blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
bc3c434190c692ff3c0094d20db9185411b09b8e
3caa6e43e3da18858a719c51dc9c63eb11014035
/build/LawnMowerRobot/hrp/am_loopmap/catkin_generated/pkg.installspace.context.pc.py
85b851e7aaef81366a23f89a188a48a8c38bea1b
[]
no_license
rh-chen/catkin_ws
2ab5050340e7e62f818681d1c86b222f2b867ce9
102203a9c5b870862d5c4fcf465f3bf88247a007
refs/heads/master
2020-06-03T10:28:31.749952
2016-06-02T21:43:10
2016-06-02T21:43:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
487
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "/home/agneev/catkin_ws/install/include".split(';') if "/home/agneev/catkin_ws/install/include" != "" else [] PROJECT_CATKIN_DEPENDS = "nav_msgs;roscpp;std_msgs;tf;am_driver".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "am_loopmap" PROJECT_SPACE_DIR = "/home/agneev/catkin_ws/install" PROJECT_VERSION = "0.0.0"
51c49fc3154deee52d0c8f7793fbddac1737f209
70bfc97fb0ff98d817f72f27775a7b467ae66c39
/firmware/python_modules/sha2017/dashboard/installer.py
2bd071a428f17b60fb027c5bec3caf6cb46245ee
[ "Apache-2.0" ]
permissive
zakx/ESP32-platform-firmware
ae6ab2d023c06598dc6a9010fb4bfcf3a2d6710f
3593865602c2aba1f5a066a333ff864d9eaae4a3
refs/heads/master
2020-07-03T03:19:04.964007
2019-08-10T17:05:16
2019-08-10T17:05:16
201,767,805
0
0
null
2019-08-11T13:24:42
2019-08-11T13:24:42
null
UTF-8
Python
false
false
5,351
py
import orientation, dashboard.resources.woezel_repo as woezel_repo, term, easydraw, system, time, gc, ugfx, wifi, uos, json, sys, woezel, display repo = woezel_repo orientation.default() def showMessage(msg, error=False, icon_wifi=False, icon_ok=False): term.header(True, "Installer") print(msg) if error: easydraw.messageCentered("ERROR\n\n"+msg, True, "/media/alert.png") elif icon_wifi: easydraw.messageCentered("PLEASE WAIT\n\n"+msg, True, "/media/wifi.png") elif icon_ok: easydraw.messageCentered(msg, True, "/media/ok.png") else: easydraw.messageCentered("PLEASE WAIT\n\n"+msg, True, "/media/busy.png") # Generic actions def btn_unhandled(pressed): display.flush(display.FLAG_LUT_FASTEST) def btn_exit(pressed): if pressed: system.launcher() def btn_update(pressed): if pressed: repo.update() system.start("installer", True) # Categories list categories_list = ugfx.List(0,0,ugfx.width(),ugfx.height()-48) def show_categories(pressed=True): if not pressed: return ugfx.clear(ugfx.WHITE) #Hide category list category_list.visible(False) category_list.enabled(False) #Show categories list categories_list.visible(True) categories_list.enabled(True) #Input handling ugfx.input_attach(ugfx.BTN_START, btn_exit) ugfx.input_attach(ugfx.BTN_SELECT, btn_update) ugfx.input_attach(ugfx.BTN_A, show_category) ugfx.input_attach(ugfx.BTN_B, btn_unhandled) ugfx.input_attach(ugfx.JOY_UP, btn_unhandled) ugfx.input_attach(ugfx.JOY_DOWN, btn_unhandled) ugfx.input_attach(ugfx.JOY_LEFT, btn_unhandled) ugfx.input_attach(ugfx.JOY_RIGHT, btn_unhandled) #Hint easydraw.disp_string_right_bottom(0, "START: Exit app") easydraw.disp_string_right_bottom(1, "A: Open category") easydraw.disp_string_right_bottom(2, "SELECT: Update repo") #Flush screen display.flush(display.FLAG_LUT_NORMAL) # Category browsing category_list = ugfx.List(0,0,ugfx.width(),ugfx.height()-48) def show_category(pressed=True): if not pressed: return ugfx.clear(ugfx.WHITE) global category categories_list.visible(False) categories_list.enabled(False) slug = repo.categories[categories_list.selected_index()]["slug"] showMessage("Loading "+slug+"...") display.drawFill() #Clean up list while category_list.count() > 0: category_list.remove_item(0) try: try: category = repo.getCategory(slug) except BaseException as e: print("CAT OPEN ERR", e) showMessage("Failed to open category "+slug+"!", True) display.drawFill() time.sleep(1) show_categories() gc.collect() for package in category: category_list.add_item("%s rev. %s" % (package["name"], package["revision"])) category_list.selected_index(0) category_list.visible(True) category_list.enabled(True) #Input handling ugfx.input_attach(ugfx.BTN_START, btn_exit) ugfx.input_attach(ugfx.BTN_SELECT, btn_unhandled) ugfx.input_attach(ugfx.BTN_A, install_app) ugfx.input_attach(ugfx.BTN_B, show_categories) ugfx.input_attach(ugfx.JOY_UP, btn_unhandled) ugfx.input_attach(ugfx.JOY_DOWN, btn_unhandled) ugfx.input_attach(ugfx.JOY_LEFT, btn_unhandled) ugfx.input_attach(ugfx.JOY_RIGHT, btn_unhandled) #Hint easydraw.disp_string_right_bottom(0, "START: Exit") easydraw.disp_string_right_bottom(1, "A: Install app") easydraw.disp_string_right_bottom(2, "B: Back") #Flush screen display.flush(display.FLAG_LUT_NORMAL) except BaseException as e: sys.print_exception(e) print("ERROR", e) showMessage("Internal error", True) display.drawFill() time.sleep(1) show_categories() # Install application def install_app(pressed=True): global category if pressed: slug = category[category_list.selected_index()]["slug"] category = [] gc.collect() category_list.visible(False) category_list.enabled(False) category_list.clear() #Input handling ugfx.input_attach(ugfx.BTN_START, btn_unhandled) ugfx.input_attach(ugfx.BTN_SELECT, btn_unhandled) ugfx.input_attach(ugfx.BTN_A, btn_unhandled) ugfx.input_attach(ugfx.BTN_B, btn_unhandled) ugfx.input_attach(ugfx.JOY_UP, btn_unhandled) ugfx.input_attach(ugfx.JOY_DOWN, btn_unhandled) ugfx.input_attach(ugfx.JOY_LEFT, btn_unhandled) ugfx.input_attach(ugfx.JOY_RIGHT, btn_unhandled) if not wifi.status(): wifi.connect() wifi.wait() if not wifi.status(): showMessage("Unable to connect to WiFi.") display.drawFill() time.sleep(2) show_category() showMessage("Installing "+slug+"...") display.drawFill() try: woezel.install(slug) showMessage("OK\n\n"+slug+" has been installed!", False, False, True) display.drawFill() time.sleep(2) show_category() except woezel.LatestInstalledError: showMessage("NOTICE\n\nLatest version is already installed.", False, False, True) display.drawFill() time.sleep(2) show_category() except BaseException as e: print("WOEZEL ERROR", e) showMessage("Failed to install "+slug+"!", True) display.drawFill() time.sleep(2) show_category() #Main application showMessage("Loading categories...") display.drawFill() if not repo.load(): if not repo.update(): if repo.lastUpdate==0: showMessage("Failed to load repository. Returning to launcher...") display.drawFill() system.launcher() for category in repo.categories: categories_list.add_item("%s (%d) >" % (category["name"], category["eggs"])) show_categories()
853dc52871c3cacc341de2c08d13e6f8f092c466
91406a8a39d4cf9c9db57d57c13b74ea6a50b31d
/backend/theadvrou_19084/settings.py
b1326c53deb98ee4d1d5405cc5757874998d7f98
[]
no_license
crowdbotics-apps/theadvrou-19084
9fb5d3ebb645f946ed70469daf0c8770e8692723
ecb1356777441578fafd5816638c4056bdaa8c21
refs/heads/master
2022-11-25T06:13:56.853550
2020-07-22T10:03:51
2020-07-22T10:03:51
281,493,497
0
0
null
null
null
null
UTF-8
Python
false
false
5,806
py
""" Django settings for theadvrou_19084 project. Generated by 'django-admin startproject' using Django 2.2.2. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os import environ env = environ.Env() # SECURITY WARNING: don't run with debug turned on in production! DEBUG = env.bool("DEBUG", default=False) # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = env.str("SECRET_KEY") ALLOWED_HOSTS = env.list("HOST", default=["*"]) SITE_ID = 1 SECURE_PROXY_SSL_HEADER = ("HTTP_X_FORWARDED_PROTO", "https") SECURE_SSL_REDIRECT = env.bool("SECURE_REDIRECT", default=False) # Application definition INSTALLED_APPS = [ "django.contrib.admin", "django.contrib.auth", "django.contrib.contenttypes", "django.contrib.sessions", "django.contrib.messages", "django.contrib.staticfiles", "django.contrib.sites", "delivery_order", "driver", "menu", "delivery_user_profile", ] LOCAL_APPS = [ "home", "users.apps.UsersConfig", ] THIRD_PARTY_APPS = [ "rest_framework", "rest_framework.authtoken", "rest_auth", "rest_auth.registration", "bootstrap4", "allauth", "allauth.account", "allauth.socialaccount", "allauth.socialaccount.providers.google", "django_extensions", "drf_yasg", # start fcm_django push notifications "fcm_django", # end fcm_django push notifications ] INSTALLED_APPS += LOCAL_APPS + THIRD_PARTY_APPS MIDDLEWARE = [ "django.middleware.security.SecurityMiddleware", "django.contrib.sessions.middleware.SessionMiddleware", "django.middleware.common.CommonMiddleware", "django.middleware.csrf.CsrfViewMiddleware", "django.contrib.auth.middleware.AuthenticationMiddleware", "django.contrib.messages.middleware.MessageMiddleware", "django.middleware.clickjacking.XFrameOptionsMiddleware", ] ROOT_URLCONF = "theadvrou_19084.urls" TEMPLATES = [ { "BACKEND": "django.template.backends.django.DjangoTemplates", "DIRS": [], "APP_DIRS": True, "OPTIONS": { "context_processors": [ "django.template.context_processors.debug", "django.template.context_processors.request", "django.contrib.auth.context_processors.auth", "django.contrib.messages.context_processors.messages", ], }, }, ] WSGI_APPLICATION = "theadvrou_19084.wsgi.application" # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { "default": { "ENGINE": "django.db.backends.sqlite3", "NAME": os.path.join(BASE_DIR, "db.sqlite3"), } } if env.str("DATABASE_URL", default=None): DATABASES = {"default": env.db()} # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { "NAME": "django.contrib.auth.password_validation.UserAttributeSimilarityValidator", }, {"NAME": "django.contrib.auth.password_validation.MinimumLengthValidator",}, {"NAME": "django.contrib.auth.password_validation.CommonPasswordValidator",}, {"NAME": "django.contrib.auth.password_validation.NumericPasswordValidator",}, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = "en-us" TIME_ZONE = "UTC" USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = "/static/" MIDDLEWARE += ["whitenoise.middleware.WhiteNoiseMiddleware"] AUTHENTICATION_BACKENDS = ( "django.contrib.auth.backends.ModelBackend", "allauth.account.auth_backends.AuthenticationBackend", ) STATIC_ROOT = os.path.join(BASE_DIR, "staticfiles") STATICFILES_DIRS = [os.path.join(BASE_DIR, "static")] STATICFILES_STORAGE = "whitenoise.storage.CompressedManifestStaticFilesStorage" # allauth / users ACCOUNT_EMAIL_REQUIRED = True ACCOUNT_AUTHENTICATION_METHOD = "email" ACCOUNT_USERNAME_REQUIRED = False ACCOUNT_EMAIL_VERIFICATION = "mandatory" ACCOUNT_CONFIRM_EMAIL_ON_GET = True ACCOUNT_LOGIN_ON_EMAIL_CONFIRMATION = True ACCOUNT_UNIQUE_EMAIL = True LOGIN_REDIRECT_URL = "users:redirect" ACCOUNT_ADAPTER = "users.adapters.AccountAdapter" SOCIALACCOUNT_ADAPTER = "users.adapters.SocialAccountAdapter" ACCOUNT_ALLOW_REGISTRATION = env.bool("ACCOUNT_ALLOW_REGISTRATION", True) SOCIALACCOUNT_ALLOW_REGISTRATION = env.bool("SOCIALACCOUNT_ALLOW_REGISTRATION", True) REST_AUTH_SERIALIZERS = { # Replace password reset serializer to fix 500 error "PASSWORD_RESET_SERIALIZER": "home.api.v1.serializers.PasswordSerializer", } REST_AUTH_REGISTER_SERIALIZERS = { # Use custom serializer that has no username and matches web signup "REGISTER_SERIALIZER": "home.api.v1.serializers.SignupSerializer", } # Custom user model AUTH_USER_MODEL = "users.User" EMAIL_HOST = env.str("EMAIL_HOST", "smtp.sendgrid.net") EMAIL_HOST_USER = env.str("SENDGRID_USERNAME", "") EMAIL_HOST_PASSWORD = env.str("SENDGRID_PASSWORD", "") EMAIL_PORT = 587 EMAIL_USE_TLS = True # start fcm_django push notifications FCM_DJANGO_SETTINGS = {"FCM_SERVER_KEY": env.str("FCM_SERVER_KEY", "")} # end fcm_django push notifications if DEBUG: # output email to console instead of sending EMAIL_BACKEND = "django.core.mail.backends.console.EmailBackend"
38ef0f1184875790dfef82c9ee5d3fb8e86bdc73
53bf080b397fb1250fc9be30b5978f7b14276fd8
/app/http/controllers/WelcomeController.py
3fde2bcb917796a4e3efb76d49a6dcee323fcfbc
[]
no_license
afdolriski/masonite-starter
0297aea952ba6ca9bf86de8436bc33157af12292
1e61170e5ac0b40fba2c3022aaab4a5a8e6fe467
refs/heads/master
2021-05-12T18:43:34.160655
2018-01-10T03:15:27
2018-01-10T03:15:27
117,072,009
1
0
null
2018-01-11T08:30:10
2018-01-11T08:30:09
null
UTF-8
Python
false
false
330
py
''' A Module Description ''' from masonite.view import view from config import application class WelcomeController(object): ''' Controller for welcoming the user ''' def __init__(self): pass def show(self, request): ''' Show Welcome Template ''' return view('welcome', {'app': application})
a80448101f8374c1c17802dfdd3ad542417d37a9
17cbe826892d06dc5aee4e4c2a5747e10933f2d0
/allennlp/scripts/train_fixtures.py
35f92b290cdb557c4bb1ba9ff665094925d8b8a5
[ "Apache-2.0", "MIT" ]
permissive
rahular/joint-coref-srl
3fdd0e37a56e3be894f3da4ceeb030a599ff4388
cd85fb4e11af1a1ea400ed657d0a4511c1d6c6be
refs/heads/main
2023-02-16T21:53:11.721014
2021-01-18T15:31:47
2021-01-18T15:31:47
330,708,579
1
0
null
null
null
null
UTF-8
Python
false
false
2,821
py
#!/usr/bin/env python import glob import logging import os import re import shutil import sys import tempfile sys.path.insert(0, os.path.dirname(os.path.abspath(os.path.join(__file__, os.pardir)))) from allennlp.commands.test_install import _get_module_root from allennlp.commands.train import train_model_from_file, train_model from allennlp.common import Params from allennlp.common.util import pushd from allennlp.training.metrics import EvalbBracketingScorer logger = logging.getLogger(__name__) def train_fixture(config_prefix: str) -> None: config_file = config_prefix + "experiment.json" serialization_dir = config_prefix + "serialization" # Train model doesn't like it if we have incomplete serialization # directories, so remove them if they exist. if os.path.exists(serialization_dir): shutil.rmtree(serialization_dir) # train the model train_model_from_file(config_file, serialization_dir) # remove unnecessary files shutil.rmtree(os.path.join(serialization_dir, "log")) for filename in glob.glob(os.path.join(serialization_dir, "*")): if ( filename.endswith(".log") or filename.endswith(".json") or re.search(r"epoch_[0-9]+\.th$", filename) ): os.remove(filename) def train_fixture_gpu(config_prefix: str) -> None: config_file = config_prefix + "experiment.json" serialization_dir = config_prefix + "serialization" params = Params.from_file(config_file) params["trainer"]["cuda_device"] = 0 # train this one to a tempdir tempdir = tempfile.gettempdir() train_model(params, tempdir) # now copy back the weights and and archived model shutil.copy( os.path.join(tempdir, "best.th"), os.path.join(serialization_dir, "best_gpu.th") ) shutil.copy( os.path.join(tempdir, "model.tar.gz"), os.path.join(serialization_dir, "model_gpu.tar.gz"), ) if __name__ == "__main__": module_root = _get_module_root().parent with pushd(module_root, verbose=True): if len(sys.argv) >= 2 and sys.argv[1].lower() == "gpu": train_fixture_gpu("allennlp/tests/fixtures/srl/") else: models = [ "biaffine_dependency_parser", "constituency_parser", "coref", "decomposable_attention", "encoder_decoder/composed_seq2seq", "encoder_decoder/simple_seq2seq", "encoder_decoder/copynet_seq2seq", "simple_tagger_with_span_f1", "srl", ] for model in models: if model == "constituency_parser": EvalbBracketingScorer.compile_evalb() train_fixture(f"allennlp/tests/fixtures/{model}/")
1eb118f5187ab4a3c4a08f6e93c8c1611df906d2
7b4cf9df77a8f5f716dece430c9465b1de137a30
/src/rubricsampling/short_answer_test.py
392581f97870dcfcb6c025aa236fdcdf982e71d0
[]
no_license
willcrichton/generative-grading
b440074e64c36a1fd982b4331e2d4ea36cbd57e4
a36e0c91f778817f8b79d36a06e4b982b1f30245
refs/heads/master
2020-06-06T16:27:02.103847
2019-07-04T21:22:40
2019-07-04T21:22:40
192,791,584
0
1
null
null
null
null
UTF-8
Python
false
false
3,536
py
#!/usr/bin/env python import pickle import os.path import sys import generatorUtils as utils from pprint import pprint from tqdm import tqdm from engine import Engine from engineTempered import EngineTempered from engineGuidedInference import EngineGuided from src.datasets.citizenship_labels import CitizenshipLabels import torch from torch.utils.data import DataLoader import matplotlib.pyplot as plt import getpass USER = getpass.getuser() GRAMMAR_DIR = 'src/rubricsampling/grammars/citizenship13' EXP_DIR = f'/home/{USER}/generative-grading/experiments/citizenship13_100k/2019-04-12--01_26_27' class RubricSampler(object): def create_data_loader(self, dataset, n=None): if n is None: n = len(dataset) out = [] raw_progs = [] for i in range(n): prog = dataset.raw_inputs[i] if prog == 'religious freedom': out.append(dataset[i]) raw_progs.append(prog) break return out, raw_progs # Function: Run # ------------- # This function compiles and renders samples # from the Rubric Sample def run(self): inf_e = EngineGuided(GRAMMAR_DIR, EXP_DIR) dataset = CitizenshipLabels(13, split='valid', vocab=inf_e.agent.train_dataset.vocab) # dataset = CitizenshipLabels(13, split='valid') N = 50 data, raw_prgs = self.create_data_loader(dataset) data_loader = DataLoader(data, batch_size=1, shuffle=False) tqdm_batch = tqdm(data_loader, total=N) # inf_e = EngineTempered(GRAMMAR_DIR) time_data = [] uniq_progs = set() failed = [] num_all = 0 num_correct = 0 for i, data_list in enumerate(tqdm_batch): program_args = (data_list[0], data_list[2]) label = data_list[3] program = raw_prgs[i] import pdb; pdb.set_trace() corr = self.infer_matches(inf_e, program, program_args, label) if corr: num_correct += 1 num_all += 1 # pprint(failed) print(f'Accuracy = {num_correct/num_all}') def infer_matches(self, inf_e, program, program_args, label, n_lim=4): all_progs = [] for i in range(n_lim): new_prog, new_choices = self.guided_sample(inf_e, program_args) all_progs.append(new_prog) # import pdb; pdb.set_trace() # print(program) # print(new_prog) # print(label) # pprint(new_choices) # input() # print() return int(new_choices['correctStrategy']) == label.item() ##################### # Private Helpers ##################### def guided_sample(self, inf_e, program_args): # something that will crash if accessed without setting initAssignments = 1000000 * torch.ones(1, inf_e.model.num_nodes) program, labels, decisions, rvOrder, rvAssignments_pred = inf_e.renderProgram(program_args, initAssignments) # program, labels, decisions, rvOrder, rvAssignments_pred = inf_e.renderProgram() # print(rvAssignments[0][rvOrders[0][:rvOrders_lengths[0]]]) # print(rvAssignments_pred[0][rvOrders[0][:rvOrders_lengths[0]]]) # input() return program, decisions def sample(self, e): program, labels, decisions, _, _ = e.renderProgram() return program, decisions if __name__ == '__main__': RubricSampler().run()
e1c77a2d0b8f06a83ef2a11dbfb21d51589e4ba3
77ab53380f74c33bb3aacee8effc0e186b63c3d6
/5180_constrained_subset_sum.py
323b9c395febde884a579570cf9771cc9a0c10dc
[]
no_license
tabletenniser/leetcode
8e3aa1b4df1b79364eb5ca3a97db57e0371250b6
d3ebbfe2e4ab87d5b44bc534984dfa453e34efbd
refs/heads/master
2023-02-23T18:14:31.577455
2023-02-06T07:09:54
2023-02-06T07:09:54
94,496,986
2
0
null
null
null
null
UTF-8
Python
false
false
2,829
py
''' Given an integer array nums and an integer k, return the maximum sum of a non-empty subset of that array such that for every two consecutive integers in the subset, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subset of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order. Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subset is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subset must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subset is [10, -2, -5, 20]. Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4 ''' import sys sys.setrecursionlimit(100000) class Solution: def max_sum(self, nums, l, h, k): cur_max = -99999999999999999999999999999 for k_i in range(k): cur_sum = 0 for n in range(l+k_i, h+1, k): cur_sum += nums[n] cur_max = max(cur_sum, cur_max) return cur_max def constrainedSubsetSum(self, nums, k) -> int: if max(nums) < 0: return max(nums) res = 0 n_start = None for i in range(len(nums)): num = nums[i] if num >= 0: if n_start: if n_start != 0: n_range_sum = self.max_sum(nums, n_start, i - 1, k) res = max(0, res + n_range_sum) n_start = None res += num else: if not n_start: n_start = i return res def rec(self, cur_ind, cur_k): if (cur_ind, cur_k) in self.ht: return self.ht[(cur_ind, cur_k)] if cur_ind == 0: return max(0, self.nums[cur_ind]) if cur_k < self.k else self.nums[cur_ind] choose = self.rec(cur_ind - 1, 1) + self.nums[cur_ind] res = choose if cur_k < self.k and self.nums[cur_ind] < 0: not_choose = self.rec(cur_ind - 1, cur_k + 1) res = max(res, not_choose) # print(cur_ind, cur_k, res) self.ht[(cur_ind, cur_k)] = res return res def constrainedSubsetSum2(self, nums, k) -> int: if max(nums) < 0: return max(nums) self.nums = nums self.k = k self.ht = dict() return self.rec(len(nums)-1, 1) s = Solution() # nums = [10,-2,-10,-5,20] # k = 2 # nums = [-1,-2,-3] # k = 1 # nums =[-5266,4019,7336,-3681,-5767] # k = 2 nums = [-8269,3217,-4023,-4138,-683,6455,-3621,9242,4015,-3790] k = 1 # nums = [(-1)**i * i for i in range(10000)] # k = 5000 res = s.constrainedSubsetSum(nums, k) print(res)
51f2b3c70763ec2c0eae169ef31a20b8bdcc1dc2
081b33ead95b323e77bdce3717af0a5790e34a1e
/backend/apps/league/migrations/0001_initial.py
791e1d76b4e75f218d5bd9686461819c8acd89b0
[]
no_license
alexmon1989/afliga
81ea3b32b18040bb8baa4e8af14a73003fb9a89f
661da30c0a5aa6b9975eb7dea9c9a031529d2dbb
refs/heads/master
2023-02-23T11:12:45.608118
2023-02-11T12:12:41
2023-02-11T12:12:41
105,630,198
0
0
null
2023-02-15T20:50:12
2017-10-03T08:36:15
Python
UTF-8
Python
false
false
7,519
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.5 on 2017-10-26 09:05 from __future__ import unicode_literals import django.core.validators from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Event', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('event_time', models.IntegerField(validators=[django.core.validators.MinValueValidator(1), django.core.validators.MaxValueValidator(100)], verbose_name='Минута')), ], ), migrations.CreateModel( name='EventType', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=255, verbose_name='Название')), ], ), migrations.CreateModel( name='Group', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=255, verbose_name='Название')), ('table', models.TextField(blank=True, null=True, verbose_name='Таблица результатов')), ('created_at', models.DateTimeField(auto_now_add=True, verbose_name='Создано')), ('updated_at', models.DateTimeField(auto_now=True, verbose_name='Обновлено')), ], ), migrations.CreateModel( name='Match', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('match_date', models.DateTimeField(blank=True, null=True, verbose_name='Время начала матча')), ('protocol', models.TextField(blank=True, verbose_name='Протокол')), ('created_at', models.DateTimeField(auto_now_add=True, verbose_name='Создано')), ('updated_at', models.DateTimeField(auto_now=True, verbose_name='Обновлено')), ], ), migrations.CreateModel( name='Player', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255, verbose_name='ФИО')), ('birth_date', models.DateField(blank=True, null=True, verbose_name='Дата рождения')), ('biography', models.TextField(blank=True, verbose_name='Биография')), ], ), migrations.CreateModel( name='Position', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=255, verbose_name='Название')), ], ), migrations.CreateModel( name='Team', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=255, verbose_name='Название')), ('description', models.TextField(blank=True, null=True, verbose_name='Описание')), ('logo', models.ImageField(blank=True, null=True, upload_to='teams', verbose_name='Логотип')), ('created_at', models.DateTimeField(auto_now_add=True, verbose_name='Создано')), ('updated_at', models.DateTimeField(auto_now=True, verbose_name='Обновлено')), ], ), migrations.CreateModel( name='Tournament', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=255, verbose_name='Название')), ('description', models.TextField(blank=True, null=True, verbose_name='Описание')), ('created_at', models.DateTimeField(auto_now_add=True, verbose_name='Создано')), ('updated_at', models.DateTimeField(auto_now=True, verbose_name='Обновлено')), ], ), migrations.CreateModel( name='TournamentPlayer', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('player', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='league.Player', verbose_name='Игрок')), ('team', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='league.Team', verbose_name='Команда')), ('tournament', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='league.Tournament', verbose_name='Турнир')), ], ), migrations.AddField( model_name='tournament', name='players', field=models.ManyToManyField(blank=True, through='league.TournamentPlayer', to='league.Player'), ), migrations.AddField( model_name='tournament', name='teams', field=models.ManyToManyField(blank=True, to='league.Team'), ), migrations.AddField( model_name='player', name='position', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='league.Position', verbose_name='Амплуа'), ), migrations.AddField( model_name='match', name='team_1', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='team_1', to='league.Team', verbose_name='Команда 1'), ), migrations.AddField( model_name='match', name='team_2', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='team_2', to='league.Team', verbose_name='Команда 2'), ), migrations.AddField( model_name='group', name='tournament', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='league.Tournament', verbose_name='Турнир'), ), migrations.AddField( model_name='event', name='event_type', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='league.EventType', verbose_name='Тип события'), ), migrations.AddField( model_name='event', name='match', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='league.Match', verbose_name='Матч'), ), migrations.AddField( model_name='event', name='player', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='league.Player', verbose_name='Игрок'), ), migrations.AddField( model_name='event', name='team', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='league.Team', verbose_name='Команда'), ), ]
dedfb1d33115d91728996501c76df18a4c9b57b9
4c5cbde4ff3af3a74aec4ecef3048c93dcd2e5e1
/alphamind/data/engines/sqlengine.py
9208a3c4821f3eff6c9e11b21af4b1cf02c0157a
[ "MIT" ]
permissive
GehirnW/alpha-mind
7a6f049d65f5250b52440b35be9b673f03bbddad
6eccbae8f9dadfabcbbf79e567a8d9ba53a9deaf
refs/heads/master
2021-08-22T07:44:21.487565
2017-11-29T17:12:33
2017-11-29T17:12:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
31,890
py
# -*- coding: utf-8 -*- """ Created on 2017-7-7 @author: cheng.li """ from typing import Iterable from typing import List from typing import Dict from typing import Tuple from typing import Union import numpy as np import pandas as pd import sqlalchemy as sa import sqlalchemy.orm as orm from sqlalchemy import select, and_, outerjoin, join, delete, insert from sqlalchemy.sql import func from sqlalchemy.sql.expression import bindparam from alphamind.data.engines.universe import Universe from alphamind.data.dbmodel.models import FactorMaster from alphamind.data.dbmodel.models import FactorLog from alphamind.data.dbmodel.models import Strategy from alphamind.data.dbmodel.models import IndexComponent from alphamind.data.dbmodel.models import Industry from alphamind.data.dbmodel.models import Experimental from alphamind.data.dbmodel.models import RiskMaster from alphamind.data.dbmodel.models import RiskCovDay from alphamind.data.dbmodel.models import RiskCovShort from alphamind.data.dbmodel.models import RiskCovLong from alphamind.data.dbmodel.models import FullFactor from alphamind.data.dbmodel.models import Models from alphamind.data.dbmodel.models import Market from alphamind.data.dbmodel.models import IndexMarket from alphamind.data.dbmodel.models import Universe as UniverseTable from alphamind.data.dbmodel.models import Formulas from alphamind.data.dbmodel.models import DailyPortfoliosSchedule from alphamind.data.dbmodel.models import Performance from alphamind.data.dbmodel.models import Positions from alphamind.data.transformer import Transformer from alphamind.model.loader import load_model from alphamind.formula.utilities import encode_formula from alphamind.formula.utilities import decode_formula from PyFin.api import advanceDateByCalendar risk_styles = ['BETA', 'MOMENTUM', 'SIZE', 'EARNYILD', 'RESVOL', 'GROWTH', 'BTOP', 'LEVERAGE', 'LIQUIDTY', 'SIZENL'] industry_styles = [ 'Bank', 'RealEstate', 'Health', 'Transportation', 'Mining', 'NonFerMetal', 'HouseApp', 'LeiService', 'MachiEquip', 'BuildDeco', 'CommeTrade', 'CONMAT', 'Auto', 'Textile', 'FoodBever', 'Electronics', 'Computer', 'LightIndus', 'Utilities', 'Telecom', 'AgriForest', 'CHEM', 'Media', 'IronSteel', 'NonBankFinan', 'ELECEQP', 'AERODEF', 'Conglomerates' ] macro_styles = ['COUNTRY'] total_risk_factors = risk_styles + industry_styles + macro_styles factor_tables = [FullFactor, Experimental] DEFAULT_URL = 'postgresql+psycopg2://postgres:[email protected]/alpha' DAILY_RETURN_OFFSET = 0 def _map_risk_model_table(risk_model: str) -> tuple: if risk_model == 'day': return RiskCovDay, FullFactor.d_srisk elif risk_model == 'short': return RiskCovShort, FullFactor.s_srisk elif risk_model == 'long': return RiskCovLong, FullFactor.l_srisk else: raise ValueError("risk model name {0} is not recognized".format(risk_model)) def _map_factors(factors: Iterable[str], used_factor_tables) -> Dict: factor_cols = {} excluded = {'trade_date', 'code', 'isOpen'} for f in factors: for t in used_factor_tables: if f not in excluded and f in t.__table__.columns: factor_cols[t.__table__.columns[f]] = t break return factor_cols def _map_industry_category(category: str) -> str: if category == 'sw': return '申万行业分类' else: raise ValueError("No other industry is supported at the current time") class SqlEngine(object): def __init__(self, db_url: str = None): if db_url: self.engine = sa.create_engine(db_url) else: self.engine = sa.create_engine(DEFAULT_URL) self.session = None self.create_session() if self.engine.name == 'mssql': self.ln_func = func.log else: self.ln_func = func.ln def create_session(self): db_session = orm.sessionmaker(bind=self.engine) self.session = db_session() def fetch_factors_meta(self) -> pd.DataFrame: query = self.session.query(FactorMaster) return pd.read_sql(query.statement, query.session.bind) def fetch_factor_coverage(self) -> pd.DataFrame: query = self.session.query(FactorLog) return pd.read_sql(query.statement, query.session.bind) def fetch_risk_meta(self) -> pd.DataFrame: query = self.session.query(RiskMaster) return pd.read_sql(query.statement, query.session.bind) def fetch_strategy(self, ref_date: str, strategy: str) -> pd.DataFrame(): query = select([Strategy.strategyName, Strategy.factor, Strategy.weight]).where( and_( Strategy.trade_date == ref_date, Strategy.strategyName == strategy ) ) return pd.read_sql(query, self.session.bind) def fetch_strategy_names(self): query = select([Strategy.strategyName]).distinct() cursor = self.engine.execute(query) strategy_names = {s[0] for s in cursor.fetchall()} return strategy_names def fetch_codes(self, ref_date: str, universe: Universe) -> List[int]: cond = universe.query(ref_date) query = select([UniverseTable.trade_date, UniverseTable.code]).distinct().where(cond) cursor = self.engine.execute(query) codes_set = {c[1] for c in cursor.fetchall()} return sorted(codes_set) def fetch_codes_range(self, universe: Universe, start_date: str = None, end_date: str = None, dates: Iterable[str] = None) -> pd.DataFrame: cond = universe.query_range(start_date, end_date, dates) query = select([UniverseTable.trade_date, UniverseTable.code]).distinct().where(cond) return pd.read_sql(query, self.engine) def fetch_dx_return(self, ref_date: str, codes: Iterable[int], expiry_date: str = None, horizon: int = 0, offset: int = 0) -> pd.DataFrame: start_date = ref_date if not expiry_date: end_date = advanceDateByCalendar('china.sse', ref_date, str(1 + horizon + offset + DAILY_RETURN_OFFSET) + 'b').strftime('%Y%m%d') else: end_date = expiry_date stats = func.sum(self.ln_func(1. + Market.chgPct)).over( partition_by=Market.code, order_by=Market.trade_date, rows=(1 + DAILY_RETURN_OFFSET + offset, 1 + horizon + DAILY_RETURN_OFFSET + offset)).label('dx') query = select([Market.trade_date, Market.code, stats]).where( and_( Market.trade_date.between(start_date, end_date), Market.code.in_(codes) ) ) df = pd.read_sql(query, self.session.bind).dropna() df = df[df.trade_date == ref_date] return df[['code', 'dx']] def fetch_dx_return_range(self, universe, start_date: str = None, end_date: str = None, dates: Iterable[str] = None, horizon: int = 0, offset: int = 0) -> pd.DataFrame: if dates: start_date = dates[0] end_date = dates[-1] end_date = advanceDateByCalendar('china.sse', end_date, str(1 + horizon + offset + DAILY_RETURN_OFFSET) + 'b').strftime('%Y-%m-%d') cond = universe.query_range(start_date, end_date) big_table = join(Market, UniverseTable, and_(Market.trade_date == UniverseTable.trade_date, Market.code == UniverseTable.code, cond)) stats = func.sum(self.ln_func(1. + Market.chgPct)).over( partition_by=Market.code, order_by=Market.trade_date, rows=(1 + offset + DAILY_RETURN_OFFSET, 1 + horizon + offset + DAILY_RETURN_OFFSET)).label('dx') query = select([Market.trade_date, Market.code, stats]) \ .select_from(big_table) df = pd.read_sql(query, self.session.bind).dropna() if dates: df = df[df.trade_date.isin(dates)] return df def fetch_dx_return_index(self, ref_date: str, index_code: int, expiry_date: str = None, horizon: int = 0, offset: int = 0) -> pd.DataFrame: start_date = ref_date if not expiry_date: end_date = advanceDateByCalendar('china.sse', ref_date, str(1 + horizon + offset + DAILY_RETURN_OFFSET) + 'b').strftime('%Y%m%d') else: end_date = expiry_date stats = func.sum(self.ln_func(1. + IndexMarket.chgPct)).over( partition_by=IndexMarket.indexCode, order_by=IndexMarket.trade_date, rows=(1 + DAILY_RETURN_OFFSET + offset, 1 + horizon + DAILY_RETURN_OFFSET + offset)).label('dx') query = select([IndexMarket.trade_date, IndexMarket.indexCode.label('code'), stats]).where( and_( IndexMarket.trade_date.between(start_date, end_date), IndexMarket.indexCode == index_code ) ) df = pd.read_sql(query, self.session.bind).dropna() df = df[df.trade_date == ref_date] return df[['code', 'dx']] def fetch_dx_return_index_range(self, index_code, start_date: str = None, end_date: str = None, dates: Iterable[str] = None, horizon: int = 0, offset: int = 0) -> pd.DataFrame: if dates: start_date = dates[0] end_date = dates[-1] end_date = advanceDateByCalendar('china.sse', end_date, str(1 + horizon + offset + DAILY_RETURN_OFFSET) + 'b').strftime('%Y-%m-%d') stats = func.sum(self.ln_func(1. + IndexMarket.chgPct)).over( partition_by=IndexMarket.indexCode, order_by=IndexMarket.trade_date, rows=(1 + offset + DAILY_RETURN_OFFSET, 1 + horizon + offset + DAILY_RETURN_OFFSET)).label('dx') query = select([IndexMarket.trade_date, IndexMarket.indexCode.label('code'), stats]) \ .where( and_( IndexMarket.trade_date.between(start_date, end_date), IndexMarket.indexCode == index_code ) ) df = pd.read_sql(query, self.session.bind).dropna() if dates: df = df[df.trade_date.isin(dates)] return df def fetch_factor(self, ref_date: str, factors: Iterable[object], codes: Iterable[int], warm_start: int = 0, used_factor_tables=None) -> pd.DataFrame: if isinstance(factors, Transformer): transformer = factors else: transformer = Transformer(factors) dependency = transformer.dependency if used_factor_tables: factor_cols = _map_factors(dependency, used_factor_tables) else: factor_cols = _map_factors(dependency, factor_tables) start_date = advanceDateByCalendar('china.sse', ref_date, str(-warm_start) + 'b').strftime('%Y-%m-%d') end_date = ref_date big_table = FullFactor for t in set(factor_cols.values()): if t.__table__.name != FullFactor.__table__.name: big_table = outerjoin(big_table, t, and_(FullFactor.trade_date == t.trade_date, FullFactor.code == t.code)) query = select( [FullFactor.trade_date, FullFactor.code, FullFactor.isOpen] + list(factor_cols.keys())) \ .select_from(big_table).where(and_(FullFactor.trade_date.between(start_date, end_date), FullFactor.code.in_(codes))) df = pd.read_sql(query, self.engine).sort_values(['trade_date', 'code']).set_index('trade_date') res = transformer.transform('code', df) for col in res.columns: if col not in set(['code', 'isOpen']) and col not in df.columns: df[col] = res[col].values df['isOpen'] = df.isOpen.astype(bool) df = df.loc[ref_date] df.index = list(range(len(df))) return df def fetch_factor_range(self, universe: Universe, factors: Union[Transformer, Iterable[object]], start_date: str = None, end_date: str = None, dates: Iterable[str] = None, external_data: pd.DataFrame = None, used_factor_tables=None) -> pd.DataFrame: if isinstance(factors, Transformer): transformer = factors else: transformer = Transformer(factors) dependency = transformer.dependency if used_factor_tables: factor_cols = _map_factors(dependency, used_factor_tables) else: factor_cols = _map_factors(dependency, factor_tables) cond = universe.query_range(start_date, end_date, dates) big_table = FullFactor for t in set(factor_cols.values()): if t.__table__.name != FullFactor.__table__.name: if dates is not None: big_table = outerjoin(big_table, t, and_(FullFactor.trade_date == t.trade_date, FullFactor.code == t.code, FullFactor.trade_date.in_(dates))) else: big_table = outerjoin(big_table, t, and_(FullFactor.trade_date == t.trade_date, FullFactor.code == t.code, FullFactor.trade_date.between(start_date, end_date))) big_table = join(big_table, UniverseTable, and_(FullFactor.trade_date == UniverseTable.trade_date, FullFactor.code == UniverseTable.code, cond)) query = select( [FullFactor.trade_date, FullFactor.code, FullFactor.isOpen] + list(factor_cols.keys())) \ .select_from(big_table).distinct() df = pd.read_sql(query, self.engine).sort_values(['trade_date', 'code']) if external_data is not None: df = pd.merge(df, external_data, on=['trade_date', 'code']).dropna() df.set_index('trade_date', inplace=True) res = transformer.transform('code', df) for col in res.columns: if col not in set(['code', 'isOpen']) and col not in df.columns: df[col] = res[col].values df['isOpen'] = df.isOpen.astype(bool) return df.reset_index() def fetch_benchmark(self, ref_date: str, benchmark: int) -> pd.DataFrame: query = select([IndexComponent.code, (IndexComponent.weight / 100.).label('weight')]).where( and_( IndexComponent.trade_date == ref_date, IndexComponent.indexCode == benchmark ) ) return pd.read_sql(query, self.engine) def fetch_benchmark_range(self, benchmark: int, start_date: str = None, end_date: str = None, dates: Iterable[str] = None) -> pd.DataFrame: cond = IndexComponent.trade_date.in_(dates) if dates else IndexComponent.trade_date.between(start_date, end_date) query = select( [IndexComponent.trade_date, IndexComponent.code, (IndexComponent.weight / 100.).label('weight')]).where( and_( cond, IndexComponent.indexCode == benchmark ) ) return pd.read_sql(query, self.engine) def fetch_risk_model(self, ref_date: str, codes: Iterable[int], risk_model: str = 'short', excluded: Iterable[str] = None) -> Tuple[pd.DataFrame, pd.DataFrame]: risk_cov_table, special_risk_col = _map_risk_model_table(risk_model) cov_risk_cols = [risk_cov_table.__table__.columns[f] for f in total_risk_factors] query = select([risk_cov_table.FactorID, risk_cov_table.Factor] + cov_risk_cols).where( risk_cov_table.trade_date == ref_date ) risk_cov = pd.read_sql(query, self.engine).sort_values('FactorID') if excluded: risk_exposure_cols = [FullFactor.__table__.columns[f] for f in total_risk_factors if f not in set(excluded)] else: risk_exposure_cols = [FullFactor.__table__.columns[f] for f in total_risk_factors] query = select([FullFactor.code, special_risk_col] + risk_exposure_cols) \ .where(and_(FullFactor.trade_date == ref_date, FullFactor.code.in_(codes))).distinct() risk_exp = pd.read_sql(query, self.engine) return risk_cov, risk_exp def fetch_risk_model_range(self, universe: Universe, start_date: str = None, end_date: str = None, dates: Iterable[str] = None, risk_model: str = 'short', excluded: Iterable[str] = None) -> Tuple[pd.DataFrame, pd.DataFrame]: risk_cov_table, special_risk_col = _map_risk_model_table(risk_model) cov_risk_cols = [risk_cov_table.__table__.columns[f] for f in total_risk_factors] cond = risk_cov_table.trade_date.in_(dates) if dates else risk_cov_table.trade_date.between(start_date, end_date) query = select([risk_cov_table.trade_date, risk_cov_table.FactorID, risk_cov_table.Factor] + cov_risk_cols).where( cond ) risk_cov = pd.read_sql(query, self.engine).sort_values(['trade_date', 'FactorID']) if not excluded: excluded = [] risk_exposure_cols = [FullFactor.__table__.columns[f] for f in total_risk_factors if f not in set(excluded)] cond = universe.query_range(start_date, end_date, dates) big_table = join(FullFactor, UniverseTable, and_(FullFactor.trade_date == UniverseTable.trade_date, FullFactor.code == UniverseTable.code, cond)) query = select( [FullFactor.trade_date, FullFactor.code, special_risk_col] + risk_exposure_cols) \ .select_from(big_table).distinct() risk_exp = pd.read_sql(query, self.engine) return risk_cov, risk_exp def fetch_industry(self, ref_date: str, codes: Iterable[int], category: str = 'sw'): industry_category_name = _map_industry_category(category) query = select([Industry.code, Industry.industryID1.label('industry_code'), Industry.industryName1.label('industry')]).where( and_( Industry.trade_date == ref_date, Industry.code.in_(codes), Industry.industry == industry_category_name ) ).distinct() return pd.read_sql(query, self.engine) def fetch_industry_range(self, universe: Universe, start_date: str = None, end_date: str = None, dates: Iterable[str] = None, category: str = 'sw'): industry_category_name = _map_industry_category(category) cond = universe.query_range(start_date, end_date, dates) if dates: big_table = join(Industry, UniverseTable, and_(Industry.trade_date == UniverseTable.trade_date, Industry.code == UniverseTable.code, Industry.industry == industry_category_name, Industry.trade_date.in_(dates), cond)) else: big_table = join(Industry, UniverseTable, and_(Industry.trade_date == UniverseTable.trade_date, Industry.code == UniverseTable.code, Industry.industry == industry_category_name, Industry.trade_date.between(start_date, end_date), cond)) query = select([Industry.trade_date, Industry.code, Industry.industryID1.label('industry_code'), Industry.industryName1.label('industry')]).select_from(big_table).distinct() return pd.read_sql(query, self.engine) def fetch_data(self, ref_date: str, factors: Iterable[str], codes: Iterable[int], benchmark: int = None, risk_model: str = 'short', industry: str = 'sw') -> Dict[str, pd.DataFrame]: total_data = {} transformer = Transformer(factors) factor_data = self.fetch_factor(ref_date, transformer, codes, used_factor_tables=[FullFactor, Experimental]) if benchmark: benchmark_data = self.fetch_benchmark(ref_date, benchmark) total_data['benchmark'] = benchmark_data factor_data = pd.merge(factor_data, benchmark_data, how='left', on=['code']) factor_data['weight'] = factor_data['weight'].fillna(0.) if risk_model: excluded = list(set(total_risk_factors).intersection(transformer.dependency)) risk_cov, risk_exp = self.fetch_risk_model(ref_date, codes, risk_model, excluded) factor_data = pd.merge(factor_data, risk_exp, how='left', on=['code']) total_data['risk_cov'] = risk_cov industry_info = self.fetch_industry(ref_date=ref_date, codes=codes, category=industry) factor_data = pd.merge(factor_data, industry_info, on=['code']) total_data['factor'] = factor_data return total_data def fetch_data_experimental(self, ref_date: str, factors: Iterable[str], codes: Iterable[int], benchmark: int = None, risk_model: str = 'short', industry: str = 'sw') -> Dict[str, pd.DataFrame]: total_data = {} transformer = Transformer(factors) factor_data = self.fetch_factor(ref_date, transformer, codes, used_factor_tables=[Experimental]) if benchmark: benchmark_data = self.fetch_benchmark(ref_date, benchmark) total_data['benchmark'] = benchmark_data factor_data = pd.merge(factor_data, benchmark_data, how='left', on=['code']) factor_data['weight'] = factor_data['weight'].fillna(0.) if risk_model: excluded = list(set(total_risk_factors).intersection(transformer.dependency)) risk_cov, risk_exp = self.fetch_risk_model(ref_date, codes, risk_model, excluded) factor_data = pd.merge(factor_data, risk_exp, how='left', on=['code']) total_data['risk_cov'] = risk_cov industry_info = self.fetch_industry(ref_date=ref_date, codes=codes, category=industry) factor_data = pd.merge(factor_data, industry_info, on=['code']) total_data['factor'] = factor_data return total_data def fetch_data_range(self, universe: Universe, factors: Iterable[str], start_date: str = None, end_date: str = None, dates: Iterable[str] = None, benchmark: int = None, risk_model: str = 'short', industry: str = 'sw', external_data: pd.DataFrame = None) -> Dict[str, pd.DataFrame]: total_data = {} transformer = Transformer(factors) factor_data = self.fetch_factor_range(universe, transformer, start_date, end_date, dates, external_data=external_data) if benchmark: benchmark_data = self.fetch_benchmark_range(benchmark, start_date, end_date, dates) total_data['benchmark'] = benchmark_data factor_data = pd.merge(factor_data, benchmark_data, how='left', on=['trade_date', 'code']) factor_data['weight'] = factor_data['weight'].fillna(0.) if risk_model: excluded = list(set(total_risk_factors).intersection(transformer.dependency)) risk_cov, risk_exp = self.fetch_risk_model_range(universe, start_date, end_date, dates, risk_model, excluded) factor_data = pd.merge(factor_data, risk_exp, how='left', on=['trade_date', 'code']) total_data['risk_cov'] = risk_cov industry_info = self.fetch_industry_range(universe, start_date=start_date, end_date=end_date, dates=dates, category=industry) factor_data = pd.merge(factor_data, industry_info, on=['trade_date', 'code']) total_data['factor'] = factor_data return total_data def fetch_model(self, ref_date=None, model_type=None, model_version=None, is_primary=True, model_id=None) -> pd.DataFrame: conditions = [] if ref_date: conditions.append(Models.trade_date == ref_date) if model_id: conditions.append(Models.model_id == model_id) if model_type: conditions.append(Models.model_type == model_type) if model_version: conditions.append(Models.model_version == model_version) conditions.append(Models.is_primary == is_primary) query = select([Models]).where(and_(*conditions)) model_df = pd.read_sql(query, self.engine) for i, model_desc in enumerate(model_df.model_desc): model_df.loc[i, 'model'] = load_model(model_desc) del model_df['model_desc'] return model_df def insert_formula(self, formula_name, formula_obj, comment=None): dict_repr = encode_formula(formula=formula_obj) query = delete(Formulas).where( Formulas.formula == formula_name ) self.engine.execute(query) query = insert(Formulas, values=dict(formula=formula_name, formula_desc=dict_repr, comment=comment)) self.engine.execute(query) def load_formula(self, formula_name): query = select([Formulas]).where( Formulas.formula == formula_name ) df = pd.read_sql(query, self.engine) if not df.empty: return decode_formula(df.loc[0, 'formula_desc']['desc']) def load_all_formulas(self): query = select([Formulas]) df = pd.read_sql(query, self.engine, index_col='formula') if not df.empty: return pd.Series({name: decode_formula(df.loc[name, 'formula_desc']['desc']) for name in df.index}) def insert_portfolio_schedule(self, df): query = insert(DailyPortfoliosSchedule).values( { DailyPortfoliosSchedule.portfolio_name: bindparam('portfolio_name'), DailyPortfoliosSchedule.trade_date: bindparam('trade_date') } ) self.engine.execute(query, df.to_dict('record')) def upsert_performance(self, ref_date, df): build_types = df['type'].unique().tolist() universes = df['universe'].unique().tolist() benchmarks = df['benchmark'].unique().tolist() portfolios = df['portfolio'].unique().tolist() sources = df['source'].unique().tolist() query = delete(Performance).where( and_( Performance.trade_date == ref_date, Performance.type.in_(build_types), Performance.universe.in_(universes), Performance.benchmark.in_(benchmarks), Performance.source.in_(sources), Performance.portfolio.in_(portfolios) ) ) self.engine.execute(query) df.to_sql(Performance.__table__.name, self.engine, if_exists='append', index=False) def upsert_positions(self, ref_date, df): universes = df.universe.unique().tolist() benchmarks = df.benchmark.unique().tolist() build_types = df.type.unique().tolist() sources = df.source.unique().tolist() portfolios = df.portfolio.unique().tolist() query = delete(Positions).where( and_( Positions.trade_date == ref_date, Positions.type.in_(build_types), Positions.universe.in_(universes), Positions.benchmark.in_(benchmarks), Positions.source.in_(sources), Positions.portfolio.in_(portfolios) ) ) self.engine.execute(query) df.to_sql(Positions.__table__.name, self.engine, if_exists='append', index=False, dtype={'weight': sa.types.JSON}) if __name__ == '__main__': engine = SqlEngine() df = pd.DataFrame(dict(trade_date=['2017-11-24'], portfolio_name=['test'])) engine.insert_portfolio_schedule(df)
43c33309ccced89d49211dc1029a296d823cd9cf
d69a933c30e45d2bf97d4e01ca0a7956daebb089
/src/rdfextras/sparql2sql/bison/QName.py
90844bfe5fe52ca3574aa9b05adf6c9b94e334f9
[]
no_license
agarrido/ro-manager
d83af466abbf9bb27952f238f4e036810a45e447
9229b435d67825ce71bb2a7bd9855119d4f02c58
refs/heads/master
2021-01-17T11:58:32.133634
2011-10-19T12:33:50
2011-10-19T12:33:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
592
py
from rdflib.term import Identifier class QName(Identifier): __slots__ = ("localname", "prefix") def __new__(cls,value): try: inst = unicode.__new__(cls, value) except UnicodeDecodeError: inst = unicode.__new__(cls, value,'utf-8') inst.prefix,inst.localname = value.split(':') return inst class QNamePrefix(Identifier): def __init__(self,prefix): super(QNamePrefix,self).__init__(prefix) # Convenience # from rdfextras.sparql2sql.bison.QName import QName # from rdfextras.sparql2sql.bison.QName import QNamePrefix
1ca683547437674bf5d5f76e7114ff272e379d08
3bb301688bfd5b31f762dbe3ffead0a345a09401
/main.py
7e1582dfd4c9db3de14ebdd93f488c96c0b2f990
[]
no_license
wudangqibujie/3.-24
5a03ef051dfaf543d788382215610016a4514e44
d29a0ed76ef5bb8c2b253f775d2ad0dad0b93f4c
refs/heads/master
2021-04-15T14:39:11.034821
2018-03-24T12:38:13
2018-03-24T12:38:13
126,597,638
0
0
null
null
null
null
UTF-8
Python
false
false
554
py
import master import redis_or import slave from lxml import etree # a=master.Master_Spider("shenzhen") # html = a.get_html("https://www.xin.com/beijing/benchi/i3/") # urls=a.get_detail_url(html) q = redis_or.Redis_Data() # for url in urls: # q.set_into_data("test_car_urls",url) for i in range(1,11): url = q.pop_data("test_car_urls") # print(url) html = master.Master_Spider("shenzhen").get_html("https://"+url) print(type(html)) a = slave.Slave_Spisder() data = a.parse_detail_data(html) print(data)
098a19b480464b71fd30f91f96b12deccd2b1286
2e682fd72e3feaa70e3f7bf2a3b83c50d783ec02
/PyTorch/built-in/nlp/MT5_ID4146_for_PyTorch/transformers/src/transformers/models/hubert/__init__.py
ee06be214ac55b024c5eba4b6ae5f0f737581f55
[ "BSD-3-Clause", "Apache-2.0", "BSD-2-Clause", "MIT", "LicenseRef-scancode-generic-cla", "LicenseRef-scancode-unknown-license-reference", "GPL-1.0-or-later" ]
permissive
Ascend/ModelZoo-PyTorch
4c89414b9e2582cef9926d4670108a090c839d2d
92acc188d3a0f634de58463b6676e70df83ef808
refs/heads/master
2023-07-19T12:40:00.512853
2023-07-17T02:48:18
2023-07-17T02:48:18
483,502,469
23
6
Apache-2.0
2022-10-15T09:29:12
2022-04-20T04:11:18
Python
UTF-8
Python
false
false
2,332
py
# flake8: noqa # There's no way to ignore "F401 '...' imported but unused" warnings in this # module, but to preserve other warnings. So, don't check this module at all. # Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tf_available, is_torch_available _import_structure = { ".wav2vec2.feature_extraction_wav2vec2": ["Wav2Vec2FeatureExtractor"], "configuration_hubert": ["HUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "HubertConfig"], } if is_torch_available(): _import_structure["modeling_hubert"] = [ "HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "HubertForCTC", "HubertForSequenceClassification", "HubertModel", "HubertPreTrainedModel", ] if is_tf_available(): _import_structure["modeling_tf_hubert"] = [ "TF_HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFHubertForCTC", "TFHubertModel", "TFHubertPreTrainedModel", ] if TYPE_CHECKING: from ..wav2vec2.feature_extraction_wav2vec2 import Wav2Vec2FeatureExtractor from .configuration_hubert import HUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, HubertConfig if is_torch_available(): from .modeling_hubert import ( HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, HubertForCTC, HubertForSequenceClassification, HubertModel, HubertPreTrainedModel, ) if is_tf_available(): from .modeling_tf_hubert import ( TF_HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFHubertForCTC, TFHubertModel, TFHubertPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
a9b1421809818a57810ce42c5b458c0686040d19
2760effda15d884af413ca2a35809d03fabea377
/lc-94.py
d3a1d65ec14db010713ce89de3a52e712e346568
[]
no_license
UtsavRaychaudhuri/leetcode
31943b98ad89d96d72ee4b6b1d1c8d70429d1e1f
77a13580fd6231830558b1cf8c84f8b3b62b99d0
refs/heads/master
2020-11-27T18:02:23.712639
2020-09-29T19:39:49
2020-09-29T19:39:49
229,552,583
0
0
null
null
null
null
UTF-8
Python
false
false
546
py
# Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution(object): def __init__(self): self.my_list=[] def inorderTraversal(self, root): """ :type root: TreeNode :rtype: List[int] """ if root: self.inorderTraversal(root.left) self.my_list.append(root.val) self.inorderTraversal(root.right) return self.my_list
577c9dd804a8656c8b35188d217681bc4516d0ac
c981cc8c8dfe05fc5a57915e9b4d8479a9a6bbf2
/py/lvmspec/bootcalib.py
91003626b0f86de4e277dcc8432285166c3fbcfa
[ "BSD-3-Clause" ]
permissive
sdss/lvmspec
af25dae6ae87ea1355aa8f9075e2e174e4599eb7
befd6991537c4947fdf63ca262937f2bb845148f
refs/heads/master
2021-06-25T02:13:27.038449
2019-10-28T20:35:38
2019-10-28T20:35:38
102,514,477
0
0
null
null
null
null
UTF-8
Python
false
false
65,452
py
""" lvmspec.bootcalib ================== Utility functions to perform a quick calibration of DESI data TODO: 1. Expand to r, i cameras 2. QA plots 3. Test with CR data """ from __future__ import print_function, absolute_import, division import numpy as np import copy import pdb import imp import yaml import glob import math import time import os import sys import argparse import locale from pkg_resources import resource_exists, resource_filename from astropy.modeling import models, fitting from astropy.stats import sigma_clip from astropy.table import Table, Column, vstack from astropy.io import fits from lvmspec.util import set_backend set_backend() from matplotlib import pyplot as plt import matplotlib import matplotlib.gridspec as gridspec import matplotlib.cm as cm from matplotlib.backends.backend_pdf import PdfPages from lvmutil.log import get_logger from lvmutil import funcfits as dufits from numpy.polynomial.legendre import legval glbl_figsz = (16,9) ######################################################## # High level wrapper # TODO: This was ported from the original bin/desi_bootcalib so that it could # be called independently by quicklook, but it needs to be coordinated with # lvmspec.scripts.bootcalib.main() ######################################################## def bootcalib(deg,flatimage,arcimage): """ Args: deg: Legendre polynomial degree to use to fit flatimage: lvmspec.image.Image object of flatfield arcimage: lvmspec.image.Image object of arc Mostly inherited from lvmspec/bin/desi_bootcalib directly as needed Returns: xfit, fdicts, gauss, all_wave_soln TODO: document what those return objects are """ camera=flatimage.camera flat=flatimage.pix ny=flat.shape[0] xpk,ypos,cut=find_fiber_peaks(flat) xset,xerr=trace_crude_init(flat,xpk,ypos) xfit,fdicts=fit_traces(xset,xerr) gauss=fiber_gauss(flat,xfit,xerr) #- Also need wavelength solution not just trace arc=arcimage.pix arc_ivar=arcimage.ivar all_spec=extract_sngfibers_gaussianpsf(arc,arc_ivar,xfit,gauss) llist=load_arcline_list(camera) ### dlamb,wmark,gd_lines,line_guess=load_gdarc_lines(camera) dlamb, gd_lines = load_gdarc_lines(camera, llist) #- Solve for wavelengths all_wv_soln=[] all_dlamb=[] for ii in range(all_spec.shape[1]): spec=all_spec[:,ii] pixpk=find_arc_lines(spec) id_dict=id_arc_lines(pixpk,gd_lines,dlamb,wmark,line_guess=line_guess) id_dict['fiber']=ii #- Find the other good ones if camera == 'z': inpoly = 3 # The solution in the z-camera has greater curvature else: inpoly = 2 add_gdarc_lines(id_dict, pixpk, gd_lines, inpoly=inpoly) #- Now the rest id_remainder(id_dict, pixpk, llist) #- Final fit wave vs. pix too final_fit, mask = dufits.iter_fit(np.array(id_dict['id_wave']), np.array(id_dict['id_pix']), 'polynomial', 3, xmin=0., xmax=1.) rms = np.sqrt(np.mean((dufits.func_val(np.array(id_dict['id_wave'])[mask==0],final_fit)-np.array(id_dict['id_pix'])[mask==0])**2)) final_fit_pix,mask2 = dufits.iter_fit(np.array(id_dict['id_pix']), np.array(id_dict['id_wave']),'legendre',deg, niter=5) id_dict['final_fit'] = final_fit id_dict['rms'] = rms id_dict['final_fit_pix'] = final_fit_pix id_dict['wave_min'] = dufits.func_val(0,final_fit_pix) id_dict['wave_max'] = dufits.func_val(ny-1,final_fit_pix) id_dict['mask'] = mask all_wv_soln.append(id_dict) return xfit, fdicts, gauss,all_wv_soln ######################################################## # Arc/Wavelength Routines (Linelists come next) ######################################################## def find_arc_lines(spec,rms_thresh=7.,nwidth=5): """Find and centroid arc lines in an input spectrum Parameters ---------- spec : ndarray Arc line spectrum rms_thresh : float RMS threshold scale nwidth : int Line width to test over """ # Threshold criterion npix = spec.size spec_mask = sigma_clip(spec, sigma=4., iters=5) rms = np.std(spec_mask) thresh = rms*rms_thresh #print("thresh = {:g}".format(thresh)) gdp = spec > thresh # Avoid edges gdp = gdp & (np.arange(npix) > 2.*nwidth) & (np.arange(npix) < (npix-2.*nwidth)) # Roll to find peaks (simple algorithm) # nwidth = 5 nstep = max(1,nwidth // 2) for kk in range(-nstep,nstep): if kk < 0: test = np.roll(spec,kk) < np.roll(spec,kk+1) else: test = np.roll(spec,kk) > np.roll(spec,kk+1) # Compare gdp = gdp & test # Center gdpix = np.where(gdp)[0] ngd = gdpix.size xpk = np.zeros(ngd) flux = np.zeros(ngd) for jj,igdpix in enumerate(gdpix): # Simple flux-weight pix = np.arange(igdpix-nstep,igdpix+nstep+1,dtype=int) flux[jj] = np.sum(spec[pix]) xpk[jj] = np.sum(pix*spec[pix]) / flux[jj] # Finish return xpk , flux def remove_duplicates_w_id(wy,w,y_id,w_id) : # might be several identical w_id y_id=np.array(y_id).astype(int) w_id=np.array(w_id).astype(int) y_id2=[] w_id2=[] for j in np.unique(w_id) : w_id2.append(j) ii=y_id[w_id==j] if ii.size==1 : y_id2.append(ii[0]) else : i=np.argmin(np.abs(wy[ii]-w[j])) y_id2.append(ii[i]) y_id2=np.array(y_id2).astype(int) w_id2=np.array(w_id2).astype(int) tmp=np.argsort(w[w_id2]) y_id2=y_id2[tmp] w_id2=w_id2[tmp] return y_id2,w_id2 def remove_duplicates_y_id(yw,y,y_id,w_id) : # might be several identical y_id w_id=np.array(w_id).astype(int) y_id=np.array(y_id).astype(int) w_id2=[] y_id2=[] for j in np.unique(y_id) : y_id2.append(j) ii=w_id[y_id==j] if ii.size==1 : w_id2.append(ii[0]) else : i=np.argmin(np.abs(yw[ii]-y[j])) w_id2.append(ii[i]) w_id2=np.array(w_id2).astype(int) y_id2=np.array(y_id2).astype(int) tmp=np.argsort(y[y_id2]) w_id2=w_id2[tmp] y_id2=y_id2[tmp] return y_id2,w_id2 def refine_solution(y,w,y_id,w_id,deg=3,tolerance=5.) : log = get_logger() # remove duplicates transfo=np.poly1d(np.polyfit(y[y_id],w[w_id],deg=deg)) wy=transfo(y) y_id,w_id=remove_duplicates_w_id(wy,w,y_id,w_id) transfo=np.poly1d(np.polyfit(w[w_id],y[y_id],deg=deg)) yw=transfo(w) y_id,w_id=remove_duplicates_y_id(yw,y,y_id,w_id) if len(y_id) != len(np.unique(y_id)) : log.error("duplicate AT INIT y_id={:s}".format(str(y_id))) if len(w_id) != len(np.unique(w_id)) : log.error("duplicate AT INIT w_id={:s}".format(str(w_id))) nmatch=len(y_id) #log.info("init nmatch=%d rms=%f wave=%s"%(nmatch,np.std(wy[y_id]-w[w_id]),w[w_id])) #log.info("init nmatch=%d rms=%f"%(nmatch,np.std(wy[y_id]-w[w_id]))) if nmatch<deg+1 : log.error("error : init nmatch too small") return y_id,w_id,1000.,0 rms=0. # loop on fit of transfo, pairing, cleaning for loop in range(200) : # compute transfo transfo=np.poly1d(np.polyfit(y[y_id],w[w_id],deg=deg)) # apply transfo to measurements wy=transfo(y) previous_rms = rms+0. rms=np.std(wy[y_id]-w[w_id]) # match lines mdiff0=min(tolerance,max(2.,rms*2.)) # this is a difficult parameter to tune, either loose lever arm, or have false matches !! mdiff1=tolerance # this is a difficult parameter to tune, either loose lever arm, or have false matches !! unmatched_indices=np.setdiff1d(np.arange(y.size),y_id) for i,wi in zip(unmatched_indices,wy[unmatched_indices]) : dist=np.abs(wi-w) jj=np.argsort(dist) for j,o in enumerate(jj) : if j in w_id : continue if dist[j]<mdiff0 or ( o<jj.size-1 and dist[j]<mdiff1 and dist[j]<0.3*dist[jj[o+1]]) : y_id=np.append(y_id,i) w_id=np.append(w_id,j) break previous_nmatch = nmatch+0 nmatch=len(y_id) #log.info("iter #%d nmatch=%d rms=%f"%(loop,nmatch,rms)) if nmatch < deg+1 : log.error("error init nmatch too small") y_id=[] w_id=[] rms=100000. return y_id,w_id,rms,loop if nmatch==previous_nmatch and abs(rms-previous_rms)<0.01 and loop>=1 : break if nmatch>=min(w.size,y.size) : #print("break because %d>=min(%d,%d)"%(nmatch,w.size,y.size)) break return y_id,w_id,rms,loop def id_remainder(id_dict, llist, deg=4, tolerance=1., verbose=False) : log = get_logger() y_id=np.array(id_dict['id_idx']).astype(int) all_y=np.array(id_dict['pixpk']) all_known_waves = np.sort(np.array(llist["wave"])) identified_waves = np.array(id_dict["id_wave"]) # lines identified at previous steps w_id=[] for w in identified_waves : i=np.argmin(np.abs(all_known_waves-w)) diff=np.abs(all_known_waves[i]-w) if diff>0.1 : log.warning("discrepant wavelength".format(w,all_known_waves[i])) w_id.append(i) w_id = np.array(w_id).astype(int) y_id,w_id,rms,niter=refine_solution(all_y,all_known_waves,y_id,w_id,deg=deg,tolerance=tolerance) id_dict['id_idx'] = np.sort(y_id) id_dict['id_pix'] = np.sort(all_y[y_id]) id_dict['id_wave'] = np.sort(all_known_waves[w_id]) id_dict['rms'] = rms log.info("{:d} matched for {:d} detected and {:d} known, rms = {:g}".format(len(y_id),len(all_y),len(all_known_waves),rms)) def compute_triplets(wave) : triplets=[] wave=np.sort(wave) for i1,w1 in enumerate(wave[:-1]) : for i2,w2 in enumerate(wave[i1+1:]) : for i3,w3 in enumerate(wave[i1+i2+2:]) : triplet=[w1,w2,w3,i1,i1+1+i2,i1+i2+2+i3,w2-w1,w3-w1,w2**2-w1**2,w3**2-w1**2] #print(triplet) #print(wave[i1],wave[i1+1+i2],wave[i1+i2+2+i3]) triplets.append(triplet) return np.array(triplets) def id_arc_lines_using_triplets(id_dict,w,dwdy_prior,d2wdy2_prior=1.5e-5,toler=0.2,ntrack=50,nmax=40): """Match (as best possible), a set of the input list of expected arc lines to the detected list Parameters ---------- id_dict : dictionnary with Pixel locations of detected arc lines in "pixpk" and fluxes in "flux" w : ndarray array of expected arc lines to be detected and identified dwdy : float Average dispersion in the spectrum d2wdy2_prior : float Prior on second derivative toler : float, optional Tolerance for matching (20%) ntrack : max. number of solutions to be tracked Returns ------- id_dict : dict dict of identified lines """ log=get_logger() #log.info("y=%s"%str(y)) #log.info("w=%s"%str(w)) y = id_dict["pixpk"] log.info("ny=%d nw=%d"%(len(y),len(w))) if nmax<10 : nmax=10 log.warning("force nmax=10 (arg was too small: {:d})".format(nmax)) if len(y)>nmax : # log.info("down-selecting the number of detected lines from {:d} to {:d}".format(len(y),nmax)) # keep at least the edges margin=3 new_y=np.append(y[:margin],y[-margin:]) # now look at the flux to select the other ones flux=id_dict["flux"][margin:-margin] ii=np.argsort(flux) new_y=np.append(new_y,y[margin:-margin][ii[-(nmax-2*margin):]]) y = np.sort(new_y) # compute triplets of waves of y positions y_triplets = compute_triplets(y) w_triplets = compute_triplets(w) # each pair of triplet defines a 2nd order polynomial (chosen centered on y=2000) # w = a*(y-2000)**2+b*(y-2000)+c # w = a*y**2-4000*a*y+b*y+cst # w = a*(y**2-4000*y)+b*y+cst # dw_12 = a*(dy2_12-4000*dy_12)+b*dy_12 # dw_13 = a*(dy2_13-4000*dy_13)+b*dy_12 # dw_12 = a*cdy2_12+b*dy_12 # dw_13 = a*cdy2_13+b*dy_13 # with cdy2_12=dy2_12-4000*dy_12 # and cdy2_13=dy2_13-4000*dy_13 # idet = 1./(dy_13*cdy2_12-dy_12*cdy2_13) # a = idet*(dy_13*dw_12-dy_12*dw_13) # b = idet*(-cdy2_13*dw_12+cdy2_12*dw_13) #triplet=[w1,w2,w3,i1,i1+1+i2,i1+i2+2+i3,w2-w1,w3-w1,w2**2-w1**2,w3**2-w1**2] dy_12=y_triplets[:,6] dy_13=y_triplets[:,7] #dy2_12=y_triplets[:,8] #dy2_13=y_triplets[:,9] # centered version cdy2_12=y_triplets[:,8]-4000.*y_triplets[:,6] cdy2_13=y_triplets[:,9]-4000.