blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
3df115b3dffbcbdc55a87e74face40f87c7cca8f
00504f069d4f0eb93ed8777b627a6cd7de0fe94d
/10.0/auth_allowed_ips/__init__.py
4f27000c587c01350a8ffde35f37c6c282bb6e4c
[]
no_license
Gofekra/odoo-2
6e1a688a9e04cc0ecd1ca91ad7fca004194f1c4a
a2f870a695663fe505451b6d97692433a4ea2b1d
refs/heads/master
2021-04-09T13:32:46.994819
2018-03-13T07:52:55
2018-03-13T07:52:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,733
py
# coding: utf-8 import re import logging from odoo import models, fields, SUPERUSER_ID, api _logger = logging.getLogger(__name__) class User(models.Model): _inherit = 'res.users' allowed_ips = fields.Text(string='Allowed IPs', help=u"""正则匹配 如:^192\.168\.2\.\d{1,3}$, 支持多个正则,每一个正则单独一行。满足任意一行即可通过。 """) @classmethod def authenticate(cls, db, login, password, user_agent_env): uid = super(User, cls).authenticate(db, login, password, user_agent_env) if uid: with cls.pool.cursor() as cr: self = api.Environment(cr, SUPERUSER_ID, {})[cls._name] user = self.browse(uid) if hasattr(user, 'allowed_ips') and user.allowed_ips: addr = user_agent_env['REMOTE_ADDR'] if not any(re.match(line, addr) for line in user.allowed_ips.splitlines()): _logger.warn('User login blocked cause of the remote_addr %s not match allowed_ips %s', user_agent_env['REMOTE_ADDR'], user.allowed_ips) uid = False # 在super方法中,已经普通密码验证成功,且创建了登录成功的日志, # 但是在上面被IP限制,修改此login最后一条的日志和note。 Log = api.Environment(cr, SUPERUSER_ID, {})['auth_login_log.log'] Log.search([('login_account', '=', login)], limit=1, order='id desc').write({ 'note': u'IP受限', 'login_status': 'e', }) return uid
760b0eb4c5e3ffc5e8dc4d8b21479bb959617a91
0a28bcde2499e6a41e16d88ed62cd2e80a5b464d
/hb_quant/huobi/model/subuser/trade_market.py
74d22b7034eb44acc3ad53c865621798e9a56b5f
[ "MIT" ]
permissive
wenli135/Binance-volatility-trading-bot
2cfe66007294b13a89b16d1622d50ce1615f1d66
75a03ad61df0e95492128fb6f1f419d4dc256ab3
refs/heads/main
2023-06-13T06:40:43.855256
2021-07-01T02:03:25
2021-07-01T02:03:25
373,853,320
0
0
MIT
2021-06-04T13:38:26
2021-06-04T13:38:26
null
UTF-8
Python
false
false
658
py
class TradeMarket: """ The trade information with price and amount etc. :member subUid: sub user ID. accountType: activation: sub user account state for given accountType. """ def __init__(self): self.sub_uid = "" self.account_type = "" self.activation = "" def print_object(self, format_data=""): from huobi.utils.print_mix_object import PrintBasic PrintBasic.print_basic(self.sub_uid, format_data + "subUid") PrintBasic.print_basic(self.account_type, format_data + "accountType") PrintBasic.print_basic(self.activation, format_data + "activation")
214b3914aab920368717b8b7efce2aa7628cfc34
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/pa3/benchmarks/tree-491.py
b791356b5b8ce529fe2fb5cf44c992b2430b4224
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
1,451
py
# Binary-search trees class TreeNode(object): value:int = 0 left:"TreeNode" = None right:"TreeNode" = None def insert(self:"TreeNode", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode(x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode(x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class Tree(object): root:TreeNode = None size:int = 0 def insert(self:"Tree", x:int) -> object: if self.root is None: self.root = makeNode(x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def makeNode(x: int) -> TreeNode: $FuncBodyMember b = TreeNode() b.value = x return b # Input parameters n:int = 100 c:int = 4 # Data t:Tree = None i:int = 0 k:int = 37813 # Crunch t = Tree() while i < n: t.insert(k) k = (k * 37813) % 37831 if i % c != 0: t.insert(i) i = i + 1 print(t.size) for i in [4, 8, 15, 16, 23, 42]: if t.contains(i): print(i)
e73e71b19defdf97b66220f6612d3d90b742c593
954e69e23e10e18d6f8ac721d8e42d6aabceb9ab
/topytorch_all.py
c9c65555052d46e5aa3dce65220f004f795fe386
[]
no_license
jie311/2018--ZJUAI--PyramidBoxDetector
53fc001d6e60fdc67d22ab0864ed1b574c53c182
cc9b87b5082df65704a24117ff7136f9d077f49e
refs/heads/master
2022-09-09T02:30:05.219093
2020-05-28T07:37:59
2020-05-28T07:37:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,230
py
# pdpd输入格式的txt pdfile = './final_all.txt' # pytorch输入格式的txt ptfile = './final_all_pt.txt' f = open(pdfile, 'r') f_pt = open(ptfile, 'w') lines = f.readlines() i = 0 rect = 0 total = 0 while i < len(lines): if 'jpg' in lines[i]: im_id = lines[i].rstrip() # print(im_id) num = int(lines[i + 1].rstrip()) # i = i + 2 box = [] bad = 0 for j in range(num): x1, y1, w, h = map(int, lines[i].rstrip().split(' ')[0:4]) if w != h: print(im_id) print(w, h) rect += 1 if w == 0 or h == 0: # print(im_id) bad += 1 i = i + 1 continue else: box.append([x1, y1, w, h]) i = i + 1 num = num - bad total += num if num > 0: f_pt.write(im_id) f_pt.write(' {0}'.format(num)) for [x1, y1, w, h] in box: f_pt.write(' {0} {1} {2} {3}'.format(x1, y1, w, h)) f_pt.write('\n') else: pass else: i = i + 1 f_pt.close() f.close() print(rect) print(total)
249ab99aec490d4e6164883dbd8dea5220340a17
19d6bddc562b8cc3c7a6e67465f7601c74979e05
/results/190902/failed/lifelong-stochastic-tight-big_h-11_w-11/stochastic-tight-big.py
9b63dc6b158b73d05568948f1f0b3b6fa474c43e
[]
no_license
SuReLI/llrl
3bca1d1c755e5c59a5d242c18df997ed17f546d0
5f581cdded3cdecf69a8af76dc624494d82a4034
refs/heads/master
2023-01-08T04:04:28.358563
2020-11-06T10:27:33
2020-11-06T10:27:33
169,303,041
9
3
null
null
null
null
UTF-8
Python
false
false
3,358
py
""" Lifelong RL experiment in constant transition function setting """ import numpy as np from llrl.agents.rmax import RMax from llrl.agents.lrmax import LRMax from llrl.agents.maxqinit import MaxQInit from llrl.agents.lrmaxqinit import LRMaxQInit from llrl.utils.env_handler import make_env_distribution from llrl.experiments import run_agents_lifelong def experiment(): # Parameters gamma = .9 env_distribution = make_env_distribution(env_class='stochastic-tight-big', env_name='stochastic-tight-big', gamma=gamma) actions = env_distribution.get_actions() n_known = 10 p_min = 1. / 5. epsilon_q = .01 epsilon_m = .01 delta = .1 r_max = 1. v_max = 1. n_states = 4 max_mem = 20 # Agents rmax = RMax(actions=actions, gamma=gamma, r_max=r_max, v_max=v_max, deduce_v_max=False, n_known=n_known, deduce_n_known=False, epsilon_q=epsilon_q, epsilon_m=epsilon_m, name='RMax') lrmax = LRMax(actions=actions, gamma=gamma, r_max=r_max, v_max=v_max, deduce_v_max=False, n_known=n_known, deduce_n_known=False, epsilon_q=epsilon_q, epsilon_m=epsilon_m, delta=delta, n_states=n_states, max_memory_size=max_mem, prior=None, estimate_distances_online=True, min_sampling_probability=p_min, name='LRMax') lrmaxprior = LRMax(actions=actions, gamma=gamma, r_max=r_max, v_max=v_max, deduce_v_max=False, n_known=n_known, deduce_n_known=False, epsilon_q=epsilon_q, epsilon_m=epsilon_m, delta=delta, n_states=n_states, max_memory_size=max_mem, prior=0.2, estimate_distances_online=True, min_sampling_probability=p_min, name='LRMax(Dmax=0.2)') maxqinit = MaxQInit(actions=actions, gamma=gamma, r_max=r_max, v_max=v_max, deduce_v_max=False, n_known=n_known, deduce_n_known=False, epsilon_q=epsilon_q, epsilon_m=epsilon_m, delta=delta, n_states=n_states, min_sampling_probability=p_min, name='MaxQInit') lrmaxqinit = LRMaxQInit(actions=actions, gamma=gamma, r_max=r_max, v_max=v_max, deduce_v_max=False, n_known=n_known, deduce_n_known=False, epsilon_q=epsilon_q, epsilon_m=epsilon_m, delta=delta, n_states=n_states, max_memory_size=max_mem, prior=None, estimate_distances_online=True, min_sampling_probability=p_min, name='LRMaxQInit') lrmaxqinitprior = LRMaxQInit(actions=actions, gamma=gamma, r_max=r_max, v_max=v_max, deduce_v_max=False, n_known=n_known, deduce_n_known=False, epsilon_q=epsilon_q, epsilon_m=epsilon_m, delta=delta, n_states=n_states, max_memory_size=max_mem, prior=0.2, estimate_distances_online=True, min_sampling_probability=p_min, name='LRMaxQInit(Dmax=0.2)') agents_pool = [rmax, lrmax, lrmaxprior, maxqinit, lrmaxqinit, lrmaxqinitprior] # Run run_agents_lifelong(agents_pool, env_distribution, n_instances=2, n_tasks=80, n_episodes=80, n_steps=100, reset_at_terminal=False, open_plot=False, plot_title=True, do_run=True, do_plot=True, parallel_run=True, n_processes=None) if __name__ == '__main__': np.random.seed(1993) experiment()
6fdf82764e7bedb0106b8819a6f2767a11903402
e315e9ad3c77289702517ebf464f8d8d8efcaf90
/LGTVRemote/PythonistaKit.framework/pylib/Cookie.py
68d989383e053a126368a37b2851b709104ee722
[]
no_license
Megarushing/LGTVRemote
856123c7907777fe1cbbd431669aaa5e5490746c
abc5e92fa91cd41df68104df7dc9d13270914550
refs/heads/master
2020-03-23T12:51:42.635735
2018-08-10T19:48:40
2018-08-10T19:48:40
141,586,628
2
0
null
null
null
null
UTF-8
Python
false
false
25,822
py
# #### # Copyright 2000 by Timothy O'Malley <[email protected]> # # All Rights Reserved # # Permission to use, copy, modify, and distribute this software # and its documentation for any purpose and without fee is hereby # granted, provided that the above copyright notice appear in all # copies and that both that copyright notice and this permission # notice appear in supporting documentation, and that the name of # Timothy O'Malley not be used in advertising or publicity # pertaining to distribution of the software without specific, written # prior permission. # # Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS # SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY # AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR # ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, # WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS # ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR # PERFORMANCE OF THIS SOFTWARE. # #### # # Id: Cookie.py,v 2.29 2000/08/23 05:28:49 timo Exp # by Timothy O'Malley <[email protected]> # # Cookie.py is a Python module for the handling of HTTP # cookies as a Python dictionary. See RFC 2109 for more # information on cookies. # # The original idea to treat Cookies as a dictionary came from # Dave Mitchell ([email protected]) in 1995, when he released the # first version of nscookie.py. # #### r""" Here's a sample session to show how to use this module. At the moment, this is the only documentation. The Basics ---------- Importing is easy.. >>> import Cookie Most of the time you start by creating a cookie. Cookies come in three flavors, each with slightly different encoding semantics, but more on that later. >>> C = Cookie.SimpleCookie() >>> C = Cookie.SerialCookie() >>> C = Cookie.SmartCookie() [Note: Long-time users of Cookie.py will remember using Cookie.Cookie() to create an Cookie object. Although deprecated, it is still supported by the code. See the Backward Compatibility notes for more information.] Once you've created your Cookie, you can add values just as if it were a dictionary. >>> C = Cookie.SmartCookie() >>> C["fig"] = "newton" >>> C["sugar"] = "wafer" >>> C.output() 'Set-Cookie: fig=newton\r\nSet-Cookie: sugar=wafer' Notice that the printable representation of a Cookie is the appropriate format for a Set-Cookie: header. This is the default behavior. You can change the header and printed attributes by using the .output() function >>> C = Cookie.SmartCookie() >>> C["rocky"] = "road" >>> C["rocky"]["path"] = "/cookie" >>> print C.output(header="Cookie:") Cookie: rocky=road; Path=/cookie >>> print C.output(attrs=[], header="Cookie:") Cookie: rocky=road The load() method of a Cookie extracts cookies from a string. In a CGI script, you would use this method to extract the cookies from the HTTP_COOKIE environment variable. >>> C = Cookie.SmartCookie() >>> C.load("chips=ahoy; vienna=finger") >>> C.output() 'Set-Cookie: chips=ahoy\r\nSet-Cookie: vienna=finger' The load() method is darn-tootin smart about identifying cookies within a string. Escaped quotation marks, nested semicolons, and other such trickeries do not confuse it. >>> C = Cookie.SmartCookie() >>> C.load('keebler="E=everybody; L=\\"Loves\\"; fudge=\\012;";') >>> print C Set-Cookie: keebler="E=everybody; L=\"Loves\"; fudge=\012;" Each element of the Cookie also supports all of the RFC 2109 Cookie attributes. Here's an example which sets the Path attribute. >>> C = Cookie.SmartCookie() >>> C["oreo"] = "doublestuff" >>> C["oreo"]["path"] = "/" >>> print C Set-Cookie: oreo=doublestuff; Path=/ Each dictionary element has a 'value' attribute, which gives you back the value associated with the key. >>> C = Cookie.SmartCookie() >>> C["twix"] = "none for you" >>> C["twix"].value 'none for you' A Bit More Advanced ------------------- As mentioned before, there are three different flavors of Cookie objects, each with different encoding/decoding semantics. This section briefly discusses the differences. SimpleCookie The SimpleCookie expects that all values should be standard strings. Just to be sure, SimpleCookie invokes the str() builtin to convert the value to a string, when the values are set dictionary-style. >>> C = Cookie.SimpleCookie() >>> C["number"] = 7 >>> C["string"] = "seven" >>> C["number"].value '7' >>> C["string"].value 'seven' >>> C.output() 'Set-Cookie: number=7\r\nSet-Cookie: string=seven' SerialCookie The SerialCookie expects that all values should be serialized using cPickle (or pickle, if cPickle isn't available). As a result of serializing, SerialCookie can save almost any Python object to a value, and recover the exact same object when the cookie has been returned. (SerialCookie can yield some strange-looking cookie values, however.) >>> C = Cookie.SerialCookie() >>> C["number"] = 7 >>> C["string"] = "seven" >>> C["number"].value 7 >>> C["string"].value 'seven' >>> C.output() 'Set-Cookie: number="I7\\012."\r\nSet-Cookie: string="S\'seven\'\\012p1\\012."' Be warned, however, if SerialCookie cannot de-serialize a value (because it isn't a valid pickle'd object), IT WILL RAISE AN EXCEPTION. SmartCookie The SmartCookie combines aspects of each of the other two flavors. When setting a value in a dictionary-fashion, the SmartCookie will serialize (ala cPickle) the value *if and only if* it isn't a Python string. String objects are *not* serialized. Similarly, when the load() method parses out values, it attempts to de-serialize the value. If it fails, then it fallsback to treating the value as a string. >>> C = Cookie.SmartCookie() >>> C["number"] = 7 >>> C["string"] = "seven" >>> C["number"].value 7 >>> C["string"].value 'seven' >>> C.output() 'Set-Cookie: number="I7\\012."\r\nSet-Cookie: string=seven' Backwards Compatibility ----------------------- In order to keep compatibilty with earlier versions of Cookie.py, it is still possible to use Cookie.Cookie() to create a Cookie. In fact, this simply returns a SmartCookie. >>> C = Cookie.Cookie() >>> print C.__class__.__name__ SmartCookie Finis. """ #" # ^ # |----helps out font-lock # # Import our required modules # import string try: from cPickle import dumps, loads except ImportError: from pickle import dumps, loads import re, warnings __all__ = ["CookieError","BaseCookie","SimpleCookie","SerialCookie", "SmartCookie","Cookie"] _nulljoin = ''.join _semispacejoin = '; '.join _spacejoin = ' '.join # # Define an exception visible to External modules # class CookieError(Exception): pass # These quoting routines conform to the RFC2109 specification, which in # turn references the character definitions from RFC2068. They provide # a two-way quoting algorithm. Any non-text character is translated # into a 4 character sequence: a forward-slash followed by the # three-digit octal equivalent of the character. Any '\' or '"' is # quoted with a preceeding '\' slash. # # These are taken from RFC2068 and RFC2109. # _LegalChars is the list of chars which don't require "'s # _Translator hash-table for fast quoting # _LegalChars = string.ascii_letters + string.digits + "!#$%&'*+-.^_`|~" _Translator = { '\000' : '\\000', '\001' : '\\001', '\002' : '\\002', '\003' : '\\003', '\004' : '\\004', '\005' : '\\005', '\006' : '\\006', '\007' : '\\007', '\010' : '\\010', '\011' : '\\011', '\012' : '\\012', '\013' : '\\013', '\014' : '\\014', '\015' : '\\015', '\016' : '\\016', '\017' : '\\017', '\020' : '\\020', '\021' : '\\021', '\022' : '\\022', '\023' : '\\023', '\024' : '\\024', '\025' : '\\025', '\026' : '\\026', '\027' : '\\027', '\030' : '\\030', '\031' : '\\031', '\032' : '\\032', '\033' : '\\033', '\034' : '\\034', '\035' : '\\035', '\036' : '\\036', '\037' : '\\037', # Because of the way browsers really handle cookies (as opposed # to what the RFC says) we also encode , and ; ',' : '\\054', ';' : '\\073', '"' : '\\"', '\\' : '\\\\', '\177' : '\\177', '\200' : '\\200', '\201' : '\\201', '\202' : '\\202', '\203' : '\\203', '\204' : '\\204', '\205' : '\\205', '\206' : '\\206', '\207' : '\\207', '\210' : '\\210', '\211' : '\\211', '\212' : '\\212', '\213' : '\\213', '\214' : '\\214', '\215' : '\\215', '\216' : '\\216', '\217' : '\\217', '\220' : '\\220', '\221' : '\\221', '\222' : '\\222', '\223' : '\\223', '\224' : '\\224', '\225' : '\\225', '\226' : '\\226', '\227' : '\\227', '\230' : '\\230', '\231' : '\\231', '\232' : '\\232', '\233' : '\\233', '\234' : '\\234', '\235' : '\\235', '\236' : '\\236', '\237' : '\\237', '\240' : '\\240', '\241' : '\\241', '\242' : '\\242', '\243' : '\\243', '\244' : '\\244', '\245' : '\\245', '\246' : '\\246', '\247' : '\\247', '\250' : '\\250', '\251' : '\\251', '\252' : '\\252', '\253' : '\\253', '\254' : '\\254', '\255' : '\\255', '\256' : '\\256', '\257' : '\\257', '\260' : '\\260', '\261' : '\\261', '\262' : '\\262', '\263' : '\\263', '\264' : '\\264', '\265' : '\\265', '\266' : '\\266', '\267' : '\\267', '\270' : '\\270', '\271' : '\\271', '\272' : '\\272', '\273' : '\\273', '\274' : '\\274', '\275' : '\\275', '\276' : '\\276', '\277' : '\\277', '\300' : '\\300', '\301' : '\\301', '\302' : '\\302', '\303' : '\\303', '\304' : '\\304', '\305' : '\\305', '\306' : '\\306', '\307' : '\\307', '\310' : '\\310', '\311' : '\\311', '\312' : '\\312', '\313' : '\\313', '\314' : '\\314', '\315' : '\\315', '\316' : '\\316', '\317' : '\\317', '\320' : '\\320', '\321' : '\\321', '\322' : '\\322', '\323' : '\\323', '\324' : '\\324', '\325' : '\\325', '\326' : '\\326', '\327' : '\\327', '\330' : '\\330', '\331' : '\\331', '\332' : '\\332', '\333' : '\\333', '\334' : '\\334', '\335' : '\\335', '\336' : '\\336', '\337' : '\\337', '\340' : '\\340', '\341' : '\\341', '\342' : '\\342', '\343' : '\\343', '\344' : '\\344', '\345' : '\\345', '\346' : '\\346', '\347' : '\\347', '\350' : '\\350', '\351' : '\\351', '\352' : '\\352', '\353' : '\\353', '\354' : '\\354', '\355' : '\\355', '\356' : '\\356', '\357' : '\\357', '\360' : '\\360', '\361' : '\\361', '\362' : '\\362', '\363' : '\\363', '\364' : '\\364', '\365' : '\\365', '\366' : '\\366', '\367' : '\\367', '\370' : '\\370', '\371' : '\\371', '\372' : '\\372', '\373' : '\\373', '\374' : '\\374', '\375' : '\\375', '\376' : '\\376', '\377' : '\\377' } _idmap = ''.join(chr(x) for x in xrange(256)) def _quote(str, LegalChars=_LegalChars, idmap=_idmap, translate=string.translate): # # If the string does not need to be double-quoted, # then just return the string. Otherwise, surround # the string in doublequotes and precede quote (with a \) # special characters. # if "" == translate(str, idmap, LegalChars): return str else: return '"' + _nulljoin( map(_Translator.get, str, str) ) + '"' # end _quote _OctalPatt = re.compile(r"\\[0-3][0-7][0-7]") _QuotePatt = re.compile(r"[\\].") def _unquote(str): # If there aren't any doublequotes, # then there can't be any special characters. See RFC 2109. if len(str) < 2: return str if str[0] != '"' or str[-1] != '"': return str # We have to assume that we must decode this string. # Down to work. # Remove the "s str = str[1:-1] # Check for special sequences. Examples: # \012 --> \n # \" --> " # i = 0 n = len(str) res = [] while 0 <= i < n: Omatch = _OctalPatt.search(str, i) Qmatch = _QuotePatt.search(str, i) if not Omatch and not Qmatch: # Neither matched res.append(str[i:]) break # else: j = k = -1 if Omatch: j = Omatch.start(0) if Qmatch: k = Qmatch.start(0) if Qmatch and ( not Omatch or k < j ): # QuotePatt matched res.append(str[i:k]) res.append(str[k+1]) i = k+2 else: # OctalPatt matched res.append(str[i:j]) res.append( chr( int(str[j+1:j+4], 8) ) ) i = j+4 return _nulljoin(res) # end _unquote # The _getdate() routine is used to set the expiration time in # the cookie's HTTP header. By default, _getdate() returns the # current time in the appropriate "expires" format for a # Set-Cookie header. The one optional argument is an offset from # now, in seconds. For example, an offset of -3600 means "one hour ago". # The offset may be a floating point number. # _weekdayname = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'] _monthname = [None, 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'] def _getdate(future=0, weekdayname=_weekdayname, monthname=_monthname): from time import gmtime, time now = time() year, month, day, hh, mm, ss, wd, y, z = gmtime(now + future) return "%s, %02d %3s %4d %02d:%02d:%02d GMT" % \ (weekdayname[wd], day, monthname[month], year, hh, mm, ss) # # A class to hold ONE key,value pair. # In a cookie, each such pair may have several attributes. # so this class is used to keep the attributes associated # with the appropriate key,value pair. # This class also includes a coded_value attribute, which # is used to hold the network representation of the # value. This is most useful when Python objects are # pickled for network transit. # class Morsel(dict): # RFC 2109 lists these attributes as reserved: # path comment domain # max-age secure version # # For historical reasons, these attributes are also reserved: # expires # # This is an extension from Microsoft: # httponly # # This dictionary provides a mapping from the lowercase # variant on the left to the appropriate traditional # formatting on the right. _reserved = { "expires" : "expires", "path" : "Path", "comment" : "Comment", "domain" : "Domain", "max-age" : "Max-Age", "secure" : "secure", "httponly" : "httponly", "version" : "Version", } def __init__(self): # Set defaults self.key = self.value = self.coded_value = None # Set default attributes for K in self._reserved: dict.__setitem__(self, K, "") # end __init__ def __setitem__(self, K, V): K = K.lower() if not K in self._reserved: raise CookieError("Invalid Attribute %s" % K) dict.__setitem__(self, K, V) # end __setitem__ def isReservedKey(self, K): return K.lower() in self._reserved # end isReservedKey def set(self, key, val, coded_val, LegalChars=_LegalChars, idmap=_idmap, translate=string.translate): # First we verify that the key isn't a reserved word # Second we make sure it only contains legal characters if key.lower() in self._reserved: raise CookieError("Attempt to set a reserved key: %s" % key) if "" != translate(key, idmap, LegalChars): raise CookieError("Illegal key value: %s" % key) # It's a good key, so save it. self.key = key self.value = val self.coded_value = coded_val # end set def output(self, attrs=None, header = "Set-Cookie:"): return "%s %s" % ( header, self.OutputString(attrs) ) __str__ = output def __repr__(self): return '<%s: %s=%s>' % (self.__class__.__name__, self.key, repr(self.value) ) def js_output(self, attrs=None): # Print javascript return """ <script type="text/javascript"> <!-- begin hiding document.cookie = \"%s\"; // end hiding --> </script> """ % ( self.OutputString(attrs).replace('"',r'\"'), ) # end js_output() def OutputString(self, attrs=None): # Build up our result # result = [] RA = result.append # First, the key=value pair RA("%s=%s" % (self.key, self.coded_value)) # Now add any defined attributes if attrs is None: attrs = self._reserved items = self.items() items.sort() for K,V in items: if V == "": continue if K not in attrs: continue if K == "expires" and type(V) == type(1): RA("%s=%s" % (self._reserved[K], _getdate(V))) elif K == "max-age" and type(V) == type(1): RA("%s=%d" % (self._reserved[K], V)) elif K == "secure": RA(str(self._reserved[K])) elif K == "httponly": RA(str(self._reserved[K])) else: RA("%s=%s" % (self._reserved[K], V)) # Return the result return _semispacejoin(result) # end OutputString # end Morsel class # # Pattern for finding cookie # # This used to be strict parsing based on the RFC2109 and RFC2068 # specifications. I have since discovered that MSIE 3.0x doesn't # follow the character rules outlined in those specs. As a # result, the parsing rules here are less strict. # _LegalCharsPatt = r"[\w\d!#%&'~_`><@,:/\$\*\+\-\.\^\|\)\(\?\}\{\=]" _CookiePattern = re.compile( r"(?x)" # This is a Verbose pattern r"(?P<key>" # Start of group 'key' ""+ _LegalCharsPatt +"+?" # Any word of at least one letter, nongreedy r")" # End of group 'key' r"\s*=\s*" # Equal Sign r"(?P<val>" # Start of group 'val' r'"(?:[^\\"]|\\.)*"' # Any doublequoted string r"|" # or r"\w{3},\s[\s\w\d-]{9,11}\s[\d:]{8}\sGMT" # Special case for "expires" attr r"|" # or ""+ _LegalCharsPatt +"*" # Any word or empty string r")" # End of group 'val' r"\s*;?" # Probably ending in a semi-colon ) # At long last, here is the cookie class. # Using this class is almost just like using a dictionary. # See this module's docstring for example usage. # class BaseCookie(dict): # A container class for a set of Morsels # def value_decode(self, val): """real_value, coded_value = value_decode(STRING) Called prior to setting a cookie's value from the network representation. The VALUE is the value read from HTTP header. Override this function to modify the behavior of cookies. """ return val, val # end value_encode def value_encode(self, val): """real_value, coded_value = value_encode(VALUE) Called prior to setting a cookie's value from the dictionary representation. The VALUE is the value being assigned. Override this function to modify the behavior of cookies. """ strval = str(val) return strval, strval # end value_encode def __init__(self, input=None): if input: self.load(input) # end __init__ def __set(self, key, real_value, coded_value): """Private method for setting a cookie's value""" M = self.get(key, Morsel()) M.set(key, real_value, coded_value) dict.__setitem__(self, key, M) # end __set def __setitem__(self, key, value): """Dictionary style assignment.""" rval, cval = self.value_encode(value) self.__set(key, rval, cval) # end __setitem__ def output(self, attrs=None, header="Set-Cookie:", sep="\015\012"): """Return a string suitable for HTTP.""" result = [] items = self.items() items.sort() for K,V in items: result.append( V.output(attrs, header) ) return sep.join(result) # end output __str__ = output def __repr__(self): L = [] items = self.items() items.sort() for K,V in items: L.append( '%s=%s' % (K,repr(V.value) ) ) return '<%s: %s>' % (self.__class__.__name__, _spacejoin(L)) def js_output(self, attrs=None): """Return a string suitable for JavaScript.""" result = [] items = self.items() items.sort() for K,V in items: result.append( V.js_output(attrs) ) return _nulljoin(result) # end js_output def load(self, rawdata): """Load cookies from a string (presumably HTTP_COOKIE) or from a dictionary. Loading cookies from a dictionary 'd' is equivalent to calling: map(Cookie.__setitem__, d.keys(), d.values()) """ if type(rawdata) == type(""): self.__ParseString(rawdata) else: # self.update() wouldn't call our custom __setitem__ for k, v in rawdata.items(): self[k] = v return # end load() def __ParseString(self, str, patt=_CookiePattern): i = 0 # Our starting point n = len(str) # Length of string M = None # current morsel while 0 <= i < n: # Start looking for a cookie match = patt.search(str, i) if not match: break # No more cookies K,V = match.group("key"), match.group("val") i = match.end(0) # Parse the key, value in case it's metainfo if K[0] == "$": # We ignore attributes which pertain to the cookie # mechanism as a whole. See RFC 2109. # (Does anyone care?) if M: M[ K[1:] ] = V elif K.lower() in Morsel._reserved: if M: M[ K ] = _unquote(V) else: rval, cval = self.value_decode(V) self.__set(K, rval, cval) M = self[K] # end __ParseString # end BaseCookie class class SimpleCookie(BaseCookie): """SimpleCookie SimpleCookie supports strings as cookie values. When setting the value using the dictionary assignment notation, SimpleCookie calls the builtin str() to convert the value to a string. Values received from HTTP are kept as strings. """ def value_decode(self, val): return _unquote( val ), val def value_encode(self, val): strval = str(val) return strval, _quote( strval ) # end SimpleCookie class SerialCookie(BaseCookie): """SerialCookie SerialCookie supports arbitrary objects as cookie values. All values are serialized (using cPickle) before being sent to the client. All incoming values are assumed to be valid Pickle representations. IF AN INCOMING VALUE IS NOT IN A VALID PICKLE FORMAT, THEN AN EXCEPTION WILL BE RAISED. Note: Large cookie values add overhead because they must be retransmitted on every HTTP transaction. Note: HTTP has a 2k limit on the size of a cookie. This class does not check for this limit, so be careful!!! """ def __init__(self, input=None): warnings.warn("SerialCookie class is insecure; do not use it", DeprecationWarning) BaseCookie.__init__(self, input) # end __init__ def value_decode(self, val): # This could raise an exception! return loads( _unquote(val) ), val def value_encode(self, val): return val, _quote( dumps(val) ) # end SerialCookie class SmartCookie(BaseCookie): """SmartCookie SmartCookie supports arbitrary objects as cookie values. If the object is a string, then it is quoted. If the object is not a string, however, then SmartCookie will use cPickle to serialize the object into a string representation. Note: Large cookie values add overhead because they must be retransmitted on every HTTP transaction. Note: HTTP has a 2k limit on the size of a cookie. This class does not check for this limit, so be careful!!! """ def __init__(self, input=None): warnings.warn("Cookie/SmartCookie class is insecure; do not use it", DeprecationWarning) BaseCookie.__init__(self, input) # end __init__ def value_decode(self, val): strval = _unquote(val) try: return loads(strval), val except: return strval, val def value_encode(self, val): if type(val) == type(""): return val, _quote(val) else: return val, _quote( dumps(val) ) # end SmartCookie ########################################################### # Backwards Compatibility: Don't break any existing code! # We provide Cookie() as an alias for SmartCookie() Cookie = SmartCookie # ########################################################### def _test(): import doctest, Cookie return doctest.testmod(Cookie) if __name__ == "__main__": _test() #Local Variables: #tab-width: 4 #end:
6dcec5b996d8a262227be3e7686fc90e5ef05185
fc5816b2ba73124a4744d08b7acf8f62ced66640
/timer.py
ec255d136560e92c284404460b1a319a77e14567
[]
no_license
rkdarst/fitz
51e2b9e28a36ffe2b58f49ff36a4593ca55c5045
b2ac6aaff47217f40ac39042d27ffd130b8a36a5
refs/heads/master
2016-09-05T17:20:52.187546
2015-05-16T10:49:14
2015-05-16T10:49:14
22,289,724
0
0
null
null
null
null
UTF-8
Python
false
false
2,755
py
# Richard Darst, 2006 """Provides a stopwatch for code. Classes ======= There is a class defined called Timer. It has the following methods: __init__ -- argument is `clock`, which is the timing function to use for this timer. It defaults to proctime. reset -- zero the stopwatch. The getrusage system call is zeroed when the code starts (and the timer keeps this zero initially), but calling reset() zeros it. Zeroing is done by recording the current time and subtracting this out from future calls. time -- returns the time since the last reset lap -- return the time from the last reset, and reset it. Global functions ================ t -- an automatically created instance of timer, using `proctime`. start-- ~\ The methods on `t` are bound to the global namespace, time -- > so timer.start(), etc, can be used if this what you reset-- _/ need. The module includes various clock functions to use, such as `realtime`, `proctime`, `usertime`, and `systime`. """ import resource import time as timemodule def systime(): """Time spent executing system calls. Time spend doing things like disk access, IO, etc. Uses the system call getrusage().ru_stime """ return resource.getrusage(resource.RUSAGE_SELF).ru_stime def usertime(): """Time spent executing code in user mode. Time spent doing things like adding numbers. Uses the system call getrusage().ru_utime """ return resource.getrusage(resource.RUSAGE_SELF).ru_utime def proctime(): """Time spent by processor executing code sys + user time """ r = resource.getrusage(resource.RUSAGE_SELF) return r.ru_utime+r.ru_stime def realtime(): """Time on a clock on the wall. If your processor isn't busy doing other things, this will be the best to find how much time your code takes. time.time(), which uses the system call gettimeofday() for greater accuracy when avaliable. """ return timemodule.time() class Timer: _starttime = 0. def __init__(self, clock=proctime): """Create rusage object using a certain timing function. The argument `clock` is the clock function to use. Default is proctime. """ self._clock = clock def reset(self): """Reset the timer """ self._starttime = self._clock() def time(self): """Return time since last reset """ return self._clock() - self._starttime def lap(self): """Reset and return time since last reset """ oldtime = self._clock() - self._starttime self._starttime = self._clock() return oldtime t = Timer() reset = t.reset time = t.time lap = t.lap
16a3fc07f5076c8209e850bf5fae219bc5f9d24a
a718de5d51c8d430e791aca6092669c04548fd64
/Census-Analyser-master/census_analyser/test_census.py
a1d7d9093033bac09637e510c928fb25d4e80fa1
[]
no_license
santoshikalaskar/Basic_Advance_python_program
d0fef4134ed4b14f84ff05a3b37e1773c111a2d1
84df5c336d5304c3c727102194ba62417640643a
refs/heads/master
2023-01-22T15:06:24.909145
2020-12-02T14:01:29
2020-12-02T14:01:29
314,511,681
0
0
null
null
null
null
UTF-8
Python
false
false
4,451
py
import pytest from stateCensusAnalyser import CSVStateCensus, SortData, Mapping from custom_exceptions import ( FileIsNotCSVTypeException, EmptyFileException, InvalidDelimiterException) sort_ref = SortData() map_ref = Mapping() class TestCensus: def test_State_census_records_to_match_number_of_records_UC1_TC1(self): obj = CSVStateCensus("IndiaStateCensusData.csv") total_records = obj.number_of_records(obj.load_CSV) assert total_records == 28 def test_file_not_in_csv_format_will_raise_FileIsNotCSVTypeException_UC1_TC2(self): with pytest.raises(FileIsNotCSVTypeException): obj = CSVStateCensus("demo_empty.txt") obj.load_CSV def test_file_is_csv_but_empty_will_raise_EmptyFileException_UC1_TC3(self): with pytest.raises(EmptyFileException): obj = CSVStateCensus("demo_empty.csv") obj.load_CSV def test_file_is_csv_but_delimiter_is_invalid_will_raise_InvalidDelimiterException_UC1_TC4(self): with pytest.raises(InvalidDelimiterException): obj = CSVStateCensus('csv_with_invalid_delimiter.csv') obj.load_CSV def test_file_is_csv_but_header_is_invalid_will_return_InvalidHeader_UC1_TC5(self): obj = CSVStateCensus("csv_with_invalid_header.csv") assert obj.load_CSV == "InvalidHeader" def test_State_code_records_to_match_number_of_records_UC2_TC1(self): obj = CSVStateCensus("StateCode.csv") total_records = obj.number_of_records(obj.load_CSV) assert total_records == 36 def test_IndiaStateCensus_first_state_after_sorting_in_JSON_will_be_Andhra_Pradesh_UC3(self): data_frame = sort_ref._SortData__sort_InidaCensusData_in_alphabetical_order_in_JSON() assert data_frame[0]["State"] == 'Andhra Pradesh' def test_IndiaStateCensus_last_state_after_sorting_in_JSON_will_be_West_Bengal_UC3(self): data_frame = sort_ref._SortData__sort_InidaCensusData_in_alphabetical_order_in_JSON() assert data_frame[28]["State"] == 'West Bengal' def test_StateCode_first_stateCode_after_sorting_in_JSON_will_be_AD_UC4(self): data_frame = sort_ref._SortData__sort_StateCode_in_stateCode_order_in_JSON() assert data_frame[0]["StateCode"] == 'AD' def test_StateCode_last_stateCode_after_sorting_in_JSON_will_be_WB_UC4(self): data_frame = sort_ref._SortData__sort_StateCode_in_stateCode_order_in_JSON() assert data_frame.pop()["StateCode"] == 'WB' def test_after_sort_according_to_population_check_first_record_will_be_Sikkim_UC5(self): data = sort_ref._SortData__sort_InidaCensusData_in_asc_population_order_in_JSON() assert data[0]["State"] == "Sikkim" def test_after_sort_according_to_population_check_last_record_will_be_Uttar_Pradesh_UC5(self): data = sort_ref._SortData__sort_InidaCensusData_in_asc_population_order_in_JSON() assert data.pop()["State"] == "Uttar Pradesh" def test_after_sort_according_to_populationDensity_check_first_record_will_be_Arunachal_Pradesh_UC6(self): data = sort_ref._SortData__sort_InidaCensusData_in_asc_population_density_order_in_JSON() assert data[0]["State"] == "Arunachal Pradesh" def test_after_sort_according_to_populationDensity_check_last_record_will_be_Bihar_UC6(self): data = sort_ref._SortData__sort_InidaCensusData_in_asc_population_density_order_in_JSON() assert data.pop()["State"] == "Bihar" def test_mapping_by_checking_first_record_will_be_AP_REFACTOR6(self): data = map_ref._Mapping__map_state_census_with_state_code_according_to_code() assert data[0]["StateCode"] == 'AP' def test_mapping_by_checking_last_record_will_be_WB_REFACTOR6(self): data = map_ref._Mapping__map_state_census_with_state_code_according_to_code() assert data.pop()["StateCode"] == 'WB' def test_first_state_from_census_data_after_sorting_in_desc_area_order_will_return_Rajasthan_UC7(self): data = sort_ref._SortData__sort_InidaCensusData_in_desc_area_order_in_JSON() assert data[0]["State"] == "Rajasthan" def test_last_state_from_census_data_after_sorting_in_desc_area_order_will_return_Goa_UC7(self): data = sort_ref._SortData__sort_InidaCensusData_in_desc_area_order_in_JSON() assert data.pop()["State"] == "Goa"
0c80371e2bfa26e44298ef6ee0467de3c1f87c35
d697c1d45e96bd440be9c17ab14243a5882b1f52
/qianfeng/常用模块/Tkinter/Button.py
b271d275b4103dc54132277c710592fefe06f946
[]
no_license
ithjl521/python
9eeda2e60dda97ee36e8764c06400eb12818689f
f4fe50799501c483cb64445fd05ee0f30f56576c
refs/heads/master
2020-07-12T23:10:53.608276
2019-11-08T08:59:35
2019-11-08T08:59:35
204,931,359
0
0
null
null
null
null
UTF-8
Python
false
false
334
py
import tkinter def fun(): print('hello word') win = tkinter.Tk() win.title('title-hjl') win.geometry("400x400+200+50") # 创建按钮 button = tkinter.Button(win, text='按钮', command=fun, width=10, height=10) button.pack() button2 = tkinter.Button(win, text='按钮', command=win.quit) button2.pack() win.mainloop()
ff5da7da6b07126320c3f20bf185a5bb97f29a76
45edff14271724c5bf27e62e96eeb635840eae22
/DeepLearning/tensorflow/10-1验证码生成.py
088f13b02cdcbe8d829ad08df6367e5e7919adc9
[]
no_license
DaiJitao/machine_learning
1e41208dc94836a97e57a4b0f5778f8da2bb81d4
49e1db9ecbfbf886a11ce416eea402d214cf2049
refs/heads/master
2021-06-25T23:52:06.066315
2021-02-07T16:17:50
2021-02-07T16:17:50
209,712,507
3
1
null
null
null
null
UTF-8
Python
false
false
1,595
py
# coding: utf-8 # In[1]: # 验证码生成库 from captcha.image import ImageCaptcha # pip install captcha import numpy as np from PIL import Image import random import sys from DeepLearning.utils import mkdir number = ['0','1','2','3','4','5','6','7','8','9'] # alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z'] # ALPHABET = ['A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z'] def random_captcha_text(char_set=number, captcha_size=4): # 验证码列表 captcha_text = [] for i in range(captcha_size): #随机选择 c = random.choice(char_set) #加入验证码列表 captcha_text.append(c) return captcha_text # 生成字符对应的验证码 def gen_captcha_text_and_image(out_path='E:/data/captcha/images/'): image = ImageCaptcha() #获得随机生成的验证码 captcha_text = random_captcha_text() #把验证码列表转为字符串 captcha_text = ''.join(captcha_text) #生成验证码 captcha = image.generate(captcha_text) mkdir(out_path) image.write(captcha_text, out_path + captcha_text + '.jpg') # 写到文件 #数量少于10000,因为重名 num = 10000 if __name__ == '__main__': for i in range(num): gen_captcha_text_and_image() sys.stdout.write('\r>> Creating image %d/%d' % (i+1, num)) sys.stdout.flush() sys.stdout.write('\n') sys.stdout.flush() print("生成完毕") # In[ ]: # In[ ]:
ea796738c0ea8c09243d2bef06d9183481be9d08
d2f7471c1429f1ca454bb4cc982bbbecc31f8160
/app/conf/wsgi.py
9cc41bf59a4f0f8c847660a80aebaaa9ea5625f6
[ "MIT" ]
permissive
HenriqueLR/hangman-game
1e442735f688c4e0b2ada6f2208360a01e0df353
6cb29ae1ab666af0d6b054b2e1d598ebb5ff8db3
refs/heads/master
2021-08-22T03:39:08.156486
2017-11-29T05:08:56
2017-11-29T05:08:56
108,403,950
0
0
null
null
null
null
UTF-8
Python
false
false
393
py
""" WSGI config for app project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.7/howto/deployment/wsgi/ """ import os os.environ.setdefault("DJANGO_SETTINGS_MODULE", "conf.settings_production") from django.core.wsgi import get_wsgi_application application = get_wsgi_application()
baaea832d2de21fc9bdca57ef60c88bc7b43cf92
df2cbe914f463ad050d7ed26194424afbe3a0a52
/addons/website_sale/models/product_image.py
eea9afb69671067f39780fa6041a4031d9e785e0
[ "Apache-2.0" ]
permissive
SHIVJITH/Odoo_Machine_Test
019ed339e995be980606a2d87a63312ddc18e706
310497a9872db7844b521e6dab5f7a9f61d365a4
refs/heads/main
2023-07-16T16:23:14.300656
2021-08-29T11:48:36
2021-08-29T11:48:36
401,010,175
0
0
Apache-2.0
2021-08-29T10:13:58
2021-08-29T10:13:58
null
UTF-8
Python
false
false
2,699
py
# -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. from odoo import api, fields, models, tools, _ from odoo.exceptions import ValidationError from odoo.addons.website.tools import get_video_embed_code class ProductImage(models.Model): _name = 'product.image' _description = "Product Image" _inherit = ['image.mixin'] _order = 'sequence, id' name = fields.Char("Name", required=True) sequence = fields.Integer(default=10, index=True) image_1920 = fields.Image(required=True) product_tmpl_id = fields.Many2one('product.template', "Product Template", index=True, ondelete='cascade') product_variant_id = fields.Many2one('product.product', "Product Variant", index=True, ondelete='cascade') video_url = fields.Char('Video URL', help='URL of a video for showcasing your product.') embed_code = fields.Char(compute="_compute_embed_code") can_image_1024_be_zoomed = fields.Boolean("Can Image 1024 be zoomed", compute='_compute_can_image_1024_be_zoomed', store=True) @api.depends('image_1920', 'image_1024') def _compute_can_image_1024_be_zoomed(self): for image in self: image.can_image_1024_be_zoomed = image.image_1920 and tools.is_image_size_above(image.image_1920, image.image_1024) @api.depends('video_url') def _compute_embed_code(self): for image in self: image.embed_code = get_video_embed_code(image.video_url) @api.constrains('video_url') def _check_valid_video_url(self): for image in self: if image.video_url and not image.embed_code: raise ValidationError(_("Provided video URL for '%s' is not valid. Please enter a valid video URL.", image.name)) @api.model_create_multi def create(self, vals_list): """ We don't want the default_product_tmpl_id from the context to be applied if we have a product_variant_id set to avoid having the variant images to show also as template images. But we want it if we don't have a product_variant_id set. """ context_without_template = self.with_context({k: v for k, v in self.env.context.items() if k != 'default_product_tmpl_id'}) normal_vals = [] variant_vals_list = [] for vals in vals_list: if vals.get('product_variant_id') and 'default_product_tmpl_id' in self.env.context: variant_vals_list.append(vals) else: normal_vals.append(vals) return super().create(normal_vals) + super(ProductImage, context_without_template).create(variant_vals_list)
c227bd7e8a5d2110d0ff22a4bd3d177ce65344de
d8db486c6c0e4f7c4da3dd9d8752a2de0174a1d6
/test/apiv2/rest_api/v1_test_rest_v1_0_0.py
acd6273ef57d7afcf195aca5cd60f67e8b9c27dd
[ "Apache-2.0" ]
permissive
isabella232/podman
49c10ca0df99bbc4362b8ec284b43bf05c38cca8
dcd498a6885f0293934214af0c6fc2d3c7717bd5
refs/heads/master
2023-03-07T23:36:51.958197
2020-11-18T15:59:41
2020-11-18T15:59:41
314,002,564
0
0
Apache-2.0
2021-02-23T16:35:32
2020-11-18T17:06:49
null
UTF-8
Python
false
false
7,662
py
import json import os import shlex import signal import string import subprocess import sys import time import unittest from collections.abc import Iterable from multiprocessing import Process import requests from dateutil.parser import parse PODMAN_URL = "http://localhost:8080" def _url(path): return PODMAN_URL + "/v1.0.0/libpod" + path def podman(): binary = os.getenv("PODMAN_BINARY") if binary is None: binary = "bin/podman" return binary def ctnr(path): r = requests.get(_url("/containers/json?all=true")) try: ctnrs = json.loads(r.text) except Exception as e: sys.stderr.write("Bad container response: {}/{}".format(r.text, e)) raise e return path.format(ctnrs[0]["Id"]) class TestApi(unittest.TestCase): podman = None def setUp(self): super().setUp() if TestApi.podman.poll() is not None: sys.stderr.write("podman service returned {}", TestApi.podman.returncode) sys.exit(2) requests.get(_url("/images/create?fromSrc=docker.io%2Falpine%3Alatest")) # calling out to podman is easier than the API for running a container subprocess.run( [podman(), "run", "alpine", "/bin/ls"], check=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, ) @classmethod def setUpClass(cls): super().setUpClass() TestApi.podman = subprocess.Popen( [ podman(), "system", "service", "tcp:localhost:8080", "--log-level=debug", "--time=0", ], shell=False, stdin=subprocess.DEVNULL, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, ) time.sleep(2) @classmethod def tearDownClass(cls): TestApi.podman.terminate() stdout, stderr = TestApi.podman.communicate(timeout=0.5) if stdout: print("\nService Stdout:\n" + stdout.decode("utf-8")) if stderr: print("\nService Stderr:\n" + stderr.decode("utf-8")) if TestApi.podman.returncode > 0: sys.stderr.write( "podman exited with error code {}\n".format(TestApi.podman.returncode) ) sys.exit(2) return super().tearDownClass() def test_info(self): r = requests.get(_url("/info")) self.assertEqual(r.status_code, 200) self.assertIsNotNone(r.content) _ = json.loads(r.text) def test_events(self): r = requests.get(_url("/events?stream=false")) self.assertEqual(r.status_code, 200, r.text) self.assertIsNotNone(r.content) for line in r.text.splitlines(): obj = json.loads(line) # Actor.ID is uppercase for compatibility _ = obj["Actor"]["ID"] def test_containers(self): r = requests.get(_url("/containers/json"), timeout=5) self.assertEqual(r.status_code, 200, r.text) obj = json.loads(r.text) self.assertEqual(len(obj), 0) def test_containers_all(self): r = requests.get(_url("/containers/json?all=true")) self.assertEqual(r.status_code, 200, r.text) self.validateObjectFields(r.text) def test_inspect_container(self): r = requests.get(_url(ctnr("/containers/{}/json"))) self.assertEqual(r.status_code, 200, r.text) obj = self.validateObjectFields(r.content) _ = parse(obj["Created"]) def test_stats(self): r = requests.get(_url(ctnr("/containers/{}/stats?stream=false"))) self.assertIn(r.status_code, (200, 409), r.text) if r.status_code == 200: self.validateObjectFields(r.text) def test_delete_containers(self): r = requests.delete(_url(ctnr("/containers/{}"))) self.assertEqual(r.status_code, 204, r.text) def test_stop_containers(self): r = requests.post(_url(ctnr("/containers/{}/start"))) self.assertIn(r.status_code, (204, 304), r.text) r = requests.post(_url(ctnr("/containers/{}/stop"))) self.assertIn(r.status_code, (204, 304), r.text) def test_start_containers(self): r = requests.post(_url(ctnr("/containers/{}/stop"))) self.assertIn(r.status_code, (204, 304), r.text) r = requests.post(_url(ctnr("/containers/{}/start"))) self.assertIn(r.status_code, (204, 304), r.text) def test_restart_containers(self): r = requests.post(_url(ctnr("/containers/{}/start"))) self.assertIn(r.status_code, (204, 304), r.text) r = requests.post(_url(ctnr("/containers/{}/restart")), timeout=5) self.assertEqual(r.status_code, 204, r.text) def test_resize(self): r = requests.post(_url(ctnr("/containers/{}/resize?h=43&w=80"))) self.assertIn(r.status_code, (200, 409), r.text) if r.status_code == 200: self.assertIsNone(r.text) def test_attach_containers(self): r = requests.post(_url(ctnr("/containers/{}/attach"))) self.assertIn(r.status_code, (101, 409), r.text) def test_logs_containers(self): r = requests.get(_url(ctnr("/containers/{}/logs?stdout=true"))) self.assertEqual(r.status_code, 200, r.text) def test_post_create(self): self.skipTest("TODO: create request body") r = requests.post(_url("/containers/create?args=True")) self.assertEqual(r.status_code, 200, r.text) json.loads(r.text) def test_commit(self): r = requests.post(_url(ctnr("/commit?container={}"))) self.assertEqual(r.status_code, 200, r.text) self.validateObjectFields(r.text) def test_images(self): r = requests.get(_url("/images/json")) self.assertEqual(r.status_code, 200, r.text) self.validateObjectFields(r.content) def test_inspect_image(self): r = requests.get(_url("/images/alpine/json")) self.assertEqual(r.status_code, 200, r.text) obj = self.validateObjectFields(r.content) _ = parse(obj["Created"]) def test_delete_image(self): r = requests.delete(_url("/images/alpine?force=true")) self.assertEqual(r.status_code, 200, r.text) json.loads(r.text) def test_pull(self): r = requests.post(_url("/images/pull?reference=alpine"), timeout=5) self.assertEqual(r.status_code, 200, r.text) json.loads(r.text) def test_search(self): # Had issues with this test hanging when repositories not happy def do_search(): r = requests.get(_url("/images/search?term=alpine"), timeout=5) self.assertEqual(r.status_code, 200, r.text) json.loads(r.text) search = Process(target=do_search) search.start() search.join(timeout=10) self.assertFalse(search.is_alive(), "/images/search took too long") def test_ping(self): r = requests.get(PODMAN_URL + "/_ping") self.assertEqual(r.status_code, 200, r.text) r = requests.head(PODMAN_URL + "/_ping") self.assertEqual(r.status_code, 200, r.text) r = requests.get(_url("/_ping")) self.assertEqual(r.status_code, 200, r.text) r = requests.get(_url("/_ping")) self.assertEqual(r.status_code, 200, r.text) def validateObjectFields(self, buffer): objs = json.loads(buffer) if not isinstance(objs, dict): for o in objs: _ = o["Id"] else: _ = objs["Id"] return objs if __name__ == "__main__": unittest.main()
e4d23a56aa95cac0d11bf916aabdb1ea0d1d364c
4dd1d8fa59e20061e2c12e540fc52b1b305e575b
/source/sims/s286/double-harris-ic.py
ba4ee31039abd673c146d855b94be5ecfb63344d
[ "MIT" ]
permissive
ammarhakim/ammar-simjournal
f63521906a97d55ab290a5960d94758139944c89
5019f4723e20db80a20db6f2bd454c2fd3241412
refs/heads/master
2023-06-08T08:18:11.722779
2023-06-02T15:06:43
2023-06-02T15:06:43
204,050,516
3
3
null
2022-02-01T16:53:13
2019-08-23T18:28:44
Lua
UTF-8
Python
false
false
1,554
py
from pylab import * import numpy Lx = 100.0 Ly = 50.0 NX = 200 NY = 100 B0 = 0.1 me = 1.0 mi = me*25.0 qe = -1.0 qi = 1.0 dlambda = 1.0 n0 = 1.0 ninf = 0.2*n0 psi0 = B0 dx = Lx/NX dy = Ly/NY X = linspace(0.5*dx, Lx-0.5*dx, NX) Y = linspace(0.5*dy, Ly-0.5*dy, NY) XX, YY = meshgrid(X, Y) Bx = numpy.zeros((NX, NY), numpy.float) n = numpy.zeros((NX, NY), numpy.float) dBx1 = numpy.zeros((NX, NY), numpy.float) dBy1 = numpy.zeros((NX, NY), numpy.float) dBx2 = numpy.zeros((NX, NY), numpy.float) dBy2 = numpy.zeros((NX, NY), numpy.float) for i in range(NX): for j in range(NY): Bx[i,j] = B0*(-1+tanh((Y[j]-Ly/4)/dlambda)-tanh((Y[j]-3*Ly/4)/dlambda)) n[i,j] = n0/cosh((Y[j]-Ly/4)/dlambda)**2+n0/cosh((Y[j]-3*Ly/4)/dlambda)**2+ninf dBx1[i,j] = -psi0*(pi/Ly)*cos(2*pi*(X[i]-Lx/4)/Lx)*sin(pi*(Y[j]-Ly/4)/Ly) dBy1[i,j] = psi0*(2*pi/Lx)*sin(2*pi*(X[i]-Lx/4)/Lx)*cos(pi*(Y[j]-Ly/4)/Ly) dBx2[i,j] = -psi0*(pi/Ly)*cos(2*pi*(X[i]+Lx/4)/Lx)*sin(pi*(Y[j]+Ly/4)/Ly) dBy2[i,j] = psi0*(2*pi/Lx)*sin(2*pi*(X[i]+Lx/4)/Lx)*cos(pi*(Y[j]+Ly/4)/Ly) figure(1) pcolormesh(XX, YY, transpose(Bx)) title('Bx(x,y)') colorbar() figure(2) pcolormesh(XX, YY, transpose(n)) title('n(x,y)') colorbar() figure(3) plot(Y, Bx[NX/2,:], 'r-') xlabel('Y') ylabel('Bx') title('Bx(y)') figure(4) plot(Y, n[NX/2,:], 'r-') xlabel('Y') ylabel('n') title('n(y)') figure(7) Bxt = Bx+dBx1+dBx2 Byt = dBy1+dBy2 Btot = sqrt(Bxt**2+Byt**2) #contour(XX, YY, transpose(Btot)) streamplot(X, Y, transpose(Bxt), transpose(Byt), density=2) show()
f1f6ea249402b6419fc6f324019956dc69813c50
69633bcb719e5caa2859c30d38f0fb0ff33b05a7
/app/api/urls.py
8ab6b71db340bc097ea2d0ae7dd19e923cae9533
[]
no_license
Zarinabonu/employee_version_2
e0ed3df43633241774686b7eaba01fbf2bebfa1a
991d8fce23d3736df0271c3ca3e380a13ab6e5c0
refs/heads/master
2022-11-26T03:22:47.067982
2019-12-07T08:14:36
2019-12-07T08:14:36
223,534,726
0
0
null
2022-11-22T04:50:39
2019-11-23T05:12:50
Python
UTF-8
Python
false
false
498
py
from django.urls import include, path urlpatterns = [ path('group/', include('app.api.group.urls')), path('employee/', include('app.api.employee.urls')), path('salary/', include('app.api.salary.urls')), path('accountant/', include('app.api.accountant.urls')), path('attendance/', include('app.api.attendance.urls')), path('project/', include('app.api.project.urls')), path('task/', include('app.api.task.urls')), path('static/', include('app.api.static.urls')), ]
deda7c2da31cde83eeb0a317505f79f8db6fb75e
326c6ad82d59bb7509c02c76695ea9035993da70
/lib/modules/powershell/situational_awareness/network/powerview/set_ad_object.py
2a0e745b9ae829fc42345a0a3330e60ab4217790
[ "BSD-3-Clause" ]
permissive
Arvanaghi/Empire
0c08bd7ddfba9be10e96bb0834b8ce3bc829059b
fd168ebf8acb1c2ee59d56f2c393ebd7a297603e
refs/heads/master
2021-01-20T14:15:34.864581
2017-08-05T17:51:44
2017-08-05T17:51:44
99,435,848
2
0
null
2017-08-05T16:50:16
2017-08-05T16:50:16
null
UTF-8
Python
false
false
4,526
py
from lib.common import helpers class Module: def __init__(self, mainMenu, params=[]): self.info = { 'Name': 'Set-ADObject', 'Author': ['@harmj0y'], 'Description': ('Takes a SID, name, or SamAccountName to query for a specified ' 'domain object, and then sets a specified "PropertyName" to a ' 'specified "PropertyValue". Part of PowerView.'), 'Background' : True, 'OutputExtension' : None, 'NeedsAdmin' : False, 'OpsecSafe' : True, 'Language' : 'powershell', 'MinLanguageVersion' : '2', 'Comments': [ 'https://github.com/PowerShellMafia/PowerSploit/blob/dev/Recon/' ] } # any options needed by the module, settable during runtime self.options = { # format: # value_name : {description, required, default_value} 'Agent' : { 'Description' : 'Agent to run module on.', 'Required' : True, 'Value' : '' }, 'SID' : { 'Description' : "The SID of the domain object you're querying for.", 'Required' : False, 'Value' : '' }, 'Name' : { 'Description' : "The name of the domain object you're querying for.", 'Required' : False, 'Value' : '' }, 'SamAccountName' : { 'Description' : "The SamAccountName of the domain object you're querying for", 'Required' : False, 'Value' : '' }, 'Domain' : { 'Description' : 'The domain to query for objects, defaults to the current domain.', 'Required' : False, 'Value' : '' }, 'PropertyName' : { 'Description' : 'The property name to set.', 'Required' : False, 'Value' : '' }, 'PropertyValue' : { 'Description' : 'The value to set for PropertyName.', 'Required' : False, 'Value' : '' }, 'PropertyXorValue' : { 'Description' : 'Integer calue to binary xor (-bxor) with the current int value.', 'Required' : False, 'Value' : '' }, 'ClearValue' : { 'Description' : 'Switch. Clear the value of PropertyName.', 'Required' : False, 'Value' : '' } } # save off a copy of the mainMenu object to access external functionality # like listeners/agent handlers/etc. self.mainMenu = mainMenu for param in params: # parameter format is [Name, Value] option, value = param if option in self.options: self.options[option]['Value'] = value def generate(self): moduleName = self.info["Name"] # read in the common powerview.ps1 module source code moduleSource = self.mainMenu.installPath + "/data/module_source/situational_awareness/network/powerview.ps1" try: f = open(moduleSource, 'r') except: print helpers.color("[!] Could not read module source path at: " + str(moduleSource)) return "" moduleCode = f.read() f.close() # get just the code needed for the specified function script = helpers.generate_dynamic_powershell_script(moduleCode, moduleName) script += moduleName + " " for option,values in self.options.iteritems(): if option.lower() != "agent": if values['Value'] and values['Value'] != '': if values['Value'].lower() == "true": # if we're just adding a switch script += " -" + str(option) else: script += " -" + str(option) + " " + str(values['Value']) script += ' | Out-String | %{$_ + \"`n\"};"`n'+str(moduleName)+' completed!"' return script
0b2ea839276a4ec36c3be5661e2ffc16dd965171
c1655d6c6c11dafc1c7fa9f771b8e1f99cf7f123
/venv/lib/python3.6/site-packages/pyomo/core/base/suffix.py
aa87df3782834ac58feecd227e58f1e7c93b5655
[]
no_license
igorsowa9/vpp
a27520f19a54d7490534016ded9cd66f4ef5385b
ea91e3b2db921e7b1a450d243f39dbcf61231107
refs/heads/master
2021-04-30T03:28:56.642244
2019-09-16T09:01:49
2019-09-16T09:01:49
121,514,524
3
1
null
null
null
null
UTF-8
Python
false
false
15,481
py
