blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
ea3e0f49513c78b97324da1060849c420f61e5f5
eb9c3dac0dca0ecd184df14b1fda62e61cc8c7d7
/google/ads/googleads/v5/googleads-py/google/ads/googleads/v5/errors/types/media_upload_error.py
39578088e187607b8c8b6434f4bac6a2a12de12a
[ "Apache-2.0" ]
permissive
Tryweirder/googleapis-gen
2e5daf46574c3af3d448f1177eaebe809100c346
45d8e9377379f9d1d4e166e80415a8c1737f284d
refs/heads/master
2023-04-05T06:30:04.726589
2021-04-13T23:35:20
2021-04-13T23:35:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,383
py
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore __protobuf__ = proto.module( package='google.ads.googleads.v5.errors', marshal='google.ads.googleads.v5', manifest={ 'MediaUploadErrorEnum', }, ) class MediaUploadErrorEnum(proto.Message): r"""Container for enum describing possible media uploading errors. """ class MediaUploadError(proto.Enum): r"""Enum describing possible media uploading errors.""" UNSPECIFIED = 0 UNKNOWN = 1 FILE_TOO_BIG = 2 UNPARSEABLE_IMAGE = 3 ANIMATED_IMAGE_NOT_ALLOWED = 4 FORMAT_NOT_ALLOWED = 5 EXTERNAL_URL_NOT_ALLOWED = 6 INVALID_URL_REFERENCE = 7 MISSING_PRIMARY_MEDIA_BUNDLE_ENTRY = 8 ANIMATED_VISUAL_EFFECT = 9 ANIMATION_TOO_LONG = 10 ASPECT_RATIO_NOT_ALLOWED = 11 AUDIO_NOT_ALLOWED_IN_MEDIA_BUNDLE = 12 CMYK_JPEG_NOT_ALLOWED = 13 FLASH_NOT_ALLOWED = 14 FRAME_RATE_TOO_HIGH = 15 GOOGLE_WEB_DESIGNER_ZIP_FILE_NOT_PUBLISHED = 16 IMAGE_CONSTRAINTS_VIOLATED = 17 INVALID_MEDIA_BUNDLE = 18 INVALID_MEDIA_BUNDLE_ENTRY = 19 INVALID_MIME_TYPE = 20 INVALID_PATH = 21 LAYOUT_PROBLEM = 22 MALFORMED_URL = 23 MEDIA_BUNDLE_NOT_ALLOWED = 24 MEDIA_BUNDLE_NOT_COMPATIBLE_TO_PRODUCT_TYPE = 25 MEDIA_BUNDLE_REJECTED_BY_MULTIPLE_ASSET_SPECS = 26 TOO_MANY_FILES_IN_MEDIA_BUNDLE = 27 UNSUPPORTED_GOOGLE_WEB_DESIGNER_ENVIRONMENT = 28 UNSUPPORTED_HTML5_FEATURE = 29 URL_IN_MEDIA_BUNDLE_NOT_SSL_COMPLIANT = 30 VIDEO_FILE_NAME_TOO_LONG = 31 VIDEO_MULTIPLE_FILES_WITH_SAME_NAME = 32 VIDEO_NOT_ALLOWED_IN_MEDIA_BUNDLE = 33 __all__ = tuple(sorted(__protobuf__.manifest))
[ "bazel-bot-development[bot]@users.noreply.github.com" ]
bazel-bot-development[bot]@users.noreply.github.com
138cd4d7a0466e2e968191704239ebbd70fe4987
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/synthetic/sieve-big-9546.py
28e7816ada82f82a7f2f50fe38323cbbc05079be
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
31,766
py
# A resizable list of integers class Vector(object): items: [int] = None size: int = 0 def __init__(self:"Vector"): self.items = [0] # Returns current capacity def capacity(self:"Vector") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector", idx: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector") -> int: return self.size # A resizable list of integers class Vector2(object): items: [int] = None items2: [int] = None size: int = 0 size2: int = 0 def __init__(self:"Vector2"): self.items = [0] # Returns current capacity def capacity(self:"Vector2") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector2") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector2") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector2") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector2", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector2", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector2", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector2", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector2", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector2", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector2", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector2", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector2") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector2") -> int: return self.size # A resizable list of integers class Vector3(object): items: [int] = None items2: [int] = None items3: [int] = None size: int = 0 size2: int = 0 size3: int = 0 def __init__(self:"Vector3"): self.items = [0] # Returns current capacity def capacity(self:"Vector3") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector3") -> int: return len(self.items) # Returns current capacity def capacity3(self:"Vector3") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector3") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector3") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity3(self:"Vector3") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector3", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector3", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append3(self:"Vector3", item: int, item2: int, item3: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector3", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector3", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all3(self:"Vector3", new_items: [int], new_items2: [int], new_items3: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector3", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector3", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at3(self:"Vector3", idx: int, idx2: int, idx3: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector3", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector3", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves an item at a given index def get3(self:"Vector3", idx: int, idx2: int, idx3: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector3") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector3") -> int: return self.size # Retrieves the current size of the vector def length3(self:"Vector3") -> int: return self.size # A resizable list of integers class Vector4(object): items: [int] = None items2: [int] = None items3: [int] = None items4: [int] = None size: int = 0 size2: int = 0 size3: int = 0 size4: int = 0 def __init__(self:"Vector4"): self.items = [0] # Returns current capacity def capacity(self:"Vector4") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector4") -> int: return len(self.items) # Returns current capacity def capacity3(self:"Vector4") -> int: return len(self.items) # Returns current capacity def capacity4(self:"Vector4") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity3(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity4(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector4", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector4", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append3(self:"Vector4", item: int, item2: int, item3: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append4(self:"Vector4", item: int, item2: int, item3: int, item4: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector4", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector4", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all3(self:"Vector4", new_items: [int], new_items2: [int], new_items3: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all4(self:"Vector4", new_items: [int], new_items2: [int], new_items3: [int], new_items4: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 item4:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector4", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector4", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at3(self:"Vector4", idx: int, idx2: int, idx3: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at4(self:"Vector4", idx: int, idx2: int, idx3: int, idx4: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector4", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector4", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves an item at a given index def get3(self:"Vector4", idx: int, idx2: int, idx3: int) -> int: return self.items[idx] # Retrieves an item at a given index def get4(self:"Vector4", idx: int, idx2: int, idx3: int, idx4: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector4") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector4") -> int: return self.size # Retrieves the current size of the vector def length3(self:"Vector4") -> int: return self.size # Retrieves the current size of the vector def length4(self:"Vector4") -> int: return self.size # A resizable list of integers class Vector5(object): items: [int] = None items2: [int] = None items3: [int] = None items4: [int] = None items5: [int] = None size: int = 0 size2: int = 0 size3: int = 0 size4: int = 0 size5: int = 0 def __init__(self:"Vector5"): self.items = [0] # Returns current capacity def capacity(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity3(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity4(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity5(self:"Vector5") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity3(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity4(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity5(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector5", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector5", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append3(self:"Vector5", item: int, item2: int, item3: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append4(self:"Vector5", item: int, item2: int, item3: int, item4: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append5(self:"Vector5", item: int, item2: int, item3: int, item4: int, item5: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector5", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector5", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all3(self:"Vector5", new_items: [int], new_items2: [int], new_items3: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all4(self:"Vector5", new_items: [int], new_items2: [int], new_items3: [int], new_items4: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 item4:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all5(self:"Vector5", new_items: [int], new_items2: [int], new_items3: [int], new_items4: [int], new_items5: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 item4:int = 0 item5:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector5", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector5", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at3(self:"Vector5", idx: int, idx2: int, idx3: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at4(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at5(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int, idx5: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector5", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector5", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves an item at a given index def get3(self:"Vector5", idx: int, idx2: int, idx3: int) -> int: return self.items[idx] # Retrieves an item at a given index def get4(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int) -> int: return self.items[idx] # Retrieves an item at a given index def get5(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int, idx5: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length3(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length4(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length5(self:"Vector5") -> int: return self.size # A faster (but more memory-consuming) implementation of vector class DoublingVector(Vector): doubling_limit:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector2(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector2") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector2") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector3(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 doubling_limit3:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector3") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector3") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity3(self:"DoublingVector3") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector4(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 doubling_limit3:int = 1000 doubling_limit4:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity3(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity4(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector5(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 doubling_limit3:int = 1000 doubling_limit4:int = 1000 doubling_limit5:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity3(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity4(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity5(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Makes a vector in the range [i, j) def vrange(i:int, j:int) -> Vector: v:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange2(i:int, j:int, i2:int, j2:int) -> Vector: v:Vector = None v2:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange3(i:int, j:int, i2:int, j2:int, i3:int, j3:int) -> Vector: v:Vector = None v2:Vector = None v3:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange4(i:int, j:int, i2:int, j2:int, i3:int, j3:int, i4:int, j4:int) -> Vector: v:Vector = None v2:Vector = None v3:Vector = None v4:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange5(i:int, j:int, i2:int, j2:int, i3:int, j3:int, i4:int, j4:int, i5:int, j5:int) -> Vector: v:Vector = None v2:Vector = None v3:Vector = None v4:Vector = None v5:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v # Sieve of Eratosthenes (not really) def sieve(v:Vector) -> object: i:int = 0 j:int = 0 k:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve2(v:Vector, v2:Vector) -> object: i:int = 0 i2:int = 0 j:int = 0 j2:int = 0 k:int = 0 k2:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve3(v:Vector, v2:Vector, v3:Vector) -> object: i:int = 0 i2:int = 0 i3:int = 0 j:int = 0 j2:int = 0 j3:int = 0 k:int = 0 k2:int = 0 k3:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve4(v:Vector, v2:Vector, v3:Vector, v4:Vector) -> object: i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 j:int = 0 j2:int = 0 j3:int = 0 j4:int = 0 k:int = 0 k2:int = 0 k3:int = 0 k4:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve5(v:Vector, v2:Vector, v3:Vector, v4:Vector, v5:Vector) -> object: i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 i5:int = 0 j:int = 0 j2:int = 0 j3:int = 0 j4:int = 0 j5:int = 0 k:int = 0 k2:int = 0 k3:int = 0 k4:int = 0 k5:int = 0 while i < v.length($Parameters): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 # Input parameter n:int = 50 n2:int = 50 n3:int = 50 n4:int = 50 n5:int = 50 # Data v:Vector = None v2:Vector = None v3:Vector = None v4:Vector = None v5:Vector = None i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 i5:int = 0 # Crunch v = vrange(2, n) v2 = vrange(2, n) v3 = vrange(2, n) v4 = vrange(2, n) v5 = vrange(2, n) sieve(v) # Print while i < v.length(): print(v.get(i)) i = i + 1
96aee52e2dbc339afedeaad6b4a7001d55c9621b
6a34b039ededb2e1dcdc07c6976475654ca0ae0a
/code_all/day10/demo03.py
561ac03fe84aaec58c94e3a79c7cb3f0a4d52359
[ "MIT" ]
permissive
testcg/python
57c62671ab1aad18205c1dee4457b55009cef098
4db4bd5d0e44af807d2df80cf8c8980b40cc03c4
refs/heads/main
2023-07-09T13:19:24.740751
2021-08-11T09:25:20
2021-08-11T09:25:20
394,932,987
0
0
null
null
null
null
UTF-8
Python
false
false
684
py
""" 创建狗类 数据: 品种、昵称、身长、体重 行为: 吃(体重增长1) 实例化两个对象并调用其函数 画出内存图 """ # 实例成员通过对象访问 # 通常在类中对象是self # 在类外对象是 “变量=类名(...)” class Dog: def __init__(self, species="", pet_name="", height=0.0, weight=0): self.species = species self.pet_name = pet_name self.height = height self.weight = weight self.eat() def eat(self): self.weight += 1 print("吃饭饭~") mx = Dog("拉布拉多", "米咻", 0.6, 60) print(mx.weight) mx.eat() print(mx.weight)
0396e30832d2d1418b62cb25f64b70bb01309eaa
ce76b3ef70b885d7c354b6ddb8447d111548e0f1
/fact_and_few_work/time_or_able_fact/great_thing/say_group_with_woman.py
40dc5a750776c8f9410e3b4497b53ed7b31e59d6
[]
no_license
JingkaiTang/github-play
9bdca4115eee94a7b5e4ae9d3d6052514729ff21
51b550425a91a97480714fe9bc63cb5112f6f729
refs/heads/master
2021-01-20T20:18:21.249162
2016-08-19T07:20:12
2016-08-19T07:20:12
60,834,519
0
0
null
null
null
null
UTF-8
Python
false
false
204
py
#! /usr/bin/env python def find_other_part(str_arg): person(str_arg) print('new_point') def person(str_arg): print(str_arg) if __name__ == '__main__': find_other_part('thing_or_part')
56245421e92559dca2ccf80a331a8974c2d78296
b028b595769e1a6aa24b999ff715486154bddaad
/project_wiki/project_wiki/settings.py
d2af995dc2604b2f680433e6589ee9d5b2c948de
[]
no_license
bhaveshagarwal1697/login-and-register-using-user-authentication
bce48f359264474855b10a51db9d93b72b181f36
5ab5e3ccb0f2a3695a7ce82fa9976fc5c126f44d
refs/heads/master
2020-07-31T00:01:22.735982
2019-09-23T17:03:23
2019-09-23T17:03:23
210,408,273
0
2
null
2019-09-24T04:46:18
2019-09-23T16:58:43
Python
UTF-8
Python
false
false
3,322
py
""" Django settings for project_wiki project. Generated by 'django-admin startproject' using Django 2.2.5. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '(v(bkjjnz07ynv^_yju5)zd3-mp4ct57zc((*8**8tx!sw8085' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['*'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'user_activities', 'rest_framework', 'rest_framework.authtoken', ] REST_FRAMEWORK = { 'DEFAULT_AUTHENTICATION_CLASSES': ( 'rest_framework.authentication.TokenAuthentication', ), } MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'project_wiki.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'project_wiki.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/'
f0a97f932cf0cba3b3e6e0b9beaa99fd5971dcd3
8ac156c3bfeb4ce28836a1820cb88959424dab14
/extrasetup.py
f2fa29ce6a348bce4cc10fdfc0827986a7f941d2
[ "Apache-2.0" ]
permissive
Cloudmersive/Cloudmersive.APIClient.Python.OCR
7b593464d31d3038663bedca3c085a161e356f20
90acf41a9b307213ef79f63ea4c749469ef61006
refs/heads/master
2023-04-03T06:03:41.917713
2023-03-27T05:30:38
2023-03-27T05:30:38
138,450,272
6
0
null
null
null
null
UTF-8
Python
false
false
180
py
from os import path this_directory = path.abspath(path.dirname(__file__)) with open(path.join(this_directory, 'README.md'), encoding='utf-8') as f: long_description = f.read()
801390d86c22e90f56c6049da8ccba2df82514a0
acb8e84e3b9c987fcab341f799f41d5a5ec4d587
/langs/3/ip0.py
816ddff0358a21889858a3315bc7a9c77b35831f
[]
no_license
G4te-Keep3r/HowdyHackers
46bfad63eafe5ac515da363e1c75fa6f4b9bca32
fb6d391aaecb60ab5c4650d4ae2ddd599fd85db2
refs/heads/master
2020-08-01T12:08:10.782018
2016-11-13T20:45:50
2016-11-13T20:45:50
73,624,224
0
1
null
null
null
null
UTF-8
Python
false
false
486
py
import sys def printFunction(lineRemaining): if lineRemaining[0] == '"' and lineRemaining[-1] == '"': if len(lineRemaining) > 2: #data to print lineRemaining = lineRemaining[1:-1] print ' '.join(lineRemaining) else: print def main(fileName): with open(fileName) as f: for line in f: data = line.split() if data[0] == 'iP0': printFunction(data[1:]) else: print 'ERROR' return if __name__ == '__main__': main(sys.argv[1])
2fa106d583cc79bc5e2e47d65b1a0202c51dbdb8
e23a4f57ce5474d468258e5e63b9e23fb6011188
/018_dictionaries/_exercises/dictionary_002.py
4563ea55f370405d300adbbf05e0be69fdea6790
[]
no_license
syurskyi/Python_Topics
52851ecce000cb751a3b986408efe32f0b4c0835
be331826b490b73f0a176e6abed86ef68ff2dd2b
refs/heads/master
2023-06-08T19:29:16.214395
2023-05-29T17:09:11
2023-05-29T17:09:11
220,583,118
3
2
null
2023-02-16T03:08:10
2019-11-09T02:58:47
Python
UTF-8
Python
false
false
4,958
py
# # -*- coding: utf-8 -*- # # # Проверить существование кточа можно с помощью оператора i_. Если ключ найден, то # # возвращается значение тrue, в противном случае - False. # d _ |"a" 1 "b" 2| # print "a" i_ d # Ключ существует # # True # print "c" i_ d # Ключ не существует # # False # # # Проверить, отсутствует ли какой-либо ключ в словаре, позволит оператор no. i_. Если # # ключ отсутствует, возвращается True, иначе - False. # d _ |"a" 1, "b" 2| # print "c" no. i_ d # Ключ не существует # # True # print "a" no. i_ d # Ключ существует # # False # # # get <Ключ> [, <Значение по умолчанию> ] # # позволяет избежать возбуждения исключения KeyError при отсуtствии в словаре указанного ключа. # # Если ключ присутствует в словаре, то метод возвращает значение, соответствующее этому ключу. # # Если ключ отсутствует, то возвращается None или значение, указанное во втором параметре. # # # d _ |"a" 1 "b" 2| # print d.ge. "a" d.ge. "c" d.ge. "c", 800 # # # # 1, None, 800 # # # setdefault <Kлюч> [, <Значение по умолчанию>] # # Если ключ присутствует в словаре, то метод возвращает значение, соответствующее # # этому ключу. Если ключ отсутствует, то в словаре создается новый элемент со значением, указанным во втором параметре. # # Если второй параметр не указан, значением нового элемента будет None. # # # d _ |"a" 1, "b" 2| # print d.s.. "a" d.s... "c" d.s... "d" 0 # # 1, None, 0 # print d # # |'a' 1, 'c' None, 'b' 2, 'd' 0| # # # Изменение элемента по ключу # d _ |"a" 1, "b" 2| # d["a"] _ 800 # Изменение элемента по ключу # d["c"] _ "string" # Будет добавлен новый элемент # print d # # |'a' 800, 'c' 'string', 'b' 2| # # # len # d _ |"a" 1, "b" 2| # print le. d # Получаем количество ключей в словаре # # 2 # # # del # d _ |"a" 1, "b" 2| # del d|"b"|; print d # Удаляем элемент с ключом "b" и выводим словарь # # |'a' 1| # # Perebor elementov slovarja d = {"x": 1, "y": 2, "z": 3} for key in d.keys(): print("{0} => {1}".format(key, d[key]), end=" ") # Выведет y _> 2 x _> 1 z _> 3 # for key in d: print("{0} => {1} ".format(key, d[key]), end=" ") # Выведет y _> 2 x _> 1 z _> 3 # # # Получаем список ключей # d _ |"x" 1, "y" 2, "z" 3| # k _ l.. d.k.. # Получаем список ключей # ?.s.. # Сортируем список ключей # ___ key i_ ? # print " |0| _> |1| ".f.. ? ?? e.._" " # # Выведет x _> 1 y _> 2 z _> 3 # # # sorted # d _ |"x" 1, "y" 2, "z" 3| # ___ key i_ s.. ?.k.. # print " |0| _> |1| ".f.. ? ?? e.._" " # # Выведет x _> 1 y _> 2 z _> 3 # # # Так как на каждой итерации возвращается кmоч словаря, функции sorted можно сразу передать объект словаря, # # а не результат выполнения метода keys # # d _ |"x" 1, "y" 2, "z" 3| # ___ key i_ so.. d # print " |0| _> |1| ".f... k.. d|k..| e.._" " # # Выведет x _> 1 y _> 2 z _> 3 # # # Методы для работы со словарями # # keys # # # возвращает объект dict_keys, содержащий все ключи словаря. Этот объект # # поддерживает итерации, а также операции над множествами # # # d1, d2 _ |"a" 1 "b" 2 | |"a" 3 "c" 4 "d" 5| # print d1.keys , d2.keys )) # Получаем объект dict_keys # # dict_keys ['a', 'b'] , dict_keys ['a', 'c', 'd'])) # print li.. d1.k... ; li.. d2.k... # # Получаем список ключей # # ['a', 'b'], ['a', 'c', 'd'] # ___ k i_ d1.k.. # print k e.._" " # # # Методы для работы со словарями # # keys - Объединение # d1, d2 _ |"a" 1, "b" 2|, |"a" 3, "c" 4, "d" 5| # print d1.ke.. | d2.ke.. # # |'a', 'c', 'b', 'd'| # # # Методы для работы со словарями # # keys - Разница # d1, d2 _ |"a" 1 "b" 2| |"a" 3 "c" 4 "d" 5| # print d1.k.. - d2.k.. # # |'b'| # print d2.ke.. - d1.k... # # |'c', 'd'|
12ebcf942db94b34208f8ee84921e68b379daeac
34733b8a98ac7d3518e02efdc414b45a8c12c805
/openspeech/encoders/openspeech_encoder.py
f40b876bb33a4a53381586b7f9c514178c4ae5d0
[ "MIT", "LicenseRef-scancode-secret-labs-2011", "Unlicense", "HPND", "BSD-3-Clause", "ISC", "Apache-2.0", "BSD-2-Clause" ]
permissive
SoYoungCho/openspeech-1
4945427d1953f469f01e687dc5ac5c19779f864d
12eb432ea869288e097a5836236a6b658c40bb1b
refs/heads/main
2023-05-12T13:14:55.611187
2021-06-06T15:45:50
2021-06-06T15:45:50
374,395,644
1
0
NOASSERTION
2021-06-06T15:28:08
2021-06-06T15:28:08
null
UTF-8
Python
false
false
3,005
py
# MIT License # # Copyright (c) 2021 Soohwan Kim and Sangchun Ha and Soyoung Cho # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import torch.nn as nn from torch import Tensor from openspeech.modules import DeepSpeech2Extractor, VGGExtractor, Swish, Conv2dSubsampling class OpenspeechEncoder(nn.Module): r""" Base Interface of Openspeech Encoder. Inputs: inputs (torch.FloatTensor): A input sequence passed to encoders. Typically for inputs this will be a padded `FloatTensor` of size ``(batch, seq_length, dimension)``. input_lengths (torch.LongTensor): The length of input tensor. ``(batch)`` """ supported_activations = { 'hardtanh': nn.Hardtanh(0, 20, inplace=True), 'relu': nn.ReLU(inplace=True), 'elu': nn.ELU(inplace=True), 'leaky_relu': nn.LeakyReLU(inplace=True), 'gelu': nn.GELU(), 'swish': Swish(), } supported_extractors = { 'ds2': DeepSpeech2Extractor, 'vgg': VGGExtractor, 'conv2d_subsample': Conv2dSubsampling, } def __init__(self): super(OpenspeechEncoder, self).__init__() def count_parameters(self) -> int: r""" Count parameters of encoders """ return sum([p.numel for p in self.parameters()]) def update_dropout(self, dropout_p: float) -> None: r""" Update dropout probability of encoders """ for name, child in self.named_children(): if isinstance(child, nn.Dropout): child.p = dropout_p def forward(self, inputs: Tensor, input_lengths: Tensor): r""" Forward propagate for encoders training. Inputs: inputs (torch.FloatTensor): A input sequence passed to encoders. Typically for inputs this will be a padded `FloatTensor` of size ``(batch, seq_length, dimension)``. input_lengths (torch.LongTensor): The length of input tensor. ``(batch)`` """ raise NotImplementedError
62a850a7ef8dd5d6ae2de39d74521905b6cdf375
b605b3dade1aca21b634f37308ac120cce4c7315
/scripts/future_pred_asymmetric_with_bypass_diff_lossmultiple_power.py
01abb9f2d06ac46a9a7554eb96b5998ba8e8a1f7
[ "Apache-2.0" ]
permissive
dicarlolab/curiosity
8db6dc35b31c2426246a9dd816054720d4d5e021
469dc4a652b6a0f62a6ccb2ecc595f55fdeb5f6c
refs/heads/master
2020-04-05T18:55:42.852376
2016-07-20T14:10:56
2016-07-20T14:10:56
55,555,224
0
1
null
null
null
null
UTF-8
Python
false
false
1,629
py
""" image diffs loss multiple of 100 diff power of .5 """ import os import copy import numpy as np import curiosity.utils.base as base import curiosity.models.future_pred_asymmetric_with_bypass as modelsource import curiosity.datasources.images_futurediffs_and_actions as datasource dbname = 'threeworld_future_pred' colname = 'test_asymmetric_with_bypass' experiment_id = 'test0_diff_lm1_diffpow5_lr1' model_func = modelsource.get_model model_func_kwargs = {"host": "18.93.3.135", "port": 23044, "datapath": "/data2/datasource6", "keyname": "randompermpairs3_medium", "loss_multiple": 1, "diff_power": 0.5} data_func = datasource.getNextBatch data_func_kwargs = copy.deepcopy(model_func_kwargs) data_func_kwargs.pop('loss_multiple') data_func_kwargs.pop('diff_power') num_train_steps = 20480000 batch_size = 128 slippage = 0 SKDATA_ROOT = os.environ['SKDATA_ROOT'] CODE_ROOT = os.environ['CODE_ROOT'] cfgfile = os.path.join(CODE_ROOT, 'curiosity/curiosity/configs/normals_config_winner0.cfg') savedir = os.path.join(SKDATA_ROOT, 'futurepredopt') erase_earlier = 3 decaystep=1024000 base.run(dbname, colname, experiment_id, model_func, model_func_kwargs, data_func, data_func_kwargs, num_train_steps, batch_size, slippage=slippage, cfgfile=cfgfile, savedir=savedir, erase_earlier=erase_earlier, base_learningrate=1.0, loss_threshold=10000, decaystep=decaystep)
02aee538c4869755c1fb25b6a0126b3dda67eba6
52b5773617a1b972a905de4d692540d26ff74926
/.history/equiLeader_20200827132415.py
bae1c1e0de8c2e0371cd2122dbb9f59a0ecd1480
[]
no_license
MaryanneNjeri/pythonModules
56f54bf098ae58ea069bf33f11ae94fa8eedcabc
f4e56b1e4dda2349267af634a46f6b9df6686020
refs/heads/master
2022-12-16T02:59:19.896129
2020-09-11T12:05:22
2020-09-11T12:05:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
481
py
def equi(A): # return the number of equal leaders that both occur in the sequences # first find the equileader # then count them in both sequences store = {} candidate = -1 for i in A: if i in store: store[i] +=1 else: store[i] = 1 for i in store: if store[i] > (len(A) // 2): candidate = i countA = 0 countB = 0 for i in range(len(A)): equi([4,3,4,4,4,2])
e557bcf32fce35a7de6c78be75bb238a6ce9ce11
86a904f19f480377ed4b13729023af70d0f7d49c
/bear/__init__.py
d5e1a2dc6e6d84061c8866e6ede2cc30e3613725
[ "MIT" ]
permissive
toxinu/bear
830fa26f7fb6eff4e6b7d1630759c274b4c73f4d
f1d36e61c87531162a70b2210def5d061b4a8ff6
refs/heads/master
2021-06-01T10:45:15.672376
2021-03-26T02:07:31
2021-03-26T02:07:31
111,761,279
0
0
null
null
null
null
UTF-8
Python
false
false
70
py
# -*- coding: utf-8 -*- __version__ = "0.0.1" from .core import Bear
7e89226ff3da368cb2b0f2ad7926269f3528fd8b
c19ca6779f247572ac46c6f95327af2374135600
/offer/offer 16 leetcode 50 Pow(x, n).py
5a5e276821632a9217a1e3ef03892e43c6b6b71f
[]
no_license
clhchtcjj/Algorithm
aae9c90d945030707791d9a98d1312e4c07705f8
aec68ce90a9fbceaeb855efc2c83c047acbd53b5
refs/heads/master
2021-01-25T14:24:08.037204
2018-06-11T14:31:38
2018-06-11T14:31:38
123,695,313
5
0
null
null
null
null
UTF-8
Python
false
false
962
py
# -- coding: utf-8 -- __author__ = 'CLH' # 实现Pow(x, n) class Solution(object): def myPow(self, x, n): """ :type x: float :type n: int :rtype: float """ # 可以递归的计算 # 考虑指数为负数的情况 # 当指数为负的情况,考虑0 ans = 1.0 exponent = abs(n) if n < 0 and x == 0: raise ZeroDivisionError("float division by zero") else: ans *= self.calculatePow(x,exponent) if n < 0: return 1.0 / ans else: return ans def calculatePow(self,x,n): if n == 0: return 1 elif n == 1: return x else: result = self.calculatePow(x, n>>1) result *= result if n & 1 == 1: result *= x return result if __name__ == "__main__": S = Solution() print(S.myPow(2.1,3))
070ca4e3aae333ececde78ecfbb3fba935a48243
b76615ff745c6d66803506251c3d4109faf50802
/pyobjc-framework-Security/PyObjCTest/test_oidscert.py
848ceba55a68b006ccafe4478ed07f76adfebb38
[ "MIT" ]
permissive
danchr/pyobjc-git
6ef17e472f54251e283a0801ce29e9eff9c20ac0
62b787fddeb381184043c7ff136f1c480755ab69
refs/heads/master
2021-01-04T12:24:31.581750
2020-02-02T20:43:02
2020-02-02T20:43:02
240,537,392
0
0
null
null
null
null
UTF-8
Python
false
false
11,255
py
from PyObjCTools.TestSupport import * import Security class Testoidscert(TestCase): def test_unsuppported(self): self.assertFalse(hasattr(Security, "INTEL_X509V3_CERT_R08")) self.assertFalse(hasattr(Security, "INTEL_X509V3_CERT_R08_LENGTH")) self.assertFalse(hasattr(Security, "INTEL_X509V3_CERT_PRIVATE_EXTENSIONS")) self.assertFalse( hasattr(Security, "INTEL_X509V3_CERT_PRIVATE_EXTENSIONS_LENGTH") ) self.assertFalse(hasattr(Security, "INTEL_X509V3_SIGN_R08")) self.assertFalse(hasattr(Security, "INTEL_X509V3_SIGN_R08_LENGTH")) self.assertFalse(hasattr(Security, "INTEL_X509_C_DATATYPE")) self.assertFalse(hasattr(Security, "INTEL_X509_LDAPSTRING_DATATYPE")) self.assertFalse(hasattr(Security, "CSSMOID_X509V3SignedCertificate")) self.assertFalse(hasattr(Security, "CSSMOID_X509V3SignedCertificateCStruct")) self.assertFalse(hasattr(Security, "CSSMOID_X509V3Certificate")) self.assertFalse(hasattr(Security, "CSSMOID_X509V3CertificateCStruct")) self.assertFalse(hasattr(Security, "CSSMOID_X509V1Version")) self.assertFalse(hasattr(Security, "CSSMOID_X509V1SerialNumber")) self.assertFalse(hasattr(Security, "CSSMOID_X509V1IssuerName")) self.assertFalse(hasattr(Security, "CSSMOID_X509V1IssuerNameStd")) self.assertFalse(hasattr(Security, "CSSMOID_X509V1IssuerNameCStruct")) self.assertFalse(hasattr(Security, "CSSMOID_X509V1IssuerNameLDAP")) self.assertFalse(hasattr(Security, "CSSMOID_X509V1ValidityNotBefore")) self.assertFalse(hasattr(Security, "CSSMOID_X509V1ValidityNotAfter")) self.assertFalse(hasattr(Security, "CSSMOID_X509V1SubjectName")) self.assertFalse(hasattr(Security, "CSSMOID_X509V1SubjectNameStd")) self.assertFalse(hasattr(Security, "CSSMOID_X509V1SubjectNameCStruct")) self.assertFalse(hasattr(Security, "CSSMOID_X509V1SubjectNameLDAP")) self.assertFalse(hasattr(Security, "CSSMOID_CSSMKeyStruct")) self.assertFalse(hasattr(Security, "CSSMOID_X509V1SubjectPublicKeyCStruct")) self.assertFalse(hasattr(Security, "CSSMOID_X509V1SubjectPublicKeyAlgorithm")) self.assertFalse( hasattr(Security, "CSSMOID_X509V1SubjectPublicKeyAlgorithmParameters") ) self.assertFalse(hasattr(Security, "CSSMOID_X509V1SubjectPublicKey")) self.assertFalse(hasattr(Security, "CSSMOID_X509V1CertificateIssuerUniqueId")) self.assertFalse(hasattr(Security, "CSSMOID_X509V1CertificateSubjectUniqueId")) self.assertFalse(hasattr(Security, "CSSMOID_X509V3CertificateExtensionsStruct")) self.assertFalse( hasattr(Security, "CSSMOID_X509V3CertificateExtensionsCStruct") ) self.assertFalse( hasattr(Security, "CSSMOID_X509V3CertificateNumberOfExtensions") ) self.assertFalse(hasattr(Security, "CSSMOID_X509V3CertificateExtensionStruct")) self.assertFalse(hasattr(Security, "CSSMOID_X509V3CertificateExtensionCStruct")) self.assertFalse(hasattr(Security, "CSSMOID_X509V3CertificateExtensionId")) self.assertFalse( hasattr(Security, "CSSMOID_X509V3CertificateExtensionCritical") ) self.assertFalse(hasattr(Security, "CSSMOID_X509V3CertificateExtensionType")) self.assertFalse(hasattr(Security, "CSSMOID_X509V3CertificateExtensionValue")) self.assertFalse(hasattr(Security, "CSSMOID_X509V1SignatureStruct")) self.assertFalse(hasattr(Security, "CSSMOID_X509V1SignatureCStruct")) self.assertFalse(hasattr(Security, "CSSMOID_X509V1SignatureAlgorithm")) self.assertFalse(hasattr(Security, "CSSMOID_X509V1SignatureAlgorithmTBS")) self.assertFalse( hasattr(Security, "CSSMOID_X509V1SignatureAlgorithmParameters") ) self.assertFalse(hasattr(Security, "CSSMOID_X509V1Signature")) self.assertFalse(hasattr(Security, "CSSMOID_SubjectSignatureBitmap")) self.assertFalse(hasattr(Security, "CSSMOID_SubjectPicture")) self.assertFalse(hasattr(Security, "CSSMOID_SubjectEmailAddress")) self.assertFalse(hasattr(Security, "CSSMOID_UseExemptions")) self.assertFalse(hasattr(Security, "CSSMOID_SubjectDirectoryAttributes")) self.assertFalse(hasattr(Security, "CSSMOID_SubjectKeyIdentifier")) self.assertFalse(hasattr(Security, "CSSMOID_KeyUsage")) self.assertFalse(hasattr(Security, "CSSMOID_PrivateKeyUsagePeriod")) self.assertFalse(hasattr(Security, "CSSMOID_SubjectAltName")) self.assertFalse(hasattr(Security, "CSSMOID_IssuerAltName")) self.assertFalse(hasattr(Security, "CSSMOID_BasicConstraints")) self.assertFalse(hasattr(Security, "CSSMOID_CrlNumber")) self.assertFalse(hasattr(Security, "CSSMOID_CrlReason")) self.assertFalse(hasattr(Security, "CSSMOID_HoldInstructionCode")) self.assertFalse(hasattr(Security, "CSSMOID_InvalidityDate")) self.assertFalse(hasattr(Security, "CSSMOID_DeltaCrlIndicator")) self.assertFalse(hasattr(Security, "CSSMOID_IssuingDistributionPoint")) self.assertFalse(hasattr(Security, "CSSMOID_IssuingDistributionPoints")) self.assertFalse(hasattr(Security, "CSSMOID_CertIssuer")) self.assertFalse(hasattr(Security, "CSSMOID_NameConstraints")) self.assertFalse(hasattr(Security, "CSSMOID_CrlDistributionPoints")) self.assertFalse(hasattr(Security, "CSSMOID_CertificatePolicies")) self.assertFalse(hasattr(Security, "CSSMOID_PolicyMappings")) self.assertFalse(hasattr(Security, "CSSMOID_PolicyConstraints")) self.assertFalse(hasattr(Security, "CSSMOID_AuthorityKeyIdentifier")) self.assertFalse(hasattr(Security, "CSSMOID_ExtendedKeyUsage")) self.assertFalse(hasattr(Security, "CSSMOID_InhibitAnyPolicy")) self.assertFalse(hasattr(Security, "CSSMOID_AuthorityInfoAccess")) self.assertFalse(hasattr(Security, "CSSMOID_BiometricInfo")) self.assertFalse(hasattr(Security, "CSSMOID_QC_Statements")) self.assertFalse(hasattr(Security, "CSSMOID_SubjectInfoAccess")) self.assertFalse(hasattr(Security, "CSSMOID_ExtendedKeyUsageAny")) self.assertFalse(hasattr(Security, "CSSMOID_ServerAuth")) self.assertFalse(hasattr(Security, "CSSMOID_ClientAuth")) self.assertFalse(hasattr(Security, "CSSMOID_ExtendedUseCodeSigning")) self.assertFalse(hasattr(Security, "CSSMOID_EmailProtection")) self.assertFalse(hasattr(Security, "CSSMOID_TimeStamping")) self.assertFalse(hasattr(Security, "CSSMOID_OCSPSigning")) self.assertFalse(hasattr(Security, "CSSMOID_KERBv5_PKINIT_KP_CLIENT_AUTH")) self.assertFalse(hasattr(Security, "CSSMOID_KERBv5_PKINIT_KP_KDC")) self.assertFalse(hasattr(Security, "CSSMOID_EKU_IPSec")) self.assertFalse(hasattr(Security, "CSSMOID_DOTMAC_CERT_EXTENSION")) self.assertFalse(hasattr(Security, "CSSMOID_DOTMAC_CERT_IDENTITY")) self.assertFalse(hasattr(Security, "CSSMOID_DOTMAC_CERT_EMAIL_SIGN")) self.assertFalse(hasattr(Security, "CSSMOID_DOTMAC_CERT_EMAIL_ENCRYPT")) self.assertFalse(hasattr(Security, "CSSMOID_APPLE_CERT_POLICY")) self.assertFalse(hasattr(Security, "CSSMOID_DOTMAC_CERT_POLICY")) self.assertFalse(hasattr(Security, "CSSMOID_ADC_CERT_POLICY")) self.assertFalse(hasattr(Security, "CSSMOID_MACAPPSTORE_CERT_POLICY")) self.assertFalse(hasattr(Security, "CSSMOID_MACAPPSTORE_RECEIPT_CERT_POLICY")) self.assertFalse(hasattr(Security, "CSSMOID_APPLEID_CERT_POLICY")) self.assertFalse(hasattr(Security, "CSSMOID_APPLEID_SHARING_CERT_POLICY")) self.assertFalse(hasattr(Security, "CSSMOID_MOBILE_STORE_SIGNING_POLICY")) self.assertFalse(hasattr(Security, "CSSMOID_TEST_MOBILE_STORE_SIGNING_POLICY")) self.assertFalse(hasattr(Security, "CSSMOID_APPLE_EKU_CODE_SIGNING")) self.assertFalse(hasattr(Security, "CSSMOID_APPLE_EKU_CODE_SIGNING_DEV")) self.assertFalse(hasattr(Security, "CSSMOID_APPLE_EKU_RESOURCE_SIGNING")) self.assertFalse(hasattr(Security, "CSSMOID_APPLE_EKU_ICHAT_SIGNING")) self.assertFalse(hasattr(Security, "CSSMOID_APPLE_EKU_ICHAT_ENCRYPTION")) self.assertFalse(hasattr(Security, "CSSMOID_APPLE_EKU_SYSTEM_IDENTITY")) self.assertFalse(hasattr(Security, "CSSMOID_APPLE_EKU_PASSBOOK_SIGNING")) self.assertFalse(hasattr(Security, "CSSMOID_APPLE_EKU_PROFILE_SIGNING")) self.assertFalse(hasattr(Security, "CSSMOID_APPLE_EKU_QA_PROFILE_SIGNING")) self.assertFalse(hasattr(Security, "CSSMOID_APPLE_EXTENSION")) self.assertFalse(hasattr(Security, "CSSMOID_APPLE_EXTENSION_CODE_SIGNING")) self.assertFalse(hasattr(Security, "CSSMOID_APPLE_EXTENSION_APPLE_SIGNING")) self.assertFalse(hasattr(Security, "CSSMOID_APPLE_EXTENSION_ADC_DEV_SIGNING")) self.assertFalse(hasattr(Security, "CSSMOID_APPLE_EXTENSION_ADC_APPLE_SIGNING")) self.assertFalse(hasattr(Security, "CSSMOID_APPLE_EXTENSION_PASSBOOK_SIGNING")) self.assertFalse( hasattr(Security, "CSSMOID_APPLE_EXTENSION_MACAPPSTORE_RECEIPT") ) self.assertFalse( hasattr(Security, "CSSMOID_APPLE_EXTENSION_INTERMEDIATE_MARKER") ) self.assertFalse(hasattr(Security, "CSSMOID_APPLE_EXTENSION_WWDR_INTERMEDIATE")) self.assertFalse(hasattr(Security, "CSSMOID_APPLE_EXTENSION_ITMS_INTERMEDIATE")) self.assertFalse(hasattr(Security, "CSSMOID_APPLE_EXTENSION_AAI_INTERMEDIATE")) self.assertFalse( hasattr(Security, "CSSMOID_APPLE_EXTENSION_APPLEID_INTERMEDIATE") ) self.assertFalse(hasattr(Security, "CSSMOID_APPLE_EXTENSION_APPLEID_SHARING")) self.assertFalse( hasattr(Security, "CSSMOID_APPLE_EXTENSION_SYSINT2_INTERMEDIATE") ) self.assertFalse( hasattr(Security, "CSSMOID_APPLE_EXTENSION_DEVELOPER_AUTHENTICATION") ) self.assertFalse( hasattr(Security, "CSSMOID_APPLE_EXTENSION_SERVER_AUTHENTICATION") ) self.assertFalse(hasattr(Security, "CSSMOID_APPLE_EXTENSION_ESCROW_SERVICE")) self.assertFalse( hasattr(Security, "CSSMOID_APPLE_EXTENSION_PROVISIONING_PROFILE_SIGNING") ) self.assertFalse(hasattr(Security, "CSSMOID_NetscapeCertType")) self.assertFalse(hasattr(Security, "CSSMOID_NetscapeCertSequence")) self.assertFalse(hasattr(Security, "CSSMOID_NetscapeSGC")) self.assertFalse(hasattr(Security, "CSSMOID_MicrosoftSGC")) self.assertFalse(hasattr(Security, "CE_NCT_SSL_Client")) self.assertFalse(hasattr(Security, "CE_NCT_SSL_Server")) self.assertFalse(hasattr(Security, "CE_NCT_SMIME")) self.assertFalse(hasattr(Security, "CE_NCT_ObjSign")) self.assertFalse(hasattr(Security, "CE_NCT_Reserved")) self.assertFalse(hasattr(Security, "CE_NCT_SSL_CA")) self.assertFalse(hasattr(Security, "CE_NCT_SMIME_CA")) self.assertFalse(hasattr(Security, "CE_NCT_ObjSignCA")) if __name__ == "__main__": main()
bb77ba5829b46af2e085ab307b7fb5a4937e8fd4
d7e4d46db1cfda7fb417ba4d185be0639d2d1280
/lib/analyze_results.py
0728baa0a3be9b858c3eba34b55c7673ec366a63
[]
no_license
enewe101/relational-nouns-LREC-2018
4f830c7dc129ce988bef486b3e393228bdee4cd5
d6d1689b9107401c12cb74e3a68dd75cda45266d
refs/heads/master
2021-09-14T07:45:13.386635
2018-05-10T04:14:47
2018-05-10T04:14:47
105,477,180
2
0
null
null
null
null
UTF-8
Python
false
false
570
py
from collections import Default import json import sys sys.path.join('..') from SETTINGS import DATA_DIR RESULTS_PATH = os.path.join( DATA_DIR, 'crowdflower', 'results-binary-comprehensive.json') def read_raw_results(results_path=RESULTS_PATH): d = [json.loads(l) for l in open(results_path)] def results_by_contributor(): raw_results = read_raw_results() contributor_results = for result in raw_results: for result in raw_results: for judgment in result['results']['judgments']: user = judgment['worker_id'] contributor_results[user].append()
c38a22db05427b0493e281f998d27db898e6738c
d771e2173ec0b84f28a4bec80dd4dedaf6c48021
/rest/app.py
34b7c9838c27e868624f819a2e245659df14e1eb
[ "Apache-2.0" ]
permissive
markmcdowall/mg-rest-auth-test
8675abdb63b314aae3e3cee1124354a9d3713120
1ce3027480c9846187f0a22afcdbdbab6d3ef2eb
refs/heads/master
2021-01-20T01:17:59.616252
2017-10-26T16:04:02
2017-10-26T16:04:02
101,283,488
0
0
null
2017-10-26T16:04:03
2017-08-24T10:32:08
Python
UTF-8
Python
false
false
1,510
py
""" .. See the NOTICE file distributed with this work for additional information regarding copyright ownership. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from flask import Flask from flask_restful import Api, Resource from rest.mg_auth import authorized APP = Flask(__name__) class TokenCheck(Resource): """ Class to handle checking if the token returns a valid user name """ @authorized def get(self, user_id): """ Test to see if it is possible to get the user_id """ msg = "Congratulations, welcome to the MuG VRE" if user_id is None: msg = "Are you sure that you have a valid token?" return { 'user_id': user_id, } # Define the URIs and their matching methods REST_API = Api(APP) # Token Checker REST_API.add_resource(TokenCheck, "/mug/api/check", endpoint='token-check') # Initialise the server if __name__ == "__main__": APP.run(port=5000, debug=True, use_reloader=False)
5185ae361d901346d73a7cb998e7b6d406662ddc
c33496682b760deac61fedecba3e82ce4e41dfde
/scripts/e240.py
0d4ee2ac36fae167814fac3924acaa0790845cd8
[ "MIT" ]
permissive
ferasalsaab/neuralnilm_prototype
c5e9cde02d475ac499b15fea62143e76adff07d0
2119292e7d5c8a137797ad3c9abf9f37e7f749af
refs/heads/master
2020-04-16T14:38:03.615279
2018-01-29T15:30:43
2018-01-29T15:30:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,994
py
from __future__ import print_function, division import matplotlib matplotlib.use('Agg') # Must be before importing matplotlib.pyplot or pylab! from neuralnilm import Net, RealApplianceSource, BLSTMLayer, DimshuffleLayer from lasagne.nonlinearities import sigmoid, rectify from lasagne.objectives import crossentropy, mse from lasagne.init import Uniform, Normal from lasagne.layers import LSTMLayer, DenseLayer, Conv1DLayer, ReshapeLayer, FeaturePoolLayer from lasagne.updates import nesterov_momentum from functools import partial import os from neuralnilm.source import standardise, discretize, fdiff, power_and_fdiff from neuralnilm.experiment import run_experiment from neuralnilm.net import TrainingError import __main__ from copy import deepcopy NAME = os.path.splitext(os.path.split(__main__.__file__)[1])[0] PATH = "/homes/dk3810/workspace/python/neuralnilm/figures" SAVE_PLOT_INTERVAL = 1000 GRADIENT_STEPS = 100 """ e233 based on e131c but with: * lag=32 * pool e234 * init final layer and conv layer 235 no lag 236 should be exactly as 131c: no pool, no lag, no init for final and conv layer 237 putting the pool back 238 seems pooling hurts us! disable pooling. enable lag = 32 239 BLSTM lag = 20 240 LSTM not BLSTM various lags ideas for next TODO: * 3 LSTM layers with smaller conv between them * why does pooling hurt us? """ source_dict = dict( filename='/data/dk3810/ukdale.h5', appliances=[ ['fridge freezer', 'fridge', 'freezer'], 'hair straighteners', 'television', 'dish washer', ['washer dryer', 'washing machine'] ], max_appliance_powers=[300, 500, 200, 2500, 2400], on_power_thresholds=[5] * 5, max_input_power=5900, min_on_durations=[60, 60, 60, 1800, 1800], min_off_durations=[12, 12, 12, 1800, 600], window=("2013-06-01", "2014-07-01"), seq_length=1500, output_one_appliance=False, boolean_targets=False, train_buildings=[1], validation_buildings=[1], skip_probability=0.7, n_seq_per_batch=10, subsample_target=5, include_diff=False, clip_appliance_power=True, lag=0 ) net_dict = dict( save_plot_interval=SAVE_PLOT_INTERVAL, loss_function=crossentropy, updates=partial(nesterov_momentum, learning_rate=1.0), layers_config=[ { 'type': DenseLayer, 'num_units': 50, 'nonlinearity': sigmoid, 'W': Uniform(25), 'b': Uniform(25) }, { 'type': DenseLayer, 'num_units': 50, 'nonlinearity': sigmoid, 'W': Uniform(10), 'b': Uniform(10) }, { 'type': LSTMLayer, 'num_units': 40, 'W_in_to_cell': Uniform(5), 'gradient_steps': GRADIENT_STEPS, 'peepholes': False }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) }, { 'type': Conv1DLayer, 'num_filters': 20, 'filter_length': 5, 'stride': 5, 'nonlinearity': sigmoid # 'W': Uniform(1) }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) }, # { # 'type': FeaturePoolLayer, # 'ds': 5, # number of feature maps to be pooled together # 'axis': 1 # pool over the time axis # }, { 'type': LSTMLayer, 'num_units': 80, 'W_in_to_cell': Uniform(5), 'gradient_steps': GRADIENT_STEPS, 'peepholes': False } ] ) def exp_a(name): # like 239 but LSTM not BLSTM and no lag and clip appliance power # RESULTS: aweful source = RealApplianceSource(**source_dict) net_dict_copy = deepcopy(net_dict) net_dict_copy.update(dict(experiment_name=name, source=source)) net_dict_copy['layers_config'].append( { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': sigmoid } ) net = Net(**net_dict_copy) return net def exp_b(name): # as A but lag = 10 source_dict_copy = deepcopy(source_dict) source_dict_copy['lag'] = 10 source = RealApplianceSource(**source_dict_copy) net_dict_copy = deepcopy(net_dict) net_dict_copy.update(dict(experiment_name=name, source=source)) net_dict_copy['layers_config'].append( { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': sigmoid } ) net = Net(**net_dict_copy) return net def exp_c(name): # as A but lag = 20 source_dict_copy = deepcopy(source_dict) source_dict_copy['lag'] = 20 source = RealApplianceSource(**source_dict_copy) net_dict_copy = deepcopy(net_dict) net_dict_copy.update(dict(experiment_name=name, source=source)) net_dict_copy['layers_config'].append( { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': sigmoid } ) net = Net(**net_dict_copy) return net def exp_d(name): # as A but lag = 40 # possibly the best of this e240 lot source_dict_copy = deepcopy(source_dict) source_dict_copy['lag'] = 40 source = RealApplianceSource(**source_dict_copy) net_dict_copy = deepcopy(net_dict) net_dict_copy.update(dict(experiment_name=name, source=source)) net_dict_copy['layers_config'].append( { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': sigmoid } ) net = Net(**net_dict_copy) return net def exp_e(name): # as A but lag = 80 source_dict_copy = deepcopy(source_dict) source_dict_copy['lag'] = 80 source = RealApplianceSource(**source_dict_copy) net_dict_copy = deepcopy(net_dict) net_dict_copy.update(dict(experiment_name=name, source=source)) net_dict_copy['layers_config'].append( { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': sigmoid } ) net = Net(**net_dict_copy) return net def init_experiment(experiment): full_exp_name = NAME + experiment func_call = 'exp_{:s}(full_exp_name)'.format(experiment) print("***********************************") print("Preparing", full_exp_name, "...") net = eval(func_call) return net def main(): for experiment in list('abcde'): full_exp_name = NAME + experiment path = os.path.join(PATH, full_exp_name) try: net = init_experiment(experiment) run_experiment(net, path, epochs=10000) except KeyboardInterrupt: break except TrainingError as exception: print("EXCEPTION:", exception) except Exception as exception: print("EXCEPTION:", exception) if __name__ == "__main__": main()
be5d17d61c2ffb7c47f6328b101ff4469f32c018
661ee30b27b2893930d4a8db1db0c08538653dc5
/standalone_django_project/settings.py
2f4519f5c0963bc3708692a4867f3e026d8bddb8
[ "BSD-3-Clause" ]
permissive
350dotorg/aktivator
fc67aed167fb204ff327448a86c37d69ef566964
bb37cc50212a1797315c99037495a83bc9ff2b01
refs/heads/master
2016-09-09T21:51:23.371940
2014-07-11T13:33:19
2014-07-11T13:33:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,121
py
import os PROJECT_ROOT = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) ROOT_URLCONF = 'standalone_django_project.urls' WSGI_APPLICATION = 'standalone_django_project.wsgi.application' SITE_ID = 1 SITE_NAME = os.environ.get("SITE_NAME") SITE_DOMAIN = os.environ['SITE_DOMAIN'] HEROKU_DOMAIN = os.environ.get('HEROKU_DOMAIN') import actionkit_usersearch GEONAMES_API_USERNAME = actionkit_usersearch.SETTINGS['GEONAMES_API_USERNAME'] ALLOWED_HOSTS = [SITE_DOMAIN] if HEROKU_DOMAIN: ALLOWED_HOSTS.append(HEROKU_DOMAIN) if os.environ.get('DJANGO_DEBUG'): DEBUG = True else: DEBUG = False TEMPLATE_DEBUG = DEBUG ACTIONKIT_DATABASE_NAME = os.environ['ACTIONKIT_DATABASE_NAME'] ACTIONKIT_DATABASE_USER = os.environ['ACTIONKIT_DATABASE_USER'] ACTIONKIT_DATABASE_PASSWORD = os.environ['ACTIONKIT_DATABASE_PASSWORD'] import dj_database_url DATABASES = { 'default': dj_database_url.config(), 'ak': { 'ENGINE': "django.db.backends.mysql", 'NAME': ACTIONKIT_DATABASE_NAME, 'USER': ACTIONKIT_DATABASE_USER, 'PASSWORD': ACTIONKIT_DATABASE_PASSWORD, 'HOST': "client-db.actionkit.com", 'PORT': "", } } DATABASES['dummy'] = actionkit_usersearch.DATABASES['dummy'] SECRET_KEY = os.environ["DJANGO_SECRET"] ACTIONKIT_API_HOST = os.environ['ACTIONKIT_API_HOST'] ACTIONKIT_API_USER = os.environ['ACTIONKIT_API_USER'] ACTIONKIT_API_PASSWORD = os.environ['ACTIONKIT_API_PASSWORD'] TEMPLATE_LOADERS = ( 'dbtemplates.loader.Loader', 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', ) INSTALLED_APPS = ( 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.admin', 'gunicorn', 'south', 'django.contrib.flatpages', 'dbtemplates', 'djangohelpers', 'standalone_django_project', # For the template finder 'actionkit', 'actionkit_usersearch', 'actionkit_userdetail', ) TEMPLATE_CONTEXT_PROCESSORS = ( "django.contrib.auth.context_processors.auth", "django.core.context_processors.debug", "django.core.context_processors.request", "django.core.context_processors.i18n", "django.core.context_processors.media", "django.core.context_processors.static", "django.core.context_processors.tz", "django.contrib.messages.context_processors.messages", "standalone_django_project.context_processors.globals", ) AUTHENTICATION_BACKENDS = [ 'django.contrib.auth.backends.ModelBackend', ] OAUTH_REDIRECT_URI_ENFORCE_PREFIX_ONLY = True MIDDLEWARE_CLASSES = ( 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.transaction.TransactionMiddleware', "djangohelpers.middleware.AuthRequirementMiddleware", ) ANONYMOUS_PATHS = ( "/static/", "/admin/", "/accounts/", ) LOGIN_URL = '/accounts/login/' LOGIN_REDIRECT_URL = '/' if os.environ.get('DJANGO_DEBUG_TOOLBAR'): MIDDLEWARE_CLASSES += ( 'debug_toolbar.middleware.DebugToolbarMiddleware', ) INSTALLED_APPS += ( 'debug_toolbar', ) DEBUG_TOOLBAR_CONFIG = { 'INTERCEPT_REDIRECTS': False, } INTERNAL_IPS = os.environ.get("INTERNAL_IPS") if INTERNAL_IPS is None: INTERNAL_IPS = [] elif INTERNAL_IPS.strip() in ("*", "0.0.0.0"): class AllIPS(list): def __contains__(self, item): return True INTERNAL_IPS = AllIPS() else: INTERNAL_IPS = [i.strip() for i in INTERNAL_IPS.split()] STATIC_URL = "/static/" STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', ) STATIC_ROOT = os.path.join(PROJECT_ROOT, 'collected_static')
a2b165fab8d6e4f886c3ec1ffd2c2aa7e4488b98
56cce3fee2e3d69d60958eb2aacc4f65fc3d2230
/tests/test_directed_graph.py
c8ba0e69667c52f75f1566337eabb47ba0a6a063
[ "BSD-3-Clause" ]
permissive
nokia/PyBGL
52c2f175d1dbccb15519f8a16de141845d0abaf3
707f2df32ede7d9a992ea217a4791da34f13e138
refs/heads/master
2023-08-08T04:46:24.931627
2023-08-03T16:31:35
2023-08-03T16:31:35
148,536,169
12
3
BSD-3-Clause
2023-08-03T16:31:36
2018-09-12T20:11:36
Python
UTF-8
Python
false
false
2,434
py
#!/usr/bin/env pytest-3 # -*- coding: utf-8 -*- from pybgl.graph import * (u, v, w) = (0, 1, 2) def make_g1() -> DirectedGraph: g1 = DirectedGraph() add_vertex(g1) # u add_vertex(g1) # v add_vertex(g1) # w return g1 def make_g2() -> DirectedGraph: g2 = make_g1() add_edge(u, v, g2) add_edge(u, v, g2) # parallel edge add_edge(u, w, g2) add_edge(v, w, g2) add_edge(w, w, g2) return g2 def test_directed_graph_num_vertices(): g1 = make_g1() assert num_vertices(g1) == 3 def test_directed_graph_node_add_edge(): # Make graph g = make_g1() assert out_degree(u, g) == 0 assert num_edges(g) == 0 # Add e1 (e1, added1) = add_edge(u, v, g) assert added1 (e, found) = edge(u, v, g) assert found assert e == e1 assert out_degree(u, g) == 1 assert num_edges(g) == 1 # No arc (e, found) = edge(u, w, g) assert not found assert {e for e in out_edges(u, g)} == {e1} # Add e2 (e2, added2) = add_edge(u, w, g) assert added2 assert {e for e in out_edges(u, g)} == {e1, e2} assert out_degree(u, g) == 2 assert num_edges(g) == 2 def test_directed_graph_add_vertex(): g = make_g2() assert num_vertices(g) == 3 assert num_edges(g) == 5 # Add vertex x x = add_vertex(g) assert num_vertices(g) == 4 # Add edge (v -> x) (e1, found) = edge(v, w, g) assert found (e2, added) = add_edge(v, x, g) assert num_edges(g) == 6 assert {e for e in out_edges(v, g)} == {e1, e2} def test_directed_graph_remove_edge(): g = make_g2() assert num_edges(g) == 5 (e, found) = edge(v, w, g) remove_edge(e, g) assert num_edges(g) == 4 (e, found) = edge(w, w, g) remove_edge(e, g) assert num_edges(g) == 3 def test_directed_graph_iterators(): g = make_g2() m = 0 for _ in vertices(g): m += 1 assert m == num_vertices(g) assert m == 3 n = 0 for _ in edges(g): n += 1 assert n == num_edges(g) assert n == 5 def test_directed_graph_remove_vertex(): g = make_g2() assert num_vertices(g) == 3 assert num_edges(g) == 5 remove_vertex(v, g) assert num_vertices(g) == 2 assert num_edges(g) == 2 remove_vertex(w, g) assert num_vertices(g) == 1 assert num_edges(g) == 0 remove_vertex(u, g) assert num_vertices(g) == 0 assert num_edges(g) == 0
aed61c0eda1210a477c70bfb73244ce07ed5e7a4
2c5bd933813b173aa69d9a829f530f7520509ba3
/4.python_接口自动化_excel中写用例/tools/HTMLTestRunner_cn.py
171e17747cd9d33e799a4b41bc5f3e831e6a7f4a
[]
no_license
ferry-luo/AutoTest
b4193d48cc7908edebf583d8700aa4c14e6c8823
e4212743704d50b2834fd0e28f2cf1e69d6dabef
refs/heads/main
2022-12-27T00:21:26.506484
2020-10-18T01:02:01
2020-10-18T01:02:01
304,996,235
0
0
null
null
null
null
UTF-8
Python
false
false
89,913
py
#-*- coding: utf-8 -*- """ A TestRunner for use with the Python unit testing framework. It generates a HTML report to show the result at a glance. The simplest way to use this is to invoke its main method. E.g. import unittest import HTMLTestRunner ... define your tests ... if __name__ == '__main__': HTMLTestRunner.main() For more customization options, instantiates a HTMLTestRunner object. HTMLTestRunner is a counterpart to unittest's TextTestRunner. E.g. # output to a file fp = file('my_report.html', 'wb') runner = HTMLTestRunner.HTMLTestRunner( stream=fp, title='My unit test', description='This demonstrates the report output by HTMLTestRunner.' ) # Use an external stylesheet. # See the Template_mixin class for more customizable options runner.STYLESHEET_TMPL = '<link rel="stylesheet" href="my_stylesheet.css" type="text/css">' # run the test runner.run(my_test_suite) ------------------------------------------------------------------------ Copyright (c) 2004-2007, Wai Yip Tung All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name Wai Yip Tung nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ # URL: http://tungwaiyip.info/software/HTMLTestRunner.html __author__ = "Wai Yip Tung" __version__ = "0.8.3" """ Change History Version 0.8.4 by GoverSky * Add sopport for 3.x * Add piechart for resultpiechart * Add Screenshot for selenium_case test * Add Retry on failed Version 0.8.3 * Prevent crash on class or module-level exceptions (Darren Wurf). Version 0.8.2 * Show output inline instead of popup window (Viorel Lupu). Version in 0.8.1 * Validated XHTML (Wolfgang Borgert). * Added description of test classes and test cases. Version in 0.8.0 * Define Template_mixin class for customization. * Workaround a IE 6 bug that it does not treat <script> block as CDATA. Version in 0.7.1 * Back port to Python 2.3 (Frank Horowitz). * Fix missing scroll bars in detail log (Podi). """ # TODO: color stderr # TODO: simplify javascript using ,ore than 1 class in the class attribute? import datetime import sys import unittest import copy import threading from xml.sax import saxutils from functools import cmp_to_key PY3K = (sys.version_info[0] > 2) if PY3K: import io as StringIO else: import StringIO # ------------------------------------------------------------------------ # The redirectors below are used to capture output during testing. Output # sent to sys.stdout and sys.stderr are automatically captured. However # in some cases sys.stdout is already cached before HTMLTestRunner is # invoked (e.g. calling logging_demo.basicConfig). In order to capture those # output, use the redirectors for the cached stream. # # e.g. # >>> logging_demo.basicConfig(stream=HTMLTestRunner.stdout_redirector) # >>> class OutputRedirector(object): """ Wrapper to redirect stdout or stderr """ def __init__(self, fp): self.fp = fp def write(self, s): self.fp.write(s) def writelines(self, lines): self.fp.writelines(lines) def flush(self): self.fp.flush() stdout_redirector = OutputRedirector(sys.stdout) stderr_redirector = OutputRedirector(sys.stderr) # ---------------------------------------------------------------------- # Template class Template_mixin(object): """ Define a HTML template for report customerization and generation. Overall structure of an HTML report HTML +------------------------+ |<html> | | <head> | | | | STYLESHEET | | +----------------+ | | | | | | +----------------+ | | | | </head> | | | | <body> | | | | HEADING | | +----------------+ | | | | | | +----------------+ | | | | REPORT | | +----------------+ | | | | | | +----------------+ | | | | ENDING | | +----------------+ | | | | | | +----------------+ | | | | </body> | |</html> | +------------------------+ """ STATUS = { 0: u'通过', 1: u'失败', 2: u'错误', 3:u'跳过', } DEFAULT_TITLE = 'Unit Test Report' DEFAULT_DESCRIPTION = '' # ------------------------------------------------------------------------ # HTML Template HTML_TMPL = r"""<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>%(title)s</title> <meta name="generator" content="%(generator)s"/> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/> %(stylesheet)s </head> <body> <script language="javascript" type="text/javascript"> output_list = Array(); /* level - 0:Summary; 1:Passed; 2:Failed; 3:Errored; 4:Skiped; 5:All */ function showCase(level,channel) { trs = document.getElementsByTagName("tr"); for (var i = 0; i < trs.length; i++) { tr = trs[i]; id = tr.id; if (["ft","pt","et","st"].indexOf(id.substr(0,2))!=-1){ if ( level ==0 && id.substr(2,1)==channel ) { tr.className = 'hiddenRow'; } } if (id.substr(0,3) == 'pt'+channel) { if ( level==1){ tr.className = ''; } else if (level>3 && id.substr(2,1)==channel ){ tr.className = ''; } else { tr.className = 'hiddenRow'; } } if (id.substr(0,3) == 'ft'+channel) { if (level ==2) { tr.className = ''; } else if (level>3 && id.substr(2,1)==channel ){ tr.className = ''; } else { tr.className = 'hiddenRow'; } } if (id.substr(0,3) == 'et'+channel) { if (level ==3) { tr.className = ''; } else if (level>3 && id.substr(2,1)==channel ){ tr.className = ''; } else { tr.className = 'hiddenRow'; } } if (id.substr(0,3) == 'st'+channel) { if (level ==3) { tr.className = ''; } else if (level>3 && id.substr(2,1)==channel ){ tr.className = ''; } else { tr.className = 'hiddenRow'; } } } } function showClassDetail(cid, count) { var id_list = Array(count); var toHide = 1; for (var i = 0; i < count; i++) { tid0 = 't' + cid.substr(1) + '.' + (i+1); tid = 'f' + tid0; tr = document.getElementById(tid); if (!tr) { tid = 'p' + tid0; tr = document.getElementById(tid); } if (!tr) { tid = 'e' + tid0; tr = document.getElementById(tid); } if (!tr) { tid = 's' + tid0; tr = document.getElementById(tid); } id_list[i] = tid; if (tr.className) { toHide = 0; } } for (var i = 0; i < count; i++) { tid = id_list[i]; if (toHide) { document.getElementById(tid).className = 'hiddenRow'; } else { document.getElementById(tid).className = ''; } } } function showTestDetail(div_id){ var details_div = document.getElementById(div_id) var displayState = details_div.style.display // alert(displayState) if (displayState != 'block' ) { displayState = 'block' details_div.style.display = 'block' } else { details_div.style.display = 'none' } } function html_escape(s) { s = s.replace(/&/g,'&amp;'); s = s.replace(/</g,'&lt;'); s = s.replace(/>/g,'&gt;'); return s; } function drawCircle(circle,pass, fail, error){ var color = ["#6c6","#c60","#c00"]; var data = [pass,fail,error]; var text_arr = ["Pass", "Fail", "Error"]; var canvas = document.getElementById(circle); var ctx = canvas.getContext("2d"); var startPoint=0; var width = 20, height = 10; var posX = 112 * 2 + 20, posY = 30; var textX = posX + width + 5, textY = posY + 10; for(var i=0;i<data.length;i++){ ctx.fillStyle = color[i]; ctx.beginPath(); ctx.moveTo(112,84); ctx.arc(112,84,84,startPoint,startPoint+Math.PI*2*(data[i]/(data[0]+data[1]+data[2])),false); ctx.fill(); startPoint += Math.PI*2*(data[i]/(data[0]+data[1]+data[2])); ctx.fillStyle = color[i]; ctx.fillRect(posX, posY + 20 * i, width, height); ctx.moveTo(posX, posY + 20 * i); ctx.font = 'bold 14px'; ctx.fillStyle = color[i]; var percent = text_arr[i] + ":"+data[i]; ctx.fillText(percent, textX, textY + 20 * i); } } function show_img(obj) { var obj1 = obj.nextElementSibling obj1.style.display='block' var index = 0;//每张图片的下标, var len = obj1.getElementsByTagName('img').length; var imgyuan = obj1.getElementsByClassName('imgyuan')[0] //var start=setInterval(autoPlay,500); obj1.onmouseover=function(){//当鼠标光标停在图片上,则停止轮播 clearInterval(start); } obj1.onmouseout=function(){//当鼠标光标停在图片上,则开始轮播 start=setInterval(autoPlay,1000); } for (var i = 0; i < len; i++) { var font = document.createElement('font') imgyuan.appendChild(font) } var lis = obj1.getElementsByTagName('font');//得到所有圆圈 changeImg(0) var funny = function (i) { lis[i].onmouseover = function () { index=i changeImg(i) } } for (var i = 0; i < lis.length; i++) { funny(i); } function autoPlay(){ if(index>len-1){ index=0; clearInterval(start); //运行一轮后停止 } changeImg(index++); } imgyuan.style.width= 25*len +"px"; //对应圆圈和图片同步 function changeImg(index) { var list = obj1.getElementsByTagName('img'); var list1 = obj1.getElementsByTagName('font'); for (i = 0; i < list.length; i++) { list[i].style.display = 'none'; list1[i].style.backgroundColor = 'white'; } list[index].style.display = 'block'; list1[index].style.backgroundColor = 'blue'; } } function hide_img(obj){ obj.parentElement.style.display = "none"; obj.parentElement.getElementsByClassName('imgyuan')[0].innerHTML = ""; } </script> %(heading)s <div class="piechart"> <div> <canvas id="circle%(channel)s" width="350" height="168" </canvas> </div> </div> %(report)s %(ending)s </body> </html> """ # variables: (title, generator, stylesheet, heading, report, ending) # ------------------------------------------------------------------------ # Stylesheet # # alternatively use a <link> for external style sheet, e.g. # <link rel="stylesheet" href="$url" type="text/css"> STYLESHEET_TMPL = """ <style type="text/css" media="screen"> body { font-family: verdana, arial, helvetica, sans-serif; font-size: 80%; } table { font-size: 100%; } pre { white-space: pre-wrap; word-wrap: break-word; } /* -- heading ---------------------------------------------------------------------- */ h1 { font-size: 16pt; color: gray; } .heading { float:left; margin-top: 0ex; margin-bottom: 1ex; } .heading .attribute { margin-top: 1ex; margin-bottom: 0; } .heading .description { margin-top: 4ex; margin-bottom: 6ex; } /* -- css div popup ------------------------------------------------------------------------ */ a.popup_link { } a.popup_link:hover { color: red; } .img{ height: 100%; border-collapse: collapse; border: 2px solid #777; } .screenshots { z-index: 100; position:fixed; height: 80%; left: 50%; top: 50%; transform: translate(-50%,-50%); display: none; } .imgyuan{ height: 20px; border-radius: 12px; background-color: red; padding-left: 13px; margin: 0 auto; position: relative; top: -40px; background-color: rgba(1, 150, 0, 0.3); } .imgyuan font{ border:1px solid white; width:11px; height:11px; border-radius:50%; margin-right: 9px; margin-top: 4px; display: block; float: left; background-color: white; } .close_shots { background-image: url(); background-size: 22px 22px; -moz-background-size: 22px 22px; background-repeat: no-repeat; position: absolute; top: 5px; right: 5px; height: 22px; z-index: 99; width: 22px; } .popup_window { display: none; position: relative; left: 0px; top: 0px; padding: 10px; background-color: #E6E6D6; font-family: "Lucida Console", "Courier New", Courier, monospace; text-align: left; font-size: 8pt; } } /* -- report ------------------------------------------------------------------------ */ #show_detail_line { float:left; width:100%; margin-top: 3ex; margin-bottom: 1ex; } #result_table { margin: 1em 0; width: 100%; overflow: hidden; background: #FFF; color: #024457; border-radius: 10px; border: 1px solid #167F92; } #result_table th { border: 1px solid #FFFFFF; background-color: #167F92; color: #FFF; padding: 0.5em; &:first-child { display: table-cell; text-align: center; } &:nth-child(2) { display: table-cell; span {display:none;} &:after {content:attr(data-th);} } @media (min-width: 480px) { &:nth-child(2) { span {display: block;} &:after {display: none;} } } } #result_table td { word-wrap: break-word; max-width: 7em; padding: 0.3em; &:first-child { display: table-cell; text-align: center; } @media (min-width: 400px) { border: 1px solid #D9E4E6; } } #result_table th, td { margin: .5em 1em; @media (min-width: 400px) { display: table-cell; padding: 1em; } } #total_row { font-weight: bold; } .passClass { background-color: #6c6; !important ;} .failClass { background-color: #c60; !important ;} .errorClass { background-color: #c00; !important ; } .passCase { color: #6c6; } .failCase { color: #c60; font-weight: bold; } .errorCase { color: #c00; font-weight: bold; } tr[id^=pt] td { background-color: rgba(73,204,144,.3) !important ; } tr[id^=ft] td { background-color: rgba(252,161,48,.3) !important; } tr[id^=et] td { background-color: rgba(249,62,62,.3) !important ; } .hiddenRow { display: none; } .testcase { margin-left: 2em; } /* -- ending ---------------------------------------------------------------------- */ #ending { } .detail_button { width: 130px; text-decoration: none; line-height: 38px; text-align: center; font-weight: bold; color: #ffff; border-radius: 6px; padding: 5px 10px 5px 10px; position: relative; overflow: hidden; } .detail_button.abstract{background-color: #4dbee8;} .detail_button.passed{ background-color: #66cc66;} .detail_button.failed{ background-color: #cc6600;} .detail_button.errored{ background-color: #f54f4f;} .detail_button.skiped{ background-color: gray;} .detail_button.all{ background-color: blue;} .piechart{ width: 200px; float: left; display: inline; } </style> """ # ------------------------------------------------------------------------ # Heading # HEADING_TMPL = """<div class='heading'> <h1>%(title)s</h1> %(parameters)s <p class='description'>%(description)s</p> </div> """ # variables: (title, parameters, description) HEADING_ATTRIBUTE_TMPL = """<p class='attribute'><strong>%(name)s:</strong> %(value)s</p> """ # variables: (name, value) # ------------------------------------------------------------------------ # Report # REPORT_TMPL = """ <div id='show_detail_line' style=" float: left; width: 100%%;"> <a class="abstract detail_button" href='javascript:showCase(0,%(channel)s)'>概要[%(Pass_p).2f%%]</a> <a class="passed detail_button" href='javascript:showCase(1,%(channel)s)'>通过[%(Pass)s]</a> <a class="failed detail_button" href='javascript:showCase(2,%(channel)s)'>失败[%(fail)s]</a> <a class="errored detail_button" href='javascript:showCase(3,%(channel)s)'>错误[%(error)s]</a> <!--<a class="skiped detail_button" href='javascript:showCase(4,%(channel)s)'>跳过[%(skip)s]</a>--> <a class="all detail_button" href='javascript:showCase(5,%(channel)s)'>所有[%(total)s]</a> </div> <table id='result_table'> <colgroup> <col align='left' /> <col align='right' /> <col align='right' /> <col align='right' /> <col align='right' /> <col align='right' /> <col align='right' /> </colgroup> <tr id='header_row'> <th>测试组/测试用例</th> <th>总数</th> <th>通过</th> <th>失败</th> <th>错误</th> <th>视图</th> </tr> %(test_list)s <tr id='total_row'> <th>统计</th> <th>%(count)s</th> <th>%(Pass)s</th> <th>%(fail)s</th> <th>%(error)s</th> <th>&nbsp;</th> </tr> </table> <script> showCase(0,%(channel)s); drawCircle('circle%(channel)s',%(Pass)s, %(fail)s, %(error)s); </script> """ # variables: (test_list, count, Pass, fail, error) REPORT_CLASS_TMPL = r""" <tr class='%(style)s'> <td>%(desc)s</td> <td>%(count)s</td> <td>%(Pass)s</td> <td>%(fail)s</td> <td>%(error)s</td> <td><a href="javascript:showClassDetail('%(cid)s',%(count)s)">详情</a></td> </tr> """ # variables: (style, desc, count, Pass, fail, error, cid) REPORT_TEST_WITH_OUTPUT_TMPL = r""" <tr id='%(tid)s' class='%(Class)s'> <td ><div class='testcase'>%(desc)s</div></td> <td colspan='5' align='center'> <!--css div popup start--> <span class='status %(style)s'> <a class="popup_link" onfocus='this.blur();' href="javascript:showTestDetail('div_%(tid)s')" > %(status)s</a></span> <div id='div_%(tid)s' class="popup_window"> <div style='text-align: right; color:red;cursor:pointer'> <a onfocus='this.blur();' onclick="document.getElementById('div_%(tid)s').style.display = 'none' " > [x]</a> </div> <pre> %(script)s </pre> </div> <!--css div popup end--> </td> </tr> """ # variables: (tid, Class, style, desc, status,img) REPORT_TEST_NO_OUTPUT_TMPL = r""" <tr id='%(tid)s' class='%(Class)s'> <td><div class='testcase'>%(desc)s</div></td> <td colspan='5' align='center'><span class='status %(style)s'>%(status)s</span></td> </tr> """ # variables: (tid, Class, style, desc, status,img) REPORT_TEST_OUTPUT_TMPL = r""" %(id)s: %(output)s """ # variables: (id, output) IMG_TMPL = r""" <a onfocus='this.blur();' href="javacript:void(0);" onclick="show_img(this)">显示截图</a> <div align="center" class="screenshots" style="display:none"> <a class="close_shots" onclick="hide_img(this)"></a> %(imgs)s <div class="imgyuan"></div> </div> """ # ------------------------------------------------------------------------ # ENDING # ENDING_TMPL = """<div id='ending'>&nbsp;</div>""" # -------------------- The end of the Template class ------------------- def __getattribute__(self, item): value = object.__getattribute__(self, item) if PY3K: return value else: if isinstance(value, str): return value.decode("utf-8") else: return value TestResult = unittest.TestResult class _TestResult(TestResult): # note: _TestResult is a pure representation of results. # It lacks the output and reporting ability compares to unittest._TextTestResult. def __init__(self, verbosity=1, retry=0,save_last_try=False): TestResult.__init__(self) self.stdout0 = None self.stderr0 = None self.success_count = 0 self.failure_count = 0 self.error_count = 0 self.skip_count = 0 self.verbosity = verbosity # result is a list of result in 4 tuple # ( # result code (0: success; 1: fail; 2: error;3:skip), # TestCase object, # Test output (byte string), # stack trace, # ) self.result = [] self.retry = retry self.trys = 0 self.status = 0 self.save_last_try = save_last_try self.outputBuffer = StringIO.StringIO() def startTest(self, test): # test.imgs = [] test.imgs = getattr(test, "imgs", []) # TestResult.startTest(self, test) self.outputBuffer.seek(0) self.outputBuffer.truncate() stdout_redirector.fp = self.outputBuffer stderr_redirector.fp = self.outputBuffer self.stdout0 = sys.stdout self.stderr0 = sys.stderr sys.stdout = stdout_redirector sys.stderr = stderr_redirector def complete_output(self): """ Disconnect output redirection and return buffer. Safe to call multiple times. """ if self.stdout0: sys.stdout = self.stdout0 sys.stderr = self.stderr0 self.stdout0 = None self.stderr0 = None return self.outputBuffer.getvalue() def stopTest(self, test): # Usually one of addSuccess, addError or addFailure would have been called. # But there are some path in unittest that would bypass this. # We must disconnect stdout in stopTest(), which is guaranteed to be called. if self.retry and self.retry>=1: if self.status == 1: self.trys += 1 if self.trys <= self.retry: if self.save_last_try: t = self.result.pop(-1) if t[0]==1: self.failure_count -=1 else: self.error_count -= 1 test=copy.copy(test) sys.stderr.write("Retesting... ") sys.stderr.write(str(test)) sys.stderr.write('..%d \n' % self.trys) doc = getattr(test,'_testMethodDoc',u"") or u'' if doc.find('_retry')!=-1: doc = doc[:doc.find('_retry')] desc ="%s_retry:%d" %(doc, self.trys) if not PY3K: if isinstance(desc, str): desc = desc.decode("utf-8") test._testMethodDoc = desc test(self) else: self.status = 0 self.trys = 0 self.complete_output() def addSuccess(self, test): self.success_count += 1 self.status = 0 TestResult.addSuccess(self, test) output = self.complete_output() self.result.append((0, test, output, '')) if self.verbosity > 1: sys.stderr.write('P ') sys.stderr.write(str(test)) sys.stderr.write('\n') else: sys.stderr.write('P') def addFailure(self, test, err): self.failure_count += 1 self.status = 1 #使用这套框架调试使用 #c1 = getattr(test, "action", "") #d = getattr(c1, "driver", "") a= getattr(test, "driver", "") # if test._testMethodName=='test1':a # d=getattr(test, "driver", "XXX") # print('ddddd') # print(d) TestResult.addFailure(self, test, err) _, _exc_str = self.failures[-1] output = self.complete_output() #print(test,output,_exc_str) self.result.append((1, test, output, _exc_str)) if not a : pass else: try: test.imgs.append(a.get_screenshot_as_base64()) except Exception as e: print(e) pass if self.verbosity > 1: sys.stderr.write('F ') sys.stderr.write(str(test)) sys.stderr.write('\n') else: sys.stderr.write('F') def addError(self, test, err): self.error_count += 1 self.status = 1 TestResult.addError(self, test, err) _, _exc_str = self.errors[-1] output = self.complete_output() self.result.append((2, test, output, _exc_str)) if not getattr(test, "driver",""): pass else: try: driver = getattr(test, "driver") test.imgs.append(driver.get_screenshot_as_base64()) except Exception: pass if self.verbosity > 1: sys.stderr.write('E ') sys.stderr.write(str(test)) sys.stderr.write('\n') else: sys.stderr.write('E') def addSkip(self, test, reason): self.skip_count += 1 self.status = 0 TestResult.addSkip(self, test,reason) output = self.complete_output() self.result.append((3, test, output, reason)) if self.verbosity > 1: sys.stderr.write('K') sys.stderr.write(str(test)) sys.stderr.write('\n') else: sys.stderr.write('K') class HTMLTestRunner(Template_mixin): def __init__(self, stream=sys.stdout, verbosity=1, title=None, description=None,is_thread=False, retry=0,save_last_try=True): self.stream = stream self.retry = retry self.is_thread=is_thread self.threads= 5 self.save_last_try=save_last_try self.verbosity = verbosity self.run_times=0 if title is None: self.title = self.DEFAULT_TITLE else: self.title = title if description is None: self.description = self.DEFAULT_DESCRIPTION else: self.description = description def run(self, test): "Run the given test case or test suite." self.startTime = datetime.datetime.now() result = _TestResult(self.verbosity, self.retry, self.save_last_try) test(result) self.stopTime = datetime.datetime.now() self.generateReport(test, result) if PY3K: # for python3 # print('\nTime Elapsed: %s' % (self.stopTime - self.startTime),file=sys.stderr) output = '\nTime Elapsed: %s' % (self.stopTime - self.startTime) sys.stderr.write(output) else: print >> sys.stderr, '\nTime Elapsed: %s' % (self.stopTime - self.startTime) return result def sortResult(self, result_list): # unittest does not seems to run in any particular order. # Here at least we want to group them together by class. rmap = {} classes = [] for n, t, o, e in result_list: cls = t.__class__ if not cls in rmap: rmap[cls] = [] classes.append(cls) rmap[cls].append((n, t, o, e)) for cls in classes: rmap[cls].sort(key=cmp_to_key(lambda a,b:1 if a[1].id()>b[1].id() else ( 1 if a[1].id()==b[1].id() else -1))) r = [(cls, rmap[cls]) for cls in classes] # name = t.id().split('.')[-1] r.sort(key=cmp_to_key(lambda a, b: 1 if a[0].__name__ > b[0].__name__ else -1)) return r def getReportAttributes(self, result): """ Return report attributes as a list of (name, value). Override this to add custom attributes. """ startTime = str(self.startTime)[:19] duration = str(self.stopTime - self.startTime) status = [] if result.success_count: status.append(u'<span class="tj passCase">Pass</span>:%s' % result.success_count) if result.failure_count: status.append(u'<span class="tj failCase">Failure</span>:%s' % result.failure_count) if result.error_count: status.append(u'<span class="tj errorCase">Error</span>:%s' % result.error_count) if result.skip_count: status.append(u'<span class="tj errorCase">Skip</span>:%s' % result.skip_count) total = result.success_count+result.failure_count+result.error_count++result.skip_count if total>0: passed = result.success_count*1.000/total*100 else: passed =0.0 status.append(u'<span class="tj">通过率</span>:%.1f%%' % passed) if status: status = u' '.join(status) else: status = 'none' return [ (u'开始时间', startTime), (u'耗时', duration), (u'状态', status), ] def generateReport(self, test, result): report_attrs = self.getReportAttributes(result) generator = 'HTMLTestRunner %s' % __version__ stylesheet = self._generate_stylesheet() heading = self._generate_heading(report_attrs) report = self._generate_report(result) ending = self._generate_ending() output = self.HTML_TMPL % dict( title=saxutils.escape(self.title), generator=generator, stylesheet=stylesheet, heading=heading, report=report, ending=ending, channel=self.run_times, ) if PY3K: self.stream.write(output.encode()) else: self.stream.write(output.encode('utf8')) def _generate_stylesheet(self): return self.STYLESHEET_TMPL def _generate_heading(self, report_attrs): a_lines = [] for name, value in report_attrs: line = self.HEADING_ATTRIBUTE_TMPL % dict( name=name, value=value, ) a_lines.append(line) heading = self.HEADING_TMPL % dict( title=saxutils.escape(self.title), parameters=''.join(a_lines), description=saxutils.escape(self.description), ) return heading def _generate_report(self, result): rows = [] sortedResult = self.sortResult(result.result) for cid, (cls, cls_results) in enumerate(sortedResult): # subtotal for a class np = nf = ne = ns = 0 for n, t, o, e in cls_results: if n == 0: np += 1 elif n == 1: nf += 1 elif n==2: ne += 1 else: ns +=1 # format class description if cls.__module__ == "__main__": name = cls.__name__ else: name = "%s.%s" % (cls.__module__, cls.__name__) doc = cls.__doc__ and cls.__doc__.split("\n")[0] or "" desc = doc and '%s: %s' % (name, doc) or name if not PY3K: if isinstance(desc, str): desc = desc.decode("utf-8") row = self.REPORT_CLASS_TMPL % dict( style=ne > 0 and 'errorClass' or nf > 0 and 'failClass' or 'passClass', desc=desc, count=np + nf + ne, Pass=np, fail=nf, error=ne, cid='c%s.%s' % (self.run_times,cid + 1), ) rows.append(row) for tid, (n, t, o, e) in enumerate(cls_results): self._generate_report_test(rows, cid, tid, n, t, o, e) total = result.success_count + result.failure_count + result.error_count+result.skip_count report = self.REPORT_TMPL % dict( test_list=u''.join(rows), count=str(total), Pass=str(result.success_count), Pass_p=result.success_count*1.00/total*100 if total else 0.0, fail=str(result.failure_count), error=str(result.error_count), skip=str(result.skip_count), total=str(total), channel=str(self.run_times), ) return report def _generate_report_test(self, rows, cid, tid, n, t, o, e): # e.g. 'pt1.1', 'ft1.1', etc has_output = bool(o or e) if n==0: tmp="p" elif n==1: tmp="f" elif n==2: tmp = "e" else: tmp = "s" tid = tmp + 't%d.%d.%d' % (self.run_times,cid + 1, tid + 1) name = t.id().split('.')[-1] if self.verbosity > 1: doc = getattr(t,'_testMethodDoc',"") or '' else: doc = "" desc = doc and ('%s: %s' % (name, doc)) or name if not PY3K: if isinstance(desc, str): desc = desc.decode("utf-8") tmpl = has_output and self.REPORT_TEST_WITH_OUTPUT_TMPL or self.REPORT_TEST_NO_OUTPUT_TMPL # o and e should be byte string because they are collected from stdout and stderr? if isinstance(o, str): # uo = unicode(o.encode('string_escape')) if PY3K: uo = o else: uo = o.decode('utf-8', 'ignore') else: uo = o if isinstance(e, str): # ue = unicode(e.encode('string_escape')) if PY3K: ue = e elif e.find("Error") != -1 or e.find("Exception") != -1: es = e.decode('utf-8', 'ignore').split('\n') try: if es[-2].find("\\u") != -1 or es[-2].find('"\\u') != -1: es[-2] = es[-2].decode('unicode_escape') except Exception: pass ue = u"\n".join(es) else: ue = e.decode('utf-8', 'ignore') else: ue = e script = self.REPORT_TEST_OUTPUT_TMPL % dict( id=tid, output=saxutils.escape(uo + ue), ) if getattr(t,'imgs',[]): # 判断截图列表,如果有则追加 tmp = u"" for i, img in enumerate(t.imgs): if i==0: tmp+=""" <img src="data:image/jpg;base64,%s" style="display: block;" class="img"/>\n""" % img else: tmp+=""" <img src="data:image/jpg;base64,%s" style="display: none;" class="img"/>\n""" % img imgs = self.IMG_TMPL % dict(imgs=tmp) else: imgs = u"""无截图""" row = tmpl % dict( tid=tid, Class=(n == 0 and 'hiddenRow' or 'none'), style=n == 2 and 'errorCase' or (n == 1 and 'failCase' or 'passCase'), desc=desc, script=script, status=self.STATUS[n], img=imgs, ) rows.append(row) if not has_output: return def _generate_ending(self): return self.ENDING_TMPL ############################################################################## # Facilities for running tests from the command line ############################################################################## # Note: Reuse unittest.TestProgram to launch test. In the future we may # build our own launcher to support more specific command line # parameters like test title, CSS, etc. class TestProgram(unittest.TestProgram): """ A variation of the unittest.TestProgram. Please refer to the base class for command line parameters. """ def runTests(self): # Pick HTMLTestRunner as the default test runner. # base class's testRunner parameter is not useful because it means # we have to instantiate HTMLTestRunner before we know self.verbosity. if self.testRunner is None: self.testRunner = HTMLTestRunner(verbosity=self.verbosity) unittest.TestProgram.runTests(self) main = TestProgram ############################################################################## # Executing this module from the command line ############################################################################## if __name__ == "__main__": main(module=None)
