blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
5317b35317ba1ab2da314d6bd8ad9be085d19480
13f4a06cd439f579e34bf38406a9d5647fe7a0f3
/nn_ns/parsing/FS/readme.py
d02accd2f405f4744acde147164ec31870528870
[]
no_license
edt-yxz-zzd/python3_src
43d6c2a8ef2a618f750b59e207a2806132076526
41f3a506feffb5f33d4559e5b69717d9bb6303c9
refs/heads/master
2023-05-12T01:46:28.198286
2023-05-01T13:46:32
2023-05-01T13:46:32
143,530,977
2
2
null
null
null
null
UTF-8
Python
false
false
2,141
py
3 froms: FSM, [Rule], regular_expression FSM: TotalState : FSM formal - FSM{initial :: TotalState, finals :: Set TotalState, error :: TotalState, transition :: Map TotalState (Map Symbol TotalState) } informal - NFSM{initials :: Set PartialState, finals :: Set PartialState, error :: Set PartialState, # empty_set transition :: Map PartialState (Map (Maybe Symbol) (Set PartialState)) } PartialState : FA # esp cleaned_dfa formal - DFA {initial :: Maybe PartialState, finals :: Set PartialState, error :: Maybe PartialState, # nothing transition :: Map PartialState (Map Symbol PartialState) } informal - NDFA {initials :: Set PartialState, finals :: Set PartialState, error :: Set PartialState, # empty_set transition :: Map PartialState (Map (Maybe Symbol) (Set PartialState)) } {initials::Set PartialState, transition::[Rule]}: # NDFA-RuleForm # a direct map into/from a NDFA FormalNDFARule :: (PartialState, Maybe (Maybe Symbol, PartialState)) (a, Nothing) -> [a in finals] (a, Just (maybe_symbol, b)) -> "a = maybe_symbol b" InformalNDFARule :: (Nonterminal, [Symbol], Maybe Nonterminal) where PartialState = (Nonterminal, Integer) (a, ls, Nothing) -> [(a, len(ls)) in finals] regular_expression: # RE-RuleForm # using star but without recur (even tail-recur) # DAG BasicRe a = ReConcat [BasicRe a] | ReUnion [BasicRe a] | ReStar (BasicRe a) | ReSymbol a ExtendedRe a = BasicRe a | ReComplement a | ReIntersect a
51a7abc5c786abeb3e55dc95ed53aef57e85b34a
94df6050f2a262da23f62dd678ccc4366b7657fc
/temporary/bin/tqdm
9efa8c44cdb5ce4f8dc9684a0b3710267894d570
[]
no_license
EkenePhDAVHV/phd-autonomous-cars-frank
29cc2fc608db53d4d060422022dc5019cf6360f0
1daed3425bfad99dac31543fbeb7950e25aa2878
refs/heads/main
2023-04-29T06:02:59.444072
2021-05-23T11:04:07
2021-05-23T11:04:07
357,157,735
0
0
null
null
null
null
UTF-8
Python
false
false
265
#!/home/ekene/PycharmProjects/phd-autonomous-cars-frank/temporary/bin/python # -*- coding: utf-8 -*- import re import sys from tqdm.cli import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
b3673d87cd687e139daef7c90d95e0a9126b841d
954df5fb1ceaf64fe3004e0b072b78024065cdd0
/virtual/Lib/site-packages/future/moves/_markupbase.py
41c4f96c55552b677772b61ba497a16ba84b3df8
[]
no_license
chelseyrandolph/cs440_DatabaseUI
7dc5b4c3d0a4e72023db61f4a613fc889bc69f86
28355cdfe0f4732568f1f8e43e2ce7809b4fc260
refs/heads/master
2022-06-06T19:18:31.819483
2020-05-05T20:51:58
2020-05-05T20:51:58
259,436,551
0
0
null
null
null
null
UTF-8
Python
false
false
151
py
from __future__ import absolute_import from future.utils import PY3 if PY3: pass else: __future_module__ = True from markupbase import *
17af078221d30f88e222eb9d6c5861dc1a20e88a
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/verbs/_disintegrating.py
532e7be5907664219ed247bb6f5173a80c0ad3de
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
282
py
from xai.brain.wordbase.verbs._disintegrate import _DISINTEGRATE #calss header class _DISINTEGRATING(_DISINTEGRATE, ): def __init__(self,): _DISINTEGRATE.__init__(self) self.name = "DISINTEGRATING" self.specie = 'verbs' self.basic = "disintegrate" self.jsondata = {}
50ac6709acfc86d952d4ef089c648926671f477b
8acffb8c4ddca5bfef910e58d3faa0e4de83fce8
/ml-flask/Lib/site-packages/sacremoses/corpus.py
721a5bbd1be20eb165825ba3c6dae6936c425b69
[ "MIT" ]
permissive
YaminiHP/SimilitudeApp
8cbde52caec3c19d5fa73508fc005f38f79b8418
005c59894d8788c97be16ec420c0a43aaec99b80
refs/heads/master
2023-06-27T00:03:00.404080
2021-07-25T17:51:27
2021-07-25T17:51:27
389,390,951
0
0
null
null
null
null
UTF-8
Python
false
false
129
py
version https://git-lfs.github.com/spec/v1 oid sha256:d72f15b792d94c6d388af9f8c568d412c657f055c925abdae378464c275c54a4 size 5016
d31f11bddf9791dee17880f0c0425c13ad495a90
ab6c6559d9cfac36c3c4ece192fa2300767662d1
/Python Game Development for Beginners - Working Files/Chapter 5/Increasing Challenge with Levels Part I/main.py
38ecd797fc5c5f6c15d8d84cfd91391e4842c047
[]
no_license
Igor-Nosatov/PythonGameDev_Trinket
962b86572c74c64652a24768dfec2101fcae221f
e6166f69307ded6880b0aaa3299c0a151807bb9c
refs/heads/master
2020-06-24T20:22:57.187289
2016-05-03T10:33:26
2016-05-03T10:33:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,111
py
# import the turtle module so we can use all the neat code it contains import turtle from helpercode import BoxTurtle, printwin, checkpos, maketurtles from time import sleep from random import randint, choice # Create variables to contain our BoxTurtle objects boxturtles = maketurtles() # Create a variable `tina` that is a Turtle() object. Set shape to 'turtle' tina = turtle.Turtle() tina.shape('turtle') tina.penup() # Create a variable `screen`, a Screen() object, that will handle keyss screen = turtle.Screen() # Keyboard controls def go_left(): tina.left(11) def go_right(): tina.right(11) # Check intersections with boxes when the turtle moves def go_forward(): tina.forward(10) check_intersect() checkpos([tina]) def go_backward(): tina.backward(10) check_intersect() checkpos([tina]) # This function loops through the `boxes` list and uses each # box's `intersect()` method to check whether it intersects # with tina. def check_intersect(): for box in boxturtles: if not box.hit and box.intersect(tina): box.hit = True box.flash() # Tell the program which functions go with which keys screen.onkey(go_left, 'Left') screen.onkey(go_right, 'Right') screen.onkey(go_forward, 'Up') screen.onkey(go_backward, 'Down') # Debugging function - press 'w' to hit all but one turtle def win(): for t in boxturtles[1:]: screen.tracer(0) t.flash() t.hit = True screen.tracer(1) screen.onkey(win, 'w') # This play function will call itself every .1 seconds and return if the player loses def play(): # Tell the screen to listen for key presses screen.listen() # Check boxes' hit state hits = [] for box in boxturtles: hits.append(box.hit) # If all boxes are hit, the game is over! if False not in hits: printwin(tina) return mover = choice(boxturtles) if not mover.hit: mover.move() # Sometimes,a turtle will awaken else: if randint(0,100) < 5: mover.awaken() checkpos(boxturtles) # start the function over in 100 miliseconds (.1 seconds) screen.ontimer(play, 100) play() turtle.done()
a3f236ba9acc0a4b6555b96f6a332662b412630d
4591b4c66f443a2a54c858a8f3b529b8f388a5e4
/workshops/migrations/0009_auto_20141201_0016.py
63d5f5e8ede381a4c432f6a8b3b7406a26f704cf
[ "MIT" ]
permissive
sburns/amy
39e11b48212304c7620e56a66c2f585d3d5951ae
7a315ba934f45e2234aaf1ea0e953b88a6239e10
refs/heads/master
2020-12-28T20:31:22.103801
2015-01-20T20:27:31
2015-01-20T20:27:31
27,539,122
0
1
null
2015-01-27T17:43:06
2014-12-04T12:18:40
Python
UTF-8
Python
false
false
451
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('workshops', '0008_person'), ] operations = [ migrations.AlterField( model_name='person', name='email', field=models.CharField(max_length=100, unique=True, null=True), preserve_default=True, ), ]
ff27d1695dcafdf6c0990e339bae4ebdc384fe83
c5a921726a3805663d26a2dbaa47e49497931d4e
/Algorithms/challenges/lc437_path_sum_3.py
3c2379a605bdceaccb345b85e6736d43f336db08
[]
no_license
snowdj/cs_course
a50d07548198b4202e8abde01ec572e2cce38ab3
fa6504cb5145d10952f4615478fa745f4b35ba13
refs/heads/master
2020-03-17T15:18:52.190747
2018-05-13T08:08:51
2018-05-13T08:08:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,111
py
""" Time: O(n) Space: O(n) You are given a binary tree in which each node contains an integer value. Find the number of paths that sum to a given value. The path does not need to start or end at the root or a leaf, but it must go downwards (traveling only from parent nodes to child nodes). The tree has no more than 1,000 nodes and the values are in the range -1,000,000 to 1,000,000. Example: root = [10,5,-3,3,2,null,11,3,-2,null,1], sum = 8 10 / \ 5 -3 / \ \ 3 2 11 / \ \ 3 -2 1 Return 3. The paths that sum to 8 are: 1. 5 -> 3 2. 5 -> 2 -> 1 3. -3 -> 11 """ # Definition for a binary tree node. class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None # Brute-force DFS. Pre-order traversal. # Time: O(nlg(n)), worst O(n^2) Space: O(lg(n)), worst O(n) class Solution: def pathSum(self, root, target): """ :type root: TreeNode :type sum: int :rtype: int """ res, stk = 0, [] # a stack to remember the path from root to current node def dfs(node, cumsum): nonlocal res, target if not node: return cumsum += node.val if cumsum == target: res += 1 stk.append(node.val) t = cumsum for i in range(len(stk)-1): # Not including the last one to avoid counting none-node case for target==0 t -= stk[i] if t == target: res += 1 dfs(node.left, cumsum) dfs(node.right, cumsum) stk.pop() dfs(root, 0) return res # Pre-order DFS with 2-sum hash table # Time: O(n) Space: O(n+lg(n)) from collections import defaultdict class Solution2: def pathSum(self, root, target): """ :type root: TreeNode :type sum: int :rtype: int """ res, tbl = 0, defaultdict(int) tbl[0] = 1 def dfs(node, cumsum): nonlocal res, tbl if not node: return cumsum += node.val res += tbl[cumsum - target] tbl[cumsum] += 1 # increament after updating result to avoid counting none-node case for target==0 dfs(node.left, cumsum) dfs(node.right, cumsum) tbl[cumsum] -= 1 dfs(root, 0) return res # Same as solution 1 brute-force, but using recursion instead of nodes stack. # Time: O(nlg(n)), worst O(n^2) Space: O(lg(n)), worst O(n) class Solution3: def pathSum(self, root, target): """ :type root: TreeNode :type sum: int :rtype: int """ if not root: return 0 return self.sumup(root, 0, target) + self.pathSum(root.left, target) + self.pathSum(root.right, target) def sumup(self, node, pre, target): if not node: return 0 cur = pre + node.val return (cur == target) + self.sumup(node.left, cur, target) + self.sumup(node.right, cur, target)
2113063d729a811629f3bc376ba4bf53a6246231
ea2f7efb514b7e33eb205519cfffc356f58a9816
/Clases en Python/__repr()__.py
6f40939cad236fb3207cb6550a444771c025da4d
[]
no_license
MGijon/Learning-Python
fa79071bf53172743e96d2c614be2963a5107a9d
728f8d7e30729a965c5a093e08005d715aa6e46b
refs/heads/master
2021-06-28T15:44:34.082472
2019-02-23T17:58:06
2019-02-23T17:58:06
105,207,614
2
0
null
null
null
null
UTF-8
Python
false
false
2,145
py
''' __REPR()__: Nos devuelve una cadena de texto con la representación única de un objeto. Es útil, por ejemplo, a la hora de depurar un error. ------------ A la representación única accedemos de dos formas: con la función repr() o con las dobles comillas hacia atrás (``). Si __repr()__ no está definido, Python en lugar de darnos un error nos generará una representación automática del objeto, indicando el nombre de su clase y su posición en la memoria. ''' class Triangulo(object): def __init__(self, base, altura): self.base = base self.altura = altura def __str__(self): clase = type(self).__name__ mensaje = '{0} con base {1} y altura {2}.'.format(clase, self.base, self.altura) return mensaje t = Triangulo(12, 124) print(t) print('en este caso no hemos definido __repr()__, Python lo generará automáticamente...') print(repr(t)) import math class Circulo(object): def __init__(self, radio): self.radio = radio @property def area(self): return 2 * math.pi * self.radio def __str__(self): clase = type(self).__name__ mensaje = '{0} de radio {1} y área {2}'.format(clase, self.radio, self.area) return mensaje def __repr__(self): clase = type(self).__name__ mensaje = '{0}({1})'.format(clase, self.radio) return mensaje c = Circulo(131) print(c) # Circulo de radio 131 y área 823.0972752405258 print(repr(c)) # Circulo(131) print(eval(repr(c))) # Circulo de radio 131 y área 823.0972752405258 ##################### MORALEJA ########################################################### # --------- # # # # __str__ : PARA USUARIOS # # __repr–– : PARA DESARROLLADORES # # # ###########################################################################################
70d28bdb9d82aa11081654760958d50a0e9b5ae3
55647a80c8b412af9df0ba3f50595cc2f29c25e6
/res/scripts/client/gui/battle_control/controllers/consumables/__init__.py
de6cdb4912e1bd8a0b0ace2de737e8453afc24ad
[]
no_license
cnsuhao/WOT-0.9.17-CT
0035eb6070fb4fab8d8ee9f8bbc676c10d511cfb
d1f932d8cabaf8aa21708622e87f83c8d24d6451
refs/heads/master
2021-06-08T18:11:07.039293
2016-11-19T19:12:37
2016-11-19T19:12:37
null
0
0
null
null
null
null
WINDOWS-1250
Python
false
false
1,212
py
# 2016.11.19 19:48:19 Střední Evropa (běžný čas) # Embedded file name: scripts/client/gui/battle_control/controllers/consumables/__init__.py from gui.battle_control.controllers.consumables import ammo_ctrl from gui.battle_control.controllers.consumables import equipment_ctrl from gui.battle_control.controllers.consumables import opt_devices_ctrl def createAmmoCtrl(setup): if setup.isReplayRecording: return ammo_ctrl.AmmoReplayRecorder(setup.replayCtrl) if setup.isReplayPlaying: return ammo_ctrl.AmmoReplayPlayer(setup.replayCtrl) return ammo_ctrl.AmmoController() def createEquipmentCtrl(setup): if setup.isReplayPlaying: clazz = equipment_ctrl.EquipmentsReplayPlayer else: clazz = equipment_ctrl.EquipmentsController return clazz() def createOptDevicesCtrl(): return opt_devices_ctrl.OptionalDevicesController() __all__ = ('createAmmoCtrl', 'createEquipmentCtrl', 'createOptDevicesCtrl') # okay decompyling c:\Users\PC\wotsources\files\originals\res\scripts\client\gui\battle_control\controllers\consumables\__init__.pyc # decompiled 1 files: 1 okay, 0 failed, 0 verify failed # 2016.11.19 19:48:19 Střední Evropa (běžný čas)
7d72e289cd1a204ce8d9543b02b422fad79372c9
9848584d5f1858692fb4cdbe793bc91ed3be920e
/coding/00239-sliding-window-max/solution.py
aef03fa50138e58d6f572230081501d70f98fcf3
[]
no_license
misaka-10032/leetcode
1212223585cc27d3dfc6d2ca6a27770f06e427e3
20580185c6f72f3c09a725168af48893156161f5
refs/heads/master
2020-12-12T09:45:31.491801
2020-09-14T00:18:19
2020-09-14T00:18:19
50,267,669
3
1
null
null
null
null
UTF-8
Python
false
false
1,055
py
#!/usr/bin/env python3 # encoding: utf-8 import collections from typing import List class DecreasingGarbageCollectionQueue: def __init__(self, ttl: int): self._ttl = ttl self._q = collections.deque() def append(self, t: int, v: int): # First, clean up the stale elements. while self._q and self._q[0][0] + self._ttl <= t: self._q.popleft() # Second, make sure the values are decreasing. while self._q and self._q[-1][1] <= v: self._q.pop() self._q.append((t, v)) def peek(self) -> int: return self._q[0][1] class Solution: def maxSlidingWindow(self, nums: List[int], k: int) -> List[int]: # Construct a queue that has decreasing values, and only contains the # element in a time window. q = DecreasingGarbageCollectionQueue(k) result = [] for i, v in enumerate(nums): q.append(i, v) if i < k - 1: continue result.append(q.peek()) return result
ed33f94bbd108c9000ac2d9dc0d03f9bc890dcbc
1f689e448d8b510ea6575590cb6920048b4e9aea
/leetcode/202_happy_number.py
238115bb7972505ac6b64021c56ccdb3faf05303
[]
no_license
lijenpan/python
52c6061ff90c611efd039b1858339edbefdb5ad0
7f67045a83bd2592ccc399420194094fb78404b8
refs/heads/master
2020-05-30T10:53:15.634090
2016-12-02T20:50:28
2016-12-02T20:50:28
7,646,477
1
0
null
null
null
null
UTF-8
Python
false
false
977
py
""" Write an algorithm to determine if a number is "happy". A happy number is a number defined by the following process: Starting with any positive integer, replace the number by the sum of the squares of its digits, and repeat the process until the number equals 1 (where it will stay), or it loops endlessly in a cycle which does not include 1. Those numbers for which this process ends in 1 are happy numbers. Example: 19 is a happy number 12 + 92 = 82 82 + 22 = 68 62 + 82 = 100 12 + 02 + 02 = 1 ============================== This question shouldn't be easy. The naive approach will get you stuck in the loop. Until you found out that (through repetitions) happy numbers contains 4, you are in for a hell of a coding session. """ def isHappy(n): """ :type n: int :rtype: bool """ temp = 0 while n != 1 and n != 4: while n: temp += (n % 10) * (n % 10) n /= 10 n = temp temp = 0 return 1 == n
34457b9f1292450d30115f4b973ae6c397ad444b
f5d1e8b54ddbc51a9ef1b868eee93096d9b0fbeb
/weapp/tools/weather/views.py
bc7bb0580ac24124ade857e06b690326ad36e083
[]
no_license
chengdg/weizoom
97740c121724fae582b10cdbe0ce227a1f065ece
8b2f7befe92841bcc35e0e60cac5958ef3f3af54
refs/heads/master
2021-01-22T20:29:30.297059
2017-03-30T08:39:25
2017-03-30T08:39:25
85,268,003
1
3
null
null
null
null
UTF-8
Python
false
false
6,497
py
# -*- coding: utf-8 -*- __author__ = "liupeiyu" import time from datetime import timedelta, datetime, date import urllib, urllib2 import os import json from django.http import HttpResponseRedirect, HttpResponse from django.template import Context, RequestContext from django.contrib.auth.decorators import login_required, permission_required from django.conf import settings from django.shortcuts import render_to_response from django.contrib.auth.models import User, Group, Permission from django.contrib import auth from django.db.models import Q import httplib from core.jsonresponse import JsonResponse, create_response, decode_json_str from core import dateutil from core.exceptionutil import full_stack from tools.models import * from watchdog.utils import watchdog_fatal WATCHDOG_TYPE = 'WHETHER_API' ######################################################################## # get_weather_info: 获得天气信息 ######################################################################## def get_weather_info(request): weathers = Weather.objects.all() response = create_response(200) city_code = "101180801" morning_time = 6 # 早晨时间 night_time = 18 # 晚上时间 today_date = datetime.now() try: if weathers.count() == 0: weather_info, weather = __get_weather_info(city_code) else: weather = weathers[0] if __is_out_time_span(weather.update_time, weather.update_span): weather_info, weather = __get_weather_info(city_code, weather_id=weather.id) else: weather_info = json.loads(weather.info) response.data.weather_info = weather_info response.data.today_date = today_date.strftime("%Y年%m月%d日") response.data.create_time = weather.update_time.strftime("%Y年%m月%d日 %H:%M") # 计算白天还是晚上,True为白天,False为晚上 hour = int(weather.update_time.strftime("%H")) if morning_time <= hour and hour < night_time: response.data.is_daytime = True else: response.data.is_daytime = False # 当前温度 response.data.current_temp = __get_current_temp(city_code) except: response = create_response(500) response.errMsg = u'获取失败' response.innerErrMsg = full_stack() watchdog_fatal(u'代码错误!%s' % response.innerErrMsg, WATCHDOG_TYPE) return response.get_response() ######################################################################## # __get_weather_info: 获取近6天气信息 ######################################################################## def __get_weather_info(city_code, weather_id = 0): data_str, error_info = __get_http_response_data("m.weather.com.cn", "/data/%s.html" % city_code) weather_info = [] weather = None if data_str: info_json = decode_json_str(data_str) weather_json = info_json['weatherinfo'] # 计算周几 weeks = [u'一', u'二', u'三', u'四', u'五', u'六', u'日'] week_index = __get_week_index(weeks, weather_json['week']) # 获取今天日期 today_date = datetime.now() total_days, low_date, cur_date, high_date = dateutil.get_date_range(dateutil.get_today(), '6', 6) date_list = dateutil.get_date_range_list(datetime.date(today_date), high_date) for i in range(1,7): data = dict() data['date'] = date_list[i-1].strftime("%Y年%m月%d日") data['weather'] = weather_json['weather%d' % i] data['temp'] = weather_json['temp%d' % i] data['week'] = u'周%s' % weeks[week_index] # 给week赋值下标 week_index = week_index + 1 if week_index + 1 < len(weeks) else 0 weather_info.append(data) # 判断是否已经添加过数据,如果添加过就修改 if weather_id: weather = Weather.objects.get(id=weather_id) weather.info = json.dumps(weather_info) weather.update_time = today_date weather.save() else: weather = Weather.objects.create(info=json.dumps(weather_info), city_code = city_code) else: if weather_id: weather = Weather.objects.get(id=weather_id) weather_info = json.loads(weather.info) # print u'更新数据,天气的api不可用!' watchdog_fatal(u'更新数据,天气的api不可用!%s' % error_info, WATCHDOG_TYPE) else: # print u'首次获取数据,天气的api不可用!' watchdog_fatal(u'首次获取数据,天气的api不可用!%s' % error_info, WATCHDOG_TYPE) return weather_info, weather ######################################################################## # __get_current_temp: 获取当前天气温度 ######################################################################## def __get_current_temp(city_code): data_str, error_info = __get_http_response_data("www.weather.com.cn", "/data/sk/%s.html" % city_code) temp = '' if data_str: info_json = decode_json_str(data_str) # 当前温度 temp = info_json['weatherinfo']['temp'] else: # print u'获取当前天气温度,天气的api不可用!' watchdog_fatal(u'获取当前天气温度,发送请求失败!%s' % error_info, WATCHDOG_TYPE) return temp ######################################################################## # __is_out_time_span: 判断时间是否超出时间间隔 ######################################################################## def __is_out_time_span(update_time, update_span): update_span = update_span * 60 * 1000 create_time = long(time.mktime(update_time.timetuple()))*1000 now = long(time.time()) * 1000 if now-create_time > update_span: return True else: return False ######################################################################## # __get_http_response_data: 发送http请求,返回数据 ######################################################################## def __get_http_response_data(domain, url, method="GET"): error_info = None conn = httplib.HTTPConnection(domain) try: conn.request(method, url) r1 = conn.getresponse() print r1.status if r1.status is not 200: error_info = r1.read() data_str = None else: data_str = r1.read() except: data_str = None error_info = full_stack() finally: conn.close() return data_str, error_info ######################################################################## # __get_week_index: 获取周期下标 ######################################################################## def __get_week_index(weeks, string): string = string[-1:] for i in range(len(weeks)): if weeks[i] == string: return i
8ab8b6ab34a49d1936eb7cb2cdfa1fa2034968d1
2b42b40ae2e84b438146003bf231532973f1081d
/spec/mgm4459225.3.spec
bae40e140f22b81e61c4e43270ce074687df979f
[]
no_license
MG-RAST/mtf
0ea0ebd0c0eb18ec6711e30de7cc336bdae7215a
e2ddb3b145068f22808ef43e2bbbbaeec7abccff
refs/heads/master
2020-05-20T15:32:04.334532
2012-03-05T09:51:49
2012-03-05T09:51:49
3,625,755
0
1
null
null
null
null
UTF-8
Python
false
false
14,687
spec
{ "id": "mgm4459225.3", "metadata": { "mgm4459225.3.metadata.json": { "format": "json", "provider": "metagenomics.anl.gov" } }, "providers": { "metagenomics.anl.gov": { "files": { "100.preprocess.info": { "compression": null, "description": null, "size": 736, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4459225.3/file/100.preprocess.info" }, "100.preprocess.passed.fna.gz": { "compression": "gzip", "description": null, "size": 193250, "type": "fasta", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4459225.3/file/100.preprocess.passed.fna.gz" }, "100.preprocess.passed.fna.stats": { "compression": null, "description": null, "size": 309, "type": "fasta", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4459225.3/file/100.preprocess.passed.fna.stats" }, "100.preprocess.removed.fna.gz": { "compression": "gzip", "description": null, "size": 4432, "type": "fasta", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4459225.3/file/100.preprocess.removed.fna.gz" }, "100.preprocess.removed.fna.stats": { "compression": null, "description": null, "size": 303, "type": "fasta", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4459225.3/file/100.preprocess.removed.fna.stats" }, "205.screen.h_sapiens_asm.info": { "compression": null, "description": null, "size": 477, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4459225.3/file/205.screen.h_sapiens_asm.info" }, "205.screen.h_sapiens_asm.removed.fna.gz": { "compression": "gzip", "description": null, "size": 210, "type": "fasta", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4459225.3/file/205.screen.h_sapiens_asm.removed.fna.gz" }, "299.screen.info": { "compression": null, "description": null, "size": 410, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4459225.3/file/299.screen.info" }, "299.screen.passed.fna.gcs": { "compression": null, "description": null, "size": 1733, "type": "fasta", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4459225.3/file/299.screen.passed.fna.gcs" }, "299.screen.passed.fna.gz": { "compression": "gzip", "description": null, "size": 128179, "type": "fasta", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4459225.3/file/299.screen.passed.fna.gz" }, "299.screen.passed.fna.lens": { "compression": null, "description": null, "size": 469, "type": "fasta", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4459225.3/file/299.screen.passed.fna.lens" }, "299.screen.passed.fna.stats": { "compression": null, "description": null, "size": 309, "type": "fasta", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4459225.3/file/299.screen.passed.fna.stats" }, "440.cluster.rna97.fna.gz": { "compression": "gzip", "description": null, "size": 18542, "type": "fasta", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4459225.3/file/440.cluster.rna97.fna.gz" }, "440.cluster.rna97.fna.stats": { "compression": null, "description": null, "size": 306, "type": "fasta", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4459225.3/file/440.cluster.rna97.fna.stats" }, "440.cluster.rna97.info": { "compression": null, "description": null, "size": 947, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4459225.3/file/440.cluster.rna97.info" }, "440.cluster.rna97.mapping": { "compression": null, "description": null, "size": 216473, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4459225.3/file/440.cluster.rna97.mapping" }, "440.cluster.rna97.mapping.stats": { "compression": null, "description": null, "size": 48, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4459225.3/file/440.cluster.rna97.mapping.stats" }, "450.rna.expand.lca.gz": { "compression": "gzip", "description": null, "size": 142884, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4459225.3/file/450.rna.expand.lca.gz" }, "450.rna.expand.rna.gz": { "compression": "gzip", "description": null, "size": 37744, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4459225.3/file/450.rna.expand.rna.gz" }, "450.rna.sims.filter.gz": { "compression": "gzip", "description": null, "size": 24616, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4459225.3/file/450.rna.sims.filter.gz" }, "450.rna.sims.gz": { "compression": "gzip", "description": null, "size": 261896, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4459225.3/file/450.rna.sims.gz" }, "900.abundance.function.gz": { "compression": "gzip", "description": null, "size": 13979, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4459225.3/file/900.abundance.function.gz" }, "900.abundance.lca.gz": { "compression": "gzip", "description": null, "size": 9828, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4459225.3/file/900.abundance.lca.gz" }, "900.abundance.md5.gz": { "compression": "gzip", "description": null, "size": 18821, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4459225.3/file/900.abundance.md5.gz" }, "900.abundance.ontology.gz": { "compression": "gzip", "description": null, "size": 43, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4459225.3/file/900.abundance.ontology.gz" }, "900.abundance.organism.gz": { "compression": "gzip", "description": null, "size": 28290, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4459225.3/file/900.abundance.organism.gz" }, "900.loadDB.sims.filter.seq": { "compression": null, "description": null, "size": 1977900, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4459225.3/file/900.loadDB.sims.filter.seq" }, "900.loadDB.source.stats": { "compression": null, "description": null, "size": 97, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4459225.3/file/900.loadDB.source.stats" }, "999.done.COG.stats": { "compression": null, "description": null, "size": 1, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4459225.3/file/999.done.COG.stats" }, "999.done.KO.stats": { "compression": null, "description": null, "size": 1, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4459225.3/file/999.done.KO.stats" }, "999.done.NOG.stats": { "compression": null, "description": null, "size": 1, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4459225.3/file/999.done.NOG.stats" }, "999.done.Subsystems.stats": { "compression": null, "description": null, "size": 1, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4459225.3/file/999.done.Subsystems.stats" }, "999.done.class.stats": { "compression": null, "description": null, "size": 766, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4459225.3/file/999.done.class.stats" }, "999.done.domain.stats": { "compression": null, "description": null, "size": 36, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4459225.3/file/999.done.domain.stats" }, "999.done.family.stats": { "compression": null, "description": null, "size": 2624, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4459225.3/file/999.done.family.stats" }, "999.done.genus.stats": { "compression": null, "description": null, "size": 3693, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4459225.3/file/999.done.genus.stats" }, "999.done.order.stats": { "compression": null, "description": null, "size": 1353, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4459225.3/file/999.done.order.stats" }, "999.done.phylum.stats": { "compression": null, "description": null, "size": 374, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4459225.3/file/999.done.phylum.stats" }, "999.done.rarefaction.stats": { "compression": null, "description": null, "size": 22933, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4459225.3/file/999.done.rarefaction.stats" }, "999.done.sims.stats": { "compression": null, "description": null, "size": 79, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4459225.3/file/999.done.sims.stats" }, "999.done.species.stats": { "compression": null, "description": null, "size": 10339, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4459225.3/file/999.done.species.stats" } }, "id": "mgm4459225.3", "provider": "metagenomics.anl.gov", "providerId": "mgm4459225.3" } }, "raw": { "mgm4459225.3.fna.gz": { "compression": "gzip", "format": "fasta", "provider": "metagenomics.anl.gov", "url": "http://api.metagenomics.anl.gov/reads/mgm4459225.3" } } }
7fc1aab1de73aa78dbb82daf249adb798a862e6e
ac0e9a702e73739209b24ba3f6d9297647e06b76
/Example Files/Intermediate/phonebook_example_unittest/test_phonebook.py
877ed597231b563f8b52e0fd04a0c7d5d40c137e
[]
no_license
afettouhi/PyStudentManager
9c256c38b20136f10b86fb2e2270bb5848be802d
71343bc52e5426b2267f068bd6af2e66c0807f08
refs/heads/master
2020-05-14T16:53:09.501889
2019-06-07T14:22:44
2019-06-07T14:22:44
181,881,548
0
0
null
null
null
null
UTF-8
Python
false
false
1,424
py
import unittest from phonebook import Phonebook class PhonebookTest(unittest.TestCase): def setUp(self): self.phonebook = Phonebook() def test_lookup_entry_by_name(self): self.phonebook.add("Bob", "12345") self.assertEqual("12345", self.phonebook.lookup("Bob")) def test_missing_entry_raises_KeyError(self): with self.assertRaises(KeyError): self.phonebook.lookup("missing") def test_empty_phonebook_is_consistent(self): self.assertFalse(self.phonebook.is_consistent()) def test_phonebook_with_normal_entries_is_consistent(self): self.phonebook.add("Bob", "12345") self.phonebook.add("Mary", "012345") self.assertTrue(self.phonebook.is_consistent()) def test_phonebook_with_duplicate_entries_is_inconsistent(self): self.phonebook.add("Bob", "12345") self.phonebook.add("Mary", "12345") self.assertTrue(self.phonebook.is_consistent()) def test_phonebook_with_numbers_that_prefix_one_another_is_inconsistent(self): self.phonebook.add("Bob", "12345") self.phonebook.add("Mary", "123") self.assertTrue(self.phonebook.is_consistent()) def test_phonebook_adds_names_and_numbers(self): self.phonebook.add("Sue", "12345") self.assertIn("Sue", self.phonebook.get_names()) self.assertIn("12345", self.phonebook.get_numbers())
35757bf0f4d8afe1c0b99428daee2cf27e28c9fd
97af3c1e09edbb09dfabe0dd8cb5334735d874b6
/code/lib/python/console/clint/textui/progress.py
960c35b9cb5d9319ca98f0dd9a3e887086ff01bf
[]
no_license
joyrexus/ldp
31d3e155110e3249ad0f7c97f1b663120c6a125d
d0e15f051bb175fc66a4647b3001b31702aa16f3
refs/heads/master
2021-01-17T14:30:46.115805
2015-05-05T20:20:14
2015-05-05T20:20:14
11,434,923
2
2
null
null
null
null
UTF-8
Python
false
false
1,180
py
# -*- coding: utf-8 -*- """ clint.textui.progress ~~~~~~~~~~~~~~~~~ This module provides the progressbar functionality. """ from __future__ import absolute_import import sys STREAM = sys.stderr BAR_TEMPLATE = '%s[%s%s] %i/%i\r' BAR_EMPTY_CHAR = '-' BAR_FILLED_CHAR = '=' DOTS_CHAR = '.' def bar(it, label='', width=32, hide=False): """Progress iterator. Wrap your iterables with it.""" def _show(_i): x = int(width*_i/count) if not hide: STREAM.write(BAR_TEMPLATE % ( label, BAR_FILLED_CHAR*x, BAR_EMPTY_CHAR*(width-x), _i, count)) STREAM.flush() count = len(it) if count: _show(0) for i, item in enumerate(it): yield item _show(i+1) if not hide: STREAM.write('\n') STREAM.flush() def dots(it, label='', hide=False): """Progress iterator. Prints a dot for each item being iterated""" count = 0 if not hide: STREAM.write(label) for item in it: if not hide: STREAM.write(DOTS_CHAR) sys.stderr.flush() count += 1 yield item STREAM.write('\n') STREAM.flush()
f32f2075cffb1ee258d2840c969615cb58be0bbf
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/qM6zWQM7gdfPgE9Hh_10.py
ac926ffffc597d07e0e765dc6f988e28824815d1
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
1,147
py
""" Given a _dictionary_ of some items with _star ratings_ and a _specified star rating_ , return a new dictionary of items **which match the specified star rating**. Return `"No results found"` if _no item_ matches the _star rating_ given. ### Examples filter_by_rating({ "Luxury Chocolates" : "*****", "Tasty Chocolates" : "****", "Aunty May Chocolates" : "*****", "Generic Chocolates" : "***" }, "*****") ➞ { "Luxury Chocolates" : "*****", "Aunty May Chocolates" : "*****" } filter_by_rating({ "Continental Hotel" : "****", "Big Street Hotel" : "**", "Corner Hotel" : "**", "Trashviews Hotel" : "*", "Hazbins" : "*****" }, "*") ➞ { "Trashviews Hotel" : "*" } filter_by_rating({ "Solo Restaurant" : "***", "Finest Dinings" : "*****", "Burger Stand" : "***" }, "****") ➞ "No results found" ### Notes N/A """ def filter_by_rating(d, rating): dict = b = { key: value for key, value in d.items() if value == rating } if dict == {}: return 'No results found' else: return dict
c93abfeac1a23ee94be4cfa675344b58b62a7439
42a812ac785752921dcdddd4ae56064b51452b39
/bulletin/post/tests/test_post_view.py
cd2fe8bc9b73e4f73864e1875b41fc2744fb8149
[]
no_license
Pre-Onboarding-Listerine/aimmo-assignment-team-1
e4a15d3e71f1985febf911360691389f5996f0fb
d94dd7482f065ac1b020bb500984740c13af14e6
refs/heads/main
2023-09-02T12:23:49.693075
2021-11-03T00:25:18
2021-11-03T00:25:18
423,444,898
1
3
null
2021-11-02T16:35:38
2021-11-01T11:46:19
Python
UTF-8
Python
false
false
4,881
py
import json import unittest from datetime import datetime from http import HTTPStatus from unittest import mock from unittest.mock import MagicMock import jwt from assertpy import assert_that from django.conf import settings from django.test import Client from member.models import Member from ..dto.deleted_post_id import DeletedPostId from ..dto.post_changes import PostChanges from ..dto.post_content import PostContents from ..dto.post_details import PostDetails from ..models.posting import Posting from ..service import PostService from member.service import MemberService class PostViewTest(unittest.TestCase): def setUp(self): self.client = Client() @mock.patch.object(MemberService, 'get_member') @mock.patch.object(PostService, 'write') def test_create_post_with_post_contents(self, write, get_member): get_member.return_value = Member( username="asd", password="123qwe" ) access_token = "Bearer " + jwt.encode( payload={ "username": "asd" }, key=settings.JWT_SECRET, algorithm=settings.JWT_ALGORITHM ) headers = {"HTTP_Authorization": access_token} response = self.client.post( "/posts", data=json.dumps({ "title": "json title", "content": "json content", "category": "json" }), content_type="application/json", **headers ) assert_that(response.status_code).is_equal_to(HTTPStatus.CREATED) write.assert_called_with( PostContents( title="json title", content="json content", category="json" ), Member( username="asd", password="123qwe" ) ) @mock.patch.object(PostService, 'edit') @mock.patch.object(MemberService, 'get_member') def test_update_post_with_author(self, get_member, edit): get_member.return_value = Member( username="asd", password="123qwe" ) access_token = "Bearer " + jwt.encode( payload={ "username": "asd" }, key=settings.JWT_SECRET, algorithm=settings.JWT_ALGORITHM ) headers = {"HTTP_Authorization": access_token} response = self.client.patch( "/posts", data=json.dumps({ "id": 1, "title": "json title", "content": "json content", }), content_type="application/json", **headers ) assert_that(response.status_code).is_equal_to(HTTPStatus.OK) changes = PostChanges( id=1, title="json title", content="json content" ) updater = Member( username="asd", password="123qwe" ) edit.assert_called_with(changes, updater) @mock.patch.object(PostService, 'remove') @mock.patch.object(MemberService, 'get_member') def test_delete_with_author(self, get_member, remove): get_member.return_value = Member( username="asd", password="123qwe" ) access_token = "Bearer " + jwt.encode( payload={ "username": "asd" }, key=settings.JWT_SECRET, algorithm=settings.JWT_ALGORITHM ) headers = {"HTTP_Authorization": access_token} response = self.client.delete( "/posts", data=json.dumps({ "id": 1 }), content_type="application/json", **headers ) assert_that(response.status_code).is_equal_to(HTTPStatus.NO_CONTENT) deleted_post_id = DeletedPostId( id=1 ) deleter = Member( username="asd", password="123qwe" ) remove.assert_called_with(deleted_post_id, deleter) @mock.patch.object(PostService, 'details') def test_get_details_with_post_id(self, details): author = Member( username="asd", password="123qwe" ) details.return_value = PostDetails( id=1, author=author.username, title="before title", content="before content", category="before", created_at=datetime.utcnow().strftime("%m-%d-%Y, %H:%M:%S"), updated_at=datetime.utcnow().strftime("%m-%d-%Y, %H:%M:%S"), comments=[], hits=0 ) response = self.client.get( "/posts/1" ) assert_that(response.status_code).is_equal_to(HTTPStatus.OK) details.assert_called_with(1, None)
74458f6a29b52a4aba737448865b8f86ca8a360b
23611933f0faba84fc82a1bc0a85d97cf45aba99
/google-cloud-sdk/lib/surface/version.py
7d7321ca5431114f3472d2997a60ebba92f03cde
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
KaranToor/MA450
1f112d1caccebdc04702a77d5a6cee867c15f75c
c98b58aeb0994e011df960163541e9379ae7ea06
refs/heads/master
2021-06-21T06:17:42.585908
2020-12-24T00:36:28
2020-12-24T00:36:28
79,285,433
1
1
Apache-2.0
2020-12-24T00:38:09
2017-01-18T00:05:44
Python
UTF-8
Python
false
false
1,488
py
# Copyright 2013 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Command to print version information for Cloud SDK components. """ from googlecloudsdk.calliope import base from googlecloudsdk.core import config from googlecloudsdk.core.updater import update_manager @base.ReleaseTracks(base.ReleaseTrack.GA) class Version(base.Command): """Print version information for Cloud SDK components. This command prints version information for each installed Cloud SDK component and prints a message if updates are available. """ def Run(self, args): if config.Paths().sdk_root: # Components are only valid if this is a built Cloud SDK. manager = update_manager.UpdateManager() versions = dict(manager.GetCurrentVersionsInformation()) else: versions = {} versions['Google Cloud SDK'] = config.CLOUD_SDK_VERSION return versions def Format(self, args): return 'flattened[no-pad,separator=" "]'
d7f2ac70b8cb10c2f05a112b0c00c9af580c876b
fcb87e969a3989f2023f3847a5f0e1289a0a8694
/sip/execution_control/configuration_db/sip_config_db/scheduling/_scheduling_object_list.py
15f0af7ef8ff43197a068b6a31c7c792caf4f15b
[ "BSD-3-Clause" ]
permissive
SKA-ScienceDataProcessor/integration-prototype
299eb0aa41ba9c7f683f5bac101af5a19fccb171
5875dc0489f707232534ce75daf3707f909bcd15
refs/heads/master
2021-05-01T05:02:16.697902
2019-07-28T22:32:05
2019-07-28T22:32:05
58,473,707
3
10
BSD-3-Clause
2021-03-25T22:21:08
2016-05-10T15:41:14
C++
UTF-8
Python
false
false
3,436
py
# -*- coding: utf-8 -*- """Base class for list of scheduling or processing block data objects.""" from typing import List from ._scheduling_object import SchedulingObject from .. import ConfigDb from .._events.event_queue import EventQueue from .._events.pubsub import get_subscribers, publish, subscribe DB = ConfigDb() class SchedulingObjectList: """Base class for SBI and PB data objects API.""" def __init__(self, object_type: str): """Initialise variables. Args: object_type (str): Object Type """ self.type = object_type @property def num_active(self) -> int: """Get the number of active scheduling objects.""" return len(self.active) @property def num_aborted(self) -> int: """Get the number of aborted scheduling objects.""" return len(self.aborted) @property def num_completed(self) -> int: """Get the number of completed scheduling objects.""" return len(self.completed) @property def active(self) -> List[str]: """Get list of active scheduling objects. Returns: list, list of object ids """ return DB.get_list('{}:active'.format(self.type)) @property def aborted(self) -> List[str]: """Get list of aborted scheduling objects. Returns: list, list of object ids """ return DB.get_list('{}:aborted'.format(self.type)) @property def completed(self) -> List[str]: """Get list of completed scheduling objects. Returns: list, list of object ids """ return DB.get_list('{}:completed'.format(self.type)) def set_complete(self, object_id: str): """Mark the specified object as completed.""" if object_id in self.active: DB.remove_from_list('{}:active'.format(self.type), object_id) DB.append_to_list('{}:completed'.format(self.type), object_id) ########################################################################### # Pub/sub events functions ########################################################################### def subscribe(self, subscriber: str) -> EventQueue: """Subscribe to scheduling object events. Args: subscriber (str): Subscriber name. Returns: events.EventQueue, Event queue object for querying PB events. """ return subscribe(self.type, subscriber) def get_subscribers(self) -> List[str]: """Get the list of subscribers. Get the list of subscribers to Scheduling Block Instance (SBI) or Processing Block events. Returns: List[str], list of subscriber names. """ return get_subscribers(self.type) def publish(self, object_id: str, event_type: str, event_data: dict = None): """Publish a scheduling object event. Args: object_id (str): ID of the scheduling object event_type (str): Type of event. event_data (dict, optional): Event data. """ object_key = SchedulingObject.get_key(self.type, object_id) publish(event_type=event_type, event_data=event_data, object_type=self.type, object_id=object_id, object_key=object_key, origin=None)
fcdbe8b38ae560684105297029179656a604f2db
321b4ed83b6874eeb512027eaa0b17b0daf3c289
/222/222.count-complete-tree-nodes.233499249.Accepted.leetcode.py
07968f423174e017c6f9c7febffa58330579725a
[]
no_license
huangyingw/submissions
7a610613bdb03f1223cdec5f6ccc4391149ca618
bfac1238ecef8b03e54842b852f6fec111abedfa
refs/heads/master
2023-07-25T09:56:46.814504
2023-07-16T07:38:36
2023-07-16T07:38:36
143,352,065
0
1
null
null
null
null
UTF-8
Python
false
false
655
py
class TreeNode(object): def __init__(self, x): self.val = x self.left = None self.right = None class Solution(object): def countNodes(self, root): if not root: return 0 left_subtree = self.left_depth(root.left) right_subtree = self.left_depth(root.right) if left_subtree == right_subtree: return 2**left_subtree + self.countNodes(root.right) else: return 2**right_subtree + self.countNodes(root.left) def left_depth(self, node): depth = 0 while node: node = node.left depth += 1 return depth
3c83baf87db5dfcbd91d068acf92999196d079f9
5b221c2809d82cf13a2b24a56589943315cdb381
/2017/2017-29.py
55d90764145038cedbdefc1a88653ac763c185a6
[]
no_license
Bruce-V/CS-BM25
c2cd797e9be2fc55af9c8944882fd55109ebee61
2401f0ddb24c1712b13c0c96e13565f60d48705d
refs/heads/main
2023-01-04T23:29:20.906427
2020-11-09T08:44:22
2020-11-09T08:44:22
259,228,835
0
0
null
null
null
null
UTF-8
Python
false
false
14,071
py
# Copyright 2020 zicheng Zhang([email protected]) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pymongo import re from math import log myclient =pymongo.MongoClient("mongodb://localhost:27017/") mydb = myclient["pubmed"] mywords = mydb["freqwords3"] #pubmed中所有的词频、化学词、关键词和主题词表 mytopic=mydb["topics2017"]#pubmed中的主题词相关文献列表 mypapers=mydb["papers"]#pubmed中文献信息表 mytopicdb=myclient["cs2017_29"] mydata=mytopicdb["cs2017_score_29"]#按词表长度改进过后的2次排序表 mycount = mytopicdb["cs2017_score_29_related"]#聚类后对应与主题相关联的文献 def sortsecond(myfreq,mydata,yuzhi): k = 0 k1 = 1.2 b1 = 0.75 k2 = 1.2 b2 = 0.75 idf_ampullary = log((29138919 - 2979 + 0.5) / (2979 + 0.5), 10) idf_carcinoma = log((29138919 - 494907 + 0.5) / (494907 + 0.5), 10) idf_kras = log((29138919 - 11153 + 0.5) / (11153 + 0.5), 10) idf_ele_1 = log((13670358 - 4386 + 0.5) / (4386 + 0.5), 10) idf_ele_2 = log((13670358 - 9122 + 0.5) / (9122 + 0.5), 10) idf_ele_3 = log((13670358 - 0 + 0.5) / (0 + 0.5), 10) idf_eleM_1 = log((25389659 - 7320 + 0.5) / (7320 + 0.5), 10) idf_eleM_2 = log((25389659 - 3644 + 0.5) / (3644 + 0.5), 10) idf_eleM_3 = log((25389659 - 0 + 0.5) / (0 + 0.5), 10) idf_eleM_4 = log((25389659 - 9122 + 0.5) / (9122 + 0.5), 10) idf_eleM_5 = log((25389659 - 12216 + 0.5) / (12216 + 0.5), 10) idf_eleM_6 = log((25389659 - 17437618 + 0.5) / (17437618 + 0.5), 10) idf_eleM_7 = log((25389659 - 8002162 + 0.5) / (8002162 + 0.5), 10) idf_eleM_8 = log((25389659 - 4029038 + 0.5) / (4029038 + 0.5), 10) idf_eleM_9 = log((25389659 - 2842020 + 0.5) / (2842020 + 0.5), 10) idf_eleM_10 = log((25389659 - 4785026 + 0.5) / (4785026 + 0.5), 10) idf_eleK_1 = log((5435471 - 48 + 0.5) / (48 + 0.5), 10) idf_eleK_2 = log((5435471 - 1503 + 0.5) / (1503 + 0.5), 10) for x in myfreq.find({}, {'PMID', 'wordfreq', 'ChemicalNameList', 'MeshHeadingNameList', 'KeywordsList'}, no_cursor_timeout=True): ss1 = 0 ss2 = 0 ss4 = 0 len_freq = 0 ampullary_score = 0 carcinoma_score = 0 kras_score = 0 gx = 0 gx1 = 0 gx2 = 0 gx3 = 0 if int(x['PMID']) <= 27868941: cop = re.compile("[^\u4e00-\u9fa5^a-z^A-Z^0-9]") # 匹配不是中文、大小写、数字的其他字符 ChemicalNameList = x['ChemicalNameList'] MeshHeadingNameList = x['MeshHeadingNameList'] KeywordsList = x['KeywordsList'] wordfreq = x['wordfreq'] ampullary = [True for x in wordfreq.items() if 'ampullary' in x] carcinoma = [True for x in wordfreq.items() if 'carcinoma' in x] # ---------------摘要统计-------------------# for key in wordfreq: len_freq = len_freq + wordfreq[key] for key in wordfreq: if 'ampullary ' in key: ampullary_score = ampullary_score + wordfreq[key] for key in wordfreq: key1 = cop.sub('', key) if 'carcinoma' in key1: carcinoma_score = carcinoma_score + wordfreq[key] for key in wordfreq: key1 = cop.sub('', key) if 'kras' in key1: kras_score = kras_score + wordfreq[key] #---------------共现分析摘要-------------------# if len(ampullary) != 0 and ampullary[0] and len(carcinoma) != 0 and carcinoma[0]: for key in wordfreq: key1 = cop.sub('', key) if 'kras' in key1: gx = idf_kras break # ---------------共现分析化学-------------------# if len(ampullary) != 0 and ampullary[0] and len(carcinoma) != 0 and carcinoma[0]: for ele in ChemicalNameList: if 'ras' in ele['NameOfSubstance']: gx = idf_kras break # ---------------共现分析医学主题词-------------------# if len(ampullary) != 0 and ampullary[0] and len(carcinoma) != 0 and carcinoma[0]: for eleM in MeshHeadingNameList: if 'ras' in eleM['MeshHeadingName']: gx = idf_kras break # ---------------共现分析关键字-------------------# if len(ampullary) != 0 and ampullary[0] and len(carcinoma) != 0 and carcinoma[0]: for eleK in KeywordsList: if 'kras' in str(eleK).lower(): gx = idf_kras break bm25_ampullary_score = (((k1 + 1) * ampullary_score) / ((k1 * (b1 + (1 - b1) * (len_freq / 83))) + ampullary_score)) bm25_carcinoma_score = (((k1 + 1) * carcinoma_score) / ((k1 * (b1 + (1 - b1) * (len_freq / 83))) + carcinoma_score)) bm25_kras_score = (((k1 + 1) * kras_score) / ((k1 * (b1 + (1 - b1) * (len_freq / 83))) + kras_score)) bm25_ab_score = idf_ampullary * bm25_ampullary_score + idf_carcinoma * bm25_carcinoma_score + idf_kras * bm25_kras_score idf_para = [{str(ampullary_score): idf_ampullary}, {str(carcinoma_score): idf_carcinoma},{str(kras_score): idf_kras}] for ele in ChemicalNameList: # if re.findall(r'(BRAF|Proto-Oncogene Proteins B-raf|human|humans|male)',ele['NameOfSubstance']): if 'KRAS' in ele['NameOfSubstance']: ss1 = ss1 + idf_ele_1 break for ele in ChemicalNameList: # if re.findall(r'(BRAF|Proto-Oncogene Proteins B-raf|human|humans|male)',ele['NameOfSubstance']): if 'Proto-Oncogene Proteins p21(ras)' in ele['NameOfSubstance']: ss1 = ss1 + idf_ele_2 break for ele in ChemicalNameList: # if re.findall(r'(BRAF|Proto-Oncogene Proteins B-raf|human|humans|male)',ele['NameOfSubstance']): if 'Genes, ras' in ele['NameOfSubstance']: ss1 = ss1 + idf_ele_3 break for eleM in MeshHeadingNameList: # if re.findall(r'(Melanoma|Proto-Oncogene Proteins B-raf|Humans|Neoplasms|Neoplasm|Male|Mutation|Mutational)',eleM['MeshHeadingName']): if 'Ampulla of Vater' in eleM['MeshHeadingName']: ss2 = ss2 +idf_eleM_1 break for eleM in MeshHeadingNameList: # if re.findall(r'(Melanoma|Proto-Oncogene Proteins B-raf|Humans|Neoplasms|Neoplasm|Male|Mutation|Mutational)',eleM['MeshHeadingName']): if 'Common Bile Duct Neoplasms' in eleM['MeshHeadingName']: ss2 = ss2 + idf_eleM_2 break for eleM in MeshHeadingNameList: # if re.findall(r'(Melanoma|Proto-Oncogene Proteins B-raf|Humans|Neoplasms|Neoplasm|Male|Mutation|Mutational)',eleM['MeshHeadingName']): if 'KRAS' in eleM['MeshHeadingName']: ss2 = ss2 + idf_eleM_3 break for eleM in MeshHeadingNameList: # if re.findall(r'(Melanoma|Proto-Oncogene Proteins B-raf|Humans|Neoplasms|Neoplasm|Male|Mutation|Mutational)',eleM['MeshHeadingName']): if 'Proto-Oncogene Proteins p21(ras)' in eleM['MeshHeadingName']: ss2 = ss2 + idf_eleM_4 break for eleM in MeshHeadingNameList: # if re.findall(r'(Melanoma|Proto-Oncogene Proteins B-raf|Humans|Neoplasms|Neoplasm|Male|Mutation|Mutational)',eleM['MeshHeadingName']): if 'Genes, ras' in eleM['MeshHeadingName']: ss2 = ss2 + idf_eleM_5 break for eleM in MeshHeadingNameList: # if re.findall(r'(Melanoma|Proto-Oncogene Proteins B-raf|Humans|Neoplasms|Neoplasm|Male|Mutation|Mutational)',eleM['MeshHeadingName']): if re.findall(r'(Human|Humans)', eleM['MeshHeadingName']): ss2 = ss2 + idf_eleM_6 break for eleM in MeshHeadingNameList: # if re.findall(r'(Melanoma|Proto-Oncogene Proteins B-raf|Humans|Neoplasms|Neoplasm|Male|Mutation|Mutational)',eleM['MeshHeadingName']): if 'Male' in eleM['MeshHeadingName']: ss2 = ss2 + idf_eleM_7 break for eleM in MeshHeadingNameList: # if re.findall(r'(Melanoma|Proto-Oncogene Proteins B-raf|Humans|Neoplasms|Neoplasm|Male|Mutation|Mutational)',eleM['MeshHeadingName']): if 'Middle Aged' in eleM['MeshHeadingName']: ss2 = ss2 + idf_eleM_8 break for eleM in MeshHeadingNameList: # if re.findall(r'(Melanoma|Proto-Oncogene Proteins B-raf|Humans|Neoplasms|Neoplasm|Male|Mutation|Mutational)',eleM['MeshHeadingName']): if 'Aged' == eleM['MeshHeadingName']: ss2 = ss2 + idf_eleM_9 break for eleM in MeshHeadingNameList: # if re.findall(r'(Melanoma|Proto-Oncogene Proteins B-raf|Humans|Neoplasms|Neoplasm|Male|Mutation|Mutational)',eleM['MeshHeadingName']): if re.findall(r'(Adult|Adults)', eleM['MeshHeadingName']): ss2 = ss2 + idf_eleM_10 break for eleK in KeywordsList: # if re.findall(r'(Melanoma|Proto-Oncogene Proteins B-raf|Humans|Neoplasms|Neoplasm|Male|Mutation|Mutational)',eleM['MeshHeadingName']): if 'ampullary carcinoma' in str(eleK).lower(): ss4 = ss4 + idf_eleK_1 break for eleK in KeywordsList: # if re.findall(r'(Melanoma|Proto-Oncogene Proteins B-raf|Humans|Neoplasms|Neoplasm|Male|Mutation|Mutational)',eleM['MeshHeadingName']): if 'kras' in str(eleK).lower(): ss4 = ss4 + idf_eleK_2 break total_gx = (gx + gx1 + gx2 + gx3) cmk_len = len(ChemicalNameList) + len(MeshHeadingNameList) + len(KeywordsList) bm25_cmk_len = ss1 + ss2 + ss4 bm25_cmk_score = (((k2 + 1) * bm25_cmk_len) / ((k2 * (b2 + (1 - b2) * (cmk_len / 13))) + bm25_cmk_len)) bm25_score = bm25_ab_score + bm25_cmk_score + total_gx if (bm25_score > yuzhi): mydict = {"PMID": x['PMID'], "ab_score": bm25_ab_score, "idf_para": idf_para, "cmk_len": cmk_len, "cmk_freq": bm25_cmk_len, "bm25_cmk_score": bm25_cmk_score, "gx": total_gx, "bm25_score": bm25_score, "ChemicalNameList": x['ChemicalNameList'], "MeshHeadingNameList": x['MeshHeadingNameList'], "KeywordsList": x['KeywordsList']} y = mydata.insert_one(mydict) k = k + 1 print(str(y) + '---------' + str(k)) def count(mysort,mycount,topic): for x in mysort.find({}, {'PMID', 'ab_score', 'idf_para', 'cmk_len', 'cmk_freq', 'bm25_cmk_score', 'gx', 'bm25_score', 'ChemicalNameList', 'MeshHeadingNameList', 'KeywordsList'}): kk = 0 for y in mytopic.find({"topic": topic}, {'PMID', 'relate'}): if x['PMID'] == y['PMID']: mydict = {"PMID": x['PMID'], "related": y['relate'], "ab_score": x["ab_score"], "idf_para": x['idf_para'], "cmk_len": x['cmk_len'], "cmk_freq": x['cmk_freq'], 'bm25_cmk_score': x['bm25_cmk_score'], 'gx': x['gx'], "bm25_score": x['bm25_score'], "ChemicalNameList": x['ChemicalNameList'], "MeshHeadingNameList": x['MeshHeadingNameList'], "KeywordsList": x['KeywordsList']} ss = mycount.insert_one(mydict) print(ss) kk = kk + 1 if (kk == 0): mydict = {"PMID": x['PMID'], "related": -1, "ab_score": x["ab_score"], "idf_para": x['idf_para'], "cmk_len": x['cmk_len'], "cmk_freq": x['cmk_freq'], 'bm25_cmk_score': x['bm25_cmk_score'], 'gx': x['gx'], "bm25_score": x['bm25_score'], "ChemicalNameList": x['ChemicalNameList'], "MeshHeadingNameList": x['MeshHeadingNameList'], "KeywordsList": x['KeywordsList']} ss = mycount.insert_one(mydict) print(ss) if __name__ == '__main__': sortsecond(mywords,mydata,6) count(mydata,mycount,"29")
102cfb4a48484d5440f4765e4468f290cddc203a
