blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
listlengths
1
1
author_id
stringlengths
1
132
c3e5ac9657c6a68133633a1e6cf922e32dec52c2
806709d56129cf9c5422b5e58be7072d21887b7d
/HW_clock/clockapp/apps.py
688d37335d37894cee69aa8591f52c6f0c302190
[]
no_license
merry-hyelyn/LikeLion
6334f5cc909a090a5e264aedcd9d790436ce59cf
cbd1654abd0bfbf872c2c670c604679467f5ef8e
refs/heads/master
2020-07-11T07:14:31.308439
2019-09-13T14:26:47
2019-09-13T14:26:47
204,473,722
0
0
null
null
null
null
UTF-8
Python
false
false
91
py
from django.apps import AppConfig class ClockappConfig(AppConfig): name = 'clockapp'
ed9a9a16fa606dc3a0b92e7d93dbca7f3237abe1
7101871e7a82d202483ada3053fec155ce7824a6
/test/functional/sapling_wallet_send.py
39c6d0a107af083c9d58aa278ac3ef4d18f9ad78
[ "MIT" ]
permissive
trumpcoinsupport/TrumpCoin
633a9992e46cab00774d01e569f4611b7f6b4b54
098c62ea249a63ca1cc31d5f37c6209ccdf50e2a
refs/heads/master
2023-01-11T20:22:03.469608
2021-12-31T10:04:39
2021-12-31T10:04:39
194,952,065
15
14
MIT
2023-01-08T02:49:09
2019-07-03T00:24:45
C++
UTF-8
Python
false
false
3,831
py
#!/usr/bin/env python3 # Copyright (c) 2018 The Zcash developers # Copyright (c) 2020 The TrumpCoin developers # Distributed under the MIT software license, see the accompanying # file COPYING or https://www.opensource.org/licenses/mit-license.php . from decimal import Decimal from test_framework.test_framework import TrumpCoinTestFramework from test_framework.util import ( assert_equal, ) class SaplingWalletSend(TrumpCoinTestFramework): def set_test_params(self): self.num_nodes = 3 self.setup_clean_chain = True saplingUpgrade = ['-nuparams=v5_shield:201'] self.extra_args = [saplingUpgrade, saplingUpgrade, saplingUpgrade] def run_test(self): self.log.info("Mining...") self.nodes[0].generate(2) self.sync_all() self.nodes[2].generate(200) self.sync_all() assert_equal(self.nodes[1].getblockcount(), 202) taddr1 = self.nodes[1].getnewaddress() saplingAddr1 = self.nodes[1].getnewshieldaddress() # Verify addresses assert(saplingAddr1 in self.nodes[1].listshieldaddresses()) assert_equal(self.nodes[1].getshieldbalance(saplingAddr1), Decimal('0')) assert_equal(self.nodes[1].getreceivedbyaddress(taddr1), Decimal('0')) # Test subtract fee from recipient self.log.info("Checking sendto[shield]address with subtract-fee-from-amt") node_0_bal = self.nodes[0].getbalance() node_1_bal = self.nodes[1].getbalance() txid = self.nodes[0].sendtoaddress(saplingAddr1, 10, "", "", True) node_0_bal -= Decimal('10') assert_equal(self.nodes[0].getbalance(), node_0_bal) self.sync_mempools() self.nodes[2].generate(1) self.sync_all() feeTx = self.nodes[0].gettransaction(txid)["fee"] # fee < 0 saplingAddr1_bal = (Decimal('10') + feeTx) node_1_bal += saplingAddr1_bal assert_equal(self.nodes[1].getbalance(), node_1_bal) self.log.info("Checking shieldsendmany with subtract-fee-from-amt") node_2_bal = self.nodes[2].getbalance() recipients1 = [{"address": saplingAddr1, "amount": Decimal('10')}, {"address": self.nodes[0].getnewshieldaddress(), "amount": Decimal('5')}] subtractfeefrom = [saplingAddr1] txid = self.nodes[2].shieldsendmany("from_transparent", recipients1, 1, 0, subtractfeefrom) node_2_bal -= Decimal('15') assert_equal(self.nodes[2].getbalance(), node_2_bal) self.nodes[2].generate(1) self.sync_all() feeTx = self.nodes[2].gettransaction(txid)["fee"] # fee < 0 node_1_bal += (Decimal('10') + feeTx) saplingAddr1_bal += (Decimal('10') + feeTx) assert_equal(self.nodes[1].getbalance(), node_1_bal) node_0_bal += Decimal('5') assert_equal(self.nodes[0].getbalance(), node_0_bal) self.log.info("Checking sendmany to shield with subtract-fee-from-amt") node_2_bal = self.nodes[2].getbalance() txid = self.nodes[2].sendmany('', {saplingAddr1: 10, taddr1: 10}, 1, "", False, [saplingAddr1, taddr1]) node_2_bal -= Decimal('20') assert_equal(self.nodes[2].getbalance(), node_2_bal) self.nodes[2].generate(1) self.sync_all() feeTx = self.nodes[2].gettransaction(txid)["fee"] # fee < 0 node_1_bal += (Decimal('20') + feeTx) assert_equal(self.nodes[1].getbalance(), node_1_bal) taddr1_bal = Decimal('10') + feeTx/2 saplingAddr1_bal += Decimal('10') + feeTx / 2 assert_equal(self.nodes[1].getreceivedbyaddress(taddr1), taddr1_bal) assert_equal(self.nodes[1].getshieldbalance(saplingAddr1), saplingAddr1_bal) if __name__ == '__main__': SaplingWalletSend().main()
d96f1e56f4b8aa0ac94be4330d3f7524cc14c3a7
ffd19240effa4f50b8469432d6ad2078e6b0db7d
/app/models.py
2e9fa0ba6b2c20f730a447db3c7f950342cbe5c6
[]
no_license
Jackson-coder-arch/Studio-session-booker
98e26ca1ef7953b81562884b4306becde097a47c
de20432fa3bb0660c7499efd5dd0917f0218670b
refs/heads/features
2023-03-21T11:42:48.043138
2021-03-12T08:49:34
2021-03-12T08:49:34
345,683,743
0
0
null
2021-03-12T08:49:35
2021-03-08T14:27:54
Python
UTF-8
Python
false
false
1,749
py
from app import db from flask_login import UserMixin from datetime import datetime from werkzeug.security import generate_password_hash,check_password_hash from . import login_manager class User(UserMixin,db.Model): __tablename__ = 'users' id = db.Column(db.Integer,primary_key = True) username = db.Column(db.String(255),index =True) email = db.Column(db.String(255),unique = True,index =True) pass_secure = db.Column(db.String(255)) bio = db.Column(db.String(255)) profile_pic_path = db.Column(db.String()) bookings = db.relationship('Booking',backref = 'user', lazy = 'dynamic') @property def password(self): raise AttributeError('You cannot read the password attribute') @password.setter def password(self, password): self.pass_secure = generate_password_hash(password) @login_manager.user_loader def load_user(user_id): return User.query.get(int(user_id)) def verify_password(self, password): return check_password_hash(self.pass_secure, password) def save_user(self): db.session.add(self) db.session.commit() def __repr__(self): return f'User {self.username} ' class Booking(db.Model): __tablename__ = 'bookings' id = db.Column(db.Integer,primary_key = True) # email = db.Column(db.String(255),unique = True,index =True) title = db.Column(db.String(255)) day = db.Column(db.String(255)) session = db.Column(db.String(255)) category = db.Column(db.String(255)) user_id = db.Column(db.Integer,db.ForeignKey('users.id')) def save_booking(self): db.session.add(self) db.session.commit() def __repr__(self): return f'Booking {self.day} '
6ca7eee9d0ea8b564e470641f42e79dd6d3c8de4
35d3bd909cc232b51496b8b07971386305bbc769
/sitemessage/settings.py
649d4678202125f4fcafd413a1db551e4a45344d
[]
no_license
shtalinberg/django-sitemessage
772810beae344529867df2b58e873a04dc6b5c93
dc1a5312316c5d0269380c1f80752437c7a1d6eb
refs/heads/master
2021-01-22T05:57:43.991672
2017-04-15T04:33:30
2017-04-15T04:33:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
782
py
from django.conf import settings # Module name to search sitemessage preferences in. APP_MODULE_NAME = getattr(settings, 'SITEMESSAGE_APP_MODULE_NAME', 'sitemessages') # Whether to register builtin message types. INIT_BUILTIN_MESSAGE_TYPES = getattr(settings, 'SITEMESSAGE_INIT_BUILTIN_MESSAGE_TYPES', True) # Priority for messages sent by Django Email backend (sitemessage.backends.EmailBackend). EMAIL_BACKEND_MESSAGES_PRIORITY = getattr(settings, 'SITEMESSAGE_EMAIL_BACKEND_MESSAGES_PRIORITY', None) # Message type alias for messages sent `schedule_email` shortcut. DEFAULT_SHORTCUT_EMAIL_MESSAGES_TYPE = getattr(settings, 'SITEMESSAGE_DEFAULT_SHORTCUT_EMAIL_MESSAGES_TYPE', 'smtp') # Site URL to use in messages. SITE_URL = getattr(settings, 'SITEMESSAGE_SITE_URL', None)
6a9727a84a58a3c17a257bafd64c3423e263ac0a
9a93a4d9e8d7424ccc3947ed8486083b815c5276
/websockets/exceptions.py
1b758c648ad74be77879f58c0bf6c315f1664f94
[ "BSD-3-Clause" ]
permissive
MariaElysse/websockets
de40f7dea8fa26c5f29a0cc2bf41d78c1acd2ac8
4216b35384c177981c4d18d763248c712b8e21d4
refs/heads/master
2020-03-26T19:26:29.171235
2018-08-11T10:16:12
2018-08-11T10:16:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,462
py
__all__ = [ 'AbortHandshake', 'ConnectionClosed', 'DuplicateParameter', 'InvalidHandshake', 'InvalidHeader', 'InvalidHeaderFormat', 'InvalidHeaderValue', 'InvalidMessage', 'InvalidOrigin', 'InvalidParameterName', 'InvalidParameterValue', 'InvalidState', 'InvalidStatusCode', 'InvalidUpgrade', 'InvalidURI', 'NegotiationError', 'PayloadTooBig', 'WebSocketProtocolError', ] class InvalidHandshake(Exception): """ Exception raised when a handshake request or response is invalid. """ class AbortHandshake(InvalidHandshake): """ Exception raised to abort a handshake and return a HTTP response. """ def __init__(self, status, headers, body=b''): self.status = status self.headers = headers self.body = body message = "HTTP {}, {} headers, {} bytes".format( status, len(headers), len(body)) super().__init__(message) class InvalidMessage(InvalidHandshake): """ Exception raised when the HTTP message in a handshake request is malformed. """ class InvalidHeader(InvalidHandshake): """ Exception raised when a HTTP header doesn't have a valid format or value. """ def __init__(self, name, value): if value: message = "Invalid {} header: {}".format(name, value) else: message = "Missing or empty {} header".format(name) super().__init__(message) class InvalidHeaderFormat(InvalidHeader): """ Exception raised when a Sec-WebSocket-* HTTP header cannot be parsed. """ def __init__(self, name, error, string, pos): error = "{} at {} in {}".format(error, pos, string) super().__init__(name, error) class InvalidHeaderValue(InvalidHeader): """ Exception raised when a Sec-WebSocket-* HTTP header has a wrong value. """ class InvalidUpgrade(InvalidHeader): """ Exception raised when a Upgrade or Connection header isn't correct. """ class InvalidOrigin(InvalidHeader): """ Exception raised when the Origin header in a request isn't allowed. """ def __init__(self, origin): super().__init__('Origin', origin) class InvalidStatusCode(InvalidHandshake): """ Exception raised when a handshake response status code is invalid. Provides the integer status code in its ``status_code`` attribute. """ def __init__(self, status_code): self.status_code = status_code message = "Status code not 101: {}".format(status_code) super().__init__(message) class NegotiationError(InvalidHandshake): """ Exception raised when negotiating an extension fails. """ class InvalidParameterName(NegotiationError): """ Exception raised when a parameter name in an extension header is invalid. """ def __init__(self, name): self.name = name message = "Invalid parameter name: {}".format(name) super().__init__(message) class InvalidParameterValue(NegotiationError): """ Exception raised when a parameter value in an extension header is invalid. """ def __init__(self, name, value): self.name = name self.value = value message = "Invalid value for parameter {}: {}".format(name, value) super().__init__(message) class DuplicateParameter(NegotiationError): """ Exception raised when a parameter name is repeated in an extension header. """ def __init__(self, name): self.name = name message = "Duplicate parameter: {}".format(name) super().__init__(message) class InvalidState(Exception): """ Exception raised when an operation is forbidden in the current state. """ CLOSE_CODES = { 1000: "OK", 1001: "going away", 1002: "protocol error", 1003: "unsupported type", # 1004 is reserved 1005: "no status code [internal]", 1006: "connection closed abnormally [internal]", 1007: "invalid data", 1008: "policy violation", 1009: "message too big", 1010: "extension required", 1011: "unexpected error", 1015: "TLS failure [internal]", } def format_close(code, reason): """ Display a human-readable version of the close code and reason. """ if 3000 <= code < 4000: explanation = "registered" elif 4000 <= code < 5000: explanation = "private use" else: explanation = CLOSE_CODES.get(code, "unknown") result = "code = {} ({}), ".format(code, explanation) if reason: result += "reason = {}".format(reason) else: result += "no reason" return result class ConnectionClosed(InvalidState): """ Exception raised when trying to read or write on a closed connection. Provides the connection close code and reason in its ``code`` and ``reason`` attributes respectively. """ def __init__(self, code, reason): self.code = code self.reason = reason message = "WebSocket connection is closed: " message += format_close(code, reason) super().__init__(message) class InvalidURI(Exception): """ Exception raised when an URI isn't a valid websocket URI. """ class PayloadTooBig(Exception): """ Exception raised when a frame's payload exceeds the maximum size. """ class WebSocketProtocolError(Exception): """ Internal exception raised when the remote side breaks the protocol. """
bdf28fd0c02c0410299165e2313553ae48a9f9ea
b92417413ec5b05ca25695de55934ce7072a0f0a
/test/test_v1_role.py
8276850e9eb6f7e6038ba217a2d6777c01ea27fd
[ "Apache-2.0" ]
permissive
detiber/lib_openshift
be1f0f1b3eec62c9bbf50a3fcea61303a870c112
efea21ce6f67e3d48885c03ae22978c576c0b87d
refs/heads/master
2021-01-18T04:12:00.820052
2016-10-04T03:20:43
2016-10-04T03:20:43
63,102,761
0
0
null
2016-07-11T21:15:36
2016-07-11T21:15:36
null
UTF-8
Python
false
false
1,212
py
# coding: utf-8 """ OpenAPI spec version: Generated by: https://github.com/swagger-api/swagger-codegen.git Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from __future__ import absolute_import import os import sys import unittest import lib_openshift from lib_openshift.rest import ApiException from lib_openshift.models.v1_role import V1Role class TestV1Role(unittest.TestCase): """ V1Role unit test stubs """ def setUp(self): pass def tearDown(self): pass def testV1Role(self): """ Test V1Role """ model = lib_openshift.models.v1_role.V1Role() if __name__ == '__main__': unittest.main()
5dacf336171c8318f8a1a9bd3b0984427bad0db2
6285a6f1357a8c4104edbb1f9ece10a27d4be344
/lib/modeling/backbone/resnet.py
f5c5600b4d372bc93756faa06bb3c08ae0137669
[]
no_license
cumtchenchang/descriptor-space
f9af90a12c484f519a5cbd54985fe112e063332e
0e7d0b15785039f7d8ecf3bc96db746b1ccf3465
refs/heads/master
2020-07-17T13:57:11.027855
2019-08-20T13:54:01
2019-08-20T13:54:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,919
py
import torch.nn as nn import torch.utils.model_zoo as model_zoo import numpy as np __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152'] model_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', } def conv3x3(in_planes, out_planes, stride=1, dilation=1): """3x3 convolution with padding""" padding = dilation return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=padding, dilation=dilation, bias=False) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride, dilation=dilation) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes, dilation=dilation) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = conv1x1(inplanes, planes) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = conv3x3(planes, planes, stride, dilation=dilation) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = conv1x1(planes, planes * self.expansion) self.bn3 = nn.BatchNorm2d(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, block, layers, num_classes=1000, zero_init_residual=False, cfg=None): super(ResNet, self).__init__() self.inplanes = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) end_layer = int(cfg.MODEL.BACKBONE.STOP_DOWNSAMPLING[1:]) - 1 if end_layer <= 1: raise ValueError("The stride and dilation before layer 2 should not be revised") start_layer = 5 if cfg.MODEL.BACKBONE.START_DOWNSAMPLING: start_layer = int(cfg.MODEL.BACKBONE.START_DOWNSAMPLING[1:]) - 1 strides = [1, 2, 2, 2] for i in range(end_layer-1, start_layer-1): strides[i] = 1 receptive = np.array([1, 2, 4, 8]) dilations = receptive // np.cumprod(strides) self.layer1 = self._make_layer(block, 64, layers[0], stride=strides[0], dilation=dilations[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=strides[1], dilation=dilations[1]) self.layer3 = self._make_layer(block, 256, layers[2], stride=strides[2], dilation=dilations[2]) self.layer4 = self._make_layer(block, 512, layers[3], stride=strides[3], dilation=dilations[3]) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): nn.init.constant_(m.bn3.weight, 0) elif isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0) def _make_layer(self, block, planes, blocks, stride=1, dilation=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, dilation, downsample)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes, dilation=dilation)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x class SingleResNet(nn.Module): def __init__(self, cfg): super(SingleResNet, self).__init__() self.cfg = cfg conv_body = cfg.MODEL.BACKBONE.CONV_BODY ind = conv_body.rfind('-') resnet = _RESNETS[conv_body[:ind]](pretrained=True, cfg=cfg) self.stage = int(conv_body[ind+2:]) resnet_module_list = [ resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool, resnet.layer1, resnet.layer2, resnet.layer3, resnet.layer4 ] self.model = nn.Sequential(*resnet_module_list[:3+self.stage]) def forward(self, x): return self.model(x) class MultiResNet(nn.Module): def __init__(self, cfg): super(MultiResNet, self).__init__() self.cfg = cfg conv_body = cfg.MODEL.BACKBONE.CONV_BODY ind = conv_body.rfind('-') resnet = _RESNETS[conv_body[:ind]](pretrained=True, cfg=cfg) self.stage = int(conv_body[ind+2:]) resnet_module_list = [ resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool, resnet.layer1, resnet.layer2, resnet.layer3, resnet.layer4 ] self.model = nn.Sequential(*resnet_module_list[:3+self.stage]) def forward(self, x): feats = {} x = self.model[:4](x) feats['C1'] = x for i in range(1, self.stage): x = self.model[i + 3](x) feats['C' + str(i+1)] = x return feats def resnet18(pretrained=False, **kwargs): """Constructs a ResNet-18 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls["resnet18"], model_dir=kwargs["cfg"].MODEL_DIR)) return model def resnet34(pretrained=False, **kwargs): """Constructs a ResNet-34 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls["resnet34"], model_dir=kwargs["cfg"].MODEL_DIR)) return model def resnet50(pretrained=False, **kwargs): """Constructs a ResNet-50 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls["resnet50"], model_dir=kwargs["cfg"].MODEL_DIR)) return model def resnet101(pretrained=False, **kwargs): """Constructs a ResNet-101 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls["resnet101"], model_dir=kwargs["cfg"].MODEL_DIR)) return model def resnet152(pretrained=False, **kwargs): """Constructs a ResNet-152 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls["resnet152"], model_dir=kwargs["cfg"].MODEL_DIR)) return model _RESNETS = { 'R-18': resnet18, 'Multi-R-18': resnet18, 'R-34': resnet34, 'R-50': resnet50, 'R-101': resnet101, 'R-152': resnet152, }
d9b8eb05b29632fdf14022991b75fcc4898142aa
76c8a2593316a74078e5ebe3c280d393b058ff67
/vai/commands/JoinWithNextLineCommand.py
c009849009712410c2f67e842d8f74c84019c1ef
[]
no_license
gavd89/vai
b7f746c3ba31397e8d85f477af9b9b71d01795fb
afa3a31b74ee81f9be8ab2c06cd8bdaebae1baad
refs/heads/master
2021-01-16T22:04:05.131998
2014-10-31T22:35:37
2014-10-31T22:35:37
26,130,434
1
0
null
null
null
null
UTF-8
Python
false
false
825
py
from .BufferCommand import BufferCommand from .CommandResult import CommandResult from ..models.TextDocument import LineMeta class JoinWithNextLineCommand(BufferCommand): def execute(self): cursor = self._cursor document = self._document pos = cursor.pos if pos[0] == document.numLines(): return CommandResult(success=False, info=None) self.saveCursorPos() line_meta = document.lineMeta(pos[0]) self.saveLineMemento(pos[0], BufferCommand.MEMENTO_REPLACE) self.saveLineMemento(pos[0]+1, BufferCommand.MEMENTO_INSERT) document.joinWithNextLine(pos[0]) if line_meta.get(LineMeta.Change) == None: document.updateLineMeta(pos[0], {LineMeta.Change: "modified"}) return CommandResult(success=True, info=None)
b78e36b1360b1dd9d552187653a755c3bb26c881
35ff4e124ea73cd2630ddf25dfe019b4b4e3f5d6
/55_JumpGame/55_JumpGame_3.py
01b5f0afae09de958c5980a9bd943ed3ceab4200
[]
no_license
H-Cong/LeetCode
0a2084a4845b5d7fac67c89bd72a2adf49f90c3d
d00993a88c6b34fcd79d0a6580fde5c523a2741d
refs/heads/master
2023-03-19T15:22:00.971461
2021-03-11T00:33:00
2021-03-11T00:33:00
303,265,129
0
0
null
null
null
null
UTF-8
Python
false
false
775
py
class Solution: def canJump(self, nums: List[int]) -> bool: ''' BackTracking ''' return self.canJumpFromPosition(0, nums) def canJumpFromPosition(self, position, nums): if position == len(nums) - 1: return True furthestJump = min(position + nums[position], len(nums) - 1) for nextPosition in range(position + 1, furthestJump + 1): if self.canJumpFromPosition(nextPosition, nums): return True return False # TC: O(2^n) # There are 2^n (upper bound) ways of jumping from the first position to the last, # where nn is the length of array nums. # SC: O(n) # Recursion requires additional memory for the stack frames.
ef301480c09e8bf0f702faabb05d320f96d1726c
8b3ca44ee3d990233e74655b7131d616094f70c2
/experiments/cross_validation/movielens_1M/gaussian_gaussian_wishart.py
77b129a3b7aae4cbfca58736af054f4dfb1902a5
[]
no_license
zshwuhan/BMF_Priors
8b8c54271285a72d2085a56a9475c0756f375e67
6a600da1c41f1ccde2f2ba99298b40e68fb9910a
refs/heads/master
2021-05-13T19:10:07.203215
2017-12-01T13:30:21
2017-12-01T13:30:21
116,883,181
1
0
null
2018-01-09T23:36:13
2018-01-09T23:36:13
null
UTF-8
Python
false
false
1,730
py
''' Run nested cross-validation experiment on the MovieLens 1M dataset, with the All Gaussian model (multivariate posterior) and Wishart prior. ''' project_location = "/Users/thomasbrouwer/Documents/Projects/libraries/" # "/home/tab43/Documents/Projects/libraries/" # import sys sys.path.append(project_location) from BMF_Priors.code.models.bmf_gaussian_gaussian_wishart import BMF_Gaussian_Gaussian_Wishart from BMF_Priors.code.cross_validation.nested_matrix_cross_validation import MatrixNestedCrossValidation from BMF_Priors.data.movielens.load_data import load_processed_movielens_1M ''' Settings BMF model. ''' method = BMF_Gaussian_Gaussian_Wishart R, M = load_processed_movielens_1M() hyperparameters = { 'alpha':1., 'beta':1., 'mu0':0., 'beta0':1., 'W0':1. } train_config = { 'iterations' : 120, 'init' : 'random', } predict_config = { 'burn_in' : 100, 'thinning' : 1, } ''' Settings nested cross-validation. ''' K_range = [12,13,14] no_folds = 5 no_threads = 5 parallel = False folder_results = './results/gaussian_gaussian_wishart/' output_file = folder_results+'results.txt' files_nested_performances = [folder_results+'fold_%s.txt'%(fold+1) for fold in range(no_folds)] ''' Construct the parameter search. ''' parameter_search = [{'K':K, 'hyperparameters':hyperparameters} for K in K_range] ''' Run the cross-validation framework. ''' nested_crossval = MatrixNestedCrossValidation( method=method, R=R, M=M, K=no_folds, P=no_threads, parameter_search=parameter_search, train_config=train_config, predict_config=predict_config, file_performance=output_file, files_nested_performances=files_nested_performances, ) nested_crossval.run(parallel=parallel)
d0a7aeff905f45c9098ea9c161be390f6f6400d6
00b24ff5ec169210b1b7cce53b621cbc0ee0fe40
/migrations/versions/e812a221262e_initialized_database.py
5944c31f6d72464d38c440607572aeca5fe9a83d
[]
no_license
carter3689/fakebook-march
1242c052fa51826f56aeb187cfdf41e0464ca4f8
41c2c388e0f19d849eef4572a13fcdffb41d3de4
refs/heads/main
2023-05-04T02:59:00.245789
2021-05-18T16:28:38
2021-05-18T16:28:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
938
py
"""initialized database Revision ID: e812a221262e Revises: Create Date: 2021-04-26 11:24:10.910838 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'e812a221262e' down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('post', sa.Column('id', sa.Integer(), nullable=False), sa.Column('email', sa.String(length=50), nullable=True), sa.Column('image', sa.String(), nullable=True), sa.Column('title', sa.String(), nullable=True), sa.Column('body', sa.Text(), nullable=True), sa.Column('created_on', sa.DateTime(), nullable=True), sa.PrimaryKeyConstraint('id') ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table('post') # ### end Alembic commands ###
d2bda2941a3c280e45de65afc578c06a0a1341f7
95f9c734c4bf5de8e5d0adff9ac2cf0228df75ac
/django-pro/opweb/opweb/wsgi.py
afbe2f475b239ff7eb311f1c9c1e5d1dd89b1289
[]
no_license
holen/Python
7a996b13ff2224084397223879c380169d47ff8c
506fff291d6e9c6f80c30a51cc3b77e9dd048468
refs/heads/master
2022-12-12T22:12:51.561716
2019-10-16T03:08:00
2019-10-16T03:08:00
14,278,665
1
0
null
2022-12-08T00:51:26
2013-11-10T15:29:59
Python
UTF-8
Python
false
false
385
py
""" WSGI config for opweb project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.7/howto/deployment/wsgi/ """ import os os.environ.setdefault("DJANGO_SETTINGS_MODULE", "opweb.settings") from django.core.wsgi import get_wsgi_application application = get_wsgi_application()
b0e721c955feb492b1b48896ef1eeac252b62e25
ee303308d85c28467a7dfe5300951d49a3866fb3
/src/uvm/base/uvm_report_server.py
07b247efdc4497b985ad27098590a5554ee788dc
[ "Apache-2.0" ]
permissive
tpoikela/uvm-python
3a66a43100a2903f91e0bb73b84c07c1003f7763
fc5f955701b2b56c1fddac195c70cb3ebb9139fe
refs/heads/master
2023-05-02T05:08:00.792132
2023-04-24T16:07:14
2023-04-24T16:07:14
232,838,902
199
43
Apache-2.0
2023-04-24T16:10:44
2020-01-09T15:22:26
Python
UTF-8
Python
false
false
22,445
py
# from cocotb.utils import get_sim_time from .uvm_object import UVMObject from .uvm_object_globals import (UVM_BIN, UVM_COUNT, UVM_DEC, UVM_DISPLAY, UVM_ERROR, UVM_EXIT, UVM_FATAL, UVM_INFO, UVM_LOG, UVM_LOW, UVM_MEDIUM, UVM_NONE, UVM_NO_ACTION, UVM_RM_RECORD, UVM_SEVERITY_LEVELS, UVM_STOP, UVM_WARNING) from .uvm_globals import uvm_report_info, uvm_sim_time from .uvm_pool import UVMPool from .uvm_global_vars import uvm_default_printer from .sv import sv from ..macros.uvm_message_defines import uvm_info from .uvm_tr_database import UVMTrDatabase, UVMTextTrDatabase from typing import List, Any, Callable def ename(sever) -> str: """ Converts given severity level into string. Args: sever (int): Severity level. Returns: str: Severity as string. Raises: Exception """ if isinstance(sever, str): raise Exception("str was given to ename(). Expected int. Got: " + sever) if sever == UVM_INFO: return "UVM_INFO" if sever == UVM_ERROR: return "UVM_ERROR" if sever == UVM_FATAL: return "UVM_FATAL" if sever == UVM_WARNING: return "UVM_WARNING" return "UNKNOWN_SEVERITY: {}".format(sever) class UVMReportServer(UVMObject): """ UVMReportServer is a global server that processes all of the reports generated by a uvm_report_handler. The `UVMReportServer` is an abstract class which declares many of its methods as ~pure virtual~. The UVM uses the <uvm_default_report_server> class as its default report server implementation. """ def __init__(self, name="base"): UVMObject.__init__(self, name) self.m_quit_count = 0 self.m_max_quit_count = 0 self.max_quit_overridable = True self.m_severity_count = UVMPool() self.m_id_count = UVMPool() self.enable_report_id_count_summary = True self.record_all_messages = False self.show_verbosity = False self.show_terminator = False self.m_message_db: UVMTrDatabase = UVMTextTrDatabase() # uvm_tr_database self.m_streams = {} self.reset_quit_count() self.reset_severity_counts() self.set_max_quit_count(0) self.print_on_closed_file = True self.logger = print # By default, use print to emit the messages def get_type_name(self) -> str: return "uvm_report_server" @classmethod def set_server(cls, server): cs = get_cs() #server.copy(cs.get_report_server()) cs.set_report_server(server) @classmethod def get_server(cls) -> 'UVMReportServer': cs = get_cs() return cs.get_report_server() def set_logger(self, logger: Callable): """ Sets the logger function used to print the messages. Default is python built-in print. logger (func): Logging function to use. """ self.logger = logger # Function: print # # The uvm_report_server implements the `UVMObject.do_print()` such that # ~print~ method provides UVM printer formatted output # of the current configuration. A snippet of example output is shown here:: # # uvm_report_server uvm_report_server - @13 # quit_count int 32 'd0 # max_quit_count int 32 'd5 # max_quit_overridable bit 1 'b1 # severity_count severity counts 4 - # [UVM_INFO] integral 32 'd4 # [UVM_WARNING] integral 32 'd2 # [UVM_ERROR] integral 32 'd50 # [UVM_FATAL] integral 32 'd10 # id_count id counts 4 - # [ID1] integral 32 'd1 # [ID2] integral 32 'd2 # [RNTST] integral 32 'd1 # enable_report_id_count_summary bit 1 'b1 # record_all_messages bit 1 `b0 # show_verbosity bit 1 `b0 # show_terminator bit 1 `b0 def do_print(self, printer): """ Print to show report server state Args: printer (UVMPrinter): """ l_severity_count_index = 0 l_id_count_index = "" printer.print_int("quit_count", self.m_quit_count, sv.bits(self.m_quit_count), UVM_DEC, ".", "int") printer.print_int("max_quit_count", self.m_max_quit_count, sv.bits(self.m_max_quit_count), UVM_DEC, ".", "int") printer.print_int("max_quit_overridable", self.max_quit_overridable, sv.bits(self.max_quit_overridable), UVM_BIN, ".", "bit") if self.m_severity_count.has_first(): l_severity_count_index = self.m_severity_count.first() sev_count = self.m_severity_count.num() printer.print_array_header("severity_count",sev_count,"severity counts") ok = True while ok: printer.print_int("[{}]".format(ename(l_severity_count_index)), self.m_severity_count[l_severity_count_index], 32, UVM_DEC) ok = self.m_severity_count.has_next() if ok: l_severity_count_index = self.m_severity_count.next() printer.print_array_footer() if self.m_id_count.has_first(): l_id_count_index = self.m_id_count.first() printer.print_array_header("id_count",self.m_id_count.num(),"id counts") ok = True while ok: printer.print_int("[{}]".format(l_id_count_index), self.m_id_count[l_id_count_index], 32, UVM_DEC) ok = self.m_id_count.has_next() if ok: l_id_count_index = self.m_id_count.next() printer.print_array_footer() printer.print_int("enable_report_id_count_summary", self.enable_report_id_count_summary, sv.bits(self.enable_report_id_count_summary), UVM_BIN, ".", "bit") printer.print_int("record_all_messages", self.record_all_messages, sv.bits(self.record_all_messages), UVM_BIN, ".", "bit") printer.print_int("show_verbosity", self.show_verbosity, sv.bits(self.show_verbosity), UVM_BIN, ".", "bit") printer.print_int("show_terminator", self.show_terminator, sv.bits(self.show_terminator), UVM_BIN, ".", "bit") #---------------------------------------------------------------------------- # Group: Quit Count #---------------------------------------------------------------------------- def get_max_quit_count(self): """ Get the maximum number of COUNT actions that can be tolerated before a UVM_EXIT action is taken. The default is 0, which specifies no maximum. Returns: int: Max quit count allowed for the server. """ return self.m_max_quit_count # Function: set_max_quit_count # # Get or set the maximum number of COUNT actions that can be tolerated # before a UVM_EXIT action is taken. The default is 0, which specifies # no maximum. def set_max_quit_count(self, count, overridable=True): if self.max_quit_overridable is False: uvm_report_info("NOMAXQUITOVR", "The max quit count setting of {} is not overridable to {} due to a previous setting." .format(self.m_max_quit_count, count), UVM_NONE) return self.max_quit_overridable = overridable if count < 0: self.m_max_quit_count = 0 else: self.m_max_quit_count = count def get_quit_count(self): """ Function: get_quit_count Returns: int: Quit count set for this report server. """ return self.m_quit_count def set_quit_count(self, quit_count): """ Args: quit_count (int): Desired quit count for this server. """ if quit_count < 0: self.m_quit_count = 0 else: self.m_quit_count = quit_count def incr_quit_count(self): """ Increment quit count by one. """ self.m_quit_count += 1 def reset_quit_count(self): """ Set, get, increment, or reset to 0 the quit count, i.e., the number of `UVM_COUNT` actions issued. """ self.m_quit_count = 0 def is_quit_count_reached(self): """ If is_quit_count_reached returns 1, then the quit counter has reached the maximum. Returns: bool: True is maximum quit count reached, False otherwise. """ return self.m_quit_count >= self.m_max_quit_count #---------------------------------------------------------------------------- # Group: Severity Count #---------------------------------------------------------------------------- def get_severity_count(self, severity): """ Returns number of messages reported for given severity. Args: severity (int): Severity level Returns: int: Number of messages reported for given severity. """ if self.m_severity_count.exists(severity): return self.m_severity_count.get(severity) return 0 # Function: set_severity_count def set_severity_count(self, severity, count): val = count if count < 0: val = 0 self.m_severity_count.add(severity, val) # Function: incr_severity_count def incr_severity_count(self, severity): if self.m_severity_count.exists(severity): new_count = self.m_severity_count.get(severity) + 1 self.m_severity_count.add(severity, new_count) else: self.m_severity_count.add(severity, 1) def reset_severity_counts(self): """ Function: reset_severity_counts Set, get, or increment the counter for the given severity, or reset all severity counters to 0. """ for s in UVM_SEVERITY_LEVELS: self.m_severity_count.add(s, 0) #---------------------------------------------------------------------------- # Group: id Count #---------------------------------------------------------------------------- # Function: get_id_count def get_id_count(self, id): if self.m_id_count.exists(id): return self.m_id_count.get(id) return 0 # Function: set_id_count def set_id_count(self, id, count): val = count if count < 0: val = 0 self.m_id_count.add(id, val) # Function: incr_id_count # # Set, get, or increment the counter for reports with the given id. def incr_id_count(self, id): if self.m_id_count.exists(id): val = self.m_id_count.get(id) self.m_id_count.add(id, val + 1) else: self.m_id_count.add(id, 1) #---------------------------------------------------------------------------- # Group: message recording # # The ~uvm_default_report_server~ will record messages into the message # database, using one transaction per message, and one stream per report # object/handler pair. # #---------------------------------------------------------------------------- def set_message_database(self, database: UVMTrDatabase): """ Function: set_message_database sets the `UVMTrDatabase` used for recording messages Args: database (UVMTrDatabase): """ self.m_message_db = database def get_message_database(self) -> UVMTrDatabase: """ Function: get_message_database returns the `uvm_tr_database` used for recording messages Returns: UVMTrDatabase: Message database. """ return self.m_message_db def get_severity_set(self, q: List[Any]) -> None: while self.m_severity_count.has_next(): q.append(self.m_severity_count.next()) def get_id_set(self, q: List[Any]) -> None: while self.m_id_count.has_next(): q.append(self.m_id_count.next()) def f_display(self, file, _str) -> None: """ This method sends string severity to the command line if file is 0 and to the file(s) specified by file if it is not 0. Args: file: _str: """ if file == 0: self.logger(_str) # print(_str) else: if not file.closed: file.write(_str + "\n") else: if self.print_on_closed_file: self.logger('UVM_WARNING. File already closed for msg ' + _str) def process_report_message(self, report_message) -> None: l_report_handler = report_message.get_report_handler() #process p = process::self() report_ok = True # Set the report server for this message report_message.set_report_server(self) if report_ok is True: from .uvm_report_catcher import UVMReportCatcher report_ok = UVMReportCatcher.process_all_report_catchers(report_message) if report_message.get_action() == UVM_NO_ACTION: report_ok = False if report_ok: m = "" cs = get_cs() # give the global server a chance to intercept the calls svr = cs.get_report_server() # no need to compose when neither UVM_DISPLAY nor UVM_LOG is set if report_message.get_action() & (UVM_LOG | UVM_DISPLAY): m = svr.compose_report_message(report_message) svr.execute_report_message(report_message, m) #---------------------------------------------------------------------------- # Group: Message Processing #---------------------------------------------------------------------------- def execute_report_message(self, report_message, composed_message) -> None: """ Processes the provided message per the actions contained within. Expert users can overload this method to customize action processing. Args: report_message (UVMReportMessage): composed_message (str): Formatted message string """ #process p = process::self() # Update counts self.incr_severity_count(report_message.get_severity()) self.incr_id_count(report_message.get_id()) if self.record_all_messages is True: report_message.set_action(report_message.get_action() | UVM_RM_RECORD) # UVM_RM_RECORD action if report_message.get_action() & UVM_RM_RECORD: stream = None # uvm_tr_stream stream ro = report_message.get_report_object() rh = report_message.get_report_handler() # Check for pre-existing stream TODO #if (m_streams.exists(ro.get_name()) && (m_streams[ro.get_name()].exists(rh.get_name()))) #stream = m_streams[ro.get_name()][rh.get_name()] # If no pre-existing stream (or for some reason pre-existing stream was ~null~) if stream is None: # Grab the database db = self.get_message_database() # If database is ~null~, use the default database if db is None: cs = get_cs() db = cs.get_default_tr_database() if db is not None: # Open the stream. Name=report object name, scope=report handler name, type=MESSAGES stream = db.open_stream(ro.get_name(), rh.get_name(), "MESSAGES") # Save off the openned stream self.m_streams[ro.get_name()][rh.get_name()] = stream if stream is not None: recorder = stream.open_recorder(report_message.get_name(), None,report_message.get_type_name()) if recorder is not None: report_message.record(recorder) recorder.free() # DISPLAY action if report_message.get_action() & UVM_DISPLAY: self.logger(composed_message) # LOG action # if log is set we need to send to the file but not resend to the # display. So, we need to mask off stdout for an mcd or we need # to ignore the stdout file handle for a file handle. if report_message.get_action() & UVM_LOG: if report_message.get_file() == 0 or report_message.get_file() != 0x80000001: #ignore stdout handle tmp_file = report_message.get_file() #if report_message.get_file() & 0x80000000 == 0: # is an mcd so mask off stdout # tmp_file = report_message.get_file() & 0xfffffffe self.f_display(tmp_file, composed_message) # Process the UVM_COUNT action if report_message.get_action() & UVM_COUNT: if self.get_max_quit_count() != 0: self.incr_quit_count() # If quit count is reached, add the UVM_EXIT action. if self.is_quit_count_reached(): report_message.set_action(report_message.get_action() | UVM_EXIT) # Process the UVM_EXIT action if report_message.get_action() & UVM_EXIT: cs = get_cs() l_root = cs.get_root() l_root.die() # Process the UVM_STOP action if report_message.get_action() & UVM_STOP: raise Exception("$stop from uvm_report_server, msg: " + report_message.sprint()) def compose_report_message(self, report_message, report_object_name="") -> str: """ Constructs the actual string sent to the file or command line from the severity, component name, report id, and the message itself. Expert users can overload this method to customize report formatting. Args: report_message (UVMReportMessage): report_object_name (UVMReportObject): Returns: str: Composed message as string. """ sev_string = "" l_severity = UVM_INFO l_verbosity = UVM_MEDIUM filename_line_string = "" time_str = "" line_str = "" context_str = "" verbosity_str = "" terminator_str = "" msg_body_str = "" el_container = None prefix = "" l_report_handler = None l_severity = report_message.get_severity() sev_string = ename(l_severity) if report_message.get_filename() != "": line_str = str(report_message.get_line()) filename_line_string = report_message.get_filename() + "(" + line_str + ") " # Make definable in terms of units. #$swrite(time_str, "%0t", $time) #time_str = get_sim_time('ns') TODO time_str = str(uvm_sim_time('NS')) + 'NS' if report_message.get_context() != "": context_str = "@@" + report_message.get_context() if self.show_verbosity is True: verb = report_message.get_verbosity() verbosity_str = "(" + verb + ")" if self.show_terminator is True: terminator_str = " -" + sev_string el_container = report_message.get_element_container() if el_container.size() == 0: msg_body_str = report_message.get_message() else: prefix = uvm_default_printer.knobs.prefix uvm_default_printer.knobs.prefix = " +" msg_body_str = report_message.get_message() + "\n" + el_container.sprint() uvm_default_printer.knobs.prefix = prefix if report_object_name == "": l_report_handler = report_message.get_report_handler() if l_report_handler is not None: report_object_name = l_report_handler.get_full_name() else: report_object_name = "NO_REPORT_OBJECT" result = (sev_string + verbosity_str + " " + filename_line_string + "@ " + time_str + ": " + report_object_name + context_str + " [" + report_message.get_id() + "] " + msg_body_str + terminator_str) return result def report_summarize(self, file=0) -> None: """ Outputs statistical information on the reports issued by this central report server. This information will be sent to the command line if ~file~ is 0, or to the file descriptor ~file~ if it is not 0. The `UVMRoot.run_test` method in `UVMRoot` calls this method. """ rpt = self.get_summary_string() uvm_info("UVM/REPORT/SERVER", rpt, UVM_LOW) def get_summary_string(self) -> str: """ Returns the statistical information on the reports issued by this central report server as multi-line string. Returns: str: End of simulation summary. """ id = "" q = [] from .uvm_report_catcher import UVMReportCatcher UVMReportCatcher.summarize() q.append("\n--- UVM Report Summary ---\n\n") if self.m_max_quit_count != 0: if self.m_quit_count >= self.m_max_quit_count: q.append("Quit count reached!\n") q.append("Quit count : {} of {}\n".format(self.m_quit_count, self.m_max_quit_count)) q.append("** Report counts by severity\n") for s in self.m_severity_count.keys(): q.append("{} : {}\n".format(ename(s), self.m_severity_count.get(s))) if self.enable_report_id_count_summary is True: q.append("** Report counts by id\n") for id in self.m_id_count.keys(): q.append("[{}] {}\n".format(id, self.m_id_count.get(id))) return "".join(q) def get_cs(): from .uvm_coreservice import UVMCoreService return UVMCoreService.get()
15b35b4d0ed83d0b99c75f0e25604fb40d79f538
ea6b3b74c8f1ff9333c5d4b06a0e4dd9bbdb3bba
/tests/rpc/test_reflect_service.py
b7a206e547357b2ef8b7398477b04497c4742ae9
[ "MIT" ]
permissive
sgalkina/venom
d495d296a388afcb25525491bbbe590bfd258a05
e372ab9002e71ba4e2422aabd02143e4f1247dba
refs/heads/master
2021-01-23T03:27:17.239289
2017-03-24T15:05:56
2017-03-24T15:05:56
86,077,951
0
0
null
2017-03-24T14:40:46
2017-03-24T14:40:46
null
UTF-8
Python
false
false
557
py
from unittest import TestCase from venom.rpc import Service, Venom from venom.rpc.reflect.service import ReflectService class ReflectServiceTestCase(TestCase): def test_service_registration(self): class BeforeService(Service): pass class AfterService(Service): pass venom = Venom() venom.add(BeforeService) venom.add(ReflectService) venom.add(AfterService) self.assertEqual(ReflectService.__manager__.reflect.services, {BeforeService, AfterService, ReflectService})
a19b592b9058d5945dee87f774bc4ee913bbecf1
0b5f2442b222da2895cdad06913c3687162f06bb
/pyclustering/container/__init__.py
27e87524cc9610c785f192f53863d1b4e7d5a005
[]
no_license
Kinddle-tick/ML_clustering
a765fadde581392de098227b0ee4a9b3572ef24f
27f9887cb383d0d1ea0a4a42788eddc2f4c85c67
refs/heads/master
2023-03-14T18:15:08.350604
2021-03-23T07:16:51
2021-03-23T07:16:51
350,600,754
0
0
null
null
null
null
UTF-8
Python
false
false
168
py
"""! @brief pyclustering module of data structures (containers). @authors Andrei Novikov ([email protected]) @date 2014-2020 @copyright BSD-3-Clause """
66ba21a633e7441cc8a26fce40999953920a1510
37c243e2f0aab70cbf38013d1d91bfc3a83f7972
/pp7TeV/HeavyIonsAnalysis/JetAnalysis/python/jets/akPu3PFJetSequence_pp_mc_bTag_cff.py
9bd3111ca859c1bbd91ad38579946f0d50b47212
[]
no_license
maoyx/CMSWork
82f37256833cbe4c60cb8df0b4eb68ceb12b65e7
501456f3f3e0f11e2f628b40e4d91e29668766d5
refs/heads/master
2021-01-01T18:47:55.157534
2015-03-12T03:47:15
2015-03-12T03:47:15
10,951,799
0
0
null
null
null
null
UTF-8
Python
false
false
11,707
py
import FWCore.ParameterSet.Config as cms from PhysicsTools.PatAlgos.patHeavyIonSequences_cff import * from HeavyIonsAnalysis.JetAnalysis.inclusiveJetAnalyzer_cff import * from HeavyIonsAnalysis.JetAnalysis.bTaggers_cff import * from RecoJets.JetProducers.JetIDParams_cfi import * akPu3PFmatch = patJetGenJetMatch.clone( src = cms.InputTag("akPu3PFJets"), matched = cms.InputTag("ak3HiGenJets") ) akPu3PFparton = patJetPartonMatch.clone(src = cms.InputTag("akPu3PFJets") ) akPu3PFcorr = patJetCorrFactors.clone( useNPV = False, # primaryVertices = cms.InputTag("hiSelectedVertex"), levels = cms.vstring('L2Relative','L3Absolute'), src = cms.InputTag("akPu3PFJets"), payload = "AKPu3PF_generalTracks" ) akPu3PFJetID= cms.EDProducer('JetIDProducer', JetIDParams, src = cms.InputTag('akPu3CaloJets')) akPu3PFclean = heavyIonCleanedGenJets.clone(src = cms.InputTag('ak3HiGenJets')) akPu3PFbTagger = bTaggers("akPu3PF") #create objects locally since they dont load properly otherwise akPu3PFmatch = akPu3PFbTagger.match akPu3PFparton = akPu3PFbTagger.parton akPu3PFPatJetFlavourAssociation = akPu3PFbTagger.PatJetFlavourAssociation akPu3PFJetTracksAssociatorAtVertex = akPu3PFbTagger.JetTracksAssociatorAtVertex akPu3PFSimpleSecondaryVertexHighEffBJetTags = akPu3PFbTagger.SimpleSecondaryVertexHighEffBJetTags akPu3PFSimpleSecondaryVertexHighPurBJetTags = akPu3PFbTagger.SimpleSecondaryVertexHighPurBJetTags akPu3PFCombinedSecondaryVertexBJetTags = akPu3PFbTagger.CombinedSecondaryVertexBJetTags akPu3PFCombinedSecondaryVertexMVABJetTags = akPu3PFbTagger.CombinedSecondaryVertexMVABJetTags akPu3PFJetBProbabilityBJetTags = akPu3PFbTagger.JetBProbabilityBJetTags akPu3PFSoftMuonByPtBJetTags = akPu3PFbTagger.SoftMuonByPtBJetTags akPu3PFSoftMuonByIP3dBJetTags = akPu3PFbTagger.SoftMuonByIP3dBJetTags akPu3PFTrackCountingHighEffBJetTags = akPu3PFbTagger.TrackCountingHighEffBJetTags akPu3PFTrackCountingHighPurBJetTags = akPu3PFbTagger.TrackCountingHighPurBJetTags akPu3PFPatJetPartonAssociation = akPu3PFbTagger.PatJetPartonAssociation akPu3PFImpactParameterTagInfos = akPu3PFbTagger.ImpactParameterTagInfos akPu3PFJetProbabilityBJetTags = akPu3PFbTagger.JetProbabilityBJetTags akPu3PFPositiveOnlyJetProbabilityJetTags = akPu3PFbTagger.PositiveOnlyJetProbabilityJetTags akPu3PFNegativeOnlyJetProbabilityJetTags = akPu3PFbTagger.NegativeOnlyJetProbabilityJetTags akPu3PFNegativeTrackCountingHighEffJetTags = akPu3PFbTagger.NegativeTrackCountingHighEffJetTags akPu3PFNegativeTrackCountingHighPur = akPu3PFbTagger.NegativeTrackCountingHighPur akPu3PFNegativeOnlyJetBProbabilityJetTags = akPu3PFbTagger.NegativeOnlyJetBProbabilityJetTags akPu3PFPositiveOnlyJetBProbabilityJetTags = akPu3PFbTagger.PositiveOnlyJetBProbabilityJetTags akPu3PFSecondaryVertexTagInfos = akPu3PFbTagger.SecondaryVertexTagInfos akPu3PFSimpleSecondaryVertexHighEffBJetTags = akPu3PFbTagger.SimpleSecondaryVertexHighEffBJetTags akPu3PFSimpleSecondaryVertexHighPurBJetTags = akPu3PFbTagger.SimpleSecondaryVertexHighPurBJetTags akPu3PFCombinedSecondaryVertexBJetTags = akPu3PFbTagger.CombinedSecondaryVertexBJetTags akPu3PFCombinedSecondaryVertexMVABJetTags = akPu3PFbTagger.CombinedSecondaryVertexMVABJetTags akPu3PFSecondaryVertexNegativeTagInfos = akPu3PFbTagger.SecondaryVertexNegativeTagInfos akPu3PFSimpleSecondaryVertexNegativeHighEffBJetTags = akPu3PFbTagger.SimpleSecondaryVertexNegativeHighEffBJetTags akPu3PFSimpleSecondaryVertexNegativeHighPurBJetTags = akPu3PFbTagger.SimpleSecondaryVertexNegativeHighPurBJetTags akPu3PFCombinedSecondaryVertexNegativeBJetTags = akPu3PFbTagger.CombinedSecondaryVertexNegativeBJetTags akPu3PFCombinedSecondaryVertexPositiveBJetTags = akPu3PFbTagger.CombinedSecondaryVertexPositiveBJetTags akPu3PFSoftMuonTagInfos = akPu3PFbTagger.SoftMuonTagInfos akPu3PFSoftMuonBJetTags = akPu3PFbTagger.SoftMuonBJetTags akPu3PFSoftMuonByIP3dBJetTags = akPu3PFbTagger.SoftMuonByIP3dBJetTags akPu3PFSoftMuonByPtBJetTags = akPu3PFbTagger.SoftMuonByPtBJetTags akPu3PFNegativeSoftMuonByPtBJetTags = akPu3PFbTagger.NegativeSoftMuonByPtBJetTags akPu3PFPositiveSoftMuonByPtBJetTags = akPu3PFbTagger.PositiveSoftMuonByPtBJetTags akPu3PFPatJetFlavourId = cms.Sequence(akPu3PFPatJetPartonAssociation*akPu3PFPatJetFlavourAssociation) akPu3PFJetBtaggingIP = cms.Sequence(akPu3PFImpactParameterTagInfos * (akPu3PFTrackCountingHighEffBJetTags + akPu3PFTrackCountingHighPurBJetTags + akPu3PFJetProbabilityBJetTags + akPu3PFJetBProbabilityBJetTags + akPu3PFPositiveOnlyJetProbabilityJetTags + akPu3PFNegativeOnlyJetProbabilityJetTags + akPu3PFNegativeTrackCountingHighEffJetTags + akPu3PFNegativeTrackCountingHighPur + akPu3PFNegativeOnlyJetBProbabilityJetTags + akPu3PFPositiveOnlyJetBProbabilityJetTags ) ) akPu3PFJetBtaggingSV = cms.Sequence(akPu3PFImpactParameterTagInfos * akPu3PFSecondaryVertexTagInfos * (akPu3PFSimpleSecondaryVertexHighEffBJetTags + akPu3PFSimpleSecondaryVertexHighPurBJetTags + akPu3PFCombinedSecondaryVertexBJetTags + akPu3PFCombinedSecondaryVertexMVABJetTags ) ) akPu3PFJetBtaggingNegSV = cms.Sequence(akPu3PFImpactParameterTagInfos * akPu3PFSecondaryVertexNegativeTagInfos * (akPu3PFSimpleSecondaryVertexNegativeHighEffBJetTags + akPu3PFSimpleSecondaryVertexNegativeHighPurBJetTags + akPu3PFCombinedSecondaryVertexNegativeBJetTags + akPu3PFCombinedSecondaryVertexPositiveBJetTags ) ) akPu3PFJetBtaggingMu = cms.Sequence(akPu3PFSoftMuonTagInfos * (akPu3PFSoftMuonBJetTags + akPu3PFSoftMuonByIP3dBJetTags + akPu3PFSoftMuonByPtBJetTags + akPu3PFNegativeSoftMuonByPtBJetTags + akPu3PFPositiveSoftMuonByPtBJetTags ) ) akPu3PFJetBtagging = cms.Sequence(akPu3PFJetBtaggingIP *akPu3PFJetBtaggingSV *akPu3PFJetBtaggingNegSV *akPu3PFJetBtaggingMu ) akPu3PFpatJetsWithBtagging = patJets.clone(jetSource = cms.InputTag("akPu3PFJets"), genJetMatch = cms.InputTag("akPu3PFmatch"), genPartonMatch = cms.InputTag("akPu3PFparton"), jetCorrFactorsSource = cms.VInputTag(cms.InputTag("akPu3PFcorr")), JetPartonMapSource = cms.InputTag("akPu3PFPatJetFlavourAssociation"), trackAssociationSource = cms.InputTag("akPu3PFJetTracksAssociatorAtVertex"), discriminatorSources = cms.VInputTag(cms.InputTag("akPu3PFSimpleSecondaryVertexHighEffBJetTags"), cms.InputTag("akPu3PFSimpleSecondaryVertexHighPurBJetTags"), cms.InputTag("akPu3PFCombinedSecondaryVertexBJetTags"), cms.InputTag("akPu3PFCombinedSecondaryVertexMVABJetTags"), cms.InputTag("akPu3PFJetBProbabilityBJetTags"), cms.InputTag("akPu3PFJetProbabilityBJetTags"), cms.InputTag("akPu3PFSoftMuonByPtBJetTags"), cms.InputTag("akPu3PFSoftMuonByIP3dBJetTags"), cms.InputTag("akPu3PFTrackCountingHighEffBJetTags"), cms.InputTag("akPu3PFTrackCountingHighPurBJetTags"), ), jetIDMap = cms.InputTag("akPu3PFJetID"), addBTagInfo = True, addTagInfos = True, addDiscriminators = True, addAssociatedTracks = True, addJetCharge = False, addJetID = True, getJetMCFlavour = True, addGenPartonMatch = True, addGenJetMatch = True, embedGenJetMatch = True, embedGenPartonMatch = True, embedCaloTowers = False, embedPFCandidates = True ) akPu3PFJetAnalyzer = inclusiveJetAnalyzer.clone(jetTag = cms.InputTag("akPu3PFpatJetsWithBtagging"), genjetTag = 'ak3HiGenJets', rParam = 0.3, matchJets = cms.untracked.bool(False), matchTag = 'patJetsWithBtagging', pfCandidateLabel = cms.untracked.InputTag('particleFlow'), trackTag = cms.InputTag("generalTracks"), fillGenJets = True, isMC = True, genParticles = cms.untracked.InputTag("genParticles"), eventInfoTag = cms.InputTag("generator"), doLifeTimeTagging = cms.untracked.bool(True), doLifeTimeTaggingExtras = cms.untracked.bool(True), bTagJetName = cms.untracked.string("akPu3PF"), genPtMin = cms.untracked.double(15), hltTrgResults = cms.untracked.string('TriggerResults::'+'HISIGNAL') ) akPu3PFJetSequence_mc = cms.Sequence( akPu3PFclean * akPu3PFmatch * akPu3PFparton * akPu3PFcorr * akPu3PFJetID * akPu3PFPatJetFlavourId * akPu3PFJetTracksAssociatorAtVertex * akPu3PFJetBtagging * akPu3PFpatJetsWithBtagging * akPu3PFJetAnalyzer ) akPu3PFJetSequence_data = cms.Sequence(akPu3PFcorr * akPu3PFJetTracksAssociatorAtVertex * akPu3PFJetBtagging * akPu3PFpatJetsWithBtagging * akPu3PFJetAnalyzer ) akPu3PFJetSequence_jec = akPu3PFJetSequence_mc akPu3PFJetSequence_mix = akPu3PFJetSequence_mc akPu3PFJetSequence = cms.Sequence(akPu3PFJetSequence_mc)
05932b5eb4efff7df2c4efaadaa8037452a9e61d
cd90bbc775cbce9a7e0bc46cbb9437e3961e587f
/misc/advent/2017/5/e.py
4d998c22b9ab5cb25fc7a904a5b71e05e17ea209
[]
no_license
llimllib/personal_code
7b3f0483589e2928bf994184e3413f4b887e1f0c
4d4662d53e0ac293dea8a4208ccca4a1f272e64a
refs/heads/master
2023-09-05T04:02:05.075388
2023-09-01T12:34:09
2023-09-01T12:34:09
77,958
9
16
null
2023-08-16T13:54:39
2008-11-19T02:04:46
HTML
UTF-8
Python
false
false
571
py
def run(cmds): location = 0 counter = 0 l = len(cmds) while 1: try: cmd = cmds[location] if cmd >= 3: cmds[location] -= 1 else: cmds[location] += 1 location += cmd if location < 0: print(counter) break counter += 1 except: print(counter) break if __name__=="__main__": text = open("input.txt").read().strip().split("\n") cmds = [int(cmd) for cmd in text] run(cmds)
0977ce752af81adc5992e95036e5f5f852fc53ac
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02903/s750261745.py
420fde7847d4409890218c615f7f27f1bf072248
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
116
py
h,w,a,b=map(int,input().split()) for _ in range(b):print("0"*a+"1"*(w-a)) for _ in range(h-b):print("1"*a+"0"*(w-a))
b314afaaabc9bbf3ea4b69fe5f6f89638900efc2
04d55063219d484f29bf1a351b87e972b374e9a6
/inversetoon/core/light_estimation/light_estimation.py
f6a43a8535f4fe512287218f1850a235825d8872
[ "MIT" ]
permissive
tody411/InverseToon
5530f63d225f91d1c497f3f80f24c4ccf086aa8f
bc5b922cae9bbf99ed1f020c93b1577c4747ff92
refs/heads/master
2020-05-18T13:32:25.285723
2015-10-06T02:35:15
2015-10-06T02:35:15
39,255,745
4
0
null
null
null
null
UTF-8
Python
false
false
1,150
py
# -*- coding: utf-8 -*- ## @package inversetoon.core.light_estimation # # inversetoon.core.light_estimation utility package. # @author tody # @date 2015/09/07 import numpy as np from inversetoon.np.norm import normalizeVector from inversetoon.core.light_estimation.light_estimation_common import testToon def estimateLightDir(input_data): N_sil = input_data["N_sil"] I_sil = input_data["I_sil"] I_positive = I_sil > 0.001 N_sil = N_sil[I_positive] I_sil = I_sil[I_positive] NdLs = I_sil L = estimateLightDirProjection(N_sil, NdLs) output_data = {"L": L} # error = np.linalg.norm(np.dot(N_sil, L) - NdLs) return output_data def estimateLightDirLstSq(Ns, NdLs): b = NdLs A = Ns L = np.linalg.lstsq(A, b)[0] return L def estimateLightDirProjection(Ns, NdLs): I_maxID = np.argmax(NdLs) L = Ns[I_maxID] for i in xrange(100): for N, NdL in zip(Ns, NdLs): NdL_c = np.dot(L, N) L = L - NdL_c * N + NdL * N L = normalizeVector(L) return L if __name__ == '__main__': testToon("LeastSquare", estimateLightDir)
050fe8dd60fa24022d363e59407aef735c810440
3d19e1a316de4d6d96471c64332fff7acfaf1308
/Users/P/protanto/vultus_christi_archive.py
a3494ec9528161e0c530bce04e116f028619d6fe
[]
no_license
BerilBBJ/scraperwiki-scraper-vault
4e98837ac3b1cc3a3edb01b8954ed00f341c8fcc
65ea6a943cc348a9caf3782b900b36446f7e137d
refs/heads/master
2021-12-02T23:55:58.481210
2013-09-30T17:02:59
2013-09-30T17:02:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,560
py
