_function", torch.sqrt)) @register_acc_op def sqrt(*, input): return torch.sqrt(**locals()) @register_acc_op_properties(AccOpProperty.pointwise, AccOpProperty.unary) @register_acc_op_mapping(op_and_target=("call_function", torch.reciprocal)) @register_acc_op def reciprocal(*, input): return torch.reciprocal(**locals()) @register_acc_op_properties(AccOpProperty.pointwise, AccOpProperty.unary) @register_acc_op_mapping(op_and_target=("call_function", torch.abs)) @register_acc_op def abs(*, input): return torch.abs(**locals()) @register_acc_op_properties(AccOpProperty.pointwise, AccOpProperty.unary) @register_acc_op_mapping(op_and_target=("call_function", torch.neg)) @register_acc_op def neg(*, input): return torch.neg(**locals()) @register_acc_op_properties(AccOpProperty.pointwise, AccOpProperty.unary) @register_acc_op_mapping(op_and_target=("call_function", torch.floor)) @register_acc_op def floor(*, input): return torch.floor(**locals()) @register_acc_op_properties(AccOpProperty.pointwise, AccOpProperty.unary) @register_acc_op_mapping(op_and_target=("call_function", torch.ceil)) @register_acc_op def ceil(*, input): return torch.ceil(**locals()) @register_acc_op_mapping(op_and_target=("call_function", torch.nn.functional.pad)) @register_acc_op def pad(*, input, pad, mode, value): return torch.nn.functional.pad(**locals()) @register_acc_op_mapping(op_and_target=("call_function", torch.conv2d)) @register_acc_op def conv2d(*, input, weight, bias, stride, padding, dilation, groups): return nn.functional.conv2d(**locals()) @register_acc_op_properties(AccOpProperty.quantized) @register_acc_op def quantized_conv2d( *, input, weight, bias, stride, padding, dilation, groups, padding_mode, acc_out_ty, ): qparams = acc_utils.get_field_from_acc_out_ty(acc_out_ty, "qparams") return torch.nn.quantized.functional.conv2d( input, weight, bias, stride, padding, dilation, groups, padding_mode, qparams["scale"], qparams["zero_point"], ) @register_acc_op_mapping(op_and_target=("call_function", nn.functional.batch_norm)) @register_acc_op def batch_norm( *, input, running_mean, running_var, weight, bias, training, momentum, eps ): return nn.functional.batch_norm(**locals()) @register_acc_op_mapping(op_and_target=("call_function", nn.functional.layer_norm)) @register_acc_op def layer_norm(*, input, normalized_shape, weight, bias, eps): return nn.functional.layer_norm(**locals()) def argmin_max_mapper_impl(node: torch.fx.Node, largest: bool) -> torch.fx.Node: """ Map torch.argmin or torch.argmax to acc_ops.flatten (depend on dim) + acc_ops.topk + acc_ops.getitem + acc_ops.squeeze (depends on keepdim). """ input_node = node.kwargs["input"] dim = node.kwargs["dim"] keepdim = node.kwargs["keepdim"] if dim is None and keepdim: raise RuntimeError( "We currently don't support argmin/argmax with dim=None and keepdim=True" ) with node.graph.inserting_before(node): if dim is None: flatten_kwargs = { "input": node.kwargs["input"], "start_dim": 0, "end_dim": -1, } flatten_node = node.graph.call_function(flatten, kwargs=flatten_kwargs) flatten_node.meta["type"] = torch.Tensor input_node = flatten_node dim = -1 topk_kwargs = { "input": input_node, "k": 1, "dim": dim, "largest": largest, "sorted": False, } topk_node = node.graph.call_function(topk, kwargs=topk_kwargs) # It's actually more like NamedTuple but tuple here should be fine. topk_node.meta["type"] = tuple getitem_kwargs = {"input": topk_node, "idx": 1} getitem_node = node.graph.call_function(getitem, kwargs=getitem_kwargs) getitem_node.meta["type"] = torch.Tensor output_node = getitem_node if not keepdim: squeeze_kwargs = {"input": getitem_node, "dim": dim} output_node = node.graph.call_function(squeeze, kwargs=squeeze_kwargs) output_node.meta = node.meta.copy() return output_node @register_custom_acc_mapper_fn( op_and_target=("call_function", torch.argmin), arg_replacement_tuples=[ ("input", "input"), ("dim", "dim"), ("keepdim", "keepdim"), ], ) def torch_argmin_mapper(node: torch.fx.Node, _: torch.nn.Module) -> torch.fx.Node: """ Map torch.argmin to acc_ops.flatten (depend on dim) + acc_ops.topk + acc_ops.getitem + acc_ops.squeeze (depends on keepdim). """ return argmin_max_mapper_impl(node, largest=False) @register_acc_op_mapping(op_and_target=("call_function", torch.linalg.norm)) @register_acc_op def linalg_norm(*, input, ord, dim, keepdim): return torch.linalg.norm(**locals()) @register_custom_acc_mapper_fn( op_and_target=("call_method", "split"), arg_replacement_tuples=[ ("tensor", "input"), ("split_size_or_sections", "split_size_or_sections"), ("dim", "dim"), ], ) @register_custom_acc_mapper_fn( op_and_target=("call_function", torch.split), arg_replacement_tuples=[ ("tensor", "input"), ("split_size_or_sections", "split_size_or_sections"), ("dim", "dim"), ], ) def torch_split_mapper(node: torch.fx.Node, mod: nn.Module) -> torch.fx.Node: """ If split_size_or_sections is sections, map the node to slice_tensors + tuple_construct. Otherwise, if split_size_or_sections is split_size, map the node to acc_ops.split. """ split_size_or_sections = node.kwargs["split_size_or_sections"] with node.graph.inserting_before(node): if isinstance(split_size_or_sections, int): new_kwargs = { "input": node.kwargs["input"], "split_size": split_size_or_sections, "dim": node.kwargs["dim"], } new_node = node.graph.call_function(split, kwargs=new_kwargs) new_node.meta = node.meta.copy() return new_node assert isinstance(split_size_or_sections, Sequence) start = 0 slice_nodes = [] for i in split_size_or_sections: assert isinstance(i, int) new_kwargs = { "input": node.kwargs["input"], "dims": (node.kwargs["dim"],), "starts": (start,), "stops": (start + i,), "steps": (1,), } new_node = node.graph.call_function(slice_tensor, kwargs=new_kwargs) new_node.meta["type"] = torch.Tensor slice_nodes.append(new_node) start += i new_node = node.graph.call_function( tuple_construct, kwargs={"tensors": tuple(slice_nodes)} ) new_node.meta = node.meta.copy() return new_node @register_acc_op_properties(AccOpProperty.unary) @register_acc_op def split(*, input, split_size, dim): return torch.split(input, split_size, dim) @register_acc_op def tuple_construct(*, tensors): return tuple(tensors) @register_acc_op_properties(AccOpProperty.quantized) @register_acc_op_mapping( op_and_target=("call_function", torch.ops.quantized.batch_norm2d), arg_replacement_tuples=[ ("input", "input"), ("weight", "weight"), ("bias", "bias"), ("running_mean", "running_mean"), ("running_var", "running_var"), ("eps", "eps"), ("scale", "scale"), ("zero_point", "zero_point"), ], kwargs_to_move_to_acc_out_ty=[ ("scale", "scale", move_to_qparams), ("zero_point", "zero_point", move_to_qparams), ], ) @register_acc_op def quantized_batch_norm2d( *, input, running_mean, running_var, weight, bias, eps, acc_out_ty ): qparams = acc_utils.get_field_from_acc_out_ty(acc_out_ty, "qparams") return torch.ops.quantized.batch_norm2d( input, weight, bias, running_mean, running_var, eps, qparams["scale"], qparams["zero_point"], ) @register_acc_op_mapping(op_and_target=("call_function", nn.functional.embedding_bag)) @register_acc_op def embedding_bag( *, input, weight, offsets, max_norm, norm_type, scale_grad_by_freq, mode, sparse, per_sample_weights, include_last_offset, padding_idx, ): return nn.functional.embedding_bag(**locals()) @register_acc_op_mapping( op_and_target=( "call_function", torch.ops.quantized.embedding_bag_byte_rowwise_offsets, ) ) @register_acc_op def embedding_bag_byte_rowwise_offsets( *, weight, indices, offsets, scale_grad_by_freq, mode, pruned_weights, per_sample_weights, compressed_indices_mapping, include_last_offset, ): return torch.ops.quantized.embedding_bag_byte_rowwise_offsets(**locals()) @register_acc_op_mapping( op_and_target=( "call_function", torch.ops.quantized.embedding_bag_4bit_rowwise_offsets, ) ) @register_acc_op def embedding_bag_4bit_rowwise_offsets( *, weight, indices, offsets, scale_grad_by_freq, mode, pruned_weights, per_sample_weights, compressed_indices_mapping, include_last_offset, ): return torch.ops.quantized.embedding_bag_4bit_rowwise_offsets(**locals()) @register_acc_op_properties(AccOpProperty.pointwise, AccOpProperty.unary) @register_acc_op_mapping(op_and_target=("call_function", torch.sin)) @register_acc_op def sin(*, input): return torch.sin(**locals()) @register_acc_op_properties(AccOpProperty.pointwise, AccOpProperty.unary) @register_acc_op_mapping(op_and_target=("call_function", torch.cos)) @register_acc_op def cos(*, input): return torch.cos(**locals()) @register_acc_op_properties(AccOpProperty.pointwise, AccOpProperty.unary) @register_acc_op_mapping(op_and_target=("call_function", torch.tan)) @register_acc_op def tan(*, input): return torch.tan(**locals()) @register_acc_op_properties(AccOpProperty.unary) @register_acc_op_mapping(op_and_target=("call_function", torch.topk)) @register_acc_op def topk(*, input, k, dim, largest, sorted): return torch.topk(**locals()) @register_acc_op_mapping(op_and_target=("call_function", operator.getitem)) @register_acc_op def getitem(*, input, idx): return input[idx] @register_acc_op_properties(AccOpProperty.unary) @register_acc_op def slice_tensor(*, input, dims, starts, stops, steps): slices: List[Optional[slice]] = [None for _ in range(input.dim())] # For all provided dims, extract out a slice for starts/stops/steps. for idx, dim in enumerate(dims): slices[dim] = slice(starts[idx], stops[idx], steps[idx]) # For all unspecified dims, default to the full slice. for idx, s in enumerate(slices): if s is None: slices[idx] = slice(None, None, None) return input[slices] @register_custom_acc_mapper_fn( op_and_target=("call_function", torch.narrow), arg_replacement_tuples=[ ("input", "input"), ("dim", "dim"), ("start", "start"), ("length", "length"), ], ) @register_custom_acc_mapper_fn( op_and_target=("call_method", "narrow"), arg_replacement_tuples=[ ("input", "input"), ("dim", "dim"), ("start", "start"), ("length", "length"), ], ) def custom_narrow_mapper(node: torch.fx.Node, mod: nn.Module) -> torch.fx.Node: assert isinstance(node.kwargs["start"], int) and isinstance( node.kwargs["length"], int ) kwargs = { "input": node.kwargs["input"], "dims": (node.kwargs["dim"],), "starts": (node.kwargs["start"],), "stops": (node.kwargs["start"] + node.kwargs["length"],), "steps": (1,), } with node.graph.inserting_before(node): new_node = node.graph.call_function(slice_tensor, kwargs=kwargs) new_node.meta = node.meta.copy() return new_node @register_acc_op_properties(AccOpProperty.unary) @register_acc_op_mapping( op_and_target=("call_function", torch.reshape), arg_replacement_tuples=[ ("input", "input"), ("shape", "shape"), ], kwargs_to_move_to_acc_out_ty=[("shape", "shape")], ) @register_acc_op_mapping( op_and_target=("call_method", "view"), arg_replacement_tuples=[ ("input", "input"), ("*", "shape"), ], kwargs_to_move_to_acc_out_ty=[("shape", "shape")], ) @register_acc_op def reshape(*, input, acc_out_ty): return torch.reshape( input, tuple(acc_utils.get_field_from_acc_out_ty(acc_out_ty, "shape")) ) @register_custom_acc_mapper_fn( op_and_target=("call_method", "reshape"), arg_replacement_tuples=[ ("input", "input"), ("*", "shape"), ], ) def custom_tensor_reshape_mapper(node: torch.fx.Node, _: nn.Module) -> torch.fx.Node: """ For Tensor.reshape node, args could be (input, 1, 2, 3) or (input, (1, 2, 3)). Here we do some special handling with the `shape` arg in order to map it to acc_ops.reshape. It also handles the case when `shape` is a list instead of tuple. """ input_node = node.kwargs["input"] shape = node.kwargs["shape"] assert isinstance(shape, Sequence) if isinstance(shape[0], (tuple, list)): # type: ignore[index] shape = shape[0] # type: ignore[index] with node.graph.inserting_before(node): new_node = node.graph.call_function( reshape, kwargs={ "input": input_node, "acc_out_ty": acc_utils.build_raw_tensor_meta(shape=shape), }, ) new_node.meta = node.meta.copy() return new_node @register_acc_op_properties(AccOpProperty.pointwise, AccOpProperty.unary) @register_acc_op def to_dtype(input, acc_out_ty): assert acc_out_ty is not None, "valid acc_out_ty needed" return input.to(dtype=acc_utils.get_field_from_acc_out_ty(acc_out_ty, "dtype")) @register_custom_acc_mapper_fn( op_and_target=("call_method", "to"), arg_replacement_tuples=[ ("input", "input"), ("dtype", "dtype"), ], ) def custom_tensor_to_mapper(node: torch.fx.Node, _: nn.Module): dest_dtype = node.kwargs["dtype"] mem_format = node.kwargs.get("memory_format") device = node.kwargs.get("device") assert dest_dtype is not None assert mem_format is None or mem_format == torch.preserve_format assert device is None new_kwargs = { "input": node.kwargs["input"], "acc_out_ty": acc_utils.build_raw_tensor_meta(dtype=dest_dtype), } with node.graph.inserting_before(node): new_node = node.graph.create_node( "call_function", to_dtype, kwargs=new_kwargs, name=node.name ) new_node.meta = node.meta return new_node @register_custom_acc_mapper_fn( op_and_target=("call_function", torch.add), # Note that we may have aliases for inputs here due to issues with deterministically # knowing the correct target that will be resolved by pytorch. arg_replacement_tuples=[ (("input", "a"), "input"), (("other", "b"), "other"), ("alpha", "alpha", this_arg_is_optional), ], ) def custom_torch_add_mapper(node: torch.fx.Node, mod: nn.Module) -> torch.fx.Node: """ Add custom mapping for torch.add because it has an `alpha` parameter which scales the `other` input, and we want to make that mul a separate node. """ with node.graph.inserting_before(node): # If alpha is in kwargs check if we need to add a mul, and use correct kwargs. if "alpha" in node.kwargs: # Add mul node only if it has a numerical impact, i.e. alpha != 1.0. if node.kwargs["alpha"] != 1.0: other_node = node.graph.create_node( "call_function", mul, kwargs={ "input": node.kwargs["other"], "other": node.kwargs["alpha"], }, name=node.name + "_mul_alpha", ) other_node.meta = node.meta else: other_node = node.kwargs["other"] add_kwargs = {"input": node.kwargs["input"], "other": other_node} else: add_kwargs = node.kwargs new_node = node.graph.create_node( "call_function", add, kwargs=add_kwargs, name=node.name ) new_node.meta = node.meta return new_node @register_custom_acc_mapper_fn( op_and_target=("call_module", nn.quantized.Linear), arg_replacement_tuples=[ ("input", "input"), ], ) def packed_quantized_linear_mapper( node: torch.fx.Node, mod: nn.Module ) -> torch.fx.Node: """ Mapping from quantized_linear module to acc_op.linear. We unpack weight and bias in this mapper and pass them directly to linear node. """ assert isinstance(node.target, str) linear_module = dict(mod.named_modules())[node.target] prefix = node.target.replace(".", "_") weight_name = f"{prefix}_weight" bias_name = f"{prefix}_bias" # Store weight and bias in the main module mod.register_buffer(weight_name, linear_module.weight()) if linear_module.bias() is not None: mod.register_buffer(bias_name, linear_module.bias()) with node.graph.inserting_before(node): # Insert get_attr nodes for weight and bias get_weight = node.graph.get_attr(weight_name) get_weight.meta["tensor_meta"] = _extract_tensor_metadata( linear_module.weight() ) get_bias = None if linear_module.bias() is not None: get_bias = node.graph.get_attr(bias_name) get_bias.meta["tensor_meta"] = _extract_tensor_metadata( linear_module.bias() ) qparams = {"scale": linear_module.scale, "zero_point": linear_module.zero_point} # Create kwargs for acc_op.quantized_linear kwargs = { "input": node.kwargs["input"], "weight": get_weight, "bias": get_bias, "acc_out_ty": acc_utils.build_raw_tensor_meta(qparams=qparams), } new_node = node.graph.call_function(quantized_linear, kwargs=kwargs) new_node.meta = node.meta return new_node @register_custom_acc_mapper_fn( op_and_target=("call_module", nn.quantized.Conv2d), arg_replacement_tuples=[ ("input", "input"), ], ) def packed_quantized_conv2d_mapper( node: torch.fx.Node, mod: nn.Module ) -> torch.fx.Node: """ Mapping from quantzed Conv2d module to acc_op.conv. We unpack all the parameters in this mapper and pass them directly to conv2d node. """ assert isinstance(node.target, str) conv_module = dict(mod.named_modules())[node.target] prefix = node.target.replace(".", "_") weight_name = f"{prefix}_weight" bias_name = f"{prefix}_bias" # Store weight and bias in the main module mod.register_buffer(weight_name, conv_module.weight()) if conv_module.bias() is not None: mod.register_buffer(bias_name, conv_module.bias()) with node.graph.inserting_before(node): # Insert get_attr nodes for weight and bias get_weight = node.graph.get_attr(weight_name) get_weight.meta["tensor_meta"] = _extract_tensor_metadata(conv_module.weight()) get_bias = None if conv_module.bias() is not None: get_bias = node.graph.get_attr(bias_name) get_bias.meta["tensor_meta"] = _extract_tensor_metadata(conv_module.bias()) qparams = {"scale": conv_module.scale, "zero_point": conv_module.zero_point} # Create kwargs for acc_op.conv kwargs = { "input": node.kwargs["input"], "weight": get_weight, "bias": get_bias, "stride": conv_module.stride, "padding": conv_module.padding, "dilation": conv_module.dilation, "groups": conv_module.groups, "padding_mode": conv_module.padding_mode, "acc_out_ty": acc_utils.build_raw_tensor_meta(qparams=qparams), } new_node = node.graph.call_function(quantized_conv2d, kwargs=kwargs) new_node.meta = node.meta return new_node @register_custom_acc_mapper_fn( op_and_target=("call_function", torch.ops.quantized.add_relu), arg_replacement_tuples=[ ("input", "input"), ("other", "other"), ("scale", "scale"), ("zero_point", "zero_point"), ], ) def add_relu_unfuse_mapper( node: torch.fx.Node, mod: torch.fx.GraphModule ) -> torch.fx.Node: with node.graph.inserting_before(node): qparams = { "scale": node.kwargs["scale"], "zero_point": node.kwargs["zero_point"], } add_kwargs = { "input": node.kwargs["input"], "other": node.kwargs["other"], "acc_out_ty": acc_utils.build_raw_tensor_meta(qparams=qparams), } add_node = node.graph.call_function(quantized_add, kwargs=add_kwargs) add_node.meta = node.meta.copy() relu_node = node.graph.call_function( relu, kwargs={"input": add_node, "inplace": False} ) relu_node.meta = node.meta return relu_node @register_custom_acc_mapper_fn( op_and_target=("call_module", nn.intrinsic.quantized.ConvReLU2d), arg_replacement_tuples=[ ("input", "input"), ], ) def packed_quantized_convrelu2d_mapper( node: torch.fx.Node, mod: nn.Module ) -> torch.fx.Node: """ Mapping from quantized ConvReLU2d module to acc_op.relu. We use packed_quantized_conv2d_mapper to unpack all the parameters in this mapper and pass the returned conv2d node directly to relu node. """ with node.graph.inserting_before(node): # conv2d op conv2d_node = packed_quantized_conv2d_mapper(node, mod) # relu op relu_node = node.graph.call_function( relu, kwargs={"input": conv2d_node, "inplace": False} ) relu_node.meta = node.meta return relu_node @register_acc_op_properties(AccOpProperty.pointwise, AccOpProperty.unary) @register_acc_op_mapping(op_and_target=("call_function", torch.nn.functional.gelu)) @register_acc_op_mapping(op_and_target=("call_method", "gelu")) @register_acc_op def gelu(*, input): return torch.nn.functional.gelu(**locals()) @register_acc_op_properties(AccOpProperty.unary) @register_acc_op_mapping(op_and_target=("call_function", torch.cumsum)) @register_acc_op_mapping(op_and_target=("call_method", "cumsum")) @register_acc_op def cumsum(*, input, dim, dtype=None): return torch.cumsum(**locals()) @register_acc_op_properties(AccOpProperty.unary) @register_acc_op_mapping(op_and_target=("call_function", torch.chunk)) @register_acc_op_mapping(op_and_target=("call_method", "chunk")) @register_acc_op def chunk(*, input, chunks, dim=0): return torch.chunk(input, chunks, dim)
6a89e67c4330943ffd882ccd41577f252a47d876
d4abaedd47e5a3ce3e8aa7893cb63faaa4064551
/spoj/bearseg.py
0e1ced7689b4dc52b995ffd978e630c5f46fadb7
[]
no_license
shiv125/Competetive_Programming
fc1a39be10c0588e0222efab8809b966430fe20f
9c949c6d6b5f83a35d6f5f6a169c493f677f4003
refs/heads/master
2020-03-15T19:47:12.944241
2018-05-06T08:18:11
2018-05-06T08:18:11
132,317,356
0
0
null
null
null
null
UTF-8
Python
false
false
424
py
t=input() MAX=10**5+1 lookup=[0]*MAX while t>0: t-=1 n,p=map(int,raw_input().split()) arr=map(int,raw_input().split()) lookup[0]=arr[0] for i in range(1,n): lookup[i]=lookup[i-1]+arr[i] count={} ma=-1 for i in range(n): for j in range(i,n): if i!=0: z=(lookup[j]-lookup[i-1]+p)%p else: z=lookup[j]%p ma=max(ma,z) if z not in count: count[z]=1 else: count[z]+=1 print ma,count[ma]
[ "shivdutt@shivdutt-Lenovo-G50-80" ]
shivdutt@shivdutt-Lenovo-G50-80
e57399c656326fe5aad20cd04948bccb429a51df
274eb3a3c4202c86a40e13d2de7c2d6f2a982fcb
/tests/unit/altimeter/aws/resource/ec2/test_vpc_endpoint_service.py
6823edb92f519c7b51b496fae25c2ff3d1253997
[ "MIT", "Python-2.0" ]
permissive
tableau/altimeter
6199b8827d193946bb0d0d1e29e462fc8749d3e4
eb7d5d18f3d177973c4105c21be9d251250ca8d6
refs/heads/master
2023-08-15T16:21:31.265590
2023-07-04T13:13:32
2023-07-04T13:13:32
212,153,766
75
25
MIT
2023-08-02T02:05:22
2019-10-01T17:10:16
Python
UTF-8
Python
false
false
2,670
py
import unittest from altimeter.aws.resource.ec2.vpc_endpoint_service import VpcEndpointServiceResourceSpec from altimeter.core.resource.resource import Resource from altimeter.core.graph.links import LinkCollection, SimpleLink, TagLink class TestVpcEndpointServiceResourceSpec(unittest.TestCase): maxDiff = None def test_schema_parse(self): resource_arn = "arn:aws:ec2:us-west-2:111122223333:vpc-endpoint-service/com.amazonaws.vpce.us-west-2.vpce-svc-01234abcd5678ef01" aws_resource_dict = { "ServiceType": [{"ServiceType": "Interface"}], "ServiceId": "vpce-svc-01234abcd5678ef01", "ServiceName": "com.amazonaws.vpce.us-west-2.vpce-svc-01234abcd5678ef01", "ServiceState": "Available", "AvailabilityZones": ["us-west-2a", "us-west-2b"], "AcceptanceRequired": True, "ManagesVpcEndpoints": False, "NetworkLoadBalancerArns": [ "arn:aws:elasticloadbalancing:us-west-2:111122223333:loadbalancer/net/splunk-hwf-lb/1a7ff9c18eeaaf9b" ], "BaseEndpointDnsNames": ["vpce-svc-01234abcd5678ef01.us-west-2.vpce.amazonaws.com"], "PrivateDnsNameConfiguration": {}, "Tags": [{"Key": "Name", "Value": "Splunk HEC"}], } link_collection = VpcEndpointServiceResourceSpec.schema.parse( data=aws_resource_dict, context={"account_id": "111122223333", "region": "us-west-2"} ) resource = Resource( resource_id=resource_arn, type=VpcEndpointServiceResourceSpec.type_name, link_collection=link_collection, ) expected_resource = Resource( resource_id="arn:aws:ec2:us-west-2:111122223333:vpc-endpoint-service/com.amazonaws.vpce.us-west-2.vpce-svc-01234abcd5678ef01", type="vpc-endpoint-service", link_collection=LinkCollection( simple_links=( SimpleLink(pred="service_type", obj="Interface"), SimpleLink( pred="service_name", obj="com.amazonaws.vpce.us-west-2.vpce-svc-01234abcd5678ef01", ), SimpleLink(pred="service_state", obj="Available"), SimpleLink(pred="acceptance_required", obj=True), SimpleLink(pred="availability_zones", obj="us-west-2a"), SimpleLink(pred="availability_zones", obj="us-west-2b"), ), tag_links=(TagLink(pred="Name", obj="Splunk HEC"),), ), ) self.assertEqual(resource, expected_resource)
9e73235485cb9b7abfd44cdb5134347f883ec5e0
c31d185fb65da94dc15e16869ef1fbaf0dabc736
/base/views.py
0ec041e02c0386a93c8196390322f023f393e73e
[]
no_license
Joacoco/nosotrosusamos
2777907b3df3b4022770f9ccef554d4c2b2c53c8
593d087c303f72136f6c425e908631357298c1eb
refs/heads/master
2020-12-26T05:01:28.674841
2013-12-02T13:37:49
2013-12-02T13:37:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
353
py
# -*- coding: utf-8 -*- """ This file contains some generic purpouse views """ from django.shortcuts import render_to_response from django.template import RequestContext def index(request): """ view that renders a default home""" return render_to_response('index.jade', context_instance=RequestContext(request))
d0e7793917bd8df51c7afbc5a6fd7696ae7ba824
17a3418a6143ea2d953cf6509aeca7cc6e074686
/Final-Project/backend/venv/lib/python3.5/site-packages/spotdl/spotdl.py
de67a73c1760448f2bb4d525c6580a9f01e7cf5c
[]
no_license
francolmenar-USYD/Internet-Software-Platforms
addb69a5582a63877e5f3408d64485a7ca942721
9e82ab6e7d0f8d4b3d55789cf5cfcd8e524a85df
refs/heads/master
2022-04-22T02:07:25.419086
2020-04-22T10:02:43
2020-04-22T10:02:43
256,714,630
0
0
null
null
null
null
UTF-8
Python
false
false
8,396
py
#!/usr/bin/env python3 # -*- coding: UTF-8 -*- from spotdl import __version__ from spotdl import const from spotdl import handle from spotdl import metadata from spotdl import convert from spotdl import internals from spotdl import spotify_tools from spotdl import youtube_tools from slugify import slugify import spotipy import urllib.request import os import sys import time import platform import pprint def check_exists(music_file, raw_song, meta_tags): """ Check if the input song already exists in the given folder. """ log.debug('Cleaning any temp files and checking ' 'if "{}" already exists'.format(music_file)) songs = os.listdir(const.args.folder) for song in songs: if song.endswith('.temp'): os.remove(os.path.join(const.args.folder, song)) continue # check if a song with the same name is already present in the given folder if os.path.splitext(song)[0] == music_file: log.debug('Found an already existing song: "{}"'.format(song)) if internals.is_spotify(raw_song): # check if the already downloaded song has correct metadata # if not, remove it and download again without prompt already_tagged = metadata.compare(os.path.join(const.args.folder, song), meta_tags) log.debug('Checking if it is already tagged correctly? {}', already_tagged) if not already_tagged: os.remove(os.path.join(const.args.folder, song)) return False log.warning('"{}" already exists'.format(song)) if const.args.overwrite == 'prompt': log.info('"{}" has already been downloaded. ' 'Re-download? (y/N): '.format(song)) prompt = input('> ') if prompt.lower() == 'y': os.remove(os.path.join(const.args.folder, song)) return False else: return True elif const.args.overwrite == 'force': os.remove(os.path.join(const.args.folder, song)) log.info('Overwriting "{}"'.format(song)) return False elif const.args.overwrite == 'skip': log.info('Skipping "{}"'.format(song)) return True return False def download_list(text_file): """ Download all songs from the list. """ with open(text_file, 'r') as listed: # read tracks into a list and remove any duplicates lines = listed.read().splitlines() lines = list(set(lines)) # ignore blank lines in text_file (if any) try: lines.remove('') except ValueError: pass log.info(u'Preparing to download {} songs'.format(len(lines))) downloaded_songs = [] for number, raw_song in enumerate(lines, 1): print('') try: download_single(raw_song, number=number) # token expires after 1 hour except spotipy.client.SpotifyException: # refresh token when it expires log.debug('Token expired, generating new one and authorizing') new_token = spotify_tools.generate_token() spotify_tools.spotify = spotipy.Spotify(auth=new_token) download_single(raw_song, number=number) # detect network problems except (urllib.request.URLError, TypeError, IOError): lines.append(raw_song) # remove the downloaded song from file internals.trim_song(text_file) # and append it at the end of file with open(text_file, 'a') as myfile: myfile.write(raw_song + '\n') log.warning('Failed to download song. Will retry after other songs\n') # wait 0.5 sec to avoid infinite looping time.sleep(0.5) continue downloaded_songs.append(raw_song) log.debug('Removing downloaded song from text file') internals.trim_song(text_file) return downloaded_songs def download_single(raw_song, number=None): """ Logic behind downloading a song. """ if internals.is_youtube(raw_song): log.debug('Input song is a YouTube URL') content = youtube_tools.go_pafy(raw_song, meta_tags=None) raw_song = slugify(content.title).replace('-', ' ') meta_tags = spotify_tools.generate_metadata(raw_song) else: meta_tags = spotify_tools.generate_metadata(raw_song) content = youtube_tools.go_pafy(raw_song, meta_tags) if content is None: log.debug('Found no matching video') return if const.args.download_only_metadata and meta_tags is None: log.info('Found no metadata. Skipping the download') return # "[number]. [artist] - [song]" if downloading from list # otherwise "[artist] - [song]" youtube_title = youtube_tools.get_youtube_title(content, number) log.info('{} ({})'.format(youtube_title, content.watchv_url)) # generate file name of the song to download songname = content.title if meta_tags is not None: refined_songname = internals.format_string(const.args.file_format, meta_tags, slugification=True) log.debug('Refining songname from "{0}" to "{1}"'.format(songname, refined_songname)) if not refined_songname == ' - ': songname = refined_songname else: log.warning('Could not find metadata') songname = internals.sanitize_title(songname) if const.args.dry_run: return if not check_exists(songname, raw_song, meta_tags): # deal with file formats containing slashes to non-existent directories songpath = os.path.join(const.args.folder, os.path.dirname(songname)) os.makedirs(songpath, exist_ok=True) input_song = songname + const.args.input_ext output_song = songname + const.args.output_ext if youtube_tools.download_song(input_song, content): print('') try: convert.song(input_song, output_song, const.args.folder, avconv=const.args.avconv, trim_silence=const.args.trim_silence) except FileNotFoundError: encoder = 'avconv' if const.args.avconv else 'ffmpeg' log.warning('Could not find {0}, skipping conversion'.format(encoder)) const.args.output_ext = const.args.input_ext output_song = songname + const.args.output_ext if not const.args.input_ext == const.args.output_ext: os.remove(os.path.join(const.args.folder, input_song)) if not const.args.no_metadata and meta_tags is not None: metadata.embed(os.path.join(const.args.folder, output_song), meta_tags) return True def main(): const.args = handle.get_arguments() if const.args.version: print('spotdl {version}'.format(version=__version__)) sys.exit() internals.filter_path(const.args.folder) youtube_tools.set_api_key() const.log = const.logzero.setup_logger(formatter=const._formatter, level=const.args.log_level) global log log = const.log log.debug('Python version: {}'.format(sys.version)) log.debug('Platform: {}'.format(platform.platform())) log.debug(pprint.pformat(const.args.__dict__)) try: if const.args.song: download_single(raw_song=const.args.song) elif const.args.list: download_list(text_file=const.args.list) elif const.args.playlist: spotify_tools.write_playlist(playlist_url=const.args.playlist) elif const.args.album: spotify_tools.write_album(album_url=const.args.album) elif const.args.username: spotify_tools.write_user_playlist(username=const.args.username) # actually we don't necessarily need this, but yeah... # explicit is better than implicit! sys.exit(0) except KeyboardInterrupt as e: log.exception(e) sys.exit(3) if __name__ == '__main__': main()
a6084bfe94a88078593f1b6359db3a036eae22de
c6759b857e55991fea3ef0b465dbcee53fa38714
/tools/nntool/nntool/importer/tflite2/tflite_schema_head/PackOptions.py
80d5354a3e6d6c474f93bce81eb2b362de5ab65e
[ "AGPL-3.0-or-later", "AGPL-3.0-only", "GPL-1.0-or-later", "LicenseRef-scancode-other-copyleft", "Apache-2.0" ]
permissive
GreenWaves-Technologies/gap_sdk
1b343bba97b7a5ce62a24162bd72eef5cc67e269
3fea306d52ee33f923f2423c5a75d9eb1c07e904
refs/heads/master
2023-09-01T14:38:34.270427
2023-08-10T09:04:44
2023-08-10T09:04:44
133,324,605
145
96
Apache-2.0
2023-08-27T19:03:52
2018-05-14T07:50:29
C
UTF-8
Python
false
false
2,002
py
# automatically generated by the FlatBuffers compiler, do not modify # namespace: tflite_schema_head import flatbuffers from flatbuffers.compat import import_numpy np = import_numpy() class PackOptions(object): __slots__ = ['_tab'] @classmethod def GetRootAs(cls, buf, offset=0): n = flatbuffers.encode.Get(flatbuffers.packer.uoffset, buf, offset) x = PackOptions() x.Init(buf, n + offset) return x @classmethod def GetRootAsPackOptions(cls, buf, offset=0): """This method is deprecated. Please switch to GetRootAs.""" return cls.GetRootAs(buf, offset) @classmethod def PackOptionsBufferHasIdentifier(cls, buf, offset, size_prefixed=False): return flatbuffers.util.BufferHasIdentifier(buf, offset, b"\x54\x46\x4C\x33", size_prefixed=size_prefixed) # PackOptions def Init(self, buf, pos): self._tab = flatbuffers.table.Table(buf, pos) # PackOptions def ValuesCount(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(4)) if o != 0: return self._tab.Get(flatbuffers.number_types.Int32Flags, o + self._tab.Pos) return 0 # PackOptions def Axis(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(6)) if o != 0: return self._tab.Get(flatbuffers.number_types.Int32Flags, o + self._tab.Pos) return 0 def PackOptionsStart(builder): builder.StartObject(2) def Start(builder): return PackOptionsStart(builder) def PackOptionsAddValuesCount(builder, valuesCount): builder.PrependInt32Slot(0, valuesCount, 0) def AddValuesCount(builder, valuesCount): return PackOptionsAddValuesCount(builder, valuesCount) def PackOptionsAddAxis(builder, axis): builder.PrependInt32Slot(1, axis, 0) def AddAxis(builder, axis): return PackOptionsAddAxis(builder, axis) def PackOptionsEnd(builder): return builder.EndObject() def End(builder): return PackOptionsEnd(builder)
6b2a348908d35fad77fed82f1775983dd9ffd7cf
cc096d321ab5c6abf54fdcea67f10e77cd02dfde
/flex-backend/pypy/translator/jvm/methods.py
582a5f04b0c2e370370a0d62c2866cc366e73d0a
[ "LicenseRef-scancode-unknown-license-reference", "MIT" ]
permissive
limweb/flex-pypy
310bd8fcd6a9ddc01c0b14a92f0298d0ae3aabd2
05aeeda183babdac80f9c10fca41e3fb1a272ccb
refs/heads/master
2021-01-19T22:10:56.654997
2008-03-19T23:51:59
2008-03-19T23:51:59
32,463,309
0
0
null
null
null
null
UTF-8
Python
false
false
6,487
py
""" Special methods which we hand-generate, such as toString(), equals(), and hash(). These are generally added to methods listing of node.Class, and the only requirement is that they must have a render(self, gen) method. """ import pypy.translator.jvm.generator as jvmgen import pypy.translator.jvm.typesystem as jvmtype from pypy.rpython.ootypesystem import ootype, rclass class BaseDumpMethod(object): def __init__(self, db, OOCLASS, clsobj): self.db = db self.OOCLASS = OOCLASS self.clsobj = clsobj self.name = "toString" self.jargtypes = [clsobj] self.jrettype = jvmtype.jString def _print_field_value(self, fieldnm, FIELDOOTY): self.gen.emit(jvmgen.DUP) self.gen.load_this_ptr() fieldobj = self.clsobj.lookup_field(fieldnm) fieldobj.load(self.gen) dumpmethod = self.db.toString_method_for_ootype(FIELDOOTY) self.gen.emit(dumpmethod) self.gen.emit(jvmgen.PYPYAPPEND) def _print(self, str): self.gen.emit(jvmgen.DUP) self.gen.load_string(str) self.gen.emit(jvmgen.PYPYAPPEND) def render(self, gen): self.gen = gen gen.begin_function( self.name, (), self.jargtypes, self.jrettype, static=False) gen.new_with_jtype(jvmtype.jStringBuilder) self._render_guts(gen) gen.emit(jvmgen.OBJTOSTRING) gen.emit(jvmgen.RETURN.for_type(jvmtype.jString)) gen.end_function() self.gen = None class InstanceDumpMethod(BaseDumpMethod): def _render_guts(self, gen): clsobj = self.clsobj genprint = self._print # Start the dump genprint("InstanceWrapper(") genprint("'" + self.OOCLASS._name + "', ") genprint("{") for fieldnm, (FIELDOOTY, fielddef) in self.OOCLASS._fields.iteritems(): if FIELDOOTY is ootype.Void: continue genprint('"'+fieldnm+'":') print "fieldnm=%r fieldty=%r" % (fieldnm, FIELDOOTY) # Print the value of the field: self._print_field_value(fieldnm, FIELDOOTY) # Dump close genprint("})") class RecordDumpMethod(BaseDumpMethod): def _render_guts(self, gen): clsobj = self.clsobj genprint = self._print # We only render records that represent tuples: # In that case, the field names look like item0, item1, etc # Otherwise, we just do nothing... this is because we # never return records that do not represent tuples from # a testing function for f_name in self.OOCLASS._fields: if not f_name.startswith('item'): return # Start the dump genprint("StructTuple((") numfields = len(self.OOCLASS._fields) for i in range(numfields): f_name = 'item%d' % i FIELD_TYPE, f_default = self.OOCLASS._fields[f_name] if FIELD_TYPE is ootype.Void: continue # Print the value of the field: self._print_field_value(f_name, FIELD_TYPE) genprint(',') # Decrement indent and dump close genprint("))") class ConstantStringDumpMethod(BaseDumpMethod): """ Just prints out a string """ def __init__(self, clsobj, str): BaseDumpMethod.__init__(self, None, None, clsobj) self.constant_string = str def _render_guts(self, gen): genprint = self._print genprint("'" + self.constant_string + "'") class DeepEqualsMethod(object): def __init__(self, db, OOCLASS, clsobj): self.db = db self.OOCLASS = OOCLASS self.clsobj = clsobj self.name = "equals" self.jargtypes = [clsobj, jvmtype.jObject] self.jrettype = jvmtype.jBool def render(self, gen): self.gen = gen gen.begin_function( self.name, (), self.jargtypes, self.jrettype, static=False) # Label to branch to should the items prove to be unequal unequal_lbl = gen.unique_label('unequal') gen.add_comment('check that the argument is of the correct type') gen.load_jvm_var(self.clsobj, 1) gen.instanceof(self.OOCLASS) gen.goto_if_false(unequal_lbl) gen.add_comment('Cast it to the right type:') gen.load_jvm_var(self.clsobj, 1) gen.downcast(self.OOCLASS) gen.store_jvm_var(self.clsobj, 1) # If so, compare field by field for fieldnm, (FIELDOOTY, fielddef) in self.OOCLASS._fields.iteritems(): if FIELDOOTY is ootype.Void: continue fieldobj = self.clsobj.lookup_field(fieldnm) gen.add_comment('Compare field %s of type %s' % (fieldnm, FIELDOOTY)) # Load the field from both this and the argument: gen.load_jvm_var(self.clsobj, 0) gen.emit(fieldobj) gen.load_jvm_var(self.clsobj, 1) gen.emit(fieldobj) # And compare them: gen.compare_values(FIELDOOTY, unequal_lbl) # Return true or false as appropriate gen.push_primitive_constant(ootype.Bool, True) gen.return_val(jvmtype.jBool) gen.mark(unequal_lbl) gen.push_primitive_constant(ootype.Bool, False) gen.return_val(jvmtype.jBool) gen.end_function() class DeepHashMethod(object): def __init__(self, db, OOCLASS, clsobj): self.db = db self.OOCLASS = OOCLASS self.clsobj = clsobj self.name = "hashCode" self.jargtypes = [clsobj] self.jrettype = jvmtype.jInt def render(self, gen): self.gen = gen gen.begin_function( self.name, (), self.jargtypes, self.jrettype, static=False) # Initial hash: 0 gen.push_primitive_constant(ootype.Signed, 0) # Get hash of each field for fieldnm, (FIELDOOTY, fielddef) in self.OOCLASS._fields.iteritems(): if FIELDOOTY is ootype.Void: continue fieldobj = self.clsobj.lookup_field(fieldnm) gen.add_comment('Hash field %s of type %s' % (fieldnm, FIELDOOTY)) # Load the field and hash it: gen.load_jvm_var(self.clsobj, 0) gen.emit(fieldobj) gen.hash_value(FIELDOOTY) # XOR that with the main hash gen.emit(jvmgen.IXOR) # Return the final hash gen.return_val(jvmtype.jInt) gen.end_function()
[ "lucio.torre@dbd81ab4-9648-0410-a770-9b81666e587d" ]
lucio.torre@dbd81ab4-9648-0410-a770-9b81666e587d
72caef93226a4cb05201677c911b3789efdba9fd
d400c32010a414a2f536c5c0a3490c8b8e2e9d5a
/modules/m16e/ods_doc.py
75ba3b1fea0134d2c04d2e55576de59bd5e2f548
[ "LicenseRef-scancode-public-domain" ]
permissive
CarlosCorreiaM16e/chirico_cms
3e521eae8f38b732497a2b808950c6a534e69d4f
73897cbddb230630e13f22333b9094d0a047acb3
refs/heads/master
2020-12-30T07:59:04.100330
2020-05-02T12:26:58
2020-05-02T12:26:58
238,917,321
2
0
null
null
null
null
UTF-8
Python
false
false
1,946
py
# -*- coding: utf-8 -*- import sys import traceback from m16e.kommon import KDT_CHAR, KDT_INT, KDT_DEC, KDT_PERCENT from m16e.odslib import odslib #---------------------------------------------------------------------- class OdsDoc( object ): #---------------------------------------------------------------------- def __init__(self): self.doc = odslib.ODS() #---------------------------------------------------------------------- def set_cell( self, row, col, value, val_type=KDT_CHAR, row_span=1, col_span=1, font_size=None, font_bold=False, h_align=None, v_align=None ): # term.printDebug( 'row: %d, col: %d' % (row, col) ) for i in range( 6 ): try: cell = self.doc.content.getCell( col, row ) if val_type in (KDT_INT, KDT_DEC, KDT_PERCENT): cell.floatValue( value ) else: cell.stringValue( str( value ) ) if font_size: cell.setFontSize( "%dpt" % font_size ) if font_bold: cell.setBold( True ) if v_align: cell.setAlignVertical( v_align ) if h_align: cell.setAlignHorizontal( h_align ) if row_span > 1 or col_span > 1: self.doc.content.mergeCells( col, row, col_span, row_span ) # if completed successfuly break except: t, v, tb = sys.exc_info() traceback.print_exception( t, v, tb ) #---------------------------------------------------------------------- def save( self, filename ): self.doc.save( filename )
5b36220be41518a877ad62d96ad26ec30da2a3a7