# ___________________________________________________________________________ # # Pyomo: Python Optimization Modeling Objects # Copyright 2017 National Technology and Engineering Solutions of Sandia, LLC # Under the terms of Contract DE-NA0003525 with National Technology and # Engineering Solutions of Sandia, LLC, the U.S. Government retains certain # rights in this software. # This software is distributed under the 3-clause BSD License. # ___________________________________________________________________________ __all__ = ('Suffix', 'active_export_suffix_generator', 'active_import_suffix_generator') import logging import pprint from pyomo.util.timing import ConstructionTimer from pyomo.core.kernel.component_map import ComponentMap from pyomo.core.base.plugin import register_component from pyomo.core.base.component import ActiveComponent from six import iteritems, itervalues from pyomo.util.deprecation import deprecated logger = logging.getLogger('pyomo.core') # A list of convenient suffix generators, including: # - active_export_suffix_generator # **(used by problem writers) # - export_suffix_generator # - active_import_suffix_generator # **(used by OptSolver and PyomoModel._load_solution) # - import_suffix_generator # - active_local_suffix_generator # - local_suffix_generator # - active_suffix_generator # - suffix_generator def active_export_suffix_generator(a_block, datatype=False): if (datatype is False): for name, suffix in iteritems(a_block.component_map(Suffix, active=True)): if suffix.export_enabled() is True: yield name, suffix else: for name, suffix in iteritems(a_block.component_map(Suffix, active=True)): if (suffix.export_enabled() is True) and \ (suffix.get_datatype() is datatype): yield name, suffix def export_suffix_generator(a_block, datatype=False): if (datatype is False): for name, suffix in iteritems(a_block.component_map(Suffix)): if suffix.export_enabled() is True: yield name, suffix else: for name, suffix in iteritems(a_block.component_map(Suffix)): if (suffix.export_enabled() is True) and \ (suffix.get_datatype() is datatype): yield name, suffix def active_import_suffix_generator(a_block, datatype=False): if (datatype is False): for name, suffix in iteritems(a_block.component_map(Suffix, active=True)): if suffix.import_enabled() is True: yield name, suffix else: for name, suffix in iteritems(a_block.component_map(Suffix, active=True)): if (suffix.import_enabled() is True) and \ (suffix.get_datatype() is datatype): yield name, suffix def import_suffix_generator(a_block, datatype=False): if (datatype is False): for name, suffix in iteritems(a_block.component_map(Suffix)): if suffix.import_enabled() is True: yield name, suffix else: for name, suffix in iteritems(a_block.component_map(Suffix)): if (suffix.import_enabled() is True) and \ (suffix.get_datatype() is datatype): yield name, suffix def active_local_suffix_generator(a_block, datatype=False): if (datatype is False): for name, suffix in iteritems(a_block.component_map(Suffix, active=True)): if suffix.get_direction() is Suffix.LOCAL: yield name, suffix else: for name, suffix in iteritems(a_block.component_map(Suffix, active=True)): if (suffix.get_direction() is Suffix.LOCAL) and \ (suffix.get_datatype() is datatype): yield name, suffix def local_suffix_generator(a_block, datatype=False): if (datatype is False): for name, suffix in iteritems(a_block.component_map(Suffix)): if suffix.get_direction() is Suffix.LOCAL: yield name, suffix else: for name, suffix in iteritems(a_block.component_map(Suffix)): if (suffix.get_direction() is Suffix.LOCAL) and \ (suffix.get_datatype() is datatype): yield name, suffix def active_suffix_generator(a_block, datatype=False): if (datatype is False): for name, suffix in iteritems(a_block.component_map(Suffix, active=True)): yield name, suffix else: for name, suffix in iteritems(a_block.component_map(Suffix, active=True)): if suffix.get_datatype() is datatype: yield name, suffix def suffix_generator(a_block, datatype=False): if (datatype is False): for name, suffix in iteritems(a_block.component_map(Suffix)): yield name, suffix else: for name, suffix in iteritems(a_block.component_map(Suffix)): if suffix.get_datatype() is datatype: yield name, suffix # Note: The order of inheritance here is important so that # __setstate__ works correctly on the ActiveComponent base class. class Suffix(ComponentMap, ActiveComponent): """A model suffix, representing extraneous model data""" """ Constructor Arguments: direction The direction of information flow for this suffix. By default, this is LOCAL, indicating that no suffix data is exported or imported. datatype A variable type associated with all values of this suffix. """ # Suffix Directions: # If more directions are added be sure to update the error message # in the setDirection method # neither sent to solver or received from solver LOCAL = 0 # sent to solver or other external location EXPORT = 1 # obtained from solver or other external source IMPORT = 2 IMPORT_EXPORT = 3 # both SuffixDirections = (LOCAL, EXPORT, IMPORT, IMPORT_EXPORT) SuffixDirectionToStr = {LOCAL: 'Suffix.LOCAL', EXPORT: 'Suffix.EXPORT', IMPORT: 'Suffix.IMPORT', IMPORT_EXPORT: 'Suffix.IMPORT_EXPORT'} # Suffix Datatypes FLOAT = 4 INT = 0 SuffixDatatypes = (FLOAT, INT, None) SuffixDatatypeToStr = {FLOAT: 'Suffix.FLOAT', INT: 'Suffix.INT', None: str(None)} def __init__(self, **kwds): # Suffix type information self._direction = None self._datatype = None self._rule = None # The suffix direction direction = kwds.pop('direction', Suffix.LOCAL) # The suffix datatype datatype = kwds.pop('datatype', Suffix.FLOAT) # The suffix construction rule # TODO: deprecate the use of 'rule' self._rule = kwds.pop('rule', None) self._rule = kwds.pop('initialize', self._rule) # Check that keyword values make sense (these function have # internal error checking). self.set_direction(direction) self.set_datatype(datatype) # Initialize base classes kwds.setdefault('ctype', Suffix) ActiveComponent.__init__(self, **kwds) ComponentMap.__init__(self) if self._rule is None: self.construct() def __setstate__(self, state): """ This method must be defined for deepcopy/pickling because this class relies on component ids. """ ActiveComponent.__setstate__(self, state) ComponentMap.__setstate__(self, state) def construct(self, data=None): """ Constructs this component, applying rule if it exists. """ if __debug__ and logger.isEnabledFor(logging.DEBUG): logger.debug("Constructing suffix %s", self.name) if self._constructed is True: return timer = ConstructionTimer(self) self._constructed = True if self._rule is not None: self.update_values(self._rule(self._parent())) timer.report() @deprecated('Suffix.exportEnabled is replaced with Suffix.export_enabled.') def exportEnabled(self): return self.export_enabled() def export_enabled(self): """ Returns True when this suffix is enabled for export to solvers. """ return bool(self._direction & Suffix.EXPORT) @deprecated('Suffix.importEnabled is replaced with Suffix.import_enabled.') def importEnabled(self): return self.import_enabled() def import_enabled(self): """ Returns True when this suffix is enabled for import from solutions. """ return bool(self._direction & Suffix.IMPORT) @deprecated('Suffix.updateValues is replaced with Suffix.update_values.') def updateValues(self, data, expand=True): return self.update_values(data, expand) def update_values(self, data, expand=True): """ Updates the suffix data given a list of component,value tuples. Provides an improvement in efficiency over calling set_value on every component. """ if expand: try: items = iteritems(data) except AttributeError: items = data for component, value in items: self.set_value(component, value, expand=expand) else: # As implemented by MutableMapping self.update(data) @deprecated('Suffix.setValue is replaced with Suffix.set_value.') def setValue(self, component, value, expand=True): return self.set_value(component, value, expand) def set_value(self, component, value, expand=True): """ Sets the value of this suffix on the specified component. When expand is True (default), array components are handled by storing a reference and value for each index, with no reference being stored for the array component itself. When expand is False (this is the case for __setitem__), this behavior is disabled and a reference to the array component itself is kept. """ if expand and component.is_indexed(): for component_ in itervalues(component): self[component_] = value else: self[component] = value @deprecated('Suffix.setAllValues is replaced with Suffix.set_all_values.') def setAllValues(self, value): return self.set_all_values(value) def set_all_values(self, value): """ Sets the value of this suffix on all components. """ for ndx in self: self[ndx] = value @deprecated('Suffix.clearValue is replaced with Suffix.clear_value.') def clearValue(self, component, expand=True): return self.clear_value(component, expand) def clear_value(self, component, expand=True): """ Clears suffix information for a component. """ if expand and component.is_indexed(): for component_ in itervalues(component): try: del self[component_] except KeyError: pass else: try: del self[component] except KeyError: pass @deprecated('Suffix.clearAllValues is replaced with ' 'Suffix.clear_all_values.') def clearAllValues(self): return self.clear_all_values() def clear_all_values(self): """ Clears all suffix data. """ self.clear() @deprecated('Suffix.setDatatype is replaced with Suffix.set_datatype.') def setDatatype(self, datatype): return self.set_datatype(datatype) def set_datatype(self, datatype): """ Set the suffix datatype. """ if datatype not in self.SuffixDatatypes: raise ValueError("Suffix datatype must be one of: %s. \n" "Value given: %s" % (list(Suffix.SuffixDatatypeToStr.values()), datatype)) self._datatype = datatype @deprecated('Suffix.getDatatype is replaced with Suffix.get_datatype.') def getDatatype(self): return self.get_datatype() def get_datatype(self): """ Return the suffix datatype. """ return self._datatype @deprecated('Suffix.setDirection is replaced with Suffix.set_direction.') def setDirection(self, direction): return self.set_direction(direction) def set_direction(self, direction): """ Set the suffix direction. """ if direction not in self.SuffixDirections: raise ValueError("Suffix direction must be one of: %s. \n" "Value given: %s" % (list(self.SuffixDirectionToStr.values()), direction)) self._direction = direction @deprecated('Suffix.getDirection is replaced with Suffix.get_direction.') def getDirection(self): return self.get_direction() def get_direction(self): """ Return the suffix direction. """ return self._direction def __str__(self): """ Return a string representation of the suffix. If the name attribute is None, then return '' """ name = self.name if name is None: return '' return name def _pprint(self): return ( [('Direction', self.SuffixDirectionToStr[self._direction]), ('Datatype', self.SuffixDatatypeToStr[self._datatype]), ], ((str(k), v) for k, v in itervalues(self._dict)), ("Value",), lambda k, v: [v] ) # TODO: delete @deprecated('Suffix.getValue is replaced with ' 'the dict-interface method Suffix.get.') def getValue(self, component, *args): """ Returns the current value of this suffix for the specified component. """ # As implemented by MutableMapping return self.get(component, *args) # TODO: delete @deprecated('Suffix.extractValues() is replaced with ' 'the dict-interface method Suffix.items().') def extractValues(self): """ Extract all data stored on this Suffix into a list of component, value tuples. """ # As implemented by MutableMapping return list(self.items()) # # Override a few methods to make sure the ActiveComponent versions are # called. We can't just switch the inheritance order due to # complications with __setstate__ # def pprint(self, *args, **kwds): return ActiveComponent.pprint(self, *args, **kwds) def __str__(self): return ActiveComponent.__str__(self) # # Override NotImplementedError messages on ComponentMap base class # def __eq__(self, other): """Not implemented.""" raise NotImplementedError("Suffix components are not comparable") def __ne__(self, other): """Not implemented.""" raise NotImplementedError("Suffix components are not comparable") register_component(Suffix, "Declare a container for extraneous model data")
b988547aeade1c42cfea0da062e3ba6a62e711c9
c2fb6846d5b932928854cfd194d95c79c723f04c
/python/coursera_python/MICHIGAN/wikicrawler/fin5.py
6ca16eb862d2f226ef4bed731e6432b820b1b03d
[ "MIT" ]
permissive
Jimut123/code-backup
ef90ccec9fb6483bb6dae0aa6a1f1cc2b8802d59
8d4c16b9e960d352a7775786ea60290b29b30143
refs/heads/master
2022-12-07T04:10:59.604922
2021-04-28T10:22:19
2021-04-28T10:22:19
156,666,404
9
5
MIT
2022-12-02T20:27:22
2018-11-08T07:22:48
Jupyter Notebook
UTF-8
Python
false
false
3,200
py
# To run this, you can install BeautifulSoup # https://pypi.python.org/pypi/beautifulsoup4 # Or download the file # http://www.py4e.com/code3/bs4.zip # and unzip it in the same directory as this file import sqlite3 conn = sqlite3.connect('wiki1.sqlite') cur = conn.cursor() cur.executescript(''' CREATE TABLE IF NOT EXISTS data ( id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT UNIQUE, link TEXT UNIQUE ); ''') import urllib.request, urllib.parse, urllib.error from bs4 import BeautifulSoup import ssl # Ignore SSL certificate errors ctx = ssl.create_default_context() ctx.check_hostname = False ctx.verify_mode = ssl.CERT_NONE url='0' dummy = 1 next_url = '0' i=10 ####### print("i = ",i) while(1): i=i+1 ########## print("i = ",i) if dummy == 1: url = input('Enter - ') ####### print("url entered = ",url) print("dummy = ",dummy) if dummy == 0: ####### print("dummy = ",dummy) url = next_url ####### print("url = ",url) html = urllib.request.urlopen(url, context=ctx).read() soup = BeautifulSoup(html, 'html.parser') # Retrieve all of the anchor tags tags = soup('a') ###### print(tags) for tag in tags: dummy3=0 while dummy3==0: ###### print("dummy3 = ",dummy3) dummy3=1 try: ###### link_get = tag.get('href', None) dummy3=1 ####### print("link_get = ",link_get) print("dummy3 = ",1) except ValueError: link_get = cur.execute(''' SELECT link FROM data where id = ?''',(i,)) ####### print("link_get = ",link_get) i=i-1 ####### print("i = ",i) #html = urllib.request.urlopen(url, context=ctx).read() #soup = BeautifulSoup(html, 'html.parser') #tags = soup('a') #i=i+1 ######## print(link_get) while(link_get == None): ######## print(link_get) if link_get == None: i=i-1 link_get = cur.execute(''' SELECT link FROM data where id = ?''',(i,)) ##### print("Entered here !! safe !!") print(link_get) while 'https:' not in link_get: try : if 'https:' in link_get: print(link_get," no https: protocol changing mode"); except ValueError: link_get = cur.execute(''' SELECT link FROM data where id = ?''',(i,)) print("link_get = ",link_get) i=i-1 print("i = ",i) if 'https:' in link_get: i=i+1 print("link_get = ",link_get,"i = ",i ) if 'https:' in link_get: next_url = link_get print("next_url = ", next_url) k=0 while k==0: i=i-1 print("i = ",i) try: url = next_url print("next_url : ",next_url) print("url : ",url) html = urllib.request.urlopen(url, context=ctx).read() print(html) soup = BeautifulSoup(html, 'html.parser') print(soup) tags = soup('a') print(tags) k=1 except: url = cur.execute(''' SELECT link FROM data where id = ?''',(i,)) print(next_url," == is not valid") print("====================================") cur.execute('''INSERT OR IGNORE INTO data (link) VALUES ( ? )''', ( link_get, ) ) #i=150 if(i%10 == 0): conn.commit() dummy = 0 conn.commit()
fa8309731559f5f28c23907d10d8809df78cf6ea
7142c3941481e661075154d714a29d5e283a3074
/KeywordArguments.py
7238526401ef054445d4af584ad76d295e46f26a
[]
no_license
nirajan5/Demo
5642a9669fedcca47b0304ac423c0b3e6333b8e2
2451875bf5698cd38af69baa117c14099951bc9f
refs/heads/master
2023-07-27T17:04:03.689673
2021-09-15T11:14:25
2021-09-15T11:14:25
406,732,005
0
0
null
null
null
null
UTF-8
Python
false
false
279
py
# function func is called with the name and message as the keyword arguments def func(name, message): print("printing the message with", name, "and ", message) # name and message is copied with the values Mike and hello respectively func(name="Mike", message="hello")
baf79214692455db57861792b2f1ca24f8f899e9
7d8022661a756f77f715ee4d099fb17cb9da671a
/feature/zoo/Skewness_Daily.py
65ff2a7ce6ebc641dccfe4e1a9bbef343ece64da
[]
no_license
lxj0276/Quant-Util
a7d70d88fc47eb16a08149faefa7b128c01c670e
2706ecba72a293ee01105ad22508a8d6b20e1394
refs/heads/master
2020-04-25T13:40:36.700892
2018-10-15T04:35:54
2018-10-15T04:35:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
609
py
from feature.base import NonPersistentFeature from feature.ops import * from feature.zoo.ChangeRate_Daily import ChangeRate_Daily class Skewness_Daily(NonPersistentFeature): description = '个股历史22日收益率的偏度' formula = 'Skewness = E[(R)^3], R=(r-mu)/sigma ' granularity = 'day' def _create_feature(self, instrument_id, time_range): def get_skewness(x): neu_x = ((x - nanmean(x)) / nanstd(x)) ** 3 return nanmean(neu_x) skewness = Rolling(ChangeRate_Daily(), 22, get_skewness) return skewness.load(instrument_id, time_range)
42d4e14bfa94bd62f6a98bae988d6c52e6d4f11d
12139fb270a099b01e4d68ce66aa7482f9eed189
/backend/delivery_order/migrations/0001_initial.py
b001253df4ca0fca357aab50cc409aed84cd07ea
[]
no_license
crowdbotics-apps/himi2-25342
610a85cba7221f3412de3ee3e00af182b9cb2fd4
ba9c7c90e42984b26d234a281ea50f2738b2146f
refs/heads/master
2023-04-03T05:05:43.969021
2021-03-29T13:35:53
2021-03-29T13:35:53
352,651,097
0
0
null
null
null
null
UTF-8
Python
false
false
2,609
py
# Generated by Django 2.2.19 on 2021-03-29 13:24 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('delivery_user_profile', '0001_initial'), ('menu', '0001_initial'), ] operations = [ migrations.CreateModel( name='Bill', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('total_amount', models.FloatField()), ('timestamp_created', models.DateTimeField(auto_now_add=True)), ('contact_info', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='bill_contact_info', to='delivery_user_profile.ContactInfo')), ('profile', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='bill_profile', to='delivery_user_profile.Profile')), ], ), migrations.CreateModel( name='PaymentMethod', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255)), ('detail', models.TextField()), ], ), migrations.CreateModel( name='Order', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('quantity', models.IntegerField()), ('total_price', models.FloatField()), ('status', models.CharField(max_length=20)), ('notes', models.TextField()), ('timestamp_created', models.DateTimeField(auto_now_add=True)), ('bill', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='order_bill', to='delivery_order.Bill')), ('item_variant', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='order_item_variant', to='menu.ItemVariant')), ('payment_method', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='order_payment_method', to='delivery_order.PaymentMethod')), ('profile', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='order_profile', to='delivery_user_profile.Profile')), ], ), ]
e48dd44a6f32d70bb408a6cef32b370ce27ed821
711756b796d68035dc6a39060515200d1d37a274
/output_cog/optimized_35426.py
f2b6425c5719c07256d34c3c3090f1c6c421232f
[]
no_license
batxes/exocyst_scripts
8b109c279c93dd68c1d55ed64ad3cca93e3c95ca
a6c487d5053b9b67db22c59865e4ef2417e53030
refs/heads/master
2020-06-16T20:16:24.840725
2016-11-30T16:23:16
2016-11-30T16:23:16
75,075,164
0
0
null
null
null
null
UTF-8
Python
false
false
10,841
py
import _surface import chimera try: import chimera.runCommand except: pass from VolumePath import markerset as ms try: from VolumePath import Marker_Set, Link new_marker_set=Marker_Set except: from VolumePath import volume_path_dialog d= volume_path_dialog(True) new_marker_set= d.new_marker_set marker_sets={} surf_sets={} if "Cog2_GFPN" not in marker_sets: s=new_marker_set('Cog2_GFPN') marker_sets["Cog2_GFPN"]=s s= marker_sets["Cog2_GFPN"] mark=s.place_marker((416.771, 568.834, 456.01), (0.89, 0.1, 0.1), 18.4716) if "Cog2_0" not in marker_sets: s=new_marker_set('Cog2_0') marker_sets["Cog2_0"]=s s= marker_sets["Cog2_0"] mark=s.place_marker((478.125, 536.686, 441.652), (0.89, 0.1, 0.1), 17.1475) if "Cog2_1" not in marker_sets: s=new_marker_set('Cog2_1') marker_sets["Cog2_1"]=s s= marker_sets["Cog2_1"] mark=s.place_marker((543.981, 496.055, 418.157), (0.89, 0.1, 0.1), 17.1475) if "Cog2_GFPC" not in marker_sets: s=new_marker_set('Cog2_GFPC') marker_sets["Cog2_GFPC"]=s s= marker_sets["Cog2_GFPC"] mark=s.place_marker((425.594, 431.548, 453.614), (0.89, 0.1, 0.1), 18.4716) if "Cog2_Anch" not in marker_sets: s=new_marker_set('Cog2_Anch') marker_sets["Cog2_Anch"]=s s= marker_sets["Cog2_Anch"] mark=s.place_marker((718.919, 437.149, 361.466), (0.89, 0.1, 0.1), 18.4716) if "Cog3_GFPN" not in marker_sets: s=new_marker_set('Cog3_GFPN') marker_sets["Cog3_GFPN"]=s s= marker_sets["Cog3_GFPN"] mark=s.place_marker((459.023, 550.179, 451.747), (1, 1, 0), 18.4716) if "Cog3_0" not in marker_sets: s=new_marker_set('Cog3_0') marker_sets["Cog3_0"]=s s= marker_sets["Cog3_0"] mark=s.place_marker((458.027, 550.94, 452.46), (1, 1, 0.2), 17.1475) if "Cog3_1" not in marker_sets: s=new_marker_set('Cog3_1') marker_sets["Cog3_1"]=s s= marker_sets["Cog3_1"] mark=s.place_marker((436.774, 567.26, 460.512), (1, 1, 0.2), 17.1475) if "Cog3_2" not in marker_sets: s=new_marker_set('Cog3_2') marker_sets["Cog3_2"]=s s= marker_sets["Cog3_2"] mark=s.place_marker((430.535, 569.191, 487.703), (1, 1, 0.2), 17.1475) if "Cog3_3" not in marker_sets: s=new_marker_set('Cog3_3') marker_sets["Cog3_3"]=s s= marker_sets["Cog3_3"] mark=s.place_marker((427.51, 558.848, 513.509), (1, 1, 0.2), 17.1475) if "Cog3_4" not in marker_sets: s=new_marker_set('Cog3_4') marker_sets["Cog3_4"]=s s= marker_sets["Cog3_4"] mark=s.place_marker((442.031, 554.939, 537.2), (1, 1, 0.2), 17.1475) if "Cog3_5" not in marker_sets: s=new_marker_set('Cog3_5') marker_sets["Cog3_5"]=s s= marker_sets["Cog3_5"] mark=s.place_marker((469.157, 553.815, 544.912), (1, 1, 0.2), 17.1475) if "Cog3_GFPC" not in marker_sets: s=new_marker_set('Cog3_GFPC') marker_sets["Cog3_GFPC"]=s s= marker_sets["Cog3_GFPC"] mark=s.place_marker((440.268, 569.826, 443.081), (1, 1, 0.4), 18.4716) if "Cog3_Anch" not in marker_sets: s=new_marker_set('Cog3_Anch') marker_sets["Cog3_Anch"]=s s= marker_sets["Cog3_Anch"] mark=s.place_marker((505.665, 540.548, 643.871), (1, 1, 0.4), 18.4716) if "Cog4_GFPN" not in marker_sets: s=new_marker_set('Cog4_GFPN') marker_sets["Cog4_GFPN"]=s s= marker_sets["Cog4_GFPN"] mark=s.place_marker((666.111, 495.379, 529.545), (0, 0, 0.8), 18.4716) if "Cog4_0" not in marker_sets: s=new_marker_set('Cog4_0') marker_sets["Cog4_0"]=s s= marker_sets["Cog4_0"] mark=s.place_marker((666.111, 495.379, 529.545), (0, 0, 0.8), 17.1475) if "Cog4_1" not in marker_sets: s=new_marker_set('Cog4_1') marker_sets["Cog4_1"]=s s= marker_sets["Cog4_1"] mark=s.place_marker((639.316, 495.203, 518.441), (0, 0, 0.8), 17.1475) if "Cog4_2" not in marker_sets: s=new_marker_set('Cog4_2') marker_sets["Cog4_2"]=s s= marker_sets["Cog4_2"] mark=s.place_marker((612.49, 497.77, 508.274), (0, 0, 0.8), 17.1475) if "Cog4_3" not in marker_sets: s=new_marker_set('Cog4_3') marker_sets["Cog4_3"]=s s= marker_sets["Cog4_3"] mark=s.place_marker((587.059, 502.902, 496.319), (0, 0, 0.8), 17.1475) if "Cog4_4" not in marker_sets: s=new_marker_set('Cog4_4') marker_sets["Cog4_4"]=s s= marker_sets["Cog4_4"] mark=s.place_marker((563.526, 514.295, 484.818), (0, 0, 0.8), 17.1475) if "Cog4_5" not in marker_sets: s=new_marker_set('Cog4_5') marker_sets["Cog4_5"]=s s= marker_sets["Cog4_5"] mark=s.place_marker((542.321, 528.683, 472.335), (0, 0, 0.8), 17.1475) if "Cog4_6" not in marker_sets: s=new_marker_set('Cog4_6') marker_sets["Cog4_6"]=s s= marker_sets["Cog4_6"] mark=s.place_marker((523.571, 546.236, 460.099), (0, 0, 0.8), 17.1475) if "Cog4_GFPC" not in marker_sets: s=new_marker_set('Cog4_GFPC') marker_sets["Cog4_GFPC"]=s s= marker_sets["Cog4_GFPC"] mark=s.place_marker((629.248, 444.349, 672.606), (0, 0, 0.8), 18.4716) if "Cog4_Anch" not in marker_sets: s=new_marker_set('Cog4_Anch') marker_sets["Cog4_Anch"]=s s= marker_sets["Cog4_Anch"] mark=s.place_marker((412.033, 648.998, 249.421), (0, 0, 0.8), 18.4716) if "Cog5_GFPN" not in marker_sets: s=new_marker_set('Cog5_GFPN') marker_sets["Cog5_GFPN"]=s s= marker_sets["Cog5_GFPN"] mark=s.place_marker((549.542, 543.366, 426.292), (0.3, 0.3, 0.3), 18.4716) if "Cog5_0" not in marker_sets: s=new_marker_set('Cog5_0') marker_sets["Cog5_0"]=s s= marker_sets["Cog5_0"] mark=s.place_marker((549.542, 543.366, 426.292), (0.3, 0.3, 0.3), 17.1475) if "Cog5_1" not in marker_sets: s=new_marker_set('Cog5_1') marker_sets["Cog5_1"]=s s= marker_sets["Cog5_1"] mark=s.place_marker((530.381, 523.266, 434.841), (0.3, 0.3, 0.3), 17.1475) if "Cog5_2" not in marker_sets: s=new_marker_set('Cog5_2') marker_sets["Cog5_2"]=s s= marker_sets["Cog5_2"] mark=s.place_marker((517.88, 497.312, 437.865), (0.3, 0.3, 0.3), 17.1475) if "Cog5_3" not in marker_sets: s=new_marker_set('Cog5_3') marker_sets["Cog5_3"]=s s= marker_sets["Cog5_3"] mark=s.place_marker((516.772, 475.796, 418.388), (0.3, 0.3, 0.3), 17.1475) if "Cog5_GFPC" not in marker_sets: s=new_marker_set('Cog5_GFPC') marker_sets["Cog5_GFPC"]=s s= marker_sets["Cog5_GFPC"] mark=s.place_marker((400.297, 516.212, 436.788), (0.3, 0.3, 0.3), 18.4716) if "Cog5_Anch" not in marker_sets: s=new_marker_set('Cog5_Anch') marker_sets["Cog5_Anch"]=s s= marker_sets["Cog5_Anch"] mark=s.place_marker((630.725, 430.984, 392.126), (0.3, 0.3, 0.3), 18.4716) if "Cog6_GFPN" not in marker_sets: s=new_marker_set('Cog6_GFPN') marker_sets["Cog6_GFPN"]=s s= marker_sets["Cog6_GFPN"] mark=s.place_marker((453.26, 523.696, 434.586), (0.21, 0.49, 0.72), 18.4716) if "Cog6_0" not in marker_sets: s=new_marker_set('Cog6_0') marker_sets["Cog6_0"]=s s= marker_sets["Cog6_0"] mark=s.place_marker((453.087, 523.598, 434.473), (0.21, 0.49, 0.72), 17.1475) if "Cog6_1" not in marker_sets: s=new_marker_set('Cog6_1') marker_sets["Cog6_1"]=s s= marker_sets["Cog6_1"] mark=s.place_marker((427.526, 535.727, 434.791), (0.21, 0.49, 0.72), 17.1475) if "Cog6_2" not in marker_sets: s=new_marker_set('Cog6_2') marker_sets["Cog6_2"]=s s= marker_sets["Cog6_2"] mark=s.place_marker((417.975, 536.646, 461.346), (0.21, 0.49, 0.72), 17.1475) if "Cog6_3" not in marker_sets: s=new_marker_set('Cog6_3') marker_sets["Cog6_3"]=s s= marker_sets["Cog6_3"] mark=s.place_marker((438.5, 535.991, 480.778), (0.21, 0.49, 0.72), 17.1475) if "Cog6_4" not in marker_sets: s=new_marker_set('Cog6_4') marker_sets["Cog6_4"]=s s= marker_sets["Cog6_4"] mark=s.place_marker((458.66, 548.534, 496.147), (0.21, 0.49, 0.72), 17.1475) if "Cog6_5" not in marker_sets: s=new_marker_set('Cog6_5') marker_sets["Cog6_5"]=s s= marker_sets["Cog6_5"] mark=s.place_marker((471.084, 568.348, 511.772), (0.21, 0.49, 0.72), 17.1475) if "Cog6_6" not in marker_sets: s=new_marker_set('Cog6_6') marker_sets["Cog6_6"]=s s= marker_sets["Cog6_6"] mark=s.place_marker((484.573, 580.637, 532.861), (0.21, 0.49, 0.72), 17.1475) if "Cog6_GFPC" not in marker_sets: s=new_marker_set('Cog6_GFPC') marker_sets["Cog6_GFPC"]=s s= marker_sets["Cog6_GFPC"] mark=s.place_marker((508.607, 605.682, 454.219), (0.21, 0.49, 0.72), 18.4716) if "Cog6_Anch" not in marker_sets: s=new_marker_set('Cog6_Anch') marker_sets["Cog6_Anch"]=s s= marker_sets["Cog6_Anch"] mark=s.place_marker((457.301, 550.724, 610.16), (0.21, 0.49, 0.72), 18.4716) if "Cog7_GFPN" not in marker_sets: s=new_marker_set('Cog7_GFPN') marker_sets["Cog7_GFPN"]=s s= marker_sets["Cog7_GFPN"] mark=s.place_marker((507.568, 589.169, 411.108), (0.7, 0.7, 0.7), 18.4716) if "Cog7_0" not in marker_sets: s=new_marker_set('Cog7_0') marker_sets["Cog7_0"]=s s= marker_sets["Cog7_0"] mark=s.place_marker((504.336, 562.174, 411.716), (0.7, 0.7, 0.7), 17.1475) if "Cog7_1" not in marker_sets: s=new_marker_set('Cog7_1') marker_sets["Cog7_1"]=s s= marker_sets["Cog7_1"] mark=s.place_marker((494.025, 505.416, 414.401), (0.7, 0.7, 0.7), 17.1475) if "Cog7_2" not in marker_sets: s=new_marker_set('Cog7_2') marker_sets["Cog7_2"]=s s= marker_sets["Cog7_2"] mark=s.place_marker((483.424, 449.86, 417.225), (0.7, 0.7, 0.7), 17.1475) if "Cog7_GFPC" not in marker_sets: s=new_marker_set('Cog7_GFPC') marker_sets["Cog7_GFPC"]=s s= marker_sets["Cog7_GFPC"] mark=s.place_marker((408.918, 472.128, 390.765), (0.7, 0.7, 0.7), 18.4716) if "Cog7_Anch" not in marker_sets: s=new_marker_set('Cog7_Anch') marker_sets["Cog7_Anch"]=s s= marker_sets["Cog7_Anch"] mark=s.place_marker((523.816, 357.25, 440.525), (0.7, 0.7, 0.7), 18.4716) if "Cog8_0" not in marker_sets: s=new_marker_set('Cog8_0') marker_sets["Cog8_0"]=s s= marker_sets["Cog8_0"] mark=s.place_marker((475.134, 580.25, 456.521), (1, 0.5, 0), 17.1475) if "Cog8_1" not in marker_sets: s=new_marker_set('Cog8_1') marker_sets["Cog8_1"]=s s= marker_sets["Cog8_1"] mark=s.place_marker((477.378, 568.069, 430.952), (1, 0.5, 0), 17.1475) if "Cog8_2" not in marker_sets: s=new_marker_set('Cog8_2') marker_sets["Cog8_2"]=s s= marker_sets["Cog8_2"] mark=s.place_marker((469.924, 547.447, 411.567), (1, 0.5, 0), 17.1475) if "Cog8_3" not in marker_sets: s=new_marker_set('Cog8_3') marker_sets["Cog8_3"]=s s= marker_sets["Cog8_3"] mark=s.place_marker((490.811, 533.549, 395.781), (1, 0.5, 0), 17.1475) if "Cog8_4" not in marker_sets: s=new_marker_set('Cog8_4') marker_sets["Cog8_4"]=s s= marker_sets["Cog8_4"] mark=s.place_marker((513.336, 518.386, 382.281), (1, 0.5, 0), 17.1475) if "Cog8_5" not in marker_sets: s=new_marker_set('Cog8_5') marker_sets["Cog8_5"]=s s= marker_sets["Cog8_5"] mark=s.place_marker((535.474, 503.441, 366.558), (1, 0.5, 0), 17.1475) if "Cog8_GFPC" not in marker_sets: s=new_marker_set('Cog8_GFPC') marker_sets["Cog8_GFPC"]=s s= marker_sets["Cog8_GFPC"] mark=s.place_marker((485.361, 543.981, 408.528), (1, 0.6, 0.1), 18.4716) if "Cog8_Anch" not in marker_sets: s=new_marker_set('Cog8_Anch') marker_sets["Cog8_Anch"]=s s= marker_sets["Cog8_Anch"] mark=s.place_marker((592.874, 460.04, 319.901), (1, 0.6, 0.1), 18.4716) for k in surf_sets.keys(): chimera.openModels.add([surf_sets[k]])
3b4c3ebcc95f6891385346ebc2ece840427a93c5
9c3f16a3474948468215a0bb8de481b685acf0b7
/pwkit/environments/casa/util.py
0c44962c7d305ee183f9370cd5831d29460b900a
[ "MIT" ]
permissive
BunnyBuster/pwkit
4b738ecddf2bb4fae26a73d5a5e62cad96d5b87f
ce20bf4b0d54aa9bf2ebbaadadadeb1d4eb88ba2
refs/heads/master
2021-01-17T22:18:28.541008
2015-08-06T19:31:10
2015-08-06T19:31:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,772
py
# -*- mode: python; coding: utf-8 -*- # Copyright 2015 Peter Williams <[email protected]> and collaborators. # Licensed under the MIT License. """pwkit.environments.casa.util - core utilities for the CASA Python libraries Variables: INVERSE_C_SM - Inverse of C in s/m (useful for wavelength to time conversion) INVERSE_C_NSM - Inverse of C in ns/m (ditto). pol_names - Dict mapping CASA polarization codes to their string names. pol_to_miriad - Dict mapping CASA polarization codes to their MIRIAD equivalents. msselect_keys - A set of the keys supported by the CASA ms-select subsystem. tools - An object for constructing CASA tools: ``ia = tools.image ()``. Functions: datadir - Return the CASA data directory. logger - Create a CASA logger that prints to stderr without leaving a casapy.log file around. forkandlog - Run a function in a subprocess, returning the text it outputs via the CASA logging subsystem. sanitize_unicode - Encode Unicode strings as bytes for interfacing with casac functions. """ from __future__ import absolute_import, division, print_function, unicode_literals __all__ = (b'''INVERSE_C_MS INVERSE_C_MNS pol_names pol_to_miriad msselect_keys datadir logger forkandlog sanitize_unicode tools''').split () from ... import binary_type, text_type # Some constants that can be useful. INVERSE_C_MS = 3.3356409519815204e-09 # inverse speed of light in m/s INVERSE_C_MNS = 3.3356409519815204 # inverse speed of light in m/ns pol_names = { 0: '?', 1: 'I', 2: 'Q', 3: 'U', 4: 'V', 5: 'RR', 6: 'RL', 7: 'LR', 8: 'LL', 9: 'XX', 10: 'XY', 11: 'YX', 12: 'YY', 13: 'RX', 14: 'RY', 15: 'LX', 16: 'LY', 17: 'XR', 18: 'XL', 19: 'YR', 20: 'YL', 21: 'PP', 22: 'PQ', 23: 'QP', 24: 'QQ', 25: 'RCirc', 26: 'Lcirc', 27: 'Lin', 28: 'Ptot', 29: 'Plin', 30: 'PFtot', 31: 'PFlin', 32: 'Pang', } pol_to_miriad = { # see mirtask.util for the MIRIAD magic numbers. 1: 1, 2: 2, 3: 3, 4: 4, # IQUV 5: -1, 6: -3, 7: -4, 8: -2, # R/L 9: -5, 10: -7, 11: -8, 12: -6, # X/Y # rest are inexpressible } # "polarization" is technically valid as an MS selection, but it pretty much # doesn't do what you'd want since records generally contain multiple pols. # ms.selectpolarization() should be used instead. Maybe ditto for spw? msselect_keys = frozenset ('array baseline field observation ' 'scan scaninent spw taql time uvdist'.split ()) def sanitize_unicode (item): """The Python bindings to CASA tasks expect to receive all string values as binary data (Python 2.X "str" or 3.X "bytes") and not Unicode (Python 2.X "unicode" or 3.X "str"). To prep for Python 3 (not that CASA will ever be compatible with it ...) I true to use the unicode_literals everywhere, and other Python modules are getting better about using Unicode consistently, so this causes problems. This helper converts Unicode into UTF-8 encoded bytes, handling the common data structures that are passed to CASA functions. I usually import this as just 'b' and write tool.method (b(arg)), in analogy with the b'' byte string syntax. """ if isinstance (item, text_type): return item.encode ('utf8') if isinstance (item, dict): return dict ((sanitize_unicode (k), sanitize_unicode (v)) for k, v in item.iteritems ()) if isinstance (item, (list, tuple)): return item.__class__ (sanitize_unicode (x) for x in item) return item # Finding the data directory def datadir (*subdirs): import os.path data = None if 'CASAPATH' in os.environ: data = os.path.join (os.environ['CASAPATH'].split ()[0], 'data') if data is None: # The Conda CASA directory layout: try: import casadef except ImportError: pass else: data = os.path.join (os.path.dirname (casadef.task_directory), 'data') if not os.path.isdir (data): data = None if data is None: import casac prevp = None p = os.path.dirname (casac.__file__) while len (p) and p != prevp: data = os.path.join (p, 'data') if os.path.isdir (data): break prevp = p p = os.path.dirname (p) if not os.path.isdir (data): raise RuntimeError ('cannot identify CASA data directory') return os.path.join (data, *subdirs) # Trying to use the logging facility in a sane way. # # As soon as you create a logsink, it creates a file called casapy.log. # So we do some junk to not leave turds all around the filesystem. def _rmtree_error (func, path, excinfo): from ...cli import warn warn ('couldn\'t delete temporary file %s: %s (%s)', path, excinfo[0], func) def logger (filter='WARN'): import os, shutil, tempfile cwd = os.getcwd () tempdir = None try: tempdir = tempfile.mkdtemp (prefix='casautil') try: os.chdir (tempdir) sink = tools.logsink () sink.setlogfile (sanitize_unicode (os.devnull)) os.unlink ('casapy.log') finally: os.chdir (cwd) finally: if tempdir is not None: shutil.rmtree (tempdir, onerror=_rmtree_error) sink.showconsole (True) sink.setglobal (True) sink.filter (sanitize_unicode (filter.upper ())) return sink def forkandlog (function, filter='INFO5', debug=False): import sys, os readfd, writefd = os.pipe () pid = os.fork () if pid == 0: # Child process. We never leave this branch. # # Log messages of priority >WARN are sent to stderr regardless of the # status of log.showconsole(). The idea is for this subprocess to be # something super lightweight and constrained, so it seems best to # nullify stderr, and stdout, to not pollute the output of the calling # process. # # I thought of using the default logger() setup and dup2'ing stderr to # the pipe fd, but then if anything else gets printed to stderr (e.g. # Python exception info), it'll get sent along the pipe too. The # caller would have to be much more complex to be able to detect and # handle such output. os.close (readfd) if not debug: f = open (os.devnull, 'w') os.dup2 (f.fileno (), 1) os.dup2 (f.fileno (), 2) sink = logger (filter=filter) sink.setlogfile (b'/dev/fd/%d' % writefd) function (sink) sys.exit (0) # Original process. os.close (writefd) with os.fdopen (readfd) as readhandle: for line in readhandle: yield line info = os.waitpid (pid, 0) if info[1]: # Because we're a generator, this is the only way for us to signal if # the process died. We could be rewritten as a context manager. e = RuntimeError ('logging child process PID %d exited ' 'with error code %d' % tuple (info)) e.pid, e.exitcode = info raise e # Tool factories. class _Tools (object): """This class is structured so that it supports useful tab-completion interactively, but also so that new tools can be constructed if the underlying library provides them. """ _builtinNames = ('agentflagger atmosphere calanalysis calibrater calplot componentlist ' 'coordsys deconvolver fitter flagger functional image imagepol ' 'imager logsink measures msmetadata ms msplot plotms regionmanager ' 'simulator spectralline quanta table tableplot utils vlafiller ' 'vpmanager').split () def __getattribute__ (self, n): """Returns factories, not instances.""" # We need to make this __getattribute__, not __getattr__, only because # we set the builtin names in the class __dict__ to enable tab-completion. import casac if hasattr (casac, 'casac'): # casapy >= 4.0? t = getattr (casac.casac, n, None) if t is None: raise AttributeError ('tool "%s" not present' % n) return t else: try: return casac.homefinder.find_home_by_name (n + 'Home').create except Exception: # raised exception is class 'homefinder.error'; it appears unavailable # on the Python layer raise AttributeError ('tool "%s" not present' % n) for n in _Tools._builtinNames: setattr (_Tools, n, None) # ease autocompletion tools = _Tools ()
f22e0886db6f9382a5e20f45bcfbf625ccc3c4b8
54f352a242a8ad6ff5516703e91da61e08d9a9e6
/Source Codes/AtCoder/arc076/B/3550700.py
8f96f6d28852e7726701218eb446f377441ebaf7
[]
no_license
Kawser-nerd/CLCDSA
5cbd8a4c3f65173e4e8e0d7ed845574c4770c3eb
aee32551795763b54acb26856ab239370cac4e75
refs/heads/master
2022-02-09T11:08:56.588303
2022-01-26T18:53:40
2022-01-26T18:53:40
211,783,197
23
9
null
null
null
null
UTF-8
Python
false
false
1,186
py
# -*- coding: utf-8 -*- n = int(input()) ax = [] ay = [] for i in range(n): x,y = map(int, input().split()) ax.append((x,i)) ay.append((y,i)) ax.sort() ay.sort() edge = [] for i in range(n-1): v = ax[i][1] u = ax[i+1][1] c = abs(ax[i][0]-ax[i+1][0]) edge.append((c,v,u)) v = ay[i][1] u = ay[i+1][1] c = abs(ay[i][0]-ay[i+1][0]) edge.append((c,v,u)) edge.sort() class UnionFind(): def __init__(self, n): self.par = [i for i in range(n)] def find(self, x): if self.par[x] == x: return x else: self.par[x] = self.find(self.par[x]) return self.par[x] def unite(self, x, y): x = self.find(x) y = self.find(y) if x==y: return if x<y: self.par[y] = x else: self.par[x] = y def same(self, x, y): return self.find(x) == self.find(y) t = UnionFind(n) res = 0 for e in edge: cost = e[0] v = e[1] u = e[2] if not t.same(v,u): # print((v,u,cost)) t.unite(v,u) res += cost print(res)
a7bdf555c5c6d3f96279b3733f29b9c8b469e4e2
54f352a242a8ad6ff5516703e91da61e08d9a9e6
/Source Codes/AtCoder/abc114/C/4911470.py
7120757865868e9a23be1abac95852d41aafe750
[]
no_license
Kawser-nerd/CLCDSA
5cbd8a4c3f65173e4e8e0d7ed845574c4770c3eb
aee32551795763b54acb26856ab239370cac4e75
refs/heads/master
2022-02-09T11:08:56.588303
2022-01-26T18:53:40
2022-01-26T18:53:40
211,783,197
23
9
null
null
null
null
UTF-8
Python
false
false
428
py
n=int(input()) import bisect import itertools l=len(str(n)) ans=[] num=[] x=['3', '5', '7'] for k in range(3,l+1): m=list(itertools.product(x, repeat=k)) num.extend(m) for i in range(len(num)): y=num[i] if '3' in y and '5' in y and '7' in y: number='' for j in range(len(y)): number+=y[j] ans.append(int(number)) ans.sort() print(bisect.bisect_right(ans, n))
4bfae37ee37f293153a442a5301b4ea1d1887493
7cd0b68c088bf8d42e048c3e4c2b3428a914b988
/mk-ckeck-ints-py2.py
b5e236d2cf8f7ab5e2b24ee8432412a594fb0cd9
[ "Apache-2.0" ]
permissive
mykespb/pythoner
9603904be46298f52ce54f7e421889e6d88b1c8e
5049b20018890d18d9fd8076ad13f176e1f037e3
refs/heads/master
2023-07-26T07:17:42.848231
2023-07-23T19:30:20
2023-07-23T19:30:20
42,587,225
1
0
Apache-2.0
2022-07-06T21:09:43
2015-09-16T12:59:54
HTML
UTF-8
Python
false
false
3,741
py
#!/usr/bin/env python2 # -*- coding: utf-8 -*- # mk-check-ints.py (c) myke 2015-11-07 # check first integer predefined refs for i in range (-10, 300): a = i+0 b = i+0 if a is b: print i, "equals" else: print i, "not equals" -10 not equals -9 not equals -8 not equals -7 not equals -6 not equals -5 equals -4 equals -3 equals -2 equals -1 equals 0 equals 1 equals 2 equals 3 equals 4 equals 5 equals 6 equals 7 equals 8 equals 9 equals 10 equals 11 equals 12 equals 13 equals 14 equals 15 equals 16 equals 17 equals 18 equals 19 equals 20 equals 21 equals 22 equals 23 equals 24 equals 25 equals 26 equals 27 equals 28 equals 29 equals 30 equals 31 equals 32 equals 33 equals 34 equals 35 equals 36 equals 37 equals 38 equals 39 equals 40 equals 41 equals 42 equals 43 equals 44 equals 45 equals 46 equals 47 equals 48 equals 49 equals 50 equals 51 equals 52 equals 53 equals 54 equals 55 equals 56 equals 57 equals 58 equals 59 equals 60 equals 61 equals 62 equals 63 equals 64 equals 65 equals 66 equals 67 equals 68 equals 69 equals 70 equals 71 equals 72 equals 73 equals 74 equals 75 equals 76 equals 77 equals 78 equals 79 equals 80 equals 81 equals 82 equals 83 equals 84 equals 85 equals 86 equals 87 equals 88 equals 89 equals 90 equals 91 equals 92 equals 93 equals 94 equals 95 equals 96 equals 97 equals 98 equals 99 equals 100 equals 101 equals 102 equals 103 equals 104 equals 105 equals 106 equals 107 equals 108 equals 109 equals 110 equals 111 equals 112 equals 113 equals 114 equals 115 equals 116 equals 117 equals 118 equals 119 equals 120 equals 121 equals 122 equals 123 equals 124 equals 125 equals 126 equals 127 equals 128 equals 129 equals 130 equals 131 equals 132 equals 133 equals 134 equals 135 equals 136 equals 137 equals 138 equals 139 equals 140 equals 141 equals 142 equals 143 equals 144 equals 145 equals 146 equals 147 equals 148 equals 149 equals 150 equals 151 equals 152 equals 153 equals 154 equals 155 equals 156 equals 157 equals 158 equals 159 equals 160 equals 161 equals 162 equals 163 equals 164 equals 165 equals 166 equals 167 equals 168 equals 169 equals 170 equals 171 equals 172 equals 173 equals 174 equals 175 equals 176 equals 177 equals 178 equals 179 equals 180 equals 181 equals 182 equals 183 equals 184 equals 185 equals 186 equals 187 equals 188 equals 189 equals 190 equals 191 equals 192 equals 193 equals 194 equals 195 equals 196 equals 197 equals 198 equals 199 equals 200 equals 201 equals 202 equals 203 equals 204 equals 205 equals 206 equals 207 equals 208 equals 209 equals 210 equals 211 equals 212 equals 213 equals 214 equals 215 equals 216 equals 217 equals 218 equals 219 equals 220 equals 221 equals 222 equals 223 equals 224 equals 225 equals 226 equals 227 equals 228 equals 229 equals 230 equals 231 equals 232 equals 233 equals 234 equals 235 equals 236 equals 237 equals 238 equals 239 equals 240 equals 241 equals 242 equals 243 equals 244 equals 245 equals 246 equals 247 equals 248 equals 249 equals 250 equals 251 equals 252 equals 253 equals 254 equals 255 equals 256 equals 257 not equals 258 not equals 259 not equals 260 not equals 261 not equals 262 not equals 263 not equals 264 not equals 265 not equals 266 not equals 267 not equals 268 not equals 269 not equals 270 not equals 271 not equals 272 not equals 273 not equals 274 not equals 275 not equals 276 not equals 277 not equals 278 not equals 279 not equals 280 not equals 281 not equals 282 not equals 283 not equals 284 not equals 285 not equals 286 not equals 287 not equals 288 not equals 289 not equals 290 not equals 291 not equals 292 not equals 293 not equals 294 not equals 295 not equals 296 not equals 297 not equals 298 not equals 299 not equals
781480b6b7c9c10bf5e38599c8db5a2b48975330
4e3eedbf46a032c42665c3b212a48bc30652c1ed
/day09/03 作业.py
0f6da2b7095362708f20d35f0057463e18209925
[]
no_license
zranguai/python-learning
7eb2a842f6f4624f550ee1c4ff7cd64ac948097a
acf19c9f85eec4bee3e3e3a00712c4a53aa9d249
refs/heads/master
2023-03-24T14:36:32.248437
2021-03-15T08:24:01
2021-03-15T08:24:01
347,874,326
1
0
null
null
null
null
UTF-8
Python
false
false
4,475
py
# # 1.整理函数相关知识点,写博客。 # # 2.写函数,检查获取传入列表或元组对象的所有奇数位索引对应的元素,并将其作为新列表返回给调用者。 # def odd_element(li): # l1 = li[1::2] # return l1 # # # l2 = [1, 2, 3, 6, 5, 8] # tu2 = (1, 2, 3, 6, 5, 8) # res = odd_element(l2) # res1 = odd_element(tu2) # print(res) # print(res1) # 3.写函数,判断用户传入的对象(字符串、列表、元组)长度是否大于5。 # def judge_length(li): # if len(li) > 5: # return True # else: # return False # # # print(judge_length('askdhajdaj')) # print(judge_length([1, 2, 3, 5])) # print(judge_length((1, 2, 3, 5, 6, 9))) # 4.写函数,检查传入列表的长度,如果大于2,那么仅保留前两个长度的内容,并将新内容返回给调用者。 # def check_length(li): # return li[0:2] if len(li) > 2 else False # # # print(check_length([1, 2, 3, 6, 8])) # print(check_length([18])) # 5.写函数,计算传入函数的字符串中,[数字]、[字母] 以及 [其他]的个数,并返回结果。 # s1 = '256aasdf582中文学习' # i.isalpha不能判断中英文 # def foo(s): # num1 = 0 # s1 = 0 # other = 0 # for i in s: # if i.isdigit(): # num1 += 1 # elif i.encode('utf-8').isalpha(): # s1 += 1 # else: # other += 1 # return num1, s1, other # # # res = foo('256aasdf582中文k学习') # print(res) # 6.写函数,接收两个数字参数,返回比较大的那个数字。 # def foo(num1, num2): # return num1 if num1 > num2 else num2 # # # print(foo(53, 23)) # print(foo(0, 23)) # 7.写函数,检查传入字典的每一个value的长度,如果大于2,那么仅保留前两个长度的内容,并将新内容返回给调用者。 # dic = {"k1": "v1v1", "k2": [11,22,33,44]} {"k1": "v1", "k2": [11,22]} # PS:字典中的value只能是字符串或列表 # dic = {"k1": "v1v1", "k2": [11, 22, 33, 44]} # def foo(dic): # dic1 = {} # for i in dic.keys(): # if len(dic[i]) > 2: # dic1[i] = dic[i][0:2] # return dic1 # # # print(foo(dic)) # 8.写函数,此函数只接收一个参数且此参数必须是列表数据类型,此函数完成的功能是返回给调用者一个字典, # 此字典的键值对为此列表的索引及对应的元素。例如传入的列表为:[11,22,33] 返回的字典为 {0:11,1:22,2:33}。 # l1 = [11, 22, 33, 44, 25] # def foo(l1): # dic = {} # for index in range(len(l1)): # dic[index] = l1[index] # return dic # # # print(foo(l1)) # 9.写函数,函数接收四个参数分别是:姓名,性别,年龄,学历。 # 用户通过输入这四个内容,然后将这四个内容传入到函数中,此函数接收到这四个内容,将内容追加到一个student_msg文件中。 # def foo(name, sex, age, edu): # s1 = '姓名是:{},性别是:{},年龄是:{},学历是:{}\n'.format(name, sex, age, edu) # with open('student_msg', mode='a', encoding='utf-8') as f: # f.write(s1) # # # foo('小明', '男', 23, '本科') # foo('小红', '女', 21, '专科') # 10.对第9题升级:支持用户持续输入,Q或者q退出,性别默认为男,如果遇到女学生,则把性别输入女。 # 用户持续输入: while input # # 函数:接收四个参数。将四个参数追加到文件中。 # def foo(name, age, edu, sex='男'): # s1 = '姓名是:{},性别是:{},年龄是:{},学历是:{}\n'.format(name, sex, age, edu) # with open('student_msg', mode='a', encoding='utf-8') as f: # f.write(s1) # # # while True: # if input('输入q/Q退出,输入其他继续').upper() == 'Q': # break # name = input('请输入姓名') # sex = input('请输入性别') # age = input('请输入年龄') # edu = input('请输入学历') # foo(name, age, edu, sex) # 写函数,用户传入修改的文件名,与要修改的内容,执行函数,完成整个文件的批量修改操作(选做题)。 # # import os # def foo(name, change): # with open(name, mode='r', encoding='utf-8') as f1, \ # open(name + '.bak', mode='w', encoding='utf-8') as f2: # old_content = f1.read() # new_content = old_content.replace('SB', change) # f2.write(new_content) # os.remove(name) # os.rename(name + '.bak', name) # # foo('student_msg', 'alexxx')
55c0ddc10dfebaabc5ebad6bab71d2634378ec9e
887811408e187da2422900a31859925d59d4d6ec
/UniquePaths.py
5e5e9cbb532d75cf1af78435b7bb02a6042e8d8b
[]
no_license
adityachhajer/LeetCodeJuneChallenge
5a998baf6dc5207c56c48ccd36c82ef44f41217c
8ed8b0c012691387e417bcf45009debe4d5f8551
refs/heads/master
2022-11-12T16:40:25.360578
2020-07-01T06:31:51
2020-07-01T06:31:51
268,749,503
2
0
null
null
null
null
UTF-8
Python
false
false
686
py
class Solution: def solve(self,n,m,t): if n-1==0 and m-1==0: return 1 elif t[n][m]!=0: return t[n][m] else: if n - 1 == 0 and m - 1 != 0: t[n][m]=self.solve(n, m - 1, t) return t[n][m] elif n - 1 != 0 and m - 1 == 0: t[n][m]=self.solve(n - 1, m, t) return t[n][m] else: t[n][m]=self.solve(n - 1, m, t) + self.solve(n, m - 1, t) return t[n][m] def uniquePaths(self, m: int, n: int) -> int: t=[[0 for _ in range(m+1)]for _ in range(n+1)] return self.solve(n,m,t)
a4121b364c978347da27194b9061f3bd495259a0
871b3fa6647983570ecc0a8f4764dd2af4765427
/roxanne/main.py
08b439409202f5e1b432bc061bb3ebca88dcd4b2
[]
no_license
kwarwp/anita
5eaa8f6b587bdc8d702aeae775803bec60856fbc
b813492175365a0f7b8934c710cc09b0ff26763f
refs/heads/master
2022-10-17T01:02:37.845442
2022-09-26T15:05:06
2022-09-26T15:05:06
216,602,314
0
0
null
null
null
null
UTF-8
Python
false
false
462
py
# anita.roxanne.main.pyhttps://i.imgur.com/u1dActr.jpgV from _ spy. violino.main import cena,elemento,texto, STYLE STYLE["width"]=600 STYLE["heigth]= "200px" linkdatalita="https://i.imgur.com/6rLmVNz.jpg" linkdocolete="https://i.imgur.com/PV7WWPJ.jpg" linkquartodatalita="https://i.imgur.com/wdKENXo.jpg" linkdosubmarino="https://i.imgur.com/fJWGYNu.jpg" linkdoquadro1="https://i.imgur.com/ydF1bV2.jpg" linkdoquadro2="https://i.imgur.com/u1dActr.jpg" img_moeda="
f3a01b868d231358e9f762b09e2d8400c33d7e03
b39d9ef9175077ac6f03b66d97b073d85b6bc4d0
/Torisel_WC500039912.1.py
e171724fdab26401b59865112ccd9ffbabce2d73
[]
no_license
urudaro/data-ue
2d840fdce8ba7e759b5551cb3ee277d046464fe0
176c57533b66754ee05a96a7429c3e610188e4aa
refs/heads/master
2021-01-22T12:02:16.931087
2013-07-16T14:05:41
2013-07-16T14:05:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,874
py
{'_data': [['Common', [['Immune system', u'Diabetes mellitus 10 (3,1) 2 (0,6) Dehydrering 17 (5,3) 8 (2,5) Hypokalcemi 21 (6,5) 5 (1,6) Hypofosfatemi 26 (8,1) 14 (4,4) Hyperlipidemi 4 (1,2) 0 (0,0) Psykiska Mycket vanliga Insomni 45 (14,0) 1 (0,3) st\xf6rningar Depression 16 (5,0) 0 (0,0)'], ['Immune system', u'\xc5ngest 28 (8,7) 0 (0,0)'], ['Eye', u'Pneumonit 7 (2,2) 2 (0,6) Interstitiell lungsjukdom 6 (1,9) 3 (0,9) Pleurav\xe4tska 19 (5,9) 9 (2,8)'], ['Eye', u'Gastrointestinal bl\xf6dning (inklusive anal-, rektal-, haemorroidal-, l\xe4pp och munbl\xf6dning, bl\xf6dning i 16 (5,0) 4 (1,2) tandk\xf6tt) Gastrit *** 7 (2,1) 2 (0,6) Dysfagi 13 (4,0) 0 (0,0) Utsp\xe4nd buk 14 (4,4) 1 (0,3) Aft\xf6s stomatit 15 (4,7) 1 (0,3) Oral sm\xe4rta 9 (2,8) 1 (0,3) Gingivit 6 (1,9) 0 (0,0)'], ['Skin', u'Vanliga Dermatit 6 (1,9) 0 (0,0) Exfoliativa utslag 5 (1,6) 0 (0,0) Akne 15 (4,7) 0 (0,0) Nagelsjukdom 24 (8,1) 0 (0,0) Bl\xe5m\xe4rken**** 5 (1,6) 0 (0,0) Petekier 4 (1,2) 0 (0,0) Muskuloskeletala Mycket vanliga Ledv\xe4rk 50 (15,6) 2 (0,6) systemet och Ryggsm\xe4rta 53 (16,5) 8 (2,5) bindv\xe4v Vanliga Muskelsm\xe4rta 19 (5,9) 0 (0,0) Njurar och Vanliga Njursvikt 5 (1,6) 0 (0,0) urinv\xe4gar Allm\xe4nna symtom Mycket vanliga Fatigue 133 (41,4) 31 (9,7) och/eller symtom \xd6dem (inklusive generellt \xf6dem, vid ansikts\xf6dem, perifert \xf6dem, 122 (38,0) 11 (3,4) administreringsst\xe4 testikel\xf6dem, genitala \xf6dem ) llet Asteni 67 (20,9)) 16 (5,0) Mukosit 66 (20,6) 7 (2,2) Feber 91 (28,3) 5 (1,6) Sm\xe4rta 36 (11,2) 7 (2,2) Frossa 32 (10,0) 1 (0,3) Br\xf6stsm\xe4rta 32 (10,0) 1 (0,3)'], ['Skin', u'Vanliga F\xf6rh\xf6jt aspartataminotransferas 27 (8,4) 5 (1,6)'], ['Skin', u'Vanliga F\xf6rh\xf6jt alaninaminotransferas 17 (5,3) 2 (0,6) a, b, c: inklusive ett d\xf6dsfall i varje fall']]], ['Uncommon', [['Eye', u'Bl\xf6dning i \xf6gat 3 (0,9) 0 (0,0) Hj\xe4rtat Mindre vanliga Perikardv\xe4tska 3 (0,9) 1 (0,3) Blodk\xe4rl Vanliga Ven\xf6s tromboembolism (inklusive djup ventrombos, ven\xf6s trombos) 7 (2,2) 4 (1,2) Tromboflebit 4 (1,2) 0 (0,0) Hypertension 20 (6,2) 3 (0,9) Andningsv\xe4gar, Mycket vanliga Dyspn\xe9 79 (24,6) 27 (8,4) br\xf6stkorg och N\xe4sbl\xf6dning *** 69 (21,5) 1 (0,3) mediastinum Hosta 93 (29) 3 (0,9)'], ['Eye', u'Lungemboli 2 (0,6) 1 (0,3) Magtarmkanalen Mycket vanliga Illam\xe5ende 109 (34,0) 5 (1,6) Diarr\xe9 109 (34,0) 16 (5,0) Stomatit 67 (20,9) 3 (0,9) Kr\xe4kningar 57 (17,8) 4 (1,2) F\xf6rstoppning 56 (17,4) 0 (0,0) Buksm\xe4rta 56 (17,4) 10 (3,1)'], ['Eye', u'Mindre vanliga Tarmperforation 2 (0,6) 1 (0,3)'], ['Skin', u'Mindre vanliga F\xf6rs\xe4mrad s\xe5rl\xe4kning 2 (0,6) 0 (0,0) Unders\xf6kningar Mycket vanliga F\xf6rh\xf6jt blodkreatinin 35 (10,9) 4 (1,2)']]], ['Unknown', [['Immune system', u'utl\xf6sta reaktioner 24 (7,5) 1 (0,3) Metabolism och Mycket vanliga Hyperglykemi 63 (19,6) 31 (9,7) nutrition Hyperkolesterolemi 60 (18,79) 1 (0,3) Hypertriglyceridemi 56 (17,4) 8 (2,5) Minskad aptit 107 (33,3) 9 (2,8) Hypokalemi 44 (13,7) 13 (4,0)'], ['Eye', u'sjukdomar i t\xe5rapparaten)'], ['Skin', u'utslag, makulopapul\xf6st utslag, generella utslag, makul\xe4ra utslag, 138 (43,0) 16 (5,0) pustul\xf6st utslag) Pruritus (inklusive generell pruritus) 69 (21,5) 4 (1,2) Torr hud 32 (10,0) 1 (0,3)'], ['Immune system', u'reaktioner Hud och subkutan v\xe4vnad Ingen k\xe4nd frekvens Stevens-Johnson syndrom Muskuloskeletala systemet Ingen k\xe4nd frekvens Rabdomyolys och bindv\xe4v']]]], '_pages': [9, 14], u'_rank': 15, u'_type': u'LSFU'}
[ "daro@daro-ThinkPad-X220.(none)" ]
daro@daro-ThinkPad-X220.(none)
4049a02fd60ab4a249f4d40702531b9eafed09fd
a9fe1b5c320cdef138ac4a942a8b741c7f27de7c
/LC742-Closest-Leaf-in-a-Binary-Tree.py
f3a487514bfb862775af04044d8e89b47e295321
[]
no_license
kate-melnykova/LeetCode-solutions
a6bbb5845310ce082770bcb92ef6f6877962a8ee
ee8237b66975fb5584a3d68b311e762c0462c8aa
refs/heads/master
2023-06-28T06:35:33.342025
2021-07-30T06:59:31
2021-07-30T06:59:31
325,106,033
2
1
null
null
null
null
UTF-8
Python
false
false
4,287
py
""" Given a binary tree where every node has a unique value, and a target key k, find the value of the nearest leaf node to target k in the tree. Here, nearest to a leaf means the least number of edges travelled on the binary tree to reach any leaf of the tree. Also, a node is called a leaf if it has no children. In the following examples, the input tree is represented in flattened form row by row. The actual root tree given will be a TreeNode object. Example 1: Input: root = [1, 3, 2], k = 1 Diagram of binary tree: 1 / \ 3 2 Output: 2 (or 3) Explanation: Either 2 or 3 is the nearest leaf node to the target of 1. Example 2: Input: root = [1], k = 1 Output: 1 Explanation: The nearest leaf node is the root node itself. Example 3: Input: root = [1,2,3,4,null,null,null,5,null,6], k = 2 Diagram of binary tree: 1 / \ 2 3 / 4 / 5 / 6 Output: 3 Explanation: The leaf node with value 3 (and not the leaf node with value 6) is nearest to the node with value 2. Note: root represents a binary tree with at least 1 node and at most 1000 nodes. Every node has a unique node.val in range [1, 1000]. There exists some node in the given binary tree for which node.val == k. """ from TreeNode import TreeNode class Solution: def findClosestLeaf(self, root: TreeNode, k: int) -> int: """ Time complexity: O(n) Space complexity: O(n) """ # assign parent root.parent = None self.assignParent(root) # compute distance the closest leaf downwards and the leaf value self.distToLeaf(root) # find the node with value k node = self.getNode(root, k) # find the distance to the closest leaf closest = node.to_leaf + 1 leaf_value = node.leaf_value node = node.parent steps_up = 2 while node is not None: if node.to_leaf + steps_up < closest: closest = node.to_leaf + steps_up leaf_value = node.leaf_value node = node.parent steps_up += 1 return leaf_value def distToLeaf(self, root: TreeNode): """ Time complexity: O(n) Space complexity: O(n) """ if root is None: pass elif root.left is None and root.right is None: root.to_leaf = 1 root.leaf_value = root.val else: self.distToLeaf(root.left) self.distToLeaf(root.right) if getattr(root.left, 'to_leaf', float('inf')) < getattr(root.right, 'to_leaf', float('inf')): root.to_leaf = root.left.to_leaf + 1 root.leaf_value = root.left.leaf_value else: root.to_leaf = root.right.to_leaf + 1 root.leaf_value = root.right.leaf_value def assignParent(self, root: TreeNode): """ Time complexity: O(n) Space complexity: O(n) """ if root.left is not None: root.left.parent = root self.assignParent(root.left) if root.right is not None: root.right.parent = root self.assignParent(root.right) def getNode(self, root: TreeNode, k: int) -> TreeNode: # find the node with value k level = [root, ] while level: new_level = [] for node in level: if node.val == k: return node if node.left is not None: new_level.append(node.left) if node.right is not None: new_level.append(node.right) level = list(new_level) if __name__ == '__main__': from run_tests import run_tests correct_answers = [ [[1, 3, 2], 1, 2], [[1], 1, 1], [[1,2,3,4,None,None,None,5,None,6], 2, 3], [[1, 2, 3, 4, None, None, None, 5, None, 6], 5, 6], [[1, 2, 3, 4, None, None, None, 5, None, 6], 1, 3] ] for i in range(len(correct_answers)): correct_answers[i][0] = TreeNode.to_treenode(correct_answers[i][0]) print(f'Running tests for findClosestLeaf') run_tests(Solution().findClosestLeaf, correct_answers)
fb8a1445699331f925683dbd999d5a4054e78cd8
6d45ba4adff74b2cb1b6764dc684f37407b41ba9
/PirateBoxMessageBoard/settings.py
1193cea6cdedb820fe1d514892d7e3735830b66f
[]
no_license
bussiere/PirateBoxMessageBoard
bbf478af1886caf811f38802bde5528593bba2c4
8626a8a44d5bdbf06486fac65682a50e4209396d
refs/heads/master
2021-01-23T11:56:22.905167
2013-03-08T16:33:08
2013-03-08T16:33:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,926
py
# Django settings for DrakBus project. try : import dj_database_url except : pass import os.path PROJECT_ROOT = '/home/pi/PirateBox/PirateBoxMessageBoard' # The '/..' is needed to work with Django 1.4+, remove for older versions. DEBUG = False TEMPLATE_DEBUG = DEBUG INTERNAL_IPS = ('127.0.0.1',) ADMINS = ( # ('Your Name', '[email protected]'), ) MANAGERS = ADMINS DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', # Add 'postgresql_psycopg2', 'postgresql', 'mysql', 'sqlite3' or 'oracle'. 'NAME': '/home/pi/PirateBox/PirateBoxMessageBoard/PirateBoxMessageBoard.db', # Or path to database file if using sqlite3. 'USER': '', # Not used with sqlite3. 'PASSWORD': '', # Not used with sqlite3. 'HOST': '', # Set to empty string for localhost. Not used with sqlite3. 'PORT': '', # Set to empty string for default. Not used with sqlite3. } } ALLOWED_HOSTS = ['*'] # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be available on all operating systems. # In a Windows environment this must be set to your system time zone. TIME_ZONE = 'America/Winnipeg' # Language code for this installation. All choices can be found here: # http://www.i18nguy.com/unicode/language-identifiers.html LANGUAGE_CODE = 'en-us' SITE_ID = 1 # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = True # If you set this to False, Django will not format dates, numbers and # calendars according to the current locale. USE_L10N = True # If you set this to False, Django will not use timezone-aware datetimes. USE_TZ = True # Absolute filesystem path to the directory that will hold user-uploaded files. # Example: "/home/media/media.lawrence.com/media/" MEDIA_ROOT = os.path.join(PROJECT_ROOT, 'media') # URL that handles the media served from MEDIA_ROOT. Make sure to use a # trailing slash. # Examples: "http://media.lawrence.com/media/", "http://example.com/media/" MEDIA_URL = '/m/' # Absolute path to the directory static files should be collected to. # Don't put anything in this directory yourself; store your static files # in apps' "static/" subdirectories and in STATICFILES_DIRS. # Example: "/home/media/media.lawrence.com/static/" STATIC_ROOT = os.path.join(PROJECT_ROOT, 'staticfiles') # URL prefix for static files. # Example: "http://media.lawrence.com/static/" STATIC_URL = '/s/' # Additional locations of static files STATICFILES_DIRS = ( os.path.join(PROJECT_ROOT, 'staticfiles'), ) # List of finder classes that know how to find static files in # various locations. STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', 'django.contrib.staticfiles.finders.DefaultStorageFinder', ) # Make this unique, and don't share it with anybody. SECRET_KEY = 'tamereenslip' # List of callables that know how to import templates from various sources. TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', # 'django.template.loaders.eggs.Loader', ) MIDDLEWARE_CLASSES = ( 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'message.middleware.UserBasedExceptionMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', ) LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'handlers': { # Include the default Django email handler for errors # This is what you'd get without configuring logging at all. 'mail_admins': { 'class': 'django.utils.log.AdminEmailHandler', 'level': 'ERROR', # But the emails are plain text by default - HTML is nicer 'include_html': True, }, # Log to a text file that can be rotated by logrotate 'logfile': { 'class': 'logging.handlers.WatchedFileHandler', 'filename': '/home/pi/myapp.log' }, }, 'loggers': { # Again, default Django configuration to email unhandled exceptions 'django.request': { 'handlers': ['mail_admins'], 'level': 'ERROR', 'propagate': True, }, # Might as well log any errors anywhere else in Django 'django': { 'handlers': ['logfile'], 'level': 'ERROR', 'propagate': False, }, # Your own app - this assumes all your logger names start with "myapp." 'message': { 'handlers': ['logfile'], 'level': 'WARNING', # Or maybe INFO or DEBUG 'propagate': False }, }, } ROOT_URLCONF = 'urls' # Python dotted path to the WSGI application used by Django's runserver. WSGI_APPLICATION = 'wsgi.application' TEMPLATE_DIRS = ( os.path.join(PROJECT_ROOT, 'templates'), ) TEMPLATE_CONTEXT_PROCESSORS = ( 'django.contrib.auth.context_processors.auth', 'django.core.context_processors.debug', 'django.core.context_processors.i18n', 'django.core.context_processors.media', 'django.core.context_processors.static', 'django.core.context_processors.tz', 'django.contrib.messages.context_processors.messages', ) INSTALLED_APPS = ( 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.admin', 'message', 'django.contrib.admin', 'django.contrib.admindocs', ) # A sample logging configuration. The only tangible logging # performed by this configuration is to send an email to # the site admins on every HTTP 500 error when DEBUG=False. # See http://docs.djangoproject.com/en/dev/topics/logging for # more details on how to customize your logging configuration. LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'filters': { 'require_debug_false': { '()': 'django.utils.log.RequireDebugFalse' } }, 'handlers': { 'mail_admins': { 'level': 'ERROR', 'filters': ['require_debug_false'], 'class': 'django.utils.log.AdminEmailHandler' } }, 'loggers': { 'django.request': { 'handlers': ['mail_admins'], 'level': 'ERROR', 'propagate': True, }, } } EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend'
532900bebd339267ebc10dfaff3592998f41e76f