from datetime import datetime, timedelta import scraperwiki import requests import lxml.html from lxml.cssselect import CSSSelector as CSS import dateutil.parser import dateutil.tz TARGET = "http://vultus.stblogs.org/archives.html" HEADERS = { 'User-agent': 'Mozilla/5.0 (X11; CrOS i686 2268.111.0) AppleWebKit/536.11 (KHTML, like Gecko) Chrome/20.0.1132.57 Safari/536.11', } ROW_KEY = ['year', 'month', 'slug'] ROW_SCHEMA = ROW_KEY + ['title', 'text', 'author', 'date', 'tags'] EDIT_WINDOW = timedelta(days=10) sel_item = CSS("div.archive-individual li") sel_anchor = CSS("a") sel_asset = CSS("#alpha-inner") sel_author = CSS("div.asset-header span.byline address.author a") sel_date = CSS("div.asset-header span.byline abbr.published") sel_text = CSS("div.asset-content") sel_tags = CSS("div.asset-footer li.entry-category a") def scrape(url): return lxml.html.fromstring(requests.get(url, headers=HEADERS).text) def Row(**kwargs): row = dict((field, None) for field in ROW_SCHEMA) row.update(kwargs) return row store = scraperwiki.sqlite.save parsedate = dateutil.parser.parse tzlocal = dateutil.tz.tzlocal # If the scraper has run once successfully, subsequent runs should # only scrape new pages and pages that are less than ten days old (to # allow for edits by the author) historic_latest = scraperwiki.sqlite.get_var('latest') if historic_latest: historic_latest = parsedate(historic_latest) print("Begin scraping archive ten days prior to: %s" % historic_latest.strftime("%Y.%m.%d")) latest = datetime(year=2000, month=12, day=31, tzinfo=tzlocal()) latest_timestamp = None # the scraping loop below swallows errors, but the error may have been # due to a request timeout or similar, so we want to retry those pages # that don't exist in the database try: archive = set( (d['year'], d['month'], d['slug']) for d in scraperwiki.sqlite.select("year, month, slug FROM pages") ) except: archive = set([]) print "PAGE COUNT: %s" % len(archive) # begin scrape - first the archive index page to get all individual page urls index = scrape(TARGET) # go through the list of page links and scrape each one for li in sel_item(index): date = li.text.rstrip().rstrip(':').strip() a = sel_anchor(li)[0] href = a.get('href') if href: year, month, day = map(int, date.split('.')) slug = href.split('/')[5].partition('.')[0] if (year, month, slug) in archive and historic_latest: # don't re-scrape anything outside the ten day edit window if datetime(year=year, month=month, day=day, tzinfo=tzlocal()) < historic_latest-EDIT_WINDOW: # you could break here because the list is date-ordered continue print("%s - %s - %s" % (date, slug, href)) page = scrape(href) try: content = sel_asset(page)[0] timestamp = sel_date(content)[0].get('title') date = parsedate(timestamp) if date > latest: # there's a new 'latest' timestamp - saved as a variable below latest = date latest_timestamp = timestamp row = Row(year=year, month=month, title=a.text_content(), slug=slug) row['date'] = date row['author'] = sel_author(content)[0].text_content() row['tags'] = ','.join(a.text_content() for a in sel_tags(content)) row['text'] = lxml.html.tostring(sel_text(content)[0]) except Exception, e: print("Skipping " + href) print(" ERROR: %s" % e) continue #print row store(unique_keys=ROW_KEY, data=row, table_name="pages") if latest_timestamp: scraperwiki.sqlite.save_var('latest', latest_timestamp) from datetime import datetime, timedelta import scraperwiki import requests import lxml.html from lxml.cssselect import CSSSelector as CSS import dateutil.parser import dateutil.tz TARGET = "http://vultus.stblogs.org/archives.html" HEADERS = { 'User-agent': 'Mozilla/5.0 (X11; CrOS i686 2268.111.0) AppleWebKit/536.11 (KHTML, like Gecko) Chrome/20.0.1132.57 Safari/536.11', } ROW_KEY = ['year', 'month', 'slug'] ROW_SCHEMA = ROW_KEY + ['title', 'text', 'author', 'date', 'tags'] EDIT_WINDOW = timedelta(days=10) sel_item = CSS("div.archive-individual li") sel_anchor = CSS("a") sel_asset = CSS("#alpha-inner") sel_author = CSS("div.asset-header span.byline address.author a") sel_date = CSS("div.asset-header span.byline abbr.published") sel_text = CSS("div.asset-content") sel_tags = CSS("div.asset-footer li.entry-category a") def scrape(url): return lxml.html.fromstring(requests.get(url, headers=HEADERS).text) def Row(**kwargs): row = dict((field, None) for field in ROW_SCHEMA) row.update(kwargs) return row store = scraperwiki.sqlite.save parsedate = dateutil.parser.parse tzlocal = dateutil.tz.tzlocal # If the scraper has run once successfully, subsequent runs should # only scrape new pages and pages that are less than ten days old (to # allow for edits by the author) historic_latest = scraperwiki.sqlite.get_var('latest') if historic_latest: historic_latest = parsedate(historic_latest) print("Begin scraping archive ten days prior to: %s" % historic_latest.strftime("%Y.%m.%d")) latest = datetime(year=2000, month=12, day=31, tzinfo=tzlocal()) latest_timestamp = None # the scraping loop below swallows errors, but the error may have been # due to a request timeout or similar, so we want to retry those pages # that don't exist in the database try: archive = set( (d['year'], d['month'], d['slug']) for d in scraperwiki.sqlite.select("year, month, slug FROM pages") ) except: archive = set([]) print "PAGE COUNT: %s" % len(archive) # begin scrape - first the archive index page to get all individual page urls index = scrape(TARGET) # go through the list of page links and scrape each one for li in sel_item(index): date = li.text.rstrip().rstrip(':').strip() a = sel_anchor(li)[0] href = a.get('href') if href: year, month, day = map(int, date.split('.')) slug = href.split('/')[5].partition('.')[0] if (year, month, slug) in archive and historic_latest: # don't re-scrape anything outside the ten day edit window if datetime(year=year, month=month, day=day, tzinfo=tzlocal()) < historic_latest-EDIT_WINDOW: # you could break here because the list is date-ordered continue print("%s - %s - %s" % (date, slug, href)) page = scrape(href) try: content = sel_asset(page)[0] timestamp = sel_date(content)[0].get('title') date = parsedate(timestamp) if date > latest: # there's a new 'latest' timestamp - saved as a variable below latest = date latest_timestamp = timestamp row = Row(year=year, month=month, title=a.text_content(), slug=slug) row['date'] = date row['author'] = sel_author(content)[0].text_content() row['tags'] = ','.join(a.text_content() for a in sel_tags(content)) row['text'] = lxml.html.tostring(sel_text(content)[0]) except Exception, e: print("Skipping " + href) print(" ERROR: %s" % e) continue #print row store(unique_keys=ROW_KEY, data=row, table_name="pages") if latest_timestamp: scraperwiki.sqlite.save_var('latest', latest_timestamp)
a60e1c26c1bea3cb0d32e6cad14184af90210d17
92f6008ff6a3199111f9cd6d26ef9102dcc2c5c3
/Problems/Jackie's Savings/tests.py
44a6f5b4df88f82de7dd04ed4be188fc14ccbccb
[]
no_license
TonyNewbie/-SmartCalculator
52c8f5f074e6c72d7b335cf33d7f4f6cab2da34e
e3779b74d83b5db62101f29a73a350b308e982f9
refs/heads/master
2022-07-04T02:22:12.044689
2020-05-10T08:49:30
2020-05-10T08:49:30
262,726,009
0
0
null
null
null
null
UTF-8
Python
false
false
114
py
from test_helper import check_samples if __name__ == '__main__': check_samples(samples=[["5 7 4","1168.44"]])
50bcbf5cec7db78090ff9b0a03360ba55829d65d
cb65ef874d2427a1edcb132cda05e5ce2dc1aae4
/modpy/proxy/examples/example_kriging.py
8b2f0eec48e6e00edcf4d69f0493b005e6b0ba69
[ "MIT" ]
permissive
FrederikLehn/modpy
1395c27029f5fbfae2388cbd500b28e67a3cdb9e
19ab18547e06e93fabfbd7f7b2f0f07ff0e70db3
refs/heads/main
2023-07-14T11:58:26.379687
2021-07-30T11:04:19
2021-07-30T11:04:19
390,731,060
1
0
null
null
null
null
UTF-8
Python
false
false
17,160
py
import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib.ticker import MaxNLocator from numpy.random import Generator, PCG64 from modpy.proxy._kriging import SimpleKrigingModel, OrdinaryKrigingModel, UniversalKrigingModel,\ _maximum_likelihood_objective, exponential_correlation, gaussian_correlation, matern32_correlation,\ matern52_correlation, power_exponential_correlation from modpy.illustration.illustration_util import PROXY_PATH from modpy.plot.plot_util import default_color, cm_parula, subplot_layout, add_point, set_font_sizes from modpy.optimize import nlprog, cma_es from modpy.proxy._kriging import _ensure_matrix def _plot_ML_obj_1D(): x, z = np.array([ [-5.01, 1.06], [-4.90, 0.92], [-4.82, 0.35], [-4.69, 0.49], [-4.56, 0.52], [-4.52, 0.12], [-4.39, 0.47], [-4.32, -0.19], [-4.19, 0.08], [-4.11, -0.19], [-4.00, -0.03], [-3.89, -0.03], [-3.78, -0.05], [-3.67, 0.10], [-3.59, 0.44], [-3.50, 0.66], [-3.39, -0.12], [-3.28, 0.45], [-3.20, 0.14], [-3.07, -0.28], [-3.01, -0.46], [-2.90, -0.32], [-2.77, -1.58], [-2.69, -1.44], [-2.60, -1.51], [-2.49, -1.50], [-2.41, -2.04], [-2.28, -1.57], [-2.19, -1.25], [-2.10, -1.50], [-2.00, -1.42], [-1.91, -1.10], [-1.80, -0.58], [-1.67, -1.08], [-1.61, -0.79], [-1.50, -1.00], [-1.37, -0.04], [-1.30, -0.54], [-1.19, -0.15], [-1.06, -0.18], [-0.98, -0.25], [-0.87, -1.20], [-0.78, -0.49], [-0.68, -0.83], [-0.57, -0.15], [-0.50, 0.00], [-0.38, -1.10], [-0.29, -0.32], [-0.18, -0.60], [-0.09, -0.49], [0.03, -0.50], [0.09, -0.02], [0.20, -0.47], [0.31, -0.11], [0.41, -0.28], [0.53, 0.40], [0.61, 0.11], [0.70, 0.32], [0.94, 0.42], [1.02, 0.57], [1.13, 0.82], [1.24, 1.18], [1.30, 0.86], [1.43, 1.11], [1.50, 0.74], [1.63, 0.75], [1.74, 1.15], [1.80, 0.76], [1.93, 0.68], [2.03, 0.03], [2.12, 0.31], [2.23, -0.14], [2.31, -0.88], [2.40, -1.25], [2.50, -1.62], [2.63, -1.37], [2.72, -0.99], [2.80, -1.92], [2.83, -1.94], [2.91, -1.32], [3.00, -1.69], [3.13, -1.84], [3.21, -2.05], [3.30, -1.69], [3.41, -0.53], [3.52, -0.55], [3.63, -0.92], [3.72, -0.76], [3.80, -0.41], [3.91, 0.12], [4.04, 0.25], [4.13, 0.16], [4.24, 0.26], [4.32, 0.62], [4.44, 1.69], [4.52, 1.11], [4.65, 0.36], [4.74, 0.79], [4.84, 0.87], [4.93, 1.01], [5.02, 0.55] ]).T x = np.atleast_2d(x).T n = z.size m = 1 correlations = (exponential_correlation, gaussian_correlation, matern32_correlation, matern52_correlation, power_exponential_correlation) methods = ('Exponential', 'Gaussian', 'Matérn $\\nu=3/2$', 'Matérn $\\nu=5/2$', 'Power-Exponential') # ordinary kriging def f(x_): return np.ones((x_.shape[0], 1)) bounds = tuple([(1e-5, None) for _ in range(m)]) par0 = (np.array([0.6665]), np.array([0.0087]), np.array([0.1635]), np.array([0.1253]), np.array([0.1235])) ng = 100 theta = np.linspace(1e-5, 1., ng) r, c = subplot_layout(len(correlations)) fig = plt.figure(figsize=(20, 11)) # plot data ax = fig.add_subplot(r, c, 1) ax.scatter(x, z, s=20, c='k') ax.set_xlabel('$x$') ax.set_ylabel('$Z(x)$') ax.set_title('Data') ax.grid(True) # plot objective functions for i, (corr, method) in enumerate(zip(correlations, methods)): obj = _maximum_likelihood_objective('ordinary', x, z, f, corr) vals = np.zeros((ng,)) for j in range(ng): print('j = {}'.format(j)) vals[j] = obj(np.atleast_1d(theta[j])) res = cma_es(obj, par0[i], bounds=bounds, sigma0=0.02, tol=1e-3, seed=1234) print('Optimization: {}, theta: {}'.format(res.success, res.x)) ax = fig.add_subplot(r, c, i + 2) ax.plot(theta, vals, c=default_color(0), label='Obj($\\theta$)', zorder=1) ax.scatter(res.x, obj(res.x), c='r', label='Optimum', zorder=2) ax.set_xlim([0., None]) ax.set_xlabel('$\\theta$') ax.set_ylabel('$Obj(\\theta)$') ax.grid(True) ax.legend() ax.set_title(method) fig.savefig(PROXY_PATH + 'kriging_ML_obj_1D.png') def _plot_ML_obj_2D(): x = np.array([[1., 1.], [0.5, 0.3], [0.1, 0.1], [0.8, 0.3], [0.25, 0.75]]) z = np.array([1., 10., 12., 5., 7.]) n = z.size m = 2 correlations = (exponential_correlation, gaussian_correlation, matern32_correlation, matern52_correlation, power_exponential_correlation) methods = ('Exponential', 'Gaussian', 'Matérn $\\nu=3/2$', 'Matérn $\\nu=5/2$', 'Power-Exponential ($p=2$)') # ordinary kriging def f(x_): return np.ones((x_.shape[0], 1)) bounds = tuple([(1e-5, None) for _ in range(m)]) # run optimization. TODO: change to MMO optimizer par0 = np.array([0.5, 1.]) ng = 100 theta1 = np.linspace(1e-5, 3., ng) theta2 = np.linspace(1e-5, 3., ng) X, Y = np.meshgrid(theta1, theta2) S = np.vstack((X.flatten(), Y.flatten())).T r, c = subplot_layout(len(correlations)) fig = plt.figure(figsize=(20, 11)) # plot data ax = fig.add_subplot(r, c, 1, projection='3d') ax.scatter(x[:, 0], x[:, 1], z, c='r') ax.set_xlabel('$x_1$') ax.set_ylabel('$x_2$') ax.set_zlabel('$Z(x)$') ax.set_title('Data') ax.view_init(elev=40., azim=-110) # plot objective functions for i, (corr, method) in enumerate(zip(correlations, methods)): obj = _maximum_likelihood_objective('ordinary', x, z, f, corr) vals = np.zeros((ng ** 2,)) for j in range(ng ** 2): vals[j] = obj(S[j]) Z = np.reshape(vals, (ng, ng)) res = cma_es(obj, par0, bounds=bounds, sigma0=0.1, seed=1234) print('Optimization: {}, theta: {}'.format(res.success, res.x)) ax = fig.add_subplot(r, c, i + 2, projection='3d') ax.plot_surface(X, Y, Z, cmap=cm_parula, edgecolors='k', lw=0.2, alpha=0.7, zorder=1) add_point(ax, res.x[0], res.x[1], res.f, fc='r', ec='r', radius=0.08) ax.set_xlabel('$\\theta_1$') ax.set_ylabel('$\\theta_2$') ax.set_zlabel('$Obj(\\theta)$') ax.zaxis.set_major_locator(MaxNLocator(integer=True)) ax.set_title(method) ax.view_init(elev=50., azim=-120) #plt.show() fig.savefig(PROXY_PATH + 'kriging_ML_obj_2D.png') def _plot_covariance_functions(): correlations = (exponential_correlation, gaussian_correlation, matern32_correlation, matern52_correlation, power_exponential_correlation) names = ('Exponential', 'Gaussian', 'Matérn $\\nu=3/2$', 'Matérn $\\nu=5/2$', 'Power-Exponential ($p=2$)') nb = 1000 x_min = 0. x_max = 1.8 x0 = np.linspace(x_min, x_max, nb) theta = 0.5 sigma = 4. fig = plt.figure() ax = fig.gca() for i, (corr, name) in enumerate(zip(correlations, names)): c = sigma ** 2. * corr(x0, theta) ax.plot(x0, c, c=default_color(i), label=name) #ax.set_xlim([x.min() * 0.9, x.max() * 1.1]) #ax.set_ylim([z.min() * 1.5, z.max() * 1.5]) ax.set_xlim([x_min, x_max]) ax.set_ylim([0., sigma ** 2. + 1.]) ax.set_xlabel(r'$h$') ax.set_ylabel(r'$C(h)$') ax.grid(True) ax.legend() fig.savefig(PROXY_PATH + 'covariance_functions.png') def _plot_kernel_impact_1D(): x = np.array([1., 1.8, 3.8, 4.7, 5.7, 7.3, 7.8, 9.2, 11.1, 12.9]) z = np.array([0.9, 2.2, -2.3, -4.9, -3.7, 7.3, 7.3, 0.8, -10.8, 7.1]) methods = ['exp', 'gaussian', 'matern32', 'matern52', 'pow-exp'] names = ('Exponential', 'Gaussian', 'Matérn $\\nu=3/2$', 'Matérn $\\nu=5/2$', 'Power-Exponential $p=1.5$') theta0 = np.array([1.1]) nb = 200 ns = 10 x_min = 0. x_max = 15. x0 = np.linspace(x_min, x_max, nb) h = np.linspace(0., 5., nb) r, c = subplot_layout(len(methods)) fig = plt.figure(figsize=(20, 11)) ax1 = fig.add_subplot(r, c, 1) fill_col = np.array([0.7, 0.7, 0.7, 0.3]) for i, (method, name) in enumerate(zip(methods, names)): if method == 'pow-exp': args = (1.5,) else: args = () model = OrdinaryKrigingModel(x, z, method, seed=1324, args=args) model.initialize_ML(theta0) model.define_weights(x0) z0 = model.mean() v0 = model.variance() conf = 1.96 * np.sqrt(v0) samples = model.sample(ns) # add covariance function to ax1 ax1.plot(h, model.sigma ** 2. * model.corr(h, model.theta), c=default_color(i), label='{} ($\\theta=${})'.format(name, *np.round(model.theta, 2))) ax = fig.add_subplot(r, c, i + 2) ax.scatter(x, z, s=20, c='k', zorder=4) ax.plot(x0, z0, c=default_color(i), label='$Z(x_0)$', zorder=3) ax.fill_between(x0, z0 - conf, z0 + conf, color=fill_col, label='Conf.', zorder=1) ax.plot(x0, samples[0, :], c='gray', label='Samples', lw=0.5) for j in range(1, ns): ax.plot(x0, samples[j, :], c='gray', lw=0.5, zorder=2) ax.set_xlim([x_min, x_max]) ax.set_xlabel(r'$x$') ax.set_ylabel(r'$Z(x)$') ax.set_title(name) ax.grid(True) ax.legend() ax1.set_xlim([0., 5.]) ax1.set_ylim([0., None]) ax1.set_xlabel(r'$h$') ax1.set_ylabel(r'$C(h)$') ax1.set_title('Kernels') ax1.grid(True) ax1.legend() fig.savefig(PROXY_PATH + 'kernel_impact_1D.png') def _plot_prior_posterior_process(): x = np.array([1., 1.8, 3.8, 4.7, 5.7, 7.3, 7.8, 9.2, 11.1, 12.9]) z = np.array([0.9, 2.2, -2.3, -4.9, -3.7, 7.3, 7.3, 0.8, -10.8, 7.1]) theta0 = np.array([1.1]) nb = 1000 ns = 15 x_min = 0. x_max = 15. x0 = np.linspace(x_min, x_max, nb) fig = plt.figure(figsize=(24, 10)) fill_col = np.array([0.7, 0.7, 0.7, 0.5]) model = OrdinaryKrigingModel(x, z, 'gaussian', seed=1324) model.initialize_ML(theta0) model.define_weights(x0) # plot prior process m = np.mean(z) s = model.sigma conf = 1.96 * s samples = model.sample(ns, posterior=False) ax = fig.add_subplot(1, 2, 1) ax.plot([x_min, x_max], [m, m], c=default_color(0), label='$Z(x_0)$', zorder=3) ax.fill_between([x_min, x_max], m - conf, m + conf, color=fill_col, label='Conf.', zorder=1) ax.plot(x0, samples[0, :], c='gray', label='Samples', lw=1., zorder=2) for j in range(1, ns): ax.plot(x0, samples[j, :], c='gray', lw=1., zorder=2) ax.set_xlim([x_min, x_max]) ax.set_xlabel(r'$x$') ax.set_ylabel(r'$Z(x)$') ax.set_title('Prior Probability') ax.grid(True) ax.legend() set_font_sizes(ax, 16) # plot posterior process z0 = model.mean() v0 = model.variance() conf = 1.96 * np.sqrt(v0) samples = model.sample(ns) ax = fig.add_subplot(1, 2, 2) ax.scatter(x, z, s=20, c='k', zorder=4) ax.plot(x0, z0, c=default_color(0), label='$Z(x_0)$', zorder=3) ax.fill_between(x0, z0 - conf, z0 + conf, color=fill_col, label='Conf.', zorder=1) ax.plot(x0, samples[0, :], c='gray', label='Samples', lw=1., zorder=2) for j in range(1, ns): ax.plot(x0, samples[j, :], c='gray', lw=1., zorder=2) ax.set_xlim([x_min, x_max]) ax.set_xlabel(r'$x$') ax.set_ylabel(r'$Z(x)$') ax.set_title('Posterior Probability') ax.grid(True) ax.legend(loc='upper left') set_font_sizes(ax, 16) fig.savefig(PROXY_PATH + 'gaussian_process_prior_posterior.png') def _plot_kriging_types_1D(): gen = Generator(PCG64(1234)) def f(x_): x2d = _ensure_matrix(x_) n = x2d.shape[0] return np.hstack((np.ones((n, 1)), x2d, x2d ** 2.)) x = np.array([1., 1.8, 3.8, 4.7, 5.7, 7.3, 7.8, 9.2, 11.1, 12.9]) beta_true = np.array([40., -20., 1.5]) sigma_true = 4. z = f(x) @ beta_true + gen.normal(0., sigma_true, x.size) theta0 = np.array([0.9]) nb = 600 x0 = np.linspace(0., 15., nb) fig = plt.figure() ax = fig.gca() # simple kriging simple = SimpleKrigingModel(x, z, 'gaussian', seed=1324) simple.initialize_ML(theta0) simple.define_weights(x0) z_sim = simple.mean() v_sim = simple.variance() conf_sim = 1.96 * np.sqrt(v_sim) print('SK ($\\beta$={}, $\\theta$={}, $\sigma$={})'\ .format(np.round(simple.beta, 1), *np.round(simple.theta, 2), np.round(simple.sigma, 1))) ax.plot(x0, z_sim, c=default_color(0), label='Simple') ax.plot(x0, z_sim - conf_sim, c=default_color(0), lw=0.5, ls='--') ax.plot(x0, z_sim + conf_sim, c=default_color(0), lw=0.5, ls='--') # ordinary kriging ordinary = OrdinaryKrigingModel(x, z, 'gaussian', seed=1324) ordinary.initialize_ML(theta0) ordinary.define_weights(x0) z_ord = ordinary.mean() v_ord = ordinary.variance() conf_ord = 1.96 * np.sqrt(v_ord) print('OK ($\\beta$={}, $\\theta$={}, $\sigma$={})' \ .format(*np.round(ordinary.beta, 1), *np.round(ordinary.theta, 2), np.round(ordinary.sigma, 1))) ax.plot(x0, z_ord, c=default_color(1), label='Ordinary') ax.plot(x0, z_ord - conf_ord, c=default_color(1), lw=0.5, ls='--') ax.plot(x0, z_ord + conf_ord, c=default_color(1), lw=0.5, ls='--') # universal kriging universal = UniversalKrigingModel(x, z, f, 'gaussian', seed=1324) universal.initialize_ML(theta0) universal.define_weights(x0) z_uni = universal.mean() v_uni = universal.variance() conf_uni = 1.96 * np.sqrt(v_uni) print('UK ($\\beta$={}, $\\theta$={}, $\sigma$={})' \ .format(np.round(universal.beta, 1), *np.round(universal.theta, 3), np.round(universal.sigma, 1))) ax.plot(x0, z_uni, c=default_color(2), label='Universal') ax.plot(x0, z_uni - conf_uni, c=default_color(2), lw=0.5, ls='--') ax.plot(x0, z_uni + conf_uni, c=default_color(2), lw=0.5, ls='--') # data ax.scatter(x, z, s=20, c='k', zorder=2.5) ax.set_xlabel(r'$x$') ax.set_ylabel(r'$Z(x)$') ax.grid(True) ax.legend() fig.savefig(PROXY_PATH + 'kriging_types_1D.png') def _plot_kriging_types_2D(): def f(x_): if x_.ndim == 1: x_ = np.reshape(x_, (1, x_.size)) n, _ = x_.shape return np.hstack((np.ones((n, 1)), np.atleast_2d(np.prod(x_, axis=1)).T)) x = np.array([[1., 1.], [0.5, 0.3], [0.1, 0.1], [0.8, 0.3], [0.25, 0.75]]) z = np.array([1., 10., 12., 5., 7.]) theta0 = (np.array([0.4136, 0.5822]), np.array([0.4363, 0.5614]), np.array([0.0381, 0.0812])) bounds = ((1e-3, 1.), (1e-3, 1.)) ng = 100 L = np.sqrt(2.) x1 = np.linspace(-.5 * L, .5 * L, ng) + .5 * L x2 = np.linspace(-.5 * L, .5 * L, ng) + .5 * L X1, X2 = np.meshgrid(x1, x2) x0 = np.vstack((X1.flatten(), X2.flatten())).T r, c = 2, 2 fig = plt.figure(figsize=(20, 14)) fig.subplots_adjust(hspace=0.05, wspace=0.05) ax = fig.add_subplot(r, c, 1, projection='3d') ax.scatter(x[:, 0], x[:, 1], z, c='r') ax.set_xlabel('$x_1$') ax.set_ylabel('$x_2$') ax.set_zlabel('$Z(x)$') ax.set_title('Data') ax.view_init(elev=50, azim=120) models = (SimpleKrigingModel(x, z, 'gaussian', seed=1324), OrdinaryKrigingModel(x, z, 'gaussian', seed=1324), UniversalKrigingModel(x, z, f, 'gaussian', seed=1324)) names = ('Simple', 'Ordinary', 'Universal') for i, (model, name) in enumerate(zip(models, names)): model.initialize_ML(theta0[i], bounds=bounds) model.define_weights(x0) Z = model.mean() Z = np.reshape(Z, (ng, ng)) print(name, ' theta={}'.format(model.theta)) ax = fig.add_subplot(r, c, i + 2, projection='3d') ax.plot_surface(X1, X2, Z, cmap=cm_parula, edgecolors='k', lw=0.2, alpha=0.7) #ax.scatter(x[:, 0], x[:, 1], z, s=40, c='r', zorder=2.5) for j in range(5): add_point(ax, x[j, 0], x[j, 1], z[j], fc='r', ec='r', radius=0.03) ax.set_xlabel('$x_1$') ax.set_ylabel('$x_2$') ax.set_zlabel('$Z(x)$') ax.set_title(name) set_font_sizes(ax, 12) ax.view_init(elev=50, azim=120) fig.savefig(PROXY_PATH + 'kriging_types_2D.png', bbox_inches='tight') if __name__ == '__main__': #_plot_ML_obj_1D() #_plot_ML_obj_2D() #_plot_covariance_functions() #_plot_kernel_impact_1D() #_plot_kriging_types_1D() _plot_kriging_types_2D() #_plot_prior_posterior_process()
80a203056070914fde0b633807198a6f49b4d484
67c3c2a310a4d129a45739ca6351052f36f6d5f4
/venv/lib/python3.7/keyword.py
10891398d4fb79df3c09b078b871f9a58f1528fd
[]
no_license
cyobero/django-blog
a743203bdaf1d8ae9e6bd47c6e7b33a213a7abfd
307335c84a0fa9eba6d3f69172a47580144cc066
refs/heads/master
2022-12-09T20:25:51.396813
2020-03-10T14:52:26
2020-03-10T14:52:26
245,950,344
0
0
null
2022-11-22T05:22:50
2020-03-09T05:20:31
Python
UTF-8
Python
false
false
48
py
/home/cyobero/anaconda3/lib/python3.7/keyword.py
266635f8db60fe89592c32c152f3b53a7832a8f6
2b3f859e7bde80f19e0f823b5e6e73ddb44cb3fe
/tests/migrators/test_group.py
a08a14e4fd2b0715b54d3f317b4ef5b0ed0de7b1
[]
no_license
stormpath/stormpath-migrate
4a0d4bc949da7df416529820bdcd76f590a8fe89
ee43dbddda29a0b85c9901ea1e678660ef3bce36
refs/heads/master
2021-01-22T10:01:37.030105
2017-03-06T19:17:13
2017-03-06T19:17:13
43,518,049
3
1
null
null
null
null
UTF-8
Python
false
false
2,665
py
"""Tests for our GroupMigrator class.""" from os import environ from unittest import TestCase from uuid import uuid4 from stormpath.client import Client from migrate.migrators import DirectoryMigrator, GroupMigrator from migrate.utils import sanitize # Necessary environment variables. SRC_CLIENT_ID = environ['SRC_CLIENT_ID'] SRC_CLIENT_SECRET = environ['SRC_CLIENT_SECRET'] DST_CLIENT_ID = environ['DST_CLIENT_ID'] DST_CLIENT_SECRET = environ['DST_CLIENT_SECRET'] class GroupMigratorTest(TestCase): def setUp(self): self.src = Client(id=SRC_CLIENT_ID, secret=SRC_CLIENT_SECRET) self.dst = Client(id=DST_CLIENT_ID, secret=DST_CLIENT_SECRET) self.dir = self.src.directories.create({ 'description': uuid4().hex, 'name': uuid4().hex, }) self.group = self.dir.groups.create({ 'description': uuid4().hex, 'name': uuid4().hex, 'status': 'DISABLED', 'custom_data': {'hi': 'there'}, }) migrator = DirectoryMigrator(destination_client=self.dst, source_directory=self.dir) self.dst_dir = migrator.migrate() def tearDown(self): self.dir.delete() self.dst_dir.delete() def test_copy_group(self): migrator = GroupMigrator(destination_directory=self.dst_dir, source_group=self.group) migrator.destination_group = migrator.get_destination_group() migrator.get_destination_group() copied_group = migrator.copy_group() self.assertTrue(copied_group) self.assertEqual(copied_group.description, self.group.description) self.assertEqual(copied_group.name, self.group.name) self.assertEqual(copied_group.status, self.group.status) def test_copy_custom_data(self): migrator = GroupMigrator(destination_directory=self.dst_dir, source_group=self.group) migrator.destination_group = migrator.get_destination_group() copied_group = migrator.copy_group() copied_custom_data = migrator.copy_custom_data() self.assertEqual(copied_custom_data['hi'], 'there') def test_migrate(self): custom_data = self.group.custom_data migrator = GroupMigrator(destination_directory=self.dst_dir, source_group=self.group) copied_group = migrator.migrate() copied_custom_data = copied_group.custom_data self.assertEqual(copied_group.description, self.group.description) self.assertEqual(copied_group.name, self.group.name) self.assertEqual(copied_group.status, self.group.status) self.assertEqual(copied_custom_data['hi'], self.group.custom_data['hi'])
86ac7f9bcafb82d17cf1e1940c1920b2fc108579
0b414a080c9853997bfba016c7f66e5f11d80a14
/cj_env/lib/python3.6/site-packages/pysnmp/proto/rfc1901.py
8b7dec076254fc3b3a6d3e95de8296083ff5f1db
[]
no_license
alkhor/Cable_Journal
2bd4bf00210f78c08fcc5508c13833b5e8aa3c46
e64fb1bfcc4d1b7844b2e0a10653264d58039259
refs/heads/master
2021-01-22T19:09:33.562313
2018-04-15T19:42:16
2018-04-15T19:42:16
100,772,711
2
0
null
null
null
null
UTF-8
Python
false
false
554
py
# # This file is part of pysnmp software. # # Copyright (c) 2005-2017, Ilya Etingof <[email protected]> # License: http://pysnmp.sf.net/license.html # from pyasn1.type import univ, namedtype, namedval from pysnmp.proto import rfc1905 version = univ.Integer(namedValues=namedval.NamedValues(('version-2c', 1))) class Message(univ.Sequence): componentType = namedtype.NamedTypes( namedtype.NamedType('version', version), namedtype.NamedType('community', univ.OctetString()), namedtype.NamedType('data', rfc1905.PDUs()) )
32a95aa4742fabf685bb335ad6a630b7ee37a801
975b2d421d3661e6770b601929d5f11d981d8985
/msgraph/generated/models/data_subject_type.py
8af8f9227c69c2dc7db37be9eb47d8afd69c4c11
[ "MIT" ]
permissive
microsoftgraph/msgraph-sdk-python
a7c551b85daadeebf76ec4ae12668664ea639b42
27de7ccbe688d7614b2f6bde0fdbcda4bc5cc949
refs/heads/main
2023-09-03T21:45:27.989672
2023-08-31T06:22:18
2023-08-31T06:22:18
534,665,999
135
18
MIT
2023-09-14T11:04:11
2022-09-09T14:00:17
Python
UTF-8
Python
false
false
357
py
from enum import Enum class DataSubjectType(str, Enum): Customer = "customer", CurrentEmployee = "currentEmployee", FormerEmployee = "formerEmployee", ProspectiveEmployee = "prospectiveEmployee", Student = "student", Teacher = "teacher", Faculty = "faculty", Other = "other", UnknownFutureValue = "unknownFutureValue",
34405ad77c78331d0d5982215aff3c9b75139970
54ddb3f38cd09ac25213a7eb8743376fe778fee8
/topic_08_functions/examples/6_visibility_global.py
ec56199933ecb0c82714c47ca80123e9fa749b43
[]
no_license
ryndovaira/leveluppythonlevel1_300321
dbfd4ee41485870097ee490f652751776ccbd7ab
0877226e6fdb8945531775c42193a90ddb9c8a8b
refs/heads/master
2023-06-06T07:44:15.157913
2021-06-18T11:53:35
2021-06-18T11:53:35
376,595,962
0
0
null
null
null
null
UTF-8
Python
false
false
208
py
x = 0 def outer(): x = 1 def inner(): global x x = 2 print("inner:", x) inner() print("outer:", x) outer() print("global:", x) # inner: 2 # outer: 1 # global: 2
66925b569b205b36e465e85da39a6c1ca0b998ab
cccf8da8d41ae2c14f5f4313c1edcf03a27956bb
/python/python2latex/writeLTXtextrm.py
25de7160851c9ab2eed55ced5886e34a78ecaea7
[]
no_license
LucaDiStasio/transpilers
e8f8ac4d99be3b42a050148ca8fbc5d025b83290
c55d4f5240083ffd512f76cd1d39cff1016909b8
refs/heads/master
2021-01-12T01:57:00.540331
2017-11-01T13:59:55
2017-11-01T13:59:55
78,448,378
1
0
null
null
null
null
UTF-8
Python
false
false
3,283
py
# Autogenerated with SMOP from smop.core import * # @function def writeLTXtextrm(filepath=None,args=None,options=None,*args,**kwargs): varargin = writeLTXtextrm.varargin nargin = writeLTXtextrm.nargin ## #============================================================================== # Copyright (c) 2016-2017 Universite de Lorraine & Lulea tekniska universitet # Author: Luca Di Stasio <[email protected]> # <[email protected]> # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the distribution # Neither the name of the Universite de Lorraine or Lulea tekniska universitet # nor the names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. #============================================================================== # DESCRIPTION # # A function to create a Latex file. # Sets roman font family. SeeText Formatting.# ## fileId=fopen(filepath,'a') fprintf(fileId,'\\n') line='\\textrm' if logical_not(strcmp(options,'none')) and logical_not(strcmp(options,'NONE')) and logical_not(strcmp(options,'None')): line=strcat(line,'[',options,']') if logical_not(isempty(args)): line=strcat(line,'{') for i in arange(1,length(args)).reshape(-1): dims=size(args) if dims[1] == 1 and dims[2] == 1: line=strcat(line,args[i]) else: if dims[1] > 1 and dims[2] == 1: try: line=strcat(line,args[i][1]) finally: pass else: if dims[1] == 1 and dims[2] > 1: try: line=strcat(line,args[1][i]) finally: pass else: line=strcat(line,args[i]) line=strcat(line,'}') fprintf(fileId,strcat(line,'\\n')) fclose(fileId) return
e3d03d32e51e516989a28022f99a1ecc931a3bb1
cb0e7d6493b23e870aa625eb362384a10f5ee657
/solutions/python3/0199.py
55bf7f22754e31867cd312d03f303f6cb6b10e0b
[]
no_license
sweetpand/LeetCode-1
0acfa603af254a3350d457803449a91322f2d1a7
65f4ef26cb8b2db0b4bf8c42bfdc76421b479f94
refs/heads/master
2022-11-14T07:01:42.502172
2020-07-12T12:25:56
2020-07-12T12:25:56
279,088,171
1
0
null
2020-07-12T15:03:20
2020-07-12T15:03:19
null
UTF-8
Python
false
false
384
py
class Solution: def rightSideView(self, root: TreeNode) -> List[int]: def dfs(root: TreeNode, depth: int) -> None: if not root: return if depth == len(ans): ans.append(root.val) dfs(root.right, depth + 1) dfs(root.left, depth + 1) ans = [] dfs(root, 0) return ans
36aa53c07596f0697adcc2a9facc301ec460cbac
c9a6b59b7164b6e402105c802b91d6c2695cec21
/blog/templatetags/isliked.py
36f43c2eee37d031b1f40c6b9824525f9ca61c65
[]
no_license
harunurkst/amar-campus
9b9d10e216c9e85b2c78e0c6720310084d389187
fe0474274fb7419ef70f9463842260af7d6dea2f
refs/heads/master
2021-01-18T20:24:40.343852
2017-04-25T06:07:26
2017-04-25T06:07:26
86,963,328
1
5
null
null
null
null
UTF-8
Python
false
false
391
py
from django import template register = template.Library() @register.filter(name="is_liked") def is_liked(user): post_id = request.POST.get('id', None) post = get_object_or_404(Post, pk=post_id) if post.likes.filter(id=user.id).exists(): post.likes.remove(user) is_liked = False else: post.likes.add(user) is_liked = True return is_liked
7a52bd2dc5f9b0f200ec0b550facbc8715441923
043ca446cbee59c1926de7473869ef34748e5b2b
/_2019/windmill.py
c133ab63983de261a692cf2dd68f69183eeb79b6
[ "MIT" ]
permissive
soubam/videos
785d04907d6955456797f989893b3f811c7f721e
04a00e521808e2b733903bd1c91435a29ba2c678
refs/heads/master
2023-08-28T15:38:08.284733
2021-11-11T23:22:35
2021-11-11T23:22:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
120,504
py
from manim_imports_ext import * import json class IntroduceIMO(Scene): CONFIG = { "num_countries": 130, "use_real_images": True, # "use_real_images": False, "include_labels": False, "camera_config": {"background_color": GREY_E}, "random_seed": 6, "year": 2019, "n_flag_rows": 10, "reorganize_students": True, } def construct(self): self.add_title() self.show_flags() self.show_students() self.move_title() self.isolate_usa() def add_title(self): title = TexText( "International ", "Mathematical ", "Olympiad", ) title.scale(1.25) logo = ImageMobject("imo_logo") logo.set_height(1) group = Group(logo, title) group.arrange(RIGHT) group.to_edge(UP, buff=MED_SMALL_BUFF) self.add(title, logo) self.title = title self.logo = logo def show_flags(self): flags = self.get_flags() flags.set_height(6) flags.to_edge(DOWN) random_flags = Group(*flags) random_flags.shuffle() self.play( LaggedStartMap( FadeInFromDown, random_flags, run_time=2, lag_ratio=0.03, ) ) self.remove(random_flags) self.add(flags) self.wait() self.flags = flags def show_students(self): flags = self.flags student_groups = VGroup() all_students = VGroup() for flag in flags: group = self.get_students(flag) student_groups.add(group) for student in group: student.preimage = VectorizedPoint() student.preimage.move_to(flag) all_students.add(student) all_students.shuffle() student_groups.generate_target() student_groups.target.arrange_in_grid( n_rows=self.n_flag_rows, buff=SMALL_BUFF, ) # student_groups.target[-9:].align_to(student_groups.target[0], LEFT) student_groups.target.match_height(flags) student_groups.target.match_y(flags) student_groups.target.to_edge(RIGHT, buff=0.25) self.play(LaggedStart( *[ ReplacementTransform( student.preimage, student ) for student in all_students ], run_time=2, lag_ratio=0.2, )) self.wait() if self.reorganize_students: self.play( MoveToTarget(student_groups), flags.space_out_submobjects, 0.75, flags.to_edge, LEFT, MED_SMALL_BUFF, ) self.wait() self.student_groups = student_groups def move_title(self): title = self.title logo = self.logo new_title = TexText("IMO") new_title.match_height(title) logo.generate_target() group = Group(logo.target, new_title) group.arrange(RIGHT, buff=SMALL_BUFF) group.match_y(title) group.match_x(self.student_groups, UP) title.generate_target() for word, letter in zip(title.target, new_title[0]): for nl in word: nl.move_to(letter) word.set_opacity(0) word[0].set_opacity(1) word[0].become(letter) self.play( MoveToTarget(title), MoveToTarget(logo), ) self.wait() def isolate_usa(self): flags = self.flags student_groups = self.student_groups us_flag = flags[0] random_flags = Group(*flags[1:]) random_flags.shuffle() old_height = us_flag.get_height() us_flag.label.set_width(0.8 * us_flag.get_width()) us_flag.label.next_to( us_flag, DOWN, buff=0.2 * us_flag.get_height(), ) us_flag.label.set_opacity(0) us_flag.add(us_flag.label) us_flag.generate_target() us_flag.target.scale(1 / old_height) us_flag.target.to_corner(UL) us_flag.target[1].set_opacity(1) self.remove(us_flag) self.play( LaggedStart( *[ FadeOut(flag, DOWN) for flag in random_flags ], lag_ratio=0.05, run_time=1.5 ), MoveToTarget(us_flag), student_groups[1:].fade, 0.9, ) self.wait() # def get_students(self, flag): dots = VGroup(*[Dot() for x in range(6)]) dots.arrange_in_grid(n_cols=2, buff=SMALL_BUFF) dots.match_height(flag) dots.next_to(flag, RIGHT, SMALL_BUFF) dots[flag.n_students:].set_opacity(0) if isinstance(flag, ImageMobject): rgba = random.choice(random.choice(flag.pixel_array)) if np.all(rgba < 100): rgba = interpolate(rgba, 256 * np.ones(len(rgba)), 0.5) color = rgba_to_color(rgba / 256) else: color = random_bright_color() dots.set_color(color) dots.set_stroke(WHITE, 1, background=True) return dots def get_flags(self): year = self.year file = "{}_imo_countries.json".format(year) with open(os.path.join("assets", file)) as fp: countries_with_counts = json.load(fp) with open(os.path.join("assets", "country_codes.json")) as fp: country_codes = json.load(fp) country_to_code2 = dict([ (country.lower(), code2.lower()) for country, code2, code3 in country_codes ]) country_to_code3 = dict([ (country.lower(), code3.lower()) for country, code2, code3 in country_codes ]) images = Group() for country, count in countries_with_counts: country = country.lower() alt_names = [ ("united states of america", "united states"), ("people's republic of china", "china"), ("macau", "macao"), ("syria", "syrian arab republic"), ("north macedonia", "macedonia, the former yugoslav republic of"), ("tanzania", "united republic of tanzania"), ("vietnam", "viet nam"), ("ivory coast", "cote d'ivoire") ] for n1, n2 in alt_names: if country == n1: country = n2 if country not in country_to_code2: print("Can't find {}".format(country)) continue short_code = country_to_code2[country] try: image = ImageMobject(os.path.join("flags", short_code)) image.set_width(1) label = VGroup(*[ TexText(l) for l in country_to_code3[country].upper() ]) label.arrange(RIGHT, buff=0.05, aligned_edge=DOWN) label.set_height(0.25) if not self.use_real_images: rect = SurroundingRectangle(image, buff=0) rect.set_stroke(WHITE, 1) image = rect image.label = label image.n_students = count images.add(image) except OSError: print("Failed on {}".format(country)) n_rows = self.n_flag_rows images.arrange_in_grid( n_rows=n_rows, buff=1.25, ) images[-(len(images) % n_rows):].align_to(images[0], LEFT) sf = 1.7 images.stretch(sf, 0) for i, image in enumerate(images): image.set_height(1) image.stretch(1 / sf, 0) image.label.next_to(image, DOWN, SMALL_BUFF) if self.include_labels: image.add(image.label) images.set_width(FRAME_WIDTH - 1) if images.get_height() > FRAME_HEIGHT - 1: images.set_height(FRAME_HEIGHT - 1) images.center() return images class ShowTinyTao(IntroduceIMO): CONFIG = { "reorganize_students": False, } def construct(self): self.force_skipping() self.add_title() self.show_flags() self.show_students() self.revert_to_original_skipping_status() image = ImageMobject("TerryTaoIMO") label = TexText("Terence Tao at 12") label.match_width(image) label.next_to(image, DOWN, SMALL_BUFF) image.add(label) ausie = self.flags[17] image.replace(ausie) image.set_opacity(0) self.play(image.set_opacity, 1) self.play( image.set_height, 5, image.to_corner, DR, {"buff": MED_SMALL_BUFF}, ) self.wait() self.play(FadeOut(image)) class FootnoteToIMOIntro(Scene): def construct(self): words = TexText("$^*$Based on data from 2019 test") self.play(FadeIn(words, UP)) self.wait() class ShowTest(Scene): def construct(self): self.introduce_test() def introduce_test(self): test = self.get_test() test.generate_target() test.target.to_edge(UP) # Time label time_labels = VGroup( TexText("Day 1", ": 4.5 hours"), TexText("Day 2", ": 4.5 hours"), ) time_labels.scale(1.5) day_labels = VGroup() hour_labels = VGroup() for label, page in zip(time_labels, test.target): label.next_to(page, DOWN) label[0].save_state() label[0].next_to(page, DOWN) label[1][1:].set_color(YELLOW) day_labels.add(label[0]) hour_labels.add(label[1]) # Problem descriptions problem_rects = self.get_problem_rects(test.target[0]) proof_words = VGroup() for rect in problem_rects: word = TexText("Proof") word.scale(2) word.next_to(rect, RIGHT, buff=3) word.set_color(BLUE) proof_words.add(word) proof_words.space_out_submobjects(2) proof_arrows = VGroup() for rect, word in zip(problem_rects, proof_words): arrow = Arrow(word.get_left(), rect.get_right()) arrow.match_color(word) proof_arrows.add(arrow) scores = VGroup() for word in proof_words: score = VGroup(Integer(0), Tex("/"), Integer(7)) score.arrange(RIGHT, buff=SMALL_BUFF) score.scale(2) score.move_to(word) score.to_edge(RIGHT) scores.add(score) score[0].add_updater(lambda m: m.set_color( interpolate_color(RED, GREEN, m.get_value() / 7) )) # Introduce test self.play( LaggedStart( FadeIn(test[0], 2 * RIGHT), FadeIn(test[1], 2 * LEFT), lag_ratio=0.3, ) ) self.wait() self.play( MoveToTarget(test, lag_ratio=0.2), FadeIn(day_labels, UP, lag_ratio=0.2), ) self.wait() self.play( *map(Restore, day_labels), FadeIn(hour_labels, LEFT), ) self.wait() # Discuss problems self.play( FadeOut(test[1]), FadeOut(time_labels[1]), LaggedStartMap(ShowCreation, problem_rects), run_time=1, ) self.play( LaggedStart(*[ FadeIn(word, LEFT) for word in proof_words ]), LaggedStart(*[ GrowArrow(arrow) for arrow in proof_arrows ]), ) self.wait() self.play(FadeIn(scores)) self.play( LaggedStart(*[ ChangeDecimalToValue(score[0], 7) for score in scores ], lag_ratio=0.2, rate_func=rush_into) ) self.wait() self.scores = scores self.proof_arrows = proof_arrows self.proof_words = proof_words self.problem_rects = problem_rects self.test = test self.time_labels = time_labels def get_test(self): group = Group( ImageMobject("imo_2011_p1"), ImageMobject("imo_2011_p2"), ) group.set_height(6) group.arrange(RIGHT, buff=LARGE_BUFF) for page in group: rect = SurroundingRectangle(page, buff=0.01) rect.set_stroke(WHITE, 1) page.add(rect) # page.pixel_array[:, :, :3] = 255 - page.pixel_array[:, :, :3] return group def get_problem_rects(self, page): pw = page.get_width() rects = VGroup(*[Rectangle() for x in range(3)]) rects.set_stroke(width=2) rects.set_color_by_gradient([BLUE_E, BLUE_C, BLUE_D]) rects.set_width(pw * 0.75) for factor, rect in zip([0.095, 0.16, 0.1], rects): rect.set_height(factor * pw, stretch=True) rects.arrange(DOWN, buff=0.08) rects.move_to(page) rects.shift(0.09 * pw * DOWN) return rects class USProcessAlt(IntroduceIMO): CONFIG = { } def construct(self): self.add_flag_and_label() self.show_tests() self.show_imo() def add_flag_and_label(self): flag = ImageMobject("flags/us") flag.set_height(1) flag.to_corner(UL) label = VGroup(*map(TexText, "USA")) label.arrange(RIGHT, buff=0.05, aligned_edge=DOWN) label.set_width(0.8 * flag.get_width()) label.next_to(flag, DOWN, buff=0.2 * flag.get_height()) self.add(flag, label) self.flag = flag def show_tests(self): tests = VGroup( self.get_test( ["American ", "Mathematics ", "Contest"], n_questions=25, time_string="75 minutes", hours=1.25, n_students=250000, ), self.get_test( ["American ", "Invitational ", "Math ", "Exam"], n_questions=15, time_string="3 hours", hours=3, n_students=12000, ), self.get_test( ["U", "S", "A ", "Math ", "Olympiad"], n_questions=6, time_string="$2 \\times 4.5$ hours", hours=4.5, n_students=500, ), self.get_test( ["Mathematical ", "Olympiad ", "Program"], n_questions=None, time_string="3 weeks", hours=None, n_students=60 ) ) amc, aime, usamo, mop = tests arrows = VGroup() amc.to_corner(UR) top_point = amc.get_top() last_arrow = VectorizedPoint() last_arrow.to_corner(DL) next_anims = [] self.force_skipping() for test in tests: test.move_to(top_point, UP) test.shift_onto_screen() self.play( Write(test.name), *next_anims, run_time=1, ) self.wait() self.animate_name_abbreviation(test) self.wait() if isinstance(test.nq_label[0], Integer): int_mob = test.nq_label[0] n = int_mob.get_value() int_mob.set_value(0) self.play( ChangeDecimalToValue(int_mob, n), FadeIn(test.nq_label[1:]) ) else: self.play(FadeIn(test.nq_label)) self.play( FadeIn(test.t_label) ) self.wait() test.generate_target() test.target.scale(0.575) test.target.next_to(last_arrow, RIGHT, buff=SMALL_BUFF) test.target.shift_onto_screen() next_anims = [ MoveToTarget(test), GrowArrow(last_arrow), ] last_arrow = Vector(0.5 * RIGHT) last_arrow.set_color(WHITE) last_arrow.next_to(test.target, RIGHT, SMALL_BUFF) arrows.add(last_arrow) self.play(*next_anims) self.revert_to_original_skipping_status() self.play( LaggedStartMap( FadeInFrom, tests, lambda m: (m, LEFT), ), LaggedStartMap( GrowArrow, arrows[:-1] ), lag_ratio=0.4, ) self.wait() self.tests = tests def show_imo(self): tests = self.tests logo = ImageMobject("imo_logo") logo.set_height(1) name = TexText("IMO") name.scale(2) group = Group(logo, name) group.arrange(RIGHT) group.to_corner(UR) group.shift(2 * LEFT) students = VGroup(*[ PiCreature() for x in range(6) ]) students.arrange_in_grid(n_cols=3, buff=LARGE_BUFF) students.set_height(2) students.next_to(group, DOWN) colors = it.cycle([RED, GREY_B, BLUE]) for student, color in zip(students, colors): student.set_color(color) student.save_state() student.move_to(tests[-1]) student.fade(1) self.play( FadeInFromDown(group), LaggedStartMap( Restore, students, run_time=3, lag_ratio=0.3, ) ) self.play( LaggedStart(*[ ApplyMethod(student.change, "hooray") for student in students ]) ) for x in range(3): self.play(Blink(random.choice(students))) self.wait() # def animate_name_abbreviation(self, test): name = test.name short_name = test.short_name short_name.move_to(name, LEFT) name.generate_target() for p1, p2 in zip(name.target, short_name): for letter in p1: letter.move_to(p2[0]) letter.set_opacity(0) p1[0].set_opacity(1) self.add(test.rect, test.name, test.ns_label) self.play( FadeIn(test.rect), MoveToTarget(name), FadeIn(test.ns_label), ) test.remove(name) test.add(short_name) self.remove(name) self.add(short_name) def get_test(self, name_parts, n_questions, time_string, hours, n_students): T_COLOR = GREEN_B Q_COLOR = YELLOW name = TexText(*name_parts) short_name = TexText(*[np[0] for np in name_parts]) if n_questions: nq_label = VGroup( Integer(n_questions), TexText("questions") ) nq_label.arrange(RIGHT) else: nq_label = TexText("Lots of training") nq_label.set_color(Q_COLOR) if time_string: t_label = TexText(time_string) t_label.set_color(T_COLOR) else: t_label = Integer(0).set_opacity(0) clock = Clock() clock.hour_hand.set_opacity(0) clock.minute_hand.set_opacity(0) clock.set_stroke(WHITE, 2) if hours: sector = Sector( start_angle=TAU / 4, angle=-TAU * (hours / 12), outer_radius=clock.get_width() / 2, arc_center=clock.get_center() ) sector.set_fill(T_COLOR, 0.5) sector.set_stroke(T_COLOR, 2) clock.add(sector) if hours == 4.5: plus = Tex("+").scale(2) plus.next_to(clock, RIGHT) clock_copy = clock.copy() clock_copy.next_to(plus, RIGHT) clock.add(plus, clock_copy) else: clock.set_opacity(0) clock.set_height(1) clock.next_to(t_label, RIGHT, buff=MED_LARGE_BUFF) t_label.add(clock) ns_label = TexText("$\\sim${:,} students".format(n_students)) result = VGroup( name, nq_label, t_label, ns_label, ) result.arrange( DOWN, buff=MED_LARGE_BUFF, aligned_edge=LEFT, ) rect = SurroundingRectangle(result, buff=MED_SMALL_BUFF) rect.set_width( result[1:].get_width() + MED_LARGE_BUFF, about_edge=LEFT, stretch=True, ) rect.set_stroke(WHITE, 2) rect.set_fill(BLACK, 1) result.add_to_back(rect) result.name = name result.short_name = short_name result.nq_label = nq_label result.t_label = t_label result.ns_label = ns_label result.rect = rect result.clock = clock return result class Describe2011IMO(IntroduceIMO): CONFIG = { "year": 2011, "use_real_images": True, "n_flag_rows": 10, "student_data": [ [1, "Lisa Sauermann", "de", [7, 7, 7, 7, 7, 7]], [2, "Jeck Lim", "sg", [7, 5, 7, 7, 7, 7]], [3, "Lin Chen", "cn", [7, 3, 7, 7, 7, 7]], [4, "Jun Jie Joseph Kuan", "sg", [7, 7, 7, 7, 7, 1]], [4, "David Yang", "us", [7, 7, 7, 7, 7, 1]], [6, "Jie Jun Ang", "sg", [7, 7, 7, 7, 7, 0]], [6, "Kensuke Yoshida", "jp", [7, 6, 7, 7, 7, 1]], [6, "Raul Sarmiento", "pe", [7, 7, 7, 7, 7, 0]], [6, "Nipun Pitimanaaree", "th", [7, 7, 7, 7, 7, 0]], ], } def construct(self): self.add_title() self.add_flags_and_students() self.comment_on_primality() self.show_top_three_scorers() def add_title(self): year = Tex("2011") logo = ImageMobject("imo_logo") imo = TexText("IMO") group = Group(year, logo, imo) group.scale(1.25) logo.set_height(1) group.arrange(RIGHT) group.to_corner(UR, buff=MED_SMALL_BUFF) group.shift(LEFT) self.add(group) self.play(FadeIn(year, RIGHT)) self.title = group def add_flags_and_students(self): flags = self.get_flags() flags.space_out_submobjects(0.8) sf = 0.8 flags.stretch(sf, 0) for flag in flags: flag.stretch(1 / sf, 0) flags.set_height(5) flags.to_corner(DL) student_groups = VGroup(*[ self.get_students(flag) for flag in flags ]) student_groups.arrange_in_grid( n_rows=self.n_flag_rows, buff=SMALL_BUFF, ) student_groups[-1].align_to(student_groups, LEFT) student_groups.set_height(6) student_groups.next_to(self.title, DOWN) flags.align_to(student_groups, UP) all_students = VGroup(*it.chain(*[ [ student for student in group if student.get_fill_opacity() > 0 ] for group in student_groups ])) # Counters student_counter = VGroup( Integer(0), TexText("Participants"), ) student_counter.set = all_students student_counter.next_to(self.title, LEFT, MED_LARGE_BUFF) student_counter.right_edge = student_counter.get_right() def update_counter(counter): counter[0].set_value(len(counter.set)) counter.arrange(RIGHT) counter[0].align_to(counter[1][0][0], DOWN) counter.move_to(counter.right_edge, RIGHT) student_counter.add_updater(update_counter) flag_counter = VGroup( Integer(0), TexText("Countries") ) flag_counter.set = flags flag_counter.next_to(student_counter, LEFT, buff=0.75) flag_counter.align_to(student_counter[0], DOWN) flag_counter.right_edge = flag_counter.get_right() flag_counter.add_updater(update_counter) self.add(student_counter) self.play( ShowIncreasingSubsets(all_students), run_time=3, ) self.wait() self.add(flag_counter) self.play( ShowIncreasingSubsets(flags), run_time=3, ) self.wait() self.student_counter = student_counter self.flag_counter = flag_counter self.all_students = all_students self.student_groups = student_groups self.flags = flags def comment_on_primality(self): full_rect = FullScreenFadeRectangle(opacity=0.9) numbers = VGroup( self.title[0], self.student_counter[0], self.flag_counter[0], ) lines = VGroup(*[ Line().match_width(number).next_to(number, DOWN, SMALL_BUFF) for number in numbers ]) lines.set_stroke(TEAL, 2) randy = Randolph() randy.to_corner(DL) randy.look_at(numbers) words = VGroup(*[ TexText("Prime").next_to(line, DOWN) for line in reversed(lines) ]) words.match_color(lines) self.add(full_rect, numbers) self.play( FadeIn(full_rect), randy.change, "sassy", VFadeIn(randy), ) self.play( ShowCreation(lines), randy.change, "pondering", ) self.play(Blink(randy)) self.play( randy.change, "thinking", LaggedStart(*[ FadeIn(word, UP) for word in words ], run_time=3, lag_ratio=0.5) ) self.play(Blink(randy)) self.play( FadeOut(randy), FadeOut(words), ) self.play(FadeOut(full_rect), FadeOut(lines)) def show_top_three_scorers(self): student_groups = self.student_groups all_students = self.all_students flags = self.flags student_counter = self.student_counter flag_counter = self.flag_counter student = student_groups[10][0] flag = flags[10] students_to_fade = VGroup(*filter( lambda s: s is not student, all_students )) flags_to_fade = Group(*filter( lambda s: s is not flag, flags )) grid = self.get_score_grid() grid.shift(3 * DOWN) title_row = grid.rows[0] top_row = grid.rows[1] self.play( LaggedStartMap(FadeOutAndShiftDown, students_to_fade), LaggedStartMap(FadeOutAndShiftDown, flags_to_fade), ChangeDecimalToValue(student_counter[0], 1), FadeOut(flag_counter), run_time=2 ) student_counter[1][0][-1].fade(1) self.play( Write(top_row[0]), ReplacementTransform(student, top_row[1][1]), flag.replace, top_row[1][0], ) self.remove(flag) self.add(top_row[1]) self.play( LaggedStartMap(FadeIn, title_row[2:]), LaggedStartMap(FadeIn, top_row[2:]), ) self.wait() self.play( LaggedStart(*[ FadeIn(row, UP) for row in grid.rows[2:4] ]), LaggedStart(*[ ShowCreation(line) for line in grid.h_lines[:2] ]), lag_ratio=0.5, ) self.wait() self.play( ShowCreationThenFadeAround( Group(title_row[3], grid.rows[3][3]), ) ) self.wait() student_counter.clear_updaters() self.play( FadeOut(self.title, UP), FadeOut(student_counter, UP), grid.rows[:4].shift, 3 * UP, grid.h_lines[:3].shift, 3 * UP, ) remaining_rows = grid.rows[4:] remaining_lines = grid.h_lines[3:] Group(remaining_rows, remaining_lines).shift(3 * UP) self.play( LaggedStartMap( FadeInFrom, remaining_rows, lambda m: (m, UP), ), LaggedStartMap(ShowCreation, remaining_lines), lag_ratio=0.3, run_time=2, ) self.wait() def get_score_grid(self): data = self.student_data ranks = VGroup(*[ Integer(row[0]) for row in data ]) # Combine students with flags students = VGroup(*[ TexText(row[1]) for row in data ]) flags = Group(*[ ImageMobject("flags/{}.png".format(row[2])).set_height(0.3) for row in data ]) students = Group(*[ Group(flag.next_to(student, LEFT, buff=0.2), student) for flag, student in zip(flags, students) ]) score_rows = VGroup(*[ VGroup(*map(Integer, row[3])) for row in data ]) colors = color_gradient([RED, YELLOW, GREEN], 8) for score_row in score_rows: for score in score_row: score.set_color(colors[score.get_value()]) titles = VGroup(*[ VectorizedPoint(), VectorizedPoint(), *[ TexText("P{}".format(i)) for i in range(1, 7) ] ]) titles.arrange(RIGHT, buff=MED_LARGE_BUFF) titles[2:].shift(students.get_width() * RIGHT) rows = Group(titles, *[ Group(rank, student, *score_row) for rank, flag, student, score_row in zip( ranks, flags, students, score_rows ) ]) rows.arrange(DOWN) rows.to_edge(UP) for row in rows: for i, e1, e2 in zip(it.count(), titles, row): if i < 2: e2.align_to(e1, LEFT) else: e2.match_x(e1) ranks.next_to(students, LEFT) h_lines = VGroup() for r1, r2 in zip(rows[1:], rows[2:]): line = Line() line.set_stroke(WHITE, 0.5) line.match_width(r2) line.move_to(midpoint(r1.get_bottom(), r2.get_top())) line.align_to(r2, LEFT) h_lines.add(line) grid = Group(rows, h_lines) grid.rows = rows grid.h_lines = h_lines return grid class AskWhatsOnTest(ShowTest, MovingCameraScene): def construct(self): self.force_skipping() self.introduce_test() self.revert_to_original_skipping_status() self.ask_about_questions() def ask_about_questions(self): scores = self.scores arrows = self.proof_arrows proof_words = self.proof_words question = TexText("What kind \\\\ of problems?") question.scale(1.5) question.move_to(proof_words, LEFT) research = TexText("Research-lite") research.scale(1.5) research.move_to(question, LEFT) research.shift(MED_SMALL_BUFF * RIGHT) research.set_color(BLUE) arrows.generate_target() for arrow in arrows.target: end = arrow.get_end() start = arrow.get_start() arrow.put_start_and_end_on( interpolate(question.get_left(), start, 0.1), end ) self.play( FadeOut(scores), FadeOut(proof_words), MoveToTarget(arrows), Write(question), ) self.wait() self.play( FadeIn(research, DOWN), question.shift, 2 * UP, ) self.wait() # Experience randy = Randolph(height=2) randy.move_to(research.get_corner(UL), DL) randy.shift(SMALL_BUFF * RIGHT) clock = Clock() clock.set_height(1) clock.next_to(randy, UR) self.play( FadeOut(question), FadeIn(randy), FadeInFromDown(clock), ) self.play( randy.change, "pondering", ClockPassesTime(clock, run_time=5, hours_passed=5), ) self.play( ClockPassesTime(clock, run_time=2, hours_passed=2), VFadeOut(clock), Blink(randy), VFadeOut(randy), LaggedStartMap( FadeOut, VGroup( research, *arrows, *self.problem_rects, self.time_labels[0] ) ), ) # Second part big_rect = FullScreenFadeRectangle() lil_rect = self.problem_rects[1].copy() lil_rect.reverse_points() big_rect.append_vectorized_mobject(lil_rect) frame = self.camera_frame frame.generate_target() frame.target.scale(0.35) frame.target.move_to(lil_rect) self.play( FadeInFromDown(self.test[1]), ) self.wait() self.play( FadeIn(big_rect), MoveToTarget(frame, run_time=6), ) self.wait() class ReadQuestions(Scene): def construct(self): background = ImageMobject("AskWhatsOnTest_final_image") background.set_height(FRAME_HEIGHT) self.add(background) lines = SVGMobject("imo_2011_2_underline-01") lines.set_width(FRAME_WIDTH - 1) lines.move_to(0.1 * DOWN) lines.set_stroke(TEAL, 3) clump_sizes = [1, 2, 3, 2, 1, 2] partial_sums = list(np.cumsum(clump_sizes)) clumps = VGroup(*[ lines[i:j] for i, j in zip( [0] + partial_sums, partial_sums, ) ]) faders = [] for clump in clumps: rects = VGroup() for line in clump: rect = Rectangle() rect.set_stroke(width=0) rect.set_fill(TEAL, 0.25) rect.set_width(line.get_width() + SMALL_BUFF) rect.set_height(0.35, stretch=True) rect.move_to(line, DOWN) rects.add(rect) self.play( ShowCreation(clump, run_time=2), FadeIn(rects), *faders, ) self.wait() faders = [ FadeOut(clump), FadeOut(rects), ] self.play(*faders) self.wait() # Windmill scenes class WindmillScene(Scene): CONFIG = { "dot_config": { "fill_color": GREY_B, "radius": 0.05, "background_stroke_width": 2, "background_stroke_color": BLACK, }, "windmill_style": { "stroke_color": RED, "stroke_width": 2, "background_stroke_width": 3, "background_stroke_color": BLACK, }, "windmill_length": 2 * FRAME_WIDTH, "windmill_rotation_speed": 0.25, # "windmill_rotation_speed": 0.5, # "hit_sound": "pen_click.wav", "hit_sound": "pen_click.wav", "leave_shadows": False, } def