8ecf4930f9aa90c35e5199d117068b64a8d779dd
/TopQuarkAnalysis/SingleTop/test/W3Jets_part_1_cfg.py
f8bb10ce78a88541601740748c24f63154e9a910
[]
no_license
fabozzi/ST_44
178bd0829b1aff9d299528ba8e85dc7b7e8dd216
0becb8866a7c758d515e70ba0b90c99f6556fef3
refs/heads/master
2021-01-20T23:27:07.398661
2014-04-14T15:12:32
2014-04-14T15:12:32
18,765,529
0
0
null
null
null
null
UTF-8
Python
false
false
5,779
py
import FWCore.ParameterSet.Config as cms process = cms.Process("SingleTopSystematics") process.load("FWCore.MessageLogger.MessageLogger_cfi") process.options = cms.untracked.PSet( wantSummary = cms.untracked.bool(True), FailPath = cms.untracked.vstring('ProductNotFound','Type Mismatch') ) process.load("Configuration.StandardSequences.FrontierConditions_GlobalTag_cff") process.load("Configuration.StandardSequences.MagneticField_AutoFromDBCurrent_cff") ### real data process.GlobalTag.globaltag = cms.string("START44_V13::All") #Load B-Tag #MC measurements from 36X #process.load ("RecoBTag.PerformanceDB.PoolBTagPerformanceDBMC36X") #process.load ("RecoBTag.PerformanceDB.BTagPerformanceDBMC36X") ##Measurements from Fall10 #process.load ("RecoBTag.PerformanceDB.BTagPerformanceDB1011") #process.load ("RecoBTag.PerformanceDB.PoolBTagPerformanceDB1011") #Spring11 process.load ("RecoBTag.PerformanceDB.PoolBTagPerformanceDB1107") process.load ("RecoBTag.PerformanceDB.BTagPerformanceDB1107") process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(-1) ) # Process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(20000)) process.source = cms.Source ("PoolSource", fileNames = cms.untracked.vstring ( 'file:/tmp/mmerola/W3JetsMerged.root', #'rfio:/castor/cern.ch/user/m/mmerola/SingleTop_2012/MergedJune/W3JetsMerged.root', ), duplicateCheckMode = cms.untracked.string('noDuplicateCheck'), #eventsToProcess = cms.untracked.VEventRange('1:19517967-1:19517969'), ) #from W3Jets import * #process.source.fileNames = W3Jets_ntuple #process.source.fileNames = cms.untracked.vstring("file:/tmp/mmerola/W3JetsMerged.root") #PileUpSync #Output #process.TFileService = cms.Service("TFileService", fileName = cms.string("/castor/cern.ch/user/m/mmerola/SingleTop_2012/TreesJune/W3Jets_part_1.root")) process.TFileService = cms.Service("TFileService", fileName = cms.string("/tmp/mmerola/W3Jets_part_1.root")) #process.TFileService = cms.Service("TFileService", fileName = cms.string("testNoPU.root")) #process.load("SingleTopAnalyzers_cfi") process.load("SingleTopRootPlizer_cfi") process.load("SingleTopFilters_cfi") #from SingleTopPSets_cfi import * #from SingleTopPSetsFall11_cfi import * from SingleTopPSetsFall_cfi import * process.TreesEle.dataPUFile = cms.untracked.string("pileUpDistr.root") process.TreesMu.dataPUFile = cms.untracked.string("pileUpDistr.root") #process.TreesEle.doTurnOn = cms.untracked.bool(False) process.TreesEle.channelInfo = W3JetsEle process.TreesMu.channelInfo = W3JetsMu #process.PlotsEle.channelInfo = W3JetsEle #process.PlotsMu.channelInfo = W3JetsMu #process.TreesMu.systematics = cms.untracked.vstring(); #doPU = cms.untracked.bool(False) #process.WeightProducer.doPU = cms.untracked.bool(False) #process.TreesMu.doQCD = cms.untracked.bool(False) #process.TreesEle.doQCD = cms.untracked.bool(False) #process.TreesMu.doResol = cms.untracked.bool(False) #process.TreesEle.doResol = cms.untracked.bool(False) #process.TreesMu.doPU = cms.untracked.bool(False) #process.TreesEle.doPU = cms.untracked.bool(False) channel_instruction = "allmc" #SWITCH_INSTRUCTION #channel_instruction = "allmc" #SWITCH_INSTRUCTION MC_instruction = True #TRIGGER_INSTRUCTION process.HLTFilterMu.isMC = MC_instruction process.HLTFilterEle.isMC = MC_instruction process.HLTFilterMuOrEle.isMC = MC_instruction process.HLTFilterMuOrEleMC.isMC = MC_instruction #process.PUWeightsPath = cms.Path( # process.WeightProducer #) if channel_instruction == "allmc": # process.TreesMu.doResol = cms.untracked.bool(True) # process.TreesEle.doResol = cms.untracked.bool(True) # process.TreesEle.doTurnOn = cms.untracked.bool(True) process.PathSysMu = cms.Path( process.HLTFilterMuMC * process.TreesMu ) process.PathSysEle = cms.Path( process.HLTFilterEleMC * process.TreesEle ) if channel_instruction == "all": process.TreesEle.doTurnOn = cms.untracked.bool(False) process.TreesEle.doPU = cms.untracked.bool(False) process.TreesMu.doPU = cms.untracked.bool(False) process.PathSys = cms.Path( # process.PlotsMu + # process.PlotsEle + process.HLTFilterMuOrEle * process.TreesMu + process.TreesEle ) if channel_instruction == "mu": process.TreesMu.doPU = cms.untracked.bool(False) process.TreesMu.doResol = cms.untracked.bool(False) process.PathSysMu = cms.Path( # process.PlotsMu + # process.PlotsEle + # process.HLTFilterMu * process.HLTFilterMuData * process.TreesMu ) if channel_instruction == "ele": process.TreesEle.doTurnOn = cms.untracked.bool(False) process.TreesEle.doPU = cms.untracked.bool(False) process.TreesEle.doResol = cms.untracked.bool(False) process.PathSysMu = cms.Path( # process.PlotsMu + # process.PlotsEle + process.HLTFilterEle * process.TreesEle ) if channel_instruction == "muqcd": process.TreesMu.doPU = cms.untracked.bool(False) process.TreesMu.doResol = cms.untracked.bool(False) process.PathSysMu = cms.Path( # process.PlotsMu + # process.PlotsEle + process.HLTFilterMuQCD * process.TreesMu ) if channel_instruction == "eleqcd": process.TreesEle.doTurnOn = cms.untracked.bool(False) process.TreesEle.doPU = cms.untracked.bool(False) process.TreesEle.doResol = cms.untracked.bool(False) process.TreesEle.isControlSample = cms.untracked.bool(True) process.PathSysEle = cms.Path( # process.PlotsMu + # process.PlotsEle + process.HLTFilterEleQCD * process.TreesEle ) process.source.fileNames = cms.untracked.vstring('file:/tmp/mmerola/W3Jets_part_1Merged.root',)
e703967804eb0f8cb2843481d277c85bc8c71b2e
a9fc496e0724866093dbb9cba70a8fdce12b67a9
/scripts/field/cygnus_Summon.py
3881deea825b33318e178ca09b9972f8f7486987
[ "MIT" ]
permissive
ryantpayton/Swordie
b2cd6b605f7f08f725f5e35d23ba3c22ef2ae7c0
ca6f42dd43f63b1d2e6bb5cdc8fc051c277f326e
refs/heads/master
2022-12-01T09:46:47.138072
2020-03-24T10:32:20
2020-03-24T10:32:20
253,997,319
2
0
MIT
2022-11-24T08:17:54
2020-04-08T05:50:22
Java
UTF-8
Python
false
false
153
py
if sm.getFieldID() == 271040100: sm.spawnMob(8850111, -147, 115, False) elif sm.getFieldID() == 211070102: sm.spawnMob(8850111, -147, 115, False)
840e453e531447a4fa54106cccc088175874e5c4
ed06e8278f34e1b14b3f228684fbc37b8b66d1bd
/tfmiss/keras/layers/wordvec_test.py
30b0a63f767a033c3f468276202bbaea5781285e
[ "MIT" ]
permissive
shkarupa-alex/tfmiss
7fa798e9e3b2e7142dcf0062eb188ae8e2bb69fa
a8ce1bdc57fc72381bdfed96098be3edef5fa535
refs/heads/master
2023-08-17T04:11:26.764935
2023-08-15T10:00:28
2023-08-15T10:00:28
190,878,990
1
2
MIT
2023-04-18T06:57:51
2019-06-08T11:17:38
Python
UTF-8
Python
false
false
39,892
py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from collections import Counter from keras.saving import register_keras_serializable from keras.src.testing_infra import test_combinations, test_utils from tfmiss.keras.layers.wordvec import WordEmbedding, NgramEmbedding, BpeEmbedding, CnnEmbedding, Highway @test_combinations.run_all_keras_modes class WordEmbeddingTest(test_combinations.TestCase): def test_reserved_words(self): layer = WordEmbedding() self.assertListEqual(layer._reserved_words, [layer.UNK_MARK]) layer = WordEmbedding(reserved_words=['~TesT~']) self.assertListEqual(layer._reserved_words, [layer.UNK_MARK, '~TesT~']) def test_merged_vocab(self): vocab = ['the', 'fox', 'jumps', '\u1E69'] layer = WordEmbedding(vocab) self.assertListEqual(layer._vocabulary, [layer.UNK_MARK] + vocab) layer = WordEmbedding(vocab, reserved_words=['~TesT~']) self.assertListEqual(layer._vocabulary, [layer.UNK_MARK, '~TesT~'] + vocab) layer = WordEmbedding(vocab + ['~TesT~'], reserved_words=['~TesT~']) self.assertListEqual(layer._vocabulary, [layer.UNK_MARK, '~TesT~'] + vocab) def test_build_vocab(self): counts = Counter({'the': 4, 'fox': 2, 'jumps': 2, '\u1E9B\u0323': 2, 'dog': 1}) expected = [('the', 4), ('fox', 2), ('jumps', 2), ('\u1E69', 2), ('dog', 1)] layer = WordEmbedding() self.assertListEqual(layer.vocab(counts).most_common(), expected) def test_adapt_1d(self): data = ['[UNK]', 'the', 'fox', 'jumps', 'over', 'the', 'lazy', 'dog'] layer = WordEmbedding() result = layer.adapt(data) result = self.evaluate(result) result = np.char.decode(result.astype('S'), 'utf-8').tolist() self.assertListEqual(result, data) def test_adapt_2d(self): data = [['[UNK]', 'the', 'fox', 'jumps'], ['over', 'the', 'lazy', 'dog']] layer = WordEmbedding() result = layer.adapt(data) result = self.evaluate(result) result = np.char.decode(result.astype('S'), 'utf-8').tolist() self.assertListEqual(result, data) def test_adapt_ragged(self): data = [[[b'[UNK]', b'the', b'fox']], [[b'jumps', b'over'], [b'the', b'lazy', b'dog']]] layer = WordEmbedding() result = layer.adapt(tf.ragged.constant(data)) result = self.evaluate(result).to_list() self.assertListEqual(result, data) def test_adapt_prep_odd(self): data = ['[UNK]', '\u0041\u030A', 'Fox', 'jump99', 'abcdefghik', 'abcdefghikl'] expected = ['[UNK]', '\u00E5', 'fox', 'jump00', 'abc\uFFFDik', 'abc\uFFFDkl'] layer = WordEmbedding(normalize_unicode='NFC', lower_case=True, zero_digits=True, max_len=6) result = layer.adapt(data) result = self.evaluate(result) result = np.char.decode(result.astype('S'), 'utf-8').tolist() self.assertListEqual(expected, result) def test_adapt_prep_even(self): data = ['[UNK]', '\u0041\u030A', 'Fox', 'jum99', 'abcdefghik', 'abcdefghikl'] expected = ['[UNK]', '\u00E5', 'fox', 'jum00', 'ab\uFFFDik', 'ab\uFFFDkl'] layer = WordEmbedding(normalize_unicode='NFC', lower_case=True, zero_digits=True, max_len=5) result = layer.adapt(data) result = self.evaluate(result) result = np.char.decode(result.astype('S'), 'utf-8').tolist() self.assertListEqual(expected, result) def test_preprocess(self): data = ['[UNK]', 'the', 'fox', 'jumps', 'over', 'the', 'lazy', 'dog'] vocab = ['the', 'fox', 'jumps'] layer = WordEmbedding(vocab) result = layer.preprocess(data) result = self.evaluate(result).tolist() self.assertListEqual(result, [0, 1, 2, 3, 0, 1, 0, 0]) def test_layer(self): data = np.array(['[UNK]', 'the', 'fox', 'jumps', 'over', 'the', 'lazy', 'dog']) vocab = ['the', 'fox', 'jumps'] inputs = WordEmbedding(vocab).preprocess(data) inputs = self.evaluate(inputs) test_utils.layer_test( WordEmbedding, kwargs={'vocabulary': vocab, 'output_dim': 12, 'normalize_unicode': 'NFKC', 'lower_case': False, 'zero_digits': False, 'max_len': None, 'reserved_words': None, 'embed_type': 'dense_auto', 'adapt_cutoff': None, 'adapt_factor': 4}, input_data=inputs, expected_output_dtype='float32', expected_output_shape=[None, 12] ) test_utils.layer_test( WordEmbedding, kwargs={'vocabulary': vocab, 'output_dim': 12, 'normalize_unicode': None, 'lower_case': False, 'zero_digits': False, 'max_len': None, 'reserved_words': None, 'embed_type': 'dense_auto', 'adapt_cutoff': None, 'adapt_factor': 4}, input_data=inputs, expected_output_dtype='float32', expected_output_shape=[None, 12] ) test_utils.layer_test( WordEmbedding, kwargs={'vocabulary': vocab, 'output_dim': 12, 'normalize_unicode': 'NFKC', 'lower_case': True, 'zero_digits': False, 'max_len': None, 'reserved_words': None, 'embed_type': 'dense_auto', 'adapt_cutoff': None, 'adapt_factor': 4}, input_data=inputs, expected_output_dtype='float32', expected_output_shape=[None, 12] ) test_utils.layer_test( WordEmbedding, kwargs={'vocabulary': vocab, 'output_dim': 12, 'normalize_unicode': 'NFKC', 'lower_case': False, 'zero_digits': True, 'max_len': 4, 'reserved_words': None, 'embed_type': 'dense_auto', 'adapt_cutoff': None, 'adapt_factor': 4}, input_data=inputs, expected_output_dtype='float32', expected_output_shape=[None, 12] ) test_utils.layer_test( WordEmbedding, kwargs={'vocabulary': vocab, 'output_dim': 12, 'normalize_unicode': 'NFKC', 'lower_case': False, 'zero_digits': False, 'max_len': None, 'reserved_words': None, 'embed_type': 'dense_auto', 'adapt_cutoff': None, 'adapt_factor': 4}, input_data=inputs, expected_output_dtype='float32', expected_output_shape=[None, 12] ) test_utils.layer_test( WordEmbedding, kwargs={'vocabulary': ['[UNK]'] + vocab, 'output_dim': 12, 'normalize_unicode': 'NFKC', 'lower_case': False, 'zero_digits': False, 'max_len': None, 'reserved_words': None, 'embed_type': 'dense_auto', 'adapt_cutoff': None, 'adapt_factor': 4}, input_data=inputs, expected_output_dtype='float32', expected_output_shape=[None, 12] ) test_utils.layer_test( WordEmbedding, kwargs={'vocabulary': vocab + ['[UNK]'], 'output_dim': 12, 'normalize_unicode': 'NFKC', 'lower_case': False, 'zero_digits': False, 'max_len': None, 'reserved_words': None, 'embed_type': 'dense_auto', 'adapt_cutoff': None, 'adapt_factor': 4}, input_data=inputs, expected_output_dtype='float32', expected_output_shape=[None, 12] ) test_utils.layer_test( WordEmbedding, kwargs={'vocabulary': vocab, 'output_dim': 12, 'normalize_unicode': 'NFKC', 'lower_case': False, 'zero_digits': False, 'max_len': None, 'reserved_words': ['[UNK]', '~TesT~'], 'embed_type': 'dense_auto', 'adapt_cutoff': None, 'adapt_factor': 4}, input_data=inputs, expected_output_dtype='float32', expected_output_shape=[None, 12] ) test_utils.layer_test( WordEmbedding, kwargs={'vocabulary': vocab, 'output_dim': 12, 'normalize_unicode': 'NFKC', 'lower_case': False, 'zero_digits': False, 'max_len': None, 'reserved_words': None, 'embed_type': 'dense_cpu', 'adapt_cutoff': None, 'adapt_factor': 4}, input_data=inputs, expected_output_dtype='float32', expected_output_shape=[None, 12] ) test_utils.layer_test( WordEmbedding, kwargs={'vocabulary': vocab, 'output_dim': 12, 'normalize_unicode': 'NFKC', 'lower_case': False, 'zero_digits': False, 'max_len': None, 'reserved_words': None, 'embed_type': 'adapt', 'adapt_cutoff': [2], 'adapt_factor': 4}, input_data=inputs, expected_output_dtype='float32', expected_output_shape=[None, 12] ) test_utils.layer_test( WordEmbedding, kwargs={'vocabulary': vocab, 'output_dim': 12, 'normalize_unicode': 'NFKC', 'lower_case': False, 'zero_digits': False, 'max_len': None, 'reserved_words': None, 'embed_type': 'dense_auto', 'adapt_cutoff': None, 'adapt_factor': 4, 'with_prep': True}, input_data=np.array(data), expected_output_dtype='float32', expected_output_shape=[None, 12] ) def test_layer_2d(self): data = [['[UNK]', 'the', 'fox', 'jumps'], ['over', 'the', 'lazy', 'dog']] vocab = ['the', 'fox', 'jumps'] inputs = WordEmbedding(vocab).preprocess(data) inputs = self.evaluate(inputs) test_utils.layer_test( WordEmbedding, kwargs={'vocabulary': vocab, 'output_dim': 12, 'normalize_unicode': 'NFKC', 'lower_case': False, 'zero_digits': False, 'max_len': None, 'reserved_words': None, 'embed_type': 'dense_auto', 'adapt_cutoff': None, 'adapt_factor': 4}, input_data=inputs, expected_output_dtype='float32', expected_output_shape=[None, 4, 12] ) def test_layer_ragged(self): data = tf.ragged.constant([[['[UNK]', 'the', 'fox']], [['jumps', 'over'], ['the', 'lazy', 'dog']]]) vocab = ['the', 'fox', 'jumps'] outputs = WordEmbedding(vocab, 5, with_prep=True)(data) outputs = self.evaluate(outputs).to_list() self.assertLen(outputs, 2) self.assertLen(outputs[0], 1) self.assertLen(outputs[0][0], 3) self.assertLen(outputs[0][0][0], 5) self.assertLen(outputs[1], 2) self.assertLen(outputs[1][1], 3) self.assertLen(outputs[1][1][2], 5) inputs = WordEmbedding(vocab).preprocess(data) outputs = WordEmbedding(vocab, 5)(inputs) outputs = self.evaluate(outputs).to_list() self.assertLen(outputs, 2) self.assertLen(outputs[0], 1) self.assertLen(outputs[0][0], 3) self.assertLen(outputs[0][0][0], 5) self.assertLen(outputs[1], 2) self.assertLen(outputs[1][1], 3) self.assertLen(outputs[1][1][2], 5) @register_keras_serializable(package='Miss') class NgramEmbeddingWrap(NgramEmbedding): def call(self, inputs, **kwargs): dense_shape = tf.unstack(tf.shape(inputs)) row_lengths = [] for r in range(inputs.shape.rank - 2): row_lengths.append(tf.repeat(dense_shape[r + 1], dense_shape[r])) val_mask = inputs >= 0 row_length = tf.reduce_sum(tf.cast(val_mask, 'int32'), axis=-1) row_length = tf.reshape(row_length, [-1]) row_lengths.append(row_length) outputs = tf.RaggedTensor.from_nested_row_lengths(inputs[val_mask], row_lengths) outputs = super().call(outputs, **kwargs) if isinstance(outputs, tf.RaggedTensor): outputs = outputs.to_tensor(0.) outputs.set_shape(self.compute_output_shape(inputs.shape)) return outputs @test_combinations.run_all_keras_modes class NgramEmbeddingTest(test_combinations.TestCase): def test_reserved_words(self): layer = NgramEmbedding() self.assertListEqual(layer._reserved_words, [layer.UNK_MARK]) layer = NgramEmbedding(reserved_words=['~TesT~']) self.assertListEqual(layer._reserved_words, [layer.UNK_MARK, '~TesT~']) def test_merged_vocab(self): vocab = [ '<th', '<the', '<the>', 'he>', 'the', 'the>', '<fo', '<fox', '<fox>', '<ju', '<jum', '<jump', '<jumps>', '<\u1E69>', 'fox', 'fox>', 'jum', 'jump', 'jumps', 'mps', 'mps>', 'ox>', 'ps>', 'ump', 'umps', 'umps>'] layer = NgramEmbedding(vocab) self.assertListEqual(layer._vocabulary, [layer.UNK_MARK] + vocab) layer = NgramEmbedding(vocab, reserved_words=['~TesT~']) self.assertListEqual(layer._vocabulary, [layer.UNK_MARK, '~TesT~'] + vocab) layer = NgramEmbedding(vocab + ['~TesT~'], reserved_words=['~TesT~']) self.assertListEqual(layer._vocabulary, [layer.UNK_MARK, '~TesT~'] + vocab) def test_build_vocab(self): counts = Counter({'the': 4, 'fox': 2, 'jumps': 2, '\u1E9B\u0323': 2, 'dog': 1}) expected = [ ('<th', 4), ('the', 4), ('he>', 4), ('<the', 4), ('the>', 4), ('<the>', 4), ('<fo', 2), ('fox', 2), ('ox>', 2), ('<fox', 2), ('fox>', 2), ('<fox>', 2), ('<ju', 2), ('jum', 2), ('ump', 2), ('mps', 2), ('ps>', 2), ('<jum', 2), ('jump', 2), ('umps', 2), ('mps>', 2), ('<jump', 2), ('jumps', 2), ('umps>', 2), ('<jumps>', 2), ('<\u1E69>', 2), ('<do', 1), ('dog', 1), ('og>', 1), ('<dog', 1), ('dog>', 1), ('<dog>', 1)] layer = NgramEmbedding() self.assertListEqual(layer.vocab(counts).most_common(), expected) def test_adapt_1d(self): data = ['[UNK]', 'the', 'fox', 'jumps', 'over', 'the', 'lazy', 'dog'] expected = [ [b'[UNK]'], [b'<th', b'the', b'he>', b'<the', b'the>', b'<the>'], [b'<fo', b'fox', b'ox>', b'<fox', b'fox>', b'<fox>'], [b'<ju', b'jum', b'ump', b'mps', b'ps>', b'<jum', b'jump', b'umps', b'mps>', b'<jump', b'jumps', b'umps>', b'<jumps>'], [b'<ov', b'ove', b'ver', b'er>', b'<ove', b'over', b'ver>', b'<over', b'over>', b'<over>'], [b'<th', b'the', b'he>', b'<the', b'the>', b'<the>'], [b'<la', b'laz', b'azy', b'zy>', b'<laz', b'lazy', b'azy>', b'<lazy', b'lazy>', b'<lazy>'], [b'<do', b'dog', b'og>', b'<dog', b'dog>', b'<dog>']] layer = NgramEmbedding() result = layer.adapt(data) result = self.evaluate(result).to_list() self.assertListEqual(expected, result) def test_adapt_2d(self): data = [['[UNK]', 'the', 'fox', 'jumps'], ['over', 'the', 'lazy', 'dog']] expected = [ [[b'[UNK]'], [b'<th', b'the', b'he>', b'<the', b'the>', b'<the>'], [b'<fo', b'fox', b'ox>', b'<fox', b'fox>', b'<fox>'], [b'<ju', b'jum', b'ump', b'mps', b'ps>', b'<jum', b'jump', b'umps', b'mps>', b'<jump', b'jumps', b'umps>', b'<jumps>']], [[b'<ov', b'ove', b'ver', b'er>', b'<ove', b'over', b'ver>', b'<over', b'over>', b'<over>'], [b'<th', b'the', b'he>', b'<the', b'the>', b'<the>'], [b'<la', b'laz', b'azy', b'zy>', b'<laz', b'lazy', b'azy>', b'<lazy', b'lazy>', b'<lazy>'], [b'<do', b'dog', b'og>', b'<dog', b'dog>', b'<dog>']]] layer = NgramEmbedding() result = layer.adapt(data) result = self.evaluate(result).to_list() self.assertListEqual(expected, result) def test_adapt_ragged(self): data = [[[b'[UNK]', b'the', b'fox']], [[b'jumps', b'over'], [b'the', b'lazy', b'dog']]] expected = [ [[[b'[UNK]'], [b'<th', b'the', b'he>', b'<the', b'the>', b'<the>'], [b'<fo', b'fox', b'ox>', b'<fox', b'fox>', b'<fox>']]], [[[b'<ju', b'jum', b'ump', b'mps', b'ps>', b'<jum', b'jump', b'umps', b'mps>', b'<jump', b'jumps', b'umps>', b'<jumps>'], [b'<ov', b'ove', b'ver', b'er>', b'<ove', b'over', b'ver>', b'<over', b'over>', b'<over>']], [[b'<th', b'the', b'he>', b'<the', b'the>', b'<the>'], [b'<la', b'laz', b'azy', b'zy>', b'<laz', b'lazy', b'azy>', b'<lazy', b'lazy>', b'<lazy>'], [b'<do', b'dog', b'og>', b'<dog', b'dog>', b'<dog>']]]] layer = NgramEmbedding() result = layer.adapt(tf.ragged.constant(data)) result = self.evaluate(result).to_list() self.assertListEqual(expected, result) def test_preprocess(self): data = ['[UNK]', 'the', 'fox', 'jumps', 'over', 'the', 'lazy', 'dog'] vocab = [ '<th', 'the', 'he>', '<the', 'the>', '<the>', '<fo', 'fox', 'ox>', '<fox', 'fox>', '<fox>', '<ju', 'jum', 'ump', 'mps', 'ps>', '<jum', 'jump', 'umps', 'mps>', '<jump', 'jumps', 'umps>', '<jumps>', '<ṩ>', '<do', 'dog', 'og>', '<dog', 'dog>', '<dog>'] expected = [ [0], [1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12], [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2, 3, 4, 5, 6], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [27, 28, 29, 30, 31, 32]] layer = NgramEmbedding(vocab) result = layer.preprocess(data) result = self.evaluate(result).to_list() self.assertListEqual(expected, result) def test_layer(self): data = np.array(['[UNK]', 'the', 'fox', 'jumps', 'over', 'the', 'lazy', 'dog']) vocab = [ '<th', 'the', 'he>', '<the', 'the>', '<the>', '<fo', 'fox', 'ox>', '<fox', 'fox>', '<fox>', '<ju', 'jum', 'ump', 'mps', 'ps>', '<jum', 'jump', 'umps', 'mps>', '<jump', 'jumps', 'umps>', '<jumps>', '<ṩ>', '<do', 'dog', 'og>', '<dog', 'dog>', '<dog>'] inputs = NgramEmbedding(vocab).preprocess(data) inputs = inputs.to_tensor(-1) inputs = self.evaluate(inputs) test_utils.layer_test( NgramEmbeddingWrap, kwargs={'vocabulary': vocab, 'output_dim': 12, 'normalize_unicode': 'NFKC', 'lower_case': False, 'zero_digits': False, 'max_len': None, 'minn': 2, 'maxn': 5, 'itself': 'always', 'reduction': 'mean', 'reserved_words': None, 'embed_type': 'dense_auto', 'adapt_cutoff': None, 'adapt_factor': 4}, input_data=inputs, expected_output_dtype='float32', expected_output_shape=[None, 12] ) test_utils.layer_test( NgramEmbedding, kwargs={'vocabulary': vocab, 'output_dim': 12, 'normalize_unicode': 'NFKC', 'lower_case': False, 'zero_digits': False, 'max_len': None, 'minn': 2, 'maxn': 5, 'itself': 'always', 'reduction': 'mean', 'reserved_words': None, 'embed_type': 'dense_auto', 'adapt_cutoff': None, 'adapt_factor': 4, 'with_prep': True}, input_data=data, expected_output_dtype='float32', expected_output_shape=[None, 12] ) def test_layer_2d(self): data = [['[UNK]', 'the', 'fox', 'jumps'], ['over', 'the', 'lazy', 'dog']] vocab = [ '<th', 'the', 'he>', '<the', 'the>', '<the>', '<fo', 'fox', 'ox>', '<fox', 'fox>', '<fox>', '<ju', 'jum', 'ump', 'mps', 'ps>', '<jum', 'jump', 'umps', 'mps>', '<jump', 'jumps', 'umps>', '<jumps>', '<ṩ>', '<do', 'dog', 'og>', '<dog', 'dog>', '<dog>'] inputs = NgramEmbedding(vocab).preprocess(data) inputs = inputs.to_tensor(-1) inputs = self.evaluate(inputs) test_utils.layer_test( NgramEmbeddingWrap, kwargs={'vocabulary': vocab, 'output_dim': 12, 'normalize_unicode': 'NFKC', 'lower_case': False, 'zero_digits': False, 'max_len': None, 'reserved_words': None, 'embed_type': 'dense_auto', 'adapt_cutoff': None, 'adapt_factor': 4}, input_data=inputs, expected_output_dtype='float32', expected_output_shape=[None, None, 12] ) def test_layer_ragged(self): data = tf.ragged.constant([[['[UNK]', 'the', 'fox']], [['jumps', 'over'], ['the', 'lazy', 'dog']]]) vocab = [ '<th', 'the', 'he>', '<the', 'the>', '<the>', '<fo', 'fox', 'ox>', '<fox', 'fox>', '<fox>', '<ju', 'jum', 'ump', 'mps', 'ps>', '<jum', 'jump', 'umps', 'mps>', '<jump', 'jumps', 'umps>', '<jumps>', '<ṩ>', '<do', 'dog', 'og>', '<dog', 'dog>', '<dog>'] outputs = NgramEmbedding(vocab, 5, with_prep=True)(data) outputs = self.evaluate(outputs).to_list() self.assertLen(outputs, 2) self.assertLen(outputs[0], 1) self.assertLen(outputs[0][0], 3) self.assertLen(outputs[0][0][0], 5) self.assertLen(outputs[1], 2) self.assertLen(outputs[1][1], 3) self.assertLen(outputs[1][1][2], 5) inputs = NgramEmbedding(vocab).preprocess(data) outputs = NgramEmbedding(vocab, 5)(inputs) outputs = self.evaluate(outputs).to_list() self.assertLen(outputs, 2) self.assertLen(outputs[0], 1) self.assertLen(outputs[0][0], 3) self.assertLen(outputs[0][0][0], 5) self.assertLen(outputs[1], 2) self.assertLen(outputs[1][1], 3) self.assertLen(outputs[1][1][2], 5) @register_keras_serializable(package='Miss') class BpeEmbeddingWrap(BpeEmbedding): def call(self, inputs, **kwargs): dense_shape = tf.unstack(tf.shape(inputs)) row_lengths = [] for r in range(inputs.shape.rank - 2): row_lengths.append(tf.repeat(dense_shape[r + 1], dense_shape[r])) val_mask = inputs >= 0 row_length = tf.reduce_sum(tf.cast(val_mask, 'int32'), axis=-1) row_length = tf.reshape(row_length, [-1]) row_lengths.append(row_length) outputs = tf.RaggedTensor.from_nested_row_lengths(inputs[val_mask], row_lengths) outputs = super().call(outputs, **kwargs) if isinstance(outputs, tf.RaggedTensor): outputs = outputs.to_tensor(0.) outputs.set_shape(self.compute_output_shape(inputs.shape)) return outputs @test_combinations.run_all_keras_modes class BpeEmbeddingTest(test_combinations.TestCase): def test_reserved_words(self): layer = BpeEmbedding() self.assertListEqual(layer._reserved_words, [layer.UNK_MARK, layer.UNK_CHAR]) layer = BpeEmbedding(reserved_words=['~TesT~']) self.assertListEqual(layer._reserved_words, [layer.UNK_MARK, layer.UNK_CHAR, '~TesT~']) def test_merged_vocab(self): vocab = ['the', '##o', 'f', '##u', '##m', '##s', 'o', '##v', '##er', 'l', '##a', '##y', 'd', '##g'] layer = BpeEmbedding(vocab) self.assertListEqual(layer._vocabulary, [layer.UNK_MARK, layer.UNK_CHAR] + vocab) layer = BpeEmbedding(vocab, reserved_words=['~TesT~']) self.assertListEqual(layer._vocabulary, [layer.UNK_MARK, layer.UNK_CHAR, '~TesT~'] + vocab) layer = BpeEmbedding(vocab + ['~TesT~'], reserved_words=['~TesT~']) self.assertListEqual(layer._vocabulary, [layer.UNK_MARK, layer.UNK_CHAR, '~TesT~'] + vocab) def test_build_vocab(self): counts = Counter({'the': 4, 'fox': 2, 'jumps': 2, '\u1E9B\u0323': 2, 'dog': 1}) expected = [ ('the', 4), ('##o', 3), ('f', 2), ('##x', 2), ('j', 2), ('##u', 2), ('##m', 2), ('##p', 2), ('##s', 2), ('[UNK]', 2), ('d', 1), ('##g', 1)] layer = BpeEmbedding(vocab_size=4) self.assertListEqual(layer.vocab(counts).most_common(), expected) def test_adapt_1d(self): data = ['[UNK]', 'the', 'fox', 'jumps', 'over', 'the', 'lazy', 'dog'] vocab = ['the', '##o', 'f', '##u', '##m', '##s', 'o', '##v', '##er', 'l', '##a', '##y', 'd', '##g'] expected = [ [b'[UNK]'], [b'the'], [b'f', b'##o', b'##[UNK]'], [b'[UNK]', b'##u', b'##m', b'##[UNK]', b'##s'], [b'o', b'##v', b'##er'], [b'the'], [b'l', b'##a', b'##[UNK]', b'##y'], [b'd', b'##o', b'##g']] layer = BpeEmbedding(vocab) result = layer.adapt(data) result = self.evaluate(result).to_list() self.assertListEqual(expected, result) def test_adapt_2d(self): data = [['[UNK]', 'the', 'fox', 'jumps'], ['over', 'the', 'lazy', 'dog']] vocab = ['the', '##o', 'f', '##u', '##m', '##s', 'o', '##v', '##er', 'l', '##a', '##y', 'd', '##g'] expected = [ [[b'[UNK]'], [b'the'], [b'f', b'##o', b'##[UNK]'], [b'[UNK]', b'##u', b'##m', b'##[UNK]', b'##s']], [[b'o', b'##v', b'##er'], [b'the'], [b'l', b'##a', b'##[UNK]', b'##y'], [b'd', b'##o', b'##g']]] layer = BpeEmbedding(vocab) result = layer.adapt(data) result = self.evaluate(result).to_list() self.assertListEqual(expected, result) def test_adapt_ragged(self): data = [[[b'[UNK]', b'the', b'fox']], [[b'jumps', b'over'], [b'the', b'lazy', b'dog']]] vocab = ['the', '##o', 'f', '##u', '##m', '##s', 'o', '##v', '##er', 'l', '##a', '##y', 'd', '##g'] expected = [ [[[b'[UNK]'], [b'the'], [b'f', b'##o', b'##[UNK]']]], [[[b'[UNK]', b'##u', b'##m', b'##[UNK]', b'##s'], [b'o', b'##v', b'##er']], [[b'the'], [b'l', b'##a', b'##[UNK]', b'##y'], [b'd', b'##o', b'##g']]]] layer = BpeEmbedding(vocab) result = layer.adapt(tf.ragged.constant(data)) result = self.evaluate(result).to_list() self.assertListEqual(expected, result) def test_preprocess(self): data = ['[UNK]', 'the', 'fox', 'jumps', 'over', 'the', 'lazy', 'dog'] vocab = ['the', '##o', 'f', '##u', '##m', '##s', 'o', '##v', '##er', 'l', '##a', '##y', 'd', '##g'] expected = [[0], [2], [4, 3, 1], [0, 5, 6, 1, 7], [8, 9, 10], [2], [11, 12, 1, 13], [14, 3, 15]] layer = BpeEmbedding(vocab) result = layer.preprocess(data) result = self.evaluate(result).to_list() self.assertListEqual(expected, result) def test_layer(self): data = np.array(['[UNK]', 'the', 'fox', 'jumps', 'over', 'the', 'lazy', 'dog']) vocab = ['the', '##o', 'f', '##u', '##m', '##s', 'o', '##v', '##er', 'l', '##a', '##y', 'd', '##g'] inputs = BpeEmbedding(vocab).preprocess(data) inputs = inputs.to_tensor(-1) inputs = self.evaluate(inputs) test_utils.layer_test( BpeEmbeddingWrap, kwargs={'vocabulary': vocab, 'output_dim': 12, 'reduction': 'mean', 'reserved_words': None, 'embed_type': 'dense_auto', 'adapt_cutoff': None, 'adapt_factor': 4}, input_data=inputs, expected_output_dtype='float32', expected_output_shape=[None, 12] ) test_utils.layer_test( BpeEmbedding, kwargs={'vocabulary': vocab, 'output_dim': 12, 'reduction': 'mean', 'reserved_words': None, 'embed_type': 'dense_auto', 'adapt_cutoff': None, 'adapt_factor': 4, 'with_prep': True}, input_data=data, expected_output_dtype='float32', expected_output_shape=[None, 12] ) def test_layer_2d(self): data = [['[UNK]', 'the', 'fox', 'jumps'], ['over', 'the', 'lazy', 'dog']] vocab = ['the', '##o', 'f', '##u', '##m', '##s', 'o', '##v', '##er', 'l', '##a', '##y', 'd', '##g'] inputs = BpeEmbedding(vocab).preprocess(data) inputs = inputs.to_tensor(-1) inputs = self.evaluate(inputs) test_utils.layer_test( BpeEmbeddingWrap, kwargs={'vocabulary': vocab, 'output_dim': 12, 'normalize_unicode': 'NFKC', 'lower_case': False, 'zero_digits': False, 'max_len': None, 'reserved_words': None, 'embed_type': 'dense_auto', 'adapt_cutoff': None, 'adapt_factor': 4}, input_data=inputs, expected_output_dtype='float32', expected_output_shape=[None, None, 12] ) def test_layer_ragged(self): data = tf.ragged.constant([[['[UNK]', 'the', 'fox']], [['jumps', 'over'], ['the', 'lazy', 'dog']]]) vocab = ['the', '##o', 'f', '##u', '##m', '##s', 'o', '##v', '##er', 'l', '##a', '##y', 'd', '##g'] outputs = BpeEmbedding(vocab, 5, with_prep=True)(data) outputs = self.evaluate(outputs).to_list() self.assertLen(outputs, 2) self.assertLen(outputs[0], 1) self.assertLen(outputs[0][0], 3) self.assertLen(outputs[0][0][0], 5) self.assertLen(outputs[1], 2) self.assertLen(outputs[1][1], 3) self.assertLen(outputs[1][1][2], 5) inputs = BpeEmbedding(vocab).preprocess(data) outputs = BpeEmbedding(vocab, 5)(inputs) outputs = self.evaluate(outputs).to_list() self.assertLen(outputs, 2) self.assertLen(outputs[0], 1) self.assertLen(outputs[0][0], 3) self.assertLen(outputs[0][0][0], 5) self.assertLen(outputs[1], 2) self.assertLen(outputs[1][1], 3) self.assertLen(outputs[1][1][2], 5) @register_keras_serializable(package='Miss') class CnnEmbeddingWrap(CnnEmbedding): def call(self, inputs, **kwargs): dense_shape = tf.unstack(tf.shape(inputs)) row_lengths = [] for r in range(inputs.shape.rank - 2): row_lengths.append(tf.repeat(dense_shape[r + 1], dense_shape[r])) val_mask = inputs >= 0 row_length = tf.reduce_sum(tf.cast(val_mask, 'int32'), axis=-1) row_length = tf.reshape(row_length, [-1]) row_lengths.append(row_length) outputs = tf.RaggedTensor.from_nested_row_lengths(inputs[val_mask], row_lengths) outputs = super().call(outputs, **kwargs) if isinstance(outputs, tf.RaggedTensor): outputs = outputs.to_tensor(0.) outputs.set_shape(self.compute_output_shape(inputs.shape)) return outputs @test_combinations.run_all_keras_modes class CnnEmbeddingTest(test_combinations.TestCase): def test_reserved_words(self): layer = CnnEmbedding() self.assertListEqual(layer._reserved_words, [layer.UNK_MARK, layer.BOW_MARK, layer.EOW_MARK]) layer = CnnEmbedding(reserved_words=['~TesT~']) self.assertListEqual(layer._reserved_words, [layer.UNK_MARK, layer.BOW_MARK, layer.EOW_MARK, '~TesT~']) def test_merged_vocab(self): vocab = ['e', 'o', 't', 'h'] layer = CnnEmbedding(vocab) self.assertListEqual(layer._vocabulary, [layer.UNK_MARK, layer.BOW_MARK, layer.EOW_MARK] + vocab) layer = CnnEmbedding(vocab, reserved_words=['~TesT~']) self.assertListEqual(layer._vocabulary, [layer.UNK_MARK, layer.BOW_MARK, layer.EOW_MARK, '~TesT~'] + vocab) layer = CnnEmbedding(vocab + ['~TesT~'], reserved_words=['~TesT~']) self.assertListEqual(layer._vocabulary, [layer.UNK_MARK, layer.BOW_MARK, layer.EOW_MARK, '~TesT~'] + vocab) def test_build_vocab(self): counts = Counter({'the': 4, 'fox': 2, 'jumps': 2, '\u1E9B\u0323': 2, 'dog': 1}) expected = [ ('[BOW]', 11), ('[EOW]', 11), ('t', 4), ('h', 4), ('e', 4), ('o', 3), ('f', 2), ('x', 2), ('j', 2), ('u', 2), ('m', 2), ('p', 2), ('s', 2), ('\u1E69', 2), ('d', 1), ('g', 1)] layer = CnnEmbedding() self.assertListEqual(layer.vocab(counts).most_common(), expected) def test_adapt_1d(self): data = ['[UNK]', 'the', 'fox', 'jumps', 'over', 'the', 'lazy', 'dog'] expected = [ [b'[BOW]', b'[UNK]', b'[EOW]'], [b'[BOW]', b't', b'h', b'e', b'[EOW]'], [b'[BOW]', b'f', b'o', b'x', b'[EOW]'], [b'[BOW]', b'j', b'u', b'm', b'p', b's', b'[EOW]'], [b'[BOW]', b'o', b'v', b'e', b'r', b'[EOW]'], [b'[BOW]', b't', b'h', b'e', b'[EOW]'], [b'[BOW]', b'l', b'a', b'z', b'y', b'[EOW]'], [b'[BOW]', b'd', b'o', b'g', b'[EOW]']] layer = CnnEmbedding() result = layer.adapt(data) result = self.evaluate(result).to_list() self.assertListEqual(expected, result) def test_adapt_2d(self): data = [['[UNK]', 'the', 'fox', 'jumps'], ['over', 'the', 'lazy', 'dog']] expected = [ [[b'[BOW]', b'[UNK]', b'[EOW]'], [b'[BOW]', b't', b'h', b'e', b'[EOW]'], [b'[BOW]', b'f', b'o', b'x', b'[EOW]'], [b'[BOW]', b'j', b'u', b'm', b'p', b's', b'[EOW]']], [[b'[BOW]', b'o', b'v', b'e', b'r', b'[EOW]'], [b'[BOW]', b't', b'h', b'e', b'[EOW]'], [b'[BOW]', b'l', b'a', b'z', b'y', b'[EOW]'], [b'[BOW]', b'd', b'o', b'g', b'[EOW]']]] layer = CnnEmbedding() result = layer.adapt(data) result = self.evaluate(result).to_list() self.assertListEqual(expected, result) def test_adapt_ragged(self): data = [[['[UNK]', 'the', 'fox']], [['jumps', 'over'], ['the', 'lazy', 'dog']]] expected = [ [[[b'[BOW]', b'[UNK]', b'[EOW]'], [b'[BOW]', b't', b'h', b'e', b'[EOW]'], [b'[BOW]', b'f', b'o', b'x', b'[EOW]']]], [[[b'[BOW]', b'j', b'u', b'm', b'p', b's', b'[EOW]'], [b'[BOW]', b'o', b'v', b'e', b'r', b'[EOW]']], [[b'[BOW]', b't', b'h', b'e', b'[EOW]'], [b'[BOW]', b'l', b'a', b'z', b'y', b'[EOW]'], [b'[BOW]', b'd', b'o', b'g', b'[EOW]']]]] layer = CnnEmbedding() result = layer.adapt(tf.ragged.constant(data)) result = self.evaluate(result).to_list() self.assertListEqual(expected, result) def test_adapt_prep_odd(self): data = ['[UNK]', 'the', 'fox', '0123456789abcdefghij', '0123456789abcdefghijk'] expected = [ [b'[BOW]', b'[UNK]', b'[EOW]'], [b'[BOW]', b't', b'h', b'e', b'[EOW]'], [b'[BOW]', b'f', b'o', b'x', b'[EOW]'], [b'[BOW]', b'0', b'1', b'2', b'3', b'\xef\xbf\xbd', b'h', b'i', b'j', b'[EOW]'], [b'[BOW]', b'0', b'1', b'2', b'3', b'\xef\xbf\xbd', b'i', b'j', b'k', b'[EOW]']] layer = CnnEmbedding(max_len=8) result = layer.adapt(data) result = self.evaluate(result).to_list() self.assertListEqual(expected, result) def test_adapt_prep_even(self): data = ['[UNK]', 'the', 'fox', '0123456789abcdefghij', '0123456789abcdefghijk'] expected = [ [b'[BOW]', b'[UNK]', b'[EOW]'], [b'[BOW]', b't', b'h', b'e', b'[EOW]'], [b'[BOW]', b'f', b'o', b'x', b'[EOW]'], [b'[BOW]', b'0', b'1', b'2', b'\xef\xbf\xbd', b'h', b'i', b'j', b'[EOW]'], [b'[BOW]', b'0', b'1', b'2', b'\xef\xbf\xbd', b'i', b'j', b'k', b'[EOW]']] layer = CnnEmbedding(max_len=7) result = layer.adapt(data) result = self.evaluate(result).to_list() self.assertListEqual(expected, result) def test_preprocess(self): data = ['[UNK]', 'the', 'fox', 'jumps', 'over', 'the', 'lazy', 'dog'] vocab = ['e', 'o', 't', 'h'] expected = [ [1, 0, 2], [1, 5, 6, 3, 2], [1, 0, 4, 0, 2], [1, 0, 0, 0, 0, 0, 2], [1, 4, 0, 3, 0, 2], [1, 5, 6, 3, 2], [1, 0, 0, 0, 0, 2], [1, 0, 4, 0, 2]] layer = CnnEmbedding(vocab) result = layer.preprocess(data) result = self.evaluate(result).to_list() self.assertListEqual(expected, result) def test_layer(self): data = np.array(['[UNK]', 'the', 'fox', 'jumps', 'over', 'the', 'lazy', 'dog']) vocab = ['e', 'o', 't', 'h'] inputs = CnnEmbedding(vocab).preprocess(data) inputs = inputs.to_tensor(-1) inputs = self.evaluate(inputs) test_utils.layer_test( CnnEmbeddingWrap, kwargs={'vocabulary': vocab, 'output_dim': 12, 'filters': [32, 32, 64, 128, 256, 512, 1024], 'kernels': [1, 2, 3, 4, 5, 6, 7], 'char_dim': 16, 'activation': 'tanh', 'highways': 2, 'normalize_unicode': 'NFKC', 'lower_case': False, 'zero_digits': False, 'max_len': 50, 'reserved_words': None, 'embed_type': 'dense_auto', 'adapt_cutoff': None, 'adapt_factor': 4}, input_data=inputs, expected_output_dtype='float32', expected_output_shape=[None, 12] ) test_utils.layer_test( CnnEmbedding, kwargs={'vocabulary': vocab, 'output_dim': 12, 'filters': [32, 32, 64, 128, 256, 512, 1024], 'kernels': [1, 2, 3, 4, 5, 6, 7], 'char_dim': 16, 'activation': 'tanh', 'highways': 2, 'normalize_unicode': 'NFKC', 'lower_case': False, 'zero_digits': False, 'max_len': 50, 'reserved_words': None, 'embed_type': 'dense_auto', 'adapt_cutoff': None, 'adapt_factor': 4, 'with_prep': True}, input_data=data, expected_output_dtype='float32', expected_output_shape=[None, 12] ) def test_layer_2d(self): data = [['[UNK]', 'the', 'fox', 'jumps'], ['over', 'the', 'lazy', 'dog']] vocab = ['e', 'o', 't', 'h'] inputs = CnnEmbedding(vocab).preprocess(data) inputs = inputs.to_tensor(-1) inputs = self.evaluate(inputs) test_utils.layer_test( CnnEmbeddingWrap, kwargs={'vocabulary': vocab, 'output_dim': 12, 'normalize_unicode': 'NFKC', 'lower_case': False, 'zero_digits': False, 'max_len': None, 'reserved_words': None, 'embed_type': 'dense_auto', 'adapt_cutoff': None, 'adapt_factor': 4}, input_data=inputs, expected_output_dtype='float32', expected_output_shape=[None, None, 12] ) def test_layer_ragged(self): data = tf.ragged.constant([[['[UNK]', 'the', 'fox']], [['jumps', 'over'], ['the', 'lazy', 'dog']]]) vocab = ['e', 'o', 't', 'h'] outputs = CnnEmbedding(vocab, 5, with_prep=True)(data) outputs = self.evaluate(outputs).to_list() self.assertLen(outputs, 2) self.assertLen(outputs[0], 1) self.assertLen(outputs[0][0], 3) self.assertLen(outputs[0][0][0], 5) self.assertLen(outputs[1], 2) self.assertLen(outputs[1][1], 3) self.assertLen(outputs[1][1][2], 5) inputs = CnnEmbedding(vocab).preprocess(data) outputs = CnnEmbedding(vocab, 5)(inputs) outputs = self.evaluate(outputs).to_list() self.assertLen(outputs, 2) self.assertLen(outputs[0], 1) self.assertLen(outputs[0][0], 3) self.assertLen(outputs[0][0][0], 5) self.assertLen(outputs[1], 2) self.assertLen(outputs[1][1], 3) self.assertLen(outputs[1][1][2], 5) @test_combinations.run_all_keras_modes class HighwayTest(test_combinations.TestCase): def test_layer(self): test_utils.layer_test( Highway, kwargs={}, input_shape=[2, 16, 8], input_dtype='float32', expected_output_dtype='float32', expected_output_shape=[None, 16, 8] ) test_utils.layer_test( Highway, kwargs={}, input_shape=[2, 16, 8, 4], input_dtype='float32', expected_output_dtype='float32', expected_output_shape=[None, 16, 8, 4] ) if __name__ == "__main__": tf.test.main()
6e7da8d8db94998e492bafe969437e9b40e5a8f4
4d0f3e2d7455f80caea978e4e70621d50c6c7561
/MongoDB/CRUD/QueryingByObjectId.py
efc3f90c9e14317b40ca16aed85eda0d2c3df484
[]
no_license
mhdr/PythonSamples
66940ee2353872d2947c459e3865be42140329c6
1a9dccc05962033ea02b081a39cd67c1e7b29d0c
refs/heads/master