*y_triplets[:,7] idet=1./(dy_13*cdy2_12-dy_12*cdy2_13) # fill histogram with polynomial coefs and first index of each triplet in the pair for all pairs of triplets(y,w) # create the 4D histogram ndwdy = 41 nd2wdy2 = 21 dwdy_min = dwdy_prior*(1-toler) dwdy_max = dwdy_prior*(1+toler) dwdy_step = (dwdy_max-dwdy_min)/ndwdy d2wdy2_min = -d2wdy2_prior d2wdy2_max = +d2wdy2_prior d2wdy2_step = (d2wdy2_max-d2wdy2_min)/nd2wdy2 histogram = np.zeros((ndwdy,nd2wdy2,len(y),len(w))) # definition of the histogram # fill the histogram for w_triplet in w_triplets : #d2wdy2 = idet*(dy_13*w_triplet[6]-dy_12*w_triplet[7]) #dwdy = idet*(-cdy2_13*w_triplet[6]+cdy2_12*w_triplet[7]) # bins in the histogram dwdy_bin = ((idet*(-cdy2_13*w_triplet[6]+cdy2_12*w_triplet[7])-dwdy_min)/dwdy_step).astype(int) d2wdy2_bin = ((idet*(dy_13*w_triplet[6]-dy_12*w_triplet[7])-d2wdy2_min)/d2wdy2_step).astype(int) pairs_in_histo=np.where((dwdy_bin>=0)&(dwdy_bin<ndwdy)&(d2wdy2_bin>=0)&(d2wdy2_bin<nd2wdy2))[0] # fill histo iw=int(w_triplet[3]) for a,b,c in zip(dwdy_bin[pairs_in_histo],d2wdy2_bin[pairs_in_histo],y_triplets[pairs_in_histo,3].astype(int)) : histogram[a,b,c,iw] += 1 # find max bins in the histo histogram_ravel = histogram.ravel() best_histo_bins = histogram_ravel.argsort()[::-1] #log.info("nmatch in first bins=%s"%histogram.ravel()[best_histo_bins[:3]]) best_y_id=[] best_w_id=[] best_rms=1000. # loop on best matches ( = most populated bins) count=0 for histo_bin in best_histo_bins[:ntrack] : if histogram_ravel[histo_bin]<4 and count>3 : log.warning("stopping here") break count += 1 dwdy_best_bin,d2wdy2_best_bin,iy_best_bin,iw_best_bin = np.unravel_index(histo_bin, histogram.shape) # bin coord #print("bins=",dwdy_best_bin,d2wdy2_best_bin,iy_best_bin,iw_best_bin) # pairs of triplets in this histo bin w_id=np.array([]) y_id=np.array([]) wok=np.where(w_triplets[:,3]==iw_best_bin)[0] yok=np.where(y_triplets[:,3]==iy_best_bin)[0] for w_triplet in w_triplets[wok] : #d2wdy2 = idet[yok]*(dy_13[yok]*w_triplet[6]-dy_12[yok]*w_triplet[7]) #dwdy = idet[yok]*(-cdy2_13[yok]*w_triplet[6]+cdy2_12[yok]*w_triplet[7]) # bins in the histogram dwdy_bin = ((idet[yok]*(-cdy2_13[yok]*w_triplet[6]+cdy2_12[yok]*w_triplet[7])-dwdy_min)/dwdy_step).astype(int) d2wdy2_bin = ((idet[yok]*(dy_13[yok]*w_triplet[6]-dy_12[yok]*w_triplet[7])-d2wdy2_min)/d2wdy2_step).astype(int) wyok=yok[np.where((dwdy_bin==dwdy_best_bin)&(d2wdy2_bin==d2wdy2_best_bin))[0]] for y_triplet in y_triplets[wyok] : y_id=np.append(y_id,y_triplet[3:6]) w_id=np.append(w_id,w_triplet[3:6]) # now need to rm duplicates nw=len(w) ny=len(y) unique_common_id=np.unique(y_id.astype(int)*nw+w_id.astype(int)) y_id=(unique_common_id/nw).astype(int) w_id=(unique_common_id%nw).astype(int) ordering=np.argsort(y[y_id]) y_id=y_id[ordering] w_id=w_id[ordering] # refine y_id,w_id,rms,niter=refine_solution(y,w,y_id,w_id) #log.info("get solution with %d match and rms=%f (niter=%d)"%(len(y_id),rms,niter)) if (len(y_id)>len(best_y_id) and rms<max(1,best_rms)) or (len(y_id)==len(best_y_id) and rms<best_rms) or (best_rms>1 and rms<1 and len(y_id)>=8) : #log.info("new best solution #%d with %d match and rms=%f (niter=%d)"%(count,len(y_id),rms,niter)) #log.info("previous had %d match and rms=%f"%(len(best_y_id),best_rms)) best_y_id = y_id best_w_id = w_id best_rms = rms # stop at some moment if best_rms<0.2 and len(y_id)>=min(15,min(len(y),len(w))) : #log.info("stop here because we have a correct solution") break if len(y) != len(id_dict["pixpk"]) : #log.info("re-indexing the result") tmp_y_id = [] for i in best_y_id : tmp_y_id.append(np.argmin(np.abs(id_dict["pixpk"]-y[i]))) best_y_id = np.array(tmp_y_id).astype(int) y = id_dict["pixpk"] if len(best_w_id) == 0 : log.error("failed, no match") id_dict["status"]="failed" id_dict["id_idx"]=[] id_dict["id_pix"]=[] id_dict["id_wave"]=[] id_dict["rms"]=999. id_dict["fit"]=None return id_dict["status"]="ok" id_dict["id_idx"]=best_y_id id_dict["id_pix"]=y[best_y_id] id_dict["id_wave"]=w[best_w_id] id_dict["rms"]=best_rms deg=max(1,min(3,best_y_id.size-2)) id_dict["fit"]= dufits.func_fit(w[best_w_id],y[best_y_id],'polynomial',deg,xmin=0.,xmax=1.) log.info("{:d} matched for {:d} detected and {:d} known as good, rms = {:g}".format(len(best_y_id),len(y),len(w),best_rms)) ######################################################## # Linelist routines ######################################################## def parse_nist(ion, vacuum=True): """Parse a NIST ASCII table. Note that the long ---- should have been commented out and also the few lines at the start. Taken from PYPIT Parameters ---------- ion : str Name of ion vaccuum : bool, optional Use vacuum wavelengths """ log=get_logger() # Find file medium = 'vacuum' if not vacuum: log.info("Using air wavelengths") medium = 'air' srch_file = "data/arc_lines/{0}_{1}.ascii".format(ion, medium) if not resource_exists('lvmspec', srch_file): log.error("Cannot find NIST file {:s}".format(srch_file)) raise Exception("Cannot find NIST file {:s}".format(srch_file)) # Read, while working around non-ASCII characters in NIST line lists nist_file = resource_filename('lvmspec', srch_file) log.info("reading NIST file {:s}".format(nist_file)) default_locale = locale.getlocale(locale.LC_CTYPE) locale.setlocale(locale.LC_CTYPE, 'en_US.UTF-8') nist_tbl = Table.read(nist_file, format='ascii.fixed_width') locale.setlocale(locale.LC_CTYPE, default_locale) gdrow = nist_tbl['Observed'] > 0. # Eliminate dummy lines nist_tbl = nist_tbl[gdrow] # Now unique values only (no duplicates) uniq, indices = np.unique(nist_tbl['Observed'],return_index=True) nist_tbl = nist_tbl[indices] # Deal with Rel agdrel = [] for row in nist_tbl: try: gdrel = int(row['Rel.']) except: try: gdrel = int(row['Rel.'][:-1]) except: gdrel = 0 agdrel.append(gdrel) agdrel = np.array(agdrel) # Remove and add nist_tbl.remove_column('Rel.') nist_tbl.remove_column('Ritz') nist_tbl.add_column(Column(agdrel,name='RelInt')) nist_tbl.add_column(Column([ion]*len(nist_tbl), name='Ion', dtype=(str, 5))) nist_tbl.rename_column('Observed','wave') # Return return nist_tbl def load_arcline_list(camera, vacuum=True,lamps=None): """Loads arc line list from NIST files Parses and rejects Taken from PYPIT Parameters ---------- lines : list List of ions to load vacuum : bool, optional Use vacuum wavelengths lamps : optional numpy array of ions, ex np.array(["HgI","CdI","ArI","NeI"]) Returns ------- alist : Table Table of arc lines """ log=get_logger() wvmnx = None if lamps is None : if camera[0] == 'b': lamps = ['CdI','ArI','HgI','NeI','KrI'] elif camera[0] == 'r': lamps = ['CdI','ArI','HgI','NeI','KrI'] elif camera[0] == 'z': lamps = ['CdI','ArI','HgI','NeI','KrI'] elif camera == 'all': # Used for specex lamps = ['CdI','ArI','HgI','NeI','KrI'] else: log.error("Not ready for this camera") # Get the parse dict parse_dict = load_parse_dict() # Read rejection file medium = 'vacuum' if not vacuum: log.info("Using air wavelengths") medium = 'air' rej_file = resource_filename('lvmspec', "data/arc_lines/rejected_lines_{0}.yaml".format(medium)) with open(rej_file, 'r') as infile: rej_dict = yaml.load(infile) # Loop through the NIST Tables tbls = [] for iline in lamps: # Load tbl = parse_nist(iline, vacuum=vacuum) # Parse if iline in parse_dict: tbl = parse_nist_tbl(tbl,parse_dict[iline]) # Reject if iline in rej_dict: log.info("Rejecting select {:s} lines".format(iline)) tbl = reject_lines(tbl,rej_dict[iline]) #print("DEBUG",iline) #print("DEBUG",tbl[['Ion','wave','RelInt']]) tbls.append(tbl[['Ion','wave','RelInt']]) # Stack alist = vstack(tbls) # wvmnx? if wvmnx is not None: print('Cutting down line list by wvmnx: {:g},{:g}'.format(wvmnx[0],wvmnx[1])) gdwv = (alist['wave'] >= wvmnx[0]) & (alist['wave'] <= wvmnx[1]) alist = alist[gdwv] # Return return alist def reject_lines(tbl,rej_dict, rej_tol=0.1): """Rejects lines from a NIST table Taken from PYPIT Parameters ---------- tbl : Table Read previously from NIST ASCII file rej_dict : dict Dict of rejected lines rej_tol : float, optional Tolerance for matching a line to reject to linelist (Angstroms) Returns ------- tbl : Table Rows not rejected """ msk = tbl['wave'] == tbl['wave'] # Loop on rejected lines for wave in rej_dict: close = np.where(np.abs(wave-tbl['wave']) < rej_tol)[0] if rej_dict[wave] == 'all': msk[close] = False else: raise ValueError('Not ready for this') # Return return tbl[msk] def parse_nist_tbl(tbl,parse_dict): """Parses a NIST table using various criteria Parameters ---------- tbl : Table Read previously from NIST ASCII file parse_dict : dict Dict of parsing criteria. Read from load_parse_dict Returns ------- tbl : Table Rows meeting the criteria """ # Parse gdI = tbl['RelInt'] >= parse_dict['min_intensity'] gdA = tbl['Aki'] >= parse_dict['min_Aki'] gdw = tbl['wave'] >= parse_dict['min_wave'] # Combine allgd = gdI & gdA & gdw # Return return tbl[allgd] def load_parse_dict(): """Dicts for parsing Arc line lists from NIST Rejected lines are in the rejected_lines.yaml file """ dict_parse = dict(min_intensity=0., min_Aki=0., min_wave=0.) arcline_parse = {} # ArI arcline_parse['ArI'] = copy.deepcopy(dict_parse) arcline_parse['ArI']['min_intensity'] = 1000. # NOT PICKING UP REDDEST LINES # HgI arcline_parse['HgI'] = copy.deepcopy(dict_parse) arcline_parse['HgI']['min_intensity'] = 800. # HeI arcline_parse['HeI'] = copy.deepcopy(dict_parse) arcline_parse['HeI']['min_intensity'] = 20. # NeI arcline_parse['NeI'] = copy.deepcopy(dict_parse) arcline_parse['NeI']['min_intensity'] = 999. #arcline_parse['NeI']['min_Aki'] = 1. # NOT GOOD FOR DEIMOS, DESI #arcline_parse['NeI']['min_wave'] = 5700. arcline_parse['NeI']['min_wave'] = 5850. # NOT GOOD FOR DEIMOS? # ZnI arcline_parse['ZnI'] = copy.deepcopy(dict_parse) arcline_parse['ZnI']['min_intensity'] = 50. # KrI arcline_parse['KrI'] = copy.deepcopy(dict_parse) arcline_parse['KrI']['min_intensity'] = 50. return arcline_parse def load_gdarc_lines(camera, llist, vacuum=True,lamps=None,good_lines_filename=None): """Loads a select set of arc lines for initial calibrating Parameters ---------- camera : str Camera ('b', 'g', 'r') llist : table of lines to use, with columns Ion, wave vacuum : bool, optional Use vacuum wavelengths lamps : optional numpy array of ions, ex np.array(["HgI","CdI","ArI","NeI"]) Returns ------- dlamb : float Dispersion for input camera wmark : float wavelength to key off of [???] gd_lines : ndarray Array of lines expected to be recorded and good for ID line_guess : int or None Guess at the line index corresponding to wmark (default is to guess the 1/2 way point) """ log=get_logger() if lamps is None : lamps=np.array(["HgI","CdI","ArI","NeI"]) lines={} dlamb=0.6 if camera[0] == 'b': dlamb = 0.589 elif camera[0] == 'r': dlamb = 0.527 elif camera[0] == 'z': #dlamb = 0.599 # Ang dlamb = 0.608 # Ang (from teststand, ranges (fiber & wave) from 0.54 to 0.66) # read good lines if good_lines_filename is not None : filename = good_lines_filename else : if vacuum : filename = resource_filename('lvmspec', "data/arc_lines/goodlines_vacuum.ascii") else : filename = resource_filename('lvmspec', "data/arc_lines/goodlines_air.ascii") log.info("Reading good lines in {:s}".format(filename)) lines={} ifile=open(filename) for line in ifile.readlines() : if line[0]=="#" : continue vals=line.strip().split() if len(vals)<3 : log.warning("ignoring line '{:s}' in {:s}".format(line.strip(),filename)) continue cameras=vals[2] if cameras.find(camera[0].upper()) < 0 : continue ion=vals[1] wave=float(vals[0]) if ion in lines: lines[ion].append(wave) else : lines[ion]=[wave,] ifile.close() log.info("Good lines = {:s}".format(str(lines))) log.info("Checking consistency with full line list") nbad=0 for ion in lines: ii=np.where(llist["Ion"]==ion)[0] if ii.size == 0 : continue all_waves=np.array(llist["wave"][ii]) for j,w in enumerate(lines[ion]) : i=np.argmin(np.abs(w-all_waves)) if np.abs(w-all_waves[i])>0.2 : log.error("cannot find good line {:f} of {:s} in full line list. nearest is {:f}".format(w,ion,all_waves[i])) nbad += 1 elif np.abs(w-all_waves[i])>0.001 : log.warning("adjusting hardcoded {:s} line {:f} -> {:f} (the NIST line list is the truth)".format(w,ion,all_waves[i])) lines[ion][j]=all_waves[i] if nbad>0 : log.error("{:d} inconsistent hardcoded lines, exiting".format(nbad)) sys.exit(12) gd_lines=np.array([]) for lamp in lamps : if lamp in lines: gd_lines=np.append(gd_lines,lines[lamp]) # Sort and return gd_lines.sort() return dlamb, gd_lines ######################################################## # Fiber routines ######################################################## def fiber_gauss(flat, xtrc, xerr, box_radius=2, max_iter=5, debug=False, verbose=False) : return fiber_gauss_new(flat, xtrc, xerr, box_radius, max_iter) def fiber_gauss_new(flat, xtrc, xerr, box_radius=2, max_iter=5, debug=False, verbose=False): """Find the PSF sigma for each fiber This serves as an initial guess to what follows Parameters ---------- flat : ndarray of fiber flat image xtrc: ndarray of fiber traces xerr: ndarray of error in fiber traces box_radius: int, optinal Radius of boxcar extraction in pixels max_iter : int, optional Maximum number of iterations for rejection Returns ------- gauss list of Gaussian sigma """ log=get_logger() npix_y = flat.shape[0] npix_x = flat.shape[1] ny = xtrc.shape[0] # number of ccd rows in trace assert(ny==npix_y) nfiber = xtrc.shape[1] minflux=1. # minimal flux in a row to include in the fit # Loop on fibers gauss = [] start = 0 for ii in range(nfiber): if (ii % 25 == 0): # & verbose: stop=time.time() if start==0 : log.info("Working on fiber {:d} of {:d}".format(ii,nfiber)) else : log.info("Working on fiber %d of %d (25 done in %3.2f sec)"%(ii,nfiber,stop-start)) start=stop # collect data central_xpix=np.floor(xtrc[:,ii]+0.5) begin_xpix=(central_xpix-box_radius).astype(int) end_xpix=(central_xpix+box_radius+1).astype(int) dx=[] flux=[] for y in range(ny) : yflux=flat[y,begin_xpix[y]:end_xpix[y]] syflux=np.sum(yflux) if syflux<minflux : continue dx.append(np.arange(begin_xpix[y],end_xpix[y])-(xtrc[y,ii])) flux.append(yflux/syflux) dx=np.array(dx) flux=np.array(flux) # compute profile # one way to get something robust is to compute median in bins # it's a bit biasing but the PSF is not a Gaussian anyway bins=np.linspace(-box_radius,box_radius,100) bstep=bins[1]-bins[0] bdx=[] bflux=[] for b in bins : ok=(dx>=b)&(dx<(b+bstep)) if np.sum(ok)>0 : bdx.append(np.mean(dx[ok])) bflux.append(np.median(flux[ok])) if len(bdx)<10 : log.error("sigma fit failed for fiber #%02d"%ii) log.error("this should only occur for the fiber near the center of the detector (if at all)") log.error("using the sigma value from the previous fiber") gauss.append(gauss[-1]) continue # this is the profile : bdx=np.array(bdx) bflux=np.array(bflux) # fast iterative gaussian fit sigma = 1.0 sq2 = math.sqrt(2.) for i in range(10) : nsigma = sq2*np.sqrt(np.mean(bdx**2*bflux*np.exp(-bdx**2/2/sigma**2))/np.mean(bflux*np.exp(-bdx**2/2/sigma**2))) if abs(nsigma-sigma) < 0.001 : break sigma = nsigma gauss.append(sigma) return np.array(gauss) def fiber_gauss_old(flat, xtrc, xerr, box_radius=2, max_iter=5, debug=False, verbose=False): """Find the PSF sigma for each fiber This serves as an initial guess to what follows Parameters ---------- flat : ndarray of fiber flat image xtrc: ndarray of fiber traces xerr: ndarray of error in fiber traces box_radius: int, optinal Radius of boxcar extraction in pixels max_iter : int, optional Maximum number of iterations for rejection Returns ------- gauss list of Gaussian sigma """ log=get_logger() log.warning("fiber_gauss uses astropy.modeling. Consider an alternative") # Init nfiber = xtrc.shape[1] ny = xtrc.shape[0] iy = np.arange(ny).astype(int) # Mask mask = np.zeros_like(flat,dtype=int) # Sub images xpix_img = np.outer(np.ones(flat.shape[0]),np.arange(flat.shape[1])) # Gaussian fit g_init = models.Gaussian1D(amplitude=1., mean=0., stddev=1.) g_init.amplitude.fixed = True g_init.mean.fixed = True fitter = fitting.LevMarLSQFitter() # Loop on fibers gauss = [] start = 0 for ii in range(nfiber): if (ii % 25 == 0): # & verbose: stop=time.time() if start==0 : log.info("Working on fiber {:d} of {:d}".format(ii,nfiber)) else : log.info("Working on fiber %d of %d (done 25 in %3.2f sec)"%(ii,nfiber,stop-start)) start=stop mask[:] = 0 ixt = np.round(xtrc[:,ii]).astype(int) for jj,ibox in enumerate(range(-box_radius,box_radius+1)): ix = ixt + ibox mask[iy,ix] = 1 dx_img = xpix_img - np.outer(xtrc[:,ii],np.ones(flat.shape[1])) # Sum flux = np.sum(mask*flat,axis=1) flux = np.maximum(flux,1.) # Normalize nrm_img = flat / np.outer(flux,np.ones(flat.shape[1])) # Gaussian cpix = np.where(np.abs(dx_img)<0.10) if len(cpix[0]) < 50: cpix = np.where(np.abs(dx_img)<0.40) amp = np.median(nrm_img[cpix]) g_init.amplitude.value = amp # Fixed fdimg = dx_img[mask==1].flatten() fnimg = nrm_img[mask==1].flatten() # Guess at sigma gdfn = (fnimg < amp) & (fnimg > 0.) all_sig = np.abs(fdimg[gdfn]) / np.sqrt( np.log(amp)-np.log(fnimg[gdfn]) ) g_init.stddev.value = np.median(all_sig[np.where((np.abs(fdimg[gdfn])>1) & (np.abs(fdimg[gdfn])<1.5) & (np.isfinite(all_sig)))]) # Initial fit (need to mask!) parm = fitter(g_init, fdimg, fnimg) # Iterate iterate = True nrej = 0 niter = 0 while iterate & (niter < max_iter): # Clip resid = parm(fdimg) - fnimg resid_mask = sigma_clip(resid, sigma=4., iters=5) # Fit gdp = ~resid_mask.mask parm = fitter(g_init, fdimg[gdp], fnimg[gdp]) # Again? if np.sum(resid_mask.mask) <= nrej: iterate = False else: nrej = np.sum(resid_mask.mask) niter += 1 if verbose: log.info("Rejected {:d} in {:d} iterations".format(nrej,niter)) #debug = False if debug: plt.clf() plt.scatter(fdimg[gdp], fnimg[gdp]) x= np.linspace(-box_radius, box_radius, 200) plt.plot(x, parm(x), 'r-') plt.show() plt.close() pdb.set_trace() # Save gauss.append(parm.stddev.value) # return np.array(gauss) def find_fiber_peaks(flat, ypos=None, nwidth=5, debug=False) : """Find the peaks of the fiber flat spectra Preforms book-keeping error checking Args: flat : ndarray of fiber flat image ypos : int [optional] Row for finding peaks Default is half-way up the image nwidth : int [optional] Width of peak (end-to-end) debug: bool, optional Returns: xpk, ypos, cut list of xpk (nearest pixel) at ypos ndarray of cut through the image """ log=get_logger() log.info("starting") # Init Nbundle = 20 Nfiber = 25 # Fibers per bundle # Set ypos for peak finding if ypos is None: ypos = flat.shape[0]//2 # Cut image cutimg = flat[ypos-50:ypos+50, :] # Smash cut = np.median(cutimg, axis=0) # Set flux threshold #srt = np.sort(cutimg.flatten()) # this does not work for sparse fibers #thresh = srt[int(cutimg.size*0.95)] / 2. # this does not work for sparse fibers thresh = np.max(cut)/20. pixels_below_threshold=np.where(cut<thresh)[0] if pixels_below_threshold.size>2 : values_below_threshold = sigma_clip(cut[pixels_below_threshold],sigma=3,iters=200) if values_below_threshold.size>2 : rms=np.std(values_below_threshold) nsig=7 new_thresh=max(thresh,nsig*rms) log.info("Threshold: {:f} -> {:f} ({:d}*rms: {:f})".format(thresh,new_thresh,nsig,nsig*rms)) thresh=new_thresh #gdp = cut > thresh # Roll to find peaks (simple algorithm) #nstep = nwidth // 2 #for kk in range(-nstep,nstep): # if kk < 0: # test = np.roll(cut,kk) < np.roll(cut,kk+1) # else: # test = np.roll(cut,kk) > np.roll(cut,kk+1) # # Compare # gdp = gdp & test #xpk = np.where(gdp)[0] # Find clusters of adjacent points clusters=[] gdp=np.where(cut > thresh)[0] cluster=[gdp[0]] for i in gdp[1:] : if i==cluster[-1]+1 : cluster.append(i) else : clusters.append(cluster) cluster=[i] clusters.append(cluster) log.info("Number of clusters found: {:d}".format(len(clusters))) # Record max of each cluster xpk=np.zeros((len(clusters)), dtype=np.int64) for i in range(len(clusters)) : t=np.argmax(cut[clusters[i]]) xpk[i]=clusters[i][t] if debug: #pdb.xplot(cut, xtwo=xpk, ytwo=cut[xpk],mtwo='o') pdb.set_trace() # Book-keeping and some error checking if len(xpk) != Nbundle*Nfiber: log.warning('Found the wrong number of total fibers: {:d}'.format(len(xpk))) else: log.info('Found {:d} fibers'.format(len(xpk))) # Find bundles xsep = np.roll(xpk,-1) - xpk medsep = np.median(xsep) bundle_ends = np.where(np.abs(xsep-medsep) > 0.5*medsep)[0] if len(bundle_ends) != Nbundle: log.warning('Found the wrong number of bundles: {:d}'.format(len(bundle_ends))) else: log.info('Found {:d} bundles'.format(len(bundle_ends))) # Confirm correct number of fibers per bundle bad = ((bundle_ends+1) % Nfiber) != 0 if np.sum(bad) > 0: log.warning('Wrong number of fibers in a bundle') #raise ValueError('Wrong number of fibers in a bundle') # Return return xpk, ypos, cut def fit_traces(xset, xerr, func='legendre', order=6, sigrej=20., RMS_TOLER=0.03, verbose=False): """Fit the traces Default is 6th order Legendre polynomials Parameters ---------- xset : ndarray traces xerr : ndarray Error in the trace values (999.=Bad) RMS_TOLER : float, optional [0.02] Tolerance on size of RMS in fit Returns ------- xnew, fits xnew : ndarray New fit values (without error) fits : list List of the fit dicts """ log=get_logger() ny = xset.shape[0] ntrace = xset.shape[1] xnew = np.zeros_like(xset) fits = [] yval = np.arange(ny) for ii in range(ntrace): mask = xerr[:,ii] > 900. nmask = np.sum(mask) # Fit with rejection dfit, mask = dufits.iter_fit(yval, xset[:,ii], func, order, sig_rej=sigrej, weights=1./xerr[:,ii], initialmask=mask, maxone=True)#, sigma=xerr[:,ii]) # Stats on residuals nmask_new = np.sum(mask)-nmask if nmask_new > 200: log.error("Rejected many points ({:d}) in fiber {:d}".format(nmask_new, ii)) # Save xnew[:,ii] = dufits.func_val(yval,dfit) fits.append(dfit) # Residuas gdval = mask==0 resid = xnew[:,ii][gdval] - xset[:,ii][gdval] rms = np.std(resid) if verbose: print('RMS of FIT= {:g}'.format(rms)) if rms > RMS_TOLER: #from xastropy.xutils import xdebug as xdb #xdb.xplot(yval, xnew[:,ii], xtwo=yval[gdval],ytwo=xset[:,ii][gdval], mtwo='o') log.error("RMS {:g} exceeded tolerance for fiber {:d}".format(rms, ii)) # Return return xnew, fits def extract_sngfibers_gaussianpsf(img, img_ivar, xtrc, sigma, box_radius=2, verbose=True): """Extract spectrum for fibers one-by-one using a Gaussian PSF Parameters ---------- img : ndarray Image img_ivar : ndarray Image inverse variance xtrc : ndarray fiber trace sigma : float Gaussian sigma for PSF box_radius : int, optional Radius for extraction (+/-) Returns ------- spec : ndarray Extracted spectrum """ # Init xpix_img = np.outer(np.ones(img.shape[0]),np.arange(img.shape[1])) mask = np.zeros_like(img,dtype=int) iy = np.arange(img.shape[0],dtype=int) log = get_logger() # all_spec = np.zeros_like(xtrc) cst = 1./np.sqrt(2*np.pi) start=0 for qq in range(xtrc.shape[1]): if verbose & (qq % 25 == 0): stop=time.time() if start>0 : log.info("Working on fiber %d of %d (done 25 in %3.2f sec)"%(qq,xtrc.shape[1],stop-start)) else : log.info("Working on fiber %d of %d"%(qq,xtrc.shape[1])) start=stop # Mask mask[:,:] = 0 ixt = np.round(xtrc[:,qq]).astype(int) for jj,ibox in enumerate(range(-box_radius,box_radius+1)): ix = ixt + ibox mask[iy,ix] = 1 # Sub-image (for speed, not convenience) gdp = np.where(mask == 1) minx = np.min(gdp[1]) maxx = np.max(gdp[1]) nx = (maxx-minx)+1 # Generate PSF dx_img = xpix_img[:,minx:maxx+1] - np.outer(xtrc[:,qq], np.ones(nx)) psf = cst*np.exp(-0.5 * (dx_img/sigma[qq])**2)/sigma[qq] #dx_img = xpix_img[:,minx:maxx+1] - np.outer(xtrc[:,qq],np.ones(img.shape[1])) #g_init = models.Gaussian1D(amplitude=1., mean=0., stddev=sigma[qq]) #psf = mask * g_init(dx_img) # Extract #all_spec[:,qq] = np.sum(psf*img,axis=1) / np.sum(psf,axis=1) #all_spec[:,qq] = np.sum(psf*img[:,minx:maxx+1],axis=1) / np.sum(psf,axis=1) a=np.sum(img_ivar[:,minx:maxx+1]*psf**2,axis=1) b=np.sum(img_ivar[:,minx:maxx+1]*psf*img[:,minx:maxx+1],axis=1) ok=(a>1.e-6) all_spec[ok,qq] = b[ok] / a[ok] #import astropy.io.fits as pyfits #h=pyfits.HDUList([pyfits.PrimaryHDU(), # pyfits.ImageHDU(img[:,minx:maxx+1],name="FLUX"), # pyfits.ImageHDU(img_ivar[:,minx:maxx+1],name="IVAR"), # pyfits.ImageHDU(psf,name="PSF"), # pyfits.ImageHDU(a,name="A"), # pyfits.ImageHDU(b,name="B")]) #h.writeto("test.fits") #sys.exit(12) # Return return all_spec def trace_crude_init(image, xinit0, ypass, invvar=None, radius=2., maxshift0=0.5, maxshift=0.15, maxerr=0.2): # xset, xerr, maxerr, maxshift, maxshift0 """Python port of trace_crude_idl.pro from IDLUTILS Modified for initial guess Parameters ---------- image : 2D ndarray Image for tracing xinit : ndarray Initial guesses for trace peak at ypass ypass : int Row for initial guesses Returns ------- xset : Trace for each fiber xerr : Estimated error in that trace """ # Init xinit = xinit0.astype(float) #xinit = xinit[0:3] ntrace = xinit.size ny = image.shape[0] xset = np.zeros((ny,ntrace)) xerr = np.zeros((ny,ntrace)) if invvar is None: invvar = np.zeros_like(image) + 1. # # Recenter INITIAL Row for all traces simultaneously # iy = ypass * np.ones(ntrace,dtype=int) xfit,xfiterr = trace_fweight(image, xinit, iy, invvar=invvar, radius=radius) # Shift xshift = np.clip(xfit-xinit, -1*maxshift0, maxshift0) * (xfiterr < maxerr) xset[ypass,:] = xinit + xshift xerr[ypass,:] = xfiterr * (xfiterr < maxerr) + 999.0 * (xfiterr >= maxerr) # /* LOOP FROM INITIAL (COL,ROW) NUMBER TO LARGER ROW NUMBERS */ for iy in range(ypass+1, ny): xinit = xset[iy-1, :] ycen = iy * np.ones(ntrace,dtype=int) xfit,xfiterr = trace_fweight(image, xinit, ycen, invvar=invvar, radius=radius) # Shift xshift = np.clip(xfit-xinit, -1*maxshift, maxshift) * (xfiterr < maxerr) # Save xset[iy,:] = xinit + xshift xerr[iy,:] = xfiterr * (xfiterr < maxerr) + 999.0 * (xfiterr >= maxerr) # /* LOOP FROM INITIAL (COL,ROW) NUMBER TO SMALLER ROW NUMBERS */ for iy in range(ypass-1, -1,-1): xinit = xset[iy+1, :] ycen = iy * np.ones(ntrace,dtype=int) xfit,xfiterr = trace_fweight(image, xinit, ycen, invvar=invvar, radius=radius) # Shift xshift = np.clip(xfit-xinit, -1*maxshift, maxshift) * (xfiterr < maxerr) # Save xset[iy,:] = xinit + xshift xerr[iy,:] = xfiterr * (xfiterr < maxerr) + 999.0 * (xfiterr >= maxerr) return xset, xerr def trace_fweight(fimage, xinit, ycen=None, invvar=None, radius=2., debug=False): '''Python port of trace_fweight.pro from IDLUTILS Parameters ---------- fimage: 2D ndarray Image for tracing xinit: ndarray Initial guesses for x-trace invvar: ndarray, optional Inverse variance array for the image radius: float, optional Radius for centroiding; default to 3.0 ''' # Definitions for Cython #cdef int nx,ny,ncen # Init nx = fimage.shape[1] ny = fimage.shape[0] ncen = len(xinit) # Create xnew, xerr xnew = xinit.astype(float) xerr = np.zeros(ncen) + 999. # ycen if ycen is None: if ncen != ny: raise ValueError('Bad input') ycen = np.arange(ny, dtype=int) else: if len(ycen) != ncen: raise ValueError('Bad ycen input. Wrong length') x1 = xinit - radius + 0.5 x2 = xinit + radius + 0.5 ix1 = np.floor(x1).astype(int) ix2 = np.floor(x2).astype(int) fullpix = int(np.maximum(np.min(ix2-ix1)-1,0)) sumw = np.zeros(ncen) sumxw = np.zeros(ncen) sumwt = np.zeros(ncen) sumsx1 = np.zeros(ncen) sumsx2 = np.zeros(ncen) qbad = np.array([False]*ncen) if invvar is None: invvar = np.zeros_like(fimage) + 1. # Compute for ii in range(0,fullpix+3): spot = ix1 - 1 + ii ih = np.clip(spot,0,nx-1) xdiff = spot - xinit # wt = np.clip(radius - np.abs(xdiff) + 0.5,0,1) * ((spot >= 0) & (spot < nx)) sumw = sumw + fimage[ycen,ih] * wt sumwt = sumwt + wt sumxw = sumxw + fimage[ycen,ih] * xdiff * wt var_term = wt**2 / (invvar[ycen,ih] + (invvar[ycen,ih] == 0)) sumsx2 = sumsx2 + var_term sumsx1 = sumsx1 + xdiff**2 * var_term #qbad = qbad or (invvar[ycen,ih] <= 0) qbad = np.any([qbad, invvar[ycen,ih] <= 0], axis=0) if debug: pdb.set_trace() # Fill up good = (sumw > 0) & (~qbad) if np.sum(good) > 0: delta_x = sumxw[good]/sumw[good] xnew[good] = delta_x + xinit[good] xerr[good] = np.sqrt(sumsx1[good] + sumsx2[good]*delta_x**2)/sumw[good] bad = np.any([np.abs(xnew-xinit) > radius + 0.5,xinit < radius - 0.5,xinit > nx - 0.5 - radius],axis=0) if np.sum(bad) > 0: xnew[bad] = xinit[bad] xerr[bad] = 999.0 # Return return xnew, xerr def fix_ycoeff_outliers(xcoeff, ycoeff, deg=5, tolerance=2): ''' Fix outliers in coefficients for wavelength solution, assuming a continuous function of CCD coordinates Args: xcoeff[nfiber, ncoeff] : 2D array of Legendre coefficients for X(wavelength) ycoeff[nfiber, ncoeff] : 2D array of Legendre coefficients for Y(wavelength) Options: deg : integer degree of polynomial to fit tolerance : replace fibers with difference of wavelength solution larger than this number of pixels after interpolation Returns: new_ycoeff[nfiber, ncoeff] with outliers replaced by interpolations For each coefficient, fit a polynomial vs. fiber number with one pass of sigma clipping. Remaining outliers are than replaced with the interpolated fit value. ''' log = get_logger() nfibers=ycoeff.shape[0] if nfibers < 3 : log.warning("only {:d} fibers, cannot interpolate coefs".format(nfibers)) return ycoeff deg=min(deg,nfibers-1) nwave=ycoeff.shape[1]+1 wave_nodes = np.linspace(-1,1,nwave) # get traces using fit coefs x=np.zeros((nfibers,nwave)) y=np.zeros((nfibers,nwave)) for i in range(nfibers) : x[i] = legval(wave_nodes,xcoeff[i]) y[i] = legval(wave_nodes,ycoeff[i]) new_ycoeff=ycoeff.copy() bad_fibers=None while True : # loop to discard one fiber at a time # polynomial fit as a function of x for each wave yf=np.zeros((nfibers,nwave)) xx=2*(x - np.min(x)) / (np.max(x) - np.min(x)) - 1 for i in range(nwave) : c=np.polyfit(xx[:,i], y[:,i], deg) yf[:,i]=np.polyval(c, xx[:,i]) diff=np.max(np.abs(y-yf),axis=1) for f in range(nfibers) : log.info("fiber {:d} maxdiff= {:f}".format(f,diff[f])) worst = np.argmax(diff) if diff[worst] > tolerance : log.warning("replace fiber {:d} trace by interpolation".format(worst)) leg_fit = dufits.func_fit(wave_nodes, yf[worst], 'legendre', ycoeff.shape[1]-1, xmin=-1, xmax=1) new_ycoeff[worst] = leg_fit['coeff'] y[worst] = legval(wave_nodes,new_ycoeff[worst]) if bad_fibers is None : bad_fibers = np.array([worst]) else : bad_fibers=np.append(bad_fibers, worst) bad_fibers=np.unique(bad_fibers) continue break return new_ycoeff ##################################################################### ##################################################################### # Output ##################################################################### def write_psf(outfile, xfit, fdicts, gauss, wv_solns, legendre_deg=5, without_arc=False, XCOEFF=None, fiberflat_header=None, arc_header=None): """ Write the output to a Base PSF format Parameters ---------- outfile : str Output file xfit : ndarray Traces gauss : list List of gaussian sigmas fdicts : list List of trace fits wv_solns : list List of wavelength calibrations ncoeff : int Number of Legendre coefficients in fits """ # # check legendre degree makes sense based on number of lines if not without_arc: nlines=10000 for ii,id_dict in enumerate(wv_solns): if len(id_dict['id_pix']) > 0 : nlines_in_fiber=(np.array(id_dict['id_pix'])[id_dict['mask']==0]).size #print("fiber #%d nlines=%d"%(ii,nlines_in_fiber)) nlines=min(nlines,nlines_in_fiber) if nlines < legendre_deg+2 : legendre_deg=nlines-2 print("reducing legendre degree to %d because the min. number of emission lines found is %d"%(legendre_deg,nlines)) ny = xfit.shape[0] nfiber = xfit.shape[1] ncoeff=legendre_deg+1 if XCOEFF is None: XCOEFF = np.zeros((nfiber, ncoeff)) YCOEFF = np.zeros((nfiber, ncoeff)) # Find WAVEMIN, WAVEMAX if without_arc: WAVEMIN = 0. WAVEMAX = ny-1. wv_solns = [None]*nfiber else: WAVEMIN = 10000000. WAVEMAX = 0. for id_dict in wv_solns : if 'wave_min' in id_dict : WAVEMIN = min(WAVEMIN,id_dict['wave_min']) if 'wave_max' in id_dict : WAVEMAX = max(WAVEMAX,id_dict['wave_max']) WAVEMIN -= 1. WAVEMAX += 1. wv_array = np.linspace(WAVEMIN, WAVEMAX, num=ny) # Fit Legendre to y vs. wave for ii,id_dict in enumerate(wv_solns): # Fit y vs. wave if without_arc: yleg_fit, mask = dufits.iter_fit(wv_array, np.arange(ny), 'legendre', ncoeff-1, xmin=WAVEMIN, xmax=WAVEMAX, niter=1) else: if len(id_dict['id_wave']) > 0 : yleg_fit, mask = dufits.iter_fit(np.array(id_dict['id_wave'])[id_dict['mask']==0], np.array(id_dict['id_pix'])[id_dict['mask']==0], 'legendre', ncoeff-1, xmin=WAVEMIN, xmax=WAVEMAX, sig_rej=100000.) else : yleg_fit = None mask = None if yleg_fit is None : continue YCOEFF[ii, :] = yleg_fit['coeff'] # Fit x vs. wave yval = dufits.func_val(wv_array, yleg_fit) if fdicts is None: if XCOEFF is None: raise IOError("Need to set either fdicts or XCOEFF!") else: xtrc = dufits.func_val(yval, fdicts[ii]) xleg_fit,mask = dufits.iter_fit(wv_array, xtrc, 'legendre', ncoeff-1, xmin=WAVEMIN, xmax=WAVEMAX, niter=5, sig_rej=100000.) XCOEFF[ii, :] = xleg_fit['coeff'] # Fix outliers assuming that coefficients vary smoothly vs. CCD coordinates YCOEFF = fix_ycoeff_outliers(XCOEFF,YCOEFF,tolerance=2) # Write the FITS file prihdu = fits.PrimaryHDU(XCOEFF) prihdu.header['WAVEMIN'] = WAVEMIN prihdu.header['WAVEMAX'] = WAVEMAX prihdu.header['EXTNAME'] = 'XTRACE' prihdu.header['PSFTYPE'] = 'bootcalib' from lvmutil.depend import add_dependencies add_dependencies(prihdu.header) # Add informations for headers if arc_header is not None : if "NIGHT" in arc_header: prihdu.header["ARCNIGHT"] = arc_header["NIGHT"] if "EXPID" in arc_header: prihdu.header["ARCEXPID"] = arc_header["EXPID"] if "CAMERA" in arc_header: prihdu.header["CAMERA"] = arc_header["CAMERA"] prihdu.header['NPIX_X'] = arc_header['NAXIS1'] prihdu.header['NPIX_Y'] = arc_header['NAXIS2'] if fiberflat_header is not None : if 'NPIX_X' not in prihdu.header: prihdu.header['NPIX_X'] = fiberflat_header['NAXIS1'] prihdu.header['NPIX_Y'] = fiberflat_header['NAXIS2'] if "NIGHT" in fiberflat_header: prihdu.header["FLANIGHT"] = fiberflat_header["NIGHT"] if "EXPID" in fiberflat_header: prihdu.header["FLAEXPID"] = fiberflat_header["EXPID"] yhdu = fits.ImageHDU(YCOEFF, name='YTRACE') # also save wavemin wavemax in yhdu yhdu.header['WAVEMIN'] = WAVEMIN yhdu.header['WAVEMAX'] = WAVEMAX gausshdu = fits.ImageHDU(np.array(gauss), name='XSIGMA') hdulist = fits.HDUList([prihdu, yhdu, gausshdu]) hdulist.writeto(outfile, clobber=True) def write_line_list(filename,all_wv_soln,llist) : wave = np.array([]) for id_dict in all_wv_soln : wave=np.append(wave,id_dict["id_wave"]) wave=np.unique(wave) ofile=open(filename,"w") ofile.write("# from bootcalib\n") ofile.write("Ion wave score RelInt\n") for w in wave : ii=np.argmin(np.abs(llist["wave"]-w)) print(w,llist["wave"][ii],llist["Ion"][ii]) ofile.write("{:s} {:f} 1 1\n".format(llist["Ion"][ii],w)) ofile.close() ##################################################################### ##################################################################### # Utilities ##################################################################### def script_bootcalib(arc_idx, flat_idx, cameras=None, channels=None, nproc=10): """ Runs desi_bootcalib on a series of pix files Returns: script_bootcalib([0,1,2,3,4,5,6,7,8,9], [10,11,12,13,14]) """ from subprocess import Popen # if cameras is None: cameras = ['0','1','2','3','4','5','6','7','8','9'] if channels is None: channels = ['b','r','z'] #channels = ['b']#,'r','z'] nchannels = len(channels) ncameras = len(cameras) # narc = len(arc_idx) nflat = len(flat_idx) ntrial = narc*nflat*ncameras*nchannels # Loop on the systems nrun = -1 #nrun = 123 while(nrun < ntrial): proc = [] ofiles = [] for ss in range(nproc): nrun += 1 iarc = nrun % narc jflat = (nrun//narc) % nflat kcamera = (nrun//(narc*nflat)) % ncameras lchannel = nrun // (narc*nflat*ncameras) #pdb.set_trace() if nrun == ntrial: break # Names afile = str('pix-{:s}{:s}-{:08d}.fits'.format(channels[lchannel], cameras[kcamera], arc_idx[iarc])) ffile = str('pix-{:s}{:s}-{:08d}.fits'.format(channels[lchannel], cameras[kcamera], flat_idx[jflat])) ofile = str('boot_psf-{:s}{:s}-{:d}{:d}.fits'.format(channels[lchannel], cameras[kcamera], arc_idx[iarc], flat_idx[jflat])) qfile = str('qa_boot-{:s}{:s}-{:d}{:d}.pdf'.format(channels[lchannel], cameras[kcamera], arc_idx[iarc], flat_idx[jflat])) lfile = str('boot-{:s}{:s}-{:d}{:d}.log'.format(channels[lchannel], cameras[kcamera], arc_idx[iarc], flat_idx[jflat])) ## Run script = [str('desi_bootcalib.py'), str('--fiberflat={:s}'.format(ffile)), str('--arcfile={:s}'.format(afile)), str('--outfile={:s}'.format(ofile)), str('--qafile={:s}'.format(qfile))]#, #str('>'), #str('{:s}'.format(lfile))] f = open(lfile, "w") proc.append(Popen(script, stdout=f)) ofiles.append(f) exit_codes = [p.wait() for p in proc] for ofile in ofiles: ofile.close() ##################################################################### ##################################################################### ##################################################################### # QA ##################################################################### def qa_fiber_peaks(xpk, cut, pp=None, figsz=None, nper=100): """ Generate a QA plot for the fiber peaks Args: xpk: x positions on the CCD of the fiber peaks at a ypos cut: Spatial cut through the detector pp: PDF file pointer figsz: figure size, optional nper: number of fibers per row in the plot, optional """ # Init if figsz is None: figsz = glbl_figsz nfiber = xpk.size nrow = (nfiber // nper) + ((nfiber % nper) > 0) xplt = np.arange(cut.size) # Plots gs = gridspec.GridSpec(nrow, 1) plt.figure(figsize=figsz) # Loop for ii in range(nrow): ax = plt.subplot(gs[ii]) i0 = ii*nper i1 = i0 + nper ax.plot(xplt,cut, 'k-') ax.plot(xpk, cut[xpk],'go') xmin = np.min(xpk[i0:i1])-10. xmax = np.max(xpk[i0:i1])+10. ax.set_xlim(xmin,xmax) # Save and close if pp is not None: pp.savefig(bbox_inches='tight') else: plt.show() plt.close() def qa_fiber_Dx(xfit, fdicts, pp=None, figsz=None): """ Show the spread in the trace per fiber Used to diagnose the traces Args: xfit: traces fdicts: dict of the traces pp: PDF file pointer figsz: figure size, optional """ # if figsz is None: figsz = glbl_figsz # Calculate Dx nfiber = xfit.shape[1] Dx = [] for ii in range(nfiber): Dx.append(np.max(xfit[:, ii])-np.min(xfit[:, ii])) # Plot plt.figure(figsize=figsz) plt.scatter(np.arange(nfiber), np.array(Dx)) # Label plt.xlabel('Fiber', fontsize=17.) plt.ylabel(r'$\Delta x$ (pixels)', fontsize=17.) # Save and close if pp is None: plt.show() else: pp.savefig(bbox_inches='tight') plt.close() def qa_fiber_gauss(gauss, pp=None, figsz=None): """ Show the Gaussian (sigma) fits to each fiber Args: gauss: Gaussian of each fiber pp: PDF file pointer figsz: figure size, optional """ # if figsz is None: figsz = glbl_figsz # Calculate Dx nfiber = gauss.size # Plot plt.figure(figsize=figsz) plt.scatter(np.arange(nfiber), gauss) # Label plt.xlabel('Fiber', fontsize=17.) plt.ylabel('Gaussian sigma (pixels)', fontsize=17.) # Save and close if pp is None: plt.show() else: pp.savefig(bbox_inches='tight') plt.close() def qa_arc_spec(all_spec, all_soln, pp, figsz=None): """ Generate QA plots of the arc spectra with IDs Args: all_spec: Arc 1D fiber spectra all_soln: Wavelength solutions pp: PDF file pointer figsz: figure size, optional """ # Init if figsz is None: figsz = glbl_figsz nfiber = len(all_soln) npix = all_spec.shape[0] # nrow = 2 ncol = 3 # Plots gs = gridspec.GridSpec(nrow, ncol) plt.figure(figsize=figsz) # Loop for ii in range(nrow*ncol): ax = plt.subplot(gs[ii]) idx = ii * (nfiber//(nrow*ncol)) yspec = np.log10(np.maximum(all_spec[:,idx],1)) ax.plot(np.arange(npix), yspec, 'k-') ax.set_xlabel('Pixel') ax.set_ylabel('log Flux') # ID id_dict = all_soln[idx] for jj,xpixpk in enumerate(id_dict['id_pix']): ax.text(xpixpk, yspec[int(np.round(xpixpk))], '{:g}'.format(id_dict['id_wave'][jj]), ha='center',color='red', rotation=90.) # Save and close pp.savefig(bbox_inches='tight') plt.close() def qa_fiber_arcrms(all_soln, pp, figsz=None): """ Show the RMS of the wavelength solutions vs. fiber Args: all_soln: Wavelength solutions pp: PDF file pointer figsz: figure size, optional """ # if figsz is None: figsz = glbl_figsz # Calculate Dx nfiber = len(all_soln) rms = [id_dict['rms'] for id_dict in all_soln] # Plot plt.figure(figsize=figsz) plt.scatter(np.arange(nfiber), np.array(rms)) # Label plt.xlabel('Fiber', fontsize=17.) plt.ylabel('RMS (pixels)', fontsize=17.) # Save and close pp.savefig(bbox_inches='tight') plt.close() def qa_fiber_dlamb(all_spec, all_soln, pp, figsz=None): """ Show the Dlamb of the wavelength solutions vs. fiber Args: all_soln: Wavelength solutions pp: PDF file pointer figsz: figure size, optional """ # if figsz is None: figsz = glbl_figsz # Calculate Dx nfiber = len(all_soln) npix = all_spec.shape[0] xval = np.arange(npix) dlamb = [] for ii in range(nfiber): idict = all_soln[ii] wave = dufits.func_val(xval,idict['final_fit_pix']) dlamb.append(np.median(np.abs(wave-np.roll(wave,1)))) # Plot plt.figure(figsize=figsz) plt.scatter(np.arange(nfiber), np.array(dlamb)) # Label plt.xlabel('Fiber', fontsize=17.) plt.ylabel(r'$\Delta \lambda$ (Ang)', fontsize=17.) # Save and close pp.savefig(bbox_inches='tight') plt.close() def qa_fiber_trace(flat, xtrc, outfil=None, Nfiber=25, isclmin=0.5): ''' Generate a QA plot for the fiber traces Parameters ---------- flat: ndarray image xtrc: ndarray Trace array isclmin: float, optional [0.5] Fraction of 90 percentile flux to scale image by outfil: str, optional Output file normalize: bool, optional Normalize the flat? If not, use zscale for output ''' ticks_font = matplotlib.font_manager.FontProperties(family='times new roman', style='normal', size=16, weight='normal', stretch='normal') plt.rcParams['font.family']= 'times new roman' cmm = cm.Greys_r # Outfil if outfil is None: outfil = 'fiber_trace_qa.pdf' ntrc = xtrc.shape[1] ycen = np.arange(flat.shape[0]) # Plot pp = PdfPages(outfil) plt.clf() fig = plt.figure(figsize=(8, 5.0),dpi=1200) #fig.set_size_inches(10.0,6.5) Nbundle = ntrc // Nfiber + (ntrc%Nfiber > 0) for qq in range(Nbundle): ax = plt.gca() for label in ax.get_yticklabels() : label.set_fontproperties(ticks_font) for label in ax.get_xticklabels() : label.set_fontproperties(ticks_font) # Cut image i0 = qq*Nfiber i1 = np.minimum((qq+1)*Nfiber,ntrc) x0 = np.maximum(int(np.min(xtrc[:,i0:i1]))-3,0) x1 = np.minimum(int(np.max(xtrc[:,i0:i1]))+3,flat.shape[1]) sub_flat = flat[:,x0:x1].T # Scale srt = np.sort(sub_flat.flatten()) sclmax = srt[int(sub_flat.size*0.9)] sclmin = isclmin * sclmax # Plot mplt = plt.imshow(sub_flat,origin='lower', cmap=cmm, extent=(0., sub_flat.shape[1]-1, x0,x1-1), aspect='auto') #extent=(0., sub_flat.shape[1]-1, x0,x1)) #mplt.set_clim(vmin=sclmin, vmax=sclmax) # Axes #plt.xlim(0., sub_flat.shape[1]-1) plt.xlim(0., sub_flat.shape[1]-1) plt.ylim(x0,x1) # Traces for ii in range(i0,i1): # Left plt.plot(ycen, xtrc[:,ii], 'r-',alpha=0.7, linewidth=0.5) # Label #iy = int(frame.shape[0]/2.) #plt.text(ltrace[iy,ii], ycen[iy], '{:d}'.format(ii+1), color='red', ha='center') #plt.text(rtrace[iy,ii], ycen[iy], '{:d}'.format(ii+1), color='green', ha='center') pp.savefig(bbox_inches='tight') plt.close() # Finish print('Writing {:s} QA for fiber trace'.format(outfil)) pp.close()
e5f75c282a91efceab67452309899a392be1f731
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/303/usersdata/304/68337/submittedfiles/testes.py
ef1b112bb914f1155a9ca8d3cbd194b2db577544
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
1,807
py
# -*- coding: utf-8 -*- #COMECE AQUI ABAIXO ########AULA DO DIA 06/09/2017######## """ idade = int(input('Digite sua idade: ')) print('A idade do indivíduo é',idade,'!') if int(idade) < 18: print('Você tem menos de 18 anos') elif int(idade) == 18: print('Você tem 18 anos') else: print('Você tem mais de 18 anos') altura = float(input('Digite sua altura: ')) if float(altura) <= 1.50: print('Você é um smurf!') elif float(altura) >1.50 < 1.70: print('Você é normal') else: print('Você é um avatar!') razao = idade/altura print('Razão idade/altura = %.2f' %(razao)) """ #QUESTÃO 01: """ print(50*'-') print('QUESTÃO 01') print(50*'-') n1 = float(input('Insira a nota do primeiro bimestre: ')) n2 = float(input('Insira a nota do segundo bimestre: ')) n3 = float(input('Insira a nota do terceiro bimestre: ')) n4 = float(input('Insira a nota do quarto bimestre: ')) media = float((n1+n2+n3+n4)/4) print('A média do aluno foi de %.2f' %(media)) """ #QUESTÃO 02: """ print(50*'-') print('QUESTÃO 02') print(50*'-') a = float(input('Insira metros para a conversão: ')) b = (a*100) print(a,'metros convertido em centímetros = %.0f' %(b)) """ #QUESTÃO 03: """ print(50*'-') print('QUESTÃO 03') print(50*'-') altura = float(input('Insira a sua altura: ')) peso = float(input('Insira o seu peso: ')) pi = (72.7*altura)-58 print('O seu peso atual é de %.2f quilos e o peso ideal para a sua altura é de %.2f quilos' %(peso,pi)) """ #QUESTÃO 04: """ print(50*'-') print('QUESTÃO 04') print(50*'-') raio = float(input('Insira o raio do círculo em centímetros: ')) area = (3.14159*raio**2) print('A área do círculo é de %.2f centímetros' %(area)) """ x = 1 x + 2 x = x + 1 print (x)
021870ba7e83cd49d113645f14d918b18cc9157b
a9063fd669162d4ce0e1d6cd2e35974274851547
/test/test_inline_response20072_plan_base.py
a7ee91720c79393327a18f8d2b9bb2083c8bfc00
[]
no_license
rootalley/py-zoom-api
9d29a8c750e110f7bd9b65ff7301af27e8518a3d
bfebf3aa7b714dcac78be7c0affb9050bbce8641
refs/heads/master
2022-11-07T14:09:59.134600
2020-06-20T18:13:50
2020-06-20T18:13:50
273,760,906
1
3
null
null
null
null
UTF-8
Python
false
false
1,508
py
# coding: utf-8 """ Zoom API The Zoom API allows developers to safely and securely access information from Zoom. You can use this API to build private services or public applications on the [Zoom App Marketplace](http://marketplace.zoom.us). To learn how to get your credentials and create private/public applications, read our [Authorization Guide](https://marketplace.zoom.us/docs/guides/authorization/credentials). All endpoints are available via `https` and are located at `api.zoom.us/v2/`. For instance you can list all users on an account via `https://api.zoom.us/v2/users/`. # noqa: E501 OpenAPI spec version: 2.0.0 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import swagger_client from models.inline_response20072_plan_base import InlineResponse20072PlanBase # noqa: E501 from swagger_client.rest import ApiException class TestInlineResponse20072PlanBase(unittest.TestCase): """InlineResponse20072PlanBase unit test stubs""" def setUp(self): pass def tearDown(self): pass def testInlineResponse20072PlanBase(self): """Test InlineResponse20072PlanBase""" # FIXME: construct object with mandatory attributes with example values # model = swagger_client.models.inline_response20072_plan_base.InlineResponse20072PlanBase() # noqa: E501 pass if __name__ == '__main__': unittest.main()
85c0f14b868a22e23e5e3fd51fe3cc1e84759e72
5d3a6f5d1731d32479c3cd65748c58eefa614b07
/tests/test_models.py
8bef9f492bb207d37d8955f5b49e2f5693b413af
[]
permissive
timgates42/django-rest-localflavor
fde435f0f07775ccf48187f68e7f29ad9d2a793f
844f86dbed5be126706b8d65678ed7e1fc9cfed0
refs/heads/master
2023-03-17T08:04:59.020065
2020-12-30T12:25:36
2020-12-30T12:25:36
246,013,020
0
0
BSD-3-Clause
2020-03-09T11:04:03
2020-03-09T11:04:02
null
UTF-8
Python
false
false
377
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ test_django-rest-localflavor ------------ Tests for `django-rest-localflavor` models module. """ from django.test import TestCase from rest_localflavor import models class TestRest_localflavor(TestCase): def setUp(self): pass def test_something(self): pass def tearDown(self): pass
1644cc8eed28893ea0314b6a735bb23190e45faa
8a38bb4e40a78afc69eed06c3d88d45e5995a336
/jax/experimental/gda_serialization/serialization.py
438f108293d7b1dc0bc9a3f97dc7ce9aad711ed9
[ "Apache-2.0", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
MichaelMarien/jax
979a808ab6ea1698d2f03b1e9aeb826f59955543
bf3c658114703e955f0b06642c53c6b64c5b2df3
refs/heads/master
2023-02-13T00:45:04.056207
2022-02-15T19:25:26
2022-02-15T19:25:26
216,413,853
0
0
Apache-2.0
2023-02-06T07:02:48
2019-10-20T19:13:38
Python
UTF-8
Python
false
false
4,185
py
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """GlobalDeviceArray serialization and deserialization.""" import asyncio import re from typing import Callable import jax from jax.experimental import global_device_array as gda from jax.experimental.maps import Mesh import jax.numpy as jnp import numpy as np import tensorstore as ts async def create_async_gda_from_callback( global_shape: gda.Shape, global_mesh: Mesh, mesh_axes: gda.MeshAxes, data_callback: Callable[[gda.Index], asyncio.Future], ): global_idx_rid = gda.get_shard_indices_replica_ids( global_shape, global_mesh, mesh_axes) local_devices = global_mesh.local_devices future_arrays = [data_callback(global_idx_rid[d][0]) for d in local_devices] # Pause here and come back to `from_async_callback()` when future_arrays are # ready. device_put cannot happen with future_arrays. local_arrays = await asyncio.gather(*future_arrays) dbs = [jax.device_put(array, device) for array, device in zip(local_arrays, local_devices)] return gda.GlobalDeviceArray(global_shape, global_mesh, mesh_axes, dbs, gda._GdaFastPathArgs(global_idx_rid, local_devices)) def _get_metadata(gda): if gda.dtype == jnp.bfloat16: # Tensorstore uses 'bfloat16', not '<V2'. dtype = 'bfloat16' else: dtype = np.dtype(gda.dtype).str return { 'compressor': { 'id': 'gzip' }, 'shape': gda.shape, 'chunks': np.array(np.maximum(1, gda.local_data(0).shape)), 'dtype': dtype, } def get_tensorstore_spec(ckpt_path: str): spec = {'driver': 'zarr', 'kvstore': {}} if ckpt_path.startswith('gs://'): m = re.fullmatch('^gs://([^/]*)/(.*)$', ckpt_path, re.DOTALL) if m is None: raise ValueError('The ckpt_path should contain the bucket name and the ' f'file path inside the bucket. Got: {ckpt_path}') gcs_bucket = m.group(1) path_without_bucket = m.group(2) spec['kvstore'] = {'driver': 'gcs', 'bucket': gcs_bucket, 'path': path_without_bucket} else: spec['kvstore'] = {'driver': 'file', 'path': ckpt_path} return spec async def async_serialize(gda_inp: gda.GlobalDeviceArray, tensorstore_spec): if not tensorstore_spec.get('metadata'): tensorstore_spec['metadata'] = _get_metadata(gda_inp) t = await ts.open( ts.Spec(tensorstore_spec), create=True, open=True, context=ts.Context({'file_io_concurrency': { 'limit': 128 }})) async def _write_array(shard): if shard.replica_id == 0: await t[shard.index].write(shard.data) future_write_state = jax.tree_util.tree_map(_write_array, tuple(gda_inp.local_shards)) return await asyncio.gather(*future_write_state) def run_serialization(gdas, tensorstore_specs): async def _run_serializer(): future_writer = jax.tree_map(async_serialize, gdas, tensorstore_specs) return await asyncio.gather(*future_writer) asyncio.run(_run_serializer()) async def async_deserialize(mesh, mesh_axes, tensorstore_spec): t = ts.open(ts.Spec(tensorstore_spec), open=True).result() async def cb(index): return await t[index].read() return await create_async_gda_from_callback(t.shape, mesh, mesh_axes, cb) def run_deserialization(global_meshes, mesh_axes, tensorstore_specs): async def _run_deserializer(): future_gdas = jax.tree_map(async_deserialize, global_meshes, mesh_axes, tensorstore_specs) return await asyncio.gather(*future_gdas) return asyncio.run(_run_deserializer())
1fccb8fb07eda6f838b5b01854800df046dde04d
01548099ec20976d31cca7a720102c11c56fc9be
/scripts/handle_mysql.py
e9b295986da2e42b703e109bceae62db0fa7fd71
[]
no_license
OMEN001/Lemon_Api_Test
6a27a9a9ccf28623006b465a107d53b17ad30404
373c9f1a1f1f3160bbe8edcc4b5740f9779947ae
refs/heads/master
2023-02-25T22:31:39.824908
2021-01-24T14:22:52
2021-01-24T14:22:52
329,324,658
1
0
null
null
null
null
UTF-8
Python
false
false
2,651
py
# -*- coding: utf-8 -*- # @Time : BaLiang # @Author : 86187 import pymysql import random from scripts.handle_yaml import do_yaml class HandleMysql: def __init__(self): # 创建连接对象 self.conn = pymysql.connect(host=do_yaml.read('mysql', 'host'), # mysql服务器ip或者域名 user=do_yaml.read('mysql', 'user'), # 用户名 password=do_yaml.read('mysql', 'password'), db=do_yaml.read('mysql', 'db'), # 要连接的数据库名 port=do_yaml.read('mysql', 'port'), # 数据库端口号, 默认为3306(int型) charset='utf8', # 数据库编码为utf8, 不能设为utf-8 # 默认返回的结果为元祖或者嵌套元祖的列表 # 可以指定cursorclass为DictCursor, 那么返回的结果为字典或者嵌套字典的列表 cursorclass=pymysql.cursors.DictCursor) # 创建游标对象 self.cursor = self.conn.cursor() # 执行查询语句 def run(self,sql,args=None,is_more=False): # 通过游标对象执行sal self.cursor.execute(sql,args) # 通过连接对象提交 self.conn.commit() if is_more: return self.cursor.fetchall() else: return self.cursor.fetchone() @staticmethod def create_mobile(): # def create_mobile(self): 因为这里的self没有用到所以创建了静态方法(类中实例方法也可调用静态方法) """生成11位数字""" # return "183" + "".join(random.randint(10000000,99999999)) return "183" + "".join(random.sample("0123456789",8)) def is_existed_mobile(self, mobile): """判断收集好是否被注册""" sql = do_yaml.read("mysql","sql") if self.run(sql, args=[mobile]): return True else: return False def create_not_existed_mobile(self): """生成一个不存在的电话号码""" one_mobile = self.create_mobile() while True: if not self.is_existed_mobile(one_mobile): break return one_mobile def close(self): # 关闭游标对象 self.cursor.close() # 关闭连接对象 self.conn.close() if __name__ == '__main__': sql = "select max(id) from member;" do_mysql = HandleMysql() max_id = do_mysql.run(sql) print(max_id["max(id)"] + 1) do_mysql.close()
5d8433435bfdcf5f87e885ef711187b442bf55db
ecd9cbfa2c30e1bc39cf442e3302c4cb3cf1ea03
/bin/calculate_phylocsf.py
767ee44799121f64903399942d84fbb0d1288a98
[]
no_license
lixin856/proteogenomics-analysis-workflow
087c84971ab8386ef06d031244da37fd895e82f5
0b0a02dfb93cc5806ef9c951d1674d82f454ec29
refs/heads/master
2023-05-01T17:13:44.293272
2021-05-11T07:23:14
2021-05-11T07:23:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,579
py
#!/usr/bin/env python3 ''' the script is modified from Mikael Hussius @ SciLifeLab, https://github.com/hussius/gff-phylocsf-human download the following bigwig files first # wget https://data.broadinstitute.org/compbio1/PhyloCSFtracks/hg19/latest/PhyloCSF+0.bw # wget https://data.broadinstitute.org/compbio1/PhyloCSFtracks/hg19/latest/PhyloCSF+1.bw # wget https://data.broadinstitute.org/compbio1/PhyloCSFtracks/hg19/latest/PhyloCSF+2.bw # wget https://data.broadinstitute.org/compbio1/PhyloCSFtracks/hg19/latest/PhyloCSF-0.bw # wget https://data.broadinstitute.org/compbio1/PhyloCSFtracks/hg19/latest/PhyloCSF-1.bw # wget https://data.broadinstitute.org/compbio1/PhyloCSFtracks/hg19/latest/PhyloCSF-2.bw ''' import sys import os import pyBigWig as pw import numpy as np def predict_coding(vec): coding = "OTHER" for v in vec: if not v: continue if v > 0: coding = "CODING" return(coding) if len(sys.argv)<4: sys.exit("USAGE: python " + sys.argv[0] + "<GFF file> <BigWig file path> <output file>") infile = sys.argv[1] bw_file_path = sys.argv[2] outfile = sys.argv[3] regs = [] chrom={} starts={} ends={} peptide={} for line in open(infile): if not line.startswith("chr"): continue fields = line.strip().split() (chr, start, end, pept) = (fields[0], fields[3], fields[4], fields[8]) if not pept.startswith("Parent="): continue name = chr+":"+start+"-"+end chrom[name]=chr starts[name]=int(start) ends[name]=int(end) peptide[name]=pept.split("=")[1] regs.append(name) scores = {} rpathbase = os.path.join(bw_file_path,"PhyloCSF") for rf in ["+0","+1","+2","+3","-0","-1","-2","-3"]: rpath = rpathbase + rf + ".bw" if os.path.isfile(rpath): sys.stderr.write("Searching PhyloCSF reading frame " + rf + "\n") bw = pw.open(rpath) frame_score = {} count = 0 for r in regs: count += 1 if(count % 50 ==0): sys.stderr.write('\tProcessed ' + str(count) + " peptides out of " + str(len(regs)) + "\n") sys.stderr.flush() try: score = bw.stats(chrom[r], starts[r], ends[r])[0] except RuntimeError: pass frame_score[r] = score scores[rf] = frame_score bw.close() else: sys.stderr.write("%s doesn't exist \n" % rpath) output = open(outfile,"w") output.write("\t".join(["Bare peptide","PhyloCSF+0.score","PhyloCSF+1.score","PhyloCSF+2.score","PhyloCSF-0.score","PhyloCSF-1.score","PhyloCSF-2.score","PhyloCSF_prediction"])+"\n") pep_scores={} for r in regs: scoreList = [scores["+0"][r], scores["+1"][r], scores["+2"][r], scores["-0"][r], scores["-1"][r], scores["-2"][r]] seq = peptide[r] if seq not in pep_scores: pep_scores[seq]=scoreList else: # this is to consider splice junction peptides which have two regions separated in gff file, we take mean phylocsf score of two regions for i in range(0,len(scoreList)): value = scoreList[i] if value is None and pep_scores[seq][i] is None: continue elif None in [value, pep_scores[seq][i]]: pep_scores[seq][i] = value if value else pep_scores[seq][i] else: pep_scores[seq][i] = (pep_scores[seq][i] + value)/2 for seq in pep_scores: scoreList = pep_scores[seq] row = [seq]+['NA' if x is None else str(x) for x in scoreList] + [predict_coding(scoreList)] output.write('\t'.join(row) + '\n')
490c3ff06f2d1f0ec763b0b33cbe461f3ce4c015
c5c95aee3c04ab89f1aa3505f45768d15994be53
/myScript.spec
bac2683370cf6c59b42d84e6187d2d5590501df2
[]
no_license
snagavamsi123/Banking-Bot
16f55a9cad523ca63fb1bf47a1a802236adcd164
9745e51a2c3c8a2cf614d3052a3577fce40a74c0
refs/heads/master
2023-03-27T18:54:35.585541
2021-04-03T11:31:49
2021-04-03T11:31:49
354,273,629
0
0
null
null
null
null
UTF-8
Python
false
false
920
spec
# -*- mode: python ; coding: utf-8 -*- block_cipher = None a = Analysis(['myScript.py'], pathex=['C:\\Projects @tp\\Banking Bot\\BankingBot (1)\\BankingBot'], binaries=[], datas=[], hiddenimports=['pandas._libs.tslibs.timedeltas'], hookspath=[], runtime_hooks=[], excludes=[], win_no_prefer_redirects=False, win_private_assemblies=False, cipher=block_cipher, noarchive=False) pyz = PYZ(a.pure, a.zipped_data, cipher=block_cipher) exe = EXE(pyz, a.scripts, a.binaries, a.zipfiles, a.datas, [], name='myScript', debug=False, bootloader_ignore_signals=False, strip=False, upx=True, upx_exclude=[], runtime_tmpdir=None, console=True )
f9610abf23be1a086309f79e6e949e757fd77148
487ce91881032c1de16e35ed8bc187d6034205f7
/codes/CodeJamCrawler/16_0_2/Remi05/RevengeOfPancakes.py
fd169dd8bcbd41b26d7a608b5f9048070362f40d
[]
no_license
DaHuO/Supergraph
9cd26d8c5a081803015d93cf5f2674009e92ef7e
c88059dc66297af577ad2b8afa4e0ac0ad622915
refs/heads/master
2021-06-14T16:07:52.405091
2016-08-21T13:39:13
2016-08-21T13:39:13
49,829,508
2
0
null
2021-03-19T21:55:46
2016-01-17T18:23:00
Python
UTF-8
Python
false
false
824
py
import sys import itertools def formatOutput(n, result): return 'Case #' + str(n) + ': ' + result + '\n' file = open(sys.argv[1]) output = open('output.txt', 'w') nTests = int(file.readline()) HAPPY = '+' SAD = '-' testNb = 1 for line in itertools.islice(file, 0, nTests+1): stack = line.replace('\n', '') nFlips = 0 while SAD in stack: sPos = stack.index(SAD) if sPos != 0: stack = (sPos)*SAD + stack[sPos+1:] nFlips += 1 if HAPPY in stack: hPos = stack.index(HAPPY) stack = (hPos)*HAPPY + stack[hPos+1:] nFlips += 1 else: stack = stack.replace(SAD, HAPPY) nFlips += 1 output.write(formatOutput(testNb, str(nFlips))) testNb += 1
494970626e046ba086e9f9147e5adae928f73dd6
6b2a8dd202fdce77c971c412717e305e1caaac51
/solutions_2464487_1/Python/Andrew510/prob1.py
c9fc74984a7c57248747efda818c0b13b2a96b5c
[]
no_license
alexandraback/datacollection
0bc67a9ace00abbc843f4912562f3a064992e0e9
076a7bc7693f3abf07bfdbdac838cb4ef65ccfcf
refs/heads/master
2021-01-24T18:27:24.417992
2017-05-23T09:23:38
2017-05-23T09:23:38
84,313,442
2
4
null
null
null
null
UTF-8
Python
false
false
455
py
#!/usr/bin/python import math import sys infile = sys.stdin T = int(infile.readline()) for n in range(T): r, t = map(int, infile.readline().split()) b = 2*r - 1 xx = int(math.sqrt(b*b + 8*t)) sol = (-b + xx) / 4 #XXX need = 2*sol*sol + sol*b #print need, t while need > t: sol -= 1 need = 2*sol*sol + sol*b if sol < 0: sol = 0 print 'Case #%d: %d' % (n+1, sol)
d103f044e4b88a589318d2a3495451a5c29d7e4e
b19f1a0ed3b26f0b5cbc2a0b7db2141edc955901
/auto_test/Case_rbm/ftp_check_user/message.py
b6bd2eb9ef1d8977d9c1f2fee0b164c6ac7656c4
[]
no_license
wangqian0818/auto_test_platform
5a1f04cbf6007e6ff3dbb74e838981de53491526
64e32099ac2d79fb70d3727b085465aac0e49d3f
refs/heads/master
2023-04-26T23:39:04.232001
2021-05-22T12:23:02
2021-05-22T12:23:02
368,116,381
0
0
null
null
null
null
UTF-8
Python
false
false
1,098
py
import time from common import baseinfo from ftp_check_user import index datatime = time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())) proxy_ip = baseinfo.gwServerIp ftp_ip = baseinfo.ftp_ip username = index.username case2_allow_user = index.case2_allow_user addftp = { 'AddAgent':{ "MethodName":"AddAgent", "MessageTime":datatime, "Sender":"Centre0", "Content":[{ "InProtocol":"ftp", "Type":2, "InPort":8887, "domain":"all", "SyncId":87, "OutAddr":[{"OutPort":21,"OutIp":ftp_ip}], "InIp":proxy_ip }] }} delftp = { 'DelAgent':{ "MethodName":"DelAgent", "MessageTime":datatime, "Sender":"Centre0", "Content":[{ "InProtocol":"ftp", "Type":2, "InPort":8887, "domain":"all", "SyncId":87, "OutAddr":[{"OutPort":21,"OutIp":ftp_ip}], "InIp":proxy_ip }]} } ftpcheck1 = {'SetFtpCheck':{ "MethodName":"SetFtpCheck", "MessageTime":datatime, "Sender":"Centre0", "Content":[{ "Type":"user","DataCheck":username} ]} } ftpcheck2 = {'SetFtpCheck':{ "MethodName":"SetFtpCheck", "MessageTime":datatime, "Sender":"Centre0", "Content":[{ "Type":"user","DataCheck":f'{username};{case2_allow_user}'} ]} }
1a8534c747ce64a7d53d310af6a6610ca5a802de
b7dd07413c05a13207988535b755b7d28dbc5663
/Chapter_11/name_function.py
ff49f2a5f8b4c33b8d0e85a0b57ace81dc09e227
[]
no_license
GrnTeaLatte/AlienInvasion
b671a87cd730c3d4b31a8e8d760d2d02d576cfb3
d60e8e65adb79e54a1e1c579825827355a7e85ea
refs/heads/main
2023-02-26T03:55:26.799446
2020-11-03T00:42:06
2020-11-03T00:42:06
336,111,408
0
0
null
null
null
null
UTF-8
Python
false
false
222
py
def get_formatted_name(first, last, middle=''): """Generate a neatly formatted full name.""" if middle: full_name = first + ' ' + middle + ' ' + last else: full_name = first + ' ' + last return full_name.title()
ba139b91da3b1c9b90d16903405e283f9fc3ed5e
63b364ad79288be56c55c83b7d78785b60be3a2e
/ssm/core.py
67c2527f8918067c2a1d811cbbe165edf9664ffd
[ "MIT" ]
permissive
quliuwuyihmy/ssm
65b69ce0e62ac65a3b99f1d20fc92a99b6769492
7d4e8830cfc7f30f8e1429149e239b823478cc14
refs/heads/master
2020-04-01T22:42:07.580301
2018-10-17T19:55:51
2018-10-17T19:55:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
24,937
py
import copy import warnings from functools import partial import tqdm import autograd.numpy as np import autograd.numpy.random as npr from autograd.scipy.misc import logsumexp from autograd.misc.optimizers import sgd, adam from autograd.tracer import getval from autograd import grad from ssm.primitives import hmm_normalizer, hmm_expected_states, hmm_filter, viterbi from ssm.util import ensure_args_are_lists, ensure_args_not_none, \ ensure_slds_args_not_none, ensure_elbo_args_are_lists, adam_with_convergence_check class _HMM(object): """ Base class for hidden Markov models. Notation: K: number of discrete latent states D: dimensionality of observations M: dimensionality of inputs In the code we will sometimes refer to the discrete latent state sequence as z and the data as x. """ def __init__(self, K, D, M, init_state_distn, transitions, observations): self.K, self.D, self.M = K, D, M self.init_state_distn = init_state_distn self.transitions = transitions self.observations = observations self._fitting_methods = \ dict(sgd=partial(self._fit_sgd, "sgd"), adam=partial(self._fit_sgd, "adam"), em=self._fit_em, stochastic_em=partial(self._fit_stochastic_em, "adam"), stochastic_em_sgd=partial(self._fit_stochastic_em, "sgd"), ) @property def params(self): return self.init_state_distn.params, \ self.transitions.params, \ self.observations.params @params.setter def params(self, value): self.init_state_distn.params = value[0] self.transitions.params = value[1] self.observations.params = value[2] @ensure_args_are_lists def initialize(self, datas, inputs=None, masks=None, tags=None): """ Initialize parameters given data. """ self.init_state_distn.initialize(datas, inputs=inputs, masks=masks, tags=tags) self.transitions.initialize(datas, inputs=inputs, masks=masks, tags=tags) self.observations.initialize(datas, inputs=inputs, masks=masks, tags=tags) def permute(self, perm): """ Permute the discrete latent states. """ assert np.all(np.sort(perm) == np.arange(self.K)) self.init_state_distn.permute(perm) self.transitions.permute(perm) self.observations.permute(perm) def sample(self, T, prefix=None, input=None, tag=None, with_noise=True): K, D = self.K, self.D # If prefix is given, pad the output with it if prefix is None: pad = 1 z = np.zeros(T+1, dtype=int) data = np.zeros((T+1, D)) input = np.zeros((T+1, self.M)) if input is None else input mask = np.ones((T+1, D), dtype=bool) # Sample the first state from the initial distribution pi0 = np.exp(self.init_state_distn.log_initial_state_distn(data, input, mask, tag)) z[0] = npr.choice(self.K, p=pi0) data[0] = self.observations.sample_x(z[0], data[:0], with_noise=with_noise) else: zhist, xhist = prefix pad = len(zhist) assert zhist.dtype == int and zhist.min() >= 0 and zhist.max() < K assert xhist.shape == (pad, D) z = np.concatenate((zhist, np.zeros(T, dtype=int))) data = np.concatenate((xhist, np.zeros((T, D)))) input = np.zeros((T+pad, self.M)) if input is None else input mask = np.ones((T+pad, D), dtype=bool) # Fill in the rest of the data for t in range(pad, pad+T): Pt = np.exp(self.transitions.log_transition_matrices(data[t-1:t+1], input[t-1:t+1], mask=mask[t-1:t+1], tag=tag))[0] z[t] = npr.choice(self.K, p=Pt[z[t-1]]) data[t] = self.observations.sample_x(z[t], data[:t], input=input[t], tag=tag, with_noise=with_noise) return z[pad:], data[pad:] @ensure_args_not_none def expected_states(self, data, input=None, mask=None, tag=None): log_pi0 = self.init_state_distn.log_initial_state_distn(data, input, mask, tag) log_Ps = self.transitions.log_transition_matrices(data, input, mask, tag) log_likes = self.observations.log_likelihoods(data, input, mask, tag) return hmm_expected_states(log_pi0, log_Ps, log_likes) @ensure_args_not_none def most_likely_states(self, data, input=None, mask=None, tag=None): log_pi0 = self.init_state_distn.log_initial_state_distn(data, input, mask, tag) log_Ps = self.transitions.log_transition_matrices(data, input, mask, tag) log_likes = self.observations.log_likelihoods(data, input, mask, tag) return viterbi(log_pi0, log_Ps, log_likes) @ensure_args_not_none def filter(self, data, input=None, mask=None, tag=None): log_pi0 = self.init_state_distn.log_initial_state_distn(data, input, mask, tag) log_Ps = self.transitions.log_transition_matrices(data, input, mask, tag) log_likes = self.observations.log_likelihoods(data, input, mask, tag) return hmm_filter(log_pi0, log_Ps, log_likes) @ensure_args_not_none def smooth(self, data, input=None, mask=None, tag=None): """ Compute the mean observation under the posterior distribution of latent discrete states. """ Ez, _, _ = self.expected_states(data, input, mask) return self.observations.smooth(Ez, data, input, tag) def log_prior(self): """ Compute the log prior probability of the model parameters """ return self.init_state_distn.log_prior() + \ self.transitions.log_prior() + \ self.observations.log_prior() @ensure_args_are_lists def log_likelihood(self, datas, inputs=None, masks=None, tags=None): """ Compute the log probability of the data under the current model parameters. :param datas: single array or list of arrays of data. :return total log probability of the data. """ ll = 0 for data, input, mask, tag in zip(datas, inputs, masks, tags): log_pi0 = self.init_state_distn.log_initial_state_distn(data, input, mask, tag) log_Ps = self.transitions.log_transition_matrices(data, input, mask, tag) log_likes = self.observations.log_likelihoods(data, input, mask, tag) ll += hmm_normalizer(log_pi0, log_Ps, log_likes) assert np.isfinite(ll) return ll @ensure_args_are_lists def log_probability(self, datas, inputs=None, masks=None, tags=None): return self.log_likelihood(datas, inputs, masks, tags) + self.log_prior() def expected_log_probability(self, expectations, datas, inputs=None, masks=None, tags=None): """ Compute the log probability of the data under the current model parameters. :param datas: single array or list of arrays of data. :return total log probability of the data. """ elp = self.log_prior() for (Ez, Ezzp1, _), data, input, mask, tag in zip(expectations, datas, inputs, masks, tags): log_pi0 = self.init_state_distn.log_initial_state_distn(data, input, mask, tag) log_Ps = self.transitions.log_transition_matrices(data, input, mask, tag) log_likes = self.observations.log_likelihoods(data, input, mask, tag) # Compute the expected log probability elp += np.sum(Ez[0] * log_pi0) elp += np.sum(Ezzp1 * log_Ps) elp += np.sum(Ez * log_likes) assert np.isfinite(elp) return elp # Model fitting def _fit_sgd(self, optimizer, datas, inputs, masks, tags, print_intvl=10, **kwargs): """ Fit the model with maximum marginal likelihood. """ T = sum([data.shape[0] for data in datas]) def _objective(params, itr): self.params = params obj = self.log_probability(datas, inputs, masks, tags) return -obj / T lls = [] def _print_progress(params, itr, g): lls.append(self.log_probability(datas, inputs, masks, tags)._value) if itr % print_intvl == 0: print("Iteration {}. LL: {}".format(itr, lls[-1])) optimizers = dict(sgd=sgd, adam=adam, adam_with_convergence_check=adam_with_convergence_check) self.params = \ optimizers[optimizer](grad(_objective), self.params, callback=_print_progress, **kwargs) return lls def _fit_stochastic_em(self, optimizer, datas, inputs, masks, tags, num_epochs=100, **kwargs): """ Replace the M-step of EM with a stochastic gradient update using the ELBO computed on a minibatch of data. """ M = len(datas) T = sum([data.shape[0] for data in datas]) perm = [np.random.permutation(M) for _ in range(num_epochs)] def _get_minibatch(itr): epoch = itr // M m = itr % M i = perm[epoch][m] return datas[i], inputs[i], masks[i], tags[i] def _objective(params, itr): # Grab a minibatch of data data, input, mask, tag = _get_minibatch(itr) Ti = data.shape[0] # E step: compute expected latent states with current parameters Ez, Ezzp1, _ = self.expected_states(data, input, mask, tag) # M step: set the parameter and compute the (normalized) objective function self.params = params log_pi0 = self.init_state_distn.log_initial_state_distn(data, input, mask, tag) log_Ps = self.transitions.log_transition_matrices(data, input, mask, tag) log_likes = self.observations.log_likelihoods(data, input, mask, tag) # Compute the expected log probability # (Scale by number of length of this minibatch.) obj = self.log_prior() obj += np.sum(Ez[0] * log_pi0) * M obj += np.sum(Ezzp1 * log_Ps) * (T - M) / (Ti - 1) obj += np.sum(Ez * log_likes) * T / Ti assert np.isfinite(obj) return -obj / T lls = [] pbar = tqdm.trange(num_epochs * M) def _print_progress(params, itr, g): epoch = itr // M m = itr % M lls.append(-T * _objective(params, itr)) pbar.set_description("Epoch {} Itr {} LP: {:.1f}".format(epoch, m, lls[-1])) pbar.update(1) # Run the optimizer optimizers = dict(sgd=sgd, adam=adam) self.params = \ optimizers[optimizer](grad(_objective), self.params, callback=_print_progress, num_iters=num_epochs * M) return lls def _fit_em(self, datas, inputs, masks, tags, num_em_iters=100, **kwargs): """ Fit the parameters with expectation maximization. E step: compute E[z_t] and E[z_t, z_{t+1}] with message passing; M-step: analytical maximization of E_{p(z | x)} [log p(x, z; theta)]. """ pbar = tqdm.trange(num_em_iters) lls = [self.log_probability(datas, inputs, masks, tags)] pbar.set_description("LP: {:.1f}".format(lls[-1])) for itr in pbar: # E step: compute expected latent states with current parameters expectations = [self.expected_states(data, input, mask, tag) for data, input, mask, tag in zip(datas, inputs, masks, tags)] # M step: maximize expected log joint wrt parameters self.init_state_distn.m_step(expectations, datas, inputs, masks, tags, **kwargs) self.transitions.m_step(expectations, datas, inputs, masks, tags, **kwargs) self.observations.m_step(expectations, datas, inputs, masks, tags, **kwargs) # Store progress lls.append(self.log_prior() + sum([ll for (_, _, ll) in expectations])) pbar.set_description("LP: {:.1f}".format(lls[-1])) return lls @ensure_args_are_lists def fit(self, datas, inputs=None, masks=None, tags=None, method="sgd", initialize=True, **kwargs): if method not in self._fitting_methods: raise Exception("Invalid method: {}. Options are {}".\ format(method, self._fitting_methods.keys())) if initialize: self.initialize(datas, inputs=inputs, masks=masks, tags=tags) return self._fitting_methods[method](datas, inputs=inputs, masks=masks, tags=tags, **kwargs) class _SwitchingLDS(object): """ Switching linear dynamical system fit with stochastic variational inference on the marginal model, integrating out the discrete states. """ def __init__(self, N, K, D, M, init_state_distn, transitions, dynamics, emissions): self.N, self.K, self.D, self.M = N, K, D, M self.init_state_distn = init_state_distn self.transitions = transitions self.dynamics = dynamics self.emissions = emissions # Only allow fitting by SVI self._fitting_methods = dict(svi=self._fit_svi) @property def params(self): return self.init_state_distn.params, \ self.transitions.params, \ self.dynamics.params, \ self.emissions.params @params.setter def params(self, value): self.init_state_distn.params = value[0] self.transitions.params = value[1] self.dynamics.params = value[2] self.emissions.params = value[3] @ensure_args_are_lists def initialize(self, datas, inputs=None, masks=None, tags=None, num_em_iters=25, verbose=False): # First initialize the observation model self.emissions.initialize(datas, inputs, masks, tags) # Get the initialized variational mean for the data xs = [self.emissions.initialize_variational_params(data, input, mask, tag)[0] for data, input, mask, tag in zip(datas, inputs, masks, tags)] xmasks = [np.ones_like(x, dtype=bool) for x in xs] # Now run a few iterations of EM on a ARHMM with the variational mean print("Initializing with an ARHMM using {} steps of EM.".format(num_em_iters)) arhmm = _HMM(self.K, self.D, self.M, copy.deepcopy(self.init_state_distn), copy.deepcopy(self.transitions), copy.deepcopy(self.dynamics)) arhmm.fit(xs, inputs=inputs, masks=xmasks, tags=tags, method="em", num_em_iters=num_em_iters, num_iters=10, verbose=verbose) self.init_state_distn = copy.deepcopy(arhmm.init_state_distn) self.transitions = copy.deepcopy(arhmm.transitions) self.dynamics = copy.deepcopy(arhmm.observations) print("Done") def permute(self, perm): """ Permute the discrete latent states. """ assert np.all(np.sort(perm) == np.arange(self.K)) self.init_state_distn.permute(perm) self.transitions.permute(perm) self.dynamics.permute(perm) self.emissions.permute(perm) def log_prior(self): """ Compute the log prior probability of the model parameters """ return self.init_state_distn.log_prior() + \ self.transitions.log_prior() + \ self.dynamics.log_prior() + \ self.emissions.log_prior() def sample(self, T, input=None, tag=None): K, D = self.K, self.D input = np.zeros((T, self.M)) if input is None else input mask = np.ones((T, D), dtype=bool) # Initialize outputs z = np.zeros(T, dtype=int) x = np.zeros((T, D)) # Sample discrete and continuous latent states pi0 = np.exp(self.init_state_distn.log_initial_state_distn(x, input, mask, tag)) z[0] = npr.choice(self.K, p=pi0) x[0] = self.dynamics.sample_x(z[0], x[:0], tag=tag) for t in range(1, T): Pt = np.exp(self.transitions.log_transition_matrices(x[t-1:t+1], input[t-1:t+1], mask=mask[t-1:t+1], tag=tag))[0] z[t] = npr.choice(self.K, p=Pt[z[t-1]]) x[t] = self.dynamics.sample_x(z[t], x[:t], input=input[t], tag=tag) # Sample observations given latent states y = self.emissions.sample_y(z, x, input=input, tag=tag) return z, x, y @ensure_slds_args_not_none def expected_states(self, variational_mean, data, input=None, mask=None, tag=None): log_pi0 = self.init_state_distn.log_initial_state_distn(variational_mean, input, mask, tag) log_Ps = self.transitions.log_transition_matrices(variational_mean, input, mask, tag) log_likes = self.dynamics.log_likelihoods(variational_mean, input, np.ones_like(variational_mean, dtype=bool), tag) log_likes += self.emissions.log_likelihoods(data, input, mask, tag, variational_mean) return hmm_expected_states(log_pi0, log_Ps, log_likes) @ensure_slds_args_not_none def most_likely_states(self, variational_mean, data, input=None, mask=None, tag=None): Ez, _ = self.expected_states(variational_mean, data, input, mask, tag) return np.argmax(Ez, axis=1) @ensure_slds_args_not_none def smooth(self, variational_mean, data, input=None, mask=None, tag=None): """ Compute the mean observation under the posterior distribution of latent discrete states. """ Ez, _ = self.expected_states(variational_mean, data, input, mask, tag) return self.emissions.smooth(Ez, variational_mean, data, input, tag) @ensure_args_are_lists def log_probability(self, datas, inputs=None, masks=None, tags=None): warnings.warn("Cannot compute exact marginal log probability for the SLDS. " "the ELBO instead.") return np.nan @ensure_elbo_args_are_lists def elbo(self, variational_params, datas, inputs=None, masks=None, tags=None, n_samples=1): """ Lower bound on the marginal likelihood p(y | theta) using variational posterior q(x; phi) where phi = variational_params """ elbo = 0 for data, input, mask, tag, (q_mu, q_sigma_inv) in \ zip(datas, inputs, masks, tags, variational_params): q_sigma = np.exp(q_sigma_inv) for sample in range(n_samples): # log p(theta) elbo += self.log_prior() # Sample x from the variational posterior x = q_mu + np.sqrt(q_sigma) * npr.randn(data.shape[0], self.D) # Compute log p(x | theta) = log \sum_z p(x, z | theta) # The "mask" for x is all ones x_mask = np.ones_like(x, dtype=bool) log_pi0 = self.init_state_distn.log_initial_state_distn(x, input, x_mask, tag) log_Ps = self.transitions.log_transition_matrices(x, input, x_mask, tag) log_likes = self.dynamics.log_likelihoods(x, input, x_mask, tag) log_likes += self.emissions.log_likelihoods(data, input, mask, tag, x) elbo += hmm_normalizer(log_pi0, log_Ps, log_likes) # -log q(x) elbo -= np.sum(-0.5 * np.log(2 * np.pi * q_sigma)) elbo -= np.sum(-0.5 * (x - q_mu)**2 / q_sigma) assert np.isfinite(elbo) return elbo / n_samples def _fit_svi(self, datas, inputs, masks, tags, learning=True, optimizer="adam", print_intvl=1, **kwargs): """ Fit with stochastic variational inference using a mean field Gaussian approximation for the latent states x_{1:T}. """ T = sum([data.shape[0] for data in datas]) # Initialize the variational posterior parameters variational_params = [self.emissions.initialize_variational_params(data, input, mask, tag) for data, input, mask, tag in zip(datas, inputs, masks, tags)] def _objective(params, itr): if learning: self.params, variational_params = params else: variational_params = params obj = self.elbo(variational_params, datas, inputs, masks, tags) return -obj / T elbos = [] def _print_progress(params, itr, g): elbos.append(-_objective(params, itr) * T) if itr % print_intvl == 0: print("Iteration {}. ELBO: {:.1f}".format(itr, elbos[-1])) optimizers = dict(sgd=sgd, adam=adam, adam_with_convergence_check=adam_with_convergence_check) initial_params = (self.params, variational_params) if learning else variational_params results = \ optimizers[optimizer](grad(_objective), initial_params, callback=_print_progress, **kwargs) if learning: self.params, variational_params = results else: variational_params = results # unpack outputs as necessary variational_params = variational_params[0] if len(variational_params) == 1 else variational_params return elbos, variational_params @ensure_args_are_lists def fit(self, datas, inputs=None, masks=None, tags=None, method="svi", initialize=True, **kwargs): if method not in self._fitting_methods: raise Exception("Invalid method: {}. Options are {}".\ format(method, self._fitting_methods.keys())) if initialize: self.initialize(datas, inputs, masks, tags) return self._fitting_methods[method](datas, inputs, masks, tags, learning=True, **kwargs) @ensure_args_are_lists def approximate_posterior(self, datas, inputs=None, masks=None, tags=None, method="svi", **kwargs): if method not in self._fitting_methods: raise Exception("Invalid method: {}. Options are {}".\ format(method, self._fitting_methods.keys())) return self._fitting_methods[method](datas, inputs, masks, tags, learning=False, **kwargs) class _LDS(_SwitchingLDS): """ Switching linear dynamical system fit with stochastic variational inference on the marginal model, integrating out the discrete states. """ def __init__(self, N, D, M, dynamics, emissions): from ssm.init_state_distns import InitialStateDistribution from ssm.transitions import StationaryTransitions init_state_distn = InitialStateDistribution(1, D, M) transitions = StationaryTransitions(1, D, M) super(_LDS, self).__init__(N, 1, D, M, init_state_distn, transitions, dynamics, emissions) @ensure_slds_args_not_none def expected_states(self, variational_mean, data, input=None, mask=None, tag=None): return np.ones((variational_mean.shape[0], 1)), \ np.ones((variational_mean.shape[0], 1, 1)), @ensure_slds_args_not_none def most_likely_states(self, variational_mean, data, input=None, mask=None, tag=None): raise NotImplementedError def log_prior(self): return self.dynamics.log_prior() + self.emissions.log_prior() @ensure_args_are_lists def log_probability(self, datas, inputs=None, masks=None, tags=None): warnings.warn("Log probability of LDS is not yet implemented.") return np.nan @ensure_elbo_args_are_lists def elbo(self, variational_params, datas, inputs=None, masks=None, tags=None, n_samples=1): """ Lower bound on the marginal likelihood p(y | theta) using variational posterior q(x; phi) where phi = variational_params """ elbo = 0 for data, input, mask, tag, (q_mu, q_sigma_inv) in \ zip(datas, inputs, masks, tags, variational_params): q_sigma = np.exp(q_sigma_inv) for sample in range(n_samples): # log p(theta) elbo += self.log_prior() # Sample x from the variational posterior x = q_mu + np.sqrt(q_sigma) * npr.randn(data.shape[0], self.D) x_mask = np.ones_like(x, dtype=bool) # Compute log p(y, x | theta) elbo += np.sum(self.dynamics.log_likelihoods(x, input, x_mask, tag)) elbo += np.sum(self.emissions.log_likelihoods(data, input, mask, tag, x)) # -log q(x) elbo -= np.sum(-0.5 * np.log(2 * np.pi * q_sigma)) elbo -= np.sum(-0.5 * (x - q_mu)**2 / q_sigma) assert np.isfinite(elbo) return elbo / n_samples