get_random_point_set(self, n_points=11, width=6, height=6): return np.array([ [ -width / 2 + np.random.random() * width, -height / 2 + np.random.random() * height, 0 ] for n in range(n_points) ]) def get_dots(self, points): return VGroup(*[ Dot(point, **self.dot_config) for point in points ]) def get_windmill(self, points, pivot=None, angle=TAU / 4): line = Line(LEFT, RIGHT) line.set_length(self.windmill_length) line.set_angle(angle) line.set_style(**self.windmill_style) line.point_set = points if pivot is not None: line.pivot = pivot else: line.pivot = points[0] line.rot_speed = self.windmill_rotation_speed line.add_updater(lambda l: l.move_to(l.pivot)) return line def get_pivot_dot(self, windmill, color=YELLOW): pivot_dot = Dot(color=YELLOW) pivot_dot.add_updater(lambda d: d.move_to(windmill.pivot)) return pivot_dot def start_leaving_shadows(self): self.leave_shadows = True self.add(self.get_windmill_shadows()) def get_windmill_shadows(self): if not hasattr(self, "windmill_shadows"): self.windmill_shadows = VGroup() return self.windmill_shadows def next_pivot_and_angle(self, windmill): curr_angle = windmill.get_angle() pivot = windmill.pivot non_pivots = list(filter( lambda p: not np.all(p == pivot), windmill.point_set )) angles = np.array([ -(angle_of_vector(point - pivot) - curr_angle) % PI for point in non_pivots ]) # Edge case for 2 points tiny_indices = angles < 1e-6 if np.all(tiny_indices): return non_pivots[0], PI angles[tiny_indices] = np.inf index = np.argmin(angles) return non_pivots[index], angles[index] def rotate_to_next_pivot(self, windmill, max_time=None, added_anims=None): """ Returns animations to play following the contact, and total run time """ new_pivot, angle = self.next_pivot_and_angle(windmill) change_pivot_at_end = True if added_anims is None: added_anims = [] run_time = angle / windmill.rot_speed if max_time is not None and run_time > max_time: ratio = max_time / run_time rate_func = (lambda t: ratio * t) run_time = max_time change_pivot_at_end = False else: rate_func = linear for anim in added_anims: if anim.run_time > run_time: anim.run_time = run_time self.play( Rotate( windmill, -angle, rate_func=rate_func, run_time=run_time, ), *added_anims, ) if change_pivot_at_end: self.handle_pivot_change(windmill, new_pivot) # Return animations to play return [self.get_hit_flash(new_pivot)], run_time def handle_pivot_change(self, windmill, new_pivot): windmill.pivot = new_pivot self.add_sound(self.hit_sound) if self.leave_shadows: new_shadow = windmill.copy() new_shadow.fade(0.5) new_shadow.set_stroke(width=1) new_shadow.clear_updaters() shadows = self.get_windmill_shadows() shadows.add(new_shadow) def let_windmill_run(self, windmill, time): # start_time = self.get_time() # end_time = start_time + time # curr_time = start_time anims_from_last_hit = [] while time > 0: anims_from_last_hit, last_run_time = self.rotate_to_next_pivot( windmill, max_time=time, added_anims=anims_from_last_hit, ) time -= last_run_time # curr_time = self.get_time() def add_dot_color_updater(self, dots, windmill, **kwargs): for dot in dots: dot.add_updater(lambda d: self.update_dot_color( d, windmill, **kwargs )) def update_dot_color(self, dot, windmill, color1=BLUE, color2=GREY_BROWN): perp = rotate_vector(windmill.get_vector(), TAU / 4) dot_product = np.dot(perp, dot.get_center() - windmill.pivot) if dot_product > 0: dot.set_color(color1) # elif dot_product < 0: else: dot.set_color(color2) # else: # dot.set_color(WHITE) dot.set_stroke( # interpolate_color(dot.get_fill_color(), WHITE, 0.5), WHITE, width=2, background=True ) def get_hit_flash(self, point): flash = Flash( point, line_length=0.1, flash_radius=0.2, run_time=0.5, remover=True, ) flash_mob = flash.mobject for submob in flash_mob: submob.reverse_points() return Uncreate( flash.mobject, run_time=0.25, lag_ratio=0, ) def get_pivot_counters(self, windmill, counter_height=0.25, buff=0.2, color=WHITE): points = windmill.point_set counters = VGroup() for point in points: counter = Integer(0) counter.set_color(color) counter.set_height(counter_height) counter.next_to(point, UP, buff=buff) counter.point = point counter.windmill = windmill counter.is_pivot = False counter.add_updater(self.update_counter) counters.add(counter) return counters def update_counter(self, counter): dist = get_norm(counter.point - counter.windmill.pivot) counter.will_be_pivot = (dist < 1e-6) if (not counter.is_pivot) and counter.will_be_pivot: counter.increment_value() counter.is_pivot = counter.will_be_pivot def get_orientation_arrows(self, windmill, n_tips=20): tips = VGroup(*[ ArrowTip(start_angle=0) for x in range(n_tips) ]) tips.stretch(0.75, 1) tips.scale(0.5) tips.rotate(windmill.get_angle()) tips.match_color(windmill) tips.set_stroke(BLACK, 1, background=True) for tip, a in zip(tips, np.linspace(0, 1, n_tips)): tip.shift( windmill.point_from_proportion(a) - tip.get_points()[0] ) return tips def get_left_right_colorings(self, windmill, opacity=0.3): rects = VGroup(VMobject(), VMobject()) rects.const_opacity = opacity def update_regions(rects): p0, p1 = windmill.get_start_and_end() v = p1 - p0 vl = rotate_vector(v, 90 * DEGREES) vr = rotate_vector(v, -90 * DEGREES) p2 = p1 + vl p3 = p0 + vl p4 = p1 + vr p5 = p0 + vr rects[0].set_points_as_corners([p0, p1, p2, p3]) rects[1].set_points_as_corners([p0, p1, p4, p5]) rects.set_stroke(width=0) rects[0].set_fill(BLUE, rects.const_opacity) rects[1].set_fill(GREY_BROWN, rects.const_opacity) return rects rects.add_updater(update_regions) return rects class IntroduceWindmill(WindmillScene): CONFIG = { "final_run_time": 60, "windmill_rotation_speed": 0.5, } def construct(self): self.add_points() self.exclude_colinear() self.add_line() self.switch_pivots() self.continue_and_count() def add_points(self): points = self.get_random_point_set(8) points[-1] = midpoint(points[0], points[1]) dots = self.get_dots(points) dots.set_color(YELLOW) dots.set_height(3) braces = VGroup( Brace(dots, LEFT), Brace(dots, RIGHT), ) group = VGroup(dots, braces) group.set_height(4) group.center().to_edge(DOWN) S, eq = S_eq = Tex("\\mathcal{S}", "=") S_eq.scale(2) S_eq.next_to(braces, LEFT) self.play( FadeIn(S_eq), FadeIn(braces[0], RIGHT), FadeIn(braces[1], LEFT), ) self.play( LaggedStartMap(FadeInFromLarge, dots) ) self.wait() self.play( S.next_to, dots, LEFT, {"buff": 2, "aligned_edge": UP}, FadeOut(braces), FadeOut(eq), ) self.S_label = S self.dots = dots def exclude_colinear(self): dots = self.dots line = Line(dots[0].get_center(), dots[1].get_center()) line.scale(1.5) line.set_stroke(WHITE) words = TexText("Not allowed!") words.scale(2) words.set_color(RED) words.next_to(line.get_center(), RIGHT) self.add(line, dots) self.play( ShowCreation(line), FadeIn(words, LEFT), dots[-1].set_color, RED, ) self.wait() self.play( FadeOut(line), FadeOut(words), ) self.play( FadeOut( dots[-1], 3 * RIGHT, path_arc=-PI / 4, rate_func=running_start, ) ) dots.remove(dots[-1]) self.wait() def add_line(self): dots = self.dots points = np.array(list(map(Mobject.get_center, dots))) p0 = points[0] windmill = self.get_windmill(points, p0, angle=60 * DEGREES) pivot_dot = self.get_pivot_dot(windmill) l_label = Tex("\\ell") l_label.scale(1.5) p_label = Tex("P") l_label.next_to( p0 + 2 * normalize(windmill.get_vector()), RIGHT, ) l_label.match_color(windmill) p_label.next_to(p0, RIGHT) p_label.match_color(pivot_dot) arcs = VGroup(*[ Arc(angle=-45 * DEGREES, radius=1.5) for x in range(2) ]) arcs[1].rotate(PI, about_point=ORIGIN) for arc in arcs: arc.add_tip(tip_length=0.2) arcs.rotate(windmill.get_angle()) arcs.shift(p0) self.add(windmill, dots) self.play( GrowFromCenter(windmill), FadeIn(l_label, DL), ) self.wait() self.play( TransformFromCopy(pivot_dot, p_label), GrowFromCenter(pivot_dot), dots.set_color, WHITE, ) self.wait() self.play(*map(ShowCreation, arcs)) self.wait() # Rotate to next pivot next_pivot, angle = self.next_pivot_and_angle(windmill) self.play( *[ Rotate( mob, -0.99 * angle, about_point=p0, rate_func=linear, ) for mob in [windmill, arcs, l_label] ], VFadeOut(l_label), ) self.add_sound(self.hit_sound) self.play( self.get_hit_flash(next_pivot) ) self.wait() self.pivot2 = next_pivot self.pivot_dot = pivot_dot self.windmill = windmill self.p_label = p_label self.arcs = arcs def switch_pivots(self): windmill = self.windmill pivot2 = self.pivot2 p_label = self.p_label arcs = self.arcs q_label = Tex("Q") q_label.set_color(YELLOW) q_label.next_to(pivot2, DR, buff=SMALL_BUFF) self.rotate_to_next_pivot(windmill) self.play( FadeIn(q_label, LEFT), FadeOut(p_label), FadeOut(arcs), ) self.wait() flashes, run_time = self.rotate_to_next_pivot(windmill) self.remove(q_label) self.add_sound(self.hit_sound) self.play(*flashes) self.wait() self.let_windmill_run(windmill, 10) def continue_and_count(self): windmill = self.windmill pivot_dot = self.pivot_dot p_label = Tex("P") p_label.match_color(pivot_dot) p_label.next_to(pivot_dot, DR, buff=0) l_label = Tex("\\ell") l_label.scale(1.5) l_label.match_color(windmill) l_label.next_to( windmill.get_center() + -3 * normalize(windmill.get_vector()), DR, buff=SMALL_BUFF, ) self.play(FadeIn(p_label, UL)) self.play(FadeIn(l_label, LEFT)) self.wait() self.add( windmill.copy().fade(0.75), pivot_dot.copy().fade(0.75), ) pivot_counters = self.get_pivot_counters(windmill) self.add(pivot_counters) windmill.rot_speed *= 2 self.let_windmill_run(windmill, self.final_run_time) class ContrastToOtherOlympiadProblems(AskWhatsOnTest): def construct(self): self.zoom_to_other_questions() def zoom_to_other_questions(self): test = self.get_test() rects = self.get_all_rects() big_rects = VGroup() for rect in rects: big_rect = FullScreenFadeRectangle() rect.reverse_points() big_rect.append_vectorized_mobject(rect) big_rects.add(big_rect) frame = self.camera_frame frame.generate_target() frame.target.scale(0.35) frame.target.move_to(rects[1]) big_rect = big_rects[1].copy() self.add(test) self.play( FadeIn(big_rect), MoveToTarget(frame, run_time=3), ) self.wait() for i in [2, 0, 3, 5]: self.play( frame.move_to, rects[i], Transform(big_rect, big_rects[i]) ) self.wait() def get_all_rects(self, test): rects = self.get_problem_rects(test[0]) new_rects = VGroup(rects[1], rects[0], rects[2]).copy() new_rects[0].stretch(0.85, 1) new_rects[1].stretch(0.8, 1) new_rects[2].stretch(0.8, 1) new_rects.arrange(DOWN, buff=0.08) new_rects.move_to(test[1]) new_rects.align_to(rects, UP) rects.add(*new_rects) return rects class WindmillExample30Points(WindmillScene): CONFIG = { "n_points": 30, "random_seed": 0, "run_time": 60, "counter_config": { "counter_height": 0.15, "buff": 0.1, }, } def construct(self): points = self.get_random_point_set(self.n_points) points[:, 0] *= 1.5 sorted_points = sorted(list(points), key=lambda p: p[1]) sorted_points[4] += RIGHT dots = self.get_dots(points) windmill = self.get_windmill(points, sorted_points[5], angle=PI / 4) pivot_dot = self.get_pivot_dot(windmill) # self.add_dot_color_updater(dots, windmill) self.add(windmill) self.add(dots) self.add(pivot_dot) self.add(self.get_pivot_counters( windmill, **self.counter_config )) self.let_windmill_run(windmill, self.run_time) class WindmillExample15Points(WindmillExample30Points): CONFIG = { "n_points": 15, "run_time": 60, "random_seed": 2, "counter_config": { "counter_height": 0.25, "buff": 0.1, }, } class TheQuestion(Scene): def construct(self): words = TexText( "Will each point be hit infinitely many times?" ) words.set_width(FRAME_WIDTH - 1) words.to_edge(UP) self.add(words) class SpiritOfIMO(PiCreatureScene): def construct(self): randy = self.pi_creature problems = VGroup(*[ TexText("P{})".format(i)) for i in range(1, 7) ]) problems.arrange_in_grid(n_cols=2, buff=LARGE_BUFF) problems.scale(1.5) problems[3:].shift(1.5 * RIGHT) problems.to_corner(UR, buff=LARGE_BUFF) problems.shift(2 * LEFT) light_bulbs = VGroup() lights = VGroup() for problem in problems: light_bulb = Lightbulb() light_bulb.base = light_bulb[:3] light_bulb.light = light_bulb[3:] light_bulb.set_height(1) light_bulb.next_to(problem, RIGHT) light_bulbs.add(light_bulb) light = self.get_light(light_bulb.get_center()) lights.add(light) self.play( LaggedStartMap(FadeInFromDown, problems) ) self.play( LaggedStartMap( FadeIn, light_bulbs, run_time=1, ), LaggedStartMap( LaggedStartMap, lights, lambda l: (VFadeInThenOut, l), run_time=3 ), randy.change, "thinking" ) self.wait() self.pi_creature_thinks( "Oh, I've\\\\seen this...", target_mode="surprised", ) self.wait(3) def get_light(self, point): radii = np.arange(0, 5, 0.1) result = VGroup(*[ Annulus( inner_radius=r1, outer_radius=r2, arc_center=point, fill_opacity=(1 / (r1 + 1)**2), fill_color=YELLOW, ) for r1, r2 in zip(radii[1:], radii[2:]) ]) return result # TODO class HowToPrepareForThis(Scene): def construct(self): pass class HarderThanExpected(TeacherStudentsScene): def construct(self): title = TexText("Unusual aspect \\#2") title.scale(1.5) title.to_edge(UP) line = Line(LEFT, RIGHT) line.match_width(title) line.next_to(title, DOWN) words = TexText("Harder than expected") words.set_color(RED) words.scale(1.5) words.next_to(line, DOWN, LARGE_BUFF) self.play( FadeInFromDown(title), ShowCreation(line), self.teacher.change, "raise_right_hand", self.get_student_changes("pondering", "confused", "sassy") ) self.wait() self.play( FadeIn(words, UP), self.get_student_changes(*3 * ["horrified"]), ) self.wait(3) class TraditionalDifficulty(ContrastToOtherOlympiadProblems): def construct(self): test = self.get_test() rects = self.get_all_rects(test) for rect in rects: rect.reverse_points() big_rects = VGroup(*[ FullScreenFadeRectangle() for x in range(3) ]) for br, r1, r2 in zip(big_rects, rects, rects[3:]): br.append_vectorized_mobject(r1) br.append_vectorized_mobject(r2) big_rect = big_rects[0].copy() p_labels = VGroup() for i, rect in enumerate(rects): p_label = TexText("P{}".format(i + 1)) p_label.next_to(rect, LEFT) p_labels.add(p_label) arrow = Vector(3 * DOWN) arrow.next_to(test[0], RIGHT) arrow.match_y(rects) harder_words = TexText("Get harder") harder_words.scale(2) harder_words.next_to(arrow, RIGHT) harder_words.set_color(RED) p_words = VGroup( TexText("Doable", color=GREEN), TexText("Challenging", color=YELLOW), TexText("Brutal", color=RED), ) p_words.add(*p_words.copy()) for rect, word, label in zip(rects, p_words, p_labels): word.next_to(rect, UP) label.match_color(word) self.add(test[0]) self.play( FadeIn(harder_words), GrowArrow(arrow), LaggedStart(*[FadeIn(p, UP) for p in p_labels[:3]]), LaggedStartMap(ShowCreation, rects[:3]), ) self.wait() self.play( FadeIn(test[1]), FadeIn(p_labels[3:]), FadeIn(rects[3:]), FadeOut(harder_words), FadeOut(arrow), ) self.wait() self.add(big_rect, p_labels[0], p_labels[3]) self.play( FadeIn(big_rect), FadeOut(rects), FadeOut(p_labels[1:3]), FadeOut(p_labels[4:]), FadeInFromDown(p_words[0::3]), ) self.wait() self.play( Transform(big_rect, big_rects[1]), FadeOut(p_labels[0::3]), FadeIn(p_labels[1::3]), FadeOut(p_words[0::3], DOWN), FadeIn(p_words[1::3], UP), ) self.wait() self.play( Transform(big_rect, big_rects[2]), FadeOut(p_labels[1::3]), FadeIn(p_labels[2::3]), FadeOut(p_words[1::3], DOWN), FadeIn(p_words[2::3], UP), ) self.wait() class PerfectScoreData(Describe2011IMO): CONFIG = { "n_students": 563, "n_perfect_scores_per_problem": [ 345, 22, 51, 267, 170, 6, ], "full_bar_width": 7, } def construct(self): self.add_title() self.show_total_number_of_students() self.add_subtitle() self.show_data() self.analyze_data() def add_title(self): self.force_skipping() super().add_title() self.revert_to_original_skipping_status() self.title.center().to_edge(UP) def show_total_number_of_students(self): title = self.title bar = self.get_bar(self.n_students, ORIGIN) bar.next_to(title, DOWN, buff=0.3) counter = self.get_bar_counter(bar) counter_label = TexText("Students") counter_label.add_updater( lambda m: m.next_to(counter, RIGHT) ) self.add(counter, counter_label) self.play( self.get_bar_growth_anim(bar), run_time=2, ) self.wait() def add_subtitle(self): title = self.title subtitle = TexText( "Number of perfect scores on each problem:" ) subtitle.scale(1.25) subtitle.set_color(GREEN) subtitle.next_to(title, DOWN, buff=LARGE_BUFF) problems = VGroup(*[ TexText("P{})".format(i)) for i in range(1, 7) ]) problems.arrange_in_grid(n_cols=2, buff=LARGE_BUFF) problems[3:].shift(5 * RIGHT) problems.next_to(subtitle, DOWN, LARGE_BUFF) problems.to_edge(LEFT) self.play( FadeInFromDown(subtitle), LaggedStartMap(FadeInFromDown, problems), ) self.problems = problems def show_data(self): problems = self.problems bars = VGroup(*[ self.get_bar(n, p.get_right() + SMALL_BUFF * RIGHT) for n, p in zip( self.n_perfect_scores_per_problem, problems, ) ]) counters = VGroup(*map(self.get_bar_counter, bars)) self.play( VFadeIn(counters), *[ self.get_bar_growth_anim(bar) for bar in bars ], ) counters.set_fill(WHITE, 1) self.wait() self.problem_bars = bars self.problem_counters = counters def analyze_data(self): problems = VGroup(*[ VGroup(p, pb, pc) for p, pb, pc in zip( self.problems, self.problem_bars, self.problem_counters, ) ]) rects = VGroup(*[ SurroundingRectangle(p, color=p[1].get_color()) for p in problems ]) rect = rects[1].copy() self.play(ShowCreation(rect)) self.wait() self.play(TransformFromCopy(rect, rects[4])) self.wait() self.play(TransformFromCopy(rect, rects[2])) self.wait() self.play( ReplacementTransform(rect, rects[5]), ReplacementTransform(rects[4], rects[5]), ReplacementTransform(rects[2], rects[5]), ) self.wait() # def get_bar(self, number, left_side): bar = Rectangle() bar.set_stroke(width=0) bar.set_fill(WHITE, 1) bar.set_height(0.25) bar.set_width( self.full_bar_width * number / self.n_students, stretch=True ) bar.move_to(left_side, LEFT) def update_bar_color(bar): frac = bar.get_width() / self.full_bar_width if 0 < frac <= 0.25: alpha = 4 * frac bar.set_color(interpolate_color(RED, YELLOW, alpha)) elif 0.25 < frac <= 0.5: alpha = 4 * (frac - 0.25) bar.set_color(interpolate_color(YELLOW, GREEN, alpha)) else: alpha = 2 * (frac - 0.5) bar.set_color(interpolate_color(GREEN, BLUE, alpha)) bar.add_updater(update_bar_color) return bar def get_bar_growth_anim(self, bar): bar.save_state() bar.stretch(0, 0, about_edge=LEFT) return Restore( bar, suspend_mobject_updating=False, run_time=2, ) def get_bar_counter(self, bar): counter = Integer() counter.add_updater( lambda m: m.set_value( self.n_students * bar.get_width() / self.full_bar_width ) ) counter.add_updater(lambda m: m.next_to(bar, RIGHT, SMALL_BUFF)) return counter class SixOnSix(Describe2011IMO): CONFIG = { "student_data": [ [1, "Lisa Sauermann", "de", [7, 7, 7, 7, 7, 7]], [2, "Jeck Lim", "sg", [7, 5, 7, 7, 7, 7]], [3, "Lin Chen", "cn", [7, 3, 7, 7, 7, 7]], [14, "Mina Dalirrooyfard", "ir", [7, 0, 2, 7, 7, 7]], [202, "Georgios Kalantzis", "gr", [7, 0, 1, 1, 2, 7]], [202, "Chi Hong Chow", "hk", [7, 0, 3, 1, 0, 7]], ], } def construct(self): grid = self.get_score_grid() grid.to_edge(DOWN, buff=LARGE_BUFF) for row in grid.rows: row[0].set_opacity(0) grid.h_lines.stretch(0.93, 0, about_edge=RIGHT) sf = 1.25 title = TexText("Only 6 solved P6") title.scale(sf) title.to_edge(UP, buff=MED_SMALL_BUFF) subtitle = TexText("P2 evaded 5 of them") subtitle.set_color(YELLOW) subtitle.scale(sf) subtitle.next_to(title, DOWN) six_rect, two_rect = [ SurroundingRectangle(VGroup( grid.rows[0][index], grid.rows[-1][index], )) for index in [7, 3] ] self.play( Write(title), LaggedStart(*[FadeIn(row, UP) for row in grid.rows]), LaggedStart(*[ShowCreation(line) for line in grid.h_lines]), ) self.play(ShowCreation(six_rect)) self.wait() self.play( ReplacementTransform(six_rect, two_rect), FadeIn(subtitle, UP) ) self.wait() class AlwaysStartSimple(TeacherStudentsScene): def construct(self): self.teacher_says("Always start\\\\simple") self.change_all_student_modes("pondering") self.wait(3) class TryOutSimplestExamples(WindmillScene): CONFIG = { "windmill_rotation_speed": TAU / 8, } def construct(self): self.two_points() self.add_third_point() self.add_fourth_point() self.move_starting_line() def two_points(self): points = [1.5 * LEFT, 1.5 * RIGHT] dots = self.dots = self.get_dots(points) windmill = self.windmill = self.get_windmill(points, angle=TAU / 8) pivot_dot = self.pivot_dot = self.get_pivot_dot(windmill) self.play( ShowCreation(windmill), LaggedStartMap( FadeInFromLarge, dots, scale_factor=10, run_time=1, lag_ratio=0.4, ), GrowFromCenter(pivot_dot), ) self.let_windmill_run(windmill, 8) def add_third_point(self): windmill = self.windmill new_point = 2 * DOWN new_dot = self.get_dots([new_point]) windmill.point_set.append(new_point) self.add(new_dot, self.pivot_dot) self.play(FadeInFromLarge(new_dot, scale_factor=10)) self.let_windmill_run(windmill, 8) def add_fourth_point(self): windmill = self.windmill dot = self.get_dots([ORIGIN]) dot.move_to(DOWN + 2 * RIGHT) words = TexText("Never hit!") words.set_color(RED) words.scale(0.75) words.move_to(0.7 * DOWN, DOWN) self.add(dot, self.pivot_dot) self.play( FadeInFromLarge(dot, scale_factor=10) ) windmill.point_set.append(dot.get_center()) windmill.rot_speed = TAU / 4 self.let_windmill_run(windmill, 4) # Shift point self.play( dot.next_to, words, DOWN, FadeIn(words, RIGHT), ) windmill.point_set[3] = dot.get_center() self.let_windmill_run(windmill, 4) self.wait() self.dots.add(dot) self.never_hit_words = words def move_starting_line(self): windmill = self.windmill dots = self.dots windmill.suspend_updating() self.play( windmill.move_to, dots[-1], FadeOut(self.never_hit_words), ) windmill.pivot = dots[-1].get_center() windmill.resume_updating() counters = self.get_pivot_counters(windmill) self.play( LaggedStart(*[ FadeIn(counter, DOWN) for counter in counters ]) ) self.wait() windmill.rot_speed = TAU / 8 self.let_windmill_run(windmill, 16) highlight = windmill.copy() highlight.set_stroke(YELLOW, 4) self.play( ShowCreationThenDestruction(highlight), ) self.let_windmill_run(windmill, 8) class FearedCase(WindmillScene): CONFIG = { "n_points": 25, "windmill_rotation_speed": TAU / 16, } def construct(self): points = self.get_random_point_set(self.n_points) sorted_points = sorted(list(points), key=lambda p: p[1]) dots = self.get_dots(points) windmill = self.get_windmill( points, sorted_points[self.n_points // 2], angle=0, ) pivot_dot = self.get_pivot_dot(windmill) # self.add_dot_color_updater(dots, windmill) counters = self.get_pivot_counters( windmill, counter_height=0.15, buff=0.1 ) self.add(windmill) self.add(dots) self.add(pivot_dot) self.add(counters) self.let_windmill_run(windmill, 32) windmill.pivot = sorted_points[0] self.let_windmill_run(windmill, 32) class WhereItStartsItEnds(WindmillScene): CONFIG = { "n_points": 11, "windmill_rotation_speed": TAU / 8, "random_seed": 1, "points_shift_val": 2 * LEFT, } def construct(self): self.show_stays_in_middle() self.ask_about_proof() def show_stays_in_middle(self): points = self.get_random_point_set(self.n_points) points += self.points_shift_val sorted_points = sorted(list(points), key=lambda p: p[1]) dots = self.get_dots(points) windmill = self.get_windmill( points, sorted_points[self.n_points // 2], angle=0 ) pivot_dot = self.get_pivot_dot(windmill) sf = 1.25 start_words = TexText("Starts in the ", "``middle''") start_words.scale(sf) start_words.next_to(windmill, UP, MED_SMALL_BUFF) start_words.to_edge(RIGHT) end_words = TexText("Stays in the ", "``middle''") end_words.scale(sf) end_words.next_to(windmill, DOWN, MED_SMALL_BUFF) end_words.to_edge(RIGHT) start_words.match_x(end_words) self.add(dots) self.play( ShowCreation(windmill), GrowFromCenter(pivot_dot), FadeIn(start_words, LEFT), ) self.wait() self.start_leaving_shadows() self.add(windmill, dots, pivot_dot) half_time = PI / windmill.rot_speed self.let_windmill_run(windmill, time=half_time) self.play(FadeIn(end_words, UP)) self.wait() self.let_windmill_run(windmill, time=half_time) self.wait() self.start_words = start_words self.end_words = end_words self.windmill = windmill self.dots = dots self.pivot_dot = pivot_dot def ask_about_proof(self): sf = 1.25 middle_rects = self.get_middle_rects() middle_words = TexText("Can you formalize this?") middle_words.scale(sf) middle_words.next_to(middle_rects, DOWN, MED_LARGE_BUFF) middle_words.to_edge(RIGHT) middle_words.match_color(middle_rects) proof_words = TexText("Can you prove this?") proof_words.next_to( self.end_words.get_left(), DL, buff=2, ) proof_words.shift(RIGHT) proof_words.scale(sf) proof_arrow = Arrow( proof_words.get_top(), self.end_words.get_corner(DL), buff=SMALL_BUFF, ) proof_words2 = TexText("Then prove the result?") proof_words2.scale(sf) proof_words2.next_to(middle_words, DOWN, MED_LARGE_BUFF) proof_words2.to_edge(RIGHT) VGroup(proof_words, proof_words2, proof_arrow).set_color(YELLOW) self.play( Write(proof_words), GrowArrow(proof_arrow), run_time=1, ) self.wait() self.play( FadeOut(proof_arrow), FadeOut(proof_words), LaggedStartMap(ShowCreation, middle_rects), Write(middle_words), ) self.wait() self.play(FadeIn(proof_words2, UP)) self.wait() self.let_windmill_run(self.windmill, time=10) def get_middle_rects(self): middle_rects = VGroup(*[ SurroundingRectangle(words[1]) for words in [ self.start_words, self.end_words ] ]) middle_rects.set_color(TEAL) return middle_rects class AltWhereItStartsItEnds(WhereItStartsItEnds): CONFIG = { "n_points": 9, "random_seed": 3, } class FormalizeMiddle(WhereItStartsItEnds): CONFIG = { "random_seed": 2, "points_shift_val": 3 * LEFT, } def construct(self): self.show_stays_in_middle() self.problem_solving_tip() self.define_colors() self.mention_odd_case() self.ask_about_numbers() def problem_solving_tip(self): mid_words = VGroup( self.start_words, self.end_words, ) mid_words.save_state() sf = 1.25 pst = TexText("Problem-solving tip:") pst.scale(sf) underline = Line(LEFT, RIGHT) underline.match_width(pst) underline.move_to(pst.get_bottom()) pst.add(underline) pst.to_corner(UR) # pst.set_color(YELLOW) steps = VGroup( TexText("Vague idea"), TexText("Put numbers to it"), TexText("Ask about those numbers"), ) steps.scale(sf) steps.arrange(DOWN, buff=LARGE_BUFF) steps.next_to(pst, DOWN, buff=MED_LARGE_BUFF) steps.shift_onto_screen() pst.match_x(steps) colors = color_gradient([BLUE, YELLOW], 3) for step, color in zip(steps, colors): step.set_color(color) arrows = VGroup() for s1, s2 in zip(steps, steps[1:]): arrow = Arrow(s1.get_bottom(), s2.get_top(), buff=SMALL_BUFF) arrows.add(arrow) self.play(Write(pst), run_time=1) self.wait() self.play( mid_words.scale, 0.75, mid_words.set_opacity, 0.25, mid_words.to_corner, DL, FadeInFromDown(steps[0]), ) self.wait() for arrow, step in zip(arrows, steps[1:]): self.play( FadeIn(step, UP), GrowArrow(arrow), ) self.wait() steps.generate_target() steps.target.scale(0.75) steps.target.arrange(DOWN, buff=0.2) steps.target.to_corner(UR) self.play( FadeOut(pst), MoveToTarget(steps), Restore(mid_words), FadeOut(arrows) ) self.wait() self.tip_words = steps self.mid_words = mid_words def define_colors(self): windmill = self.windmill mid_words = self.mid_words tip_words = self.tip_words shadows = self.windmill_shadows self.leave_shadows = False full_time = TAU / windmill.rot_speed self.play(FadeOut(shadows)) self.add(windmill, tip_words, mid_words, self.dots, self.pivot_dot) self.let_windmill_run(windmill, time=full_time / 4) windmill.rotate(PI) self.wait() # Show regions rects = self.get_left_right_colorings(windmill) rects.suspend_updating() rects.save_state() rects.stretch(0, 0, about_point=windmill.get_center()) counters = VGroup(Integer(0), Integer(0)) counters.scale(2) counters[0].set_stroke(BLUE, 3, background=True) counters[1].set_stroke(GREY_BROWN, 3, background=True) new_dots = self.dots.copy() new_dots.set_color(WHITE) for dot in new_dots: dot.scale(1.25) new_dots.sort(lambda p: p[0]) k = self.n_points // 2 dot_sets = VGroup(new_dots[:k], new_dots[-k:]) label_sets = VGroup() for dot_set, direction in zip(dot_sets, [LEFT, RIGHT]): label_set = VGroup() for i, dot in zip(it.count(1), dot_set): label = Integer(i) label.set_height(0.15) label.next_to(dot, direction, SMALL_BUFF) label_set.add(label) label_sets.add(label_set) for counter, dot_set in zip(counters, dot_sets): counter.move_to(dot_set) counter.to_edge(UP) self.add(rects, *self.get_mobjects()) self.play( Restore(rects), FadeIn(counters), ) for counter, dot_set, label_set in zip(counters, dot_sets, label_sets): self.play( ShowIncreasingSubsets(dot_set), ShowIncreasingSubsets(label_set), ChangingDecimal(counter, lambda a: len(dot_set)), rate_func=linear, ) self.wait() self.wait() self.remove(self.dots) self.dots = new_dots # Show orientation tips = self.get_orientation_arrows(windmill) self.play(ShowCreation(tips)) windmill.add(tips) self.wait() self.add_dot_color_updater(new_dots, windmill) rects.suspend_updating() for rect in rects: self.play(rect.set_opacity, 1) self.play(rect.set_opacity, rects.const_opacity) rects.resume_updating() self.wait() self.play( counters.space_out_submobjects, 0.8, counters.next_to, mid_words, DOWN, LARGE_BUFF, FadeOut(label_sets), ) eq = Tex("=") eq.scale(2) eq.move_to(counters) self.play(FadeIn(eq)) self.wait() self.counters = counters self.colored_regions = rects rects.resume_updating() def mention_odd_case(self): dots = self.dots counters = self.counters sf = 1.0 words = TexText( "Assume odd \\# points" ) words.scale(sf) words.to_corner(UL) example = VGroup( TexText("Example:"), Integer(0) ) example.arrange(RIGHT) example.scale(sf) example.next_to(words, DOWN) example.align_to(words, LEFT) k = self.n_points // 2 dot_rects = VGroup() for i, dot in zip(it.count(1), dots): dot_rect = SurroundingRectangle(dot) dot_rect.match_color(dot) dot_rects.add(dot_rect) self.play(FadeIn(words, DOWN)) self.wait() self.play( ShowCreationThenFadeAround(dots[k]), self.pivot_dot.set_color, WHITE, ) self.play(FadeIn(example, UP)) self.play( ShowIncreasingSubsets(dot_rects), ChangingDecimal( example[1], lambda a: len(dot_rects) ), rate_func=linear ) self.wait() self.remove(dot_rects) self.play( ShowCreationThenFadeOut(dot_rects[:k]), ShowCreationThenFadeOut( SurroundingRectangle(counters[0], color=BLUE) ), ) self.play( ShowCreationThenFadeOut(dot_rects[-k:]), ShowCreationThenFadeOut( SurroundingRectangle(counters[1], color=GREY_BROWN) ), ) self.wait() self.play( FadeOut(words), FadeOut(example), ) def ask_about_numbers(self): self.windmill.rot_speed *= 0.5 self.add(self.dots, self.pivot_dot) self.let_windmill_run(self.windmill, 20) class SecondColoringExample(WindmillScene): CONFIG = { "run_time": 30, "n_points": 9, } def construct(self): points = self.get_random_point_set(self.n_points) points += RIGHT sorted_points = sorted(list(points), key=lambda p: p[0]) dots = self.get_dots(points) windmill = self.get_windmill( points, pivot=sorted_points[self.n_points // 2], angle=PI / 2 ) pivot_dot = self.get_pivot_dot(windmill) pivot_dot.set_color(WHITE) rects = self.get_left_right_colorings(windmill) self.add_dot_color_updater(dots, windmill) counts = VGroup( TexText("\\# Blues = 4"), TexText("\\# Browns = 4"), ) counts.arrange(DOWN, aligned_edge=LEFT, buff=MED_LARGE_BUFF) counts.to_corner(UL) counts[0].set_color(interpolate_color(BLUE, WHITE, 0.25)) counts[1].set_color(interpolate_color(GREY_BROWN, WHITE, 0.5)) counts[0].set_stroke(BLACK, 5, background=True) counts[1].set_stroke(BLACK, 5, background=True) const_words = TexText("Stay constant$\\dots$why?") const_words.next_to(counts, RIGHT, buff=1.5, aligned_edge=UP) arrows = VGroup(*[ Arrow( const_words.get_left(), count.get_right(), buff=SMALL_BUFF, max_tip_length_to_length_ratio=0.15, max_stroke_width_to_length_ratio=3, ) for count in counts ]) self.add(rects, windmill, dots, pivot_dot) self.add(counts, const_words, arrows) self.let_windmill_run(windmill, time=self.run_time) class TalkThroughPivotChange(WindmillScene): CONFIG = { "windmill_rotation_speed": 0.2, } def construct(self): self.setup_windmill() self.ask_about_pivot_change() self.show_above_and_below() self.change_pivot() def setup_windmill(self): points = self.points = np.array([ DR, UR, UL, DL, 0.5 * LEFT ]) points *= 3 self.dots = self.get_dots(points) self.windmill = self.get_windmill(points, points[-1]) self.pivot_dot = self.get_pivot_dot(self.windmill) self.pivot_dot.set_color(WHITE) self.add_dot_color_updater(self.dots, self.windmill) self.rects = self.get_left_right_colorings(self.windmill) self.add( self.rects, self.windmill, self.dots, self.pivot_dot, ) def ask_about_pivot_change(self): windmill = self.windmill new_pivot, angle = self.next_pivot_and_angle(windmill) words = TexText("Think about\\\\pivot change") words.next_to(new_pivot, UP, buff=2) words.to_edge(LEFT) arrow = Arrow(words.get_bottom(), new_pivot, buff=0.2) self.play( Rotate( windmill, -0.9 * angle, run_time=3, rate_func=linear ), Write(words, run_time=1), ShowCreation(arrow), ) self.wait() self.question = words self.question_arrow = arrow def show_above_and_below(self): windmill = self.windmill vect = normalize(windmill.get_vector()) angle = windmill.get_angle() tips = self.get_orientation_arrows(windmill) top_half = Line(windmill.get_center(), windmill.get_end()) low_half = Line(windmill.get_center(), windmill.get_start()) top_half.set_stroke(YELLOW, 3) low_half.set_stroke(PINK, 3) halves = VGroup(top_half, low_half) top_words = TexText("Above pivot") low_words = TexText("Below pivot") all_words = VGroup(top_words, low_words) for words, half in zip(all_words, halves): words.next_to(ORIGIN, DOWN) words.rotate(angle, about_point=ORIGIN) words.shift(half.point_from_proportion(0.15)) words.match_color(half) self.play(ShowCreation(tips)) self.wait() self.add(top_half, tips) self.play( ShowCreationThenFadeOut(top_half), FadeIn(top_words, -vect), ) self.add(low_half, tips) self.play( ShowCreationThenFadeOut(low_half), FadeIn(low_words, vect), ) self.wait() windmill.add(tips) self.above_below_words = all_words def change_pivot(self): windmill = self.windmill dots = self.dots arrow = self.question_arrow blue_rect = SurroundingRectangle(dots[3]) blue_rect.set_color(BLUE) new_pivot_word = TexText("New pivot") new_pivot_word.next_to(blue_rect, LEFT) old_pivot_word = TexText("Old pivot") old_pivot = windmill.pivot old_pivot_word.next_to( old_pivot, LEFT, buff=SMALL_BUFF + MED_SMALL_BUFF ) self.play( FadeOut(self.above_below_words), ReplacementTransform( self.question, new_pivot_word, ), ReplacementTransform(arrow, blue_rect), ) self.wait() anims, time = self.rotate_to_next_pivot(windmill) self.play( *anims, Rotate( windmill, angle=-windmill.rot_speed, rate_func=linear, ) ) self.wait() self.play( TransformFromCopy(new_pivot_word, old_pivot_word), blue_rect.move_to, old_pivot, ) self.wait(2) # Hit new point brown_rect = SurroundingRectangle(dots[1]) brown_rect.set_color(GREY_BROWN) self.play(TransformFromCopy(blue_rect, brown_rect)) self.play( blue_rect.move_to, windmill.pivot, blue_rect.set_color, GREY_BROWN, old_pivot_word.move_to, new_pivot_word, FadeOut(new_pivot_word, DL) ) self.let_windmill_run(windmill, 1) self.wait() self.play( FadeOut(old_pivot_word), FadeOut(blue_rect), FadeOut(brown_rect), ) self.let_windmill_run(windmill, 20) class InsightNumber1(Scene): def construct(self): words = TexText( "Key insight 1: ", "\\# Points on either side is constant" ) words[0].set_color(YELLOW) words.set_width(FRAME_WIDTH - 1) self.play(FadeInFromDown(words)) self.wait() class Rotate180Argument(WindmillScene): CONFIG = { "n_points": 21, "random_seed": 3, } def construct(self): self.setup_windmill() self.add_total_rotation_label() self.rotate_180() self.show_parallel_lines() self.rotate_180() self.rotate_180() def setup_windmill(self): n = self.n_points points = self.get_random_point_set(n) points[:, 0] *= 1.5 points += RIGHT points = sorted(points, key=lambda p: p[0]) mid_point = points[n // 2] points[n // 2 - 1] += 0.2 * LEFT self.points = points self.dots = self.get_dots(points) self.windmill = self.get_windmill(points, mid_point) self.pivot_dot = self.get_pivot_dot(self.windmill) self.pivot_dot.set_color(WHITE) self.add_dot_color_updater(self.dots, self.windmill) self.rects = self.get_left_right_colorings(self.windmill) p_label = Tex("P_0") p_label.next_to(mid_point, RIGHT, SMALL_BUFF) self.p_label = p_label self.add( self.rects, self.windmill, self.dots, self.pivot_dot, self.p_label, ) def add_total_rotation_label(self): windmill = self.windmill words = TexText("Total rotation:") counter = Integer(0, unit="^\\circ") title = VGroup(words, counter) title.arrange(RIGHT) title.to_corner(UL) rot_arrow = Vector(UP) rot_arrow.set_color(RED) rot_arrow.next_to(title, DOWN) circle = Circle() circle.replace(rot_arrow, dim_to_match=1) circle.set_stroke(WHITE, 1) rot_arrow.add_updater( lambda m: m.set_angle(windmill.get_angle()) ) rot_arrow.add_updater( lambda m: m.move_to(circle) ) def update_count(c): new_val = 90 - windmill.get_angle() * 360 / TAU while abs(new_val - c.get_value()) > 90: new_val += 360 c.set_value(new_val) counter.add_updater(update_count) rect = SurroundingRectangle( VGroup(title, circle), buff=MED_LARGE_BUFF, ) rect.set_fill(BLACK, 0.8) rect.set_stroke(WHITE, 1) title.shift(MED_SMALL_BUFF * LEFT) self.rotation_label = VGroup( rect, words, counter, circle, rot_arrow ) self.add(self.rotation_label) def rotate_180(self): windmill = self.windmill self.add(self.pivot_dot) self.let_windmill_run( windmill, PI / windmill.rot_speed, ) self.wait() def show_parallel_lines(self): points = self.get_points() rotation_label = self.rotation_label dots = self.dots windmill = self.windmill lines = VGroup() for point in points: line = Line(DOWN, UP) line.set_height(2 * FRAME_HEIGHT) line.set_stroke(RED, 1, opacity=0.5) line.move_to(point) lines.add(line) lines.shuffle() self.add(lines, dots, rotation_label) self.play( ShowCreation(lines, lag_ratio=0.5, run_time=3) ) self.wait() self.rects.suspend_updating() for rect in self.rects: self.play( rect.set_opacity, 0, rate_func=there_and_back, run_time=2 ) self.rects.resume_updating() self.wait() pivot_tracker = VectorizedPoint(windmill.pivot) pivot_tracker.save_state() def update_pivot(w): w.pivot = pivot_tracker.get_center() windmill.add_updater(update_pivot) for x in range(4): point = random.choice(points) self.play( pivot_tracker.move_to, point ) self.wait() self.play(Restore(pivot_tracker)) self.play(FadeOut(lines)) windmill.remove_updater(update_pivot) self.wait() class Rotate180ArgumentFast(Rotate180Argument): CONFIG = { "windmill_rotation_speed": 0.5, } class EvenCase(Rotate180Argument): CONFIG = { "n_points": 10, "dot_config": {"radius": 0.075}, } def construct(self): self.ask_about_even_number() self.choose_halfway_point() self.add_total_rotation_label() self.rotate_180() self.rotate_180() self.show_parallel_lines() self.rotate_180() self.rotate_180() def ask_about_even_number(self): n = self.n_points points = self.get_random_point_set(n) points[:, 0] *= 2 points += DOWN points = sorted(points, key=lambda p: p[0]) dots = self.get_dots(points) windmill = self.get_windmill(points, points[3]) region_rects = self.rects = self.get_left_right_colorings(windmill) pivot_dot = self.get_pivot_dot(windmill) pivot_dot.set_color(WHITE) dot_rects = VGroup(*map(SurroundingRectangle, dots)) question = TexText("What about an even number?") # question.to_corner(UL) question.to_edge(UP) counter_label = TexText("\\# Points", ":") counter = Integer(0) counter_group = VGroup(counter_label, counter) counter_group.arrange(RIGHT) counter.align_to(counter_label[1], DOWN) counter_group.next_to(question, DOWN, MED_LARGE_BUFF) counter_group.set_color(YELLOW) # counter_group.align_to(question, LEFT) self.add(question, counter_label) self.add(windmill, dots, pivot_dot) self.add_dot_color_updater(dots, windmill) self.add(region_rects, question, counter_group, windmill, dots, pivot_dot) self.play( ShowIncreasingSubsets(dot_rects), ChangingDecimal(counter, lambda a: len(dot_rects)), rate_func=linear ) self.play(FadeOut(dot_rects)) self.wait() # region_rects.suspend_updating() # self.play( # FadeIn(region_rects), # FadeOut(dot_rects), # ) # region_rects.resume_updating() # self.wait() # Count by color blue_rects = dot_rects[:3] blue_rects.set_color(BLUE) brown_rects = dot_rects[4:] brown_rects.set_color(GREY_BROWN) pivot_rect = dot_rects[3] pivot_rect.set_color(GREY_BROWN) blues_label = TexText("\\# Blues", ":") blues_counter = Integer(len(blue_rects)) blues_group = VGroup(blues_label, blues_counter) blues_group.set_color(BLUE) browns_label = TexText("\\# Browns", ":") browns_counter = Integer(len(brown_rects)) browns_group = VGroup(browns_label, browns_counter) browns_group.set_color(interpolate_color(GREY_BROWN, WHITE, 0.5)) groups = VGroup(blues_group, browns_group) for group in groups: group.arrange(RIGHT) group[-1].align_to(group[0][-1], DOWN) groups.arrange(DOWN, aligned_edge=LEFT) groups.next_to(counter_group, DOWN, aligned_edge=LEFT) self.play( FadeIn(blues_group, UP), ShowCreation(blue_rects), ) self.play( FadeIn(browns_group, UP), ShowCreation(brown_rects), ) self.wait() # Pivot counts as brown pivot_words = TexText("Pivot counts as brown") arrow = Vector(LEFT) arrow.next_to(pivot_dot, RIGHT, SMALL_BUFF) pivot_words.next_to(arrow, RIGHT, SMALL_BUFF) self.play( FadeIn(pivot_words, LEFT), ShowCreation(arrow), ) self.play( ShowCreation(pivot_rect), ChangeDecimalToValue(browns_counter, len(brown_rects) + 1), FadeOut(pivot_dot), ) self.wait() self.play( FadeOut(dot_rects), FadeOut(pivot_words), FadeOut(arrow), ) self.wait() blues_counter.add_updater( lambda c: c.set_value(len(list(filter( lambda d: d.get_fill_color() == Color(BLUE), dots )))) ) browns_counter.add_updater( lambda c: c.set_value(len(list(filter( lambda d: d.get_fill_color() == Color(GREY_BROWN), dots )))) ) self.windmill = windmill self.dots = dots self.points = points self.question = question self.counter_group = VGroup( counter_group, blues_group, browns_group, ) def choose_halfway_point(self): windmill = self.windmill points = self.points n = self.n_points p_label = Tex("P_0") p_label.next_to(points[n // 2], RIGHT, SMALL_BUFF) pivot_tracker = VectorizedPoint(windmill.pivot) def update_pivot(w): w.pivot = pivot_tracker.get_center() windmill.add_updater(update_pivot) self.play( pivot_tracker.move_to, points[n // 2], run_time=2 ) self.play(FadeIn(p_label, LEFT)) self.wait() windmill.remove_updater(update_pivot) def add_total_rotation_label(self): super().add_total_rotation_label() self.rotation_label.scale(0.8, about_edge=UL) self.play( FadeOut(self.question), FadeIn(self.rotation_label), self.counter_group.to_edge, UP, ) class TwoTakeaways(TeacherStudentsScene): def construct(self): title = TexText("Two takeaways") title.scale(2) title.to_edge(UP) line = Line() line.match_width(title) line.next_to(title, DOWN, SMALL_BUFF) items = VGroup(*[ TexText("1) Social"), TexText("2) Mathematical"), ]) items.scale(1.5) items.arrange(DOWN, buff=MED_LARGE_BUFF, aligned_edge=LEFT) items.next_to(line, DOWN, buff=MED_LARGE_BUFF) self.play( ShowCreation(line), GrowFromPoint(title, self.hold_up_spot), self.teacher.change, "raise_right_hand", ) self.change_all_student_modes("pondering") self.wait() for item in items: self.play(FadeIn(item, LEFT)) item.big = item.copy() item.small = item.copy() item.big.scale(1.5, about_edge=LEFT) item.big.set_color(BLUE) item.small.scale(0.75, about_edge=LEFT) item.small.fade(0.5) self.play(self.teacher.change, "happy") self.wait() for i, j in [(0, 1), (1, 0)]: self.play( items[i].become, items[i].big, items[j].become, items[j].small, ) self.wait() class EasyToFoolYourself(PiCreatureScene): CONFIG = { "default_pi_creature_kwargs": { "color": GREY_BROWN, } } def construct(self): morty = self.pi_creature morty.to_corner(DL) bubble = ThoughtBubble() for i, part in enumerate(bubble): part.shift(2 * i * SMALL_BUFF * DOWN) bubble.pin_to(morty) fool_word = TexText("Fool") fool_word.scale(1.5) fool_arrow = Vector(LEFT) fool_arrow.next_to(morty, RIGHT, buff=0) fool_word.next_to(fool_arrow, RIGHT) self.add(morty) self.play( ShowCreation(bubble), morty.change, "pondering", ) self.play( bubble[3].set_fill, GREEN_SCREEN, 0.5, ) self.wait() self.play(morty.change, "thinking") self.play( FadeIn(fool_word, LEFT), ShowCreation(fool_arrow), ) self.wait() self.pi_creature_says( "Isn't it\\\\obvious?", target_mode="maybe", added_anims=[FadeOut(bubble)] ) self.wait(4) # words = TexText("No it's not!") words.scale(1.5) words.set_color(RED) words.next_to(morty.bubble, RIGHT, LARGE_BUFF) words.match_y(morty.bubble.content) self.play( FadeInFromLarge(words), morty.change, "guilty", ) self.wait() # for i, part in enumerate(bubble): # self.add(Integer(i).move_to(part)) class FailureToEmpathize(PiCreatureScene): def construct(self): randy, morty = self.pi_creatures # What a mess... big_bubble = ThoughtBubble(height=4, width=5) big_bubble.scale(1.75) big_bubble.flip(UR) for part in big_bubble: part.rotate(90 * DEGREES) big_bubble[:3].rotate(-30 * DEGREES) for i, part in enumerate(big_bubble[:3]): part.rotate(30 * DEGREES) part.shift((3 - i) * SMALL_BUFF * DOWN) big_bubble[0].shift(MED_SMALL_BUFF * RIGHT) big_bubble[:3].next_to(big_bubble[3], LEFT) big_bubble[:3].shift(0.3 * DOWN) big_bubble.set_fill(GREY_E) big_bubble.to_corner(UR) equation = Tex( "\\sum_{k=1}^n (2k - 1) = n^2" ) self.pi_creature_thinks( randy, equation, target_mode="confused", look_at_arg=equation, ) randy_group = VGroup( randy, randy.bubble, randy.bubble.content ) self.wait() self.play( DrawBorderThenFill(big_bubble), morty.change, "confused", randy_group.scale, 0.5, randy_group.move_to, big_bubble.get_bubble_center(), randy_group.shift, 0.5 * DOWN + RIGHT, ) self.wait() self.play(morty.change, "maybe") self.wait(2) # Zoom out morty_group = VGroup(morty, big_bubble) ap = 5 * RIGHT + 2.5 * UP self.add(morty_group, randy_group) self.play( morty_group.scale, 2, {"about_point": ap}, morty_group.fade, 1, randy_group.scale, 2, {"about_point": ap}, run_time=2 ) self.wait() def create_pi_creatures(self): randy = Randolph() morty = Mortimer() randy.flip().to_corner(DR) morty.flip().to_corner(DL) return (randy, morty) class DifficultyEstimateVsReality(Scene): def construct(self): axes = Axes( x_min=-1, x_max=10, x_axis_config={ "include_tip": False, }, y_min=-1, y_max=5, ) axes.set_height(FRAME_HEIGHT - 1) axes.center() axes.x_axis.tick_marks.set_opacity(0) y_label = TexText("Average score") y_label.scale(1.25) y_label.rotate(90 * DEGREES) y_label.next_to(axes.y_axis, LEFT, SMALL_BUFF) y_label.shift(UP) estimated = [1.8, 2.6, 3, 4, 5] actual = [1.5, 0.5, 1, 1.2, 1.8] colors = [GREEN, RED] estimated_color, actual_color = colors estimated_bars = VGroup() actual_bars = VGroup() bar_pairs = VGroup() width = 0.25 for a, e in zip(actual, estimated): bars = VGroup( Rectangle(width=width, height=e), Rectangle(width=width, height=a), ) bars.set_stroke(width=1) bars[0].set_fill(estimated_color, 0.75) bars[1].set_fill(actual_color, 0.75) bars.arrange(RIGHT, buff=0, aligned_edge=DOWN) bar_pairs.add(bars) estimated_bars.add(bars[0]) actual_bars.add(bars[1]) bar_pairs.arrange(RIGHT, buff=1.5, aligned_edge=DOWN) bar_pairs.move_to(axes.c2p(5, 0), DOWN) for bp in bar_pairs: for bar in bp: bar.save_state() bar.stretch(0, 1, about_edge=DOWN) x_labels = VGroup(*[ TexText("Q{}".format(i)).next_to(bp, DOWN) for i, bp in zip(it.count(1), bar_pairs) ]) data_labels = VGroup( TexText("Estimated average"), TexText("Actual average"), ) data_labels.arrange(DOWN, buff=MED_LARGE_BUFF, aligned_edge=LEFT) data_labels.to_edge(UP) for color, label in zip(colors, data_labels): square = Square() square.set_height(0.5) square.set_fill(color, 0.75) square.set_stroke(WHITE, 1) square.next_to(label, LEFT, SMALL_BUFF) label.add(square) self.play(Write(axes)) self.play(Write(y_label)) self.play( LaggedStartMap( FadeInFrom, x_labels, lambda m: (m, UP), run_time=2, ), LaggedStartMap( Restore, estimated_bars, run_time=3, ), FadeIn(data_labels[0]), ) self.wait() self.play( LaggedStartMap( Restore, actual_bars, run_time=3, ), FadeIn(data_labels[1]), ) self.wait() class KeepInMindWhenTeaching(TeacherStudentsScene): def construct(self): self.teacher_says( "I don't know\\\\what you know!", target_mode="pleading" ) self.wait(2) self.play( PiCreatureSays( self.students[0], "We know", target_mode="hooray", ), self.students[1].change, "happy", self.students[2].change, "happy", ) self.wait(2) class VastSpaceOfConsiderations(Scene): def construct(self): considerations = VGroup(*[ TexText(phrase) for phrase in [ "Define ``outer'' points", "Convex hulls", "Linear equations", "Sort points by when they're hit", "Sort points by some kind of angle?", "How does this permute the $n \\choose 2$ lines through pairs?", "Some points are hit more than others, can we quantify this?", ] ]) considerations.arrange(DOWN, buff=MED_LARGE_BUFF, aligned_edge=LEFT) considerations.to_edge(LEFT) self.play(LaggedStart(*[ FadeIn(mob, UP) for mob in considerations ], run_time=3, lag_ratio=0.2)) class WhatStaysConstantWrapper(Scene): CONFIG = { "camera_config": { "background_color": GREY_E } } def construct(self): rect = ScreenRectangle() rect.set_height(6) rect.set_stroke(WHITE, 2) rect.set_fill(BLACK, 1) title1 = TexText("What stays constant?") title2 = TexText("Find an ", "``invariant''") title2[1].set_color(YELLOW) for title in [title1, title2]: title.scale(2) title.to_edge(UP) rect.next_to(title1, DOWN) self.add(rect) self.play(FadeInFromDown(title1)) self.wait() self.play( FadeOut(title1, UP), FadeInFromDown(title2), ) self.wait() class CountHoles(Scene): def construct(self): labels = VGroup( TexText("Genus ", "0"), TexText("Genus ", "1"), TexText("Genus ", "2"), ) labels.scale(2) labels.arrange(RIGHT, buff=1.5) labels.move_to(2 * DOWN) equation = Tex("y^2 = x^3 + ax + b") equation.scale(1.5) equation.shift(UP) equation.to_edge(LEFT) # arrow = Tex("\\approx").scale(2) arrow = Vector(2 * RIGHT) arrow.next_to(equation, RIGHT) equation_text = TexText("Some other problem") equation_text.next_to(equation, DOWN, MED_LARGE_BUFF) equation_text.match_width(equation) equation_text.set_color(YELLOW) self.play(LaggedStartMap( FadeInFromDown, labels, lag_ratio=0.5, )) self.wait() self.play( labels[1].shift, 4 * RIGHT, FadeOut(labels[0::2]), ) self.play( FadeIn(equation, RIGHT), GrowArrow(arrow), ) self.play(FadeIn(equation_text, UP)) self.wait() class LorenzTransform(Scene): def construct(self): grid = NumberPlane( # faded_line_ratio=0, # y_axis_config={ # "y_min": -10, # "y_max": 10, # } ) grid.scale(2) back_grid = grid.copy() back_grid.set_stroke(GREY, 0.5) # back_grid.set_opacity(0.5) c_lines = VGroup(Line(DL, UR), Line(DR, UL)) c_lines.scale(FRAME_HEIGHT) c_lines.set_stroke(YELLOW, 3) equation = Tex( "d\\tau^2 = dt^2 - dx^2" ) equation.scale(1.7) equation.to_corner(UL, buff=MED_SMALL_BUFF) equation.shift(2.75 * DOWN) equation.set_stroke(BLACK, 5, background=True) self.add(back_grid, grid, c_lines) self.add(equation) beta = 0.4 self.play( grid.apply_matrix, np.array([ [1, beta], [beta, 1], ]) / (1 - beta**2), run_time=2 ) self.wait() class OnceACleverDiscovery(Scene): def construct(self): energy = TexText("energy") rect = SurroundingRectangle(energy) words = TexText("Once a clever discovery") vect = Vector(DR) vect.next_to(rect.get_top(), UL, SMALL_BUFF) words.next_to(vect.get_start(), UP) words.set_color(YELLOW) vect.set_color(YELLOW) self.play( ShowCreation(vect), ShowCreation(rect), ) self.play(FadeInFromDown(words)) self.wait() class TerryTaoQuote(Scene): def construct(self): image = ImageMobject("TerryTao") image.set_height(4) name = TexText("Terence Tao") name.scale(1.5) name.next_to(image, DOWN, buff=0.2) tao = Group(image, name) tao.to_corner(DL, buff=MED_SMALL_BUFF) tiny_tao = ImageMobject("TerryTaoIMO") tiny_tao.match_height(image) tiny_tao.next_to(image, RIGHT, LARGE_BUFF) quote = self.get_quote() self.play( FadeInFromDown(image), Write(name), ) self.wait() self.play( FadeIn(tiny_tao, LEFT) ) self.wait() self.play(FadeOut(tiny_tao)) # self.play( FadeIn( quote, lag_ratio=0.05, run_time=5, rate_func=bezier([0, 0, 1, 1]) ) ) self.wait() story_line = Line() story_line.match_width(quote.story_part) story_line.next_to(quote.story_part, DOWN, buff=0) story_line.set_color(TEAL), self.play( quote.story_part.set_color, TEAL, ShowCreation(story_line), lag_ratio=0.2, ) self.wait() def get_quote(self): story_words = "fables, stories, and anecdotes" quote = TexText( """ \\Large ``Mathematical problems, or puzzles, are important to real mathematics (like solving real-life problems), just as fables, stories, and anecdotes are important to the young in understanding real life.''\\\\ """, alignment="", arg_separator=" ", isolate=[story_words] ) quote.story_part = quote.get_part_by_tex(story_words) quote.set_width(FRAME_WIDTH - 2.5) quote.to_edge(UP) return quote class WindmillFairyTale(Scene): def construct(self): paths = SVGMobject(file_name="windmill_fairytale") paths.set_height(FRAME_HEIGHT - 1) paths.set_stroke(width=0) paths.set_fill([GREY_B, WHITE]) for path in paths: path.reverse_points() self.play(Write(paths[0], run_time=3)) self.wait() self.play( LaggedStart( FadeIn(paths[1], RIGHT), FadeIn(paths[2], RIGHT), lag_ratio=0.2, run_time=3, ) ) class SolveAProblemOneDay(SpiritOfIMO, PiCreatureScene): def construct(self): randy = self.pi_creature light_bulb = Lightbulb() light_bulb.base = light_bulb[:3] light_bulb.light = light_bulb[3:] light_bulb.set_height(1) light_bulb.next_to(randy, UP, MED_LARGE_BUFF) light = self.get_light(light_bulb.get_center()) bubble = ThoughtBubble() bubble.pin_to(randy) you = TexText("You") you.scale(1.5) arrow = Vector(LEFT) arrow.next_to(randy, RIGHT) you.next_to(arrow) self.play( ShowCreation(bubble), randy.change, "pondering", ) self.play( FadeIn(you, LEFT), GrowArrow(arrow) ) self.wait(2) self.play( FadeInFromDown(light_bulb), randy.change, "hooray", ) self.play( LaggedStartMap( VFadeInThenOut, light, run_time=2 ), randy.change, "thinking", light, ) self.wait(2) class QuixoteReference(Scene): def construct(self): rect = FullScreenFadeRectangle() rect.set_fill([GREY_D, GREY]) windmill = SVGMobject("windmill") windmill.set_fill([GREY_BROWN, WHITE], 1) windmill.set_stroke(width=0) windmill.set_height(6) windmill.to_edge(RIGHT) # windmill.to_edge(DOWN, buff=0) quixote = SVGMobject("quixote") quixote.flip() quixote.set_height(4) quixote.to_edge(LEFT) quixote.set_stroke(BLACK, width=0) quixote.set_fill(BLACK, 1) quixote.align_to(windmill, DOWN) self.add(rect) # self.add(windmill) self.play(LaggedStart( DrawBorderThenFill(windmill), DrawBorderThenFill( quixote, stroke_width=1, ), lag_ratio=0.4, run_time=3 )) self.wait() class WindmillEndScreen(PatreonEndScreen): CONFIG = { "specific_patrons": [ "Juan Benet", "Kurt Dicus", "Vassili Philippov", "Davie Willimoto", "Burt Humburg", "Hardik Meisheri", "L. Z.", "Matt Russell", "Scott Gray", "soekul", "Tihan Seale", "D. Sivakumar", "Richard Barthel", "Ali Yahya", "Arthur Zey", "dave nicponski", "Joseph Kelly", "Kaustuv DeBiswas", "kkm", "Lambda AI Hardware", "Lukas Biewald", "Mark Heising", "Nicholas Cahill", "Peter Mcinerney", "Quantopian", "Roy Larson", "Scott Walter, Ph.D.", "Tauba Auerbach", "Yana Chernobilsky", "Yu Jun", "Jordan Scales", "Lukas -krtek.net- Novy", "Britt Selvitelle", "David Gow", "J", "Jonathan Wilson", "Joseph John Cox", "Magnus Dahlström", "Randy C. Will", "Ryan Atallah", "Luc Ritchie", "1stViewMaths", "Adrian Robinson", "Aidan Shenkman", "Alex Mijalis", "Alexis Olson", "Andreas Benjamin Brössel", "Andrew Busey", "Ankalagon", "Antoine Bruguier", "Antonio Juarez", "Arjun Chakroborty", "Art Ianuzzi", "Austin Goodman", "Awoo", "Ayan Doss", "AZsorcerer", "Barry Fam", "Bernd Sing", "Boris Veselinovich", "Bradley Pirtle", "Brian Staroselsky", "Charles Southerland", "Charlie N", "Chris Connett", "Christian Kaiser", "Clark Gaebel", "Cooper Jones", "Danger Dai", "Daniel Pang", "Dave B", "Dave Kester", "David B. Hill", "David Clark", "DeathByShrimp", "Delton Ding", "Dheeraj Vepakomma", "eaglle", "Empirasign", "emptymachine", "Eric Younge", "Ero Carrera", "Eryq Ouithaqueue", "Federico Lebron", "Fernando Via Canel", "Gero Bone-Winkel", "Giovanni Filippi", "Hal Hildebrand", "Hitoshi Yamauchi", "Isaac Jeffrey Lee", "Ivan Sorokin", "j eduardo perez", "Jacob Harmon", "Jacob Hartmann", "Jacob Magnuson", "Jameel Syed", "Jason Hise", "Jeff Linse", "Jeff Straathof", "John C. Vesey", "John Griffith", "John Haley", "John V Wertheim", "Jonathan Eppele", "Jordan A Purcell", "Josh Kinnear", "Joshua Claeys", "Kai-Siang Ang", "Kanan Gill", "Kartik Cating-Subramanian", "L0j1k", "Lee Redden", "Linh Tran", "Ludwig Schubert", "Magister Mugit", "Mark B Bahu", "Martin Price", "Mathias Jansson", "Matt Langford", "Matt Roveto", "Matthew Bouchard", "Matthew Cocke", "Michael Faust", "Michael Hardel", "Mirik Gogri", "Mustafa Mahdi", "Márton Vaitkus", "Nero Li", "Nikita Lesnikov", "Omar Zrien", "Owen Campbell-Moore", "Patrick Lucas", "Peter Ehrnstrom", "RedAgent14", "rehmi post", "Ripta Pasay", "Rish Kundalia", "Roman Sergeychik", "Roobie", "Ryan Williams", "Sebastian Garcia", "Solara570", "Steven Siddals", "Stevie Metke", "Tal Einav", "Ted Suzman", "Thomas Tarler", "Tianyu Ge", "Tom Fleming", "Tyler VanValkenburg", "Valeriy Skobelev", "Vinicius Reis", "Xuanji Li", "Yavor Ivanov", "YinYangBalance.Asia", "Zach Cardwell", ], } class Thumbnail(WindmillScene): CONFIG = { "dot_config": { "radius": 0.15, "stroke_width": 1, }, "random_seed": 7, "animate": False, } def construct(self): points = self.get_random_point_set(11) points[:, 0] *= 1.7 points += 0.5 * LEFT points[1] = ORIGIN points[10] += LEFT points[6] += 3 * RIGHT windmill = self.get_windmill( points, points[1], angle=45 * DEGREES, ) dots = self.get_dots(points) # rects = self.get_left_right_colorings(windmill) pivot_dot = self.get_pivot_dot(windmill) pivot_dot.scale(2) pivot_dot.set_color(WHITE) new_pivot = points[5] new_pivot2 = points[3] flash = Flash(pivot_dot, flash_radius=0.5) wa = windmill.get_angle() arcs = VGroup(*[ Arc( start_angle=wa + a, angle=90 * DEGREES, radius=1.5, stroke_width=10, ).add_tip(tip_length=0.7) for a in [0, PI] ]) arcs.move_to(windmill.pivot) arcs.set_color([GREY_B, WHITE]) polygon1 = Polygon( (FRAME_HEIGHT * UP + FRAME_WIDTH * LEFT) / 2, (FRAME_HEIGHT * UP + FRAME_HEIGHT * RIGHT) / 2, (FRAME_HEIGHT * DOWN + FRAME_HEIGHT * LEFT) / 2, (FRAME_HEIGHT * DOWN + FRAME_WIDTH * LEFT) / 2, ) polygon1.set_color([BLUE, GREY_E]) polygon1.set_fill(opacity=0.5) polygon2 = Polygon( (FRAME_HEIGHT * UP + FRAME_WIDTH * RIGHT) / 2, (FRAME_HEIGHT * UP + FRAME_HEIGHT * RIGHT) / 2, (FRAME_HEIGHT * DOWN + FRAME_HEIGHT * LEFT) / 2, (FRAME_HEIGHT * DOWN + FRAME_WIDTH * RIGHT) / 2, ) polygon2.set_sheen_direction(DR) polygon2.set_color([GREY_BROWN, BLACK]) polygon2.set_fill(opacity=1) self.add(polygon1, polygon2) # self.add(rects[0]) self.add(windmill, dots, pivot_dot) self.add(arcs) self.add(flash.mobject) self.add_dot_color_updater(dots, windmill, color2=WHITE) words = TexText("Next\\\\", "pivot") words2 = TexText("Next\\\\", "next\\\\", "pivot", alignment="") words.scale(2) words2.scale(2) # words.next_to(windmill.pivot, RIGHT) words.to_edge(UR) words2.to_corner(DL) arrow = Arrow(words[1].get_left(), new_pivot, buff=0.6) arrow.set_stroke(width=10) arrow.set_color(YELLOW) arrow2 = Arrow(words2[-1].get_right(), new_pivot2, buff=0.6) arrow2.match_style(arrow) arrow.rotate( arrow2.get_angle() + PI - arrow.get_angle(), about_point=new_pivot, ) self.add(words, arrow) self.add(words2, arrow2) # for i, dot in enumerate(dots): # self.add(Integer(i).move_to(dot)) if self.animate: sorted_dots = VGroup(*dots) sorted_dots.sort(lambda p: np.dot(p, DR)) self.play( polygon1.shift, FRAME_WIDTH * LEFT, polygon2.shift, FRAME_WIDTH * RIGHT, LaggedStart(*[ ApplyMethod(mob.scale, 0) for mob in [sorted_dots[6], *flash.mobject, windmill, pivot_dot] ]), LaggedStart(*[ ApplyMethod(dot.to_edge, LEFT, {"buff": -1}) for dot in sorted_dots[:6] ]), LaggedStart(*[ ApplyMethod(dot.to_edge, RIGHT, {"buff": -1}) for dot in sorted_dots[7:] ]), LaggedStart(*[ FadeOut(word, RIGHT) for word in words ]), LaggedStart(*[ FadeOut(word, LEFT) for word in words2 ]), LaggedStartMap( Uncreate, VGroup(arrow, arrow2, *arcs), ), run_time=3, ) class ThumbanailAnimated(Thumbnail): CONFIG = { "animate": True, } class Thumbnail2(Scene): def construct(self): words = TexText("Olympics\\\\", "for\\\\", "math", alignment="") # words.arrange(DOWN, aligned_edge=LEFT) words.set_height(FRAME_HEIGHT - 1.5) words.to_edge(LEFT) logo = ImageMobject("imo_logo") logo.set_height(4.5) logo.to_corner(DR, buff=LARGE_BUFF) rect = FullScreenFadeRectangle() rect.set_fill([GREY, BLACK], 1) self.clear() self.add(rect) self.add(words) self.add(logo)