2020-04-14T01:10:13.033940
2016-05-28T15:33:52
2016-05-28T15:33:52
30,691,539
1
0
null
null
null
null
UTF-8
Python
false
false
1,060
py
__author__ = 'mahmood' from pymongo import MongoClient client=MongoClient() # drop last db client.drop_database("test-db") # database db=client["test-db"] # table people=db["People"] new_person1={"FirstName" : "Mahmood", "LastName" : "Ramzani", "Gender": "Male", "BirthDate" : {"Year" : 1985 , "Month" : 5 , "Day" : 22}} new_person2={"FirstName" : "Javad", "LastName" : "Najafi", "Gender": "Male", "BirthDate" : {"Year" : 1984 , "Month" : 7 , "Day" : 13}} new_person3={"FirstName" : "Mahmood", "LastName" : "Rohani", "Gender": "Male", "BirthDate" : {"Year" : 1985 , "Month" : 8 , "Day" : 8}} id1= people.insert(new_person1) id2= people.insert(new_person2) id3= people.insert(new_person3) print(id1) print(id2) print(id3) match1=people.find_one({"_id":id2}) print(match1) # if id is string we need to convert # for example if id comes from web from bson.objectid import ObjectId match2=people.find_one({"_id":ObjectId(id3)}) print(match2)
dbf7640a313af2358461941e02b18b6d1e7c1709
ce76b3ef70b885d7c354b6ddb8447d111548e0f1
/time/high_work_and_long_life/group/case/good_child_and_case.py
fdb05e9779fa6e59a4688c46e5b2f2dee289fb94
[]
no_license
JingkaiTang/github-play
9bdca4115eee94a7b5e4ae9d3d6052514729ff21
51b550425a91a97480714fe9bc63cb5112f6f729
refs/heads/master
2021-01-20T20:18:21.249162
2016-08-19T07:20:12
2016-08-19T07:20:12
60,834,519
0
0
null
null
null
null
UTF-8
Python
false
false
215
py
#! /usr/bin/env python def long_world(str_arg): group(str_arg) print('little_hand_and_week') def group(str_arg): print(str_arg) if __name__ == '__main__': long_world('high_person_and_big_child')
e5fc5b2e2f076a3deb4a132618a1ce25e94c26cc
e204cdd8a38a247aeac3d07f6cce6822472bdcc5
/.history/app_test_django/views_20201116131730.py
f28ad5d7088723c0254f3cead00c09213ae31ad9
[]
no_license
steven-halla/python-test
388ad8386662ad5ce5c1a0976d9f054499dc741b
0b760a47d154078002c0272ed1204a94721c802a
refs/heads/master
2023-04-08T03:40:00.453977
2021-04-09T19:12:29
2021-04-09T19:12:29
354,122,365
0
0
null
null
null
null
UTF-8
Python
false
false
2,095
py
from django.shortcuts import render, redirect from .models import * from django.contrib import messages def index(request): return render(request, "index.html") def register_new_user(request): errors = User.objects.user_registration_validator(request.POST) if len(errors) > 0: for key, value in errors.items(): error_msg = key + ' - ' + value messages.error(request, error_msg) return redirect("/") else: first_name_from_post = request.POST['first_name'] last_name_from_post = request.POST['last_name'] email_from_post = request.POST['email'] password_from_post = request.POST['password'] new_user = User.objects.create( first_name=first_name_from_post, last_name=last_name_from_post, email=email_from_post, password=password_from_post ) print(new_user.id) request.session['user_id'] = new_user.id return redirect('/dashboard') def login(request): # user did provide email/password, now lets check database email_from_post = request.POST['email'] password_from_post = request.POST['password'] # this will return all users that have the email_from_post # in future we should require email to be unique users = User.objects.filter(email=email_from_post) if len(users) == 0: messages.error(request, "email/password does not exist") return redirect("/") user = users[0] print(user) if (user.password != password_from_post): messages.error(request, "email/password does not exist") return redirect("/") request.session['user_id'] = user.id return redirect("/dashboard") def logout(request): request.session.clear() return redirect("/") def view_dashboard(request): if 'user_id' not in request.session: return redirect("/") this_user = User.objects.get(id=request.session['user_id']) context = { "user":this_user } return render(request, "dash_board.html", context)
b2087e7207c8d5906a761f9b5d0333fdf5fa7128
20f89f49400feb9d2885dc2daf3ea3ca189556e7
/day09/proctice/05 粘包问题解决/mod_struct.py
08c0855ed616bb6cfc08acaaf5767a5483a48750
[]
no_license
xiaobaiskill/python
201511b1b1bddec8c33c4efa7ca2cc4afed24a89
540693baad757369ff811fb622a949c99fb6b4ba
refs/heads/master
2021-04-12T03:43:30.308110
2018-07-13T01:41:19
2018-07-13T01:41:19
125,884,001
0
0
null
null
null
null
UTF-8
Python
false
false
138
py
#!/usr/bin/env python # -*- coding:utf-8 -*- # Author Jmz import struct total = 16374 res = struct.pack('i',total) print(len(res))
f16a18a60451d63b0c3e3ea9dfd47962690ed967
eb19175c18053e5d414b4f6442bdfd0f9f97e24d
/tests/starwars_django/test_connections.py
9992f0f3809a991f64dc9a760a689072066a1616
[ "MIT" ]
permissive
jhgg/graphene
6c4c5a64b7b0f39c8f6b32d17f62e1c31ca03825
67904e8329de3d69fec8c82ba8c3b4fe598afa8e
refs/heads/master
2020-12-25T21:23:22.556227
2015-10-15T19:56:40
2015-10-15T19:56:40
43,073,008
1
0
null
2015-09-24T14:47:19
2015-09-24T14:47:19
null
UTF-8
Python
false
false
987
py
import pytest from graphql.core import graphql from .models import * from .schema import schema from .data import initialize pytestmark = pytest.mark.django_db def test_correct_fetch_first_ship_rebels(): initialize() query = ''' query RebelsShipsQuery { rebels { name, hero { name } ships(first: 1) { edges { node { name } } } } } ''' expected = { 'rebels': { 'name': 'Alliance to Restore the Republic', 'hero': { 'name': 'Human' }, 'ships': { 'edges': [ { 'node': { 'name': 'X-Wing' } } ] } } } result = schema.execute(query) assert not result.errors assert result.data == expected
a5cfd192a6bdd36268a411986e5257ad3f206711
a2e638cd0c124254e67963bda62c21351881ee75
/Python modules/HP_2021_01_04_XTP_Trades.py
4313930c4f2639f99725c878fd6a2d0aae8b3bfc
[]
no_license
webclinic017/fa-absa-py3
1ffa98f2bd72d541166fdaac421d3c84147a4e01
5e7cc7de3495145501ca53deb9efee2233ab7e1c
refs/heads/main
2023-04-19T10:41:21.273030
2021-05-10T08:50:05
2021-05-10T08:50:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
878
py
import acm import csv with open( 'C:\\Temp\\1\\CA_Stock Input.csv', mode='r') as csv_file: readCSV = csv.DictReader(csv_file) print 'trade number', "|", 'instrument', "|", 'trade price', "|", 'Portfolio' for row in readCSV: trade=acm.FTrade() trade.Instrument(row['Instrument']) trade.Quantity(row['Quantity']) trade.Price(row['Price']) trade.Acquirer(row['Acquirer']) trade.Portfolio(row['Portfolio']) trade.Counterparty("JSE") trade.Status('Simulated') trade.Currency('ZAR') trade.TradeTime('2021-01-04') trade.ValueDay('2021-01-07') trade.Commit() premium=trade.Quantity() *-1*trade.Price()/100 trade.Premium(premium) trade.AcquireDay(trade.ValueDay()) trade.Commit() print trade.Name(), "|", trade.Instrument().Name(), "|", trade.Price(), "|", trade.Portfolio().Name()
5a8b2cdde3908ffa52271f85cdfd0d8883b5c8db
ce76b3ef70b885d7c354b6ddb8447d111548e0f1
/young_government/want_thing.py
fe79d6bc7b16f04663bb72a76609bd5cc5bbb80f
[]
no_license
JingkaiTang/github-play
9bdca4115eee94a7b5e4ae9d3d6052514729ff21
51b550425a91a97480714fe9bc63cb5112f6f729
refs/heads/master
2021-01-20T20:18:21.249162
2016-08-19T07:20:12
2016-08-19T07:20:12
60,834,519
0
0
null
null
null
null
UTF-8
Python
false
false
206
py
#! /usr/bin/env python def group(str_arg): small_work(str_arg) print('old_work_and_young_company') def small_work(str_arg): print(str_arg) if __name__ == '__main__': group('have_thing')
956ef7f9bbda19c259de876c23f18bfa189bc407
2b167e29ba07e9f577c20c54cb943861d0ccfa69
/numerical_analysis_backup/large-scale-multiobj2/core-arch4-guard2-beta0-hebbe/pareto0.py
0000998404917886a9c21b69d9c51c32cf41c0cc
[]
no_license
LiYan1988/kthOld_OFC
17aeeed21e195d1a9a3262ec2e67d6b1d3f9ff0f
b1237577ea68ad735a65981bf29584ebd889132b
refs/heads/master
2021-01-11T17:27:25.574431
2017-01-23T05:32:35
2017-01-23T05:32:35
79,773,237
0
0
null
null
null
null
UTF-8
Python
false
false
2,399
py
# -*- coding: utf-8 -*- """ Created on Thu Aug 4 15:15:10 2016 @author: li optimize both throughput and connections """ #import sys #sys.path.insert(0, '/home/li/Dropbox/KTH/numerical_analysis/ILPs') import csv from gurobipy import * import numpy as np from arch4_decomposition_new import Arch4_decompose np.random.seed(2010) num_cores=10 num_slots=320 i = 0 time_limit_routing = 3600 time_limit_sa = 10800 filename = 'traffic_matrix_pod250_load50_'+str(i)+'.csv' tm = [] with open(filename) as f: reader = csv.reader(f) for idx, row in enumerate(reader): row = [float(u) for u in row] tm.append(row) tm = np.array(tm) #%% arch2 corev = np.array([1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20]) #corev = np.array([1, 2]) connection_ub = [] throughput_ub = [] obj_ub = [] connection_lb = [] throughput_lb = [] obj_lb = [] connection_he = [] throughput_he = [] obj_he = [] for c in corev: m = Arch4_decompose(tm, num_slots=num_slots, num_cores=c, alpha=1,beta=0, num_guard_slot=2) m.create_model_routing(mipfocus=1,timelimit=7200,mipgap=0.01, method=2) connection_ub.append(m.connection_ub_) throughput_ub.append(m.throughput_ub_) obj_ub.append(m.obj_ub_) # m.create_model_sa(mipfocus=1,timelimit=10800,mipgap=0.01, method=2, # SubMIPNodes=2000, heuristics=0.8) # connection_lb.append(m.connection_lb_) # throughput_lb.append(m.throughput_lb_) # obj_lb.append(m.obj_lb_) # m.write_result_csv('cnklist_lb_%d_%d.csv'%(i,c), m.cnklist_lb) connection_lb.append(0) throughput_lb.append(0) obj_lb.append(0) m.heuristic() connection_he.append(m.obj_heuristic_connection_) throughput_he.append(m.obj_heuristic_throughput_) obj_he.append(m.obj_heuristic_) m.write_result_csv('cnklist_heuristic_arch4_i%d_c%d.csv'%(i,c), m.cnklist_heuristic_) result = np.array([corev, connection_ub,throughput_ub,obj_ub, connection_lb,throughput_lb,obj_lb, connection_he,throughput_he,obj_he]).T file_name = "result_pareto_arch4_old_pod100_i{}.csv".format(i) with open(file_name, 'w') as f: writer = csv.writer(f, delimiter=',') writer.writerow(['#cores', 'connection_ub', 'throughput_ub', 'obj_ub', 'connection_lb', 'throughput_lb', 'obj_lb', 'connection_he', 'throughput_he', 'obj_he']) writer.writerows(result)
ddd352a932897eab44ab466a1462189f4656689c
c934e7c27f0e72385218a14b4e2a7e94a747a360
/google-cloud-sdk/lib/googlecloudsdk/third_party/apis/gsuiteaddons/v1/gsuiteaddons_v1_messages.py
3c7225d36f055cd65a71467d6cc9a202871a533a
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
PrateekKhatri/gcloud_cli
5f74b97494df4f61816026af9460b9c4d8e89431
849d09dd7863efecbdf4072a504e1554e119f6ae
refs/heads/master
2023-03-27T05:53:53.796695
2021-03-10T04:08:14
2021-03-10T04:08:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
31,183
py
"""Generated message classes for gsuiteaddons version v1. """ # NOTE: This file is autogenerated and should not be edited by hand. from __future__ import absolute_import from apitools.base.protorpclite import messages as _messages from apitools.base.py import encoding from apitools.base.py import extra_types package = 'gsuiteaddons' class GoogleAppsScriptTypeAddOnWidgetSet(_messages.Message): r"""The widget subset used by an add-on. Enums: UsedWidgetsValueListEntryValuesEnum: Fields: usedWidgets: The list of widgets used in an add-on. """ class UsedWidgetsValueListEntryValuesEnum(_messages.Enum): r"""UsedWidgetsValueListEntryValuesEnum enum type. Values: WIDGET_TYPE_UNSPECIFIED: The default widget set. DATE_PICKER: The date picker. STYLED_BUTTONS: Styled buttons include filled buttons and disabled buttons. PERSISTENT_FORMS: Persistent forms allow persisting form values during actions. FIXED_FOOTER: Fixed footer in card. UPDATE_SUBJECT_AND_RECIPIENTS: Update the subject and recipients of a draft. GRID_WIDGET: The grid widget. ADDON_COMPOSE_UI_ACTION: A Gmail add-on action that applies to the add- on compose UI. """ WIDGET_TYPE_UNSPECIFIED = 0 DATE_PICKER = 1 STYLED_BUTTONS = 2 PERSISTENT_FORMS = 3 FIXED_FOOTER = 4 UPDATE_SUBJECT_AND_RECIPIENTS = 5 GRID_WIDGET = 6 ADDON_COMPOSE_UI_ACTION = 7 usedWidgets = _messages.EnumField('UsedWidgetsValueListEntryValuesEnum', 1, repeated=True) class GoogleAppsScriptTypeCalendarCalendarAddOnManifest(_messages.Message): r"""Properties customizing the appearance and execution of a Calendar add- on. Enums: CurrentEventAccessValueValuesEnum: Defines the level of data access when an event add-on is triggered. Fields: conferenceSolution: Defines conference solutions provided by this add-on. createSettingsUrlFunction: An endpoint to execute that creates a URL to the add-on's settings page. currentEventAccess: Defines the level of data access when an event add-on is triggered. eventOpenTrigger: An endpoint that triggers when an event is opened to be viewed or edited. eventUpdateTrigger: An endpoint that triggers when the open event is updated. homepageTrigger: Defines an endpoint that will be executed in contexts that don't match a declared contextual trigger. Any cards generated by this function will always be available to the user, but might be eclipsed by contextual content when this add-on declares more targeted triggers. If present, this overrides the configuration from `addOns.common.homepageTrigger`. """ class CurrentEventAccessValueValuesEnum(_messages.Enum): r"""Defines the level of data access when an event add-on is triggered. Values: UNSPECIFIED: Default value when nothing is set for EventAccess. METADATA: Gives event triggers the permission to access the metadata of events such as event ID and calendar ID. READ: Gives event triggers access to all provided event fields including the metadata, attendees, and conference data. WRITE: Gives event triggers access to the metadata of events and the ability to perform all actions, including adding attendees and setting conference data. READ_WRITE: Gives event triggers access to all provided event fields including the metadata, attendees, and conference data and the ability to perform all actions. """ UNSPECIFIED = 0 METADATA = 1 READ = 2 WRITE = 3 READ_WRITE = 4 conferenceSolution = _messages.MessageField('GoogleAppsScriptTypeCalendarConferenceSolution', 1, repeated=True) createSettingsUrlFunction = _messages.StringField(2) currentEventAccess = _messages.EnumField('CurrentEventAccessValueValuesEnum', 3) eventOpenTrigger = _messages.MessageField('GoogleAppsScriptTypeCalendarCalendarExtensionPoint', 4) eventUpdateTrigger = _messages.MessageField('GoogleAppsScriptTypeCalendarCalendarExtensionPoint', 5) homepageTrigger = _messages.MessageField('GoogleAppsScriptTypeHomepageExtensionPoint', 6) class GoogleAppsScriptTypeCalendarCalendarExtensionPoint(_messages.Message): r"""Common format for declaring a calendar add-on's triggers. Fields: runFunction: Required. The endpoint to execute when this extension point is activated. """ runFunction = _messages.StringField(1) class GoogleAppsScriptTypeCalendarConferenceSolution(_messages.Message): r"""Defines conference related values. Fields: id: Required. IDs should be uniquely assigned across ConferenceSolutions within one add-on, otherwise the wrong ConferenceSolution might be used when the add-on is triggered. While you can change the display name of an add-on, the ID shouldn't be changed. logoUrl: Required. The URL for the logo image of the ConferenceSolution. name: Required. The display name of the ConferenceSolution. onCreateFunction: Required. The endpoint to call when ConferenceData should be created. """ id = _messages.StringField(1) logoUrl = _messages.StringField(2) name = _messages.StringField(3) onCreateFunction = _messages.StringField(4) class GoogleAppsScriptTypeCommonAddOnManifest(_messages.Message): r"""Add-on configuration that is shared across all add-on host applications. Fields: addOnWidgetSet: The widgets used in the add-on. If this field is not specified, the default set is used. homepageTrigger: Defines an endpoint that will be executed in any context, in any host. Any cards generated by this function will always be available to the user, but might be eclipsed by contextual content when this add-on declares more targeted triggers. layoutProperties: Common layout properties for the add-on cards. logoUrl: Required. The URL for the logo image shown in the add-on toolbar. name: Required. The display name of the add-on. openLinkUrlPrefixes: An OpenLink action can only use a URL with an HTTPS, MAILTO or TEL scheme. For HTTPS links, the URL must also [match](/gmail/add-ons/concepts/manifests#whitelisting_urls) one of the prefixes specified in this whitelist. If the prefix omits the scheme, HTTPS is assumed. Notice that HTTP links are automatically rewritten to HTTPS links. universalActions: Defines a list of extension points in the universal action menu which serves as a settings menu for the add-on. The extension point can be a link URL to open or an endpoint to execute as a form submission. useLocaleFromApp: Whether to pass locale information from host app. """ addOnWidgetSet = _messages.MessageField('GoogleAppsScriptTypeAddOnWidgetSet', 1) homepageTrigger = _messages.MessageField('GoogleAppsScriptTypeHomepageExtensionPoint', 2) layoutProperties = _messages.MessageField('GoogleAppsScriptTypeLayoutProperties', 3) logoUrl = _messages.StringField(4) name = _messages.StringField(5) openLinkUrlPrefixes = _messages.MessageField('extra_types.JsonValue', 6, repeated=True) universalActions = _messages.MessageField('GoogleAppsScriptTypeUniversalActionExtensionPoint', 7, repeated=True) useLocaleFromApp = _messages.BooleanField(8) class GoogleAppsScriptTypeDocsDocsAddOnManifest(_messages.Message): r"""Properties customizing the appearance and execution of a Google Docs add-on. Fields: homepageTrigger: If present, this overrides the configuration from `addOns.common.homepageTrigger`. onFileScopeGrantedTrigger: Endpoint to execute when file scope authorization is granted for this document/user pair. """ homepageTrigger = _messages.MessageField('GoogleAppsScriptTypeHomepageExtensionPoint', 1) onFileScopeGrantedTrigger = _messages.MessageField('GoogleAppsScriptTypeDocsDocsExtensionPoint', 2) class GoogleAppsScriptTypeDocsDocsExtensionPoint(_messages.Message): r"""Common format for declaring a Docs add-on's triggers. Fields: runFunction: Required. The endpoint to execute when this extension point is activated. """ runFunction = _messages.StringField(1) class GoogleAppsScriptTypeDriveDriveAddOnManifest(_messages.Message): r"""Properties customizing the appearance and execution of a Drive add-on. Fields: homepageTrigger: If present, this overrides the configuration from `addOns.common.homepageTrigger`. onItemsSelectedTrigger: Corresponds to behavior that executes when items are selected in the relevant Drive view, such as the My Drive Doclist. """ homepageTrigger = _messages.MessageField('GoogleAppsScriptTypeHomepageExtensionPoint', 1) onItemsSelectedTrigger = _messages.MessageField('GoogleAppsScriptTypeDriveDriveExtensionPoint', 2) class GoogleAppsScriptTypeDriveDriveExtensionPoint(_messages.Message): r"""Common format for declaring a Drive add-on's triggers. Fields: runFunction: Required. The endpoint to execute when the extension point is activated. """ runFunction = _messages.StringField(1) class GoogleAppsScriptTypeGmailComposeTrigger(_messages.Message): r"""A trigger that activates when user is composing an email. Enums: DraftAccessValueValuesEnum: Defines the level of data access when a compose time add-on is triggered. Fields: actions: Defines the set of actions for a compose time add-on. These are actions that users can trigger on a compose time add-on. draftAccess: Defines the level of data access when a compose time add-on is triggered. """ class DraftAccessValueValuesEnum(_messages.Enum): r"""Defines the level of data access when a compose time add-on is triggered. Values: UNSPECIFIED: Default value when nothing is set for DraftAccess. NONE: The compose trigger can't access any data of the draft when a compose add-on is triggered. METADATA: Gives the compose trigger the permission to access the metadata of the draft when a compose add-on is triggered. This includes the audience list, such as the To and Cc list of a draft message. """ UNSPECIFIED = 0 NONE = 1 METADATA = 2 actions = _messages.MessageField('GoogleAppsScriptTypeMenuItemExtensionPoint', 1, repeated=True) draftAccess = _messages.EnumField('DraftAccessValueValuesEnum', 2) class GoogleAppsScriptTypeGmailContextualTrigger(_messages.Message): r"""Defines a trigger that fires when the open email meets a specific criteria. When the trigger fires, it executes a specific endpoint, usually in order to create new cards and update the UI. Fields: onTriggerFunction: Required. The name of the endpoint to call when a message matches the trigger. unconditional: UnconditionalTriggers are executed when any mail message is opened. """ onTriggerFunction = _messages.StringField(1) unconditional = _messages.MessageField('GoogleAppsScriptTypeGmailUnconditionalTrigger', 2) class GoogleAppsScriptTypeGmailGmailAddOnManifest(_messages.Message): r"""Properties customizing the appearance and execution of a Gmail add-on. Fields: authorizationCheckFunction: The name of an endpoint that verifies that the add-on has all the required third-party authorizations, by probing the third-party APIs. If the probe fails, the function should throw an exception to initiate the authorization flow. This function is called before each invocation of the add-on in order to ensure a smooth user experience. composeTrigger: Defines the compose time trigger for a compose time add- on. This is the trigger that causes an add-on to take action when the user is composing an email. All compose time add-ons must have the `gmail.addons.current.action.compose` scope even though it might not edit the draft. contextualTriggers: Defines the set of conditions that trigger the add-on. homepageTrigger: Defines an endpoint that will be executed in contexts that don't match a declared contextual trigger. Any cards generated by this function will always be available to the user, but may be eclipsed by contextual content when this add-on declares more targeted triggers. If present, this overrides the configuration from `addOns.common.homepageTrigger`. universalActions: Defines set of [universal actions](/gmail/add-ons/how- tos/universal-actions) for the add-on. The user triggers universal actions from the add-on toolbar menu. """ authorizationCheckFunction = _messages.StringField(1) composeTrigger = _messages.MessageField('GoogleAppsScriptTypeGmailComposeTrigger', 2) contextualTriggers = _messages.MessageField('GoogleAppsScriptTypeGmailContextualTrigger', 3, repeated=True) homepageTrigger = _messages.MessageField('GoogleAppsScriptTypeHomepageExtensionPoint', 4) universalActions = _messages.MessageField('GoogleAppsScriptTypeGmailUniversalAction', 5, repeated=True) class GoogleAppsScriptTypeGmailUnconditionalTrigger(_messages.Message): r"""A trigger that fires when any email message is opened.""" class GoogleAppsScriptTypeGmailUniversalAction(_messages.Message): r"""An action that is always available in the add-on toolbar menu regardless of message context. Fields: openLink: A link that is opened by Gmail when the user triggers the action. runFunction: An endpoint that is called when the user triggers the action. See the [universal actions guide](/gmail/add-ons/how-tos/universal- actions) for details. text: Required. User-visible text describing the action, for example, "Add a new contact." """ openLink = _messages.StringField(1) runFunction = _messages.StringField(2) text = _messages.StringField(3) class GoogleAppsScriptTypeHomepageExtensionPoint(_messages.Message): r"""Common format for declaring an add-on's homepage view. Fields: enabled: Optional. If set to `false`, deactivates the homepage view in this context. Defaults to `true` if unset. If an add-on's custom homepage view is disabled, a generic overview card is provided for users instead. runFunction: Required. The endpoint to execute when this extension point is activated. """ enabled = _messages.BooleanField(1) runFunction = _messages.StringField(2) class GoogleAppsScriptTypeHttpOptions(_messages.Message): r"""Options for sending requests to add-on HTTP endpoints Enums: AuthorizationHeaderValueValuesEnum: Configuration for the token sent in the HTTP Authorization header Fields: authorizationHeader: Configuration for the token sent in the HTTP Authorization header """ class AuthorizationHeaderValueValuesEnum(_messages.Enum): r"""Configuration for the token sent in the HTTP Authorization header Values: HTTP_AUTHORIZATION_HEADER_UNSPECIFIED: Default value, equivalent to `SYSTEM_ID_TOKEN` SYSTEM_ID_TOKEN: Send an ID token for the project-specific Google Workspace Add-on's system service account (default). USER_ID_TOKEN: Send an ID token for the end user. NONE: Do not send an Authentication header. """ HTTP_AUTHORIZATION_HEADER_UNSPECIFIED = 0 SYSTEM_ID_TOKEN = 1 USER_ID_TOKEN = 2 NONE = 3 authorizationHeader = _messages.EnumField('AuthorizationHeaderValueValuesEnum', 1) class GoogleAppsScriptTypeLayoutProperties(_messages.Message): r"""Card layout properties shared across all add-on host applications. Fields: primaryColor: The primary color of the add-on. It sets the color of toolbar. If no primary color is set explicitly, the default value provided by the framework is used. secondaryColor: The secondary color of the add-on. It sets the color of buttons. If primary color is set but no secondary color is set, the secondary color is the same as the primary color. If neither primary color nor secondary color is set, the default value provided by the framework is used. useNewMaterialDesign: Enable material design for cards. """ primaryColor = _messages.StringField(1) secondaryColor = _messages.StringField(2) useNewMaterialDesign = _messages.BooleanField(3) class GoogleAppsScriptTypeMenuItemExtensionPoint(_messages.Message): r"""Common format for declaring a menu item or button that appears within a host app. Fields: label: Required. User-visible text that describes the action taken by activating this extension point. For example, "Insert invoice." logoUrl: The URL for the logo image shown in the add-on toolbar. If not set, defaults to the add-on's primary logo URL. runFunction: Required. The endpoint to execute when this extension point is activated. """ label = _messages.StringField(1) logoUrl = _messages.StringField(2) runFunction = _messages.StringField(3) class GoogleAppsScriptTypeSheetsSheetsAddOnManifest(_messages.Message): r"""Properties customizing the appearance and execution of a Google Sheets add-on. Fields: homepageTrigger: If present, this overrides the configuration from `addOns.common.homepageTrigger`. onFileScopeGrantedTrigger: Endpoint to execute when file scope authorization is granted for this document/user pair. """ homepageTrigger = _messages.MessageField('GoogleAppsScriptTypeHomepageExtensionPoint', 1) onFileScopeGrantedTrigger = _messages.MessageField('GoogleAppsScriptTypeSheetsSheetsExtensionPoint', 2) class GoogleAppsScriptTypeSheetsSheetsExtensionPoint(_messages.Message): r"""Common format for declaring a Sheets add-on's triggers. Fields: runFunction: Required. The endpoint to execute when this extension point is activated. """ runFunction = _messages.StringField(1) class GoogleAppsScriptTypeSlidesSlidesAddOnManifest(_messages.Message): r"""Properties customizing the appearance and execution of a Google Slides add-on. Fields: homepageTrigger: If present, this overrides the configuration from `addOns.common.homepageTrigger`. onFileScopeGrantedTrigger: Endpoint to execute when file scope authorization is granted for this document/user pair. """ homepageTrigger = _messages.MessageField('GoogleAppsScriptTypeHomepageExtensionPoint', 1) onFileScopeGrantedTrigger = _messages.MessageField('GoogleAppsScriptTypeSlidesSlidesExtensionPoint', 2) class GoogleAppsScriptTypeSlidesSlidesExtensionPoint(_messages.Message): r"""Common format for declaring a Slides add-on's triggers. Fields: runFunction: Required. The endpoint to execute when this extension point is activated. """ runFunction = _messages.StringField(1) class GoogleAppsScriptTypeUniversalActionExtensionPoint(_messages.Message): r"""Format for declaring a universal action menu item extension point. Fields: label: Required. User-visible text that describes the action taken by activating this extension point, for example, "Add a new contact." openLink: URL to be opened by the UniversalAction. runFunction: Endpoint to be run by the UniversalAction. """ label = _messages.StringField(1) openLink = _messages.StringField(2) runFunction = _messages.StringField(3) class GoogleCloudGsuiteaddonsV1AddOns(_messages.Message): r"""A Google Workspace Add-on configuration. Fields: calendar: Calendar add-on configuration. common: Configuration that is common across all Google Workspace Add-ons. docs: Docs add-on configuration. drive: Drive add-on configuration. gmail: Gmail add-on configuration. httpOptions: Options for sending requests to add-on HTTP endpoints sheets: Sheets add-on configuration. slides: Slides add-on configuration. """ calendar = _messages.MessageField('GoogleAppsScriptTypeCalendarCalendarAddOnManifest', 1) common = _messages.MessageField('GoogleAppsScriptTypeCommonAddOnManifest', 2) docs = _messages.MessageField('GoogleAppsScriptTypeDocsDocsAddOnManifest', 3) drive = _messages.MessageField('GoogleAppsScriptTypeDriveDriveAddOnManifest', 4) gmail = _messages.MessageField('GoogleAppsScriptTypeGmailGmailAddOnManifest', 5) httpOptions = _messages.MessageField('GoogleAppsScriptTypeHttpOptions', 6) sheets = _messages.MessageField('GoogleAppsScriptTypeSheetsSheetsAddOnManifest', 7) slides = _messages.MessageField('GoogleAppsScriptTypeSlidesSlidesAddOnManifest', 8) class GoogleCloudGsuiteaddonsV1Authorization(_messages.Message): r"""The authorization information used when invoking deployment endpoints. Fields: name: The canonical full name of this resource. Example: `projects/123/authorization` oauthClientId: The OAuth client ID used to obtain OAuth access tokens for a user on the add-on's behalf. serviceAccountEmail: The email address of the service account used to authenticate requests to add-on callback endpoints. """ name = _messages.StringField(1) oauthClientId = _messages.StringField(2) serviceAccountEmail = _messages.StringField(3) class GoogleCloudGsuiteaddonsV1Deployment(_messages.Message): r"""A Google Workspace Add-on deployment Fields: addOns: The Google Workspace Add-on configuration. etag: This value is computed by the server based on the version of the deployment in storage, and may be sent on update and delete requests to ensure the client has an up-to-date value before proceeding. name: The deployment resource name. Example: `projects/123/deployments/my_deployment`. oauthScopes: The list of Google OAuth scopes for which to request consent from the end user before executing an add-on endpoint. """ addOns = _messages.MessageField('GoogleCloudGsuiteaddonsV1AddOns', 1) etag = _messages.StringField(2) name = _messages.StringField(3) oauthScopes = _messages.StringField(4, repeated=True) class GoogleCloudGsuiteaddonsV1InstallDeploymentRequest(_messages.Message): r"""Request message to install a deployment for testing.""" class GoogleCloudGsuiteaddonsV1InstallStatus(_messages.Message): r"""Install status of a test deployment. Fields: installed: True if the deployment is installed for the user. name: The canonical full resource name of the deployment install status. Example: `projects/123/deployments/my_deployment/installStatus`. """ installed = _messages.BooleanField(1) name = _messages.StringField(2) class GoogleCloudGsuiteaddonsV1ListDeploymentsResponse(_messages.Message): r"""Response message to list deployments. Fields: deployments: The list of deployments for the given project. nextPageToken: A token, which can be sent as `page_token` to retrieve the next page. If this field is omitted, there are no subsequent pages. """ deployments = _messages.MessageField('GoogleCloudGsuiteaddonsV1Deployment', 1, repeated=True) nextPageToken = _messages.StringField(2) class GoogleCloudGsuiteaddonsV1UninstallDeploymentRequest(_messages.Message): r"""Request message to uninstall a test deployment.""" class GoogleProtobufEmpty(_messages.Message): r"""A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); } The JSON representation for `Empty` is empty JSON object `{}`. """ class GsuiteaddonsProjectsDeploymentsCreateRequest(_messages.Message): r"""A GsuiteaddonsProjectsDeploymentsCreateRequest object. Fields: deploymentId: Required. The ID to use for this deployment. The full name of the created resource will be `projects//deployments/`. googleCloudGsuiteaddonsV1Deployment: A GoogleCloudGsuiteaddonsV1Deployment resource to be passed as the request body. parent: Required. Name of the project in which to create the deployment. Example: `projects/my_project`. """ deploymentId = _messages.StringField(1) googleCloudGsuiteaddonsV1Deployment = _messages.MessageField('GoogleCloudGsuiteaddonsV1Deployment', 2) parent = _messages.StringField(3, required=True) class GsuiteaddonsProjectsDeploymentsDeleteRequest(_messages.Message): r"""A GsuiteaddonsProjectsDeploymentsDeleteRequest object. Fields: etag: The etag of the deployment to delete. If this is provided, it must match the server's etag. name: Required. The full resource name of the deployment to delete. Example: `projects/my_project/deployments/my_deployment`. """ etag = _messages.StringField(1) name = _messages.StringField(2, required=True) class GsuiteaddonsProjectsDeploymentsGetInstallStatusRequest(_messages.Message): r"""A GsuiteaddonsProjectsDeploymentsGetInstallStatusRequest object. Fields: name: Required. The full resource name of the deployment. Example: `projects/my_project/deployments/my_deployment/installStatus`. """ name = _messages.StringField(1, required=True) class GsuiteaddonsProjectsDeploymentsGetRequest(_messages.Message): r"""A GsuiteaddonsProjectsDeploymentsGetRequest object. Fields: name: Required. The full resource name of the deployment to get. Example: `projects/my_project/deployments/my_deployment`. """ name = _messages.StringField(1, required=True) class GsuiteaddonsProjectsDeploymentsInstallRequest(_messages.Message): r"""A GsuiteaddonsProjectsDeploymentsInstallRequest object. Fields: googleCloudGsuiteaddonsV1InstallDeploymentRequest: A GoogleCloudGsuiteaddonsV1InstallDeploymentRequest resource to be passed as the request body. name: Required. The full resource name of the deployment to install. Example: `projects/my_project/deployments/my_deployment`. """ googleCloudGsuiteaddonsV1InstallDeploymentRequest = _messages.MessageField('GoogleCloudGsuiteaddonsV1InstallDeploymentRequest', 1) name = _messages.StringField(2, required=True) class GsuiteaddonsProjectsDeploymentsListRequest(_messages.Message): r"""A GsuiteaddonsProjectsDeploymentsListRequest object. Fields: pageSize: The maximum number of deployments to return. The service might return fewer than this value. If unspecified, at most 1,000 deployments are returned. The maximum possible value is 1,000; values above 1,000 are changed to 1,000. pageToken: A page token, received from a previous `ListDeployments` call. Provide this to retrieve the subsequent page. When paginating, all other parameters provided to `ListDeployments` must match the call that provided the page token. parent: Required. Name of the project in which to create the deployment. Example: `projects/my_project`. """ pageSize = _messages.IntegerField(1, variant=_messages.Variant.INT32) pageToken = _messages.StringField(2) parent = _messages.StringField(3, required=True) class GsuiteaddonsProjectsDeploymentsReplaceDeploymentRequest(_messages.Message): r"""A GsuiteaddonsProjectsDeploymentsReplaceDeploymentRequest object. Fields: googleCloudGsuiteaddonsV1Deployment: A GoogleCloudGsuiteaddonsV1Deployment resource to be passed as the request body. name: The deployment resource name. Example: `projects/123/deployments/my_deployment`. """ googleCloudGsuiteaddonsV1Deployment = _messages.MessageField('GoogleCloudGsuiteaddonsV1Deployment', 1) name = _messages.StringField(2, required=True) class GsuiteaddonsProjectsDeploymentsUninstallRequest(_messages.Message): r"""A GsuiteaddonsProjectsDeploymentsUninstallRequest object. Fields: googleCloudGsuiteaddonsV1UninstallDeploymentRequest: A GoogleCloudGsuiteaddonsV1UninstallDeploymentRequest resource to be passed as the request body. name: Required. The full resource name of the deployment to install. Example: `projects/my_project/deployments/my_deployment`. """ googleCloudGsuiteaddonsV1UninstallDeploymentRequest = _messages.MessageField('GoogleCloudGsuiteaddonsV1UninstallDeploymentRequest', 1) name = _messages.StringField(2, required=True) class GsuiteaddonsProjectsGetAuthorizationRequest(_messages.Message): r"""A GsuiteaddonsProjectsGetAuthorizationRequest object. Fields: name: Required. Name of the project for which to get the Google Workspace Add-on authorization information. Example: `projects/my_project/authorization`. """ name = _messages.StringField(1, required=True) class StandardQueryParameters(_messages.Message): r"""Query parameters accepted by all methods. Enums: FXgafvValueValuesEnum: V1 error format. AltValueValuesEnum: Data format for response. Fields: f__xgafv: V1 error format. access_token: OAuth access token. alt: Data format for response. callback: JSONP fields: Selector specifying which fields to include in a partial response. key: API key. Your API key identifies your project and provides you with API access, quota, and reports. Required unless you provide an OAuth 2.0 token. oauth_token: OAuth 2.0 token for the current user. prettyPrint: Returns response with indentations and line breaks. quotaUser: Available to use for quota purposes for server-side applications. Can be any arbitrary string assigned to a user, but should not exceed 40 characters. trace: A tracing token of the form "token:<tokenid>" to include in api requests. uploadType: Legacy upload protocol for media (e.g. "media", "multipart"). upload_protocol: Upload protocol for media (e.g. "raw", "multipart"). """ class AltValueValuesEnum(_messages.Enum): r"""Data format for response. Values: json: Responses with Content-Type of application/json media: Media download with context-dependent Content-Type proto: Responses with Content-Type of application/x-protobuf """ json = 0 media = 1 proto = 2 class FXgafvValueValuesEnum(_messages.Enum): r"""V1 error format. Values: _1: v1 error format _2: v2 error format """ _1 = 0 _2 = 1 f__xgafv = _messages.EnumField('FXgafvValueValuesEnum', 1) access_token = _messages.StringField(2) alt = _messages.EnumField('AltValueValuesEnum', 3, default='json') callback = _messages.StringField(4) fields = _messages.StringField(5) key = _messages.StringField(6) oauth_token = _messages.StringField(7) prettyPrint = _messages.BooleanField(8, default=True) quotaUser = _messages.StringField(9) trace = _messages.StringField(10) uploadType = _messages.StringField(11) upload_protocol = _messages.StringField(12) encoding.AddCustomJsonFieldMapping( StandardQueryParameters, 'f__xgafv', '$.xgafv') encoding.AddCustomJsonEnumMapping( StandardQueryParameters.FXgafvValueValuesEnum, '_1', '1') encoding.AddCustomJsonEnumMapping( StandardQueryParameters.FXgafvValueValuesEnum, '_2', '2')
d29f5685c461da483a731f28490384ef6e074cab
a0cf59e79154d6062c2dccfb2ff8b61aa9681486
/10.py
9f90c64b92e30c225325d27221e01584d6676600
[]
no_license
PetraVidnerova/AdventOfCode
a211d77210ac1c43a9b2c0f546250f6d7c1d183c
5b0e8017fcd8f71576a312b6c7b5bd3602be6e89
refs/heads/master
2021-01-10T16:07:03.336632
2016-02-28T14:02:54
2016-02-28T14:02:54
52,216,197
0
0
null
2016-02-21T17:17:37
2016-02-21T16:39:51
null
UTF-8
Python
false
false
471
py
def read(input): # one iteration of read input = input + "x" # last char is ignored result = "" lastchar = None count = 0 for ch in input: if ch == lastchar: count += 1 continue if lastchar: result = result + str(count) + str(lastchar) count = 1 lastchar = ch return result input = "3113322113" for x in range(50): print(x) input = read(input) print(len(input))
ce468ff5a9ed3402454e645b2be13c4a473020ea
e10a6d844a286db26ef56469e31dc8488a8c6f0e
/gaternet/main.py
c4692b2cd0fdba89e13d15c53467b6b2f916be48
[ "Apache-2.0", "CC-BY-4.0" ]
permissive
Jimmy-INL/google-research
54ad5551f97977f01297abddbfc8a99a7900b791
5573d9c5822f4e866b6692769963ae819cb3f10d
refs/heads/master