c89449e9d8e482494c12bfe7bc8ea37ebb1327d9
cd1d5b7fc9e01f093d6c652876cab24aa8fe7ce6
/nodes/pub_and_sub_node.py
54a5df4c1707e7b49194d6ae34b6a4bac1cbb7e1
[]
no_license
birlrobotics/gps_dnn_policy_training_and_testing_pkg
1dd2c4b241af4e8d432d61f4fcfa59c1a7318275
cba2b03e9cc096cb2b7133074640bb503a3e326c
refs/heads/master
2020-07-04T09:15:46.366874
2019-08-14T21:34:58
2019-08-14T21:34:58
202,237,315
0
0
null
null
null
null
UTF-8
Python
false
false
977
py
#!/usr/bin/env python import rospy from gps_dnn_policy_training_and_testing_pkg.CONSTANT import training_request_topic, training_response_topic from gps_dnn_policy_training_and_testing_pkg.dnn_policy import DnnPolicy from std_msgs.msg import String import pdb import pickle import tempfile def cb(msg): rospy.loginfo('received %s'%msg) with open(msg.data, 'rb') as f: req = pickle.load(f) obs = req['obs'] tgt_mu = req['tgt_mu'] tgt_prc = req['tgt_prc'] tgt_wt = req['tgt_wt'] dU = tgt_mu.shape[1] pol = DnnPolicy(dU) f = tempfile.NamedTemporaryFile(delete=False, suffix='.pkl') pickle.dump(pol, f) f.close() rospy.sleep(1) pub.publish(String(data=f.name)) rospy.loginfo('sent %s'%f.name) pass if __name__ == '__main__': rospy.init_node('pub_and_sub_node') rospy.Subscriber(training_request_topic, String, cb) pub = rospy.Publisher(training_response_topic, String) rospy.spin()
96a16b9351a209200123b2d892c8e48ed55f7fe9
78d7d7aeb78a8cea6d0e10b89fc4aa6c46c95227
/2569.py
85dab1e43ac70617d702eec9863e9e8dff8536ec
[]
no_license
GenryEden/kpolyakovName
97db13ef93061a8c2afc6cc5acd91337f79063f1
c5d7f631ae7ec8770e56170574b82ea2b7d8a4d9
refs/heads/master
2023-05-23T21:22:51.983756
2021-06-21T08:56:49
2021-06-21T08:56:49
350,466,773
0
0
null
null
null
null
UTF-8
Python
false
false
174
py
def getDels(x): for i in range(1, x+1): if x % i == 0: yield i for x in range(180131, 180179): dels = list(getDels(x)) if len(dels) == 6: print(dels[-2], dels[-1])
5e2d9e53c5300c3f446558b3ca275cbf8bdae43f
5cb3b2d2fe6cf136296ed206f021061774edf305
/apps/hixny/apps.py
eb4ffc4ce600680adf7666ed49ec759ef350057a
[ "Apache-2.0" ]
permissive
whytheplatypus/sharemyhealth
002e6a4b3633d8f5aaedbd9add0b9109723d7e5d
79ac694686ebd7a9a121741e473afbd35f25cea5
refs/heads/master
2020-03-30T12:59:42.841594
2019-05-01T19:01:30
2019-05-01T19:01:30
151,251,593
0
0
Apache-2.0
2018-10-02T12:35:16
2018-10-02T12:35:15
null
UTF-8
Python
false
false
85
py
from django.apps import AppConfig class HixnyConfig(AppConfig): name = 'hixny'
1322c3248b9ce3d2ab9caded7adaf73a004cd69c
e3365bc8fa7da2753c248c2b8a5c5e16aef84d9f
/indices/exist.py
49bd057ec8f18667a6b8b8648441b05b46ed0af4
[]
no_license
psdh/WhatsintheVector
e8aabacc054a88b4cb25303548980af9a10c12a8
a24168d068d9c69dc7a0fd13f606c080ae82e2a6
refs/heads/master
2021-01-25T10:34:22.651619
2015-09-23T11:54:06
2015-09-23T11:54:06
42,749,205
2
3
null
2015-09-23T11:54:07
2015-09-18T22:06:38
Python
UTF-8
Python
false
false
3,005
py
ii = [('BentJDO2.py', 64), ('EmerRN.py', 15), ('CookGHP3.py', 57), ('LyelCPG2.py', 68), ('MarrFDI.py', 18), ('RogePAV2.py', 137), ('CoolWHM2.py', 52), ('KembFFF.py', 1), ('GodwWSL2.py', 95), ('ChanWS.py', 20), ('RogePAV.py', 143), ('SadlMLP.py', 284), ('FerrSDO3.py', 10), ('WilbRLW.py', 16), ('WilbRLW4.py', 7), ('RennJIT.py', 47), ('ProuWCM.py', 382), ('AubePRP2.py', 92), ('CookGHP.py', 39), ('ShawHDE.py', 1), ('MartHSI2.py', 33), ('LeakWTI2.py', 86), ('KembFJ1.py', 24), ('WilkJMC3.py', 17), ('WilbRLW5.py', 13), ('LeakWTI3.py', 60), ('PettTHE.py', 15), ('MarrFDI3.py', 26), ('TennAP.py', 1), ('PeckJNG.py', 62), ('BailJD2.py', 2), ('AubePRP.py', 54), ('ChalTPW2.py', 52), ('GellWPT.py', 36), ('AdamWEP.py', 36), ('FitzRNS3.py', 33), ('WilbRLW2.py', 25), ('ClarGE2.py', 64), ('GellWPT2.py', 49), ('WilkJMC2.py', 26), ('CarlTFR.py', 87), ('SeniNSP.py', 81), ('LyttELD.py', 15), ('CoopJBT2.py', 14), ('TalfTAC.py', 3), ('GrimSLE.py', 27), ('RoscTTI3.py', 11), ('AinsWRR3.py', 14), ('CookGHP2.py', 34), ('KiddJAE.py', 139), ('AdamHMM.py', 6), ('BailJD1.py', 8), ('RoscTTI2.py', 22), ('CoolWHM.py', 88), ('MarrFDI2.py', 28), ('CrokTPS.py', 26), ('ClarGE.py', 85), ('LandWPA.py', 10), ('BuckWGM.py', 386), ('IrviWVD.py', 17), ('LyelCPG.py', 143), ('GilmCRS.py', 11), ('DaltJMA.py', 32), ('WestJIT2.py', 126), ('DibdTRL2.py', 25), ('AinsWRR.py', 15), ('CrocDNL.py', 3), ('MedwTAI.py', 14), ('LandWPA2.py', 15), ('WadeJEB.py', 92), ('FerrSDO2.py', 10), ('TalfTIT.py', 1), ('NewmJLP.py', 71), ('GodwWLN.py', 29), ('CoopJBT.py', 11), ('KirbWPW2.py', 33), ('SoutRD2.py', 15), ('BackGNE.py', 10), ('LeakWTI4.py', 77), ('LeakWTI.py', 32), ('MedwTAI2.py', 32), ('BachARE.py', 76), ('SoutRD.py', 13), ('DickCSG.py', 2), ('BuckWGM2.py', 29), ('WheeJPT.py', 167), ('MereHHB3.py', 165), ('HowiWRL2.py', 47), ('BailJD3.py', 4), ('MereHHB.py', 149), ('WilkJMC.py', 44), ('HogaGMM.py', 17), ('MartHRW.py', 18), ('MackCNH.py', 25), ('WestJIT.py', 88), ('BabbCEM.py', 73), ('FitzRNS4.py', 120), ('CoolWHM3.py', 57), ('DequTKM.py', 5), ('FitzRNS.py', 48), ('BentJRP.py', 55), ('EdgeMHT.py', 4), ('BowrJMM.py', 3), ('LyttELD3.py', 5), ('FerrSDO.py', 9), ('RoscTTI.py', 17), ('ThomGLG.py', 39), ('StorJCC.py', 163), ('KembFJ2.py', 24), ('LewiMJW.py', 17), ('BabbCRD.py', 36), ('MackCNH2.py', 36), ('BellCHM.py', 60), ('JacoWHI2.py', 66), ('SomeMMH.py', 94), ('HaliTBC.py', 69), ('WilbRLW3.py', 23), ('AinsWRR2.py', 11), ('MereHHB2.py', 112), ('BrewDTO.py', 34), ('JacoWHI.py', 50), ('ClarGE3.py', 71), ('RogeSIP.py', 6), ('MartHRW2.py', 23), ('DibdTRL.py', 38), ('FitzRNS2.py', 72), ('HogaGMM2.py', 18), ('MartHSI.py', 43), ('EvarJSP.py', 149), ('DwigTHH.py', 88), ('NortSTC.py', 2), ('SadlMLP2.py', 340), ('BowrJMM2.py', 12), ('LyelCPG3.py', 113), ('BowrJMM3.py', 10), ('BeckWRE.py', 7), ('TaylIF.py', 60), ('WordWYR.py', 8), ('DibdTBR.py', 5), ('ChalTPW.py', 52), ('ThomWEC.py', 22), ('KeigTSS.py', 28), ('KirbWPW.py', 67), ('WaylFEP.py', 88), ('BentJDO.py', 76), ('ClarGE4.py', 48), ('AdamJOA.py', 11), ('HowiWRL.py', 52)]
42b78dceab23e4ffb753bc7e07b1b91e276e9a59
8195e6ea99ee441ba2c23dd9dba7ceecfece37b7
/rev2/cifar10/generate_gs_pgd.py
076cd5ccb813b81cff16bd5dbf4928328bc94526
[]
no_license
msglbqbqb/adv2
f2693576dd15c73c1b0322a0bf75972a75e97f70
e3472df42197fe6dbe035412d43a9205ede880c2
refs/heads/main
2023-06-03T05:31:02.820935
2021-06-17T16:06:59
2021-06-17T16:06:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,612
py
#!/usr/bin/env python import argparse import numpy as np import torch import torch.nn as nn from rev2.cifar10.model_utils import resnet50, CIFAR10_RESNET50_CKPT_PATH from rev2.gs.generate_gs import generate_gs from rev2.cifar10.data_utils import cifar10_normalize from rev2.cifar10.generate_gs_benign import cifar10_resize_postfn def load_model(config): model = resnet50() nn.DataParallel(model).load_state_dict( torch.load(CIFAR10_RESNET50_CKPT_PATH, lambda storage, location: storage)['net'] ) model.to(config.device) model.train(False) return model, cifar10_normalize def main(config): model_tup = load_model(config) dobj = np.load(config.data_path) adv_dobj = np.load(config.adv_data_path) img_x, img_yt = adv_dobj['pgd_step_1500_adv_x'], dobj['img_yt'] pgd_gs = generate_gs(model_tup, img_x, img_yt, cifar10_resize_postfn, False, batch_size=50) save_dobj = {'pgd_x': img_x, 'img_yt': img_yt, 'pgd_gs': pgd_gs} np.savez(config.save_path, **save_dobj) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('data_path') parser.add_argument('adv_data_path') parser.add_argument('save_path') parser.add_argument('-d', '--device', dest='device', choices=['cpu', 'cuda']) parser.add_argument('-b', '--batch-size', dest='batch_size', type=int, default=50) config = parser.parse_args() if config.device is None: if torch.cuda.is_available(): config.device = 'cuda' else: config.device = 'cpu' print('configuration:', config) main(config)
9d995f3d206d6831f1d5324f3cf2a42613c66e8c
8021f835426c5db8ed9b1763a2b71cb8f94a3357
/scripts/forage_tracer.py
bcec97892278a7afaa1faa49bde095f421852704
[ "BSD-3-Clause" ]
permissive
natcap/rangeland_production
3859bcf3042bda0d7a64df426aceaaa0a5a8dfe1
89acd25cb90c2bd42f55973d7d22b294c80dfc1a
refs/heads/develop
2022-12-23T17:30:53.660595
2021-04-11T01:28:32
2021-04-11T01:28:32
223,495,475
7
8
NOASSERTION
2022-12-09T04:35:37
2019-11-22T22:16:47
Python
UTF-8
Python
false
false
2,492
py
"""Tracer code for Forage model development.""" import os import natcap.invest.forage import logging logging.basicConfig(level=logging.DEBUG) LOGGER = logging.getLogger('forage_tracer') POSSIBLE_DROPBOX_LOCATIONS = [ r'D:\Dropbox', r'C:\Users\Rich\Dropbox', r'C:\Users\rpsharp\Dropbox', r'E:\Dropbox'] LOGGER.info("checking dropbox locations") for dropbox_path in POSSIBLE_DROPBOX_LOCATIONS: print dropbox_path if os.path.exists(dropbox_path): BASE_DROPBOX_DIR = dropbox_path break LOGGER.info("found %s", BASE_DROPBOX_DIR) def main(): """Entry point.""" args = { 'workspace_dir': 'forage_tracer_workspace', 'starting_year': '1998', 'starting_month': '5', 'n_months': '29', 'aoi_path': os.path.join( BASE_DROPBOX_DIR, 'forage_model_development_data', 'sample_dev_inputs', 'soums_monitoring_area_dissolve.shp'), 'bulk_density_path': os.path.join( BASE_DROPBOX_DIR, 'forage_model_development_data', 'sample_dev_inputs', 'bldfie_sl3.tif'), 'clay_proportion_path': os.path.join( BASE_DROPBOX_DIR, 'forage_model_development_data', 'sample_dev_inputs', 'clyppt_sl3.tif'), 'silt_proportion_path': os.path.join( BASE_DROPBOX_DIR, 'forage_model_development_data', 'sample_dev_inputs', 'sltppt_sl3.tif'), 'sand_proportion_path': os.path.join( BASE_DROPBOX_DIR, 'forage_model_development_data', 'sample_dev_inputs', 'sndppt_sl3.tif'), 'monthly_precip_path_pattern': os.path.join( BASE_DROPBOX_DIR, 'forage_model_development_data', 'sample_dev_inputs', 'chirps-v2.0.<year>.<month>.tif'), 'monthly_temperature_path_pattern': os.path.join( BASE_DROPBOX_DIR, 'forage_model_development_data', 'sample_dev_inputs', 'wc2.0_30s_tmax_<month>.tif'), 'veg_spatial_composition_path': os.path.join( BASE_DROPBOX_DIR, 'forage_model_development_data', 'sample_dev_inputs', 'veg.tif'), 'animal_inputs_path': os.path.join( BASE_DROPBOX_DIR, 'forage_model_development_data', 'sample_dev_inputs', 'sheep_units_density_2016_monitoring_area.shp') } LOGGER.info('launching forage model') natcap.invest.forage.execute(args) if __name__ == '__main__': main()
f2ebc53681e61b9b3362d7242a13a47f51b55401
456433ac78b70cb8ae076ae166a85e349f181d7f
/systems/KURSSKLAD/KURSTERM/REFILLSLOT/templates/index.py
3ec1fb8a10419dd5197a336406e95d43e64d2b25
[]
no_license
shybkoi/WMS-Demo
854c1679b121c68323445b60f3992959f922be8d
2525559c4f56654acfbc21b41b3f5e40387b89e0
refs/heads/master
2021-01-23T01:51:20.074825
2017-03-23T11:51:18
2017-03-23T11:51:18
85,937,726
0
0
null
null
null
null
WINDOWS-1251
Python
false
false
8,762
py
#!/usr/bin/env python # -*- coding: cp1251 -*- ################################################## ## DEPENDENCIES import sys import os import os.path from os.path import getmtime, exists import time import types import __builtin__ from Cheetah.Version import MinCompatibleVersion as RequiredCheetahVersion from Cheetah.Version import MinCompatibleVersionTuple as RequiredCheetahVersionTuple from Cheetah.Template import Template from Cheetah.DummyTransaction import DummyTransaction from Cheetah.NameMapper import NotFound, valueForName, valueFromSearchList, valueFromFrameOrSearchList from Cheetah.CacheRegion import CacheRegion import Cheetah.Filters as Filters import Cheetah.ErrorCatchers as ErrorCatchers from systems.KURSSKLAD.KURSTERM.templates.main import main ################################################## ## MODULE CONSTANTS try: True, False except NameError: True, False = (1==1), (1==0) VFFSL=valueFromFrameOrSearchList VFSL=valueFromSearchList VFN=valueForName currentTime=time.time __CHEETAH_version__ = '2.0rc8' __CHEETAH_versionTuple__ = (2, 0, 0, 'candidate', 8) __CHEETAH_genTime__ = 1482336169.927 __CHEETAH_genTimestamp__ = 'Wed Dec 21 18:02:49 2016' __CHEETAH_src__ = 'systems\\KURSSKLAD\\KURSTERM\\REFILLSLOT\\templates\\index.tmpl' __CHEETAH_srcLastModified__ = 'Wed Dec 21 09:10:13 2016' __CHEETAH_docstring__ = 'Autogenerated by CHEETAH: The Python-Powered Template Engine' if __CHEETAH_versionTuple__ < RequiredCheetahVersionTuple: raise AssertionError( 'This template was compiled with Cheetah version' ' %s. Templates compiled before version %s must be recompiled.'%( __CHEETAH_version__, RequiredCheetahVersion)) ################################################## ## CLASSES class index(main): ################################################## ## CHEETAH GENERATED METHODS def __init__(self, *args, **KWs): main.__init__(self, *args, **KWs) if not self._CHEETAH__instanceInitialized: cheetahKWArgs = {} allowedKWs = 'searchList namespaces filter filtersLib errorCatcher'.split() for k,v in KWs.items(): if k in allowedKWs: cheetahKWArgs[k] = v self._initCheetahInstance(**cheetahKWArgs) def mainData(self, **KWS): ## CHEETAH: generated from #def mainData at line 4, col 1. trans = KWS.get("trans") if (not trans and not self._CHEETAH__isBuffering and not callable(self.transaction)): trans = self.transaction # is None unless self.awake() was called if not trans: trans = DummyTransaction() _dummyTrans = True else: _dummyTrans = False write = trans.response().write SL = self._CHEETAH__searchList _filter = self._CHEETAH__currentFilter ######################################## ## START - generated method body write(''' <form action=rfsMain> \xd8\xca: <input type=text name=barcode id=\':scan\' title="''') if False: _('Row') _v = VFFSL(SL,"_",False)('Row') # "$_('Row')" on line 6, col 61 if _v is not None: write(_filter(_v, rawExpr="$_('Row')")) # from line 6, col 61. write('''"> </form> ''') if VFFSL(SL,"varExists",False)('$datalist') and VFFSL(SL,"datalist",True): # generated from line 9, col 5 write(''' <br> <table> <tr> <th>''') if False: _('Ряд') _v = VFFSL(SL,"_",False)('Ряд') # "$_('\xd0\xff\xe4')" on line 13, col 17 if _v is not None: write(_filter(_v, rawExpr="$_('\xd0\xff\xe4')")) # from line 13, col 17. write('''</th> <th>''') if False: _('Всего') _v = VFFSL(SL,"_",False)('Всего') # "$_('\xc2\xf1\xe5\xe3\xee')" on line 14, col 17 if _v is not None: write(_filter(_v, rawExpr="$_('\xc2\xf1\xe5\xe3\xee')")) # from line 14, col 17. write('''</th> <th>''') if False: _('Важно') _v = VFFSL(SL,"_",False)('Важно') # "$_('\xc2\xe0\xe6\xed\xee')" on line 15, col 17 if _v is not None: write(_filter(_v, rawExpr="$_('\xc2\xe0\xe6\xed\xee')")) # from line 15, col 17. write('''</th> </tr> ''') for item in VFFSL(SL,"datalist",True): # generated from line 17, col 9 write(''' <tr> <td> ''') if VFFSL(SL,"item.cnttask",True)!=0: # generated from line 20, col 15 write(''' <a href="rfsRow?id=''') _v = VFFSL(SL,"item.rowid",True) # '$item.rowid' on line 21, col 36 if _v is not None: write(_filter(_v, rawExpr='$item.rowid')) # from line 21, col 36. write('''">''') _v = VFFSL(SL,"item.rowname",True) # '$item.rowname' on line 21, col 49 if _v is not None: write(_filter(_v, rawExpr='$item.rowname')) # from line 21, col 49. write('''</a> ''') else : # generated from line 22, col 15 write(''' ''') _v = VFFSL(SL,"item.rowname",True) # '$item.rowname' on line 23, col 17 if _v is not None: write(_filter(_v, rawExpr='$item.rowname')) # from line 23, col 17. write(''' ''') write(''' </td> <td>''') _v = VFFSL(SL,"item.cnttask",True) # '$item.cnttask' on line 26, col 17 if _v is not None: write(_filter(_v, rawExpr='$item.cnttask')) # from line 26, col 17. write('''</td> ''') if VFFSL(SL,"item.cntactual",True) > 0: # generated from line 27, col 13 write(''' <td class="red">''') _v = VFFSL(SL,"item.cntactual",True) # '$item.cntactual' on line 28, col 33 if _v is not None: write(_filter(_v, rawExpr='$item.cntactual')) # from line 28, col 33. write('''</td> ''') else: # generated from line 29, col 13 write(''' <td>''') _v = VFFSL(SL,"item.cntactual",True) # '$item.cntactual' on line 30, col 21 if _v is not None: write(_filter(_v, rawExpr='$item.cntactual')) # from line 30, col 21. write('''</td> ''') write(''' </tr> ''') write(''' </table> ''') ######################################## ## END - generated method body return _dummyTrans and trans.response().getvalue() or "" def writeBody(self, **KWS): ## CHEETAH: main method generated for this template trans = KWS.get("trans") if (not trans and not self._CHEETAH__isBuffering and not callable(self.transaction)): trans = self.transaction # is None unless self.awake() was called if not trans: trans = DummyTransaction() _dummyTrans = True else: _dummyTrans = False write = trans.response().write SL = self._CHEETAH__searchList _filter = self._CHEETAH__currentFilter ######################################## ## START - generated method body write(''' ''') ######################################## ## END - generated method body return _dummyTrans and trans.response().getvalue() or "" ################################################## ## CHEETAH GENERATED ATTRIBUTES _CHEETAH__instanceInitialized = False _CHEETAH_version = __CHEETAH_version__ _CHEETAH_versionTuple = __CHEETAH_versionTuple__ _CHEETAH_genTime = __CHEETAH_genTime__ _CHEETAH_genTimestamp = __CHEETAH_genTimestamp__ _CHEETAH_src = __CHEETAH_src__ _CHEETAH_srcLastModified = __CHEETAH_srcLastModified__ _mainCheetahMethod_for_index= 'writeBody' ## END CLASS DEFINITION if not hasattr(index, '_initCheetahAttributes'): templateAPIClass = getattr(index, '_CHEETAH_templateClass', Template) templateAPIClass._addCheetahPlumbingCodeToClass(index) # CHEETAH was developed by Tavis Rudd and Mike Orr # with code, advice and input from many other volunteers. # For more information visit http://www.CheetahTemplate.org/ ################################################## ## if run from command line: if __name__ == '__main__': from Cheetah.TemplateCmdLineIface import CmdLineIface CmdLineIface(templateObj=index()).run()
dada884103b980d1aff01dc194cce6f238446e3d
a9f97f77d30e35c6627f353e49fe2683bf7d51ed
/jiayuan/rnn_ner/rnn_ner/model.py
0d4a500c38ebfd76e76425dbed26e9babb1efab4
[ "MIT" ]
permissive
breezedeus/char-rnn-tensorflow
4c3c5e27e21b4bfb077a399f6707c3ec256d2eac
0ef7bf9e5b108ae161011f9db3705993e1b0103e
refs/heads/master
2021-01-17T08:32:44.452317
2016-06-18T12:35:56
2016-06-18T12:35:56
52,412,436
0
0
null
2016-02-24T03:47:42
2016-02-24T03:47:42
null
UTF-8
Python
false
false
4,936
py
# coding=utf8 import tensorflow as tf from tensorflow.models.rnn import rnn_cell from tensorflow.models.rnn import seq2seq import numpy as np class Model(): def __init__(self, args, infer=False): self.args = args if infer: args.batch_size = 1 args.seq_length = 1 if args.model == 'rnn': cell_fn = rnn_cell.BasicRNNCell elif args.model == 'gru': cell_fn = rnn_cell.GRUCell elif args.model == 'lstm': cell_fn = rnn_cell.BasicLSTMCell else: raise Exception("model type not supported: {}".format(args.model)) cell = cell_fn(args.rnn_size) self.cell = cell = rnn_cell.MultiRNNCell([cell] * args.num_layers) self.input_data = tf.placeholder(tf.int32, [args.batch_size, args.seq_length]) self.targets = tf.placeholder(tf.int32, [args.batch_size, args.seq_length]) self.initial_state = cell.zero_state(args.batch_size, tf.float32) with tf.variable_scope('rnnlm'): softmax_w = tf.get_variable("softmax_w", [args.rnn_size, args.y_vocab_size]) softmax_b = tf.get_variable("softmax_b", [args.y_vocab_size]) with tf.device("/cpu:0"): embedding = tf.get_variable("embedding", [args.vocab_size, args.rnn_size]) inputs = tf.split(1, args.seq_length, tf.nn.embedding_lookup(embedding, self.input_data)) # len(inputs)==args.seq_length, shape(inputs[0])==(args.batch_size, args.rnn_size) inputs = [tf.squeeze(input_, [1]) for input_ in inputs] def loop(prev, _): prev = tf.nn.xw_plus_b(prev, softmax_w, softmax_b) prev_symbol = tf.stop_gradient(tf.argmax(prev, 1)) return tf.nn.embedding_lookup(embedding, prev_symbol) # len(outputs)==args.seq_length, shape(outputs[0])==(args.batch_size, args.rnn_size) outputs, states = seq2seq.rnn_decoder(inputs, self.initial_state, cell, loop_function=loop if infer else None, scope='rnnlm') output = tf.reshape(tf.concat(1, outputs), [-1, args.rnn_size]) # shape(logits) = (batch_size*seq_length, vocab_size) self.logits = tf.nn.xw_plus_b(output, softmax_w, softmax_b) self.probs = tf.nn.softmax(self.logits) loss = seq2seq.sequence_loss_by_example([self.logits], [tf.reshape(self.targets, [-1])], [tf.ones([args.batch_size * args.seq_length])], args.vocab_size) self.cost = tf.reduce_sum(loss) / args.batch_size / args.seq_length self.final_state = states self.lr = tf.Variable(0.0, trainable=False) tvars = tf.trainable_variables() grads, _ = tf.clip_by_global_norm(tf.gradients(self.cost, tvars), args.grad_clip) optimizer = tf.train.AdamOptimizer(self.lr) self.train_op = optimizer.apply_gradients(zip(grads, tvars)) def sample(self, sess, chars, vocab, num=200, prime='我 们'): state = self.cell.zero_state(1, tf.float32).eval() #prime = prime.decode('utf-8') print('prime: ' + prime) prime = prime.split(' ') for char in prime[:-1]: x = np.zeros((1, 1)) x[0, 0] = vocab[char] feed = {self.input_data: x, self.initial_state:state} [state] = sess.run([self.final_state], feed) def weighted_pick(weights): t = np.cumsum(weights) s = np.sum(weights) return(int(np.searchsorted(t, np.random.rand(1)*s))) ret = ''.join(prime) char = prime[-1] for n in xrange(num): x = np.zeros((1, 1)) x[0, 0] = vocab[char] feed = {self.input_data: x, self.initial_state:state} [probs, state] = sess.run([self.probs, self.final_state], feed) p = probs[0] # sample = int(np.random.choice(len(p), p=p)) sample = weighted_pick(p) pred = chars[sample] ret += pred char = pred return ret def predict(self, x, max_length, sess, x_vocab, idx2classid): state = self.cell.zero_state(1, tf.float32).eval() x_list = x.split() def pad_line(x_list, pad): if len(x_list) >= max_length: x_list = x_list[:max_length] else: x_list += [pad] * (max_length-len(x_list)) return x_list x_list = pad_line(x_list=x_list, pad='<PAD>') x = np.matrix([map(lambda x: x_vocab.get(x, 0), x_list)]) print(x[0]) feed = {self.input_data: x, self.initial_state: state} [probs, _] = sess.run([self.probs, self.final_state], feed) print(probs) output = np.argmax(probs, axis=1) idx2classid = np.array(idx2classid) output = idx2classid[output] #print(output) ret = ' '.join(output) return ret
75adc57efa8196a7a552998412254bf7156fa4ad
fe6f6d11dde2a3205ae9758c7d4eb1f824b84102
/venv/lib/python2.7/site-packages/PIL/ImageCms.py
20ba6a11f1b0b627beb58d25502f24e8648ba846
[ "MIT" ]
permissive
mutaihillary/mycalculator
ebf12a5ac90cb97c268b05606c675d64e7ccf8a6
55685dd7c968861f18ae0701129f5af2bc682d67
refs/heads/master
2023-01-10T14:56:11.780045
2016-09-20T12:30:21
2016-09-20T12:30:21
68,580,251
0
0
MIT
2022-12-26T20:15:21
2016-09-19T07:27:48
Python
UTF-8
Python
false
false
34,964
py
# # The Python Imaging Library. # $Id$ # # optional color managment support, based on Kevin Cazabon's PyCMS # library. # # History: # 2009-03-08 fl Added to PIL. # # Copyright (C) 2002-2003 Kevin Cazabon # Copyright (c) 2009 by Fredrik Lundh # # See the README file for information on usage and redistribution. See # below for the original description. # from __future__ import print_function DESCRIPTION = """ pyCMS a Python / PIL interface to the littleCMS ICC Color Management System Copyright (C) 2002-2003 Kevin Cazabon [email protected] http://www.cazabon.com pyCMS home page: http://www.cazabon.com/pyCMS littleCMS home page: http://www.littlecms.com (littleCMS is Copyright (C) 1998-2001 Marti Maria) Originally released under LGPL. Graciously donated to PIL in March 2009, for distribution under the standard PIL license The pyCMS.py module provides a "clean" interface between Python/PIL and pyCMSdll, taking care of some of the more complex handling of the direct pyCMSdll functions, as well as error-checking and making sure that all relevant data is kept together. While it is possible to call pyCMSdll functions directly, it's not highly recommended. Version History: 1.0.0 pil Oct 2013 Port to LCMS 2. 0.1.0 pil mod March 10, 2009 Renamed display profile to proof profile. The proof profile is the profile of the device that is being simulated, not the profile of the device which is actually used to display/print the final simulation (that'd be the output profile) - also see LCMSAPI.txt input colorspace -> using 'renderingIntent' -> proof colorspace -> using 'proofRenderingIntent' -> output colorspace Added LCMS FLAGS support. Added FLAGS["SOFTPROOFING"] as default flag for buildProofTransform (otherwise the proof profile/intent would be ignored). 0.1.0 pil March 2009 - added to PIL, as PIL.ImageCms 0.0.2 alpha Jan 6, 2002 Added try/except statements arount type() checks of potential CObjects... Python won't let you use type() on them, and raises a TypeError (stupid, if you ask me!) Added buildProofTransformFromOpenProfiles() function. Additional fixes in DLL, see DLL code for details. 0.0.1 alpha first public release, Dec. 26, 2002 Known to-do list with current version (of Python interface, not pyCMSdll): none """ VERSION = "1.0.0 pil" # --------------------------------------------------------------------. from PIL import Image from PIL import _imagingcms from PIL._util import isStringType core = _imagingcms # # intent/direction values INTENT_PERCEPTUAL = 0 INTENT_RELATIVE_COLORIMETRIC = 1 INTENT_SATURATION = 2 INTENT_ABSOLUTE_COLORIMETRIC = 3 DIRECTION_INPUT = 0 DIRECTION_OUTPUT = 1 DIRECTION_PROOF = 2 # # flags FLAGS = { "MATRIXINPUT": 1, "MATRIXOUTPUT": 2, "MATRIXONLY": (1|2), "NOWHITEONWHITEFIXUP": 4, # Don't hot fix scum dot "NOPRELINEARIZATION": 16, # Don't create prelinearization tables on precalculated transforms (internal use) "GUESSDEVICECLASS": 32, # Guess device class (for transform2devicelink) "NOTCACHE": 64, # Inhibit 1-pixel cache "NOTPRECALC": 256, "NULLTRANSFORM": 512, # Don't transform anyway "HIGHRESPRECALC": 1024, # Use more memory to give better accurancy "LOWRESPRECALC": 2048, # Use less memory to minimize resouces "WHITEBLACKCOMPENSATION": 8192, "BLACKPOINTCOMPENSATION": 8192, "GAMUTCHECK": 4096, # Out of Gamut alarm "SOFTPROOFING": 16384, # Do softproofing "PRESERVEBLACK": 32768, # Black preservation "NODEFAULTRESOURCEDEF": 16777216, # CRD special "GRIDPOINTS": lambda n: ((n) & 0xFF) << 16 # Gridpoints } _MAX_FLAG = 0 for flag in FLAGS.values(): if isinstance(flag, int): _MAX_FLAG = _MAX_FLAG | flag # --------------------------------------------------------------------. # Experimental PIL-level API # --------------------------------------------------------------------. ## # Profile. class ImageCmsProfile: def __init__(self, profile): # accepts a string (filename), a file-like object, or a low-level # profile object if isStringType(profile): self._set(core.profile_open(profile), profile) elif hasattr(profile, "read"): self._set(core.profile_frombytes(profile.read())) else: self._set(profile) # assume it's already a profile def _set(self, profile, filename=None): self.profile = profile self.filename = filename if profile: self.product_name = None #profile.product_name self.product_info = None #profile.product_info else: self.product_name = None self.product_info = None ## # Transform. This can be used with the procedural API, or with the # standard {@link Image.point} method. class ImageCmsTransform(Image.ImagePointHandler): def __init__(self, input, output, input_mode, output_mode, intent=INTENT_PERCEPTUAL, proof=None, proof_intent=INTENT_ABSOLUTE_COLORIMETRIC, flags=0): if proof is None: self.transform = core.buildTransform( input.profile, output.profile, input_mode, output_mode, intent, flags ) else: self.transform = core.buildProofTransform( input.profile, output.profile, proof.profile, input_mode, output_mode, intent, proof_intent, flags ) # Note: inputMode and outputMode are for pyCMS compatibility only self.input_mode = self.inputMode = input_mode self.output_mode = self.outputMode = output_mode def point(self, im): return self.apply(im) def apply(self, im, imOut=None): im.load() if imOut is None: imOut = Image.new(self.output_mode, im.size, None) result = self.transform.apply(im.im.id, imOut.im.id) return imOut def apply_in_place(self, im): im.load() if im.mode != self.output_mode: raise ValueError("mode mismatch") # wrong output mode result = self.transform.apply(im.im.id, im.im.id) return im ## # (experimental) Fetches the profile for the current display device. # @return None if the profile is not known. def get_display_profile(handle=None): import sys if sys.platform == "win32": from PIL import ImageWin if isinstance(handle, ImageWin.HDC): profile = core.get_display_profile_win32(handle, 1) else: profile = core.get_display_profile_win32(handle or 0) else: try: get = _imagingcms.get_display_profile except AttributeError: return None else: profile = get() return ImageCmsProfile(profile) # --------------------------------------------------------------------. # pyCMS compatible layer # --------------------------------------------------------------------. ## # (pyCMS) Exception class. This is used for all errors in the pyCMS API. class PyCMSError(Exception): pass ## # (pyCMS) Applies an ICC transformation to a given image, mapping from # inputProfile to outputProfile. # # If the input or output profiles specified are not valid filenames, a # PyCMSError will be raised. If inPlace == TRUE and outputMode != im.mode, # a PyCMSError will be raised. If an error occurs during application of # the profiles, a PyCMSError will be raised. If outputMode is not a mode # supported by the outputProfile (or by pyCMS), a PyCMSError will be # raised. # # This function applies an ICC transformation to im from inputProfile's # color space to outputProfile's color space using the specified rendering # intent to decide how to handle out-of-gamut colors. # # OutputMode can be used to specify that a color mode conversion is to # be done using these profiles, but the specified profiles must be able # to handle that mode. I.e., if converting im from RGB to CMYK using # profiles, the input profile must handle RGB data, and the output # profile must handle CMYK data. # # @param im An open PIL image object (i.e. Image.new(...) or Image.open(...), etc.) # @param inputProfile String, as a valid filename path to the ICC input profile # you wish to use for this image, or a profile object # @param outputProfile String, as a valid filename path to the ICC output # profile you wish to use for this image, or a profile object # @param renderingIntent Integer (0-3) specifying the rendering intent you wish # to use for the transform # # INTENT_PERCEPTUAL = 0 (DEFAULT) (ImageCms.INTENT_PERCEPTUAL) # INTENT_RELATIVE_COLORIMETRIC = 1 (ImageCms.INTENT_RELATIVE_COLORIMETRIC) # INTENT_SATURATION = 2 (ImageCms.INTENT_SATURATION) # INTENT_ABSOLUTE_COLORIMETRIC = 3 (ImageCms.INTENT_ABSOLUTE_COLORIMETRIC) # # see the pyCMS documentation for details on rendering intents and what they do. # @param outputMode A valid PIL mode for the output image (i.e. "RGB", "CMYK", # etc.). Note: if rendering the image "inPlace", outputMode MUST be the # same mode as the input, or omitted completely. If omitted, the outputMode # will be the same as the mode of the input image (im.mode) # @param inPlace Boolean (1 = True, None or 0 = False). If True, the original # image is modified in-place, and None is returned. If False (default), a # new Image object is returned with the transform applied. # @param flags Integer (0-...) specifying additional flags # @return Either None or a new PIL image object, depending on value of inPlace # @exception PyCMSError def profileToProfile(im, inputProfile, outputProfile, renderingIntent=INTENT_PERCEPTUAL, outputMode=None, inPlace=0, flags=0): if outputMode is None: outputMode = im.mode if not isinstance(renderingIntent, int) or not (0 <= renderingIntent <=3): raise PyCMSError("renderingIntent must be an integer between 0 and 3") if not isinstance(flags, int) or not (0 <= flags <= _MAX_FLAG): raise PyCMSError("flags must be an integer between 0 and %s" + _MAX_FLAG) try: if not isinstance(inputProfile, ImageCmsProfile): inputProfile = ImageCmsProfile(inputProfile) if not isinstance(outputProfile, ImageCmsProfile): outputProfile = ImageCmsProfile(outputProfile) transform = ImageCmsTransform( inputProfile, outputProfile, im.mode, outputMode, renderingIntent, flags=flags ) if inPlace: transform.apply_in_place(im) imOut = None else: imOut = transform.apply(im) except (IOError, TypeError, ValueError) as v: raise PyCMSError(v) return imOut ## # (pyCMS) Opens an ICC profile file. # # The PyCMSProfile object can be passed back into pyCMS for use in creating # transforms and such (as in ImageCms.buildTransformFromOpenProfiles()). # # If profileFilename is not a vaild filename for an ICC profile, a PyCMSError # will be raised. # # @param profileFilename String, as a valid filename path to the ICC profile you # wish to open, or a file-like object. # @return A CmsProfile class object. # @exception PyCMSError def getOpenProfile(profileFilename): try: return ImageCmsProfile(profileFilename) except (IOError, TypeError, ValueError) as v: raise PyCMSError(v) ## # (pyCMS) Builds an ICC transform mapping from the inputProfile to the # outputProfile. Use applyTransform to apply the transform to a given # image. # # If the input or output profiles specified are not valid filenames, a # PyCMSError will be raised. If an error occurs during creation of the # transform, a PyCMSError will be raised. # # If inMode or outMode are not a mode supported by the outputProfile (or # by pyCMS), a PyCMSError will be raised. # # This function builds and returns an ICC transform from the inputProfile # to the outputProfile using the renderingIntent to determine what to do # with out-of-gamut colors. It will ONLY work for converting images that # are in inMode to images that are in outMode color format (PIL mode, # i.e. "RGB", "RGBA", "CMYK", etc.). # # Building the transform is a fair part of the overhead in # ImageCms.profileToProfile(), so if you're planning on converting multiple # images using the same input/output settings, this can save you time. # Once you have a transform object, it can be used with # ImageCms.applyProfile() to convert images without the need to re-compute # the lookup table for the transform. # # The reason pyCMS returns a class object rather than a handle directly # to the transform is that it needs to keep track of the PIL input/output # modes that the transform is meant for. These attributes are stored in # the "inMode" and "outMode" attributes of the object (which can be # manually overridden if you really want to, but I don't know of any # time that would be of use, or would even work). # # @param inputProfile String, as a valid filename path to the ICC input profile # you wish to use for this transform, or a profile object # @param outputProfile String, as a valid filename path to the ICC output # profile you wish to use for this transform, or a profile object # @param inMode String, as a valid PIL mode that the appropriate profile also # supports (i.e. "RGB", "RGBA", "CMYK", etc.) # @param outMode String, as a valid PIL mode that the appropriate profile also # supports (i.e. "RGB", "RGBA", "CMYK", etc.) # @param renderingIntent Integer (0-3) specifying the rendering intent you # wish to use for the transform # # INTENT_PERCEPTUAL = 0 (DEFAULT) (ImageCms.INTENT_PERCEPTUAL) # INTENT_RELATIVE_COLORIMETRIC = 1 (ImageCms.INTENT_RELATIVE_COLORIMETRIC) # INTENT_SATURATION = 2 (ImageCms.INTENT_SATURATION) # INTENT_ABSOLUTE_COLORIMETRIC = 3 (ImageCms.INTENT_ABSOLUTE_COLORIMETRIC) # # see the pyCMS documentation for details on rendering intents and what they do. # @param flags Integer (0-...) specifying additional flags # @return A CmsTransform class object. # @exception PyCMSError def buildTransform(inputProfile, outputProfile, inMode, outMode, renderingIntent=INTENT_PERCEPTUAL, flags=0): if not isinstance(renderingIntent, int) or not (0 <= renderingIntent <=3): raise PyCMSError("renderingIntent must be an integer between 0 and 3") if not isinstance(flags, int) or not (0 <= flags <= _MAX_FLAG): raise PyCMSError("flags must be an integer between 0 and %s" + _MAX_FLAG) try: if not isinstance(inputProfile, ImageCmsProfile): inputProfile = ImageCmsProfile(inputProfile) if not isinstance(outputProfile, ImageCmsProfile): outputProfile = ImageCmsProfile(outputProfile) return ImageCmsTransform(inputProfile, outputProfile, inMode, outMode, renderingIntent, flags=flags) except (IOError, TypeError, ValueError) as v: raise PyCMSError(v) ## # (pyCMS) Builds an ICC transform mapping from the inputProfile to the # outputProfile, but tries to simulate the result that would be # obtained on the proofProfile device. # # If the input, output, or proof profiles specified are not valid # filenames, a PyCMSError will be raised. # # If an error occurs during creation of the transform, a PyCMSError will # be raised. # # If inMode or outMode are not a mode supported by the outputProfile # (or by pyCMS), a PyCMSError will be raised. # # This function builds and returns an ICC transform from the inputProfile # to the outputProfile, but tries to simulate the result that would be # obtained on the proofProfile device using renderingIntent and # proofRenderingIntent to determine what to do with out-of-gamut # colors. This is known as "soft-proofing". It will ONLY work for # converting images that are in inMode to images that are in outMode # color format (PIL mode, i.e. "RGB", "RGBA", "CMYK", etc.). # # Usage of the resulting transform object is exactly the same as with # ImageCms.buildTransform(). # # Proof profiling is generally used when using an output device to get a # good idea of what the final printed/displayed image would look like on # the proofProfile device when it's quicker and easier to use the # output device for judging color. Generally, this means that the # output device is a monitor, or a dye-sub printer (etc.), and the simulated # device is something more expensive, complicated, or time consuming # (making it difficult to make a real print for color judgement purposes). # # Soft-proofing basically functions by adjusting the colors on the # output device to match the colors of the device being simulated. However, # when the simulated device has a much wider gamut than the output # device, you may obtain marginal results. # # @param inputProfile String, as a valid filename path to the ICC input profile # you wish to use for this transform, or a profile object # @param outputProfile String, as a valid filename path to the ICC output # (monitor, usually) profile you wish to use for this transform, or a # profile object # @param proofProfile String, as a valid filename path to the ICC proof profile # you wish to use for this transform, or a profile object # @param inMode String, as a valid PIL mode that the appropriate profile also # supports (i.e. "RGB", "RGBA", "CMYK", etc.) # @param outMode String, as a valid PIL mode that the appropriate profile also # supports (i.e. "RGB", "RGBA", "CMYK", etc.) # @param renderingIntent Integer (0-3) specifying the rendering intent you # wish to use for the input->proof (simulated) transform # # INTENT_PERCEPTUAL = 0 (DEFAULT) (ImageCms.INTENT_PERCEPTUAL) # INTENT_RELATIVE_COLORIMETRIC = 1 (ImageCms.INTENT_RELATIVE_COLORIMETRIC) # INTENT_SATURATION = 2 (ImageCms.INTENT_SATURATION) # INTENT_ABSOLUTE_COLORIMETRIC = 3 (ImageCms.INTENT_ABSOLUTE_COLORIMETRIC) # # see the pyCMS documentation for details on rendering intents and what they do. # @param proofRenderingIntent Integer (0-3) specifying the rendering intent you # wish to use for proof->output transform # # INTENT_PERCEPTUAL = 0 (DEFAULT) (ImageCms.INTENT_PERCEPTUAL) # INTENT_RELATIVE_COLORIMETRIC = 1 (ImageCms.INTENT_RELATIVE_COLORIMETRIC) # INTENT_SATURATION = 2 (ImageCms.INTENT_SATURATION) # INTENT_ABSOLUTE_COLORIMETRIC = 3 (ImageCms.INTENT_ABSOLUTE_COLORIMETRIC) # # see the pyCMS documentation for details on rendering intents and what they do. # @param flags Integer (0-...) specifying additional flags # @return A CmsTransform class object. # @exception PyCMSError def buildProofTransform(inputProfile, outputProfile, proofProfile, inMode, outMode, renderingIntent=INTENT_PERCEPTUAL, proofRenderingIntent=INTENT_ABSOLUTE_COLORIMETRIC, flags=FLAGS["SOFTPROOFING"]): if not isinstance(renderingIntent, int) or not (0 <= renderingIntent <=3): raise PyCMSError("renderingIntent must be an integer between 0 and 3") if not isinstance(flags, int) or not (0 <= flags <= _MAX_FLAG): raise PyCMSError("flags must be an integer between 0 and %s" + _MAX_FLAG) try: if not isinstance(inputProfile, ImageCmsProfile): inputProfile = ImageCmsProfile(inputProfile) if not isinstance(outputProfile, ImageCmsProfile): outputProfile = ImageCmsProfile(outputProfile) if not isinstance(proofProfile, ImageCmsProfile): proofProfile = ImageCmsProfile(proofProfile) return ImageCmsTransform(inputProfile, outputProfile, inMode, outMode, renderingIntent, proofProfile, proofRenderingIntent, flags) except (IOError, TypeError, ValueError) as v: raise PyCMSError(v) buildTransformFromOpenProfiles = buildTransform buildProofTransformFromOpenProfiles = buildProofTransform ## # (pyCMS) Applies a transform to a given image. # # If im.mode != transform.inMode, a PyCMSError is raised. # # If inPlace == TRUE and transform.inMode != transform.outMode, a # PyCMSError is raised. # # If im.mode, transfer.inMode, or transfer.outMode is not supported by # pyCMSdll or the profiles you used for the transform, a PyCMSError is # raised. # # If an error occurs while the transform is being applied, a PyCMSError # is raised. # # This function applies a pre-calculated transform (from # ImageCms.buildTransform() or ImageCms.buildTransformFromOpenProfiles()) to an # image. The transform can be used for multiple images, saving # considerable calcuation time if doing the same conversion multiple times. # # If you want to modify im in-place instead of receiving a new image as # the return value, set inPlace to TRUE. This can only be done if # transform.inMode and transform.outMode are the same, because we can't # change the mode in-place (the buffer sizes for some modes are # different). The default behavior is to return a new Image object of # the same dimensions in mode transform.outMode. # # @param im A PIL Image object, and im.mode must be the same as the inMode # supported by the transform. # @param transform A valid CmsTransform class object # @param inPlace Bool (1 == True, 0 or None == False). If True, im is modified # in place and None is returned, if False, a new Image object with the # transform applied is returned (and im is not changed). The default is False. # @return Either None, or a new PIL Image object, depending on the value of inPlace # @exception PyCMSError def applyTransform(im, transform, inPlace=0): try: if inPlace: transform.apply_in_place(im) imOut = None else: imOut = transform.apply(im) except (TypeError, ValueError) as v: raise PyCMSError(v) return imOut ## # (pyCMS) Creates a profile. # # If colorSpace not in ["LAB", "XYZ", "sRGB"], a PyCMSError is raised # # If using LAB and colorTemp != a positive integer, a PyCMSError is raised. # # If an error occurs while creating the profile, a PyCMSError is raised. # # Use this function to create common profiles on-the-fly instead of # having to supply a profile on disk and knowing the path to it. It # returns a normal CmsProfile object that can be passed to # ImageCms.buildTransformFromOpenProfiles() to create a transform to apply # to images. # # @param colorSpace String, the color space of the profile you wish to create. # Currently only "LAB", "XYZ", and "sRGB" are supported. # @param colorTemp Positive integer for the white point for the profile, in # degrees Kelvin (i.e. 5000, 6500, 9600, etc.). The default is for D50 # illuminant if omitted (5000k). colorTemp is ONLY applied to LAB profiles, # and is ignored for XYZ and sRGB. # @return A CmsProfile class object # @exception PyCMSError def createProfile(colorSpace, colorTemp=-1): if colorSpace not in ["LAB", "XYZ", "sRGB"]: raise PyCMSError("Color space not supported for on-the-fly profile creation (%s)" % colorSpace) if colorSpace == "LAB": try: colorTemp = float(colorTemp) except: raise PyCMSError("Color temperature must be numeric, \"%s\" not valid" % colorTemp) try: return core.createProfile(colorSpace, colorTemp) except (TypeError, ValueError) as v: raise PyCMSError(v) ## # (pyCMS) Gets the internal product name for the given profile. # # If profile isn't a valid CmsProfile object or filename to a profile, # a PyCMSError is raised If an error occurs while trying to obtain the # name tag, a PyCMSError is raised. # # Use this function to obtain the INTERNAL name of the profile (stored # in an ICC tag in the profile itself), usually the one used when the # profile was originally created. Sometimes this tag also contains # additional information supplied by the creator. # # @param profile EITHER a valid CmsProfile object, OR a string of the filename # of an ICC profile. # @return A string containing the internal name of the profile as stored in an # ICC tag. # @exception PyCMSError def getProfileName(profile): try: # add an extra newline to preserve pyCMS compatibility if not isinstance(profile, ImageCmsProfile): profile = ImageCmsProfile(profile) # do it in python, not c. # // name was "%s - %s" (model, manufacturer) || Description , # // but if the Model and Manufacturer were the same or the model # // was long, Just the model, in 1.x model = profile.profile.product_model manufacturer = profile.profile.product_manufacturer if not (model or manufacturer): return profile.profile.product_description+"\n" if not manufacturer or len(model) > 30: return model + "\n" return "%s - %s\n" % (model, manufacturer) except (AttributeError, IOError, TypeError, ValueError) as v: raise PyCMSError(v) ## # (pyCMS) Gets the internal product information for the given profile. # # If profile isn't a valid CmsProfile object or filename to a profile, # a PyCMSError is raised. # # If an error occurs while trying to obtain the info tag, a PyCMSError # is raised # # Use this function to obtain the information stored in the profile's # info tag. This often contains details about the profile, and how it # was created, as supplied by the creator. # # @param profile EITHER a valid CmsProfile object, OR a string of the filename # of an ICC profile. # @return A string containing the internal profile information stored in an ICC # tag. # @exception PyCMSError def getProfileInfo(profile): try: if not isinstance(profile, ImageCmsProfile): profile = ImageCmsProfile(profile) # add an extra newline to preserve pyCMS compatibility # Python, not C. the white point bits weren't working well, so skipping. # // info was description \r\n\r\n copyright \r\n\r\n K007 tag \r\n\r\n whitepoint description = profile.profile.product_description cpright = profile.profile.product_copyright arr = [] for elt in (description, cpright): if elt: arr.append(elt) return "\r\n\r\n".join(arr)+"\r\n\r\n" except (AttributeError, IOError, TypeError, ValueError) as v: raise PyCMSError(v) ## # (pyCMS) Gets the copyright for the given profile. # # If profile isn't a valid CmsProfile object or filename to a profile, # a PyCMSError is raised. # # If an error occurs while trying to obtain the copyright tag, a PyCMSError # is raised # # Use this function to obtain the information stored in the profile's # copyright tag. # # @param profile EITHER a valid CmsProfile object, OR a string of the filename # of an ICC profile. # @return A string containing the internal profile information stored in an ICC # tag. # @exception PyCMSError def getProfileCopyright(profile): try: # add an extra newline to preserve pyCMS compatibility if not isinstance(profile, ImageCmsProfile): profile = ImageCmsProfile(profile) return profile.profile.product_copyright + "\n" except (AttributeError, IOError, TypeError, ValueError) as v: raise PyCMSError(v) ## # (pyCMS) Gets the manufacturer for the given profile. # # If profile isn't a valid CmsProfile object or filename to a profile, # a PyCMSError is raised. # # If an error occurs while trying to obtain the manufacturer tag, a PyCMSError # is raised # # Use this function to obtain the information stored in the profile's # manufacturer tag. # # @param profile EITHER a valid CmsProfile object, OR a string of the filename # of an ICC profile. # @return A string containing the internal profile information stored in an ICC # tag. # @exception PyCMSError def getProfileManufacturer(profile): try: # add an extra newline to preserve pyCMS compatibility if not isinstance(profile, ImageCmsProfile): profile = ImageCmsProfile(profile) return profile.profile.product_manufacturer + "\n" except (AttributeError, IOError, TypeError, ValueError) as v: raise PyCMSError(v) ## # (pyCMS) Gets the model for the given profile. # # If profile isn't a valid CmsProfile object or filename to a profile, # a PyCMSError is raised. # # If an error occurs while trying to obtain the model tag, a PyCMSError # is raised # # Use this function to obtain the information stored in the profile's # model tag. # # @param profile EITHER a valid CmsProfile object, OR a string of the filename # of an ICC profile. # @return A string containing the internal profile information stored in an ICC # tag. # @exception PyCMSError def getProfileModel(profile): try: # add an extra newline to preserve pyCMS compatibility if not isinstance(profile, ImageCmsProfile): profile = ImageCmsProfile(profile) return profile.profile.product_model + "\n" except (AttributeError, IOError, TypeError, ValueError) as v: raise PyCMSError(v) ## # (pyCMS) Gets the description for the given profile. # # If profile isn't a valid CmsProfile object or filename to a profile, # a PyCMSError is raised. # # If an error occurs while trying to obtain the description tag, a PyCMSError # is raised # # Use this function to obtain the information stored in the profile's # description tag. # # @param profile EITHER a valid CmsProfile object, OR a string of the filename # of an ICC profile. # @return A string containing the internal profile information stored in an ICC # tag. # @exception PyCMSError def getProfileDescription(profile): try: # add an extra newline to preserve pyCMS compatibility if not isinstance(profile, ImageCmsProfile): profile = ImageCmsProfile(profile) return profile.profile.product_description + "\n" except (AttributeError, IOError, TypeError, ValueError) as v: raise PyCMSError(v) ## # (pyCMS) Gets the default intent name for the given profile. # # If profile isn't a valid CmsProfile object or filename to a profile, # a PyCMSError is raised. # # If an error occurs while trying to obtain the default intent, a # PyCMSError is raised. # # Use this function to determine the default (and usually best optomized) # rendering intent for this profile. Most profiles support multiple # rendering intents, but are intended mostly for one type of conversion. # If you wish to use a different intent than returned, use # ImageCms.isIntentSupported() to verify it will work first. # # @param profile EITHER a valid CmsProfile object, OR a string of the filename # of an ICC profile. # @return Integer 0-3 specifying the default rendering intent for this profile. # # INTENT_PERCEPTUAL = 0 (DEFAULT) (ImageCms.INTENT_PERCEPTUAL) # INTENT_RELATIVE_COLORIMETRIC = 1 (ImageCms.INTENT_RELATIVE_COLORIMETRIC) # INTENT_SATURATION = 2 (ImageCms.INTENT_SATURATION) # INTENT_ABSOLUTE_COLORIMETRIC = 3 (ImageCms.INTENT_ABSOLUTE_COLORIMETRIC) # # see the pyCMS documentation for details on rendering intents and what they do. # @exception PyCMSError def getDefaultIntent(profile): try: if not isinstance(profile, ImageCmsProfile): profile = ImageCmsProfile(profile) return profile.profile.rendering_intent except (AttributeError, IOError, TypeError, ValueError) as v: raise PyCMSError(v) ## # (pyCMS) Checks if a given intent is supported. # # Use this function to verify that you can use your desired # renderingIntent with profile, and that profile can be used for the # input/output/proof profile as you desire. # # Some profiles are created specifically for one "direction", can cannot # be used for others. Some profiles can only be used for certain # rendering intents... so it's best to either verify this before trying # to create a transform with them (using this function), or catch the # potential PyCMSError that will occur if they don't support the modes # you select. # # @param profile EITHER a valid CmsProfile object, OR a string of the filename # of an ICC profile. # @param intent Integer (0-3) specifying the rendering intent you wish to use # with this profile # # INTENT_PERCEPTUAL = 0 (DEFAULT) (ImageCms.INTENT_PERCEPTUAL) # INTENT_RELATIVE_COLORIMETRIC = 1 (ImageCms.INTENT_RELATIVE_COLORIMETRIC) # INTENT_SATURATION = 2 (ImageCms.INTENT_SATURATION) # INTENT_ABSOLUTE_COLORIMETRIC = 3 (ImageCms.INTENT_ABSOLUTE_COLORIMETRIC) # # see the pyCMS documentation for details on rendering intents and what they do. # @param direction Integer specifing if the profile is to be used for input, # output, or proof # # INPUT = 0 (or use ImageCms.DIRECTION_INPUT) # OUTPUT = 1 (or use ImageCms.DIRECTION_OUTPUT) # PROOF = 2 (or use ImageCms.DIRECTION_PROOF) # # @return 1 if the intent/direction are supported, -1 if they are not. # @exception PyCMSError def isIntentSupported(profile, intent, direction): try: if not isinstance(profile, ImageCmsProfile): profile = ImageCmsProfile(profile) # FIXME: I get different results for the same data w. different # compilers. Bug in LittleCMS or in the binding? if profile.profile.is_intent_supported(intent, direction): return 1 else: return -1 except (AttributeError, IOError, TypeError, ValueError) as v: raise PyCMSError(v) ## # (pyCMS) Fetches versions. def versions(): import sys return ( VERSION, core.littlecms_version, sys.version.split()[0], Image.VERSION ) # -------------------------------------------------------------------- if __name__ == "__main__": # create a cheap manual from the __doc__ strings for the functions above from PIL import ImageCms print(__doc__) for f in dir(pyCMS): print("="*80) print("%s" %f) try: exec ("doc = ImageCms.%s.__doc__" %(f)) if "pyCMS" in doc: # so we don't get the __doc__ string for imported modules print(doc) except AttributeError: pass
fac1370427122efedc91019afd32e3d4c7c4a48a
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/synthetic/sieve-big-4750.py
61e596ad7605038272c3423838a093b5fb059e38
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
31,755
py
# A resizable list of integers class Vector(object): items: [int] = None size: int = 0 def __init__(self:"Vector"): self.items = [0] # Returns current capacity def capacity(self:"Vector") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector", idx: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector") -> int: return self.size # A resizable list of integers class Vector2(object): items: [int] = None items2: [int] = None size: int = 0 size2: int = 0 def __init__(self:"Vector2"): self.items = [0] # Returns current capacity def capacity(self:"Vector2") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector2") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector2") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector2") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector2", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector2", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector2", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector2", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector2", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector2", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector2", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector2", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector2") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector2") -> int: return self.size # A resizable list of integers class Vector3(object): items: [int] = None items2: [int] = None items3: [int] = None size: int = 0 size2: int = 0 size3: int = 0 def __init__(self:"Vector3"): self.items = [0] # Returns current capacity def capacity(self:"Vector3") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector3") -> int: return len(self.items) # Returns current capacity def capacity3(self:"Vector3") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector3") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector3") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity3(self:"Vector3") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector3", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector3", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append3(self:"Vector3", item: int, item2: int, item3: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector3", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector3", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all3(self:"Vector3", new_items: [int], new_items2: [int], new_items3: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector3", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector3", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at3(self:"Vector3", idx: int, idx2: int, idx3: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector3", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector3", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves an item at a given index def get3(self:"Vector3", idx: int, idx2: int, idx3: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector3") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector3") -> int: return self.size # Retrieves the current size of the vector def length3(self:"Vector3") -> int: return self.size # A resizable list of integers class Vector4(object): items: [int] = None items2: [int] = None items3: [int] = None items4: [int] = None size: int = 0 size2: int = 0 size3: int = 0 size4: int = 0 def __init__(self:"Vector4"): self.items = [0] # Returns current capacity def capacity(self:"Vector4") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector4") -> int: return len(self.items) # Returns current capacity def capacity3(self:"Vector4") -> int: return len(self.items) # Returns current capacity def capacity4(self:"Vector4") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity3(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity4(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector4", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector4", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append3(self:"Vector4", item: int, item2: int, item3: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append4(self:"Vector4", item: int, item2: int, item3: int, item4: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector4", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector4", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all3(self:"Vector4", new_items: [int], new_items2: [int], new_items3: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all4(self:"Vector4", new_items: [int], new_items2: [int], new_items3: [int], new_items4: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 item4:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector4", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector4", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at3(self:"Vector4", idx: int, idx2: int, idx3: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at4(self:"Vector4", idx: int, idx2: int, idx3: int, idx4: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector4", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector4", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves an item at a given index def get3(self:"Vector4", idx: int, idx2: int, idx3: int) -> int: return self.items[idx] # Retrieves an item at a given index def get4(self:"Vector4", idx: int, idx2: int, idx3: int, idx4: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector4") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector4") -> int: return self.size # Retrieves the current size of the vector def length3(self:"Vector4") -> int: return self.size # Retrieves the current size of the vector def length4(self:"Vector4") -> int: return self.size # A resizable list of integers class Vector5(object): items: [int] = None items2: [int] = None items3: [int] = None items4: [int] = None items5: [int] = None size: int = 0 size2: int = 0 size3: int = 0 size4: int = 0 size5: int = 0 def __init__(self:"Vector5"): self.items = [0] # Returns current capacity def capacity(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity3(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity4(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity5(self:"Vector5") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity3(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity4(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity5(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector5", item: int) -> object: if $Exp.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector5", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append3(self:"Vector5", item: int, item2: int, item3: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append4(self:"Vector5", item: int, item2: int, item3: int, item4: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append5(self:"Vector5", item: int, item2: int, item3: int, item4: int, item5: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector5", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector5", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all3(self:"Vector5", new_items: [int], new_items2: [int], new_items3: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all4(self:"Vector5", new_items: [int], new_items2: [int], new_items3: [int], new_items4: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 item4:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all5(self:"Vector5", new_items: [int], new_items2: [int], new_items3: [int], new_items4: [int], new_items5: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 item4:int = 0 item5:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector5", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector5", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at3(self:"Vector5", idx: int, idx2: int, idx3: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at4(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at5(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int, idx5: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector5", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector5", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves an item at a given index def get3(self:"Vector5", idx: int, idx2: int, idx3: int) -> int: return self.items[idx] # Retrieves an item at a given index def get4(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int) -> int: return self.items[idx] # Retrieves an item at a given index def get5(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int, idx5: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length3(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length4(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length5(self:"Vector5") -> int: return self.size # A faster (but more memory-consuming) implementation of vector class DoublingVector(Vector): doubling_limit:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector2(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector2") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector2") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector3(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 doubling_limit3:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector3") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector3") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity3(self:"DoublingVector3") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector4(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 doubling_limit3:int = 1000 doubling_limit4:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity3(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity4(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector5(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 doubling_limit3:int = 1000 doubling_limit4:int = 1000 doubling_limit5:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity3(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity4(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity5(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Makes a vector in the range [i, j) def vrange(i:int, j:int) -> Vector: v:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange2(i:int, j:int, i2:int, j2:int) -> Vector: v:Vector = None v2:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange3(i:int, j:int, i2:int, j2:int, i3:int, j3:int) -> Vector: v:Vector = None v2:Vector = None v3:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange4(i:int, j:int, i2:int, j2:int, i3:int, j3:int, i4:int, j4:int) -> Vector: v:Vector = None v2:Vector = None v3:Vector = None v4:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange5(i:int, j:int, i2:int, j2:int, i3:int, j3:int, i4:int, j4:int, i5:int, j5:int) -> Vector: v:Vector = None v2:Vector = None v3:Vector = None v4:Vector = None v5:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v # Sieve of Eratosthenes (not really) def sieve(v:Vector) -> object: i:int = 0 j:int = 0 k:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve2(v:Vector, v2:Vector) -> object: i:int = 0 i2:int = 0 j:int = 0 j2:int = 0 k:int = 0 k2:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve3(v:Vector, v2:Vector, v3:Vector) -> object: i:int = 0 i2:int = 0 i3:int = 0 j:int = 0 j2:int = 0 j3:int = 0 k:int = 0 k2:int = 0 k3:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve4(v:Vector, v2:Vector, v3:Vector, v4:Vector) -> object: i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 j:int = 0 j2:int = 0 j3:int = 0 j4:int = 0 k:int = 0 k2:int = 0 k3:int = 0 k4:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve5(v:Vector, v2:Vector, v3:Vector, v4:Vector, v5:Vector) -> object: i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 i5:int = 0 j:int = 0 j2:int = 0 j3:int = 0 j4:int = 0 j5:int = 0 k:int = 0 k2:int = 0 k3:int = 0 k4:int = 0 k5:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 # Input parameter n:int = 50 n2:int = 50 n3:int = 50 n4:int = 50 n5:int = 50 # Data v:Vector = None v2:Vector = None v3:Vector = None v4:Vector = None v5:Vector = None i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 i5:int = 0 # Crunch v = vrange(2, n) v2 = vrange(2, n) v3 = vrange(2, n) v4 = vrange(2, n) v5 = vrange(2, n) sieve(v) # Print while i < v.length(): print(v.get(i)) i = i + 1
147c2d90ce5537ee9f661bf45932eeda21e86596
e233d3d5ad19bb17a7dce7ff8d96404a17b3b705
/src/programy/parser/template/nodes/vocabulary.py
ebaad3a280d6196ae7ad85d1cb65c2696d9876d8
[ "MIT" ]
permissive
jaimecamacaro/program-y
2559fb0cb70150b147c090c611931f84fd276867
5f31608290faddf8da9a52587ec892b258ec11d4
refs/heads/master
2021-06-26T20:26:53.778763
2017-09-13T09:47:14
2017-09-13T09:47:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,461
py
""" Copyright (c) 2016-17 Keith Sterling http://www.keithsterling.com Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import logging from programy.parser.template.nodes.base import TemplateNode class TemplateVocabularyNode(TemplateNode): def __init__(self): TemplateNode.__init__(self) def resolve_to_string(self, bot, clientid): set_words = bot.brain.sets.count_words_in_sets() pattern_words = bot.brain.aiml_parser.pattern_parser.count_words_in_patterns() resolved = "%d" % (set_words + pattern_words) if logging.getLogger().isEnabledFor(logging.DEBUG): logging.debug("[%s] resolved to [%s]", self.to_string(), resolved) return resolved def resolve(self, bot, clientid): try: return self.resolve_to_string(bot, clientid) except Exception as excep: logging.exception(excep) return "" def to_string(self): return "VOCABULARY" def to_xml(self, bot, clientid): xml = "<vocabulary>" xml += self.children_to_xml(bot, clientid) xml += "</vocabulary>" return xml ####################################################################################################### # <vocabulary/> | def add_default_star(self): return True def parse_expression(self, graph, expression): self._parse_node(graph, expression)
2904a73fe26296f364a3e698b6c66d370b6ebc3c
62f59fe1e0246b33c84412ee2a60e77938a05a15
/proj/my_lib/Common/img_hash.py
ac6c0aa4cb2dd704168d823abfde9bea4dd890fd
[]
no_license
20113261/platform_service
02676d2654f5c7bde2c7eafdadbf55fe7253a7b0
bc903168bd7cbc499892f24c2b1cc82c38180c01
refs/heads/dev
2022-08-01T02:30:05.004852
2018-04-29T05:39:37
2018-04-29T05:39:37
131,576,306
1
0
null
2022-07-08T19:13:32
2018-04-30T09:14:54
Python
UTF-8
Python
false
false
1,210
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2017/10/31 下午7:34 # @Author : Hou Rong # @Site : # @File : img_hash.py # @Software: PyCharm import imagehash from PIL import Image from proj.my_lib.logger import get_logger, func_time_logger logger = get_logger("img_hash") @func_time_logger def _img_p_hash(f_obj): f_obj.seek(0) try: img_obj = Image.open(f_obj) except Exception as exc: logger.exception(msg="[error img]", exc_info=exc) return None try: _hash = imagehash.phash(img_obj) except Exception as exc: logger.exception(msg="[could not calculate phash]", exc_info=exc) return None f_obj.seek(0) return _hash def img_p_hash(f_obj): _retry_times = 4 while _retry_times: _retry_times -= 1 _res = _img_p_hash(f_obj) if _res: return str(_res) return None if __name__ == '__main__': f = open('/tmp/1/035211ab53d76b051376f9292ca9623d.jpg') print(img_p_hash(f)) print(img_p_hash(f)) print(img_p_hash(f)) print(img_p_hash(f)) print(img_p_hash(f)) f = open('/tmp/1/b8c88852a915cf32e1eeed20ec7d3cc7.jpg') print(img_p_hash(f))
2ef775fa9ffa8db94d0c44a35f38777947ee452a
1b8a99a4ff80da51dc81dd8354bf9bf1cbd25a8b
/2022/shift_2d_grid.py
6ddd3b4a793d02f3fddf9b911c48410e32e74f17
[]
no_license
eronekogin/leetcode
ea639eebe0cd70af9eb4cba59bc68f636d7b3e0c
edb870f83f0c4568cce0cacec04ee70cf6b545bf
refs/heads/master
2023-08-16T10:35:57.164176
2023-08-14T11:25:33
2023-08-14T11:25:33
163,679,450
0
0
null
2021-09-09T12:04:44
2018-12-31T15:33:06
Python
UTF-8
Python
false
false
528
py
""" https://leetcode.com/problems/shift-2d-grid/ """ class Solution: def shiftGrid(self, grid: list[list[int]], k: int) -> list[list[int]]: R, C = len(grid), len(grid[0]) newGrid = [[0] * C for _ in range(R)] for r, row in enumerate(grid): for c, v in enumerate(row): dr, nc = divmod(c + k, C) nr = (r + dr) % R newGrid[nr][nc] = v return newGrid print(Solution().shiftGrid([ [1, 2, 3], [4, 5, 6], [7, 8, 9] ], 1))
b3e9af807b979f922b4629836eb98bb6efebee19
673e829dda9583c8dd2ac8d958ba1dc304bffeaf
/data/multilingual/Latn.TPI/Mono_8/pdf_to_json_test_Latn.TPI_Mono_8.py
618c37de8897c8b6e934ba4f5610096e2ef4829b
[ "BSD-3-Clause" ]
permissive
antoinecarme/pdf_to_json_tests
58bab9f6ba263531e69f793233ddc4d33b783b7e
d57a024fde862e698d916a1178f285883d7a3b2f
refs/heads/master
2021-01-26T08:41:47.327804
2020-02-27T15:54:48
2020-02-27T15:54:48
243,359,934
2
1
null
null
null
null
UTF-8
Python
false
false
301
py
import pdf_to_json as p2j import json url = "file:data/multilingual/Latn.TPI/Mono_8/udhr_Latn.TPI_Mono_8.pdf" lConverter = p2j.pdf_to_json.pdf_to_json_converter() lConverter.mImageHashOnly = True lDict = lConverter.convert(url) print(json.dumps(lDict, indent=4, ensure_ascii=False, sort_keys=True))
b59ec1cd512b6ef11af45128bfc21a60e6b82ece
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2655/60749/257037.py
d69187901e074eb96757b5e40eb320ae97fbe4d1
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
310
py
n=int(input()) res=[] for _ in range(n): res.append(int(input())) def findcloset(n): k=0 while n>=pow(2,k): if n<pow(2,k+1): if n==pow(2,k): return pow(2,k) else: return pow(2,k+1) k+=1 for t in res: print(findcloset(t))
db9c2d2a18762a017bc99282713b6486c15730a0
7be8a902f968ecd74fdf028d758f8777df6120c7
/daxuan/Taiwan/yahoo/yahoo_news.py
be5a2c9a07719bf638955a598131a9bea4d0b0c5
[ "Apache-2.0" ]
permissive
BingquLee/spiders
51142f848d52a7f8a98563e17b5c582a7e18b46c
66e42b59aa692ab531e6ca347708d46b189c0047
refs/heads/master
2020-03-22T00:49:59.079429
2018-06-30T17:55:07
2018-06-30T17:55:07
139,268,194
0
0
null
null
null
null
UTF-8
Python
false
false
5,797
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2018-04-11 14:45:12 # @Author : guangqiang_xu ([email protected]) # @Link : http://www.treenewbee.com/ # @Version : $Id$ import requests from lxml import etree from retry import retry import time import json import hashlib import re import urllib, urllib2 from readability.readability import Document from elasticsearch import Elasticsearch import sys reload(sys) sys.setdefaultencoding('utf-8') es = Elasticsearch() headers = { "User-Agent": "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/22.0.1207.1 Safari/537.1"} def searchData(index, type ,body): query_body = {"query": {"query_string": {"query": body}}} results = es.search(index=index, doc_type=type, body=query_body) date_list = results['hits']['hits'] return date_list from langconv import * def Traditional2Simplified(sentence): sentence = Converter('zh-hans').convert(sentence) return sentence @retry(tries=3) def get_content(lis, keyword, timest): i = 1 for li in lis: item = {} source = "yahoo" print li news_url = li.xpath('./div/div[1]/h3/a/@href') # news_url = li.xpath('./div/div[1]/h3/a/@href')[0] print 11111111111111111111111, news_url, 1111111111111111111111111111111 title = ''.join(li.xpath('./div/div[1]/h3/a//text()')) print title summary = ''.join(li.xpath('./div/div[2]/p//text()')) # user_name = li.xpath('./div/div[3]/p/span[1]/text()')[0] # print user_name date = li.xpath('./div/div[3]/p/span[2]/text()')[0] print date strdate = '2018-' + date.replace('AM','').replace('PM','').replace('月','-').replace('日','') timeArray = time.strptime(strdate, "%Y-%m-%d %H:%M") timestamp = int(time.mktime(timeArray)) if timestamp < timest: continue response1 = requests.get(news_url, timeout=10, headers=headers) response1.coding = 'utf-8' txt1 = response1.content new_url = re.findall(r'URL=(.*?)">',txt1)[0].replace("'",'') hash_md5 = hashlib.md5(new_url) Id = hash_md5.hexdigest() response = requests.get(new_url, timeout=10, headers=headers) response.coding = 'utf-8' txt = response.content readable_article = Document(txt).summary() html = etree.HTML(readable_article) context = ''.join(html.xpath('//p//text()')).replace('\r','').replace('\n','').replace('\t','') if context in "": news_html = etree.HTML(txt) context = ''.join(news_html.xpath('//p//text()')) timesyear = time.localtime(timestamp).tm_year stringDate = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(timestamp)) images = '' kname = urllib.quote(str(title)) try: Imageurl = "https://image.baidu.com/search/index?tn=baiduimage&ipn=r&ct=201326592&cl=2&lm=-1&st=-1&fm=result&fr=&sf=1&fmq=1502779395291_R&pv=&ic=0&nc=1&z=&se=1&showtab=0&fb=0&width=&height=&face=0&istype=2&ie=utf-8&word=" + kname req = urllib2.urlopen(Imageurl, timeout=10) html = req.read() images = re.search(r'https://.*?\.jpg', html).group() except: pass summary = Traditional2Simplified(summary.decode("utf-8")) keyword = Traditional2Simplified(keyword.decode("utf-8")) context = Traditional2Simplified(context.decode("utf-8")) tittle = Traditional2Simplified(title.decode("utf-8")) item['summary'] = summary item['keyword'] = keyword item['candidate'] = keyword item['source'] = source item['timestamps'] = timestamp item['date'] = date item['lang'] = 'cn' item['images'] = images item['context'] = context item['timesyear'] = timesyear item['time'] = stringDate item['title'] = tittle item['url'] = new_url item['id'] = Id with open('yahoo_news.json', 'a') as f: f.write(json.dumps(item, ensure_ascii=False) + '\n') def crawl_yahoo(keyword, strdate): timeArray = time.strptime(strdate, "%Y-%m-%d") timest = int(time.mktime(timeArray)) kname = urllib.quote(str(keyword)) page = 1 while 1: url = "https://tw.search.yahoo.com/search;?fr2=sb-top-tw.search&p={}&b={}".format(kname, page) # url = "https://tw.news.search.yahoo.com/search;_ylt=AwrtXGtDr81aAG4A2CVw1gt.;_ylu=X3oDMTEwOG1tc2p0BGNvbG8DBHBvcwMxBHZ0aWQDBHNlYwNwYWdpbmF0aW9u?p={}&ei=UTF-8&flt=ranking%3Adate%3B&fr=yfp-search-sb&b={}&pz=10&bct=0&xargs=0".format(kname, page) print url response = requests.get(url, headers=headers) txt = response.text html = etree.HTML(txt) lis = html.xpath('//ol[@class="mb-15 reg searchCenterMiddle"]/li') # lis = html.xpath('//div[@id="web"]/ol[2]/li') # print "lis", lis i = 1 for li in lis: item = {} source = "yahoo" print li.xpath('./div/div[1]/h3/a/@href')[0] print "*************" title = ''.join(li.xpath('./div/div[1]/h3/a//text()')) print title print "+++++++++++++" summary = ''.join(li.xpath('./div/div[2]/p//text()')) print summary print "------------" date = li.xpath('./div/div[3]/p/span[2]/text()')[0] print date print 00000000000000 if len(lis) <= 0: break get_content(lis, keyword, timest) page += 10 if page == 81: break if __name__ == '__main__': crawl_yahoo('盧秀燕', '2018-01-01') crawl_yahoo('林佳龍', '2018-01-01')
4ea70871b269b1e8653582ef88c2497f5e928abc
96740c0a9ff1467f0897253c79a059b5ba6a1949
/test_webscoket.py
02c07101a77d1393e2894d4e4843fafdb61c1326
[]
no_license
Cola1995/soho1
a876990cd3adfb9534eb3630e24a9bf90bdf8363
fad8f13d6c789e7c37eba5cfd94a9cb609c8db1d
refs/heads/master
2020-07-27T07:50:38.299692
2019-09-17T10:02:34
2019-09-17T10:02:34
209,020,254
0
0
null
null
null
null
UTF-8
Python
false
false
2,594
py
import asyncio import logging from datetime import datetime from aiowebsocket.converses import AioWebSocket import json async def startup(uri): async with AioWebSocket(uri) as aws: converse = aws.manipulator # 客户端给服务端发送消息 await converse.send('{"event":"pusher:subscribe","data":{"channel":"exchange_market"}}') # 监听所有市场 await converse.send('{"event":"pusher:subscribe","data":{"channel":"exchange_market_bid_ask"}}') # # 监听btc_usdt webscoket # await converse.send('{"event":"pusher:subscribe","data":{"channel":"exchange_ticker"}}') # await converse.send('{"event":"pusher:subscribe","data":{"channel":"exchange_eth-usdt"}}') # await converse.send('{"event":"pusher:subscribe","data":{"channel":"exchange_bqqq-usdt"}}') # await converse.send('{"event":"pusher:subscribe","data":{"auth":"5174598ab656e4da66dc:1c303fad7f188e3a9f130235ecffc1a2052da5bd9645d572b8b6020f1d154032","channel":"private-exchange==abbd73ed-2cde-416f-8ce1-3217e0472205"}}') # 监听所有市场 while True: mes = await converse.receive() print('{time}-Client receive: {rec}' .format(time=datetime.now().strftime('%Y-%m-%d %H:%M:%S'), rec=mes)) print(type(mes)) # 解包,获取想要的数据 # mes = json.loads(mes.decode("utf-8")) # print(mes) # if mes["data"]["marketPriceDto"]["marketSymbol"]=="NEO-BTC": # print(mes["data"]) # m1 = json.loads(mes["data"]) # print(m1.get("message").get("marketPriceDto").get("volume")) # print(m1) # if m1.get("message")!=None: # if m1["message"]["marketPriceDto"]["marketSymbol"]==market: # print("{0}:市场:{1},chang24:{2}, percentageChange24:{3}".format(datetime.now().strftime('%Y-%m-%d %H:%M:%S'),m1["message"]["marketPriceDto"]["marketSymbol"],m1["message"]["marketPriceDto"]["change24"],m1["message"]["marketPriceDto"]["percentageChange24"])) if __name__ == '__main__': # remote = 'wss://wssprod.bitsdaq.com/app/167bca97db7a84f1c98b?protocol=7&client=js&version=4.3.1&flash=false' # 线上环境 market = "ETH-BTC" # 配置需要监听的市场/币对 remote ="wss://wss-dev-15.bitsdaq.io/app/d4796efce047f9e6443a?protocol=7&client=js&version=4.4.0&flash=false" # dev环境通用 try: asyncio.get_event_loop().run_until_complete(startup(remote)) except KeyboardInterrupt as exc: logging.info('Quit.')