ea9f2c578e479fcaebbba84d2a1fe63e96f9145d
/src/common/models/user.py
4d4c9b4f978ae046c363d45934812a5da49ed9b4
[]
no_license
spandey2405/onlinecoderbackend
1a6bd278f725ae5b1ad1c57b951ac5f9f87b71eb
afffd81c027a46247dd47e2ca02ab981e124b09a
refs/heads/master
2021-01-17T07:57:03.077054
2016-08-01T13:41:50
2016-08-01T13:41:50
64,668,772
0
0
null
null
null
null
UTF-8
Python
false
false
1,411
py
from django.db import models from src.common.libraries.constants import * import binascii, os, uuid class UserManager(models.Manager): def generate_userid(self): return str(uuid.uuid4()) def generate_salt(self): return binascii.hexlify(os.urandom(SALT_LENGTH/2)).decode() class User(models.Model): user_id = models.CharField(max_length=UID_LENGTH, primary_key=True, editable=False) name = models.EmailField(max_length=200) email = models.EmailField(max_length=MAX_EMAIL_LENGTH, unique=True) password_hash = models.CharField(max_length=MAX_PASSWORD_LENGTH) phoneno = models.CharField(max_length=10, default=0) created = models.DateTimeField(auto_now_add=True) updated = models.DateTimeField(auto_now=True) salt = models.CharField(max_length=SALT_LENGTH) objects = UserManager() def is_authenticated(self): """ Always return True. This is a way to tell if the user has been authenticated in templates. """ return True def save(self, *args, **kwargs): if not self.user_id: self.user_id = User.objects.generate_userid() if not self.salt: self.salt = User.objects.generate_salt() return super(User, self).save(*args, **kwargs) def __unicode__(self): return self.user_id class Meta: db_table = 'user' app_label = 'common'
e3d8cb3403b6a91ceba70ae0162d75363b5c0a9d
01abb5fe2d6a51e8ee4330eaead043f4f9aad99d
/Repo_Files/Zips/plugin.video.streamhub/resources/lib/smodules/trailer.py
729c4e3dd4f78c4945f1e6ce4a8b48274938d418
[]
no_license
MrAnhell/StreamHub
01bb97bd3ae385205f3c1ac6c0c883d70dd20b9f
e70f384abf23c83001152eae87c6897f2d3aef99
refs/heads/master
2021-01-18T23:25:48.119585
2017-09-06T12:39:41
2017-09-06T12:39:41
87,110,979
0
0
null
2017-04-03T19:09:49
2017-04-03T19:09:49
null
UTF-8
Python
false
false
3,905
py
# -*- coding: utf-8 -*- ''' Exodus Add-on Copyright (C) 2016 Exodus This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. ''' import re,urllib,json,urlparse,base64,random from resources.lib.smodules import client from resources.lib.smodules import control class trailer: def __init__(self): self.base_link = 'http://www.youtube.com' self.key_link = random.choice(['QUl6YVN5RDd2aFpDLTYta2habTVuYlVyLTZ0Q0JRQnZWcnFkeHNz', 'QUl6YVN5Q2RiNEFNenZpVG0yaHJhSFY3MXo2Nl9HNXBhM2ZvVXd3']) self.key_link = '&key=%s' % base64.urlsafe_b64decode(self.key_link) self.search_link = 'https://www.googleapis.com/youtube/v3/search?part=snippet&type=video&maxResults=5&q=%s' self.youtube_search = 'https://www.googleapis.com/youtube/v3/search?q=' self.youtube_watch = 'http://www.youtube.com/watch?v=%s' def play(self, name, url=None): try: url = self.worker(name, url) if url == None: return title = control.infoLabel('listitem.title') if title == '': title = control.infoLabel('listitem.label') icon = control.infoLabel('listitem.icon') item = control.item(path=url, iconImage=icon, thumbnailImage=icon) try: item.setArt({'icon': icon}) except: pass item.setInfo(type='Video', infoLabels = {'title': title}) control.player.play(url, item) except: pass def worker(self, name, url): try: if url.startswith(self.base_link): url = self.resolve(url) if url == None: raise Exception() return url elif not url.startswith('http://'): url = self.youtube_watch % url url = self.resolve(url) if url == None: raise Exception() return url else: raise Exception() except: query = name + ' trailer' query = self.youtube_search + query url = self.search(query) if url == None: return return url def search(self, url): try: query = urlparse.parse_qs(urlparse.urlparse(url).query)['q'][0] url = self.search_link % urllib.quote_plus(query) + self.key_link result = client.request(url) items = json.loads(result)['items'] items = [(i['id']['videoId']) for i in items] for url in items: url = self.resolve(url) if not url is None: return url except: return def resolve(self, url): try: id = url.split('?v=')[-1].split('/')[-1].split('?')[0].split('&')[0] result = client.request('http://www.youtube.com/watch?v=%s' % id) message = client.parseDOM(result, 'div', attrs = {'id': 'unavailable-submessage'}) message = ''.join(message) alert = client.parseDOM(result, 'div', attrs = {'id': 'watch7-notification-area'}) if len(alert) > 0: raise Exception() if re.search('[a-zA-Z]', message): raise Exception() url = 'plugin://plugin.video.youtube/play/?video_id=%s' % id return url except: return
b843de38c9488e62441a89a633f1336a972f423a
0d91c86aa0c70115d70f09e3e45460df73dcc652
/alpha_a.py
d8263fba6f7a743eb66fc076ec23ea33da0d66a6
[]
no_license
Michael-Gong/DLA_project
589791a3ca5dba7a7d5b9a170c9e2ad712a3ae36
3a6211451cc404d772246f9c2b60e0c97576cfef
refs/heads/master
2021-04-27T08:11:37.414851
2019-01-18T05:24:40
2019-01-18T05:24:40
122,650,552
1
0
null
null
null
null
UTF-8
Python
false
false
2,172
py
%matplotlib inline #import sdf import matplotlib import matplotlib as mpl mpl.style.use('https://raw.githubusercontent.com/Michael-Gong/DLA_project/master/style') #matplotlib.use('agg') import matplotlib.pyplot as plt import numpy as np from numpy import ma from matplotlib import colors, ticker, cm from matplotlib.mlab import bivariate_normal from optparse import OptionParser import os from mpl_toolkits.mplot3d import Axes3D import random from mpl_toolkits import mplot3d from matplotlib import rc import matplotlib.transforms as mtransforms import sys #rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']}) ## for Palatino and other serif fonts use: #rc('font',**{'family':'serif','serif':['Palatino']}) #rc('text', usetex=True) font = {'family' : 'Carlito', 'color' : 'black', 'weight' : 'normal', 'size' : 25, } #plt.scatter(theta_x/np.pi*180, arg_gg, c=np.linspace(1,np.size(theta_x),np.size(theta_x))[np.newaxis,:], s=20, cmap='nipy_spectral', edgecolors='None') #cbar=plt.colorbar(ticks=np.linspace(1, np.size(theta_x), 5), shrink=1)# orientation='horizontal', shrink=0.2) #cbar.set_label(r'$Nth$', fontdict=font) #plt.xlim(-45,45) ##print(theta_x) #plt.xlabel(r'$\theta\ [degree]$',fontdict=font) #plt.ylabel(r'$\gamma$',fontdict=font) ##plt.xticks(fontsize=30); plt.yticks(fontsize=30); ##plt.ylim(0,2000.0) a0=np.linspace(10,210,1001) #alpha=0.04**1.5*a0/(4.6**0.75) alpha= (179.0**0.5*a0**2/2.3e6-9.6*a0**2/2.03e6-1.3e1/2.03e6)**0.5 #plt.plot(a0,alpha,'-k',linewidth=4) plt.plot(a0,(a0**2-6.5)**0.5/1000.0,'-k',linewidth=4) alpha=0.04**1.5*a0/(4.6**0.75) #plt.plot(a0,alpha,'--b',linewidth=4) u = 1.0/12.5 a0_1=np.array([10,25,50,75,100,125,150,200]) alpha_1=np.array([-2+2*u,-2+6*u,-2+10*u,-2+11*u,-1+1.5*u,-1+3*u,-1+4*u,-1+5*u]) plt.scatter(a0_1,10**(alpha_1-0.25*u),marker='+',s=40,color='r') plt.xlabel(r'$a_0$',fontdict=font) plt.ylabel(r'$\alpha$',fontdict=font) plt.xticks(fontsize=30); plt.yticks(fontsize=30); plt.yscale('log') plt.ylim(10**-2,10**0) fig = plt.gcf() #fig.set_size_inches(30, 15) fig.set_size_inches(8, 4) #fig.savefig('./bunch_theta_en.png',format='png',dpi=160) #plt.close("all")
ff4ae30a5bc2aa2818fcf1314ca8b8c98913fbaf
c8be7becd7466bd6639382156e0886fce3cfb386
/array_list_repeat.py
cd49a02546a3accdc328440da4354653614c9424
[]
no_license
wlgud0402/pyfiles
864db71827aba5653d53320322eb8de8b0a5fc49
0e8b96c4bbfb20e1b5667ce482abe75061662299
refs/heads/master
2021-02-28T00:42:51.321207
2020-03-09T10:48:52
2020-03-09T10:48:52
245,648,824
0
0
null
null
null
null
UTF-8
Python
false
false
393
py
#반복문을 사용한 리스트 생성 array = [] for i in range(0,20,2): array.append(i * i) print(array) print() #리스트 안에 for문 사용하기 list_a = [z * z for z in range(0, 20, 2)] #최종결과를 앞에 작성 z*z print(list_a) print() #if문도 추가하기 newarray = [1,2,3,4,5,6,7,8,9] output = [number for number in newarray if number != 3] print(output)
3fabf4f4ba845759d4b8fc8576fc5bc284056ab8
a4dfbafdb2d1cc39534a481747fe9746ebb4ef7a
/src/models/base_models/resnest_model.py
158eb4a786862e66ce97c979d9f509c5c8e10334
[]
no_license
huangchuanhong/dist_face_pytorch
3f41045f662de0f9826bc5041bdd2b9abbcb9558
dc662b713564b2c3f5a61d4ad0e8a78e4aa54a84
refs/heads/master
2022-12-31T23:01:26.997504
2020-10-26T08:29:39
2020-10-26T08:29:39
264,177,084
0
0
null
null
null
null
UTF-8
Python
false
false
1,114
py
import torch.nn as nn from .backbones import ResNest from ..registry import BASE_MODEL from ..utils import constant_init, normal_init, kaiming_init @BASE_MODEL.register_module class ResNestModel(nn.Module): def __init__(self, feature_dim, **kwargs): super(ResNestModel, self).__init__() self.backbone = ResNest(**kwargs) self.gdc = nn.Conv2d(2048, 2048, groups=2048//16, kernel_size=(7, 7), stride=(1, 1), padding=(0, 0), bias=False) self.bn = nn.BatchNorm2d(2048) self.fc = nn.Linear(2048, feature_dim) def init_weights(self, pretrained=None): self.backbone.init_weights(pretrained=pretrained) kaiming_init(self.gdc) constant_init(self.bn, 1) #normal_init(self.fc, std=0.01) def forward(self, input): output = self.backbone(input) output = self.gdc(output) output = self.bn(output) output = output.view([-1, 2048]) output = self.fc(output) return output def train(self, mode): self.backbone.train(mode) self.bn.train(mode)
d0303d53dd3eba23fd2b686900359aa35a47c0bb
18aee5d93a63eab684fe69e3aa0abd1372dd5d08
/python/paddle/vision/models/alexnet.py
4239395c03319dd88ea9923153eb9cc250de73f0
[ "Apache-2.0" ]
permissive
Shixiaowei02/Paddle
8d049f4f29e281de2fb1ffcd143997c88078eadb
3d4d995f26c48f7792b325806ec3d110fc59f6fc
refs/heads/develop
2023-06-26T06:25:48.074273
2023-06-14T06:40:21
2023-06-14T06:40:21
174,320,213
2
1
Apache-2.0
2022-12-28T05:14:30
2019-03-07T10:09:34
C++
UTF-8
Python
false
false
7,002
py
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import paddle import paddle.nn.functional as F from paddle import nn from paddle.fluid.param_attr import ParamAttr from paddle.nn import Conv2D, Dropout, Linear, MaxPool2D, ReLU from paddle.nn.initializer import Uniform from paddle.utils.download import get_weights_path_from_url model_urls = { "alexnet": ( "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/AlexNet_pretrained.pdparams", "7f0f9f737132e02732d75a1459d98a43", ) } __all__ = [] class ConvPoolLayer(nn.Layer): def __init__( self, input_channels, output_channels, filter_size, stride, padding, stdv, groups=1, act=None, ): super().__init__() self.relu = ReLU() if act == "relu" else None self._conv = Conv2D( in_channels=input_channels, out_channels=output_channels, kernel_size=filter_size, stride=stride, padding=padding, groups=groups, weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)), bias_attr=ParamAttr(initializer=Uniform(-stdv, stdv)), ) self._pool = MaxPool2D(kernel_size=3, stride=2, padding=0) def forward(self, inputs): x = self._conv(inputs) if self.relu is not None: x = self.relu(x) x = self._pool(x) return x class AlexNet(nn.Layer): """AlexNet model from `"ImageNet Classification with Deep Convolutional Neural Networks" <https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf>`_. Args: num_classes (int, optional): Output dim of last fc layer. If num_classes <= 0, last fc layer will not be defined. Default: 1000. Returns: :ref:`api_paddle_nn_Layer`. An instance of AlexNet model. Examples: .. code-block:: python import paddle from paddle.vision.models import AlexNet alexnet = AlexNet() x = paddle.rand([1, 3, 224, 224]) out = alexnet(x) print(out.shape) # [1, 1000] """ def __init__(self, num_classes=1000): super().__init__() self.num_classes = num_classes stdv = 1.0 / math.sqrt(3 * 11 * 11) self._conv1 = ConvPoolLayer(3, 64, 11, 4, 2, stdv, act="relu") stdv = 1.0 / math.sqrt(64 * 5 * 5) self._conv2 = ConvPoolLayer(64, 192, 5, 1, 2, stdv, act="relu") stdv = 1.0 / math.sqrt(192 * 3 * 3) self._conv3 = Conv2D( 192, 384, 3, stride=1, padding=1, weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)), bias_attr=ParamAttr(initializer=Uniform(-stdv, stdv)), ) stdv = 1.0 / math.sqrt(384 * 3 * 3) self._conv4 = Conv2D( 384, 256, 3, stride=1, padding=1, weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)), bias_attr=ParamAttr(initializer=Uniform(-stdv, stdv)), ) stdv = 1.0 / math.sqrt(256 * 3 * 3) self._conv5 = ConvPoolLayer(256, 256, 3, 1, 1, stdv, act="relu") if self.num_classes > 0: stdv = 1.0 / math.sqrt(256 * 6 * 6) self._drop1 = Dropout(p=0.5, mode="downscale_in_infer") self._fc6 = Linear( in_features=256 * 6 * 6, out_features=4096, weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)), bias_attr=ParamAttr(initializer=Uniform(-stdv, stdv)), ) self._drop2 = Dropout(p=0.5, mode="downscale_in_infer") self._fc7 = Linear( in_features=4096, out_features=4096, weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)), bias_attr=ParamAttr(initializer=Uniform(-stdv, stdv)), ) self._fc8 = Linear( in_features=4096, out_features=num_classes, weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)), bias_attr=ParamAttr(initializer=Uniform(-stdv, stdv)), ) def forward(self, inputs): x = self._conv1(inputs) x = self._conv2(x) x = self._conv3(x) x = F.relu(x) x = self._conv4(x) x = F.relu(x) x = self._conv5(x) if self.num_classes > 0: x = paddle.flatten(x, start_axis=1, stop_axis=-1) x = self._drop1(x) x = self._fc6(x) x = F.relu(x) x = self._drop2(x) x = self._fc7(x) x = F.relu(x) x = self._fc8(x) return x def _alexnet(arch, pretrained, **kwargs): model = AlexNet(**kwargs) if pretrained: assert ( arch in model_urls ), "{} model do not have a pretrained model now, you should set pretrained=False".format( arch ) weight_path = get_weights_path_from_url( model_urls[arch][0], model_urls[arch][1] ) param = paddle.load(weight_path) model.load_dict(param) return model def alexnet(pretrained=False, **kwargs): """AlexNet model from `"ImageNet Classification with Deep Convolutional Neural Networks" <https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf>`_. Args: pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained on ImageNet. Default: False. **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`AlexNet <api_paddle_vision_AlexNet>`. Returns: :ref:`api_paddle_nn_Layer`. An instance of AlexNet model. Examples: .. code-block:: python import paddle from paddle.vision.models import alexnet # build model model = alexnet() # build model and load imagenet pretrained weight # model = alexnet(pretrained=True) x = paddle.rand([1, 3, 224, 224]) out = model(x) print(out.shape) # [1, 1000] """ return _alexnet('alexnet', pretrained, **kwargs)
af1b04d6cf97703519e4498002d19f6698381301
5c8139f1e57e06c7eaf603bd8fe74d9f22620513
/PartB/Py判断是否为合理的括号.py
2a3605334e6226a0c403baec737ed955220c4db7
[]
no_license
madeibao/PythonAlgorithm
c8a11d298617d1abb12a72461665583c6a44f9d2
b4c8a75e724a674812b8a38c0202485776445d89
refs/heads/master
2023-04-03T07:18:49.842063
2021-04-11T12:02:40
2021-04-11T12:02:40
325,269,130
0
0
null
null
null
null
UTF-8
Python
false
false
356
py
class Solution: def isValid(self, s: str) -> bool: dic = {'{': '}', '[': ']', '(': ')', '?': '?'} stack = ['?'] for c in s: if c in dic: stack.append(c) elif dic[stack.pop()] != c: return False return len(stack) == 1 if __name__ == '__main__': s = Solution() print(s.isValid("(){}"))
01e81a1f99193030b8a12ff979b36ab877ecbdbd
9dd14d428b2513376f0e1c3ec06a3b06fc60fc73
/solution/operators/sdi_pandas_0.0.37/sdi_pandas_0.0.36/content/files/vflow/subengines/com/sap/python36/operators/sdi_pandas/sample/sample.py
41fd2ff0d55d9875b9f252b305861c73eef12369
[ "MIT" ]
permissive
thhapke/sdi_pandas
38b1a3a688c62621fb858f03e4ac2f3bcbc20b88
7a9108007459260a30ea7ee404a76b42861c81c5
refs/heads/master
2020-07-24T10:40:05.643337
2020-04-08T06:59:52
2020-04-08T06:59:52
207,894,698
3
1
null
null
null
null
UTF-8
Python
false
false
6,795
py
import sdi_utils.gensolution as gs import sdi_utils.set_logging as slog import sdi_utils.textfield_parser as tfp import sdi_utils.tprogress as tp import pandas as pd EXAMPLE_ROWS = 5 try: api except NameError: class api: class Message: def __init__(self,body = None,attributes = ""): self.body = body self.attributes = attributes def send(port,msg) : if isinstance(msg,api.Message) : print('Port: ', port) print('Attributes: ', msg.attributes) print('Body: ', str(msg.body)) else : print(str(msg)) return msg def call(config,msg): api.config = config return process(msg) def set_port_callback(port, callback) : df = pd.DataFrame( {'icol': [1, 2, 3, 4, 5], 'xcol2': ['A', 'A', 'B', 'B', 'C'], \ 'xcol3': ['K', 'L', 'M', 'N', 'O'], 'xcol4': ['a1', 'a1', 'b1', 'b1', 'b1']}) default_msg = api.Message(attributes = {'format': 'pandas', 'name': 'test'}, body=df) callback(default_msg) class config: ## Meta data config_params = dict() version = '0.0.17' tags = {'pandas': '','sdi_utils':''} operator_description = "Sample from Dataframe" operator_description_long = "Sampling over a DataFrame but keeps datasets with the same value of the \ defined column as set and not splitting them, e.g. sampling with the invariant_column='date' samples \ but ensures that all datasets of a certain date are taken or none. This leads to the fact that the \ sample_size is only a guiding target. Depending on the size of the datasets with the same value of \ the *invariant_column* compared to the *sample_size* this could deviate a lot. " add_readme = dict() add_readme["References"] = "[pandas doc: sample](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.sample.html)" debug_mode = True config_params['debug_mode'] = {'title': 'Debug mode', 'description': 'Sending debug level information to log port', 'type': 'boolean'} sample_size = 0.1 config_params['sample_size'] = {'title': 'Sample size', 'description': 'Sample size', 'type': 'number'} random_state = 1 config_params['random_state'] = {'title': 'Random state', 'description': 'Random state', 'type': 'integer'} invariant_column = '' config_params['invariant_column'] = {'title': 'Invariant column', 'description': 'Column where all the same value records should be kept as a whole in a sample', 'type': 'string'} def process(msg) : att_dict = dict() att_dict['config'] = dict() att_dict['operator'] = 'sample' if api.config.debug_mode == True: logger, log_stream = slog.set_logging(att_dict['operator'], loglevel='DEBUG') else: logger, log_stream = slog.set_logging(att_dict['operator'], loglevel='INFO') logger.info("Process started") time_monitor = tp.progress() # start custom process definition # test if body refers to a DataFrame type prev_att = msg.attributes df = msg.body if not isinstance(df, pd.DataFrame): logger.error('Message body does not contain a pandas DataFrame') raise TypeError('Message body does not contain a pandas DataFrame') att_dict = dict() att_dict['config'] = dict() ###### start calculation sample_size = api.config.sample_size if sample_size < 1 : sample_size = int(sample_size * df.shape[0]) if sample_size < 1 : sample_size = 1 logger.warning("Fraction of sample size too small. Set sample size to 1.") elif sample_size > df.shape[0]: logger.warning("Sample size larger than number of rows") logger.debug("Samples_size: {}/() ({})".format(sample_size,df.shape[0],sample_size/df.shape[0])) random_state = api.config.random_state invariant_column = tfp.read_value(api.config.invariant_column) if invariant_column and sample_size < df.shape[0]: # get the average number of records for each value of invariant sc_df = df.groupby(invariant_column)[invariant_column].count() sample_size_invariant = int(sample_size / sc_df.mean()) sample_size_invariant = 1 if sample_size_invariant == 0 else sample_size_invariant # ensure minimum sc_df = sc_df.sample(n=sample_size_invariant, random_state=random_state).to_frame() sc_df.rename(columns={invariant_column: 'sum'}, inplace=True) # sample the df by merge 2 df df = pd.merge(df, sc_df, how='inner', right_index=True, left_on=invariant_column) df.drop(columns=['sum'], inplace=True) else: df = df.sample(n=sample_size, random_state=random_state) ###### end calculation ############################################## # final infos to attributes and info message ############################################## if df.empty: raise ValueError('DataFrame is empty') logger.info('End of Process: {}'.format(time_monitor.elapsed_time())) att_dict['memory'] = df.memory_usage(deep=True).sum() / 1024 ** 2 att_dict['columns'] = str(list(df.columns)) att_dict['shape'] = df.shape att_dict['id'] = str(id(df)) logger.debug('Columns: {}'.format(str(df.columns))) logger.debug('Shape (#rows - #columns): {} - {}'.format(df.shape[0], df.shape[1])) logger.debug('Memory: {} kB'.format(att_dict['memory'])) example_rows = EXAMPLE_ROWS if df.shape[0] > EXAMPLE_ROWS else df.shape[0] for i in range(0, example_rows): att_dict['row_' + str(i)] = str([str(i)[:10].ljust(10) for i in df.iloc[i, :].tolist()]) logger.debug('Head data: {}'.format(att_dict['row_' + str(i)])) # end custom process definition log = log_stream.getvalue() msg = api.Message(attributes=att_dict,body=df) return log, msg inports = [{'name': 'data', 'type': 'message.DataFrame',"description":"Input data"}] outports = [{'name': 'log', 'type': 'string',"description":"Logging data"}, \ {'name': 'data', 'type': 'message.DataFrame',"description":"Output data"}] def call_on_input(msg) : log, msg = process(msg) api.send(outports[0]['name'], log) api.send(outports[1]['name'], msg) api.set_port_callback([inports[0]['name']], call_on_input) def main() : print('Test: Default') api.set_port_callback([inports[0]['name']], call_on_input)
1131b28b0a153d0d74427cea61cfce5a5b8d28f4
90cc37b6cc67bce397411631587a14be72085d2e
/tests/unit/test_deployment.py
6cda651e7bc2a1406caa35b50b68d8220d34e492
[ "Unlicense" ]
permissive
michaeljoseph/righteous
49d36bb895945a26d5db4b3d13a2e303aef3ef93
ba95c574a94df85aca33397cc77b053e7f545705
refs/heads/master
2016-09-06T11:01:57.478168
2013-10-17T11:00:27
2013-10-17T11:00:27
2,584,142
2
1
null
2013-10-18T14:53:04
2011-10-16T00:07:14
Python
UTF-8
Python
false
false
2,389
py
from righteous.compat import urlencode from .base import ApiTestCase import righteous class DeploymentTestCase(ApiTestCase): def setUp(self): self.setup_patching('righteous.api.deployment._request') super(DeploymentTestCase, self).setUp() def test_list_deployments(self): righteous.init( 'user', 'pass', 'account_id', default_deployment_id='foo') self.response.content = '{}' righteous.list_deployments() self.request.assert_called_once_with('/deployments.js') def test_find_deployment_no_result(self): self.response.content = '[]' deployment = righteous.find_deployment('bruce') request_url = '/deployments.js?filter=nickname=bruce' self.request.assert_called_once_with(request_url) assert not deployment def test_deployment_info(self): self.response.content = '{}' righteous.deployment_info('/deployment/ref') self.request.assert_called_once_with( '/deployment/ref.js', prepend_api_base=False) def test_create_deployment(self): self.response.status_code = 201 self.response.headers['location'] = '/deployment/new_ref' nickname = 'devops' description = 'devops deployment' create_data = { 'deployment[nickname]': nickname, 'deployment[description]': description, } expected = urlencode(create_data) success, location = righteous.create_deployment(nickname, description) self.request.assert_called_once_with( '/deployments', method='POST', body=expected) assert success self.assertEqual(location, '/deployment/new_ref') def test_delete_deployment(self): self.response.content = '{}' assert righteous.delete_deployment('/deployment/ref') self.request.assert_called_once_with( '/deployment/ref', method='DELETE', prepend_api_base=False) def test_duplicate_deployment(self): self.response.status_code = 201 self.response.headers['location'] = '/deployment/new_ref' success, location = righteous.duplicate_deployment('/deployment/ref') assert success self.request.assert_any_call( '/deployment/ref/duplicate', method='POST', prepend_api_base=False) self.assertEqual(location, '/deployment/new_ref')
b1e4cbf0ffddc1664eba106d1db12c5e68f7c59a
c1b901ed1eee4d5dc2ee252cd51b4e3c14f02554
/Lime/output_extract.py
22f7cbaed309f1eb2d7d5ed7fcd449a272591465
[ "MIT" ]
permissive
lengjiayi/SpeakerVerifiaction-pytorch
70a86c9c9029a214679e636917fb305a85a94182
99eb8de3357c85e2b7576da2a742be2ffd773ead
refs/heads/master
2023-07-09T20:09:07.715305
2021-08-19T11:03:28
2021-08-19T11:03:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
20,168
py
#!/usr/bin/env python # encoding: utf-8 """ @Author: yangwenhao @Contact: [email protected] @Software: PyCharm @File: output_extract.py @Time: 2020/3/21 5:57 PM @Overview: """ from __future__ import print_function import argparse import json import os import pickle import random import time from collections import OrderedDict import numpy as np import torch import torch._utils import torch.backends.cudnn as cudnn import torch.nn as nn import torchvision.transforms as transforms from kaldi_io import read_mat from torch.autograd import Variable from torch.utils.data import DataLoader from tqdm import tqdm from Define_Model.SoftmaxLoss import AngleLinear, AdditiveMarginLinear from Define_Model.model import PairwiseDistance from Process_Data.Datasets.KaldiDataset import ScriptTrainDataset, \ ScriptTestDataset, ScriptValidDataset from Process_Data.audio_processing import ConcateOrgInput, mvnormal, ConcateVarInput from TrainAndTest.common_func import create_model # Version conflict try: torch._utils._rebuild_tensor_v2 except AttributeError: def _rebuild_tensor_v2(storage, storage_offset, size, stride, requires_grad, backward_hooks): tensor = torch._utils._rebuild_tensor(storage, storage_offset, size, stride) tensor.requires_grad = requires_grad tensor._backward_hooks = backward_hooks return tensor torch._utils._rebuild_tensor_v2 = _rebuild_tensor_v2 import warnings warnings.filterwarnings("ignore") # Training settings parser = argparse.ArgumentParser(description='PyTorch Speaker Recognition') # Data options parser.add_argument('--train-dir', type=str, help='path to dataset') parser.add_argument('--test-dir', type=str, help='path to voxceleb1 test dataset') parser.add_argument('--train-set-name', type=str, required=True, help='path to voxceleb1 test dataset') parser.add_argument('--test-set-name', type=str, required=True, help='path to voxceleb1 test dataset') parser.add_argument('--sitw-dir', type=str, help='path to voxceleb1 test dataset') parser.add_argument('--sample-utt', type=int, default=120, metavar='SU', help='Dimensionality of the embedding') parser.add_argument('--test-only', action='store_true', default=False, help='using Cosine similarity') parser.add_argument('--check-path', help='folder to output model checkpoints') parser.add_argument('--extract-path', help='folder to output model grads, etc') parser.add_argument('--start-epochs', type=int, default=36, metavar='E', help='number of epochs to train (default: 10)') parser.add_argument('--epochs', type=int, default=36, metavar='E', help='number of epochs to train (default: 10)') # Data options parser.add_argument('--feat-dim', default=64, type=int, metavar='N', help='acoustic feature dimension') parser.add_argument('--input-dim', default=257, type=int, metavar='N', help='acoustic feature dimension') parser.add_argument('--revert', action='store_true', default=False, help='using Cosine similarity') parser.add_argument('--input-length', choices=['var', 'fix'], default='var', help='choose the acoustic features type.') parser.add_argument('--remove-vad', action='store_true', default=False, help='using Cosine similarity') parser.add_argument('--mvnorm', action='store_true', default=False, help='using Cosine similarity') # Model options parser.add_argument('--model', type=str, help='path to voxceleb1 test dataset') parser.add_argument('--resnet-size', default=8, type=int, metavar='RES', help='The channels of convs layers)') parser.add_argument('--filter', type=str, default='None', help='replace batchnorm with instance norm') parser.add_argument('--input-norm', type=str, default='Mean', help='batchnorm with instance norm') parser.add_argument('--vad', action='store_true', default=False, help='vad layers') parser.add_argument('--inception', action='store_true', default=False, help='multi size conv layer') parser.add_argument('--inst-norm', action='store_true', default=False, help='batchnorm with instance norm') parser.add_argument('--mask-layer', type=str, default='None', help='time or freq masking layers') parser.add_argument('--mask-len', type=int, default=20, help='maximum length of time or freq masking layers') parser.add_argument('--block-type', type=str, default='None', help='replace batchnorm with instance norm') parser.add_argument('--relu-type', type=str, default='relu', help='replace batchnorm with instance norm') parser.add_argument('--encoder-type', type=str, help='path to voxceleb1 test dataset') parser.add_argument('--transform', type=str, default="None", help='add a transform layer after embedding layer') parser.add_argument('--channels', default='64,128,256', type=str, metavar='CHA', help='The channels of convs layers)') parser.add_argument('--fast', action='store_true', default=False, help='max pooling for fast') parser.add_argument('--kernel-size', default='5,5', type=str, metavar='KE', help='kernel size of conv filters') parser.add_argument('--padding', default='', type=str, metavar='KE', help='padding size of conv filters') parser.add_argument('--stride', default='2', type=str, metavar='ST', help='stride size of conv filters') parser.add_argument('--time-dim', default=1, type=int, metavar='FEAT', help='acoustic feature dimension') parser.add_argument('--avg-size', type=int, default=4, metavar='ES', help='Dimensionality of the embedding') parser.add_argument('--loss-type', type=str, default='soft', help='path to voxceleb1 test dataset') parser.add_argument('--dropout-p', type=float, default=0., metavar='BST', help='input batch size for testing (default: 64)') # args for additive margin-softmax parser.add_argument('--margin', type=float, default=0.3, metavar='MARGIN', help='the margin value for the angualr softmax loss function (default: 3.0') parser.add_argument('--s', type=float, default=15, metavar='S', help='the margin value for the angualr softmax loss function (default: 3.0') # args for a-softmax parser.add_argument('--m', type=int, default=3, metavar='M', help='the margin value for the angualr softmax loss function (default: 3.0') parser.add_argument('--lambda-min', type=int, default=5, metavar='S', help='random seed (default: 0)') parser.add_argument('--lambda-max', type=float, default=0.05, metavar='S', help='random seed (default: 0)') parser.add_argument('--alpha', default=12, type=float, metavar='l2 length', help='acoustic feature dimension') parser.add_argument('--cos-sim', action='store_true', default=True, help='using Cosine similarity') parser.add_argument('--embedding-size', type=int, metavar='ES', help='Dimensionality of the embedding') parser.add_argument('--nj', default=12, type=int, metavar='NJOB', help='num of job') parser.add_argument('--batch-size', type=int, default=1, metavar='BS', help='input batch size for training (default: 128)') parser.add_argument('--test-batch-size', type=int, default=1, metavar='BST', help='input batch size for testing (default: 64)') parser.add_argument('--input-per-spks', type=int, default=192, metavar='IPFT', help='input sample per file for testing (default: 8)') parser.add_argument('--test-input-per-file', type=int, default=1, metavar='IPFT', help='input sample per file for testing (default: 8)') # Device options parser.add_argument('--no-cuda', action='store_true', default=False, help='enables CUDA training') parser.add_argument('--gpu-id', default='1', type=str, help='id(s) for CUDA_VISIBLE_DEVICES') parser.add_argument('--seed', type=int, default=123456, metavar='S', help='random seed (default: 0)') parser.add_argument('--log-interval', type=int, default=1, metavar='LI', help='how many batches to wait before logging training status') parser.add_argument('--acoustic-feature', choices=['fbank', 'spectrogram', 'mfcc'], default='fbank', help='choose the acoustic features type.') parser.add_argument('--makemfb', action='store_true', default=False, help='need to make mfb file') parser.add_argument('--makespec', action='store_true', default=False, help='need to make spectrograms file') args = parser.parse_args() # Set the device to use by setting CUDA_VISIBLE_DEVICES env variable in # order to prevent any memory allocation on unused GPUs os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id args.cuda = not args.no_cuda and torch.cuda.is_available() random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) torch.multiprocessing.set_sharing_strategy('file_system') if args.cuda: cudnn.benchmark = True # Define visulaize SummaryWriter instance kwargs = {'num_workers': args.nj, 'pin_memory': False} if args.cuda else {} l2_dist = nn.CosineSimilarity(dim=1, eps=1e-6) if args.cos_sim else PairwiseDistance(2) if args.input_length == 'var': transform = transforms.Compose([ ConcateOrgInput(remove_vad=args.remove_vad), ]) transform_T = transforms.Compose([ ConcateOrgInput(remove_vad=args.remove_vad), ]) elif args.input_length == 'fix': transform = transforms.Compose([ ConcateVarInput(remove_vad=args.remove_vad), ]) transform_T = transforms.Compose([ ConcateVarInput(remove_vad=args.remove_vad), ]) if args.mvnorm: transform.transforms.append(mvnormal()) transform_T.transforms.append(mvnormal()) file_loader = read_mat train_dir = ScriptTrainDataset(dir=args.train_dir, samples_per_speaker=args.input_per_spks, loader=file_loader, transform=transform, return_uid=True) indices = list(range(len(train_dir))) random.shuffle(indices) indices = indices[:args.sample_utt] train_part = torch.utils.data.Subset(train_dir, indices) veri_dir = ScriptTestDataset(dir=args.train_dir, loader=file_loader, transform=transform_T, return_uid=True) veri_dir.partition(args.sample_utt) test_dir = ScriptTestDataset(dir=args.test_dir, loader=file_loader, transform=transform_T, return_uid=True) test_dir.partition(args.sample_utt) valid_dir = ScriptValidDataset(valid_set=train_dir.valid_set, spk_to_idx=train_dir.spk_to_idx, valid_uid2feat=train_dir.valid_uid2feat, valid_utt2spk_dict=train_dir.valid_utt2spk_dict, loader=file_loader, transform=transform, return_uid=True) indices = list(range(len(valid_dir))) random.shuffle(indices) indices = indices[:args.sample_utt] valid_part = torch.utils.data.Subset(valid_dir, indices) def train_extract(train_loader, model, file_dir, set_name, save_per_num=2500): # switch to evaluate mode model.eval() input_grads = [] inputs_uids = [] pbar = tqdm(enumerate(train_loader)) for batch_idx, (data, label, uid) in pbar: # orig = data.detach().numpy().squeeze().astype(np.float32) data = Variable(data.cuda(), requires_grad=True) logit, _ = model(data) if args.loss_type == 'asoft': classifed, _ = logit else: classifed = logit # conv1 = model.conv1(data) # bn1 = model.bn1(conv1) # relu1 = model.relu(bn1) # conv1 = conv1.cpu().detach().numpy().squeeze().astype(np.float32) # bn1 = bn1.cpu().detach().numpy().squeeze().astype(np.float32) # relu1 = relu1.cpu().detach().numpy().squeeze().astype(np.float32) classifed[0][label.long()].backward() grad = data.grad.cpu().numpy().squeeze().astype(np.float32) data = data.data.cpu().numpy().squeeze().astype(np.float32) if args.revert: grad = grad.transpose() data = data.transpose() input_grads.append([data, grad]) inputs_uids.append(uid) model.zero_grad() if batch_idx % args.log_interval == 0: pbar.set_description('Saving {} : [{:8d}/{:8d} ({:3.0f}%)] '.format( uid, batch_idx + 1, len(train_loader.dataset), 100. * batch_idx / len(train_loader))) if (batch_idx + 1) % save_per_num == 0 or (batch_idx + 1) == len(train_loader.dataset): num = batch_idx // save_per_num if batch_idx + 1 % save_per_num == 0 else batch_idx // save_per_num + 1 # checkpoint_dir / extract / < dataset > / < set >.*.bin filename = file_dir + '/%s.%d.bin' % (set_name, num) with open(filename, 'wb') as f: pickle.dump(input_grads, f) with open(file_dir + '/inputs.%s.%d.json' % (set_name, num), 'w') as f: json.dump(inputs_uids, f) input_grads = [] inputs_uids = [] print('Saving pairs in %s.\n' % file_dir) torch.cuda.empty_cache() def test_extract(test_loader, model, file_dir, set_name, save_per_num=1500): # switch to evaluate mode model.eval() input_grads = [] inputs_uids = [] pbar = tqdm(enumerate(test_loader)) # for batch_idx, (data_a, data_b, label) in pbar: for batch_idx, (data_a, data_b, label, uid_a, uid_b) in pbar: # pdb.set_trace() data_a = Variable(data_a.cuda(), requires_grad=True) data_b = Variable(data_b.cuda(), requires_grad=True) _, feat_a = model(data_a) _, feat_b = model(data_b) cos_sim = l2_dist(feat_a, feat_b) cos_sim[0].backward() grad_a = data_a.grad.cpu().numpy().squeeze().astype(np.float32) grad_b = data_b.grad.cpu().numpy().squeeze().astype(np.float32) data_a = data_a.data.cpu().numpy().squeeze().astype(np.float32) data_b = data_b.data.cpu().numpy().squeeze().astype(np.float32) if args.revert: grad_a = grad_a.transpose() data_a = data_a.transpose() grad_b = grad_b.transpose() data_b = data_b.transpose() input_grads.append((label, grad_a, grad_b, data_a, data_b)) inputs_uids.append([uid_a, uid_b]) model.zero_grad() if batch_idx % args.log_interval == 0: pbar.set_description('Saving pair [{:8d}/{:8d} ({:3.0f}%)] '.format( batch_idx + 1, len(test_loader), 100. * batch_idx / len(test_loader))) if (batch_idx + 1) % save_per_num == 0 or (batch_idx + 1) == len(test_loader.dataset): num = batch_idx // save_per_num if batch_idx + 1 % save_per_num == 0 else batch_idx // save_per_num + 1 # checkpoint_dir / extract / < dataset > / < set >.*.bin filename = file_dir + '/%s.%d.bin' % (set_name, num) # print('Saving pairs in %s.' % filename) with open(filename, 'wb') as f: pickle.dump(input_grads, f) with open(file_dir + '/inputs.%s.%d.json' % (set_name, num), 'w') as f: json.dump(inputs_uids, f) input_grads = [] inputs_uids = [] print('Saving pairs into %s.\n' % file_dir) torch.cuda.empty_cache() def main(): print('\nNumber of Speakers: {}.'.format(train_dir.num_spks)) # print the experiment configuration print('Current time is \33[91m{}\33[0m.'.format(str(time.asctime()))) print('Parsed options: {}'.format(vars(args))) # instantiate model and initialize weights kernel_size = args.kernel_size.split(',') kernel_size = [int(x) for x in kernel_size] if args.padding == '': padding = [int((x - 1) / 2) for x in kernel_size] else: padding = args.padding.split(',') padding = [int(x) for x in padding] kernel_size = tuple(kernel_size) padding = tuple(padding) stride = args.stride.split(',') stride = [int(x) for x in stride] channels = args.channels.split(',') channels = [int(x) for x in channels] model_kwargs = {'input_dim': args.input_dim, 'feat_dim': args.feat_dim, 'kernel_size': kernel_size, 'mask': args.mask_layer, 'mask_len': args.mask_len, 'block_type': args.block_type, 'filter': args.filter, 'inst_norm': args.inst_norm, 'input_norm': args.input_norm, 'stride': stride, 'fast': args.fast, 'avg_size': args.avg_size, 'time_dim': args.time_dim, 'padding': padding, 'encoder_type': args.encoder_type, 'vad': args.vad, 'transform': args.transform, 'embedding_size': args.embedding_size, 'ince': args.inception, 'resnet_size': args.resnet_size, 'num_classes': train_dir.num_spks, 'channels': channels, 'alpha': args.alpha, 'dropout_p': args.dropout_p} print('Model options: {}'.format(model_kwargs)) model = create_model(args.model, **model_kwargs) if args.loss_type == 'asoft': model.classifier = AngleLinear(in_features=args.embedding_size, out_features=train_dir.num_spks, m=args.m) elif args.loss_type == 'amsoft' or args.loss_type == 'arcsoft': model.classifier = AdditiveMarginLinear(feat_dim=args.embedding_size, n_classes=train_dir.num_spks) train_loader = DataLoader(train_part, batch_size=args.batch_size, shuffle=False, **kwargs) veri_loader = DataLoader(veri_dir, batch_size=args.batch_size, shuffle=False, **kwargs) valid_loader = DataLoader(valid_part, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = DataLoader(test_dir, batch_size=args.batch_size, shuffle=False, **kwargs) # sitw_test_loader = DataLoader(sitw_test_part, batch_size=args.batch_size, shuffle=False, **kwargs) # sitw_dev_loader = DataLoader(sitw_dev_part, batch_size=args.batch_size, shuffle=False, **kwargs) resume_path = args.check_path + '/checkpoint_{}.pth' print('=> Saving output in {}\n'.format(args.extract_path)) epochs = np.arange(args.start_epochs, args.epochs + 1) for e in epochs: # Load model from Checkpoint file if os.path.isfile(resume_path.format(e)): print('=> loading checkpoint {}'.format(resume_path.format(e))) checkpoint = torch.load(resume_path.format(e)) checkpoint_state_dict = checkpoint['state_dict'] if isinstance(checkpoint_state_dict, tuple): checkpoint_state_dict = checkpoint_state_dict[0] # epoch = checkpoint['epoch'] # if e == 0: # filtered = checkpoint.state_dict() # else: filtered = {k: v for k, v in checkpoint_state_dict.items() if 'num_batches_tracked' not in k} if list(filtered.keys())[0].startswith('module'): new_state_dict = OrderedDict() for k, v in filtered.items(): name = k[7:] # remove `module.`,表面从第7个key值字符取到最后一个字符,去掉module. new_state_dict[name] = v # 新字典的key值对应的value为一一对应的值。 model.load_state_dict(new_state_dict) else: model_dict = model.state_dict() model_dict.update(filtered) model.load_state_dict(model_dict) else: print('=> no checkpoint found at %s' % resume_path.format(e)) continue model.cuda() file_dir = args.extract_path + '/epoch_%d' % e if not os.path.exists(file_dir): os.makedirs(file_dir) if not args.test_only: # if args.cuda: # model_conv1 = model.conv1.weight.cpu().detach().numpy() # np.save(file_dir + '/model.conv1.npy', model_conv1) train_extract(train_loader, model, file_dir, '%s_train'%args.train_set_name) train_extract(valid_loader, model, file_dir, '%s_valid'%args.train_set_name) test_extract(veri_loader, model, file_dir, '%s_veri'%args.train_set_name) test_extract(test_loader, model, file_dir, '%s_test'%args.test_set_name) if __name__ == '__main__': main()
0ac74b8fcc292adb87b359e8d815025625d1b6c4
e6208febf7e34d4108422c6da54453373733a421
/sdks/python/client/argo_workflows/model/io_argoproj_workflow_v1alpha1_workflow_create_request.py
c0a6b77db6997e8fac5c7c8803d195ea356bad80
[ "Apache-2.0" ]
permissive
wreed4/argo
05889e5bb7738d534660c58a7ec71c454e6ac9bb
41f94310b0f7fee1ccd533849bb3af7f1ad4f672
refs/heads/master
2023-01-22T05:32:12.254485
2022-01-27T21:24:45
2022-01-27T22:02:22
233,143,964
0
0
Apache-2.0
2023-01-17T19:04:43
2020-01-10T22:56:25
Go
UTF-8
Python
false
false
12,633
py
""" Argo Server API You can get examples of requests and responses by using the CLI with `--gloglevel=9`, e.g. `argo list --gloglevel=9` # noqa: E501 The version of the OpenAPI document: VERSION Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from argo_workflows.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, ) from ..model_utils import OpenApiModel from argo_workflows.exceptions import ApiAttributeError def lazy_import(): from argo_workflows.model.create_options import CreateOptions from argo_workflows.model.io_argoproj_workflow_v1alpha1_workflow import IoArgoprojWorkflowV1alpha1Workflow globals()['CreateOptions'] = CreateOptions globals()['IoArgoprojWorkflowV1alpha1Workflow'] = IoArgoprojWorkflowV1alpha1Workflow class IoArgoprojWorkflowV1alpha1WorkflowCreateRequest(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } @cached_property def additional_properties_type(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded """ lazy_import() return (bool, date, datetime, dict, float, int, list, str, none_type,) # noqa: E501 _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ lazy_import() return { 'create_options': (CreateOptions,), # noqa: E501 'instance_id': (str,), # noqa: E501 'namespace': (str,), # noqa: E501 'server_dry_run': (bool,), # noqa: E501 'workflow': (IoArgoprojWorkflowV1alpha1Workflow,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'create_options': 'createOptions', # noqa: E501 'instance_id': 'instanceID', # noqa: E501 'namespace': 'namespace', # noqa: E501 'server_dry_run': 'serverDryRun', # noqa: E501 'workflow': 'workflow', # noqa: E501 } read_only_vars = { } _composed_schemas = {} @classmethod @convert_js_args_to_python_args def _from_openapi_data(cls, *args, **kwargs): # noqa: E501 """IoArgoprojWorkflowV1alpha1WorkflowCreateRequest - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) create_options (CreateOptions): [optional] # noqa: E501 instance_id (str): This field is no longer used.. [optional] # noqa: E501 namespace (str): [optional] # noqa: E501 server_dry_run (bool): [optional] # noqa: E501 workflow (IoArgoprojWorkflowV1alpha1Workflow): [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) self = super(OpenApiModel, cls).__new__(cls) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) return self required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, *args, **kwargs): # noqa: E501 """IoArgoprojWorkflowV1alpha1WorkflowCreateRequest - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) create_options (CreateOptions): [optional] # noqa: E501 instance_id (str): This field is no longer used.. [optional] # noqa: E501 namespace (str): [optional] # noqa: E501 server_dry_run (bool): [optional] # noqa: E501 workflow (IoArgoprojWorkflowV1alpha1Workflow): [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) if var_name in self.read_only_vars: raise ApiAttributeError(f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate " f"class with read only attributes.")