8a3240dd4912d714f1b093941c011621f9e39570
1ee3dc4fa096d12e409af3a298ba01f5558c62b5
/ixnetwork_restpy/testplatform/sessions/ixnetwork/traffic/statistics/statistics.py
dc0d25842e6752902a80cfea75ca7c0ec4747a1a
[ "MIT" ]
permissive
parthpower/ixnetwork_restpy
321e64a87be0a4d990276d26f43aca9cf4d43cc9
73fa29796a5178c707ee4e21d90ff4dad31cc1ed
refs/heads/master
2020-07-04T13:34:42.162458
2019-08-13T20:33:17
2019-08-13T20:33:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,933
py
# MIT LICENSE # # Copyright 1997 - 2019 by IXIA Keysight # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from ixnetwork_restpy.base import Base from ixnetwork_restpy.files import Files class Statistics(Base): """The Statistics class encapsulates a required statistics node in the ixnetwork hierarchy. An instance of the class can be obtained by accessing the Statistics property from a parent instance. The internal properties list will contain one and only one set of properties which is populated when the property is accessed. """ _SDM_NAME = 'statistics' def __init__(self, parent): super(Statistics, self).__init__(parent) @property def AdvancedSequenceChecking(self): """An instance of the AdvancedSequenceChecking class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.traffic.statistics.advancedsequencechecking.advancedsequencechecking.AdvancedSequenceChecking) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.traffic.statistics.advancedsequencechecking.advancedsequencechecking import AdvancedSequenceChecking return AdvancedSequenceChecking(self)._select() @property def CpdpConvergence(self): """An instance of the CpdpConvergence class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.traffic.statistics.cpdpconvergence.cpdpconvergence.CpdpConvergence) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.traffic.statistics.cpdpconvergence.cpdpconvergence import CpdpConvergence return CpdpConvergence(self)._select() @property def DataIntegrity(self): """An instance of the DataIntegrity class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.traffic.statistics.dataintegrity.dataintegrity.DataIntegrity) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.traffic.statistics.dataintegrity.dataintegrity import DataIntegrity return DataIntegrity(self)._select() @property def DelayVariation(self): """An instance of the DelayVariation class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.traffic.statistics.delayvariation.delayvariation.DelayVariation) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.traffic.statistics.delayvariation.delayvariation import DelayVariation return DelayVariation(self)._select() @property def ErrorStats(self): """An instance of the ErrorStats class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.traffic.statistics.errorstats.errorstats.ErrorStats) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.traffic.statistics.errorstats.errorstats import ErrorStats return ErrorStats(self)._select() @property def InterArrivalTimeRate(self): """An instance of the InterArrivalTimeRate class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.traffic.statistics.interarrivaltimerate.interarrivaltimerate.InterArrivalTimeRate) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.traffic.statistics.interarrivaltimerate.interarrivaltimerate import InterArrivalTimeRate return InterArrivalTimeRate(self)._select() @property def Iptv(self): """An instance of the Iptv class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.traffic.statistics.iptv.iptv.Iptv) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.traffic.statistics.iptv.iptv import Iptv return Iptv(self)._select() @property def L1Rates(self): """An instance of the L1Rates class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.traffic.statistics.l1rates.l1rates.L1Rates) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.traffic.statistics.l1rates.l1rates import L1Rates return L1Rates(self)._select() @property def Latency(self): """An instance of the Latency class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.traffic.statistics.latency.latency.Latency) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.traffic.statistics.latency.latency import Latency return Latency(self)._select() @property def MisdirectedPerFlow(self): """An instance of the MisdirectedPerFlow class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.traffic.statistics.misdirectedperflow.misdirectedperflow.MisdirectedPerFlow) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.traffic.statistics.misdirectedperflow.misdirectedperflow import MisdirectedPerFlow return MisdirectedPerFlow(self)._select() @property def MultipleJoinLeaveLatency(self): """An instance of the MultipleJoinLeaveLatency class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.traffic.statistics.multiplejoinleavelatency.multiplejoinleavelatency.MultipleJoinLeaveLatency) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.traffic.statistics.multiplejoinleavelatency.multiplejoinleavelatency import MultipleJoinLeaveLatency return MultipleJoinLeaveLatency(self)._select() @property def OneTimeJoinLeaveLatency(self): """An instance of the OneTimeJoinLeaveLatency class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.traffic.statistics.onetimejoinleavelatency.onetimejoinleavelatency.OneTimeJoinLeaveLatency) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.traffic.statistics.onetimejoinleavelatency.onetimejoinleavelatency import OneTimeJoinLeaveLatency return OneTimeJoinLeaveLatency(self)._select() @property def PacketLossDuration(self): """An instance of the PacketLossDuration class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.traffic.statistics.packetlossduration.packetlossduration.PacketLossDuration) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.traffic.statistics.packetlossduration.packetlossduration import PacketLossDuration return PacketLossDuration(self)._select() @property def Prbs(self): """An instance of the Prbs class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.traffic.statistics.prbs.prbs.Prbs) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.traffic.statistics.prbs.prbs import Prbs return Prbs(self)._select() @property def SequenceChecking(self): """An instance of the SequenceChecking class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.traffic.statistics.sequencechecking.sequencechecking.SequenceChecking) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.traffic.statistics.sequencechecking.sequencechecking import SequenceChecking return SequenceChecking(self)._select()
7cd000559400fe32194070d58464cca0aa9ce297
bdc0b8809d52933c10f8eb77442bd0b4453f28f9
/build/nav_msgs/rosidl_generator_py/nav_msgs/msg/_map_meta_data.py
df3dc46c9436798500483901a5ad8cffd380adde
[]
no_license
ClaytonCalabrese/BuiltRos2Eloquent
967f688bbca746097016dbd34563716bd98379e3
76bca564bfd73ef73485e5c7c48274889032e408
refs/heads/master
2021-03-27T22:42:12.976367
2020-03-17T14:24:07
2020-03-17T14:24:07
247,810,969
1
0
null
null
null
null
UTF-8
Python
false
false
7,517
py
# generated from rosidl_generator_py/resource/_idl.py.em # with input from nav_msgs:msg/MapMetaData.idl # generated code does not contain a copyright notice # Import statements for member types import rosidl_parser.definition # noqa: E402, I100 class Metaclass_MapMetaData(type): """Metaclass of message 'MapMetaData'.""" _CREATE_ROS_MESSAGE = None _CONVERT_FROM_PY = None _CONVERT_TO_PY = None _DESTROY_ROS_MESSAGE = None _TYPE_SUPPORT = None __constants = { } @classmethod def __import_type_support__(cls): try: from rosidl_generator_py import import_type_support module = import_type_support('nav_msgs') except ImportError: import logging import traceback logger = logging.getLogger( 'nav_msgs.msg.MapMetaData') logger.debug( 'Failed to import needed modules for type support:\n' + traceback.format_exc()) else: cls._CREATE_ROS_MESSAGE = module.create_ros_message_msg__msg__map_meta_data cls._CONVERT_FROM_PY = module.convert_from_py_msg__msg__map_meta_data cls._CONVERT_TO_PY = module.convert_to_py_msg__msg__map_meta_data cls._TYPE_SUPPORT = module.type_support_msg__msg__map_meta_data cls._DESTROY_ROS_MESSAGE = module.destroy_ros_message_msg__msg__map_meta_data from builtin_interfaces.msg import Time if Time.__class__._TYPE_SUPPORT is None: Time.__class__.__import_type_support__() from geometry_msgs.msg import Pose if Pose.__class__._TYPE_SUPPORT is None: Pose.__class__.__import_type_support__() @classmethod def __prepare__(cls, name, bases, **kwargs): # list constant names here so that they appear in the help text of # the message class under "Data and other attributes defined here:" # as well as populate each message instance return { } class MapMetaData(metaclass=Metaclass_MapMetaData): """Message class 'MapMetaData'.""" __slots__ = [ '_map_load_time', '_resolution', '_width', '_height', '_origin', ] _fields_and_field_types = { 'map_load_time': 'builtin_interfaces/Time', 'resolution': 'float', 'width': 'uint32', 'height': 'uint32', 'origin': 'geometry_msgs/Pose', } SLOT_TYPES = ( rosidl_parser.definition.NamespacedType(['builtin_interfaces', 'msg'], 'Time'), # noqa: E501 rosidl_parser.definition.BasicType('float'), # noqa: E501 rosidl_parser.definition.BasicType('uint32'), # noqa: E501 rosidl_parser.definition.BasicType('uint32'), # noqa: E501 rosidl_parser.definition.NamespacedType(['geometry_msgs', 'msg'], 'Pose'), # noqa: E501 ) def __init__(self, **kwargs): assert all('_' + key in self.__slots__ for key in kwargs.keys()), \ 'Invalid arguments passed to constructor: %s' % \ ', '.join(sorted(k for k in kwargs.keys() if '_' + k not in self.__slots__)) from builtin_interfaces.msg import Time self.map_load_time = kwargs.get('map_load_time', Time()) self.resolution = kwargs.get('resolution', float()) self.width = kwargs.get('width', int()) self.height = kwargs.get('height', int()) from geometry_msgs.msg import Pose self.origin = kwargs.get('origin', Pose()) def __repr__(self): typename = self.__class__.__module__.split('.') typename.pop() typename.append(self.__class__.__name__) args = [] for s, t in zip(self.__slots__, self.SLOT_TYPES): field = getattr(self, s) fieldstr = repr(field) # We use Python array type for fields that can be directly stored # in them, and "normal" sequences for everything else. If it is # a type that we store in an array, strip off the 'array' portion. if ( isinstance(t, rosidl_parser.definition.AbstractSequence) and isinstance(t.value_type, rosidl_parser.definition.BasicType) and t.value_type.typename in ['float', 'double', 'int8', 'uint8', 'int16', 'uint16', 'int32', 'uint32', 'int64', 'uint64'] ): if len(field) == 0: fieldstr = '[]' else: assert fieldstr.startswith('array(') prefix = "array('X', " suffix = ')' fieldstr = fieldstr[len(prefix):-len(suffix)] args.append(s[1:] + '=' + fieldstr) return '%s(%s)' % ('.'.join(typename), ', '.join(args)) def __eq__(self, other): if not isinstance(other, self.__class__): return False if self.map_load_time != other.map_load_time: return False if self.resolution != other.resolution: return False if self.width != other.width: return False if self.height != other.height: return False if self.origin != other.origin: return False return True @classmethod def get_fields_and_field_types(cls): from copy import copy return copy(cls._fields_and_field_types) @property def map_load_time(self): """Message field 'map_load_time'.""" return self._map_load_time @map_load_time.setter def map_load_time(self, value): if __debug__: from builtin_interfaces.msg import Time assert \ isinstance(value, Time), \ "The 'map_load_time' field must be a sub message of type 'Time'" self._map_load_time = value @property def resolution(self): """Message field 'resolution'.""" return self._resolution @resolution.setter def resolution(self, value): if __debug__: assert \ isinstance(value, float), \ "The 'resolution' field must be of type 'float'" self._resolution = value @property def width(self): """Message field 'width'.""" return self._width @width.setter def width(self, value): if __debug__: assert \ isinstance(value, int), \ "The 'width' field must be of type 'int'" assert value >= 0 and value < 4294967296, \ "The 'width' field must be an unsigned integer in [0, 4294967295]" self._width = value @property def height(self): """Message field 'height'.""" return self._height @height.setter def height(self, value): if __debug__: assert \ isinstance(value, int), \ "The 'height' field must be of type 'int'" assert value >= 0 and value < 4294967296, \ "The 'height' field must be an unsigned integer in [0, 4294967295]" self._height = value @property def origin(self): """Message field 'origin'.""" return self._origin @origin.setter def origin(self, value): if __debug__: from geometry_msgs.msg import Pose assert \ isinstance(value, Pose), \ "The 'origin' field must be a sub message of type 'Pose'" self._origin = value
8cf6fd89ee600098c8692b913af978be39e9889e
da9a5b53d41474dfc588e7b8a14e0192e81bdb47
/GUI Programming with Python and Kivy BOOK/slugrace107/accident.py
5dc107fe1f66fade5a6c85d846a0a1bddf0a81bc
[]
no_license
prospero-apps/python
1c0bdded512c8e73360511118f7ba643772af774
67719d8c25f6f13f21ba0c260aadf43beb8de99d
refs/heads/master
2021-11-28T16:22:55.108106
2021-11-17T22:13:24
2021-11-17T22:13:24
173,511,053
5
8
null
null
null
null
UTF-8
Python
false
false
10,139
py
# File name: accident.py from abc import ABC, abstractmethod from kivy.core.audio import SoundLoader class Accident(ABC): intro = 'BREAKING NEWS: ' def __init__(self, name, headlines, sound, position = 0, slug = None, image = None): self.name = name self.headlines = headlines self.sound = SoundLoader.load(sound) self.position = position self.slug = slug self.image = image @abstractmethod def happen(self): pass @abstractmethod def reset(self): pass ### BROKEN LEG ### class BrokenLegAccident(Accident): name = 'Broken Leg' headlines = [ "just broke his leg and is grounded!", "broke his leg, which is practically all he consists of!", "suffered from an open fracture. All he can do now is watch the others win!", "broke his only leg and now looks pretty helpless!", "tripped over a root and broke his leg!"] sound = 'assets/sounds/Accidents/Broken Leg.mp3' def __init__(self, **kwargs): super().__init__(name=self.name, headlines=self.headlines, sound=self.sound, **kwargs) def happen(self): pass def reset(self): pass ### OVERHEAT ### class OverheatAccident(Accident): name = 'Overheat' headlines = [ "has been running faster than he should have. He burned of overheat!", "burned by friction. Needs to cool down a bit before the next race!", "roasted on the track from overheat. He's been running way too fast!", "looks like he has been running faster than his body cooling system can handle!", "shouldn't have been speeding like that. Overheating can be dangerous!"] sound = 'assets/sounds/Accidents/Overheat.mp3' def __init__(self, **kwargs): super().__init__(name=self.name, headlines=self.headlines, sound=self.sound, **kwargs) def happen(self): pass def reset(self): pass ### HEART ATTACK ### class HeartAttackAccident(Accident): name = 'Heart Attack' headlines = [ "had a heart attack. Definitely needs a rest!", "has a poor heart condition. Hadn't he stopped now, it could have killed him!", "beaten by cardiac infarction. He'd better go to hospital asap!", "almost killed by heart attack. He had a really narrow escape!", "beaten by his weak heart. He'd better get some rest!"] sound = 'assets/sounds/Accidents/Heart Attack.mp3' image = 'atlas://assets/accidents/accidents/heart attack' def __init__(self, **kwargs): super().__init__(name=self.name, headlines=self.headlines, sound=self.sound, image=self.image, **kwargs) def happen(self): pass def reset(self): pass ### GRASS ### class GrassAccident(Accident): name = 'Grass' headlines = [ "just found magic grass. It's famous for powering slugs up!", "just about to speed up after eating magic grass!", "powered up by magic grass found unexpectedly on the track!", "seems to be full of beans after having eaten the magic grass on his way!", "heading perhaps even for victory after his magic grass meal!"] sound = 'assets/sounds/Accidents/Grass.mp3' image = 'atlas://assets/accidents/accidents/grass' def __init__(self, **kwargs): super().__init__(name=self.name, headlines=self.headlines, sound=self.sound, image=self.image, **kwargs) def happen(self): pass def reset(self): pass ### ASLEEP ### class AsleepAccident(Accident): name = 'Asleep' headlines = [ "just fell asleep for a while after the long and wearisome running!", "having a nap. He again has chosen just the perfect time for that!", "sleeping instead of running. It's getting one of his bad habits!", "always takes a short nap at this time of the day, no matter what he's doing!", "knows how important sleep is. Even if it's not the best time for that!"] sound = 'assets/sounds/Accidents/Asleep.mp3' def __init__(self, **kwargs): super().__init__(name=self.name, headlines=self.headlines, sound=self.sound, **kwargs) def happen(self): pass def reset(self): pass ### BLIND ### class BlindAccident(Accident): name = 'Blind' headlines = [ "gone blind. Now staggering to find his way!", "shouldn't have been reading in dark. Now it's hard to find the way!", "temporarily lost his eyesight. Now it's difficult for him to follow the track!", "trying hard to find his way after going blind on track!", "staggering to finish the race after going blind because of an infection!"] sound = 'assets/sounds/Accidents/Blind.mp3' def __init__(self, **kwargs): super().__init__(name=self.name, headlines=self.headlines, sound=self.sound, **kwargs) def happen(self): pass def reset(self): pass ### PUDDLE ### class PuddleAccident(Accident): name = 'Puddle' headlines = [ "drowning in a puddle of water!", "beaten by yesterday's heavy rainfalls. Just drowning in a puddle!", "shouldn't have skipped his swimming lessons. Drowning in a puddle now!", "has always neglected his swimming lessons. How wrong he's been!", "disappearing in a puddle of water formed afted heavy rainfall!"] sound = 'assets/sounds/Accidents/Drown.mp3' image = 'atlas://assets/accidents/accidents/puddle' def __init__(self, **kwargs): super().__init__(name=self.name, headlines=self.headlines, sound=self.sound, image=self.image, **kwargs) def happen(self): pass def reset(self): pass ### ELECTROSHOCK ### class ElectroshockAccident(Accident): name = 'Electroshock' headlines = [ "speeding up after being struck by lightning!", "powered up by lightning. Now running really fast!", "hit by electric discharge. Seems to have been powered up by it!", "accelerated by a series of electric discharges!", "now running much faster after being struck by lightning!"] sound = 'assets/sounds/Accidents/Electroshock.mp3' image = 'atlas://assets/accidents/accidents/electroshock' def __init__(self, **kwargs): super().__init__(name=self.name, headlines=self.headlines, sound=self.sound, image=self.image, **kwargs) def happen(self): pass def reset(self): pass ### TURNING BACK ### class TurningBackAccident(Accident): name = 'Turning Back' headlines = [ "has forgotten to turn off the gas. Must hurry home before it's too late!", "just received a phone call. His house is on fire. No time to lose!", "seems to have more interesting stuff to do than racing.", "seems to have lost orientation. Well, how these little brains work!", "has left his snack in the kitchen. He won't race when he's hungry!"] sound = 'assets/sounds/Accidents/Turning Back.mp3' def __init__(self, **kwargs): super().__init__(name=self.name, headlines=self.headlines, sound=self.sound, **kwargs) def happen(self): pass def reset(self): pass ### SHOOTING EYES ### class ShootingEyesAccident(Accident): name = 'Shooting Eyes' headlines = [ "shooting his eyes. Is he ever going to stop cheating?", "just shot his eyes. It seems he would do anything to win!", "sacrificing his eyes for victory's sake!", "shooting his eyes for victory and hoping for quick regeneration!", "too slow to win? Maybe him, but who knows, possibly not his eyes!"] sound = 'assets/sounds/Accidents/Shooting Eyes.mp3' def __init__(self, **kwargs): super().__init__(name=self.name, headlines=self.headlines, sound=self.sound, **kwargs) def happen(self): pass def reset(self): pass ### RUBBERIZED ### class RubberizedAccident(Accident): name = 'Rubberized' headlines = [ "stretching like rubber. This can help!", "stretching for victory. Seems to be approaching finish line faster!", "has never forgotten he was an eraser as a kid.", "cheating again. This time pretending to be a piece of rubber!", "just discovered his ability to stretch like rubber. Why not use it right now?"] sound = 'assets/sounds/Accidents/Rubberizer.mp3' def __init__(self, **kwargs): super().__init__(name=self.name, headlines=self.headlines, sound=self.sound, **kwargs) def happen(self): pass def reset(self): pass ### DEVOURED ### class DevouredAccident(Accident): name = 'Devoured' headlines = [ "devoured by the infamous slug monster. Bad luck!", "just swallowed by the terrible slug monster!", "next on the long list of the slug monster's victims!", "has never suspected he's gonna end up as a snack!", "devoured by the legendary slug monster from the nearby swamps!"] sound = 'assets/sounds/Accidents/Devoured.mp3' image = 'atlas://assets/accidents/accidents/slug monster' def __init__(self, **kwargs): super().__init__(name=self.name, headlines=self.headlines, sound=self.sound, image=self.image, **kwargs) def happen(self): pass def reset(self): pass
075ab43e3a0a41cba1a3ddc5516d4f2be053423a
bb2120075f05463160e7ad9a3986f18848733563
/tests/test_vec2d.py
aabcdfc7d592e0bd89fc791e9d20daec1d79e802
[ "MIT" ]
permissive
pablodiegoss/pytaon
b443d6a86773c691383aa607b7b1497bcfa7bc3b
0c5def531249331871197377338471521cf8de2c
refs/heads/master
2022-12-31T10:51:13.762691
2020-10-07T18:09:24
2020-10-07T18:09:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,504
py
""" Módulo de testes para a classe Vec2d. Utiliza os vetores u = <3,4>, v = <1,1>, ii=<1,0> e jj=<0,1> definidos em conftest. """ import pytest import random from math import pi, sqrt from pytaon import Vec2d def similar(x, y, tol=1e-6): return abs(x - y) <= tol class TestVec2d: def test_angle(self, u, v): assert u.angle > v.angle assert similar(u.angle, pi / 4) assert similar(u.angle_degrees, 45) def test_angle_setter(self, u, v): u.angle = 0.0 assert similar(u.x, 5.0) assert similar(u.y, 0.0) u.angle_degrees = 45.0 assert similar(u.x, 2.5 * sqrt(2)) assert similar(u.y, 2.5 * sqrt(2)) u.angle = pi / 4 assert similar(u.x, 2.5 * sqrt(2)) assert similar(u.y, 2.5 * sqrt(2)) def test_length(self, u, v): assert u.length > v.length assert u.length == 5 assert u.length_sqrd == 25 def test_length_setter(self, u): x, y = u u.length *= 2 assert similar(u.x, 2 * x) assert similar(u.y, 2 * y) def test_algebraic_operations(self, u, v): assert u + v == Vec2d(u.x + v.x, u.y + v.y) assert u - v == Vec2d(u.x - v.x, u.y - v.y) assert u * 2 == Vec2d(2 * u.x, 2 * u.y) assert 2 * u == Vec2d(2 * u.x, 2 * u.y) assert u / 2 == Vec2d(u.x / 2, u.y / 2) def test_algebraic_operations_with_tuples(self, u, v): U, V = map(tuple, (u, v)) assert u + v == u + V == U + v assert u - v == u - V == U - v def test_neg_and_pos(self, u): assert (-u) == u * (-1) assert (+u) == u * (+1) assert +u is not u def test_inplace(self, u): u_orig = u u += (1, 1) assert u == Vec2d(4, 5) assert u is u_orig u -= (1, 1) assert u == Vec2d(3, 4) assert u is u_orig u *= 2 assert u == Vec2d(6, 8) assert u is u_orig u /= 2 assert u == Vec2d(3, 4) assert u is u_orig def test_item_getter(self, u, v): for u in [u, v]: assert u[0] == u.x assert u[1] == u.y def test_item_setter(self, u): u[0] = n = random.random() u[1] = m = random.random() assert u.x == n assert u.y == m def test_item_raises_index_error(self, u): with pytest.raises(IndexError): u[2] with pytest.raises(IndexError): u[2] = 0.0 def test_cross_product(self, u, v): V = tuple(v) assert similar(u.cross(v), -v.cross(u)) assert similar(u.cross(v), -1) assert u.cross(v) == u.cross(V) def test_dot_product(self, u, v): V = tuple(v) assert u.dot(v) == 7.0 assert u.dot(v) == u.dot(V) def test_get_angle_between(self, ii, v): II = tuple(ii) assert v.get_angle_between(v) == 0.0 assert similar(v.get_angle_between((-1) * v), pi) assert v.get_angle_degrees_between(v) == 0.0 assert similar(v.get_angle_degrees_between((-1) * v), 180) assert v.get_angle_between(ii) == v.get_angle_between(II) assert similar(v.get_angle_between(ii), pi / 4) assert similar(v.get_angle_degrees_between(ii), 45) def test_get_distance(self, u, v): assert similar(u.get_distance(v), sqrt(u.get_dist_sqrd(v))) assert similar(u.get_distance(v), sqrt(13)) assert similar(u.get_dist_sqrd(v), 13) def test_get_distance_accepts_tuples(self, u, v): U, V = map(tuple, (u, v)) assert similar(u.get_distance(v), u.get_distance(V)) assert similar(u.get_dist_sqrd(v), u.get_dist_sqrd(V)) def test_normalized(self, u): assert similar(u.normalized().length, 1) assert similar(u.normalized().angle, u.angle) def test_normalized_return_length(self, u): angle, length = u.angle, u.length assert similar(u.normalize_return_length(), length) assert similar(u.angle, angle) def test_interpolate_to(self, u, v): assert similar(u.interpolate_to(v, 0), u) assert similar(u.interpolate_to(v, 1), v) assert similar(u.interpolate_to(v, 0.5), (u + v) / 2) def test_interpolate_to_accept_tuples(self, u, v): V = tuple(v) assert similar(u.interpolate_to(v, 0.5), u.interpolate_to(V, 0.5)) def test_perpendicular(self, u): v = u.perpendicular() assert similar(u.length, v.length) assert similar(u.dot(v), 0) assert similar(u.angle_between(v), pi / 2) def test_perpendicular_normal(self, u, v): v = u.perpendicular() assert similar(v.length, 1) assert similar(u.dot(v), 0) assert similar(u.angle_between(v), pi / 2) def test_projection(self, u, v): proj = u.projection(v) assert similar(proj.angle, v.angle) assert proj.length <= u.length assert similar(v.length * proj.length, u.dot(v)) assert similar(u.length * v.projection(u).length, u.dot(v)) def test_rotate(self, u): angle, length = u.angle, u.length rotation = pi * random.random() assert u.rotate(rotation) is None assert similar(u.angle, angle + rotation) assert similar(u.length, length) def test_rotated(self, u): rotation = pi * random.random() u_ = u.rotated(rotation) assert similar(u_.angle, u.angle + rotation) assert similar(u_.length, u.length)
0e12c4c1d236ff6bcd3ab8cc64c14f44a5fe1dda
32eee26d7747ab272a51e9918a5d2dc1bc10f98b
/src/classic_models/training/data_loader.py
a0b8aa0fbf9a94b169ecf4539bbf07dd73df33e9
[ "Apache-2.0" ]
permissive
David082/daguan_competition_2021_codes
5d61ec1c88c0be401212490ad2fc61cb4e5132b3
b488dbab35d8914bc8f19a086b200ca2418d66f8
refs/heads/master
2023-07-26T23:36:53.290387
2021-09-13T11:36:16
2021-09-13T11:36:16
402,744,920
0
0
Apache-2.0
2021-09-13T11:36:17
2021-09-03T11:21:40
Python
UTF-8
Python
false
false
8,865
py
import os import copy import json import logging import torch from torch.utils.data import TensorDataset from src.classic_models.training.utils import get_labels logger = logging.getLogger(__name__) class InputExample(object): """ A single training/test example for simple sequence classification. Args: guid: Unique id for the example. words: list. The words of the sequence. label: (Optional) string. The label of the example. """ def __init__(self, guid, words, label_level_1=None, label_level_2=None): self.guid = guid self.words = words self.label_level_1 = label_level_1 self.label_level_2 = label_level_2 def __repr__(self): return str(self.to_json_string()) def to_dict(self): """Serializes this instance to a Python dictionary.""" output = copy.deepcopy(self.__dict__) return output def to_json_string(self): """Serializes this instance to a JSON string.""" return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" class InputFeatures(object): """A single set of features of data.""" def __init__(self, input_ids, attention_mask, label_id_level_1, label_id_level_2): self.input_ids = input_ids self.attention_mask = attention_mask self.label_id_level_1 = label_id_level_1 self.label_id_level_2 = label_id_level_2 def __repr__(self): return str(self.to_json_string()) def to_dict(self): """Serializes this instance to a Python dictionary.""" output = copy.deepcopy(self.__dict__) return output def to_json_string(self): """Serializes this instance to a JSON string.""" return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" class DaguanDataProcessor(object): """Processor for the BERT data set """ def __init__(self, args): self.args = args self.labels_level_1 = get_labels(args.label_file_level_1) self.labels_level_2 = get_labels(args.label_file_level_2) @classmethod def _read_file(cls, input_file, skip_first_line=False): """Reads a tab separated value file.""" with open(input_file, "r", encoding="utf-8") as f: lines = [] for i, line in enumerate(f): if skip_first_line: if i == 0: continue lines.append(line.strip()) return lines def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for i, line in enumerate(lines): line = line.strip() if not line: continue line = line.split(",") # id id_ = line[0] guid = "%s-%s" % (set_type, id_) # 1. input_text words = line[1].split() words = [w.strip() for w in words if len(w.strip()) > 0] # 标签 if set_type == "test": label_level_1 = 0 label_level_2 = 0 else: label_name = line[2] label_name_level_1 = label_name.split("-")[0] label_name_level_2 = label_name label_level_1 = self.labels_level_1.index(label_name_level_1) label_level_2 = self.labels_level_2.index(label_name_level_2) examples.append( InputExample( guid=guid, words=words, label_level_1=label_level_1, label_level_2=label_level_2, ) ) return examples def get_examples(self, mode): """ Args: mode: train, dev, test """ data_path = os.path.join(self.args.data_dir, "{}.txt".format(mode)) logger.info("LOOKING AT {}".format(data_path)) return self._create_examples(lines=self._read_file(data_path), set_type=mode) processors = { "daguan": DaguanDataProcessor, } def convert_examples_to_features(examples, max_seq_len, pad_token_id=0, unk_token_id=1, mask_padding_with_zero=True, vocab_list=None ): features = [] for (ex_index, example) in enumerate(examples): if ex_index % 5000 == 0: logger.info("Writing example %d of %d" % (ex_index, len(examples))) # Tokenize word by word (for NER) tokens = example.words # Account for [CLS] and [SEP] special_tokens_count = 0 if len(tokens) > max_seq_len - special_tokens_count: tokens = tokens[:(max_seq_len - special_tokens_count)] input_ids = [vocab_list.index(w) if w in vocab_list else unk_token_id for w in tokens] # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) # Zero-pad up to the sequence length. padding_length = max_seq_len - len(input_ids) input_ids = input_ids + ([pad_token_id] * padding_length) attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length) assert len(input_ids) == max_seq_len, "Error with input length {} vs {}".format(len(input_ids), max_seq_len) assert len(attention_mask) == max_seq_len, "Error with attention mask length {} vs {}".format(len(attention_mask), max_seq_len) label_id_level_1 = int(example.label_level_1) label_id_level_2 = int(example.label_level_2) if ex_index < 5: logger.info("*** Example ***") logger.info("guid: %s" % example.guid) logger.info("tokens: %s" % " ".join([str(x) for x in tokens])) logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) logger.info("attention_mask: %s" % " ".join([str(x) for x in attention_mask])) logger.info("label_level_1: %s (id = %d)" % (example.label_level_1, label_id_level_1)) logger.info("label_level_2: %s (id = %d)" % (example.label_level_2, label_id_level_2)) features.append( InputFeatures(input_ids=input_ids, attention_mask=attention_mask, label_id_level_1=label_id_level_1, label_id_level_2=label_id_level_2 )) return features def load_and_cache_examples(args, mode, vocab_list=None): processor = processors[args.task](args) # Load data features from cache or dataset file cached_features_file = os.path.join( args.data_dir, 'cached_{}_{}_{}'.format( mode, args.task, args.max_seq_len ) ) if os.path.exists(cached_features_file): logger.info("Loading features from cached file %s", cached_features_file) features = torch.load(cached_features_file) else: # Load data features from dataset file logger.info("Creating features from dataset file at %s", args.data_dir) if mode == "train": examples = processor.get_examples("train") elif mode == "dev": examples = processor.get_examples("dev") elif mode == "test": examples = processor.get_examples("test") else: raise Exception("For mode, Only train, dev, test is available") # Use cross entropy ignore index as padding label id so that only real label ids contribute to the loss later features = convert_examples_to_features(examples, args.max_seq_len, vocab_list=vocab_list) logger.info("Saving features into cached file %s", cached_features_file) torch.save(features, cached_features_file) # Convert to Tensors and build dataset all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long) all_label_id_level_1s = torch.tensor([f.label_id_level_1 for f in features], dtype=torch.long) all_label_id_level_2s = torch.tensor([f.label_id_level_2 for f in features], dtype=torch.long) dataset = TensorDataset(all_input_ids, all_attention_mask, all_label_id_level_1s, all_label_id_level_2s, ) return dataset
d4da526b1b6a2167f6447cb28620af606f1feff5
58f38f1d69d4bfc650ad18e0045c36ae29c9d84a
/Django基础部分代码/chapter03/template_if_demo/template_if_demo/settings.py
6480e6ae4c0c6464a93e7c33669bcc9dbf62e816
[]
no_license
zjf201811/DjangoWebProject
0670c61b89387901089bf67cf2423d9341f69913
fab15784fb326ba4517951e180418ea54de03afe
refs/heads/master
2020-04-18T12:03:08.798484
2019-05-06T03:59:46
2019-05-06T03:59:46
167,522,193
3
1
null
null
null
null
UTF-8
Python
false
false
3,162
py
""" Django settings for template_if_demo project. Generated by 'django-admin startproject' using Django 2.0.2. For more information on this file, see https://docs.djangoproject.com/en/2.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'sz^wv74%ke1n4rtxs)$bxlfu!)q6ra2i63ak$ms-#h8+piw6fz' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'template_if_demo.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')] , 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'template_if_demo.wsgi.application' # Database # https://docs.djangoproject.com/en/2.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.0/howto/static-files/ STATIC_URL = '/static/'
5e03884088e7112a4fe74cab90f05bd21fd61391
be0f3dfbaa2fa3d8bbe59229aef3212d032e7dd1
/DaVinciDev_v38r1p1/Phys/StrippingArchive/python/StrippingArchive/Stripping17/StrippingLambdac2PKPiForXSec.py
d220bbc13f2a976b45ccebde6e2a9d69ff4e73dd
[]
no_license
Sally27/backup_cmtuser_full
34782102ed23c6335c48650a6eaa901137355d00
8924bebb935b96d438ce85b384cfc132d9af90f6
refs/heads/master
2020-05-21T09:27:04.370765
2018-12-12T14:41:07
2018-12-12T14:41:07
185,989,173
0
0
null
null
null
null
UTF-8
Python
false
false
7,182
py
''' Lambdac cross-section lines Adapted to current stripping framework by P. Spradlin. ''' __author__ = ['Francesca Dordei', 'Francesco Dettori', 'Patrick Spradlin'] __date__ = '2010/07/15' __version__ = '$Revision: 1.3 $' __all__ = ( 'StrippingLambdac2PKPiForXSecConf', 'makeLambdac2PKPi', 'default_config' ) from Gaudi.Configuration import * from StrippingConf.StrippingLine import StrippingLine from GaudiKernel.SystemOfUnits import MeV, mm, ns from LHCbKernel.Configuration import * #from Configurables import FilterDesktop, CombineParticles from GaudiConfUtils.ConfigurableGenerators import FilterDesktop, CombineParticles from PhysSelPython.Wrappers import Selection from StrippingUtils.Utils import LineBuilder from StandardParticles import StdNoPIDsPions, StdNoPIDsKaons, StdNoPIDsProtons class StrippingLambdac2PKPiForXSecConf(LineBuilder): # { __configuration_keys__ = ( 'Daug_All_PT_MIN' , 'Daug_1of3_PT_MIN' , 'Daug_P_MIN' , 'Daug_TRCHI2DOF_MAX' , 'Daug_BPVIPCHI2_MIN' , 'Proton_PIDp_MIN' , 'Pi_PIDK_MAX' , 'K_PIDK_MIN' , 'Comb_ADAMASS_WIN' , 'Comb_ADOCAMAX_MAX' , 'Lambdac_PT_MIN' , 'Lambdac_VCHI2VDOF_MAX' , 'Lambdac_BPVVDCHI2_MIN' , 'Lambdac_BPVDIRA_MIN' , 'Lambdac_BPVLTIME_MAX' , 'Lambdac_BPVLTIME_MIN' , 'HltFilter' , 'PrescaleLambdac2PKPi' , 'PostscaleLambdac2PKPi' ) def __init__(self, name, config) : # { LineBuilder.__init__(self, name, config) lambdac_name = name + 'Lambdac2PKPi' self.inPions = StdNoPIDsPions self.inKaons = StdNoPIDsKaons self.inProtons = StdNoPIDsProtons self.selLambdac2PKPi = makeLambdac2PKPi( name = lambdac_name , inputSel = [ self.inPions, self.inKaons, self.inProtons ] , Daug_All_PT_MIN = config['Daug_All_PT_MIN'] , Daug_1of3_PT_MIN = config['Daug_1of3_PT_MIN'] , Daug_P_MIN = config['Daug_P_MIN'] , Daug_TRCHI2DOF_MAX = config['Daug_TRCHI2DOF_MAX'] , Daug_BPVIPCHI2_MIN = config['Daug_BPVIPCHI2_MIN'] , Proton_PIDp_MIN = config['Proton_PIDp_MIN'] , Pi_PIDK_MAX = config['Pi_PIDK_MAX'] , K_PIDK_MIN = config['K_PIDK_MIN'] , Comb_ADAMASS_WIN = config['Comb_ADAMASS_WIN'] , Comb_ADOCAMAX_MAX = config['Comb_ADOCAMAX_MAX'] , Lambdac_PT_MIN = config['Lambdac_PT_MIN'] , Lambdac_VCHI2VDOF_MAX = config['Lambdac_VCHI2VDOF_MAX'] , Lambdac_BPVVDCHI2_MIN = config['Lambdac_BPVVDCHI2_MIN'] , Lambdac_BPVDIRA_MIN = config['Lambdac_BPVDIRA_MIN'] , Lambdac_BPVLTIME_MAX = config['Lambdac_BPVLTIME_MAX'] , Lambdac_BPVLTIME_MIN = config['Lambdac_BPVLTIME_MIN'] ) self.line_Lambdac2PKPi = StrippingLine( lambdac_name + 'Line', HLT = config['HltFilter'], prescale = config['PrescaleLambdac2PKPi'], postscale = config['PostscaleLambdac2PKPi'], algos = [ self.selLambdac2PKPi ] ) self.registerLine(self.line_Lambdac2PKPi) # } # } def makeLambdac2PKPi( name , inputSel , Daug_All_PT_MIN , Daug_1of3_PT_MIN , Daug_P_MIN , Daug_TRCHI2DOF_MAX , Daug_BPVIPCHI2_MIN , Proton_PIDp_MIN , Pi_PIDK_MAX , K_PIDK_MIN , Comb_ADAMASS_WIN , Comb_ADOCAMAX_MAX , Lambdac_PT_MIN , Lambdac_VCHI2VDOF_MAX , Lambdac_BPVVDCHI2_MIN , Lambdac_BPVDIRA_MIN , Lambdac_BPVLTIME_MAX , Lambdac_BPVLTIME_MIN , decDescriptors = [ "[Lambda_c+ -> p+ K- pi+]cc" ] ) : # { daugCuts = "(PT > %(Daug_All_PT_MIN)s)" \ "& (P > %(Daug_P_MIN)s)" \ "& (TRCHI2DOF < %(Daug_TRCHI2DOF_MAX)s)" \ "& (BPVIPCHI2() > %(Daug_BPVIPCHI2_MIN)s)" % locals() pCuts = "((PIDp-PIDpi) > %(Proton_PIDp_MIN)s)" % locals() piCuts = "((PIDK-PIDpi) < %(Pi_PIDK_MAX)s)" % locals() kCuts = "((PIDK-PIDpi) > %(K_PIDK_MIN)s)" % locals() combCuts = "(ADAMASS('Lambda_c+') < %(Comb_ADAMASS_WIN)s)" \ "& (AMAXCHILD(PT) > %(Daug_1of3_PT_MIN)s)" \ "& (ADOCAMAX('') < %(Comb_ADOCAMAX_MAX)s)" % locals() lambdacCuts = "(PT > %(Lambdac_PT_MIN)s)" \ "& (VFASPF(VCHI2/VDOF) < %(Lambdac_VCHI2VDOF_MAX)s)" \ "& (BPVVDCHI2 > %(Lambdac_BPVVDCHI2_MIN)s)" \ "& (BPVDIRA > %(Lambdac_BPVDIRA_MIN)s)" \ "& (BPVLTIME('PropertimeFitter/properTime:PUBLIC') > %(Lambdac_BPVLTIME_MIN)s)" \ "& (BPVLTIME('PropertimeFitter/properTime:PUBLIC') < %(Lambdac_BPVLTIME_MAX)s)" % locals() _Lambdac = CombineParticles( DecayDescriptors = decDescriptors , DaughtersCuts = { "pi+" : daugCuts + '&' + piCuts, "K+" : daugCuts + '&' + kCuts, "p+" : daugCuts + '&' + pCuts } , CombinationCut = combCuts , MotherCut = lambdacCuts ) return Selection( name, Algorithm = _Lambdac, RequiredSelections = inputSel ) # } default_config = { 'Daug_All_PT_MIN' : 400.0 * MeV , 'Daug_1of3_PT_MIN' : 1200.0 * MeV , 'Daug_P_MIN' : 3200.0 * MeV , 'Daug_TRCHI2DOF_MAX' : 10.0 , 'Daug_BPVIPCHI2_MIN' : 0.5 , 'Proton_PIDp_MIN' : 10.0 , 'Pi_PIDK_MAX' : 0.0 , 'K_PIDK_MIN' : 10.0 , 'Comb_ADAMASS_WIN' : 90.0 * MeV , 'Comb_ADOCAMAX_MAX' : 0.1 * mm , 'Lambdac_PT_MIN' : 0.0 * MeV , 'Lambdac_VCHI2VDOF_MAX' : 20.0 , 'Lambdac_BPVVDCHI2_MIN' : 8.0 , 'Lambdac_BPVDIRA_MIN' : 0.9999 , 'Lambdac_BPVLTIME_MAX' : 0.0012 * ns , 'Lambdac_BPVLTIME_MIN' : 0.0 * ns , 'HltFilter' : "HLT_PASS_RE('Hlt1MB.*')" , 'PrescaleLambdac2PKPi' : 1.0 , 'PostscaleLambdac2PKPi' : 1.0 }
fe464ac5b360f982dd7e65eb0bbded553f4417b3
674a48ab817fb841417d72de7197a84b2d2b71b7
/wav_mixed/wavelet_composite_no_overlap_parallax_dominant.py
935c279e67758e93f07bf6484059e2f43710e447
[]
no_license
cornkle/proj_CEH
0d1556bbb5992e663257841ada333f32e6da3e22
790ad1aa7e7a8c6593a21ee53b2c946b2f7a356b
refs/heads/master
2023-09-01T01:26:58.669089
2023-08-23T14:22:47
2023-08-23T14:22:47
55,054,763
2
2
null
null
null
null
UTF-8
Python
false
false
10,560
py
# -*- coding: utf-8 -*- """ Created on Thu Aug 4 10:15:40 2016 @author: cornkle """ import numpy as np import xarray as xr from wavelet import util from utils import u_arrays as ua from scipy import ndimage import matplotlib.pyplot as plt import matplotlib from eod import tm_utils import matplotlib as mpl import multiprocessing import pdb from collections import OrderedDict import matplotlib.cm as cm import pickle as pkl from utils import u_met, u_parallelise, u_gis, u_arrays, constants matplotlib.rc('xtick', labelsize=10) matplotlib.rc('ytick', labelsize=10) def composite(): pool = multiprocessing.Pool(processes=7) files = ua.locate(".nc", '/users/global/cornkle/MCSfiles/WA15_big_-40_15W-20E_size_zR/') # /WA30/ out = '/users/global/cornkle/papers/wavelet/saves/pandas/' #files = files[0:1500] print('Nb files', len(files)) tt = 'WA15' comp_collect = {} precip = {} res = pool.map(file_loop, files) pool.close() res = [x for x in res if x is not None] nb_sys = len(res) print('Number systems: ', nb_sys) res = [item for sublist in res for item in sublist] # flatten list of lists for v in res: comp_collect[v[2]]={'p': [], 't' : [], 'scale':[], 'hour':[], 'id' : []} precip[v[2]]=[] # ret.append((kernel, kernelt, sc, id, dic['time.hour'].values.tolist(), # clat, clon, lat_min, lat_max, lon_min, lon_max, area, # bulk_pmax, bulk_pmean, bulk_tmean, bulk_tmean_p, bulk_tmin_p, bulk_g30, # circle_Tcenter, circle_p, circle_t, circle_valid, circle_sum, # circle_nz, circle_g30, circle_max, circle_p99, circle_p95, circle_p90)) dic = OrderedDict([('scale', []), ('id' , []), ('hour' , []), ('clat',[]), ('clon',[]),('lat_min',[]), ('lat_max' , []), ('lon_min' , []), ('lon_max' , []), ('area' , []), ('bulk_pmax' , []), ('bulk_pmean' ,[]), ('bulk_tmean',[]), ('bulk_tmean_p',[]), ('bulk_tmin_p',[]), ('bulk_g30',[]), ('circle_pix' , []), ('circle_Tcentre', []), ('circle_p' , []), ('circle_t' , []), ('circle_val' , []), ('circle_sum' , []), ('circle_nz' , []), ('circle_g30' , []), ('circle_max' , []), ('circle_p99' , []), ('circle_p95' , []), ('circle_p90' , []), ('circle_val_all', []), ('circle_pc', [])]) keys = comp_collect.keys() print(keys) for v in res: print(v[2]) comp_collect[v[2]]['p'].append(v[0]) comp_collect[v[2]]['t'].append(v[1]) comp_collect[v[2]]['hour'].append(v[4]) comp_collect[v[2]]['id'].append(v[3]) for cnt, kk in enumerate(dic.keys()): dic[kk].append(v[cnt+2]) # omit kernel and kernelt precip[v[2]].extend(v[20]) pkl.dump(dic, open(out+'3dmax_gt15000_lax_nonan_dominant_fulldomain.p','wb')) #pkl.dump(precip, open(out+'precip_3dmax_gt15000_lax_nonan_dominant.p','wb')) #pkl.dump(comp_collect, open(out + 'comp_collect_composite_lax_nonan_dominant.p', 'wb')) def file_loop(fi): ret = [] print('Doing file: ' + fi) dic = xr.open_dataset(fi) id = fi.split('/')[-1] outt = dic['tc_lag0'].values outp = dic['p'].values outpc = dic['pconv'].values lon = dic['lon'].values lat = dic['lat'].values outt[np.isnan(outt)] = 150 outt[outt >= -40] = 150 grad = np.gradient(outt) outt[outt == 150] = np.nan outp[np.isnan(outt)] = np.nan outpc[np.isnan(outt)] = np.nan area = np.nansum(outt <= -40) try: bulk_pmax = np.max(outp[(np.isfinite(outp)) & (np.isfinite(outt))]) except ValueError: return ret try: bulk_pmin = np.min(outp[(np.isfinite(outp)) & (np.isfinite(outt))]) except ValueError: return ret if (area * 25 < 15000) or (area * 25 > 800000) or (bulk_pmax > 200) or (bulk_pmin < 0): print(area * 25) print('throw out') return perc = np.percentile(outt[np.isfinite(outt)], 60) # 60 #perc = -60 clat = np.min(dic.lat.values) + ((np.max(dic.lat.values) - np.min(dic.lat.values)) * 0.5) clon = np.min(dic.lon.values) + ((np.max(dic.lon.values) - np.min(dic.lon.values)) * 0.5) # if (clon > 10) or (clon < -10) or (clat < 10): # return if (clon > 28) or (clon < -17.2) or (clat < 4.1): return lat_min = np.min(dic.lat.values) lat_max = np.max(dic.lat.values) lon_min = np.min(dic.lon.values) lon_max = np.max(dic.lon.values) bulk_tmean = np.nanmean(outt) bulk_tmin_p = np.min(outt[(np.isfinite(outp)) & (np.isfinite(outt))]) bulk_tmean_p = np.mean(outt[(np.isfinite(outp)) & (np.isfinite(outt))]) bulk_pmean = np.max(outp[(np.isfinite(outp)) & (np.isfinite(outt))]) bulk_g30 = np.sum(outp[(np.isfinite(outp)) & (np.isfinite(outt))] >= 30) o2 = outt.copy() o2[np.isnan(o2)] = perc nok = np.where(abs(grad[0]) > 80) d = 2 i = nok[0] j = nok[1] for ii, jj in zip(i, j): kern = o2[ii - d:ii + d + 1, jj - d:jj + d + 1] o2[ii - d:ii + d + 1, jj - d:jj + d + 1] = ndimage.gaussian_filter(kern, 3, mode='nearest') wav = util.waveletT(o2, 5) arr = np.array(wav['scales'], dtype=str) arrf = np.array(wav['scales'], dtype=float) scale_ind = range(arr.size) figure = np.zeros_like(outt) wll = wav['t'] maxoutt = ( wll == ndimage.maximum_filter(wll, (5, 4, 4), mode='reflect', cval=np.amax(wll) + 1)) # (np.round(orig / 5)) #(5,4,4) #maxs = np.zeros_like(wll) yyy = [] xxx = [] scal = [] for nb in scale_ind[::-1]: orig = float(arr[nb]) print(np.round(orig)) wl = wll[nb, :, :] maxout = maxoutt[nb, :, :] try: yy, xx = np.where((maxout == 1) & (outt <= -50) & (wl > orig ** .5)) except IndexError: continue for y, x in zip(yy, xx): ss = orig iscale = (np.ceil(ss / 2. / 5.)).astype(int) if ss <= 20: iscale = iscale + 1 ycirc, xcirc = ua.draw_cut_circle(x, y, iscale, outt) # 15km radius in every direction for all scales figure[ycirc, xcirc] = np.round(orig) xxx.append(x) yyy.append(y) scal.append(orig) figure[np.isnan(outt)] = 0 figure[np.isnan(outp)] = 0 circle_val_all = np.sum(figure > 0) xx = [] yy = [] cnt = 0 for y, x, sc in zip(yyy[::-1], xxx[::-1], scal[::-1]): if figure[y, x] == 0: continue if cnt > 0: bulk_g30 = bulk_g30*0 # if sc < 150:spoti # continue xx.append(x) yy.append(y) int_sc = np.round(sc) radius = sc iscale = (np.ceil(radius / 2. / 5.)).astype(int) if int_sc <= 20: iscale = iscale + 1 ycircf, xcircf = ua.draw_cut_circle(x, y, iscale, outt) # 20km radius pos = np.where((figure[ycircf, xcircf] == int_sc)) if len(pos[0]) <= 3: continue circle_Tcenter = outt[y, x] t_para = np.nanmean(outt[ycircf[pos], xcircf[pos]]) # if sc < 90: # km, coords = u_gis.call_parallax_era(int(dic['time.month']), t_para, lon[y,x], lat[y,x], 0, 0) # lx, ly = km # lx = int(np.round(lx/5.)) # ly = int(np.round(ly/5.)) # km into pixels # else: lx = 0 ly = 0 # print(lx,ly) # plt.imshow(outt) # f = plt.figure() # plt.imshow(figure) # f = plt.figure() # plt.imshow(outp) # outt[ycircf[pos], xcircf[pos]] = 150 # outt[ycircf[pos]-ly, xcircf[pos]-lx] = 300 # f = plt.figure() # plt.imshow(outt) r = 20 kernel = tm_utils.cut_kernel(outp, x-lx, y-ly, r) kernelt = tm_utils.cut_kernel(outt, x, y, r) if kernel.shape != (r * 2 + 1, r * 2 + 1): kernel = np.zeros((41, 41)) + np.nan if kernelt.shape != (r * 2 + 1, r * 2 + 1): kernelt = np.zeros((41, 41)) + np.nan circle_p = outp[ycircf[pos]-ly, xcircf[pos]-lx] #outp[ycircf[pos] - ly, xcircf[pos] - lx] = np.nan circle_pc = outpc[ycircf[pos]-ly, xcircf[pos]-lx] #outpc[ycircf[pos] - ly, xcircf[pos] - lx] = np.nan circle_t = outt[ycircf[pos], xcircf[pos]] circle_valid = np.sum(np.isfinite(circle_p)) # # if (int_sc >=90): # outp[ycircf[pos] - ly, xcircf[pos] - lx] = 1000 # outt[ycircf[pos], xcircf[pos]] = 1000 ppos = np.where(outp>=30) outt[np.isnan(outt)] = -40 # f = plt.figure() # plt.imshow(outp, cmap='jet', origin='lower') # f = plt.figure() # plt.pcolormesh(outt, cmap='jet') f = plt.figure() plt.imshow(outt, cmap='jet', origin='lower') plt.contour(outp, cmap='viridis', vmin=20) figure[figure < 15] = np.nan plt.contourf(figure,cmap='Reds', vmin=9, title='dominant') plt.plot(ppos[1], ppos[0], 'ro') f = plt.figure() plt.imshow(figure, cmap='jet', origin='lower') if ((circle_valid) < 2): continue circle_sum = np.nansum(circle_p) circle_nz = np.nansum(circle_p > 0.1) circle_g30 = np.nansum(circle_p >= 30) try: circle_max = np.nanmax(circle_p) except ValueError: circle_max = np.nan try: circle_p99 = np.percentile(circle_p[circle_p >= 0.1], 99) except IndexError: circle_p99 = np.nan try: circle_p95 = np.percentile(circle_p[circle_p >= 0.1], 95) except IndexError: circle_p95 = np.nan try: circle_p90 = np.percentile(circle_p[circle_p >= 0.1], 90) except IndexError: circle_p90 = np.nan #maxs[posi, y, x] = 1 cnt = cnt+1 ret.append((kernel, kernelt, int_sc, id, dic['time.hour'].values.tolist(), clat, clon, lat_min, lat_max, lon_min, lon_max, area, bulk_pmax, bulk_pmean, bulk_tmean, bulk_tmean_p, bulk_tmin_p, bulk_g30, len(ycircf), circle_Tcenter, circle_p, circle_t, circle_valid, circle_sum, circle_nz, circle_g30, circle_max, circle_p99, circle_p95, circle_p90, circle_val_all, circle_pc)) return ret if __name__ == "__main__": composite()
b6b66a4cef930e66539a9b62c88a7eb8347904bc
55bcc8b6d5eb2878405f71ad5559cc3c80f5edc9
/nlpAnylise/nlpctrTwo.py
30735dfca102be6fd889b08ca03eb4fb2bde0a4d
[ "Apache-2.0" ]
permissive
chenwangwww/ppython
2989026d5ef6d8a733e8b62ef6d4d7bcd2783b38
13a2f1193714133701743bfdf1a8add61a29dd4c
refs/heads/master
2023-05-03T01:15:01.828534
2021-05-13T06:13:55
2021-05-13T06:13:55
343,254,494
0
0
null
null
null
null
UTF-8
Python
false
false
6,587
py
#主语 # 谓语 # 宾语 # 主语的定语数组(定语的状语+介宾关系数组)[attStru, ...] # 宾语的定语数组(定语的状语+介宾关系数组) # 谓语的状语数组(状语+介宾关系数组) [{'adv': 谓语的状语, 'pob': 介宾关系},...] # 并列谓语数组(并列谓语的宾语、宾语的定语数组、宾语的定语的状语+介宾关系数组) # [[并列谓语, 宾语, [attStru, ...]], ...] # 并列主语数组(并列主语的定语数组、定语的状语+介宾关系数组) # [[并列主语, [attStru, ...]], ...] # 并列宾语数组(并列宾语的定语数组、定语的状语+介宾关系数组) # --------------------------------------------------------------- # attStru = {'attM': 定语, 'adv': 定语的状语, 'pob': 介宾关系, 'att': 定语的定语} # masterStru = {'master': 主语或宾语, 'rel': [attStru, ...]} # advStru = {'adv': 状语, 'pob': 介宾关系} # predStru = {'pred':谓语, 'objs': [masterStru, ...], 'advs': [advStru, ...]} # 并列主语数组 # [masterStru, ...] # 并列谓语数组 # [predStru, ...] # --------------------------------------------------------------- from ltp import LTP ltp = LTP() class NlpCtr(object): def __init__(self): self.seg = None def trans_result(self, depArr): tempdepArr = depArr[0] tempArr = [] for item in tempdepArr: dic = { 'dep': item[0], 'gov': item[1], 'type': item[2], } tempArr.append(dic) return tempArr def getHED(self, words): root = None for word in words: if word['gov'] == 0 and word['type'] == 'HED': root = word['dep'] return root def getWord(self, words, GOV, wType): res = None for word in words: if word['type'] == wType and word['gov'] == GOV: res = word['dep'] return res def getWords(self, words, GOV, wType): res = [] for word in words: if word['type'] == wType and word['gov'] == GOV: res.append(word['dep']) res = res if len(res) > 0 else None return res def getSubject(self, words, HED, ADVS): subject = self.getWord(words, HED, 'SBV') if subject is None and ADVS is not None: for adv in ADVS: if self.indexToWord(adv) == '被': subject = self.getWord(words, adv, 'POB') return subject def getObject(self, words, HED): vob = self.getWord(words, HED, 'VOB') fob = self.getWord(words, HED, 'FOB') return self.get_not_none([vob, fob]) # 获取定语相关信息 def getATTInfo(self, words, GOV): atts = self.getWords(words, GOV, 'ATT') res = [] if atts is not None: for a in atts: adv = self.getWord(words, a, 'ADV') pob = self.getWord(words, adv, 'POB') res.append((a, (adv, pob))) res = res if len(res) > 0 else None return res # 获取并列主语或宾语的相关信息 def getCOOInfo(self, words, GOV): res = [] coos = self.getWords(words, GOV, 'COO') if coos is not None: for coo in coos: atts = self.getATTInfo(words, coo) res.append((coo, atts)) res = res if len(res) > 0 else None return res # 状语+介宾关系数组 def getADVPOBS(self, words, ADVS): res = [] if ADVS is not None: for adv in ADVS: pob = self.getWord(words, adv, 'POB') res.append((adv, pob)) res = res if len(res) > 0 else None return res def get_not_none(self, alist): for a in alist: if a is not None: return a return None def recuTran(self, source, target): t = type(source) if t == list or t == tuple: for a in source: subt = type(a) if subt == list or subt == tuple: target.append([]) self.recuTran(a, target[-1]) else: target.append(self.indexToWord(a)) def indexToWord(self, index): res = None if index and index <= len(self.seg[0]): res = self.seg[0][index - 1] return res def showWords(self, dic): items = dic.items() target = {} for item in items: t = type(item[1]) if t == list or t == tuple: sub = [] self.recuTran(item[1], sub) target.update({item[0]: sub}) elif item[1] is not None: sub = self.indexToWord(item[1]) target.update({item[0]: sub}) print(dic) print(target) def abstractSentence(self, sentence): dic = None self.seg, hidden = ltp.seg([sentence]) dep = ltp.dep(hidden) pos = ltp.pos(hidden) words = self.trans_result(dep) if len(words) > 0: hed = self.getHED(words) if hed is not None: coos = self.getWords(words, hed, 'COO') #并列谓语 advs = self.getWords(words, hed, 'ADV') #谓语的状语 aps = self.getADVPOBS(words, advs) #谓语的状语+介宾关系 subject = self.getSubject(words, hed, advs) #主语 object = self.getObject(words, hed) #宾语 attsS = self.getATTInfo(words, subject) #主语的定语 attsO = self.getATTInfo(words, object) #宾语的定语 coosS = self.getCOOInfo(words, subject) #并列主语 coosO = self.getCOOInfo(words, object) #并列宾语 dic = { 'subject': subject, 'object': object, 'pred': hed, 'coos': coos, 'advs': advs, 'aps': aps, 'attsS': attsS, 'attsO': attsO, 'coosS': coosS, 'coosO': coosO } self.showWords(dic) return dic nlpCtr = NlpCtr() # nlpCtr.abstractSentence('他因为酒驾被交警拘留了。') # nlpCtr.abstractSentence('学术委员会的每个成员都是博士并且是教授。') nlpCtr.abstractSentence('小明、小霞,和小刘是三兄弟。')
3718b80b3f210bd3e22c1c5a08f559e56bad00df
ac5e52a3fc52dde58d208746cddabef2e378119e
/exps-sblp/sblp_ut=3.5_rd=0.5_rw=0.06_rn=4_u=0.075-0.325_p=harmonic-2/sched=RUN_trial=65/sched.py
c840f1d8aaa51cee48681dfe3e4420cbfb56d305
[]
no_license
ricardobtxr/experiment-scripts
1e2abfcd94fb0ef5a56c5d7dffddfe814752eef1
7bcebff7ac2f2822423f211f1162cd017a18babb
refs/heads/master
2023-04-09T02:37:41.466794
2021-04-25T03:27:16
2021-04-25T03:27:16
358,926,457
0
0
null
null
null
null
UTF-8
Python
false
false
401
py
-S 0 -X RUN -Q 0 -L 4 86 250 -S 0 -X RUN -Q 0 -L 4 83 400 -S 0 -X RUN -Q 0 -L 4 72 400 -S 1 -X RUN -Q 1 -L 3 60 300 -S 1 -X RUN -Q 1 -L 3 58 175 -S 2 -X RUN -Q 2 -L 2 55 200 -S 2 -X RUN -Q 2 -L 2 48 200 -S 3 -X RUN -Q 3 -L 1 37 125 -S 3 -X RUN -Q 3 -L 1 31 125 -S 4 30 125 -S 4 26 175 -S 5 25 250 -S 4 24 200 -S 5 24 250 -S 4 23 100 -S 4 12 100 -S 4 12 100
49ddd274a9c8562c1cb9e1fedb9abbbc9ea96f2f
649bd422025e421d86025743eac324c9b882a2e8
/exam/1_three-dimensional_atomic_system/dump/phasetrans/temp190_1000.py
7fa715a9823977e00b8a404e111fa2054431a5e0
[]
no_license
scheuclu/atom_class
36ddee1f6a5995872e858add151c5942c109847c
0c9a8c63d9b38898c1869fe8983126cef17662cd
refs/heads/master
2021-01-21T10:52:28.448221
2017-03-07T23:04:41
2017-03-07T23:04:41
83,489,471
0
0
null
null
null
null
UTF-8
Python
false
false
68,714
py