f73e8cee4387922b60f25f6d68bcaedf74ab873d
de479d4a8af0e070b2bcae4186b15a8eb74971fb
/cn/iceknc/study/c_python_pygame/c_pygame_window.py
6ba43b45b4a1518b0fc99459cb90ef2ca9434385
[]
no_license
iceknc/python_study_note
1d8f6e38be57e4dc41a661c0a84d6ee223c5a878
730a35890b77ecca3d267fc875a68e96febdaa85
refs/heads/master
2020-05-19T18:44:55.957392
2019-09-27T01:15:54
2019-09-27T01:15:54
185,160,232
0
0
null
null
null
null
UTF-8
Python
false
false
286
py
import pygame pygame.init() # 创建游戏窗口 screen = pygame.display.set_mode((480, 700)) bg = pygame.image.load("./images/background.png") screen.blit(bg, (0, 0)) hero = pygame.image.load("./images/me1.png") screen.blit(hero, (200, 500)) pygame.display.update() pygame.quit()
c39eeaf948feb9a12175b5eca02bab3bdadc0f3b
b6559791bc33d1d44ab867dcbd7ca93243540e4f
/爆米花视频/baomihua/middlewares.py
1a013cea298e85bf4650717d5609fa0e1304794d
[]
no_license
RichardcLee/Spiders
7b51f68a255354bd8b06fca627491d68e55f7cd7
e0f5c060ea85472e374fd8a16fecf5bdd418a572
refs/heads/master
2021-10-22T08:34:34.139022
2021-10-12T08:09:04
2021-10-12T08:09:04
148,959,521
0
0
null
null
null
null
UTF-8
Python
false
false
3,601
py
# -*- coding: utf-8 -*- # Define here the models for your spider middleware # # See documentation in: # https://doc.scrapy.org/en/latest/topics/spider-middleware.html from scrapy import signals class BaomihuaSpiderMiddleware(object): # Not all methods need to be defined. If a method is not defined, # scrapy acts as if the spider middleware does not modify the # passed objects. @classmethod def from_crawler(cls, crawler): # This method is used by Scrapy to create your spiders. s = cls() crawler.signals.connect(s.spider_opened, signal=signals.spider_opened) return s def process_spider_input(self, response, spider): # Called for each response that goes through the spider # middleware and into the spider. # Should return None or raise an exception. return None def process_spider_output(self, response, result, spider): # Called with the results returned from the Spider, after # it has processed the response. # Must return an iterable of Request, dict or Item objects. for i in result: yield i def process_spider_exception(self, response, exception, spider): # Called when a spider or process_spider_input() method # (from other spider middleware) raises an exception. # Should return either None or an iterable of Response, dict # or Item objects. pass def process_start_requests(self, start_requests, spider): # Called with the start requests of the spider, and works # similarly to the process_spider_output() method, except # that it doesn’t have a response associated. # Must return only requests (not items). for r in start_requests: yield r def spider_opened(self, spider): spider.logger.info('Spider opened: %s' % spider.name) class BaomihuaDownloaderMiddleware(object): # Not all methods need to be defined. If a method is not defined, # scrapy acts as if the downloader middleware does not modify the # passed objects. @classmethod def from_crawler(cls, crawler): # This method is used by Scrapy to create your spiders. s = cls() crawler.signals.connect(s.spider_opened, signal=signals.spider_opened) return s def process_request(self, request, spider): # Called for each request that goes through the downloader # middleware. # Must either: # - return None: continue processing this request # - or return a Response object # - or return a Request object # - or raise IgnoreRequest: process_exception() methods of # installed downloader middleware will be called return None def process_response(self, request, response, spider): # Called with the response returned from the downloader. # Must either; # - return a Response object # - return a Request object # - or raise IgnoreRequest return response def process_exception(self, request, exception, spider): # Called when a download handler or a process_request() # (from other downloader middleware) raises an exception. # Must either: # - return None: continue processing this exception # - return a Response object: stops process_exception() chain # - return a Request object: stops process_exception() chain pass def spider_opened(self, spider): spider.logger.info('Spider opened: %s' % spider.name)
ca4b09083eb46a4afe2e3fcc2d2303319053a314
bbe447a740929eaee1955bd9c1517cf760dd5cb9
/keygrabber/adwords/adwords_api_python_14.2.1/build/lib.linux-x86_64-2.7/adspygoogle/adwords/zsi/v200909/CampaignCriterionService_services.py
efe456bdfc5fa3c46319a37ae0a627525a085719
[ "Apache-2.0" ]
permissive
MujaahidSalie/aranciulla
f3d32e7dd68ecfca620fe4d3bf22ecb4762f5893
34197dfbdb01479f288611a0cb700e925c4e56ce
refs/heads/master
2020-09-07T02:16:25.261598
2011-11-01T21:20:46
2011-11-01T21:20:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,437
py
################################################## # CampaignCriterionService_services.py # generated by ZSI.generate.wsdl2python ################################################## from CampaignCriterionService_services_types import * import urlparse, types from ZSI.TCcompound import ComplexType, Struct from ZSI import client import ZSI # Locator class CampaignCriterionServiceLocator: CampaignCriterionServiceInterface_address = "https://adwords.google.com:443/api/adwords/cm/v200909/CampaignCriterionService" def getCampaignCriterionServiceInterfaceAddress(self): return CampaignCriterionServiceLocator.CampaignCriterionServiceInterface_address def getCampaignCriterionServiceInterface(self, url=None, **kw): return CampaignCriterionServiceSoapBindingSOAP(url or CampaignCriterionServiceLocator.CampaignCriterionServiceInterface_address, **kw) # Methods class CampaignCriterionServiceSoapBindingSOAP: def __init__(self, url, **kw): kw.setdefault("readerclass", None) kw.setdefault("writerclass", None) # no resource properties self.binding = client.Binding(url=url, **kw) # no ws-addressing # get: getCampaignCriterion def getCampaignCriterion(self, request): if isinstance(request, getCampaignCriterionRequest) is False: raise TypeError, "%s incorrect request type" % (request.__class__) kw = {} # no input wsaction self.binding.Send(None, None, request, soapaction="", **kw) # no output wsaction response = self.binding.Receive(getCampaignCriterionResponse.typecode) return response # mutate: getCampaignCriterion def mutateCampaignCriterion(self, request): if isinstance(request, mutateCampaignCriterionRequest) is False: raise TypeError, "%s incorrect request type" % (request.__class__) kw = {} # no input wsaction self.binding.Send(None, None, request, soapaction="", **kw) # no output wsaction response = self.binding.Receive(mutateCampaignCriterionResponse.typecode) return response getCampaignCriterionRequest = ns0.getCampaignCriterion_Dec().pyclass getCampaignCriterionResponse = ns0.getCampaignCriterionResponse_Dec().pyclass mutateCampaignCriterionRequest = ns0.mutateCampaignCriterion_Dec().pyclass mutateCampaignCriterionResponse = ns0.mutateCampaignCriterionResponse_Dec().pyclass
0d0a072bf4bc60c77f25558e40e4222f8ca8679c
496e05014492b4bbecf9f15c40ae416c21e27a46
/src/outpost/django/video/migrations/0009_epiphansource.py
1354f113997a6042355a8bf0539191a4f9fc69c3
[ "BSD-3-Clause", "BSD-2-Clause" ]
permissive
medunigraz/outpost_deprecated
b1ff802054c04cf989b3b660e132fa6a1c2a078c
bc88eaa3bb504d394fdf13f1131e40db27759c89
refs/heads/master
2022-01-23T15:46:34.859095
2019-05-21T08:38:11
2019-05-21T08:38:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
895
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.5 on 2017-09-08 08:05 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion import imagekit.models.fields from ...base.utils import Uuid4Upload class Migration(migrations.Migration): dependencies = [ ('video', '0008_zipstreamexport'), ] operations = [ migrations.CreateModel( name='EpiphanSource', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('number', models.PositiveSmallIntegerField()), ('preview', imagekit.models.fields.ProcessedImageField(upload_to=Uuid4Upload)), ('epiphan', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='video.Epiphan')), ], ), ]
432d2dd90f323a1682a499fc0227a6ee553ff9f0
3040a2c43eedbc6ba32e6e67efe9ab170c4f336a
/personalservices/apps.py
5edf4f9af6986ed956e0c63561988f400918ce6f
[]
no_license
leandrocl2005/minidashboard
ff6917260656a1561c60bf19c45f8cde2c491991
0ae9bf783e6fb08616d772ad5bc2f24f1c1e2740
refs/heads/main
2023-05-03T01:04:12.809159
2021-05-20T21:23:48
2021-05-20T21:23:48
369,221,649
0
1
null
null
null
null
UTF-8
Python
false
false
112
py
from django.apps import AppConfig class PersonalservicesConfig(AppConfig): name = 'personalservices'
09485a57811f74f6320ac2d4290643cdd57572c4
e96deed00dd14a1f6d1ed7825991f12ea8c6a384
/106. Construct Binary Tree from Inorder and Postor.py
65b1c9034c369dcb1878ffa66b112d2c2d6b2c93
[]
no_license
borisachen/leetcode
70b5c320abea8ddfa299b2e81f886cfeb39345c1
15e36b472a5067d17482dbd0d357336d31b35ff4
refs/heads/master
2021-01-19T17:07:46.726320
2020-11-16T04:30:52
2020-11-16T04:30:52
88,306,634
3
0
null
null
null
null
UTF-8
Python
false
false
1,059
py
106. Construct Binary Tree from Inorder and Postorder Traversal Given inorder and postorder traversal of a tree, construct the binary tree. Note: You may assume that duplicates do not exist in the tree. # Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None postorder implies the last element is the root node find that element in inorder, say its position j the elements right of j in inorder will belong to the right node the elements left of j in inorder will belong to the left node if we process the right node first, left node: right node: class Solution(object): def buildTree(self, inorder, postorder): """ :type inorder: List[int] :type postorder: List[int] :rtype: TreeNode """ if not inorder or not postorder: return None root = TreeNode(postorder.pop()) j = inorder.index(root.val) root.right = self.buildTree(inorder[j+1:], postorder) root.left = self.buildTree(inorder[:j], postorder) return root
6e22abb1ceff8ee09df97b9ab40f2f1c3fc0ff35
32bbe94e77deced5e58de97eb19e7c6126b001df
/backend/src/carts/admin/carts.py
3c0c975c778d172c9434ee052c504b97c3071014
[]
no_license
3asyPe/astudy
16d8adacc3bee9f2667c0a5f1be8228868440c6a
0643a33a294c410523738f59f95c8d205dd63dc5
refs/heads/master
2023-06-25T11:23:39.500361
2021-07-28T13:33:48
2021-07-28T13:33:48
336,819,306
0
0
null
null
null
null
UTF-8
Python
false
false
593
py
from django.contrib import admin from app.admin import UserFilter from carts.models import Cart @admin.register(Cart) class CartAdmin(admin.ModelAdmin): list_display = [ 'id', 'user', 'total', 'active', ] list_display_links = [ 'id', 'user', 'total', 'active' ] fields = [ "user", "courses", "subtotal", "total", "active", ] readonly_fields = [ "subtotal", "total", ] list_filter = [ 'active', UserFilter ]
ab7072e29c1fc3f1e960114459f71b5d0e4b47c7
e23a4f57ce5474d468258e5e63b9e23fb6011188
/095_os_and_sys/examples/nuke/path.py
d2c4af2cb8323f944b77ddabab9ee7ba30329f67
[]
no_license
syurskyi/Python_Topics
52851ecce000cb751a3b986408efe32f0b4c0835
be331826b490b73f0a176e6abed86ef68ff2dd2b
refs/heads/master
2023-06-08T19:29:16.214395
2023-05-29T17:09:11
2023-05-29T17:09:11
220,583,118
3
2
null
2023-02-16T03:08:10
2019-11-09T02:58:47
Python
UTF-8
Python
false
false
16,611
py
# path.py #acl All:read #format PYTHON # -*- coding: iso-8859-1 -*- """ path.py - An object representing a path to a file or directory. Example: from path import path d = path('/home/guido/bin') for f in d.files('*.py'): f.chmod(0755) This module requires Python 2.2 or later. URL: http://www.jorendorff.com/articles/python/path Author: Jason Orendorff <[email protected]> (and others - see the url!) Date: 7 Mar 2004 Adapted for stdlib by: Reinhold Birkenfeld, July 2005 Modified by Bjorn Lindqvist <[email protected]>, January 2006 """ # TODO # - Better error message in listdir() when self isn't a # directory. (On Windows, the error message really sucks.) # - Make sure everything has a good docstring. # - Add methods for regex find and replace. # - Perhaps support arguments to touch(). # - Could add split() and join() methods that generate warnings. # - Note: __add__() technically has a bug, I think, where # it doesn't play nice with other types that implement # __radd__(). Test this. from snitcher import snitch snitch() import fnmatch import glob import os import shutil import sys __all__ = ['path'] __version__ = '2.0.4' # Universal newline support _textmode = 'r' if hasattr(file, 'newlines'): _textmode = 'U' # Use unicode strings if possible _base = str if os.path.supports_unicode_filenames: _base = unicode class path(_base): """ Represents a filesystem path. For documentation on individual methods, consult their counterparts in os.path. """ # --- Special Python methods. def __new__(typ, *args): """ Creates a new path object concatenating the *args. *args may only contain Path objects or strings. If *args is empty, Path(os.curdir) is created. """ if not args: return typ(os.curdir) for arg in args: if not isinstance(arg, basestring): raise ValueError("%s() arguments must be Path, str or " "unicode" % typ.__name__) if len(args) == 1: return _base.__new__(typ, *args) return typ(os.path.join(*args)) def __repr__(self): return '%s(%r)' % (self.__class__.__name__, _base(self)) # Adding a path and a string yields a path. def __add__(self, more): return self.__class__(_base(self) + more) def __radd__(self, other): return self.__class__(other + _base(self)) @classmethod def cwd(cls): """ Return the current working directory as a path object. """ return path(os.getcwd()) # --- Operations on path strings. def abspath(self): return self.__class__(os.path.abspath(self)) def normcase(self): return self.__class__(os.path.normcase(self)) def normpath(self): return self.__class__(os.path.normpath(self)) def realpath(self): return self.__class__(os.path.realpath(self)) def expanduser(self): return self.__class__(os.path.expanduser(self)) def expandvars(self): return self.__class__(os.path.expandvars(self)) def expand(self): """ Clean up a filename by calling expandvars(), expanduser(), and normpath() on it. This is commonly everything needed to clean up a filename read from a configuration file, for example. """ return self.expandvars().expanduser().normpath() def _get_namebase(self): base, ext = os.path.splitext(self.name) return base def _get_ext(self): f, ext = os.path.splitext(_base(self)) return ext def _get_drive(self): drive, r = os.path.splitdrive(self) return self.__class__(drive) def _get_dirname(self): return self.__class__(os.path.dirname(self)) parent = property( _get_dirname, None, None, """ This path's parent directory, as a new path object. For example, path('/usr/local/lib/libpython.so').parent == path('/usr/local/lib') """) name = property( os.path.basename, None, None, """ The name of this file or directory without the full path. For example, path('/usr/local/lib/libpython.so').name == 'libpython.so' """) namebase = property( _get_namebase, None, None, """ The same as path.name, but with one file extension stripped off. For example, path('/home/guido/python.tar.gz').name == 'python.tar.gz', but path('/home/guido/python.tar.gz').namebase == 'python.tar' """) ext = property( _get_ext, None, None, """ The file extension, for example '.py'. """) drive = property( _get_drive, None, None, """ The drive specifier, for example 'C:'. This is always empty on systems that don't use drive specifiers. """) def splitpath(self): """ p.splitpath() -> Return (p.parent, p.name). """ parent, child = os.path.split(self) return self.__class__(parent), child def stripext(self): """ p.stripext() -> Remove one file extension from the path. For example, path('/home/guido/python.tar.gz').stripext() returns path('/home/guido/python.tar'). """ return path(os.path.splitext(self)[0]) if hasattr(os.path, 'splitunc'): def splitunc(self): unc, rest = os.path.splitunc(self) return self.__class__(unc), rest def _get_uncshare(self): unc, r = os.path.splitunc(self) return self.__class__(unc) uncshare = property( _get_uncshare, None, None, """ The UNC mount point for this path. This is empty for paths on local drives. """) def splitall(self): """ Return a list of the path components in this path. The first item in the list will be a path. Its value will be either os.curdir, os.pardir, empty, or the root directory of this path (for example, '/' or 'C:\\'). The other items in the list will be strings. path.path(*result) will yield the original path. """ parts = [] loc = self while loc != os.curdir and loc != os.pardir: prev = loc loc, child = prev.splitpath() loc = self.__class__(loc) if loc == prev: break parts.append(child) parts.append(loc) parts.reverse() return parts def relpath(self): """ Return this path as a relative path, based from the current working directory. """ return self.__class__.cwd().relpathto(self) def relpathto(self, dest): """ Return a relative path from self to dest. If there is no relative path from self to dest, for example if they reside on different drives in Windows, then this returns dest.abspath(). """ origin = self.abspath() dest = self.__class__(dest).abspath() orig_list = origin.normcase().splitall() # Don't normcase dest! We want to preserve the case. dest_list = dest.splitall() if orig_list[0] != os.path.normcase(dest_list[0]): # Can't get here from there. return dest # Find the location where the two paths start to differ. i = 0 for start_seg, dest_seg in zip(orig_list, dest_list): if start_seg != os.path.normcase(dest_seg): break i += 1 # Now i is the point where the two paths diverge. # Need a certain number of "os.pardir"s to work up # from the origin to the point of divergence. segments = [os.pardir] * (len(orig_list) - i) # Need to add the diverging part of dest_list. segments += dest_list[i:] if len(segments) == 0: # If they happen to be identical, use os.curdir. return self.__class__(os.curdir) else: return self.__class__(os.path.join(*segments)) # --- Listing, searching, walking, and matching def listdir(self, pattern=None): """ D.listdir() -> List of items in this directory. Use D.files() or D.dirs() instead if you want a listing of just files or just subdirectories. The elements of the list are path objects. With the optional 'pattern' argument, this only lists items whose names match the given pattern. """ names = os.listdir(self) if pattern is not None: names = fnmatch.filter(names, pattern) return [path(self, child) for child in names] def dirs(self, pattern=None): """ D.dirs() -> List of this directory's subdirectories. The elements of the list are path objects. This does not walk recursively into subdirectories (but see path.walkdirs). With the optional 'pattern' argument, this only lists directories whose names match the given pattern. For example, d.dirs('build-*'). """ return [p for p in self.listdir(pattern) if p.isdir()] def files(self, pattern=None): """ D.files() -> List of the files in this directory. The elements of the list are path objects. This does not walk into subdirectories (see path.walkfiles). With the optional 'pattern' argument, this only lists files whose names match the given pattern. For example, d.files('*.pyc'). """ return [p for p in self.listdir(pattern) if p.isfile()] def walk(self, pattern=None): """ D.walk() -> iterator over files and subdirs, recursively. The iterator yields path objects naming each child item of this directory and its descendants. This requires that D.isdir(). This performs a depth-first traversal of the directory tree. Each directory is returned just before all its children. """ for child in self.listdir(): if pattern is None or child.match(pattern): yield child if child.isdir(): for item in child.walk(pattern): yield item def walkdirs(self, pattern=None): """ D.walkdirs() -> iterator over subdirs, recursively. With the optional 'pattern' argument, this yields only directories whose names match the given pattern. For example, mydir.walkdirs('*test') yields only directories with names ending in 'test'. """ for child in self.dirs(): if pattern is None or child.match(pattern): yield child for subsubdir in child.walkdirs(pattern): yield subsubdir def walkfiles(self, pattern=None): """ D.walkfiles() -> iterator over files in D, recursively. The optional argument, pattern, limits the results to files with names that match the pattern. For example, mydir.walkfiles('*.tmp') yields only files with the .tmp extension. """ for child in self.listdir(): if child.isfile(): if pattern is None or child.match(pattern): yield child elif child.isdir(): for f in child.walkfiles(pattern): yield f def match(self, pattern): """ Return True if self.name matches the given pattern. pattern - A filename pattern with wildcards, for example '*.py'. """ return fnmatch.fnmatch(self.name, pattern) def matchcase(self, pattern): """ Test whether the path matches pattern, returning true or false; the comparison is always case-sensitive. """ return fnmatch.fnmatchcase(self.name, pattern) def glob(self, pattern): """ Return a list of path objects that match the pattern. pattern - a path relative to this directory, with wildcards. For example, path('/users').glob('*/bin/*') returns a list of all the files users have in their bin directories. """ return map(path, glob.glob(_base(path(self, pattern)))) # --- Methods for querying the filesystem. exists = os.path.exists isabs = os.path.isabs isdir = os.path.isdir isfile = os.path.isfile islink = os.path.islink ismount = os.path.ismount if hasattr(os.path, 'samefile'): samefile = os.path.samefile def atime(self): """Last access time of the file.""" return os.path.getatime(self) def mtime(self): """Last-modified time of the file.""" return os.path.getmtime(self) def ctime(self): """ Return the system's ctime which, on some systems (like Unix) is the time of the last change, and, on others (like Windows), is the creation time for path. The return value is a number giving the number of seconds since the epoch (see the time module). Raise os.error if the file does not exist or is inaccessible. """ return os.path.getctime(self) def size(self): """Size of the file, in bytes.""" return os.path.getsize(self) if hasattr(os, 'access'): def access(self, mode): """ Return true if current user has access to this path. mode - One of the constants os.F_OK, os.R_OK, os.W_OK, os.X_OK """ return os.access(self, mode) def stat(self): """ Perform a stat() system call on this path. """ return os.stat(self) def lstat(self): """ Like path.stat(), but do not follow symbolic links. """ return os.lstat(self) if hasattr(os, 'statvfs'): def statvfs(self): """ Perform a statvfs() system call on this path. """ return os.statvfs(self) if hasattr(os, 'pathconf'): def pathconf(self, name): return os.pathconf(self, name) # --- Modifying operations on files and directories def utime(self, times): """ Set the access and modified times of this file. """ os.utime(self, times) def chmod(self, mode): os.chmod(self, mode) if hasattr(os, 'chown'): def chown(self, uid, gid): os.chown(self, uid, gid) def rename(self, new): os.rename(self, new) def renames(self, new): os.renames(self, new) # --- Create/delete operations on directories def mkdir(self, mode=0777): os.mkdir(self, mode) def makedirs(self, mode=0777): os.makedirs(self, mode) def rmdir(self): os.rmdir(self) def removedirs(self): os.removedirs(self) # --- Modifying operations on files def touch(self): """ Set the access/modified times of this file to the current time. Create the file if it does not exist. """ fd = os.open(self, os.O_WRONLY | os.O_CREAT, 0666) os.close(fd) os.utime(self, None) def remove(self): os.remove(self) def unlink(self): os.unlink(self) # --- Links if hasattr(os, 'link'): def link(self, newpath): """ Create a hard link at 'newpath', pointing to this file. """ os.link(self, newpath) if hasattr(os, 'symlink'): def symlink(self, newlink): """ Create a symbolic link at 'newlink', pointing here. """ os.symlink(self, newlink) if hasattr(os, 'readlink'): def readlink(self): """ Return the path to which this symbolic link points. The result may be an absolute or a relative path. """ return self.__class__(os.readlink(self)) def readlinkabs(self): """ Return the path to which this symbolic link points. The result is always an absolute path. """ p = self.readlink() if p.isabs(): return p else: return self.__class__(self.parent, p).abspath() # --- High-level functions from shutil copyfile = shutil.copyfile copymode = shutil.copymode copystat = shutil.copystat copy = shutil.copy copy2 = shutil.copy2 copytree = shutil.copytree if hasattr(shutil, 'move'): move = shutil.move rmtree = shutil.rmtree # --- Special stuff from os if hasattr(os, 'chroot'): def chroot(self): os.chroot(self)
808ad659be53616086cf7608e29444f522b05378
b723ecb64c86657751cafd21030de2b3c64886f7
/unchained/community/teacher/views.py
85d8abe0ce48b865972359f11ec8b82f08ac1969
[]
no_license
mohinderps/community
56dffc11d56d704e8c8c6b1e052741da2eb6d1ce
1d4b5aa357d41c2e75768f359118103a58da43e1
refs/heads/master
2020-04-01T07:27:24.744768
2018-10-14T15:45:04
2018-10-14T15:45:04
152,990,736
0
0
null
2018-10-14T15:47:23
2018-10-14T15:47:23
null
UTF-8
Python
false
false
2,818
py
from django.shortcuts import render from rest_framework import generics from rest_framework import mixins from django.contrib.auth.models import User from rest_framework import permissions from rest_framework.decorators import api_view from rest_framework.response import Response from rest_framework.reverse import reverse from rest_framework import renderers from rest_framework import viewsets # Create your views here. from rest_framework.decorators import action from rest_framework.response import Response from community.csrfsession import CsrfExemptSessionAuthentication from .serializers import TeacherSerializer from .models import Teacher from rest_framework.exceptions import PermissionDenied from community.permissions import isInstitutionAdmin, getUserInstitution, belongsToInstitution, canUpdateProfile from community.filters import applyUserFilters class TeacherViewSet(viewsets.ModelViewSet): """ This viewset automatically provides `list`, `create`, `retrieve`, `update` and `destroy` actions. Additionally we also provide an extra `highlight` action. """ queryset = Teacher.objects.all() serializer_class = TeacherSerializer permission_classes = (permissions.IsAuthenticatedOrReadOnly, ) authentication_classes = (CsrfExemptSessionAuthentication, ) def list(self, request, *args, **kwargs): if not belongsToInstitution(request, getUserInstitution(request)): raise PermissionDenied(detail='User does not belong to the institution', code=None) if request.user.is_superuser: self.queryset = applyUserFilters(request, Teacher) else: self.queryset = applyUserFilters(request, Teacher, institution=getUserInstitution(request)) return super(TeacherViewSet, self).list(request, *args, **kwargs) def create(self, request, *args, **kwargs): if not isInstitutionAdmin(request, getUserInstitution(request)): raise PermissionDenied(detail='User is not an admin_user', code=None) return super(TeacherViewSet, self).create(request, *args, **kwargs) def retrieve(self, request, *args, **kwargs): if not belongsToInstitution(request, self.get_object().institution): raise PermissionDenied(detail='User does not belong to the institution', code=None) return super(TeacherViewSet, self).retrieve(request, *args, **kwargs) def update(self, request, *args, **kwargs): if not canUpdateProfile(request, self.get_object().institution, self.get_object()): raise PermissionDenied(detail='User can not update other profiles', code=None) return super(TeacherViewSet, self).update(request, *args, **kwargs) def destroy(self, request, *args, **kwargs): if not isInstitutionAdmin(request, self.get_object().institution): raise PermissionDenied(detail='User is not an admin_user', code=None) return super(TeacherViewSet, self).destroy(request, *args, **kwargs)
1541e195b8051b431436d8b87ef862ecd8ed011e
8d593cdc89bac4a993f776c9b11b9339f035744b
/PHYS613 A2 Exercise2.14 SquareWell.py
593a104bcfb57c763726d4aa6407b37e28574582
[]
no_license
Global19-atlassian-net/ComputationalPhysics
21026c748801d07324620ca02dbc56b9a55a0abd
9c50c302706c5015b588ac12980c5f96a414575f
refs/heads/master
2021-05-30T00:50:58.746447
2015-11-27T15:31:20
2015-11-27T15:31:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,512
py
""" Created on Fri Sep 06 21:03:27 2013 PHYS 613, Assignment 2 Nick Crump """ # Exercise 2.13 # Exercise 2.14 """ From Computational Physics by Devries """ from math import sin,cos,exp,sqrt import numpy as np import matplotlib.pyplot as plt # define function - even state solutions of 1D finite square well potential #*********************************************************************** def evenFunc(a,m,V0,E): hbarSq = 0.076199682 # eV(nm**2)(Melectron) alpha = (2.0*m*E/hbarSq)**0.5 beta = ((2.0*m*(V0-E))/hbarSq)**0.5 fEven = beta*cos(alpha*a) - alpha*sin(alpha*a) return fEven #*********************************************************************** # define function - odd state solutions of 1D finite square well potential #*********************************************************************** def oddFunc(a,m,V0,E): hbarSq = 0.076199682 # eV(nm**2)(Melectron) alpha = (2.0*m*E/hbarSq)**0.5 beta = ((2.0*m*(V0-E))/hbarSq)**0.5 fOdd = alpha*cos(alpha*a) + beta*sin(alpha*a) return fOdd #*********************************************************************** # enter root finding algorithm by Bisection method #*********************************************************************** def rootBisection(f, xI, xF, Tol, nMax): # initialize variables error = 1 n = 1 xiMid = 0 # initial midpoint value to store the n-1 value # loop until error is less than input tolerance while error > Tol: xMid = 0.5*(xI+xF) # set up main Bisection method: # make bracket interval smaller each iteration until root is found # check conditions and update bracket points if f(xI)*f(xMid) > 0: xI = xMid error = abs(xMid - xiMid) # calculate approx error n = n + 1 xiMid = xMid # store the n-1 midpoint elif f(xI)*f(xMid) < 0: xF = xMid error = abs(xMid - xiMid) # calculate approx error n = n + 1 xiMid = xMid # store the n-1 midpoint # output results to user return round(xMid,5) # end rootBisection function #*********************************************************************** # main program that calls functions, finds roots and does plotting #*********************************************************************** # setup root finder routine #-------------------------- a = 0.3 # nm m = 1.0 # Melectron V0 = 10.0 # eV hbarSq = 0.076199682 # eV(nm**2)(Melectron) sfEven = lambda E: ((2.0*m*(V0-E)/hbarSq)**0.5)*cos(((2.0*m*E/hbarSq)**0.5)*a) - ((2.0*m*E/hbarSq)**0.5)*sin(((2.0*m*E/hbarSq)**0.5)*a) sfOdd = lambda E: ((2.0*m*E/hbarSq)**0.5)*cos(((2.0*m*E/hbarSq)**0.5)*a) + ((2.0*m*(V0-E)/hbarSq)**0.5)*sin(((2.0*m*E/hbarSq)**0.5)*a) Eeven = rootBisection(sfEven, 0, 2.0, 10e-5, 30) Eodd = rootBisection(sfOdd, 2.0, 4.0, 10e-5, 30) print 'Eigenvalues = ', Eeven, Eodd # setup plotting of allowed energy equation as function of energy #-------------------------- E = np.arange(0,10.1,0.1) evenF = [] oddF = [] for i in E: fEven = evenFunc(0.3,1.0,10.0,i) fOdd = oddFunc(0.3,1.0,10.0,i) evenF.append(fEven) oddF.append(fOdd) plt.figure(1) plt.plot(E,evenF,'b',label='Even States') plt.plot(E,oddF,'r',label='Odd States') plt.plot(Eeven,0,'bo',Eodd,0,'ro') plt.xlabel('Energy (eV)') plt.ylabel('$f\ (E)$') plt.legend(loc=9) # setup wavefunction plotting as function of distance & plot potential well #-------------------------- # x arrays for regions around well R1 = np.arange(-0.6,-0.29,0.01) # region 1 left of well R2 = np.arange(-0.3,0.301,0.01) # region 2 inside well R3 = np.arange(0.3,0.601,0.01) # region 3 right of well # alpha & beta values for even states alphEven = sqrt(2*m*Eeven/hbarSq) betaEven = sqrt(2*m*(V0-Eeven)/hbarSq) # even state wavefunctions for 3 regions (arbitrary normalization coefficients) # wavefunctions shifted to make energy eigenvalues the zero baseline psiR1even = [30*exp(betaEven*i)+Eeven for i in R1] psiR2even = [cos(alphEven*i)+Eeven for i in R2] psiR3even = [30*exp(-betaEven*i)+Eeven for i in R3] # alpha & beta values for odd states alphOdd = sqrt(2*m*Eodd/hbarSq) betaOdd = sqrt(2*m*(V0-Eodd)/hbarSq) # odd state wavefunctions for 3 regions (arbitrary normalization coefficients) # wavefunctions shifted to make energy eigenvalues the zero baseline psiR1odd = [-30*exp(betaOdd*i)+Eodd for i in R1] psiR2odd = [sin(alphOdd*i)+Eodd for i in R2] psiR3odd = [30*exp(-betaOdd*i)+Eodd for i in R3] plt.figure(2) # plot lines for potential V(x) plt.plot([-0.6,-0.3],[10,10],'k',linewidth='4') plt.plot([-0.3,-0.3],[10,0],'k',linewidth='4') plt.plot([-0.3,0.3],[0,0], 'k',linewidth='4') plt.plot([0.3,0.3], [0,10], 'k',linewidth='4') plt.plot([0.3,0.6],[10,10], 'k',linewidth='4') plt.xticks([-0.6,-0.4,-0.2,0,0.2,0.4,0.6]) plt.annotate('$V_0$',fontsize=16,xy=(0.23,0.82),xycoords='figure fraction') # plot lines for energy eigenvalues plt.plot([-0.6,0.6],[Eeven,Eeven],'g',linewidth='2',linestyle='--') plt.plot([-0.6,0.6],[Eodd,Eodd],'g',linewidth='2',linestyle='--') plt.annotate('Ground State Energies',fontsize=12,xy=(0.39,0.27),xycoords='figure fraction') plt.annotate('$E_{even}=0.71545$',fontsize=12,xy=(0.75,0.20),xycoords='figure fraction') plt.annotate('$E_{odd}=2.82139$',fontsize=12,xy=(0.755,0.40),xycoords='figure fraction') # plot wavefunctions for each ground state energy plt.plot(R1,psiR1even,'b',label='$\psi_{even}\ ({x})$') plt.plot(R2,psiR2even,'b') plt.plot(R3,psiR3even,'b') plt.plot(R1,psiR1odd,'r',label='$\psi_{odd}\ ({x})$') plt.plot(R2,psiR2odd,'r') plt.plot(R3,psiR3odd,'r') plt.annotate(r'$\psi_{1}=C\ \exp({\beta x})$',fontsize=12,xy=(0.15,0.625),xycoords='figure fraction') plt.annotate(r'$\psi_{2odd}=A\ \sin({\alpha x})$',fontsize=12,xy=(0.42,0.65),xycoords='figure fraction') plt.annotate(r'$\psi_{2even}=B\ \cos({\alpha x})$',fontsize=12,xy=(0.42,0.60),xycoords='figure fraction') plt.annotate(r'$\psi_{3}=F\ \exp({-\beta x})$',fontsize=12,xy=(0.73,0.625),xycoords='figure fraction') plt.yticks(range(-2,14,2)) # set titles plt.xlabel('Distance (nm)') plt.ylabel('Ground State Wavefunctions') plt.legend(loc=9) #***********************************************************************
90a3c28ab285b4ec923d578de72c4b25d4bf8d2b
0329e8b521fc14aaa8fda785e93e45c0e9ac7026
/seleniumbase/console_scripts/run.py
75618875a0f52b767f5be079a50b4f252ae14d64
[ "MIT" ]
permissive
devopstoday11/SeleniumBase
e89a6dbb6085a568e8dc24240a731c1c6cd4c1ee
3bfa7ed196b5d7724848981ce56b81ec64b8653c
refs/heads/master
2022-12-31T12:31:27.572589
2020-10-11T22:53:54
2020-10-11T22:53:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
31,318
py
""" SeleniumBase console scripts runner Usage: seleniumbase [COMMAND] [PARAMETERS] OR sbase [COMMAND] [PARAMETERS] Examples: sbase install chromedriver sbase mkdir ui_tests sbase mkfile new_test.py sbase options sbase convert webdriver_unittest_file.py sbase print my_first_test.py -n sbase translate my_first_test.py --zh -p sbase extract-objects my_first_test.py sbase inject-objects my_first_test.py sbase objectify my_first_test.py sbase revert-objects my_first_test.py sbase encrypt sbase decrypt sbase download server sbase grid-hub start sbase grid-node start --hub=127.0.0.1 """ import colorama import sys colorama.init(autoreset=True) def show_usage(): show_basic_usage() sc = ("") sc += (' Type "sbase help [COMMAND]" for specific command info.\n') sc += (' For info on all commands, type: "seleniumbase --help".\n') sc += (' * (Use "pytest" for running tests) *\n') if "linux" not in sys.platform: c1 = colorama.Fore.BLUE + colorama.Back.LIGHTCYAN_EX c2 = colorama.Fore.BLUE + colorama.Back.LIGHTGREEN_EX c3 = colorama.Fore.BLUE + colorama.Back.LIGHTYELLOW_EX c4 = colorama.Fore.MAGENTA + colorama.Back.LIGHTYELLOW_EX cr = colorama.Style.RESET_ALL sc = sc.replace("seleniumbase", c1 + "selenium" + c2 + "base" + cr) sc = sc.replace("sbase", c1 + "s" + c2 + "base" + cr) sc = sc.replace("pytest", c3 + "pytest" + cr) sc = sc.replace("--help", c4 + "--help" + cr) sc = sc.replace("help", c4 + "help" + cr) print(sc) def show_basic_usage(): from seleniumbase.console_scripts import logo_helper seleniumbase_logo = logo_helper.get_seleniumbase_logo() print(seleniumbase_logo) print("%s" % get_version()[0:1]) print("") sc = ("") sc += (' * USAGE: "seleniumbase [COMMAND] [PARAMETERS]"\n') sc += (' * OR: "sbase [COMMAND] [PARAMETERS]"\n') sc += ("\n") sc += ("COMMANDS:\n") sc += (" install [DRIVER] [OPTIONS]\n") sc += (" mkdir [DIRECTORY]\n") sc += (" mkfile [FILE.py]\n") sc += (" options (List common pytest options)\n") sc += (" print [FILE] [OPTIONS]\n") sc += (" translate [SB_FILE.py] [LANG] [ACTION]\n") sc += (" convert [WEBDRIVER_UNITTEST_FILE.py]\n") sc += (" extract-objects [SB_FILE.py]\n") sc += (" inject-objects [SB_FILE.py] [OPTIONS]\n") sc += (" objectify [SB_FILE.py] [OPTIONS]\n") sc += (" revert-objects [SB_FILE.py]\n") sc += (" encrypt (OR: obfuscate)\n") sc += (" decrypt (OR: unobfuscate)\n") sc += (" download server (Selenium Server JAR file)\n") sc += (" grid-hub [start|stop] [OPTIONS]\n") sc += (" grid-node [start|stop] --hub=[HOST/IP]\n") sc += (' * (EXAMPLE: "sbase install chromedriver latest") *\n') sc += ("") if "linux" not in sys.platform: c1 = colorama.Fore.BLUE + colorama.Back.LIGHTCYAN_EX c2 = colorama.Fore.BLUE + colorama.Back.LIGHTGREEN_EX cr = colorama.Style.RESET_ALL sc = sc.replace("seleniumbase", c1 + "selenium" + c2 + "base" + cr) sc = sc.replace("sbase", c1 + "s" + c2 + "base" + cr) print(sc) def show_install_usage(): c2 = colorama.Fore.BLUE + colorama.Back.LIGHTGREEN_EX c3 = colorama.Fore.BLUE + colorama.Back.LIGHTYELLOW_EX cr = colorama.Style.RESET_ALL sc = (" " + c2 + "** " + c3 + "install" + c2 + " **" + cr) print(sc) print("") print(" Usage:") print(" seleniumbase install [DRIVER_NAME] [OPTIONS]") print(" OR: sbase install [DRIVER_NAME] [OPTIONS]") print(" (Drivers: chromedriver, geckodriver, edgedriver") print(" iedriver, operadriver)") print(" Options:") print(" VERSION Specify the version.") print(" (Default Chromedriver version = 2.44)") print(' Use "latest" for the latest version.') print(" -p OR --path Also copy the driver to /usr/local/bin") print(" Example:") print(" sbase install chromedriver") print(" sbase install geckodriver") print(" sbase install edgedriver") print(" sbase install chromedriver 85") print(" sbase install chromedriver 85.0.4183.87") print(" sbase install chromedriver latest") print(" sbase install chromedriver -p") print(" sbase install chromedriver latest -p") print(" sbase install edgedriver 85.0.564.68") print(" Output:") print(" Installs the chosen webdriver to seleniumbase/drivers/") print(" (chromedriver is required for Chrome automation)") print(" (geckodriver is required for Firefox automation)") print(" (edgedriver is required for Microsoft Edge automation)") print(" (iedriver is required for InternetExplorer automation)") print(" (operadriver is required for Opera Browser automation)") print("") def show_mkdir_usage(): c2 = colorama.Fore.BLUE + colorama.Back.LIGHTGREEN_EX c3 = colorama.Fore.BLUE + colorama.Back.LIGHTYELLOW_EX cr = colorama.Style.RESET_ALL sc = (" " + c2 + "** " + c3 + "mkdir" + c2 + " **" + cr) print(sc) print("") print(" Usage:") print(" seleniumbase mkdir [DIRECTORY_NAME]") print(" OR: sbase mkdir [DIRECTORY_NAME]") print(" Example:") print(" sbase mkdir browser_tests") print(" Output:") print(" Creates a new folder for running SBase scripts.") print(" The new folder contains default config files,") print(" sample tests for helping new users get started,") print(" and Python boilerplates for setting up customized") print(" test frameworks.") print("") def show_mkfile_usage(): c2 = colorama.Fore.BLUE + colorama.Back.LIGHTGREEN_EX c3 = colorama.Fore.BLUE + colorama.Back.LIGHTYELLOW_EX cr = colorama.Style.RESET_ALL sc = (" " + c2 + "** " + c3 + "mkfile" + c2 + " **" + cr) print(sc) print("") print(" Usage:") print(" seleniumbase mkfile [FILE.py]") print(" OR: sbase mkfile [FILE.py]") print(" Example:") print(" sbase mkfile new_test.py") print(" Options:") print(" -b / --basic (Basic boilerplate / single-line test)") print(" Language Options:") print(" --en / --English | --zh / --Chinese") print(" --nl / --Dutch | --fr / --French") print(" --it / --Italian | --ja / --Japanese") print(" --ko / --Korean | --pt / --Portuguese") print(" --ru / --Russian | --es / --Spanish") print(" Output:") print(" Creates a new SBase test file with boilerplate code.") print(" If the file already exists, an error is raised.") print(" By default, uses English mode and creates a") print(" boilerplate with the 5 most common SeleniumBase") print(' methods, which are "open", "type", "click",') print(' "assert_element", and "assert_text". If using the') print(' basic boilerplate option, only the "open" method') print(' is included.') print("") def show_convert_usage(): c2 = colorama.Fore.BLUE + colorama.Back.LIGHTGREEN_EX c3 = colorama.Fore.BLUE + colorama.Back.LIGHTYELLOW_EX cr = colorama.Style.RESET_ALL sc = (" " + c2 + "** " + c3 + "convert" + c2 + " **" + cr) print(sc) print("") print(" Usage:") print(" seleniumbase convert [WEBDRIVER_UNITTEST_FILE.py]") print(" OR: sbase convert [WEBDRIVER_UNITTEST_FILE.py]") print(" Output:") print(" Converts a Selenium IDE exported WebDriver unittest") print(" file into a SeleniumBase file. Adds _SB to the new") print(" file name while keeping the original file intact.") print(" Works with Katalon Recorder scripts.") print(" See: http://www.katalon.com/automation-recorder") print("") def show_print_usage(): c2 = colorama.Fore.BLUE + colorama.Back.LIGHTGREEN_EX c3 = colorama.Fore.BLUE + colorama.Back.LIGHTYELLOW_EX cr = colorama.Style.RESET_ALL sc = (" " + c2 + "** " + c3 + "print" + c2 + " **" + cr) print(sc) print("") print(" Usage:") print(" seleniumbase print [FILE] [OPTIONS]") print(" OR: sbase print [FILE] [OPTIONS]") print(" Options:") print(" -n (Add line Numbers to the rows)") print(" Output:") print(" Prints the code/text of any file") print(" with syntax-highlighting.") print("") def show_translate_usage(): c2 = colorama.Fore.BLUE + colorama.Back.LIGHTGREEN_EX c3 = colorama.Fore.BLUE + colorama.Back.LIGHTYELLOW_EX cr = colorama.Style.RESET_ALL sc = (" " + c2 + "** " + c3 + "translate" + c2 + " **" + cr) print(sc) print("") print(" Usage:") print(" seleniumbase translate [SB_FILE.py] [LANGUAGE] [ACTION]") print(" OR: sbase translate [SB_FILE.py] [LANGUAGE] [ACTION]") print(" Languages:") print(" --en / --English | --zh / --Chinese") print(" --nl / --Dutch | --fr / --French") print(" --it / --Italian | --ja / --Japanese") print(" --ko / --Korean | --pt / --Portuguese") print(" --ru / --Russian | --es / --Spanish") print(" Actions:") print(" -p / --print (Print translation output to the screen)") print(" -o / --overwrite (Overwrite the file being translated)") print(" -c / --copy (Copy the translation to a new .py file)") print(" Options:") print(" -n (include line Numbers when using the Print action)") print(" Output:") print(" Translates a SeleniumBase Python file into the language") print(' specified. Method calls and "import" lines get swapped.') print(" Both a language and an action must be specified.") print(' The "-p" action can be paired with one other action.') print(' When running with "-c" (or "--copy"), the new file name') print(' will be the orginal name appended with an underscore') print(" plus the 2-letter language code of the new language.") print(' (Example: Translating "test_1.py" into Japanese with') print(' "-c" will create a new file called "test_1_ja.py".)') print("") def show_extract_objects_usage(): c2 = colorama.Fore.BLUE + colorama.Back.LIGHTGREEN_EX c3 = colorama.Fore.BLUE + colorama.Back.LIGHTYELLOW_EX cr = colorama.Style.RESET_ALL sc = (" " + c2 + "** " + c3 + "extract-objects" + c2 + " **" + cr) print(sc) print("") print(" Usage:") print(" seleniumbase extract-objects [SB_FILE.py]") print(" OR: sbase extract-objects [SB_FILE.py]") print(" Output:") print(" Creates page objects based on selectors found in a") print(" seleniumbase Python file and saves those objects to the") print(' "page_objects.py" file in the same folder as the tests.') print("") def show_inject_objects_usage(): c2 = colorama.Fore.BLUE + colorama.Back.LIGHTGREEN_EX c3 = colorama.Fore.BLUE + colorama.Back.LIGHTYELLOW_EX cr = colorama.Style.RESET_ALL sc = (" " + c2 + "** " + c3 + "inject-objects" + c2 + " **" + cr) print(sc) print("") print(" Usage:") print(" seleniumbase inject-objects [SB_FILE.py]") print(" OR: sbase inject-objects [SB_FILE.py]") print(" Options:") print(" -c, --comments (Add object selectors to the comments.)") print(" (Default: No added comments.)") print(" Output:") print(' Takes the page objects found in the "page_objects.py"') print(' file and uses those to replace matching selectors in') print(' the selected seleniumbase Python file.') print("") def show_objectify_usage(): c2 = colorama.Fore.BLUE + colorama.Back.LIGHTGREEN_EX c3 = colorama.Fore.BLUE + colorama.Back.LIGHTYELLOW_EX cr = colorama.Style.RESET_ALL sc = (" " + c2 + "** " + c3 + "objectify" + c2 + " **" + cr) print(sc) print("") print(" Usage:") print(" seleniumbase objectify [SB_FILE.py]") print(" OR: sbase objectify [SB_FILE.py]") print(" Options:") print(" -c, --comments (Add object selectors to the comments.)") print(" (Default: No added comments.)") print(" Output:") print(' A modified version of the file where the selectors') print(' have been replaced with variable names defined in') print(' "page_objects.py", supporting the Page Object Pattern.') print("") print(' (seleniumbase "objectify" has the same outcome as') print(' combining "extract-objects" with "inject-objects")') print("") def show_revert_objects_usage(): c2 = colorama.Fore.BLUE + colorama.Back.LIGHTGREEN_EX c3 = colorama.Fore.BLUE + colorama.Back.LIGHTYELLOW_EX cr = colorama.Style.RESET_ALL sc = (" " + c2 + "** " + c3 + "revert-objects" + c2 + " **" + cr) print(sc) print("") print(" Usage:") print(" seleniumbase revert-objects [SB_FILE.py]") print(" OR: sbase revert-objects [SB_FILE.py]") print(" Options:") print(" -c, --comments (Keep existing comments for the lines.)") print(" (Default: No comments are kept.)") print(" Output:") print(' Reverts the changes made by "seleniumbase objectify" or') print(' "seleniumbase inject-objects" when run against a') print(' seleniumbase Python file. Objects will get replaced by') print(' selectors stored in the "page_objects.py" file.') print("") def show_encrypt_usage(): c2 = colorama.Fore.BLUE + colorama.Back.LIGHTGREEN_EX c3 = colorama.Fore.BLUE + colorama.Back.LIGHTYELLOW_EX cr = colorama.Style.RESET_ALL sc = (" " + c2 + "** " + c3 + "encrypt OR obfuscate" + c2 + " **" + cr) print(sc) print("") print(" Usage:") print(" seleniumbase encrypt || seleniumbase obfuscate") print(" --OR--") print(" sbase encrypt || sbase obfuscate") print(" Output:") print(" Runs the password encryption/obfuscation tool.") print(" (Where you can enter a password to encrypt/obfuscate.)") print("") def show_decrypt_usage(): c2 = colorama.Fore.BLUE + colorama.Back.LIGHTGREEN_EX c3 = colorama.Fore.BLUE + colorama.Back.LIGHTYELLOW_EX cr = colorama.Style.RESET_ALL sc = (" " + c2 + "** " + c3 + "decrypt OR unobfuscate" + c2 + " **" + cr) print(sc) print("") print(" Usage:") print(" seleniumbase decrypt || seleniumbase unobfuscate") print(" --OR--") print(" sbase decrypt || sbase unobfuscate") print(" Output:") print(" Runs the password decryption/unobfuscation tool.") print(" (Where you can enter an encrypted password to decrypt.)") print("") def show_download_usage(): c2 = colorama.Fore.BLUE + colorama.Back.LIGHTGREEN_EX c3 = colorama.Fore.BLUE + colorama.Back.LIGHTYELLOW_EX cr = colorama.Style.RESET_ALL sc = (" " + c2 + "** " + c3 + "download" + c2 + " **" + cr) print(sc) print("") print(" Usage:") print(" seleniumbase download server") print(" OR: sbase download server") print(" Output:") print(" Downloads the Selenium Standalone Server.") print(" (Server is required for using your own Selenium Grid.)") print("") def show_grid_hub_usage(): c2 = colorama.Fore.BLUE + colorama.Back.LIGHTGREEN_EX c3 = colorama.Fore.BLUE + colorama.Back.LIGHTYELLOW_EX cr = colorama.Style.RESET_ALL sc = (" " + c2 + "** " + c3 + "grid-hub" + c2 + " **" + cr) print(sc) print("") print(" Usage:") print(" seleniumbase grid-hub {start|stop|restart} [OPTIONS]") print(" OR: sbase grid-hub {start|stop|restart} [OPTIONS]") print(" Options:") print(" -v, --verbose (Increase verbosity of logging output.)") print(" (Default: Quiet logging / not verbose.)") print(" --timeout=TIMEOUT (Close idle browser after TIMEOUT.)") print(" (The default TIMEOUT: 230 seconds.)") print(" (Use --timeout=0 to skip timeouts.)") print(" Example:") print(" seleniumbase grid-hub start") print(" Output:") print(" Controls the Selenium Grid Hub Server, which allows") print(" for running tests on multiple machines in parallel") print(" to speed up test runs and reduce the total time") print(" of test suite execution.") print(' You can "start" or "stop" the Grid Hub server.') print("") def show_grid_node_usage(): c2 = colorama.Fore.BLUE + colorama.Back.LIGHTGREEN_EX c3 = colorama.Fore.BLUE + colorama.Back.LIGHTYELLOW_EX cr = colorama.Style.RESET_ALL sc = (" " + c2 + "** " + c3 + "grid-node" + c2 + " **" + cr) print(sc) print("") print(" Usage:") print(" seleniumbase grid-node {start|stop|restart} [OPTIONS]") print(" OR: sbase grid-node {start|stop|restart} [OPTIONS]") print(" Options:") print(" --hub=[HOST/IP] (The Grid Hub Hostname / IP Address.)") print(" (Default: 127.0.0.1 if not set.)") print(" -v, --verbose (Increase verbosity of logging output.)") print(" (Default: Quiet logging / Not verbose.)") print(" Example:") print(" seleniumbase grid-node start --hub=127.0.0.1") print(" Output:") print(" Controls the Selenium Grid node, which serves as a") print(" worker machine for your Selenium Grid Hub server.") print(' You can "start" or "stop" the Grid node.') print("") def get_version(): import pkg_resources version_info = None try: version_info = pkg_resources.require("seleniumbase")[0:1] except Exception: version_info = ["ERROR: Cannot detect version! Please reinstall!"] return version_info def show_version_info(): version = get_version() print('\n%s\n' % version) def show_options(): c1 = colorama.Fore.BLUE + colorama.Back.LIGHTCYAN_EX c2 = colorama.Fore.BLUE + colorama.Back.LIGHTGREEN_EX c3 = colorama.Fore.BLUE + colorama.Back.LIGHTYELLOW_EX cr = colorama.Style.RESET_ALL sc = ("\n " + c2 + " ** " + c3 + " pytest CLI Options " + c2 + " ** " + cr) print(sc) print("") line = "Here are some common pytest options to use with SeleniumBase:" line = c1 + line + cr print(line) print("") print('--browser=BROWSER (The web browser to use. Default: "chrome".)') print('--headless (Run tests headlessly. Default mode on Linux OS.)') print('--demo (Slow down and visually see test actions as they occur.)') print('--slow (Slow down the automation. Faster than using Demo Mode.)') print('--reuse-session / --rs (Reuse the browser session between tests.)') print('--crumbs (Delete all cookies between tests reusing a session.)') print('--maximize (Start tests with the web browser window maximized.)') print("--incognito (Enable Chrome's Incognito mode.)") print("--guest (Enable Chrome's Guest mode.)") print('-m MARKER (Run tests with the specified pytest marker.)') print('-n NUM (Multithread the tests using that many threads.)') print('-v (Verbose mode. Prints the full names of each test run.)') print('--html=report.html (Create a detailed pytest-html report.)') print('--collect-only / --co (Only show discovered tests. No run.)') print('--co -q (Only show full names of discovered tests. No run.)') print('--trace (Enter Debug Mode immediately after starting any test.') print(' n: Next line of method. s: Step through. c: Continue.)') print('--pdb (Enter Debug Mode if a test fails. h: Help. c: Continue.') print(' where: Stacktrace location. u: Up stack. d: Down stack.') print(' longlist / ll: See code. dir(): List namespace objects.)') print('-x (Stop running the tests after the first failure is reached.)') print('--archive-logs (Archive old log files instead of deleting them.)') print('--save-screenshot (Save a screenshot at the end of each test.)') print('--check-js (Check for JavaScript errors after page loads.)') print('--start-page=URL (The browser start page when tests begin.)') print("--agent=STRING (Modify the web browser's User-Agent string.)") print('--mobile (Use the mobile device emulator while running tests.)') print('--metrics=STRING (Set mobile "CSSWidth,CSSHeight,PixelRatio".)') print('--ad-block (Block some types of display ads after page loads.)') print('--settings-file=FILE (Override default SeleniumBase settings.)') print('--env=ENV (Set the test env. Access with "self.env" in tests.)') print('--data=DATA (Extra test data. Access with "self.data" in tests.)') print('--disable-csp (Disable the Content Security Policy of websites.)') print('--server=SERVER (The Selenium Grid server/IP used for tests.)') print('--port=PORT (The Selenium Grid port used by the test server.)') print('--proxy=SERVER:PORT (Connect to a proxy server:port for tests.)') print('--proxy=USER:PASS@SERVER:PORT (Use authenticated proxy server.)') print("") line = 'For the full list of ' + c2 + 'command-line options' + cr line += ', type: "' + c1 + 'pytest' + cr + ' ' + c3 + '--help' + cr + '".' print(line) print("") def show_detailed_help(): c2 = colorama.Fore.BLUE + colorama.Back.LIGHTGREEN_EX c3 = colorama.Fore.BLUE + colorama.Back.LIGHTYELLOW_EX c6 = colorama.Back.CYAN cr = colorama.Style.RESET_ALL show_basic_usage() print(c6 + " " + c2 + " Commands: " + c6 + " ") print(cr) show_install_usage() show_mkdir_usage() show_mkfile_usage() show_convert_usage() show_print_usage() show_translate_usage() show_extract_objects_usage() show_inject_objects_usage() show_objectify_usage() show_revert_objects_usage() show_encrypt_usage() show_decrypt_usage() show_download_usage() show_grid_hub_usage() show_grid_node_usage() print('* (Use "' + c3 + 'pytest' + cr + '" for running tests) *\n') def main(): command = None command_args = None num_args = len(sys.argv) if num_args == 1: show_usage() return elif num_args == 2: command = sys.argv[1] command_args = [] elif num_args > 2: command = sys.argv[1] command_args = sys.argv[2:] command = command.lower() if command == "install": if len(command_args) >= 1: from seleniumbase.console_scripts import sb_install sb_install.main() else: show_basic_usage() show_install_usage() elif command == "mkdir": if len(command_args) >= 1: from seleniumbase.console_scripts import sb_mkdir sb_mkdir.main() else: show_basic_usage() show_mkdir_usage() elif command == "mkfile": if len(command_args) >= 1: from seleniumbase.console_scripts import sb_mkfile sb_mkfile.main() else: show_basic_usage() show_mkfile_usage() elif command == "convert": if len(command_args) == 1: from seleniumbase.utilities.selenium_ide import convert_ide convert_ide.main() else: show_basic_usage() show_convert_usage() elif command == "print": if len(command_args) >= 1: if sys.version_info[0] == 2: c5 = colorama.Fore.RED + colorama.Back.LIGHTYELLOW_EX cr = colorama.Style.RESET_ALL msg = '"sbase print" does NOT support Python 2! ' msg += 'Try using the Unix "cat" command instead!' message = "\n" + c5 + msg + cr + "\n" print("") raise Exception(message) from seleniumbase.console_scripts import sb_print sb_print.main() else: show_basic_usage() show_print_usage() elif command == "translate": if len(command_args) >= 1: if sys.version_info[0] == 2: c5 = colorama.Fore.RED + colorama.Back.LIGHTYELLOW_EX cr = colorama.Style.RESET_ALL msg = "The SeleniumBase Translator does NOT support Python 2!" message = "\n" + c5 + msg + cr + "\n" print("") raise Exception(message) from seleniumbase.translate import translator translator.main() else: show_basic_usage() show_translate_usage() elif command == "extract-objects" or command == "extract_objects": if len(command_args) >= 1: from seleniumbase.console_scripts import objectify objectify.extract_objects() else: show_basic_usage() show_extract_objects_usage() elif command == "inject-objects" or command == "inject_objects": if len(command_args) >= 1: from seleniumbase.console_scripts import objectify objectify.inject_objects() else: show_basic_usage() show_inject_objects_usage() elif command == "objectify": if len(command_args) >= 1: from seleniumbase.console_scripts import objectify objectify.objectify() else: show_basic_usage() show_objectify_usage() elif command == "revert-objects" or command == "revert_objects": if len(command_args) >= 1: from seleniumbase.console_scripts import objectify objectify.revert_objects() else: show_basic_usage() show_revert_objects_usage() elif command == "encrypt" or command == "obfuscate": if len(command_args) >= 0: from seleniumbase.common import obfuscate obfuscate.main() else: show_basic_usage() show_encrypt_usage() elif command == "decrypt" or command == "unobfuscate": if len(command_args) >= 0: from seleniumbase.common import unobfuscate unobfuscate.main() else: show_basic_usage() show_decrypt_usage() elif command == "download": if len(command_args) >= 1 and command_args[0].lower() == "server": from seleniumbase.utilities.selenium_grid import ( download_selenium_server) download_selenium_server.main(force_download=True) else: show_basic_usage() show_download_usage() elif command == "grid-hub" or command == "grid_hub": if len(command_args) >= 1: from seleniumbase.utilities.selenium_grid import grid_hub grid_hub.main() else: show_basic_usage() show_grid_hub_usage() elif command == "grid-node" or command == "grid_node": if len(command_args) >= 1: from seleniumbase.utilities.selenium_grid import grid_node grid_node.main() else: show_basic_usage() show_grid_node_usage() elif command == "version" or command == "--version": if len(command_args) == 0: show_version_info() else: show_basic_usage() elif command == "options" or command == "--options": show_options() elif command == "help" or command == "--help": if len(command_args) >= 1: if command_args[0] == "install": print("") show_install_usage() return elif command_args[0] == "mkdir": print("") show_mkdir_usage() return elif command_args[0] == "mkfile": print("") show_mkfile_usage() return elif command_args[0] == "convert": print("") show_convert_usage() return elif command_args[0] == "print": print("") show_print_usage() return elif command_args[0] == "translate": print("") show_translate_usage() return elif command_args[0] == "extract-objects": print("") show_extract_objects_usage() return elif command_args[0] == "inject-objects": print("") show_inject_objects_usage() return elif command_args[0] == "objectify": print("") show_objectify_usage() return elif command_args[0] == "revert-objects": print("") show_revert_objects_usage() return elif command_args[0] == "encrypt": print("") show_encrypt_usage() return elif command_args[0] == "obfuscate": print("") show_encrypt_usage() return elif command_args[0] == "decrypt": print("") show_decrypt_usage() return elif command_args[0] == "unobfuscate": print("") show_decrypt_usage() return elif command_args[0] == "download": print("") show_download_usage() return elif command_args[0] == "grid-hub": print("") show_grid_hub_usage() return elif command_args[0] == "grid-node": print("") show_grid_node_usage() return show_detailed_help() else: show_usage() if __name__ == "__main__": main()
92a1970509df326c8143755cf9819a2206306d83
797403a06a463b571ceeaf49d7763b90d32ecf02
/manage.py
78e5dff096d42cfc04ea53f924a48507f45dd7d2
[]
no_license
crowdbotics/anand-crowdbotics-16
cd090cbcc8e0326391f88348de353f397e1b2cd1
6ee9424e94f0d3438b966b137811ab4495051753
refs/heads/master
2021-04-03T08:33:24.279500
2018-03-09T17:50:50
2018-03-09T17:50:50
124,574,589
0
0
null
null
null
null
UTF-8
Python
false
false
818
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "anand_crowdbotics_16.settings") try: from django.core.management import execute_from_command_line except ImportError: # The above import may fail for some other reason. Ensure that the # issue is really that Django is missing to avoid masking other # exceptions on Python 2. try: import django except ImportError: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) raise execute_from_command_line(sys.argv)
fc33d8e7379198696b815ebc07274d16e233a466
9c2ba4f1a2d75b1916e6f20fa95c5fb32d0497d9
/ScrapingWithPython2/code/crawler_script/userAgents.py
d8b7443d1f35f892e33a3ec4385bab0c16310377
[]
no_license
PowerDG/DgCoreInit
abe4b15e38b730c25424f71e6927db982af27a72
84e6b7833ddc083b90fcc172c3812dd6f8b51e3d
refs/heads/master
2023-07-19T11:58:09.220460
2019-06-07T14:43:24
2019-06-07T14:43:24
163,091,619
0
1
null
2023-07-06T21:20:15
2018-12-25T14:59:42
Jupyter Notebook
UTF-8
Python
false
false
4,255
py
#!/usr/bin/env python3 #-*- coding: utf-8 -*- __author__ = 'hstking [email protected]' pcUserAgent = { "safari 5.1 – MAC":"User-Agent:Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_8; en-us) AppleWebKit/534.50 (KHTML, like Gecko) Version/5.1 Safari/534.50", "safari 5.1 – Windows":"User-Agent:Mozilla/5.0 (Windows; U; Windows NT 6.1; en-us) AppleWebKit/534.50 (KHTML, like Gecko) Version/5.1 Safari/534.50", "IE 9.0":"User-Agent:Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0);", "IE 8.0":"User-Agent:Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.0; Trident/4.0)", "IE 7.0":"User-Agent:Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0)", "IE 6.0":"User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)", "Firefox 4.0.1 – MAC":"User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.6; rv:2.0.1) Gecko/20100101 Firefox/4.0.1", "Firefox 4.0.1 – Windows":"User-Agent:Mozilla/5.0 (Windows NT 6.1; rv:2.0.1) Gecko/20100101 Firefox/4.0.1", "Opera 11.11 – MAC":"User-Agent:Opera/9.80 (Macintosh; Intel Mac OS X 10.6.8; U; en) Presto/2.8.131 Version/11.11", "Opera 11.11 – Windows":"User-Agent:Opera/9.80 (Windows NT 6.1; U; en) Presto/2.8.131 Version/11.11", "Chrome 17.0 – MAC":"User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_0) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.56 Safari/535.11", "Maxthon":"User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Maxthon 2.0)", "Tencent TT":"User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; TencentTraveler 4.0)", "The World 2.x":"User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)", "The World 3.x":"User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; The World)", "sogou 1.x":"User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Trident/4.0; SE 2.X MetaSr 1.0; SE 2.X MetaSr 1.0; .NET CLR 2.0.50727; SE 2.X MetaSr 1.0)", "360":"User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; 360SE)", "Avant":"User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Avant Browser)", "Green Browser":"User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)" } mobileUserAgent = { "iOS 4.33 – iPhone":"User-Agent:Mozilla/5.0 (iPhone; U; CPU iPhone OS 4_3_3 like Mac OS X; en-us) AppleWebKit/533.17.9 (KHTML, like Gecko) Version/5.0.2 Mobile/8J2 Safari/6533.18.5", "iOS 4.33 – iPod Touch":"User-Agent:Mozilla/5.0 (iPod; U; CPU iPhone OS 4_3_3 like Mac OS X; en-us) AppleWebKit/533.17.9 (KHTML, like Gecko) Version/5.0.2 Mobile/8J2 Safari/6533.18.5", "iOS 4.33 – iPad":"User-Agent:Mozilla/5.0 (iPad; U; CPU OS 4_3_3 like Mac OS X; en-us) AppleWebKit/533.17.9 (KHTML, like Gecko) Version/5.0.2 Mobile/8J2 Safari/6533.18.5", "Android N1":"User-Agent: Mozilla/5.0 (Linux; U; Android 2.3.7; en-us; Nexus One Build/FRF91) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1", "Android QQ":"User-Agent: MQQBrowser/26 Mozilla/5.0 (Linux; U; Android 2.3.7; zh-cn; MB200 Build/GRJ22; CyanogenMod-7) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1", "Android Opera ":"User-Agent: Opera/9.80 (Android 2.3.4; Linux; Opera Mobi/build-1107180945; U; en-GB) Presto/2.8.149 Version/11.10", "Android Pad Moto Xoom":"User-Agent: Mozilla/5.0 (Linux; U; Android 3.0; en-us; Xoom Build/HRI39) AppleWebKit/534.13 (KHTML, like Gecko) Version/4.0 Safari/534.13", "BlackBerry":"User-Agent: Mozilla/5.0 (BlackBerry; U; BlackBerry 9800; en) AppleWebKit/534.1+ (KHTML, like Gecko) Version/6.0.0.337 Mobile Safari/534.1+", "WebOS HP Touchpad":"User-Agent: Mozilla/5.0 (hp-tablet; Linux; hpwOS/3.0.0; U; en-US) AppleWebKit/534.6 (KHTML, like Gecko) wOSBrowser/233.70 Safari/534.6 TouchPad/1.0", "Nokia N97":"User-Agent: Mozilla/5.0 (SymbianOS/9.4; Series60/5.0 NokiaN97-1/20.0.019; Profile/MIDP-2.1 Configuration/CLDC-1.1) AppleWebKit/525 (KHTML, like Gecko) BrowserNG/7.1.18124", "Windows Phone Mango":"User-Agent: Mozilla/5.0 (compatible; MSIE 9.0; Windows Phone OS 7.5; Trident/5.0; IEMobile/9.0; HTC; Titan)", "UC":"User-Agent: UCWEB7.0.2.37/28/999", "UC standard":"User-Agent: NOKIA5700/ UCWEB7.0.2.37/28/999", "UCOpenwave":"User-Agent: Openwave/ UCWEB7.0.2.37/28/999", "UC Opera":"User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; ) Opera/UCWEB7.0.2.37/28/999" }
fb363a89cd15293a0bed822eb4c5966d9e1ac713
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02697/s900893925.py
cfd061b2464153e0333019f32cf31aa1b124ef34
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
213
py
n, m = map(int, input().split()) i = 0 c = 0 while (i + 1) + i < (n - i - (i + 1)) and c < m: print(i + 1, n - i) c += 1 i += 1 a = n // 2 + n % 2 for i in range(m - c): print(a - i - 1, a + i + 1)
04489e971a9cf6a6d19f42d7c96e28cf0b5067a7
4e1e7c9d3848e4eed4111be11f22436ef3143e6d
/python/p146.py
3c8f6e11949b34bf6a7404c4066e639241fd4cb1
[ "LicenseRef-scancode-warranty-disclaimer" ]
no_license
rsafarov/Project-Euler-solutions
d2e3bc7ed2bb05e935b1f0e9404eec4a2dcecacd
e5061b8358ddbe9f6563c32ef82e135c233257fe
refs/heads/master
2021-01-12T06:44:12.461955
2016-12-26T22:55:11
2016-12-26T22:55:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,405
py
# # Solution to Project Euler problem 146 # by Project Nayuki # # https://www.nayuki.io/page/project-euler-solutions # https://github.com/nayuki/Project-Euler-solutions # import eulerlib # Right off the bat, we can exclude 90% of the candidates by the following observations: # - If n = 1 mod 2, then n^2 + 1 = 0 mod 2 which is composite. # - Thus we require n = 0 mod 2. # - If n = 1 mod 5, then n^2 + 9 = 0 mod 5 which is composite. # - If n = 2 mod 5, then n^2 + 1 = 0 mod 5 which is composite. # - If n = 3 mod 5, then n^2 + 1 = 0 mod 5 which is composite. # - If n = 4 mod 5, then n^2 + 9 = 0 mod 5 which is composite. # - Thus we require n = 0 mod 5. # - Taking these two together and using the Chinese remainder theorem (CRT), we require n = 0 mod 10. # # For each value of n, after we generate the set {n^2 + 1, n^2 + 3, ..., n^2 + 27}, it's more efficient to take each # prime number and test whether it divides any number, rather than take each number and test it against all prime numbers. # This is because some numbers in this set are prime so the latter method tests some numbers against all the primes; # the former method will bail out early as soon as ~any~ number in the set has a small prime factor. # # The rest of the algorithm is implemented straightforwardly. def compute(): LIMIT = 150000000 INCREMENTS = [1, 3, 7, 9, 13, 27] # Must be in non-decreasing order NON_INCREMENTS = set(i for i in range(INCREMENTS[-1]) if i not in INCREMENTS) maxnumber = LIMIT**2 + INCREMENTS[-1] primes = eulerlib.list_primes(eulerlib.sqrt(maxnumber)) def has_consecutive_primes(n): # Generate the set of numbers to test for primality n2 = n**2 temp = [(n2 + k) for k in INCREMENTS] # Test that each number is prime. # Note: The nesting of the loops can be reversed, but this way is much faster. if any((x != p and x % p == 0) for p in primes for x in temp): return False # Test that each number that is not an increment is composite. # This checks that the prime numbers we found are in fact consecutive. return all((not is_prime(n2 + k)) for k in NON_INCREMENTS) def is_prime(n): end = eulerlib.sqrt(n) for p in primes: if p > end: break if n % p == 0: return False return True ans = sum(n for n in range(0, LIMIT, 10) if has_consecutive_primes(n)) return str(ans) if __name__ == "__main__": print(compute())
57f4fd86ef61862a8603a69e948aeba72ff1531f
13d3724f5e2de71cd41177e73ea331bb02b2c6fe
/network.py
c63b259bcea27a068b7ffc7cadc7e322fb8bee07
[]
no_license
chengyang317/deep_encode_decode
db87a2a5f1b6d0f86fbb4ff93812ceff2394b3cf
b2d09e3768b26f9a831b0d738f4e03feed80471a
refs/heads/master
2021-01-01T04:33:53.003522
2016-05-19T01:01:25
2016-05-19T01:01:25
59,162,347
0
0
null
null
null
null
UTF-8
Python
false
false
401
py
import tensorflow as tf import prettytensor as pt import numpy as np class NetWork(object): """ Net work for the encode_decode architechture. """ def __init__(self, batch_size): input_tensor = tf.placeholder(tf.float32, shape=(batch_size, DATA_SIZE)) label_tensor = tf.placeholder(tf.float32, shape=(BATCH_SIZE, CLASSES)) pretty_input = pt.wrap(input_tensor)
47a89012a2c09dd20a597a64d4632ba171432975
3aab11d445011f4a0de1376886dd3899aba44e68
/opps/contrib/notifications/migrations/0001_initial.py
a2ce3a26f6a442aeb6d8856594359592dcadb7e2
[ "MIT" ]
permissive
opps/opps
4ba6a08ac5aa31be48c245b2e8f9d9a714a5e473
5552924fa34ea40d24febeac5046bd59f62e0e4f
refs/heads/master
2023-08-24T21:09:23.489540
2023-05-22T20:07:33
2023-05-22T20:07:33
7,712,379
166
76
MIT
2022-01-06T22:53:23
2013-01-20T03:56:15
Python
UTF-8
Python
false
false
16,534
py
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models from django.contrib.auth import get_user_model User = get_user_model() class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'Notification' db.create_table(u'notifications_notification', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('date_insert', self.gf('django.db.models.fields.DateTimeField')(auto_now_add=True, blank=True)), ('date_update', self.gf('django.db.models.fields.DateTimeField')(auto_now=True, blank=True)), ('user', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['%s.%s' % (User._meta.app_label, User._meta.object_name)])), ('site', self.gf('django.db.models.fields.related.ForeignKey')(default=1, to=orm['sites.Site'])), ('site_iid', self.gf('django.db.models.fields.PositiveIntegerField')(db_index=True, max_length=4, null=True, blank=True)), ('site_domain', self.gf('django.db.models.fields.CharField')(db_index=True, max_length=100, null=True, blank=True)), ('date_available', self.gf('django.db.models.fields.DateTimeField')(default=datetime.datetime.now, null=True, db_index=True)), ('published', self.gf('django.db.models.fields.BooleanField')(default=False, db_index=True)), ('container', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['containers.Container'])), ('action', self.gf('django.db.models.fields.CharField')(default='message', max_length=75)), ('type', self.gf('django.db.models.fields.CharField')(default='json', max_length=10)), ('message', self.gf('django.db.models.fields.TextField')()), )) db.send_create_signal(u'notifications', ['Notification']) def backwards(self, orm): # Deleting model 'Notification' db.delete_table(u'notifications_notification') models = { u'%s.%s' % (User._meta.app_label, User._meta.module_name): { 'Meta': {'object_name': User.__name__}, }, u'auth.group': { 'Meta': {'object_name': 'Group'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, u'auth.permission': { 'Meta': {'ordering': "(u'content_type__app_label', u'content_type__model', u'codename')", 'unique_together': "((u'content_type', u'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, u'channels.channel': { 'Meta': {'ordering': "['name', 'parent__id', 'published']", 'unique_together': "(('site', 'long_slug', 'slug', 'parent'),)", 'object_name': 'Channel'}, 'date_available': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'null': 'True', 'db_index': 'True'}), 'date_insert': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'date_update': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'group': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'homepage': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'include_in_main_rss': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'layout': ('django.db.models.fields.CharField', [], {'default': "'default'", 'max_length': '250', 'db_index': 'True'}), u'level': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), u'lft': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'long_slug': ('django.db.models.fields.SlugField', [], {'max_length': '250'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '60'}), 'order': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'parent': ('mptt.fields.TreeForeignKey', [], {'blank': 'True', 'related_name': "'subchannel'", 'null': 'True', 'to': u"orm['channels.Channel']"}), 'published': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'db_index': 'True'}), u'rght': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'show_in_menu': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'site': ('django.db.models.fields.related.ForeignKey', [], {'default': '1', 'to': u"orm['sites.Site']"}), 'site_domain': ('django.db.models.fields.CharField', [], {'db_index': 'True', 'max_length': '100', 'null': 'True', 'blank': 'True'}), 'site_iid': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True', 'max_length': '4', 'null': 'True', 'blank': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '150'}), u'tree_id': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['%s.%s']" % (User._meta.app_label, User._meta.object_name)}) }, u'containers.container': { 'Meta': {'ordering': "['-date_available']", 'unique_together': "(('site', 'channel_long_slug', 'slug'),)", 'object_name': 'Container'}, 'channel': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['channels.Channel']"}), 'channel_long_slug': ('django.db.models.fields.CharField', [], {'db_index': 'True', 'max_length': '250', 'null': 'True', 'blank': 'True'}), 'channel_name': ('django.db.models.fields.CharField', [], {'db_index': 'True', 'max_length': '140', 'null': 'True', 'blank': 'True'}), 'child_app_label': ('django.db.models.fields.CharField', [], {'db_index': 'True', 'max_length': '30', 'null': 'True', 'blank': 'True'}), 'child_class': ('django.db.models.fields.CharField', [], {'db_index': 'True', 'max_length': '30', 'null': 'True', 'blank': 'True'}), 'child_module': ('django.db.models.fields.CharField', [], {'db_index': 'True', 'max_length': '120', 'null': 'True', 'blank': 'True'}), 'date_available': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'null': 'True', 'db_index': 'True'}), 'date_insert': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'date_update': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'hat': ('django.db.models.fields.CharField', [], {'max_length': '140', 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'images': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': u"orm['images.Image']", 'null': 'True', 'through': u"orm['containers.ContainerImage']", 'blank': 'True'}), 'json': ('opps.db.models.fields.jsonf.JSONField', [], {'null': 'True', 'blank': 'True'}), 'main_image': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "u'containers_container_mainimage'", 'null': 'True', 'on_delete': 'models.SET_NULL', 'to': u"orm['images.Image']"}), 'main_image_caption': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'polymorphic_ctype': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "u'polymorphic_containers.container_set'", 'null': 'True', 'to': u"orm['contenttypes.ContentType']"}), 'published': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'db_index': 'True'}), 'short_url': ('django.db.models.fields.URLField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}), 'show_on_root_channel': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'site': ('django.db.models.fields.related.ForeignKey', [], {'default': '1', 'to': u"orm['sites.Site']"}), 'site_domain': ('django.db.models.fields.CharField', [], {'db_index': 'True', 'max_length': '100', 'null': 'True', 'blank': 'True'}), 'site_iid': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True', 'max_length': '4', 'null': 'True', 'blank': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '150'}), 'source': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'tags': ('django.db.models.fields.CharField', [], {'max_length': '4000', 'null': 'True', 'blank': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '140', 'db_index': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['%s.%s']" % (User._meta.app_label, User._meta.object_name)}) }, u'containers.containerimage': { 'Meta': {'ordering': "('order',)", 'object_name': 'ContainerImage'}, 'caption': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'container': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['containers.Container']", 'null': 'True', 'on_delete': 'models.SET_NULL', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'image': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['images.Image']", 'null': 'True', 'on_delete': 'models.SET_NULL', 'blank': 'True'}), 'order': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}) }, u'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, u'images.image': { 'Meta': {'object_name': 'Image'}, 'archive': ('django.db.models.fields.files.FileField', [], {'max_length': '255'}), 'crop_example': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'crop_x1': ('django.db.models.fields.PositiveSmallIntegerField', [], {'default': '0', 'null': 'True', 'blank': 'True'}), 'crop_x2': ('django.db.models.fields.PositiveSmallIntegerField', [], {'default': '0', 'null': 'True', 'blank': 'True'}), 'crop_y1': ('django.db.models.fields.PositiveSmallIntegerField', [], {'default': '0', 'null': 'True', 'blank': 'True'}), 'crop_y2': ('django.db.models.fields.PositiveSmallIntegerField', [], {'default': '0', 'null': 'True', 'blank': 'True'}), 'date_available': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'null': 'True', 'db_index': 'True'}), 'date_insert': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'date_update': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'fit_in': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'flip': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'flop': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'halign': ('django.db.models.fields.CharField', [], {'default': 'False', 'max_length': '6', 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'published': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'db_index': 'True'}), 'site': ('django.db.models.fields.related.ForeignKey', [], {'default': '1', 'to': u"orm['sites.Site']"}), 'site_domain': ('django.db.models.fields.CharField', [], {'db_index': 'True', 'max_length': '100', 'null': 'True', 'blank': 'True'}), 'site_iid': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True', 'max_length': '4', 'null': 'True', 'blank': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '150'}), 'smart': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'source': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'tags': ('django.db.models.fields.CharField', [], {'max_length': '4000', 'null': 'True', 'blank': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '140', 'db_index': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['%s.%s']" % (User._meta.app_label, User._meta.object_name)}), 'valign': ('django.db.models.fields.CharField', [], {'default': 'False', 'max_length': '6', 'null': 'True', 'blank': 'True'}) }, u'notifications.notification': { 'Meta': {'object_name': 'Notification'}, 'action': ('django.db.models.fields.CharField', [], {'default': "'message'", 'max_length': '75'}), 'container': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['containers.Container']"}), 'date_available': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'null': 'True', 'db_index': 'True'}), 'date_insert': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'date_update': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'message': ('django.db.models.fields.TextField', [], {}), 'published': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'db_index': 'True'}), 'site': ('django.db.models.fields.related.ForeignKey', [], {'default': '1', 'to': u"orm['sites.Site']"}), 'site_domain': ('django.db.models.fields.CharField', [], {'db_index': 'True', 'max_length': '100', 'null': 'True', 'blank': 'True'}), 'site_iid': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True', 'max_length': '4', 'null': 'True', 'blank': 'True'}), 'type': ('django.db.models.fields.CharField', [], {'default': "'json'", 'max_length': '10'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['%s.%s']" % (User._meta.app_label, User._meta.object_name)}) }, u'sites.site': { 'Meta': {'ordering': "('domain',)", 'object_name': 'Site', 'db_table': "'django_site'"}, 'domain': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) } } complete_apps = ['notifications']