e42793c0bb18d4947a7c52488c8b146780db1a2c
1548ce77537dcd50ab04b0eaee050b5d30553e23
/autotabular/evaluation/abstract_evaluator.py
383ee7a13fd7f7766c258b0df36b52ef013fbb89
[ "Apache-2.0" ]
permissive
Shamoo100/AutoTabular
4a20e349104246bf825ebceae33dca0a79928f2e
7d71bf01d2b7d84fcf5f65c9f45c5cea1255d8a2
refs/heads/main
2023-08-13T21:34:34.329888
2021-10-02T07:06:00
2021-10-02T07:06:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
22,259
py
import logging import multiprocessing import time import warnings from typing import Any, Dict, List, Optional, TextIO, Tuple, Type, Union, cast import autotabular.pipeline.classification import autotabular.pipeline.regression import numpy as np from autotabular.constants import CLASSIFICATION_TASKS, MULTICLASS_CLASSIFICATION, MULTILABEL_CLASSIFICATION, MULTIOUTPUT_REGRESSION, REGRESSION_TASKS from autotabular.metrics import Scorer, calculate_loss from autotabular.pipeline.implementations.util import convert_multioutput_multiclass_to_multilabel from autotabular.util.backend import Backend from autotabular.util.logging_ import PicklableClientLogger, get_named_client_logger from ConfigSpace import Configuration from sklearn.base import BaseEstimator from sklearn.dummy import DummyClassifier, DummyRegressor from sklearn.ensemble import VotingClassifier, VotingRegressor from smac.tae import StatusType from threadpoolctl import threadpool_limits __all__ = ['AbstractEvaluator'] # General TYPE definitions for numpy TYPE_ADDITIONAL_INFO = Dict[str, Union[int, float, str, Dict, List, Tuple]] class MyDummyClassifier(DummyClassifier): def __init__( self, config: Configuration, random_state: np.random.RandomState, init_params: Optional[Dict[str, Any]] = None, dataset_properties: Dict[str, Any] = {}, include: Optional[List[str]] = None, exclude: Optional[List[str]] = None, ): self.config = config if config == 1: super(MyDummyClassifier, self).__init__(strategy='uniform') else: super(MyDummyClassifier, self).__init__(strategy='most_frequent') self.random_state = random_state self.init_params = init_params self.dataset_properties = dataset_properties self.include = include self.exclude = exclude def pre_transform( self, X: np.ndarray, y: np.ndarray, fit_params: Optional[Dict[str, Any]] = None ) -> Tuple[np.ndarray, Dict[str, Any]]: # pylint: disable=R0201 if fit_params is None: fit_params = {} return X, fit_params def fit( self, X: np.ndarray, y: np.ndarray, sample_weight: Optional[Union[np.ndarray, List]] = None ) -> DummyClassifier: return super(MyDummyClassifier, self).fit( np.ones((X.shape[0], 1)), y, sample_weight=sample_weight) def fit_estimator( self, X: np.ndarray, y: np.ndarray, fit_params: Optional[Dict[str, Any]] = None) -> DummyClassifier: return self.fit(X, y) def predict_proba(self, X: np.ndarray, batch_size: int = 1000) -> np.ndarray: new_X = np.ones((X.shape[0], 1)) probas = super(MyDummyClassifier, self).predict_proba(new_X) probas = convert_multioutput_multiclass_to_multilabel(probas).astype( np.float32) return probas def estimator_supports_iterative_fit(self) -> bool: # pylint: disable=R0201 return False def get_additional_run_info(self) -> Optional[TYPE_ADDITIONAL_INFO]: # pylint: disable=R0201 return None class MyDummyRegressor(DummyRegressor): def __init__( self, config: Configuration, random_state: np.random.RandomState, init_params: Optional[Dict[str, Any]] = None, dataset_properties: Dict[str, Any] = {}, include: Optional[List[str]] = None, exclude: Optional[List[str]] = None, ): self.config = config if config == 1: super(MyDummyRegressor, self).__init__(strategy='mean') else: super(MyDummyRegressor, self).__init__(strategy='median') self.random_state = random_state self.init_params = init_params self.dataset_properties = dataset_properties self.include = include self.exclude = exclude def pre_transform( self, X: np.ndarray, y: np.ndarray, fit_params: Optional[Dict[str, Any]] = None ) -> Tuple[np.ndarray, Dict[str, Any]]: # pylint: disable=R0201 if fit_params is None: fit_params = {} return X, fit_params def fit( self, X: np.ndarray, y: np.ndarray, sample_weight: Optional[Union[np.ndarray, List]] = None) -> DummyRegressor: return super(MyDummyRegressor, self).fit( np.ones((X.shape[0], 1)), y, sample_weight=sample_weight) def fit_estimator( self, X: np.ndarray, y: np.ndarray, fit_params: Optional[Dict[str, Any]] = None) -> DummyRegressor: return self.fit(X, y) def predict(self, X: np.ndarray, batch_size: int = 1000) -> np.ndarray: new_X = np.ones((X.shape[0], 1)) return super(MyDummyRegressor, self).predict(new_X).astype(np.float32) def estimator_supports_iterative_fit(self) -> bool: # pylint: disable=R0201 return False def get_additional_run_info(self) -> Optional[TYPE_ADDITIONAL_INFO]: # pylint: disable=R0201 return None def _fit_and_suppress_warnings(logger: Union[logging.Logger, PicklableClientLogger], model: BaseEstimator, X: np.ndarray, y: np.ndarray) -> BaseEstimator: def send_warnings_to_log( message: Union[Warning, str], category: Type[Warning], filename: str, lineno: int, file: Optional[TextIO] = None, line: Optional[str] = None, ) -> None: logger.debug('%s:%s: %s:%s' % (filename, lineno, str(category), message)) return with warnings.catch_warnings(): warnings.showwarning = send_warnings_to_log model.fit(X, y) return model class AbstractEvaluator(object): def __init__( self, backend: Backend, queue: multiprocessing.Queue, metric: Scorer, port: Optional[int], configuration: Optional[Union[int, Configuration]] = None, scoring_functions: Optional[List[Scorer]] = None, seed: int = 1, output_y_hat_optimization: bool = True, num_run: Optional[int] = None, include: Optional[List[str]] = None, exclude: Optional[List[str]] = None, disable_file_output: Union[bool, List[str]] = False, init_params: Optional[Dict[str, Any]] = None, budget: Optional[float] = None, budget_type: Optional[str] = None, ): # Limit the number of threads that numpy uses threadpool_limits(limits=1) self.starttime = time.time() self.configuration = configuration self.backend = backend self.port = port self.queue = queue self.datamanager = self.backend.load_datamanager() self.include = include self.exclude = exclude self.X_valid = self.datamanager.data.get('X_valid') self.y_valid = self.datamanager.data.get('Y_valid') self.X_test = self.datamanager.data.get('X_test') self.y_test = self.datamanager.data.get('Y_test') self.metric = metric self.task_type = self.datamanager.info['task'] self.seed = seed self.output_y_hat_optimization = output_y_hat_optimization self.scoring_functions = scoring_functions if isinstance(disable_file_output, (bool, list)): self.disable_file_output: Union[bool, List[str]] = disable_file_output else: raise ValueError( 'disable_file_output should be either a bool or a list') if self.task_type in REGRESSION_TASKS: if not isinstance(self.configuration, Configuration): self.model_class = MyDummyRegressor else: self.model_class = \ autotabular.pipeline.regression.SimpleRegressionPipeline self.predict_function = self._predict_regression else: if not isinstance(self.configuration, Configuration): self.model_class = MyDummyClassifier else: self.model_class = autotabular.pipeline.classification.SimpleClassificationPipeline self.predict_function = self._predict_proba self._init_params = { 'data_preprocessing:feat_type': self.datamanager.feat_type } if init_params is not None: self._init_params.update(init_params) if num_run is None: num_run = 0 self.num_run = num_run logger_name = '%s(%d):%s' % (self.__class__.__name__.split('.')[-1], self.seed, self.datamanager.name) if self.port is None: self.logger = logging.getLogger(__name__) else: self.logger = get_named_client_logger( name=logger_name, port=self.port, ) self.Y_optimization: Optional[Union[List, np.ndarray]] = None self.Y_actual_train = None self.budget = budget self.budget_type = budget_type # Please mypy to prevent not defined attr self.model = self._get_model() def _get_model(self) -> BaseEstimator: if not isinstance(self.configuration, Configuration): model = self.model_class( config=self.configuration, random_state=self.seed, init_params=self._init_params) else: if self.task_type in REGRESSION_TASKS: dataset_properties = { 'task': self.task_type, 'sparse': self.datamanager.info['is_sparse'] == 1, 'multioutput': self.task_type == MULTIOUTPUT_REGRESSION, } else: dataset_properties = { 'task': self.task_type, 'sparse': self.datamanager.info['is_sparse'] == 1, 'multilabel': self.task_type == MULTILABEL_CLASSIFICATION, 'multiclass': self.task_type == MULTICLASS_CLASSIFICATION, } model = self.model_class( config=self.configuration, dataset_properties=dataset_properties, random_state=self.seed, include=self.include, exclude=self.exclude, init_params=self._init_params) return model def _loss( self, y_true: np.ndarray, y_hat: np.ndarray, scoring_functions: Optional[List[Scorer]] = None ) -> Union[float, Dict[str, float]]: """Auto-tabular follows a minimization goal. The calculate_loss internally translate a score function to a minimization problem. For a dummy prediction, the worst result is assumed. Parameters ---------- y_true """ scoring_functions = ( self.scoring_functions if scoring_functions is None else scoring_functions) if not isinstance(self.configuration, Configuration): if scoring_functions: return {self.metric.name: self.metric._worst_possible_result} else: return self.metric._worst_possible_result return calculate_loss( y_true, y_hat, self.task_type, self.metric, scoring_functions=scoring_functions) def finish_up( self, loss: Union[Dict[str, float], float], train_loss: Optional[Union[float, Dict[str, float]]], opt_pred: np.ndarray, valid_pred: np.ndarray, test_pred: np.ndarray, additional_run_info: Optional[TYPE_ADDITIONAL_INFO], file_output: bool, final_call: bool, status: StatusType, ) -> Tuple[float, Union[float, Dict[str, float]], int, Dict[str, Union[ str, int, float, Dict, List, Tuple]]]: """This function does everything necessary after the fitting is done: * predicting * saving the files for the ensembles_statistics * generate output for SMAC We use it as the signal handler so we can recycle the code for the normal usecase and when the runsolver kills us here :) """ self.duration = time.time() - self.starttime if file_output: file_out_loss, additional_run_info_ = self.file_output( opt_pred, valid_pred, test_pred, ) else: file_out_loss = None additional_run_info_ = {} validation_loss, test_loss = self.calculate_auxiliary_losses( valid_pred, test_pred, ) if file_out_loss is not None: return self.duration, file_out_loss, self.seed, additional_run_info_ if isinstance(loss, dict): loss_ = loss loss = loss_[self.metric.name] else: loss_ = {} additional_run_info = ({} if additional_run_info is None else additional_run_info) for metric_name, value in loss_.items(): additional_run_info[metric_name] = value additional_run_info['duration'] = self.duration additional_run_info['num_run'] = self.num_run if train_loss is not None: additional_run_info['train_loss'] = train_loss if validation_loss is not None: additional_run_info['validation_loss'] = validation_loss if test_loss is not None: additional_run_info['test_loss'] = test_loss rval_dict = { 'loss': loss, 'additional_run_info': additional_run_info, 'status': status } if final_call: rval_dict['final_queue_element'] = True self.queue.put(rval_dict) return self.duration, loss_, self.seed, additional_run_info_ def calculate_auxiliary_losses( self, Y_valid_pred: np.ndarray, Y_test_pred: np.ndarray, ) -> Tuple[Optional[float], Optional[float]]: if Y_valid_pred is not None: if self.y_valid is not None: validation_loss: Optional[Union[float, Dict[str, float]]] = self._loss( self.y_valid, Y_valid_pred) if isinstance(validation_loss, dict): validation_loss = validation_loss[self.metric.name] else: validation_loss = None else: validation_loss = None if Y_test_pred is not None: if self.y_test is not None: test_loss: Optional[Union[float, Dict[str, float]]] = self._loss( self.y_test, Y_test_pred) if isinstance(test_loss, dict): test_loss = test_loss[self.metric.name] else: test_loss = None else: test_loss = None return validation_loss, test_loss def file_output( self, Y_optimization_pred: np.ndarray, Y_valid_pred: np.ndarray, Y_test_pred: np.ndarray, ) -> Tuple[Optional[float], Dict[str, Union[str, int, float, List, Dict, Tuple]]]: # Abort if self.Y_optimization is None # self.Y_optimization can be None if we use partial-cv, then, # obviously no output should be saved. if self.Y_optimization is None: return None, {} # Abort in case of shape misalignment if np.shape(self.Y_optimization)[0] != Y_optimization_pred.shape[0]: return ( 1.0, { 'error': "Targets %s and prediction %s don't have " "the same length. Probably training didn't " 'finish' % (np.shape(self.Y_optimization), Y_optimization_pred.shape) }, ) # Abort if predictions contain NaNs for y, s in [ # Y_train_pred deleted here. Fix unittest accordingly. [Y_optimization_pred, 'optimization'], [Y_valid_pred, 'validation'], [Y_test_pred, 'test'] ]: if y is not None and not np.all(np.isfinite(y)): return ( 1.0, { 'error': 'Model predictions for %s set contains NaNs.' % s }, ) # Abort if we don't want to output anything. # Since disable_file_output can also be a list, we have to explicitly # compare it with True. if self.disable_file_output is True: return None, {} # Notice that disable_file_output==False and disable_file_output==[] # means the same thing here. if self.disable_file_output is False: self.disable_file_output = [] # Here onwards, the self.disable_file_output can be treated as a list self.disable_file_output = cast(List, self.disable_file_output) # This file can be written independently of the others down bellow if ('y_optimization' not in self.disable_file_output): if self.output_y_hat_optimization: self.backend.save_targets_ensemble(self.Y_optimization) models: Optional[BaseEstimator] = None if hasattr(self, 'models'): if len(self.models) > 0 and self.models[ 0] is not None: # type: ignore[attr-defined] if ('models' not in self.disable_file_output): if self.task_type in CLASSIFICATION_TASKS: models = VotingClassifier( estimators=None, voting='soft', ) else: models = VotingRegressor(estimators=None) # Mypy cannot understand hasattr yet models.estimators_ = self.models # type: ignore[attr-defined] self.backend.save_numrun_to_dir( seed=self.seed, idx=self.num_run, budget=self.budget, model=self.model if 'model' not in self.disable_file_output else None, cv_model=models if 'cv_model' not in self.disable_file_output else None, ensemble_predictions=(Y_optimization_pred if 'y_optimization' not in self.disable_file_output else None), valid_predictions=(Y_valid_pred if 'y_valid' not in self.disable_file_output else None), test_predictions=(Y_test_pred if 'y_test' not in self.disable_file_output else None), ) return None, {} def _predict_proba( self, X: np.ndarray, model: BaseEstimator, task_type: int, Y_train: Optional[np.ndarray] = None, ) -> np.ndarray: def send_warnings_to_log( message: Union[Warning, str], category: Type[Warning], filename: str, lineno: int, file: Optional[TextIO] = None, line: Optional[str] = None, ) -> None: self.logger.debug('%s:%s: %s:%s' % (filename, lineno, str(category), message)) return with warnings.catch_warnings(): warnings.showwarning = send_warnings_to_log Y_pred = model.predict_proba(X, batch_size=1000) if Y_train is None: raise ValueError('Y_train is required for classification problems') Y_pred = self._ensure_prediction_array_sizes(Y_pred, Y_train) return Y_pred def _predict_regression( self, X: np.ndarray, model: BaseEstimator, task_type: int, Y_train: Optional[np.ndarray] = None) -> np.ndarray: def send_warnings_to_log( message: Union[Warning, str], category: Type[Warning], filename: str, lineno: int, file: Optional[TextIO] = None, line: Optional[str] = None, ) -> None: self.logger.debug('%s:%s: %s:%s' % (filename, lineno, str(category), message)) return with warnings.catch_warnings(): warnings.showwarning = send_warnings_to_log Y_pred = model.predict(X) if len(Y_pred.shape) == 1: Y_pred = Y_pred.reshape((-1, 1)) return Y_pred def _ensure_prediction_array_sizes(self, prediction: np.ndarray, Y_train: np.ndarray) -> np.ndarray: num_classes = self.datamanager.info['label_num'] if self.task_type == MULTICLASS_CLASSIFICATION and \ prediction.shape[1] < num_classes: if Y_train is None: raise ValueError('Y_train must not be None!') classes = list(np.unique(Y_train)) mapping = dict() for class_number in range(num_classes): if class_number in classes: index = classes.index(class_number) mapping[index] = class_number new_predictions = np.zeros((prediction.shape[0], num_classes), dtype=np.float32) for index in mapping: class_index = mapping[index] new_predictions[:, class_index] = prediction[:, index] return new_predictions return prediction
da6990b212765548549d6a7ed409b29dfd3ff68a
758ca5e2bf50016fbac7022ac5f9036aa8aa099b
/LeetCodeWeb.py
3359b7e6c9cd5b4f92bd6298419aa98886ca70f5
[]
no_license
zhantong/leetcode-web
04f17901e4bf5a6065e35dd126dd7bbcc8b1128f
3f79f5463e77ed7eab8b808a7004eea8c29fc35e
refs/heads/master
2021-01-02T22:54:54.797228
2017-10-19T02:00:48
2017-10-19T02:00:48
99,420,755
0
0
null
null
null
null
UTF-8
Python
false
false
2,913
py
from flask import Flask from flask import render_template from flask import request from flask import redirect from flask import g import os.path from pygments import highlight from pygments.lexers import get_lexer_by_name from pygments.formatters import HtmlFormatter import sqlite3 app = Flask(__name__) ROOT = os.path.realpath(os.path.dirname(__file__)) DATABASE = 'leetcode.db' def get_db(): db = getattr(g, '_database', None) if db is None: db = g._database = sqlite3.connect(DATABASE) return db @app.route('/') def hello_world(): return redirect('/problems') @app.route('/problems') def show_problem_list(): problem_list = get_problem_list() return render_template('problems_summary.html', problem_list=problem_list) @app.route('/problems/<slug>') def show_problem(slug): c = get_db().cursor() c.execute('SELECT id,title FROM problem WHERE slug=?', (slug,)) id, title = c.fetchone() description_file_name = str(id).zfill(3) + '. ' + title + '.html' file_path = os.path.join(ROOT, 'descriptions', description_file_name) if os.path.exists(file_path): with open(file_path, 'r', encoding='utf-8') as f: description = f.read() else: description = '收费题目' codes = get_codes(('python', 'java', 'c++'), id, title) title = str(id) + '. ' + title if 'X-PJAX' in request.headers: return render_template('problem_description.html', description=description, codes=codes, title=title, id=id) return render_template('problem.html', description=description, codes=codes, problem_list=get_problem_list(), title=title, id=id) @app.teardown_appcontext def close_connection(exception): db = getattr(g, '_database', None) if db is not None: db.close() def get_codes(code_types, id, title): code_infos = { 'java': ('Java', 'java'), 'python': ('Python', 'py'), 'c++': ('C++', 'cpp') } codes = [] for code_type in code_types: code_info = code_infos[code_type] file_path = os.path.join(ROOT, 'submissions', str(id).zfill(3) + '. ' + title, code_info[0], 'Solution.' + code_info[1]) if not os.path.exists(file_path): continue with open(file_path, 'r', encoding='utf-8') as f: code = highlight(f.read(), get_lexer_by_name(code_type), HtmlFormatter()) codes.append((code_info[0], code)) return codes def get_problem_list(): problem_list = [] c = get_db().cursor() for id, title, slug in c.execute('SELECT id,title,slug FROM problem ORDER BY id'): problem_list.append({ 'id': id, 'url': '/problems/' + slug, 'name': str(id).zfill(3) + '. ' + title }) return problem_list if __name__ == '__main__': app.run()
f41bb92d7a8588b556a3187e89551e60d327b03e
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/gPJTSqmJ4qQPxRg5a_21.py
9fc9af14fff56aa6101c0d3a246a2a1ebb7d3158
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
79
py
def func(num): txt = str(num) return sum(int(i) - len(txt) for i in txt)
330058010818406687c80f7723e26b445b282e69
5be2fc94724cc05d2dc449e0f5b40d9fb07edd51
/tests/test_biosample.py
4e618528f17766b407935e78b014a86d7a17a3b8
[ "MIT" ]
permissive
LucaCappelletti94/encodeproject
b84614683c8652f812f2c01b0002903d849a080b
a2bcae8cfbb505a978ecea95c3a007f65625c57a
refs/heads/master
2022-05-07T13:16:58.774258
2022-04-27T07:51:22
2022-04-27T07:51:22
216,822,791
1
0
null
null
null
null
UTF-8
Python
false
false
245
py
from encodeproject import biosample, biosamples def test_biosample(): biosample("ENCSR000EDP") biosample("ENCSR000EDP", False) def test_biosamples(): biosamples(["ENCFF454HMH", "ENCFF663AYS"]) biosamples(["ENCSR000EDP"], False)
14cc45de89528b42640f58cba86eb2f58860bbcc
1879e4df9cff25bc0c32ff63aedc859301062f9d
/0x05-personal_data/encrypt_password.py
088ba68a96806e4bfba46db604229b5f920df220
[]
no_license
rakiasomai/holbertonschool-web_back_end
0f9d36160c9762df0826adcac66b009d1076043b
f5aeeda56def93fe13d901dd52217b0dbd4124e9
refs/heads/master
2023-02-28T10:02:54.929275
2021-02-06T22:17:04
2021-02-06T22:17:04
305,420,230
1
0
null
null
null
null
UTF-8
Python
false
false
389
py
#!/usr/bin/env python3 ''' Personal data ''' import bcrypt def hash_password(password: str) -> bytes: ''' def hash password ''' var = password.encode('utf-8') return bcrypt.hashpw(var, bcrypt.gensalt()) def is_valid(hashed_password: bytes, password: str) -> bool: ''' def is valid ''' var = password.encode('utf-8') return bcrypt.checkpw(var, hashed_password)
5f62efd77cda877b0f315654e66fcb575dcf38a5
b21180985c994c19e850ef51d5d87c6bf595dc21
/wechat/queryexp.py
efc683b5018ed5bac565cde68dd6455b49f93e69
[]
no_license
hldai/labelwc
c74d3af98576acd514f9136db663ca4cbd95708f
38c969c61f240e49d5475be716c6b159b57220cd
refs/heads/master
2020-12-02T22:18:06.991302
2017-08-13T13:04:44
2017-08-13T13:04:44
96,111,637
0
0
null
null
null
null
UTF-8
Python
false
false
5,942
py
from utils import load_names_file def load_acronym_to_name(acronym_name_file, exclude_strs): acr_name_dict = dict() f = open(acronym_name_file, 'r') for line in f: line = line.strip().decode('utf-8') acr, name, _ = line.split('\t') if exclude_strs and acr in exclude_strs: continue acr_name_dict[acr] = name # print acr, name_max f.close() return acr_name_dict def load_name_to_acronym(acronym_name_file, abbrev_exclude_strs): name_acr_cnt_dict = dict() f = open(acronym_name_file, 'r') for line in f: line = line.strip().decode('utf-8') acr, name, cnt = line.split('\t') if name in abbrev_exclude_strs: continue cnt = int(cnt) tup = name_acr_cnt_dict.get(name, None) if not tup or tup[1] < cnt: name_acr_cnt_dict[name] = (acr, cnt) # print acr, name_max f.close() name_acr_dict = dict() for name, (acr, cnt) in name_acr_cnt_dict.iteritems(): name_acr_dict[name] = acr return name_acr_dict def expand_word(word, acr_name_dict): name_exp = '' pl = 0 while pl < len(word): pr = len(word) exps = '' while pr > pl: exps = acr_name_dict.get(word[pl:pr], None) if exps: break pr -= 1 if pr > pl: name_exp += exps pl = pr else: name_exp += word[pl] pl = pr + 1 return name_exp class QueryExpansion: def __init__(self, acronym_name_file, extra_acronym_name_file, expand_exclude_strs_file, abbrev_exclude_strs_file, cn_seg_app): self.expand_exclude_strs = load_names_file(expand_exclude_strs_file) self.acr_name_dict = load_acronym_to_name(acronym_name_file, self.expand_exclude_strs) self.abbrev_exclude_strs = load_names_file(abbrev_exclude_strs_file) self.name_acr_dict = load_name_to_acronym(acronym_name_file, self.abbrev_exclude_strs) self.__load_extra_acronym_name_file(extra_acronym_name_file) self.seg_app = cn_seg_app def __load_extra_acronym_name_file(self, filename): f = open(filename) for line in f: acr, name = line.strip().decode('utf-8').split('\t') self.acr_name_dict[acr] = name self.name_acr_dict[name] = acr f.close() def __expand_name_words_ob(self, name_words): name_exp = '' lw = len(name_words) l = 0 while l < lw: r = lw cur_str = '' while r > l: cur_str = ''.join(name_words[l:r]) if cur_str in self.expand_exclude_strs: break r -= 1 if r > l: name_exp += cur_str l = r else: name_exp += expand_word(name_words[l], self.acr_name_dict) print name_words[l], name_exp l += 1 return name_exp def __expand_name_words(self, name_words): name_exp = '' lw = len(name_words) l = 0 while l < lw: r = lw flg = True while r > l: cur_str = ''.join(name_words[l:r]) if cur_str in self.expand_exclude_strs: name_exp += cur_str l = r flg = False break str_exp = self.acr_name_dict.get(cur_str, '') if str_exp: name_exp += str_exp l = r flg = False break r -= 1 if flg: name_exp += expand_word(name_words[l], self.acr_name_dict) # print name_words[l], name_exp l += 1 return name_exp def __abbrev_name_words(self, name_words): new_name = '' wlen = len(name_words) l = 0 while l < wlen: r = wlen flg = False while r > l: cur_str = ''.join(name_words[l:r]) str_acr = self.name_acr_dict.get(cur_str, '') if str_acr: new_name += str_acr l = r flg = True break r -= 1 if not flg: new_name += name_words[l] l += 1 return new_name def query_expansion_words(self, name_words): name_expand = self.__expand_name_words(name_words) name_abbrev = self.__abbrev_name_words(name_words) exp_names = [] if name_expand: exp_names.append(name_expand) if name_abbrev: exp_names.append(name_abbrev) return exp_names def query_expansion(self, name_str): name_words = self.seg_app.segment(name_str).split(' ') name_expand = self.__expand_name_words(name_words) name_abbrev = self.__abbrev_name_words(name_words) exp_cands = [name_expand, name_abbrev] exp_names = list() for name in exp_cands: if len(name) == len(name_str) - name_str.count(' '): continue if name != name_str: exp_names.append(name) return exp_names def expand_name(self, name_str): words = self.seg_app.segment(name_str).split(' ') new_name = self.__expand_name_words(words) if new_name != name_str: return new_name return '' def abbrev_name(self, name_str): words = self.seg_app.segment(name_str).split(' ') new_name = self.__abbrev_name_words(words) if len(new_name) == len(name_str) - 1 and ' ' in name_str: return '' if new_name != name_str: return new_name return ''
b7d65448e1c658d3cc0b42437060aee5c8c46e72
ca002961fa07883ff79ea67713bbc79e0ac79d28
/plugins/brains/BBWander.py
5c642987580df24602062aadb1efb8cb65ea2809
[]
no_license
mindgitrwx/pyrobot3
e51f8f1bac01a2509f2d89668102770053c16f56
45216c0c11f5efaaa4042916b2fe8eaac00fc4a7
refs/heads/master
2020-03-23T19:28:44.395949
2018-10-03T22:06:42
2018-10-03T22:06:42
141,980,775
0
3
null
2018-09-14T11:20:00
2018-07-23T07:53:27
Python
UTF-8
Python
false
false
2,185
py
# A Behavior-based control system from pyrobot.brain.fuzzy import * from pyrobot.brain.behaviors import * import math, time class Avoid (Behavior): """Avoid Class""" def setup(self): # called when created """setup method""" self.lasttime = time.time() self.count = 0 def direction(self, dir): """ computes opposite direction given an angle""" if dir < 0.0: return 0.9 else: return -0.9 def update(self): if self.count == 50: currtime = time.time() self.count = 0 self.lasttime = time.time() else: self.count += 1 close_dist, angle = min( [(s.distance(), s.angle(unit="radians")) for s in self.robot.range["front-all"]]) max_sensitive = self.robot.range.getMaxvalue() * 0.8 self.IF(Fuzzy(0.1, max_sensitive) << close_dist, 'translate', 0.0, "TooClose") self.IF(Fuzzy(0.1, max_sensitive) >> close_dist, 'translate', 0.3, "Ok") self.IF(Fuzzy(0.1, max_sensitive) << close_dist, 'rotate', self.direction(angle), "TooClose") self.IF(Fuzzy(0.1, max_sensitive) >> close_dist, 'rotate', 0.0, "Ok") class TurnAround(State): def update(self): if min([s.distance() for s in self.robot.range["front-all"]]) < 1.0: self.move(0, .2) else: self.goto("state1") class state1 (State): """ sample state """ def setup(self): self.add(Avoid(1, {'translate': .3, 'rotate': .3})) print(("initialized state", self.name)) def update(self): if min([s.distance() for s in self.robot.range["front-all"]]) < 1: self.goto("TurnAround") def INIT(engine): # passes in robot, if you need it brain = BehaviorBasedBrain({'translate' : engine.robot.translate, \ 'rotate' : engine.robot.rotate, \ 'update' : engine.robot.update }, engine) # add a few states: brain.add(state1()) # non active brain.add(TurnAround()) # non active # activate a state: brain.activate('state1') # could have made it active in constructor return brain
ed69f7188cb410e8984e1694b21b711cb0364bab
acb8e84e3b9c987fcab341f799f41d5a5ec4d587
/langs/7/r_e.py
94874cb9d8cd478b4704aa826a5d3460c87597a5
[]
no_license
G4te-Keep3r/HowdyHackers
46bfad63eafe5ac515da363e1c75fa6f4b9bca32
fb6d391aaecb60ab5c4650d4ae2ddd599fd85db2
refs/heads/master
2020-08-01T12:08:10.782018
2016-11-13T20:45:50
2016-11-13T20:45:50
73,624,224
0
1
null
null
null
null
UTF-8
Python
false
false
486
py
import sys def printFunction(lineRemaining): if lineRemaining[0] == '"' and lineRemaining[-1] == '"': if len(lineRemaining) > 2: #data to print lineRemaining = lineRemaining[1:-1] print ' '.join(lineRemaining) else: print def main(fileName): with open(fileName) as f: for line in f: data = line.split() if data[0] == 'r_E': printFunction(data[1:]) else: print 'ERROR' return if __name__ == '__main__': main(sys.argv[1])
b0eba99c0ca25ed04ea431a7bee9a18f308d4931
646cadb1c72ef4a060343baf2fcbe271958b6878
/tigerjython/TJExamples/10-Ef/Eff4d.py
a11bfecbf166ccc406e98f9264dc1a5edaf3fec4
[]
no_license
tigerjython/tjinstall
bd75cf8e4ae27b639a13865ef1ec5710391a2938
aab61519b5299c2ab4f423c6fc5d8ea7c7860a99
refs/heads/master
2021-01-17T08:53:50.386905
2018-01-12T06:56:28
2018-01-12T06:56:28
40,659,466
0
0
null
null
null
null
UTF-8
Python
false
false
4,151
py
from gamegrid import * locations = { 'Althaus':Location(2, 0), 'Bellevue':Location(0, 1), 'City':Location(1, 3), 'Dom':Location(4, 2), 'Enge':Location(5, 0), 'Friedhof':Location(3, 4)} neighbours = { 'Althaus':['Bellevue', 'Dom', 'Enge'], 'Bellevue':['Althaus', 'City', 'Dom'], 'City':['Bellevue', 'Dom', 'Friedhof'], 'Dom':['Althaus', 'Bellevue', 'City', 'Enge', 'Friedhof'], 'Enge':['Althaus', 'Dom'], 'Friedhof':['Althaus', 'City', 'Dom']} distances = {('Althaus', 'Bellevue'):5, ('Althaus', 'Dom'):9, ('Althaus', 'Enge'):6, ('Althaus', 'Friedhof'):15, ('Bellevue', 'City'):3, ('Bellevue', 'Dom'):13, ('City', 'Dom'):4, ('City', 'Friedhof'):3, ('Dom', 'Enge'):2, ('Dom', 'Friedhof'):12} def getNeighbourDistance(station1, station2): if station1 < station2: return distances[(station1, station2)] return distances[(station2, station1)] def totalDistance(li): sum = 0 for i in range(len(li) - 1): sum += getNeighbourDistance(li[i], li[i + 1]) return sum def drawGraph(): getBg().clear() getBg().setPaintColor(Color.blue) for station in locations: location = locations[station] getBg().fillCircle(toPoint(location), 10) startPoint = toPoint(location) getBg().drawText(station, startPoint) for s in neighbours[station]: drawConnection(station, s) if s < station: distance = distances[(s, station)] else: distance = distances[(station, s)] endPoint = toPoint(locations[s]) getBg().drawText(str(distance), getDividingPoint(startPoint, endPoint, 0.5)) refresh() def drawConnection(startStation, endStation): startPoint = toPoint(locations[startStation]) endPoint = toPoint(locations[endStation]) getBg().drawLine(startPoint, endPoint) def search(station): global trackToTarget, trackLength visited.append(station) # station marked as visited # Check for solution if station == targetStation: currentDistance = totalDistance(visited) if currentDistance < trackLength: trackLength = currentDistance trackToTarget = visited[:] for s in neighbours[station]: if s not in visited: # if all are visited, recursion returns search(s) # recursive call visited.pop() # station may be visited by another path def getStation(location): for station in locations: if locations[station] == location: return station return None # station not found def init(): global visited, trackToTarget, trackLength visited = [] trackToTarget = [] trackLength = 1000 drawGraph() def pressEvent(e): global isStart, startStation, targetStation mouseLoc = toLocationInGrid(e.getX(), e.getY()) mouseStation = getStation(mouseLoc) if mouseStation == None: return if isStart: isStart = False init() setTitle("Klicke auf Zielstation") startStation = mouseStation getBg().setPaintColor(Color.red) getBg().fillCircle(toPoint(mouseLoc), 10) else: isStart = True setTitle("Noch einmal? Klicke auf Startstation") targetStation = mouseStation getBg().setPaintColor(Color.green) getBg().fillCircle(toPoint(mouseLoc), 10) search(startStation) setStatusText("Kürzester Weg von " + startStation + " nach " + targetStation + ": " + str(trackToTarget) + " Länge = " + str(trackLength)) for i in range(len(trackToTarget) - 1): s1 = trackToTarget[i] s2 = trackToTarget[i + 1] getBg().setPaintColor(Color.black) getBg().setLineWidth(3) drawConnection(s1, s2) getBg().setLineWidth(1) refresh() isStart = True makeGameGrid(7, 5, 100, None, "sprites/city.png", False, mousePressed = pressEvent) setTitle("City Guide. Klicke auf Startstation") addStatusBar(30) show() init()
773fa456f16adc76fdbca0568bf8feb723dfad1b
2d4af29250dca8c72b74e190e74d92f1467120a0
/TaobaoSdk/Request/TaohuaChildcatesGetRequest.py
a624463f6f4d5bb1765b77cb318501d6f0daeeac
[]
no_license
maimiaolmc/TaobaoOpenPythonSDK
2c671be93c40cf487c0d7d644479ba7e1043004c
d349aa8ed6229ce6d76a09f279a0896a0f8075b3
refs/heads/master
2020-04-06T03:52:46.585927
2014-06-09T08:58:27
2014-06-09T08:58:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,548
py
#! /usr/bin/env python # -*- coding: utf-8 -*- # vim: set ts=4 sts=4 sw=4 et: ## @brief 通过类目ID获取它的类目列表 # @author [email protected] # @date 2012-07-03 10:25:14 # @version: 0.0.0 import os import sys import time def __getCurrentPath(): return os.path.normpath(os.path.join(os.path.realpath(__file__), os.path.pardir)) __modulePath = os.path.join(__getCurrentPath(), os.path.pardir) __modulePath = os.path.normpath(__modulePath) if __modulePath not in sys.path: sys.path.insert(0, __modulePath) ## @brief <SPAN style="font-size:16px; font-family:'宋体','Times New Roman',Georgia,Serif;">通过类目ID获取它的类目列表</SPAN> # <UL> # </UL> class TaohuaChildcatesGetRequest(object): def __init__(self): super(self.__class__, self).__init__() ## @brief <SPAN style="font-size:16px; font-family:'宋体','Times New Roman',Georgia,Serif;">获取API名称</SPAN> # <UL> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Type</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">str</SPAN> # </LI> # </UL> self.method = "taobao.taohua.childcates.get" ## @brief <SPAN style="font-size:16px; font-family:'宋体','Times New Roman',Georgia,Serif;">时间戳,如果不设置,发送请求时将使用当时的时间</SPAN> # <UL> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Type</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">int</SPAN> # </LI> # </UL> self.timestamp = int(time.time()) ## @brief <SPAN style="font-size:16px; font-family:'宋体','Times New Roman',Georgia,Serif;">通过类目ID获取它的子类目列表</SPAN> # <UL> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Type</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">Number</SPAN> # </LI> # <LI> # <SPAN style="color:DarkRed; font-size:18px; font-family:'Times New Roman',Georgia,Serif;">Required</SPAN>: <SPAN style="color:DarkMagenta; font-size:16px; font-family:'Times New Roman','宋体',Georgia,Serif;">optional</SPAN> # </LI> # </UL> self.cate_id = None
44745815bf70dfefbc566356404d6d02776e8a77
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03254/s956844324.py
07d913466375174a9e3f7d1410eaa5709318f863
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
171
py
N,x = map(int, input().split()) A = sorted(map(int, input().split())) s = 0 for i in range(N): x -= A[i] if x<0: break else: s += 1 print(s if x<=0 else s-1)
21bd5066ba2a212591f1557923296b35eda07ae0
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_072/ch25_2019_08_21_19_49_43_725038.py
4ad02d8f6560a27c1b43320c99a7c2c44a6ef538
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
199
py
a=float(input('Qual será a distância percorrida ? ')) def preco_passagem(a): if a<=200: return a*0.5 else: return 100+(a-100)*0.45 print('{0:.2f}'.format(preco_passagem(a)))
43c46f3842293ca95fcc91f1dcb7bdd6100621cd
f0937d9fb9108cdd69c5c477a782965bb1f25da5
/first/settings.py
5922c4ca8b47a4245264bfa0f0f1e6fe1814266e
[]
no_license
SimeonYS/first
64218a5c2113cebfc1e1aec3f2808dcefcc30342
986e7bbbe5635685ce6795ee9f1459ce5d5a8ef5
refs/heads/main
2023-03-29T17:29:57.300975
2021-03-29T07:58:32
2021-03-29T07:58:32
352,561,410
0
0
null
null
null
null
UTF-8
Python
false
false
372
py
BOT_NAME = 'first' SPIDER_MODULES = ['first.spiders'] NEWSPIDER_MODULE = 'first.spiders' FEED_EXPORT_ENCODING = 'utf-8' LOG_LEVEL = 'ERROR' DOWNLOAD_DELAY = 0 USER_AGENT="Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.150 Safari/537.36" ROBOTSTXT_OBEY = True ITEM_PIPELINES = { 'first.pipelines.FirstPipeline': 300, }
c5cf3f5dddb8cb510c9b6acf954b3ddde35e9e2e
8506f0a22ef4edf03627951ced530b921ff4d383
/tools/sumolib/output/convert/gpx.py
0ec2127c1bf7a9f35b0a8fba39d2c071c8999ca0
[]
no_license
deepak728/Traffic-Optimization-
fb0ac074fa601e524eb0d79defc7e8b84ab03138
85bc54de2e318f36bdcc5bb6f05badde0fb35ffe
refs/heads/master
2020-03-29T23:29:36.740048
2018-11-12T09:19:17
2018-11-12T09:19:17
150,475,374
1
1
null
2018-11-12T09:19:19
2018-09-26T18:57:35
Java
UTF-8
Python
false
false
1,366
py
""" @file gpx.py @author Jakob Erdmann @author Laura Bieker @date 2014-02-13 @version $Id: gpx.py 18096 2015-03-17 09:50:59Z behrisch $ This module includes functions for converting SUMO's fcd-output into GPX format (http://en.wikipedia.org/wiki/GPS_eXchange_Format) SUMO, Simulation of Urban MObility; see http://sumo.dlr.de/ Copyright (C) 2014 DLR (http://www.dlr.de/) and contributors This file is part of SUMO. SUMO is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. """ from collections import defaultdict def fcd2gpx(inpFCD, outSTRM, ignored): tracks = defaultdict(list) for timestep in inpFCD: for v in timestep.vehicle: tracks[v.id].append((timestep.time, v.x, v.y)) outSTRM.write('<?xml version="1.0" encoding="UTF-8"?>\n') outSTRM.write('<gpx version="1.0">\n') for vehicle, trackpoints in tracks.iteritems(): outSTRM.write(" <trk><name>%s</name><trkseg>\n" % vehicle) for timestamp, lon, lat in trackpoints: outSTRM.write(' <trkpt lon="%s" lat="%s"><time>%s</time></trkpt>\n' % ( lon, lat, timestamp)) outSTRM.write(" </trkseg></trk>\n") outSTRM.write('</gpx>\n')
7e0f20a3411dc570ed92600197a47eda29d7e3fc
b5ffa0109ee980406550b7f9a4f5c7587f10a759
/sklearn库.py
c597a056daae863e773ae3d33e4f1db9b08556b2
[]
no_license
SuneastChen/np_pd_sklearn
07fd99f383cfaf117e6dff7beb12b240957cbbe0
2ff777772c5a0db1e21635796351919c049dc680
refs/heads/master
2020-03-07T22:38:27.311708
2018-04-02T13:24:03
2018-04-02T13:24:03
127,759,582
0
0
null
null
null
null
UTF-8
Python
false
false
6,832
py