ITEM: TIMESTEP 1000 ITEM: NUMBER OF ATOMS 2048 ITEM: BOX BOUNDS pp pp pp -1.6496218340970648e+02 2.1216218340975081e+02 -1.6496218340970648e+02 2.1216218340975081e+02 -1.6496218340970648e+02 2.1216218340975081e+02 ITEM: ATOMS id type xs ys zs 1671 1 0.804029 0.0718461 0.000845276 868 1 0.414143 0.0913991 0.00812121 1314 1 0.672389 0.154284 0.00912022 116 1 0.834906 0.241537 0.0180341 555 1 0.603326 0.258952 0.0154642 976 1 0.207274 0.343015 0.0146075 1800 1 0.64538 0.373703 0.0162016 1388 1 0.178024 0.479279 0.0161467 1896 1 0.0337624 0.495173 0.00994893 1433 1 0.369529 0.496983 0.000144061 1589 1 0.597483 0.494957 0.0026028 1788 1 0.474907 0.00681992 0.0241883 1347 1 0.796792 0.013096 0.0302368 476 1 0.894166 0.0182732 0.019627 756 1 0.416734 0.094628 0.0196988 581 1 0.429506 0.117272 0.0358522 180 1 0.478193 0.122779 0.0358237 1025 1 0.766023 0.146788 0.0360193 488 1 0.215102 0.169437 0.0218118 1469 1 0.394311 0.165841 0.0304703 301 1 0.297955 0.193399 0.0221655 1693 1 0.558997 0.203332 0.0221559 368 1 0.0728511 0.251628 0.0263535 63 1 0.621598 0.299788 0.0301145 194 1 0.237146 0.357353 0.0372387 420 1 0.808712 0.413128 0.019348 602 1 0.923203 0.427134 0.0246589 1625 1 0.331891 0.471118 0.0382476 353 1 0.602032 0.00894157 0.0496826 1319 1 0.00931362 0.0586303 0.0470602 345 1 0.661747 0.0644285 0.056106 1925 1 0.706808 0.0628472 0.0558509 306 1 0.216145 0.096759 0.0448836 506 1 0.347588 0.111329 0.0531847 55 1 0.620537 0.148392 0.0555542 433 1 0.663724 0.153245 0.0416431 1509 1 0.144519 0.1736 0.0399161 1623 1 0.219833 0.19094 0.0427601 289 1 0.891585 0.180252 0.0571782 1882 1 0.536507 0.217334 0.0558339 501 1 0.672389 0.214844 0.0417885 1249 1 0.990236 0.277668 0.0503066 371 1 0.805404 0.346132 0.0539383 681 1 0.31276 0.376955 0.0493869 1408 1 0.655642 0.368943 0.0504174 1554 1 0.207497 0.403694 0.0551626 1155 1 0.237705 0.398109 0.0574975 254 1 0.822732 0.401829 0.0493045 1901 1 0.320656 0.479858 0.0388699 342 1 0.152422 0.487351 0.0430879 1624 1 0.953837 0.0620117 0.0671058 1737 1 0.00136352 0.0916694 0.065143 775 1 0.514337 0.0834875 0.0762591 1644 1 0.61687 0.101179 0.0664493 1418 1 0.0605815 0.129515 0.067428 661 1 0.47286 0.138684 0.0617358 308 1 0.319167 0.183112 0.0628926 1095 1 0.702871 0.211561 0.0594946 550 1 0.843865 0.248177 0.0754526 918 1 0.856299 0.23295 0.0613675 1798 1 0.413709 0.258842 0.069341 1987 1 0.833073 0.278338 0.0649368 325 1 0.746236 0.291929 0.0725846 108 1 0.426731 0.346777 0.0732178 2026 1 0.689114 0.351584 0.0586268 1500 1 0.653811 0.395923 0.0602897 1421 1 0.999104 0.415863 0.0598078 1464 1 0.320508 0.447587 0.0717133 179 1 0.293263 0.480415 0.0699567 625 1 0.303038 0.0317137 0.0876646 1445 1 0.585512 0.0360542 0.0920485 503 1 0.456168 0.0560239 0.0875236 1079 1 0.0260499 0.124333 0.0842391 1459 1 0.848358 0.13359 0.0835318 2025 1 0.00578166 0.162822 0.0801624 819 1 0.0341227 0.155663 0.0929248 1575 1 0.90616 0.155368 0.0865113 366 1 0.290909 0.186589 0.0772939 1778 1 0.462365 0.209427 0.0887383 979 1 0.881848 0.19847 0.094725 1273 1 0.0415696 0.215175 0.0947488 1614 1 0.374927 0.239492 0.0844021 619 1 0.483865 0.252719 0.082512 1638 1 0.143091 0.285118 0.0830587 1884 1 0.427274 0.284433 0.0843827 375 1 0.355388 0.302473 0.0911092 1977 1 0.538087 0.354986 0.0800995 815 1 0.529835 0.356324 0.095602 384 1 0.782834 0.350757 0.0825531 450 1 0.927045 0.361082 0.085974 1586 1 0.444064 0.380312 0.0794632 582 1 0.73099 0.382742 0.0777546 689 1 0.181078 0.495027 0.0868729 1238 1 0.603113 0.0268362 0.110658 793 1 0.749611 0.0359153 0.115019 1752 1 0.224348 0.0519941 0.113934 1338 1 0.28556 0.100374 0.0967109 817 1 0.0843854 0.129167 0.112526 1640 1 0.441379 0.128599 0.102825 649 1 0.660898 0.158732 0.106754 1452 1 0.743523 0.180741 0.105148 814 1 0.0878331 0.23928 0.103302 573 1 0.675581 0.340355 0.113009 453 1 0.686675 0.344481 0.105168 1296 1 0.131982 0.351882 0.107073 332 1 0.86214 0.35383 0.113522 512 1 0.530599 0.402596 0.105793 1208 1 0.620241 0.417851 0.103842 1617 1 0.686918 0.427153 0.110576 1199 1 0.324488 0.45449 0.102172 454 1 0.570642 0.453772 0.108973 1163 1 0.37181 0.462954 0.103973 838 1 0.512079 0.473589 0.0983676 917 1 0.0306067 0.0501905 0.127366 722 1 0.195858 0.0803343 0.130023 455 1 0.46331 0.0801071 0.122417 723 1 0.0279089 0.191494 0.120796 1804 1 0.10333 0.188887 0.129241 895 1 0.225926 0.324659 0.127271 347 1 0.0974918 0.362543 0.119289 1330 1 0.692166 0.450302 0.127368 1824 1 0.0940844 0.463058 0.11661 25 1 0.539411 0.488804 0.123087 1398 1 0.203825 0.00743334 0.146529 1042 1 0.0196976 0.0521705 0.14829 341 1 0.926628 0.0468186 0.138645 1864 1 0.13015 0.0642194 0.149848 894 1 0.756625 0.0612473 0.149797 580 1 0.0749025 0.0974133 0.151051 1805 1 0.560954 0.112647 0.14099 1688 1 0.14761 0.128947 0.152224 1587 1 0.0774307 0.137871 0.149136 1507 1 0.988228 0.152503 0.152995 1663 1 0.0215158 0.162804 0.151076 547 1 0.423987 0.185691 0.142486 1818 1 0.842301 0.176379 0.140994 1576 1 0.182485 0.243408 0.138895 707 1 0.329685 0.231465 0.134905 586 1 0.4354 0.302258 0.140573 714 1 0.519681 0.303087 0.15287 1058 1 0.50405 0.317136 0.153035 767 1 0.460288 0.327712 0.152389 1758 1 0.577945 0.353023 0.146253 2043 1 0.456284 0.42987 0.135595 536 1 0.967799 0.453861 0.150399 1833 1 0.0902472 0.46476 0.14395 1202 1 0.683716 0.489728 0.150293 534 1 0.53462 0.0126528 0.167619 694 1 0.637766 0.00450911 0.163038 732 1 0.957019 0.00367004 0.155054 1562 1 0.711148 0.0471842 0.163848 1170 1 0.315707 0.076048 0.156274 1045 1 0.956855 0.106158 0.16685 773 1 0.819175 0.134539 0.163521 1590 1 0.660986 0.164534 0.164112 1553 1 0.421763 0.209975 0.162403 1440 1 0.0120613 0.225675 0.170521 1890 1 0.0294416 0.239469 0.170134 1403 1 0.142946 0.247121 0.158513 545 1 0.78413 0.249482 0.155009 1670 1 0.500298 0.260728 0.170143 2029 1 0.430058 0.269932 0.164427 46 1 0.118384 0.320131 0.156019 443 1 0.253668 0.384797 0.171337 83 1 0.917046 0.439772 0.169376 1673 1 0.944999 0.437076 0.163723 10 1 0.230155 0.443107 0.170993 239 1 0.286525 0.460894 0.169932 1490 1 0.897952 0.443682 0.170141 100 1 0.656436 0.496492 0.168905 771 1 0.0166725 0.0233854 0.186174 185 1 0.61175 0.059448 0.180652 360 1 0.452695 0.100407 0.175194 1228 1 0.0416855 0.127965 0.179898 20 1 0.829449 0.12042 0.181148 350 1 0.622964 0.234995 0.181854 379 1 0.77612 0.265825 0.188649 1094 1 0.0662626 0.296374 0.18892 1774 1 0.69177 0.30458 0.177841 637 1 0.83608 0.340282 0.186494 1354 1 0.366137 0.363658 0.190289 665 1 0.954305 0.351999 0.1731 1527 1 0.207112 0.384787 0.175222 1779 1 0.467023 0.450299 0.190464 1591 1 0.546183 0.0781162 0.196871 926 1 0.67329 0.0928283 0.210424 418 1 0.0125737 0.119002 0.195877 1088 1 0.428136 0.117469 0.198451 396 1 0.936126 0.129496 0.20031 909 1 0.156845 0.1517 0.203966 578 1 0.82002 0.165617 0.206867 1789 1 0.90725 0.167428 0.210529 1087 1 0.126427 0.187564 0.192504 2044 1 0.279816 0.173211 0.198075 1434 1 0.738868 0.185257 0.204864 1110 1 0.854475 0.212206 0.194002 1912 1 0.244431 0.241413 0.197625 127 1 0.33583 0.29445 0.201284 1026 1 0.763922 0.302463 0.204261 339 1 0.334062 0.312849 0.201554 583 1 0.0920881 0.332246 0.197697 1986 1 0.370076 0.345979 0.194301 1320 1 0.33327 0.369977 0.201792 171 1 0.584854 0.379007 0.201489 1981 1 0.648267 0.470849 0.195833 215 1 0.867159 0.000246854 0.225472 1979 1 0.717816 0.0277186 0.218078 462 1 0.00180441 0.0645926 0.21764 148 1 0.0813206 0.0843945 0.229736 1468 1 0.60394 0.162513 0.212363 640 1 0.521827 0.178934 0.21853 449 1 0.536955 0.209357 0.223164 1736 1 0.583936 0.221709 0.222278 518 1 0.363491 0.235753 0.218311 576 1 0.468414 0.268081 0.223537 1853 1 0.709638 0.277091 0.228214 351 1 0.105427 0.290287 0.215719 1182 1 0.444591 0.301502 0.226179 1534 1 0.701766 0.29015 0.212847 202 1 0.165823 0.322395 0.223621 1422 1 0.276696 0.329799 0.214976 1608 1 0.413691 0.455862 0.212106 1213 1 0.650837 0.451454 0.223416 1964 1 0.675054 0.455439 0.227495 989 1 0.941687 0.467569 0.223624 696 1 0.594629 0.488277 0.211848 170 1 0.952631 0.482467 0.216182 407 1 0.972684 0.480898 0.214615 727 1 0.114823 0.014569 0.24667 798 1 0.249679 0.0100162 0.24912 122 1 0.509857 0.00624149 0.241143 1216 1 0.727016 0.0135462 0.241642 1814 1 0.462523 0.0322586 0.240265 559 1 0.136253 0.0513418 0.237389 729 1 0.194223 0.0849925 0.245841 319 1 0.254631 0.108784 0.240599 934 1 0.583881 0.101283 0.235006 1859 1 0.951897 0.123782 0.240532 344 1 0.45748 0.134915 0.24184 818 1 0.874266 0.252169 0.247826 1573 1 0.0568778 0.277899 0.234104 872 1 0.157443 0.289873 0.239003 1038 1 0.797864 0.302107 0.238667 752 1 0.699858 0.35366 0.23488 942 1 0.459341 0.389199 0.242879 1888 1 0.151113 0.489738 0.248973 321 1 0.187517 0.00341351 0.258789 1871 1 0.062083 0.111816 0.268324 1067 1 0.503128 0.0970379 0.252111 1242 1 0.753727 0.132545 0.251292 1946 1 0.232825 0.228367 0.266829 847 1 0.268223 0.255591 0.262454 1970 1 0.515879 0.286522 0.253811 386 1 0.740257 0.350424 0.252989 39 1 0.203854 0.389455 0.257252 1944 1 0.658788 0.395139 0.262211 1784 1 0.493106 0.449771 0.264704 886 1 0.0373391 0.474308 0.253534 1687 1 0.322584 0.481125 0.264595 1297 1 0.343799 0.486823 0.261627 1374 1 0.585403 0.498968 0.256041 1725 1 0.633869 0.497554 0.263899 184 1 0.280502 0.011225 0.285334 1816 1 0.887459 0.0344887 0.284764 676 1 0.0965683 0.0565536 0.270886 666 1 0.51116 0.0602625 0.280764 1030 1 0.862244 0.0912005 0.274743 385 1 0.0966444 0.152564 0.273566 1291 1 0.254212 0.143785 0.278671 1135 1 0.374239 0.149315 0.275788 1356 1 0.0875628 0.198535 0.276051 1201 1 0.899717 0.207249 0.277858 1435 1 0.77462 0.303892 0.274156 370 1 0.794977 0.304883 0.279694 1905 1 0.0640877 0.380002 0.276492 169 1 0.625269 0.398495 0.273464 82 1 0.311618 0.414358 0.269566 824 1 0.134363 0.429226 0.281622 168 1 0.44665 0.423338 0.26927 1385 1 0.732835 0.426818 0.285888 1545 1 0.860422 0.445491 0.278464 1294 1 0.816237 0.475655 0.286575 616 1 0.544238 0.498535 0.283028 1068 1 0.222966 0.00305304 0.294218 1341 1 0.322362 0.0278706 0.300313 1690 1 0.627023 0.0360629 0.305498 285 1 0.982893 0.0557448 0.303842 1016 1 0.269321 0.0859393 0.297147 425 1 0.467158 0.0785116 0.298154 451 1 0.991381 0.106206 0.30197 1753 1 0.71782 0.146877 0.296727 1329 1 0.674391 0.192797 0.299491 827 1 0.313792 0.229129 0.306572 897 1 0.721816 0.21997 0.307628 1173 1 0.632028 0.252629 0.294958 1180 1 0.653462 0.25226 0.30123 1934 1 0.450352 0.290251 0.289693 1471 1 0.21755 0.343623 0.301593 1009 1 0.951593 0.330936 0.301612 1692 1 0.0746315 0.356858 0.297411 1062 1 0.797477 0.352769 0.297502 932 1 0.359957 0.406687 0.294671 1292 1 0.45864 0.483717 0.297911 992 1 0.525549 0.0176919 0.317628 1552 1 0.634034 0.0983403 0.322698 2014 1 0.617276 0.115715 0.326057 508 1 0.815391 0.122336 0.318818 878 1 0.246895 0.210176 0.324836 588 1 0.417898 0.198426 0.311593 1289 1 0.317931 0.268235 0.325239 1920 1 0.53858 0.264096 0.317648 87 1 0.671652 0.26359 0.319902 796 1 0.0255931 0.280774 0.312637 1676 1 0.284889 0.300821 0.310515 1313 1 0.400724 0.337637 0.316705 263 1 0.929984 0.341386 0.32447 1803 1 0.932972 0.345406 0.31022 411 1 0.116647 0.388859 0.320784 1352 1 0.0856578 0.404563 0.320713 904 1 0.185091 0.419679 0.322899 34 1 0.113244 0.451354 0.323036 540 1 0.556469 0.0335359 0.340699 997 1 0.246658 0.0412295 0.338831 1484 1 0.352386 0.106234 0.344154 207 1 0.459656 0.146214 0.333097 787 1 0.451907 0.180943 0.331305 734 1 0.935631 0.187036 0.333487 1011 1 0.145403 0.219559 0.337559 1031 1 0.793831 0.218077 0.342973 846 1 0.940389 0.237919 0.331526 839 1 0.144077 0.261458 0.343394 1358 1 0.256814 0.283572 0.329324 484 1 0.747243 0.294017 0.331989 402 1 0.952848 0.297352 0.343199 1127 1 0.328142 0.321288 0.338843 1165 1 0.849506 0.322491 0.340105 2024 1 0.272992 0.35555 0.34197 193 1 0.289723 0.361819 0.329371 954 1 0.36652 0.376462 0.328419 1846 1 0.730236 0.368222 0.337306 110 1 0.504631 0.448556 0.343238 1023 1 0.760232 0.460213 0.344661 876 1 0.880076 0.466819 0.332882 502 1 0.927507 0.0364766 0.358712 1373 1 0.223546 0.0639239 0.348855 1636 1 0.229585 0.0609999 0.364185 1492 1 0.246853 0.0624698 0.361046 290 1 0.2867 0.12986 0.364311 157 1 0.76796 0.147287 0.351338 1965 1 0.303757 0.164523 0.359293 526 1 0.866552 0.188853 0.348657 1710 1 0.488765 0.216137 0.348727 1390 1 0.779458 0.233946 0.361866 13 1 0.167551 0.267995 0.353267 251 1 0.321589 0.26081 0.352452 123 1 0.334771 0.257057 0.348493 829 1 0.405786 0.26914 0.352153 1396 1 0.323428 0.270829 0.348231 1499 1 0.759206 0.277531 0.360324 783 1 0.465364 0.319835 0.347085 1012 1 0.012923 0.352599 0.35693 836 1 0.644086 0.383776 0.364051 448 1 0.881896 0.445539 0.348371 1898 1 0.5424 0.480304 0.356098 685 1 0.416416 0.493799 0.35385 391 1 0.468251 0.485418 0.364549 956 1 0.0337593 0.000809982 0.370705 1271 1 0.678057 0.0352421 0.383455 1060 1 0.284218 0.0602747 0.380238 865 1 0.211037 0.0834487 0.373797 21 1 0.61144 0.0871188 0.380746 1634 1 0.281347 0.210919 0.38402 1255 1 0.682145 0.220582 0.366881 1969 1 0.112811 0.244918 0.375777 1470 1 0.659876 0.25082 0.38218 1252 1 0.805043 0.315712 0.367302 623 1 0.0363852 0.340313 0.376068 1962 1 0.781815 0.375402 0.370042 1461 1 0.828232 0.398569 0.370703 1161 1 0.159946 0.459348 0.365843 422 1 0.672494 0.453316 0.367609 223 1 0.721349 0.451721 0.376748 958 1 0.170215 0.464347 0.368887 1577 1 0.269455 0.496892 0.372136 232 1 0.600335 0.49879 0.365639 167 1 0.404018 0.0159627 0.395083 1504 1 0.172767 0.0496486 0.386188 590 1 0.829488 0.095191 0.385801 1592 1 0.898757 0.0977343 0.391953 1662 1 0.255267 0.172661 0.397597 142 1 0.928039 0.172002 0.403832 2038 1 0.414849 0.177097 0.390772 175 1 0.225215 0.196942 0.396694 1224 1 0.103342 0.267977 0.385062 1048 1 0.805895 0.301014 0.395769 1607 1 0.0258551 0.322278 0.400982 440 1 0.121959 0.380192 0.39185 1724 1 0.503398 0.399194 0.397936 1226 1 0.817047 0.391403 0.402252 577 1 0.983607 0.386826 0.38858 731 1 0.344356 0.433973 0.401134 428 1 0.611228 0.446715 0.398696 1360 1 0.785545 0.456358 0.388747 647 1 0.575916 0.469211 0.39627 984 1 0.265881 0.494627 0.389655 1364 1 0.614695 0.483333 0.388775 1893 1 0.811941 0.485525 0.394949 1787 1 0.938541 0.482231 0.389823 77 1 0.827218 0.0877816 0.416981 1206 1 0.574198 0.123529 0.415176 270 1 0.510452 0.167747 0.422889 60 1 0.205825 0.17317 0.417196 61 1 0.594483 0.203241 0.417987 1423 1 0.739795 0.1949 0.405835 1 1 0.0196597 0.212383 0.405558 1389 1 0.843904 0.21874 0.409132 1867 1 0.774987 0.268629 0.409125 8 1 0.806222 0.276259 0.412189 999 1 0.193681 0.338762 0.407792 322 1 0.905774 0.344927 0.42049 1914 1 0.455059 0.349657 0.406052 2002 1 0.572246 0.357645 0.406294 1621 1 0.787569 0.400518 0.406254 1770 1 0.351977 0.439283 0.414093 630 1 0.48727 0.205889 0.435091 149 1 0.644183 0.208652 0.425934 2021 1 0.133206 0.256951 0.425688 1766 1 0.935215 0.279146 0.42367 471 1 0.377935 0.322151 0.439331 1427 1 0.0391758 0.348115 0.439028 1721 1 0.475402 0.391901 0.429733 1796 1 0.940631 0.414758 0.429408 1503 1 0.867083 0.45239 0.428126 1428 1 0.16659 0.0525806 0.459705 658 1 0.855196 0.0955 0.448147 206 1 0.16338 0.111 0.443838 479 1 0.0620495 0.131088 0.445362 937 1 0.220637 0.125951 0.454756 1287 1 0.229688 0.173412 0.448103 1958 1 0.486326 0.210938 0.444693 29 1 0.51934 0.20897 0.443896 124 1 0.762186 0.200532 0.451619 1103 1 0.681318 0.224389 0.445162 1217 1 0.832045 0.244731 0.44543 244 1 0.515234 0.26002 0.460998 1655 1 0.264712 0.26956 0.4531 1187 1 0.0666166 0.300444 0.460969 1230 1 0.89389 0.34492 0.452658 799 1 0.426821 0.355316 0.448068 760 1 0.506149 0.398504 0.442487 1227 1 0.307473 0.410258 0.449315 1620 1 0.677669 0.450349 0.442809 1205 1 0.567166 0.0663736 0.479767 1416 1 0.409057 0.140866 0.463989 472 1 0.574657 0.144382 0.468561 957 1 0.171189 0.169193 0.465958 1956 1 0.473214 0.157487 0.477856 492 1 0.914453 0.161734 0.462015 750 1 0.0757083 0.207989 0.475973 1801 1 0.457244 0.208195 0.466966 1874 1 0.76474 0.198311 0.471813 240 1 0.768462 0.29842 0.468049 1911 1 0.79889 0.310503 0.471726 1467 1 0.144521 0.337019 0.47561 1700 1 0.371507 0.349057 0.478613 281 1 0.690454 0.359836 0.468896 1376 1 0.348925 0.38411 0.467845 1856 1 0.617138 0.38511 0.475668 211 1 0.8606 0.0508733 0.480936 150 1 0.799176 0.103897 0.494548 1769 1 0.11276 0.186374 0.483606 925 1 0.166224 0.182602 0.485552 730 1 0.429453 0.178605 0.490763 927 1 0.594823 0.197424 0.48104 687 1 0.7609 0.206888 0.49322 390 1 0.66112 0.224012 0.485289 1628 1 0.454324 0.245052 0.48744 2010 1 0.334167 0.253954 0.482093 444 1 0.0629633 0.284505 0.486221 869 1 0.283686 0.371371 0.499129 1192 1 0.653962 0.3814 0.497091 1714 1 0.404396 0.391186 0.492758 432 1 0.470553 0.418586 0.491679 128 1 0.653403 0.457401 0.49253 176 1 0.891794 0.471044 0.497894 1602 1 0.349012 0.00959395 0.507546 1921 1 0.908415 0.00281578 0.513297 768 1 0.927618 0.0551937 0.505412 1251 1 0.745072 0.0888681 0.513116 1072 1 0.637994 0.097523 0.509995 1994 1 0.793851 0.107052 0.503304 1136 1 0.488002 0.164318 0.514431 387 1 0.519243 0.174193 0.515159 1780 1 0.620227 0.178632 0.501221 305 1 0.341779 0.199336 0.517462 893 1 0.434507 0.229185 0.518115 329 1 0.612404 0.229106 0.512254 78 1 0.592151 0.24047 0.513065 620 1 0.386616 0.250537 0.506577 634 1 0.509689 0.267354 0.510044 774 1 0.666829 0.319379 0.513679 880 1 0.298296 0.338533 0.503313 1715 1 0.913216 0.376301 0.505183 604 1 0.616907 0.404992 0.514353 409 1 0.0453871 0.454845 0.50975 1424 1 0.284117 0.454166 0.51611 1248 1 0.75198 0.454064 0.516358 1186 1 0.820752 0.458396 0.504679 631 1 0.106349 0.49729 0.515688 313 1 0.351488 0.0532684 0.531332 114 1 0.728937 0.0414212 0.537566 1047 1 0.221675 0.115877 0.535018 247 1 0.891004 0.147687 0.535575 1904 1 0.118486 0.162904 0.526301 1918 1 0.275208 0.16091 0.529714 1179 1 0.599182 0.159821 0.53406 996 1 0.888489 0.227117 0.521505 546 1 0.833884 0.239045 0.533854 249 1 0.252349 0.260899 0.536694 388 1 0.801327 0.282954 0.525603 1879 1 0.51835 0.310672 0.533727 1622 1 0.568831 0.313531 0.530689 853 1 0.830717 0.317178 0.528945 464 1 0.335978 0.338374 0.531424 403 1 0.894016 0.334904 0.52768 1567 1 0.998329 0.332483 0.53131 1631 1 0.155167 0.377257 0.537937 1457 1 0.223797 0.379471 0.521161 1414 1 0.438364 0.422552 0.53154 495 1 0.214535 0.479345 0.523032 712 1 0.674877 0.464896 0.529493 1570 1 0.61115 0.0270705 0.544511 947 1 0.185482 0.0763668 0.554033 1394 1 0.303551 0.0671021 0.548325 2047 1 0.837075 0.101849 0.545862 1034 1 0.980481 0.140156 0.554247 268 1 0.321629 0.173917 0.548092 27 1 0.508161 0.219183 0.555783 84 1 0.67976 0.216334 0.557434 513 1 0.880211 0.242568 0.541829 414 1 0.989623 0.237463 0.540887 1483 1 0.398922 0.261518 0.554692 365 1 0.615322 0.253768 0.553215 1476 1 0.662972 0.254249 0.5492 1115 1 0.497286 0.281297 0.541452 605 1 0.782887 0.299432 0.540081 881 1 0.47672 0.337834 0.550079 833 1 0.811494 0.334145 0.54354 1363 1 0.397982 0.354898 0.557106 1510 1 0.47703 0.373154 0.54204 1847 1 0.184192 0.420941 0.551867 915 1 0.0617974 0.492042 0.547455 186 1 0.456735 0.489669 0.552704 790 1 0.721785 0.48079 0.552825 158 1 0.402272 0.0542683 0.56577 906 1 0.176135 0.070887 0.55831 1980 1 0.116937 0.094563 0.576102 931 1 0.109516 0.118012 0.574832 400 1 0.332755 0.131008 0.571369 551 1 0.712309 0.199281 0.568274 95 1 0.233613 0.22493 0.561999 1927 1 0.293309 0.229022 0.572326 1945 1 0.659139 0.219984 0.575582 748 1 0.906487 0.230616 0.561639 333 1 0.273882 0.24761 0.564936 515 1 0.64903 0.242182 0.568912 1968 1 0.381343 0.275737 0.559964 1838 1 0.426581 0.27786 0.568971 424 1 0.684822 0.294054 0.573118 516 1 0.787736 0.3054 0.573201 574 1 0.718127 0.353616 0.572908 395 1 0.599118 0.403185 0.557966 832 1 0.756289 0.402025 0.575787 1835 1 0.762797 0.39979 0.565812 671 1 0.920396 0.388709 0.563848 1460 1 0.138946 0.407056 0.574835 264 1 0.991341 0.416028 0.558303 1413 1 0.447877 0.0488482 0.591078 1172 1 0.641107 0.0615815 0.578901 1277 1 0.635347 0.0896682 0.580613 1181 1 0.636632 0.0996611 0.579425 410 1 0.37212 0.144804 0.593723 1603 1 0.756637 0.164708 0.585722 1446 1 0.961933 0.180501 0.590201 1353 1 0.136208 0.205616 0.593521 1564 1 0.738802 0.221411 0.583835 1569 1 0.620255 0.27686 0.592428 1096 1 0.164832 0.301456 0.58441 982 1 0.822923 0.346577 0.585795 1404 1 0.0213084 0.397646 0.581171 1339 1 0.374441 0.417164 0.58973 1278 1 0.400028 0.476949 0.585447 465 1 0.628364 0.47762 0.591378 645 1 0.508938 0.0317539 0.600453 626 1 0.176789 0.152835 0.602702 1738 1 0.67495 0.169571 0.60873 1794 1 0.927149 0.183537 0.600797 1915 1 0.879033 0.225564 0.604062 37 1 0.374118 0.247725 0.605669 1311 1 0.996511 0.232653 0.606589 1174 1 0.784357 0.26831 0.614682 1055 1 0.862773 0.283322 0.601416 1708 1 0.404 0.330881 0.606413 2018 1 0.884157 0.336307 0.614254 120 1 0.873176 0.348613 0.59658 136 1 0.114163 0.485669 0.607528 1916 1 0.66918 0.0102343 0.61612 766 1 0.0182052 0.0906365 0.618564 1004 1 0.582467 0.0964486 0.628847 651 1 0.580056 0.105483 0.622102 1497 1 0.358366 0.145574 0.629969 1439 1 0.61281 0.136096 0.625648 1600 1 0.453173 0.171122 0.616397 1415 1 0.336097 0.190408 0.627673 1917 1 0.523875 0.185213 0.633287 42 1 0.514343 0.173954 0.629993 389 1 0.942345 0.199193 0.630385 1857 1 0.874326 0.217378 0.617349 1139 1 0.925278 0.224452 0.626864 1017 1 0.423135 0.247661 0.62808 1539 1 0.725364 0.23923 0.622706 1572 1 0.251745 0.263347 0.627242 1892 1 0.521513 0.263766 0.62607 1695 1 0.791654 0.260372 0.626642 859 1 0.0508968 0.277301 0.619989 54 1 0.438157 0.272662 0.621616 1876 1 0.505665 0.286215 0.631149 822 1 0.156439 0.321003 0.618414 1310 1 0.225254 0.314062 0.628021 1696 1 0.249358 0.321574 0.619436 521 1 0.223882 0.328908 0.628468 1852 1 0.0256741 0.354386 0.621294 994 1 0.183464 0.359409 0.618501 1475 1 0.605793 0.359055 0.629688 1099 1 0.618947 0.383013 0.61879 861 1 0.894332 0.397929 0.617285 562 1 0.871663 0.438276 0.617646 296 1 0.20528 0.473691 0.623887 1735 1 0.684386 0.117572 0.639178 1961 1 0.890417 0.189687 0.635084 1044 1 0.755751 0.211646 0.643158 1519 1 0.985776 0.244134 0.64799 1604 1 0.517866 0.292092 0.636931 358 1 0.845075 0.296382 0.647777 1020 1 0.868059 0.307745 0.636584 801 1 0.519432 0.336344 0.649097 1176 1 0.911955 0.39788 0.645184 1728 1 0.642673 0.00331501 0.671673 1077 1 0.0673011 0.0684548 0.660242 1057 1 0.463164 0.0827418 0.673028 737 1 0.606176 0.131067 0.655174 1250 1 0.0175915 0.149958 0.671414 212 1 0.806946 0.151905 0.655425 1426 1 0.651145 0.160089 0.664514 1043 1 0.103775 0.196931 0.667597 437 1 0.994037 0.211153 0.655969 1976 1 0.508546 0.227311 0.654262 1877 1 0.782068 0.221188 0.663641 356 1 0.39736 0.266901 0.663631 276 1 0.546127 0.335593 0.660541 703 1 0.362844 0.355962 0.668649 1093 1 0.0153092 0.384486 0.664655 898 1 0.861161 0.405587 0.666656 1299 1 0.984993 0.496823 0.656185 191 1 0.970509 0.0479743 0.684649 837 1 0.0936794 0.0757936 0.678408 1678 1 0.0754078 0.130657 0.688477 1380 1 0.425635 0.121666 0.678332 1243 1 0.864419 0.185837 0.685793 1775 1 0.293559 0.227396 0.688157 1828 1 0.516676 0.222926 0.674791 615 1 0.19592 0.254289 0.675545 1978 1 0.46172 0.268283 0.675597 1517 1 0.736881 0.286936 0.675372 961 1 0.603504 0.309031 0.677855 16 1 0.714227 0.325411 0.685136 2035 1 0.756241 0.309591 0.674212 1270 1 0.803527 0.318185 0.674381 2030 1 0.659931 0.335452 0.691922 1533 1 0.060171 0.352817 0.682775 2015 1 0.891361 0.358266 0.685972 228 1 0.407305 0.387334 0.680511 1641 1 0.246117 0.426446 0.686159 1407 1 0.478649 0.448513 0.680595 1167 1 0.277557 0.478088 0.677394 33 1 0.367998 0.481124 0.684993 1810 1 0.816323 0.00540208 0.702992 1091 1 0.610851 0.0245681 0.694227 964 1 0.789582 0.0361528 0.701698 1928 1 0.4859 0.0501052 0.70591 36 1 0.622547 0.0431553 0.698256 1131 1 0.66645 0.107264 0.693585 233 1 0.735119 0.126284 0.709054 490 1 0.0662715 0.13643 0.692312 1100 1 0.430063 0.137896 0.701541 1049 1 0.74193 0.156825 0.694107 1559 1 0.0486205 0.190664 0.698853 246 1 0.787483 0.233014 0.710819 188 1 0.873757 0.232364 0.710284 1598 1 0.106227 0.256775 0.709103 300 1 0.624145 0.266847 0.693073 1881 1 0.583206 0.277075 0.711387 617 1 0.808453 0.285526 0.711314 971 1 0.617141 0.315357 0.70814 2008 1 0.692241 0.308203 0.702989 811 1 0.0700364 0.36711 0.706407 196 1 0.14442 0.397816 0.709007 969 1 0.754844 0.400362 0.708408 1485 1 0.343698 0.436935 0.710222 820 1 0.480192 0.427637 0.699626 1878 1 0.0720407 0.0839786 0.716496 1078 1 0.455715 0.0855769 0.719399 1984 1 0.842809 0.0796064 0.72876 1627 1 0.404142 0.104491 0.722093 1748 1 0.0313998 0.14374 0.728397 216 1 0.281567 0.144638 0.712355 1909 1 0.791629 0.152817 0.720111 1018 1 0.55828 0.160452 0.716647 1754 1 0.613882 0.154356 0.712401 843 1 0.842656 0.206025 0.719526 1169 1 0.967262 0.21064 0.726321 214 1 0.776188 0.229941 0.715404 558 1 0.777683 0.219199 0.718088 477 1 0.602449 0.240696 0.718615 1184 1 0.0154439 0.265109 0.720625 527 1 0.389258 0.338084 0.713809 200 1 0.651203 0.329785 0.729777 2007 1 0.678306 0.357835 0.724622 103 1 0.762588 0.354778 0.724569 2028 1 0.835678 0.365167 0.729128 1975 1 0.770397 0.46256 0.723824 234 1 0.145066 0.481664 0.73046 795 1 0.266573 0.481651 0.720527 1931 1 0.362693 0.486021 0.713189 713 1 0.762654 0.492768 0.726947 2016 1 0.969872 0.489261 0.726468 1684 1 0.325405 0.00905198 0.742329 1351 1 0.452946 0.000222709 0.743848 1743 1 0.734629 0.0142163 0.734395 1323 1 0.899364 0.00638142 0.749799 923 1 0.416191 0.0226296 0.732553 1474 1 0.401037 0.0428702 0.745049 311 1 0.455556 0.0499623 0.749223 987 1 0.332273 0.0753971 0.741548 1073 1 0.475935 0.0663705 0.749745 1548 1 0.320674 0.0944292 0.73664 776 1 0.278288 0.129588 0.743159 1792 1 0.949293 0.14871 0.742956 1840 1 0.376478 0.205975 0.736554 852 1 0.407488 0.257349 0.747772 1506 1 0.400971 0.273982 0.738703 641 1 0.505336 0.285143 0.732326 181 1 0.478484 0.30461 0.738588 610 1 0.553959 0.303652 0.733358 1903 1 0.0313677 0.354865 0.742397 94 1 0.556086 0.394724 0.740568 1116 1 0.303876 0.420932 0.731731 709 1 0.519499 0.419913 0.737306 256 1 0.614293 0.409968 0.740382 1891 1 0.528833 0.474189 0.739725 1159 1 0.0412345 0.0139684 0.755418 1785 1 0.68738 0.0182085 0.759868 1303 1 0.286314 0.0333807 0.753024 595 1 0.402994 0.0230417 0.761811 757 1 0.595882 0.0396428 0.762193 1370 1 0.524194 0.0967602 0.752945 405 1 0.694193 0.0995657 0.767494 467 1 0.324309 0.117527 0.751763 2042 1 0.114959 0.164364 0.755339 500 1 0.141895 0.15742 0.757225 960 1 0.586891 0.173438 0.750907 563 1 0.484515 0.196583 0.760446 1966 1 0.957726 0.193566 0.751028 1134 1 0.477981 0.217378 0.750073 1547 1 0.964725 0.211847 0.7589 544 1 0.259763 0.247163 0.768355 1544 1 0.191621 0.271318 0.766245 56 1 0.313715 0.272509 0.763354 1560 1 0.466268 0.272116 0.764309 1935 1 0.0265653 0.31869 0.753241 208 1 0.873096 0.417288 0.756219 1247 1 0.986991 0.418681 0.765466 326 1 0.581411 0.437251 0.759784 567 1 0.184974 0.489209 0.752234 663 1 0.291423 0.0189814 0.787776 921 1 0.970269 0.00435907 0.769958 1786 1 0.465688 0.0199608 0.771718 404 1 0.624218 0.0274317 0.771826 2032 1 0.990593 0.0267498 0.771201 973 1 0.74247 0.047056 0.77943 417 1 0.455811 0.150301 0.783106 1699 1 0.472709 0.209024 0.779074 537 1 0.63408 0.211162 0.786528 1000 1 0.755168 0.215297 0.777443 132 1 0.859598 0.229614 0.778662 670 1 0.997901 0.211877 0.782908 441 1 0.306491 0.238448 0.77967 307 1 0.473654 0.241619 0.781302 99 1 0.523434 0.245853 0.778632 229 1 0.383757 0.259789 0.778708 1209 1 0.0996692 0.287124 0.770072 1844 1 0.78828 0.280507 0.782055 1383 1 0.364342 0.30009 0.775252 89 1 0.621738 0.361293 0.774113 682 1 0.57095 0.410458 0.770856 1866 1 0.943412 0.421844 0.787032 1720 1 0.479157 0.46288 0.770112 1092 1 0.461862 0.488118 0.780399 812 1 0.455532 0.0556944 0.803838 1951 1 0.537761 0.0609774 0.798119 622 1 0.606752 0.0606173 0.796356 1123 1 0.00463982 0.0883055 0.803924 1222 1 0.256628 0.131731 0.790484 834 1 0.919544 0.116159 0.791574 237 1 0.301455 0.142742 0.795429 978 1 0.363923 0.189042 0.789478 1887 1 0.844054 0.202055 0.792838 88 1 0.889135 0.213014 0.796583 533 1 0.323672 0.261298 0.79247 1551 1 0.390096 0.288168 0.795343 491 1 0.670063 0.302434 0.795487 672 1 0.464851 0.310583 0.801888 1653 1 0.827315 0.309602 0.79076 864 1 0.177649 0.369161 0.788515 58 1 0.396633 0.375245 0.796518 1750 1 0.800795 0.367121 0.794823 1200 1 0.518058 0.393268 0.799693 1489 1 0.534754 0.418514 0.799711 1842 1 0.874831 0.40603 0.79825 498 1 0.985479 0.411914 0.800286 704 1 0.468895 0.434975 0.80176 568 1 0.89303 0.460246 0.788868 1568 1 0.712854 0.486551 0.79252 1054 1 0.480148 0.00383201 0.814811 119 1 0.068517 0.0813215 0.818636 1630 1 0.305685 0.113369 0.81424 1705 1 0.131364 0.121692 0.810366 314 1 0.424602 0.121318 0.813604 1253 1 0.513065 0.116138 0.821312 45 1 0.999263 0.145226 0.808126 1108 1 0.548846 0.228968 0.819704 1211 1 0.928739 0.226967 0.813339 486 1 0.05013 0.231709 0.808317 1771 1 0.899053 0.258298 0.82305 1409 1 0.104417 0.272263 0.816369 1717 1 0.890787 0.337136 0.808849 1359 1 0.07731 0.363264 0.81324 1021 1 0.346585 0.393837 0.812524 1740 1 0.451557 0.406806 0.812065 1482 1 0.719494 0.451611 0.807697 1188 1 0.372585 0.473546 0.817188 1665 1 0.413413 0.469204 0.819264 2017 1 0.487712 0.495389 0.812962 705 1 0.500007 0.498052 0.819707 667 1 0.612316 0.0363571 0.844778 1148 1 0.176556 0.0530089 0.84568 144 1 0.489726 0.11031 0.84331 334 1 0.563787 0.208151 0.843539 1008 1 0.851066 0.209165 0.838868 807 1 0.939864 0.204755 0.841769 1593 1 0.0694188 0.223347 0.834676 1325 1 0.86398 0.242433 0.838333 1588 1 0.0589817 0.261767 0.835291 1119 1 0.87963 0.285835 0.827281 1348 1 0.0226948 0.307082 0.845498 764 1 0.662185 0.304207 0.83206 1178 1 0.303088 0.308273 0.845957 882 1 0.816359 0.314127 0.838386 1902 1 0.908892 0.307766 0.843963 487 1 0.638783 0.373791 0.844993 1681 1 0.896756 0.397679 0.833171 266 1 0.660327 0.405955 0.831657 525 1 0.668264 0.418094 0.84276 73 1 0.0488773 0.434149 0.833171 1648 1 0.455217 0.439979 0.83002 146 1 0.861588 0.440253 0.830153 1982 1 0.848921 0.444222 0.83349 118 1 0.176576 0.478626 0.839803 210 1 0.0165695 0.0227568 0.856533 1372 1 0.590827 0.0330958 0.862934 1584 1 0.726172 0.0352927 0.84885 162 1 0.814205 0.0758556 0.852563 2037 1 0.160057 0.0945488 0.853481 293 1 0.500155 0.108819 0.857039 1837 1 0.564947 0.128934 0.850849 137 1 0.468905 0.287681 0.846428 1819 1 0.185278 0.394949 0.852068 480 1 0.349134 0.385638 0.861741 199 1 0.404142 0.400242 0.852396 156 1 0.453961 0.41122 0.857136 1680 1 0.898648 0.421402 0.862488 1312 1 0.268019 0.470196 0.861933 260 1 0.903834 0.476467 0.862872 195 1 0.5197 0.487694 0.849477 445 1 0.680702 0.486086 0.857118 1906 1 0.768352 0.497266 0.857782 205 1 0.290279 0.0178938 0.878645 879 1 0.82261 0.0127084 0.867893 1829 1 0.0931753 0.0325153 0.883557 1128 1 0.669566 0.0687995 0.876524 1953 1 0.332491 0.0827162 0.881453 1834 1 0.171779 0.109575 0.878414 621 1 0.762357 0.121875 0.879034 1256 1 0.874427 0.149071 0.880126 601 1 0.411691 0.172677 0.881495 32 1 0.459851 0.207168 0.869691 1832 1 0.497581 0.192415 0.876229 639 1 0.225687 0.249531 0.865948 892 1 0.116966 0.260119 0.865661 1899 1 0.94332 0.268867 0.880802 680 1 0.0201376 0.270557 0.881588 1417 1 0.21552 0.334475 0.8738 763 1 0.778688 0.34073 0.876501 3 1 0.93887 0.33434 0.867753 998 1 0.428018 0.349867 0.870487 660 1 0.661628 0.401062 0.870774 644 1 0.195303 0.416655 0.874636 1645 1 0.59974 0.412115 0.874665 147 1 0.686058 0.422415 0.865584 303 1 0.498933 0.456457 0.881863 1972 1 0.170346 0.477169 0.873185 688 1 0.449443 0.494452 0.877191 373 1 0.641792 0.485258 0.868138 657 1 0.0743185 0.0310868 0.885211 1081 1 0.165236 0.0558401 0.899928 1349 1 0.248223 0.0431702 0.898458 1472 1 0.524127 0.0875995 0.889657 1050 1 0.950994 0.126692 0.899203 1959 1 0.151639 0.204617 0.892895 71 1 0.708337 0.272218 0.890981 1713 1 0.259224 0.294404 0.896778 107 1 0.78096 0.289722 0.900498 485 1 0.359966 0.360229 0.897581 1132 1 0.448243 0.356273 0.90239 914 1 0.552786 0.380755 0.892923 952 1 0.816546 0.417455 0.902897 1941 1 0.99807 0.446057 0.892937 1733 1 0.231774 0.0307876 0.920131 1550 1 0.235769 0.0405418 0.916755 977 1 0.586361 0.0695353 0.920995 749 1 0.674707 0.073926 0.920541 1137 1 0.341916 0.0927874 0.904737 1456 1 0.443591 0.153485 0.909733 429 1 0.685995 0.160477 0.920746 1308 1 0.780399 0.15806 0.915085 340 1 0.15295 0.188776 0.913363 674 1 0.522263 0.279202 0.919648 2027 1 0.575676 0.292148 0.914269 499 1 0.97864 0.331385 0.912065 1523 1 0.931925 0.349132 0.919589 1515 1 0.223615 0.379714 0.917737 761 1 0.0524698 0.409795 0.909445 1027 1 0.11546 0.428137 0.920867 1332 1 0.625469 0.429815 0.917546 30 1 0.0198906 0.459868 0.915898 762 1 0.116394 0.448259 0.904885 143 1 0.216812 0.486124 0.912744 539 1 0.48555 0.0174361 0.931336 164 1 0.480195 0.00777124 0.942255 1511 1 0.738449 0.00896427 0.928983 2033 1 0.786011 0.134027 0.932098 1677 1 0.237404 0.143636 0.935416 541 1 0.81775 0.161329 0.933043 69 1 0.134018 0.174867 0.928396 1694 1 0.0260126 0.200681 0.924413 1220 1 0.173006 0.208464 0.928532 772 1 0.243551 0.227179 0.92529 1661 1 0.715813 0.223676 0.930461 361 1 0.428225 0.24103 0.939775 271 1 0.269409 0.33944 0.930881 575 1 0.59153 0.333691 0.938425 1650 1 0.882885 0.332546 0.929566 1317 1 0.34863 0.368602 0.931693 245 1 0.407669 0.402657 0.934756 1158 1 0.638708 0.399962 0.938255 1549 1 0.321168 0.41657 0.939908 336 1 0.712638 0.406676 0.92375 717 1 0.949047 0.415971 0.938649 112 1 0.168087 0.441851 0.934897 699 1 0.217223 0.438225 0.940938 11 1 0.136688 0.449242 0.930543 278 1 0.0885187 0.475435 0.932069 1229 1 0.3428 0.46506 0.933227 1382 1 0.508422 0.47828 0.933225 1059 1 0.818618 0.0494701 0.950931 770 1 0.379467 0.0602394 0.95069 1304 1 0.542577 0.0714268 0.957462 12 1 0.723936 0.0994358 0.943798 866 1 0.219596 0.131877 0.946179 1157 1 0.551457 0.122968 0.957132 1036 1 0.938574 0.144867 0.943679 1827 1 0.469929 0.181258 0.958089 794 1 0.712136 0.19349 0.958121 474 1 0.354797 0.312208 0.953727 177 1 0.417341 0.316675 0.952911 920 1 0.460408 0.311393 0.957393 166 1 0.601516 0.316737 0.954036 494 1 0.603604 0.335069 0.950231 335 1 0.838766 0.332499 0.946859 1260 1 0.365684 0.378736 0.949807 1010 1 0.197071 0.417017 0.959068 1543 1 0.0814806 0.438297 0.945152 1450 1 0.0899414 0.45936 0.957145 1309 1 0.368739 0.475259 0.943675 43 1 0.0676338 0.00864445 0.976296 1732 1 0.237801 0.0349235 0.972696 662 1 0.915379 0.0273013 0.98037 1302 1 0.578723 0.0695346 0.967053 1581 1 0.541758 0.0970717 0.969749 1406 1 0.659636 0.154473 0.968319 1988 1 0.739371 0.166984 0.976459 1657 1 0.0525221 0.19636 0.968578 636 1 0.169245 0.204867 0.980042 1245 1 0.962183 0.246007 0.963367 1683 1 0.865357 0.266269 0.966094 203 1 0.978395 0.258081 0.970933 1198 1 0.362225 0.279266 0.978123 1601 1 0.557321 0.312611 0.969001 1950 1 0.628779 0.309687 0.979315 803 1 0.423019 0.33035 0.970125 1239 1 0.553037 0.339878 0.963611 1923 1 0.659272 0.330659 0.970059 1930 1 0.863752 0.376967 0.975294 884 1 0.799919 0.391824 0.971125 706 1 0.128285 0.421887 0.979966 1343 1 0.9162 0.422805 0.978174 398 1 0.810206 0.451412 0.969435 2020 1 0.708649 0.0349631 0.997274 1080 1 0.806499 0.042043 0.982417 248 1 0.646001 0.133199 0.989659 1234 1 0.675993 0.13662 0.992425 1746 1 0.973402 0.203291 0.998311 1391 1 0.462801 0.214737 0.986478 192 1 0.833101 0.231648 0.981592 1387 1 0.769155 0.291626 0.991159 280 1 0.683972 0.311597 0.981982 1231 1 0.684947 0.316383 0.992478 469 1 0.996178 0.346854 0.993928 507 1 0.763491 0.382013 0.987855 277 1 0.207168 0.385505 0.992291 1430 1 0.0965697 0.412432 0.999798 1449 1 0.127335 0.419824 0.995519 553 1 0.712754 0.408471 0.994985 401 1 0.691768 0.435368 0.985116 1781 1 0.81228 0.447852 0.996428 1089 1 0.935873 0.598657 0.0160258 468 1 0.0837488 0.688819 0.0169443 972 1 0.422292 0.730007 0.0170982 690 1 0.848457 0.807332 0.0188231 1505 1 0.10518 0.815307 0.0162954 1326 1 0.39578 0.840065 0.0114913 1610 1 0.408791 0.831317 0.011626 1007 1 0.887237 0.856142 0.00804493 1983 1 0.144337 0.874066 0.000201401 1802 1 0.613181 0.889058 0.00273268 2 1 0.871198 0.93919 0.0051368 851 1 0.609393 0.954686 0.00763904 374 1 0.954395 0.954853 0.0183893 1085 1 0.177548 0.973229 0.00184156 1679 1 0.223772 0.99417 0.0134235 272 1 0.263764 0.987465 0.0141805 970 1 0.652718 0.534067 0.0279837 524 1 0.548988 0.541534 0.026312 1605 1 0.610285 0.545151 0.0224978 584 1 0.792253 0.610622 0.0341222 1697 1 0.496256 0.644523 0.0365881 1618 1 0.927859 0.66514 0.0285142 255 1 0.988675 0.678122 0.0326163 1350 1 0.225457 0.694796 0.0230266 2040 1 0.22462 0.725278 0.0284379 1773 1 0.693247 0.738506 0.0383635 1466 1 0.509989 0.78612 0.0303603 716 1 0.650927 0.797567 0.01957 1246 1 0.728086 0.836615 0.0260517 377 1 0.187367 0.86123 0.0351683 579 1 0.0396049 0.897973 0.0376249 940 1 0.686897 0.90156 0.0304841 265 1 0.17864 0.976656 0.0349316 549 1 0.0252978 0.538817 0.0469278 1368 1 0.617149 0.572525 0.0555688 1241 1 0.869973 0.611803 0.0495295 1836 1 0.416515 0.654029 0.0408266 596 1 0.193907 0.680305 0.0501722 806 1 0.54875 0.727691 0.0386505 1580 1 0.645344 0.792932 0.0519412 1082 1 0.540254 0.860467 0.0573636 9 1 0.287765 0.876244 0.0393299 236 1 0.0959918 0.91662 0.044582 1262 1 0.399356 0.911748 0.047231 1739 1 0.197446 0.980678 0.0425479 1477 1 0.383434 0.976334 0.0497094 1566 1 0.638597 0.973636 0.051774 1269 1 0.685143 0.514782 0.0734939 1218 1 0.644244 0.541573 0.0734975 1947 1 0.95978 0.557486 0.0741116 1438 1 0.816964 0.707717 0.0597586 1723 1 0.141215 0.749384 0.0580688 482 1 0.458516 0.821413 0.059978 35 1 0.913444 0.820694 0.0736905 1237 1 0.929752 0.818355 0.0659086 48 1 0.690828 0.828252 0.0614402 953 1 0.0121061 0.847762 0.0613701 297 1 0.586689 0.848656 0.0616868 269 1 0.27814 0.895539 0.0621301 416 1 0.395088 0.895201 0.0601898 1508 1 0.45813 0.90208 0.0582822 1362 1 0.0147787 0.948483 0.0668465 1894 1 0.0319177 0.975662 0.0730663 57 1 0.300889 0.968397 0.0755 1537 1 0.339672 0.525997 0.0909423 800 1 0.488781 0.554985 0.0858392 856 1 0.4337 0.609661 0.084524 1397 1 0.845954 0.608727 0.0852626 788 1 0.738848 0.618272 0.0790475 1171 1 0.777416 0.668655 0.0823697 1203 1 0.313502 0.711165 0.0893326 419 1 0.919361 0.717057 0.0772102 1973 1 0.245106 0.768729 0.0788472 1232 1 0.409581 0.755042 0.0796337 1006 1 0.896783 0.755837 0.0865319 1378 1 0.902534 0.771297 0.0913038 2000 1 0.761429 0.818831 0.0923875 1809 1 0.142135 0.838682 0.077575 1487 1 0.123738 0.989073 0.0837973 514 1 0.251831 0.993454 0.0937691 1455 1 0.316437 0.518046 0.109912 435 1 0.878408 0.500386 0.104359 145 1 0.62476 0.538335 0.106832 1097 1 0.0542095 0.546818 0.112423 273 1 0.211938 0.649464 0.1012 1757 1 0.234051 0.65021 0.111863 830 1 0.460297 0.65333 0.10176 531 1 0.625117 0.667498 0.112216 1528 1 0.849224 0.67143 0.0976259 903 1 0.23792 0.686717 0.101053 990 1 0.895908 0.674259 0.0997807 1153 1 0.288408 0.694837 0.109306 318 1 0.569453 0.739398 0.111184 327 1 0.70052 0.792467 0.110431 1795 1 0.526236 0.863747 0.101388 511 1 0.996549 0.905156 0.113354 1594 1 0.231091 0.991048 0.114381 76 1 0.558637 0.50983 0.116537 415 1 0.846943 0.512723 0.126185 349 1 0.903728 0.535501 0.13421 1524 1 0.0461122 0.551963 0.13287 1989 1 0.357587 0.563844 0.121427 1996 1 0.374183 0.573173 0.12571 529 1 0.108296 0.591677 0.120846 1579 1 0.851671 0.578145 0.129035 130 1 0.382023 0.676267 0.130011 504 1 0.376255 0.704106 0.129385 1900 1 0.342901 0.73523 0.118719 1626 1 0.85855 0.751291 0.118356 726 1 0.769211 0.782206 0.120318 711 1 0.842458 0.778106 0.131974 1938 1 0.918444 0.800564 0.126504 1453 1 0.928162 0.797351 0.131586 1051 1 0.524349 0.812444 0.125929 862 1 0.971086 0.822015 0.122553 1557 1 0.348152 0.828144 0.123655 295 1 0.0809845 0.856147 0.134464 1193 1 0.689897 0.882838 0.132702 1331 1 0.379299 0.8858 0.123517 669 1 0.964026 0.893549 0.117209 1967 1 0.995522 0.898078 0.128833 1922 1 0.489905 0.955071 0.122661 592 1 0.980558 0.95125 0.131867 1848 1 0.530306 0.97444 0.115976 172 1 0.777434 0.514538 0.149649 739 1 0.177897 0.58345 0.149783 1400 1 0.459901 0.584224 0.134716 875 1 0.719691 0.593441 0.153482 1074 1 0.950587 0.584312 0.140091 304 1 0.633868 0.610627 0.151543 1196 1 0.146395 0.650612 0.145531 535 1 0.0264034 0.696051 0.136324 858 1 0.09063 0.698787 0.139948 1741 1 0.345114 0.702143 0.149502 1863 1 0.458126 0.693502 0.138776 299 1 0.380358 0.7248 0.15352 1122 1 0.531369 0.767197 0.144853 779 1 0.282088 0.781284 0.146991 597 1 0.524882 0.771699 0.151603 1002 1 0.883788 0.774239 0.136589 683 1 0.586823 0.793924 0.144355 438 1 0.658962 0.800242 0.14424 458 1 0.923499 0.830971 0.149472 901 1 0.972382 0.846916 0.138407 1014 1 0.161741 0.868693 0.136206 1377 1 0.85167 0.890536 0.150567 1698 1 0.0780042 0.975859 0.13711 446 1 0.439672 0.988535 0.139601 1113 1 0.0222725 0.513448 0.17156 1488 1 0.410585 0.508693 0.169705 1815 1 0.237578 0.529249 0.158743 408 1 0.332144 0.554247 0.165753 1284 1 0.820763 0.548203 0.166971 140 1 0.416882 0.620181 0.167388 1235 1 0.602954 0.632243 0.161616 967 1 0.451088 0.641601 0.155776 2041 1 0.56575 0.655589 0.169508 522 1 0.524622 0.693285 0.167107 951 1 0.0018453 0.720452 0.169905 519 1 0.974044 0.748738 0.168762 1660 1 0.0280803 0.752035 0.156454 493 1 0.943366 0.756282 0.167988 966 1 0.100739 0.787395 0.168451 2003 1 0.30992 0.790521 0.156607 1858 1 0.174539 0.884221 0.154062 413 1 0.34084 0.873482 0.163683 1288 1 0.872025 0.977197 0.157071 1971 1 0.0947652 0.997938 0.164667 746 1 0.694439 0.993208 0.156552 101 1 0.294307 0.528735 0.173724 695 1 0.424136 0.549654 0.190685 153 1 0.639914 0.556879 0.184304 1651 1 0.0914601 0.5585 0.183685 1367 1 0.507619 0.611132 0.184905 654 1 0.577533 0.610785 0.192055 1764 1 0.544076 0.695293 0.187651 1215 1 0.699272 0.697 0.179289 1751 1 0.748551 0.713766 0.175632 470 1 0.636857 0.804077 0.1913 1910 1 0.956848 0.795992 0.179935 1582 1 0.67167 0.814289 0.17668 988 1 0.24981 0.839135 0.191993 1064 1 0.0751613 0.856059 0.183506 286 1 0.144284 0.866064 0.174078 1106 1 0.925215 0.872043 0.190628 554 1 0.780569 0.888205 0.177066 74 1 0.303413 0.913757 0.18789 1672 1 0.991688 0.908895 0.173752 44 1 0.427648 0.927407 0.1923 204 1 0.975496 0.950843 0.176301 638 1 0.991839 0.946322 0.178203 659 1 0.356423 0.980536 0.1911 258 1 0.415762 0.513278 0.20567 163 1 0.283602 0.5242 0.206214 243 1 0.419286 0.535583 0.204538 131 1 0.861016 0.59856 0.20445 1204 1 0.770525 0.633958 0.202049 1454 1 0.912989 0.627605 0.207264 64 1 0.531886 0.666799 0.204338 1258 1 0.940513 0.665109 0.194952 566 1 0.264153 0.688813 0.206414 1084 1 0.675268 0.691447 0.204384 1561 1 0.292431 0.694753 0.200922 310 1 0.567013 0.705915 0.198838 1479 1 0.572725 0.703924 0.209407 28 1 0.647901 0.717702 0.208054 1486 1 0.220519 0.824542 0.206961 226 1 0.915571 0.825858 0.196787 17 1 0.901513 0.881863 0.201003 786 1 0.201866 0.945394 0.195974 1843 1 0.465189 0.948387 0.204194 945 1 0.577903 0.951997 0.193548 1480 1 0.852055 0.942416 0.196827 1162 1 0.567739 0.535763 0.220015 1117 1 0.222001 0.578072 0.226282 1613 1 0.229208 0.589109 0.216875 1301 1 0.99782 0.591407 0.213305 1992 1 0.597693 0.600051 0.227254 478 1 0.810248 0.631828 0.213113 1704 1 0.430892 0.658025 0.226667 941 1 0.815294 0.655164 0.228314 831 1 0.363372 0.701903 0.217869 1629 1 0.603152 0.735265 0.216594 1143 1 0.50476 0.771274 0.21558 201 1 0.164332 0.792448 0.221973 841 1 0.520805 0.814856 0.225991 1478 1 0.488186 0.839225 0.220032 1822 1 0.570587 0.829382 0.227072 1146 1 0.390906 0.873354 0.214778 461 1 0.558576 0.866081 0.215346 1761 1 0.121583 0.924414 0.212923 1149 1 0.95915 0.926859 0.213491 463 1 0.901194 0.972818 0.221563 758 1 0.287779 0.995405 0.216417 2004 1 0.419066 0.994216 0.224321 708 1 0.507439 0.985756 0.224449 165 1 0.114069 0.53251 0.247876 1328 1 0.673408 0.524502 0.231666 41 1 0.211284 0.620024 0.236469 2001 1 0.617312 0.623649 0.243879 1005 1 0.0262219 0.677828 0.23451 1190 1 0.117945 0.680012 0.233624 1144 1 0.215498 0.724749 0.242291 1596 1 0.990672 0.724598 0.249128 1039 1 0.835637 0.763712 0.24893 1393 1 0.222635 0.775695 0.242047 618 1 0.467466 0.774048 0.249898 369 1 0.655826 0.806891 0.243452 1606 1 0.223701 0.862699 0.249154 1053 1 0.340821 0.950361 0.236092 848 1 0.963188 0.94489 0.236092 1854 1 0.912381 0.987338 0.231193 1371 1 0.242855 0.506901 0.266895 1939 1 0.0854892 0.533181 0.269047 1726 1 0.572294 0.531272 0.266707 928 1 0.696303 0.538329 0.253489 1642 1 0.0418973 0.583345 0.267544 1111 1 0.609444 0.608917 0.25447 1883 1 0.682606 0.612422 0.268879 421 1 0.829109 0.631645 0.253317 2013 1 0.841694 0.673066 0.266026 106 1 0.829057 0.685156 0.251399 821 1 0.831109 0.689475 0.261021 991 1 0.535987 0.694765 0.259457 1635 1 0.94787 0.711472 0.25505 62 1 0.970569 0.697987 0.264528 190 1 0.51717 0.732472 0.256113 1494 1 0.799748 0.744238 0.260782 995 1 0.156777 0.751067 0.263319 1412 1 0.544295 0.826588 0.266231 1861 1 0.0771175 0.829556 0.262171 292 1 0.541571 0.85809 0.260888 1257 1 0.213326 0.896521 0.26891 481 1 0.497044 0.89219 0.260996 139 1 0.810136 0.894917 0.264411 1936 1 0.514368 0.931743 0.263954 1293 1 0.358004 0.955604 0.256368 968 1 0.0218955 0.980258 0.250027 919 1 0.623775 0.509079 0.279491 1041 1 0.411539 0.527188 0.281786 908 1 0.546421 0.575914 0.271555 70 1 0.99019 0.599207 0.285213 1150 1 0.193002 0.663209 0.286201 1808 1 0.333259 0.671628 0.28842 1266 1 0.79813 0.664131 0.26973 789 1 0.358138 0.689701 0.286821 1052 1 0.735432 0.700467 0.287739 348 1 0.853244 0.716899 0.274314 279 1 0.946518 0.718785 0.275434 1295 1 0.78975 0.750042 0.284297 357 1 0.245287 0.782434 0.271231 719 1 0.837471 0.78461 0.271294 781 1 0.551948 0.803847 0.280272 238 1 0.462744 0.814799 0.278716 585 1 0.569725 0.813172 0.278641 394 1 0.0531151 0.851625 0.273659 560 1 0.969616 0.868788 0.285076 1974 1 0.449661 0.893461 0.270915 1940 1 0.624727 0.890696 0.281241 1731 1 0.501583 0.925773 0.284388 452 1 0.0403613 0.943564 0.280718 2022 1 0.95189 0.991716 0.284007 1872 1 0.366648 0.506549 0.298921 152 1 0.54628 0.530425 0.301548 253 1 0.258352 0.613863 0.29206 693 1 0.501717 0.605494 0.307511 538 1 0.856733 0.625229 0.307353 1022 1 0.989221 0.624916 0.30718 1357 1 0.487622 0.684527 0.294922 542 1 0.0553888 0.697844 0.288862 860 1 0.0176678 0.727135 0.302497 1839 1 0.0779432 0.750258 0.302356 1261 1 0.117873 0.803146 0.306796 367 1 0.370096 0.866521 0.301286 1401 1 0.347244 0.899032 0.297039 209 1 0.578524 0.908939 0.294799 887 1 0.924183 0.923892 0.295903 552 1 0.155581 0.950155 0.293126 1300 1 0.648171 0.954503 0.298893 1221 1 0.93591 0.948151 0.29884 569 1 0.784974 0.977847 0.300844 1514 1 0.290087 0.527593 0.315692 252 1 0.00307265 0.549628 0.323519 489 1 0.641958 0.588828 0.323928 840 1 0.977159 0.583001 0.312829 447 1 0.0425672 0.603244 0.312846 1334 1 0.343981 0.681129 0.316119 1425 1 0.871297 0.803358 0.31409 980 1 0.153553 0.862154 0.315552 117 1 0.190502 0.8556 0.322789 1647 1 0.213432 0.88892 0.315009 287 1 0.616291 0.906798 0.323673 1701 1 0.0805022 0.928908 0.326311 965 1 0.2789 0.973148 0.326361 1147 1 0.964863 0.994723 0.3232 993 1 0.075737 0.508559 0.340432 849 1 0.607452 0.536096 0.333685 121 1 0.491604 0.573449 0.335883 1369 1 0.514542 0.591914 0.329598 66 1 0.56867 0.61082 0.330946 1777 1 0.654879 0.618871 0.342775 309 1 0.289976 0.638048 0.34231 1772 1 0.379954 0.647255 0.340045 611 1 0.516162 0.643413 0.333262 1565 1 0.0110298 0.663652 0.34485 1652 1 0.443895 0.659196 0.339729 1442 1 0.109335 0.755139 0.329668 1316 1 0.440761 0.757303 0.334035 1024 1 0.379159 0.841424 0.335558 1436 1 0.0860348 0.854568 0.327288 1125 1 0.787605 0.849999 0.345787 439 1 0.884173 0.872246 0.338582 1495 1 0.758925 0.933736 0.333347 936 1 0.77385 0.929147 0.335861 1765 1 0.328615 0.959209 0.345931 53 1 0.233672 0.976959 0.332307 337 1 0.586562 0.984464 0.326964 896 1 0.714876 0.987943 0.329529 1616 1 0.79449 0.996303 0.328234 133 1 0.293702 0.622305 0.347297 261 1 0.749767 0.616525 0.350868 1632 1 0.906187 0.669137 0.349221 1706 1 0.0690753 0.676347 0.355295 900 1 0.393668 0.727341 0.348567 1071 1 0.382309 0.798018 0.358314 225 1 0.0382273 0.809409 0.351227 769 1 0.661766 0.823614 0.351205 1015 1 0.511035 0.833008 0.35595 1028 1 0.392789 0.904711 0.355203 556 1 0.446406 0.941211 0.347273 1762 1 0.921245 0.952174 0.35835 684 1 0.50852 0.996113 0.360475 728 1 0.119212 0.517776 0.368255 1142 1 0.237101 0.505628 0.370761 845 1 0.508418 0.505014 0.368403 1813 1 0.350149 0.521807 0.373024 520 1 0.95488 0.554418 0.371521 1745 1 0.0615042 0.577574 0.374266 1151 1 0.218489 0.598268 0.366239 943 1 0.706547 0.606884 0.366607 1943 1 0.629304 0.670253 0.375458 456 1 0.197326 0.710589 0.382005 564 1 0.113475 0.748803 0.367535 944 1 0.712656 0.759571 0.380353 1821 1 0.339384 0.826139 0.370797 828 1 0.0138624 0.827683 0.376219 1366 1 0.363652 0.827616 0.377324 863 1 0.899874 0.838301 0.371974 608 1 0.508336 0.875617 0.378943 1066 1 0.426393 0.899967 0.379027 1346 1 0.337428 0.949407 0.370473 1823 1 0.940911 0.952305 0.377808 1612 1 0.995968 0.502308 0.399952 691 1 0.258633 0.54231 0.400916 1540 1 0.169407 0.615576 0.395789 159 1 0.55323 0.644824 0.403174 885 1 0.0919464 0.655179 0.393178 113 1 0.158253 0.816193 0.401371 591 1 0.200992 0.813966 0.395642 959 1 0.308003 0.821175 0.391323 283 1 0.918737 0.841565 0.400357 1611 1 0.217009 0.862778 0.393699 816 1 0.752857 0.883478 0.394216 1035 1 0.547988 0.899204 0.394906 1734 1 0.888833 0.884749 0.401731 784 1 0.0522865 0.915672 0.385742 949 1 0.10198 0.958111 0.403217 2048 1 0.58226 0.956837 0.396982 1929 1 0.0536102 0.962947 0.401598 785 1 0.385018 0.513842 0.40953 1518 1 0.752605 0.513502 0.418046 328 1 0.135641 0.532349 0.413969 1826 1 0.46407 0.524944 0.40668 105 1 0.235387 0.54809 0.405931 1667 1 0.215254 0.687165 0.422952 383 1 0.944296 0.679474 0.417484 755 1 0.580877 0.717593 0.416057 224 1 0.813191 0.762587 0.405182 1868 1 0.841651 0.774061 0.408409 1437 1 0.237654 0.79894 0.405007 1643 1 0.540514 0.804737 0.42302 1830 1 0.0357215 0.989843 0.416385 1462 1 0.0506754 0.988436 0.41152 702 1 0.853405 0.993164 0.404833 262 1 0.873307 0.988181 0.41707 275 1 0.921734 0.994423 0.416554 392 1 0.283144 0.549496 0.436817 1240 1 0.9196 0.550097 0.441515 738 1 0.772518 0.55813 0.441684 930 1 0.157977 0.676519 0.424906 557 1 0.759605 0.705324 0.437944 430 1 0.26823 0.783141 0.434741 646 1 0.861274 0.770706 0.430394 741 1 0.343441 0.804434 0.425841 675 1 0.652015 0.810761 0.437717 1129 1 0.25893 0.856186 0.424413 1307 1 0.682677 0.921427 0.428008 791 1 0.167288 0.930673 0.439778 899 1 0.427223 0.937876 0.436067 1656 1 0.988498 0.938788 0.436402 1003 1 0.608613 0.976001 0.438473 1324 1 0.821985 0.991587 0.434432 7 1 0.860488 0.986676 0.426339 1825 1 0.890765 0.528595 0.456162 338 1 0.273558 0.590629 0.444296 643 1 0.679877 0.594988 0.455953 1069 1 0.392545 0.637563 0.450795 877 1 0.505579 0.644913 0.446699 1855 1 0.688163 0.648788 0.449853 1880 1 0.545001 0.681192 0.456939 1889 1 0.245201 0.714252 0.456443 874 1 0.484675 0.742308 0.442903 929 1 0.516986 0.860266 0.454665 1086 1 0.038911 0.882337 0.455501 777 1 0.819647 0.881794 0.457792 1585 1 0.287423 0.91872 0.445847 380 1 0.443757 0.944881 0.447644 710 1 0.848248 0.945022 0.44942 1531 1 0.964062 0.957438 0.458355 1001 1 0.207288 0.979928 0.446788 1473 1 0.778843 0.979807 0.460225 1759 1 0.211372 0.543402 0.464782 346 1 0.656928 0.548382 0.477024 235 1 0.694033 0.610047 0.468251 642 1 0.290082 0.629782 0.468353 363 1 0.780017 0.617211 0.470955 1807 1 0.363473 0.66276 0.477276 436 1 0.445923 0.697632 0.469021 1013 1 0.202488 0.717345 0.467147 955 1 0.57233 0.723243 0.462087 1465 1 0.603313 0.716042 0.468376 1954 1 0.33639 0.736123 0.480218 1776 1 0.529625 0.805574 0.463003 935 1 0.864551 0.791966 0.465078 1090 1 0.37995 0.833906 0.480117 1926 1 0.48731 0.859642 0.480497 1529 1 0.881211 0.926504 0.464313 1379 1 0.0198088 0.959278 0.478314 1669 1 0.0353375 0.983125 0.465115 221 1 0.719085 0.989318 0.465458 1337 1 0.332065 0.511259 0.495277 528 1 0.153531 0.549611 0.49285 891 1 0.450081 0.575107 0.48614 673 1 0.0579752 0.608749 0.490807 442 1 0.0682087 0.667378 0.49176 1806 1 0.120995 0.698368 0.483296 79 1 0.361356 0.724304 0.487083 1875 1 0.993081 0.77086 0.493631 399 1 0.984358 0.781001 0.489486 1793 1 0.261171 0.79574 0.489095 1536 1 0.622736 0.810675 0.48857 1138 1 0.467696 0.845632 0.49648 1056 1 0.594516 0.845119 0.486252 15 1 0.819397 0.829623 0.499716 1869 1 0.115216 0.854641 0.480884 517 1 0.352805 0.881908 0.494875 67 1 0.802125 0.906321 0.490056 1102 1 0.52467 0.936552 0.498842 650 1 0.725994 0.974726 0.490338 1101 1 0.991547 0.980166 0.490461 725 1 0.310462 0.99323 0.491998 1265 1 0.85781 0.995644 0.483639 1386 1 0.577436 0.537481 0.511429 1493 1 0.610629 0.535052 0.50011 1755 1 0.475043 0.584304 0.507618 1502 1 0.452095 0.642142 0.504223 183 1 0.514956 0.639592 0.509918 141 1 0.541175 0.669615 0.516862 1574 1 0.882629 0.672939 0.504237 257 1 0.083009 0.685271 0.510212 80 1 0.251574 0.687567 0.501121 825 1 0.569634 0.690002 0.513773 1597 1 0.283136 0.711018 0.511527 317 1 0.0766939 0.726716 0.513435 724 1 0.188258 0.735366 0.512413 1709 1 0.250816 0.734239 0.513378 475 1 0.335437 0.736525 0.504883 22 1 0.962423 0.734092 0.512919 648 1 0.216387 0.75657 0.515686 355 1 0.588159 0.765151 0.504351 1345 1 0.59428 0.770612 0.513101 72 1 0.700848 0.837367 0.504604 354 1 0.0140328 0.84661 0.514682 68 1 0.230325 0.863416 0.502056 1109 1 0.274299 0.999004 0.507788 1275 1 0.888942 0.987314 0.51896 160 1 0.427439 0.508929 0.530599 65 1 0.598907 0.566045 0.536998 1955 1 0.395157 0.617849 0.538368 692 1 0.577396 0.621032 0.525502 1432 1 0.160244 0.666743 0.529864 910 1 0.595136 0.656764 0.528978 4 1 0.716784 0.679117 0.526181 1175 1 0.774605 0.682886 0.530754 1124 1 0.14141 0.718857 0.537607 1443 1 0.166569 0.718515 0.523629 18 1 0.824962 0.780908 0.537795 2023 1 0.908906 0.8594 0.538211 1264 1 0.174168 0.879161 0.534468 1268 1 0.620155 0.866089 0.529476 532 1 0.644763 0.873345 0.535263 1191 1 0.0933439 0.885326 0.523549 1244 1 0.684992 0.894452 0.528782 782 1 0.972488 0.914946 0.535558 1327 1 0.155636 0.933698 0.524772 5 1 0.426955 0.931185 0.521058 1405 1 0.787258 0.923399 0.526275 1177 1 0.850665 0.931591 0.520327 1160 1 0.504707 0.953475 0.523289 1932 1 0.817314 0.946571 0.526631 459 1 0.229657 0.972676 0.52662 1546 1 0.502652 0.963834 0.52264 948 1 0.266165 0.52811 0.551456 47 1 0.968179 0.52594 0.550896 1225 1 0.652247 0.561013 0.545854 1112 1 0.487289 0.610388 0.54289 241 1 0.429775 0.651632 0.542975 1999 1 0.332658 0.697932 0.55464 1281 1 0.364926 0.698621 0.553446 870 1 0.674535 0.746775 0.548574 1392 1 0.812295 0.748738 0.552245 938 1 0.639101 0.760817 0.538983 2009 1 0.0226208 0.782308 0.555241 1675 1 0.0135355 0.79582 0.545066 1990 1 0.47192 0.942742 0.553081 701 1 0.586253 0.505989 0.566939 1791 1 0.337663 0.525584 0.559287 187 1 0.624238 0.522036 0.571971 1065 1 0.233961 0.591586 0.565523 1194 1 0.870916 0.656769 0.574345 797 1 0.246093 0.685081 0.558458 1130 1 0.738727 0.689188 0.571177 1168 1 0.944292 0.685263 0.562473 1263 1 0.000135897 0.694739 0.563213 457 1 0.282003 0.693444 0.570744 939 1 0.661882 0.698104 0.559643 1040 1 0.704793 0.709572 0.573612 1441 1 0.880049 0.702606 0.572791 565 1 0.681534 0.783834 0.56848 1849 1 0.262556 0.852957 0.570434 1512 1 0.26467 0.931772 0.559259 274 1 0.646731 0.924455 0.56369 2019 1 0.999777 0.95791 0.558333 1283 1 0.711027 0.513713 0.584156 1451 1 0.0592867 0.531078 0.58043 983 1 0.296487 0.56112 0.593998 765 1 0.660723 0.570115 0.589592 809 1 0.49423 0.586927 0.582535 284 1 0.353543 0.605982 0.58958 1712 1 0.399304 0.607828 0.58621 426 1 0.418789 0.605511 0.587926 572 1 0.980541 0.612833 0.595889 1913 1 0.745548 0.635304 0.582891 1799 1 0.119876 0.678763 0.580801 320 1 0.0555326 0.71978 0.58951 26 1 0.445225 0.727476 0.595885 81 1 0.0391775 0.7531 0.592099 364 1 0.217583 0.786665 0.577993 134 1 0.690223 0.785381 0.585423 298 1 0.794392 0.777139 0.578903 198 1 0.800216 0.830407 0.593908 780 1 0.617887 0.863092 0.578543 1609 1 0.248841 0.899572 0.589283 1702 1 0.231426 0.91931 0.592147 883 1 0.785466 0.978862 0.577397 1321 1 0.951227 0.975382 0.578737 220 1 0.924375 0.991475 0.595295 1841 1 0.168378 0.502596 0.612674 530 1 0.623135 0.520981 0.608061 1140 1 0.50166 0.616132 0.601988 406 1 0.930772 0.627961 0.606314 744 1 0.930644 0.63858 0.609253 561 1 0.389062 0.662463 0.598306 330 1 0.484539 0.678958 0.611184 700 1 0.77722 0.709356 0.607787 138 1 0.127105 0.740857 0.603114 59 1 0.432455 0.788948 0.610471 1141 1 0.912908 0.801595 0.603904 1384 1 0.804911 0.812696 0.613242 1274 1 0.672713 0.841134 0.606279 1402 1 0.327834 0.864423 0.604456 963 1 0.512183 0.915905 0.607573 155 1 0.789741 0.956225 0.614205 1654 1 0.588433 0.977518 0.613112 1599 1 0.0143148 0.990304 0.596932 302 1 0.15609 0.99385 0.599858 1037 1 0.533841 0.508194 0.622012 628 1 0.321856 0.537396 0.633493 427 1 0.388056 0.530318 0.625343 102 1 0.75277 0.532095 0.622222 718 1 0.675121 0.569413 0.634557 1322 1 0.34869 0.577981 0.634342 632 1 0.559301 0.594548 0.630482 250 1 0.806116 0.644097 0.622006 548 1 0.254191 0.677073 0.61613 613 1 0.0186006 0.704486 0.631195 1521 1 0.781491 0.717191 0.615864 913 1 0.209556 0.813164 0.634608 1280 1 0.418655 0.895611 0.627017 1817 1 0.651188 0.905054 0.626889 24 1 0.706144 0.906502 0.629017 1121 1 0.236781 0.996066 0.623721 154 1 0.46711 0.506522 0.644423 1491 1 0.854555 0.518686 0.642736 1107 1 0.840732 0.554401 0.642556 743 1 0.501465 0.575664 0.645676 1633 1 0.377797 0.577135 0.651664 1845 1 0.0478432 0.61628 0.64484 1185 1 0.05933 0.616204 0.638252 288 1 0.1127 0.638811 0.646496 1133 1 0.474862 0.638209 0.647965 912 1 0.990191 0.652563 0.645518 571 1 0.716492 0.656532 0.641084 664 1 0.511307 0.684378 0.641212 1272 1 0.683151 0.679735 0.653622 93 1 0.950909 0.67449 0.652032 1749 1 0.231957 0.742767 0.651546 2046 1 0.940936 0.740509 0.63499 1744 1 0.14747 0.782653 0.642961 397 1 0.402804 0.815456 0.638603 174 1 0.500781 0.856474 0.647054 745 1 0.671451 0.878771 0.652546 38 1 0.904006 0.866654 0.648002 1995 1 0.257875 0.887402 0.645185 1722 1 0.420181 0.900363 0.63781 1862 1 0.552935 0.895421 0.641579 197 1 0.571832 0.898221 0.636885 946 1 0.0591157 0.911102 0.648157 1419 1 0.0647412 0.932764 0.637109 1342 1 0.637927 0.929399 0.646115 679 1 0.20665 0.990922 0.65017 50 1 0.973865 0.981664 0.641071 736 1 0.076207 0.581252 0.658486 510 1 0.777553 0.580671 0.6597 677 1 0.438068 0.610346 0.672457 362 1 0.808242 0.62939 0.654732 1420 1 0.33526 0.64094 0.667866 86 1 0.471647 0.63798 0.672352 1381 1 0.767626 0.641521 0.669968 1075 1 0.181147 0.664544 0.660928 1513 1 0.975744 0.688082 0.658327 606 1 0.308204 0.711433 0.658015 890 1 0.0112286 0.722272 0.669051 1639 1 0.0582913 0.736786 0.658885 1411 1 0.0896132 0.738301 0.672905 1666 1 0.746537 0.747881 0.668126 1619 1 0.794833 0.751896 0.669629 1756 1 0.43914 0.821595 0.655262 1895 1 0.73535 0.967276 0.665211 6 1 0.618452 0.547244 0.673583 189 1 0.332254 0.608709 0.674931 813 1 0.764673 0.616526 0.674433 1649 1 0.0816023 0.652521 0.676021 655 1 0.976399 0.653131 0.685175 1960 1 0.923446 0.671727 0.676831 178 1 0.329775 0.675586 0.67482 1556 1 0.997556 0.693306 0.682111 698 1 0.701009 0.717734 0.675816 91 1 0.801474 0.7555 0.680518 1448 1 0.832431 0.756473 0.691954 294 1 0.0985018 0.769609 0.688696 1933 1 0.587808 0.826291 0.687399 1098 1 0.576318 0.842806 0.690871 754 1 0.0965061 0.879082 0.681892 1282 1 0.139316 0.884773 0.686764 635 1 0.219526 0.929836 0.686426 2012 1 0.258927 0.933102 0.689925 1120 1 0.144975 0.978821 0.684699 652 1 0.0960549 0.514036 0.692796 1267 1 0.888055 0.512676 0.705213 1730 1 0.104438 0.520299 0.701623 312 1 0.77371 0.529341 0.704434 1207 1 0.158256 0.550978 0.707732 1963 1 0.90625 0.546056 0.710553 668 1 0.127868 0.621563 0.706752 1333 1 0.987342 0.647927 0.710983 1276 1 0.910145 0.667852 0.703725 599 1 0.0425952 0.687877 0.701065 950 1 0.368969 0.694387 0.705585 600 1 0.744391 0.699026 0.696839 359 1 0.871246 0.710091 0.696586 1019 1 0.239932 0.767455 0.6967 589 1 0.945666 0.754893 0.69479 805 1 0.459772 0.769561 0.705924 1685 1 0.261587 0.812611 0.693466 888 1 0.575382 0.959654 0.69269 1811 1 0.0702895 0.992713 0.694451 1707 1 0.842993 0.984015 0.693922 1355 1 0.46357 0.548738 0.720372 1716 1 0.454921 0.610182 0.721729 1335 1 0.493266 0.629173 0.725022 792 1 0.246273 0.662154 0.717732 1318 1 0.351377 0.675253 0.730639 975 1 0.346293 0.692499 0.713833 1541 1 0.0834726 0.713326 0.717134 697 1 0.363445 0.730298 0.717193 1212 1 0.556606 0.725052 0.726421 40 1 0.901108 0.729067 0.722517 1076 1 0.287341 0.78144 0.730709 721 1 0.305356 0.79234 0.726596 1501 1 0.166266 0.822213 0.7124 1831 1 0.0193904 0.829223 0.729047 720 1 0.592736 0.849483 0.715752 543 1 0.639003 0.85128 0.720146 1993 1 0.664384 0.884591 0.728995 2005 1 0.567969 0.890091 0.72029 1532 1 0.760124 0.896495 0.718617 2006 1 0.104194 0.925821 0.712366 1555 1 0.510259 0.939857 0.729489 911 1 0.635921 0.951675 0.723264 1236 1 0.69633 0.969632 0.728551 1286 1 0.787768 0.963472 0.728674 1937 1 0.486659 0.999628 0.724334 1691 1 0.352954 0.525582 0.74543 496 1 0.612185 0.556638 0.748835 1768 1 0.089988 0.58031 0.741003 1729 1 0.278604 0.607852 0.748289 51 1 0.437277 0.629552 0.746486 1530 1 0.675451 0.678959 0.739078 1535 1 0.486925 0.733114 0.742845 1104 1 0.322496 0.787674 0.737394 331 1 0.196669 0.788484 0.748323 393 1 0.647907 0.805639 0.744589 75 1 0.15739 0.840423 0.742348 96 1 0.111617 0.861344 0.744304 97 1 0.785302 0.846629 0.739847 31 1 0.596659 0.911406 0.740173 844 1 0.925266 0.933891 0.739848 1154 1 0.0812531 0.950298 0.742804 1897 1 0.967655 0.952155 0.741443 1070 1 0.130884 0.515261 0.757625 678 1 0.341307 0.510792 0.756025 962 1 0.207995 0.59252 0.757155 1870 1 0.0489119 0.626643 0.762767 161 1 0.898058 0.629928 0.762098 1907 1 0.350887 0.665346 0.761017 231 1 0.333202 0.71958 0.761155 111 1 0.522871 0.725341 0.764892 1166 1 0.713395 0.738735 0.767053 1583 1 0.0865586 0.772556 0.756972 873 1 0.511769 0.784975 0.763863 808 1 0.705518 0.788421 0.754623 854 1 0.387632 0.826063 0.76776 85 1 0.634665 0.845866 0.768088 753 1 0.938677 0.921867 0.759314 509 1 0.634683 0.946103 0.766984 1949 1 0.231819 0.510695 0.781538 376 1 0.0671808 0.534481 0.769455 907 1 0.631236 0.576275 0.77918 19 1 0.204492 0.580714 0.775993 1998 1 0.271143 0.582415 0.781353 222 1 0.885522 0.591882 0.783322 733 1 0.56106 0.664648 0.783258 1637 1 0.923825 0.676483 0.780233 1571 1 0.259776 0.708682 0.776183 922 1 0.282188 0.774105 0.77662 259 1 0.44838 0.797991 0.78612 1233 1 0.622938 0.803419 0.774019 90 1 0.233305 0.811169 0.774083 1118 1 0.00335834 0.840587 0.777567 629 1 0.580205 0.840152 0.771782 1365 1 0.0404866 0.863663 0.775353 1458 1 0.156655 0.884163 0.772462 804 1 0.197788 0.869172 0.773975 603 1 0.538503 0.890464 0.778128 372 1 0.186138 0.911702 0.78119 1664 1 0.405612 0.93705 0.786699 924 1 0.976258 0.950468 0.773246 867 1 0.776735 0.543649 0.802285 1152 1 0.904013 0.63429 0.806375 1279 1 0.651065 0.635211 0.789311 826 1 0.164656 0.686393 0.801117 52 1 0.735051 0.689807 0.797772 1463 1 0.0282288 0.741694 0.790457 1686 1 0.808102 0.752731 0.800851 213 1 0.807743 0.798313 0.801993 1526 1 0.384435 0.821612 0.792904 291 1 0.244896 0.841 0.796948 1516 1 0.957993 0.850614 0.79383 1156 1 0.592561 0.896169 0.791361 1886 1 0.899556 0.890601 0.803911 1727 1 0.513107 0.911711 0.799563 1763 1 0.324627 0.929051 0.795192 1711 1 0.228233 0.990326 0.790082 612 1 0.527396 0.503743 0.821657 1126 1 0.546834 0.568024 0.816446 92 1 0.36005 0.589856 0.824888 656 1 0.499987 0.58167 0.822454 1865 1 0.829866 0.578819 0.818141 1395 1 0.797821 0.596799 0.818881 1689 1 0.291526 0.668892 0.825692 1985 1 0.0286264 0.688071 0.824743 466 1 0.334303 0.679694 0.816713 1783 1 0.199529 0.756643 0.820277 871 1 0.718946 0.809835 0.823707 686 1 0.234463 0.844906 0.811724 1942 1 0.436711 0.908451 0.820975 151 1 0.639617 0.941816 0.823572 1315 1 0.975589 0.944298 0.808418 316 1 0.22384 0.971968 0.815158 1782 1 0.050387 0.547767 0.833782 607 1 0.599468 0.556419 0.833719 1305 1 0.689685 0.576666 0.827596 217 1 0.966116 0.571073 0.845991 1952 1 0.12293 0.602572 0.841624 505 1 0.248077 0.613495 0.829199 624 1 0.616762 0.670077 0.843578 1668 1 0.792728 0.664597 0.840051 523 1 0.334787 0.72255 0.830482 483 1 0.0817073 0.750761 0.845759 460 1 0.285428 0.751001 0.84568 1997 1 0.674855 0.801332 0.827758 1481 1 0.534222 0.826904 0.835684 242 1 0.134327 0.831795 0.833131 1873 1 0.805016 0.846448 0.834449 129 1 0.917706 0.86362 0.841539 2039 1 0.435216 0.902158 0.830721 1340 1 0.347289 0.962883 0.834942 1682 1 0.845602 0.97536 0.834621 2011 1 0.167947 0.983129 0.828631 902 1 0.549179 0.505173 0.864356 218 1 0.888074 0.500835 0.851407 173 1 0.0246704 0.576886 0.857109 1525 1 0.32457 0.570525 0.861742 905 1 0.740032 0.57991 0.85552 497 1 0.57253 0.609164 0.857876 598 1 0.333403 0.640089 0.850605 104 1 0.675649 0.724591 0.855975 653 1 0.937777 0.826761 0.850331 323 1 0.99312 0.836266 0.862459 1957 1 0.118318 0.880456 0.85201 1767 1 0.425651 0.909146 0.848079 715 1 0.489227 0.919906 0.853216 1083 1 0.220568 0.959639 0.858568 933 1 0.808654 0.951391 0.859481 1219 1 0.26092 0.963421 0.863995 1851 1 0.114704 0.518064 0.873241 227 1 0.606378 0.649307 0.869508 1658 1 0.969316 0.636891 0.880289 1760 1 0.201314 0.76875 0.878216 1860 1 0.596082 0.757105 0.882853 1344 1 0.76029 0.763273 0.874565 594 1 0.639624 0.775256 0.876485 282 1 0.132946 0.801924 0.870652 1290 1 0.378441 0.794437 0.878678 759 1 0.38401 0.793286 0.867028 1522 1 0.929437 0.96117 0.869668 1336 1 0.582343 0.98365 0.878418 1214 1 0.348922 0.515855 0.897749 1189 1 0.234692 0.658147 0.89996 1429 1 0.345971 0.666946 0.88793 735 1 0.017502 0.699762 0.891791 614 1 0.170055 0.719835 0.898574 378 1 0.56615 0.712467 0.900535 1674 1 0.53085 0.785518 0.891098 1538 1 0.309981 0.821955 0.898117 431 1 0.320841 0.809854 0.895969 324 1 0.875123 0.880499 0.889532 1742 1 0.297947 0.899247 0.903487 315 1 0.43378 0.922063 0.888274 747 1 0.772378 0.924273 0.884819 1924 1 0.950606 0.509353 0.904226 857 1 0.816187 0.551086 0.918798 1719 1 0.881347 0.551533 0.921311 1646 1 0.110421 0.561284 0.917544 1197 1 0.438676 0.56489 0.909422 1029 1 0.550711 0.567626 0.912114 985 1 0.634198 0.55883 0.903894 2034 1 0.243659 0.600495 0.919045 1747 1 0.0393689 0.680108 0.912573 1991 1 0.33915 0.674458 0.911607 742 1 0.349477 0.724794 0.912405 587 1 0.638022 0.759787 0.910084 1885 1 0.660234 0.771065 0.907391 1183 1 0.282343 0.799105 0.91707 382 1 0.594145 0.86659 0.910421 1908 1 0.705525 0.900612 0.912212 1061 1 0.0488176 0.937271 0.917792 1210 1 0.00123038 0.970274 0.915162 381 1 0.614946 0.515715 0.932352 1703 1 0.669869 0.503148 0.932054 1195 1 0.753177 0.505727 0.93684 570 1 0.690837 0.530661 0.936082 1820 1 0.901639 0.540614 0.937351 1431 1 0.913676 0.579395 0.928063 740 1 0.356305 0.645024 0.923293 1558 1 0.545964 0.678753 0.926406 126 1 0.312108 0.728765 0.931051 352 1 0.514699 0.740441 0.934136 778 1 0.778836 0.740224 0.933205 125 1 0.796602 0.771217 0.931644 343 1 0.805905 0.788345 0.929472 49 1 0.10601 0.788896 0.929451 1063 1 0.40053 0.806301 0.923352 14 1 0.848423 0.816484 0.940086 2036 1 0.113913 0.864135 0.932778 219 1 0.811821 0.857287 0.938197 1298 1 0.327038 0.866256 0.931612 633 1 0.396302 0.889735 0.933278 267 1 0.535972 0.89444 0.935764 1595 1 0.396323 0.922667 0.930545 802 1 0.856022 0.915615 0.941293 1615 1 0.33521 0.941368 0.924491 627 1 0.301765 0.567577 0.947172 1306 1 0.183026 0.608 0.944395 916 1 0.322531 0.606869 0.942851 135 1 0.193748 0.633352 0.957142 1790 1 0.666612 0.642755 0.957028 1033 1 0.635926 0.658961 0.951799 842 1 0.332359 0.674624 0.957508 109 1 0.161086 0.716609 0.955495 473 1 0.388194 0.717469 0.95107 1285 1 0.741609 0.74936 0.956697 230 1 0.514856 0.79219 0.948826 1718 1 0.206499 0.842753 0.943389 1542 1 0.332526 0.889784 0.952255 751 1 0.340785 0.956053 0.950453 434 1 0.675976 0.951446 0.947776 810 1 0.321134 0.985008 0.956844 1032 1 0.809584 0.512693 0.974322 1498 1 0.0891929 0.534879 0.98017 2031 1 0.473005 0.549497 0.979806 1563 1 0.508772 0.549177 0.962122 423 1 0.730115 0.55575 0.977047 1164 1 0.580464 0.581848 0.964744 850 1 0.197357 0.627114 0.964423 974 1 0.764376 0.630333 0.977527 609 1 0.535318 0.672344 0.965263 1361 1 0.72218 0.680815 0.965545 1114 1 0.409585 0.693577 0.969881 1410 1 0.737067 0.705262 0.970814 855 1 0.879813 0.725224 0.962345 1850 1 0.970873 0.732405 0.97722 1812 1 0.542342 0.786127 0.963064 115 1 0.111217 0.816883 0.971208 98 1 0.242513 0.811501 0.975086 182 1 0.323188 0.825662 0.963208 1046 1 0.498763 0.807739 0.969822 1520 1 0.929838 0.861284 0.962889 1659 1 0.734023 0.87149 0.976961 1259 1 0.846369 0.892195 0.969713 1223 1 0.135357 0.927563 0.979515 823 1 0.156006 0.95774 0.977588 1578 1 0.9868 0.96672 0.964286 2045 1 0.254156 0.501156 0.997581 1919 1 0.200078 0.540598 0.981186 1447 1 0.826769 0.58083 0.994607 986 1 0.630698 0.60336 0.988521 889 1 0.759572 0.609657 0.99047 1496 1 0.299786 0.619595 0.998513 1948 1 0.665458 0.647537 0.997501 593 1 0.771195 0.68111 0.992236 23 1 0.211944 0.693588 0.982205 1145 1 0.50918 0.733496 0.995189 412 1 0.478642 0.765578 0.98226 1254 1 0.668081 0.767375 0.990512 1375 1 0.901307 0.75399 0.989548 835 1 0.108948 0.825986 0.984663 981 1 0.48803 0.811595 0.990615 1105 1 0.390871 0.889706 0.989447 1399 1 0.70794 0.903501 0.98143 1444 1 0.820112 0.947248 0.99117 1797 1 0.65955 0.965872 0.99423
9075dd1014f657925ce2124e438848edeafc5986
a4ea525e226d6c401fdb87a6e9adfdc5d07e6020
/src/azure-cli/azure/cli/command_modules/network/aaz/latest/network/lb/inbound_nat_pool/_create.py
d0545878bf25bb35ef2c3afc23da82bba846e82e
[ "MIT", "BSD-3-Clause", "LGPL-2.0-or-later", "GPL-1.0-or-later", "MPL-2.0", "LGPL-2.1-only", "Apache-2.0", "LGPL-2.1-or-later", "BSD-2-Clause" ]
permissive
Azure/azure-cli
13340eeca2e288e66e84d393fa1c8a93d46c8686
a40fd14ad0b6e89720a2e58d4d9be3a6ce1535ca
refs/heads/dev
2023-08-17T06:25:37.431463
2023-08-17T06:00:10
2023-08-17T06:00:10
51,040,886
4,018
3,310
MIT
2023-09-14T11:11:05
2016-02-04T00:21:51
Python
UTF-8
Python
false
false
121,667
py
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # # Code generated by aaz-dev-tools # -------------------------------------------------------------------------------------------- # pylint: skip-file # flake8: noqa from azure.cli.core.aaz import * @register_command( "network lb inbound-nat-pool create", ) class Create(AAZCommand): """Create an inbound NAT address pool. :example: Create an inbound NAT address pool. az network lb inbound-nat-pool create -g MyResourceGroup --lb-name MyLb -n MyNatPool --protocol Tcp --frontend-port-range-start 80 --frontend-port-range-end 89 --backend-port 80 --frontend-ip MyFrontendIp """ _aaz_info = { "version": "2022-05-01", "resources": [ ["mgmt-plane", "/subscriptions/{}/resourcegroups/{}/providers/microsoft.network/loadbalancers/{}", "2022-05-01", "properties.inboundNatPools[]"], ] } AZ_SUPPORT_NO_WAIT = True def _handler(self, command_args): super()._handler(command_args) self.SubresourceSelector(ctx=self.ctx, name="subresource") return self.build_lro_poller(self._execute_operations, self._output) _args_schema = None @classmethod def _build_arguments_schema(cls, *args, **kwargs): if cls._args_schema is not None: return cls._args_schema cls._args_schema = super()._build_arguments_schema(*args, **kwargs) # define Arg Group "" _args_schema = cls._args_schema _args_schema.lb_name = AAZStrArg( options=["--lb-name"], help="The load balancer name.", required=True, ) _args_schema.resource_group = AAZResourceGroupNameArg( required=True, ) _args_schema.name = AAZStrArg( options=["-n", "--name"], help="The name of the resource that is unique within the set of inbound NAT pools used by the load balancer. This name can be used to access the resource.", required=True, ) # define Arg Group "Parameters.properties.inboundNatPools[]" # define Arg Group "Properties" _args_schema = cls._args_schema _args_schema.backend_port = AAZIntArg( options=["--backend-port"], arg_group="Properties", help="The port used for internal connections on the endpoint. Acceptable values are between 1 and 65535.", required=True, ) _args_schema.enable_floating_ip = AAZBoolArg( options=["--floating-ip", "--enable-floating-ip"], arg_group="Properties", help="Configures a virtual machine's endpoint for the floating IP capability required to configure a SQL AlwaysOn Availability Group. This setting is required when using the SQL AlwaysOn Availability Groups in SQL server. This setting can't be changed after you create the endpoint.", ) _args_schema.enable_tcp_reset = AAZBoolArg( options=["--enable-tcp-reset"], arg_group="Properties", help="Receive bidirectional TCP Reset on TCP flow idle timeout or unexpected connection termination. This element is only used when the protocol is set to TCP.", ) _args_schema.frontend_ip_name = AAZStrArg( options=["--frontend-ip", "--frontend-ip-name"], arg_group="Properties", help="The name or ID of the frontend IP configuration.", ) _args_schema.frontend_port_range_end = AAZIntArg( options=["--frontend-port-range-end"], arg_group="Properties", help="The last port number in the range of external ports that will be used to provide Inbound Nat to NICs associated with a load balancer. Acceptable values range between 1 and 65535.", required=True, ) _args_schema.frontend_port_range_start = AAZIntArg( options=["--frontend-port-range-start"], arg_group="Properties", help="The first port number in the range of external ports that will be used to provide Inbound Nat to NICs associated with a load balancer. Acceptable values range between 1 and 65534.", required=True, ) _args_schema.idle_timeout_in_minutes = AAZIntArg( options=["--idle-timeout", "--idle-timeout-in-minutes"], arg_group="Properties", help="The timeout for the TCP idle connection. The value can be set between 4 and 30 minutes. The default value is 4 minutes. This element is only used when the protocol is set to TCP.", ) _args_schema.protocol = AAZStrArg( options=["--protocol"], arg_group="Properties", help="The reference to the transport protocol used by the inbound NAT pool.", required=True, enum={"All": "All", "Tcp": "Tcp", "Udp": "Udp"}, ) return cls._args_schema def _execute_operations(self): self.pre_operations() self.LoadBalancersGet(ctx=self.ctx)() self.pre_instance_create() self.InstanceCreateByJson(ctx=self.ctx)() self.post_instance_create(self.ctx.selectors.subresource.required()) yield self.LoadBalancersCreateOrUpdate(ctx=self.ctx)() self.post_operations() @register_callback def pre_operations(self): pass @register_callback def post_operations(self): pass @register_callback def pre_instance_create(self): pass @register_callback def post_instance_create(self, instance): pass def _output(self, *args, **kwargs): result = self.deserialize_output(self.ctx.selectors.subresource.required(), client_flatten=True) return result class SubresourceSelector(AAZJsonSelector): def _get(self): result = self.ctx.vars.instance result = result.properties.inboundNatPools filters = enumerate(result) filters = filter( lambda e: e[1].name == self.ctx.args.name, filters ) idx = next(filters)[0] return result[idx] def _set(self, value): result = self.ctx.vars.instance result = result.properties.inboundNatPools filters = enumerate(result) filters = filter( lambda e: e[1].name == self.ctx.args.name, filters ) idx = next(filters, [len(result)])[0] result[idx] = value return class LoadBalancersGet(AAZHttpOperation): CLIENT_TYPE = "MgmtClient" def __call__(self, *args, **kwargs): request = self.make_request() session = self.client.send_request(request=request, stream=False, **kwargs) if session.http_response.status_code in [200]: return self.on_200(session) return self.on_error(session.http_response) @property def url(self): return self.client.format_url( "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/loadBalancers/{loadBalancerName}", **self.url_parameters ) @property def method(self): return "GET" @property def error_format(self): return "ODataV4Format" @property def url_parameters(self): parameters = { **self.serialize_url_param( "loadBalancerName", self.ctx.args.lb_name, required=True, ), **self.serialize_url_param( "resourceGroupName", self.ctx.args.resource_group, required=True, ), **self.serialize_url_param( "subscriptionId", self.ctx.subscription_id, required=True, ), } return parameters @property def query_parameters(self): parameters = { **self.serialize_query_param( "api-version", "2022-05-01", required=True, ), } return parameters @property def header_parameters(self): parameters = { **self.serialize_header_param( "Accept", "application/json", ), } return parameters def on_200(self, session): data = self.deserialize_http_content(session) self.ctx.set_var( "instance", data, schema_builder=self._build_schema_on_200 ) _schema_on_200 = None @classmethod def _build_schema_on_200(cls): if cls._schema_on_200 is not None: return cls._schema_on_200 cls._schema_on_200 = AAZObjectType() _CreateHelper._build_schema_load_balancer_read(cls._schema_on_200) return cls._schema_on_200 class LoadBalancersCreateOrUpdate(AAZHttpOperation): CLIENT_TYPE = "MgmtClient" def __call__(self, *args, **kwargs): request = self.make_request() session = self.client.send_request(request=request, stream=False, **kwargs) if session.http_response.status_code in [202]: return self.client.build_lro_polling( self.ctx.args.no_wait, session, self.on_200_201, self.on_error, lro_options={"final-state-via": "azure-async-operation"}, path_format_arguments=self.url_parameters, ) if session.http_response.status_code in [200, 201]: return self.client.build_lro_polling( self.ctx.args.no_wait, session, self.on_200_201, self.on_error, lro_options={"final-state-via": "azure-async-operation"}, path_format_arguments=self.url_parameters, ) return self.on_error(session.http_response) @property def url(self): return self.client.format_url( "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/loadBalancers/{loadBalancerName}", **self.url_parameters ) @property def method(self): return "PUT" @property def error_format(self): return "ODataV4Format" @property def url_parameters(self): parameters = { **self.serialize_url_param( "loadBalancerName", self.ctx.args.lb_name, required=True, ), **self.serialize_url_param( "resourceGroupName", self.ctx.args.resource_group, required=True, ), **self.serialize_url_param( "subscriptionId", self.ctx.subscription_id, required=True, ), } return parameters @property def query_parameters(self): parameters = { **self.serialize_query_param( "api-version", "2022-05-01", required=True, ), } return parameters @property def header_parameters(self): parameters = { **self.serialize_header_param( "Content-Type", "application/json", ), **self.serialize_header_param( "Accept", "application/json", ), } return parameters @property def content(self): _content_value, _builder = self.new_content_builder( self.ctx.args, value=self.ctx.vars.instance, ) return self.serialize_content(_content_value) def on_200_201(self, session): data = self.deserialize_http_content(session) self.ctx.set_var( "instance", data, schema_builder=self._build_schema_on_200_201 ) _schema_on_200_201 = None @classmethod def _build_schema_on_200_201(cls): if cls._schema_on_200_201 is not None: return cls._schema_on_200_201 cls._schema_on_200_201 = AAZObjectType() _CreateHelper._build_schema_load_balancer_read(cls._schema_on_200_201) return cls._schema_on_200_201 class InstanceCreateByJson(AAZJsonInstanceCreateOperation): def __call__(self, *args, **kwargs): self.ctx.selectors.subresource.set(self._create_instance()) def _create_instance(self): _instance_value, _builder = self.new_content_builder( self.ctx.args, typ=AAZObjectType ) _builder.set_prop("name", AAZStrType, ".name") _builder.set_prop("properties", AAZObjectType, ".", typ_kwargs={"flags": {"required": True, "client_flatten": True}}) properties = _builder.get(".properties") if properties is not None: properties.set_prop("backendPort", AAZIntType, ".backend_port", typ_kwargs={"flags": {"required": True}}) properties.set_prop("enableFloatingIP", AAZBoolType, ".enable_floating_ip") properties.set_prop("enableTcpReset", AAZBoolType, ".enable_tcp_reset") properties.set_prop("frontendIPConfiguration", AAZObjectType) properties.set_prop("frontendPortRangeEnd", AAZIntType, ".frontend_port_range_end", typ_kwargs={"flags": {"required": True}}) properties.set_prop("frontendPortRangeStart", AAZIntType, ".frontend_port_range_start", typ_kwargs={"flags": {"required": True}}) properties.set_prop("idleTimeoutInMinutes", AAZIntType, ".idle_timeout_in_minutes") properties.set_prop("protocol", AAZStrType, ".protocol", typ_kwargs={"flags": {"required": True}}) frontend_ip_configuration = _builder.get(".properties.frontendIPConfiguration") if frontend_ip_configuration is not None: frontend_ip_configuration.set_prop("id", AAZStrType, ".frontend_ip_name") return _instance_value class _CreateHelper: """Helper class for Create""" _schema_application_security_group_read = None @classmethod def _build_schema_application_security_group_read(cls, _schema): if cls._schema_application_security_group_read is not None: _schema.etag = cls._schema_application_security_group_read.etag _schema.id = cls._schema_application_security_group_read.id _schema.location = cls._schema_application_security_group_read.location _schema.name = cls._schema_application_security_group_read.name _schema.properties = cls._schema_application_security_group_read.properties _schema.tags = cls._schema_application_security_group_read.tags _schema.type = cls._schema_application_security_group_read.type return cls._schema_application_security_group_read = _schema_application_security_group_read = AAZObjectType() application_security_group_read = _schema_application_security_group_read application_security_group_read.etag = AAZStrType( flags={"read_only": True}, ) application_security_group_read.id = AAZStrType() application_security_group_read.location = AAZStrType() application_security_group_read.name = AAZStrType( flags={"read_only": True}, ) application_security_group_read.properties = AAZObjectType( flags={"client_flatten": True}, ) application_security_group_read.tags = AAZDictType() application_security_group_read.