5b22437902bffa0f62b375d56bfb2b4485ef43f0
/src/video_inpainting/create_padded_masked_video_dataset.py
2550634c0f8d379f97bcce53a9e71e7662817ff7
[ "MIT", "CC-BY-SA-3.0", "CC-BY-SA-4.0" ]
permissive
JohnsonzxChang/devil
eafa09f5258b4f33eda9564077814c6e63473a0f
296115cd5f4952c7dc65bbcaaf2d1d5c55ef5d35
refs/heads/public
2023-07-03T12:07:58.917440
2021-08-10T00:06:38
2021-08-10T00:06:38
555,846,483
1
0
MIT
2022-10-22T13:22:43
2022-10-22T13:22:42
null
UTF-8
Python
false
false
820
py
import os from .padded_masked_video_folder_dataset import PaddedMaskedVideoFolderDataset from .padded_masked_video_tar_dataset import PaddedMaskedVideoTarDataset def create_padded_masked_video_dataset(frames_dataset_path, masks_dataset_path): if os.path.isdir(frames_dataset_path) and os.path.isdir(masks_dataset_path): return PaddedMaskedVideoFolderDataset(frames_dataset_path, masks_dataset_path) else: _, frames_dataset_ext = os.path.splitext(frames_dataset_path) _, masks_dataset_ext = os.path.splitext(masks_dataset_path) if frames_dataset_ext == '.tar' and masks_dataset_ext == '.tar': return PaddedMaskedVideoTarDataset(frames_dataset_path, masks_dataset_path) else: raise ValueError('Given paths must both be directories or .tar files')
06e6a38e865091a553dcec1b2b286abf65848f83
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_344/ch53_2019_03_31_15_57_40_910628.py
842c153c78e87eff9b5ce32522a0897f56a27f48
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
101
py
def inverte_lista(lista): i=0 while i<len(lista): lista=lista[::-1] return lista
ba50dd86cdaa99cd34695548a76e5f6592516bc7
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2696/60765/305370.py
3d1f7821f1511367fc86d5ab1dbfcfe888cd8ca5
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
1,954
py
#!/usr/bin/env python # -*- coding:utf-8 -*- import math import sys import re from collections import * from itertools import * from functools import * def solve(): # =list(map(int,input().split())) # =int(input()) # def root(i): # if unions[i]<0: # return i # else: # return root(unions[i]) # def union(x,y): # roota=root(x) # rootb=root(y) # # unions[roota] += unions[rootb] # unions[rootb]=roota # n =input()[2:-2].split('],[') # target=int(input()) n=int(input()) a=[] a.append(list(map(int,input().split()))) a.append(list(map(int,input().split()))) a.append(list(map(int,input().split()))) a.append(a[2]) dp=[[1,1,1,1]] for i in range(n-1): dp.append([0,0,0,0]) for k in range(1,n): for i in range(4): for j in range(k): if a[i][j]<=dp[k][0]: dp[k][0]=max(dp[k][0],dp[j][i]+1) if a[i][j] >= dp[k][1]: dp[k][1] = max(dp[k][1], dp[j][i] + 1) if a[i][j] <= dp[k][2] and j!=3: dp[k][2] = max(dp[k][2], dp[j][i] + 1) if a[i][j] >= dp[k][3] and j!=2: dp[k][3] = max(dp[k][3], dp[j][i] + 1) res=0 for i in range(4): res=max(dp[i][-1],res) m=a[0][0] if n == 7 and m == 19: print('7',end='') elif n == 5 and m == 1: print('5',end='') elif n == 6 and m == 1: print('6') elif n == '3' and m == '1': print('32') elif n == '1' and m == '3': print('4') elif n == '15' and m == '1': print('704') elif n == '3' and m == '35': print('10') elif n == '18' and m == '1'and l=='2': print('859') elif n == '' and m == '': print('') elif n == '' and m == '': print('') else: print(n) print(m) solve()
175a95df1b171942b913d77561029a1915f14dea
7162c36b73d97c82b165d6fd14d568552a0269d8
/setup.py
37f71d57aab9125965f253b2077c743f7b916d16
[]
no_license
welbornprod/findfunc
d90cbe0110a0f9b656b0ff70846e0c29a583f703
0247cba193fb3193c60399c3d2f9910e85319493
refs/heads/master
2021-01-19T09:29:10.707496
2019-04-02T23:14:08
2019-04-02T23:14:08
87,763,285
0
0
null
null
null
null
UTF-8
Python
false
false
2,355
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ FindFunc Setup -Christopher Welborn 04-09-2017 """ try: from setuptools import setup except ImportError: from distutils.core import setup # Try using the latest DESC.txt. shortdesc = 'Finds function definitions/signatures from the command line.' try: with open('DESC.txt', 'r') as f: shortdesc = f.read() except FileNotFoundError: pass # Default README files to use for the longdesc, if pypandoc fails. readmefiles = ('docs/README.txt', 'README.txt', 'docs/README.rst') for readmefile in readmefiles: try: with open(readmefile, 'r') as f: longdesc = f.read() break except EnvironmentError: # File not found or failed to read. pass else: # No readme file found. # If a README.md exists, and pypandoc is installed, generate a new readme. try: import pypandoc except ImportError: print('Pypandoc not installed, using default description.') longdesc = shortdesc else: # Convert using pypandoc. try: longdesc = pypandoc.convert('README.md', 'rst') except EnvironmentError: # No readme file, no fresh conversion. print('Pypandoc readme conversion failed, using default desc.') longdesc = shortdesc setup( name='FindFunc', version='0.4.4', author='Christopher Welborn', author_email='[email protected]', packages=['findfunc'], url='https://github.com/welbornprod/findfunc', description=shortdesc, long_description=longdesc, keywords=( 'python 3 command line tool function class definition signature' ), classifiers=[ 'License :: OSI Approved :: MIT License', 'Operating System :: Microsoft :: Windows', 'Operating System :: POSIX :: Linux', 'Programming Language :: Python', 'Programming Language :: Python :: 3 :: Only', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', ], install_requires=[ 'colr >= 0.8.1', 'docopt >= 0.6.2', 'pygments >= 2.1.3', 'printdebug >= 0.3.0', ], entry_points={ 'console_scripts': [ 'findfunc = findfunc.__main__:entry_point', ], } )
46cb1c572815f8a6d20635acff1d237fcd0d8db4
215bf668b69b5ebea1b538be217a7cd91db1772a
/bin/condor-compute-psd
7e2e02878351d44edbb14260ba2a9af208a2b15f
[ "MIT" ]
permissive
reedessick/exposure
a2fce2e0a2ff059200d0498ae68e81a6e2bb1b9c
10aeb1fb29befbbb305d65c379d983fd8bad5693
refs/heads/master
2022-04-05T09:36:15.969152
2020-02-28T23:24:05
2020-02-28T23:24:05
105,042,945
0
0
MIT
2019-08-08T16:09:08
2017-09-27T16:35:52
Python
UTF-8
Python
false
false
6,825
#!/usr/bin/env python __doc__ = "a very basic wrapper that schedules `compute-psd` jobs. The resulting DAG should run to completion if everything worked correctly (i.e. nodes should not raise exceptions" __author__ = "Reed Essick ([email protected])" #------------------------------------------------- import os import getpass ### for default accounting_group_user import subprocess as sp from distutils.spawn import find_executable from argparse import ArgumentParser ### non-standard libraries from exposure import utils from exposure import datafind #------------------------------------------------- parser = ArgumentParser(description=__doc__) parser.add_argument('channel', type=str) parser.add_argument('frametype', type=str) parser.add_argument('gpsstart', type=int) parser.add_argument('gpsstop', type=int) parser.add_argument("-v", "--verbose", default=False, action="store_true") parser.add_argument("-V", "--Verbose", default=False, action="store_true") parser.add_argument("--include-flag", default=[], type=str, action='append', help='the flags used to select subsets of [gpsstart, gpsstop] for analysis. \ Can be repeated to take the intersection of multiple flags. \ DEFAULT=[] (analyze all time in [gpsstart, gpsstop]).') parser.add_argument("--exclude-flag", default=[], type=str, action='append', help='the same as --include-flag, except we only retain times that are \ outside of these flags instead of inside them') parser.add_argument("--win", default=60, type=int, help="estimate PSDs separately in sequential windows of this duration. \ DEFAULT=60") parser.add_argument("--seglen", default=4, type=int, help='the length of segments used to estimate the PSD via an averaging procedure (specify in seconds). \ NOTE: if we do not obtain an integer number of segments based on --seglen, --overlap, gpsstart, and gpsstop, \ we will raise a ValueError. DEFAULT=4') parser.add_argument("--overlap", default=2, type=float, help='the amount of time overlapped for segments used to estimate the PSD (specify in seconds). \ NOTE: if we do not obtain an integer number of segments based on --seglen, --overlap, gpsstart, and gpsstop, \ we will raise a ValueError. DEFAULT=2') parser.add_argument("--tukey-alpha", default=0.50, type=float, help='the Tukey "alpha" value used for windowing the DFT. \ DEFAULT=0.50') parser.add_argument('--universe', default='vanilla', type=str, help='DEFAULT=vanilla') parser.add_argument('--exe', default='compute-psd', type=str, help='specify the explicit path to the executable. \ DEFAULT=compute-psd') parser.add_argument('--accounting-group', default=utils.DEFAULT_ACCOUNTING_GROUP, type=str) parser.add_argument('--accounting-group-user', default=getpass.getuser(), type=str, help='DEFAULT='+getpass.getuser()) parser.add_argument('--retry', default=utils.DEFAULT_RETRY, type=int) parser.add_argument('--psd-suffix', default='csv.gz', type=str) parser.add_argument("-o", "--output-dir", default='.', type=str) parser.add_argument("-t", "--tag", default="", type=str) parser.add_argument('-s', '--condor-submit', default=False, action='store_true', help='submit the DAG to condor') args = parser.parse_args() stride = args.gpsstop - args.gpsstart assert args.channel[0]==args.frametype[0], 'I do not believe you want a channel and frametype \ from different IFOs\n\tchannel : %s\n\tframetype : %s'%(args.channel, args.frametype) assert args.seglen > args.overlap, '--seglen must be larger than --overlap' if args.tag: filetag = "_"+args.tag else: filetag = "" args.output_dir = os.path.abspath(args.output_dir) if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) logdir = os.path.join(args.output_dir, 'log') if not os.path.exists(logdir): os.makedirs(logdir) args.verbose |= args.Verbose #------------------------------------------------- ### query segments to define individual runs ### ensure we have proper coverage segments = [[args.gpsstart, args.gpsstop]] segments = datafind.include_flags(segments, args.include_flag, args.gpsstart, stride, verbose=args.verbose) segments = datafind.exclude_flags(segments, args.exclude_flag, args.gpsstart, stride, verbose=args.verbose) ### check to make sure we have livetime left, etc assert len(segments), 'no remaining livetime after filtering by flags!' lvtm = utils.livetime(segments) ### amount of time requested within segments #------------------------ ### write sub file subname = "%s/compute-psd%s-%d-%d.sub"%(args.output_dir, filetag, args.gpsstart, stride) if args.verbose: print( "writing : "+subname ) with open(subname, 'w') as f: f.write(utils.compute_psd_sub%{\ 'universe' : args.universe, 'exe' : os.path.abspath(find_executable(args.exe)), 'channel' : args.channel, 'frametype' : args.frametype, 'accounting_group' : args.accounting_group, 'accounting_group_user' : args.accounting_group_user, 'tag' : "--tag "+args.tag if args.tag else '', 'filetag' : filetag, 'start' : args.gpsstart, 'dur' : stride, 'seglen' : args.seglen, 'overlap' : args.overlap, 'tukey_alpha' : args.tukey_alpha, 'suffix' : args.psd_suffix, }) ### iterate over segments and define compute-psd jobs for each dagname = subname.replace('.sub', '.dag') if args.verbose: print( "writing : "+dagname ) with open(dagname, 'w') as f: covered = 0 ### amount of time that's covered by a PSD estimate for segstart, segstop in segments: segdur = segstop - segstart if args.verbose: print( "scheduling jobs for %d -- %d"%(segstart, segstop) ) s = (segstart/args.win)*args.win ### line-up start with integer number of windows. Needed to guarantee files will line up later -> integer division! if s < segstart: ### mostly likely case, but we need to check just in case s += args.win while s+args.win < segstop: f.write(utils.compute_psd_dag%{\ 'jobid' : '%d'%s, 'sub' : subname, 'gpsstart' : s, 'gpsstop' : s+args.win, 'retry' : args.retry, 'outdir' : args.output_dir, }) s += args.win covered += args.win #------------------------------------------------- if args.verbose: ### report amount of time covered print( 'requested : %d sec'%stride ) print( 'within segments : %d sec'%lvtm ) print( 'covered by PSD : %d sec'%covered ) ### submit if args.condor_submit: if args.verbose: print( 'submitting : '+dagname ) import subprocess as sp sp.Popen(['condor_submit_dag', dagname]).wait() elif args.verbose: print( 'you can now submit : '+dagname )
42c5f9db30567097bc2bfb0f4424be748d2301fc
0b5be4b9162c19cf0d98972e52ce80aa8af47f0a
/Thread/thread/concurrent_futures.py
5b0040e31097304271f9bf34a179dee1e60395c7
[]
no_license
Air-Zhuang/Test35
374c974a2a7693fff21be81278c1bb59a050f7ee
d9f92b7a025c91b7503f02afc896ac769f818a84
refs/heads/master
2021-06-19T12:36:13.383878
2019-09-21T08:02:43
2019-09-21T08:02:43
147,629,865
0
0
null
null
null
null
UTF-8
Python
false
false
2,004
py
''' 用于线程池和进程池编程(顶层的包,高度封装) 主线程中可以获取某一个线程的状态或者某一个任务的状态,以及返回值 当一个线程完成的时候我们主线程能立即知道 futures可以让多线程和多进程编码接口一致 ''' from concurrent.futures import ThreadPoolExecutor,as_completed,wait import time def get_html(times): time.sleep(times) print("get page {} success".format(times)) return str(times) #使用线程池可以获取返回值 '''基本用法''' exector=ThreadPoolExecutor(max_workers=2) #创造最大进程数为2的线程池 task1=exector.submit(get_html,(0.5)) #传参必须这么写,不知道原因 task2=exector.submit(get_html,(0.3)) task3=exector.submit(get_html,(0.4)) print("task3任务已取消:",task3.cancel()) #取消任务(任务必须还未开始执行) print("task1任务已完成:",task1.done()) #判断任务是否已执行完(立即执行,不会被上面的代码阻塞) time.sleep(1) print("task1任务已完成:",task1.done()) print("task1返回值:",task1.result()) #可以获取任务的返回值 print() '''获取已经完成的task的返回''' urls=[2,1,3] all_task=[exector.submit(get_html,(i)) for i in urls] wait(all_task) #等待某个任务执行完成,必须传iterable print("main") for i in as_completed(all_task): res=i.result() print("返回值为:",res) print() '''通过executor获取已经完成的task的返回''' for i in exector.map(get_html,urls): print("返回值为:", i) print() '''with''' def fib(n): if n<2: return 1 return fib(n-1)+fib(n-2) with ThreadPoolExecutor(3) as exector: all_task=[exector.submit(fib,(num)) for num in range(25,35)] start_time=time.time() for i in as_completed(all_task): res = i.result() print("exe result:{}".format(res)) print(time.time()-start_time) print()
c97c300158c4f94cf5638626ee2d67678df0fbee
82b946da326148a3c1c1f687f96c0da165bb2c15
/sdk/python/pulumi_azure_native/network/v20200401/get_virtual_network_gateway_learned_routes.py
dc0c3a5ca849b2e3f6452ce8aa86df4484b07682
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
morrell/pulumi-azure-native
3916e978382366607f3df0a669f24cb16293ff5e
cd3ba4b9cb08c5e1df7674c1c71695b80e443f08
refs/heads/master
2023-06-20T19:37:05.414924
2021-07-19T20:57:53
2021-07-19T20:57:53
387,815,163
0
0
Apache-2.0
2021-07-20T14:18:29
2021-07-20T14:18:28
null
UTF-8
Python
false
false
2,485
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs __all__ = [ 'GetVirtualNetworkGatewayLearnedRoutesResult', 'AwaitableGetVirtualNetworkGatewayLearnedRoutesResult', 'get_virtual_network_gateway_learned_routes', ] @pulumi.output_type class GetVirtualNetworkGatewayLearnedRoutesResult: """ List of virtual network gateway routes. """ def __init__(__self__, value=None): if value and not isinstance(value, list): raise TypeError("Expected argument 'value' to be a list") pulumi.set(__self__, "value", value) @property @pulumi.getter def value(self) -> Optional[Sequence['outputs.GatewayRouteResponse']]: """ List of gateway routes. """ return pulumi.get(self, "value") class AwaitableGetVirtualNetworkGatewayLearnedRoutesResult(GetVirtualNetworkGatewayLearnedRoutesResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetVirtualNetworkGatewayLearnedRoutesResult( value=self.value) def get_virtual_network_gateway_learned_routes(resource_group_name: Optional[str] = None, virtual_network_gateway_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetVirtualNetworkGatewayLearnedRoutesResult: """ List of virtual network gateway routes. :param str resource_group_name: The name of the resource group. :param str virtual_network_gateway_name: The name of the virtual network gateway. """ __args__ = dict() __args__['resourceGroupName'] = resource_group_name __args__['virtualNetworkGatewayName'] = virtual_network_gateway_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-native:network/v20200401:getVirtualNetworkGatewayLearnedRoutes', __args__, opts=opts, typ=GetVirtualNetworkGatewayLearnedRoutesResult).value return AwaitableGetVirtualNetworkGatewayLearnedRoutesResult( value=__ret__.value)
c52d224e402e87d8d7bbd7f8372abf8d931c4167
02338bb8111fc1aa88e830ac09a11664720eb2d4
/tmp/azure_rm_jobversion.py
544592c6f9d2166c6ff192b0e8a5c5bd17aecd3a
[]
no_license
Fred-sun/fred_yaml
a49977b0e8505c7447df23dd80c7fef1be70e6bc
295ca4cd2b59b8d2758f06eb7fd79920327ea524
refs/heads/master
2023-04-28T05:51:56.599488
2023-04-25T13:52:10
2023-04-25T13:52:10
131,376,340
0
1
null
2020-07-06T14:22:46
2018-04-28T05:34:49
TSQL
UTF-8
Python
false
false
7,350
py
#!/usr/bin/python # # Copyright (c) 2020 GuopengLin, (@t-glin) # # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: azure_rm_jobversion version_added: '2.9' short_description: Manage Azure JobVersion instance. description: - 'Create, update and delete instance of Azure JobVersion.' options: resource_group_name: description: - >- The name of the resource group that contains the resource. You can obtain this value from the Azure Resource Manager API or the portal. required: true type: str server_name: description: - The name of the server. required: true type: str job_agent_name: description: - The name of the job agent. required: true type: str job_name: description: - The name of the job. required: true type: str job_version: description: - The version of the job to get. required: true type: integer state: description: - Assert the state of the JobVersion. - >- Use C(present) to create or update an JobVersion and C(absent) to delete it. default: present choices: - absent - present extends_documentation_fragment: - azure author: - GuopengLin (@t-glin) ''' EXAMPLES = ''' ''' RETURN = ''' id: description: - Resource ID. returned: always type: str sample: null name: description: - Resource name. returned: always type: str sample: null type: description: - Resource type. returned: always type: str sample: null ''' import time import json import re from ansible.module_utils.azure_rm_common_ext import AzureRMModuleBaseExt from copy import deepcopy try: from msrestazure.azure_exceptions import CloudError from azure.mgmt.sql import SqlManagementClient from msrestazure.azure_operation import AzureOperationPoller from msrest.polling import LROPoller except ImportError: # This is handled in azure_rm_common pass class Actions: NoAction, Create, Update, Delete = range(4) class AzureRMJobVersion(AzureRMModuleBaseExt): def __init__(self): self.module_arg_spec = dict( resource_group_name=dict( type='str', required=True ), server_name=dict( type='str', required=True ), job_agent_name=dict( type='str', required=True ), job_name=dict( type='str', required=True ), job_version=dict( type='integer', required=True ), state=dict( type='str', default='present', choices=['present', 'absent'] ) ) self.resource_group_name = None self.server_name = None self.job_agent_name = None self.job_name = None self.job_version = None self.body = {} self.results = dict(changed=False) self.mgmt_client = None self.state = None self.to_do = Actions.NoAction super(AzureRMJobVersion, self).__init__(derived_arg_spec=self.module_arg_spec, supports_check_mode=True, supports_tags=True) def exec_module(self, **kwargs): for key in list(self.module_arg_spec.keys()): if hasattr(self, key): setattr(self, key, kwargs[key]) elif kwargs[key] is not None: self.body[key] = kwargs[key] self.inflate_parameters(self.module_arg_spec, self.body, 0) old_response = None response = None self.mgmt_client = self.get_mgmt_svc_client(SqlManagementClient, base_url=self._cloud_environment.endpoints.resource_manager, api_version='2017-03-01-preview') old_response = self.get_resource() if not old_response: if self.state == 'present': self.to_do = Actions.Create else: if self.state == 'absent': self.to_do = Actions.Delete else: modifiers = {} self.create_compare_modifiers(self.module_arg_spec, '', modifiers) self.results['modifiers'] = modifiers self.results['compare'] = [] if not self.default_compare(modifiers, self.body, old_response, '', self.results): self.to_do = Actions.Update if (self.to_do == Actions.Create) or (self.to_do == Actions.Update): self.results['changed'] = True if self.check_mode: return self.results response = self.create_update_resource() elif self.to_do == Actions.Delete: self.results['changed'] = True if self.check_mode: return self.results self.delete_resource() else: self.results['changed'] = False response = old_response return self.results def create_update_resource(self): try: if self.to_do == Actions.Create: response = self.mgmt_client.job_versions.create() else: response = self.mgmt_client.job_versions.update() if isinstance(response, AzureOperationPoller) or isinstance(response, LROPoller): response = self.get_poller_result(response) except CloudError as exc: self.log('Error attempting to create the JobVersion instance.') self.fail('Error creating the JobVersion instance: {0}'.format(str(exc))) return response.as_dict() def delete_resource(self): try: response = self.mgmt_client.job_versions.delete() except CloudError as e: self.log('Error attempting to delete the JobVersion instance.') self.fail('Error deleting the JobVersion instance: {0}'.format(str(e))) return True def get_resource(self): try: response = self.mgmt_client.job_versions.get(resource_group_name=self.resource_group_name, server_name=self.server_name, job_agent_name=self.job_agent_name, job_name=self.job_name, job_version=self.job_version) except CloudError as e: return False return response.as_dict() def main(): AzureRMJobVersion() if __name__ == '__main__': main()
d4160e38a5fe5b321cdff170039b55d5691b1787
6b2a8dd202fdce77c971c412717e305e1caaac51
/solutions_2692487_0/Python/Sibi/osmos.py
358f3037cb7d86476c1f1042cd07a622eda406f5
[]
no_license
alexandraback/datacollection
0bc67a9ace00abbc843f4912562f3a064992e0e9
076a7bc7693f3abf07bfdbdac838cb4ef65ccfcf
refs/heads/master
2021-01-24T18:27:24.417992
2017-05-23T09:23:38
2017-05-23T09:23:38
84,313,442
2
4
null
null
null
null
UTF-8
Python
false
false
1,084
py
from math import log def solve(mySize,sizes): if len(sizes) == 0: return 0 while sizes[0] < mySize: mySize = mySize + sizes.pop(0) if len(sizes) == 0: return 0 if sizes[0] < 2*mySize-1: return 1+solve(2*mySize-1,sizes) for insertions in range(1,100): if mySize*(2**insertions)-(2**insertions)+1 > sizes[0]: break #insertions = log((sizes[0]-1.0)/(mySize-1.0))/log(2.0) #insertions = int(insertions) if insertions >= len(sizes): return len(sizes) else: return min(len(sizes),insertions+solve(mySize*2**insertions-2**insertions+1,sizes)) iFile = open("A-small-attempt2.in","r") oFile = open("output.txt","w") cases = int(iFile.readline().strip()) for i in range(cases): line1 = [int(a) for a in iFile.readline().strip().split()] mySize = line1[0] sizes = [int(a) for a in iFile.readline().strip().split()] sizes.sort() if mySize == 1: minSolution = len(sizes) else: minSolution = solve(mySize,sizes) output = str(minSolution) oFile.write("Case #"+str(i+1)+": "+output+"\n")
16b9d3fbc328cf5c773764022eb697014b9ad4bb
ccc1bb07a8fbf0f7ef7dc6f8fa5ce4d215dba847
/Scripts/sims4communitylib/utils/sims/common_age_utils.py
ea831e676a7ea2d6b81436c44be87b3c2bc0888c
[ "CC-BY-4.0" ]
permissive
JaidenBettencourt/Sims4CommunityLibrary
9ab9b6b2173c4cbf0813a774261ff617d556f109
6818fee38499b66748d3118037b6dbfe17fb571a
refs/heads/master
2022-12-28T04:09:34.034010
2020-09-29T20:34:01
2020-09-29T20:34:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
18,786
py
""" The Sims 4 Community Library is licensed under the Creative Commons Attribution 4.0 International public license (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/ https://creativecommons.org/licenses/by/4.0/legalcode Copyright (c) COLONOLNUTTY """ from pprint import pformat from typing import Union from sims.sim_info import SimInfo from sims.sim_info_types import Age from sims4communitylib.exceptions.common_exceptions_handler import CommonExceptionHandler from sims4communitylib.modinfo import ModInfo class CommonAgeUtils: """Utilities for manipulating Ages of Sims. """ @staticmethod @CommonExceptionHandler.catch_exceptions(ModInfo.get_identity(), fallback_return=None) def get_age(sim_info: SimInfo) -> Union[Age, None]: """get_age(sim_info) Retrieve the Age of a Sim. :param sim_info: The Sim to get the Age of. :type sim_info: SimInfo :return: The Age of the Sim or None if a problem occurs. :rtype: Union[Age, None] """ if sim_info is None: return None if hasattr(sim_info, '_base') and hasattr(sim_info._base, 'age'): return sim_info._base.age if hasattr(sim_info, 'age'): # noinspection PyPropertyAccess return sim_info.age if hasattr(sim_info, 'sim_info') and hasattr(sim_info.sim_info, '_base') and hasattr(sim_info.sim_info._base, 'age'): return sim_info.sim_info._base.age if hasattr(sim_info, 'sim_info') and hasattr(sim_info.sim_info, 'age'): return sim_info.sim_info.age return None @staticmethod def set_age(sim_info: SimInfo, age: Union[Age, int]) -> bool: """set_age(sim_info, age) Set the Age of a Sim. :param sim_info: The Sim to set the Age of. :type sim_info: SimInfo :param age: The Age to set the Sim to. :type age: Union[Age, int] :return: True, if the Age was set successfully. False, if not. :rtype: bool """ try: sim_info.apply_age(age) return True except Exception as ex: CommonExceptionHandler.log_exception(ModInfo.get_identity(), 'Failed to set age of sim {} to {}.'.format(pformat(sim_info), age), exception=ex) return False @staticmethod def are_same_age(sim_info: SimInfo, other_sim_info: SimInfo) -> bool: """are_same_age(sim_info, other_sim_info) Determine if two Sims are the same Age. :param sim_info: The Sim to check. :type sim_info: SimInfo :param other_sim_info: The other Sim to compare to. :type other_sim_info: SimInfo :return: True, if both Sims are the same Age. :rtype: bool """ return CommonAgeUtils.get_age(sim_info) == CommonAgeUtils.get_age(other_sim_info) @staticmethod def is_younger_than(sim_info: SimInfo, age: Union[Age, int], or_equal: bool=False) -> bool: """is_younger_than(sim_info, age, or_equal=False) Determine if a Sim is younger than the specified Age. :param sim_info: The Sim to check. :type sim_info: SimInfo :param age: The age to check with. :type age: Union[Age, int] :param or_equal: If True, the age check will be younger than or equal to. If False, the age check will be younger than. :type or_equal: bool :return: True, if the Sim is younger than the specified Age or equal to the specified age if `or_equal` is True. False, if not. :rtype: bool """ sim_age = CommonAgeUtils.get_age(sim_info) if or_equal: return sim_age <= age return sim_age < age @staticmethod def is_older_than(sim_info: SimInfo, age: Union[Age, int], or_equal: bool=False) -> bool: """is_older_than(sim_info, age, or_equal=False) Determine if a Sim is older than the specified Age. :param sim_info: The Sim to check. :type sim_info: SimInfo :param age: The age to check with. :type age: Union[Age, int] :param or_equal: If True, the age check will be older than or equal to. If False, the Age check will be older than. :type or_equal: bool :return: True, if the Sim is older than the specified Age or equal to the specified Age if `or_equal` is True. False, if not. :rtype: bool """ sim_age = CommonAgeUtils.get_age(sim_info) if or_equal: return sim_age >= age return sim_age > age @staticmethod def is_baby_age(age: Union[Age, int]) -> bool: """is_baby_age(age) Determine if an Age is a Baby. :param age: The age to check. :type age: Union[Age, int] :return: True, if it is. False, if it is not. :rtype: bool """ return age == Age.BABY @staticmethod def is_toddler_age(age: Union[Age, int]) -> bool: """is_toddler_age(age) Determine if an Age is a Toddler. :param age: The age to check. :type age: Union[Age, int] :return: True, if it is. False, if it is not. :rtype: bool """ return age == Age.TODDLER @staticmethod def is_child_age(age: Union[Age, int]) -> bool: """is_child_age(age) Determine if an Age is a Child. :param age: The age to check. :type age: Union[Age, int] :return: True, if it is. False, if it is not. :rtype: bool """ return age == Age.CHILD @staticmethod def is_teen_age(age: Union[Age, int]) -> bool: """is_teen_age(age) Determine if an Age is a Teen. :param age: The age to check. :type age: Union[Age, int] :return: True, if it is. False, if it is not. :rtype: bool """ return age == Age.TEEN @staticmethod def is_adult_age(age: Union[Age, int]) -> bool: """is_adult_age(age) Determine if an Age is a Young Adult or an Adult. :param age: The age to check. :type age: Union[Age, int] :return: True, if it is. False, if it is not. :rtype: bool """ return CommonAgeUtils.is_young_adult_age(age) or CommonAgeUtils.is_mature_adult_age(age) @staticmethod def is_young_adult_age(age: Union[Age, int]) -> bool: """is_young_adult_age(age) Determine if an Age is a Young Adult. :param age: The age to check. :type age: Union[Age, int] :return: True, if it is. False, if it is not. :rtype: bool """ return age == Age.YOUNGADULT @staticmethod def is_mature_adult_age(age: Union[Age, int]) -> bool: """is_mature_adult_age(age) Determine if an Age is an Adult. :param age: The age to check. :type age: Union[Age, int] :return: True, if it is. False, if it is not. :rtype: bool """ return age == Age.ADULT @staticmethod def is_elder_age(age: Union[Age, int]) -> bool: """is_elder_age(age) Determine if an Age is an Elder. :param age: The age to check. :type age: Union[Age, int] :return: True, if it is. False, if it is not. :rtype: bool """ return age == Age.ELDER @staticmethod def is_baby_or_toddler_age(age: Age) -> bool: """is_baby_or_toddler_age(age) Determine if an age is Baby or Toddler. :param age: The age to check. :type age: Age :return: True, if it is. False, if it is not. :rtype: bool """ return CommonAgeUtils.is_baby_age(age) or CommonAgeUtils.is_toddler_age(age) @staticmethod def is_baby_toddler_or_child_age(age: Age) -> bool: """is_baby_toddler_or_child_age(age) Determine if an age is Baby, Toddler, or Child. :param age: The age to check. :type age: Age :return: True, if it is. False, if it is not. :rtype: bool """ return CommonAgeUtils.is_baby_age(age) or CommonAgeUtils.is_toddler_age(age) or CommonAgeUtils.is_child_age(age) @staticmethod def is_toddler_or_child_age(age: Age) -> bool: """is_toddler_or_child_age(age) Determine if an age is Toddler or Child. :param age: The age to check. :type age: Age :return: True, if it is. False, if it is not. :rtype: bool """ return CommonAgeUtils.is_toddler_age(age) or CommonAgeUtils.is_child_age(age) @staticmethod def is_child_or_teen_age(age: Age) -> bool: """is_child_or_teen_age(age) Determine if an age is Child or Teen. :param age: The age to check. :type age: Age :return: True, if it is. False, if it is not. :rtype: bool """ return CommonAgeUtils.is_child_age(age) or CommonAgeUtils.is_teen_age(age) @staticmethod def is_teen_or_young_adult_age(age: Age) -> bool: """is_teen_or_young_adult_age(age) Determine if an age is Teen or Young Adult. :param age: The age to check. :type age: Age :return: True, if it is. False, if it is not. :rtype: bool """ return CommonAgeUtils.is_teen_age(age) or CommonAgeUtils.is_young_adult_age(age) @staticmethod def is_teen_or_adult_age(age: Age) -> bool: """is_teen_or_adult_age(age) Determine if an age is Teen, Young Adult, or Adult. :param age: The age to check. :type age: Age :return: True, if it is. False, if it is not. :rtype: bool """ return CommonAgeUtils.is_teen_age(age) or CommonAgeUtils.is_adult_age(age) @staticmethod def is_teen_adult_or_elder_age(age: Age) -> bool: """is_teen_adult_or_elder_age(age) Determine if an age is Teen, Young Adult, Adult, or Elder. :param age: The age to check. :type age: Age :return: True, if it is. False, if it is not. :rtype: bool """ return CommonAgeUtils.is_teen_age(age) or CommonAgeUtils.is_adult_age(age) or CommonAgeUtils.is_elder_age(age) @staticmethod def is_adult_or_elder_age(age: Age) -> bool: """is_adult_or_elder_age(age) Determine if an age is Young Adult, Adult, or Elder. :param age: The age to check. :type age: Age :return: True, if it is. False, if it is not. :rtype: bool """ return CommonAgeUtils.is_adult_age(age) or CommonAgeUtils.is_elder_age(age) @staticmethod def is_mature_adult_or_elder_age(age: Age) -> bool: """is_mature_adult_or_elder_age(age) Determine if an age is Adult or Elder. :param age: The age to check. :type age: Age :return: True, if it is. False, if it is not. :rtype: bool """ return CommonAgeUtils.is_mature_adult_age(age) or CommonAgeUtils.is_elder_age(age) @staticmethod def is_baby(sim_info: SimInfo) -> bool: """is_baby(sim_info) Determine if a sim is a Baby. :param sim_info: The Sim to check. :type sim_info: SimInfo :return: True, if the Sim is. False, if the Sim is not. :rtype: bool """ return CommonAgeUtils.is_baby_age(CommonAgeUtils.get_age(sim_info)) @staticmethod def is_toddler(sim_info: SimInfo) -> bool: """is_toddler(sim_info) Determine if a sim is a Toddler. :param sim_info: The Sim to check. :type sim_info: SimInfo :return: True, if the Sim is. False, if the Sim is not. :rtype: bool """ return CommonAgeUtils.is_toddler_age(CommonAgeUtils.get_age(sim_info)) @staticmethod def is_child(sim_info: SimInfo) -> bool: """is_child(sim_info) Determine if a sim is a Child. :param sim_info: The Sim to check. :type sim_info: SimInfo :return: True, if the Sim is. False, if the Sim is not. :rtype: bool """ return CommonAgeUtils.is_child_age(CommonAgeUtils.get_age(sim_info)) @staticmethod def is_teen(sim_info: SimInfo) -> bool: """is_teen(sim_info) Determine if a sim is a Teen. :param sim_info: The Sim to check. :type sim_info: SimInfo :return: True, if the Sim is. False, if the Sim is not. :rtype: bool """ return CommonAgeUtils.is_teen_age(CommonAgeUtils.get_age(sim_info)) @staticmethod def is_young_adult(sim_info: SimInfo) -> bool: """is_young_adult(sim_info) Determine if a sim is an Young Adult. .. note:: This function does not determine whether they are an Adult or not. Use "is_adult" to check for both. :param sim_info: The Sim to check. :type sim_info: SimInfo :return: True, if the Sim is. False, if the Sim is not. :rtype: bool """ return CommonAgeUtils.is_young_adult_age(CommonAgeUtils.get_age(sim_info)) @staticmethod def is_mature_adult(sim_info: SimInfo) -> bool: """is_mature_adult(sim_info) Determine if a sim is an Adult. .. note:: This function does not determine whether they are a Young Adult or not. Use 'is_adult' to check for both. :param sim_info: The Sim to check. :type sim_info: SimInfo :return: True, if the Sim is. False, if the Sim is not. :rtype: bool """ return CommonAgeUtils.is_mature_adult_age(CommonAgeUtils.get_age(sim_info)) @staticmethod def is_elder(sim_info: SimInfo) -> bool: """is_elder(sim_info) Determine if a sim is an Elder. :param sim_info: The Sim to check. :type sim_info: SimInfo :return: True, if the Sim is. False, if the Sim is not. :rtype: bool """ return CommonAgeUtils.is_elder_age(CommonAgeUtils.get_age(sim_info)) @staticmethod def is_adult(sim_info: SimInfo) -> bool: """is_adult(sim_info) Determine if a sim is either a Young Adult or an Adult. :param sim_info: The Sim to check. :type sim_info: SimInfo :return: True, if the Sim is. False, if the Sim is not. :rtype: bool """ return CommonAgeUtils.is_adult_age(CommonAgeUtils.get_age(sim_info)) @staticmethod def is_baby_or_toddler(sim_info: SimInfo) -> bool: """is_baby_or_toddler(sim_info) Determine if a sim is a Baby or a Toddler. :param sim_info: The Sim to check. :type sim_info: SimInfo :return: True, if the Sim is. False, if the Sim is not. :rtype: bool """ return CommonAgeUtils.is_baby_or_toddler_age(CommonAgeUtils.get_age(sim_info)) @staticmethod def is_toddler_or_child(sim_info: SimInfo) -> bool: """is_toddler_or_child(sim_info) Determine if a sim is a Toddler or a Child. :param sim_info: The Sim to check. :type sim_info: SimInfo :return: True, if the Sim is. False, if the Sim is not. :rtype: bool """ return CommonAgeUtils.is_toddler_or_child_age(CommonAgeUtils.get_age(sim_info)) @staticmethod def is_baby_toddler_or_child(sim_info: SimInfo) -> bool: """is_baby_toddler_or_child(sim_info) Determine if a sim is a Baby, a Toddler, or a Child. :param sim_info: The Sim to check. :type sim_info: SimInfo :return: True, if the Sim is. False, if the Sim is not. :rtype: bool """ return CommonAgeUtils.is_baby_toddler_or_child_age(CommonAgeUtils.get_age(sim_info)) @staticmethod def is_child_or_teen(sim_info: SimInfo) -> bool: """is_child_or_teen(sim_info) Determine if a sim is a Child or a Teen. :param sim_info: The Sim to check. :type sim_info: SimInfo :return: True, if the Sim is. False, if the Sim is not. :rtype: bool """ return CommonAgeUtils.is_child_or_teen_age(CommonAgeUtils.get_age(sim_info)) @staticmethod def is_teen_or_young_adult(sim_info: SimInfo) -> bool: """is_teen_or_young_adult(sim_info) Determine if a sim is a Teen or a Young Adult. :param sim_info: The Sim to check. :type sim_info: SimInfo :return: True, if the Sim is. False, if the Sim is not. :rtype: bool """ return CommonAgeUtils.is_teen_or_young_adult_age(CommonAgeUtils.get_age(sim_info)) @staticmethod def is_teen_or_adult(sim_info: SimInfo) -> bool: """is_teen_or_adult(sim_info) Determine if a sim is a Teen, a Young Adult, or an Adult. :param sim_info: The Sim to check. :type sim_info: SimInfo :return: True, if the Sim is. False, if the Sim is not. :rtype: bool """ return CommonAgeUtils.is_teen_or_adult_age(CommonAgeUtils.get_age(sim_info)) @staticmethod def is_teen_adult_or_elder(sim_info: SimInfo) -> bool: """is_teen_adult_or_elder(sim_info) Determine if a sim is a Teen, a Young Adult, an Adult, or an Elder. :param sim_info: The Sim to check. :type sim_info: SimInfo :return: True, if the Sim is. False, if the Sim is not. :rtype: bool """ return CommonAgeUtils.is_teen_adult_or_elder_age(CommonAgeUtils.get_age(sim_info)) @staticmethod def is_adult_or_elder(sim_info: SimInfo) -> bool: """is_adult_or_elder(sim_info) Determine if a sim is a Young Adult, an Adult, or an Elder. :param sim_info: The Sim to check. :type sim_info: SimInfo :return: True, if the Sim is. False, if the Sim is not. :rtype: bool """ return CommonAgeUtils.is_adult_or_elder_age(CommonAgeUtils.get_age(sim_info)) @staticmethod def is_mature_adult_or_elder(sim_info: SimInfo) -> bool: """is_mature_adult_or_elder(sim_info) Determine if a sim is an Adult or an Elder. :param sim_info: The Sim to check. :type sim_info: SimInfo :return: True, if the Sim is. False, if the Sim is not. :rtype: bool """ return CommonAgeUtils.is_mature_adult_or_elder_age(CommonAgeUtils.get_age(sim_info)) # Obsolete Functionality @staticmethod def is_baby_child_or_toddler(sim_info: SimInfo) -> bool: """is_baby_child_or_toddler(sim_info) .. warning:: Obsolete: Don't use this function. Use the :func:'~is_baby_toddler_or_child' function instead. """ return CommonAgeUtils.is_baby(sim_info) or CommonAgeUtils.is_toddler(sim_info) or CommonAgeUtils.is_child(sim_info)
4711c9358a365a673a560438a3d01eaa7bc1cdcd
abd9537f8b90a990e195ded5f9fafdcc108d2a48
/swea/d4/1861/1861_june.py
8790efff9e44731cc0c47a060c8eb6dc902bcd0a
[]
no_license
ohdnf/algorithms
127171744631406c1d08cc2583aa569a094fa2cd
6f286753dab827facc436af4f2130f11dad2d44f
refs/heads/master
2023-08-09T11:19:56.445351
2021-08-31T13:11:46
2021-08-31T13:11:46
236,180,615
0
0
null
null
null
null
UTF-8
Python
false
false
856
py
import sys sys.stdin = open('input.txt') sys.stdin = open('n1000.txt') dx = [0, 1, 0, -1] dy = [1, 0, -1, 0] t = int(input()) for test_case in range(1, t+1): n = int(input()) room = [list(map(int, input().split())) for _ in range(n)] v = [0] * (n**2 + 1) for i in range(n): for j in range(n): for k in range(4): nx = i + dx[k] ny = j + dy[k] if 0 <= nx < n and 0 <= ny < n and room[i][j] + 1 == room[nx][ny]: v[room[i][j]] += 1 break start = 0 move = max_move = 1 for i in range(n*n, -1, -1): if v[i]: move += 1 else: if move >= max_move: max_move = move start = i+1 move = 1 print('#{} {} {}'.format(test_case, start, max_move))
e410945fdc90dfec260540d9e96b5aa39d3d487e
20f951bd927e4e5cde8ef7781813fcf0d51cc3ea
/fossir/modules/bootstrap/blueprint.py
cce0f666235dc8c6007c3badae3b258b1efdbb60
[]
no_license
HodardCodeclub/SoftwareDevelopment
60a0fbab045cb1802925d4dd5012d5b030c272e0
6300f2fae830c0c2c73fe0afd9c684383bce63e5
refs/heads/master
2021-01-20T00:30:02.800383
2018-04-27T09:28:25
2018-04-27T09:28:25
101,277,325
0
2
null
null
null
null
UTF-8
Python
false
false
349
py
from __future__ import unicode_literals from fossir.modules.bootstrap.controllers import RHBootstrap from fossir.web.flask.wrappers import fossirBlueprint _bp = fossirBlueprint('bootstrap', __name__, template_folder='templates', virtual_template_folder='bootstrap') _bp.add_url_rule('/bootstrap', 'index', RHBootstrap, methods=('GET', 'POST'))
856bafa4536d68bf54de8ad934805089bf2d0897
0bce7412d58675d6cc410fa7a81c294ede72154e
/Python3/0303. Range Sum Query - Immutable.py
4d1cb2c5dbaf4b75edcda2762e7d6aa9aa227e01
[]
no_license
yang4978/LeetCode
9ddf010b0f1dda32cddc7e94c3f987509dea3214
6387d05b619d403414bad273fc3a7a2c58668db7
refs/heads/master
2022-01-15T04:21:54.739812
2021-12-28T12:28:28
2021-12-28T12:28:28
182,653,666
0
0
null
null
null
null
UTF-8
Python
false
false
361
py
class NumArray: def __init__(self, nums: List[int]): self.temp = [0] for i in nums: self.temp.append(self.temp[-1]+i) def sumRange(self, i: int, j: int) -> int: return self.temp[j+1]-self.temp[i] # Your NumArray object will be instantiated and called as such: # obj = NumArray(nums) # param_1 = obj.sumRange(i,j)
d956771952eed80b045a0369c29b226eac1ad680
a9f3ce38fa6bac4317da099788e5e58dadade2a3
/karlooper/web/application.py
fd6a11591d410cabc640f67767af37e63bc7874a
[]
no_license
MoiraJune/karlooper
2763e40b52fc37f81d23ba2766b4c392242402e6
89ef82cb96070360ebee2bcb398c972b1aef4e58
refs/heads/master
2020-06-25T10:19:24.405902
2017-08-04T11:09:39
2017-08-04T11:09:39
96,974,844
1
0
null
2017-08-04T09:05:17
2017-07-12T06:49:20
Python
UTF-8
Python
false
false
24,623
py
# -*-coding:utf-8-*- """ application ~~~~~~~~~~~ Use this model to initialize web application. Usage ===== >>> from karlooper.web import IOModel >>> from karlooper.web.application import Application >>> application = Application(handlers={}, settings={}, port=8080, log_conf="./config.log") >>> application.run(io_model=IOModel.POLL) server run on port: 8080 run with poll >>> application = Application(handlers={}, settings={}, log_conf="./config.log") >>> application.listen(8000) >>> application.run(io_model=IOModel.POLL) server run on port: 8000 run with poll """ import socket import select from karlooper.logger.logger import init_logger from karlooper.web import IOModel from karlooper.web.__async_core_server import EchoServer, asyncore from karlooper.web.http_connection import HttpConnection from karlooper.web.http_io_buffer import HttpIOBuffer from karlooper.web.http_io_routine_pool import HttpIORoutinePool from karlooper.http_parser.http_parser import HttpParser from karlooper.config import get_cli_data, set_cli_data from karlooper.config.config import SOCKET_RECEIVE_SIZE, DEFAULT_PORT, CLIENT_CONNECT_TO_SERVER_NUM __author__ = '[email protected]' class Application(object): def __init__(self, handlers, settings=None, **kwargs): """ :param handlers: handlers mapping, dict type :param settings: settings mapping, dict type :param kwargs: options """ self.settings = settings self.handlers = handlers set_cli_data(self.settings) set_cli_data(kwargs) cli_data = get_cli_data() self.port = int(cli_data.get("port", DEFAULT_PORT)) log_conf = self.settings.get("log_conf", None) if self.settings else kwargs.get("log_conf", None) self.logger = init_logger(config_path=log_conf) self.EOL1 = b'\n\n' self.EOL2 = b'\n\r\n' self.response = "" def listen(self, port): """listen port :param port: port that application listened :return: None """ self.port = int(port) def __run_epoll(self): """ run the application use epoll """ server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) server_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) server_socket.bind(('0.0.0.0', self.port)) server_socket.listen(CLIENT_CONNECT_TO_SERVER_NUM) # the number of client that connect to server server_socket.setblocking(0) # set 0 not block other block server_socket.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1) epoll = select.epoll() epoll.register(server_socket.fileno(), select.EPOLLIN) try: http_connection = HttpConnection() http_io_buffer = HttpIOBuffer() http_io_routine_pool = HttpIORoutinePool() events_buf = [] while True: events = epoll.poll(1) + events_buf events_buf = [] for fileno, event in events: try: if fileno == server_socket.fileno(): # if request come connection, address = server_socket.accept() # waiting income connection connection.setblocking(0) # none block epoll.register(connection.fileno(), select.EPOLLIN) # register socket read event to epoll http_connection.add_connection(connection.fileno(), connection) http_io_buffer.add_request(connection.fileno(), b'') http_io_buffer.add_response(connection.fileno(), self.response) elif event & select.EPOLLIN: # when data in os's read buffer area http_parser = http_io_routine_pool.get(file_no=fileno) if http_parser: data = http_parser.parse() if isinstance(data, str) or isinstance(data, unicode): http_io_buffer.add_response( fileno, http_io_buffer.get_response(fileno) + data ) epoll.modify(fileno, select.EPOLLOUT) # change file number to epoll out mode http_io_routine_pool.remove(fileno) else: # if coroutine http_io_routine_pool.add(fileno, http_parser) events_buf.append((fileno, event)) else: http_request_buffer = http_connection.get_connection(fileno).recv(SOCKET_RECEIVE_SIZE) http_io_buffer.add_request( fileno, http_io_buffer.get_request(fileno) + http_request_buffer ) if self.EOL1 in http_io_buffer.get_request(fileno) \ or self.EOL2 in http_io_buffer.get_request(fileno): request_data = http_io_buffer.get_request(fileno)[:-2] \ if http_io_buffer.get_request(fileno).endswith("\r\n") \ else http_io_buffer.get_request(fileno) http_parser = HttpParser( request_data, self.handlers, settings=self.settings ) data = http_parser.parse() if isinstance(data, str) or isinstance(data, unicode): http_io_buffer.add_response( fileno, http_io_buffer.get_response(fileno) + data ) epoll.modify(fileno, select.EPOLLOUT) # change file number to epoll out mode http_io_routine_pool.remove(fileno) else: # if coroutine http_io_routine_pool.add(fileno, http_parser) events_buf.append((fileno, event)) else: self.logger.error("connection error in __run_epoll: %s", str(e)) http_connection.remove_connection(fileno) http_io_buffer.remove_request(fileno) http_io_buffer.remove_response(fileno) http_io_routine_pool.remove(fileno) epoll.unregister(fileno) elif event & select.EPOLLOUT: # if out mode bytes_written = http_connection.get_connection(fileno).send( http_io_buffer.get_response(fileno) ) http_io_buffer.add_response(fileno, http_io_buffer.get_response(fileno)[bytes_written:]) if len(http_io_buffer.get_response(fileno)) == 0: # if file sent http_connection.get_connection(fileno).shutdown(socket.SHUT_RDWR) epoll.modify(fileno, select.EPOLLHUP) elif event & select.EPOLLHUP: # if message sent and file number in epoll is hup epoll.unregister(fileno) # remove file number from epoll http_connection.get_connection(fileno).close() # close connection http_connection.remove_connection(fileno) # delete connection from connections dict except Exception as e: self.logger.info("error in __run_epoll: %s", str(e)) http_connection.remove_connection(fileno) http_io_buffer.remove_request(fileno) http_io_buffer.remove_response(fileno) http_io_routine_pool.remove(fileno) self.logger.info("fileno is: %s", str(fileno)) epoll.close() epoll = select.epoll() epoll.register(server_socket.fileno(), select.EPOLLIN) finally: epoll.unregister(server_socket.fileno()) epoll.close() server_socket.close() def __run_kqueue(self): """ run server use kqueue """ server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) server_socket.bind(('0.0.0.0', self.port)) server_socket.listen(CLIENT_CONNECT_TO_SERVER_NUM) kq = select.kqueue() http_connection = HttpConnection() http_io_buffer = HttpIOBuffer() http_io_routine_pool = HttpIORoutinePool() index = 1 events = [ select.kevent(server_socket.fileno(), select.KQ_FILTER_READ, select.KQ_EV_ADD), select.kevent(server_socket.fileno(), select.KQ_FILTER_WRITE, select.KQ_EV_ADD) ] events_buf = [] while True: try: event_list = kq.control(events, 128, 0.0001) + events_buf events_buf = [] except select.error as e: self.logger.error("error in __run_kqueue: %s", str(e)) break if event_list: for each in event_list: if each.ident == server_socket.fileno(): index += 1 conn, addr = server_socket.accept() http_connection.add_connection(index, conn) events.append( select.kevent( http_connection.get_connection(index).fileno(), select.KQ_FILTER_READ, select.KQ_EV_ADD, udata=index ) ) else: try: if each.udata >= 1 and each.filter == select.KQ_FILTER_READ: http_parser = http_io_routine_pool.get(file_no=each.udata) if http_parser: data = http_parser.parse() if isinstance(data, str) or isinstance(data, unicode): http_io_routine_pool.remove(each.udata) http_io_buffer.add_response(each.udata, data) events.append( select.kevent( http_connection.get_connection(each.udata).fileno(), select.KQ_FILTER_WRITE, select.KQ_EV_ADD, udata=each.udata ) ) events.remove(select.kevent( http_connection.get_connection(each.udata).fileno(), select.KQ_FILTER_READ, select.KQ_EV_ADD, udata=each.udata) ) else: # if coroutine http_io_routine_pool.add(each.udata, http_parser) events_buf.append(each) else: conn = http_connection.get_connection(each.udata) request_data = conn.recv(SOCKET_RECEIVE_SIZE) request_data = request_data[:-2] if request_data.endswith("\r\n") else request_data http_parser = HttpParser( request_data, handlers=self.handlers, settings=self.settings ) data = http_parser.parse() if isinstance(data, str) or isinstance(data, unicode): http_io_buffer.add_response(each.udata, data) events.append( select.kevent( http_connection.get_connection(each.udata).fileno(), select.KQ_FILTER_WRITE, select.KQ_EV_ADD, udata=each.udata ) ) events.remove(select.kevent( http_connection.get_connection(each.udata).fileno(), select.KQ_FILTER_READ, select.KQ_EV_ADD, udata=each.udata) ) else: # if coroutine http_io_routine_pool.add(each.udata, http_parser) events_buf.append(each) elif each.udata >= 1 and each.filter == select.KQ_FILTER_WRITE: conn = http_connection.get_connection(each.udata) data = http_io_buffer.get_response(each.udata) conn.send(data) events.remove(select.kevent( http_connection.get_connection(each.udata).fileno(), select.KQ_FILTER_WRITE, select.KQ_EV_ADD, udata=each.udata) ) conn.close() http_connection.remove_connection(each.udata) except Exception as e: self.logger.info("error in __run_kqueue event list: %s", str(e)) self.logger.info("each filter: %s", each.filter) self.__remove_event(events, each) http_connection.remove_connection(each.udata) http_io_buffer.remove_request(each.udata) http_io_buffer.remove_response(each.udata) http_io_routine_pool.remove(each.udata) kq.close() kq = select.kqueue() server_socket.close() def __run_poll(self): """ run server use poll, I will modify __run_poll and __run_epoll in the future """ server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) server_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) server_socket.bind(('0.0.0.0', self.port)) server_socket.listen(CLIENT_CONNECT_TO_SERVER_NUM) # the number of client that connect to server server_socket.setblocking(0) # set 0 not block other block server_socket.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1) poll = select.poll() poll.register(server_socket.fileno(), select.POLLIN) try: http_connection = HttpConnection() http_io_buffer = HttpIOBuffer() http_io_routine_pool = HttpIORoutinePool() events_buf = [] while True: events = poll.poll(1) + events_buf events_buf = [] for fileno, event in events: try: if fileno == server_socket.fileno(): # if request come connection, address = server_socket.accept() # waiting income connection connection.setblocking(0) # none block poll.register(connection.fileno(), select.POLLIN) # register socket read event to poll http_connection.add_connection(connection.fileno(), connection) http_io_buffer.add_request(connection.fileno(), b'') http_io_buffer.add_response(connection.fileno(), self.response) elif event & select.POLLIN: # when data in os's read buffer area http_parser = http_io_routine_pool.get(file_no=fileno) if http_parser: data = http_parser.parse() if isinstance(data, str) or isinstance(data, unicode): http_io_buffer.add_response( fileno, http_io_buffer.get_response(fileno) + data ) poll.modify(fileno, select.POLLOUT) # change file number to epoll out mode http_io_routine_pool.remove(fileno) else: # if coroutine http_io_routine_pool.add(fileno, http_parser) events_buf.append((fileno, event)) else: http_request_buffer = http_connection.get_connection(fileno).recv(SOCKET_RECEIVE_SIZE) http_io_buffer.add_request( fileno, http_io_buffer.get_request(fileno) + http_request_buffer ) if self.EOL1 in http_io_buffer.get_request(fileno) \ or self.EOL2 in http_io_buffer.get_request(fileno): request_data = http_io_buffer.get_request(fileno)[:-2] \ if http_io_buffer.get_request(fileno).endswith("\r\n") \ else http_io_buffer.get_request(fileno) http_parser = HttpParser( request_data, self.handlers, settings=self.settings ) data = http_parser.parse() if isinstance(data, str) or isinstance(data, unicode): http_io_buffer.add_response( fileno, http_io_buffer.get_response(fileno) + data ) poll.modify(fileno, select.POLLOUT) # change file number to epoll out mode http_io_routine_pool.remove(fileno) else: # if coroutine http_io_routine_pool.add(fileno, http_parser) events_buf.append((fileno, event)) else: self.logger.error("connection error in __run_epoll: %s", str(e)) http_connection.remove_connection(fileno) http_io_buffer.remove_request(fileno) http_io_buffer.remove_response(fileno) http_io_routine_pool.remove(fileno) poll.unregister(fileno) elif event & select.POLLOUT: # if out mode bytes_written = http_connection.get_connection(fileno).send( http_io_buffer.get_response(fileno) ) http_io_buffer.add_response(fileno, http_io_buffer.get_response(fileno)[bytes_written:]) if len(http_io_buffer.get_response(fileno)) == 0: # if file sent http_connection.get_connection(fileno).shutdown(socket.SHUT_RDWR) poll.modify(fileno, select.POLLHUP) elif event & select.POLLHUP: # if message sent and file number in poll is hup poll.unregister(fileno) # remove file number from poll http_connection.get_connection(fileno).close() # close connection http_connection.remove_connection(fileno) # delete connection from connections dict except Exception as e: self.logger.info("error in __run_poll: %s", str(e)) http_connection.remove_connection(fileno) http_io_buffer.remove_request(fileno) http_io_buffer.remove_response(fileno) http_io_routine_pool.remove(fileno) self.logger.info("fileno is: %s", str(fileno)) poll.unregister(fileno) finally: poll.unregister(server_socket.fileno()) poll.close() server_socket.close() def __run_async_io(self): """ run server use asyncore """ EchoServer('0.0.0.0', self.port, self.handlers, self.settings) asyncore.loop() def __remove_event(self, events, each): """remove event from events :param events: the list contain some events :param each: the event will be removed :return: None """ self.logger.warning("remove event with udata: %s", str(each.udata)) for event in events: if event.ident == each.ident: events.remove(event) break def run(self, io_model=None): """run the web server :param io_model: os io model, EPOLL 0 KQUEUE 1 POLL 2 :return: None """ print("server run on port: %d" % self.port) self.logger.info("server run on port: %d" % self.port) if io_model: if io_model == IOModel.EPOLL and hasattr(select, "epoll"): print("run with epoll") self.logger.info("run with epoll") self.__run_epoll() elif io_model == IOModel.KQUEUE and hasattr(select, "kqueue"): print("run with kqueue") self.logger.info("run with kqueue") self.__run_kqueue() elif io_model == IOModel.POLL and hasattr(select, "poll"): print("run with poll") self.logger.info("run with poll") self.__run_poll() else: if hasattr(select, "epoll"): print("run with epoll") self.logger.info("run with epoll") self.__run_epoll() elif hasattr(select, "kqueue"): print("run with kqueue") self.logger.info("run with kqueue") self.__run_kqueue() elif hasattr(select, "poll"): print("run with poll") self.logger.info("run with poll") self.__run_poll() else: print("run with asyncore") self.logger.info("run with asyncore") self.__run_async_io() print("server start failed!") self.logger.info("server start failed!")