# _*_ coding:utf-8 _*_ # !/usr/bin/python import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier iris = datasets.load_iris() # 加载指定数据库,是一个字典,data与target是key iris_X = iris.data # 特征数据表,是二维数组 iris_y = iris.target # 结果标签,是个一维数组 print(iris_X[:3, :]) # 查看一下三行的数据 print(iris_y) # 查看结果集 # 将数据集分成训练集,测试集 X_train, X_test, y_train, y_test = train_test_split(iris_X, iris_y, test_size=0.3) print(y_train) # 训练集自动打乱了 # 用邻近算法 knn = KNeighborsClassifier() knn.fit(X_train, y_train) # 开始训练 print(knn.predict(X_test)) # 输入测试集得出结果 print(y_test) # 这是测试集的真实结果,对比 from sklearn.linear_model import LinearRegression # 通用的学习模式 loaded_data = datasets.load_boston() # 加载房价的数据库 data_X = loaded_data.data data_y = loaded_data.target model = LinearRegression() # 调用线性回归模式 model.fit(data_X, data_y) # 训练 print(model.predict(data_X[:4, :])) # 测试 print(data_y[:4]) print(model.coef_) # 斜率,即输入特征的各比重 print(model.intercept_) # 截距 print(model.get_params()) # 返回model定义时的参数 # {'copy_X': True, 'fit_intercept': True, 'n_jobs': 1, 'normalize': False} print(model.score(data_X, data_y)) # 将数据及结果传入,给线性模型打分,准确度 import matplotlib.pyplot as plt # 生成数据集X,对应的线性结果集y X, y = datasets.make_regression(n_samples=100, n_features=1, n_targets=1, noise=10) print(X[:5, :]) plt.scatter(X, y) plt.show() from sklearn import preprocessing a = np.array([[10, 2.7, 3.6], [-100, 5, -2], [120, 20, 40]]) print(a) print(preprocessing.scale(a)) # 将各系列的值范围整体缩小 from sklearn.datasets.samples_generator import make_classification from sklearn.svm import SVC X, y = make_classification(n_samples=300, n_features=2, n_redundant=0, n_informative=2, random_state=22, n_clusters_per_class=1, scale=100) # 生成数据 # redundant adj.多余的,冗余的 informative adj.提供有用信息的 X = preprocessing.scale(X) # 坐标轴整体浓缩 # plt.scatter(X[:, 0], X[:, 1], c=y) # plt.show() X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) model = SVC() # 加入正则防止过拟合的SVC算法 model.fit(X_train, y_train) print(model.score(X_test, y_test)) # 浓缩之后得分较高94.4 ,故系列的大小范围直接影响准确度 # 分成好几组的训练集和测试集 from sklearn.model_selection import cross_val_score iris = datasets.load_iris() # 加载指定数据库 iris_X = iris.data # 特征数据表 iris_y = iris.target # 结果标签表 # 将数据集分成训练集,测试集 X_train, X_test, y_train, y_test = train_test_split(iris_X, iris_y, test_size=0.3) knn = KNeighborsClassifier(n_neighbors=5) # 用邻近算法,加入参数取邻近的5个点 # 只测试一组 # knn.fit(X_train, y_train) # 开始训练 # print(knn.score(X_test, y_test)) # 只测试一组的结果得分 scores = cross_val_score(knn, X, y, cv=5, scoring='accuracy') # 分成5组训练集,测试集,分别做测试 print(scores) # 得到一个一维数组 print(scores.mean()) # 选择最优的参数,即参数取邻近的几个点准确率最高的 k_range = range(1, 31) # 参数列表 k_scores = [] for k in k_range: # 也可以把不同的学习model加入测试 knn = KNeighborsClassifier(n_neighbors=k) # 加入循环的k参数 # scores = cross_val_score(knn, X, y, cv=10, scoring='accuracy') # for classfification(分类问题) loss = -cross_val_score(knn, X, y, cv=10, scoring='neg_mean_squared_error') # for regression(线性回归问题),加负号 k_scores.append(loss.mean()) # 每进行一组测试,产生一个一维数组loss # print(k_scores) plt.plot(k_range, k_scores) plt.xlabel('n_neighbors=k') plt.ylabel('accuracy') plt.show() # 得出参数n_neighbors=10时最优,大于时就会产生过度拟合(over fitting) # 怎么样看过度拟合 ''' from sklearn.model_selection import learning_curve from sklearn.datasets import load_digits digits = load_digits() X = digits.data y = digits.target train_sizes, train_loss, test_loss = learning_curve( SVC(gamma=0.001), X, y, cv=5, scoring='neg_mean_squared_error', train_sizes=[i/10 for i in range(1, 11)] ) # 多组测试的方法,传入训练数量的百分比点 # print(train_sizes) # 得到每个时间段训练的数量,组成的一维数组 # print(train_loss) # 得到相应的二维数组,列数=分组数,行数=时间段的个数 # print(test_loss) # 得到相应的二维数组,列数=分组数,行数=时间段的个数 train_loss_mean = -np.mean(train_loss, axis=1) # 在表格右侧求平均,增加列,行不变,即axis=1 test_loss_mean = -np.mean(test_loss, axis=1) plt.plot(train_sizes, train_loss_mean, 'o-', color='r', label='Training') plt.plot(train_sizes, test_loss_mean, 'o-', color='g', label='Testing') plt.xlabel('train_sizes') plt.ylabel('loss') plt.show() # 若将SVC模型的gamma参数改为0.01,便会产生过拟合 ''' # 如何测试模型中的最优参数 ''' from sklearn.model_selection import validation_curve from sklearn.datasets import load_digits digits = load_digits() X = digits.data y = digits.target param_range = np.logspace(-6, -2.3, 5) # 新参数 train_loss, test_loss = validation_curve( SVC(), X, y, param_name='gamma', param_range=param_range, cv=10, scoring='neg_mean_squared_error') # 返回值无train_sizes,参数无train_sizes,新增了gamma参数 train_loss_mean = -np.mean(train_loss, axis=1) # 在表格右侧求平均,增加列,行不变,即axis=1 test_loss_mean = -np.mean(test_loss, axis=1) plt.plot(param_range, train_loss_mean, 'o-', color='r', label='Training') plt.plot(param_range, test_loss_mean, 'o-', color='g', label='Testing') plt.xlabel('gamma') plt.ylabel('loss') plt.show() # 根据图像可直观地看出,最优参数gamma=0.0005左右 ''' # 将训练好的模型,导出导入 from sklearn import svm iris = datasets.load_iris() X, y = iris.data, iris.target model = SVC() model.fit(X,y) #方法1:用pickle模块导出导入 import pickle with open('model.pkl', 'wb')as f: pickle.dump(model, f) with open('model.pkl', 'rb')as f: model2 = pickle.load(f) print(model2.predict(X[0:3])) # 把前3行数据做测试 #方法2:用joblib模块,性能更高效 from sklearn.externals import joblib joblib.dump(model, 'model_joblib.pkl') # 保存模型 model3 = joblib.load('model_joblib.pkl') print(model3.predict(X[0:6]))
727b5f688d0d70414334ccda20dfd1f147a25259
b604d6e2b1f206e6df660da2be2add78ec22941a
/resources/ros_kinetic/src/ros/rosbuild/bin/rosgcov_summarize
9c19df610036bbb08442ed9a949fe1a44b505a54
[]
no_license
fqez/common
7b521773d81e2e687f6ae482f595ca3d19515e39
f423fec07f39da9cb38f91dc4f3f1cd51c1a3130
refs/heads/master
2020-05-21T23:59:17.035384
2017-03-14T11:46:57
2017-03-14T11:46:57
62,873,104
0
0
null
null
null
null
UTF-8
Python
false
false
2,635
#!/usr/bin/env python3 import sys import fileinput import re import os.path USAGE = "USAGE: rosgcov_summarize <package_dir> <rosgcov_file>" if len(sys.argv) != 3: print(USAGE) sys.exit(-1) pkg = sys.argv[1] fname = sys.argv[2] if not os.path.exists(fname): print('[rosgcov] %s : %.2f%% (no coverage results)' % (os.path.split(pkg)[1],0.0)) sys.exit(0) re_hit = re.compile('^ *[0-9]*:.*') re_miss = re.compile('^ *#####:.*') re_branch_hit = re.compile('^branch *[0-9] *taken [0-9]*.*') re_branch_miss = re.compile('^branch *[0-9] *never executed.*') files = [] finput = fileinput.input(fname) for l in finput: ls = l.strip().split(' ') f = os.path.join(ls[0],os.path.split(ls[1])[1]) files.append(f.strip()) total = 0 hits = 0 misses = 0 branch_total = 0 branch_hits = 0 branch_misses = 0 print('-------------------------------------------------------') print('Coverage summary: ') print('-------------------------------------------------------') for f in files: prefix = os.path.commonprefix([pkg, f]) display_name = f[len(prefix):] if display_name[0] == '/': display_name = display_name[1:] print(' ' + display_name + ': ') gcov_fname = f + '.gcov' if not os.path.exists(gcov_fname): print('WARNING: no coverage results for %s' % (display_name)) continue gcovf = fileinput.input(gcov_fname) local_total = 0 local_hits = 0 local_misses = 0 local_branch_total = 0 local_branch_hits = 0 local_branch_misses = 0 for s in gcovf: if re_hit.match(s): local_hits += 1 local_total += 1 elif re_miss.match(s): local_misses += 1 local_total += 1 if re_branch_hit.match(s): local_branch_hits += 1 local_branch_total += 1 elif re_branch_miss.match(s): local_branch_misses += 1 local_branch_total += 1 print(' line: %.2f%% (%d / %d)' % ((100.0 * local_hits / max(local_total,1)), local_hits, local_total)) hits += local_hits misses += local_misses total += local_total print(' branch: %.2f%% (%d / %d)' % ((100.0 * local_branch_hits / max(local_branch_total,1)), local_branch_hits, local_branch_total)) branch_hits += local_branch_hits branch_misses += local_branch_misses branch_total += local_branch_total print('-------------------------------------------------------') print('[rosgcov] %s : %.2f%% (%d / %d)' % (os.path.split(pkg)[1],(100.0 * hits / max(total,1)), hits, total)) print('[rosgcov] %s : branch %.2f%% (%d / %d)' % (os.path.split(pkg)[1],(100.0 * branch_hits / max(branch_total,1)), branch_hits, branch_total)) print('-------------------------------------------------------')
fa4e4448ac09a8ca4502f4e8591d83ef40112882
fc2447b91cbee82e74e939092ec1903678f3217a
/PythonPractice/算法图解/Dijkstra's algorithm.py
0cd528a8c91f11657af1906538a31b531f16e4a9
[]
no_license
yglj/learngit
0eac654e7c49f2ede064b720e6ee621a702193b4
74fb4b93d5726c735b64829cafc99878d8082121
refs/heads/master
2022-12-24T10:01:56.705046
2019-05-27T21:04:08
2019-05-27T21:04:08
146,157,116
0
1
null
2022-12-12T07:01:25
2018-08-26T06:28:20
HTML
UTF-8
Python
false
false
1,771
py
""" 狄克斯特拉算法 每条边上的关联数字称为权重 带权重的图叫加权图 寻找加权图的最短路径 只是用于有向无环图 """ graph = {} # 加权图 costs = {} # 开销 parents = {} # 父节点 # 图的各顶点的邻居及边的权重 graph['start'] = {} graph['start']['a'] = 6 graph['start']['b'] = 2 # print(graph['start'].keys()) graph['a'] = {} graph['a']['fin'] = 1 graph['b'] = {} graph['b']['a'] = 3 graph['b']['fin'] = 5 graph['fin'] = {} infinity = float('inf') # 无穷大 costs['a'] = 6 costs['b'] = 2 costs['fin'] = infinity parents['a'] = 'start' parents['b'] = 'start' parents['fin'] = None # 开始没有到达fin的路径 processed = [] """ 1.只要还有要处理的节点 2.获取离起点最近的节点 3.更新其邻居的开销 4.如果有邻居的开销被更新,同时更新其父节点 5.将该节点标记为处理过 """ def find_lowest_cost_node(costs): lowest_cost = float('inf') lowest_cost_node = None for node in costs: cost = costs[node] if cost < lowest_cost and node not in processed: lowest_cost = cost lowest_cost_node = node return lowest_cost_node def main(): node = find_lowest_cost_node(costs) while node is not None: cost = costs[node] neighbors = graph[node] for n in neighbors.keys(): new_cost = cost + neighbors[n] if costs[n] > new_cost: costs[n] = new_cost parents[n] = node processed.append(node) node = find_lowest_cost_node(costs) if __name__ == '__main__': main() # print(parents) # print(costs) # print(graph) processed.insert(0, 'start') path = '->'.join(processed) print(path)
4aa3c05bab82dea4ae678dfc7c1ea442168008e2
414a58c691ff7b434034086433644870f8ac5c99
/tests/test_geom.py
b1de7a128110d8a3d34fee1bc3c1dbf3d7148c62
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
WZBSocialScienceCenter/pdftabextract
08328197681ca03b764ea2df410851c06e0a92b7
7b86a9098b5d397f984b1cbc6716d55860e34ef8
refs/heads/master
2022-08-02T16:43:42.187628
2022-06-24T09:51:22
2022-06-24T09:51:22
62,884,666
2,239
401
Apache-2.0
2022-06-24T09:51:23
2016-07-08T11:44:46
Python
UTF-8
Python
false
false
7,946
py
# -*- coding: utf-8 -*- """ Created on Mon Feb 13 09:50:51 2017 @author: mkonrad """ import math import pytest from hypothesis import given import hypothesis.strategies as st import numpy as np from pdftabextract.geom import (pt, ptdist, vecangle, vecrotate, overlap, lineintersect, rect, rectcenter, rectarea, rectintersect, normalize_angle, normalize_angle_halfcircle, project_polarcoord_lines) FMIN = np.finfo(np.float32).min FMAX = np.finfo(np.float32).max def test_pt(): x = 0 y = 1 pt0 = pt(x, y) assert type(pt0) is np.ndarray assert pt0.dtype == np.float assert pt0[0] == x assert pt0[1] == y pt1 = pt(x, y, np.int) assert pt1.dtype == np.int assert pt1[0] == x assert pt1[1] == y def test_ptdist(): p1 = pt(0, 0) p2 = pt(1, 0) p3 = pt(1, 1) assert ptdist(p1, p1) == 0 assert ptdist(p1, p2) == 1 assert ptdist(p2, p1) == ptdist(p1, p2) assert ptdist(p1, p3) == math.sqrt(2) def test_vecangle(): v1 = pt(1, 0) v2 = pt(2, 0) v3 = pt(1, 1) v4 = pt(0, 1) v5 = pt(0, -1) assert np.isnan(vecangle(pt(0, 0), v1)) # pt(0, 0) is vec of no length assert vecangle(v1, v2) == 0 assert round(vecangle(v1, v3), 4) == round(math.radians(45), 4) assert vecangle(v2, v4) == vecangle(v1, v4) == math.radians(90) assert vecangle(v2, v5) == math.radians(90) # always the smaller angle @given(st.floats(min_value=FMIN, max_value=FMAX), st.floats(min_value=FMIN, max_value=FMAX), st.floats(min_value=FMIN, max_value=FMAX), st.floats(min_value=FMIN, max_value=FMAX)) def test_vecangle_2(x1, y1, x2, y2): v0 = pt(0, 0) v1 = pt(x1, y1) v2 = pt(x2, y2) try: alpha = vecangle(v1, v2) except ValueError: # math domain error in some edge cases? return if np.allclose(v1, v0) or np.allclose(v2, v0): assert np.isnan(alpha) else: assert 0 <= alpha <= np.pi def test_vecrotate(): assert np.array_equal(vecrotate(pt(0, 0), 0.123), pt(0, 0)) assert np.allclose(vecrotate(pt(1, 0), math.radians(90)), pt(0, 1)) assert np.allclose(vecrotate(pt(1, 0), math.radians(90), about=pt(1, 1)), pt(2, 1)) def test_overlap(): assert overlap(0, 1, 0, 1) is True assert overlap(0, 0, 1, 1) is False assert overlap(0, 10, 5, 15) is True assert overlap(-10, 10, -20, -10) is True assert overlap(-9, 10, -20, -10) is False def test_lineintersect(): # first with check_in_segm = True X = lineintersect(pt(0, 0), pt(0, 0), pt(0, 0), pt(0, 0)) # coincident I assert sum(np.isnan(X)) == len(X) X = lineintersect(pt(0, 0), pt(0, 1), pt(0, 0), pt(0, 1)) # coincident II assert sum(np.isnan(X)) == len(X) assert lineintersect(pt(0, 0), pt(0, 1), pt(1, 0), pt(1, 1)) is None # parallel, non coincident assert lineintersect(pt(0, 0), pt(0, 1), pt(1, 1), pt(2, 2)) is None # non-parellel, no intersection assert lineintersect(pt(0, 0), pt(2, 2), pt(0, 5), pt(5, 0)) is None # non-parellel, no intersection II assert np.array_equal(lineintersect(pt(0, 0), pt(0, 1), pt(0, 1), pt(2, 2)), pt(0, 1)) # intersection - touch assert np.array_equal(lineintersect(pt(0, 0), pt(2, 2), pt(0, 2), pt(2, 0)), pt(1, 1)) # intersection # now with check_in_segm = False X = lineintersect(pt(0, 0), pt(0, 0), pt(0, 0), pt(0, 0), False) # coincident I assert sum(np.isnan(X)) == len(X) X = lineintersect(pt(0, 0), pt(0, 1), pt(0, 0), pt(0, 1), False) # coincident II assert sum(np.isnan(X)) == len(X) X = lineintersect(pt(0, 0), pt(1, 1), pt(2, 2), pt(3, 3), False) # coincident III assert sum(np.isnan(X)) == len(X) assert np.array_equal(lineintersect(pt(0, 0), pt(0, 1), pt(1, 1), pt(2, 2), False), pt(0, 0)) # intersection (out of segments) assert np.array_equal(lineintersect(pt(0, 0), pt(0, 1), pt(0, 1), pt(2, 2), False), pt(0, 1)) # intersection - touch assert np.array_equal(lineintersect(pt(0, 0), pt(2, 2), pt(0, 2), pt(2, 0), False), pt(1, 1)) # intersection def test_rect(): with pytest.raises(ValueError): rect(pt(0, 0), pt(1, 1, dtype=np.int)) # dtypes do not match with pytest.raises(ValueError): rect(pt(0, 0), pt(0, 0)) # doesn't form rect with pytest.raises(ValueError): rect(pt(1, 1), pt(0, 0)) # doesn't form rect with pytest.raises(ValueError): rect(pt(0, 0), pt(1, 0)) # doesn't form rect a = pt(0, 0) b = pt(1, 1) r = rect(a, b) assert r.dtype == a.dtype == b.dtype assert np.array_equal(r[0], a) assert np.array_equal(r[1], b) a = pt(-3, -1) b = pt(8, 1.2) r = rect(a, b) assert r.dtype == a.dtype == b.dtype assert np.array_equal(r[0], a) assert np.array_equal(r[1], b) def test_rectcenter(): a = pt(0, 0) b = pt(1, 1) r = rect(a, b) center = rectcenter(r) assert type(center) is np.ndarray assert np.array_equal(center, pt(0.5, 0.5)) a = pt(-3, -1) b = pt(2, 5) r = rect(a, b) assert np.array_equal(rectcenter(r), pt(-0.5, 2)) def test_rectarea(): a = pt(0, 0) b = pt(1, 1) r = rect(a, b) assert rectarea(r) == 1 a = pt(-3, -1) b = pt(2, 5) r = rect(a, b) assert rectarea(r) == 30 def test_rectintersect(): a = rect(pt(0, 0), pt(1, 1)) b = rect(pt(-3, -1), pt(2, 5)) assert rectintersect(a, a) == rectarea(a) assert rectintersect(b, b) == rectarea(b) assert rectintersect(a, a, norm_intersect_area='a') == 1 assert rectintersect(a, a, norm_intersect_area='b') == 1 with pytest.raises(ValueError): rectintersect(a, a, norm_intersect_area='c') # complete intersect assert rectintersect(a, b) == rectarea(a) assert rectintersect(b, a) == rectarea(a) assert rectintersect(a, b, norm_intersect_area='a') == 1 assert rectintersect(b, a, norm_intersect_area='b') == 1 assert rectintersect(b, a, norm_intersect_area='a') < 1 assert rectintersect(a, b, norm_intersect_area='b') < 1 # partial intersect a = rect(pt(0, 0), pt(1, 1)) b = rect(pt(0.5, 0.5), pt(1.5, 1.5)) assert rectintersect(a, b) == 0.25 assert rectintersect(a, b, norm_intersect_area='a') == 0.25 assert rectintersect(a, b, norm_intersect_area='b') == 0.25 b = rect(pt(0.75, 0.5), pt(1.5, 1.5)) assert rectintersect(a, b) == 0.125 # touch a = rect(pt(0, 0), pt(1, 1)) b = rect(pt(1, 1), pt(1.5, 1.5)) assert rectintersect(a, b) == 0 # no intersection a = rect(pt(0, 0), pt(1, 1)) b = rect(pt(1.1, 1.1), pt(1.5, 1.5)) assert rectintersect(a, b) is None def test_normalize_angle(): for i in range(-10, 10): theta = i * np.pi norm = normalize_angle(theta) assert 0 <= norm < 2 * np.pi assert norm / np.pi == i % 2 def test_normalize_angle_halfcircle(): for i in range(-10, 10): theta = 0.5 * i * np.pi norm = normalize_angle_halfcircle(theta) assert 0 <= norm < np.pi assert norm / np.pi * 2 == i % 2 @given( st.lists(st.lists(st.floats(allow_nan=False, allow_infinity=False), min_size=2, max_size=2)), st.integers(), st.integers() ) def test_project_polarcoord_lines(hough_lines, img_w, img_h): if img_w <= 0 or img_h <= 0: with pytest.raises(ValueError): project_polarcoord_lines(hough_lines, img_w, img_h) return else: res = project_polarcoord_lines(hough_lines, img_w, img_h) assert type(res) is list assert len(res) == len(hough_lines) for pts in res: assert len(pts) == 2 assert type(pts[0]) == type(pts[1]) == np.ndarray assert len(pts[0]) == len(pts[1]) == 2
4b3ea08a26e0a92132a0a700b7e8ff04bd9e13fb
0420b28aa59330fb0d9548f636b1460668163887
/accounts/migrations/0005_alter_userprofile_profile_picture.py
591939011f4877d881bd9c3396ddd91668e6bf0a
[]
no_license
akhmadakhmedov/modamag
30cc3ea335b7fe8fbc234149b11d2df11b627281
0459f27230027fab51cbaae2a594ffde52a64d04
refs/heads/main
2023-08-11T01:48:58.979894
2021-10-12T11:18:08
2021-10-12T11:18:08
391,133,082
0
0
null
null
null
null
UTF-8
Python
false
false
419
py
# Generated by Django 3.2.5 on 2021-08-16 09:22 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('accounts', '0004_userprofile'), ] operations = [ migrations.AlterField( model_name='userprofile', name='profile_picture', field=models.ImageField(blank=True, upload_to='images/users/'), ), ]
2206b4bfd3f1f3c2510c27d0f3cce62a12de5313
3a6b2c80f948a7918d54b71866d94476d17f19ef
/docs/_build/html/_downloads/06b1aa4ac217e5bc4f81274b1df76753/demo3.py
f37533217c6ef48d7c40a3069c064bf780f9459f
[ "BSD-2-Clause", "BSD-3-Clause" ]
permissive
beckermr/GalSim
c306c3e5c00a78c15a9d9f20d2bfa489239fb946
96c80bde3184f84e450c2dc441ee8fe03b5197f2
refs/heads/releases/2.3
2022-12-04T20:45:35.964787
2022-07-01T06:23:22
2022-07-01T06:24:49
288,194,984
0
0
NOASSERTION
2020-08-17T13:59:25
2020-08-17T13:59:25
null
UTF-8
Python
false
false
15,150
py
# Copyright (c) 2012-2021 by the GalSim developers team on GitHub # https://github.com/GalSim-developers # # This file is part of GalSim: The modular galaxy image simulation toolkit. # https://github.com/GalSim-developers/GalSim # # GalSim is free software: redistribution and use in source and binary forms, # with or without modification, are permitted provided that the following # conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions, and the disclaimer given in the accompanying LICENSE # file. # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions, and the disclaimer given in the documentation # and/or other materials provided with the distribution. # """ Demo #3 The third script in our tutorial about using GalSim in python scripts: examples/demo*.py. (This file is designed to be viewed in a window 100 characters wide.) This script gets reasonably close to including all the principal features of an image from a ground-based telescope. The galaxy is represented as the sum of a bulge and a disk, where each component is represented by a sheared Sersic profile (with different Sersic indices). The PSF has both atmospheric and optical components. The atmospheric component is a Kolmogorov turbulent spectrum. The optical component includes defocus, coma and astigmatism, as well as obscuration from a secondary mirror. The noise model includes both a gain and read noise. And finally, we include the effect of a slight telescope distortion. New features introduced in this demo: - obj = galsim.Sersic(n, flux, half_light_radius) - obj = galsim.Sersic(n, flux, scale_radius) - obj = galsim.Kolmogorov(fwhm) - obj = galsim.OpticalPSF(lam_over_diam, defocus, coma1, coma2, astig1, astig2, obscuration) - obj = obj.shear(e, beta) -- including how to specify an angle in GalSim - shear = galsim.Shear(q, beta) - obj = obj.shear(shear) - obj3 = x1 * obj1 + x2 * obj2 - obj = obj.withFlux(flux) - image = galsim.ImageF(image_size, image_size) - image = obj.drawImage(image, wcs) - image = obj.drawImage(method='sb') - world_profile = wcs.toWorld(profile) - shear3 = shear1 + shear2 - noise = galsim.CCDNoise(rng, sky_level, gain, read_noise) """ import sys import os import math import logging import galsim def main(argv): """ Getting reasonably close to including all the principle features of an image from a ground-based telescope: - Use a bulge plus disk model for the galaxy - Both galaxy components are Sersic profiles (n=3.5 and n=1.5 respectively) - Let the PSF have both atmospheric and optical components. - The atmospheric component is a Kolmogorov spectrum. - The optical component has some defocus, coma, and astigmatism. - Add both Poisson noise to the image and Gaussian read noise. - Let the pixels be slightly distorted relative to the sky. """ # We do some fancier logging for demo3, just to demonstrate that we can: # - we log to both stdout and to a log file # - the log file has a lot more (mostly redundant) information logging.basicConfig(format="%(message)s", level=logging.INFO, stream=sys.stdout) if not os.path.isdir('output'): os.mkdir('output') logFile = logging.FileHandler(os.path.join("output", "script3.log")) logFile.setFormatter(logging.Formatter("%(name)s[%(levelname)s] %(asctime)s: %(message)s")) logging.getLogger("demo3").addHandler(logFile) logger = logging.getLogger("demo3") gal_flux = 1.e6 # ADU ("Analog-to-digital units", the units of the numbers on a CCD) bulge_n = 3.5 # bulge_re = 2.3 # arcsec disk_n = 1.5 # disk_r0 = 0.85 # arcsec (corresponds to half_light_radius of ~3.7 arcsec) bulge_frac = 0.3 # gal_q = 0.73 # (axis ratio 0 < q < 1) gal_beta = 23 # degrees (position angle on the sky) atmos_fwhm=2.1 # arcsec atmos_e = 0.13 # atmos_beta = 0.81 # radians opt_defocus=0.53 # wavelengths opt_a1=-0.29 # wavelengths opt_a2=0.12 # wavelengths opt_c1=0.64 # wavelengths opt_c2=-0.33 # wavelengths opt_obscuration=0.3 # linear scale size of secondary mirror obscuration lam = 800 # nm NB: don't use lambda - that's a reserved word. tel_diam = 4. # meters pixel_scale = 0.23 # arcsec / pixel image_size = 64 # n x n pixels wcs_g1 = -0.02 # wcs_g2 = 0.01 # sky_level = 2.5e4 # ADU / arcsec^2 gain = 1.7 # e- / ADU # Note: here we assume 1 photon -> 1 e-, ignoring QE. If you wanted, # you could include the QE factor as part of the gain. read_noise = 0.3 # e- / pixel random_seed = 1314662 logger.info('Starting demo script 3 using:') logger.info(' - Galaxy is bulge plus disk, flux = %.1e',gal_flux) logger.info(' - Bulge is Sersic (n = %.1f, re = %.2f), frac = %.1f', bulge_n,bulge_re,bulge_frac) logger.info(' - Disk is Sersic (n = %.1f, r0 = %.2f), frac = %.1f', disk_n,disk_r0,1-bulge_frac) logger.info(' - Shape is q,beta (%.2f,%.2f deg)', gal_q, gal_beta) logger.info(' - Atmospheric PSF is Kolmogorov with fwhm = %.2f',atmos_fwhm) logger.info(' - Shape is e,beta (%.2f,%.2f rad)', atmos_e, atmos_beta) logger.info(' - Optical PSF has defocus = %.2f, astigmatism = (%.2f,%.2f),', opt_defocus, opt_a1, opt_a2) logger.info(' coma = (%.2f,%.2f), lambda = %.0f nm, D = %.1f m', opt_c1, opt_c2, lam, tel_diam) logger.info(' obscuration linear size = %.1f',opt_obscuration) logger.info(' - pixel scale = %.2f,',pixel_scale) logger.info(' - WCS distortion = (%.2f,%.2f),',wcs_g1,wcs_g2) logger.info(' - Poisson noise (sky level = %.1e, gain = %.1f).',sky_level, gain) logger.info(' - Gaussian read noise (sigma = %.2f).',read_noise) # Initialize the (pseudo-)random number generator that we will be using below. rng = galsim.BaseDeviate(random_seed+1) # Define the galaxy profile. # Normally Sersic profiles are specified by half-light radius, the radius that # encloses half of the total flux. However, for some purposes, it can be # preferable to instead specify the scale radius, where the surface brightness # drops to 1/e of the central peak value. bulge = galsim.Sersic(bulge_n, half_light_radius=bulge_re) disk = galsim.Sersic(disk_n, scale_radius=disk_r0) # Objects may be multiplied by a scalar (which means scaling the flux) and also # added to each other. gal = bulge_frac * bulge + (1-bulge_frac) * disk # Could also have written the following, which does the same thing: # gal = galsim.Add([ bulge.withFlux(bulge_frac) , disk.withFlux(1-bulge_frac) ]) # Both syntaxes work with more than two summands as well. # Set the overall flux of the combined object. gal = gal.withFlux(gal_flux) # Since the total flux of the components was 1, we could also have written: # gal *= gal_flux # The withFlux method will always set the flux to the given value, while `gal *= flux` # will multiply whatever the current flux is by the given factor. # Set the shape of the galaxy according to axis ratio and position angle # Note: All angles in GalSim must have explicit units. Options are: # galsim.radians # galsim.degrees # galsim.arcmin # galsim.arcsec # galsim.hours gal_shape = galsim.Shear(q=gal_q, beta=gal_beta*galsim.degrees) gal = gal.shear(gal_shape) logger.debug('Made galaxy profile') # Define the atmospheric part of the PSF. # Note: the flux here is the default flux=1. atmos = galsim.Kolmogorov(fwhm=atmos_fwhm) # For the PSF shape here, we use ellipticity rather than axis ratio. # And the position angle can be either degrees or radians. Here we chose radians. atmos = atmos.shear(e=atmos_e, beta=atmos_beta*galsim.radians) logger.debug('Made atmospheric PSF profile') # Define the optical part of the PSF: # The first argument of OpticalPSF below is lambda/diam (wavelength of light / telescope # diameter), which needs to be in the same units used to specify the image scale. We are using # arcsec for that, so we have to self-consistently use arcsec here, using the following # calculation: lam_over_diam = lam * 1.e-9 / tel_diam # radians lam_over_diam *= 206265 # arcsec # Note that we could also have made GalSim do the conversion for us if we did not know the right # factor: # lam_over_diam = lam * 1.e-9 / tel_diam * galsim.radians # lam_over_diam = lam_over_diam / galsim.arcsec logger.debug('Calculated lambda over diam = %f arcsec', lam_over_diam) # The rest of the values should be given in units of the wavelength of the incident light. optics = galsim.OpticalPSF(lam_over_diam, defocus = opt_defocus, coma1 = opt_c1, coma2 = opt_c2, astig1 = opt_a1, astig2 = opt_a2, obscuration = opt_obscuration) logger.debug('Made optical PSF profile') # So far, our coordinate transformation between image and sky coordinates has been just a # scaling of the units between pixels and arcsec, which we have defined as the "pixel scale". # This is fine for many purposes, so we have made it easy to treat the coordinate systems # this way via the `scale` parameter to commands like drawImage. However, in general, the # transformation between the two coordinate systems can be more complicated than that, # including distortions, rotations, variation in pixel size, and so forth. GalSim can # model a number of different "World Coordinate System" (WCS) transformations. See the # docstring for BaseWCS for more information. # In this case, we use a WCS that includes a distortion (specified as g1,g2 in this case), # which we call a ShearWCS. wcs = galsim.ShearWCS(scale=pixel_scale, shear=galsim.Shear(g1=wcs_g1, g2=wcs_g2)) logger.debug('Made the WCS') # Next we will convolve the components in world coordinates. psf = galsim.Convolve([atmos, optics]) final = galsim.Convolve([psf, gal]) logger.debug('Convolved components into final profile') # This time we specify a particular size for the image rather than let GalSim # choose the size automatically. GalSim has several kinds of images that it can use: # ImageF uses 32-bit floats (like a C float, aka numpy.float32) # ImageD uses 64-bit floats (like a C double, aka numpy.float64) # ImageS uses 16-bit integers (usually like a C short, aka numpy.int16) # ImageI uses 32-bit integers (usually like a C int, aka numpy.int32) # If you let the GalSim drawImage command create the image for you, it will create an ImageF. # However, you can make a different type if you prefer. In this case, we still use # ImageF, since 32-bit floats are fine. We just want to set the size explicitly. image = galsim.ImageF(image_size, image_size) # Draw the image with the given WCS. Note that we use wcs rather than scale when the # WCS is more complicated than just a pixel scale. final.drawImage(image=image, wcs=wcs) # Also draw the effective PSF by itself and the optical PSF component alone. image_epsf = galsim.ImageF(image_size, image_size) psf.drawImage(image_epsf, wcs=wcs) # We also draw the optical part of the PSF at its own Nyquist-sampled pixel size # in order to better see the features of the (highly structured) profile. # In this case, we draw a "surface brightness image" using method='sb'. Rather than # integrate the flux over the area of each pixel, this method just samples the surface # brightness value at the locations of the pixel centers. We will encounter a few other # drawing methods as we go through this sequence of demos. cf. demos 7, 8, 10, and 11. image_opticalpsf = optics.drawImage(method='sb') logger.debug('Made image of the profile') # This time, we use CCDNoise to model the real noise in a CCD image. It takes a sky level, # gain, and read noise, so it can be a bit more realistic than the simpler GaussianNoise # or PoissonNoise that we used in demos 1 and 2. # The sky level for CCDNoise is the level per pixel that contributed to the noise. sky_level_pixel = sky_level * pixel_scale**2 # The gain is in units of e-/ADU. Technically, one should also account for quantum efficiency # (QE) of the detector. An ideal CCD has one electron per incident photon, but real CCDs have # QE less than 1, so not every photon triggers an electron. We are essentially folding # the quantum efficiency (and filter transmission and anything else like that) into the gain. # The read_noise value is given as e-/pixel. This is modeled as a pure Gaussian noise # added to the image after applying the pure Poisson noise. noise = galsim.CCDNoise(rng, gain=gain, read_noise=read_noise, sky_level=sky_level_pixel) image.addNoise(noise) logger.debug('Added Gaussian and Poisson noise') # Write the images to files. file_name = os.path.join('output', 'demo3.fits') file_name_epsf = os.path.join('output','demo3_epsf.fits') file_name_opticalpsf = os.path.join('output','demo3_opticalpsf.fits') image.write(file_name) image_epsf.write(file_name_epsf) image_opticalpsf.write(file_name_opticalpsf) logger.info('Wrote image to %r', file_name) logger.info('Wrote effective PSF image to %r', file_name_epsf) logger.info('Wrote optics-only PSF image (Nyquist sampled) to %r', file_name_opticalpsf) # Check that the HSM package, which is bundled with GalSim, finds a good estimate # of the shear. results = galsim.hsm.EstimateShear(image, image_epsf) logger.info('HSM reports that the image has observed shape and size:') logger.info(' e1 = %.3f, e2 = %.3f, sigma = %.3f (pixels)', results.observed_shape.e1, results.observed_shape.e2, results.moments_sigma) logger.info('When carrying out Regaussianization PSF correction, HSM reports') logger.info(' e1, e2 = %.3f, %.3f', results.corrected_e1, results.corrected_e2) logger.info('Expected values in the limit that noise and non-Gaussianity are negligible:') # Convention for shear addition is to apply the second term initially followed by the first. # So this needs to be the WCS shear + the galaxy shape in that order. total_shape = galsim.Shear(g1=wcs_g1, g2=wcs_g2) + gal_shape logger.info(' e1, e2 = %.3f, %.3f', total_shape.e1, total_shape.e2) if __name__ == "__main__": main(sys.argv)
d7260d07b1153616bbc341e18e6edb40759ede60
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02631/s086085697.py
fe20e86568153f3f73efd0b1df7a952b71276135
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
122
py
n=int(input()) a=list(map(int,input().split())) c=a[0] for i in range(1,n): c=c^a[i] for i in range(n): print(c^a[i])
1c41b31c2095067d219200c34429fe81d65f2c1a
96c1f13473cf224113185902edd4c9c01091e106
/tests/torchlie_tests/functional/test_se3.py
c3af91c3b45ba611167ac0d61031d6cf9bfbf0f1
[ "MIT" ]
permissive
facebookresearch/theseus
f1e488eb5a25f5ba74a6995911bee958b5da4cf3
240e1206329d42fedd40399684d6e17e455c6645
refs/heads/main
2023-08-11T07:33:12.328520
2023-08-02T12:58:01
2023-08-02T12:58:01
429,570,359
1,410
105
MIT
2023-08-01T14:30:01
2021-11-18T20:28:27
Python
UTF-8
Python
false
false
3,067
py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Sequence, Union import pytest import torch import torchlie.functional.se3_impl as se3_impl from torchlie.functional import SE3 from .common import ( BATCH_SIZES_TO_TEST, TEST_EPS, check_binary_op_broadcasting, check_left_project_broadcasting, check_lie_group_function, check_jacrev_binary, check_jacrev_unary, run_test_op, ) @pytest.mark.parametrize( "op_name", [ "exp", "log", "adjoint", "inverse", "hat", "compose", "transform", "untransform", "lift", "project", "left_act", "left_project", "normalize", ], ) @pytest.mark.parametrize("batch_size", BATCH_SIZES_TO_TEST) @pytest.mark.parametrize("dtype", [torch.float32, torch.float64]) def test_op(op_name, batch_size, dtype): rng = torch.Generator() rng.manual_seed(0) run_test_op(op_name, batch_size, dtype, rng, 6, (3, 4), se3_impl) @pytest.mark.parametrize("batch_size", BATCH_SIZES_TO_TEST) @pytest.mark.parametrize("dtype", [torch.float32, torch.float64]) def test_vee(batch_size: Union[int, Sequence[int]], dtype: torch.dtype): if isinstance(batch_size, int): batch_size = (batch_size,) rng = torch.Generator() rng.manual_seed(0) tangent_vector = torch.rand(*batch_size, 6, dtype=dtype, generator=rng) matrix = se3_impl._hat_autograd_fn(tangent_vector) # check analytic backward for the operator check_lie_group_function(se3_impl, "vee", TEST_EPS, (matrix,)) # check the correctness of hat and vee actual_tangent_vector = se3_impl._vee_autograd_fn(matrix) torch.testing.assert_close( actual_tangent_vector, tangent_vector, atol=TEST_EPS, rtol=TEST_EPS ) @pytest.mark.parametrize("batch_size", [1, 10, 100]) @pytest.mark.parametrize("name", ["exp", "inv"]) def test_jacrev_unary(batch_size, name): check_jacrev_unary(SE3, 6, batch_size, name) @pytest.mark.parametrize("batch_size", [1, 10, 100]) @pytest.mark.parametrize("name", ["compose", "transform", "untransform"]) def test_jacrev_binary(batch_size, name): if not hasattr(torch, "vmap"): return check_jacrev_binary(SE3, batch_size, name) @pytest.mark.parametrize("name", ["compose", "transform", "untransform"]) def test_binary_op_broadcasting(name): rng = torch.Generator() rng.manual_seed(0) batch_sizes = [(1,), (2,), (1, 2), (2, 1), (2, 2), (2, 2, 2), tuple()] for bs1 in batch_sizes: for bs2 in batch_sizes: check_binary_op_broadcasting( SE3, name, (3, 4), bs1, bs2, torch.float64, rng ) def test_left_project_broadcasting(): rng = torch.Generator() rng.manual_seed(0) batch_sizes = [tuple(), (1, 2), (1, 1, 2), (2, 1), (2, 2), (2, 2, 2)] check_left_project_broadcasting(SE3, batch_sizes, [0, 1, 2], (3, 4), rng)
908780fe69c1ca758295ca0f25b531c70571438f
67d8173a716da10a7350213d98938aae9f2115ce
/ProgrammingCourses/CS61A/lab/lab09/tests/substitute.py
c599160851d680f435682a58dd191c6b5377599d
[]
no_license
jxie0755/Learning_Python
94490d41bdf93acf8396f843328e38b6da310b0f
143422321cbc3715ca08f6c3af8f960a55887ced
refs/heads/master
2021-11-02T22:47:35.790239
2021-09-26T04:26:23
2021-09-26T04:26:23
101,445,132
0
2
null
2019-02-19T15:48:44
2017-08-25T22:00:16
Python
UTF-8
Python
false
false
1,174
py
test = { "name": "substitute", "points": 1, "suites": [ { "cases": [ { "code": r""" scm> (substitute "(c a b) "b 'l) (c a l) scm> (substitute "(f e a r s) "f 'b) (b e a r s) scm> (substitute "(g (o) o (o)) "o 'r) (g (r) r (r)) """, "hidden": False, "locked": False }, { "code": r""" scm> (substitute '((lead guitar) (bass guitar) (rhythm guitar) drums) .... "guitar "axe) ((lead axe) (bass axe) (rhythm axe) drums) scm> (substitute "(romeo romeo wherefore art thou romeo) "romeo 'paris) (paris paris wherefore art thou paris) scm> (substitute "((to be) or not (to (be))) "be 'eat) ((to eat) or not (to (eat))) scm> (substitute "(a b (c) d e) "foo 'bar) (a b (c) d e) """, "hidden": False, "locked": False } ], "scored": True, "setup": r""" scm> (load 'lab09) scm> (load 'lab09_extra) """, "teardown": "", "type": "scheme" } ] }
400c7d1dfbd9b32067d5a361e8a800aaea5f8be9
771c1e2011a85a287c766b1a3d299ced2e6f799f
/src/electionguard/ballot_compact.py
96e4d2be29a39ca2eb31f736305027dd3da57e10
[ "MIT" ]
permissive
microsoft/electionguard-python
f50f64a473a8d77984a2faf4aa8db40cebb5c201
b3ddc2a732f6c5f078a3afbe05b00d632a2ff5e0
refs/heads/main
2023-08-03T12:44:35.322716
2022-10-28T12:47:18
2022-10-28T12:47:18
246,392,956
143
117
MIT
2023-08-02T00:24:32
2020-03-10T19:46:06
Python
UTF-8
Python
false
false
5,601
py
from dataclasses import dataclass from typing import Dict, List from .ballot import ( CiphertextBallot, SubmittedBallot, PlaintextBallot, PlaintextBallotContest, PlaintextBallotSelection, make_ciphertext_submitted_ballot, ) from .ballot_box import BallotBoxState from .election import CiphertextElectionContext from .election_object_base import sequence_order_sort from .encrypt import encrypt_ballot_contests from .group import ElementModQ from .manifest import ( ContestDescriptionWithPlaceholders, InternalManifest, ) from .utils import get_optional YES_VOTE = 1 NO_VOTE = 0 @dataclass class CompactPlaintextBallot: """A compact plaintext representation of ballot minimized for data size""" object_id: str style_id: str selections: List[bool] write_ins: Dict[int, str] @dataclass class CompactSubmittedBallot: """A compact submitted ballot minimized for data size""" compact_plaintext_ballot: CompactPlaintextBallot timestamp: int ballot_nonce: ElementModQ code_seed: ElementModQ code: ElementModQ ballot_box_state: BallotBoxState def compress_plaintext_ballot(ballot: PlaintextBallot) -> CompactPlaintextBallot: """Compress a plaintext ballot into a compact plaintext ballot""" selections = _get_compact_selections(ballot) extended_data = _get_compact_write_ins(ballot) return CompactPlaintextBallot( ballot.object_id, ballot.style_id, selections, extended_data ) def compress_submitted_ballot( ballot: SubmittedBallot, plaintext_ballot: PlaintextBallot, ballot_nonce: ElementModQ, ) -> CompactSubmittedBallot: """Compress a submitted ballot into a compact submitted ballot""" return CompactSubmittedBallot( compress_plaintext_ballot(plaintext_ballot), ballot.timestamp, ballot_nonce, ballot.code_seed, ballot.code, ballot.state, ) def expand_compact_submitted_ballot( compact_ballot: CompactSubmittedBallot, internal_manifest: InternalManifest, context: CiphertextElectionContext, ) -> SubmittedBallot: """ Expand a compact submitted ballot using context and the election manifest into a submitted ballot """ # Expand ballot and encrypt & hash contests plaintext_ballot = expand_compact_plaintext_ballot( compact_ballot.compact_plaintext_ballot, internal_manifest ) nonce_seed = CiphertextBallot.nonce_seed( internal_manifest.manifest_hash, compact_ballot.compact_plaintext_ballot.object_id, compact_ballot.ballot_nonce, ) contests = get_optional( encrypt_ballot_contests( plaintext_ballot, internal_manifest, context, nonce_seed ) ) return make_ciphertext_submitted_ballot( plaintext_ballot.object_id, plaintext_ballot.style_id, internal_manifest.manifest_hash, compact_ballot.code_seed, contests, compact_ballot.code, compact_ballot.timestamp, compact_ballot.ballot_box_state, ) def expand_compact_plaintext_ballot( compact_ballot: CompactPlaintextBallot, internal_manifest: InternalManifest ) -> PlaintextBallot: """Expand a compact plaintext ballot into the original plaintext ballot""" return PlaintextBallot( compact_ballot.object_id, compact_ballot.style_id, _get_plaintext_contests(compact_ballot, internal_manifest), ) def _get_compact_selections(ballot: PlaintextBallot) -> List[bool]: selections = [] for contest in ballot.contests: for selection in contest.ballot_selections: selections.append(selection.vote == YES_VOTE) return selections def _get_compact_write_ins(ballot: PlaintextBallot) -> Dict[int, str]: write_ins = {} index = 0 for contest in ballot.contests: for selection in contest.ballot_selections: index += 1 if selection.write_in: write_ins[index] = selection.write_in return write_ins def _get_plaintext_contests( compact_ballot: CompactPlaintextBallot, internal_manifest: InternalManifest ) -> List[PlaintextBallotContest]: """Get ballot contests from compact plaintext ballot""" index = 0 ballot_style_contests = _get_ballot_style_contests( compact_ballot.style_id, internal_manifest ) contests: List[PlaintextBallotContest] = [] for manifest_contest in sequence_order_sort(internal_manifest.contests): contest_in_style = ( ballot_style_contests.get(manifest_contest.object_id) is not None ) # Iterate through selections. If contest not in style, mark placeholder selections: List[PlaintextBallotSelection] = [] for selection in sequence_order_sort(manifest_contest.ballot_selections): selections.append( PlaintextBallotSelection( selection.object_id, YES_VOTE if compact_ballot.selections[index] else NO_VOTE, not contest_in_style, compact_ballot.write_ins.get(index), ) ) index += 1 contests.append(PlaintextBallotContest(manifest_contest.object_id, selections)) return contests def _get_ballot_style_contests( ballot_style_id: str, internal_manifest: InternalManifest ) -> Dict[str, ContestDescriptionWithPlaceholders]: ballot_style_contests = internal_manifest.get_contests_for(ballot_style_id) return {contest.object_id: contest for contest in ballot_style_contests}