2023-04-07T19:43:54.483068
2023-03-24T16:27:28
2023-03-24T16:32:17
282,682,170
1
0
Apache-2.0
2020-07-26T15:50:32
2020-07-26T15:50:31
null
UTF-8
Python
false
false
5,362
py
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Loads a GaterNet checkpoint and tests on Cifar-10 test set.""" import argparse import io import os from backbone_resnet import Network as Backbone from gater_resnet import Gater import torch import torch.nn as nn import torch.nn.functional as F from torchvision import datasets from torchvision import transforms def load_from_state(state_dict, model): """Loads the state dict of a checkpoint into model.""" tem_dict = dict() for k in state_dict.keys(): tem_dict[k.replace('module.', '')] = state_dict[k] state_dict = tem_dict ckpt_key = set(state_dict.keys()) model_key = set(model.state_dict().keys()) print('Keys not in current model: {}\n'.format(ckpt_key - model_key)) print('Keys not in checkpoint: {}\n'.format(model_key - ckpt_key)) model.load_state_dict(state_dict, strict=True) print('Successfully reload from state.') return model def test(backbone, gater, device, test_loader): """Tests the model on a test set.""" backbone.eval() gater.eval() loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) gate = gater(data) output = backbone(data, gate) loss += F.cross_entropy(output, target, size_average=False).item() pred = output.max(1, keepdim=True)[1] correct += pred.eq(target.view_as(pred)).sum().item() loss /= len(test_loader.dataset) acy = 100. * correct / len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.4f}%)\n'.format( loss, correct, len(test_loader.dataset), acy)) return acy def run(args, device, test_loader): """Loads checkpoint into GaterNet and runs test on the test data.""" with open(args.checkpoint_file, 'rb') as fin: inbuffer = io.BytesIO(fin.read()) state_dict = torch.load(inbuffer, map_location='cpu') print('Successfully load checkpoint file.\n') backbone = Backbone(depth=args.backbone_depth, num_classes=10) print('Loading checkpoint weights into backbone.') backbone = load_from_state(state_dict['backbone_state_dict'], backbone) backbone = nn.DataParallel(backbone).to(device) print('Backbone is ready after loading checkpoint and moving to device:') print(backbone) n_params_b = sum( [param.view(-1).size()[0] for param in backbone.parameters()]) print('Number of parameters in backbone: {}\n'.format(n_params_b)) gater = Gater(depth=20, bottleneck_size=8, gate_size=backbone.module.gate_size) print('Loading checkpoint weights into gater.') gater = load_from_state(state_dict['gater_state_dict'], gater) gater = nn.DataParallel(gater).to(device) print('Gater is ready after loading checkpoint and moving to device:') print(gater) n_params_g = sum( [param.view(-1).size()[0] for param in gater.parameters()]) print('Number of parameters in gater: {}'.format(n_params_g)) print('Total number of parameters: {}\n'.format(n_params_b + n_params_g)) print('Running test on test data.') test(backbone, gater, device, test_loader) def parse_flags(): """Parses input arguments.""" parser = argparse.ArgumentParser(description='GaterNet') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--backbone-depth', type=int, default=20, help='resnet depth of the backbone subnetwork') parser.add_argument('--checkpoint-file', type=str, default=None, help='checkpoint file to run test') parser.add_argument('--data-dir', type=str, default=None, help='the directory for storing data') args = parser.parse_args() return args def main(args): print('Input arguments:\n{}\n'.format(args)) use_cuda = not args.no_cuda and torch.cuda.is_available() print('use_cuda: {}'.format(use_cuda)) device = torch.device('cuda' if use_cuda else 'cpu') torch.backends.cudnn.benchmark = True print('device: {}'.format(device)) if not os.path.isdir(args.data_dir): os.mkdir(args.data_dir) kwargs = {'num_workers': 8, 'pin_memory': True} if use_cuda else {} normalize_mean = [0.4914, 0.4822, 0.4465] normalize_std = [0.2470, 0.2435, 0.2616] test_loader = torch.utils.data.DataLoader( datasets.CIFAR10( args.data_dir, train=False, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize(normalize_mean, normalize_std)]) ), batch_size=1000, shuffle=False, drop_last=False, **kwargs) print('Successfully get data loader.') run(args, device, test_loader) if __name__ == '__main__': main(parse_flags())
d3e688e2e0724426f98735db7408e549f3245eda
717f7d68e5f36c1d30d223cb201407b0f9c11f9c
/statistical data analysis/02_variance_measure.py
dc22125bd55674bad964315424d4951b43a8ed47
[]
no_license
raunakshakya/PythonPractice
7f54508f9adb8541a9cedc7a58e3629bcfb9b6f5
3643e9f526401d31ca706f036af0cdae3da04984
refs/heads/master
2020-03-22T18:01:54.357735
2019-06-05T03:32:07
2019-06-05T03:32:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,160
py
# https://www.tutorialspoint.com/python/python_measuring_variance.htm """ Variance is a measure of how far a value in a data set lies from the mean value. In other words, it indicates how dispersed the values are. It is measured by using standard deviation. The other method commonly used is skewness. """ import pandas as pd # Create a Dictionary of series d = {'Name': pd.Series(['Tom', 'James', 'Ricky', 'Vin', 'Steve', 'Smith', 'Jack', 'Lee', 'Chanchal', 'Gasper', 'Naviya', 'Andres']), 'Age': pd.Series([25, 26, 25, 23, 30, 25, 23, 34, 40, 30, 25, 46]), 'Rating': pd.Series([4.23, 3.24, 3.98, 2.56, 3.20, 4.6, 3.8, 3.78, 2.98, 4.80, 4.10, 3.65])} # Create a DataFrame df = pd.DataFrame(d) """ Standard deviation is square root of variance. """ # Calculate the standard deviation print(df.std()) print() """ Skewness is used to determine whether the data is symmetric or skewed. If the index is between -1 and 1, then the distribution is symmetric. If the index is no more than -1 then it is skewed to the left and if it is at least 1, then it is skewed to the right. """ # Calculate the skewness print(df.skew())
a97ed4333fd26e92040a8518e6c7c947a2d216c3
747f759311d404af31c0f80029e88098193f6269
/addons/c2c_timesheet_reports/reminder.py
ab9dad36b4cf448e2f10b2624628cc6cc88d7346
[]
no_license
sgeerish/sirr_production
9b0d0f7804a928c0c582ddb4ccb7fcc084469a18
1081f3a5ff8864a31b2dcd89406fac076a908e78
refs/heads/master
2020-05-19T07:21:37.047958
2013-09-15T13:03:36
2013-09-15T13:03:36
9,648,444
0
1
null
null
null
null
UTF-8
Python
false
false
71
py
/home/openerp/production/extra-addons/c2c_timesheet_reports/reminder.py
d6271117a9193e0facb6f43251e36bccbc847ba1
9bb01fa882e713aa59345051fec07f4e3d3478b0
/tests/cysparse_/sparse/common_attributes/test_common_attributes_matrices_likes_ConjugatedSparseMatrix_INT32_t_FLOAT32_t.py
17904df851dbc456f945b9e24ed309bc76956c00
[]
no_license
syarra/cysparse
f1169c496b54d61761fdecbde716328fd0fb131b
7654f7267ab139d0564d3aa3b21c75b364bcfe72
refs/heads/master
2020-05-25T16:15:38.160443
2017-03-14T21:17:39
2017-03-14T21:17:39
84,944,993
0
0
null
2017-03-14T12:11:48
2017-03-14T12:11:48
null
UTF-8
Python
false
false
7,395
py
#!/usr/bin/env python """ This file tests basic common attributes for **all** matrix like objects. Proxies are only tested for a :class:`LLSparseMatrix` object. See file ``sparse_matrix_coherence_test_functions``. """ from sparse_matrix_like_common_attributes import common_matrix_like_attributes import unittest from cysparse.sparse.ll_mat import * from cysparse.common_types.cysparse_types import * ######################################################################################################################## # Tests ######################################################################################################################## ################################## # Case Non Symmetric, Non Zero ################################## class CySparseCommonAttributesMatrices_ConjugatedSparseMatrix_INT32_t_FLOAT32_t_TestCase(unittest.TestCase): def setUp(self): self.nrow = 10 self.ncol = 14 self.nnz = self.nrow * self.ncol self.A = LinearFillLLSparseMatrix(nrow=self.nrow, ncol=self.ncol, dtype=FLOAT32_T, itype=INT32_T) self.C = self.A.conj self.nargin = self.ncol self.nargout = self.nrow self.base_type_str = self.A.base_type_str def test_common_attributes(self): is_OK, attribute = common_matrix_like_attributes(self.C) self.assertTrue(is_OK, msg="Attribute '%s' is missing" % attribute) def test_nrow_attribute(self): self.assertTrue(self.C.nrow == self.nrow) def test_ncol_attribute(self): self.assertTrue(self.C.ncol == self.ncol) def test_nnz_attribute(self): self.assertTrue(self.C.nnz == self.nnz) def test_symmetric_storage_attribute(self): self.assertTrue(not self.C.store_symmetric) def test_zero_storage_attribute(self): self.assertTrue(not self.C.store_zero) def test_is_mutable_attribute(self): self.assertTrue(self.C.is_mutable) def test_base_type_str(self): self.assertTrue(self.C.base_type_str == self.base_type_str, "'%s' is not '%s'" % (self.C.base_type_str, self.base_type_str)) def test_is_symmetric(self): self.assertTrue(not self.C.is_symmetric) def test_nargin(self): self.assertTrue(self.nargin == self.C.nargin) def test_nargout(self): self.assertTrue(self.nargout == self.C.nargout) ################################## # Case Symmetric, Non Zero ################################## class CySparseCommonAttributesSymmetricMatrices_ConjugatedSparseMatrix_INT32_t_FLOAT32_t_TestCase(unittest.TestCase): def setUp(self): self.size = 14 self.nnz = ((self.size + 1) * self.size) / 2 self.nargin = self.size self.nargout = self.size self.A = LinearFillLLSparseMatrix(size=self.size, dtype=FLOAT32_T, itype=INT32_T, store_symmetric=True) self.C = self.A.conj self.base_type_str = self.A.base_type_str def test_common_attributes(self): is_OK, attribute = common_matrix_like_attributes(self.C) self.assertTrue(is_OK, msg="Attribute '%s' is missing" % attribute) def test_nrow_attribute(self): self.assertTrue(self.C.nrow == self.size) def test_ncol_attribute(self): self.assertTrue(self.C.ncol == self.size) def test_nnz_attribute(self): self.assertTrue(self.C.nnz == self.nnz, '%d is not %d' % (self.C.nnz, self.nnz)) def test_symmetric_storage_attribute(self): self.assertTrue(self.C.store_symmetric) def test_zero_storage_attribute(self): self.assertTrue(not self.C.store_zero) def test_is_mutable_attribute(self): self.assertTrue(self.C.is_mutable) def test_base_type_str(self): self.assertTrue(self.C.base_type_str == self.base_type_str) def test_is_symmetric(self): self.assertTrue(self.C.is_symmetric) def test_nargin(self): self.assertTrue(self.nargin == self.C.nargin) def test_nargout(self): self.assertTrue(self.nargout == self.C.nargout) ################################## # Case Non Symmetric, Zero ################################## class CySparseCommonAttributesWithZeroMatrices_ConjugatedSparseMatrix_INT32_t_FLOAT32_t_TestCase(unittest.TestCase): def setUp(self): self.nrow = 10 self.ncol = 14 self.nnz = self.nrow * self.ncol self.A = LinearFillLLSparseMatrix(nrow=self.nrow, ncol=self.ncol, dtype=FLOAT32_T, itype=INT32_T, store_zero=True) self.C = self.A.conj self.nargin = self.ncol self.nargout = self.nrow self.base_type_str = self.A.base_type_str def test_common_attributes(self): is_OK, attribute = common_matrix_like_attributes(self.C) self.assertTrue(is_OK, msg="Attribute '%s' is missing" % attribute) def test_nrow_attribute(self): self.assertTrue(self.C.nrow == self.nrow) def test_ncol_attribute(self): self.assertTrue(self.C.ncol == self.ncol) def test_nnz_attribute(self): self.assertTrue(self.C.nnz == self.nnz) def test_symmetric_storage_attribute(self): self.assertTrue(not self.C.store_symmetric) def test_zero_storage_attribute(self): self.assertTrue(self.C.store_zero) def test_is_mutable_attribute(self): self.assertTrue(self.C.is_mutable) def test_base_type_str(self): self.assertTrue(self.C.base_type_str == self.base_type_str) def test_is_symmetric(self): self.assertTrue(not self.C.is_symmetric) def test_nargin(self): self.assertTrue(self.nargin == self.C.nargin) def test_nargout(self): self.assertTrue(self.nargout == self.C.nargout) ################################## # Case Symmetric, Zero ################################## class CySparseCommonAttributesSymmetricWithZeroMatrices_ConjugatedSparseMatrix_INT32_t_FLOAT32_t_TestCase(unittest.TestCase): def setUp(self): self.size = 14 self.nnz = ((self.size + 1) * self.size) / 2 self.A = LinearFillLLSparseMatrix(size=self.size, dtype=FLOAT32_T, itype=INT32_T, store_symmetric=True, store_zero=True) self.nargin = self.size self.nargout = self.size self.C = self.A.conj self.base_type_str = self.A.base_type_str def test_common_attributes(self): is_OK, attribute = common_matrix_like_attributes(self.C) self.assertTrue(is_OK, msg="Attribute '%s' is missing" % attribute) def test_nrow_attribute(self): self.assertTrue(self.C.nrow == self.size) def test_ncol_attribute(self): self.assertTrue(self.C.ncol == self.size) def test_nnz_attribute(self): self.assertTrue(self.C.nnz, self.nnz) def test_symmetric_storage_attribute(self): self.assertTrue(self.C.store_symmetric) def test_zero_storage_attribute(self): self.assertTrue(self.C.store_zero) def test_is_mutable_attribute(self): self.assertTrue(self.C.is_mutable) def test_base_type_str(self): self.assertTrue(self.C.base_type_str == self.base_type_str) def test_is_symmetric(self): self.assertTrue(self.C.is_symmetric) def test_nargin(self): self.assertTrue(self.nargin == self.C.nargin) def test_nargout(self): self.assertTrue(self.nargout == self.C.nargout) if __name__ == '__main__': unittest.main()
c284c62518399e7db958db634226e57614625b90
2f0ab8bdc939da79a314a749044a13a429596832
/odin/bay/layers/dense.py
7c455df3b1845c0f9ec7b08f8e4f5fe317632de0
[ "MIT" ]
permissive
YashinaTatiana/odin-ai
6bb65d691471cf632b4137fc21bd0b09ef76cf2a
f44c56c3f01ddb354bfc5df430bfd6587f95897c
refs/heads/master
2022-04-20T15:26:20.617310
2020-04-23T17:35:57
2020-04-23T17:35:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
19,313
py
from __future__ import absolute_import, division, print_function import inspect from functools import partial from numbers import Number from typing import Callable, Optional, Text, Type, Union import numpy as np import tensorflow as tf from six import string_types from tensorflow.python.keras import Model, Sequential from tensorflow.python.keras import layers as layer_module from tensorflow.python.keras.layers import Dense, Lambda from tensorflow_probability.python.bijectors import FillScaleTriL from tensorflow_probability.python.distributions import (Categorical, Distribution, Independent, MixtureSameFamily, MultivariateNormalDiag, MultivariateNormalTriL, Normal) from tensorflow_probability.python.internal import \ distribution_util as dist_util from tensorflow_probability.python.layers import DistributionLambda from tensorflow_probability.python.layers.distribution_layer import ( DistributionLambda, _get_convert_to_tensor_fn, _serialize, _serialize_function) from odin import backend as bk from odin.bay.distribution_alias import parse_distribution from odin.bay.helpers import (KLdivergence, is_binary_distribution, is_discrete_distribution, is_mixture_distribution, is_zeroinflated_distribution, kl_divergence) from odin.bay.layers.continuous import VectorDeterministicLayer from odin.bay.layers.distribution_util_layers import Moments, Sampling __all__ = [ 'DenseDeterministic', 'DenseDistribution', 'MixtureDensityNetwork', 'MixtureMassNetwork' ] def _params_size(layer, event_shape): spec = inspect.getfullargspec(layer.params_size) args = spec.args + spec.kwonlyargs if 'event_size' == args[0]: event_shape = tf.reduce_prod(event_shape) # extra kwargs from function closure kw = {} if len(args) > 1: fn = layer._make_distribution_fn closures = { k: v.cell_contents for k, v in zip(fn.__code__.co_freevars, fn.__closure__) } for k in args[1:]: if k in closures: kw[k] = closures[k] return layer.params_size(event_shape, **kw) class DenseDistribution(Dense): r""" Using `Dense` layer to parameterize the tensorflow_probability `Distribution` Arguments: event_shape : `int` number of output units. posterior : the posterior distribution, a distribution alias or Distribution type can be given for later initialization (Default: 'normal'). prior : {`None`, `tensorflow_probability.Distribution`} prior distribution, used for calculating KL divergence later. use_bias : `bool` (default=`True`) enable biases for the Dense layers posterior_kwargs : `dict`. Keyword arguments for initializing the posterior `DistributionLambda` Return: `tensorflow_probability.Distribution` """ def __init__(self, event_shape=(), posterior='normal', posterior_kwargs={}, prior=None, convert_to_tensor_fn=Distribution.sample, dropout=0.0, activation='linear', use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, disable_projection=False, **kwargs): assert prior is None or isinstance(prior, Distribution), \ "prior can be None or instance of tensorflow_probability.Distribution" # duplicated event_shape or event_size in posterior_kwargs posterior_kwargs = dict(posterior_kwargs) if 'event_shape' in posterior_kwargs: event_shape = posterior_kwargs.pop('event_shape') if 'event_size' in posterior_kwargs: event_shape = posterior_kwargs.pop('event_size') convert_to_tensor_fn = posterior_kwargs.pop('convert_to_tensor_fn', Distribution.sample) # process the posterior # TODO: support give instance of DistributionLambda directly if inspect.isclass(posterior) and issubclass(posterior, DistributionLambda): post_layer_cls = posterior else: post_layer_cls, _ = parse_distribution(posterior) # create layers self._convert_to_tensor_fn = convert_to_tensor_fn self._posterior = posterior self._prior = prior self._event_shape = event_shape self._posterior_class = post_layer_cls self._posterior_kwargs = posterior_kwargs self._dropout = dropout # set more descriptive name name = kwargs.pop('name', None) if name is None: name = 'dense_%s' % (posterior if isinstance(posterior, string_types) else posterior.__class__.__name__) kwargs['name'] = name # params_size could be static function or method params_size = _params_size(self.posterior_layer(), event_shape) self._disable_projection = bool(disable_projection) super(DenseDistribution, self).__init__(units=params_size, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint, **kwargs) # store the distribution from last call self._last_distribution = None # if 'input_shape' in kwargs and not self.built: # self.build(kwargs['input_shape']) def build(self, input_shape): if self._disable_projection: self.built = True else: super().build(input_shape) @property def is_binary(self): return is_binary_distribution(self.posterior_layer) @property def is_discrete(self): return is_discrete_distribution(self.posterior_layer) @property def is_mixture(self): return is_mixture_distribution(self.posterior_layer) @property def is_zero_inflated(self): return is_zeroinflated_distribution(self.posterior_layer) @property def event_shape(self): shape = self._event_shape if not (tf.is_tensor(shape) or isinstance(shape, tf.TensorShape)): shape = tf.nest.flatten(shape) return shape @property def event_size(self): return tf.cast(tf.reduce_prod(self._event_shape), tf.int32) @property def prior(self) -> Distribution: return self._prior @prior.setter def prior(self, p): assert isinstance(p, (Distribution, type(None))) self._prior = p def posterior_layer(self, sample_shape=()) -> DistributionLambda: if self._convert_to_tensor_fn == Distribution.sample: fn = partial(Distribution.sample, sample_shape=sample_shape) else: fn = self._convert_to_tensor_fn return self._posterior_class(self._event_shape, convert_to_tensor_fn=fn, **self._posterior_kwargs) @property def posterior(self) -> Distribution: r""" Return the last parametrized distribution, i.e. the result from the last `call` """ return self._last_distribution @tf.function def sample(self, sample_shape=(), seed=None): r""" Sample from prior distribution """ if self._prior is None: raise RuntimeError("prior hasn't been provided for the %s" % self.__class__.__name__) return self.prior.sample(sample_shape=sample_shape, seed=seed) def call(self, inputs, training=None, sample_shape=(), projection=True, prior=None): # projection by Dense layer could be skipped by setting projection=False # NOTE: a 2D inputs is important here, but we don't want to flatten # automatically if projection and not self._disable_projection: params = super().call(inputs) else: params = inputs # applying dropout if self._dropout > 0: params = bk.dropout(params, p_drop=self._dropout, training=training) # create posterior distribution (this will create a new layer everytime) posterior = self.posterior_layer(sample_shape=sample_shape)( params, training=training) self._last_distribution = posterior # NOTE: all distribution has the method kl_divergence, so we cannot use it prior = self.prior if prior is None else prior posterior.KL_divergence = KLdivergence( posterior, prior=prior, sample_shape=None) # None mean reuse samples here assert not hasattr(posterior, 'prior'), "Cannot assign prior to the output" posterior.prior = prior return posterior def kl_divergence(self, prior=None, analytic=True, sample_shape=1, reverse=True): r""" KL(q||p) where `p` is the posterior distribution returned from last call Arguments: prior : instance of `tensorflow_probability.Distribution` prior distribution of the latent analytic : `bool` (default=`True`). Using closed form solution for calculating divergence, otherwise, sampling with MCMC reverse : `bool`. If `True`, calculate `KL(q||p)` else `KL(p||q)` sample_shape : `int` (default=`1`) number of MCMC sample if `analytic=False` Return: kullback_divergence : Tensor [sample_shape, batch_size, ...] """ if prior is None: prior = self._prior assert isinstance(prior, Distribution), "prior is not given!" if self.posterior is None: raise RuntimeError( "DenseDistribution must be called to create the distribution before " "calculating the kl-divergence.") kullback_div = kl_divergence(q=self.posterior, p=prior, analytic=bool(analytic), reverse=reverse, q_sample=sample_shape, auto_remove_independent=True) if analytic: kullback_div = tf.expand_dims(kullback_div, axis=0) if isinstance(sample_shape, Number) and sample_shape > 1: ndims = kullback_div.shape.ndims kullback_div = tf.tile(kullback_div, [sample_shape] + [1] * (ndims - 1)) return kullback_div def log_prob(self, x): r""" Calculating the log probability (i.e. log likelihood) using the last distribution returned from call """ return self.posterior.log_prob(x) def __repr__(self): return self.__str__() def __str__(self): text = "<Dense proj:%s shape:%s #params:%d posterior:%s prior:%s dropout:%.2f kw:%s>" % \ (not self._disable_projection, self.event_shape, self.units, self._posterior_class.__name__, str(self.prior), self._dropout, str(self._posterior_kwargs)) text = text.replace("tfp.distributions.", "") return text def get_config(self): config = super().get_config() config['convert_to_tensor_fn'] = _serialize(self._convert_to_tensor_fn) config['event_shape'] = self._event_shape config['posterior'] = self._posterior config['prior'] = self._prior config['dropout'] = self._dropout config['posterior_kwargs'] = self._posterior_kwargs config['disable_projection'] = self._disable_projection return config # =========================================================================== # Shortcuts # =========================================================================== class MixtureDensityNetwork(DenseDistribution): def __init__(self, units, n_components=2, covariance='none', loc_activation='linear', scale_activation='softplus1', convert_to_tensor_fn=Distribution.sample, use_bias=True, dropout=0.0, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, **kwargs): self.covariance = covariance self.n_components = n_components super().__init__(event_shape=units, posterior='mixgaussian', posterior_kwargs=dict(n_components=int(n_components), covariance=str(covariance), loc_activation=loc_activation, scale_activation=scale_activation), convert_to_tensor_fn=convert_to_tensor_fn, dropout=dropout, activation='linear', use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint, **kwargs) def set_prior(self, loc=0., log_scale=np.log(np.expm1(1)), mixture_logits=1.): r""" Set the prior for mixture density network loc : Scalar or Tensor with shape `[n_components, event_size]` log_scale : Scalar or Tensor with shape `[n_components, event_size]` for 'none' and 'diag' component, and `[n_components, event_size*(event_size +1)//2]` for 'full' component. mixture_logits : Scalar or Tensor with shape `[n_components]` """ event_size = self.event_size if self.covariance == 'diag': scale_shape = [self.n_components, event_size] fn = lambda l, s: MultivariateNormalDiag(loc=l, scale_diag=tf.nn.softplus(s)) elif self.covariance == 'none': scale_shape = [self.n_components, event_size] fn = lambda l, s: Independent(Normal(loc=l, scale=tf.math.softplus(s)), 1) elif self.covariance == 'full': scale_shape = [self.n_components, event_size * (event_size + 1) // 2] fn = lambda l, s: MultivariateNormalTriL( loc=l, scale_tril=FillScaleTriL(diag_shift=1e-5)(tf.math.softplus(s))) # if isinstance(log_scale, Number) or tf.rank(log_scale) == 0: loc = tf.fill([self.n_components, self.event_size], loc) # if isinstance(log_scale, Number) or tf.rank(log_scale) == 0: log_scale = tf.fill(scale_shape, log_scale) # if mixture_logits is None: mixture_logits = 1. if isinstance(mixture_logits, Number) or tf.rank(mixture_logits) == 0: mixture_logits = tf.fill([self.n_components], mixture_logits) # loc = tf.cast(loc, self.dtype) log_scale = tf.cast(log_scale, self.dtype) mixture_logits = tf.cast(mixture_logits, self.dtype) self._prior = MixtureSameFamily( components_distribution=fn(loc, log_scale), mixture_distribution=Categorical(logits=mixture_logits), name="prior") return self class MixtureMassNetwork(DenseDistribution): def __init__(self, event_shape=(), n_components=2, mean_activation='softplus1', disp_activation=None, dispersion='full', alternative=False, zero_inflated=False, convert_to_tensor_fn=Distribution.sample, use_bias=True, dropout=0.0, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, **kwargs): self.n_components = n_components self.dispersion = dispersion self.zero_inflated = zero_inflated self.alternative = alternative super().__init__(event_shape=event_shape, posterior='mixnb', prior=None, posterior_kwargs=dict( n_components=int(n_components), mean_activation=mean_activation, disp_activation=disp_activation, dispersion=dispersion, alternative=alternative, zero_inflated=zero_inflated, ), convert_to_tensor_fn=convert_to_tensor_fn, dropout=dropout, activation='linear', use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint, **kwargs) class DenseDeterministic(DenseDistribution): r""" Similar to `keras.Dense` layer but return a `tensorflow_probability.VectorDeterministic` distribution to represent the output, hence, making it compatible to the probabilistic framework. """ def __init__(self, units, dropout=0.0, activation='linear', use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, **kwargs): super().__init__(event_shape=int(units), posterior='vdeterministic', posterior_kwargs={}, prior=None, convert_to_tensor_fn=Distribution.sample, dropout=dropout, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint, **kwargs)
4ea282c215b39bd1c20dba68c9aa0b0f34066973
e6dab5aa1754ff13755a1f74a28a201681ab7e1c
/.parts/lib/yaml-3.10/yaml/composer.py
09bc60b808f475856445853ce5b7bc7054ef576a
[]
no_license
ronkagan/Euler_1
67679203a9510147320f7c6513eefd391630703e
022633cc298475c4f3fd0c6e2bde4f4728713995
refs/heads/master
2021-01-06T20:45:52.901025
2014-09-06T22:34:16
2014-09-06T22:34:16
23,744,842
0
1
null
null
null
null
UTF-8
Python
false
false
81
py
/home/action/.parts/packages/googleappengine/1.9.4/lib/yaml-3.10/yaml/composer.py
8e5530438c97d0e7a5e092c7bb90b4885627ccac
bb150497a05203a718fb3630941231be9e3b6a32
/framework/e2e/jit/test_Conv1DTranspose_7.py
38603397c5765f6c7bc79e052c30df74cd538a9e
[]
no_license
PaddlePaddle/PaddleTest
4fb3dec677f0f13f7f1003fd30df748bf0b5940d
bd3790ce72a2a26611b5eda3901651b5a809348f
refs/heads/develop
2023-09-06T04:23:39.181903
2023-09-04T11:17:50
2023-09-04T11:17:50
383,138,186
42
312
null
2023-09-13T11:13:35
2021-07-05T12:44:59
Python
UTF-8
Python
false
false
635
py
#!/bin/env python # -*- coding: utf-8 -*- # encoding=utf-8 vi:ts=4:sw=4:expandtab:ft=python """ test jit cases """ import os import sys sys.path.append(os.path.abspath(os.path.dirname(os.getcwd()))) sys.path.append(os.path.join(os.path.abspath(os.path.dirname(os.getcwd())), "utils")) from utils.yaml_loader import YamlLoader from jittrans import JitTrans yaml_path = os.path.join(os.path.abspath(os.path.dirname(os.getcwd())), "yaml", "nn.yml") yml = YamlLoader(yaml_path) def test_Conv1DTranspose_7(): """test Conv1DTranspose_7""" jit_case = JitTrans(case=yml.get_case_info("Conv1DTranspose_7")) jit_case.jit_run()
8761eaff518d705e57ceb09085af5d4088e080fb
71047c4c45e97f474b45e0989202d8d88b0e4895
/sparse_dot/sparse_dot.py
3e82d3d8e3094bf5d04af57799a660e9c4e6e47a
[ "Apache-2.0" ]
permissive
pluralsight/sparse_dot
bd86e676e323ef84f51b2b5ae7b453ba7fa66916
271131a3a28f12d7dcca0fbeca8591e9d052c98a
refs/heads/master
2023-04-01T06:03:51.845211
2016-12-13T19:33:30
2016-12-13T19:33:30
72,578,014
3
1
Apache-2.0
2023-03-27T18:25:07
2016-11-01T21:24:52
Python
UTF-8
Python
false
false
2,459
py
'''The main script''' # To update with any Cython changes, just run: # python setup.py build_ext --inplace import numpy as np import cy_sparse_dot def to_saf(arr1d): arr1d = np.asanyarray(arr1d) locs = np.nonzero(arr1d) return {'locs': locs[0].astype(np.uint32), 'array': arr1d[locs].astype(np.float32)} def to_saf_list(arr2d): return map(to_saf, arr2d) def validate_saf(saf, verbose=True): '''True if the locs (indices) in a saf are ordered AND the data types of the arrays are uint32 and float32 respectively''' def vpr(x): if verbose: print x if not ('locs' in saf and 'array' in saf): vpr('missing members') return False if not (hasattr(saf['locs'], 'dtype') and hasattr(saf['array'], 'dtype')): vpr('members not arrays') return False if not (saf['locs'].dtype == np.uint32 and saf['array'].dtype == np.float32): vpr('bad dtype') return False if not np.all(saf['locs'][1:] > saf['locs'][:-1]): vpr('locs not ordered') return False return True def sparse_dot_full(saf_list, validate=True, verbose=True): '''Takes a list of arrays in locs/array dict form and ''' if validate: assert all(validate_saf(saf, verbose=verbose) for saf in saf_list) return cy_sparse_dot.cy_sparse_dot_full(saf_list) def dot_full_using_sparse(arr): '''Takes a 2d array and runs dot products against every combination of rows''' return sparse_dot_full(to_saf_list(arr), validate=False) def sparse_cos_similarity(saf_list, validate=True, verbose=True): norms = np.array([np.linalg.norm(saf['array']) for saf in saf_list]) dots = sparse_dot_full(saf_list, validate=validate, verbose=verbose) norm_i, norm_j = norms[(dots['i'],)], norms[(dots['j'],)] dots['sparse_result'] /= norm_i * norm_j return dots def sparse_cos_distance(saf_list, validate=True, verbose=True): dots = sparse_cos_similarity(saf_list, validate=validate, verbose=verbose) dots['sparse_result'] *= -1 dots['sparse_result'] += 1 return dots def cos_similarity_using_sparse(arr): return sparse_cos_similarity(to_saf_list(arr)) def cos_distance_using_sparse(arr): return sparse_cos_distance(to_saf_list(arr)) if __name__ == '__main__': r = dot_full_using_sparse([[1, 0, 0, 1, 3, 1], [2, 0, 0, 0, 1, 5]]) print r
9a8cac4b3e32f6a077d7eb78d0f5051c0512f4a2
936dc2666f27de7a7d1428c7ad2ded62a722b8fa
/src/aids/migrations/0176_alter_aid_subvention_comment.py
9b1d57c10296955b4148ac4b92dc72f523a577cb
[ "ISC" ]
permissive
MTES-MCT/aides-territoires
03451a32bdeaab3812b8593bfe3a27c1b1d9a182
af9f6e6e8b1918363793fbf291f3518ef1454169
refs/heads/master
2023-09-04T22:15:17.819264
2023-08-25T13:19:17
2023-08-25T13:19:17
124,301,398
21
11
NOASSERTION
2023-09-12T13:46:49
2018-03-07T22:19:11
Python
UTF-8
Python
false
false
553
py
# Generated by Django 4.1.7 on 2023-04-25 12:27 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("aids", "0175_aid_ds_id_aid_ds_mapping_aid_ds_schema_exists"), ] operations = [ migrations.AlterField( model_name="aid", name="subvention_comment", field=models.CharField( blank=True, max_length=255, verbose_name="Taux de subvention (commentaire optionnel)", ), ), ]
54ca12d67db93ad73a903f15cd006cccfdefb7b9
38b8bceafb4d80afc7c77196eb9ee99694191bcf
/scrapy/study/w3school/w3school/pipelines.py
f7b1b2c843306a1645d8a3cfe490cb83fe27c0f5
[]
no_license
tangc1986/PythonStudy
f6c5b384874e82fbf0b5f51cfb7a7a89a48ec0ff
1ed1956758e971647426e7096ac2e8cbcca585b4
refs/heads/master
2021-01-23T20:39:23.930754
2017-10-08T07:40:32
2017-10-08T07:42:38
42,122,267
0
0
null
null
null
null
UTF-8
Python
false
false
542
py
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html import json import codecs class W3SchoolPipeline(object): def __init__(self): self.file = codecs.open('w3school_data_utf8.json', 'wb', encoding='utf-8') def process_item(self, item, spider): line = json.dumps(dict(item)) + '\n' # print line self.file.write(line.decode("unicode_escape")) return item
bc84b1d032b1997b9821ff3ddf33c6d2c324154e
a6f9b3b1503fc08e7d77161bb2b5beac3b89480d
/app/main/views.py
d9d53ba612eb73e52f381e20e54f8542edc6833b
[]
no_license
AugustineOchieng/newsFeed
e779d7e4cf91c6769947cb5e140d417001ecf7c2
b08720540c31453f895f395524177edb489add97
refs/heads/master
2020-05-09T14:53:23.346539
2019-04-16T10:04:09
2019-04-16T10:04:09
181,212,503
0
0
null
null
null
null
UTF-8
Python
false
false
1,064
py
from flask import render_template,request,redirect,url_for from . import main from flask import render_template,request,redirect,url_for from ..request import get_source,article_source,get_category,get_headlines #our views @main.route('/') def index(): ''' Root function returning index/home page with data ''' source= get_source() headlines = get_headlines() return render_template('index.html',sources=source, headlines = headlines) @main.route('/article/<id>') def article(id): ''' View article page function that returns the various article details page and its data ''' # title= 'Articles' articles = article_source(id) return render_template('article.html',articles= articles,id=id ) @main.route('/categories/<cat_name>') def category(cat_name): ''' function to return the categories.html page and its content ''' category = get_category(cat_name) title = f'{cat_name}' cat = cat_name return render_template('categories.html',title = title,category = category, cat= cat_name)
ec7f623c696363ec82e593a0d6aac0e53ec677b5
26d450ba94d06ce9ff2ced9e41c2daf6ea011118
/demo/demo3.py
49f164c4895737804908e1e03a4f0aff2eb7e256
[ "BSD-2-Clause", "BSD-3-Clause" ]
permissive
Correct-Syntax/ui-style-lang
d0a9ac478dc9c7572d0d663b48eea0c07dd48705
5c6dc9f1cd50de35c5745082dd02dc572f794ccc
refs/heads/master
2023-04-28T20:01:03.866809
2021-05-14T14:38:49
2021-05-14T14:38:49
267,696,517
12
0
null
null
null
null
UTF-8
Python
false
false
3,331
py
# Demo for UI Style Lang # ====================== # This demo file (demo3.py) is MIT licensed - (C) 2020 Noah Rahm, Correct Syntax # Usage: # It's a custom button...click it! # This demo is up-to-date import wx from uistylelang import UIStylePDC, UIStyleApp, UIStyleFrame class MainApplication(UIStyleFrame): def __init__(self): UIStyleFrame.__init__(self, None, title="UI Style Lang Demo", pos=(0, 0), size=(1000, 800), name="main-frame") # Create the DC self._pdc = UIStylePDC( self, './custom-widget-demo.uiss' ) self.DrawDrawing(self._pdc) self.Bind(wx.EVT_PAINT, self.OnPaint) self.Bind(wx.EVT_ERASE_BACKGROUND, lambda x: None) self.Bind(wx.EVT_LEFT_DOWN, self.OnLeftDown) self.Bind(wx.EVT_LEFT_UP, self.OnLeftUp) self.Bind(wx.EVT_MOTION, self.OnMotion) def OnPaint(self, event): dc = wx.BufferedPaintDC(self) dc = wx.GCDC(dc) # We need to clear the dc BEFORE calling PrepareDC. dc.Clear() # Draw to the dc using the calculated clipping rect. self._pdc.DrawToDCClipped( dc, wx.Rect(0, 0, self.Size[0], self.Size[1]) ) def OnMotion(self, event): pnt = event.GetPosition() elem_rect = self._pdc.GetWxRect('button') mouse_pnt = wx.Rect(pnt[0], pnt[1], 1, 1) if mouse_pnt.Intersects(elem_rect) == True: self._pdc.UpdateElem('button:hover') else: self._pdc.UpdateElem('button') self.RefreshDemo() def OnLeftDown(self, event): pnt = event.GetPosition() elem_rect = self._pdc.GetWxRect('button') # Create a 1x1 rect for the mouse pointer mouse_pnt = wx.Rect(pnt[0], pnt[1], 1, 1) if mouse_pnt.Intersects(elem_rect) == True: self._pdc.UpdateElem('button:press') self._pdc.UpdateElem('button-text:hover') self.RefreshDemo() def OnLeftUp(self, event): pnt = event.GetPosition() elem_rect = self._pdc.GetWxRect('button') # Create a 1x1 rect for the mouse pointer mouse_pnt = wx.Rect(pnt[0], pnt[1], 1, 1) if mouse_pnt.Intersects(elem_rect) == True: self._pdc.UpdateElem('button') self._pdc.UpdateElem('button-text') self.ButtonCallback() self.RefreshDemo() def DrawDrawing(self, dc): # Initial dc.InitElem('button') dc.InitElem('button-text', "TEXT", "UI Style Lang Demo") dc.InitElem('text', "TEXT", "UI Style Lang Demo") def RefreshDemo(self): rect = wx.Rect(0, 0, self.Size[0], self.Size[1]) self.RefreshRect(rect, False) self.Refresh() def ButtonCallback(self): notify = wx.adv.NotificationMessage( title="Button Clicked", message="You clicked the UI Style Lang custom button", parent=None, flags=wx.ICON_INFORMATION) notify.Show(timeout=2) # 1 for short timeout, 100 for long timeout if __name__ == '__main__': # Create the app and startup app = UIStyleApp(file='./custom-widget-demo.uiss', redirect=False) frame = MainApplication() frame.Show() app.SetTopWindow(frame) app.MainLoop()
a9e9e39af8ee92b0bba4707c28c6f54219d54710
3f327d2654b85b922909925b9f475315d78f4652
/Backend/lib/python3.6/site-packages/twilio/rest/api/v2010/account/outgoing_caller_id.py
628e08a85f4247c7f5276900e177aa432bd198b0
[ "MIT" ]
permissive
brianwang1217/SelfImprovementWebApp
8db45914027537aee9614f9d218c93cc08dc90f8
7892fc4ee5434307b74b14257b29a5f05a0a0dd7
refs/heads/master
2022-12-13T15:01:08.595735
2018-06-23T04:46:06
2018-06-23T04:46:06
137,548,289
1
1
MIT
2022-05-25T01:28:29
2018-06-16T02:48:52
Python
UTF-8
Python
false
false
15,446
py