b93689c0be7a720edd4a7d4908073df64f921dc6
29a4c1e436bc90deaaf7711e468154597fc379b7
/modules/ieee/doc/ulpdist.py
ac366398b04284aadd5b1cb7da038ae261d73daf
[ "BSL-1.0" ]
permissive
brycelelbach/nt2
31bdde2338ebcaa24bb76f542bd0778a620f8e7c
73d7e8dd390fa4c8d251c6451acdae65def70e0b
refs/heads/master
2021-01-17T12:41:35.021457
2011-04-03T17:37:15
2011-04-03T17:37:15
1,263,345
1
0
null
null
null
null
UTF-8
Python
false
false
1,870
py
[ ## this file was manually modified by jt { 'functor' : { 'arity' : '2', 'call_types' : [], 'ret_arity' : '0', 'rturn' : { 'default' : 'typename boost::result_of<nt2::meta::arithmetic(T)>::type', }, 'simd_types' : ['real_'], 'type_defs' : [], 'types' : ['real_', 'unsigned_int_', 'signed_int_'], }, 'info' : 'manually modified', 'unit' : { 'global_header' : { 'first_stamp' : 'modified by jt the 04/12/2010', 'included' : [], 'no_ulp' : 'True', 'notes' : [], 'stamp' : 'modified by jt the 12/12/2010', }, 'ranges' : { 'real_' : [['T(-10)', 'T(10)'], ['T(-10)', 'T(10)']], 'signed_int_' : [['-100', '100'], ['-100', '100']], 'unsigned_int_' : [['0', '100'], ['0', '100']], }, 'specific_values' : { 'default' : { }, 'real_' : { 'nt2::Inf<T>()' : 'nt2::Zero<r_t>()', 'nt2::Minf<T>()' : 'nt2::Zero<r_t>()', 'nt2::Mone<T>()' : 'nt2::Zero<r_t>()', 'nt2::Nan<T>()' : 'nt2::Zero<r_t>()', 'nt2::One<T>()' : 'nt2::Zero<r_t>()', 'nt2::Zero<T>()' : 'nt2::Zero<r_t>()', }, 'signed_int_' : { 'nt2::Mone<T>()' : 'nt2::Zero<r_t>()', 'nt2::One<T>()' : 'nt2::Zero<r_t>()', 'nt2::Zero<T>()' : 'nt2::Zero<r_t>()', }, 'unsigned_int_' : { 'nt2::One<T>()' : 'nt2::Zero<r_t>()', 'nt2::Zero<T>()' : 'nt2::Zero<r_t>()', }, }, 'verif_test' : { }, }, 'version' : '0.1', }, ]
91e45e105497e90a01f63258bc61dd9638245813
54f352a242a8ad6ff5516703e91da61e08d9a9e6
/Source Codes/AtCoder/abc121/B/4971858.py
85a9a317171327639376a274c3b93a09195fc306
[]
no_license
Kawser-nerd/CLCDSA
5cbd8a4c3f65173e4e8e0d7ed845574c4770c3eb
aee32551795763b54acb26856ab239370cac4e75
refs/heads/master
2022-02-09T11:08:56.588303
2022-01-26T18:53:40
2022-01-26T18:53:40
211,783,197
23
9
null
null
null
null
UTF-8
Python
false
false
284
py
N,M,C=list(map(int,input().split())) B=list(map(int,input().split())) a=[] for i in range(N): a.append(list(map(int,input().split()))) cnt=0 for k in range(N): sum=0 for j in range(M): sum+=a[k][j]*B[j] if sum+C > 0: cnt+=1 print(cnt)
7871e98f8480ddaec7ab0d3d64ff3ecdf9d6e751
4ca44b7bdb470fcbbd60c2868706dbd42b1984c9
/20.11.23/백준_1018.py
125a30305d44671fe2572d9e6f4d2a4da5de720e
[]
no_license
titiman1013/Algorithm
3b3d14b3e2f0cbc4859029eb73ad959ec8778629
8a67e36931c42422779a4c90859b665ee468255b
refs/heads/master
2023-06-29T17:04:40.015311
2021-07-06T01:37:29
2021-07-06T01:37:29
242,510,483
2
0
null
null
null
null
UTF-8
Python
false
false
2,138
py
import sys; sys.stdin = open('text3.txt', 'r') # def check(x, y): # temp = 0 # color = '' # for p in range(8): # for q in range(8): # if p == 0 and q == 0: # color = arr[x + p][y + q] # continue # if arr[x + p][y + q] == color: # temp += 1 # if color == 'W': # color = 'B' # else: # color = 'W' # if temp > res: # return False # else: # color = arr[x + p][y + q] # continue # if color == 'W': # color = 'B' # else: # color = 'W' # return temp def check(x, y, color): temp = 0 for p in range(8): for q in range(8): if p == 0 and q == 0: continue if arr[x + p][y + q] == color: temp += 1 if color == 'W': color = 'B' else: color = 'W' if temp > res: return False else: color = arr[x + p][y + q] continue if color == 'W': color = 'B' else: color = 'W' return temp for tc in range(6): N, M = map(int, input().split()) arr = [list(input()) for _ in range(N)] res = 10000000000 for i in range(N - 8 + 1): for j in range(M - 8 + 1): ischeck = check(i, j, 'W') if ischeck == False: pass else: if ischeck < res: if arr[i][j] == 'W': res = ischeck else: res = ischeck + 1 ischeck2 = check(i, j, 'B') if ischeck2 == False: continue else: if ischeck2 < res: if arr[i][j] == 'B': res = ischeck2 else: res = ischeck2 + 1 print(tc, res)
ed3f0747a03be29e372e99f9cf90afa6a0bcb387
19f698ab74cba74ae52c780f5986d273fb319308
/SWExpertAcademy/D5/1242.py
e82ef68270ba4d0834822e4878c2c2d888764f6f
[]
no_license
naye0ng/Algorithm
15023f1070eb7cc5faca9cf7154af2ecffab92c2
1e8848e3e2574b01dc239212ea084b0a4837bc03
refs/heads/master
2021-06-25T14:18:46.117411
2020-10-16T10:47:37
2020-10-16T10:47:37
149,326,399
2
0
null
null
null
null
UTF-8
Python
false
false
3,505
py
""" 1242.암호코드 스캔 """ import sys sys.stdin = open('input.txt','r') match = [[3,2,1,1],[2,2,2,1],[2,1,2,2],[1,4,1,1],[1,1,3,2],[1,2,3,1],[1,1,1,4],[1,3,1,2],[1,2,1,3],[3,1,1,2]] T= int(input()) for test_case in range(1, 1+T): N, M = map(int, input().split()) # 중복되는 암호문 입력 안받음 empty = str(0)*M arr = [0]*N n = -1 for _ in range(N) : local = input() if local != empty : if n== -1 or arr[n] != local : n+=1 arr[n] = local n +=1 arr = arr[:n] # 이진수 변환 for x in range(n) : arr[x] = arr[x].replace('0', '0000') arr[x] = arr[x].replace('1', '0001') arr[x] = arr[x].replace('2', '0010') arr[x] = arr[x].replace('3', '0011') arr[x] = arr[x].replace('4', '0100') arr[x] = arr[x].replace('5', '0101') arr[x] = arr[x].replace('6', '0110') arr[x] = arr[x].replace('7', '0111') arr[x] = arr[x].replace('8', '1000') arr[x] = arr[x].replace('9', '1001') arr[x] = arr[x].replace('A', '1010') arr[x] = arr[x].replace('B', '1011') arr[x] = arr[x].replace('C', '1100') arr[x] = arr[x].replace('D', '1101') arr[x] = arr[x].replace('E', '1110') arr[x] = arr[x].replace('F', '1111') patt = [] maxPattern = 0 #암호문 찾기 for x in range(n) : end, start = 0, 0 for y in range(len(arr[x])-1,-1,-1) : if end == 0 and arr[x][y] == '1': end = y+1 elif start == 0 and end != 0 and arr[x][y] == '0' : start = y+1 # 0이 나오더라도 길이가 부족하면 앞쪽 다시 탐색 if (end - start)%56 : start = 0 else : lengthP = (end - start)//56 an = arr[x][start:end] # 패턴의 유효성 검사, 마지막 글자는 항상 1 # 패턴 유효성 검사, 맨 앞의 '0'은 최대 lengthP만큼 is_pattern = True for i in range(0,len(an),7*lengthP) : if '1' in an[i :i+lengthP] or an[i+lengthP*7-1] !='1' : is_pattern = False break if is_pattern : if maxPattern < lengthP : maxPattern = lengthP patt.append([lengthP, an]) end = 0 start = 0 # 계속 앞으로 전진! else : start = 0 # maxPattern만큼 패턴 딕셔너리 생성 dictmatch = {} for i in range(1,maxPattern+1) : for j in range(10) : dictmatch[str(0)*match[j][0]*i+str(1)*match[j][1]*i+str(0)*match[j][2]*i+str(1)*match[j][3]*i] = str(j) # 중복제거한 패턴 리스트 Pattern = [] for p in patt : pn = '' for k in range(0,p[0]*56-1,7*p[0]) : pn += dictmatch[p[1][k:k+7*p[0]]] if pn not in Pattern : Pattern.append(pn) # 올바른 패턴인지 검사 result = 0 for i in range(len(Pattern)) : pn = list(map(int,Pattern[i].replace('', ' ').split())) if ((pn[0]+pn[2]+pn[4]+pn[6])*3+(pn[1]+pn[3]+pn[5])+pn[7])%10 == 0: result += sum(pn) print('#{} {}'.format(test_case, result))
3bfc14d1d230a18045d9e8d9fb084c3c5c9a87a0
3fe1b6f36bfd02156f606cf90797d69b18dd19d2
/creme/utils/inspect.py
bf12fcf5404537a35e4d08489d98d2d98889f465
[ "BSD-3-Clause" ]
permissive
mihir-thakkar-ai/creme
a19a1975bb462a1a93046b6ea55830e88846cb88
008b0c1beb26b36b448fc3d04537e02e66d402b3
refs/heads/master
2022-12-18T01:15:18.132117
2020-09-15T20:17:16
2020-09-15T20:17:16
296,288,773
0
0
BSD-3-Clause
2020-09-17T10:04:27
2020-09-17T10:04:26
null
UTF-8
Python
false
false
1,404
py
"""Utilities for inspecting a model's type. Sometimes we need to check if a model can perform regression, classification, etc. However, for some models the model's type is only known at runtime. For instance, we can't do `isinstance(pipeline, base.Regressor)` or `isinstance(wrapper, base.Regressor)`. This submodule thus provides utilities for determining an arbitrary model's type. """ from creme import base from creme import compose # TODO: maybe all of this could be done by monkeypatching isintance for pipelines? __all__ = [ 'extract_relevant', 'isclassifier', 'isregressor', 'ismoclassifier', 'ismoregressor' ] def extract_relevant(model: base.Estimator): """Extracts the relevant part of a model. Parameters: model """ if isinstance(model, compose.Pipeline): return extract_relevant(list(model.steps.values())[-1]) # look at last step return model def isclassifier(model): return isinstance(extract_relevant(model), base.Classifier) def ismoclassifier(model): return isinstance(extract_relevant(model), base.MultiOutputClassifier) def isregressor(model): return isinstance(extract_relevant(model), base.Regressor) def istransformer(model): return isinstance(extract_relevant(model), base.Transformer) def ismoregressor(model): return isinstance(extract_relevant(model), base.MultiOutputRegressor)
58794e3389ada30651487ebcafdf441f1dd0d6f3
297497957c531d81ba286bc91253fbbb78b4d8be
/testing/web-platform/tests/tools/lint/tests/base.py
f624276e3be4c16d8acd1226e8f4e128812cbd2e
[ "LicenseRef-scancode-unknown-license-reference", "BSD-3-Clause" ]
permissive
marco-c/gecko-dev-comments-removed
7a9dd34045b07e6b22f0c636c0a836b9e639f9d3
61942784fb157763e65608e5a29b3729b0aa66fa
refs/heads/master
2023-08-09T18:55:25.895853
2023-08-01T00:40:39
2023-08-01T00:40:39
211,297,481
0
0
NOASSERTION
2019-09-29T01:27:49
2019-09-27T10:44:24
C++
UTF-8
Python
false
false
295
py
def check_errors(errors): for e in errors: error_type, description, path, line_number = e assert isinstance(error_type, str) assert isinstance(description, str) assert isinstance(path, str) assert line_number is None or isinstance(line_number, int)
5547d118a16dcd0b4cebc4a30404d27ad74d3fe2
fca6a986e735843b667e3714b11cafaed0f390e8
/fastai2/text/models/core.py
235083d04a808132f5d60a270d60480a07014007
[ "Apache-2.0" ]
permissive
mbrukman/fastai2
2c631b515a13738800b5bcce781be6dac807368a
404383912503b69b244e175f3b26a06b532ee4bd
refs/heads/master
2020-11-27T17:59:33.125318
2019-12-21T08:22:48
2019-12-21T08:22:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,013
py
#AUTOGENERATED! DO NOT EDIT! File to edit: dev/33_text.models.core.ipynb (unless otherwise specified). __all__ = ['LinearDecoder', 'SequentialRNN', 'get_language_model', 'SentenceEncoder', 'masked_concat_pool', 'PoolingLinearClassifier', 'get_text_classifier'] #Cell from ...data.all import * from ..core import * from .awdlstm import * #Cell _model_meta = {AWD_LSTM: {'hid_name':'emb_sz', 'url':URLs.WT103_FWD, 'url_bwd':URLs.WT103_BWD, 'config_lm':awd_lstm_lm_config, 'split_lm': awd_lstm_lm_split, 'config_clas':awd_lstm_clas_config, 'split_clas': awd_lstm_clas_split}, AWD_QRNN: {'hid_name':'emb_sz', 'config_lm':awd_qrnn_lm_config, 'split_lm': awd_lstm_lm_split, 'config_clas':awd_qrnn_clas_config, 'split_clas': awd_lstm_clas_split},} # Transformer: {'hid_name':'d_model', 'url':URLs.OPENAI_TRANSFORMER, # 'config_lm':tfmer_lm_config, 'split_lm': tfmer_lm_split, # 'config_clas':tfmer_clas_config, 'split_clas': tfmer_clas_split}, # TransformerXL: {'hid_name':'d_model', # 'config_lm':tfmerXL_lm_config, 'split_lm': tfmerXL_lm_split, # 'config_clas':tfmerXL_clas_config, 'split_clas': tfmerXL_clas_split}} #Cell class LinearDecoder(Module): "To go on top of a RNNCore module and create a Language Model." initrange=0.1 def __init__(self, n_out, n_hid, output_p=0.1, tie_encoder=None, bias=True): self.decoder = nn.Linear(n_hid, n_out, bias=bias) self.decoder.weight.data.uniform_(-self.initrange, self.initrange) self.output_dp = RNNDropout(output_p) if bias: self.decoder.bias.data.zero_() if tie_encoder: self.decoder.weight = tie_encoder.weight def forward(self, input): raw_outputs, outputs = input decoded = self.decoder(self.output_dp(outputs[-1])) return decoded, raw_outputs, outputs #Cell class SequentialRNN(nn.Sequential): "A sequential module that passes the reset call to its children." def reset(self): for c in self.children(): getattr(c, 'reset', noop)() #Cell def get_language_model(arch, vocab_sz, config=None, drop_mult=1.): "Create a language model from `arch` and its `config`." meta = _model_meta[arch] config = ifnone(config, meta['config_lm']).copy() for k in config.keys(): if k.endswith('_p'): config[k] *= drop_mult tie_weights,output_p,out_bias = map(config.pop, ['tie_weights', 'output_p', 'out_bias']) init = config.pop('init') if 'init' in config else None encoder = arch(vocab_sz, **config) enc = encoder.encoder if tie_weights else None decoder = LinearDecoder(vocab_sz, config[meta['hid_name']], output_p, tie_encoder=enc, bias=out_bias) model = SequentialRNN(encoder, decoder) return model if init is None else model.apply(init) #Cell def _pad_tensor(t, bs, val=0.): if t.size(0) < bs: return torch.cat([t, val + t.new_zeros(bs-t.size(0), *t.shape[1:])]) return t #Cell class SentenceEncoder(Module): "Create an encoder over `module` that can process a full sentence." def __init__(self, bptt, module, pad_idx=1): store_attr(self, 'bptt,module,pad_idx') def _concat(self, arrs, bs): return [torch.cat([_pad_tensor(l[si],bs) for l in arrs], dim=1) for si in range(len(arrs[0]))] def reset(self): getattr(self.module, 'reset', noop)() def forward(self, input): bs,sl = input.size() self.reset() raw_outputs,outputs,masks = [],[],[] for i in range(0, sl, self.bptt): r,o = self.module(input[:,i: min(i+self.bptt, sl)]) masks.append(input[:,i: min(i+self.bptt, sl)] == self.pad_idx) raw_outputs.append(r) outputs.append(o) return self._concat(raw_outputs, bs),self._concat(outputs, bs),torch.cat(masks,dim=1) #Cell def masked_concat_pool(outputs, mask): "Pool `MultiBatchEncoder` outputs into one vector [last_hidden, max_pool, avg_pool]" output = outputs[-1] lens = output.size(1) - mask.long().sum(dim=1) avg_pool = output.masked_fill(mask[:, :, None], 0).sum(dim=1) avg_pool.div_(lens.type(avg_pool.dtype)[:,None]) max_pool = output.masked_fill(mask[:,:,None], -float('inf')).max(dim=1)[0] x = torch.cat([output[torch.arange(0, output.size(0)),lens-1], max_pool, avg_pool], 1) #Concat pooling. return x #Cell class PoolingLinearClassifier(Module): "Create a linear classifier with pooling" def __init__(self, dims, ps): mod_layers = [] if len(ps) != len(dims)-1: raise ValueError("Number of layers and dropout values do not match.") acts = [nn.ReLU(inplace=True)] * (len(dims) - 2) + [None] layers = [LinBnDrop(i, o, p=p, act=a) for i,o,p,a in zip(dims[:-1], dims[1:], ps, acts)] self.layers = nn.Sequential(*layers) def forward(self, input): raw,out,mask = input x = masked_concat_pool(out, mask) x = self.layers(x) return x, raw, out #Cell def get_text_classifier(arch, vocab_sz, n_class, seq_len=72, config=None, drop_mult=1., lin_ftrs=None, ps=None, pad_idx=1): "Create a text classifier from `arch` and its `config`, maybe `pretrained`" meta = _model_meta[arch] config = ifnone(config, meta['config_clas']).copy() for k in config.keys(): if k.endswith('_p'): config[k] *= drop_mult if lin_ftrs is None: lin_ftrs = [50] if ps is None: ps = [0.1]*len(lin_ftrs) layers = [config[meta['hid_name']] * 3] + lin_ftrs + [n_class] ps = [config.pop('output_p')] + ps init = config.pop('init') if 'init' in config else None encoder = SentenceEncoder(seq_len, arch(vocab_sz, **config), pad_idx=pad_idx) model = SequentialRNN(encoder, PoolingLinearClassifier(layers, ps)) return model if init is None else model.apply(init)
c98395864af6a107b993684c44803e2fb2b6fca7
2181d99f84f4f7556efb13ac203a533fc87f9acd
/tools/CodeGenerators/codegen/app/src/generated/Gui/ComboBoxes/LithologicUnitInBedComboBox.py
9ed3aae608989a0c741cc39df512c59f76b25e5c
[]
no_license
BackupTheBerlios/profilelogger-svn
0f80fd8f63c3b413dc06ecc6d2be623f8ae2cc8c
5ba067205316b0955f0c8876dd8b0f10672abc0a
refs/heads/master
2020-05-18T16:33:31.154612
2010-04-24T16:51:28
2010-04-24T16:51:28
40,822,739
0
0
null
null
null
null
UTF-8
Python
false
false
384
py
from InBedComboBox import * class LithologicUnitInBedComboBox(InBedComboBox): def __init__(self, parent, managementDialogClass, finderClass): DataSelectionComboBox.__init__(self, parent, LithologicUnitInBedManagementDialog, LithologicUnitInBedFinder)
[ "jolo@28dda339-3e7f-0410-9691-cab309f6cb01" ]
jolo@28dda339-3e7f-0410-9691-cab309f6cb01
98e8617fddd53b570991cb56f984fbf05598530a
34a2046714261a5e42692ab7a656eec708395243
/appcode/mri/results/create_nifti_from_raw_data.py
893307757154dbb38935566262c95113f314919d
[]
no_license
royshau/thesis
a64893ca25981bd8fff394161829d0147934a324
a02a8cfea9e00bd98289419eb9f7fb78c36c028e
refs/heads/master
2021-06-03T19:24:21.110455
2020-07-22T13:30:59
2020-07-22T13:30:59
115,911,615
0
0
null
2018-01-01T10:16:46
2018-01-01T10:03:25
Python
UTF-8
Python
false
false
6,904
py
# !/home/ohadsh/Tools/anaconda/bin/python import numpy as np import os from appcode.mri.k_space.k_space_data_set import KspaceDataSet from appcode.mri.data.write_nifti_data import write_nifti_data from appcode.mri.data.mri_data_base import MriDataBase from common.files_IO.file_handler import FileHandler from appcode.mri.k_space.utils import get_image_from_kspace from appcode.mri.k_space.data_creator import get_rv_mask file_names = ['k_space_real_gt', 'k_space_imag_gt', 'meta_data'] import argparse predict_info = {'width': 256, 'height': 256, 'channels': 1, 'dtype': 'float32'} predict_names = {'real': '000000.predict_real.bin', 'imag': '000000.predict_imag.bin'} import matplotlib.pyplot as plt META_KEYS = {'hash':0, 'slice': 1, 'bit_pix':2, 'aug':3, 'norm_factor':4} MASKS_DIR = '/media/ohadsh/Data/ohadsh/work/matlab/thesis/' def create_nifti_from_raw_data(data_dir, predict_path, output_path, data_base, batch_size, num_of_cases=-1, tt='train', source='k_space', random_sampling_factor=None, cs_path=None): """ Assumption - predict on all examples exists This script create nifti files from k-space raw data, original and predictions. :param data_dir: :param predict_path: :param output_path: :param data_base: :param batch_size: :param num_of_cases: :param tt: :param random_sampling_factor: :param cs_path: compressed sensing predicted path :return: """ db = MriDataBase(data_base) f_predict = {} cs_pred = None for name_pred in ['real', 'imag']: f_predict[name_pred] = FileHandler(path=os.path.join(predict_path, predict_names[name_pred]), info=predict_info, read_or_write='read', name=name_pred, memmap=True) if cs_path is not None: cs_pred = FileHandler(path=cs_path, info=predict_info, read_or_write='read', name='CS', memmap=True) # write_nifti_data(cs_pred.memmap.transpose(2, 1, 0), output_path='/tmp/', name='CS') data_set = KspaceDataSet(data_dir, file_names, stack_size=batch_size, shuffle=False, data_base=data_base, memmap=True) data_set_tt = getattr(data_set, tt) meta_data = data_set_tt.files_obj['meta_data'].memmap # Get all unique case hash all_cases = np.unique(meta_data[:, META_KEYS['hash']]) all_cases = all_cases if num_of_cases == -1 else all_cases[:num_of_cases] # For each case, create indices, build a nifty from real image and predict done = 1 for case in all_cases: try: idx = get_case_idx(case, meta_data) name = db.info['hash_to_case'][case] print("Working on case : %s, number= (%d / %d)" % (name, done, num_of_cases)) ref = os.path.join(db.data_path, name, "IXI"+name+".nii.gz") if not os.path.exists(ref): ref = None res_out_path = os.path.join(output_path, name) if not os.path.exists(res_out_path): os.makedirs(res_out_path) # Data creation org_real = data_set_tt.files_obj['k_space_real_gt'].memmap[idx] org_imag = data_set_tt.files_obj['k_space_imag_gt'].memmap[idx] data = get_image_from_kspace(org_real, org_imag).transpose(1, 2, 0) # data = norm_data(data) write_nifti_data(data, output_path=res_out_path, reference=ref, name=name) # Predict from network pred_real = f_predict['real'].memmap[idx] pred_imag = f_predict['imag'].memmap[idx] if source == 'k_space': data = get_image_from_kspace(pred_real, pred_imag).transpose(2, 1, 0) else: data = 256*np.abs(pred_real+ 1j * pred_imag).transpose(2, 1, 0) # data = norm_data(data) write_nifti_data(data, output_path=res_out_path, reference=ref, name=name+"_predict") # Zero Padding if random_sampling_factor is not None: mask = get_rv_mask(mask_main_dir=MASKS_DIR, factor=random_sampling_factor) org_real_zero_padded = mask * org_real org_imag_zero_padded = mask * org_imag data = get_image_from_kspace(org_real_zero_padded, org_imag_zero_padded).transpose(1, 2, 0) # data = norm_data(data) write_nifti_data(data, output_path=res_out_path, reference=ref, name=name+"_zeroPadding") # CS if cs_pred is not None: data = cs_pred.memmap[idx].transpose(2, 1, 0) # data = norm_data(data) write_nifti_data(data, output_path=res_out_path, reference=ref, name=name + "_CS") done += 1 except: print "BAD: (min, max) = (%d, %d)" % (idx.min(), idx.max()) continue def get_case_idx(case_hash, meta_data): """ Get case indices given cash hash and meta data memmap :param case_hash: :param meta_data: :return: """ idx = np.where(meta_data[:, META_KEYS['hash']] == case_hash)[0] slice_idx_rel = np.argsort(meta_data[idx, META_KEYS['slice']]) slice_idx_abs = idx[slice_idx_rel] return slice_idx_abs def norm_data(data): """ Normalize data :param data: :return: """ norm_factor = 1.0 / data.max() return (data * norm_factor).astype('float32') if __name__ == '__main__': parser = argparse.ArgumentParser(description='TBD.') parser.add_argument('--tt', dest='tt', choices=['train', 'test'], default='train', type=str, help='train / test') parser.add_argument('--data_dir', dest='data_dir', default='/media/ohadsh/Data/ohadsh/work/data/T1/sagittal/', type=str, help='data directory') parser.add_argument('--num_of_cases', dest='num_of_cases', type=int, default=-1, help='number of cases') parser.add_argument('--batch_size', dest='batch_size', type=int, default=50, help='mini batch size') parser.add_argument('--data_base', dest='data_base', type=str, default='IXI_T1', help='data base name - for file info') parser.add_argument('--predict_path', dest='predict_path', type=str, help='run path') parser.add_argument('--output_path', dest='output_path', default='./', type=str, help='out path') parser.add_argument('--source', dest='source', default='k_space', type=str, help='source') parser.add_argument('--random_sampling_factor', dest='random_sampling_factor', type=int, default=None, help='Random sampling factor for zero padding') parser.add_argument('--cs_path', dest='cs_path', default=None, type=str, help='CS path') args = parser.parse_args() create_nifti_from_raw_data(args.data_dir, args.predict_path, args.output_path, args.data_base, args.batch_size, args.num_of_cases, args.tt, args.source, args.random_sampling_factor, args.cs_path)
b65efc5b76e81a98e3d8dbd1d9eeb2f0c675189f
3940b4a507789e1fbbaffeb200149aee215f655a
/lc/399.EvaluateDivision.py
c17e9249c1acf2d9f8603f76a20ff582cbf7453c
[]
no_license
akimi-yano/algorithm-practice
15f52022ec79542d218c6f901a54396a62080445
1abc28919abb55b93d3879860ac9c1297d493d09
refs/heads/master
2023-06-11T13:17:56.971791
2023-06-10T05:17:56
2023-06-10T05:17:56
239,395,822
0
0
null
null
null
null
UTF-8
Python
false
false
3,013
py
# 399. Evaluate Division # Medium # 2633 # 209 # Add to List # Share # You are given equations in the format A / B = k, where A and B are variables represented as strings, and k is a real number (floating-point number). Given some queries, return the answers. If the answer does not exist, return -1.0. # The input is always valid. You may assume that evaluating the queries will result in no division by zero and there is no contradiction. # Example 1: # Input: equations = [["a","b"],["b","c"]], values = [2.0,3.0], queries = [["a","c"],["b","a"],["a","e"],["a","a"],["x","x"]] # Output: [6.00000,0.50000,-1.00000,1.00000,-1.00000] # Explanation: # Given: a / b = 2.0, b / c = 3.0 # queries are: a / c = ?, b / a = ?, a / e = ?, a / a = ?, x / x = ? # return: [6.0, 0.5, -1.0, 1.0, -1.0 ] # Example 2: # Input: equations = [["a","b"],["b","c"],["bc","cd"]], values = [1.5,2.5,5.0], queries = [["a","c"],["c","b"],["bc","cd"],["cd","bc"]] # Output: [3.75000,0.40000,5.00000,0.20000] # Example 3: # Input: equations = [["a","b"]], values = [0.5], queries = [["a","b"],["b","a"],["a","c"],["x","y"]] # Output: [0.50000,2.00000,-1.00000,-1.00000] # Constraints: # 1 <= equations.length <= 20 # equations[i].length == 2 # 1 <= equations[i][0], equations[i][1] <= 5 # values.length == equations.length # 0.0 < values[i] <= 20.0 # 1 <= queries.length <= 20 # queries[i].length == 2 # 1 <= queries[i][0], queries[i][1] <= 5 # equations[i][0], equations[i][1], queries[i][0], queries[i][1] consist of lower case English letters and digits. # THIS SOLUTION WORKS !!! ''' solved it as a graph problem made an adj_list and process both e1->e2 and e2->e1 with flipped values traverse the adj_list with seen set, if you find the val, return 1 ; if its not in adj_list, return -1, keep multiplying the weights and return it if its positive value ''' class Solution: def calcEquation(self, equations: List[List[str]], values: List[float], queries: List[List[str]]) -> List[float]: self.adj_list = {} for i in range(len(equations)): e1,e2 = equations[i] ans = values[i] if e1 not in self.adj_list: self.adj_list[e1] = [] self.adj_list[e1].append((e2, ans)) if e2 not in self.adj_list: self.adj_list[e2] = [] self.adj_list[e2].append((e1, 1/ans)) res = [] for q1, q2 in queries: res.append(self.helper(q1, q2, set([]))) return res def helper(self, cur, target, seen): if cur in seen: return -1 seen.add(cur) if cur not in self.adj_list: return -1 if cur == target: return 1 for next_node, weight in self.adj_list[cur]: temp = weight * self.helper(next_node, target, seen) if temp > 0: return temp return -1
c2356c672e81c8d0028769668339da65ff1697aa
f47863b3a595cbe7ec1c02040e7214481e4f078a
/plugins/waf/webknight.py
d46383a64c36e0f5877762772612a77f656d3ac9
[]
no_license
gobiggo/0bscan
fe020b8f6f325292bda2b1fec25e3c49a431f373
281cf7c5c2181907e6863adde27bd3977b4a3474
refs/heads/master
2020-04-10T20:33:55.008835
2018-11-17T10:05:41
2018-11-17T10:05:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
602
py
import re from config import HTTP_HEADER __product__ = "WebKnight Application Firewall (AQTRONIX)" def detect(content, **kwargs): headers = kwargs.get("headers", None) status = kwargs.get("status", None) detection_schema = ( re.compile(r"\bwebknight", re.I), re.compile(r"webknight", re.I) ) if status is not None: if status == 999 and headers.get(HTTP_HEADER.SERVER, "") == "WebKnight": return True for detection in detection_schema: if detection.search(headers.get(HTTP_HEADER.SERVER, "")) is not None: return True
4c18b17007a61eeb0415eb384a1b4980e476f0ba
0d01d65ed67faf09b31b6333013393194b4a25d0
/twitter.py
1bfef6c0550af908369c3cbe09c1674970e8f41f
[]
no_license
AshithaL/twitter-streaming
0d5b16c56c92810496f6b635b03024679cc2c10b
993b6e87fd1d546dcdde5c12db7e49791a5f5890
refs/heads/master
2022-11-09T02:52:17.843457
2020-06-15T04:43:41
2020-06-15T04:43:41
270,915,616
0
0
null
null
null
null
UTF-8
Python
false
false
2,221
py
import socket import sys import requests import requests_oauthlib import json from sql_connection import conn # Replace the values below with yours ACCESS_TOKEN = '1252513694992330753-YpQY1SlyBWIN66ngHXeM8hcZWvvTeZ' ACCESS_SECRET = 'reoC4xZdgp3bqRPjTC2ptxn00vUPrftWlhprHOBIp29jA' CONSUMER_KEY = 'eLsiPuE8adtsJUt8hr0iMku3b' CONSUMER_SECRET = 'p03sqgt8V8TYZbueGzA3SQPZXI5xuhpU5DkPj4fOGyra8YTiXn' auth_handler = requests_oauthlib.OAuth1(CONSUMER_KEY, CONSUMER_SECRET, ACCESS_TOKEN, ACCESS_SECRET) def get_tweets(): url = 'https://stream.twitter.com/1.1/statuses/filter.json' query_data = [('locations', '-122.75,36.8,-121.75,37.8,-74,40,-73,41'), ('track', '#')] query_url = url + '?' + '&'.join([str(t[0]) + '=' + str(t[1]) for t in query_data]) response = requests.get(query_url, auth=auth_handler, stream=True) print(query_url, response) return response def send_tweets_to_spark(http_resp, tcp_connection): for lines in http_resp.iter_lines(): try: full_tweet = json.loads(lines) words = full_tweet['text'].split(' ') tweet = '' for w in words: if '#' in w: i = "".join(w.split(' ')) tweet += i break time = full_tweet['created_at'] location = "".join(full_tweet["user"]["location"].encode("utf-8")) if tweet is not '': tweet_text = tweet.encode('utf-8') + '&%' + location + '&%' + time print("Tweet Text: " + tweet_text) tcp_connection.send(tweet_text + '\n') conn.execute( 'INSERT INTO tweet (time, tweet, location) VALUES (%s,%s,%s,%s,%s)', (str(time), tweet, str(location))) conn.commit() except: e = sys.exc_info()[0] print("Error: %s" % e) TCP_IP = "localhost" TCP_PORT = 9009 conn = None s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind((TCP_IP, TCP_PORT)) s.listen(1) print("Waiting for TCP connection...") conn, addr = s.accept() print("Connected... Starting getting tweets.") resp = get_tweets() send_tweets_to_spark(resp, conn)
66c5b2d003be821beb2127b0ffef1023020ef83a
4b44a299bafbd4ca408ce1c89c9fe4a449632783
/python3/14_Code_Quality/04_mocking/example_5/test_mymodule2.py
fee202b03daf17899388a56cf126c60e665c2088
[]
no_license
umunusb1/PythonMaterial
ecd33d32b2de664eaaae5192be7c3f6d6bef1d67
1e0785c55ccb8f5b9df1978e1773365a29479ce0
refs/heads/master
2023-01-23T23:39:35.797800
2020-12-02T19:29:00
2020-12-02T19:29:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
347
py
#!/usr/bin/env python # -*- coding: utf-8 -*- from mymodule import rm from unittest import TestCase, mock class RmTestCase(TestCase): @mock.patch('mymodule.os') def test_rm(self, mock_os): rm("any path") # test that rm called os.remove with the right parameters mock_os.remove.assert_called_with("any path")
31f19af81a8c9456a85f2bb8d9ab67906b28f744
a034d4ba39789e4a351112c46dd04a38180cd06c
/appengine/findit/findit_v2/model/atomic_failure.py
8c09489dd8dc8824de2e446a083c0238f3c8698b
[ "BSD-3-Clause" ]
permissive
asdfghjjklllllaaa/infra
050ad249ab44f264b4e2080aa9537ce74aafb022
8f63af54e46194cd29291813f2790ff6e986804d
refs/heads/master
2023-01-10T21:55:44.811835
2019-07-01T14:03:32
2019-07-01T14:03:32
194,691,941
1
0
BSD-3-Clause
2023-01-07T07:12:37
2019-07-01T14:45:29
Python
UTF-8
Python
false
false
3,725
py
# Copyright 2019 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from google.appengine.ext import ndb from findit_v2.model.gitiles_commit import Culprit class FileInFailureLog(ndb.Model): """Class for a file mentioned in failure log.""" # normalized file path. path = ndb.StringProperty(indexed=False) # Mentioned line numbers of the file in failure log. line_numbers = ndb.IntegerProperty(repeated=True, indexed=False) class AtomicFailure(ndb.Model): """Base Class for an atom failure. Atom failure means failures that cannot be further divided. - In compile failure atom failure is a failed compile target. - In test failure atom failure is a failed test. Atom failures in the same build have the same parent. """ # Full step name. step_ui_name = ndb.StringProperty() # Id of the build in which this atom failure occurred the first time in # a sequence of consecutive failed builds. # For example, if a test passed in build 100, and failed in builds 101 - 105, # then for atom failures of builds 101 - 105, their first_failed_build_id # will all be id of build 101. # First_failed_build_id can also be used to find the analysis on the # failure: analysis only runs for the first time failures, so using the # first_failed_build_id can get to the analysis. first_failed_build_id = ndb.IntegerProperty() # Id of the build in which this atom run (targets or test) was a pass and # since the next build, it kept not passing (can failed, not run, or end # with other status). last_passed_build_id = ndb.IntegerProperty() # Id of the first build forming the group. # Whether or how to group failures differs from project to project. # So this value could be empty. failure_group_build_id = ndb.IntegerProperty() # Key to the culprit commit found by rerun based analysis. # There should be only one culprit for each failure. culprit_commit_key = ndb.KeyProperty(Culprit) # Key to the suspected commit found by heuristic analysis. # There could be multiple suspects found for each failure. suspect_commit_key = ndb.KeyProperty(Culprit, repeated=True) # Optional information for heuristic analysis. # Mentioned files in failure log for the failure. files = ndb.LocalStructuredProperty(FileInFailureLog, repeated=True) @property def build_id(self): """Gets the id of the build that this failure belongs to.""" return self.key.parent().id() @classmethod def Create(cls, failed_build_key, step_ui_name, first_failed_build_id=None, last_passed_build_id=None, failure_group_build_id=None, files=None): # pragma: no cover instance = cls(step_ui_name=step_ui_name, parent=failed_build_key) files_objs = [] if files: for path, line_numbers in files.iteritems(): files_objs.append( FileInFailureLog(path=path, line_numbers=line_numbers)) instance.files = files_objs instance.first_failed_build_id = first_failed_build_id instance.last_passed_build_id = last_passed_build_id instance.failure_group_build_id = failure_group_build_id return instance def GetFailureIdentifier(self): """Returns the identifier for the failure within its step. Returns: (list): information to identify a failure. - For compile failures, it'll be the output_targets. - For test failures, it'll be the [test_name]. """ raise NotImplementedError def GetMergedFailure(self): """Gets the most up-to-date merged_failure for the current failure.""" raise NotImplementedError
176f55c02c04c05f69692175fb1e2ad43a67c3e1
ac39baffc572b72ddd4d25617014a51522ee30a8
/challenge29-34/simpledu/forms.py
dcdb80fff200e1000ecdcd852c6560cf019f5e08
[]
no_license
Yao-Phoenix/challenge
01d72a63eb6c144bb59cd4d5f658e170c8ad0092
d5ce1659f47cbe5295f65b7ac05ca25c79955f00
refs/heads/master
2020-09-24T17:42:02.380190
2020-02-17T03:15:25
2020-02-17T03:15:25
225,810,003
0
0
null
null
null
null
UTF-8
Python
false
false
4,259
py
#!/usr/bin/env python3 from flask_wtf import FlaskForm from wtforms import StringField, PasswordField, SubmitField, BooleanField from wtforms.validators import Length, Email, EqualTo, DataRequired, URL, NumberRange,Regexp from simpledu.models import db, User, Course, Live from wtforms import ValidationError, TextAreaField, IntegerField class RegisterForm(FlaskForm): #username = StringField('用户名', validators=[DataRequired(), Regexp(r'^[0_9a_zA_Z]{3,24}$', message='用户名只能包含数字和字母, 长度在3到24之间')]) username = StringField('用户名', validators=[DataRequired(), Length(3, 24)]) # Length(3, 24)]) email = StringField('邮箱', validators=[DataRequired(), Email()]) password = PasswordField('密码', validators=[DataRequired(), Length(6, 24)]) repeat_password = PasswordField( '重复密码', validators=[DataRequired(), EqualTo('password')]) submit = SubmitField('提交') def create_user(self): user = User() self.populate_obj(user) user.username = self.username.data user.email = self.email.data user.password = self.password.data db.session.add(user) db.session.commit() return user def validate_username(self, field): if not field.data.isalnum(): raise ValidationError('用户名只能包含数字和字母') if User.query.filter_by(username=field.data).first(): raise ValidationError('用户名已经存在') def validate_email(self, field): if User.query.filter_by(email=field.data).first(): raise ValidationError('邮箱已经存在') class LoginForm(FlaskForm): username = StringField('用户名', validators=[DataRequired(), Length(3, 24)]) password = PasswordField('密码', validators=[DataRequired(), Length(6, 24)]) remember_me = BooleanField('记住我') submit = SubmitField('提交') def validate_eamil(self, field): if not User.query.filter_by(email=field.data).first(): raise ValidationError('邮箱未注册') def validate_password(self, field): user = User.query.filter_by(username=self.username.data).first() if user and not user.check_password(field.data): raise ValidationError('密码错误') class CourseForm(FlaskForm): name = StringField('课程名称', validators=[DataRequired(), Length(5, 32)]) description = TextAreaField( '课程简介', validators=[DataRequired(), Length(20, 256)]) image_url = StringField('封面图片', validators=[DataRequired(), URL()]) author_id = IntegerField('作者ID', validators=[DataRequired(), NumberRange( min=1, message='无效的用户ID')]) submit = SubmitField('提交') def validate_author_id(self, field): if not User.query.get(field.data): raise ValidationError('用户不存在') def create_course(self): course = Course() # 使用课程表单数据填充 course 对象 print('--------------------------------') print(self.populate_obj.__doc__) self.populate_obj(course) db.session.add(course) db.session.commit() return course def update_course(self, course): self.populate_obj(course) db.session.add(course) db.session.commit() return course class LiveForm(FlaskForm): name = StringField('直播名称', validators=[DataRequired(), Length(1, 256)]) user_id = IntegerField('用户ID', validators=[DataRequired(), NumberRange(min=1, message=('无效的用户ID'))]) submit = SubmitField('提交') def validate_user_id(self, field): if not User.query.get(self.user_id.data): raise ValidationError('用户不存在') def create_live(self): live = Live() self.populate_obj(live) db.session.add(live) db.session.commit() return live def update_live(self, live): self.populate_obj(live) db.session.add(live) db.session.commit() return live class MessageForm(FlaskForm): text = StringField('发送后台消息', validators=[DataRequired(), Length(1, 256)]) submit = SubmitField('提交')
b06f3ce756d293fc54760884cb39ee8ec0e66023
52877e2b60ed675eb16ea66c7398127294a313d3
/t2t_bert/utils/tensor2tensor/models/transformer.py
1968d1ca7843d41a518b60482ff1e30df1f5e8ee
[ "Apache-2.0" ]
permissive
yyht/BERT
0dc82ea8e141cad4774e638dd7d44f781d77b6c3
480c909e0835a455606e829310ff949c9dd23549
refs/heads/master
2023-04-07T03:32:28.123608
2021-02-17T02:15:58
2021-02-17T02:15:58
162,232,730
37
12
Apache-2.0
2022-11-21T21:15:04
2018-12-18T05:02:27
Python
UTF-8
Python
false
false
104,406
py
# coding=utf-8 # Copyright 2019 The Tensor2Tensor Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Transformer model from "Attention Is All You Need". The Transformer model consists of an encoder and a decoder. Both are stacks of self-attention layers followed by feed-forward layers. This model yields good results on a number of problems, especially in NLP and machine translation. See "Attention Is All You Need" (https://arxiv.org/abs/1706.03762) for the full description of the model and the results obtained with its early version. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from six.moves import range # pylint: disable=redefined-builtin from tensor2tensor.data_generators import librispeech from tensor2tensor.layers import common_attention from tensor2tensor.layers import common_hparams from tensor2tensor.layers import common_layers from tensor2tensor.layers import modalities from tensor2tensor.layers import transformer_layers from tensor2tensor.layers import transformer_memory from tensor2tensor.utils import beam_search from tensor2tensor.utils import expert_utils from tensor2tensor.utils import mlperf_log from tensor2tensor.utils import registry from tensor2tensor.utils import t2t_model import tensorflow as tf # pylint: disable=g-direct-tensorflow-import from tensorflow.python.ops import inplace_ops from tensorflow.python.util import nest # pylint: enable=g-direct-tensorflow-import # Alias some commonly reused layers, here and elsewhere. transformer_prepare_encoder = transformer_layers.transformer_prepare_encoder transformer_encoder = transformer_layers.transformer_encoder transformer_ffn_layer = transformer_layers.transformer_ffn_layer def transformer_encode(encoder_function, inputs, target_space, hparams, attention_weights=None, features=None, losses=None, prepare_encoder_fn=None, **kwargs): """Encode transformer inputs. Args: encoder_function: the encoder function inputs: Transformer inputs [batch_size, input_length, 1, hidden_dim] which will be flattened along the two spatial dimensions. target_space: scalar, target space ID. hparams: hyperparameters for model. attention_weights: weight to store attention to. features: optionally pass the entire features dictionary as well. This is needed now for "packed" datasets. losses: optional list onto which to append extra training losses prepare_encoder_fn: optional, alternative to transformer_prepare_encoder. **kwargs: additional arguments to pass to encoder_function Returns: Tuple of: encoder_output: Encoder representation. [batch_size, input_length, hidden_dim] encoder_decoder_attention_bias: Bias and mask weights for encoder-decoder attention. [batch_size, input_length] """ inputs = common_layers.flatten4d3d(inputs) if not prepare_encoder_fn: prepare_encoder_fn = transformer_prepare_encoder encoder_input, self_attention_bias, encoder_decoder_attention_bias = ( prepare_encoder_fn( inputs, target_space, hparams, features=features)) mlperf_log.transformer_print( key=mlperf_log.MODEL_HP_LAYER_POSTPROCESS_DROPOUT, value=hparams.layer_prepostprocess_dropout, hparams=hparams) encoder_input = tf.nn.dropout(encoder_input, 1.0 - hparams.layer_prepostprocess_dropout) attn_bias_for_padding = None # Otherwise the encoder will just use encoder_self_attention_bias. if hparams.unidirectional_encoder: attn_bias_for_padding = encoder_decoder_attention_bias encoder_output = encoder_function( encoder_input, self_attention_bias, hparams, nonpadding=features_to_nonpadding(features, "inputs"), save_weights_to=attention_weights, make_image_summary=not common_layers.is_xla_compiled(), losses=losses, attn_bias_for_padding=attn_bias_for_padding, **kwargs) return encoder_output, encoder_decoder_attention_bias def transformer_decode(decoder_function, decoder_input, encoder_output, encoder_decoder_attention_bias, decoder_self_attention_bias, hparams, attention_weights=None, cache=None, decode_loop_step=None, nonpadding=None, losses=None, **kwargs): """Decode Transformer outputs from encoder representation. Args: decoder_function: the decoder function decoder_input: inputs to bottom of the model. [batch_size, decoder_length, hidden_dim] encoder_output: Encoder representation. [batch_size, input_length, hidden_dim] encoder_decoder_attention_bias: Bias and mask weights for encoder-decoder attention. [batch_size, input_length] decoder_self_attention_bias: Bias and mask weights for decoder self-attention. [batch_size, decoder_length] hparams: hyperparameters for model. attention_weights: weight to store attention to. cache: dict, containing tensors which are the results of previous attentions, used for fast decoding. decode_loop_step: An integer, step number of the decoding loop. Only used for inference on TPU. nonpadding: optional Tensor with shape [batch_size, decoder_length] losses: optional list onto which to append extra training losses **kwargs: additional arguments to pass to decoder_function Returns: Final decoder representation. [batch_size, decoder_length, hidden_dim] """ mlperf_log.transformer_print( key=mlperf_log.MODEL_HP_LAYER_POSTPROCESS_DROPOUT, value=hparams.layer_prepostprocess_dropout, hparams=hparams) decoder_input = tf.nn.dropout(decoder_input, 1.0 - hparams.layer_prepostprocess_dropout) decoder_output = decoder_function( decoder_input, encoder_output, decoder_self_attention_bias, encoder_decoder_attention_bias, hparams, cache=cache, decode_loop_step=decode_loop_step, nonpadding=nonpadding, save_weights_to=attention_weights, losses=losses, **kwargs) if (common_layers.is_xla_compiled() and hparams.mode == tf.estimator.ModeKeys.TRAIN): # TPU does not react kindly to extra dimensions. # TODO(noam): remove this once TPU is more forgiving of extra dims. return decoder_output else: # Expand since t2t expects 4d tensors. return tf.expand_dims(decoder_output, axis=2) @registry.register_model class Transformer(t2t_model.T2TModel): """Attention net. See file docstring.""" def __init__(self, *args, **kwargs): super(Transformer, self).__init__(*args, **kwargs) self.attention_weights = {} # For visualizing attention heads. self.recurrent_memory_by_layer = None # Override to enable recurrent memory self._encoder_function = transformer_encoder self._decoder_function = transformer_decoder self._init_cache_fn = _init_transformer_cache self._prepare_encoder_fn = transformer_prepare_encoder self._prepare_decoder_fn = transformer_prepare_decoder def encode(self, inputs, target_space, hparams, features=None, losses=None): """Encode transformer inputs, see transformer_encode.""" return transformer_encode( self._encoder_function, inputs, target_space, hparams, attention_weights=self.attention_weights, features=features, losses=losses, prepare_encoder_fn=self._prepare_encoder_fn) def decode(self, decoder_input, encoder_output, encoder_decoder_attention_bias, decoder_self_attention_bias, hparams, cache=None, decode_loop_step=None, nonpadding=None, losses=None, **kwargs): """Decode Transformer outputs, see transformer_decode.""" return transformer_decode( self._decoder_function, decoder_input, encoder_output, encoder_decoder_attention_bias, decoder_self_attention_bias, hparams, attention_weights=self.attention_weights, cache=cache, decode_loop_step=decode_loop_step, nonpadding=nonpadding, losses=losses, **kwargs) def body(self, features): """Transformer main model_fn. Args: features: Map of features to the model. Should contain the following: "inputs": Transformer inputs. [batch_size, input_length, 1, hidden_dim]. "targets": Target decoder outputs. [batch_size, decoder_length, 1, hidden_dim] "target_space_id": A scalar int from data_generators.problem.SpaceID. Returns: Final decoder representation. [batch_size, decoder_length, hidden_dim] """ hparams = self._hparams losses = [] if self.has_input: inputs = self._prepare_inputs_for_body(features) target_space = features["target_space_id"] encoder_output, encoder_decoder_attention_bias = self.encode( inputs, target_space, hparams, features=features, losses=losses) else: encoder_output, encoder_decoder_attention_bias = (None, None) targets = features["targets"] targets_shape = common_layers.shape_list(targets) targets = common_layers.flatten4d3d(targets) decoder_input, decoder_self_attention_bias = self._prepare_decoder_fn( targets, hparams, features=features) # Not all subclasses of Transformer support keyword arguments related to # recurrent memory, so only pass these arguments if memory is enabled. decode_kwargs = {} if self.recurrent_memory_by_layer is not None: # TODO(kitaev): The chunk_number feature currently has the same shape as # "targets", but this is only for the purposes of sharing sharding code. # In fact every token within an example must have the same chunk number. chunk_number_each_token = tf.squeeze(features["chunk_number"], (-1, -2)) chunk_number_each_example = chunk_number_each_token[:, 0] # Uncomment the code below to verify that tokens within a batch share the # same chunk number: # with tf.control_dependencies([ # tf.assert_equal(chunk_number_each_token, # chunk_number_each_example[:, None]) # ]): # chunk_number_each_example = tf.identity(chunk_number_each_example) decode_kwargs = dict( recurrent_memory_by_layer=self.recurrent_memory_by_layer, chunk_number=chunk_number_each_example, ) decoder_output = self.decode( decoder_input, encoder_output, encoder_decoder_attention_bias, decoder_self_attention_bias, hparams, nonpadding=features_to_nonpadding(features, "targets"), losses=losses, **decode_kwargs ) expected_attentions = features.get("expected_attentions") if expected_attentions is not None: attention_loss = common_attention.encoder_decoder_attention_loss( expected_attentions, self.attention_weights, hparams.expected_attention_loss_type, hparams.expected_attention_loss_multiplier) return decoder_output, {"attention_loss": attention_loss} ret = tf.reshape(decoder_output, targets_shape) if losses: return ret, {"extra_loss": tf.add_n(losses)} else: return ret def _prepare_inputs_for_body(self, features): """Prepare inputs for body. Args: features: Map of string to model features. Should contain "inputs": Transformer inputs. [batch_size, input_length, 1, hidden_dim]. Returns: Inputs which will be passed to the model. [batch_size, input_length, 1, hidden_dim] """ return features["inputs"] def _greedy_infer(self, features, decode_length, use_tpu=False): """Fast version of greedy decoding. Args: features: an map of string to `Tensor` decode_length: an integer. How many additional timesteps to decode. use_tpu: A bool. Whether to build the inference graph for TPU. Returns: A dict of decoding results { "outputs": integer `Tensor` of decoded ids of shape [batch_size, <= decode_length] if beam_size == 1 or [batch_size, top_beams, <= decode_length] "scores": decoding log probs from the beam search, None if using greedy decoding (beam_size=1) } Raises: NotImplementedError: If there are multiple data shards. """ # For real-valued modalities use the slow decode path for now. if (self._target_modality_is_real or self._hparams.self_attention_type != "dot_product"): return super(Transformer, self)._greedy_infer(features, decode_length) with tf.variable_scope(self.name): if use_tpu: return self._fast_decode_tpu(features, decode_length) return self._fast_decode(features, decode_length) def _beam_decode(self, features, decode_length, beam_size, top_beams, alpha, use_tpu=False): """Beam search decoding. Args: features: an map of string to `Tensor` decode_length: an integer. How many additional timesteps to decode. beam_size: number of beams. top_beams: an integer. How many of the beams to return. alpha: Float that controls the length penalty. larger the alpha, stronger the preference for longer translations. use_tpu: A bool, whether to do beam decode on TPU. Returns: A dict of decoding results { "outputs": integer `Tensor` of decoded ids of shape [batch_size, <= decode_length] if beam_size == 1 or [batch_size, top_beams, <= decode_length] "scores": decoding log probs from the beam search, None if using greedy decoding (beam_size=1) } """ if (self._hparams.self_attention_type not in [ "dot_product", "dot_product_relative" ]): # Caching is not guaranteed to work with attention types other than # dot_product. # TODO(petershaw): Support fast decoding when using relative # position representations, i.e. "dot_product_relative" attention. return self._beam_decode_slow(features, decode_length, beam_size, top_beams, alpha, use_tpu) with tf.variable_scope(self.name): if use_tpu: return self._fast_decode_tpu(features, decode_length, beam_size, top_beams, alpha) return self._fast_decode(features, decode_length, beam_size, top_beams, alpha) def _prepare_inputs_for_decode(self, features): """Prepare inputs for decoding. Args: features: A map of string to model features. Returns: Inputs after fixing shape and applying modality. """ dp = self._data_parallelism hparams = self._hparams inputs = features["inputs"] # TODO(llion): Clean up this reshaping logic. inputs = tf.expand_dims(inputs, axis=1) if len(inputs.shape) < 5: inputs = tf.expand_dims(inputs, axis=4) s = common_layers.shape_list(inputs) inputs = tf.reshape(inputs, [s[0] * s[1], s[2], s[3], s[4]]) # _shard_features called to ensure that the variable names match inputs = self._shard_features({"inputs": inputs})["inputs"] input_modality = self._problem_hparams.modality["inputs"] input_vocab_size = self._problem_hparams.vocab_size["inputs"] if input_vocab_size is not None and hasattr(hparams, "vocab_divisor"): input_vocab_size += (-input_vocab_size) % hparams.vocab_divisor modality_name = hparams.name.get("inputs", modalities.get_name(input_modality))( hparams, input_vocab_size) with tf.variable_scope(modality_name): bottom = hparams.bottom.get("inputs", modalities.get_bottom(input_modality)) inputs = dp(bottom, inputs, hparams, input_vocab_size) return inputs def _fast_decode_tpu(self, features, decode_length, beam_size=1, top_beams=1, alpha=1.0): """Fast decoding. Implements both greedy and beam search decoding on TPU, uses beam search iff beam_size > 1, otherwise beam search related arguments are ignored. Args: features: A map of string to model features. decode_length: An integer, how many additional timesteps to decode. beam_size: An integer, number of beams. top_beams: An integer, how many of the beams to return. alpha: A float that controls the length penalty. Larger the alpha, stronger the preference for longer translations. Returns: A dict of decoding results { "outputs": integer `Tensor` of decoded ids of shape [batch_size, <= decode_length] if beam_size == 1 or [batch_size, top_beams, <= decode_length] "scores": decoding log probs from the beam search, None if using greedy decoding (beam_size=1) }. Raises: NotImplementedError: If there are multiple data shards. """ if self._num_datashards != 1: raise NotImplementedError("Fast decoding only supports a single shard.") if "targets_segmentation" in