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_application_security_group_read.properties properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.resource_guid = AAZStrType( serialized_name="resourceGuid", flags={"read_only": True}, ) tags = _schema_application_security_group_read.tags tags.Element = AAZStrType() _schema.etag = cls._schema_application_security_group_read.etag _schema.id = cls._schema_application_security_group_read.id _schema.location = cls._schema_application_security_group_read.location _schema.name = cls._schema_application_security_group_read.name _schema.properties = cls._schema_application_security_group_read.properties _schema.tags = cls._schema_application_security_group_read.tags _schema.type = cls._schema_application_security_group_read.type _schema_backend_address_pool_read = None @classmethod def _build_schema_backend_address_pool_read(cls, _schema): if cls._schema_backend_address_pool_read is not None: _schema.etag = cls._schema_backend_address_pool_read.etag _schema.id = cls._schema_backend_address_pool_read.id _schema.name = cls._schema_backend_address_pool_read.name _schema.properties = cls._schema_backend_address_pool_read.properties _schema.type = cls._schema_backend_address_pool_read.type return cls._schema_backend_address_pool_read = _schema_backend_address_pool_read = AAZObjectType() backend_address_pool_read = _schema_backend_address_pool_read backend_address_pool_read.etag = AAZStrType( flags={"read_only": True}, ) backend_address_pool_read.id = AAZStrType() backend_address_pool_read.name = AAZStrType() backend_address_pool_read.properties = AAZObjectType( flags={"client_flatten": True}, ) backend_address_pool_read.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_backend_address_pool_read.properties properties.backend_ip_configurations = AAZListType( serialized_name="backendIPConfigurations", flags={"read_only": True}, ) properties.drain_period_in_seconds = AAZIntType( serialized_name="drainPeriodInSeconds", ) properties.inbound_nat_rules = AAZListType( serialized_name="inboundNatRules", flags={"read_only": True}, ) properties.load_balancer_backend_addresses = AAZListType( serialized_name="loadBalancerBackendAddresses", ) properties.load_balancing_rules = AAZListType( serialized_name="loadBalancingRules", flags={"read_only": True}, ) properties.location = AAZStrType() properties.outbound_rule = AAZObjectType( serialized_name="outboundRule", ) cls._build_schema_sub_resource_read(properties.outbound_rule) properties.outbound_rules = AAZListType( serialized_name="outboundRules", flags={"read_only": True}, ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.tunnel_interfaces = AAZListType( serialized_name="tunnelInterfaces", ) backend_ip_configurations = _schema_backend_address_pool_read.properties.backend_ip_configurations backend_ip_configurations.Element = AAZObjectType() cls._build_schema_network_interface_ip_configuration_read(backend_ip_configurations.Element) inbound_nat_rules = _schema_backend_address_pool_read.properties.inbound_nat_rules inbound_nat_rules.Element = AAZObjectType() cls._build_schema_sub_resource_read(inbound_nat_rules.Element) load_balancer_backend_addresses = _schema_backend_address_pool_read.properties.load_balancer_backend_addresses load_balancer_backend_addresses.Element = AAZObjectType() _element = _schema_backend_address_pool_read.properties.load_balancer_backend_addresses.Element _element.name = AAZStrType() _element.properties = AAZObjectType( flags={"client_flatten": True}, ) properties = _schema_backend_address_pool_read.properties.load_balancer_backend_addresses.Element.properties properties.admin_state = AAZStrType( serialized_name="adminState", ) properties.inbound_nat_rules_port_mapping = AAZListType( serialized_name="inboundNatRulesPortMapping", flags={"read_only": True}, ) properties.ip_address = AAZStrType( serialized_name="ipAddress", ) properties.load_balancer_frontend_ip_configuration = AAZObjectType( serialized_name="loadBalancerFrontendIPConfiguration", ) cls._build_schema_sub_resource_read(properties.load_balancer_frontend_ip_configuration) properties.network_interface_ip_configuration = AAZObjectType( serialized_name="networkInterfaceIPConfiguration", ) cls._build_schema_sub_resource_read(properties.network_interface_ip_configuration) properties.subnet = AAZObjectType() cls._build_schema_sub_resource_read(properties.subnet) properties.virtual_network = AAZObjectType( serialized_name="virtualNetwork", ) cls._build_schema_sub_resource_read(properties.virtual_network) inbound_nat_rules_port_mapping = _schema_backend_address_pool_read.properties.load_balancer_backend_addresses.Element.properties.inbound_nat_rules_port_mapping inbound_nat_rules_port_mapping.Element = AAZObjectType() _element = _schema_backend_address_pool_read.properties.load_balancer_backend_addresses.Element.properties.inbound_nat_rules_port_mapping.Element _element.backend_port = AAZIntType( serialized_name="backendPort", ) _element.frontend_port = AAZIntType( serialized_name="frontendPort", ) _element.inbound_nat_rule_name = AAZStrType( serialized_name="inboundNatRuleName", ) load_balancing_rules = _schema_backend_address_pool_read.properties.load_balancing_rules load_balancing_rules.Element = AAZObjectType() cls._build_schema_sub_resource_read(load_balancing_rules.Element) outbound_rules = _schema_backend_address_pool_read.properties.outbound_rules outbound_rules.Element = AAZObjectType() cls._build_schema_sub_resource_read(outbound_rules.Element) tunnel_interfaces = _schema_backend_address_pool_read.properties.tunnel_interfaces tunnel_interfaces.Element = AAZObjectType() _element = _schema_backend_address_pool_read.properties.tunnel_interfaces.Element _element.identifier = AAZIntType() _element.port = AAZIntType() _element.protocol = AAZStrType() _element.type = AAZStrType() _schema.etag = cls._schema_backend_address_pool_read.etag _schema.id = cls._schema_backend_address_pool_read.id _schema.name = cls._schema_backend_address_pool_read.name _schema.properties = cls._schema_backend_address_pool_read.properties _schema.type = cls._schema_backend_address_pool_read.type _schema_extended_location_read = None @classmethod def _build_schema_extended_location_read(cls, _schema): if cls._schema_extended_location_read is not None: _schema.name = cls._schema_extended_location_read.name _schema.type = cls._schema_extended_location_read.type return cls._schema_extended_location_read = _schema_extended_location_read = AAZObjectType() extended_location_read = _schema_extended_location_read extended_location_read.name = AAZStrType() extended_location_read.type = AAZStrType() _schema.name = cls._schema_extended_location_read.name _schema.type = cls._schema_extended_location_read.type _schema_frontend_ip_configuration_read = None @classmethod def _build_schema_frontend_ip_configuration_read(cls, _schema): if cls._schema_frontend_ip_configuration_read is not None: _schema.etag = cls._schema_frontend_ip_configuration_read.etag _schema.id = cls._schema_frontend_ip_configuration_read.id _schema.name = cls._schema_frontend_ip_configuration_read.name _schema.properties = cls._schema_frontend_ip_configuration_read.properties _schema.type = cls._schema_frontend_ip_configuration_read.type _schema.zones = cls._schema_frontend_ip_configuration_read.zones return cls._schema_frontend_ip_configuration_read = _schema_frontend_ip_configuration_read = AAZObjectType() frontend_ip_configuration_read = _schema_frontend_ip_configuration_read frontend_ip_configuration_read.etag = AAZStrType( flags={"read_only": True}, ) frontend_ip_configuration_read.id = AAZStrType() frontend_ip_configuration_read.name = AAZStrType() frontend_ip_configuration_read.properties = AAZObjectType( flags={"client_flatten": True}, ) frontend_ip_configuration_read.type = AAZStrType( flags={"read_only": True}, ) frontend_ip_configuration_read.zones = AAZListType() properties = _schema_frontend_ip_configuration_read.properties properties.gateway_load_balancer = AAZObjectType( serialized_name="gatewayLoadBalancer", ) cls._build_schema_sub_resource_read(properties.gateway_load_balancer) properties.inbound_nat_pools = AAZListType( serialized_name="inboundNatPools", flags={"read_only": True}, ) properties.inbound_nat_rules = AAZListType( serialized_name="inboundNatRules", flags={"read_only": True}, ) properties.load_balancing_rules = AAZListType( serialized_name="loadBalancingRules", flags={"read_only": True}, ) properties.outbound_rules = AAZListType( serialized_name="outboundRules", flags={"read_only": True}, ) properties.private_ip_address = AAZStrType( serialized_name="privateIPAddress", ) properties.private_ip_address_version = AAZStrType( serialized_name="privateIPAddressVersion", ) properties.private_ip_allocation_method = AAZStrType( serialized_name="privateIPAllocationMethod", ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.public_ip_address = AAZObjectType( serialized_name="publicIPAddress", ) cls._build_schema_public_ip_address_read(properties.public_ip_address) properties.public_ip_prefix = AAZObjectType( serialized_name="publicIPPrefix", ) cls._build_schema_sub_resource_read(properties.public_ip_prefix) properties.subnet = AAZObjectType() cls._build_schema_subnet_read(properties.subnet) inbound_nat_pools = _schema_frontend_ip_configuration_read.properties.inbound_nat_pools inbound_nat_pools.Element = AAZObjectType() cls._build_schema_sub_resource_read(inbound_nat_pools.Element) inbound_nat_rules = _schema_frontend_ip_configuration_read.properties.inbound_nat_rules inbound_nat_rules.Element = AAZObjectType() cls._build_schema_sub_resource_read(inbound_nat_rules.Element) load_balancing_rules = _schema_frontend_ip_configuration_read.properties.load_balancing_rules load_balancing_rules.Element = AAZObjectType() cls._build_schema_sub_resource_read(load_balancing_rules.Element) outbound_rules = _schema_frontend_ip_configuration_read.properties.outbound_rules outbound_rules.Element = AAZObjectType() cls._build_schema_sub_resource_read(outbound_rules.Element) zones = _schema_frontend_ip_configuration_read.zones zones.Element = AAZStrType() _schema.etag = cls._schema_frontend_ip_configuration_read.etag _schema.id = cls._schema_frontend_ip_configuration_read.id _schema.name = cls._schema_frontend_ip_configuration_read.name _schema.properties = cls._schema_frontend_ip_configuration_read.properties _schema.type = cls._schema_frontend_ip_configuration_read.type _schema.zones = cls._schema_frontend_ip_configuration_read.zones _schema_ip_configuration_read = None @classmethod def _build_schema_ip_configuration_read(cls, _schema): if cls._schema_ip_configuration_read is not None: _schema.etag = cls._schema_ip_configuration_read.etag _schema.id = cls._schema_ip_configuration_read.id _schema.name = cls._schema_ip_configuration_read.name _schema.properties = cls._schema_ip_configuration_read.properties return cls._schema_ip_configuration_read = _schema_ip_configuration_read = AAZObjectType() ip_configuration_read = _schema_ip_configuration_read ip_configuration_read.etag = AAZStrType( flags={"read_only": True}, ) ip_configuration_read.id = AAZStrType() ip_configuration_read.name = AAZStrType() ip_configuration_read.properties = AAZObjectType( flags={"client_flatten": True}, ) properties = _schema_ip_configuration_read.properties properties.private_ip_address = AAZStrType( serialized_name="privateIPAddress", ) properties.private_ip_allocation_method = AAZStrType( serialized_name="privateIPAllocationMethod", ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.public_ip_address = AAZObjectType( serialized_name="publicIPAddress", ) cls._build_schema_public_ip_address_read(properties.public_ip_address) properties.subnet = AAZObjectType() cls._build_schema_subnet_read(properties.subnet) _schema.etag = cls._schema_ip_configuration_read.etag _schema.id = cls._schema_ip_configuration_read.id _schema.name = cls._schema_ip_configuration_read.name _schema.properties = cls._schema_ip_configuration_read.properties _schema_inbound_nat_rule_read = None @classmethod def _build_schema_inbound_nat_rule_read(cls, _schema): if cls._schema_inbound_nat_rule_read is not None: _schema.etag = cls._schema_inbound_nat_rule_read.etag _schema.id = cls._schema_inbound_nat_rule_read.id _schema.name = cls._schema_inbound_nat_rule_read.name _schema.properties = cls._schema_inbound_nat_rule_read.properties _schema.type = cls._schema_inbound_nat_rule_read.type return cls._schema_inbound_nat_rule_read = _schema_inbound_nat_rule_read = AAZObjectType() inbound_nat_rule_read = _schema_inbound_nat_rule_read inbound_nat_rule_read.etag = AAZStrType( flags={"read_only": True}, ) inbound_nat_rule_read.id = AAZStrType() inbound_nat_rule_read.name = AAZStrType() inbound_nat_rule_read.properties = AAZObjectType( flags={"client_flatten": True}, ) inbound_nat_rule_read.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_inbound_nat_rule_read.properties properties.backend_address_pool = AAZObjectType( serialized_name="backendAddressPool", ) cls._build_schema_sub_resource_read(properties.backend_address_pool) properties.backend_ip_configuration = AAZObjectType( serialized_name="backendIPConfiguration", ) cls._build_schema_network_interface_ip_configuration_read(properties.backend_ip_configuration) properties.backend_port = AAZIntType( serialized_name="backendPort", ) properties.enable_floating_ip = AAZBoolType( serialized_name="enableFloatingIP", ) properties.enable_tcp_reset = AAZBoolType( serialized_name="enableTcpReset", ) properties.frontend_ip_configuration = AAZObjectType( serialized_name="frontendIPConfiguration", ) cls._build_schema_sub_resource_read(properties.frontend_ip_configuration) properties.frontend_port = AAZIntType( serialized_name="frontendPort", ) properties.frontend_port_range_end = AAZIntType( serialized_name="frontendPortRangeEnd", ) properties.frontend_port_range_start = AAZIntType( serialized_name="frontendPortRangeStart", ) properties.idle_timeout_in_minutes = AAZIntType( serialized_name="idleTimeoutInMinutes", ) properties.protocol = AAZStrType() properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) _schema.etag = cls._schema_inbound_nat_rule_read.etag _schema.id = cls._schema_inbound_nat_rule_read.id _schema.name = cls._schema_inbound_nat_rule_read.name _schema.properties = cls._schema_inbound_nat_rule_read.properties _schema.type = cls._schema_inbound_nat_rule_read.type _schema_load_balancer_read = None @classmethod def _build_schema_load_balancer_read(cls, _schema): if cls._schema_load_balancer_read is not None: _schema.etag = cls._schema_load_balancer_read.etag _schema.extended_location = cls._schema_load_balancer_read.extended_location _schema.id = cls._schema_load_balancer_read.id _schema.location = cls._schema_load_balancer_read.location _schema.name = cls._schema_load_balancer_read.name _schema.properties = cls._schema_load_balancer_read.properties _schema.sku = cls._schema_load_balancer_read.sku _schema.tags = cls._schema_load_balancer_read.tags _schema.type = cls._schema_load_balancer_read.type return cls._schema_load_balancer_read = _schema_load_balancer_read = AAZObjectType() load_balancer_read = _schema_load_balancer_read load_balancer_read.etag = AAZStrType( flags={"read_only": True}, ) load_balancer_read.extended_location = AAZObjectType( serialized_name="extendedLocation", ) cls._build_schema_extended_location_read(load_balancer_read.extended_location) load_balancer_read.id = AAZStrType() load_balancer_read.location = AAZStrType() load_balancer_read.name = AAZStrType( flags={"read_only": True}, ) load_balancer_read.properties = AAZObjectType( flags={"client_flatten": True}, ) load_balancer_read.sku = AAZObjectType() load_balancer_read.tags = AAZDictType() load_balancer_read.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_load_balancer_read.properties properties.backend_address_pools = AAZListType( serialized_name="backendAddressPools", ) properties.frontend_ip_configurations = AAZListType( serialized_name="frontendIPConfigurations", ) properties.inbound_nat_pools = AAZListType( serialized_name="inboundNatPools", ) properties.inbound_nat_rules = AAZListType( serialized_name="inboundNatRules", ) properties.load_balancing_rules = AAZListType( serialized_name="loadBalancingRules", ) properties.outbound_rules = AAZListType( serialized_name="outboundRules", ) properties.probes = AAZListType() properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.resource_guid = AAZStrType( serialized_name="resourceGuid", flags={"read_only": True}, ) backend_address_pools = _schema_load_balancer_read.properties.backend_address_pools backend_address_pools.Element = AAZObjectType() cls._build_schema_backend_address_pool_read(backend_address_pools.Element) frontend_ip_configurations = _schema_load_balancer_read.properties.frontend_ip_configurations frontend_ip_configurations.Element = AAZObjectType() cls._build_schema_frontend_ip_configuration_read(frontend_ip_configurations.Element) inbound_nat_pools = _schema_load_balancer_read.properties.inbound_nat_pools inbound_nat_pools.Element = AAZObjectType() _element = _schema_load_balancer_read.properties.inbound_nat_pools.Element _element.etag = AAZStrType( flags={"read_only": True}, ) _element.id = AAZStrType() _element.name = AAZStrType() _element.properties = AAZObjectType( flags={"required": True, "client_flatten": True}, ) _element.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_load_balancer_read.properties.inbound_nat_pools.Element.properties properties.backend_port = AAZIntType( serialized_name="backendPort", flags={"required": True}, ) properties.enable_floating_ip = AAZBoolType( serialized_name="enableFloatingIP", ) properties.enable_tcp_reset = AAZBoolType( serialized_name="enableTcpReset", ) properties.frontend_ip_configuration = AAZObjectType( serialized_name="frontendIPConfiguration", ) cls._build_schema_sub_resource_read(properties.frontend_ip_configuration) properties.frontend_port_range_end = AAZIntType( serialized_name="frontendPortRangeEnd", flags={"required": True}, ) properties.frontend_port_range_start = AAZIntType( serialized_name="frontendPortRangeStart", flags={"required": True}, ) properties.idle_timeout_in_minutes = AAZIntType( serialized_name="idleTimeoutInMinutes", ) properties.protocol = AAZStrType( flags={"required": True}, ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) inbound_nat_rules = _schema_load_balancer_read.properties.inbound_nat_rules inbound_nat_rules.Element = AAZObjectType() cls._build_schema_inbound_nat_rule_read(inbound_nat_rules.Element) load_balancing_rules = _schema_load_balancer_read.properties.load_balancing_rules load_balancing_rules.Element = AAZObjectType() _element = _schema_load_balancer_read.properties.load_balancing_rules.Element _element.etag = AAZStrType( flags={"read_only": True}, ) _element.id = AAZStrType() _element.name = AAZStrType() _element.properties = AAZObjectType( flags={"client_flatten": True}, ) _element.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_load_balancer_read.properties.load_balancing_rules.Element.properties properties.backend_address_pool = AAZObjectType( serialized_name="backendAddressPool", ) cls._build_schema_sub_resource_read(properties.backend_address_pool) properties.backend_address_pools = AAZListType( serialized_name="backendAddressPools", ) properties.backend_port = AAZIntType( serialized_name="backendPort", ) properties.disable_outbound_snat = AAZBoolType( serialized_name="disableOutboundSnat", ) properties.enable_floating_ip = AAZBoolType( serialized_name="enableFloatingIP", ) properties.enable_tcp_reset = AAZBoolType( serialized_name="enableTcpReset", ) properties.frontend_ip_configuration = AAZObjectType( serialized_name="frontendIPConfiguration", ) cls._build_schema_sub_resource_read(properties.frontend_ip_configuration) properties.frontend_port = AAZIntType( serialized_name="frontendPort", flags={"required": True}, ) properties.idle_timeout_in_minutes = AAZIntType( serialized_name="idleTimeoutInMinutes", ) properties.load_distribution = AAZStrType( serialized_name="loadDistribution", ) properties.probe = AAZObjectType() cls._build_schema_sub_resource_read(properties.probe) properties.protocol = AAZStrType( flags={"required": True}, ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) backend_address_pools = _schema_load_balancer_read.properties.load_balancing_rules.Element.properties.backend_address_pools backend_address_pools.Element = AAZObjectType() cls._build_schema_sub_resource_read(backend_address_pools.Element) outbound_rules = _schema_load_balancer_read.properties.outbound_rules outbound_rules.Element = AAZObjectType() _element = _schema_load_balancer_read.properties.outbound_rules.Element _element.etag = AAZStrType( flags={"read_only": True}, ) _element.id = AAZStrType() _element.name = AAZStrType() _element.properties = AAZObjectType( flags={"client_flatten": True}, ) _element.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_load_balancer_read.properties.outbound_rules.Element.properties properties.allocated_outbound_ports = AAZIntType( serialized_name="allocatedOutboundPorts", ) properties.backend_address_pool = AAZObjectType( serialized_name="backendAddressPool", flags={"required": True}, ) cls._build_schema_sub_resource_read(properties.backend_address_pool) properties.enable_tcp_reset = AAZBoolType( serialized_name="enableTcpReset", ) properties.frontend_ip_configurations = AAZListType( serialized_name="frontendIPConfigurations", flags={"required": True}, ) properties.idle_timeout_in_minutes = AAZIntType( serialized_name="idleTimeoutInMinutes", ) properties.protocol = AAZStrType( flags={"required": True}, ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) frontend_ip_configurations = _schema_load_balancer_read.properties.outbound_rules.Element.properties.frontend_ip_configurations frontend_ip_configurations.Element = AAZObjectType() cls._build_schema_sub_resource_read(frontend_ip_configurations.Element) probes = _schema_load_balancer_read.properties.probes probes.Element = AAZObjectType() _element = _schema_load_balancer_read.properties.probes.Element _element.etag = AAZStrType( flags={"read_only": True}, ) _element.id = AAZStrType() _element.name = AAZStrType() _element.properties = AAZObjectType( flags={"client_flatten": True}, ) _element.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_load_balancer_read.properties.probes.Element.properties properties.interval_in_seconds = AAZIntType( serialized_name="intervalInSeconds", ) properties.load_balancing_rules = AAZListType( serialized_name="loadBalancingRules", flags={"read_only": True}, ) properties.number_of_probes = AAZIntType( serialized_name="numberOfProbes", ) properties.port = AAZIntType( flags={"required": True}, ) properties.probe_threshold = AAZIntType( serialized_name="probeThreshold", ) properties.protocol = AAZStrType( flags={"required": True}, ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.request_path = AAZStrType( serialized_name="requestPath", ) load_balancing_rules = _schema_load_balancer_read.properties.probes.Element.properties.load_balancing_rules load_balancing_rules.Element = AAZObjectType() cls._build_schema_sub_resource_read(load_balancing_rules.Element) sku = _schema_load_balancer_read.sku sku.name = AAZStrType() sku.tier = AAZStrType() tags = _schema_load_balancer_read.tags tags.Element = AAZStrType() _schema.etag = cls._schema_load_balancer_read.etag _schema.extended_location = cls._schema_load_balancer_read.extended_location _schema.id = cls._schema_load_balancer_read.id _schema.location = cls._schema_load_balancer_read.location _schema.name = cls._schema_load_balancer_read.name _schema.properties = cls._schema_load_balancer_read.properties _schema.sku = cls._schema_load_balancer_read.sku _schema.tags = cls._schema_load_balancer_read.tags _schema.type = cls._schema_load_balancer_read.type _schema_network_interface_ip_configuration_read = None @classmethod def _build_schema_network_interface_ip_configuration_read(cls, _schema): if cls._schema_network_interface_ip_configuration_read is not None: _schema.etag = cls._schema_network_interface_ip_configuration_read.etag _schema.id = cls._schema_network_interface_ip_configuration_read.id _schema.name = cls._schema_network_interface_ip_configuration_read.name _schema.properties = cls._schema_network_interface_ip_configuration_read.properties _schema.type = cls._schema_network_interface_ip_configuration_read.type return cls._schema_network_interface_ip_configuration_read = _schema_network_interface_ip_configuration_read = AAZObjectType() network_interface_ip_configuration_read = _schema_network_interface_ip_configuration_read network_interface_ip_configuration_read.etag = AAZStrType( flags={"read_only": True}, ) network_interface_ip_configuration_read.id = AAZStrType() network_interface_ip_configuration_read.name = AAZStrType() network_interface_ip_configuration_read.properties = AAZObjectType( flags={"client_flatten": True}, ) network_interface_ip_configuration_read.type = AAZStrType() properties = _schema_network_interface_ip_configuration_read.properties properties.application_gateway_backend_address_pools = AAZListType( serialized_name="applicationGatewayBackendAddressPools", ) properties.application_security_groups = AAZListType( serialized_name="applicationSecurityGroups", ) properties.gateway_load_balancer = AAZObjectType( serialized_name="gatewayLoadBalancer", ) cls._build_schema_sub_resource_read(properties.gateway_load_balancer) properties.load_balancer_backend_address_pools = AAZListType( serialized_name="loadBalancerBackendAddressPools", ) properties.load_balancer_inbound_nat_rules = AAZListType( serialized_name="loadBalancerInboundNatRules", ) properties.primary = AAZBoolType() properties.private_ip_address = AAZStrType( serialized_name="privateIPAddress", ) properties.private_ip_address_version = AAZStrType( serialized_name="privateIPAddressVersion", ) properties.private_ip_allocation_method = AAZStrType( serialized_name="privateIPAllocationMethod", ) properties.private_link_connection_properties = AAZObjectType( serialized_name="privateLinkConnectionProperties", ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.public_ip_address = AAZObjectType( serialized_name="publicIPAddress", ) cls._build_schema_public_ip_address_read(properties.public_ip_address) properties.subnet = AAZObjectType() cls._build_schema_subnet_read(properties.subnet) properties.virtual_network_taps = AAZListType( serialized_name="virtualNetworkTaps", ) application_gateway_backend_address_pools = _schema_network_interface_ip_configuration_read.properties.application_gateway_backend_address_pools application_gateway_backend_address_pools.Element = AAZObjectType() _element = _schema_network_interface_ip_configuration_read.properties.application_gateway_backend_address_pools.Element _element.etag = AAZStrType( flags={"read_only": True}, ) _element.id = AAZStrType() _element.name = AAZStrType() _element.properties = AAZObjectType( flags={"client_flatten": True}, ) _element.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_network_interface_ip_configuration_read.properties.application_gateway_backend_address_pools.Element.properties properties.backend_addresses = AAZListType( serialized_name="backendAddresses", ) properties.backend_ip_configurations = AAZListType( serialized_name="backendIPConfigurations", flags={"read_only": True}, ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) backend_addresses = _schema_network_interface_ip_configuration_read.properties.application_gateway_backend_address_pools.Element.properties.backend_addresses backend_addresses.Element = AAZObjectType() _element = _schema_network_interface_ip_configuration_read.properties.application_gateway_backend_address_pools.Element.properties.backend_addresses.Element _element.fqdn = AAZStrType() _element.ip_address = AAZStrType( serialized_name="ipAddress", ) backend_ip_configurations = _schema_network_interface_ip_configuration_read.properties.application_gateway_backend_address_pools.Element.properties.backend_ip_configurations backend_ip_configurations.Element = AAZObjectType() cls._build_schema_network_interface_ip_configuration_read(backend_ip_configurations.Element) application_security_groups = _schema_network_interface_ip_configuration_read.properties.application_security_groups application_security_groups.Element = AAZObjectType() cls._build_schema_application_security_group_read(application_security_groups.Element) load_balancer_backend_address_pools = _schema_network_interface_ip_configuration_read.properties.load_balancer_backend_address_pools load_balancer_backend_address_pools.Element = AAZObjectType() cls._build_schema_backend_address_pool_read(load_balancer_backend_address_pools.Element) load_balancer_inbound_nat_rules = _schema_network_interface_ip_configuration_read.properties.load_balancer_inbound_nat_rules load_balancer_inbound_nat_rules.Element = AAZObjectType() cls._build_schema_inbound_nat_rule_read(load_balancer_inbound_nat_rules.Element) private_link_connection_properties = _schema_network_interface_ip_configuration_read.properties.private_link_connection_properties private_link_connection_properties.fqdns = AAZListType( flags={"read_only": True}, ) private_link_connection_properties.group_id = AAZStrType( serialized_name="groupId", flags={"read_only": True}, ) private_link_connection_properties.required_member_name = AAZStrType( serialized_name="requiredMemberName", flags={"read_only": True}, ) fqdns = _schema_network_interface_ip_configuration_read.properties.private_link_connection_properties.fqdns fqdns.Element = AAZStrType() virtual_network_taps = _schema_network_interface_ip_configuration_read.properties.virtual_network_taps virtual_network_taps.Element = AAZObjectType() cls._build_schema_virtual_network_tap_read(virtual_network_taps.Element) _schema.etag = cls._schema_network_interface_ip_configuration_read.etag _schema.id = cls._schema_network_interface_ip_configuration_read.id _schema.name = cls._schema_network_interface_ip_configuration_read.name _schema.properties = cls._schema_network_interface_ip_configuration_read.properties _schema.type = cls._schema_network_interface_ip_configuration_read.type _schema_network_interface_tap_configuration_read = None @classmethod def _build_schema_network_interface_tap_configuration_read(cls, _schema): if cls._schema_network_interface_tap_configuration_read is not None: _schema.etag = cls._schema_network_interface_tap_configuration_read.etag _schema.id = cls._schema_network_interface_tap_configuration_read.id _schema.name = cls._schema_network_interface_tap_configuration_read.name _schema.properties = cls._schema_network_interface_tap_configuration_read.properties _schema.type = cls._schema_network_interface_tap_configuration_read.type return cls._schema_network_interface_tap_configuration_read = _schema_network_interface_tap_configuration_read = AAZObjectType() network_interface_tap_configuration_read = _schema_network_interface_tap_configuration_read network_interface_tap_configuration_read.etag = AAZStrType( flags={"read_only": True}, ) network_interface_tap_configuration_read.id = AAZStrType() network_interface_tap_configuration_read.name = AAZStrType() network_interface_tap_configuration_read.properties = AAZObjectType( flags={"client_flatten": True}, ) network_interface_tap_configuration_read.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_network_interface_tap_configuration_read.properties properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.virtual_network_tap = AAZObjectType( serialized_name="virtualNetworkTap", ) cls._build_schema_virtual_network_tap_read(properties.virtual_network_tap) _schema.etag = cls._schema_network_interface_tap_configuration_read.etag _schema.id = cls._schema_network_interface_tap_configuration_read.id _schema.name = cls._schema_network_interface_tap_configuration_read.name _schema.properties = cls._schema_network_interface_tap_configuration_read.properties _schema.type = cls._schema_network_interface_tap_configuration_read.type _schema_network_interface_read = None @classmethod def _build_schema_network_interface_read(cls, _schema): if cls._schema_network_interface_read is not None: _schema.etag = cls._schema_network_interface_read.etag _schema.extended_location = cls._schema_network_interface_read.extended_location _schema.id = cls._schema_network_interface_read.id _schema.location = cls._schema_network_interface_read.location _schema.name = cls._schema_network_interface_read.name _schema.properties = cls._schema_network_interface_read.properties _schema.tags = cls._schema_network_interface_read.tags _schema.type = cls._schema_network_interface_read.type return cls._schema_network_interface_read = _schema_network_interface_read = AAZObjectType() network_interface_read = _schema_network_interface_read network_interface_read.etag = AAZStrType( flags={"read_only": True}, ) network_interface_read.extended_location = AAZObjectType( serialized_name="extendedLocation", ) cls._build_schema_extended_location_read(network_interface_read.extended_location) network_interface_read.id = AAZStrType() network_interface_read.location = AAZStrType() network_interface_read.name = AAZStrType( flags={"read_only": True}, ) network_interface_read.properties = AAZObjectType( flags={"client_flatten": True}, ) network_interface_read.tags = AAZDictType() network_interface_read.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_network_interface_read.properties properties.auxiliary_mode = AAZStrType( serialized_name="auxiliaryMode", ) properties.disable_tcp_state_tracking = AAZBoolType( serialized_name="disableTcpStateTracking", ) properties.dns_settings = AAZObjectType( serialized_name="dnsSettings", ) properties.dscp_configuration = AAZObjectType( serialized_name="dscpConfiguration", ) cls._build_schema_sub_resource_read(properties.dscp_configuration) properties.enable_accelerated_networking = AAZBoolType( serialized_name="enableAcceleratedNetworking", ) properties.enable_ip_forwarding = AAZBoolType( serialized_name="enableIPForwarding", ) properties.hosted_workloads = AAZListType( serialized_name="hostedWorkloads", flags={"read_only": True}, ) properties.ip_configurations = AAZListType( serialized_name="ipConfigurations", ) properties.mac_address = AAZStrType( serialized_name="macAddress", flags={"read_only": True}, ) properties.migration_phase = AAZStrType( serialized_name="migrationPhase", ) properties.network_security_group = AAZObjectType( serialized_name="networkSecurityGroup", ) cls._build_schema_network_security_group_read(properties.network_security_group) properties.nic_type = AAZStrType( serialized_name="nicType", ) properties.primary = AAZBoolType( flags={"read_only": True}, ) properties.private_endpoint = AAZObjectType( serialized_name="privateEndpoint", ) cls._build_schema_private_endpoint_read(properties.private_endpoint) properties.private_link_service = AAZObjectType( serialized_name="privateLinkService", ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.resource_guid = AAZStrType( serialized_name="resourceGuid", flags={"read_only": True}, ) properties.tap_configurations = AAZListType( serialized_name="tapConfigurations", flags={"read_only": True}, ) properties.virtual_machine = AAZObjectType( serialized_name="virtualMachine", ) cls._build_schema_sub_resource_read(properties.virtual_machine) properties.vnet_encryption_supported = AAZBoolType( serialized_name="vnetEncryptionSupported", flags={"read_only": True}, ) properties.workload_type = AAZStrType( serialized_name="workloadType", ) dns_settings = _schema_network_interface_read.properties.dns_settings dns_settings.applied_dns_servers = AAZListType( serialized_name="appliedDnsServers", flags={"read_only": True}, ) dns_settings.dns_servers = AAZListType( serialized_name="dnsServers", ) dns_settings.internal_dns_name_label = AAZStrType( serialized_name="internalDnsNameLabel", ) dns_settings.internal_domain_name_suffix = AAZStrType( serialized_name="internalDomainNameSuffix", flags={"read_only": True}, ) dns_settings.internal_fqdn = AAZStrType( serialized_name="internalFqdn", flags={"read_only": True}, ) applied_dns_servers = _schema_network_interface_read.properties.dns_settings.applied_dns_servers applied_dns_servers.Element = AAZStrType() dns_servers = _schema_network_interface_read.properties.dns_settings.dns_servers dns_servers.Element = AAZStrType() hosted_workloads = _schema_network_interface_read.properties.hosted_workloads hosted_workloads.Element = AAZStrType() ip_configurations = _schema_network_interface_read.properties.ip_configurations ip_configurations.Element = AAZObjectType() cls._build_schema_network_interface_ip_configuration_read(ip_configurations.Element) private_link_service = _schema_network_interface_read.properties.private_link_service private_link_service.etag = AAZStrType( flags={"read_only": True}, ) private_link_service.extended_location = AAZObjectType( serialized_name="extendedLocation", ) cls._build_schema_extended_location_read(private_link_service.extended_location) private_link_service.id = AAZStrType() private_link_service.location = AAZStrType() private_link_service.name = AAZStrType( flags={"read_only": True}, ) private_link_service.properties = AAZObjectType( flags={"client_flatten": True}, ) private_link_service.tags = AAZDictType() private_link_service.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_network_interface_read.properties.private_link_service.properties properties.alias = AAZStrType( flags={"read_only": True}, ) properties.auto_approval = AAZObjectType( serialized_name="autoApproval", ) properties.enable_proxy_protocol = AAZBoolType( serialized_name="enableProxyProtocol", ) properties.fqdns = AAZListType() properties.ip_configurations = AAZListType( serialized_name="ipConfigurations", ) properties.load_balancer_frontend_ip_configurations = AAZListType( serialized_name="loadBalancerFrontendIpConfigurations", ) properties.network_interfaces = AAZListType( serialized_name="networkInterfaces", flags={"read_only": True}, ) properties.private_endpoint_connections = AAZListType( serialized_name="privateEndpointConnections", flags={"read_only": True}, ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.visibility = AAZObjectType() auto_approval = _schema_network_interface_read.properties.private_link_service.properties.auto_approval auto_approval.subscriptions = AAZListType() subscriptions = _schema_network_interface_read.properties.private_link_service.properties.auto_approval.subscriptions subscriptions.Element = AAZStrType() fqdns = _schema_network_interface_read.properties.private_link_service.properties.fqdns fqdns.Element = AAZStrType() ip_configurations = _schema_network_interface_read.properties.private_link_service.properties.ip_configurations ip_configurations.Element = AAZObjectType() _element = _schema_network_interface_read.properties.private_link_service.properties.ip_configurations.Element _element.etag = AAZStrType( flags={"read_only": True}, ) _element.id = AAZStrType() _element.name = AAZStrType() _element.properties = AAZObjectType( flags={"client_flatten": True}, ) _element.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_network_interface_read.properties.private_link_service.properties.ip_configurations.Element.properties properties.primary = AAZBoolType() properties.private_ip_address = AAZStrType( serialized_name="privateIPAddress", ) properties.private_ip_address_version = AAZStrType( serialized_name="privateIPAddressVersion", ) properties.private_ip_allocation_method = AAZStrType( serialized_name="privateIPAllocationMethod", ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.subnet = AAZObjectType() cls._build_schema_subnet_read(properties.subnet) load_balancer_frontend_ip_configurations = _schema_network_interface_read.properties.private_link_service.properties.load_balancer_frontend_ip_configurations load_balancer_frontend_ip_configurations.Element = AAZObjectType() cls._build_schema_frontend_ip_configuration_read(load_balancer_frontend_ip_configurations.Element) network_interfaces = _schema_network_interface_read.properties.private_link_service.properties.network_interfaces network_interfaces.Element = AAZObjectType() cls._build_schema_network_interface_read(network_interfaces.Element) private_endpoint_connections = _schema_network_interface_read.properties.private_link_service.properties.private_endpoint_connections private_endpoint_connections.Element = AAZObjectType() _element = _schema_network_interface_read.properties.private_link_service.properties.private_endpoint_connections.Element _element.etag = AAZStrType( flags={"read_only": True}, ) _element.id = AAZStrType() _element.name = AAZStrType() _element.properties = AAZObjectType( flags={"client_flatten": True}, ) _element.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_network_interface_read.properties.private_link_service.properties.private_endpoint_connections.Element.properties properties.link_identifier = AAZStrType( serialized_name="linkIdentifier", flags={"read_only": True}, ) properties.private_endpoint = AAZObjectType( serialized_name="privateEndpoint", ) cls._build_schema_private_endpoint_read(properties.private_endpoint) properties.private_link_service_connection_state = AAZObjectType( serialized_name="privateLinkServiceConnectionState", ) cls._build_schema_private_link_service_connection_state_read(properties.private_link_service_connection_state) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) visibility = _schema_network_interface_read.properties.private_link_service.properties.visibility visibility.subscriptions = AAZListType() subscriptions = _schema_network_interface_read.properties.private_link_service.properties.visibility.subscriptions subscriptions.Element = AAZStrType() tags = _schema_network_interface_read.properties.private_link_service.tags tags.Element = AAZStrType() tap_configurations = _schema_network_interface_read.properties.tap_configurations tap_configurations.Element = AAZObjectType() cls._build_schema_network_interface_tap_configuration_read(tap_configurations.Element) tags = _schema_network_interface_read.tags tags.Element = AAZStrType() _schema.etag = cls._schema_network_interface_read.etag _schema.extended_location = cls._schema_network_interface_read.extended_location _schema.id = cls._schema_network_interface_read.id _schema.location = cls._schema_network_interface_read.location _schema.name = cls._schema_network_interface_read.name _schema.properties = cls._schema_network_interface_read.properties _schema.tags = cls._schema_network_interface_read.tags _schema.type = cls._schema_network_interface_read.type _schema_network_security_group_read = None @classmethod def _build_schema_network_security_group_read(cls, _schema): if cls._schema_network_security_group_read is not None: _schema.etag = cls._schema_network_security_group_read.etag _schema.id = cls._schema_network_security_group_read.id _schema.location = cls._schema_network_security_group_read.location _schema.name = cls._schema_network_security_group_read.name _schema.properties = cls._schema_network_security_group_read.properties _schema.tags = cls._schema_network_security_group_read.tags _schema.type = cls._schema_network_security_group_read.type return cls._schema_network_security_group_read = _schema_network_security_group_read = AAZObjectType() network_security_group_read = _schema_network_security_group_read network_security_group_read.etag = AAZStrType( flags={"read_only": True}, ) network_security_group_read.id = AAZStrType() network_security_group_read.location = AAZStrType() network_security_group_read.name = AAZStrType( flags={"read_only": True}, ) network_security_group_read.properties = AAZObjectType( flags={"client_flatten": True}, ) network_security_group_read.tags = AAZDictType() network_security_group_read.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_network_security_group_read.properties properties.default_security_rules = AAZListType( serialized_name="defaultSecurityRules", flags={"read_only": True}, ) properties.flow_logs = AAZListType( serialized_name="flowLogs", flags={"read_only": True}, ) properties.flush_connection = AAZBoolType( serialized_name="flushConnection", ) properties.network_interfaces = AAZListType( serialized_name="networkInterfaces", flags={"read_only": True}, ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.resource_guid = AAZStrType( serialized_name="resourceGuid", flags={"read_only": True}, ) properties.security_rules = AAZListType( serialized_name="securityRules", ) properties.subnets = AAZListType( flags={"read_only": True}, ) default_security_rules = _schema_network_security_group_read.properties.default_security_rules default_security_rules.Element = AAZObjectType() cls._build_schema_security_rule_read(default_security_rules.Element) flow_logs = _schema_network_security_group_read.properties.flow_logs flow_logs.Element = AAZObjectType() _element = _schema_network_security_group_read.properties.flow_logs.Element _element.etag = AAZStrType( flags={"read_only": True}, ) _element.id = AAZStrType() _element.location = AAZStrType() _element.name = AAZStrType( flags={"read_only": True}, ) _element.properties = AAZObjectType( flags={"client_flatten": True}, ) _element.tags = AAZDictType() _element.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_network_security_group_read.properties.flow_logs.Element.properties properties.enabled = AAZBoolType() properties.flow_analytics_configuration = AAZObjectType( serialized_name="flowAnalyticsConfiguration", ) properties.format = AAZObjectType() properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.retention_policy = AAZObjectType( serialized_name="retentionPolicy", ) properties.storage_id = AAZStrType( serialized_name="storageId", flags={"required": True}, ) properties.target_resource_guid = AAZStrType( serialized_name="targetResourceGuid", flags={"read_only": True}, ) properties.target_resource_id = AAZStrType( serialized_name="targetResourceId", flags={"required": True}, ) flow_analytics_configuration = _schema_network_security_group_read.properties.flow_logs.Element.properties.flow_analytics_configuration flow_analytics_configuration.network_watcher_flow_analytics_configuration = AAZObjectType( serialized_name="networkWatcherFlowAnalyticsConfiguration", ) network_watcher_flow_analytics_configuration = _schema_network_security_group_read.properties.flow_logs.Element.properties.flow_analytics_configuration.network_watcher_flow_analytics_configuration network_watcher_flow_analytics_configuration.enabled = AAZBoolType() network_watcher_flow_analytics_configuration.traffic_analytics_interval = AAZIntType( serialized_name="trafficAnalyticsInterval", ) network_watcher_flow_analytics_configuration.workspace_id = AAZStrType( serialized_name="workspaceId", ) network_watcher_flow_analytics_configuration.workspace_region = AAZStrType( serialized_name="workspaceRegion", ) network_watcher_flow_analytics_configuration.workspace_resource_id = AAZStrType( serialized_name="workspaceResourceId", ) format = _schema_network_security_group_read.properties.flow_logs.Element.properties.format format.type = AAZStrType() format.version = AAZIntType() retention_policy = _schema_network_security_group_read.properties.flow_logs.Element.properties.retention_policy retention_policy.days = AAZIntType() retention_policy.enabled = AAZBoolType() tags = _schema_network_security_group_read.properties.flow_logs.Element.tags tags.Element = AAZStrType() network_interfaces = _schema_network_security_group_read.properties.network_interfaces network_interfaces.Element = AAZObjectType() cls._build_schema_network_interface_read(network_interfaces.Element) security_rules = _schema_network_security_group_read.properties.security_rules security_rules.Element = AAZObjectType() cls._build_schema_security_rule_read(security_rules.Element) subnets = _schema_network_security_group_read.properties.subnets subnets.Element = AAZObjectType() cls._build_schema_subnet_read(subnets.Element) tags = _schema_network_security_group_read.tags tags.Element = AAZStrType() _schema.etag = cls._schema_network_security_group_read.etag _schema.id = cls._schema_network_security_group_read.id _schema.location = cls._schema_network_security_group_read.location _schema.name = cls._schema_network_security_group_read.name _schema.properties = cls._schema_network_security_group_read.properties _schema.tags = cls._schema_network_security_group_read.tags _schema.type = cls._schema_network_security_group_read.type _schema_private_endpoint_read = None @classmethod def _build_schema_private_endpoint_read(cls, _schema): if cls._schema_private_endpoint_read is not None: _schema.etag = cls._schema_private_endpoint_read.etag _schema.extended_location = cls._schema_private_endpoint_read.extended_location _schema.id = cls._schema_private_endpoint_read.id _schema.location = cls._schema_private_endpoint_read.location _schema.name = cls._schema_private_endpoint_read.name _schema.properties = cls._schema_private_endpoint_read.properties _schema.tags = cls._schema_private_endpoint_read.tags _schema.type = cls._schema_private_endpoint_read.type return cls._schema_private_endpoint_read = _schema_private_endpoint_read = AAZObjectType() private_endpoint_read = _schema_private_endpoint_read private_endpoint_read.etag = AAZStrType( flags={"read_only": True}, ) private_endpoint_read.extended_location = AAZObjectType( serialized_name="extendedLocation", ) cls._build_schema_extended_location_read(private_endpoint_read.extended_location) private_endpoint_read.id = AAZStrType() private_endpoint_read.location = AAZStrType() private_endpoint_read.name = AAZStrType( flags={"read_only": True}, ) private_endpoint_read.properties = AAZObjectType( flags={"client_flatten": True}, ) private_endpoint_read.tags = AAZDictType() private_endpoint_read.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_private_endpoint_read.properties properties.application_security_groups = AAZListType( serialized_name="applicationSecurityGroups", ) properties.custom_dns_configs = AAZListType( serialized_name="customDnsConfigs", ) properties.custom_network_interface_name = AAZStrType( serialized_name="customNetworkInterfaceName", ) properties.ip_configurations = AAZListType( serialized_name="ipConfigurations", ) properties.manual_private_link_service_connections = AAZListType( serialized_name="manualPrivateLinkServiceConnections", ) properties.network_interfaces = AAZListType( serialized_name="networkInterfaces", flags={"read_only": True}, ) properties.private_link_service_connections = AAZListType( serialized_name="privateLinkServiceConnections", ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.subnet = AAZObjectType() cls._build_schema_subnet_read(properties.subnet) application_security_groups = _schema_private_endpoint_read.properties.application_security_groups application_security_groups.Element = AAZObjectType() cls._build_schema_application_security_group_read(application_security_groups.Element) custom_dns_configs = _schema_private_endpoint_read.properties.custom_dns_configs custom_dns_configs.Element = AAZObjectType() _element = _schema_private_endpoint_read.properties.custom_dns_configs.Element _element.fqdn = AAZStrType() _element.ip_addresses = AAZListType( serialized_name="ipAddresses", ) ip_addresses = _schema_private_endpoint_read.properties.custom_dns_configs.Element.ip_addresses ip_addresses.Element = AAZStrType() ip_configurations = _schema_private_endpoint_read.properties.ip_configurations ip_configurations.Element = AAZObjectType() _element = _schema_private_endpoint_read.properties.ip_configurations.Element _element.etag = AAZStrType( flags={"read_only": True}, ) _element.name = AAZStrType() _element.properties = AAZObjectType( flags={"client_flatten": True}, ) _element.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_private_endpoint_read.properties.ip_configurations.Element.properties properties.group_id = AAZStrType( serialized_name="groupId", ) properties.member_name = AAZStrType( serialized_name="memberName", ) properties.private_ip_address = AAZStrType( serialized_name="privateIPAddress", ) manual_private_link_service_connections = _schema_private_endpoint_read.properties.manual_private_link_service_connections manual_private_link_service_connections.Element = AAZObjectType() cls._build_schema_private_link_service_connection_read(manual_private_link_service_connections.Element) network_interfaces = _schema_private_endpoint_read.properties.network_interfaces network_interfaces.Element = AAZObjectType() cls._build_schema_network_interface_read(network_interfaces.Element) private_link_service_connections = _schema_private_endpoint_read.properties.private_link_service_connections private_link_service_connections.Element = AAZObjectType() cls._build_schema_private_link_service_connection_read(private_link_service_connections.Element) tags = _schema_private_endpoint_read.tags tags.Element = AAZStrType() _schema.etag = cls._schema_private_endpoint_read.etag _schema.extended_location = cls._schema_private_endpoint_read.extended_location _schema.id = cls._schema_private_endpoint_read.id _schema.location = cls._schema_private_endpoint_read.location _schema.name = cls._schema_private_endpoint_read.name _schema.properties = cls._schema_private_endpoint_read.properties _schema.tags = cls._schema_private_endpoint_read.tags _schema.type = cls._schema_private_endpoint_read.type _schema_private_link_service_connection_state_read = None @classmethod def _build_schema_private_link_service_connection_state_read(cls, _schema): if cls._schema_private_link_service_connection_state_read is not None: _schema.actions_required = cls._schema_private_link_service_connection_state_read.actions_required _schema.description = cls._schema_private_link_service_connection_state_read.description _schema.status = cls._schema_private_link_service_connection_state_read.status return cls._schema_private_link_service_connection_state_read = _schema_private_link_service_connection_state_read = AAZObjectType() private_link_service_connection_state_read = _schema_private_link_service_connection_state_read private_link_service_connection_state_read.actions_required = AAZStrType( serialized_name="actionsRequired", ) private_link_service_connection_state_read.description = AAZStrType() private_link_service_connection_state_read.status = AAZStrType() _schema.actions_required = cls._schema_private_link_service_connection_state_read.actions_required _schema.description = cls._schema_private_link_service_connection_state_read.description _schema.status = cls._schema_private_link_service_connection_state_read.status _schema_private_link_service_connection_read = None @classmethod def _build_schema_private_link_service_connection_read(cls, _schema): if cls._schema_private_link_service_connection_read is not None: _schema.etag = cls._schema_private_link_service_connection_read.etag _schema.id = cls._schema_private_link_service_connection_read.id _schema.name = cls._schema_private_link_service_connection_read.name _schema.properties = cls._schema_private_link_service_connection_read.properties _schema.type = cls._schema_private_link_service_connection_read.type return cls._schema_private_link_service_connection_read = _schema_private_link_service_connection_read = AAZObjectType() private_link_service_connection_read = _schema_private_link_service_connection_read private_link_service_connection_read.etag = AAZStrType( flags={"read_only": True}, ) private_link_service_connection_read.id = AAZStrType() private_link_service_connection_read.name = AAZStrType() private_link_service_connection_read.properties = AAZObjectType( flags={"client_flatten": True}, ) private_link_service_connection_read.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_private_link_service_connection_read.properties properties.group_ids = AAZListType( serialized_name="groupIds", ) properties.private_link_service_connection_state = AAZObjectType( serialized_name="privateLinkServiceConnectionState", ) cls._build_schema_private_link_service_connection_state_read(properties.private_link_service_connection_state) properties.private_link_service_id = AAZStrType( serialized_name="privateLinkServiceId", ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.request_message = AAZStrType( serialized_name="requestMessage", ) group_ids = _schema_private_link_service_connection_read.properties.group_ids group_ids.Element = AAZStrType() _schema.etag = cls._schema_private_link_service_connection_read.etag _schema.id = cls._schema_private_link_service_connection_read.id _schema.name = cls._schema_private_link_service_connection_read.name _schema.properties = cls._schema_private_link_service_connection_read.properties _schema.type = cls._schema_private_link_service_connection_read.type _schema_public_ip_address_read = None @classmethod def _build_schema_public_ip_address_read(cls, _schema): if cls._schema_public_ip_address_read is not None: _schema.etag = cls._schema_public_ip_address_read.etag _schema.extended_location = cls._schema_public_ip_address_read.extended_location _schema.id = cls._schema_public_ip_address_read.id _schema.location = cls._schema_public_ip_address_read.location _schema.name = cls._schema_public_ip_address_read.name _schema.properties = cls._schema_public_ip_address_read.properties _schema.sku = cls._schema_public_ip_address_read.sku _schema.tags = cls._schema_public_ip_address_read.tags _schema.type = cls._schema_public_ip_address_read.type _schema.zones = cls._schema_public_ip_address_read.zones return cls._schema_public_ip_address_read = _schema_public_ip_address_read = AAZObjectType() public_ip_address_read = _schema_public_ip_address_read public_ip_address_read.etag = AAZStrType( flags={"read_only": True}, ) public_ip_address_read.extended_location = AAZObjectType( serialized_name="extendedLocation", ) cls._build_schema_extended_location_read(public_ip_address_read.extended_location) public_ip_address_read.id = AAZStrType() public_ip_address_read.location = AAZStrType() public_ip_address_read.name = AAZStrType( flags={"read_only": True}, ) public_ip_address_read.properties = AAZObjectType( flags={"client_flatten": True}, ) public_ip_address_read.sku = AAZObjectType() public_ip_address_read.tags = AAZDictType() public_ip_address_read.type = AAZStrType( flags={"read_only": True}, ) public_ip_address_read.zones = AAZListType() properties = _schema_public_ip_address_read.properties properties.ddos_settings = AAZObjectType( serialized_name="ddosSettings", ) properties.delete_option = AAZStrType( serialized_name="deleteOption", ) properties.dns_settings = AAZObjectType( serialized_name="dnsSettings", ) properties.idle_timeout_in_minutes = AAZIntType( serialized_name="idleTimeoutInMinutes", ) properties.ip_address = AAZStrType( serialized_name="ipAddress", ) properties.ip_configuration = AAZObjectType( serialized_name="ipConfiguration", ) cls._build_schema_ip_configuration_read(properties.ip_configuration) properties.ip_tags = AAZListType( serialized_name="ipTags", ) properties.linked_public_ip_address = AAZObjectType( serialized_name="linkedPublicIPAddress", ) cls._build_schema_public_ip_address_read(properties.linked_public_ip_address) properties.migration_phase = AAZStrType( serialized_name="migrationPhase", ) properties.nat_gateway = AAZObjectType( serialized_name="natGateway", ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.public_ip_address_version = AAZStrType( serialized_name="publicIPAddressVersion", ) properties.public_ip_allocation_method = AAZStrType( serialized_name="publicIPAllocationMethod", ) properties.public_ip_prefix = AAZObjectType( serialized_name="publicIPPrefix", ) cls._build_schema_sub_resource_read(properties.public_ip_prefix) properties.resource_guid = AAZStrType( serialized_name="resourceGuid", flags={"read_only": True}, ) properties.service_public_ip_address = AAZObjectType( serialized_name="servicePublicIPAddress", ) cls._build_schema_public_ip_address_read(properties.service_public_ip_address) ddos_settings = _schema_public_ip_address_read.properties.ddos_settings ddos_settings.ddos_protection_plan = AAZObjectType( serialized_name="ddosProtectionPlan", ) cls._build_schema_sub_resource_read(ddos_settings.ddos_protection_plan) ddos_settings.protection_mode = AAZStrType( serialized_name="protectionMode", ) dns_settings = _schema_public_ip_address_read.properties.dns_settings dns_settings.domain_name_label = AAZStrType( serialized_name="domainNameLabel", ) dns_settings.fqdn = AAZStrType() dns_settings.reverse_fqdn = AAZStrType( serialized_name="reverseFqdn", ) ip_tags = _schema_public_ip_address_read.properties.ip_tags ip_tags.Element = AAZObjectType() _element = _schema_public_ip_address_read.properties.ip_tags.Element _element.ip_tag_type = AAZStrType( serialized_name="ipTagType", ) _element.tag = AAZStrType() nat_gateway = _schema_public_ip_address_read.properties.nat_gateway nat_gateway.etag = AAZStrType( flags={"read_only": True}, ) nat_gateway.id = AAZStrType() nat_gateway.location = AAZStrType() nat_gateway.name = AAZStrType( flags={"read_only": True}, ) nat_gateway.properties = AAZObjectType( flags={"client_flatten": True}, ) nat_gateway.sku = AAZObjectType() nat_gateway.tags = AAZDictType() nat_gateway.type = AAZStrType( flags={"read_only": True}, ) nat_gateway.zones = AAZListType() properties = _schema_public_ip_address_read.properties.nat_gateway.properties properties.idle_timeout_in_minutes = AAZIntType( serialized_name="idleTimeoutInMinutes", ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.public_ip_addresses = AAZListType( serialized_name="publicIpAddresses", ) properties.public_ip_prefixes = AAZListType( serialized_name="publicIpPrefixes", ) properties.resource_guid = AAZStrType( serialized_name="resourceGuid", flags={"read_only": True}, ) properties.subnets = AAZListType( flags={"read_only": True}, ) public_ip_addresses = _schema_public_ip_address_read.properties.nat_gateway.properties.public_ip_addresses public_ip_addresses.Element = AAZObjectType() cls._build_schema_sub_resource_read(public_ip_addresses.Element) public_ip_prefixes = _schema_public_ip_address_read.properties.nat_gateway.properties.public_ip_prefixes public_ip_prefixes.Element = AAZObjectType() cls._build_schema_sub_resource_read(public_ip_prefixes.Element) subnets = _schema_public_ip_address_read.properties.nat_gateway.properties.subnets subnets.Element = AAZObjectType() cls._build_schema_sub_resource_read(subnets.Element) sku = _schema_public_ip_address_read.properties.nat_gateway.sku sku.name = AAZStrType() tags = _schema_public_ip_address_read.properties.nat_gateway.tags tags.Element = AAZStrType() zones = _schema_public_ip_address_read.properties.nat_gateway.zones zones.Element = AAZStrType() sku = _schema_public_ip_address_read.sku sku.name = AAZStrType() sku.tier = AAZStrType() tags = _schema_public_ip_address_read.tags tags.Element = AAZStrType() zones = _schema_public_ip_address_read.zones zones.Element = AAZStrType() _schema.etag = cls._schema_public_ip_address_read.etag _schema.extended_location = cls._schema_public_ip_address_read.extended_location _schema.id = cls._schema_public_ip_address_read.id _schema.location = cls._schema_public_ip_address_read.location _schema.name = cls._schema_public_ip_address_read.name _schema.properties = cls._schema_public_ip_address_read.properties _schema.sku = cls._schema_public_ip_address_read.sku _schema.tags = cls._schema_public_ip_address_read.tags _schema.type = cls._schema_public_ip_address_read.type _schema.zones = cls._schema_public_ip_address_read.zones _schema_security_rule_read = None @classmethod def _build_schema_security_rule_read(cls, _schema): if cls._schema_security_rule_read is not None: _schema.etag = cls._schema_security_rule_read.etag _schema.id = cls._schema_security_rule_read.id _schema.name = cls._schema_security_rule_read.name _schema.properties = cls._schema_security_rule_read.properties _schema.type = cls._schema_security_rule_read.type return cls._schema_security_rule_read = _schema_security_rule_read = AAZObjectType() security_rule_read = _schema_security_rule_read security_rule_read.etag = AAZStrType( flags={"read_only": True}, ) security_rule_read.id = AAZStrType() security_rule_read.name = AAZStrType() security_rule_read.properties = AAZObjectType( flags={"client_flatten": True}, ) security_rule_read.type = AAZStrType() properties = _schema_security_rule_read.properties properties.access = AAZStrType( flags={"required": True}, ) properties.description = AAZStrType() properties.destination_address_prefix = AAZStrType( serialized_name="destinationAddressPrefix", ) properties.destination_address_prefixes = AAZListType( serialized_name="destinationAddressPrefixes", ) properties.destination_application_security_groups = AAZListType( serialized_name="destinationApplicationSecurityGroups", ) properties.destination_port_range = AAZStrType( serialized_name="destinationPortRange", ) properties.destination_port_ranges = AAZListType( serialized_name="destinationPortRanges", ) properties.direction = AAZStrType( flags={"required": True}, ) properties.priority = AAZIntType() properties.protocol = AAZStrType( flags={"required": True}, ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.source_address_prefix = AAZStrType( serialized_name="sourceAddressPrefix", ) properties.source_address_prefixes = AAZListType( serialized_name="sourceAddressPrefixes", ) properties.source_application_security_groups = AAZListType( serialized_name="sourceApplicationSecurityGroups", ) properties.source_port_range = AAZStrType( serialized_name="sourcePortRange", ) properties.source_port_ranges = AAZListType( serialized_name="sourcePortRanges", ) destination_address_prefixes = _schema_security_rule_read.properties.destination_address_prefixes destination_address_prefixes.Element = AAZStrType() destination_application_security_groups = _schema_security_rule_read.properties.destination_application_security_groups destination_application_security_groups.Element = AAZObjectType() cls._build_schema_application_security_group_read(destination_application_security_groups.Element) destination_port_ranges = _schema_security_rule_read.properties.destination_port_ranges destination_port_ranges.Element = AAZStrType() source_address_prefixes = _schema_security_rule_read.properties.source_address_prefixes source_address_prefixes.Element = AAZStrType() source_application_security_groups = _schema_security_rule_read.properties.source_application_security_groups source_application_security_groups.Element = AAZObjectType() cls._build_schema_application_security_group_read(source_application_security_groups.Element) source_port_ranges = _schema_security_rule_read.properties.source_port_ranges source_port_ranges.Element = AAZStrType() _schema.etag = cls._schema_security_rule_read.etag _schema.id = cls._schema_security_rule_read.id _schema.name = cls._schema_security_rule_read.name _schema.properties = cls._schema_security_rule_read.properties _schema.type = cls._schema_security_rule_read.type _schema_sub_resource_read = None @classmethod def _build_schema_sub_resource_read(cls, _schema): if cls._schema_sub_resource_read is not None: _schema.id = cls._schema_sub_resource_read.id return cls._schema_sub_resource_read = _schema_sub_resource_read = AAZObjectType() sub_resource_read = _schema_sub_resource_read sub_resource_read.id = AAZStrType() _schema.id = cls._schema_sub_resource_read.id _schema_subnet_read = None @classmethod def _build_schema_subnet_read(cls, _schema): if cls._schema_subnet_read is not None: _schema.etag = cls._schema_subnet_read.etag _schema.id = cls._schema_subnet_read.id _schema.name = cls._schema_subnet_read.name _schema.properties = cls._schema_subnet_read.properties _schema.type = cls._schema_subnet_read.type return cls._schema_subnet_read = _schema_subnet_read = AAZObjectType() subnet_read = _schema_subnet_read subnet_read.etag = AAZStrType( flags={"read_only": True}, ) subnet_read.id = AAZStrType() subnet_read.name = AAZStrType() subnet_read.properties = AAZObjectType( flags={"client_flatten": True}, ) subnet_read.type = AAZStrType() properties = _schema_subnet_read.properties properties.address_prefix = AAZStrType( serialized_name="addressPrefix", ) properties.address_prefixes = AAZListType( serialized_name="addressPrefixes", ) properties.application_gateway_ip_configurations = AAZListType( serialized_name="applicationGatewayIpConfigurations", ) properties.delegations = AAZListType() properties.ip_allocations = AAZListType( serialized_name="ipAllocations", ) properties.ip_configuration_profiles = AAZListType( serialized_name="ipConfigurationProfiles", flags={"read_only": True}, ) properties.ip_configurations = AAZListType( serialized_name="ipConfigurations", flags={"read_only": True}, ) properties.nat_gateway = AAZObjectType( serialized_name="natGateway", ) cls._build_schema_sub_resource_read(properties.nat_gateway) properties.network_security_group = AAZObjectType( serialized_name="networkSecurityGroup", ) cls._build_schema_network_security_group_read(properties.network_security_group) properties.private_endpoint_network_policies = AAZStrType( serialized_name="privateEndpointNetworkPolicies", ) properties.private_endpoints = AAZListType( serialized_name="privateEndpoints", flags={"read_only": True}, ) properties.private_link_service_network_policies = AAZStrType( serialized_name="privateLinkServiceNetworkPolicies", ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.purpose = AAZStrType( flags={"read_only": True}, ) properties.resource_navigation_links = AAZListType( serialized_name="resourceNavigationLinks", flags={"read_only": True}, ) properties.route_table = AAZObjectType( serialized_name="routeTable", ) properties.service_association_links = AAZListType( serialized_name="serviceAssociationLinks", flags={"read_only": True}, ) properties.service_endpoint_policies = AAZListType( serialized_name="serviceEndpointPolicies", ) properties.service_endpoints = AAZListType( serialized_name="serviceEndpoints", ) address_prefixes = _schema_subnet_read.properties.address_prefixes address_prefixes.Element = AAZStrType() application_gateway_ip_configurations = _schema_subnet_read.properties.application_gateway_ip_configurations application_gateway_ip_configurations.Element = AAZObjectType() _element = _schema_subnet_read.properties.application_gateway_ip_configurations.Element _element.etag = AAZStrType( flags={"read_only": True}, ) _element.id = AAZStrType() _element.name = AAZStrType() _element.properties = AAZObjectType( flags={"client_flatten": True}, ) _element.