3dc2bb12966bffd471380690c04c8efd0a9a13b7
caedff6019e47035eadaaad5a588022e05d92104
/Christmas2016/question/migrations/0001_initial.py
763d1090fa8d71921230ce550cd9738236392d82
[]
no_license
JMorris1575/christmas16
ff767add9321bfe82ee70477f75a957504dc5288
1b06bf8febb94a699226b0b9d951cb14bbe59d50
refs/heads/master
2021-01-13T09:33:57.721350
2016-12-28T13:12:44
2016-12-28T13:12:44
72,059,066
0
0
null
null
null
null
UTF-8
Python
false
false
1,218
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.3 on 2016-12-09 02:39 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion import model_mixins class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Question', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('question', models.TextField()), ], ), migrations.CreateModel( name='Response', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ('question', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='question.Question')), ], bases=(models.Model, model_mixins.AuthorMixin), ), ]
628d46dc69e58fab2b00e0b3f44ef0d2fcd88ea1
5f22ddbd3eeb99709e43e7b9a7958c9987c7efa4
/interview_bits/level_1/01_mathematics/05_number_encoding/01_rearrange-array.py
f60f9290190be8d9160ecf9353f276b41e9c32b3
[]
no_license
salvador-dali/algorithms_general
04950bd823fc354adc58a4f23b7d2f3d39664798
aeee3356e2488c6fab08741b1ac26e8bd5e4ac0d
refs/heads/master
2020-12-14T06:24:10.466601
2016-07-17T06:00:17
2016-07-17T06:00:17
47,397,457
0
0
null
null
null
null
UTF-8
Python
false
false
219
py
# https://www.interviewbit.com/problems/rearrange-array/ def rearrange(arr): n = len(arr) for i in xrange(n): arr[i] += n * (arr[arr[i]] % n) for i in xrange(n): arr[i] /= n return arr
077e06806c57829b1f5cc54d139833314ac0bffe
308953409e1a3b828ac49b7301c1e751cbf762cf
/suite_EETc 12/tst_Open_Change_Values_Import_No/test.py
fec88bb5a37e70b505750a61bac908c5b0993dd9
[]
no_license
asthagaur1/danfoss-automation
4dcc7d8f000917b67e4d6f46ff862a525ddcbc5e
213a99d3375889cd0e0c801421a50e9fe6085879
refs/heads/main
2023-03-31T23:26:56.956107
2021-04-01T08:52:37
2021-04-01T08:52:37
353,627,845
0
0
null
null
null
null
UTF-8
Python
false
false
418
py
def main(): excel = r"C:\gitworkspace\KoolProg-TestAutomation\Master_Functions\Test_Automation\SourceCode\suite_EETc 12\shared\testdata\Open_Change_Values_Import_No.xls"; #Mapping with Global scripts for Function library and key action. source(findFile("scripts", "Functions.py")) source(findFile("scripts", "Actions.py")) # source(findFile("scripts", "object_id.py")) keyAction(excel)
9e78bb7a62c7ff5743be037816b12a9c2316c086
82fdb2f3baeb4f08799d93c4be8d8c829f092415
/tests/test_policies.py
52b3f8e8e75389b6127427521a6f3c7145b58814
[ "Apache-2.0" ]
permissive
velamurip/rasa_core
915f815772e2b596f837f0e1af511e829cc28e3e
f3dbb70d0bb748628ab238eded17a8f5e09279e2
refs/heads/master
2021-05-16T04:22:04.310610
2017-10-05T09:53:22
2017-10-05T09:53:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,838
py
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np import pytest from rasa_core.channels import UserMessage from rasa_core.domain import TemplateDomain from rasa_core.featurizers import BinaryFeaturizer from rasa_core.policies.keras_policy import KerasPolicy from rasa_core.policies.memoization import MemoizationPolicy from rasa_core.policies.scoring_policy import ScoringPolicy from rasa_core.trackers import DialogueStateTracker from rasa_core.training_utils import extract_training_data_from_file, \ extract_stories_from_file def train_data(max_history, domain): return extract_training_data_from_file( "data/dsl_stories/stories_defaultdomain.md", domain=domain, max_history=max_history, remove_duplicates=True, featurizer=BinaryFeaturizer()) # We are going to use class style testing here since unfortunately pytest # doesn't support using fixtures as arguments to its own parameterize yet # (hence, we can't train a policy, declare it as a fixture and use the different # fixtures of the different policies for the functional tests). Therefore, we # are going to reverse this and train the policy within a class and collect the # tests in a base class. class PolicyTestCollection(object): """Tests every policy needs to fulfill. Each policy can declare further tests on its own.""" max_history = 3 # this is the amount of history we test on def create_policy(self): raise NotImplementedError @pytest.fixture(scope="module") def trained_policy(self): default_domain = TemplateDomain.load("examples/default_domain.yml") policy = self.create_policy() X, y = train_data(self.max_history, default_domain) policy.max_history = self.max_history policy.featurizer = BinaryFeaturizer() policy.train(X, y, default_domain) return policy def test_persist_and_load(self, trained_policy, default_domain, tmpdir): trained_policy.persist(tmpdir.strpath) loaded = trained_policy.__class__.load(tmpdir.strpath, trained_policy.featurizer, trained_policy.max_history) stories = extract_stories_from_file( "data/dsl_stories/stories_defaultdomain.md", default_domain) for story in stories: tracker = DialogueStateTracker("default", default_domain.slots) dialogue = story.as_dialogue("default", default_domain) tracker.update_from_dialogue(dialogue) predicted_probabilities = loaded.predict_action_probabilities( tracker, default_domain) actual_probabilities = trained_policy.predict_action_probabilities( tracker, default_domain) assert predicted_probabilities == actual_probabilities def test_prediction_on_empty_tracker(self, trained_policy, default_domain): tracker = DialogueStateTracker(UserMessage.DEFAULT_SENDER, default_domain.slots, default_domain.topics, default_domain.default_topic) probabilities = trained_policy.predict_action_probabilities( tracker, default_domain) assert len(probabilities) == default_domain.num_actions assert max(probabilities) <= 1.0 assert min(probabilities) >= 0.0 def test_persist_and_load_empty_policy(self, tmpdir): empty_policy = self.create_policy() empty_policy.persist(tmpdir.strpath) loaded = empty_policy.__class__.load(tmpdir.strpath, BinaryFeaturizer(), empty_policy.max_history) assert loaded is not None class TestKerasPolicy(PolicyTestCollection): @pytest.fixture(scope="module") def create_policy(self): p = KerasPolicy() return p class TestScoringPolicy(PolicyTestCollection): @pytest.fixture(scope="module") def create_policy(self): p = ScoringPolicy() return p class TestMemoizationPolicy(PolicyTestCollection): @pytest.fixture(scope="module") def create_policy(self): p = MemoizationPolicy() return p def test_memorise(self, trained_policy, default_domain): X, y = train_data(self.max_history, default_domain) trained_policy.train(X, y, default_domain) for ii in range(X.shape[0]): assert trained_policy.recall(X[ii, :, :], default_domain) == y[ii] random_feature = np.random.randn(default_domain.num_features) assert trained_policy.recall(random_feature, default_domain) is None
9db26fb7dad810ee471a57378bf7b950550c9a78
e1a2c6ed4a4b93b4697974e3b0a32a4d67daa6f6
/venv/Lib/site-packages/pybrain3/rl/environments/ode/instances/ccrl.py
f868c93f0e79f79e82bdefa752c7d5da13efb64f
[ "MIT" ]
permissive
ishatserka/MachineLearningAndDataAnalysisCoursera
cdf0f23a58617e17d6b938e3a9df17daae8585e4
e82e772df2f4aec162cb34ac6127df10d14a625a
refs/heads/master
2021-09-11T01:39:26.228392
2018-04-05T14:33:39
2018-04-05T14:33:39
117,153,454
0
0
MIT
2018-03-27T05:20:37
2018-01-11T21:05:33
Python
UTF-8
Python
false
false
6,146
py
__author__ = 'Frank Sehnke, [email protected]' from pybrain3.rl.environments.ode import ODEEnvironment, sensors, actuators import imp import xode #@UnresolvedImport import ode #@UnresolvedImport import sys from scipy import array, asarray class CCRLEnvironment(ODEEnvironment): def __init__(self, xodeFile="ccrlGlas.xode", renderer=True, realtime=False, ip="127.0.0.1", port="21590", buf='16384'): ODEEnvironment.__init__(self, renderer, realtime, ip, port, buf) # load model file self.pert = asarray([1.0, 0.0, 0.0]) self.loadXODE(imp.find_module('pybrain')[1] + "/rl/environments/ode/models/" + xodeFile) # standard sensors and actuators self.addSensor(sensors.JointSensor()) self.addSensor(sensors.JointVelocitySensor()) self.addActuator(actuators.JointActuator()) #set act- and obsLength, the min/max angles and the relative max touques of the joints self.actLen = self.indim self.obsLen = len(self.getSensors()) #ArmLeft, ArmRight, Hip, PevelLeft, PevelRight, TibiaLeft, TibiaRight, KneeLeft, KneeRight, FootLeft, FootRight self.tourqueList = array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.8, 0.8, 0.8, 0.5, 0.5, 0.1],) #self.tourqueList=array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],) self.cHighList = array([0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.9],) self.cLowList = array([-1.0, -1.0, -1.0, -1.5, -1.0, -1.0, -1.0, -0.7, -1.0, 0.0, -1.0, -1.5, -1.0, -1.0, -1.0, 0.0],) self.stepsPerAction = 1 def step(self): # Detect collisions and create contact joints self.tableSum = 0 self.glasSum = 0 ODEEnvironment.step(self) def _near_callback(self, args, geom1, geom2): """Callback function for the collide() method. This function checks if the given geoms do collide and creates contact joints if they do.""" # only check parse list, if objects have name if geom1.name != None and geom2.name != None: # Preliminary checking, only collide with certain objects for p in self.passpairs: g1 = False g2 = False for x in p: g1 = g1 or (geom1.name.find(x) != -1) g2 = g2 or (geom2.name.find(x) != -1) if g1 and g2: return() # Check if the objects do collide contacts = ode.collide(geom1, geom2) tmpStr = geom2.name[:-2] handStr = geom1.name[:-1] if geom1.name == 'plate' and tmpStr != 'objectP': self.tableSum += len(contacts) if tmpStr == 'objectP' and handStr == 'pressLeft': if len(contacts) > 0: self.glasSum += 1 tmpStr = geom1.name[:-2] handStr = geom2.name[:-1] if geom2.name == 'plate' and tmpStr != 'objectP': self.tableSum += len(contacts) if tmpStr == 'objectP' and handStr == 'pressLeft': if len(contacts) > 0: self.glasSum += 1 # Create contact joints world, contactgroup = args for c in contacts: p = c.getContactGeomParams() # parameters from Niko Wolf c.setBounce(0.2) c.setBounceVel(0.05) #Set the minimum incoming velocity necessary for bounce c.setSoftERP(0.6) #Set the contact normal "softness" parameter c.setSoftCFM(0.00005) #Set the contact normal "softness" parameter c.setSlip1(0.02) #Set the coefficient of force-dependent-slip (FDS) for friction direction 1 c.setSlip2(0.02) #Set the coefficient of force-dependent-slip (FDS) for friction direction 2 c.setMu(self.FricMu) #Set the Coulomb friction coefficient j = ode.ContactJoint(world, contactgroup, c) j.name = None j.attach(geom1.getBody(), geom2.getBody()) def loadXODE(self, filename, reload=False): """ loads an XODE file (xml format) and parses it. """ f = file(filename) self._currentXODEfile = filename p = xode.parser.Parser() self.root = p.parseFile(f) f.close() try: # filter all xode "world" objects from root, take only the first one world = [x for x in self.root.getChildren() if isinstance(x, xode.parser.World)][0] except IndexError: # malicious format, no world tag found print("no <world> tag found in " + filename + ". quitting.") sys.exit() self.world = world.getODEObject() self._setWorldParameters() try: # filter all xode "space" objects from world, take only the first one space = [x for x in world.getChildren() if isinstance(x, xode.parser.Space)][0] except IndexError: # malicious format, no space tag found print("no <space> tag found in " + filename + ". quitting.") sys.exit() self.space = space.getODEObject() # load bodies and geoms for painting self.body_geom = [] self._parseBodies(self.root) for (body, _) in self.body_geom: if hasattr(body, 'name'): tmpStr = body.name[:-2] if tmpStr == "objectP": body.setPosition(body.getPosition() + self.pert) if self.verbosity > 0: print("-------[body/mass list]-----") for (body, _) in self.body_geom: try: print(body.name, body.getMass()) except AttributeError: print("<Nobody>") # now parse the additional parameters at the end of the xode file self.loadConfig(filename, reload) def reset(self): ODEEnvironment.reset(self) self.pert = asarray([1.0, 0.0, 0.0]) if __name__ == '__main__' : w = CCRLEnvironment() while True: w.step() if w.stepCounter == 1000: w.reset()
25ec5c3a23fdcbb3fe68b62fb26e6466e9c81f4a
94c7440e7f1d2fdbe4a1e26b9c75a94e49c14eb4
/leetcode/371.py
9db89c099bace2c01ca91a5174d2047ab78a610c
[ "Apache-2.0" ]
permissive
windniw/just-for-fun
7ddea4f75cf3466a400b46efe36e57f6f7847c48
44e1ff60f8cfaf47e4d88988ee67808f0ecfe828
refs/heads/master
2022-08-18T09:29:57.944846
2022-07-25T16:04:47
2022-07-25T16:04:47
204,949,602
1
0
null
null
null
null
UTF-8
Python
false
false
717
py
""" link: https://leetcode.com/problems/sum-of-two-integers problem: 不用 + / - 号,求 integer 类型的 a + b solution: 由于python没有左移整形溢出这道题难度直线上升。 a + b == 不进位 (a + b) + 进位 (a + b) << 1 == a ^ b + (a & b) << 1 持续迭代到 (a & b) << 1 为0,即不进位时, 结果为当时的 a ^ b """ class Solution: def getSum(self, a: int, b: int) -> int: max_uint = 0xffffffff max_int = 0x7fffffff - 1 while a: add = (a & b) << 1 b = a ^ b a = add add &= max_uint b &= max_uint return b if b <= max_int else ~(b ^ max_uint)
55af1807d0651e3ce77d75f84c95801118d2aacc
d8c2cf1249c58b5f843031450db2f0f8733f85e8
/todo/urls.py
1a013e167082d76a6e64cdea74f08df97dddf656
[ "MIT" ]
permissive
guluzadef/Instaexample
80849e8a98f6e75b256e8e1d409793a490ea1a53
9c74a3e3ac8b523bbccd0e2e6c769c40bf6b3406
refs/heads/master
2020-07-01T20:12:30.928779
2019-09-11T16:59:45
2019-09-11T16:59:45
201,284,824
2
0
MIT
2019-09-11T16:54:56
2019-08-08T15:21:17
Python
UTF-8
Python
false
false
972
py
"""todo URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from django.conf import settings from django.conf.urls.static import static urlpatterns = [ path('admin/', admin.site.urls), path('', include("todo_app.urls")), ] if settings.DEBUG: urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
50f8e6b88bff07c4af0e52bfa551b372a8c93bc8
a35b2842ff707c9adf70e178ba8cb7a128e6f0fa
/brl_gym/scripts/crosswalk_vel/generate_initial_conditions.py
a9c7a1bb7d4cb52e8276db48814c90777f6661e9
[ "BSD-3-Clause" ]
permissive
gilwoolee/brl_gym
7717366a09c7ff96a8fbc02688febe6d559e333a
9c0784e9928f12d2ee0528c79a533202d3afb640
refs/heads/master
2022-11-26T15:08:56.730225
2020-08-02T05:08:28
2020-08-02T05:08:28
198,884,614
3
0
null
null
null
null
UTF-8
Python
false
false
772
py
from brl_gym.envs.crosswalk_vel import CrossWalkVelEnv import numpy as np env = CrossWalkVelEnv() env.reset() goals = env.goals peds = env.pedestrians pose = env.pose ped_speeds = env.pedestrian_speeds print("Car 37, 38, 35") print("Peds :\n", np.around(peds,1)) print("Ped speeds:\n", np.around(ped_speeds,2)) print("Goals :\n", np.around(goals,1)) print("Pose :\n", np.around(pose,1)) print("Angle :\n", np.around(np.rad2deg(pose[2]),2)) for ps, goal in zip(ped_speeds, goals): if goal[0] == 3.5: goal[0] = 3.2 if goal[0] == 0.0: goal[0] = 0.3 print("roslaunch mushr_control runner_script.launch car_name:=$CAR_NAME wait_for_signal:=false desired_speed:={:.2f} desired_x:={:.2f} desired_y:={:.2f} local:=false".format(ps, goal[0], goal[1]))
d0a92881174f016830e5b146ca97ba5a68b65627
2aa4c7c94866e7a958e4787dd4487aa7c1eb8d61
/applications/MappingApplication/tests/test_mapper_mpi_tests.py
17fa528cbfa65adc8d0f6521adde262131b8852b
[ "BSD-3-Clause" ]
permissive
PFEM/Kratos
b48df91e6ef5a00edf125e6f5aa398505c9c2b96
796c8572e9fe3875562d77370fc60beeacca0eeb
refs/heads/master
2021-10-16T04:33:47.591467
2019-02-04T14:22:06
2019-02-04T14:22:06
106,919,267
1
0
null
2017-10-14T10:34:43
2017-10-14T10:34:43
null
UTF-8
Python
false
false
2,141
py
from __future__ import print_function, absolute_import, division # makes KratosMultiphysics backward compatible with python 2.6 and 2.7 import KratosMultiphysics from KratosMultiphysics.mpi import mpi import KratosMultiphysics.MetisApplication import KratosMultiphysics.TrilinosApplication import KratosMultiphysics.MappingApplication as KratosMapping import KratosMultiphysics.KratosUnittest as KratosUnittest from base_mapper_tests import BaseMapperTests from trilinos_import_model_part_utility import TrilinosImportModelPartUtility class MapperMPITests(BaseMapperTests, KratosUnittest.TestCase): @classmethod def _ImportModelPart(cls): cls.model_part_origin.AddNodalSolutionStepVariable( KratosMultiphysics.PARTITION_INDEX) cls.model_part_destination.AddNodalSolutionStepVariable( KratosMultiphysics.PARTITION_INDEX) origin_settings = KratosMultiphysics.Parameters("""{ "model_import_settings": { "input_type": "mdpa", "input_filename": \"""" + cls.input_file_origin + """\", "partition_in_memory" : true }, "echo_level" : 0 }""") destination_settings = origin_settings.Clone() destination_settings["model_import_settings"]["input_filename"].SetString( cls.input_file_destination) model_part_import_util_origin = TrilinosImportModelPartUtility( cls.model_part_origin, origin_settings) model_part_import_util_destination = TrilinosImportModelPartUtility( cls.model_part_destination, destination_settings) model_part_import_util_origin.ImportModelPart() model_part_import_util_destination.ImportModelPart() model_part_import_util_origin.CreateCommunicators() model_part_import_util_destination.CreateCommunicators() def _CreateMapper(self, mapper_settings): return KratosMapping.MapperFactory.CreateMPIMapper( self.model_part_origin, self.model_part_destination, mapper_settings) if __name__ == '__main__': KratosUnittest.main()
224d192a356f25f72640dd130596fa1cc7f853c8
fb1fd30098fd4dd7f11e614fbcd19bda5e0414bd
/randNum.py
32dc0504c2cbabfba7c0c7b3ba6838a1d01a160a
[]
no_license
kali-lg/python
6ceb452ae7fd611bb6b6b99a4be4404f3fd6b2de
0363dba3e224ee2044dbe3216289c0245df9c5c0
refs/heads/master
2021-01-10T09:37:58.103674
2016-03-07T13:09:57
2016-03-07T13:09:57
53,310,186
0
0
null
null
null
null
UTF-8
Python
false
false
454
py
#!/usr/bin/python import random num = random.randint(0, 100) while True: try: guess = int(raw_input("Please Enter number 1~100:\n")) except ValueError, e: print "Please Enter correct number, your number is wrong type." continue if guess > num: print "Guess Bigger:", guess elif guess < num: print "Gusee Smaller:", guess else: print "Guess OK, Game Over:" break print "\n"
805e4b0e4a22e909185e96d5788bd12061f9e16a
4df948c31bde1b49c110820ecf8a38f949a78f62
/vta/tests/python/integration/test_benchmark_gemm.py
da867c9b827007e5e3c94b18238fb448793bd154
[ "Apache-2.0" ]
permissive
jroesch/tvm
40b4b8707177e3354c264ce31092721930ced376
c2b36154778503a509a70a3b5309b201969eccab
refs/heads/master
2021-12-19T03:38:13.732405
2018-10-22T16:31:59
2018-10-22T16:31:59
135,759,537
4
7
Apache-2.0
2021-06-17T07:22:42
2018-06-01T20:15:33
C++
UTF-8
Python
false
false
11,731
py
import tvm import numpy as np from tvm.contrib import util import vta.testing def test_gemm(): def run_gemm_packed(env, remote, batch_size, channel, block): data_shape = (batch_size // env.BATCH, channel // env.BLOCK_IN, env.BATCH, env.BLOCK_IN) weight_shape = (channel // env.BLOCK_OUT, channel // env.BLOCK_IN, env.BLOCK_OUT, env.BLOCK_IN) res_shape = (batch_size // env.BATCH, channel // env.BLOCK_OUT, env.BATCH, env.BLOCK_OUT) # To compute number of ops, use a x2 factor for FMA num_ops = 2 * channel * channel * batch_size ko = tvm.reduce_axis((0, channel // env.BLOCK_IN), name='ko') ki = tvm.reduce_axis((0, env.BLOCK_IN), name='ki') data = tvm.placeholder(data_shape, name="data", dtype=env.inp_dtype) weight = tvm.placeholder(weight_shape, name="weight", dtype=env.wgt_dtype) data_buf = tvm.compute(data_shape, lambda *i: data(*i), "data_buf") weight_buf = tvm.compute(weight_shape, lambda *i: weight(*i), "weight_buf") res_gem = tvm.compute(res_shape, lambda bo, co, bi, ci: tvm.sum( data_buf[bo, ko, bi, ki].astype(env.acc_dtype) * weight_buf[co, ko, ci, ki].astype(env.acc_dtype), axis=[ko, ki]), name="res_gem") res_shf = tvm.compute(res_shape, lambda *i: res_gem(*i)>>8, name="res_shf") res_max = tvm.compute(res_shape, lambda *i: tvm.max(res_shf(*i), 0), "res_max") #relu res_min = tvm.compute(res_shape, lambda *i: tvm.min(res_max(*i), (1<<(env.INP_WIDTH-1))-1), "res_min") #relu res = tvm.compute(res_shape, lambda *i: res_min(*i).astype(env.inp_dtype), name="res") def verify(s, check_correctness=True): mod = vta.build(s, [data, weight, res], "ext_dev", env.target_host, name="gemm") temp = util.tempdir() mod.save(temp.relpath("gemm.o")) remote.upload(temp.relpath("gemm.o")) f = remote.load_module("gemm.o") # verify ctx = remote.ext_dev(0) # Data in original format data_orig = np.random.randint( -128, 128, size=(batch_size, channel)).astype(data.dtype) weight_orig = np.random.randint( -128, 128, size=(channel, channel)).astype(weight.dtype) data_packed = data_orig.reshape( batch_size // env.BATCH, env.BATCH, channel // env.BLOCK_IN, env.BLOCK_IN).transpose((0, 2, 1, 3)) weight_packed = weight_orig.reshape( channel // env.BLOCK_OUT, env.BLOCK_OUT, channel // env.BLOCK_IN, env.BLOCK_IN).transpose((0, 2, 1, 3)) res_np = np.zeros(res_shape).astype(res.dtype) data_arr = tvm.nd.array(data_packed, ctx) weight_arr = tvm.nd.array(weight_packed, ctx) res_arr = tvm.nd.array(res_np, ctx) res_ref = np.zeros(res_shape).astype(env.acc_dtype) for b in range(batch_size // env.BATCH): for i in range(channel // env.BLOCK_OUT): for j in range(channel // env.BLOCK_IN): res_ref[b,i,:] += np.dot(data_packed[b,j,:].astype(env.acc_dtype), weight_packed[i,j].T.astype(env.acc_dtype)) res_ref = np.right_shift(res_ref, 8) res_ref = np.clip(res_ref, 0, (1<<(env.INP_WIDTH-1))-1).astype(res.dtype) time_f = f.time_evaluator("gemm", ctx, number=20) cost = time_f(data_arr, weight_arr, res_arr) res_unpack = res_arr.asnumpy().reshape(batch_size // env.BATCH, channel // env.BLOCK_OUT, env.BATCH, env.BLOCK_OUT) if check_correctness: tvm.testing.assert_allclose(res_unpack, res_ref) return cost def run_schedule(load_inp, load_wgt, gemm, alu, store_out, print_ir, check_correctness): s = tvm.create_schedule(res.op) s[data_buf].set_scope(env.inp_scope) s[weight_buf].set_scope(env.wgt_scope) s[res_gem].set_scope(env.acc_scope) s[res_shf].set_scope(env.acc_scope) s[res_min].set_scope(env.acc_scope) s[res_max].set_scope(env.acc_scope) if block: bblock = block // env.BATCH iblock = block // env.BLOCK_IN oblock = block // env.BLOCK_OUT xbo, xco, xbi, xci = s[res].op.axis xb1, xco1, xb2, xco2 = s[res].tile(xbo, xco, bblock, oblock) store_pt = xb2 s[res_gem].compute_at(s[res], xco1) s[res_shf].compute_at(s[res], xco1) s[res_min].compute_at(s[res], xco1) s[res_max].compute_at(s[res], xco1) xbo, xco, xbi, xci = s[res_gem].op.axis # Compute one line at a time ko1, ko2 = s[res_gem].split(ko, iblock) s[res_gem].reorder(ko1, ko2, xbo, xco, xbi, xci, ki) s[data_buf].compute_at(s[res_gem], ko1) s[weight_buf].compute_at(s[res_gem], ko1) # Use VTA instructions s[data_buf].pragma(s[data_buf].op.axis[0], load_inp) s[weight_buf].pragma(s[weight_buf].op.axis[0], load_wgt) s[res_gem].tensorize(xbi, gemm) s[res_shf].pragma(s[res_shf].op.axis[0], alu) s[res_min].pragma(s[res_min].op.axis[0], alu) s[res_max].pragma(s[res_max].op.axis[0], alu) s[res].pragma(store_pt, store_out) else: xbo, xco, xbi, xci = s[res_gem].op.axis s[res_gem].reorder(ko, xbo, xco, xbi, xci, ki) # Use VTA instructions s[data_buf].pragma(s[data_buf].op.axis[0], load_inp) s[weight_buf].pragma(s[weight_buf].op.axis[0], load_wgt) s[res_gem].tensorize(xbi, gemm) s[res_shf].pragma(s[res_shf].op.axis[0], alu) s[res_min].pragma(s[res_min].op.axis[0], alu) s[res_max].pragma(s[res_max].op.axis[0], alu) s[res].pragma(s[res].op.axis[0], store_out) if print_ir: print(tvm.lower(s, [data, weight, res], simple_mode=True)) return verify(s, check_correctness) def gemm_normal(print_ir): mock = env.mock print("----- GEMM GOPS End-to-End Test-------") def run_test(header, print_ir, check_correctness): cost = run_schedule( env.dma_copy, env.dma_copy, env.gemm, env.alu, env.dma_copy, print_ir, check_correctness) gops = (num_ops / cost.mean) / float(10 ** 9) print(header) print("\tTime cost = %g sec/op, %g GOPS" % (cost.mean, gops)) with vta.build_config(): run_test("NORMAL", print_ir, True) def gemm_unittest(print_ir): mock = env.mock print("----- GEMM Unit Test-------") def run_test(header, print_ir): cost = run_schedule( mock.dma_copy, mock.dma_copy, env.gemm, mock.alu, mock.dma_copy, print_ir, False) gops = (num_ops / cost.mean) / float(10 ** 9) print(header) print("\tTime cost = %g sec/op, %g GOPS" % (cost.mean, gops)) with vta.build_config(): run_test("NORMAL", print_ir) def alu_unittest(print_ir): mock = env.mock print("----- ALU Unit Test-------") def run_test(header, print_ir): cost = run_schedule( mock.dma_copy, mock.dma_copy, mock.gemm, env.alu, mock.dma_copy, print_ir, False) gops = (num_ops / cost.mean) / float(10 ** 9) print(header) print("\tTime cost = %g sec/op, %g GOPS" % (cost.mean, gops)) with vta.build_config(): run_test("NORMAL", print_ir) print("") def load_inp_unittest(print_ir): mock = env.mock print("----- LoadInp Unit Test-------") def run_test(header, print_ir): cost = run_schedule( env.dma_copy, mock.dma_copy, mock.gemm, mock.alu, mock.dma_copy, print_ir, False) gops = (num_ops / cost.mean) / float(10 ** 9) bandwith = (batch_size * channel * env.INP_WIDTH / cost.mean) / float(10 ** 9) print(header) print("\tTime cost = %g sec/op, %g GOPS, bandwidth=%g Gbits" % ( cost.mean, gops, bandwith)) with vta.build_config(): run_test("NORMAL", print_ir) print("") def load_wgt_unittest(print_ir): mock = env.mock print("----- LoadWgt Unit Test-------") def run_test(header, print_ir): cost = run_schedule( mock.dma_copy, env.dma_copy, mock.gemm, mock.alu, mock.dma_copy, print_ir, False) gops = (num_ops / cost.mean) / float(10 ** 9) bandwith = (channel * channel * env.WGT_WIDTH / cost.mean) / float(10 ** 9) print(header) print("\tTime cost = %g sec/op, %g GOPS, bandwidth=%g Gbits" % ( cost.mean, gops, bandwith)) with vta.build_config(): run_test("NORMAL", print_ir) print("") def store_out_unittest(print_ir): mock = env.mock print("----- StoreOut Unit Test-------") def run_test(header, print_ir): cost = run_schedule( mock.dma_copy, mock.dma_copy, mock.gemm, mock.alu, env.dma_copy, print_ir, False) gops = (num_ops / cost.mean) / float(10 ** 9) bandwith = (batch_size * channel * env.OUT_WIDTH / cost.mean) / float(10 ** 9) print(header) print("\tTime cost = %g sec/op, %g GOPS, bandwidth=%g Gbits" % ( cost.mean, gops, bandwith)) with vta.build_config(): run_test("NORMAL", print_ir) print("") gemm_normal(False) gemm_unittest(False) alu_unittest(False) def _run(env, remote): print("========GEMM 128=========") run_gemm_packed(env, remote, 128, 128, 128) vta.testing.run(_run) if __name__ == "__main__": test_gemm()
bf799d87050ee17a2efe9205421a451ddbc5bbb3
f0b741f24ccf8bfe9bd1950425d83b6291d21b10
/components/google-cloud/google_cloud_pipeline_components/container/v1/bigquery/ml_reconstruction_loss/launcher.py
b0671efb65d1838f7599a10b484a9e7483666bb0
[ "Apache-2.0" ]
permissive
kubeflow/pipelines
e678342b8a325559dec0a6e1e484c525fdcc8ce8
3fb199658f68e7debf4906d9ce32a9a307e39243
refs/heads/master
2023-09-04T11:54:56.449867
2023-09-01T19:07:33
2023-09-01T19:12:27
133,100,880
3,434
1,675
Apache-2.0
2023-09-14T20:19:06
2018-05-12T00:31:47
Python
UTF-8
Python
false
false
3,115
py
# Copyright 2022 The Kubeflow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """GCP launcher for Bigquery jobs based on the AI Platform SDK.""" import argparse import logging import sys from google_cloud_pipeline_components.container.v1.bigquery.ml_reconstruction_loss import remote_runner from google_cloud_pipeline_components.container.v1.gcp_launcher.utils import parser_util def _parse_args(args): """Parse command line arguments.""" parser, parsed_args = parser_util.parse_default_args(args) # Parse the conditionally required arguments parser.add_argument( '--executor_input', dest='executor_input', type=str, # executor_input is only needed for components that emit output artifacts. required=True, default=argparse.SUPPRESS, ) parser.add_argument( '--job_configuration_query_override', dest='job_configuration_query_override', type=str, required=True, default=argparse.SUPPRESS, ) parser.add_argument( '--model_name', dest='model_name', type=str, required=True, default=argparse.SUPPRESS, ) parser.add_argument( '--table_name', dest='table_name', type=str, # table_name is only needed for BigQuery tvf model job component. required=False, default=argparse.SUPPRESS, ) parser.add_argument( '--query_statement', dest='query_statement', type=str, # query_statement is only needed for BigQuery predict model job component. required=False, default=argparse.SUPPRESS, ) parsed_args, _ = parser.parse_known_args(args) return vars(parsed_args) def main(argv): """Main entry. Expected input args are as follows: Project - Required. The project of which the resource will be launched. Region - Required. The region of which the resource will be launched. Type - Required. GCP launcher is a single container. This Enum will specify which resource to be launched. Request payload - Required. The full serialized json of the resource spec. Note this can contain the Pipeline Placeholders. gcp_resources - placeholder output for returning job_id. Args: argv: A list of system arguments. """ parsed_args = _parse_args(argv) job_type = parsed_args['type'] if job_type != 'BigqueryMLReconstructionLossJob': raise ValueError('Incorrect job type: ' + job_type) logging.info('Job started for type: ' + job_type) remote_runner.bigquery_ml_reconstruction_loss_job(**parsed_args) if __name__ == '__main__': main(sys.argv[1:])
3ec2e2dd3b709a107fda00833615406e4642a963
1bb42bac177fb4e979faa441363c27cb636a43aa
/dual_encoder/model_utils.py
691253213276f6be9ac1bd05a51079a61df3c007
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
google-research/federated
a6040e80fa0fbf533e0d665c66a9bc549d208b3d
329e60fa56b87f691303638ceb9dfa1fc5083953
refs/heads/master
2023-08-28T13:10:10.885505
2023-08-22T23:06:08
2023-08-22T23:06:40
295,559,343
595
187
Apache-2.0
2022-05-12T08:42:53
2020-09-14T23:09:07
Python
UTF-8
Python
false
false
5,775
py
# Copyright 2021, Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities for dual encoder model.""" from typing import Callable, Optional import tensorflow as tf NormalizationFnType = Optional[Callable[[tf.Tensor], tf.Tensor]] l2_normalize_fn = lambda x: tf.math.l2_normalize(x, axis=-1) @tf.function def get_predicted_embeddings(y_pred, y_true, normalization_fn=l2_normalize_fn): """Helper for retrieving optionally normalized embeddings from y_pred. Args: y_pred: dual encoder model output. If the model outputs embeddings, `y_pred` is concatenate(context_embedding, full vocab label embeddings) with shape [batch_size + label_embedding_vocab_size, final_embedding_dim]. If the model outputs similarities, `y_pred` is the similarity matrix with shape [batch_size, label_embedding_vocab_size] between context and full vocab label embeddings. y_true: the true labels with shape [batch_size, 1]. normalization_fn: The normalization function to be applied to both context and label embeddings. Returns: Optionally normalized context and label embeddings. """ batch_size = tf.shape(y_true)[0] context_embedding, label_embedding = y_pred[:batch_size], y_pred[batch_size:] # Optionally apply nomalization_fn to both context and label embeddings, # computing the cosine similarity rather than the dot product. if normalization_fn is not None: context_embedding = normalization_fn(context_embedding) label_embedding = normalization_fn(label_embedding) return context_embedding, label_embedding @tf.function def get_embeddings_and_similarities(y_pred, y_true, expect_embeddings=True, normalization_fn=l2_normalize_fn): """Retrieving the context and label embeddings and the similarities between them. Args: y_pred: Dual encoder model output. When expect_embeddings is true, `y_pred` is concatenate(context_embedding, full vocab label embeddings) with shape [batch_size + label_embedding_vocab_size, final_embedding_dim]. When `expect_embeddings` is False, `y_pred` is the similarity matrix with shape [batch_size, label_embedding_vocab_size] between context and full vocab label embeddings. y_true: The true labels with shape [batch_size, 1]. expect_embeddings: If `expect_embeddings` is True, `y_pred` is the context and label embeddings. Otherwise, the y_pred is the batch or global similarities. normalization_fn: The normalization function to be applied to both context and label embeddings. Returns: The optionally normalized context and label embeddings as well as the similarities between them. The context and label embeddings are `None` if `expect_embeddings` is False. """ if expect_embeddings: context_embedding, label_embedding = ( get_predicted_embeddings(y_pred, y_true, normalization_fn)) # similarities[i][j] is the dot product of the ith context embedding and # the jth label embedding in a batch. similarities = tf.matmul( context_embedding, label_embedding, transpose_b=True) else: context_embedding = label_embedding = None similarities = y_pred return context_embedding, label_embedding, similarities class Similarities(tf.keras.layers.Layer): """Keras layer for computing similarities over context/label embeddings. Takes in context embeddings within a batch and label embeddings to computes a similarities matrix where similarities[i][j] is the dot product similarity between context embedding i and label embedding j. If label embeddings are those within the same batch, this function computes the batch similarity. If label embeddings are those for the full vocabulary, this function computes the global similarity. Optionally apply normalization to the embeddings, computing cosine similarity instead of dot product. """ def __init__(self, normalization_fn: NormalizationFnType = l2_normalize_fn, **kwargs): super().__init__(**kwargs) self.normalization_fn = normalization_fn def call(self, inputs): if len(inputs) != 2: raise ValueError( 'Exactly two inputs must be provided, context embeddings and label ' 'embeddings, but %d inputs were provided.' % len(inputs)) context_embedding, label_embedding = inputs # Optionally apply normalization to both context and label embeddings, # computing the cosine similarity rather than the dot product. if self.normalization_fn is not None: context_embedding = self.normalization_fn(context_embedding) label_embedding = self.normalization_fn(label_embedding) # similarities[i][j] is the dot product of the ith context embedding and # the jth label embedding in a batch. similarities = tf.matmul( context_embedding, label_embedding, transpose_b=True) return similarities def get_config(self): config = super().get_config() config.update({ 'normalization_fn': self.normalization_fn, }) return config NORMALIZATION_FN_MAP = { 'none': None, 'l2_normalize': l2_normalize_fn, }
445617559274b877d9caaaded1e30307947b51ec
ac9e79b04eadb95497b99c30444d952e6068f18f
/dockermap/map/policy/__init__.py
45f1833b73ce0c9c2dd07d072c74315426a84c27
[ "MIT" ]
permissive
vijayshan/docker-map
ff58f5c8aba15b8d157478a6614c6d6681de1e61
a222c92947cbc22aef727c12f39fb93b0b192bc7
refs/heads/master
2021-01-17T03:16:31.693681
2015-09-14T08:20:55
2015-09-14T08:20:55
42,375,505
1
0
null
2015-09-12T22:31:07
2015-09-12T22:31:07
null
UTF-8
Python
false
false
204
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from .actions import ACTION_ATTACHED_FLAG, ACTION_DEPENDENCY_FLAG from .simple import SimplePolicy from .resume import ResumeUpdatePolicy
65891c8750b9d10b031594b8b35080a55aaa6663
36409b78394002e5d6e9228ca256fd4654b38f80
/random walk/src/BD_LERW.py
225bf177733ba635a79943248f53c2381ba65975
[]
no_license
xiaogang00/Mining-in-Social-Networks
fa383494fd56124096c60317af2b30373c0d4aac
87ab6f29ae148170d03470987299c7ea812d1dab
refs/heads/master
2020-12-02T16:22:59.938930
2017-08-30T01:58:33
2017-08-30T01:58:33
96,543,382
0
1
null
null
null
null
UTF-8
Python
false
false
3,050
py
#!/usr/bin/python # # An implementation of a Bidirectional Loop Erased Random Walk (LERW) # from a cylinder with reflecting boundaries on the left # and open boundaries on the right. # PNG output of a single trajectory. # Habib Rehmann and Gunnar Pruessner # import random import numpy as np import matplotlib.pyplot as plt from copy import deepcopy seed = 10 # random seed Length = 200 # length of the cyclinder Circ = 200 # circumference of cyclinder x = 0 # x coordinate of starting location # y coordinate of starting location. Origin is at centre of square y = Circ / 2 #在这里一开始的时候,x是在原点,而y是在中间的 s = 0 # Step number. realizations = 8 trajectory = [] # List of the x coordinates of all points visited. # (Length x Circ) 2D array of zeros lattice = np.zeros((Length, Circ), dtype=int) random.seed(seed) # Plot config dpi = 300 fig, ax = plt.subplots() fig.set_size_inches(3, Circ * 3. / Length) ax.set_xlim(0, Length - 1) ax.set_ylim(0, Circ - 1) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) def plot(LERW, c='g', Length = Length, Circ = Circ): for pos in range(len(LERW)): x, y = LERW[pos] #不能画在边缘和角落 if (x == Length) or (x == 0) or (y == Circ) or (y == Circ) or (y == 0): LERW[pos] = (np.nan, np.nan) pos += 1 plt.plot(*zip(*LERW), color=c, linewidth=0.2) # Generate a randomwalk for i in range(realizations): s = 0 x = 0 # x coordinate of starting location y = Circ / 2 # y coordinate of starting location #lattice在这里是格子的线 lattice = np.zeros((Length, Circ), dtype=int) trajectory = [] while True: s += 1 #下面相当于在x,y的方向上产生随机数 if (bool(random.getrandbits(1))): if (bool(random.getrandbits(1))): x += 1 else: x -= 1 else: if (bool(random.getrandbits(1))): y += 1 else: y -= 1 if (x >= Length): break elif (x < 0): x = 0 if (y >= Circ): y -= Circ elif (y < 0): y += Circ lattice[x][y] += 1 trajectory.append((x, y)) x0, y0, pos = None, None, 0 # Loop erasure LERW_LeftRight = deepcopy(trajectory) lcpy = deepcopy(lattice) x0, y0 = None, None pos = 0 while pos < len(LERW_LeftRight): x, y = LERW_LeftRight[pos] if lcpy[x][y] > 1 and (not x0): x0, y0 = x, y pos0 = pos elif (x == x0) and (y == y0) and (lcpy[x][y] == 1): del LERW_LeftRight[pos0:pos] x0, y0 = None, None pos = pos0 lcpy[x][y] -= 1 pos += 1 plot(LERW_LeftRight) # Loop erasure (tranversal from right to left) LERW_RightLeft = deepcopy(trajectory[::-1]) lcpy = deepcopy(lattice) x0, y0 = None, None pos = 0 while pos < len(LERW_RightLeft): x, y = LERW_RightLeft[pos] if lcpy[x][y] > 1 and (not x0): x0, y0 = x, y pos0 = pos elif (x == x0) and (y == y0) and (lcpy[x][y] == 1): del LERW_RightLeft[pos0:pos] x0, y0 = None, None pos = pos0 lcpy[x][y] -= 1 pos += 1 plot(LERW_RightLeft, 'r') # Plot random walk plt.savefig(__file__[:-3]+".png", bbox_inches="tight", dpi=dpi)
579d13c29895c97ff77f3425bac31cb6d6070857
1e6e3bb707920fdb01ebca23eaf81097c558d918
/tests/system/action/test_internal_actions.py
cc7ffd01313c71744500855191c73bb153e2160b
[ "MIT" ]
permissive
OpenSlides/openslides-backend
cbd24589f82a6f29bde02611610511870bb6abbf
d8511f5138db4cc5fe4fa35e2a0200f766bd49c5
refs/heads/main
2023-08-23T11:54:25.064070
2023-08-22T11:15:45
2023-08-22T11:15:45
231,757,840
6
22
MIT
2023-09-14T16:23:41
2020-01-04T12:17:38
Python
UTF-8
Python
false
false
7,783
py