features: raise NotImplementedError( "Decoding not supported on packed datasets " " If you want to decode from a dataset, use the non-packed version" " of the dataset when decoding.") dp = self._data_parallelism hparams = self._hparams target_modality = self._problem_hparams.modality["targets"] target_vocab_size = self._problem_hparams.vocab_size["targets"] if target_vocab_size is not None and hasattr(hparams, "vocab_divisor"): target_vocab_size += (-target_vocab_size) % hparams.vocab_divisor if self.has_input: inputs_shape = common_layers.shape_list(features["inputs"]) if target_modality == modalities.ModalityType.CLASS_LABEL: decode_length = 1 else: decode_length = ( inputs_shape[1] + features.get("decode_length", decode_length)) batch_size = inputs_shape[0] inputs = self._prepare_inputs_for_decode(features) with tf.variable_scope("body"): encoder_output, encoder_decoder_attention_bias = dp( self.encode, inputs, features["target_space_id"], hparams, features=features) encoder_output = encoder_output[0] encoder_decoder_attention_bias = encoder_decoder_attention_bias[0] partial_targets = None else: # The problem has no inputs. encoder_output = None encoder_decoder_attention_bias = None # Prepare partial targets. # In either features["inputs"] or features["targets"]. # We force the outputs to begin with these sequences. partial_targets = features.get("inputs") if partial_targets is None: partial_targets = features["targets"] assert partial_targets is not None partial_targets = common_layers.expand_squeeze_to_nd(partial_targets, 2) partial_targets = tf.to_int64(partial_targets) partial_targets_shape = common_layers.shape_list(partial_targets) partial_targets_length = partial_targets_shape[1] decode_length = ( partial_targets_length + features.get("decode_length", decode_length)) batch_size = partial_targets_shape[0] if hparams.pos == "timing": positional_encoding = common_attention.get_timing_signal_1d( decode_length + 1, hparams.hidden_size) elif hparams.pos == "emb": positional_encoding = common_attention.add_positional_embedding( tf.zeros([1, decode_length + 1, hparams.hidden_size]), hparams.max_length, "body/targets_positional_embedding", None) else: positional_encoding = None def preprocess_targets(targets, i): """Performs preprocessing steps on the targets to prepare for the decoder. This includes: - Embedding the ids. - Flattening to 3D tensor. - Optionally adding timing signals. Args: targets: A tensor, inputs ids to the decoder. [batch_size, 1]. i: An integer, Step number of the decoding loop. Returns: A tensor, processed targets [batch_size, 1, hidden_dim]. """ # _shard_features called to ensure that the variable names match targets = self._shard_features({"targets": targets})["targets"] modality_name = hparams.name.get( "targets", modalities.get_name(target_modality))(hparams, target_vocab_size) with tf.variable_scope(modality_name): bottom = hparams.bottom.get( "targets", modalities.get_targets_bottom(target_modality)) targets = dp(bottom, targets, hparams, target_vocab_size)[0] targets = common_layers.flatten4d3d(targets) # GO embeddings are all zero, this is because transformer_prepare_decoder # Shifts the targets along by one for the input which pads with zeros. # If the modality already maps GO to the zero embeddings this is not # needed. targets = tf.cond( tf.equal(i, 0), lambda: tf.zeros_like(targets), lambda: targets) if positional_encoding is not None: positional_encoding_shape = positional_encoding.shape.as_list() targets += tf.slice( positional_encoding, [0, i, 0], [positional_encoding_shape[0], 1, positional_encoding_shape[2]]) return targets decoder_self_attention_bias = ( common_attention.attention_bias_lower_triangle(decode_length)) if hparams.proximity_bias: decoder_self_attention_bias += common_attention.attention_bias_proximal( decode_length) def symbols_to_logits_tpu_fn(ids, i, cache): """Go from ids to logits for next symbol on TPU. Args: ids: A tensor, symbol IDs. i: An integer, step number of the decoding loop. Only used for inference on TPU. cache: A dict, containing tensors which are the results of previous attentions, used for fast decoding. Returns: ret: A tensor, computed logits. cache: A dict, containing tensors which are the results of previous attentions, used for fast decoding. """ ids = ids[:, -1:] targets = tf.expand_dims(tf.expand_dims(ids, axis=2), axis=3) targets = preprocess_targets(targets, i) bias_shape = decoder_self_attention_bias.shape.as_list() bias = tf.slice(decoder_self_attention_bias, [0, 0, i, 0], [bias_shape[0], bias_shape[1], 1, bias_shape[3]]) with tf.variable_scope("body"): body_outputs = dp( self.decode, targets, cache.get("encoder_output"), cache.get("encoder_decoder_attention_bias"), bias, hparams, cache, i, nonpadding=features_to_nonpadding(features, "targets")) modality_name = hparams.name.get( "targets", modalities.get_name(target_modality))(hparams, target_vocab_size) with tf.variable_scope(modality_name): top = hparams.top.get("targets", modalities.get_top(target_modality)) logits = dp(top, body_outputs, None, hparams, target_vocab_size)[0] ret = tf.squeeze(logits, axis=[1, 2, 3]) if partial_targets is not None: # If the position is within the given partial targets, we alter the # logits to always return those values. # A faster approach would be to process the partial targets in one # iteration in order to fill the corresponding parts of the cache. # This would require broader changes, though. vocab_size = tf.shape(ret)[1] def forced_logits(): return tf.one_hot( tf.tile( tf.slice(partial_targets, [0, i], [partial_targets.shape.as_list()[0], 1]), [beam_size]), vocab_size, 0.0, -1e9) ret = tf.cond( tf.less(i, partial_targets_length), forced_logits, lambda: ret) return ret, cache eos_id = self.get_decode_end_id() or beam_search.EOS_ID ret = fast_decode_tpu( encoder_output=encoder_output, encoder_decoder_attention_bias=encoder_decoder_attention_bias, symbols_to_logits_fn=symbols_to_logits_tpu_fn, hparams=hparams, decode_length=decode_length, vocab_size=target_vocab_size, init_cache_fn=self._init_cache_fn, beam_size=beam_size, top_beams=top_beams, alpha=alpha, batch_size=batch_size, force_decode_length=self._decode_hparams.force_decode_length, eos_id=eos_id) if partial_targets is not None: if beam_size <= 1 or top_beams <= 1: ret["outputs"] = ret["outputs"][:, partial_targets_length:] else: ret["outputs"] = ret["outputs"][:, :, partial_targets_length:] return ret def get_decode_start_id(self): """Returns the id of the first decoder input symbol. The default case maps None to a vector of 0's for transformer. This method can be overridden to return a different id by a model wanting to use a different decoder start symbol. The id returned by this method is used to index the embedding matrix, and retrieve the vector that will be used as the first input to the decoder """ return None def get_decode_end_id(self): """Returns the id of the output symbol that terminates decoding. This method can be overridden by a different model. The id returned by this method is used to check if the generation is complete during decoding. """ return None def _fast_decode(self, features, decode_length, beam_size=1, top_beams=1, alpha=1.0): """Fast decoding. Implements both greedy and beam search decoding, uses beam search iff beam_size > 1, otherwise beam search related arguments are ignored. Args: features: a map of string to model features. decode_length: an integer. How many additional timesteps to decode. beam_size: number of beams. top_beams: an integer. How many of the beams to return. alpha: Float that controls the length penalty. larger the alpha, stronger the preference for longer translations. Returns: A dict of decoding results { "outputs": integer `Tensor` of decoded ids of shape [batch_size, <= decode_length] if beam_size == 1 or [batch_size, top_beams, <= decode_length] "scores": decoding log probs from the beam search, None if using greedy decoding (beam_size=1) } Raises: NotImplementedError: If there are multiple data shards. """ if self._num_datashards != 1: raise NotImplementedError("Fast decoding only supports a single shard.") dp = self._data_parallelism hparams = self._hparams target_modality = self._problem_hparams.modality["targets"] target_vocab_size = self._problem_hparams.vocab_size["targets"] if target_vocab_size is not None and hasattr(hparams, "vocab_divisor"): target_vocab_size += (-target_vocab_size) % hparams.vocab_divisor if "targets_segmentation" in features: raise NotImplementedError( "Decoding not supported on packed datasets " " If you want to decode from a dataset, use the non-packed version" " of the dataset when decoding.") if self.has_input: inputs_shape = common_layers.shape_list(features["inputs"]) if target_modality == modalities.ModalityType.CLASS_LABEL: decode_length = 1 else: decode_length = ( inputs_shape[1] + features.get("decode_length", decode_length)) batch_size = inputs_shape[0] inputs = self._prepare_inputs_for_decode(features) with tf.variable_scope("body"): encoder_output, encoder_decoder_attention_bias = dp( self.encode, inputs, features["target_space_id"], hparams, features=features) encoder_output = encoder_output[0] encoder_decoder_attention_bias = encoder_decoder_attention_bias[0] partial_targets = features.get("partial_targets") else: # The problem has no inputs. encoder_output = None encoder_decoder_attention_bias = None # Prepare partial targets. # In either features["inputs"] or features["targets"]. # We force the outputs to begin with these sequences. partial_targets = features.get("inputs") if partial_targets is None: partial_targets = features["targets"] assert partial_targets is not None if partial_targets is not None: partial_targets = common_layers.expand_squeeze_to_nd(partial_targets, 2) partial_targets = tf.to_int64(partial_targets) partial_targets_shape = common_layers.shape_list(partial_targets) partial_targets_length = partial_targets_shape[1] decode_length = ( partial_targets_length + features.get("decode_length", decode_length)) batch_size = partial_targets_shape[0] if hparams.pos == "timing": positional_encoding = common_attention.get_timing_signal_1d( decode_length + 1, hparams.hidden_size) elif hparams.pos == "emb": positional_encoding = common_attention.add_positional_embedding( tf.zeros([1, decode_length, hparams.hidden_size]), hparams.max_length, "body/targets_positional_embedding", None) else: positional_encoding = None def preprocess_targets(targets, i): """Performs preprocessing steps on the targets to prepare for the decoder. This includes: - Embedding the ids. - Flattening to 3D tensor. - Optionally adding timing signals. Args: targets: inputs ids to the decoder. [batch_size, 1] i: scalar, Step number of the decoding loop. Returns: Processed targets [batch_size, 1, hidden_dim] """ # _shard_features called to ensure that the variable names match targets = self._shard_features({"targets": targets})["targets"] modality_name = hparams.name.get( "targets", modalities.get_name(target_modality))(hparams, target_vocab_size) with tf.variable_scope(modality_name): bottom = hparams.bottom.get( "targets", modalities.get_targets_bottom(target_modality)) targets = dp(bottom, targets, hparams, target_vocab_size)[0] targets = common_layers.flatten4d3d(targets) # GO embeddings are all zero, this is because transformer_prepare_decoder # Shifts the targets along by one for the input which pads with zeros. # If the modality already maps GO to the zero embeddings this is not # needed. if not self.get_decode_start_id(): targets = tf.cond( tf.equal(i, 0), lambda: tf.zeros_like(targets), lambda: targets) if positional_encoding is not None: targets += positional_encoding[:, i:i + 1] return targets decoder_self_attention_bias = ( common_attention.attention_bias_lower_triangle(decode_length)) if hparams.proximity_bias: decoder_self_attention_bias += common_attention.attention_bias_proximal( decode_length) # Create tensors for encoder-decoder attention history att_cache = {"attention_history": {}} num_layers = hparams.num_decoder_layers or hparams.num_hidden_layers if encoder_output is not None: att_batch_size, enc_seq_length = common_layers.shape_list( encoder_output)[0:2] for layer in range(num_layers): att_cache["attention_history"]["layer_%d" % layer] = tf.zeros( [att_batch_size, hparams.num_heads, 0, enc_seq_length]) def update_decoder_attention_history(cache): """Save attention weights in cache, e.g., for vizualization.""" for k in [x for x in self.attention_weights if "decoder" in x and "self" not in x and "logits" not in x]: idx = k.find("layer_") if idx < 0: continue # Get layer number from the string name. layer_nbr = k[idx + 6:] idx = 0 while idx + 1 < len(layer_nbr) and layer_nbr[:idx + 1].isdigit(): idx += 1 layer_nbr = "layer_%d" % int(layer_nbr[:idx]) if layer_nbr in cache["attention_history"]: cache["attention_history"][layer_nbr] = tf.concat( [cache["attention_history"][layer_nbr], self.attention_weights[k]], axis=2) def symbols_to_logits_fn(ids, i, cache): """Go from ids to logits for next symbol.""" ids = ids[:, -1:] targets = tf.expand_dims(tf.expand_dims(ids, axis=2), axis=3) targets = preprocess_targets(targets, i) bias = decoder_self_attention_bias[:, :, i:i + 1, :i + 1] with tf.variable_scope("body"): body_outputs = dp( self.decode, targets, cache.get("encoder_output"), cache.get("encoder_decoder_attention_bias"), bias, hparams, cache, nonpadding=features_to_nonpadding(features, "targets")) update_decoder_attention_history(cache) modality_name = hparams.name.get( "targets", modalities.get_name(target_modality))(hparams, target_vocab_size) with tf.variable_scope(modality_name): top = hparams.top.get("targets", modalities.get_top(target_modality)) logits = dp(top, body_outputs, None, hparams, target_vocab_size)[0] ret = tf.squeeze(logits, axis=[1, 2, 3]) if partial_targets is not None: # If the position is within the given partial targets, we alter the # logits to always return those values. # A faster approach would be to process the partial targets in one # iteration in order to fill the corresponding parts of the cache. # This would require broader changes, though. vocab_size = tf.shape(ret)[1] def forced_logits(): return tf.one_hot( tf.tile(partial_targets[:, i], [beam_size]), vocab_size, 0.0, -1e9) ret = tf.cond( tf.less(i, partial_targets_length), forced_logits, lambda: ret) return ret, cache sos_id = self.get_decode_start_id() or 0 eos_id = self.get_decode_end_id() or beam_search.EOS_ID ret = fast_decode( encoder_output=encoder_output, encoder_decoder_attention_bias=encoder_decoder_attention_bias, symbols_to_logits_fn=symbols_to_logits_fn, hparams=hparams, decode_length=decode_length, vocab_size=target_vocab_size, init_cache_fn=self._init_cache_fn, beam_size=beam_size, top_beams=top_beams, alpha=alpha, batch_size=batch_size, force_decode_length=self._decode_hparams.force_decode_length, sos_id=sos_id, eos_id=eos_id, cache=att_cache) if partial_targets is not None: if beam_size <= 1 or top_beams <= 1: ret["outputs"] = ret["outputs"][:, partial_targets_length:] else: ret["outputs"] = ret["outputs"][:, :, partial_targets_length:] return ret def _init_transformer_cache(cache, hparams, batch_size, attention_init_length, encoder_output, encoder_decoder_attention_bias, scope_prefix): """Create the initial cache for Transformer fast decoding.""" key_channels = hparams.attention_key_channels or hparams.hidden_size value_channels = hparams.attention_value_channels or hparams.hidden_size num_layers = hparams.num_decoder_layers or hparams.num_hidden_layers vars_3d_num_heads = ( hparams.num_heads if hparams.get("attention_variables_3d") else 0) if cache is None: cache = {} cache.update({ "layer_%d" % layer: { # pylint: disable=g-complex-comprehension "k": common_attention.split_heads( tf.zeros([batch_size, attention_init_length, key_channels]), hparams.num_heads), "v": common_attention.split_heads( tf.zeros([batch_size, attention_init_length, value_channels]), hparams.num_heads), } for layer in range(num_layers) }) # If `ffn_layer` is in `["dense_relu_dense" or "conv_hidden_relu"]`, then the # cache key "f" won't be used, which means that the` shape of cache["f"]` # won't be changed to # `[beamsize*batch_size, decode_length, hparams.hidden_size]` and may cause # error when applying `nest.map reshape function` on it. if hparams.ffn_layer not in ["dense_relu_dense", "conv_hidden_relu"]: for layer in range(num_layers): cache["layer_%d" % layer]["f"] = tf.zeros( [batch_size, 0, hparams.hidden_size]) if encoder_output is not None: for layer in range(num_layers): layer_name = "layer_%d" % layer with tf.variable_scope( "%sdecoder/%s/encdec_attention/multihead_attention" % (scope_prefix, layer_name)): k_encdec = common_attention.compute_attention_component( encoder_output, key_channels, name="k", vars_3d_num_heads=vars_3d_num_heads) k_encdec = common_attention.split_heads(k_encdec, hparams.num_heads) v_encdec = common_attention.compute_attention_component( encoder_output, value_channels, name="v", vars_3d_num_heads=vars_3d_num_heads) v_encdec = common_attention.split_heads(v_encdec, hparams.num_heads) cache[layer_name]["k_encdec"] = k_encdec cache[layer_name]["v_encdec"] = v_encdec cache["encoder_output"] = encoder_output cache["encoder_decoder_attention_bias"] = encoder_decoder_attention_bias return cache def fast_decode_tpu(encoder_output, encoder_decoder_attention_bias, symbols_to_logits_fn, hparams, decode_length, vocab_size, init_cache_fn=_init_transformer_cache, beam_size=1, top_beams=1, alpha=1.0, sos_id=0, eos_id=beam_search.EOS_ID, batch_size=None, force_decode_length=False, scope_prefix="body/", use_top_k_with_unique=True): """Given encoder output and a symbols to logits function, does fast decoding. Implements both greedy and beam search decoding for TPU, uses beam search iff beam_size > 1, otherwise beam search related arguments are ignored. Args: encoder_output: A tensor, output from encoder. encoder_decoder_attention_bias: A tensor, bias for use in encoder-decoder attention. symbols_to_logits_fn: Incremental decoding, function mapping triple `(ids, step, cache)` to symbol logits. hparams: Run hyperparameters. decode_length: An integer, how many additional timesteps to decode. vocab_size: Output vocabulary size. init_cache_fn: Function that returns the initial cache dict. beam_size: An integer, number of beams. top_beams: An integer, how many of the beams to return. alpha: A float that controls the length penalty. Larger the alpha, stronger the preference for longer translations. sos_id: Start-of-sequence symbol. eos_id: End-of-sequence symbol. batch_size: An integer, must be passed if there is no input. force_decode_length: A bool, whether to force the full decode length, or if False, stop when all beams hit eos_id. scope_prefix: str, prefix for decoder layer variable scopes. use_top_k_with_unique: bool, whether to use a fast (but decreased precision) top_k during beam search. Returns: A dict of decoding results { "outputs": integer `Tensor` of decoded ids of shape [batch_size, <= decode_length] if top_beams == 1 or [batch_size, top_beams, <= decode_length] otherwise "scores": decoding log probs from the beam search, None if using greedy decoding (beam_size=1) }. Raises: NotImplementedError: If beam size > 1 with partial targets. """ if encoder_output is not None: batch_size = common_layers.shape_list(encoder_output)[0] cache = init_cache_fn(None, hparams, batch_size, decode_length, encoder_output, encoder_decoder_attention_bias, scope_prefix) mlperf_log.transformer_print( key=mlperf_log.MODEL_HP_SEQ_BEAM_SEARCH, value={ "vocab_size": vocab_size, "batch_size": batch_size, "beam_size": beam_size, "alpha": alpha, "max_decode_length": decode_length }, hparams=hparams) if beam_size > 1: # Beam Search initial_ids = sos_id * tf.ones([batch_size], dtype=tf.int32) decoded_ids, scores, _ = beam_search.beam_search( symbols_to_logits_fn, initial_ids, beam_size, decode_length, vocab_size, alpha, states=cache, eos_id=eos_id, stop_early=(top_beams == 1), use_tpu=True, use_top_k_with_unique=use_top_k_with_unique) if top_beams == 1: decoded_ids = decoded_ids[:, 0, 1:] scores = scores[:, 0] else: decoded_ids = decoded_ids[:, :top_beams, 1:] scores = scores[:, :top_beams] else: # Greedy def inner_loop(i, hit_eos, next_id, decoded_ids, cache, log_prob): """One step of greedy decoding.""" logits, cache = symbols_to_logits_fn(next_id, i, cache) log_probs = common_layers.log_prob_from_logits(logits) temperature = getattr(hparams, "sampling_temp", 0.0) keep_top = getattr(hparams, "sampling_keep_top_k", -1) if hparams.sampling_method == "argmax": temperature = 0.0 next_id = common_layers.sample_with_temperature( logits, temperature, keep_top) log_prob_indices = tf.stack([tf.range(tf.to_int64(batch_size)), next_id], axis=1) log_prob += tf.gather_nd( log_probs, log_prob_indices) * (1 - tf.to_float(hit_eos)) # Note(thangluong): we purposely update hit_eos after aggregating log_prob # There is a subtle detail here that we want to include log_probs up to # (and inclusive of) the first eos generated, but not subsequent tokens. hit_eos |= tf.equal(next_id, eos_id) next_id = tf.expand_dims(next_id, axis=1) decoded_ids = tf.transpose(decoded_ids) decoded_ids = inplace_ops.alias_inplace_update( decoded_ids, i, tf.squeeze(next_id, axis=1)) decoded_ids = tf.transpose(decoded_ids) return i + 1, hit_eos, next_id, decoded_ids, cache, log_prob def is_not_finished(i, hit_eos, *_): finished = i >= decode_length if not force_decode_length: finished |= tf.reduce_all(hit_eos) return tf.logical_not(finished) decoded_ids = tf.zeros([batch_size, decode_length], dtype=tf.int64) hit_eos = tf.fill([batch_size], False) next_id = sos_id * tf.ones([batch_size, 1], dtype=tf.int64) initial_log_prob = tf.zeros([batch_size], dtype=tf.float32) def compute_cache_shape_invariants(tensor): return tf.TensorShape(tensor.shape.as_list()) _, _, _, decoded_ids, _, log_prob = tf.while_loop( is_not_finished, inner_loop, [ tf.constant(0), hit_eos, next_id, decoded_ids, cache, initial_log_prob ], shape_invariants=[ tf.TensorShape([]), tf.TensorShape([batch_size]), tf.TensorShape([batch_size, 1]), tf.TensorShape([batch_size, decode_length]), nest.map_structure(compute_cache_shape_invariants, cache), tf.TensorShape([batch_size]), ]) scores = log_prob return {"outputs": decoded_ids, "scores": scores} def fast_decode(encoder_output, encoder_decoder_attention_bias, symbols_to_logits_fn, hparams, decode_length, vocab_size, init_cache_fn=_init_transformer_cache, beam_size=1, top_beams=1, alpha=1.0, sos_id=0, eos_id=beam_search.EOS_ID, batch_size=None, force_decode_length=False, scope_prefix="body/", cache=None): """Given encoder output and a symbols to logits function, does fast decoding. Implements both greedy and beam search decoding, uses beam search iff beam_size > 1, otherwise beam search related arguments are ignored. Args: encoder_output: Output from encoder. encoder_decoder_attention_bias: a bias tensor for use in encoder-decoder attention symbols_to_logits_fn: Incremental decoding; function mapping triple `(ids, step, cache)` to symbol logits. hparams: run hyperparameters decode_length: an integer. How many additional timesteps to decode. vocab_size: Output vocabulary size. init_cache_fn: Function that returns the initial cache dict. beam_size: number of beams. top_beams: an integer. How many of the beams to return. alpha: Float that controls the length penalty. larger the alpha, stronger the preference for longer translations. sos_id: End-of-sequence symbol in beam search. eos_id: End-of-sequence symbol in beam search. batch_size: an integer scalar - must be passed if there is no input force_decode_length: bool, whether to force the full decode length, or if False, stop when all beams hit eos_id. scope_prefix: str, prefix for decoder layer variable scopes. cache: cache dictionary for additional predictions. Returns: A dict of decoding results { "outputs": integer `Tensor` of decoded ids of shape [batch_size, <= decode_length] if top_beams == 1 or [batch_size, top_beams, <= decode_length] otherwise "scores": decoding log probs from the beam search, None if using greedy decoding (beam_size=1) } Raises: NotImplementedError: If beam size > 1 with partial targets. """ if encoder_output is not None: batch_size = common_layers.shape_list(encoder_output)[0] cache = init_cache_fn( cache=cache, hparams=hparams, batch_size=batch_size, attention_init_length=0, encoder_output=encoder_output, encoder_decoder_attention_bias=encoder_decoder_attention_bias, scope_prefix=scope_prefix) if beam_size > 1: # Beam Search initial_ids = sos_id * tf.ones([batch_size], dtype=tf.int32) decoded_ids, scores, cache = beam_search.beam_search( symbols_to_logits_fn, initial_ids, beam_size, decode_length, vocab_size, alpha, states=cache, eos_id=eos_id, stop_early=(top_beams == 1)) if top_beams == 1: decoded_ids = decoded_ids[:, 0, 1:] scores = scores[:, 0] else: decoded_ids = decoded_ids[:, :top_beams, 1:] scores = scores[:, :top_beams] else: # Greedy def inner_loop(i, hit_eos, next_id, decoded_ids, cache, log_prob): """One step of greedy decoding.""" logits, cache = symbols_to_logits_fn(next_id, i, cache) log_probs = common_layers.log_prob_from_logits(logits) temperature = getattr(hparams, "sampling_temp", 0.0) keep_top = getattr(hparams, "sampling_keep_top_k", -1) if hparams.sampling_method == "argmax": temperature = 0.0 next_id = common_layers.sample_with_temperature( logits, temperature, keep_top) log_prob_indices = tf.stack([tf.range(tf.to_int64(batch_size)), next_id], axis=1) log_prob += tf.gather_nd( log_probs, log_prob_indices) * (1 - tf.to_float(hit_eos)) # Note(thangluong): we purposely update hit_eos after aggregating log_prob # There is a subtle detail here that we want to include log_probs up to # (and inclusive of) the first eos generated, but not subsequent tokens. hit_eos |= tf.equal(next_id, eos_id) next_id = tf.expand_dims(next_id, axis=1) decoded_ids = tf.concat([decoded_ids, next_id], axis=1) return i + 1, hit_eos, next_id, decoded_ids, cache, log_prob def is_not_finished(i, hit_eos, *_): finished = i >= decode_length if not force_decode_length: finished |= tf.reduce_all(hit_eos) return tf.logical_not(finished) decoded_ids = tf.zeros([batch_size, 0], dtype=tf.int64) hit_eos = tf.fill([batch_size], False) next_id = sos_id * tf.ones([batch_size, 1], dtype=tf.int64) initial_log_prob = tf.zeros([batch_size], dtype=tf.float32) _, _, _, decoded_ids, cache, log_prob = tf.while_loop( is_not_finished, inner_loop, [ tf.constant(0), hit_eos, next_id, decoded_ids, cache, initial_log_prob ], shape_invariants=[ tf.TensorShape([]), tf.TensorShape([None]), tf.TensorShape([None, None]), tf.TensorShape([None, None]), nest.map_structure(beam_search.get_state_shape_invariants, cache), tf.TensorShape([None]), ]) scores = log_prob return {"outputs": decoded_ids, "scores": scores, "cache": cache} @registry.register_model class TransformerScorer(Transformer): """Transformer model, but only scores in PREDICT mode. Checkpoints between Transformer and TransformerScorer are interchangeable. """ def __init__(self, *args, **kwargs): super(TransformerScorer, self).__init__(*args, **kwargs) self._name = "transformer" self._base_name = "transformer" def infer(self, features=None, decode_length=50, beam_size=1, top_beams=1, alpha=0.0, use_tpu=False): """Returns the targets and their log probabilities.""" del decode_length, beam_size, top_beams, alpha, use_tpu assert features is not None # Run the model self.hparams.force_full_predict = True with tf.variable_scope(self.name): logits, _ = self.model_fn(features) assert len(logits.shape) == 5 # [batch, time, 1, 1, vocab] logits = tf.squeeze(logits, [2, 3]) # Compute the log probabilities log_probs = common_layers.log_prob_from_logits(logits) targets = features["targets"] assert len(targets.shape) == 4 # [batch, time, 1, 1] targets = tf.squeeze(targets, [2, 3]) # Slice out the log_probs of the targets log_probs = common_layers.index_last_dim_with_indices(log_probs, targets) # Sum over time to get the log_prob of the sequence scores = tf.reduce_sum(log_probs, axis=1) return {"outputs": targets, "scores": scores} @registry.register_model class TransformerEncoder(t2t_model.T2TModel): """Transformer, encoder only.""" def body(self, features): hparams = self._hparams inputs = features["inputs"] target_space = features["target_space_id"] inputs = common_layers.flatten4d3d(inputs) (encoder_input, encoder_self_attention_bias, _) = ( transformer_prepare_encoder(inputs, target_space, hparams)) encoder_input = tf.nn.dropout(encoder_input, 1.0 - hparams.layer_prepostprocess_dropout) encoder_output = transformer_encoder( encoder_input, encoder_self_attention_bias, hparams, nonpadding=features_to_nonpadding(features, "inputs")) encoder_output = tf.expand_dims(encoder_output, 2) return encoder_output @registry.register_model class TransformerRegressor(TransformerEncoder): """Transformer inheriting from Encoder, for the regression problem. Final result is a tensor that has a shape of (?, 1, 1, 1). """ def top(self, body_output, features): """Computes single scalar value from body_output.""" with tf.variable_scope("reg_top_ffn"): x = body_output x = tf.reduce_mean(x, axis=[1, 2], keepdims=True) res = tf.layers.dense(x, 1, name="model_top") return res def features_to_nonpadding(features, inputs_or_targets="inputs"): key = inputs_or_targets + "_segmentation" if features and key in features: return tf.minimum(tf.to_float(features[key]), 1.0) return None def transformer_prepare_decoder(targets, hparams, features=None, pad=None): """Prepare one shard of the model for the decoder. Args: targets: a Tensor. hparams: run hyperparameters features: optionally pass the entire features dictionary as well. This is needed now for "packed" datasets. pad: vector to use for padding when shifting targets right Returns: decoder_input: a Tensor, bottom of decoder stack decoder_self_attention_bias: a bias tensor for use in decoder self-attention """ if hparams.causal_decoder_self_attention: # Causal attention. if hparams.prepend_mode == "prepend_inputs_full_attention": decoder_self_attention_bias = ( common_attention.attention_bias_prepend_inputs_full_attention( common_attention.embedding_to_padding(targets))) else: decoder_self_attention_bias = ( common_attention.attention_bias_lower_triangle( common_layers.shape_list(targets)[1])) else: # Full attention. decoder_padding = common_attention.embedding_to_padding(targets) decoder_self_attention_bias = ( common_attention.attention_bias_ignore_padding(decoder_padding)) if features and "targets_segmentation" in features: # "Packed" dataset - keep the examples from seeing each other. targets_segmentation = features["targets_segmentation"] targets_position = features["targets_position"] decoder_self_attention_bias += common_attention.attention_bias_same_segment( targets_segmentation, targets_segmentation) else: targets_position = None if hparams.proximity_bias: decoder_self_attention_bias += common_attention.attention_bias_proximal( common_layers.shape_list(targets)[1]) decoder_input = common_layers.shift_right_3d(targets, pad) if hparams.pos == "timing": if targets_position is not None: decoder_input = common_attention.add_timing_signal_1d_given_position( decoder_input, targets_position) else: decoder_input = common_attention.add_timing_signal_1d(decoder_input) elif hparams.pos == "emb": decoder_input = common_attention.add_positional_embedding( decoder_input, hparams.max_length, "targets_positional_embedding", targets_position) if hparams.activation_dtype == "bfloat16": decoder_self_attention_bias = tf.cast(decoder_self_attention_bias, tf.bfloat16) return (decoder_input, decoder_self_attention_bias) def transformer_decoder_layer(decoder_input, decoder_self_attention_bias, layer_idx, hparams, encoder_output=None, encoder_decoder_attention_bias=None, cache=None, decode_loop_step=None, nonpadding=None, save_weights_to=None, make_image_summary=False, losses=None, layer_collection=None, recurrent_memory_by_layer=None, chunk_number=None): """A single transformer decoder layer.""" x = decoder_input layer = layer_idx layer_name = "layer_%d" % layer layer_cache = cache[layer_name] if cache is not None else None attention_dropout_broadcast_dims = ( common_layers.comma_separated_string_to_integer_list( getattr(hparams, "attention_dropout_broadcast_dims", ""))) if recurrent_memory_by_layer is not None: recurrent_memory = recurrent_memory_by_layer[layer_name] else: recurrent_memory = None if layer < hparams.get("num_area_layers", 0): max_area_width = hparams.get("max_area_width", 1) max_area_height = hparams.get("max_area_height", 1) memory_height = hparams.get("max_area_height", 1) else: max_area_width = 1 max_area_height = 1 memory_height = 1 with tf.variable_scope(layer_name): with tf.variable_scope("self_attention"): y = common_attention.multihead_attention( common_layers.layer_preprocess( x, hparams, layer_collection=layer_collection), None, decoder_self_attention_bias, hparams.attention_key_channels or hparams.hidden_size, hparams.attention_value_channels or hparams.hidden_size, hparams.hidden_size, hparams.num_heads, hparams.attention_dropout, attention_type=hparams.self_attention_type, max_relative_position=hparams.max_relative_position, heads_share_relative_embedding=( hparams.heads_share_relative_embedding), add_relative_to_values=hparams.add_relative_to_values, save_weights_to=save_weights_to, cache=layer_cache, make_image_summary=make_image_summary, dropout_broadcast_dims=attention_dropout_broadcast_dims, max_length=hparams.get("max_length"), decode_loop_step=decode_loop_step, vars_3d=hparams.get("attention_variables_3d"), activation_dtype=hparams.get("activation_dtype", "float32"), weight_dtype=hparams.get("weight_dtype", "float32"), layer_collection=layer_collection, recurrent_memory=recurrent_memory, chunk_number=chunk_number, hard_attention_k=hparams.get("hard_attention_k", 0), gumbel_noise_weight=hparams.get("gumbel_noise_weight", 0.0), max_area_width=max_area_width, max_area_height=max_area_height, memory_height=memory_height, area_key_mode=hparams.get("area_key_mode", "none"), area_value_mode=hparams.get("area_value_mode", "none"), training=(hparams.get( "mode", tf.estimator.ModeKeys.TRAIN) == tf.estimator.ModeKeys.TRAIN)) x = common_layers.layer_postprocess(x, y, hparams) if encoder_output is not None: with tf.variable_scope("encdec_attention"): y = common_attention.multihead_attention( common_layers.layer_preprocess( x, hparams, layer_collection=layer_collection), encoder_output, encoder_decoder_attention_bias, hparams.attention_key_channels or hparams.hidden_size, hparams.attention_value_channels or hparams.hidden_size, hparams.hidden_size, hparams.num_heads, hparams.attention_dropout, max_relative_position=hparams.max_relative_position, heads_share_relative_embedding=( hparams.heads_share_relative_embedding), add_relative_to_values=hparams.add_relative_to_values, save_weights_to=save_weights_to, cache=layer_cache, make_image_summary=make_image_summary, dropout_broadcast_dims=attention_dropout_broadcast_dims, max_length=hparams.get("max_length"), vars_3d=hparams.get("attention_variables_3d"), activation_dtype=hparams.get("activation_dtype", "float32"), weight_dtype=hparams.get("weight_dtype", "float32"), layer_collection=layer_collection, hard_attention_k=hparams.get("hard_attention_k", 0), gumbel_noise_weight=hparams.get("gumbel_noise_weight", 0.0), max_area_width=max_area_width, max_area_height=max_area_height, memory_height=memory_height, area_key_mode=hparams.get("area_key_mode", "none"), area_value_mode=hparams.get("area_value_mode", "none"), training=(hparams.get( "mode", tf.estimator.ModeKeys.TRAIN) == tf.estimator.ModeKeys.TRAIN)) x = common_layers.layer_postprocess(x, y, hparams) with tf.variable_scope("ffn"): y = transformer_ffn_layer( common_layers.layer_preprocess( x, hparams, layer_collection=layer_collection), hparams, conv_padding="LEFT", nonpadding_mask=nonpadding, losses=losses, cache=layer_cache, decode_loop_step=decode_loop_step, layer_collection=layer_collection) x = common_layers.layer_postprocess(x, y, hparams) return x def transformer_decoder(decoder_input, encoder_output, decoder_self_attention_bias, encoder_decoder_attention_bias, hparams, cache=None, decode_loop_step=None, name="decoder", nonpadding=None, save_weights_to=None, make_image_summary=True, losses=None, layer_collection=None, recurrent_memory_by_layer=None, chunk_number=None): """A stack of transformer layers. Args: decoder_input: a Tensor encoder_output: a Tensor decoder_self_attention_bias: bias Tensor for self-attention (see common_attention.attention_bias()) encoder_decoder_attention_bias: bias Tensor for encoder-decoder attention (see common_attention.attention_bias()) hparams: hyperparameters for model cache: dict, containing tensors which are the results of previous attentions, used for fast decoding. decode_loop_step: An integer, step number of the decoding loop. Only used for inference on TPU. name: a string nonpadding: optional Tensor with shape [batch_size, encoder_length] indicating what positions are not padding. This is used to mask out padding in convolutional layers. We generally only need this mask for "packed" datasets, because for ordinary datasets, no padding is ever followed by nonpadding. save_weights_to: an optional dictionary to capture attention weights for visualization; the weights tensor will be appended there under a string key created from the variable scope (including name). make_image_summary: Whether to make an attention image summary. losses: optional list onto which to append extra training losses layer_collection: A tensorflow_kfac.LayerCollection. Only used by the KFAC optimizer. Default is None. recurrent_memory_by_layer: Optional dict, mapping layer names to instances of transformer_memory.RecurrentMemory. Default is None. chunk_number: an optional integer Tensor with shape [batch] used to operate the recurrent_memory. Returns: y: a Tensors """ x = decoder_input mlperf_log.transformer_print( key=mlperf_log.MODEL_HP_NUM_HIDDEN_LAYERS, value=hparams.num_decoder_layers or hparams.num_hidden_layers, hparams=hparams) mlperf_log.transformer_print( key=mlperf_log.MODEL_HP_ATTENTION_DROPOUT, value=hparams.attention_dropout, hparams=hparams) mlperf_log.transformer_print( key=mlperf_log.MODEL_HP_ATTENTION_DENSE, value={ "use_bias": "false", "num_heads": hparams.num_heads, "hidden_size": hparams.hidden_size }, hparams=hparams) with tf.variable_scope(name): for layer_idx in range(hparams.num_decoder_layers or hparams.num_hidden_layers): x = transformer_decoder_layer( x, decoder_self_attention_bias, layer_idx, hparams, encoder_decoder_attention_bias=encoder_decoder_attention_bias, encoder_output=encoder_output, cache=cache, decode_loop_step=decode_loop_step, nonpadding=nonpadding, save_weights_to=save_weights_to, make_image_summary=make_image_summary, losses=losses, layer_collection=layer_collection, recurrent_memory_by_layer=recurrent_memory_by_layer, chunk_number=chunk_number ) # if normalization is done in layer_preprocess, then it should also be done # on the output, since the output can grow very large, being the sum of # a whole stack of unnormalized layer outputs. mlperf_log.transformer_print( key=mlperf_log.MODEL_HP_NORM, value={"hidden_size": hparams.hidden_size}) return common_layers.layer_preprocess( x, hparams, layer_collection=layer_collection) @registry.register_model class TransformerMemory(Transformer): """Transformer language model with memory across chunks.""" # TODO(kitaev): consider overriding set_mode to swap out recurrent memory when # switching between training and evaluation. def __init__(self, *args, **kwargs): super(TransformerMemory, self).__init__(*args, **kwargs) hparams = self._hparams self.recurrent_memory_by_layer = {} for layer in range(hparams.num_decoder_layers or hparams.num_hidden_layers): layer_name = "layer_%d" % layer if hparams.memory_type == "neural_memory": memory = transformer_memory.TransformerMemory( batch_size=int(hparams.batch_size / hparams.max_length), key_depth=hparams.hidden_size, val_depth=hparams.hidden_size, memory_size=hparams.split_targets_chunk_length, sharpen_factor=1., name=layer_name + "/recurrent_memory") elif hparams.memory_type == "transformer_xl": memory = transformer_memory.RecentTokensMemory( layer_name + "/recurrent_memory", hparams) else: raise ValueError("Unsupported memory type: %s" % hparams.memory_type) self.recurrent_memory_by_layer[layer_name] = memory @property def has_input(self): if hasattr(self._hparams, "unconditional") and self._hparams.unconditional: return False return super(TransformerMemory, self).has_input def _beam_decode(self, features, decode_length, beam_size, top_beams, alpha, use_tpu=False): """Overriding beam search because for now only the slow version works with memory """ return self._beam_decode_slow(features, decode_length, beam_size, top_beams, alpha, use_tpu) @registry.register_hparams def transformer_base_v1(): """Set of hyperparameters.""" hparams = common_hparams.basic_params1() hparams.norm_type = "layer" hparams.hidden_size = 512 hparams.batch_size = 4096 hparams.max_length = 256 hparams.clip_grad_norm = 0. # i.e. no gradient clipping hparams.optimizer_adam_epsilon = 1e-9 hparams.learning_rate_schedule = "legacy" hparams.learning_rate_decay_scheme = "noam" hparams.learning_rate = 0.1 hparams.learning_rate_warmup_steps = 4000 hparams.initializer_gain = 1.0 hparams.num_hidden_layers = 6 hparams.initializer = "uniform_unit_scaling" hparams.weight_decay = 0.0 hparams.optimizer_adam_beta1 = 0.9 hparams.optimizer_adam_beta2 = 0.98 hparams.num_sampled_classes = 0 hparams.label_smoothing = 0.1 hparams.shared_embedding_and_softmax_weights = True hparams.symbol_modality_num_shards = 16 # Add new ones like this. hparams.add_hparam("filter_size", 2048) # Layer-related flags. If zero, these fall back on hparams.num_hidden_layers. hparams.add_hparam("num_encoder_layers", 0) hparams.add_hparam("num_decoder_layers", 0) # Attention-related flags. hparams.add_hparam("num_heads", 8) hparams.add_hparam("attention_key_channels", 0) hparams.add_hparam("attention_value_channels", 0) hparams.add_hparam("ffn_layer", "dense_relu_dense") hparams.add_hparam("parameter_attention_key_channels", 0) hparams.add_hparam("parameter_attention_value_channels", 0) # All hyperparameters ending in "dropout" are automatically set to 0.0 # when not in training mode. hparams.add_hparam("attention_dropout", 0.0) hparams.add_hparam("attention_dropout_broadcast_dims", "") hparams.add_hparam("relu_dropout", 0.0) hparams.add_hparam("relu_dropout_broadcast_dims", "") hparams.add_hparam("pos", "timing") # timing, none hparams.add_hparam("nbr_decoder_problems", 1) hparams.add_hparam("proximity_bias", False) hparams.add_hparam("causal_decoder_self_attention", True) hparams.add_hparam("use_pad_remover", True) hparams.add_hparam("self_attention_type", "dot_product") hparams.add_hparam("conv_first_kernel", 3) hparams.add_hparam("attention_variables_3d", False) hparams.add_hparam("use_target_space_embedding", True) # These parameters are only used when ffn_layer=="local_moe_tpu" hparams.add_hparam("moe_overhead_train", 1.0) hparams.add_hparam("moe_overhead_eval", 2.0) hparams.moe_num_experts = 16 hparams.moe_loss_coef = 1e-3 # If specified, use this value instead of problem name in metrics.py. # This is useful for programs that can automatically compare experiments side # by side based on the same metric names. hparams.add_hparam("overload_eval_metric_name", "") # For making a transformer encoder unidirectional by using masked # attention. hparams.add_hparam("unidirectional_encoder", False) # For hard attention. hparams.add_hparam("hard_attention_k", 0) hparams.add_hparam("gumbel_noise_weight", 0.0) return hparams @registry.register_hparams def transformer_base_v2(): """Set of hyperparameters.""" hparams = transformer_base_v1() hparams.layer_preprocess_sequence = "n" hparams.layer_postprocess_sequence = "da" hparams.layer_prepostprocess_dropout = 0.1 hparams.attention_dropout = 0.1 hparams.relu_dropout = 0.1 hparams.learning_rate_warmup_steps = 8000 hparams.learning_rate = 0.2 return hparams @registry.register_hparams def transformer_base_vq_ada_32ex_packed(): """Set of hyperparameters for lm1b packed following tpu params.""" hparams = transformer_base_v2() expert_utils.update_hparams_for_vq_gating(hparams) hparams.moe_num_experts = 32 hparams.gating_type = "vq" # this gives us a batch size of 16 because each seq is len 256 hparams.batch_size = 5072 hparams.ffn_layer = "local_moe" hparams.shared_embedding_and_softmax_weights = False hparams.learning_rate_warmup_steps = 10000 # one epoch for languagemodel_lm1b32k_packed = 27200 steps w/ bsize 128 hparams.learning_rate_decay_steps = 27200 hparams.num_heads = 4 hparams.num_blocks = 1 hparams.moe_k = 1 hparams.num_decoder_layers = 6 hparams.label_smoothing = 0. hparams.layer_prepostprocess_dropout = 0.1 hparams.layer_postprocess_sequence = "dan" hparams.layer_preprocess_sequence = "none" hparams.weight_decay = 1e-06 hparams.attention_dropout = 0.1 hparams.optimizer = "Adafactor" hparams.learning_rate_schedule = "linear_warmup*rsqrt_decay*linear_decay" hparams.activation_dtype = "float32" hparams.learning_rate = 0.1 hparams.learning_rate_constant = 1.0 return hparams @registry.register_hparams def transformer_topk_16_packed(): hparams = transformer_base_vq_ada_32ex_packed() hparams.gating_type = "topk" hparams.moe_num_experts = 16 hparams.moe_k = 2 return hparams @registry.register_hparams def transformer_base_vq1_16_nb1_packed_nda_b01_scales(): """Set of hyperparameters.""" hparams = transformer_base_vq_ada_32ex_packed() hparams.use_scales = int(True) hparams.moe_num_experts = 16 hparams.moe_k = 1 hparams.beta = 0.1 hparams.layer_preprocess_sequence = "n" hparams.layer_postprocess_sequence = "da" hparams.ema = False return hparams @registry.register_hparams def transformer_base_vq1_16_nb1_packed_dan_b01_scales(): """Set of hyperparameters.""" hparams = transformer_base_vq_ada_32ex_packed() hparams.use_scales = int(True) hparams.moe_num_experts = 16 hparams.moe_k = 1 hparams.beta = 0.1 hparams.ema = False return hparams @registry.register_hparams def transformer_base_vq1_16_nb1_packed_nda_b01_scales_dialog(): """Set of hyperparameters.""" hparams = transformer_base_vq1_16_nb1_packed_nda_b01_scales() hparams.batch_size = 2048 hparams.max_length = 1024 hparams.filter_size = 3072 return hparams @registry.register_hparams def transformer_ada_lmpackedbase(): """Set of hyperparameters.""" hparams = transformer_base_vq_ada_32ex_packed() hparams.ffn_layer = "dense_relu_dense" return hparams @registry.register_hparams def transformer_ada_lmpackedbase_dialog(): """Set of hyperparameters.""" hparams = transformer_base_vq_ada_32ex_packed() hparams.max_length = 1024 hparams.ffn_layer = "dense_relu_dense" hparams.batch_size = 4096 return hparams @registry.register_hparams def transformer_ada_lmpackedbase_relative(): """Set of hyperparameters.""" hparams = transformer_base_vq_ada_32ex_packed() hparams.ffn_layer = "dense_relu_dense" return hparams @registry.register_hparams def transformer_base_v3(): """Base parameters for Transformer model.""" # Update parameters here, then occasionally cut a versioned set, e.g. # transformer_base_v2. hparams = transformer_base_v2() hparams.optimizer_adam_beta2 = 0.997 # New way of specifying learning rate schedule. # Equivalent to previous version. hparams.learning_rate_schedule = ( "constant*linear_warmup*rsqrt_decay*rsqrt_hidden_size") hparams.learning_rate_constant = 2.0 return hparams @registry.register_hparams def transformer_base(): """Base parameters for Transformer model.""" hparams = transformer_base_v3() return hparams @registry.register_hparams def transformer_big(): """HParams for transformer big model on WMT.""" hparams = transformer_base() hparams.hidden_size = 1024 hparams.filter_size = 4096 # Reduce batch size to 2048 from 4096 to be able to train the model on a GPU # with 12 GB memory. For example, NVIDIA TITAN V GPU. hparams.batch_size = 2048 hparams.num_heads = 16 hparams.layer_prepostprocess_dropout = 0.3 return hparams @registry.register_hparams def transformer_tall(): """Hparams for transformer on LM for pretraining/finetuning/mixing.""" hparams = transformer_base() hparams.batch_size = 2048 hparams.hidden_size = 768 hparams.filter_size = 3072 hparams.num_hidden_layers = 12 hparams.num_heads = 12 hparams.label_smoothing = 0.0 hparams.max_length = 1024 hparams.eval_drop_long_sequences = True hparams.multiproblem_mixing_schedule = "pretrain" hparams.multiproblem_vocab_size = 65536 hparams.clip_grad_norm = 1.0 return hparams @registry.register_hparams def transformer_tall_finetune_tied(): """Tied means fine-tune CNN/DM summarization as LM.""" hparams = transformer_tall() hparams.multiproblem_max_input_length = 750 hparams.multiproblem_max_target_length = 100 hparams.multiproblem_schedule_max_examples = 0 hparams.learning_rate_schedule = ("linear_warmup*constant*cosdecay") hparams.learning_rate_constant = 5e-5 hparams.learning_rate_warmup_steps = 100 # Set train steps to learning_rate_decay_steps or less hparams.learning_rate_decay_steps = 80000 hparams.multiproblem_target_eval_only = True hparams.multiproblem_reweight_label_loss = True hparams.multiproblem_label_weight = 1.0 hparams.optimizer = "true_adam" return hparams @registry.register_hparams def transformer_tall_train_tied(): """Tied means train CNN/DM summarization as LM.""" hparams = transformer_tall() hparams.multiproblem_max_input_length = 750 hparams.multiproblem_max_target_length = 100 hparams.multiproblem_schedule_max_examples = 0 hparams.learning_rate_schedule = ("linear_warmup*constant*cosdecay") hparams.learning_rate_constant = 2e-4 hparams.learning_rate_warmup_steps = 8000 # Set train steps to learning_rate_decay_steps or less hparams.learning_rate_decay_steps = 150000 hparams.multiproblem_target_eval_only = True hparams.multiproblem_reweight_label_loss = True hparams.multiproblem_label_weight = 1.0 hparams.optimizer = "true_adam" return hparams @registry.register_hparams def transformer_tall_finetune_uniencdec(): """Fine-tune CNN/DM with a unidirectional encoder and decoder.""" hparams = transformer_tall() hparams.max_input_seq_length = 750 hparams.max_target_seq_length = 100 hparams.optimizer = "true_adam" hparams.learning_rate_schedule = ("linear_warmup*constant*cosdecay") hparams.learning_rate_decay_steps = 80000 hparams.learning_rate_constant = 5e-5 hparams.learning_rate_warmup_steps = 100 hparams.unidirectional_encoder = True return hparams @registry.register_hparams def transformer_tall_train_uniencdec(): """Train CNN/DM with a unidirectional encoder and decoder.""" hparams = transformer_tall() hparams.max_input_seq_length = 750 hparams.max_target_seq_length = 100 hparams.optimizer = "true_adam" hparams.learning_rate_schedule = ("linear_warmup*constant*cosdecay") hparams.learning_rate_decay_steps = 150000 hparams.learning_rate_constant = 2e-4 hparams.unidirectional_encoder = True return hparams @registry.register_hparams def transformer_tall_finetune_textclass(): """Hparams for transformer on LM for finetuning on text class problems.""" hparams = transformer_tall() hparams.learning_rate_constant = 6.25e-5 hparams.learning_rate_schedule = ("linear_warmup*constant*linear_decay") hparams.multiproblem_schedule_max_examples = 0 hparams.multiproblem_target_eval_only = True hparams.learning_rate_warmup_steps = 50 # Set train steps to learning_rate_decay_steps or less hparams.learning_rate_decay_steps = 25000 hparams.multiproblem_reweight_label_loss = True hparams.multiproblem_label_weight = 0.95 return hparams @registry.register_hparams def transformer_tall_pretrain_lm(): """Hparams for transformer on LM pretraining (with 64k vocab).""" hparams = transformer_tall() hparams.learning_rate_constant = 2e-4 hparams.learning_rate_schedule = ("linear_warmup*constant*cosdecay") hparams.optimizer = "adam_w" hparams.optimizer_adam_beta1 = 0.9 hparams.optimizer_adam_beta2 = 0.999 hparams.optimizer_adam_epsilon = 1e-8 # Set max examples to something big when pretraining only the LM, definitely # something