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_subnet_read.properties.application_gateway_ip_configurations.Element.properties properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.subnet = AAZObjectType() cls._build_schema_sub_resource_read(properties.subnet) delegations = _schema_subnet_read.properties.delegations delegations.Element = AAZObjectType() _element = _schema_subnet_read.properties.delegations.Element _element.etag = AAZStrType( flags={"read_only": True}, ) _element.id = AAZStrType() _element.name = AAZStrType() _element.properties = AAZObjectType( flags={"client_flatten": True}, ) _element.type = AAZStrType() properties = _schema_subnet_read.properties.delegations.Element.properties properties.actions = AAZListType( flags={"read_only": True}, ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.service_name = AAZStrType( serialized_name="serviceName", ) actions = _schema_subnet_read.properties.delegations.Element.properties.actions actions.Element = AAZStrType() ip_allocations = _schema_subnet_read.properties.ip_allocations ip_allocations.Element = AAZObjectType() cls._build_schema_sub_resource_read(ip_allocations.Element) ip_configuration_profiles = _schema_subnet_read.properties.ip_configuration_profiles ip_configuration_profiles.Element = AAZObjectType() _element = _schema_subnet_read.properties.ip_configuration_profiles.Element _element.etag = AAZStrType( flags={"read_only": True}, ) _element.id = AAZStrType() _element.name = AAZStrType() _element.properties = AAZObjectType( flags={"client_flatten": True}, ) _element.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_subnet_read.properties.ip_configuration_profiles.Element.properties properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.subnet = AAZObjectType() cls._build_schema_subnet_read(properties.subnet) ip_configurations = _schema_subnet_read.properties.ip_configurations ip_configurations.Element = AAZObjectType() cls._build_schema_ip_configuration_read(ip_configurations.Element) private_endpoints = _schema_subnet_read.properties.private_endpoints private_endpoints.Element = AAZObjectType() cls._build_schema_private_endpoint_read(private_endpoints.Element) resource_navigation_links = _schema_subnet_read.properties.resource_navigation_links resource_navigation_links.Element = AAZObjectType() _element = _schema_subnet_read.properties.resource_navigation_links.Element _element.etag = AAZStrType( flags={"read_only": True}, ) _element.id = AAZStrType( flags={"read_only": True}, ) _element.name = AAZStrType() _element.properties = AAZObjectType( flags={"client_flatten": True}, ) _element.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_subnet_read.properties.resource_navigation_links.Element.properties properties.link = AAZStrType() properties.linked_resource_type = AAZStrType( serialized_name="linkedResourceType", ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) route_table = _schema_subnet_read.properties.route_table route_table.etag = AAZStrType( flags={"read_only": True}, ) route_table.id = AAZStrType() route_table.location = AAZStrType() route_table.name = AAZStrType( flags={"read_only": True}, ) route_table.properties = AAZObjectType( flags={"client_flatten": True}, ) route_table.tags = AAZDictType() route_table.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_subnet_read.properties.route_table.properties properties.disable_bgp_route_propagation = AAZBoolType( serialized_name="disableBgpRoutePropagation", ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.resource_guid = AAZStrType( serialized_name="resourceGuid", flags={"read_only": True}, ) properties.routes = AAZListType() properties.subnets = AAZListType( flags={"read_only": True}, ) routes = _schema_subnet_read.properties.route_table.properties.routes routes.Element = AAZObjectType() _element = _schema_subnet_read.properties.route_table.properties.routes.Element _element.etag = AAZStrType( flags={"read_only": True}, ) _element.id = AAZStrType() _element.name = AAZStrType() _element.properties = AAZObjectType( flags={"client_flatten": True}, ) _element.type = AAZStrType() properties = _schema_subnet_read.properties.route_table.properties.routes.Element.properties properties.address_prefix = AAZStrType( serialized_name="addressPrefix", ) properties.has_bgp_override = AAZBoolType( serialized_name="hasBgpOverride", ) properties.next_hop_ip_address = AAZStrType( serialized_name="nextHopIpAddress", ) properties.next_hop_type = AAZStrType( serialized_name="nextHopType", flags={"required": True}, ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) subnets = _schema_subnet_read.properties.route_table.properties.subnets subnets.Element = AAZObjectType() cls._build_schema_subnet_read(subnets.Element) tags = _schema_subnet_read.properties.route_table.tags tags.Element = AAZStrType() service_association_links = _schema_subnet_read.properties.service_association_links service_association_links.Element = AAZObjectType() _element = _schema_subnet_read.properties.service_association_links.Element _element.etag = AAZStrType( flags={"read_only": True}, ) _element.id = AAZStrType() _element.name = AAZStrType() _element.properties = AAZObjectType( flags={"client_flatten": True}, ) _element.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_subnet_read.properties.service_association_links.Element.properties properties.allow_delete = AAZBoolType( serialized_name="allowDelete", ) properties.link = AAZStrType() properties.linked_resource_type = AAZStrType( serialized_name="linkedResourceType", ) properties.locations = AAZListType() properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) locations = _schema_subnet_read.properties.service_association_links.Element.properties.locations locations.Element = AAZStrType() service_endpoint_policies = _schema_subnet_read.properties.service_endpoint_policies service_endpoint_policies.Element = AAZObjectType() _element = _schema_subnet_read.properties.service_endpoint_policies.Element _element.etag = AAZStrType( flags={"read_only": True}, ) _element.id = AAZStrType() _element.kind = AAZStrType( flags={"read_only": True}, ) _element.location = AAZStrType() _element.name = AAZStrType( flags={"read_only": True}, ) _element.properties = AAZObjectType( flags={"client_flatten": True}, ) _element.tags = AAZDictType() _element.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_subnet_read.properties.service_endpoint_policies.Element.properties properties.contextual_service_endpoint_policies = AAZListType( serialized_name="contextualServiceEndpointPolicies", ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.resource_guid = AAZStrType( serialized_name="resourceGuid", flags={"read_only": True}, ) properties.service_alias = AAZStrType( serialized_name="serviceAlias", ) properties.service_endpoint_policy_definitions = AAZListType( serialized_name="serviceEndpointPolicyDefinitions", ) properties.subnets = AAZListType( flags={"read_only": True}, ) contextual_service_endpoint_policies = _schema_subnet_read.properties.service_endpoint_policies.Element.properties.contextual_service_endpoint_policies contextual_service_endpoint_policies.Element = AAZStrType() service_endpoint_policy_definitions = _schema_subnet_read.properties.service_endpoint_policies.Element.properties.service_endpoint_policy_definitions service_endpoint_policy_definitions.Element = AAZObjectType() _element = _schema_subnet_read.properties.service_endpoint_policies.Element.properties.service_endpoint_policy_definitions.Element _element.etag = AAZStrType( flags={"read_only": True}, ) _element.id = AAZStrType() _element.name = AAZStrType() _element.properties = AAZObjectType( flags={"client_flatten": True}, ) _element.type = AAZStrType() properties = _schema_subnet_read.properties.service_endpoint_policies.Element.properties.service_endpoint_policy_definitions.Element.properties properties.description = AAZStrType() properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.service = AAZStrType() properties.service_resources = AAZListType( serialized_name="serviceResources", ) service_resources = _schema_subnet_read.properties.service_endpoint_policies.Element.properties.service_endpoint_policy_definitions.Element.properties.service_resources service_resources.Element = AAZStrType() subnets = _schema_subnet_read.properties.service_endpoint_policies.Element.properties.subnets subnets.Element = AAZObjectType() cls._build_schema_subnet_read(subnets.Element) tags = _schema_subnet_read.properties.service_endpoint_policies.Element.tags tags.Element = AAZStrType() service_endpoints = _schema_subnet_read.properties.service_endpoints service_endpoints.Element = AAZObjectType() _element = _schema_subnet_read.properties.service_endpoints.Element _element.locations = AAZListType() _element.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) _element.service = AAZStrType() locations = _schema_subnet_read.properties.service_endpoints.Element.locations locations.Element = AAZStrType() _schema.etag = cls._schema_subnet_read.etag _schema.id = cls._schema_subnet_read.id _schema.name = cls._schema_subnet_read.name _schema.properties = cls._schema_subnet_read.properties _schema.type = cls._schema_subnet_read.type _schema_virtual_network_tap_read = None @classmethod def _build_schema_virtual_network_tap_read(cls, _schema): if cls._schema_virtual_network_tap_read is not None: _schema.etag = cls._schema_virtual_network_tap_read.etag _schema.id = cls._schema_virtual_network_tap_read.id _schema.location = cls._schema_virtual_network_tap_read.location _schema.name = cls._schema_virtual_network_tap_read.name _schema.properties = cls._schema_virtual_network_tap_read.properties _schema.tags = cls._schema_virtual_network_tap_read.tags _schema.type = cls._schema_virtual_network_tap_read.type return cls._schema_virtual_network_tap_read = _schema_virtual_network_tap_read = AAZObjectType() virtual_network_tap_read = _schema_virtual_network_tap_read virtual_network_tap_read.etag = AAZStrType( flags={"read_only": True}, ) virtual_network_tap_read.id = AAZStrType() virtual_network_tap_read.location = AAZStrType() virtual_network_tap_read.name = AAZStrType( flags={"read_only": True}, ) virtual_network_tap_read.properties = AAZObjectType( flags={"client_flatten": True}, ) virtual_network_tap_read.tags = AAZDictType() virtual_network_tap_read.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_virtual_network_tap_read.properties properties.destination_load_balancer_front_end_ip_configuration = AAZObjectType( serialized_name="destinationLoadBalancerFrontEndIPConfiguration", ) cls._build_schema_frontend_ip_configuration_read(properties.destination_load_balancer_front_end_ip_configuration) properties.destination_network_interface_ip_configuration = AAZObjectType( serialized_name="destinationNetworkInterfaceIPConfiguration", ) cls._build_schema_network_interface_ip_configuration_read(properties.destination_network_interface_ip_configuration) properties.destination_port = AAZIntType( serialized_name="destinationPort", ) properties.network_interface_tap_configurations = AAZListType( serialized_name="networkInterfaceTapConfigurations", flags={"read_only": True}, ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.resource_guid = AAZStrType( serialized_name="resourceGuid", flags={"read_only": True}, ) network_interface_tap_configurations = _schema_virtual_network_tap_read.properties.network_interface_tap_configurations network_interface_tap_configurations.Element = AAZObjectType() cls._build_schema_network_interface_tap_configuration_read(network_interface_tap_configurations.Element) tags = _schema_virtual_network_tap_read.tags tags.Element = AAZStrType() _schema.etag = cls._schema_virtual_network_tap_read.etag _schema.id = cls._schema_virtual_network_tap_read.id _schema.location = cls._schema_virtual_network_tap_read.location _schema.name = cls._schema_virtual_network_tap_read.name _schema.properties = cls._schema_virtual_network_tap_read.properties _schema.tags = cls._schema_virtual_network_tap_read.tags _schema.type = cls._schema_virtual_network_tap_read.type __all__ = ["Create"]
79daec963e10fb204d7c5820ecf5dfa742767c35
208bc8b87cb20fc6e57c8c8846cbe947b2eec1f3
/pyocd/core/memory_interface.py
0bd655b77628999f3cd190bde3c656e1c7f96830
[ "Apache-2.0", "CC-BY-4.0" ]
permissive
canerbulduk/pyOCD
28c545f25ef9b2949a1cd49c00faeeda986a26fe
a61e8b8dc2050309510d9fe7ca63680aafe06749
refs/heads/main
2023-08-24T21:10:52.427697
2021-11-09T15:13:48
2021-11-09T15:13:48
426,275,463
0
0
Apache-2.0
2021-11-09T15:08:22
2021-11-09T15:08:21
null
UTF-8
Python
false
false
4,837
py
# pyOCD debugger # Copyright (c) 2018-2020 Arm Limited # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..utility import conversion class MemoryInterface(object): """! @brief Interface for memory access.""" def write_memory(self, addr, data, transfer_size=32): """! @brief Write a single memory location. By default the transfer size is a word.""" raise NotImplementedError() def read_memory(self, addr, transfer_size=32, now=True): """! @brief Read a memory location. By default, a word will be read.""" raise NotImplementedError() def write_memory_block32(self, addr, data): """! @brief Write an aligned block of 32-bit words.""" raise NotImplementedError() def read_memory_block32(self, addr, size): """! @brief Read an aligned block of 32-bit words.""" raise NotImplementedError() def write64(self, addr, value): """! @brief Shorthand to write a 64-bit word.""" self.write_memory(addr, value, 64) def write32(self, addr, value): """! @brief Shorthand to write a 32-bit word.""" self.write_memory(addr, value, 32) def write16(self, addr, value): """! @brief Shorthand to write a 16-bit halfword.""" self.write_memory(addr, value, 16) def write8(self, addr, value): """! @brief Shorthand to write a byte.""" self.write_memory(addr, value, 8) def read64(self, addr, now=True): """! @brief Shorthand to read a 64-bit word.""" return self.read_memory(addr, 64, now) def read32(self, addr, now=True): """! @brief Shorthand to read a 32-bit word.""" return self.read_memory(addr, 32, now) def read16(self, addr, now=True): """! @brief Shorthand to read a 16-bit halfword.""" return self.read_memory(addr, 16, now) def read8(self, addr, now=True): """! @brief Shorthand to read a byte.""" return self.read_memory(addr, 8, now) def read_memory_block8(self, addr, size): """! @brief Read a block of unaligned bytes in memory. @return an array of byte values """ res = [] # try to read 8bits data if (size > 0) and (addr & 0x01): mem = self.read8(addr) res.append(mem) size -= 1 addr += 1 # try to read 16bits data if (size > 1) and (addr & 0x02): mem = self.read16(addr) res.append(mem & 0xff) res.append((mem >> 8) & 0xff) size -= 2 addr += 2 # try to read aligned block of 32bits if (size >= 4): mem = self.read_memory_block32(addr, size // 4) res += conversion.u32le_list_to_byte_list(mem) size -= 4*len(mem) addr += 4*len(mem) if (size > 1): mem = self.read16(addr) res.append(mem & 0xff) res.append((mem >> 8) & 0xff) size -= 2 addr += 2 if (size > 0): mem = self.read8(addr) res.append(mem) return res def write_memory_block8(self, addr, data): """! @brief Write a block of unaligned bytes in memory.""" size = len(data) idx = 0 #try to write 8 bits data if (size > 0) and (addr & 0x01): self.write8(addr, data[idx]) size -= 1 addr += 1 idx += 1 # try to write 16 bits data if (size > 1) and (addr & 0x02): self.write16(addr, data[idx] | (data[idx+1] << 8)) size -= 2 addr += 2 idx += 2 # write aligned block of 32 bits if (size >= 4): data32 = conversion.byte_list_to_u32le_list(data[idx:idx + (size & ~0x03)]) self.write_memory_block32(addr, data32) addr += size & ~0x03 idx += size & ~0x03 size -= size & ~0x03 # try to write 16 bits data if (size > 1): self.write16(addr, data[idx] | (data[idx+1] << 8)) size -= 2 addr += 2 idx += 2 #try to write 8 bits data if (size > 0): self.write8(addr, data[idx])
75738732f1f444b4a8f55db79e8378fbee80e1dc
46577285b990bb2711cc718b99a24f78c53a7da7
/파이썬 알고리즘_4기/자물쇠와 열쇠 사본/solution.py
2f4518155d216a95b0238d57febf454450496e5c
[]
no_license
suwonraison900206/TIL
890f02ff768c3a7d6ed647a27ba8da96b0cc06b4
2153623238bcc6965ec6983df9e7b207cc5aa361
refs/heads/master
2022-06-08T09:51:12.289608
2022-05-18T12:04:56
2022-05-18T12:04:56
235,004,266
2
0
null
null
null
null
UTF-8
Python
false
false
1,396
py
def solution(key, lock): answer = True def turn_key(key): key_lst = [] for i in range(len(key)): a = [] for j in range(len(key)-1, -1, -1): a.append(key[j][i]) key_lst.append(a) return key_lst lst = [[0] * (len(lock) * 3) for __ in range(len(lock) * 3)] for i in range(len(lock), (len(lock) * 2)): for j in range(len(lock), (len(lock) * 2)): lst[i][j] = lock[i-len(lock)][j - len(lock)] L = len(lst) K = len(key) for cnt in range(4): key = turn_key(key) for i in range(0, (L-K+1)): for j in range(0, (L-K+1)): flag = True for q in range(K): for w in range(K): lst[i+q][j+w] = lst[i+q][j+w] + key[q][w] for x in range(len(lock), (len(lock) * 2)): for y in range(len(lock), (len(lock) * 2)): if lst[x][y] == 0 or lst[x][y] == 2: flag = False if flag == True: return True for q in range(K): for w in range(K): lst[i+q][j+w] = lst[i+q][j+w] - key[q][w] return False key = [[0, 0, 0], [1, 0, 0], [0, 1, 1]] lock = [[1, 1, 1], [1, 1, 0], [1, 0, 1]] print(solution(key,lock))
bfd99852e69fe7ffaa50887a79dd2443937aae29
26f6313772161851b3b28b32a4f8d255499b3974
/Books/CrackingtheCodingInterview/1708_CircusTowerLCCI.py
e0a049aefcf9028bc196ec5e00e061eeb6f66683
[]
no_license
here0009/LeetCode
693e634a3096d929e5c842c5c5b989fa388e0fcd
f96a2273c6831a8035e1adacfa452f73c599ae16
refs/heads/master
2023-06-30T19:07:23.645941
2021-07-31T03:38:51
2021-07-31T03:38:51
266,287,834
1
0
null
null
null
null
UTF-8
Python
false
false
2,429
py
""" 有个马戏团正在设计叠罗汉的表演节目,一个人要站在另一人的肩膀上。出于实际和美观的考虑,在上面的人要比下面的人矮一点且轻一点。已知马戏团每个人的身高和体重,请编写代码计算叠罗汉最多能叠几个人。 示例: 输入:height = [65,70,56,75,60,68] weight = [100,150,90,190,95,110] 输出:6 解释:从上往下数,叠罗汉最多能叠 6 层:(56,90), (60,95), (65,100), (68,110), (70,150), (75,190) 提示: height.length == weight.length <= 10000 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/circus-tower-lcci 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。 """ from typing import List from functools import lru_cache class Solution: def bestSeqAtIndex(self, height: List[int], weight: List[int]) -> int: """ TLE """ @lru_cache(None) def calc(idx, h, w): if idx == length: return 0 res = calc(idx + 1, h, w) for j in range(idx, length): h2, w2 = sorted_h_w[j] if h2 > h and w2 > w: res = max(res, 1 + calc(j, h2, w2)) return res length = len(height) sorted_h_w = sorted(zip(height, weight)) # print(sorted_h_w) return calc(0, 0, 0) from typing import List from bisect import bisect_left, bisect_right class Solution: def bestSeqAtIndex(self, height: List[int], weight: List[int]) -> int: length = len(height) sorted_h_w = sorted(zip(height, weight), key=lambda x: (x[0], -x[1])) stack = [] # print(sorted_h_w) for i in range(length): _, w = sorted_h_w[i] idx = bisect_left(stack, w) # bisect_left will replace the idx, bisect_right will append num to the end if idx == len(stack): if not stack or w > stack[-1]: stack.append(w) else: stack[idx] = w # print(stack) return len(stack) S = Solution() height = [65,70,56,75,60,68] weight = [100,150,90,190,95,110] print(S.bestSeqAtIndex(height, weight)) height =[1,2,3,4] weight =[4,3,2,1] print(S.bestSeqAtIndex(height, weight)) nums = [1,3,3,3,4,5,7,10] for k in range(10): print(k, bisect_left(nums, k), bisect_right(nums, k))
89673a5966ae7356ef9eff43e2a87a6420672288
ded10c2f2f5f91c44ec950237a59225e8486abd8
/.history/3/ising2d_microstates_run_20200506001321.py
7e09e413f76c69e16147063ce74e71d6947cc7bc
[]
no_license
jearistiz/Statistical-Physics-Projects
276a86407b32ded4e06b32efb2fadbd8eff8daed
d9c5b16a50856e148dc8604d92b6de3ea21fc552
refs/heads/master
2022-11-05T03:41:23.623050
2020-06-28T06:36:05
2020-06-28T06:36:05
254,909,897
1
0
null
null
null
null
UTF-8
Python
false
false
1,809
py
from ising2d_microstates import * ################################################################################################ # PANEL DE CONTROL ################################################################################################ # Decide si corre algoritmo matrix squaring con aproximación de trotter run_microstates_algorithm = True # Decide si corre algoritmo para cálculo de energía interna run_avg_energy = True # Decide si corre algoritmo para optimización de dx y beta_ini run_optimization = False ################################################################################################ # PARÁMETROS GENERALES PARA LAS FIGURAS ################################################################################################ # Usar latex en texto de figuras y agrandar tamaño de fuente plt.rc('text', usetex=True) plt.rcParams.update({'font.size':15,'text.latex.unicode':True}) # Obtenemos path para guardar archivos en el mismo directorio donde se ubica el script script_dir = os.path.dirname(os.path.abspath(__file__)) # or just a list of the list of key value pairs # list_key_value = [ [k,v] for k, v in dict.items() ] if run_microstates_algorithm: L = 4 microstates = ising_microstates(L) print('All microstates, each in a single row:') print(pd.DataFrame(microstates),'\n') neighbours = ising_neighbours(L) energies = ising_energy(microstates, neighbours, save_data=True) ising_energy_plot(energies, L, save_plot=True) microstate_rand_index = 2 ** (L*L) - np.random.randint(1, 2 ** (L*L)) microstate_rand = microstates[microstate_rand_index,:] print('One random microstate as a 2D grid:') print(pd.DataFrame(microstate_rand.reshape((L,L))), '\n') ising_microstate_plot(microstate_rand, save_plot=True)
65ac4195a5a3a9edf018eb3a67a7ce8033813f0e
85a9ffeccb64f6159adbd164ff98edf4ac315e33
/pysnmp/Wellfleet-TI-RUI-MIB.py
4cb13fe3eac166af78ef58402f7f017088e83a71
[ "Apache-2.0" ]
permissive
agustinhenze/mibs.snmplabs.com
5d7d5d4da84424c5f5a1ed2752f5043ae00019fb
1fc5c07860542b89212f4c8ab807057d9a9206c7
refs/heads/master
2020-12-26T12:41:41.132395
2019-08-16T15:51:41
2019-08-16T15:53:57
237,512,469
0
0
Apache-2.0
2020-01-31T20:41:36
2020-01-31T20:41:35
null
UTF-8
Python
false
false
3,080
py
# # PySNMP MIB module Wellfleet-TI-RUI-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/Wellfleet-TI-RUI-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 21:35:28 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # ObjectIdentifier, OctetString, Integer = mibBuilder.importSymbols("ASN1", "ObjectIdentifier", "OctetString", "Integer") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") SingleValueConstraint, ConstraintsIntersection, ValueRangeConstraint, ValueSizeConstraint, ConstraintsUnion = mibBuilder.importSymbols("ASN1-REFINEMENT", "SingleValueConstraint", "ConstraintsIntersection", "ValueRangeConstraint", "ValueSizeConstraint", "ConstraintsUnion") ModuleCompliance, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "NotificationGroup") ObjectIdentity, ModuleIdentity, MibScalar, MibTable, MibTableRow, MibTableColumn, MibIdentifier, Counter32, Bits, Gauge32, Integer32, Unsigned32, Counter64, IpAddress, NotificationType, TimeTicks, iso = mibBuilder.importSymbols("SNMPv2-SMI", "ObjectIdentity", "ModuleIdentity", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "MibIdentifier", "Counter32", "Bits", "Gauge32", "Integer32", "Unsigned32", "Counter64", "IpAddress", "NotificationType", "TimeTicks", "iso") TextualConvention, DisplayString = mibBuilder.importSymbols("SNMPv2-TC", "TextualConvention", "DisplayString") wfServices, = mibBuilder.importSymbols("Wellfleet-COMMON-MIB", "wfServices") wfTiRui = MibIdentifier((1, 3, 6, 1, 4, 1, 18, 3, 3, 2, 2)) wfTiRuiState = MibScalar((1, 3, 6, 1, 4, 1, 18, 3, 3, 2, 2, 1), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("idle", 1), ("busy", 2))).clone('idle')).setMaxAccess("readonly") if mibBuilder.loadTexts: wfTiRuiState.setStatus('mandatory') wfTiRuiAction = MibScalar((1, 3, 6, 1, 4, 1, 18, 3, 3, 2, 2, 2), DisplayString()).setMaxAccess("readwrite") if mibBuilder.loadTexts: wfTiRuiAction.setStatus('mandatory') wfTiRuiResult = MibScalar((1, 3, 6, 1, 4, 1, 18, 3, 3, 2, 2, 3), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: wfTiRuiResult.setStatus('mandatory') wfTiRuiInReqs = MibScalar((1, 3, 6, 1, 4, 1, 18, 3, 3, 2, 2, 4), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: wfTiRuiInReqs.setStatus('mandatory') wfTiRuiOutResults = MibScalar((1, 3, 6, 1, 4, 1, 18, 3, 3, 2, 2, 5), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: wfTiRuiOutResults.setStatus('mandatory') wfTiRuiOutResultsErr = MibScalar((1, 3, 6, 1, 4, 1, 18, 3, 3, 2, 2, 6), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: wfTiRuiOutResultsErr.setStatus('mandatory') mibBuilder.exportSymbols("Wellfleet-TI-RUI-MIB", wfTiRuiInReqs=wfTiRuiInReqs, wfTiRuiResult=wfTiRuiResult, wfTiRuiState=wfTiRuiState, wfTiRuiOutResultsErr=wfTiRuiOutResultsErr, wfTiRui=wfTiRui, wfTiRuiOutResults=wfTiRuiOutResults, wfTiRuiAction=wfTiRuiAction)
103da40cbb391b6592cac3e559ff96bfbd0bcadf
dbe1f4110921a08cb13e22ea325d503bd5627195
/chuhuo_2.7_clickhouse/bluedon/bdwafd/newscantools/plugins/ChckDeadLinksScript.py
624b61e9bc42c1fa2dd55d579de07834790dac83
[]
no_license
Hehouhua/waf_branches
92dc1b1cbecba20f24ef6c7372dde7caa43f9158
ca76f3a1ed8150b423474c9e37aee37841a5ee35
refs/heads/main
2023-01-07T11:33:31.667688
2020-11-03T06:58:33
2020-11-03T06:58:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,386
py
#!/usr/bin/env python # -*- coding: utf-8 -*- from lib.common import * import httplib2 import urlparse import re def run_url(http,ob,item): try: result=[] url=item['url'] detail=u'' detail=detail.encode('utf8') parse=urlparse.urlparse(url) path=parse.path if path=="" or path=="/": return result if item['params'] == "": return result #end if if item['method'] == 'get': response,content=requestUrl(http,item['url']+"?"+item['params'],ob['task_id'],ob['domain_id']) if response['status']!='200': request=getRequest(item['url']+"?"+item['params'],'GET') response=getResponse(response,"") result.append(getRecord(ob,item['url']+"?"+item['params'],ob['level'],detail,request,response)) except Exception,e: logging.getLogger().error("File:LocalFileIncludeScript.py, run_url function :" + str(e) + ",task id:" + ob['task_id'] + ",domain id:" + ob['domain_id']) write_scan_log(ob['task_id'],ob['domain_id'],"File:LocalFileIncludeScript.py, run_url function :" + str(e)+", url:"+item['url']+"?"+item['params']) #end try return result
46cff41cf2f4186df4da0d2a9bc67633ba43561b
2436422e8d584f1dd9fc27a403e02a5571b033b2
/server/rest/views.py
2635af1999df24bf3511af493d4d3a08bd53aa07
[]
no_license
yhs3434/Study-Room
20657a7d068edbc24cb27ddef49c6e18890a0fcb
8b6804f02ba47517aa8e725f5531b7e0e5ac7315
refs/heads/master
2020-04-04T17:19:28.954492
2020-02-05T17:09:43
2020-02-05T17:09:43
156,116,178
2
0
null
null
null
null
UTF-8
Python
false
false
10,511
py
from django.shortcuts import render from django.http import HttpResponse, JsonResponse from rest_framework.decorators import api_view from rest_framework.renderers import JSONRenderer from rest_framework.parsers import JSONParser from .models import User, Group, Subject, Tendency from .models import User_Group, User_Subject, User_Tendency from .models import Wait from .serializers import UserSerializer, UserSubjectSerializer, UserTendencySerializer from. serializers import WaitSerializer, GroupSerializer, UserGroupSerializer from rest_framework import status from rest_framework.response import Response from rest_framework.views import APIView from django.http import Http404 # Create your views here. def index(request): return render(request, 'rest/index.html', {}) @api_view(['GET', 'POST']) def user_list(request): if request.method == 'GET': users = User.objects.all() serializer = UserSerializer(users, many=True) return JsonResponse(serializer.data, safe=False) elif request.method == 'POST': data = JSONParser().parse(request) serializer = UserSerializer(data = data) if serializer.is_valid(): serializer.save() return JsonResponse(serializer.data, status=201) return JsonResponse(serializer.errors, status=400) @api_view(['GET', 'PUT', 'DELETE']) def user_detail(request, pk): try: user = User.objects.get(pk=pk) except(User.DoesNotExist): return (HttpResponse(status=404)) if (request.method == 'GET'): serializer = UserSerializer(user) return (JsonResponse(serializer.data)) elif (request.method == 'PUT'): data = JSONParser().parse(request) serializer = UserSerializer(user, data=data) if serializer.is_valid(): serializer.save() return (JsonResponse(serializer.data)) return (JsonResponse(serializer.errors, status=404)) elif request.method == 'DELETE': user.delete() return (HttpResponse(status=204)) @api_view(['POST']) def user_login(request): if (request.method == 'POST'): data = JSONParser().parse(request) try: user = User.objects.filter(auth_id = data['auth_id']) if (user[0].auth_pw == data['auth_pw']): serializer = UserSerializer(user[0]) return (Response(data=serializer.data, status=status.HTTP_200_OK)) else: return (Response(status=status.HTTP_404_NOT_FOUND)) except(User.DoesNotExist): return (Response(status=status.HTTP_404_NOT_FOUND)) else: return (Response(status = status.HTTP_400_BAD_REQUEST)) @api_view(['GET', 'POST']) def choice_subject(request): if (request.method == 'POST'): data = JSONParser().parse(request) user_id = data['id'] list = [] for key in data: if(key == 'id'): continue try: subject_id = (Subject.objects.get(name=key)).id if(data[key] == 1): insert = User_Subject.objects.create(user_id=User.objects.get(pk=user_id), subject_id=Subject.objects.get(pk=subject_id)) list.append(insert) else: queryset = User_Subject.objects.all() queryset = queryset.filter(user_id=User.objects.get(pk=user_id), subject_id=Subject.objects.get(pk=subject_id)) queryset.delete() except: continue return Response(status=status.HTTP_200_OK) elif (request.method == 'GET'): user_subject = User_Subject.objects.all() serializer = UserSubjectSerializer(user_subject, many=True) return Response(data=serializer.data, status=status.HTTP_200_OK) else: return Response(status=status.HTTP_404_NOT_FOUND) @api_view(['POST', 'GET']) def choice_tendency(request): if (request.method=='POST'): data = JSONParser().parse(request) user_id = data['id'] user = User.objects.get(pk=user_id) try: queryset = User_Tendency.objects.filter(user_id=user) queryset.delete() except: print('user(',user_id,') choose tendencies.') try: insert = User_Tendency.objects.create(user_id=user, rule=data['규칙'], learning=data['학습량'], \ numberPeople=data['인원'], friendship=data['친목'], environment=data['환경'], style=data['스타일']) except: return Response(status=status.HTTP_406_NOT_ACCEPTABLE) return Response(status=status.HTTP_200_OK) elif (request.method=='GET'): user_tendency = User_Tendency.objects.all() serializer = UserTendencySerializer(user_tendency, many=True) return Response(data=serializer.data, status=status.HTTP_200_OK) else: return Response(status=status.HTTP_404_NOT_FOUND) # 매칭 구현을 위한 뷰 (사용 할지 말지는 미지수) class FindGroup(APIView): def get(self, request): waiter = Wait.objects.all() serializer = WaitSerializer(waiter, many=True) return Response(serializer.data) def post(self, request): data = JSONParser().parse(request) try: user = User.objects.get(pk=data['id']) except User.DoesNotExist: return Http404 Wait.objects.filter(user=user).delete() Wait.objects.create(user=user) return Response(status=status.HTTP_201_CREATED) # 매칭 구현을 위한 뷰 (사용 할지 말지는 미지수) class FindGroupDetail(APIView): def get_object(self, pk): try: return Wait.objects.get(pk=pk) except Wait.DoesNotExist: return Http404 def get(self, request, pk, format=None): waiter = self.get_object(pk) serializer = WaitSerializer(waiter) return Response(serializer.data) def delete(self, request, pk, format=None): waiter = self.get_object(pk) waiter.delete() return Response(status=status.HTTP_204_NO_CONTENT) # 방 목록, 생성 클래스 class group_list(APIView): def get(self, request): groups = Group.objects.filter(public=True).order_by("-created_date") serializer = GroupSerializer(groups, many=True) return Response(serializer.data) def post(self, request): data = JSONParser().parse(request) serializer = GroupSerializer(data=data) if (serializer.is_valid()): serializer.save() return Response(data=serializer.data, status=status.HTTP_201_CREATED) else: return Response(status.HTTP_406_NOT_ACCEPTABLE) # 방 가입, 삭제 클래스 class group_detail(APIView): def get_object(self, pk): try: return Group.objects.get(pk=pk) except Group.DoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND) def get(self, request, pk): group = self.get_object(pk) serializer = GroupSerializer(group) return Response(data = serializer.data, status = status.HTTP_200_OK) def delete(self, request, pk): obj = self.get_object(pk) obj.delete() return Response(status=status.HTTP_204_NO_CONTENT) # 스터디 그룹 가입 함수. @api_view(['POST']) def join_group(request): if (request.method != 'POST'): return Response(status=status.HTTP_400_BAD_REQUEST) data = JSONParser().parse(request) user_id = data['user_id'] group_id = data['group_id'] try: user = User.objects.get(pk=user_id) group = Group.objects.get(pk=group_id) except: return Response(status=status.HTTP_404_NOT_FOUND) try: num_of_people = group.num_people max_of_people = group.max_num_people if(num_of_people<max_of_people): obj, created = User_Group.objects.update_or_create(user=user, group=group) if(created): group.num_people += 1 group.save() except: return Response(status=status.HTTP_500_INTERNAL_SERVER_ERROR) return Response(status=status.HTTP_201_CREATED) class UserGroupList(APIView): def get_object(self, user_pk, group_pk): try: print(user_pk, group_pk) user = User.objects.get(pk= user_pk) group = Group.objects.get(pk= group_pk) except User.DoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND) except Group.DoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND) return user, group def get(self, request, user_pk, group_pk): user, group = self.get_object(user_pk, group_pk) try: user_group = User_Group.objects.filter(user = user).get(group = group) return Response(data=200, status=status.HTTP_200_OK) except User_Group.DoesNotExist: return Response(data=404, status=status.HTTP_404_NOT_FOUND) def delete(self, request, user_pk, group_pk): user, group = self.get_object(user_pk, group_pk) try: user_group = User_Group.objects.filter(user = user).get(group = group) except User_Group.DoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND) try: group = user_group.group user_group.delete() group.num_people -= 1 group.save() return Response(status=status.HTTP_204_NO_CONTENT) except: return Response(status=status.HTTP_400_BAD_REQUEST) class UserGroupListUser(APIView): def get_object(self, pk): try: user = User.objects.get(pk = pk) except User.DoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND) return user def get(self, request, pk): user = self.get_object(pk) try: user_group = User_Group.objects.filter(user = user) list_id = [] for obj in user_group: list_id.append(obj.group.id) group = Group.objects.filter(pk__in = list_id).order_by("-created_date") serializer = GroupSerializer(group, many=True) return Response(data=serializer.data, status=status.HTTP_200_OK) except User_Group.DoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND)
5dbca4f77abbcf27decc3fc2b15a7295c0496a74
7fae23d734356d2016f13f231673ee9ea1b6efd5
/catkin_ws/devel/lib/python2.7/dist-packages/gazebo_msgs/srv/_GetLinkState.py
f4f9e09cc9915ae8a183933b57272e86be88a698
[]
no_license
Tidu09/Eyantra
57c4fd01a39305ff01758ed021643d894e61e60f
2bca1cdce1742e79f1550b832cda086dc22e946f
refs/heads/main
2023-01-12T07:57:54.356909
2020-11-22T05:41:40
2020-11-22T05:41:40
306,226,769
0
0
null
null
null
null
UTF-8
Python
false
false
108
py
/home/tidu/catkin_ws/devel/.private/gazebo_msgs/lib/python2.7/dist-packages/gazebo_msgs/srv/_GetLinkState.py
df6ed0a656f9ec810d286b827144bf78ca8db30a
2da6133f3cd5c5fc19355292d60253b8c0dbcd49
/.history/antz/views_20200404012439.py
3dfd28a5bafc973ee616d892836f17b28524ad88
[]
no_license
mirfarzam/python-advance-jadi-maktabkhooneh
b24f5c03ab88e3b12c166a439b925af92f50de49
d9bcecae73fd992f1290c6fd76761683bb512825
refs/heads/master
2021-05-25T21:33:37.782734
2020-04-07T22:39:28
2020-04-07T22:39:28
253,927,960
0
0
null
null
null
null
UTF-8
Python
false
false
74
py
from django.shortcuts import render def index(request): return
2561a47c4d7afb0c4bf31d06192529c574366797
2fa016eeb6d4d4cc61fb0d43aa9f0fd1ad4ef2e3
/python/函数/quadratic.py
236d535788afe5e6a4ac3ede0dd3b40f57f946f1
[]
no_license
juechen-zzz/learngit
521e0d2c13d97248f6f8b1f2096f718dc497351b
513d3e57f4e0fce72ca4ecd1f30be2d261ee9260
refs/heads/master
2021-07-04T17:20:58.456812
2020-08-27T02:08:05
2020-08-27T02:08:05
163,482,583
8
0
null
null
null
null
UTF-8
Python
false
false
218
py
# -*- coding: utf-8 -*- ##一元二次方程求解 import math; def quadratic(a,b,c): m = b*b - 4*a*c; x1 = (-b + math.sqrt(m))/(-2*a); x2 = (-b - math.sqrt(m))/(-2*a); return x1,x2 r = quadratic(1,6,9); print(r);
f16744f50e18e59f1326b83f02cb864a6192f983
d554b1aa8b70fddf81da8988b4aaa43788fede88
/5 - Notebooks e Data/1 - Análises numéricas/Arquivos David/Atualizados/logDicas-master/data/2019-1/226/users/4137/codes/1836_2604.py
2d39fb44f590d1ffec7a63f648064058d2d0a792
[]
no_license
JosephLevinthal/Research-projects
a3bc3ca3b09faad16f5cce5949a2279cf14742ba
60d5fd6eb864a5181f4321e7a992812f3c2139f9
refs/heads/master
2022-07-31T06:43:02.686109
2020-05-23T00:24:26
2020-05-23T00:24:26
266,199,309
1
0
null
null
null
null
UTF-8
Python
false
false
132
py
from numpy import* from numpy.linalg import* n = array(eval(input("Pagamentos:"))) for i in range(shape(n)[0]): print(max(n[i]))
b0cf9febae60c6a97766768835e4a2dd26a5c061
e24db52fb64c06e859e36122008fe27d7f2b7a81
/model/fixed_length_pqueue.py
c1d5e99db2b86d1534e97d1221d61c221a000d05
[]
no_license
zhuowangsylu/sklearn-sknnsuite
1cd7f46d4f0f54190db8262a35e987cf103e62d4
22fe386be643e309d6491e9a408711e3472e396d
refs/heads/master
2020-12-08T09:20:49.940874
2017-06-10T20:24:56
2017-06-10T20:24:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,097
py
import itertools import heapq class FixedLengthPQueue(object): def __init__(self, length): """ :param length: max length of queue. Should be greater then 0 """ self.pq = [] # list of entries arranged in a heap self.entry_finder = {} # mapping of tasks to entries self.counter = itertools.count() # unique sequence count self.length = length def add_task(self, task, priority=0): """Add a new task or update the priority of an existing task""" if len(self.pq) == self.length: self.pop_task() count = next(self.counter) entry = [- priority, count, task] self.entry_finder[task] = entry heapq.heappush(self.pq, entry) def pop_task(self): """Remove and return the lowest priority task. Raise KeyError if empty.""" while self.pq: priority, count, task = heapq.heappop(self.pq) del self.entry_finder[task] return task raise KeyError('pop from an empty priority queue')
55d758c86721b7858d56921aa5add18d6ae86097
6be845bf70a8efaf390da28c811c52b35bf9e475
/windows/Resources/Python/Core/Lib/email/_parseaddr.py
853096ece7f0c40a593e0fe0820a7588fca4ed1f
[]
no_license
kyeremalprime/ms
228194910bf2ed314d0492bc423cc687144bb459
47eea098ec735b2173ff0d4e5c493cb8f04e705d
refs/heads/master
2020-12-30T15:54:17.843982
2017-05-14T07:32:01
2017-05-14T07:32:01
91,180,709
2
2
null
null
null
null
UTF-8
Python
false
false
14,230
py
# uncompyle6 version 2.9.10 # Python bytecode 2.7 (62211) # Decompiled from: Python 3.6.0b2 (default, Oct 11 2016, 05:27:10) # [GCC 6.2.0 20161005] # Embedded file name: _parseaddr.py """Email address parsing code. Lifted directly from rfc822.py. This should eventually be rewritten. """ __all__ = [ 'mktime_tz', 'parsedate', 'parsedate_tz', 'quote'] import time SPACE = ' ' EMPTYSTRING = '' COMMASPACE = ', ' _monthnames = [ 'jan', 'feb', 'mar', 'apr', 'may', 'jun', 'jul', 'aug', 'sep', 'oct', 'nov', 'dec', 'january', 'february', 'march', 'april', 'may', 'june', 'july', 'august', 'september', 'october', 'november', 'december'] _daynames = [ 'mon', 'tue', 'wed', 'thu', 'fri', 'sat', 'sun'] _timezones = {'UT': 0,'UTC': 0,'GMT': 0,'Z': 0,'AST': -400, 'ADT': -300,'EST': -500, 'EDT': -400,'CST': -600, 'CDT': -500,'MST': -700, 'MDT': -600,'PST': -800, 'PDT': -700} def parsedate_tz(data): """Convert a date string to a time tuple. Accounts for military timezones. """ data = data.split() if data[0].endswith(',') or data[0].lower() in _daynames: del data[0] else: i = data[0].rfind(',') if i >= 0: data[0] = data[0][i + 1:] if len(data) == 3: stuff = data[0].split('-') if len(stuff) == 3: data = stuff + data[1:] if len(data) == 4: s = data[3] i = s.find('+') if i > 0: data[3:] = [ s[:i], s[i + 1:]] else: data.append('') if len(data) < 5: return else: data = data[:5] dd, mm, yy, tm, tz = data mm = mm.lower() if mm not in _monthnames: dd, mm = mm, dd.lower() if mm not in _monthnames: return mm = _monthnames.index(mm) + 1 if mm > 12: mm -= 12 if dd[-1] == ',': dd = dd[:-1] i = yy.find(':') if i > 0: yy, tm = tm, yy if yy[-1] == ',': yy = yy[:-1] if not yy[0].isdigit(): yy, tz = tz, yy if tm[-1] == ',': tm = tm[:-1] tm = tm.split(':') if len(tm) == 2: thh, tmm = tm tss = '0' elif len(tm) == 3: thh, tmm, tss = tm else: return try: yy = int(yy) dd = int(dd) thh = int(thh) tmm = int(tmm) tss = int(tss) except ValueError: return if yy < 100: if yy > 68: yy += 1900 else: yy += 2000 tzoffset = None tz = tz.upper() if tz in _timezones: tzoffset = _timezones[tz] else: try: tzoffset = int(tz) except ValueError: pass if tzoffset: if tzoffset < 0: tzsign = -1 tzoffset = -tzoffset else: tzsign = 1 tzoffset = tzsign * (tzoffset // 100 * 3600 + tzoffset % 100 * 60) return ( yy, mm, dd, thh, tmm, tss, 0, 1, -1, tzoffset) def parsedate(data): """Convert a time string to a time tuple.""" t = parsedate_tz(data) if isinstance(t, tuple): return t[:9] else: return t def mktime_tz(data): """Turn a 10-tuple as returned by parsedate_tz() into a UTC timestamp.""" if data[9] is None: return time.mktime(data[:8] + (-1, )) else: t = time.mktime(data[:8] + (0, )) return t - data[9] - time.timezone return def quote(str): """Prepare string to be used in a quoted string. Turns backslash and double quote characters into quoted pairs. These are the only characters that need to be quoted inside a quoted string. Does not add the surrounding double quotes. """ return str.replace('\\', '\\\\').replace('"', '\\"') class AddrlistClass(): """Address parser class by Ben Escoto. To understand what this class does, it helps to have a copy of RFC 2822 in front of you. Note: this class interface is deprecated and may be removed in the future. Use rfc822.AddressList instead. """ def __init__(self, field): """Initialize a new instance. `field' is an unparsed address header field, containing one or more addresses. """ self.specials = '()<>@,:;."[]' self.pos = 0 self.LWS = ' \t' self.CR = '\r\n' self.FWS = self.LWS + self.CR self.atomends = self.specials + self.LWS + self.CR self.phraseends = self.atomends.replace('.', '') self.field = field self.commentlist = [] def gotonext(self): """Parse up to the start of the next address.""" while self.pos < len(self.field): if self.field[self.pos] in self.LWS + '\n\r': self.pos += 1 elif self.field[self.pos] == '(': self.commentlist.append(self.getcomment()) else: break def getaddrlist(self): """Parse all addresses. Returns a list containing all of the addresses. """ result = [] while self.pos < len(self.field): ad = self.getaddress() if ad: result += ad else: result.append(('', '')) return result def getaddress(self): """Parse the next address.""" self.commentlist = [] self.gotonext() oldpos = self.pos oldcl = self.commentlist plist = self.getphraselist() self.gotonext() returnlist = [] if self.pos >= len(self.field): if plist: returnlist = [ ( SPACE.join(self.commentlist), plist[0])] elif self.field[self.pos] in '.@': self.pos = oldpos self.commentlist = oldcl addrspec = self.getaddrspec() returnlist = [(SPACE.join(self.commentlist), addrspec)] elif self.field[self.pos] == ':': returnlist = [] fieldlen = len(self.field) self.pos += 1 while self.pos < len(self.field): self.gotonext() if self.pos < fieldlen and self.field[self.pos] == ';': self.pos += 1 break returnlist = returnlist + self.getaddress() elif self.field[self.pos] == '<': routeaddr = self.getrouteaddr() if self.commentlist: returnlist = [(SPACE.join(plist) + ' (' + ' '.join(self.commentlist) + ')', routeaddr)] else: returnlist = [ ( SPACE.join(plist), routeaddr)] elif plist: returnlist = [ ( SPACE.join(self.commentlist), plist[0])] elif self.field[self.pos] in self.specials: self.pos += 1 self.gotonext() if self.pos < len(self.field) and self.field[self.pos] == ',': self.pos += 1 return returnlist def getrouteaddr(self): """Parse a route address (Return-path value). This method just skips all the route stuff and returns the addrspec. """ if self.field[self.pos] != '<': return expectroute = False self.pos += 1 self.gotonext() adlist = '' while self.pos < len(self.field): if expectroute: self.getdomain() expectroute = False elif self.field[self.pos] == '>': self.pos += 1 break elif self.field[self.pos] == '@': self.pos += 1 expectroute = True elif self.field[self.pos] == ':': self.pos += 1 else: adlist = self.getaddrspec() self.pos += 1 break self.gotonext() return adlist def getaddrspec(self): """Parse an RFC 2822 addr-spec.""" aslist = [] self.gotonext() while self.pos < len(self.field): if self.field[self.pos] == '.': aslist.append('.') self.pos += 1 elif self.field[self.pos] == '"': aslist.append('"%s"' % quote(self.getquote())) elif self.field[self.pos] in self.atomends: break else: aslist.append(self.getatom()) self.gotonext() if self.pos >= len(self.field) or self.field[self.pos] != '@': return EMPTYSTRING.join(aslist) aslist.append('@') self.pos += 1 self.gotonext() return EMPTYSTRING.join(aslist) + self.getdomain() def getdomain(self): """Get the complete domain name from an address.""" sdlist = [] while self.pos < len(self.field): if self.field[self.pos] in self.LWS: self.pos += 1 elif self.field[self.pos] == '(': self.commentlist.append(self.getcomment()) elif self.field[self.pos] == '[': sdlist.append(self.getdomainliteral()) elif self.field[self.pos] == '.': self.pos += 1 sdlist.append('.') elif self.field[self.pos] in self.atomends: break else: sdlist.append(self.getatom()) return EMPTYSTRING.join(sdlist) def getdelimited(self, beginchar, endchars, allowcomments=True): """Parse a header fragment delimited by special characters. `beginchar' is the start character for the fragment. If self is not looking at an instance of `beginchar' then getdelimited returns the empty string. `endchars' is a sequence of allowable end-delimiting characters. Parsing stops when one of these is encountered. If `allowcomments' is non-zero, embedded RFC 2822 comments are allowed within the parsed fragment. """ if self.field[self.pos] != beginchar: return '' slist = [''] quote = False self.pos += 1 while self.pos < len(self.field): if quote: slist.append(self.field[self.pos]) quote = False elif self.field[self.pos] in endchars: self.pos += 1 break elif allowcomments and self.field[self.pos] == '(': slist.append(self.getcomment()) continue elif self.field[self.pos] == '\\': quote = True else: slist.append(self.field[self.pos]) self.pos += 1 return EMPTYSTRING.join(slist) def getquote(self): """Get a quote-delimited fragment from self's field.""" return self.getdelimited('"', '"\r', False) def getcomment(self): """Get a parenthesis-delimited fragment from self's field.""" return self.getdelimited('(', ')\r', True) def getdomainliteral(self): """Parse an RFC 2822 domain-literal.""" return '[%s]' % self.getdelimited('[', ']\r', False) def getatom(self, atomends=None): """Parse an RFC 2822 atom. Optional atomends specifies a different set of end token delimiters (the default is to use self.atomends). This is used e.g. in getphraselist() since phrase endings must not include the `.' (which is legal in phrases).""" atomlist = [ ''] if atomends is None: atomends = self.atomends while self.pos < len(self.field): if self.field[self.pos] in atomends: break else: atomlist.append(self.field[self.pos]) self.pos += 1 return EMPTYSTRING.join(atomlist) def getphraselist(self): """Parse a sequence of RFC 2822 phrases. A phrase is a sequence of words, which are in turn either RFC 2822 atoms or quoted-strings. Phrases are canonicalized by squeezing all runs of continuous whitespace into one space. """ plist = [] while self.pos < len(self.field): if self.field[self.pos] in self.FWS: self.pos += 1 elif self.field[self.pos] == '"': plist.append(self.getquote()) elif self.field[self.pos] == '(': self.commentlist.append(self.getcomment()) elif self.field[self.pos] in self.phraseends: break else: plist.append(self.getatom(self.phraseends)) return plist class AddressList(AddrlistClass): """An AddressList encapsulates a list of parsed RFC 2822 addresses.""" def __init__(self, field): AddrlistClass.__init__(self, field) if field: self.addresslist = self.getaddrlist() else: self.addresslist = [] def __len__(self): return len(self.addresslist) def __add__(self, other): newaddr = AddressList(None) newaddr.addresslist = self.addresslist[:] for x in other.addresslist: if x not in self.addresslist: newaddr.addresslist.append(x) return newaddr def __iadd__(self, other): for x in other.addresslist: if x not in self.addresslist: self.addresslist.append(x) return self def __sub__(self, other): newaddr = AddressList(None) for x in self.addresslist: if x not in other.addresslist: newaddr.addresslist.append(x) return newaddr def __isub__(self, other): for x in other.addresslist: if x in self.addresslist: self.addresslist.remove(x) return self def __getitem__(self, index): return self.addresslist[index]
5cb01c05221174a919960232eb3fdbabe308c355
fb94faa56d5763607be6566925132f4957d751cf
/pyroms_toolbox/pyroms_toolbox/zview.py
508a6b3ba23f1910f4321953d47cf1b4eeea0055
[ "BSD-3-Clause" ]
permissive
csherwood-usgs/pyroms
44e684ec0b20e242cf3743d128332be330209289
be5e40a1720561bb18698f08a2c74b1906c73bab
refs/heads/master
2021-01-24T23:51:00.789744
2013-12-30T20:46:15
2013-12-30T20:46:15
16,179,889
0
1
null
null
null
null
UTF-8
Python
false
false
6,825
py
import numpy as np import matplotlib.pyplot as plt from matplotlib import cm, colors from mpl_toolkits.basemap import Basemap import pyroms import pyroms_toolbox def zview(var, tindex, depth, grid, filename=None, \ cmin=None, cmax=None, clev=None, clb_format='%.2f', \ fill=False, contour=False, d=4, range=None, fts=None, \ title=None, clb=True, pal=None, proj='merc', \ fill_land=False, outfile=None): """ map = zview(var, tindex, depth, grid, {optional switch}) optional switch: - filename if defined, load the variable from file - cmin set color minimum limit - cmax set color maximum limit - clev set the number of color step - fill use contourf instead of pcolor - contour overlay contour (request fill=True) - range set axis limit - fts set font size (default: 12) - title add title to the plot - clb add colorbar (defaul: True) - pal set color map (default: cm.jet) - proj set projection type (default: merc) - fill_land fill land masked area with gray (defaul: True) - outfile if defined, write figure to file plot a constante-z slice of variable var. If filename is provided, var must be a string and the variable will be load from the file. grid can be a grid object or a gridid. In the later case, the grid object correponding to the provided gridid will be loaded. If proj is not None, return a Basemap object to be used with quiver for example. """ # get grid if type(grid).__name__ == 'ROMS_Grid': grd = grid else: grd = pyroms.grid.get_ROMS_grid(grid) # get variable if filename == None: var = var else: data = pyroms.io.Dataset(filename) var = data.variables[var] Np, Mp, Lp = grd.vgrid.z_r[0,:].shape if tindex is not -1: assert len(var.shape) == 4, 'var must be 4D (time plus space).' K, N, M, L = var.shape else: assert len(var.shape) == 3, 'var must be 3D (no time dependency).' N, M, L = var.shape # determine where on the C-grid these variable lies if N == Np and M == Mp and L == Lp: Cpos='rho' mask = grd.hgrid.mask_rho if N == Np and M == Mp and L == Lp-1: Cpos='u' mask = grd.hgrid.mask_u if N == Np and M == Mp-1 and L == Lp: Cpos='v' mask = grd.hgrid.mask_v # get constante-z slice if tindex == -1: var = var[:,:,:] else: var = var[tindex,:,:,:] depth = -abs(depth) if fill == True: zslice, lon, lat = pyroms.tools.zslice(var, depth, grd, \ Cpos=Cpos) else: zslice, lon, lat = pyroms.tools.zslice(var, depth, grd, \ Cpos=Cpos, vert=True) # plot if cmin is None: cmin = zslice.min() else: cmin = float(cmin) if cmax is None: cmax = zslice.max() else: cmax = float(cmax) if clev is None: clev = 100. else: clev = float(clev) dc = (cmax - cmin)/clev ; vc = np.arange(cmin,cmax+dc,dc) if pal is None: pal = cm.jet else: pal = pal if fts is None: fts = 12 else: fts = fts #pal.set_over('w', 1.0) #pal.set_under('w', 1.0) #pal.set_bad('w', 1.0) pal_norm = colors.BoundaryNorm(vc,ncolors=256, clip = False) if range is None: lon_min = lon.min() lon_max = lon.max() lon_0 = (lon_min + lon_max) / 2. lat_min = lat.min() lat_max = lat.max() lat_0 = (lat_min + lat_max) / 2. else: lon_min = range[0] lon_max = range[1] lon_0 = (lon_min + lon_max) / 2. lat_min = range[2] lat_max = range[3] lat_0 = (lat_min + lat_max) / 2. # clear figure #plt.clf() if proj is not None: map = Basemap(projection=proj, llcrnrlon=lon_min, llcrnrlat=lat_min, \ urcrnrlon=lon_max, urcrnrlat=lat_max, lat_0=lat_0, lon_0=lon_0, \ resolution='h', area_thresh=5.) #map = pyroms.utility.get_grid_proj(grd, type=proj) x, y = map(lon,lat) if fill_land is True and proj is not None: # fill land and draw coastlines map.drawcoastlines() map.fillcontinents(color='grey') else: if proj is not None: Basemap.pcolor(map, x, y, mask, vmin=-2, cmap=cm.gray) pyroms_toolbox.plot_coast_line(grd, map) else: plt.pcolor(lon, lat, mask, vmin=-2, cmap=cm.gray) pyroms_toolbox.plot_coast_line(grd) if fill is True: if proj is not None: cf = Basemap.contourf(map, x, y, zslice, vc, cmap = pal, \ norm = pal_norm) else: cf = plt.contourf(lon, lat, zslice, vc, cmap = pal, \ norm = pal_norm) else: if proj is not None: cf = Basemap.pcolor(map, x, y, zslice, cmap = pal, norm = pal_norm) else: cf = plt.pcolor(lon, lat, zslice, cmap = pal, norm = pal_norm) if clb is True: clb = plt.colorbar(cf, fraction=0.075,format=clb_format) for t in clb.ax.get_yticklabels(): t.set_fontsize(fts) if contour is True: if fill is not True: raise Warning, 'Please run again with fill=True to overlay contour.' else: if proj is not None: Basemap.contour(map, x, y, zslice, vc[::d], colors='k', linewidths=0.5, linestyles='solid') else: plt.contour(lon, lat, zslice, vc[::d], colors='k', linewidths=0.5, linestyles='solid') if proj is None and range is not None: plt.axis(range) if title is not None: plt.title(title, fontsize=fts+4) if proj is not None: map.drawmeridians(np.arange(lon_min,lon_max, (lon_max-lon_min)/5.001), \ labels=[0,0,0,1], fmt='%.1f') map.drawparallels(np.arange(lat_min,lat_max, (lat_max-lat_min)/5.001), \ labels=[1,0,0,0], fmt='%.1f') if outfile is not None: if outfile.find('.png') != -1 or outfile.find('.svg') != -1 or \ outfile.find('.eps') != -1: print 'Write figure to file', outfile plt.savefig(outfile, dpi=200, facecolor='w', edgecolor='w', \ orientation='portrait') else: print 'Unrecognized file extension. Please use .png, .svg or .eps file extension.' if proj is None: return else: return map
cf67d8266fd1c7b49d932b7a0d593bdefd4d6ab8
a67a987ed078da0a1de2908c8c0e08070dee65b1
/genice/lattices/sTprime.py
16592d7d2a4fb71ae63cafd4bb23059714c8213e
[]
no_license
Python3pkg/GenIce
ef1ce7ee2997c10e08dde75ac36050a653cd4fc5
1e9458b7bf8e0fd2ad5d0c4f8987cea0ae7ca0b0
refs/heads/master
2021-01-21T17:31:51.595858
2017-05-21T14:09:32
2017-05-21T14:09:32
91,962,047
0
0
null
2017-05-21T14:09:28
2017-05-21T14:09:28
null
UTF-8
Python
false
false
1,457
py
""" Data source: Smirnov, G. S. & Stegailov, V. V. Toward Determination of the New Hydrogen Hydrate Clathrate Structures. J Phys Chem Lett 4, 3560-3564 (2013). """ density = 1.2 #default density bondlen = 1.2 #bond threshold celltype = "rect" cell=""" 4.04345643838 3.18400949048 3.18412710497 """ #estimated by unitcell-designer2.py coord="relative" waters=""" 0.324999313604 0.241626046227 0.741607546689 0.457688412412 0.491604796867 0.811167153486 0.324997440466 0.741611811736 0.741618888106 0.457662988572 0.991605010596 0.672075052384 0.692311583922 0.991727905597 0.672166183923 0.825002557263 0.741721003892 0.741714422407 0.692337007775 0.491727692099 0.811258277449 0.825000683446 0.241706769677 0.741725809343 0.192314228314 0.311166810957 0.491600600285 0.192335356629 0.67208565913 0.491600986442 0.957685764524 0.672166320486 0.491732720568 0.95766464453 0.311247477429 0.491732335146 0.32499754824 0.241612330348 0.241618912338 0.457662990343 0.491605708657 0.172075024014 0.324999242327 0.741626562519 0.241607525056 0.457688416499 0.991605358409 0.31116718725 0.69233701333 0.991728253805 0.311258313389 0.825000760623 0.741707288042 0.2417257845 0.692311587147 0.491728604283 0.172166142582 0.825002454031 0.241721519946 0.241714444623 0.192335354927 0.172085857455 0.991600896391 0.192314236022 0.811167014397 0.991600717379 0.957664643845 0.811247674634 0.991732448252 0.957685771209 0.172166522813 0.991732627999 """
e02234ba0c5b8cd9dfb2f91ac9dc4b789beb104e
a0e5418d4f79587dd8ea6f9425a84ded3351d139
/src/actions/conquer_action.py
917e56d82ffd6f263150995370328040c06b611b
[]
no_license
thydungeonsean/Shinar_Genesis
db99f17c8d6afbf69a4950b46223b586e55c83cf
ac21f324c11db7c1a722f029a8186c5dc45c9097
refs/heads/master
2020-03-15T22:07:48.281124
2018-06-07T21:09:18
2018-06-07T21:09:18
116,487,934
0
0
null
null
null
null
UTF-8
Python
false
false
2,425
py
from military_action import MilitaryAction from src.enum.actions import CONQUER_ACTION from map_tools import get_army_movement_options, get_conquered_points, in_player_domain from src.enum.object_codes import * class ConquerAction(MilitaryAction): def __init__(self, state, player): MilitaryAction.__init__(self, state, player, CONQUER_ACTION) def place_text(self): return 'Raise Army' def select_text(self): return 'Conquer the land' # moving action def compute_valid_move_points(self): # points in range of selected army return get_army_movement_options(self.state, self.selected_army, conquer=True) def activate_effect(self, point): # if enemy building - attack it # else # get conquered points conquered = get_conquered_points(self.state, point) # spread dominion to those points map(self.extend_rule, conquered) # end action def extend_rule(self, point): self.state.map.dominion_map.add_dominion(self.player.player_id, point) # battle triggering helper methods def get_win_effect(self, point, defender): def win_effect(): self.activate_effect(point) print 'attacker wins' # if defender is garrison, apply correct building conquer interaction if defender.is_garrison() and not defender.sallying: defender.rout() self.conquer_building(defender) else: defender.rout() # end point self.complete_action() return win_effect def conquer_building(self, garrison): building = garrison.building point = building.coord.int_position if building.obj_code in {TOWER, PALACE}: building.raze() elif building.obj_code == GRANARY: if in_player_domain(self.state, point): building.capture(self.player) self.selected_army.form_garrison(building) else: building.raze() elif building.obj_code == ZIGGURAT: if in_player_domain(self.state, point) and not building.under_construction and\ self.player.can_add_ziggurat(): building.capture(self.player) self.selected_army.form_garrison(building) else: building.raze()
33f386fa4ae0cf685ab62da52fc7c8b759b4cd0d
48c65330f577d11cedb29fd970aee35788ab72c6
/model_flfact_tpv__eg_cupones.py
6f28705bd6ef39f7f6e6d8c6c9eafc90d2a08dcc
[]
no_license
yeboyebo/elganso_sync
309ecbaba3127493abe001cd1704cc7098234baa
66f033a0e27a05c1fc6704ec6ba2bd474d204b7e
refs/heads/master
2023-07-22T00:17:48.201252
2023-07-19T07:48:40
2023-07-19T07:48:40
173,096,155
0
0
null
null
null
null
UTF-8
Python
false
false
842
py
# @class_declaration interna_eg_cupones # import importlib from YBUTILS.viewREST import helpers from models.flfact_tpv import models as modelos class interna_eg_cupones(modelos.mtd_eg_cupones, helpers.MixinConAcciones): pass class Meta: proxy = True # @class_declaration elganso_sync_eg_cupones # class elganso_sync_eg_cupones(interna_eg_cupones, helpers.MixinConAcciones): pass class Meta: proxy = True # @class_declaration eg_cupones # class eg_cupones(elganso_sync_eg_cupones, helpers.MixinConAcciones): pass class Meta: proxy = True def getIface(self=None): return form.iface definitions = importlib.import_module("models.flfact_tpv.eg_cupones_def") form = definitions.FormInternalObj() form._class_init() form.iface.ctx = form.iface form.iface.iface = form.iface
cfb35bf471134268b39e963d38b5d44009cbd811
f92dff3781ce21b5a1fd18f30ab52a3976d254f5
/backend/wallet/api/v1/urls.py
4befa8658a0e2aa3f590ee382d837b3ab9016fa4
[]
no_license
crowdbotics-apps/test-24800
41270507a49b02bc43fc89822b541cd99cb84005
6e7d5bb77af12c5d2c6e3f9f46b7d4d39d185267
refs/heads/master
2023-03-11T22:27:56.763867
2021-03-02T07:29:45
2021-03-02T07:29:45
343,671,693
0
0
null
null
null
null
UTF-8
Python
false
false
635
py
from django.urls import path, include from rest_framework.routers import DefaultRouter from .viewsets import ( PaymentTransactionViewSet, TaskerPaymentAccountViewSet, TaskerWalletViewSet, PaymentMethodViewSet, CustomerWalletViewSet, ) router = DefaultRouter() router.register("taskerpaymentaccount", TaskerPaymentAccountViewSet) router.register("customerwallet", CustomerWalletViewSet) router.register("paymentmethod", PaymentMethodViewSet) router.register("paymenttransaction", PaymentTransactionViewSet) router.register("taskerwallet", TaskerWalletViewSet) urlpatterns = [ path("", include(router.urls)), ]
322a37cf0131836f7a7093c2ddcb5b15b9851a03
a50e73d880fcea987cd2ddd4cc059a67cd7e22e0
/day06/求区间的整数和函数版.py
400f1072c91905899a2f52dd43cd1e51e98234c1
[]
no_license
Icecarry/learn
31bed60d5b61201d30bfbaaf520e4e0146e10863
2af301b92c9143def9b4c278024d6d2d6e21f0b9
refs/heads/master
2021-04-06T07:45:11.938995
2018-03-13T06:40:54
2018-03-13T06:40:54
124,759,777
0
0
null
null
null
null
UTF-8
Python
false
false
433
py
# 编写一段代码,求1-100之间所有整数的和 # def sum1(m, n): # return summer # sum1(1, 50) # 用户输入 num1 = int(input("请输入起始数:")) num2 = int(input("请输入结束的数:")) # print("%d - %d 之间的所有整数和为:" % (num1, num2), sum1(num1, num2)) # 运用循环累加 summer = 0 for x in range(num2 + 1): if x >= num1: summer += x else: continue print(summer)
419c2a5f336d46136d581b7847fb23c29400c2e3
fe62d139012bdde8431b1b9c2b36b2a1491c6ad6
/temps1series0213plot.py
011f2b595599cef85f2ad0777247c5330ad45954
[]
no_license
Gattocrucco/locs12
923467db0f49b3bf9e45c6a45c548751c972b130
fa99528fadc2d8e745486e427319ec67527cf866
refs/heads/master
2023-03-28T21:40:22.385179
2021-04-08T21:52:11
2021-04-08T21:52:11
356,057,491
0
0
null
null
null
null
UTF-8
Python
false
false
4,782
py
import numpy as np from matplotlib import pyplot as plt from scipy import interpolate import textbox inphotons = 2 # in [3, 7, 10, 15, 20, 30, 40] idcr = 1 # in [25, 250] cps/pdm rate = 100 # cps table = np.load('temps1series0213.npy') figkw = dict(clear=True, sharex=True, figsize=[9, 7]) figs = [] axs = [] for wname in ['efficiency', 'fakerate', 'effvsrate', 'effvssigma']: figkw['sharey'] = 'col' if wname == 'effvsrate' else True fig, ax = plt.subplots(2, 2, num=f'temps1series0213plot-{wname}', **figkw) figs.append(fig) axs.append(ax) axs = np.array(axs) for ax in axs[0].reshape(-1): if ax.is_first_col(): ax.set_ylabel('S1 detection efficiency') if ax.is_last_row(): ax.set_xlabel('Threshold on filter output') for ax in axs[1].reshape(-1): if ax.is_first_col(): ax.set_ylabel('Fake rate [cps]') if ax.is_last_row(): ax.set_xlabel('Threshold on filter output') for ax in axs[2].reshape(-1): if ax.is_first_col(): ax.set_ylabel('S1 detection efficiency') if ax.is_last_row(): ax.set_xlabel('Fake rate [cps]') for ax in axs[3].reshape(-1): if ax.is_first_col(): ax.set_ylabel(f'Efficiency at fake rate {rate} cps') if ax.is_last_row(): ax.set_xlabel('Template $\\sigma$ [ns]') # the shape of table is over (DCR, VL, nphotons, sigma) for ivl in range(table.shape[1]): entries = table[idcr, ivl] if np.count_nonzero(entries['done']) == 0: continue for ifilter, fname in enumerate(['ER', 'NR']): qax = axs[:, ifilter, ivl] for ifig, ax in enumerate(qax): for inph, entry in enumerate(entries): if not np.any(entry['done']) or ifig != 3: continue entry = entry[entry['done']] nph = entry[0]['parameters']['nphotons'] plotkw = dict( alpha=(inph + 1) / len(entries), color='#600', label=f'{nph}', linestyle=['-', '--', '-.', ':'][inph % 4], ) x = entry['parameters']['sigma'] interpkw = dict(assume_sorted=True, copy=False) y = [ interpolate.interp1d(subent['rate'], subent[fname]['efficiency'], **interpkw)(rate) for subent in entry ] ax.plot(x, y, **plotkw) for isigma, entry in enumerate(entries[inphotons]): if not entry['done'] or ifig == 3: continue sigma = entry['parameters']['sigma'] plotkw = dict( alpha=(isigma + 1) / len(entries[inphotons]), color='#600', label=f'{sigma:.3g}', linestyle=['-', '--', '-.', ':'][isigma % 4], ) if ifig == 0: x = entry['threshold'] y = entry[fname]['effthr'] elif ifig == 1: x = entry['threshold'] y = entry[fname]['ratethr'] elif ifig == 2: x = entry['rate'] y = entry[fname]['efficiency'] changepoint = np.flatnonzero(np.diff(y)) start = max(0 , changepoint[ 0] - 1) end = min(len(y), changepoint[-1] + 3) sel = slice(start, end) x = x[sel] y = y[sel] ax.plot(x, y, **plotkw) for ax in qax: s1type = 'ER' if entries[0, 0]['parameters']['VL'] < 1 else 'NR' ax.set_title(f'{s1type} S1, {fname} filter') ax.minorticks_on() ax.grid(True, which='major', linestyle='--') ax.grid(True, which='minor', linestyle=':') for ifig, fax in enumerate(axs): if ifig == 3: legendtitle = 'Nphotons' else: legendtitle = 'Template $\\sigma$ [ns]' fax[0, 0].legend(loc='best', fontsize='small', ncol=2, title=legendtitle) params = table[idcr, 0, inphotons, 0]['parameters'] info = f"""\ DCR = {params['DCR'] * 1e9:.3g} cps/pdm tres = 10 ns nevents = 1000""" if ifig != 3: info = f"nphotons = {params['nphotons']}\n" + info infoheight = 'lower' if ifig in [2, 3] else 'upper' textbox.textbox(fax[0, 1], info, loc=f'{infoheight} right', fontsize='small') if ifig == 1: fax[0, 0].set_yscale('log') if ifig == 2: fax[0, 0].set_xscale('log') for fig in figs: fig.tight_layout() fig.show()
4ac44ea7572c0f7f3ccbbb100cda5acbab08db23
70e75a0b0ca56fd8318606cc093e13fe3d700227
/Programmers/2020_카카오_상반기_공채/src/3.자물쇠와열쇠.py
ac042fd66fc62a187dd6c8ce877832ab61ec41db
[]
no_license
hanameee/Algorithm
ba4632797ff8ea999f37d2578f32c3c00da02b0f
bf1203544e1b44d2bbf929fd729e263278260313
refs/heads/master
2023-02-04T19:22:44.845863
2023-01-27T17:05:26
2023-01-27T17:05:26
220,486,014
4
0
null
null
null
null
UTF-8
Python
false
false
1,486
py
from copy import deepcopy def is_solved(graph, m, n): for i in range(m-1, m-1+n): for j in range(m-1, m-1+n): if graph[i][j] != 1: return False return True def rotate(key): new_key = [[0]*len(key[0]) for _ in range(len(key[0]))] for i in range(len(key)): for j in range(len(key)): new_key[j][len(key)-i-1] = key[i][j] return new_key def process(key, graph, m, n): g_len = len(graph) for i in range(m-1+n): for j in range(m-1+n): g = deepcopy(graph) # 키를 적용시켜본다 for key_i in range(len(key)): if i+key_i > n+m-1: break for key_j in range(len(key)): g[i+key_i][j+key_j] += key[key_i][key_j] if is_solved(g, m, n): return True return False def solution(key, lock): m = len(key) n = len(lock) mp = [[0]*(n+2*(m-1)) for _ in range(n+2*(m-1))] for i in range(m-1, m-1+n): for j in range(m-1, m-1+n): mp[i][j] = lock[i-m+1][j-m+1] rotated_keys = [key] for i in range(3): new_key = rotate(key) rotated_keys.append((new_key)) key = new_key for key in rotated_keys: result = process(key, mp, m, n) if result: return True return False print(solution([[0, 0, 0], [1, 1, 0], [1, 1, 1]], [[1, 1, 1], [1, 1, 0], [1, 0, 1]]))
8af58098a16f7c4b58e3049f703029d17be1afe1
c475cd8531a94ffae69cc92371d41531dbbddb6c
/Projects/bullet3-2.89/examples/pybullet/gym/pybullet_data/laikago/laikago.py
149c67714cd0441b6c31e290b2f2dca76dd6b712
[ "Apache-2.0", "LicenseRef-scancode-free-unknown", "Zlib" ]
permissive
WolfireGames/overgrowth
72d3dd29cbd7254337265c29f8de3e5c32400114
594a2a4f9da0855304ee8cd5335d042f8e954ce1
refs/heads/main
2023-08-15T19:36:56.156578
2023-05-17T08:17:53
2023-05-17T08:20:36
467,448,492
2,264
245
Apache-2.0
2023-05-09T07:29:58
2022-03-08T09:38:54
C++
UTF-8
Python
false
false
3,056
py
import pybullet as p import time p.connect(p.GUI) plane = p.loadURDF("plane.urdf") p.setGravity(0,0,-9.8) p.setTimeStep(1./500) #p.setDefaultContactERP(0) #urdfFlags = p.URDF_USE_SELF_COLLISION+p.URDF_USE_SELF_COLLISION_EXCLUDE_ALL_PARENTS urdfFlags = p.URDF_USE_SELF_COLLISION quadruped = p.loadURDF("laikago_toes.urdf",[0,0,.5],[0,0.5,0.5,0], flags = urdfFlags,useFixedBase=False) #enable collision between lower legs for j in range (p.getNumJoints(quadruped)): print(p.getJointInfo(quadruped,j)) #2,5,8 and 11 are the lower legs lower_legs = [2,5,8,11] for l0 in lower_legs: for l1 in lower_legs: if (l1>l0): enableCollision = 1 print("collision for pair",l0,l1, p.getJointInfo(quadruped,l0)[12],p.getJointInfo(quadruped,l1)[12], "enabled=",enableCollision) p.setCollisionFilterPair(quadruped, quadruped, 2,5,enableCollision) jointIds=[] paramIds=[] jointOffsets=[] jointDirections=[-1,1,1,1,1,1,-1,1,1,1,1,1] jointAngles=[0,0,0,0,0,0,0,0,0,0,0,0] for i in range (4): jointOffsets.append(0) jointOffsets.append(-0.7) jointOffsets.append(0.7) maxForceId = p.addUserDebugParameter("maxForce",0,100,20) for j in range (p.getNumJoints(quadruped)): p.changeDynamics(quadruped,j,linearDamping=0, angularDamping=0) info = p.getJointInfo(quadruped,j) #print(info) jointName = info[1] jointType = info[2] if (jointType==p.JOINT_PRISMATIC or jointType==p.JOINT_REVOLUTE): jointIds.append(j) p.getCameraImage(480,320) p.setRealTimeSimulation(0) joints=[] with open("data1.txt","r") as filestream: for line in filestream: maxForce = p.readUserDebugParameter(maxForceId) currentline = line.split(",") frame = currentline[0] t = currentline[1] joints=currentline[2:14] for j in range (12): targetPos = float(joints[j]) p.setJointMotorControl2(quadruped,jointIds[j],p.POSITION_CONTROL,jointDirections[j]*targetPos+jointOffsets[j], force=maxForce) p.stepSimulation() for lower_leg in lower_legs: #print("points for ", quadruped, " link: ", lower_leg) pts = p.getContactPoints(quadruped,-1, lower_leg) #print("num points=",len(pts)) #for pt in pts: # print(pt[9]) time.sleep(1./500.) index = 0 for j in range (p.getNumJoints(quadruped)): p.changeDynamics(quadruped,j,linearDamping=0, angularDamping=0) info = p.getJointInfo(quadruped,j) js = p.getJointState(quadruped,j) #print(info) jointName = info[1] jointType = info[2] if (jointType==p.JOINT_PRISMATIC or jointType==p.JOINT_REVOLUTE): paramIds.append(p.addUserDebugParameter(jointName.decode("utf-8"),-4,4,(js[0]-jointOffsets[index])/jointDirections[index])) index=index+1 p.setRealTimeSimulation(1) while (1): for i in range(len(paramIds)): c = paramIds[i] targetPos = p.readUserDebugParameter(c) maxForce = p.readUserDebugParameter(maxForceId) p.setJointMotorControl2(quadruped,jointIds[i],p.POSITION_CONTROL,jointDirections[i]*targetPos+jointOffsets[i], force=maxForce)