1fa19d44a1c11b59e3a25c948ed5ac15c23cdb30
8c917dc4810e2dddf7d3902146280a67412c65ea
/v_11/EBS-SVN/trunk/purchase_custom/__manifest__.py
90748a083184db83669186389d9fa5f1e7757874
[]
no_license
musabahmed/baba
d0906e03c1bbd222d3950f521533f3874434b993
0b997095c260d58b026440967fea3a202bef7efb
refs/heads/master
2021-10-09T02:37:32.458269
2018-12-20T06:00:00
2018-12-20T06:00:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,230
py
# -*- coding: utf-8 -*- { 'name': "purchase_custom", 'summary': """ Short (1 phrase/line) summary of the module's purpose, used as subtitle on modules listing or apps.openerp.com""", 'description': """ Long description of module's purpose """, 'author': "My Company", 'website': "http://www.yourcompany.com", # Categories can be used to filter modules in modules listing # Check https://github.com/odoo/odoo/blob/master/odoo/addons/base/module/module_data.xml # for the full list 'category': 'Uncategorized', 'version': '0.1', # any module necessary for this one to work correctly 'depends': ['base','base_custom','purchase','purchase_requisition','hr','account'], # always loaded 'data': [ # 'security/ir.model.access.csv', 'views/views.xml', 'views/templates.xml', 'security/purchase_security.xml', 'wizard/purchase_order_wizard_view.xml', 'report/action_purchase_order_report.xml', 'report/template_purchase_order_report.xml', 'report/purchase_quotation_templates_inherit.xml', ], # only loaded in demonstration mode 'demo': [ 'demo/demo.xml', ], }
b7ac2271f415f595aa5380f77be150c49345beab
f0e25779a563c2d570cbc22687c614565501130a
/Think_Python/ackermann.py
58574bbcd3d3e680558b07a0a04c15c6a2349f44
[]
no_license
XyK0907/for_work
8dcae9026f6f25708c14531a83a6593c77b38296
85f71621c54f6b0029f3a2746f022f89dd7419d9
refs/heads/master
2023-04-25T04:18:44.615982
2021-05-15T12:10:26
2021-05-15T12:10:26
293,845,080
0
0
null
null
null
null
UTF-8
Python
false
false
503
py
"""This module contains code from Think Python by Allen B. Downey http://thinkpython.com Copyright 2012 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ def ackermann(m, n): """Computes the Ackermann function A(m, n) See http://en.wikipedia.org/wiki/Ackermann_function n, m: non-negative integers """ if m == 0: return n+1 if n == 0: return ackermann(m-1, 1) return ackermann(m-1, ackermann(m, n-1)) print(ackermann(100, 101))
bdb9812cf2874f454a6ae0a548efa9589981824c
3528abad46b15133b2108c237f926a1ab252cbd5
/Core/_Axiom/Transport.py
bc2b7d2b4e8787c324fb18ec12fce7581ef3879f
[]
no_license
scottmudge/MPK261_Ableton
20f08234f4eab5ba44fde6e5e745752deb968df2
c2e316b8347367bd157276f143b9f1a9bc2fe92c
refs/heads/master
2020-03-20T10:56:32.421561
2018-06-14T19:12:47
2018-06-14T19:12:47
137,389,086
1
0
null
null
null
null
UTF-8
Python
false
false
3,693
py
# Embedded file name: /Users/versonator/Jenkins/live/output/mac_64_static/Release/python-bundle/MIDI Remote Scripts/_Axiom/Transport.py # Compiled at: 2018-04-23 20:27:04 from __future__ import absolute_import, print_function, unicode_literals import Live from .consts import * class Transport: u""" Class representing the transport section on the Axiom controllers """ def __init__(self, parent): self.__parent = parent self.__ffwd_held = False self.__rwd_held = False self.__delay_counter = 0 def build_midi_map(self, script_handle, midi_map_handle): for cc_no in AXIOM_TRANSPORT: Live.MidiMap.forward_midi_cc(script_handle, midi_map_handle, 15, cc_no) def receive_midi_cc(self, cc_no, cc_value): if cc_no == AXIOM_STOP: if cc_value > 0: self.__parent.song().is_playing = False else: if cc_no == AXIOM_PLAY: if cc_value > 0: self.__parent.song().is_playing = True else: if cc_no == AXIOM_REC: if cc_value > 0: self.__parent.song().record_mode = not self.__parent.song().record_mode else: if self.__parent.application().view.is_view_visible('Session'): if cc_value > 0: self.__cc_in_session(cc_no) else: self.__cc_in_arranger(cc_no, cc_value) def __cc_in_session(self, cc_no): index = list(self.__parent.song().scenes).index(self.__parent.song().view.selected_scene) if cc_no == AXIOM_LOOP: self.__parent.song().view.selected_scene.fire_as_selected() else: if cc_no == AXIOM_RWD: if index > 0: index = index - 1 self.__parent.song().view.selected_scene = self.__parent.song().scenes[index] else: if cc_no == AXIOM_FFWD: if index < len(self.__parent.song().scenes) - 1: index = index + 1 self.__parent.song().view.selected_scene = self.__parent.song().scenes[index] def __cc_in_arranger(self, cc_no, cc_value): if cc_no == AXIOM_LOOP: if cc_value > 0: self.__parent.song().loop = not self.__parent.song().loop else: if cc_no == AXIOM_RWD: if not self.__ffwd_held: if cc_value > 0: self.__rwd_held = True self.__delay_counter = 0 self.__parent.song().jump_by(-1 * self.__parent.song().signature_denominator) else: self.__rwd_held = False else: if cc_no == AXIOM_FFWD: if not self.__rwd_held: if cc_value > 0: self.__ffwd_held = True self.__delay_counter = 0 self.__parent.song().jump_by(self.__parent.song().signature_denominator) else: self.__ffwd_held = False def refresh_state(self): if self.__ffwd_held: self.__delay_counter += 1 if self.__delay_counter % 5 == 0: self.__parent.song().jump_by(self.__parent.song().signature_denominator) if self.__rwd_held: self.__delay_counter += 1 if self.__delay_counter % 5 == 0: self.__parent.song().jump_by(-1 * self.__parent.song().signature_denominator)
d9e0bc511e4e2824de47b2ed8a38c4a528b2ad2b
1333a965058e926649652ea55154bd73b6f05edd
/4_advanced/ai-py-param-validation/src/paramvalidator/exceptions/validation_exception.py
594afb62d07c15d96b2052c9d63a8accbf4eb5fb
[ "MIT", "LicenseRef-scancode-generic-cla" ]
permissive
grecoe/teals
42ebf114388b9f3f1580a41d5d03da39eb083082
ea00bab4e90d3f71e3ec2d202ce596abcf006f37
refs/heads/main
2021-06-21T20:12:03.108427
2021-05-10T19:34:40
2021-05-10T19:34:40
223,172,099
0
2
null
null
null
null
UTF-8
Python
false
false
269
py
""" (c) Microsoft. All rights reserved. """ class ParameterValidationException(Exception): """ Base exception for parameter validation """ def __init__(self, message): self.message = message def __str__(self): return self.message
a7be7d0c99595985e6a9bcda3ec4af33a03ae376
18057e01c81dc792a73a2e0bd1a4e037de8fefcb
/kaohantei/ninsiki.py
606ec732585a18eb525347fe8015002c5d6950de
[]
no_license
kentahoriuchi/Kenta
15e80018f5c14e1409ac13a7a52c4f64acdce938
97bb657a37f0d89525b04f9157a223b47664793e
refs/heads/master
2020-03-22T14:21:30.221093
2018-07-08T14:22:15
2018-07-08T14:22:15
140,173,191
0
0
null
null
null
null
UTF-8
Python
false
false
1,025
py
from keras.models import load_model from keras.utils.np_utils import to_categorical from keras.optimizers import Adagrad from keras.optimizers import Adam import numpy as np import cv2 import sys dir = "face.jpeg" img = cv2.imread(sys.argv[1]) filepath = "sys.argv[1]" cascade_path = "haarcascade_frontalface_default.xml" cascade = cv2.CascadeClassifier(cascade_path) image_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) facerect = cascade.detectMultiScale(image_gray, scaleFactor=1.1, minNeighbors=10, minSize=(30, 30)) for rect in facerect: x = rect[0] y = rect[1] width = rect[2] height = rect[3] dst = img[y:y+height, x:x+width] image = cv2.resize(dst, (100, 100)) image = image.transpose(2, 0, 1) model = load_model('gazou.h5') opt = Adam(0.0001) model.compile(loss="categorical_crossentropy", optimizer=opt, metrics=["accuracy"]) result = model.predict_classes(np.array([image/255.])) if result[0] == 0: print("he may be man1") elif result[0] == 1: print("he may be man2")
b7721870d8d7c53ef25f4eb6c25ca932b7aa76e7
10d8fab4b21d55cfef0139c04a7f70881f5196f4
/Stack/simplify-directory-path-unix-like.py
db6af1a41488710662509a134bcd9f11f7e8172a
[]
no_license
wilfredarin/geeksforgeeks
a2afcfd2c64be682b836019407e557332d629ab8
5e27cb6706e0ae507694c2170fa00370f219c3e6
refs/heads/master
2021-08-07T05:48:39.426686
2020-08-19T07:25:19
2020-08-19T07:25:19
212,023,179
0
1
null
null
null
null
UTF-8
Python
false
false
2,284
py
"""Simplify the directory path (Unix like) Given an absolute path for a file (Unix-style), simplify it. Note that absolute path always begin with ‘/’ ( root directory ), a dot in path represent current directory and double dot represents parent directory. Examples: "/a/./" --> means stay at the current directory 'a' "/a/b/.." --> means jump to the parent directory from 'b' to 'a' "////" --> consecutive multiple '/' are a valid path, they are equivalent to single "/". Input : /home/ Output : /home Input : /a/./b/../../c/ Output : /c Input : /a/.. Output:/ Input : /a/../ Output : / Input : /../../../../../a Output : /a Input : /a/./b/./c/./d/ Output : /a/b/c/d Input : /a/../.././../../. Output:/ Input : /a//b//c//////d Output : /a/b/c/d By looking at examples we can see that the above simplification process just behaves like a stack. Whenever we encounter any file’s name, we simply push it into the stack. when we come across ” . ” we do nothing. When we find “..” in our path, we simply pop the topmost element as we have to jump back to parent’s directory. When we see multiple “////” we just ignore them as they are equivalent to one single “/”. After iterating through the whole string the elements remaining in the stack is our simplified absolute path. We have to create another stack to reverse the elements stored inside the original stack and then store the result inside a string. """ def simplifyPath(self, A): stack = [] dir = "" res = "" res+="/" n = len(A) i = 0 while i<n: #new comand dir_str = "" while i<n and A[i]=="/": i+=1 while i<n and A[i]!="/": dir_str+=A[i] i+=1 if dir_str==".." : if stack: stack.pop() elif dir_str==".": continue elif dir_str: stack.append(dir_str) i+=1 stack.reverse() while stack: temp = stack[-1] if len(stack)!=1: res+=temp+"/" else: res+=temp stack.pop() return res
5dbea0ee8b5ef1ca38d84fa1aaf715f0c794feb4
d89581e043a154a56de69f419f9e7c2f67cf4ff2
/Apps/Engines/Nuke/NukeTools_1.01/Python/minorVersionUp.py
214d1a6323b578537a59a33a18fc91be3ffd8409
[ "MIT" ]
permissive
yazici/CyclopsVFX-Unity
38b121333d5a5a610cf58489822c6f20f825be11
6ab9ab122b6c3e6200e90d49a0c2bf774e53d985
refs/heads/master
2020-04-29T15:05:04.942646
2017-11-21T17:16:45
2017-11-21T17:16:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,921
py
#The MIT License (MIT) # #Copyright (c) 2015 Geoffroy Givry # #Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is #furnished to do so, subject to the following conditions: # #The above copyright notice and this permission notice shall be included in all #copies or substantial portions of the Software. # #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR #IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, #FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE #AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER #LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, #OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE #SOFTWARE. import nuke import os geoffPath = os.getenv("SHOW_PATH") task = os.getenv('TASK') def minorVersionUp(): if not nuke.root()['name'].value() == "": version = int(nuke.root()['name'].value().split('/')[-1].split('v')[1].split('_')[0]) take = int(nuke.root()['name'].value().split('/')[-1].split('v')[1].split('_')[1].split('.')[0]) shot = os.environ['SHOT'] job = os.environ['JOB'] baseFile = nuke.root()['name'].value().split('/')[-1].split('v')[0] baseFile0 = '%s/%s/%s/TASKS/%s/Work/Nuke/' % (geoffPath, job, shot, task) takeUp = take + 1 newFile = baseFile0 + '%sv%03d_%02d.nk' % (baseFile, version, takeUp) nuke.scriptSaveAs(newFile,0) else: nuke.message('please choose a script to save first') pass
975050352947450358340060f69ced694a7463e3
143eb3ced0ff1f9cad745c620fcb572f72d66048
/Assignment4/atom3/Kernel/GenericGraph/models/test_GenericGraph_mdl.py
fd96c32e3307d5950cd3b3ee0c3afc1ddfd9c6c7
[]
no_license
pombreda/comp304
2c283c60ffd7810a1d50b69cab1d5c338563376d
d900f58f0ddc1891831b298d9b37fbe98193719d
refs/heads/master
2020-12-11T07:26:19.594752
2014-11-07T12:29:28
2014-11-07T12:29:28
35,264,549
1
1
null
2015-05-08T07:18:18
2015-05-08T07:18:18
null
UTF-8
Python
false
false
1,825
py
from graph_ASG_ERmetaMetaModel import * from stickylink import * from widthXfillXdecoration import * from ASG_GenericGraph import * from ASG_GenericGraph import * from GenericGraphNode import * from GenericGraphEdge import * from ATOM3Enum import * from ATOM3String import * from ATOM3BottomType import * from ATOM3Constraint import * from ATOM3Attribute import * from ATOM3Float import * from ATOM3List import * from ATOM3Link import * from ATOM3Connection import * from ATOM3Boolean import * from ATOM3Appearance import * from ATOM3Text import * from ATOM3Integer import * from ATOM3Port import * from ATOM3MSEnum import * def test_GenericGraph_mdl(self, rootNode): self.globalPrecondition( rootNode ) self.obj52=GenericGraphNode(self) self.obj52.graphClass_= graph_GenericGraphNode if self.genGraphics: from graph_GenericGraphNode import * new_obj = graph_GenericGraphNode(182.0,111.0,self.obj52) new_obj.DrawObject(self.UMLmodel) self.UMLmodel.addtag_withtag("GenericGraphNode", new_obj.tag) else: new_obj = None self.obj52.graphObject_ = new_obj rootNode.addNode(self.obj52) self.globalAndLocalPostcondition(self.obj52, rootNode) self.globalPrecondition( rootNode ) self.obj56=GenericGraphEdge(self) self.obj56.graphClass_= graph_GenericGraphEdge if self.genGraphics: from graph_GenericGraphEdge import * new_obj = graph_GenericGraphEdge(249.0,218.0,self.obj56) new_obj.DrawObject(self.UMLmodel) self.UMLmodel.addtag_withtag("GenericGraphEdge", new_obj.tag) else: new_obj = None self.obj56.graphObject_ = new_obj rootNode.addNode(self.obj56) self.globalAndLocalPostcondition(self.obj56, rootNode) self.drawConnections( ) newfunction = test_GenericGraph_mdl loadedMMName = 'GenericGraph'
65b3e12a7a4232da82a51c7d4fddf642b3b3700e
2df82b931c89ac70d49b0716d642d8e355926d50
/product/urls.py
87647f6494c6266c870dd2feb79bc260185026f8
[]
no_license
khanansha/producthunt
1a638104e83803b9afc4a51ff3ead438ae47cab6
03b8d45091c88a2ff142f0a3082910ac1fa0ba41
refs/heads/master
2021-05-26T03:21:35.246011
2020-04-08T08:41:17
2020-04-08T08:41:17
254,031,608
0
0
null
null
null
null
UTF-8
Python
false
false
258
py
from django.urls import path, include from . import views urlpatterns = [ path('create', views.create, name='create'), path('<int:product_id>', views.detail, name='detail'), path('<int:product_id>/upvote', views.upvote, name='upvote'), ]
b98dfa1240d8bb0330bd47a98fbbe848f5c6744d
e9ef3cd143478660d098668a10e67544a42b5878
/Lib/corpuscrawler/crawl_kjh.py
ed7f0805140a95e20c6d09212308da8737fd583b
[ "Apache-2.0" ]
permissive
google/corpuscrawler
a5c790c19b26e6397b768ce26cf12bbcb641eb90
10adaecf4ed5a7d0557c8e692c186023746eb001
refs/heads/master
2023-08-26T04:15:59.036883
2022-04-20T08:18:11
2022-04-20T08:18:11
102,909,145
119
40
NOASSERTION
2022-04-20T08:18:12
2017-09-08T22:21:03
Python
UTF-8
Python
false
false
809
py
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, print_function, unicode_literals from corpuscrawler.util import crawl_bibleis def crawl(crawler): out = crawler.get_output(language='kjh') crawl_bibleis(crawler, out, bible='KJHIBT')
7f33ebf6e4c0e218d49274dab77575fbad6f4e72
b3638a57ff986c9af7281f057bd4cb5641c11589
/백준/210803_최단경로/11404플로이드.py
e3904cdf037eb2b00770b01adef797ef64f2da63
[]
no_license
commGom/pythonStudy
6adc01faddbe3ef88e0cbab9da174caa77857ff7
a5d52e66dfd0b3b7538454ca2b6fcd9665f83e6c
refs/heads/main
2023-08-25T12:21:27.670495
2021-10-04T08:19:42
2021-10-04T08:19:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,119
py
# 5 # 14 # 1 2 2 # 1 3 3 # 1 4 1 # 1 5 10 # 2 4 2 # 3 4 1 # 3 5 1 # 4 5 3 # 3 5 10 # 3 1 8 # 1 4 2 # 5 1 7 # 3 4 2 # 5 2 4 import sys input=sys.stdin.readline # 도시의 갯수 N, 버스의 갯수 M N=int(input()) M=int(input()) # 버스의 도착도시, 드는 비용 값을 저장할 graph #버스의 출발도시 도착도시 드는비용 순으로 값을 M번 받는다 graph=[[0 for col in range(N+1)] for row in range(N+1)] for _ in range(M): start,arrive,cost=map(int,input().split()) if graph[start][arrive]==0 or graph[start][arrive]>cost: graph[start][arrive]=cost # print(graph) for k in range(1,N+1): for i in range(1,N+1): for j in range(1,N+1): if i==j or i==k or j==k:continue if graph[i][k]>0 and graph[k][j]>0: if graph[i][j]==0: graph[i][j]=graph[i][k]+graph[k][j] else: graph[i][j]=min(graph[i][j],graph[i][k]+graph[k][j]) # print(graph) for i in range(1,len(graph)): for j in range(1,len(graph[i])): print(graph[i][j],end=" ") print()
07632b55cea18f87762376f2c17c30d0fd1d32bc
ba694353a3cb1cfd02a6773b40f693386d0dba39
/sdk/python/pulumi_google_native/compute/v1/network_attachment_iam_policy.py
a5af364be5feb5a7850e9d4462d7156faf070069
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
pulumi/pulumi-google-native
cc57af8bd3d1d6b76f1f48333ed1f1b31d56f92b
124d255e5b7f5440d1ef63c9a71e4cc1d661cd10
refs/heads/master
2023-08-25T00:18:00.300230
2023-07-20T04:25:48
2023-07-20T04:25:48
323,680,373
69
16
Apache-2.0
2023-09-13T00:28:04
2020-12-22T16:39:01
Python
UTF-8
Python
false
false
22,498
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import copy import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs from ._enums import * from ._inputs import * __all__ = ['NetworkAttachmentIamPolicyArgs', 'NetworkAttachmentIamPolicy'] @pulumi.input_type class NetworkAttachmentIamPolicyArgs: def __init__(__self__, *, region: pulumi.Input[str], resource: pulumi.Input[str], audit_configs: Optional[pulumi.Input[Sequence[pulumi.Input['AuditConfigArgs']]]] = None, bindings: Optional[pulumi.Input[Sequence[pulumi.Input['BindingArgs']]]] = None, etag: Optional[pulumi.Input[str]] = None, project: Optional[pulumi.Input[str]] = None, rules: Optional[pulumi.Input[Sequence[pulumi.Input['RuleArgs']]]] = None, version: Optional[pulumi.Input[int]] = None): """ The set of arguments for constructing a NetworkAttachmentIamPolicy resource. :param pulumi.Input[Sequence[pulumi.Input['AuditConfigArgs']]] audit_configs: Specifies cloud audit logging configuration for this policy. :param pulumi.Input[Sequence[pulumi.Input['BindingArgs']]] bindings: Associates a list of `members`, or principals, with a `role`. Optionally, may specify a `condition` that determines how and when the `bindings` are applied. Each of the `bindings` must contain at least one principal. The `bindings` in a `Policy` can refer to up to 1,500 principals; up to 250 of these principals can be Google groups. Each occurrence of a principal counts towards these limits. For example, if the `bindings` grant 50 different roles to `user:[email protected]`, and not to any other principal, then you can add another 1,450 principals to the `bindings` in the `Policy`. :param pulumi.Input[str] etag: `etag` is used for optimistic concurrency control as a way to help prevent simultaneous updates of a policy from overwriting each other. It is strongly suggested that systems make use of the `etag` in the read-modify-write cycle to perform policy updates in order to avoid race conditions: An `etag` is returned in the response to `getIamPolicy`, and systems are expected to put that etag in the request to `setIamPolicy` to ensure that their change will be applied to the same version of the policy. **Important:** If you use IAM Conditions, you must include the `etag` field whenever you call `setIamPolicy`. If you omit this field, then IAM allows you to overwrite a version `3` policy with a version `1` policy, and all of the conditions in the version `3` policy are lost. :param pulumi.Input[Sequence[pulumi.Input['RuleArgs']]] rules: This is deprecated and has no effect. Do not use. :param pulumi.Input[int] version: Specifies the format of the policy. Valid values are `0`, `1`, and `3`. Requests that specify an invalid value are rejected. Any operation that affects conditional role bindings must specify version `3`. This requirement applies to the following operations: * Getting a policy that includes a conditional role binding * Adding a conditional role binding to a policy * Changing a conditional role binding in a policy * Removing any role binding, with or without a condition, from a policy that includes conditions **Important:** If you use IAM Conditions, you must include the `etag` field whenever you call `setIamPolicy`. If you omit this field, then IAM allows you to overwrite a version `3` policy with a version `1` policy, and all of the conditions in the version `3` policy are lost. If a policy does not include any conditions, operations on that policy may specify any valid version or leave the field unset. To learn which resources support conditions in their IAM policies, see the [IAM documentation](https://cloud.google.com/iam/help/conditions/resource-policies). """ pulumi.set(__self__, "region", region) pulumi.set(__self__, "resource", resource) if audit_configs is not None: pulumi.set(__self__, "audit_configs", audit_configs) if bindings is not None: pulumi.set(__self__, "bindings", bindings) if etag is not None: pulumi.set(__self__, "etag", etag) if project is not None: pulumi.set(__self__, "project", project) if rules is not None: pulumi.set(__self__, "rules", rules) if version is not None: pulumi.set(__self__, "version", version) @property @pulumi.getter def region(self) -> pulumi.Input[str]: return pulumi.get(self, "region") @region.setter def region(self, value: pulumi.Input[str]): pulumi.set(self, "region", value) @property @pulumi.getter def resource(self) -> pulumi.Input[str]: return pulumi.get(self, "resource") @resource.setter def resource(self, value: pulumi.Input[str]): pulumi.set(self, "resource", value) @property @pulumi.getter(name="auditConfigs") def audit_configs(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['AuditConfigArgs']]]]: """ Specifies cloud audit logging configuration for this policy. """ return pulumi.get(self, "audit_configs") @audit_configs.setter def audit_configs(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['AuditConfigArgs']]]]): pulumi.set(self, "audit_configs", value) @property @pulumi.getter def bindings(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['BindingArgs']]]]: """ Associates a list of `members`, or principals, with a `role`. Optionally, may specify a `condition` that determines how and when the `bindings` are applied. Each of the `bindings` must contain at least one principal. The `bindings` in a `Policy` can refer to up to 1,500 principals; up to 250 of these principals can be Google groups. Each occurrence of a principal counts towards these limits. For example, if the `bindings` grant 50 different roles to `user:[email protected]`, and not to any other principal, then you can add another 1,450 principals to the `bindings` in the `Policy`. """ return pulumi.get(self, "bindings") @bindings.setter def bindings(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['BindingArgs']]]]): pulumi.set(self, "bindings", value) @property @pulumi.getter def etag(self) -> Optional[pulumi.Input[str]]: """ `etag` is used for optimistic concurrency control as a way to help prevent simultaneous updates of a policy from overwriting each other. It is strongly suggested that systems make use of the `etag` in the read-modify-write cycle to perform policy updates in order to avoid race conditions: An `etag` is returned in the response to `getIamPolicy`, and systems are expected to put that etag in the request to `setIamPolicy` to ensure that their change will be applied to the same version of the policy. **Important:** If you use IAM Conditions, you must include the `etag` field whenever you call `setIamPolicy`. If you omit this field, then IAM allows you to overwrite a version `3` policy with a version `1` policy, and all of the conditions in the version `3` policy are lost. """ return pulumi.get(self, "etag") @etag.setter def etag(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "etag", value) @property @pulumi.getter def project(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "project") @project.setter def project(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "project", value) @property @pulumi.getter def rules(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['RuleArgs']]]]: """ This is deprecated and has no effect. Do not use. """ return pulumi.get(self, "rules") @rules.setter def rules(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['RuleArgs']]]]): pulumi.set(self, "rules", value) @property @pulumi.getter def version(self) -> Optional[pulumi.Input[int]]: """ Specifies the format of the policy. Valid values are `0`, `1`, and `3`. Requests that specify an invalid value are rejected. Any operation that affects conditional role bindings must specify version `3`. This requirement applies to the following operations: * Getting a policy that includes a conditional role binding * Adding a conditional role binding to a policy * Changing a conditional role binding in a policy * Removing any role binding, with or without a condition, from a policy that includes conditions **Important:** If you use IAM Conditions, you must include the `etag` field whenever you call `setIamPolicy`. If you omit this field, then IAM allows you to overwrite a version `3` policy with a version `1` policy, and all of the conditions in the version `3` policy are lost. If a policy does not include any conditions, operations on that policy may specify any valid version or leave the field unset. To learn which resources support conditions in their IAM policies, see the [IAM documentation](https://cloud.google.com/iam/help/conditions/resource-policies). """ return pulumi.get(self, "version") @version.setter def version(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "version", value) class NetworkAttachmentIamPolicy(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, audit_configs: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['AuditConfigArgs']]]]] = None, bindings: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['BindingArgs']]]]] = None, etag: Optional[pulumi.Input[str]] = None, project: Optional[pulumi.Input[str]] = None, region: Optional[pulumi.Input[str]] = None, resource: Optional[pulumi.Input[str]] = None, rules: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['RuleArgs']]]]] = None, version: Optional[pulumi.Input[int]] = None, __props__=None): """ Sets the access control policy on the specified resource. Replaces any existing policy. Note - this resource's API doesn't support deletion. When deleted, the resource will persist on Google Cloud even though it will be deleted from Pulumi state. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['AuditConfigArgs']]]] audit_configs: Specifies cloud audit logging configuration for this policy. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['BindingArgs']]]] bindings: Associates a list of `members`, or principals, with a `role`. Optionally, may specify a `condition` that determines how and when the `bindings` are applied. Each of the `bindings` must contain at least one principal. The `bindings` in a `Policy` can refer to up to 1,500 principals; up to 250 of these principals can be Google groups. Each occurrence of a principal counts towards these limits. For example, if the `bindings` grant 50 different roles to `user:[email protected]`, and not to any other principal, then you can add another 1,450 principals to the `bindings` in the `Policy`. :param pulumi.Input[str] etag: `etag` is used for optimistic concurrency control as a way to help prevent simultaneous updates of a policy from overwriting each other. It is strongly suggested that systems make use of the `etag` in the read-modify-write cycle to perform policy updates in order to avoid race conditions: An `etag` is returned in the response to `getIamPolicy`, and systems are expected to put that etag in the request to `setIamPolicy` to ensure that their change will be applied to the same version of the policy. **Important:** If you use IAM Conditions, you must include the `etag` field whenever you call `setIamPolicy`. If you omit this field, then IAM allows you to overwrite a version `3` policy with a version `1` policy, and all of the conditions in the version `3` policy are lost. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['RuleArgs']]]] rules: This is deprecated and has no effect. Do not use. :param pulumi.Input[int] version: Specifies the format of the policy. Valid values are `0`, `1`, and `3`. Requests that specify an invalid value are rejected. Any operation that affects conditional role bindings must specify version `3`. This requirement applies to the following operations: * Getting a policy that includes a conditional role binding * Adding a conditional role binding to a policy * Changing a conditional role binding in a policy * Removing any role binding, with or without a condition, from a policy that includes conditions **Important:** If you use IAM Conditions, you must include the `etag` field whenever you call `setIamPolicy`. If you omit this field, then IAM allows you to overwrite a version `3` policy with a version `1` policy, and all of the conditions in the version `3` policy are lost. If a policy does not include any conditions, operations on that policy may specify any valid version or leave the field unset. To learn which resources support conditions in their IAM policies, see the [IAM documentation](https://cloud.google.com/iam/help/conditions/resource-policies). """ ... @overload def __init__(__self__, resource_name: str, args: NetworkAttachmentIamPolicyArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Sets the access control policy on the specified resource. Replaces any existing policy. Note - this resource's API doesn't support deletion. When deleted, the resource will persist on Google Cloud even though it will be deleted from Pulumi state. :param str resource_name: The name of the resource. :param NetworkAttachmentIamPolicyArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(NetworkAttachmentIamPolicyArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, audit_configs: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['AuditConfigArgs']]]]] = None, bindings: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['BindingArgs']]]]] = None, etag: Optional[pulumi.Input[str]] = None, project: Optional[pulumi.Input[str]] = None, region: Optional[pulumi.Input[str]] = None, resource: Optional[pulumi.Input[str]] = None, rules: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['RuleArgs']]]]] = None, version: Optional[pulumi.Input[int]] = None, __props__=None): opts = pulumi.ResourceOptions.merge(_utilities.get_resource_opts_defaults(), opts) if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = NetworkAttachmentIamPolicyArgs.__new__(NetworkAttachmentIamPolicyArgs) __props__.__dict__["audit_configs"] = audit_configs __props__.__dict__["bindings"] = bindings __props__.__dict__["etag"] = etag __props__.__dict__["project"] = project if region is None and not opts.urn: raise TypeError("Missing required property 'region'") __props__.__dict__["region"] = region if resource is None and not opts.urn: raise TypeError("Missing required property 'resource'") __props__.__dict__["resource"] = resource __props__.__dict__["rules"] = rules __props__.__dict__["version"] = version replace_on_changes = pulumi.ResourceOptions(replace_on_changes=["project", "region", "resource"]) opts = pulumi.ResourceOptions.merge(opts, replace_on_changes) super(NetworkAttachmentIamPolicy, __self__).__init__( 'google-native:compute/v1:NetworkAttachmentIamPolicy', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'NetworkAttachmentIamPolicy': """ Get an existing NetworkAttachmentIamPolicy resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = NetworkAttachmentIamPolicyArgs.__new__(NetworkAttachmentIamPolicyArgs) __props__.__dict__["audit_configs"] = None __props__.__dict__["bindings"] = None __props__.__dict__["etag"] = None __props__.__dict__["project"] = None __props__.__dict__["region"] = None __props__.__dict__["resource"] = None __props__.__dict__["rules"] = None __props__.__dict__["version"] = None return NetworkAttachmentIamPolicy(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="auditConfigs") def audit_configs(self) -> pulumi.Output[Sequence['outputs.AuditConfigResponse']]: """ Specifies cloud audit logging configuration for this policy. """ return pulumi.get(self, "audit_configs") @property @pulumi.getter def bindings(self) -> pulumi.Output[Sequence['outputs.BindingResponse']]: """ Associates a list of `members`, or principals, with a `role`. Optionally, may specify a `condition` that determines how and when the `bindings` are applied. Each of the `bindings` must contain at least one principal. The `bindings` in a `Policy` can refer to up to 1,500 principals; up to 250 of these principals can be Google groups. Each occurrence of a principal counts towards these limits. For example, if the `bindings` grant 50 different roles to `user:[email protected]`, and not to any other principal, then you can add another 1,450 principals to the `bindings` in the `Policy`. """ return pulumi.get(self, "bindings") @property @pulumi.getter def etag(self) -> pulumi.Output[str]: """ `etag` is used for optimistic concurrency control as a way to help prevent simultaneous updates of a policy from overwriting each other. It is strongly suggested that systems make use of the `etag` in the read-modify-write cycle to perform policy updates in order to avoid race conditions: An `etag` is returned in the response to `getIamPolicy`, and systems are expected to put that etag in the request to `setIamPolicy` to ensure that their change will be applied to the same version of the policy. **Important:** If you use IAM Conditions, you must include the `etag` field whenever you call `setIamPolicy`. If you omit this field, then IAM allows you to overwrite a version `3` policy with a version `1` policy, and all of the conditions in the version `3` policy are lost. """ return pulumi.get(self, "etag") @property @pulumi.getter def project(self) -> pulumi.Output[str]: return pulumi.get(self, "project") @property @pulumi.getter def region(self) -> pulumi.Output[str]: return pulumi.get(self, "region") @property @pulumi.getter def resource(self) -> pulumi.Output[str]: return pulumi.get(self, "resource") @property @pulumi.getter def rules(self) -> pulumi.Output[Sequence['outputs.RuleResponse']]: """ This is deprecated and has no effect. Do not use. """ return pulumi.get(self, "rules") @property @pulumi.getter def version(self) -> pulumi.Output[int]: """ Specifies the format of the policy. Valid values are `0`, `1`, and `3`. Requests that specify an invalid value are rejected. Any operation that affects conditional role bindings must specify version `3`. This requirement applies to the following operations: * Getting a policy that includes a conditional role binding * Adding a conditional role binding to a policy * Changing a conditional role binding in a policy * Removing any role binding, with or without a condition, from a policy that includes conditions **Important:** If you use IAM Conditions, you must include the `etag` field whenever you call `setIamPolicy`. If you omit this field, then IAM allows you to overwrite a version `3` policy with a version `1` policy, and all of the conditions in the version `3` policy are lost. If a policy does not include any conditions, operations on that policy may specify any valid version or leave the field unset. To learn which resources support conditions in their IAM policies, see the [IAM documentation](https://cloud.google.com/iam/help/conditions/resource-policies). """ return pulumi.get(self, "version")
aeeee04864a4e9f90e0b78751f06a0c1734023fe
ffca2ab12cb1dad9e3ddd6bf0f615cef91db62e5
/test.py
cf87ab1380fb1dd2c650be87a67e7c934d453c5d
[ "MIT" ]
permissive
CyborgVillager/Block-Tower-Defense
0ee26678bb00951b1168f5bc20c762c04cf8a648
287da85c852e8596de9e57827845c6d7db286ec9
refs/heads/master
2020-12-02T02:22:29.347524
2019-12-30T10:54:27
2019-12-30T10:54:27
230,857,127
0
0
MIT
2019-12-30T06:00:15
2019-12-30T06:00:14
null
UTF-8
Python
false
false
1,138
py
import pygame pygame.init() screen = pygame.display.set_mode((640, 480)) pygame.display.set_caption("Hello, world!") background = pygame.Surface(screen.get_size()) background = background.convert() background.fill((100, 60, 25)) clock = pygame.time.Clock() keepGoing = True color = (100, 100, 100) size = (150, 50) pos = (50, 50) # Set up main loop while keepGoing: # Timer to set frame rate clock.tick(30) touch = pygame.mouse.get_pos() bar = pygame.Surface(size) bar = bar.convert() bar.fill(color) bar.fill(color) for event in pygame.event.get(): if event.type == pygame.QUIT: keepGoing = False if touch[0] >= 50 and touch[0] <= 200 and touch[1] >= 50 and touch[1] <= 100: if event.type == pygame.MOUSEBUTTONDOWN: color = (50, 50, 50) size = (160, 60) pos = (45, 45) if event.type == pygame.MOUSEBUTTONUP: color = (100, 100, 100) size = (150, 50) pos = (50, 50) screen.blit(background, (0, 0)) screen.blit(bar, pos) pygame.display.flip()
d5a5c939def085847ffa6a958f51d3a0dee2867d
ebd5c4632bb5f85c9e3311fd70f6f1bf92fae53f
/Sourcem8/pirates/world/ZoneLOD.py
484017d0780e356d8af203a398a3626258d15e5c
[]
no_license
BrandonAlex/Pirates-Online-Retribution
7f881a64ec74e595aaf62e78a39375d2d51f4d2e
980b7448f798e255eecfb6bd2ebb67b299b27dd7
refs/heads/master
2020-04-02T14:22:28.626453
2018-10-24T15:33:17
2018-10-24T15:33:17
154,521,816
2
1
null
null
null
null
UTF-8
Python
false
false
7,823
py
from pandac.PandaModules import * from direct.showbase.DirectObject import DirectObject from direct.showbase.PythonUtil import * from otp.otpbase import OTPGlobals from pirates.piratesbase import PiratesGlobals class ZoneLOD(DirectObject): notify = directNotify.newCategory('ZoneLOD') def __init__(self, uniqueNameFunc, zoneRadii = []): self.uniqueNameFunc = uniqueNameFunc self.zoneRadii = zoneRadii self.zoneSphere = [] self.lastZoneLevel = None self.numSpheres = 0 self.levelForced = False self.lodCollideMask = PiratesGlobals.ZoneLODBitmask self.allEnabled = False def delete(self): self.deleteZoneCollisions() if self.zoneSphere: del self.zoneSphere self.ignoreAll() del self.uniqueNameFunc def cleanup(self): if hasattr(self, 'outerSphere') and self.numSpheres: self.setZoneLevel(self.outerSphere + 1) def setZoneRadii(self, zoneRadii, zoneCenter=[0, 0]): self.numSpheres = len(zoneRadii) self.zoneRadii = zoneRadii self.zoneCenter = zoneCenter self.innerSphere = 0 self.outerSphere = self.numSpheres - 1 self.deleteZoneCollisions() self.initZoneCollisions() def setLodCollideMask(self, mask): self.lodCollideMask = mask for currSphere in self.zoneSphere: currSphere.node().setIntoCollideMask(self.lodCollideMask) def getLodCollideMask(self): return self.lodCollideMask def initZoneCollisions(self): for i in xrange(len(self.zoneRadii)): cSphere = CollisionSphere(0.0, 0.0, 0.0, self.zoneRadii[i]) cSphere.setTangible(0) cName = self.uniqueNameFunc('zoneLevel' + str(i)) cSphereNode = CollisionNode(cName) cSphereNode.setIntoCollideMask(self.lodCollideMask) cSphereNode.addSolid(cSphere) cRoot = self.find('collisions') if not cRoot.isEmpty(): cSphereNodePath = cRoot.attachNewNode(cSphereNode) else: cSphereNodePath = self.attachNewNode(cSphereNode) cSphereNodePath.setPos(self.zoneCenter[0], self.zoneCenter[1], 0) self.zoneSphere.append(cSphereNodePath) self.setZoneLevel(self.outerSphere + 1) def deleteZoneCollisions(self): for c in self.zoneSphere: c.remove_node() self.zoneSphere = [] for i in xrange(self.numSpheres): self.ignore(self.uniqueNameFunc('enterzoneLevel' + str(i))) self.ignore(self.uniqueNameFunc('exitzoneLevel' + str(i))) def showZoneCollisions(self): for c in self.zoneSphere: c.show() def hideZoneCollisions(self): for c in self.zoneSphere: c.hide() def enableAllLODSpheres(self): for i in xrange(self.numSpheres): self.accept(self.uniqueNameFunc('exitzoneLevel' + str(i)), Functor(self.handleExitZoneLevel, i + 1)) self.accept(self.uniqueNameFunc('enterzoneLevel' + str(i)), Functor(self.handleEnterZoneLevel, i)) for sphere in self.zoneSphere: sphere.unstash() self.allEnabled = True def disableAllLODSpheres(self): for i in xrange(self.numSpheres): self.ignore(self.uniqueNameFunc('exitzoneLevel' + str(i))) self.ignore(self.uniqueNameFunc('enterzoneLevel' + str(i))) for sphere in self.zoneSphere: sphere.stash() self.allEnabled = False def clearAllEnabled(self, resetLastZoneLevel = False): self.allEnabled = False if resetLastZoneLevel: self.setCollLevel(self.lastZoneLevel) def setCollLevel(self, level): if self.allEnabled: return None for i in xrange(self.numSpheres): self.ignore(self.uniqueNameFunc('enterzoneLevel' + str(i))) self.ignore(self.uniqueNameFunc('exitzoneLevel' + str(i))) for sphere in self.zoneSphere: sphere.stash() if level <= self.outerSphere: self.zoneSphere[level].unstash() if level > self.innerSphere: self.zoneSphere[level - 1].unstash() if level <= self.outerSphere: self.accept(self.uniqueNameFunc('exitzoneLevel' + str(level)), Functor(self.handleExitZoneLevel, level + 1)) if level > self.innerSphere: self.accept(self.uniqueNameFunc('enterzoneLevel' + str(level - 1)), Functor(self.handleEnterZoneLevel, level - 1)) def handleEnterZoneLevel(self, level, entry = None): if level >= self.lastZoneLevel: return None self.setZoneLevel(level, entry) def handleExitZoneLevel(self, level, entry = None): if level < self.lastZoneLevel: return None self.setZoneLevel(level, entry) def setZoneLevel(self, level, entry = None): self.notify.debug('Changing Zone %s:%s' % (self.name, level)) if self.levelForced: return None if self.lastZoneLevel == None: self.loadZoneLevel(level) elif self.lastZoneLevel > level: for i in xrange(self.lastZoneLevel - 1, level - 1, -1): self.loadZoneLevel(i) self.lastZoneLevel = i elif self.lastZoneLevel < level: for i in xrange(self.lastZoneLevel, level): self.unloadZoneLevel(i) if i == self.numSpheres: self.allEnabled = False self.lastZoneLevel = i self.setCollLevel(level) self.lastZoneLevel = level def setInitialZone(self, pos): avDist = pos.length() curLevel = self.outerSphere + 1 for i in xrange(self.numSpheres): dist = self.zoneRadii[i] if avDist < dist: curLevel = i break continue self.setZoneLevel(curLevel) def setZoneLevelOuter(self): if self.outerSphere > self.lastZoneLevel: self.setZoneLevel(self.outerSphere) def turnOff(self): for i in xrange(self.numSpheres): self.ignore(self.uniqueNameFunc('enterzoneLevel' + str(i))) self.ignore(self.uniqueNameFunc('exitzoneLevel' + str(i))) for sphere in self.zoneSphere: sphere.stash() def turnOn(self): self.allEnabled = False if self.lastZoneLevel is not None: self.setCollLevel(self.lastZoneLevel) else: self.setCollLevel(self.outerSphere) def loadZoneLevel(self, level): pass def unloadZoneLevel(self, level): pass def forceZoneLevel(self, level): self.setZoneLevel(level) self.levelForced = True def clearForceZoneLevel(self): self.levelForced = False self.setZoneLevel(self.outerSphere) def childLeft(self, myDoId, parentObj, isIsland = True): if isIsland: self.builder.left() for island in parentObj.islands.values(): if island.doId != myDoId: if isIsland: island.builder.areaGeometry.unstash() island.enableAllLODSpheres() if isIsland: island.builder.collisions.unstash() def childArrived(self, myDoId, parentObj, isIsland = True): if isIsland: self.builder.arrived() for island in parentObj.islands.values(): if island.doId != myDoId: if isIsland: island.builder.areaGeometry.stash() island.disableAllLODSpheres() island.builder.collisions.stash() else: island.clearAllEnabled(True)
b6f879be814c5cb7ae7e78b1b76cb8c2557580c5
487ce91881032c1de16e35ed8bc187d6034205f7
/codes/CodeJamCrawler/16_0_4_neat/16_0_4_kylewilson_d.py
f0a169990ea6d378bafc747d1a45704aacf52a63
[]
no_license
DaHuO/Supergraph
9cd26d8c5a081803015d93cf5f2674009e92ef7e
c88059dc66297af577ad2b8afa4e0ac0ad622915
refs/heads/master
2021-06-14T16:07:52.405091
2016-08-21T13:39:13
2016-08-21T13:39:13
49,829,508
2
0
null
2021-03-19T21:55:46
2016-01-17T18:23:00
Python
UTF-8
Python
false
false
355
py
f = open("D-small-attempt0.in", "r") fo = open("out.txt","w") count = int(f.readline()) for case in xrange(0,count): print case line = f.readline().split() k = line[0] c = line[1] s = line[2] fo.write("Case #" + str(case + 1) + ":") if s < k: fo.write(" IMPOSSIBLE") else: for x in range(int(k)): fo.write(" " + str(x+1)) fo.write("\n")
d3a1c4a014e244b6ab4565a5e932f0082a4ab67a
b3f58deae474db9035cd340b4e66b3e6bdafdeca
/components/proximity_auth.gypi
3b4307df79370a117178a4013c1d5396e3ea6421
[ "BSD-3-Clause" ]
permissive
quanxinglong/chromium
0c45f232254c056e27f35e00da8472ff3ac49fd9
16dda055c8799052d45a593059b614ea682d4f6c
refs/heads/master
2021-01-24T17:58:29.213579
2015-08-10T19:39:07
2015-08-10T19:39:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,788
gypi
# Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. { 'targets': [ { # GN version: //components/proximity_auth and # //components/proximity_auth/ble. 'target_name': 'proximity_auth', 'type': 'static_library', 'include_dirs': [ '..', ], 'dependencies': [ ':cryptauth', ':cryptauth_proto', ':proximity_auth_logging', '../base/base.gyp:base', '../base/base.gyp:base_prefs', '../device/bluetooth/bluetooth.gyp:device_bluetooth', '../net/net.gyp:net', ], 'sources': [ "proximity_auth/authenticator.h", "proximity_auth/ble/bluetooth_low_energy_characteristics_finder.cc", "proximity_auth/ble/bluetooth_low_energy_characteristics_finder.h", "proximity_auth/ble/bluetooth_low_energy_connection.cc", "proximity_auth/ble/bluetooth_low_energy_connection.h", "proximity_auth/ble/bluetooth_low_energy_connection_finder.cc", "proximity_auth/ble/bluetooth_low_energy_connection_finder.h", "proximity_auth/ble/bluetooth_low_energy_device_whitelist.cc", "proximity_auth/ble/bluetooth_low_energy_device_whitelist.h", "proximity_auth/ble/remote_attribute.h", "proximity_auth/ble/fake_wire_message.cc", "proximity_auth/ble/fake_wire_message.h", "proximity_auth/ble/pref_names.cc", "proximity_auth/ble/pref_names.h", "proximity_auth/ble/proximity_auth_ble_system.cc", "proximity_auth/ble/proximity_auth_ble_system.h", "proximity_auth/bluetooth_connection.cc", "proximity_auth/bluetooth_connection.h", "proximity_auth/bluetooth_connection_finder.cc", "proximity_auth/bluetooth_connection_finder.h", "proximity_auth/bluetooth_throttler.h", "proximity_auth/bluetooth_throttler_impl.cc", "proximity_auth/bluetooth_throttler_impl.h", "proximity_auth/bluetooth_util.cc", "proximity_auth/bluetooth_util.h", "proximity_auth/bluetooth_util_chromeos.cc", "proximity_auth/client.h", "proximity_auth/client_impl.cc", "proximity_auth/client_impl.h", "proximity_auth/client_observer.h", "proximity_auth/connection.cc", "proximity_auth/connection.h", "proximity_auth/connection_finder.h", "proximity_auth/connection_observer.h", "proximity_auth/device_to_device_authenticator.cc", "proximity_auth/device_to_device_authenticator.h", "proximity_auth/device_to_device_initiator_operations.cc", "proximity_auth/device_to_device_initiator_operations.h", "proximity_auth/device_to_device_secure_context.cc", "proximity_auth/device_to_device_secure_context.h", "proximity_auth/metrics.cc", "proximity_auth/metrics.h", "proximity_auth/proximity_auth_client.h", "proximity_auth/proximity_auth_system.cc", "proximity_auth/proximity_auth_system.h", "proximity_auth/proximity_monitor.h", "proximity_auth/proximity_monitor_impl.cc", "proximity_auth/proximity_monitor_impl.h", "proximity_auth/proximity_monitor_observer.h", "proximity_auth/remote_device.cc", "proximity_auth/remote_device.h", "proximity_auth/remote_status_update.cc", "proximity_auth/remote_status_update.h", "proximity_auth/screenlock_bridge.cc", "proximity_auth/screenlock_bridge.h", "proximity_auth/screenlock_state.h", "proximity_auth/secure_context.h", "proximity_auth/switches.cc", "proximity_auth/switches.h", "proximity_auth/throttled_bluetooth_connection_finder.cc", "proximity_auth/throttled_bluetooth_connection_finder.h", "proximity_auth/wire_message.cc", "proximity_auth/wire_message.h", ], 'export_dependent_settings': [ 'cryptauth_proto', ], }, { 'target_name': 'proximity_auth_test_support', 'type': 'static_library', 'include_dirs': [ '..', ], 'dependencies': [ ':cryptauth_test_support', '../base/base.gyp:base', ], 'sources': [ "proximity_auth/device_to_device_responder_operations.cc", "proximity_auth/device_to_device_responder_operations.h", ], }, { # GN version: //components/proximity_auth/logging 'target_name': 'proximity_auth_logging', 'type': 'static_library', 'include_dirs': [ '..', ], 'dependencies': [ '../base/base.gyp:base', ], 'sources': [ "proximity_auth/logging/log_buffer.cc", "proximity_auth/logging/log_buffer.h", "proximity_auth/logging/logging.h", "proximity_auth/logging/logging.cc", ] }, { # GN version: //components/proximity_auth/cryptauth/proto 'target_name': 'cryptauth_proto', 'type': 'static_library', 'sources': [ 'proximity_auth/cryptauth/proto/cryptauth_api.proto', 'proximity_auth/cryptauth/proto/securemessage.proto', ], 'variables': { 'proto_in_dir': 'proximity_auth/cryptauth/proto', 'proto_out_dir': 'components/proximity_auth/cryptauth/proto', }, 'includes': [ '../build/protoc.gypi' ] }, { 'target_name': 'cryptauth', 'type': 'static_library', 'include_dirs': [ '..', ], 'dependencies': [ 'cryptauth_proto', '../base/base.gyp:base', '../crypto/crypto.gyp:crypto', '../components/components.gyp:gcm_driver', '../google_apis/google_apis.gyp:google_apis', '../net/net.gyp:net', ], 'sources': [ "proximity_auth/cryptauth/base64url.cc", "proximity_auth/cryptauth/base64url.h", "proximity_auth/cryptauth/cryptauth_access_token_fetcher.h", "proximity_auth/cryptauth/cryptauth_access_token_fetcher_impl.cc", "proximity_auth/cryptauth/cryptauth_access_token_fetcher_impl.h", "proximity_auth/cryptauth/cryptauth_api_call_flow.cc", "proximity_auth/cryptauth/cryptauth_api_call_flow.h", "proximity_auth/cryptauth/cryptauth_client.h", "proximity_auth/cryptauth/cryptauth_client_impl.cc", "proximity_auth/cryptauth/cryptauth_client_impl.h", "proximity_auth/cryptauth/cryptauth_device_manager.cc", "proximity_auth/cryptauth/cryptauth_device_manager.h", "proximity_auth/cryptauth/cryptauth_enroller.h", "proximity_auth/cryptauth/cryptauth_enroller_impl.cc", "proximity_auth/cryptauth/cryptauth_enroller_impl.h", "proximity_auth/cryptauth/cryptauth_enrollment_manager.cc", "proximity_auth/cryptauth/cryptauth_enrollment_manager.h", "proximity_auth/cryptauth/cryptauth_enrollment_utils.cc", "proximity_auth/cryptauth/cryptauth_gcm_manager.cc", "proximity_auth/cryptauth/cryptauth_gcm_manager.h", "proximity_auth/cryptauth/cryptauth_gcm_manager_impl.cc", "proximity_auth/cryptauth/cryptauth_gcm_manager_impl.h", "proximity_auth/cryptauth/pref_names.cc", "proximity_auth/cryptauth/pref_names.h", "proximity_auth/cryptauth/secure_message_delegate.cc", "proximity_auth/cryptauth/secure_message_delegate.h", "proximity_auth/cryptauth/sync_scheduler.cc", "proximity_auth/cryptauth/sync_scheduler.h", "proximity_auth/cryptauth/sync_scheduler_impl.cc", "proximity_auth/cryptauth/sync_scheduler_impl.h", ], 'export_dependent_settings': [ 'cryptauth_proto', ], }, { 'target_name': 'cryptauth_test_support', 'type': 'static_library', 'include_dirs': [ '..', ], 'dependencies': [ 'cryptauth_proto', '../base/base.gyp:base', '../testing/gmock.gyp:gmock', ], 'sources': [ "proximity_auth/cryptauth/fake_cryptauth_gcm_manager.cc", "proximity_auth/cryptauth/fake_cryptauth_gcm_manager.h", "proximity_auth/cryptauth/fake_secure_message_delegate.cc", "proximity_auth/cryptauth/fake_secure_message_delegate.h", "proximity_auth/cryptauth/mock_cryptauth_client.cc", "proximity_auth/cryptauth/mock_cryptauth_client.h", "proximity_auth/cryptauth/mock_sync_scheduler.cc", "proximity_auth/cryptauth/mock_sync_scheduler.h", ], 'export_dependent_settings': [ 'cryptauth_proto', ], }, { # GN version: //components/proximity_auth/webui 'target_name': 'proximity_auth_webui', 'type': 'static_library', 'dependencies': [ '../base/base.gyp:base', '../content/content.gyp:content_browser', '../ui/resources/ui_resources.gyp:ui_resources', 'components_resources.gyp:components_resources', 'cryptauth', 'cryptauth_proto', 'proximity_auth', ], 'include_dirs': [ '..', ], 'sources': [ 'proximity_auth/webui/cryptauth_enroller_factory_impl.cc', 'proximity_auth/webui/cryptauth_enroller_factory_impl.h', 'proximity_auth/webui/proximity_auth_ui.cc', 'proximity_auth/webui/proximity_auth_ui.h', 'proximity_auth/webui/proximity_auth_ui_delegate.h', 'proximity_auth/webui/proximity_auth_webui_handler.cc', 'proximity_auth/webui/proximity_auth_webui_handler.h', 'proximity_auth/webui/reachable_phone_flow.cc', 'proximity_auth/webui/reachable_phone_flow.h', 'proximity_auth/webui/url_constants.cc', 'proximity_auth/webui/url_constants.h', ], }, ], }