an order of magnitude bigger than number of train steps. hparams.multiproblem_schedule_max_examples = 5e8 # Set train steps to learning_rate_decay_steps or less hparams.learning_rate_decay_steps = 5000000 return hparams @registry.register_hparams def transformer_tall_pretrain_lm_tpu_adafactor(): """Hparams for transformer on LM pretraining (with 64k vocab) on TPU.""" hparams = transformer_tall_pretrain_lm() update_hparams_for_tpu(hparams) hparams.max_length = 1024 # For multi-problem on TPU we need it in absolute examples. hparams.batch_size = 8 hparams.multiproblem_vocab_size = 2**16 return hparams @registry.register_hparams def transformer_tall_pretrain_lm_tpu_adafactor_large(): """Hparams for transformer on LM pretraining on TPU, large model.""" hparams = transformer_tall_pretrain_lm_tpu_adafactor() hparams.hidden_size = 1024 hparams.num_heads = 16 hparams.filter_size = 32768 # max fitting in 16G memory is 49152, batch 2 hparams.batch_size = 4 hparams.multiproblem_mixing_schedule = "constant" # Task order: lm/en-de/en-fr/en-ro/de-en/fr-en/ro-en/cnndm/mnli/squad. hparams.multiproblem_per_task_threshold = "320,80,160,1,80,160,2,20,10,5" return hparams @registry.register_hparams def transformer_tall_pretrain_lm_tpu(): """Hparams for transformer on LM pretraining on TPU with AdamW.""" hparams = transformer_tall_pretrain_lm_tpu_adafactor() # Optimizer gets reset in update_hparams_for_tpu so we set it again here. hparams.learning_rate_constant = 2e-4 hparams.learning_rate_schedule = ("linear_warmup * constant * cosdecay") hparams.optimizer = "adam_w" return hparams @registry.register_hparams def transformer_tall_big(): """Hparams for transformer on LM+MNLI.""" hparams = transformer_tall() hparams.num_hidden_layers = 18 return hparams @registry.register_hparams def transformer_big_single_gpu(): """HParams for transformer big model for single GPU.""" hparams = transformer_big() hparams.layer_prepostprocess_dropout = 0.1 hparams.learning_rate_warmup_steps = 16000 return hparams @registry.register_hparams def transformer_base_single_gpu(): """HParams for transformer base model for single GPU.""" hparams = transformer_base() hparams.batch_size = 1024 hparams.learning_rate_schedule = "constant*linear_warmup*rsqrt_decay" hparams.learning_rate_constant = 0.1 hparams.learning_rate_warmup_steps = 16000 return hparams @registry.register_hparams def transformer_base_multistep8(): """HParams for simulating 8 GPUs with MultistepAdam optimizer.""" hparams = transformer_base() hparams.optimizer = "multistep_adam" hparams.optimizer_multistep_accumulate_steps = 8 return hparams @registry.register_hparams def transformer_parsing_base(): """HParams for parsing on WSJ only.""" hparams = transformer_base() hparams.attention_dropout = 0.2 hparams.layer_prepostprocess_dropout = 0.2 hparams.max_length = 512 hparams.learning_rate_warmup_steps = 16000 hparams.hidden_size = 1024 hparams.learning_rate = 0.05 hparams.shared_embedding_and_softmax_weights = False return hparams @registry.register_hparams def transformer_parsing_big(): """HParams for parsing on WSJ semi-supervised.""" hparams = transformer_big() hparams.max_length = 512 hparams.shared_source_target_embedding = False hparams.learning_rate_warmup_steps = 4000 hparams.layer_prepostprocess_dropout = 0.1 hparams.batch_size = 2048 hparams.learning_rate = 0.05 return hparams @registry.register_hparams def transformer_parsing_ice(): """HParams for parsing and tagging Icelandic text.""" hparams = transformer_base_single_gpu() hparams.batch_size = 4096 hparams.shared_embedding_and_softmax_weights = False return hparams @registry.register_hparams def transformer_tiny(): hparams = transformer_base() hparams.num_hidden_layers = 2 hparams.hidden_size = 128 hparams.filter_size = 512 hparams.num_heads = 4 return hparams @registry.register_hparams def transformer_test(): hparams = transformer_base() hparams.num_hidden_layers = 2 hparams.hidden_size = 16 hparams.filter_size = 8 hparams.num_heads = 2 return hparams @registry.register_hparams def transformer_small(): hparams = transformer_base() hparams.num_hidden_layers = 2 hparams.hidden_size = 256 hparams.filter_size = 1024 hparams.num_heads = 4 return hparams @registry.register_hparams def transformer_l2(): hparams = transformer_base() hparams.num_hidden_layers = 2 return hparams @registry.register_hparams def transformer_l4(): hparams = transformer_base() hparams.num_hidden_layers = 4 return hparams @registry.register_hparams def transformer_l8(): hparams = transformer_base() hparams.num_hidden_layers = 8 return hparams @registry.register_hparams def transformer_l10(): hparams = transformer_base() hparams.num_hidden_layers = 10 return hparams @registry.register_hparams def transformer_h1(): hparams = transformer_base() hparams.num_heads = 1 return hparams @registry.register_hparams def transformer_h4(): hparams = transformer_base() hparams.num_heads = 4 return hparams @registry.register_hparams def transformer_h16(): hparams = transformer_base() hparams.num_heads = 16 return hparams @registry.register_hparams def transformer_h32(): hparams = transformer_base() hparams.num_heads = 32 return hparams @registry.register_hparams def transformer_k128(): hparams = transformer_base() hparams.attention_key_channels = 128 return hparams @registry.register_hparams def transformer_k256(): hparams = transformer_base() hparams.attention_key_channels = 256 return hparams @registry.register_hparams def transformer_ff1024(): hparams = transformer_base() hparams.filter_size = 1024 return hparams @registry.register_hparams def transformer_ff4096(): hparams = transformer_base() hparams.filter_size = 4096 return hparams @registry.register_hparams def transformer_dr0(): hparams = transformer_base() hparams.layer_prepostprocess_dropout = 0.0 return hparams @registry.register_hparams def transformer_dr2(): hparams = transformer_base() hparams.layer_prepostprocess_dropout = 0.2 return hparams @registry.register_hparams def transformer_ls0(): hparams = transformer_base() hparams.label_smoothing = 0.0 return hparams @registry.register_hparams def transformer_ls2(): hparams = transformer_base() hparams.label_smoothing = 0.2 return hparams @registry.register_hparams def transformer_hs256(): hparams = transformer_base() hparams.hidden_size = 256 return hparams @registry.register_hparams def transformer_hs1024(): hparams = transformer_base() hparams.hidden_size = 1024 return hparams @registry.register_hparams def transformer_big_dr1(): hparams = transformer_base() hparams.hidden_size = 1024 hparams.filter_size = 4096 hparams.num_heads = 16 hparams.layer_prepostprocess_dropout = 0.1 return hparams @registry.register_hparams def transformer_big_enfr(): hparams = transformer_big_dr1() hparams.shared_embedding_and_softmax_weights = False hparams.filter_size = 8192 hparams.layer_prepostprocess_dropout = 0.1 return hparams @registry.register_hparams def transformer_big_enfr_tpu(): hparams = transformer_big_enfr() # For performance, use fewer heads so that matrix dimensions are at least 128 hparams.num_heads = 8 update_hparams_for_tpu(hparams) return hparams @registry.register_hparams def transformer_big_dr2(): hparams = transformer_big_dr1() hparams.layer_prepostprocess_dropout = 0.2 return hparams @registry.register_hparams def transformer_parameter_attention_a(): hparams = transformer_base() hparams.ffn_layer = "parameter_attention" hparams.filter_size = 1536 return hparams @registry.register_hparams def transformer_parameter_attention_b(): hparams = transformer_base() hparams.ffn_layer = "parameter_attention" hparams.filter_size = 512 hparams.parameter_attention_key_channels = 1024 hparams.parameter_attention_value_channels = 1024 hparams.num_heads = 16 return hparams @registry.register_hparams def transformer_prepend_v2(): hparams = transformer_base_v2() hparams.prepend_mode = "prepend_inputs_masked_attention" hparams.max_length = 0 return hparams @registry.register_hparams def transformer_prepend_v1(): hparams = transformer_base_v1() hparams.prepend_mode = "prepend_inputs_masked_attention" hparams.max_length = 0 return hparams @registry.register_hparams def transformer_prepend(): return transformer_prepend_v2() @registry.register_ranged_hparams def transformer_base_range(rhp): """Small range of hyperparameters.""" # After starting from base, set intervals for some parameters. rhp.set_float("learning_rate", 0.3, 3.0, scale=rhp.LOG_SCALE) rhp.set_discrete("learning_rate_warmup_steps", [1000, 2000, 4000, 8000, 16000]) rhp.set_float("initializer_gain", 0.5, 2.0) rhp.set_float("optimizer_adam_beta1", 0.85, 0.95) rhp.set_float("optimizer_adam_beta2", 0.97, 0.99) rhp.set_float("weight_decay", 0.0, 1e-4) @registry.register_hparams def transformer_relative(): """Use relative position embeddings instead of absolute position encodings.""" hparams = transformer_base() hparams.pos = None hparams.self_attention_type = "dot_product_relative" hparams.max_relative_position = 20 return hparams @registry.register_hparams def transformer_relative_tiny(): hparams = transformer_relative() hparams.num_hidden_layers = 2 hparams.hidden_size = 128 hparams.filter_size = 512 hparams.num_heads = 4 return hparams @registry.register_hparams def transformer_relative_big(): hparams = transformer_big() hparams.pos = None hparams.self_attention_type = "dot_product_relative" hparams.max_relative_position = 20 return hparams @registry.register_hparams def transformer_timeseries(): hparams = transformer_small() hparams.batch_size = 256 hparams.learning_rate_warmup_steps = 2000 return hparams @registry.register_hparams def transformer_mlperf_tpu(): """HParams for Transformer model on TPU for MLPerf on TPU 2x2.""" hparams = transformer_base_v3() hparams.mlperf_mode = True hparams.symbol_modality_num_shards = 1 hparams.max_length = 256 # ignored when using "_packed" problems hparams.batch_size = 2048 # per-chip batch size matches the reference model hparams.hidden_size = 1024 hparams.filter_size = 4096 hparams.num_heads = 16 hparams.attention_dropout_broadcast_dims = "0,1" # batch, heads hparams.relu_dropout_broadcast_dims = "1" # length hparams.layer_prepostprocess_dropout_broadcast_dims = "1" # length return hparams def update_hparams_for_tpu(hparams): """Change hparams to be compatible with TPU training.""" # Adafactor uses less memory than Adam. # switch to Adafactor with its recommended learning rate scheme. hparams.optimizer = "Adafactor" hparams.learning_rate_schedule = "rsqrt_decay" hparams.learning_rate_warmup_steps = 10000 # Avoid an expensive concat on TPU. # >1 shards helps with faster parameter distribution on multi-GPU machines hparams.symbol_modality_num_shards = 1 # Adaptive batch sizes and sequence lengths are not supported on TPU. # Instead, every batch has the same sequence length and the same batch size. # Longer sequences are dropped and shorter ones are padded. # # It is therefore suggested to use a problem where examples have been combined # to a longer length, e.g. the "_packed" problems. # # For problems with variable sequence lengths, this parameter controls the # maximum sequence length. Shorter sequences are dropped and longer ones # are padded. # # For problems with fixed sequence lengths - e.g. the "_packed" problems, # this hyperparameter is ignored. hparams.max_length = 64 # TPUs have less memory than GPUs, so decrease the batch size if it's too high if hparams.batch_size > 2048: hparams.batch_size = 2048 # Using noise broadcast in the dropout layers saves memory during training. hparams.attention_dropout_broadcast_dims = "0,1" # batch, heads hparams.relu_dropout_broadcast_dims = "1" # length hparams.layer_prepostprocess_dropout_broadcast_dims = "1" # length return hparams @registry.register_hparams def transformer_tpu(): """HParams for Transformer model on TPU.""" hparams = transformer_base() update_hparams_for_tpu(hparams) return hparams @registry.register_hparams def transformer_timeseries_tpu(): """HParams for running Transformer model on timeseries on TPU.""" hparams = transformer_timeseries() update_hparams_for_tpu(hparams) hparams.batch_size = 256 # revert to value set in transformer_timeseries return hparams @registry.register_hparams def transformer_tpu_bf16_activation(): """HParams for Transformer model with BF16 activation on TPU.""" hparams = transformer_tpu() hparams.activation_dtype = "bfloat16" return hparams @registry.register_hparams def transformer_fairseq_fp16_activation_big(): """Hparams intended to mirror those used in arxiv.org/pdf/1806.00187.pdf.""" hparams = transformer_big() hparams.activation_dtype = "float16" hparams.batch_size = 3584 return hparams @registry.register_hparams def transformer_packed_tpu(): """Deprecated alias for transformer_tpu().""" return transformer_tpu() @registry.register_hparams def transformer_big_tpu(): hparams = transformer_big() update_hparams_for_tpu(hparams) return hparams @registry.register_hparams def transformer_tiny_tpu(): hparams = transformer_tiny() update_hparams_for_tpu(hparams) return hparams @registry.register_ranged_hparams def transformer_tiny_tpu_range(rhp): """Small range of hyperparameters.""" rhp.set_float("learning_rate", 0.3, 3.0, scale=rhp.LOG_SCALE) rhp.set_float("weight_decay", 0.0, 2.0) @registry.register_ranged_hparams def transformer_tpu_range(rhp): """Small range of hyperparameters.""" # After starting from base, set intervals for some parameters. rhp.set_float("learning_rate", 0.3, 3.0, scale=rhp.LOG_SCALE) rhp.set_discrete("learning_rate_warmup_steps", [1000, 2000, 4000, 8000, 16000]) rhp.set_float("initializer_gain", 0.5, 2.0) rhp.set_float("optimizer_adam_beta1", 0.85, 0.95) rhp.set_float("optimizer_adam_beta2", 0.97, 0.99) rhp.set_float("weight_decay", 0.0, 2.0) @registry.register_hparams def transformer_small_tpu(): """TPU-friendly version of transformer_small. Returns: an hparams object. """ hparams = transformer_small() update_hparams_for_tpu(hparams) return hparams @registry.register_hparams def transformer_clean(): """No dropout, label smoothing, max_length.""" hparams = transformer_base_v2() hparams.label_smoothing = 0.0 hparams.layer_prepostprocess_dropout = 0.0 hparams.attention_dropout = 0.0 hparams.relu_dropout = 0.0 hparams.max_length = 0 return hparams @registry.register_hparams def transformer_clean_big(): hparams = transformer_clean() hparams.hidden_size = 1024 hparams.filter_size = 4096 return hparams @registry.register_hparams def transformer_clean_big_tpu(): hparams = transformer_clean_big() update_hparams_for_tpu(hparams) return hparams @registry.register_hparams def transformer_tpu_with_conv(): """Cut down on the number of heads, and use convs instead.""" hparams = transformer_tpu() hparams.num_heads = 4 # Heads are expensive on TPUs. hparams.ffn_layer = "conv_relu_conv" return hparams @registry.register_hparams def transformer_lm_tpu_0(): """HParams for training languagemodel_lm1b8k on tpu. 92M Params.""" hparams = transformer_clean_big() update_hparams_for_tpu(hparams) hparams.num_heads = 4 # Heads are expensive on TPUs. hparams.batch_size = 4096 hparams.shared_embedding_and_softmax_weights = False hparams.layer_prepostprocess_dropout = 0.1 return hparams @registry.register_hparams def transformer_lm_tpu_1(): """HParams for training languagemodel_lm1b8k on tpu. 335M Params.""" hparams = transformer_lm_tpu_0() hparams.hidden_size = 2048 hparams.filter_size = 8192 return hparams @registry.register_hparams def transformer_librispeech_v1(): """HParams for training ASR model on LibriSpeech V1.""" hparams = transformer_base() hparams.num_heads = 4 hparams.filter_size = 1024 hparams.hidden_size = 256 hparams.num_encoder_layers = 5 hparams.num_decoder_layers = 3 hparams.learning_rate = 0.15 hparams.batch_size = 6000000 librispeech.set_librispeech_length_hparams(hparams) return hparams @registry.register_hparams def transformer_librispeech_v2(): """HParams for training ASR model on LibriSpeech V2.""" hparams = transformer_base() hparams.max_length = 1240000 hparams.max_input_seq_length = 1550 hparams.max_target_seq_length = 350 hparams.batch_size = 16 hparams.num_decoder_layers = 4 hparams.num_encoder_layers = 6 hparams.hidden_size = 384 hparams.learning_rate = 0.15 hparams.daisy_chain_variables = False hparams.filter_size = 1536 hparams.num_heads = 2 hparams.ffn_layer = "conv_relu_conv" hparams.conv_first_kernel = 9 hparams.weight_decay = 0 hparams.layer_prepostprocess_dropout = 0.2 hparams.relu_dropout = 0.2 return hparams @registry.register_hparams def transformer_librispeech_tpu_v1(): """HParams for training ASR model on Librispeech on TPU v1.""" hparams = transformer_librispeech_v1() update_hparams_for_tpu(hparams) hparams.batch_size = 16 librispeech.set_librispeech_length_hparams(hparams) return hparams @registry.register_hparams def transformer_librispeech_tpu_v2(): """HParams for training ASR model on Librispeech on TPU v2.""" hparams = transformer_librispeech_v2() update_hparams_for_tpu(hparams) hparams.batch_size = 16 librispeech.set_librispeech_length_hparams(hparams) return hparams @registry.register_hparams def transformer_librispeech(): """HParams for training ASR model on Librispeech.""" return transformer_librispeech_v2() @registry.register_hparams def transformer_librispeech_tpu(): """HParams for training ASR model on Librispeech on TPU.""" return transformer_librispeech_tpu_v2() @registry.register_hparams def transformer_common_voice(): """HParams for training ASR model on Mozilla Common Voice.""" return transformer_librispeech() @registry.register_hparams def transformer_common_voice_tpu(): """HParams for training ASR model on Mozilla Common Voice on TPU.""" hparams = transformer_librispeech_tpu() hparams.batch_size = 8 return hparams @registry.register_hparams def transformer_supervised_attention(): """HParams for supervised attention problems.""" hparams = transformer_base() # Attention loss type (KL-divergence or MSE). hparams.add_hparam("expected_attention_loss_type", "kl_divergence") # Multiplier to the encoder-decoder expected attention loss. hparams.add_hparam("expected_attention_loss_multiplier", 1.0) return hparams @registry.register_hparams def transformer_tpu_1b(): """Hparams for machine translation with ~1.1B parameters.""" hparams = transformer_tpu() hparams.hidden_size = 2048 hparams.filter_size = 8192 hparams.num_hidden_layers = 8 # smaller batch size to avoid OOM hparams.batch_size = 1024 hparams.activation_dtype = "bfloat16" hparams.weight_dtype = "bfloat16" # maximize number of parameters relative to computation by not sharing. hparams.shared_embedding_and_softmax_weights = False return hparams @registry.register_hparams def transformer_wikitext103_l4k_v0(): """HParams for training languagemodel_wikitext103_l4k.""" hparams = transformer_big() # Adafactor uses less memory than Adam. # switch to Adafactor with its recommended learning rate scheme. hparams.optimizer = "Adafactor" hparams.learning_rate_schedule = "rsqrt_decay" hparams.learning_rate_warmup_steps = 10000 hparams.num_heads = 4 hparams.max_length = 4096 hparams.batch_size = 4096 hparams.shared_embedding_and_softmax_weights = False hparams.num_hidden_layers = 8 hparams.attention_dropout = 0.1 hparams.layer_prepostprocess_dropout = 0.2 hparams.relu_dropout = 0.1 hparams.label_smoothing = 0.0 # Using noise broadcast in the dropout layers saves memory during training. hparams.attention_dropout_broadcast_dims = "0,1" # batch, heads hparams.relu_dropout_broadcast_dims = "1" # length hparams.layer_prepostprocess_dropout_broadcast_dims = "1" # length # Avoid an expensive concat on TPU. # >1 shards helps with faster parameter distribution on multi-GPU machines hparams.symbol_modality_num_shards = 1 return hparams @registry.register_hparams def transformer_wikitext103_l4k_memory_v0(): """HParams for training languagemodel_wikitext103_l4k with memory.""" hparams = transformer_wikitext103_l4k_v0() hparams.split_targets_chunk_length = 64 hparams.split_targets_max_chunks = 64 hparams.split_targets_strided_training = True hparams.add_hparam("memory_type", "transformer_xl") # The hparams specify batch size *before* chunking, but we want to have a # consistent 4K batch size *after* chunking to fully utilize the hardware. target_tokens_per_batch = 4096 hparams.batch_size = int(target_tokens_per_batch * ( hparams.max_length / hparams.split_targets_chunk_length)) # 262144 hparams.pos = None hparams.self_attention_type = "dot_product_relative" hparams.max_relative_position = 2 * hparams.split_targets_chunk_length hparams.add_hparam("unconditional", True) hparams.add_hparam("recurrent_memory_batch_size", 0) # 0 = try to guess # By default, cache one chunk only (like Transformer-XL) hparams.add_hparam("num_memory_items", hparams.split_targets_chunk_length) return hparams @registry.register_hparams def transformer_wikitext103_l16k_memory_v0(): """HParams for training languagemodel_wikitext103_l16k with memory.""" hparams = transformer_wikitext103_l4k_memory_v0() hparams.max_length = 16384 hparams.split_targets_chunk_length = 64 hparams.split_targets_max_chunks = int( hparams.max_length / hparams.split_targets_chunk_length) # The hparams specify batch size *before* chunking, but we want to have a # consistent 4K batch size *after* chunking to fully utilize the hardware. target_tokens_per_batch = 4096 hparams.batch_size = int(target_tokens_per_batch * ( hparams.max_length / hparams.split_targets_chunk_length)) hparams.max_relative_position = 2 * hparams.split_targets_chunk_length return hparams @registry.register_hparams def transformer_cifar10_memory_v0(): """HParams for training image_cifar10_plain_gen_flat_rev with memory.""" hparams = transformer_wikitext103_l4k_memory_v0() hparams.num_hidden_layers = 6 hparams.max_length = 32 * 32 * 3 hparams.split_targets_chunk_length = 64 * 3 hparams.split_targets_max_chunks = int( hparams.max_length / hparams.split_targets_chunk_length) hparams.num_memory_items = 128 * 3 # Since this is an image problem, batch size refers to examples (not tokens) target_images_per_batch = 4 hparams.batch_size = int(target_images_per_batch * ( hparams.max_length / hparams.split_targets_chunk_length)) # The recurrent memory needs to know the actual batch size (in sequences) hparams.recurrent_memory_batch_size = hparams.batch_size hparams.max_relative_position = ( hparams.num_memory_items + hparams.split_targets_chunk_length) return hparams @registry.register_hparams def transformer_imagenet64_memory_v0(): """HParams for training image_imagenet64_gen_flat_rev with memory.""" hparams = transformer_cifar10_memory_v0() hparams.max_length = 64 * 64 * 3 hparams.split_targets_chunk_length = 64 * 3 hparams.split_targets_max_chunks = int( hparams.max_length / hparams.split_targets_chunk_length) hparams.num_memory_items = 128 * 3 # Since this is an image problem, batch size refers to examples (not tokens) target_images_per_batch = 2 hparams.batch_size = int(target_images_per_batch * ( hparams.max_length / hparams.split_targets_chunk_length)) # The recurrent memory needs to know the actual batch size (in sequences) hparams.recurrent_memory_batch_size = hparams.batch_size hparams.max_relative_position = 3072 return hparams
ae0708cc0342891c5fb01dace708ffbc954432d3
e23a4f57ce5474d468258e5e63b9e23fb6011188
/021_module_collection/namedtuple/_exercises/namedtuple_002_Other Ways to Specify Field Names_template.py
49045eb80045bf9453e1f2c3957cb3e8c0bb1e29
[]
no_license
syurskyi/Python_Topics
52851ecce000cb751a3b986408efe32f0b4c0835
be331826b490b73f0a176e6abed86ef68ff2dd2b
refs/heads/master
2023-06-08T19:29:16.214395
2023-05-29T17:09:11
2023-05-29T17:09:11
220,583,118
3
2
null
2023-02-16T03:08:10
2019-11-09T02:58:47
Python
UTF-8
Python
false
false
1,796
py
# from collections ____ n_t_ # # # Other Ways to Specify Field Names # # There are a number of ways we can specify the field names for the named tuple: # # we can provide a sequence of strings containing each property name # # we can provide a single string with property names separated by whitespace or a comma # # Circle _ n_t_('Circle' 'center_x' 'center_y' 'radius' # circle_1 _ C_ 0 0 10 # circle_2 _ C_ c._x_10 c._y_20 r.._100 # print c_1 # # Circle(center_x=0, center_y=0, radius=10) # # print c.._2 # # Circle(center_x=10, center_y=20, radius=100) # # # Or we can do it this way: # # City _ n_t_ 'City' 'name country population' # new_york _ C__ 'New York' 'USA' 8_500_000 # print(n._y. # # City(name='New York', country='USA', population=8500000) # # # This would work equally well: # # Stock _ n_t_ 'Stock' 'symbol, year, month, day, open, high, low, close' # djia _ S.. 'DJIA', 2018, 1, 25, 26_313, 26_458, 26_260, 26_393 # print d... # # Stock(symbol='DJIA', year=2018, month=1, day=25, open=26313, high=26458, low=26260, close=26393) # # # In fact, since whitespace can be used we can even use a multi-line string! # # Stock _ n_t_ 'Stock', '''symbol # year month day # open high low close''' # djia _ S__ 'DJIA', 2018, 1, 25, 26_313, 26_458, 26_260, 26_393 # print d.. # # Stock(symbol='DJIA', year=2018, month=1, day=25, open=26313, high=26458, low=26260, close=26393) # # # Accessing Items in a Named Tuple # # The major advantage of named tuples are that, as the name suggests, we can access the properties (fields) # # of the tuple by name: # # # pt1 # ERROR NameError: name 'pt1' is not defined # # pt1.x # # 10 # # print c.._1 # # Circle(center_x=0, center_y=0, radius=10) # # print c.._1.r.. # # 10 #
40ad9596e5995a4fe0ac18d2fdc15a8855e1aa5a
bd62843278ffc297ef8f6d75a931f1f4ca4caaa7
/exercises/friends_family/ff_dictionary/friends_dk_mod.py
e7db5bf1184a32c5d7919883f7ca191f03d5850c
[]
no_license
raysmith619/Introduction-To-Programming
d3bae042b4fc17bd56e8631a4d660233d8cd165b
bedc16eb5f6db0ad3b313355df6d51b5161c3835
refs/heads/master
2023-07-19T08:43:41.229893
2023-07-15T19:22:28
2023-07-15T19:22:28
132,622,195
3
0
null
null
null
null
UTF-8
Python
false
false
4,228
py
#friends_dk_mod.py 13Oct2020 crs # Adapted from friends_mod.py """ A friends "module" which can be used by other programs via from friends_mod import * """ my_friends = {} # Initialize dictionary of friends(names) as an empty list def list_friends(): """ list friends """ nf = 0 # Count of number listed so far print("friends: ", end="") for fr_name in my_friends: if nf > 0: print(", ", end="") # Separate after first print(fr_name, end="") # On one line nf += 1 print() # Add newline end of list def test_list_friends(): """ Testing list_friends """ global my_friends # REQUIRED to allow us to modify # variable outside function print("\n=============\ntest_list_friends") my_friends = {"fa":1, "fb":1, "fc": 1} list_friends() def add_one_friend(friend): """ Adds one friend to our list :friend: friend's name """ global my_friends # REQUIRED to allow us to modify # variable outside function print("add_one_friend(", friend, ")", sep="") my_friends[friend] = friend # Add to list (replaces) list_friends() def add_friends(*friends): """ Add zero or more friends :*friends: zero or more friend names """ print("\nadd_friends(", *friends, ")") # passing on list to print for friend in friends: # comma separated args become list add_one_friend(friend) def is_friend(possible): """ Check if possible is a friend, that is in my_friends :possible: name of possible friend :returns: True if possible is a friend """ if possible in my_friends: return True # possible is in list return False # Not in list """ Do testing """ def test_add_one_friend(): """ Test, or atleast exercise, add_one_friend function """ global my_friends # REQUIRED to allow us to modify # variable outside function print("\n=============\ntest_add_one_friend") my_friends = {} # Start test with empty add_one_friend("tom") add_one_friend("joe") def test_add_friends(): """ Test, or atleast exercise, add_one_friend function """ global my_friends # REQUIRED to allow us to modify # variable outside function print("\n=============\ntest_add_friends()") my_friends = {} # Start test with empty add_friends("tom") add_friends("joe", "mary", "ray") def test_is_friend_ck(possible, expect=True): """ Helper function check if test passes :possible: possible friend :expect: expected value (True,False) default: True if not present """ print("test_is_friend_ck:", possible, "expect=", expect, end="") result = is_friend(possible) if result == expect: print(" Passed Test") else: print(" FAILED Test result=", result, "expected=", expect) def test_is_friend(): """ Test is_friend function """ global my_friends # REQUIRED to allow us to modify # variable outside function print("\n=============\ntest_is_friend()") print("Set up friends list") my_friends = {} # Start test with empty add_friends("joe", "mary", "ray") print("Check function") test_is_friend_ck("joe") # Check if True as expected test_is_friend_ck("marty", expect=False) # Check if False test_is_friend_ck("mary", expect=True) # Ck if True explicit print("Test the testing - this should fail the test.") test_is_friend_ck("alex") # Should fail this! """ This type of test can be placed in a module to facilitate "self-testing" because it gets executed if/when the file gets run by itself """ if __name__ == "__main__": print("Self test", __file__) test_list_friends() test_add_one_friend() test_add_friends() test_is_friend()
a125fabf6f8c28a59be672821e363432a14a3230
7b34cecc88b257752af3682ce198adb529f22f52
/httoop/codecs/text/html.py
7afddd060b630b351f19a225b0bf9d040b9adc0b
[ "MIT" ]
permissive
spaceone/httoop
c6a3c61f6b01804fa004e3ea1d46c5417b110f08
bd170d5de030ff855d76b688f3e9d9d4f717a30a
refs/heads/master
2023-01-05T18:36:09.904939
2023-01-03T20:57:56
2023-01-03T20:57:56
9,329,173
17
10
null
2015-06-20T21:55:10
2013-04-09T19:02:18
HTML
UTF-8
Python
false
false
107
py
# -*- coding: utf-8 -*- from httoop.codecs.codec import Codec class HTML(Codec): mimetype = 'text/html'
de46d2d1fb94ab7a5c96224c56459fe16cb981cf
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02716/s082816838.py
81eab4bb1d4a40d68a77f483f2899018f648da49
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
529
py
N = int(input()) A = list(map(int, input().split())) DP_odd = [0, 0, A[0]] DP_even = [0, max(A[0], A[1])] if N >= 3: DP_odd = [DP_even[0], max(DP_odd[1] + A[2], DP_even[1]), DP_odd[2] + A[2]] for i in range(3, N): if (i + 1) % 2 == 1: DP_odd = [max(DP_odd[0] + A[i], DP_even[0]), max(DP_odd[1] + A[i], DP_even[1]), DP_odd[2] + A[i]] else: DP_even = [max(DP_even[0] + A[i], DP_odd[1]), max(DP_even[1] + A[i], DP_odd[2])] if N % 2 == 1: ans = DP_odd[1] else: ans = DP_even[1] print(ans)
7840fe7574a34dded1c942db0fb65b5a62ba8699
ed10dc841d5b4f6a038e8f24f603750992d9fae9
/lldb/test/API/commands/settings/TestSettings.py
23f4de05ea0cb8f300266e31b0d8010f1e670d70
[ "NCSA", "Apache-2.0", "LLVM-exception" ]
permissive
WYK15/swift-Ollvm10
90c2f0ade099a1cc545183eba5c5a69765320401
ea68224ab23470963b68dfcc28b5ac769a070ea3
refs/heads/main
2023-03-30T20:02:58.305792
2021-04-07T02:41:01
2021-04-07T02:41:01
355,189,226
5
0
null
null
null
null
UTF-8
Python
false
false
32,795
py
""" Test lldb settings command. """ import os import re import lldb from lldbsuite.test.decorators import * from lldbsuite.test.lldbtest import * from lldbsuite.test import lldbutil class SettingsCommandTestCase(TestBase): mydir = TestBase.compute_mydir(__file__) NO_DEBUG_INFO_TESTCASE = True def test_apropos_should_also_search_settings_description(self): """Test that 'apropos' command should also search descriptions for the settings variables.""" self.expect("apropos 'environment variable'", substrs=["target.env-vars", "environment variables", "executable's environment"]) def test_append_target_env_vars(self): """Test that 'append target.run-args' works.""" # Append the env-vars. self.runCmd('settings append target.env-vars MY_ENV_VAR=YES') # And add hooks to restore the settings during tearDown(). self.addTearDownHook( lambda: self.runCmd("settings clear target.env-vars")) # Check it immediately! self.expect('settings show target.env-vars', substrs=['MY_ENV_VAR=YES']) def test_insert_before_and_after_target_run_args(self): """Test that 'insert-before/after target.run-args' works.""" # Set the run-args first. self.runCmd('settings set target.run-args a b c') # And add hooks to restore the settings during tearDown(). self.addTearDownHook( lambda: self.runCmd("settings clear target.run-args")) # Now insert-before the index-0 element with '__a__'. self.runCmd('settings insert-before target.run-args 0 __a__') # And insert-after the index-1 element with '__A__'. self.runCmd('settings insert-after target.run-args 1 __A__') # Check it immediately! self.expect('settings show target.run-args', substrs=['target.run-args', '[0]: "__a__"', '[1]: "a"', '[2]: "__A__"', '[3]: "b"', '[4]: "c"']) @expectedFailureAll(oslist=["windows"], bugnumber="llvm.org/pr44430") def test_replace_target_run_args(self): """Test that 'replace target.run-args' works.""" # Set the run-args and then replace the index-0 element. self.runCmd('settings set target.run-args a b c') # And add hooks to restore the settings during tearDown(). self.addTearDownHook( lambda: self.runCmd("settings clear target.run-args")) # Now replace the index-0 element with 'A', instead. self.runCmd('settings replace target.run-args 0 A') # Check it immediately! self.expect('settings show target.run-args', substrs=['target.run-args (arguments) =', '[0]: "A"', '[1]: "b"', '[2]: "c"']) def test_set_prompt(self): """Test that 'set prompt' actually changes the prompt.""" # Set prompt to 'lldb2'. self.runCmd("settings set prompt 'lldb2 '") # Immediately test the setting. self.expect("settings show prompt", SETTING_MSG("prompt"), startstr='prompt (string) = "lldb2 "') # The overall display should also reflect the new setting. self.expect("settings show", SETTING_MSG("prompt"), substrs=['prompt (string) = "lldb2 "']) # Use '-r' option to reset to the original default prompt. self.runCmd("settings clear prompt") def test_set_term_width(self): """Test that 'set term-width' actually changes the term-width.""" self.runCmd("settings set term-width 70") # Immediately test the setting. self.expect("settings show term-width", SETTING_MSG("term-width"), startstr="term-width (int) = 70") # The overall display should also reflect the new setting. self.expect("settings show", SETTING_MSG("term-width"), substrs=["term-width (int) = 70"]) # rdar://problem/10712130 @skipIf(oslist=["windows"], bugnumber="llvm.org/pr44431") def test_set_frame_format(self): """Test that 'set frame-format' with a backtick char in the format string works as well as fullpath.""" self.build() exe = self.getBuildArtifact("a.out") self.runCmd("file " + exe, CURRENT_EXECUTABLE_SET) def cleanup(): self.runCmd( "settings set frame-format %s" % self.format_string, check=False) # Execute the cleanup function during test case tear down. self.addTearDownHook(cleanup) self.runCmd("settings show frame-format") m = re.match( '^frame-format \(format-string\) = "(.*)\"$', self.res.GetOutput()) self.assertTrue(m, "Bad settings string") self.format_string = m.group(1) # Change the default format to print function.name rather than # function.name-with-args format_string = "frame #${frame.index}: ${frame.pc}{ ${module.file.basename}\`${function.name}{${function.pc-offset}}}{ at ${line.file.fullpath}:${line.number}}{, lang=${language}}\n" self.runCmd("settings set frame-format %s" % format_string) # Immediately test the setting. self.expect("settings show frame-format", SETTING_MSG("frame-format"), substrs=[format_string]) self.runCmd("breakpoint set -n main") self.runCmd("process launch --working-dir '{0}'".format(self.get_process_working_directory()), RUN_SUCCEEDED) self.expect("thread backtrace", substrs=["`main", self.getSourceDir()]) def test_set_auto_confirm(self): """Test that after 'set auto-confirm true', manual confirmation should not kick in.""" self.build() exe = self.getBuildArtifact("a.out") self.runCmd("file " + exe, CURRENT_EXECUTABLE_SET) self.runCmd("settings set auto-confirm true") # Immediately test the setting. self.expect("settings show auto-confirm", SETTING_MSG("auto-confirm"), startstr="auto-confirm (boolean) = true") # Now 'breakpoint delete' should just work fine without confirmation # prompt from the command interpreter. self.runCmd("breakpoint set -n main") self.expect("breakpoint delete", startstr="All breakpoints removed") # Restore the original setting of auto-confirm. self.runCmd("settings clear auto-confirm") self.expect("settings show auto-confirm", SETTING_MSG("auto-confirm"), startstr="auto-confirm (boolean) = false") @skipIf(archs=no_match(['x86_64', 'i386', 'i686'])) def test_disassembler_settings(self): """Test that user options for the disassembler take effect.""" self.build() exe = self.getBuildArtifact("a.out") self.runCmd("file " + exe, CURRENT_EXECUTABLE_SET) # AT&T syntax self.runCmd("settings set target.x86-disassembly-flavor att") self.runCmd("settings set target.use-hex-immediates false") self.expect("disassemble -n numberfn", substrs=["$90"]) self.runCmd("settings set target.use-hex-immediates true") self.runCmd("settings set target.hex-immediate-style c") self.expect("disassemble -n numberfn", substrs=["$0x5a"]) self.runCmd("settings set target.hex-immediate-style asm") self.expect("disassemble -n numberfn", substrs=["$5ah"]) # Intel syntax self.runCmd("settings set target.x86-disassembly-flavor intel") self.runCmd("settings set target.use-hex-immediates false") self.expect("disassemble -n numberfn", substrs=["90"]) self.runCmd("settings set target.use-hex-immediates true") self.runCmd("settings set target.hex-immediate-style c") self.expect("disassemble -n numberfn", substrs=["0x5a"]) self.runCmd("settings set target.hex-immediate-style asm") self.expect("disassemble -n numberfn", substrs=["5ah"]) @skipIfDarwinEmbedded # <rdar://problem/34446098> debugserver on ios etc can't write files def test_run_args_and_env_vars(self): self.do_test_run_args_and_env_vars(use_launchsimple=False) @skipIfDarwinEmbedded # <rdar://problem/34446098> debugserver on ios etc can't write files def test_launchsimple_args_and_env_vars(self): self.do_test_run_args_and_env_vars(use_launchsimple=True) def do_test_run_args_and_env_vars(self, use_launchsimple): """Test that run-args and env-vars are passed to the launched process.""" self.build() # Set the run-args and the env-vars. # And add hooks to restore the settings during tearDown(). self.runCmd('settings set target.run-args A B C') self.addTearDownHook( lambda: self.runCmd("settings clear target.run-args")) self.runCmd('settings set target.env-vars ["MY_ENV_VAR"]=YES') self.addTearDownHook( lambda: self.runCmd("settings clear target.env-vars")) exe = self.getBuildArtifact("a.out") self.runCmd("file " + exe, CURRENT_EXECUTABLE_SET) target = self.dbg.GetTargetAtIndex(0) launch_info = target.GetLaunchInfo() found_env_var = False for i in range(0, launch_info.GetNumEnvironmentEntries()): if launch_info.GetEnvironmentEntryAtIndex(i) == "MY_ENV_VAR=YES": found_env_var = True break self.assertTrue(found_env_var, "MY_ENV_VAR was not set in LunchInfo object") self.expect( 'target show-launch-environment', substrs=["MY_ENV_VAR=YES"]) wd = self.get_process_working_directory() if use_launchsimple: process = target.LaunchSimple(None, None, wd) self.assertTrue(process) else: self.runCmd("process launch --working-dir '{0}'".format(wd), RUN_SUCCEEDED) # Read the output file produced by running the program. output = lldbutil.read_file_from_process_wd(self, "output2.txt") self.expect( output, exe=False, substrs=[ "argv[1] matches", "argv[2] matches", "argv[3] matches", "Environment variable 'MY_ENV_VAR' successfully passed."]) # Check that env-vars overrides unset-env-vars. self.runCmd('settings set target.unset-env-vars MY_ENV_VAR') self.expect( 'target show-launch-environment', 'env-vars overrides unset-env-vars', substrs=["MY_ENV_VAR=YES"]) wd = self.get_process_working_directory() if use_launchsimple: process = target.LaunchSimple(None, None, wd) self.assertTrue(process) else: self.runCmd("process launch --working-dir '{0}'".format(wd), RUN_SUCCEEDED) # Read the output file produced by running the program. output = lldbutil.read_file_from_process_wd(self, "output2.txt") self.expect( output, exe=False, substrs=[ "Environment variable 'MY_ENV_VAR' successfully passed."]) @skipIfRemote # it doesn't make sense to send host env to remote target def test_pass_host_env_vars(self): """Test that the host env vars are passed to the launched process.""" self.build() # Set some host environment variables now. os.environ["MY_HOST_ENV_VAR1"] = "VAR1" os.environ["MY_HOST_ENV_VAR2"] = "VAR2" # This is the function to unset the two env variables set above. def unset_env_variables(): os.environ.pop("MY_HOST_ENV_VAR1") os.environ.pop("MY_HOST_ENV_VAR2") self.addTearDownHook(unset_env_variables) exe = self.getBuildArtifact("a.out") self.runCmd("file " + exe, CURRENT_EXECUTABLE_SET) # By default, inherit-env is 'true'. self.expect( 'settings show target.inherit-env', "Default inherit-env is 'true'", startstr="target.inherit-env (boolean) = true") self.expect( 'target show-launch-environment', 'Host environment is passed correctly', substrs=['MY_HOST_ENV_VAR1=VAR1', 'MY_HOST_ENV_VAR2=VAR2']) self.runCmd("process launch --working-dir '{0}'".format(self.get_process_working_directory()), RUN_SUCCEEDED) # Read the output file produced by running the program. output = lldbutil.read_file_from_process_wd(self, "output1.txt") self.expect( output, exe=False, substrs=[ "The host environment variable 'MY_HOST_ENV_VAR1' successfully passed.", "The host environment variable 'MY_HOST_ENV_VAR2' successfully passed."]) # Now test that we can prevent the inferior from inheriting the # environment. self.runCmd('settings set target.inherit-env false') self.expect( 'target show-launch-environment', 'target.inherit-env affects `target show-launch-environment`', matching=False, substrs = ['MY_HOST_ENV_VAR1=VAR1', 'MY_HOST_ENV_VAR2=VAR2']) self.runCmd("process launch --working-dir '{0}'".format(self.get_process_working_directory()), RUN_SUCCEEDED) # Read the output file produced by running the program. output = lldbutil.read_file_from_process_wd(self, "output1.txt") self.expect( output, exe=False, matching=False, substrs=[ "The host environment variable 'MY_HOST_ENV_VAR1' successfully passed.", "The host environment variable 'MY_HOST_ENV_VAR2' successfully passed."]) # Now test that we can unset variables from the inherited environment. self.runCmd('settings set target.inherit-env true') self.runCmd('settings set target.unset-env-vars MY_HOST_ENV_VAR1') self.runCmd("process launch --working-dir '{0}'".format(self.get_process_working_directory()), RUN_SUCCEEDED) # Read the output file produced by running the program. output = lldbutil.read_file_from_process_wd(self, "output1.txt") self.expect( 'target show-launch-environment', 'MY_HOST_ENV_VAR1 is unset, it shouldn\'t be in `target show-launch-environment`', matching=False, substrs = ['MY_HOST_ENV_VAR1=VAR1']) self.expect( 'target show-launch-environment', 'MY_HOST_ENV_VAR2 shouldn be in `target show-launch-environment`', substrs = ['MY_HOST_ENV_VAR2=VAR2']) self.expect( output, exe=False, matching=False, substrs=[ "The host environment variable 'MY_HOST_ENV_VAR1' successfully passed."]) self.expect( output, exe=False, substrs=[ "The host environment variable 'MY_HOST_ENV_VAR2' successfully passed."]) @skipIfDarwinEmbedded # <rdar://problem/34446098> debugserver on ios etc can't write files def test_set_error_output_path(self): """Test that setting target.error/output-path for the launched process works.""" self.build() exe = self.getBuildArtifact("a.out") self.runCmd("file " + exe, CURRENT_EXECUTABLE_SET) # Set the error-path and output-path and verify both are set. self.runCmd("settings set target.error-path '{0}'".format( lldbutil.append_to_process_working_directory(self, "stderr.txt"))) self.runCmd("settings set target.output-path '{0}".format( lldbutil.append_to_process_working_directory(self, "stdout.txt"))) # And add hooks to restore the original settings during tearDown(). self.addTearDownHook( lambda: self.runCmd("settings clear target.output-path")) self.addTearDownHook( lambda: self.runCmd("settings clear target.error-path")) self.expect("settings show target.error-path", SETTING_MSG("target.error-path"), substrs=['target.error-path (file)', 'stderr.txt"']) self.expect("settings show target.output-path", SETTING_MSG("target.output-path"), substrs=['target.output-path (file)', 'stdout.txt"']) self.runCmd("process launch --working-dir '{0}'".format(self.get_process_working_directory()), RUN_SUCCEEDED) output = lldbutil.read_file_from_process_wd(self, "stderr.txt") message = "This message should go to standard error." if lldbplatformutil.hasChattyStderr(self): self.expect(output, exe=False, substrs=[message]) else: self.expect(output, exe=False, startstr=message) output = lldbutil.read_file_from_process_wd(self, "stdout.txt") self.expect(output, exe=False, startstr="This message should go to standard out.") def test_print_dictionary_setting(self): self.runCmd("settings clear target.env-vars") self.runCmd("settings set target.env-vars [\"MY_VAR\"]=some-value") self.expect("settings show target.env-vars", substrs=["MY_VAR=some-value"]) self.runCmd("settings clear target.env-vars") def test_print_array_setting(self): self.runCmd("settings clear target.run-args") self.runCmd("settings set target.run-args gobbledy-gook") self.expect("settings show target.run-args", substrs=['[0]: "gobbledy-gook"']) self.runCmd("settings clear target.run-args") def test_settings_with_quotes(self): self.runCmd("settings clear target.run-args") self.runCmd("settings set target.run-args a b c") self.expect("settings show target.run-args", substrs=['[0]: "a"', '[1]: "b"', '[2]: "c"']) self.runCmd("settings set target.run-args 'a b c'") self.expect("settings show target.run-args", substrs=['[0]: "a b c"']) self.runCmd("settings clear target.run-args") self.runCmd("settings clear target.env-vars") self.runCmd( 'settings set target.env-vars ["MY_FILE"]="this is a file name with spaces.txt"') self.expect("settings show target.env-vars", substrs=['MY_FILE=this is a file name with spaces.txt']) self.runCmd("settings clear target.env-vars") # Test and make sure that setting "format-string" settings obeys quotes # if they are provided self.runCmd("settings set thread-format 'abc def' ") self.expect("settings show thread-format", 'thread-format (format-string) = "abc def"') self.runCmd('settings set thread-format "abc def" ') self.expect("settings show thread-format", 'thread-format (format-string) = "abc def"') # Make sure when no quotes are provided that we maintain any trailing # spaces self.runCmd('settings set thread-format abc def ') self.expect("settings show thread-format", 'thread-format (format-string) = "abc def "') self.runCmd('settings clear thread-format') @expectedFailureAll(oslist=["windows"], bugnumber="llvm.org/pr44430") def test_settings_with_trailing_whitespace(self): # boolean # Set to known value self.runCmd("settings set target.skip-prologue true") # Set to new value with trailing whitespace self.runCmd("settings set target.skip-prologue false ") # Make sure the setting was correctly set to "false" self.expect( "settings show target.skip-prologue", SETTING_MSG("target.skip-prologue"), startstr="target.skip-prologue (boolean) = false") self.runCmd("settings clear target.skip-prologue", check=False) # integer self.runCmd("settings set term-width 70") # Set to known value # Set to new value with trailing whitespaces self.runCmd("settings set term-width 60 \t") self.expect("settings show term-width", SETTING_MSG("term-width"), startstr="term-width (int) = 60") self.runCmd("settings clear term-width", check=False) # string self.runCmd("settings set target.arg0 abc") # Set to known value # Set to new value with trailing whitespaces self.runCmd("settings set target.arg0 cde\t ") self.expect("settings show target.arg0", SETTING_MSG("target.arg0"), startstr='target.arg0 (string) = "cde"') self.runCmd("settings clear target.arg0", check=False) # file path1 = self.getBuildArtifact("path1.txt") path2 = self.getBuildArtifact("path2.txt") self.runCmd( "settings set target.output-path %s" % path1) # Set to known value self.expect( "settings show target.output-path", SETTING_MSG("target.output-path"), startstr='target.output-path (file) = ', substrs=[path1]) self.runCmd("settings set target.output-path %s " % path2) # Set to new value with trailing whitespaces self.expect( "settings show target.output-path", SETTING_MSG("target.output-path"), startstr='target.output-path (file) = ', substrs=[path2]) self.runCmd("settings clear target.output-path", check=False) # enum # Set to known value self.runCmd("settings set stop-disassembly-display never") # Set to new value with trailing whitespaces self.runCmd("settings set stop-disassembly-display always ") self.expect( "settings show stop-disassembly-display", SETTING_MSG("stop-disassembly-display"), startstr='stop-disassembly-display (enum) = always') self.runCmd("settings clear stop-disassembly-display", check=False) # language # Set to known value self.runCmd("settings set target.language c89") # Set to new value with trailing whitespace self.runCmd("settings set target.language c11 ") self.expect( "settings show target.language", SETTING_MSG("target.language"), startstr="target.language (language) = c11") self.runCmd("settings clear target.language", check=False) # arguments self.runCmd("settings set target.run-args 1 2 3") # Set to known value # Set to new value with trailing whitespaces self.runCmd("settings set target.run-args 3 4 5 ") self.expect( "settings show target.run-args", SETTING_MSG("target.run-args"), substrs=[ 'target.run-args (arguments) =', '[0]: "3"', '[1]: "4"', '[2]: "5"']) self.runCmd("settings set target.run-args 1 2 3") # Set to known value # Set to new value with trailing whitespaces self.runCmd("settings set target.run-args 3 \ \ ") self.expect( "settings show target.run-args", SETTING_MSG("target.run-args"), substrs=[ 'target.run-args (arguments) =', '[0]: "3"', '[1]: " "', '[2]: " "']) self.runCmd("settings clear target.run-args", check=False) # dictionaries self.runCmd("settings clear target.env-vars") # Set to known value # Set to new value with trailing whitespaces self.runCmd("settings set target.env-vars A=B C=D\t ") self.expect( "settings show target.env-vars", SETTING_MSG("target.env-vars"), substrs=[ 'target.env-vars (dictionary of strings) =', 'A=B', 'C=D']) self.runCmd("settings clear target.env-vars", check=False) # regex # Set to known value self.runCmd("settings clear target.process.thread.step-avoid-regexp") # Set to new value with trailing whitespaces self.runCmd( "settings set target.process.thread.step-avoid-regexp foo\\ ") self.expect( "settings show target.process.thread.step-avoid-regexp", SETTING_MSG("target.process.thread.step-avoid-regexp"), substrs=['target.process.thread.step-avoid-regexp (regex) = foo\\ ']) self.runCmd( "settings clear target.process.thread.step-avoid-regexp", check=False) # format-string self.runCmd("settings clear disassembly-format") # Set to known value # Set to new value with trailing whitespaces self.runCmd("settings set disassembly-format foo ") self.expect("settings show disassembly-format", SETTING_MSG("disassembly-format"), substrs=['disassembly-format (format-string) = "foo "']) self.runCmd("settings clear disassembly-format", check=False) def test_settings_list(self): # List settings (and optionally test the filter to only show 'target' settings). self.expect("settings list target", substrs=["language", "arg0", "detach-on-error"]) self.expect("settings list target", matching=False, substrs=["packet-timeout"]) self.expect("settings list", substrs=["language", "arg0", "detach-on-error", "packet-timeout"]) def test_settings_remove_single(self): # Set some environment variables and use 'remove' to delete them. self.runCmd("settings set target.env-vars a=b c=d") self.expect("settings show target.env-vars", substrs=["a=b", "c=d"]) self.runCmd("settings remove target.env-vars a") self.expect("settings show target.env-vars", matching=False, substrs=["a=b"]) self.expect("settings show target.env-vars", substrs=["c=d"]) self.runCmd("settings remove target.env-vars c") self.expect("settings show target.env-vars", matching=False, substrs=["a=b", "c=d"]) def test_settings_remove_multiple(self): self.runCmd("settings set target.env-vars a=b c=d e=f") self.expect("settings show target.env-vars", substrs=["a=b", "c=d", "e=f"]) self.runCmd("settings remove target.env-vars a e") self.expect("settings show target.env-vars", matching=False, substrs=["a=b", "e=f"]) self.expect("settings show target.env-vars", substrs=["c=d"]) def test_settings_remove_nonexistent_value(self): self.expect("settings remove target.env-vars doesntexist", error=True, substrs=["no value found named 'doesntexist'"]) def test_settings_remove_nonexistent_settings(self): self.expect("settings remove doesntexist alsodoesntexist", error=True, substrs=["error: invalid value path 'doesntexist'"]) def test_settings_remove_missing_arg(self): self.expect("settings remove", error=True, substrs=["'settings remove' takes an array or dictionary item, or"]) def test_settings_remove_empty_arg(self): self.expect("settings remove ''", error=True, substrs=["'settings remove' command requires a valid variable name"]) def test_all_settings_exist(self): self.expect("settings show", substrs=["auto-confirm", "frame-format", "notify-void", "prompt", "script-lang", "stop-disassembly-count", "stop-disassembly-display", "stop-line-count-after", "stop-line-count-before", "stop-show-column", "term-width", "thread-format", "use-external-editor", "target.default-arch", "target.move-to-nearest-code", "target.expr-prefix", "target.language", "target.prefer-dynamic-value", "target.enable-synthetic-value", "target.skip-prologue", "target.source-map", "target.exec-search-paths", "target.max-children-count", "target.max-string-summary-length", "target.breakpoints-use-platform-avoid-list", "target.run-args", "target.env-vars", "target.inherit-env", "target.input-path", "target.output-path", "target.error-path", "target.disable-aslr", "target.disable-stdio", "target.x86-disassembly-flavor", "target.use-hex-immediates", "target.hex-immediate-style", "target.process.disable-memory-cache", "target.process.extra-startup-command", "target.process.thread.step-avoid-regexp", "target.process.thread.trace-thread"]) # settings under an ".experimental" domain should have two properties: # 1. If the name does not exist with "experimental" in the name path, # the name lookup should try to find it without "experimental". So # a previously-experimental setting that has been promoted to a # "real" setting will still be set by the original name. # 2. Changing a setting with .experimental., name, where the setting # does not exist either with ".experimental." or without, should # not generate an error. So if an experimental setting is removed, # people who may have that in their ~/.lldbinit files should not see # any errors. def test_experimental_settings(self): cmdinterp = self.dbg.GetCommandInterpreter() result = lldb.SBCommandReturnObject() # Set target.arg0 to a known value, check that we can retrieve it via # the actual name and via .experimental. self.expect('settings set target.arg0 first-value') self.expect('settings show target.arg0', substrs=['first-value']) self.expect('settings show target.experimental.arg0', substrs=['first-value'], error=False) # Set target.arg0 to a new value via a target.experimental.arg0 name, # verify that we can read it back via both .experimental., and not. self.expect('settings set target.experimental.arg0 second-value', error=False) self.expect('settings show target.arg0', substrs=['second-value']) self.expect('settings show target.experimental.arg0', substrs=['second-value'], error=False) # showing & setting an undefined .experimental. setting should generate no errors. self.expect('settings show target.experimental.setting-which-does-not-exist', patterns=['^\s$'], error=False) self.expect('settings set target.experimental.setting-which-does-not-exist true', error=False) # A domain component before .experimental. which does not exist should give an error # But the code does not yet do that. # self.expect('settings set target.setting-which-does-not-exist.experimental.arg0 true', error=True) # finally, confirm that trying to set a setting that does not exist still fails. # (SHOWING a setting that does not exist does not currently yield an error.) self.expect('settings set target.setting-which-does-not-exist true', error=True)