2bb89f735b7789b3fe3c0e3995cc2bbf484329da
986a8c617725cb707dd21c5bd1487dd9d46adaa0
/mutation/example_2.py
a9d60729aa1d8151f26eee7697bd93132e37abce
[]
no_license
tohfaakib/python_playground
6ee497cc7011be798e68f74ce331c24bd7a4edab
13f2b2e179e2c4f4198ac99965c53e1ddcf436e0
refs/heads/master
2020-09-16T09:46:24.231034
2019-12-24T05:06:24
2019-12-24T05:06:24
223,732,363
1
0
null
null
null
null
UTF-8
Python
false
false
392
py
def add_to(num, target=[]): target.append(num) return target print(add_to(1)) # output: [1] print(add_to(2)) # output: [1, 2] print(add_to(3)) # output: [1, 2, 3] def add_to_2(num, target=None): if target is None: target = [] target.append(num) return target print(add_to_2(1)) # output: [1] print(add_to_2(2)) # output: [2] print(add_to_2(3)) # output: [3]
1aa3293f0f6dade194eb63b0104f6ef1b168dc27
654f400751dfb180a937e0f18f6b722119a5b4f1
/tests/unitario/zend_django/parametros/test_parametro_models.py
8756743f0a08311b89c4a2e539506ed56101ebbb
[]
no_license
imagilex/tereapps
fae8bcb18ad4276f09a6ef6887d0c685c7a5522a
51d4da8dab1d184cb7dcfe144ac8d2405a179028
refs/heads/main
2023-07-04T12:19:32.943411
2021-08-10T19:41:00
2021-08-10T19:41:00
343,847,920
0
1
null
null
null
null
UTF-8
Python
false
false
6,310
py
import pytest from django.contrib.auth.models import User from django.test import TestCase from zend_django.models import ParametroSistema from zend_django.models import ParametroUsuario from zend_django.models import ParametroUsuarioValor from zend_django.parametros_models import PARAM_TYPES from zend_django.parametros_models import PARAM_TYPES_Tuples from zend_django.parametros_models import get_param_type_to_show pytestmark = pytest.mark.django_db class TestParametrosModelsFunctions(TestCase): def test_get_param_type_to_show(self): for tipo in PARAM_TYPES_Tuples: self.assertEqual(get_param_type_to_show(tipo[0]), tipo[1]) class TestParametroSistemaModel(TestCase): def setUp(self): self.objs = [ ParametroSistema.objects.get_or_create( seccion='seccion', nombre='nombre', nombre_para_mostrar='mostrar como', tipo=PARAM_TYPES['CADENA'], )[0], ParametroSistema.objects.get_or_create( seccion='seccion', nombre='nombre_2', nombre_para_mostrar='mostrar como', valor='valor_default', tipo=PARAM_TYPES['IMAGEN'], )[0] ] def test_to_string(self): self.assertEqual( f"{self.objs[0]}", self.objs[0].nombre_para_mostrar) self.assertEqual( f"{self.objs[1]}", f"{self.objs[1].nombre_para_mostrar}: {self.objs[1].valor}") def test_tipo_txt(self): for obj in self.objs: self.assertEqual(obj.tipo_txt, get_param_type_to_show(obj.tipo)) def test_get(self): for obj in self.objs: self.assertEqual( obj.valor, ParametroSistema.get(obj.seccion, obj.nombre)) self.assertIn("no encontrado", ParametroSistema.get( self.objs[0].seccion, "inexistente")) self.assertIn("no encontrado", ParametroSistema.get( "inexistente", self.objs[0].nombre)) self.assertIn("no encontrado", ParametroSistema.get( "inexistente", "inexistente")) class TestParametroUsuario(TestCase): def setUp(self): self.objs = [ ParametroUsuario.objects.get_or_create( seccion='seccion', nombre='nombre', tipo=PARAM_TYPES['CADENA'], )[0], ParametroUsuario.objects.get_or_create( seccion='seccion', nombre='nombre_2', valor_default='valor_default', tipo=PARAM_TYPES['IMAGEN'], )[0] ] self.usrs = [ User.objects.get_or_create(username="testuser")[0], User.objects.get_or_create(username="testuser")[1], ] self.values = [ ParametroUsuarioValor.objects.get_or_create( user=self.usrs[0], parametro=self.objs[0], valor="Valor" )[0], ] def test_to_string(self): self.assertEqual( f"{self.objs[0]}", self.objs[0].nombre) self.assertEqual( f"{self.objs[1]}", f"{self.objs[1].nombre}: {self.objs[1].valor_default}") def test_tipo_txt(self): for obj in self.objs: self.assertEqual(obj.tipo_txt, get_param_type_to_show(obj.tipo)) def test_get_default(self): for obj in self.objs: self.assertEqual( obj.valor_default, ParametroUsuario.get_default(obj.seccion, obj.nombre)) self.assertRaises( ParametroUsuario.DoesNotExist, ParametroUsuario.get_default, self.objs[0].seccion, "inexistente") self.assertRaises( ParametroUsuario.DoesNotExist, ParametroUsuario.get_default, "inexistente", self.objs[0].nombre) self.assertRaises( ParametroUsuario.DoesNotExist, ParametroUsuario.get_default, "inexistente", "inexistente") def test_get_value(self): self.assertEqual(ParametroUsuario.get_valor( self.usrs[0], "seccion", "nombre"), "Valor") self.assertEqual(ParametroUsuario.get_valor( self.usrs[0], "seccion", "nombre_2"), "valor_default") self.assertEqual("", ParametroUsuario.get_valor( self.usrs[0], "inexistente", "nombre")) self.assertEqual("", ParametroUsuario.get_valor( self.usrs[0], "seccion", "inexistente")) self.assertEqual("", ParametroUsuario.get_valor( self.usrs[0], "inexistente", "inexistente")) def test_set_valor(self): cnt1 = len(ParametroUsuarioValor.objects.all()) self.assertTrue(ParametroUsuario.set_valor( self.usrs[0], "seccion", "nombre", "Valor")) self.assertTrue(ParametroUsuario.set_valor( self.usrs[0], "seccion", "nombre_2", "Valor")) self.assertFalse(ParametroUsuario.set_valor( self.usrs[0], "inexistente", "nombre", "Valor")) self.assertFalse(ParametroUsuario.set_valor( self.usrs[0], "seccion", "inexistente", "Valor")) self.assertFalse(ParametroUsuario.set_valor( self.usrs[0], "inexistente", "inexistente", "Valor")) cnt2 = len(ParametroUsuarioValor.objects.all()) self.assertGreaterEqual(cnt2, cnt2) class TestParametroUsuarioValor(TestCase): def setUp(self): self.usrs = [ User.objects.get_or_create(username="testuser")[0], User.objects.get_or_create(username="testuser2")[0] ] self.param = ParametroUsuario.objects.get_or_create( seccion='seccion', nombre='nombre', tipo=PARAM_TYPES['CADENA'], )[0] self.objs = [ ParametroUsuarioValor.objects.get_or_create( user=self.usrs[0], parametro=self.param, valor="Valor" )[0], ParametroUsuarioValor.objects.get_or_create( user=self.usrs[1], parametro=self.param, )[0], ] def test_to_string(self): self.assertEqual("Valor", f'{self.objs[0]}') self.assertEqual("", f'{self.objs[1]}')
931b28badc8e29c492e27998419342b19c1db54c
0e1e643e864bcb96cf06f14f4cb559b034e114d0
/Exps_7_v3/doc3d/I_w_M_to_W_focus_Zok_div/ch032/wiColorJ/Sob_k05_s001_EroM/pyr_Tcrop255_p60_j15/pyr_1s/L5/step09_1side_L5.py
7219559e641a143505af65d8a2b9b3627b574ddb
[]
no_license
KongBOy/kong_model2
33a94a9d2be5b0f28f9d479b3744e1d0e0ebd307
1af20b168ffccf0d5293a393a40a9fa9519410b2
refs/heads/master
2022-10-14T03:09:22.543998
2022-10-06T11:33:42
2022-10-06T11:33:42
242,080,692
3
0
null
null
null
null
UTF-8
Python
false
false
6,182
py
############################################################################################################################################################################################################# ############################################################################################################################################################################################################# ### 把 kong_model2 加入 sys.path import os from tkinter import S code_exe_path = os.path.realpath(__file__) ### 目前執行 step10_b.py 的 path code_exe_path_element = code_exe_path.split("\\") ### 把 path 切分 等等 要找出 kong_model 在第幾層 kong_layer = code_exe_path_element.index("kong_model2") ### 找出 kong_model2 在第幾層 kong_model2_dir = "\\".join(code_exe_path_element[:kong_layer + 1]) ### 定位出 kong_model2 的 dir import sys ### 把 kong_model2 加入 sys.path sys.path.append(kong_model2_dir) # print(__file__.split("\\")[-1]) # print(" code_exe_path:", code_exe_path) # print(" code_exe_path_element:", code_exe_path_element) # print(" kong_layer:", kong_layer) # print(" kong_model2_dir:", kong_model2_dir) ############################################################################################################################################################################################################# from step08_b_use_G_generate_I_w_M_to_Wx_Wy_Wz_combine import I_w_M_to_W from step08_b_use_G_generate_0_util import Tight_crop, Color_jit from step09_c_train_step import Train_step_I_w_M_to_W from step09_d_KModel_builder_combine_step789 import KModel_builder, MODEL_NAME color_jit = Color_jit(do_ratio=0.6) use_what_gen_op = I_w_M_to_W( separate_out=True, focus=True, tight_crop=Tight_crop(pad_size=60, resize=(255, 255), jit_scale= 0) ) use_what_train_step = Train_step_I_w_M_to_W( separate_out=True, focus=True, tight_crop=Tight_crop(pad_size=60, resize=(255, 255), jit_scale= 15), color_jit=color_jit ) use_hid_ch = 32 import time start_time = time.time() ############################################################################################################################################################################################### ############################################################################################################################################################################################### ########################################################### Block1 ### Block1 ######################################################################################### pyramid_1side_1 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] pyramid_1side_2 = [1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1] pyramid_1side_3 = [1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1] pyramid_1side_4 = [1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1] pyramid_1side_5 = [1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1] pyramid_1side_6 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ######################################################################################### ch032_pyramid_1side_1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=5, out_ch=1, d_amount=3, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=5, out_ch=1, d_amount=3, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_2, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=5, out_ch=1, d_amount=3, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_3, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=5, out_ch=1, d_amount=3, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=5, out_ch=1, d_amount=3, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_5, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_6 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=5, out_ch=1, d_amount=3, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_6, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ######################################################################################### ############################################################################################################################################################################################### if(__name__ == "__main__"): import numpy as np print("build_model cost time:", time.time() - start_time) data = np.zeros(shape=(1, 512, 512, 1)) use_model = ch032_pyramid_1side_4 use_model = use_model.build() result = use_model.generator(data) print(result.shape) from kong_util.tf_model_util import Show_model_weights Show_model_weights(use_model.generator) use_model.generator.summary() print(use_model.model_describe)
f8ea905f492854fd8ecc472ff5ac65bb0b66c53f
2aa5d0ae8f74ebb0026c715f8c871388bed4427c
/nurse/tests.py
71daa82205d698b13836a4c9030dcb85e07285e1
[]
no_license
surajit003/valentis
1614c46b77c5827ea187b47284f49d46584d7291
53fd97bd17f36ce14b2be28bb08d5b65abde8d82
refs/heads/master
2022-11-26T23:18:41.982907
2020-08-09T10:16:39
2020-08-09T10:16:39
285,679,287
1
2
null
null
null
null
UTF-8
Python
false
false
3,319
py
import unittest from django.urls import reverse from django.test import Client from .models import Nurse from django.contrib.auth.models import User from django.contrib.auth.models import Group from django.contrib.contenttypes.models import ContentType def create_django_contrib_auth_models_user(**kwargs): defaults = {} defaults["username"] = "username" defaults["email"] = "[email protected]" defaults.update(**kwargs) return User.objects.create(**defaults) def create_django_contrib_auth_models_group(**kwargs): defaults = {} defaults["name"] = "group" defaults.update(**kwargs) return Group.objects.create(**defaults) def create_django_contrib_contenttypes_models_contenttype(**kwargs): defaults = {} defaults.update(**kwargs) return ContentType.objects.create(**defaults) def create_models(**kwargs): defaults = {} defaults["systolic"] = "systolic" defaults["diastolic"] = "diastolic" defaults["temperature"] = "temperature" defaults["oxygen_saturation"] = "oxygen_saturation" defaults["urinalysis"] = "urinalysis" defaults["heart_rate"] = "heart_rate" defaults["others"] = "others" defaults["attending_nurse"] = "attending_nurse" defaults["patient_no"] = "patient_no" defaults["first_name"] = "first_name" defaults["last_name"] = "last_name" defaults["middle_name"] = "middle_name" defaults.update(**kwargs) return Nurse.objects.create(**defaults) class modelsViewTest(unittest.TestCase): ''' Tests for Nurse ''' def setUp(self): self.client = Client() def test_list_models(self): url = reverse('nurse_models_list') response = self.client.get(url) self.assertEqual(response.status_code, 200) def test_create_models(self): url = reverse('nurse_models_create') data = { "systolic": "systolic", "diastolic": "diastolic", "temperature": "temperature", "oxygen_saturation": "oxygen_saturation", "urinalysis": "urinalysis", "heart_rate": "heart_rate", "others": "others", "attending_nurse": "attending_nurse", "patient_no": "patient_no", } response = self.client.post(url, data=data) self.assertEqual(response.status_code, 302) def test_detail_models(self): models = create_models() url = reverse('nurse_models_detail', args=[models.slug,]) response = self.client.get(url) self.assertEqual(response.status_code, 200) def test_update_models(self): models = create_models() data = { "systolic": "systolic", "diastolic": "diastolic", "temperature": "temperature", "oxygen_saturation": "oxygen_saturation", "urinalysis": "urinalysis", "heart_rate": "heart_rate", "others": "others", "attending_nurse": "attending_nurse", "patient_no": "patient_no", } url = reverse('nurse_models_update', args=[models.slug,]) response = self.client.post(url, data) self.assertEqual(response.status_code, 302)
b113374c074f9ff48b5efb71f0783554bc365763
3dd23bd87205ccb425709f3ec9dea6341425526d
/examples/texture_font.py
9b5c4485c97860269b20fc0031f5afa8e653cd47
[ "BSD-3-Clause" ]
permissive
titusz/freetype-py
ff05faef474534c24f20eaf0f53c9ce091c8eef0
72ac4c442251bc2b0d5617c5703eb48d3348e804
refs/heads/master
2021-01-18T08:26:04.215075
2012-05-21T14:59:29
2012-05-21T14:59:29
2,360,409
0
0
null
null
null
null
UTF-8
Python
false
false
11,752
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # # FreeType high-level python API - Copyright 2011 Nicolas P. Rougier # Distributed under the terms of the new BSD license. # # ----------------------------------------------------------------------------- ''' Texture font class ''' import sys import math import numpy as np import OpenGL.GL as gl from freetype import * class TextureAtlas: ''' Group multiple small data regions into a larger texture. The algorithm is based on the article by Jukka Jylänki : "A Thousand Ways to Pack the Bin - A Practical Approach to Two-Dimensional Rectangle Bin Packing", February 27, 2010. More precisely, this is an implementation of the Skyline Bottom-Left algorithm based on C++ sources provided by Jukka Jylänki at: http://clb.demon.fi/files/RectangleBinPack/ Example usage: -------------- atlas = TextureAtlas(512,512,3) region = atlas.get_region(20,20) ... atlas.set_region(region, data) ''' def __init__(self, width=1024, height=1024, depth=1): ''' Initialize a new atlas of given size. Parameters ---------- width : int Width of the underlying texture height : int Height of the underlying texture depth : 1 or 3 Depth of the underlying texture ''' self.width = int(math.pow(2, int(math.log(width, 2) + 0.5))) self.height = int(math.pow(2, int(math.log(height, 2) + 0.5))) self.depth = depth self.nodes = [ (0,0,self.width), ] self.data = np.zeros((self.height, self.width, self.depth), dtype=np.ubyte) self.texid = 0 self.used = 0 def upload(self): ''' Upload atlas data into video memory. ''' if not self.texid: self.texid = gl.glGenTextures(1) gl.glBindTexture( gl.GL_TEXTURE_2D, self.texid ) gl.glTexParameteri( gl.GL_TEXTURE_2D, gl.GL_TEXTURE_WRAP_S, gl.GL_CLAMP ) gl.glTexParameteri( gl.GL_TEXTURE_2D, gl.GL_TEXTURE_WRAP_T, gl.GL_CLAMP ) gl.glTexParameteri( gl.GL_TEXTURE_2D, gl.GL_TEXTURE_MAG_FILTER, gl.GL_LINEAR ) gl.glTexParameteri( gl.GL_TEXTURE_2D, gl.GL_TEXTURE_MIN_FILTER, gl.GL_LINEAR ) if self.depth == 1: gl.glTexImage2D( gl.GL_TEXTURE_2D, 0, gl.GL_ALPHA, self.width, self.height, 0, gl.GL_ALPHA, gl.GL_UNSIGNED_BYTE, self.data ) else: gl.glTexImage2D( gl.GL_TEXTURE_2D, 0, gl.GL_RGB, self.width, self.height, 0, gl.GL_RGB, gl.GL_UNSIGNED_BYTE, self.data ) def set_region(self, region, data): ''' Set a given region width provided data. Parameters ---------- region : (int,int,int,int) an allocated region (x,y,width,height) data : numpy array data to be copied into given region ''' x, y, width, height = region self.data[y:y+height,x:x+width, :] = data def get_region(self, width, height): ''' Get a free region of given size and allocate it Parameters ---------- width : int Width of region to allocate height : int Height of region to allocate Return ------ A newly allocated region as (x,y,width,height) or (-1,-1,0,0) ''' best_height = sys.maxint best_index = -1 best_width = sys.maxint region = 0, 0, width, height for i in range(len(self.nodes)): y = self.fit(i, width, height) if y >= 0: node = self.nodes[i] if (y+height < best_height or (y+height == best_height and node[2] < best_width)): best_height = y+height best_index = i best_width = node[2] region = node[0], y, width, height if best_index == -1: return -1,-1,0,0 node = region[0], region[1]+height, width self.nodes.insert(best_index, node) i = best_index+1 while i < len(self.nodes): node = self.nodes[i] prev_node = self.nodes[i-1] if node[0] < prev_node[0]+prev_node[2]: shrink = prev_node[0]+prev_node[2] - node[0] x,y,w = self.nodes[i] self.nodes[i] = x+shrink, y, w-shrink if self.nodes[i][2] <= 0: del self.nodes[i] i -= 1 else: break else: break i += 1 self.merge() self.used += width*height return region def fit(self, index, width, height): ''' Test if region (width,height) fit into self.nodes[index] Parameters ---------- index : int Index of the internal node to be tested width : int Width or the region to be tested height : int Height or the region to be tested ''' node = self.nodes[index] x,y = node[0], node[1] width_left = width if x+width > self.width: return -1 i = index while width_left > 0: node = self.nodes[i] y = max(y, node[1]) if y+height > self.height: return -1 width_left -= node[2] i += 1 return y def merge(self): ''' Merge nodes ''' i = 0 while i < len(self.nodes)-1: node = self.nodes[i] next_node = self.nodes[i+1] if node[1] == next_node[1]: self.nodes[i] = node[0], node[1], node[2]+next_node[2] del self.nodes[i+1] else: i += 1 class TextureFont: ''' A texture font gathers a set of glyph relatively to a given font filename and size. ''' def __init__(self, atlas, filename, size): ''' Initialize font Parameters: ----------- atlas: TextureAtlas Texture atlas where glyph texture will be stored filename: str Font filename size : float Font size ''' self.atlas = atlas self.filename = filename self.size = size self.glyphs = {} face = Face( self.filename ) face.set_char_size( int(self.size*64)) self._dirty = False metrics = face.size self.ascender = metrics.ascender/64.0 self.descender = metrics.descender/64.0 self.height = metrics.height/64.0 self.linegap = self.height - self.ascender + self.descender self.depth = atlas.depth set_lcd_filter(FT_LCD_FILTER_LIGHT) def __getitem__(self, charcode): ''' x.__getitem__(y) <==> x[y] ''' if charcode not in self.glyphs.keys(): self.load('%c' % charcode) return self.glyphs[charcode] def get_texid(self): ''' Get underlying texture identity . ''' if self._dirty: self.atlas.upload() self._dirty = False return self.atlas.texid texid = property(get_texid, doc='''Underlying texture identity.''') def load(self, charcodes = ''): ''' Build glyphs corresponding to individual characters in charcodes. Parameters: ----------- charcodes: [str | unicode] Set of characters to be represented ''' face = Face( self.filename ) pen = Vector(0,0) hres = 16*72 hscale = 1.0/16 face.set_char_size( int(self.size * 64), 0, hres, 72 ) matrix = Matrix( int((hscale) * 0x10000L), int((0.0) * 0x10000L), int((0.0) * 0x10000L), int((1.0) * 0x10000L) ) for charcode in charcodes: face.set_transform( matrix, pen ) if charcode in self.glyphs.keys(): continue self.dirty = True flags = FT_LOAD_RENDER | FT_LOAD_FORCE_AUTOHINT flags |= FT_LOAD_TARGET_LCD face.load_char( charcode, flags ) bitmap = face.glyph.bitmap left = face.glyph.bitmap_left top = face.glyph.bitmap_top width = face.glyph.bitmap.width rows = face.glyph.bitmap.rows pitch = face.glyph.bitmap.pitch x,y,w,h = self.atlas.get_region(width/self.depth+2, rows+2) if x < 0: print 'Missed !' continue x,y = x+1, y+1 w,h = w-2, h-2 data = [] for i in range(rows): data.extend(bitmap.buffer[i*pitch:i*pitch+width]) data = np.array(data,dtype=np.ubyte).reshape(h,w,3) gamma = 1.5 Z = ((data/255.0)**(gamma)) data = (Z*255).astype(np.ubyte) self.atlas.set_region((x,y,w,h), data) # Build glyph size = w,h offset = left, top advance= face.glyph.advance.x, face.glyph.advance.y u0 = (x + 0.0)/float(self.atlas.width) v0 = (y + 0.0)/float(self.atlas.height) u1 = (x + w - 0.0)/float(self.atlas.width) v1 = (y + h - 0.0)/float(self.atlas.height) texcoords = (u0,v0,u1,v1) glyph = TextureGlyph(charcode, size, offset, advance, texcoords) self.glyphs[charcode] = glyph # Generate kerning for g in self.glyphs.values(): kerning = face.get_kerning(g.charcode, charcode, mode=FT_KERNING_UNSCALED) if kerning.x != 0: glyph.kerning[g.charcode] = kerning.x kerning = face.get_kerning(charcode, g.charcode, mode=FT_KERNING_UNSCALED) if kerning.x != 0: g.kerning[charcode] = kerning.x class TextureGlyph: ''' A texture glyph gathers information relative to the size/offset/advance and texture coordinates of a single character. It is generally built automatically by a TextureFont. ''' def __init__(self, charcode, size, offset, advance, texcoords): ''' Build a new texture glyph Parameter: ---------- charcode : char Represented character size: tuple of 2 ints Glyph size in pixels offset: tuple of 2 floats Glyph offset relatively to anchor point advance: tuple of 2 floats Glyph advance texcoords: tuple of 4 floats Texture coordinates of bottom-left and top-right corner ''' self.charcode = charcode self.size = size self.offset = offset self.advance = advance self.texcoords = texcoords self.kerning = {} def get_kerning(self, charcode): ''' Get kerning information Parameters: ----------- charcode: char Character preceding this glyph ''' if charcode in self.kerning.keys(): return self.kerning[charcode] else: return 0
fc593f18e687cb291d60be67c2b8038adda0ff0a
c3c7398ec14865ea34c7f03aa5e012ddb19f0d5b
/app/models.py
e35cb5a4cf60d86793de1766edc457b72c9f70fa
[]
no_license
mzm5466/blog
0e022f0ce85a0079cb72ffd9f472c7684f94d9fb
13625fe7028a0df11a30d7de32751e34d681de00
refs/heads/master
2021-01-23T16:51:58.296591
2018-11-17T06:05:50
2018-11-17T06:05:50
102,748,039
0
0
null
2018-11-12T23:28:57
2017-09-07T14:36:32
JavaScript
UTF-8
Python
false
false
1,318
py
#!/usr/bin/python #-*- coding:utf-8 -*- from __future__ import unicode_literals from django.db import models from DjangoUeditor.models import UEditorField from django.core.urlresolvers import reverse KIND_CHOICES=( ('python','python'), ('c++','c++'), ('java','java'), ('javascript','javascript'), ('html','html'), ('css','css'), ('linux','linux'), ) # Create your models here. class Moment(models.Model): title=models.CharField(u'标题',max_length=30,default="请在此输入标题") shortcontent=models.TextField(u'短梗概',max_length=100,default="请在此输入梗概") content = UEditorField(u'内容', height=300, width=1000, default=u'', blank=True, imagePath="", toolbars='full', filePath='')#models.TextField(u'内容',max_length=3000,default="请在此处输入") user_name=models.CharField(u'作者',max_length=20,default='匿名') kind=models.CharField(u'文章类型',max_length=20,choices=KIND_CHOICES,default=KIND_CHOICES[0]) createtime=models.DateTimeField(auto_now=True) def __unicode__(self): # 在Python3中用 __str__ 代替 __unicode__ return self.title class Meta: verbose_name = '博客文章' verbose_name_plural = '博客文章' ordering = ['-createtime']
cc47cf7d57fa133086e9fd19950f7804b7feb362
2f2d2ceb7eb79e1d441ed278a92ea484dee8501e
/analysis/python/scattering/gb_scatt_fit.py
a4edccd2010cf300912f2ac406c7cc461027e8bc
[]
no_license
rtreharne/SZO
b20943b1afaa10f0e4fc032a1f2955eda4fd54b5
2fb71f85cd3c19f46782c528d7357a1ae5dc49e5
refs/heads/master
2021-01-10T04:28:13.662690
2015-12-17T10:16:28
2015-12-17T10:16:28
48,166,656
0
0
null
null
null
null
UTF-8
Python
false
false
3,927
py
#! /usr/bin/env python from numpy import * from pylab import * from math import * from pylab import * from matplotlib.widgets import Slider import matplotlib.pyplot as plt import matplotlib.cm as cm import matplotlib.mlab as mlab import tkFileDialog import numpy as np import nvsmob import nelmin from matplotlib.font_manager import FontProperties #matplotlib.rc('xtick', labelsize = 15) #matplotlib.rc('ytick', labelsize = 15, ) class Page: fig = figure(figsize = (6,5)) #subplots_adjust(bottom=0.35) global e, m0, e0, hbar, k, T, kT, m e = 1.602e-19 e0 = 8.85e-12 m0 = 9.11e-31 hbar = 1.055e-34 k = 1.38e-23 T = 300 kT = k*T m = 0.4*m0 def __init__(self): self.x = arange(1e19, 1e21, 1e18) self.ax = subplot(111) self.xdata, self.ydata, self.greenx, self.greeny= nvsmob.mob() p = ([50, 1.8, 9.25, 0.54]) p = self.fit(p) mu_total, mu1, mu2 = self.crunch(p) self.update(self.x, mu_total, mu1, mu2) print p def crunch(self, p): self.index = 0 mumax = 50 x = self.x L = p[0]*1e-7 Nt = p[1]*1e14 A = p[2]/e B = p[3] mu0 = e*L/sqrt(2*pi*m*kT) Eb = e**2*Nt**2/(8*8.4*e0*x) Ef = hbar**2*(3*pi**2*x*1e6)**(2.0/3)/(2*m) mu1 = mu0*exp(-Eb/kT) mu2 = (mumax - mu0)/(1+exp(-A*(Ef - (B*e) - Eb))) mu_total = mu1+mu2 return mu_total, mu1, mu2 def update(self, x, mu_total, mu1, mu2): sigma = 1e-20 for i in range (0,len(x)): x[i] = sigma*x[i] for i in range (0,len(self.xdata)): self.xdata[i] = sigma*self.xdata[i] self.greenx[i] = sigma*self.greenx[i] self.ax.clear() line3, = self.ax.plot(x, mu_total, linewidth = 3, alpha = 0.75) data1, = self.ax.plot(self.xdata, self.ydata, 'o', color = 'red', alpha = 0.7, markersize = 8) data2, = self.ax.plot(self.greenx, self.greeny, '^', color = 'green', alpha = 0.7, markersize = 8) #self.ax.plot(self.greenx, self.greeny, 'o', color = 'green') line1, = self.ax.plot(x, mu1, '--', linewidth = 2, color = 'orange') line2, = self.ax.plot(x, mu2, '-', linewidth = 2, color = 'purple') line2.set_dashes([8, 4, 2, 4, 2, 4]) #self.ax.set_xscale('log') self.ax.set_ylim(0, 18) self.ax.set_ylabel(r'$\mu_e$ (cm$^2$V$^{-1}$s$^{-1}$)', fontsize = 15) self.ax.set_xlim(0.5, 5) self.ax.set_xlabel(r'$n_e$ ($\times10^{20}$ cm$^{-3}$)', fontsize = 15) #self.ax.set_xscale('log') fontP = FontProperties() fontP.set_size('large') leg1 = self.ax.legend((data1,data2,line1, line2,line3), (r'data ($< 0.65\%$ wt. SiO$_{2}$)',r'data ($>0.65\%$ wt. SiO$_{2}$)',r'$\mu_{gb}=\mu_0\exp(-\frac{\phi}{k_BT})$', r'$\mu_t=\frac{\mu_{ii}-\mu_{gb}}{1+\exp[-\alpha(E_f-\beta\phi)]}$',r'$\mu_{eff}=\mu_{gb} + \mu_t$'), 'upper left', prop = fontP,fancybox=False) leg1.get_frame().set_alpha(0.0) def func(self, p): sum = 0 x = self.xdata y = self.ydata mumax = 50 L = p[0]*1e-7 Nt = p[1]*1e14 A = p[2]/e B = p[3] mu0 = e*L/sqrt(2*pi*m*kT) Eb, Ef, mu1, mu2, mu_total = [],[],[],[],[] for i in range (0, len(x)): Eb.append(e**2*Nt**2/(8*8.4*e0*x[i])) Ef.append(hbar**2*(3*pi**2*x[i]*1e6)**(2.0/3)/(2*m)) mu1.append(mu0*exp(-Eb[i]/kT)) mu2.append((mumax - mu0)/(1+exp(-A*(Ef[i] - (B*e) - Eb[i])))) mu_total.append(mu1[i] + mu2[i]) sum += sqrt((mu_total[i]-y[i])**2) sum = sum/len(x) return sum def fit(self, p): for i in range (0, 5): result, fx, conv_flag, nfe, res = nelmin.minimize(self.func, p) p = result return result graph = Page() show()
21f24ea6ddca2a3fb1ffdbb15429ef55979c5e7d
439f3bbc4b9a84b27052b2d1d5ea166bca2e1498
/setup.py
dff003eddf7047204a0ae39f94ca37da91cabe76
[ "Apache-2.0" ]
permissive
zeroyou/AndroidViewClient
dc52c821b11e96decf6066b670165c154101bc81
06cefca324d3ab255e4367990a5d1389b0a39d3d
refs/heads/master
2022-12-25T00:57:29.432351
2020-09-20T00:41:47
2020-09-20T00:41:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,135
py
#!/usr/bin/env python from setuptools import setup, find_packages setup(name='androidviewclient', version='20.0.0b5', description='''AndroidViewClient is a 100% pure python library and tools that simplifies test script creation providing higher level operations and the ability of obtaining the tree of Views present at any given moment on the device or emulator screen. ''', license='Apache', keywords='android uiautomator viewclient monkeyrunner test automation', author='Diego Torres Milano', author_email='[email protected]', url='https://github.com/dtmilano/AndroidViewClient/', packages=find_packages('src'), package_dir={'':'src'}, package_data={'':['*.png']}, include_package_data=True, scripts=['tools/culebra', 'tools/dump'], classifiers=['Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'License :: OSI Approved :: Apache Software License'], install_requires=['setuptools', 'requests', 'numpy', 'matplotlib', 'culebratester-client >= 2.0.6'], )
a55eb2498c338eae709672405c5607d332a40235
c81d7dfef424b088bf2509a1baf406a80384ea5a
/venv/Lib/site-packages/whitenoise/middleware.py
f359321a7b53c64e2d2620204bde7381490358d6
[]
no_license
Goutham2591/OMK_PART2
111210d78fc4845481ed55c852b8f2f938918f4a
cb54fb21ebf472bffc6ee4f634bf1e68303e113d
refs/heads/master
2022-12-10T01:43:08.213010
2018-04-05T02:09:41
2018-04-05T02:09:41
124,828,094
0
1
null
2022-12-07T23:43:03
2018-03-12T03:20:14
Python
UTF-8
Python
false
false
1,545
py
from __future__ import absolute_import from django.http import FileResponse from whitenoise.django import DjangoWhiteNoise class WhiteNoiseMiddleware(DjangoWhiteNoise): """ Wrap DjangoWhiteNoise to allow it to function as Django middleware, rather than WSGI middleware This functions as both old- and new-style middleware, so can be included in either MIDDLEWARE or MIDDLEWARE_CLASSES. """ def __init__(self, get_response=None): self.get_response = get_response # We pass None for `application` super(WhiteNoiseMiddleware, self).__init__(None) def __call__(self, request): response = self.process_request(request) if response is None: response = self.get_response(request) return response def process_request(self, request): if self.autorefresh: static_file = self.find_file(request.path_info) else: static_file = self.files.get(request.path_info) if static_file is not None: return self.serve(static_file, request) def serve(self, static_file, request): response = static_file.get_response(request.method, request.META) status = int(response.status) http_response = FileResponse(response.file or (), status=status) # Remove default content-type del http_response['content-type'] for key, value in response.headers: http_response[key] = value return http_response
34ae4058e8b7b076fbec0cd6c034ebe978798f7f
1dacbf90eeb384455ab84a8cf63d16e2c9680a90
/pkgs/tornado-4.4.1-py27_0/lib/python2.7/site-packages/tornado/test/tcpserver_test.py
c01c04ddfb2baf903a76fbf5dfa182c3c2d21172
[ "Apache-2.0", "BSD-3-Clause", "LicenseRef-scancode-unknown" ]
permissive
wangyum/Anaconda
ac7229b21815dd92b0bd1c8b7ec4e85c013b8994
2c9002f16bb5c265e0d14f4a2314c86eeaa35cb6
refs/heads/master
2022-10-21T15:14:23.464126
2022-10-05T12:10:31
2022-10-05T12:10:31
76,526,728
11
10
Apache-2.0
2022-10-05T12:10:32
2016-12-15T05:26:12
Python
UTF-8
Python
false
false
1,361
py
from __future__ import absolute_import, division, print_function, with_statement import socket from tornado import gen from tornado.iostream import IOStream from tornado.log import app_log from tornado.stack_context import NullContext from tornado.tcpserver import TCPServer from tornado.testing import AsyncTestCase, ExpectLog, bind_unused_port, gen_test class TCPServerTest(AsyncTestCase): @gen_test def test_handle_stream_coroutine_logging(self): # handle_stream may be a coroutine and any exception in its # Future will be logged. class TestServer(TCPServer): @gen.coroutine def handle_stream(self, stream, address): yield gen.moment stream.close() 1 / 0 server = client = None try: sock, port = bind_unused_port() with NullContext(): server = TestServer() server.add_socket(sock) client = IOStream(socket.socket()) with ExpectLog(app_log, "Exception in callback"): yield client.connect(('localhost', port)) yield client.read_until_close() yield gen.moment finally: if server is not None: server.stop() if client is not None: client.close()
048da83cda17a4a360c09c39781995cf2d3af27f
3691259d4be62b60d8d52f38b36d6a24e5fd4536
/docs/examples/compute/cloudsigma/create_vlan_subscription.py
a29e2394267225a7fe1141d0ed6edefb84091bdc
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
chenjiang1985/libcloud
f385fac278777c2bbfedaf440d353c9ad9eb5c69
587212da626dfe0e2936737108bcc49d666cf4b4
refs/heads/master
2021-07-16T14:29:21.821490
2019-11-27T02:20:43
2019-11-27T02:20:43
222,844,781
1
2
Apache-2.0
2020-10-27T22:06:36
2019-11-20T03:41:31
Python
UTF-8
Python
false
false
376
py
from libcloud.compute.types import Provider from libcloud.compute.providers import get_driver cls = get_driver(Provider.CLOUDSIGMA) driver = cls('username', 'password', region='zrh', api_version='2.0') subscription = driver.ex_create_subscription(amount=1, period='30 days', resource='vlan', auto_renew=True) print(subscription)
58b1d1422474f6027aa3f69edddb42e44fbb2a52
ce76b3ef70b885d7c354b6ddb8447d111548e0f1
/life_and_point/public_number/go_person_with_week/time/small_fact/tell_high_number.py
8f2dcc2a9607cc6373040ba43be5bb60c8ac08a7
[]
no_license
JingkaiTang/github-play
9bdca4115eee94a7b5e4ae9d3d6052514729ff21
51b550425a91a97480714fe9bc63cb5112f6f729
refs/heads/master
2021-01-20T20:18:21.249162
2016-08-19T07:20:12
2016-08-19T07:20:12
60,834,519
0
0
null
null
null
null
UTF-8
Python
false
false
191
py
#! /usr/bin/env python def thing(str_arg): way(str_arg) print('seem_great_time') def way(str_arg): print(str_arg) if __name__ == '__main__': thing('be_work_to_next_time')
f83fa49d5475aa107fb54496baa054affa656ec8
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/adverbs/_truest.py
f2ef775949b9144ce37ca8397bf6342c1da23e39
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
230
py
from xai.brain.wordbase.adverbs._true import _TRUE #calss header class _TRUEST(_TRUE, ): def __init__(self,): _TRUE.__init__(self) self.name = "TRUEST" self.specie = 'adverbs' self.basic = "true" self.jsondata = {}
f958909a7a6b280c944a1b5dcfc27981d588a125
4f01328f202107399b5676c82be9d8fc246a7cf9
/torch2trt_dynamic/converters/new_ones.py
b45d45eeac35741c2040f6444c7c52a79a7cbd40
[ "MIT" ]
permissive
JasonDu1993/torch2trt_dynamic
cccc6570ba68399e902346c06f362f80d38b6239
24bbad2ea4977bb88ce2ade433058becc6980c82
refs/heads/master
2022-12-29T17:10:03.714226
2020-10-11T07:24:37
2020-10-11T07:24:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,706
py
from torch2trt_dynamic.torch2trt_dynamic import * @tensorrt_converter('torch.Tensor.new_ones') def convert_new_ones(ctx): input = ctx.method_args[0] size = get_arg(ctx, 'size', pos=1, default=None) dtype = get_arg(ctx, 'dtype', pos=2, default=input.dtype) output = ctx.method_return if isinstance(size, int): size = (size, ) # check const is_const = True for s in size: if hasattr(s,'_trt'): is_const = False break if is_const: # create const value output_trt = trt_(ctx.network, output) else: # create fill trt_size = [] for s in size: if hasattr(s, '_trt'): trt_size.append(s._trt) else: trt_size.append(trt_(ctx.network, s)) trt_size = ctx.network.add_concatenation(trt_size).get_output(0) layer = ctx.network.add_fill(size, trt.FillOperation.RANDOM_UNIFORM) layer.set_input(0, trt_size) layer.set_input(1, trt_(ctx.network, input.new_tensor(1))) layer.set_input(2, trt_(ctx.network, input.new_tensor(1))) output_trt = layer.get_output(0) data_type = None if dtype==torch.float32: data_type = trt.DataType.FLOAT elif dtype==torch.int32 or dtype==torch.long: data_type = trt.DataType.INT32 elif dtype==torch.bool: data_type = trt.DataType.BOOL else: print("unsupported convert type:{}".format(dtype)) if data_type is not None: layer = ctx.network.add_identity(output_trt) layer.set_output_type(0, data_type) output_trt = layer.get_output(0) output._trt = output_trt
df5fdd8502bafee22cd6422aadd62f41b6e93175
ade047677ca695a8d27ff50645f1afe8cd1463df
/Entity.py
74b0d2ab5a75cdc154d488c7aee0e35e161aff20
[]
no_license
xuzhuo77/WorkSpace-FrameWork
677f02eead801fb48e60d0411ea4dc5aa516af57
109c691c270020ef20f36f625c31166c49386351
refs/heads/master
2023-03-06T13:02:28.528231
2021-02-21T23:01:08
2021-02-21T23:01:08
337,577,954
0
0
null
null
null
null
UTF-8
Python
false
false
947
py
from sqlalchemy import Column, Integer, String,DateTime from sqlalchemy.ext.declarative import declarative_base import datetime from Utils.UniqueIdUtil import gen_guid base = declarative_base() class Entity(base): __abstract__ = True # __tablename__ = "Entity" id = Column(Integer, primary_key=True,autoincrement=True) version = Column(Integer, nullable=False) update_time=Column(DateTime, default=datetime.datetime.now, comment='更新时间') # guid =Column(String(64), default=gen_guid(), primary_key=True) # delete_flag=Column(Integer) # creator=Column(String(64)) create_date=Column(DateTime, default=datetime.datetime.now, comment='创建时间') # def __new__(cls, *args, **kwargs): # print(kwargs) # def __init__(self,*args,**kwargs): # for i,k in kwargs: # def __dict__(self): # return str({c.name: getattr(self, c.name, None) for c in self.__table__.columns})
b4328f61f077d87793f58c3c84eb3f34d5b7bf26
607dc8df19fc5248f6289cdda97857b5d58ca16f
/smac/model/gaussian_process/kernels/rbf_kernel.py
5bf20765886b3b5320be8d5b80fa8810a4ef6c68
[ "BSD-3-Clause", "LicenseRef-scancode-philippe-de-muyter", "LicenseRef-scancode-unknown-license-reference" ]
permissive
automl/SMAC3
7dce243a33023c52d6819deff966f7b502e90ed0
541ee7e0383b491b86d1a23dcff669f2efad616d
refs/heads/main
2023-08-31T17:36:06.067579
2023-08-01T13:02:51
2023-08-01T13:02:51
65,900,469
943
259
NOASSERTION
2023-09-11T02:36:57
2016-08-17T10:58:05
Python
UTF-8
Python
false
false
2,738
py
from __future__ import annotations import numpy as np import scipy.optimize import scipy.spatial.distance import scipy.special import sklearn.gaussian_process.kernels as kernels from smac.model.gaussian_process.kernels.base_kernels import AbstractKernel from smac.model.gaussian_process.priors.abstract_prior import AbstractPrior __copyright__ = "Copyright 2022, automl.org" __license__ = "3-clause BSD" class RBFKernel(AbstractKernel, kernels.RBF): """RBF kernel implementation.""" def __init__( self, length_scale: float | tuple[float, ...] | np.ndarray = 1.0, length_scale_bounds: tuple[float, float] | list[tuple[float, float]] | np.ndarray = (1e-5, 1e5), operate_on: np.ndarray | None = None, has_conditions: bool = False, prior: AbstractPrior | None = None, ) -> None: super().__init__( operate_on=operate_on, has_conditions=has_conditions, prior=prior, length_scale=length_scale, length_scale_bounds=length_scale_bounds, ) def _call( self, X: np.ndarray, Y: np.ndarray | None = None, eval_gradient: bool = False, active: np.ndarray | None = None, ) -> np.ndarray | tuple[np.ndarray, np.ndarray]: X = np.atleast_2d(X) length_scale = kernels._check_length_scale(X, self.length_scale) if Y is None: dists = scipy.spatial.distance.pdist(X / length_scale, metric="sqeuclidean") K = np.exp(-0.5 * dists) # convert from upper-triangular matrix to square matrix K = scipy.spatial.distance.squareform(K) np.fill_diagonal(K, 1) else: if eval_gradient: raise ValueError("Gradient can only be evaluated when Y is None.") dists = scipy.spatial.distance.cdist(X / length_scale, Y / length_scale, metric="sqeuclidean") K = np.exp(-0.5 * dists) if active is not None: K = K * active if eval_gradient: if self.hyperparameter_length_scale.fixed: # Hyperparameter l kept fixed return K, np.empty((X.shape[0], X.shape[0], 0)) elif not self.anisotropic or length_scale.shape[0] == 1: K_gradient = (K * scipy.spatial.distance.squareform(dists))[:, :, np.newaxis] return K, K_gradient elif self.anisotropic: # We need to recompute the pairwise dimension-wise distances K_gradient = (X[:, np.newaxis, :] - X[np.newaxis, :, :]) ** 2 / (length_scale**2) K_gradient *= K[..., np.newaxis] return K, K_gradient return K
089cc627b0ee56e98b1c995bece77eec11b6c657
76e931912629c37beedf7c9b112b53e7de5babd7
/1-mouth01/day14/exe01.py
e46e565f07c85e20b97d5613bbc0a84c048de75f
[ "Apache-2.0" ]
permissive
gary-gggggg/gary
c59ac21d8e065f296ff986d11a0e4cbf186a1bc4
d8ba30ea4bc2b662a2d6a87d247f813e5680d63e
refs/heads/main
2023-02-23T06:54:34.500683
2021-02-01T10:17:02
2021-02-01T10:17:02
334,905,744
4
0
null
null
null
null
UTF-8
Python
false
false
151
py
from module_exe import data import module_exe from module_exe import MyClass c1 = MyClass() c1.func02() c1.func03() print(data) module_exe.func01()
87ab68ad4f53266913c451ae4e3913018abb2b9c
88c1f9ccb62e91d6b0574bcde1043921bdeb0126
/lib_common/src/d1_common/type_conversions.py
04d9b2723e4710e9fdf897485b15fcc9c73a449b
[ "Apache-2.0" ]
permissive
jevans97utk/d1_python
83b8de8780287c655779844f367b9189413da074
3ac4d4f3ca052d3e8641a6a329cab526c8ddcb0d
refs/heads/master
2020-05-21T01:16:50.677816
2019-04-22T16:09:44
2019-04-22T16:09:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
19,001
py
#!/usr/bin/env python # This work was created by participants in the DataONE project, and is # jointly copyrighted by participating institutions in DataONE. For # more information on DataONE, see our web site at http://dataone.org. # # Copyright 2009-2019 DataONE # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities for handling the DataONE types. - Handle conversions between XML representations used in the D1 Python stack. - Handle conversions between v1 and v2 DataONE XML types. The DataONE Python stack uses the following representations for the DataONE API XML docs: - As native Unicode ``str``, typically "pretty printed" with indentations, when formatted for display. - As UTF-8 encoded ``bytes`` when send sending or receiving over the network, or loading or saving as files. - Schema validation and manipulation in Python code as PyXB binding objects. - General processing as ElementTrees. In order to allow conversions between all representations without having to implement separate conversions for each combination of input and output representation, a "hub and spokes" model is used. Native Unicode str was selected as the "hub" representation due to: - PyXB provides translation to/from string and DOM. - ElementTree provides translation to/from string. """ import re import xml.etree import xml.etree.ElementTree import pyxb import pyxb.namespace.utility import d1_common.types.dataoneTypes_v1 import d1_common.types.dataoneTypes_v1_1 import d1_common.types.dataoneTypes_v1_2 import d1_common.types.dataoneTypes_v2_0 # Map common namespace prefixes to namespaces NS_DICT = { # TODO: 'v1' should map to v1_2.Namespace 'v1': str(d1_common.types.dataoneTypes_v1.Namespace), 'v1_1': str(d1_common.types.dataoneTypes_v1_1.Namespace), 'v1_2': str(d1_common.types.dataoneTypes_v1_2.Namespace), 'v2': str(d1_common.types.dataoneTypes_v2_0.Namespace), 'rdfs': 'http://www.w3.org/2000/01/rdf-schema#', 'ore': 'http://www.openarchives.org/ore/terms/', 'rdf': 'http://www.w3.org/1999/02/22-rdf-syntax-ns#', 'dcterms': 'http://purl.org/dc/terms/', 'cito': 'http://purl.org/spar/cito/', } # Map common namespaces to prefixes NS_REVERSE_DICT = {v: k for k, v in NS_DICT.items()} BINDING_TO_VERSION_TAG_DICT = { d1_common.types.dataoneTypes_v1: 'v1', d1_common.types.dataoneTypes_v1_1: 'v1', d1_common.types.dataoneTypes_v1_2: 'v1', d1_common.types.dataoneTypes_v2_0: 'v2', } VERSION_TO_BINDING_DICT = { 'v1': d1_common.types.dataoneTypes_v1_2, 'v2': d1_common.types.dataoneTypes_v2_0, (1, 0): d1_common.types.dataoneTypes_v1, (1, 1): d1_common.types.dataoneTypes_v1_1, (1, 2): d1_common.types.dataoneTypes_v1_2, (2, 0): d1_common.types.dataoneTypes_v2_0, } # Register global namespace prefixes for use by ElementTree when serializing. for prefix_str, uri_str in list(NS_DICT.items()): xml.etree.ElementTree.register_namespace(prefix_str, uri_str) def get_version_tag_by_pyxb_binding(pyxb_binding): """Map PyXB binding to DataONE API version. Given a PyXB binding, return the API major version number. Args: pyxb_binding: PyXB binding object Returns: DataONE API major version number, currently, ``v1``, ``1``, ``v2`` or ``2``. """ try: return BINDING_TO_VERSION_TAG_DICT[pyxb_binding] except KeyError: raise ValueError( 'Unknown PyXB binding. pyxb_binding="{}"'.format(repr(pyxb_binding)) ) def get_pyxb_binding_by_api_version(api_major, api_minor=0): """Map DataONE API version tag to PyXB binding. Given a DataONE API major version number, return PyXB binding that can serialize and deserialize DataONE XML docs of that version. Args: api_major, api_minor: str or int DataONE API major and minor version numbers. - If ``api_major`` is an integer, it is combined with ``api_minor`` to form an exact version. - If ``api_major`` is a string of ``v1`` or ``v2``, ``api_minor`` is ignored and the latest PyXB bindingavailable for the ``api_major`` version is returned. Returns: PyXB binding: E.g., ``d1_common.types.dataoneTypes_v1_1``. """ try: return VERSION_TO_BINDING_DICT[api_major, api_minor] except KeyError: raise ValueError( 'Unknown DataONE API version: {}.{}'.format(api_major, api_minor) ) def get_version_tag(api_major): """Args: api_major: int DataONE API major version. Valid versions are currently 1 or 2. Returns: str: DataONE API version tag. Valid version tags are currently ``v1`` or ``v2``. """ return 'v{}'.format(api_major) def extract_version_tag_from_url(url): """Extract a DataONE API version tag from a MN or CN service endpoint URL. Args: url : str Service endpoint URL. E.g.: ``https://mn.example.org/path/v2/object/pid``. Returns: str : Valid version tags are currently ``v1`` or ``v2``. """ m = re.match(r'(/|^)(v\d)(/|$)', url) if not m: return None return m.group(2) def get_pyxb_namespaces(): """Returns: list of str: XML namespaces currently known to PyXB """ return pyxb.namespace.utility.AvailableNamespaces() # # Convert types to v1 # def str_to_v1_str(xml_str): """Convert a API v2 XML doc to v1 XML doc. Removes elements that are only valid for v2 and changes namespace to v1. If doc is already v1, it is returned unchanged. Args: xml_str : str API v2 XML doc. E.g.: ``SystemMetadata v2``. Returns: str : API v1 XML doc. E.g.: ``SystemMetadata v1``. """ if str_is_v1(xml_str): return xml_str etree_obj = str_to_etree(xml_str) strip_v2_elements(etree_obj) etree_replace_namespace(etree_obj, d1_common.types.dataoneTypes_v1.Namespace) return etree_to_str(etree_obj) def pyxb_to_v1_str(pyxb_obj): """Convert a API v2 PyXB object to v1 XML doc. Removes elements that are only valid for v2 and changes namespace to v1. Args: pyxb_obj: PyXB object API v2 PyXB object. E.g.: ``SystemMetadata v2_0``. Returns: str : API v1 XML doc. E.g.: ``SystemMetadata v1``. """ return str_to_v1_str(pyxb_to_str(pyxb_obj)) def str_to_v1_pyxb(xml_str): """Convert a API v2 XML doc to v1 PyXB object. Removes elements that are only valid for v2 and changes namespace to v1. Args: xml_str : str API v2 XML doc. E.g.: ``SystemMetadata v2``. Returns: PyXB object: API v1 PyXB object. E.g.: ``SystemMetadata v1_2``. """ str_to_pyxb(str_to_v1_str(xml_str)) # # Convert types to v2 # def str_to_v2_str(xml_str): """Convert a API v1 XML doc to v2 XML doc. All v1 elements are valid for v2, so only changes namespace. Args: xml_str : str API v1 XML doc. E.g.: ``SystemMetadata v1``. Returns: str : API v2 XML doc. E.g.: ``SystemMetadata v2``. """ if str_is_v2(xml_str): return xml_str etree_obj = str_to_etree(xml_str) etree_replace_namespace(etree_obj, d1_common.types.dataoneTypes_v2_0.Namespace) return etree_to_str(etree_obj) def pyxb_to_v2_str(pyxb_obj): """Convert a API v1 PyXB object to v2 XML doc. All v1 elements are valid for v2, so only changes namespace. Args: pyxb_obj: PyXB object API v1 PyXB object. E.g.: ``SystemMetadata v1_0``. Returns: str : API v2 XML doc. E.g.: ``SystemMetadata v2``. """ return str_to_v2_str(pyxb_to_str(pyxb_obj)) def str_to_v2_pyxb(xml_str): """Convert a API v1 XML doc to v2 PyXB object. All v1 elements are valid for v2, so only changes namespace. Args: xml_str : str API v1 XML doc. E.g.: ``SystemMetadata v1``. Returns: PyXB object: API v2 PyXB object. E.g.: ``SystemMetadata v2_0``. """ str_to_pyxb(str_to_v2_str(xml_str)) # Type checks def is_pyxb(pyxb_obj): """Returns: bool: **True** if ``pyxb_obj`` is a PyXB object. """ return isinstance(pyxb_obj, pyxb.cscRoot) def is_pyxb_d1_type(pyxb_obj): """Returns: bool: **True** if ``pyxb_obj`` is a PyXB object holding a DataONE API type. """ try: return pyxb_is_v1(pyxb_obj) or pyxb_is_v2(pyxb_obj) except AttributeError: return False def is_pyxb_d1_type_name(pyxb_obj, expected_pyxb_type_name): """ Args: pyxb_obj : object May be a PyXB object and may hold a DataONE API type. expected_pyxb_type_name : str Case sensitive name of a DataONE type. E.g.: ``SystemMetadata``, ``LogEntry``, ``ObjectInfo``. Returns: bool: **True** if object is a PyXB object holding a value of the specified type. """ try: return pyxb_get_type_name(pyxb_obj) == expected_pyxb_type_name except AttributeError: return False def pyxb_get_type_name(obj_pyxb): """Args: obj_pyxb: PyXB object. Returns: str: Name of the type the PyXB object is holding. E.g.: ``SystemMetadata``, ``LogEntry``, ``ObjectInfo``. """ return pyxb_get_namespace_name(obj_pyxb).split('}')[-1] # noinspection PyProtectedMember def pyxb_get_namespace_name(obj_pyxb): """Args: obj_pyxb: PyXB object. Returns: str: Namespace and Name of the type the PyXB object is holding. E.g.: ``{http://ns.dataone.org/service/types/v2.0}SystemMetadata`` """ return str(obj_pyxb._ExpandedName) def str_is_v1(xml_str): """ Args: xml_str : str DataONE API XML doc. Returns: bool: **True** if XML doc is a DataONE API v1 type. """ return pyxb_is_v1(str_to_pyxb(xml_str)) def str_is_v2(xml_str): """ Args: xml_str : str DataONE API XML doc. Returns: bool: **True** if XML doc is a DataONE API v2 type. """ return pyxb_is_v2(str_to_pyxb(xml_str)) def str_is_error(xml_str): """ Args: xml_str : str DataONE API XML doc. Returns: bool: **True** if XML doc is a DataONE Exception type. """ return str_to_etree(xml_str).tag == 'error' def str_is_identifier(xml_str): """ Args: xml_str : str DataONE API XML doc. Returns: bool: **True** if XML doc is a DataONE Identifier type. """ return ( str_to_etree(xml_str).tag == '{http://ns.dataone.org/service/types/v1}identifier' ) def str_is_objectList(xml_str): """ Args: xml_str : str DataONE API XML doc. Returns: bool: **True** if XML doc is a DataONE ObjectList type. """ return ( str_to_etree(xml_str).tag == '{http://ns.dataone.org/service/types/v1}objectList' ) def str_is_well_formed(xml_str): """ Args: xml_str : str DataONE API XML doc. Returns: bool: **True** if XML doc is well formed. """ try: str_to_etree(xml_str) except xml.etree.ElementTree.ParseError: return False else: return True # noinspection PyProtectedMember def pyxb_is_v1(pyxb_obj): """ Args: pyxb_obj : PyXB object PyXB object holding an unknown type. Returns: bool: **True** if ``pyxb_obj`` holds an API v1 type. """ # TODO: Will not detect v1.2 as v1. return ( pyxb_obj._element().name().namespace() == d1_common.types.dataoneTypes_v1.Namespace ) # noinspection PyProtectedMember def pyxb_is_v2(pyxb_obj): """ Args: pyxb_obj : PyXB object PyXB object holding an unknown type. Returns: bool: **True** if ``pyxb_obj`` holds an API v2 type. """ return ( pyxb_obj._element().name().namespace() == d1_common.types.dataoneTypes_v2_0.Namespace ) # Conversions between XML representations def str_to_pyxb(xml_str): """Deserialize API XML doc to PyXB object. Args: xml_str: str DataONE API XML doc Returns: PyXB object: Matching the API version of the XML doc. """ # PyXB shares information about all known types between all imported pyxb_binding, so # a v1 binding will work for deserializing a v2 type. return d1_common.types.dataoneTypes_v1.CreateFromDocument(xml_str) def str_to_etree(xml_str, encoding='utf-8'): """Deserialize API XML doc to an ElementTree. Args: xml_str: bytes DataONE API XML doc encoding: str Decoder to use when converting the XML doc ``bytes`` to a Unicode str. Returns: ElementTree: Matching the API version of the XML doc. """ parser = xml.etree.ElementTree.XMLParser(encoding=encoding) return xml.etree.ElementTree.fromstring(xml_str, parser=parser) def pyxb_to_str(pyxb_obj, encoding='utf-8'): """Serialize PyXB object to XML doc. Args: pyxb_obj: PyXB object encoding: str Encoder to use when converting the Unicode strings in the PyXB object to XML doc ``bytes``. Returns: str: API XML doc, matching the API version of ``pyxb_obj``. """ return pyxb_obj.toxml(encoding) def etree_to_str(etree_obj, encoding='utf-8'): """Serialize ElementTree to XML doc. Args: etree_obj: ElementTree encoding: str Encoder to use when converting the Unicode strings in the ElementTree to XML doc ``bytes``. Returns: str: API XML doc matching the API version of ``etree_obj``. """ return xml.etree.ElementTree.tostring(etree_obj, encoding) def pyxb_to_etree(pyxb_obj): """Convert PyXB object to ElementTree. Args: pyxb_obj: PyXB object Returns: ElementTree: Matching the API version of the PyXB object. """ return str_to_etree(pyxb_to_str(pyxb_obj)) def etree_to_pyxb(etree_obj): """Convert ElementTree to PyXB object. Args: etree_obj: ElementTree Returns: PyXB object: Matching the API version of the ElementTree object. """ return pyxb_to_str(str_to_etree(etree_obj)) # ElementTree def replace_namespace_with_prefix(tag_str, ns_reverse_dict=None): """Convert XML tag names with namespace on the form ``{namespace}tag`` to form ``prefix:tag``. Args: tag_str: str Tag name with namespace. E.g.: ``{http://www.openarchives.org/ore/terms/}ResourceMap``. ns_reverse_dict : dict A dictionary of namespace to prefix to use for the conversion. If not supplied, a default dict with the namespaces used in DataONE XML types is used. Returns: str: Tag name with prefix. E.g.: ``ore:ResourceMap``. """ ns_reverse_dict = ns_reverse_dict or NS_REVERSE_DICT for namespace_str, prefix_str in ns_reverse_dict.items(): tag_str = tag_str.replace( '{{{}}}'.format(namespace_str), '{}:'.format(prefix_str) ) return tag_str def etree_replace_namespace(etree_obj, ns_str): """In-place change the namespace of elements in an ElementTree. Args: etree_obj: ElementTree ns_str : str The namespace to set. E.g.: ``http://ns.dataone.org/service/types/v1``. """ def _replace_recursive(el, n): el.tag = re.sub(r'{.*\}', '{{{}}}'.format(n), el.tag) el.text = el.text.strip() if el.text else None el.tail = el.tail.strip() if el.tail else None for child_el in el: _replace_recursive(child_el, n) _replace_recursive(etree_obj, ns_str) def strip_v2_elements(etree_obj): """In-place remove elements and attributes that are only valid in v2 types. Args: etree_obj: ElementTree ElementTree holding one of the DataONE API types that changed between v1 and v2. """ if etree_obj.tag == v2_0_tag('logEntry'): strip_logEntry(etree_obj) elif etree_obj.tag == v2_0_tag('log'): strip_log(etree_obj) elif etree_obj.tag == v2_0_tag('node'): strip_node(etree_obj) elif etree_obj.tag == v2_0_tag('nodeList'): strip_node_list(etree_obj) elif etree_obj.tag == v2_0_tag('systemMetadata'): strip_system_metadata(etree_obj) else: raise ValueError('Unknown root element. tag="{}"'.format(etree_obj.tag)) def strip_system_metadata(etree_obj): """In-place remove elements and attributes that are only valid in v2 types from v1 System Metadata. Args: etree_obj: ElementTree ElementTree holding a v1 SystemMetadata. """ for series_id_el in etree_obj.findall('seriesId'): etree_obj.remove(series_id_el) for media_type_el in etree_obj.findall('mediaType'): etree_obj.remove(media_type_el) for file_name_el in etree_obj.findall('fileName'): etree_obj.remove(file_name_el) def strip_log(etree_obj): """In-place remove elements and attributes that are only valid in v2 types from v1 Log. Args: etree_obj: ElementTree ElementTree holding a v1 Log. """ for log_entry_el in etree_obj.findall('logEntry'): strip_logEntry(log_entry_el) def strip_logEntry(etree_obj): """In-place remove elements and attributes that are only valid in v2 types from v1 LogEntry. Args: etree_obj: ElementTree ElementTree holding a v1 LogEntry. """ for event_el in etree_obj.findall('event'): if event_el.text not in ( 'create', 'read', 'update', 'delete', 'replicate', 'synchronization_failed', 'replication_failed', ): event_el.text = 'create' def strip_node(etree_obj): """In-place remove elements and attributes that are only valid in v2 types from v1 Node. Args: etree_obj: ElementTree ElementTree holding a v1 Node. """ for property_el in etree_obj.findall('property'): etree_obj.remove(property_el) def strip_node_list(etree_obj): """In-place remove elements and attributes that are only valid in v2 types from v1 NodeList. Args: etree_obj: ElementTree ElementTree holding a v1 NodeList. """ for node_el in etree_obj.findall('node'): strip_node(node_el) def v2_0_tag(element_name): """Add a v2 namespace to a tag name. Args: element_name: str The name of a DataONE v2 type. E.g.: ``NodeList``. Returns: str: The tag name with DataONE API v2 namespace. E.g.: ``{http://ns.dataone.org/service/types/v2.0}NodeList`` """ return '{{{}}}{}'.format(NS_DICT['v2'], element_name)
81026946ea3022346dd16b919458822b14a2eb72
ac2c3e8c278d0aac250d31fd023c645fa3984a1b
/saleor/saleor/graphql/core/enums.py
8046ea0ca5905d638c87ce50b2abe62ae9f3c1c4
[ "BSD-3-Clause", "CC-BY-4.0" ]
permissive
jonndoe/saleor-test-shop
152bc8bef615382a45ca5f4f86f3527398bd1ef9
1e83176684f418a96260c276f6a0d72adf7dcbe6
refs/heads/master
2023-01-21T16:54:36.372313
2020-12-02T10:19:13
2020-12-02T10:19:13
316,514,489
1
1
BSD-3-Clause
2020-11-27T23:29:20
2020-11-27T13:52:33
TypeScript
UTF-8
Python
false
false
5,088
py
import graphene from ...account import error_codes as account_error_codes from ...app import error_codes as app_error_codes from ...checkout import error_codes as checkout_error_codes from ...core import JobStatus, error_codes as core_error_codes from ...core.permissions import get_permissions_enum_list from ...core.weight import WeightUnits from ...csv import error_codes as csv_error_codes from ...discount import error_codes as discount_error_codes from ...giftcard import error_codes as giftcard_error_codes from ...invoice import error_codes as invoice_error_codes from ...menu import error_codes as menu_error_codes from ...order import error_codes as order_error_codes from ...page import error_codes as page_error_codes from ...payment import error_codes as payment_error_codes from ...plugins import error_codes as plugin_error_codes from ...plugins.vatlayer import TaxRateType as CoreTaxRateType from ...product import error_codes as product_error_codes from ...shipping import error_codes as shipping_error_codes from ...warehouse import error_codes as warehouse_error_codes from ...webhook import error_codes as webhook_error_codes from ...wishlist import error_codes as wishlist_error_codes from .utils import str_to_enum # FIXME CoreTaxRateType should be removed after we will drop old api fields dedicated # to taxes class OrderDirection(graphene.Enum): ASC = "" DESC = "-" @property def description(self): # Disable all the no-member violations in this function # pylint: disable=no-member if self == OrderDirection.ASC: return "Specifies an ascending sort order." if self == OrderDirection.DESC: return "Specifies a descending sort order." raise ValueError("Unsupported enum value: %s" % self.value) class ReportingPeriod(graphene.Enum): TODAY = "TODAY" THIS_MONTH = "THIS_MONTH" def to_enum(enum_cls, *, type_name=None, **options) -> graphene.Enum: """Create a Graphene enum from a class containing a set of options. :param enum_cls: The class to build the enum from. :param type_name: The name of the type. Default is the class name + 'Enum'. :param options: - description: Contains the type description (default is the class's docstring) - deprecation_reason: Contains the deprecation reason. The default is enum_cls.__deprecation_reason__ or None. :return: """ # note this won't work until # https://github.com/graphql-python/graphene/issues/956 is fixed deprecation_reason = getattr(enum_cls, "__deprecation_reason__", None) if deprecation_reason: options.setdefault("deprecation_reason", deprecation_reason) type_name = type_name or (enum_cls.__name__ + "Enum") enum_data = [(str_to_enum(code.upper()), code) for code, name in enum_cls.CHOICES] return graphene.Enum(type_name, enum_data, **options) TaxRateType = graphene.Enum( "TaxRateType", [(str_to_enum(rate[0]), rate[0]) for rate in CoreTaxRateType.CHOICES] ) JobStatusEnum = to_enum(JobStatus) PermissionEnum = graphene.Enum("PermissionEnum", get_permissions_enum_list()) WeightUnitsEnum = graphene.Enum( "WeightUnitsEnum", [(str_to_enum(unit[0]), unit[0]) for unit in WeightUnits.CHOICES] ) AccountErrorCode = graphene.Enum.from_enum(account_error_codes.AccountErrorCode) AppErrorCode = graphene.Enum.from_enum(app_error_codes.AppErrorCode) CheckoutErrorCode = graphene.Enum.from_enum(checkout_error_codes.CheckoutErrorCode) ExportErrorCode = graphene.Enum.from_enum(csv_error_codes.ExportErrorCode) DiscountErrorCode = graphene.Enum.from_enum(discount_error_codes.DiscountErrorCode) PluginErrorCode = graphene.Enum.from_enum(plugin_error_codes.PluginErrorCode) GiftCardErrorCode = graphene.Enum.from_enum(giftcard_error_codes.GiftCardErrorCode) MenuErrorCode = graphene.Enum.from_enum(menu_error_codes.MenuErrorCode) MetadataErrorCode = graphene.Enum.from_enum(core_error_codes.MetadataErrorCode) OrderErrorCode = graphene.Enum.from_enum(order_error_codes.OrderErrorCode) InvoiceErrorCode = graphene.Enum.from_enum(invoice_error_codes.InvoiceErrorCode) PageErrorCode = graphene.Enum.from_enum(page_error_codes.PageErrorCode) PaymentErrorCode = graphene.Enum.from_enum(payment_error_codes.PaymentErrorCode) PermissionGroupErrorCode = graphene.Enum.from_enum( account_error_codes.PermissionGroupErrorCode ) ProductErrorCode = graphene.Enum.from_enum(product_error_codes.ProductErrorCode) ShopErrorCode = graphene.Enum.from_enum(core_error_codes.ShopErrorCode) ShippingErrorCode = graphene.Enum.from_enum(shipping_error_codes.ShippingErrorCode) StockErrorCode = graphene.Enum.from_enum(warehouse_error_codes.StockErrorCode) WarehouseErrorCode = graphene.Enum.from_enum(warehouse_error_codes.WarehouseErrorCode) WebhookErrorCode = graphene.Enum.from_enum(webhook_error_codes.WebhookErrorCode) WishlistErrorCode = graphene.Enum.from_enum(wishlist_error_codes.WishlistErrorCode) TranslationErrorCode = graphene.Enum.from_enum(core_error_codes.TranslationErrorCode)
9e3b1da5a3fe55cbd4b708c74114095a43a6ea6a
f1748434c3a06e6005618afc1c1b259ce2c5b115
/Learn/DataStructure/Graph/MinimumSpanningTree/kruskal.py
04faf853259776ac7c8a87b5d0e1da488a7ebcec
[]
no_license
yue-yue-haha/Algorithm
f5175ae0e1339dba98c1bbd1c6b238634ced969c
1f7a120d262b80f2b4fc452a33f698ccdd9e1fad
refs/heads/master
2023-03-12T22:53:32.873956
2021-02-19T02:29:14
2021-02-19T02:29:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
823
py
from functools import cmp_to_key from Learn.DataStructure.UnionFindSet.template import UnionFindSet def kruskal(graph: dict): tree, n = [], len(graph.get("nodes")) ufs = UnionFindSet(n + 1) graph.get("edges").sort(key=cmp_to_key(lambda a, b: a[2] - b[2])) for start, end, weight in graph.get("edges"): if len(tree) == n - 1: break if not ufs.same(start, end): ufs.union(start, end) tree.append((start, end, weight)) return tree if __name__ == '__main__': graphData = { "nodes": [1, 2, 3, 4, 5], "edges": [(1, 2, 1), (1, 3, 3), (1, 4, 5), (2, 3, 2), (2, 4, 4), (2, 5, 6)] } res = kruskal(graphData) print(f"Kruskal = {res}")
066e5664df0a50e956687b5f7e4c722d5ee4ec28
52b5773617a1b972a905de4d692540d26ff74926
/.history/module_test1_20200420155724.py
ac696c9fa98c42a760ab8d2fbdbab7e551b5fc27
[]
no_license
MaryanneNjeri/pythonModules
56f54bf098ae58ea069bf33f11ae94fa8eedcabc
f4e56b1e4dda2349267af634a46f6b9df6686020
refs/heads/master
2022-12-16T02:59:19.896129
2020-09-11T12:05:22
2020-09-11T12:05:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
52
py
list_a = [1,2,7,4,5,6,3] list_a.sort() print(list_a)
2c99815d97b01dd33b9f52fda6a4d4f27a943fe2
d3af72e4c623dffeda95e662d495a95c8f2e317a
/scripts/gene_checker/annotations/glimmer_annotation.py
53a169406e4c8d9a608689a2828ffe6aab7b0b88
[]
no_license
bioinf/bi2014-mycoplasma-genitalium
0e2fbf095a461339064ea38f1be4586897f7c2ac
bd8eb82bb8d883faeb0492d74deb7a396577b782
refs/heads/master
2016-09-05T11:34:00.325602
2014-12-06T12:37:12
2014-12-06T12:37:12
24,504,082
0
1
null
null
null
null
UTF-8
Python
false
false
649
py
__author__ = 'nikita_kartashov' from generic_annotation import GenericAnnotation class GlimmerAnnotation(GenericAnnotation): def __init__(self, line): super(GlimmerAnnotation, self).__init__() self.__parse_annotation(line.split()) self._length = self.end() - self.start() def __parse_annotation(self, annotation_list): self._id = annotation_list[0] self._start = int(annotation_list[1]) self._end = int(annotation_list[2]) self._forward_chain = annotation_list[3][0] == '+' def check_annotation(self, code): return super(GlimmerAnnotation, self).check_annotation(code)
795a88f021e67b571a81ee946bc1108a9a4f7243
336f11ee8934581f05ab620c5324c601ba864b05
/python_unit_testing/Introduction/The possible test results/possible_test_results.py
2f19b271168fe43ac4d72e877771ed0bb40c8b2c
[]
no_license
ancient-clever/sandbox
01adeee2638a23533965cf57ca873a30e7dfad3d
87dec3bf8860a67a36154ee5d7c826d919d3111b
refs/heads/master
2022-05-17T04:49:54.703068
2020-01-19T17:44:27
2020-01-19T17:44:27
206,946,679
0
0
null
null
null
null
UTF-8
Python
false
false
223
py
import unittest class TestPossibleResults(unittest.TestCase): def test_success(self): pass def test_failure(self): self.assertEqual(True, False) def test_error(self): raise Exception
83dde2b826ec281476013ca779abb5abbedd1de5
1617a9a9c92146bcdac89b5efb1ef0d18408160b
/contlab7/31/solution.py
f68d9662c990a36c62a4e6b0cab797991dbca222
[]
no_license
LitRidl/checker-content
1b1329b4462b87731e0755ab33480ff063a94a00
b5d0456c8d4d28db6e6022e272a95a385f253797
refs/heads/master
2023-08-17T18:08:07.377680
2018-02-04T11:16:34
2018-02-04T11:16:34
120,077,784
0
0
null
null
null
null
UTF-8
Python
false
false
759
py
#!/usr/bin/python # -*- coding: utf-8 -*- u''' Составить алгоритм кодирования слова в латинском алфавите по Цезарю со сдвигом, равным 13 (см. шифр rot13). Входное слово представляет собой последовательность малых латинских букв a-z. последовательность малых латинских букв, полученная из исходной путём применения шифра rot13 icanhazcheeseburger ''' from __future__ import print_function from numpy import base_repr try: a = raw_input().strip() except EOFError: a = '' result = a.encode('rot_13') print('{0}'.format(result))
2efbeedfb1feb7576a382150e2e2754a57d664e2
003372621424577306aff35de88f7366fcc4baa0
/sa_tools_core/libs/qcloud/qcloudsdkbmeip/EipBmBindVpcIpRequest.py
65b528a54cc4dd083a6ef835f2228e02f6de0ceb
[]
no_license
stoensin/sa-tools-core
ab28ca5f7a8d5703952db9e6554b104682507964
c0faeef4de8ba677817384d88cb107ad2308c03e
refs/heads/master
2020-07-11T06:59:33.224305
2019-08-22T07:36:46
2019-08-22T07:36:46
204,472,284
1
0
null
2019-08-26T12:36:18
2019-08-26T12:36:18
null
UTF-8
Python
false
false
852
py
# -*- coding: utf-8 -*- from ..qcloudsdkcore.request import Request class EipBmBindVpcIpRequest(Request): def __init__(self): super(EipBmBindVpcIpRequest, self).__init__( 'bmeip', 'qcloudcliV1', 'EipBmBindVpcIp', 'bmeip.api.qcloud.com') def get_eipId(self): return self.get_params().get('eipId') def set_eipId(self, eipId): self.add_param('eipId', eipId) def get_unVpcId(self): return self.get_params().get('unVpcId') def set_unVpcId(self, unVpcId): self.add_param('unVpcId', unVpcId) def get_vpcId(self): return self.get_params().get('vpcId') def set_vpcId(self, vpcId): self.add_param('vpcId', vpcId) def get_vpcIp(self): return self.get_params().get('vpcIp') def set_vpcIp(self, vpcIp): self.add_param('vpcIp', vpcIp)
d70c87e261956e3d381b2fac3f1dc1fe02bde460
5d304c6ec0f01edee73e3b612f84307060c0da54
/add_two_numbers.py
d9649cba9d5f094e5a6a7c4bdc848c78665f5ec0
[]
no_license
xartisan/leetcode-solutions-in-python
cfa06b9e02f7ec0446cf6b71df4ea46caa359adc
7e3929a4b5bd0344f93373979c9d1acc4ae192a7
refs/heads/master
2020-03-14T17:10:07.957089
2018-07-29T10:11:01
2018-07-29T10:11:01
131,713,447
1
0
null
null
null
null
UTF-8
Python
false
false
1,340
py
# Definition for singly-linked list. class ListNode: def __init__(self, x, next_node=None): self.val = x self.next = next_node def __repr__(self): rv = str(self.val) if self.next is not None: rv += ' -> ' + repr(self.next) return rv class Solution: def addTwoNumbers(self, l1, l2): """ :type l1: ListNode :type l2: ListNode :rtype: ListNode """ # dummy node dummy_node = ListNode(0) cur_node = dummy_node acc = 0 while l1 is not None or l2 is not None: s = acc + (l1 or dummy_node).val + (l2 or dummy_node).val acc = 0 if s >= 10: s, acc = s - 10, 1 new_node = ListNode(s) cur_node.next = new_node cur_node = new_node if l1 is not None: l1 = l1.next if l2 is not None: l2 = l2.next if acc == 1: cur_node.next = ListNode(1) return dummy_node.next if __name__ == '__main__': l1 = ListNode(2, ListNode(4, ListNode(3))) print(l1) l2 = ListNode(5, ListNode(6, ListNode(4))) print(l2) s = Solution() rv = s.addTwoNumbers(l1, l2) print(rv) assert repr(rv) == '7 -> 0 -> 8', 'Wrong answer!'