0468f8f8d3852fec3500d09cba904bdbd0e2e2c9
bc9abf538f5d4093324b2f055f0b090fe4b03247
/python/etc/primer3d.py
e4712fca4b2656dfe05717a7fff112e19d3cfd1f
[]
no_license
galaxysd/GalaxyCodeBases
3c8900d0c2ca0ed73e9cf4c30630aca4da6cc971
58946261bf72afd6a7287e781a2176cdfaddf50e
refs/heads/master
2023-09-04T04:59:35.348199
2023-08-25T01:04:02
2023-08-25T01:04:02
33,782,566
7
6
null
2020-09-04T06:06:49
2015-04-11T16:12:14
C
UTF-8
Python
false
false
4,773
py
#!/usr/bin/env python3 import argparse import logging import primer3 # https://github.com/libnano/primer3-py # https://brcaexchange.org/variants and click "Show All Public Data", then click "Download" to get `variants.tsv`. # gzcat ~/Downloads/variants.tsv.gz|head -n30|awk -F'\t' '{if (length($124)+length($125)==2 || NR==1) print $43,$108,$122,$123,$124,$125}'|column -t # DBID_LOVD Genomic_Coordinate_hg38 Chr Pos Ref Alt # BRCA1_001574 chr17:g.43093299:A>G 17 43093299 A G # BRCA1_003516 chr17:g.43078507:T>G 17 43078507 T G # BRCA1_004379 chr17:g.43103085:A>G 17 43103085 A G from os.path import expanduser InFile: str = r'~/tmp/variants.tsv.0.gz' InFile = expanduser(InFile) InRef: str = expanduser(r'~/tmp/GRCh38.fa') from pyfaidx import Fasta RefSeqs = Fasta(InRef) #print(RefSeqs['chr1']) # Random access of BGZip is not supported now, see https://github.com/mdshw5/pyfaidx/issues/126 #InColNames = ['DBID_LOVD','Chr','Pos','Ref','Alt','Genomic_Coordinate_hg38'] InColNames = ['Chr','Pos','Ref','Alt'] #import numpy #import pandas as pd #pd.read_table(InFile,compression='gzip',sep='\t') import gzip import csv Total: int = 0 Skipped: int = 0 from typing import Dict, List, Tuple InData: Dict[str,Dict[int,Tuple[str,List[str]]]] = {} ''' 第一种引物,上游引物3‘端设一个,下游距离300bp-400bp设置 第二种,目标点上游100bp设置上游引物,不要覆盖目标点,下游,200-300, 只考虑一对引物中间的部分,引物本身不考虑。 Tm 参考范围55-62 ''' thePara: Dict[str,int] = dict(MaxAmpLen=400, MinAmpLen=300, P5Up1=0, P5Up2=100, TmMax=63, TmMin=55, TmDeltra=5, PrimerLenMin=25, PrimerLenMax=36, Mode2LeftMax=100 ) with gzip.open(InFile, 'rt') as tsvin: tsvin = csv.DictReader(tsvin, delimiter='\t') #headers = tsvin.fieldnames #print(headers) for row in tsvin: #print(', '.join(row[col] for col in InColNames)) Total += 1 if len(row['Ref']) > 1 or len(row['Alt']) > 1 : #print(', '.join(row[col] for col in ['Chr','Pos','Ref','Alt'])) Skipped += 1 else : print(', '.join(row[col] for col in InColNames)) row['Pos'] = int(row['Pos']) if row['Chr'] in InData : if row['Pos'] in InData[row['Chr']] : InData[row['Chr']][row['Pos']][1].append(row['Alt']) #print(InData[row['Chr']][row['Pos']]) else : InData[row['Chr']][row['Pos']] = (row['Ref'],[row['Alt']]) else : InData[row['Chr']] = { row['Pos'] : (row['Ref'],[row['Alt']]) } Primer3GlobalArgs: Dict = { 'PRIMER_OPT_SIZE': 2+thePara['PrimerLenMin'], 'PRIMER_PICK_INTERNAL_OLIGO': 1, 'PRIMER_INTERNAL_MAX_SELF_END': 8, 'PRIMER_MIN_SIZE': thePara['PrimerLenMin'], 'PRIMER_MAX_SIZE': thePara['PrimerLenMax'], 'PRIMER_OPT_TM': 60.0, 'PRIMER_MIN_TM': thePara['TmMin'], 'PRIMER_MAX_TM': thePara['TmMax'], 'PRIMER_MIN_GC': 20.0, 'PRIMER_MAX_GC': 80.0, 'PRIMER_MAX_POLY_X': 10, 'PRIMER_INTERNAL_MAX_POLY_X': 10, 'PRIMER_SALT_MONOVALENT': 50.0, 'PRIMER_DNA_CONC': 50.0, 'PRIMER_MAX_NS_ACCEPTED': 0, 'PRIMER_MAX_SELF_ANY': 12, 'PRIMER_MAX_SELF_END': 8, 'PRIMER_PAIR_MAX_COMPL_ANY': 12, 'PRIMER_PAIR_MAX_COMPL_END': 8, 'PRIMER_PRODUCT_SIZE_RANGE': [[thePara['MinAmpLen']-thePara['PrimerLenMax'],thePara['MaxAmpLen']+thePara['PrimerLenMax']]], 'PRIMER_TASK': 'generic', 'PRIMER_PICK_LEFT_PRIMER': 1, 'PRIMER_PICK_INTERNAL_OLIGO': 0, 'PRIMER_PICK_RIGHT_PRIMER': 1, 'PRIMER_PAIR_MAX_DIFF_TM': thePara['TmDeltra'], } primer3.bindings.setP3Globals(Primer3GlobalArgs) for ChrID in InData.keys() : for thePos in InData[ChrID].keys() : FulChrID: str = ''.join(['chr',ChrID]) # Start attributes are 1-based Left: int = thePos - thePara['Mode2LeftMax'] - thePara['PrimerLenMax'] -1 if Left < 0 : Left = 0 #Left = thePos-1 # End attributes are 0-based Right: int = thePos + thePara['MaxAmpLen'] + thePara['PrimerLenMax'] if Right > len(RefSeqs[FulChrID]) : Right = len(RefSeqs[FulChrID]) theSeq: str = RefSeqs[FulChrID][Left:Right] print(':'.join([ChrID,str(thePos),FulChrID,str(theSeq),str(InData[ChrID][thePos]) ])) Primer3Ret: Dict = primer3.bindings.designPrimers({ 'SEQUENCE_ID': theSeq.fancy_name, 'SEQUENCE_TEMPLATE': str(theSeq), 'SEQUENCE_INCLUDED_REGION': [ thePara['PrimerLenMax'],thePara['MaxAmpLen'] ], }) print(Primer3Ret) print(b'[!] %(skipped)d InDels skipped in %(Total)d items.' % {b'skipped': Skipped, b'Total': Total})
217989fa3591eada71f3986a3f8d7079071acfa7
d52ee2f7ec5dcd8825f4e221a7f084d488d35634
/new_scripts/baselines/dmass/model/seq2seq.py
8e1de823151e02d643e898a3ce67afbef2823090
[]
no_license
rekriz11/sockeye-recipes
9dbf96140e4d9d546210dd1c29801132e1b9201c
644363b92e2f38311cc2b7e926b6558aa41900f3
refs/heads/master
2020-03-29T16:52:52.542574
2020-03-13T18:18:25
2020-03-13T18:18:25
150,131,769
5
3
null
2018-09-24T16:15:47
2018-09-24T16:15:46
null
UTF-8
Python
false
false
16,250
py
from model.graph import Graph from model.graph import ModelOutput from model.seq2seq_beamsearch import beam_search import tensorflow as tf from util import constant, nn class Seq2SeqGraph(Graph): def __init__(self, data, is_train, model_config): super(Seq2SeqGraph, self).__init__(data, is_train, model_config) self.model_fn = self.seq2seq_fn self.rand_unif_init = tf.contrib.layers.xavier_initializer() # tf.random_uniform_initializer(-0.05, 0.05, seed=123) self.trunc_norm_init = tf.contrib.layers.xavier_initializer() # tf.truncated_normal_initializer(stddev=1e-4) def decode_inputs_to_outputs(self, inp, prev_state_c, prev_state_h, encoder_outputs, encoder_padding_bias, encoder_features, attn_v, rule_id_input_placeholder, mem_contexts, mem_outputs, global_step): def attention(query): if self.model_config.attention_type == 'ffn': decoder_feature = tf.expand_dims( nn.linear(query, self.model_config.dimension, True, scope='decoder_feature'), axis=1) energy = tf.expand_dims(tf.reduce_sum( attn_v * tf.tanh(encoder_features + decoder_feature), axis=2), axis=1) energy += encoder_padding_bias energy_norm = tf.nn.softmax(energy, axis=2) context_vector = tf.matmul(energy_norm, encoder_outputs) return tf.squeeze(context_vector, axis=1), tf.squeeze(energy_norm, axis=1) elif self.model_config.attention_type == 'dot': query = tf.expand_dims(tf.concat(query, axis=1), axis=1) weight = tf.matmul(query, encoder_outputs, transpose_b=True) weight += encoder_padding_bias weight = tf.nn.softmax(weight, axis=2) context_vector = tf.matmul(weight, encoder_outputs) return tf.squeeze(context_vector, axis=1), tf.squeeze(weight, axis=1) elif self.model_config.attention_type == 'bilinear': query = tf.expand_dims(tf.concat(query, axis=1), axis=1) weight = tf.matmul(query, encoder_features, transpose_b=True) weight += encoder_padding_bias weight = tf.nn.softmax(weight, axis=2) context_vector = tf.matmul(weight, encoder_outputs) return tf.squeeze(context_vector, axis=1), tf.squeeze(weight, axis=1) prev_state = tf.contrib.rnn.LSTMStateTuple(prev_state_c, prev_state_h) if self.is_train: inp = tf.nn.dropout(inp, 1.0 - self.model_config.layer_prepostprocess_dropout) cell_output, state = self.decode_cell(inp, prev_state) context_vector, attn_dist = attention(state) final_output = nn.linear([context_vector] + [cell_output], self.model_config.dimension, True, scope='projection') cur_context = None if 'rule' in self.model_config.memory: cur_context = context_vector cur_mem_contexts = tf.stack(self.embedding_fn(rule_id_input_placeholder, mem_contexts), axis=1) cur_mem_outputs = tf.stack(self.embedding_fn(rule_id_input_placeholder, mem_outputs), axis=1) bias = tf.expand_dims( -1e9 * tf.to_float(tf.equal(tf.stack(rule_id_input_placeholder, axis=1), 0)), axis=1) weights = tf.nn.softmax(bias + tf.matmul(tf.expand_dims(context_vector, axis=1), cur_mem_contexts, transpose_b=True)) mem_output = tf.squeeze(tf.matmul(weights, cur_mem_outputs), axis=1) nmem_output = nn.linear([final_output] + [mem_output], self.model_config.dimension, True) g = tf.greater(global_step, tf.constant(2 * self.model_config.memory_prepare_step, dtype=tf.int64)) final_output = tf.cond(g, lambda: nmem_output, lambda: final_output) return final_output, state[0], state[1], attn_dist, cur_context def seq2seq_fn(self, sentence_complex_input_placeholder, emb_complex, sentence_simple_input_placeholder, emb_simple, w, b, rule_id_input_placeholder, mem_contexts, mem_outputs, global_step): train_mode = self.model_config.train_mode with tf.variable_scope('seq2seq_encoder'): encoder_embed_inputs = tf.stack( self.embedding_fn(sentence_complex_input_placeholder, emb_complex), axis=1) encoder_len = tf.cast(tf.reduce_sum(tf.to_float(tf.not_equal(tf.stack(sentence_complex_input_placeholder, axis=1), self.data.vocab_complex.encode(constant.SYMBOL_PAD))), axis=1), tf.int32) cell_fw = tf.contrib.rnn.LSTMCell(self.model_config.dimension, initializer=self.rand_unif_init, state_is_tuple=True) cell_bw = tf.contrib.rnn.LSTMCell(self.model_config.dimension, initializer=self.rand_unif_init, state_is_tuple=True) (encoder_outputs, (fw_st, bw_st)) = tf.nn.bidirectional_dynamic_rnn(cell_fw, cell_bw, encoder_embed_inputs, dtype=tf.float32, sequence_length=encoder_len, swap_memory=False) encoder_outputs = tf.concat(axis=2, values=encoder_outputs) encoder_padding_bias = tf.expand_dims(tf.to_float(tf.equal(tf.stack(sentence_complex_input_placeholder, axis=1), self.data.vocab_complex.encode(constant.SYMBOL_PAD))), axis=1) * -1e9 # variables prepare for decoder encoder_features, attn_v = None, None if self.model_config.attention_type == 'bilinear': attn_w = tf.get_variable("attn_w", [1, 2 * self.model_config.dimension, 2 * self.model_config.dimension]) encoder_features = tf.nn.conv1d(encoder_outputs, attn_w, 1, 'SAME') elif self.model_config.attention_type == 'ffn': attn_w = tf.get_variable("attn_w", [1, 2 * self.model_config.dimension, self.model_config.dimension]) encoder_features = tf.nn.conv1d(encoder_outputs, attn_w, 1, 'SAME') attn_v = tf.get_variable("v", [1, 1, self.model_config.dimension]) w_reduce_c = tf.get_variable('w_reduce_c', [self.model_config.dimension * 2, self.model_config.dimension], dtype=tf.float32, initializer=self.trunc_norm_init) w_reduce_h = tf.get_variable('w_reduce_h', [self.model_config.dimension * 2, self.model_config.dimension], dtype=tf.float32, initializer=self.trunc_norm_init) bias_reduce_c = tf.get_variable('bias_reduce_c', [self.model_config.dimension], dtype=tf.float32, initializer=self.trunc_norm_init) bias_reduce_h = tf.get_variable('bias_reduce_h', [self.model_config.dimension], dtype=tf.float32, initializer=self.trunc_norm_init) # Apply linear layer old_c = tf.concat(axis=1, values=[fw_st.c, bw_st.c]) # Concatenation of fw and bw cell old_h = tf.concat(axis=1, values=[fw_st.h, bw_st.h]) # Concatenation of fw and bw state new_c = tf.nn.relu(tf.matmul(old_c, w_reduce_c) + bias_reduce_c) # Get new cell from old cell new_h = tf.nn.relu(tf.matmul(old_h, w_reduce_h) + bias_reduce_h) # Get new state from old state decoder_in_state = tf.contrib.rnn.LSTMStateTuple(new_c, new_h) with tf.variable_scope('seq2seq_decoder'): self.decode_cell = tf.contrib.rnn.LSTMCell( self.model_config.dimension, state_is_tuple=True, initializer=self.rand_unif_init) state = decoder_in_state if self.is_train: batch_go = tf.zeros( [self.model_config.batch_size, self.model_config.dimension]) decoder_embed_inputs_list = self.embedding_fn( sentence_simple_input_placeholder[:-1], emb_simple) decoder_embed_inputs_list = [batch_go] + decoder_embed_inputs_list outputs = [] logits = [] attn_dists = [] targats = [] contexts = [] sampled_targets = [] sampled_logits = [] for i, dec_inp in enumerate(decoder_embed_inputs_list): if i > 0: tf.get_variable_scope().reuse_variables() x = dec_inp state_c, state_h = state[0], state[1] final_output, state_c, state_h, attn_dist, context = self.decode_inputs_to_outputs( x, state_c, state_h, encoder_outputs, encoder_padding_bias, encoder_features, attn_v, rule_id_input_placeholder, mem_contexts, mem_outputs, global_step) state = tf.contrib.rnn.LSTMStateTuple(state_c, state_h) logit = self.output_to_logit(final_output, w, b) target = tf.argmax(logit, axis=1) if train_mode == 'dynamic_self-critical': target = tf.stop_gradient(target) sampled_target = tf.cast(tf.squeeze( tf.multinomial(logit, 1), axis=1), tf.int32) indices = tf.stack( [tf.range(0, self.model_config.batch_size, dtype=tf.int32), tf.squeeze(sampled_target)], axis=-1) sampled_logit = tf.gather_nd(tf.nn.softmax(logit, axis=1), indices) sampled_targets.append(sampled_target) sampled_logits.append(sampled_logit) targats.append(target) logits.append(logit) outputs.append(final_output) attn_dists.append(attn_dist) contexts.append(context) if 'rule' in self.model_config.memory: contexts = tf.stack(contexts, axis=1) gt_target_list = sentence_simple_input_placeholder output = ModelOutput( contexts=contexts if 'rule' in self.model_config.memory else None, encoder_outputs=encoder_outputs, decoder_outputs_list=outputs, final_outputs_list=outputs, decoder_logit_list=logits, gt_target_list=gt_target_list, encoder_embed_inputs_list=tf.unstack(encoder_embed_inputs, axis=1), decoder_target_list=targats, sample_logit_list=sampled_logits if train_mode == 'dynamic_self-critical' else None, sample_target_list=sampled_targets if train_mode == 'dynamic_self-critical' else None, decoder_score=0.0, attn_distr_list=attn_dists, ) self.attn_dists = tf.stack(attn_dists, axis=1) self.targets = tf.stack(targats, axis=1) self.cs = tf.stack(sentence_complex_input_placeholder, axis=1) return output else: # encoder_beam_outputs = tf.concat( # [tf.tile(tf.expand_dims(encoder_outputs[o, :, :], axis=0), # [self.model_config.beam_search_size, 1, 1]) # for o in range(self.model_config.batch_size)], axis=0) # # encoder_beam_features = tf.concat( # [tf.tile(tf.expand_dims(encoder_outputs[o, :, :], axis=0), # [self.model_config.beam_search_size, 1, 1]) # for o in range(self.model_config.batch_size)], axis=0) # # encoder_beam_padding_bias = tf.concat( # [tf.tile(tf.expand_dims(encoder_padding_bias[o, :], axis=0), # [self.model_config.beam_search_size, 1]) # for o in range(self.model_config.batch_size)], axis=0) def symbol_to_logits_fn(ids, pre_state_c, pre_state_h): id = ids[:, -1] inp = self.embedding_fn(id, emb_simple) final_output, state_c, state_h, attn_dist, _ = self.decode_inputs_to_outputs( inp, pre_state_c, pre_state_h, encoder_outputs, encoder_padding_bias, encoder_features, attn_v, rule_id_input_placeholder, mem_contexts, mem_outputs, global_step) logit = self.output_to_logit(final_output, w, b) return logit, state_c, state_h, attn_dist beam_ids, beam_score, beam_attn_distrs = beam_search(symbol_to_logits_fn, tf.zeros([self.model_config.batch_size], tf.int32), self.model_config.beam_search_size, self.model_config.max_simple_sentence, self.data.vocab_simple.vocab_size(), self.model_config.penalty_alpha, state[0], state[1], model_config=self.model_config) top_beam_ids = beam_ids[:, 0, 1:] top_beam_ids = tf.pad(top_beam_ids, [[0, 0], [0, self.model_config.max_simple_sentence - tf.shape(top_beam_ids)[1]]]) decoder_target_list = [tf.squeeze(d, 1) for d in tf.split(top_beam_ids, self.model_config.max_simple_sentence, axis=1)] decoder_score = -beam_score[:, 0] / tf.to_float(tf.shape(top_beam_ids)[1]) top_attn_distrs = beam_attn_distrs[:, 0, 1:] top_attn_distrs = tf.pad(top_attn_distrs, [[0, 0], [0, self.model_config.max_simple_sentence - tf.shape(top_attn_distrs)[1]], [0,0]]) top_attn_distrs.set_shape( [self.model_config.batch_size, self.model_config.max_simple_sentence, self.model_config.max_complex_sentence]) gt_target_list = sentence_simple_input_placeholder output = ModelOutput( # contexts=cur_context if 'rule' in self.model_config.memory else None, encoder_outputs=encoder_outputs, # decoder_outputs_list=outputs if train_mode != 'dynamic_self-critical' else None, # final_outputs_list=outputs if train_mode != 'dynamic_self-critical' else None, # decoder_logit_list=logits if train_mode != 'dynamic_self-critical' else None, gt_target_list=gt_target_list, # encoder_embed_inputs_list=tf.unstack(encoder_embed_inputs, axis=1), decoder_target_list=decoder_target_list, # sample_logit_list=sampled_logit_list if train_mode == 'dynamic_self-critical' else None, # sample_target_list=sampled_target_list if train_mode == 'dynamic_self-critical' else None, decoder_score=decoder_score, attn_distr_list=top_attn_distrs ) return output
d2fe44622bb24756b61b213bf3e55799154afa69
ca752ad55da471392e8690437d9a672c9a52bf2a
/manage.py
30ad0b0215c06bac6732623c2d633d4d66ec30aa
[]
no_license
fortable1999/zhaomengblog
9280f8bbb1b8f8bbb8e56e26b0b7fb074e07685b
f9ee379affee99ebf8a4a6da2b322fb469451fe9
refs/heads/master
2021-01-10T21:30:37.297876
2013-07-12T13:05:47
2013-07-12T13:05:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
249
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "zmblog.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
e7b36c21f59ad06459d4b86ada0988020ae3ef90
463c8ba5baad086d37819804af4ee10f43ab6dd5
/Algorithm/190911/실수_연습문제3.py
82ce02e942a893598cacf8b5c5949694673348f5
[]
no_license
sooya14/TIL
dbbb0608d45ce273ddef6f7cea1b1195285f269d
232b0d38d8f6ee2e6e5517bfd6a2a15cf1000dad
refs/heads/master
2023-01-11T17:12:39.370178
2020-05-11T12:06:41
2020-05-11T12:06:41
195,916,241
0
0
null
2023-01-05T18:22:56
2019-07-09T02:17:42
Jupyter Notebook
UTF-8
Python
false
false
169
py
def Bbit_print(i): output = '' for j in range(15, -1, -1): output += '1' if i & (1 << j) else '0' return output a = 0xDEC print(Bbit_print(a))
ba50d67df374167270831ee86f66ac7d0f40ba3f
3d19e1a316de4d6d96471c64332fff7acfaf1308
/Users/F/frabcus/p-francis.py
16380646750da2ccabd56a5aaf6b52e69bb3b125
[]
no_license
BerilBBJ/scraperwiki-scraper-vault
4e98837ac3b1cc3a3edb01b8954ed00f341c8fcc
65ea6a943cc348a9caf3782b900b36446f7e137d
refs/heads/master
2021-12-02T23:55:58.481210
2013-09-30T17:02:59
2013-09-30T17:02:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
370
py
import scraperwiki print "hello, world" download = scraperwiki.scrape("http://un.org/") print download data = { 'foo': 10, 'bar': 'hello' } scraperwiki.sqlite.save( ['foo'], data ) import scraperwiki print "hello, world" download = scraperwiki.scrape("http://un.org/") print download data = { 'foo': 10, 'bar': 'hello' } scraperwiki.sqlite.save( ['foo'], data )
511a12dcf6ad86e4c5a9d820d091e7c541027811
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03239/s021170085.py
463b5e90f404a028b4f64d43dc4fefef0042eb47
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
280
py
def resolve(): n,T=map(int,input().split()) ans=10000 for i in range(n): c,t=map(int,input().split()) if t<=T: ans=min(ans,c) if ans==10000: print('TLE') else: print(ans) if __name__ == '__main__': resolve()
db0075a312c5191fbe8ab1c749b93da07077d880
2eeda6bfea74cf746f8223274ee9ec25b9387526
/dgCubeDemo/testString.py
8641d86826c9af2d47311dc85fb3b364d42349e4
[]
no_license
PowerDG/PycharmProjects
74f6468964d64846d8c979260a51f375e5d0476d
74a7f18be4a7337eef546e4bf3cc6320b9f5b39d
refs/heads/master
2022-12-09T09:25:11.993089
2020-09-18T13:28:00
2020-09-18T13:28:00
287,977,596
0
0
null
null
null
null
UTF-8
Python
false
false
2,391
py
# !/usr/bin/env python # -*- coding:utf-8 -*- # outhor:xinlan time: # 我是中国人 """ https://zhuanlan.zhihu.com/p/52770875 我是中国人, 那你呢 """ str1 = '我叫 %s,俺爹是 %s' % ('小王', '老王') print(str1) nameStr = '马爸爸' moneyStr = '有钱' print('用+将字符串合并,', nameStr + moneyStr) # === 列表----[ ] nameList = ['猴子', '马云', '王健林', '马化腾'] nameLen = len(nameList) print(nameLen) nameList.append('刘强东') print('增加1个元素的列表是', nameList) del nameList[1] print('删除第2个元素后的列表是', nameList) name1 = nameList[0] print('查询列表的第一个元素是:', name1) print('修改之前的列表是', nameList) nameList[0] = '孙悟空' print('修改之后的列表是', nameList) # === 定义元组 gafataTuple = ('腾讯', '阿里巴巴', '苹果', '谷歌', 'FB', '亚马逊') # 元组的长度 gafataLen = len(gafataTuple) print('元组的长度是:', gafataLen) # 查询元组元素 print('第1个元素的值', gafataTuple[0]) # === 7、集合----花括号{ } 定义:集合(sets)是不重复的容器 # # List有序、可重复,Set无序,不能重复的 gafataSets = {'腾讯', '阿里巴巴', '苹果', '谷歌', 'FB', '亚马 逊', '亚马逊'} print(gafataSets) stockSets = set() # 使用update()增加元素 stockSets.update(['腾讯', '阿里巴巴', '京东']) print(stockSets) # (2)删除 stockSets.discard('京东') print(stockSets) # (3)查找 txBool = '京东' in stockSets print(txBool) # (#4)修改 stockSets.discard('京东') stockSets.update(['京东']) print(stockSets) # 8、字典(映射(键值对))----{ } # 定义字典 patientDic = {'001': ['猴子', 29, '1型糖尿病', '较差'], '002': ['马云', 34, '2型糖尿病', '好转'], '003': ['王健林', 28, '1型糖尿病', '显著好转'], '004': ['马化腾', 52, '型糖尿病', '好转'], '005': ['王思聪', 30, '1型糖尿病', '好转']} # === 字典的操作: # (1)增加 print(patientDic) # (2)删除 del patientDic['005'] print(patientDic) # (3)查询 valueList = patientDic['001'] print(valueList) # (4)修改 print('修改之前的,病人信息:', patientDic) patientDic['001'] = ['猴子', 29, '1型糖尿病', '好转'] print('修改之后的,病人信息:', patientDic)
480312fb4dd33c1c96bed2d89c5eda9c402cec34
b7f3edb5b7c62174bed808079c3b21fb9ea51d52
/third_party/blink/renderer/build/scripts/make_origin_trials.py
db5b93a998e28fcaa8ec63a52fc4e2229de671db
[ "LGPL-2.0-or-later", "LicenseRef-scancode-warranty-disclaimer", "LGPL-2.1-only", "GPL-1.0-or-later", "GPL-2.0-only", "LGPL-2.0-only", "BSD-2-Clause", "LicenseRef-scancode-other-copyleft", "MIT", "Apache-2.0", "BSD-3-Clause" ]
permissive
otcshare/chromium-src
26a7372773b53b236784c51677c566dc0ad839e4
64bee65c921db7e78e25d08f1e98da2668b57be5
refs/heads/webml
2023-03-21T03:20:15.377034
2020-11-16T01:40:14
2020-11-16T01:40:14
209,262,645
18
21
BSD-3-Clause
2023-03-23T06:20:07
2019-09-18T08:52:07
null
UTF-8
Python
false
false
5,714
py
#!/usr/bin/env python # Copyright (C) 2015 Google Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import sys import json5_generator import make_runtime_features import name_utilities import template_expander # We want exactly the same parsing as RuntimeFeatureWriter # but generate different files. class OriginTrialsWriter(make_runtime_features.BaseRuntimeFeatureWriter): file_basename = 'origin_trials' def __init__(self, json5_file_path, output_dir): super(OriginTrialsWriter, self).__init__(json5_file_path, output_dir) self._outputs = { (self.file_basename + '.cc'): self.generate_implementation, } self._implied_mappings = self._make_implied_mappings() self._trial_to_features_map = self._make_trial_to_features_map() self._max_features_per_trial = max( len(features) for features in self._trial_to_features_map.values()) self._set_trial_types() @property def origin_trial_features(self): return self._origin_trial_features def _make_implied_mappings(self): # Set up the implied_by relationships between trials. implied_mappings = dict() for implied_feature in (feature for feature in self._origin_trial_features if feature['origin_trial_feature_name'] and feature['implied_by']): # An origin trial can only be implied by other features that also # have a trial defined. implied_by_trials = [] for implied_by_name in implied_feature['implied_by']: if any(implied_by_name == feature['name'].original and feature['origin_trial_feature_name'] for feature in self._origin_trial_features): implied_by_trials.append(implied_by_name) # Keep a list of origin trial features implied for each # trial. This is essentially an inverse of the implied_by # list attached to each feature. implied_list = implied_mappings.get(implied_by_name) if implied_list is None: implied_list = set() implied_mappings[implied_by_name] = implied_list implied_list.add(implied_feature['name'].original) implied_feature['implied_by_origin_trials'] = implied_by_trials return implied_mappings def _make_trial_to_features_map(self): trial_feature_mappings = {} for feature in [ feature for feature in self._origin_trial_features if feature['origin_trial_feature_name'] ]: trial_name = feature['origin_trial_feature_name'] if trial_name in trial_feature_mappings: trial_feature_mappings[trial_name].append(feature) else: trial_feature_mappings[trial_name] = [feature] return trial_feature_mappings def _set_trial_types(self): for feature in self._origin_trial_features: trial_type = feature['origin_trial_type'] if feature[ 'origin_trial_allows_insecure'] and trial_type != 'deprecation': raise Exception('Origin trial must have type deprecation to ' 'specify origin_trial_allows_insecure: %s' % feature['name']) if trial_type: feature[ 'origin_trial_type'] = name_utilities._upper_camel_case( trial_type) @template_expander.use_jinja('templates/' + file_basename + '.cc.tmpl') def generate_implementation(self): return { 'features': self._features, 'origin_trial_features': self._origin_trial_features, 'implied_origin_trial_features': self._implied_mappings, 'trial_to_features_map': self._trial_to_features_map, 'max_features_per_trial': self._max_features_per_trial, 'input_files': self._input_files, } if __name__ == '__main__': json5_generator.Maker(OriginTrialsWriter).main()
c4c4ccbd2c0b793fb79453c25f124a66643c2f62
8535bbc7781c4691880c935bd7025646f0dbb7c3
/sum of square of digits.py
56cc2426f15835c4fed720b0b451c4f4bf9814a9
[]
no_license
Mahadev0317/Codekata
3b2149f3116ebe4b48b2059b873544c27b23ff39
c35fa0ed0c4870faea69152638f461e743a9ff69
refs/heads/master
2020-04-15T04:59:17.062947
2019-05-29T04:46:35
2019-05-29T04:46:35
164,404,727
1
2
null
null
null
null
UTF-8
Python
false
false
65
py
n=list(input()) s=0 for i in n: i=int(i) s=s+(i**2) print(s)
2358045598136f87583bfb602e34f757cb5c6c6d
cff08cd0aefb52f1cf2c5a8bc5c301c6a03b886e
/maskrcnn_benchmark/config/defaults_2d.py
672946d117c798f5610a2b65bfd98d1a35a4af03
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
zhupan007/Detection_3D
5bc0c4f185889c08a531990a257af7f3af25fafa
2fead7b8d754912a53fed6c5826d4d898a520237
refs/heads/master
2020-11-28T13:48:16.763314
2019-11-25T11:12:47
2019-11-25T11:12:47
212,738,109
1
0
MIT
2019-10-04T04:51:29
2019-10-04T04:51:29
null
UTF-8
Python
false
false
11,394
py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import os from yacs.config import CfgNode as CN # ----------------------------------------------------------------------------- # Convention about Training / Test specific parameters # ----------------------------------------------------------------------------- # Whenever an argument can be either used for training or for testing, the # corresponding name will be post-fixed by a _TRAIN for a training parameter, # or _TEST for a test-specific parameter. # For example, the number of images during training will be # IMAGES_PER_BATCH_TRAIN, while the number of images for testing will be # IMAGES_PER_BATCH_TEST # ----------------------------------------------------------------------------- # Config definition # ----------------------------------------------------------------------------- _C = CN() _C.MODEL = CN() _C.MODEL.RPN_ONLY = False _C.MODEL.MASK_ON = False _C.MODEL.DEVICE = "cuda" _C.MODEL.META_ARCHITECTURE = "GeneralizedRCNN" # If the WEIGHT starts with a catalog://, like :R-50, the code will look for # the path in paths_catalog. Else, it will use it as the specified absolute # path _C.MODEL.WEIGHT = "" # ----------------------------------------------------------------------------- # Sparse 3D # ----------------------------------------------------------------------------- _C.SPARSE3D = CN() _C.SPARSE3D.VOXEL_SCALE = 20 _C.SPARSE3D.VOXEL_FULL_SCALE = 4096 _C.SPARSE3D.VAL_REPS = 3 # ----------------------------------------------------------------------------- # INPUT # ----------------------------------------------------------------------------- _C.INPUT = CN() # Size of the smallest side of the image during training _C.INPUT.MIN_SIZE_TRAIN = 800 # (800,) # Maximum size of the side of the image during training _C.INPUT.MAX_SIZE_TRAIN = 1333 # Size of the smallest side of the image during testing _C.INPUT.MIN_SIZE_TEST = 800 # Maximum size of the side of the image during testing _C.INPUT.MAX_SIZE_TEST = 1333 # Values to be used for image normalization _C.INPUT.PIXEL_MEAN = [102.9801, 115.9465, 122.7717] # Values to be used for image normalization _C.INPUT.PIXEL_STD = [1., 1., 1.] # Convert image to BGR format (for Caffe2 models), in range 0-255 _C.INPUT.TO_BGR255 = True # ----------------------------------------------------------------------------- # Dataset # ----------------------------------------------------------------------------- _C.DATASETS = CN() # List of the dataset names for training, as present in paths_catalog.py _C.DATASETS.TRAIN = () # List of the dataset names for testing, as present in paths_catalog.py _C.DATASETS.TEST = () # ----------------------------------------------------------------------------- # DataLoader # ----------------------------------------------------------------------------- _C.DATALOADER = CN() # Number of data loading threads _C.DATALOADER.NUM_WORKERS = 4 # If > 0, this enforces that each collated batch should have a size divisible # by SIZE_DIVISIBILITY _C.DATALOADER.SIZE_DIVISIBILITY = 0 # If True, each batch should contain only images for which the aspect ratio # is compatible. This groups portrait images together, and landscape images # are not batched with portrait images. _C.DATALOADER.ASPECT_RATIO_GROUPING = True # ---------------------------------------------------------------------------- # # Backbone options # ---------------------------------------------------------------------------- # _C.MODEL.BACKBONE = CN() # The backbone conv body to use # The string must match a function that is imported in modeling.model_builder # (e.g., 'FPN.add_fpn_ResNet101_conv5_body' to specify a ResNet-101-FPN # backbone) _C.MODEL.BACKBONE.CONV_BODY = "R-50-C4" # Add StopGrad at a specified stage so the bottom layers are frozen _C.MODEL.BACKBONE.FREEZE_CONV_BODY_AT = 2 _C.MODEL.BACKBONE.OUT_CHANNELS = 256 * 4 # ---------------------------------------------------------------------------- # # RPN options # ---------------------------------------------------------------------------- # _C.MODEL.RPN = CN() _C.MODEL.RPN.USE_FPN = False # Base RPN anchor sizes given in absolute pixels w.r.t. the scaled network input _C.MODEL.RPN.ANCHOR_SIZES = (32, 64, 128, 256, 512) # Stride of the feature map that RPN is attached. # For FPN, number of strides should match number of scales _C.MODEL.RPN.ANCHOR_STRIDE = (16,) # RPN anchor aspect ratios _C.MODEL.RPN.ASPECT_RATIOS = (0.5, 1.0, 2.0) # Remove RPN anchors that go outside the image by RPN_STRADDLE_THRESH pixels # Set to -1 or a large value, e.g. 100000, to disable pruning anchors _C.MODEL.RPN.STRADDLE_THRESH = 0 # Minimum overlap required between an anchor and ground-truth box for the # (anchor, gt box) pair to be a positive example (IoU >= FG_IOU_THRESHOLD # ==> positive RPN example) _C.MODEL.RPN.FG_IOU_THRESHOLD = 0.7 # Maximum overlap allowed between an anchor and ground-truth box for the # (anchor, gt box) pair to be a negative examples (IoU < BG_IOU_THRESHOLD # ==> negative RPN example) _C.MODEL.RPN.BG_IOU_THRESHOLD = 0.3 # Total number of RPN examples per image _C.MODEL.RPN.BATCH_SIZE_PER_IMAGE = 256 # Target fraction of foreground (positive) examples per RPN minibatch _C.MODEL.RPN.POSITIVE_FRACTION = 0.5 # Number of top scoring RPN proposals to keep before applying NMS # When FPN is used, this is *per FPN level* (not total) _C.MODEL.RPN.PRE_NMS_TOP_N_TRAIN = 12000 _C.MODEL.RPN.PRE_NMS_TOP_N_TEST = 6000 # Number of top scoring RPN proposals to keep after applying NMS _C.MODEL.RPN.POST_NMS_TOP_N_TRAIN = 2000 _C.MODEL.RPN.POST_NMS_TOP_N_TEST = 1000 # NMS threshold used on RPN proposals _C.MODEL.RPN.NMS_THRESH = 0.7 # Proposal height and width both need to be greater than RPN_MIN_SIZE # (a the scale used during training or inference) _C.MODEL.RPN.MIN_SIZE = 0 # Number of top scoring RPN proposals to keep after combining proposals from # all FPN levels _C.MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN = 2000 _C.MODEL.RPN.FPN_POST_NMS_TOP_N_TEST = 2000 # Custom rpn head, empty to use default conv or separable conv _C.MODEL.RPN.RPN_HEAD = "SingleConvRPNHead" # ---------------------------------------------------------------------------- # # ROI HEADS options # ---------------------------------------------------------------------------- # _C.MODEL.ROI_HEADS = CN() _C.MODEL.ROI_HEADS.USE_FPN = False # Overlap threshold for an RoI to be considered foreground (if >= FG_IOU_THRESHOLD) _C.MODEL.ROI_HEADS.FG_IOU_THRESHOLD = 0.5 # Overlap threshold for an RoI to be considered background # (class = 0 if overlap in [0, BG_IOU_THRESHOLD)) _C.MODEL.ROI_HEADS.BG_IOU_THRESHOLD = 0.5 # Default weights on (dx, dy, dw, dh) for normalizing bbox regression targets # These are empirically chosen to approximately lead to unit variance targets _C.MODEL.ROI_HEADS.BBOX_REG_WEIGHTS = (10., 10., 5., 5.) # RoI minibatch size *per image* (number of regions of interest [ROIs]) # Total number of RoIs per training minibatch = # TRAIN.BATCH_SIZE_PER_IM * TRAIN.IMS_PER_BATCH * NUM_GPUS # E.g., a common configuration is: 512 * 2 * 8 = 8192 _C.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 512 # Target fraction of RoI minibatch that is labeled foreground (i.e. class > 0) _C.MODEL.ROI_HEADS.POSITIVE_FRACTION = 0.25 # Only used on test mode # Minimum score threshold (assuming scores in a [0, 1] range); a value chosen to # balance obtaining high recall with not having too many low precision # detections that will slow down inference post processing steps (like NMS) _C.MODEL.ROI_HEADS.SCORE_THRESH = 0.05 # Overlap threshold used for non-maximum suppression (suppress boxes with # IoU >= this threshold) _C.MODEL.ROI_HEADS.NMS = 0.5 # Maximum number of detections to return per image (100 is based on the limit # established for the COCO dataset) _C.MODEL.ROI_HEADS.DETECTIONS_PER_IMG = 100 _C.MODEL.ROI_BOX_HEAD = CN() _C.MODEL.ROI_BOX_HEAD.FEATURE_EXTRACTOR = "ResNet50Conv5ROIFeatureExtractor" _C.MODEL.ROI_BOX_HEAD.PREDICTOR = "FastRCNNPredictor" _C.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION = 14 _C.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO = 0 _C.MODEL.ROI_BOX_HEAD.POOLER_SCALES = (1.0 / 16,) _C.MODEL.ROI_BOX_HEAD.NUM_CLASSES = 81 # Hidden layer dimension when using an MLP for the RoI box head _C.MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM = 1024 _C.MODEL.ROI_MASK_HEAD = CN() _C.MODEL.ROI_MASK_HEAD.FEATURE_EXTRACTOR = "ResNet50Conv5ROIFeatureExtractor" _C.MODEL.ROI_MASK_HEAD.PREDICTOR = "MaskRCNNC4Predictor" _C.MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION = 14 _C.MODEL.ROI_MASK_HEAD.POOLER_SAMPLING_RATIO = 0 _C.MODEL.ROI_MASK_HEAD.POOLER_SCALES = (1.0 / 16,) _C.MODEL.ROI_MASK_HEAD.MLP_HEAD_DIM = 1024 _C.MODEL.ROI_MASK_HEAD.CONV_LAYERS = (256, 256, 256, 256) _C.MODEL.ROI_MASK_HEAD.RESOLUTION = 14 _C.MODEL.ROI_MASK_HEAD.SHARE_BOX_FEATURE_EXTRACTOR = True # Whether or not resize and translate masks to the input image. _C.MODEL.ROI_MASK_HEAD.POSTPROCESS_MASKS = False _C.MODEL.ROI_MASK_HEAD.POSTPROCESS_MASKS_THRESHOLD = 0.5 # ---------------------------------------------------------------------------- # # ResNe[X]t options (ResNets = {ResNet, ResNeXt} # Note that parts of a resnet may be used for both the backbone and the head # These options apply to both # ---------------------------------------------------------------------------- # _C.MODEL.RESNETS = CN() # Number of groups to use; 1 ==> ResNet; > 1 ==> ResNeXt _C.MODEL.RESNETS.NUM_GROUPS = 1 # Baseline width of each group _C.MODEL.RESNETS.WIDTH_PER_GROUP = 64 # Place the stride 2 conv on the 1x1 filter # Use True only for the original MSRA ResNet; use False for C2 and Torch models _C.MODEL.RESNETS.STRIDE_IN_1X1 = True # Residual transformation function _C.MODEL.RESNETS.TRANS_FUNC = "BottleneckWithFixedBatchNorm" # ResNet's stem function (conv1 and pool1) _C.MODEL.RESNETS.STEM_FUNC = "StemWithFixedBatchNorm" # Apply dilation in stage "res5" _C.MODEL.RESNETS.RES5_DILATION = 1 _C.MODEL.RESNETS.RES2_OUT_CHANNELS = 256 _C.MODEL.RESNETS.STEM_OUT_CHANNELS = 64 # ---------------------------------------------------------------------------- # # Solver # ---------------------------------------------------------------------------- # _C.SOLVER = CN() _C.SOLVER.MAX_ITER = 40000 _C.SOLVER.BASE_LR = 0.001 _C.SOLVER.BIAS_LR_FACTOR = 2 _C.SOLVER.MOMENTUM = 0.9 _C.SOLVER.WEIGHT_DECAY = 0.0005 _C.SOLVER.WEIGHT_DECAY_BIAS = 0 _C.SOLVER.GAMMA = 0.1 _C.SOLVER.STEPS = (30000,) _C.SOLVER.WARMUP_FACTOR = 1.0 / 3 _C.SOLVER.WARMUP_ITERS = 500 _C.SOLVER.WARMUP_METHOD = "linear" _C.SOLVER.CHECKPOINT_PERIOD = 2500 # Number of images per batch # This is global, so if we have 8 GPUs and IMS_PER_BATCH = 16, each GPU will # see 2 images per batch _C.SOLVER.IMS_PER_BATCH = 16 # ---------------------------------------------------------------------------- # # Specific test options # ---------------------------------------------------------------------------- # _C.TEST = CN() _C.TEST.EXPECTED_RESULTS = [] _C.TEST.EXPECTED_RESULTS_SIGMA_TOL = 4 # Number of images per batch # This is global, so if we have 8 GPUs and IMS_PER_BATCH = 16, each GPU will # see 2 images per batch _C.TEST.IMS_PER_BATCH = 8 # ---------------------------------------------------------------------------- # # Misc options # ---------------------------------------------------------------------------- # _C.OUTPUT_DIR = "." _C.PATHS_CATALOG = os.path.join(os.path.dirname(__file__), "paths_catalog.py")
7c4beb4c63680a1ee45c5c97a528c02e1ef70d08
ae7ba9c83692cfcb39e95483d84610715930fe9e
/yubinbai/pcuva-problems/UVa 12493 stars/main.py
779906f17e251db0fb19cfabdf8ad7b649c8263a
[]
no_license
xenron/sandbox-github-clone
364721769ea0784fb82827b07196eaa32190126b
5eccdd8631f8bad78eb88bb89144972dbabc109c
refs/heads/master
2022-05-01T21:18:43.101664
2016-09-12T12:38:32
2016-09-12T12:38:32
65,951,766
5
7
null
null
null
null
UTF-8
Python
false
false
468
py
import sys import math def primeFactors(n): i = 2 result = [] while i <= math.sqrt(n): while n % i == 0: result.append(i) n /= i i += 1 if n != 1: result.append(n) result.sort() return result sys.stdin = open('input.txt') while True: try: n = int(input()) except: break res = n for f in set(primeFactors(n)): res *= (1 - 1.0 / f) print int(res / 2)
c41013fcbae7df51d04a6e80c96ad4de24752f18
d0aade2edd6ba5750d70c70198a4bfe16356355e
/maskrcnn_benchmark/modeling/poolers.py
754b5147485769c9de1ff6429e4a1300a0e27231
[ "MIT" ]
permissive
mjq11302010044/RRPN_pytorch
ca3a6b781d49b80323671581ea0a5c13ca500a7a
a966f6f238c03498514742cde5cd98e51efb440c
refs/heads/master
2022-08-29T07:29:20.311262
2020-10-16T02:29:19
2020-10-16T02:29:19
184,703,273
305
68
MIT
2020-04-30T06:37:19
2019-05-03T05:28:03
Python
UTF-8
Python
false
false
7,295
py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import torch import torch.nn.functional as F from torch import nn from maskrcnn_benchmark.layers import ROIAlign from maskrcnn_benchmark.layers import RROIAlign from .utils import cat class LevelMapper(object): """Determine which FPN level each RoI in a set of RoIs should map to based on the heuristic in the FPN paper. """ def __init__(self, k_min, k_max, canonical_scale=224, canonical_level=4, eps=1e-6): """ Arguments: k_min (int) k_max (int) canonical_scale (int) canonical_level (int) eps (float) """ self.k_min = k_min self.k_max = k_max self.s0 = canonical_scale self.lvl0 = canonical_level self.eps = eps def __call__(self, boxlists): """ Arguments: boxlists (list[BoxList]) """ # Compute level ids s = torch.sqrt(cat([boxlist.area() for boxlist in boxlists])) # Eqn.(1) in FPN paper target_lvls = torch.floor(self.lvl0 + torch.log2(s / self.s0 + self.eps)) target_lvls = torch.clamp(target_lvls, min=self.k_min, max=self.k_max) return target_lvls.to(torch.int64) - self.k_min class PyramidRROIAlign(nn.Module): """ Pooler for Detection with or without FPN. It currently hard-code ROIAlign in the implementation, but that can be made more generic later on. Also, the requirement of passing the scales is not strictly necessary, as they can be inferred from the size of the feature map / size of original image, which is available thanks to the BoxList. """ def __init__(self, output_size, scales): """ Arguments: output_size (list[tuple[int]] or list[int]): output size for the pooled region scales (list[float]): scales for each Pooler sampling_ratio (int): sampling ratio for ROIAlign """ super(PyramidRROIAlign, self).__init__() poolers = [] for scale in scales: poolers.append( RROIAlign( output_size, spatial_scale=scale ) ) self.poolers = nn.ModuleList(poolers) self.output_size = output_size # get the levels in the feature map by leveraging the fact that the network always # downsamples by a factor of 2 at each level. lvl_min = -torch.log2(torch.tensor(scales[0], dtype=torch.float32)).item() lvl_max = -torch.log2(torch.tensor(scales[-1], dtype=torch.float32)).item() self.map_levels = LevelMapper(lvl_min, lvl_max) def convert_to_roi_format(self, boxes): concat_boxes = cat([b.bbox for b in boxes], dim=0) device, dtype = concat_boxes.device, concat_boxes.dtype ids = cat( [ torch.full((len(b), 1), i, dtype=dtype, device=device) for i, b in enumerate(boxes) ], dim=0, ) rois = torch.cat([ids, concat_boxes], dim=1) return rois def forward(self, x, boxes): """ Arguments: x (list[Tensor]): feature maps for each level boxes (list[BoxList]): boxes to be used to perform the pooling operation. Returns: result (Tensor) """ num_levels = len(self.poolers) rois = self.convert_to_roi_format(boxes) if num_levels == 1: return self.poolers[0](x[0], rois) levels = self.map_levels(boxes) num_rois = len(rois) num_channels = x[0].shape[1] output_size = self.output_size[0] dtype, device = x[0].dtype, x[0].device result = torch.zeros( (num_rois, num_channels, output_size, output_size), dtype=dtype, device=device, ) # result = [] for level, (per_level_feature, pooler) in enumerate(zip(x, self.poolers)): idx_in_level = torch.nonzero(levels == level).squeeze(1) rois_per_level = rois[idx_in_level] result[idx_in_level] = pooler(per_level_feature, rois_per_level) # rois_per_level) # result.append(pooler(per_level_feature, rois)) return result # torch.cat(result, 1) class Pooler(nn.Module): """ Pooler for Detection with or without FPN. It currently hard-code ROIAlign in the implementation, but that can be made more generic later on. Also, the requirement of passing the scales is not strictly necessary, as they can be inferred from the size of the feature map / size of original image, which is available thanks to the BoxList. """ def __init__(self, output_size, scales, sampling_ratio): """ Arguments: output_size (list[tuple[int]] or list[int]): output size for the pooled region scales (list[float]): scales for each Pooler sampling_ratio (int): sampling ratio for ROIAlign """ super(Pooler, self).__init__() poolers = [] for scale in scales: poolers.append( ROIAlign( output_size, spatial_scale=scale, sampling_ratio=sampling_ratio ) ) self.poolers = nn.ModuleList(poolers) self.output_size = output_size # get the levels in the feature map by leveraging the fact that the network always # downsamples by a factor of 2 at each level. lvl_min = -torch.log2(torch.tensor(scales[0], dtype=torch.float32)).item() lvl_max = -torch.log2(torch.tensor(scales[-1], dtype=torch.float32)).item() self.map_levels = LevelMapper(lvl_min, lvl_max) def convert_to_roi_format(self, boxes): concat_boxes = cat([b.bbox for b in boxes], dim=0) device, dtype = concat_boxes.device, concat_boxes.dtype ids = cat( [ torch.full((len(b), 1), i, dtype=dtype, device=device) for i, b in enumerate(boxes) ], dim=0, ) rois = torch.cat([ids, concat_boxes], dim=1) return rois def forward(self, x, boxes): """ Arguments: x (list[Tensor]): feature maps for each level boxes (list[BoxList]): boxes to be used to perform the pooling operation. Returns: result (Tensor) """ num_levels = len(self.poolers) rois = self.convert_to_roi_format(boxes) if num_levels == 1: return self.poolers[0](x[0], rois) levels = self.map_levels(boxes) num_rois = len(rois) num_channels = x[0].shape[1] output_size = self.output_size[0] dtype, device = x[0].dtype, x[0].device result = torch.zeros( (num_rois, num_channels, output_size, output_size), dtype=dtype, device=device, ) for level, (per_level_feature, pooler) in enumerate(zip(x, self.poolers)): idx_in_level = torch.nonzero(levels == level).squeeze(1) rois_per_level = rois[idx_in_level] result[idx_in_level] = pooler(per_level_feature, rois_per_level) return result
ded84433bff0e82fd58f4dc304b9a645a18403dd
dfad28a2e1a0199c0117e551fd1e31804804d5b9
/app/__init__.py
6efcbe27d1084742b368ce958eb28dc8ecdb33de
[ "MIT" ]
permissive
wilbrone/Pitches
c33d60b142b43de9ccf60a86cf59acbc262c6711
b20d234fd930a6551f26d9cf863c6d1631b62bc2
refs/heads/master
2022-12-09T08:02:08.631177
2019-11-25T23:47:13
2019-11-25T23:47:13
223,405,696
0
0
MIT
2022-12-08T06:55:48
2019-11-22T13:09:30
Python
UTF-8
Python
false
false
1,139
py
from flask import Flask from flask_bootstrap import Bootstrap from flask_sqlalchemy import SQLAlchemy from flask_mail import Mail from flask_login import LoginManager from flask_simplemde import SimpleMDE # from flask_uploads import UploadSet,configure_uploads,IMAGES from config import config_options bootstrap = Bootstrap() db = SQLAlchemy() mail = Mail() # photos = UploadSet('photos',IMAGES) login_manager = LoginManager() login_manager.session_protection = 'strong' login_manager.login_view = 'auth.login' simple = SimpleMDE() def create_app(config_name): app = Flask(__name__) # creating app configurations app.config.from_object(config_options[config_name]) # initializing flask extentions bootstrap.init_app(app) db.init_app(app) login_manager.init_app(app) mail.init_app(app) # registering BluePrint from .main import main as main_blueprint app.register_blueprint(main_blueprint) from .auth import auth as auth_blueprint app.register_blueprint(auth_blueprint,url_prefix = '/authenticate') # configure UploadSet # configure_uploads(app,photos) return app
fa772d6c102d931e816220e31d045e9b09bf18ab
3fd9c7ee49a32eae3013191b63154a9a5d6dafe6
/12.6驾驶飞船/12.6.4调整飞船的速度/alien_invasion_0.10.py
07be0e8c4159b335189b2368a83e687b00039bf0
[]
no_license
taozhenting/alien_invasion
e0c03cd9797cb33e40ca47a13eadeda8b1c4cf85
fd9bd97d6238da702fbb1eb6fcb78e8352875fe2
refs/heads/master
2020-04-27T05:31:48.862784
2019-01-30T09:43:49
2019-01-30T09:43:50
174,083,029
0
0
null
null
null
null
UTF-8
Python
false
false
885
py
#修改while循环,每次执行循环时调用飞船方法update() import pygame from settings_2 import Settings from ship_4 import Ship import game_functions_5 as gf def run_game(): #初始化游戏并创建一个屏幕对象 pygame.init() #创建Settings实例存储在ai_settings变量中 ai_settings = Settings() #使用ai_settings的属性screen_width和screen_height screen = pygame.display.set_mode( (ai_settings.screen_width,ai_settings.screen_height) ) pygame.display.set_caption("Alien Invasion") #创建一艘飞船 #需要传入实参ai_settings ship = Ship(ai_settings,screen) #开始游戏的循环 while True: gf.check_events(ship) #飞船的位置在检测到键盘事件后(但在更新屏幕前)更新。 ship.update() gf.update_screen(ai_settings,screen,ship) run_game()
584201b3a981910411696aaa3cbbeb9fa1d2944e
8f8f40280afdd0c47fd39664b43c8fb45d86a285
/code_sd_ssc/plot_utils.py
d11d53930b5434a904ba8695ee4e51e7e4f4b739
[]
no_license
shibaji7/IP_Shock_SSC_SuperDARN
d463341c432e14c3007a0540ad96b4325289d6c0
32ea9d72d2ab68a7b80ab12f41228783370b6d4f
refs/heads/main
2023-02-19T14:32:43.806681
2021-01-23T02:41:00
2021-01-23T02:41:00
303,022,533
1
0
null
null
null
null
UTF-8
Python
false
false
3,803
py
#!/usr/bin/env python """plot_utils.py: module is dedicated to plot different types of parameters""" __author__ = "Chakraborty, S." __copyright__ = "Copyright 2020, SuperDARN@VT" __credits__ = [] __license__ = "MIT" __version__ = "1.0." __maintainer__ = "Chakraborty, S." __email__ = "[email protected]" __status__ = "Research" import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import matplotlib.dates as mdates from matplotlib.dates import DateFormatter, num2date from matplotlib import patches import matplotlib.patches as mpatches import random import utils class RangeTimePlot(object): """ Create plots for velocity or power. """ def __init__(self, nrang, fig_title, num_subplots=1): self.nrang = nrang self.unique_gates = np.linspace(1, nrang, nrang) self.num_subplots = num_subplots self._num_subplots_created = 0 self.fig = plt.figure(figsize=(8, 3*num_subplots), dpi=100) # Size for website plt.suptitle(fig_title, x=0.075, y=0.99, ha="left", fontweight="bold", fontsize=15) mpl.rcParams.update({"font.size": 10}) return def _tight_layout(self): #self.fig.tight_layout(rect=[0, 0, 0.9, 0.97]) return def show(self): plt.show() return def save(self, filepath): plt.savefig(filepath, bbox_inches="tight") return def close(self): self.fig.clf() plt.close() return def _add_axis(self): self._num_subplots_created += 1 ax = self.fig.add_subplot(self.num_subplots, 1, self._num_subplots_created) return ax def _add_colorbar(self, fig, ax, bounds, colormap, label=""): """ Add a colorbar to the right of an axis. :param fig: :param ax: :param bounds: :param colormap: :param label: :return: """ import matplotlib as mpl pos = ax.get_position() cpos = [pos.x1 + 0.025, pos.y0 + 0.0125, 0.015, pos.height * 0.9] # this list defines (left, bottom, width, height cax = fig.add_axes(cpos) norm = mpl.colors.BoundaryNorm(bounds, colormap.N) cb2 = mpl.colorbar.ColorbarBase(cax, cmap=colormap, norm=norm, ticks=bounds, spacing="uniform", orientation="vertical") cb2.set_label(label) return def addPlot(self, df, beam, param="v", title="", pmax=200, step=25, xlabel="Time UT"): # add new axis df = df[df.bmnum==beam] self.ax = self._add_axis() # set up variables for plotter time = np.hstack(df["time"]) gate = np.hstack(df["slist"]) flags = np.hstack(df["v"]) bounds = list(range(-pmax, pmax+1, step)) cmap = plt.cm.jet X, Y, Z = utils.get_gridded_parameters(df, xparam="time", yparam="slist", zparam="v") norm = mpl.colors.BoundaryNorm(bounds, cmap.N) # cmap.set_bad("w", alpha=0.0) # Configure axes self.ax.xaxis.set_major_formatter(DateFormatter("%H:%M")) hours = mdates.HourLocator(byhour=range(0, 24, 4)) self.ax.xaxis.set_major_locator(hours) self.ax.set_xlabel(xlabel) self.ax.set_xlim([df.time.tolist()[0], df.time.tolist()[-1]]) self.ax.set_ylabel("Range gate") self.ax.pcolormesh(X, Y, Z.T, lw=0.01, edgecolors="None", cmap=cmap, norm=norm) self._tight_layout() # need to do this before adding the colorbar, because it depends on the axis position self._add_colorbar(self.fig, self.ax, bounds, cmap, label="Velocity [m/s]") self.ax.set_title(title, loc="left", fontdict={"fontweight": "bold"}) return
f0b36e876db026e32aeb47a005d47490db58f2bd
ff23e5c890216a1a63278ecb40cd7ac79ab7a4cd
/clients/client/python/test/test_update_recovery_flow_body.py
91fe274624feee373ef8d631fc0e1e6dd405c9ab
[ "Apache-2.0" ]
permissive
ory/sdk
fcc212166a92de9d27b2dc8ff587dcd6919e53a0
7184e13464948d68964f9b605834e56e402ec78a
refs/heads/master
2023-09-01T10:04:39.547228
2023-08-31T08:46:23
2023-08-31T08:46:23
230,928,630
130
85
Apache-2.0
2023-08-14T11:09:31
2019-12-30T14:21:17
C#
UTF-8
Python
false
false
1,293
py
""" Ory APIs Documentation for all public and administrative Ory APIs. Administrative APIs can only be accessed with a valid Personal Access Token. Public APIs are mostly used in browsers. # noqa: E501 The version of the OpenAPI document: v1.1.51 Contact: [email protected] Generated by: https://openapi-generator.tech """ import sys import unittest import ory_client from ory_client.model.update_recovery_flow_with_code_method import UpdateRecoveryFlowWithCodeMethod from ory_client.model.update_recovery_flow_with_link_method import UpdateRecoveryFlowWithLinkMethod globals()['UpdateRecoveryFlowWithCodeMethod'] = UpdateRecoveryFlowWithCodeMethod globals()['UpdateRecoveryFlowWithLinkMethod'] = UpdateRecoveryFlowWithLinkMethod from ory_client.model.update_recovery_flow_body import UpdateRecoveryFlowBody class TestUpdateRecoveryFlowBody(unittest.TestCase): """UpdateRecoveryFlowBody unit test stubs""" def setUp(self): pass def tearDown(self): pass def testUpdateRecoveryFlowBody(self): """Test UpdateRecoveryFlowBody""" # FIXME: construct object with mandatory attributes with example values # model = UpdateRecoveryFlowBody() # noqa: E501 pass if __name__ == '__main__': unittest.main()
faeb98b87b529091b354db981aaab9a7664aa97d
a59d20b9918df7cc17cfaf4bd1abaa73a086eb2a
/tfcnn_retraining.py
bc37e62d3d31befff38348e8f53c5da0d95d24cf
[]
no_license
yanqinghao/TFdeeplearning
5da5e7f4462c539ae25f29a42f2c5bc3b4abd171
8ec4f99b6e73b9d0866bc3706e2807cfa3229c58
refs/heads/master
2018-12-10T13:45:35.552852
2018-09-13T09:52:49
2018-09-13T09:52:49
118,085,046
0
0
null
null
null
null
UTF-8
Python
false
false
2,866
py
import os import tarfile import _pickle as cPickle import numpy as np import urllib.request import scipy.misc cifar_link = 'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz' data_dir = 'temp' if not os.path.isdir(data_dir): os.makedirs(data_dir) objects = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] target_file = os.path.join(data_dir, 'cifar-10-python.tar.gz') if not os.path.isfile(target_file): print('CIFAR-10 file not found. Downloading CIFAR data (Size = 163MB)') print('This may take a few minutes, please wait.') filename, headers = urllib.request.urlretrieve(cifar_link, target_file) # Extract into memory tar = tarfile.open(target_file) tar.extractall(path=data_dir) tar.close() # Create train image folders train_folder = 'train_dir' if not os.path.isdir(os.path.join(data_dir, train_folder)): for i in range(10): folder = os.path.join(data_dir, train_folder, objects[i]) os.makedirs(folder) # Create test image folders test_folder = 'validation_dir' if not os.path.isdir(os.path.join(data_dir, test_folder)): for i in range(10): folder = os.path.join(data_dir, test_folder, objects[i]) os.makedirs(folder) def load_batch_from_file(file): file_conn = open(file, 'rb') image_dictionary = cPickle.load(file_conn, encoding='latin1') file_conn.close() return(image_dictionary) def save_images_from_dict(image_dict, folder='data_dir'): for ix, label in enumerate(image_dict['labels']): folder_path = os.path.join(data_dir, folder, objects[label]) filename = image_dict['filenames'][ix] #Transform image data image_array = image_dict['data'][ix] image_array.resize([3, 32, 32]) # Save image output_location = os.path.join(folder_path, filename) scipy.misc.imsave(output_location,image_array.transpose()) data_location = os.path.join(data_dir, 'cifar-10-batches-py') train_names = ['data_batch_' + str(x) for x in range(1,6)] test_names = ['test_batch'] # Sort train images for file in train_names: print('Saving images from file: {}'.format(file)) file_location = os.path.join(data_dir, 'cifar-10-batches-py', file) image_dict = load_batch_from_file(file_location) save_images_from_dict(image_dict, folder=train_folder) # Sort test images for file in test_names: print('Saving images from file: {}'.format(file)) file_location = os.path.join(data_dir, 'cifar-10-batches-py', file) image_dict = load_batch_from_file(file_location) save_images_from_dict(image_dict, folder=test_folder) cifar_labels_file = os.path.join(data_dir,'cifar10_labels.txt') print('Writing labels file, {}'.format(cifar_labels_file)) with open(cifar_labels_file, 'w') as labels_file: for item in objects: labels_file.write("{}\n".format(item))