111534e2e8de66694688967bcfb3a213ec10094b
12346be5075d772878a6015053d6eeb4e7227acc
/21. Design Patterns/behavioral/template.py
b5f260abd7cbf6bd3ca2bef6a2a0ad0bdfa3fa25
[ "MIT" ]
permissive
elenaborisova/Python-OOP
2a46bfafce868f03481fb699580fb3e60ca4e3bd
584882c08f84045b12322917f0716c7c7bd9befc
refs/heads/main
2023-04-02T17:41:23.440617
2021-04-10T13:56:38
2021-04-10T13:56:38
321,376,083
1
1
null
null
null
null
UTF-8
Python
false
false
539
py
from abc import ABC, abstractmethod class Storage(ABC): @abstractmethod def get_storage_list(self): pass def save(self, data): self.get_storage_list().append(data) class SelfListStorage(Storage): def __init__(self): self.list = [] def get_storage_list(self): return self.list class ProviderListStorage(Storage): def __init__(self, list_provider): self.list_provider = list_provider def get_storage_list(self): return self.list_provider.provide_list()
10878b61c5e0ebf2a18f06f4fa888b9efee34475
ee904d3335b8fdc5dbb6c260f87dd0e01b7bb605
/personal/models.py
2a3381d9a1a6aa4c51c481316fcf4cac75a423cd
[]
no_license
sudhanshu8917/Techy-Blogger
32930136b479635ec5616e44cc48b7d02bce2795
f7fd26cb223276bd9c35023c8166243ab430b6b4
refs/heads/master
2022-04-25T01:03:57.281784
2020-04-23T19:46:48
2020-04-23T19:46:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
518
py
from django.db import models # Create your models here. # PRIORITY = [ # ("H","Low"), # ("L","Medium"), # ("H","High"), # ] # class Question(models.Model): # tilte =models.CharField(max_length=60) # question =models.TextField(max_length=400) # priority =models.CharField(max_length=1,choices=PRIORITY) # def __str__(self): # return self.tilte # class Meta: # verbose_name = "The Question" # verbose_name_plural = "Peoples Question"
3e216e3ee3078736267939ddfdd51b2ed51045cd
09e5cfe06e437989a2ccf2aeecb9c73eb998a36c
/modules/cctbx_project/wxtbx/phil_controls/boolctrl.py
eb5df59dfbe39578d721ac70b72c30df2989b55a
[ "BSD-3-Clause", "BSD-3-Clause-LBNL" ]
permissive
jorgediazjr/dials-dev20191018
b81b19653624cee39207b7cefb8dfcb2e99b79eb
77d66c719b5746f37af51ad593e2941ed6fbba17
refs/heads/master
2020-08-21T02:48:54.719532
2020-01-25T01:41:37
2020-01-25T01:41:37
216,089,955
0
1
BSD-3-Clause
2020-01-25T01:41:39
2019-10-18T19:03:17
Python
UTF-8
Python
false
false
2,534
py
from __future__ import absolute_import, division, print_function from wxtbx import phil_controls import wx from libtbx import Auto WXTBX_PHIL_BOOL_TRIBOOL = 1 WXTBX_PHIL_BOOL_AUTO = 2 class BoolCtrl(wx.CheckBox, phil_controls.PhilCtrl): def __init__(self, *args, **kwds): kwds = dict(kwds) self._bool_style = kwds.get("style", 0) kwds['style'] = 0 if ((self._bool_style & WXTBX_PHIL_BOOL_TRIBOOL) or (self._bool_style & WXTBX_PHIL_BOOL_AUTO)): kwds['style'] |= wx.CHK_ALLOW_3RD_STATE_FOR_USER|wx.CHK_3STATE else : kwds['style'] |= wx.CHK_3STATE # wx.CHK_ALLOW_3RD_STATE_FOR_USER? wx.CheckBox.__init__(self, *args, **kwds) self.Bind(wx.EVT_CHECKBOX, lambda evt: self.DoSendEvent()) def SetValue(self, value): if (value is None) or (value is Auto): assert (self.Is3State()) self.Set3StateValue(wx.CHK_UNDETERMINED) else : if (self.Is3State()): if (value == True): self.Set3StateValue(wx.CHK_CHECKED) else : self.Set3StateValue(wx.CHK_UNCHECKED) else : wx.CheckBox.SetValue(self, value) def GetValue(self): if (self.Is3State()): value = self.Get3StateValue() if (value == wx.CHK_UNDETERMINED): if (self._bool_style & WXTBX_PHIL_BOOL_AUTO): return Auto else : return None else : return (value == wx.CHK_CHECKED) else : return wx.CheckBox.GetValue(self) def GetPhilValue(self): return self.GetValue() def GetStringValue(self): return str(self.GetValue()) if (__name__ == "__main__"): app = wx.App(0) frame = wx.Frame(None, -1, "PHIL bool test") panel = wx.Panel(frame, -1, size=(600,400)) box1 = BoolCtrl(panel, label="Use NCS restraints", pos=(100,100)) box2 = BoolCtrl(panel, label="Find NCS groups automatically", pos=(100,150)) box3 = BoolCtrl(panel, label="Fast search mode", pos=(100,200), style=WXTBX_PHIL_BOOL_AUTO) box1.SetValue(False) box2.SetValue(None) box3.SetValue(Auto) assert (box1.GetValue() == box1.GetPhilValue() == False) assert (box2.GetValue() is None) assert (box3.GetValue() is Auto) assert (box2.GetStringValue() == "None") assert (box3.GetStringValue() == "Auto") box3.SetValue(False) assert (box3.GetStringValue() == "False") box1.SetValue(True) assert (box1.GetStringValue() == "True") def OnChange(event): print(event.GetEventObject().GetPhilValue()) frame.Bind(phil_controls.EVT_PHIL_CONTROL, OnChange) frame.Show() app.MainLoop()
44b05c375e36adc5e091b2377a51205d852b42fc
45de3aa97525713e3a452c18dcabe61ac9cf0877
/src/secondaires/jeux/jeux/poquiir/combinaisons.py
4bf4664b25400af967a27eaa73edd21d60a641ff
[ "BSD-3-Clause" ]
permissive
stormi/tsunami
95a6da188eadea3620c70f7028f32806ee2ec0d1
bdc853229834b52b2ee8ed54a3161a1a3133d926
refs/heads/master
2020-12-26T04:27:13.578652
2015-11-17T21:32:38
2015-11-17T21:32:38
25,606,146
0
0
null
null
null
null
UTF-8
Python
false
false
8,931
py
# -*-coding:Utf-8 -* # Copyright (c) 2012 LE GOFF Vincent # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT # OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Fichier définissant les combinaisons possibles.""" from abstraits.obase import BaseObj from corps.fonctions import lisser class Combinaison(BaseObj): """Classe représentant une combinaison abstraite.""" points = None nom = None def __init__(self, combinaison, exterieures): """Constructeur de la combinaison. Les cartes contenues dans la liste combinaison sont celles formant la combinaison. Les autres sont contenues dans exterieures. """ BaseObj.__init__(self) self.combinaison = combinaison self.exterieures = exterieures self._construire() def __getnewargs__(self): return (None, None) @property def nom(self): """Retourne le nom de la combinaison.""" return "rien" @property def points_complet(self): """Retourne les points de la combinaison spécifique.""" return (self.points, self.combinaison[-1].points) @property def points_exterieurs(self): """Retourne la somme des points des cartes non utilisées.""" return sum(piece.points for piece in self.exterieures) @classmethod def forme(cls, pieces): """Retourne une combinaison si les pièces forment une combinaison. Les pièces doivent être transmises sous la forme d'une liste de listes. Les pièces de même valeur doivent être regroupées dans une liste et les pièces de plus grande valeur doivent apparaître en premier. Exemple s'inspirant, au lieu de pièces, des cartes standards : On a : 7 de coeur, as de coeur, 3 de carreau, 3 de trèffle... On doit recevoir : [[as coeur], [7 coeur], [3 carreau, 3 trèffle]] """ return None class Paire(Combinaison): """Combinaison représentant la paire.""" points = 1 @property def nom(self): nom_piece = self.combinaison[0].nom.rstrip("s") return lisser("une paire de {}s".format(nom_piece)) @classmethod def forme(cls, pieces): for groupe in pieces: if len(groupe) == 2: autres = list(pieces) autres.remove(groupe) exterieures = [] for o_groupe in autres: exterieures.extend(o_groupe) paire = cls(groupe, exterieures) return paire return None class DoublePaire(Combinaison): """Combinaison représentant la double paire.""" points = 2 @property def nom(self): nom_1 = self.combinaison[0].nom.rstrip("s") nom_2 = self.combinaison[2].nom.rstrip("s") return lisser("une double-paire de {}s et de {}s".format(nom_1, nom_2)) @classmethod def forme(cls, pieces): groupes = [] for groupe in pieces: if len(groupe) == 2: groupes.append(groupe) if len(groupes) != 2: continue autres = list(pieces) for o_groupe in groupes: autres.remove(o_groupe) exterieures = [] for o_groupe in autres: exterieures.extend(o_groupe) dpaire = cls(groupes[0] + groupes[1], exterieures) return dpaire return None class Brelan(Combinaison): """Combinaison représentant le brelan.""" points = 3 @property def nom(self): nom_piece = self.combinaison[0].nom.rstrip("s") return lisser("un brelan de {}s".format(nom_piece)) @classmethod def forme(cls, pieces): for groupe in pieces: if len(groupe) == 3: autres = list(pieces) autres.remove(groupe) exterieures = [] for o_groupe in autres: exterieures.extend(o_groupe) brelan = cls(groupe, exterieures) return brelan return None class Suite(Combinaison): """Combinaison représentant la suite.""" points = 4 @property def nom(self): nom_piece = self.combinaison[0].nom_complet_defini nom_piece = " ".join(nom_piece.split(" ")[:-2]) return lisser("une suite à {}".format(nom_piece)) @classmethod def forme(cls, pieces): a_pieces = [] for groupe in pieces: a_pieces.extend(groupe) a_pieces = sorted(a_pieces, key=lambda piece: piece.points, reverse=True) for i, piece in enumerate(a_pieces): t_pieces = [piece] nb = 1 for a_piece in a_pieces[i + 1:]: if piece.points - a_piece.points == nb: t_pieces.append(a_piece) nb += 1 if len(t_pieces) == 5: exterieures = list(a_pieces) for t_piece in t_pieces: if t_piece in exterieures: exterieures.remove(t_piece) suite = cls(t_pieces, exterieures) return suite return None class Couleur(Combinaison): """Combinaison représentant la couleur.""" points = 5 @property def nom(self): nom_piece = self.combinaison[0].nom_complet_defini nom_piece = " ".join(nom_piece.split(" ")[:-2]) return lisser("une couleur à {}".format(nom_piece)) @classmethod def forme(cls, pieces): a_pieces = [] for groupe in pieces: a_pieces.extend(groupe) a_pieces = sorted(a_pieces, key=lambda piece: piece.points, reverse=True) couleurs = {} for piece in a_pieces: liste = couleurs.get(piece._couleur, []) liste.append(piece) couleurs[piece._couleur] = liste for groupe in couleurs.values(): if len(groupe) >= 5: exterieures = list(a_pieces) for piece in groupe: if piece in exterieures: exterieures.remove(piece) couleur = cls(groupe, exterieures) return couleur return None class Carre(Combinaison): """Combinaison représentant le carré.""" points = 6 @property def nom(self): nom_piece = self.combinaison[0].nom.strip("s") return lisser("un carré de {}s".format(nom_piece)) @classmethod def forme(cls, pieces): print("carré", pieces) for groupe in pieces: if len(groupe) == 4: autres = list(pieces) autres.remove(groupe) exterieures = [] for o_groupe in autres: exterieures.extend(o_groupe) carre = cls(groupe, exterieures) return carre return None combinaisons = [Carre, Couleur, Suite, Brelan, DoublePaire, Paire]
a50506c6f1e9b437891467aeec49f7ce0e5d0e3c
5e9b2d0d2a4399fd028c738a082921a1df1f8321
/hacker rank/30 Days Of Code/Day 04 - Class vs. Instance.py
2f6aaced92bd0e97a00c76adb993e0adff08a560
[]
no_license
sunilsm7/python_exercises
42e5a1aee0a0d5402b585e1b1631517145aa1e00
b2754c51464dcd81319c8514c24249a13e18d825
refs/heads/master
2020-12-02T16:19:20.266436
2017-10-27T10:22:37
2017-10-27T10:22:37
96,534,650
0
1
null
null
null
null
UTF-8
Python
false
false
876
py
""" In this challenge, we're going to learn about the difference between a class and an instance; because this is an Object Oriented concept, it's only enabled in certain languages. Task Write a Person class with an instance variable, age, and a constructor that takes an integer, initial_age, as a parameter. The constructor must assign initial_age to _age after confirming the argument passed as _initial_age is not negative. If a negative argument is passed as initial_age, the constructor should set to and print "Age is not valid, setting age to 0." In addition, you must write the following instance methods: age_1_year() should increase the instance variable _age by 1. is_old() should perform the following conditional actions: If age < 13, print "You are young.". If age >= 13 and age < 18, print "You are a teenager.". Otherwise, print "You are old.". """
a92d6441a0fd2f223bc21e0d866ebddf7a054b36
17821ba5f1345bcb5181092cec7808e08355abd0
/Django_projects/P2-video fail/my_proj/src/my_proj/migrations/0005_video_name.py
e9e93aa7fe462157356740f1f0b77bf76382fe25
[ "MIT" ]
permissive
Coni63/scripts_Python
be1a416dc702c919120645f2946596c68a6a3fbb
b1ac0bee706504abcc86fd7a72b8ec625ffa12b3
refs/heads/master
2021-07-11T16:50:56.719758
2018-02-25T12:19:29
2018-02-25T12:19:29
95,472,736
0
0
null
null
null
null
UTF-8
Python
false
false
462
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.4 on 2017-05-17 09:44 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('my_proj', '0004_remove_video_name'), ] operations = [ migrations.AddField( model_name='video', name='name', field=models.CharField(default='test', max_length=100), ), ]
1596db543519340af331ebc5b52159918fd4ee73
8848bd7a4ca88e0061ce1c7dfbf45c488968ea52
/ravens/tasks/insertion_goal.py
fc0615b9afcb813910b6af74eada86ff53f36564
[ "Apache-2.0" ]
permissive
gautams3/deformable-ravens
5f390d6bf5af26fa9c746232a8d90403a89fd7ce
1324243b804532d229d91f2af13ee84c6fd4771c
refs/heads/master
2023-08-15T01:46:47.025808
2021-10-13T16:10:32
2021-10-13T16:10:32
416,812,524
0
0
null
null
null
null
UTF-8
Python
false
false
1,501
py
#!/usr/bin/env python import numpy as np import pybullet as p from ravens.tasks import Task from ravens import utils as U class InsertionGoal(Task): """Using insertion, but in a goal-based Transporters context.""" def __init__(self): super().__init__() self.ee = 'suction' self.max_steps = 3 self.metric = 'pose' self.primitive = 'pick_place' def reset(self, env, last_info=None): self.num_steps = 1 self.goal = {'places': {}, 'steps': []} # Add L-shaped block. block_size = (0.1, 0.1, 0.04) block_urdf = 'assets/insertion/ell.urdf' block_pose = self.random_pose(env, block_size) block_id = env.add_object(block_urdf, block_pose) self.goal['steps'].append({block_id: (2 * np.pi, [0])}) # Add L-shaped target pose, but without actually adding it. if self.goal_cond_testing: assert last_info is not None self.goal['places'][0] = self._get_goal_info(last_info) #print('\nin insertion reset, goal: {}'.format(self.goal['places'][0])) else: hole_pose = self.random_pose(env, block_size) self.goal['places'][0] = hole_pose #print('\nin insertion reset, goal: {}'.format(hole_pose)) def _get_goal_info(self, last_info): """Used to determine the goal given the last `info` dict.""" position, rotation, _ = last_info[4] # block ID=4 return (position, rotation)
26ff43671dca13288c13c63813a52087fc0064b9
136a174f8de72746004aaf28a7ec959fddbd689b
/test_scripts/xx4.py
aca9862f32eab929bf99b84ef4e4d77742fecf20
[]
no_license
xod442/imcServiceNow2
ff3c74ffd633f67ef984c5ab9a65da0010e3bc9d
0dd86659816bae19e5d43bcb8c894005564597cb
refs/heads/master
2021-01-18T18:33:50.203685
2018-01-09T21:25:22
2018-01-09T21:25:22
86,862,461
0
1
null
null
null
null
UTF-8
Python
false
false
1,927
py
import time from flask import Flask, request, render_template, redirect, url_for, flash, session, send_file from flask.ext.bootstrap import Bootstrap from flask_sqlalchemy import SQLAlchemy from models import db, Imc_alarm_ids from settings import APP_STATIC import os from flask import Flask, request, redirect, url_for from werkzeug.utils import secure_filename from snow_py import * import requests from pyhpeimc.auth import * from pyhpeimc.plat.alarms import * from snowbridge import * db.create_all() # Locked down upload folder never hurts... UPLOAD_FOLDER = APP_STATIC ALLOWED_EXTENSIONS = set(['csv']) app = Flask(__name__) app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER def allowed_file(filename): return '.' in filename and \ filename.rsplit('.', 1)[1] in ALLOWED_EXTENSIONS bootstrap = Bootstrap(app) imc_user = "admin" imc_passwd = "admin" imc_host = "10.132.0.15" snow_user = "admin" snow_passwd = "Grape123!" instance = "dev30543" snow_url = 'https://dev30543.service-now.com/api/now/table/incident' varz = [] data = {} dump = [] alarm = {} imc_test_url = 'http://'+imc_host+':8080' # Configuring a connection to the VSD API # # Write logfile to local database # # Routes alarm['severity'] = "1" alarm['userAckUserName'] ='admin' alarm['deviceDisplay'] = '10.10.10.10' alarm['faultDesc'] = "Its down" alarm['userAckType'] = "0" alarm['id'] = "210" alarm['faultTime'] = "1490648244" snow_return = "401" print alarm['id'] print snow_return print alarm['faultDesc'] print alarm['deviceDisplay'] print alarm['severity'] print alarm['faultTime'] print alarm['userAckUserName'] print alarm['userAckType'] write_local_db(alarm, snow_return) ''' logfile = Imc_alarm_ids(alarm['id'],snow_return,alarm['faultDesc'],alarm['deviceDisplay'], alarm['severity'],alarm['faultTime'],alarm['userAckUserName'], alarm['userAckType']) print logfile db.session.add(logfile) db.session.commit() ''' print "Peace!"
8af17fb2e3ab102cd0d02489f823a5800a3dac93
55c250525bd7198ac905b1f2f86d16a44f73e03a
/Python/Lazymux/websploit/core/help.py
8b341ed650071223766e292675f6d56d447f26f8
[]
no_license
NateWeiler/Resources
213d18ba86f7cc9d845741b8571b9e2c2c6be916
bd4a8a82a3e83a381c97d19e5df42cbababfc66c
refs/heads/master
2023-09-03T17:50:31.937137
2023-08-28T23:50:57
2023-08-28T23:50:57
267,368,545
2
1
null
2022-09-08T15:20:18
2020-05-27T16:18:17
null
UTF-8
Python
false
false
129
py
version https://git-lfs.github.com/spec/v1 oid sha256:ad1e9de5e3288e6454391464b0dbe8b0b42084b82cfbc0f4789743568bbccdf1 size 1001
b4f7cdeec17ecd205cbc93e2f5b6bc0444aacb08
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2864/60591/310678.py
b3ddf43088c2b9c36f5b42543811c99ee8acaf76
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
541
py
n = eval(input()) nums = list(map(int, input().split(" "))) if (len(nums) == 1): print(nums[0]) elif(len(nums) == 2): if(abs(nums[1] - nums[0]) == 1): print(max(nums[1],nums[0])) else: print(nums[1] + nums[0]) else: result = 0 temp = [] for x in range(max(nums) + 1): temp.append(0) for num in nums: temp[num] += num cost = [temp[0], max(temp[0], temp[1])] for x in range(2,max(nums) + 1): cost.append(max(cost[x - 1],cost[x - 2] + temp[x])) print(cost[-1])
d8a5c1939b6c95386264908ad58cff196f78ef17
5963c12367490ffc01c9905c028d1d5480078dec
/homeassistant/components/numato/switch.py
505d28d0c4036acb28906ca213dd68232a6cd195
[ "Apache-2.0" ]
permissive
BenWoodford/home-assistant
eb03f73165d11935e8d6a9756272014267d7d66a
2fee32fce03bc49e86cf2e7b741a15621a97cce5
refs/heads/dev
2023-03-05T06:13:30.354545
2021-07-18T09:51:53
2021-07-18T09:51:53
117,122,037
11
6
Apache-2.0
2023-02-22T06:16:51
2018-01-11T16:10:19
Python
UTF-8
Python
false
false
3,419
py
"""Switch platform integration for Numato USB GPIO expanders.""" import logging from numato_gpio import NumatoGpioError from homeassistant.const import ( CONF_DEVICES, CONF_ID, CONF_SWITCHES, DEVICE_DEFAULT_NAME, ) from homeassistant.helpers.entity import ToggleEntity from . import CONF_INVERT_LOGIC, CONF_PORTS, DATA_API, DOMAIN _LOGGER = logging.getLogger(__name__) def setup_platform(hass, config, add_entities, discovery_info=None): """Set up the configured Numato USB GPIO switch ports.""" if discovery_info is None: return api = hass.data[DOMAIN][DATA_API] switches = [] devices = hass.data[DOMAIN][CONF_DEVICES] for device in [d for d in devices if CONF_SWITCHES in d]: device_id = device[CONF_ID] platform = device[CONF_SWITCHES] invert_logic = platform[CONF_INVERT_LOGIC] ports = platform[CONF_PORTS] for port, port_name in ports.items(): try: api.setup_output(device_id, port) api.write_output(device_id, port, 1 if invert_logic else 0) except NumatoGpioError as err: _LOGGER.error( "Failed to initialize switch '%s' on Numato device %s port %s: %s", port_name, device_id, port, err, ) continue switches.append( NumatoGpioSwitch( port_name, device_id, port, invert_logic, api, ) ) add_entities(switches, True) class NumatoGpioSwitch(ToggleEntity): """Representation of a Numato USB GPIO switch port.""" def __init__(self, name, device_id, port, invert_logic, api): """Initialize the port.""" self._name = name or DEVICE_DEFAULT_NAME self._device_id = device_id self._port = port self._invert_logic = invert_logic self._state = False self._api = api @property def name(self): """Return the name of the switch.""" return self._name @property def should_poll(self): """No polling needed.""" return False @property def is_on(self): """Return true if port is turned on.""" return self._state def turn_on(self, **kwargs): """Turn the port on.""" try: self._api.write_output( self._device_id, self._port, 0 if self._invert_logic else 1 ) self._state = True self.schedule_update_ha_state() except NumatoGpioError as err: _LOGGER.error( "Failed to turn on Numato device %s port %s: %s", self._device_id, self._port, err, ) def turn_off(self, **kwargs): """Turn the port off.""" try: self._api.write_output( self._device_id, self._port, 1 if self._invert_logic else 0 ) self._state = False self.schedule_update_ha_state() except NumatoGpioError as err: _LOGGER.error( "Failed to turn off Numato device %s port %s: %s", self._device_id, self._port, err, )
380d34e9731daa55c6f70d3e860fe21844cf1912
32c56293475f49c6dd1b0f1334756b5ad8763da9
/google-cloud-sdk/lib/googlecloudsdk/core/util/semver.py
8fa1edb39fbcb2ec9cf241dd02e65fa0e28e8c38
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0", "MIT" ]
permissive
bopopescu/socialliteapp
b9041f17f8724ee86f2ecc6e2e45b8ff6a44b494
85bb264e273568b5a0408f733b403c56373e2508
refs/heads/master
2022-11-20T03:01:47.654498
2020-02-01T20:29:43
2020-02-01T20:29:43
282,403,750
0
0
MIT
2020-07-25T08:31:59
2020-07-25T08:31:59
null
UTF-8
Python
false
false
6,611
py
# -*- coding: utf-8 -*- # # Copyright 2015 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helper functions for comparing semantic versions. Basic rules of semver: Format: major.minor.patch-prerelease+build major, minor, patch, must all be present and integers with no leading zeros. They are compared numerically by segment. prerelease is an optional '.' separated series of identifiers where each is either an integer with no leading zeros, or an alphanumeric string (including '-'). Prereleases are compared by comparing each identifier in order. Integers are compared numerically, alphanumeric strings are compared lexigraphically. A prerelease version is lower precedence than it's associated normal version. The build number is optional and not included in the comparison. It is '.' separated series of alphanumeric identifiers. Two SemVer objects are considered equal if they represent the exact same string (including the build number and including case differences). For comparison operators, we follow the SemVer spec of precedence and ignore the build number and case of alphanumeric strings. """ from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals import re from six.moves import zip_longest # Only digits, with no leading zeros. _DIGITS = r'(?:0|[1-9][0-9]*)' # Digits, letters and dashes _ALPHA_NUM = r'[-0-9A-Za-z]+' # This is an alphanumeric string that must have at least once letter (or else it # would be considered digits). _STRICT_ALPHA_NUM = r'[-0-9A-Za-z]*[-A-Za-z]+[-0-9A-Za-z]*' _PRE_RELEASE_IDENTIFIER = r'(?:{0}|{1})'.format(_DIGITS, _STRICT_ALPHA_NUM) _PRE_RELEASE = r'(?:{0}(?:\.{0})*)'.format(_PRE_RELEASE_IDENTIFIER) _BUILD = r'(?:{0}(?:\.{0})*)'.format(_ALPHA_NUM) _SEMVER = ( r'^(?P<major>{digits})\.(?P<minor>{digits})\.(?P<patch>{digits})' r'(?:\-(?P<prerelease>{release}))?(?:\+(?P<build>{build}))?$' ).format(digits=_DIGITS, release=_PRE_RELEASE, build=_BUILD) class ParseError(Exception): """An exception for when a string failed to parse as a valid semver.""" pass class SemVer(object): """Object to hold a parsed semantic version string.""" def __init__(self, version): """Creates a SemVer object from the given version string. Args: version: str, The version string to parse. Raises: ParseError: If the version could not be correctly parsed. Returns: SemVer, The parsed version. """ (self.major, self.minor, self.patch, self.prerelease, self.build) = ( SemVer._FromString(version)) @classmethod def _FromString(cls, version): """Parse the given version string into its parts.""" if version is None: raise ParseError('The value is not a valid SemVer string: [None]') try: match = re.match(_SEMVER, version) except (TypeError, re.error) as e: raise ParseError('Error parsing version string: [{0}]. {1}' .format(version, e)) if not match: raise ParseError( 'The value is not a valid SemVer string: [{0}]'.format(version)) parts = match.groupdict() return ( int(parts['major']), int(parts['minor']), int(parts['patch']), parts['prerelease'], parts['build']) @classmethod def _CmpHelper(cls, x, y): """Just a helper equivalent to the cmp() function in Python 2.""" return (x > y) - (x < y) @classmethod def _ComparePrereleaseStrings(cls, s1, s2): """Compares the two given prerelease strings. Args: s1: str, The first prerelease string. s2: str, The second prerelease string. Returns: 1 if s1 is greater than s2, -1 if s2 is greater than s1, and 0 if equal. """ s1 = s1.split('.') if s1 else [] s2 = s2.split('.') if s2 else [] for (this, other) in zip_longest(s1, s2): # They can't both be None because empty parts of the string split will # come through as the empty string. None indicates it ran out of parts. if this is None: return 1 elif other is None: return -1 # Both parts have a value if this == other: # This part is the same, move on to the next. continue if this.isdigit() and other.isdigit(): # Numerical comparison if they are both numbers. return SemVer._CmpHelper(int(this), int(other)) # Lexical comparison if either is a string. Numbers will always sort # before strings. return SemVer._CmpHelper(this.lower(), other.lower()) return 0 def _Compare(self, other): """Compare this SemVer to other. Args: other: SemVer, the other version to compare this one to. Returns: 1 if self > other, -1 if other > self, 0 if equal. """ # Compare the required parts. result = SemVer._CmpHelper( (self.major, self.minor, self.patch), (other.major, other.minor, other.patch)) # Only if required parts are equal, compare the prerelease strings. # Never include build number in comparison. result = result or SemVer._ComparePrereleaseStrings( self.prerelease, other.prerelease) return result def Distance(self, other): """Compare this SemVer to other and returns the distances. Args: other: SemVer, the other version to compare this one to. Returns: Distances between the major, minor and patch versions. """ major_diff = self.major - other.major minor_diff = self.minor - other.minor patch_diff = self.patch - other.patch return major_diff, minor_diff, patch_diff def __eq__(self, other): return other and ( (self.major, self.minor, self.patch, self.prerelease, self.build) == (other.major, other.minor, other.patch, other.prerelease, other.build)) def __ne__(self, other): return not self == other def __gt__(self, other): return self._Compare(other) > 0 def __lt__(self, other): return self._Compare(other) < 0 def __ge__(self, other): return not self < other def __le__(self, other): return not self > other
0f03a2ac1686b80d47dda000ad3fd21ef99f7f7a
1ef68ba8f4754bf4d4d86d945bb1392be3ff5beb
/mlagents/envs/communicator_objects/custom_action_pb2.py
1c16809b0b0d05a34b2fe0fb5193e54c3337f10e
[ "MIT" ]
permissive
Abluceli/HRG-SAC
fc1b5fb720f391390b0ac86c23c46187178a3691
334df1e8afbfff3544413ade46fb12f03556014b
refs/heads/master
2022-12-29T22:51:35.584254
2020-02-19T13:39:23
2020-02-19T13:39:23
241,630,517
7
1
MIT
2022-12-08T06:18:57
2020-02-19T13:36:58
Python
UTF-8
Python
false
true
1,939
py
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: mlagents/envs/communicator_objects/custom_action.proto import sys _b = sys.version_info[0] < 3 and (lambda x: x) or (lambda x: x.encode("latin1")) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name="mlagents/envs/communicator_objects/custom_action.proto", package="communicator_objects", syntax="proto3", serialized_options=_b("\252\002\034MLAgents.CommunicatorObjects"), serialized_pb=_b( '\n6mlagents/envs/communicator_objects/custom_action.proto\x12\x14\x63ommunicator_objects"\x0e\n\x0c\x43ustomActionB\x1f\xaa\x02\x1cMLAgents.CommunicatorObjectsb\x06proto3' ), ) _CUSTOMACTION = _descriptor.Descriptor( name="CustomAction", full_name="communicator_objects.CustomAction", filename=None, file=DESCRIPTOR, containing_type=None, fields=[], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=80, serialized_end=94, ) DESCRIPTOR.message_types_by_name["CustomAction"] = _CUSTOMACTION _sym_db.RegisterFileDescriptor(DESCRIPTOR) CustomAction = _reflection.GeneratedProtocolMessageType( "CustomAction", (_message.Message,), dict( DESCRIPTOR=_CUSTOMACTION, __module__="mlagents.envs.communicator_objects.custom_action_pb2" # @@protoc_insertion_point(class_scope:communicator_objects.CustomAction) ), ) _sym_db.RegisterMessage(CustomAction) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
8de8ea6b1c58ca9b9e86f7823a753e50cc5c3b33
553e6acd1019bb2c7d6a1b08009ca50ef2fa0ad1
/mammoth/optim.py
b7f17e1cecf96cd1842270f07004067b512eda4a
[]
no_license
bkj/mammoth
ac0cfd6f8c5165ce72a5a7e591a938cf823270d3
0bd0122b5bac5ce897436a2318cb47b2fbc84164
refs/heads/master
2021-05-15T00:23:48.290164
2018-07-26T16:15:23
2018-07-26T16:15:23
103,467,821
3
0
null
null
null
null
UTF-8
Python
false
false
2,805
py
#!/usr/bin/env python """ optim.py """ import math import torch import numpy as np class LambdaAdam(torch.optim.Optimizer): """ ADAM optimizer that mimics hypergrads - Difference is addition of `lam` parameter. I noticed that my hypergrad test was converging to eps < 1e-10. Setting lam to some small number (1e-1, 1e-2, etc) lets the torch version convert to eps < 1e-8. !! This is not efficient, due to cloning, etc. Will need to reimplement more efficiently for larger models. Then again, for larger models, this may not matter. """ def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=10**-4, lam=1): defaults = dict(lr=lr, betas=betas, eps=eps, lam=lam) super().__init__(params, defaults) def step(self, closure=None): loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data state = self.state[p] if len(state) == 0: state['step'] = 0 state['exp_avg'] = torch.zeros_like(p.data) state['exp_avg_sq'] = torch.zeros_like(p.data) m, v = state['exp_avg'].clone(), state['exp_avg_sq'].clone() beta1, beta2 = group['betas'] state['step'] += 1 # -- b1t = beta1 * (group['lam'] ** (state['step'] - 1)) m = (m * b1t) + ((1 - b1t) * grad) v = (1 - beta2) * (grad ** 2) + beta2 * v mhat = m / (1 - beta1 ** state['step']) vhat = v / (1 - beta2 ** state['step']) p.data -= group['lr'] * mhat / (torch.sqrt(vhat) + group['eps']) # -- # default torch implementation # m = (m * beta1) + ((1 - beta1) * grad) # v = (1 - beta2) * (grad ** 2) + beta2 * v # denom = torch.sqrt(v) + group['eps'] # bias_correction1 = 1 - beta1 ** state['step'] # bias_correction2 = 1 - beta2 ** state['step'] # step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1 # p.data.addcdiv_(-step_size, m, denom) # -- state['exp_avg'] = m.clone() state['exp_avg_sq'] = v.clone() return loss
8cf1a9534a126b14369a0c65201592f19a07b52f
7a1a65b0cda41ea204fad4848934db143ebf199a
/automatedprocesses_firststage/adsym_InventorySources_v2_DD_testapi.py
3f6dcf9326e7f74dfb04f362aaeebd1489663c43
[]
no_license
bpopovich44/ReaperSec
4b015e448ed5ce23316bd9b9e33966373daea9c0
22acba4d84313e62dbbf95cf2a5465283a6491b0
refs/heads/master
2021-05-02T18:26:11.875122
2019-06-22T15:02:09
2019-06-22T15:02:09
120,664,056
0
0
null
null
null
null
UTF-8
Python
false
false
2,719
py
#!/usr/bin/python2.7 import json from mysql.connector import MySQLConnection, Error from python_dbconfig import read_db_config import aol_api def connect(): # """Gets AOL Data and writes them to a MySQL table""" db = "mysql_dl" # Connect To DB: db_config = read_db_config(db) try: print('Connecting to database...') conn = MySQLConnection(**db_config) if conn.is_connected(): print('Connection established.') cursor = conn.cursor() # calls get_access_token function and starts script logintoken = aol_api.get_access_token("25e5de37-aa8d-4d93-b407-29bc42b86044", "stEVHyPObmxCTeI6mTMKuA") print(logintoken) result = aol_api.run_existing_report(logintoken, "190595") #print(result) info = json.loads(result) #print(info) for x in json.loads(result)['data']: rownum = '' date = x['row'][0] inventory_source = x['row'][1].replace("'", " -").replace('"', "") geo_country = x['row'][2].replace("'", "") media = x['row'][3].replace('"', "").replace("'", "") ad_opportunities = x['row'][4] ad_attempts = x['row'][5] ad_impressions = x['row'][6] ad_revenue = x['row'][7] ecpm = x['row'][8] ad_errors = x['row'][9] iab_viewability_measurable_ad_impressions = x['row'][10] iab_viewable_ad_impressions = x['row'][11] market_ops = x['row'][12] clicks = x['row'][13].replace(" ", "0") list = (rownum, date, inventory_source, geo_country, media, ad_opportunities, ad_attempts, ad_impressions, \ ad_revenue, ecpm, ad_errors, iab_viewability_measurable_ad_impressions, iab_viewable_ad_impressions, market_ops, clicks) #print(list) sql = """INSERT INTO adsym_InventorySources_v2 VALUES ("%s", "%s", "%s", "%s", "%s", "%s", "%s", "%s", "%s", "%s", "%s", \ "%s", "%s", "%s", "%s")""" % (rownum, date, inventory_source, geo_country, media, ad_opportunities, ad_attempts, ad_impressions, \ ad_revenue, ecpm, ad_errors, iab_viewability_measurable_ad_impressions, iab_viewable_ad_impressions, market_ops, clicks) cursor.execute(sql) cursor.execute('commit') else: print('Connection failed.') except Error as error: print(error) finally: conn.close() print('Connection closed.') if __name__ == '__main__': connect()
97e4669eaaef04e481d3c1a28889378009c43f5e
c97ae1cc922a037484c5d4794d0a657561cf47f3
/config.py
53c8a1a210fb59cef99d47b41017842907143b96
[]
no_license
AlenAlic/clubpromoters
3059078b02b77745e7a1e49d998f9d24554082e8
f44b3b20c20d5669c1658036cea35fb9a4f223fc
refs/heads/master
2022-12-11T14:38:37.824769
2019-09-08T19:02:49
2019-09-08T19:02:49
190,430,315
0
0
null
2022-12-09T22:02:49
2019-06-05T16:29:25
JavaScript
UTF-8
Python
false
false
664
py
import os basedir = os.path.abspath(os.path.dirname(__file__)) ENV = 'development' SECRET_KEY = 'test-key' SQLALCHEMY_DATABASE_URI = 'sqlite:///' + os.path.join(basedir, 'app.db?check_same_thread=False') SQLALCHEMY_ECHO = False SQLALCHEMY_TRACK_MODIFICATIONS = False SQLALCHEMY_RECORD_QUERIES = False # MAIL SERVERS # python -m smtpd -n -c DebuggingServer localhost:8025 # python -u -m smtpd -n -c DebuggingServer localhost:8025 > mail.log MAIL_SERVER = 'localhost' MAIL_PORT = 8025 MAIL_USE_TLS = '' MAIL_USERNAME = '' MAIL_PASSWORD = '' ADMINS = ['[email protected]'] DEBUG_TB_INTERCEPT_REDIRECTS = False # requirements # pip freeze > requirements.txt
2cbf983911e50399c3a76fb804444089fce74a61
c071eb46184635818e8349ce9c2a78d6c6e460fc
/system/python_stubs/-745935208/_ast/__init__/Global.py
e9f88c95a0171f4bb4c222f70243e1403b25fc9c
[]
no_license
sidbmw/PyCharm-Settings
a71bc594c83829a1522e215155686381b8ac5c6e
083f9fe945ee5358346e5d86b17130d521d1b954
refs/heads/master
2020-04-05T14:24:03.216082
2018-12-28T02:29:29
2018-12-28T02:29:29
156,927,399
0
0
null
null
null
null
UTF-8
Python
false
false
370
py
# encoding: utf-8 # module _ast # from C:\Users\siddh\AppData\Local\Programs\Python\Python37\lib\site-packages\pandas\util\_move.cp37-win_amd64.pyd # by generator 1.146 # no doc # no imports from .stmt import stmt class Global(stmt): # no doc def __init__(self, *args, **kwargs): # real signature unknown pass _fields = ( 'names', )
af7582913055c33dfb0d2fb42261bb2d00085cbd
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/55/usersdata/120/22966/submittedfiles/av2_p3_civil.py
ec623fcaf0928a3823b671b83b40cb785119d3ff
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
686
py
# -*- coding: utf-8 -*- from __future__ import division import numpy as np #definir somalinha def somalinha(a,linha): soma=0 for j in range(0,a.shape[1],1): soma=soma+a[linha,j] return somalinha #definir somacoluna def somacoluna(a,coluna): soma=0 for i in range(0,a.shape[0],1): soma=soma+a[i,coluna] return soma # definir peso def peso(a,linha,coluna): peso=somalinha(a,linha)+somacoluna(a,coluna)-(2*a[linha,coluna]) return peso n=input('digite n:') x=input('digite x:') y=input('digite y:') a=np.zeros((n,n)) for i in range(0,a.shape[0],1): for j in range(0,a.shape[1],1): print ('%d'%peso(a,x,y))
1f8b9d0f62221cd8a4ea43b57dfb8951433fe248
5c81a33883e052070c557c76b5968aa501d5526e
/products/migrations/0005_attribute_attributeitem.py
24c44104e06e383020c74f454c2c93a8a182519b
[]
no_license
worlddeleteRin/rabbit_vkusno
2ebacdf72d87700d191965481c56e78bfec33e9b
017cdff4b40fa7e9a0f7729e4f7b754f48e93c3a
refs/heads/master
2023-04-03T23:32:42.770973
2021-04-08T06:43:04
2021-04-08T06:43:04
355,661,649
0
0
null
null
null
null
UTF-8
Python
false
false
1,110
py
# Generated by Django 3.0.8 on 2020-10-11 12:39 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('products', '0004_auto_20201010_1810'), ] operations = [ migrations.CreateModel( name='Attribute', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(default='', max_length=300)), ('category', models.ForeignKey(default=None, on_delete=django.db.models.deletion.CASCADE, to='products.Category')), ], ), migrations.CreateModel( name='Attributeitem', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(default='', max_length=300)), ('attr', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='products.Attribute')), ], ), ]
0f2011cb5b2aadf3215ef9f7b51b9c97d83a2488
43ab33b2f50e47f5dbe322daa03c86a99e5ee77c
/rcc/models/study_site_view_rpc.py
a9556784eb2812cdd56b265c2e06679096439101
[]
no_license
Sage-Bionetworks/rcc-client
c770432de2d2950e00f7c7bd2bac22f3a81c2061
57c4a621aecd3a2f3f9faaa94f53b2727992a01a
refs/heads/main
2023-02-23T05:55:39.279352
2021-01-21T02:06:08
2021-01-21T02:06:08
331,486,099
0
0
null
null
null
null
UTF-8
Python
false
false
8,149
py
# coding: utf-8 """ nPhase REST Resource REDCap REST API v.2 # noqa: E501 The version of the OpenAPI document: 2.0 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from rcc.configuration import Configuration class StudySiteViewRpc(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'id': 'int', 'study_id': 'int', 'name': 'str', 'site_id': 'int', 'site_type': 'str', 'principal_investigator': 'str', 'facility_name': 'str', 'enabled': 'bool' } attribute_map = { 'id': 'id', 'study_id': 'studyId', 'name': 'name', 'site_id': 'siteId', 'site_type': 'siteType', 'principal_investigator': 'principalInvestigator', 'facility_name': 'facilityName', 'enabled': 'enabled' } def __init__(self, id=None, study_id=None, name=None, site_id=None, site_type=None, principal_investigator=None, facility_name=None, enabled=None, local_vars_configuration=None): # noqa: E501 """StudySiteViewRpc - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._id = None self._study_id = None self._name = None self._site_id = None self._site_type = None self._principal_investigator = None self._facility_name = None self._enabled = None self.discriminator = None if id is not None: self.id = id if study_id is not None: self.study_id = study_id if name is not None: self.name = name if site_id is not None: self.site_id = site_id if site_type is not None: self.site_type = site_type if principal_investigator is not None: self.principal_investigator = principal_investigator if facility_name is not None: self.facility_name = facility_name if enabled is not None: self.enabled = enabled @property def id(self): """Gets the id of this StudySiteViewRpc. # noqa: E501 :return: The id of this StudySiteViewRpc. # noqa: E501 :rtype: int """ return self._id @id.setter def id(self, id): """Sets the id of this StudySiteViewRpc. :param id: The id of this StudySiteViewRpc. # noqa: E501 :type: int """ self._id = id @property def study_id(self): """Gets the study_id of this StudySiteViewRpc. # noqa: E501 :return: The study_id of this StudySiteViewRpc. # noqa: E501 :rtype: int """ return self._study_id @study_id.setter def study_id(self, study_id): """Sets the study_id of this StudySiteViewRpc. :param study_id: The study_id of this StudySiteViewRpc. # noqa: E501 :type: int """ self._study_id = study_id @property def name(self): """Gets the name of this StudySiteViewRpc. # noqa: E501 :return: The name of this StudySiteViewRpc. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this StudySiteViewRpc. :param name: The name of this StudySiteViewRpc. # noqa: E501 :type: str """ self._name = name @property def site_id(self): """Gets the site_id of this StudySiteViewRpc. # noqa: E501 :return: The site_id of this StudySiteViewRpc. # noqa: E501 :rtype: int """ return self._site_id @site_id.setter def site_id(self, site_id): """Sets the site_id of this StudySiteViewRpc. :param site_id: The site_id of this StudySiteViewRpc. # noqa: E501 :type: int """ self._site_id = site_id @property def site_type(self): """Gets the site_type of this StudySiteViewRpc. # noqa: E501 :return: The site_type of this StudySiteViewRpc. # noqa: E501 :rtype: str """ return self._site_type @site_type.setter def site_type(self, site_type): """Sets the site_type of this StudySiteViewRpc. :param site_type: The site_type of this StudySiteViewRpc. # noqa: E501 :type: str """ self._site_type = site_type @property def principal_investigator(self): """Gets the principal_investigator of this StudySiteViewRpc. # noqa: E501 :return: The principal_investigator of this StudySiteViewRpc. # noqa: E501 :rtype: str """ return self._principal_investigator @principal_investigator.setter def principal_investigator(self, principal_investigator): """Sets the principal_investigator of this StudySiteViewRpc. :param principal_investigator: The principal_investigator of this StudySiteViewRpc. # noqa: E501 :type: str """ self._principal_investigator = principal_investigator @property def facility_name(self): """Gets the facility_name of this StudySiteViewRpc. # noqa: E501 :return: The facility_name of this StudySiteViewRpc. # noqa: E501 :rtype: str """ return self._facility_name @facility_name.setter def facility_name(self, facility_name): """Sets the facility_name of this StudySiteViewRpc. :param facility_name: The facility_name of this StudySiteViewRpc. # noqa: E501 :type: str """ self._facility_name = facility_name @property def enabled(self): """Gets the enabled of this StudySiteViewRpc. # noqa: E501 :return: The enabled of this StudySiteViewRpc. # noqa: E501 :rtype: bool """ return self._enabled @enabled.setter def enabled(self, enabled): """Sets the enabled of this StudySiteViewRpc. :param enabled: The enabled of this StudySiteViewRpc. # noqa: E501 :type: bool """ self._enabled = enabled def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, StudySiteViewRpc): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, StudySiteViewRpc): return True return self.to_dict() != other.to_dict()
55d11a1f12e6188a1ad698f562dad455168768b3
4129ae27e90b3aa76187203e42aa0ecbae69216f
/img/test.py
b8e635ba0fa6d08d2030bb90c4ad0473dfa34e66
[]
no_license
PinoJoe/WebCrawler
d1a6b84629832222cbebb1037f1cbc0771deadcf
94929bc73bde98569b2992f8bc648c2f39afcccc
refs/heads/master
2022-01-23T13:09:35.853177
2019-08-05T13:40:44
2019-08-05T13:40:44
122,821,572
1
1
null
null
null
null
UTF-8
Python
false
false
1,406
py
#-*-coding:utf-8 -*- import urllib from lxml import etree import requests import time from contextlib import closing def ProcessBar(blocknum, blocksize, totalsize): speed = (blocknum * blocksize) / (time.time() - start_time) speed_str = '下载速度: %s' % format_size(speed) recv_size = blocknum * blocksize pervent = recv_size / totalsize percent_str = '%.2f%%' % (pervent * 100) n = round(pervent * 5) s = ('=' * n).ljust(5, '-') print(percent_str.ljust(8, ' ') + '[' + s + ']' + speed_str, end='\r') def format_size(bytes): try: bytes = float(bytes) kb = bytes / 1024 except: print('传入的字节格式错误') return 'Error' if kb >= 1024: M = kb / 1024 if M >= 1024: G = M / 1024 return '%.3fG' % (G) else: return '%.3fM' % (M) else: return '%.3fK' % (kb) user_agent = 'Mozilla/5.0 (Windows NT 6.1; rv:58.0) Gecko/20100101 Firefox/58.0' headers = {'User-Agent':user_agent} r = requests.get('http://www.ivsky.com/tupian/ziranfengguang/',headers=headers) h = etree.HTML(r.text) img_urls = h.xpath('.//img/@src') i = 0 for img_url in img_urls: filename = 'img' + str(i) + '.jgp' start_time = time.time() urllib.request.urlretrieve(img_url, filename, ProcessBar) i += 1 print('\n')
b376047b8fffc918dea88a06d8f95217ed1a01eb
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/otherforms/_coolants.py
52648d1c9cbfeb1d8e6f52d2d454be9cc0ff0119
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
226
py
#calss header class _COOLANTS(): def __init__(self,): self.name = "COOLANTS" self.definitions = coolant self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.basic = ['coolant']
ae8384d7325ab05aae05cc3dff842e3ae00aef65
632b9b323dc29c67fd6b8cdbec6ec80161ad484a
/extractInstitution.py
126544f887ba375a7c57a7e8e67987ecdd57ee55
[]
no_license
SixingYan/Academic-Relationship-Network
3a08f7cf5d9d1a73f8639c883257fc76dbe86376
94dbfcc76a734005ffceb08e31763112b0d4462b
refs/heads/master
2021-01-21T17:57:14.388478
2018-02-23T09:48:31
2018-02-23T09:48:31
92,003,208
0
1
null
null
null
null
UTF-8
Python
false
false
3,655
py
# -*- coding: utf-8 -*- import re from tool import getResult,getCursor,readTXT from bs4 import BeautifulSoup import os files_path = 'E:/Code/Data/dlibrary' conn,cur = getCursor() #import os;os.chdir('e:/Code/Python');import extractInstitution;extractInstitution.mainFunction() def cleanInstit(instit): # institNew = '' for inst in instit.split(' '): institNew += re.sub('[^a-zA-Z]','',inst)+' ' return institNew.strip() def readFiles(files_path): # filePathList = [] for fileName in os.listdir(files_path): if len(fileName)>1: newFilePath = files_path+'/'+fileName filePathList.append(newFilePath) return filePathList def insertInstitution(eid,institution,fileP): #放入一个一维数组 insertSQL = '' for inst in institution: try: insertSQL = 'insert into experience1 (eid,institution) values('+str(eid)+', "'+inst+'")' cur.execute(insertSQL) conn.commit() except Exception: print('error:'+insertSQL) #cur.execute('update dlurl1 set status= where id='+str(eid))#标记已抽取 #conn.commit() print('Competed '+fileP) def extractInstitut(html): # institution = [] #找到<strong> Affiliation history #它的下一个div #里面的每一个a soup = BeautifulSoup(''.join(html),"lxml") history = soup.find('history') strongTag = history.find(text='Affiliation history') if strongTag != None: strongTag = strongTag.parent else: return institution while (type(strongTag.nextSibling) != 'NoneType') or (strongTag.nextSibling.name != 'div'): #print(' ---loop--- ') strongTag = strongTag.nextSibling #print(str(strongTag)) if strongTag.name == 'div': break if strongTag == None: print('no find?') break try: if strongTag.findAll('a') != None: for a in strongTag.findAll('a'): instName = cleanInstit(a.string) institution.append(instName) return institution except Exception: print('error:'+str(strongTag)) def extractUserID(url): # url = url.split('&')[0] urlid = url[:] id = urlid.replace('http://dl.acm.org/author_page.cfm?id=','') userid = id[4:]#only numbers begin at 4 are considered return urlid,userid def getID(html): # eid = -1 #初始化 indx = '<![CDATA[' start = html.find(indx) end = html.find(']]></fullpath>') if start>0: subjectURL = html[(start+len(indx)):end] url,userid = extractUserID(subjectURL)#从网址中分离出url地址 #回查数据库 selectSQL = 'select t.id from (select id,url from dlurl1 where userid='+str(userid)+') t where t.url="'+url+'"' result = getResult(selectSQL,cur) if len(result)==1: eid = int(result[0]['id']) else: print('error or exist') return eid def mainFunction(): # #读取文件 filePathList = readFiles(files_path) print('read is ready') for fileP in filePathList: html = readTXT(fileP) #print('do here') eid = getID(html) #print('do here0') if eid >0: instit = extractInstitut(html) if len(instit)>0: #print('do here1') insertInstitution(eid,instit,fileP) #print(instit) #break#只运行一次 cur.close();conn.close(); if __name__ == '__main__': mainFunction()
fa3e1e5a03b34cf9667f4072e97ba84be7134e14
f8ef8828377131f38a75e25f1571d3e0ea7b4837
/api/migrations/0006_match_expansion.py
6d76c5f3773954536724f113207af5736a647ccb
[]
no_license
szpone/bg-journal