# coding=utf-8 """ This code was generated by \ / _ _ _| _ _ | (_)\/(_)(_|\/| |(/_ v1.0.0 / / """ from twilio.base import deserialize from twilio.base import values from twilio.base.instance_context import InstanceContext from twilio.base.instance_resource import InstanceResource from twilio.base.list_resource import ListResource from twilio.base.page import Page class OutgoingCallerIdList(ListResource): """ """ def __init__(self, version, account_sid): """ Initialize the OutgoingCallerIdList :param Version version: Version that contains the resource :param account_sid: The unique sid that identifies this account :returns: twilio.rest.api.v2010.account.outgoing_caller_id.OutgoingCallerIdList :rtype: twilio.rest.api.v2010.account.outgoing_caller_id.OutgoingCallerIdList """ super(OutgoingCallerIdList, self).__init__(version) # Path Solution self._solution = { 'account_sid': account_sid, } self._uri = '/Accounts/{account_sid}/OutgoingCallerIds.json'.format(**self._solution) def stream(self, phone_number=values.unset, friendly_name=values.unset, limit=None, page_size=None): """ Streams OutgoingCallerIdInstance records from the API as a generator stream. This operation lazily loads records as efficiently as possible until the limit is reached. The results are returned as a generator, so this operation is memory efficient. :param unicode phone_number: Filter by phone number :param unicode friendly_name: Filter by friendly name :param int limit: Upper limit for the number of records to return. stream() guarantees to never return more than limit. Default is no limit :param int page_size: Number of records to fetch per request, when not set will use the default value of 50 records. If no page_size is defined but a limit is defined, stream() will attempt to read the limit with the most efficient page size, i.e. min(limit, 1000) :returns: Generator that will yield up to limit results :rtype: list[twilio.rest.api.v2010.account.outgoing_caller_id.OutgoingCallerIdInstance] """ limits = self._version.read_limits(limit, page_size) page = self.page( phone_number=phone_number, friendly_name=friendly_name, page_size=limits['page_size'], ) return self._version.stream(page, limits['limit'], limits['page_limit']) def list(self, phone_number=values.unset, friendly_name=values.unset, limit=None, page_size=None): """ Lists OutgoingCallerIdInstance records from the API as a list. Unlike stream(), this operation is eager and will load `limit` records into memory before returning. :param unicode phone_number: Filter by phone number :param unicode friendly_name: Filter by friendly name :param int limit: Upper limit for the number of records to return. list() guarantees never to return more than limit. Default is no limit :param int page_size: Number of records to fetch per request, when not set will use the default value of 50 records. If no page_size is defined but a limit is defined, list() will attempt to read the limit with the most efficient page size, i.e. min(limit, 1000) :returns: Generator that will yield up to limit results :rtype: list[twilio.rest.api.v2010.account.outgoing_caller_id.OutgoingCallerIdInstance] """ return list(self.stream( phone_number=phone_number, friendly_name=friendly_name, limit=limit, page_size=page_size, )) def page(self, phone_number=values.unset, friendly_name=values.unset, page_token=values.unset, page_number=values.unset, page_size=values.unset): """ Retrieve a single page of OutgoingCallerIdInstance records from the API. Request is executed immediately :param unicode phone_number: Filter by phone number :param unicode friendly_name: Filter by friendly name :param str page_token: PageToken provided by the API :param int page_number: Page Number, this value is simply for client state :param int page_size: Number of records to return, defaults to 50 :returns: Page of OutgoingCallerIdInstance :rtype: twilio.rest.api.v2010.account.outgoing_caller_id.OutgoingCallerIdPage """ params = values.of({ 'PhoneNumber': phone_number, 'FriendlyName': friendly_name, 'PageToken': page_token, 'Page': page_number, 'PageSize': page_size, }) response = self._version.page( 'GET', self._uri, params=params, ) return OutgoingCallerIdPage(self._version, response, self._solution) def get_page(self, target_url): """ Retrieve a specific page of OutgoingCallerIdInstance records from the API. Request is executed immediately :param str target_url: API-generated URL for the requested results page :returns: Page of OutgoingCallerIdInstance :rtype: twilio.rest.api.v2010.account.outgoing_caller_id.OutgoingCallerIdPage """ response = self._version.domain.twilio.request( 'GET', target_url, ) return OutgoingCallerIdPage(self._version, response, self._solution) def get(self, sid): """ Constructs a OutgoingCallerIdContext :param sid: Fetch by unique outgoing-caller-id Sid :returns: twilio.rest.api.v2010.account.outgoing_caller_id.OutgoingCallerIdContext :rtype: twilio.rest.api.v2010.account.outgoing_caller_id.OutgoingCallerIdContext """ return OutgoingCallerIdContext( self._version, account_sid=self._solution['account_sid'], sid=sid, ) def __call__(self, sid): """ Constructs a OutgoingCallerIdContext :param sid: Fetch by unique outgoing-caller-id Sid :returns: twilio.rest.api.v2010.account.outgoing_caller_id.OutgoingCallerIdContext :rtype: twilio.rest.api.v2010.account.outgoing_caller_id.OutgoingCallerIdContext """ return OutgoingCallerIdContext( self._version, account_sid=self._solution['account_sid'], sid=sid, ) def __repr__(self): """ Provide a friendly representation :returns: Machine friendly representation :rtype: str """ return '<Twilio.Api.V2010.OutgoingCallerIdList>' class OutgoingCallerIdPage(Page): """ """ def __init__(self, version, response, solution): """ Initialize the OutgoingCallerIdPage :param Version version: Version that contains the resource :param Response response: Response from the API :param account_sid: The unique sid that identifies this account :returns: twilio.rest.api.v2010.account.outgoing_caller_id.OutgoingCallerIdPage :rtype: twilio.rest.api.v2010.account.outgoing_caller_id.OutgoingCallerIdPage """ super(OutgoingCallerIdPage, self).__init__(version, response) # Path Solution self._solution = solution def get_instance(self, payload): """ Build an instance of OutgoingCallerIdInstance :param dict payload: Payload response from the API :returns: twilio.rest.api.v2010.account.outgoing_caller_id.OutgoingCallerIdInstance :rtype: twilio.rest.api.v2010.account.outgoing_caller_id.OutgoingCallerIdInstance """ return OutgoingCallerIdInstance( self._version, payload, account_sid=self._solution['account_sid'], ) def __repr__(self): """ Provide a friendly representation :returns: Machine friendly representation :rtype: str """ return '<Twilio.Api.V2010.OutgoingCallerIdPage>' class OutgoingCallerIdContext(InstanceContext): """ """ def __init__(self, version, account_sid, sid): """ Initialize the OutgoingCallerIdContext :param Version version: Version that contains the resource :param account_sid: The account_sid :param sid: Fetch by unique outgoing-caller-id Sid :returns: twilio.rest.api.v2010.account.outgoing_caller_id.OutgoingCallerIdContext :rtype: twilio.rest.api.v2010.account.outgoing_caller_id.OutgoingCallerIdContext """ super(OutgoingCallerIdContext, self).__init__(version) # Path Solution self._solution = { 'account_sid': account_sid, 'sid': sid, } self._uri = '/Accounts/{account_sid}/OutgoingCallerIds/{sid}.json'.format(**self._solution) def fetch(self): """ Fetch a OutgoingCallerIdInstance :returns: Fetched OutgoingCallerIdInstance :rtype: twilio.rest.api.v2010.account.outgoing_caller_id.OutgoingCallerIdInstance """ params = values.of({}) payload = self._version.fetch( 'GET', self._uri, params=params, ) return OutgoingCallerIdInstance( self._version, payload, account_sid=self._solution['account_sid'], sid=self._solution['sid'], ) def update(self, friendly_name=values.unset): """ Update the OutgoingCallerIdInstance :param unicode friendly_name: A human readable description of the caller ID :returns: Updated OutgoingCallerIdInstance :rtype: twilio.rest.api.v2010.account.outgoing_caller_id.OutgoingCallerIdInstance """ data = values.of({ 'FriendlyName': friendly_name, }) payload = self._version.update( 'POST', self._uri, data=data, ) return OutgoingCallerIdInstance( self._version, payload, account_sid=self._solution['account_sid'], sid=self._solution['sid'], ) def delete(self): """ Deletes the OutgoingCallerIdInstance :returns: True if delete succeeds, False otherwise :rtype: bool """ return self._version.delete('delete', self._uri) def __repr__(self): """ Provide a friendly representation :returns: Machine friendly representation :rtype: str """ context = ' '.join('{}={}'.format(k, v) for k, v in self._solution.items()) return '<Twilio.Api.V2010.OutgoingCallerIdContext {}>'.format(context) class OutgoingCallerIdInstance(InstanceResource): """ """ def __init__(self, version, payload, account_sid, sid=None): """ Initialize the OutgoingCallerIdInstance :returns: twilio.rest.api.v2010.account.outgoing_caller_id.OutgoingCallerIdInstance :rtype: twilio.rest.api.v2010.account.outgoing_caller_id.OutgoingCallerIdInstance """ super(OutgoingCallerIdInstance, self).__init__(version) # Marshaled Properties self._properties = { 'sid': payload['sid'], 'date_created': deserialize.rfc2822_datetime(payload['date_created']), 'date_updated': deserialize.rfc2822_datetime(payload['date_updated']), 'friendly_name': payload['friendly_name'], 'account_sid': payload['account_sid'], 'phone_number': payload['phone_number'], 'uri': payload['uri'], } # Context self._context = None self._solution = { 'account_sid': account_sid, 'sid': sid or self._properties['sid'], } @property def _proxy(self): """ Generate an instance context for the instance, the context is capable of performing various actions. All instance actions are proxied to the context :returns: OutgoingCallerIdContext for this OutgoingCallerIdInstance :rtype: twilio.rest.api.v2010.account.outgoing_caller_id.OutgoingCallerIdContext """ if self._context is None: self._context = OutgoingCallerIdContext( self._version, account_sid=self._solution['account_sid'], sid=self._solution['sid'], ) return self._context @property def sid(self): """ :returns: A string that uniquely identifies this outgoing-caller-ids :rtype: unicode """ return self._properties['sid'] @property def date_created(self): """ :returns: The date this resource was created :rtype: datetime """ return self._properties['date_created'] @property def date_updated(self): """ :returns: The date this resource was last updated :rtype: datetime """ return self._properties['date_updated'] @property def friendly_name(self): """ :returns: A human readable description for this resource :rtype: unicode """ return self._properties['friendly_name'] @property def account_sid(self): """ :returns: The unique sid that identifies this account :rtype: unicode """ return self._properties['account_sid'] @property def phone_number(self): """ :returns: The incoming phone number :rtype: unicode """ return self._properties['phone_number'] @property def uri(self): """ :returns: The URI for this resource :rtype: unicode """ return self._properties['uri'] def fetch(self): """ Fetch a OutgoingCallerIdInstance :returns: Fetched OutgoingCallerIdInstance :rtype: twilio.rest.api.v2010.account.outgoing_caller_id.OutgoingCallerIdInstance """ return self._proxy.fetch() def update(self, friendly_name=values.unset): """ Update the OutgoingCallerIdInstance :param unicode friendly_name: A human readable description of the caller ID :returns: Updated OutgoingCallerIdInstance :rtype: twilio.rest.api.v2010.account.outgoing_caller_id.OutgoingCallerIdInstance """ return self._proxy.update( friendly_name=friendly_name, ) def delete(self): """ Deletes the OutgoingCallerIdInstance :returns: True if delete succeeds, False otherwise :rtype: bool """ return self._proxy.delete() def __repr__(self): """ Provide a friendly representation :returns: Machine friendly representation :rtype: str """ context = ' '.join('{}={}'.format(k, v) for k, v in self._solution.items()) return '<Twilio.Api.V2010.OutgoingCallerIdInstance {}>'.format(context)
3a28f8f33d4492d8f2c8922de5dcebfd6fbd2cff
e6dab5aa1754ff13755a1f74a28a201681ab7e1c
/.parts/lib/django-1.4/django/contrib/comments/templatetags/__init__.py
f5f7397defa1565158775adfb5cee392fb466f4d
[]
no_license
ronkagan/Euler_1
67679203a9510147320f7c6513eefd391630703e
022633cc298475c4f3fd0c6e2bde4f4728713995
refs/heads/master
2021-01-06T20:45:52.901025
2014-09-06T22:34:16
2014-09-06T22:34:16
23,744,842
0
1
null
null
null
null
UTF-8
Python
false
false
114
py
/home/action/.parts/packages/googleappengine/1.9.4/lib/django-1.4/django/contrib/comments/templatetags/__init__.py
9e2d3cebcf48028ed81634ea26699d80d74e08bd
74f0c966d09786f447ad60bf837ea342cb405874
/neutron/tests/unit/plugins/ml2/drivers/openvswitch/agent/openflow/native/ovs_bridge_test_base.py
1437e0cd4203167b172302fcb4514f6b1a8a20d2
[ "Apache-2.0" ]
permissive
mrwukang/neutron
ad354d19a6ba4ec9a92b4e54d02cf1bbfd66e47e
ebdb2ad1213eaf09c6a3f061a94ff4453c3e7506
refs/heads/master
2020-04-11T18:24:09.601969
2019-01-02T15:42:05
2019-01-02T15:42:05
161,997,228
1
0
null
null
null
null
UTF-8
Python
false
false
10,153
py
# Copyright (C) 2014,2015 VA Linux Systems Japan K.K. # Copyright (C) 2014,2015 YAMAMOTO Takashi <yamamoto at valinux co jp> # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock from oslo_utils import importutils from neutron.tests.unit.plugins.ml2.drivers.openvswitch.agent \ import ovs_test_base call = mock.call # short hand class OVSBridgeTestBase(ovs_test_base.OVSRyuTestBase): _ARP_MODULE = 'ryu.lib.packet.arp' _ETHER_TYPES_MODULE = 'ryu.lib.packet.ether_types' _ICMPV6_MODULE = 'ryu.lib.packet.icmpv6' _IN_PROTO_MODULE = 'ryu.lib.packet.in_proto' _OFP_MODULE = 'ryu.ofproto.ofproto_v1_3' _OFPP_MODULE = 'ryu.ofproto.ofproto_v1_3_parser' def setup_bridge_mock(self, name, cls): self.br = cls(name) self.dp = mock.Mock() self.ofp = importutils.import_module(self._OFP_MODULE) self.ofpp = importutils.import_module(self._OFPP_MODULE) self.arp = importutils.import_module(self._ARP_MODULE) self.ether_types = importutils.import_module(self._ETHER_TYPES_MODULE) self.icmpv6 = importutils.import_module(self._ICMPV6_MODULE) self.in_proto = importutils.import_module(self._IN_PROTO_MODULE) mock.patch.object(self.br, '_get_dp', autospec=True, return_value=self._get_dp()).start() mock__send_msg = mock.patch.object(self.br, '_send_msg').start() mock_delete_flows = mock.patch.object(self.br, 'delete_flows').start() self.mock = mock.Mock() self.mock.attach_mock(mock__send_msg, '_send_msg') self.mock.attach_mock(mock_delete_flows, 'delete_flows') def _get_dp(self): return self.dp, self.ofp, self.ofpp def test_drop_port(self): in_port = 2345 self.br.drop_port(in_port=in_port) (dp, ofp, ofpp) = self._get_dp() expected = [ call._send_msg( ofpp.OFPFlowMod(dp, cookie=0, instructions=[], match=ofpp.OFPMatch(in_port=in_port), priority=2, table_id=0)), ] self.assertEqual(expected, self.mock.mock_calls) def test_install_goto(self): dest_table_id = 123 priority = 99 in_port = 666 self.br.install_goto(dest_table_id=dest_table_id, priority=priority, in_port=in_port) (dp, ofp, ofpp) = self._get_dp() expected = [ call._send_msg( ofpp.OFPFlowMod(dp, cookie=0, instructions=[ ofpp.OFPInstructionGotoTable(table_id=dest_table_id), ], match=ofpp.OFPMatch(in_port=in_port), priority=priority, table_id=0)), ] self.assertEqual(expected, self.mock.mock_calls) def test_install_drop(self): priority = 99 in_port = 666 self.br.install_drop(priority=priority, in_port=in_port) (dp, ofp, ofpp) = self._get_dp() expected = [ call._send_msg( ofpp.OFPFlowMod(dp, cookie=0, instructions=[], match=ofpp.OFPMatch(in_port=in_port), priority=priority, table_id=0)), ] self.assertEqual(expected, self.mock.mock_calls) def test_install_normal(self): priority = 99 in_port = 666 self.br.install_normal(priority=priority, in_port=in_port) (dp, ofp, ofpp) = self._get_dp() expected = [ call._send_msg( ofpp.OFPFlowMod(dp, cookie=0, instructions=[ ofpp.OFPInstructionActions(ofp.OFPIT_APPLY_ACTIONS, [ ofpp.OFPActionOutput(ofp.OFPP_NORMAL, 0) ]), ], match=ofpp.OFPMatch(in_port=in_port), priority=priority, table_id=0)), ] self.assertEqual(expected, self.mock.mock_calls) def test__cidr_to_ryu(self): f = self.br._cidr_to_ryu self.assertEqual('192.168.0.1', f('192.168.0.1')) self.assertEqual('192.168.0.1', f('192.168.0.1/32')) self.assertEqual(('192.168.0.0', '255.255.255.0'), f('192.168.0.0/24')) class OVSDVRProcessTestMixin(object): def test_install_dvr_process_ipv4(self): vlan_tag = 999 gateway_ip = '192.0.2.1' self.br.install_dvr_process_ipv4(vlan_tag=vlan_tag, gateway_ip=gateway_ip) (dp, ofp, ofpp) = self._get_dp() expected = [ call._send_msg(ofpp.OFPFlowMod(dp, cookie=0, instructions=[], match=ofpp.OFPMatch( eth_type=self.ether_types.ETH_TYPE_ARP, arp_tpa=gateway_ip, vlan_vid=vlan_tag | ofp.OFPVID_PRESENT), priority=3, table_id=self.dvr_process_table_id)), ] self.assertEqual(expected, self.mock.mock_calls) def test_delete_dvr_process_ipv4(self): vlan_tag = 999 gateway_ip = '192.0.2.1' self.br.delete_dvr_process_ipv4(vlan_tag=vlan_tag, gateway_ip=gateway_ip) (dp, ofp, ofpp) = self._get_dp() expected = [ call.delete_flows(table_id=self.dvr_process_table_id, match=ofpp.OFPMatch( eth_type=self.ether_types.ETH_TYPE_ARP, arp_tpa=gateway_ip, vlan_vid=vlan_tag | ofp.OFPVID_PRESENT)), ] self.assertEqual(expected, self.mock.mock_calls) def test_install_dvr_process_ipv6(self): vlan_tag = 999 gateway_mac = '08:60:6e:7f:74:e7' self.br.install_dvr_process_ipv6(vlan_tag=vlan_tag, gateway_mac=gateway_mac) (dp, ofp, ofpp) = self._get_dp() expected = [ call._send_msg(ofpp.OFPFlowMod(dp, cookie=0, instructions=[], match=ofpp.OFPMatch( eth_src=gateway_mac, eth_type=self.ether_types.ETH_TYPE_IPV6, icmpv6_type=self.icmpv6.ND_ROUTER_ADVERT, ip_proto=self.in_proto.IPPROTO_ICMPV6, vlan_vid=vlan_tag | ofp.OFPVID_PRESENT), priority=3, table_id=self.dvr_process_table_id)), ] self.assertEqual(expected, self.mock.mock_calls) def test_delete_dvr_process_ipv6(self): vlan_tag = 999 gateway_mac = '08:60:6e:7f:74:e7' self.br.delete_dvr_process_ipv6(vlan_tag=vlan_tag, gateway_mac=gateway_mac) (dp, ofp, ofpp) = self._get_dp() expected = [ call.delete_flows(table_id=self.dvr_process_table_id, match=ofpp.OFPMatch( eth_src=gateway_mac, eth_type=self.ether_types.ETH_TYPE_IPV6, icmpv6_type=self.icmpv6.ND_ROUTER_ADVERT, ip_proto=self.in_proto.IPPROTO_ICMPV6, vlan_vid=vlan_tag | ofp.OFPVID_PRESENT)), ] self.assertEqual(expected, self.mock.mock_calls) def test_install_dvr_process(self): vlan_tag = 999 vif_mac = '00:0e:0c:5e:95:d0' dvr_mac_address = 'f2:0b:a4:5b:b2:ab' self.br.install_dvr_process(vlan_tag=vlan_tag, vif_mac=vif_mac, dvr_mac_address=dvr_mac_address) (dp, ofp, ofpp) = self._get_dp() expected = [ call._send_msg(ofpp.OFPFlowMod(dp, cookie=0, instructions=[], match=ofpp.OFPMatch( eth_dst=vif_mac, vlan_vid=vlan_tag | ofp.OFPVID_PRESENT), priority=2, table_id=self.dvr_process_table_id)), call._send_msg(ofpp.OFPFlowMod(dp, cookie=0, instructions=[ ofpp.OFPInstructionActions(ofp.OFPIT_APPLY_ACTIONS, [ ofpp.OFPActionSetField(eth_src=dvr_mac_address), ]), ofpp.OFPInstructionGotoTable( table_id=self.dvr_process_next_table_id), ], match=ofpp.OFPMatch( eth_src=vif_mac, vlan_vid=vlan_tag | ofp.OFPVID_PRESENT), priority=1, table_id=self.dvr_process_table_id)), ] self.assertEqual(expected, self.mock.mock_calls) def test_delete_dvr_process(self): vlan_tag = 999 vif_mac = '00:0e:0c:5e:95:d0' self.br.delete_dvr_process(vlan_tag=vlan_tag, vif_mac=vif_mac) (dp, ofp, ofpp) = self._get_dp() expected = [ call.delete_flows(table_id=self.dvr_process_table_id, match=ofpp.OFPMatch( eth_dst=vif_mac, vlan_vid=vlan_tag | ofp.OFPVID_PRESENT)), call.delete_flows(table_id=self.dvr_process_table_id, match=ofpp.OFPMatch( eth_src=vif_mac, vlan_vid=vlan_tag | ofp.OFPVID_PRESENT)), ] self.assertEqual(expected, self.mock.mock_calls)
590926c548bbf4d2c80cd8848ec14070f263882b
4d0bbeb8ab52f7e450aff20056f7509e12751258
/functional_tests/test_list_item_validation.py
b76997f17a27784079ace3f2665c4571d9f5f356
[]
no_license
chicocheco/tdd_book
f7c9246dcb4eb5327704c72f655bf6e187b28849
574b1082aa523c7434f50e0c4cbdf5777ddf50ef
refs/heads/master
2022-05-02T17:44:27.217329
2020-03-13T18:57:22
2020-03-13T18:57:22
197,633,503
0
0
null
2022-04-22T22:19:12
2019-07-18T17:56:43
JavaScript
UTF-8
Python
false
false
4,895
py
from selenium.webdriver.common.keys import Keys from unittest import skip from .base import FunctionalTest class ItemValidationTest(FunctionalTest): # YAGNI, 3 strikes and refactor, not moving helper methods to base.py if not needed elsewhere def get_error_element(self): return self.browser.find_element_by_css_selector('.has-error') def test_cannot_add_empty_list_items(self): # Tania jde na domovskou stranku a omylem zkusi na seznam pridat prazdny text. self.browser.get(self.live_server_url) self.get_item_input_box().send_keys(Keys.ENTER) # every click or enter should be followed by some wait # prohlizec zastavi pozadavek protoze jsme nezadali nic do 'required' policka # (HTML5) browser adds a CSS pseudoselector ":invalid" to the id parameter of the element # and pops up "Fill out the field" alert # fallback: if the browser like Safari, does not fully implement HTML5, so the custom error message will be used self.wait_for(lambda: self.browser.find_element_by_css_selector('#id_text:invalid')) """ lambda: when you want to save a function with arguments to a variable/parameter but not executing it yet >>> myfn = lambda: addthree(2) # note addthree is not called immediately here >>> myfn <function <lambda> at 0x7f3b140339d8> >>> myfn() # execute it here 5 """ # Nyni to zkusi znovu s nejakym textem pro polozku, coz funguje, chyba zmizi # CSS pseudoselector changes from #id_text:invalid to #id_text:valid self.get_item_input_box().send_keys('Buy milk') self.wait_for(lambda: self.browser.find_element_by_css_selector('#id_text:valid')) # a muze bez problemu potvrdit predmet self.get_item_input_box().send_keys(Keys.ENTER) self.wait_for_row_in_list_table('1: Buy milk') # Skodolibe, ted zkusi znovu pridat druhou prazdnou polozku (jiz pro existujici seznam) self.get_item_input_box().send_keys(Keys.ENTER) # Dostane podobne varovani na strance listu, prohlizec nadava self.wait_for(lambda: self.browser.find_element_by_css_selector('#id_text:invalid')) # Ted to muze opravit vyplnenim pole nejakym textem self.get_item_input_box().send_keys('Make tea') self.wait_for(lambda: self.browser.find_element_by_css_selector('#id_text:valid')) self.get_item_input_box().send_keys(Keys.ENTER) self.wait_for_row_in_list_table('1: Buy milk') self.wait_for_row_in_list_table('2: Make tea') # self.fail('Finish this test!') def test_cannot_add_duplicate_items(self): # Tania jde na domovskou stranku a zacne novy list self.browser.get(self.live_server_url) self.add_list_item('Buy wellies') # omylem zkusi zadat stejnou polozku znovu (novy list jiz existuje) self.get_item_input_box().send_keys('Buy wellies') self.get_item_input_box().send_keys(Keys.ENTER) # vidi uzitecnou chybovou zpravu ze zadava duplikat self.wait_for(lambda: self.assertEqual( self.get_error_element().text, "You've already got this in your list" )) def test_error_messages_are_cleared_on_input(self): # Tania otevre novy seznam a zpusobi validaci error # this uses JavaScript and can be tested as: # python manage.py test # functional_tests.test_list_item_validation.ItemValidationTest.test_error_messages_are_cleared_on_input self.browser.get(self.live_server_url) self.add_list_item('Banter too thick') self.get_item_input_box().send_keys('Banter too thick') self.get_item_input_box().send_keys(Keys.ENTER) self.wait_for(lambda: self.assertTrue( self.get_error_element().is_displayed() )) # zacne neco psat do policka aby zmizela chybova hlaska o jiz existujici polozce self.get_item_input_box().send_keys('a') # ma radost, ze chybova hlaska zmizi self.wait_for((lambda: self.assertFalse( self.get_error_element().is_displayed() ))) def test_error_messages_are_cleared_on_focus(self): # Tania otevre novy seznam a zpusobi validaci error self.browser.get(self.live_server_url) self.add_list_item('Banter too thin') self.get_item_input_box().send_keys('Banter too thin') self.get_item_input_box().send_keys(Keys.ENTER) self.wait_for(lambda: self.assertTrue( self.get_error_element().is_displayed() )) # klikne do policka aby zmizela chybova hlaska o jiz existujici polozce self.get_item_input_box().click() # ma radost, ze chybova hlaska zmizi self.wait_for((lambda: self.assertFalse( self.get_error_element().is_displayed() )))
bf50837fd80b831d40a6bba91fc419a1019c4bd2
fa346a2d5886420e22707a7be03599e634b230a9
/temboo/Library/Amazon/S3/__init__.py
905fa3010c0e9c654a3d2c2b1a47f51be344b1f9
[]
no_license
elihuvillaraus/entity-resolution
cebf937499ed270c3436b1dd25ab4aef687adc11
71dd49118a6e11b236861289dcf36436d31f06bc
refs/heads/master
2021-12-02T17:29:11.864065
2014-01-08T04:29:30
2014-01-08T04:29:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,274
py
from PutBucketACL import * from GetBucketLocation import * from DeleteMultipleObjects import * from GetBucketWebsite import * from DeleteBucketCORS import * from DeleteBucketTagging import * from GetObjectACL import * from ZipBucket import * from DeleteBucket import * from PutBucketWebsiteRedirectAll import * from GetBucketVersioning import * from PutBucketWebsiteRedirect import * from GetBucketList import * from PutObjectACL import * from PutBucketCORS import * from GetService import * from GetBucketCORS import * from GetBucketNotification import * from GetBase64EncodedObject import * from DeleteBucketLifecycle import * from GetBucketLifecycle import * from GetObjectTorrent import * from PutBucketNotification import * from PutBucketTagging import * from PutBucketVersioning import * from GetBucketPolicy import * from GetBucketTagging import * from GetBucketACL import * from CopyObject import * from PutBucketLifecycle import * from ZipObject import * from DeleteObject import * from PutBucket import * from PutBucketPolicy import * from GetBucketLogging import * from PutObject import * from PutBucketLogging import * from DeleteBucketPolicy import * from PutBucketRequestPayment import * from DeleteBucketWebsite import * from GetBucketRequestPayment import *
8487f1f63135e4bffeb4b1e070046c863dd458cf
52f734b8f04ed0c88e3a41de2b5fb4aa3b2c1a8b
/data_process.py
3eb1ff7174c0319da6678cce0e541f8ad5cfd25f
[]
no_license
hongjy127/CNN_ultrasonics
d79398d947ffca0014da2f917b2871362d624e91
11c5614ac734f4d7af9a4a488ddc52bb4be28b87
refs/heads/master
2023-02-27T00:10:58.396549
2021-02-03T16:39:40
2021-02-03T16:39:40
328,112,167
0
0
null
null
null
null
UTF-8
Python
false
false
1,863
py
import numpy as np import matplotlib.pyplot as plt from pyts.image import RecurrencePlot # 설정 정보 불러오기 class Configuration: def __init__(self): config = self.load() self.fname = config['FNAME'] def load(self): config = {} with open('config.ini','rt') as f: entries = f.readlines() for entry in entries: key, value = entry.split('=') config[key.strip()] = value.strip() return config def __str__(self): return f'<Configuration fname {self.fname}>' # data.csv file 불러오기 def load(fname): datas = np.loadtxt(fname, delimiter=',', dtype=np.float32) signals = datas[:, :-1] labels = datas[:, -1].astype('int') data = (signals, labels) return data # scaling def scaling(signals): signals = signals/np.max(np.abs(signals)) return signals # 이미지로 변환 (memory 문제 - 사용 X) def sig2img(signals): rp = RecurrencePlot(dimension=1, time_delay=1, threshold=None) signals.reshape(1,-1) img = rp.fit_transform(signals) return img # Cross validation def CV(signals, labels): pass if __name__ == "__main__": # config 확인 config = Configuration() fname = config.fname print(fname) # load 확인 data = load(fname) print(data[0][-1]) print(data[1][-1]) print(data[0].shape, data[1].shape) signals = data[0] plt.plot(signals[-1,:]) # scaling 확인 signals = scaling(signals) plt.plot(signals[-1,:]) plt.show() # sig2img 확인 signal = signals[0:2] img = sig2img(signal) print(img.shape) fig = plt.figure() rows = 1 cols = 2 ax1 = fig.add_subplot(rows, cols, 1) ax1.imshow(img[0]) ax2 = fig.add_subplot(rows, cols, 2) ax2.imshow(img[1]) plt.show()
5b730b0e8f6cecaf216b0cf318e622fb159d42ce
a4b81839fe6d7726eb6c9d2c9fd0d9a70cf3ef3f
/day11_20191119/exercise00002.py
d84024cddff13dcadc302524c26401f03a257578
[]
no_license
Python87-com/PythonExercise
3f84e0f194254d0f0a8b106348b214ccdeebf842
9bef64c6d3b143236bf06131e5f7a5aabcf6980b
refs/heads/master
2021-01-31T15:56:27.743718
2020-01-02T12:10:43
2020-01-02T12:10:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
274
py
""" 4. 请用面向对象思想,描述以下场景: 玩家(攻击力)攻击敌人(血量),敌人受伤(掉血),还可能死亡(掉装备,加分)。 敌人(攻击力)攻击玩家,玩家(血量)受伤(掉血/碎屏),还可能死亡(游戏结束)。 """
1a4dbf5f1ac9cc33c0301f9ba2db8c21e1972c06
781029dcc468a7d1467a17727870d526da1df985
/algorithm/2806_N-queens/sol.py
d0219b8816f66160b7d8c92f7d7a7d00ec2b6996
[]
no_license
Huijiny/TIL
5f0edec5ad187029e04ed2d69e85ae4d278e048d
d1a974b3cacfb45b2718f87d5c262a23986c6574
refs/heads/master
2023-09-03T15:28:11.744287
2021-10-21T12:38:10
2021-10-21T12:38:10
335,220,747
0
0
null
null
null
null
UTF-8
Python
false
false
850
py
import sys sys.stdin = open('sample_input (3).txt') def is_exist_diagnal(cur_pos): for queen in queens: if abs(cur_pos[0] - queen[0]) == abs(cur_pos[1] - queen[1]): return True return False def n_queens(row): global visited, count if row == N: count += 1 else: for col in range(N): # 같은 열에 다른 퀸이 존재하는지 체크 및 대각선 체크 if not visited[col] and not is_exist_diagnal((col, row)): visited[col] = True queens.append((col, row)) n_queens(row + 1) queens.pop() visited[col] = False T = int(input()) for tc in range(1, T+1): N = int(input()) count = 0 visited = [False] * N queens = [] n_queens(0) print("#{} {}".format(tc, count))
97b61b984b05740f9ba96560cbecd106998ce823
d4ca0866381e577e3d36a22735d02eb4bf817b10
/roman_to_integer.py
17099c8e9ce1347818f6937355f5dd6828331434
[]
no_license
haiwenzhu/leetcode
e842936b69bbaf5695de1f98c8c17507819435dd
bc068c2b00793ae72439efe5bdecaeed029e9f65
refs/heads/master
2021-01-15T13:11:22.672952
2015-07-25T04:45:36
2015-07-25T04:45:36
36,838,199
0
0
null
null
null
null
UTF-8
Python
false
false
724
py
class Solution: """ @see https://oj.leetcode.com/problems/roman-to-integer/ """ # @return an integer def romanToInt(self, s): chart = dict(I=1, V=5, X=10, L=50, C=100, D=500, M=1000) if s == "": return 0 n = chart[s[-1]] for i in range(2, len(s)+1): if chart[s[-i]] < chart[s[-i+1]]: n -= chart[s[-i]] else: n += chart[s[-i]] return n if __name__ == "__main__": solution = Solution() print(solution.romanToInt("")) print(solution.romanToInt("VII") == 7) print(solution.romanToInt("XXXIX") == 39) print(solution.romanToInt("DCCCXC") == 890)
30bded28cc0dcda07789d41d085dfdb3d9e6e17c
82fce9aae9e855a73f4e92d750e6a8df2ef877a5
/Lab/venv/lib/python3.8/site-packages/OpenGL/GLES2/NV/shader_atomic_fp16_vector.py
99ece98dcff7af485333887d940e48ccac1ff4b7
[]
no_license
BartoszRudnik/GK
1294f7708902e867dacd7da591b9f2e741bfe9e5
6dc09184a3af07143b9729e42a6f62f13da50128
refs/heads/main
2023-02-20T19:02:12.408974
2021-01-22T10:51:14
2021-01-22T10:51:14
307,847,589
0
0
null
null
null
null
UTF-8
Python
false
false
883
py
'''OpenGL extension NV.shader_atomic_fp16_vector This module customises the behaviour of the OpenGL.raw.GLES2.NV.shader_atomic_fp16_vector to provide a more Python-friendly API Overview (from the spec) This extension provides GLSL built-in functions and assembly opcodes allowing shaders to perform a limited set of atomic read-modify-write operations to buffer or texture memory with 16-bit floating point vector surface formats. The official definition of this extension is available here: http://www.opengl.org/registry/specs/NV/shader_atomic_fp16_vector.txt ''' from OpenGL.raw.GLES2.NV.shader_atomic_fp16_vector import _EXTENSION_NAME def glInitShaderAtomicFp16VectorNV(): '''Return boolean indicating whether this extension is available''' from OpenGL import extensions return extensions.hasGLExtension( _EXTENSION_NAME ) ### END AUTOGENERATED SECTION
c4d74c2b8f344ee2be3556aa368f15b22c62cd6e
cb1d06e91347a23438057d9f40b5a74cad595766
/autonetkit/anm/__init__.py
4ee754a1a2282b1c46bccc42aaac4a0d566210a7
[]
permissive
plucena24/autonetkit
9f94d3fba6bfad54793a7de58ef17439c2c71f0b
f7e8c03ee685d5b89f9028cb556017e730e0446c
refs/heads/master
2023-08-16T18:03:54.593010
2014-11-07T13:43:39
2014-11-07T13:43:39
27,204,033
0
0
BSD-3-Clause
2023-08-08T18:36:36
2014-11-27T01:36:38
Python
UTF-8
Python
false
false
273
py
from autonetkit.anm.network_model import NetworkModel as NetworkModel from autonetkit.anm.graph import NmGraph as NmGraph from autonetkit.anm.node import NmNode as NmNode from autonetkit.anm.edge import NmEdge as NmEdge from autonetkit.anm.interface import NmPort as NmPort
8be656429e0ccfbc6d5b995c311d4436a9d86d31
3ca67d69abd4e74b7145b340cdda65532f90053b
/programmers/난이도별/level03.표 편집/sangmandu.py
309e210a1f26779c12c4f4c6978734fa138431d5
[]
no_license
DKU-STUDY/Algorithm
19549516984b52a1c5cd73e1ed1e58f774d6d30e
6f78efdbefd8eedab24e43d74c7dae7f95c2893b
refs/heads/master
2023-02-18T06:48:39.309641
2023-02-09T07:16:14
2023-02-09T07:16:14
258,455,710
175
49
null
2023-02-09T07:16:16
2020-04-24T08:42:27
Python
UTF-8
Python
false
false
3,870
py
''' https://programmers.co.kr/learn/courses/30/lessons/81303 표 편집 [풀이] 0. 연결리스트 문제 => 보통 이런문제가 나오면 클래스로 짜는 사람이 있다. 참 대단.. 1. 연결리스트를 딕셔너리로 구현한다. => i번째 노드는 원소가 2개인 list 타입의 값을 가진다. => [0] : left = i-1번째 노드 => [1] : right = i+1번째 노드 => 0번 노드와 n-1번 노드는 양쪽 끝에 None을 가지고 있다. 2. 명령어가 C, Z일때를 조건으로 하고 그 외에는 split()을 한다. 2-1. C일 경우 => rm 리스트에 삭제할 노드의 idx와 left, right를 추가한다. => rm 리스트는 추후에 명령어가 Z일 경우 필요 => 자신의 left 노드와 right 노드를 서로 이어준다 => 이 때 None일 경우의 예외처리 2.2 Z일 경우 => 삭제한 노드가 담겨있는 rm 리스트에서 pop => 되돌리려는 노드가 가장 마지막 노드일 경우와 아닌 경우를 나눈다. => 그리고 자신의 left, right 노드와 자신을 이어준다. => 자신의 left, right가 현재 삭제되있을 가능성은? => 없다. 왜냐하면 자신이 가장 최근에 삭제된 노드기 때문 => 자신의 left, right가 삭제되었다면 이미 또 다른 left, right값을 가지고 있을 것임 2.3 U, D 일 경우 => D면 idx 증가, U면 idx 감소. => 연결리스트의 장점이 드러나는 부분 => 그 외의 방법은 이동하면서 노드가 삭제되었는지 여부를 검사해야한다. => 연결리스트는 연결이 안돼있으면 이미 삭제된 것이기 때문에 검사할 필요가 없음. ''' def solution(n, k, cmd): dic = {} for i in range(0, n): dic[i] = [i-1, i+1] dic[0][0] = dic[n-1][1] = None rm = [] for c in cmd: if c == "C": rm.append([k, dic[k][0], dic[k][1]]) if dic[k][1] is None: k = dic[k][0] dic[k][1] = None else: if dic[k][0] is not None: dic[dic[k][0]][1] = dic[k][1] dic[dic[k][1]][0] = dic[k][0] k = dic[k][1] elif c == "Z": idx, left, right = rm.pop() if left is not None: dic[left][1] = idx if right is not None: dic[right][0] = idx dic[idx] = [left, right] else: move, steps = c.split() for _ in range(int(steps)): k = dic[k][int(move == "D")] answer = ["O"] * n for idx, _, _ in rm: answer[idx] = "X" return ''.join(answer) ''' 리스트로 이 문제를 구현하면 100% 시간초과 날 것을 예상했다. => 삭제 검사, 리스트 중간에 삽입 및 삭제가 일어날 것이기 떄문 그래서 각 리스트의 상태를 기억할 수 있도록 구조를 짰다. 굉장히 좋은 풀이라고 생각했는데 효율성에서 에러가 났다. (아마 실제 인턴십 코테에서도 저랬던 것 같다) 아래 코드는 리스트로 짠 코드. 4개의 테스트 케이스에서 시간초과가 나서 결국 버려야 했다 ㅠㅠ def solution(n, k, cmd): lst = ["O"] * n top = n-1 remove = [] for c in cmd: if c == "C": remove.append(k) lst[k] = "X" drt = 2 * (top != k) - 1 while lst[k+drt] == "X": k += drt k += drt while lst[top] == "X": top -= 1 elif c == "Z": idx = remove.pop() lst[idx] = "O" top = max(idx, top) else: move, steps = c.split() steps = int(steps) drt = 2 * (move == "D") - 1 while steps: k += drt steps -= lst[k] == "O" #print(c, lst, remove, top, k) return ''.join(lst) '''
009bcc09b6b0e01969e419f841aa942b60421c69
ce36737f134db1726bb189c17a729b9d3abba4e4
/assets/src/ba_data/python/bastd/ui/settings/gamepadselect.py
4c1b4fa15cb76c093ad443c0653ec961e3d5fead
[ "MIT" ]
permissive
Indev450/ballistica
0559940971c69b7596442abfc6ac2818a4987064
27420d3f64c24bf3c9b4b047177a4769977659b1
refs/heads/master
2023-07-20T16:01:04.586170
2020-04-13T09:32:36
2020-04-13T09:32:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,740
py
# Copyright (c) 2011-2020 Eric Froemling # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # ----------------------------------------------------------------------------- """Settings UI related to gamepad functionality.""" from __future__ import annotations from typing import TYPE_CHECKING import _ba import ba if TYPE_CHECKING: from typing import Dict, Any def gamepad_configure_callback(event: Dict[str, Any]) -> None: """Respond to a gamepad button press during config selection.""" from ba.internal import get_remote_app_name from bastd.ui.settings import gamepad # Ignore all but button-presses. if event['type'] not in ['BUTTONDOWN', 'HATMOTION']: return _ba.release_gamepad_input() try: ba.containerwidget(edit=ba.app.main_menu_window, transition='out_left') except Exception: ba.print_exception("Error transitioning out main_menu_window.") ba.playsound(ba.getsound('activateBeep')) ba.playsound(ba.getsound('swish')) inputdevice = event['input_device'] assert isinstance(inputdevice, ba.InputDevice) if inputdevice.allows_configuring: ba.app.main_menu_window = ( gamepad.GamepadSettingsWindow(inputdevice).get_root_widget()) else: width = 700 height = 200 button_width = 100 ba.app.main_menu_window = dlg = (ba.containerwidget( scale=1.7 if ba.app.small_ui else 1.4 if ba.app.med_ui else 1.0, size=(width, height), transition='in_right')) device_name = inputdevice.name if device_name == 'iDevice': msg = ba.Lstr(resource='bsRemoteConfigureInAppText', subs=[('${REMOTE_APP_NAME}', get_remote_app_name())]) else: msg = ba.Lstr(resource='cantConfigureDeviceText', subs=[('${DEVICE}', device_name)]) ba.textwidget(parent=dlg, position=(0, height - 80), size=(width, 25), text=msg, scale=0.8, h_align="center", v_align="top") def _ok() -> None: from bastd.ui.settings import controls ba.containerwidget(edit=dlg, transition='out_right') ba.app.main_menu_window = (controls.ControlsSettingsWindow( transition='in_left').get_root_widget()) ba.buttonwidget(parent=dlg, position=((width - button_width) / 2, 20), size=(button_width, 60), label=ba.Lstr(resource='okText'), on_activate_call=_ok) class GamepadSelectWindow(ba.Window): """Window for selecting a gamepad to configure.""" def __init__(self) -> None: from typing import cast width = 480 height = 170 spacing = 40 self._r = 'configGamepadSelectWindow' super().__init__(root_widget=ba.containerwidget( scale=2.3 if ba.app.small_ui else 1.5 if ba.app.med_ui else 1.0, size=(width, height), transition='in_right')) btn = ba.buttonwidget(parent=self._root_widget, position=(20, height - 60), size=(130, 60), label=ba.Lstr(resource='backText'), button_type='back', scale=0.8, on_activate_call=self._back) # Let's not have anything selected by default; its misleading looking # for the controller getting configured. ba.containerwidget(edit=self._root_widget, cancel_button=btn, selected_child=cast(ba.Widget, 0)) ba.textwidget(parent=self._root_widget, position=(20, height - 50), size=(width, 25), text=ba.Lstr(resource=self._r + '.titleText'), maxwidth=250, color=ba.app.title_color, h_align="center", v_align="center") ba.buttonwidget(edit=btn, button_type='backSmall', size=(60, 60), label=ba.charstr(ba.SpecialChar.BACK)) v: float = height - 60 v -= spacing ba.textwidget(parent=self._root_widget, position=(15, v), size=(width - 30, 30), scale=0.8, text=ba.Lstr(resource=self._r + '.pressAnyButtonText'), maxwidth=width * 0.95, color=ba.app.infotextcolor, h_align="center", v_align="top") v -= spacing * 1.24 if ba.app.platform == 'android': ba.textwidget(parent=self._root_widget, position=(15, v), size=(width - 30, 30), scale=0.46, text=ba.Lstr(resource=self._r + '.androidNoteText'), maxwidth=width * 0.95, color=(0.7, 0.9, 0.7, 0.5), h_align="center", v_align="top") _ba.capture_gamepad_input(gamepad_configure_callback) def _back(self) -> None: from bastd.ui.settings import controls _ba.release_gamepad_input() ba.containerwidget(edit=self._root_widget, transition='out_right') ba.app.main_menu_window = (controls.ControlsSettingsWindow( transition='in_left').get_root_widget())
e2d6533a67d8bebf792f226e1e5a1c797c7a7032
39d7ab29356ea5363c783d518b3c92f52c2ef8c2
/crawler/crawlers_BACKUP/sinarollcustom.py
9c3170f6636f92bf98ab84af04baecb8a1e39df5
[]
no_license
wdcpop/Web-Crawler
7daad778bbda9e5852248971845e3b448629175e
725037d17dfd2535e213df3cb7aafda523d39c03
refs/heads/master
2018-07-31T15:12:31.605633
2018-06-02T16:03:36
2018-06-02T16:03:36
121,194,531
4
1
null
null
null
null
UTF-8
Python
false
false
731
py
#!/usr/bin/env python # -*- encoding: utf-8 -*- from .abstracts.crawler_abstract import CrawlerAbstract import re from urlparse import urljoin from urlparse import urlsplit from arrow import Arrow import time class SINAROLLCUSTOM(CrawlerAbstract): title = u'新浪财经 - 滚动自选' start_urls = [ 'http://roll.news.sina.com.cn/s/channel.php?ch=01#col=96,97,98&spec=&type=&ch=01&k=&offset_page=0&offset_num=0&num=60&asc=&page=4' ] url_patterns = [ re.compile(r'(http://.*?\.sina\.com\.cn/[\w/]+?/\d{4}-\d{2}-\d{2}/doc-\w+?\.shtml)') ] content_selector = dict( title='#artibodyTitle', content='.article, #artibody', date_area='.time-source, #pub_date' )
2370bfe569782dc9bb6f537eb8495692b3be2571
51d5bd1f792f3a0fe1285c3ccdeefb58077890df
/anees/migrations/0027_auto_20200926_1337.py
33ea2f35e72c08589a1f98ef7070dd993ad8150f
[ "MIT" ]
permissive
ashish2020kashyap/cessini
667c2d4ab64f34121255a43c327b8110fa499d0b
9713fd76d2e31a95266ec69da2abc98424a46e52
refs/heads/master
2022-12-16T13:30:21.093504
2020-09-29T06:31:12
2020-09-29T06:31:12
299,510,700
0
0
null
null
null
null
UTF-8
Python
false
false
1,233
py
# Generated by Django 3.1.1 on 2020-09-26 13:37 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('anees', '0026_auto_20200926_1336'), ] operations = [ migrations.AlterField( model_name='customer', name='customer_camp', field=models.ManyToManyField(blank=True, null=True, related_name='customer_camp', to='anees.Campaign'), ), migrations.AlterField( model_name='customer', name='customer_email', field=models.ManyToManyField(blank=True, null=True, related_name='customer_email', to='anees.Email'), ), migrations.AlterField( model_name='customer', name='name', field=models.CharField(blank=True, max_length=200, null=True), ), migrations.AlterField( model_name='customer', name='phone', field=models.CharField(blank=True, max_length=200, null=True), ), migrations.AlterField( model_name='email', name='camp', field=models.ManyToManyField(null=True, related_name='camp', to='anees.Campaign'), ), ]
0a1b40f9c2382b1f57e2db3116afbfc749929daf