f57e92ca341a4ef719218a9cc8d1a392d5f8ed20
f14f48e50efb50cfe7078c68f0d61015ae2d646b
/Stock/Select/Ui/Other/DyStockSelectTestedStocksDlg.py
2b6d429fd49050e93adc805172ad3f4f682f0fbe
[ "MIT" ]
permissive
stockcode/DevilYuan
17a23da68954714cacae29f428c3005444e0e3a2
163d06cb7fd30a8f24b3f2e06206c1fd024353c3
refs/heads/master
2020-05-03T14:40:08.420822
2019-03-29T13:16:42
2019-03-29T13:16:42
178,683,886
2
1
MIT
2019-03-31T12:17:49
2019-03-31T12:17:49
null
UTF-8
Python
false
false
2,126
py
from datetime import * import os import re from PyQt5.QtWidgets import QDialog, QGridLayout, QLabel, QTextEdit, QPushButton, QApplication from DyCommon.DyCommon import * class DyStockSelectTestedStocksDlg(QDialog): def __init__(self, data, parent=None): super().__init__(parent) self._data = data self._init() self._initUi() def _init(self): path = DyCommon.createPath('Stock/User/Config/Testing') self._file = os.path.join(path, 'DyStockSelectTestedStocks.dy') def _read(self): if os.path.exists(self._file): with open(self._file) as f: codes = f.read() else: codes = "" return codes def _save(self): with open(self._file, 'w') as f: f.write(self._codesTextEdit.toPlainText()) def _initUi(self): self.setWindowTitle('要调试的股票') # 控件 descriptionLabel = QLabel('要调试的股票代码') self._codesTextEdit = QTextEdit() self._codesTextEdit.setPlainText(self._read()) cancelPushButton = QPushButton('Cancel') okPushButton = QPushButton('OK') cancelPushButton.clicked.connect(self._cancel) okPushButton.clicked.connect(self._ok) # 布局 grid = QGridLayout() grid.setSpacing(10) grid.addWidget(descriptionLabel, 0, 0) grid.addWidget(self._codesTextEdit, 1, 0, 20, 10) grid.addWidget(okPushButton, 1, 11) grid.addWidget(cancelPushButton, 2, 11) self.setLayout(grid) self.resize(QApplication.desktop().size().width()//3, QApplication.desktop().size().height()//2) def _ok(self): # save self._save() # set out data codes = re.split(',|\n| ', self._codesTextEdit.toPlainText()) temp = [] for x in codes: if x and x not in temp: temp.append(x) codes = [x + '.SH' if x[0] in ['6', '5'] else x + '.SZ' for x in temp] self._data['codes'] = codes self.accept() def _cancel(self): self.reject()
8b7a7bf8e469f8575e9b8af31593301da9b21c06
e57af4a840d1126e22363bd9611a40fe18093c92
/wrappers/s2i/python/test/router-template-app/MyRouter.py
10aa8ee91177f1fa9145641815baeec07abb43aa
[ "Apache-2.0" ]
permissive
holdenk/seldon-core
ca05e12c8e568700487f9b9e4b79a900200bd03c
de08406883850e5566b4e08af7d6484c1960bdd6
refs/heads/master
2020-03-07T12:47:07.530623
2018-03-30T10:08:42
2018-03-30T10:08:42
127,485,585
1
0
Apache-2.0
2018-03-31T00:37:40
2018-03-31T00:37:40
null
UTF-8
Python
false
false
755
py
class MyRouter(object): """ Router template. """ def __init__(self): """ Add any initialization parameters. These will be passed at runtime from the graph definition parameters defined in your seldondeployment kubernetes resource manifest. """ print("Initializing") def route(self,features,feature_names): """ Route a request. Parameters ---------- features : array-like feature_names : array of feature names (optional) """ return 0 def send_feedback(self,features,feature_names,routing,reward,truth): """ Handle feedback for your routings. Optional. """ print("Received feedback")
014442c52df6cfc9302ce48ac5b1ba27eebb94e3
d9eef8dd3489682c8db41f2311e3058d1f369780
/.history/abel-network-files/mcmc_alg_implementation_own_two_20180704104642.py
20737f1c25b68caf620680915be9d652c2c31371
[]
no_license
McKenzie-Lamb/Gerrymandering
93fe4a49fe39a0b307ed341e46ba8620ea1225be
b7a7c4129d6b0fcd760ba8952de51eafa701eac3
refs/heads/master
2021-01-25T06:06:43.824339
2018-10-16T14:27:01
2018-10-16T14:27:01
93,526,515
0
0
null
2018-07-12T19:07:35
2017-06-06T14:17:47
Python
UTF-8
Python
false
false
11,006
py
# Author: Abel Gonzalez # Date: 06/26/18 # # Description: # This program uses the .shp file to create a network graph where each node # represents a census tract and the edge represents adjacency between each # tract, usign graph-tool instead of networkx import random import math import numpy as np import graph_tool.all as gt import time from pathlib import Path def create_graph_views(district_total_no): graph_views = list() for i in range(district_total_no): graph_view = gt.GraphView(graph) graph_view_check = graph_view.new_vertex_property("bool") matched_vertices = gt.find_vertex(graph, district_no, i) for j in matched_vertices: graph_view_check[j] = True graph_view = gt.GraphView(graph_view, vfilt=graph_view_check) graph_view.vp.valid = graph_view_check graph_views.append(graph_view) return graph_views def turn_off_edges(districts_graphs): turned_off_graphs = list() # Iterate through districts and selects random edges for district in range(len(districts_graphs)): to_delete = districts_graphs[district].new_edge_property('bool') edges = districts_graphs[district].get_edges() selected = edges[np.random.randint( edges.shape[0], size=len(edges)//2), :] # Here is the prob for edge turn off for i in selected: to_delete[i] = True turned_off_graphs.append(gt.GraphView( districts_graphs[district], efilt=to_delete)) return turned_off_graphs def get_cp_boundaries(graph, turned_on_graphs): cp_boundary = list() for g in range(len(turned_on_graphs)): cp_label, hist = gt.label_components(turned_on_graphs[g]) labels = set(cp_label.a) for l in labels: cp = gt.find_vertex(turned_on_graphs[g], cp_label, l) label_boun = 0 for v in cp: vertex_bound = False for n in graph.vertex(v).all_neighbors(): for g_two in range(len(turned_on_graphs)): if g == g_two: continue try: turned_on_graphs[g_two].vertex(n) except ValueError: continue else: graph.vp.nd[graph.vertex(v)] = g_two graph.vp.cd[graph.vertex(v)] = g vertex_bound = True break if vertex_bound == True: label_boun += 1 break if label_boun == len(cp): cp_boundary.append(cp) return cp_boundary def get_non_adjacent_v(labels_in_boundaries, graph): list_to_swap = random.sample( labels_in_boundaries, random.randint(2, len(labels_in_boundaries))) # Prob for choosing from boundaries index_to_del = list() for l in range(len(list_to_swap)): for v in range(len(list_to_swap[l])): for l_two in range(len(list_to_swap)): if l == l_two: continue for v_two in range(len(list_to_swap[l_two])): if len(gt.shortest_path(graph, graph.vertex(list_to_swap[l][v]), graph.vertex(list_to_swap[l_two][v_two]))[0]) < 3: index_to_del.append(l) for i in range(len(list_to_swap)): if i in index_to_del: try: del list_to_swap[i] except IndexError: continue return list_to_swap def gather_districts_data(districts_graphs): for i in range(len(districts_graphs)): population = districts_graphs[i].new_graph_property('int') districts_graphs[i].graph_properties["pop"] = population districts_graphs[i].graph_properties["pop"] = 0 dem_vote = districts_graphs[i].new_graph_property('int') districts_graphs[i].graph_properties["dem_vote"] = dem_vote districts_graphs[i].graph_properties["dem_vote"] = 0 rep_vote = districts_graphs[i].new_graph_property('int') districts_graphs[i].graph_properties["rep_vote"] = rep_vote districts_graphs[i].graph_properties["rep_vote"] = 0 for v in districts_graphs[i].vertices(): districts_graphs[i].graph_properties["pop"] += graph.vp.data[v]["PERSONS"] districts_graphs[i].graph_properties["dem_vote"] += graph.vp.data[v]["CONDEM14"] districts_graphs[i].graph_properties["rep_vote"] += graph.vp.data[v]["CONREP14"] return districts_graphs def random_color(): r = random.randint(0, 256) g = random.randint(0, 256) b = random.randint(0, 256) a = 1 color_to_return = [r, g, b, a] index_to_zero = random.randint(0, 3) color_to_return[index_to_zero] = 0 return color_to_return def adjust_color(districts_graphs, color, ring_color, niter_type = 'first', ring_colors_dict = None): if niter_type == 'nonfirst': for i in range(len(districts_graphs)): if districts_graphs[i].graph_properties["dem_vote"] > districts_graphs[i].graph_properties["rep_vote"]: color_ = (0, 0, 255, 1) else: color_ = (255, 0, 0, 1) for v in districts_graphs[i].vertices(): color[v] = color_ ring_color[v] = ring_colors_dict[i] return color, ring_color else: ring_colors_dict = dict() for i in range(len(districts_graphs)): ring_colors_dict[i] = random_color().copy() if districts_graphs[i].graph_properties["dem_vote"] > districts_graphs[i].graph_properties["rep_vote"]: color_ = (0, 0, 255, 1) else: color_ = (255, 0, 0, 1) for v in districts_graphs[i].vertices(): color[v] = color_ ring_color[v] = ring_colors_dict[i] return color, ring_color, ring_colors_dict def propose_swap(districts_graphs, proposed_components, graph, labels_in_boundaries): changes = dict() vertex_to_add = dict() vertex_to_delete = dict() for i in range(len(districts_graphs)): changes[i] = [districts_graphs[i].graph_properties["pop"], districts_graphs[i].graph_properties["rep_vote"], districts_graphs[i].graph_properties["dem_vote"]] vertex_to_add[i] = [] vertex_to_delete[i] = [] for c in proposed_components: added_pop = 0 added_rep = 0 added_dem = 0 n_dindex = 0 c_dindex = 0 for v in range(len(c)): added_pop += graph.vp.data[c[v]]['PERSONS'] added_rep += graph.vp.data[c[v]]['CONREP14'] added_dem += graph.vp.data[c[v]]['CONDEM14'] n_dindex = graph.vp.nd[c[v]] c_dindex = graph.vp.cd[c[v]] vertex_to_add[n_dindex].append(c[v]) vertex_to_delete[c_dindex].append(c[v]) changes[n_dindex][0] += added_pop changes[n_dindex][1] += added_rep changes[n_dindex][2] += added_dem changes[c_dindex][0] -= added_pop changes[c_dindex][1] -= added_rep changes[c_dindex][2] -= added_dem similar_pop = True for i in changes.keys(): if i == 0: continue similar_pop = math.isclose(changes[i][0], changes[i-1][0], rel_tol=0.50) # Here is the population difference if similar_pop == True: contiguos = True for i in changes.keys(): previous_state = districts_graphs[i].vp.valid.copy() districts_graphs[i].graph_properties["pop"] = changes[i][0] districts_graphs[i].graph_properties["rep_vote"] = changes[i][1] districts_graphs[i].graph_properties["dem_vote"] = changes[i][2] for j in vertex_to_add[i]: if len(vertex_to_add[i]) == 0: break districts_graphs[i].vp.valid[j] = True for j in vertex_to_delete[i]: if len(vertex_to_delete[i]) == 0: break districts_graphs[i].vp.valid[j] = False comp, hist = gt.label_components(districts_graphs[i]) if np.sum(comp.a) != 0: contiguos == False if contiguos == True: return districts_graphs else: selected_vertices = get_non_adjacent_v(labels_in_boundaries, graph) propose_swap(districts_graphs, selected_vertices, graph, labels_in_boundaries) else: selected_vertices = get_non_adjacent_v(labels_in_boundaries, graph) propose_swap(districts_graphs, selected_vertices, graph, labels_in_boundaries) # Paths main_folder = Path("abel-network-files/") data_folder = Path("abel-network-files/data/") images_folder = Path("abel-network-files/images/") # Loading the previous created Graph and creating the prop maps graph = gt.load_graph(str(data_folder / "tmp_graph.gt")) color = graph.new_vertex_property("vector<double>") ring_color = graph.new_vertex_property("vector<double>") cp_label = graph.new_vertex_property("int") neighbor_district = graph.new_vertex_property('int') current_district = graph.new_vertex_property('int') graph.vp.nd = neighbor_district graph.vp.cd = current_district # Init variables district_total_no = 2 # Separates graph into blocks districts = gt.minimize_blockmodel_dl( graph, district_total_no, district_total_no) district_no = districts.get_blocks() # Create the different graphs districts_graphs = create_graph_views(district_total_no) # Initialize data and draw first image districts_graphs = gather_districts_data(districts_graphs) color, ring_color, ring_colors_dict = adjust_color(districts_graphs, color, ring_color) gt.graph_draw(graph, vertex_fill_color = color, vertex_color = ring_color, output = str(main_folder / 'tmp.png'), bg_color=(255, 255, 255, 1), pos=graph.vp.pos) # Actual function calling part of algorithm for i in range(10): turned_on_graphs = turn_off_edges(districts_graphs) labels_in_boundaries = get_cp_boundaries(graph, turned_on_graphs) selected_vertices = get_non_adjacent_v(labels_in_boundaries, graph) districts_graphs = propose_swap(districts_graphs, selected_vertices, graph, labels_in_boundaries) start_t = time.time() for j in districts_graphs: comp, hist = gt.label_components(j) if sum(comp.a) == 0: print(True) else: print(False) end_t = time.time() print(end_t - start_t) print('-------------') color, ring_color = adjust_color(districts_graphs, color, ring_color, niter_type = 'nonfirst', ring_colors_dict = ring_colors_dict) gt.graph_draw(graph, vertex_fill_color = color, vertex_color = ring_color, output = str(main_folder / ('tmp'+str(i)+'.png')), bg_color=(255, 255, 255, 1), pos=graph.vp.pos)
bbf67b6d8b12d59dd77937c8c5df126c1dd64d82
ba198225eceb33df214400c8a19a46292c051fe2
/conf/settings/settings_production.py
3e2f6aff61ff45d7a83f5a749ef78ecc26392a48
[]
no_license
puntonim/inspire-read-api
64e39261b41c6610f8775645eab18252bbeeb6c2
876a053ae5ad2642911bab5387ed6139bc9b09ec
refs/heads/master
2020-07-11T12:36:41.358661
2019-04-04T12:22:38
2019-08-26T19:07:21
204,540,974
0
0
null
null
null
null
UTF-8
Python
false
false
170
py
""" Production settings. """ from .settings_base import * DEBUG = False ALLOWED_HOSTS = ['mysite.com'] SECRET_KEY = 'mysecretkey' ORCID_TOKENS_ENCRYPTION_KEY = 'mykey'
a5af53f0ae3c8b6d8628a1c09137e61e88a8ea9d
156b77dc620d47fa76baf9361b4ccac04a7f7995
/FSND/projects/02_trivia_api/starter/backend/test_flaskr.py
5adf46e7e178d309d8bf8069f3ee65a3d2663468
[]
no_license
zyfsju/fullstack-study
cc43b18a47bdf277be3828d351624063d965723a
1172d62689e8edf60636d548cfc89c5168296d9c
refs/heads/master
2023-03-25T03:03:04.021634
2021-03-22T17:56:04
2021-03-22T17:56:04
350,438,373
0
0
null
null
null
null
UTF-8
Python
false
false
3,503
py
import os import unittest import json from flask_sqlalchemy import SQLAlchemy from flaskr import create_app from models import setup_db, Question, Category class TriviaTestCase(unittest.TestCase): """This class represents the trivia test case""" def setUp(self): """Define test variables and initialize app.""" self.app = create_app() self.client = self.app.test_client self.database_name = "trivia_test" self.database_path = "postgres://{}/{}".format( "localhost:5432", self.database_name ) self.new_question = { "question": "How far is the mooon away from the earth?", "answer": "238,900 mi", "category": 3, "difficulty": 4, } setup_db(self.app, self.database_path) # binds the app to the current context with self.app.app_context(): self.db = SQLAlchemy() self.db.init_app(self.app) # create all tables self.db.create_all() def tearDown(self): """Executed after reach test""" pass """ TODO Write at least one test for each test for successful operation and for expected errors. """ def test_get_categories(self): res = self.client().get("/categories") data = json.loads(res.data) self.assertEqual(res.status_code, 200) self.assertTrue(len(data["categories"])) def test_get_questions_success(self): res = self.client().get("/questions?page=1") data = json.loads(res.data) self.assertEqual(res.status_code, 200) self.assertTrue(len(data["questions"])) def test_get_questions_404(self): res = self.client().get("/questions?page=30") self.assertEqual(res.status_code, 404) def test_delete_question_success(self): res = self.client().delete("/questions/9") self.assertEqual(res.status_code, 200) def test_delete_question_404(self): res = self.client().delete("/questions/100") self.assertEqual(res.status_code, 404) def test_post_question_search(self): res = self.client().post("/questions", json={"searchTerm": "box"}) self.assertEqual(res.status_code, 200) def test_post_question_insert(self): res = self.client().post("/questions", json=self.new_question) self.assertEqual(res.status_code, 200) def test_post_question_422(self): res = self.client().post("/questions", json={"test": True}) self.assertEqual(res.status_code, 422) def test_post_question_400(self): res = self.client().post("/questions", json={}) self.assertEqual(res.status_code, 400) def test_get_questions_by_category(self): res = self.client().get("/categories/2/questions") self.assertEqual(res.status_code, 200) def test_get_questions_by_category_404(self): res = self.client().get("/categories/tt/questions") self.assertEqual(res.status_code, 404) def test_get_quiz_question(self): res = self.client().post( "/quizzes", json={ "previous_questions": [], "quiz_category": {"type": "History", "id": "4"}, }, ) data = json.loads(res.data) self.assertEqual(res.status_code, 200) self.assertTrue("question" in data.keys()) # Make the tests conveniently executable if __name__ == "__main__": unittest.main()
5d2db857d942cc972b50c1533898446b0879cf70
53dee1a74618e5ac343c5abe0a7a46fdf287e51e
/modules/callbacks.py
24e779a197aeef08e887e7541a2d795fa423a938
[]
no_license
SpencerRaw/GNCA
250e8bc0351d121ba4c752ad07d02975f9e15e17
f82f24925acb26c141ed02b0b0fe23ebb0878450
refs/heads/master
2023-08-29T10:27:08.590713
2021-11-08T07:52:12
2021-11-08T07:52:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,275
py
import numpy as np from tensorflow.keras.callbacks import Callback from boids.evaluate_boids import evaluate_complexity from boids.forward import forward class ComplexityCallback(Callback): def __init__( self, test_every=10, n_trajectories=1, trajectory_len=1000, n_boids=100 ): super().__init__() self.test_every = test_every self.n_trajectories = n_trajectories self.trajectory_len = trajectory_len self.n_boids = n_boids self.complexities = [] def on_epoch_begin(self, epoch, logs=None): if self.test_every > 0 and epoch == 0: self.evaluate_complexity() def on_epoch_end(self, epoch, logs=None): if self.test_every > 0 and epoch > 0 and epoch % self.test_every == 0: self.evaluate_complexity() def on_train_end(self, logs=None): if self.test_every > 0: self.complexities = np.array(self.complexities) np.savez("complexities.npz", complexities=self.complexities) def evaluate_complexity(self): out = evaluate_complexity( self.model, forward, self.n_trajectories, self.trajectory_len, self.n_boids, ) self.complexities.append(out)
bc041e4c5efd26ad99e6caa4c17e001f6f83401a
b5daf9d5525971be607e87e140c6e7575ac4a9e2
/service-mgmt-api/sm-api/sm_api/openstack/common/cliutils.py
4e37ff8fcfa5fda508427ff57b265d4cf6653e80
[ "Apache-2.0" ]
permissive
starlingx/ha
9befeac4e934a22fdeadfc35163feb37967189e0
e35510e1cc54e83a158af9a5da3fb75ed4dd8601
refs/heads/master
2023-08-16T18:36:29.902446
2023-08-09T14:31:50
2023-08-10T14:52:02
237,515,014
3
3
Apache-2.0
2021-01-14T02:49:45
2020-01-31T20:58:31
C
UTF-8
Python
false
false
2,020
py
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2012 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # # Copyright (c) 2013-2014 Wind River Systems, Inc. # import inspect class MissingArgs(Exception): def __init__(self, missing): self.missing = missing def __str__(self): if len(self.missing) == 1: return "An argument is missing" else: return ("%(num)d arguments are missing" % dict(num=len(self.missing))) def validate_args(fn, *args, **kwargs): """Check that the supplied args are sufficient for calling a function. >>> validate_args(lambda a: None) Traceback (most recent call last): ... MissingArgs: An argument is missing >>> validate_args(lambda a, b, c, d: None, 0, c=1) Traceback (most recent call last): ... MissingArgs: 2 arguments are missing :param fn: the function to check :param arg: the positional arguments supplied :param kwargs: the keyword arguments supplied """ argspec = inspect.getargspec(fn) num_defaults = len(argspec.defaults or []) required_args = argspec.args[:len(argspec.args) - num_defaults] def isbound(method): return getattr(method, 'im_self', None) is not None if isbound(fn): required_args.pop(0) missing = [arg for arg in required_args if arg not in kwargs] missing = missing[len(args):] if missing: raise MissingArgs(missing)
61bffabbd45a33440250f55fb45cacc40dd6a16c
19a32440205b2caeec67c73c10d917b5fb30a86a
/test/test_cloud_account_create_params.py
729711d8628bae2fcbff63c14301d27e5882ccab
[ "MIT", "Apache-2.0" ]
permissive
marrotte/isilon_sdk_python
480e84312f5924a506aeb09c9c7cae79a2b9b7f4
91039da803ae37ed4abf8d2a3f59c333f3ef1866
refs/heads/master
2020-03-23T07:31:40.376316
2016-06-07T23:44:31
2016-06-07T23:44:31
141,277,076
1
0
MIT
2018-07-17T11:02:08
2018-07-17T11:02:08
null
UTF-8
Python
false
false
1,331
py
# coding: utf-8 """ Copyright 2016 SmartBear Software Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ref: https://github.com/swagger-api/swagger-codegen """ from __future__ import absolute_import import os import sys import unittest import swagger_client from swagger_client.rest import ApiException from swagger_client.models.cloud_account_create_params import CloudAccountCreateParams class TestCloudAccountCreateParams(unittest.TestCase): """ CloudAccountCreateParams unit test stubs """ def setUp(self): pass def tearDown(self): pass def testCloudAccountCreateParams(self): """ Test CloudAccountCreateParams """ model = swagger_client.models.cloud_account_create_params.CloudAccountCreateParams() if __name__ == '__main__': unittest.main()
0cb3fb9fc0bf5c436f79abb096e9c3c3d73b02bb
39d4504ec1da8975fac526d6801b94f4348b6b61
/research/object_detection/core/keypoint_ops.py
4e34d34eccf3f3b0da87fb24dd13973323dabd23
[ "Apache-2.0" ]
permissive
vincentcheny/models
fe0ff5888e6ee00a0d4fa5ee14154acdbeebe7ad
afb1a59fc1bc792ac72d1a3e22e2469020529788
refs/heads/master
2020-07-23T21:38:24.559521
2019-11-15T07:50:11
2019-11-15T07:50:11
207,712,649
1
0
Apache-2.0
2019-09-11T03:12:31
2019-09-11T03:12:31
null
UTF-8
Python
false
false
11,522
py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Keypoint operations. Keypoints are represented as tensors of shape [num_instances, num_keypoints, 2], where the last dimension holds rank 2 tensors of the form [y, x] representing the coordinates of the keypoint. """ import numpy as np import tensorflow as tf def scale(keypoints, y_scale, x_scale, scope=None): """Scales keypoint coordinates in x and y dimensions. Args: keypoints: a tensor of shape [num_instances, num_keypoints, 2] y_scale: (float) scalar tensor x_scale: (float) scalar tensor scope: name scope. Returns: new_keypoints: a tensor of shape [num_instances, num_keypoints, 2] """ with tf.name_scope(scope, 'Scale'): y_scale = tf.cast(y_scale, tf.float32) x_scale = tf.cast(x_scale, tf.float32) new_keypoints = keypoints * [[[y_scale, x_scale]]] return new_keypoints def clip_to_window(keypoints, window, scope=None): """Clips keypoints to a window. This op clips any input keypoints to a window. Args: keypoints: a tensor of shape [num_instances, num_keypoints, 2] window: a tensor of shape [4] representing the [y_min, x_min, y_max, x_max] window to which the op should clip the keypoints. scope: name scope. Returns: new_keypoints: a tensor of shape [num_instances, num_keypoints, 2] """ with tf.name_scope(scope, 'ClipToWindow'): y, x = tf.split(value=keypoints, num_or_size_splits=2, axis=2) win_y_min, win_x_min, win_y_max, win_x_max = tf.unstack(window) y = tf.maximum(tf.minimum(y, win_y_max), win_y_min) x = tf.maximum(tf.minimum(x, win_x_max), win_x_min) new_keypoints = tf.concat([y, x], 2) return new_keypoints def prune_outside_window(keypoints, window, scope=None): """Prunes keypoints that fall outside a given window. This function replaces keypoints that fall outside the given window with nan. See also clip_to_window which clips any keypoints that fall outside the given window. Args: keypoints: a tensor of shape [num_instances, num_keypoints, 2] window: a tensor of shape [4] representing the [y_min, x_min, y_max, x_max] window outside of which the op should prune the keypoints. scope: name scope. Returns: new_keypoints: a tensor of shape [num_instances, num_keypoints, 2] """ with tf.name_scope(scope, 'PruneOutsideWindow'): y, x = tf.split(value=keypoints, num_or_size_splits=2, axis=2) win_y_min, win_x_min, win_y_max, win_x_max = tf.unstack(window) valid_indices = tf.logical_and( tf.logical_and(y >= win_y_min, y <= win_y_max), tf.logical_and(x >= win_x_min, x <= win_x_max)) new_y = tf.where(valid_indices, y, np.nan * tf.ones_like(y)) new_x = tf.where(valid_indices, x, np.nan * tf.ones_like(x)) new_keypoints = tf.concat([new_y, new_x], 2) return new_keypoints def change_coordinate_frame(keypoints, window, scope=None): """Changes coordinate frame of the keypoints to be relative to window's frame. Given a window of the form [y_min, x_min, y_max, x_max], changes keypoint coordinates from keypoints of shape [num_instances, num_keypoints, 2] to be relative to this window. An example use case is data augmentation: where we are given groundtruth keypoints and would like to randomly crop the image to some window. In this case we need to change the coordinate frame of each groundtruth keypoint to be relative to this new window. Args: keypoints: a tensor of shape [num_instances, num_keypoints, 2] window: a tensor of shape [4] representing the [y_min, x_min, y_max, x_max] window we should change the coordinate frame to. scope: name scope. Returns: new_keypoints: a tensor of shape [num_instances, num_keypoints, 2] """ with tf.name_scope(scope, 'ChangeCoordinateFrame'): win_height = window[2] - window[0] win_width = window[3] - window[1] new_keypoints = scale(keypoints - [window[0], window[1]], 1.0 / win_height, 1.0 / win_width) return new_keypoints def to_normalized_coordinates(keypoints, height, width, check_range=True, scope=None): """Converts absolute keypoint coordinates to normalized coordinates in [0, 1]. Usually one uses the dynamic shape of the image or conv-layer tensor: keypoints = keypoint_ops.to_normalized_coordinates(keypoints, tf.shape(images)[1], tf.shape(images)[2]), This function raises an assertion failed error at graph execution time when the maximum coordinate is smaller than 1.01 (which means that coordinates are already normalized). The value 1.01 is to deal with small rounding errors. Args: keypoints: A tensor of shape [num_instances, num_keypoints, 2]. height: Maximum value for y coordinate of absolute keypoint coordinates. width: Maximum value for x coordinate of absolute keypoint coordinates. check_range: If True, checks if the coordinates are normalized. scope: name scope. Returns: tensor of shape [num_instances, num_keypoints, 2] with normalized coordinates in [0, 1]. """ with tf.name_scope(scope, 'ToNormalizedCoordinates'): height = tf.cast(height, tf.float32) width = tf.cast(width, tf.float32) if check_range: max_val = tf.reduce_max(keypoints) max_assert = tf.Assert(tf.greater(max_val, 1.01), ['max value is lower than 1.01: ', max_val]) with tf.control_dependencies([max_assert]): width = tf.identity(width) return scale(keypoints, 1.0 / height, 1.0 / width) def to_absolute_coordinates(keypoints, height, width, check_range=True, scope=None): """Converts normalized keypoint coordinates to absolute pixel coordinates. This function raises an assertion failed error when the maximum keypoint coordinate value is larger than 1.01 (in which case coordinates are already absolute). Args: keypoints: A tensor of shape [num_instances, num_keypoints, 2] height: Maximum value for y coordinate of absolute keypoint coordinates. width: Maximum value for x coordinate of absolute keypoint coordinates. check_range: If True, checks if the coordinates are normalized or not. scope: name scope. Returns: tensor of shape [num_instances, num_keypoints, 2] with absolute coordinates in terms of the image size. """ with tf.name_scope(scope, 'ToAbsoluteCoordinates'): height = tf.cast(height, tf.float32) width = tf.cast(width, tf.float32) # Ensure range of input keypoints is correct. if check_range: max_val = tf.reduce_max(keypoints) max_assert = tf.Assert(tf.greater_equal(1.01, max_val), ['maximum keypoint coordinate value is larger ' 'than 1.01: ', max_val]) with tf.control_dependencies([max_assert]): width = tf.identity(width) return scale(keypoints, height, width) def flip_horizontal(keypoints, flip_point, flip_permutation, scope=None): """Flips the keypoints horizontally around the flip_point. This operation flips the x coordinate for each keypoint around the flip_point and also permutes the keypoints in a manner specified by flip_permutation. Args: keypoints: a tensor of shape [num_instances, num_keypoints, 2] flip_point: (float) scalar tensor representing the x coordinate to flip the keypoints around. flip_permutation: rank 1 int32 tensor containing the keypoint flip permutation. This specifies the mapping from original keypoint indices to the flipped keypoint indices. This is used primarily for keypoints that are not reflection invariant. E.g. Suppose there are 3 keypoints representing ['head', 'right_eye', 'left_eye'], then a logical choice for flip_permutation might be [0, 2, 1] since we want to swap the 'left_eye' and 'right_eye' after a horizontal flip. scope: name scope. Returns: new_keypoints: a tensor of shape [num_instances, num_keypoints, 2] """ with tf.name_scope(scope, 'FlipHorizontal'): keypoints = tf.transpose(keypoints, [1, 0, 2]) keypoints = tf.gather(keypoints, flip_permutation) v, u = tf.split(value=keypoints, num_or_size_splits=2, axis=2) u = flip_point * 2.0 - u new_keypoints = tf.concat([v, u], 2) new_keypoints = tf.transpose(new_keypoints, [1, 0, 2]) return new_keypoints def flip_vertical(keypoints, flip_point, flip_permutation, scope=None): """Flips the keypoints vertically around the flip_point. This operation flips the y coordinate for each keypoint around the flip_point and also permutes the keypoints in a manner specified by flip_permutation. Args: keypoints: a tensor of shape [num_instances, num_keypoints, 2] flip_point: (float) scalar tensor representing the y coordinate to flip the keypoints around. flip_permutation: rank 1 int32 tensor containing the keypoint flip permutation. This specifies the mapping from original keypoint indices to the flipped keypoint indices. This is used primarily for keypoints that are not reflection invariant. E.g. Suppose there are 3 keypoints representing ['head', 'right_eye', 'left_eye'], then a logical choice for flip_permutation might be [0, 2, 1] since we want to swap the 'left_eye' and 'right_eye' after a horizontal flip. scope: name scope. Returns: new_keypoints: a tensor of shape [num_instances, num_keypoints, 2] """ with tf.name_scope(scope, 'FlipVertical'): keypoints = tf.transpose(keypoints, [1, 0, 2]) keypoints = tf.gather(keypoints, flip_permutation) v, u = tf.split(value=keypoints, num_or_size_splits=2, axis=2) v = flip_point * 2.0 - v new_keypoints = tf.concat([v, u], 2) new_keypoints = tf.transpose(new_keypoints, [1, 0, 2]) return new_keypoints def rot90(keypoints, scope=None): """Rotates the keypoints counter-clockwise by 90 degrees. Args: keypoints: a tensor of shape [num_instances, num_keypoints, 2] scope: name scope. Returns: new_keypoints: a tensor of shape [num_instances, num_keypoints, 2] """ with tf.name_scope(scope, 'Rot90'): keypoints = tf.transpose(keypoints, [1, 0, 2]) v, u = tf.split(value=keypoints[:, :, ::-1], num_or_size_splits=2, axis=2) v = 1.0 - v new_keypoints = tf.concat([v, u], 2) new_keypoints = tf.transpose(new_keypoints, [1, 0, 2]) return new_keypoints
f747c7fc30189608f2665557c00fa27eb5312c27
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_092/ch68_2020_05_04_19_40_02_713532.py
94edce737f60b07ea6de9d86db9b8fbf6ef19a20
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
960
py
def separa_trios(x): if len(x)%3 == 0: i = 0 L1 = [] L2 = [] while i < len(x): L1.append(x[i]) L1.append(x[i + 1]) L1.append(x[i + 2]) L2.append(L1) L1 = [] i += 3 return L2 elif len(x)%3 == 2: c = 0 L3 = [] L4 = [] while(c < (len(x)-2)): L3.append(x[c]) L3.append(x[c + 1]) L3.append(x[c + 2]) L4.append(L3) L3 = [] c += 3 L3.append(x[len(X)-1]) L3.append(x[len(x)]) L4.append(L3) return L4 else: j = 0 L5 = [] L6 = [] while(j < (len(x)-1)): L5.append(x[j]) L5.append(x[j + 1]) L5.append(x[j + 2]) L6.append(L5) L5 = [] j += 3 L5.append(x[len(x)]) L6.append(L5) return L6
ddff7707ddf45d323fdbddc7a9da8e6465da5e1d
491c1e520a64e3ebd5349130f35047aaed1e70ec
/contest/maxAscendingSum.py
854c5fb405b93f90d906324748c19480c1d1e40d
[]
no_license
pangyouzhen/data-structure
33a7bd7790c8db3e018114d85a137f5f3d6b92f8
cd46cf08a580c418cc40a68bf9b32371fc69a803
refs/heads/master
2023-05-26T12:02:30.800301
2023-05-21T08:07:57
2023-05-21T08:07:57
189,315,047
0
0
null
null
null
null
UTF-8
Python
false
false
607
py
class Solution(object): # 这个题如果改成 子序列呢 def maxAscendingSum(self, nums): """ :type nums: List[int] :rtype: int """ dp = [0] * len(nums) dp[0] = nums[0] for i in range(1, len(nums)): if nums[i] > nums[i - 1]: dp[i] = dp[i - 1] + nums[i] else: dp[i] = nums[i] return max(dp) if __name__ == '__main__': # nums = [10, 30, 60, 60, 60, 65] nums = [10, 20, 30, 5, 10, 50] sol = Solution() print(sol.maxAscendingSum(nums))
0c811292eabe29cef6cd91ec494fede6e354542b
f07a42f652f46106dee4749277d41c302e2b7406
/Data Set/bug-fixing-1/1d3d6a3e2d2c4b7e50ebc0f191430bfbef4fd40a-<main>-fix.py
93eb6b2dcb9e8a30f58802955767945e9a6d77f4
[]
no_license
wsgan001/PyFPattern
e0fe06341cc5d51b3ad0fe29b84098d140ed54d1
cc347e32745f99c0cd95e79a18ddacc4574d7faa
refs/heads/main
2023-08-25T23:48:26.112133
2021-10-23T14:11:22
2021-10-23T14:11:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,476
py
def main(): module = AnsibleModule(argument_spec=dict(path=dict(type='list', required=True), format=dict(type='str', default='gz', choices=['bz2', 'gz', 'tar', 'xz', 'zip']), dest=dict(type='path'), exclude_path=dict(type='list'), remove=dict(type='bool', default=False)), add_file_common_args=True, supports_check_mode=True) params = module.params check_mode = module.check_mode paths = params['path'] dest = params['dest'] exclude_paths = params['exclude_path'] remove = params['remove'] expanded_paths = [] expanded_exclude_paths = [] format = params['format'] globby = False changed = False state = 'absent' archive = False successes = [] if ((not HAS_LZMA) and (format == 'xz')): module.fail_json(msg='lzma or backports.lzma is required when using xz format.') for path in paths: path = os.path.expanduser(os.path.expandvars(path)) if (('*' in path) or ('?' in path)): expanded_paths = (expanded_paths + glob.glob(path)) globby = True else: expanded_paths.append(path) if exclude_paths: for exclude_path in exclude_paths: exclude_path = os.path.expanduser(os.path.expandvars(exclude_path)) if (('*' in exclude_path) or ('?' in exclude_path)): expanded_exclude_paths = (expanded_exclude_paths + glob.glob(exclude_path)) else: expanded_exclude_paths.append(exclude_path) if (not expanded_paths): return module.fail_json(path=', '.join(paths), expanded_paths=', '.join(expanded_paths), msg='Error, no source paths were found') archive = (globby or os.path.isdir(expanded_paths[0]) or (len(expanded_paths) > 1)) if ((not dest) and (not archive)): dest = ('%s.%s' % (expanded_paths[0], format)) if (archive and (not dest)): module.fail_json(dest=dest, path=', '.join(paths), msg='Error, must specify "dest" when archiving multiple files or trees') archive_paths = [] missing = [] arcroot = '' for path in expanded_paths: if (arcroot == ''): arcroot = (os.path.dirname(path) + os.sep) else: for i in range(len(arcroot)): if (path[i] != arcroot[i]): break if (i < len(arcroot)): arcroot = os.path.dirname(arcroot[0:(i + 1)]) arcroot += os.sep if (remove and os.path.isdir(path)): path_dir = path if (path[(- 1)] != '/'): path_dir += '/' if dest.startswith(path_dir): module.fail_json(path=', '.join(paths), msg='Error, created archive can not be contained in source paths when remove=True') if (os.path.lexists(path) and (path not in expanded_exclude_paths)): archive_paths.append(path) else: missing.append(path) if ((len(missing) == len(expanded_paths)) and dest and os.path.exists(dest)): if re.search('(\\.tar|\\.tar\\.gz|\\.tgz|\\.tbz2|\\.tar\\.bz2|\\.tar\\.xz|\\.zip)$', os.path.basename(dest), re.IGNORECASE): state = 'archive' else: state = 'compress' elif archive: if (not archive_paths): if os.path.lexists(dest): state = 'archive' elif missing: state = 'incomplete' archive = None size = 0 errors = [] if os.path.lexists(dest): size = os.path.getsize(dest) if (state != 'archive'): if check_mode: changed = True else: try: if (format == 'zip'): arcfile = zipfile.ZipFile(dest, 'w', zipfile.ZIP_DEFLATED, True) elif ((format == 'gz') or (format == 'bz2')): arcfile = tarfile.open(dest, ('w|' + format)) elif (format == 'xz'): arcfileIO = io.BytesIO() arcfile = tarfile.open(fileobj=arcfileIO, mode='w') elif (format == 'tar'): arcfile = tarfile.open(dest, 'w') match_root = re.compile(('^%s' % re.escape(arcroot))) for path in archive_paths: if os.path.isdir(path): for (dirpath, dirnames, filenames) in os.walk(path, topdown=True): if (not dirpath.endswith(os.sep)): dirpath += os.sep for dirname in dirnames: fullpath = (dirpath + dirname) arcname = match_root.sub('', fullpath) try: if (format == 'zip'): arcfile.write(fullpath, arcname) else: arcfile.add(fullpath, arcname, recursive=False) except Exception as e: errors.append(('%s: %s' % (fullpath, to_native(e)))) for filename in filenames: fullpath = (dirpath + filename) arcname = match_root.sub('', fullpath) if (not filecmp.cmp(fullpath, dest)): try: if (format == 'zip'): arcfile.write(fullpath, arcname) else: arcfile.add(fullpath, arcname, recursive=False) successes.append(fullpath) except Exception as e: errors.append(('Adding %s: %s' % (path, to_native(e)))) else: if (format == 'zip'): arcfile.write(path, match_root.sub('', path)) else: arcfile.add(path, match_root.sub('', path), recursive=False) successes.append(path) except Exception as e: module.fail_json(msg=('Error when writing %s archive at %s: %s' % ((((format == 'zip') and 'zip') or ('tar.' + format)), dest, to_native(e))), exception=format_exc()) if arcfile: arcfile.close() state = 'archive' if (format == 'xz'): with lzma.open(dest, 'wb') as f: f.write(arcfileIO.getvalue()) arcfileIO.close() if errors: module.fail_json(msg=('Errors when writing archive at %s: %s' % (dest, '; '.join(errors)))) if ((state in ['archive', 'incomplete']) and remove): for path in successes: try: if os.path.isdir(path): shutil.rmtree(path) elif (not check_mode): os.remove(path) except OSError as e: errors.append(path) if errors: module.fail_json(dest=dest, msg=('Error deleting some source files: ' + str(e)), files=errors) if ((not check_mode) and (os.path.getsize(dest) != size)): changed = True if (successes and (state != 'incomplete')): state = 'archive' else: path = expanded_paths[0] if (not (os.path.exists(path) or os.path.lexists(dest))): state = 'absent' elif ((not os.path.lexists(path)) and os.path.lexists(dest)): state = 'compress' else: if module.check_mode: if (not os.path.exists(dest)): changed = True else: size = 0 f_in = f_out = arcfile = None if os.path.lexists(dest): size = os.path.getsize(dest) try: if (format == 'zip'): arcfile = zipfile.ZipFile(dest, 'w', zipfile.ZIP_DEFLATED, True) arcfile.write(path, path[len(arcroot):]) arcfile.close() state = 'archive' elif (format == 'tar'): arcfile = tarfile.open(dest, 'w') arcfile.add(path) arcfile.close() else: f_in = open(path, 'rb') if (format == 'gz'): f_out = gzip.open(dest, 'wb') elif (format == 'bz2'): f_out = bz2.BZ2File(dest, 'wb') elif (format == 'xz'): f_out = lzma.LZMAFile(dest, 'wb') else: raise OSError('Invalid format') shutil.copyfileobj(f_in, f_out) successes.append(path) except OSError as e: module.fail_json(path=path, dest=dest, msg=('Unable to write to compressed file: %s' % to_native(e)), exception=format_exc()) if arcfile: arcfile.close() if f_in: f_in.close() if f_out: f_out.close() if (os.path.getsize(dest) != size): changed = True state = 'compress' if (remove and (not check_mode)): try: os.remove(path) except OSError as e: module.fail_json(path=path, msg=('Unable to remove source file: %s' % to_native(e)), exception=format_exc()) params['path'] = dest file_args = module.load_file_common_arguments(params) if (not check_mode): changed = module.set_fs_attributes_if_different(file_args, changed) module.exit_json(archived=successes, dest=dest, changed=changed, state=state, arcroot=arcroot, missing=missing, expanded_paths=expanded_paths, expanded_exclude_paths=expanded_exclude_paths)
b91c102509d6cfc53f4dfb4a2f6fad0aa1418164
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/adjectives/_encouraging.py
80132252a0c761c502ceab036d3d7ee9fc288904
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
409
py
#calss header class _ENCOURAGING(): def __init__(self,): self.name = "ENCOURAGING" self.definitions = [u'making you feel more confidence or hope: '] self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.specie = 'adjectives' def run(self, obj1, obj2): self.jsondata[obj2] = {} self.jsondata[obj2]['properties'] = self.name.lower() return self.jsondata
66e2b39f73d65ebeac8acb7ee4270d2bf488b601
5c37dfaac3a02cc592c154bd9ed1a3fbcf5855cd
/python/cron/numpy.py
6a5307cbf874d543abfc54dfb176cdaf496672e7
[]
no_license
thejohnfreeman/cron
5a91884e5ce8448e6f16b4d0823a05cc429ee37f
c2dbbb50ea8852e0f947b075e9e2f663a450fdcb
refs/heads/master
2020-12-29T00:41:24.952795
2016-03-30T02:29:48
2016-03-30T02:30:47
55,026,110
0
0
null
2016-03-30T02:31:40
2016-03-30T02:31:40
null
UTF-8
Python
false
false
751
py
""" Numpy support for Cron. Numpy support is provided in a submodule so that users who do not need it aren't forced to import numpy. After this module is imported, Cron types that can be used as numpy array types will have a `dtype` attribute. For example: >>> import numpy as np >>> from cron import Date >>> import cron.numpy >>> array = np.zeroes(8, dtype=Date.dtype) """ #------------------------------------------------------------------------------- import numpy from .ext import set_up_numpy as _set_up_numpy # Add all the numpy stuff to the extension module. _set_up_numpy() # FIXME: Should we put this all in a submodule? from .ext import get_day, get_month, get_year, get_ymd, get_ymdi from .ext import date_from_ymdi
1057b2013d6364200744efd5a4918a410b79b9bf
03a70d422855fcf2b488c5070c5ef12001143230
/virtual/bin/django-admin
c98dbb340f1fcdb0df6f4f85e1453a849a12ae31
[ "MIT" ]
permissive
bellahOchola/Rater
0b5f1004552a8d966bff4092bd242834cd68564e
0251fdc6886eb1bcbad82a7aefc61e0ecf6a0738
refs/heads/master
2022-12-11T01:21:39.542482
2020-01-17T00:33:18
2020-01-17T00:33:18
232,781,927
0
0
null
2022-12-08T03:26:23
2020-01-09T10:22:29
Python
UTF-8
Python
false
false
309
#!/home/moringa/Desktop/projects/Django/rater/virtual/bin/python # -*- coding: utf-8 -*- import re import sys from django.core.management import execute_from_command_line if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(execute_from_command_line())
1e30765ae403bdd8a4a0a002c1a6768b0b8fafa0
269f18999a158db1a8a736655b84704780439cab
/shots/migrations/0009_remove_image_tags.py
cf21e8bde8d3c97021b08bf3ed43d7db2113b507
[]
no_license
raul-jr3/fantastic-spoon
6c6d1a323f4d3ff1dc157c8bfd63e0cd8da41ffd
557cb3e85d2c385b080564bdf2571bd09c3b6655
refs/heads/master
2021-01-02T08:37:20.087398
2017-09-14T09:05:13
2017-09-14T09:05:13
99,033,801
0
0
null
null
null
null
UTF-8
Python
false
false
380
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.3 on 2017-08-13 14:38 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('shots', '0008_image_tags'), ] operations = [ migrations.RemoveField( model_name='image', name='tags', ), ]
c964f1ce9a0d56b63720d461b59ad92d73476c3b
9192a0bf95b54fcbe76573cc250e590d64328422
/ibanking_web/ibanking/views.py
5e90f4bacf087dda72646b04d0de445acae9a6d1
[]
no_license
ihfazhillah/explore-scrapy
ca07b31ce4c285bef1e1a7e0f5d97da1e3018217
74751f687062b47e56a1466836306b84724f094e
refs/heads/master
2022-12-10T03:00:54.083201
2019-02-15T00:41:38
2019-02-15T00:41:38
166,724,277
0
0
null
2022-12-08T01:37:37
2019-01-21T00:22:30
Python
UTF-8
Python
false
false
1,001
py
from uuid import uuid4 from django.shortcuts import render from django.http import JsonResponse from scrapyd_api import ScrapydAPI from .models import ScrapyItem # Create your views here. scrapyd = ScrapydAPI('http://localhost:6800') def get_statements(request): unique_id = str(uuid4()) settings = { 'unique_id': unique_id } task = scrapyd.schedule('default', 'ibmandiri', settings=settings, to_crawl='otjlsjflask') return JsonResponse({ 'task_id': task, 'unique_id': unique_id, 'status': 'started', 'url': '/check_job?unique_id={}&task_id={}'.format(unique_id, task) }) def check_job_get_statements(request): task_id = request.GET.get('task_id') unique_id = request.GET.get('unique_id') status = scrapyd.job_status('default', task_id) if status == 'finished': item = ScrapyItem.objects.get(unique_id=unique_id) return JsonResponse(item.to_dict()) return JsonResponse({'status': status})
b5f279e0b892ad03556863e8883bdf0635bb56f0
4b86ebac6e2273bec07e8f0f1275a9f4c4700491
/Sort/2947_나무조각.py
b14eb7a5c7ba76ac4a95e165b8923bbaf58b19a0
[]
no_license
chohan3036/algo_study
999d8a9d44b27100009246dcf913e07f36787295
64abbc8a401f9e555692f01917eb78b0fd37d7fb
refs/heads/master
2023-04-07T06:13:16.059638
2021-04-20T04:32:35
2021-04-20T04:32:35
307,859,670
0
0
null
null
null
null
UTF-8
Python
false
false
334
py
import sys reading = lambda :sys.stdin.readline().strip() N = list(map(int, reading().split())) n = 5 for i in range(n): for j in range(1, n): if N[j - 1] > N[j]: temp = N[j - 1] N[j - 1] = N[j] N[j] = temp for k in N: print(k, end=' ') print()
0ab887523c36a9a3a0f880417a77e0c20e147a6d
f07a42f652f46106dee4749277d41c302e2b7406
/Data Set/bug-fixing-5/6a8e7087831193afbc3e1799460614506743077b-<stack>-bug.py
01dc6fbc3cc25cc1e58e588b0c339369943c2826
[]
no_license
wsgan001/PyFPattern
e0fe06341cc5d51b3ad0fe29b84098d140ed54d1
cc347e32745f99c0cd95e79a18ddacc4574d7faa
refs/heads/main
2023-08-25T23:48:26.112133
2021-10-23T14:11:22
2021-10-23T14:11:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,170
py
def stack(self, level=(- 1), dropna=True): "\n Stack the prescribed level(s) from columns to index.\n\n Return a reshaped DataFrame or Series having a multi-level\n index with one or more new inner-most levels compared to the current\n DataFrame. The new inner-most levels are created by pivoting the\n columns of the current dataframe:\n\n - if the columns have a single level, the output is a Series;\n - if the columns have multiple levels, the new index\n level(s) is (are) taken from the prescribed level(s) and\n the output is a DataFrame.\n\n The new index levels are sorted.\n\n Parameters\n ----------\n level : int, str, list, default -1\n Level(s) to stack from the column axis onto the index\n axis, defined as one index or label, or a list of indices\n or labels.\n dropna : bool, default True\n Whether to drop rows in the resulting Frame/Series with\n missing values. Stacking a column level onto the index\n axis can create combinations of index and column values\n that are missing from the original dataframe. See Examples\n section.\n\n Returns\n -------\n DataFrame or Series\n Stacked dataframe or series.\n\n See Also\n --------\n DataFrame.unstack : Unstack prescribed level(s) from index axis\n onto column axis.\n DataFrame.pivot : Reshape dataframe from long format to wide\n format.\n DataFrame.pivot_table : Create a spreadsheet-style pivot table\n as a DataFrame.\n\n Notes\n -----\n The function is named by analogy with a collection of books\n being re-organised from being side by side on a horizontal\n position (the columns of the dataframe) to being stacked\n vertically on top of of each other (in the index of the\n dataframe).\n\n Examples\n --------\n **Single level columns**\n\n >>> df_single_level_cols = pd.DataFrame([[0, 1], [2, 3]],\n ... index=['cat', 'dog'],\n ... columns=['weight', 'height'])\n\n Stacking a dataframe with a single level column axis returns a Series:\n\n >>> df_single_level_cols\n weight height\n cat 0 1\n dog 2 3\n >>> df_single_level_cols.stack()\n cat weight 0\n height 1\n dog weight 2\n height 3\n dtype: int64\n\n **Multi level columns: simple case**\n\n >>> multicol1 = pd.MultiIndex.from_tuples([('weight', 'kg'),\n ... ('weight', 'pounds')])\n >>> df_multi_level_cols1 = pd.DataFrame([[1, 2], [2, 4]],\n ... index=['cat', 'dog'],\n ... columns=multicol1)\n\n Stacking a dataframe with a multi-level column axis:\n\n >>> df_multi_level_cols1\n weight\n kg pounds\n cat 1 2\n dog 2 4\n >>> df_multi_level_cols1.stack()\n weight\n cat kg 1\n pounds 2\n dog kg 2\n pounds 4\n\n **Missing values**\n\n >>> multicol2 = pd.MultiIndex.from_tuples([('weight', 'kg'),\n ... ('height', 'm')])\n >>> df_multi_level_cols2 = pd.DataFrame([[1.0, 2.0], [3.0, 4.0]],\n ... index=['cat', 'dog'],\n ... columns=multicol2)\n\n It is common to have missing values when stacking a dataframe\n with multi-level columns, as the stacked dataframe typically\n has more values than the original dataframe. Missing values\n are filled with NaNs:\n\n >>> df_multi_level_cols2\n weight height\n kg m\n cat 1.0 2.0\n dog 3.0 4.0\n >>> df_multi_level_cols2.stack()\n height weight\n cat kg NaN 1.0\n m 2.0 NaN\n dog kg NaN 3.0\n m 4.0 NaN\n\n **Prescribing the level(s) to be stacked**\n\n The first parameter controls which level or levels are stacked:\n\n >>> df_multi_level_cols2.stack(0)\n kg m\n cat height NaN 2.0\n weight 1.0 NaN\n dog height NaN 4.0\n weight 3.0 NaN\n >>> df_multi_level_cols2.stack([0, 1])\n cat height m 2.0\n weight kg 1.0\n dog height m 4.0\n weight kg 3.0\n dtype: float64\n\n **Dropping missing values**\n\n >>> df_multi_level_cols3 = pd.DataFrame([[None, 1.0], [2.0, 3.0]],\n ... index=['cat', 'dog'],\n ... columns=multicol2)\n\n Note that rows where all values are missing are dropped by\n default but this behaviour can be controlled via the dropna\n keyword parameter:\n\n >>> df_multi_level_cols3\n weight height\n kg m\n cat NaN 1.0\n dog 2.0 3.0\n >>> df_multi_level_cols3.stack(dropna=False)\n height weight\n cat kg NaN NaN\n m 1.0 NaN\n dog kg NaN 2.0\n m 3.0 NaN\n >>> df_multi_level_cols3.stack(dropna=True)\n height weight\n cat m 1.0 NaN\n dog kg NaN 2.0\n m 3.0 NaN\n " from pandas.core.reshape.reshape import stack, stack_multiple if isinstance(level, (tuple, list)): return stack_multiple(self, level, dropna=dropna) else: return stack(self, level, dropna=dropna)
2f07383bfc2b9984072cbf5c3ab0ad171fc409ae
f92fb9b9abe021d5604d3b5fb2ade0fbe6d85e3e
/robot/logging.py
30ffb6e8cc9edea7f47e51458319b66961d6af58
[ "MIT" ]
permissive
chuchiring/wukong-robot
a9f4656db45656962614451ebb170b4ca4573871
f31982738df5b5c3929c713415aee04d13f2f4c8
refs/heads/master
2020-04-23T06:45:10.085706
2019-02-16T05:51:26
2019-02-16T05:51:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,096
py
import logging import sys import os from robot import config, constants from logging.handlers import RotatingFileHandler, HTTPHandler PAGE = 4096 DEBUG = logging.DEBUG INFO = logging.INFO ERROR = logging.ERROR def tail(filepath, n=10): """ 实现 tail -n """ res = "" with open(filepath, 'rb') as f: f_len = f.seek(0, 2) rem = f_len % PAGE page_n = f_len // PAGE r_len = rem if rem else PAGE while True: # 如果读取的页大小>=文件大小,直接读取数据输出 if r_len >= f_len: f.seek(0) lines = f.readlines()[::-1] break f.seek(-r_len, 2) # print('f_len: {}, rem: {}, page_n: {}, r_len: {}'.format(f_len, rem, page_n, r_len)) lines = f.readlines()[::-1] count = len(lines) -1 # 末行可能不完整,减一行,加大读取量 if count >= n: # 如果读取到的行数>=指定行数,则退出循环读取数据 break else: # 如果读取行数不够,载入更多的页大小读取数据 r_len += PAGE page_n -= 1 for line in lines[:n][::-1]: res += line.decode('utf-8') return res def getLogger(name): formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger(name) # StreamHandler stream_handler = logging.StreamHandler(sys.stdout) stream_handler.setLevel(level=logging.INFO) stream_handler.setFormatter(formatter) logger.addHandler(stream_handler) # FileHandler file_handler = RotatingFileHandler(os.path.join(constants.TEMP_PATH, 'wukong.log'), maxBytes=1024*1024,backupCount=5) file_handler.setLevel(level=logging.DEBUG) file_handler.setFormatter(formatter) logger.addHandler(file_handler) return logger def readLog(lines=200): log_path = os.path.join(constants.TEMP_PATH, 'wukong.log') if os.path.exists(log_path): return tail(log_path, lines) return ''
7dca2733f4c7e5b4178a1a284fd2614650b0b984
e522c1606e06cd0a2ea82c57b72aac2e065ad429
/programming-team/First Semester/UCB/boxes.py
9d349284cd7c37e4a74902d185a11f42dbe71df4
[]
no_license
Nate8888/programming-contest-practice
80d17d7ccea9491f42ec0cccab7e0cfe80849f17
4c2496260c209190103d7bbef82d866ae4be09b6
refs/heads/master
2023-05-04T16:20:36.136598
2021-05-27T22:52:04
2021-05-27T22:52:04
293,109,179
0
0
null
null
null
null
UTF-8
Python
false
false
598
py
import sys def k_min_max_partitions(my_list, size, k): if k == 1: return sum(my_list[0:size]) if size == 1: return my_list[0] current_min_max = 1e27 for current_index in range(1, size + 1): current_min_max = min(current_min_max, max(k_min_max_partitions(my_list, current_index, k - 1), sum(my_list[current_index:size]))) #print(current_min_max) return current_min_max line = input().rstrip().split(" ") partitions = int(line[1]) items = int(line[0]) all_nums = input().rstrip().split(" ") nums = [int(x) for x in all_nums] print(k_min_max_partitions(nums, items, partitions))
ff3b0522f795040dd1eea2c2af80b0748c4a76eb
151e4ab8bdcff37ded920f32250331c1edc1772d
/tlmshop/serializers/__init__.py
87773f17382c4d432810508bc9149e2b62673837
[]
no_license
LegionMarket/django-cms-base
79069ee67628ff7d10338b48b154fe087863e1ea
1b6fc3423e3d0b2165552cc980432befb496f3e0
refs/heads/master
2020-12-30T17:10:33.866390
2017-05-25T12:49:41
2017-05-25T12:49:41
91,057,746
0
0
null
null
null
null
UTF-8
Python
false
false
2,797
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.conf import settings from django.utils.safestring import mark_safe from rest_framework import serializers from shop.serializers.bases import ProductSerializer from shop.search.serializers import ProductSearchSerializer as BaseProductSearchSerializer from tlmshop.search_indexes import tlmshop_search_index_classes __all__ = ['ProductSummarySerializer', 'ProductSearchSerializer', 'CatalogSearchSerializer'] class ProductSummarySerializer(ProductSerializer): media = serializers.SerializerMethodField() class Meta(ProductSerializer.Meta): fields = ['id', 'product_name', 'product_url', 'product_model', 'price', 'media', 'caption'] def get_media(self, product): return self.render_html(product, 'media') if settings.SHOP_TYPE in ['commodity', 'i18n_commodity']: class ProductDetailSerializer(ProductSerializer): class Meta(ProductSerializer.Meta): fields = ['product_name', 'slug', 'unit_price', 'product_code'] __all__.append('ProductDetailSerializer') elif settings.SHOP_TYPE in ['smartcard', 'i18n_smartcard']: class ProductDetailSerializer(ProductSerializer): class Meta(ProductSerializer.Meta): fields = ['product_name', 'slug', 'unit_price', 'manufacturer', 'card_type', 'speed', 'product_code', 'storage'] __all__.append('ProductDetailSerializer') elif settings.SHOP_TYPE in ['i18n_polymorphic', 'polymorphic']: from .polymorphic import (SmartCardSerializer, SmartPhoneSerializer, AddSmartPhoneToCartSerializer) __all__.extend(['SmartCardSerializer', 'SmartPhoneSerializer', 'AddSmartPhoneToCartSerializer']) class ProductSearchSerializer(BaseProductSearchSerializer): """ Serializer to search over all products in this shop """ media = serializers.SerializerMethodField() class Meta(BaseProductSearchSerializer.Meta): fields = BaseProductSearchSerializer.Meta.fields + ['media', 'caption'] field_aliases = {'q': 'text'} search_fields = ['text'] index_classes = tlmshop_search_index_classes def get_media(self, search_result): return mark_safe(search_result.search_media) class CatalogSearchSerializer(BaseProductSearchSerializer): """ Serializer to restrict products in the catalog """ media = serializers.SerializerMethodField() class Meta(BaseProductSearchSerializer.Meta): fields = BaseProductSearchSerializer.Meta.fields + ['media', 'caption'] field_aliases = {'q': 'autocomplete'} search_fields = ['autocomplete'] index_classes = tlmshop_search_index_classes def get_media(self, search_result): return mark_safe(search_result.catalog_media)