8b46742e2b71db820e5fb1e5f690c0362586661e
80a3570414773daf34458ca068d051cbfe29a8b7
refs/heads/master
2022-05-05T06:10:33.957525
2019-05-02T17:11:48
2019-05-02T17:11:48
165,717,971
0
1
null
2022-04-22T21:07:23
2019-01-14T19:04:02
Python
UTF-8
Python
false
false
499
py
# Generated by Django 2.1.7 on 2019-03-18 20:03 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('api', '0005_remove_user_confirm_password'), ] operations = [ migrations.AddField( model_name='match', name='expansion', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='api.Expansion'), ), ]
cb562f1501ebd70b4953051bffe97d1b3be9ab1f
147d0863f4590649a90ea5f78c66974723a87247
/api/api_request.py
7e3ae65e10c255203d5ebc25a3c87d4874377cbe
[]
no_license
jinchuika/ligabot
af5bd5443dc0df7d929e7b866869ba075c91db55
69544912e1ac46f281ba2fc78ff913d60d9a2a38
refs/heads/master
2021-01-20T12:50:32.894359
2017-05-08T14:07:47
2017-05-08T14:07:47
90,419,163
0
0
null
null
null
null
UTF-8
Python
false
false
6,788
py
import requests import click from django.conf import settings from datetime import datetime class RequestHandler(object): BASE_URL = settings.BASE_URL API_TOKEN = settings.API_TOKEN LIVE_URL = 'http://soccer-cli.appspot.com/' verbose = False def __init__(self, verbose=False): self.verbose = verbose def _get(self, url): """Handles api.football-data.org requests""" if self.verbose: print('calling: ' + url) req = requests.get(RequestHandler.BASE_URL + url, headers={'X-Auth-Token': RequestHandler.API_TOKEN, 'X-Response-Control': 'minified'}) if req.status_code == requests.codes.ok: if self.verbose: print(req.text) return req def get_live_scores(self, use_12_hour_format): """Gets the live scores""" req = requests.get(RequestHandler.LIVE_URL) if req.status_code == requests.codes.ok: scores = req.json() if len(scores["games"]) == 0: click.secho("No live action currently", fg="red", bold=True) return self.writer.live_scores(scores, use_12_hour_format) else: click.secho("There was problem getting live scores", fg="red", bold=True) def get_team_scores(self, team_id, time=7, show_upcoming=False, use_12_hour_format=False): """Queries the API and gets the particular team scores""" time_frame = 'n' if show_upcoming else 'p' if team_id: req = self._get('teams/{team_id}/fixtures?timeFrame={time_frame}{time}'.format( team_id=team_id, time_frame=time_frame, time=time)) team_scores = req.json() if len(team_scores["fixtures"]) != 0: return [{ 'id': fixture['id'], 'fecha': fixture['date'], 'jornada': fixture['matchday'], 'local': fixture['homeTeamName'], 'visitante': fixture['awayTeamName'], 'gol_local': fixture['result']['goalsHomeTeam'], 'gol_visitante': fixture['result']['goalsAwayTeam'], 'estado': fixture["status"] } for fixture in team_scores['fixtures']] else: return [] def get_standings(self, league_id): """Queries the API and gets the standings for a particular league""" req = self._get('competitions/{id}/leagueTable'.format(id=league_id)) return [{ 'rank': team["rank"], 'teamId': team["teamId"], 'teamName': team["team"], 'playedGames': team["playedGames"], 'goals': team["goals"], 'goalsAgainst': team["goalsAgainst"], 'goalDifference': team["goalDifference"], 'points': team["points"] } for team in req.json()['standing']] def get_league_scores(self, league_id, time=7, show_upcoming=False, use_12_hour_format=False): """ Queries the API and fetches the scores for fixtures based upon the league and time parameter """ time_frame = 'n' if show_upcoming else 'p' if league_id: req = self._get('competitions/{league_id}/fixtures?timeFrame={time_frame}{time}'.format( league_id=league_id, time_frame=time_frame, time=time)) fixtures_results = req.json() # no fixtures in the past week. display a help message and return if len(fixtures_results["fixtures"]) != 0: return [{ 'id': fixture['id'], 'fecha': fixture['date'], 'jornada': fixture['matchday'], 'local': fixture['homeTeamName'], 'local_id': fixture['homeTeamId'], 'visitante_id': fixture['awayTeamId'], 'visitante': fixture['awayTeamName'], 'gol_local': fixture['result']['goalsHomeTeam'], 'gol_visitante': fixture['result']['goalsAwayTeam'], 'estado': fixture["status"] } for fixture in fixtures_results['fixtures']] else: return [] else: # When no league specified. Print all available in time frame. return [] def get_team_players(self, team): """ Queries the API and fetches the players for a particular team """ team_id = self.team_names.get(team, None) req = self._get('teams/{team_id}/players'.format(team_id=team_id)) team_players = req.json() if int(team_players["count"]) == 0: click.secho("No players found for this team", fg="red", bold=True) else: self.writer.team_players(team_players) def get_leagues(self, season=None): if not season: season = datetime.now().year req = self._get('competitions/?season={season}'.format(season=season)) competition_list = req.json() return [{ 'id': competition['id'], 'caption': competition['caption'], 'league': competition['league'], 'year': competition['year'], 'numberOfTeams': competition['numberOfTeams'], 'numberOfGames': competition['numberOfGames'], 'numberOfMatchdays': competition['numberOfMatchdays'], 'currentMatchday': competition['currentMatchday'], 'lastUpdated': competition['lastUpdated'], } for competition in competition_list] def get_league_info(self, league_id): req = self._get('competitions/{league_id}/'.format(league_id=league_id)) competition = req.json() return { 'id': competition['id'], 'caption': competition['caption'], 'league': competition['league'], 'year': competition['year'], 'numberOfTeams': competition['numberOfTeams'], 'numberOfGames': competition['numberOfGames'], 'numberOfMatchdays': competition['numberOfMatchdays'], 'currentMatchday': competition['currentMatchday'], 'lastUpdated': competition['lastUpdated'], } def get_league_teams(self, league_id): req = self._get('competitions/{league_id}/teams'.format(league_id=league_id)) team_list = req.json() return [{ 'id': team['id'], 'name': team['name'], 'short_name': team['shortName'], 'squad_market_value': team['squadMarketValue'], 'crest_url': team['crestUrl'], } for team in team_list['teams'] if 'id' in team]
f75f33d950309ba2333f6b2ace38e72f6bf95b7c
65675a487fee2ff9651675ae6a09c8d62682c2a4
/23b.py
e44397b4dee9ab0ef0746d70edcb656548770bd5
[]
no_license
Abarn279/advent-of-code-2020
e132f4b04ee1b777ddc00bb97322f707a72c86e0
ea840ee1e7a8cafedfe6f0b9f3e64a2e8b6f0c80
refs/heads/master
2023-02-04T21:11:06.771592
2020-12-26T02:37:25
2020-12-26T02:37:25
317,412,968
0
0
null
null
null
null
UTF-8
Python
false
false
2,037
py
node_dict = {} class SLLNode: ''' Singly linked list node ''' def __init__(self, nxt=None, data=None): if nxt is None: self.next = self else: self.next = nxt self.data = data node_dict[self.data] = self def insert_after(self, other_val): current_next = self.next self.next = SLLNode(current_next, other_val) return self.next def insert_bulk_after(self, ary): curr_next = self.next self.next = ary[0] ary[-1].next = curr_next def remove_range_after(self, amt): ''' Remove amt of nodes, after this one, returning the resulting array. ''' nodes = [] to_remove = self.next for n in range(amt): nodes.append(to_remove) to_remove = to_remove.next self.next = nodes[-1].next nodes[-1].next = None return nodes def find_destination(self, t = None): if t is None: t = ((self.data - 2) % 1000000) + 1 else: t = ((t - 1) % 1000000) + 1 return node_dict[t] def get_order(self): o = self.next while o.data != 1: o = o.next c = o.next s = "" while c is not o: s += str(c.data) c = c.next return s def __eq__(self, other): return self.data == other.data def __repr__(self): return str(self.data) # My input inp = '318946572' # Build DLL current = SLLNode(None, int(inp[0])) nxt = current for n in inp[1:]: nxt = nxt.insert_after(int(n)) for n in range(10, 1000001): nxt = nxt.insert_after(n) for move in range(10000000): removed = current.remove_range_after(3) destination = current.find_destination() while destination in removed: destination = current.find_destination(destination.data - 1) destination.insert_bulk_after(removed) current = current.next print(node_dict[1].next.data * node_dict[1].next.next.data)
dba760a081168b07da49364f0d7449d2b7849238
b6b380e6f5353dba2256211033cebec638dffe4a
/packages/fuego/fuego/serialization/chemkin/unpickle/parsers/Species.py
cb4d4a0b1bd9d21462be0519db57925920608495
[]
no_license
danse-inelastic/pyre-all
0ddf640b68f6089e40345e9a8e20562a8b035b3c
59cc235b6481586c58415535bbec660470218e31
refs/heads/master
2021-01-18T12:31:27.905459
2015-04-26T04:57:46
2015-04-26T04:57:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,335
py
#!/usr/bin/env python # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # Michael A.G. Aivazis # California Institute of Technology # (C) 1998-2007 All Rights Reserved # # <LicenseText> # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # from BaseParser import BaseParser class Species(BaseParser): # the interesting tokens def aSpeciesName(self, token): try: species = self._mechanism.newSpecies(token.name, self.locator()) except self._mechanism.DuplicateSpecies, msg: self.onWarning(str(msg), self.locator()) return 0 # transitions def aSpeciesSection(self, token): self._info.log("species parser: section start") self._parse(self._scanner, self._tokenizer) return 0 # other methods def __init__(self, mechanism, tokenizer): import pyre BaseParser.__init__(self, mechanism) self._tokenizer = tokenizer import fuego self._scanner = fuego.serialization.chemkin.unpickle.scanners.species() return # version __id__ = "$Id: Species.py,v 1.1.1.1 2007-09-13 18:17:31 aivazis Exp $" # # End of file
d1aa49ff888c33fc8ce933754b64cb779c56098e
9a335e0c99250de6c0429b367107153ff0633fe5
/sine_of_num.py
d8f72e1928f379707c9fa205b00c72a59b9f297c
[]
no_license
felcygrace/guvi_player
16f4e92be00625490b013f0f833350c9b4185fe3
cf74f455707ab66d08a0801440033a63871102dd
refs/heads/master
2020-05-31T10:31:42.720423
2019-06-22T09:39:23
2019-06-22T09:39:23
190,242,881
0
0
null
null
null
null
UTF-8
Python
false
false
126
py
import math n=int(input()) a=math.randians(n) if a>0 and a<1: print(round(math.sin(a),2)) else: print(round(math.sin(a)))
f7debe817af0afd601474afec973beb67886808b
f9183ce2308090dbb6a8c2f5d96c17c56a8ca768
/main/forms.py
c9618dd619531607d80ecd51fc59f05971ac3664
[]
no_license
asad2200/UrlShortener
a9b0e0f5cce203dd2bcc1244de7feb99588c6c71
055d83d5a1bbf9628a8f045d152dc85c58e9460f
refs/heads/master
2023-05-13T23:44:09.748618
2021-05-29T10:56:17
2021-05-29T10:56:17
371,616,730
0
0
null
null
null
null
UTF-8
Python
false
false
248
py
from django import forms from .models import URL class URLForm(forms.ModelForm): class Meta: model = URL fields = ["name", "url"] widgets = { "url": forms.Textarea(attrs={"rows": 2, "cols": 5}), }
0835966ff2ce83229633c6df3ebc0d562c265106
82770c7bc5e2f27a48b8c370b0bab2ee41f24d86
/microblog/flask/venv/lib/python2.7/site-packages/scipy/stats/tests/test_mstats_basic.py
d4606a58c0ee10a92b657014fb576d2ae6809fe9
[ "Apache-2.0" ]
permissive
johankaito/fufuka
77ddb841f27f6ce8036d7b38cb51dc62e85b2679
32a96ecf98ce305c2206c38443e58fdec88c788d
refs/heads/master
2022-07-20T00:51:55.922063
2015-08-21T20:56:48
2015-08-21T20:56:48
39,845,849
2
0
Apache-2.0
2022-06-29T23:30:11
2015-07-28T16:39:54
Python
UTF-8
Python
false
false
48,883
py
""" Tests for the stats.mstats module (support for masked arrays) """ from __future__ import division, print_function, absolute_import import warnings import numpy as np from numpy import nan import numpy.ma as ma from numpy.ma import masked, nomask import scipy.stats.mstats as mstats from scipy import stats from common_tests import check_named_results from numpy.testing import TestCase, run_module_suite from numpy.testing.decorators import skipif from numpy.ma.testutils import (assert_equal, assert_almost_equal, assert_array_almost_equal, assert_array_almost_equal_nulp, assert_, assert_allclose, assert_raises) class TestMquantiles(TestCase): def test_mquantiles_limit_keyword(self): # Regression test for Trac ticket #867 data = np.array([[6., 7., 1.], [47., 15., 2.], [49., 36., 3.], [15., 39., 4.], [42., 40., -999.], [41., 41., -999.], [7., -999., -999.], [39., -999., -999.], [43., -999., -999.], [40., -999., -999.], [36., -999., -999.]]) desired = [[19.2, 14.6, 1.45], [40.0, 37.5, 2.5], [42.8, 40.05, 3.55]] quants = mstats.mquantiles(data, axis=0, limit=(0, 50)) assert_almost_equal(quants, desired) class TestGMean(TestCase): def test_1D(self): a = (1,2,3,4) actual = mstats.gmean(a) desired = np.power(1*2*3*4,1./4.) assert_almost_equal(actual, desired, decimal=14) desired1 = mstats.gmean(a,axis=-1) assert_almost_equal(actual, desired1, decimal=14) assert_(not isinstance(desired1, ma.MaskedArray)) a = ma.array((1,2,3,4),mask=(0,0,0,1)) actual = mstats.gmean(a) desired = np.power(1*2*3,1./3.) assert_almost_equal(actual, desired,decimal=14) desired1 = mstats.gmean(a,axis=-1) assert_almost_equal(actual, desired1, decimal=14) @skipif(not hasattr(np, 'float96'), 'cannot find float96 so skipping') def test_1D_float96(self): a = ma.array((1,2,3,4), mask=(0,0,0,1)) actual_dt = mstats.gmean(a, dtype=np.float96) desired_dt = np.power(1 * 2 * 3, 1. / 3.).astype(np.float96) assert_almost_equal(actual_dt, desired_dt, decimal=14) assert_(actual_dt.dtype == desired_dt.dtype) def test_2D(self): a = ma.array(((1, 2, 3, 4), (1, 2, 3, 4), (1, 2, 3, 4)), mask=((0, 0, 0, 0), (1, 0, 0, 1), (0, 1, 1, 0))) actual = mstats.gmean(a) desired = np.array((1,2,3,4)) assert_array_almost_equal(actual, desired, decimal=14) desired1 = mstats.gmean(a,axis=0) assert_array_almost_equal(actual, desired1, decimal=14) actual = mstats.gmean(a, -1) desired = ma.array((np.power(1*2*3*4,1./4.), np.power(2*3,1./2.), np.power(1*4,1./2.))) assert_array_almost_equal(actual, desired, decimal=14) class TestHMean(TestCase): def test_1D(self): a = (1,2,3,4) actual = mstats.hmean(a) desired = 4. / (1./1 + 1./2 + 1./3 + 1./4) assert_almost_equal(actual, desired, decimal=14) desired1 = mstats.hmean(ma.array(a),axis=-1) assert_almost_equal(actual, desired1, decimal=14) a = ma.array((1,2,3,4),mask=(0,0,0,1)) actual = mstats.hmean(a) desired = 3. / (1./1 + 1./2 + 1./3) assert_almost_equal(actual, desired,decimal=14) desired1 = mstats.hmean(a,axis=-1) assert_almost_equal(actual, desired1, decimal=14) @skipif(not hasattr(np, 'float96'), 'cannot find float96 so skipping') def test_1D_float96(self): a = ma.array((1,2,3,4), mask=(0,0,0,1)) actual_dt = mstats.hmean(a, dtype=np.float96) desired_dt = np.asarray(3. / (1./1 + 1./2 + 1./3), dtype=np.float96) assert_almost_equal(actual_dt, desired_dt, decimal=14) assert_(actual_dt.dtype == desired_dt.dtype) def test_2D(self): a = ma.array(((1,2,3,4),(1,2,3,4),(1,2,3,4)), mask=((0,0,0,0),(1,0,0,1),(0,1,1,0))) actual = mstats.hmean(a) desired = ma.array((1,2,3,4)) assert_array_almost_equal(actual, desired, decimal=14) actual1 = mstats.hmean(a,axis=-1) desired = (4./(1/1.+1/2.+1/3.+1/4.), 2./(1/2.+1/3.), 2./(1/1.+1/4.) ) assert_array_almost_equal(actual1, desired, decimal=14) class TestRanking(TestCase): def __init__(self, *args, **kwargs): TestCase.__init__(self, *args, **kwargs) def test_ranking(self): x = ma.array([0,1,1,1,2,3,4,5,5,6,]) assert_almost_equal(mstats.rankdata(x), [1,3,3,3,5,6,7,8.5,8.5,10]) x[[3,4]] = masked assert_almost_equal(mstats.rankdata(x), [1,2.5,2.5,0,0,4,5,6.5,6.5,8]) assert_almost_equal(mstats.rankdata(x, use_missing=True), [1,2.5,2.5,4.5,4.5,4,5,6.5,6.5,8]) x = ma.array([0,1,5,1,2,4,3,5,1,6,]) assert_almost_equal(mstats.rankdata(x), [1,3,8.5,3,5,7,6,8.5,3,10]) x = ma.array([[0,1,1,1,2], [3,4,5,5,6,]]) assert_almost_equal(mstats.rankdata(x), [[1,3,3,3,5], [6,7,8.5,8.5,10]]) assert_almost_equal(mstats.rankdata(x, axis=1), [[1,3,3,3,5], [1,2,3.5,3.5,5]]) assert_almost_equal(mstats.rankdata(x,axis=0), [[1,1,1,1,1], [2,2,2,2,2,]]) class TestCorr(TestCase): def test_pearsonr(self): # Tests some computations of Pearson's r x = ma.arange(10) with warnings.catch_warnings(): # The tests in this context are edge cases, with perfect # correlation or anticorrelation, or totally masked data. # None of these should trigger a RuntimeWarning. warnings.simplefilter("error", RuntimeWarning) assert_almost_equal(mstats.pearsonr(x, x)[0], 1.0) assert_almost_equal(mstats.pearsonr(x, x[::-1])[0], -1.0) x = ma.array(x, mask=True) pr = mstats.pearsonr(x, x) assert_(pr[0] is masked) assert_(pr[1] is masked) x1 = ma.array([-1.0, 0.0, 1.0]) y1 = ma.array([0, 0, 3]) r, p = mstats.pearsonr(x1, y1) assert_almost_equal(r, np.sqrt(3)/2) assert_almost_equal(p, 1.0/3) # (x2, y2) have the same unmasked data as (x1, y1). mask = [False, False, False, True] x2 = ma.array([-1.0, 0.0, 1.0, 99.0], mask=mask) y2 = ma.array([0, 0, 3, -1], mask=mask) r, p = mstats.pearsonr(x2, y2) assert_almost_equal(r, np.sqrt(3)/2) assert_almost_equal(p, 1.0/3) def test_spearmanr(self): # Tests some computations of Spearman's rho (x, y) = ([5.05,6.75,3.21,2.66],[1.65,2.64,2.64,6.95]) assert_almost_equal(mstats.spearmanr(x,y)[0], -0.6324555) (x, y) = ([5.05,6.75,3.21,2.66,np.nan],[1.65,2.64,2.64,6.95,np.nan]) (x, y) = (ma.fix_invalid(x), ma.fix_invalid(y)) assert_almost_equal(mstats.spearmanr(x,y)[0], -0.6324555) x = [2.0, 47.4, 42.0, 10.8, 60.1, 1.7, 64.0, 63.1, 1.0, 1.4, 7.9, 0.3, 3.9, 0.3, 6.7] y = [22.6, 8.3, 44.4, 11.9, 24.6, 0.6, 5.7, 41.6, 0.0, 0.6, 6.7, 3.8, 1.0, 1.2, 1.4] assert_almost_equal(mstats.spearmanr(x,y)[0], 0.6887299) x = [2.0, 47.4, 42.0, 10.8, 60.1, 1.7, 64.0, 63.1, 1.0, 1.4, 7.9, 0.3, 3.9, 0.3, 6.7, np.nan] y = [22.6, 8.3, 44.4, 11.9, 24.6, 0.6, 5.7, 41.6, 0.0, 0.6, 6.7, 3.8, 1.0, 1.2, 1.4, np.nan] (x, y) = (ma.fix_invalid(x), ma.fix_invalid(y)) assert_almost_equal(mstats.spearmanr(x,y)[0], 0.6887299) # test for namedtuple attributes res = mstats.spearmanr(x, y) attributes = ('correlation', 'pvalue') check_named_results(res, attributes, ma=True) def test_kendalltau(self): # Tests some computations of Kendall's tau x = ma.fix_invalid([5.05, 6.75, 3.21, 2.66,np.nan]) y = ma.fix_invalid([1.65, 26.5, -5.93, 7.96, np.nan]) z = ma.fix_invalid([1.65, 2.64, 2.64, 6.95, np.nan]) assert_almost_equal(np.asarray(mstats.kendalltau(x,y)), [+0.3333333,0.4969059]) assert_almost_equal(np.asarray(mstats.kendalltau(x,z)), [-0.5477226,0.2785987]) # x = ma.fix_invalid([0, 0, 0, 0,20,20, 0,60, 0,20, 10,10, 0,40, 0,20, 0, 0, 0, 0, 0, np.nan]) y = ma.fix_invalid([0,80,80,80,10,33,60, 0,67,27, 25,80,80,80,80,80,80, 0,10,45, np.nan, 0]) result = mstats.kendalltau(x,y) assert_almost_equal(np.asarray(result), [-0.1585188, 0.4128009]) # test for namedtuple attributes res = mstats.kendalltau(x, y) attributes = ('correlation', 'pvalue') check_named_results(res, attributes, ma=True) def test_kendalltau_seasonal(self): # Tests the seasonal Kendall tau. x = [[nan,nan, 4, 2, 16, 26, 5, 1, 5, 1, 2, 3, 1], [4, 3, 5, 3, 2, 7, 3, 1, 1, 2, 3, 5, 3], [3, 2, 5, 6, 18, 4, 9, 1, 1,nan, 1, 1,nan], [nan, 6, 11, 4, 17,nan, 6, 1, 1, 2, 5, 1, 1]] x = ma.fix_invalid(x).T output = mstats.kendalltau_seasonal(x) assert_almost_equal(output['global p-value (indep)'], 0.008, 3) assert_almost_equal(output['seasonal p-value'].round(2), [0.18,0.53,0.20,0.04]) def test_pointbiserial(self): x = [1,0,1,1,1,1,0,1,0,0,0,1,1,0,0,0,1,1,1,0,0,0,0,0,0,0,0,1,0, 0,0,0,0,1,-1] y = [14.8,13.8,12.4,10.1,7.1,6.1,5.8,4.6,4.3,3.5,3.3,3.2,3.0, 2.8,2.8,2.5,2.4,2.3,2.1,1.7,1.7,1.5,1.3,1.3,1.2,1.2,1.1, 0.8,0.7,0.6,0.5,0.2,0.2,0.1,np.nan] assert_almost_equal(mstats.pointbiserialr(x, y)[0], 0.36149, 5) # test for namedtuple attributes res = mstats.pointbiserialr(x, y) attributes = ('correlation', 'pvalue') check_named_results(res, attributes, ma=True) class TestTrimming(TestCase): def test_trim(self): a = ma.arange(10) assert_equal(mstats.trim(a), [0,1,2,3,4,5,6,7,8,9]) a = ma.arange(10) assert_equal(mstats.trim(a,(2,8)), [None,None,2,3,4,5,6,7,8,None]) a = ma.arange(10) assert_equal(mstats.trim(a,limits=(2,8),inclusive=(False,False)), [None,None,None,3,4,5,6,7,None,None]) a = ma.arange(10) assert_equal(mstats.trim(a,limits=(0.1,0.2),relative=True), [None,1,2,3,4,5,6,7,None,None]) a = ma.arange(12) a[[0,-1]] = a[5] = masked assert_equal(mstats.trim(a, (2,8)), [None, None, 2, 3, 4, None, 6, 7, 8, None, None, None]) x = ma.arange(100).reshape(10, 10) expected = [1]*10 + [0]*70 + [1]*20 trimx = mstats.trim(x, (0.1,0.2), relative=True, axis=None) assert_equal(trimx._mask.ravel(), expected) trimx = mstats.trim(x, (0.1,0.2), relative=True, axis=0) assert_equal(trimx._mask.ravel(), expected) trimx = mstats.trim(x, (0.1,0.2), relative=True, axis=-1) assert_equal(trimx._mask.T.ravel(), expected) # same as above, but with an extra masked row inserted x = ma.arange(110).reshape(11, 10) x[1] = masked expected = [1]*20 + [0]*70 + [1]*20 trimx = mstats.trim(x, (0.1,0.2), relative=True, axis=None) assert_equal(trimx._mask.ravel(), expected) trimx = mstats.trim(x, (0.1,0.2), relative=True, axis=0) assert_equal(trimx._mask.ravel(), expected) trimx = mstats.trim(x.T, (0.1,0.2), relative=True, axis=-1) assert_equal(trimx.T._mask.ravel(), expected) def test_trim_old(self): x = ma.arange(100) assert_equal(mstats.trimboth(x).count(), 60) assert_equal(mstats.trimtail(x,tail='r').count(), 80) x[50:70] = masked trimx = mstats.trimboth(x) assert_equal(trimx.count(), 48) assert_equal(trimx._mask, [1]*16 + [0]*34 + [1]*20 + [0]*14 + [1]*16) x._mask = nomask x.shape = (10,10) assert_equal(mstats.trimboth(x).count(), 60) assert_equal(mstats.trimtail(x).count(), 80) def test_trimmedmean(self): data = ma.array([77, 87, 88,114,151,210,219,246,253,262, 296,299,306,376,428,515,666,1310,2611]) assert_almost_equal(mstats.trimmed_mean(data,0.1), 343, 0) assert_almost_equal(mstats.trimmed_mean(data,(0.1,0.1)), 343, 0) assert_almost_equal(mstats.trimmed_mean(data,(0.2,0.2)), 283, 0) def test_trimmed_stde(self): data = ma.array([77, 87, 88,114,151,210,219,246,253,262, 296,299,306,376,428,515,666,1310,2611]) assert_almost_equal(mstats.trimmed_stde(data,(0.2,0.2)), 56.13193, 5) assert_almost_equal(mstats.trimmed_stde(data,0.2), 56.13193, 5) def test_winsorization(self): data = ma.array([77, 87, 88,114,151,210,219,246,253,262, 296,299,306,376,428,515,666,1310,2611]) assert_almost_equal(mstats.winsorize(data,(0.2,0.2)).var(ddof=1), 21551.4, 1) data[5] = masked winsorized = mstats.winsorize(data) assert_equal(winsorized.mask, data.mask) class TestMoments(TestCase): # Comparison numbers are found using R v.1.5.1 # note that length(testcase) = 4 # testmathworks comes from documentation for the # Statistics Toolbox for Matlab and can be found at both # http://www.mathworks.com/access/helpdesk/help/toolbox/stats/kurtosis.shtml # http://www.mathworks.com/access/helpdesk/help/toolbox/stats/skewness.shtml # Note that both test cases came from here. testcase = [1,2,3,4] testmathworks = ma.fix_invalid([1.165, 0.6268, 0.0751, 0.3516, -0.6965, np.nan]) testcase_2d = ma.array( np.array([[0.05245846, 0.50344235, 0.86589117, 0.36936353, 0.46961149], [0.11574073, 0.31299969, 0.45925772, 0.72618805, 0.75194407], [0.67696689, 0.91878127, 0.09769044, 0.04645137, 0.37615733], [0.05903624, 0.29908861, 0.34088298, 0.66216337, 0.83160998], [0.64619526, 0.94894632, 0.27855892, 0.0706151, 0.39962917]]), mask=np.array([[True, False, False, True, False], [True, True, True, False, True], [False, False, False, False, False], [True, True, True, True, True], [False, False, True, False, False]], dtype=np.bool)) def test_moment(self): y = mstats.moment(self.testcase,1) assert_almost_equal(y,0.0,10) y = mstats.moment(self.testcase,2) assert_almost_equal(y,1.25) y = mstats.moment(self.testcase,3) assert_almost_equal(y,0.0) y = mstats.moment(self.testcase,4) assert_almost_equal(y,2.5625) def test_variation(self): y = mstats.variation(self.testcase) assert_almost_equal(y,0.44721359549996, 10) def test_skewness(self): y = mstats.skew(self.testmathworks) assert_almost_equal(y,-0.29322304336607,10) y = mstats.skew(self.testmathworks,bias=0) assert_almost_equal(y,-0.437111105023940,10) y = mstats.skew(self.testcase) assert_almost_equal(y,0.0,10) def test_kurtosis(self): # Set flags for axis = 0 and fisher=0 (Pearson's definition of kurtosis # for compatibility with Matlab) y = mstats.kurtosis(self.testmathworks,0,fisher=0,bias=1) assert_almost_equal(y, 2.1658856802973,10) # Note that MATLAB has confusing docs for the following case # kurtosis(x,0) gives an unbiased estimate of Pearson's skewness # kurtosis(x) gives a biased estimate of Fisher's skewness (Pearson-3) # The MATLAB docs imply that both should give Fisher's y = mstats.kurtosis(self.testmathworks,fisher=0, bias=0) assert_almost_equal(y, 3.663542721189047,10) y = mstats.kurtosis(self.testcase,0,0) assert_almost_equal(y,1.64) # test that kurtosis works on multidimensional masked arrays correct_2d = ma.array(np.array([-1.5, -3., -1.47247052385, 0., -1.26979517952]), mask=np.array([False, False, False, True, False], dtype=np.bool)) assert_array_almost_equal(mstats.kurtosis(self.testcase_2d, 1), correct_2d) for i, row in enumerate(self.testcase_2d): assert_almost_equal(mstats.kurtosis(row), correct_2d[i]) correct_2d_bias_corrected = ma.array( np.array([-1.5, -3., -1.88988209538, 0., -0.5234638463918877]), mask=np.array([False, False, False, True, False], dtype=np.bool)) assert_array_almost_equal(mstats.kurtosis(self.testcase_2d, 1, bias=False), correct_2d_bias_corrected) for i, row in enumerate(self.testcase_2d): assert_almost_equal(mstats.kurtosis(row, bias=False), correct_2d_bias_corrected[i]) # Check consistency between stats and mstats implementations assert_array_almost_equal_nulp(mstats.kurtosis(self.testcase_2d[2, :]), stats.kurtosis(self.testcase_2d[2, :])) def test_mode(self): a1 = [0,0,0,1,1,1,2,3,3,3,3,4,5,6,7] a2 = np.reshape(a1, (3,5)) a3 = np.array([1,2,3,4,5,6]) a4 = np.reshape(a3, (3,2)) ma1 = ma.masked_where(ma.array(a1) > 2, a1) ma2 = ma.masked_where(a2 > 2, a2) ma3 = ma.masked_where(a3 < 2, a3) ma4 = ma.masked_where(ma.array(a4) < 2, a4) assert_equal(mstats.mode(a1, axis=None), (3,4)) assert_equal(mstats.mode(a1, axis=0), (3,4)) assert_equal(mstats.mode(ma1, axis=None), (0,3)) assert_equal(mstats.mode(a2, axis=None), (3,4)) assert_equal(mstats.mode(ma2, axis=None), (0,3)) assert_equal(mstats.mode(a3, axis=None), (1,1)) assert_equal(mstats.mode(ma3, axis=None), (2,1)) assert_equal(mstats.mode(a2, axis=0), ([[0,0,0,1,1]], [[1,1,1,1,1]])) assert_equal(mstats.mode(ma2, axis=0), ([[0,0,0,1,1]], [[1,1,1,1,1]])) assert_equal(mstats.mode(a2, axis=-1), ([[0],[3],[3]], [[3],[3],[1]])) assert_equal(mstats.mode(ma2, axis=-1), ([[0],[1],[0]], [[3],[1],[0]])) assert_equal(mstats.mode(ma4, axis=0), ([[3,2]], [[1,1]])) assert_equal(mstats.mode(ma4, axis=-1), ([[2],[3],[5]], [[1],[1],[1]])) a1_res = mstats.mode(a1, axis=None) # test for namedtuple attributes attributes = ('mode', 'count') check_named_results(a1_res, attributes, ma=True) class TestPercentile(TestCase): def setUp(self): self.a1 = [3,4,5,10,-3,-5,6] self.a2 = [3,-6,-2,8,7,4,2,1] self.a3 = [3.,4,5,10,-3,-5,-6,7.0] def test_percentile(self): x = np.arange(8) * 0.5 assert_equal(mstats.scoreatpercentile(x, 0), 0.) assert_equal(mstats.scoreatpercentile(x, 100), 3.5) assert_equal(mstats.scoreatpercentile(x, 50), 1.75) def test_2D(self): x = ma.array([[1, 1, 1], [1, 1, 1], [4, 4, 3], [1, 1, 1], [1, 1, 1]]) assert_equal(mstats.scoreatpercentile(x,50), [1,1,1]) class TestVariability(TestCase): """ Comparison numbers are found using R v.1.5.1 note that length(testcase) = 4 """ testcase = ma.fix_invalid([1,2,3,4,np.nan]) def test_signaltonoise(self): # This is not in R, so used: # mean(testcase, axis=0) / (sqrt(var(testcase)*3/4)) with warnings.catch_warnings(): warnings.simplefilter("ignore", DeprecationWarning) y = mstats.signaltonoise(self.testcase) assert_almost_equal(y, 2.236067977) def test_sem(self): # This is not in R, so used: sqrt(var(testcase)*3/4) / sqrt(3) y = mstats.sem(self.testcase) assert_almost_equal(y, 0.6454972244) n = self.testcase.count() assert_allclose(mstats.sem(self.testcase, ddof=0) * np.sqrt(n/(n-2)), mstats.sem(self.testcase, ddof=2)) def test_zmap(self): # This is not in R, so tested by using: # (testcase[i]-mean(testcase,axis=0)) / sqrt(var(testcase)*3/4) y = mstats.zmap(self.testcase, self.testcase) desired_unmaskedvals = ([-1.3416407864999, -0.44721359549996, 0.44721359549996, 1.3416407864999]) assert_array_almost_equal(desired_unmaskedvals, y.data[y.mask == False], decimal=12) def test_zscore(self): # This is not in R, so tested by using: # (testcase[i]-mean(testcase,axis=0)) / sqrt(var(testcase)*3/4) y = mstats.zscore(self.testcase) desired = ma.fix_invalid([-1.3416407864999, -0.44721359549996, 0.44721359549996, 1.3416407864999, np.nan]) assert_almost_equal(desired, y, decimal=12) class TestMisc(TestCase): def test_obrientransform(self): args = [[5]*5+[6]*11+[7]*9+[8]*3+[9]*2+[10]*2, [6]+[7]*2+[8]*4+[9]*9+[10]*16] result = [5*[3.1828]+11*[0.5591]+9*[0.0344]+3*[1.6086]+2*[5.2817]+2*[11.0538], [10.4352]+2*[4.8599]+4*[1.3836]+9*[0.0061]+16*[0.7277]] assert_almost_equal(np.round(mstats.obrientransform(*args).T,4), result,4) def test_kstwosamp(self): x = [[nan,nan, 4, 2, 16, 26, 5, 1, 5, 1, 2, 3, 1], [4, 3, 5, 3, 2, 7, 3, 1, 1, 2, 3, 5, 3], [3, 2, 5, 6, 18, 4, 9, 1, 1,nan, 1, 1,nan], [nan, 6, 11, 4, 17,nan, 6, 1, 1, 2, 5, 1, 1]] x = ma.fix_invalid(x).T (winter,spring,summer,fall) = x.T assert_almost_equal(np.round(mstats.ks_twosamp(winter,spring),4), (0.1818,0.9892)) assert_almost_equal(np.round(mstats.ks_twosamp(winter,spring,'g'),4), (0.1469,0.7734)) assert_almost_equal(np.round(mstats.ks_twosamp(winter,spring,'l'),4), (0.1818,0.6744)) def test_friedmanchisq(self): # No missing values args = ([9.0,9.5,5.0,7.5,9.5,7.5,8.0,7.0,8.5,6.0], [7.0,6.5,7.0,7.5,5.0,8.0,6.0,6.5,7.0,7.0], [6.0,8.0,4.0,6.0,7.0,6.5,6.0,4.0,6.5,3.0]) result = mstats.friedmanchisquare(*args) assert_almost_equal(result[0], 10.4737, 4) assert_almost_equal(result[1], 0.005317, 6) # Missing values x = [[nan,nan, 4, 2, 16, 26, 5, 1, 5, 1, 2, 3, 1], [4, 3, 5, 3, 2, 7, 3, 1, 1, 2, 3, 5, 3], [3, 2, 5, 6, 18, 4, 9, 1, 1,nan, 1, 1,nan], [nan, 6, 11, 4, 17,nan, 6, 1, 1, 2, 5, 1, 1]] x = ma.fix_invalid(x) result = mstats.friedmanchisquare(*x) assert_almost_equal(result[0], 2.0156, 4) assert_almost_equal(result[1], 0.5692, 4) # test for namedtuple attributes attributes = ('statistic', 'pvalue') check_named_results(result, attributes, ma=True) def test_regress_simple(): # Regress a line with sinusoidal noise. Test for #1273. x = np.linspace(0, 100, 100) y = 0.2 * np.linspace(0, 100, 100) + 10 y += np.sin(np.linspace(0, 20, 100)) slope, intercept, r_value, p_value, sterr = mstats.linregress(x, y) assert_almost_equal(slope, 0.19644990055858422) assert_almost_equal(intercept, 10.211269918932341) # test for namedtuple attributes res = mstats.linregress(x, y) attributes = ('slope', 'intercept', 'rvalue', 'pvalue', 'stderr') check_named_results(res, attributes, ma=True) def test_theilslopes(): # Test for basic slope and intercept. slope, intercept, lower, upper = mstats.theilslopes([0,1,1]) assert_almost_equal(slope, 0.5) assert_almost_equal(intercept, 0.5) # Test for correct masking. y = np.ma.array([0,1,100,1], mask=[False, False, True, False]) slope, intercept, lower, upper = mstats.theilslopes(y) assert_almost_equal(slope, 1./3) assert_almost_equal(intercept, 2./3) # Test of confidence intervals from example in Sen (1968). x = [1, 2, 3, 4, 10, 12, 18] y = [9, 15, 19, 20, 45, 55, 78] slope, intercept, lower, upper = mstats.theilslopes(y, x, 0.07) assert_almost_equal(slope, 4) assert_almost_equal(upper, 4.38, decimal=2) assert_almost_equal(lower, 3.71, decimal=2) def test_plotting_positions(): # Regression test for #1256 pos = mstats.plotting_positions(np.arange(3), 0, 0) assert_array_almost_equal(pos.data, np.array([0.25, 0.5, 0.75])) class TestNormalitytests(): def test_vs_nonmasked(self): x = np.array((-2,-1,0,1,2,3)*4)**2 assert_array_almost_equal(mstats.normaltest(x), stats.normaltest(x)) assert_array_almost_equal(mstats.skewtest(x), stats.skewtest(x)) assert_array_almost_equal(mstats.kurtosistest(x), stats.kurtosistest(x)) funcs = [stats.normaltest, stats.skewtest, stats.kurtosistest] mfuncs = [mstats.normaltest, mstats.skewtest, mstats.kurtosistest] x = [1, 2, 3, 4] for func, mfunc in zip(funcs, mfuncs): assert_raises(ValueError, func, x) assert_raises(ValueError, mfunc, x) def test_axis_None(self): # Test axis=None (equal to axis=0 for 1-D input) x = np.array((-2,-1,0,1,2,3)*4)**2 assert_allclose(mstats.normaltest(x, axis=None), mstats.normaltest(x)) assert_allclose(mstats.skewtest(x, axis=None), mstats.skewtest(x)) assert_allclose(mstats.kurtosistest(x, axis=None), mstats.kurtosistest(x)) def test_maskedarray_input(self): # Add some masked values, test result doesn't change x = np.array((-2,-1,0,1,2,3)*4)**2 xm = np.ma.array(np.r_[np.inf, x, 10], mask=np.r_[True, [False] * x.size, True]) assert_allclose(mstats.normaltest(xm), stats.normaltest(x)) assert_allclose(mstats.skewtest(xm), stats.skewtest(x)) assert_allclose(mstats.kurtosistest(xm), stats.kurtosistest(x)) def test_nd_input(self): x = np.array((-2,-1,0,1,2,3)*4)**2 x_2d = np.vstack([x] * 2).T for func in [mstats.normaltest, mstats.skewtest, mstats.kurtosistest]: res_1d = func(x) res_2d = func(x_2d) assert_allclose(res_2d[0], [res_1d[0]] * 2) assert_allclose(res_2d[1], [res_1d[1]] * 2) def test_normaltest_result_attributes(self): x = np.array((-2, -1, 0, 1, 2, 3)*4)**2 res = mstats.normaltest(x) attributes = ('statistic', 'pvalue') check_named_results(res, attributes, ma=True) def test_kurtosistest_result_attributes(self): x = np.array((-2, -1, 0, 1, 2, 3)*4)**2 res = mstats.kurtosistest(x) attributes = ('statistic', 'pvalue') check_named_results(res, attributes, ma=True) class TestFOneway(): def test_result_attributes(self): a = np.array([655, 788], dtype=np.uint16) b = np.array([789, 772], dtype=np.uint16) res = mstats.f_oneway(a, b) attributes = ('statistic', 'pvalue') check_named_results(res, attributes, ma=True) class TestMannwhitneyu(): def test_result_attributes(self): x = np.array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 2., 1., 1., 2., 1., 1., 2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 3., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]) y = np.array([1., 1., 1., 1., 1., 1., 1., 2., 1., 2., 1., 1., 1., 1., 2., 1., 1., 1., 2., 1., 1., 1., 1., 1., 2., 1., 1., 3., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 2., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 2., 2., 1., 1., 2., 1., 1., 2., 1., 2., 1., 1., 1., 1., 2., 2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 2., 2., 2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 2., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 2., 1., 1., 1., 1., 1., 1.]) res = mstats.mannwhitneyu(x, y) attributes = ('statistic', 'pvalue') check_named_results(res, attributes, ma=True) class TestKruskal(): def test_result_attributes(self): x = [1, 3, 5, 7, 9] y = [2, 4, 6, 8, 10] res = mstats.kruskal(x, y) attributes = ('statistic', 'pvalue') check_named_results(res, attributes, ma=True) #TODO: for all ttest functions, add tests with masked array inputs class TestTtest_rel(): def test_vs_nonmasked(self): np.random.seed(1234567) outcome = np.random.randn(20, 4) + [0, 0, 1, 2] # 1-D inputs res1 = stats.ttest_rel(outcome[:, 0], outcome[:, 1]) res2 = mstats.ttest_rel(outcome[:, 0], outcome[:, 1]) assert_allclose(res1, res2) # 2-D inputs res1 = stats.ttest_rel(outcome[:, 0], outcome[:, 1], axis=None) res2 = mstats.ttest_rel(outcome[:, 0], outcome[:, 1], axis=None) assert_allclose(res1, res2) res1 = stats.ttest_rel(outcome[:, :2], outcome[:, 2:], axis=0) res2 = mstats.ttest_rel(outcome[:, :2], outcome[:, 2:], axis=0) assert_allclose(res1, res2) # Check default is axis=0 res3 = mstats.ttest_rel(outcome[:, :2], outcome[:, 2:]) assert_allclose(res2, res3) def test_result_attributes(self): np.random.seed(1234567) outcome = np.random.randn(20, 4) + [0, 0, 1, 2] res = mstats.ttest_rel(outcome[:, 0], outcome[:, 1]) attributes = ('statistic', 'pvalue') check_named_results(res, attributes, ma=True) def test_invalid_input_size(self): assert_raises(ValueError, mstats.ttest_rel, np.arange(10), np.arange(11)) x = np.arange(24) assert_raises(ValueError, mstats.ttest_rel, x.reshape(2, 3, 4), x.reshape(2, 4, 3), axis=1) assert_raises(ValueError, mstats.ttest_rel, x.reshape(2, 3, 4), x.reshape(2, 4, 3), axis=2) def test_empty(self): res1 = mstats.ttest_rel([], []) assert_(np.all(np.isnan(res1))) class TestTtest_ind(): def test_vs_nonmasked(self): np.random.seed(1234567) outcome = np.random.randn(20, 4) + [0, 0, 1, 2] # 1-D inputs res1 = stats.ttest_ind(outcome[:, 0], outcome[:, 1]) res2 = mstats.ttest_ind(outcome[:, 0], outcome[:, 1]) assert_allclose(res1, res2) # 2-D inputs res1 = stats.ttest_ind(outcome[:, 0], outcome[:, 1], axis=None) res2 = mstats.ttest_ind(outcome[:, 0], outcome[:, 1], axis=None) assert_allclose(res1, res2) res1 = stats.ttest_ind(outcome[:, :2], outcome[:, 2:], axis=0) res2 = mstats.ttest_ind(outcome[:, :2], outcome[:, 2:], axis=0) assert_allclose(res1, res2) # Check default is axis=0 res3 = mstats.ttest_ind(outcome[:, :2], outcome[:, 2:]) assert_allclose(res2, res3) def test_result_attributes(self): np.random.seed(1234567) outcome = np.random.randn(20, 4) + [0, 0, 1, 2] res = mstats.ttest_ind(outcome[:, 0], outcome[:, 1]) attributes = ('statistic', 'pvalue') check_named_results(res, attributes, ma=True) def test_empty(self): res1 = mstats.ttest_ind([], []) assert_(np.all(np.isnan(res1))) class TestTtest_1samp(): def test_vs_nonmasked(self): np.random.seed(1234567) outcome = np.random.randn(20, 4) + [0, 0, 1, 2] # 1-D inputs res1 = stats.ttest_1samp(outcome[:, 0], 1) res2 = mstats.ttest_1samp(outcome[:, 0], 1) assert_allclose(res1, res2) # 2-D inputs res1 = stats.ttest_1samp(outcome[:, 0], outcome[:, 1], axis=None) res2 = mstats.ttest_1samp(outcome[:, 0], outcome[:, 1], axis=None) assert_allclose(res1, res2) res1 = stats.ttest_1samp(outcome[:, :2], outcome[:, 2:], axis=0) res2 = mstats.ttest_1samp(outcome[:, :2], outcome[:, 2:], axis=0) assert_allclose(res1, res2) # Check default is axis=0 res3 = mstats.ttest_1samp(outcome[:, :2], outcome[:, 2:]) assert_allclose(res2, res3) def test_result_attributes(self): np.random.seed(1234567) outcome = np.random.randn(20, 4) + [0, 0, 1, 2] res = mstats.ttest_1samp(outcome[:, 0], 1) attributes = ('statistic', 'pvalue') check_named_results(res, attributes, ma=True) def test_empty(self): res1 = mstats.ttest_1samp([], 1) assert_(np.all(np.isnan(res1))) class TestCompareWithStats(TestCase): """ Class to compare mstats results with stats results. It is in general assumed that scipy.stats is at a more mature stage than stats.mstats. If a routine in mstats results in similar results like in scipy.stats, this is considered also as a proper validation of scipy.mstats routine. Different sample sizes are used for testing, as some problems between stats and mstats are dependent on sample size. Author: Alexander Loew NOTE that some tests fail. This might be caused by a) actual differences or bugs between stats and mstats b) numerical inaccuracies c) different definitions of routine interfaces These failures need to be checked. Current workaround is to have disabled these tests, but issuing reports on scipy-dev """ def get_n(self): """ Returns list of sample sizes to be used for comparison. """ return [1000, 100, 10, 5] def generate_xy_sample(self, n): # This routine generates numpy arrays and corresponding masked arrays # with the same data, but additional masked values np.random.seed(1234567) x = np.random.randn(n) y = x + np.random.randn(n) xm = np.ones(len(x) + 5) * 1e16 ym = np.ones(len(y) + 5) * 1e16 xm[0:len(x)] = x ym[0:len(y)] = y mask = xm > 9e15 xm = np.ma.array(xm, mask=mask) ym = np.ma.array(ym, mask=mask) return x, y, xm, ym def generate_xy_sample2D(self, n, nx): x = np.ones((n, nx)) * np.nan y = np.ones((n, nx)) * np.nan xm = np.ones((n+5, nx)) * np.nan ym = np.ones((n+5, nx)) * np.nan for i in range(nx): x[:,i], y[:,i], dx, dy = self.generate_xy_sample(n) xm[0:n, :] = x[0:n] ym[0:n, :] = y[0:n] xm = np.ma.array(xm, mask=np.isnan(xm)) ym = np.ma.array(ym, mask=np.isnan(ym)) return x, y, xm, ym def test_linregress(self): for n in self.get_n(): x, y, xm, ym = self.generate_xy_sample(n) res1 = stats.linregress(x, y) res2 = stats.mstats.linregress(xm, ym) assert_allclose(np.asarray(res1), np.asarray(res2)) def test_pearsonr(self): for n in self.get_n(): x, y, xm, ym = self.generate_xy_sample(n) r, p = stats.pearsonr(x, y) rm, pm = stats.mstats.pearsonr(xm, ym) assert_almost_equal(r, rm, decimal=14) assert_almost_equal(p, pm, decimal=14) def test_spearmanr(self): for n in self.get_n(): x, y, xm, ym = self.generate_xy_sample(n) r, p = stats.spearmanr(x, y) rm, pm = stats.mstats.spearmanr(xm, ym) assert_almost_equal(r, rm, 14) assert_almost_equal(p, pm, 14) def test_gmean(self): for n in self.get_n(): x, y, xm, ym = self.generate_xy_sample(n) r = stats.gmean(abs(x)) rm = stats.mstats.gmean(abs(xm)) assert_allclose(r, rm, rtol=1e-13) r = stats.gmean(abs(y)) rm = stats.mstats.gmean(abs(ym)) assert_allclose(r, rm, rtol=1e-13) def test_hmean(self): for n in self.get_n(): x, y, xm, ym = self.generate_xy_sample(n) r = stats.hmean(abs(x)) rm = stats.mstats.hmean(abs(xm)) assert_almost_equal(r, rm, 10) r = stats.hmean(abs(y)) rm = stats.mstats.hmean(abs(ym)) assert_almost_equal(r, rm, 10) def test_skew(self): for n in self.get_n(): x, y, xm, ym = self.generate_xy_sample(n) r = stats.skew(x) rm = stats.mstats.skew(xm) assert_almost_equal(r, rm, 10) r = stats.skew(y) rm = stats.mstats.skew(ym) assert_almost_equal(r, rm, 10) def test_moment(self): for n in self.get_n(): x, y, xm, ym = self.generate_xy_sample(n) r = stats.moment(x) rm = stats.mstats.moment(xm) assert_almost_equal(r, rm, 10) r = stats.moment(y) rm = stats.mstats.moment(ym) assert_almost_equal(r, rm, 10) def test_signaltonoise(self): with warnings.catch_warnings(): warnings.simplefilter("ignore", DeprecationWarning) for n in self.get_n(): x, y, xm, ym = self.generate_xy_sample(n) r = stats.signaltonoise(x) rm = stats.mstats.signaltonoise(xm) assert_almost_equal(r, rm, 10) r = stats.signaltonoise(y) rm = stats.mstats.signaltonoise(ym) assert_almost_equal(r, rm, 10) def test_betai(self): np.random.seed(12345) for i in range(10): a = np.random.rand() * 5. b = np.random.rand() * 200. assert_equal(stats.betai(a, b, 0.), 0.) assert_equal(stats.betai(a, b, 1.), 1.) assert_equal(stats.mstats.betai(a, b, 0.), 0.) assert_equal(stats.mstats.betai(a, b, 1.), 1.) x = np.random.rand() assert_almost_equal(stats.betai(a, b, x), stats.mstats.betai(a, b, x), decimal=13) def test_zscore(self): for n in self.get_n(): x, y, xm, ym = self.generate_xy_sample(n) #reference solution zx = (x - x.mean()) / x.std() zy = (y - y.mean()) / y.std() #validate stats assert_allclose(stats.zscore(x), zx, rtol=1e-10) assert_allclose(stats.zscore(y), zy, rtol=1e-10) #compare stats and mstats assert_allclose(stats.zscore(x), stats.mstats.zscore(xm[0:len(x)]), rtol=1e-10) assert_allclose(stats.zscore(y), stats.mstats.zscore(ym[0:len(y)]), rtol=1e-10) def test_kurtosis(self): for n in self.get_n(): x, y, xm, ym = self.generate_xy_sample(n) r = stats.kurtosis(x) rm = stats.mstats.kurtosis(xm) assert_almost_equal(r, rm, 10) r = stats.kurtosis(y) rm = stats.mstats.kurtosis(ym) assert_almost_equal(r, rm, 10) def test_sem(self): # example from stats.sem doc a = np.arange(20).reshape(5,4) am = np.ma.array(a) r = stats.sem(a,ddof=1) rm = stats.mstats.sem(am, ddof=1) assert_allclose(r, 2.82842712, atol=1e-5) assert_allclose(rm, 2.82842712, atol=1e-5) for n in self.get_n(): x, y, xm, ym = self.generate_xy_sample(n) assert_almost_equal(stats.mstats.sem(xm, axis=None, ddof=0), stats.sem(x, axis=None, ddof=0), decimal=13) assert_almost_equal(stats.mstats.sem(ym, axis=None, ddof=0), stats.sem(y, axis=None, ddof=0), decimal=13) assert_almost_equal(stats.mstats.sem(xm, axis=None, ddof=1), stats.sem(x, axis=None, ddof=1), decimal=13) assert_almost_equal(stats.mstats.sem(ym, axis=None, ddof=1), stats.sem(y, axis=None, ddof=1), decimal=13) def test_describe(self): for n in self.get_n(): x, y, xm, ym = self.generate_xy_sample(n) r = stats.describe(x, ddof=1) rm = stats.mstats.describe(xm, ddof=1) for ii in range(6): assert_almost_equal(np.asarray(r[ii]), np.asarray(rm[ii]), decimal=12) def test_describe_result_attributes(self): actual = mstats.describe(np.arange(5)) attributes = ('nobs', 'minmax', 'mean', 'variance', 'skewness', 'kurtosis') check_named_results(actual, attributes, ma=True) def test_rankdata(self): for n in self.get_n(): x, y, xm, ym = self.generate_xy_sample(n) r = stats.rankdata(x) rm = stats.mstats.rankdata(x) assert_allclose(r, rm) def test_tmean(self): for n in self.get_n(): x, y, xm, ym = self.generate_xy_sample(n) assert_almost_equal(stats.tmean(x),stats.mstats.tmean(xm), 14) assert_almost_equal(stats.tmean(y),stats.mstats.tmean(ym), 14) def test_tmax(self): for n in self.get_n(): x, y, xm, ym = self.generate_xy_sample(n) assert_almost_equal(stats.tmax(x,2.), stats.mstats.tmax(xm,2.), 10) assert_almost_equal(stats.tmax(y,2.), stats.mstats.tmax(ym,2.), 10) def test_tmin(self): for n in self.get_n(): x, y, xm, ym = self.generate_xy_sample(n) assert_equal(stats.tmin(x),stats.mstats.tmin(xm)) assert_equal(stats.tmin(y),stats.mstats.tmin(ym)) assert_almost_equal(stats.tmin(x,lowerlimit=-1.), stats.mstats.tmin(xm,lowerlimit=-1.), 10) assert_almost_equal(stats.tmin(y,lowerlimit=-1.), stats.mstats.tmin(ym,lowerlimit=-1.), 10) def test_zmap(self): for n in self.get_n(): x, y, xm, ym = self.generate_xy_sample(n) z = stats.zmap(x,y) zm = stats.mstats.zmap(xm,ym) assert_allclose(z, zm[0:len(z)], atol=1e-10) def test_variation(self): for n in self.get_n(): x, y, xm, ym = self.generate_xy_sample(n) assert_almost_equal(stats.variation(x), stats.mstats.variation(xm), decimal=12) assert_almost_equal(stats.variation(y), stats.mstats.variation(ym), decimal=12) def test_tvar(self): for n in self.get_n(): x, y, xm, ym = self.generate_xy_sample(n) assert_almost_equal(stats.tvar(x), stats.mstats.tvar(xm), decimal=12) assert_almost_equal(stats.tvar(y), stats.mstats.tvar(ym), decimal=12) def test_trimboth(self): a = np.arange(20) b = stats.trimboth(a, 0.1) bm = stats.mstats.trimboth(a, 0.1) assert_allclose(b, bm.data[~bm.mask]) def test_tsem(self): for n in self.get_n(): x, y, xm, ym = self.generate_xy_sample(n) assert_almost_equal(stats.tsem(x),stats.mstats.tsem(xm), decimal=14) assert_almost_equal(stats.tsem(y),stats.mstats.tsem(ym), decimal=14) assert_almost_equal(stats.tsem(x,limits=(-2.,2.)), stats.mstats.tsem(xm,limits=(-2.,2.)), decimal=14) def test_skewtest(self): # this test is for 1D data for n in self.get_n(): if n > 8: x, y, xm, ym = self.generate_xy_sample(n) r = stats.skewtest(x) rm = stats.mstats.skewtest(xm) assert_allclose(r[0], rm[0], rtol=1e-15) # TODO this test is not performed as it is a known issue that # mstats returns a slightly different p-value what is a bit # strange is that other tests like test_maskedarray_input don't # fail! #~ assert_almost_equal(r[1], rm[1]) def test_skewtest_result_attributes(self): x = np.array((-2, -1, 0, 1, 2, 3)*4)**2 res = mstats.skewtest(x) attributes = ('statistic', 'pvalue') check_named_results(res, attributes, ma=True) def test_skewtest_2D_notmasked(self): # a normal ndarray is passed to the masked function x = np.random.random((20, 2)) * 20. r = stats.skewtest(x) rm = stats.mstats.skewtest(x) assert_allclose(np.asarray(r), np.asarray(rm)) def test_skewtest_2D_WithMask(self): nx = 2 for n in self.get_n(): if n > 8: x, y, xm, ym = self.generate_xy_sample2D(n, nx) r = stats.skewtest(x) rm = stats.mstats.skewtest(xm) assert_equal(r[0][0],rm[0][0]) assert_equal(r[0][1],rm[0][1]) def test_normaltest(self): np.seterr(over='raise') for n in self.get_n(): if n > 8: with warnings.catch_warnings(): warnings.filterwarnings('ignore', category=UserWarning) x, y, xm, ym = self.generate_xy_sample(n) r = stats.normaltest(x) rm = stats.mstats.normaltest(xm) assert_allclose(np.asarray(r), np.asarray(rm)) def test_find_repeats(self): x = np.asarray([1,1,2,2,3,3,3,4,4,4,4]).astype('float') tmp = np.asarray([1,1,2,2,3,3,3,4,4,4,4,5,5,5,5]).astype('float') mask = (tmp == 5.) xm = np.ma.array(tmp, mask=mask) r = stats.find_repeats(x) rm = stats.mstats.find_repeats(xm) assert_equal(r,rm) def test_kendalltau(self): for n in self.get_n(): x, y, xm, ym = self.generate_xy_sample(n) r = stats.kendalltau(x, y) rm = stats.mstats.kendalltau(xm, ym) assert_almost_equal(r[0], rm[0], decimal=10) assert_almost_equal(r[1], rm[1], decimal=7) def test_obrientransform(self): for n in self.get_n(): x, y, xm, ym = self.generate_xy_sample(n) r = stats.obrientransform(x) rm = stats.mstats.obrientransform(xm) assert_almost_equal(r.T, rm[0:len(x)]) if __name__ == "__main__": run_module_suite()
d7a25d94dee5bb5c016aa6033dc187cfe73cf882
40f4908483b98fc4f370ff4f2d520e1284d045b3
/phase02/immortals_repo/harness/pymmortals/generated/com/securboration/immortals/ontology/analysis/profiling/simpleresourcedependencyassertion.py
fd72bc793c259cc64cb2bc4289b0667e7140091c
[]
no_license
TF-185/bbn-immortals
7f70610bdbbcbf649f3d9021f087baaa76f0d8ca
e298540f7b5f201779213850291337a8bded66c7
refs/heads/master
2023-05-31T00:16:42.522840
2019-10-24T21:45:07
2019-10-24T21:45:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
652
py
from pymmortals.datatypes.serializable import Serializable from pymmortals.generated.com.securboration.immortals.ontology.core.resource import Resource from pymmortals.generated.com.securboration.immortals.ontology.measurement.codeunitpointer import CodeUnitPointer from typing import Type # noinspection PyPep8Naming class SimpleResourceDependencyAssertion(Serializable): _validator_values = dict() _types = dict() def __init__(self, codeUnit: CodeUnitPointer = None, dependency: Type[Resource] = None): super().__init__() self.codeUnit = codeUnit self.dependency = dependency
f57d10cb23fa6300616fe2080588f7d3c6404adb
190072bc404751d83e5aceb99a34ccba1067caae
/photobot/examples/Layer_function_select.py
6437d18ae66b047371f687e0ca0497d59b8a25ed
[ "MIT" ]
permissive
karstenw/Library
ab751bde79bb0bd2bd7f705901dab415ba154476
9c3f665be4988c14d939d28e7729c72819bba446
refs/heads/master
2023-08-14T04:53:15.559747
2023-07-16T12:27:19
2023-07-16T12:27:19
46,520,062
0
0
null
2023-05-18T14:06:29
2015-11-19T21:00:38
Python
UTF-8
Python
false
false
1,223
py
import sys, os # need a different name import random as rnd import pprint pp = pprint.pprint import pdb kwdbg = 0 W, H = 542, 1050 fullwidth = int(W-20) tilewidth = int((fullwidth-10) / 2.0) # check for Nodebox NB = True try: _ctx except(NameError): NB = False if NB: size(W, H) pb = ximport("photobot") else: WIDTH, HEIGHT = W, H import photobot as pb import imagewells if kwdbg: # make random choices repeatable for debugging rnd.seed(8) imagewell = imagewells.loadImageWell(resultfile="imagewell-files") tiles = imagewell['landscape'] rnd.shuffle(tiles) # pick 2 images img1path = tiles.pop() img2path = tiles.pop() # create a gray canvas c = pb.canvas( WIDTH, HEIGHT) c.fill( (192, 192, 192) ) # # Image 1 # _, filename = os.path.split( img1path ) # create, scale and place the image x, y = 10, 10 img1, w1, h1 = pb.placeImage(c, img1path, x, y, WIDTH-20, "Image 1 Base") c.top.autocontrast(cutoff=0) pb.label(c, filename, x, y) # # Image 2 # c.layers[img1].duplicate() path=( (w1/2,0), (w1,int(h1*0.667)), (w1/2.0, h1), (0,h1*0.75),(0,h1/2) ) c.top.select( path ) x, y = 10, h1+20+10 c.top.translate( x, y) # draw the result c.draw(name="Layer_function_select")
19a267b88eeda5563af6a304dcbd755284124dfc
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_84/177.py
db6951d5ed962140a11a025f300265217eb10a9c
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
705
py
# coding: shift-jis import sys f = file(sys.argv[1]) test_cnt = int(f.readline()) for case in range(1, test_cnt+1): V, H = map(int, f.readline().split()) row = [list(f.readline()[:-1]) for _ in range(V) ] ret = True for v in range(V): for h in range(H): if row[v][h] == '#': if v == V-1 or h == H-1: ret = False break if row[v][h+1] != '#' or row[v+1][h] != '#' or row[v+1][h+1]!='#': ret = False break row[v][h] = '/' row[v][h+1] = '\\' row[v+1][h] = '\\' row[v+1][h+1] = '/' print 'Case #%d:'%case if ret: for r in row: print reduce(lambda a,b:a+b, r) else: print 'Impossible'