1b2fc9666edbbdc65387c854831097e0be8b686c
/BOJ(Baekjoon Online Judge)/Mathematics/2004_조합 0의 개수(counting trailing zero in combination).py
cfc777b9dac881b237d3a84d4de3aec3d7992dda
[]
no_license
seongbeenkim/Algorithm-python
6593878cff8755800f3e8bcdaabdb41625324f38
24fe365a29c61c2405a06345f9105ed200a76bd5
refs/heads/master
2023-09-04T11:05:08.318769
2021-02-18T14:58:20
2021-02-18T14:58:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
515
py
#https://www.acmicpc.net/problem/2004 import sys count_two = 0 count_five = 0 n, m = list(map(int,sys.stdin.readline().split())) i = 2 while n >= i: count_two += n // i i *= 2 i = 2 while (n-m) >= i: count_two -= (n-m) // i i *= 2 i = 2 while m >= i: count_two -= m // i i *= 2 i = 5 while n >= i: count_five += n // i i *= 5 i = 5 while (n-m) >= i: count_five -= (n-m) // i i *= 5 i = 5 while m >= i: count_five -= m // i i *= 5 print(min(count_two,count_five))
52e5b6853dc97a6beb2f483898e29c76c462f3e8
8fd28b248511f42ad8732ca1e574aada33908376
/tests/test_models/test_recognizers.py
8ce86d6ec3689d2e8fbc75634871f24de57ddb72
[ "Apache-2.0" ]
permissive
vt-vl-lab/video-data-aug
28bd175535cab1444055502389c8f5d7d75e4bd2
01667cdbd1b952f2510af3422beeeb76e0d9e15a
refs/heads/main
2023-09-01T02:36:40.034893
2021-07-21T01:31:42
2021-07-21T01:31:42
352,920,339
29
6
Apache-2.0
2021-07-21T01:29:36
2021-03-30T08:06:54
Jupyter Notebook
UTF-8
Python
false
false
10,211
py
import os.path as osp import mmcv import numpy as np import pytest import torch import torch.nn.functional as F from mmaction.models import BaseRecognizer, build_recognizer class ExampleRecognizer(BaseRecognizer): def __init__(self, train_cfg, test_cfg): super(BaseRecognizer, self).__init__() # reconstruct `__init__()` method in BaseRecognizer to avoid building # backbone and head which are useless to ExampleRecognizer, # since ExampleRecognizer is only used for model-unrelated methods # (like `average_clip`) testing. self.train_cfg = train_cfg self.test_cfg = test_cfg def forward_train(self, imgs, labels): pass def forward_test(self, imgs): pass def _get_recognizer_cfg(fname): """Grab configs necessary to create a recognizer. These are deep copied to allow for safe modification of parameters without influencing other tests. """ repo_dpath = osp.dirname(osp.dirname(osp.dirname(__file__))) config_dpath = osp.join(repo_dpath, 'configs/recognition') config_fpath = osp.join(config_dpath, fname) if not osp.exists(config_dpath): raise Exception('Cannot find config path') config = mmcv.Config.fromfile(config_fpath) return config.model, config.train_cfg, config.test_cfg def test_base_recognizer(): cls_score = torch.rand(5, 400) with pytest.raises(KeyError): # "average_clips" must defined in test_cfg keys wrong_test_cfg = dict(clip='score') recognizer = ExampleRecognizer(None, wrong_test_cfg) recognizer.average_clip(cls_score) with pytest.raises(ValueError): # unsupported average clips type wrong_test_cfg = dict(average_clips='softmax') recognizer = ExampleRecognizer(None, wrong_test_cfg) recognizer.average_clip(cls_score) with pytest.raises(ValueError): # Label should not be None recognizer = ExampleRecognizer(None, None) recognizer(torch.tensor(0)) # average_clips='score' test_cfg = dict(average_clips='score') recognizer = ExampleRecognizer(None, test_cfg) score = recognizer.average_clip(cls_score) assert torch.equal(score, cls_score.mean(dim=0, keepdim=True)) # average_clips='prob' test_cfg = dict(average_clips='prob') recognizer = ExampleRecognizer(None, test_cfg) score = recognizer.average_clip(cls_score) assert torch.equal(score, F.softmax(cls_score, dim=1).mean(dim=0, keepdim=True)) def test_tsn(): model, train_cfg, test_cfg = _get_recognizer_cfg( 'tsn/tsn_r50_1x1x3_100e_kinetics400_rgb.py') model['backbone']['pretrained'] = None recognizer = build_recognizer( model, train_cfg=train_cfg, test_cfg=test_cfg) input_shape = (1, 3, 3, 32, 32) demo_inputs = generate_demo_inputs(input_shape) imgs = demo_inputs['imgs'] gt_labels = demo_inputs['gt_labels'] losses = recognizer(imgs, gt_labels) assert isinstance(losses, dict) # Test forward test with torch.no_grad(): img_list = [img[None, :] for img in imgs] for one_img in img_list: recognizer(one_img, None, return_loss=False) def test_i3d(): model, train_cfg, test_cfg = _get_recognizer_cfg( 'i3d/i3d_r50_32x2x1_100e_kinetics400_rgb.py') model['backbone']['pretrained2d'] = False model['backbone']['pretrained'] = None recognizer = build_recognizer( model, train_cfg=train_cfg, test_cfg=test_cfg) input_shape = (1, 3, 3, 8, 32, 32) demo_inputs = generate_demo_inputs(input_shape, '3D') imgs = demo_inputs['imgs'] gt_labels = demo_inputs['gt_labels'] # parrots 3dconv is only implemented on gpu if torch.__version__ == 'parrots': if torch.cuda.is_available(): recognizer = recognizer.cuda() imgs = imgs.cuda() gt_labels = gt_labels.cuda() losses = recognizer(imgs, gt_labels) assert isinstance(losses, dict) # Test forward test with torch.no_grad(): img_list = [img[None, :] for img in imgs] for one_img in img_list: recognizer(one_img, None, return_loss=False) else: losses = recognizer(imgs, gt_labels) assert isinstance(losses, dict) # Test forward test with torch.no_grad(): img_list = [img[None, :] for img in imgs] for one_img in img_list: recognizer(one_img, None, return_loss=False) def test_r2plus1d(): model, train_cfg, test_cfg = _get_recognizer_cfg( 'r2plus1d/r2plus1d_r34_8x8x1_180e_kinetics400_rgb.py') model['backbone']['pretrained2d'] = False model['backbone']['pretrained'] = None model['backbone']['norm_cfg'] = dict(type='BN3d') recognizer = build_recognizer( model, train_cfg=train_cfg, test_cfg=test_cfg) input_shape = (1, 3, 3, 8, 32, 32) demo_inputs = generate_demo_inputs(input_shape, '3D') imgs = demo_inputs['imgs'] gt_labels = demo_inputs['gt_labels'] # parrots 3dconv is only implemented on gpu if torch.__version__ == 'parrots': if torch.cuda.is_available(): recognizer = recognizer.cuda() imgs = imgs.cuda() gt_labels = gt_labels.cuda() losses = recognizer(imgs, gt_labels) assert isinstance(losses, dict) # Test forward test with torch.no_grad(): img_list = [img[None, :] for img in imgs] for one_img in img_list: recognizer(one_img, None, return_loss=False) else: losses = recognizer(imgs, gt_labels) assert isinstance(losses, dict) # Test forward test with torch.no_grad(): img_list = [img[None, :] for img in imgs] for one_img in img_list: recognizer(one_img, None, return_loss=False) def test_slowfast(): model, train_cfg, test_cfg = _get_recognizer_cfg( 'slowfast/slowfast_r50_4x16x1_256e_kinetics400_rgb.py') recognizer = build_recognizer( model, train_cfg=train_cfg, test_cfg=test_cfg) input_shape = (1, 3, 3, 8, 32, 32) demo_inputs = generate_demo_inputs(input_shape, '3D') imgs = demo_inputs['imgs'] gt_labels = demo_inputs['gt_labels'] # parrots 3dconv is only implemented on gpu if torch.__version__ == 'parrots': if torch.cuda.is_available(): recognizer = recognizer.cuda() imgs = imgs.cuda() gt_labels = gt_labels.cuda() losses = recognizer(imgs, gt_labels) assert isinstance(losses, dict) # Test forward test with torch.no_grad(): img_list = [img[None, :] for img in imgs] for one_img in img_list: recognizer(one_img, None, return_loss=False) else: losses = recognizer(imgs, gt_labels) assert isinstance(losses, dict) # Test forward test with torch.no_grad(): img_list = [img[None, :] for img in imgs] for one_img in img_list: recognizer(one_img, None, return_loss=False) def test_tsm(): model, train_cfg, test_cfg = _get_recognizer_cfg( 'tsm/tsm_r50_1x1x8_50e_kinetics400_rgb.py') model['backbone']['pretrained'] = None recognizer = build_recognizer( model, train_cfg=train_cfg, test_cfg=test_cfg) input_shape = (1, 8, 3, 32, 32) demo_inputs = generate_demo_inputs(input_shape) imgs = demo_inputs['imgs'] gt_labels = demo_inputs['gt_labels'] losses = recognizer(imgs, gt_labels) assert isinstance(losses, dict) # Test forward test with torch.no_grad(): img_list = [img[None, :] for img in imgs] for one_img in img_list: recognizer(one_img, None, return_loss=False) def test_csn(): model, train_cfg, test_cfg = _get_recognizer_cfg( 'csn/ircsn_ig65m_pretrained_r152_32x2x1_58e_kinetics400_rgb.py') model['backbone']['pretrained2d'] = False model['backbone']['pretrained'] = None recognizer = build_recognizer( model, train_cfg=train_cfg, test_cfg=test_cfg) input_shape = (1, 3, 3, 8, 32, 32) demo_inputs = generate_demo_inputs(input_shape, '3D') imgs = demo_inputs['imgs'] gt_labels = demo_inputs['gt_labels'] # parrots 3dconv is only implemented on gpu if torch.__version__ == 'parrots': if torch.cuda.is_available(): recognizer = recognizer.cuda() imgs = imgs.cuda() gt_labels = gt_labels.cuda() losses = recognizer(imgs, gt_labels) assert isinstance(losses, dict) # Test forward test with torch.no_grad(): img_list = [img[None, :] for img in imgs] for one_img in img_list: recognizer(one_img, None, return_loss=False) else: losses = recognizer(imgs, gt_labels) assert isinstance(losses, dict) # Test forward test with torch.no_grad(): img_list = [img[None, :] for img in imgs] for one_img in img_list: recognizer(one_img, None, return_loss=False) def generate_demo_inputs(input_shape=(1, 3, 3, 224, 224), model_type='2D'): """Create a superset of inputs needed to run test or train batches. Args: input_shape (tuple): input batch dimensions. Default: (1, 250, 3, 224, 224). model_type (str): Model type for data generation, from {'2D', '3D'}. Default:'2D' """ if len(input_shape) == 5: (N, L, C, H, W) = input_shape elif len(input_shape) == 6: (N, M, C, L, H, W) = input_shape imgs = np.random.random(input_shape) if model_type == '2D': gt_labels = torch.LongTensor([2] * N) elif model_type == '3D': gt_labels = torch.LongTensor([2] * M) else: raise ValueError(f'Data type {model_type} is not available') inputs = { 'imgs': torch.FloatTensor(imgs), 'gt_labels': gt_labels, } return inputs
7b1eb99a5365b143075c1cb52706163e83e63362
794e14945c0521b4eab03e8b9a3f93b8fa14e021
/src/compas_ghpython/artists/lineartist.py
e4bc4ee098824c867f75517ab75f1e85f0d1a226
[ "MIT" ]
permissive
KEERTHANAUDAY/compas
5e8ada865bc87ee48ba77b3f6fd03661a9b9c17d
4d1101cf302f95a4472a01a1265cc64eaec6aa4a
refs/heads/master
2021-07-11T16:26:19.452926
2020-09-10T14:27:11
2020-09-10T14:27:11
294,453,684
0
0
MIT
2020-09-10T15:47:31
2020-09-10T15:47:30
null
UTF-8
Python
false
false
1,054
py
from __future__ import print_function from __future__ import absolute_import from __future__ import division import compas_ghpython from compas_ghpython.artists._primitiveartist import PrimitiveArtist __all__ = ['LineArtist'] class LineArtist(PrimitiveArtist): """Artist for drawing lines. Parameters ---------- primitive : :class:`compas.geometry.Line` A COMPAS line. Other Parameters ---------------- See :class:`compas_ghpython.artists.PrimitiveArtist` for all other parameters. """ def draw(self): """Draw the line. Returns ------- :class:`Rhino.Geometry.Line` """ start = list(self.primitive.start) end = list(self.primitive.end) lines = [{'start': start, 'end': end}] return compas_ghpython.draw_lines(lines)[0] # ============================================================================== # Main # ============================================================================== if __name__ == "__main__": pass
f0078d8d238fb95be3367e8c9a6724e692d2f892
d806dd4a6791382813d2136283a602207fb4b43c
/migrations/versions/414eda9f70d0_.py
2eb67987fdcb5ce4328978a6b6c70f45820f1622
[]
no_license
MarsStirner/sirius
5bbf2a03dafb7248db481e13aff63ff989fabbc2
8839460726cca080ca8549bacd3a498e519c8f96
refs/heads/master
2021-03-24T12:09:14.673193
2017-06-06T16:28:53
2017-06-06T16:28:53
96,042,947
0
0
null
null
null
null
UTF-8
Python
false
false
1,037
py
"""empty message Revision ID: 414eda9f70d0 Revises: f088f9315be0 Create Date: 2016-10-20 20:27:23.521000 """ # revision identifiers, used by Alembic. revision = '414eda9f70d0' down_revision = 'f088f9315be0' from alembic import op import sqlalchemy as sa from sqlalchemy.dialects import postgresql def upgrade(): ### commands auto generated by Alembic - please adjust! ### op.drop_constraint(u'_remote_entity_id_uc', 'matching_id', type_='unique') op.drop_index('ix_matching_id_remote_id', table_name='matching_id') op.drop_column(u'matching_id', 'remote_id') ### end Alembic commands ### def downgrade(): ### commands auto generated by Alembic - please adjust! ### op.add_column(u'matching_id', sa.Column('remote_id', sa.INTEGER(), autoincrement=False, nullable=False)) op.create_index('ix_matching_id_remote_id', 'matching_id', ['remote_id'], unique=False) op.create_unique_constraint(u'_remote_entity_id_uc', 'matching_id', ['remote_entity_id', 'remote_id']) ### end Alembic commands ###
c2fbf9b3a660a865fe1e20d672d48b4f0f4211bc
50084bf941b61791ac4def5b8cff950e7ddfdd15
/10 Advanced Language Techniques/Functional/04_currying.py
9bfdbe7774d011369592c47083061947c15d5c7e
[]
no_license
gjq91459/mycourse
6904ad191dc6128fb853eb8bdb1b200a46b2059f
211d7707e41f50495375b4a1dfc32b62b76b317b
refs/heads/master
2021-01-21T10:34:44.841349
2017-03-01T11:17:52
2017-03-01T11:17:52
83,456,979
1
0
null
null
null
null
UTF-8
Python
false
false
595
py
# conventional function that takes 5 args def func(a, b, c, d, e): return a, b, c, d, e print func(1, 2, 3, 4, 5) # curried version that takes 1 arg def f(a): def g(b): def h(c): def i(d): def j(e): return a, b, c, d, e return j return i return h return g # f can be called in a variety of ways a = f(1) b = f(1)(2) c = f(1)(2)(3) d = f(1)(2)(3)(4) e = f(1)(2)(3)(4)(5) # missing arguments can be supplied later print a(2)(3)(4)(5) print b(3)(4)(5) print c(4)(5) print d(5) print e
bd036bff8f5d9e56e55bb6ba97338a10bbbf2499
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/82/usersdata/231/43199/submittedfiles/decimal2bin.py
cfc4f3a70bf6f9df805aa03d52a228511ebb8f8f
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
151
py
# -*- coding: utf-8 -*- n=int(input('digite n: ')) soma=0 i=0 while n>0: resto =n%10 soma=soma+resto*(2**i) n=n//10 i=i+1 print(soma)
9af0b1c58bb1fb1a4ecbbacf86e2e4df2322826d
e37050384528b91832860d5490c1551812f45359
/train/train_spider_funtions/constant.py
24228b31060266e820cb2c471204257d584cba3f
[]
no_license
gii001/train_spider_api
72366cf4c17ac9596090bba1f9b80778e1d2d289
5307b6f538bad1379e6f218f824a402565c42fee
refs/heads/master
2020-05-01T03:59:11.263971
2019-04-05T06:07:07
2019-04-05T06:07:07
177,261,078
0
0
null
null
null
null
UTF-8
Python
false
false
60,619
py
#!/usr/bin/env python # encoding: utf-8 """ 常量设置 Author: Wendell Date: 2019/03/23 11:00 """ # 车次信息网址 TRAIN_NO_BASE_URL = 'https://kyfw.12306.cn/otn/leftTicket/query?' # 车站信息网址 STATION_INFO_BASE_URL = 'https://kyfw.12306.cn/otn/czxx/queryByTrainNo?' # 成人票网址后缀 PURPOSE_CODES = '&purpose_codes=ADULT' # User-Agent USER_AGENTS = [ 'Mozilla/5.0(Macintosh;U;IntelMacOSX10_6_8;en-us)AppleWebKit/534.50(KHTML,likeGecko)Version/5.1Safari/534.50', 'Mozilla/5.0(Windows;U;WindowsNT6.1;en-us)AppleWebKit/534.50(KHTML,likeGecko)Version/5.1Safari/534.50', 'Mozilla/5.0(compatible;MSIE9.0;WindowsNT6.1;Trident/5.0;', 'Mozilla/5.0(Macintosh;IntelMacOSX10.6;rv:2.0.1)Gecko/20100101Firefox/4.0.1', 'Opera/9.80(WindowsNT6.1;U;en)Presto/2.8.131Version/11.11', 'Mozilla/5.0(Macintosh;IntelMacOSX10_7_0)AppleWebKit/535.11(KHTML,likeGecko)Chrome/17.0.963.56Safari/535.11', 'Mozilla/4.0(compatible;MSIE7.0;WindowsNT5.1;Maxthon2.0)', 'Mozilla/4.0(compatible;MSIE7.0;WindowsNT5.1;TencentTraveler4.0)', 'Mozilla/4.0(compatible;MSIE7.0;WindowsNT5.1;TheWorld)', 'Mozilla/5.0(Linux;U;Android2.3.7;en-us;NexusOneBuild/FRF91)AppleWebKit/533.1(KHTML,likeGecko)Version/4.0MobileSafari/533.1', 'Mozilla/5.0(iPad;U;CPUOS4_3_3likeMacOSX;en-us)AppleWebKit/533.17.9(KHTML,likeGecko)Version/5.0.2Mobile/8J2Safari/6533.18.5', 'Mozilla/4.0(compatible;MSIE7.0;WindowsNT5.1;Trident/4.0;SE2.XMetaSr1.0;SE2.XMetaSr1.0;.NETCLR2.0.50727;SE2.XMetaSr1.0)', ] # 车站字典 STATION_DICT = {'北京北': 'VAP', '北京东': 'BOP', '北京': 'BJP', '北京南': 'VNP', '北京西': 'BXP', '广州南': 'IZQ', '重庆北': 'CUW', '重庆': 'CQW', '重庆南': 'CRW', '重庆西': 'CXW', '广州东': 'GGQ', '上海': 'SHH', '上海南': 'SNH', '上海虹桥': 'AOH', '上海西': 'SXH', '天津北': 'TBP', '天津': 'TJP', '天津南': 'TIP', '天津西': 'TXP', '香港西九龙': 'XJA', '长春': 'CCT', '长春南': 'CET', '长春西': 'CRT', '成都东': 'ICW', '成都南': 'CNW', '成都': 'CDW', '长沙': 'CSQ', '长沙南': 'CWQ', '大明湖': 'JAK', '福州': 'FZS', '福州南': 'FYS', '贵阳': 'GIW', '广州': 'GZQ', '广州西': 'GXQ', '哈尔滨': 'HBB', '哈尔滨东': 'VBB', '哈尔滨西': 'VAB', '合肥': 'HFH', '合肥西': 'HTH', '呼和浩特东': 'NDC', '呼和浩特': 'HHC', '海 口东': 'KEQ', '海口东': 'HMQ', '海口': 'VUQ', '杭州东': 'HGH', '杭州': 'HZH', '杭州南': 'XHH', '济南': 'JNK', '济南西': 'JGK', '昆明': 'KMM', '昆明西': 'KXM', '拉萨': 'LSO', '兰州东': 'LVJ', '兰州': 'LZJ', '兰州西': 'LAJ', '南昌': 'NCG', '南京': 'NJH', '南京南': 'NKH', '南宁': 'NNZ', '石家庄北': 'VVP', '石家庄': 'SJP', '沈阳': 'SYT', '沈阳北': 'SBT', '沈阳东': 'SDT', '沈阳南': 'SOT', '太原北': 'TBV', '太原东': 'TDV', '太原': 'TYV', '武汉': 'WHN', '王家营西': 'KNM', '乌鲁木齐': 'WAR', '西安北': 'EAY', '西安': 'XAY', '西安南': 'CAY', '西宁': 'XNO', '银川': 'YIJ', '郑州': 'ZZF', '阿尔山': 'ART', '安康': 'AKY', '阿克苏': 'ASR', '阿里河': 'AHX', '阿拉山口': 'AKR', '安平': 'APT', '安庆': 'AQH', '安顺': 'ASW', '鞍山': 'AST', '安阳': 'AYF', '北安': 'BAB', '蚌埠': 'BBH', '白城': 'BCT', '北海': 'BHZ', '白河': 'BEL', '白涧': 'BAP', '宝鸡': 'BJY', '滨江': 'BJB', '博克图': 'BKX', '百色': 'BIZ', '白山市': 'HJL', '北台': 'BTT', '包头东': 'BDC', '包头': 'BTC', '北屯市': 'BXR', '本溪': 'BXT', '白云鄂博': 'BEC', '白银西': 'BXJ', '亳州': 'BZH', '赤壁': 'CBN', '常德': 'VGQ', '承德': 'CDP', '长甸': 'CDT', '赤峰': 'CFD', '茶陵': 'CDG', '苍南': 'CEH', '昌平': 'CPP', '崇仁': 'CRG', '昌图': 'CTT', '长汀镇': 'CDB', '曹县': 'CXK', '楚雄南': 'COM', '陈相屯': 'CXT', '长治北': 'CBF', '池州': 'IYH', '长征': 'CZJ', '常州': 'CZH', '郴州': 'CZQ', '长治': 'CZF', '沧州': 'COP', '崇左': 'CZZ', '大安北': 'RNT', '大成': 'DCT', '丹东': 'DUT', '东方红': 'DFB', '东莞东': 'DMQ', '大虎山': 'DHD', '敦化': 'DHL', '敦煌': 'DHJ', '德惠': 'DHT', '东京城': 'DJB', '大涧': 'DFP', '都江堰': 'DDW', '大连北': 'DFT', '大理': 'DKM', '大连': 'DLT', '定南': 'DNG', '大庆': 'DZX', '东胜': 'DOC', '大石桥': 'DQT', '大同': 'DTV', '东营': 'DPK', '大杨树': 'DUX', '都匀': 'RYW', '邓州': 'DOF', '达州': 'RXW', '德州': 'DZP', '额济纳': 'EJC', '二连': 'RLC', '恩施': 'ESN', '福鼎': 'FES', '凤凰机场': 'FJQ', '风陵渡': 'FLV', '涪陵': 'FLW', '富拉尔基': 'FRX', '抚顺北': 'FET', '佛山': 'FSQ', '阜新南': 'FXD', '阜阳': 'FYH', '格尔木': 'GRO', '广汉': 'GHW', '古交': 'GJV', '桂林北': 'GBZ', '古莲': 'GRX', '桂林': 'GLZ', '固始': 'GXN', '广水': 'GSN', '干塘': 'GNJ', '广元': 'GYW', '广州北': 'GBQ', '赣州': 'GZG', '公主岭': 'GLT', '公主岭南': 'GBT', '淮安': 'AUH', '淮北': 'HRH', '鹤北': 'HMB', '淮滨': 'HVN', '河边': 'HBV', '潢川': 'KCN', '韩城': 'HCY', '邯郸': 'HDP', '横道河子': 'HDB', '鹤岗': 'HGB', '皇姑屯': 'HTT', '红果': 'HEM', '黑河': 'HJB', '怀化': 'HHQ', '汉口': 'HKN', '葫芦岛': 'HLD', '海拉尔': 'HRX', '霍林郭勒': 'HWD', '海伦': 'HLB', '侯马': 'HMV', '哈密': 'HMR', '淮南': 'HAH', '桦南': 'HNB', '海宁西': 'EUH', '鹤庆': 'HQM', '怀柔北': 'HBP', '怀柔': 'HRP', '黄石东': 'OSN', '华山': 'HSY', '黄山': 'HKH', '黄石': 'HSN', '衡水': 'HSP', '衡阳': 'HYQ', '菏泽': 'HIK', '贺州': 'HXZ', '汉中': 'HOY', '惠州': 'HCQ', '吉安': 'VAG', '集安': 'JAL', '江边村': 'JBG', '晋城': 'JCF', '金城江': 'JJZ', '景德镇': 'JCG', '嘉峰': 'JFF', '加格达奇': 'JGX', '井冈山': 'JGG', '蛟河': 'JHL', '金华南': 'RNH', '金华': 'JBH', '九江': 'JJG', '吉林': 'JLL', '荆门': 'JMN', '佳木斯': 'JMB', '济宁': 'JIK', '集宁南': 'JAC', '酒泉': 'JQJ', '江山': 'JUH', '吉首': 'JIQ', '九台': 'JTL', '镜铁山': 'JVJ', '鸡西': 'JXB', '绩溪县': 'JRH', '嘉峪关': 'JGJ', '江油': 'JFW', '蓟州北': 'JKP', '金州': 'JZT', '锦州': 'JZD', '库尔勒': 'KLR', '开封': 'KFF', '岢岚': 'KLV', '凯里': 'KLW', '喀什': 'KSR', '昆山南': 'KNH', '奎屯': 'KTR', '开原': 'KYT', '六安': 'UAH', '灵宝': 'LBF', '芦潮港': 'UCH', '隆昌': 'LCW', '陆川': 'LKZ', '利川': 'LCN', '临川': 'LCG', '潞城': 'UTP', '鹿道': 'LDL', '娄底': 'LDQ', '临汾': 'LFV', '良各庄': 'LGP', '临河': 'LHC', '漯河': 'LON', '绿化': 'LWJ', '隆化': 'UHP', '丽江': 'LHM', '临江': 'LQL', '龙井': 'LJL', '吕梁': 'LHV', '醴陵': 'LLG', '柳林南': 'LKV', '滦平': 'UPP', '六盘水': 'UMW', '灵丘': 'LVV', '旅顺': 'LST', '兰溪': 'LWH', '陇西': 'LXJ', '澧县': 'LEQ', '临西': 'UEP', '龙岩': 'LYS', '耒阳': 'LYQ', '洛阳': 'LYF', '连云港东': 'UKH', '洛阳东': 'LDF', '临沂': 'LVK', '洛阳龙门': 'LLF', '柳园': 'DHR', '凌源': 'LYD', '辽源': 'LYL', '立志': 'LZX', '柳州': 'LZZ', '辽中': 'LZD', '麻城': 'MCN', '免渡河': 'MDX', '牡丹江': 'MDB', '莫尔道嘎': 'MRX', '明光': 'MGH', '满归': 'MHX', '漠河': 'MVX', '茂名': 'MDQ', '茂名西': 'MMZ', '密山': 'MSB', '马三家': 'MJT', '麻尾': 'VAW', '绵阳': 'MYW', '梅州': 'MOQ', '满洲里': 'MLX', '宁波东': 'NVH', '宁波': 'NGH', '南岔': 'NCB', '南充': 'NCW', '南丹': 'NDZ', '南大庙': 'NMP', '南芬': 'NFT', '讷河': 'NHX', '嫩江': 'NGX', '内江': 'NJW', '南平': 'NPS', '南通': 'NUH', '南阳': 'NFF', '碾子山': 'NZX', '平顶山': 'PEN', '盘锦': 'PVD', '平凉': 'PIJ', '平凉南': 'POJ', '平泉': 'PQP', '坪石': 'PSQ', '萍乡': 'PXG', '凭祥': 'PXZ', '郫县西': 'PCW', '攀枝花': 'PRW', '蕲春': 'QRN', '青城山': 'QSW', '青岛': 'QDK', '清河城': 'QYP', '曲靖': 'QJM', '黔江': 'QNW', '前进镇': 'QEB', '齐齐哈尔': 'QHX', '七台河': 'QTB', '沁县': 'QVV', '泉州东': 'QRS', '泉州': 'QYS', '衢州': 'QEH', '融安': 'RAZ', '汝箕沟': 'RQJ', '瑞金': 'RJG', '日照': 'RZK', '双城堡': 'SCB', '绥芬河': 'SFB', '韶关东': 'SGQ', '山海关': 'SHD', '绥化': 'SHB', '三间房': 'SFX', '苏家屯': 'SXT', '舒兰': 'SLL', '神木南': 'OMY', '三门峡': 'SMF', '商南': 'ONY', '遂宁': 'NIW', '四平': 'SPT', '商丘': 'SQF', '上饶': 'SRG', '韶山': 'SSQ', '宿松': 'OAH', '汕头': 'OTQ', '邵武': 'SWS', '涉县': 'OEP', '三亚': 'SEQ', '三 亚': 'JUQ', '邵阳': 'SYQ', '十堰': 'SNN', '三元区': 'SMS', '双鸭山': 'SSB', '松原': 'VYT', '苏州': 'SZH', '深圳': 'SZQ', '宿州': 'OXH', '随州': 'SZN', '朔州': 'SUV', '深圳西': 'OSQ', '塘豹': 'TBQ', '塔尔气': 'TVX', '潼关': 'TGY', '塘沽': 'TGP', '塔河': 'TXX', '通化': 'THL', '泰来': 'TLX', '吐鲁番': 'TFR', '通辽': 'TLD', '铁岭': 'TLT', '陶赖昭': 'TPT', '图们': 'TML', '铜仁': 'RDQ', '唐山北': 'FUP', '田师府': 'TFT', '泰山': 'TAK', '唐山': 'TSP', '天水': 'TSJ', '通远堡': 'TYT', '太阳升': 'TQT', '泰州': 'UTH', '桐梓': 'TZW', '通州西': 'TAP', '五常': 'WCB', '武昌': 'WCN', '瓦房店': 'WDT', '威海': 'WKK', '芜湖': 'WHH', '乌海西': 'WXC', '吴家屯': 'WJT', '乌鲁木齐南': 'WMR', '武隆': 'WLW', '乌兰浩特': 'WWT', '渭南': 'WNY', '威舍': 'WSM', '歪头山': 'WIT', '武威': 'WUJ', '武威南': 'WWJ', '无锡': 'WXH', '乌西': 'WXR', '乌伊岭': 'WPB', '武夷山': 'WAS', '万源': 'WYY', '万州': 'WYW', '梧州': 'WZZ', '温州': 'RZH', '温州南': 'VRH', '西昌': 'ECW', '许昌': 'XCF', '西昌南': 'ENW', '锡林浩特': 'XTC', '厦门北': 'XKS', '厦门': 'XMS', '厦门高崎': 'XBS', '宣威': 'XWM', '新乡': 'XXF', '信阳': 'XUN', '咸阳': 'XYY', '襄阳': 'XFN', '熊岳城': 'XYT', '新余': 'XUG', '徐州': 'XCH', '延安': 'YWY', '宜宾': 'YBW', '亚布力南': 'YWB', '叶柏寿': 'YBD', '宜昌东': 'HAN', '永川': 'YCW', '盐城': 'AFH', '宜昌': 'YCN', '运城': 'YNV', '伊春': 'YCB', '榆次': 'YCV', '杨村': 'YBP', '宜春西': 'YCG', '伊尔施': 'YET', '燕岗': 'YGW', '永济': 'YIV', '延吉': 'YJL', '营口': 'YKT', '牙克石': 'YKX', '玉林': 'YLZ', '阎良': 'YNY', '榆林': 'ALY', '亚龙湾': 'TWQ', '一面坡': 'YPB', '伊宁': 'YMR', '阳平关': 'YAY', '玉屏': 'YZW', '原平': 'YPV', '延庆': 'YNP', '阳泉曲': 'YYV', '玉泉': 'YQB', '阳泉': 'AQP', '营山': 'NUW', '玉山': 'YNG', '燕山': 'AOP', '榆树': 'YRT', '鹰潭': 'YTG', '烟台': 'YAK', '伊图里河': 'YEX', '玉田县': 'ATP', '义乌': 'YWH', '阳新': 'YON', '义县': 'YXD', '益阳': 'AEQ', '岳阳': 'YYQ', '崖州': 'YUQ', '永州': 'AOQ', '扬州': 'YLH', '淄博': 'ZBK', '镇城底': 'ZDV', '自贡': 'ZGW', '珠海': 'ZHQ', '珠海北': 'ZIQ', '湛江': 'ZJZ', '镇江': 'ZJH', '张家界': 'DIQ', '张家口': 'ZKP', '张家口南': 'ZMP', '周口': 'ZKN', '哲里木': 'ZLC', '扎兰屯': 'ZTX', '驻马店': 'ZDN', '肇庆': 'ZVQ', '周水子': 'ZIT', '昭通': 'ZDW', '中卫': 'ZWJ', '资阳': 'ZYW', '遵义西': 'ZIW', '枣庄': 'ZEK', '资中': 'ZZW', '株洲': 'ZZQ', '枣庄西': 'ZFK', '昂昂溪': 'AAX', '阿城': 'ACB', '安达': 'ADX', '安德': 'ARW', '安定': 'ADP', '安多': 'ADO', '安广': 'AGT', '敖汉': 'YED', '艾河': 'AHP', '安化': 'PKQ', '艾家村': 'AJJ', '鳌江': 'ARH', '安家': 'AJB', '阿金': 'AJD', '安靖': 'PYW', '阿克陶': 'AER', '安口窑': 'AYY', '敖力布告': 'ALD', '安龙': 'AUZ', '阿龙山': 'ASX', '安陆': 'ALN', '阿木尔': 'JTX', '阿南庄': 'AZM', '安庆西': 'APH', '鞍山西': 'AXT', '安塘': 'ATV', '安亭北': 'ASH', '阿图什': 'ATR', '安图': 'ATL', '安溪': 'AXS', '博鳌': 'BWQ', '北碚': 'BPW', '白壁关': 'BGV', '蚌埠南': 'BMH', '巴楚': 'BCR', '板城': 'BUP', '北戴河': 'BEP', '保定': 'BDP', '宝坻': 'BPP', '八达岭': 'ILP', '巴东': 'BNN', '柏果': 'BGM', '布海': 'BUT', '白河东': 'BIY', '贲红': 'BVC', '宝华山': 'BWH', '白河县': 'BEY', '白芨沟': 'BJJ', '碧鸡关': 'BJM', '北滘': 'IBQ', '碧江': 'BLQ', '白鸡坡': 'BBM', '笔架山': 'BSB', '八角台': 'BTD', '保康': 'BKD', '白奎堡': 'BKB', '白狼': 'BAT', '百浪': 'BRZ', '博乐': 'BOR', '宝拉格': 'BQC', '巴林': 'BLX', '宝林': 'BNB', '北流': 'BOZ', '勃利': 'BLB', '布列开': 'BLR', '宝龙山': 'BND', '百里峡': 'AAP', '八面城': 'BMD', '班猫箐': 'BNM', '八面通': 'BMB', '北马圈子': 'BRP', '北票南': 'RPD', '白旗': 'BQP', '宝泉岭': 'BQB', '白泉': 'BQL', '巴山': 'BAY', '白水江': 'BSY', '白沙坡': 'BPM', '白石山': 'BAL', '白水镇': 'BUM', '包头 东': 'FDC', '坂田': 'BTQ', '泊头': 'BZP', '北屯': 'BYP', '本溪湖': 'BHT', '博兴': 'BXK', '八仙筒': 'VXD', '白音察干': 'BYC', '背荫河': 'BYB', '北营': 'BIV', '巴彦高勒': 'BAC', '白音他拉': 'BID', '鲅鱼圈': 'BYT', '白银市': 'BNJ', '白音胡硕': 'BCD', '巴中': 'IEW', '霸州': 'RMP', '北宅': 'BVP', '赤壁北': 'CIN', '查布嘎': 'CBC', '长城': 'CEJ', '长冲': 'CCM', '承德东': 'CCP', '赤峰西': 'CID', '嵯岗': 'CAX', '柴岗': 'CGT', '长葛': 'CEF', '柴沟堡': 'CGV', '城固': 'CGY', '陈官营': 'CAJ', '成高子': 'CZB', '草海': 'WBW', '柴河': 'CHB', '册亨': 'CHZ', '草河口': 'CKT', '崔黄口': 'CHP', '巢湖': 'CIH', '蔡家沟': 'CJT', '成吉思汗': 'CJX', '岔江': 'CAM', '蔡家坡': 'CJY', '昌乐': 'CLK', '超梁沟': 'CYP', '慈利': 'CUQ', '昌黎': 'CLP', '长岭子': 'CLT', '晨明': 'CMB', '长农': 'CNJ', '昌平北': 'VBP', '常平': 'DAQ', '长坡岭': 'CPM', '辰清': 'CQB', '蔡山': 'CON', '楚山': 'CSB', '长寿': 'EFW', '磁山': 'CSP', '苍石': 'CST', '草市': 'CSL', '察素齐': 'CSC', '长山屯': 'CVT', '长汀': 'CES', '朝天南': 'CTY', '昌图西': 'CPT', '春湾': 'CQQ', '磁县': 'CIP', '岑溪': 'CNZ', '辰溪': 'CXQ', '磁西': 'CRP', '长兴南': 'CFH', '磁窑': 'CYK', '春阳': 'CAL', '城阳': 'CEK', '创业村': 'CEX', '朝阳川': 'CYL', '朝阳地': 'CDD', '朝阳南': 'CYD', '长垣': 'CYF', '朝阳镇': 'CZL', '滁州北': 'CUH', '常州北': 'ESH', '滁州': 'CXH', '潮州': 'CKQ', '常庄': 'CVK', '曹子里': 'CFP', '车转湾': 'CWM', '郴州西': 'ICQ', '沧州西': 'CBP', '德安': 'DAG', '大安': 'RAT', '大坝': 'DBJ', '大板': 'DBC', '大巴': 'DBD', '电白': 'NWQ', '到保': 'RBT', '达坂城': 'DCR', '定边': 'DYJ', '东边井': 'DBB', '德伯斯': 'RDT', '打柴沟': 'DGJ', '德昌': 'DVW', '滴道': 'DDB', '大磴沟': 'DKJ', '刀尔登': 'DRD', '得耳布尔': 'DRX', '杜尔伯特': 'TKX', '东方': 'UFQ', '丹凤': 'DGY', '东丰': 'DIL', '都格': 'DMM', '大官屯': 'DTT', '大关': 'RGW', '东光': 'DGP', '东海': 'DHB', '大灰厂': 'DHP', '大红旗': 'DQD', '大禾塘': 'SOQ', '德惠西': 'DXT', '东海县': 'DQH', '达家沟': 'DJT', '东津': 'DKB', '杜家': 'DJL', '大口屯': 'DKP', '东来': 'RVD', '德令哈': 'DHO', '大陆号': 'DLC', '带岭': 'DLB', '大林': 'DLD', '达拉特旗': 'DIC', '独立屯': 'DTX', '豆罗': 'DLV', '达拉特西': 'DNC', '大连西': 'GZT', '东明村': 'DMD', '洞庙河': 'DEP', '东明县': 'DNF', '大拟': 'DNZ', '大平房': 'DPD', '大盘石': 'RPP', '大埔': 'DPI', '大堡': 'DVT', '大庆东': 'LFX', '大其拉哈': 'DQX', '道清': 'DML', '对青山': 'DQB', '德清西': 'MOH', '大庆西': 'RHX', '东升': 'DRQ', '砀山': 'DKH', '独山': 'RWW', '登沙河': 'DWT', '读书铺': 'DPM', '大石头': 'DSL', '东胜西': 'DYC', '大石寨': 'RZT', '东台': 'DBH', '定陶': 'DQK', '灯塔': 'DGT', '大田边': 'DBM', '东通化': 'DTL', '丹徒': 'RUH', '大屯': 'DNT', '东湾': 'DRJ', '大武口': 'DFJ', '低窝铺': 'DWJ', '大王滩': 'DZZ', '大湾子': 'DFM', '大兴沟': 'DXL', '大兴': 'DXX', '定西': 'DSJ', '甸心': 'DXM', '东乡': 'DXG', '代县': 'DKV', '定襄': 'DXV', '东戌': 'RXP', '东辛庄': 'DXD', '丹阳': 'DYH', '德阳': 'DYW', '大雁': 'DYX', '当阳': 'DYN', '丹阳北': 'EXH', '大英东': 'IAW', '东淤地': 'DBV', '大营': 'DYV', '定远': 'EWH', '岱岳': 'RYV', '大元': 'DYZ', '大营镇': 'DJP', '大营子': 'DZD', '大战场': 'DTJ', '德州东': 'DIP', '东至': 'DCH', '低庄': 'DVQ', '东镇': 'DNV', '道州': 'DFZ', '东庄': 'DZV', '兑镇': 'DWV', '豆庄': 'ROP', '定州': 'DXP', '大竹园': 'DZY', '大杖子': 'DAP', '豆张庄': 'RZP', '峨边': 'EBW', '二道沟门': 'RDP', '二道湾': 'RDX', '鄂尔多斯': 'EEC', '二龙': 'RLD', '二龙山屯': 'ELA', '峨眉': 'EMW', '二密河': 'RML', '恩平': 'PXQ', '二营': 'RYJ', '鄂州': 'ECN', '福安': 'FAS', '丰城': 'FCG', '丰城南': 'FNG', '肥东': 'FIH', '发耳': 'FEM', '富海': 'FHX', '福海': 'FHR', '凤凰城': 'FHT', '汾河': 'FEV', '奉化': 'FHH', '富锦': 'FIB', '范家屯': 'FTT', '福利区': 'FLJ', '福利屯': 'FTB', '丰乐镇': 'FZB', '阜南': 'FNH', '阜宁': 'AKH', '抚宁': 'FNP', '福清': 'FQS', '福泉': 'VMW', '丰水村': 'FSJ', '丰顺': 'FUQ', '繁峙': 'FSV', '抚顺': 'FST', '福山口': 'FKP', '扶绥': 'FSZ', '冯屯': 'FTX', '浮图峪': 'FYP', '富县东': 'FDY', '凤县': 'FXY', '富县': 'FEY', '费县': 'FXK', '凤阳': 'FUH', '汾阳': 'FAV', '扶余北': 'FBT', '分宜': 'FYG', '富源': 'FYM', '扶余': 'FYT', '富裕': 'FYX', '抚州北': 'FBG', '凤州': 'FZY', '丰镇': 'FZC', '范镇': 'VZK', '固安': 'GFP', '广安': 'VJW', '高碑店': 'GBP', '沟帮子': 'GBD', '甘草店': 'GDJ', '谷城': 'GCN', '藁城': 'GEP', '高村': 'GCV', '古城镇': 'GZB', '广德': 'GRH', '贵定': 'GTW', '贵定南': 'IDW', '古东': 'GDV', '贵港': 'GGZ', '官高': 'GVP', '葛根庙': 'GGT', '干沟': 'GGL', '甘谷': 'GGJ', '高各庄': 'GGP', '甘河': 'GAX', '根河': 'GEX', '郭家店': 'GDT', '孤家子': 'GKT', '古浪': 'GLJ', '皋兰': 'GEJ', '高楼房': 'GFM', '归流河': 'GHT', '关林': 'GLF', '甘洛': 'VOW', '郭磊庄': 'GLP', '高密': 'GMK', '公庙子': 'GMC', '工农湖': 'GRT', '广宁寺南': 'GNT', '广南卫': 'GNM', '高平': 'GPF', '甘泉北': 'GEY', '共青城': 'GAG', '甘旗卡': 'GQD', '甘泉': 'GQY', '高桥镇': 'GZD', '灌水': 'GST', '赶水': 'GSW', '孤山口': 'GSP', '果松': 'GSL', '高山子': 'GSD', '嘎什甸子': 'GXD', '高台': 'GTJ', '高滩': 'GAY', '古田': 'GTS', '官厅': 'GTP', '官厅西': 'KEP', '贵溪': 'GXG', '涡阳': 'GYH', '巩义': 'GXF', '高邑': 'GIP', '巩义南': 'GYF', '广元南': 'GAW', '固原': 'GUJ', '菇园': 'GYL', '公营子': 'GYD', '光泽': 'GZS', '古镇': 'GNQ', '固镇': 'GEH', '虢镇': 'GZY', '瓜州': 'GZJ', '高州': 'GSQ', '盖州': 'GXT', '官字井': 'GOT', '冠豸山': 'GSS', '盖州西': 'GAT', '海安': 'HIH', '淮安南': 'AMH', '红安': 'HWN', '红安西': 'VXN', '黄柏': 'HBL', '海北': 'HEB', '鹤壁': 'HAF', '会昌北': 'XEG', '华城': 'VCQ', '河唇': 'HCZ', '汉川': 'HCN', '海城': 'HCT', '合川': 'WKW', '黑冲滩': 'HCJ', '黄村': 'HCP', '海城西': 'HXT', '化德': 'HGC', '洪洞': 'HDV', '霍尔果斯': 'HFR', '横峰': 'HFG', '韩府湾': 'HXJ', '汉沽': 'HGP', '黄瓜园': 'HYM', '红光镇': 'IGW', '浑河': 'HHT', '红花沟': 'VHD', '黄花筒': 'HUD', '贺家店': 'HJJ', '和静': 'HJR', '红江': 'HFM', '黑井': 'HIM', '获嘉': 'HJF', '河津': 'HJV', '涵江': 'HJS', '华家': 'HJT', '杭锦后旗': 'HDC', '河间西': 'HXP', '花家庄': 'HJM', '河口南': 'HKJ', '湖口': 'HKG', '黄口': 'KOH', '呼兰': 'HUB', '葫芦岛北': 'HPD', '浩良河': 'HHB', '哈拉海': 'HIT', '鹤立': 'HOB', '桦林': 'HIB', '黄陵': 'ULY', '海林': 'HRB', '虎林': 'VLB', '寒岭': 'HAT', '和龙': 'HLL', '海龙': 'HIL', '哈拉苏': 'HAX', '呼鲁斯太': 'VTJ', '火连寨': 'HLT', '黄梅': 'VEH', '韩麻营': 'HYP', '黄泥河': 'HHL', '海宁': 'HNH', '惠农': 'HMJ', '和平': 'VAQ', '花棚子': 'HZM', '花桥': 'VQH', '宏庆': 'HEY', '怀仁': 'HRV', '华容': 'HRN', '华山北': 'HDY', '黄松甸': 'HDL', '和什托洛盖': 'VSR', '红山': 'VSB', '汉寿': 'VSQ', '衡山': 'HSQ', '黑水': 'HOT', '惠山': 'VCH', '虎什哈': 'HHP', '红寺堡': 'HSJ', '虎石台': 'HUT', '海石湾': 'HSO', '衡山西': 'HEQ', '红砂岘': 'VSJ', '黑台': 'HQB', '桓台': 'VTK', '和田': 'VTR', '会同': 'VTQ', '海坨子': 'HZT', '黑旺': 'HWK', '海湾': 'RWH', '红星': 'VXB', '徽县': 'HYY', '红兴隆': 'VHB', '换新天': 'VTB', '红岘台': 'HTJ', '红彦': 'VIX', '海晏': 'HFO', '合阳': 'HAY', '衡阳东': 'HVQ', '华蓥': 'HUW', '汉阴': 'HQY', '黄羊滩': 'HGJ', '汉源': 'WHW', '河源': 'VIQ', '花园': 'HUN', '湟源': 'HNO', '黄羊镇': 'HYJ', '湖州': 'VZH', '化州': 'HZZ', '黄州': 'VON', '霍州': 'HZV', '惠州西': 'VXQ', '巨宝': 'JRT', '靖边': 'JIY', '金宝屯': 'JBD', '晋城北': 'JEF', '金昌': 'JCJ', '鄄城': 'JCK', '交城': 'JNV', '建昌': 'JFD', '峻德': 'JDB', '井店': 'JFP', '鸡东': 'JOB', '江都': 'UDH', '鸡冠山': 'JST', '金沟屯': 'VGP', '静海': 'JHP', '金河': 'JHX', '锦河': 'JHB', '精河': 'JHR', '精河南': 'JIR', '江华': 'JHZ', '建湖': 'AJH', '纪家沟': 'VJD', '晋江': 'JJS', '锦界': 'JEY', '姜家': 'JJB', '江津': 'JJW', '金坑': 'JKT', '芨岭': 'JLJ', '金马村': 'JMM', '江门东': 'JWQ', '角美': 'JES', '莒南': 'JOK', '井南': 'JNP', '建瓯': 'JVS', '经棚': 'JPC', '江桥': 'JQX', '九三': 'SSX', '金山北': 'EGH', '嘉善': 'JSH', '京山': 'JCN', '建始': 'JRN', '稷山': 'JVV', '吉舒': 'JSL', '建设': 'JET', '甲山': 'JOP', '建三江': 'JIB', '嘉善南': 'EAH', '金山屯': 'JTB', '江所田': 'JOM', '景泰': 'JTJ', '九台南': 'JNL', '吉文': 'JWX', '进贤': 'JUG', '莒县': 'JKK', '嘉祥': 'JUK', '介休': 'JXV', '嘉兴': 'JXH', '井陉': 'JJP', '嘉兴南': 'EPH', '夹心子': 'JXT', '姜堰': 'UEH', '简阳': 'JYW', '揭阳': 'JRQ', '建阳': 'JYS', '巨野': 'JYK', '江永': 'JYZ', '缙云': 'JYH', '靖远': 'JYJ', '江源': 'SZL', '济源': 'JYF', '靖远西': 'JXJ', '胶州北': 'JZK', '焦作东': 'WEF', '金寨': 'JZH', '靖州': 'JEQ', '荆州': 'JBN', '胶州': 'JXK', '晋州': 'JXP', '蓟州': 'JIP', '锦州南': 'JOD', '焦作': 'JOF', '旧庄窝': 'JVP', '金杖子': 'JYD', '开安': 'KAT', '库车': 'KCR', '康城': 'KCP', '库都尔': 'KDX', '宽甸': 'KDT', '克东': 'KOB', '昆都仑召': 'KDC', '开江': 'KAW', '康金井': 'KJB', '喀喇其': 'KQX', '开鲁': 'KLC', '克拉玛依': 'KHR', '开平南': 'PVQ', '口前': 'KQL', '昆山': 'KSH', '奎山': 'KAB', '克山': 'KSB', '康熙岭': 'KXZ', '昆阳': 'KAM', '克一河': 'KHX', '开原西': 'KXT', '康庄': 'KZP', '来宾': 'UBZ', '老边': 'LLT', '灵宝西': 'LPF', '龙川': 'LUQ', '乐昌': 'LCQ', '黎城': 'UCP', '聊城': 'UCK', '蓝村': 'LCK', '两当': 'LDY', '林东': 'LRC', '乐都': 'LDO', '梁底下': 'LDP', '六道河子': 'LVP', '鲁番': 'LVM', '廊坊': 'LJP', '落垡': 'LOP', '廊坊北': 'LFP', '老府': 'UFD', '兰岗': 'LNB', '龙骨甸': 'LGM', '芦沟': 'LOM', '龙沟': 'LGJ', '拉古': 'LGB', '临海': 'UFH', '林海': 'LXX', '拉哈': 'LHX', '凌海': 'JID', '柳河': 'LNL', '六合': 'KLH', '龙华': 'LHP', '滦河沿': 'UNP', '六合镇': 'LEX', '亮甲店': 'LRT', '刘家店': 'UDT', '刘家河': 'LVT', '连江': 'LKS', '庐江': 'UJH', '李家': 'LJB', '罗江': 'LJW', '廉江': 'LJZ', '两家': 'UJT', '龙江': 'LJX', '龙嘉': 'UJL', '莲江口': 'LHB', '蔺家楼': 'ULK', '李家坪': 'LIJ', '兰考': 'LKF', '林口': 'LKB', '路口铺': 'LKQ', '老莱': 'LAX', '拉林': 'LAB', '陆良': 'LRM', '龙里': 'LLW', '临澧': 'LWQ', '兰棱': 'LLB', '零陵': 'UWZ', '卢龙': 'UAP', '喇嘛甸': 'LMX', '里木店': 'LMB', '洛门': 'LMJ', '龙南': 'UNG', '梁平': 'UQW', '罗平': 'LPM', '落坡岭': 'LPP', '六盘山': 'UPJ', '乐平市': 'LPG', '临清': 'UQK', '龙泉寺': 'UQJ', '乐山北': 'UTW', '乐善村': 'LUM', '冷水江东': 'UDQ', '连山关': 'LGT', '流水沟': 'USP', '丽水': 'USH', '陵水': 'LIQ', '罗山': 'LRN', '鲁山': 'LAF', '梁山': 'LMK', '灵石': 'LSV', '露水河': 'LUL', '庐山': 'LSG', '林盛堡': 'LBT', '柳树屯': 'LSD', '龙山镇': 'LAS', '梨树镇': 'LSB', '李石寨': 'LET', '黎塘': 'LTZ', '轮台': 'LAR', '芦台': 'LTP', '龙塘坝': 'LBM', '濑湍': 'LVZ', '骆驼巷': 'LTJ', '李旺': 'VLJ', '莱芜东': 'LWK', '狼尾山': 'LRJ', '灵武': 'LNJ', '莱芜西': 'UXK', '朗乡': 'LXB', '陇县': 'LXY', '临湘': 'LXQ', '芦溪': 'LUG', '莱西': 'LXK', '林西': 'LXC', '滦县': 'UXP', '莱阳': 'LYK', '略阳': 'LYY', '辽阳': 'LYT', '凌源东': 'LDD', '临沂东': 'UYK', '连云港': 'UIH', '临颍': 'LNF', '老营': 'LXL', '龙游': 'LMH', '罗源': 'LVS', '林源': 'LYX', '涟源': 'LAQ', '涞源': 'LYP', '耒阳西': 'LPQ', '临泽': 'LEJ', '龙爪沟': 'LZT', '雷州': 'UAQ', '六枝': 'LIW', '鹿寨': 'LIZ', '来舟': 'LZS', '龙镇': 'LZA', '拉鲊': 'LEM', '兰州新区': 'LQJ', '马鞍山': 'MAH', '毛坝': 'MBY', '毛坝关': 'MGY', '麻城北': 'MBN', '渑池': 'MCF', '明城': 'MCL', '庙城': 'MAP', '渑池南': 'MNF', '茅草坪': 'KPM', '猛洞河': 'MUQ', '磨刀石': 'MOB', '弥渡': 'MDF', '帽儿山': 'MRB', '明港': 'MGN', '梅河口': 'MHL', '马皇': 'MHZ', '孟家岗': 'MGB', '美兰': 'MHQ', '汨罗东': 'MQQ', '马莲河': 'MHB', '茅岭': 'MLZ', '庙岭': 'MLL', '茂林': 'MLD', '穆棱': 'MLB', '马林': 'MID', '马龙': 'MGM', '木里图': 'MUD', '汨罗': 'MLQ', '玛纳斯湖': 'MNR', '冕宁': 'UGW', '沐滂': 'MPQ', '马桥河': 'MQB', '闽清': 'MQS', '民权': 'MQF', '明水河': 'MUT', '麻山': 'MAB', '眉山': 'MSW', '漫水湾': 'MKW', '茂舍祖': 'MOM', '米沙子': 'MST', '马踏': 'PWQ', '美溪': 'MEB', '勉县': 'MVY', '麻阳': 'MVQ', '密云北': 'MUP', '米易': 'MMW', '麦园': 'MYS', '墨玉': 'MUR', '庙庄': 'MZJ', '米脂': 'MEY', '明珠': 'MFQ', '宁安': 'NAB', '农安': 'NAT', '南博山': 'NBK', '南仇': 'NCK', '南城司': 'NSP', '宁村': 'NCZ', '宁德': 'NES', '南观村': 'NGP', '南宫东': 'NFP', '南关岭': 'NLT', '宁国': 'NNH', '宁海': 'NHH', '南华北': 'NHS', '南河川': 'NHJ', '泥河子': 'NHD', '宁家': 'NVT', '南靖': 'NJS', '牛家': 'NJB', '能家': 'NJD', '南口': 'NKP', '南口前': 'NKT', '南朗': 'NNQ', '乃林': 'NLD', '尼勒克': 'NIR', '那罗': 'ULZ', '宁陵县': 'NLF', '奈曼': 'NMD', '宁明': 'NMZ', '南木': 'NMX', '南平南': 'NNS', '那铺': 'NPZ', '南桥': 'NQD', '那曲': 'NQO', '暖泉': 'NQJ', '南台': 'NTT', '南头': 'NOQ', '宁武': 'NWV', '南湾子': 'NWP', '南翔北': 'NEH', '宁乡': 'NXQ', '内乡': 'NXF', '牛心台': 'NXT', '南峪': 'NUP', '娘子关': 'NIP', '南召': 'NAF', '南杂木': 'NZT', '蓬安': 'PAW', '平安': 'PAL', '平安驿': 'PNO', '磐安镇': 'PAJ', '平安镇': 'PZT', '蒲城东': 'PEY', '蒲城': 'PCY', '裴德': 'PDB', '偏店': 'PRP', '平顶山西': 'BFF', '坡底下': 'PXJ', '瓢儿屯': 'PRT', '平房': 'PFB', '平岗': 'PGL', '平果': 'PGZ', '平关': 'PGM', '盘关': 'PAM', '徘徊北': 'PHP', '平河口': 'PHM', '平湖': 'PHQ', '盘锦北': 'PBD', '潘家店': 'PDP', '皮口南': 'PKT', '普兰店': 'PLT', '偏岭': 'PNT', '平山': 'PSB', '彭山': 'PSW', '皮山': 'PSR', '磐石': 'PSL', '平社': 'PSV', '彭水': 'PHW', '平台': 'PVT', '平田': 'PTM', '莆田': 'PTS', '葡萄菁': 'PTW', '普湾': 'PWT', '平旺': 'PWV', '平型关': 'PGV', '普雄': 'POW', '蓬溪': 'KZW', '郫县': 'PWW', '平洋': 'PYX', '彭阳': 'PYJ', '平遥': 'PYV', '平邑': 'PIK', '平原堡': 'PPJ', '平原': 'PYK', '平峪': 'PYP', '彭泽': 'PZG', '邳州': 'PJH', '平庄': 'PZD', '泡子': 'POD', '平庄南': 'PND', '乾安': 'QOT', '庆安': 'QAB', '迁安': 'QQP', '祁东北': 'QRQ', '七甸': 'QDM', '曲阜东': 'QAK', '庆丰': 'QFT', '奇峰塔': 'QVP', '曲阜': 'QFK', '琼海': 'QYQ', '秦皇岛': 'QTP', '千河': 'QUY', '清河': 'QIP', '清河门': 'QHD', '清华园': 'QHP', '全椒': 'INH', '渠旧': 'QJZ', '潜江': 'QJN', '秦家': 'QJB', '綦江': 'QJW', '祁家堡': 'QBT', '清涧县': 'QNY', '秦家庄': 'QZV', '七里河': 'QLD', '秦岭': 'QLY', '渠黎': 'QLZ', '青龙': 'QIB', '青龙山': 'QGH', '祁门': 'QIH', '前磨头': 'QMP', '青山': 'QSB', '确山': 'QSN', '前山': 'QXQ', '清水': 'QUJ', '戚墅堰': 'QYH', '青田': 'QVH', '桥头': 'QAT', '青铜峡': 'QTJ', '前卫': 'QWD', '前苇塘': 'QWP', '渠县': 'QRW', '祁县': 'QXV', '青县': 'QXP', '桥西': 'QXJ', '清徐': 'QUV', '旗下营': 'QXC', '千阳': 'QOY', '沁阳': 'QYF', '泉阳': 'QYL', '祁阳北': 'QVQ', '七营': 'QYJ', '庆阳山': 'QSJ', '清远': 'QBQ', '清原': 'QYT', '钦州东': 'QDZ', '钦州': 'QRZ', '青州市': 'QZK', '瑞安': 'RAH', '荣昌': 'RCW', '瑞昌': 'RCG', '如皋': 'RBH', '容桂': 'RUQ', '任丘': 'RQP', '乳山': 'ROK', '融水': 'RSZ', '热水': 'RSD', '容县': 'RXZ', '饶阳': 'RVP', '汝阳': 'RYF', '绕阳河': 'RHD', '汝州': 'ROF', '石坝': 'OBJ', '上板城': 'SBP', '施秉': 'AQW', '上板城南': 'OBP', '世博园': 'ZWT', '双城北': 'SBB', '舒城': 'OCH', '商城': 'SWN', '莎车': 'SCR', '顺昌': 'SCS', '神池': 'SMV', '沙城': 'SCP', '石城': 'SCT', '山城镇': 'SCL', '山丹': 'SDJ', '顺德': 'ORQ', '绥德': 'ODY', '水洞': 'SIL', '商都': 'SXC', '十渡': 'SEP', '四道湾': 'OUD', '顺德学院': 'OJQ', '绅坊': 'OLH', '双丰': 'OFB', '四方台': 'STB', '水富': 'OTW', '三关口': 'OKJ', '桑根达来': 'OGC', '韶关': 'SNQ', '上高镇': 'SVK', '上杭': 'JBS', '沙海': 'SED', '蜀河': 'SHY', '松河': 'SBM', '沙河': 'SHP', '沙河口': 'SKT', '赛汗塔拉': 'SHC', '沙河市': 'VOP', '沙后所': 'SSD', '山河屯': 'SHL', '三河县': 'OXP', '四合永': 'OHD', '三汇镇': 'OZW', '双河镇': 'SEL', '石河子': 'SZR', '三合庄': 'SVP', '三家店': 'ODP', '水家湖': 'SQH', '沈家河': 'OJJ', '松江河': 'SJL', '尚家': 'SJB', '孙家': 'SUB', '沈家': 'OJB', '双吉': 'SML', '松江': 'SAH', '三江口': 'SKD', '司家岭': 'OLK', '松江南': 'IMH', '石景山南': 'SRP', '邵家堂': 'SJJ', '三江县': 'SOZ', '三家寨': 'SMM', '十家子': 'SJD', '松江镇': 'OZL', '施家嘴': 'SHM', '深井子': 'SWT', '什里店': 'OMP', '疏勒': 'SUR', '疏勒河': 'SHJ', '舍力虎': 'VLD', '石磷': 'SPB', '石林': 'SLM', '双辽': 'ZJD', '绥棱': 'SIB', '石岭': 'SOL', '石林南': 'LNM', '石龙': 'SLQ', '萨拉齐': 'SLC', '索伦': 'SNT', '商洛': 'OLY', '沙岭子': 'SLP', '石门县北': 'VFQ', '三门峡南': 'SCF', '三门县': 'OQH', '石门县': 'OMQ', '三门峡西': 'SXF', '肃宁': 'SYP', '宋': 'SOB', '双牌': 'SBZ', '沙坪坝': 'CYW', '四平东': 'PPT', '遂平': 'SON', '沙坡头': 'SFJ', '沙桥': 'SQM', '商丘南': 'SPF', '水泉': 'SID', '石泉县': 'SXY', '石桥子': 'SQT', '石人城': 'SRB', '石人': 'SRL', '山市': 'SQB', '神树': 'SWB', '鄯善': 'SSR', '三水': 'SJQ', '泗水': 'OSK', '石山': 'SAD', '松树': 'SFT', '首山': 'SAT', '三十家': 'SRD', '三十里堡': 'SST', '双水镇': 'PQQ', '松树镇': 'SSL', '松桃': 'MZQ', '索图罕': 'SHX', '三堂集': 'SDH', '石头': 'OTB', '神头': 'SEV', '沙沱': 'SFM', '上万': 'SWP', '孙吴': 'SKB', '沙湾县': 'SXR', '歙县': 'OVH', '遂溪': 'SXZ', '沙县': 'SAS', '绍兴': 'SOH', '石岘': 'SXL', '上西铺': 'SXM', '石峡子': 'SXJ', '沭阳': 'FMH', '绥阳': 'SYB', '寿阳': 'SYV', '水洋': 'OYP', '三阳川': 'SYJ', '上腰墩': 'SPJ', '三营': 'OEJ', '顺义': 'SOP', '三义井': 'OYD', '三源浦': 'SYL', '上虞': 'BDH', '三原': 'SAY', '上园': 'SUD', '水源': 'OYJ', '桑园子': 'SAJ', '绥中北': 'SND', '苏州北': 'OHH', '宿州东': 'SRH', '深圳东': 'BJQ', '深州': 'OZP', '孙镇': 'OZY', '绥中': 'SZD', '尚志': 'SZB', '师庄': 'SNM', '松滋': 'SIN', '师宗': 'SEM', '苏州园区': 'KAH', '苏州新区': 'ITH', '泰安': 'TMK', '台安': 'TID', '通安驿': 'TAJ', '桐柏': 'TBF', '通北': 'TBB', '桐城': 'TTH', '汤池': 'TCX', '郯城': 'TZK', '铁厂': 'TCL', '桃村': 'TCK', '通道': 'TRQ', '田东': 'TDZ', '天岗': 'TGL', '土贵乌拉': 'TGC', '通沟': 'TOL', '太谷': 'TGV', '塔哈': 'THX', '棠海': 'THM', '唐河': 'THF', '泰和': 'THG', '太湖': 'TKH', '团结': 'TIX', '谭家井': 'TNJ', '陶家屯': 'TOT', '唐家湾': 'PDQ', '统军庄': 'TZP', '吐列毛杜': 'TMD', '图里河': 'TEX', '铜陵': 'TJH', '田林': 'TFZ', '亭亮': 'TIZ', '铁力': 'TLB', '铁岭西': 'PXT', '图们北': 'QSL', '天门': 'TMN', '天门南': 'TNN', '太姥山': 'TLS', '土牧尔台': 'TRC', '土门子': 'TCJ', '洮南': 'TVT', '潼南': 'TVW', '太平川': 'TIT', '太平镇': 'TEB', '图强': 'TQX', '台前': 'TTK', '天桥岭': 'TQL', '土桥子': 'TQJ', '汤山城': 'TCT', '桃山': 'TAB', '台山': 'PUQ', '塔石嘴': 'TIM', '通途': 'TUT', '汤旺河': 'THB', '同心': 'TXJ', '土溪': 'TSW', '桐乡': 'TCH', '田阳': 'TRZ', '天义': 'TND', '汤阴': 'TYF', '驼腰岭': 'TIL', '太阳山': 'TYJ', '通榆': 'KTT', '汤原': 'TYB', '塔崖驿': 'TYP', '滕州东': 'TEK', '台州': 'TZH', '天祝': 'TZJ', '滕州': 'TXK', '天镇': 'TZV', '桐子林': 'TEW', '天柱山': 'QWH', '文安': 'WBP', '武安': 'WAP', '王安镇': 'WVP', '吴堡': 'WUY', '旺苍': 'WEW', '五叉沟': 'WCT', '文昌': 'WEQ', '温春': 'WDB', '五大连池': 'WRB', '文登': 'WBK', '五道沟': 'WDL', '五道河': 'WHP', '文地': 'WNZ', '卫东': 'WVT', '武当山': 'WRN', '望都': 'WDP', '乌尔旗汗': 'WHX', '潍坊': 'WFK', '万发屯': 'WFB', '王府': 'WUT', '瓦房店西': 'WXT', '王岗': 'WGB', '武功': 'WGY', '湾沟': 'WGL', '吴官田': 'WGM', '乌海': 'WVC', '苇河': 'WHB', '卫辉': 'WHF', '吴家川': 'WCJ', '五家': 'WUB', '威箐': 'WAM', '午汲': 'WJP', '渭津': 'WJL', '王家湾': 'WJJ', '倭肯': 'WQB', '五棵树': 'WKT', '五龙背': 'WBT', '乌兰哈达': 'WLC', '万乐': 'WEB', '瓦拉干': 'WVX', '温岭': 'VHH', '五莲': 'WLK', '乌拉特前旗': 'WQC', '乌拉山': 'WSC', '卧里屯': 'WLX', '渭南北': 'WBY', '乌奴耳': 'WRX', '万宁': 'WNQ', '万年': 'WWG', '渭南南': 'WVY', '渭南镇': 'WNJ', '沃皮': 'WPT', '吴桥': 'WUP', '汪清': 'WQL', '武清': 'WWP', '武山': 'WSJ', '文水': 'WEV', '魏善庄': 'WSP', '王瞳': 'WTP', '五台山': 'WSV', '王团庄': 'WZJ', '五五': 'WVR', '无锡东': 'WGH', '卫星': 'WVB', '闻喜': 'WXV', '武乡': 'WVV', '无锡新区': 'IFH', '武穴': 'WXN', '吴圩': 'WYZ', '王杨': 'WYB', '武义': 'RYH', '五营': 'WWB', '瓦窑田': 'WIM', '五原': 'WYC', '苇子沟': 'WZL', '韦庄': 'WZY', '五寨': 'WZV', '王兆屯': 'WZB', '微子镇': 'WQP', '魏杖子': 'WKD', '新安': 'EAM', '兴安': 'XAZ', '新安县': 'XAF', '新保安': 'XAP', '下板城': 'EBP', '西八里': 'XLP', '宣城': 'ECH', '兴城': 'XCD', '小村': 'XEM', '新绰源': 'XRX', '下城子': 'XCB', '新城子': 'XCT', '喜德': 'EDW', '小得江': 'EJM', '西大庙': 'XMP', '小董': 'XEZ', '小东': 'XOD', '香坊': 'XFB', '信丰': 'EFG', '襄汾': 'XFV', '息烽': 'XFW', '新干': 'EGG', '轩岗': 'XGV', '孝感': 'XGN', '西固城': 