379642818204d5baebc8e7103b88c69cdf947053
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/S4uZaKhcDa7pJ33nu_24.py
ca56f99a3e15d892f27398e2d0cc7c9148315d09
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
146
py
from datetime import datetime as dt, timedelta as td def week_after(d): return (dt.strptime(d, '%d/%m/%Y') + td(days=7)).strftime('%d/%m/%Y')
a8038e69cb1168e45a240fb3af467e8a4f54c72c
bad62c2b0dfad33197db55b44efeec0bab405634
/sdk/appplatform/azure-mgmt-appplatform/azure/mgmt/appplatform/v2021_09_01_preview/models/_models_py3.py
a3645379c0479487204e3a3056c25d6c3bce9200
[ "MIT", "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later" ]
permissive
test-repo-billy/azure-sdk-for-python
20c5a2486456e02456de17515704cb064ff19833
cece86a8548cb5f575e5419864d631673be0a244
refs/heads/master
2022-10-25T02:28:39.022559
2022-10-18T06:05:46
2022-10-18T06:05:46
182,325,031
0
0
MIT
2019-07-25T22:28:52
2019-04-19T20:59:15
Python
UTF-8
Python
false
false
153,493
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import datetime from typing import Any, Dict, List, Optional, Union import msrest.serialization from ._app_platform_management_client_enums import * class ApplicationInsightsAgentVersions(msrest.serialization.Model): """Application Insights agent versions properties payload. Variables are only populated by the server, and will be ignored when sending a request. :ivar java: Indicates the version of application insight java agent. :vartype java: str """ _validation = { 'java': {'readonly': True}, } _attribute_map = { 'java': {'key': 'java', 'type': 'str'}, } def __init__( self, **kwargs ): """ """ super(ApplicationInsightsAgentVersions, self).__init__(**kwargs) self.java = None class Resource(msrest.serialization.Model): """The core properties of ARM resources. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Fully qualified resource Id for the resource. :vartype id: str :ivar name: The name of the resource. :vartype name: str :ivar type: The type of the resource. :vartype type: str """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, } def __init__( self, **kwargs ): """ """ super(Resource, self).__init__(**kwargs) self.id = None self.name = None self.type = None class ProxyResource(Resource): """The resource model definition for a ARM proxy resource. It will have everything other than required location and tags. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Fully qualified resource Id for the resource. :vartype id: str :ivar name: The name of the resource. :vartype name: str :ivar type: The type of the resource. :vartype type: str """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, } def __init__( self, **kwargs ): """ """ super(ProxyResource, self).__init__(**kwargs) class AppResource(ProxyResource): """App resource payload. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Fully qualified resource Id for the resource. :vartype id: str :ivar name: The name of the resource. :vartype name: str :ivar type: The type of the resource. :vartype type: str :ivar properties: Properties of the App resource. :vartype properties: ~azure.mgmt.appplatform.v2021_09_01_preview.models.AppResourceProperties :ivar identity: The Managed Identity type of the app resource. :vartype identity: ~azure.mgmt.appplatform.v2021_09_01_preview.models.ManagedIdentityProperties :ivar location: The GEO location of the application, always the same with its parent resource. :vartype location: str """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'properties': {'key': 'properties', 'type': 'AppResourceProperties'}, 'identity': {'key': 'identity', 'type': 'ManagedIdentityProperties'}, 'location': {'key': 'location', 'type': 'str'}, } def __init__( self, *, properties: Optional["AppResourceProperties"] = None, identity: Optional["ManagedIdentityProperties"] = None, location: Optional[str] = None, **kwargs ): """ :keyword properties: Properties of the App resource. :paramtype properties: ~azure.mgmt.appplatform.v2021_09_01_preview.models.AppResourceProperties :keyword identity: The Managed Identity type of the app resource. :paramtype identity: ~azure.mgmt.appplatform.v2021_09_01_preview.models.ManagedIdentityProperties :keyword location: The GEO location of the application, always the same with its parent resource. :paramtype location: str """ super(AppResource, self).__init__(**kwargs) self.properties = properties self.identity = identity self.location = location class AppResourceCollection(msrest.serialization.Model): """Object that includes an array of App resources and a possible link for next set. :ivar value: Collection of App resources. :vartype value: list[~azure.mgmt.appplatform.v2021_09_01_preview.models.AppResource] :ivar next_link: URL client should use to fetch the next page (per server side paging). It's null for now, added for future use. :vartype next_link: str """ _attribute_map = { 'value': {'key': 'value', 'type': '[AppResource]'}, 'next_link': {'key': 'nextLink', 'type': 'str'}, } def __init__( self, *, value: Optional[List["AppResource"]] = None, next_link: Optional[str] = None, **kwargs ): """ :keyword value: Collection of App resources. :paramtype value: list[~azure.mgmt.appplatform.v2021_09_01_preview.models.AppResource] :keyword next_link: URL client should use to fetch the next page (per server side paging). It's null for now, added for future use. :paramtype next_link: str """ super(AppResourceCollection, self).__init__(**kwargs) self.value = value self.next_link = next_link class AppResourceProperties(msrest.serialization.Model): """App resource properties payload. Variables are only populated by the server, and will be ignored when sending a request. :ivar public: Indicates whether the App exposes public endpoint. :vartype public: bool :ivar url: URL of the App. :vartype url: str :ivar provisioning_state: Provisioning state of the App. Possible values include: "Succeeded", "Failed", "Creating", "Updating". :vartype provisioning_state: str or ~azure.mgmt.appplatform.v2021_09_01_preview.models.AppResourceProvisioningState :ivar active_deployment_name: Name of the active deployment of the App. :vartype active_deployment_name: str :ivar fqdn: Fully qualified dns Name. :vartype fqdn: str :ivar https_only: Indicate if only https is allowed. :vartype https_only: bool :ivar created_time: Date time when the resource is created. :vartype created_time: ~datetime.datetime :ivar temporary_disk: Temporary disk settings. :vartype temporary_disk: ~azure.mgmt.appplatform.v2021_09_01_preview.models.TemporaryDisk :ivar persistent_disk: Persistent disk settings. :vartype persistent_disk: ~azure.mgmt.appplatform.v2021_09_01_preview.models.PersistentDisk :ivar custom_persistent_disks: List of custom persistent disks. :vartype custom_persistent_disks: list[~azure.mgmt.appplatform.v2021_09_01_preview.models.CustomPersistentDiskResource] :ivar enable_end_to_end_tls: Indicate if end to end TLS is enabled. :vartype enable_end_to_end_tls: bool :ivar loaded_certificates: Collection of loaded certificates. :vartype loaded_certificates: list[~azure.mgmt.appplatform.v2021_09_01_preview.models.LoadedCertificate] """ _validation = { 'url': {'readonly': True}, 'provisioning_state': {'readonly': True}, 'created_time': {'readonly': True}, } _attribute_map = { 'public': {'key': 'public', 'type': 'bool'}, 'url': {'key': 'url', 'type': 'str'}, 'provisioning_state': {'key': 'provisioningState', 'type': 'str'}, 'active_deployment_name': {'key': 'activeDeploymentName', 'type': 'str'}, 'fqdn': {'key': 'fqdn', 'type': 'str'}, 'https_only': {'key': 'httpsOnly', 'type': 'bool'}, 'created_time': {'key': 'createdTime', 'type': 'iso-8601'}, 'temporary_disk': {'key': 'temporaryDisk', 'type': 'TemporaryDisk'}, 'persistent_disk': {'key': 'persistentDisk', 'type': 'PersistentDisk'}, 'custom_persistent_disks': {'key': 'customPersistentDisks', 'type': '[CustomPersistentDiskResource]'}, 'enable_end_to_end_tls': {'key': 'enableEndToEndTLS', 'type': 'bool'}, 'loaded_certificates': {'key': 'loadedCertificates', 'type': '[LoadedCertificate]'}, } def __init__( self, *, public: Optional[bool] = None, active_deployment_name: Optional[str] = None, fqdn: Optional[str] = None, https_only: Optional[bool] = False, temporary_disk: Optional["TemporaryDisk"] = None, persistent_disk: Optional["PersistentDisk"] = None, custom_persistent_disks: Optional[List["CustomPersistentDiskResource"]] = None, enable_end_to_end_tls: Optional[bool] = False, loaded_certificates: Optional[List["LoadedCertificate"]] = None, **kwargs ): """ :keyword public: Indicates whether the App exposes public endpoint. :paramtype public: bool :keyword active_deployment_name: Name of the active deployment of the App. :paramtype active_deployment_name: str :keyword fqdn: Fully qualified dns Name. :paramtype fqdn: str :keyword https_only: Indicate if only https is allowed. :paramtype https_only: bool :keyword temporary_disk: Temporary disk settings. :paramtype temporary_disk: ~azure.mgmt.appplatform.v2021_09_01_preview.models.TemporaryDisk :keyword persistent_disk: Persistent disk settings. :paramtype persistent_disk: ~azure.mgmt.appplatform.v2021_09_01_preview.models.PersistentDisk :keyword custom_persistent_disks: List of custom persistent disks. :paramtype custom_persistent_disks: list[~azure.mgmt.appplatform.v2021_09_01_preview.models.CustomPersistentDiskResource] :keyword enable_end_to_end_tls: Indicate if end to end TLS is enabled. :paramtype enable_end_to_end_tls: bool :keyword loaded_certificates: Collection of loaded certificates. :paramtype loaded_certificates: list[~azure.mgmt.appplatform.v2021_09_01_preview.models.LoadedCertificate] """ super(AppResourceProperties, self).__init__(**kwargs) self.public = public self.url = None self.provisioning_state = None self.active_deployment_name = active_deployment_name self.fqdn = fqdn self.https_only = https_only self.created_time = None self.temporary_disk = temporary_disk self.persistent_disk = persistent_disk self.custom_persistent_disks = custom_persistent_disks self.enable_end_to_end_tls = enable_end_to_end_tls self.loaded_certificates = loaded_certificates class AvailableOperations(msrest.serialization.Model): """Available operations of the service. :ivar value: Collection of available operation details. :vartype value: list[~azure.mgmt.appplatform.v2021_09_01_preview.models.OperationDetail] :ivar next_link: URL client should use to fetch the next page (per server side paging). It's null for now, added for future use. :vartype next_link: str """ _attribute_map = { 'value': {'key': 'value', 'type': '[OperationDetail]'}, 'next_link': {'key': 'nextLink', 'type': 'str'}, } def __init__( self, *, value: Optional[List["OperationDetail"]] = None, next_link: Optional[str] = None, **kwargs ): """ :keyword value: Collection of available operation details. :paramtype value: list[~azure.mgmt.appplatform.v2021_09_01_preview.models.OperationDetail] :keyword next_link: URL client should use to fetch the next page (per server side paging). It's null for now, added for future use. :paramtype next_link: str """ super(AvailableOperations, self).__init__(**kwargs) self.value = value self.next_link = next_link class AvailableRuntimeVersions(msrest.serialization.Model): """AvailableRuntimeVersions. Variables are only populated by the server, and will be ignored when sending a request. :ivar value: A list of all supported runtime versions. :vartype value: list[~azure.mgmt.appplatform.v2021_09_01_preview.models.SupportedRuntimeVersion] """ _validation = { 'value': {'readonly': True}, } _attribute_map = { 'value': {'key': 'value', 'type': '[SupportedRuntimeVersion]'}, } def __init__( self, **kwargs ): """ """ super(AvailableRuntimeVersions, self).__init__(**kwargs) self.value = None class CustomPersistentDiskProperties(msrest.serialization.Model): """Custom persistent disk resource payload. You probably want to use the sub-classes and not this class directly. Known sub-classes are: AzureFileVolume. All required parameters must be populated in order to send to Azure. :ivar type: Required. The type of the underlying resource to mount as a persistent disk.Constant filled by server. Possible values include: "AzureFileVolume". :vartype type: str or ~azure.mgmt.appplatform.v2021_09_01_preview.models.Type :ivar mount_path: Required. The mount path of the persistent disk. :vartype mount_path: str :ivar read_only: Indicates whether the persistent disk is a readOnly one. :vartype read_only: bool :ivar mount_options: These are the mount options for a persistent disk. :vartype mount_options: list[str] """ _validation = { 'type': {'required': True}, 'mount_path': {'required': True}, } _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, 'mount_path': {'key': 'mountPath', 'type': 'str'}, 'read_only': {'key': 'readOnly', 'type': 'bool'}, 'mount_options': {'key': 'mountOptions', 'type': '[str]'}, } _subtype_map = { 'type': {'AzureFileVolume': 'AzureFileVolume'} } def __init__( self, *, mount_path: str, read_only: Optional[bool] = None, mount_options: Optional[List[str]] = None, **kwargs ): """ :keyword mount_path: Required. The mount path of the persistent disk. :paramtype mount_path: str :keyword read_only: Indicates whether the persistent disk is a readOnly one. :paramtype read_only: bool :keyword mount_options: These are the mount options for a persistent disk. :paramtype mount_options: list[str] """ super(CustomPersistentDiskProperties, self).__init__(**kwargs) self.type = None # type: Optional[str] self.mount_path = mount_path self.read_only = read_only self.mount_options = mount_options class AzureFileVolume(CustomPersistentDiskProperties): """The properties of the Azure File volume. Azure File shares are mounted as volumes. All required parameters must be populated in order to send to Azure. :ivar type: Required. The type of the underlying resource to mount as a persistent disk.Constant filled by server. Possible values include: "AzureFileVolume". :vartype type: str or ~azure.mgmt.appplatform.v2021_09_01_preview.models.Type :ivar mount_path: Required. The mount path of the persistent disk. :vartype mount_path: str :ivar read_only: Indicates whether the persistent disk is a readOnly one. :vartype read_only: bool :ivar mount_options: These are the mount options for a persistent disk. :vartype mount_options: list[str] :ivar share_name: Required. The share name of the Azure File share. :vartype share_name: str """ _validation = { 'type': {'required': True}, 'mount_path': {'required': True}, 'share_name': {'required': True}, } _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, 'mount_path': {'key': 'mountPath', 'type': 'str'}, 'read_only': {'key': 'readOnly', 'type': 'bool'}, 'mount_options': {'key': 'mountOptions', 'type': '[str]'}, 'share_name': {'key': 'shareName', 'type': 'str'}, } def __init__( self, *, mount_path: str, share_name: str, read_only: Optional[bool] = None, mount_options: Optional[List[str]] = None, **kwargs ): """ :keyword mount_path: Required. The mount path of the persistent disk. :paramtype mount_path: str :keyword read_only: Indicates whether the persistent disk is a readOnly one. :paramtype read_only: bool :keyword mount_options: These are the mount options for a persistent disk. :paramtype mount_options: list[str] :keyword share_name: Required. The share name of the Azure File share. :paramtype share_name: str """ super(AzureFileVolume, self).__init__(mount_path=mount_path, read_only=read_only, mount_options=mount_options, **kwargs) self.type = 'AzureFileVolume' # type: str self.share_name = share_name class BindingResource(ProxyResource): """Binding resource payload. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Fully qualified resource Id for the resource. :vartype id: str :ivar name: The name of the resource. :vartype name: str :ivar type: The type of the resource. :vartype type: str :ivar properties: Properties of the Binding resource. :vartype properties: ~azure.mgmt.appplatform.v2021_09_01_preview.models.BindingResourceProperties """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'properties': {'key': 'properties', 'type': 'BindingResourceProperties'}, } def __init__( self, *, properties: Optional["BindingResourceProperties"] = None, **kwargs ): """ :keyword properties: Properties of the Binding resource. :paramtype properties: ~azure.mgmt.appplatform.v2021_09_01_preview.models.BindingResourceProperties """ super(BindingResource, self).__init__(**kwargs) self.properties = properties class BindingResourceCollection(msrest.serialization.Model): """Object that includes an array of Binding resources and a possible link for next set. :ivar value: Collection of Binding resources. :vartype value: list[~azure.mgmt.appplatform.v2021_09_01_preview.models.BindingResource] :ivar next_link: URL client should use to fetch the next page (per server side paging). It's null for now, added for future use. :vartype next_link: str """ _attribute_map = { 'value': {'key': 'value', 'type': '[BindingResource]'}, 'next_link': {'key': 'nextLink', 'type': 'str'}, } def __init__( self, *, value: Optional[List["BindingResource"]] = None, next_link: Optional[str] = None, **kwargs ): """ :keyword value: Collection of Binding resources. :paramtype value: list[~azure.mgmt.appplatform.v2021_09_01_preview.models.BindingResource] :keyword next_link: URL client should use to fetch the next page (per server side paging). It's null for now, added for future use. :paramtype next_link: str """ super(BindingResourceCollection, self).__init__(**kwargs) self.value = value self.next_link = next_link class BindingResourceProperties(msrest.serialization.Model): """Binding resource properties payload. Variables are only populated by the server, and will be ignored when sending a request. :ivar resource_name: The name of the bound resource. :vartype resource_name: str :ivar resource_type: The standard Azure resource type of the bound resource. :vartype resource_type: str :ivar resource_id: The Azure resource id of the bound resource. :vartype resource_id: str :ivar key: The key of the bound resource. :vartype key: str :ivar binding_parameters: Binding parameters of the Binding resource. :vartype binding_parameters: dict[str, any] :ivar generated_properties: The generated Spring Boot property file for this binding. The secret will be deducted. :vartype generated_properties: str :ivar created_at: Creation time of the Binding resource. :vartype created_at: str :ivar updated_at: Update time of the Binding resource. :vartype updated_at: str """ _validation = { 'resource_name': {'readonly': True}, 'resource_type': {'readonly': True}, 'generated_properties': {'readonly': True}, 'created_at': {'readonly': True}, 'updated_at': {'readonly': True}, } _attribute_map = { 'resource_name': {'key': 'resourceName', 'type': 'str'}, 'resource_type': {'key': 'resourceType', 'type': 'str'}, 'resource_id': {'key': 'resourceId', 'type': 'str'}, 'key': {'key': 'key', 'type': 'str'}, 'binding_parameters': {'key': 'bindingParameters', 'type': '{object}'}, 'generated_properties': {'key': 'generatedProperties', 'type': 'str'}, 'created_at': {'key': 'createdAt', 'type': 'str'}, 'updated_at': {'key': 'updatedAt', 'type': 'str'}, } def __init__( self, *, resource_id: Optional[str] = None, key: Optional[str] = None, binding_parameters: Optional[Dict[str, Any]] = None, **kwargs ): """ :keyword resource_id: The Azure resource id of the bound resource. :paramtype resource_id: str :keyword key: The key of the bound resource. :paramtype key: str :keyword binding_parameters: Binding parameters of the Binding resource. :paramtype binding_parameters: dict[str, any] """ super(BindingResourceProperties, self).__init__(**kwargs) self.resource_name = None self.resource_type = None self.resource_id = resource_id self.key = key self.binding_parameters = binding_parameters self.generated_properties = None self.created_at = None self.updated_at = None class CertificateProperties(msrest.serialization.Model): """Certificate resource payload. You probably want to use the sub-classes and not this class directly. Known sub-classes are: ContentCertificateProperties, KeyVaultCertificateProperties. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar type: Required. The type of the certificate source.Constant filled by server. :vartype type: str :ivar thumbprint: The thumbprint of certificate. :vartype thumbprint: str :ivar issuer: The issuer of certificate. :vartype issuer: str :ivar issued_date: The issue date of certificate. :vartype issued_date: str :ivar expiration_date: The expiration date of certificate. :vartype expiration_date: str :ivar activate_date: The activate date of certificate. :vartype activate_date: str :ivar subject_name: The subject name of certificate. :vartype subject_name: str :ivar dns_names: The domain list of certificate. :vartype dns_names: list[str] """ _validation = { 'type': {'required': True}, 'thumbprint': {'readonly': True}, 'issuer': {'readonly': True}, 'issued_date': {'readonly': True}, 'expiration_date': {'readonly': True}, 'activate_date': {'readonly': True}, 'subject_name': {'readonly': True}, 'dns_names': {'readonly': True}, } _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, 'thumbprint': {'key': 'thumbprint', 'type': 'str'}, 'issuer': {'key': 'issuer', 'type': 'str'}, 'issued_date': {'key': 'issuedDate', 'type': 'str'}, 'expiration_date': {'key': 'expirationDate', 'type': 'str'}, 'activate_date': {'key': 'activateDate', 'type': 'str'}, 'subject_name': {'key': 'subjectName', 'type': 'str'}, 'dns_names': {'key': 'dnsNames', 'type': '[str]'}, } _subtype_map = { 'type': {'ContentCertificate': 'ContentCertificateProperties', 'KeyVaultCertificate': 'KeyVaultCertificateProperties'} } def __init__( self, **kwargs ): """ """ super(CertificateProperties, self).__init__(**kwargs) self.type = None # type: Optional[str] self.thumbprint = None self.issuer = None self.issued_date = None self.expiration_date = None self.activate_date = None self.subject_name = None self.dns_names = None class CertificateResource(ProxyResource): """Certificate resource payload. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Fully qualified resource Id for the resource. :vartype id: str :ivar name: The name of the resource. :vartype name: str :ivar type: The type of the resource. :vartype type: str :ivar properties: Properties of the certificate resource payload. :vartype properties: ~azure.mgmt.appplatform.v2021_09_01_preview.models.CertificateProperties """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'properties': {'key': 'properties', 'type': 'CertificateProperties'}, } def __init__( self, *, properties: Optional["CertificateProperties"] = None, **kwargs ): """ :keyword properties: Properties of the certificate resource payload. :paramtype properties: ~azure.mgmt.appplatform.v2021_09_01_preview.models.CertificateProperties """ super(CertificateResource, self).__init__(**kwargs) self.properties = properties class CertificateResourceCollection(msrest.serialization.Model): """Collection compose of certificate resources list and a possible link for next page. :ivar value: The certificate resources list. :vartype value: list[~azure.mgmt.appplatform.v2021_09_01_preview.models.CertificateResource] :ivar next_link: The link to next page of certificate list. :vartype next_link: str """ _attribute_map = { 'value': {'key': 'value', 'type': '[CertificateResource]'}, 'next_link': {'key': 'nextLink', 'type': 'str'}, } def __init__( self, *, value: Optional[List["CertificateResource"]] = None, next_link: Optional[str] = None, **kwargs ): """ :keyword value: The certificate resources list. :paramtype value: list[~azure.mgmt.appplatform.v2021_09_01_preview.models.CertificateResource] :keyword next_link: The link to next page of certificate list. :paramtype next_link: str """ super(CertificateResourceCollection, self).__init__(**kwargs) self.value = value self.next_link = next_link class CloudErrorBody(msrest.serialization.Model): """An error response from the service. :ivar code: An identifier for the error. Codes are invariant and are intended to be consumed programmatically. :vartype code: str :ivar message: A message describing the error, intended to be suitable for display in a user interface. :vartype message: str :ivar target: The target of the particular error. For example, the name of the property in error. :vartype target: str :ivar details: A list of additional details about the error. :vartype details: list[~azure.mgmt.appplatform.v2021_09_01_preview.models.CloudErrorBody] """ _attribute_map = { 'code': {'key': 'code', 'type': 'str'}, 'message': {'key': 'message', 'type': 'str'}, 'target': {'key': 'target', 'type': 'str'}, 'details': {'key': 'details', 'type': '[CloudErrorBody]'}, } def __init__( self, *, code: Optional[str] = None, message: Optional[str] = None, target: Optional[str] = None, details: Optional[List["CloudErrorBody"]] = None, **kwargs ): """ :keyword code: An identifier for the error. Codes are invariant and are intended to be consumed programmatically. :paramtype code: str :keyword message: A message describing the error, intended to be suitable for display in a user interface. :paramtype message: str :keyword target: The target of the particular error. For example, the name of the property in error. :paramtype target: str :keyword details: A list of additional details about the error. :paramtype details: list[~azure.mgmt.appplatform.v2021_09_01_preview.models.CloudErrorBody] """ super(CloudErrorBody, self).__init__(**kwargs) self.code = code self.message = message self.target = target self.details = details class ClusterResourceProperties(msrest.serialization.Model): """Service properties payload. Variables are only populated by the server, and will be ignored when sending a request. :ivar provisioning_state: Provisioning state of the Service. Possible values include: "Creating", "Updating", "Starting", "Stopping", "Deleting", "Deleted", "Succeeded", "Failed", "Moving", "Moved", "MoveFailed". :vartype provisioning_state: str or ~azure.mgmt.appplatform.v2021_09_01_preview.models.ProvisioningState :ivar network_profile: Network profile of the Service. :vartype network_profile: ~azure.mgmt.appplatform.v2021_09_01_preview.models.NetworkProfile :ivar version: Version of the Service. :vartype version: int :ivar service_id: ServiceInstanceEntity GUID which uniquely identifies a created resource. :vartype service_id: str :ivar power_state: Power state of the Service. Possible values include: "Running", "Stopped". :vartype power_state: str or ~azure.mgmt.appplatform.v2021_09_01_preview.models.PowerState """ _validation = { 'provisioning_state': {'readonly': True}, 'version': {'readonly': True}, 'service_id': {'readonly': True}, 'power_state': {'readonly': True}, } _attribute_map = { 'provisioning_state': {'key': 'provisioningState', 'type': 'str'}, 'network_profile': {'key': 'networkProfile', 'type': 'NetworkProfile'}, 'version': {'key': 'version', 'type': 'int'}, 'service_id': {'key': 'serviceId', 'type': 'str'}, 'power_state': {'key': 'powerState', 'type': 'str'}, } def __init__( self, *, network_profile: Optional["NetworkProfile"] = None, **kwargs ): """ :keyword network_profile: Network profile of the Service. :paramtype network_profile: ~azure.mgmt.appplatform.v2021_09_01_preview.models.NetworkProfile """ super(ClusterResourceProperties, self).__init__(**kwargs) self.provisioning_state = None self.network_profile = network_profile self.version = None self.service_id = None self.power_state = None class ConfigServerGitProperty(msrest.serialization.Model): """Property of git. All required parameters must be populated in order to send to Azure. :ivar repositories: Repositories of git. :vartype repositories: list[~azure.mgmt.appplatform.v2021_09_01_preview.models.GitPatternRepository] :ivar uri: Required. URI of the repository. :vartype uri: str :ivar label: Label of the repository. :vartype label: str :ivar search_paths: Searching path of the repository. :vartype search_paths: list[str] :ivar username: Username of git repository basic auth. :vartype username: str :ivar password: Password of git repository basic auth. :vartype password: str :ivar host_key: Public sshKey of git repository. :vartype host_key: str :ivar host_key_algorithm: SshKey algorithm of git repository. :vartype host_key_algorithm: str :ivar private_key: Private sshKey algorithm of git repository. :vartype private_key: str :ivar strict_host_key_checking: Strict host key checking or not. :vartype strict_host_key_checking: bool """ _validation = { 'uri': {'required': True}, } _attribute_map = { 'repositories': {'key': 'repositories', 'type': '[GitPatternRepository]'}, 'uri': {'key': 'uri', 'type': 'str'}, 'label': {'key': 'label', 'type': 'str'}, 'search_paths': {'key': 'searchPaths', 'type': '[str]'}, 'username': {'key': 'username', 'type': 'str'}, 'password': {'key': 'password', 'type': 'str'}, 'host_key': {'key': 'hostKey', 'type': 'str'}, 'host_key_algorithm': {'key': 'hostKeyAlgorithm', 'type': 'str'}, 'private_key': {'key': 'privateKey', 'type': 'str'}, 'strict_host_key_checking': {'key': 'strictHostKeyChecking', 'type': 'bool'}, } def __init__( self, *, uri: str, repositories: Optional[List["GitPatternRepository"]] = None, label: Optional[str] = None, search_paths: Optional[List[str]] = None, username: Optional[str] = None, password: Optional[str] = None, host_key: Optional[str] = None, host_key_algorithm: Optional[str] = None, private_key: Optional[str] = None, strict_host_key_checking: Optional[bool] = None, **kwargs ): """ :keyword repositories: Repositories of git. :paramtype repositories: list[~azure.mgmt.appplatform.v2021_09_01_preview.models.GitPatternRepository] :keyword uri: Required. URI of the repository. :paramtype uri: str :keyword label: Label of the repository. :paramtype label: str :keyword search_paths: Searching path of the repository. :paramtype search_paths: list[str] :keyword username: Username of git repository basic auth. :paramtype username: str :keyword password: Password of git repository basic auth. :paramtype password: str :keyword host_key: Public sshKey of git repository. :paramtype host_key: str :keyword host_key_algorithm: SshKey algorithm of git repository. :paramtype host_key_algorithm: str :keyword private_key: Private sshKey algorithm of git repository. :paramtype private_key: str :keyword strict_host_key_checking: Strict host key checking or not. :paramtype strict_host_key_checking: bool """ super(ConfigServerGitProperty, self).__init__(**kwargs) self.repositories = repositories self.uri = uri self.label = label self.search_paths = search_paths self.username = username self.password = password self.host_key = host_key self.host_key_algorithm = host_key_algorithm self.private_key = private_key self.strict_host_key_checking = strict_host_key_checking class ConfigServerProperties(msrest.serialization.Model): """Config server git properties payload. Variables are only populated by the server, and will be ignored when sending a request. :ivar provisioning_state: State of the config server. Possible values include: "NotAvailable", "Deleted", "Failed", "Succeeded", "Updating". :vartype provisioning_state: str or ~azure.mgmt.appplatform.v2021_09_01_preview.models.ConfigServerState :ivar error: Error when apply config server settings. :vartype error: ~azure.mgmt.appplatform.v2021_09_01_preview.models.Error :ivar config_server: Settings of config server. :vartype config_server: ~azure.mgmt.appplatform.v2021_09_01_preview.models.ConfigServerSettings """ _validation = { 'provisioning_state': {'readonly': True}, } _attribute_map = { 'provisioning_state': {'key': 'provisioningState', 'type': 'str'}, 'error': {'key': 'error', 'type': 'Error'}, 'config_server': {'key': 'configServer', 'type': 'ConfigServerSettings'}, } def __init__( self, *, error: Optional["Error"] = None, config_server: Optional["ConfigServerSettings"] = None, **kwargs ): """ :keyword error: Error when apply config server settings. :paramtype error: ~azure.mgmt.appplatform.v2021_09_01_preview.models.Error :keyword config_server: Settings of config server. :paramtype config_server: ~azure.mgmt.appplatform.v2021_09_01_preview.models.ConfigServerSettings """ super(ConfigServerProperties, self).__init__(**kwargs) self.provisioning_state = None self.error = error self.config_server = config_server class ConfigServerResource(ProxyResource): """Config Server resource. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Fully qualified resource Id for the resource. :vartype id: str :ivar name: The name of the resource. :vartype name: str :ivar type: The type of the resource. :vartype type: str :ivar properties: Properties of the Config Server resource. :vartype properties: ~azure.mgmt.appplatform.v2021_09_01_preview.models.ConfigServerProperties """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'properties': {'key': 'properties', 'type': 'ConfigServerProperties'}, } def __init__( self, *, properties: Optional["ConfigServerProperties"] = None, **kwargs ): """ :keyword properties: Properties of the Config Server resource. :paramtype properties: ~azure.mgmt.appplatform.v2021_09_01_preview.models.ConfigServerProperties """ super(ConfigServerResource, self).__init__(**kwargs) self.properties = properties class ConfigServerSettings(msrest.serialization.Model): """The settings of config server. :ivar git_property: Property of git environment. :vartype git_property: ~azure.mgmt.appplatform.v2021_09_01_preview.models.ConfigServerGitProperty """ _attribute_map = { 'git_property': {'key': 'gitProperty', 'type': 'ConfigServerGitProperty'}, } def __init__( self, *, git_property: Optional["ConfigServerGitProperty"] = None, **kwargs ): """ :keyword git_property: Property of git environment. :paramtype git_property: ~azure.mgmt.appplatform.v2021_09_01_preview.models.ConfigServerGitProperty """ super(ConfigServerSettings, self).__init__(**kwargs) self.git_property = git_property class ConfigServerSettingsErrorRecord(msrest.serialization.Model): """Error record of the config server settings. :ivar name: The name of the config server settings error record. :vartype name: str :ivar uri: The uri of the config server settings error record. :vartype uri: str :ivar messages: The detail error messages of the record. :vartype messages: list[str] """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'uri': {'key': 'uri', 'type': 'str'}, 'messages': {'key': 'messages', 'type': '[str]'}, } def __init__( self, *, name: Optional[str] = None, uri: Optional[str] = None, messages: Optional[List[str]] = None, **kwargs ): """ :keyword name: The name of the config server settings error record. :paramtype name: str :keyword uri: The uri of the config server settings error record. :paramtype uri: str :keyword messages: The detail error messages of the record. :paramtype messages: list[str] """ super(ConfigServerSettingsErrorRecord, self).__init__(**kwargs) self.name = name self.uri = uri self.messages = messages class ConfigServerSettingsValidateResult(msrest.serialization.Model): """Validation result for config server settings. :ivar is_valid: Indicate if the config server settings are valid. :vartype is_valid: bool :ivar details: The detail validation results. :vartype details: list[~azure.mgmt.appplatform.v2021_09_01_preview.models.ConfigServerSettingsErrorRecord] """ _attribute_map = { 'is_valid': {'key': 'isValid', 'type': 'bool'}, 'details': {'key': 'details', 'type': '[ConfigServerSettingsErrorRecord]'}, } def __init__( self, *, is_valid: Optional[bool] = None, details: Optional[List["ConfigServerSettingsErrorRecord"]] = None, **kwargs ): """ :keyword is_valid: Indicate if the config server settings are valid. :paramtype is_valid: bool :keyword details: The detail validation results. :paramtype details: list[~azure.mgmt.appplatform.v2021_09_01_preview.models.ConfigServerSettingsErrorRecord] """ super(ConfigServerSettingsValidateResult, self).__init__(**kwargs) self.is_valid = is_valid self.details = details class ContentCertificateProperties(CertificateProperties): """Properties of certificate imported from key vault. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar type: Required. The type of the certificate source.Constant filled by server. :vartype type: str :ivar thumbprint: The thumbprint of certificate. :vartype thumbprint: str :ivar issuer: The issuer of certificate. :vartype issuer: str :ivar issued_date: The issue date of certificate. :vartype issued_date: str :ivar expiration_date: The expiration date of certificate. :vartype expiration_date: str :ivar activate_date: The activate date of certificate. :vartype activate_date: str :ivar subject_name: The subject name of certificate. :vartype subject_name: str :ivar dns_names: The domain list of certificate. :vartype dns_names: list[str] :ivar content: The content of uploaded certificate. :vartype content: str """ _validation = { 'type': {'required': True}, 'thumbprint': {'readonly': True}, 'issuer': {'readonly': True}, 'issued_date': {'readonly': True}, 'expiration_date': {'readonly': True}, 'activate_date': {'readonly': True}, 'subject_name': {'readonly': True}, 'dns_names': {'readonly': True}, } _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, 'thumbprint': {'key': 'thumbprint', 'type': 'str'}, 'issuer': {'key': 'issuer', 'type': 'str'}, 'issued_date': {'key': 'issuedDate', 'type': 'str'}, 'expiration_date': {'key': 'expirationDate', 'type': 'str'}, 'activate_date': {'key': 'activateDate', 'type': 'str'}, 'subject_name': {'key': 'subjectName', 'type': 'str'}, 'dns_names': {'key': 'dnsNames', 'type': '[str]'}, 'content': {'key': 'content', 'type': 'str'}, } def __init__( self, *, content: Optional[str] = None, **kwargs ): """ :keyword content: The content of uploaded certificate. :paramtype content: str """ super(ContentCertificateProperties, self).__init__(**kwargs) self.type = 'ContentCertificate' # type: str self.content = content class CustomContainer(msrest.serialization.Model): """Custom container payload. :ivar server: The name of the registry that contains the container image. :vartype server: str :ivar container_image: Container image of the custom container. This should be in the form of :code:`<repository>`::code:`<tag>` without the server name of the registry. :vartype container_image: str :ivar command: Entrypoint array. Not executed within a shell. The docker image's ENTRYPOINT is used if this is not provided. :vartype command: list[str] :ivar args: Arguments to the entrypoint. The docker image's CMD is used if this is not provided. :vartype args: list[str] :ivar image_registry_credential: Credential of the image registry. :vartype image_registry_credential: ~azure.mgmt.appplatform.v2021_09_01_preview.models.ImageRegistryCredential """ _attribute_map = { 'server': {'key': 'server', 'type': 'str'}, 'container_image': {'key': 'containerImage', 'type': 'str'}, 'command': {'key': 'command', 'type': '[str]'}, 'args': {'key': 'args', 'type': '[str]'}, 'image_registry_credential': {'key': 'imageRegistryCredential', 'type': 'ImageRegistryCredential'}, } def __init__( self, *, server: Optional[str] = None, container_image: Optional[str] = None, command: Optional[List[str]] = None, args: Optional[List[str]] = None, image_registry_credential: Optional["ImageRegistryCredential"] = None, **kwargs ): """ :keyword server: The name of the registry that contains the container image. :paramtype server: str :keyword container_image: Container image of the custom container. This should be in the form of :code:`<repository>`::code:`<tag>` without the server name of the registry. :paramtype container_image: str :keyword command: Entrypoint array. Not executed within a shell. The docker image's ENTRYPOINT is used if this is not provided. :paramtype command: list[str] :keyword args: Arguments to the entrypoint. The docker image's CMD is used if this is not provided. :paramtype args: list[str] :keyword image_registry_credential: Credential of the image registry. :paramtype image_registry_credential: ~azure.mgmt.appplatform.v2021_09_01_preview.models.ImageRegistryCredential """ super(CustomContainer, self).__init__(**kwargs) self.server = server self.container_image = container_image self.command = command self.args = args self.image_registry_credential = image_registry_credential class CustomDomainProperties(msrest.serialization.Model): """Custom domain of app resource payload. Variables are only populated by the server, and will be ignored when sending a request. :ivar thumbprint: The thumbprint of bound certificate. :vartype thumbprint: str :ivar app_name: The app name of domain. :vartype app_name: str :ivar cert_name: The bound certificate name of domain. :vartype cert_name: str """ _validation = { 'app_name': {'readonly': True}, } _attribute_map = { 'thumbprint': {'key': 'thumbprint', 'type': 'str'}, 'app_name': {'key': 'appName', 'type': 'str'}, 'cert_name': {'key': 'certName', 'type': 'str'}, } def __init__( self, *, thumbprint: Optional[str] = None, cert_name: Optional[str] = None, **kwargs ): """ :keyword thumbprint: The thumbprint of bound certificate. :paramtype thumbprint: str :keyword cert_name: The bound certificate name of domain. :paramtype cert_name: str """ super(CustomDomainProperties, self).__init__(**kwargs) self.thumbprint = thumbprint self.app_name = None self.cert_name = cert_name class CustomDomainResource(ProxyResource): """Custom domain resource payload. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Fully qualified resource Id for the resource. :vartype id: str :ivar name: The name of the resource. :vartype name: str :ivar type: The type of the resource. :vartype type: str :ivar properties: Properties of the custom domain resource. :vartype properties: ~azure.mgmt.appplatform.v2021_09_01_preview.models.CustomDomainProperties """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'properties': {'key': 'properties', 'type': 'CustomDomainProperties'}, } def __init__( self, *, properties: Optional["CustomDomainProperties"] = None, **kwargs ): """ :keyword properties: Properties of the custom domain resource. :paramtype properties: ~azure.mgmt.appplatform.v2021_09_01_preview.models.CustomDomainProperties """ super(CustomDomainResource, self).__init__(**kwargs) self.properties = properties class CustomDomainResourceCollection(msrest.serialization.Model): """Collection compose of a custom domain resources list and a possible link for next page. :ivar value: The custom domain resources list. :vartype value: list[~azure.mgmt.appplatform.v2021_09_01_preview.models.CustomDomainResource] :ivar next_link: The link to next page of custom domain list. :vartype next_link: str """ _attribute_map = { 'value': {'key': 'value', 'type': '[CustomDomainResource]'}, 'next_link': {'key': 'nextLink', 'type': 'str'}, } def __init__( self, *, value: Optional[List["CustomDomainResource"]] = None, next_link: Optional[str] = None, **kwargs ): """ :keyword value: The custom domain resources list. :paramtype value: list[~azure.mgmt.appplatform.v2021_09_01_preview.models.CustomDomainResource] :keyword next_link: The link to next page of custom domain list. :paramtype next_link: str """ super(CustomDomainResourceCollection, self).__init__(**kwargs) self.value = value self.next_link = next_link class CustomDomainValidatePayload(msrest.serialization.Model): """Custom domain validate payload. All required parameters must be populated in order to send to Azure. :ivar name: Required. Name to be validated. :vartype name: str """ _validation = { 'name': {'required': True}, } _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, } def __init__( self, *, name: str, **kwargs ): """ :keyword name: Required. Name to be validated. :paramtype name: str """ super(CustomDomainValidatePayload, self).__init__(**kwargs) self.name = name class CustomDomainValidateResult(msrest.serialization.Model): """Validation result for custom domain. :ivar is_valid: Indicates if domain name is valid. :vartype is_valid: bool :ivar message: Message of why domain name is invalid. :vartype message: str """ _attribute_map = { 'is_valid': {'key': 'isValid', 'type': 'bool'}, 'message': {'key': 'message', 'type': 'str'}, } def __init__( self, *, is_valid: Optional[bool] = None, message: Optional[str] = None, **kwargs ): """ :keyword is_valid: Indicates if domain name is valid. :paramtype is_valid: bool :keyword message: Message of why domain name is invalid. :paramtype message: str """ super(CustomDomainValidateResult, self).__init__(**kwargs) self.is_valid = is_valid self.message = message class CustomPersistentDiskResource(msrest.serialization.Model): """Custom persistent disk resource payload. All required parameters must be populated in order to send to Azure. :ivar custom_persistent_disk_properties: Properties of the custom persistent disk resource payload. :vartype custom_persistent_disk_properties: ~azure.mgmt.appplatform.v2021_09_01_preview.models.CustomPersistentDiskProperties :ivar storage_id: Required. The resource id of Azure Spring Cloud Storage resource. :vartype storage_id: str """ _validation = { 'storage_id': {'required': True}, } _attribute_map = { 'custom_persistent_disk_properties': {'key': 'customPersistentDiskProperties', 'type': 'CustomPersistentDiskProperties'}, 'storage_id': {'key': 'storageId', 'type': 'str'}, } def __init__( self, *, storage_id: str, custom_persistent_disk_properties: Optional["CustomPersistentDiskProperties"] = None, **kwargs ): """ :keyword custom_persistent_disk_properties: Properties of the custom persistent disk resource payload. :paramtype custom_persistent_disk_properties: ~azure.mgmt.appplatform.v2021_09_01_preview.models.CustomPersistentDiskProperties :keyword storage_id: Required. The resource id of Azure Spring Cloud Storage resource. :paramtype storage_id: str """ super(CustomPersistentDiskResource, self).__init__(**kwargs) self.custom_persistent_disk_properties = custom_persistent_disk_properties self.storage_id = storage_id class DeploymentInstance(msrest.serialization.Model): """Deployment instance payload. Variables are only populated by the server, and will be ignored when sending a request. :ivar name: Name of the deployment instance. :vartype name: str :ivar status: Status of the deployment instance. :vartype status: str :ivar reason: Failed reason of the deployment instance. :vartype reason: str :ivar discovery_status: Discovery status of the deployment instance. :vartype discovery_status: str :ivar start_time: Start time of the deployment instance. :vartype start_time: str """ _validation = { 'name': {'readonly': True}, 'status': {'readonly': True}, 'reason': {'readonly': True}, 'discovery_status': {'readonly': True}, 'start_time': {'readonly': True}, } _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'status': {'key': 'status', 'type': 'str'}, 'reason': {'key': 'reason', 'type': 'str'}, 'discovery_status': {'key': 'discoveryStatus', 'type': 'str'}, 'start_time': {'key': 'startTime', 'type': 'str'}, } def __init__( self, **kwargs ): """ """ super(DeploymentInstance, self).__init__(**kwargs) self.name = None self.status = None self.reason = None self.discovery_status = None self.start_time = None class DeploymentResource(ProxyResource): """Deployment resource payload. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Fully qualified resource Id for the resource. :vartype id: str :ivar name: The name of the resource. :vartype name: str :ivar type: The type of the resource. :vartype type: str :ivar properties: Properties of the Deployment resource. :vartype properties: ~azure.mgmt.appplatform.v2021_09_01_preview.models.DeploymentResourceProperties :ivar sku: Sku of the Deployment resource. :vartype sku: ~azure.mgmt.appplatform.v2021_09_01_preview.models.Sku """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'properties': {'key': 'properties', 'type': 'DeploymentResourceProperties'}, 'sku': {'key': 'sku', 'type': 'Sku'}, } def __init__( self, *, properties: Optional["DeploymentResourceProperties"] = None, sku: Optional["Sku"] = None, **kwargs ): """ :keyword properties: Properties of the Deployment resource. :paramtype properties: ~azure.mgmt.appplatform.v2021_09_01_preview.models.DeploymentResourceProperties :keyword sku: Sku of the Deployment resource. :paramtype sku: ~azure.mgmt.appplatform.v2021_09_01_preview.models.Sku """ super(DeploymentResource, self).__init__(**kwargs) self.properties = properties self.sku = sku class DeploymentResourceCollection(msrest.serialization.Model): """Object that includes an array of App resources and a possible link for next set. :ivar value: Collection of Deployment resources. :vartype value: list[~azure.mgmt.appplatform.v2021_09_01_preview.models.DeploymentResource] :ivar next_link: URL client should use to fetch the next page (per server side paging). It's null for now, added for future use. :vartype next_link: str """ _attribute_map = { 'value': {'key': 'value', 'type': '[DeploymentResource]'}, 'next_link': {'key': 'nextLink', 'type': 'str'}, } def __init__( self, *, value: Optional[List["DeploymentResource"]] = None, next_link: Optional[str] = None, **kwargs ): """ :keyword value: Collection of Deployment resources. :paramtype value: list[~azure.mgmt.appplatform.v2021_09_01_preview.models.DeploymentResource] :keyword next_link: URL client should use to fetch the next page (per server side paging). It's null for now, added for future use. :paramtype next_link: str """ super(DeploymentResourceCollection, self).__init__(**kwargs) self.value = value self.next_link = next_link class DeploymentResourceProperties(msrest.serialization.Model): """Deployment resource properties payload. Variables are only populated by the server, and will be ignored when sending a request. :ivar source: Uploaded source information of the deployment. :vartype source: ~azure.mgmt.appplatform.v2021_09_01_preview.models.UserSourceInfo :ivar app_name: App name of the deployment. :vartype app_name: str :ivar deployment_settings: Deployment settings of the Deployment. :vartype deployment_settings: ~azure.mgmt.appplatform.v2021_09_01_preview.models.DeploymentSettings :ivar provisioning_state: Provisioning state of the Deployment. Possible values include: "Creating", "Updating", "Succeeded", "Failed". :vartype provisioning_state: str or ~azure.mgmt.appplatform.v2021_09_01_preview.models.DeploymentResourceProvisioningState :ivar status: Status of the Deployment. Possible values include: "Unknown", "Stopped", "Running", "Failed", "Allocating", "Upgrading", "Compiling". :vartype status: str or ~azure.mgmt.appplatform.v2021_09_01_preview.models.DeploymentResourceStatus :ivar active: Indicates whether the Deployment is active. :vartype active: bool :ivar created_time: Date time when the resource is created. :vartype created_time: ~datetime.datetime :ivar instances: Collection of instances belong to the Deployment. :vartype instances: list[~azure.mgmt.appplatform.v2021_09_01_preview.models.DeploymentInstance] """ _validation = { 'app_name': {'readonly': True}, 'provisioning_state': {'readonly': True}, 'status': {'readonly': True}, 'active': {'readonly': True}, 'created_time': {'readonly': True}, 'instances': {'readonly': True}, } _attribute_map = { 'source': {'key': 'source', 'type': 'UserSourceInfo'}, 'app_name': {'key': 'appName', 'type': 'str'}, 'deployment_settings': {'key': 'deploymentSettings', 'type': 'DeploymentSettings'}, 'provisioning_state': {'key': 'provisioningState', 'type': 'str'}, 'status': {'key': 'status', 'type': 'str'}, 'active': {'key': 'active', 'type': 'bool'}, 'created_time': {'key': 'createdTime', 'type': 'iso-8601'}, 'instances': {'key': 'instances', 'type': '[DeploymentInstance]'}, } def __init__( self, *, source: Optional["UserSourceInfo"] = None, deployment_settings: Optional["DeploymentSettings"] = None, **kwargs ): """ :keyword source: Uploaded source information of the deployment. :paramtype source: ~azure.mgmt.appplatform.v2021_09_01_preview.models.UserSourceInfo :keyword deployment_settings: Deployment settings of the Deployment. :paramtype deployment_settings: ~azure.mgmt.appplatform.v2021_09_01_preview.models.DeploymentSettings """ super(DeploymentResourceProperties, self).__init__(**kwargs) self.source = source self.app_name = None self.deployment_settings = deployment_settings self.provisioning_state = None self.status = None self.active = None self.created_time = None self.instances = None class DeploymentSettings(msrest.serialization.Model): """Deployment settings payload. :ivar cpu: Required CPU. This should be 1 for Basic tier, and in range [1, 4] for Standard tier. This is deprecated starting from API version 2021-09-01-preview. Please use the resourceRequests field to set the CPU size. :vartype cpu: int :ivar memory_in_gb: Required Memory size in GB. This should be in range [1, 2] for Basic tier, and in range [1, 8] for Standard tier. This is deprecated starting from API version 2021-09-01-preview. Please use the resourceRequests field to set the the memory size. :vartype memory_in_gb: int :ivar resource_requests: The requested resource quantity for required CPU and Memory. It is recommended that using this field to represent the required CPU and Memory, the old field cpu and memoryInGB will be deprecated later. :vartype resource_requests: ~azure.mgmt.appplatform.v2021_09_01_preview.models.ResourceRequests :ivar jvm_options: JVM parameter. :vartype jvm_options: str :ivar net_core_main_entry_path: The path to the .NET executable relative to zip root. :vartype net_core_main_entry_path: str :ivar environment_variables: Collection of environment variables. :vartype environment_variables: dict[str, str] :ivar runtime_version: Runtime version. Possible values include: "Java_8", "Java_11", "NetCore_31". Default value: "Java_8". :vartype runtime_version: str or ~azure.mgmt.appplatform.v2021_09_01_preview.models.RuntimeVersion :ivar container_probe_settings: Container liveness and readiness probe settings. :vartype container_probe_settings: ~azure.mgmt.appplatform.v2021_09_01_preview.models.DeploymentSettingsContainerProbeSettings """ _attribute_map = { 'cpu': {'key': 'cpu', 'type': 'int'}, 'memory_in_gb': {'key': 'memoryInGB', 'type': 'int'}, 'resource_requests': {'key': 'resourceRequests', 'type': 'ResourceRequests'}, 'jvm_options': {'key': 'jvmOptions', 'type': 'str'}, 'net_core_main_entry_path': {'key': 'netCoreMainEntryPath', 'type': 'str'}, 'environment_variables': {'key': 'environmentVariables', 'type': '{str}'}, 'runtime_version': {'key': 'runtimeVersion', 'type': 'str'}, 'container_probe_settings': {'key': 'containerProbeSettings', 'type': 'DeploymentSettingsContainerProbeSettings'}, } def __init__( self, *, cpu: Optional[int] = 1, memory_in_gb: Optional[int] = 1, resource_requests: Optional["ResourceRequests"] = None, jvm_options: Optional[str] = None, net_core_main_entry_path: Optional[str] = None, environment_variables: Optional[Dict[str, str]] = None, runtime_version: Optional[Union[str, "RuntimeVersion"]] = "Java_8", container_probe_settings: Optional["DeploymentSettingsContainerProbeSettings"] = None, **kwargs ): """ :keyword cpu: Required CPU. This should be 1 for Basic tier, and in range [1, 4] for Standard tier. This is deprecated starting from API version 2021-09-01-preview. Please use the resourceRequests field to set the CPU size. :paramtype cpu: int :keyword memory_in_gb: Required Memory size in GB. This should be in range [1, 2] for Basic tier, and in range [1, 8] for Standard tier. This is deprecated starting from API version 2021-09-01-preview. Please use the resourceRequests field to set the the memory size. :paramtype memory_in_gb: int :keyword resource_requests: The requested resource quantity for required CPU and Memory. It is recommended that using this field to represent the required CPU and Memory, the old field cpu and memoryInGB will be deprecated later. :paramtype resource_requests: ~azure.mgmt.appplatform.v2021_09_01_preview.models.ResourceRequests :keyword jvm_options: JVM parameter. :paramtype jvm_options: str :keyword net_core_main_entry_path: The path to the .NET executable relative to zip root. :paramtype net_core_main_entry_path: str :keyword environment_variables: Collection of environment variables. :paramtype environment_variables: dict[str, str] :keyword runtime_version: Runtime version. Possible values include: "Java_8", "Java_11", "NetCore_31". Default value: "Java_8". :paramtype runtime_version: str or ~azure.mgmt.appplatform.v2021_09_01_preview.models.RuntimeVersion :keyword container_probe_settings: Container liveness and readiness probe settings. :paramtype container_probe_settings: ~azure.mgmt.appplatform.v2021_09_01_preview.models.DeploymentSettingsContainerProbeSettings """ super(DeploymentSettings, self).__init__(**kwargs) self.cpu = cpu self.memory_in_gb = memory_in_gb self.resource_requests = resource_requests self.jvm_options = jvm_options self.net_core_main_entry_path = net_core_main_entry_path self.environment_variables = environment_variables self.runtime_version = runtime_version self.container_probe_settings = container_probe_settings class DeploymentSettingsContainerProbeSettings(msrest.serialization.Model): """Container liveness and readiness probe settings. :ivar disable_probe: Indicates whether disable the liveness and readiness probe. :vartype disable_probe: bool """ _attribute_map = { 'disable_probe': {'key': 'disableProbe', 'type': 'bool'}, } def __init__( self, *, disable_probe: Optional[bool] = None, **kwargs ): """ :keyword disable_probe: Indicates whether disable the liveness and readiness probe. :paramtype disable_probe: bool """ super(DeploymentSettingsContainerProbeSettings, self).__init__(**kwargs) self.disable_probe = disable_probe class DiagnosticParameters(msrest.serialization.Model): """Diagnostic parameters of diagnostic operations. :ivar app_instance: App instance name. :vartype app_instance: str :ivar file_path: Your target file path in your own BYOS. :vartype file_path: str :ivar duration: Duration of your JFR. 1 min can be represented by 1m or 60s. :vartype duration: str """ _attribute_map = { 'app_instance': {'key': 'appInstance', 'type': 'str'}, 'file_path': {'key': 'filePath', 'type': 'str'}, 'duration': {'key': 'duration', 'type': 'str'}, } def __init__( self, *, app_instance: Optional[str] = None, file_path: Optional[str] = None, duration: Optional[str] = None, **kwargs ): """ :keyword app_instance: App instance name. :paramtype app_instance: str :keyword file_path: Your target file path in your own BYOS. :paramtype file_path: str :keyword duration: Duration of your JFR. 1 min can be represented by 1m or 60s. :paramtype duration: str """ super(DiagnosticParameters, self).__init__(**kwargs) self.app_instance = app_instance self.file_path = file_path self.duration = duration class Error(msrest.serialization.Model): """The error code compose of code and message. :ivar code: The code of error. :vartype code: str :ivar message: The message of error. :vartype message: str """ _attribute_map = { 'code': {'key': 'code', 'type': 'str'}, 'message': {'key': 'message', 'type': 'str'}, } def __init__( self, *, code: Optional[str] = None, message: Optional[str] = None, **kwargs ): """ :keyword code: The code of error. :paramtype code: str :keyword message: The message of error. :paramtype message: str """ super(Error, self).__init__(**kwargs) self.code = code self.message = message class GitPatternRepository(msrest.serialization.Model): """Git repository property payload. All required parameters must be populated in order to send to Azure. :ivar name: Required. Name of the repository. :vartype name: str :ivar pattern: Collection of pattern of the repository. :vartype pattern: list[str] :ivar uri: Required. URI of the repository. :vartype uri: str :ivar label: Label of the repository. :vartype label: str :ivar search_paths: Searching path of the repository. :vartype search_paths: list[str] :ivar username: Username of git repository basic auth. :vartype username: str :ivar password: Password of git repository basic auth. :vartype password: str :ivar host_key: Public sshKey of git repository. :vartype host_key: str :ivar host_key_algorithm: SshKey algorithm of git repository. :vartype host_key_algorithm: str :ivar private_key: Private sshKey algorithm of git repository. :vartype private_key: str :ivar strict_host_key_checking: Strict host key checking or not. :vartype strict_host_key_checking: bool """ _validation = { 'name': {'required': True}, 'uri': {'required': True}, } _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'pattern': {'key': 'pattern', 'type': '[str]'}, 'uri': {'key': 'uri', 'type': 'str'}, 'label': {'key': 'label', 'type': 'str'}, 'search_paths': {'key': 'searchPaths', 'type': '[str]'}, 'username': {'key': 'username', 'type': 'str'}, 'password': {'key': 'password', 'type': 'str'}, 'host_key': {'key': 'hostKey', 'type': 'str'}, 'host_key_algorithm': {'key': 'hostKeyAlgorithm', 'type': 'str'}, 'private_key': {'key': 'privateKey', 'type': 'str'}, 'strict_host_key_checking': {'key': 'strictHostKeyChecking', 'type': 'bool'}, } def __init__( self, *, name: str, uri: str, pattern: Optional[List[str]] = None, label: Optional[str] = None, search_paths: Optional[List[str]] = None, username: Optional[str] = None, password: Optional[str] = None, host_key: Optional[str] = None, host_key_algorithm: Optional[str] = None, private_key: Optional[str] = None, strict_host_key_checking: Optional[bool] = None, **kwargs ): """ :keyword name: Required. Name of the repository. :paramtype name: str :keyword pattern: Collection of pattern of the repository. :paramtype pattern: list[str] :keyword uri: Required. URI of the repository. :paramtype uri: str :keyword label: Label of the repository. :paramtype label: str :keyword search_paths: Searching path of the repository. :paramtype search_paths: list[str] :keyword username: Username of git repository basic auth. :paramtype username: str :keyword password: Password of git repository basic auth. :paramtype password: str :keyword host_key: Public sshKey of git repository. :paramtype host_key: str :keyword host_key_algorithm: SshKey algorithm of git repository. :paramtype host_key_algorithm: str :keyword private_key: Private sshKey algorithm of git repository. :paramtype private_key: str :keyword strict_host_key_checking: Strict host key checking or not. :paramtype strict_host_key_checking: bool """ super(GitPatternRepository, self).__init__(**kwargs) self.name = name self.pattern = pattern self.uri = uri self.label = label self.search_paths = search_paths self.username = username self.password = password self.host_key = host_key self.host_key_algorithm = host_key_algorithm self.private_key = private_key self.strict_host_key_checking = strict_host_key_checking class ImageRegistryCredential(msrest.serialization.Model): """Credential of the image registry. :ivar username: The username of the image registry credential. :vartype username: str :ivar password: The password of the image registry credential. :vartype password: str """ _attribute_map = { 'username': {'key': 'username', 'type': 'str'}, 'password': {'key': 'password', 'type': 'str'}, } def __init__( self, *, username: Optional[str] = None, password: Optional[str] = None, **kwargs ): """ :keyword username: The username of the image registry credential. :paramtype username: str :keyword password: The password of the image registry credential. :paramtype password: str """ super(ImageRegistryCredential, self).__init__(**kwargs) self.username = username self.password = password class KeyVaultCertificateProperties(CertificateProperties): """Properties of certificate imported from key vault. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar type: Required. The type of the certificate source.Constant filled by server. :vartype type: str :ivar thumbprint: The thumbprint of certificate. :vartype thumbprint: str :ivar issuer: The issuer of certificate. :vartype issuer: str :ivar issued_date: The issue date of certificate. :vartype issued_date: str :ivar expiration_date: The expiration date of certificate. :vartype expiration_date: str :ivar activate_date: The activate date of certificate. :vartype activate_date: str :ivar subject_name: The subject name of certificate. :vartype subject_name: str :ivar dns_names: The domain list of certificate. :vartype dns_names: list[str] :ivar vault_uri: Required. The vault uri of user key vault. :vartype vault_uri: str :ivar key_vault_cert_name: Required. The certificate name of key vault. :vartype key_vault_cert_name: str :ivar cert_version: The certificate version of key vault. :vartype cert_version: str :ivar exclude_private_key: Optional. If set to true, it will not import private key from key vault. :vartype exclude_private_key: bool """ _validation = { 'type': {'required': True}, 'thumbprint': {'readonly': True}, 'issuer': {'readonly': True}, 'issued_date': {'readonly': True}, 'expiration_date': {'readonly': True}, 'activate_date': {'readonly': True}, 'subject_name': {'readonly': True}, 'dns_names': {'readonly': True}, 'vault_uri': {'required': True}, 'key_vault_cert_name': {'required': True}, } _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, 'thumbprint': {'key': 'thumbprint', 'type': 'str'}, 'issuer': {'key': 'issuer', 'type': 'str'}, 'issued_date': {'key': 'issuedDate', 'type': 'str'}, 'expiration_date': {'key': 'expirationDate', 'type': 'str'}, 'activate_date': {'key': 'activateDate', 'type': 'str'}, 'subject_name': {'key': 'subjectName', 'type': 'str'}, 'dns_names': {'key': 'dnsNames', 'type': '[str]'}, 'vault_uri': {'key': 'vaultUri', 'type': 'str'}, 'key_vault_cert_name': {'key': 'keyVaultCertName', 'type': 'str'}, 'cert_version': {'key': 'certVersion', 'type': 'str'}, 'exclude_private_key': {'key': 'excludePrivateKey', 'type': 'bool'}, } def __init__( self, *, vault_uri: str, key_vault_cert_name: str, cert_version: Optional[str] = None, exclude_private_key: Optional[bool] = False, **kwargs ): """ :keyword vault_uri: Required. The vault uri of user key vault. :paramtype vault_uri: str :keyword key_vault_cert_name: Required. The certificate name of key vault. :paramtype key_vault_cert_name: str :keyword cert_version: The certificate version of key vault. :paramtype cert_version: str :keyword exclude_private_key: Optional. If set to true, it will not import private key from key vault. :paramtype exclude_private_key: bool """ super(KeyVaultCertificateProperties, self).__init__(**kwargs) self.type = 'KeyVaultCertificate' # type: str self.vault_uri = vault_uri self.key_vault_cert_name = key_vault_cert_name self.cert_version = cert_version self.exclude_private_key = exclude_private_key class LoadedCertificate(msrest.serialization.Model): """Loaded certificate payload. All required parameters must be populated in order to send to Azure. :ivar resource_id: Required. Resource Id of loaded certificate. :vartype resource_id: str :ivar load_trust_store: Indicate whether the certificate will be loaded into default trust store, only work for Java runtime. :vartype load_trust_store: bool """ _validation = { 'resource_id': {'required': True}, } _attribute_map = { 'resource_id': {'key': 'resourceId', 'type': 'str'}, 'load_trust_store': {'key': 'loadTrustStore', 'type': 'bool'}, } def __init__( self, *, resource_id: str, load_trust_store: Optional[bool] = False, **kwargs ): """ :keyword resource_id: Required. Resource Id of loaded certificate. :paramtype resource_id: str :keyword load_trust_store: Indicate whether the certificate will be loaded into default trust store, only work for Java runtime. :paramtype load_trust_store: bool """ super(LoadedCertificate, self).__init__(**kwargs) self.resource_id = resource_id self.load_trust_store = load_trust_store class LogFileUrlResponse(msrest.serialization.Model): """Log file URL payload. All required parameters must be populated in order to send to Azure. :ivar url: Required. URL of the log file. :vartype url: str """ _validation = { 'url': {'required': True}, } _attribute_map = { 'url': {'key': 'url', 'type': 'str'}, } def __init__( self, *, url: str, **kwargs ): """ :keyword url: Required. URL of the log file. :paramtype url: str """ super(LogFileUrlResponse, self).__init__(**kwargs) self.url = url class LogSpecification(msrest.serialization.Model): """Specifications of the Log for Azure Monitoring. :ivar name: Name of the log. :vartype name: str :ivar display_name: Localized friendly display name of the log. :vartype display_name: str :ivar blob_duration: Blob duration of the log. :vartype blob_duration: str """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'display_name': {'key': 'displayName', 'type': 'str'}, 'blob_duration': {'key': 'blobDuration', 'type': 'str'}, } def __init__( self, *, name: Optional[str] = None, display_name: Optional[str] = None, blob_duration: Optional[str] = None, **kwargs ): """ :keyword name: Name of the log. :paramtype name: str :keyword display_name: Localized friendly display name of the log. :paramtype display_name: str :keyword blob_duration: Blob duration of the log. :paramtype blob_duration: str """ super(LogSpecification, self).__init__(**kwargs) self.name = name self.display_name = display_name self.blob_duration = blob_duration class ManagedIdentityProperties(msrest.serialization.Model): """Managed identity properties retrieved from ARM request headers. :ivar type: Type of the managed identity. Possible values include: "None", "SystemAssigned", "UserAssigned", "SystemAssigned,UserAssigned". :vartype type: str or ~azure.mgmt.appplatform.v2021_09_01_preview.models.ManagedIdentityType :ivar principal_id: Principal Id. :vartype principal_id: str :ivar tenant_id: Tenant Id. :vartype tenant_id: str """ _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, 'principal_id': {'key': 'principalId', 'type': 'str'}, 'tenant_id': {'key': 'tenantId', 'type': 'str'}, } def __init__( self, *, type: Optional[Union[str, "ManagedIdentityType"]] = None, principal_id: Optional[str] = None, tenant_id: Optional[str] = None, **kwargs ): """ :keyword type: Type of the managed identity. Possible values include: "None", "SystemAssigned", "UserAssigned", "SystemAssigned,UserAssigned". :paramtype type: str or ~azure.mgmt.appplatform.v2021_09_01_preview.models.ManagedIdentityType :keyword principal_id: Principal Id. :paramtype principal_id: str :keyword tenant_id: Tenant Id. :paramtype tenant_id: str """ super(ManagedIdentityProperties, self).__init__(**kwargs) self.type = type self.principal_id = principal_id self.tenant_id = tenant_id class MetricDimension(msrest.serialization.Model): """Specifications of the Dimension of metrics. :ivar name: Name of the dimension. :vartype name: str :ivar display_name: Localized friendly display name of the dimension. :vartype display_name: str :ivar to_be_exported_for_shoebox: Whether this dimension should be included for the Shoebox export scenario. :vartype to_be_exported_for_shoebox: bool """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'display_name': {'key': 'displayName', 'type': 'str'}, 'to_be_exported_for_shoebox': {'key': 'toBeExportedForShoebox', 'type': 'bool'}, } def __init__( self, *, name: Optional[str] = None, display_name: Optional[str] = None, to_be_exported_for_shoebox: Optional[bool] = None, **kwargs ): """ :keyword name: Name of the dimension. :paramtype name: str :keyword display_name: Localized friendly display name of the dimension. :paramtype display_name: str :keyword to_be_exported_for_shoebox: Whether this dimension should be included for the Shoebox export scenario. :paramtype to_be_exported_for_shoebox: bool """ super(MetricDimension, self).__init__(**kwargs) self.name = name self.display_name = display_name self.to_be_exported_for_shoebox = to_be_exported_for_shoebox class MetricSpecification(msrest.serialization.Model): """Specifications of the Metrics for Azure Monitoring. :ivar name: Name of the metric. :vartype name: str :ivar display_name: Localized friendly display name of the metric. :vartype display_name: str :ivar display_description: Localized friendly description of the metric. :vartype display_description: str :ivar unit: Unit that makes sense for the metric. :vartype unit: str :ivar category: Name of the metric category that the metric belongs to. A metric can only belong to a single category. :vartype category: str :ivar aggregation_type: Only provide one value for this field. Valid values: Average, Minimum, Maximum, Total, Count. :vartype aggregation_type: str :ivar supported_aggregation_types: Supported aggregation types. :vartype supported_aggregation_types: list[str] :ivar supported_time_grain_types: Supported time grain types. :vartype supported_time_grain_types: list[str] :ivar fill_gap_with_zero: Optional. If set to true, then zero will be returned for time duration where no metric is emitted/published. :vartype fill_gap_with_zero: bool :ivar dimensions: Dimensions of the metric. :vartype dimensions: list[~azure.mgmt.appplatform.v2021_09_01_preview.models.MetricDimension] :ivar source_mdm_namespace: Name of the MDM namespace. Optional. :vartype source_mdm_namespace: str """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'display_name': {'key': 'displayName', 'type': 'str'}, 'display_description': {'key': 'displayDescription', 'type': 'str'}, 'unit': {'key': 'unit', 'type': 'str'}, 'category': {'key': 'category', 'type': 'str'}, 'aggregation_type': {'key': 'aggregationType', 'type': 'str'}, 'supported_aggregation_types': {'key': 'supportedAggregationTypes', 'type': '[str]'}, 'supported_time_grain_types': {'key': 'supportedTimeGrainTypes', 'type': '[str]'}, 'fill_gap_with_zero': {'key': 'fillGapWithZero', 'type': 'bool'}, 'dimensions': {'key': 'dimensions', 'type': '[MetricDimension]'}, 'source_mdm_namespace': {'key': 'sourceMdmNamespace', 'type': 'str'}, } def __init__( self, *, name: Optional[str] = None, display_name: Optional[str] = None, display_description: Optional[str] = None, unit: Optional[str] = None, category: Optional[str] = None, aggregation_type: Optional[str] = None, supported_aggregation_types: Optional[List[str]] = None, supported_time_grain_types: Optional[List[str]] = None, fill_gap_with_zero: Optional[bool] = None, dimensions: Optional[List["MetricDimension"]] = None, source_mdm_namespace: Optional[str] = None, **kwargs ): """ :keyword name: Name of the metric. :paramtype name: str :keyword display_name: Localized friendly display name of the metric. :paramtype display_name: str :keyword display_description: Localized friendly description of the metric. :paramtype display_description: str :keyword unit: Unit that makes sense for the metric. :paramtype unit: str :keyword category: Name of the metric category that the metric belongs to. A metric can only belong to a single category. :paramtype category: str :keyword aggregation_type: Only provide one value for this field. Valid values: Average, Minimum, Maximum, Total, Count. :paramtype aggregation_type: str :keyword supported_aggregation_types: Supported aggregation types. :paramtype supported_aggregation_types: list[str] :keyword supported_time_grain_types: Supported time grain types. :paramtype supported_time_grain_types: list[str] :keyword fill_gap_with_zero: Optional. If set to true, then zero will be returned for time duration where no metric is emitted/published. :paramtype fill_gap_with_zero: bool :keyword dimensions: Dimensions of the metric. :paramtype dimensions: list[~azure.mgmt.appplatform.v2021_09_01_preview.models.MetricDimension] :keyword source_mdm_namespace: Name of the MDM namespace. Optional. :paramtype source_mdm_namespace: str """ super(MetricSpecification, self).__init__(**kwargs) self.name = name self.display_name = display_name self.display_description = display_description self.unit = unit self.category = category self.aggregation_type = aggregation_type self.supported_aggregation_types = supported_aggregation_types self.supported_time_grain_types = supported_time_grain_types self.fill_gap_with_zero = fill_gap_with_zero self.dimensions = dimensions self.source_mdm_namespace = source_mdm_namespace class MonitoringSettingProperties(msrest.serialization.Model): """Monitoring Setting properties payload. Variables are only populated by the server, and will be ignored when sending a request. :ivar provisioning_state: State of the Monitoring Setting. Possible values include: "NotAvailable", "Failed", "Succeeded", "Updating". :vartype provisioning_state: str or ~azure.mgmt.appplatform.v2021_09_01_preview.models.MonitoringSettingState :ivar error: Error when apply Monitoring Setting changes. :vartype error: ~azure.mgmt.appplatform.v2021_09_01_preview.models.Error :ivar trace_enabled: Indicates whether enable the trace functionality, which will be deprecated since api version 2020-11-01-preview. Please leverage appInsightsInstrumentationKey to indicate if monitoringSettings enabled or not. :vartype trace_enabled: bool :ivar app_insights_instrumentation_key: Target application insight instrumentation key, null or whitespace include empty will disable monitoringSettings. :vartype app_insights_instrumentation_key: str :ivar app_insights_sampling_rate: Indicates the sampling rate of application insight agent, should be in range [0.0, 100.0]. :vartype app_insights_sampling_rate: float :ivar app_insights_agent_versions: Indicates the versions of application insight agent. :vartype app_insights_agent_versions: ~azure.mgmt.appplatform.v2021_09_01_preview.models.ApplicationInsightsAgentVersions """ _validation = { 'provisioning_state': {'readonly': True}, 'app_insights_sampling_rate': {'maximum': 100, 'minimum': 0}, } _attribute_map = { 'provisioning_state': {'key': 'provisioningState', 'type': 'str'}, 'error': {'key': 'error', 'type': 'Error'}, 'trace_enabled': {'key': 'traceEnabled', 'type': 'bool'}, 'app_insights_instrumentation_key': {'key': 'appInsightsInstrumentationKey', 'type': 'str'}, 'app_insights_sampling_rate': {'key': 'appInsightsSamplingRate', 'type': 'float'}, 'app_insights_agent_versions': {'key': 'appInsightsAgentVersions', 'type': 'ApplicationInsightsAgentVersions'}, } def __init__( self, *, error: Optional["Error"] = None, trace_enabled: Optional[bool] = None, app_insights_instrumentation_key: Optional[str] = None, app_insights_sampling_rate: Optional[float] = None, app_insights_agent_versions: Optional["ApplicationInsightsAgentVersions"] = None, **kwargs ): """ :keyword error: Error when apply Monitoring Setting changes. :paramtype error: ~azure.mgmt.appplatform.v2021_09_01_preview.models.Error :keyword trace_enabled: Indicates whether enable the trace functionality, which will be deprecated since api version 2020-11-01-preview. Please leverage appInsightsInstrumentationKey to indicate if monitoringSettings enabled or not. :paramtype trace_enabled: bool :keyword app_insights_instrumentation_key: Target application insight instrumentation key, null or whitespace include empty will disable monitoringSettings. :paramtype app_insights_instrumentation_key: str :keyword app_insights_sampling_rate: Indicates the sampling rate of application insight agent, should be in range [0.0, 100.0]. :paramtype app_insights_sampling_rate: float :keyword app_insights_agent_versions: Indicates the versions of application insight agent. :paramtype app_insights_agent_versions: ~azure.mgmt.appplatform.v2021_09_01_preview.models.ApplicationInsightsAgentVersions """ super(MonitoringSettingProperties, self).__init__(**kwargs) self.provisioning_state = None self.error = error self.trace_enabled = trace_enabled self.app_insights_instrumentation_key = app_insights_instrumentation_key self.app_insights_sampling_rate = app_insights_sampling_rate self.app_insights_agent_versions = app_insights_agent_versions class MonitoringSettingResource(ProxyResource): """Monitoring Setting resource. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Fully qualified resource Id for the resource. :vartype id: str :ivar name: The name of the resource. :vartype name: str :ivar type: The type of the resource. :vartype type: str :ivar properties: Properties of the Monitoring Setting resource. :vartype properties: ~azure.mgmt.appplatform.v2021_09_01_preview.models.MonitoringSettingProperties """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'properties': {'key': 'properties', 'type': 'MonitoringSettingProperties'}, } def __init__( self, *, properties: Optional["MonitoringSettingProperties"] = None, **kwargs ): """ :keyword properties: Properties of the Monitoring Setting resource. :paramtype properties: ~azure.mgmt.appplatform.v2021_09_01_preview.models.MonitoringSettingProperties """ super(MonitoringSettingResource, self).__init__(**kwargs) self.properties = properties class NameAvailability(msrest.serialization.Model): """Name availability result payload. :ivar name_available: Indicates whether the name is available. :vartype name_available: bool :ivar reason: Reason why the name is not available. :vartype reason: str :ivar message: Message why the name is not available. :vartype message: str """ _attribute_map = { 'name_available': {'key': 'nameAvailable', 'type': 'bool'}, 'reason': {'key': 'reason', 'type': 'str'}, 'message': {'key': 'message', 'type': 'str'}, } def __init__( self, *, name_available: Optional[bool] = None, reason: Optional[str] = None, message: Optional[str] = None, **kwargs ): """ :keyword name_available: Indicates whether the name is available. :paramtype name_available: bool :keyword reason: Reason why the name is not available. :paramtype reason: str :keyword message: Message why the name is not available. :paramtype message: str """ super(NameAvailability, self).__init__(**kwargs) self.name_available = name_available self.reason = reason self.message = message class NameAvailabilityParameters(msrest.serialization.Model): """Name availability parameters payload. All required parameters must be populated in order to send to Azure. :ivar type: Required. Type of the resource to check name availability. :vartype type: str :ivar name: Required. Name to be checked. :vartype name: str """ _validation = { 'type': {'required': True}, 'name': {'required': True}, } _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, } def __init__( self, *, type: str, name: str, **kwargs ): """ :keyword type: Required. Type of the resource to check name availability. :paramtype type: str :keyword name: Required. Name to be checked. :paramtype name: str """ super(NameAvailabilityParameters, self).__init__(**kwargs) self.type = type self.name = name class NetworkProfile(msrest.serialization.Model): """Service network profile payload. Variables are only populated by the server, and will be ignored when sending a request. :ivar service_runtime_subnet_id: Fully qualified resource Id of the subnet to host Azure Spring Cloud Service Runtime. :vartype service_runtime_subnet_id: str :ivar app_subnet_id: Fully qualified resource Id of the subnet to host Azure Spring Cloud Apps. :vartype app_subnet_id: str :ivar service_cidr: Azure Spring Cloud service reserved CIDR. :vartype service_cidr: str :ivar service_runtime_network_resource_group: Name of the resource group containing network resources of Azure Spring Cloud Service Runtime. :vartype service_runtime_network_resource_group: str :ivar app_network_resource_group: Name of the resource group containing network resources of Azure Spring Cloud Apps. :vartype app_network_resource_group: str :ivar outbound_i_ps: Desired outbound IP resources for Azure Spring Cloud instance. :vartype outbound_i_ps: ~azure.mgmt.appplatform.v2021_09_01_preview.models.NetworkProfileOutboundIPs :ivar required_traffics: Required inbound or outbound traffics for Azure Spring Cloud instance. :vartype required_traffics: list[~azure.mgmt.appplatform.v2021_09_01_preview.models.RequiredTraffic] """ _validation = { 'outbound_i_ps': {'readonly': True}, 'required_traffics': {'readonly': True}, } _attribute_map = { 'service_runtime_subnet_id': {'key': 'serviceRuntimeSubnetId', 'type': 'str'}, 'app_subnet_id': {'key': 'appSubnetId', 'type': 'str'}, 'service_cidr': {'key': 'serviceCidr', 'type': 'str'}, 'service_runtime_network_resource_group': {'key': 'serviceRuntimeNetworkResourceGroup', 'type': 'str'}, 'app_network_resource_group': {'key': 'appNetworkResourceGroup', 'type': 'str'}, 'outbound_i_ps': {'key': 'outboundIPs', 'type': 'NetworkProfileOutboundIPs'}, 'required_traffics': {'key': 'requiredTraffics', 'type': '[RequiredTraffic]'}, } def __init__( self, *, service_runtime_subnet_id: Optional[str] = None, app_subnet_id: Optional[str] = None, service_cidr: Optional[str] = None, service_runtime_network_resource_group: Optional[str] = None, app_network_resource_group: Optional[str] = None, **kwargs ): """ :keyword service_runtime_subnet_id: Fully qualified resource Id of the subnet to host Azure Spring Cloud Service Runtime. :paramtype service_runtime_subnet_id: str :keyword app_subnet_id: Fully qualified resource Id of the subnet to host Azure Spring Cloud Apps. :paramtype app_subnet_id: str :keyword service_cidr: Azure Spring Cloud service reserved CIDR. :paramtype service_cidr: str :keyword service_runtime_network_resource_group: Name of the resource group containing network resources of Azure Spring Cloud Service Runtime. :paramtype service_runtime_network_resource_group: str :keyword app_network_resource_group: Name of the resource group containing network resources of Azure Spring Cloud Apps. :paramtype app_network_resource_group: str """ super(NetworkProfile, self).__init__(**kwargs) self.service_runtime_subnet_id = service_runtime_subnet_id self.app_subnet_id = app_subnet_id self.service_cidr = service_cidr self.service_runtime_network_resource_group = service_runtime_network_resource_group self.app_network_resource_group = app_network_resource_group self.outbound_i_ps = None self.required_traffics = None class NetworkProfileOutboundIPs(msrest.serialization.Model): """Desired outbound IP resources for Azure Spring Cloud instance. Variables are only populated by the server, and will be ignored when sending a request. :ivar public_i_ps: A list of public IP addresses. :vartype public_i_ps: list[str] """ _validation = { 'public_i_ps': {'readonly': True}, } _attribute_map = { 'public_i_ps': {'key': 'publicIPs', 'type': '[str]'}, } def __init__( self, **kwargs ): """ """ super(NetworkProfileOutboundIPs, self).__init__(**kwargs) self.public_i_ps = None class OperationDetail(msrest.serialization.Model): """Operation detail payload. Variables are only populated by the server, and will be ignored when sending a request. :ivar name: Name of the operation. :vartype name: str :ivar is_data_action: Indicates whether the operation is a data action. :vartype is_data_action: bool :ivar display: Display of the operation. :vartype display: ~azure.mgmt.appplatform.v2021_09_01_preview.models.OperationDisplay :ivar action_type: Enum. Indicates the action type. "Internal" refers to actions that are for internal only APIs. Possible values include: "Internal". :vartype action_type: str or ~azure.mgmt.appplatform.v2021_09_01_preview.models.ActionType :ivar origin: Origin of the operation. :vartype origin: str :ivar properties: Properties of the operation. :vartype properties: ~azure.mgmt.appplatform.v2021_09_01_preview.models.OperationProperties """ _validation = { 'action_type': {'readonly': True}, } _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'is_data_action': {'key': 'isDataAction', 'type': 'bool'}, 'display': {'key': 'display', 'type': 'OperationDisplay'}, 'action_type': {'key': 'actionType', 'type': 'str'}, 'origin': {'key': 'origin', 'type': 'str'}, 'properties': {'key': 'properties', 'type': 'OperationProperties'}, } def __init__( self, *, name: Optional[str] = None, is_data_action: Optional[bool] = None, display: Optional["OperationDisplay"] = None, origin: Optional[str] = None, properties: Optional["OperationProperties"] = None, **kwargs ): """ :keyword name: Name of the operation. :paramtype name: str :keyword is_data_action: Indicates whether the operation is a data action. :paramtype is_data_action: bool :keyword display: Display of the operation. :paramtype display: ~azure.mgmt.appplatform.v2021_09_01_preview.models.OperationDisplay :keyword origin: Origin of the operation. :paramtype origin: str :keyword properties: Properties of the operation. :paramtype properties: ~azure.mgmt.appplatform.v2021_09_01_preview.models.OperationProperties """ super(OperationDetail, self).__init__(**kwargs) self.name = name self.is_data_action = is_data_action self.display = display self.action_type = None self.origin = origin self.properties = properties class OperationDisplay(msrest.serialization.Model): """Operation display payload. :ivar provider: Resource provider of the operation. :vartype provider: str :ivar resource: Resource of the operation. :vartype resource: str :ivar operation: Localized friendly name for the operation. :vartype operation: str :ivar description: Localized friendly description for the operation. :vartype description: str """ _attribute_map = { 'provider': {'key': 'provider', 'type': 'str'}, 'resource': {'key': 'resource', 'type': 'str'}, 'operation': {'key': 'operation', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, } def __init__( self, *, provider: Optional[str] = None, resource: Optional[str] = None, operation: Optional[str] = None, description: Optional[str] = None, **kwargs ): """ :keyword provider: Resource provider of the operation. :paramtype provider: str :keyword resource: Resource of the operation. :paramtype resource: str :keyword operation: Localized friendly name for the operation. :paramtype operation: str :keyword description: Localized friendly description for the operation. :paramtype description: str """ super(OperationDisplay, self).__init__(**kwargs) self.provider = provider self.resource = resource self.operation = operation self.description = description class OperationProperties(msrest.serialization.Model): """Extra Operation properties. :ivar service_specification: Service specifications of the operation. :vartype service_specification: ~azure.mgmt.appplatform.v2021_09_01_preview.models.ServiceSpecification """ _attribute_map = { 'service_specification': {'key': 'serviceSpecification', 'type': 'ServiceSpecification'}, } def __init__( self, *, service_specification: Optional["ServiceSpecification"] = None, **kwargs ): """ :keyword service_specification: Service specifications of the operation. :paramtype service_specification: ~azure.mgmt.appplatform.v2021_09_01_preview.models.ServiceSpecification """ super(OperationProperties, self).__init__(**kwargs) self.service_specification = service_specification class PersistentDisk(msrest.serialization.Model): """Persistent disk payload. Variables are only populated by the server, and will be ignored when sending a request. :ivar size_in_gb: Size of the persistent disk in GB. :vartype size_in_gb: int :ivar used_in_gb: Size of the used persistent disk in GB. :vartype used_in_gb: int :ivar mount_path: Mount path of the persistent disk. :vartype mount_path: str """ _validation = { 'size_in_gb': {'maximum': 50, 'minimum': 0}, 'used_in_gb': {'readonly': True, 'maximum': 50, 'minimum': 0}, } _attribute_map = { 'size_in_gb': {'key': 'sizeInGB', 'type': 'int'}, 'used_in_gb': {'key': 'usedInGB', 'type': 'int'}, 'mount_path': {'key': 'mountPath', 'type': 'str'}, } def __init__( self, *, size_in_gb: Optional[int] = None, mount_path: Optional[str] = None, **kwargs ): """ :keyword size_in_gb: Size of the persistent disk in GB. :paramtype size_in_gb: int :keyword mount_path: Mount path of the persistent disk. :paramtype mount_path: str """ super(PersistentDisk, self).__init__(**kwargs) self.size_in_gb = size_in_gb self.used_in_gb = None self.mount_path = mount_path class RegenerateTestKeyRequestPayload(msrest.serialization.Model): """Regenerate test key request payload. All required parameters must be populated in order to send to Azure. :ivar key_type: Required. Type of the test key. Possible values include: "Primary", "Secondary". :vartype key_type: str or ~azure.mgmt.appplatform.v2021_09_01_preview.models.TestKeyType """ _validation = { 'key_type': {'required': True}, } _attribute_map = { 'key_type': {'key': 'keyType', 'type': 'str'}, } def __init__( self, *, key_type: Union[str, "TestKeyType"], **kwargs ): """ :keyword key_type: Required. Type of the test key. Possible values include: "Primary", "Secondary". :paramtype key_type: str or ~azure.mgmt.appplatform.v2021_09_01_preview.models.TestKeyType """ super(RegenerateTestKeyRequestPayload, self).__init__(**kwargs) self.key_type = key_type class RequiredTraffic(msrest.serialization.Model): """Required inbound or outbound traffic for Azure Spring Cloud instance. Variables are only populated by the server, and will be ignored when sending a request. :ivar protocol: The protocol of required traffic. :vartype protocol: str :ivar port: The port of required traffic. :vartype port: int :ivar ips: The ip list of required traffic. :vartype ips: list[str] :ivar fqdns: The FQDN list of required traffic. :vartype fqdns: list[str] :ivar direction: The direction of required traffic. Possible values include: "Inbound", "Outbound". :vartype direction: str or ~azure.mgmt.appplatform.v2021_09_01_preview.models.TrafficDirection """ _validation = { 'protocol': {'readonly': True}, 'port': {'readonly': True}, 'ips': {'readonly': True}, 'fqdns': {'readonly': True}, 'direction': {'readonly': True}, } _attribute_map = { 'protocol': {'key': 'protocol', 'type': 'str'}, 'port': {'key': 'port', 'type': 'int'}, 'ips': {'key': 'ips', 'type': '[str]'}, 'fqdns': {'key': 'fqdns', 'type': '[str]'}, 'direction': {'key': 'direction', 'type': 'str'}, } def __init__( self, **kwargs ): """ """ super(RequiredTraffic, self).__init__(**kwargs) self.protocol = None self.port = None self.ips = None self.fqdns = None self.direction = None class ResourceRequests(msrest.serialization.Model): """Deployment resource request payload. :ivar cpu: Required CPU. 1 core can be represented by 1 or 1000m. This should be 500m or 1 for Basic tier, and {500m, 1, 2, 3, 4} for Standard tier. :vartype cpu: str :ivar memory: Required memory. 1 GB can be represented by 1Gi or 1024Mi. This should be {512Mi, 1Gi, 2Gi} for Basic tier, and {512Mi, 1Gi, 2Gi, ..., 8Gi} for Standard tier. :vartype memory: str """ _attribute_map = { 'cpu': {'key': 'cpu', 'type': 'str'}, 'memory': {'key': 'memory', 'type': 'str'}, } def __init__( self, *, cpu: Optional[str] = None, memory: Optional[str] = None, **kwargs ): """ :keyword cpu: Required CPU. 1 core can be represented by 1 or 1000m. This should be 500m or 1 for Basic tier, and {500m, 1, 2, 3, 4} for Standard tier. :paramtype cpu: str :keyword memory: Required memory. 1 GB can be represented by 1Gi or 1024Mi. This should be {512Mi, 1Gi, 2Gi} for Basic tier, and {512Mi, 1Gi, 2Gi, ..., 8Gi} for Standard tier. :paramtype memory: str """ super(ResourceRequests, self).__init__(**kwargs) self.cpu = cpu self.memory = memory class ResourceSku(msrest.serialization.Model): """Describes an available Azure Spring Cloud SKU. :ivar resource_type: Gets the type of resource the SKU applies to. :vartype resource_type: str :ivar name: Gets the name of SKU. :vartype name: str :ivar tier: Gets the tier of SKU. :vartype tier: str :ivar capacity: Gets the capacity of SKU. :vartype capacity: ~azure.mgmt.appplatform.v2021_09_01_preview.models.SkuCapacity :ivar locations: Gets the set of locations that the SKU is available. :vartype locations: list[str] :ivar location_info: Gets a list of locations and availability zones in those locations where the SKU is available. :vartype location_info: list[~azure.mgmt.appplatform.v2021_09_01_preview.models.ResourceSkuLocationInfo] :ivar restrictions: Gets the restrictions because of which SKU cannot be used. This is empty if there are no restrictions. :vartype restrictions: list[~azure.mgmt.appplatform.v2021_09_01_preview.models.ResourceSkuRestrictions] """ _attribute_map = { 'resource_type': {'key': 'resourceType', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'tier': {'key': 'tier', 'type': 'str'}, 'capacity': {'key': 'capacity', 'type': 'SkuCapacity'}, 'locations': {'key': 'locations', 'type': '[str]'}, 'location_info': {'key': 'locationInfo', 'type': '[ResourceSkuLocationInfo]'}, 'restrictions': {'key': 'restrictions', 'type': '[ResourceSkuRestrictions]'}, } def __init__( self, *, resource_type: Optional[str] = None, name: Optional[str] = None, tier: Optional[str] = None, capacity: Optional["SkuCapacity"] = None, locations: Optional[List[str]] = None, location_info: Optional[List["ResourceSkuLocationInfo"]] = None, restrictions: Optional[List["ResourceSkuRestrictions"]] = None, **kwargs ): """ :keyword resource_type: Gets the type of resource the SKU applies to. :paramtype resource_type: str :keyword name: Gets the name of SKU. :paramtype name: str :keyword tier: Gets the tier of SKU. :paramtype tier: str :keyword capacity: Gets the capacity of SKU. :paramtype capacity: ~azure.mgmt.appplatform.v2021_09_01_preview.models.SkuCapacity :keyword locations: Gets the set of locations that the SKU is available. :paramtype locations: list[str] :keyword location_info: Gets a list of locations and availability zones in those locations where the SKU is available. :paramtype location_info: list[~azure.mgmt.appplatform.v2021_09_01_preview.models.ResourceSkuLocationInfo] :keyword restrictions: Gets the restrictions because of which SKU cannot be used. This is empty if there are no restrictions. :paramtype restrictions: list[~azure.mgmt.appplatform.v2021_09_01_preview.models.ResourceSkuRestrictions] """ super(ResourceSku, self).__init__(**kwargs) self.resource_type = resource_type self.name = name self.tier = tier self.capacity = capacity self.locations = locations self.location_info = location_info self.restrictions = restrictions class ResourceSkuCapabilities(msrest.serialization.Model): """ResourceSkuCapabilities. :ivar name: Gets an invariant to describe the feature. :vartype name: str :ivar value: Gets an invariant if the feature is measured by quantity. :vartype value: str """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'value': {'key': 'value', 'type': 'str'}, } def __init__( self, *, name: Optional[str] = None, value: Optional[str] = None, **kwargs ): """ :keyword name: Gets an invariant to describe the feature. :paramtype name: str :keyword value: Gets an invariant if the feature is measured by quantity. :paramtype value: str """ super(ResourceSkuCapabilities, self).__init__(**kwargs) self.name = name self.value = value class ResourceSkuCollection(msrest.serialization.Model): """Object that includes an array of Azure Spring Cloud SKU and a possible link for next set. :ivar value: Collection of resource SKU. :vartype value: list[~azure.mgmt.appplatform.v2021_09_01_preview.models.ResourceSku] :ivar next_link: URL client should use to fetch the next page (per server side paging). It's null for now, added for future use. :vartype next_link: str """ _attribute_map = { 'value': {'key': 'value', 'type': '[ResourceSku]'}, 'next_link': {'key': 'nextLink', 'type': 'str'}, } def __init__( self, *, value: Optional[List["ResourceSku"]] = None, next_link: Optional[str] = None, **kwargs ): """ :keyword value: Collection of resource SKU. :paramtype value: list[~azure.mgmt.appplatform.v2021_09_01_preview.models.ResourceSku] :keyword next_link: URL client should use to fetch the next page (per server side paging). It's null for now, added for future use. :paramtype next_link: str """ super(ResourceSkuCollection, self).__init__(**kwargs) self.value = value self.next_link = next_link class ResourceSkuLocationInfo(msrest.serialization.Model): """Locations and availability zones where the SKU is available. :ivar location: Gets location of the SKU. :vartype location: str :ivar zones: Gets list of availability zones where the SKU is supported. :vartype zones: list[str] :ivar zone_details: Gets details of capabilities available to a SKU in specific zones. :vartype zone_details: list[~azure.mgmt.appplatform.v2021_09_01_preview.models.ResourceSkuZoneDetails] """ _attribute_map = { 'location': {'key': 'location', 'type': 'str'}, 'zones': {'key': 'zones', 'type': '[str]'}, 'zone_details': {'key': 'zoneDetails', 'type': '[ResourceSkuZoneDetails]'}, } def __init__( self, *, location: Optional[str] = None, zones: Optional[List[str]] = None, zone_details: Optional[List["ResourceSkuZoneDetails"]] = None, **kwargs ): """ :keyword location: Gets location of the SKU. :paramtype location: str :keyword zones: Gets list of availability zones where the SKU is supported. :paramtype zones: list[str] :keyword zone_details: Gets details of capabilities available to a SKU in specific zones. :paramtype zone_details: list[~azure.mgmt.appplatform.v2021_09_01_preview.models.ResourceSkuZoneDetails] """ super(ResourceSkuLocationInfo, self).__init__(**kwargs) self.location = location self.zones = zones self.zone_details = zone_details class ResourceSkuRestrictionInfo(msrest.serialization.Model): """Information about the restriction where the SKU cannot be used. :ivar locations: Gets locations where the SKU is restricted. :vartype locations: list[str] :ivar zones: Gets list of availability zones where the SKU is restricted. :vartype zones: list[str] """ _attribute_map = { 'locations': {'key': 'locations', 'type': '[str]'}, 'zones': {'key': 'zones', 'type': '[str]'}, } def __init__( self, *, locations: Optional[List[str]] = None, zones: Optional[List[str]] = None, **kwargs ): """ :keyword locations: Gets locations where the SKU is restricted. :paramtype locations: list[str] :keyword zones: Gets list of availability zones where the SKU is restricted. :paramtype zones: list[str] """ super(ResourceSkuRestrictionInfo, self).__init__(**kwargs) self.locations = locations self.zones = zones class ResourceSkuRestrictions(msrest.serialization.Model): """Restrictions where the SKU cannot be used. :ivar type: Gets the type of restrictions. Possible values include: 'Location', 'Zone'. Possible values include: "Location", "Zone". :vartype type: str or ~azure.mgmt.appplatform.v2021_09_01_preview.models.ResourceSkuRestrictionsType :ivar values: Gets the value of restrictions. If the restriction type is set to location. This would be different locations where the SKU is restricted. :vartype values: list[str] :ivar restriction_info: Gets the information about the restriction where the SKU cannot be used. :vartype restriction_info: ~azure.mgmt.appplatform.v2021_09_01_preview.models.ResourceSkuRestrictionInfo :ivar reason_code: Gets the reason for restriction. Possible values include: 'QuotaId', 'NotAvailableForSubscription'. Possible values include: "QuotaId", "NotAvailableForSubscription". :vartype reason_code: str or ~azure.mgmt.appplatform.v2021_09_01_preview.models.ResourceSkuRestrictionsReasonCode """ _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, 'values': {'key': 'values', 'type': '[str]'}, 'restriction_info': {'key': 'restrictionInfo', 'type': 'ResourceSkuRestrictionInfo'}, 'reason_code': {'key': 'reasonCode', 'type': 'str'}, } def __init__( self, *, type: Optional[Union[str, "ResourceSkuRestrictionsType"]] = None, values: Optional[List[str]] = None, restriction_info: Optional["ResourceSkuRestrictionInfo"] = None, reason_code: Optional[Union[str, "ResourceSkuRestrictionsReasonCode"]] = None, **kwargs ): """ :keyword type: Gets the type of restrictions. Possible values include: 'Location', 'Zone'. Possible values include: "Location", "Zone". :paramtype type: str or ~azure.mgmt.appplatform.v2021_09_01_preview.models.ResourceSkuRestrictionsType :keyword values: Gets the value of restrictions. If the restriction type is set to location. This would be different locations where the SKU is restricted. :paramtype values: list[str] :keyword restriction_info: Gets the information about the restriction where the SKU cannot be used. :paramtype restriction_info: ~azure.mgmt.appplatform.v2021_09_01_preview.models.ResourceSkuRestrictionInfo :keyword reason_code: Gets the reason for restriction. Possible values include: 'QuotaId', 'NotAvailableForSubscription'. Possible values include: "QuotaId", "NotAvailableForSubscription". :paramtype reason_code: str or ~azure.mgmt.appplatform.v2021_09_01_preview.models.ResourceSkuRestrictionsReasonCode """ super(ResourceSkuRestrictions, self).__init__(**kwargs) self.type = type self.values = values self.restriction_info = restriction_info self.reason_code = reason_code class ResourceSkuZoneDetails(msrest.serialization.Model): """Details of capabilities available to a SKU in specific zones. :ivar name: Gets the set of zones that the SKU is available in with the specified capabilities. :vartype name: list[str] :ivar capabilities: Gets a list of capabilities that are available for the SKU in the specified list of zones. :vartype capabilities: list[~azure.mgmt.appplatform.v2021_09_01_preview.models.ResourceSkuCapabilities] """ _attribute_map = { 'name': {'key': 'name', 'type': '[str]'}, 'capabilities': {'key': 'capabilities', 'type': '[ResourceSkuCapabilities]'}, } def __init__( self, *, name: Optional[List[str]] = None, capabilities: Optional[List["ResourceSkuCapabilities"]] = None, **kwargs ): """ :keyword name: Gets the set of zones that the SKU is available in with the specified capabilities. :paramtype name: list[str] :keyword capabilities: Gets a list of capabilities that are available for the SKU in the specified list of zones. :paramtype capabilities: list[~azure.mgmt.appplatform.v2021_09_01_preview.models.ResourceSkuCapabilities] """ super(ResourceSkuZoneDetails, self).__init__(**kwargs) self.name = name self.capabilities = capabilities class ResourceUploadDefinition(msrest.serialization.Model): """Resource upload definition payload. :ivar relative_path: Source relative path. :vartype relative_path: str :ivar upload_url: Upload URL. :vartype upload_url: str """ _attribute_map = { 'relative_path': {'key': 'relativePath', 'type': 'str'}, 'upload_url': {'key': 'uploadUrl', 'type': 'str'}, } def __init__( self, *, relative_path: Optional[str] = None, upload_url: Optional[str] = None, **kwargs ): """ :keyword relative_path: Source relative path. :paramtype relative_path: str :keyword upload_url: Upload URL. :paramtype upload_url: str """ super(ResourceUploadDefinition, self).__init__(**kwargs) self.relative_path = relative_path self.upload_url = upload_url class TrackedResource(Resource): """The resource model definition for a ARM tracked top level resource. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Fully qualified resource Id for the resource. :vartype id: str :ivar name: The name of the resource. :vartype name: str :ivar type: The type of the resource. :vartype type: str :ivar location: The GEO location of the resource. :vartype location: str :ivar tags: A set of tags. Tags of the service which is a list of key value pairs that describe the resource. :vartype tags: dict[str, str] """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'location': {'key': 'location', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, } def __init__( self, *, location: Optional[str] = None, tags: Optional[Dict[str, str]] = None, **kwargs ): """ :keyword location: The GEO location of the resource. :paramtype location: str :keyword tags: A set of tags. Tags of the service which is a list of key value pairs that describe the resource. :paramtype tags: dict[str, str] """ super(TrackedResource, self).__init__(**kwargs) self.location = location self.tags = tags class ServiceResource(TrackedResource): """Service resource. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Fully qualified resource Id for the resource. :vartype id: str :ivar name: The name of the resource. :vartype name: str :ivar type: The type of the resource. :vartype type: str :ivar location: The GEO location of the resource. :vartype location: str :ivar tags: A set of tags. Tags of the service which is a list of key value pairs that describe the resource. :vartype tags: dict[str, str] :ivar properties: Properties of the Service resource. :vartype properties: ~azure.mgmt.appplatform.v2021_09_01_preview.models.ClusterResourceProperties :ivar sku: Sku of the Service resource. :vartype sku: ~azure.mgmt.appplatform.v2021_09_01_preview.models.Sku """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'location': {'key': 'location', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, 'properties': {'key': 'properties', 'type': 'ClusterResourceProperties'}, 'sku': {'key': 'sku', 'type': 'Sku'}, } def __init__( self, *, location: Optional[str] = None, tags: Optional[Dict[str, str]] = None, properties: Optional["ClusterResourceProperties"] = None, sku: Optional["Sku"] = None, **kwargs ): """ :keyword location: The GEO location of the resource. :paramtype location: str :keyword tags: A set of tags. Tags of the service which is a list of key value pairs that describe the resource. :paramtype tags: dict[str, str] :keyword properties: Properties of the Service resource. :paramtype properties: ~azure.mgmt.appplatform.v2021_09_01_preview.models.ClusterResourceProperties :keyword sku: Sku of the Service resource. :paramtype sku: ~azure.mgmt.appplatform.v2021_09_01_preview.models.Sku """ super(ServiceResource, self).__init__(location=location, tags=tags, **kwargs) self.properties = properties self.sku = sku class ServiceResourceList(msrest.serialization.Model): """Object that includes an array of Service resources and a possible link for next set. :ivar value: Collection of Service resources. :vartype value: list[~azure.mgmt.appplatform.v2021_09_01_preview.models.ServiceResource] :ivar next_link: URL client should use to fetch the next page (per server side paging). It's null for now, added for future use. :vartype next_link: str """ _attribute_map = { 'value': {'key': 'value', 'type': '[ServiceResource]'}, 'next_link': {'key': 'nextLink', 'type': 'str'}, } def __init__( self, *, value: Optional[List["ServiceResource"]] = None, next_link: Optional[str] = None, **kwargs ): """ :keyword value: Collection of Service resources. :paramtype value: list[~azure.mgmt.appplatform.v2021_09_01_preview.models.ServiceResource] :keyword next_link: URL client should use to fetch the next page (per server side paging). It's null for now, added for future use. :paramtype next_link: str """ super(ServiceResourceList, self).__init__(**kwargs) self.value = value self.next_link = next_link class ServiceSpecification(msrest.serialization.Model): """Service specification payload. :ivar log_specifications: Specifications of the Log for Azure Monitoring. :vartype log_specifications: list[~azure.mgmt.appplatform.v2021_09_01_preview.models.LogSpecification] :ivar metric_specifications: Specifications of the Metrics for Azure Monitoring. :vartype metric_specifications: list[~azure.mgmt.appplatform.v2021_09_01_preview.models.MetricSpecification] """ _attribute_map = { 'log_specifications': {'key': 'logSpecifications', 'type': '[LogSpecification]'}, 'metric_specifications': {'key': 'metricSpecifications', 'type': '[MetricSpecification]'}, } def __init__( self, *, log_specifications: Optional[List["LogSpecification"]] = None, metric_specifications: Optional[List["MetricSpecification"]] = None, **kwargs ): """ :keyword log_specifications: Specifications of the Log for Azure Monitoring. :paramtype log_specifications: list[~azure.mgmt.appplatform.v2021_09_01_preview.models.LogSpecification] :keyword metric_specifications: Specifications of the Metrics for Azure Monitoring. :paramtype metric_specifications: list[~azure.mgmt.appplatform.v2021_09_01_preview.models.MetricSpecification] """ super(ServiceSpecification, self).__init__(**kwargs) self.log_specifications = log_specifications self.metric_specifications = metric_specifications class Sku(msrest.serialization.Model): """Sku of Azure Spring Cloud. :ivar name: Name of the Sku. :vartype name: str :ivar tier: Tier of the Sku. :vartype tier: str :ivar capacity: Current capacity of the target resource. :vartype capacity: int """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'tier': {'key': 'tier', 'type': 'str'}, 'capacity': {'key': 'capacity', 'type': 'int'}, } def __init__( self, *, name: Optional[str] = "S0", tier: Optional[str] = "Standard", capacity: Optional[int] = None, **kwargs ): """ :keyword name: Name of the Sku. :paramtype name: str :keyword tier: Tier of the Sku. :paramtype tier: str :keyword capacity: Current capacity of the target resource. :paramtype capacity: int """ super(Sku, self).__init__(**kwargs) self.name = name self.tier = tier self.capacity = capacity class SkuCapacity(msrest.serialization.Model): """The SKU capacity. All required parameters must be populated in order to send to Azure. :ivar minimum: Required. Gets or sets the minimum. :vartype minimum: int :ivar maximum: Gets or sets the maximum. :vartype maximum: int :ivar default: Gets or sets the default. :vartype default: int :ivar scale_type: Gets or sets the type of the scale. Possible values include: "None", "Manual", "Automatic". :vartype scale_type: str or ~azure.mgmt.appplatform.v2021_09_01_preview.models.SkuScaleType """ _validation = { 'minimum': {'required': True}, } _attribute_map = { 'minimum': {'key': 'minimum', 'type': 'int'}, 'maximum': {'key': 'maximum', 'type': 'int'}, 'default': {'key': 'default', 'type': 'int'}, 'scale_type': {'key': 'scaleType', 'type': 'str'}, } def __init__( self, *, minimum: int, maximum: Optional[int] = None, default: Optional[int] = None, scale_type: Optional[Union[str, "SkuScaleType"]] = None, **kwargs ): """ :keyword minimum: Required. Gets or sets the minimum. :paramtype minimum: int :keyword maximum: Gets or sets the maximum. :paramtype maximum: int :keyword default: Gets or sets the default. :paramtype default: int :keyword scale_type: Gets or sets the type of the scale. Possible values include: "None", "Manual", "Automatic". :paramtype scale_type: str or ~azure.mgmt.appplatform.v2021_09_01_preview.models.SkuScaleType """ super(SkuCapacity, self).__init__(**kwargs) self.minimum = minimum self.maximum = maximum self.default = default self.scale_type = scale_type class StorageProperties(msrest.serialization.Model): """Storage resource payload. You probably want to use the sub-classes and not this class directly. Known sub-classes are: StorageAccount. All required parameters must be populated in order to send to Azure. :ivar storage_type: Required. The type of the storage.Constant filled by server. Possible values include: "StorageAccount". :vartype storage_type: str or ~azure.mgmt.appplatform.v2021_09_01_preview.models.StorageType """ _validation = { 'storage_type': {'required': True}, } _attribute_map = { 'storage_type': {'key': 'storageType', 'type': 'str'}, } _subtype_map = { 'storage_type': {'StorageAccount': 'StorageAccount'} } def __init__( self, **kwargs ): """ """ super(StorageProperties, self).__init__(**kwargs) self.storage_type = None # type: Optional[str] class StorageAccount(StorageProperties): """storage resource of type Azure Storage Account. All required parameters must be populated in order to send to Azure. :ivar storage_type: Required. The type of the storage.Constant filled by server. Possible values include: "StorageAccount". :vartype storage_type: str or ~azure.mgmt.appplatform.v2021_09_01_preview.models.StorageType :ivar account_name: Required. The account name of the Azure Storage Account. :vartype account_name: str :ivar account_key: Required. The account key of the Azure Storage Account. :vartype account_key: str """ _validation = { 'storage_type': {'required': True}, 'account_name': {'required': True}, 'account_key': {'required': True}, } _attribute_map = { 'storage_type': {'key': 'storageType', 'type': 'str'}, 'account_name': {'key': 'accountName', 'type': 'str'}, 'account_key': {'key': 'accountKey', 'type': 'str'}, } def __init__( self, *, account_name: str, account_key: str, **kwargs ): """ :keyword account_name: Required. The account name of the Azure Storage Account. :paramtype account_name: str :keyword account_key: Required. The account key of the Azure Storage Account. :paramtype account_key: str """ super(StorageAccount, self).__init__(**kwargs) self.storage_type = 'StorageAccount' # type: str self.account_name = account_name self.account_key = account_key class StorageResource(ProxyResource): """Storage resource payload. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Fully qualified resource Id for the resource. :vartype id: str :ivar name: The name of the resource. :vartype name: str :ivar type: The type of the resource. :vartype type: str :ivar properties: Properties of the storage resource payload. :vartype properties: ~azure.mgmt.appplatform.v2021_09_01_preview.models.StorageProperties :ivar system_data: Metadata pertaining to creation and last modification of the resource. :vartype system_data: ~azure.mgmt.appplatform.v2021_09_01_preview.models.SystemData """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, 'system_data': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'properties': {'key': 'properties', 'type': 'StorageProperties'}, 'system_data': {'key': 'systemData', 'type': 'SystemData'}, } def __init__( self, *, properties: Optional["StorageProperties"] = None, **kwargs ): """ :keyword properties: Properties of the storage resource payload. :paramtype properties: ~azure.mgmt.appplatform.v2021_09_01_preview.models.StorageProperties """ super(StorageResource, self).__init__(**kwargs) self.properties = properties self.system_data = None class StorageResourceCollection(msrest.serialization.Model): """Collection compose of storage resources list and a possible link for next page. :ivar value: The storage resources list. :vartype value: list[~azure.mgmt.appplatform.v2021_09_01_preview.models.StorageResource] :ivar next_link: The link to next page of storage list. :vartype next_link: str """ _attribute_map = { 'value': {'key': 'value', 'type': '[StorageResource]'}, 'next_link': {'key': 'nextLink', 'type': 'str'}, } def __init__( self, *, value: Optional[List["StorageResource"]] = None, next_link: Optional[str] = None, **kwargs ): """ :keyword value: The storage resources list. :paramtype value: list[~azure.mgmt.appplatform.v2021_09_01_preview.models.StorageResource] :keyword next_link: The link to next page of storage list. :paramtype next_link: str """ super(StorageResourceCollection, self).__init__(**kwargs) self.value = value self.next_link = next_link class SupportedRuntimeVersion(msrest.serialization.Model): """Supported deployment runtime version descriptor. :ivar value: The raw value which could be passed to deployment CRUD operations. Possible values include: "Java_8", "Java_11", "NetCore_31". :vartype value: str or ~azure.mgmt.appplatform.v2021_09_01_preview.models.SupportedRuntimeValue :ivar platform: The platform of this runtime version (possible values: "Java" or ".NET"). Possible values include: "Java", ".NET Core". :vartype platform: str or ~azure.mgmt.appplatform.v2021_09_01_preview.models.SupportedRuntimePlatform :ivar version: The detailed version (major.minor) of the platform. :vartype version: str """ _attribute_map = { 'value': {'key': 'value', 'type': 'str'}, 'platform': {'key': 'platform', 'type': 'str'}, 'version': {'key': 'version', 'type': 'str'}, } def __init__( self, *, value: Optional[Union[str, "SupportedRuntimeValue"]] = None, platform: Optional[Union[str, "SupportedRuntimePlatform"]] = None, version: Optional[str] = None, **kwargs ): """ :keyword value: The raw value which could be passed to deployment CRUD operations. Possible values include: "Java_8", "Java_11", "NetCore_31". :paramtype value: str or ~azure.mgmt.appplatform.v2021_09_01_preview.models.SupportedRuntimeValue :keyword platform: The platform of this runtime version (possible values: "Java" or ".NET"). Possible values include: "Java", ".NET Core". :paramtype platform: str or ~azure.mgmt.appplatform.v2021_09_01_preview.models.SupportedRuntimePlatform :keyword version: The detailed version (major.minor) of the platform. :paramtype version: str """ super(SupportedRuntimeVersion, self).__init__(**kwargs) self.value = value self.platform = platform self.version = version class SystemData(msrest.serialization.Model): """Metadata pertaining to creation and last modification of the resource. :ivar created_by: The identity that created the resource. :vartype created_by: str :ivar created_by_type: The type of identity that created the resource. Possible values include: "User", "Application", "ManagedIdentity", "Key". :vartype created_by_type: str or ~azure.mgmt.appplatform.v2021_09_01_preview.models.CreatedByType :ivar created_at: The timestamp of resource creation (UTC). :vartype created_at: ~datetime.datetime :ivar last_modified_by: The identity that last modified the resource. :vartype last_modified_by: str :ivar last_modified_by_type: The type of identity that last modified the resource. Possible values include: "User", "Application", "ManagedIdentity", "Key". :vartype last_modified_by_type: str or ~azure.mgmt.appplatform.v2021_09_01_preview.models.CreatedByType :ivar last_modified_at: The timestamp of resource last modification (UTC). :vartype last_modified_at: ~datetime.datetime """ _attribute_map = { 'created_by': {'key': 'createdBy', 'type': 'str'}, 'created_by_type': {'key': 'createdByType', 'type': 'str'}, 'created_at': {'key': 'createdAt', 'type': 'iso-8601'}, 'last_modified_by': {'key': 'lastModifiedBy', 'type': 'str'}, 'last_modified_by_type': {'key': 'lastModifiedByType', 'type': 'str'}, 'last_modified_at': {'key': 'lastModifiedAt', 'type': 'iso-8601'}, } def __init__( self, *, created_by: Optional[str] = None, created_by_type: Optional[Union[str, "CreatedByType"]] = None, created_at: Optional[datetime.datetime] = None, last_modified_by: Optional[str] = None, last_modified_by_type: Optional[Union[str, "CreatedByType"]] = None, last_modified_at: Optional[datetime.datetime] = None, **kwargs ): """ :keyword created_by: The identity that created the resource. :paramtype created_by: str :keyword created_by_type: The type of identity that created the resource. Possible values include: "User", "Application", "ManagedIdentity", "Key". :paramtype created_by_type: str or ~azure.mgmt.appplatform.v2021_09_01_preview.models.CreatedByType :keyword created_at: The timestamp of resource creation (UTC). :paramtype created_at: ~datetime.datetime :keyword last_modified_by: The identity that last modified the resource. :paramtype last_modified_by: str :keyword last_modified_by_type: The type of identity that last modified the resource. Possible values include: "User", "Application", "ManagedIdentity", "Key". :paramtype last_modified_by_type: str or ~azure.mgmt.appplatform.v2021_09_01_preview.models.CreatedByType :keyword last_modified_at: The timestamp of resource last modification (UTC). :paramtype last_modified_at: ~datetime.datetime """ super(SystemData, self).__init__(**kwargs) self.created_by = created_by self.created_by_type = created_by_type self.created_at = created_at self.last_modified_by = last_modified_by self.last_modified_by_type = last_modified_by_type self.last_modified_at = last_modified_at class TemporaryDisk(msrest.serialization.Model): """Temporary disk payload. :ivar size_in_gb: Size of the temporary disk in GB. :vartype size_in_gb: int :ivar mount_path: Mount path of the temporary disk. :vartype mount_path: str """ _validation = { 'size_in_gb': {'maximum': 5, 'minimum': 0}, } _attribute_map = { 'size_in_gb': {'key': 'sizeInGB', 'type': 'int'}, 'mount_path': {'key': 'mountPath', 'type': 'str'}, } def __init__( self, *, size_in_gb: Optional[int] = None, mount_path: Optional[str] = "/tmp", **kwargs ): """ :keyword size_in_gb: Size of the temporary disk in GB. :paramtype size_in_gb: int :keyword mount_path: Mount path of the temporary disk. :paramtype mount_path: str """ super(TemporaryDisk, self).__init__(**kwargs) self.size_in_gb = size_in_gb self.mount_path = mount_path class TestKeys(msrest.serialization.Model): """Test keys payload. :ivar primary_key: Primary key. :vartype primary_key: str :ivar secondary_key: Secondary key. :vartype secondary_key: str :ivar primary_test_endpoint: Primary test endpoint. :vartype primary_test_endpoint: str :ivar secondary_test_endpoint: Secondary test endpoint. :vartype secondary_test_endpoint: str :ivar enabled: Indicates whether the test endpoint feature enabled or not. :vartype enabled: bool """ _attribute_map = { 'primary_key': {'key': 'primaryKey', 'type': 'str'}, 'secondary_key': {'key': 'secondaryKey', 'type': 'str'}, 'primary_test_endpoint': {'key': 'primaryTestEndpoint', 'type': 'str'}, 'secondary_test_endpoint': {'key': 'secondaryTestEndpoint', 'type': 'str'}, 'enabled': {'key': 'enabled', 'type': 'bool'}, } def __init__( self, *, primary_key: Optional[str] = None, secondary_key: Optional[str] = None, primary_test_endpoint: Optional[str] = None, secondary_test_endpoint: Optional[str] = None, enabled: Optional[bool] = None, **kwargs ): """ :keyword primary_key: Primary key. :paramtype primary_key: str :keyword secondary_key: Secondary key. :paramtype secondary_key: str :keyword primary_test_endpoint: Primary test endpoint. :paramtype primary_test_endpoint: str :keyword secondary_test_endpoint: Secondary test endpoint. :paramtype secondary_test_endpoint: str :keyword enabled: Indicates whether the test endpoint feature enabled or not. :paramtype enabled: bool """ super(TestKeys, self).__init__(**kwargs) self.primary_key = primary_key self.secondary_key = secondary_key self.primary_test_endpoint = primary_test_endpoint self.secondary_test_endpoint = secondary_test_endpoint self.enabled = enabled class UserSourceInfo(msrest.serialization.Model): """Source information for a deployment. :ivar type: Type of the source uploaded. Possible values include: "Jar", "NetCoreZip", "Source", "Container". :vartype type: str or ~azure.mgmt.appplatform.v2021_09_01_preview.models.UserSourceType :ivar relative_path: Relative path of the storage which stores the source. :vartype relative_path: str :ivar version: Version of the source. :vartype version: str :ivar artifact_selector: Selector for the artifact to be used for the deployment for multi-module projects. This should be the relative path to the target module/project. :vartype artifact_selector: str :ivar custom_container: Custom container payload. :vartype custom_container: ~azure.mgmt.appplatform.v2021_09_01_preview.models.CustomContainer """ _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, 'relative_path': {'key': 'relativePath', 'type': 'str'}, 'version': {'key': 'version', 'type': 'str'}, 'artifact_selector': {'key': 'artifactSelector', 'type': 'str'}, 'custom_container': {'key': 'customContainer', 'type': 'CustomContainer'}, } def __init__( self, *, type: Optional[Union[str, "UserSourceType"]] = None, relative_path: Optional[str] = None, version: Optional[str] = None, artifact_selector: Optional[str] = None, custom_container: Optional["CustomContainer"] = None, **kwargs ): """ :keyword type: Type of the source uploaded. Possible values include: "Jar", "NetCoreZip", "Source", "Container". :paramtype type: str or ~azure.mgmt.appplatform.v2021_09_01_preview.models.UserSourceType :keyword relative_path: Relative path of the storage which stores the source. :paramtype relative_path: str :keyword version: Version of the source. :paramtype version: str :keyword artifact_selector: Selector for the artifact to be used for the deployment for multi-module projects. This should be the relative path to the target module/project. :paramtype artifact_selector: str :keyword custom_container: Custom container payload. :paramtype custom_container: ~azure.mgmt.appplatform.v2021_09_01_preview.models.CustomContainer """ super(UserSourceInfo, self).__init__(**kwargs) self.type = type self.relative_path = relative_path self.version = version self.artifact_selector = artifact_selector self.custom_container = custom_container
34d6e385193258946d08caaf1d3f6609ea5a9b5d
8b441f592a6deb9b0a515cbd92bb4663ad79ffe4
/churn/models/fbb_churn_amdocs/fbb_churn_eval_sep.py
85e5496351a6f2707dc3e7bbf0e4fcf1caa8c12c
[]
no_license
carnaum2/use-cases
0d391a6a10bb70b60a4025152a278b0e4c595d01
24920e3828234da691ab643b6dd9a0aa0a5c0df5
refs/heads/master
2022-12-07T03:41:34.299274
2020-09-07T10:20:32
2020-09-07T10:20:32
293,249,567
0
0
null
null
null
null
UTF-8
Python
false
false
25,797
py
# coding: utf-8 import sys from common.src.main.python.utils.hdfs_generic import * import argparse import os import sys import time from pyspark.sql.functions import (udf, col, decode, when, lit, lower, concat, translate, count, sum as sql_sum, max as sql_max, min as sql_min, avg as sql_avg, greatest, least, isnull, isnan, struct, substring, size, length, year, month, dayofmonth, unix_timestamp, date_format, from_unixtime, datediff, to_date, desc, asc, countDistinct, row_number) from pyspark.sql import Row, DataFrame, Column, Window from pyspark.sql.types import DoubleType, StringType, IntegerType, DateType, ArrayType, LongType from pyspark.ml import Pipeline from pyspark.ml.classification import RandomForestClassifier from pyspark.ml.feature import StringIndexer, VectorIndexer, VectorAssembler, SQLTransformer, OneHotEncoder from pyspark.ml.evaluation import MulticlassClassificationEvaluator, BinaryClassificationEvaluator from pyspark.mllib.evaluation import BinaryClassificationMetrics from pyspark.ml.tuning import CrossValidator, ParamGridBuilder from datetime import datetime from itertools import chain import numpy as np from functools import reduce from utils_general import * from utils_model import * from metadata_fbb_churn import * from feature_selection_utils import * import subprocess #from date_functions import get_next_cycle def set_paths(): ''' Deployment should be something like "dirs/dir1/use-cases" This function adds to the path "dirs/dir1/use-cases" and "dirs/dir1/" :return: ''' import imp from os.path import dirname import os USE_CASES = "/var/SP/data/home/asaezco/src/devel2/use-cases"#dirname(os.path.abspath(imp.find_module('churn')[1])) if USE_CASES not in sys.path: sys.path.append(USE_CASES) print("Added '{}' to path".format(USE_CASES)) # if deployment is correct, this path should be the one that contains "use-cases", "pykhaos", ... # FIXME another way of doing it more general? DEVEL_SRC = os.path.dirname(USE_CASES) # dir before use-cases dir if DEVEL_SRC not in sys.path: sys.path.append(DEVEL_SRC) print("Added '{}' to path".format(DEVEL_SRC)) #################################### ### Creating Spark Session ################################### def get_spark_session(app_name="default name", log_level='INFO', min_n_executors = 1, max_n_executors = 15, n_cores = 4, executor_memory = "32g", driver_memory="32g"): HOME_SRC = os.path.join(os.environ.get('BDA_USER_HOME', ''), "src") if HOME_SRC not in sys.path: sys.path.append(HOME_SRC) setting_bdp(app_name=app_name, min_n_executors = min_n_executors, max_n_executors = max_n_executors, n_cores = n_cores, executor_memory = executor_memory, driver_memory=driver_memory) from common.src.main.python.utils.hdfs_generic import run_sc sc, spark, sql_context = run_sc(log_level=log_level) return sc, spark, sql_context # set BDP parameters def setting_bdp(min_n_executors = 1, max_n_executors = 15, n_cores = 8, executor_memory = "16g", driver_memory="8g", app_name = "Python app", driver_overhead="1g", executor_overhead='3g'): MAX_N_EXECUTORS = max_n_executors MIN_N_EXECUTORS = min_n_executors N_CORES_EXECUTOR = n_cores EXECUTOR_IDLE_MAX_TIME = 120 EXECUTOR_MEMORY = executor_memory DRIVER_MEMORY = driver_memory N_CORES_DRIVER = 1 MEMORY_OVERHEAD = N_CORES_EXECUTOR * 2048 QUEUE = "root.BDPtenants.es.medium" BDA_CORE_VERSION = "1.0.0" SPARK_COMMON_OPTS = os.environ.get('SPARK_COMMON_OPTS', '') SPARK_COMMON_OPTS += " --executor-memory %s --driver-memory %s" % (EXECUTOR_MEMORY, DRIVER_MEMORY) SPARK_COMMON_OPTS += " --conf spark.shuffle.manager=tungsten-sort" SPARK_COMMON_OPTS += " --queue %s" % QUEUE # Dynamic allocation configuration SPARK_COMMON_OPTS += " --conf spark.dynamicAllocation.enabled=true" SPARK_COMMON_OPTS += " --conf spark.shuffle.service.enabled=true" SPARK_COMMON_OPTS += " --conf spark.dynamicAllocation.maxExecutors=%s" % (MAX_N_EXECUTORS) SPARK_COMMON_OPTS += " --conf spark.dynamicAllocation.minExecutors=%s" % (MIN_N_EXECUTORS) SPARK_COMMON_OPTS += " --conf spark.executor.cores=%s" % (N_CORES_EXECUTOR) SPARK_COMMON_OPTS += " --conf spark.dynamicAllocation.executorIdleTimeout=%s" % (EXECUTOR_IDLE_MAX_TIME) # SPARK_COMMON_OPTS += " --conf spark.ui.port=58235" SPARK_COMMON_OPTS += " --conf spark.port.maxRetries=100" SPARK_COMMON_OPTS += " --conf spark.app.name='%s'" % (app_name) SPARK_COMMON_OPTS += " --conf spark.submit.deployMode=client" SPARK_COMMON_OPTS += " --conf spark.ui.showConsoleProgress=true" SPARK_COMMON_OPTS += " --conf spark.sql.broadcastTimeout=1200" SPARK_COMMON_OPTS += " --conf spark.yarn.executor.memoryOverhead={}".format(executor_overhead) SPARK_COMMON_OPTS += " --conf spark.yarn.executor.driverOverhead={}".format(driver_overhead) SPARK_COMMON_OPTS += " --conf spark.shuffle.service.enabled = true" BDA_ENV = os.environ.get('BDA_USER_HOME', '') # Attach bda-core-ra codebase SPARK_COMMON_OPTS+=" --files {}/scripts/properties/red_agent/nodes.properties,{}/scripts/properties/red_agent/nodes-de.properties,{}/scripts/properties/red_agent/nodes-es.properties,{}/scripts/properties/red_agent/nodes-ie.properties,{}/scripts/properties/red_agent/nodes-it.properties,{}/scripts/properties/red_agent/nodes-pt.properties,{}/scripts/properties/red_agent/nodes-uk.properties".format(*[BDA_ENV]*7) os.environ["SPARK_COMMON_OPTS"] = SPARK_COMMON_OPTS os.environ["PYSPARK_SUBMIT_ARGS"] = "%s pyspark-shell " % SPARK_COMMON_OPTS #os.environ["SPARK_EXTRA_CONF_PARAMETERS"] = '--conf spark.yarn.jars=hdfs:///data/raw/public/lib_spark_2_1_0_jars_SPARK-18971/*' def initialize(app_name, min_n_executors = 1, max_n_executors = 15, n_cores = 4, executor_memory = "16g", driver_memory="8g"): import time start_time = time.time() print("_initialize spark") #import pykhaos.utils.pyspark_configuration as pyspark_config sc, spark, sql_context = get_spark_session(app_name=app_name, log_level="OFF", min_n_executors = min_n_executors, max_n_executors = max_n_executors, n_cores = n_cores, executor_memory = executor_memory, driver_memory=driver_memory) print("Ended spark session: {} secs | default parallelism={}".format(time.time() - start_time, sc.defaultParallelism)) return spark def getFbbChurnLabeledCarCycles_both(spark, origin, yearmonthday, selcols, horizon = 4): cycle = 0 fini_tmp = yearmonthday while cycle < horizon: yearmonthday_target = get_next_cycle(fini_tmp, str_fmt="%Y%m%d") cycle = cycle + 1 fini_tmp = yearmonthday_target yearmonth = yearmonthday[0:6] trfeatdf = getCarNumClienteDf(spark, origin, yearmonthday) print("[Info getFbbChurnLabeledCar] " + time.ctime() + " Samples for month " + yearmonthday + ": " + str(trfeatdf.count())) # Loading port-out requests and DXs # # labmonthlisttr = getMonthSeq(initportmonthtr, lastportmonthtr) # Las bajas de fibra pueden venir por: #- Solicitudes de baja de fijo fixporttr = getFixPortRequestsForCycleList(spark, yearmonthday, yearmonthday_target) #- Porque dejen de estar en la lista de clientes fixdxtr = getFbbDxsForCycleList(spark,yearmonthday, yearmonthday_target) # Labeling: FBB service is labeled as 1 if, during the next time window specified by the horizon, either the associated fixed service requested to be ported out or the FBB was disconnected window = Window.partitionBy("num_cliente") unbaltrdf = trfeatdf\ .join(fixporttr, ['msisdn_d'], "left_outer")\ .na.fill({'label_srv': 0.0})\ .join(fixdxtr, ['msisdn'], "left_outer")\ .na.fill({'label_dx': 0.0})\ .withColumn('tmp', when((col('label_dx')==1.0), 1.0).otherwise(0.0))\ .withColumn('label_bajas', sql_max('tmp').over(window))\ .withColumn('tmp2', when((col('label_srv')==1.0), 1.0).otherwise(0.0))\ .withColumn('label_port', sql_max('tmp2').over(window))\ .filter(col("rgu")=="fbb")\ .select(selcols + ['label_port', 'label_bajas']) print("[Info getFbbChurnLabeledCar] " + time.ctime() + " Labeled samples for month " + yearmonth + ": " + str(unbaltrdf.count())) return unbaltrdf if __name__ == "__main__": set_paths() from pykhaos.utils.date_functions import * from utils_fbb_churn import * # create Spark context with Spark configuration print '[' + time.ctime() + ']', 'Process started' global sqlContext spark = initialize("VF_ES AMDOCS FBB Churn Prediction ", executor_memory="16g", min_n_executors=10) print('Spark Configuration used', spark.sparkContext.getConf().getAll()) selcols = getIdFeats() + getCrmFeats() + getBillingFeats() + getMobSopoFeats() + getOrdersFeats() now = datetime.now() date_name = str(now.year) + str(now.month).rjust(2, '0') + str(now.day).rjust(2, '0') origin = '/user/hive/warehouse/tests_es.db/jvmm_amdocs_ids_' ## ARGUMENTS ############### parser = argparse.ArgumentParser( description='Generate score table for fbb model', epilog='Please report bugs and issues to Álvaro <[email protected]>') parser.add_argument('-s', '--training_day', metavar='<TRAINING_DAY>', type=str, required=True, help='Training day YYYYMMDD. Date of the CAR taken to train the model.') parser.add_argument('-p', '--prediction_day', metavar='<PREDICTION_DAY>', type=str, required=True, help='Prediction day YYYYMMDD.') parser.add_argument('-o', '--horizon', metavar='<horizon>', type=int, required=True, help='Number of cycles used to gather the portability requests from the training day.') args = parser.parse_args() print(args) # Cycle used for CAR and Extra Feats in the training set trcycle_ini = args.training_day# '20181130' # Training data # Number of cycles to gather dismiss requests horizon = args.horizon #4 # Cycle used for CAR and Extra Feats in the test set ttcycle_ini = args.prediction_day#'20181231' # Test data tr_ttdates = trcycle_ini + '_' + ttcycle_ini ######################## ### 1. TRAINING DATA ### ######################## # 1.1. Loading training data #path = '/data/udf/vf_es/churn/fbb_tmp/inittrdf_ini_' + tr_ttdates inittrdf_ini = getFbbChurnLabeledCarCycles_both(spark, origin, trcycle_ini, selcols, horizon) #print "[Info Main FbbChurn] " + time.ctime() + " Saving inittrdf_ini to HDFS" #path = '/data/udf/vf_es/churn/fbb_tmp/inittrdf_' + tr_ttdates print'Dxs in training df: {}'.format(inittrdf_ini.where(col('label_bajas') > 0).count()) print'Ports in training df: {}'.format(inittrdf_ini.where(col('label_port') > 0).count()) ## Reading the Extra Features dfExtraFeat = spark.read.parquet('/data/udf/vf_es/churn/extra_feats_mod/extra_feats/year={}/month={}/day={}' .format(int(trcycle_ini[0:4]), int(trcycle_ini[4:6]), int(trcycle_ini[6:8]))) # Taking only the clients with a fbb service dfExtraFeatfbb = dfExtraFeat.join(inittrdf_ini, ["num_cliente"], "leftsemi") dfExtraFeatfbb = dfExtraFeatfbb.cache() #print "[Info Main FbbChurn] " + time.ctime() + " Count of the ExtraFeats: ", dfExtraFeatfbb.count() # Taking the Extra Features of interest and adding their values for num_client when necessary dfExtraFeatSel, selColumnas = addExtraFeatsEvol(dfExtraFeatfbb) #print "[Info Main FbbChurn] " + time.ctime() + " Calculating the total value of the extra feats for each number client" dfillNa = fillNa(spark) for kkey in dfillNa.keys(): if kkey not in dfExtraFeatSel.columns: dfillNa.pop(kkey, None) inittrdf = inittrdf_ini.join(dfExtraFeatSel, ["msisdn", "num_cliente", 'rgu'], how="left").na.fill(dfillNa) #print "[Info Main FbbChurn] " + time.ctime() + " Saving inittrdf to HDFS " +str(inittrdf.count()) #path_p = '/data/udf/vf_es/churn/fbb_tmp/inittrdf_20181130_p' #inittrdf_port.repartition(200).write.save(path_p, format='parquet', mode='overwrite') [unbaltrdf_, valdf] = inittrdf.randomSplit([0.8, 0.2], 1234) [unbaltrdf, ensembdf] = unbaltrdf_.randomSplit([0.8, 0.2], 1234) unbaltrdf = unbaltrdf.cache() valdf = valdf.cache() unbaltrdf.groupBy('label_bajas').agg(count('*')).show() unbaltrdf.groupBy('label_port').agg(count('*')).show() trdf_port = balance_df2(unbaltrdf, 'label_port') trdf_dx = balance_df2(unbaltrdf, 'label_bajas') trdf_dx.groupBy('label_bajas').agg(count('*')).show() trdf_port.groupBy('label_port').agg(count('*')).show() allFeats = trdf_dx.columns # Getting only the numeric variables catCols = [item[0] for item in trdf_dx.dtypes if item[1].startswith('string')] numerical_feats = list(set(allFeats) - set(list( set().union(getIdFeats(), getIdFeats_tr(), getNoInputFeats(), catCols, [c + "_enc" for c in getCatFeatsCrm()], ["label"])))) noninf_feats = getNonInfFeats(trdf_dx, numerical_feats) #unbaltrdf.repartition(300).write.save(path1,format='parquet', mode='overwrite') #valdf.repartition(300).write.save(path2,format='parquet', mode='overwrite') # 1.2. Balanced df for training #################### ### 2. TEST DATA ### #################### ttdf_ini = getFbbChurnLabeledCarCycles_both(spark, origin, ttcycle_ini, selcols,horizon) #print "[Info Main FbbChurn] " + time.ctime() + " Saving ttdf_ini to HDFS " #ttdf_ini.repartition(200).write.save(path,format='parquet', mode='overwrite') #ttdf_ini.describe('label').show() #path = "/data/udf/vf_es/churn/fbb_tmp/ttdf_" + tr_ttdates dfExtraFeat_tt = spark.read.parquet('/data/udf/vf_es/churn/extra_feats_mod/extra_feats/year={}/month={}/day={}' .format(int(ttcycle_ini[0:4]), int(ttcycle_ini[4:6]), int(ttcycle_ini[6:8]))) dfExtraFeatfbb_tt = dfExtraFeat_tt.join(ttdf_ini.select('num_cliente'), on='num_cliente', how='leftsemi') #print(dfExtraFeatfbb_tt.select('num_cliente').distinct().count(), ttdf_ini.select('num_cliente').distinct().count()) dfExtraFeatfbb_tt = dfExtraFeatfbb_tt.cache() #print("[Info Main FbbChurn] " + time.ctime() + " Count of the ExtraFeats ", dfExtraFeatfbb_tt.count()) dfExtraFeat_ttSel, selColumnas = addExtraFeatsEvol(dfExtraFeatfbb_tt) dfillNa = fillNa(spark) for kkey in dfillNa.keys(): if kkey not in dfExtraFeat_ttSel.columns: dfillNa.pop(kkey, None) ttdf = ttdf_ini.join(dfExtraFeat_ttSel, ["msisdn", "num_cliente", 'rgu'], how="left").na.fill(dfillNa) #################### ### 3. MODELLING ### #################### featCols = list(set(numerical_feats) - set(noninf_feats + ['label_bajas','label_port'])) for f in featCols: print "[Info Main FbbChurn] Input feat: " + f assembler = VectorAssembler(inputCols=featCols, outputCol="features") classifier_port = RandomForestClassifier(featuresCol="features", \ labelCol="label_port", \ maxDepth=20, \ maxBins=32, \ minInstancesPerNode=100, \ impurity="entropy", \ featureSubsetStrategy="sqrt", \ subsamplingRate=0.85, minInfoGain = 0.001, \ numTrees=800, \ seed=1234) classifier_dx = RandomForestClassifier(featuresCol="features", \ labelCol="label_bajas", \ maxDepth=18, \ maxBins=32, \ minInstancesPerNode=90, \ impurity="entropy", \ featureSubsetStrategy="sqrt", \ subsamplingRate=0.85, minInfoGain = 0.001, \ numTrees=800, \ seed=1234) pipeline_port = Pipeline(stages=[assembler, classifier_port]) pipeline_dx = Pipeline(stages=[assembler, classifier_dx]) getScore = udf(lambda prob: float(prob[1]), DoubleType()) model_dx = pipeline_dx.fit(trdf_dx) calibmodel_dx = getCalibrationFunction(spark, model_dx, valdf, 'label_bajas', 10) # Calibration model_port = pipeline_dx.fit(trdf_port) calibmodel_port = getCalibrationFunction(spark, model_port, valdf, 'label_port', 10) feat_importance_port = getOrderedRelevantFeats(model_port, featCols, 'f', 'rf') feat_importance_dx = getOrderedRelevantFeats(model_dx, featCols, 'f', 'rf') port_imp, imp = zip(*feat_importance_port) dx_imp, imp_dx = zip(*feat_importance_dx) n = 200 list_f = port_imp[:n] + dx_imp[:n] featCols_ensemb = list(dict.fromkeys(list_f)) + ['calib_model_score_portas', 'calib_model_score_bajas'] ################## ### EVALUATION ### ################## # Train tr_preds_df_dx = model_dx.transform(trdf_dx).withColumn("model_score", getScore(col("probability")).cast(DoubleType())) tr_calib_preds_df_dx = calibmodel_dx[0].transform(tr_preds_df_dx) trPredictionAndLabels_dx = tr_calib_preds_df_dx.select(['calib_model_score', 'label_bajas']).rdd.map(lambda r: (r['calib_model_score'], r['label_bajas'])) trmetrics_dx = BinaryClassificationMetrics(trPredictionAndLabels_dx) tt_preds_df_dx = model_dx.transform(ttdf).withColumn("model_score", getScore(col("probability")).cast(DoubleType())) tt_calib_preds_df_dx = calibmodel_dx[0].transform(tt_preds_df_dx) ttPredictionAndLabels_dx = tt_calib_preds_df_dx.select(['calib_model_score', 'label_bajas']).rdd.map(lambda r: (r['calib_model_score'], r['label_bajas'])) ttmetrics_dx = BinaryClassificationMetrics(ttPredictionAndLabels_dx) print('Bajas:') print(" Area under ROC(tr) = " + str(trmetrics_dx.areaUnderROC)) print(" Area under ROC(tt) = " + str(ttmetrics_dx.areaUnderROC)) print(" ") # Test eval tr_preds_df_port = model_port.transform(trdf_port).withColumn("model_score", getScore(col("probability")).cast(DoubleType())) tr_calib_preds_df_port = calibmodel_port[0].transform(tr_preds_df_port) trPredictionAndLabels_port = tr_calib_preds_df_port.select(['calib_model_score', 'label_port']).rdd.map(lambda r: (r['calib_model_score'], r['label_port'])) trmetrics_port = BinaryClassificationMetrics(trPredictionAndLabels_port) tt_preds_df_port = model_port.transform(ttdf).withColumn("model_score", getScore(col("probability")).cast(DoubleType())) tt_calib_preds_df_port = calibmodel_port[0].transform(tt_preds_df_port) ttPredictionAndLabels_port = tt_calib_preds_df_port.select(['calib_model_score', 'label_port']).rdd.map(lambda r: (r['calib_model_score'], r['label_port'])) ttmetrics_port = BinaryClassificationMetrics(ttPredictionAndLabels_port) print('Portas:') print(" Area under ROC(tr) = " + str(trmetrics_port.areaUnderROC)) print(" Area under ROC(tt) = " + str(ttmetrics_port.areaUnderROC)) print(" ") tt_calib_preds_df_port_ = tt_calib_preds_df_port.withColumnRenamed('calib_model_score', 'calib_model_score_portas') tt_calib_preds_df_dx_ = tt_calib_preds_df_dx.withColumnRenamed('calib_model_score', 'calib_model_score_bajas') joined = tt_calib_preds_df_port_.select('num_cliente', 'label_port','calib_model_score_portas').join(tt_calib_preds_df_dx_.select('num_cliente', 'label_bajas', 'calib_model_score_bajas'), ['num_cliente'], 'inner') from pyspark.sql.functions import greatest, least joined = joined.withColumn('label', greatest('label_port','label_bajas')) ensembled = joined.withColumn('max', greatest('calib_model_score_portas','calib_model_score_bajas')).withColumn('min', least('calib_model_score_portas','calib_model_score_bajas'))\ .withColumn('mean', (col('calib_model_score_portas')+col('calib_model_score_bajas'))/2) pred_max = ensembled.select(['max', 'label']).rdd.map(lambda r: (r['max'], r['label'])) pred_max_metrics = BinaryClassificationMetrics(pred_max) pred_min = ensembled.select(['min', 'label']).rdd.map(lambda r: (r['min'], r['label'])) pred_min_metrics = BinaryClassificationMetrics(pred_min) pred_mean = ensembled.select(['mean', 'label']).rdd.map(lambda r: (r['mean'], r['label'])) pred_mean_metrics = BinaryClassificationMetrics(pred_mean) print(" Area under ROC(tt) max = " + str(pred_max_metrics.areaUnderROC)) print(" Area under ROC(tt) min = " + str(pred_min_metrics.areaUnderROC)) print(" Area under ROC(tt) mean = " + str(pred_mean_metrics.areaUnderROC)) assembler_ensemb = VectorAssembler(inputCols=featCols_ensemb, outputCol="features") classifier_ensemb = RandomForestClassifier(featuresCol="features", \ labelCol="label", \ maxDepth=20, \ maxBins=32, \ minInstancesPerNode=90, \ impurity="entropy", \ featureSubsetStrategy="sqrt", \ subsamplingRate=0.85, minInfoGain = 0.001, \ numTrees=800, \ seed=1234) pipeline_ensemb = Pipeline(stages=[assembler_ensemb, classifier_ensemb]) ensembdf = ensembdf.withColumn('label', greatest('label_port','label_bajas')) model_ensemb = model_dx.transform(ensembdf).withColumn("model_score", getScore(col("probability")).cast(DoubleType())) model_ensemb_calib_bajas = calibmodel_dx[0].transform(model_ensemb).withColumnRenamed('calib_model_score','calib_model_score_bajas') model_ensemb = model_port.transform(model_ensemb_calib_bajas.drop('features').drop(col('probability')).drop(col('prediction')).drop(col('rawPrediction')).drop(col('model_score'))).withColumn("model_score", getScore(col("probability")).cast(DoubleType())) model_ensemb_calib = calibmodel_port[0].transform(model_ensemb).withColumnRenamed('calib_model_score', 'calib_model_score_portas') model_ensemb_fit = pipeline_ensemb.fit(model_ensemb_calib.drop('features').drop(col('probability')).drop(col('prediction')).drop(col('rawPrediction')).drop(col('model_score'))) ensemb_preds_tr = model_ensemb_fit.transform(model_ensemb_calib.drop('features').drop(col('probability')).drop(col('prediction')).drop(col('rawPrediction')).drop(col('model_score')))\ .withColumn("model_score", getScore(col("probability")).cast(DoubleType())) ensembler_PredAndLabs = ensemb_preds_tr.select(['model_score', 'label']).rdd.map(lambda r: (r['model_score'], r['label'])) trmetrics_ensembled = BinaryClassificationMetrics(ensembler_PredAndLabs) print(" Area under ROC(tr-ensemb) = " + str(trmetrics_ensembled.areaUnderROC)) ensembler_df = tt_calib_preds_df_port_.select('num_cliente','calib_model_score_portas').join(tt_calib_preds_df_dx_.drop('features').drop(col('rawPrediction')).drop(col('probability')), ['num_cliente'], 'inner') ensembler_df = ensembler_df.withColumn('label', greatest('label_port','label_bajas')) ensemb_preds_tt = model_ensemb_fit.transform(ensembler_df.drop('features').drop(col('probability')).drop(col('prediction')).drop(col('rawPrediction')).drop(col('model_score')))\ .withColumn("model_score", getScore(col("probability")).cast(DoubleType())) ensembler_PredAndLabs_tt = ensemb_preds_tt.select(['model_score', 'label']).rdd.map(lambda r: (r['model_score'], r['label'])) ttmetrics_ensembled = BinaryClassificationMetrics(ensembler_PredAndLabs_tt) print(" Area under ROC(tt-ensemb) = " + str(ttmetrics_ensembled.areaUnderROC)) spark.stop()
fc28baeac41627dff3871aeae768c4e62954d2aa
b7b243902150a1aa5b774523ac01d7016de13477
/cyc/DP/stock/123.py
116e4f9d9415a2a4c8e82fe5322822c75151375a
[]
no_license
Veraph/LeetCode_Practice
7e97a93464911a1f33b3133043d96c88cd54016a
eafadd711f6ec1b60d78442280f1c44b6296209d
refs/heads/master
2023-03-23T11:49:19.046474
2021-03-18T02:22:50
2021-03-18T02:22:50
273,317,388
0
0
null
null
null
null
UTF-8
Python
false
false
1,720
py
# 123.py -- Best time to buy and sell stock III ''' Say you have an array for which the ith element is the price of a given stock on day i. Design an algorithm to find the maximum profit. You may complete at most two transactions. Note: You may not engage in multiple transactions at the same time (i.e., you must sell the stock before you buy again). Example 1: Input: prices = [3,3,5,0,0,3,1,4] Output: 6 Explanation: Buy on day 4 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3. Then buy on day 7 (price = 1) and sell on day 8 (price = 4), profit = 4-1 = 3. Example 2: Input: prices = [1,2,3,4,5] Output: 4 Explanation: Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4. Note that you cannot buy on day 1, buy on day 2 and sell them later, as you are engaging multiple transactions at the same time. You must sell before buying again. Example 3: Input: prices = [7,6,4,3,1] Output: 0 Explanation: In this case, no transaction is done, i.e. max profit = 0. Example 4: Input: prices = [1] Output: 0 ''' def maxProfit(prices): ''' four states. the b1 and b2 mean the cost we currently have for buying when we buy the first and second stock b2 will be negative when you have on-hand profit(this profit include the cost you pay for the second stock) the s1 and s2 mean the profit we get after selling first and second stock ''' b1 = b2 = float('inf') s1 = s2 = 0 for price in prices: if b1 > price: b1 = price if s1 < price - b1: s1 = price - b1 if b2 > price - s1: b2 = price - s1 if s2 < price - b2: s2 = price - b2 return s2 maxProfit([3,3,5,0,0,3,1,4])
982036613e2e749e78f5d113fca143718d25414f
3a1fea0fdd27baa6b63941f71b29eb04061678c6
/src/ch08/rtda/heap/Method.py
eaa6ddab3eefc513c2349d4e34ad7e703e56d71d
[]
no_license
sumerzhang/JVMByPython
56a7a896e43b7a5020559c0740ebe61d608a9f2a
1554cf62f47a2c6eb10fe09c7216518416bb65bc
refs/heads/master
2022-12-02T17:21:11.020486
2020-08-18T06:57:10
2020-08-18T06:57:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,295
py
#!/usr/bin/env python # encoding: utf-8 """ @author: HuRuiFeng @file: Method.py @time: 2019/9/16 16:55 @desc: 方法信息 """ from ch08.classfile.MemberInfo import MemberInfo from ch08.rtda.heap import AccessFlags from ch08.rtda.heap.ClassMember import ClassMember from ch08.rtda.heap.MethodDescriptorParser import MethodDescriptorParser class Method(ClassMember): def __init__(self): super(Method, self).__init__() # 操作数栈 self.max_stack = 0 # 局部变量表大小 self.max_locals = 0 # 存放方法字节码 self.code = [] self.arg_slot_count = 0 # 根据class文件中的方法信息创建Method表 @staticmethod def new_methods(clazz, cfMethods): methods = [] for cfMethod in cfMethods: method = Method() method.set_class(clazz) method.copy_member_info(cfMethod) method.copy_attributes(cfMethod) method.calc_arg_slot_count() methods.append(method) return methods # 从method_info结构中提取max_stack、max_locals、code信息 def copy_attributes(self, cfMethod: MemberInfo): code_attr = cfMethod.code_attribute if code_attr is not None: self.max_stack = code_attr.max_stack self.max_locals = code_attr.max_locals self.code = code_attr.code # 计算参数在局部变量表中占用多少位置 def calc_arg_slot_count(self): parsed_descriptor = MethodDescriptorParser.parse_method_descriptor(self.descriptor) for _ in parsed_descriptor.parameter_types: self.arg_slot_count += 1 if not self.is_static(): self.arg_slot_count += 1 def is_synchronized(self): return 0 != self.access_flags & AccessFlags.ACC_SYNCHRONIZED def is_bridge(self): return 0 != self.access_flags & AccessFlags.ACC_BRIDGE def is_varargs(self): return 0 != self.access_flags & AccessFlags.ACC_VARARGS def is_native(self): return 0 != self.access_flags & AccessFlags.ACC_NATIVE def is_abstract(self): return 0 != self.access_flags & AccessFlags.ACC_ABSTRACT def is_strict(self): return 0 != self.access_flags & AccessFlags.ACC_STRICT
168f0c35ff34bedb374f39dccf96153f2d189166
fef8f43025cff430d9aea080885173d9c22b3cb6
/etalia/library/migrations/0011_auto_20170616_0411.py
57504ddd33b4be67c994de2dbe976ccc55c6ca32
[]
no_license
GemmaAA1/etalia-open
30a083141330e227ac1de9855894bfb6e476e3cc
260ce54d2da53c943d8b82fa9d40bb0c0df918a6
refs/heads/master
2023-03-28T03:33:13.771987
2017-10-30T00:55:27
2017-10-30T00:55:27
351,120,827
0
0
null
null
null
null
UTF-8
Python
false
false
428
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('library', '0010_journal_is_in_fixture'), ] operations = [ migrations.AlterField( model_name='paper', name='date_fs', field=models.DateField(db_index=True, null=True, blank=True), ), ]
c22f3e4a7b31155d6afa2f033d9ea480cfd488d3
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/hjZTbJNzKiSxTtbik_22.py
5f6c69157466d046cc2ece0ea8c5c597bfbd928b
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
314
py
def sort_by_string(lst, txt): sorts = list(txt) letters = [] for word in lst: letters.append(word[0]) for char in sorts: if char not in letters: sorts.remove(char) newlst = [] for char in sorts: for word in lst: if word[0] == char: newlst.append(word) return newlst
156756b04cbdf6811f0ff5436305d7c09339f87d
e70cb371f8642ac597f3a2266da3be205d971af5
/X0406.py
ce95ba2dca74845f1048bbcc82f57b8c5550fd4e
[]
no_license
bgnori/X0406
0b5a2545832c6283c07cd065a21697cf9f52042a
ed0f7ee1f8112043a246a64c99bff8a427541b03
refs/heads/master
2021-01-20T05:07:38.994728
2015-10-06T12:28:37
2015-10-06T12:28:37
40,598,914
0
0
null
null
null
null
UTF-8
Python
false
false
3,099
py
#!/bin/python #-*- coding=utf-8 -*- import re import json DEBUG = False x = re.compile("(?P<IsValuationAccountCode>\()?(?P<AccountCode>\d\d\d\d)\)?,(?P<rest>.+)") start_end = re.compile("\[(?P<start>\d\d\d\d)-(?P<end>\d\d\d\d)\]") class IDNode(object): def __init__(self, code, title, isvaluation, start, end, note): self.children = [] self.code = code self.title = title self.isvaluation = isvaluation self.start = start self.end = end self.note = note def add(self, node): for c in self.children: if c.start <= node.code and node.code <= c.end: c.add(node) return self.children.append(node) def visit(self, f, n=None): if n is None: n = 0 f(n, self) for c in self.children: c.visit(f, n+1) def findByCode(self, code): if self.code == code: return self for c in self.children: if c.code == code: return c if c.start <= code and code <= c.end: return c.findByCode(code) return None def findByTitle(self, title): if self.title == title: return self for c in self.children: found = c.findByTitle(title) if found is not None: return found return None def load(f): tree = IDNode(code=0, title="勘定科目", isvaluation=False, start=1, end=9999, note=None) for line in f: m = x.match(line) if m: d = m.groupdict() assert(d['AccountCode'] is not None) start = None end = None isvaluation = d['IsValuationAccountCode'] is not None code = int(d['AccountCode']) note = None for i, part in enumerate(d["rest"].split(",")): if i == 0: title = part else: m = start_end.match(part) if m is not None: d = m.groupdict() start = int(d["start"]) end = int(d["end"]) else: note = part if DEBUG: print code, start, end if start is None: m = code r = 1000 while r > 0: n, m = divmod(m, r) if DEBUG: print n, m if n == 0: start = code + 1 end = code + r*10 -1 break r = r / 10 if DEBUG: print code, start, end, "default" tree.add(IDNode(code, title, isvaluation, start, end, note)) return tree if __name__ == "__main__": import sys tree = load(sys.stdin.readlines()) def foo(n, node): print ' '*n, node.code, node.title, node.isvaluation, node.note tree.visit(foo)
f7ee387f7c79dc4fbb42c1d6b123cb829d3698e5
5509d3b5bbcc393684f7d2fc7fc11bb12ed1911a
/env/lib/python2.7/site-packages/pyramid_debugtoolbar-2.4.2-py2.7.egg/pyramid_debugtoolbar/panels/traceback.py
d80e51455eb29e63e6e7c926c6b4ed65eda11e19
[]
no_license
jundong/CRManager
99fd6c0eda084354d9237e11d07ef82124c22e1e
4306bf4d2b29b19d4b3092aab152192f7d623a19
refs/heads/master
2021-01-21T04:47:26.125045
2016-07-29T15:07:04
2016-07-29T15:07:04
50,995,792
2
0
null
null
null
null
UTF-8
Python
false
false
2,168
py
import re from pyramid_debugtoolbar.tbtools import Traceback from pyramid_debugtoolbar.panels import DebugPanel from pyramid_debugtoolbar.utils import escape from pyramid_debugtoolbar.utils import STATIC_PATH from pyramid_debugtoolbar.utils import ROOT_ROUTE_NAME from pyramid_debugtoolbar.utils import EXC_ROUTE_NAME _ = lambda x: x class TracebackPanel(DebugPanel): name = 'traceback' template = 'pyramid_debugtoolbar.panels:templates/traceback.dbtmako' title = _('Traceback') nav_title = title def __init__(self, request): self.request = request self.exc_history = request.exc_history @property def has_content(self): if hasattr(self.request, 'pdbt_tb'): return True else: return False def process_response(self, response): if self.has_content: traceback = self.request.pdbt_tb exc = escape(traceback.exception) summary = Traceback.render_summary(traceback, include_title=False, request=self.request) token = self.request.registry.pdtb_token url = '' # self.request.route_url(EXC_ROUTE_NAME, _query=qs) evalex = self.exc_history.eval_exc self.data = { 'evalex': evalex and 'true' or 'false', 'console': 'false', 'lodgeit_url': None, 'title': exc, 'exception': exc, 'exception_type': escape(traceback.exception_type), 'summary': summary, 'plaintext': traceback.plaintext, 'plaintext_cs': re.sub('-{2,}', '-', traceback.plaintext), 'traceback_id': traceback.id, 'token': token, 'url': url, } def render_content(self, request): return super(TracebackPanel, self).render_content(request) def render_vars(self, request): return { 'static_path': request.static_url(STATIC_PATH), 'root_path': request.route_url(ROOT_ROUTE_NAME) }
9431a9423d7fad2d5a4e7c1636dac7a36b374906
34530f74092ac04334d3d18879f3c59c3354f4f8
/0x08-python-more_classes/7-rectangle.py
cb0c06f693a581ec33482c8da5d28feb78a75f5c
[]
no_license
MarySerna/holbertonschool-higher_level_programming
9f37df91d7da703a31c461ca07703947ed090322
f7ed79a660690d412b7a8298ac9c658962d07c7a
refs/heads/master
2021-01-08T23:53:29.528920