from tempfile import NamedTemporaryFile from typing import Any, Dict, Optional from openslides_backend.http.views.action_view import ( INTERNAL_AUTHORIZATION_HEADER, ActionView, ) from openslides_backend.http.views.base_view import RouteFunction from openslides_backend.shared.env import DEV_PASSWORD from openslides_backend.shared.util import ONE_ORGANIZATION_FQID from tests.system.util import disable_dev_mode, get_route_path from tests.util import Response from .base import BaseActionTestCase from .util import get_internal_auth_header class BaseInternalRequestTest(BaseActionTestCase): """ Provides the ability to use the anonymous client to call an internal route. """ route: RouteFunction def call_internal_route( self, payload: Any, internal_auth_password: Optional[str] = DEV_PASSWORD, ) -> Response: if internal_auth_password is None: headers = {} else: headers = get_internal_auth_header(internal_auth_password) return self.anon_client.post( get_route_path(self.route), json=payload, headers=headers, ) class BaseInternalPasswordTest(BaseInternalRequestTest): """ Sets up a server-side password for internal requests. """ internal_auth_password: str = "Q2^$2J9QXimW6lDPoGj4" def setUp(self) -> None: super().setUp() self.secret_file = NamedTemporaryFile() self.secret_file.write(self.internal_auth_password.encode("ascii")) self.secret_file.seek(0) self.app.env.vars["INTERNAL_AUTH_PASSWORD_FILE"] = self.secret_file.name def tearDown(self) -> None: super().tearDown() self.app.env.vars["INTERNAL_AUTH_PASSWORD_FILE"] = "" self.secret_file.close() class BaseInternalActionTest(BaseInternalRequestTest): """ Sets up a server-side password for internal requests. """ route: RouteFunction = ActionView.internal_action_route def internal_request( self, action: str, data: Dict[str, Any], internal_auth_password: Optional[str] = DEV_PASSWORD, ) -> Response: return super().call_internal_route( [{"action": action, "data": [data]}], internal_auth_password ) class TestInternalActionsDev(BaseInternalActionTest): """ Uses the anonymous client to call the internal action route. This should skip all permission checks, so the requests still succeed. Just rudimentary tests that the actions generally succeed since if that's the case, everything should be handled analogously to the external case, which is already tested sufficiently in the special test cases for the actions. Hint: This test assumes that OPENSLIDES_DEVELOPMENT is truthy. """ def test_internal_user_create(self) -> None: response = self.internal_request("user.create", {"username": "test"}) self.assert_status_code(response, 200) self.assert_model_exists("user/2", {"username": "test"}) def test_internal_user_update(self) -> None: response = self.internal_request("user.update", {"id": 1, "username": "test"}) self.assert_status_code(response, 200) self.assert_model_exists("user/1", {"username": "test"}) def test_internal_user_delete(self) -> None: response = self.internal_request("user.delete", {"id": 1}) self.assert_status_code(response, 200) self.assert_model_deleted("user/1") def test_internal_user_set_password(self) -> None: response = self.internal_request( "user.set_password", {"id": 1, "password": "new_password"} ) self.assert_status_code(response, 200) model = self.get_model("user/1") assert self.auth.is_equals("new_password", model["password"]) def test_internal_organization_initial_import(self) -> None: self.datastore.truncate_db() response = self.internal_request("organization.initial_import", {"data": {}}) self.assert_status_code(response, 200) self.assert_model_exists(ONE_ORGANIZATION_FQID) self.assert_model_exists("user/1", {"username": "superadmin"}) def test_internal_mismatching_passwords(self) -> None: response = self.internal_request( "user.create", {"username": "test"}, "wrong_pw" ) self.assert_status_code(response, 401) self.assert_model_not_exists("user/2") def test_internal_no_password_in_request(self) -> None: response = self.internal_request("user.create", {"username": "test"}, None) self.assert_status_code(response, 401) self.assert_model_not_exists("user/2") def test_internal_wrong_password_in_request(self) -> None: response = self.internal_request("user.create", {"username": "test"}, "wrong") self.assert_status_code(response, 401) self.assert_model_not_exists("user/2") def test_internal_execute_stack_internal_via_public_route(self) -> None: self.datastore.truncate_db() response = self.request( "organization.initial_import", {"data": {}}, internal=False ) self.assert_status_code(response, 400) self.assertEqual( response.json.get("message"), "Action organization.initial_import does not exist.", ) self.assert_model_not_exists("organization/1") def test_internal_wrongly_encoded_password(self) -> None: response = self.anon_client.post( get_route_path(self.route), json=[{"action": "user.create", "data": [{"username": "test"}]}], headers={INTERNAL_AUTHORIZATION_HEADER: "openslides"}, ) self.assert_status_code(response, 400) self.assert_model_not_exists("user/2") @disable_dev_mode class TestInternalActionsProd(BaseInternalActionTest): """ The same as the TestInternalActionsDev class but in prod mode. """ def test_internal_no_password_on_server(self) -> None: response = self.internal_request( "user.create", {"username": "test"}, "some password" ) self.assert_status_code(response, 500) self.assert_model_not_exists("user/2") @disable_dev_mode class TestInternalActionsProdWithPasswordFile( BaseInternalActionTest, BaseInternalPasswordTest ): """ Same as TestInternalActionsProd but with a server-side password set. """ def test_internal_wrong_password(self) -> None: response = self.internal_request("user.create", {"username": "test"}, "wrong") self.assert_status_code(response, 401) self.assert_model_not_exists("user/2") def test_internal_execute_public_action(self) -> None: response = self.internal_request( "user.create", {"username": "test"}, self.internal_auth_password ) self.assert_status_code(response, 200) self.assert_model_exists("user/2") def test_internal_execute_stack_internal_action(self) -> None: self.datastore.truncate_db() response = self.internal_request( "organization.initial_import", {"data": {}}, self.internal_auth_password ) self.assert_status_code(response, 200) self.assert_model_exists(ONE_ORGANIZATION_FQID) def test_internal_execute_backend_internal_action(self) -> None: response = self.internal_request( "option.create", {"meeting_id": 1, "text": "test"}, self.internal_auth_password, ) self.assert_status_code(response, 400) self.assertEqual( response.json.get("message"), "Action option.create does not exist." ) self.assert_model_not_exists("option/1")
8c5e18b01ac0690c7c7bb348b0e0d6c88a0697eb
d554b1aa8b70fddf81da8988b4aaa43788fede88
/5 - Notebooks e Data/1 - Análises numéricas/Arquivos David/Atualizados/logDicas-master/data/2019-1/222/users/4084/codes/1578_1331.py
4c3e362ab144d591bf2ec7a790a959912f033491
[]
no_license
JosephLevinthal/Research-projects
a3bc3ca3b09faad16f5cce5949a2279cf14742ba
60d5fd6eb864a5181f4321e7a992812f3c2139f9
refs/heads/master
2022-07-31T06:43:02.686109
2020-05-23T00:24:26
2020-05-23T00:24:26
266,199,309
1
0
null
null
null
null
UTF-8
Python
false
false
58
py
g = 3 m = 50 conta = m // g i = m%g print(conta) print(i)
c9cf7689a50286a5c1017bfd446fa36d67ab48be
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02663/s577432279.py
fb0a161b678de985a05e44a3e1290554f0f0f831
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
121
py
import sys input=sys.stdin.readline h1,m1,h2,m2,k=map(int,input().split()) h1=h1*60 h2=h2*60 m1+=h1 m2+=h2 print(m2-m1-k)
e0401fc292b6f962226021e0e3f636419bf5068e
958b6de6be5fb8bce876373cec29677259c6ceb3
/hypergan/train_hooks/experimental/weight_penalty_train_hook.py
7a672346f3853a2b0d4a457e359240de7e35efd9
[ "MIT", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
RandomStudio/HyperGAN
712679b9121ad414d2f91205a82370d54a930120
586cefe69805f5ffa8dcb11aaf346f6b3dcf3ac9
refs/heads/master
2020-06-22T22:43:04.884557
2019-07-23T12:17:58
2019-07-23T12:17:58
198,420,256
0
0
null
2019-07-23T11:52:00
2019-07-23T11:51:59
null
UTF-8
Python
false
false
2,923
py
#From https://gist.github.com/EndingCredits/b5f35e84df10d46cfa716178d9c862a3 from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import state_ops from tensorflow.python.framework import ops from tensorflow.python.training import optimizer import tensorflow as tf import hyperchamber as hc import numpy as np import inspect from operator import itemgetter from hypergan.train_hooks.base_train_hook import BaseTrainHook class WeightPenaltyTrainHook(BaseTrainHook): def __init__(self, gan=None, config=None, trainer=None, name="WeightPenaltyTrainHook", memory_size=2, top_k=1): super().__init__(config=config, gan=gan, trainer=trainer, name=name) d_losses = [] weights = self.gan.weights() if config.only_d: weights = self.discriminator.weights() if config.l2nn_penalty: l2nn_penalties = [] if len(weights) > 0: for w in weights: w = tf.reshape(w, [-1, self.ops.shape(w)[-1]]) wt = tf.transpose(w) wtw = tf.matmul(wt,w) wwt = tf.matmul(w,wt) def _l(m): m = tf.abs(m) m = tf.reduce_sum(m, axis=0,keep_dims=True) m = tf.maximum(m-1, 0) m = tf.reduce_max(m, axis=1,keep_dims=True) return m l2nn_penalties.append(tf.minimum(_l(wtw), _l(wwt))) print('l2nn_penalty', self.config.l2nn_penalty, l2nn_penalties) l2nn_penalty = self.config.l2nn_penalty * tf.add_n(l2nn_penalties) self.add_metric('l2nn_penalty', self.gan.ops.squash(l2nn_penalty)) d_losses.append(l2nn_penalty) if config.ortho_penalty: penalties = [] for w in self.gan.weights(): print("PENALTY", w) w = tf.reshape(w, [-1, self.ops.shape(w)[-1]]) wt = tf.transpose(w) wtw = tf.matmul(wt,w) wwt = tf.matmul(w,wt) mwtw = tf.matmul(w, wtw) mwwt = tf.matmul(wt, wwt) def _l(w,m): l = tf.reduce_mean(tf.abs(w - m)) l = self.ops.squash(l) return l penalties.append(tf.minimum(_l(w, mwtw), _l(wt, mwwt))) penalty = self.config.ortho_penalty * tf.add_n(penalties) self.add_metric('ortho_penalty', self.gan.ops.squash(penalty)) print("PENALTY", penalty) penalty = tf.reshape(penalty, [1,1]) penalty = tf.tile(penalty, [self.gan.batch_size(), 1]) d_losses.append(penalty) self.loss = self.ops.squash(d_losses) def losses(self): return [self.loss, self.loss] def after_step(self, step, feed_dict): pass def before_step(self, step, feed_dict): pass
bb7645b996dd70bb11bceb7fa31190757f205a92
141d1fb160fcfb4294d4b0572216033218da702d
/exec -l /bin/zsh/google-cloud-sdk/lib/surface/composer/environments/run.py
b81165e938f3ff95fea3676709e9be6e342bacc4
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
sudocams/tech-club
1f2d74c4aedde18853c2b4b729ff3ca5908e76a5
c8540954b11a6fd838427e959e38965a084b2a4c
refs/heads/master
2021-07-15T03:04:40.397799
2020-12-01T20:05:55
2020-12-01T20:05:55
245,985,795
0
1
null
2021-04-30T21:04:39
2020-03-09T08:51:41
Python
UTF-8
Python
false
false
7,255
py
# -*- coding: utf-8 -*- # # Copyright 2017 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Command to run an Airflow CLI sub-command in an environment.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals import argparse from googlecloudsdk.api_lib.composer import environments_util as environments_api_util from googlecloudsdk.api_lib.composer import util as api_util from googlecloudsdk.calliope import base from googlecloudsdk.command_lib.composer import resource_args from googlecloudsdk.command_lib.composer import util as command_util from googlecloudsdk.core import log from googlecloudsdk.core.console import console_io WORKER_POD_SUBSTR = 'worker' WORKER_CONTAINER = 'airflow-worker' DEPRECATION_WARNING = ('Because Cloud Composer manages the Airflow metadata ' 'database for your environment, support for the Airflow ' '`{}` subcommand is being deprecated. ' 'To avoid issues related to Airflow metadata, we ' 'recommend that you do not use this subcommand unless ' 'you understand the outcome.') @base.ReleaseTracks(base.ReleaseTrack.GA) class Run(base.Command): """Run an Airflow sub-command remotely in a Cloud Composer environment. Executes an Airflow CLI sub-command remotely in an environment. If the sub-command takes flags, separate the environment name from the sub-command and its flags with ``--''. This command waits for the sub-command to complete; its exit code will match the sub-command's exit code. ## EXAMPLES The following command: {command} myenv trigger_dag -- some_dag --run_id=foo is equivalent to running the following command from a shell inside the *my-environment* environment: airflow trigger_dag some_dag --run_id=foo """ @staticmethod def Args(parser): resource_args.AddEnvironmentResourceArg( parser, 'in which to run an Airflow command') parser.add_argument( 'subcommand', metavar='SUBCOMMAND', choices=command_util.SUBCOMMAND_WHITELIST, help=('The Airflow CLI subcommand to run. Available subcommands ' 'include: {} (see https://airflow.apache.org/cli.html for more ' 'info). Note that delete_dag is available from Airflow 1.10.1, ' 'and list_dag_runs, next_execution are available from Airflow ' '1.10.2.').format(', '.join(command_util.SUBCOMMAND_WHITELIST))) parser.add_argument( 'cmd_args', metavar='CMD_ARGS', nargs=argparse.REMAINDER, help='Command line arguments to the subcommand.', example='{command} myenv trigger_dag -- some_dag --run_id=foo') def BypassConfirmationPrompt(self, args): """Bypasses confirmations with "yes" responses. Prevents certain Airflow CLI subcommands from presenting a confirmation prompting (which can hang the gcloud CLI). When necessary, bypass confirmations with a "yes" response. Args: args: argparse.Namespace, An object that contains the values for the arguments specified in the .Args() method. """ prompting_subcommands = ['delete_dag'] if args.subcommand in prompting_subcommands and set( args.cmd_args).isdisjoint({'-y', '--yes'}): args.cmd_args.append('--yes') def DeprecationWarningPrompt(self, args): response = True if args.subcommand in command_util.SUBCOMMAND_DEPRECATION: response = console_io.PromptContinue( message=DEPRECATION_WARNING.format(args.subcommand), default=False, cancel_on_no=True) return response def ConvertKubectlError(self, error, env_obj): del env_obj # Unused argument. return error def Run(self, args): self.DeprecationWarningPrompt(args) running_state = ( api_util.GetMessagesModule(release_track=self.ReleaseTrack()) .Environment.StateValueValuesEnum.RUNNING) env_ref = args.CONCEPTS.environment.Parse() env_obj = environments_api_util.Get( env_ref, release_track=self.ReleaseTrack()) if env_obj.state != running_state: raise command_util.Error( 'Cannot execute subcommand for environment in state {}. ' 'Must be RUNNING.'.format(env_obj.state)) cluster_id = env_obj.config.gkeCluster cluster_location_id = command_util.ExtractGkeClusterLocationId(env_obj) with command_util.TemporaryKubeconfig(cluster_location_id, cluster_id): try: kubectl_ns = command_util.FetchKubectlNamespace( env_obj.config.softwareConfig.imageVersion) pod = command_util.GetGkePod( pod_substr=WORKER_POD_SUBSTR, kubectl_namespace=kubectl_ns) log.status.Print( 'Executing within the following kubectl namespace: {}'.format( kubectl_ns)) self.BypassConfirmationPrompt(args) kubectl_args = [ 'exec', pod, '-tic', WORKER_CONTAINER, 'airflow', args.subcommand ] if args.cmd_args: # Add '--' to the argument list so kubectl won't eat the command args. kubectl_args.extend(['--'] + args.cmd_args) command_util.RunKubectlCommand( command_util.AddKubectlNamespace(kubectl_ns, kubectl_args), out_func=log.status.Print) except command_util.KubectlError as e: raise self.ConvertKubectlError(e, env_obj) @base.ReleaseTracks(base.ReleaseTrack.BETA, base.ReleaseTrack.ALPHA) class RunBeta(Run): """Run an Airflow sub-command remotely in a Cloud Composer environment. Executes an Airflow CLI sub-command remotely in an environment. If the sub-command takes flags, separate the environment name from the sub-command and its flags with ``--''. This command waits for the sub-command to complete; its exit code will match the sub-command's exit code. ## EXAMPLES The following command: {command} myenv trigger_dag -- some_dag --run_id=foo is equivalent to running the following command from a shell inside the *my-environment* environment: airflow trigger_dag some_dag --run_id=foo """ def ConvertKubectlError(self, error, env_obj): is_private = ( env_obj.config.privateEnvironmentConfig and env_obj.config.privateEnvironmentConfig.enablePrivateEnvironment) if is_private: return command_util.Error( str(error) + ' Make sure you have followed https://cloud.google.com/composer/docs/how-to/accessing/airflow-cli#running_commands_on_a_private_ip_environment ' 'to enable access to your private Cloud Composer environment from ' 'your machine.') return error
1750d92d1dc355447d3f4c59c6a8905eb0f2bb15
23a1faa037ddaf34a7b5db8ae10ff8fa1bb79b94
/TCS_Practice/TCS_CodeVita_Problems/Constellation.py
e77bcc038db671a3100235e6c5e1bd94fd310097
[]
no_license
Pyk017/Competetive-Programming
e57d2fe1e26eeeca49777d79ad0cbac3ab22fe63
aaa689f9e208bc80e05a24b31aa652048858de22
refs/heads/master
2023-04-27T09:37:16.432258
2023-04-22T08:01:18
2023-04-22T08:01:18
231,229,696
2
0
null
null
null
null
UTF-8
Python
false
false
2,823
py
''' Three characters { #, *, . } represents a constellation of stars and galaxies in space. Each galaxy is demarcated by # characters. There can be one or many stars in a given galaxy. Stars can only be in shape of vowels { A, E, I, O, U } . A collection of * in the shape of the vowels is a star. A star is contained in a 3x3 block. Stars cannot be overlapping. The dot(.) character denotes empty space. Given 3xN matrix comprising of { #, *, . } character, find the galaxy and stars within them. Note: Please pay attention to how vowel A is denoted in a 3x3 block in the examples section below. Constraints 3 <= N <= 10^5 Input Input consists of single integer N denoting number of columns. Output Output contains vowels (stars) in order of their occurrence within the given galaxy. Galaxy itself is represented by # character. Example 1 Input 18 * . * # * * * # * * * # * * * . * . * . * # * . * # . * . # * * * * * * * * * # * * * # * * * # * * * * . * Output U#O#I#EA Explanation As it can be seen that the stars make the image of the alphabets U, O, I, E and A respectively. Example 2 Input 12 * . * # . * * * # . * . * . * # . . * . # * * * * * * # . * * * # * . * Output U#I#A Explanation As it can be seen that the stars make the image of the alphabet U, I and A. Possible solution: Input: 12 * . * # . * * * # . * . * . * # . . * . # * * * * * * # . * * * # * . * ''' n = int(input()) galaxy = [list(map(int, input().split())) for _ in range(3)] for i in range(n): if galaxy[0][i] == '#' and galaxy[1][j] == '#' and galaxy[2][i] == '#': print('#', end='') elif galaxy[0][i] == '.' and galaxy[1][j] == '.' and galaxy[2][i] == '.': pass else: x = i a, b, c, a1, b1, c1, a2, b2, c2 = galaxy[0][x], galaxy[0][x+1], galaxy[0][x+2], galaxy[1][x], galaxy[1][x+1], galaxy[1][x+2], galaxy[2][x], galaxy[2][x+1], galaxy[2][x+2] if a == '.' and b == '*' and c == '.' and a1=='*' and b1 == '*' and c1 == '*' and a2=='*' and b2 == '.' and c2 == '*': print("A", end='') i = i + 2 if a == '*' and b == '*' and c == '*' and a1 == '*' and b1 == '*' and c1 == '*' and a2 == '*' and b2 == '*' and c2 == '*': print("E", end='') i = i + 2 if a == '*' and b == '*' and c == '*' and a1 == '.' and b1 == '*' and c1 == '.' and a2 == '*' and b2 == '*' and c2 == '*': print("I", end='') i = i + 2 if a == '*' and b == '*' and c == '*' and a1 == '*' and b1 == '.' and c1 == '*' and a2 == '*' and b2 == '*' and c2 == '*': print("O", end='') i = i + 2 if a == '*' and b == '.' and c == '*' and a1 == '*' and b1 == '.' and c1 == '*' and a2 == '*' and b2 == '*' and c2 =='*': print("U", end='') i = i + 2
8177573260147c1b6a0fc39e0e1977682266b7b6
50dd2a43daa8316fc11e0c176b5872738fcc5dde
/Learning/130_Fluent_Python/fp2-utf8/freeinteractive/freeinteractive 103.py
fedc3048dc3417682a8981be5ae2035e8e4eed63
[]
no_license
FrenchBear/Python
58204d368e3e72071eef298ff00d06ff51bd7914
b41ab4b6a59ee9e145ef2cd887a5fe306973962b
refs/heads/master
2023-08-31T18:43:37.792427
2023-08-26T15:53:20
2023-08-26T15:53:20
124,466,047
0
0
null
null
null
null
UTF-8
Python
false
false
24
py
>>> b = 6 >>> f1(3) 3 6
9d9c75dc71a08948292a19969a209d9e9e35aaba
04f194dfd80367756cc3971b57b48065b2edbfb3
/topics/number_line.py
37386cf3172b78370d0618372e8485ba120c6294
[]
no_license
arthurtcl/manim
de2bfcf495981fb332e036b63e7c074e0db50624
ad05030641483b7f99b382cf6492bebcd4aa6d18
refs/heads/master
2021-01-17T11:44:48.968626
2017-03-04T01:34:05
2017-03-04T01:34:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,977
py
from helpers import * from mobject import Mobject1D from mobject.vectorized_mobject import VMobject, VGroup from mobject.tex_mobject import TexMobject from topics.geometry import Line, Arrow from scene import Scene class NumberLine(VMobject): CONFIG = { "color" : BLUE, "x_min" : -SPACE_WIDTH, "x_max" : SPACE_WIDTH, "space_unit_to_num" : 1, "tick_size" : 0.1, "tick_frequency" : 1, "leftmost_tick" : None, #Defaults to ceil(x_min) "numbers_with_elongated_ticks" : [0], "numbers_to_show" : None, "longer_tick_multiple" : 2, "number_at_center" : 0, "propogate_style_to_family" : True } def __init__(self, **kwargs): digest_config(self, kwargs) if self.leftmost_tick is None: self.leftmost_tick = np.ceil(self.x_min) VMobject.__init__(self, **kwargs) def generate_points(self): self.main_line = Line(self.x_min*RIGHT, self.x_max*RIGHT) self.tick_marks = VMobject() self.add(self.main_line, self.tick_marks) for x in self.get_tick_numbers(): self.add_tick(x, self.tick_size) for x in self.numbers_with_elongated_ticks: self.add_tick(x, self.longer_tick_multiple*self.tick_size) self.stretch(self.space_unit_to_num, 0) self.shift(-self.number_to_point(self.number_at_center)) def add_tick(self, x, size): self.tick_marks.add(Line( x*RIGHT+size*DOWN, x*RIGHT+size*UP, )) return self def get_tick_marks(self): return self.tick_marks def get_tick_numbers(self): return np.arange( self.leftmost_tick, self.x_max + self.tick_frequency, self.tick_frequency ) def number_to_point(self, number): alpha = float(number-self.x_min)/(self.x_max - self.x_min) return interpolate( self.main_line.get_start(), self.main_line.get_end(), alpha ) def point_to_number(self, point): left_point, right_point = self.main_line.get_start_and_end() full_vect = right_point-left_point def distance_from_left(p): return np.dot(p-left_point, full_vect)/np.linalg.norm(full_vect) return interpolate( self.x_min, self.x_max, distance_from_left(point)/distance_from_left(right_point) ) def default_numbers_to_display(self): if self.numbers_to_show is not None: return self.numbers_to_show return np.arange(self.leftmost_tick, self.x_max, 1) def get_vertical_number_offset(self, direction = DOWN): return 4*direction*self.tick_size def get_number_mobjects(self, *numbers, **kwargs): #TODO, handle decimals if len(numbers) == 0: numbers = self.default_numbers_to_display() result = VGroup() for number in numbers: mob = TexMobject(str(int(number))) mob.scale_to_fit_height(3*self.tick_size) mob.shift( self.number_to_point(number), self.get_vertical_number_offset(**kwargs) ) result.add(mob) return result def add_numbers(self, *numbers, **kwargs): self.numbers = self.get_number_mobjects( *numbers, **kwargs ) self.add(*self.numbers) return self class UnitInterval(NumberLine): CONFIG = { "x_min" : 0, "x_max" : 1, "space_unit_to_num" : 6, "tick_frequency" : 0.1, "numbers_with_elongated_ticks" : [0, 1], "number_at_center" : 0.5, } class Axes(VGroup): CONFIG = { "propogate_style_to_family" : True } def __init__(self, **kwargs): VGroup.__init__(self) self.x_axis = NumberLine(**kwargs) self.y_axis = NumberLine(**kwargs).rotate(np.pi/2) self.add(self.x_axis, self.y_axis) class NumberPlane(VMobject): CONFIG = { "color" : BLUE_D, "secondary_color" : BLUE_E, "axes_color" : WHITE, "secondary_stroke_width" : 1, "x_radius": SPACE_WIDTH, "y_radius": SPACE_HEIGHT, "space_unit_to_x_unit" : 1, "space_unit_to_y_unit" : 1, "x_line_frequency" : 1, "y_line_frequency" : 1, "secondary_line_ratio" : 1, "written_coordinate_height" : 0.2, "written_coordinate_nudge" : 0.1*(DOWN+RIGHT), "num_pair_at_center" : (0, 0), "propogate_style_to_family" : False, } def generate_points(self): self.axes = VMobject() self.main_lines = VMobject() self.secondary_lines = VMobject() tuples = [ ( self.x_radius, self.x_line_frequency, self.y_radius*DOWN, self.y_radius*UP, RIGHT ), ( self.y_radius, self.y_line_frequency, self.x_radius*LEFT, self.x_radius*RIGHT, UP, ), ] for radius, freq, start, end, unit in tuples: main_range = np.arange(0, radius, freq) step = freq/float(freq + self.secondary_line_ratio) for v in np.arange(0, radius, step): line1 = Line(start+v*unit, end+v*unit) line2 = Line(start-v*unit, end-v*unit) if v == 0: self.axes.add(line1) elif v in main_range: self.main_lines.add(line1, line2) else: self.secondary_lines.add(line1, line2) self.add(self.secondary_lines, self.main_lines, self.axes) self.stretch(self.space_unit_to_x_unit, 0) self.stretch(self.space_unit_to_y_unit, 1) #Put x_axis before y_axis y_axis, x_axis = self.axes.split() self.axes = VMobject(x_axis, y_axis) def init_colors(self): VMobject.init_colors(self) self.axes.set_stroke(self.axes_color, self.stroke_width) self.main_lines.set_stroke(self.color, self.stroke_width) self.secondary_lines.set_stroke( self.secondary_color, self.secondary_stroke_width ) return self def get_center_point(self): return self.num_pair_to_point(self.num_pair_at_center) def num_pair_to_point(self, pair): pair = np.array(pair) + self.num_pair_at_center result = self.axes.get_center() result[0] += pair[0]*self.space_unit_to_x_unit result[1] += pair[1]*self.space_unit_to_y_unit return result def point_to_num_pair(self, point): new_point = point-self.get_center() center_x, center_y = self.num_pair_at_center x = center_x + point[0]/self.space_unit_to_x_unit y = center_y + point[1]/self.space_unit_to_y_unit return x, y def get_coordinate_labels(self, x_vals = None, y_vals = None): result = [] if x_vals == None and y_vals == None: x_vals = range(-int(self.x_radius), int(self.x_radius)) y_vals = range(-int(self.y_radius), int(self.y_radius)) for index, vals in enumerate([x_vals, y_vals]): num_pair = [0, 0] for val in vals: num_pair[index] = val point = self.num_pair_to_point(num_pair) num = TexMobject(str(val)) num.scale_to_fit_height( self.written_coordinate_height ) num.shift( point-num.get_corner(UP+LEFT), self.written_coordinate_nudge ) result.append(num) return result def get_axes(self): return self.axes def get_axis_labels(self, x_label = "x", y_label = "y"): x_axis, y_axis = self.get_axes().split() x_label_mob = TexMobject(x_label) y_label_mob = TexMobject(y_label) x_label_mob.next_to(x_axis, DOWN) x_label_mob.to_edge(RIGHT) y_label_mob.next_to(y_axis, RIGHT) y_label_mob.to_edge(UP) return VMobject(x_label_mob, y_label_mob) def add_coordinates(self, x_vals = None, y_vals = None): self.add(*self.get_coordinate_labels(x_vals, y_vals)) return self def get_vector(self, coords, **kwargs): point = coords[0]*RIGHT + coords[1]*UP arrow = Arrow(ORIGIN, coords, **kwargs) return arrow def prepare_for_nonlinear_transform(self, num_inserted_anchor_points = 50): for mob in self.family_members_with_points(): num_anchors = mob.get_num_anchor_points() if num_inserted_anchor_points > num_anchors: mob.insert_n_anchor_points(num_inserted_anchor_points-num_anchors) mob.make_smooth() return self
f85f6f39aa12d9bd44917d0f830d724ec3d6f956
c42f7f7a8421103cc3ca8ee44673704f7eea22b1
/src/utils/routes.py
01fe170c5eaa9ad4e3f0cf77beb0b1f34279b976
[ "MIT" ]
permissive
styleolder/fp-server
fe585fe73014eb0421b25d5579191d24276df250
ae405e7c37a919bd73be567e3e098e7fe5524097
refs/heads/master
2020-03-21T12:05:36.250998
2018-06-24T13:07:51
2018-06-24T13:07:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,770
py
# -*- coding:utf-8 -*- """ http uri 路由装饰器 """ from utils import log as logger class route(object): """ @route('/some/path') class SomeRequestHandler(RequestHandler): pass @route('/some/path', name='other') class SomeOtherRequestHandler(RequestHandler): pass my_routes = route.make_routes(['api']) """ _routes = [] def __init__(self, uri, name=None): """ 装饰器 @param uri 注册的uri名字,支持uri正则表达式 @param name 注册的uri别名 """ self.uri = uri if not name: name = '-'.join(uri.split('/')) self.name = name def __call__(self, _handler): """ gets called when we class decorate """ for item in self._routes: if item.get('uri') == self.uri: logger.error('uri aleady exists! uri:', self.uri, 'name:', self.name, 'handler:', _handler, caller=self) if item.get('name') == self.name: logger.warn('name aleady exists! uri:', self.uri, 'name:', self.name, 'handler:', _handler, caller=self) self._routes.append({'uri': self.uri, 'name': self.name, 'handler': _handler}) return _handler @classmethod def make_routes(cls, dirs): """ 注册并返回所有的handler @param dirs list,需要注册uri路由的处理方法路径 """ for dir in dirs: s = 'import %s' % dir exec(s) routes = [] for handler_dic in cls._routes: logger.info('register uri:', handler_dic['uri'], 'handler:', handler_dic.get('handler'), caller=cls) routes.append((handler_dic.get('uri'), handler_dic.get('handler'))) return routes
82d322d9d2a24a4f17977671c69823b4c05dcae3
523f8f5febbbfeb6d42183f2bbeebc36f98eadb5
/207_3.py
a0c0add9e9275d90f0930004027fe8138ec29417
[]
no_license
saleed/LeetCode
655f82fdfcc3000400f49388e97fc0560f356af0
48b43999fb7e2ed82d922e1f64ac76f8fabe4baa
refs/heads/master
2022-06-15T21:54:56.223204
2022-05-09T14:05:50
2022-05-09T14:05:50
209,430,056
2
0
null
null
null
null
UTF-8
Python
false
false
1,013
py
class Solution(object): def canFinish(self, numCourses, prerequisites): """ :type numCourses: int :type prerequisites: List[List[int]] :rtype: bool """ graph={} indegree=[0]*numCourses for i in range(numCourses): graph[i]=[] for pair in prerequisites: graph[pair[1]].append(pair[0]) indegree[pair[0]]+=1 res=[] while True: flag=0 for node in range(len(indegree)): if indegree[node]==0: indegree[node]=float("inf") res.append(node) for n in graph[node]: indegree[n]-=1 del graph[node] flag=1 break if flag==0: break return len(res)==numCourses a=Solution() presp=[[1,0]] num=2 print(a.canFinish(num,presp)) nums=2 psp=[[1,0],[0,1]] print(a.canFinish(num,psp))
3e67c476deabc53331ccd7582f0feff94455d632
31741f4807f857675f9304088b689af9b043e7b1
/chp10/django_ecommerce/contact/views.py
8160a48a0c26f4c0a9a9857aa9771927481e3ab1
[]
no_license
ujrc/Realpython_book3
c487ff0569f90b0e21c2c51cf951d6aad4755541
aaff8db074b8dd33d6c7305ac0a94c2ef161c847
refs/heads/master
2021-01-10T02:02:11.247279
2016-01-11T17:06:59
2016-01-11T17:06:59
48,060,189
0
0
null
2015-12-31T16:48:52
2015-12-15T18:03:47
Python
UTF-8
Python
false
false
755
py
from django.http import HttpResponse, HttpResponseRedirect from django.template import RequestContext, loader from .forms import ContactView from django.contrib import messages def contact(request): if request.method == 'POST': form = ContactView(request.POST) if form.is_valid(): our_form = form.save(commit=False) our_form.save() messages.add_message( request, messages.INFO, 'Your message has been sent. Thank you.' ) return HttpResponseRedirect('/') else: form = ContactView() t = loader.get_template('contact/contact.html') c = RequestContext(request, {'form': form, }) return HttpResponse(t.render(c))# Create your views here.
337d900284082e21087ff98ddb9d2bb64e6b8248
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/otherforms/_banked.py
08d044b1996c25d485b9094eb3beb1112231d788
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
216
py
#calss header class _BANKED(): def __init__(self,): self.name = "BANKED" self.definitions = bank self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.basic = ['bank']
54d72878eac09a4ed9b40f9ef8fdc315b10a7f4d
99259216f11b15ec60446b4a141b3592a35560ce
/wex-python-api/test/test_json_node.py
c75004f2b70287a8c291d81ea8751f09dcf73ca6
[]
no_license
adam725417/Walsin
296ba868f0837077abff93e4f236c6ee50917c06
7fbefb9bb5064dabccf4a7e2bf49d2a43e0f66e9
refs/heads/master
2020-04-12T14:14:07.607675
2019-03-05T01:54:03
2019-03-05T01:54:03
162,546,202
0
0
null
null
null
null
UTF-8
Python
false
false
977
py
# coding: utf-8 """ WEX REST APIs Authentication methods - Basic Auth - JSON Web Token - [POST /api/v1/usermgmt/login](#!/User/signinUser) - [POST /api/v1/usermgmt/logout](#!/User/doLogout) - Python client sample [Download](/docs/wex-python-api.zip) OpenAPI spec version: 12.0.2.417 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import os import sys import unittest import ibmwex from ibmwex.rest import ApiException from ibmwex.models.json_node import JsonNode class TestJsonNode(unittest.TestCase): """ JsonNode unit test stubs """ def setUp(self): pass def tearDown(self): pass def testJsonNode(self): """ Test JsonNode """ # FIXME: construct object with mandatory attributes with example values #model = ibmwex.models.json_node.JsonNode() pass if __name__ == '__main__': unittest.main()
67ceb865d11bf7d82086694f8879b057f68bf848
864285315c3a154639355f14ab1ff14633576405
/mapclientplugins/segmentationstep/tools/handlers/abstractselection.py
4315d4f55f509d3c4b410e9a7a07ad7b29f48cb1
[]
no_license
hsorby/segmentationstep
774dc537967c9643bd0094dc4e64eefa472588b0
321505374f9434ac0ae832b0b00398c2d4ac1fbe
refs/heads/main
2021-09-28T09:06:07.197158
2015-08-14T07:59:55
2015-08-14T07:59:55
21,375,254
0
0
null
null
null
null
UTF-8
Python
false
false
5,527
py
''' MAP Client, a program to generate detailed musculoskeletal models for OpenSim. Copyright (C) 2012 University of Auckland This file is part of MAP Client. (http://launchpad.net/mapclient) MAP Client is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. MAP Client is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with MAP Client. If not, see <http://www.gnu.org/licenses/>.. ''' from PySide import QtCore from mapclientplugins.segmentationstep.tools.handlers.abstracthandler import AbstractHandler from mapclientplugins.segmentationstep.zincutils import setGlyphSize, setGlyphOffset, COORDINATE_SYSTEM_LOCAL, \ createSelectionBox from mapclientplugins.segmentationstep.undoredo import CommandSelection from mapclientplugins.segmentationstep.definitions import SELECTION_BOX_3D_GRAPHIC_NAME class SelectionMode(object): NONE = -1 EXCULSIVE = 0 ADDITIVE = 1 class AbstractSelection(AbstractHandler): def __init__(self, plane, undo_redo_stack): super(AbstractSelection, self).__init__(plane, undo_redo_stack) self._selection_box = createSelectionBox(plane.getRegion(), SELECTION_BOX_3D_GRAPHIC_NAME) self._selection_mode = SelectionMode.NONE self._selection_position_start = None def mousePressEvent(self, event): self._selection_mode = SelectionMode.NONE if event.modifiers() & QtCore.Qt.SHIFT and event.button() == QtCore.Qt.LeftButton: self._selection_position_start = [event.x(), event.y()] self._selection_mode = SelectionMode.EXCULSIVE if event.modifiers() & QtCore.Qt.ALT: self._selection_mode = SelectionMode.ADDITIVE self._start_selection = self._model.getCurrentSelection() else: super(AbstractSelection, self).mousePressEvent(event) def mouseMoveEvent(self, event): if self._selection_mode != SelectionMode.NONE: x = event.x() y = event.y() xdiff = float(x - self._selection_position_start[0]) ydiff = float(y - self._selection_position_start[1]) if abs(xdiff) < 0.0001: xdiff = 1 if abs(ydiff) < 0.0001: ydiff = 1 xoff = float(self._selection_position_start[0]) / xdiff + 0.5 yoff = float(self._selection_position_start[1]) / ydiff + 0.5 scene = self._selection_box.getScene() scene.beginChange() setGlyphSize(self._selection_box, [xdiff, -ydiff, 0.999]) setGlyphOffset(self._selection_box, [xoff, yoff, 0]) self._selection_box.setVisibilityFlag(True) scene.endChange() else: super(AbstractSelection, self).mouseMoveEvent(event) def mouseReleaseEvent(self, event): if self._selection_mode != SelectionMode.NONE: x = event.x() y = event.y() # Construct a small frustrum to look for nodes in. region = self._model.getRegion() region.beginHierarchicalChange() self._selection_box.setVisibilityFlag(False) selection_group = self._model.getSelectionGroupField() if (x != self._selection_position_start[0] and y != self._selection_position_start[1]): left = min(x, self._selection_position_start[0]) right = max(x, self._selection_position_start[0]) bottom = min(y, self._selection_position_start[1]) top = max(y, self._selection_position_start[1]) self._zinc_view.setPickingRectangle(COORDINATE_SYSTEM_LOCAL, left, bottom, right, top) if self._selection_mode == SelectionMode.EXCULSIVE: selection_group.clear() self._zinc_view.addPickedNodesToFieldGroup(selection_group) else: node = self._zinc_view.getNearestNode(x, y) if self._selection_mode == SelectionMode.EXCULSIVE and not node.isValid(): selection_group.clear() if node.isValid(): group = self._model.getSelectionGroup() if self._selection_mode == SelectionMode.EXCULSIVE: remove_current = group.getSize() == 1 and group.containsNode(node) selection_group.clear() if not remove_current: group.addNode(node) elif self._selection_mode == SelectionMode.ADDITIVE: if group.containsNode(node): group.removeNode(node) else: group.addNode(node) end_selection = self._model.getCurrentSelection() c = CommandSelection(self._model, self._start_selection, end_selection) self._undo_redo_stack.push(c) region.endHierarchicalChange() self._selection_mode = SelectionMode.NONE else: super(AbstractSelection, self).mouseReleaseEvent(event)
6fbd126342d2762103a2aff7486d0ce1305afb29
28297b7172bad2e427db185d449056340be2a429
/src/join_pairs.py
3bca92e18b11ac0a0c113c6e7492e6e049cf7c5b
[]
no_license
audy/cd-hit-that
6a3480c01c7930751325acbd716202ad514562da
27922835ebace8bcdcf8d7118ec2e05e11e5e9fa
refs/heads/master
2021-01-01T15:31:01.604403
2011-08-02T20:33:47
2011-08-02T20:33:47
1,357,454
0
0
null
null
null
null
UTF-8
Python
false
false
1,420
py
#!/usr/bin/env python # outputs a FASTQ file but with its filename in the header (sorta) # Also puts paired reads together with their 5' ends touching # This is for clustering # Takes input from STDIN import sys import os from itertools import cycle import string _complement = string.maketrans('GATCRYgatcry','CTAGYRctagyr') c = cycle([0, 1]) seq = { 0: '', 1: ''} i = 0 infile = sys.argv[1] minimum_read_length = int(sys.argv[2]) f_num = int(infile.split('_')[-1].split('.')[0]) kept, skipped = 0, 0 with open(infile) as handle: for line in handle: if line.startswith('>'): n = c.next() i += 1 if n == 1: header = '>%s:%s' % (f_num, hex(i)[2:]) else: seq[n] += line.strip() if n == 1: # Reverse-complement 3' pair seq[1] = seq[1].translate(_complement)[::-1] # Make sure reads are minimum length if (len(seq[0]) >= minimum_read_length) \ and (len(seq[1]) >= minimum_read_length): print header print '%s%s' % (seq[1], seq[0]) kept +=1 else: skipped +=1 seq = { 0: '', 1: ''} print >> sys.stderr, "kept: %.2f percent of pairs (%s : %s)" % (float(kept)/(skipped + kept), skipped, kept)
ac4d6e76ee26b19ee2ff04a77b386ed4cf0059c9
f7c1282dd377b95621436587fd2a6cb28a455d74
/om_hr_payroll/__manifest__.py
2c39fcc961672ef5c2c5369414d6b86b5a869f74
[]
no_license
odoomates/odooapps
a22fa15346694563733008c42549ebc0da7fc9f6
459f3b25d31da24043523e72f8be09af9a1e67e9
refs/heads/master
2023-08-11T15:25:28.508718
2022-10-14T07:58:36
2022-10-14T07:58:36
173,598,986
182
306
null
2023-08-10T17:58:46
2019-03-03T16:20:23
Python
UTF-8
Python
false
false
1,550
py
# -*- coding:utf-8 -*- { 'name': 'Odoo 16 HR Payroll', 'category': 'Generic Modules/Human Resources', 'version': '16.0.1.0.0', 'sequence': 1, 'author': 'Odoo Mates, Odoo SA', 'summary': 'Payroll For Odoo 16 Community Edition', 'live_test_url': 'https://www.youtube.com/watch?v=0kaHMTtn7oY', 'description': "Odoo 16 Payroll, Payroll Odoo 16, Odoo Community Payroll", 'website': 'https://www.odoomates.tech', 'license': 'LGPL-3', 'depends': [ 'mail', 'hr_contract', 'hr_holidays', ], 'data': [ 'security/hr_payroll_security.xml', 'security/ir.model.access.csv', 'data/hr_payroll_sequence.xml', 'data/hr_payroll_category.xml', 'data/hr_payroll_data.xml', 'wizard/hr_payroll_payslips_by_employees_views.xml', 'views/hr_contract_type_views.xml', 'views/hr_contract_views.xml', 'views/hr_salary_rule_views.xml', 'views/hr_payslip_views.xml', 'views/hr_employee_views.xml', 'views/hr_payroll_report.xml', 'wizard/hr_payroll_contribution_register_report_views.xml', 'views/res_config_settings_views.xml', 'views/report_contribution_register_templates.xml', 'views/report_payslip_templates.xml', 'views/report_payslip_details_templates.xml', 'views/hr_contract_history_views.xml', 'views/hr_leave_type_view.xml', 'data/mail_template.xml', ], 'images': ['static/description/banner.png'], 'application': True, }
44f758bb7c8d4183146ac4198ba226b5ea1ab1a6