'XUJ', '兴国': 'EUG', '西固': 'XIJ', '夏官营': 'XGJ', '西岗子': 'NBB', '宣汉': 'XHY', '襄河': 'XXB', '新和': 'XIR', '宣和': 'XWJ', '斜河涧': 'EEP', '新华屯': 'XAX', '新会': 'EFQ', '新华': 'XHB', '新晃': 'XLQ', '新化': 'EHQ', '宣化': 'XHP', '兴和西': 'XEC', '小河沿': 'XYD', '下花园': 'XYP', '小河镇': 'EKY', '徐家店': 'HYK', '徐家': 'XJB', '峡江': 'EJG', '新绛': 'XJV', '辛集': 'ENP', '新江': 'XJM', '西街口': 'EKM', '许家屯': 'XJT', '许家台': 'XTJ', '谢家镇': 'XMT', '兴凯': 'EKB', '小榄': 'EAQ', '香兰': 'XNB', '兴隆店': 'XDD', '新乐': 'ELP', '新林': 'XPX', '小岭': 'XLB', '新李': 'XLJ', '西林': 'XYB', '西柳': 'GCT', '仙林': 'XPH', '新立屯': 'XLD', '兴隆县': 'EXP', '兴隆镇': 'XZB', '新立镇': 'XGT', '新民': 'XMD', '西麻山': 'XMB', '下马塘': 'XAT', '孝南': 'XNV', '咸宁北': 'XRN', '兴宁': 'ENQ', '咸宁': 'XNN', '犀浦东': 'XAW', '西平': 'XPN', '兴平': 'XPY', '新坪田': 'XPM', '霞浦': 'XOS', '溆浦': 'EPQ', '犀浦': 'XIW', '新青': 'XQB', '新邱': 'XQD', '兴泉堡': 'XQJ', '仙人桥': 'XRL', '小寺沟': 'ESP', '杏树': 'XSB', '浠水': 'XZN', '下社': 'XSV', '小市': 'XST', '徐水': 'XSP', '夏石': 'XIZ', '小哨': 'XAM', '秀山': 'ETW', '新松浦': 'XOB', '杏树屯': 'XDT', '许三湾': 'XSJ', '湘潭': 'XTQ', '邢台': 'XTP', '向塘': 'XTG', '仙桃西': 'XAN', '下台子': 'EIP', '徐闻': 'XJQ', '新窝铺': 'EPD', '修武': 'XWF', '新县': 'XSN', '息县': 'ENN', '西乡': 'XQY', '湘乡': 'XXQ', '西峡': 'XIF', '孝西': 'XOV', '小新街': 'XXM', '新兴县': 'XGQ', '西小召': 'XZC', '小西庄': 'XXP', '向阳': 'XDB', '旬阳': 'XUY', '旬阳北': 'XBY', '襄阳东': 'XWN', '兴业': 'SNZ', '小雨谷': 'XHM', '新沂': 'VIH', '兴义': 'XRZ', '信宜': 'EEQ', '小月旧': 'XFM', '小扬气': 'XYX', '襄垣': 'EIF', '夏邑县': 'EJH', '祥云西': 'EXM', '新友谊': 'EYB', '新阳镇': 'XZJ', '徐州东': 'UUH', '新帐房': 'XZX', '悬钟': 'XRP', '新肇': 'XZT', '忻州': 'XXV', '汐子': 'XZD', '西哲里木': 'XRD', '新杖子': 'ERP', '姚安': 'YAC', '依安': 'YAX', '永安': 'YAS', '永安乡': 'YNB', '亚布力': 'YBB', '元宝山': 'YUD', '羊草': 'YAB', '秧草地': 'YKM', '阳澄湖': 'AIH', '迎春': 'YYB', '叶城': 'YER', '盐池': 'YKJ', '砚川': 'YYY', '阳春': 'YQQ', '宜城': 'YIN', '应城': 'YHN', '禹城': 'YCK', '晏城': 'YEK', '阳城': 'YNF', '阳岔': 'YAL', '郓城': 'YPK', '雁翅': 'YAP', '云彩岭': 'ACP', '虞城县': 'IXH', '营城子': 'YCT', '英德': 'YDQ', '永登': 'YDJ', '尹地': 'YDM', '永定': 'YGS', '阳东': 'WLQ', '雁荡山': 'YGH', '于都': 'YDG', '园墩': 'YAJ', '英德西': 'IIQ', '永丰营': 'YYM', '杨岗': 'YRB', '阳高': 'YOV', '阳谷': 'YIK', '友好': 'YOB', '余杭': 'EVH', '沿河城': 'YHP', '岩会': 'AEP', '羊臼河': 'YHM', '永嘉': 'URH', '营街': 'YAM', '盐津': 'AEW', '阳江': 'WRQ', '余江': 'YHG', '燕郊': 'AJP', '姚家': 'YAT', '岳家井': 'YGJ', '一间堡': 'YJT', '英吉沙': 'YIR', '云居寺': 'AFP', '燕家庄': 'AZK', '永康': 'RFH', '营口东': 'YGT', '银浪': 'YJX', '永郎': 'YLW', '宜良北': 'YSM', '永乐店': 'YDY', '伊拉哈': 'YLX', '伊林': 'YLB', '杨陵': 'YSY', '彝良': 'ALW', '杨林': 'YLM', '余粮堡': 'YLD', '杨柳青': 'YQP', '月亮田': 'YUM', '义马': 'YMF', '阳明堡': 'YVV', '玉门': 'YXJ', '云梦': 'YMN', '元谋': 'YMM', '一面山': 'YST', '沂南': 'YNK', '宜耐': 'YVM', '伊宁东': 'YNR', '营盘水': 'YZJ', '羊堡': 'ABM', '阳泉北': 'YPP', '乐清': 'UPH', '焉耆': 'YSR', '源迁': 'AQK', '姚千户屯': 'YQT', '阳曲': 'YQV', '榆树沟': 'YGP', '月山': 'YBF', '玉石': 'YSJ', '玉舍': 'AUM', '偃师': 'YSF', '沂水': 'YUK', '榆社': 'YSV', '颍上': 'YVH', '窑上': 'ASP', '元氏': 'YSP', '杨树岭': 'YAD', '野三坡': 'AIP', '榆树屯': 'YSX', '榆树台': 'YUT', '鹰手营子': 'YIP', '源潭': 'YTQ', '牙屯堡': 'YTZ', '烟筒山': 'YSL', '烟筒屯': 'YUX', '羊尾哨': 'YWM', '越西': 'YHW', '攸县': 'YOG', '阳西': 'WMQ', '永修': 'ACG', '玉溪西': 'YXM', '弋阳': 'YIG', '余姚': 'YYH', '酉阳': 'AFW', '岳阳东': 'YIQ', '阳邑': 'ARP', '鸭园': 'YYL', '鸳鸯镇': 'YYJ', '燕子砭': 'YZY', '仪征': 'UZH', '宜州': 'YSZ', '兖州': 'YZK', '迤资': 'YQM', '羊者窝': 'AEM', '杨杖子': 'YZD', '镇安': 'ZEY', '治安': 'ZAD', '招柏': 'ZBP', '张百湾': 'ZUP', '中川机场': 'ZJJ', '枝城': 'ZCN', '子长': 'ZHY', '诸城': 'ZQK', '邹城': 'ZIK', '赵城': 'ZCV', '章党': 'ZHT', '正定': 'ZDP', '肇东': 'ZDB', '照福铺': 'ZFM', '章古台': 'ZGD', '赵光': 'ZGB', '中和': 'ZHX', '中华门': 'VNH', '枝江北': 'ZIN', '钟家村': 'ZJY', '朱家沟': 'ZUB', '紫荆关': 'ZYP', '周家': 'ZOB', '诸暨': 'ZDH', '镇江南': 'ZEH', '周家屯': 'ZOD', '褚家湾': 'CWJ', '湛江西': 'ZWQ', '朱家窑': 'ZUJ', '曾家坪子': 'ZBW', '张兰': 'ZLV', '镇赉': 'ZLT', '枣林': 'ZIV', '扎鲁特': 'ZLD', '扎赉诺尔西': 'ZXX', '樟木头': 'ZOQ', '中牟': 'ZGF', '中宁东': 'ZDJ', '中宁': 'VNJ', '中宁南': 'ZNJ', '镇平': 'ZPF', '漳平': 'ZPS', '泽普': 'ZPR', '枣强': 'ZVP', '张桥': 'ZQY', '章丘': 'ZTK', '朱日和': 'ZRC', '泽润里': 'ZLM', '中山北': 'ZGQ', '樟树东': 'ZOG', '珠斯花': 'ZHD', '中山': 'ZSQ', '柞水': 'ZSY', '钟山': 'ZSZ', '樟树': 'ZSG', '珠窝': 'ZOP', '张维屯': 'ZWB', '彰武': 'ZWD', '棕溪': 'ZOY', '钟祥': 'ZTN', '资溪': 'ZXS', '镇西': 'ZVT', '张辛': 'ZIP', '正镶白旗': 'ZXC', '紫阳': 'ZVY', '枣阳': 'ZYN', '竹园坝': 'ZAW', '张掖': 'ZYJ', '镇远': 'ZUW', '漳州东': 'GOS', '漳州': 'ZUS', '壮志': 'ZUX', '子洲': 'ZZY', '中寨': 'ZZM', '涿州': 'ZXP', '咋子': 'ZAL', '卓资山': 'ZZC', '株洲西': 'ZAQ', '郑州西': 'XPF', '阿巴嘎旗': 'AQC', '阿城北': 'ABB', '阿尔山北': 'ARX', '安江东': 'ADA', '阿勒泰': 'AUR', '安仁': 'ARG', '安顺西': 'ASE', '安图西': 'AXL', '安阳东': 'ADF', '博白': 'BBZ', '八步': 'BBE', '栟茶': 'FWH', '保定东': 'BMP', '八方山': 'FGQ', '白沟': 'FEP', '滨海': 'YKP', '滨海北': 'FCP', '滨海港': 'BGU', '滨海西': 'FHP', '宝鸡南': 'BBY', '北井子': 'BRT', '白马井': 'BFQ', '北票': 'BPT', '宝清': 'BUB', '璧山': 'FZW', '白沙铺': 'BSN', '白水县': 'BGY', '板塘': 'NGQ', '白文东': 'BCV', '宾西北': 'BBB', '本溪新城': 'BVT', '宾阳': 'UKZ', '白洋淀': 'FWP', '百宜': 'FHW', '白音华南': 'FNC', '巴中东': 'BDE', '彬州': 'BXY', '滨州': 'BIK', '宾州': 'BZB', '霸州西': 'FOP', '澄城': 'CUY', '承德县北': 'IYP', '承德南': 'IVP', '成都西': 'CMW', '曹妃甸东': 'POP', '曹妃甸港': 'PGP', '城固北': 'CBY', '查干湖': 'VAT', '巢湖东': 'GUH', '从江': 'KNW', '蔡家崖': 'EBV', '茶卡': 'CVO', '长临河': 'FVH', '茶陵南': 'CNG', '常平东': 'FQQ', '常平南': 'FPQ', '长庆桥': 'CQJ', '长寿北': 'COW', '长寿湖': 'CSE', '常山': 'CSU', '潮汕': 'CBQ', '长沙西': 'RXQ', '朝天': 'CTE', '长汀南': 'CNS', '长武': 'CWY', '长兴': 'CBH', '苍溪': 'CXE', '楚雄': 'CUM', '朝阳': 'VBT', '长阳': 'CYN', '潮阳': 'CNQ', '朝阳湖': 'CYE', '崇州': 'CZE', '城子坦': 'CWT', '东安东': 'DCZ', '德保': 'RBZ', '都昌': 'DCG', '东岔': 'DCJ', '东城南': 'IYQ', '东戴河': 'RDD', '丹东西': 'RWT', '东二道河': 'DRB', '大丰': 'KRQ', '大方南': 'DNE', '东港北': 'RGT', '大孤山': 'RMT', '东莞': 'RTQ', '鼎湖东': 'UWQ', '鼎湖山': 'NVQ', '道滘': 'RRQ', '垫江': 'DJE', '洞井': 'FWQ', '董家口': 'DTK', '大苴': 'DIM', '洞口': 'DKA', '达连河': 'DCB', '大荔': 'DNY', '大朗镇': 'KOQ', '得莫利': 'DTB', '大青沟': 'DSD', '德清': 'DRH', '东胜东': 'RSC', '砀山南': 'PRH', '大石头南': 'DAL', '当涂东': 'OWH', '大通西': 'DTO', '大旺': 'WWQ', '定西北': 'DNJ', '德兴东': 'DDG', '德兴': 'DWG', '丹霞山': 'IRQ', '大冶北': 'DBN', '都匀东': 'KJW', '大邑': 'DEE', '东营南': 'DOK', '大余': 'DYG', '定州东': 'DOP', '端州': 'WZQ', '大足南': 'FQW', '峨眉山': 'IXW', '阿房宫': 'EGY', '鄂州东': 'EFN', '防城港北': 'FBZ', '凤城东': 'FDT', '富川': 'FDZ', '繁昌西': 'PUH', '丰都': 'FUW', '涪陵北': 'FEW', '枫林': 'FLN', '阜宁东': 'FDU', '富宁': 'FNM', '佛坪': 'FUY', '法启': 'FQE', '芙蓉南': 'KCQ', '复盛': 'FAW', '抚松': 'FSL', '佛山西': 'FOQ', '福山镇': 'FZQ', '福田': 'NZQ', '阜新': 'FOT', '富阳': 'FYU', '富源北': 'FBM', '抚远': 'FYB', '抚州东': 'FDG', '抚州': 'FZG', '方正': 'FNB', '福州 南': 'FXS', '高安': 'GCG', '广安南': 'VUW', '贵安': 'GAE', '高碑店东': 'GMP', '恭城': 'GCZ', '藁城南': 'GUP', '贵定北': 'FMW', '葛店南': 'GNN', '贵定县': 'KIW', '广汉北': 'GVW', '高花': 'HGD', '革居': 'GEM', '高楞': 'GLB', '关岭': 'GLE', '桂林西': 'GEZ', '高密北': 'GVK', '光明城': 'IMQ', '广宁': 'FBQ', '广宁寺': 'GQT', '广南县': 'GXM', '桂平': 'GAZ', '弓棚子': 'GPT', '赶水东': 'GDE', '光山': 'GUN', '谷山': 'FFQ', '观沙岭': 'FKQ', '古田北': 'GBS', '广通北': 'GPM', '高台南': 'GAJ', '古田会址': 'STS', '贵阳北': 'KQW', '贵阳东': 'KEW', '赣榆': 'GYU', '高邑西': 'GNP', '惠安': 'HNS', '淮北北': 'PLH', '鹤壁东': 'HFF', '寒葱沟': 'HKB', '霍城': 'SER', '珲春': 'HUL', '横道河子东': 'KUX', '邯郸东': 'HPP', '惠东': 'KDQ', '哈达铺': 'HDJ', '洪洞西': 'HTV', '海东西': 'HDO', '哈尔滨北': 'HTB', '合肥北城': 'COH', '合肥南': 'ENH', '黄冈': 'KGN', '黄冈东': 'KAN', '横沟桥东': 'HNN', '黄冈西': 'KXN', '洪河': 'HPB', '怀化南': 'KAQ', '黄河景区': 'HCF', '惠环': 'KHQ', '花湖': 'KHN', '后湖': 'IHN', '怀集': 'FAQ', '河口北': 'HBM', '宏克力': 'OKB', '海林北': 'KBX', '黄流': 'KLQ', '黄陵南': 'VLY', '鲘门': 'KMQ', '海门': 'HMU', '虎门': 'IUQ', '侯马西': 'HPV', '衡南': 'HNG', '淮南东': 'HOH', '合浦': 'HVZ', '霍邱': 'FBH', '怀仁东': 'HFV', '华容东': 'HPN', '华容南': 'KRN', '黑山北': 'HQT', '衡水北': 'IHP', '黄石北': 'KSN', '黄山北': 'NYH', '贺胜桥东': 'HLN', '和硕': 'VUR', '花山南': 'KNN', '荷塘': 'KXQ', '黄土店': 'HKP', '海阳北': 'HEK', '合阳北': 'HTY', '槐荫': 'IYN', '鄠邑': 'KXY', '花园口': 'HYT', '霍州东': 'HWV', '惠州南': 'KNQ', '建安': 'JUL', '泾川': 'JAJ', '景德镇北': 'JDG', '旌德': 'NSH', '建德': 'JDU', '尖峰': 'PFQ', '近海': 'JHD', '蛟河西': 'JOL', '军粮城北': 'JMP', '将乐': 'JLS', '贾鲁河': 'JLF', '九郎山': 'KJQ', '即墨北': 'JVK', '剑门关': 'JME', '佳木斯西': 'JUB', '建宁县北': 'JCS', '济南东': 'MDK', '江宁': 'JJH', '江宁西': 'OKH', '建瓯西': 'JUS', '酒泉南': 'JNJ', '句容西': 'JWH', '建水': 'JSM', '尖山': 'JPQ', '界首市': 'JUN', '绩溪北': 'NRH', '介休东': 'JDV', '泾县': 'LOH', '靖西': 'JMZ', '进贤南': 'JXG', '江油北': 'JBE', '简阳南': 'JOW', '嘉峪关南': 'JBJ', '金银潭': 'JTN', '靖宇': 'JYL', '金月湾': 'PYQ', '缙云西': 'PYH', '景州': 'JEP', '晋中': 'JZV', '开封北': 'KBF', '开福寺': 'FLQ', '开化': 'KHU', '凯里南': 'QKW', '库伦': 'KLD', '昆明南': 'KOM', '葵潭': 'KTQ', '开阳': 'KVW', '喀左': 'KZT', '隆安东': 'IDZ', '来宾北': 'UCZ', '灵璧': 'GMH', '寮步': 'LTQ', '绿博园': 'LCF', '隆昌北': 'NWW', '乐昌东': 'ILQ', '临城': 'UUP', '罗城': 'VCZ', '陵城': 'LGK', '老城镇': 'ACQ', '龙洞堡': 'FVW', '乐都南': 'LVO', '娄底南': 'UOQ', '乐东': 'UQQ', '离堆公园': 'INW', '娄烦': 'USV', '陆丰': 'LLQ', '龙丰': 'KFQ', '禄丰南': 'LQM', '临汾西': 'LXV', '临高南': 'KGQ', '麓谷': 'BNQ', '滦河': 'UDP', '珞璜南': 'LNE', '隆回': 'LHA', '漯河西': 'LBN', '罗江东': 'IKW', '柳江': 'UQZ', '利津南': 'LNK', '兰考南': 'LUF', '龙口市': 'UKK', '龙里北': 'KFW', '兰陵北': 'COK', '沥林北': 'KBQ', '醴陵东': 'UKQ', '陇南': 'INJ', '梁平南': 'LPE', '礼泉': 'LGY', '灵石东': 'UDV', '乐山': 'IVW', '龙市': 'LAG', '溧水': 'LDH', '娄山关南': 'LSE', '岚山西': 'UWK', '洛湾三江': 'KRW', '莱西北': 'LBK', '岚县': 'UXV', '溧阳': 'LEH', '临邑': 'LUK', '柳园南': 'LNR', '鹿寨北': 'LSZ', '临淄北': 'UEK', '阆中': 'LZE', '临泽南': 'LDJ', '马鞍山东': 'OMH', '毛陈': 'MHN', '帽儿山西': 'MUB', '明港东': 'MDN', '民和南': 'MNO', '闵集': 'MJN', '马兰': 'MLR', '民乐': 'MBJ', '弥勒': 'MLM', '玛纳斯': 'MSR', '牟平': 'MBK', '闽清北': 'MBS', '民权北': 'MIF', '眉山东': 'IUW', '名山': 'MSE', '庙山': 'MSN', '岷县': 'MXJ', '门源': 'MYO', '暮云': 'KIQ', '蒙自北': 'MBM', '孟庄': 'MZF', '蒙自': 'MZM', '南部': 'NBE', '南曹': 'NEF', '南充北': 'NCE', '南城': 'NDG', '南 昌': 'NOG', '南昌西': 'NXG', '宁东南': 'NDJ', '宁东': 'NOJ', '南芬北': 'NUT', '南丰': 'NFG', '南湖东': 'NDN', '牛河梁': 'LKT', '南华': 'NAM', '内江北': 'NKW', '南江': 'FIW', '南江口': 'NDQ', '奈林皋': 'NGT', '南陵': 'LLH', '尼木': 'NMO', '南宁东': 'NFZ', '南宁西': 'NXZ', '南平北': 'NBS', '南堡北': 'TLP', '宁强南': 'NOY', '南雄': 'NCQ', '纳雍': 'NYE', '南阳寨': 'NYF', '普安': 'PAN', '普安县': 'PUE', '屏边': 'PBM', '平坝南': 'PBE', '平昌': 'PCE', '普定': 'PGW', '平度': 'PAK', '蒲江': 'PJE', '皮口': 'PUT', '盘龙城': 'PNN', '蓬莱市': 'POK', '普宁': 'PEQ', '平南南': 'PAZ', '平泉北': 'PBP', '彭山北': 'PPW', '盘山': 'PUD', '坪上': 'PSK', '萍乡北': 'PBG', '鄱阳': 'PYG', '濮阳': 'PYF', '平遥古城': 'PDV', '平原东': 'PUK', '盘州': 'PAE', '普者黑': 'PZM', '彭州': 'PMW', '秦安': 'QGJ', '青白江东': 'QFW', '青川': 'QCE', '青岛北': 'QHK', '千岛湖': 'QDU', '祁东': 'QMQ', '启东': 'QOU', '青堆': 'QET', '青岛西': 'QUK', '前锋': 'QFB', '清河门北': 'QBD', '齐河': 'QIK', '曲靖北': 'QBM', '綦江东': 'QDE', '曲江': 'QIM', '邛崃': 'QLE', '青莲': 'QEW', '齐齐哈尔南': 'QNB', '清水北': 'QEJ', '青神': 'QVW', '岐山': 'QAY', '庆盛': 'QSQ', '清水县': 'QIJ', '曲水县': 'QSO', '祁县东': 'QGV', '乾县': 'QBY', '旗下营南': 'QNC', '祁阳': 'QWQ', '青州市北': 'QOK', '全州南': 'QNZ', '棋子湾': 'QZQ', '仁布': 'RUO', '荣昌北': 'RQW', '荣成': 'RCK', '瑞昌西': 'RXG', '如东': 'RIH', '榕江': 'RVW', '日喀则': 'RKO', '饶平': 'RVQ', '日照西': 'KZK', '宋城路': 'SFF', '三道湖': 'SDL', '邵东': 'FIQ', '三都县': 'KKW', '胜芳': 'SUP', '双峰北': 'NFQ', '商河': 'SOK', '泗洪': 'GQH', '四会': 'AHQ', '石家庄东': 'SXP', '三江南': 'SWZ', '三井子': 'OJT', '双流机场': 'IPW', '双龙湖': 'OHB', '石林西': 'SYM', '沙岭子西': 'IXP', '双流西': 'IQW', '胜利镇': 'OLB', '三明北': 'SHS', '三明': 'SVS', '嵩明': 'SVM', '树木岭': 'FMQ', '神木': 'HMY', '苏尼特左旗': 'ONC', '山坡东': 'SBN', '石桥': 'SQE', '沈丘': 'SQN', '鄯善北': 'SMR', '狮山北': 'NSQ', '三水北': 'ARQ', '松山湖北': 'KUQ', '狮山': 'KSQ', '三水南': 'RNQ', '韶山南': 'INQ', '三穗': 'QHW', '石梯': 'STE', '汕尾': 'OGQ', '歙县北': 'NPH', '绍兴北': 'SLH', '绍兴东': 'SSH', '泗县': 'GPH', '始兴': 'IPQ', '双洋': 'SQS', '泗阳': 'MPH', '三阳': 'SYU', '射阳': 'SAU', '双阳': 'OYT', '邵阳北': 'OVQ', '松原北': 'OCT', '山阴': 'SNV', '邵阳西': 'SXA', '沈阳西': 'OOT', '深圳北': 'IOQ', '神州': 'SRQ', '尚志南': 'OZB', '深圳坪山': 'IFQ', '石嘴山': 'QQJ', '石柱县': 'OSW', '台安南': 'TAD', '桃村北': 'TOK', '田东北': 'TBZ', '土地堂东': 'TTN', '太谷西': 'TIV', '吐哈': 'THR', '通海': 'TAM', '太和北': 'JYN', '天河机场': 'TJN', '天河街': 'TEN', '唐海南': 'IEP', '通化县': 'TXL', '同江': 'TJB', '托克托东': 'TVC', '吐鲁番北': 'TAR', '铜陵北': 'KXH', '桐庐': 'TLU', '泰宁': 'TNS', '铜仁南': 'TNW', '天水南': 'TIJ', '通渭': 'TWJ', '田心东': 'KQQ', '汤逊湖': 'THN', '藤县': 'TAZ', '太原南': 'TNV', '通远堡西': 'TST', '桐梓北': 'TBE', '桐梓东': 'TDE', '通州': 'TOP', '吴川': 'WAQ', '文登东': 'WGK', '潍坊北': 'WJK', '五府山': 'WFG', '威虎岭北': 'WBL', '威海北': 'WHK', '苇河西': 'WIB', '温江': 'WJE', '乌兰察布': 'WPC', '五龙背东': 'WMT', '乌龙泉南': 'WFN', '乌兰木图': 'VLT', '五女山': 'WET', '武胜': 'WSE', '五通': 'WTZ', '无为': 'IIH', '瓦屋山': 'WAH', '闻喜西': 'WOV', '武义北': 'WDH', '武夷山北': 'WBS', '武夷山东': 'WCS', '婺源': 'WYG', '渭源': 'WEJ', '万州北': 'WZE', '武陟': 'WIF', '梧州南': 'WBZ', '兴安北': 'XDZ', '许昌东': 'XVF', '项城': 'ERN', '新都东': 'EWW', '西渡': 'XDA', '西丰': 'XFT', '先锋': 'NQQ', '湘府路': 'FVQ', '襄汾西': 'XTV', '孝感北': 'XJN', '孝感东': 'GDN', '西湖东': 'WDQ', '新化南': 'EJQ', '新晃西': 'EWQ', '新津': 'IRW', '小金口': 'NKQ', '辛集南': 'IJP', '新津南': 'ITW', '西来': 'XLE', '新民北': 'XOT', '厦 门': 'EMS', '咸宁东': 'XKN', '咸宁南': 'UNN', '溆浦南': 'EMQ', '西平西': 'EGQ', '响水县': 'XSU', '湘潭北': 'EDQ', '邢台东': 'EDP', '西乌旗': 'XWC', '修武西': 'EXF', '修文县': 'XWE', '萧县北': 'QSH', '新香坊北': 'RHB', '新乡东': 'EGF', '新余北': 'XBG', '西阳村': 'XQF', '信阳东': 'OYN', '咸阳秦都': 'XOY', '仙游': 'XWS', '祥云': 'XQM', '新郑机场': 'EZF', '香樟路': 'FNQ', '忻州西': 'IXV', '雅安': 'YAE', '永安南': 'YQS', '迎宾路': 'YFW', '亚布力西': 'YSB', '永城北': 'RGH', '盐城北': 'AEH', '运城北': 'ABV', '永川东': 'WMW', '禹城东': 'YSK', '宜春': 'YEG', '岳池': 'AWW', '云东海': 'NAQ', '姚渡': 'AOJ', '云浮东': 'IXQ', '永福南': 'YBZ', '雨格': 'VTM', '洋河': 'GTH', '永济北': 'AJV', '弋江': 'RVH', '延吉西': 'YXL', '永康南': 'QUH', '依兰': 'YEB', '运粮河': 'YEF', '炎陵': 'YAG', '杨陵南': 'YEY', '羊马': 'YME', '一面坡北': 'YXB', '伊敏': 'YMX', '郁南': 'YKQ', '云南驿': 'ANM', '银瓶': 'KPQ', '延平西': 'YWS', '原平西': 'IPV', '杨桥': 'YQA', '阳曲西': 'IQV', '阳朔': 'YCZ', '永寿': 'ASY', '云山': 'KZQ', '玉山南': 'YGG', '雁石南': 'YMS', '永泰': 'YTS', '银滩': 'CTQ', '鹰潭北': 'YKG', '烟台南': 'YLK', '伊通': 'YTL', '烟台西': 'YTK', '尤溪': 'YXS', '云霄': 'YBS', '宜兴': 'YUH', '玉溪': 'AXM', '阳信': 'YVK', '应县': 'YZV', '攸县南': 'YXG', '洋县西': 'YXY', '义县西': 'YSD', '余姚北': 'CTH', '榆中': 'IZJ', '诏安': 'ZDS', '淄博北': 'ZRK', '正定机场': 'ZHP', '纸坊东': 'ZMN', '准格尔': 'ZEC', '庄河北': 'ZUT', '昭化': 'ZHW', '织金北': 'ZJE', '张家川': 'ZIJ', '芷江': 'ZPQ', '织金': 'IZW', '仲恺': 'KKQ', '曾口': 'ZKE', '珠琳': 'ZOM', '左岭': 'ZSN', '樟木头东': 'ZRQ', '驻马店西': 'ZLN', '邹平': 'ZLK', '漳浦': 'ZCS', '漳平西': 'ZXG', '章丘北': 'ZVK', '肇庆东': 'FCQ', '庄桥': 'ZQH', '昭山': 'KWQ', '钟山西': 'ZAZ', '朱砂古镇': 'ZSE', '漳县': 'ZXJ', '资阳北': 'FYW', '遵义': 'ZYE', '遵义南': 'ZNE', '张掖西': 'ZEJ', '资中北': 'WZW', '涿州东': 'ZAP', '枣庄东': 'ZNK', '卓资东': 'ZDC', '郑州东': 'ZAF', '株洲南': 'KVQ'}
b9b729355f00f06c81c387568d229eb5f38329c1
b206fdcb53cb69497745c67beed17e0be909ddf6
/Hack2020/db_load/init_data.py
d13c1243716ba3d30a4ad449457696d4830a6ddd
[]
no_license
zapravka-team/hack_django
1e5300684699420085048b3bdfae67f5daa75937
007f6e216d605c4742d55285064c077b7e0c2755
refs/heads/main
2023-01-05T21:44:32.829539
2020-11-01T08:59:32
2020-11-01T08:59:32
308,709,023
0
0
null
null
null
null
UTF-8
Python
false
false
21,678
py
from pet.models import PetType, PetGender, EarType, TailType, ColorType, EuthanasiaCause, DeathCause, DisposeCause, \ FursType, Breed ears = \ """Стоячие Полустоячие Висячие Купированные""" tails = """Обычный Саблевидный Крючком Поленом Прутом Пером Серпом Кольцом Купированный""" death_cause = """Естественная смерть Эвтаназия""" dispose_cause = """Смерть Передача в собственность (под опеку)""" euthanasia_cause = """Заболевание, несовместимое с жизнью Травма, несовместимая с жизнью""" furs_types_pussy = """ Короткая Длинная Бесшерстная """ furs_types_dogs = """ Обычная Длинная Гладкая Вьющаяся Жесткая Бесшерстная Нетипичная""" colors_pussy = """черный белый голубой шоколадный красный кремовый черепаховый серебристый пегий дымчатый золотой голубо-кремовый черепаховый арлекин биколор шиншилла коричневый светло-коричневый лиловый черный с белым красный с белым голубой с белым мраморный дымчатый золотистый циннамон (корица) фавн (бежевый) бледно-желтый тигровый черно-красный-белый """ colors_dogs = """черный белый лиловый рыжий кремовый темно коричневый светло коричневый молочный тигровый триколор (красный/черный/лиловый) биколор (черный/красный) лиловый с белым черно-белый перец с солью голубой с подпалом голубой с пятнами чепрачный мраморный абрикосовый палевый волчий соболиный муругий чалый пегий""" breeds_dog = """австралийская борзая, кенгуровая австралийская овчарка австралийский терьер азавак аиди, атласская овчарка айну акбаш Акита - ину акита ину акита-ину алабай алапахский чистокровный бульдог альпийский спаниель альпине даксбракке аляскинский маламут американский бульдог американский водяной спаниель американский кокер спаниель американский питбультерьер американский стафордшир-терьер американский той-фокстерьер американский фоксхаунд американский эскимоский шпиц анатолийский карабаш английская овчарка английский бульдог английский водяной спаниель английский кокер спаниель английский мастиф английский пойнтер английский сеттер английский спрингер-спаниель английский той-терьер английский фоксхаунд аппенцеллер аргентинский дог арденский бувье армант, египетская овчарка артезиано-нормандский бассет артуазская гончая арьежская гончая афганская борзая афганская гончая аффенпинчер баварская горная гончая балканская гончая банджарская борзая барбе бардино махеро басенджи баскетмейкер бассетхаунд беардед колли (хайланд колли) бедлингтон терьер белый английский терьер бельгийская лакенуа бельгийская малинуа бельгийский брак бельгийский гриффон бельгийский грюнендаль бельгийский ловенар бельгийский тервюрен бергамаско, бергамская овчарка бернер лауфхунд бернская горная пастушья собака бернский зенненхунд беспородная бигль бийи бишон фризе бладхаунд блю лейси бобтейл, староанглийская овчарка бойкин спаниель боксёр Болонка болонский бишон большая англо-французская гончая большая голубая гасконская гончая большая древесная гончая большая пиринейская собака большая швейцарская горная пасту большой вандейский гриффон большой мюнстерлендер большой немецкий шпиц большой французский брак бордер колли бордер терьер бордосский дог (французский мастифф) борзой, русская псовая борзая бородатая колли босерон боснийская грубошерстная гончая бостон-терьер брабансон брак дюпюи брандл-брак бретонский эпаньоль бриар бруно-де-юра брюссельский гриффон булленбайзер бульдог англии старого типа бульмастиф бультерьер бультерьер миниатюрный бурбонский брак бурбуль веймаренер Вельш корги вельш корги кардиган вельш корги пемброук вельш-спрингер-спаниель вельш-терьер венгерская борзая вест хайленд уайт терьер вестфальский таксообразный брак ветерхаунд, голландский спаниель водяной спаниель водяной твид спаниель вольпино итальано восточно-европейская овчарка восточносибирская лайка выжла, венгерская легавая гавайская собака пои гаванский бишон гамильтонстёваре ганноверская гончая германский дратхаар германский жесткошерстный пойнте германский короткошерстный пойнт герта пойнтер гладкошерстный ретривер гладкошерстный фокстерьер глен-оф-имаал-терьер голая собака инков голландская овчарка голландский смаусхонд голландский тульпхонд голубой гасконский бассет голубой овернский брак голубой пикардийский эпаньоль голубой хиллер голштинская гончая гончая плотта гончая стефена гончая тальбота гордон-сеттер гранди поденгу португезу грейхаунд гренландская собака греческая заячья гончая греческая овчарка Гриффон гриффон кортальса далматин датский брохольмер денди-динмонт терьер джек рассел терьер джек-рассел-терьер джиндо Доберман доберман-пинчер дратхаар древер древесная тенессийская тигровая дрентская куропаточная собака другая дункер западно-сибирская лайка зауерландский брак зауерландский хольцбрак золотистый ретривер ирландский водяной спаниель ирландский волкодав (вольфхаунд) ирландский красно-белый сеттер ирландский сеттер ирландский терьер исландская собака испанский брак, испанская легавая испанский гальго, испанская борзая испанский мастиф истрийская гончая итальянский брак йемтхунд, шведский элкхаунд йоркширский терьер ка де бо Кавалер кинг чарльз спаниель кавказская овчарка кай кен кай лео кан да серра ди айреш кан да серра ди эштрела кан ди агуа кангал кане корсо каракачанская овчарка карело-финская лайка карельская медвежья собака карликовый пинчер каролинская собака карстская (красская) овчарка каталонская овчарка кеесхонд келпи кентукская шел хип керн-терьер керри блю терьер керри-бигль кисю китайская хохлатая собака кламбер спаниель коикерхондье колли, шотландская овчарка комондор, венгерская овчарка котон де тулеар крапчато-голубой кунхаунд красный кунхаунд кромфорлендер ксолойтцкуинтли кувас кунхаунд уолкера курляндская гончая курцхаар курчавый ретривер куунхаунд лабрадор лабрадор ретривер лабрадор-ретривер лаготто-романьоло лангедокская пастушья собака лангхаар ландсир ланкаширский хилер лапинкойра, финнский лаппхунд лапинпорокойра лапландский шпиц ларри левеск левретка, итальянская борзая лёвхен, львиная собачка лейкланд-терьер леонбергер леопардовая гончая леопардовая собака катахулы лёрчер литовская гончая лудогорская гончая лхасский апсо люненбургская гончая люцернер лауфхунд малая англо-французская гончая малый брабансон малый вандейский бассет-гриффон малый мюнстерлендер малый французский брак мальтез, мальтийский бишон манчестерский терьер маратхская борзая маремма мастино наполетано медвежья канадская собака талтан медиу поденгу португезу метис микадо терьер миниатюрный ксолойтцкуинтли мино миттельшнауцер монтебёф мопс московская сторожевая московский длинношерстный той-терьер московский дракон московский короткошерстный той-терьер мууди немецкая овчарка немецкая оленегонная лайка немецкий вахтельхунд немецкий вольфшпиц немецкий дог немецкий карликовый шпиц немецкий шпиц нивернейский гриффон новогвинейская поющая собака новошотландский ретривер норботтен шпиц норвежский бухунд норвежский дункер хаунд норвежский лундехунд норвежский элкхаунд норвич-терьер нормандская гончая норфолк терьер ньюфаундленд ойразир ойуки терьер орхидея петербургская оттерхаунд, выдровая гончая палевый бретонский бассет-гриффо папильон паттердейл-терьер пекинес пекиньу поденгу португезу пердигейру португезу пердигеро де бургос пердигеро наварро перро де пастор мальоркин перро де преса мальоркин перро де пресса канарио перуанская орхидея инков пикардийская овчарка пинчер пинчер миниатюрный пиринейская овчарка пиринейский мастиф подгальянская овчарка поденгу ди мастра поденгу ибисенко, ибисская собака польская низинная собака польский огар помераниан померанский шпиц понт-одмерский эпаньоль порселен, фарфоровая гончая посавская гончая пражский крысарик пуатвен, пуатвинская гончая пудель пудель миниатюрный пудель стандартный пудель-пойнтер пули пуми пшеничный мягкошерстный терьер рампурская борзая растреадор бразилейру рафейру ду алентежу ретривер Риджбек ризеншнауцер родезийский риджбек ротвейлер румынская овчарка русская гончая русская пегая гончая русский спаниель русский той-терьер русский черный терьер русско-европейская лайка рэт-терьер саарлосвольфхунд сабуесо эспаньоле де монте сабуэсо эспаньоль де монте салюки, персидская гончая самоедская лайка санин сансю сегуджио итальяно сенбернар сен-жерменский брак серис сеттер-гордон сиба-ину сибирская хаски сибирский хаски сийлихам терьер сика ину сикоку силки терьер синсю скай терьер скотч терьер словацкий копов словацкий чувач слюги, арабская борзая смаусхонд смешанная смитфильд-колли смоландстёваре, смоландская гончая солуки спиноне среднеазиатская овчарка средний шнауцер средняя англо-французская гончая стабихаун стародатская легавая стафордширский бультерьер стреллуфстёвер суоменайокойра, финская гончая суоменпастикорва, финский шпиц суссекс-спаниель тазы (среднеазиатская борзая) тай риджбек тайган, киргизская борзая такса гладкошерстная такса длинношерстная такса жесткошерстная такса кроличья такса миниатюрная такса стандартная теломиан тибетский мастиф тибетский спаниель тибетский терьер тирольская гончая той-пудель той-терьер тоса ину уест-хайланд-уайт-терьер уипет фален, континентальный той-спаниель фараоновая собака фила бразилейру (бразильский мастиф) фильд спаниель финская лайка финский шпиц фландрский бувье фокстерьер гладкошерстный фокстерьер жесткошерстный французская гончая французский бульдог французский эпаньоль француский бульдог фу куок халенденстёваре, хальденская гончая ханаанская собака харрьер хаски антарктическая ховаварт хорватская овчарка хортая хюгенхунд хюнерхунд цвергпинчер цвергшнауцер цвергшпиц чау-чау черный терьер чесапик бей ретривер чехословацкий влчак чешский терьер чешский фоусек чинук чихуахуа чи-хуа-хуа шапендус шарпей шарпланинская овчарка швайсхунд шведский вальхунд швейцарская овчарка швейцарский лауфхунд шелти шельти шиллерстёваре шипперке ши-тцу шотландский дирхаунд шотландский терьер шпиц штихельхаар Щвейцарский зенненхунд энтлебухер зенненхунд эпаньоль нэн эрдели копо, трансильванская гончая эрдельтерьер эскимосская лайка эстонская гончая югославская грехцветная гончая южная гончая южнорусская овчарка ягдтерьер японский спаниель японский стерьер японский хин японский шпиц """ breeds_cats = """абиссинская американская жесткошерстная американская короткошерстная американский бобтейл американский кёрл ангорская балинезийская бенгальская беспородная бирма бирманская пятнисто-краповая бомбейская британская голубая британская короткошерстная бурма бурмилла гаванна герман рекс девон рекс домашняя донский сфинкс другая европейская короткошерстная египетская мау канадский сфинкс кимрик корат корниш-рекс курильский бобтейл манкс манчкин мейн кун меконгский бобтейл мексиканская метис мингонский бобтейл мэйн кун невская маскарадная норвежская лесная дымчато-голубая ориенталская короткошерстная ориентальская длинношерстная охос азулес оцикет персидская пиксибоб русская голубая рысь домашняя рэгдол селкирк-рекс сиамская сибирская сингапура скоттиш страйт скоттиш фолд сноу-шу сомали сфинкс тайская тифани тонкинез турецкий ван цейлонская шартрез шиншилла шотландская вислоухая экзотическая короткошерстная японский бобтейл""" genders = """Мужской Женский""" pet_type = """Кошка Собака""" operation_orgs = """ГБУ «Автомобильные дороги САО» ГБУ «Автомобильные дороги СВАО» ГБУ «Автомобильные дороги ВАО» ГБУ «Автомобильные дороги ЮАО» ГБУ «Автомобильные дороги ЮЗАО» ГБУ «Автомобильные дороги ЮВАО» ГБУ «Автомобильные дороги ЗАО» ГБУ «Доринвест»""" from manufacture.models import OperatingOrganization def load_all(): PetType.load_initial(pet_type, None) PetGender.load_initial(genders, None) EarType.load_initial(ears, None) TailType.load_initial(tails, None) EuthanasiaCause.load_initial(euthanasia_cause, None) DeathCause.load_initial(death_cause, None) DisposeCause.load_initial(dispose_cause, None) dog = PetType.objects.get(value='собака') cat = PetType.objects.get(value='кошка') ColorType.load_initial(colors_dogs, dog) FursType.load_initial(furs_types_dogs, dog) ColorType.load_initial(colors_pussy, cat) FursType.load_initial(furs_types_pussy, cat) Breed.load_initial(breeds_cats, cat) Breed.load_initial(breeds_dog, dog) OperatingOrganization.load_data(operation_orgs)
b7d64c74771a4379ce29c27a191bccd4114e553d
5b4c803f68e52849a1c1093aac503efc423ad132
/UnPyc/tests/tests/all_opcodes/34.py
1281469b68be11bf4133e93412aa03185117bd5e
[]
no_license
Prashant-Jonny/UnPyc
9ce5d63b1e0d2ec19c1faa48d932cc3f71f8599c
4b9d4ab96dfc53a0b4e06972443e1402e9dc034f
refs/heads/master
2021-01-17T12:03:17.314248
2013-02-22T07:22:35
2013-02-22T07:22:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
24
py
a = [1, 2, 3] del a[:2]
dee4c636e7942fb1628a33bd9034f00d3c0944cd
4125b4e65bd523e2c8c44d0a269d11de3f246d9c
/jsont/transforms/xml.py
a55dbbb796cca2e236b85972001c744456e2f77e
[]
no_license
usnistgov/jsont
a3be1c2a9f3c16d670a4cb0ad12470b1b289a34c
091f5471f2aaba71ffe7904b7ff620f09f4ebf15
refs/heads/master
2021-01-10T02:09:21.988933
2016-03-16T00:19:40
2016-03-16T00:19:40
53,922,397
0
0
null
null
null
null
UTF-8
Python
false
false
25,959
py
""" transforms for creating XML from JSON data """ import os, copy, re, textwrap, collections import json as jsp from ..exceptions import * from ..base import Transform, ScopedDict, Context from .std import JSON, Extract, StringTemplate, Function from . import std MODULE_NAME = __name__ TRANSFORMS_PKG = __name__.rsplit('.', 1)[0] def _generate_name(spec, engine, tname=None, ttype=None): return _generate_value(spec, engine, tname, ttype, True) def _generate_value(spec, engine, tname=None, ttype=None, forname=False): if spec is None: return None if not forname and (isinstance(spec, int) or isinstance(spec, float) or \ isinstance(spec, bool)): return spec if isinstance(spec, dict): if spec.has_key('$val'): spec = spec['$val'] if isinstance(spec, dict): return engine.make_transform(spec) if isinstance(spec, str) or isinstance(spec, unicode): if not Function.matches(spec) and \ (spec == '' or ':' in spec or spec.startswith('/')): return Extract({'select': spec}, engine, tname, ttype) return engine.resolve_transform(spec) else: raise TransformConfigTypeError("spec", "string or object", type(spec), self.spec) if isinstance(spec, str) or isinstance(spec, unicode): if '{' in spec and '}' in spec: # it's a string template return StringTemplate({'content': spec}, engine, "attr spec", "xml.attribute") else: raise TransformConfigTypeError("spec", "string or object", type(spec), self.spec) return spec def _generate_object(spec, engine, tname=None, ttype=None): if spec is None: return None if isinstance(spec, dict): # it's an object, either a transform or JSON template if not spec.has_key('$val'): # it's a JSON template return JSON({'content': spec}, engine, tname, ttype) else: spec = spec["$val"] if isinstance(spec, dict): # it's an anonymous transform return engine.make_transform(spec) if isinstance(spec, str) or isinstance(spec, unicode): if not Function.matches(spec) and \ (spec == '' or ':' in spec or spec.startswith('/')): # it's a data pointer to select data return Extract({'select': spec}, engine, tname, ttype) # it's a named transform or transform function return engine.resolve_transform(spec) return spec class ToAttribute(Transform): """ a transform type for creating XML Attribute data. This transform type takes the following paramters: :argument name: the local name for the attribute. If provided as a string (with { and } characters), it will be treated as a StringTemplate. If provided as an object with a $val property, the name will be generated by the transform implied by the $val property value. Any other kind of object will be treated as an anonymous transform that should produce a string value to provide the value of the name. :argument value: :argument namespace: :argument prefix: """ def mkfn(self, config, engine): tname = self.name or '(xml)' ttype = "xml.attribute" try: name = _generate_name(config['name'], engine, tname+" Attr name", ttype) except KeyError, ex: raise MissingTransformData("name", self.name) try: value = _generate_value(config['value'], engine, tname+" Attr val",ttype) except KeyError, ex: raise MissingTransformData("value", self.name) ns = _generate_name(config.get('namespace'), engine, tname+" Attr ns", ttype) pref = _generate_name(config.get('prefix'), engine, tname+" Attr prefix", ttype) def impl(input, context, *args): out = {} out['name'] = name if isinstance(name, Transform): out['name'] = name(input, context) out['value'] = value if isinstance(value, Transform): out['value'] = value(input, context) if ns: out['namespace'] = ns if isinstance(ns, Transform): out['namespace'] = ns(input, context) if pref: out['prefix'] = pref if isinstance(pref, Transform): out['prefix'] = pref(input, context) return out return impl class ToElementContent(Transform): def mkfn(self, config, engine): ttype = "xml.elementContent" name = self.name or "(anon)" attrs = None if config.has_key("attrs"): # attrs can be # 1) a list where each element forms an attribute # 2) a dict representing a transform ({$val}, {$type}) that # generates a list of attributes # 3) a string providing a named transform or datapointer that # generates a list of attributes if isinstance(config['attrs'], list): attrs = [] for attr in config['attrs']: attr = self._generate_attribute(attr, engine, "{0} attr".format(name), ttype) attrs.append(attr) else: # some reference to a transform that should result in an array. # the value is interpreted just like a metaproperty directive attrs = std.resolve_meta_property(config['attrs'], engine, name+':(attrs)') children = None if config.has_key("children"): if isinstance(config['children'], list) or \ isinstance(config['children'], tuple): children = [] for child in config['children']: if isinstance(child, list) or isinstance(child, tuple): raise TransformConfigTypeError("children item", "str or dict",type(child), name) elif isinstance(child, collections.Mapping): child = self._generate_element(child, engine, "{0} child".format(name), ttype) children.append(child) else: # some reference to a transform that should result in an array. # the value is interpreted just like a metaproperty directive children = std.resolve_meta_property(config['children'], engine, name+':(children)') def impl(input, context, *args): out = {} if attrs is not None: if isinstance(attrs, Transform): out['attrs'] = attrs(input, context) else: ol = [] for attr in attrs: if isinstance(attr, Transform): attr = attr(input, context) elif isinstance(attr, collections.Mapping): if '$ins' in attr: attr = attr['$ins'](input, context) if hasattr(attr, '__iter__'): ol.extend(attr) continue elif '$upd' in attr: # shouldn't happen attr = attr['$upd'](input, context) ol.append(attr) out['attrs'] = ol if children is not None: if isinstance(children, Transform): out['children'] = children(input, context) else: ol = [] for child in children: if isinstance(child, Transform): child = child(input, context) elif isinstance(child, collections.Mapping): if '$ins' in child: child = child['$ins'](input, context) if hasattr(child, '__iter__'): ol.extend(child) continue elif '$upd' in child: # shouldn't happen child = child['$upd'](input, context) ol.append(child) out['children'] = ol return out return impl def _generate_attribute(self, spec, engine, name, type=None): return self._gen_cont_item(spec, engine, name, ToAttribute, type) def _gen_cont_item(self, spec, engine, name, cls, type=None): if isinstance(spec, collections.Mapping): if '$val' in spec: return std.resolve_meta_directive(spec['$val'], engine, name+":$val") if '$ins' in spec or '$upd' in spec: key = '$upd' if '$ins' in spec: key = '$ins' spec[key] = std.resolve_meta_directive(spec[key], engine, name+":"+key) return spec # assume this is a cls transform if it isn't some other # reference to a transform return std.resolve_meta_directive(spec, engine, name, cls) def _generate_element(self, spec, engine, name, type=None): return self._gen_cont_item(spec, engine, name, ToElement, type) class ToElement(Transform): def mkfn(self, config, engine): tname = self.name or '(xml)' ttype = "xml.element" try: name = _generate_name(config['name'], engine, tname+" Element name", ttype) except KeyError, ex: raise MissingTransformData("name", self.name) ns = _generate_value(config.get('namespace'), engine, tname+" El ns", ttype) pref = _generate_name(config.get('prefix'), engine, tname+" El prefix", ttype) content = self._generate_content(config.get('content'), engine, tname+" content", ttype) prefixes = _generate_object(config.get('prefixes'), engine, tname+" prefixes", ttype) def impl(input, context, *args): out = {} out['name'] = name if isinstance(name, Transform): out['name'] = name(input, context) out['content'] = content if isinstance(content, Transform): out['content'] = content(input, context) if ns: out['namespace'] = ns if isinstance(ns, Transform): out['namespace'] = ns(input, context) if pref: out['prefix'] = pref if isinstance(pref, Transform): out['prefix'] = pref(input, context) if prefixes: out['prefixes'] = prefixes if isinstance(prefixes, Transform): out['prefixes'] = prefixes(input, context) if config.has_key('hints'): out['hints'] = copy.deepcopy(config['hints']) return out return impl def _generate_content(self, spec, engine, tname, ttype): # a plain object (no $val or $type) is an implicit ToElementContent # transform if spec is None: return None return std.resolve_meta_directive(spec, engine, tname, ToElementContent) class ToTextElement(Transform): """ formats an XML element that contains only text as its contents (attributes are optional). """ def mkfn(self, config, engine): elcfg = copy.deepcopy(config) elcfg['$type'] = 'element' content = { } if "value" in elcfg: content['children'] = [ elcfg['value'] ] del elcfg['value'] if "attrs" in elcfg: content['attrs'] = [ elcfg['attrs'] ] del elcfg['attrs'] elcfg['content'] = content transf = ToElement(elcfg, engine, self.name, 'element', True) def impl(input, context, *args): return transf(input, context, *args) return impl class ToXML(Transform): """ formats XML data into an output string """ def mkfn(self, config, engine): try: transf = config['element'] except KeyError, ex: raise MissingTransformData("element", self.name) if isinstance(transf, dict): transf = engine.make_transform(transf) elif isinstance(transf, str) or isinstance(transf, unicode): transf = engine.resolve_transform(transf) else: raise TransformConfigTypeError('transform', 'dict or str', type(transf)) def impl(input, context): root = transf(input, context) return format_element(root, context, None, self.name) return impl types = { "xml.print": ToXML, "xml.attribute": ToAttribute, "xml.elementContent": ToElementContent, "xml.element": ToElement, "xml.textElement": ToTextElement } class InvalidXMLError(TransformInputTypeError): """ XML cannot be properly formatted because the input XML data is invalid. """ def __init__(self, got=None, input=None, context=None, message=None): if not got: got = str(type(input)) if not message: msg = "Invalid XML data: need an object" if got: msg += ", got " + got + "." message = msg super(InvalidXMLError, self).__init__("object", got, None, input, context, message) def format_element(el, context, prefixes=None, transname=None): """ format the data in an element data object into XML according to preferences from the context. """ if not isinstance(el, dict): raise InvalidXMLError(input=el, context=context) if prefixes is None: prefixes = ScopedDict() else: prefixes = ScopedDict(prefixes) hints = {} newxmlns = None if el.get('hints'): # The element data carries hints on rendering the data; these override # preferences given in the context. So... # load the hints about formatting into our context hints = el['hints'] if hints.get('xmlns') != context.get('xmlns',''): newxmlns context = Context(context) context.update(hints) if context.get('xml.style','pretty') == 'compact': context['xml.base_indent'] = 0 context['xml.indent'] = -1 context['xml.text_packing'] = 'compact' elif context.get('xml.value_pad', 0) > 0: context['xml.text_packing'] = 'pretty' indent = context.get('xml.base_indent', 0) step = context.get('xml.indent', 2) try: # determine if we need a prefix prefix, pfxdefs = determine_prefix(el.get('namespace'), el.get('prefix'), context, prefixes) # preface opening tag with indent indentsp = (indent * ' ') opentag = indentsp + '<' + prefix + el['name'] # assemble the attribute data atts = el.get('content', {}).get('attrs', []) if pfxdefs: atts.extend(pfxdefs) if el.get('prefixes'): for p, ns in el['prefixes'].items(): if ns not in prefixes or prefixes[ns] != p: prefixes[ns] = p atts.append('xmlns:{0}="{1}"'.format(p, ns)) if el.get('content', {}).get('children'): for child in el['content']['children']: p, pfxdefs = determine_prefix(el.get('namespace'), el.get('prefix'), context, prefixes) atts.extend(pfxdefs) # now insert attributes into the opening tag if atts: atts = format_atts(atts, len(opentag), context, prefixes) opentag += atts # format the child nodes if not el.get('content', {}).get('children'): # there are none opentag += '/>' if step >= 0: opentag += '\n' return opentag else: opentag += '>' closetag = '</' + prefix + el['name'] + '>' maxlen = context.get('xml.max_line_length', 78) minlen = context.get('xml.min_line_length', 30) if len(el['content']['children']) == 1 and \ (isinstance(el['content']['children'][0], str) or isinstance(el['content']['children'][0], unicode)): # single text value child = el['content']['children'][0] if context.get('xml.value_pad', 0) <= 0 or \ context.get('xml.text_packing','pretty') == 'pretty' and \ len(child) < maxlen - len(opentag) - len(closetag): #short enough to fit into one line if context.get('xml.value_pad', 0) > 0: pad = context['xml.value_pad'] * ' ' child = pad + child + pad # return the single line return opentag + child + closetag # treat like multi-child content parts = [ opentag ] subcontext = Context(context) if step < 0: # don't insert newlines subcontext['xml.base_indent'] = 0 subcontext['xml.indent'] = -1 else: subcontext['xml.base_indent'] = indent + step for child in el['content']['children']: if isinstance(child, str) or isinstance(child, unicode): parts.append(format_text(child, subcontext)) else: parts.append(format_element(child, subcontext, prefixes)) if step < 0: parts.append(closetag) return ''.join(parts) parts.append(indentsp + closetag) return '\n'.join(parts) except KeyError, ex: raise MissingXMLData.due_to(ex, transname) def format_text(text, context=None): """ format the given text for inclusion as the content for an element """ if not isinstance(text, str) and not isinstance(text, unicode): raise InvalidXMLError(input=text, context=context, message="Invalid XML: expected text, got "+str(type(text))+": "+text) if context is None: context = Context() step = context.get('xml.indent', 2) pack = context.get('xml.text_packing', 'compact') if pack == 'compact' or step < 0: return text indent = context.get('xml.base_indent', 0) if pack == 'loose': return (indent * ' ') + text maxlen = context.get('xml.max_line_length', 78) minlen = context.get('xml.min_line_length', 30) sublen = maxlen - indent if sublen < minlen: sublen = minlen return "\n".join(map(lambda l: (indent * ' ') + l, textwrap.wrap(text, sublen))) def determine_prefix(ns, prefix, context, prefixes): pfxdefs = [] xmlns = context.get('xml.xmlns', '') if ns and not context.get('xml.prefer_prefix', False) and ns == xmlns: # namespace matches xmlns return ('', pfxdefs) if ns: if prefix: if prefix != prefixes.get(ns): prefixes[ns] = prefix pfxdefs.append('xmlns:{0}="{1}"'.format(prefix, ns)) else: prefix = prefixes.get(ns) if not prefix: autopat = re.compile(r'^ns\d+') nums = map(lambda i: int(i), map(lambda p: p[2:], filter(lambda x: autopat.match(x), prefixes.values()))) if not nums: nums = [0] prefix = 'ns'+str(max(nums)+1) prefixes[ns] = prefix pfxdefs.append('xmlns:{0}="{1}"'.format(prefix, ns)) if prefix: return (prefix+':', pfxdefs) return ('', pfxdefs) def format_atts(atts, indent, context, prefixes): """ format the attributes for insertion into an opening element tag. When many attributes are present, these can be wrapped onto separate lines. """ if not isinstance(atts, list) and not isinstance(atts, tuple): raise InvalidXMLError(input=atts, context=context, message="Invalid XML: expected array, got "+str(type(atts))+": "+atts) style = context.get('xml.style', 'pretty') maxlen = context.get('xml.max_line_length', 78) minlen = context.get('xml.min_line_length', 30) attlen = maxlen - indent out = [''] atts = list(atts) while len(atts) > 0: att = atts.pop(0) if isinstance(att, dict): prefix, pfxdefs = determine_prefix(att.get('namespace'), att.get('prefix'), context, prefixes) if len(pfxdefs) > 0: atts.extend(pfxdefs) nxt = prefix+att['name'] + '="' + att['value'] + '"' else: # assume it's already formatted (better be a string) nxt = att if style == 'pretty' and \ len(out[-1]) > minlen and len(nxt) + len(out[-1]) + 1 > attlen: out.append('') out[-1] += ' '+nxt if style == 'pretty': return ('\n'+(indent * ' ')).join(out) return ''.join(out) class MissingXMLData(TransformApplicationException): def __init__(self, message, prop=None, input=None, context=None, name=None, cause=None): """ construct the exception, providing an explanation. :argument str message: an explanation of what went wrong :argument str prop: the name of the missing XML property :argument input: the JSON data that was being transformed :argument context: the context at the point of the exception :argument str name: the name of the transform being applied when the exception occured. If None, the exception is not known or not specific to a particular transform. :argument Exception cause: the exception representing the underlying cause of the exception. If None, there was no such underlying cause. """ super(MissingXMLData, self).__init__(message,input,context,name,cause) self.prop = prop @classmethod def due_to(cls, cause, input=None, context=None, name=None): prop = None if isinstance(cause, KeyError): prop = cause.args[0] msg = "Missing XML data" if name: msg += " in '"+name+"' transform" msg += ": " msg += (prop or str(cause)) return cls(msg, prop, input, context, name, cause) # load in stylesheet-based definitions MOD_STYLESHEET_FILE = "xml_ss.json" ssfile = os.path.join(os.path.dirname(__file__), MOD_STYLESHEET_FILE) with open(ssfile) as fd: MOD_STYLESHEET = jsp.load(fd) del ssfile # load the module's initial context data. The defaults are specified here # for documentation purposes; however, values set wihtin the stylesheet file # will take precedence. p = "xml." def_context = { # The prefered line width to use when filling data into paragraphs by # the fill transform # p+"max_line_width": 75, # The prefered indentation amount to use when filling data into # paragraphs by the fill transform # p+"style": 'compact', # The number of spaces to add to indentation with each step into the # XML hierarchy p+"indent": 2, # The number of spaces to indent the current element. When printing # an entire XML document, the current element is the root element; thus, # the whole document will be indented by this much (plus what is added # by xml.indent for the root's children). This parameter is updated # automatically by xml.indent amounts as the document is printed. p+"base_indent": 0 } del p # the module's default context data MOD_CONTEXT = ScopedDict(def_context) MOD_CONTEXT.update(MOD_STYLESHEET.get('context',{})) MOD_STYLESHEET['context'] = MOD_CONTEXT