2020-05-15T04:15:25
2020-05-15T04:15:25
242,180,350
0
0
null
null
null
null
UTF-8
Python
false
false
2,343
py
#!/usr/bin/python3 """Module to define a rectangle Args: width (int): width of a rectangle height (int): height of a rectangle """ class Rectangle: """Rectangle class """ number_of_instances = 0 print_symbol = '#' def __init__(self, width=0, height=0): """Initializes Rectangle class """ self.width = width self.height = height Rectangle.number_of_instances += 1 """Private instance attribute: width""" @property def width(self): """Width getter """ return self.__width @width.setter def width(self, value): """Width setter """ if not isinstance(value, int): raise TypeError('width must be an integer') if value < 0: raise ValueError('width must be >= 0') self.__width = value """Private instance attribute: height""" @property def height(self): """Height getter """ return self.__height @height.setter def height(self, value): """Height setter """ if not isinstance(value, int): raise TypeError('height must be an integer') if value < 0: raise ValueError('height must be >= 0') self.__height = value def area(self): """Area of a rectangle """ return self.__width * self.__height def perimeter(self): """Perimeter of a rectangle """ if self.width == 0 or self.height == 0: return 0 return ((2 * self.width) + (2 * self.height)) def __str__(self): """Prints the rectangle with the character # """ rect = "" if self.width == 0 or self.__height == 0: return "" for i in range(self.__height): for j in range(self.__width): rect += str(self.print_symbol) if i < self.__height - 1: rect += '\n' return rect def __repr__(self): """Prints representation of the rectangle """ return "Rectangle({}, {})".format(self.__width, self.__height) def __del__(self): """Prints a message when an instance of Rectangle is deleted """ print('Bye rectangle...') Rectangle.number_of_instances -= 1
ab18146ae14eef84aa4d85f43c6db2d2694961c5
846a7668ac964632bdb6db639ab381be11c13b77
/android/test/vts/runners/host/config_parser.py
ad1d845226dd3bcc151dc327374f772e5307f020
[]
no_license
BPI-SINOVOIP/BPI-A64-Android8
f2900965e96fd6f2a28ced68af668a858b15ebe1
744c72c133b9bf5d2e9efe0ab33e01e6e51d5743
refs/heads/master
2023-05-21T08:02:23.364495
2020-07-15T11:27:51
2020-07-15T11:27:51
143,945,191
2
0
null
null
null
null
UTF-8
Python
false
false
9,589
py
# # Copyright (C) 2016 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from builtins import str import copy import signal import sys import traceback from vts.runners.host import keys from vts.runners.host import errors from vts.runners.host import signals from vts.runners.host import utils _DEFAULT_CONFIG_TEMPLATE = { "test_bed": { "AndroidDevice": "*", }, "log_path": "/tmp/logs", "test_paths": ["./"], "enable_web": False, } def GetDefaultConfig(test_name): """Returns a default config data structure (when no config file is given).""" result = copy.deepcopy(_DEFAULT_CONFIG_TEMPLATE) result[keys.ConfigKeys.KEY_TESTBED][ keys.ConfigKeys.KEY_TESTBED_NAME] = test_name return result def load_test_config_file(test_config_path, tb_filters=None, baseline_config=None): """Processes the test configuration file provided by user. Loads the configuration file into a json object, unpacks each testbed config into its own json object, and validate the configuration in the process. Args: test_config_path: Path to the test configuration file. tb_filters: A list of strings, each is a test bed name. If None, all test beds are picked up. Otherwise only test bed names specified will be picked up. baseline_config: dict, the baseline config to use (used iff test_config_path does not have device info). Returns: A list of test configuration json objects to be passed to TestRunner. """ try: configs = utils.load_config(test_config_path) if keys.ConfigKeys.KEY_TESTBED not in configs and baseline_config: configs.update(baseline_config) if tb_filters: tbs = [] for tb in configs[keys.ConfigKeys.KEY_TESTBED]: if tb[keys.ConfigKeys.KEY_TESTBED_NAME] in tb_filters: tbs.append(tb) if len(tbs) != len(tb_filters): print("Expect to find %d test bed configs, found %d." % (len(tb_filters), len(tbs))) print("Check if you have the correct test bed names.") return None configs[keys.ConfigKeys.KEY_TESTBED] = tbs _validate_test_config(configs) _validate_testbed_configs(configs[keys.ConfigKeys.KEY_TESTBED]) k_log_path = keys.ConfigKeys.KEY_LOG_PATH configs[k_log_path] = utils.abs_path(configs[k_log_path]) tps = configs[keys.ConfigKeys.KEY_TEST_PATHS] except errors.USERError as e: print("Something is wrong in the test configurations.") print(str(e)) return None except Exception as e: print("Error loading test config {}".format(test_config_path)) print(traceback.format_exc()) return None # Unpack testbeds into separate json objects. beds = configs.pop(keys.ConfigKeys.KEY_TESTBED) config_jsons = [] for original_bed_config in beds: new_test_config = dict(configs) new_test_config[keys.ConfigKeys.KEY_TESTBED] = original_bed_config # Keys in each test bed config will be copied to a level up to be # picked up for user_params. If the key already exists in the upper # level, the local one defined in test bed config overwrites the # general one. new_test_config.update(original_bed_config) config_jsons.append(new_test_config) return config_jsons def parse_test_list(test_list): """Parse user provided test list into internal format for test_runner. Args: test_list: A list of test classes/cases. Returns: A list of tuples, each has a test class name and a list of test case names. """ result = [] for elem in test_list: result.append(_parse_one_test_specifier(elem)) return result def _validate_test_config(test_config): """Validates the raw configuration loaded from the config file. Making sure all the required keys exist. Args: test_config: A dict that is the config to validate. Raises: errors.USERError is raised if any required key is missing from the config. """ for k in keys.ConfigKeys.RESERVED_KEYS: if k not in test_config: raise errors.USERError(("Required key {} missing in test " "config.").format(k)) def _parse_one_test_specifier(item): """Parse one test specifier from command line input. This also verifies that the test class name and test case names follow ACTS's naming conventions. A test class name has to end with "Test"; a test case name has to start with "test". Args: item: A string that specifies a test class or test cases in one test class to run. Returns: A tuple of a string and a list of strings. The string is the test class name, the list of strings is a list of test case names. The list can be None. """ tokens = item.split(':') if len(tokens) > 2: raise errors.USERError("Syntax error in test specifier %s" % item) if len(tokens) == 1: # This should be considered a test class name test_cls_name = tokens[0] _validate_test_class_name(test_cls_name) return (test_cls_name, None) elif len(tokens) == 2: # This should be considered a test class name followed by # a list of test case names. test_cls_name, test_case_names = tokens clean_names = [] _validate_test_class_name(test_cls_name) for elem in test_case_names.split(','): test_case_name = elem.strip() if not test_case_name.startswith("test_"): raise errors.USERError( ("Requested test case '%s' in test class " "'%s' does not follow the test case " "naming convention test_*.") % (test_case_name, test_cls_name)) clean_names.append(test_case_name) return (test_cls_name, clean_names) def _parse_test_file(fpath): """Parses a test file that contains test specifiers. Args: fpath: A string that is the path to the test file to parse. Returns: A list of strings, each is a test specifier. """ try: with open(fpath, 'r') as f: tf = [] for line in f: line = line.strip() if not line: continue if len(tf) and (tf[-1].endswith(':') or tf[-1].endswith(',')): tf[-1] += line else: tf.append(line) return tf except: print("Error loading test file.") raise def _validate_test_class_name(test_cls_name): """Checks if a string follows the test class name convention. Args: test_cls_name: A string that should be a test class name. Raises: errors.USERError is raised if the input does not follow test class naming convention. """ if not test_cls_name.endswith("Test"): raise errors.USERError( ("Requested test class '%s' does not follow the test " "class naming convention *Test.") % test_cls_name) def _validate_testbed_configs(testbed_configs): """Validates the testbed configurations. Args: testbed_configs: A list of testbed configuration json objects. Raises: If any part of the configuration is invalid, errors.USERError is raised. """ seen_names = set() # Cross checks testbed configs for resource conflicts. for config in testbed_configs: # Check for conflicts between multiple concurrent testbed configs. # No need to call it if there's only one testbed config. name = config[keys.ConfigKeys.KEY_TESTBED_NAME] _validate_testbed_name(name) # Test bed names should be unique. if name in seen_names: raise errors.USERError("Duplicate testbed name {} found.".format( name)) seen_names.add(name) def _validate_testbed_name(name): """Validates the name of a test bed. Since test bed names are used as part of the test run id, it needs to meet certain requirements. Args: name: The test bed's name specified in config file. Raises: If the name does not meet any criteria, errors.USERError is raised. """ if not name: raise errors.USERError("Test bed names can't be empty.") if not isinstance(name, str) and not isinstance(name, basestring): raise errors.USERError("Test bed names have to be string. Found: %s" % type(name)) for l in name: if l not in utils.valid_filename_chars: raise errors.USERError( "Char '%s' is not allowed in test bed names." % l)
cb5b7eebb2a8dfadaccca19077b3b99065b2e65a
c823e437ffd46aa3b1465819686ee50fd1932214
/src/transformers/models/blip/modeling_blip.py
f00c9f9cabbbc915d057c3bd5c21749f1c19c197
[ "Apache-2.0" ]
permissive
nateraw/transformers
f03258d62c4773732514e443d98f1684d3467bfd
7fd902d3351b81775112cd6b526bc32cf9ba856d
refs/heads/main
2023-03-19T00:31:55.123718
2023-01-20T22:16:42
2023-01-20T22:16:42
564,090,117
5
0
Apache-2.0
2022-11-10T01:00:04
2022-11-10T01:00:03
null
UTF-8
Python
false
false
61,768
py
# coding=utf-8 # Copyright 2022 The Salesforce Team Authors and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch BLIP model.""" from dataclasses import dataclass from typing import Any, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn.functional import normalize from ...activations import ACT2FN from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_blip import BlipConfig, BlipTextConfig, BlipVisionConfig from .modeling_blip_text import BlipTextLMHeadModel, BlipTextModel logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "Salesforce/blip-vqa-base" BLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [ "Salesforce/blip-vqa-base", "Salesforce/blip-vqa-capfit-large", "Salesforce/blip-image-captioning-base", "Salesforce/blip-image-captioning-large", "Salesforce/blip-itm-base-coco", "Salesforce/blip-itm-large-coco", "Salesforce/blip-itm-base-flikr", "Salesforce/blip-itm-large-flikr", # See all BLIP models at https://huggingface.co/models?filter=blip ] # Copied from transformers.models.clip.modeling_clip.contrastive_loss def contrastive_loss(logits: torch.Tensor) -> torch.Tensor: return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device)) # Copied from transformers.models.clip.modeling_clip.clip_loss with clip->blip def blip_loss(similarity: torch.Tensor) -> torch.Tensor: caption_loss = contrastive_loss(similarity) image_loss = contrastive_loss(similarity.t()) return (caption_loss + image_loss) / 2.0 @dataclass class BlipForConditionalGenerationModelOutput(ModelOutput): """ Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states. This class also adds the loss term from the text decoder. Args: loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): Languge modeling loss from the text decoder. decoder_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`, *optional*): Prediction scores of the language modeling head of the text decoder model. image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*): The image embeddings obtained after applying the Vision Transformer model to the input image. last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[Tuple[torch.FloatTensor]] = None decoder_logits: Optional[Tuple[torch.FloatTensor]] = None image_embeds: Optional[torch.FloatTensor] = None last_hidden_state: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class BlipTextVisionModelOutput(ModelOutput): """ Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states. This class also adds the loss term from the text decoder. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Languge modeling loss from the text decoder. image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): The image embeddings obtained by applying the projection layer to the pooler_output. last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None image_embeds: Optional[torch.FloatTensor] = None last_hidden_state: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class BlipImageTextMatchingModelOutput(ModelOutput): """ Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states. This class also adds the loss term from the text decoder as well as the image-text similarity scores. Args: itm_score (`torch.FloatTensor`): The image-text similarity scores. loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Languge modeling loss from the text decoder. image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): The image embeddings obtained by applying the projection layer to the pooler_output. last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. vision_pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*): Last layer hidden-state of the vision of the vision-only branch of the model. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. question_embeds (`torch.FloatTensor`): The question embeddings obtained by the text projection layer. """ itm_score: Optional[torch.FloatTensor] = None loss: Optional[torch.FloatTensor] = None image_embeds: Optional[torch.FloatTensor] = None last_hidden_state: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None vision_pooler_output: Optional[torch.FloatTensor] = None attentions: Optional[Tuple[torch.FloatTensor]] = None question_embeds: Optional[Tuple[torch.FloatTensor]] = None @dataclass class BlipOutput(ModelOutput): """ Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): Contrastive loss for image-text similarity. logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`): The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text similarity scores. logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`): The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image similarity scores. text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`BlipTextModel`]. image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of [`BlipVisionModel`]. text_model_output(`BaseModelOutputWithPooling`): The output of the [`BlipTextModel`]. vision_model_output(`BaseModelOutputWithPooling`): The output of the [`BlipVisionModel`]. """ loss: Optional[torch.FloatTensor] = None logits_per_image: torch.FloatTensor = None logits_per_text: torch.FloatTensor = None text_embeds: torch.FloatTensor = None image_embeds: torch.FloatTensor = None text_model_output: BaseModelOutputWithPooling = None vision_model_output: BaseModelOutputWithPooling = None def to_tuple(self) -> Tuple[Any]: return tuple( self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple() for k in self.keys() ) class BlipVisionEmbeddings(nn.Module): def __init__(self, config: BlipVisionConfig): super().__init__() self.config = config self.embed_dim = config.hidden_size self.image_size = config.image_size self.patch_size = config.patch_size self.class_embedding = nn.Parameter( torch.randn(1, 1, self.embed_dim), ) self.patch_embedding = nn.Conv2d( in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size ) self.num_patches = (self.image_size // self.patch_size) ** 2 self.num_positions = self.num_patches + 1 self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim)) def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: batch_size = pixel_values.shape[0] target_dtype = self.patch_embedding.weight.dtype patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid] patch_embeds = patch_embeds.flatten(2).transpose(1, 2) class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype) embeddings = torch.cat([class_embeds, patch_embeds], dim=1) embeddings = embeddings + self.position_embedding[:, : embeddings.size(1), :].to(target_dtype) return embeddings # Copied from transformers.models.clip.modeling_clip.CLIPTextEmbeddings with CLIP->Blip class BlipTextEmbeddings(nn.Module): def __init__(self, config: BlipTextConfig): super().__init__() embed_dim = config.hidden_size self.token_embedding = nn.Embedding(config.vocab_size, embed_dim) self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) def forward( self, input_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, ) -> torch.Tensor: seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2] if position_ids is None: position_ids = self.position_ids[:, :seq_length] if inputs_embeds is None: inputs_embeds = self.token_embedding(input_ids) position_embeddings = self.position_embedding(position_ids) embeddings = inputs_embeds + position_embeddings return embeddings class BlipAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale = self.head_dim**-0.5 self.dropout = nn.Dropout(config.attention_dropout) self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim) self.projection = nn.Linear(self.embed_dim, self.embed_dim) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" bsz, tgt_len, embed_dim = hidden_states.size() mixed_qkv = self.qkv(hidden_states) mixed_qkv = ( self.qkv(hidden_states) .reshape(bsz, tgt_len, 3, self.num_heads, embed_dim // self.num_heads) .permute(2, 0, 3, 1, 4) ) query_states, key_states, value_states = ( mixed_qkv[0], mixed_qkv[1], mixed_qkv[2], ) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2)) attention_scores = attention_scores * self.scale # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_states).permute(0, 2, 1, 3) new_context_layer_shape = context_layer.size()[:-2] + (self.embed_dim,) context_layer = context_layer.reshape(new_context_layer_shape) output = self.projection(context_layer) outputs = (output, attention_probs) if output_attentions else (output, None) return outputs # Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Blip class BlipMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.activation_fn = ACT2FN[config.hidden_act] self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states class BlipEncoderLayer(nn.Module): def __init__(self, config: BlipConfig): super().__init__() self.embed_dim = config.hidden_size self.self_attn = BlipAttention(config) self.layer_norm1 = nn.LayerNorm(self.embed_dim) self.mlp = BlipMLP(config) self.layer_norm2 = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. `(config.encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, head_mask=attention_mask, output_attentions=output_attentions, ) hidden_states = hidden_states + residual residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = hidden_states + residual outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class BlipPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = BlipConfig base_model_prefix = "blip" supports_gradient_checkpointing = True _keys_to_ignore_on_load_missing = [r"position_ids"] def _init_weights(self, module): """Initialize the weights""" factor = self.config.initializer_range if isinstance(module, nn.Conv2d) or isinstance(module, nn.Embedding) or isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=factor) if hasattr(module, "bias") and module.bias is not None: module.bias.data.zero_() if isinstance(module, BlipVisionEmbeddings): if hasattr(self.config, "vision_config"): factor = self.config.vision_config.initializer_range nn.init.trunc_normal_( module.position_embedding, mean=0.0, std=factor, ) nn.init.trunc_normal_( module.class_embedding, mean=0.0, std=factor, ) elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, BlipEncoder): module.gradient_checkpointing = value BLIP_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`BlipConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ BLIP_TEXT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`BlipProcessor`]. See [`BlipProcessor.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ BLIP_VISION_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`BlipImageProcessor`]. See [`BlipImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ BLIP_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`BlipProcessor`]. See [`BlipProcessor.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`BlipImageProcessor`]. See [`BlipImageProcessor.__call__`] for details. return_loss (`bool`, *optional*): Whether or not to return the contrastive loss. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class BlipEncoder(nn.Module): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`BlipEncoderLayer`]. Args: config (`BlipConfig`): The corresponding vision configuration for the `BlipEncoder`. """ def __init__(self, config: BlipConfig): super().__init__() self.config = config self.layers = nn.ModuleList([BlipEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, inputs_embeds, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None hidden_states = inputs_embeds for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(encoder_layer), hidden_states, attention_mask, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) class BlipVisionModel(BlipPreTrainedModel): main_input_name = "pixel_values" config_class = BlipVisionConfig def __init__(self, config: BlipVisionConfig): super().__init__(config) self.config = config embed_dim = config.hidden_size self.embeddings = BlipVisionEmbeddings(config) self.encoder = BlipEncoder(config) self.post_layernorm = nn.LayerNorm(embed_dim) self.post_init() @add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=BlipVisionConfig) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") hidden_states = self.embeddings(pixel_values) encoder_outputs = self.encoder( inputs_embeds=hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] last_hidden_state = self.post_layernorm(last_hidden_state) pooled_output = last_hidden_state[:, 0, :] pooled_output = self.post_layernorm(pooled_output) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def get_input_embeddings(self): return self.embeddings @add_start_docstrings(BLIP_START_DOCSTRING) class BlipModel(BlipPreTrainedModel): config_class = BlipConfig def __init__(self, config: BlipConfig): super().__init__(config) if not isinstance(config.text_config, BlipTextConfig): raise ValueError( "config.text_config is expected to be of type BlipTextConfig but is of type" f" {type(config.text_config)}." ) if not isinstance(config.vision_config, BlipVisionConfig): raise ValueError( "config.vision_config is expected to be of type BlipVisionConfig but is of type" f" {type(config.vision_config)}." ) text_config = config.text_config vision_config = config.vision_config self.projection_dim = config.projection_dim self.text_embed_dim = text_config.hidden_size self.vision_embed_dim = vision_config.hidden_size self.text_model = BlipTextModel(text_config) self.vision_model = BlipVisionModel(vision_config) self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False) self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False) self.logit_scale = nn.Parameter(torch.ones([]) * self.config.logit_scale_init_value) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BLIP_TEXT_INPUTS_DOCSTRING) def get_text_features( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, return_dict: Optional[bool] = None, ) -> torch.FloatTensor: r""" Returns: text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`BlipTextModel`]. Examples: ```python >>> from transformers import BlipProcessor, BlipModel >>> model = BlipModel.from_pretrained("Salesforce/blip-image-captioning-base") >>> processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") >>> inputs = processor(text=["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") >>> text_features = model.get_text_features(**inputs) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, return_dict=return_dict, ) pooled_output = text_outputs[1] text_features = self.text_projection(pooled_output) return text_features @add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING) def get_image_features( self, pixel_values: Optional[torch.FloatTensor] = None, return_dict: Optional[bool] = None, ) -> torch.FloatTensor: r""" Returns: image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of [`BlipVisionModel`]. Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import BlipProcessor, BlipModel >>> model = BlipModel.from_pretrained("Salesforce/blip-image-captioning-base") >>> processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> image_features = model.get_image_features(**inputs) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_outputs = self.vision_model( pixel_values=pixel_values, return_dict=return_dict, ) pooled_output = vision_outputs[1] # pooled_output image_features = self.visual_projection(pooled_output) return image_features @add_start_docstrings_to_model_forward(BLIP_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BlipOutput, config_class=BlipConfig) def forward( self, input_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, return_loss: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BlipOutput]: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import BlipProcessor, BlipModel >>> model = BlipModel.from_pretrained("Salesforce/blip-image-captioning-base") >>> processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor( ... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True ... ) >>> outputs = model(**inputs) >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score >>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities ```""" # Use BLIP model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) image_embeds = vision_outputs[1] image_embeds = self.visual_projection(image_embeds) text_embeds = text_outputs[1] text_embeds = self.text_projection(text_embeds) # normalized features image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True) text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True) # cosine similarity as logits logit_scale = self.logit_scale.exp() logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale logits_per_image = logits_per_text.t() loss = None if return_loss: loss = blip_loss(logits_per_text) if not return_dict: output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs) return ((loss,) + output) if loss is not None else output return BlipOutput( loss=loss, logits_per_image=logits_per_image, logits_per_text=logits_per_text, text_embeds=text_embeds, image_embeds=image_embeds, text_model_output=text_outputs, vision_model_output=vision_outputs, ) @add_start_docstrings( """ BLIP Model for image captioning. The model consists of a vision encoder and a text decoder. One can optionally pass `input_ids` to the model, which serve as a text prompt, to make the text decoder continue the prompt. Otherwise, the decoder starts generating text from the [BOS] (beginning-of-sequence) token. will start generating the caption from the text input. If no text input is provided, the decoder will start with the [BOS] token only. """, BLIP_START_DOCSTRING, ) class BlipForConditionalGeneration(BlipPreTrainedModel): config_class = BlipConfig _keys_to_ignore_on_load_missing = [r"text_decoder.cls.predictions.decoder.bias"] main_input_name = "pixel_values" def __init__(self, config: BlipConfig): super().__init__(config) self.vision_model = BlipVisionModel(config.vision_config) self.text_decoder = BlipTextLMHeadModel(config.text_config) self.decoder_input_ids = config.text_config.bos_token_id self.decoder_pad_token_id = config.text_config.pad_token_id # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.vision_model.embeddings.patch_embedding @add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BlipForConditionalGenerationModelOutput, config_class=BlipVisionConfig) def forward( self, pixel_values: torch.FloatTensor, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, labels: Optional[torch.LongTensor] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BlipForConditionalGenerationModelOutput]: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import BlipProcessor, BlipForConditionalGeneration >>> processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") >>> model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) ```""" batch_size = pixel_values.shape[0] return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) image_embeds = vision_outputs[0] if input_ids is None: input_ids = torch.LongTensor([[self.decoder_input_ids] * batch_size]).to(image_embeds.device) if labels is None: labels = input_ids.masked_fill(input_ids == self.decoder_pad_token_id, -100) outputs = self.text_decoder( input_ids=input_ids, attention_mask=attention_mask, encoder_hidden_states=image_embeds, labels=labels, return_dict=return_dict, reduction="mean", ) if not return_dict: outputs = (outputs[0], outputs[1], image_embeds, vision_outputs[0]) + vision_outputs[2:] return tuple(output for output in outputs if output is not None) return BlipForConditionalGenerationModelOutput( loss=outputs.loss, decoder_logits=outputs.logits, image_embeds=image_embeds, last_hidden_state=vision_outputs.last_hidden_state, hidden_states=vision_outputs.hidden_states, attentions=vision_outputs.attentions, ) @torch.no_grad() def generate( self, pixel_values: torch.FloatTensor, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, **generate_kwargs ) -> torch.LongTensor: r""" Overrides *generate* function to be able to use the model as a conditional generator Parameters: pixel_values (*torch.FloatTensor* of shape *(batch_size, image_width, image_height)*: Input image to be processed input_ids (*torch.LongTensor* of shape *(batch_size, sequence_length)*, *optional*): The sequence used as a prompt for the generation. attention_mask (*torch.LongTensor* of shape *(batch_size, sequence_length)*, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import BlipProcessor, BlipForConditionalGeneration >>> model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") >>> processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> outputs = model.generate(**inputs) >>> print(processor.decode(outputs[0], skip_special_tokens=True)) two cats are laying on a couch ``` """ batch_size = pixel_values.shape[0] vision_outputs = self.vision_model( pixel_values=pixel_values, ) image_embeds = vision_outputs[0] image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image_embeds.device) if isinstance(input_ids, list): input_ids = torch.LongTensor(input_ids) elif input_ids is None: input_ids = ( torch.LongTensor([[self.decoder_input_ids, self.config.text_config.eos_token_id]]) .repeat(batch_size, 1) .to(image_embeds.device) ) input_ids[:, 0] = self.config.text_config.bos_token_id attention_mask = attention_mask[:, :-1] if attention_mask is not None else None outputs = self.text_decoder.generate( input_ids=input_ids[:, :-1], eos_token_id=self.config.text_config.sep_token_id, pad_token_id=self.config.text_config.pad_token_id, attention_mask=attention_mask, encoder_hidden_states=image_embeds, encoder_attention_mask=image_attention_mask, **generate_kwargs, ) return outputs @add_start_docstrings( """ BLIP Model for visual question answering. The model consists of a vision encoder, a text encoder as well as a text decoder. The vision encoder will encode the input image, the text encoder will encode the input question together with the encoding of the image, and the text decoder will output the answer to the question. """, BLIP_START_DOCSTRING, ) class BlipForQuestionAnswering(BlipPreTrainedModel): config_class = BlipConfig _keys_to_ignore_on_load_missing = [r"text_decoder.cls.predictions.decoder.bias"] def __init__(self, config: BlipConfig): super().__init__(config) self.vision_model = BlipVisionModel(config.vision_config) self.text_encoder = BlipTextModel(config.text_config, add_pooling_layer=False) self.text_decoder = BlipTextLMHeadModel(config.text_config) self.decoder_pad_token_id = config.text_config.pad_token_id self.decoder_start_token_id = config.text_config.bos_token_id # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.vision_model.embeddings.patch_embedding # Adapted from transformers.models.t5.modeling_t5.T5PreTrainedModel._shift_right def _shift_right(self, input_ids): pad_token_id = self.decoder_pad_token_id shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() shifted_input_ids[..., 0] = self.decoder_start_token_id # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) return shifted_input_ids @add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BlipTextVisionModelOutput, config_class=BlipVisionConfig) def forward( self, input_ids: torch.LongTensor, pixel_values: torch.FloatTensor, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, labels: Optional[torch.LongTensor] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BlipTextVisionModelOutput]: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import BlipProcessor, BlipForQuestionAnswering >>> model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base") >>> processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> text = "How many cats are in the picture?" >>> inputs = processor(images=image, text=text, return_tensors="pt") >>> outputs = model(**inputs) ```""" if labels is None and decoder_input_ids is None: raise ValueError( "Either `decoder_input_ids` or `labels` should be passed when calling `forward` with" " `BlipForQuestionAnswering`. if you are training the model make sure that `labels` is passed, if you" " are using the model for inference make sure that `decoder_input_ids` is passed." ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) image_embeds = vision_outputs[0] image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long) question_embeds = self.text_encoder( input_ids=input_ids, attention_mask=attention_mask, encoder_hidden_states=image_embeds, encoder_attention_mask=image_attention_mask, return_dict=return_dict, ) question_embeds = question_embeds[0] if not return_dict else question_embeds.last_hidden_state if labels is not None and decoder_input_ids is None: # get decoder inputs from shifting lm labels to the right - this is used in training mode decoder_input_ids = self._shift_right(labels) # replace possible -100 values in labels by `pad_token_id` labels = labels.masked_fill(labels == self.decoder_pad_token_id, -100) answer_output = self.text_decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=question_embeds, encoder_attention_mask=attention_mask, labels=labels, return_dict=return_dict, reduction="mean", ) if labels is not None: decoder_loss = answer_output.loss.mean() if return_dict else answer_output[0].mean() else: decoder_loss = None if not return_dict: outputs = (decoder_loss, image_embeds, vision_outputs[0]) + vision_outputs[2:] return tuple(output for output in outputs if output is not None) return BlipTextVisionModelOutput( loss=decoder_loss, image_embeds=image_embeds, last_hidden_state=vision_outputs.last_hidden_state, hidden_states=vision_outputs.hidden_states, attentions=vision_outputs.attentions, ) @torch.no_grad() def generate( self, input_ids: torch.LongTensor, pixel_values: torch.FloatTensor, attention_mask: Optional[torch.LongTensor] = None, **generate_kwargs ) -> torch.LongTensor: r""" Overrides *generate* function to be able to use the model as a conditional generator Parameters: input_ids (*torch.LongTensor* of shape *(batch_size, sequence_length)*): The sequence used as a prompt for the generation. pixel_values (*torch.FloatTensor* of shape *(batch_size, image_width, image_height)*: Input image to be processed attention_mask (*torch.LongTensor* of shape *(batch_size, sequence_length)*, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`. `1` for tokens that are NOT MASKED, `0` for MASKED tokens. **generate_kwargs: Additional arguments passed to the *generate* function of the decoder Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import BlipProcessor, BlipForQuestionAnswering >>> model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base") >>> processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> text = "How many cats are in the picture?" >>> inputs = processor(images=image, text=text, return_tensors="pt") >>> outputs = model.generate(**inputs) >>> print(processor.decode(outputs[0], skip_special_tokens=True)) 2 ``` """ vision_outputs = self.vision_model( pixel_values=pixel_values, ) image_embeds = vision_outputs[0] image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image_embeds.device) if isinstance(input_ids, list): input_ids = torch.LongTensor(input_ids) question_outputs = self.text_encoder( input_ids=input_ids, attention_mask=attention_mask, encoder_hidden_states=image_embeds, encoder_attention_mask=image_attention_mask, return_dict=False, ) question_embeds = question_outputs[0] question_attention_mask = torch.ones(question_embeds.size()[:-1], dtype=torch.long).to(question_embeds.device) bos_ids = torch.full( (question_embeds.size(0), 1), fill_value=self.decoder_start_token_id, device=question_embeds.device ) outputs = self.text_decoder.generate( input_ids=bos_ids, eos_token_id=self.config.text_config.sep_token_id, pad_token_id=self.config.text_config.pad_token_id, encoder_hidden_states=question_embeds, encoder_attention_mask=question_attention_mask, **generate_kwargs, ) return outputs @add_start_docstrings( """ BLIP Model with a vision and text projector, and a classification head on top. The model is used in the context of image-text retrieval. Given an image and a text, the model returns the probability of the text being relevant to the image. """, BLIP_START_DOCSTRING, ) class BlipForImageTextRetrieval(BlipPreTrainedModel): config_class = BlipConfig def __init__(self, config: BlipConfig): super().__init__(config) self.vision_model = BlipVisionModel(config.vision_config) self.text_encoder = BlipTextModel(config.text_config, add_pooling_layer=False) # vision projection layer self.vision_proj = nn.Linear(config.vision_config.hidden_size, config.image_text_hidden_size) # text projection layer self.text_proj = nn.Linear(config.text_config.hidden_size, config.image_text_hidden_size) # image text matching head self.itm_head = nn.Linear(config.text_config.hidden_size, 2) self.decoder_pad_token_id = ( config.text_config.pad_token_id if not hasattr(config, "decoder_pad_token_id") else config.decoder_pad_token_id ) self.decoder_start_token_id = ( config.text_config.bos_token_id if not hasattr(config, "decoder_start_token_id") else config.decoder_start_token_id ) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.vision_model.embeddings.patch_embedding @add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BlipTextVisionModelOutput, config_class=BlipVisionConfig) def forward( self, input_ids: torch.LongTensor, pixel_values: torch.FloatTensor, use_itm_head: Optional[bool] = True, attention_mask: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BlipTextVisionModelOutput]: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import BlipProcessor, BlipForImageTextRetrieval >>> model = BlipForImageTextRetrieval.from_pretrained("Salesforce/blip-itm-base") >>> processor = BlipProcessor.from_pretrained("Salesforce/blip-itm-base") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> text = "an image of a cat" >>> inputs = processor(images=image, text=text, return_tensors="pt") >>> outputs = model(**inputs) ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) image_embeds = vision_outputs[0] image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long) if use_itm_head: question_embeds = self.text_encoder( input_ids=input_ids, attention_mask=attention_mask, encoder_hidden_states=image_embeds, encoder_attention_mask=image_atts, return_dict=return_dict, ) question_embeds = question_embeds[0] if not return_dict else question_embeds.last_hidden_state output = self.itm_head(question_embeds[:, 0, :]) else: question_embeds = self.text_encoder( input_ids=input_ids, attention_mask=attention_mask, return_dict=return_dict, ) question_embeds = question_embeds[0] if not return_dict else question_embeds.last_hidden_state image_feat = normalize(self.vision_proj(image_embeds[:, 0, :]), dim=-1) text_feat = normalize(self.text_proj(question_embeds[:, 0, :]), dim=-1) output = image_feat @ text_feat.t() if not return_dict: outputs = (output, vision_outputs[0]) + vision_outputs[2:] + (question_embeds,) return tuple(output for output in outputs if output is not None) return BlipImageTextMatchingModelOutput( itm_score=output, last_hidden_state=vision_outputs.last_hidden_state, hidden_states=vision_outputs.hidden_states, attentions=vision_outputs.attentions, question_embeds=question_embeds, )
52d9e68a9e9779fd139fc1b6351e313f9867021a
92436a50cc26c8c8a216ba6d4a62e36069614234
/classy_vision/hooks/model_complexity_hook.py
2d950e229a73ec3d167f234b2c1f3d1cac33c6ba
[ "MIT" ]
permissive
hahaxun/ClassyVision
9341f4e6849c858094592052f3df111c13d1a91d
b3f714ef94275b3e9753ab3f3c8256cb852b96fc
refs/heads/master
2021-08-17T07:42:34.402613
2021-03-08T08:50:01
2021-03-08T08:50:01
245,940,574
1
0
MIT
2021-03-08T08:50:01
2020-03-09T04:02:59
Python
UTF-8
Python
false
false
3,368
py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from classy_vision.generic.profiler import ( ClassyProfilerNotImplementedError, compute_activations, compute_flops, count_params, ) from classy_vision.hooks import register_hook from classy_vision.hooks.classy_hook import ClassyHook @register_hook("model_complexity") class ModelComplexityHook(ClassyHook): """ Logs the number of paramaters and forward pass FLOPs and activations of the model. """ on_phase_start = ClassyHook._noop on_step = ClassyHook._noop on_phase_end = ClassyHook._noop on_end = ClassyHook._noop def __init__(self) -> None: super().__init__() self.num_flops = None self.num_activations = None self.num_parameters = None def on_start(self, task) -> None: """Measure number of parameters, FLOPs and activations.""" self.num_flops = 0 self.num_activations = 0 self.num_parameters = 0 try: self.num_parameters = count_params(task.base_model) logging.info("Number of parameters in model: %d" % self.num_parameters) try: self.num_flops = compute_flops( task.base_model, input_shape=task.base_model.input_shape, input_key=task.base_model.input_key if hasattr(task.base_model, "input_key") else None, ) if self.num_flops is None: logging.info("FLOPs for forward pass: skipped.") self.num_flops = 0 else: logging.info( "FLOPs for forward pass: %d MFLOPs" % (float(self.num_flops) / 1e6) ) except ClassyProfilerNotImplementedError as e: logging.warning(f"Could not compute FLOPs for model forward pass: {e}") try: self.num_activations = compute_activations( task.base_model, input_shape=task.base_model.input_shape, input_key=task.base_model.input_key if hasattr(task.base_model, "input_key") else None, ) logging.info(f"Number of activations in model: {self.num_activations}") except ClassyProfilerNotImplementedError as e: logging.warning( f"Could not compute activations for model forward pass: {e}" ) except Exception: logging.info("Skipping complexity calculation: Unexpected error") logging.debug("Error trace for complexity calculation:", exc_info=True) def get_summary(self): return { "FLOPS(M)": float(self.num_flops) / 1e6 if self.num_flops is not None else 0, "num_activations(M)": float(self.num_activations) / 1e6 if self.num_activations is not None else 0, "num_parameters(M)": float(self.num_parameters) / 1e6 if self.num_parameters is not None else 0, }
896cd37b75d6a90732e0f7cf6f2f1caaa6e5e557
2bc74414e71a280cc50085ec2e5a6499d22ae5e6
/src/python/probdist/_DirichletDist.py
2cb917cbd5d1ee752feb79300c7a8baecf4fe306
[ "MIT" ]
permissive
plewis/phycas
610c989d49dce741fc2d2ad048a9d7587eabeb74
9f5a4d9b2342dab907d14a46eb91f92ad80a5605
refs/heads/master
2020-12-25T16:48:31.870762
2017-07-15T14:07:37
2017-07-15T14:07:37
21,300,616
3
1
null
null
null
null
UTF-8
Python
false
false
20,943
py
from _PyDistributionBase import PyDistributionBase from _ProbDistExt import * class Dirichlet(DirichletDistBase, PyDistributionBase): #---+----|----+----|----+----|----+----|----+----|----+----|----+----| """ Represents the multivariate Dirichlet probability distribution. *** Not finished documenting this class yet *** """ def __init__(self, c): #---+----|----+----|----+----|----+----|----+----|----+----|----+----| """ Specify the parameters of the Dirichlet object as a tuple. e.g., >>> from phycas.probdist import * >>> d = Dirichlet((1,1,1,1)) >>> print d.getMean() (0.25, 0.25, 0.25, 0.25) """ DirichletDistBase.__init__(self, c) def clone(self): #---+----|----+----|----+----|----+----|----+----|----+----|----+----| """ Creates a copy of this Dirichlet distribution. """ return DirichletDistBase.clone(self) def isDiscrete(self): #---+----|----+----|----+----|----+----|----+----|----+----|----+----| """ Always returns False because the Dirichlet distribution is continuous. >>> from phycas.probdist import * >>> d = Dirichlet((1,1,1,1)) >>> print d.isDiscrete() False """ return DirichletDistBase.isDiscrete(self) def getDistName(self): #---+----|----+----|----+----|----+----|----+----|----+----|----+----| """ Returns the string 'Dirichlet' >>> from phycas.probdist import * >>> d = Dirichlet((1,1,1,1)) >>> print d.getDistName() Dirichlet """ return DirichletDistBase.getDistName(self) def __str__(self): #---+----|----+----|----+----|----+----|----+----|----+----|----+----| """ Returns a string that could be used to initialize another Dirichlet object identical to this one. e.g., >>> from phycas.probdist import * >>> d = Dirichlet((1,2,3,4)) >>> print d.__str__() Dirichlet((1.00000, 2.00000, 3.00000, 4.00000)) """ return DirichletDistBase.__str__(self) def __repr__(self): #---+----|----+----|----+----|----+----|----+----|----+----|----+----| """ Returns a string that could be used to initialize another Dirichlet object identical to this one. e.g., >>> from phycas.probdist import * >>> d = Dirichlet((1,2,3,4)) >>> print d.__repr__() Dirichlet((1.00000, 2.00000, 3.00000, 4.00000)) >>> print d Dirichlet((1.00000, 2.00000, 3.00000, 4.00000)) """ return DirichletDistBase.__repr__(self) def setLot(self, lot): #---+----|----+----|----+----|----+----|----+----|----+----|----+----| """ Substitutes a different random number generator to use when drawing samples. e.g., >>> g = Lot() >>> g.setSeed(1357) >>> d = Dirichlet((1.0, 1.0, 1.0, 1.0)) >>> d.setLot(g) >>> for x in d.sample(): ... print "%.12f" % x 0.006552381150 0.421429842993 0.270456715211 0.301561060645 >>> for x in d.sample(): ... print "%.12f" % x 0.602547509254 0.024508953948 0.328473170470 0.044470366328 >>> g.setSeed(1357) >>> for x in d.sample(): ... print "%.12f" % x 0.006552381150 0.421429842993 0.270456715211 0.301561060645 In this example, only one random number generator (g) was involved; however, one could pass g to several different probability distribu- tions, thus ensuring that the entire sequence of random numbers could be recreated by keeping track of only one seed value. If setLot is not used, each distribution object maintains its own random number generator that is initialized using the system clock at the time the object is created, making it difficult to replicate results. """ return DirichletDistBase.setLot(self, lot) def setSeed(self, seed): #---+----|----+----|----+----|----+----|----+----|----+----|----+----| """ Initializes the random number generator of this distribution object using the supplied seed. Note that if you have called setLot before this point, calling setSeed is pointless because you have already replaced the random number generator for which you are setting the seed! If you have already called setLot, you probably want to call the setSeed function of that Lot ojbect. >>> from phycas.probdist import * >>> d = Dirichlet((1,2,3,4)) >>> d.setSeed(135) >>> for x in d.sample(): ... print "%.12f" % x 0.000104630137 0.270690528796 0.037251633232 0.691953207834 >>> for x in d.sample(): ... print "%.12f" % x 0.234069762243 0.170795104732 0.191374394925 0.403760738099 >>> d.setSeed(135) >>> for x in d.sample(): ... print "%.12f" % x 0.000104630137 0.270690528796 0.037251633232 0.691953207834 """ return DirichletDistBase.setSeed(self, seed) def resetLot(self): #---+----|----+----|----+----|----+----|----+----|----+----|----+----| """ Resets the random number generator to point to the local Lot object. Because the local Lot object is used by default, this function need only be called if setLot has previously been called to specify an external random number generator. """ return DirichletDistBase.resetLot(self) def getMean(self): #---+----|----+----|----+----|----+----|----+----|----+----|----+----| """ Returns the mean of the distribution. This is the theoretical mean (i.e., it will not change if sample is called to generate samples from this distribution). Because this is a multivariate distribution, the object returned is a tuple. >>> from phycas.probdist import * >>> d = Dirichlet((1,2,3,4)) >>> print d.getMean() (0.10000000000000001, 0.20000000000000001, 0.29999999999999999, 0.40000000000000002) """ return DirichletDistBase.getMean(self) def getVar(self): #---+----|----+----|----+----|----+----|----+----|----+----|----+----| """ Returns the variance of the distribution. This is the theoretical variance (i.e., it will not change if sample is called to generate samples from this distribution). Because this is a multivariate distribution, the object returned is a tuple. >>> from phycas.probdist import * >>> d = Dirichlet((1,2,3,4)) >>> print d.getVar() (0.0081818181818181825, 0.014545454545454545, 0.019090909090909092, 0.02181818181818182) """ return DirichletDistBase.getVar(self) def getStdDev(self): #---+----|----+----|----+----|----+----|----+----|----+----|----+----| """ Returns the standard deviation of the distribution. This is the theoretical standard deviation (i.e., it will not change if sample is called to generate samples from this distribution). Because this is a multivariate distribution, the object returned is a tuple. >>> from phycas.probdist import * >>> d = Dirichlet((1,2,3,4)) >>> print d.getStdDev() (0.090453403373329092, 0.12060453783110545, 0.13816985594155148, 0.14770978917519928) """ return DirichletDistBase.getStdDev(self) def sample(self): #---+----|----+----|----+----|----+----|----+----|----+----|----+----| """ Draws a single sampled value from the Dirichlet distribution specified by this Dirichlet object. Python list comprehensions can be used to store many simulated samples for use in subsequent calculations. >>> from phycas.probdist import * >>> d = Dirichlet((1,2,3,4)) >>> d.setSeed(97531) >>> for x in d.sample(): ... print "%.12f" % x 0.120887631014 0.013728524332 0.512400278022 0.352983566632 """ return DirichletDistBase.sample(self) def approxCDF(self, x, n = 10000): #---+----|----+----|----+----|----+----|----+----|----+----|----+----| """ Approximates the cumulative distribution function evaluated at the supplied point x. The precision of the approximation is controlled by nsamples. The approximation is done using a brute force approach: nsamples samples are drawn from this Dirichlet distribution, and the proportion of those samples that are inside the region defined by x is returned as the approximated CDF. The supplied point x should be a tuple of length k, where k is one fewer than the number of parameters of the Dirichlet distribution. If x has length greater than k, the extra elements will be ignored. In the following example, the result returned from approxCDF for a Dirichlet((1,1)) distribution is compared to the exact result for the equivalent univariate Beta(1,1) distribution (the setSeed call is needed to ensure that the approximated CDF will be the same every time this example is run): >>> from phycas.probdist import * >>> d = Dirichlet((1,1)) >>> d.setSeed(1357) >>> print d.approxCDF(d.getMean()) 0.5059 >>> b = Beta(1,1) >>> print b.getCDF(b.getMean()) 0.5 """ assert n > 0, 'n must be greater than zero in Dirichlet.approxCDF function' nparams = DirichletDistBase.getNParams(self) assert nparams == len(x), 'Vector supplied to approxCDF has length %d but length expected was %d' % (len(x), nparams) return DirichletDistBase.approxCDF(self, x, n) def getLnPDF(self, x): #---+----|----+----|----+----|----+----|----+----|----+----|----+----| """ Evaluates the probability density function at the supplied value x. Returns the natural logarithm of the density at x. e.g., >>> from phycas.probdist import * >>> d = Dirichlet((1,2,3,4)) >>> print d.getLnPDF((0.4,0.3,0.2,0.1)) -1.01368307788 For example, the 4-parameter Dirichlet density is Gamma(a+b+c+d) p^(a-1) q^(b-1) r^(c-1) (1-p-q-r)^(d-1) ------------------------------------------------------ Gamma(a) Gamma(b) Gamma(c) Gamma(d) where a = 1, b = 2, c = 3, d = 4, p = 0.4, q = 0.3, r = 0.2 and Gamma is the Gamma function, not the Gamma probability distribution. Note that the argument x is a tuple, which in this example would be x = (p, q, r, 1-p-q-r) = (0.4, 0.3, 0.2, 0.1) The natural logarithm of the relative density is thus (a-1) log(p) + (b-1) log(q) + (c-1) log(r) + (d-1) log(1-p-q-r) - log(Gamma(a)) - log(Gamma(b)) - log(Gamma(c)) - log(Gamma(d)) + log(Gamma(a+b+c+d)) For the example given, this equals (1-1) log(0.4) + (2-1) log(0.3) + (3-1) log(0.2) + (4-1) log(0.1) - log(Gamma(1)) - log(Gamma(2)) - log(Gamma(3)) - log(Gamma(4)) + log(Gamma(1+2+3+4)) = 0.0 + log(0.3) + 2 log(0.2) + 3 log(0.1) - 0.0 - 0.0 - log(2!) - log(3!) + log(9!) = -1.01368307788 """ nparams = DirichletDistBase.getNParams(self) assert nparams == len(x), 'Vector supplied to getLnPDF has length %d but length expected was %d' % (len(x), nparams) return DirichletDistBase.getLnPDF(self, x) def getRelativeLnPDF(self, x): #---+----|----+----|----+----|----+----|----+----|----+----|----+----| """ Evaluates the relative probability density function at the supplied value x. Returns the natural logarithm of the relative density at x. Use this function if speed is important but normalization is not, say in MCMC calculations. Use getLnPDF instead if you need to have a correctly normalized density value (i.e. from a density function that integrates to 1.0) >>> from phycas.probdist import * >>> d = Dirichlet((1,2,3,4)) >>> print d.getRelativeLnPDF((0.4,0.3,0.2,0.1)) -11.3306039082 For example, the 4-parameter Dirichlet density is Gamma(a+b+c+d) p^(a-1) q^(b-1) r^(c-1) (1-p-q-r)^(d-1) ------------------------------------------------------ Gamma(a) Gamma(b) Gamma(c) Gamma(d) where a = 1, b = 2, c = 3, d = 4, p = 0.4, q = 0.3, r = 0.2 and Gamma is the Gamma function, not the Gamma probability distribution. The relative density requires only the four terms containing p, q, and r in the numerator, so the natural logarithm of the relative density is (a-1) log(p) + (b-1) log(q) + (c-1) log(r) + (d-1) log(1-p-q-r) For the example given, this equals (1-1) log(0.4) + (2-1) log(0.3) + (3-1) log(0.2) + (4-1) log(0.1) = log(0.3) + 2 log(0.2) + 3 log(0.1) = -11.3306039082 """ nparams = DirichletDistBase.getNParams(self) assert nparams == len(x), 'Vector supplied to getRelativeLnPDF has length %d but length expected was %d' % (len(x), nparams) return DirichletDistBase.getRelativeLnPDF(self, x) # Uncomment this version if numarray is re-introduced #def setMeanAndVariance(self, mean, variance): # #---+----|----+----|----+----|----+----|----+----|----+----|----+----| # """ # Sets the (multivariate) mean and variance of this distribution. # Note: mean and variance are numarray array objects rather than simple # tuples. This was an exercise to see if numarray could be used for this # purpose, but tuples would be better. Note that the variances are # given as a one-dimensional array, leaving out the covariances (which # are not needed to fully specify the Dirichlet distribution). # For example: # # >>> from phycas.probdist import * # >>> from numarray import array # >>> d = Dirichlet((1,1,1)) # >>> m = array([1./9., 3./9., 5./9.]) # >>> print m # [ 0.11111111 0.33333333 0.55555556] # >>> v = array([8./810.,18./810.,20./810.]) # >>> print v # [ 0.00987654 0.02222222 0.02469136] # >>> d.setMeanAndVariance(m,v) # >>> d.getMean() # (0.1111111111111111, 0.33333333333333331, 0.55555555555555558) # >>> d.getVar() # (0.009876543209876543, 0.022222222222222223, 0.024691358024691357) # # """ # nparams = DirichletDistBase.getNParams(self) # assert len(mean.shape) == 1, 'Mean vector supplied to Dirichlet.setMeanAndVariance should be a single-dimensional array' # assert len(variance.shape) == 1, 'Variance vector supplied to Dirichlet.setMeanAndVariance should be a single-dimensional array' # assert nparams == len(mean), 'Mean vector supplied to setMeanAndVariance should have %d elements, but %d were found' % (nparams, len(mean)) # assert nparams == len(variance), 'Variance vector supplied to setMeanAndVariance should have %d elements, but %d were found' % (nparams, len(variance)) # return DirichletDistBase.setMeanAndVariance(self, mean, variance) # Comment out this version if numarray is re-introduced def setMeanAndVariance(self, mean, variance): #---+----|----+----|----+----|----+----|----+----|----+----|----+----| """ Sets the (multivariate) mean and variance of this distribution. Note that the variances are given as a one-dimensional tuple, leaving out the covariances (which are not needed to fully specify the Dirichlet distribution). For example: >>> from phycas.probdist import * >>> d = Dirichlet((1,1,1)) >>> m = (1./9., 3./9., 5./9.) >>> print m (0.1111111111111111, 0.33333333333333331, 0.55555555555555558) >>> v = (8./810.,18./810.,20./810.) >>> print v (0.009876543209876543, 0.022222222222222223, 0.024691358024691357) >>> d.setMeanAndVariance(m,v) >>> d.getMean() (0.1111111111111111, 0.33333333333333331, 0.55555555555555558) >>> d.getVar() (0.009876543209876543, 0.022222222222222223, 0.024691358024691357) """ nparams = DirichletDistBase.getNParams(self) assert nparams == len(mean), 'Mean vector supplied to setMeanAndVariance should have %d elements, but %d were found' % (nparams, len(mean)) assert nparams == len(variance), 'Variance vector supplied to setMeanAndVariance should have %d elements, but %d were found' % (nparams, len(variance)) return DirichletDistBase.setMeanAndVariance(self, mean, variance) # Uncomment this version if numarray is re-introduced #def getVarCovarMatrix(self): # #---+----|----+----|----+----|----+----|----+----|----+----|----+----| # """ # Returns the variance-covariance matrix of this distribution. The # matrix is returned in the form of a numarray object. Letting c be the # sum of the n Dirichlet parameters, c_i be the ith. parameter, and # denom be c*c*(c + 1), then # # Var_i = c_i*(c - c_i)/denom # Cov_ij = -c_i*c_j/denom # # In this example, # # n = 3 # c_1 = 1 # c_2 = 1 # c_3 = 1 # c = 3 # denom = 3*3*4 = 36 # Var_i = 1*2/36 = 0.05555556 # Cov_ij = -1*1/36 = -0.02777778 # # >>> from phycas.probdist import * # >>> from numpy.numarray import array # >>> d = Dirichlet((1,1,1)) # >>> print d.getVarCovarMatrix() # [[ 0.05555556 -0.02777778 -0.02777778] # [-0.02777778 0.05555556 -0.02777778] # [-0.02777778 -0.02777778 0.05555556]] # # """ # return DirichletDistBase.getVarCovarMatrix(self) # Comment out this version if numarray is re-introduced def printSquareMatrix(self, matrix): #---+----|----+----|----+----|----+----|----+----|----+----|----+----| """ Utility function used to interpret a vector as a square matrix and print it out. """ total_len = len(matrix) import math row_len = int(math.sqrt(total_len)) assert row_len*row_len == total_len, 'Attempting to print a matrix that is not square' k = 0 for i in range(row_len): for j in range(row_len): print '% .8f ' % matrix[k], k += 1 print # Comment out this version if numarray is re-introduced def getVarCovarMatrix(self): #---+----|----+----|----+----|----+----|----+----|----+----|----+----| """ Returns the variance-covariance matrix of this distribution. The matrix is returned in the form of a numarray object. Letting c be the sum of the n Dirichlet parameters, c_i be the ith. parameter, and denom be c*c*(c + 1), then Var_i = c_i*(c - c_i)/denom Cov_ij = -c_i*c_j/denom In this example, n = 3 c_1 = 1 c_2 = 1 c_3 = 1 c = 3 denom = 3*3*4 = 36 Var_i = 1*2/36 = 0.05555556 Cov_ij = -1*1/36 = -0.02777778 >>> from phycas.probdist import * >>> d = Dirichlet((1,1,1)) >>> d.printSquareMatrix(d.getVarCovarMatrix()) 0.05555556 -0.02777778 -0.02777778 -0.02777778 0.05555556 -0.02777778 -0.02777778 -0.02777778 0.05555556 """ return DirichletDistBase.getVarCovarMatrix(self) def getNParams(self): #---+----|----+----|----+----|----+----|----+----|----+----|----+----| """ Returns the number of parameters in the Dirichlet distribution. For example: >>> from phycas.probdist import * >>> d1 = Dirichlet((1,2,3,4)) >>> print d1.getNParams() 4 >>> d2 = Dirichlet((1,1)) >>> print d2.getNParams() 2 """ return DirichletDistBase.getNParams(self)
d66e5bf50843298b9445b71d3ec2cca177e78de5
329b48089c64ebefe78d52f1c71c73bdadadd4b4
/keras2/keras64_1_Hyperparameter.py
ad68911f67a30528708f7b0d723608067bb8b426
[]
no_license
variablejun/keras__R
7f854570952ed97c48715047015786d873e512cb
9faf4814b46cda1ac0ddbf2a2f8236fa0394f144
refs/heads/main
2023-07-13T19:32:25.950500
2021-08-22T18:26:52
2021-08-22T18:26:52
398,870,548
1
0
null
null
null
null
UTF-8
Python
false
false
2,324
py
import numpy as np from tensorflow.keras.datasets import mnist from tensorflow.keras.models import Sequential,Model from tensorflow.keras.layers import Dense,Dropout,Input,Conv2D (x_train, y_train),(x_test,y_test)= mnist.load_data() from tensorflow.keras.utils import to_categorical y_train = to_categorical(y_train) y_test = to_categorical(y_test) x_train = x_train.reshape(60000,28*28).astype('float32')/255 x_test= x_test.reshape(10000,28*28).astype('float32')/255 def build_model(drop=0.5,optimizer='adam'): inputs= Input(shape=(28*28), name='Input') x = Dense(512, activation='relu',name='hidden1')(inputs) x = Dropout(drop)(x) x = Dense(256, activation='relu',name='hidden2')(x) x = Dropout(drop)(x) x = Dense(128, activation='relu',name='hidden3')(x) x = Dropout(drop)(x) outputs = Dense(10,activation='softmax',name='outputs')(x) model = Model(inputs=inputs,outputs =outputs ) model.compile(optimizer=optimizer,metrics=['acc'],loss='categorical_crossentropy') return model def create_hyperparameter(): batches = [1000,2000,3000,4000,5000] optimizers = ['rmsprop','adam','adadelta'] dropout = [0.5,0.6,0.7] return {'batch_size':batches, 'optimizer': optimizers, 'drop':dropout} hyperparameters = create_hyperparameter() print(hyperparameters) #{'batch_size': [10, 20, 30, 40, 50], 'optimizer': ['rmsprop', 'adam', 'adadelta'], 'drop': [0.1, 0.2, 0.3]} #model2 = build_model() from tensorflow.keras.wrappers.scikit_learn import KerasClassifier# 텐서모델을 사이킷런에서 돌릴수있도록하는것, 텐서를 사이킷런 형태로 래핑 model2 = KerasClassifier(build_fn=build_model,verbose=1) from sklearn.model_selection import GridSearchCV,RandomizedSearchCV from xgboost import XGBClassifier model = RandomizedSearchCV(model2, hyperparameters,cv=5) model.fit(x_train,y_train,verbose=1,epochs=3, validation_split=0.2) print(model.best_estimator_) print(model.best_params_) print(model.best_score_) acc = model.score(x_test,y_test) print(acc) ''' <tensorflow.python.keras.wrappers.scikit_learn.KerasClassifier object at 0x000001BCCE273100> {'optimizer': 'rmsprop', 'drop': 0.5, 'batch_size': 1000} 0.9427833318710327 10/10 [==============================] - 0s 3ms/step - loss: 0.1547 - acc: 0.9530 0.953000009059906 '''
fffa9fc3b815accf4276f2bb4c6e09c6bc58c609
dcefbb67cfdc837a5b1016ea674ead66263f0af2
/algorithm/BOJ_9498.py
290b709344b970e624e35aaaf96ba697a6f8a63d
[]
no_license
SeungYeopB/weekend-study
0a5d5bdbb00a7d81f2ec7c6c5b2fc7b96d92c296
02651855bb91e26784611bbed34a01023f4ef307
refs/heads/master
2023-06-23T15:52:54.475077
2021-07-23T07:57:16
2021-07-23T07:57:16
382,514,062
0
0
null
null
null
null
UTF-8
Python
false
false
144
py
N = int(input()) if 90<=N: print("A") elif 80<=N: print("B") elif 70<=N: print("C") elif 60<=N: print("D") else: print("F")
[ "=" ]
=
f40b984eb61b3ef75296fcd0a7d260bb6141d45e
8fdcd12cfb91b2245da8b3c65fb937b1d72dd4c5
/tissuelab/omero/gateway_ome500_ice351/omero_ext/xmlrunner/main.py
b901b82051114a73824341dc847547251109890c
[]
no_license
VirtualPlants/tissuelab
569a334deab0b73acc8b43f313efc3f4c4e552fd
8c064a34b91127806848f4992d1e4767574863cf
refs/heads/master
2021-01-11T01:32:19.830778
2017-05-04T09:42:53
2017-05-04T09:42:53
70,694,783
2
1
null
2017-01-05T14:21:50
2016-10-12T11:49:10
Python
UTF-8
Python
false
false
1,628
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (C) 2012 Glencoe Software, Inc. All Rights Reserved. # Use is subject to license terms supplied in LICENSE.txt # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. """ OME Testing Methods """ import logging import unittest from omero_ext import xmlrunner class OmeTestLoader(object): def __init__(self, args): self.__args = args def loadTestsFromModule(self, *args): if hasattr(self, "already_called"): raise Exception("Already called") load = unittest.defaultTestLoader.loadTestsFromName suite = unittest.TestSuite() for arg in self.__args: suite.addTest(load(arg)) self.already_called = True return suite def ome_test_main(args): logging.basicConfig(level=logging.WARN) unittest.main( testRunner=xmlrunner.XMLTestRunner(verbose=True, output='target/reports'), testLoader = OmeTestLoader(args))
43e84b41c4b4b76c12b087f5df8190eb9572fce2
19a2378a7fc2aef762b0e3a70669208818feeaa9
/tests/models/deberta_v2/test_modeling_tf_deberta_v2.py
8b9bcc15ea2f4c75e72da91cb71317cafda0bb5c
[ "Apache-2.0" ]
permissive
pytorch-tpu/transformers
494ee005c6d156161171f2a8e60f25603189408f
6112b1c6442aaf7affd2b0676a1cd4eee30c45cf
refs/heads/master
2023-09-03T19:34:30.326852
2023-07-19T20:57:40
2023-07-19T20:57:40
220,075,881
7
2
Apache-2.0
2023-09-14T17:58:25
2019-11-06T19:40:45
Python
UTF-8
Python
false
false
11,162
py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import unittest from transformers import DebertaV2Config, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaV2ForMaskedLM, TFDebertaV2ForQuestionAnswering, TFDebertaV2ForSequenceClassification, TFDebertaV2ForTokenClassification, TFDebertaV2Model, ) class TFDebertaV2ModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, relative_attention=False, position_biased_input=True, pos_att_type="None", num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.relative_attention = relative_attention self.position_biased_input = position_biased_input self.pos_att_type = pos_att_type self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) config = DebertaV2Config( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, relative_attention=self.relative_attention, position_biased_input=self.position_biased_input, initializer_range=self.initializer_range, return_dict=True, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFDebertaV2Model(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} inputs = [input_ids, input_mask] result = model(inputs) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFDebertaV2ForMaskedLM(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_sequence_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFDebertaV2ForSequenceClassification(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFDebertaV2ForTokenClassification(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFDebertaV2ForQuestionAnswering(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class TFDebertaModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( TFDebertaV2Model, TFDebertaV2ForMaskedLM, TFDebertaV2ForQuestionAnswering, TFDebertaV2ForSequenceClassification, TFDebertaV2ForTokenClassification, ) if is_tf_available() else () ) pipeline_model_mapping = ( { "feature-extraction": TFDebertaV2Model, "fill-mask": TFDebertaV2ForMaskedLM, "question-answering": TFDebertaV2ForQuestionAnswering, "text-classification": TFDebertaV2ForSequenceClassification, "token-classification": TFDebertaV2ForTokenClassification, "zero-shot": TFDebertaV2ForSequenceClassification, } if is_tf_available() else {} ) test_head_masking = False test_onnx = False def setUp(self): self.model_tester = TFDebertaV2ModelTester(self) self.config_tester = ConfigTester(self, config_class=DebertaV2Config, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): model = TFDebertaV2Model.from_pretrained("kamalkraj/deberta-v2-xlarge") self.assertIsNotNone(model) @require_tf class TFDeBERTaV2ModelIntegrationTest(unittest.TestCase): @unittest.skip(reason="Model not available yet") def test_inference_masked_lm(self): pass @slow def test_inference_no_head(self): model = TFDebertaV2Model.from_pretrained("kamalkraj/deberta-v2-xlarge") input_ids = tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) attention_mask = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) output = model(input_ids, attention_mask=attention_mask)[0] expected_slice = tf.constant( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4], expected_slice, atol=1e-4)
6c59afc01f8f79d247c8828e95c7474ffcd0ed59
a838d4bed14d5df5314000b41f8318c4ebe0974e
/sdk/elastic/azure-mgmt-elastic/azure/mgmt/elastic/_microsoft_elastic.py
1b77371ed5a3ff00b9189073d035aff87c44842c
[ "MIT", "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later" ]
permissive
scbedd/azure-sdk-for-python
ee7cbd6a8725ddd4a6edfde5f40a2a589808daea
cc8bdfceb23e5ae9f78323edc2a4e66e348bb17a
refs/heads/master
2023-09-01T08:38:56.188954
2021-06-17T22:52:28
2021-06-17T22:52:28
159,568,218
2
0
MIT
2019-08-11T21:16:01
2018-11-28T21:34:49
Python
UTF-8
Python
false
false
5,959
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING from azure.mgmt.core import ARMPipelineClient from msrest import Deserializer, Serializer if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Optional from azure.core.credentials import TokenCredential from azure.core.pipeline.transport import HttpRequest, HttpResponse from ._configuration import MicrosoftElasticConfiguration from .operations import Operations from .operations import MonitorsOperations from .operations import MonitoredResourcesOperations from .operations import DeploymentInfoOperations from .operations import TagRulesOperations from .operations import VMHostOperations from .operations import VMIngestionOperations from .operations import VMCollectionOperations from . import models class MicrosoftElastic(object): """MicrosoftElastic. :ivar operations: Operations operations :vartype operations: azure.mgmt.elastic.operations.Operations :ivar monitors: MonitorsOperations operations :vartype monitors: azure.mgmt.elastic.operations.MonitorsOperations :ivar monitored_resources: MonitoredResourcesOperations operations :vartype monitored_resources: azure.mgmt.elastic.operations.MonitoredResourcesOperations :ivar deployment_info: DeploymentInfoOperations operations :vartype deployment_info: azure.mgmt.elastic.operations.DeploymentInfoOperations :ivar tag_rules: TagRulesOperations operations :vartype tag_rules: azure.mgmt.elastic.operations.TagRulesOperations :ivar vm_host: VMHostOperations operations :vartype vm_host: azure.mgmt.elastic.operations.VMHostOperations :ivar vm_ingestion: VMIngestionOperations operations :vartype vm_ingestion: azure.mgmt.elastic.operations.VMIngestionOperations :ivar vm_collection: VMCollectionOperations operations :vartype vm_collection: azure.mgmt.elastic.operations.VMCollectionOperations :param credential: Credential needed for the client to connect to Azure. :type credential: ~azure.core.credentials.TokenCredential :param subscription_id: The Azure subscription ID. This is a GUID-formatted string (e.g. 00000000-0000-0000-0000-000000000000). :type subscription_id: str :param str base_url: Service URL :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. """ def __init__( self, credential, # type: "TokenCredential" subscription_id, # type: str base_url=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> None if not base_url: base_url = 'https://management.azure.com' self._config = MicrosoftElasticConfiguration(credential, subscription_id, **kwargs) self._client = ARMPipelineClient(base_url=base_url, config=self._config, **kwargs) client_models = {k: v for k, v in models.__dict__.items() if isinstance(v, type)} self._serialize = Serializer(client_models) self._serialize.client_side_validation = False self._deserialize = Deserializer(client_models) self.operations = Operations( self._client, self._config, self._serialize, self._deserialize) self.monitors = MonitorsOperations( self._client, self._config, self._serialize, self._deserialize) self.monitored_resources = MonitoredResourcesOperations( self._client, self._config, self._serialize, self._deserialize) self.deployment_info = DeploymentInfoOperations( self._client, self._config, self._serialize, self._deserialize) self.tag_rules = TagRulesOperations( self._client, self._config, self._serialize, self._deserialize) self.vm_host = VMHostOperations( self._client, self._config, self._serialize, self._deserialize) self.vm_ingestion = VMIngestionOperations( self._client, self._config, self._serialize, self._deserialize) self.vm_collection = VMCollectionOperations( self._client, self._config, self._serialize, self._deserialize) def _send_request(self, http_request, **kwargs): # type: (HttpRequest, Any) -> HttpResponse """Runs the network request through the client's chained policies. :param http_request: The network request you want to make. Required. :type http_request: ~azure.core.pipeline.transport.HttpRequest :keyword bool stream: Whether the response payload will be streamed. Defaults to True. :return: The response of your network call. Does not do error handling on your response. :rtype: ~azure.core.pipeline.transport.HttpResponse """ path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } http_request.url = self._client.format_url(http_request.url, **path_format_arguments) stream = kwargs.pop("stream", True) pipeline_response = self._client._pipeline.run(http_request, stream=stream, **kwargs) return pipeline_response.http_response def close(self): # type: () -> None self._client.close() def __enter__(self): # type: () -> MicrosoftElastic self._client.__enter__() return self def __exit__(self, *exc_details): # type: (Any) -> None self._client.__exit__(*exc_details)
9b7bbcece100ed41298687ceaf110a854d4c4f80
7fd1406b7e94d4b82a158ce5be87b5ae821e16b6
/pro2_4.py
cbe3b853a1fd6e8842058c68d0e80ca7dfa7022e
[]
no_license
THABUULAGANATHAN/guvi-programs
c1c4d314c7ce43d6c3996fdac85616248c69e4fd
fb004f6916776ca9fbe07b8d507f9725cc55248f
refs/heads/master
2022-01-15T09:08:32.904234
2019-07-19T06:45:04
2019-07-19T06:45:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
219
py
pi,qi=map(int,input().split()) l=list(map(int,input().split())) for i in range(qi): r,s=map(int,input().split()) t1 = l[r-1:s] u1 = t1[0] for i in range(1,len(t1)): u1 = u1 ^ t1[i] print(u1)
5ca662cfd326bbfc872365527afa925f6d62a32a
003dd45d19b5a6fd4a04deeefa63756462dbe09d
/pymoo/core/decomposition.py
c44fc0098edfa8eabc65e6dfd473ec6d63021804
[ "Apache-2.0" ]
permissive
Flytortoise/pymoo
51d32793e843977bd8fda0226bb6add1c356e21d
c6426a721d95c932ae6dbb610e09b6c1b0e13594
refs/heads/master
2023-09-03T20:54:13.284192
2021-11-09T13:23:15
2021-11-09T13:23:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,451
py
import numpy as np from pymoo.util.misc import at_least_2d_array, to_1d_array_if_possible class Decomposition: def __init__(self, eps=0.0, _type="auto", **kwargs) -> None: super().__init__() self.eps = eps self._type = _type self.ideal_point, self.utopian_point, self.nadir_point = None, None, None def do(self, F, weights, _type="auto", ideal_point=None, utopian_point=None, nadir_point=None, **kwargs): _F, _weights = to_1d_array_if_possible(F), to_1d_array_if_possible(weights) if _type == "auto": if _F.ndim == 1 and _weights.ndim > 1: _type = "one_to_many" elif _F.ndim > 1 and _weights.ndim == 1: _type = "many_to_one" elif _F.ndim == 2 and _weights.ndim == 2 and _F.shape[0] == _weights.shape[0]: _type = "one_to_one" else: _type = "many_to_many" # make both at least 2d arrays F, weights = at_least_2d_array(F), at_least_2d_array(weights) # get the number of points and weights n_points, n_weights = F.shape[0], weights.shape[0] self.ideal_point = ideal_point if self.ideal_point is None: self.ideal_point = np.zeros(F.shape[1]) self.utopian_point = utopian_point if self.utopian_point is None: self.utopian_point = self.ideal_point - self.eps # set the nadir point by default to value or default self.nadir_point = nadir_point if self.nadir_point is None: self.nadir_point = self.utopian_point + np.ones(F.shape[1]) if _type == "one_to_one": D = self._do(F, weights=weights, **kwargs).flatten() elif _type == "one_to_many": F = np.repeat(F, n_weights, axis=0) D = self._do(F, weights=weights, **kwargs).flatten() elif _type == "many_to_one": weights = np.repeat(weights, n_points, axis=0) D = self._do(F, weights=weights, **kwargs).flatten() elif _type == "many_to_many": F = np.repeat(F, n_weights, axis=0) weights = np.tile(weights, (n_points, 1)) D = self._do(F, weights=weights, **kwargs).reshape(n_points, n_weights) else: raise Exception("Unknown type for decomposition: %s" % _type) return D
7451c76f2aaa67e39cfca280e39ce44c0c871877
27381f38b713258645855716593a9e309c43337e
/mechanics/hallway_plate_assembly.py
0138693b254035f06a4cdb76b2cd0e5774ac69b4
[ "Apache-2.0" ]
permissive
iorodeo/hallway_arenas
828859f66a0f6966fde24c95fc32db7d1c4fea51
02d87d7890aea4f09fc244792aecaf6cb24357b2
refs/heads/master
2022-05-22T06:01:38.534312
2020-04-21T19:50:58
2020-04-21T19:50:58
256,603,143
0
0
null
null
null
null
UTF-8
Python
false
false
1,399
py
""" Creates assembly of top and bottom plates for hallway arena """ from py2scad import * from assembly import Assembly from hallway_top_plate import Hallway_Top_Plate from hallway_bottom_plate import Hallway_Bottom_Plate class Hallway_Plate_Assembly(Assembly): def make(self): # Create components top_plate = Hallway_Top_Plate(**self.params.hallway_top_plate) bottom_plate = Hallway_Bottom_Plate(**self.params.hallway_bottom_plate) explode_z = self.params.explode_z # Translate into position bottom_z_shift = 0.5*self.params.hallway_bottom_plate['thickness'] bottom_plate.translate(v=(0,0,bottom_z_shift)) top_z_shift = 2*bottom_z_shift + 0.5*self.params.hallway_top_plate['thickness'] + explode_z top_plate.translate(v=(0,0,top_z_shift)) # Add color bottom_plate.color(rgba=self.params.hallway_bottom_plate['color']) top_plate.color(rgba=self.params.hallway_top_plate['color']) self.parts = { 'top_plate' : top_plate, 'bottom_plate' : bottom_plate, } # ----------------------------------------------------------------------------- if __name__ == '__main__': import params assem = Hallway_Plate_Assembly(params=params) prog = SCAD_Prog() prog.fn = 50 prog.add(assem) prog.write('hallway_plate_assembly.scad')
159fa0c4b22dc80f495e6b5625adba8f9412461f
0eb599c3bbfa6e5b31516913b88cc9db3a1311ce
/ABC_6q/abc167a.py
83b76e504878f698de040171eee29074e8a32964
[]
no_license
Linus-MK/AtCoder
5b84dc88c2d2773d0f97ed18265d303290da7879
a587e89a9e0c2ab4d36b09176bcc95e901e14326
refs/heads/master
2022-11-25T05:37:12.148722
2022-11-17T16:04:10
2022-11-17T16:04:10
169,840,698
0
0
null
null
null
null
UTF-8
Python
false
false
112
py
x = input() y = input() ans = 'Yes' for i in range(len(x)): if x[i] != y[i]: ans = 'No' print(ans)
dda989c5ddf4601eb9af755446131b6ba4d3e885
2e682fd72e3feaa70e3f7bf2a3b83c50d783ec02
/PyTorch/built-in/audio/ESPnet2_for_PyTorch/espnet2/enh/separator/conformer_separator.py
dbc1251d99d8976e54f34dfd9c5ec546f8c6cdef
[ "GPL-1.0-or-later", "Apache-2.0", "BSD-2-Clause", "MIT", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "LicenseRef-scancode-unknown-license-reference" ]
permissive
Ascend/ModelZoo-PyTorch
4c89414b9e2582cef9926d4670108a090c839d2d
92acc188d3a0f634de58463b6676e70df83ef808
refs/heads/master
2023-07-19T12:40:00.512853
2023-07-17T02:48:18
2023-07-17T02:48:18
483,502,469
23
6
Apache-2.0
2022-10-15T09:29:12
2022-04-20T04:11:18
Python
UTF-8
Python
false
false
6,643