b0c652a0481b0f73ad11a84bb549814dfbbdff09
da6fe795eec82abddcc2590696e3cdc0cf479445
/code/repository.py
b2feefb2acca4238608de76597c9ae80f8a55211
[]
no_license
techknowledgist/tgist-features
d0b37228ea65d22dec08983d259f2de92dbf02a2
994b371e68030f462074ea9a9c32a7f3ddc394f4
refs/heads/master
2021-03-24T12:59:37.417498
2019-05-14T14:09:20
2019-05-14T14:09:20
114,810,376
0
0
null
null
null
null
UTF-8
Python
false
false
28,635
py
"""repository.py Code to build, manage and access repositories. A repository needs to be initialized once. Once you have a repository you can do several things: 1- adding all files from a corpus (both sources and processed files) 2- adding sources from a list of files 3- querying the repository for data 4- analyzing the repository The above functionalities are in varying stages of (non) completion. See below for more details. USAGE: $ python repository.py --initialize --repository PATH --type STRING $ python repository.py --add-corpus --repository PATH --corpus PATH $ python repository.py --analyze --repository PATH There are short versions for some of the options: --repository (-r), --type (-t) and --corpus (-c) INITIALIZATION To initialize a repository: $ python repository.py --initialize --repository test --type patents The --type argument specifies the repository type, which is one of 'patents', 'cnki' or 'pubmed'. After a repository is initialized it has the following structure: type.txt documents/ logs/ index/ idx-dates.txt idx-identifiers.txt idx-files.txt idx-processed-d1_txt.txt idx-processed-d2_seg.txt idx-processed-d2_tag.txt idx-processed-d3_phr_feats.txt data/ sources/ processed/ All directories are empty, except for index/, which has a couple of index files that are all empty (because the repository is still empty). Other directories may be added to repositories, for example a directory with scripts for local repository-spefici processing or a directory with lists of files. Other index files may be added over time, some specific to particular repository types. The type.txt file contains the type of the repository, which is used each time the repository is opened. TODO: add an SQLite database that replaces all the index files. The index files could still be kept around as a kind of journal files. There are several kinds of repositories, each making different assumptions on identifiers: PatentRepository (--type patents) CnkiRepository (--type cnki) PubmedRepository (--type pubmed) A PatentRepository assumes that the basename of a file is a unique file and stores patents using that uniqueness. It is the only repository type that exists at this point. When more types come into being a new option will be added. The index files contain a list of records with the following fields (this is for patents): idx-ids.txt: numerical identifier idx-files.txt: timestamp numerical identifier size of source file (compressed) path in repository idx-dates: not yet used idx-processed-X.txt: timestamp git commit numerical id options (zero or more columns) ADDING CORPUS DATA To add all data from a corpus: $ python repository.py --add-corpus -r test -c data/patents/corpora/sample-us Existing data will not be overwritten. At some point we may add a flag that allows you to overwrite existing data. More corpora can be added later. This needs to be done one corpus at a time, no conccurrency is implemented. During a corpus load, source files are added to /data/sources and processed files to data/processed. For patents, the directory strcuture in data/sources is generated from the filename, for the sample corpus we end up with the following files in a three-level directory structure: data/sources/42/365/96/US4236596A.xml.gz data/sources/42/467/08/US4246708A.xml.gz data/sources/42/543/95/US4254395A.xml.gz data/sources/41/927/70/US4192770A.xml.gz This structure is mirrored under data/processed, with the addition of the name of the processing step (d1_txt, d2_seg, d2_tag or d3_phr_feats), for example, for the tagged files we get: data/processed/d2_tag/42/365/96/US4236596A.xml.gz data/processed/d2_tag/42/467/08/US4246708A.xml.gz data/processed/d2_tag/42/543/95/US4254395A.xml.gz data/processed/d2_tag/41/927/70/US4192770A.xml.gz Corpus loads also update the index files and add a time-stamped log file to the logs directory. USING FROM OTHER SCRIPTS There are a couple of utility methods intended to be used from other scripts. These methods convert between paths and identifiers: filepath2longid(path) returns a long identifier filepath2shortid(path) returns a short identifier longid2filepath(longid) returns a path to a source file longid2filepath(longid, step) returns a path to a processed file shortid2filepath(sortid) returns a path to a source file shortid2filepath(shortid, step) returns a path to a processed file longid2shortid(longid) returns a short identifier Methods that return paths will return None if the path does not exist. What is returned is actually the path with the .gz extension stripped off. This is so the result works nicely with utils.path.open_input_file(), which does not expect the .gz extension. These methods are now only implemented for PatentRepository, they may or may not make sense for other repository classes. Examples: import repository repo = repository.open_repository('ln-us') print repo.filepath2longid('57/238/US5723853A.xml') print repo.filepath2shortid('57/238/US5723853A.xml') print repo.longid2filepath('US5723853A.xml') print repo.longid2filepath('US5723853A.xml', 'd2_tag') print repo.shortid2filepath('5723853') print repo.shortid2filepath('5723853', 'd2_tag') print repo.longid2shortid('US5723853A.xml') """ import os, sys, re, time, shutil, getopt, glob from config import DEFAULT_PIPELINE from corpus import Corpus from utils.path import compress, ensure_path, read_only, make_writable REPOSITORY_DIR = '/home/j/corpuswork/fuse/FUSEData/repositories' REPOSITORY_TYPES = ('patents', 'pubmed', 'cnki') re_PATENT = re.compile('^(B|D|H|HD|RE|PP|T)?(\d+)(.*)') PROCESSING_STEPS = ('d1_txt', 'd2_seg', 'd2_tag', 'd3_phr_feats') class RepositoryError(Exception): def __init__(self, value): self.value = value def __str__(self): return repr(self.value) def create_repository(repository, repotype="patents"): """Creates a generic repository and initializes a skeleton directory structure on disk. This method is solely intended to create the repository on disk. The resulting generic repository object is not meant to be used for further processing and it is therefore not returned.""" if os.path.exists(repository): exit("WARNING: cannot create repository, directory already exists") if not repotype in REPOSITORY_TYPES: exit("WARNING: unkown repository type") os.makedirs(repository) repo = Repository(repository) repo.create_skeleton_on_disk(repotype) def open_repository(repository): repository = validate_location(repository) with open(os.path.join(repository, 'type.txt')) as fh: repotype = fh.read().strip() if repotype == 'patents': return PatentRepository(repository) elif repotype == 'pubmed': print "Not yet implemented" elif repotype == 'cnki': print "Not yet implemented" else: print "Unknown repository type" class Repository(object): def __init__(self, dirname): """The argument is a relative or absolute path to a repository. Often, this is a directory insize of REPOSITORY_DIR, which is the standard location of all repositories.""" dirname = validate_location(dirname) self.dir = dirname self.type_file = os.path.join(self.dir, 'type.txt') self.idx_dir = os.path.join(self.dir, 'index') self.doc_dir = os.path.join(self.dir, 'documents') self.log_dir = os.path.join(self.dir, 'logs') self.data_dir = os.path.join(self.dir, 'data','sources') self.proc_dir = os.path.join(self.dir, 'data', 'processed') self.idx_ids = os.path.join(self.idx_dir, 'idx-ids.txt') self.idx_files = os.path.join(self.idx_dir, 'idx-files.txt') self.idx_dates = os.path.join(self.idx_dir, 'idx-dates.txt') def __str__(self): return "<%s '%s'>" % (self.__class__.__name__, self.dir) def create_skeleton_on_disk(self, repotype): """Initialize directory structure and files on disk. The only file with content is type.txt which stores the repository type.""" for d in (self.doc_dir, self.log_dir, self.idx_dir, self.data_dir, self.proc_dir): os.makedirs(d) with open(self.type_file, 'w') as fh: fh.write("%s\n" % repotype) read_only(self.type_file) for fname in self._index_files(): open(fname, 'w').close() read_only(fname) def _index_files(self): """Return a list of all index files.""" fnames = [self.idx_ids, self.idx_files, self.idx_dates] for step in PROCESSING_STEPS: fnames.append("%s%sidx-processed-%s.txt" % (self.idx_dir, os.sep, step)) return fnames def read_identifiers(self): """Return a dictionary with as keys all the identifiers in the repository. This works for now with smaller repositories, but we may need to start using an SQLite database.""" identifiers = {} fh = open(self.idx_ids) for line in fh: identifiers[line.strip()] = True return identifiers def filepath2longid(self, path): raise RepositoryError("not yet implemented") def filepath2shortid(self, path): raise RepositoryError("not yet implemented") def longid2filepath(self, id): raise RepositoryError("not yet implemented") def shortid2filepath(self, id): raise RepositoryError("not yet implemented") def longid2shortid(self, id): raise RepositoryError("not yet implemented") def analyze(self): files = 0 size = 0 for line in open(self.idx_files): (timestamp, id, filesize, path) = line.rstrip().split("\t") files += 1 size += int(filesize) print self print " %6sMB - source size (compressed)" % (size/1000000) print " %8s - number of files" % files def load_index(self): self.index = RepositoryIndex(self) def get(self, identifier, step=None): self.index.get(identifier, step) class PatentRepository(Repository): def add_corpus(self, corpus_path, language='en', datasource='ln', limit=sys.maxint): """Adds corpus data to the repository, both the source data taken from the external source of the corpus and the processed files. Updates the list of identifiers, the list of files and the list of processed files in the index by appending elements to the end of those files. Only adds patents that are not in the identifier list. The input corpus is expected to be one of the corpora created by step1_init.py and step2_process.py. Unlike with creating corpora, where we can create and process various corpora on different cores/machines, this method should never be run in parallel, always import one corpus at a time and wait for it to finish.""" current_identifiers = self.read_identifiers() corpus = CorpusInterface(language, datasource, corpus_path) self._open_index_files() logfile = os.path.join(self.log_dir, "add-corpus-%s.txt" % timestamp()) self.log = open(logfile, 'w') log("Adding corpus %s" % corpus_path, self.log, notify=True) c = 0 t1 = time.time() added = 0 try: for line in open(corpus.file_list): c += 1 if c % 100 == 0: print c if c > limit: c -= 1; break added_p = self._add_patent(current_identifiers, corpus, c, line) if added_p: added += 1 except: log("An Exception occurred - exiting...", self.log, notify=True) finally: log("Added %d out of %d in %d seconds" % (added, c, time.time() - t1), self.log, notify=True) self._close_log() self._close_index_files() def _open_index_files(self): for fname in self._index_files(): make_writable(fname) self.fh_ids = open(self.idx_ids, 'a') self.fh_files = open(self.idx_files, 'a') self.fh_dates = open(self.idx_dates, 'a') self.fh_processed = {} for step in PROCESSING_STEPS: fname = "%s%sidx-processed-%s.txt" % (self.idx_dir, os.sep, step) self.fh_processed[step] = open(fname, 'a') def _close_log(self): logname = self.log.name self.log.close() read_only(logname) def _close_index_files(self): fhs = [self.fh_ids, self.fh_files, self.fh_dates] + self.fh_processed.values() for fh in fhs: fname = fh.name fh.close() read_only(fname) def _add_patent(self, current_identifiers, corpus, c, line): """Add a document source and the processed files. Do nothing if source cannot be found or if source is already in the list of current identifiers. Return True is data were added, false otherwise.""" # TODO: there is a nasty potential problem here. Suppose we are # processing a file in a corpus and that file was in another corpus that # we imported before. And suppose that in the erarlier corpus this file # was not processed and it was processed in the later corpus. In that # case the processed files are not copied. Even if this occurs, it will # not impact the integrity of the repository. (external_source, local_source) = get_filelist_paths(line) external_source = validate_filename(external_source) if external_source is None: log("%05d WARNING, source not available for %s" % (c, external_source), self.log, notify=True) return False (id, path, basename) = parse_patent_path(external_source) if id in current_identifiers: log("%05d Skipping %s" % (c, external_source), self.log) return False else: t = timestamp() log("%05d Adding %s to %s" % (c, external_source, os.sep.join(path)), self.log) self._add_patent_source(t, external_source, id, path, basename) self._add_patent_processed(t, corpus, local_source, id, path, basename) return True def _add_patent_source(self, t, source, id, path, basename): path = os.sep.join(path) target_dir = os.path.join(self.data_dir, path) target_file = os.path.join(target_dir, basename) copy_and_compress(source, target_dir, target_file) size = get_file_size(target_file) self.fh_ids.write("%s\n" % id) self.add_entry_to_file_index(t, id, size, path, basename) def _add_patent_processed(self, t, corpus, local_source, id, path, basename): for step in PROCESSING_STEPS: fname = get_path_of_processed_file(corpus, step, local_source) if fname is not None: target_dir = os.path.join(self.proc_dir, step, os.sep.join(path)) target_file = os.path.join(target_dir, basename) log(" Adding %s" % target_file, self.log) copy_and_compress(fname, target_dir, target_file) #self.add_entry_to_processed_index(t, id, step, corpus.git_commits) self.add_entry_to_processed_index(t, id, step, corpus) def add_entry_to_file_index(self, t, id, size, path, basename): if basename.endswith('.gz'): basename = basename[:-3] self.fh_files.write("%s\t%s\t%d\t%s%s%s\n" % (t, id, size, path, os.sep, basename)) def add_entry_to_processed_index(self, t, id, step, corpus): commit = corpus.git_commits.get(step) options = "\t".join(corpus.options[step]) if options: options = "\t" + options self.fh_processed[step].write("%s\t%s\t%s%s\n" % (t, commit, id, options)) def filepath2longid(self, path): return os.path.basename(path) def filepath2shortid(self, path): return self.longid2shortid(os.path.basename(path)) def longid2filepath(self, id, step='source'): base_dir = self.data_dir if not step == 'source': if not step in PROCESSING_STEPS: raise RepositoryError("illegal step - %s" % step) base_dir = os.path.join(self.proc_dir, step) path = os.path.join( base_dir, os.sep.join(patentid2path(self.longid2shortid(id))), id) return path if os.path.exists(path + '.gz') else None def shortid2filepath(self, id, step='source'): # use repo info to get full path # use glob to get actual path base_dir = self.data_dir if not step == 'source': if not step in PROCESSING_STEPS: raise RepositoryError("illegal step - %s" % step) base_dir = os.path.join(self.proc_dir, step) path = os.path.join( base_dir, os.sep.join(patentid2path(self.longid2shortid(id))), "*%s*.xml.gz" % id) #return path matches = glob.glob(path) return matches[0] if len(matches) == 1 else None def longid2shortid(self, id): return get_patent_id(id)[2] class RepositoryIndex(object): """An object like this will probably be needed at some point.""" def __init__(self, repository): self.repository = repository self.index = {} c = 0 for line in open(self.repository.idx_files): c += 1 if c > 10: break (timestamp, id, size, path) = line.split() def get(self, identifier): """Return all information associated with an identifier.""" pass class CorpusInterface(object): """Object that acts as an intermediary to a corpus. It emulates part of the interface of corpus.Corpus (location and file_list instance variables and adds information on commits in self.git_commits and processing step options in self.options.""" def __init__(self, language, datasource, corpus_path): self.corpus = Corpus(language, datasource, None, None, corpus_path, DEFAULT_PIPELINE, False) self.location = self.corpus.location self.file_list = self.corpus.file_list self._collect_git_commits() self._collect_step_options() def _collect_git_commits(self): """Collect the git commits for all steps in the processing chain.""" self.git_commits = {} for step in PROCESSING_STEPS: commit = self._find_git_commit_from_processing_history(step) self.git_commits[step] = commit def _find_git_commit_from_processing_history(self, step): """Returns the git commit for the code that processed this step of the corpus. Returns the earliest commit as found in the corpus.""" fname = os.path.join(self.location, 'data', step, '01', 'state', 'processing-history.txt') if os.path.exists(fname): line = open(fname).readline() return line.rstrip("\n\r\f").split("\t")[3] return None def _collect_step_options(self): self.options = {} for step in PROCESSING_STEPS: fname = os.path.join(self.location, 'data', step, '01', 'config', 'pipeline-head.txt') if not os.path.exists(fname): options = [] else: content = open(fname).readline().split() options = content[1:] self.options[step] = options def timestamp(): return time.strftime("%Y%m%d:%H%M%S") def get_filelist_paths(line): """ a file list has two or three columns, the second is the full path to the source and the third, if it exists, is the local path.By default the local path is a full copy of the source path. Return the source path and resolved local path.""" fields = line.rstrip("\n\r\f").split("\t") source = fields[1] local_source = fields[2] if len(fields)> 2 else source return (source, local_source) def get_path_of_processed_file(corpus, step, local_source): """Build a full file path given a corpus, a processing step and a local source file""" fname = os.path.join(corpus.location, 'data', step, '01', 'files', local_source) return validate_filename(fname) def validate_filename(fname): """Validate the filename by checking whether it exists, potentially in gzipped form. Return the actual filename or return None if there was no file. Note that fname typically never includes the .gz extension""" if os.path.exists(fname + '.gz'): return fname + '.gz' elif os.path.exists(fname): return fname else: return None def get_file_size(fname): """Returns the size of fname if it exists, or else the size of fname.gz.""" if not os.path.exists(fname): fname += '.gz' return os.path.getsize(fname) def parse_patent_path(path): """take a source path (of which only the basename is relevant) and get the identifier, prefix, kind (a1, A2..) and the path as used in the repository.""" basename = os.path.basename(path) basename_bare = os.path.splitext(basename)[0] prefix, kind, id = get_patent_id(basename_bare) path = patentid2path(id) return id, path, basename def get_patent_id(basename): """Get the prefix, kind code and unique numerical identifier from the file name. Prefix and kind code can both be empty strings.""" id = os.path.splitext(basename)[0] if id.startswith('US'): id = id[2:] result = re_PATENT.match(id) if result is None: print "WARNING: no match on", basename return None prefix = result.groups()[0] kind_code = result.groups()[-1] number = ''.join([g for g in result.groups()[:-1] if g is not None]) return (prefix, kind_code, number) def patentid2path(id): """Generate a pathname from the patent identifier. Split the patent identifier into three parts of a path. The first part of the path is either a year, one or two letters (D, PP, T etcetera), The last part is the last two digits of the identifier, which ensures that the deepest directories in the tree never have more that 100 patents. The middle part is what remains of the indentifier. Only the first and middle parts are returned""" if id[:2] in ('19', '20'): return id[:4], id[4:-2] elif id[0].isalpha() and id[1].isalpha(): return id[:2], id[2:-2] elif id[0].isalpha(): return id[:1], id[1:-2] else: return id[:2], id[2:-2] def copy_and_compress(source, target_dir, target_file): """Copy source to target file, making sure there is a directory. Compress the new file.""" ensure_path(target_dir) shutil.copyfile(source, target_file) compress(target_file) def log(text, fh, notify=False): fh.write("%s\n" % text) if notify: print text def check_repository_existence(repository): if not os.path.exists(repository): exit("WARNING: repository '%s' does not exist" % repository) def validate_location(path): if os.path.isdir(os.path.join(REPOSITORY_DIR, path)): return os.path.join(REPOSITORY_DIR, path) if os.path.isdir(path): return path exit("WARNING: repository '%s' does not exist" % path) ### Some tests I ran before creating the repository code LISTS_DIR = '/home/j/corpuswork/fuse/FUSEData/lists' IDX_FILE = LISTS_DIR + '/ln_uspto.all.index.txt' UPDATES_FILE = LISTS_DIR + '/ln-us-updates-2014-09-23-scrambled-basename.txt' def test_filenames(fname): """Checks whether all the numbers we extract from the filenames are unique. This is the case for IDX_FILE.""" number2name = {} number2path = {} fh = open(fname) basedir = fh.readline() c = 1 for line in fh: c += 1 if c % 100000 == 0: print c #if c > 100000: break (number, adate, pdate, path) = line.rstrip("\n\f\r").split("\t") name = os.path.splitext(os.path.basename(path))[0] if number2name.has_key(number): print "Warning, duplicate number", number, path number2name.setdefault(number,[]).append(name) number2path.setdefault(number,[]).append(path) def test_filename_lengths(fname): """Checks lengths of file names.""" lengths = {} fh = open(fname) basedir = fh.readline() c = 1 fhs = { 5: open('lengths-05.txt', 'w'), 6: open('lengths-06.txt', 'w'), 7: open('lengths-07.txt', 'w'), 8: open('lengths-08.txt', 'w'), 11: open('lengths-11.txt', 'w'), 12: open('lengths-12.txt', 'w') } for line in fh: c += 1 if c % 100000 == 0: print c #if c > 100000: break (number, adate, pdate, path) = line.rstrip("\n\f\r").split("\t") name = os.path.splitext(os.path.basename(path))[0] number_length = len(number) lengths[number_length] = lengths.get(number_length,0) + 1 fhs[number_length].write("%s\n" % name) print lengths def test_directory_structure(): """Some experiments to see how to do the directory structure of the repository. The goal is to have the filenumber reflected in the path in a predicatble manner. It looks like having a three-deep structure works nicely. The deepest level just encodes the last two numbers of the number (so no more than 100 documents in the leaf directories). Then the first is either a year, one or two letters, or two numbers. The middle directory is whatever remains of the filename.""" fh = open('tmp-patnums.txt') fh.readline() dirs = {} c = 0 for line in fh: c += 1 if c % 100000 == 0: print c num = line.strip() (dir1, dir2, dir3) = patentid2path(num) dirs.setdefault(dir1,{}) dirs[dir1][dir2] = dirs[dir1].get(dir2,0) + 1 if not dir1 and dir2 and dir3: print num, dir1, dir2, dir3 for dir1 in sorted(dirs): print '>', dir1, len(dirs[dir1]) for dir2 in sorted(dirs[dir1]): print ' ', dir2, dirs[dir1][dir2] def test_compare_lists(list1, list2): """list1 is an index with four columns, list2 just has the one column.""" in1 = open(list1) in2 = open(list2) out1 = open("out-in-repo.txt", 'w') out2 = open("out-not-in-repo.txt", 'w') basedir = in1.readline() repo = {} c = 1 for line in in1: c += 1 if c % 100000 == 0: print c repo[line.split("\t")[0]] = True in_repo = 0 not_in_repo = 0 c = 0 for line in in2: c += 1 if c % 100000 == 0: print c basename = line.strip() (prefix, code, id) = get_patent_id(basename) if id in repo: in_repo += 1 out1.write("%s\n" % basename) else: not_in_repo += 1 out2.write("%s\n" % basename) print 'in_repo', in_repo print 'not_in_repo', not_in_repo if __name__ == '__main__': options = ['initialize', 'add-corpus', 'analyze', 'repository=', 'type=', 'corpus='] (opts, args) = getopt.getopt(sys.argv[1:], 'r:t:c:', options) init_p = False add_corpus_p = False analyze_p = False repository = None repotype = 'patents' corpus = None for opt, val in opts: if opt == '--initialize': init_p = True if opt == '--add-corpus': add_corpus_p = True if opt == '--analyze': analyze_p = True if opt in ('-r', '--repository'): repository = val if opt in ('-t', '--type'): repotype = val if opt in ('-c', '--corpus'): corpus = val if repository is None: exit("WARNING: missing repository argument") if init_p: print "Initializing repository '%s'" % repository create_repository(repository, repotype) elif add_corpus_p: if corpus is None: exit("WARNING: missing corpus argument") open_repository(repository).add_corpus(corpus) elif analyze_p: print "Analyzing repository '%s'" % repository open_repository(repository).analyze()
ad14696ccc3a66d98529f577771fe50ff92df097
8038c72e9c05b9a962a78002e1ac32ac5797d33f
/qfcommon/base/dbpool.py
079fa5d9342b7d212f06955af235fb6c82168436
[]
no_license
liusiquan/open_test
faaf419dcd5877558e25847edf5e128c5e9e64b2
0cb0aaf401234ac3274d34dcf08ff633917db048
refs/heads/master
2021-01-11T20:44:25.567470
2017-01-18T10:13:54
2017-01-18T10:13:54
79,174,997
0
3
null
null
null
null
UTF-8
Python
false
false
43,385
py
# coding: utf-8 import time, datetime, os import types, random import threading import logging import traceback import pager from contextlib import contextmanager log = logging.getLogger() dbpool = None def timeit(func): def _(*args, **kwargs): starttm = time.time() ret = 0 num = 0 err = '' try: retval = func(*args, **kwargs) t = type(retval) if t == types.ListType: num = len(retval) elif t == types.DictType: num = 1 return retval except Exception, e: err = str(e) ret = -1 raise finally: endtm = time.time() conn = args[0] #dbcf = conn.pool.dbcf dbcf = conn.param log.info('server=%s|name=%s|user=%s|addr=%s:%d|db=%s|idle=%d|busy=%d|max=%d|time=%d|ret=%s|num=%d|sql=%s|err=%s', conn.type, conn.name, dbcf.get('user',''), dbcf.get('host',''), dbcf.get('port',0), os.path.basename(dbcf.get('db','')), len(conn.pool.dbconn_idle), len(conn.pool.dbconn_using), conn.pool.max_conn, int((endtm-starttm)*1000000), str(ret), num, repr(args[1]), err) return _ class DBPoolBase: def acquire(self, name): pass def release(self, name, conn): pass class DBResult: def __init__(self, fields, data): self.fields = fields self.data = data def todict(self): ret = [] for item in self.data: ret.append(dict(zip(self.fields, item))) return ret def __iter__(self): for row in self.data: yield dict(zip(self.fields, row)) def row(self, i, isdict=True): if isdict: return dict(zip(self.fields, self.data[i])) return self.data[i] def __getitem__(self, i): return dict(zip(self.fields, self.data[i])) class DBFunc: def __init__(self, data): self.value = data class DBConnection: def __init__(self, param, lasttime, status): self.name = None self.param = param self.conn = None self.status = status self.lasttime = lasttime self.pool = None self.server_id = None def __str__(self): return '<%s %s:%d %s@%s>' % (self.type, self.param.get('host',''), self.param.get('port',0), self.param.get('user',''), self.param.get('db',0) ) def is_available(self): return self.status == 0 def useit(self): self.status = 1 self.lasttime = time.time() def releaseit(self): self.status = 0 def connect(self): pass def close(self): pass def alive(self): pass def cursor(self): return self.conn.cursor() @timeit def execute(self, sql, param=None): #log.info('exec:%s', sql) cur = self.conn.cursor() if param: if not isinstance(param, (types.DictType, types.TupleType)): param = tuple([param]) ret = cur.execute(sql, param) else: ret = cur.execute(sql) cur.close() return ret @timeit def executemany(self, sql, param): cur = self.conn.cursor() if param: if not isinstance(param, (types.DictType, types.TupleType)): param = tuple([param]) ret = cur.executemany(sql, param) else: ret = cur.executemany(sql) cur.close() return ret @timeit def query(self, sql, param=None, isdict=True, head=False): '''sql查询,返回查询结果''' #log.info('query:%s', sql) cur = self.conn.cursor() if not param: cur.execute(sql) else: if not isinstance(param, (types.DictType, types.TupleType)): param = tuple([param]) cur.execute(sql, param) res = cur.fetchall() cur.close() res = [self.format_timestamp(r, cur) for r in res] #log.info('desc:', cur.description) if res and isdict: ret = [] xkeys = [ i[0] for i in cur.description] for item in res: ret.append(dict(zip(xkeys, item))) else: ret = res if head: xkeys = [ i[0] for i in cur.description] ret.insert(0, xkeys) return ret @timeit def get(self, sql, param=None, isdict=True): '''sql查询,只返回一条''' cur = self.conn.cursor() if not param: cur.execute(sql) else: if not isinstance(param, (types.DictType, types.TupleType)): param = tuple([param]) cur.execute(sql, param) res = cur.fetchone() cur.close() res = self.format_timestamp(res, cur) if res and isdict: xkeys = [ i[0] for i in cur.description] return dict(zip(xkeys, res)) else: return res def value2sql(self, v, charset='utf-8'): tv = type(v) if tv in [types.StringType, types.UnicodeType]: if tv == types.UnicodeType: v = v.encode(charset) if v.startswith(('now()','md5(')): return v return "'%s'" % self.escape(v) elif isinstance(v, datetime.datetime) or isinstance(v, datetime.date): return "'%s'" % str(v) elif isinstance(v, DBFunc): return v.value else: if v is None: return 'NULL' return str(v) def exp2sql(self, key, op, value): item = '(`%s` %s ' % (key.strip('`').replace('.','`.`'), op) if op == 'in': item += '(%s))' % ','.join([self.value2sql(x) for x in value]) elif op == 'not in': item += '(%s))' % ','.join([self.value2sql(x) for x in value]) elif op == 'between': item += ' %s and %s)' % (self.value2sql(value[0]), self.value2sql(value[1])) else: item += self.value2sql(value) + ')' return item def dict2sql(self, d, sp=','): '''字典可以是 {name:value} 形式,也可以是 {name:(operator, value)}''' x = [] for k,v in d.iteritems(): if isinstance(v, types.TupleType): x.append('%s' % self.exp2sql(k, v[0], v[1])) else: x.append('`%s`=%s' % (k.strip(' `').replace('.','`.`'), self.value2sql(v))) return sp.join(x) def dict2on(self, d, sp=' and '): x = [] for k,v in d.iteritems(): x.append('`%s`=`%s`' % (k.strip(' `').replace('.','`.`'), v.strip(' `').replace('.','`.`'))) return sp.join(x) def dict2insert(self, d): keys = d.keys() vals = [] for k in keys: vals.append('%s' % self.value2sql(d[k])) new_keys = ['`' + k.strip('`') + '`' for k in keys] return ','.join(new_keys), ','.join(vals) def fields2where(self, fields, where=None): if not where: where = {} for f in fields: if f.value == None or (f.value == '' and f.isnull == False): continue where[f.name] = (f.op, f.value) return where def format_table(self, table): '''调整table 支持加上 `` 并支持as''' #如果有as table = table.strip(' `').replace(',','`,`') index = table.find(' ') if ' ' in table: return '`%s`%s' % ( table[:index] ,table[index:]) else: return '`%s`' % table def insert(self, table, values, other=None): #sql = "insert into %s set %s" % (table, self.dict2sql(values)) keys, vals = self.dict2insert(values) sql = "insert into %s(%s) values (%s)" % (self.format_table(table), keys, vals) if other: sql += ' ' + other return self.execute(sql) def insert_list(self, table, values_list, other=None): sql = 'insert into %s ' % self.format_table(table) sql_key = '' sql_value = [] for values in values_list: keys, vals = self.dict2insert(values) sql_key = keys # 正常key肯定是一样的 sql_value.append('(%s)' % vals) sql += ' (' + sql_key + ') ' + 'values' + ','.join(sql_value) if other: sql += ' ' + other return self.execute(sql) def update(self, table, values, where=None, other=None): sql = "update %s set %s" % (self.format_table(table), self.dict2sql(values)) if where: sql += " where %s" % self.dict2sql(where,' and ') if other: sql += ' ' + other return self.execute(sql) def delete(self, table, where, other=None): sql = "delete from %s" % self.format_table(table) if where: sql += " where %s" % self.dict2sql(where, ' and ') if other: sql += ' ' + other return self.execute(sql) def select(self, table, where=None, fields='*', other=None, isdict=True): sql = self.select_sql(table, where, fields, other) return self.query(sql, None, isdict=isdict) def select_one(self, table, where=None, fields='*', other=None, isdict=True): if not other: other = ' limit 1' if 'limit' not in other: other += ' limit 1' sql = self.select_sql(table, where, fields, other) return self.get(sql, None, isdict=isdict) def select_join(self, table1, table2, join_type='inner', on=None, where=None, fields='*', other=None, isdict=True): sql = self.select_join_sql(table1, table2, join_type, on, where, fields, other) return self.query(sql, None, isdict=isdict) def select_join_one(self, table1, table2, join_type='inner', on=None, where=None, fields='*', other=None, isdict=True): if not other: other = ' limit 1' if 'limit' not in other: other += ' limit 1' sql = self.select_join_sql(table1, table2, join_type, on, where, fields, other) return self.get(sql, None, isdict=isdict) def select_sql(self, table, where=None, fields='*', other=None): if type(fields) in (types.ListType, types.TupleType): fields = ','.join(fields) sql = "select %s from %s" % (fields, self.format_table(table)) if where: sql += " where %s" % self.dict2sql(where, ' and ') if other: sql += ' ' + other return sql def select_join_sql(self, table1, table2, join_type='inner', on=None, where=None, fields='*', other=None): if type(fields) in (types.ListType, types.TupleType): fields = ','.join(fields) sql = "select %s from %s %s join %s" % (fields, self.format_table(table1), join_type, self.format_table(table2)) if on: sql += " on %s" % self.dict2on(on, ' and ') if where: sql += " where %s" % self.dict2sql(where, ' and ') if other: sql += ' ' + other return sql def select_page(self, sql, pagecur=1, pagesize=20, count_sql=None, maxid=-1): return pager.db_pager(self, sql, pagecur, pagesize, count_sql, maxid) def last_insert_id(self): pass def start(self): # start transaction pass def commit(self): self.conn.commit() def rollback(self): self.conn.rollback() def escape(self, s): return s def format_timestamp(self, ret, cur): '''将字段以_time结尾的格式化成datetime''' if not ret: return ret index = [] for d in cur.description: if d[0].endswith('_time'): index.append(cur.description.index(d)) res = [] for i , t in enumerate(ret): if i in index and type(t) in [types.IntType,types.LongType]: res.append(datetime.datetime.fromtimestamp(t)) else: res.append(t) return res def with_mysql_reconnect(func): def close_mysql_conn(self): try: self.conn.close() except: log.warning(traceback.format_exc()) self.conn = None def _(self, *args, **argitems): if self.type == 'mysql': import MySQLdb as m elif self.type == 'pymysql': import pymysql as m trycount = 3 while True: try: x = func(self, *args, **argitems) except m.OperationalError, e: log.warning(traceback.format_exc()) if e[0] >= 2000: # 客户端错误 close_mysql_conn(self) self.connect() trycount -= 1 if trycount > 0: continue raise except m.InterfaceError, e: log.warning(traceback.format_exc()) close_mysql_conn(self) self.connect() trycount -= 1 if trycount > 0: continue raise else: return x return _ #def with_mysql_reconnect(func): # def _(self, *args, **argitems): # import MySQLdb # trycount = 3 # while True: # try: # x = func(self, *args, **argitems) # except MySQLdb.OperationalError, e: # #log.err('mysql error:', e) # if e[0] >= 2000: # client error # #log.err('reconnect ...') # self.conn.close() # self.connect() # # trycount -= 1 # if trycount > 0: # continue # raise # else: # return x # # return _ class MySQLConnection (DBConnection): type = "mysql" def __init__(self, param, lasttime, status): DBConnection.__init__(self, param, lasttime, status) self.connect() def useit(self): self.status = 1 self.lasttime = time.time() def releaseit(self): self.status = 0 def connect(self): engine = self.param['engine'] if engine == 'mysql': import MySQLdb self.conn = MySQLdb.connect(host = self.param['host'], port = self.param['port'], user = self.param['user'], passwd = self.param['passwd'], db = self.param['db'], charset = self.param['charset'], connect_timeout = self.param.get('timeout', 10), ) self.conn.autocommit(1) cur = self.conn.cursor() cur.execute("show variables like 'server_id'") row = cur.fetchone() self.server_id = int(row[1]) #if self.param.get('autocommit',None): # log.note('set autocommit') # self.conn.autocommit(1) #initsqls = self.param.get('init_command') #if initsqls: # log.note('init sqls:', initsqls) # cur = self.conn.cursor() # cur.execute(initsqls) # cur.close() else: raise ValueError, 'engine error:' + engine #log.note('mysql connected', self.conn) def close(self): self.conn.close() self.conn = None @with_mysql_reconnect def alive(self): if self.is_available(): cur = self.conn.cursor() cur.execute("show tables;") cur.close() self.conn.ping() @with_mysql_reconnect def execute(self, sql, param=None): return DBConnection.execute(self, sql, param) @with_mysql_reconnect def executemany(self, sql, param): return DBConnection.executemany(self, sql, param) @with_mysql_reconnect def query(self, sql, param=None, isdict=True, head=False): return DBConnection.query(self, sql, param, isdict, head) @with_mysql_reconnect def get(self, sql, param=None, isdict=True): return DBConnection.get(self, sql, param, isdict) def escape(self, s, enc='utf-8'): if type(s) == types.UnicodeType: s = s.encode(enc) ns = self.conn.escape_string(s) return unicode(ns, enc) def last_insert_id(self): ret = self.query('select last_insert_id()', isdict=False) return ret[0][0] def start(self): sql = "start transaction" return self.execute(sql) def commit(self): sql = 'commit' return self.execute(sql) def rollback(self): sql = 'rollback' return self.execute(sql) class PyMySQLConnection (MySQLConnection): type = "pymysql" def __init__(self, param, lasttime, status): MySQLConnection.__init__(self, param, lasttime, status) def connect(self): engine = self.param['engine'] if engine == 'pymysql': import pymysql self.conn = pymysql.connect(host = self.param['host'], port = self.param['port'], user = self.param['user'], passwd = self.param['passwd'], db = self.param['db'], charset = self.param['charset'], connect_timeout = self.param.get('timeout', 10), ) self.conn.autocommit(1) cur = self.conn.cursor() cur.execute("show variables like 'server_id'") row = cur.fetchone() self.server_id = int(row[1]) else: raise ValueError, 'engine error:' + engine class SQLiteConnection (DBConnection): type = "sqlite" def __init__(self, param, lasttime, status): DBConnection.__init__(self, param, lasttime, status) def connect(self): engine = self.param['engine'] if engine == 'sqlite': import sqlite3 self.conn = sqlite3.connect(self.param['db'], detect_types=sqlite3.PARSE_DECLTYPES, isolation_level=None) else: raise ValueError, 'engine error:' + engine def useit(self): DBConnection.useit(self) if not self.conn: self.connect() def releaseit(self): DBConnection.releaseit(self) self.conn.close() self.conn = None def escape(self, s, enc='utf-8'): s = s.replace("'", "\'") s = s.replace('"', '\"') return s def last_insert_id(self): ret = self.query('select last_insert_rowid()', isdict=False) return ret[0][0] def start(self): sql = "BEGIN" return self.conn.execute(sql) class DBPool (DBPoolBase): def __init__(self, dbcf): # one item: [conn, last_get_time, stauts] self.dbconn_idle = [] self.dbconn_using = [] self.dbcf = dbcf self.max_conn = 20 self.min_conn = 1 if self.dbcf.has_key('conn'): self.max_conn = self.dbcf['conn'] self.connection_class = {} x = globals() for v in x.itervalues(): if type(v) == types.ClassType and v != DBConnection and issubclass(v, DBConnection): self.connection_class[v.type] = v self.lock = threading.Lock() self.cond = threading.Condition(self.lock) self.open(self.min_conn) def synchronize(func): def _(self, *args, **argitems): self.lock.acquire() x = None try: x = func(self, *args, **argitems) finally: self.lock.release() return x return _ def open(self, n=1): param = self.dbcf newconns = [] for i in range(0, n): myconn = self.connection_class[param['engine']](param, time.time(), 0) myconn.pool = self newconns.append(myconn) self.dbconn_idle += newconns def clear_timeout(self): #log.info('try clear timeout conn ...') now = time.time() dels = [] allconn = len(self.dbconn_idle) + len(self.dbconn_using) for c in self.dbconn_idle: if allconn == 1: break if now - c.lasttime > self.dbcf.get('idle_timeout', 10): dels.append(c) allconn -= 1 if dels: log.debug('close timeout db conn:%d', len(dels)) for c in dels: c.close() self.dbconn_idle.remove(c) @synchronize def acquire(self, timeout=10): start = time.time() while len(self.dbconn_idle) == 0: if len(self.dbconn_idle) + len(self.dbconn_using) < self.max_conn: self.open() continue self.cond.wait(timeout) if int(time.time() - start) > timeout: log.error('func=acquire|error=no idle connections') raise RuntimeError('no idle connections') conn = self.dbconn_idle.pop(0) conn.useit() self.dbconn_using.append(conn) if random.randint(0, 100) > 80: self.clear_timeout() return conn @synchronize def release(self, conn): # conn是有效的 # FIXME: conn有可能为false吗?这样是否会有conn从dbconn_using里出不来了 if conn: self.dbconn_using.remove(conn) conn.releaseit() if conn.conn: self.dbconn_idle.insert(0, conn) self.cond.notify() @synchronize def alive(self): for conn in self.dbconn_idle: conn.alive() def size(self): return len(self.dbconn_idle), len(self.dbconn_using) class DBConnProxy: #def __init__(self, masterconn, slaveconn): def __init__(self, pool, timeout=10): #self.name = '' #self.master = masterconn #self.slave = slaveconn self._pool = pool self._master = None self._slave = None self._timeout = timeout self._modify_methods = set(['execute', 'executemany', 'last_insert_id', 'insert', 'update', 'delete', 'insert_list', 'start', 'rollback', 'commit']) def __getattr__(self, name): #if name.startswith('_') and name[1] != '_': # return self.__dict__[name] if name in self._modify_methods: if not self._master: self._master = self._pool.master.acquire(self._timeout) return getattr(self._master, name) else: if name == 'master': if not self._master: self._master = self._pool.master.acquire(self._timeout) return self._master if name == 'slave': if not self._slave: self._slave = self._pool.get_slave().acquire(self._timeout) return self._slave if not self._slave: self._slave = self._pool.get_slave().acquire(self._timeout) return getattr(self._slave, name) class RWDBPool: def __init__(self, dbcf): self.dbcf = dbcf self.name = '' self.policy = dbcf.get('policy', 'round_robin') self.master = DBPool(dbcf.get('master', None)) self.slaves = [] self._slave_current = -1 for x in dbcf.get('slave', []): self.slaves.append(DBPool(x)) def get_slave(self): if self.policy == 'round_robin': size = len(self.slaves) self._slave_current = (self._slave_current + 1) % size return self.slaves[self._slave_current] else: raise ValueError, 'policy not support' def get_master(self): return self.master # def acquire(self, timeout=10): # #log.debug('rwdbpool acquire') # master_conn = None # slave_conn = None # # try: # master_conn = self.master.acquire(timeout) # slave_conn = self.get_slave().acquire(timeout) # return DBConnProxy(master_conn, slave_conn) # except: # if master_conn: # master_conn.pool.release(master_conn) # if slave_conn: # slave_conn.pool.release(slave_conn) # raise def acquire(self, timeout=10): return DBConnProxy(self, timeout) def release(self, conn): #log.debug('rwdbpool release') if conn._master: #log.debug('release master') conn._master.pool.release(conn._master) if conn._slave: #log.debug('release slave') conn._slave.pool.release(conn._slave) def size(self): ret = {'master': (-1,-1), 'slave':[]} if self.master: ret['master'] = self.master.size() for x in self.slaves: key = '%s@%s:%d' % (x.dbcf['user'], x.dbcf['host'], x.dbcf['port']) ret['slave'].append((key, x.size())) return ret def checkalive(name=None): global dbpool while True: if name is None: checknames = dbpool.keys() else: checknames = [name] for k in checknames: pool = dbpool[k] pool.alive() time.sleep(300) def install(cf): global dbpool dbpool = {} for name,item in cf.iteritems(): #item = cf[name] dbp = None if item.has_key('master'): dbp = RWDBPool(item) else: dbp = DBPool(item) dbpool[name] = dbp return dbpool def acquire(name, timeout=10): global dbpool #log.info("acquire:", name) pool = dbpool[name] x = pool.acquire(timeout) x.name = name return x def release(conn): if not conn: return global dbpool #log.info("release:", name) pool = dbpool[conn.name] return pool.release(conn) def execute(db, sql, param=None): return db.execute(sql, param) def executemany(db, sql, param): return db.executemany(sql, param) def query(db, sql, param=None, isdict=True, head=False): return db.query(sql, param, isdict, head) @contextmanager def get_connection(token): try: conn = acquire(token) yield conn except: log.error("error=%s", traceback.format_exc()) finally: release(conn) @contextmanager def get_connection_exception(token): '''出现异常捕获后,关闭连接并抛出异常''' try: conn = acquire(token) yield conn except: #log.error("error=%s", traceback.format_exc()) raise finally: release(conn) def with_database(name, errfunc=None, errstr=''): def f(func): def _(self, *args, **argitems): multi_db = isinstance(name, (types.TupleType, types.ListType)) is_none, is_inst = False, False if isinstance(self, types.NoneType): is_none = True elif isinstance(self, types.ObjectType): is_inst = True if multi_db: dbs = {} for dbname in name: dbs[dbname] = acquire(dbname) if is_inst: self.db = dbs elif is_none: self = dbs else: if is_inst: self.db = acquire(name) elif is_none: self = acquire(name) x = None try: x = func(self, *args, **argitems) except: if errfunc: return getattr(self, errfunc)(error=errstr) else: raise finally: if multi_db: if is_inst: dbs = self.db else: dbs = self dbnames = dbs.keys() for dbname in dbnames: release(dbs.pop(dbname)) else: if is_inst: release(self.db) elif is_none: release(self) if is_inst: self.db = None elif is_none: self = None return x return _ return f def test(): import random, logger logger.install('stdout') #log.install("SimpleLogger") dbcf = {'test1': {'engine': 'sqlite', 'db':'test1.db', 'conn':1}} #dbcf = {'test1': {'engine': 'sqlite', 'db':':memory:', 'conn':1}} install(dbcf) sql = "create table if not exists user(id integer primary key, name varchar(32), ctime timestamp)" print 'acquire' x = acquire('test1') print 'acquire ok' x.execute(sql) #sql1 = "insert into user values (%d, 'zhaowei', datetime())" % (random.randint(1, 100)); sql1 = "insert into user values (%d, 'zhaowei', datetime())" % (random.randint(1, 100)); x.execute(sql1) x.insert("user", {"name":"bobo","ctime":DBFunc("datetime()")}) sql2 = "select * from user" ret = x.query(sql2) print 'result:', ret ret = x.query('select * from user where name=?', 'bobo') print 'result:', ret print 'release' release(x) print 'release ok' print '-' * 60 class Test2: @with_database("test1") def test2(self): ret = self.db.query("select * from user") print ret t = Test2() t.test2() def test1(): DATABASE = {'test': # connection name, used for getting connection from pool {'engine':'mysql', # db type, eg: mysql, sqlite 'db':'test', # db table 'host':'127.0.0.1', # db host 'port':3306, # db port 'user':'root', # db user 'passwd':'654321',# db password 'charset':'utf8',# db charset 'conn':20} # db connections in pool } install(DATABASE) while True: x = random.randint(0, 10) print 'x:', x conns = [] for i in range(0, x): c = acquire('test') time.sleep(1) conns.append(c) print dbpool['test'].size() for c in conns: release(c) time.sleep(1) print dbpool['test'].size() time.sleep(1) print dbpool['test'].size() def test2(): DATABASE = {'test': # connection name, used for getting connection from pool {'engine':'mysql', # db type, eg: mysql, sqlite 'db':'test', # db name 'host':'127.0.0.1', # db host 'port':3306, # db port 'user':'root', # db user 'passwd':'123456', # db password 'charset':'utf8', # db charset 'conn':110} # db connections in pool } install(DATABASE) def go(): #x = random.randint(0, 10) #print 'x:', x #conns = [] #for i in range(0, x): # c = acquire('test') # #time.sleep(1) # conns.append(c) # print dbpool['test'].size() #for c in conns: # release(c) # #time.sleep(1) # print dbpool['test'].size() while True: #time.sleep(1) c = acquire('test') #print dbpool['test'].size() release(c) #print dbpool['test'].size() ths = [] for i in range(0, 100): t = threading.Thread(target=go, args=()) ths.append(t) for t in ths: t.start() for t in ths: t.join() def test3(): import logger logger.install('stdout') global log log = logger.log DATABASE = {'test':{ 'policy': 'round_robin', 'default_conn':'auto', 'master': {'engine':'mysql', 'db':'test', 'host':'127.0.0.1', 'port':3306, 'user':'root', 'passwd':'123456', 'charset':'utf8', 'idle_timeout':60, 'conn':20}, 'slave':[ {'engine':'mysql', 'db':'test', 'host':'127.0.0.1', 'port':3306, 'user':'zhaowei_r1', 'passwd':'123456', 'charset':'utf8', 'conn':20}, {'engine':'mysql', 'db':'test', 'host':'127.0.0.1', 'port':3306, 'user':'zhaowei_r2', 'passwd':'123456', 'charset':'utf8', 'conn':20}, ], }, } install(DATABASE) while True: x = random.randint(0, 10) print 'x:', x conns = [] print 'acquire ...' for i in range(0, x): c = acquire('test') time.sleep(1) c.insert('ztest', {'name':'zhaowei%d'%(i)}) print c.query('select count(*) from ztest') print c.get('select count(*) from ztest') conns.append(c) print dbpool['test'].size() print 'release ...' for c in conns: release(c) time.sleep(1) print dbpool['test'].size() time.sleep(1) print '-'*60 print dbpool['test'].size() print '-'*60 time.sleep(1) def test4(tcount): DATABASE = {'test': # connection name, used for getting connection from pool {'engine':'mysql', # db type, eg: mysql, sqlite 'db':'qf_core', # db name 'host':'172.100.101.106', # db host 'port':3306, # db port 'user':'qf', # db user 'passwd':'123456', # db password 'charset':'utf8', # db charset 'conn':10} # db connections in pool } install(DATABASE) def run_thread(): while True: time.sleep(0.01) conn = None try: conn = acquire('test') except: log.debug("%s catch exception in acquire", threading.currentThread().name) traceback.print_exc() time.sleep(0.5) continue try: sql = "select count(*) from profile" ret = conn.query(sql) except: log.debug("%s catch exception in query", threading.currentThread().name) traceback.print_exc() finally: if conn: release(conn) conn = None import threading th = [] for i in range(0, tcount): _th = threading.Thread(target=run_thread, args=()) log.debug("%s create", _th.name) th.append(_th) for t in th: t.start() log.debug("%s start", t.name) for t in th: t.join() log.debug("%s finish",t.name) def test5(): DATABASE = {'test': # connection name, used for getting connection from pool {'engine':'mysql', # db type, eg: mysql, sqlite 'db':'qf_core', # db name 'host':'172.100.101.106', # db host 'port':3306, # db port 'user':'qf', # db user 'passwd':'123456', # db password 'charset':'utf8', # db charset 'conn':20} # db connections in pool } install(DATABASE) def run_thread(): i = 0 while i < 10: time.sleep(0.01) with get_connection('test') as conn: sql = "select count(*) from profile" ret = conn.query(sql) log.debug('ret:%s', ret) i += 1 pool = dbpool['test'] log.debug("pool size: %s", pool.size()) import threading th = [] for i in range(0, 10): _th = threading.Thread(target=run_thread, args=()) log.debug("%s create", _th.name) th.append(_th) for t in th: t.setDaemon(True) t.start() log.debug("%s start", t.name) def test_with(): DATABASE = {'test': # connection name, used for getting connection from pool {'engine':'mysql', # db type, eg: mysql, sqlite 'db':'qf_core', # db name 'host':'172.100.101.106', # db host 'port':3306, # db port 'user':'qf', # db user 'passwd':'123456', # db password 'charset':'utf8', # db charset 'conn':10} # db connections in pool } install(DATABASE) with get_connection('test') as conn: record = conn.query("select retcd from profile where userid=227519") print record #record = conn.query("select * from chnlbind where userid=227519") #print record pool = dbpool['test'] print pool.size() with get_connection('test') as conn: record = conn.query("select * from profile where userid=227519") print record record = conn.query("select * from chnlbind where userid=227519") print record pool = dbpool['test'] print pool.size() def test_format_time(): import logger logger.install('stdout') DATABASE = {'test': # connection name, used for getting connection from pool {'engine':'mysql', # db type, eg: mysql, sqlite 'db':'qiantai', # db name 'host':'172.100.101.151', # db host 'port':3306, # db port 'user':'qf', # db user 'passwd':'123456', # db password 'charset':'utf8', # db charset 'conn':10} # db connections in pool } install(database) with get_connection('test') as conn: print conn.select('order') print conn.select_join('app','customer','inner',) print conn.format_table('order as o') def test_base_func(): import logger logger.install('stdout') database = {'test': # connection name, used for getting connection from pool {'engine':'mysql', # db type, eg: mysql, sqlite 'db':'qf_core', # db name 'host':'172.100.101.151', # db host 'port':3306, # db port 'user':'qf', # db user 'passwd':'123456', # db password 'charset':'utf8', # db charset 'conn':10} # db connections in pool } install(database) with get_connection('test') as conn: conn.insert('auth_user',{ 'username':'13512345677', 'password':'123', 'mobile':'13512345677', 'email':'[email protected]', }) print conn.select('auth_user',{ 'username':'13512345677', }) conn.delete('auth_user',{ 'username':'13512345677', }) conn.select_join('profile as p','auth_user as a',where={ 'p.userid':DBFunc('a.id'), }) def test_new_rw(): import logger logger.install('stdout') database = {'test':{ 'policy': 'round_robin', 'default_conn':'auto', 'master': {'engine':'mysql', 'db':'test', 'host':'127.0.0.1', 'port':3306, 'user':'root', 'passwd':'654321', 'charset':'utf8', 'conn':10} , 'slave':[ {'engine':'mysql', 'db':'test', 'host':'127.0.0.1', 'port':3306, 'user':'root', 'passwd':'654321', 'charset':'utf8', 'conn':10 }, {'engine':'mysql', 'db':'test', 'host':'127.0.0.1', 'port':3306, 'user':'root', 'passwd':'654321', 'charset':'utf8', 'conn':10 } ] } } install(database) def printt(t=0): now = time.time() if t > 0: print 'time:', now-t return now t = printt() with get_connection('test') as conn: t = printt(t) print 'master:', conn._master, 'slave:', conn._slave assert conn._master == None assert conn._slave == None ret = conn.query("select 10") t = printt(t) print 'after read master:', conn._master, 'slave:', conn._slave assert conn._master == None assert conn._slave != None conn.execute('create table if not exists haha (id int(4) not null primary key, name varchar(128) not null)') t = printt(t) print 'master:', conn._master, 'slave:', conn._slave assert conn._master != None assert conn._slave != None conn.execute('drop table haha') t = printt(t) assert conn._master != None assert conn._slave != None print 'ok' print '=' * 20 t = printt() with get_connection('test') as conn: t = printt(t) print 'master:', conn._master, 'slave:', conn._slave assert conn._master == None assert conn._slave == None ret = conn.master.query("select 10") assert conn._master != None assert conn._slave == None t = printt(t) print 'after query master:', conn._master, 'slave:', conn._slave ret = conn.query("select 10") assert conn._master != None assert conn._slave != None print 'after query master:', conn._master, 'slave:', conn._slave print 'ok' if __name__ == '__main__': #test_with() #test5() #time.sleep(50) #pool = dbpool['test'] #test3() #test4() #test() #test_base_func() test_new_rw() print 'complete!'