370b9d1e5738731995469d3572171a1eb0805860
b20cc37e0b986a0b458f7f446d5025beee01ba7a
/326-power-of-three/326-power-of-three.py
ee9a38938a90148c4442109da4f8e747ba9f4374
[]
no_license
Maruf-S/Competitve-programing
e5e405912a4c2d9a1fad35d66411964ecbc10d00
3134d9c1b7e987c6cec3c614512faab4114fe0bd
refs/heads/master
2023-02-04T08:08:43.374565
2023-02-01T17:29:55
2023-02-01T17:29:55
225,399,606
0
1
null
null
null
null
UTF-8
Python
false
false
183
py
class Solution: def isPowerOfThree(self, n: int) -> bool: if n==1: return True if n<1: return False return self.isPowerOfThree(n/3)
54a9a094e0ee5716cca0e893e3b82f367b83dbe1
a0dda8be5892a390836e19bf04ea1d098e92cf58
/7章之后刷题/7章/求一元二次方程的解.py
517c5ec018ad4fd2fec5dfce6394c34f9bf20cf7
[]
no_license
wmm98/homework1
d9eb67c7491affd8c7e77458ceadaf0357ea5e6b
cd1f7f78e8dbd03ad72c7a0fdc4a8dc8404f5fe2
refs/heads/master
2020-04-14T19:22:21.733111
2019-01-08T14:09:58
2019-01-08T14:09:58
164,055,018
1
0
null
null
null
null
UTF-8
Python
false
false
769
py
""" 【问题描述】一元二次方程:ax2+bx+c=0 (a ╪ 0) 【输入形式】输入a、b和c的值(有理数) 【输出形式】输出x的两个值,或者No(即没有有理数的解) 【样例输入】1 2.5 3 【样例输出】No 【样例输入】1 -2 1 【样例输出】1.00 1.00 【样例输出说明】输出的两个解保留两位小数,大的在前 """ import math a, b, c = input().split() if a != 0: a = float(a) b = float(b) c = float(c) if b ** 2 - 4 * a * c < 0: print("No") else: i = math.sqrt(b ** 2 - 4 * a * c) x1 = (-b + i) / (2 * a) x2 = (-b - i) / (2 * a) if x1 > x2: print("%.2f %.2f" % (x1, x2)) else: print("%.2f %.2f" % (x2, x1))
69219886e2fb7b8ea37b60e28d74a109c0dd00ec
508bef828c3ce1f1c53fbe52397632ebcb392a7f
/excercise/DataOutput.py
17f26dd4e5ecf58f8a646828a506123f3f85f981
[]
no_license
wudangqibujie/excercise
bc19a7923836aae9d12e1147b1d282250c0037c6
ff3e255e809e414fd43e7cf16e03466c91b613a2
refs/heads/master
2021-05-02T12:20:09.701592
2018-02-08T09:20:04
2018-02-08T09:20:04
120,738,926
0
0
null
null
null
null
UTF-8
Python
false
false
904
py
import codecs import json class DataOutput(object): def __init__(self): self.datas = [] def store_data(self,data): if data is None: return self.datas.append(data) def output_txt(self): print(self.datas) print(len(self.datas)) def output_html(self): fout = codecs.open("baike.html",'w',encoding="utf-8") fout.write("<html>") fout.write("<body>") fout.write("<table>") for data in self.datas: fout.write("<tr>") fout.write("<td>%s</td>"%data['url']) fout.write("<td>%s</td>"%data['title']) fout.write("<td>%s</td>"%data['summary']) fout.write("</tr>") self.datas.remove(data) fout.write("</table>") fout.write("</body>") fout.write("</html>") fout.close()
cb404b4d172d193fdd675a194c0f74c3dc2bcbec
7e8c799037f47345cb12a6fc7911610d7ac63640
/blog/models/kategory.py
db1f3aed151335e537ac97042a080087a708be89
[]
no_license
SonerArslan2019/Django_Blog_kilicarslan
bcfd953dfc0d530217c02ff9bf1428160a63e68e
8959708689b830c387c76414545add2474beeddd
refs/heads/master
2023-06-04T06:19:28.209246
2021-06-27T14:50:40
2021-06-27T14:50:40
346,781,400
0
0
null
null
null
null
UTF-8
Python
false
false
403
py
from django.db import models from autoslug import AutoSlugField class KategoriModel(models.Model): isim = models.CharField(max_length=30, blank=False, null=False) slug = AutoSlugField(populate_from='isim', unique=True) class Meta: db_table = 'kategori' verbose_name_plural = 'Kategoriler' verbose_name = 'Kategori' def __str__(self): return self.isim
314cb13e39d3721bdde09602caf9430c87651252
e2baefd54ed6f44d351d867b8d8eb937424fae23
/class-10/game-of-greed/tests/version_4/test_keep_scorers.py
ad3c4e7685ac39c0a0bdef3b04d08c355b08a355
[]
no_license
codefellows/seattle-python-401n2
60cc100b5b6dc8bc3d72784a5ec8f9c2c9db1942
24148a2ee6526104566b5df64945a40222cfb3e2
refs/heads/main
2023-04-23T15:35:49.820538
2021-04-24T18:02:51
2021-04-24T18:02:51
316,109,616
8
16
null
2021-03-10T05:36:09
2020-11-26T03:06:19
Jupyter Notebook
UTF-8
Python
false
false
460
py
import pytest from game_of_greed.game_logic import GameLogic pytestmark = [pytest.mark.version_4] @pytest.mark.parametrize( "test_input,expected", [ ((1, 1, 1, 2, 3, 4), (1, 1, 1)), ((1, 1, 5, 2, 3, 5), (1, 1, 5, 5)), ((1, 6, 5, 2, 3, 4), (1, 6, 5, 2, 3, 4)), ((1, 6, 5, 2, 3), (1, 5)), ], ) def test_get_scorers(test_input, expected): actual = GameLogic.get_scorers(test_input) assert actual == expected
270a1aae2fd8c1049b534b01bbc44c37a2580987
79e19819aec49b500825f82a7de149eb6a0ba81d
/leetcode/704.py
67ae34f57125b3c89b84138ec42378a347353c62
[]
no_license
seoyeonhwng/algorithm
635e5dc4a2e9e1c50dc0c75d9a2a334110bb8e26
90406ee75de69996e666ea505ff5d9045c2ad941
refs/heads/master
2023-05-03T16:51:48.454619
2021-05-26T00:54:40
2021-05-26T00:54:40
297,548,218
0
0
null
null
null
null
UTF-8
Python
false
false
174
py
class Solution: def search(self, nums: List[int], target: int) -> int: try: return nums.index(target) except ValueError: return -1
d63a8cf77a7bbfd03771436916c9f84472b354e1
13efb3baccc678f9d57776244c7dc067e486df9e
/students/migrations/0021_auto_20160517_1221.py
e9210404690fc2e9213f7ae9d9febd5fc7d78325
[]
no_license
grydinywka/studentsdb
fd109dfe60f4ffd666c12acbe645ca14e064c29b
bc2c968538f88bd539d931a7caf1b693fbb65843
refs/heads/master
2020-05-31T00:05:22.638475
2016-08-26T17:00:43
2016-08-26T17:00:43
31,331,814
0
0
null
null
null
null
UTF-8
Python
false
false
576
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import students.models.Result_exam class Migration(migrations.Migration): dependencies = [ ('students', '0020_auto_20160421_0936'), ] operations = [ migrations.AlterField( model_name='result_exam', name='valuetion', field=models.DecimalField(verbose_name='\u041e\u0446\u0456\u043d\u043a\u0430', max_digits=2, decimal_places=0, validators=[students.models.Result_exam.validate_value]), ), ]
adc4c82afca2554fb969296bae54e2b26b9e6e9f
45c170fb0673deece06f3055979ece25c3210380
/toontown/shtiker/DisguisePage.py
3ee2886febb3d641d32591427874690f460eb813
[]
no_license
MTTPAM/PublicRelease
5a479f5f696cfe9f2d9dcd96f378b5ce160ec93f
825f562d5021c65d40115d64523bb850feff6a98
refs/heads/master
2021-07-24T09:48:32.607518
2018-11-13T03:17:53
2018-11-13T03:17:53
119,129,731
2
6
null
2018-11-07T22:10:10
2018-01-27T03:43:39
Python
UTF-8
Python
false
false
9,526
py
#Embedded file name: toontown.shtiker.DisguisePage from toontown.shtiker import ShtikerPage from direct.gui.DirectGui import * from panda3d.core import * from panda3d.direct import * from toontown.toonbase import ToontownGlobals from toontown.toonbase import TTLocalizer from toontown.suit import SuitDNA from toontown.battle import SuitBattleGlobals from toontown.minigame import MinigamePowerMeter from toontown.coghq import CogDisguiseGlobals DeptColors = (Vec4(0.647, 0.608, 0.596, 1.0), Vec4(0.588, 0.635, 0.671, 1.0), Vec4(0.596, 0.714, 0.659, 1.0), Vec4(0.761, 0.678, 0.69, 1.0), Vec4(0.5, 0.5, 0.5, 1.0)) PartNames = ('lUpleg', 'lLowleg', 'lShoe', 'rUpleg', 'rLowleg', 'rShoe', 'lShoulder', 'rShoulder', 'chest', 'waist', 'hip', 'lUparm', 'lLowarm', 'lHand', 'rUparm', 'rLowarm', 'rHand') class DisguisePage(ShtikerPage.ShtikerPage): meterColor = Vec4(0.87, 0.87, 0.827, 1.0) meterActiveColor = Vec4(0.7, 0.3, 0.3, 1) def __init__(self): ShtikerPage.ShtikerPage.__init__(self) self.activeTab = 0 self.progressTitle = None def load(self): ShtikerPage.ShtikerPage.load(self) gui = loader.loadModel('phase_9/models/gui/cog_disguises') icons = loader.loadModel('phase_3/models/gui/cog_icons') self.frame = DirectFrame(parent=self, relief=None, scale=0.47, pos=(0.1, 1, 0)) self.bkgd = DirectFrame(parent=self.frame, geom=gui.find('**/base'), relief=None, scale=(0.98, 1, 1)) self.bkgd.setTextureOff(1) self.buttons = [] self.pageFrame = DirectFrame(parent=self.frame, relief=None) self.xOffset = 0.4 self.deptLabel = DirectLabel(parent=self.frame, text='', text_font=ToontownGlobals.getSuitFont(), text_style=3, text_fg=(1, 1, 1, 1), text_scale=TTLocalizer.DPdeptLabel, text_pos=(-0.1, 0.8)) DirectFrame(parent=self.frame, relief=None, geom=gui.find('**/pipe_frame')) self.tube = DirectFrame(parent=self.frame, relief=None, geom=gui.find('**/tube')) DirectFrame(parent=self.frame, relief=None, geom=gui.find('**/robot/face')) DirectLabel(parent=self.frame, relief=None, geom=gui.find('**/text_cog_disguises'), geom_pos=(0, 0.1, 0)) self.meritTitle = DirectLabel(parent=self.frame, relief=None, geom=gui.find('**/text_merit_progress'), geom_pos=(0, 0.1, 0)) self.meritTitle.hide() self.cogbuckTitle = DirectLabel(parent=self.frame, relief=None, geom=gui.find('**/text_cashbuck_progress'), geom_pos=(0, 0.1, 0)) self.cogbuckTitle.hide() self.juryNoticeTitle = DirectLabel(parent=self.frame, relief=None, geom=gui.find('**/text_jury_notice_progress'), geom_pos=(0, 0.1, 0)) self.juryNoticeTitle.hide() self.stockOptionTitle = DirectLabel(parent=self.frame, relief=None, geom=gui.find('**/text_stock_option_progress'), geom_pos=(0, 0.1, 0)) self.stockOptionTitle.hide() self.progressTitle = self.meritTitle self.promotionTitle = DirectLabel(parent=self.frame, relief=None, geom=gui.find('**/text_ready4promotion'), geom_pos=(0, 0.1, 0)) self.cogName = DirectLabel(parent=self.frame, relief=None, text='', text_font=ToontownGlobals.getSuitFont(), text_scale=TTLocalizer.DPcogName, text_align=TextNode.ACenter, pos=(-0.948, 0, -1.15)) self.cogLevel = DirectLabel(parent=self.frame, relief=None, text='', text_font=ToontownGlobals.getSuitFont(), text_scale=0.09, text_align=TextNode.ACenter, pos=(-0.91, 0, -1.02)) self.partFrame = DirectFrame(parent=self.frame, relief=None) self.parts = [] for partNum in xrange(0, 17): self.parts.append(DirectFrame(parent=self.partFrame, relief=None, geom=gui.find('**/robot/' + PartNames[partNum]))) self.holes = [] for partNum in xrange(0, 17): self.holes.append(DirectFrame(parent=self.partFrame, relief=None, geom=gui.find('**/robot_hole/' + PartNames[partNum]))) self.cogPartRatio = DirectLabel(parent=self.frame, relief=None, text='', text_font=ToontownGlobals.getSuitFont(), text_scale=0.08, text_align=TextNode.ACenter, pos=(-0.91, 0, -0.82)) self.cogMeritRatio = DirectLabel(parent=self.frame, relief=None, text='', text_font=ToontownGlobals.getSuitFont(), text_scale=0.08, text_align=TextNode.ACenter, pos=(0.45, 0, -0.36)) meterFace = gui.find('**/meter_face_whole') meterFaceHalf = gui.find('**/meter_face_half') self.meterFace = DirectLabel(parent=self.frame, relief=None, geom=meterFace, color=self.meterColor, pos=(0.455, 0.0, 0.04)) self.meterFaceHalf1 = DirectLabel(parent=self.frame, relief=None, geom=meterFaceHalf, color=self.meterActiveColor, pos=(0.455, 0.0, 0.04)) self.meterFaceHalf2 = DirectLabel(parent=self.frame, relief=None, geom=meterFaceHalf, color=self.meterColor, pos=(0.455, 0.0, 0.04)) for dept in xrange(len(SuitDNA.suitDepts)): button = DirectButton(parent=self.frame, relief=None, pos=(-1 + self.xOffset * dept, 0, 1.05), image=icons.find(SuitDNA.suitDeptModelPaths[dept]), image_scale=0.25, image2_color=(1, 1, 1, 0.75), command=self.doTab, extraArgs=[dept]) self.buttons.append(button) self.frame.hide() self.activeTab = 3 self.updatePage() def unload(self): ShtikerPage.ShtikerPage.unload(self) def enter(self): self.frame.show() ShtikerPage.ShtikerPage.enter(self) def exit(self): self.frame.hide() ShtikerPage.ShtikerPage.exit(self) def updatePage(self): self.doTab(self.activeTab) def updatePartsDisplay(self, index, numParts, numPartsRequired): partBitmask = 1 groupingBitmask = CogDisguiseGlobals.PartsPerSuitBitmasks[index] previousPart = 0 for part in self.parts: groupingBit = groupingBitmask & partBitmask if numParts & partBitmask & groupingBit: part.show() self.holes[self.parts.index(part)].hide() if groupingBit: previousPart = 1 elif not groupingBit and previousPart: part.show() self.holes[self.parts.index(part)].hide() else: self.holes[self.parts.index(part)].show() part.hide() previousPart = 0 partBitmask = partBitmask << 1 def updateMeritBar(self, dept): merits = base.localAvatar.cogMerits[dept] totalMerits = CogDisguiseGlobals.getTotalMerits(base.localAvatar, dept) if totalMerits == 0: progress = 1 else: progress = min(merits / float(totalMerits), 1) self.updateMeritDial(progress) if base.localAvatar.readyForPromotion(dept): self.cogMeritRatio['text'] = TTLocalizer.DisguisePageMeritFull self.promotionTitle.show() self.progressTitle.hide() else: self.cogMeritRatio['text'] = '%d/%d' % (merits, totalMerits) self.promotionTitle.hide() self.progressTitle.show() def updateMeritDial(self, progress): if progress == 0: self.meterFaceHalf1.hide() self.meterFaceHalf2.hide() self.meterFace.setColor(self.meterColor) elif progress == 1: self.meterFaceHalf1.hide() self.meterFaceHalf2.hide() self.meterFace.setColor(self.meterActiveColor) else: self.meterFaceHalf1.show() self.meterFaceHalf2.show() self.meterFace.setColor(self.meterColor) if progress < 0.5: self.meterFaceHalf2.setColor(self.meterColor) else: self.meterFaceHalf2.setColor(self.meterActiveColor) progress = progress - 0.5 self.meterFaceHalf2.setR(180 * (progress / 0.5)) def doTab(self, index): self.activeTab = index self.bkgd.setColor(DeptColors[index]) self.deptLabel['text'] = (SuitDNA.suitDeptFullnames[SuitDNA.suitDepts[index]],) cogIndex = base.localAvatar.cogTypes[index] + SuitDNA.suitsPerDept * index cog = SuitDNA.suitHeadTypes[cogIndex] self.progressTitle.hide() if SuitDNA.suitDepts[index] == 'm': self.progressTitle = self.cogbuckTitle elif SuitDNA.suitDepts[index] == 'l': self.progressTitle = self.juryNoticeTitle elif SuitDNA.suitDepts[index] == 'c': self.progressTitle = self.stockOptionTitle else: self.progressTitle = self.meritTitle self.progressTitle.show() self.cogName['text'] = SuitBattleGlobals.SuitAttributes[cog]['name'] cogLevel = base.localAvatar.cogLevels[index] if base.localAvatar.cogReviveLevels[self.activeTab] > -1: cogLevel = base.localAvatar.cogReviveLevels[self.activeTab] self.cogLevel['text_scale'] = 0.065 self.cogLevel['text'] = TTLocalizer.DisguisePageCogLevel % str(cogLevel + 1) + TTLocalizer.SkeleRevivePostFix else: self.cogLevel['text_scale'] = 0.09 self.cogLevel['text'] = TTLocalizer.DisguisePageCogLevel % str(cogLevel + 1) numParts = base.localAvatar.cogParts[index] numPartsRequired = CogDisguiseGlobals.PartsPerSuit[index] self.updatePartsDisplay(index, numParts, numPartsRequired) self.updateMeritBar(index) self.cogPartRatio['text'] = '%d/%d' % (CogDisguiseGlobals.getTotalParts(numParts), numPartsRequired)
0ef2bcc9c688462fe238bb21496e160b45812ca0
3e4b8fe54f11bf36f3615c21fdc1dca0ed00fe72
/month04/spider/day01/text/02_tieba.py
63d1010207234daf73d93db6df89f20b4e00ef29
[]
no_license
leinian85/year2019
30d66b1b209915301273f3c367bea224b1f449a4
2f573fa1c410e9db692bce65d445d0543fe39503
refs/heads/master
2020-06-21T20:06:34.220046
2019-11-04T06:37:02
2019-11-04T06:37:02
197,541,549
0
0
null
null
null
null
UTF-8
Python
false
false
1,495
py
from urllib import request from urllib import parse import random import time from fake_useragent import UserAgent import re class TiebaSpider: def __init__(self): self.url = "http://tieba.baidu.com/f?kw={}&pn={}" def set_headers(self): us = UserAgent() self.headers = {"User-Agent":us.random} # 获取响应内容 def get_page(self, url): self.set_headers() req = request.Request(url=url, headers=self.headers) res = request.urlopen(req) html = res.read().decode() return html # 解析,提取数据 def parse_page(self, name): return request.quote(name) # 保存数据 def write_page(self, filename, html): with open(filename, 'w') as f: f.write(html) def run(self, name, start, end): for page in range(start, end + 1): url = self.url.format(self.parse_page(name), (page - 1) * 50) filename = name + "_" + str(page) + ".html" html = self.get_page(url) print(url) # imgs = self.get_imgs(html) self.write_page(filename, html) print("第{}页抓取成功".format(page)) time.sleep(random.randint(1, 3)) def get_imgs(self, html): pattern = re.compile("",re.S) if __name__ == "__main__""": begin = time.time() spider = TiebaSpider() spider.run("赵丽颖", 1, 3) stop = time.time() print("执行时间%.2f" % (stop - begin))
8d1ae267007951a34533aae1e23eb15ed57cf4ee
0d5e40b598ee3ad2c0575a45857df49457a99cc7
/june/handlers/api.py
d6ab577e83fa85e62f43ad5ac12f2b2f71770f36
[ "BSD-3-Clause" ]
permissive
mitnk/june
7fdf928b7de452911a9d683bc50ed52a9f04085c
ab2b8e42e9b632923187333cd91af0f683c16ba6
refs/heads/master
2021-01-18T12:01:19.949051
2012-03-27T07:10:43
2012-03-27T07:10:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,530
py
import math from tornado.options import options from june.lib.handler import BaseHandler from june.lib.decorators import require_user from june.models import Topic, Member, Reply from june.models.mixin import NotifyMixin class UpTopicHandler(BaseHandler): """Up a topic will increase impact of the topic, and increase reputation of the creator """ @require_user def post(self, id): topic = self.db.query(Topic).filter_by(id=id).first() if not topic: self.send_error(404) return user_id = self.current_user.id if topic.user_id == user_id: # you can't vote your own topic dct = {'status': 'fail', 'msg': 'cannot up vote your own topic'} self.write(dct) return if user_id in topic.down_users: # you can't up and down vote at the same time dct = {'status': 'fail', 'msg': 'cannot up vote your down topic'} self.write(dct) return creator = self.db.query(Member).filter_by(id=topic.user_id).first() up_users = list(topic.up_users) if user_id in up_users: up_users.remove(user_id) topic.ups = ','.join(str(i) for i in up_users) topic.impact -= self._calc_topic_impact() creator.reputation -= self._calc_user_impact() self.db.add(creator) self.db.add(topic) self.db.commit() dct = {'status': 'ok'} dct['data'] = {'action': 'cancel', 'count': len(up_users)} self.write(dct) self.cache.delete('topic:%s' % str(id)) return up_users.append(user_id) topic.ups = ','.join(str(i) for i in up_users) topic.impact += self._calc_topic_impact() creator.reputation += self._calc_user_impact() self.db.add(topic) self.db.add(creator) self.db.commit() dct = {'status': 'ok'} dct['data'] = {'action': 'active', 'count': len(up_users)} self.write(dct) self.cache.delete('topic:%s' % str(id)) return def _calc_topic_impact(self): if self.current_user.reputation < 2: return 0 factor = int(options.up_factor_for_topic) return factor * int(math.log(self.current_user.reputation)) def _calc_user_impact(self): if self.current_user.reputation < 2: return 0 factor = int(options.up_factor_for_user) impact = factor * int(math.log(self.current_user.reputation)) return min(impact, int(options.up_max_for_user)) class DownTopicHandler(BaseHandler): """Down a topic will reduce impact of the topic, and decrease reputation of the creator """ @require_user def post(self, id): topic = self.db.query(Topic).filter_by(id=id).first() if not topic: self.send_error(404) return user_id = self.current_user.id if topic.user_id == user_id: # you can't vote your own topic dct = {'status': 'fail', 'msg': "cannot down vote your own topic"} self.write(dct) return if user_id in topic.up_users: # you can't down and up vote at the same time dct = {'status': 'fail', 'msg': "cannot down vote your up topic"} self.write(dct) return creator = self.db.query(Member).filter_by(id=topic.user_id).first() down_users = list(topic.down_users) if user_id in down_users: #TODO: can you cancel a down vote ? down_users.remove(user_id) topic.downs = ','.join(str(i) for i in down_users) topic.impact += self._calc_topic_impact() creator.reputation += self._calc_user_impact() self.db.add(creator) self.db.add(topic) self.db.commit() dct = {'status': 'ok'} dct['data'] = {'action': 'cancel', 'count': len(down_users)} self.write(dct) self.cache.delete('topic:%s' % str(id)) return down_users.append(user_id) topic.downs = ','.join(str(i) for i in down_users) topic.impact -= self._calc_topic_impact() creator.reputation -= self._calc_user_impact() self.db.add(creator) self.db.add(topic) self.db.commit() dct = {'status': 'ok'} dct['data'] = {'action': 'active', 'count': len(down_users)} self.write(dct) self.cache.delete('topic:%s' % str(id)) return def _calc_topic_impact(self): if self.current_user.reputation < 2: return 0 factor = int(options.down_factor_for_topic) return factor * int(math.log(self.current_user.reputation)) def _calc_user_impact(self): if self.current_user.reputation < 2: return 0 factor = int(options.down_factor_for_user) impact = factor * int(math.log(self.current_user.reputation)) return min(impact, int(options.down_max_for_user)) class AcceptReplyHandler(BaseHandler, NotifyMixin): """Vote for a reply will affect the topic impact and reply user's reputation """ def _is_exist(self, topic_id, reply_id): reply = self.db.query(Reply).filter_by(id=reply_id).first() if not reply or reply.topic_id != int(topic_id): return False topic = self.db.query(Topic).filter_by(id=topic_id).first() if not topic: return False return reply, topic def _calc_user_impact(self): if self.current_user.reputation < 2: return 0 factor = int(options.accept_reply_factor_for_user) impact = factor * int(math.log(self.current_user.reputation)) return min(impact, int(options.vote_max_for_user)) def post(self, topic_id, reply_id): reply_topic = self._is_exist(topic_id, reply_id) if not reply_topic: self.send_error(404) return reply, topic = reply_topic user_id = self.current_user.id if user_id != topic.user_id: dct = {'status': 'fail', 'msg': 'you are not topic owner'} self.write(dct) return if user_id == reply.user_id: dct = {'status': 'fail', 'msg': 'cannot accept your own reply'} self.write(dct) return creator = self.db.query(Member).filter_by(id=reply.user_id).first() if reply.accepted == 'y': creator.reputation -= self._calc_user_impact() reply.accepted = 'n' self.db.add(creator) self.db.add(reply) self.db.commit() self.cache.delete('ReplyListModule:%s:1' % topic.id) dct = {'status': 'ok', 'data': 'cancel'} self.write(dct) return creator.reputation += self._calc_user_impact() reply.accepted = 'y' self.db.add(reply) self.db.add(creator) link = '/topic/%s' % topic.id self.create_notify(reply.user_id, topic.title, reply.content, link, 'accept') self.db.commit() self.cache.delete('ReplyListModule:%s:1' % topic.id) dct = {'status': 'ok', 'data': 'active'} self.write(dct) return handlers = [ ('/api/topic/(\d+)/up', UpTopicHandler), ('/api/topic/(\d+)/down', DownTopicHandler), ('/api/topic/(\d+)/(\d+)/accept', AcceptReplyHandler), ]
fa45fa3e4460095d824552aa35a17268abf6e8d3
481ce69bd3611715fef0be99c655c95d67f16d5f
/riopy/tests/test_halocell.py
bb4e9a4da694b436c60b341228f6c83519a79a89
[ "BSD-3-Clause" ]
permissive
fsimkovic/riopy
0ffed18c72573e824affa97d5c17ca462c5f2031
5dc4083d1c0919d94ceeac802d3fb40748b947f3
refs/heads/master
2021-03-24T10:14:25.904758
2018-08-30T13:16:02
2018-08-30T13:16:02
117,836,272
0
0
null
null
null
null
UTF-8
Python
false
false
8,868
py
import unittest from riopy.halocell import HaloCell class HaloCellTest(unittest.TestCase): def test_ops_1(self): mate_ops = HaloCell.ops(0) self.assertListEqual([(0, 0, 0)], mate_ops) def test_ops_2(self): mate_ops = HaloCell.ops(1) true_ops = [(0, 1, 1), (1, -1, -1), (1, 0, 1), (1, -1, 0), (-1, 1, -1), (1, 1, -1), (0, 0, -1), (0, -1, -1), (1, 0, 0), (-1, 0, 1), (-1, 0, 0), (-1, 0, -1), (0, 0, 1), (0, -1, 1), (0, 0, 0), (0, -1, 0), (1, 1, 1), (-1, 1, 0), (1, 1, 0), (-1, 1, 1), (-1, -1, 1), (1, 0, -1), (-1, -1, 0), (1, -1, 1), (0, 1, 0), (0, 1, -1), (-1, -1, -1)] self.assertListEqual(true_ops, mate_ops) def test_ops_3(self): mate_ops = HaloCell.ops(2) true_ops = [(2, 1, -1), (1, -1, -2), (-1, -1, -2), (2, 2, -2), (0, 2, 1), (2, 2, 2), (-2, 0, 1), (2, -1, 2), (0, 0, -1), (2, 0, 1), (1, 2, 0), (-2, -1, 1), (-2, 1, -2), (-2, 1, 0), (1, 2, 2), (-1, 0, 0), (-1, 2, 1), (2, -1, 1), (-1, 1, 1), (1, 2, -2), (-2, 1, 1), (2, 1, -2), (1, -1, 0), (-1, -2, -1), (2, 0, 2), (0, 1, 0), (1, -1, 2), (-1, -1, -1), (-2, -1, -2), (-2, 2, -1), (-1, 2, 0), (0, 1, 2), (-2, -1, -1), (1, 0, 1), (1, 0, -1), (1, -2, 0), (-1, 1, -2), (2, -1, -2), (-2, -2, 0), (-1, 0, 2), (-2, 1, -1), (-2, 0, 0), (2, 2, 1), (1, -2, 1), (2, 2, -1), (-2, 2, 2), (2, 0, -1), (0, 0, 1), (-2, 2, -2), (-2, -2, 1), (1, 1, -2), (0, -2, 0), (-2, 0, -2), (-2, -2, -1), (1, 1, 0), (0, -2, 2), (-1, -1, 1), (1, -2, 2), (2, 1, 1), (0, 2, -2), (1, 0, -2), (1, 1, 2), (0, -1, 0), (-2, 2, 1), (2, -2, 2), (0, 2, 2), (0, 2, 0), (1, 1, -1), (0, 0, -2), (0, -1, -2), (1, -2, -1), (0, -2, 1), (-2, 0, -1), (2, 0, 0), (1, 2, 1), (-1, -2, 2), (-1, 0, -2), (-1, 1, 2), (0, -1, 2), (-1, -2, 0), (-1, 2, -2), (-1, 2, 2), (-1, 1, 0), (0, -2, -2), (2, -2, 0), (-1, -2, 1), (1, -1, 1), (1, 0, 2), (0, 1, -2), (0, 1, 1), (0, -1, -1), (-1, 1, -1), (1, -1, -1), (-2, 2, 0), (2, -1, -1), (1, 0, 0), (-1, -1, 0), (-2, -2, -2), (-2, -2, 2), (-1, 2, -1), (-2, -1, 2), (-1, 0, 1), (0, 2, -1), (2, -2, -1), (0, -2, -1), (1, 2, -1), (-1, -2, -2), (1, -2, -2), (-1, 0, -1), (0, 0, 2), (2, 2, 0), (0, -1, 1), (0, 0, 0), (2, 1, 2), (0, 1, -1), (1, 1, 1), (-2, 0, 2), (2, 0, -2), (2, -2, 1), (-1, -1, 2), (2, 1, 0), (2, -2, -2), (-2, 1, 2), (-2, -1, 0), (2, -1, 0)] self.assertListEqual(true_ops, mate_ops) def test_ops_4(self): mate_ops = HaloCell.ops(3) true_ops = [(3, 0, 3), (1, -3, 1), (1, -2, -2), (0, 2, 1), (-1, 3, 2), (-2, 3, 0), (3, -2, -3), (0, 3, -1), (1, 2, 0), (2, -3, -2), (-3, -3, -1), (3, -2, -1), (1, 1, -3), (0, -3, 0), (-2, 0, 0), (0, 0, -2), (-1, 1, 1), (-1, 2, 2), (1, -1, 0), (0, 1, -3), (0, 1, 0), (-1, -1, -1), (1, 0, 3), (2, -2, 0), (-3, -3, -2), (0, -2, -3), (-2, 1, -1), (1, 2, -3), (1, -1, 1), (3, 1, -3), (-2, 3, 2), (-3, 2, 3), (-1, 0, 2), (-2, 1, 2), (0, -2, 0), (1, 1, 0), (3, 0, 1), (-2, -1, 1), (0, 1, -1), (-3, 3, -2), (2, -3, -1), (3, -3, 2), (1, -3, 0), (-2, -2, 3), (0, 2, 0), (2, 1, -3), (-2, -3, 3), (1, -2, -1), (0, -3, 1), (3, 1, 3), (1, 2, 1), (2, -3, 0), (0, 2, -2), (-2, 1, 3), (-1, 1, -1), (1, -2, 1), (0, 1, -2), (-3, -2, 2), (0, 1, 1), (1, -1, -2), (0, -1, -3), (3, 3, 0), (1, 0, 0), (1, -3, -2), (0, -1, 2), (1, 2, -2), (2, 2, -1), (3, -1, 2), (0, -3, -1), (-3, -1, -3), (-3, -2, 0), (-2, -3, 2), (0, -2, 3), (2, -2, 3), (1, 1, 3), (-2, -2, 0), (-3, 3, -3), (3, 0, 2), (-2, 1, -3), (3, 0, 0), (3, -3, 1), (-1, -1, -2), (3, -1, -3), (-1, -2, -2), (1, -3, 3), (0, 2, 3), (-1, 0, 1), (2, 0, 1), (0, -3, 2), (3, 1, 2), (1, 2, 2), (-2, 3, 3), (-2, 2, 3), (2, -1, 1), (3, -3, 0), (-3, -2, -1), (1, 2, -1), (-2, 1, 1), (-2, -1, -2), (-1, 0, -1), (1, -1, 2), (2, 3, 3), (2, -2, -1), (0, 1, 2), (-2, -1, -3), (1, 0, 1), (1, 0, -1), (-2, 1, -2), (-2, 3, 1), (2, -3, 1), (-2, -1, 0), (1, 3, -2), (-1, -2, -3), (0, 3, 0), (-3, 0, 3), (2, 2, 0), (0, 3, 1), (-1, -2, 1), (1, 1, -1), (-1, 0, -2), (-2, -2, -1), (-1, -3, 3), (0, -2, 2), (0, 2, -1), (1, -2, 0), (1, 1, 2), (3, -2, 2), (-3, 0, 1), (2, 1, -2), (-1, -3, 2), (-3, -3, 1), (1, -2, -3), (-3, 3, 0), (0, -1, -2), (2, 2, -3), (1, 1, -2), (-1, 3, -1), (0, -1, 3), (0, 2, 2), (2, 0, 0), (0, -3, 3), (3, 1, 1), (1, 2, 3), (-1, -3, -1), (-3, -3, -3), (-1, 2, -1), (2, -1, 2), (0, -2, -2), (2, 3, 0), (-1, 0, -3), (-3, 1, -3), (-1, 1, 0), (1, -2, 3), (-1, -1, 3), (0, 1, 3), (0, 3, -3), (-1, -2, 0), (-3, 0, -1), (-1, -2, 3), (3, 2, 1), (-3, 0, 0), (3, 2, -2), (3, 2, -1), (0, -2, -1), (-1, -1, 2), (-3, -1, 1), (-1, 3, -2), (-2, 2, -2), (3, -3, -3), (-1, 1, -3), (-3, -2, -3), (3, 3, -3), (3, 3, -1), (3, -1, 3), (-1, 3, 0), (-2, -2, 2), (-3, -1, 3), (-2, 2, 2), (0, 0, -1), (3, 2, 2), (-2, -2, 1), (-2, 1, 0), (3, -1, 1), (2, 0, 3), (3, 1, 0), (3, -3, -1), (2, -2, -3), (-3, 1, 0), (-3, -2, -2), (-3, 1, -2), (-1, 2, 1), (-2, -1, 2), (2, 1, -1), (1, 3, -1), (1, 3, 3), (2, 2, -2), (-1, 2, -3), (0, 3, 3), (2, 1, 3), (1, 0, -2), (2, 3, 2), (2, 0, -1), (1, 0, -3), (-3, 2, 1), (0, 0, 3), (2, -2, -2), (-3, -1, -1), (-3, 1, -1), (-3, -1, -2), (0, -3, -3), (2, 1, 1), (3, -1, -1), (0, -1, 0), (3, 0, -1), (2, 3, -2), (1, -1, 3), (-1, -1, 1), (3, -2, -2), (-1, -3, -3), (0, 3, -2), (0, 0, -3), (3, 2, 3), (-2, 0, -1), (-2, 0, -3), (2, 0, 2), (2, -3, 2), (-1, -1, 0), (-3, 1, 3), (-1, 2, 0), (-2, -3, -2), (2, 2, 1), (1, 3, -3), (-2, -3, -1), (-3, 2, -2), (-3, -2, 3), (0, -1, -1), (1, 3, 2), (2, -1, 0), (-3, -3, 0), (2, 0, -2), (1, -3, -1), (2, -1, -1), (2, -3, -3), (3, -1, -2), (2, 3, 1), (-2, 0, 1), (-1, 2, -2), (3, -3, -2), (2, -1, -3), (-3, 2, 2), (0, 0, 2), (2, 1, 0), (3, 0, -3), (-3, -1, 0), (0, -3, -2), (3, 3, 2), (-2, 3, -3), (-3, -2, 1), (-1, 2, 3), (-3, 3, 2), (3, -2, 1), (2, 0, -3), (-1, -3, -2), (2, -3, 3), (3, -1, 0), (2, 1, 2), (2, -1, 3), (-1, -3, 0), (3, 2, 0), (-3, 2, 0), (-3, 0, -3), (3, 1, -1), (-1, 1, 3), (-3, 1, 2), (-3, 0, -2), (-2, -1, -1), (-3, 1, 1), (-2, 0, 3), (3, -2, 0), (3, 3, -2), (-1, -2, -1), (-2, 2, -1), (-3, -3, 3), (-2, -3, 0), (3, 0, -2), (-1, 0, 0), (-2, -3, -3), (-1, 3, -3), (-2, -2, -2), (2, -2, 2), (3, 2, -3), (0, 0, 1), (0, 2, -3), (2, 2, 3), (1, -2, 2), (-1, 3, 3), (3, 3, 1), (-3, 2, -1), (-3, -1, 2), (2, -2, 1), (-1, -1, -3), (-2, -1, 3), (-1, 3, 1), (1, 1, 1), (-2, -2, -3), (1, -1, -3), (-3, 0, 2), (-3, 3, -1), (-1, -2, 2), (1, 3, 1), (2, 3, -3), (-3, 2, -3), (-2, 3, -2), (-2, 3, -1), (2, 3, -1), (-2, 2, 1), (-2, -3, 1), (1, -3, 2), (1, 0, 2), (-1, 1, -2), (1, 3, 0), (2, -1, -2), (-2, 2, -3), (-3, -3, 2), (3, 1, -2), (0, 3, 2), (-1, 0, 3), (3, 3, 3), (1, -1, -1), (-2, 0, -2), (-3, 3, 1), (0, -2, 1), (0, 0, 0), (1, -3, -3), (-3, 3, 3), (-2, 0, 2), (2, 2, 2), (0, -1, 1), (-1, 1, 2), (3, -2, 3), (-1, -3, 1), (3, -3, 3), (-2, 2, 0)] self.assertListEqual(true_ops, mate_ops) if __name__ == "__main__": unittest.main(verbosity=2)
c44a12d77ff12294af2fe0d956eadc83432d93a5
77900cdd9a815caf1cd04705321ca93f5072179f
/Project/.history/main_20211116163259.py
e8cab25e7e1da7157cd5e01b04d2ba8c87d33c20
[]
no_license
Bom19990111/helloword_python
717799d994223d65de5adaeabecf396ff2bc1fb7
2ee2e67a60043f03c1ce4b070470c7d2dcdc72a7
refs/heads/master
2023-09-06T04:17:02.057628
2021-11-21T20:00:46
2021-11-21T20:00:46
407,063,273
0
1
null
2021-11-21T20:00:47
2021-09-16T07:18:35
Python
UTF-8
Python
false
false
2,680
py
import product as p def choose(): action = 0 while action >= 0: if action == 1: p.AddProduct() print("--------------------------------") elif action == 2: p.DeleteProduct() elif action == 3: p.UpdateProduct() elif action == 4: p.ShowAllProduct() elif action == 5: p.FindProductByName() elif action == 6: p.SortProductNameA_Z() print("Đã sắp xếp thành công! Vui lòng chọn số 4 để xem kết quả".upper()) print("********************************") elif action == 7: p.SortProductNameZ_A() print("Đã sắp xếp thành công! Vui lòng chọn số 4 để xem kết quả".upper()) print("********************************") elif action == 8: p.SortPriceAsc() print("Đã sắp xếp thành công! Vui lòng chọn số 4 để xem kết quả".upper()) print("********************************") elif action == 9: p.SortPriceDesc() print("Đã sắp xếp thành công! Vui lòng chọn số 4 để xem kết quả".upper()) print("********************************") elif action == 10: p.ImportExecel()() elif action == 11: p.ExportExecl() print("Vui lòng chọn chức năng bạn muốn: ") print("0. Thoát khỏi chương trình. ") print("1. Thêm mới sản phẩm. ") print("2. Xóa sản phẩm. ") print("3. Cập nhật thông tin sản phẩm. ") print("4. Xem danh sách tất cả sản phẩm. ") print("5. Tìm kiếm sản phẩm theo tên hoặc theo thương hiệu. ") print("6. Sắp xếp tên sản phẩm A-Z. ") print("7. Sắp xếp tên sản phẩm Z-A. ") print("8. Sắp xếp giá sản phẩm tăng dần. ") print("9. Sắp xếp tên sản phẩm giảm dần. ") print("10. Import file excel. ") print("11. Export file excel. ") try: action = int(input("Bạn chọn chức năng? ")) except ValueError: if action == 12: print("Không có chức năng bạn chọn, mời chọn lại!".upper()) else: print("Không có chức năng bạn chọn, mời chọn lại!".upper()) try: choose() except: print("Dừng chương trình!") if action == 0: print("Đã thoát chương trình") break choose()
a6793fef67f7d299ac2575aa4f3fdafd5fc99bae
89b0920101eaf09b0afb9a5449f3fabd68ac21c1
/analysis-blocks/scripts/SlowAdder.py
fd81750d4252600627d344e3bba39799ecfc459f
[]
no_license
metamorph-inc/openmeta-examples-and-templates
cffdcecf8b4fca1ea8ae4f8880a5f2720ec05f4b
4f6cc54510c742b9a3bf39338a5a01df510c1243
refs/heads/master
2023-04-10T06:25:28.691426
2020-03-12T23:20:36
2020-03-12T23:20:36
91,151,238
7
3
null
2018-12-03T23:01:19
2017-05-13T05:17:18
Python
UTF-8
Python
false
false
825
py
from __future__ import print_function from openmdao.api import IndepVarComp, Component, Problem, Group, FileRef import numpy as np import time class SlowAdder(Component): def __init__(self): super(SlowAdder, self).__init__() self.add_param("x", val=0.0) self.add_param("y", val=0.0) self.add_output("z", val=0.0) def solve_nonlinear(self, params, unknowns, resids): time.sleep(10) unknowns["z"] = params["x"] + params["y"] def main(): top = Problem() root = top.root = Group() root.add('Input', IndepVarComp([('x', 1.0), ('y', 2.0)])) root.add('p', SlowAdder()) root.connect('Input.x', 'p.x') root.connect('Input.y', 'p.y') top.setup() top.run() print('z =', root.p.unknowns['z']) if __name__ == "__main__": main()
892d1f7a730ca334b28fb0d84012c7de626b560d
e2ef58aa444e9e97ed26ef52bc69ac8bd79bc93e
/podoc/tests/test_utils.py
4e8a2b8169b447a65c22f3dda2df52035c514a17
[ "BSD-3-Clause" ]
permissive
willingc/podoc
1dc1c18f40e06b47760f0f6227ec70bd2dd1d19e
7021aec70d47a8a3a934c5799828f412e38b7c23
refs/heads/master
2021-01-17T10:04:47.414887
2016-04-02T09:56:55
2016-04-02T09:56:55
53,595,629
0
0
null
2016-03-10T15:32:25
2016-03-10T15:32:23
Python
UTF-8
Python
false
false
2,014
py
# -*- coding: utf-8 -*- """Test utility functions.""" #------------------------------------------------------------------------------ # Imports #------------------------------------------------------------------------------ import json import logging import os.path as op from pytest import mark, raises from ..utils import (Bunch, Path, load_text, dump_text, _get_file, assert_equal, pandoc, has_pandoc, get_pandoc_formats) logger = logging.getLogger(__name__) require_pandoc = mark.skipif(not(has_pandoc()), reason='pypandoc is not available') #------------------------------------------------------------------------------ # Tests #------------------------------------------------------------------------------ def test_bunch(): obj = Bunch() obj['a'] = 1 assert obj.a == 1 obj.b = 2 assert obj['b'] == 2 assert obj.copy().a == 1 def test_path(): print(Path(__file__)) assert Path(__file__).exists() def test_assert_equal(): assert_equal([0], [0]) assert_equal({'a': 1, 'b': [2, 3], '_c': 0}, {'a': 1, 'b': [2, 3], '_c': 1}) with raises(AssertionError): assert_equal({'a': 1, 'b': [2, 3], '_c': 0}, {'a': 1, 'b': [2, 4], '_c': 0}) #------------------------------------------------------------------------------ # Test file I/O #------------------------------------------------------------------------------ def test_open_dump_text(tempdir): path = op.join(tempdir, 'test.txt') dump_text('hello *world*', path) assert load_text(path) == 'hello *world*' assert _get_file(path, 'r').read() == 'hello *world*' with open(path, 'r') as f: assert _get_file(f, 'r').read() == 'hello *world*' def test_pandoc(): out = pandoc('hello *world*', 'json', format='markdown') assert isinstance(json.loads(out), list) sl, tl = get_pandoc_formats() assert 'markdown' in sl assert 'markdown' in tl