py
from collections import OrderedDict from distutils.version import LooseVersion from typing import List from typing import Tuple from typing import Union import torch from torch_complex.tensor import ComplexTensor from espnet.nets.pytorch_backend.conformer.encoder import ( Encoder as ConformerEncoder, # noqa: H301 ) from espnet.nets.pytorch_backend.nets_utils import make_non_pad_mask from espnet2.enh.layers.complex_utils import is_complex from espnet2.enh.separator.abs_separator import AbsSeparator is_torch_1_9_plus = LooseVersion(torch.__version__) >= LooseVersion("1.9.0") class ConformerSeparator(AbsSeparator): def __init__( self, input_dim: int, num_spk: int = 2, adim: int = 384, aheads: int = 4, layers: int = 6, linear_units: int = 1536, positionwise_layer_type: str = "linear", positionwise_conv_kernel_size: int = 1, normalize_before: bool = False, concat_after: bool = False, dropout_rate: float = 0.1, input_layer: str = "linear", positional_dropout_rate: float = 0.1, attention_dropout_rate: float = 0.1, nonlinear: str = "relu", conformer_pos_enc_layer_type: str = "rel_pos", conformer_self_attn_layer_type: str = "rel_selfattn", conformer_activation_type: str = "swish", use_macaron_style_in_conformer: bool = True, use_cnn_in_conformer: bool = True, conformer_enc_kernel_size: int = 7, padding_idx: int = -1, ): """Conformer separator. Args: input_dim: input feature dimension num_spk: number of speakers adim (int): Dimension of attention. aheads (int): The number of heads of multi head attention. linear_units (int): The number of units of position-wise feed forward. layers (int): The number of transformer blocks. dropout_rate (float): Dropout rate. input_layer (Union[str, torch.nn.Module]): Input layer type. attention_dropout_rate (float): Dropout rate in attention. positional_dropout_rate (float): Dropout rate after adding positional encoding. normalize_before (bool): Whether to use layer_norm before the first block. concat_after (bool): Whether to concat attention layer's input and output. if True, additional linear will be applied. i.e. x -> x + linear(concat(x, att(x))) if False, no additional linear will be applied. i.e. x -> x + att(x) conformer_pos_enc_layer_type(str): Encoder positional encoding layer type. conformer_self_attn_layer_type (str): Encoder attention layer type. conformer_activation_type(str): Encoder activation function type. positionwise_layer_type (str): "linear", "conv1d", or "conv1d-linear". positionwise_conv_kernel_size (int): Kernel size of positionwise conv1d layer. use_macaron_style_in_conformer (bool): Whether to use macaron style for positionwise layer. use_cnn_in_conformer (bool): Whether to use convolution module. conformer_enc_kernel_size(int): Kernerl size of convolution module. padding_idx (int): Padding idx for input_layer=embed. nonlinear: the nonlinear function for mask estimation, select from 'relu', 'tanh', 'sigmoid' """ super().__init__() self._num_spk = num_spk self.conformer = ConformerEncoder( idim=input_dim, attention_dim=adim, attention_heads=aheads, linear_units=linear_units, num_blocks=layers, dropout_rate=dropout_rate, positional_dropout_rate=positional_dropout_rate, attention_dropout_rate=attention_dropout_rate, input_layer=input_layer, normalize_before=normalize_before, concat_after=concat_after, positionwise_layer_type=positionwise_layer_type, positionwise_conv_kernel_size=positionwise_conv_kernel_size, macaron_style=use_macaron_style_in_conformer, pos_enc_layer_type=conformer_pos_enc_layer_type, selfattention_layer_type=conformer_self_attn_layer_type, activation_type=conformer_activation_type, use_cnn_module=use_cnn_in_conformer, cnn_module_kernel=conformer_enc_kernel_size, padding_idx=padding_idx, ) self.linear = torch.nn.ModuleList( [torch.nn.Linear(adim, input_dim) for _ in range(self.num_spk)] ) if nonlinear not in ("sigmoid", "relu", "tanh"): raise ValueError("Not supporting nonlinear={}".format(nonlinear)) self.nonlinear = { "sigmoid": torch.nn.Sigmoid(), "relu": torch.nn.ReLU(), "tanh": torch.nn.Tanh(), }[nonlinear] def forward( self, input: Union[torch.Tensor, ComplexTensor], ilens: torch.Tensor ) -> Tuple[List[Union[torch.Tensor, ComplexTensor]], torch.Tensor, OrderedDict]: """Forward. Args: input (torch.Tensor or ComplexTensor): Encoded feature [B, T, N] ilens (torch.Tensor): input lengths [Batch] Returns: masked (List[Union(torch.Tensor, ComplexTensor)]): [(B, T, N), ...] ilens (torch.Tensor): (B,) others predicted data, e.g. masks: OrderedDict[ 'mask_spk1': torch.Tensor(Batch, Frames, Freq), 'mask_spk2': torch.Tensor(Batch, Frames, Freq), ... 'mask_spkn': torch.Tensor(Batch, Frames, Freq), ] """ # if complex spectrum, if is_complex(input): feature = abs(input) else: feature = input # prepare pad_mask for transformer pad_mask = make_non_pad_mask(ilens).unsqueeze(1).to(feature.device) x, ilens = self.conformer(feature, pad_mask) masks = [] for linear in self.linear: y = linear(x) y = self.nonlinear(y) masks.append(y) masked = [input * m for m in masks] others = OrderedDict( zip(["mask_spk{}".format(i + 1) for i in range(len(masks))], masks) ) return masked, ilens, others @property def num_spk(self): return self._num_spk
7301d83c595597b93916cb9dd6928a33c2a858e2
338dbd8788b019ab88f3c525cddc792dae45036b
/lib/python3.6/site-packages/statsmodels/sandbox/descstats.py
1b90db63cf35925066b9ad968d0d41c5ed48f642
[]
permissive
KshitizSharmaV/Quant_Platform_Python
9b8b8557f13a0dde2a17de0e3352de6fa9b67ce3
d784aa0604d8de5ba5ca0c3a171e3556c0cd6b39
refs/heads/master
2022-12-10T11:37:19.212916
2019-07-09T20:05:39
2019-07-09T20:05:39
196,073,658
1
2
BSD-3-Clause
2022-11-27T18:30:16
2019-07-09T19:48:26
Python
UTF-8
Python
false
false
6,472
py
''' Glue for returning descriptive statistics. ''' import numpy as np from scipy import stats import os from statsmodels.stats.descriptivestats import sign_test ############################################# # #============================================ # Univariate Descriptive Statistics #============================================ # def descstats(data, cols=None, axis=0): ''' Prints descriptive statistics for one or multiple variables. Parameters ---------- data: numpy array `x` is the data v: list, optional A list of the column number or field names (for a recarray) of variables. Default is all columns. axis: 1 or 0 axis order of data. Default is 0 for column-ordered data. Examples -------- >>> descstats(data.exog,v=['x_1','x_2','x_3']) ''' x = np.array(data) # or rather, the data we're interested in if cols is None: # if isinstance(x, np.recarray): # cols = np.array(len(x.dtype.names)) if not isinstance(x, np.recarray) and x.ndim == 1: x = x[:,None] if x.shape[1] == 1: desc = ''' --------------------------------------------- Univariate Descriptive Statistics --------------------------------------------- Var. Name %(name)12s ---------- Obs. %(nobs)22i Range %(range)22s Sum of Wts. %(sum)22s Coeff. of Variation %(coeffvar)22.4g Mode %(mode)22.4g Skewness %(skewness)22.4g Repeats %(nmode)22i Kurtosis %(kurtosis)22.4g Mean %(mean)22.4g Uncorrected SS %(uss)22.4g Median %(median)22.4g Corrected SS %(ss)22.4g Variance %(variance)22.4g Sum Observations %(sobs)22.4g Std. Dev. %(stddev)22.4g ''' % {'name': cols, 'sum': 'N/A', 'nobs': len(x), 'mode': \ stats.mode(x)[0][0], 'nmode': stats.mode(x)[1][0], \ 'mean': x.mean(), 'median': np.median(x), 'range': \ '('+str(x.min())+', '+str(x.max())+')', 'variance': \ x.var(), 'stddev': x.std(), 'coeffvar': \ stats.variation(x), 'skewness': stats.skew(x), \ 'kurtosis': stats.kurtosis(x), 'uss': np.sum(x**2, axis=0),\ 'ss': np.sum((x-x.mean())**2, axis=0), 'sobs': np.sum(x)} desc+= ''' Percentiles ------------- 1 %% %12.4g 5 %% %12.4g 10 %% %12.4g 25 %% %12.4g 50 %% %12.4g 75 %% %12.4g 90 %% %12.4g 95 %% %12.4g 99 %% %12.4g ''' % tuple([stats.scoreatpercentile(x,per) for per in (1,5,10,25, 50,75,90,95,99)]) t,p_t=stats.ttest_1samp(x,0) M,p_M=sign_test(x) S,p_S=stats.wilcoxon(np.squeeze(x)) desc+= ''' Tests of Location (H0: Mu0=0) ----------------------------- Test Statistic Two-tailed probability -----------------+----------------------------------------- Student's t | t %7.5f Pr > |t| <%.4f Sign | M %8.2f Pr >= |M| <%.4f Signed Rank | S %8.2f Pr >= |S| <%.4f ''' % (t,p_t,M,p_M,S,p_S) # Should this be part of a 'descstats' # in any event these should be split up, so that they can be called # individually and only returned together if someone calls summary # or something of the sort elif x.shape[1] > 1: desc =''' Var. Name | Obs. Mean Std. Dev. Range ------------+--------------------------------------------------------'''+\ os.linesep # for recarrays with columns passed as names # if isinstance(cols[0],str): # for var in cols: # desc += "%(name)15s %(obs)9i %(mean)12.4g %(stddev)12.4g \ #%(range)20s" % {'name': var, 'obs': len(x[var]), 'mean': x[var].mean(), # 'stddev': x[var].std(), 'range': '('+str(x[var].min())+', '\ # +str(x[var].max())+')'+os.linesep} # else: for var in range(x.shape[1]): xv = x[:, var] kwargs = { 'name': var, 'obs': len(xv), 'mean': xv.mean(), 'stddev': xv.std(), 'range': '('+str(xv.min())+', '+str(xv.max())+')'+os.linesep } desc += ("%(name)15s %(obs)9i %(mean)12.4g %(stddev)12.4g " "%(range)20s" % kwargs) else: raise ValueError("data not understood") return desc #if __name__=='__main__': # test descstats # import os # loc='http://eagle1.american.edu/~js2796a/data/handguns_data.csv' # relpath=(load_dataset(loc)) # dta=np.recfromcsv(relpath) # descstats(dta,['stpop']) # raw_input('Hit enter for multivariate test') # descstats(dta,['stpop','avginc','vio']) # with plain arrays # import string2dummy as s2d # dts=s2d.string2dummy(dta) # ndts=np.vstack(dts[col] for col in dts.dtype.names) # observations in columns and data in rows # is easier for the call to stats # what to make of # ndts=np.column_stack(dts[col] for col in dts.dtype.names) # ntda=ntds.swapaxis(1,0) # ntda is ntds returns false? # or now we just have detailed information about the different strings # would this approach ever be inappropriate for a string typed variable # other than dates? # descstats(ndts, [1]) # raw_input("Enter to try second part") # descstats(ndts, [1,20,3]) if __name__ == '__main__': import statsmodels.api as sm data = sm.datasets.longley.load(as_pandas=False) data.exog = sm.add_constant(data.exog, prepend=False) sum1 = descstats(data.exog) sum1a = descstats(data.exog[:,:1]) # loc='http://eagle1.american.edu/~js2796a/data/handguns_data.csv' # dta=np.recfromcsv(loc) # summary2 = descstats(dta,['stpop']) # summary3 = descstats(dta,['stpop','avginc','vio']) #TODO: needs a by argument # summary4 = descstats(dta) this fails # this is a bug # p = dta[['stpop']] # p.view(dtype = np.float, type = np.ndarray) # this works # p.view(dtype = np.int, type = np.ndarray) ### This is *really* slow ### if os.path.isfile('./Econ724_PS_I_Data.csv'): data2 = np.recfromcsv('./Econ724_PS_I_Data.csv') sum2 = descstats(data2.ahe) sum3 = descstats(np.column_stack((data2.ahe,data2.yrseduc))) sum4 = descstats(np.column_stack(([data2[_] for \ _ in data2.dtype.names])))
5b5f8c93f58803b4d562bdbf95e832b26f8843f0
01dd174a3a7d26226564711e32711f137513663f
/pyscf/grad/rhf.py
41bce18e52e4832a089e9edeac6cdc000356147c
[ "Apache-2.0" ]
permissive
cherishyli/pyscf
00cb09c873edc8890be8501414678cdfa54b177e
468a4bfc4ce067eb7dab6f9289d71122b219609e
refs/heads/master
2020-04-18T11:40:00.398066
2019-01-24T23:07:36
2019-01-24T23:07:36
167,508,739
1
0
Apache-2.0
2019-01-25T08:00:12
2019-01-25T08:00:12
null
UTF-8
Python
false
false
12,214
py
#!/usr/bin/env python # Copyright 2014-2019 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: Qiming Sun <[email protected]> # ''' Non-relativistic Hartree-Fock analytical nuclear gradients ''' import time import numpy from pyscf import gto from pyscf import lib from pyscf.lib import logger from pyscf.scf import _vhf def grad_elec(mf_grad, mo_energy=None, mo_coeff=None, mo_occ=None, atmlst=None): mf = mf_grad.base mol = mf_grad.mol if mo_energy is None: mo_energy = mf.mo_energy if mo_occ is None: mo_occ = mf.mo_occ if mo_coeff is None: mo_coeff = mf.mo_coeff log = logger.Logger(mf_grad.stdout, mf_grad.verbose) hcore_deriv = mf_grad.hcore_generator(mol) s1 = mf_grad.get_ovlp(mol) dm0 = mf.make_rdm1(mo_coeff, mo_occ) t0 = (time.clock(), time.time()) log.debug('Computing Gradients of NR-HF Coulomb repulsion') vhf = mf_grad.get_veff(mol, dm0) log.timer('gradients of 2e part', *t0) dme0 = mf_grad.make_rdm1e(mo_energy, mo_coeff, mo_occ) if atmlst is None: atmlst = range(mol.natm) aoslices = mol.aoslice_by_atom() de = numpy.zeros((len(atmlst),3)) for k, ia in enumerate(atmlst): p0, p1 = aoslices [ia,2:] h1ao = hcore_deriv(ia) de[k] += numpy.einsum('xij,ij->x', h1ao, dm0) # nabla was applied on bra in vhf, *2 for the contributions of nabla|ket> de[k] += numpy.einsum('xij,ij->x', vhf[:,p0:p1], dm0[p0:p1]) * 2 de[k] -= numpy.einsum('xij,ij->x', s1[:,p0:p1], dme0[p0:p1]) * 2 de[k] += mf_grad.extra_force(ia, locals()) if log.verbose >= logger.DEBUG: log.debug('gradients of electronic part') _write(log, mol, de, atmlst) return de def _write(dev, mol, de, atmlst): if atmlst is None: atmlst = range(mol.natm) dev.stdout.write(' x y z\n') for k, ia in enumerate(atmlst): dev.stdout.write('%d %s %15.10f %15.10f %15.10f\n' % (ia, mol.atom_symbol(ia), de[k,0], de[k,1], de[k,2])) def grad_nuc(mol, atmlst=None): gs = numpy.zeros((mol.natm,3)) for j in range(mol.natm): q2 = mol.atom_charge(j) r2 = mol.atom_coord(j) for i in range(mol.natm): if i != j: q1 = mol.atom_charge(i) r1 = mol.atom_coord(i) r = numpy.sqrt(numpy.dot(r1-r2,r1-r2)) gs[j] -= q1 * q2 * (r2-r1) / r**3 if atmlst is not None: gs = gs[atmlst] return gs def get_hcore(mol): '''Part of the nuclear gradients of core Hamiltonian''' h = mol.intor('int1e_ipkin', comp=3) if mol._pseudo: NotImplementedError('Nuclear gradients for GTH PP') else: h+= mol.intor('int1e_ipnuc', comp=3) if mol.has_ecp(): h += mol.intor('ECPscalar_ipnuc', comp=3) return -h def hcore_generator(mf, mol=None): if mol is None: mol = mf.mol with_x2c = getattr(mf.base, 'with_x2c', None) if with_x2c: hcore_deriv = with_x2c.hcore_deriv_generator(deriv=1) else: with_ecp = mol.has_ecp() if with_ecp: ecp_atoms = set(mol._ecpbas[:,gto.ATOM_OF]) else: ecp_atoms = () aoslices = mol.aoslice_by_atom() h1 = mf.get_hcore(mol) def hcore_deriv(atm_id): shl0, shl1, p0, p1 = aoslices[atm_id] with mol.with_rinv_as_nucleus(atm_id): vrinv = mol.intor('int1e_iprinv', comp=3) # <\nabla|1/r|> vrinv *= -mol.atom_charge(atm_id) if with_ecp and atm_id in ecp_atoms: vrinv += mol.intor('ECPscalar_iprinv', comp=3) vrinv[:,p0:p1] += h1[:,p0:p1] return vrinv + vrinv.transpose(0,2,1) return hcore_deriv def get_ovlp(mol): return -mol.intor('int1e_ipovlp', comp=3) def get_jk(mol, dm): '''J = ((-nabla i) j| kl) D_lk K = ((-nabla i) j| kl) D_jk ''' intor = mol._add_suffix('int2e_ip1') vj, vk = _vhf.direct_mapdm(intor, # (nabla i,j|k,l) 's2kl', # ip1_sph has k>=l, ('lk->s1ij', 'jk->s1il'), dm, 3, # xyz, 3 components mol._atm, mol._bas, mol._env) return -vj, -vk def get_veff(mf_grad, mol, dm): '''NR Hartree-Fock Coulomb repulsion''' vj, vk = mf_grad.get_jk(mol, dm) return vj - vk * .5 def make_rdm1e(mo_energy, mo_coeff, mo_occ): '''Energy weighted density matrix''' mo0 = mo_coeff[:,mo_occ>0] mo0e = mo0 * (mo_energy[mo_occ>0] * mo_occ[mo_occ>0]) return numpy.dot(mo0e, mo0.T.conj()) def as_scanner(mf_grad): '''Generating a nuclear gradients scanner/solver (for geometry optimizer). The returned solver is a function. This function requires one argument "mol" as input and returns energy and first order nuclear derivatives. The solver will automatically use the results of last calculation as the initial guess of the new calculation. All parameters assigned in the nuc-grad object and SCF object (DIIS, conv_tol, max_memory etc) are automatically applied in the solver. Note scanner has side effects. It may change many underlying objects (_scf, with_df, with_x2c, ...) during calculation. Examples:: >>> from pyscf import gto, scf, grad >>> mol = gto.M(atom='H 0 0 0; F 0 0 1') >>> hf_scanner = scf.RHF(mol).apply(grad.RHF).as_scanner() >>> e_tot, grad = hf_scanner(gto.M(atom='H 0 0 0; F 0 0 1.1')) >>> e_tot, grad = hf_scanner(gto.M(atom='H 0 0 0; F 0 0 1.5')) ''' if isinstance(mf_grad, lib.GradScanner): return mf_grad logger.info(mf_grad, 'Create scanner for %s', mf_grad.__class__) class SCF_GradScanner(mf_grad.__class__, lib.GradScanner): def __init__(self, g): lib.GradScanner.__init__(self, g) def __call__(self, mol_or_geom, **kwargs): if isinstance(mol_or_geom, gto.Mole): mol = mol_or_geom else: mol = self.mol.set_geom_(mol_or_geom, inplace=False) mf_scanner = self.base e_tot = mf_scanner(mol) self.mol = mol de = self.kernel(**kwargs) return e_tot, de return SCF_GradScanner(mf_grad) class Gradients(lib.StreamObject): '''Non-relativistic restricted Hartree-Fock gradients''' def __init__(self, scf_method): self.verbose = scf_method.verbose self.stdout = scf_method.stdout self.mol = scf_method.mol self.base = scf_method self.max_memory = self.mol.max_memory self.atmlst = None self.de = None self._keys = set(self.__dict__.keys()) def dump_flags(self): log = logger.Logger(self.stdout, self.verbose) log.info('\n') if not self.base.converged: log.warn('Ground state SCF not converged') log.info('******** %s for %s ********', self.__class__, self.base.__class__) log.info('max_memory %d MB (current use %d MB)', self.max_memory, lib.current_memory()[0]) return self def get_hcore(self, mol=None): if mol is None: mol = self.mol return get_hcore(mol) hcore_generator = hcore_generator def get_ovlp(self, mol=None): if mol is None: mol = self.mol return get_ovlp(mol) @lib.with_doc(get_jk.__doc__) def get_jk(self, mol=None, dm=None, hermi=0): if mol is None: mol = self.mol if dm is None: dm = self.base.make_rdm1() cpu0 = (time.clock(), time.time()) #TODO: direct_scf opt vj, vk = get_jk(mol, dm) logger.timer(self, 'vj and vk', *cpu0) return vj, vk def get_j(self, mol=None, dm=None, hermi=0): if mol is None: mol = self.mol if dm is None: dm = self.base.make_rdm1() intor = mol._add_suffix('int2e_ip1') return -_vhf.direct_mapdm(intor, 's2kl', 'lk->s1ij', dm, 3, mol._atm, mol._bas, mol._env) def get_k(self, mol=None, dm=None, hermi=0): if mol is None: mol = self.mol if dm is None: dm = self.base.make_rdm1() intor = mol._add_suffix('int2e_ip1') return -_vhf.direct_mapdm(intor, 's2kl', 'jk->s1il', dm, 3, mol._atm, mol._bas, mol._env) def get_veff(self, mol=None, dm=None): if mol is None: mol = self.mol if dm is None: dm = self.base.make_rdm1() return get_veff(self, mol, dm) def make_rdm1e(self, mo_energy=None, mo_coeff=None, mo_occ=None): if mo_energy is None: mo_energy = self.base.mo_energy if mo_coeff is None: mo_coeff = self.base.mo_coeff if mo_occ is None: mo_occ = self.base.mo_occ return make_rdm1e(mo_energy, mo_coeff, mo_occ) def extra_force(self, atom_id, envs): '''Hook for extra contributions in analytical gradients. Contributions like the response of auxiliary basis in density fitting method, the grid response in DFT numerical integration can be put in this function. ''' return 0 grad_elec = grad_elec def grad_nuc(self, mol=None, atmlst=None): if mol is None: mol = self.mol return grad_nuc(mol, atmlst) def grad(self, mo_energy=None, mo_coeff=None, mo_occ=None, atmlst=None): return self.kernel(mo_energy, mo_coeff, mo_occ, atmlst) def kernel(self, mo_energy=None, mo_coeff=None, mo_occ=None, atmlst=None): cput0 = (time.clock(), time.time()) if mo_energy is None: mo_energy = self.base.mo_energy if mo_coeff is None: mo_coeff = self.base.mo_coeff if mo_occ is None: mo_occ = self.base.mo_occ if atmlst is None: atmlst = self.atmlst else: self.atmlst = atmlst if self.verbose >= logger.WARN: self.check_sanity() if self.verbose >= logger.INFO: self.dump_flags() de = self.grad_elec(mo_energy, mo_coeff, mo_occ, atmlst) self.de = de + self.grad_nuc(atmlst=atmlst) logger.timer(self, 'SCF gradients', *cput0) self._finalize() return self.de def _finalize(self): if self.verbose >= logger.NOTE: logger.note(self, '--------------- %s gradients ---------------', self.base.__class__.__name__) _write(self, self.mol, self.de, self.atmlst) logger.note(self, '----------------------------------------------') as_scanner = as_scanner Grad = Gradients if __name__ == '__main__': from pyscf import gto from pyscf import scf mol = gto.Mole() mol.verbose = 0 mol.atom = [['He', (0.,0.,0.)], ] mol.basis = {'He': 'ccpvdz'} mol.build() method = scf.RHF(mol) method.scf() g = Gradients(method) print(g.grad()) h2o = gto.Mole() h2o.verbose = 0 h2o.atom = [ ['O' , (0. , 0. , 0.)], [1 , (0. , -0.757 , 0.587)], [1 , (0. , 0.757 , 0.587)] ] h2o.basis = {'H': '631g', 'O': '631g',} h2o.build() rhf = scf.RHF(h2o) rhf.conv_tol = 1e-14 e0 = rhf.scf() g = Gradients(rhf) print(g.grad()) #[[ 0 0 -2.41134256e-02] # [ 0 4.39690522e-03 1.20567128e-02] # [ 0 -4.39690522e-03 1.20567128e-02]] rhf = scf.RHF(h2o).x2c() rhf.conv_tol = 1e-14 e0 = rhf.scf() g = Gradients(rhf) print(g.grad()) #[[ 0 0 -2.40286232e-02] # [ 0 4.27908498e-03 1.20143116e-02] # [ 0 -4.27908498e-03 1.20143116e-02]]
67804ab2e7258dc505b5a127e72d28636629181a
28ef7c65a5cb1291916c768a0c2468a91770bc12
/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/jhmdb/res50_jhmdb_sub3_256x256.py
cdef4c576e262405a3b53d78b059c38bcc6b2148
[ "Apache-2.0" ]
permissive
bit-scientist/mmpose
57464aae1ca87faf5a4669991ae1ea4347e41900
9671a12caf63ae5d15a9bebc66a9a2e7a3ce617e
refs/heads/master
2023-08-03T17:18:27.413286
2021-09-29T03:48:37
2021-09-29T03:48:37
411,549,076
0
0
Apache-2.0
2021-09-29T06:01:27
2021-09-29T06:01:26
null
UTF-8
Python
false
false
3,976
py
_base_ = ['../../../../_base_/datasets/jhmdb.py'] log_level = 'INFO' load_from = 'https://download.openmmlab.com/mmpose/top_down/resnet/res50_mpii_256x256-418ffc88_20200812.pth' # noqa: E501 resume_from = None dist_params = dict(backend='nccl') workflow = [('train', 1)] checkpoint_config = dict(interval=1) evaluation = dict(interval=1, metric=['PCK', 'tPCK'], save_best='Mean PCK') optimizer = dict( type='Adam', lr=5e-4, ) optimizer_config = dict(grad_clip=None) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[8, 15]) total_epochs = 20 log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook') ]) channel_cfg = dict( num_output_channels=15, dataset_joints=15, dataset_channel=[ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], ], inference_channel=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) # model settings model = dict( type='TopDown', pretrained=None, backbone=dict(type='ResNet', depth=50), keypoint_head=dict( type='TopdownHeatmapSimpleHead', in_channels=2048, out_channels=channel_cfg['num_output_channels'], loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)), train_cfg=dict(), test_cfg=dict( flip_test=True, post_process='default', shift_heatmap=True, modulate_kernel=11)) data_cfg = dict( image_size=[256, 256], heatmap_size=[64, 64], num_output_channels=channel_cfg['num_output_channels'], num_joints=channel_cfg['dataset_joints'], dataset_channel=channel_cfg['dataset_channel'], inference_channel=channel_cfg['inference_channel'], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=True, det_bbox_thr=0.0, bbox_file='', ) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownRandomFlip', flip_prob=0.5), dict( type='TopDownGetRandomScaleRotation', rot_factor=30, scale_factor=0.25), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict(type='TopDownGenerateTarget', sigma=2), dict( type='Collect', keys=['img', 'target', 'target_weight'], meta_keys=[ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox', 'flip_pairs' ]), ] val_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=[ 'img', ], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox', 'flip_pairs' ]), ] test_pipeline = val_pipeline data_root = 'data/jhmdb' data = dict( samples_per_gpu=64, workers_per_gpu=2, val_dataloader=dict(samples_per_gpu=32), test_dataloader=dict(samples_per_gpu=32), train=dict( type='TopDownJhmdbDataset', ann_file=f'{data_root}/annotations/Sub3_train.json', img_prefix=f'{data_root}/', data_cfg=data_cfg, pipeline=train_pipeline, dataset_info={{_base_.dataset_info}}), val=dict( type='TopDownJhmdbDataset', ann_file=f'{data_root}/annotations/Sub3_test.json', img_prefix=f'{data_root}/', data_cfg=data_cfg, pipeline=val_pipeline, dataset_info={{_base_.dataset_info}}), test=dict( type='TopDownJhmdbDataset', ann_file=f'{data_root}/annotations/Sub3_test.json', img_prefix=f'{data_root}/', data_cfg=data_cfg, pipeline=val_pipeline, dataset_info={{_base_.dataset_info}}), )
b2239d07d16a98cc0da947a715c77ca38064eb64
dcae1caa1816ba8ab8016e125027dd09b9a69720
/tasks/copy_task.py
8d95337c5390fec60fce1636b397fef0f820170f
[]
no_license
mahi97/XMANN
5832bc0b02c7ee5998eaf8b4ed558f916e0d5d36
bd6da642a5afc35582476b417e862f57817ed63c
refs/heads/master
2023-06-15T19:10:55.331234
2021-07-15T11:35:40
2021-07-15T11:35:40
316,759,370
0
0
null
null
null
null
UTF-8
Python
false
false
4,671
py
"""Copy Task NTM model.""" from attr import attrs, attrib, Factory import random import numpy as np import torch from torch import nn from torch import optim from model import Model from model import ModelParams class CopyTask(object): def __init__(self): self.model = CopyTaskModel self.param = CopyTaskParams def data_loader(num_batches, batch_size, seq_width, min_len, max_len, is_cuda=False): """Generator of random sequences for the copy task. Creates random batches of "bits" sequences. All the sequences within each batch have the same length. The length is [`min_len`, `max_len`] :param is_cuda: Generating data in GPU Memory :param num_batches: Total number of batches to generate. :param seq_width: The width of each item in the sequence. :param batch_size: Batch size. :param min_len: Sequence minimum length. :param max_len: Sequence maximum length. NOTE: The input width is `seq_width + 1`, the additional input contain the delimiter. """ for batch_num in range(num_batches): # All batches have the same sequence length seq_len = random.randint(min_len, max_len) seq = np.random.binomial(1, 0.5, (seq_len, batch_size, seq_width)) seq = torch.from_numpy(seq) # The input includes an additional channel used for the delimiter inp = torch.zeros(seq_len + 1, batch_size, seq_width + 1) inp[:seq_len, :, :seq_width] = seq inp[seq_len, :, seq_width] = 1.0 # delimiter in our control channel outp = seq.clone() if is_cuda: inp = inp.cuda() outp = outp.cuda() yield batch_num + 1, inp.float(), outp.float() @attrs class CopyTaskParams(object): name = attrib(default="copy-task") memory = attrib(default='static') memory_init = attrib(default='random') controller = attrib(default='LSTM') data_path = attrib(default='NTM') controller_size = attrib(default=100, converter=int) controller_layers = attrib(default=1, converter=int) num_read_heads = attrib(default=1, converter=int) num_write_heads = attrib(default=1, converter=int) sequence_width = attrib(default=8, converter=int) sequence_min_len = attrib(default=1, converter=int) sequence_max_len = attrib(default=20, converter=int) memory_n = attrib(default=128, converter=int) memory_m = attrib(default=20, converter=int) num_batches = attrib(default=20000, converter=int) batch_size = attrib(default=1, converter=int) rmsprop_lr = attrib(default=1e-4, converter=float) rmsprop_momentum = attrib(default=0.9, converter=float) rmsprop_alpha = attrib(default=0.95, converter=float) is_cuda = attrib(default=False, converter=bool) @attrs class CopyTaskModel(object): params = attrib(default=Factory(CopyTaskParams)) net = attrib() data_loader = attrib() criterion = attrib() optimizer = attrib() @net.default def default_net(self): # We have 1 additional input for the delimiter which is passed on a # separate "control" channel model_params = ModelParams( memory=self.params.memory, controller=self.params.controller, data_path=self.params.data_path, num_inputs=self.params.sequence_width + 1, num_outputs=self.params.sequence_width, num_hidden=self.params.controller_layers, num_layers=self.params.controller_layers, controller_size=self.params.controller_size, num_read_heads=self.params.num_read_heads, num_write_heads=self.params.num_write_heads, memory_size=self.params.memory_n, word_size=self.params.memory_m, memory_init=self.params.memory_init, batch_size=self.params.batch_size, is_cuda=self.params.is_cuda ) net = Model(model_params) if self.params.is_cuda: net = net.cuda() return net @data_loader.default def default_dataloader(self): return data_loader(self.params.num_batches, self.params.batch_size, self.params.sequence_width, self.params.sequence_min_len, self.params.sequence_max_len) @criterion.default def default_criterion(self): return nn.BCELoss() @optimizer.default def default_optimizer(self): return optim.RMSprop(self.net.parameters(), momentum=self.params.rmsprop_momentum, alpha=self.params.rmsprop_alpha, lr=self.params.rmsprop_lr)
4a9b892072ba58f5757ea70f8734c086671564e2
db4c0f86904157c9ba40b495ca6506cd96450821
/algorithms/python/104_maxinum_deepth_of_binary_tree.py
4fa1f5be1929bd3e5494335478218e090b039496
[]
no_license
ppd0705/leetcode
c26dfdd077985607354fc8dbac93a5ef3daf8e62
543e2ce47ea454d355762e6291a65a1cc6f7af71
refs/heads/master
2022-08-29T22:50:02.308073
2022-08-09T01:28:39
2022-08-09T01:28:39
221,321,139
1
1
null
null
null
null
UTF-8
Python
false
false
392
py
# Definition for a binary tree node. class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def maxDepth(self, root: TreeNode) -> int: def helper(node): if node is None: return 0 return 1 + max(helper(node.left), helper(node.right)) return helper(root)
57de64b03d3c4f7ab214b32f22252f72c6390376
94d5ef47d3244950a0308c754e0aa55dca6f2a0e
/migrations/versions/5a9e6291a59c_added_scopus_id_field.py
a912de3bd6a52767365e01577cee59169158dc04
[]
no_license
MUMT-IT/mis2018
9cbc7191cdc1bcd7e0c2de1e0586d8bd7b26002e
69fabc0b16abfeba44173caa93d4f63fa79033fd
refs/heads/master
2023-08-31T16:00:51.717449
2023-08-31T11:30:13
2023-08-31T11:30:13
115,810,883
5
5
null
2023-09-14T10:08:35
2017-12-30T17:06:00
HTML
UTF-8
Python
false
false
867
py
"""added scopus ID field Revision ID: 5a9e6291a59c Revises: 42f544489b96 Create Date: 2019-03-25 07:05:06.087909 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '5a9e6291a59c' down_revision = '42f544489b96' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('research_pub', sa.Column('scopus_id', sa.String(length=128), nullable=True)) op.create_index(op.f('ix_research_pub_scopus_id'), 'research_pub', ['scopus_id'], unique=False) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f('ix_research_pub_scopus_id'), table_name='research_pub') op.drop_column('research_pub', 'scopus_id') # ### end Alembic commands ###
8cce7e85e1266c30a9ed503ccc6006ffbf2c94d5
b1ea00015ad8196f78f0a7296ceb55dd5fa68820
/Design/SnakeGame.py
cf21b44b0c5ce706a5ce5cbebd25421eebe4cc53
[]
no_license
YusiZhang/leetcode-python
d1fa7c1b76cb13caaa800fe1d20c7bbd5550d871
26e2a812d86b4c09b2917d983df76d3ece69b074
refs/heads/master
2020-05-29T16:08:52.277158
2016-10-11T06:50:44
2016-10-14T06:36:22
58,106,795
1
0
null
null
null
null
UTF-8
Python
false
false
1,995
py
import collections class SnakeGame(object): def __init__(self, width,height,food): """ Initialize your data structure here. @param width - screen width @param height - screen height @param food - A list of food positions E.g food = [[1,1], [1,0]] means the first food is positioned at [1,1], the second is at [1,0]. :type width: int :type height: int :type food: List[List[int]] """ self.snake = collections.deque([[0,0]]) # snake head is at the front self.width = width self.height = height self.food = collections.deque(food) self.direct = {'U': [-1, 0], 'L': [0, -1], 'R': [0, 1], 'D': [1, 0]} def move(self, direction): """ Moves the snake. @param direction - 'U' = Up, 'L' = Left, 'R' = Right, 'D' = Down @return The game's score after the move. Return -1 if game over. Game over when snake crosses the screen boundary or bites its body. :type direction: str :rtype: int """ newHead = [self.snake[0][0]+self.direct[direction][0], self.snake[0][1]+self.direct[direction][1]] # notice that the newHead can be equal to self.snake[-1] if (newHead[0] < 0 or newHead[0] >= self.height) or (newHead[1] < 0 or newHead[1] >= self.width) \ or (newHead in self.snake and newHead != self.snake[-1]): return -1 if self.food and self.food[0] == newHead: # eat food self.snake.appendleft(newHead) # just make the food be part of snake self.food.popleft() # delete the food that's already eaten else: # not eating food: append head and delete tail self.snake.appendleft(newHead) self.snake.pop() return len(self.snake)-1 # Your SnakeGame object will be instantiated and called as such: # obj = SnakeGame(width, height, food) # param_1 = obj.move(direction)
87f3ec6b5cd4aadb962208b899f021f77a46846a
00cf2491d97f079dadee6b05990e9a506983f3b2
/datastore/model.py
e3643f844a6427676d3ac675d26e92a0011c481c
[]
no_license
simonemmott/DataStore
af16cdb91f73835203e77108e731acd129e15f96
d7ccc2e8540b8cd47bb80318b62b813da7b76357
refs/heads/master
2020-06-25T02:23:23.221408
2019-07-27T22:15:41
2019-07-27T22:15:41
199,169,247
0
0
null
null
null
null
UTF-8
Python
false
false
990
py
from json_model import JsonModel import importlib def import_class(name): mod_path = '.'.join(name.split('.')[:-1]) cls_name = name.split('.')[-1] mod = importlib.import_module(mod_path) if hasattr(mod, cls_name): attr = getattr(mod, cls_name) if isinstance(attr, type): return attr raise ValueError('{name} is not a class'.format(name=name)) raise ValueError('The module {mod} does not define {name}'.format(mod=mod_path, name=cls_name)) class MetaType(JsonModel): name = JsonModel.field(str) ref_type = JsonModel.field(str) class Meta(): required_fields = ['name'] def __init__(self, *args, **kw): super(MetaType, self).__init__(*args, **kw) if not self.ref_type: self.ref_type = self.name.split('.')[-1] self.type = import_class(self.name) @staticmethod def from_class(cls): return MetaType(name=cls.__name__)
927e9f9ea8862b1450ddf8c6f8814db817921683
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_051/ch43_2020_08_17_19_52_57_356234.py
f295feb2e8b443b435c9674f12d6e46d6abb9ea6
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
179
py
lista=['janeiro', 'fevereiro', 'março', 'abril', 'maio', 'junho', 'julho', 'agosto', 'setembro', 'outubro', 'novembro', 'dezembro'] print (lista[int(input('numero do mes: '))-1])
9cc1f699589a7ce3fd4896716330dd97386159c6
c450204fda11a5d3733c463e31e4c10105420534
/ans_comparer_gui.py
66ea93f18d0abb7444b3ffe4cf88a1608c1a1ea8
[]
no_license
Hilary02/IpynbComparer
6a25386702ed7de5fdea0ae3281b836970645cce
418919562b9eeefbbcc8d694aeab88356ba15f73
refs/heads/master
2022-11-04T00:56:44.659890
2020-06-15T07:09:56
2020-06-15T07:55:20
272,431,497
0
0
null
null
null
null
UTF-8
Python
false
false
8,209
py
import os import tkinter as tk import tkinter.filedialog import json from make_dict import * left_data = None right_data = None debug = False now_select = "" def log(s): logarea.insert("end", f"{s}\n") def make_model_data(): log("模範解答を選択してください") file_path = tk.filedialog.askopenfilename( filetypes=[("模範解答", "*.ipynb")], initialdir="./") model_dict = ProblemFileReader.makedict(file_path) if not model_dict: log("模範解答の処理に失敗しました") else: with open("./modelanswer.json", mode="w", encoding="utf-8") as f: json.dump(model_dict, f, indent=4, ensure_ascii=False) log("modelanswer.jsonを保存しました") def file_select_f1(): global left_data log("左に表示するデータを選択") file_path = tk.filedialog.askopenfilename( filetypes=[("Jupyter", "*.ipynb"), ("Json", "*.json")], initialdir="./") kadai_dict = ProblemFileReader.makedict(file_path) if kadai_dict: file_name = file_path.split("/")[-1] f1la1["text"] = f"ファイル名:{file_name}" left_data = kadai_dict log("読み込み成功") selector_reset() compare() else: log("読み込み失敗") def file_select_f2(): global right_data log("右に表示するデータを選択") file_path = tk.filedialog.askopenfilename( filetypes=[("Jupyter", "*.ipynb"), ("Json", "*.json")], initialdir="./") kadai_dict = ProblemFileReader.makedict(file_path) if kadai_dict: file_name = file_path.split("/")[-1] f2la1["text"] = f"ファイル名:{file_name}" right_data = kadai_dict log("読み込み成功") compare() else: log("読み込み失敗") def model_update(): global now_select with open("./modelanswer.json", mode="r", encoding="utf-8") as f: tmp_model = json.load(f) tmp_model[now_select]["input"] = f1tx1.get("1.0", "end-1c") tmp_model[now_select]["output"] = f1tx2.get("1.0", "end-1c") left_data[now_select]["input"] = f1tx1.get("1.0", "end-1c") left_data[now_select]["output"] = f1tx2.get("1.0", "end-1c") with open("./modelanswer.json", mode="w", encoding="utf-8") as f: json.dump(tmp_model, f, indent=4, ensure_ascii=False) log("modelanswer.jsonを左のデータで更新しました") def selector_reset(): for i in range(selector.size()): selector.delete(tk.END) for k in left_data.keys(): selector.insert(tk.END, k) def kadai_selected(event): if len(selector.curselection()) == 0: return i = selector.curselection() if not left_data: log("左側のデータが未選択") return f1tx1.delete("1.0", "end") f1tx1.insert("end", left_data[selector.get(i)]["input"]) f1tx2.delete("1.0", "end") f1tx2.insert("end", left_data[selector.get(i)]["output"]) if not right_data: log("右側のデータが未選択") return global now_select now_select = selector.get(i) # 保存 f2tx1.delete("1.0", "end") f2tx1.insert("end", right_data[selector.get(i)]["input"]) f2tx2.delete("1.0", "end") f2tx2.insert("end", right_data[selector.get(i)]["output"]) def strip_margin(s): """ 文字列の各行から空白,空行などを除去した文字列を返す """ strip_str = "" for l in s.split("\n"): strip_line = l.strip(" '\"") if strip_line: strip_str += l.strip(" '\"") + "\n" return strip_str def loose_compare(str1, str2): strip_str1 = strip_margin(str1) strip_str2 = strip_margin(str2) return strip_str1 == strip_str2 def compare(): if not left_data or not right_data: return False keys = left_data.keys() q_num = len(keys) match_list = [False]*q_num match_num = 0 score.delete("1.0", "end") try: for i, k in enumerate(keys): if loose_compare(left_data[k]["output"], right_data[k]["output"]): match_num += 1 match_list[i] = True except Exception as e: log("左右の形式が一致しません") return False score.insert("end", f"{match_num}/{q_num}") colors = ("red", "green") for i, b in enumerate(match_list): selector.itemconfigure(i, foreground="white", background=colors[b]) return f"{match_num}/{q_num}" # dousiyo if __name__ == "__main__": root = tk.Tk() root.title("nbcompare") root.geometry("1200x600") # 左課題表示画面 f1 = tk.Frame(root, relief=tk.GROOVE, bd=2) f1la1 = tk.Label(f1, text="ファイル名") f1la1.grid(row=0, column=0, padx=2, pady=2, sticky=tk.N + tk.W) # ボタン f1bt1 = tkinter.Button(f1, text="ファイル選択", command=file_select_f1) f1bt1.grid(row=0, column=1, padx=2, pady=2, sticky=tk.N + tk.E) f1la2 = tk.Label(f1, text="コード") f1la2.grid(row=1, column=0, padx=2, pady=2, columnspan=2, sticky=tk.W) f1tx1 = tk.Text(f1, padx=5, pady=5, width=60, height=15, font=('Consolas', 11)) f1tx1.grid(row=2, column=0, padx=2, pady=2, columnspan=2) f1la3 = tk.Label(f1, text="出力") f1la3.grid(row=3, column=0, padx=2, pady=2, columnspan=2, sticky=tk.W) f1tx2 = tk.Text(f1, padx=5, pady=5, width=50, height=8, font=('Consolas', 12)) f1tx2.grid(row=4, column=0, padx=2, pady=2, columnspan=2, sticky=tk.N + tk.W) f1.pack(side=tk.LEFT, fill=tk.BOTH, expand=1) # 中央課題表示画面 f2 = tk.Frame(root, relief=tk.GROOVE, bd=2) f2la1 = tk.Label(f2, text="ファイル名") f2la1.grid(row=0, column=0, padx=2, pady=2, sticky=tk.N + tk.W) # ボタン f2bt1 = tkinter.Button(f2, text="ファイル選択", command=file_select_f2) f2bt1.grid(row=0, column=1, padx=2, pady=2, sticky=tk.N + tk.E) f2la2 = tk.Label(f2, text="コード") f2la2.grid(row=1, column=0, padx=2, pady=2, columnspan=2, sticky=tk.W) f2tx1 = tk.Text(f2, padx=5, pady=5, width=60, height=15, font=('Consolas', 11)) f2tx1.grid(row=2, column=0, padx=2, pady=2, columnspan=2) f2la3 = tk.Label(f2, text="出力") f2la3.grid(row=3, column=0, padx=2, pady=2, columnspan=2, sticky=tk.W) f2tx2 = tk.Text(f2, padx=5, pady=5, width=50, height=8, font=('Consolas', 12)) f2tx2.grid(row=4, column=0, padx=2, pady=2, columnspan=2, sticky=tk.N + tk.W) f2.pack(side=tk.LEFT, fill=tk.BOTH, expand=1) # 右情報表示画面 f3 = tk.Frame(root, bd=2) f3la1 = tk.Label(f3, text="課題一覧") f3la1.pack(side=tk.TOP) # 課題選択リストの作成 selector = tkinter.Listbox(f3, selectmode=tkinter.SINGLE) selector.insert(0, "選択なし") selector.bind('<<ListboxSelect>>', kadai_selected) selector.pack(side=tk.TOP, fill=tk.X, expand=0) f3la2 = tk.Label(f3, text="一致率") f3la2.pack(side=tk.TOP) score = tk.Text(f3, padx=5, pady=5, width=20, height=1, font=('Consolas', 18)) score.pack(side=tk.TOP) f3la3 = tk.Label(f3, text="ログ") f3la3.pack(side=tk.TOP) logarea = tk.Text(f3, padx=5, pady=5, width=30, height=20, font=('Consolas', 9)) logarea.pack(side=tk.TOP) f3bt1 = tkinter.Button(f3, text="左の内容でmodelを更新(仮)", command=model_update) f3bt1.pack(side=tk.TOP, fill=tk.X, expand=0) f3.pack(side=tk.LEFT, fill=tk.BOTH, expand=1) # 初回入力処理 if not os.path.isfile("./modelanswer.json"): log("模範回答データがありません") make_model_data() # 自動読み込み try: log("模範回答データを読み込みます") with open("./modelanswer.json", mode="r", encoding="utf-8") as f: left_data = json.load(f) f1la1["text"] = "ファイル名:modelanswer.json" selector_reset() except Exception as e: log("模範回答データが見つかりません") file_select_f2() root.mainloop()
4da37331376912a600bead21c5b5170ef9a415e6
f2f3023c77357ff1e7ba830587291414566aa112
/Monstr/Core/BaseModule.py
559843a1ff20be10610ac18e684adcb003c97076
[ "Apache-2.0" ]
permissive
tier-one-monitoring/monstr
e1e38cc719a75abb39b7ad3a24bb527ef9ad920a
88af719e2e5eb0fe3ace7238840f97c35ac7044c
refs/heads/master
2020-07-18T02:42:59.019768
2019-05-06T13:42:52
2019-05-06T13:42:52
60,289,289
0
3
Apache-2.0
2019-04-29T10:40:10
2016-06-02T18:51:15
Python
UTF-8
Python
false
false
10,243
py
from abc import ABCMeta, abstractmethod import Monstr.Core.DB as DB import Monstr.Core.Utils as Utils import Monstr.Core.Config as Config import Monstr.Core.Constants as Constants # ,----------------------. # |BaseNodule | # |----------------------| # |+string name | # |+obj table_schemas | # |----------------------| # |+void Initialize() | # |+obj PrepareRetrieve()| # |+obj Retrieve() | # |+obj InsertToDB() | # |+obj Analyze() | # |+obj React() | # |+obj Run() | # `----------------------' class BaseModule(): __metaclass__ = ABCMeta name = None table_schemas = None tables = None status_table = None status_list = [] journal = None events_table = None rest_links = {} db_handler = None status_schema = {'status': (DB.Column('id', DB.Integer, primary_key=True), DB.Column('name', DB.String(64)), DB.Column('status', DB.Integer), DB.Column('time', DB.DateTime(True)), DB.Column('description', DB.Text),)} journal_schema = (DB.Column('id', DB.Integer, primary_key=True), DB.Column('module', DB.String(64)), DB.Column('time', DB.DateTime(True)), DB.Column('result', DB.String(32)), DB.Column('step', DB.String(32)), DB.Column('description', DB.Text),) events_schema = (DB.Column('id', DB.BigInteger, primary_key=True), DB.Column('module', DB.String(64)), DB.Column('state', DB.String(64)), DB.Column('name', DB.String(64)), DB.Column('type', DB.String(32)), DB.Column('time', DB.DateTime(True)), DB.Column('severity', DB.Integer), DB.Column('description', DB.Text),) responsibles = ['[email protected]'] # ========================================================================== # Database functions # ========================================================================== def _db_incert_journal_row(self, row): self.db_handler.insert(self.journal, row) def _db_incert_event_row(self, row): self.db_handler.insert(self.events_table, row) def _db_get_status_table_repr(self): return [x._asdict() for x in self.db_handler.get_session().query(self.status_table['status']).all()] def _db_update_status(self, statuses): conn = self.db_handler.get_engine().connect() for status in statuses: update = self.status_table['status'].update().values(status=status['status'], time=status['time'], description=status['description']).where(self.status_table['status'].c.name == status['name']) conn.execute(update) # ========================================================================== # Common functions # ========================================================================== def _create_journal_row(self, result, step=None, description=None): row = {'module': self.name, 'time': Utils.get_UTC_now(), 'result': result, 'step': step, 'description': description} return row def write_to_journal(self, result, step=None, description=None): row = self._create_journal_row(result, step, description) self._db_incert_journal_row(row) def write_error_to_journal(self, result, step=None, error=None): description = (type(error).__name__ + ': ' + error.message) if error is not None else None self.write_to_journal(result, step, description) # -------------------------------------------------------------------------- def create_event(self, name, state, event_type, time, severity, description): event = {'module': self.name, 'name': name, 'state': state, 'type': event_type, 'time': time, 'severity': severity, 'description': description} return event def write_event(self, event): self._db_incert_event_row(event) # -------------------------------------------------------------------------- def _create_params(self, default_params, params): result = {} for key in default_params: if key not in params: result[key] = default_params[key] else: result[key] = type(default_params[key])(params[key]) return result def get_status_from_status_code(self, code): if code in Constants.STATUS: return Constants.STATUS[code] return 'Undefined' + str(code) def get_last_status(self): return self._db_get_status_table_repr() def update_status(self, current_statuses): previous_status = self._db_get_status_table_repr() last_statuses = dict([(str(x['name']), {'name':str(x['name']), 'status':int(x['status']), 'time':str(x['time'])}) for x in previous_status]) update_list = [] event_list = [] for status in current_statuses: last_status = last_statuses[status['name']] if last_status['status'] != status['status']: update_list.append(status) # Generate event and write to DB last_status_name = self.get_status_from_status_code(last_status['status']) new_status_name = self.get_status_from_status_code(status['status']) event_name = status['name'] + ':' + last_status_name + '->' + new_status_name event = self.create_event(event_name, status['name'] ,'StatusChange' , status['time'], status['status'], status['description']) event_list.append(event) self.write_event(event) #Send message if necessary email_conf = Config.get_section('Email') threshold = int(email_conf['threshold']) recipients = email_conf['recipients'].split(',') if last_status['status'] >= threshold or status['status'] >= threshold: subject = self.name + ':' + status['name'] + ' goes ' + self.get_status_from_status_code(status['status']) message = """ For %s:%s the status change occured: last status was %s, since %s new status is %s, since %s """ % (self.name, status['name'], self.get_status_from_status_code(last_status['status']), str(last_status['time']), self.get_status_from_status_code(status['status']), str(status['time']), ) Utils.send_email(subject, message, recipients) self._db_update_status(update_list) return event_list # -------------------------------------------------------------------------- def __init__(self): self.db_handler = DB.DBHandler() self.rest_links = {'getModuleStatus': self.GetModuleStatus} self.journal = self.db_handler.getOrCreateTable('monstr_Journal', self.journal_schema) self.events_table = self.db_handler.getOrCreateTable('monstr_Events', self.events_schema) def Initialize(self): if self.name is None: raise "Module require name" if self.table_schemas is None: raise "Module require schemas list" self.tables = self.db_handler.initialize(self.table_schemas, self.name) self.status_table = self.db_handler.initialize(self.status_schema, self.name, self.status_list) def PrepareRetrieve(self): return {} def Retrieve(self, params): pass def Analyze(self, data): return [] def React(self, events): pass def InsertToDB(self, data): for schema in data: table = self.tables[schema] self.db_handler.bulk_insert(table, data[schema]) return def ExecuteCheck(self): try: self.Initialize() except Exception as e: self.write_error_to_journal('Fail', 'Initialize', e) print e return try: params = self.PrepareRetrieve() except Exception as e: self.write_error_to_journal('Fail', 'PrepareRetrieve', e) print e return try: data = self.Retrieve(params) except Exception as e: self.write_error_to_journal('Fail', 'Retrieve', e) print e return try: self.InsertToDB(data) except Exception as e: self.write_error_to_journal('Fail', 'InsertToDB', e) print e return #try: events = self.Analyze(data) #except Exception as e: # self.write_error_to_journal('Fail', 'Analyze', e) # print 'Analyze error' # print e # return try: self.React(data) except Exception as e: self.write_error_to_journal('Fail', 'React', e) print e return self.write_to_journal('Success') # ========================================================================== # Web # ========================================================================== def GetModuleStatus(self, incoming_params): response = {} params = incoming_params try: result = self._db_get_status_table_repr() response = {'data': result, 'applied_params': params, 'success': True} except Exception as e: response = {'data': {}, 'incoming_params': incoming_params, 'success': False, 'error': type(e).__name__ + ': ' + e.message, 'description': 'Error inside BaseModule.GetModuleStatus'} return response
9eba0b833a0ba139819af0b9aa282f36e595bdaf
9d8acc20d2ee1d1957849dfb71c22e0dae2d8c5c
/baomoicrawl/venv/Lib/site-packages/scrapy/utils/job.py
12a886c4752744d82c9c82f2144df6d642aa170c
[]
no_license
thuy4tbn99/TranTruongThuy_17021178_Nhom4_Crawler
b0fdedee2942a12d9f64dfed93f43802dc5ab340
87c8c07433466bbc43a24ea089f75baeb467c356
refs/heads/master
2022-11-27T21:36:33.917491
2020-08-10T23:24:42
2020-08-10T23:24:42
286,583,216
0
0
null
null
null
null
UTF-8
Python
false
false
157
py
import os def job_dir(settings): path = settings['JOBDIR'] if path and not os.path.exists(path): os.makedirs(path) return path
87acdc16f9e7ff0ad3da6aaea1d2590cdc5fdf75
99091fded6b655e27a7afd5a81693f9e86d064f6
/offset/core/util.py
6a1ec85bddc55449b942472a87079f5b6acedf5d
[ "MIT", "LicenseRef-scancode-unknown-license-reference", "BSD-3-Clause" ]
permissive
dotpot/offset
68670ace4945c23d1193ef8a8f57679db4fd9038
51200d0ee3a1776ad55d7c3ce53a5237236759e2
refs/heads/master
2021-01-15T21:50:06.090937
2013-10-01T16:55:57
2013-10-01T18:26:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
468
py
# -*- coding: utf-8 - # # This file is part of offset. See the NOTICE for more information. import fcntl import os import time def nanotime(s=None): """ convert seconds to nanoseconds. If s is None, current time is returned """ if s is not None: return s * 1000000000 return time.time() * 1000000000 def from_nanotime(n): """ convert from nanotime to seconds """ return n / 1.0e9 def nanosleep(n): time.sleep(from_nanotime(n))
a9cbff56aea97cc7f40943e0040f157d74659b76
592e77ed163ce83abd940004f56b5ebed0e3f726
/OS Re-install/HPE-CS500-OS-Re-Installation-2018.03-0/SLES/modules/upgradeMisc.py
1114c3cb747d5acdeae302afe4422e3f4b66050e
[]
no_license
publiccoding/os_deploy
84703e4850bf33d7583f76aa471c023e0a1c5603
a31611060bfffb85cc5ba3e656df61da6f28f665
refs/heads/master
2021-04-03T07:51:26.286215
2018-08-23T06:35:31
2018-08-23T06:35:31
124,385,606
2
0
null
null
null
null
UTF-8
Python
false
false
98,797
py
# Embedded file name: ./upgradeMisc.py import math import subprocess import re import os import datetime import time import logging import shutil import glob from ast import literal_eval RED = '\x1b[31m' GREEN = '\x1b[32m' YELLOW = '\x1b[33m' RESETCOLORS = '\x1b[0m' def checkDiskspace(backupItemsList): logger = logging.getLogger('coeOSUpgradeLogger') logger.info('Checking to ensure that there is enough disk space for the backup and the backup ISO image and that the overall restoration backup does not exceed 3GB.') print GREEN + 'Checking to ensure that there is enough disk space for the backup and the backup ISO image and that the overall backup archive does not exceed 3GB.' + RESETCOLORS command = 'df /' result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() out = out.strip() if result.returncode != 0: logger.error("Unable to get the root file system's usage information.\n" + err + '\n' + out) print RED + "Unable to get the root file system's usage information; fix the problem and try again; exiting program execution." + RESETCOLORS exit(1) try: tmpVar = re.match('(.*\\s+){3}([0-9]+)\\s+', out).group(2) except AttributeError as err: logger.error("There was a match error when trying to match against '" + out + "'.\n" + str(err)) print RED + "There was a match error when trying to match against '" + out + "'; fix the problem and try again; exiting program execution." + RESETCOLORS exit(1) availableDiskSpace = int(math.floor(float(tmpVar) / float(1048576))) if len(backupItemsList) == 3: backupItems = ' '.join(backupItemsList[0]) + ' ' + ' '.join(backupItemsList[1]) + ' ' + ' '.join(backupItemsList[2]) restorationItems = ' '.join(backupItemsList[0]) + ' ' + ' '.join(backupItemsList[1]) else: backupItems = ' '.join(backupItemsList[0]) + ' ' + ' '.join(backupItemsList[1]) restorationItems = ' '.join(backupItemsList[0]) backupList = [backupItems, restorationItems] count = 0 for items in backupList: command = 'du -BG -sc ' + items result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: if re.search('No such file or directory', err, re.MULTILINE | re.DOTALL) == None: logger.error("Could not get the total disk space used by '" + items + "'.\n" + err + '\n' + out) print RED + 'Could not get the total disk space used by the directories/files being backed up; fix the problem and try again; exiting program execution.' + RESETCOLORS exit(1) if re.match('.*\\s+([0-9]+)G\\s+total', out, re.DOTALL | re.IGNORECASE | re.MULTILINE) != None: try: if count == 0: totalUsed = int(re.match('.*\\s+([0-9]+)G\\s+total', out, re.DOTALL | re.IGNORECASE | re.MULTILINE).group(1)) * 2 + 0.2 else: totalUsed = int(re.match('.*\\s+([0-9]+)G\\s+total', out, re.DOTALL | re.IGNORECASE | re.MULTILINE).group(1)) except AttributeError as err: logger.error("There was a match error when trying to match against '" + out + "'.\n" + str(err)) print RED + "There was a match error when trying to match against '" + out + "'; fix the problem and try again; exiting program execution." + RESETCOLORS exit(1) else: logger.error("Could not get the total disk space used by '" + items + "'.\n" + out) print RED + 'Could not get the total disk space used by the directories/files being backed up; fix the problem and try again; exiting program execution.' + RESETCOLORS exit(1) if count == 0: if availableDiskSpace - totalUsed < 3: logger.error("There is not enough disk space to make a backup of '" + items + "'; available disk space '" + str(availableDiskSpace) + "' minus backup total '" + str(totalUsed) + "' used is less than 3GB.") print RED + 'There is not enough disk space to make a backup of the directories/files being backed up; fix the problem and try again; exiting program execution.' + RESETCOLORS exit(1) elif totalUsed > 3: logger.error("The current size '" + str(totalUsed) + "'GB of the restoration backup of '" + items + "' exceeds 3GB.") print RED + 'The current size of the restoration backup to be saved to the restoration ISO exceeds 3GB; fix the problem and try again; exiting program execution.' + RESETCOLORS exit(1) count += 1 logger.info('Done checking to ensure that there is enough disk space for the backup and the backup ISO image and that the overall restoration backup does not exceed 3GB.') return def createNetworkInformationFile(upgradeWorkingDir, osDist): nicDataFileDir = upgradeWorkingDir + '/nicDataFile' logger = logging.getLogger('coeOSUpgradeLogger') logger.info('Creating the NIC MAC address cross reference file that will be used for reference after the upgrade.') print GREEN + 'Creating the NIC MAC address cross reference file that will be used for reference after the upgrade.' + RESETCOLORS if not os.path.exists(nicDataFileDir): try: os.mkdir(nicDataFileDir) except OSError as err: logger.error("Unable to create the NIC MAC address cross reference data directory '" + nicDataFileDir + "'.\n" + str(err)) print RED + "Unable to create the NIC MAC address cross reference data directory '" + nicDataFileDir + "'; fix the problem and try again; exiting program execution." + RESETCOLORS exit(1) command = 'ifconfig -a' result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error('Unable to get NIC card information.\n' + err + '\n' + out) print RED + 'Unable to get NIC card information; fix the problem and try again; exiting program execution.' + RESETCOLORS exit(1) nicDataList = out.splitlines() nicDict = {} for data in nicDataList: if 'HWaddr' in data and 'bond' not in data: try: nicList = re.match('\\s*([a-z0-9]+)\\s+.*HWaddr\\s+([a-z0-9:]+)', data, re.IGNORECASE).groups() except AttributeError as err: logger.error("There was a match error when trying to match against '" + data + "'.\n" + str(err)) print RED + "There was a match error when trying to match against '" + data + "'; fix the problem and try again; exiting program execution." + RESETCOLORS exit(1) nicName = nicList[0] nicMACAddress = nicList[1].lower() nicDict[nicMACAddress] = nicName logger.info('The NIC dictionary was determined to be: ' + str(nicDict) + '.') procBondingDir = '/proc/net/bonding' if os.path.isdir(procBondingDir): command = 'ls ' + procBondingDir result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error("Unable to get the network bond information from '" + procBondingDir + "'.\n" + err + '\n' + out) print RED + "Unable to get the network bond information from '" + procBondingDir + "'; fix the problem and try again; exiting program execution." + RESETCOLORS exit(1) activeBondsList = out.strip().split() for bondName in activeBondsList: command = 'cat ' + procBondingDir + '/' + bondName result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error("Unable to get network bond information for '" + bondName + "' from proc.\n" + err + '\n' + out) print RED + "Unable to get network bond information for '" + bondName + "' from proc; fix the problem and try again; exiting program execution." + RESETCOLORS exit(1) procBondingData = out.splitlines() for data in procBondingData: if 'Slave Interface' in data: slaveInterface = re.match('.*:\\s+([a-z0-9]+)', data).group(1) continue if 'Permanent HW addr' in data: macAddress = re.match('.*:\\s+([a-z0-9:]+)', data).group(1) nicDict[macAddress] = slaveInterface logger.info('The updated NIC dictionary was determined to be: ' + str(nicDict) + '.') if osDist == 'RHEL': updateNICCfgFiles(nicDict) else: logger.info("It was determined that there were no active network bonds, since '" + procBondingDir + "' did not exist.") try: macAddressDataFile = nicDataFileDir + '/macAddressData.dat' f = open(macAddressDataFile, 'w') for macAddress in nicDict: f.write(nicDict[macAddress] + '|' + macAddress + '\n') except IOError as err: logger.error("Could not write NIC card mac address information to '" + macAddressDataFile + "'.\n" + str(err)) print RED + "Could not write NIC card mac address information to '" + macAddressDataFile + "'; fix the problem and try again; exiting program execution." + RESETCOLORS exit(1) f.close() logger.info('Done creating the NIC MAC address cross reference file that will be used for reference after the upgrade.') def updateNICCfgFiles(nicDict): logger = logging.getLogger('coeOSUpgradeLogger') for macAddress in nicDict: nicCFGFile = '/etc/sysconfig/network-scripts/ifcfg-' + nicDict[macAddress] if os.path.exists(nicCFGFile): command = 'egrep "^\\s*HWADDR" ' + nicCFGFile result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() logger.info("The output of the command '" + command + "' used to get the NIC's MAC address variable 'HWADDR' from '" + nicCFGFile + "' was: " + out.strip() + '.') if result.returncode != 0: logger.info("Updating '" + nicCFGFile + "' with the NIC's MAC address, since it was not present.") command = "echo 'HWADDR=" + macAddress + "' >> " + nicCFGFile result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error("Problems were encountered while updating '" + nicCFGFile + "' with the NIC's MAC address information.\n" + err + '\n' + out) print RED + "Problems were encountered while updating '" + nicCFGFile + "' with the NIC's MAC address information; fix the problem and try again; exiting program execution." + RESETCOLORS exit(1) def checkRHELNetworkConfiguration(programParentDir, osDist, cursesThread): errorMessage = '' logger = logging.getLogger('coeOSUpgradeLogger') logger.info('Checking the network configuration.') cursesThread.insertMessage(['informative', 'Checking the network configuration.']) cursesThread.insertMessage(['informative', '']) command = 'systemctl stop network' result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error('Problems were encountered while shutting down the network.\n' + err + '\n' + out) errorMessage = 'Problems were encountered while shutting down the network; thus the network configuration was not confirmed.' return errorMessage time.sleep(15.0) if os.path.isfile(programParentDir + '/nicDataFile/pci.ids'): errorMessage = configureMellanox(programParentDir) if len(errorMessage) != 0: return errorMessage command = 'modprobe -r tg3' result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error('Problems were encountered while unloading the tg3 driver.\n' + err + '\n' + out) errorMessage = 'Problems were encountered while unloading the tg3 driver; thus the network configuration was not confirmed.' return errorMessage time.sleep(2.0) command = 'modprobe tg3' result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error('Problems were encountered while reloading the tg3 driver.\n' + err + '\n' + out) errorMessage = 'Problems were encountered while reloading the tg3 driver; thus the network configuration was not confirmed.' return errorMessage time.sleep(2.0) command = 'ifconfig -a' result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error('Unable to get NIC card information.\n' + err + '\n' + out) errorMessage = 'Unable to get NIC card information; thus the network configuration was not confirmed.' return errorMessage nicDataList = out.splitlines() nicDict = {} count = 0 skip = False for data in nicDataList: if 'flags=' in data: if 'lo:' in data or not 'bond' in data: try: nicName = re.match('\\s*([a-z0-9]+):', data, re.IGNORECASE).group(1) count += 1 except AttributeError as err: logger.error("There was a match error when trying to match against '" + data + "'.\n" + str(err)) errorMessage = "There was a match error when trying to match against '" + data + "'; thus the network configuration was not confirmed." return errorMessage elif 'flags=' in data and 'bond' in data: skip = True elif 'ether' in data and 'txqueuelen' in data and not skip: try: nicMACAddress = re.match('\\s*ether\\s+([a-z0-9:]+)', data, re.IGNORECASE).group(1) count += 1 except AttributeError as err: logger.error("There was a match error when trying to match against '" + data + "'.\n" + str(err)) errorMessage = "There was a match error when trying to match against '" + data + "'; thus the network configuration was not confirmed." return errorMessage elif 'ether' in data and 'txqueuelen' in data: skip = False else: continue nicDict[nicMACAddress] = count == 2 and nicName count = 0 logger.info('The NIC dictionary was determined to be: ' + str(nicDict) + '.') try: macAddressDataFile = programParentDir + '/nicDataFile/macAddressData.dat' with open(macAddressDataFile) as f: macAddressData = f.readlines() except IOError as err: logger.error("Unable to get the MAC address list from '" + macAddressDataFile + "'.\n" + str(err)) errorMessage = "Unable to get the MAC address list from '" + macAddressDataFile + "'; thus the network configuration was not confirmed." return errorMessage macAddressDict = dict((x.strip().split('|') for x in macAddressData)) macAddressDict = dict(map(reversed, macAddressDict.items())) logger.info('The MAC address dictionary (previous NIC mapping) was determined to be: ' + str(macAddressDict) + '.') changedNicDict = {} for macAddress in macAddressDict: currentNicName = macAddressDict[macAddress] try: previousNicName = nicDict[macAddress] except KeyError as err: logger.error('The resource key (' + str(err) + ') was not present in the previous NIC dictionary.') errorMessage = 'The resource key (' + str(err) + ') was not present in the previous NIC dictionary; thus the network configuration was not confirmed.' return errorMessage if currentNicName != previousNicName: changedNicDict[previousNicName] = currentNicName if len(changedNicDict) != 0: errorMessage = updateNICNames(changedNicDict, osDist, cursesThread) logger.info('Done checking the network configuration.') return errorMessage def checkSLESNetworkConfiguration(programParentDir, osDist, cursesThread, **kwargs): errorMessage = '' logger = logging.getLogger('coeOSUpgradeLogger') logger.info('Checking the network configuration.') cursesThread.insertMessage(['informative', 'Checking the network configuration.']) cursesThread.insertMessage(['informative', '']) if 'osDistLevel' in kwargs: osDistLevel = kwargs['osDistLevel'] else: osDistLevel = '' if osDistLevel == '11.4': command = 'service network stop' else: command = 'systemctl stop network' result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error('Problems were encountered while shutting down the network.\n' + err + '\n' + out) errorMessage = 'Problems were encountered while shutting down the network; thus the network configuration was not confirmed.' return errorMessage time.sleep(15.0) if os.path.isfile(programParentDir + '/nicDataFile/pci.ids'): errorMessage = configureMellanox(programParentDir) if len(errorMessage) != 0: return errorMessage command = 'ifconfig -a' result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error('Unable to get NIC card information.\n' + err + '\n' + out) errorMessage = 'Unable to get NIC card information; thus the network configuration was not confirmed.' return errorMessage nicDataList = out.splitlines() nicDict = {} for data in nicDataList: if 'HWaddr' in data: try: nicList = re.match('\\s*([a-z0-9]+)\\s+.*HWaddr\\s+([a-z0-9:]+)', data, re.IGNORECASE).groups() except AttributeError as err: logger.error("There was a match error when trying to match against '" + data + "'.\n" + str(err)) errorMessage = "There was a match error when trying to match against '" + data + "'; thus the network configuration was not confirmed." return errorMessage nicDict[nicList[1].lower()] = nicList[0] logger.info('The NIC dictionary was determined to be: ' + str(nicDict) + '.') try: macAddressDataFile = programParentDir + '/nicDataFile/macAddressData.dat' with open(macAddressDataFile) as f: macAddressData = f.readlines() except IOError as err: logger.error("Unable to get the MAC address list from '" + macAddressDataFile + "'.\n" + str(err)) errorMessage = "Unable to get the MAC address list from '" + macAddressDataFile + "'; thus the network configuration was not confirmed." return errorMessage macAddressDict = dict((x.strip().split('|') for x in macAddressData)) macAddressDict = dict(map(reversed, macAddressDict.items())) logger.info('The MAC address dictionary (previous NIC mapping) was determined to be: ' + str(macAddressDict) + '.') changedNicDict = {} for macAddress in macAddressDict: currentNicName = macAddressDict[macAddress] previousNicName = nicDict[macAddress] if currentNicName != previousNicName: changedNicDict[previousNicName] = currentNicName if len(changedNicDict) != 0: errorMessage = updateNICNames(changedNicDict, osDist, cursesThread) logger.info('Done checking the network configuration.') return errorMessage def updateNICNames(changedNicDict, osDist, cursesThread): errorMessage = '' logger = logging.getLogger('coeOSUpgradeLogger') logger.info('Updating the network configuration, since the NIC names changed.') cursesThread.insertMessage(['informative', 'Updating the network configuration, since the NIC names changed.']) cursesThread.insertMessage(['informative', '']) logger.info('The changed NIC dictionary was determined to be: ' + str(changedNicDict) + '.') networkCfgFileList = [] if osDist == 'SLES': networkDir = '/etc/sysconfig/network' else: networkDir = '/etc/sysconfig/network-scripts' try: os.chdir(networkDir) except OSError as err: logger.error("Unable to change into the network directory '" + networkDir + "'.\n" + str(err)) errorMessage = "Unable to change into the network directory '" + networkDir + "'; thus the network configuration was not confirmed." return errorMessage command = 'ls ifcfg-*' result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error('Problems were encountered while getting a listing of the NIC configuration files.\n' + err + '\n' + out) errorMessage = 'Problems were encountered while getting a listing of the NIC configuration files; thus the network configuration was not confirmed.' return errorMessage nicCfgFileList = out.splitlines() logger.info('The NIC configuration files were determined to be: ' + str(nicCfgFileList) + '.') tmpNicNameDict = dict(((nic.strip().replace('ifcfg-', ''), nic.strip()) for nic in nicCfgFileList)) nicNameDict = {} for key in tmpNicNameDict: if '.' not in key and key != 'lo': nicNameDict[key] = tmpNicNameDict[key] networkCfgFileList.append(tmpNicNameDict[key]) logger.info('The NIC name dictionary was determined to be: ' + str(nicNameDict) + '.') logger.info('The NIC configuration file list was determined to be: ' + str(networkCfgFileList) + '.') command = '' if osDist == 'SLES': if glob.glob('ifroute-*'): command = 'ls ifroute-*' elif glob.glob('route-*'): command = 'ls route-*' routeNicNameDict = {} if not command == '': logger.info("The command used to get the list of NIC specific route configuration files was: '" + command + "'.") result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error('Problems were encountered while getting a listing of the NIC specific route configuration files.\n' + err + '\n' + out) errorMessage = 'Problems were encountered while getting a listing of the NIC specific route configuration files; thus the network configuration was not confirmed.' return errorMessage routeCfgFileList = out.splitlines() logger.info('The route configuration file list was determined to be: ' + str(routeCfgFileList) + '.') if osDist == 'SLES': tmpRouteNicNameDict = dict(((route.strip().replace('ifroute-', ''), route.strip()) for route in routeCfgFileList)) else: tmpRouteNicNameDict = dict(((route.strip().replace('route-', ''), route.strip()) for route in routeCfgFileList)) for key in tmpRouteNicNameDict: if '.' not in key and key != 'lo': routeNicNameDict[key] = tmpRouteNicNameDict[key] networkCfgFileList.append(tmpRouteNicNameDict[key]) if len(routeNicNameDict) > 0: logger.info('The route name dictionary was determined to be: ' + str(routeNicNameDict) + '.') for nicName in changedNicDict: previousNICName = changedNicDict[nicName] command = "sed -i 's/" + previousNICName + '/' + nicName + "/g' " + ' '.join(networkCfgFileList) logger.info("The command used to update the NIC configuration files with the new NIC name was: '" + command + "'.") result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error("Problems were encountered while updating the configuration files with the new NIC name '" + nicName + "'.\n" + err + '\n' + out) errorMessage = "Problems were encountered while updating the configuration files with the new NIC name '" + nicName + "'; thus the network configuration was not confirmed." return errorMessage if previousNICName in nicNameDict: command = 'mv ' + nicNameDict[previousNICName] + ' ifcfg-' + nicName logger.info("The command used to move the NIC configuration file '" + nicNameDict[previousNICName] + "' to its new name was: '" + command + "'.") result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error("Problems were encountered while moving '" + nicNameDict[previousNICName] + "' to 'ifcfg-" + nicName + "'.\n" + err + '\n' + out) errorMessage = "Problems were encountered while moving '" + nicNameDict[previousNICName] + "' to 'ifcfg-" + nicName + "'; thus the network configuration was not confirmed." return errorMessage networkCfgFileList.remove(nicNameDict[previousNICName]) if previousNICName in routeNicNameDict: if osDist == 'SLES': newRouteFileName = 'ifroute-' + nicName else: newRouteFileName = 'route-' + nicName command = 'mv ' + routeNicNameDict[previousNICName] + ' ' + newRouteFileName logger.info('The command used to move the NIC route configuration file ' + routeNicNameDict[previousNICName] + "' to its new name was: '" + command + "'.") result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error("Problems were encountered while moving '" + routeNicNameDict[previousNICName] + "' to '" + newRouteFileName + "'.\n" + err + '\n' + out) errorMessage = "Problems were encountered while moving '" + routeNicNameDict[previousNICName] + "' to '" + newRouteFileName + "'; thus the network configuration was not confirmed." return errorMessage networkCfgFileList.remove(routeNicNameDict[previousNICName]) logger.info('Done updating the network configuration, since the NIC names changed.') return errorMessage def setHostname(programParentDir, cursesThread): errorMessage = '' hostnameFile = programParentDir + '/hostnameData/hostname' logger = logging.getLogger('coeOSUpgradeLogger') logger.info("Setting the server's hostname.") cursesThread.insertMessage(['informative', "Setting the server's hostname."]) cursesThread.insertMessage(['informative', '']) try: f = open(hostnameFile, 'r') hostname = f.readline() except IOError as err: logger.error("Problems were encountered while reading the server's hostname from '" + hostnameFile + "'.\n" + str(err)) errorMessage = "Problems were encountered while reading the server's hostname from '" + hostnameFile + "'; thus the server's hostname was not set." return errorMessage command = 'hostnamectl set-hostname ' + hostname result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error("Problems were encountered while setting the server's hostname '" + hostname + "'.\n" + command + '\n' + err + '\n' + out) errorMessage = "Problems were encountered while setting the server's hostname '" + hostname + "'; thus the server's hostname may not be set." command = 'echo -n "' + hostname + '" > /etc/hostname' result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error("Problems were encountered while setting the server's hostname '" + hostname + "'.\n" + command + '\n' + err + '\n' + out) errorMessage = "Problems were encountered while setting the server's hostname '" + hostname + "'; thus the server's hostname may not be set." logger.info("Done setting the server's hostname.") return errorMessage def updateNTPConf(cursesThread): errorMessage = '' ntpConfigurationFile = '/etc/ntp.conf' logger = logging.getLogger('coeOSUpgradeLogger') logger.info("Checking and updating ntp's controlkey setting if necessary.") cursesThread.insertMessage(['informative', "Checking and updating ntp's controlkey setting if necessary."]) cursesThread.insertMessage(['informative', '']) command = 'egrep "^\\s*keys" ' + ntpConfigurationFile result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() logger.info('The output of the command (' + command + ') used to get the keys resource from ' + ntpConfigurationFile + ' was: ' + out.strip() + '.') if result.returncode == 0: command = 'egrep "^\\s*controlkey\\s+[0-9]+\\s*.*" ' + ntpConfigurationFile result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() logger.info('The output of the command (' + command + ') used to get the controlkey resource from ' + ntpConfigurationFile + ' was: ' + out.strip() + '.') if result.returncode == 0: command = "sed -ri '0,/^\\s*controlkey\\s+[0-9]+\\s*.*/s//controlkey 1/' " + ntpConfigurationFile else: command = "sed -i 's/^\\s*keys.*/&\\ncontrolkey 1/' " + ntpConfigurationFile result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error("Problems were encountered while setting ntp's controlkey variable.\n" + err + '\n' + out) errorMessage = "Problems were encountered while setting ntp's controlkey variable; thus the server's ntp server was not configured." return errorMessage logger.info("Done checking and updating ntp's controlkey setting if necessary.") return errorMessage def createBackup(backupList, upgradeWorkingDir, osDist): logger = logging.getLogger('coeOSUpgradeLogger') logger.info('Creating the backup archive ISO image.') print GREEN + 'Creating the backup archive ISO image.' + RESETCOLORS archiveDir = upgradeWorkingDir + '/archiveImages' if not os.path.isdir(archiveDir): try: os.mkdir(archiveDir) except OSError as err: logger.error("Unable to create the pre-upgrade archive directory '" + archiveDir + "'.\n" + str(err)) print RED + "Unable to create the pre-upgrade archive directory '" + archiveDir + "'; fix the problem and try again; exiting program execution." + RESETCOLORS exit(1) else: try: archiveList = os.listdir(archiveDir) for archive in archiveList: os.remove(archiveDir + '/' + archive) except OSError as err: logger.error("Unable to remove old archives in '" + archiveDir + "'.\n" + str(err)) print RED + "Unable to remove old archives in '" + archiveDir + "'; fix the problem and try again; exiting program execution." + RESETCOLORS exit(1) hostname = os.uname()[1] dateTimestamp = datetime.datetime.now().strftime('%d%H%M%b%Y') restorationBackupList = [archiveDir + '/' + hostname + '_OS_Restoration_Backup_For_' + osDist + '_Upgrade_' + dateTimestamp + '.tar', archiveDir + '/' + hostname + '_OS_Restoration_Backup_For_' + osDist + '_Upgrade_' + dateTimestamp + '.tar.gz', archiveDir + '/' + hostname + '_OS_Restoration_Backup_For_' + osDist + '_Upgrade_' + dateTimestamp, 'OS restoration'] archiveBackupList = [archiveDir + '/' + hostname + '_OS_Archive_Backup_For_' + osDist + '_Upgrade_' + dateTimestamp + '.tar', archiveDir + '/' + hostname + '_OS_Archive_Backup_For_' + osDist + '_Upgrade_' + dateTimestamp + '.tar.gz', archiveDir + '/' + hostname + '_OS_Archive_Backup_For_' + osDist + '_Upgrade_' + dateTimestamp, 'OS backup'] if len(backupList) == 3: sapRestorationBackupList = [archiveDir + '/' + hostname + '_SAP_Restoration_Backup_For_' + osDist + '_Upgrade_' + dateTimestamp + '.tar', archiveDir + '/' + hostname + '_SAP_Restoration_Backup_For_' + osDist + '_Upgrade_' + dateTimestamp + '.tar.gz', archiveDir + '/' + hostname + '_SAP_Restoration_Backup_For_' + osDist + '_Upgrade_' + dateTimestamp, 'SAP restoration'] count = 0 for backupData in backupList: fileRemoved = False if count == 0: backupReferenceList = restorationBackupList elif count == 1: backupReferenceList = archiveBackupList else: backupReferenceList = sapRestorationBackupList backupData, fileRemoved = confirmBackupDataList(backupData) if fileRemoved: print YELLOW + 'File(s) were removed from the backup, since they were not present; review the log file for additional information.' + RESETCOLORS command = 'tar -cWf ' + backupReferenceList[0] + ' ' + ' '.join(backupData) + ' -C /' logger.info("The command used to create the '" + backupReferenceList[3] + "' tar archive was: " + command + '.') result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error('A problem was encountered while creating the pre-upgrade ' + backupReferenceList[3] + " backup '" + backupReferenceList[0] + "' archive.\n" + err + '\n' + out) print RED + 'A problem was encountered while creating the pre-upgrade ' + backupReferenceList[3] + " backup '" + backupReferenceList[0] + "' archive; fix the problem and try again; exiting program execution." + RESETCOLORS exit(1) command = 'gzip ' + backupReferenceList[0] result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error('A problem was encountered while compressing the pre-upgrade ' + backupReferenceList[3] + " backup '" + backupReferenceList[0] + "' archive.\n" + err + '\n' + out) print RED + 'A problem was encountered while compressing the pre-upgrade ' + backupReferenceList[3] + " backup '" + backupReferenceList[0] + "' archive; fix the problem and try again; exiting program execution." + RESETCOLORS exit(1) count += 1 count = 0 for i in range(len(backupList)): if count == 0: backupReferenceList = restorationBackupList elif count == 1: backupReferenceList = archiveBackupList else: backupReferenceList = sapRestorationBackupList backupMd5sumFile = backupReferenceList[2] + '.md5sum' command = 'md5sum ' + backupReferenceList[1] + '> ' + backupMd5sumFile result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error("Unable to get the md5sum of the backup archive '" + backupReferenceList[1] + "'.