[ "qfpay@TEST107.(none)" ]
qfpay@TEST107.(none)
d0c6e4689bcc224f4fde752a7459a16adbb45cf1
2e263bb909bb706957990f23d4d07a33fe031a61
/curiosity_debug.py
dffbbe8768dbdc709baeb1ed25319c6dda169585
[]
no_license
liziniu/SuperMario
3e9b776d4c490275b1684b4fd3b3471914811b7d
64a33901c61591348dd4b9c878e396901dea27b6
refs/heads/master
2020-05-16T02:32:10.694180
2019-06-02T10:08:11
2019-06-02T10:08:11
182,632,295
0
0
null
null
null
null
UTF-8
Python
false
false
7,193
py
import matplotlib import numpy as np import tensorflow as tf matplotlib.use("Agg") import matplotlib.pyplot as plt import pandas as pd import os import argparse import pickle import json from baselines.common import set_global_seeds from curiosity.dynamics import Dynamics from run import build_env from scipy.stats import pearsonr from common.util import DataRecorder from baselines import logger class Model: def __init__(self, sess, env, aux_task, feat_dim, lr): self.sess = sess or tf.Session() self.dynamics = Dynamics(sess=self.sess, env=env, auxiliary_task=aux_task, feat_dim=feat_dim, queue_size=1000, normalize_novelty=True) self.obs_shape = env.observation_space.shape self.ac_shape = env.action_space.shape del env self.opt = tf.train.RMSPropOptimizer(lr, decay=0.99) self.aux_loss = self.dynamics.aux_loss self.dyna_loss = self.dynamics.dyna_loss self.loss = self.aux_loss + self.dyna_loss params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES) gradsandvars = self.opt.compute_gradients(self.loss, params) self.train_op = self.opt.apply_gradients(gradsandvars) self.train_history = [] def train(self, data, rollout_size, online=True, save_path=None): """ :param data: list of dict. [{"obs": arr; "next_obs": arr}] """ self.recoder = DataRecorder(os.path.join(save_path, "training")) for episode, episode_data in enumerate(data): episode_length = len(episode_data["obs"]) obs, act, next_obs, x_pos = episode_data["obs"], episode_data["act"], episode_data["next_obs"], episode_data["x_pos"] episode_novelty = [] if not online: ind = np.random.permutation(episode_length) obs, act, next_obs, x_pos = obs[ind], act[ind], next_obs[ind], x_pos[ind] for start in range(0, episode_length, rollout_size): end = start + rollout_size batch_obs, batch_act, batch_next_obs, batch_x_pos = obs[start:end], act[start:end], next_obs[start:end], x_pos[start:end] novelty = self.sess.run(self.dynamics.novelty, feed_dict={self.dynamics.obs: obs, self.dynamics.ac: act, self.dynamics.next_obs: next_obs}) self.sess.run(self.train_op, feed_dict={self.dynamics.obs: batch_obs, self.dynamics.ac: batch_act, self.dynamics.next_obs: batch_next_obs}) p = pearsonr(x_pos, novelty)[0] logger.info("Episode:{}|Epoch:{}|P:{}".format(episode, start//rollout_size, p)) episode_novelty.append(novelty) self.recoder.store({"x_pos": x_pos, "novelty": novelty, "episode": episode, "epoch": start//rollout_size, "p": p}) plt.figure() plt.scatter(x_pos, novelty) # plt.yscale("log") plt.savefig(os.path.join(save_path, "{}_{}.png".format(episode, start//rollout_size))) plt.close() self.recoder.dump() def preprocess_data(data): data_episode = [] for episode_data in data: tmp = {"obs": [], "act": [], "x_pos": []} for t in episode_data: tmp["obs"].append(t["obs"][0]) tmp["act"].append(t["act"][0]) tmp["x_pos"].append(t["info"][0]["x_pos"]) tmp["obs"] = np.asarray(tmp["obs"], dtype=np.float32) tmp["act"] = np.asarray(tmp["act"], dtype=np.float32) tmp["x_pos"] = np.asarray(tmp["x_pos"], dtype=np.float32) tmp["next_obs"] = np.copy(tmp["obs"][1:]) tmp["obs"] = tmp["obs"][:-1] tmp["act"] = tmp["act"][:-1] tmp["x_pos"] = tmp["x_pos"][:-1] data_episode.append(tmp) return data_episode def visualize_p(path): f = open(path, "rb") data = [] while True: try: data.append(pickle.load(f)) except Exception as e: print(e) break p = [] episode = None for i in range(len(data)): if episode is None: episode = data[i]["episode"] ep = data[i]["episode"] if ep == episode: p.append(data[i]["p"]) else: plt.figure() plt.plot(p) plt.savefig(os.path.join(path, "p_{}.png").format(episode)) p = [] p.append(ep) episode = ep print("Epoch:{} done".format(ep)) def main(args): f = open("{}/data.pkl".format(args.load_path), "rb") data = [] while True: try: data.append(pickle.load(f)) except: break print("Episode:", len(data)) set_global_seeds(args.seed) gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.3) config = tf.ConfigProto(gpu_options=gpu_options, allow_soft_placement=True) sess = tf.Session(config=config, ) env = build_env(env_id=args.env, num_env=1, alg="acer", reward_scale=1.0, env_type=args.env_type, gamestate=None, seed=None, prefix="") model = Model( sess=sess, env=env, aux_task=args.aux_task, feat_dim=args.feat_dim, lr=args.lr ) sess.run(tf.global_variables_initializer()) save_path = "{}/plots-{}-{}-{}".format( args.load_path, args.memo, args.online, args.aux_task, ) logger.configure(dir=save_path) if not os.path.exists(save_path): os.makedirs(save_path) with open(os.path.join(save_path, "config.json"), "w") as f: json.dump(args.__dict__, f, indent=4) model.train( preprocess_data(data), rollout_size=args.rollout_size*args.num_env, save_path=save_path, ) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--rollout_size", type=int, default=20) parser.add_argument("--batch_size", type=int, default=64) parser.add_argument("--nb_opt", type=int, default=5) parser.add_argument("--lr", type=float, default=7e-4) parser.add_argument("--memo", type=str, default="") parser.add_argument("--online", action="store_true", default=False) parser.add_argument("--aux_task", type=str, default="RF", choices=["RF", "RND", "IDF"]) parser.add_argument("--feat_dim", type=int, default=512) parser.add_argument("--dyna_dim", type=int, default=512) parser.add_argument("--seed", type=int, default=0) parser.add_argument("--load_path", type=str, default="logs") parser.add_argument('--gamestate', default=None) parser.add_argument("--alg", type=str, default="ppo2") parser.add_argument("--env_type", type=str, default="atari") parser.add_argument("--env", type=str) parser.add_argument("--num_env", type=int, default=1) parser.add_argument("--reward_scale", type=float, default=1.0, choices=[1.0]) args = parser.parse_args() main(args)
8eafd7e316029d9719d71cf80f9817845735177a
eb85c96c3783be407b396956c13448d89f5e5fee
/design_patterns_with_python/2-python-design-patterns-m2-exercise-files/Strategy/StrategyVariation/strategy_variation/shipping_cost.py
39dd4ddcb717c4d486e40cddd906eba548af071d
[]
no_license
ForeverDreamer/python_learning
83c2c290271dbf060ee1718140b8dfd128b82b20
ff905c4811ddb688f8ee44aed8c4d8067db6168b
refs/heads/master
2022-04-30T03:23:45.162498
2019-07-05T07:55:01
2019-07-05T07:55:01
181,037,513
1
0
null
2022-04-22T21:12:46
2019-04-12T15:41:44
Jupyter Notebook
UTF-8
Python
false
false
170
py
class ShippingCost(object): def __init__(self, strategy): self._strategy = strategy def shipping_cost(self, order): return self._strategy(order)
8390cd4854229dfee6b142cd9d5bbad654885cf3
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_223/ch87_2020_04_29_13_42_03_524040.py
51d2d5546b1465b3bf43fb948f7677c962d2a02a
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
297
py
with open ('churras.txt', 'r') as churrastxt: linhas = churrastxt.readlines() print (linhas) custo = 0 for linha in linhas: separa = linha.split(',') for e in separa: e1=float(e[1]) e2=float(e[2]) custo+=(e1*e2) print (custo)
b4a637358f8fd61fff627c1eb8da57d3effb6445
8b942cbd6a0da0a61f68c468956ba318c7f1603d
/sortings/0056_merge_intervals.py
9ebfcf815fa3d6974a6efdde33f440b51204ad67
[ "MIT" ]
permissive
MartinMa28/Algorithms_review
080bd608b0e0c6f39c45f28402e5181791af4766
3f2297038c00f5a560941360ca702e6868530f34
refs/heads/master
2022-04-13T03:56:56.932788
2020-04-06T03:41:33
2020-04-06T03:41:33
203,349,402
0
0
null
null
null
null
UTF-8
Python
false
false
814
py
class Solution: def merge(self, intervals: list) -> list: sorted_intervals = sorted(intervals) idx = 0 while idx < len(sorted_intervals) - 1: start, end = sorted_intervals[idx] next_start, next_end = sorted_intervals[idx + 1] if end >= next_start: # overlaps with next range sorted_intervals.pop(idx) if end < next_end: sorted_intervals[idx] = (start, next_end) else: sorted_intervals[idx] = (start, end) else: # if does not overlap, check the next range idx += 1 return sorted_intervals if __name__ == "__main__": solu = Solution() print(solu.merge([[1,3],[2,6],[8,10],[15,18]]))
85a9c7cc2c8dbd8ce1eda62b1dbc50f5b32114df
bb6ebff7a7f6140903d37905c350954ff6599091
/tools/clang/blink_gc_plugin/process-graph.py
2bff96f76ad6c8f3698738e85c74f29c3a901e19
[ "BSD-3-Clause", "GPL-2.0-only", "Apache-2.0", "LicenseRef-scancode-unknown", "LicenseRef-scancode-unknown-license-reference", "MIT" ]
permissive
PDi-Communication-Systems-Inc/lollipop_external_chromium_org
faa6602bd6bfd9b9b6277ce3cd16df0bd26e7f2f
ccadf4e63dd34be157281f53fe213d09a8c66d2c
refs/heads/master
2022-12-23T18:07:04.568931
2016-04-11T16:03:36
2016-04-11T16:03:36
53,677,925
0
1
BSD-3-Clause
2022-12-09T23:46:46
2016-03-11T15:49:07
C++
UTF-8
Python
false
false
13,211
py
#!/usr/bin/env python # Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import argparse, os, sys, json, subprocess, pickle, StringIO parser = argparse.ArgumentParser( description = "Process the Blink points-to graph generated by the Blink GC plugin.") parser.add_argument( '-', dest='use_stdin', action='store_true', help='Read JSON graph files from stdin') parser.add_argument( '-c', '--detect-cycles', action='store_true', help='Detect cycles containing GC roots') parser.add_argument( '-s', '--print-stats', action='store_true', help='Statistics about ref-counted and traced objects') parser.add_argument( '-v', '--verbose', action='store_true', help='Verbose output') parser.add_argument( '--ignore-cycles', default=None, metavar='FILE', help='File with cycles to ignore') parser.add_argument( '--ignore-classes', nargs='*', default=[], metavar='CLASS', help='Classes to ignore when detecting cycles') parser.add_argument( '--pickle-graph', default=None, metavar='FILE', help='File to read/save the graph from/to') parser.add_argument( 'files', metavar='FILE_OR_DIR', nargs='*', default=[], help='JSON graph files or directories containing them') # Command line args after parsing. args = None # Map from node labels to nodes. graph = {} # Set of root nodes. roots = [] # List of cycles to ignore. ignored_cycles = [] # Global flag to determine exit code. global_reported_error = False def set_reported_error(value): global global_reported_error global_reported_error = value def reported_error(): return global_reported_error def log(msg): if args.verbose: print msg global_inc_copy = 0 def inc_copy(): global global_inc_copy global_inc_copy += 1 def get_node(name): return graph.setdefault(name, Node(name)) ptr_types = ('raw', 'ref', 'mem') def inc_ptr(dst, ptr): if ptr in ptr_types: node = graph.get(dst) if not node: return node.counts[ptr] += 1 def add_counts(s1, s2): for (k, v) in s2.iteritems(): s1[k] += s2[k] # Representation of graph nodes. Basically a map of directed edges. class Node: def __init__(self, name): self.name = name self.edges = {} self.reset() def __repr__(self): return "%s(%s) %s" % (self.name, self.visited, self.edges) def update_node(self, decl): # Currently we don't track any node info besides its edges. pass def update_edge(self, e): new_edge = Edge(**e) edge = self.edges.get(new_edge.key) if edge: # If an edge exist, its kind is the strongest of the two. edge.kind = max(edge.kind, new_edge.kind) else: self.edges[new_edge.key] = new_edge def super_edges(self): return [ e for e in self.edges.itervalues() if e.is_super() ] def subclass_edges(self): return [ e for e in self.edges.itervalues() if e.is_subclass() ] def reset(self): self.cost = sys.maxint self.visited = False self.path = None self.counts = {} for ptr in ptr_types: self.counts[ptr] = 0 def update_counts(self): for e in self.edges.itervalues(): inc_ptr(e.dst, e.ptr) # Representation of directed graph edges. class Edge: def __init__(self, **decl): self.src = decl['src'] self.dst = decl['dst'] self.lbl = decl['lbl'] self.ptr = decl['ptr'] self.kind = decl['kind'] # 0 = weak, 1 = strong, 2 = root self.loc = decl['loc'] # The label does not uniquely determine an edge from a node. We # define the semi-unique key to be the concatenation of the # label and dst name. This is sufficient to track the strongest # edge to a particular type. For example, if the field A::m_f # has type HashMap<WeakMember<B>, Member<B>> we will have a # strong edge with key m_f#B from A to B. self.key = '%s#%s' % (self.lbl, self.dst) def __repr__(self): return '%s (%s) => %s' % (self.src, self.lbl, self.dst) def is_root(self): return self.kind == 2 def is_weak(self): return self.kind == 0 def keeps_alive(self): return self.kind > 0 def is_subclass(self): return self.lbl.startswith('<subclass>') def is_super(self): return self.lbl.startswith('<super>') def parse_file(filename): obj = json.load(open(filename)) return obj def build_graphs_in_dir(dirname): # TODO: Use plateform independent code, eg, os.walk files = subprocess.check_output( ['find', dirname, '-name', '*.graph.json']).split('\n') log("Found %d files" % len(files)) for f in files: f.strip() if len(f) < 1: continue build_graph(f) def build_graph(filename): for decl in parse_file(filename): if decl.has_key('name'): # Add/update a node entry name = decl['name'] node = get_node(name) node.update_node(decl) else: # Add/update an edge entry name = decl['src'] node = get_node(name) node.update_edge(decl) # Copy all non-weak edges from super classes to their subclasses. # This causes all fields of a super to be considered fields of a # derived class without tranitively relating derived classes with # each other. For example, if B <: A, C <: A, and for some D, D => B, # we don't want that to entail that D => C. def copy_super_edges(edge): if edge.is_weak() or not edge.is_super(): return inc_copy() # Make the super-class edge weak (prohibits processing twice). edge.kind = 0 # If the super class is not in our graph exit early. super_node = graph.get(edge.dst) if super_node is None: return # Recursively copy all super-class edges. for e in super_node.super_edges(): copy_super_edges(e) # Copy strong super-class edges (ignoring sub-class edges) to the sub class. sub_node = graph[edge.src] for e in super_node.edges.itervalues(): if e.keeps_alive() and not e.is_subclass(): new_edge = Edge( src = sub_node.name, dst = e.dst, lbl = '%s <: %s' % (super_node.name, e.lbl), ptr = e.ptr, kind = e.kind, loc = e.loc, ) sub_node.edges[new_edge.key] = new_edge # Add a strong sub-class edge. sub_edge = Edge( src = super_node.name, dst = sub_node.name, lbl = '<subclass>', ptr = edge.ptr, kind = 1, loc = edge.loc, ) super_node.edges[sub_edge.key] = sub_edge def complete_graph(): for node in graph.itervalues(): for edge in node.super_edges(): copy_super_edges(edge) for edge in node.edges.itervalues(): if edge.is_root(): roots.append(edge) log("Copied edges down <super> edges for %d graph nodes" % global_inc_copy) def reset_graph(): for n in graph.itervalues(): n.reset() def shortest_path(start, end): start.cost = 0 minlist = [start] while len(minlist) > 0: minlist.sort(key=lambda n: -n.cost) current = minlist.pop() current.visited = True if current == end or current.cost >= end.cost + 1: return for e in current.edges.itervalues(): if not e.keeps_alive(): continue dst = graph.get(e.dst) if dst is None or dst.visited: continue if current.cost < dst.cost: dst.cost = current.cost + 1 dst.path = e minlist.append(dst) def detect_cycles(): for root_edge in roots: reset_graph() # Mark ignored classes as already visited for ignore in args.ignore_classes: name = ignore.find("::") > 0 and ignore or ("WebCore::" + ignore) node = graph.get(name) if node: node.visited = True src = graph[root_edge.src] dst = graph.get(root_edge.dst) if src.visited: continue if root_edge.dst == "WTF::String": continue if dst is None: print "\nPersistent root to incomplete destination object:" print root_edge set_reported_error(True) continue # Find the shortest path from the root target (dst) to its host (src) shortest_path(dst, src) if src.cost < sys.maxint: report_cycle(root_edge) def is_ignored_cycle(cycle): for block in ignored_cycles: if block_match(cycle, block): return True def block_match(b1, b2): if len(b1) != len(b2): return False for (l1, l2) in zip(b1, b2): if l1 != l2: return False return True def report_cycle(root_edge): dst = graph[root_edge.dst] path = [] edge = root_edge dst.path = None while edge: path.append(edge) edge = graph[edge.src].path path.append(root_edge) path.reverse() # Find the max loc length for pretty printing. max_loc = 0 for p in path: if len(p.loc) > max_loc: max_loc = len(p.loc) out = StringIO.StringIO() for p in path[:-1]: print >>out, (p.loc + ':').ljust(max_loc + 1), p sout = out.getvalue() if not is_ignored_cycle(sout): print "\nFound a potentially leaking cycle starting from a GC root:\n", sout set_reported_error(True) def load_graph(): global graph global roots log("Reading graph from pickled file: " + args.pickle_graph) dump = pickle.load(open(args.pickle_graph, 'rb')) graph = dump[0] roots = dump[1] def save_graph(): log("Saving graph to pickle file: " + args.pickle_graph) dump = (graph, roots) pickle.dump(dump, open(args.pickle_graph, 'wb')) def read_ignored_cycles(): global ignored_cycles if not args.ignore_cycles: return log("Reading ignored cycles from file: " + args.ignore_cycles) block = [] for l in open(args.ignore_cycles): line = l.strip() if not line or line.startswith('Found'): if len(block) > 0: ignored_cycles.append(block) block = [] else: block += l if len(block) > 0: ignored_cycles.append(block) gc_bases = ( 'WebCore::GarbageCollected', 'WebCore::GarbageCollectedFinalized', 'WebCore::GarbageCollectedMixin', ) ref_bases = ( 'WTF::RefCounted', 'WTF::ThreadSafeRefCounted', ) gcref_bases = ( 'WebCore::RefCountedGarbageCollected', 'WebCore::ThreadSafeRefCountedGarbageCollected', ) ref_mixins = ( 'WebCore::EventTarget', 'WebCore::EventTargetWithInlineData', 'WebCore::ActiveDOMObject', ) def print_stats(): gcref_managed = [] ref_managed = [] gc_managed = [] hierarchies = [] for node in graph.itervalues(): node.update_counts() for sup in node.super_edges(): if sup.dst in gcref_bases: gcref_managed.append(node) elif sup.dst in ref_bases: ref_managed.append(node) elif sup.dst in gc_bases: gc_managed.append(node) groups = [("GC manged ", gc_managed), ("ref counted ", ref_managed), ("in transition", gcref_managed)] total = sum([len(g) for (s,g) in groups]) for (s, g) in groups: percent = len(g) * 100 / total print "%2d%% is %s (%d hierarchies)" % (percent, s, len(g)) for base in gcref_managed: stats = dict({ 'classes': 0, 'ref-mixins': 0 }) for ptr in ptr_types: stats[ptr] = 0 hierarchy_stats(base, stats) hierarchies.append((base, stats)) print "\nHierarchies in transition (RefCountedGarbageCollected):" hierarchies.sort(key=lambda (n,s): -s['classes']) for (node, stats) in hierarchies: total = stats['mem'] + stats['ref'] + stats['raw'] print ( "%s %3d%% of %-30s: %3d cls, %3d mem, %3d ref, %3d raw, %3d ref-mixins" % (stats['ref'] == 0 and stats['ref-mixins'] == 0 and "*" or " ", total == 0 and 100 or stats['mem'] * 100 / total, node.name.replace('WebCore::', ''), stats['classes'], stats['mem'], stats['ref'], stats['raw'], stats['ref-mixins'], )) def hierarchy_stats(node, stats): if not node: return stats['classes'] += 1 add_counts(stats, node.counts) for edge in node.super_edges(): if edge.dst in ref_mixins: stats['ref-mixins'] += 1 for edge in node.subclass_edges(): hierarchy_stats(graph.get(edge.dst), stats) def main(): global args args = parser.parse_args() if not (args.detect_cycles or args.print_stats): print "Please select an operation to perform (eg, -c to detect cycles)" parser.print_help() return 1 if args.pickle_graph and os.path.isfile(args.pickle_graph): load_graph() else: if args.use_stdin: log("Reading files from stdin") for f in sys.stdin: build_graph(f.strip()) else: log("Reading files and directories from command line") if len(args.files) == 0: print "Please provide files or directores for building the graph" parser.print_help() return 1 for f in args.files: if os.path.isdir(f): log("Building graph from files in directory: " + f) build_graphs_in_dir(f) else: log("Building graph from file: " + f) build_graph(f) log("Completing graph construction (%d graph nodes)" % len(graph)) complete_graph() if args.pickle_graph: save_graph() if args.detect_cycles: read_ignored_cycles() log("Detecting cycles containg GC roots") detect_cycles() if args.print_stats: log("Printing statistics") print_stats() if reported_error(): return 1 return 0 if __name__ == '__main__': sys.exit(main())
5261b1fa72f0205b52d000597183839bd1f223ff
2c7e967b5cb7c911245463ae1cd152b25b5e0b89
/steps/google.py
54cefc195ca13018e3b6ebd16626e1f29e1f6c1f
[ "MIT" ]
permissive
antonckoenig/citeas-api
902d725c59dad9292c68f873d3a3512c77ceb06e
9a0da10fad95b49363ef43c4d02be1dcb17169d6
refs/heads/master
2023-07-30T13:08:39.967004
2021-09-19T20:08:13
2021-09-19T20:08:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,542
py
from googlesearch import get_random_user_agent, search from steps.arxiv import ArxivResponseStep from steps.bitbucket import BitbucketRepoStep from steps.cran import CranLibraryStep from steps.core import Step from steps.github import GithubRepoStep from steps.pypi import PypiLibraryStep from steps.webpage import WebpageStep class GoogleStep(Step): step_intro = "Use Google to find the software citation." step_more = "This project webpage often includes attribution information like an associated DOI, GitHub repository, and/or project title." @property def starting_children(self): return [ ArxivResponseStep, GithubRepoStep, BitbucketRepoStep, CranLibraryStep, PypiLibraryStep, WebpageStep, ] def set_content_url(self, input): if "http" in input: return None self.content_url = self.google_search(input) def set_content(self, input): self.content = self.content_url @staticmethod def google_search(input): random_user_agent = get_random_user_agent() # check if input is PMID if len(input) == 8 and input.isdigit(): query = input elif "scipy" in input: query = "scipy citation" else: query = "{} software citation".format(input) for url in search(query, stop=3, user_agent=random_user_agent): if "citebay.com" not in url and not url.endswith(".pdf"): return url
97f7334a5bc7c96d20dfd8b287e3555d16fb9d1d
541fa581db6368486605fb8b622196e6fb9fc45f
/backend/manage.py
7b40c4858ed128a63f6a08a7f209ec4b57e713cd
[]
no_license
crowdbotics-apps/speakup-radio-19595
a8c92dd5b343cfaf95897108215feb3775f66ccf
cf97afc333feb0e81e0f8d2e4115ce983d66589f
refs/heads/master
2022-12-03T03:05:29.785944
2020-08-16T16:15:05
2020-08-16T16:15:05
287,979,210
0
0
null
null
null
null
UTF-8
Python
false
false
639
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'speakup_radio_19595.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
d755209ee2ddbde3f348bfcc20afc00768056f8e
d2024f10e641ab2f28a888d23071edc032299498
/demo04062018/object_rec_camera_pointing_v3_ts.py
1ce5bae4c0cba1cb4c90475cc91a28de52d3016d
[]
no_license
chen116/demo2018
6f2ae07150182b8e14a2eacbc57bdc79c03e6dee
d289545bcc30445be26e1381d5301d8f657d0c6e
refs/heads/master
2021-04-27T13:11:44.742650
2018-07-14T14:38:37
2018-07-14T14:38:37
122,435,014
0
0
null
null
null
null
UTF-8
Python
false
false
17,290
py
# USAGE # python real_time_object_detection.py --prototxt MobileNetSSD_deploy.prototxt.txt --model MobileNetSSD_deploy.caffemodel # import the necessary packages from imutils.video import VideoStream from imutils.video import FPS from foscam_v3 import FoscamCamera import numpy as np import argparse import imutils import time import cv2 import os import socket import sys import threading import copy from imutils.video import FileVideoStream import threading from queue import Queue # setup GUI if True: from tkinter import * master = Tk() w = 1000 # width for the Tk root h = 50 # height for the Tk root # get screen width and height ws = master.winfo_screenwidth() # width of the screen hs = master.winfo_screenheight() # height of the screen # calculate x and y coordinates for the Tk root window x = (ws/2) - (w/2) y = (hs)-h*2 # set the dimensions of the screen # and where it is placed master.geometry('%dx%d+%d+%d' % (w, h, x, y)) sched_var = StringVar() sched_var.set(" || "+sys.argv[7]+" ||") fg ="green" if "RT" in sys.argv[7]: fg = "blue" sched_label = Label(master, textvariable=sched_var,fg = fg,bg = "white",font = "Verdana 30 bold" ) sched_label.pack(side=LEFT) # scheds = [ # ("Credit", 0), # ("RT-Xen", 1) # ] # sched = IntVar() # sched.set(0) # initialize # previous_sched = sched.get() # for text, mode in scheds: # b = Radiobutton(master, text=text,variable=sched, value=mode) # b.pack(side=LEFT) # checked = IntVar(value=0) # previous_checked = checked.get() # c = Checkbutton(master, text="Anchors | ", variable=checked,font = "Verdana 14 bold" ) # c.pack(side=LEFT) anchors_var = StringVar() anchors_var.set("Resource:") anchors_label = Label(master, textvariable=anchors_var,font = "Verdana 10 bold" ) anchors_label.pack(side=LEFT) anchors_options = [ ("Anchors", 1), ("50%",0), ("100%", 2), ] checked = IntVar() checked.set(0) # initialize previous_checked = checked.get() for text, mode in anchors_options: b = Radiobutton(master, text=text,variable=checked, value=mode) b.pack(side=LEFT) frame_var = StringVar() frame_var.set("Frame:") frame_label = Label(master, textvariable=frame_var,font = "Verdana 10 bold" ) frame_label.pack(side=LEFT) FSIZE = [ ("S", 300), ("M", 600), ("L", 800) ] w1 = IntVar() w1.set(600) # initialize previous_f_size = w1.get() for text, mode in FSIZE: b = Radiobutton(master, text=text,variable=w1, value=mode) b.pack(side=LEFT) timeslice_var = StringVar() timeslice_var.set(" | ") timeslice_label = Label(master, textvariable=timeslice_var,font = "Verdana 14 bold" ) timeslice_label.pack(side=LEFT) tsSIZE = [ ("Low-lat", 15), ("High-thru", 30) ] ts1 = IntVar() ts1.set(15) # initialize previous_ts = ts1.get() for text, mode in tsSIZE: b = Radiobutton(master, text=text,variable=ts1, value=mode) b.pack(side=LEFT) # ts1 = Scale(master,from_=15,to=30,orient=HORIZONTAL) # ts1.set(15) # init speed # previous_ts = ts1.get() # ts1.pack(side=LEFT) def exit_app(w1): w1.set(0) done = Button(master, text="EXIT",command=lambda: exit_app(w1)) done.pack(side=LEFT) # anchors_var = StringVar() # anchors_var.set("Meow") # anchors_label = Label(master, textvariable=anchors_var) # anchors_label.pack(side=BOTTOM) m1 = Scale(master,from_=1,to=20,orient=HORIZONTAL) m1.set(5) # init speed # m1.pack(side=LEFT) class Workers(threading.Thread): def __init__(self,threadLock,every_n_frame,thread_id,input_q,output_q): threading.Thread.__init__(self) self.net = cv2.dnn.readNetFromCaffe("MobileNetSSD_deploy.prototxt.txt", "MobileNetSSD_deploy.caffemodel") self.thread_id=thread_id self.input_q=input_q self.output_q=output_q self.every_n_frame=every_n_frame self.n=every_n_frame['n'] self.threadLock=threadLock self.my_every_n_frame_cnt=0 def run(self): # Acquire lock to synchronize thread # self.threadLock.acquire() while True: self.threadLock.acquire() self.n = self.every_n_frame['n'] # self.every_n_frame['cnt']=(self.every_n_frame['cnt']+1)%self.n # self.my_every_n_frame_cnt = self.every_n_frame['cnt'] self.threadLock.release() if self.n==-1: # self.output_q.put({'cnt':-1}) break # blob = self.input_q.get() stuff = self.input_q.get() if stuff['cnt']==-1: self.output_q.put({'cnt':-1}) break # self.n = stuff['n'] self.my_every_n_frame_cnt = stuff['cnt'] blob = stuff['blob'] if self.my_every_n_frame_cnt%self.n==0: self.net.setInput(blob) #print("--------------------thread:",self.thread_id," gonna dnn", "cnt:",self.my_every_n_frame_cnt,'n:',self.n) # self.output_q.put(self.net.forward()) # self.output_q.put({'blob':self.net.forward(),'cnt':stuff['cnt']}) net_result=self.net.forward() # self.output_q.put({'blob':net_result,'cnt':stuff['cnt']}) self.output_q.put({'blob':net_result,'cnt':stuff['cnt']}) else: # self.output_q.put({'blob':-1*np.ones((1,1,1,2)),'cnt':stuff['cnt']}) self.output_q.put({'blob':-1*np.ones((1,1,1,2)),'cnt':stuff['cnt']}) # self.output_q.put(np.ndarray([0])) # Release lock for the next thread # self.threadLock.release() #print("Exiting thread" , self.thread_id) input_q = Queue() # fps is better if queue is higher but then more lags output_q = Queue() threads = [] every_n_frame = {'cnt':-1,'n':m1.get()} threadLock = threading.Lock() total_num_threads = 5 num_threads_exiting = 0 def start_server(): global remotetrack remotetrack = 0 s = socket.socket(socket.AF_INET,socket.SOCK_STREAM) host = socket.gethostname() s.bind((host,int(sys.argv[6]))) s.listen(5) #print('server started') while True: connection, address = s.accept() while True: data = connection.recv(64) if (len(data)>0): msg = data.decode('utf-8') if (msg == 'found_object'): #print('remote node found object') remotetrack = 1 elif (msg=='lost_object'): #print('remote node lost object') remotetrack = 0 elif (msg=='clean_up'): #print('cleanup from other node') remotetrack = -1 if not data: break connection.sendall(data) remotetrack = -1 connection.close() remotetrack = -1 mycam = FoscamCamera(sys.argv[1],88,sys.argv[2],sys.argv[3],daemon=False) moveright = 0 moveleft = 0 global remotetrack localtrack = 0 remotetrack = 0 localsearch = 0 sentfoundmessage = 0 sentlostmessage = 0 centered = 1 #sock_client = socket.socket(socket.AF_INET,socket.SOCK_STREAM) #sock_client.connect((sys.argv[4],int(sys.argv[5]))) thread = threading.Thread(target = start_server) thread.daemon = True thread.start() sock_client = socket.socket(socket.AF_INET,socket.SOCK_STREAM) tempFlag=None while tempFlag is None: try: sock_client.connect((sys.argv[4],int(sys.argv[5]))) tempFlag=1 except: #print("Waiting for other host") time.sleep(1) pass #setup CAM # construct the argument parse and parse the arguments #ap = argparse.ArgumentParser() #ap.add_argument("-p", "--prototxt", required=True, # help="path to Caffe 'deploy' prototxt file") #ap.add_argument("-m", "--model", required=True, # help="path to Caffe pre-trained model") #ap.add_argument("-c", "--confidence", type=float, default=0.2, # help="minimum probability to filter weak detections") #args = vars(ap.parse_args()) #os.system('python reset_cam.py') mycam.ptz_reset() # initialize the list of class labels MobileNet SSD was trained to # detect, then generate a set of bounding box colors for each class CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"] #CLASSES = ["person"] L=0.3 R=0.7 COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3)) canpoint = 1 # load our serialized model from disk # #print("[INFO] loading model...") # prototxt = 'MobileNetSSD_deploy.prototxt.txt' # model = 'MobileNetSSD_deploy.caffemodel' # net = cv2.dnn.readNetFromCaffe(prototxt, model) personincam = 0 # initialize the video stream, allow the cammera sensor to warmup, # and initialize the FPS counter #print("[INFO] starting video stream...") #vs = VideoStream('rtsp://arittenbach:[email protected]:88/videoMain').start() vs = VideoStream('rtsp://'+sys.argv[2]+':'+sys.argv[3]+'@'+sys.argv[1]+':88/videoMain').start() # realvid # vs= FileVideoStream("../walkcat.mp4").start() # outvid tracking_target = "person" # realvid # tracking_target = "cat" # outvid time.sleep(2.0) # cat_frame = vs.read() # outvid # for x in range(10): # outvid # cat_frame = vs.read() # outvid # setup mulithreads for i in range(total_num_threads): tmp_thread = Workers(threadLock,every_n_frame,i,input_q,output_q) tmp_thread.start() threads.append(tmp_thread) # prev_box = {} prev_boxes = [] # loop over the frames from the video stream cnt=0 global_cnt=0 import heartbeat window_size_hr=5 hb = heartbeat.Heartbeat(1024,window_size_hr,100,"vic.log",10,100) monitoring_items = ["heart_rate","app_mode","frame_size","timeslice"] comm = heartbeat.DomU(monitoring_items) fps = FPS().start() pointat = 0 # loop over the frames from the video stream prev_personincam = personincam # while vs.more(): # outvid while True: # realvid frame = vs.read() if frame is not None: # frame = cat_frame # outvid current_f_size=w1.get() if remotetrack == -1 or current_f_size == 0: threadLock.acquire() every_n_frame['n']=-1 threadLock.release() while not input_q.empty(): x=input_q.get() for i in range(total_num_threads): input_q.put({'cnt':-1}) break if current_f_size > 0: frame = imutils.resize(frame, width=current_f_size) # grab the frame dimensions and convert it to a blob (h, w) = frame.shape[:2] blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 0.007843, (300, 300), 127.5) threadLock.acquire() every_n_frame['n']=m1.get() threadLock.release() stuff={'blob':blob,'cnt':cnt,'n':m1.get()} cnt+=1 input_q.put(stuff) if not output_q.empty(): stuff = output_q.get() detections = stuff['blob'] order = stuff['cnt'] #print('output cnt:',order,'global cnt:',global_cnt) global_cnt+=1 if detections[0][0][0][0] == -1: if len(prev_boxes)>0: for prev_box in prev_boxes: startX=prev_box['startX'] startY=prev_box['startY'] endX=prev_box['endX'] endY=prev_box['endY'] idx=prev_box['idx'] label=prev_box['label'] cv2.rectangle(frame, (startX, startY), (endX, endY), COLORS[idx], 2) y = startY - 15 if startY - 15 > 15 else startY + 15 cv2.putText(frame, label, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2) else: prev_boxes=[] for i in np.arange(0, detections.shape[2]): # extract the confidence (i.e., probability) associated with # the prediction confidence = detections[0, 0, i, 2] idx2 = int(detections[0,0,i,1]) # filter out weak detections by ensuring the `confidence` is # greater than the minimum confidence if ((confidence > 0.2) and (CLASSES[idx2]==tracking_target)): # extract the index of the class label from the # `detections`, then compute the (x, y)-coordinates of # the bounding box for the object # #print('catttttttttttttttttt') idx = int(detections[0, 0, i, 1]) box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) (startX, startY, endX, endY) = box.astype("int") # #print('startX=',startX) # #print('endX=',endX) if(((startX+endX)/2<(L*w)) and (moveleft==0)): mycam.ptz_move_left() moveleft = 1 moveright = 0 # canpoint = 0 # pointat = time.time()+0.3 elif(((startX+endX)/2>(R*w)) and (moveright==0)): mycam.ptz_move_right() moveright = 1 moveleft = 0 # canpoint = 0 # pointat = time.time()+0.3 # draw the prediction on the frame elif((((startX+endX)/2>(L*w)) and (((startX+endX)/2)<(R*w))))and((moveright==1)or(moveleft==1)): mycam.ptz_stop_run() moveright = 0 moveleft = 0 label = "{}: {:.2f}%".format(CLASSES[idx], confidence * 100) cv2.rectangle(frame, (startX, startY), (endX, endY), COLORS[idx], 2) y = startY - 15 if startY - 15 > 15 else startY + 15 cv2.putText(frame, label, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2) prev_box = {} prev_box['startX']=startX prev_box['startY']=startY prev_box['endX']=endX prev_box['endY']=endY prev_box['idx']=idx prev_box['label']= "recalculating..." prev_boxes.append(prev_box) localtrack = 1 localsearch = 0 sentlostmessage = 0 centered = 0 myvec = detections[0,0,:,1] if myvec[0]!=-1: if CLASSES.index(tracking_target) in myvec: personincam = 1 prev_personincam=1 else: #print('about to send lost message') personincam = 0 prev_personincam = 0 localtrack = 0 sock_client.send(bytes('lost_object','UTF-8')) sentlostmessage = 1 else: personincam = prev_personincam if personincam == 0: #print('about to send lost message') personincam = 0 prev_personincam = 0 localtrack = 0 sock_client.send(bytes('lost_object','UTF-8')) sentlostmessage = 1 if ((localsearch == 0) and (localtrack == 0) and (remotetrack == 1) and (personincam==0)): #print('about to start cruise') mycam.start_cruise('mycruise') localsearch = 1 localtrack = 0 centered = 0 if ((localtrack == 0) and (remotetrack ==0) and (centered == 0) and (personincam==0)): #print('about to reset cam') mycam.ptz_reset() centered = 1 localsearch = 0 localtrack = 0 sentfoundmessage = 0 #elif ((confidence < 0.2) and (CLASSES[idx2]=='person') and (localsearch==0) and (remotetrack == 1) and (localtrack == 0)): # #print('about to start cruise') # mycam.start_horizontal_cruise() # localsearch = 1 # localtrack = 0 #elif ((confidence < 0.2) and (CLASSES[idx2]=='person') and (localsearch==0) and (remotetrack == 0) and (centered==0)): # #print('about tor reset cam') # mycam.ptz_reset() # centered = 1 # localsearch = 0 # localtrack = 0 # sock_client.send(bytes('lost_object','UTF-8')) # show the output frame cv2.imshow("Frame", frame) # hb stuff # #print("hb: before heartbeat_beat()") hb.heartbeat_beat() # #print("hb: before get_window_heartrate()") window_hr = hb.get_window_heartrate() # #print("hb: before get_instant_heartrate()") # instant_hr = hb.get_instant_heartrate() # #print("hb: after hb stuff") if global_cnt>window_size_hr: comm.write("heart_rate",window_hr) # #print('------------------window_hr:',window_hr) # #print('instant_hr:',instant_hr) current_checked = checked.get() if previous_checked!=current_checked: comm.write("app_mode",current_checked) previous_checked=current_checked if previous_f_size!=current_f_size: comm.write("frame_size",current_f_size) previous_f_size=current_f_size current_ts=ts1.get() if previous_ts!=current_ts: comm.write("timeslice",current_ts) previous_ts=current_ts # current_sched = sched.get() # if previous_sched!=current_sched: # comm.write("sched",current_sched) # previous_sched=current_sched fps.update() master.update_idletasks() master.update() key = cv2.waitKey(1) & 0xFF # if the `q` key was pressed, break from the loop if key == ord("q"): break # # update the FPS counter # fps.update() # master.update_idletasks() # master.update() #if(time.time()>pointat): # canpoint = 1 #print('localsearch = ',localsearch) #print('remotetrack = ',remotetrack) #print('localtrack = ',localtrack) #print('personincam =',personincam) #print('sentfoundmessage = ',sentfoundmessage) #print('sentlostmessage = ',sentlostmessage) sentfoundmessage = 0 if ((personincam==1) and (sentfoundmessage==0)): #print('about to send found message') sock_client.send(bytes('found_object','UTF-8')) sentfoundmessage = 1 # stop the timer and display FPS information fps.stop() #print("[INFO] elapsed time: {:.2f}".format(fps.elapsed())) #print("[INFO] approx. FPS: {:.2f}".format(fps.fps())) # do a bit of cleanup cv2.destroyAllWindows() vs.stop() # hb clean up hb.heartbeat_finish() comm.write("heart_rate","done") # worker threads clean up threadLock.acquire() every_n_frame['n']=-1 threadLock.release() while not input_q.empty(): x=input_q.get() for i in range(total_num_threads): input_q.put({'cnt':-1}) for t in threads: t.join() #print("worker threads cleaned up") # mycam1 = FoscamCamera('65.114.169.154',88,'arittenbach','8mmhamcgt16!') # mycam2 = FoscamCamera('65.114.169.108',88,'admin','admin') mycam1 = FoscamCamera('65.114.169.139',88,'arittenbach','8mmhamcgt16!') mycam2 = FoscamCamera('65.114.169.151',88,'admin','admin') mycam1.ptz_reset() mycam2.ptz_reset() mycam1.set_ptz_speed(4) mycam2.set_ptz_speed(4) if remotetrack!=-1: sock_client.send(bytes('clean_up','UTF-8'))
b7e68212cd709d9a98d2c452268db90ad47392ae
871d2a367e45164f21ecdbefe52bf442b563b33c
/tests/tests/correctness/EPLAnalytics/Utilities/DataSimulator/sim_cor_030/run.py
df3cb6f159e3069ad3abecc6e54e13c8a54fb953
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
SoftwareAG/apama-industry-analytics-kit
c0f6c30badf31411a29bc6daa4a7125b76f4e737
a3f6039915501d41251b6f7ec41b0cb8111baf7b
refs/heads/master
2022-02-19T20:47:27.180233
2022-02-02T12:58:23
2022-02-02T12:58:23
185,572,282
3
2
Apache-2.0
2022-02-02T12:58:24
2019-05-08T09:14:07
Python
UTF-8
Python
false
false
3,894
py
# $Copyright (c) 2015 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or Terracotta Inc., San Francisco, CA, USA, and/or Software AG (Canada) Inc., Cambridge, Ontario, Canada, and/or, Software AG (UK) Ltd., Derby, United Kingdom, and/or Software A.G. (Israel) Ltd., Or-Yehuda, Israel and/or their licensors.$ # Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with Software AG from industry.framework.AnalyticsBaseTest import AnalyticsBaseTest from pysys.constants import * class PySysTest(AnalyticsBaseTest): def execute(self): # Start the correlator correlator = self.startTest() self.injectAnalytic(correlator) self.injectDataSimulator(correlator) self.ready(correlator) correlator.receive(filename='RawOutputData.evt', channels=['OutputData']) correlator.receive(filename='OutputDataOnly.evt', channels=['OUTPUT_DATA_ONLY']) correlator.injectMonitorscript(['test.mon'], self.input) # Run the simulator for just over 60 seconds so that we get 60 data points generated correlator.incrementTime(60.1) self.waitForSignal('OutputDataOnly.evt', expr='Received Data:', condition='>=59', timeout=5) def validate(self): # Ensure the test output was correct exprList=[] exprList.append('Received Data: 100') exprList.append('Received Data: 96.66666666666667') exprList.append('Received Data: 93.33333333333333') exprList.append('Received Data: 90') exprList.append('Received Data: 86.66666666666667') exprList.append('Received Data: 83.33333333333334') exprList.append('Received Data: 80') exprList.append('Received Data: 76.66666666666667') exprList.append('Received Data: 73.33333333333334') exprList.append('Received Data: 70') exprList.append('Received Data: 66.66666666666667') exprList.append('Received Data: 63.33333333333334') exprList.append('Received Data: 60') exprList.append('Received Data: 56.66666666666667') exprList.append('Received Data: 53.33333333333334') exprList.append('Received Data: 50') exprList.append('Received Data: 46.66666666666667') exprList.append('Received Data: 43.33333333333334') exprList.append('Received Data: 40.00000000000001') exprList.append('Received Data: 36.66666666666667') exprList.append('Received Data: 33.33333333333334') exprList.append('Received Data: 30.00000000000001') exprList.append('Received Data: 26.66666666666667') exprList.append('Received Data: 23.33333333333334') exprList.append('Received Data: 20.00000000000001') exprList.append('Received Data: 16.66666666666668') exprList.append('Received Data: 13.33333333333334') exprList.append('Received Data: 10.00000000000001') exprList.append('Received Data: 6.66666666666668') exprList.append('Received Data: 3.33333333333334') exprList.append('Received Data: 100') self.assertOrderedGrep("OutputDataOnly.evt", exprList=exprList) self.assertLineCount('OutputDataOnly.evt', expr='Received Data:', condition='>=59') # Check for invalid data values self.assertLineCount('OutputDataOnly.evt', expr='INVALID DATA RECEIVED!', condition='==0') # Ensure the test output was correct exprList=[] exprList.append('Validating com.industry.analytics.Analytic\("DataSimulator",\[\],\["OutputData"\],{"simulationType":"sawfalling"}\)') exprList.append('Analytic DataSimulator started for inputDataNames \[\]') self.assertOrderedGrep("correlator.out", exprList=exprList) # Make sure that the we got the right number of analytics created self.assertLineCount('correlator.out', expr='Validating com.industry.analytics.Analytic', condition='==1') self.assertLineCount('correlator.out', expr='Analytic DataSimulator started', condition='==1') # Basic sanity checks self.checkSanity()
6576c4f0d44e7715aa4ad36675fbe3c92075e2db
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02381/s751837364.py
bd7cb0f49528872efae67b22b1fb8ff06610b153
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
743
py
# Standard Deviation end = 0 while end == 0: studentAmount = int(input()) if studentAmount == 0: end += 1 else: scoreData = [int(i) for i in input().rstrip().split()] totalScore = 0 for score in scoreData: totalScore += score averageScore = totalScore / studentAmount # print('Average: ' + str(averageScore)) totalSquareDistance = 0 for score in scoreData: totalSquareDistance += (score - averageScore) ** 2 variance = totalSquareDistance / studentAmount # print('Variance: ' + str(variance)) standardDeviation = variance ** 0.5 # print('Standard Deviation: ', end = '') print(str(standardDeviation))
78a893873241271aad40cdcd58e8cd782cbe62e3
6fcfb638fa725b6d21083ec54e3609fc1b287d9e
/python/hvy_chainer-gan-improvements/chainer-gan-improvements-master/sample.py
8326637b1ad23d6efabde2e6c8394804eb7dfa71
[]
no_license
LiuFang816/SALSTM_py_data
6db258e51858aeff14af38898fef715b46980ac1
d494b3041069d377d6a7a9c296a14334f2fa5acc
refs/heads/master
2022-12-25T06:39:52.222097
2019-12-12T08:49:07
2019-12-12T08:49:07
227,546,525
10
7
null
2022-12-19T02:53:01
2019-12-12T07:29:39
Python
UTF-8
Python
false
false
1,109
py
import argparse import numpy as np from chainer import serializers from models import Generator import plot # Resize the MNIST dataset to 32x32 images for convenience # since the generator will create images with dimensions # of powers of 2 (doubling upsampling in each deconvolution). im_shape = (32, 32) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--n-z', type=int, default=10) parser.add_argument('--n-samples', type=int, default=128) parser.add_argument('--in-generator-filename', type=str, default='generator.model') parser.add_argument('--out-filename', type=str, default='sample.png') return parser.parse_args() if __name__ == '__main__': args = parse_args() n_z = args.n_z n_samples = args.n_samples in_generator_filename = args.in_generator_filename out_filename = args.out_filename generator = Generator(n_z, im_shape) serializers.load_hdf5(in_generator_filename, generator) zs = np.random.uniform(-1, 1, (n_samples, n_z)).astype(np.float32) x = generator(zs) plot.save_ims(out_filename, x.data)
ecfc3bac0bddf6b0310970297e5c76cc50d20103
e33e414418be93aa0fb19c38b82b221ed8826460
/intel-sds-proto/vsm_configure_guide/packages/vsmclient/python-vsmclient/tests/test_base.py
41e0c22a674faf17892e0df2b8aceaa3fafe3569
[ "BSD-3-Clause", "Apache-2.0", "BSD-2-Clause" ]
permissive
wisererik/proposals
69e4caaf89d7838c14b18328dc261b6c914748bf
9db7413983df9341d1796f2acba7202d36f31278
refs/heads/master
2021-05-03T23:12:39.496346
2018-12-22T04:02:46
2018-12-22T04:02:46
120,399,059
0
0
null
2018-02-06T03:54:13
2018-02-06T03:54:13
null
UTF-8
Python
false
false
1,582
py
from vsmclient import base from vsmclient import exceptions from vsmclient.v1 import vsms from tests import utils from tests.v1 import fakes cs = fakes.FakeClient() class BaseTest(utils.TestCase): def test_resource_repr(self): r = base.Resource(None, dict(foo="bar", baz="spam")) self.assertEqual(repr(r), "<Resource baz=spam, foo=bar>") def test_getid(self): self.assertEqual(base.getid(4), 4) class TmpObject(object): id = 4 self.assertEqual(base.getid(TmpObject), 4) def test_eq(self): # Two resources of the same type with the same id: equal r1 = base.Resource(None, {'id': 1, 'name': 'hi'}) r2 = base.Resource(None, {'id': 1, 'name': 'hello'}) self.assertEqual(r1, r2) # Two resoruces of different types: never equal r1 = base.Resource(None, {'id': 1}) r2 = vsms.Volume(None, {'id': 1}) self.assertNotEqual(r1, r2) # Two resources with no ID: equal if their info is equal r1 = base.Resource(None, {'name': 'joe', 'age': 12}) r2 = base.Resource(None, {'name': 'joe', 'age': 12}) self.assertEqual(r1, r2) def test_findall_invalid_attribute(self): # Make sure findall with an invalid attribute doesn't cause errors. # The following should not raise an exception. cs.vsms.findall(vegetable='carrot') # However, find() should raise an error self.assertRaises(exceptions.NotFound, cs.vsms.find, vegetable='carrot')