1d7d09411e8e1745eeb4db330972104eba8afa79
0fccee4c738449f5e0a8f52ea5acabf51db0e910
/genfragments/ThirteenTeV/WR5000/WR5000_Zp1000_HN100_mumu_cfg.py
59e93042f1fff94bb505ee06a633c5fd7a303381
[]
no_license
cms-sw/genproductions
f308ffaf3586c19b29853db40e6d662e937940ff
dd3d3a3826343d4f75ec36b4662b6e9ff1f270f4
refs/heads/master
2023-08-30T17:26:02.581596
2023-08-29T14:53:43
2023-08-29T14:53:43
11,424,867
69
987
null
2023-09-14T12:41:28
2013-07-15T14:18:33
Python
UTF-8
Python
false
false
6,270
py
# Auto generated configuration file # using: # Revision: 1.19 # Source: /local/reps/CMSSW/CMSSW/Configuration/Applications/python/ConfigBuilder.py,v # with command line options: Configuration/GenProduction/python/ThirteenTeV/WRToNuMuToMuMuJJ_MW-3400_MNu-1700_TuneCUETP8M1_13TeV-pythia8_cfg.py --fileout step1.root --mc --pileup_input pileup.root --eventcontent RAWSIM --pileup 2016_25ns_SpringMC_PUScenarioV1_PoissonOOTPU --era Run2_25ns --datatier GEN-SIM-RAW --conditions 80X_mcRun2_asymptotic_2016_v3 --step GEN,SIM,DIGI,L1,DIGI2RAW,HLT:@frozen25ns --no_exec -n 1000 --python_filename test_GEN_to_HLT_cfg.py --fileout file:step1.root --python_filename step1.py import FWCore.ParameterSet.Config as cms from Configuration.StandardSequences.Eras import eras process = cms.Process('HLT',eras.Run2_25ns) # import of standard configurations process.load('Configuration.StandardSequences.Services_cff') process.load('SimGeneral.HepPDTESSource.pythiapdt_cfi') process.load('FWCore.MessageService.MessageLogger_cfi') process.load('Configuration.EventContent.EventContent_cff') process.load('SimGeneral.MixingModule.mix_2016_25ns_SpringMC_PUScenarioV1_PoissonOOTPU_cfi') process.load('Configuration.StandardSequences.GeometryRecoDB_cff') process.load('Configuration.Geometry.GeometrySimDB_cff') process.load('Configuration.StandardSequences.MagneticField_cff') process.load('Configuration.StandardSequences.Generator_cff') process.load('IOMC.EventVertexGenerators.VtxSmearedRealistic50ns13TeVCollision_cfi') process.load('GeneratorInterface.Core.genFilterSummary_cff') process.load('Configuration.StandardSequences.SimIdeal_cff') process.load('Configuration.StandardSequences.Digi_cff') process.load('Configuration.StandardSequences.SimL1Emulator_cff') process.load('Configuration.StandardSequences.DigiToRaw_cff') process.load('HLTrigger.Configuration.HLT_GRun_cff') process.load('Configuration.StandardSequences.EndOfProcess_cff') process.load('Configuration.StandardSequences.FrontierConditions_GlobalTag_cff') process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(1000) ) # Input source process.source = cms.Source("EmptySource") process.options = cms.untracked.PSet( ) # Production Info process.configurationMetadata = cms.untracked.PSet( annotation = cms.untracked.string('Configuration/GenProduction/python/ThirteenTeV/WRToNuMuToMuMuJJ_MW-3400_MNu-1700_TuneCUETP8M1_13TeV-pythia8_cfg.py nevts:1000'), name = cms.untracked.string('Applications'), version = cms.untracked.string('$Revision: 1.19 $') ) # Output definition process.RAWSIMoutput = cms.OutputModule("PoolOutputModule", SelectEvents = cms.untracked.PSet( SelectEvents = cms.vstring('generation_step') ), dataset = cms.untracked.PSet( dataTier = cms.untracked.string('GEN-SIM-RAW'), filterName = cms.untracked.string('') ), eventAutoFlushCompressedSize = cms.untracked.int32(5242880), fileName = cms.untracked.string('step1.root'), outputCommands = process.RAWSIMEventContent.outputCommands, splitLevel = cms.untracked.int32(0) ) # Additional output definition # Other statements process.mix.input.fileNames = cms.untracked.vstring(['pileup.root']) process.genstepfilter.triggerConditions=cms.vstring("generation_step") from Configuration.AlCa.GlobalTag import GlobalTag process.GlobalTag = GlobalTag(process.GlobalTag, '80X_mcRun2_asymptotic_2016_v3', '') process.generator = cms.EDFilter("Pythia8GeneratorFilter", PythiaParameters = cms.PSet( parameterSets = cms.vstring('pythia8CommonSettings', 'pythia8CUEP8M1Settings', 'processParameters'), processParameters = cms.vstring('LeftRightSymmmetry:ffbar2ZR = on', '9900024:m0 = 5000', '9900023:m0 = 1000', '9900014:m0 = 100', '9900024:onMode = off', '9900023:onMode = off', '9900023:onIfAny = 9900014, 9900014', '9900024:onIfAny = 13,9900014'), pythia8CUEP8M1Settings = cms.vstring('Tune:pp 14', 'Tune:ee 7', 'MultipartonInteractions:pT0Ref=2.4024', 'MultipartonInteractions:ecmPow=0.25208', 'MultipartonInteractions:expPow=1.6'), pythia8CommonSettings = cms.vstring('Tune:preferLHAPDF = 2', 'Main:timesAllowErrors = 10000', 'Check:epTolErr = 0.01', 'Beams:setProductionScalesFromLHEF = off', 'SLHA:keepSM = on', 'SLHA:minMassSM = 1000.', 'ParticleDecays:limitTau0 = on', 'ParticleDecays:tau0Max = 10', 'ParticleDecays:allowPhotonRadiation = on') ), comEnergy = cms.double(13000.0), filterEfficiency = cms.untracked.double(1.0), maxEventsToPrint = cms.untracked.int32(1), pythiaHepMCVerbosity = cms.untracked.bool(False), pythiaPylistVerbosity = cms.untracked.int32(1) ) # Path and EndPath definitions process.generation_step = cms.Path(process.pgen) process.simulation_step = cms.Path(process.psim) process.digitisation_step = cms.Path(process.pdigi) process.L1simulation_step = cms.Path(process.SimL1Emulator) process.digi2raw_step = cms.Path(process.DigiToRaw) process.genfiltersummary_step = cms.EndPath(process.genFilterSummary) process.endjob_step = cms.EndPath(process.endOfProcess) process.RAWSIMoutput_step = cms.EndPath(process.RAWSIMoutput) # Schedule definition process.schedule = cms.Schedule(process.generation_step,process.genfiltersummary_step,process.simulation_step,process.digitisation_step,process.L1simulation_step,process.digi2raw_step) process.schedule.extend(process.HLTSchedule) process.schedule.extend([process.endjob_step,process.RAWSIMoutput_step]) # filter all path with the production filter sequence for path in process.paths: getattr(process,path)._seq = process.generator * getattr(process,path)._seq # customisation of the process. # Automatic addition of the customisation function from HLTrigger.Configuration.customizeHLTforMC from HLTrigger.Configuration.customizeHLTforMC import customizeHLTforFullSim #call to customisation function customizeHLTforFullSim imported from HLTrigger.Configuration.customizeHLTforMC process = customizeHLTforFullSim(process) # End of customisation functions
55b7536a054de0a55848639515962924284c30e3
4dec0f934760ca69e40b62fa56b37a1aa3918b24
/test/test_web_deface_utils.py
418c9c67aa4f0448c4eb77b11bd8eeb6df758bdc
[ "MIT" ]
permissive
rejahrehim/SecureTea-Project
28ebc89f27ed59e3845b8c82f9316108cda40a24
43dec187e5848b9ced8a6b4957b6e9028d4d43cd
refs/heads/master
2020-03-27T12:36:21.779426
2019-09-02T16:01:55
2019-09-02T16:01:55
146,556,097
1
0
MIT
2018-08-29T06:35:54
2018-08-29T06:35:53
null
UTF-8
Python
false
false
1,228
py
# -*- coding: utf-8 -*- import unittest from securetea.lib.web_deface import utils try: # if python 3.x.x from unittest.mock import patch except ImportError: # python 2.x.x from mock import patch class TestUtils(unittest.TestCase): """ Test class for SecureTea Web Deface Utils. """ @patch("securetea.lib.web_deface.utils.get_system_name") def test_categorize_os(self, mock_system): """ Test categorize_os. """ mock_system.return_value = "debian" self.assertEqual(utils.categorize_os(), "debian") @patch("securetea.lib.web_deface.utils.platform") def test_get_system_name(self, mock_platform): """ Test get_system_name. """ mock_platform.dist.return_value = ["debian"] res = utils.get_system_name() self.assertEqual(res, "debian") @patch("securetea.lib.web_deface.utils.os") def test_check_root(self, mock_os): """ Test check_root. """ # Running as root mock_os.getuid.return_value = 0 self.assertTrue(utils.check_root()) # Not running as root mock_os.getuid.return_value = 1 self.assertFalse(utils.check_root())
b53fb9567516569729de2c7e54c259ae8eb494da
c53480e8d0fa431a3ac90e713010fae44e8db1a8
/maskara/gallery/migrations/0032_auto__add_spaceimage__add_spacevideo.py
1aac354e39aa52798ab2f7e8a4931575710530ca
[]
no_license
batpad/gallerym
6b5fd2e89ebade106e4c9f5c917c11791b156d08
3e1c17dc30b5b23ab40772b6b88c6d1f05393cf2
refs/heads/master
2016-09-06T11:36:02.461954
2014-10-10T07:48:49
2014-10-10T07:48:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
34,066
py
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'SpaceImage' db.create_table('gallery_spaceimage', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('changed', self.gf('django.db.models.fields.DateTimeField')(null=True)), ('created', self.gf('django.db.models.fields.DateTimeField')(null=True)), ('image', self.gf('filebrowser.fields.FileBrowseField')(max_length=1024)), ('caption', self.gf('django.db.models.fields.CharField')(max_length=1024, blank=True)), ('displayed', self.gf('django.db.models.fields.BooleanField')(default=False)), ('order', self.gf('django.db.models.fields.PositiveIntegerField')()), )) db.send_create_signal('gallery', ['SpaceImage']) # Adding model 'SpaceVideo' db.create_table('gallery_spacevideo', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('changed', self.gf('django.db.models.fields.DateTimeField')(null=True)), ('created', self.gf('django.db.models.fields.DateTimeField')(null=True)), ('video_file', self.gf('filebrowser.fields.FileBrowseField')(max_length=1024, null=True, blank=True)), ('vimeo_id', self.gf('django.db.models.fields.CharField')(max_length=128, blank=True)), ('caption', self.gf('django.db.models.fields.CharField')(max_length=1024, blank=True)), ('displayed', self.gf('django.db.models.fields.BooleanField')(default=False)), ('order', self.gf('django.db.models.fields.PositiveIntegerField')()), )) db.send_create_signal('gallery', ['SpaceVideo']) def backwards(self, orm): # Deleting model 'SpaceImage' db.delete_table('gallery_spaceimage') # Deleting model 'SpaceVideo' db.delete_table('gallery_spacevideo') models = { 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'gallery.artist': { 'Meta': {'ordering': "['name']", 'object_name': 'Artist'}, 'bio': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'bio_pdf': ('filebrowser.fields.FileBrowseField', [], {'max_length': '512', 'null': 'True', 'blank': 'True'}), 'birth_location': ('django.db.models.fields.CharField', [], {'max_length': '1024', 'blank': 'True'}), 'changed': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'dob': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'image': ('filebrowser.fields.FileBrowseField', [], {'max_length': '512', 'null': 'True', 'blank': 'True'}), 'is_represented': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '512'}), 'old_id': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'pdf': ('filebrowser.fields.FileBrowseField', [], {'max_length': '512', 'null': 'True', 'blank': 'True'}), 'published': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '50'}), 'url': ('django.db.models.fields.URLField', [], {'max_length': '200', 'blank': 'True'}) }, 'gallery.artistaward': { 'Meta': {'object_name': 'ArtistAward'}, 'artist': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['gallery.Artist']"}), 'changed': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'link': ('django.db.models.fields.URLField', [], {'max_length': '200', 'blank': 'True'}), 'text': ('django.db.models.fields.TextField', [], {}), 'year': ('django.db.models.fields.IntegerField', [], {'max_length': '4'}) }, 'gallery.artistcollection': { 'Meta': {'object_name': 'ArtistCollection'}, 'artist': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['gallery.Artist']"}), 'changed': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'link': ('django.db.models.fields.URLField', [], {'max_length': '200', 'blank': 'True'}), 'text': ('django.db.models.fields.TextField', [], {}), 'year': ('django.db.models.fields.IntegerField', [], {'max_length': '4'}) }, 'gallery.artisteducation': { 'Meta': {'object_name': 'ArtistEducation'}, 'artist': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['gallery.Artist']"}), 'changed': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'link': ('django.db.models.fields.URLField', [], {'max_length': '200', 'blank': 'True'}), 'text': ('django.db.models.fields.TextField', [], {}), 'year': ('django.db.models.fields.IntegerField', [], {'max_length': '4'}) }, 'gallery.artistgroupexhib': { 'Meta': {'object_name': 'ArtistGroupExhib'}, 'artist': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['gallery.Artist']"}), 'changed': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'link': ('django.db.models.fields.URLField', [], {'max_length': '200', 'blank': 'True'}), 'text': ('django.db.models.fields.TextField', [], {}), 'year': ('django.db.models.fields.IntegerField', [], {'max_length': '4'}) }, 'gallery.artistnews': { 'Meta': {'object_name': 'ArtistNews'}, 'artist': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['gallery.Artist']"}), 'changed': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'date': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'image': ('filebrowser.fields.FileBrowseField', [], {'max_length': '512', 'null': 'True', 'blank': 'True'}), 'link': ('django.db.models.fields.URLField', [], {'max_length': '200', 'blank': 'True'}), 'text': ('django.db.models.fields.TextField', [], {}) }, 'gallery.artistpress': { 'Meta': {'object_name': 'ArtistPress'}, 'artist': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['gallery.Artist']"}), 'changed': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'link': ('django.db.models.fields.URLField', [], {'max_length': '200', 'blank': 'True'}), 'text': ('django.db.models.fields.TextField', [], {}), 'year': ('django.db.models.fields.IntegerField', [], {'max_length': '4'}) }, 'gallery.artistpressrelease': { 'Meta': {'ordering': "['order', 'id']", 'object_name': 'ArtistPressRelease'}, 'artist': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['gallery.Artist']"}), 'author': ('django.db.models.fields.CharField', [], {'max_length': '512', 'blank': 'True'}), 'changed': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'date': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'image': ('filebrowser.fields.FileBrowseField', [], {'max_length': '512', 'null': 'True', 'blank': 'True'}), 'old_id': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'order': ('django.db.models.fields.PositiveIntegerField', [], {}), 'pdf': ('filebrowser.fields.FileBrowseField', [], {'max_length': '512', 'null': 'True', 'blank': 'True'}), 'published': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'publisher': ('django.db.models.fields.CharField', [], {'max_length': '1024'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '1024'}), 'url': ('django.db.models.fields.URLField', [], {'max_length': '200', 'blank': 'True'}) }, 'gallery.artistreview': { 'Meta': {'ordering': "['order', 'id']", 'object_name': 'ArtistReview'}, 'artist': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['gallery.Artist']"}), 'author': ('django.db.models.fields.CharField', [], {'max_length': '1024', 'blank': 'True'}), 'changed': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'date': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'old_id': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'order': ('django.db.models.fields.PositiveIntegerField', [], {}), 'pdf': ('filebrowser.fields.FileBrowseField', [], {'max_length': '512', 'null': 'True', 'blank': 'True'}), 'published': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'source': ('django.db.models.fields.CharField', [], {'max_length': '1024', 'blank': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '1024'}), 'translated_by': ('django.db.models.fields.CharField', [], {'max_length': '1024', 'blank': 'True'}), 'url': ('django.db.models.fields.URLField', [], {'max_length': '200', 'blank': 'True'}) }, 'gallery.artistsoloexhib': { 'Meta': {'object_name': 'ArtistSoloExhib'}, 'artist': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['gallery.Artist']"}), 'changed': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'link': ('django.db.models.fields.URLField', [], {'max_length': '200', 'blank': 'True'}), 'text': ('django.db.models.fields.TextField', [], {}), 'year': ('django.db.models.fields.IntegerField', [], {'max_length': '4'}) }, 'gallery.artistwork': { 'Meta': {'ordering': "['artist', 'order']", 'object_name': 'ArtistWork'}, 'artist': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['gallery.Artist']"}), 'attribution': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'category': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'changed': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'code': ('django.db.models.fields.CharField', [], {'max_length': '128', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'image': ('filebrowser.fields.FileBrowseField', [], {'max_length': '512', 'null': 'True', 'blank': 'True'}), 'is_available': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_selected': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'material': ('django.db.models.fields.CharField', [], {'max_length': '1024', 'blank': 'True'}), 'old_id': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'order': ('django.db.models.fields.PositiveIntegerField', [], {}), 'price': ('django.db.models.fields.CharField', [], {'max_length': '128', 'null': 'True', 'blank': 'True'}), 'published': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'size': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '10', 'decimal_places': '2', 'blank': 'True'}), 'size_text': ('django.db.models.fields.CharField', [], {'max_length': '1024', 'blank': 'True'}), 'theme': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '1024'}), 'year': ('django.db.models.fields.IntegerField', [], {'max_length': '4', 'null': 'True', 'blank': 'True'}) }, 'gallery.artistworkimage': { 'Meta': {'ordering': "['order']", 'object_name': 'ArtistWorkImage'}, 'caption': ('django.db.models.fields.CharField', [], {'max_length': '512', 'blank': 'True'}), 'changed': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'image': ('filebrowser.fields.FileBrowseField', [], {'max_length': '512', 'null': 'True', 'blank': 'True'}), 'is_hires': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'order': ('django.db.models.fields.PositiveIntegerField', [], {}), 'work': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['gallery.ArtistWork']"}) }, 'gallery.event': { 'Meta': {'object_name': 'Event'}, 'changed': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'date': ('django.db.models.fields.DateField', [], {}), 'description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'end_date': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'featured_artists': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['gallery.Artist']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'image': ('filebrowser.fields.FileBrowseField', [], {'max_length': '512', 'null': 'True', 'blank': 'True'}), 'location': ('django.db.models.fields.CharField', [], {'default': "'Gallery Maskara'", 'max_length': '512', 'blank': 'True'}), 'old_id': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'pdf': ('filebrowser.fields.FileBrowseField', [], {'max_length': '1024', 'null': 'True', 'blank': 'True'}), 'press_release': ('filebrowser.fields.FileBrowseField', [], {'max_length': '1024', 'null': 'True', 'blank': 'True'}), 'published': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '50'}), 'time_from': ('django.db.models.fields.TimeField', [], {}), 'time_to': ('django.db.models.fields.TimeField', [], {}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '1024'}) }, 'gallery.eventpressrelease': { 'Meta': {'object_name': 'EventPressRelease'}, 'author': ('django.db.models.fields.CharField', [], {'max_length': '512', 'blank': 'True'}), 'changed': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'date': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'event': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['gallery.Event']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'image': ('filebrowser.fields.FileBrowseField', [], {'max_length': '512', 'null': 'True', 'blank': 'True'}), 'old_id': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'order': ('django.db.models.fields.PositiveIntegerField', [], {}), 'pdf': ('filebrowser.fields.FileBrowseField', [], {'max_length': '512', 'null': 'True', 'blank': 'True'}), 'published': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'publisher': ('django.db.models.fields.CharField', [], {'max_length': '1024'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '1024'}), 'url': ('django.db.models.fields.URLField', [], {'max_length': '200', 'blank': 'True'}) }, 'gallery.eventreview': { 'Meta': {'ordering': "['order', 'id']", 'object_name': 'EventReview'}, 'author': ('django.db.models.fields.CharField', [], {'max_length': '1024', 'blank': 'True'}), 'changed': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'date': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'event': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['gallery.Event']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'old_id': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'order': ('django.db.models.fields.PositiveIntegerField', [], {}), 'pdf': ('filebrowser.fields.FileBrowseField', [], {'max_length': '512', 'null': 'True', 'blank': 'True'}), 'published': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'source': ('django.db.models.fields.CharField', [], {'max_length': '1024', 'blank': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '1024'}), 'translated_by': ('django.db.models.fields.CharField', [], {'max_length': '1024', 'blank': 'True'}), 'url': ('django.db.models.fields.URLField', [], {'max_length': '200', 'blank': 'True'}) }, 'gallery.eventwork': { 'Meta': {'object_name': 'EventWork'}, 'changed': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'event': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['gallery.Event']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'order': ('django.db.models.fields.IntegerField', [], {}), 'work': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['gallery.ArtistWork']"}) }, 'gallery.exhibition': { 'Meta': {'object_name': 'Exhibition'}, 'autopublish_date': ('django.db.models.fields.DateField', [], {}), 'changed': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'curated_by': ('django.db.models.fields.CharField', [], {'max_length': '512', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'end_date': ('django.db.models.fields.DateField', [], {}), 'exhibition_works': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['gallery.ArtistWork']", 'null': 'True', 'through': "orm['gallery.ExhibitionWork']", 'blank': 'True'}), 'featured_artists': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['gallery.Artist']", 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'image': ('filebrowser.fields.FileBrowseField', [], {'max_length': '512', 'null': 'True', 'blank': 'True'}), 'location': ('django.db.models.fields.CharField', [], {'default': "'Gallery Maskara'", 'max_length': '255'}), 'old_id': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'one_liner': ('django.db.models.fields.CharField', [], {'max_length': '512', 'blank': 'True'}), 'pdf': ('filebrowser.fields.FileBrowseField', [], {'max_length': '512', 'null': 'True', 'blank': 'True'}), 'press_release': ('filebrowser.fields.FileBrowseField', [], {'max_length': '512', 'null': 'True', 'blank': 'True'}), 'preview_date': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'preview_end_time': ('django.db.models.fields.TimeField', [], {'null': 'True', 'blank': 'True'}), 'preview_start_time': ('django.db.models.fields.TimeField', [], {'null': 'True', 'blank': 'True'}), 'published': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '50'}), 'start_date': ('django.db.models.fields.DateField', [], {}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '1024'}) }, 'gallery.exhibitionpressrelease': { 'Meta': {'object_name': 'ExhibitionPressRelease'}, 'author': ('django.db.models.fields.CharField', [], {'max_length': '512', 'blank': 'True'}), 'changed': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'date': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'exhibition': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['gallery.Exhibition']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'image': ('filebrowser.fields.FileBrowseField', [], {'max_length': '512', 'null': 'True', 'blank': 'True'}), 'old_id': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'order': ('django.db.models.fields.PositiveIntegerField', [], {}), 'pdf': ('filebrowser.fields.FileBrowseField', [], {'max_length': '512', 'null': 'True', 'blank': 'True'}), 'published': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'publisher': ('django.db.models.fields.CharField', [], {'max_length': '1024'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '1024'}), 'url': ('django.db.models.fields.URLField', [], {'max_length': '200', 'blank': 'True'}) }, 'gallery.exhibitionreview': { 'Meta': {'ordering': "['order', 'id']", 'object_name': 'ExhibitionReview'}, 'author': ('django.db.models.fields.CharField', [], {'max_length': '1024', 'blank': 'True'}), 'changed': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'date': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'exhibition': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['gallery.Exhibition']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'old_id': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'order': ('django.db.models.fields.PositiveIntegerField', [], {}), 'pdf': ('filebrowser.fields.FileBrowseField', [], {'max_length': '512', 'null': 'True', 'blank': 'True'}), 'published': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'source': ('django.db.models.fields.CharField', [], {'max_length': '1024', 'blank': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '1024'}), 'translated_by': ('django.db.models.fields.CharField', [], {'max_length': '1024', 'blank': 'True'}), 'url': ('django.db.models.fields.URLField', [], {'max_length': '200', 'blank': 'True'}) }, 'gallery.exhibitionwork': { 'Meta': {'object_name': 'ExhibitionWork'}, 'changed': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'exhibition': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['gallery.Exhibition']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'order': ('django.db.models.fields.IntegerField', [], {}), 'work': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['gallery.ArtistWork']"}) }, 'gallery.frontpageitem': { 'Meta': {'ordering': "('position',)", 'object_name': 'FrontPageItem'}, 'blurb': ('django.db.models.fields.CharField', [], {'default': "'Current Exhibition'", 'max_length': '512', 'blank': 'True'}), 'changed': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'event': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['gallery.Event']", 'null': 'True', 'blank': 'True'}), 'exhibition': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['gallery.Exhibition']", 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'position': ('django.db.models.fields.IntegerField', [], {'default': '0'}) }, 'gallery.galleryperson': { 'Meta': {'object_name': 'GalleryPerson'}, 'changed': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'image': ('filebrowser.fields.FileBrowseField', [], {'max_length': '512', 'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '512'}), 'text': ('django.db.models.fields.TextField', [], {'blank': 'True'}) }, 'gallery.publication': { 'Meta': {'object_name': 'Publication'}, 'artist': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['gallery.Artist']", 'null': 'True', 'blank': 'True'}), 'author': ('django.db.models.fields.CharField', [], {'max_length': '1024', 'blank': 'True'}), 'available': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'changed': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'date': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'editor': ('django.db.models.fields.CharField', [], {'max_length': '1024', 'blank': 'True'}), 'event': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['gallery.Event']", 'null': 'True', 'blank': 'True'}), 'exhibition': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['gallery.Exhibition']", 'null': 'True', 'blank': 'True'}), 'featured': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'image': ('filebrowser.fields.FileBrowseField', [], {'max_length': '512', 'null': 'True', 'blank': 'True'}), 'isbn': ('django.db.models.fields.CharField', [], {'max_length': '128', 'blank': 'True'}), 'old_id': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'pdf': ('filebrowser.fields.FileBrowseField', [], {'max_length': '512', 'null': 'True', 'blank': 'True'}), 'published': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'publisher': ('django.db.models.fields.CharField', [], {'max_length': '1024', 'blank': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '1024'}) }, 'gallery.spaceimage': { 'Meta': {'object_name': 'SpaceImage'}, 'caption': ('django.db.models.fields.CharField', [], {'max_length': '1024', 'blank': 'True'}), 'changed': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'displayed': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'image': ('filebrowser.fields.FileBrowseField', [], {'max_length': '1024'}), 'order': ('django.db.models.fields.PositiveIntegerField', [], {}) }, 'gallery.spacevideo': { 'Meta': {'object_name': 'SpaceVideo'}, 'caption': ('django.db.models.fields.CharField', [], {'max_length': '1024', 'blank': 'True'}), 'changed': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'displayed': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'order': ('django.db.models.fields.PositiveIntegerField', [], {}), 'video_file': ('filebrowser.fields.FileBrowseField', [], {'max_length': '1024', 'null': 'True', 'blank': 'True'}), 'vimeo_id': ('django.db.models.fields.CharField', [], {'max_length': '128', 'blank': 'True'}) }, 'gallery.video': { 'Meta': {'ordering': "['order', 'id']", 'object_name': 'Video'}, 'changed': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'created': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'duration': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'object_id': ('django.db.models.fields.PositiveIntegerField', [], {}), 'order': ('django.db.models.fields.IntegerField', [], {}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '1024'}), 'video_file': ('filebrowser.fields.FileBrowseField', [], {'max_length': '1024', 'null': 'True', 'blank': 'True'}), 'vimeo_id': ('django.db.models.fields.CharField', [], {'max_length': '128', 'blank': 'True'}) } } complete_apps = ['gallery']
3170717deab4907adb3968420a93b4be31911af6
303a4d41da8f2cd2000630ff30424d2875490e67
/hotglycol/genangletarg.py
e3e3568faeabd27bb319e698874ecd591da9fe3c
[]
no_license
noobermin/sharks
beb1d3d6a593e8d62f3d7416697d4de1fe9558b1
af87113781eb67af45a9c2f79b73b1512ae0a1fa
refs/heads/master
2022-05-10T11:55:17.200591
2021-09-30T14:27:22
2021-09-30T14:27:22
19,997,024
0
2
null
2016-05-20T19:27:49
2014-05-20T20:49:16
Common Lisp
UTF-8
Python
false
false
1,559
py
#!/usr/bin/env python2 import numpy as np; def mk45(dim=[-5e-4,5e-4,-5e-4,5e-4,], N0=1.08e22, width=0.5e-4, dropcorners=False,): xlim = dim[:2]; ylim = dim[2:]; def _corner(x,y,good): ret = y < width/np.sqrt(2) + ylim[0] -(x-xlim[0]) ret|= y > -width/np.sqrt(2) + ylim[1] -(x-xlim[1]) ret = np.logical_not(ret); return np.logical_and(ret,good); def roundcorner(x,y,good): ret = y < ylim[0] + width - (x-xlim[0]) ret|= y > ylim[1] - width - (x-xlim[1]) ret = good and not ret; ret|= (x-xlim[0]-width/2)**2 + (y-ylim[0]-width/2)**2 <= width**2/4.0; ret|= (x-xlim[1]+width/2)**2 + (y-ylim[1]+width/2)**2 <= width**2/4.0; return ret; if dropcorners == True: corner = _corner; elif dropcorners == 'round': corner = roundcorner; else: corner = lambda x,y,g: g; @np.vectorize def f(x,y): good = xlim[0] <= x <= xlim[1]; good&= ylim[0] <= y <= ylim[1]; good&=np.abs(y - x)*np.sqrt(2) < width; good =corner(x,y,good); if good: return N0; else: return 0.0; return f; if __name__ == "__main__": dx = 0.01 mn,mx = -10.5,10.5, lmn, lmx = -11.5,11.5 width = 2; F=mk45(dim=[mn,mx,mn,mx],width=width,dropcorners='round'); X,Y=np.mgrid[ lmn:lmx + dx:dx, lmn:lmx + dx:dx]; import matplotlib.pyplot as plt; plt.pcolormesh(X,Y,F(X,Y)); plt.axis('equal'); plt.show();
3bd3248d2c6bde2df7607b256dd029658457051f
aef69557d8960205a780e61b7c2dfbb1d7733449
/Code/SarahBeth/tests.py
7bbcce152ea94f86ce923360be692fa4a260987c
[]
no_license
sbtries/class_pandaaaa
579d6be89a511bdc36b0ce8c95545b9b704a734a
bbf9c419a00879118a55c2c19e5b46b08af806bc
refs/heads/master
2023-07-18T14:18:25.881333
2021-09-02T22:48:29
2021-09-02T22:48:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
154
py
# card1= input('what's your first card?') # card2= input('what's your first card?') # card3= input('what's your first card?') cards2 = ['q', '1', '2']
f91f6579324bac309cb6e4d1a8a4bdeb440f516a
24fe1f54fee3a3df952ca26cce839cc18124357a
/servicegraph/lib/python2.7/site-packages/acimodel-4.0_3d-py2.7.egg/cobra/modelimpl/l2/egrbytespart1h.py
69cf9a1ee5ebf125e11163cd4ef07ba94c3b17cf
[]
no_license
aperiyed/servicegraph-cloudcenter
4b8dc9e776f6814cf07fe966fbd4a3481d0f45ff
9eb7975f2f6835e1c0528563a771526896306392
refs/heads/master
2023-05-10T17:27:18.022381
2020-01-20T09:18:28
2020-01-20T09:18:28
235,065,676
0
0
null
2023-05-01T21:19:14
2020-01-20T09:36:37
Python
UTF-8
Python
false
false
22,891
py
# coding=UTF-8 # ********************************************************************** # Copyright (c) 2013-2019 Cisco Systems, Inc. All rights reserved # written by zen warriors, do not modify! # ********************************************************************** from cobra.mit.meta import ClassMeta from cobra.mit.meta import StatsClassMeta from cobra.mit.meta import CounterMeta from cobra.mit.meta import PropMeta from cobra.mit.meta import Category from cobra.mit.meta import SourceRelationMeta from cobra.mit.meta import NamedSourceRelationMeta from cobra.mit.meta import TargetRelationMeta from cobra.mit.meta import DeploymentPathMeta, DeploymentCategory from cobra.model.category import MoCategory, PropCategory, CounterCategory from cobra.mit.mo import Mo # ################################################## class EgrBytesPart1h(Mo): """ Mo doc not defined in techpub!!! """ meta = StatsClassMeta("cobra.model.l2.EgrBytesPart1h", "egress bytes") counter = CounterMeta("multicast", CounterCategory.COUNTER, "bytes", "egress multicast bytes") counter._propRefs[PropCategory.IMPLICIT_LASTREADING] = "multicastLast" counter._propRefs[PropCategory.IMPLICIT_CUMULATIVE] = "multicastCum" counter._propRefs[PropCategory.IMPLICIT_PERIODIC] = "multicastPer" counter._propRefs[PropCategory.IMPLICIT_MIN] = "multicastMin" counter._propRefs[PropCategory.IMPLICIT_MAX] = "multicastMax" counter._propRefs[PropCategory.IMPLICIT_AVG] = "multicastAvg" counter._propRefs[PropCategory.IMPLICIT_SUSPECT] = "multicastSpct" counter._propRefs[PropCategory.IMPLICIT_BASELINE] = "multicastBase" counter._propRefs[PropCategory.IMPLICIT_THRESHOLDED] = "multicastThr" counter._propRefs[PropCategory.IMPLICIT_TREND_BASE] = "multicastTrBase" counter._propRefs[PropCategory.IMPLICIT_TREND] = "multicastTr" counter._propRefs[PropCategory.IMPLICIT_RATE] = "multicastRate" meta._counters.append(counter) counter = CounterMeta("unicast", CounterCategory.COUNTER, "bytes", "egress unicast bytes") counter._propRefs[PropCategory.IMPLICIT_LASTREADING] = "unicastLast" counter._propRefs[PropCategory.IMPLICIT_CUMULATIVE] = "unicastCum" counter._propRefs[PropCategory.IMPLICIT_PERIODIC] = "unicastPer" counter._propRefs[PropCategory.IMPLICIT_MIN] = "unicastMin" counter._propRefs[PropCategory.IMPLICIT_MAX] = "unicastMax" counter._propRefs[PropCategory.IMPLICIT_AVG] = "unicastAvg" counter._propRefs[PropCategory.IMPLICIT_SUSPECT] = "unicastSpct" counter._propRefs[PropCategory.IMPLICIT_BASELINE] = "unicastBase" counter._propRefs[PropCategory.IMPLICIT_THRESHOLDED] = "unicastThr" counter._propRefs[PropCategory.IMPLICIT_TREND_BASE] = "unicastTrBase" counter._propRefs[PropCategory.IMPLICIT_TREND] = "unicastTr" counter._propRefs[PropCategory.IMPLICIT_RATE] = "unicastRate" meta._counters.append(counter) meta.moClassName = "l2EgrBytesPart1h" meta.rnFormat = "CDl2EgrBytesPart1h-%(nodeId)s" meta.category = MoCategory.STATS_CURRENT meta.label = "current portion of the egress bytes stats in 1 hour" meta.writeAccessMask = 0x1 meta.readAccessMask = 0x1 meta.isDomainable = False meta.isReadOnly = True meta.isConfigurable = False meta.isDeletable = False meta.isContextRoot = True meta.parentClasses.add("cobra.model.vns.EPpInfo") meta.parentClasses.add("cobra.model.vns.SDEPpInfo") meta.parentClasses.add("cobra.model.fv.InBEpP") meta.parentClasses.add("cobra.model.fv.RtdEpP") meta.parentClasses.add("cobra.model.dhcp.PRelPg") meta.parentClasses.add("cobra.model.fv.TnlEpP") meta.parentClasses.add("cobra.model.fv.BrEpP") meta.parentClasses.add("cobra.model.fv.AEPg") meta.parentClasses.add("cobra.model.l2ext.InstP") meta.parentClasses.add("cobra.model.vns.SHEPpInfo") meta.parentClasses.add("cobra.model.l3ext.InstP") meta.parentClasses.add("cobra.model.infra.PEPg") meta.parentClasses.add("cobra.model.fv.InstPEpP") meta.parentClasses.add("cobra.model.fv.OoBEpP") meta.parentClasses.add("cobra.model.infra.CEPg") meta.parentClasses.add("cobra.model.vns.REPpInfo") meta.parentClasses.add("cobra.model.fv.SvcBD") meta.parentClasses.add("cobra.model.mgmt.InB") meta.parentClasses.add("cobra.model.fv.TnlEPg") meta.parentClasses.add("cobra.model.fv.SvcEpP") meta.parentClasses.add("cobra.model.fv.EpP") meta.parentClasses.add("cobra.model.fv.BD") meta.parentClasses.add("cobra.model.fv.Ctx") meta.parentClasses.add("cobra.model.dhcp.CRelPg") meta.parentClasses.add("cobra.model.l3ext.InstPDef") meta.superClasses.add("cobra.model.stats.CurrAgPart") meta.superClasses.add("cobra.model.stats.Curr") meta.superClasses.add("cobra.model.stats.Item") meta.superClasses.add("cobra.model.l2.EgrBytesPart") meta.rnPrefixes = [ ('CDl2EgrBytesPart1h-', True), ] prop = PropMeta("str", "childAction", "childAction", 4, PropCategory.CHILD_ACTION) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("deleteAll", "deleteall", 16384) prop._addConstant("deleteNonPresent", "deletenonpresent", 8192) prop._addConstant("ignore", "ignore", 4096) meta.props.add("childAction", prop) prop = PropMeta("str", "cnt", "cnt", 16212, PropCategory.REGULAR) prop.label = "Number of Collections During this Interval" prop.isImplicit = True prop.isAdmin = True meta.props.add("cnt", prop) prop = PropMeta("str", "dn", "dn", 1, PropCategory.DN) prop.label = "None" prop.isDn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("dn", prop) prop = PropMeta("str", "lastCollOffset", "lastCollOffset", 111, PropCategory.REGULAR) prop.label = "Collection Length" prop.isImplicit = True prop.isAdmin = True meta.props.add("lastCollOffset", prop) prop = PropMeta("str", "modTs", "modTs", 7, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "never" prop._addConstant("never", "never", 0) meta.props.add("modTs", prop) prop = PropMeta("str", "multicastAvg", "multicastAvg", 21696, PropCategory.IMPLICIT_AVG) prop.label = "egress multicast bytes average value" prop.isOper = True prop.isStats = True meta.props.add("multicastAvg", prop) prop = PropMeta("str", "multicastBase", "multicastBase", 21691, PropCategory.IMPLICIT_BASELINE) prop.label = "egress multicast bytes baseline" prop.isOper = True prop.isStats = True meta.props.add("multicastBase", prop) prop = PropMeta("str", "multicastCum", "multicastCum", 21692, PropCategory.IMPLICIT_CUMULATIVE) prop.label = "egress multicast bytes cumulative" prop.isOper = True prop.isStats = True meta.props.add("multicastCum", prop) prop = PropMeta("str", "multicastLast", "multicastLast", 21690, PropCategory.IMPLICIT_LASTREADING) prop.label = "egress multicast bytes current value" prop.isOper = True prop.isStats = True meta.props.add("multicastLast", prop) prop = PropMeta("str", "multicastMax", "multicastMax", 21695, PropCategory.IMPLICIT_MAX) prop.label = "egress multicast bytes maximum value" prop.isOper = True prop.isStats = True meta.props.add("multicastMax", prop) prop = PropMeta("str", "multicastMin", "multicastMin", 21694, PropCategory.IMPLICIT_MIN) prop.label = "egress multicast bytes minimum value" prop.isOper = True prop.isStats = True meta.props.add("multicastMin", prop) prop = PropMeta("str", "multicastPer", "multicastPer", 21693, PropCategory.IMPLICIT_PERIODIC) prop.label = "egress multicast bytes periodic" prop.isOper = True prop.isStats = True meta.props.add("multicastPer", prop) prop = PropMeta("str", "multicastRate", "multicastRate", 21701, PropCategory.IMPLICIT_RATE) prop.label = "egress multicast bytes rate" prop.isOper = True prop.isStats = True meta.props.add("multicastRate", prop) prop = PropMeta("str", "multicastSpct", "multicastSpct", 21697, PropCategory.IMPLICIT_SUSPECT) prop.label = "egress multicast bytes suspect count" prop.isOper = True prop.isStats = True meta.props.add("multicastSpct", prop) prop = PropMeta("str", "multicastThr", "multicastThr", 21698, PropCategory.IMPLICIT_THRESHOLDED) prop.label = "egress multicast bytes thresholded flags" prop.isOper = True prop.isStats = True prop.defaultValue = 0 prop.defaultValueStr = "unspecified" prop._addConstant("avgCrit", "avg-severity-critical", 2199023255552) prop._addConstant("avgHigh", "avg-crossed-high-threshold", 68719476736) prop._addConstant("avgLow", "avg-crossed-low-threshold", 137438953472) prop._addConstant("avgMajor", "avg-severity-major", 1099511627776) prop._addConstant("avgMinor", "avg-severity-minor", 549755813888) prop._addConstant("avgRecovering", "avg-recovering", 34359738368) prop._addConstant("avgWarn", "avg-severity-warning", 274877906944) prop._addConstant("cumulativeCrit", "cumulative-severity-critical", 8192) prop._addConstant("cumulativeHigh", "cumulative-crossed-high-threshold", 256) prop._addConstant("cumulativeLow", "cumulative-crossed-low-threshold", 512) prop._addConstant("cumulativeMajor", "cumulative-severity-major", 4096) prop._addConstant("cumulativeMinor", "cumulative-severity-minor", 2048) prop._addConstant("cumulativeRecovering", "cumulative-recovering", 128) prop._addConstant("cumulativeWarn", "cumulative-severity-warning", 1024) prop._addConstant("lastReadingCrit", "lastreading-severity-critical", 64) prop._addConstant("lastReadingHigh", "lastreading-crossed-high-threshold", 2) prop._addConstant("lastReadingLow", "lastreading-crossed-low-threshold", 4) prop._addConstant("lastReadingMajor", "lastreading-severity-major", 32) prop._addConstant("lastReadingMinor", "lastreading-severity-minor", 16) prop._addConstant("lastReadingRecovering", "lastreading-recovering", 1) prop._addConstant("lastReadingWarn", "lastreading-severity-warning", 8) prop._addConstant("maxCrit", "max-severity-critical", 17179869184) prop._addConstant("maxHigh", "max-crossed-high-threshold", 536870912) prop._addConstant("maxLow", "max-crossed-low-threshold", 1073741824) prop._addConstant("maxMajor", "max-severity-major", 8589934592) prop._addConstant("maxMinor", "max-severity-minor", 4294967296) prop._addConstant("maxRecovering", "max-recovering", 268435456) prop._addConstant("maxWarn", "max-severity-warning", 2147483648) prop._addConstant("minCrit", "min-severity-critical", 134217728) prop._addConstant("minHigh", "min-crossed-high-threshold", 4194304) prop._addConstant("minLow", "min-crossed-low-threshold", 8388608) prop._addConstant("minMajor", "min-severity-major", 67108864) prop._addConstant("minMinor", "min-severity-minor", 33554432) prop._addConstant("minRecovering", "min-recovering", 2097152) prop._addConstant("minWarn", "min-severity-warning", 16777216) prop._addConstant("periodicCrit", "periodic-severity-critical", 1048576) prop._addConstant("periodicHigh", "periodic-crossed-high-threshold", 32768) prop._addConstant("periodicLow", "periodic-crossed-low-threshold", 65536) prop._addConstant("periodicMajor", "periodic-severity-major", 524288) prop._addConstant("periodicMinor", "periodic-severity-minor", 262144) prop._addConstant("periodicRecovering", "periodic-recovering", 16384) prop._addConstant("periodicWarn", "periodic-severity-warning", 131072) prop._addConstant("rateCrit", "rate-severity-critical", 36028797018963968) prop._addConstant("rateHigh", "rate-crossed-high-threshold", 1125899906842624) prop._addConstant("rateLow", "rate-crossed-low-threshold", 2251799813685248) prop._addConstant("rateMajor", "rate-severity-major", 18014398509481984) prop._addConstant("rateMinor", "rate-severity-minor", 9007199254740992) prop._addConstant("rateRecovering", "rate-recovering", 562949953421312) prop._addConstant("rateWarn", "rate-severity-warning", 4503599627370496) prop._addConstant("trendCrit", "trend-severity-critical", 281474976710656) prop._addConstant("trendHigh", "trend-crossed-high-threshold", 8796093022208) prop._addConstant("trendLow", "trend-crossed-low-threshold", 17592186044416) prop._addConstant("trendMajor", "trend-severity-major", 140737488355328) prop._addConstant("trendMinor", "trend-severity-minor", 70368744177664) prop._addConstant("trendRecovering", "trend-recovering", 4398046511104) prop._addConstant("trendWarn", "trend-severity-warning", 35184372088832) prop._addConstant("unspecified", None, 0) meta.props.add("multicastThr", prop) prop = PropMeta("str", "multicastTr", "multicastTr", 21700, PropCategory.IMPLICIT_TREND) prop.label = "egress multicast bytes trend" prop.isOper = True prop.isStats = True meta.props.add("multicastTr", prop) prop = PropMeta("str", "multicastTrBase", "multicastTrBase", 21699, PropCategory.IMPLICIT_TREND_BASE) prop.label = "egress multicast bytes trend baseline" prop.isOper = True prop.isStats = True meta.props.add("multicastTrBase", prop) prop = PropMeta("str", "nodeId", "nodeId", 21607, PropCategory.REGULAR) prop.label = "Node Id" prop.isConfig = True prop.isAdmin = True prop.isCreateOnly = True prop.isNaming = True meta.props.add("nodeId", prop) prop = PropMeta("str", "repIntvEnd", "repIntvEnd", 110, PropCategory.REGULAR) prop.label = "Reporting End Time" prop.isImplicit = True prop.isAdmin = True meta.props.add("repIntvEnd", prop) prop = PropMeta("str", "repIntvStart", "repIntvStart", 109, PropCategory.REGULAR) prop.label = "Reporting Start Time" prop.isImplicit = True prop.isAdmin = True meta.props.add("repIntvStart", prop) prop = PropMeta("str", "rn", "rn", 2, PropCategory.RN) prop.label = "None" prop.isRn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("rn", prop) prop = PropMeta("str", "status", "status", 3, PropCategory.STATUS) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("created", "created", 2) prop._addConstant("deleted", "deleted", 8) prop._addConstant("modified", "modified", 4) meta.props.add("status", prop) prop = PropMeta("str", "unicastAvg", "unicastAvg", 21751, PropCategory.IMPLICIT_AVG) prop.label = "egress unicast bytes average value" prop.isOper = True prop.isStats = True meta.props.add("unicastAvg", prop) prop = PropMeta("str", "unicastBase", "unicastBase", 21746, PropCategory.IMPLICIT_BASELINE) prop.label = "egress unicast bytes baseline" prop.isOper = True prop.isStats = True meta.props.add("unicastBase", prop) prop = PropMeta("str", "unicastCum", "unicastCum", 21747, PropCategory.IMPLICIT_CUMULATIVE) prop.label = "egress unicast bytes cumulative" prop.isOper = True prop.isStats = True meta.props.add("unicastCum", prop) prop = PropMeta("str", "unicastLast", "unicastLast", 21745, PropCategory.IMPLICIT_LASTREADING) prop.label = "egress unicast bytes current value" prop.isOper = True prop.isStats = True meta.props.add("unicastLast", prop) prop = PropMeta("str", "unicastMax", "unicastMax", 21750, PropCategory.IMPLICIT_MAX) prop.label = "egress unicast bytes maximum value" prop.isOper = True prop.isStats = True meta.props.add("unicastMax", prop) prop = PropMeta("str", "unicastMin", "unicastMin", 21749, PropCategory.IMPLICIT_MIN) prop.label = "egress unicast bytes minimum value" prop.isOper = True prop.isStats = True meta.props.add("unicastMin", prop) prop = PropMeta("str", "unicastPer", "unicastPer", 21748, PropCategory.IMPLICIT_PERIODIC) prop.label = "egress unicast bytes periodic" prop.isOper = True prop.isStats = True meta.props.add("unicastPer", prop) prop = PropMeta("str", "unicastRate", "unicastRate", 21756, PropCategory.IMPLICIT_RATE) prop.label = "egress unicast bytes rate" prop.isOper = True prop.isStats = True meta.props.add("unicastRate", prop) prop = PropMeta("str", "unicastSpct", "unicastSpct", 21752, PropCategory.IMPLICIT_SUSPECT) prop.label = "egress unicast bytes suspect count" prop.isOper = True prop.isStats = True meta.props.add("unicastSpct", prop) prop = PropMeta("str", "unicastThr", "unicastThr", 21753, PropCategory.IMPLICIT_THRESHOLDED) prop.label = "egress unicast bytes thresholded flags" prop.isOper = True prop.isStats = True prop.defaultValue = 0 prop.defaultValueStr = "unspecified" prop._addConstant("avgCrit", "avg-severity-critical", 2199023255552) prop._addConstant("avgHigh", "avg-crossed-high-threshold", 68719476736) prop._addConstant("avgLow", "avg-crossed-low-threshold", 137438953472) prop._addConstant("avgMajor", "avg-severity-major", 1099511627776) prop._addConstant("avgMinor", "avg-severity-minor", 549755813888) prop._addConstant("avgRecovering", "avg-recovering", 34359738368) prop._addConstant("avgWarn", "avg-severity-warning", 274877906944) prop._addConstant("cumulativeCrit", "cumulative-severity-critical", 8192) prop._addConstant("cumulativeHigh", "cumulative-crossed-high-threshold", 256) prop._addConstant("cumulativeLow", "cumulative-crossed-low-threshold", 512) prop._addConstant("cumulativeMajor", "cumulative-severity-major", 4096) prop._addConstant("cumulativeMinor", "cumulative-severity-minor", 2048) prop._addConstant("cumulativeRecovering", "cumulative-recovering", 128) prop._addConstant("cumulativeWarn", "cumulative-severity-warning", 1024) prop._addConstant("lastReadingCrit", "lastreading-severity-critical", 64) prop._addConstant("lastReadingHigh", "lastreading-crossed-high-threshold", 2) prop._addConstant("lastReadingLow", "lastreading-crossed-low-threshold", 4) prop._addConstant("lastReadingMajor", "lastreading-severity-major", 32) prop._addConstant("lastReadingMinor", "lastreading-severity-minor", 16) prop._addConstant("lastReadingRecovering", "lastreading-recovering", 1) prop._addConstant("lastReadingWarn", "lastreading-severity-warning", 8) prop._addConstant("maxCrit", "max-severity-critical", 17179869184) prop._addConstant("maxHigh", "max-crossed-high-threshold", 536870912) prop._addConstant("maxLow", "max-crossed-low-threshold", 1073741824) prop._addConstant("maxMajor", "max-severity-major", 8589934592) prop._addConstant("maxMinor", "max-severity-minor", 4294967296) prop._addConstant("maxRecovering", "max-recovering", 268435456) prop._addConstant("maxWarn", "max-severity-warning", 2147483648) prop._addConstant("minCrit", "min-severity-critical", 134217728) prop._addConstant("minHigh", "min-crossed-high-threshold", 4194304) prop._addConstant("minLow", "min-crossed-low-threshold", 8388608) prop._addConstant("minMajor", "min-severity-major", 67108864) prop._addConstant("minMinor", "min-severity-minor", 33554432) prop._addConstant("minRecovering", "min-recovering", 2097152) prop._addConstant("minWarn", "min-severity-warning", 16777216) prop._addConstant("periodicCrit", "periodic-severity-critical", 1048576) prop._addConstant("periodicHigh", "periodic-crossed-high-threshold", 32768) prop._addConstant("periodicLow", "periodic-crossed-low-threshold", 65536) prop._addConstant("periodicMajor", "periodic-severity-major", 524288) prop._addConstant("periodicMinor", "periodic-severity-minor", 262144) prop._addConstant("periodicRecovering", "periodic-recovering", 16384) prop._addConstant("periodicWarn", "periodic-severity-warning", 131072) prop._addConstant("rateCrit", "rate-severity-critical", 36028797018963968) prop._addConstant("rateHigh", "rate-crossed-high-threshold", 1125899906842624) prop._addConstant("rateLow", "rate-crossed-low-threshold", 2251799813685248) prop._addConstant("rateMajor", "rate-severity-major", 18014398509481984) prop._addConstant("rateMinor", "rate-severity-minor", 9007199254740992) prop._addConstant("rateRecovering", "rate-recovering", 562949953421312) prop._addConstant("rateWarn", "rate-severity-warning", 4503599627370496) prop._addConstant("trendCrit", "trend-severity-critical", 281474976710656) prop._addConstant("trendHigh", "trend-crossed-high-threshold", 8796093022208) prop._addConstant("trendLow", "trend-crossed-low-threshold", 17592186044416) prop._addConstant("trendMajor", "trend-severity-major", 140737488355328) prop._addConstant("trendMinor", "trend-severity-minor", 70368744177664) prop._addConstant("trendRecovering", "trend-recovering", 4398046511104) prop._addConstant("trendWarn", "trend-severity-warning", 35184372088832) prop._addConstant("unspecified", None, 0) meta.props.add("unicastThr", prop) prop = PropMeta("str", "unicastTr", "unicastTr", 21755, PropCategory.IMPLICIT_TREND) prop.label = "egress unicast bytes trend" prop.isOper = True prop.isStats = True meta.props.add("unicastTr", prop) prop = PropMeta("str", "unicastTrBase", "unicastTrBase", 21754, PropCategory.IMPLICIT_TREND_BASE) prop.label = "egress unicast bytes trend baseline" prop.isOper = True prop.isStats = True meta.props.add("unicastTrBase", prop) meta.namingProps.append(getattr(meta.props, "nodeId")) # Deployment Meta meta.deploymentQuery = True meta.deploymentType = "Ancestor" meta.deploymentQueryPaths.append(DeploymentPathMeta("ATgToGraphInst", "Graph Instances", "cobra.model.vns.GraphInst")) meta.deploymentQueryPaths.append(DeploymentPathMeta("AEPgToVirtualMachines", "Virtual Machines", "cobra.model.comp.Vm")) meta.deploymentQueryPaths.append(DeploymentPathMeta("InBToNode", "Node", "cobra.model.fv.Locale")) meta.deploymentQueryPaths.append(DeploymentPathMeta("EPgToNwIf", "Interface", "cobra.model.nw.If")) meta.deploymentQueryPaths.append(DeploymentPathMeta("CtxToNwIf", "Private Network to Interface", "cobra.model.nw.If")) meta.deploymentQueryPaths.append(DeploymentPathMeta("BDToNwIf", "Bridge Domain to Interface", "cobra.model.nw.If")) def __init__(self, parentMoOrDn, nodeId, markDirty=True, **creationProps): namingVals = [nodeId] Mo.__init__(self, parentMoOrDn, markDirty, *namingVals, **creationProps) # End of package file # ##################################################
35e94a777c8f8bc8a326cf67aab84070f19105e0
e4dcd63ed6b66b2cc164e4a9667e163e9c40601c
/virtual/bin/confusable_homoglyphs
8f58c52f317751308d6728b3aa7fd3e3d40eeb4d
[]
no_license
kepha-okari/tabler
8e95803843f5fd9a8726e4ee85a57b48a77d2a2e
f682a77d581834151f723cdd2de2a37353369047
refs/heads/master
2022-12-22T21:52:45.879263
2018-07-18T15:45:52
2018-07-18T15:45:52
136,938,470
0
0
null
2022-12-08T00:59:12
2018-06-11T14:32:53
Python
UTF-8
Python
false
false
269
#!/home/rkepha/Documents/hir/timetabler/virtual/bin/python3.6 # -*- coding: utf-8 -*- import re import sys from confusable_homoglyphs.cli import cli if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(cli())
15e3e7fd280ed96ea086aab5efc0b2fc21e4b360
a904c2fd006d6652d28af8eb8634d29d66d0024f
/net/PRESUBMIT.py
e82166c7b55e59fde047d70a83ff671f5f61f6a2
[ "BSD-3-Clause" ]
permissive
esprehn/mojo
1cba014abe08168509ebb202dd4b032f61f06713
e50a99d5c5b046aa24a5415744f6661cb12a66c3
refs/heads/master
2020-12-01T13:05:42.886923
2014-10-30T22:23:04
2014-10-30T22:23:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,007
py
# Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Chromium presubmit script for src/net. See http://dev.chromium.org/developers/how-tos/depottools/presubmit-scripts for more details on the presubmit API built into gcl. """ def GetPreferredTryMasters(project, change): masters = { 'tryserver.chromium.linux': { 'linux_chromium_rel': set(['defaulttests']), }, 'tryserver.chromium.mac': { 'mac_chromium_rel': set(['defaulttests']), }, 'tryserver.chromium.win': { 'win_chromium_rel': set(['defaulttests']), } } # Changes that touch NSS files will likely need a corresponding OpenSSL edit. # Conveniently, this one glob also matches _openssl.* changes too. if any('nss' in f.LocalPath() for f in change.AffectedFiles()): masters['tryserver.chromium.linux'].setdefault( 'linux_redux', set()).add('defaulttests') return masters
0872b8ae6fd54a0177c8e8bc0a1dcb97b506dd72
946a9dcf4e644f0d3f806f016a23ae8d96095082
/LeetCode/DP/375_GuessNumberHigherOrLower2.py
2ac71345a5c550d6ff8bd1d9657c2b24b4745021
[]
no_license
HzCeee/Algorithms
3dea898f071f4103ca3eb038f63b01ba4ba95383
e05f29071d0badd081535e773f43ebc303aa12c4
refs/heads/master
2018-10-20T21:54:37.154631
2018-10-11T20:46:34
2018-10-11T20:46:34
116,142,856
0
0
null
null
null
null
UTF-8
Python
false
false
667
py
class Solution(object): def getMoneyAmount(self, n): """ :type n: int :rtype: int """ # dp[low][high] refers to the minimum money need to guarantee a win within range [low, high] # dp[low][high] = min([guess + max(dp[low][guess], dp[guess][high]) for guess in range(low, high)]) dp = [[0] * n for _ in range(n)] for low in range(n)[::-1]: for high in range(low + 1, n): tmp = [guess + 1 + max(dp[low][guess - 1], dp[guess + 1][high]) for guess in range(low, high)] dp[low][high] = min(tmp) if tmp else 0 return dp[0][-1]
e18292f3203af3b07da2eabe2cbae4e3147fd60b
b6be7bef4c8ffd48c3a1c89fa2ad84bc8d042eb7
/Inception.py
57388fe850812ec59514d31ce4604505005ffc93
[]
no_license
Wushaoyong/tensflowtest
48e747c1a6cdd7374313013d43cb095a97f3bc34
f393a945e733fcfe0c63f5dcfffc44c60d2a5862
refs/heads/master
2023-01-10T01:47:38.764265
2020-11-10T02:26:16
2020-11-10T02:26:16
305,975,864
0
0
null
null
null
null
UTF-8
Python
false
false
1,758
py
import tensorflow as tf with tf.variable_scope('conv7') as scope: input_image = pool6 input_1 = 110 input_2 = 120 input_3 = input_2 * 3 weights = tf.get_variable('weights',shape=[3, 3, input_1, input_2], dtype=tf.float32, initializer=tf.truncated_normal_initializer(stddev=0.05, dtype=tf.float32)) biases = tf.get_variable('biases',shape=[input_2],dtype=tf.float32, initializer=tf.constant_initializer(0.1)) weights_deduce = tf.get_variable('weights_deduce',shape=[3, 3, input_3, input_2],dtype=tf.float32, initializer=tf.truncated_normal_initializer (stddev=0.05, dtype=tf.float32)) biases_deduce = tf.get_variable('biases_deduce',shape=[input_2], dtype=tf.float32,initializer=tf.constant_initializer(0.1)) conv = tf.nn.conv2d(input_image, weights, strides=[1, 1, 1, 1], padding='SAME') pre_activation = tf.nn.bias_add(conv, biases) pre_activation = batch_norm(pre_activation, is_training_mmodel) conv_relu = tf.nn.relu(pre_activation, name=scope.name) pool_2_2 = tf.nn.max_pool(conv_relu, ksize=[1, 2, 2, 1], strides=[1, 1, 1, 1], padding='SAME', name='pooling2_2') pool_3_3 = tf.nn.max_pool(conv_relu, ksize=[1, 3, 3, 1], strides=[1, 1, 1, 1], padding='SAME', name='pooling3_3') pool_4_4 = tf.nn.max_pool(conv_relu, ksize=[1, 4, 4, 1], strides=[1, 1, 1, 1], padding='SAME', name='pooling4_4') pool_pre = tf.concat([pool_2_2, pool_3_3, pool_4_4], 3) with tf.variable_scope('reduce_layer') as deduce0: conv = tf.nn.conv2d(pool_pre, weights_deduce, strides=[1, 1, 1, 1], padding='SAME') pre_activation = tf.nn.bias_add(conv, biases_deduce) pre_activation = batch_norm2(pre_activation, is_training_mmodel) pool7 = tf.nn.relu(pre_activation, name=deduce0.name)
b0a7dbf1e9f1a38e8c3c7c3f7498e5b970e34a7f
d92fc7ba34412e8a1633b87bea5761c0bdbf196e
/utils/OfflineDataLoader.py
4a6d8b8f8004d9e9b3de5a094691bbe7da61e89e
[ "MIT" ]
permissive
yigitozgumus/PolimiRecSys2018
d37876c8d678aecc52d8c4558f2b6d40d1a03d83
1e63f46b83bd52399dc600b1abbf254bf47db094
refs/heads/master
2023-02-17T16:24:39.853937
2022-08-13T08:24:13
2022-08-13T08:24:13
152,449,643
0
0
MIT
2023-02-10T22:42:06
2018-10-10T15:49:36
Python
UTF-8
Python
false
false
2,954
py
from utils.util import working_directory import os import re import models as m class OfflineDataLoader(object): def __init__(self,model_folder="saved_models",parameter_folder="saved_parameters"): super(OfflineDataLoader, self).__init__() self.repository = "tuned_parameters" self.model_folder = model_folder self.parameter_folder = parameter_folder self.training = self.model_folder + "/" + "training" self.submission = self.model_folder + "/" + "submission" self.training_models = self.get_models(self.training) self.submission_models = self.get_models(self.submission) self.parameter_files = self.get_models(self.parameter_folder) self.repository_files = self.build_repository(self.repository) def get_model(self,model_name,training=True): if training: result = [i for i in self.training_models if re.compile(model_name).search(i)] folder_path = str("/".join(result[0].split("/")[:-1])+"/") file_name = result[0].split("/")[-1] return folder_path,file_name else: result = [i for i in self.submission_models if re.compile(model_name).search(i)] folder_path = str("/".join(result[0].split("/")[:-1])+"/") file_name = result[0].split("/")[-1] return folder_path,file_name def get_parameter(self,model_name): result = [i for i in self.parameter_files if re.compile(model_name).search(i)] folder_path = str("/".join(result[0].split("/")[:-1])+"/") file_name = result[0].split("/")[-1] return folder_path,file_name def get_models(self,folder_name): fileList = os.listdir(folder_name) filter = re.compile(r'\..+|.+\.txt$') filtered_files = [folder_name + "/" + i for i in fileList if not filter.search(i)] return filtered_files def build_repository(self,repo_folder): filter = re.compile(r'\..+|.+\.txt$') listOfFolders = os.listdir(repo_folder) filteredDirPaths = [repo_folder+"/"+i for i in listOfFolders if not filter.search(i)] files = [] for folder in filteredDirPaths: with working_directory(folder): filePaths = [folder +"/"+ i for i in os.listdir(".")] files.extend(filePaths) # Categorize # Define error filter errorFilter = re.compile(r'Error.+') # Make it error free errorFilteredFiles = [i for i in files if not errorFilter.search(i)] bestModelFilter = re.compile(r'best_model$') self.best_models = [i for i in files if bestModelFilter.search(i)] parameterFilter = re.compile(r'best_parameters$') self.best_parameters = [i for i in files if parameterFilter.search(i)] resultFilter = re.compile(r'best_result_test$') self.best_results = [i for i in files if resultFilter.search(i)]
dde8ce33f41abb767cc6c00643052aeb98027f76
2c74bb301f1ed83b79254944183ac5a18a639fdf
/tests/components/modern_forms/test_init.py
fd6ff49547078e61218c25b6e6b05643814c2186
[ "Apache-2.0" ]
permissive
Adminiuga/home-assistant
5bec93007ddac1a268cc359bf7e48530c5f73b38
dcf68d768e4f628d038f1fdd6e40bad713fbc222
refs/heads/dev
2023-02-22T22:03:31.013931
2022-11-09T00:27:20
2022-11-09T00:27:20
123,929,062
5
4
Apache-2.0
2023-02-22T06:14:31
2018-03-05T14:11:09
Python
UTF-8
Python
false
false
1,766
py
"""Tests for the Modern Forms integration.""" from unittest.mock import MagicMock, patch from aiomodernforms import ModernFormsConnectionError from homeassistant.components.modern_forms.const import DOMAIN from homeassistant.config_entries import ConfigEntryState from homeassistant.core import HomeAssistant from homeassistant.helpers import entity_registry as er from . import init_integration, modern_forms_no_light_call_mock from tests.test_util.aiohttp import AiohttpClientMocker @patch( "homeassistant.components.modern_forms.ModernFormsDevice.update", side_effect=ModernFormsConnectionError, ) async def test_config_entry_not_ready( mock_update: MagicMock, hass: HomeAssistant, aioclient_mock: AiohttpClientMocker ) -> None: """Test the Modern Forms configuration entry not ready.""" entry = await init_integration(hass, aioclient_mock) assert entry.state is ConfigEntryState.SETUP_RETRY async def test_unload_config_entry( hass: HomeAssistant, aioclient_mock: AiohttpClientMocker ) -> None: """Test the Modern Forms configuration entry unloading.""" entry = await init_integration(hass, aioclient_mock) assert hass.data[DOMAIN] await hass.config_entries.async_unload(entry.entry_id) await hass.async_block_till_done() assert not hass.data.get(DOMAIN) async def test_fan_only_device(hass, aioclient_mock): """Test we set unique ID if not set yet.""" await init_integration( hass, aioclient_mock, mock_type=modern_forms_no_light_call_mock ) entity_registry = er.async_get(hass) fan_entry = entity_registry.async_get("fan.modernformsfan_fan") assert fan_entry light_entry = entity_registry.async_get("light.modernformsfan_light") assert light_entry is None
3a801ecc0c5fdc7891d75192545846fbb79e28f5
58ff923a903cf2393c87988559e55ab6d0fd5be2
/venv/lib/python3.9/site-packages/evalml/tests/component_tests/test_estimators.py
a34b16f71e38c2eb5f4463b1ed57a3b3d6748c16
[]
no_license
gurmeet1109/AVJat0621
9930d08b9ae719918ee1e53b673e541c7900f940
e845a4a5b48f5a63fd2833fbd18b91133d5ca736
refs/heads/master
2023-06-11T21:01:21.686729
2021-07-03T14:21:51
2021-07-03T14:21:51
382,629,300
0
0
null
null
null
null
UTF-8
Python
false
false
9,867
py
import string import numpy as np import pandas as pd import pytest import woodwork as ww from evalml.exceptions import ComponentNotYetFittedError from evalml.model_family import ModelFamily from evalml.pipelines.components import Estimator from evalml.pipelines.components.utils import ( _all_estimators_used_in_search, get_estimators ) from evalml.problem_types import ( ProblemTypes, handle_problem_types, is_binary, is_multiclass, is_regression ) from evalml.utils import get_random_state def test_estimators_feature_name_with_random_ascii(X_y_binary, X_y_multi, X_y_regression, ts_data, helper_functions): for estimator_class in _all_estimators_used_in_search(): if estimator_class.__name__ == 'ARIMARegressor': continue supported_problem_types = [handle_problem_types(pt) for pt in estimator_class.supported_problem_types] for problem_type in supported_problem_types: clf = helper_functions.safe_init_component_with_njobs_1(estimator_class) if is_binary(problem_type): X, y = X_y_binary elif is_multiclass(problem_type): X, y = X_y_multi elif is_regression(problem_type): X, y = X_y_regression X = get_random_state(clf.random_seed).random((X.shape[0], len(string.printable))) col_names = ['column_{}'.format(ascii_char) for ascii_char in string.printable] X = pd.DataFrame(X, columns=col_names) assert clf.input_feature_names is None clf.fit(X, y) assert len(clf.feature_importance) == len(X.columns) assert not np.isnan(clf.feature_importance).all().all() predictions = clf.predict(X) assert len(predictions) == len(y) assert not np.isnan(predictions).all() assert (clf.input_feature_names == col_names) def test_binary_classification_estimators_predict_proba_col_order(helper_functions): X = pd.DataFrame({'input': np.concatenate([np.array([-1] * 100), np.array([1] * 100)])}) data = np.concatenate([np.zeros(100), np.ones(100)]) y = pd.Series(data) for estimator_class in _all_estimators_used_in_search(): supported_problem_types = [handle_problem_types(pt) for pt in estimator_class.supported_problem_types] if ProblemTypes.BINARY in supported_problem_types: estimator = helper_functions.safe_init_component_with_njobs_1(estimator_class) estimator.fit(X, y) predicted_proba = estimator.predict_proba(X) expected = np.concatenate([(1 - data).reshape(-1, 1), data.reshape(-1, 1)], axis=1) np.testing.assert_allclose(expected, np.round(predicted_proba).values) def test_estimator_equality_different_supported_problem_types(): class MockEstimator(Estimator): name = "Mock Estimator" model_family = ModelFamily.LINEAR_MODEL supported_problem_types = ['binary'] mock_estimator = MockEstimator() mock_estimator.supported_problem_types = ['binary', 'multiclass'] assert mock_estimator != MockEstimator() assert 'Mock Estimator' != mock_estimator @pytest.mark.parametrize("data_type", ['li', 'np', 'pd', 'ww']) def test_all_estimators_check_fit_input_type(data_type, X_y_binary, make_data_type, helper_functions): X, y = X_y_binary X = make_data_type(data_type, X) y = make_data_type(data_type, y) estimators_to_check = [estimator for estimator in get_estimators('binary')] for component_class in estimators_to_check: component = helper_functions.safe_init_component_with_njobs_1(component_class) component.fit(X, y) component.predict(X) component.predict_proba(X) @pytest.mark.parametrize("data_type", ['li', 'np', 'pd', 'ww']) def test_all_estimators_check_fit_input_type_regression(data_type, X_y_regression, make_data_type, helper_functions): X, y = X_y_regression X = make_data_type(data_type, X) y = make_data_type(data_type, y) estimators_to_check = [estimator for estimator in get_estimators('regression')] for component_class in estimators_to_check: component = helper_functions.safe_init_component_with_njobs_1(component_class) component.fit(X, y) component.predict(X) def test_estimator_predict_output_type(X_y_binary, ts_data, helper_functions): X_np, y_np = X_y_binary assert isinstance(X_np, np.ndarray) assert isinstance(y_np, np.ndarray) y_list = list(y_np) X_df_no_col_names = pd.DataFrame(X_np) range_index = pd.RangeIndex(start=0, stop=X_np.shape[1], step=1) X_df_with_col_names = pd.DataFrame(X_np, columns=['x' + str(i) for i in range(X_np.shape[1])]) y_series_no_name = pd.Series(y_np) y_series_with_name = pd.Series(y_np, name='target') X_df_no_col_names_ts = pd.DataFrame(data=X_df_no_col_names.values, columns=X_df_no_col_names.columns, index=pd.date_range(start='1/1/2018', periods=X_df_no_col_names.shape[0])) X_df_with_col_names_ts = pd.DataFrame(data=X_df_with_col_names.values, columns=['x' + str(i) for i in range(X_np.shape[1])], index=pd.date_range(start='1/1/2018', periods=X_df_with_col_names.shape[0])) datatype_combos = [(X_np, y_np, range_index, np.unique(y_np), False), (X_np, y_list, range_index, np.unique(y_np), False), (X_df_no_col_names, y_series_no_name, range_index, y_series_no_name.unique(), False), (X_df_with_col_names, y_series_with_name, X_df_with_col_names.columns, y_series_with_name.unique(), False), (X_df_no_col_names_ts, y_series_no_name, range_index, y_series_no_name.unique(), True), (X_df_with_col_names_ts, y_series_with_name, X_df_with_col_names_ts.columns, y_series_with_name.unique(), True)] for component_class in _all_estimators_used_in_search(): for X, y, X_cols_expected, y_cols_expected, time_series in datatype_combos: if component_class.name == 'ARIMA Regressor' and not time_series: continue elif component_class.name != 'ARIMA Regressor' and time_series: continue print('Checking output of predict for estimator "{}" on X type {} cols {}, y type {} name {}' .format(component_class.name, type(X), X.columns if isinstance(X, pd.DataFrame) else None, type(y), y.name if isinstance(y, pd.Series) else None)) component = helper_functions.safe_init_component_with_njobs_1(component_class) component.fit(X, y=y) predict_output = component.predict(X) assert isinstance(predict_output, pd.Series) assert len(predict_output) == len(y) if component_class.name == 'ARIMA Regressor': assert predict_output.name == 'predicted_mean' else: assert predict_output.name is None if not ((ProblemTypes.BINARY in component_class.supported_problem_types) or (ProblemTypes.MULTICLASS in component_class.supported_problem_types)): continue print('Checking output of predict_proba for estimator "{}" on X type {} cols {}, y type {} name {}' .format(component_class.name, type(X), X.columns if isinstance(X, pd.DataFrame) else None, type(y), y.name if isinstance(y, pd.Series) else None)) predict_proba_output = component.predict_proba(X) assert isinstance(predict_proba_output, pd.DataFrame) assert predict_proba_output.shape == (len(y), len(np.unique(y))) assert (list(predict_proba_output.columns) == y_cols_expected).all() def test_estimator_check_for_fit_with_overrides(X_y_binary): class MockEstimatorWithOverrides(Estimator): name = "Mock Estimator" model_family = ModelFamily.LINEAR_MODEL supported_problem_types = ['binary'] def fit(self, X, y): pass def predict(self, X): pass def predict_proba(self, X): pass class MockEstimatorWithOverridesSubclass(Estimator): name = "Mock Estimator Subclass" model_family = ModelFamily.LINEAR_MODEL supported_problem_types = ['binary'] def fit(self, X, y): pass def predict(self, X): pass def predict_proba(self, X): pass X, y = X_y_binary est = MockEstimatorWithOverrides() est_subclass = MockEstimatorWithOverridesSubclass() with pytest.raises(ComponentNotYetFittedError, match='You must fit'): est.predict(X) with pytest.raises(ComponentNotYetFittedError, match='You must fit'): est_subclass.predict(X) est.fit(X, y) est.predict(X) est.predict_proba(X) est_subclass.fit(X, y) est_subclass.predict(X) est_subclass.predict_proba(X) def test_estimator_manage_woodwork(X_y_binary): X_df = pd.DataFrame({"foo": [1, 2, 3], "bar": [4, 5, 6], "baz": [7, 8, 9]}) X_df.ww.init() y_series = pd.Series([1, 2, 3]) y_series = ww.init_series(y_series) class MockEstimator(Estimator): name = "Mock Estimator Subclass" model_family = ModelFamily.LINEAR_MODEL supported_problem_types = ['binary'] # Test y is None case est = MockEstimator() X, y = est._manage_woodwork(X_df, y=None) assert isinstance(X, pd.DataFrame) assert y is None # Test y is not None case X, y = est._manage_woodwork(X_df, y_series) assert isinstance(X, pd.DataFrame) assert isinstance(y, pd.Series)
1608fa8e1c84cd41b61e54ffed640e62909cec44
c1f15f5834062b0d5a6d6857a89124f3f114b2bd
/quick/features.py
fea39d60247ca6a9a0113700e9d9fa359c349cb5
[]
no_license
msoedov/quick.py
4bd3294daf8136989bbb0d2316224360657330c3
5c89c11c7f6bc1fabbee757a8bb217dea08e359c
refs/heads/master
2023-01-09T20:20:49.811969
2020-04-13T12:46:52
2020-04-13T12:46:52
44,098,220
15
4
null
2022-12-26T20:21:03
2015-10-12T09:41:22
Python
UTF-8
Python
false
false
4,243
py
import functools import sys import unittest from collections import namedtuple from copy import deepcopy from typing import Any, Callable, List from .common import * from .core import Schema, flatten, generate from .shrink import shrink config = {"max_count": 100, "max_scale": sys.maxsize} experiment = namedtuple("experiment", "name fn config") default = object() debug = print def verify(prop: experiment, simplification: bool = False) -> Any: test_case, schema = generate(prop.fn) kwargs = flatten(schema) ok = test_case(**kwargs) if ok: return True, kwargs, None, None if simplification: shrunked, simplified_to = shrink(test_case, schema) else: shrunked = False simplified_to = kwargs return False, kwargs, shrunked, simplified_to def code_gen( experiment: experiment, x: int, skip_group: Callable, simplification: bool = False ) -> Callable: @skip_group def test_experiment(t): ok, kwargs, shrunked, simplified_to = verify(experiment, simplification) if not ok: description = "`{}` Input: #{}".format(experiment.name, kwargs) if shrunked: description = "{}\nSimplified to: {}".format(description, simplified_to) else: description = "{}\n Failed to simplify".format(description) t.assertTrue(ok, description) test_experiment.__doc__ = experiment.name return test_experiment class QuickCheck(object): def __init__(self, **settings) -> None: super(QuickCheck, self).__init__() self.settings = settings or config self.experiments = {} def __call__(self, experiment_name: str, **defaults) -> Callable: def decorator(fn): config = default if defaults: config = deepcopy(self.settings) config.update(defaults) debug("Register {} to {}".format(experiment_name, fn)) self.experiments[experiment_name] = experiment(experiment_name, fn, config) return fn return decorator forall = __call__ def as_testcase( self, prototype=unittest.TestCase, skip_on_failure=True, simplification=True ): """ :param prototype: class of test case :param skip_on_failure: boolean flag to skip all test group on first failure :return: test case class """ debug("_" * 50) class TestProperties(prototype): """ Automatically generated tests case based on quick check properties """ @classmethod def should_fail(cls): cls.__unittest_expecting_failure__ = True return cls def skip_if(): skip = False def wrap(fn): @functools.wraps(fn) def inner(*args, **kwargs): nonlocal skip if skip and skip_on_failure: raise unittest.SkipTest("Failed experiment") try: return fn(*args, **kwargs) except Exception as e: skip = True raise e return inner return wrap settings = self.settings properties = [] for experiment in self.experiments.values(): if experiment.config is not default: settings = experiment.config max_count = settings["max_count"] skip_group = skip_if() debug("Generating {} tests for [{}]".format(max_count, experiment.name)) for x in range(max_count): test_experiment = code_gen(experiment, x, skip_group, simplification) setattr( TestProperties, "{}#{}".format(experiment.name, x), test_experiment ) properties.append(test_experiment) TestProperties.properties = properties return TestProperties def verify(self) -> List[NoneType]: test_cls = self.as_testcase() test = test_cls() return [prop(test) for prop in test.properties] forall = QuickCheck()