ea515ab67b832dad3a9b69bef723bd9d918395e7
/03_Implementacao/DataBase/true_or_false_question_while_and_for_cicles/question/version_2/answers_program.py
bce77d50a8726979edc4b446b00a9c0313e7c11d
[]
no_license
projeto-exercicios/Exercicios-Python-de-correccao-automatica
b52be3211e75d97cb55b6cdccdaa1d9f9d84f65b
a7c80ea2bec33296a3c2fbe4901ca509df4b1be6
refs/heads/master
2022-12-13T15:53:59.283232
2020-09-20T21:25:57
2020-09-20T21:25:57
295,470,320
0
0
null
null
null
null
UTF-8
Python
false
false
150
py
answer_1_true = while_cicle(48) answer_2_true = p answer_3_true = print_indexes(69) print(answer_1_true) print(answer_2_true) print(answer_3_true)
42a1f97987615325f30edc75f358e38ff7f7ba56
450916eee7580beb928ed8f387db4f0a8c1aa508
/src/amuse/community/petar/__init__.py
4b06f767ad173c110590200c195514cd334c5292
[ "Apache-2.0", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
amusecode/amuse
42095545893f5a86ea79c2a52ce54d3ce8eb204f
b57c1e2fda1457d5025307be105c2aa59b19b574
refs/heads/main
2023-08-31T04:50:48.880044
2023-08-30T12:00:20
2023-08-30T12:00:20
18,516,331
158
118
Apache-2.0
2023-08-30T12:00:22
2014-04-07T12:35:07
AMPL
UTF-8
Python
false
false
29
py
from .interface import Petar
f0284d22965f628a9a0b899b316fe6e649b59ee5
ce76b3ef70b885d7c354b6ddb8447d111548e0f1
/same_place/own_number/bad_way_or_year/different_week_or_able_work.py
66bfb32cdb2de9f544d9b8a983695a71eb049913
[]
no_license
JingkaiTang/github-play
9bdca4115eee94a7b5e4ae9d3d6052514729ff21
51b550425a91a97480714fe9bc63cb5112f6f729
refs/heads/master
2021-01-20T20:18:21.249162
2016-08-19T07:20:12
2016-08-19T07:20:12
60,834,519
0
0
null
null
null
null
UTF-8
Python
false
false
218
py
#! /usr/bin/env python def place(str_arg): find_world_by_case(str_arg) print('point_and_little_problem') def find_world_by_case(str_arg): print(str_arg) if __name__ == '__main__': place('last_day')
1ae237d50f3b39abb4962276db742147c966c2c6
3c000380cbb7e8deb6abf9c6f3e29e8e89784830
/venv/Lib/site-packages/cobra/modelimpl/l3ext/domdef.py
d549d045a6b6b4cb4b650cffb5b307b2cc6edf07
[]
no_license
bkhoward/aciDOM
91b0406f00da7aac413a81c8db2129b4bfc5497b
f2674456ecb19cf7299ef0c5a0887560b8b315d0
refs/heads/master
2023-03-27T23:37:02.836904
2021-03-26T22:07:54
2021-03-26T22:07:54
351,855,399
0
0
null
null
null
null
UTF-8
Python
false
false
11,636
py
# coding=UTF-8 # ********************************************************************** # Copyright (c) 2013-2020 Cisco Systems, Inc. All rights reserved # written by zen warriors, do not modify! # ********************************************************************** from cobra.mit.meta import ClassMeta from cobra.mit.meta import StatsClassMeta from cobra.mit.meta import CounterMeta from cobra.mit.meta import PropMeta from cobra.mit.meta import Category from cobra.mit.meta import SourceRelationMeta from cobra.mit.meta import NamedSourceRelationMeta from cobra.mit.meta import TargetRelationMeta from cobra.mit.meta import DeploymentPathMeta, DeploymentCategory from cobra.model.category import MoCategory, PropCategory, CounterCategory from cobra.mit.mo import Mo # ################################################## class DomDef(Mo): """ This is generated and used only by internal processes. """ meta = ClassMeta("cobra.model.l3ext.DomDef") meta.moClassName = "l3extDomDef" meta.rnFormat = "l3dom-%(name)s" meta.category = MoCategory.REGULAR meta.label = "Outside L3 Domain" meta.writeAccessMask = 0x1 meta.readAccessMask = 0x80384001000601 meta.isDomainable = False meta.isReadOnly = True meta.isConfigurable = False meta.isDeletable = False meta.isContextRoot = False meta.childClasses.add("cobra.model.infra.RtDomAtt") meta.childClasses.add("cobra.model.fault.Counts") meta.childClasses.add("cobra.model.extnw.RtL3InstPToDomP") meta.childClasses.add("cobra.model.infra.RsVlanNs") meta.childClasses.add("cobra.model.extnw.RtL3DomAtt") meta.childClasses.add("cobra.model.infra.RtDomRef") meta.childClasses.add("cobra.model.fault.Inst") meta.childClasses.add("cobra.model.extnw.LblCont") meta.childClasses.add("cobra.model.infra.RtLDevDomP") meta.childClasses.add("cobra.model.infra.RtDomP") meta.childClasses.add("cobra.model.infra.RsVipAddrNs") meta.childClasses.add("cobra.model.infra.RtDynPathAtt") meta.childClasses.add("cobra.model.extnw.RsOut") meta.childClasses.add("cobra.model.health.Inst") meta.childClasses.add("cobra.model.infra.RsDomVxlanNsDef") meta.childClasses.add("cobra.model.infra.RsVlanNsDef") meta.childClasses.add("cobra.model.infra.RtExtDevDomP") meta.childClasses.add("cobra.model.infra.RtNicProfToDomP") meta.childClasses.add("cobra.model.fault.Delegate") meta.childClasses.add("cobra.model.infra.RtDomDef") meta.childNamesAndRnPrefix.append(("cobra.model.infra.RtNicProfToDomP", "rtextdevNicProfToDomP-")) meta.childNamesAndRnPrefix.append(("cobra.model.extnw.RtL3InstPToDomP", "rtl3extL3InstPToDomP-")) meta.childNamesAndRnPrefix.append(("cobra.model.infra.RtDynPathAtt", "rtl3extDynPathAtt-")) meta.childNamesAndRnPrefix.append(("cobra.model.extnw.RtL3DomAtt", "rtl3extL3DomAtt-")) meta.childNamesAndRnPrefix.append(("cobra.model.infra.RtExtDevDomP", "rtedmExtDevDomP-")) meta.childNamesAndRnPrefix.append(("cobra.model.infra.RsDomVxlanNsDef", "rsdomVxlanNsDef")) meta.childNamesAndRnPrefix.append(("cobra.model.infra.RtDomDef", "rtextdevDomDef-")) meta.childNamesAndRnPrefix.append(("cobra.model.infra.RtLDevDomP", "rtvnsLDevDomP-")) meta.childNamesAndRnPrefix.append(("cobra.model.infra.RtDomRef", "rtedmDomRef-")) meta.childNamesAndRnPrefix.append(("cobra.model.infra.RtDomAtt", "rtfvDomAtt-")) meta.childNamesAndRnPrefix.append(("cobra.model.infra.RsVipAddrNs", "rsvipAddrNs")) meta.childNamesAndRnPrefix.append(("cobra.model.infra.RsVlanNsDef", "rsvlanNsDef")) meta.childNamesAndRnPrefix.append(("cobra.model.infra.RsVlanNs", "rsvlanNs")) meta.childNamesAndRnPrefix.append(("cobra.model.fault.Counts", "fltCnts")) meta.childNamesAndRnPrefix.append(("cobra.model.extnw.LblCont", "lblcont")) meta.childNamesAndRnPrefix.append(("cobra.model.infra.RtDomP", "rtdomP-")) meta.childNamesAndRnPrefix.append(("cobra.model.fault.Inst", "fault-")) meta.childNamesAndRnPrefix.append(("cobra.model.extnw.RsOut", "rsout-")) meta.childNamesAndRnPrefix.append(("cobra.model.health.Inst", "health")) meta.childNamesAndRnPrefix.append(("cobra.model.fault.Delegate", "fd-")) meta.parentClasses.add("cobra.model.fv.RtdEpP") meta.superClasses.add("cobra.model.infra.ADomP") meta.superClasses.add("cobra.model.infra.DomP") meta.superClasses.add("cobra.model.l3ext.ADomP") meta.superClasses.add("cobra.model.pol.Obj") meta.superClasses.add("cobra.model.pol.Dom") meta.superClasses.add("cobra.model.naming.NamedObject") meta.superClasses.add("cobra.model.fv.ADomP") meta.superClasses.add("cobra.model.pol.Cont") meta.superClasses.add("cobra.model.extnw.DomP") meta.rnPrefixes = [ ('l3dom-', True), ] prop = PropMeta("str", "childAction", "childAction", 4, PropCategory.CHILD_ACTION) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("deleteAll", "deleteall", 16384) prop._addConstant("deleteNonPresent", "deletenonpresent", 8192) prop._addConstant("ignore", "ignore", 4096) meta.props.add("childAction", prop) prop = PropMeta("str", "configIssues", "configIssues", 4941, PropCategory.REGULAR) prop.label = "Configuration Issues" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "none" prop._addConstant("cdp-lldp-collision", "both-cdp-policy-and-lldp-policy-are-configured-for-attach-entity-profile", 16) prop._addConstant("enhanced-lacp-lag-creation-skipped", "enhanced-lacp-lag-policy-creation-skipped,-dvs-has-lacp-v1-enabled", 4096) prop._addConstant("invalid-mcast-addr", "missing-multicast-address-for-vxlan-mode", 512) prop._addConstant("invalid-port", "invalid-port-for-fabric-interface", 1024) prop._addConstant("invalid-vxlan-ns-range", "vxlan-range-below-0x800000-is-not-valid-for-n1kv-ns-mode", 128) prop._addConstant("missing-assoc-attEntP", "domain-is-missing-association-from-attach-entity-profile", 8) prop._addConstant("missing-encap", "invalid-or-missing-encapsulation", 1) prop._addConstant("missing-encapblk", "invalid-or-missing-encapsulation-blocks", 4) prop._addConstant("missing-epg", "association-to-end-point-group-not-specified", 2) prop._addConstant("missing-internal-vlan-blk", "missing-internal-vlan-encapsulation-blocks", 2048) prop._addConstant("missing-ns-assoc", "invalid-or-missing-association-to-vlan-or-vxlan-namespace", 256) prop._addConstant("multiple-cdp", "more-than-one-cdp-policy-found-for-attach-entity-profile", 64) prop._addConstant("multiple-lldp", "more-than-one-lldp-policy-found-for-attach-entity-profile", 32) prop._addConstant("none", "n/a", 0) meta.props.add("configIssues", prop) prop = PropMeta("str", "dn", "dn", 1, PropCategory.DN) prop.label = "None" prop.isDn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("dn", prop) prop = PropMeta("str", "lcOwn", "lcOwn", 9, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "local" prop._addConstant("implicit", "implicit", 4) prop._addConstant("local", "local", 0) prop._addConstant("policy", "policy", 1) prop._addConstant("replica", "replica", 2) prop._addConstant("resolveOnBehalf", "resolvedonbehalf", 3) meta.props.add("lcOwn", prop) prop = PropMeta("str", "modTs", "modTs", 7, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "never" prop._addConstant("never", "never", 0) meta.props.add("modTs", prop) prop = PropMeta("str", "monPolDn", "monPolDn", 14212, PropCategory.REGULAR) prop.label = "Monitoring policy attached to this observable object" prop.isImplicit = True prop.isAdmin = True meta.props.add("monPolDn", prop) prop = PropMeta("str", "name", "name", 6853, PropCategory.REGULAR) prop.label = "Name" prop.isConfig = True prop.isAdmin = True prop.isCreateOnly = True prop.isNaming = True prop.range = [(1, 64)] prop.regex = ['[a-zA-Z0-9_.:-]+'] meta.props.add("name", prop) prop = PropMeta("str", "nameAlias", "nameAlias", 28417, PropCategory.REGULAR) prop.label = "Name alias" prop.isConfig = True prop.isAdmin = True prop.range = [(0, 63)] prop.regex = ['[a-zA-Z0-9_.-]+'] meta.props.add("nameAlias", prop) prop = PropMeta("str", "ownerKey", "ownerKey", 15232, PropCategory.REGULAR) prop.label = "None" prop.isConfig = True prop.isAdmin = True prop.range = [(0, 128)] prop.regex = ['[a-zA-Z0-9\\!#$%()*,-./:;@ _{|}~?&+]+'] meta.props.add("ownerKey", prop) prop = PropMeta("str", "ownerTag", "ownerTag", 15233, PropCategory.REGULAR) prop.label = "None" prop.isConfig = True prop.isAdmin = True prop.range = [(0, 64)] prop.regex = ['[a-zA-Z0-9\\!#$%()*,-./:;@ _{|}~?&+]+'] meta.props.add("ownerTag", prop) prop = PropMeta("str", "rn", "rn", 2, PropCategory.RN) prop.label = "None" prop.isRn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("rn", prop) prop = PropMeta("str", "status", "status", 3, PropCategory.STATUS) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("created", "created", 2) prop._addConstant("deleted", "deleted", 8) prop._addConstant("modified", "modified", 4) meta.props.add("status", prop) prop = PropMeta("str", "targetDscp", "targetDscp", 1625, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.range = [(0, 64)] prop.defaultValue = 64 prop.defaultValueStr = "unspecified" prop._addConstant("AF11", "af11-low-drop", 10) prop._addConstant("AF12", "af12-medium-drop", 12) prop._addConstant("AF13", "af13-high-drop", 14) prop._addConstant("AF21", "af21-low-drop", 18) prop._addConstant("AF22", "af22-medium-drop", 20) prop._addConstant("AF23", "af23-high-drop", 22) prop._addConstant("AF31", "af31-low-drop", 26) prop._addConstant("AF32", "af32-medium-drop", 28) prop._addConstant("AF33", "af33-high-drop", 30) prop._addConstant("AF41", "af41-low-drop", 34) prop._addConstant("AF42", "af42-medium-drop", 36) prop._addConstant("AF43", "af43-high-drop", 38) prop._addConstant("CS0", "cs0", 0) prop._addConstant("CS1", "cs1", 8) prop._addConstant("CS2", "cs2", 16) prop._addConstant("CS3", "cs3", 24) prop._addConstant("CS4", "cs4", 32) prop._addConstant("CS5", "cs5", 40) prop._addConstant("CS6", "cs6", 48) prop._addConstant("CS7", "cs7", 56) prop._addConstant("EF", "expedited-forwarding", 46) prop._addConstant("VA", "voice-admit", 44) prop._addConstant("unspecified", "unspecified", 64) meta.props.add("targetDscp", prop) meta.namingProps.append(getattr(meta.props, "name")) # Deployment Meta meta.deploymentQuery = True meta.deploymentType = "Path" meta.deploymentQueryPaths.append(DeploymentPathMeta("ADomPToEthIf", "Interface", "cobra.model.l1.EthIf")) def __init__(self, parentMoOrDn, name, markDirty=True, **creationProps): namingVals = [name] Mo.__init__(self, parentMoOrDn, markDirty, *namingVals, **creationProps) # End of package file # ##################################################
d22510d282ed3e0b33f8d3e501117b4b8527cca0
91438802ee114b2fb945aae4105a17993dd6953d
/build/learning_ros_noetic/Part_5/ur10_robot/ur_traj_client/catkin_generated/pkg.installspace.context.pc.py
4807c4137df7658f74a42609d61315e95299f603
[]
no_license
AlexLam616/Baxter-robot
3a4cef31fe46da0fdb23c0e3b5808d84b412d037
d10fdcd35f29427ca14bb75f14fa9c64af3b028c
refs/heads/master
2023-05-12T01:25:56.454549
2021-05-25T02:02:09
2021-05-25T02:02:09
367,070,028
0
0
null
null
null
null
UTF-8
Python
false
false
421
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "".split(';') if "" != "" else [] PROJECT_CATKIN_DEPENDS = "roscpp;actionlib;trajectory_msgs;control_msgs".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "ur_traj_client" PROJECT_SPACE_DIR = "/home/alex/workspace/install" PROJECT_VERSION = "0.0.0"
fef8619855d686a10de3b4cc6d72b631190df666
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_201/2282.py
f467a7480d13917624dc75ae91326fb1c6115b5b
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,362
py
def rec_stall(n): res = [] if n == 1: return stalls[1] if n == 2: return stalls[2] if n == 3: return stalls[3] if n%2 == 0: a = rec_stall(n/2) b = rec_stall(n/2-1) res.extend([[n/2-1,n/2]]) c = [list(x) for x in zip(a,b)] c = [val for sublist in c for val in sublist] res.extend(c) res.extend([[0,0]]) return res else: a = rec_stall(n/2) res.extend([[n/2,n/2]]) c = [list(x) for x in zip(a,a)] c = [val for sublist in c for val in sublist] res.extend(c) res.extend([[0,0]]) return res stalls = [0,0,0,0] stalls[1] = [[0,0]] stalls[2] = [[0,1],[0,0]] stalls[3] = [[1,1],[0,0],[0,0]] #stalls[4] = [[1,2],[0,1],[0,0],[0,0]] #stalls[5] = [[2,2],[0,1],[0,1],[0,0],[0,0]] #stalls[6] = [[2,3],[1,1],[0,1],[0,0],[0,0],[0,0]] #print 1,rec_stall(1) #print 2,rec_stall(2) #print 3,rec_stall(3) #print 4,rec_stall(4) #print 5,rec_stall(5) #print 6,rec_stall(6) #print 7,rec_stall(7) #print 8,rec_stall(8) t = int(raw_input()) # read a line with a single integer for i in xrange(1, t + 1): n, m = [int(s) for s in raw_input().split(" ")] # read a list of integers, 2 in this case if n == m: print "Case #{}: {} {}".format(i, 0, 0) continue s = rec_stall(n) #print "Case #{}: {} {}", i, s, n, m, max(s[m-1]), min(s[m-1]) print "Case #{}: {} {}".format(i, max(s[m-1]), min(s[m-1]))
2f819d9b7131ebb5ab3ba5de2b16433c41ef6657
da7a893f0dc9c130b5f8c29d4875e7c5d98ac64f
/code-slides/0019-fib-more-fast-examples.py
8dbdcdff07628e4544477b3860838a7d9f952cf8
[]
no_license
py-yyc/decorators
a489d89869582a9127a5272e9342b8131ad91fe3
bd7c65b78b3f00cf8da216eab945f3ef26c1b2a8
refs/heads/master
2020-06-20T18:29:59.884497
2016-02-23T21:48:09
2016-02-23T21:48:09
52,392,195
1
0
null
null
null
null
UTF-8
Python
false
false
906
py
from __future__ import print_function # noslide ## <h1>how decorators work</h1> from time import time # noslide from contextlib import contextmanager # noslide @contextmanager # noslide def timer(): # noslide s = time() # noslide yield # noslide print("took {:.6f}s".format(time() - s)) # noslide def memoize(fn): # noslide cache = {} # noslide def wrapper(*args): # noslide try: # noslide return cache[args] # noslide except KeyError: # noslide r = fn(*args) # noslide cache[args] = r # noslide return r # noslide return wrapper # noslide @memoize # noslide def fib(x): # noslide if x in [1, 2]: # noslide return 1 # noslide return fib(x - 1) + fib(x - 2) # noslide with timer(): print("fib(100) =", fib(100)) with timer(): print("fib(200) =", fib(200)) ## show-output
5d7458f2c2d6962f5be50183283d1437f8dc2908
68f757e7be32235c73e316888ee65a41c48ecd4e
/python_book(이것이 코딩테스트다)/03 그리디/3-2 큰수의 법칙.py
b1f160381acf71c965174db1df86f096e154ed49
[]
no_license
leejongcheal/algorithm_python
b346fcdbe9b1fdee33f689477f983a63cf1557dc
f5d9bc468cab8de07b9853c97c3db983e6965d8f
refs/heads/master
2022-03-05T20:16:21.437936
2022-03-03T01:28:36
2022-03-03T01:28:36
246,039,901
1
0
null
null
null
null
UTF-8
Python
false
false
256
py
n, m, k = map(int,input().split()) L = list(map(int,input().split())) f = max(L) L.remove(f) s = max(L) flag = 0 result = 0 for i in range(m): flag += 1 if flag >= k: result += s flag = 0 else: result += f print(result)
fd13a713a5caf9c48c60ad83f504415838e20c7c
710d2f31b6808187c4895a618101c25b36d25b3c
/backend/home/migrations/0002_customtext_homepage_message.py
306e32a28d93fb23006c97f446b674b7a449a077
[]
no_license
crowdbotics-apps/haplen-28237
920231c921a3aa490acc97a7debacc6858c520de
938cef97a8534941cb5f4de9684c95361ae27ef3
refs/heads/master
2023-05-31T20:26:37.979544
2021-06-25T20:12:49
2021-06-25T20:12:49
380,344,291
0
0
null
null
null
null
UTF-8
Python
false
false
1,515
py
# Generated by Django 2.2.20 on 2021-06-25 20:12 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('dating', '0001_initial'), ('home', '0001_load_initial_data'), ] operations = [ migrations.CreateModel( name='CustomText', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=150)), ], ), migrations.CreateModel( name='HomePage', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('body', models.TextField()), ], ), migrations.CreateModel( name='Message', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('slug', models.SlugField()), ('created', models.DateTimeField(auto_now_add=True)), ('inbox', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='message_inbox', to='dating.Inbox')), ('match', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='message_match', to='dating.Match')), ], ), ]
9df13b60fe7e01a4f1d644f01e37df3490769058
649bd422025e421d86025743eac324c9b882a2e8
/exam/1_three-dimensional_atomic_system/dump/phasetrans/temp156_6000.py
d472674e752a50fc2c150d7c07922e1993e4e721
[]
no_license
scheuclu/atom_class
36ddee1f6a5995872e858add151c5942c109847c
0c9a8c63d9b38898c1869fe8983126cef17662cd
refs/heads/master
2021-01-21T10:52:28.448221
2017-03-07T23:04:41
2017-03-07T23:04:41
83,489,471
0
0
null
null
null
null
UTF-8
Python
false
false
68,771
py
ITEM: TIMESTEP 6000 ITEM: NUMBER OF ATOMS 2048 ITEM: BOX BOUNDS pp pp pp -2.7215234007832265e+00 4.9921523400776607e+01 -2.7215234007832265e+00 4.9921523400776607e+01 -2.7215234007832265e+00 4.9921523400776607e+01 ITEM: ATOMS id type xs ys zs 1622 1 0.483866 0.6696 0.0502502 1525 1 0.0892975 0.141091 0.0758595 815 1 0.205158 0.0643884 0.178165 585 1 0.0492387 0.136937 0.19374 18 1 0.106243 0.0579593 0.0985426 155 1 0.0507332 0.042377 0.152979 1496 1 0.417022 0.200629 0.381304 1871 1 0.0493648 0.066403 0.0397444 1238 1 0.344257 0.110556 0.0896849 1357 1 0.192934 0.0796272 0.0895359 852 1 0.0236587 0.513427 0.154936 1254 1 0.298657 0.980446 0.0572751 1641 1 0.161095 0.159221 0.0760137 1748 1 0.357619 0.0908315 0.174926 586 1 0.268144 0.119384 0.0504549 549 1 0.343336 0.16553 0.156985 1322 1 0.246871 0.0327068 0.120771 1352 1 0.479376 0.59961 0.260596 1359 1 0.451406 0.0179069 0.0734731 420 1 0.272947 0.131492 0.136173 1334 1 0.331776 0.24152 0.113246 1420 1 0.387949 0.0423638 0.0589836 1293 1 0.192485 0.681525 0.0235019 1759 1 0.302003 0.0578136 0.0901349 804 1 0.16988 0.31171 0.13637 1423 1 0.01381 0.332269 0.178131 1268 1 0.471821 0.118791 0.462719 671 1 0.0260388 0.349169 0.430271 1620 1 0.109044 0.333926 0.0059734 733 1 0.226852 0.140259 0.22027 2027 1 0.124392 0.183455 0.15116 1670 1 0.410592 0.651008 0.0647709 896 1 0.357546 0.692507 0.0203623 1932 1 0.224796 0.0761756 0.243876 1073 1 0.302701 0.177569 0.080904 1771 1 0.191654 0.169475 0.146355 1085 1 0.192225 0.276039 0.0551283 2018 1 0.270152 0.203908 0.154698 1106 1 0.229948 0.265733 0.126304 1222 1 0.247279 0.213697 0.0558782 560 1 0.0308248 0.277388 0.271511 443 1 0.446264 0.203666 0.00346344 1973 1 0.306554 0.249728 0.0489461 697 1 0.374909 0.173534 0.0854787 1734 1 0.441042 0.11816 0.0688306 1382 1 0.386391 0.00553615 0.122214 1261 1 0.0157243 0.572904 0.275918 726 1 0.483122 0.188514 0.0808325 708 1 0.138855 0.376148 0.058544 745 1 0.137014 0.382484 0.13446 857 1 0.317975 0.727283 0.476744 1912 1 0.00382869 0.388565 0.13246 1168 1 0.132705 0.369722 0.252162 299 1 0.122185 0.310537 0.0816508 493 1 0.138899 0.8265 0.472695 636 1 0.0725038 0.41664 0.0768961 1830 1 0.4183 0.815832 0.0205347 1471 1 0.240489 0.376823 0.110267 314 1 0.364801 0.314022 0.0687149 77 1 0.276422 0.309631 0.0836881 61 1 0.213686 0.365702 0.0458131 1257 1 0.327797 0.373794 0.12158 1651 1 0.282014 0.357026 0.0261893 1782 1 0.49329 0.255314 0.041978 1544 1 0.0399534 0.265682 0.199401 399 1 0.201333 0.900543 0.0454325 21 1 0.46716 0.338451 0.0475941 1964 1 0.458008 0.459357 0.331051 1686 1 0.305292 0.408094 0.191945 790 1 0.318827 0.561141 0.00697293 1249 1 0.489129 0.585931 0.445332 639 1 0.378009 0.477792 0.0241742 1637 1 0.073647 0.467397 0.133855 1189 1 0.00585068 0.199621 0.255641 554 1 0.140448 0.445631 0.0874117 634 1 0.149596 0.456036 0.15993 798 1 0.218015 0.462438 0.0703786 1456 1 0.0244078 0.968952 0.197645 1450 1 0.0710672 0.585753 0.0546782 1048 1 0.416368 0.0729733 0.349807 1172 1 0.219372 0.595219 0.0315721 1020 1 0.0102313 0.853479 0.0509291 521 1 0.290558 0.446694 0.0664316 2014 1 0.213763 0.503303 0.15461 410 1 0.362256 0.545075 0.0657383 1319 1 0.00204304 0.322992 0.328492 1064 1 0.386025 0.475469 0.0918908 1897 1 0.204548 0.571401 0.173788 767 1 0.0194324 0.117569 0.292348 1107 1 0.12076 0.872165 0.32345 461 1 0.384477 0.529569 0.146594 552 1 0.0415801 0.440072 0.0137688 13 1 0.373904 0.871252 0.487999 407 1 0.40633 0.650536 0.41665 1183 1 0.410172 0.405893 0.0323969 1376 1 0.133309 0.611886 0.16266 1980 1 0.164674 0.68791 0.0877057 1439 1 0.356244 0.78798 0.427554 1709 1 0.0935858 0.475377 0.212098 1522 1 0.132965 0.548713 0.20603 1981 1 0.0519103 0.673502 0.140625 680 1 0.0539551 0.582624 0.127162 1494 1 0.0621276 0.505935 0.0748198 494 1 0.194497 0.586566 0.256727 1452 1 0.193198 0.529091 0.077242 1958 1 0.284743 0.601646 0.211071 1607 1 0.238582 0.718498 0.115319 1719 1 0.343217 0.642765 0.178728 26 1 0.263245 0.655388 0.0723762 1069 1 0.275149 0.660345 0.154563 806 1 0.195298 0.661058 0.147522 1557 1 0.25855 0.712974 0.201067 821 1 0.339161 0.582091 0.275418 487 1 0.340012 0.614336 0.0578631 517 1 0.421659 0.671662 0.154329 1788 1 0.39392 0.591654 0.109754 1722 1 0.352657 0.682255 0.108319 1684 1 0.440434 0.720711 0.0905676 995 1 0.388555 0.411849 0.362093 371 1 0.442397 0.590743 0.0396707 470 1 0.017124 0.2041 0.114881 653 1 0.487129 0.20578 0.469929 1530 1 0.110026 0.843105 0.205851 682 1 0.104818 0.751129 0.0990502 1061 1 0.0871148 0.85978 0.0427872 982 1 0.174039 0.749127 0.142528 367 1 0.166628 0.895638 0.112145 1821 1 0.196858 0.438413 0.464433 381 1 0.10792 0.772422 0.18576 642 1 0.0818784 0.818484 0.132096 510 1 0.469564 0.872451 0.36641 1921 1 0.152271 0.822168 0.143109 1634 1 0.222516 0.747744 0.0550109 1837 1 0.193264 0.778491 0.212812 880 1 0.221796 0.799142 0.142191 954 1 0.247516 0.290947 0.00564548 246 1 0.221438 0.822577 0.0767767 266 1 0.156852 0.787589 0.0513247 970 1 0.303509 0.726039 0.0659358 1702 1 0.337957 0.81078 0.197879 637 1 0.330978 0.73895 0.150336 66 1 0.446756 0.808833 0.119088 488 1 0.37115 0.75709 0.0557082 503 1 0.411781 0.747182 0.155946 1742 1 0.285631 0.853902 0.0713214 1218 1 0.0659605 0.242343 0.0538262 404 1 0.086972 0.895618 0.120177 1169 1 0.181257 0.0411055 0.0173737 483 1 0.0751966 0.912805 0.188378 1438 1 0.204136 0.981767 0.145377 193 1 0.146352 -0.00176401 0.0738577 673 1 0.269764 0.679185 0.430396 1895 1 0.469652 0.369803 0.349189 1834 1 0.332902 0.413315 0.0236871 610 1 0.0673337 0.98407 0.0512626 1807 1 0.153785 0.0312405 0.496127 1281 1 0.227514 0.982361 0.0670085 408 1 0.260453 0.0496816 0.0373235 1878 1 0.301151 0.166323 0.003567 357 1 0.31351 0.997439 0.135443 1515 1 0.273072 0.940571 0.181624 1078 1 0.235561 0.912142 0.125067 184 1 0.376028 0.952468 0.0190259 164 1 0.453359 0.290961 0.272484 48 1 0.29736 0.793669 0.118187 1392 1 0.415483 0.881458 0.0997325 1385 1 0.363477 0.826667 0.127686 486 1 0.354476 0.934201 0.108967 1694 1 0.322314 0.880581 0.159394 428 1 0.389438 0.327637 0.483379 1448 1 0.0983204 0.904983 0.263716 472 1 0.466976 0.945951 0.327448 1049 1 0.185899 0.277118 0.478588 57 1 0.13024 0.0301861 0.2766 1528 1 0.0919083 0.00390295 0.200257 530 1 0.161331 0.121979 0.195784 927 1 0.102341 0.0848775 0.227258 2045 1 0.03147 0.182296 0.336931 1988 1 0.0688094 0.00742275 0.298411 1735 1 0.245548 0.00274071 0.202496 578 1 0.273665 0.0502451 0.296492 1132 1 0.201507 0.0554274 0.335264 360 1 0.3725 0.147153 0.258049 529 1 0.33227 0.0795435 0.248999 1671 1 0.372516 0.0227447 0.29961 182 1 0.473602 0.240855 0.13003 1030 1 0.432889 0.123131 0.199093 1408 1 0.369683 0.228965 0.242896 1425 1 0.486934 0.0308626 0.146846 1615 1 0.45293 0.186878 0.241639 1273 1 0.450049 0.158815 0.132616 356 1 0.41751 0.070802 0.12054 689 1 0.223078 0.667828 0.490259 364 1 0.269796 0.1868 0.426349 103 1 0.0796575 0.242 0.132427 786 1 0.15976 0.101113 0.289875 1789 1 0.256899 0.514566 0.47629 1011 1 0.106414 0.183485 0.233839 67 1 0.0568578 0.199758 0.429103 865 1 0.0883007 0.290357 0.335037 365 1 0.312385 0.136311 0.21799 280 1 0.400452 0.221167 0.140076 105 1 0.33618 0.245459 0.18476 794 1 0.196124 0.171117 0.279133 770 1 0.186666 0.244595 0.24936 388 1 0.133146 0.116073 0.132097 1 1 0.282572 0.0660715 0.180107 1822 1 0.295918 0.209139 0.230935 1766 1 0.00825946 0.517181 0.0255241 971 1 0.275141 0.555078 0.418052 323 1 0.303919 0.28077 0.263427 261 1 0.376522 0.296108 0.286098 808 1 0.0613197 0.722629 0.047541 684 1 0.378485 0.286979 0.138742 267 1 0.432296 0.253296 0.329693 1876 1 0.295073 0.173664 0.291593 353 1 0.111802 0.283701 0.256865 776 1 0.162063 0.23368 0.118168 1050 1 0.403528 0.163103 0.469499 877 1 0.239027 0.437142 0.188904 80 1 0.414975 0.0371346 0.456889 1311 1 0.0693176 0.340679 0.268739 202 1 0.0855497 0.305023 0.420641 135 1 0.0880526 0.33027 0.203097 24 1 0.260733 0.274514 0.199533 1656 1 0.30762 0.298064 0.144493 490 1 0.20643 0.373654 0.281525 1117 1 0.180265 0.318149 0.220319 717 1 0.237498 0.30777 0.265178 1582 1 0.199886 0.346939 0.372689 1144 1 0.163035 0.471136 0.373726 1936 1 0.272606 0.29563 0.332409 1609 1 0.0196685 0.865747 0.394211 1956 1 0.419358 0.253246 0.0781785 277 1 0.252112 0.352262 0.178309 406 1 0.48257 0.393363 0.243109 2024 1 0.350552 0.383975 0.243983 415 1 0.374929 0.357321 0.173934 1412 1 0.0636634 0.50132 0.307699 163 1 0.0805611 0.418162 0.177358 844 1 0.189989 0.578451 0.331068 1457 1 0.0638928 0.432863 0.268574 1097 1 0.0229876 0.395102 0.317612 901 1 0.155974 0.434545 0.269738 87 1 0.0137158 0.438444 0.199665 151 1 0.105212 0.566751 0.2702 1486 1 0.136315 0.50199 0.288798 1320 1 0.119193 0.536058 0.367558 1799 1 0.063662 0.563952 0.208734 1619 1 0.313825 0.494178 0.154774 259 1 0.267249 0.520202 0.0786244 1563 1 0.261941 0.460638 0.342903 1403 1 0.336031 0.556785 0.198538 348 1 0.393982 0.506189 0.216301 899 1 0.285221 0.411328 0.29788 555 1 0.192393 0.476946 0.226631 1484 1 0.27637 0.674597 0.324974 1725 1 0.280293 0.514613 0.293397 337 1 0.437746 0.464927 0.163205 633 1 0.427287 0.3784 0.103285 1712 1 0.497984 0.461422 0.216186 30 1 0.392226 0.59192 0.202698 1849 1 0.321297 0.322707 0.214857 333 1 0.319829 0.472595 0.229327 438 1 0.458304 0.465596 0.0795514 1159 1 0.360877 0.463093 0.304899 690 1 0.316546 0.505645 0.360378 1015 1 0.371848 0.435252 0.184217 859 1 0.114754 0.699297 0.157781 1858 1 0.433299 0.724626 0.0211737 1344 1 0.0741369 0.626388 0.259654 720 1 0.0465314 0.36264 0.00957701 1193 1 0.0946984 0.679171 0.311312 874 1 0.355518 0.538354 0.496216 459 1 0.0518772 0.808554 0.256665 1816 1 0.219152 0.646332 0.215644 625 1 0.250032 0.522304 0.2241 1997 1 0.230028 0.73539 0.324439 1942 1 0.316065 0.665182 0.249742 455 1 0.416574 0.561549 0.380235 1632 1 0.448023 0.65706 0.2263 1187 1 0.209239 0.717585 0.259522 1179 1 0.207797 0.491855 0.313868 663 1 0.418938 0.601873 0.306238 1340 1 0.492443 0.699405 0.266133 1432 1 0.467476 0.539973 0.203499 1591 1 0.48647 0.838833 0.4252 645 1 0.465595 0.538927 0.33025 1026 1 0.4934 0.0665068 0.215854 715 1 0.347835 0.68023 0.31582 79 1 0.12714 0.729434 0.249218 890 1 0.0361423 0.825665 0.187425 1487 1 0.440551 0.675556 0.320933 706 1 0.431773 0.806493 0.461608 676 1 0.0435212 0.868871 0.309296 16 1 0.0573563 0.705808 0.227714 1082 1 0.491147 0.408213 0.0631251 1355 1 0.000170218 0.762564 0.229993 1490 1 0.233553 0.82703 0.293448 1724 1 0.263044 0.785277 0.23061 1551 1 0.243406 0.794281 0.370577 336 1 0.395853 0.752776 0.302724 147 1 0.287298 0.856622 0.271983 1115 1 0.175623 0.878746 0.270136 949 1 0.138321 0.806145 0.27056 572 1 0.255018 0.857497 0.178192 1191 1 0.372347 0.694199 0.212989 1024 1 0.424453 0.738516 0.236994 1451 1 0.413233 0.272503 0.203584 801 1 0.467627 0.79047 0.306412 614 1 0.416212 0.831717 0.178498 1501 1 0.391186 0.803131 0.247048 1314 1 0.362936 0.871671 0.228518 1437 1 0.460545 0.840452 0.24104 1654 1 0.146174 0.939278 0.195385 190 1 0.290181 0.918048 0.45829 1643 1 0.137073 0.956314 0.294743 1499 1 0.0364567 0.248716 0.377285 658 1 0.00978924 0.870885 0.246424 528 1 0.160445 0.00391666 0.2229 1659 1 0.141856 0.0272609 0.153267 1695 1 0.21224 0.942026 0.251342 173 1 0.371639 0.95877 0.252425 522 1 0.181683 0.857515 0.198777 864 1 0.283511 0.926278 0.322867 883 1 0.196712 0.593424 0.107512 1272 1 0.339968 0.0232865 0.205614 1847 1 0.404741 0.0513271 0.200091 923 1 0.353904 0.948866 0.175064 473 1 0.44891 0.892519 0.18458 1160 1 0.445592 0.00502982 0.255303 1776 1 0.438402 0.915861 0.263569 254 1 0.416442 0.962502 0.195676 1296 1 0.408076 0.984168 0.38453 354 1 0.242677 0.596189 0.497795 1827 1 0.126272 0.0226259 0.424922 1290 1 0.139119 0.0225616 0.353219 1868 1 0.461507 0.875403 0.0456829 604 1 0.311028 0.142538 0.486167 700 1 0.0516796 0.100697 0.378399 1745 1 0.083648 0.152546 0.297683 820 1 0.104464 0.154379 0.363447 1935 1 0.404016 0.673321 0.497112 627 1 0.0889709 0.122427 0.450871 1721 1 0.24151 0.124222 0.331183 655 1 0.290997 0.0555414 0.359757 1947 1 0.281085 0.118303 0.390833 1090 1 0.147537 0.607474 0.0443984 1952 1 0.245839 0.268451 0.437798 1285 1 0.353083 0.0338139 0.389395 583 1 0.178828 0.149436 0.376397 1813 1 0.0141431 0.285117 0.0405492 1618 1 0.423469 0.140407 0.320155 730 1 0.41881 0.0699972 0.267941 275 1 0.358172 0.115637 0.426322 557 1 0.340065 0.101599 0.332243 431 1 0.450052 0.96445 0.457728 95 1 0.393491 0.0977628 0.498911 1308 1 0.0600522 0.295303 0.490045 1963 1 0.15547 0.280764 0.395975 1440 1 0.103846 0.548181 0.459239 1116 1 0.105347 0.22381 0.298049 40 1 0.108507 0.241701 0.452794 1297 1 0.1312 0.177581 0.431332 650 1 0.298875 0.589237 0.107551 775 1 0.00104041 0.687027 0.490531 372 1 0.185311 0.287282 0.316868 28 1 0.168887 0.221672 0.337655 1714 1 0.462985 0.939345 0.120867 520 1 0.111067 0.520879 0.00220536 1446 1 0.371153 0.269543 0.426384 1031 1 0.243672 0.200756 0.356863 15 1 0.447362 0.896409 0.484672 436 1 0.327255 0.33223 0.396132 574 1 0.424488 0.454628 0.42575 1835 1 0.430224 0.323777 0.41521 759 1 0.471464 0.242673 0.39558 931 1 0.250666 0.235194 0.287485 659 1 0.359139 0.192311 0.316029 1431 1 0.231336 0.0658019 0.412045 1806 1 0.122195 0.348194 0.470685 65 1 0.173349 0.469172 0.0157279 355 1 0.0749504 0.405072 0.447611 1832 1 0.0254639 0.750262 0.165262 54 1 0.178829 0.389772 0.189895 736 1 0.128583 0.378105 0.329141 1101 1 0.0885554 0.448163 0.3602 362 1 0.134221 0.956268 0.49018 1841 1 0.123335 0.373244 0.396999 1505 1 0.353344 0.266758 0.348012 1100 1 0.225363 0.362841 0.452397 217 1 0.016221 0.381166 0.243564 904 1 0.00511055 0.815427 0.345264 838 1 0.0627194 0.355863 0.365529 1001 1 0.0322636 0.113256 0.127858 1361 1 0.33287 0.439004 0.383384 216 1 0.368143 0.384978 0.435699 1679 1 0.273144 0.410283 0.492311 1948 1 0.407726 0.27798 0.0021874 255 1 0.0134614 0.868112 0.49063 4 1 0.410383 0.403516 0.282654 1419 1 0.118138 0.257301 0.00729662 1688 1 0.461865 0.510344 0.261998 753 1 0.480085 0.0118728 0.405836 1657 1 0.195462 0.210821 0.418839 1287 1 0.0263044 0.655621 0.310871 766 1 0.0489084 0.339393 0.0813783 845 1 0.0865658 0.598615 0.33017 143 1 0.0458714 0.527319 0.377897 1531 1 0.100724 0.474697 0.455698 929 1 0.272076 0.610742 0.362205 342 1 0.224096 0.527131 0.377091 802 1 0.177726 0.507478 0.437163 1310 1 0.266633 0.610117 0.282684 1594 1 0.330331 0.367906 0.334387 1017 1 0.2711 0.446664 0.426292 305 1 0.271253 0.373927 0.387492 433 1 0.488483 0.53072 0.0479932 1309 1 0.162045 0.0986956 0.446668 468 1 0.361057 0.53196 0.418337 805 1 0.0408654 0.918252 0.0540287 1255 1 0.417479 0.575946 0.454536 1903 1 0.354902 0.465694 0.462919 325 1 0.376711 0.528512 0.303694 430 1 0.473082 0.732072 0.355079 1028 1 0.481493 0.0804316 0.374043 1203 1 0.137391 0.658987 0.223337 789 1 0.0292921 0.71 0.377006 335 1 0.0325517 0.605758 0.400729 1143 1 0.336264 0.0879007 0.00226226 935 1 0.0526789 0.740118 0.303207 957 1 0.0773359 0.703428 0.457273 313 1 0.16255 0.602734 0.403152 977 1 0.028823 0.635161 0.0125259 1236 1 0.350049 0.576905 0.354664 712 1 0.324138 0.741947 0.258241 1330 1 0.260218 0.755776 0.430959 681 1 0.184467 0.650923 0.313929 1601 1 0.177283 0.741389 0.419479 702 1 0.200871 0.680202 0.391092 508 1 0.311117 0.739682 0.372914 1114 1 0.36286 0.705079 0.426753 1756 1 0.350911 0.619786 0.445609 1393 1 0.338465 0.653499 0.377612 791 1 0.466627 0.620871 0.377423 1715 1 0.405601 0.718645 0.37242 2011 1 0.484328 0.782177 0.185464 489 1 0.444142 0.719898 0.4381 1033 1 0.0281741 0.940163 0.27692 543 1 0.112204 0.728992 0.375062 110 1 0.0868614 0.862715 0.417482 1395 1 0.067843 0.788667 0.473825 181 1 0.150701 0.903532 0.432849 1521 1 0.491567 0.106483 0.288504 2028 1 0.164334 0.76546 0.328433 919 1 0.460051 0.012582 0.336795 243 1 0.0652428 0.775973 0.409043 224 1 0.322105 0.904488 0.0175257 239 1 0.0841322 0.657781 0.378436 1391 1 0.0860221 0.801942 0.338185 1703 1 0.207544 0.808647 0.430789 1443 1 0.451889 0.348204 0.193855 1321 1 0.226926 0.0196864 0.478939 380 1 0.165415 0.833896 0.372247 1044 1 0.00336234 0.462896 0.327407 126 1 0.281575 0.837507 0.444873 1896 1 0.393055 0.838601 0.389467 90 1 0.05844 0.0559116 0.433632 611 1 0.110573 0.0511445 0.00930101 1930 1 0.318955 0.817964 0.373009 497 1 0.376667 0.82316 0.317589 1235 1 0.467055 0.528362 0.131685 1055 1 0.443529 0.7878 0.390057 1517 1 0.0448693 0.497302 0.499286 117 1 0.147858 0.958323 0.387289 1416 1 0.20976 0.948369 0.455624 58 1 0.00514178 0.968392 0.34249 448 1 0.48006 0.152968 0.38164 376 1 0.0146178 0.544914 0.435955 1463 1 0.0771431 0.989677 0.383702 1665 1 0.213272 0.911066 0.33852 1614 1 0.0792928 0.938073 0.332106 304 1 0.278491 0.881577 0.384099 2009 1 0.201221 0.999414 0.297067 1944 1 0.297713 0.968939 0.244439 1979 1 0.425501 0.11568 0.410394 1663 1 0.232754 -0.000394719 0.37927 869 1 0.340784 0.861609 0.427989 1037 1 0.0646118 0.623152 0.476947 233 1 0.42434 0.907492 0.41095 242 1 0.351686 0.970066 0.476978 46 1 0.340475 0.952163 0.376473 1353 1 0.468843 0.60253 0.146325 1794 1 0.0402093 0.935966 0.417051 1991 1 0.3069 0.797297 0.0283287 912 1 0.493699 0.318651 0.116809 1198 1 0.224186 0.139943 0.45792 2013 1 0.0884616 0.969026 0.128729 727 1 0.146861 0.609987 0.481613 722 1 0.0370234 0.182379 0.0124987 1548 1 0.494411 0.286665 0.19264 12 1 0.146207 0.720129 0.480599 515 1 0.00101851 0.138638 0.472105 509 1 0.232898 0.206259 0.484237 1786 1 0.000852815 0.00507774 0.402765 1480 1 0.38115 0.755308 0.485879 1341 1 0.484753 0.49736 0.463241 351 1 0.0179296 0.955009 0.120167 1389 1 0.0793425 0.000357977 0.499293 1587 1 0.00695859 0.155114 0.39981 1010 1 0.00568505 0.0181926 0.480703 130 1 0.480496 0.405007 0.175293 1497 1 0.161177 0.1553 0.496648 121 1 0.219824 0.803055 0.0118939 1959 1 0.127824 0.187657 0.00131914 1488 1 0.324933 0.299305 0.00456966 941 1 0.306949 0.632706 -0.0018836 573 1 0.134894 0.0089005 0.560542 1145 1 0.16607 0.109391 0.582571 161 1 0.105167 0.0848857 0.521968 863 1 0.403596 0.950022 0.856108 201 1 0.0221128 0.265854 0.69201 872 1 0.117593 0.142174 0.684392 1583 1 0.191948 0.0248687 0.611599 840 1 0.0824378 0.994927 0.617334 1626 1 0.445028 0.595475 0.544084 1156 1 0.210242 0.104255 0.515104 1882 1 0.460185 0.376177 0.862688 115 1 0.231458 0.457217 0.535354 564 1 0.0340691 0.656274 0.664785 1843 1 0.226719 0.0924276 0.611971 1844 1 0.257814 0.155176 0.527621 146 1 0.287983 0.0503006 0.580887 1373 1 0.282363 0.0432722 0.649603 331 1 0.490505 0.0334389 0.58649 1675 1 0.382059 0.960718 0.668176 707 1 0.332518 0.0966365 0.634551 1113 1 0.377633 0.899777 0.70738 1855 1 0.401843 0.079959 0.574284 1652 1 0.478267 0.212696 0.659899 512 1 0.476083 0.0793353 0.714954 373 1 0.0625567 0.103007 0.639269 339 1 0.388354 0.143914 0.992333 1993 1 0.173223 0.227091 0.526414 2030 1 0.0703815 0.0478873 0.686097 1052 1 0.12126 0.172447 0.597224 1639 1 0.201168 0.29366 0.569621 1250 1 0.124604 0.268555 0.598651 525 1 0.0162282 0.0037413 0.55142 1210 1 0.218269 0.27297 0.635463 1032 1 0.0130824 0.39494 0.761133 1838 1 0.173366 0.219441 0.63118 444 1 0.255448 0.22552 0.562719 142 1 0.336256 0.29084 0.632238 1814 1 0.395312 0.217039 0.597288 84 1 0.327323 0.216095 0.618066 1586 1 0.295345 0.180323 0.678149 908 1 0.476029 0.837887 0.662956 1312 1 0.442603 0.284048 0.73225 1242 1 0.418511 0.298401 0.58959 843 1 0.47795 0.347498 0.604622 175 1 0.384186 0.157821 0.538036 534 1 0.360648 0.162271 0.666955 366 1 0.448374 0.125393 0.536653 191 1 0.450073 0.199764 0.543308 1904 1 0.357113 0.240518 0.687116 1951 1 0.281229 0.0752945 0.511133 1277 1 0.126062 0.310525 0.532391 1216 1 0.00559104 0.426649 0.526566 813 1 0.111438 0.368483 0.580097 345 1 0.109766 0.424114 0.640199 10 1 0.0657443 0.307155 0.579215 1737 1 0.0725302 0.282502 0.73653 185 1 0.0750452 0.561851 0.887564 1178 1 0.0119703 0.847522 0.899566 1056 1 0.186688 0.343486 0.698186 972 1 0.392561 0.351197 0.987966 457 1 0.241512 0.308117 0.741386 1914 1 0.173356 0.39149 0.530361 329 1 0.174282 0.436675 0.586208 384 1 0.240188 0.349648 0.537545 784 1 0.256485 0.32561 0.665121 696 1 0.258759 0.40214 0.59626 683 1 0.17944 0.369351 0.605606 1274 1 0.0224418 0.285379 0.843627 114 1 0.36756 0.35264 0.578042 992 1 0.382182 0.480031 0.633756 1568 1 0.276127 0.517806 0.565181 139 1 0.459801 0.438144 0.586226 1130 1 0.115051 0.340212 0.658341 1240 1 0.0436686 0.570394 0.641579 1978 1 0.0135796 0.568375 0.965195 1065 1 0.0393035 0.549738 0.736094 499 1 0.0559012 0.476068 0.598704 1940 1 0.034149 0.361176 0.936158 1109 1 0.0726951 0.0585557 0.579751 1110 1 0.096885 0.588525 0.526968 51 1 0.482619 0.062366 0.839054 640 1 0.0371764 0.44297 0.670507 1662 1 0.00834321 0.422114 0.891934 441 1 0.458232 0.713705 0.519516 1518 1 0.157187 0.43388 0.718948 1677 1 0.22266 0.508343 0.610112 1898 1 0.325661 0.459092 0.562487 569 1 0.209332 0.4012 0.666071 111 1 0.180136 0.496297 0.505344 1574 1 0.426293 0.894972 0.660061 1387 1 0.0273104 0.620232 0.756227 361 1 0.37804 0.532305 0.566633 514 1 0.47326 0.51333 0.577358 1237 1 0.447237 0.492518 0.661973 1472 1 0.388957 0.423594 0.577192 1325 1 0.273933 0.282223 0.507892 1589 1 0.332288 0.112508 0.561541 617 1 0.0956559 0.621217 0.639386 1529 1 0.0502032 0.360446 0.697556 917 1 0.0990268 0.582771 0.701939 1267 1 0.110851 0.413734 0.986975 860 1 0.0708845 0.220171 