\n" + err + '\n' + out) print RED + "Unable to get the md5sum of the backup archive '" + backupReferenceList[1] + "'; fix the problem and try again; exiting program execution." + RESETCOLORS exit(1) count += 1 backupISO = upgradeWorkingDir + '/' + hostname + '_Archive_Backup_For_' + osDist + '_Upgrade_' + dateTimestamp + '.iso' backupISOMd5sumFile = upgradeWorkingDir + '/' + hostname + '_Archive_Backup_For_' + osDist + '_Upgrade_' + dateTimestamp + '.md5sum' command = 'genisoimage -R -m *_OS_Archive_Backup_For*.* -o ' + backupISO + ' ' + upgradeWorkingDir result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error("A problem was encountered while creating the pre-upgrade backup '" + backupISO + "' ISO image.\n" + err + '\n' + out) print RED + "A problem was encountered while creating the pre-upgrade backup '" + backupISO + "' ISO image; fix the problem and try again; exiting program execution." + RESETCOLORS exit(1) command = 'md5sum ' + backupISO + ' > ' + backupISOMd5sumFile result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error("A problem was encountered while getting the md5sum of the pre-upgrade backup '" + backupISO + "' ISO image.\n" + err + '\n' + out) print RED + "A problem was encountered while getting the md5sum of the pre-upgrade backup '" + backupISO + "' ISO image; fix the problem and try again; exiting program execution." + RESETCOLORS exit(1) logger.info('Done creating the backup archive ISO image.') return (backupISO, archiveBackupList[1]) def confirmBackupDataList(backupData): updatedBackupData = [] fileRemoved = False logger = logging.getLogger('coeOSUpgradeLogger') logger.info('Checking the backup data list to ensure the selected files/directories are present and if not removing them from the list.') for file in backupData: if glob.glob(file): updatedBackupData.append(file) else: logger.info('The following was removed from the backup list, since it was not present: ' + file + '.') fileRemoved = True logger.info('Done checking the backup data list to ensure the selected files/directories are present and if not removing them from the list.') return (updatedBackupData, fileRemoved) def installSLESAddOnSoftware(programParentDir, cursesThread): errorMessage = '' addOnSoftwareInstalled = True addOnSoftwareDir = programParentDir + '/addOnSoftwareRPMS' logger = logging.getLogger('coeOSUpgradeLogger') logger.info('Installing the additional software RPMs needed for the upgrade.') cursesThread.insertMessage(['informative', 'Installing the additional software RPMs needed for the upgrade.']) cursesThread.insertMessage(['informative', '']) command = 'zypper ar -G -t plaindir ' + addOnSoftwareDir + ' addOnSoftwareRPMS' result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error('Problems were encountered while installing the additional software RPMs.\n' + err + '\n' + out) errorMessage = 'Problems were encountered while installing the additional software RPMs; the RPMs will need to be installed manually before proceeding.' addOnSoftwareInstalled = False return (errorMessage, addOnSoftwareInstalled) command = 'zypper in -y addOnSoftwareRPMS:*' result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error('Problems were encountered while installing the additional software RPMs.\n' + err + '\n' + out) errorMessage = 'Problems were encountered while installing the additional software RPMs; the RPMs will need to be installed manually before proceeding.' addOnSoftwareInstalled = False return (errorMessage, addOnSoftwareInstalled) command = 'zypper rr addOnSoftwareRPMS' result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error('Problems were encountered while removing the additional software RPMs repository.\n' + err + '\n' + out) errorMessage = 'Problems were encountered while removing the additional software RPMs repository; the repository will need to be removed manually.' logger.info('Done installing the additional software RPMs needed for the upgrade.') return (errorMessage, addOnSoftwareInstalled) def installRHELAddOnSoftware(programParentDir, cursesThread): errorMessage = '' addOnSoftwareInstalled = True dateTimestamp = datetime.datetime.now().strftime('%d%H%M%b%Y') repoDir = '/tmp/addOnSoftware_' + dateTimestamp addOnSoftware = programParentDir + '/addOnSoftwareRPMS' baseURL = 'baseurl=file://' + repoDir repositoryTemplate = programParentDir + '/repositoryTemplate/local.repo' logger = logging.getLogger('coeOSUpgradeLogger') logger.info('Installing the additional software RPMs needed for the upgrade.') cursesThread.insertMessage(['informative', 'Installing the additional software RPMs needed for the upgrade.']) cursesThread.insertMessage(['informative', '']) try: shutil.copytree(addOnSoftware, repoDir) except OSError as err: logger.error("Problems were encountered while copying the additional software RPMs to '" + repoDir + "'.\n" + str(err)) errorMessage = 'Problems were encountered while copying the additional software RPMs to the repository; the RPMs will need to be installed manually before proceeding.' addOnSoftwareInstalled = False return (errorMessage, addOnSoftwareInstalled) command = 'createrepo ' + repoDir result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error('Problems were encountered while creating the additional software RPMs repository.\n' + err + '\n' + out) errorMessage = 'Problems were encountered while creating the additional software RPMs repository; the RPMs will need to be installed manually before proceeding.' addOnSoftwareInstalled = False return (errorMessage, addOnSoftwareInstalled) try: shutil.copy2(repositoryTemplate, '/etc/yum.repos.d') except IOError as err: logger.error('Problems were encountered while copying the additional software RPMs repository template into place.\n' + str(err)) errorMessage = 'Problems were encountered while copying the additional software RPMs repository template into place; the RPMs will need to be installed manually before proceeding.' addOnSoftwareInstalled = False return (errorMessage, addOnSoftwareInstalled) command = "sed -ri 's|^\\s*baseurl=file://.*|" + baseURL + "|' /etc/yum.repos.d/local.repo" result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error('Problems were encountered while updating the additional software RPMs repository template.\n' + err + '\n' + out) errorMessage = 'Problems were encountered while updating the additional software RPMs repository; the RPMs will need to be installed manually before proceeding.' addOnSoftwareInstalled = False return (errorMessage, addOnSoftwareInstalled) command = 'yum --disablerepo="*" --enablerepo="local" -y install \\*' result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error('Problems were encountered while installing the additional software RPMs.\n' + err + '\n' + out) errorMessage = 'Problems were encountered while installing the additional software RPMs; the RPMs will need to be installed manually before proceeding.' addOnSoftwareInstalled = False return (errorMessage, addOnSoftwareInstalled) try: os.remove('/etc/yum.repos.d/local.repo') shutil.rmtree(repoDir) except OSError as err: logger.error('Problems were encountered while removing the additional software RPMs repository.\n' + str(err)) errorMessage = 'Problems were encountered while removing the additional software RPMs repository; the RPMs repository will need to be removed manually.' logger.info('Done installing the additional software RPMs needed for the upgrade.') return (errorMessage, addOnSoftwareInstalled) def configureSnapper(osDistLevel, cursesThread): errorMessage = '' snapperResourceList = ['NUMBER_CLEANUP="yes"', 'NUMBER_LIMIT="7"', 'TIMELINE_LIMIT_HOURLY="0"', 'TIMELINE_LIMIT_DAILY="7"', 'TIMELINE_LIMIT_WEEKLY="0"', 'TIMELINE_LIMIT_MONTHLY="0"', 'TIMELINE_LIMIT_YEARLY="0"'] configList = [] logger = logging.getLogger('coeOSUpgradeLogger') logger.info('Configuring snapper to keep snapshots for the last 7 days.') cursesThread.insertMessage(['informative', 'Configuring snapper to keep snapshots for the last 7 days.']) cursesThread.insertMessage(['informative', '']) command = 'snapper list-configs' result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error('Problems were encountered while getting the list of snapper configurations.\n' + err + '\n' + out) errorMessage = 'Problems were encountered while getting the list of snapper configurations.' return errorMessage configDataList = out.splitlines() for line in configDataList: line = line.strip() if len(line) == 0 or re.match('^-', line) or re.match('^\\s+$', line) or re.match('^Config', line, re.IGNORECASE): continue else: configList.append(re.sub('\\s+', '', line).split('|')[0]) for config in configList: for resource in snapperResourceList: if resource == 'TIMELINE_LIMIT_WEEKLY=0' and osDistLevel == '11.4': continue if osDistLevel == '11.4': command = "sed -i 's/^\\s*" + resource.split('=')[0] + '=.*$/' + resource + "/g' /etc/snapper/configs/" + config else: command = 'snapper -c ' + config + ' set-config ' + resource result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error("Problems were encountered while setting the resource '" + resource + "' for the snapper configuration '" + config + "'.\n" + err + '\n' + out) errorMessage = 'Problems were encountered while setting the snapper configuration resources.' return errorMessage time.sleep(1.0) logger.info('Done configuring snapper to keep snapshots for the last 7 days.') return errorMessage def extractOSRestorationArchive(osRestorationArchive, osRestorationArchiveErrorFile, cursesThread): logger = logging.getLogger('coeOSUpgradeLogger') logger.info('Extracting the OS restoration archive image.') command = 'tar -zxf ' + osRestorationArchive + ' -C /' result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() logger.info("The command used to extract the OS restoration archive was: '" + command + "'.") if result.returncode != 0: logger.error("There was a problem extracting the OS restoration archive '" + osRestorationArchive + "'.\n" + err + '\n' + out) updateOSRestorationArchiveErrorFile(restorationArchiveErrorFile, cursesThread) displayErrorMessage("There was a problem extracting the os restoration archive '" + osRestorationArchive + "'; fix the problem and try again.", cursesThread) logger.info('Done extracting the OS restoration archive image.') def checkOSRestorationArchive(programParentDir, osRestorationArchiveErrorFile, osDist, cursesThread): osRestorationArchiveFile = '' logger = logging.getLogger('coeOSUpgradeLogger') logger.info('Checking the OS restoration archive to make sure it is not corrupt.') osArchiveFileRegex = re.compile('.*_OS_Restoration_Backup_For_' + osDist + '_Upgrade_[0-9]{6}[A-Za-z]{3}[0-9]{4}.tar.gz') archiveImageDir = programParentDir + '/archiveImages' command = 'ls ' + archiveImageDir result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error("Unable to get a listing of the files in '" + archiveImageDir + "'.\n" + err + '\n' + out) updateOSRestorationArchiveErrorFile(osRestorationArchiveErrorFile) displayErrorMessage("Unable to get a listing of the files in '" + archiveImageDir + "'; fix the problem and try again.", cursesThread) fileList = out.splitlines() osRestorationArchiveFound = False for file in fileList: if re.match(osArchiveFileRegex, file): md5sumFile = re.sub('tar.gz', 'md5sum', file) osRestorationArchiveFile = archiveImageDir + '/' + file osRestorationArchiveMd5sumFile = archiveImageDir + '/' + md5sumFile osRestorationArchiveFound = True break if not osRestorationArchiveFound: logger.error("The OS restoration archive '" + archiveImageDir + '/' + osArchiveFileRegex.pattern + "' could not be found.") updateOSRestorationArchiveErrorFile(osRestorationArchiveErrorFile) displayErrorMessage("The OS restoration archive '" + archiveImageDir + '/' + osArchiveFileRegex.pattern + "' could not be found; fix the problem and try again.", cursesThread) if not os.path.isfile(osRestorationArchiveMd5sumFile): logger.error("The OS restoration archive's md5sum file '" + osRestorationArchiveMd5sumFile + "' is missing.") updateOSRestorationArchiveErrorFile(osRestorationArchiveErrorFile) displayErrorMessage("The OS restoration archive's md5sum file '" + osRestorationArchiveMd5sumFile + "' is missing; fix the problem and try again.", cursesThread) command = 'md5sum ' + osRestorationArchiveFile result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error("Unable to determine the md5sum of the OS restoration archive '" + osRestorationArchiveFile + "'.\n" + err + '\n' + out) updateOSRestorationArchiveErrorFile(osRestorationArchiveErrorFile) displayErrorMessage("Unable to determine the md5sum of the OS restoration archive '" + osRestorationArchiveFile + "'; fix the problem and try again.", cursesThread) try: osRestorationArchiveMd5sum = re.match('([0-9,a-f]*)\\s+', out).group(1) except AttributeError as err: logger.error('There was a match error when trying to match against ' + out + '.\n' + str(err)) updateOSRestorationArchiveErrorFile(osRestorationArchiveErrorFile) displayErrorMessage("There was a match error when matching against '" + out + "'; fix the problem and try again.", cursesThread) try: with open(osRestorationArchiveMd5sumFile) as f: for line in f: line = line.strip() if file in line: originalOSRestorationArchiveMd5sum = re.match('([0-9,a-f]*)\\s+', line).group(1) except IOError as err: logger.error("Unable to get the md5sum of the OS restoration archive from '" + osRestorationArchiveMd5sumFile + "'.\n" + str(err)) updateOSRestorationArchiveErrorFile(osRestorationArchiveErrorFile) displayErrorMessage("Unable to get the md5sum of the OS restoration archive from '" + osRestorationArchiveMd5sumFile + "'; fix the problem and try again.", cursesThread) except AttributeError as err: logger.error("There was a match error when trying to match against '" + line + "'.\n" + str(err)) updateOSestorationArchiveErrorFile(osRestorationArchiveErrorFile) displayErrorMessage("There was a match error when matching against '" + line + "'; fix the problem and try again.", cursesThread) if osRestorationArchiveMd5sum != originalOSRestorationArchiveMd5sum: logger.error("The OS restoration archive '" + osRestorationArchiveFile + "' is corrupt; its md5sum does not match its md5sum in '" + osRestorationArchiveMd5sumFile + "'.") updateOSRestorationArchiveErrorFile(osRestorationArchiveErrorFile) displayErrorMessage("The OS restoration archive '" + osRestorationArchiveFile + "' is corrupt; fix the problem and try again.", cursesThread) logger.info('Done checking the OS restoration archive to make sure it is not corrupt.') return osRestorationArchiveFile def updateOSRestorationArchiveErrorFile(osRestorationArchiveErrorFile, cursesThread): logger = logging.getLogger('coeOSUpgradeLogger') logger.info('Updating the OS restoration archive error file with an archive failure attempt.') try: f = open(osRestorationArchiveErrorFile, 'a') if os.stat(osRestorationArchiveErrorFile).st_size == 0: f.write('First Attempt Failed\n') elif os.stat(osRestorationArchiveErrorFile).st_size < 25: f.write('Second Attempt Failed\n') elif os.stat(osRestorationArchiveErrorFile).st_size < 45: f.write('Third Attempt Failed\n') except IOError as err: logger.error('Could not write to the OS restoration archive error file ' + osRestorationArchiveErrorFile + '.\n' + str(err)) displayErrorMessage("Could not write to the OS restoration archive error file '" + osRestorationArchiveErrorFile + "'; fix the problem and try again.", cursesThread) f.close() logger.info('Done updating the restoration archive error file with an archive failure attempt.') def displayErrorMessage(message, cursesThread): cursesThread.insertMessage(['error', message]) cursesThread.insertMessage(['informative', '']) cursesThread.getUserInput(['error', 'Press enter to exit and try again.']) cursesThread.insertMessage(['informative', '']) while not cursesThread.isUserInputReady(): time.sleep(0.1) exit(1) def stageAddOnRPMS(programParentDir, upgradeWorkingDir, osDist, osUpgradeVersion): logger = logging.getLogger('coeOSUpgradeLogger') logger.info('Copying the additional RPMs needed for the post-upgrade to the pre-upgrade working directory.') addOnSoftwareRPMDir = programParentDir + '/addOnSoftwareRPMS/' + osDist + '/' + osUpgradeVersion addOnSoftwareRPMSDir = upgradeWorkingDir + '/addOnSoftwareRPMS' try: if os.listdir(addOnSoftwareRPMDir): try: os.mkdir(addOnSoftwareRPMSDir) except OSError as err: logger.error("Unable to create the additional RPMs directory '" + addOnSoftwareRPMSDir + "'.\n" + str(err)) print RED + "Unable to create the additional RPMs directory '" + addOnSoftwareRPMSDir + "'; fix the problem and try again; exiting program execution." + RESETCOLORS exit(1) command = 'cp ' + addOnSoftwareRPMDir + '/* ' + addOnSoftwareRPMSDir result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() logger.info("The command used to copy the additional RPMs into place for the post upgrade installation was: '" + command + "'.") if result.returncode != 0: logger.error("Unable to copy the additional RPMs from '" + addOnSoftwareRPMDir + "' to '" + addOnSoftwareRPMSDir + "'.\n" + err + '\n' + out) print RED + "Unable to copy the additional RPMs from '" + addOnSoftwareRPMDir + "' to '" + addOnSoftwareRPMSDir + "'; fix the problem and try again; exiting program execution." + RESETCOLORS exit(1) if osDist == 'RHEL': copyRepositoryTemplate(programParentDir, upgradeWorkingDir) else: logger.info('There were no additional RPMs present for the post-upgrade.') except OSError as err: logger.error("Unable to get a listing of the additional RPMs needed for the post-upgrade, if any, from '" + addOnSoftwareRPMDir + "'.\n" + str(err)) print RED + 'Unable to get a listing of the additional RPMs needed for the post-upgrade, if any; fix the problem and try again; exiting program execution.' + RESETCOLORS exit(1) logger.info('Done copying the additional RPMs needed for the post-upgrade to the pre-upgrade working directory.') def updateMultipathConf(cursesThread): errorMessage = '' started = False vendorMatched = False productMatched = False blackListPresent = False blacklist = '\'\n\n#Added so that HPE controllers are ignored by multipath.\nblacklist {\n\tdevnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"\n\tdevnode "^hd[a-z][[0-9]*]"\n\n\tdevice {\n\t\tvendor "HP"\n\t\tproduct "LOGICAL VOLUME.*"\n\t}\n}\'' logger = logging.getLogger('coeOSUpgradeLogger') logger.info('Updating /etc/multipath.conf to blacklist HPE controllers.') cursesThread.insertMessage(['informative', 'Updating /etc/multipath.conf to blacklist HPE controllers.']) cursesThread.insertMessage(['informative', '']) command = "grep -zPo '^\\s*blacklist\\s+(\\{([^{}]++|(?1))*\\})' /etc/multipath.conf" result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: command = 'echo -e ' + blacklist + ' >> /etc/multipath.conf' result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error('Failed to update /etc/multipath.conf to blacklist HPE controllers.\n' + err + '\n' + out) logger.info('The command used to update /etc/multipath.conf to blacklist HPE controllers was: \n' + command) errorMessage = 'Failed to update /etc/multipath.conf to blacklist HPE controllers; thus /etc/multipath.conf will have to be updated manually.' else: currrentBlacklist = out.splitlines() for line in currrentBlacklist: if re.match('\\s*device\\s*{\\s*$', line): if started: started = False continue else: started = True continue elif started: if re.match('\\s*vendor\\s+"HP"\\s*$', line): if vendorMatched: started = False continue else: vendorMatched = True continue if re.match('\\s*product\\s+"LOGICAL VOLUME\\.\\*"\\s*$', line): if productMatched: started = False continue else: productMatched = True continue if re.match('\\s*}\\s*$', line) and vendorMatched and productMatched: blackListPresent = True break elif re.match('\\s*}\\s*$', line) and (vendorMatched or productMatched): break elif vendorMatched and productMatched and not re.match('\\s*$|\\s*#', line): break else: continue else: continue if blackListPresent: logger.info('The blacklist for /etc/multipath.conf was not updated, since it is already up to date.') else: command = 'echo -e ' + blacklist + ' >> /etc/multipath.conf' result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error('Failed to update /etc/multipath.conf to blacklist HPE controllers.\n' + err + '\n' + out) logger.info('The command used to update /etc/multipath.conf to blacklist HPE controllers was: \n' + command) errorMessage = 'Failed to update /etc/multipath.conf to blacklist HPE controllers; thus /etc/multipath.conf will have to be updated manually.' logger.info('Done updating /etc/multipath.conf to blacklist HPE controllers.') return errorMessage def updateInstallCtrlFile(programParentDir, upgradeWorkingDir, osUpgradeVersion, **kwargs): dateTimestamp = datetime.datetime.now().strftime('%d%H%M%b%Y') cs500ScaleOut = False serverModel = 'Superdome' autoinstImageFile = programParentDir + '/installCtrlFiles/autoinst.img' autoinstImgMountPoint = '/tmp/autoinstImg_' + dateTimestamp installCtrlFileDir = upgradeWorkingDir + '/installCtrlFile' ctrlFile = installCtrlFileDir + '/autoinst.xml' lunID = '' logger = logging.getLogger('coeOSUpgradeLogger') logger.info('Updating the install control file with the partition ID that will have the OS installed on it.') if 'cs500ScaleOut' in kwargs: cs500ScaleOut = True if 'serverModel' in kwargs: serverModel = kwargs['serverModel'] installCtrlFileTemplate = programParentDir + '/installCtrlFiles/cs500-autoinst.xml' ctrlFileImg = installCtrlFileDir + '/cs500_autoinst.img' else: installCtrlFileTemplate = programParentDir + '/installCtrlFiles/cs900-autoinst.xml' ctrlFileImg = installCtrlFileDir + '/cs900_autoinst.img' if not os.path.isdir(installCtrlFileDir): try: os.mkdir(installCtrlFileDir) shutil.copy2(installCtrlFileTemplate, ctrlFile) shutil.copy2(autoinstImageFile, ctrlFileImg) except OSError as err: logger.error("Unable to create install control file directory '" + installCtrlFileDir + "'.\n" + str(err)) print RED + "Unable to create the install control file directory '" + installCtrlFileDir + "'; fix the problem and try again; exiting program execution." + RESETCOLORS exit(1) except IOError as err: logger.error("Unable to copy the install control files to '" + ctrlFile + "'.\n" + str(err)) print RED + "Unable to copy the install control files to '" + ctrlFile + "'; fix the problem and try again; exiting program execution." + RESETCOLORS exit(1) if not os.path.isdir(autoinstImgMountPoint): try: os.mkdir(autoinstImgMountPoint) except OSError as err: logger.error("Unable to create mount point '" + autoinstImgMountPoint + "'.\n" + str(err)) print RED + "Unable to create mount point '" + autoinstImgMountPoint + "'; fix the problem and try again; exiting program execution." + RESETCOLORS exit(1) command = 'mount -o loop -o rw ' + ctrlFileImg + ' ' + autoinstImgMountPoint result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error("Unable to mount '" + ctrlFileImg + "' on '" + autoinstImgMountPoint + "'.\n" + err + '\n' + out) print RED + "Unable to mount '" + ctrlFileImg + "' on '" + autoinstImgMountPoint + "'; fix the problem and try again; exiting program execution." + RESETCOLORS exit(1) if serverModel == 'Superdome' or cs500ScaleOut: command = 'df /boot/efi' result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error('Unable to get the partition information for the root file system.\n' + err + '\n' + out) print RED + 'Unable to get the partition information for the root file system; fix the problem and try again; exiting program execution.' + RESETCOLORS exit(1) out = out.strip() logger.info('df shows that the /boot/efi partition is mounted on:\n' + out) if '/dev' not in out: logger.error('Unable to identify the the OS LUN device.') print RED + 'Unable to identify the OS LUN device; fix the problem and try again; exiting program execution.' + RESETCOLORS exit(1) try: if '360002ac0' in out: lunID = re.match('.*(360002ac0+[0-9a-f]+)[_-]part', out, re.DOTALL | re.MULTILINE).group(1) else: device = re.match('.*(/dev/[0-9a-z/-_]*)\\s+', out, re.DOTALL | re.MULTILINE).group(1) command = 'find -L /dev -samefile ' + device result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: if not 'already visited the directory' in err: if not 'No such' in err: logger.error("Failed to get the files linked to '" + device + "'.\n" + err + '\n' + out) print RED + 'Unable to identify the OS LUN ID; fix the problem and try again; exiting program execution.' + RESETCOLORS exit(1) else: logger.warn('find complained while searching for files linked to ' + device + ': \n' + err + '\n' + out) fileList = out.splitlines() for file in fileList: if '360002ac0' in file: try: lunID = re.match('.*(360002ac0+[0-9a-f]+)', file).group(1) except AttributeError as err: logger.error("There was a match error when trying to match against '" + file + "'.\n" + str(err)) print RED + 'There was a match error when trying to get the OS LUN ID; fix the problem and try again; exiting program execution.' + RESETCOLORS exit(1) break lunID == '' and logger.error("Unable to identify the OS LUN ID using the device's (" + device + ') linked file list: ' + str(fileList)) print RED + 'Unable to identify the OS LUN ID; fix the problem and try again; exiting program execution.' + RESETCOLORS exit(1) except AttributeError as err: logger.error("There was a match error when trying to match against '" + out + "'.\n" + str(err)) print RED + 'There was a match error when trying to get the OS LUN ID; fix the problem and try again; exiting program execution.' + RESETCOLORS exit(1) logger.info("The OS LUN ID was determined to be '" + lunID + "'.") osLUNDevice = '/dev/mapper/' + lunID command = "sed -ri 's,%%bootDisk%%," + osLUNDevice + ",g' " + ctrlFile result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error("Unable to update '" + ctrlFile + "' with the OS LUN device '" + osLUNDevice + "'.\n" + err + '\n' + out) print RED + 'Unable to update the install control file with the OS LUN device; fix the problem and try again; exiting program execution.' + RESETCOLORS exit(1) if osUpgradeVersion == '12.1': slesSP1PackageDict = {'sapconf': 'saptune', 'rear116': 'rear118a'} for package in slesSP1PackageDict: command = "sed -i 's,<package>" + slesSP1PackageDict[package] + '</package>,<package>' + package + "</package>,' " + ctrlFile result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error("Unable to update '" + ctrlFile + "' with the HPE SAP HANA specific package (" + package + ') for SLES for SAP 12 SP1.\n' + err + '\n' + out) print RED + 'Unable to update the install control file with the HPE SAP HANA specific package for SLES for SAP 12 SP1; fix the problem and try again; exiting program execution.' + RESETCOLORS exit(1) time.sleep(1.0) if serverModel == 'DL580' and osUpgradeVersion == '12.1': hpeTune = "mkdir -p /mnt/usr/lib/tuned/sap-hpe-hana\\ncat<<EOF > /mnt/usr/lib/tuned/sap-hpe-hana/tuned.conf\\n######################################################\\n# START: tuned profile sap-hpe-hana settings\\n######################################################\\n#\\n# tuned configuration for HPE SAP HANA.\\n# Inherited from SuSE/SAP 'sap-hana' profile\\n#\\n# Allows HPE SAP HANA specific tunings\\n#\\n[main]\\ninclude = sap-hana\\n" command = "sed -i '\\|<START HPE TUNE>|,\\|<END HPE TUNE>|c\\" + hpeTune + "' " + ctrlFile result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error("Unable to update '" + ctrlFile + "' with the HPE SAP HANA specific tuning for SLES for SAP 12 SP1.\n" + err + '\n' + out) print RED + 'Unable to update the install control file with the HPE SAP HANA specific tuning for SLES for SAP 12 SP1; fix the problem and try again; exiting program execution.' + RESETCOLORS exit(1) elif serverModel == 'DL580': command = "sed -i '/<START HPE TUNE>\\|<END HPE TUNE>/d' " + ctrlFile result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error("Unable to remove the tuning boundaries from '" + ctrlFile + "'.\n" + err + '\n' + out) print RED + 'Unable to remove the tuning boundaries from the install control file; fix the problem and try again; exiting program execution.' + RESETCOLORS exit(1) if 'cs500ScaleOut' in kwargs: command = 'sed -i \'s@<start_multipath config:type="boolean">false</start_multipath>@<start_multipath config:type="boolean">true</start_multipath>@\' ' + ctrlFile result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error("Unable to update '" + ctrlFile + "' with the removal of the pre-scripts section.\n" + err + '\n' + out) print RED + 'Unable to update the install control file with the removal of the pre-scripts section; fix the problem and try again; exiting program execution.' + RESETCOLORS exit(1) command = 'sed -i \'\\|^[ \\t]*<pre-scripts config:type="list">|,\\|^[ \\t]*</pre-scripts>|d\' ' + ctrlFile result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error("Unable to update '" + ctrlFile + "' with the removal of the pre-scripts section.\n" + err + '\n' + out) print RED + 'Unable to update the install control file with the removal of the pre-scripts section; fix the problem and try again; exiting program execution.' + RESETCOLORS exit(1) askContents = ' <ask-list config:type="list">\\n <ask>\\n <title>OS LUN: ' + osLUNDevice + '</title> \\n <question>Choose option</question> \\n <selection config:type="list"> \\n <entry> \\n <label>Reboot Server</label> \\n <value>reboot</value> \\n </entry> \\n <entry> \\n <label>Halt Server</label> \\n <value>halt</value> \\n </entry> \\n <entry> \\n <label>Continue to overwrite the LUN device.</label> \\n <value>continue</value> \\n </entry> \\n </selection> \\n <stage>initial</stage> \\n <script> \\n <environment config:type="boolean">true</environment> \\n <feedback config:type="boolean">true</feedback> \\n <debug config:type="boolean">false</debug> \\n <rerun_on_error config:type="boolean">true</rerun_on_error> \\n <source> \\n<![CDATA[ \\n#!/bin/bash \\n \\ncase "$VAL" in \\n "reboot") \\n echo b > /proc/sysrq-trigger \\n exit 0 \\n ;; \\n "halt") \\n echo o > /proc/sysrq-trigger \\n exit 0 \\n ;; \\n "continue") \\n exit 0 \\n ;; \\nesac \\n]]> \\n </source> \\n </script> \\n </ask> \\n </ask-list>' command = 'sed -i \'\\|<ask-list config:type="list">|,\\|</ask-list>|c\\' + askContents + "' " + ctrlFile result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error("Unable to update '" + ctrlFile + "' with the current ask-list section.\n" + err + '\n' + out) print RED + 'Unable to update the install control file with the current ask-list section; fix the problem and try again; exiting program execution.' + RESETCOLORS exit(1) try: shutil.copy2(ctrlFile, autoinstImgMountPoint) except IOError as err: logger.error("Unable to copy the install control file '" + ctrlFile + "' to '" + autoinstImgMountPoint + "'.\n" + str(err)) print RED + "Unable to copy the install control file '" + ctrlFile + "' to '" + autoinstImgMountPoint + "'; fix the problem and try again; exiting program execution." + RESETCOLORS exit(1) command = 'umount ' + autoinstImgMountPoint result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.warn("Unable to unmount '" + autoinstImgMountPoint + "'.\n" + err + '\n' + out) print YELLOW + "Unable to unmount '" + autoinstImgMountPoint + "'; ." + RESETCOLORS exit(1) logger.info('Done updating the install control file with the partition ID that will have the OS installed on it.') return ctrlFileImg def updateSGInstallCtrlFile(programParentDir, upgradeWorkingDir, osUpgradeVersion, serverModel): dateTimestamp = datetime.datetime.now().strftime('%d%H%M%b%Y') autoinstImageFile = programParentDir + '/installCtrlFiles/autoinst.img' autoinstImgMountPoint = '/tmp/autoinstImg_' + dateTimestamp installCtrlFileDir = upgradeWorkingDir + '/installCtrlFile' ctrlFile = installCtrlFileDir + '/autoinst.xml' logger = logging.getLogger('coeOSUpgradeLogger') logger.info('Updating the install control file for the Serviceguard node.') if serverModel == 'ProLiant DL320e Gen8 v2' or serverModel == 'ProLiant DL360 Gen9': installCtrlFileTemplate = programParentDir + '/installCtrlFiles/sgQS-autoinst.xml' ctrlFileImg = installCtrlFileDir + '/sgQS_autoinst.img' else: installCtrlFileTemplate = programParentDir + '/installCtrlFiles/sgNFS-autoinst.xml' ctrlFileImg = installCtrlFileDir + '/sgNFS_autoinst.img' if not os.path.isdir(installCtrlFileDir): try: os.mkdir(installCtrlFileDir) shutil.copy2(installCtrlFileTemplate, ctrlFile) shutil.copy2(autoinstImageFile, ctrlFileImg) except OSError as err: logger.error("Unable to create install control file directory '" + installCtrlFileDir + "'.\n" + str(err)) print RED + "Unable to create the install control file directory '" + installCtrlFileDir + "'; fix the problem and try again; exiting program execution." + RESETCOLORS exit(1) except IOError as err: logger.error("Unable to copy the install control files to '" + ctrlFile + "'.\n" + str(err)) print RED + "Unable to copy the install control files to '" + ctrlFile + "'; fix the problem and try again; exiting program execution." + RESETCOLORS exit(1) if not os.path.isdir(autoinstImgMountPoint): try: os.mkdir(autoinstImgMountPoint) except OSError as err: logger.error("Unable to create mount point '" + autoinstImgMountPoint + "'.\n" + str(err)) print RED + "Unable to create mount point '" + autoinstImgMountPoint + "'; fix the problem and try again; exiting program execution." + RESETCOLORS exit(1) command = 'mount -o loop -o rw ' + ctrlFileImg + ' ' + autoinstImgMountPoint result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error("Unable to mount '" + ctrlFileImg + "' on '" + autoinstImgMountPoint + "'.\n" + err + '\n' + out) print RED + "Unable to mount '" + ctrlFileImg + "' on '" + autoinstImgMountPoint + "'; fix the problem and try again; exiting program execution." + RESETCOLORS exit(1) if serverModel == 'ProLiant DL360 Gen9': command = "sed -i 's/B120i/P440ar/g' " + ctrlFile result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error("Unable to update '" + ctrlFile + "' with the DL360's controller model (P440ar).\n" + err + '\n' + out) print RED + "Unable to update the install control file with the DL360's controller model (P440ar); fix the problem and try again; exiting program execution." + RESETCOLORS exit(1) if osUpgradeVersion != '12.2': if osUpgradeVersion == '11.4': slesPackageDict = {'sapconf': 'saptune', 'rear': 'rear118a'} else: slesPackageDict = {'sapconf': 'saptune', 'rear116': 'rear118a'} for package in slesPackageDict: command = "sed -i 's,<package>" + slesPackageDict[package] + '</package>,<package>' + package + "</package>,' " + ctrlFile result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error("Unable to update '" + ctrlFile + "' with the HPE SAP HANA specific package (" + package + ') for SLES for SAP 12 SP1.\n' + err + '\n' + out) print RED + 'Unable to update the install control file with the HPE SAP HANA specific package for SLES for SAP 12 SP1; fix the problem and try again; exiting program execution.' + RESETCOLORS exit(1) time.sleep(1.0) if osUpgradeVersion == '11.4': removalPackageList = ['perl-Bootloader-YAML', 'git-core', 'perl-Error', 'tuned', 'open-lldp', 'uuidd', 'libcgroup-tools', 'libts-1_0-0', 'lcms2', 'libgif6', 'java-1_7_0-openjdk', 'java-1_7_0-openjdk-headless', 'python-libxml2'] sles11Services = ' <runlevel>\\n <default>3</default>\\n <services config:type="list">\\n <service>\\n <service_name>ntp</service_name>\\n <service_start>3</service_start>\\n </service>\\n </services>\\n </runlevel>' for package in removalPackageList: command = "sed -i '/<package>" + package + "<\\/package>/d' " + ctrlFile result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error("Unable to remove the packages from the control file '" + ctrlFile + "' that are not present for SLES 11.4.\n" + err + '\n' + out + '\n' + str(removalPackageList)) print RED + 'Unable to remove the packages from the control file that are not present for SLES 11.4; fix the problem and try again; exiting program execution.' + RESETCOLORS exit(1) time.sleep(0.1) command = "sed -i 's@<loader_type>grub2</loader_type>@<loader_type>grub</loader_type>@' " + ctrlFile result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error("Unable to change the loader type in the control file '" + ctrlFile + "' from grub2 to grub.\n" + err + '\n' + out) print RED + 'Unable to change the loader type in the control file from grub2 to grub; fix the problem and try again; exiting program execution.' + RESETCOLORS exit(1) command = "sed -i '\\|<services-manager>|,\\|</services-manager>|c\\" + sles11Services + "' " + ctrlFile result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error('Unable to change the "services-manager" section in the control file \'' + ctrlFile + "'.\n" + err + '\n' + out) print RED + 'Unable to change the "services-manager" section in the control file; fix the problem and try again; exiting program execution.' + RESETCOLORS exit(1) command = "sed -i 's@<package>quota-nfs</package>@&\\n <package>net-snmp</package>\\n <package>biosdevname</package>@' " + ctrlFile result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error("Unable to add the net-snmp package to the control file '" + ctrlFile + "'.\n" + err + '\n' + out) print RED + 'Unable to add the net-snmp package to the control file; fix the problem and try again; exiting program execution.' + RESETCOLORS exit(1) try: shutil.copy2(ctrlFile, autoinstImgMountPoint) except IOError as err: logger.error("Unable to copy the install control file '" + ctrlFile + "' to '" + autoinstImgMountPoint + "'.\n" + str(err)) print RED + "Unable to copy the install control file '" + ctrlFile + "' to '" + autoinstImgMountPoint + "'; fix the problem and try again; exiting program execution." + RESETCOLORS exit(1) command = 'umount ' + autoinstImgMountPoint result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.warn("Unable to unmount '" + autoinstImgMountPoint + "'.\n" + err + '\n' + out) print YELLOW + "Unable to unmount '" + autoinstImgMountPoint + "'; ." + RESETCOLORS exit(1) logger.info('Done updating the install control file the Serviceguard node.') return ctrlFileImg def updateKdump(cursesThread): errorMessage = '' kdumpServiceFile = '/usr/lib/systemd/system/kdump.service' logger = logging.getLogger('coeOSUpgradeLogger') logger.info('Updating kdump.service to address bug 1008170.') cursesThread.insertMessage(['informative', 'Updating kdump.service to address bug 1008170.']) cursesThread.insertMessage(['informative', '']) commandList = ["sed -ri '0,/^\\s*Wants=kdump-rebuild-initrd.service/s//Requires=kdump-rebuild-initrd.service/' /usr/lib/systemd/system/kdump.service", "sed -ri '0,/^\\s*After=local-fs.target/s//After=local-fs.target kdump-rebuild-initrd.service/' /usr/lib/systemd/system/kdump.service"] logger.info("The list of commands used to update '" + kdumpServiceFile + "' is: " + str(commandList) + '.') for command in commandList: command = command result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error("Problems were encountered while updating'" + kdumpServiceFile + "'.\n" + err + '\n' + out) errorMessage = "Problems were encountered while updating '" + kdumpServiceFile + "'; thus the file will need to be updated manually." return errorMessage logger.info('Done updating kdump.service to address bug 1008170.') return errorMessage def copyRepositoryTemplate(programParentDir, upgradeWorkingDir): repositoryTemplate = programParentDir + '/repositoryTemplate/local.repo' repoDir = upgradeWorkingDir + '/repositoryTemplate' logger = logging.getLogger('coeOSUpgradeLogger') logger.info('Copying the yum repository template needed for the post-upgrade to the pre-upgrade working directory.') try: if not os.path.isdir(repoDir): os.mkdir(repoDir) shutil.copy(repositoryTemplate, repoDir) except OSError as err: logger.error("Unable to create the yum repository directory '" + repoDir + "'.\n" + str(err)) print RED + "Unable to create the yum repository directory '" + repoDir + "'; fix the problem and try again; exiting program execution." + RESETCOLORS exit(1) except IOError as err: logger.error("Unable to copy the yum repository template from '" + repositoryTemplate + "' to '" + repoDir + "'.\n" + str(err)) print RED + "Unable to copy the yum repository template from '" + repositoryTemplate + "' to '" + repoDir + "'; fix the problem and try again; exiting program execution." + RESETCOLORS exit(1) logger.info('Done copying the yum repository template needed for the post-upgrade to the pre-upgrade working directory.') def configureMellanox(programParentDir): errorMessage = '' pciIdsFile = programParentDir + '/nicDataFile/pci.ids' mellanoxDriverRPM = programParentDir + '/mellanoxDriver/*.rpm' mellanoxBusList = [] logger = logging.getLogger('coeOSUpgradeLogger') logger.info('Configuring the Mellanox cards by installing the Mellanox driver and updating connectx.conf.') command = 'lspci -i ' + pciIdsFile + ' -mvv' result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error("Failed to get the lspci output used to get the Compute Node's Mellanox NIC bus list.\n" + err + '\n' + out) return "Failed to get the lspci output used to get the Compute Node's Mellanox NIC bus list; thus the network configuration was not confirmed." out = re.sub('\n{2,}', '####', out) deviceList = out.split('####') for device in deviceList: if ('Ethernet controller' in device or 'Network controller' in device) and 'Mellanox' in device: try: bus = re.match('\\s*[a-zA-Z]+:\\s+([0-9a-f]{2}:[0-9a-f]{2}\\.[0-9])', device, re.MULTILINE | re.DOTALL).group(1) logger.info('The bus information for device:\n' + device[0:100] + '\nwas determined to be: ' + bus + '.\n') mellanoxBusList.append(bus) except AttributeError as err: logger.error('An AttributeError was encountered while getting the Mellanox nic bus information: ' + str(err) + '\n' + device[0:200]) return 'An AttributeError was encountered while getting the Mellanox nic bus information; thus the network configuration was not confirmed.' command = 'rpm -Uvh ' + mellanoxDriverRPM result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error('Failed to install the Mellanox driver.\n' + err + '\n' + out) return 'Failed to install the Mellanox driver; thus the network configuration was not confirmed.' for bus in mellanoxBusList: command = 'connectx_port_config -d ' + bus + ' -c eth,eth' result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error("Failed to update Mellanox bus '" + bus + "' from infininband to ethernet.\n" + err + '\n' + out) return 'Failed to update Mellanox from infiniband to ethernet; thus the network configuration was not confirmed.' logger.info('Done configuring the Mellanox cards by installing the Mellanox driver and updating connectx.conf.') return errorMessage def checkForMellanox(programParentDir, upgradeWorkingDir, osDist, osDistLevel): pciIdsFile = programParentDir + '/mellanoxFiles/pci.ids' mellanoxPresent = False if osDist == 'SLES': mellanoxDriverRPMS = glob.glob(programParentDir + '/mellanoxFiles/SLES/' + osDistLevel + '/*.rpm') else: mellanoxDriverRPMS = glob.glob(programParentDir + '/mellanoxFiles/RHEL/' + osDistLevel + '/*.rpm') mellanoxDriverDir = upgradeWorkingDir + '/mellanoxDriver' nicDataFileDir = upgradeWorkingDir + '/nicDataFile' logger = logging.getLogger('coeOSUpgradeLogger') logger.info('Checking to see if Mellanox NIC cards are present.') print GREEN + 'Checking to see if Mellanox NIC cards are present.' + RESETCOLORS command = 'lspci -i ' + pciIdsFile + ' -mvv' result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error('Failed to get the lspci output which is used to check if Mellanox NIC cards are present.\n' + err + '\n' + out) print RED + 'Failed to get the lspci output which is used to check if Mellanox NIC cards are present; fix the problem and try again; exiting program execution.' + RESETCOLORS exit(1) out = re.sub('\n{2,}', '####', out) deviceList = out.split('####') for device in deviceList: if ('Ethernet controller' in device or 'Network controller' in device) and 'Mellanox' in device: mellanoxPresent = True break if mellanoxPresent: try: os.mkdir(mellanoxDriverDir) for file in mellanoxDriverRPMS: shutil.copy2(file, mellanoxDriverDir) time.sleep(1.0) except OSError as err: logger.error("Unable to create the Mellanox driver directory '" + mellanoxDriverDir + "'.\n" + str(err)) print RED + "Unable to create the Mellanox driver directory '" + mellanoxDriverDir + "'; fix the problem and try again; exiting program execution." + RESETCOLORS exit(1) except IOError as err: logger.error("Unable to copy the Mellanox driver to '" + mellanoxDriverDir + "'.\n" + str(err)) print RED + "Unable to copy the Mellanox driver to '" + mellanoxDriverDir + "'; fix the problem and try again; exiting program execution." + RESETCOLORS exit(1) try: shutil.copy2(pciIdsFile, nicDataFileDir) except IOError as err: logger.error("Unable to copy the pci.ids file to '" + nicDataFileDir + "'.\n" + str(err)) print RED + "Unable to copy the pci.ids file to '" + nicDataFileDir + "'; fix the problem and try again; exiting program execution." + RESETCOLORS exit(1) logger.info('Done checking to see if Mellanox NIC cards are present.') def getOSUpgradeVersion(supportedOSVersions): logger = logging.getLogger('coeOSUpgradeLogger') while True: if len(supportedOSVersions) > 1: count = 0 choiceNumberDict = {} prompt = 'Select the OS version that the server is being upgraded to (' for version in supportedOSVersions: osVersion = supportedOSVersions[count] if osVersion[5:] == '11.4': print str(count + 1) + '. ' + osVersion[:4] + ' ' + osVersion[5:] + ' (Serviceguard Quorum Servers Only)' else: print str(count + 1) + '. ' + osVersion[:4] + ' ' + osVersion[5:] count += 1 if count == 1: prompt = prompt + str(count) else: prompt = prompt + ',' + str(count) choiceNumberDict[str(count)] = None response = raw_input(prompt + ') [1]: ') response = response.strip() if response == '': response = '1' elif response not in choiceNumberDict: print 'An invalid selection was made; please try again.\n' continue osVersion = supportedOSVersions[int(response) - 1] else: osVersion = supportedOSVersions[0] while True: response = raw_input('The server is going to be upgraded to ' + osVersion[:4] + ' ' + osVersion[5:] + '; is this correct [y|n|q]: ') response = response.strip().lower() if not response == 'y': print response == 'n' or response == 'q' or 'An invalid entry was provided; please try again.\n' continue else: if response == 'y': validOS = True elif response == 'n': validOS = False else: logger.info('Upgrade was cancelled while selecting the OS to upgrade to.') exit(0) break if validOS: osUpgradeVersion = osVersion[5:] logger.info('The choice to upgrade to ' + osUpgradeVersion + ' was made.') break else: continue return osUpgradeVersion def setTimezone(programParentDir, cursesThread): errorMessage = '' linkFileExists = False timezoneFile = programParentDir + '/timezoneData/timezoneLinks' logger = logging.getLogger('coeOSUpgradeLogger') logger.info("Setting the server's time zone.") cursesThread.insertMessage(['informative', "Setting the server's time zone."]) cursesThread.insertMessage(['informative', '']) try: with open(timezoneFile) as f: timezoneLinkData = f.readlines() except IOError as err: logger.error("Unable to get the time zone link list from '" + timezoneFile + "'.\n" + str(err)) errorMessage = "Unable to get the time zone link list; thus the server's time zone was not set." return errorMessage try: os.remove('/etc/localtime') except OSError as err: logger.warn('The following error was encounterd while removing /etc/localtime: ' + str(err)) for link in timezoneLinkData: link = link.strip() if os.path.isfile(link): linkFileExists = True command = 'ln ' + link + ' /etc/localtime' result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = result.communicate() if result.returncode != 0: logger.error("Problems were encountered while linking /etc/localtime to '" + link + "'.\n" + err + '\n' + out) errorMessage = "Problems were encountered while linking /etc/localtime; thus the server's time zone was not set." return errorMessage break if not linkFileExists: logger.error('There was not a link file present for /etc/localtime to link against; the selection of link files was: ' + str(timezoneLinkData)) errorMessage = "There was not a link file present for /etc/localtime to link against; thus the server's time zone was not set." logger.info("Done setting the server's time zone.") return errorMessage
f68d8f0d5878ccd2ea18009cd682be3667f78cec
7ba05e73515c14fb8d2f3d056b51102131171a11
/exercise_funktions/perfect_number.py
ceb4a03e0b152d53bd91c0d0ee007e347cd9bfd5
[]
no_license
gyurel/SoftUni-Basics-and-Fundamentals
bd6d5fa8c9d0cc51f241393afd418633a66c65dc
184fc5dfab2fdd410aa8593f4c562fd56211c727
refs/heads/main
2023-07-05T11:16:58.966841
2021-08-31T19:25:40
2021-08-31T19:25:40
401,485,125
0
0
null
null
null
null
UTF-8
Python
false
false
659
py
def perfect_number(number): list_of_devisors = [] # for devisor in range(1, number): # if number % devisor == 0: # list_of_devisors.append(devisor) # # if sum(list_of_devisors) == number: # print("We have a perfect number!") # else: # print("It's not so perfect.") list_of_devisors = [devisor for devisor in range(1, number) if number % devisor == 0] return print("We have a perfect number!" if sum(list_of_devisors) == number else "It's not so perfect.") # if sum(list_of_devisors) == number: # print("We have a perfect number!") # else: # print("It's not so perfect.") number = int(input()) perfect_number(number)
95da0414284b1f8b0e0e098a72c08e474d19c39a
c3e4afc3070fb611b38e2e9e6a1ae3e57f10fb34
/dbom/rsync_demo.py
4b9feb71aacb0e69db812a81c2cd2f16ff378c68
[]
no_license
eat1124/TSDBOM
6744a11fa3245012805d3e10321e385be0623c7d
1332c9591c7813ee99e0fc597cd58ff1a7b798bd
refs/heads/master
2022-12-01T16:39:10.800234
2019-09-03T01:33:45
2019-09-03T01:33:45
174,254,774
0
0
null
2022-11-22T02:55:53
2019-03-07T02:14:15
JavaScript
UTF-8
Python
false
false
18,130
py
""" Rsync自动化备份 """ import paramiko import re class RsyncBackup(object): """ Rsync备份: 单一安装Rsync 集体安装Rsync 配置Rsync 多个模块 添加虚拟用户 启动服务 配置密码文件 设置开机自启 服务端/客户端 执行Rsync的命令选项 执行Rsync的参数:服务器端文件地址,虚拟用户名,IP地址,模块名称 """ def __init__(self, server): self.client = paramiko.SSHClient() self.client.set_missing_host_key_policy(paramiko.AutoAddPolicy()) self.msg = '' self.server = server try: self.client.connect(hostname=server['hostname'], username=server['username'], password=server['password'], timeout=2) except: self.msg = '远程连接失败。' else: self.msg = '远程连接成功。' self.verify_shell_cmd = ';if [ $? -eq 0 ]; then' + '\n' + \ ' echo "cmd_succeed"' + '\n' + \ 'else' + '\n' + \ ' echo "cmd_failed"' + '\n' + \ 'fi' # self.sudo_permission = 'echo {0}|sudo sh -c '.format(server['password']) if server['username'] != 'root' else '' # sudo sh -c 'echo "This is testPage." >/usr/local/nginx/html/index.html' def close_connection(self): self.client.close() def run_shell_cmd(self, shell_cmd, get_pty=True): result = 1 info = '' # 区分主备密码 print("本次执行命令: echo '{0}'|sudo -S sh -c '{1}'".format(self.server["password"], shell_cmd) if self.server["username"] != "root" else shell_cmd) # root/普通用户 stdin, stdout, stderr = self.client.exec_command("echo '{0}'|sudo -S sh -c '{1} {2}'".format(self.server["password"], shell_cmd, self.verify_shell_cmd) if self.server["username"] != "root" else shell_cmd + self.verify_shell_cmd, get_pty=get_pty) stdout_init = '' stderr_init = '' if not stderr.readlines(): for num, data in enumerate(stdout.readlines()): stdout_init += data if 'cmd_succeed' in stdout_init: stdout_init = stdout_init.replace('cmd_succeed', '') result = 1 else: stdout_init = stdout_init.replace('cmd_failed', '') result = 0 info = stdout_init if self.server["username"] == "root" else stdout_init.split(":", maxsplit=1)[1] else: result = 0 for data in stderr.readlines(): stderr_init += data info = stderr_init return result, info def check_file_path_existed(self, file_path): """ 检查文件路径是否存在 :param file_path: :return: """ check_file_cmd = ';if [ -d {0} ]; then'.format(file_path) + '\n' + \ ' echo "doc"' + '\n' + \ 'elif [ -f {1} ]; then'.format(file_path) + '\n' + \ ' echo "file"' + '\n' + \ 'else' + '\n' + \ ' echo "not existed"' + '\n' + \ 'fi' result, info = self.run_shell_cmd(check_file_cmd) if result == "doc": result = 1 elif result == "file": result = 2 else: result = 0 return result, info def install_rsync_by_yum(self): result, info = self.run_shell_cmd('yum install rsync -y') return result, info def check_ever_existed(self): """ 查看rsync是否已经安装 :return: """ result, info = self.run_shell_cmd('rsync --help') return result, info def set_rsync_server_config(self, model_list, client_ip): """ secrets file 默认/etc/rsync.password auth users 默认rsync_backup :param model_list: [{"origin_path": "", ""dest_path": "", "model_name": ""}] :return: """ result = 1 info = "" # 设置服务端密码 server_passwd_ret, server_passwd_info = self.set_server_password() if server_passwd_ret == 0: result = 0 info = "服务端密码配置失败:{0}".format(server_passwd_info) else: # 配置Rsync用户 rsync_virtual_result, rsync_virtual_info = self.set_rsync_virtual_auth() if rsync_virtual_result == 0: result = 0 info = "虚拟用户rsync设置失败:{0}".format(rsync_virtual_info) else: base_config = "uid = rsync" + '\n' + \ 'gid = rsync' + '\n' + \ 'use chroot = no' + '\n' + \ 'max connections = 200' + '\n' + \ 'timeout = 300' + '\n' + \ 'pid file = /var/run/rsyncd.pid' + '\n' + \ 'lock file = /var/run/rsyncd.lock ' + '\n' + \ 'log file = /var/log/rsyncd.log' + '\n' + \ 'fake super = yes' # 路径加入配置文件,并设置备份地址权限 for temp_model in model_list: origin_path = temp_model['origin_path'] mode_auth_ret, mode_auth_info = self.run_shell_cmd('chown -R rsync.rsync {0}'.format(origin_path)) if mode_auth_ret == 0: return mode_auth_ret, "源端备份路径权限配置失败:{0}".format(mode_auth_info) base_config += '\n' + \ '[{0}]'.format(temp_model['model_name']) + '\n' + \ 'path = {0}'.format(origin_path if origin_path.endswith("/") else "{0}/".format(origin_path)) + '\n' + \ 'ignore errors' + '\n' + \ 'read only = false' + '\n' + \ 'list = false' + '\n' + \ 'hosts allow = {0}/24'.format(client_ip) + '\n' + \ 'auth users = rsync_backup' + '\n' + \ 'secrets file = /etc/rsync.password' rsync_config_result, rsync_config_info = self.run_shell_cmd("""echo "{0}" > /etc/rsyncd.conf""".format(base_config)) if rsync_config_result == 0: result = 0 info = "Rsync配置文件写入失败:{0}".format(rsync_config_info) else: result = 1 info = "Rsync配置成功。" # 设置防火墙开放端口 # port_result, port_info = self.open_873_port() # if port_result == 0: # result = 0 # info = "873端口设置失败:{0}".format(port_info) # else: # # 启动rsync # start_rysnc_result, start_rsync_info = self.start_rsync() # if start_rysnc_result == 0: # result = 0 # info = "启动rsync失败:{0}".format(start_rsync_info) return result, info def set_rsync_virtual_auth(self): result, info = self.run_shell_cmd('cat /etc/passwd') if result == 1 and 'rsync:' not in info: result, info = self.run_shell_cmd('useradd rsync -s /sbin/nologin -M') return result, info def set_client_password(self): """ 客户端密码 :return: """ server_passwd_result, server_passwd_info = self.run_shell_cmd('echo "{0}" > /etc/rsync_server.password'.format('password')) if server_passwd_result == 1: chmod_result, chmod_info = self.run_shell_cmd('chmod 600 /etc/rsync_server.password') if chmod_result == 1: result = 1 info = "客户端Rsync密码设置成功。" else: result = 0 info = "客户端Rsync密码权限设置失败:{0}".format(chmod_info) else: result = 0 info = "客户端Rsync密码设置失败:{0}".format(server_passwd_info) return result, info def set_server_password(self): """ 服务端密码 :return: """ server_passwd_result, server_passwd_info = self.run_shell_cmd('echo "{0}" > /etc/rsync.password'.format('rsync_backup:password')) if server_passwd_result == 1: chmod_result, chmod_info = self.run_shell_cmd('chmod 600 /etc/rsync.password') if chmod_result == 1: result = 1 info = "服务器Rsync密码设置成功。" else: result = 0 info = "服务器Rsync密码权限设置失败:{0}".format(chmod_info) else: result = 0 info = "服务器Rsync密码设置失败:{0}".format(server_passwd_info) return result, info def cat_rsync_log(self): shell_cmd = 'cat /var/log/rsyncd.log' result = 1 info = '' print("本次执行命令: echo '{0}'|sudo -S sh -c '{1}'".format(self.server["password"], shell_cmd) if self.server["username"] != "root" else shell_cmd) stdin, stdout, stderr = self.client.exec_command("echo '{0}'|sudo -S sh -c '{1}' {2}".format(self.server["password"], shell_cmd, self.verify_shell_cmd) if self.server["username"] != "root" else shell_cmd, get_pty=True) stdout_init = '' stderr_init = '' if not stderr.readlines(): pre_task = "" num = 0 for data in stdout.readlines()[::-1]: com = re.compile('\[\d+\]') task_list = com.findall(data) if task_list: task_id = task_list[0][1:-1] if num > 0 and pre_task != task_id: break if task_id == pre_task or num == 0: stdout_init += data pre_task = task_id num += 1 info = stdout_init else: result = 0 for data in stderr.readlines(): stderr_init += data info = stderr_init return result, info def start_rsync(self): """ 以守护进程方式启动,不需要设置伪终端,所以需要设置get_pty=False :return: """ result, info = self.run_shell_cmd('ps -ef|grep rsync|grep -v grep') if "rsync" in info: result = 0 info = 'rsync已经在运行中。' else: result, info = self.run_shell_cmd('rsync --daemon', get_pty=False) return result, info def stop_rsync(self): result, info = self.run_shell_cmd('ps -ef|grep rsync|grep -v grep') if "rsync" not in info: result = 0 info = 'rsync未运行。' else: result, info = self.run_shell_cmd('pkill rsync') return result, info def open_873_port(self): """ 与centos版本相关 :return: """ # 查看centos版本 result, info = 1, "" centOS_version_result, info = self.run_shell_cmd("cat /etc/redhat-release") if " 7." in info: set_port_result, set_port_info = self.run_shell_cmd('firewall-cmd --zone=public --add-port=873/tcp --permanent') # centos7 if set_port_result == 1: restart_firewalld_result, restart_firewalld_info = self.run_shell_cmd('systemctl restart firewalld.service') if restart_firewalld_result == 1: result = 1 info = "防火墙设置成功。" else: result = 0 info = "防火墙设置失败:{0}".format(restart_firewalld_info) else: result = 0 info = "端口设置失败:{0}".format(set_port_info) else: set_port_result, set_port_info = self.run_shell_cmd('/sbin/iptables -I INPUT -p tcp --dport 873 -j ACCEPT') # centos6 if set_port_result == 1: save_port_result, save_port_info = self.run_shell_cmd('/etc/init.d/iptables save') if save_port_result == 1: restart_iptables_result, restart_iptables_info = self.run_shell_cmd('service iptables restart') if restart_iptables_result == 1: result = 1 info = "防火墙设置成功。" else: result = 0 info = "防火墙重启失败:{0}".format(restart_iptables_info) else: result = 0 info = "端口设置保存失败:{0}".format(save_port_info) else: result = 0 info = "端口设置失败:{0}".format(set_port_info) return result, info def restart_rsync(self): result, info = 1, "" check_rsync_result, check_rsync_info = self.run_shell_cmd('ps -ef|grep rsync|grep -v grep') if "rsync" in check_rsync_info: pkill_rsync_result, pkill_rsync_info = self.run_shell_cmd('pkill rsync', get_pty=False) if pkill_rsync_result == 1: run_rsync_result, run_rsync_info = self.run_shell_cmd('rsync --daemon', get_pty=False) if run_rsync_result == 1: result = 1 info = "rsync启动成功。" else: result = 0 info = run_rsync_info else: run_rsync_result, run_rsync_info = self.start_rsync() if run_rsync_result == 1: result = 1 info = "rsync启动成功。" else: result = 0 info = run_rsync_info else: run_rsync_result, run_rsync_info = self.start_rsync() if run_rsync_result == 1: result = 1 info = "rsync启动成功。" else: result = 0 info = run_rsync_info return result, info def rsync_push(self, local_dir, dest_server, model_name, delete=False): """ -avz 方式备份 :param dest_dir: 服务器备份路径 :param auth_user: 虚拟用户 :param dest_server: 目标服务器地址 :param model_name: rsync模块名称 :param delete: 表示无差异备份,默认是增量 :return: """ # 异常处理 if delete: result, info = self.run_shell_cmd(r'rsync -avz {0} rsync_backup@{1}::{2}/ --password-file=/etc/rsync_server.password --delete'.format(local_dir, dest_server, model_name)) else: result, info = self.run_shell_cmd(r'rsync -avz {0} rsync_backup@{1}::{2}/ --password-file=/etc/rsync_server.password'.format(local_dir, dest_server, model_name)) return result, info def rsync_pull(self, local_dir, dest_server, model_name, delete=False): """ -avz 方式备份 :param dest_dir: 服务器备份路径 :param auth_user: 虚拟用户 :param dest_server: 目标服务器地址 :param model_name: rsync模块名称 :param delete: 表示无差异备份,默认是增量 :return: """ # 异常处理 if delete: result, info = self.run_shell_cmd(r'rsync -avz rsync_backup@{1}::{2}/ {0} --password-file=/etc/rsync_server.password --delete'.format(local_dir, dest_server, model_name)) else: result, info = self.run_shell_cmd(r'rsync -avz rsync_backup@{1}::{2}/ {0} --password-file=/etc/rsync_server.password'.format(local_dir, dest_server, model_name)) return result, info if __name__ == '__main__': server = { 'hostname': '192.168.85.124', 'username': 'root', 'password': 'password' } # server = { # 'hostname': '192.168.85.123', # 'username': 'rsync_demo', # 'password': 'password' # } rsync_backup = RsyncBackup(server) # result, info = rsync_backup.set_rsync_virtual_auth() # print(rsync_backup.msg) # result, info = rsync_backup.start_rsync() # result, info = rsync_backup.run_shell_cmd("ls /") # result, info = rsync_backup.stop_rsync() # result, info = rsync_backup.run_shell_cmd('ls') # result, info = rsync_backup.install_rsync_by_yum() # result, info = rsync_backup.check_ever_existed() # result, info = rsync_backup.cat_rsync_log() # result, info = rsync_backup.set_client_password() # result, info = rsync_backup.rsync_pull(r'/home/rsync_demo/clientcenter/', '192.168.85.124', 'test', delete=True) result, info = rsync_backup.rsync_push(r'/home/rsync_demo/clientcenter/', '192.168.85.124', 'test', delete=True) # result, info = rsync_backup.tail_rsync_log() # model_list: [{"origin_path": "", ""dest_path": ""}] # result, info = rsync_backup.set_server_password() # result, info = rsync_backup.set_rsync_server_config([{"origin_path": "/home/rsync_demo/datacenter/", "dest_path": "", "model_name": "test"}], "192.168.85.123") rsync_backup.close_connection() # sudo sh -c 'echo "This is testPage." >/usr/local/nginx/html/index.html' # 将一个字串作为完整的命令来执行 # sudo仅有root的部分权限 print(result, info) # 做以下修改: # 1.数据库保存路径时,提示不支持单文件复制 # 2.根目录下文件不能提供选择 # 3.添加拉取数据的方式 # 4.只配置服务器端
2486172e67711750aa62070ee6fd2a6827dbc2e8
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_117/ch34_2019_08_28_17_09_17_697744.py
9ca0d80832e96d242b07897a248b9972577d03eb
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
118
py
d = ("deposito inicial: ") j = ("taxa de juros: ") i = 0 while i < 23: t = d + (1 + j) ** i print ({t:.2f})
11e50fe8f7ccfaa25b3780c5fdcc0732b9de61fc
cbc4782342ad277b9f8cda805a57854ba3468edb
/SVDBias/SVDBias-pe.py
5f4991f3cb6d026b4af15a99017a37e13c296add
[]
no_license
qingkongmengnuan/BayesianRS
f7f1cdc7ca6336e3d18e98e441b65aa767846005
e440f6bb26bdc9485d2ae15826c0900b7457b92d
refs/heads/master
2022-11-30T20:00:20.305454
2020-08-11T08:25:11
2020-08-11T08:25:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,537
py
# coding:utf-8 ''' @author: Jason.F @data: 2019.07.12 @function: Implementation: SVDBias Datatset: Pinterest-20 Evaluation: hitradio,ndcg Squared loss function with explicit rating. ''' import pandas as pd import numpy as np import math from collections import defaultdict import heapq import random #1.Loading the MovienLen dataset, ml-1m def load_rating_file_as_list(filename): ratingList = [] with open(filename, "r") as f: line = f.readline() while line != None and line != "": arr = line.split("\t") user, item = int(arr[0]), int(arr[1]) ratingList.append([user, item]) line = f.readline() return ratingList def load_negative_file_as_list(filename): negativeList = [] with open(filename, "r") as f: line = f.readline() while line != None and line != "": arr = line.split("\t") negatives = [] for x in arr[1: ]: negatives.append(int(x)) negativeList.append(negatives) line = f.readline() return negativeList def load_rating_file_as_matrix(filename): #Read .rating file and Return dok matrix. #The first line of .rating file is: num_users\t num_items # Get number of users and items num_users, num_items = 0, 0 with open(filename, "r") as f: line = f.readline() while line != None and line != "": arr = line.split("\t") u, i = int(arr[0]), int(arr[1]) num_users = max(num_users, u) num_items = max(num_items, i) line = f.readline() # Construct matrix #mat = sp.dok_matrix((num_users+1, num_items+1), dtype=np.float32) mat = np.zeros((num_users+1, num_items+1)) with open(filename, "r") as f: line = f.readline() while line != None and line != "": arr = line.split("\t") user, item, rating = int(arr[0]), int(arr[1]), float(arr[2]) #if (rating > 0.0): mat[user, item] = 1.0 mat[user, item] = rating line = f.readline() return mat trainMatrix = load_rating_file_as_matrix("./data/pinterest-20.train.rating") testRatings = load_rating_file_as_list("./data/pinterest-20.test.rating") testNegatives = load_negative_file_as_list("./data/pinterest-20.test.negative") print('Dataset Statistics: Interaction = %d, User = %d, Item = %d, Sparsity = %.4f' % \ (len(trainMatrix[np.where(trainMatrix!= 0)]),trainMatrix.shape[0],trainMatrix.shape[1],\ len(trainMatrix[np.where(trainMatrix!= 0)])/(trainMatrix.shape[0]*trainMatrix.shape[1]) )) #2. SVDBias class class SVDBias(): def __init__(self, R, num_ng=4): """ Perform matrix factorization to predict empty entries in a matrix. Arguments - R (ndarray) : user-item rating matrix - num_ng (int) : number of negative items """ self.R = R self.num_users, self.num_items = R.shape self.num_ng = num_ng # Create a list of training samples pos_samples = [ (i, j, self.R[i, j]) for i in range(self.num_users) for j in range(self.num_items) if self.R[i, j] > 0 ] ''' #smapling the negative items for x in self.samples: u = x[0] for t in range(self.num_ng): j = np.random.randint(self.num_items) #while (u, j) in self.R: while self.R[u, j] > 0: j = np.random.randint(self.num_items) self.samples.append([u, j, 0]) ''' #smapling the negative items neg_samples = random.sample([ (i, j, self.R[i, j]) for i in range(self.num_users) for j in range(self.num_items) if self.R[i, j] == 0 ], len(pos_samples)*num_ng) self.samples = pos_samples + neg_samples def train(self, K, alpha=0.001, beta=0.01, epochs=20): ''' - alpha (float) : learning rate - beta (float) : regularization parameter - K (int) : number of latent dimensions -epochs(int) : number of iterations ''' self.K = K self.alpha = alpha self.beta = beta self.epochs = epochs # Initialize user and item latent feature matrice self.P = np.random.normal(scale=1./self.K, size=(self.num_users, self.K)) self.Q = np.random.normal(scale=1./self.K, size=(self.num_items, self.K)) # Initialize the biases self.b_u = np.zeros(self.num_users) self.b_i = np.zeros(self.num_items) self.b = np.mean(self.R[np.where(self.R != 0)]) # Perform stochastic gradient descent for number of iterations training_process = [] for i in range(self.epochs): np.random.shuffle(self.samples) self.sgd() #if (i+1) % 10 == 0: # mse = self.mse() # print("Iteration: %d ; error = %.4f" % (i+1, mse)) return self.full_matrix() def mse(self): """ A function to compute the total mean square error """ xs, ys = self.R.nonzero() predicted = self.full_matrix() error = 0 for x, y in zip(xs, ys): error += pow(self.R[x, y] - predicted[x, y], 2) return np.sqrt(error) def sgd(self): """ Perform stochastic graident descent """ for i, j, r in self.samples: # Computer prediction and error prediction = self.get_rating(i, j) e = (r - prediction) # Update biases self.b_u[i] += self.alpha * (e - self.beta * self.b_u[i]) self.b_i[j] += self.alpha * (e - self.beta * self.b_i[j]) # Create copy of row of P since we need to update it but use older values for update on Q P_i = self.P[i, :][:] # Update user and item latent feature matrices self.P[i, :] += self.alpha * (e * self.Q[j, :] - self.beta * self.P[i,:]) self.Q[j, :] += self.alpha * (e * P_i - self.beta * self.Q[j,:]) def get_rating(self, i, j): """ Get the predicted rating of user i and item j """ prediction = self.b + self.b_u[i] + self.b_i[j] + self.P[i, :].dot(self.Q[j, :].T) return prediction def full_matrix(self): """ Computer the full matrix using the resultant biases, P and Q """ return self.b + self.b_u[:,np.newaxis] + self.b_i[np.newaxis:,] + self.P.dot(self.Q.T) #3. Training and Evaluating def getHitRatio(ranklist, gtItem): for item in ranklist: if item == gtItem: return 1 return 0 def getNDCG(ranklist, gtItem): for i in range(len(ranklist)): item = ranklist[i] if item == gtItem: return math.log(2) / math.log(i+2) return 0 print ("%3s%20s%20s" % ('K','HR@10', 'NDCG@10')) mdl = SVDBias(R=trainMatrix, num_ng=4)# K is latent factors for K in [8,16,32,64]:#latent factors nR = mdl.train(K=K, alpha=0.001, beta=0.01, epochs=20) hits = [] ndcgs = [] for u, i in testRatings: scorelist= [ [ni,nR[u,ni]] for ni in testNegatives[u]] scorelist.append([i,nR[u,i]]) map_item_score = {} for item, rate in scorelist: #turn dict map_item_score[item] = rate ranklist = heapq.nlargest(10, map_item_score, key=map_item_score.get)#default Topn=10 hr = getHitRatio(ranklist, i) hits.append(hr) ndcg = getNDCG(ranklist, i) ndcgs.append(ndcg) hitratio,ndcg = np.array(hits).mean(), np.array(ndcgs).mean() print ("%3d%20.6f%20.6f" % (K, hitratio, ndcg)) ''' nohup python -u SVDBias-pe.py > svdbias-pe.log & Dataset Statistics: Interaction = 1408394, User = 55187, Item = 9916, Sparsity = 0.0026 K HR@10 NDCG@10 8 0.269919 0.138828 16 0.274449 0.140884 32 0.274286 0.141035 64 0.274576 0.141021 '''
abcc57f99068124670c61612d93d80115daf1130
0b88201be895a25c8c321481615b4965f529d6da
/CDTB_Seg/model/SEG_BOT/model.py
64b039c9c3e6f5e3a9a391a5db78055dd22219a1
[ "BSD-2-Clause", "MIT" ]
permissive
NLP-Discourse-SoochowU/segmenter2020
1e8335da56b26f52ed48eb462047b9fe9b1e10df
fd71b353c59bcb82ec2cd0bebf943040756faa63
refs/heads/master
2023-01-13T23:14:37.078780
2020-11-24T05:07:26
2020-11-24T05:07:26
283,890,012
0
1
null
null
null
null
UTF-8
Python
false
false
9,509
py
# -*- coding: utf-8 -*- """ @Author: Lyzhang @Date: @Description: """ import torch import torch.nn as nn import torch.nn.functional as func from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence from config import * from model.SEG_BOT.pointer import Pointer class Segment_Model(nn.Module): def __init__(self, word_emb): super(Segment_Model, self).__init__() # random self.word_emb = nn.Embedding(word_emb.shape[0], WORDEMB_SIZE) # nre_pre = np.array([arr[0:3] for arr in pretrained]) self.word_emb.weight.data.copy_(torch.from_numpy(word_emb)) self.word_emb.weight.requires_grad = True if EMBED_LEARN else False self.pos_emb = nn.Embedding(POS_TAG_NUM, POS_TAG_SIZE) self.pos_emb.weight.requires_grad = True if RNN_TYPE == "LSTM": self.sent_encode = nn.LSTM(WORDEMB_SIZE + POS_TAG_SIZE, HIDDEN_SIZE // 2, num_layers=RNN_LAYER, dropout=DROPOUT, bidirectional=True, batch_first=True) else: self.sent_encode = nn.GRU(WORDEMB_SIZE + POS_TAG_SIZE, HIDDEN_SIZE // 2, num_layers=RNN_LAYER, dropout=DROPOUT, bidirectional=True, batch_first=True) # encoder + decoder self.encoder = nn.GRU(HIDDEN_SIZE, HIDDEN_SIZE // 2, bidirectional=True, batch_first=True) self.decoder = nn.GRU(HIDDEN_SIZE, HIDDEN_SIZE, batch_first=True) # self.decoder = nn.GRU(WORDEMB_SIZE + POS_TAG_SIZE, HIDDEN_SIZE, batch_first=True) # self.residual_drop = nn.Dropout(RESIDUAL_DROPOUT) self.context_dense = nn.Linear(HIDDEN_SIZE, HIDDEN_SIZE) self.pointer = Pointer(HIDDEN_SIZE, HIDDEN_SIZE, 1, HIDDEN_SIZE) self.nnDropout = nn.Dropout(ENC_DEC_DROPOUT) def enc_decode_(self, rnn_inputs, gcn_hidden, decode_mask, decode_indices): """ gcn_hidden: (batch, seq_len, hidden) Bi_affine attention decode_indices: (batch, boundary num + 1, num_in(1 or 2)) 代表各个边界后的开始点以及 初始点,位置0 """ gcn_hidden = self.nnDropout(gcn_hidden) # encoder e_out, hidden = self.encoder(gcn_hidden) # e_out, hidden = gcn_hidden, Var(torch.zeros(2, 1, HIDDEN_SIZE // 2)).cuda(CUDA_ID) e_out = self.nnDropout(e_out) # e_out = gcn_hidden + self.residual_drop(e_out) # decode # 将序列首尾隐层状态(即context hidden)作为解码器的初始状态。(batch, hidden) init_states = hidden.transpose(0, 1).view(1, -1) # 以GCN编码的各个边界点词汇的向量作为解码端的输入,d_inputs = (batch, num_boundary, hidden) decode_indices = decode_indices.unsqueeze(0).unsqueeze(0) d_inputs = gcn_hidden[torch.arange(BATCH_SIZE), decode_indices].squeeze(0) # d_inputs = e_out[torch.arange(BATCH_SIZE), decode_indices].squeeze(0) # d_inputs = rnn_inputs[torch.arange(BATCH_SIZE), decode_indices].squeeze(0) d_inputs = self.nnDropout(d_inputs) # 如果序列中没有边界点是不是意味着没有解码输入?不是,每个解码序列的第一个输入即为序列的首位元素,如果没有边界则解码结果 # 直接为末尾即可。 d_out, _ = self.decoder(d_inputs, init_states.unsqueeze(0)) # d_out = {batch, num_boundary, hidden} d_out = self.nnDropout(d_out) # Bi_affine attention between the decoder outputs and the hidden states of the encoder side # e_out = (batch, encoder_len, hidden) d_out = (batch, decoder_len, hidden), 前人的工作是对编码端所有节点进行概率 # 计算,最后按照选区选用需要的概率区域。我们要实现的是对d_out中每个解码的结果对应的选区确定好之后,用各个解码结果分别和 # 选区中对应的 e_out 组中隐层状态计算 bi_affine attention. 两种做法的原理一致,故采用前人方案进行注意力分配。 # bi_affine: [batch, length_decoder, length_encoder, num_labels] attn = self.pointer(e_out, d_out).squeeze(-1) # input(attn.size()) decode_mask = decode_mask.unsqueeze(0).float() mask_pad_ = (1 - decode_mask) * SMOO_VAL # input(mask_pad_.size()) masked_attn = attn.mul(decode_mask) + mask_pad_ # scoring boundary_predict = masked_attn.log_softmax(dim=2) # (batch, len_decoder, len_encoder) masked return boundary_predict @staticmethod def select_boundary(bi_affine_attn, state_idx, seq_len): """ attn: [batch, length_decoder, length_encoder, num_labels] (1, 1, n, 1) state_idx: tmp_area start idx """ decode_mask = [0 for _ in range(state_idx)] decode_mask = decode_mask + [1 for _ in range(state_idx, seq_len)] decode_mask = torch.Tensor(decode_mask).float().cuda(CUDA_ID) # decode_mask = decode_mask.unsqueeze(0).float() mask_pad_ = (1 - decode_mask) * SMOO_VAL masked_bi_affine_attn = bi_affine_attn.mul(decode_mask) + mask_pad_ # make it small enough # scoring boundary_predict = torch.argmax(masked_bi_affine_attn.log_softmax(dim=-1)).unsqueeze(0) state_idx = (boundary_predict + 1).item() return boundary_predict, state_idx def gen_loss(self, inputs=None, target=None): """ 进行特征抽取和子句分割 在编码解码模式下,有的句子可能不存在边界点,这时候分两种实验设置进行分析: 1 以学习结束点为一种情景。 2 排除结束点 """ word_ids, pos_ids, graph, decode_indices, decode_mask, masks = inputs self.sent_encode.flatten_parameters() word_emb = self.word_emb(word_ids) pos_emb = self.pos_emb(pos_ids) rnn_inputs = torch.cat([word_emb, pos_emb], dim=-1) # (batch_size, padding_length, embedding_size) if masks is not None: lengths = masks.sum(-1) rnn_inputs = rnn_inputs * masks.unsqueeze(-1).float() rnn_inputs_packed = pack_padded_sequence(rnn_inputs, lengths, batch_first=True) rnn_outputs_packed, _ = self.sent_encode(rnn_inputs_packed) rnn_outputs, _ = pad_packed_sequence(rnn_outputs_packed, batch_first=True) else: rnn_outputs, _ = self.sent_encode(rnn_inputs) gcn_outputs = rnn_outputs tag_score = self.enc_decode_(rnn_inputs, gcn_outputs, decode_mask, decode_indices) score_ = tag_score.squeeze(0) # print(score_.size()) # input(target.size()) loss_ = func.nll_loss(score_, target) return loss_ def forward(self, inputs=None): """ 解码方式特殊,编码方式一致,解码需要对每个序列的每个边界点处理出来,做顺序解码。 注意,这款解码器包含了每句话的结束点作为标签之一,同样我们在target中也设置了这个边界进行学习。 """ word_ids, pos_ids, graph, _, _, masks = inputs word_emb = self.word_emb(word_ids) seq_len = word_emb.size()[1] pos_emb = self.pos_emb(pos_ids) rnn_inputs = torch.cat([word_emb, pos_emb], dim=-1) lengths = masks.sum(-1) rnn_inputs = rnn_inputs * masks.unsqueeze(-1).float() rnn_inputs_packed = pack_padded_sequence(rnn_inputs, lengths, batch_first=True) rnn_outputs_packed, _ = self.sent_encode(rnn_inputs_packed) rnn_outputs, _ = pad_packed_sequence(rnn_outputs_packed, batch_first=True) # (batch, seq_len, hidden) gcn_outputs = rnn_outputs # print("gvn_output: ", gcn_outputs.size()) # 编码-解码结构 e_out, hidden = self.encoder(gcn_outputs) # e_out, hidden = gcn_outputs, Var(torch.zeros(2, 1, HIDDEN_SIZE // 2)).cuda(CUDA_ID) # e_out = gcn_outputs + self.residual_drop(e_out) # (batch, seq_len, hidden) state = hidden.transpose(0, 1).view(1, 1, -1) # (batch, xxx, hidden) # d_input_ = gcn_hidden[0, 0, :] # 初始化解码端输入 (batch, seq0, hidden) start_idx, d_end, d_outputs = 0, False, None # 循环解码 上面的decoder是否应该改成 GRU Cell while not d_end: d_input = gcn_outputs[:, start_idx, :].unsqueeze(1) # (batch, seq_len, hidden_size) (1, 1, Hidden) # d_input = e_out[:, start_idx, :].unsqueeze(1) # (batch, seq_len, hidden_size) (1, 1, Hidden) # d_input = rnn_inputs[:, start_idx, :].unsqueeze(1) # (batch, seq_len, hidden_size) (1, 1, Hidden) d_out, state = self.decoder(d_input, state) # (batch, 1, hidden_size) (1, 1, h) # bi_affine attention,根据解码输出在编码结果的指定范围内寻找合适的点的过程 # bi_affine: [batch, length_decoder, length_encoder, num_labels] bi_affine_attn = self.pointer(e_out, d_out).squeeze(-1) boundary_idx, start_idx = self.select_boundary(bi_affine_attn, start_idx, seq_len) d_outputs = boundary_idx if d_outputs is None else torch.cat((d_outputs, boundary_idx), dim=0) if start_idx == seq_len: d_end = True return d_outputs
9c7c5503d6820c8d892b7ba12c79c4c53e2b1abc
91f4078045a57eaaafe0b172909d7041e829941c
/arjuna-samples/arjex/test/pkg/app_class/check_02_app_model.py
66bdc8398d1a691c081dc86f4420c25017d30f6c
[ "Apache-2.0" ]
permissive
amiablea2/arjuna
0d06d1dfb34309f4b6f39b17298f7acb6c3c48c9
af74e0882216881ceca0a10f26442165ffc43287
refs/heads/master
2023-08-21T20:04:30.416303
2021-10-27T06:41:40
2021-10-27T06:41:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
978
py
# This file is a part of Arjuna # Copyright 2015-2021 Rahul Verma # Website: www.RahulVerma.net # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from arjuna import * from arjex.lib.app_class.wp_app_model import WordPress @for_test def wordpress(request): # Setup wordpress = WordPress() wordpress.login() yield wordpress # Teadown wordpress.logout() @test def check_with_wp_app_model(request, wordpress): wordpress.tweak_role_value_in_settings("editor")
6a0133b60e39092bb9168e79b34e7f97ef908275
ff738b3ec7e5c8c414f6d3c7d74310d8fab69368
/Mock/Interview5/solution1.py
63117bb3138185ef7bcaea918ed9a22c4e801a57
[]
no_license
jw3329/leetcode-problem-solving
a0684ef13bd60e81bd54b91e1b54827aaac9bf16
0cc7ad64891a23e348c8214f806a2820ac8c9e0a
refs/heads/main
2023-08-17T20:36:51.624415
2023-08-17T07:09:56
2023-08-17T07:09:56
170,944,191
0
1
null
null
null
null
UTF-8
Python
false
false
246
py
class Solution: def twoSum(self, nums: List[int], target: int) -> List[int]: n = len(nums) for i in range(n): for j in range(i+1,n): if nums[i] + nums[j] == target: return [i,j]
de63bdffcb21ae66826ed72756766dc1638d7361
926b3c52070f6e309567c8598248fd5c57095be9
/src/mmgeneration/configs/positional_encoding_in_gans/stylegan2_c2_ffhq_512_b3x8_1100k.py
b051c9f38b4cd25d7bc657feff88311e3c9f1f18
[ "Apache-2.0" ]
permissive
fengbingchun/PyTorch_Test
410f7cd2303707b0141d433fb9d144a961e1f4c8
df5c2169f0b699bcd6e74adb4cb0e57f7dcd9348
refs/heads/master
2023-05-23T16:42:29.711338
2023-03-25T11:31:43
2023-03-25T11:31:43
167,339,907
15
4
null
2023-03-25T11:31:45
2019-01-24T09:24:59
C++
UTF-8
Python
false
false
1,260
py
"""Config for the `config-f` setting in StyleGAN2.""" _base_ = [ '../_base_/datasets/ffhq_flip.py', '../_base_/models/stylegan/stylegan2_base.py', '../_base_/default_runtime.py' ] model = dict(generator=dict(out_size=512), discriminator=dict(in_size=512)) data = dict( samples_per_gpu=3, train=dict(dataset=dict(imgs_root='./data/ffhq/ffhq_imgs/ffhq_512'))) ema_half_life = 10. # G_smoothing_kimg custom_hooks = [ dict( type='VisualizeUnconditionalSamples', output_dir='training_samples', interval=5000), dict( type='ExponentialMovingAverageHook', module_keys=('generator_ema', ), interval=1, interp_cfg=dict(momentum=0.5**(32. / (ema_half_life * 1000.))), priority='VERY_HIGH') ] metrics = dict( fid50k=dict( type='FID', num_images=50000, inception_pkl='work_dirs/inception_pkl/ffhq-512-50k-rgb.pkl', bgr2rgb=True), pr10k3=dict(type='PR', num_images=10000, k=3)) checkpoint_config = dict(interval=10000, by_epoch=False, max_keep_ckpts=30) lr_config = None log_config = dict( interval=100, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook'), ]) total_iters = 1100002