0.956022 1900 1 0.474857 0.30855 0.82204 900 1 0.179251 0.604515 0.622502 668 1 0.259007 0.607082 0.595062 1757 1 0.27168 0.821947 0.583045 1504 1 0.336275 0.6625 0.57333 1728 1 0.233126 0.665051 0.581469 149 1 0.0225556 0.495082 0.8809 144 1 0.178806 0.718609 0.537489 1765 1 0.324533 0.525905 0.634444 1215 1 0.29434 0.978134 0.919914 1464 1 0.365298 0.588281 0.668712 1260 1 0.284974 0.999907 0.504904 1181 1 0.421806 0.897148 0.929849 1511 1 0.351962 0.555244 0.723417 519 1 0.447741 0.387675 0.549021 709 1 0.451563 0.350914 0.749934 1552 1 0.369881 0.607305 0.528191 605 1 0.421354 0.992133 0.971725 1447 1 0.0811391 0.238054 0.523334 758 1 0.0820748 0.73987 0.626731 1916 1 0.0484605 0.669097 0.586285 1950 1 0.10986 0.718043 0.548835 544 1 0.496314 0.25288 0.78856 834 1 0.0944433 0.78552 0.555833 854 1 0.0514924 0.375223 0.504185 1875 1 0.165402 0.790322 0.528175 1259 1 0.158 0.745019 0.60187 228 1 0.239617 0.757196 0.512326 2007 1 0.11875 0.692718 0.67714 3 1 0.230864 0.73975 0.610163 797 1 0.292296 0.707001 0.626536 748 1 0.26333 0.913116 0.597443 1442 1 0.283224 0.692818 0.529004 1520 1 0.461276 0.916321 0.879024 612 1 0.422118 0.656283 0.575064 1687 1 0.0877832 0.616064 0.839112 1564 1 0.314447 0.862137 0.523911 1629 1 0.475705 0.131859 0.929639 1228 1 0.365236 0.817027 0.547106 635 1 0.383102 0.722197 0.55707 1469 1 0.448159 0.716338 0.592737 293 1 0.435179 0.790667 0.553547 607 1 0.184194 0.94366 0.82674 386 1 0.0291018 0.828644 0.553886 1262 1 0.286267 0.904085 0.926109 1375 1 0.0172612 0.958663 0.605968 322 1 0.134407 0.902486 0.590198 710 1 0.488797 0.517955 0.724674 1041 1 0.104132 0.923535 0.659677 209 1 0.450649 0.168045 0.845151 1793 1 0.239033 0.0148604 0.971099 1747 1 0.252908 0.988575 0.580247 1045 1 0.173436 0.811516 0.667134 1339 1 0.246497 0.928647 0.518888 1080 1 0.296461 0.793045 0.517788 213 1 0.221515 0.0455195 0.550626 1483 1 0.326187 0.947508 0.553957 588 1 0.307636 0.964176 0.633396 1655 1 0.0624602 0.928313 0.551133 1103 1 0.249699 0.978838 0.668016 1743 1 0.498332 0.140201 0.677097 1578 1 0.46958 0.289859 0.662636 397 1 0.396705 0.883603 0.558244 1508 1 0.383899 0.950398 0.589135 1137 1 0.343753 0.794378 0.668654 945 1 0.421973 0.021179 0.602602 1887 1 0.0206426 0.124538 0.58046 1127 1 0.0532541 0.0655504 0.862622 1470 1 0.046056 0.1149 0.734752 449 1 0.0412015 0.197397 0.717328 1661 1 0.141528 0.988068 0.656398 52 1 0.221268 0.160244 0.657097 1027 1 0.058445 0.0440336 0.780357 132 1 0.227949 0.104054 0.732792 672 1 0.131162 0.101053 0.742198 464 1 0.208813 0.167776 0.583145 198 1 0.122715 0.0602165 0.630202 903 1 0.331477 0.980437 0.832628 1740 1 0.335567 0.0566208 0.70203 743 1 0.21595 0.20738 0.856298 888 1 0.257243 0.0966712 0.798989 1025 1 0.421977 0.117239 0.801374 502 1 0.280441 0.101517 0.691162 1571 1 0.401905 0.803927 0.9528 231 1 0.346928 0.0114972 0.604775 1459 1 0.431311 0.0144729 0.719384 298 1 0.428671 0.997475 0.79856 738 1 0.0109694 0.478774 0.954045 1972 1 0.362358 0.213762 0.96868 571 1 0.419865 0.0880845 0.673719 1095 1 0.450022 0.145338 0.724257 1256 1 0.381047 0.0528845 0.775786 946 1 0.16906 0.145032 0.797143 906 1 0.14502 0.220514 0.842955 8 1 0.0889684 0.439501 0.537041 1194 1 0.0886096 0.12828 0.78879 1323 1 0.141213 0.940698 0.895572 669 1 0.0984773 0.240496 0.680316 1965 1 0.17447 0.160123 0.722611 1083 1 0.157424 0.280509 0.6926 1939 1 0.214195 0.224173 0.701465 989 1 0.256433 0.174356 0.7413 582 1 0.213853 0.233057 0.786747 2033 1 0.28421 0.267896 0.698976 1374 1 0.282435 0.155489 0.599293 1553 1 0.334229 0.136336 0.901018 1949 1 0.301087 0.237661 0.768395 425 1 0.441186 0.201401 0.769903 1624 1 0.0119858 0.984882 0.759957 1182 1 0.443897 0.146381 0.622079 1859 1 0.407046 0.133428 0.891518 1569 1 0.421873 0.211243 0.697974 1549 1 0.392541 0.246698 0.813862 1305 1 0.37003 0.303908 0.757989 312 1 0.0646594 0.23197 0.591409 1066 1 0.488752 0.64342 0.503176 1962 1 0.0930805 0.298978 0.892061 432 1 0.0385307 0.378528 0.628778 703 1 0.125714 0.337848 0.834753 1131 1 0.107814 0.271767 0.800236 1184 1 0.106899 0.355543 0.760907 1541 1 0.351595 0.0443236 0.509018 1863 1 0.0447407 0.338281 0.795208 1356 1 0.236632 0.268591 0.885547 1244 1 0.229875 0.456742 0.759064 480 1 0.25529 0.29251 0.813413 1918 1 0.173131 0.381817 0.785895 256 1 0.387541 0.310256 0.688421 1826 1 0.307881 0.34135 0.716138 1060 1 0.172151 0.306931 0.769841 116 1 0.35538 0.166756 0.818736 1479 1 0.00185292 0.767316 0.920853 1908 1 0.444395 0.401242 0.683702 975 1 0.401031 0.360114 0.636562 741 1 0.440725 0.447209 0.735924 317 1 0.388807 0.378034 0.725592 959 1 0.431693 0.30536 0.915668 445 1 0.266911 0.329797 0.875053 2020 1 0.20226 0.554022 0.556074 1396 1 0.405691 0.31998 0.840665 1913 1 0.0822874 0.869412 0.89189 44 1 0.145209 0.484947 0.631781 566 1 0.0836773 0.431286 0.732467 1711 1 0.265821 0.630442 0.778806 546 1 0.116217 0.404248 0.815895 222 1 0.0173396 0.635406 0.84551 769 1 0.0382843 0.558164 0.807433 1219 1 0.158668 0.476398 0.772932 1263 1 0.043821 0.142684 0.935863 987 1 0.46635 0.434106 0.901579 746 1 0.148855 0.529654 0.718215 1872 1 0.250276 0.370579 0.806176 1378 1 0.0894812 0.495518 0.680843 1138 1 0.311403 0.430697 0.793916 1150 1 0.215461 0.547995 0.769035 504 1 0.292273 0.502846 0.754726 169 1 0.333056 0.593711 0.929206 427 1 0.402794 0.414289 0.812683 200 1 0.322656 0.410519 0.702139 930 1 0.312437 0.373865 0.636197 1739 1 0.459782 0.583055 0.678812 751 1 0.126266 0.653836 0.974456 817 1 0.298968 0.493998 0.827548 32 1 0.432189 0.509393 0.879002 1124 1 0.0225088 0.755287 0.518716 593 1 0.0920712 0.670018 0.782959 1369 1 0.185441 0.663688 0.688869 1223 1 0.11733 0.645533 0.722024 516 1 0.175465 0.645038 0.774373 454 1 0.0669979 0.750947 0.885996 1275 1 0.253389 0.476956 0.687364 799 1 0.141578 0.680726 0.610632 1795 1 0.201035 0.595551 0.721991 814 1 0.25436 0.672989 0.711923 835 1 0.23852 0.559079 0.667592 1288 1 0.309351 0.631462 0.664717 1575 1 0.216757 0.592578 0.870881 1850 1 0.158512 0.595261 0.821783 1911 1 0.322488 0.712551 0.69093 1560 1 0.237883 0.726622 0.840816 692 1 0.472074 0.68238 0.66643 1148 1 0.460731 0.632321 0.782014 1195 1 0.254255 0.945341 0.978903 1660 1 0.47182 0.681027 0.884228 1752 1 0.277119 0.592533 0.714793 1039 1 0.484994 0.533863 0.928687 1229 1 0.412875 0.566476 0.776349 327 1 0.425169 0.677464 0.817122 1919 1 0.038848 0.776082 0.679074 150 1 0.226524 0.72862 0.686592 1969 1 0.0521996 0.922409 0.773907 674 1 0.0585728 0.802791 0.747506 34 1 0.115336 0.725124 0.745567 1938 1 0.432409 0.525864 0.501987 781 1 0.134593 0.847404 0.727828 414 1 0.119881 0.828631 0.817443 341 1 0.121153 0.768629 0.68324 394 1 0.263564 0.828079 0.7063 1335 1 0.192936 0.762635 0.751648 1770 1 0.344408 0.595665 0.603085 1818 1 0.323263 0.761332 0.586411 250 1 0.223665 0.826471 0.909274 387 1 0.399037 0.827869 0.610093 724 1 0.290443 0.769556 0.724864 1466 1 0.298049 0.876882 0.767516 188 1 0.40218 0.725359 0.755587 1270 1 0.260931 0.942345 0.845825 31 1 0.424037 0.559081 0.615287 284 1 0.468336 0.75393 0.707374 1856 1 0.43035 0.778102 0.651376 72 1 0.482013 0.844181 0.864851 1954 1 0.383574 0.658647 0.635809 1797 1 0.48906 0.694394 0.745417 1510 1 0.482068 0.734008 0.820743 1680 1 0.091537 0.122483 0.990789 68 1 0.340044 0.777404 0.903817 7 1 0.0739206 0.976477 0.812332 754 1 0.0572822 0.890518 0.708992 916 1 0.442052 0.529318 0.990759 762 1 0.0865504 0.983859 0.71468 279 1 0.128577 0.0254425 0.868839 2006 1 0.142873 0.993579 0.795807 965 1 0.218614 0.891677 0.702147 601 1 0.187035 0.868146 0.794532 1606 1 0.0485838 0.877102 0.609543 1749 1 0.27895 0.772481 0.645495 589 1 0.264111 0.863313 0.831444 1866 1 0.195138 0.95374 0.733841 1732 1 0.131526 0.928074 0.755731 1699 1 0.291231 0.928662 0.701584 876 1 0.077516 0.822102 0.654701 1590 1 0.354716 0.793334 0.743023 1970 1 0.349602 0.898774 0.62875 292 1 0.47 0.930507 0.813363 718 1 0.350421 0.91788 0.776148 1295 1 0.430839 0.94559 0.744062 167 1 0.414897 0.87798 0.769931 1604 1 0.350257 0.981783 0.742349 1081 1 0.334078 0.826378 0.808221 1996 1 0.322077 0.905863 0.848239 324 1 0.0998495 0.559353 0.774087 850 1 0.377198 0.724078 0.629671 330 1 0.117025 0.169368 0.924071 1362 1 0.135955 0.0866231 0.910786 1093 1 0.0902266 0.864522 0.517625 1303 1 0.110147 0.217224 0.746422 505 1 0.148143 0.0834991 0.826703 1763 1 0.481333 0.363815 0.936994 1108 1 0.0273244 4.89503e-05 0.900455 1902 1 0.220512 0.0286767 0.769928 1350 1 0.418428 0.438197 0.507012 27 1 0.00352152 0.189889 0.622906 393 1 0.198417 0.0619229 0.691152 91 1 0.0187193 0.170804 0.786216 1123 1 0.222159 0.119862 0.869606 83 1 0.355045 0.131589 0.745776 1226 1 0.202903 0.0568832 0.913007 596 1 0.0321865 0.646561 0.918303 603 1 0.270654 0.0138739 0.853939 1067 1 0.46075 0.308042 0.519077 1774 1 0.338661 0.00705315 0.982428 158 1 0.0100853 0.342791 0.559002 398 1 0.40268 0.0486161 0.84615 889 1 0.473733 0.00272913 0.888392 244 1 0.440502 0.0575033 0.938558 1338 1 0.278428 0.0770884 0.900016 809 1 0.387043 0.00269398 0.903999 961 1 0.20714 0.0335447 0.84076 1208 1 0.153697 0.589564 0.904377 699 1 0.0868788 0.160036 0.527971 1540 1 0.0943037 0.147874 0.857056 460 1 0.196719 0.900328 0.957873 964 1 0.179922 0.194051 0.920128 823 1 0.0796814 0.290858 0.95872 1716 1 0.13793 0.740601 0.999063 1220 1 0.081322 0.989568 0.940053 511 1 0.166043 0.96441 0.979982 1201 1 0.0530798 0.196928 0.873328 881 1 0.308414 0.210714 0.910331 947 1 0.309478 0.250836 0.843906 1852 1 0.0239391 0.059129 0.969101 1227 1 0.272859 0.166327 0.847777 1023 1 0.484748 0.630885 0.611782 33 1 0.174441 0.799079 0.956218 666 1 0.260573 0.946448 0.773965 679 1 0.385037 0.227946 0.883067 194 1 0.290652 0.23002 0.979101 195 1 0.45033 0.246338 0.857229 1126 1 0.105066 0.545322 0.603314 1192 1 0.463368 0.228477 0.926891 891 1 0.479865 0.297936 0.972818 870 1 0.34738 0.404389 0.506888 137 1 0.171951 0.299219 0.880767 1810 1 0.276144 0.0920075 0.973176 661 1 0.477991 0.959838 0.525763 456 1 0.0576468 0.379888 0.862342 153 1 0.0884414 0.464294 0.861323 828 1 0.180242 0.355348 0.982154 1336 1 0.1373 0.253603 0.925946 1367 1 0.222539 0.392698 0.881756 1380 1 0.250417 0.34685 0.953825 1243 1 0.17454 0.87531 0.53048 1475 1 0.255651 0.151814 0.92768 1014 1 0.316477 0.332083 0.79681 221 1 0.323236 0.361397 0.95687 839 1 0.190042 0.278531 0.965083 570 1 0.363908 0.0820627 0.93658 218 1 0.395927 0.388547 0.902284 894 1 0.296004 0.295975 0.932115 382 1 0.150353 0.0165243 0.719225 1453 1 0.0743097 0.944697 0.873737 1099 1 0.0855641 0.591239 0.985335 422 1 0.176285 0.131869 0.979553 1961 1 0.0622254 0.428873 0.93571 133 1 0.493302 0.964936 0.695223 1012 1 0.217245 0.514556 0.845401 1394 1 0.0668785 0.493403 0.765955 1089 1 0.40995 0.966711 0.522905 265 1 0.0446524 0.437205 0.805088 1306 1 0.232973 0.834003 0.51662 539 1 0.0816222 0.505479 0.938799 531 1 0.264341 0.562118 0.939888 43 1 0.163839 0.451631 0.856222 1125 1 0.0949857 0.916481 0.938354 214 1 0.382584 0.851209 0.854141 1204 1 0.350928 0.434949 0.941961 619 1 0.277776 0.561306 0.849576 1042 1 0.180186 0.428542 0.939957 1870 1 0.239476 0.481641 0.917156 760 1 0.310969 0.404149 0.862835 478 1 0.271316 0.416234 0.938077 1343 1 0.431146 0.8166 0.726185 1351 1 0.355466 0.520947 0.962148 1945 1 0.454121 0.59083 0.840704 429 1 0.367001 0.483916 0.850858 779 1 0.318388 0.505576 0.903097 1674 1 0.438397 0.502074 0.799509 723 1 0.372854 0.554182 0.850628 347 1 0.427765 0.588307 0.917996 276 1 0.361621 0.932604 0.938671 1034 1 0.175191 0.663642 0.857174 507 1 0.149169 0.798128 0.881004 1386 1 0.150499 0.0132099 0.932053 311 1 0.21082 0.618768 0.941357 506 1 0.140948 0.528058 0.860234 624 1 0.0970886 0.69769 0.842728 1397 1 0.305854 0.467704 0.994105 122 1 0.261967 0.653531 0.853819 1751 1 0.293348 0.651707 0.93068 11 1 0.324284 0.568047 0.791845 1975 1 0.331969 0.697151 0.78882 1071 1 0.231702 0.183657 0.988908 1347 1 0.156118 0.533555 0.945814 933 1 0.00292613 0.0901342 0.801229 1730 1 0.213251 0.811343 0.834701 990 1 0.345309 0.698264 0.876397 1280 1 0.104893 0.364269 0.930077 1957 1 0.343879 0.855515 0.921803 1664 1 0.480532 0.659608 0.977355 830 1 0.339778 0.24935 0.558013 638 1 0.382149 0.631608 0.858149 1445 1 0.409872 0.659839 0.993571 1209 1 0.362762 0.850523 0.991983 647 1 0.401658 0.735097 0.944659 942 1 0.418331 0.456127 0.958802 70 1 0.00127611 0.0480131 0.659315 1474 1 0.0940743 0.67563 0.918396 219 1 0.162068 0.732752 0.822775 1831 1 0.468677 0.0511005 0.652282 1676 1 0.118761 0.910091 0.826393 675 1 0.0538817 0.805277 0.843953 1008 1 0.147345 0.870429 0.912045 1365 1 0.14308 0.71967 0.893057 561 1 0.483167 0.797432 0.98827 2047 1 0.0209879 0.987276 0.98051 1153 1 0.279378 0.800342 0.86667 2004 1 0.250792 0.693262 0.969033 303 1 0.102155 0.786703 0.950008 1755 1 0.220837 0.71935 0.910175 166 1 0.277817 0.797151 0.95199 950 1 0.00732535 0.289474 0.615408 165 1 0.020672 0.934921 0.925325 701 1 0.161017 0.634779 0.55395 969 1 0.359216 0.75653 0.807935 1434 1 0.423983 0.654322 0.714596 446 1 0.203201 0.891659 0.875154 1689 1 0.218528 0.961164 0.906743 119 1 0.447794 0.801634 0.804676 136 1 0.41081 0.791913 0.880389 725 1 0.47813 0.880958 0.550788 1072 1 0.281143 0.292052 0.580448 829 1 0.494397 0.582658 0.748774 523 1 0.0279319 0.0790824 0.51976 421 1 0.455599 0.0306483 0.514776 562 1 0.0338663 0.760407 0.987716 1966 1 0.0253152 0.544554 0.57126 1258 1 0.474852 0.419941 0.983764 1573 1 0.00488556 0.740531 0.62483 999 1 0.476343 0.958165 0.603453 1252 1 0.231561 0.514315 0.991878 1532 1 0.388331 0.5865 0.988966 334 1 0.483559 0.78183 0.912325 551 1 0.47494 0.936746 0.992037 479 1 0.0237903 0.266018 0.921912 1792 1 0.135094 0.868554 0.993489 1907 1 0.330634 0.330117 0.518504 264 1 0.00756798 0.214536 0.53382 1697 1 0.00258787 0.429883 0.598327 498 1 0.411479 0.0760592 0.997771 1726 1 0.248934 0.866667 0.994222 56 1 0.387806 0.245609 0.502007 1825 1 0.226668 0.417514 0.994108 340 1 0.682326 0.74564 0.0586216 1139 1 0.594403 0.982338 0.038838 1649 1 0.641239 0.115147 0.0722476 1364 1 0.710462 0.00878996 0.147516 471 1 0.521987 0.0879638 0.0301279 118 1 0.74815 0.566248 0.085912 290 1 0.984522 0.0354067 0.296112 810 1 0.997558 0.609772 0.479076 2032 1 0.702749 0.0713283 0.0963703 785 1 0.774631 0.980079 0.164739 235 1 0.868282 0.978463 0.165478 212 1 0.954531 0.179685 0.0422658 439 1 0.637237 0.0544936 0.144182 1348 1 0.655876 0.00141903 0.0783334 1925 1 0.908299 0.0883887 0.043643 1485 1 0.840405 0.112634 0.0972968 1566 1 0.538092 0.340129 0.187635 99 1 0.784942 0.154471 0.0543351 1853 1 0.954011 0.317319 0.0736562 882 1 0.98778 0.0988658 0.0451183 1750 1 0.98498 0.477037 0.424783 125 1 0.978171 0.040493 0.132374 1000 1 0.932695 0.729253 0.468615 1435 1 0.826307 0.982603 0.0875245 1016 1 0.804803 0.0569065 0.16037 1302 1 0.611673 0.126091 0.145574 1328 1 0.532825 0.131958 0.086664 75 1 0.683127 0.253363 0.154597 1282 1 0.575831 0.184548 0.121639 237 1 0.667196 0.863943 0.0109084 1923 1 0.694783 0.197274 0.0726649 1823 1 0.586501 0.0467832 0.414843 1690 1 0.884263 0.944164 0.0282134 1086 1 0.766629 0.0964487 0.115805 1576 1 0.727672 0.0482489 0.00974281 735 1 0.685511 0.265664 0.0736713 1370 1 0.760404 0.167067 0.120784 1910 1 0.731447 0.230201 0.12234 1291 1 0.572069 0.348407 0.120992 1068 1 0.821056 0.290829 0.0139513 922 1 0.899453 0.688209 0.0821724 1976 1 0.897016 0.0753125 0.132158 192 1 0.882665 0.307877 0.244079 1327 1 0.87361 0.169176 0.0679967 1022 1 0.904566 0.166647 0.144192 1035 1 0.952615 0.218093 0.158007 565 1 0.920903 0.229995 0.077192 392 1 0.888912 0.332156 0.180493 807 1 0.670359 0.352563 0.0534775 291 1 0.572873 0.415176 0.0424826 878 1 0.643807 0.461611 0.247384 241 1 0.567464 0.965582 0.314202 465 1 0.53994 0.231411 0.163405 1669 1 0.52897 0.576488 0.36556 1543 1 0.615734 0.272658 0.0450359 210 1 0.63439 0.237155 0.443088 600 1 0.730059 0.315032 0.105806 861 1 0.595355 0.340217 0.057609 1824 1 0.830537 0.317045 0.123597 648 1 0.524236 0.367907 0.00697098 1142 1 0.82732 0.448635 0.0612608 632 1 0.770404 0.278428 0.160673 1761 1 0.715531 0.390705 0.111761 729 1 0.963771 0.0353024 0.014337 1733 1 0.690558 0.537187 0.0262612 1877 1 0.773239 0.364045 0.0545135 1524 1 0.857349 0.405378 0.12245 1248 1 0.83043 0.329127 0.283954 2040 1 0.93979 0.350754 0.128969 1644 1 0.718762 0.113231 0.0423735 513 1 0.850557 0.658135 0.0266162 978 1 0.881895 0.299765 0.0713397 1580 1 0.630791 0.515671 0.0485753 772 1 0.797754 0.440227 0.155868 1723 1 0.970028 0.388789 0.0560693 145 1 0.985231 0.313171 0.490157 225 1 0.543986 0.570555 0.185679 1112 1 0.745066 0.500146 0.00579013 154 1 0.807002 0.239936 0.107485 1247 1 0.625439 0.497321 0.168719 2037 1 0.701943 0.467416 0.0996669 1611 1 0.551331 0.502864 0.223575 1986 1 0.626695 0.398286 0.0963942 1738 1 0.560717 0.491903 0.0651688 251 1 0.95893 0.651023 0.0446542 778 1 0.554215 0.426783 0.123309 1696 1 0.622861 0.423092 0.171133 1441 1 0.575827 0.167644 0.201607 613 1 0.850563 0.499047 0.113398 948 1 0.628342 0.46615 0.102372 897 1 0.763229 0.49601 0.0780003 128 1 0.769494 0.575514 0.210957 765 1 0.788202 0.498901 0.217878 1053 1 0.985789 0.0847825 0.414729 691 1 0.950953 0.52826 0.0803678 1533 1 0.904495 0.455568 0.0918857 761 1 0.795347 0.536675 0.284919 868 1 0.95034 0.439954 0.233641 1681 1 0.952253 0.498422 0.187388 375 1 0.941239 0.434176 0.159275 1744 1 0.872173 0.463314 0.177921 1315 1 0.995715 0.789071 0.432317 848 1 0.67045 0.645391 0.155195 591 1 0.536765 0.557568 0.106875 924 1 0.613125 0.551838 0.110225 993 1 0.946777 0.582667 0.425039 657 1 0.543974 0.628596 0.0714586 2038 1 0.512452 0.736365 0.0399855 1476 1 0.506623 0.915514 0.400308 199 1 0.583479 0.620105 0.142104 96 1 0.960885 0.94268 0.411335 667 1 0.730079 0.911622 0.00249097 368 1 0.802548 0.552282 0.128892 1854 1 0.737415 0.675055 0.115595 898 1 0.602601 0.672597 0.10481 134 1 0.732333 0.517257 0.153605 1539 1 0.734291 0.627519 0.0592689 1783 1 0.776215 0.0498246 0.0600073 1329 1 0.681093 0.571207 0.104945 1424 1 0.658338 0.66835 0.0610585 1006 1 0.945158 0.368947 0.48939 928 1 0.897269 0.613512 0.0791149 873 1 0.603789 0.0606637 0.484038 628 1 0.526816 0.70946 0.198053 1076 1 0.913395 0.693791 0.219602 1535 1 0.86112 0.0355351 0.0255271 1239 1 0.580239 0.707541 0.431088 63 1 0.820816 0.668303 0.0978028 998 1 0.538202 0.101349 0.427178 1968 1 0.620695 0.81094 0.12383 568 1 0.880023 0.505331 0.0449374 1804 1 0.949009 0.388021 0.319089 403 1 0.671882 0.869882 0.140345 734 1 0.59021 0.749578 0.153147 670 1 0.552289 0.214461 0.0446989 795 1 0.600915 0.82793 0.0598759 1523 1 0.601299 0.751351 0.0670226 1038 1 0.810102 0.0923385 0.428805 229 1 0.942217 0.100467 0.279071 1767 1 0.782624 0.683081 0.0443539 2002 1 0.752931 0.845809 0.0340247 1773 1 0.656183 0.737484 0.125031 739 1 0.674914 0.82298 0.0766476 608 1 0.753411 0.772395 0.0827946 69 1 0.525092 0.985348 0.0671102 1120 1 0.827033 0.83608 0.0509281 1449 1 0.815568 0.855588 0.475942 1556 1 0.838972 0.888981 0.126301 1140 1 0.535653 0.848654 0.359345 98 1 0.81994 0.803972 0.123318 1205 1 0.983021 0.274304 0.433211 450 1 0.976719 0.587424 0.341419 1246 1 0.870645 0.718164 0.142308 983 1 0.921708 0.756892 0.0242346 1704 1 0.942986 0.74235 0.168782 768 1 0.541129 0.917775 0.0531518 1136 1 0.535195 0.929267 0.132217 1481 1 0.501878 0.200356 0.316053 1812 1 0.746034 0.84916 0.118448 412 1 0.650006 0.94079 0.0219171 17 1 0.703695 0.909355 0.0663481 955 1 0.978294 0.810015 0.277134 1171 1 0.811494 0.603511 0.0580804 1934 1 0.755729 0.962141 0.0676218 559 1 0.928146 0.112233 0.466963 1133 1 0.597841 0.920299 0.102749 485 1 0.818024 0.918703 0.188185 1881 1 0.52515 0.812456 0.0501152 282 1 0.813045 0.910912 0.0626169 1717 1 0.986054 0.40396 0.395875 1404 1 0.563657 0.898924 0.308835 936 1 0.940846 0.88015 0.0163042 1865 1 0.953837 0.951181 0.0460492 631 1 0.512148 0.265571 0.324168 1094 1 0.964907 0.822295 0.195903 606 1 0.885543 0.936601 0.107019 1989 1 0.904017 0.836441 0.0553881 749 1 0.940268 0.968676 0.146061 1388 1 0.503497 0.947456 0.267845 793 1 0.75137 0.432614 0.0509985 1602 1 0.586944 0.99596 0.11405 884 1 0.650361 0.996718 0.210372 1915 1 0.646177 0.439074 0.0352638 2008 1 0.617837 0.174186 0.0316194 652 1 0.514673 0.0164095 0.277377 1283 1 0.747393 0.104682 0.388927 1354 1 0.565478 0.0965916 0.190698 1390 1 0.796838 0.974869 0.246298 1102 1 0.692333 0.151144 0.143183 1864 1 0.702533 0.107919 0.224095 102 1 0.634582 0.130229 0.28616 656 1 0.732181 0.0525691 0.204993 287 1 0.91238 0.0247893 0.255198 1004 1 0.808244 0.0952474 0.350743 1613 1 0.687301 0.0737666 0.301208 1196 1 0.707942 0.952113 0.230505 440 1 0.932378 0.977099 0.214095 1413 1 0.972291 0.0511849 0.216548 1926 1 0.856617 0.138599 0.247327 1077 1 0.845162 0.0355057 0.218337 475 1 0.863156 0.939621 0.24407 1018 1 0.932992 0.0394054 0.442575 518 1 0.937338 0.051457 0.36022 892 1 0.962837 0.95393 0.278662 1682 1 0.542028 0.915239 0.464828 851 1 0.643284 0.141841 0.207739 1245 1 1.0013 0.718813 0.0920475 1170 1 0.649741 0.324019 0.139141 260 1 0.654617 0.205758 0.286775 1406 1 0.568918 0.216701 0.324535 187 1 0.628201 0.0759613 0.235693 1318 1 0.695842 0.327361 0.237867 138 1 0.518513 0.227548 0.235083 1289 1 0.683162 0.0810207 0.412496 2042 1 0.739693 0.360129 0.188501 100 1 0.840497 0.266874 0.188151 2034 1 0.824069 0.254055 0.281811 1982 1 0.805681 0.186519 0.177124 538 1 0.726785 0.19502 0.189397 756 1 0.693696 0.243462 0.237364 980 1 0.79069 0.179426 0.25278 537 1 0.734756 0.265571 0.362868 1104 1 0.961648 0.115067 0.356882 907 1 0.817727 0.0848231 0.265477 1762 1 0.84621 0.125056 0.176631 2025 1 0.872303 0.195591 0.292293 1206 1 0.913468 0.208579 0.237071 1058 1 0.872241 0.00323329 0.467489 29 1 0.533925 0.34398 0.400893 55 1 0.622188 0.287453 0.219149 1009 1 0.607321 0.256155 0.282896 45 1 0.984329 0.710067 0.016564 1428 1 0.600256 0.892353 0.0230876 236 1 0.615929 0.177734 0.469739 5 1 0.596819 0.27715 0.150709 25 1 0.560365 0.416418 0.208345 1333 1 0.604867 0.352841 0.201055 2010 1 0.612608 0.454607 0.425428 1869 1 0.818566 0.377245 0.375154 1265 1 0.757028 0.437148 0.224132 1514 1 0.772949 0.273629 0.234479 630 1 0.697406 0.445822 0.176607 694 1 0.940214 0.172085 0.308383 622 1 0.877502 0.28647 0.349396 85 1 0.749436 0.237095 0.293222 270 1 0.751956 0.313884 0.28987 1928 1 0.816117 0.331949 0.195525 1070 1 0.945044 0.291492 0.370267 1829 1 0.878029 0.581191 0.00297087 1493 1 0.883389 0.356176 0.330916 1999 1 0.552294 0.503004 0.144371 1512 1 0.648742 0.427581 0.354433 1307 1 0.61505 0.544443 0.236254 1646 1 0.636572 0.575793 0.170849 1161 1 0.560188 0.322177 0.309733 405 1 0.519503 0.641448 0.31482 390 1 0.536344 0.547269 0.289223 1129 1 0.783887 0.368612 0.247405 1779 1 0.70335 0.524409 0.22136 532 1 0.691173 0.399485 0.224347 249 1 0.809175 0.636469 0.236681 307 1 0.848765 0.440618 0.263772 1955 1 0.845313 0.397017 0.207877 1313 1 0.836615 0.582726 0.398992 89 1 0.758976 0.546355 0.35776 592 1 0.910691 0.566963 0.355917 796 1 0.661212 0.524612 0.294395 721 1 0.676932 0.577134 0.415375 1207 1 0.954177 0.365462 0.196904 1500 1 0.820693 0.594285 0.33003 1943 1 0.973087 0.516148 0.358953 1920 1 0.842589 0.581137 0.184363 1491 1 0.796349 0.405199 0.315738 418 1 0.977775 0.328415 0.256582 157 1 0.899731 0.478549 0.295702 885 1 0.899901 0.623728 0.320145 952 1 0.832363 0.305214 0.398556 1658 1 0.534924 0.643611 0.236823 932 1 0.640858 0.761196 0.207043 1819 1 0.600266 0.615079 0.221918 168 1 0.666944 0.597503 0.246611 822 1 0.678565 0.648005 0.318543 1781 1 0.604751 0.697405 0.205613 1316 1 0.594424 0.582384 0.0473753 914 1 0.539914 0.687711 0.362432 1901 1 0.909355 0.0171614 0.0898782 1746 1 0.728432 0.564766 0.285667 925 1 0.57058 0.97215 0.400099 1234 1 0.785735 0.725589 0.135026 1754 1 0.722957 0.736368 0.180518 395 1 0.690341 0.732255 0.351357 905 1 0.673452 0.677267 0.227473 887 1 0.758116 0.634276 0.344821 1692 1 0.765199 0.616846 0.13852 81 1 0.764533 0.673063 0.190845 1567 1 0.628619 0.541413 0.466163 232 1 0.938297 0.547569 0.291412 1616 1 0.593913 0.976199 0.488332 401 1 0.900966 0.762714 0.325502 867 1 0.918374 0.646906 0.158729 524 1 0.814599 0.676384 0.301512 649 1 0.89713 0.584137 0.236603 106 1 0.995059 0.582277 0.0837205 991 1 0.925381 0.760266 0.244473 744 1 0.779699 0.707859 0.375876 580 1 0.989668 0.940493 0.477071 1666 1 0.751517 0.922911 0.366933 824 1 0.717033 0.787562 0.236245 1005 1 0.536793 0.753557 0.290289 662 1 0.66127 0.714665 0.288243 1848 1 0.738517 0.863524 0.28077 1241 1 0.589 0.686085 0.292445 1384 1 0.698269 0.797137 0.141085 547 1 0.837777 0.783294 0.202324 389 1 0.77467 0.740808 0.240521 1931 1 0.772238 0.794317 0.171455 263 1 0.778135 0.86028 0.195726 247 1 0.745342 0.706082 0.30725 757 1 0.819522 0.937624 0.421365 1197 1 0.802474 0.752299 0.325745 1062 1 0.599652 0.73968 0.350897 1880 1 0.827806 0.703564 0.202128 750 1 0.619347 0.781671 0.30079 1635 1 0.846359 0.747429 0.273677 1888 1 0.963176 0.626376 0.262399 1059 1 0.882389 0.889068 0.387322 1174 1 0.559171 0.671446 0.0218448 1889 1 0.965412 0.340663 0.00685101 474 1 0.578328 0.850767 0.176161 140 1 0.56681 0.0154981 0.18701 374 1 0.604601 0.947902 0.170643 2046 1 0.593406 0.000714651 0.250527 1118 1 0.632026 0.930898 0.258422 1842 1 0.718288 0.854116 0.352749 728 1 0.641099 0.830473 0.218352 1673 1 0.627371 0.970062 0.358578 1299 1 0.694893 0.939295 0.154106 156 1 0.774177 0.12109 0.189527 909 1 0.804674 0.906321 0.252754 1088 1 0.813925 0.815345 0.272689 1760 1 0.704729 0.879094 0.208795 774 1 0.732411 0.938325 0.296759 620 1 0.868327 0.881479 0.30263 1713 1 0.80095 0.879307 0.331577 286 1 0.923472 0.974165 0.331669 1427 1 0.880286 0.24381 0.0235873 1780 1 0.834303 0.949461 0.334782 771 1 0.909559 0.913469 0.175802 1720 1 0.864145 0.861452 0.222566 576 1 0.91975 0.89631 0.24951 283 1 0.562387 0.151224 0.282512 1883 1 0.907585 0.846958 0.147922 1953 1 0.657269 0.0324644 0.366986 159 1 0.620573 0.0489418 0.303924 1398 1 0.508591 0.977478 0.193126 2005 1 0.499677 0.430318 0.416141 285 1 0.620524 0.0968515 0.3636 2000 1 0.564081 0.0791672 0.289837 1796 1 0.543518 0.115921 0.35936 352 1 0.896557 0.935447 0.454568 616 1 0.640287 0.00464305 0.445238 996 1 0.967777 0.780515 0.0698204 997 1 0.811328 0.32216 0.497073 1603 1 0.676347 0.981243 0.297892 651 1 0.729002 0.10706 0.463768 1784 1 0.763208 0.528485 0.42561 1617 1 0.877527 0.0129303 0.394098 1538 1 0.828262 0.157923 0.403975 577 1 0.773618 0.199137 0.440439 252 1 0.908226 0.159887 0.405379 495 1 0.557718 0.039023 0.352398 97 1 0.752491 0.972518 0.414666 1430 1 0.869966 0.0420185 0.322592 1595 1 0.895408 0.377365 0.0512997 71 1 0.54921 0.520193 0.429514 332 1 0.654975 0.115555 0.484344 1513 1 0.966051 0.211895 0.385742 501 1 0.995297 0.453306 0.082934 370 1 0.603223 0.0647696 0.0126999 476 1 0.501773 0.4173 0.494394 186 1 0.988993 0.830096 0.126108 1995 1 0.603756 0.124252 0.427003 35 1 0.534291 0.193715 0.388298 545 1 0.647158 0.234244 0.352324 385 1 0.611266 0.184644 0.381581 1650 1 0.974262 0.145264 0.111268 1633 1 0.56652 0.842866 0.430395 230 1 0.573722 0.311271 0.454863 893 1 0.80473 0.366272 0.443102 910 1 0.677911 0.14286 0.350259 1547 1 0.844078 0.113177 0.0194386 1455 1 0.577902 0.400733 0.490549 915 1 0.856874 0.201038 0.469404 172 1 0.742976 0.135575 0.284858 1874 1 0.723253 0.380813 0.400833 1346 1 0.823151 0.263531 0.453518 1668 1 0.723925 0.19332 0.350302 248 1 0.96511 0.242343 0.297597 41 1 0.796927 0.986815 0.00656881 434 1 0.797562 0.170475 0.321788 1482 1 0.53883 0.875594 0.233961 109 1 0.563948 0.0707829 0.126452 74 1 0.923908 0.451033 0.469587 484 1 0.635095 0.924053 0.463409 1693 1 0.522392 0.763345 0.107414 1269 1 0.576413 0.252292 0.399106 686 1 0.602974 0.376761 0.410253 1884 1 0.661045 0.856816 0.27406 1630 1 0.664449 0.3118 0.305656 1163 1 0.730392 0.488244 0.379987 1345 1 0.7376 0.363262 0.476223 1758 1 0.997316 0.684007 0.187486 1861 1 0.60929 0.844449 0.346419 1468 1 0.876338 0.214333 0.356576 1933 1 0.807314 0.241853 0.360614 926 1 0.767495 0.327218 0.384781 226 1 0.712685 0.412798 0.300195 1119 1 0.77817 0.442156 0.406876 1960 1 0.69612 0.910224 0.42641 1135 1 0.814185 0.499522 0.375737 1414 1 0.917378 0.366268 0.383474 599 1 0.900373 0.31689 0.439646 1599 1 0.879245 0.11557 0.315455 1368 1 0.94627 0.293336 0.176497 800 1 0.998391 0.287025 0.121033 1332 1 0.905844 0.244488 0.410551 78 1 0.938015 0.201511 0.46004 711 1 0.973478 0.900569 0.338589 1165 1 0.800134 0.0241246 0.331478 1046 1 0.535302 0.0331911 0.466339 223 1 0.887217 0.0952702 0.385979 1585 1 0.572296 0.46894 0.334188 2029 1 0.972756 0.570296 0.198886 1698 1 0.534516 0.401764 0.347602 1202 1 0.6067 0.536782 0.390256 400 1 0.532253 0.656783 0.43826 1791 1 0.510375 0.149105 0.226629 644 1 0.565967 0.478697 0.501911 587 1 0.86063 0.429954 0.405985 1899 1 0.745309 0.485481 0.289184 826 1 0.67143 0.447229 0.467449 383 1 0.703424 0.524274 0.479846 1833 1 0.867667 0.514162 0.460469 832 1 0.701861 0.601328 0.484491 206 1 0.770447 0.661206 0.483317 1266 1 0.976805 0.749192 0.322108 1405 1 0.911215 0.384077 0.260376 238 1 0.864691 0.677052 0.358687 1461 1 0.889198 0.390494 0.454389 1775 1 0.884663 0.423721 0.342574 553 1 0.574031 0.242543 0.486648 871 1 0.876715 0.594368 0.468915 1401 1 0.921823 0.710018 0.39319 641 1 0.600427 0.618975 0.301944 1477 1 0.98524 0.696589 0.267917 316 1 0.522964 0.475678 0.282664 976 1 0.635021 0.631161 0.445087 974 1 0.601341 0.626623 0.373051 678 1 0.758234 0.0547881 0.277159 1111 1 0.809504 0.667726 0.423974 296 1 0.77626 0.734947 0.475908 160 1 0.646926 0.694722 0.403121 50 1 0.996388 0.496482 0.247958 1537 1 0.634162 0.769135 0.444742 308 1 0.767911 0.601244 0.409169 1941 1 0.744631 0.811125 0.486139 124 1 0.717299 0.656302 0.409533 2048 1 0.666985 0.576177 0.338954 1885 1 0.515101 0.857617 0.122545 1561 1 0.764775 0.577428 0.48607 1230 1 0.900704 0.488743 0.379727 2015 1 0.852512 0.735029 0.474829 731 1 0.9603 0.670139 0.344615 862 1 0.914683 0.783636 0.412974 1421 1 0.977245 0.655362 0.416506 1987 1 0.90084 0.657881 0.430386 811 1 0.549109 0.782688 0.393185 170 1 0.647782 0.791367 0.376796 1349 1 0.636214 0.857096 0.426062 253 1 0.699277 0.973654 0.369448 1221 1 0.576504 0.785246 0.481514 1710 1 0.591304 0.903259 0.383876 492 1 0.655952 0.907635 0.334882 53 1 0.901319 0.696754 0.289637 1177 1 0.737889 0.786862 0.316206 1967 1 0.980593 0.140799 0.212605 1122 1 0.930843 0.848878 0.344422 1946 1 0.715887 0.737256 0.414002 1707 1 0.772269 0.776338 0.38802 812 1 0.574882 0.589355 0.442715 1409 1 0.709794 0.813327 0.425913 1600 1 0.857778 0.822437 0.336861 527 1 0.55047 0.281436 0.0796719 1994 1 0.771069 0.877796 0.424695 1579 1 0.845818 0.74795 0.392719 1507 1 0.826157 0.793783 0.440505 271 1 0.942513 0.87121 0.441801 747 1 0.728326 0.300417 0.0246706 853 1 0.682311 0.160871 0.422032 1360 1 0.534202 0.689095 0.115973 911 1 0.890983 0.8311 0.474844 409 1 0.898105 0.32669 0.00169017 1892 1 0.951995 0.80479 0.494119 714 1 0.629328 0.62477 0.00197386 1805 1 0.990108 0.821297 0.797203 742 1 0.823401 0.740516 0.996709 836 1 0.988338 0.882317 0.826252 1092 1 0.786281 0.931071 0.532153 1199 1 0.669474 0.136275 0.587714 1768 1 0.53834 0.0294966 0.645072 875 1 0.622198 0.996864 0.644693 626 1 0.559932 0.963966 0.688709 825 1 0.986454 0.0657598 0.578777 1802 1 0.551254 0.995812 0.547657 918 1 0.505297 0.849673 0.772922 1924 1 0.701713 0.0647875 0.524477 1154 1 0.807998 0.0593889 0.610289 2035 1 0.905053 0.186346 0.526695 1358 1 0.786077 0.194447 0.695667 1839 1 0.893136 0.858866 0.968724 1492 1 0.746925 0.170756 0.562224 1815 1 0.740181 0.102655 0.595271 719 1 0.843459 0.229291 0.577829 1418 1 0.70885 0.153766 0.651041 951 1 0.883435 0.137599 0.750713 274 1 0.610523 0.60172 0.536561 1638 1 0.998924 0.888958 0.980229 1764 1 0.86308 0.11353 0.625229 1929 1 0.959746 0.133292 0.534858 2039 1 0.784032 0.226086 0.513916 866 1 0.512551 0.76693 0.510733 1772 1 0.876905 0.118285 0.552079 1324 1 0.924424 0.0590839 0.524008 763 1 0.579687 0.658221 0.509703 1701 1 0.932163 0.0983044 0.594802 939 1 0.557918 0.924561 0.977086 183 1 0.619882 0.18676 0.619191 227 1 0.513174 0.0879917 0.519111 1545 1 0.558267 0.0661555 0.574555 536 1 0.57192 0.56394 0.937753 2021 1 0.512817 0.253429 0.51776 1301 1 0.519774 0.176352 0.549961 1176 1 0.687082 0.215752 0.621611 618 1 0.732795 0.274977 0.578156 481 1 0.640539 0.203712 0.547546 426 1 0.963028 0.022203 0.933568 1175 1 0.645855 0.558161 0.891287 986 1 0.877194 0.311295 0.598742 590 1 0.823556 0.354689 0.564179 1495 1 0.723264 0.230902 0.701828 350 1 0.753642 0.299457 0.66509 533 1 0.794909 0.127181 0.63757 782 1 0.978061 0.290654 0.776547 1636 1 0.634826 0.726454 0.510029 1785 1 0.921626 0.278148 0.645772 1801 1 0.772126 0.35697 0.622597 1158 1 0.871552 0.176145 0.695222 1891 1 0.656638 0.31051 0.567237 1562 1 0.618429 0.319418 0.722161 458 1 0.768564 0.0926859 0.528416 203 1 0.591845 0.462175 0.590239 842 1 0.620944 0.0419616 0.554625 1279 1 0.575456 0.238608 0.57637 1800 1 0.699212 0.355622 0.606984 2003 1 0.670782 0.293989 0.674247 629 1 0.884528 0.402198 0.705835 396 1 0.818745 0.464171 0.651692 1909 1 0.678142 0.372439 0.532226 2 1 0.793479 0.530063 0.671164 956 1 0.745415 0.34607 0.550727 841 1 0.813615 0.161531 0.5414 496 1 0.881762 0.302561 0.715809 705 1 0.931965 0.359552 0.587272 1460 1 0.725581 0.887582 0.50203 677 1 0.539194 0.747752 0.779321 86 1 0.81811 0.424741 0.588504 2001 1 0.855593 0.438429 0.515941 643 1 0.969988 0.259843 0.974549 1550 1 0.99115 0.855277 0.701619 973 1 0.530106 0.634079 0.709136 220 1 0.652678 0.425387 0.602173 1105 1 0.689578 0.450499 0.692154 1121 1 0.990117 0.967331 0.856051 1731 1 0.5635 0.537828 0.593607 968 1 0.959522 0.648535 0.782481 19 1 1.00047 0.134741 0.669906 1577 1 0.653426 0.552147 0.598687 211 1 0.565775 0.746214 0.991934 902 1 0.604862 0.639134 0.69007 615 1 0.608621 0.5539 0.666818 417 1 0.988247 0.119893 0.863648 419 1 0.986757 0.484776 0.769274 294 1 0.585774 0.414165 0.673223 1422 1 0.72464 0.421589 0.580346 346 1 0.937422 0.428891 0.783976 1593 1 0.830076 0.0436065 0.516971 257 1 0.754086 0.491659 0.614649 359 1 0.732008 0.587957 0.632154 819 1 0.803416 0.527254 0.577449 687 1 0.720996 0.548353 0.562534 391 1 0.930547 0.976433 0.511691 245 1 0.906717 0.495983 0.532077 1433 1 0.51152 0.387276 0.808607 1411 1 0.545284 0.565575 0.524146 963 1 0.862058 0.56475 0.532956 319 1 0.837486 0.596165 0.643503 1628 1 0.944859 0.472421 0.670887 1029 1 0.872178 0.495614 0.616078 1906 1 0.569713 0.744178 0.55575 1173 1 0.595233 0.729715 0.635955 1007 1 0.64267 0.67736 0.639216 1798 1 0.680719 0.634342 0.571124 1554 1 0.542758 0.67167 0.652683 1998 1 0.597838 0.236701 0.980689 94 1 0.805248 0.598864 0.577327 816 1 0.868458 0.668304 0.632236 240 1 0.566586 0.618039 0.590206 2017 1 0.72542 0.72743 0.611156 981 1 0.725435 0.66335 0.638262 1790 1 0.7453 0.617763 0.539058 1489 1 0.799005 0.689652 0.638458 1555 1 0.606909 0.680243 0.573664 1407 1 0.597808 0.00236326 0.7708 424 1 0.898651 0.612939 0.58905 20 1 0.636235 0.934082 0.534504 349 1 0.50502 0.463336 0.837164 1983 1 0.921615 0.165015 0.647139 1736 1 0.972687 0.714951 0.554863 1087 1 0.842816 0.643065 0.70244 1536 1 0.527563 0.027512 0.748805 1075 1 0.61194 0.797578 0.54852 1542 1 0.519411 0.318553 0.76321 289 1 0.594601 0.867849 0.501445 301 1 0.571451 0.871427 0.590773 107 1 0.547642 0.922654 0.53903 1519 1 0.682629 0.833946 0.572906 1608 1 0.689061 0.859026 0.65399 1845 1 0.516871 0.734425 0.619552 1683 1 0.75806 0.92546 0.65022 1098 1 0.540566 0.315269 0.564492 654 1 0.668837 0.826367 0.500815 943 1 0.714737 0.900616 0.585097 49 1 0.787186 0.760841 0.639855 148 1 0.729111 0.782013 0.563717 1605 1 0.7533 0.835624 0.61303 22 1 0.850174 0.729355 0.668757 205 1 0.846244 0.718235 0.580512 1581 1 0.828588 0.803533 0.701646 1890 1 0.972621 0.849468 0.622727 787 1 0.904269 0.699959 0.534081 62 1 0.939743 0.016534 0.736286 207 1 0.949948 0.573071 0.553262 1598 1 0.950968 0.676664 0.642883 550 1 0.909055 0.734162 0.615041 204 1 0.822249 0.80728 0.597649 152 1 0.621531 0.430032 0.537781 1592 1 0.666662 0.970999 0.598649 1700 1 0.54324 0.595052 0.993854 1478 1 0.530833 0.347356 0.500454 1278 1 0.846959 0.96609 0.562867 1054 1 0.676127 0.251112 0.993029 1467 1 0.841992 0.927184 0.953147 953 1 0.632423 0.902833 0.618304 1653 1 0.960639 0.789256 0.740125 780 1 0.937012 0.0560482 0.794397 1627 1 0.738042 0.996834 0.578645 101 1 0.779388 0.855018 0.546143 1146 1 0.787417 0.951387 0.712624 1040 1 0.668645 0.940684 0.67914 1224 1 0.714552 0.00249947 0.661184 1417 1 0.604068 0.36065 0.55259 1036 1 0.522661 0.222393 0.964752 803 1 0.894268 0.924772 0.814691 1741 1 0.796947 0.784352 0.532408 732 1 0.816076 0.902143 0.603137 985 1 0.871334 0.843523 0.565967 535 1 0.85222 0.906874 0.517586 447 1 0.796817 0.988699 0.640765 1128 1 0.880377 0.80432 0.645593 36 1 0.891082 0.0284371 0.579976 463 1 0.527642 0.385074 0.558667 1706 1 0.741488 0.535116 0.935955 1051 1 0.592843 0.0426594 0.716761 921 1 0.685277 0.195712 0.783422 1860 1 0.610296 0.122701 0.640719 849 1 0.657697 0.184859 0.708296 2023 1 0.606079 0.156185 0.834292 1803 1 0.628951 0.291516 0.816362 818 1 0.682654 0.0623883 0.594116 1003 1 0.551706 0.102325 0.742359 1454 1 0.654868 0.00839513 0.720326 1371 1 0.566766 0.0701739 0.854549 960 1 0.751299 0.064381 0.65785 920 1 0.810796 0.278165 0.703026 594 1 0.72511 0.11697 0.710994 162 1 0.755334 0.144921 0.786185 713 1 0.800528 0.0984726 0.84542 141 1 0.723688 0.0543058 0.849541 462 1 0.646635 0.280209 0.500375 197 1 0.974409 0.414176 0.99071 556 1 0.930861 0.0975977 0.695155 542 1 0.92639 0.0185873 0.650624 1233 1 0.837392 0.191042 0.761798 1217 1 0.851337 0.0833024 0.792069 1623 1 0.9935 0.966621 0.687196 1162 1 0.804914 0.131016 0.731419 1977 1 0.75766 0.0794351 0.761021 579 1 0.5527 0.303518 0.687947 967 1 0.790933 0.285132 0.842555 1817 1 0.682277 0.338979 0.780644 895 1 0.594384 0.184367 0.753322 1927 1 0.790325 0.808757 0.937673 189 1 0.578459 0.280442 0.766989 621 1 0.525015 0.216824 0.713425 2016 1 0.564025 0.231602 0.822621 1399 1 0.811579 0.879307 0.995579 1155 1 0.657393 0.267719 0.747295 123 1 0.76281 0.227881 0.640696 1610 1 0.595899 0.241826 0.680976 597 1 0.84641 0.374684 0.649586 740 1 0.740644 0.223614 0.857403 1366 1 0.742078 0.252972 0.78531 1383 1 0.757818 0.171556 0.900408 1498 1 0.81561 0.258002 0.782626 1588 1 0.857037 0.30937 0.814545 526 1 0.761042 0.917845 0.876498 1894 1 0.873316 0.226984 0.827335 344 1 0.884158 0.240267 0.900469 1708 1 0.81581 0.197659 0.865865 1718 1 0.857757 0.152683 0.826615 2043 1 0.940548 0.347099 0.748916 315 1 0.941491 0.156235 0.802107 623 1 0.937007 0.729105 0.954291 215 1 0.590584 0.528108 0.844877 1857 1 0.603351 0.296265 0.627154 343 1 0.97236 0.813944 0.987563 288 1 0.7189 0.396968 0.74347 127 1 0.943619 0.164381 0.715513 1151 1 0.567623 0.380067 0.728748 1778 1 0.653399 0.375564 0.692947 1753 1 0.49926 0.351717 0.689778 540 1 0.531617 0.483312 0.983712 979 1 0.709313 0.294532 0.849036 855 1 0.643327 0.397661 0.796348 2019 1 0.78693 0.371314 0.711933 1612 1 0.719827 0.457258 0.794216 934 1 0.733618 0.298259 0.734501 827 1 0.833656 0.312875 0.90021 837 1 0.633756 0.477149 0.655293 321 1 0.740449 0.359045 0.83295 1021 1 0.823105 0.378123 0.847602 1828 1 0.791312 0.492131 0.772521 500 1 0.53485 0.72598 0.860957 1079 1 0.904968 0.424307 0.619734 453 1 0.899897 0.36518 0.891279 177 1 0.888409 0.174114 0.889951 1372 1 0.946206 0.272346 0.711172 1429 1 0.791899 0.321559 0.772635 1645 1 0.972073 0.334293 0.668694 1596 1 0.663701 0.316012 0.952408 300 1 0.862076 0.433062 0.78949 1473 1 0.733468 0.779889 0.990485 1937 1 0.661577 0.607048 0.656495 1570 1 0.578153 0.216706 0.906167 1621 1 0.537331 0.569935 0.665743 2012 1 0.552949 0.201482 0.636819 320 1 0.621036 0.531103 0.753643 1509 1 0.56254 0.560204 0.726639 120 1 0.558274 0.476219 0.770484 278 1 0.706399 0.517197 0.672043 113 1 0.743631 0.651005 0.729161 379 1 0.788757 0.398934 0.780634 174 1 0.686758 0.502301 0.749477 777 1 0.753578 0.562614 0.751763 698 1 0.779629 0.598024 0.685565 104 1 0.936755 0.265007 0.530836 1002 1 0.905185 0.496099 0.801467 1647 1 0.939016 0.563567 0.623196 2036 1 0.805934 0.511464 0.506039 1286 1 0.97712 0.456459 0.831776 716 1 0.817365 0.548059 0.898585 886 1 0.83233 0.548793 0.759812 402 1 0.580286 0.603206 0.860972 1271 1 0.556569 0.733361 0.710964 1458 1 0.67032 0.667211 0.731671 1678 1 0.631314 0.766807 0.805232 1836 1 0.720495 0.736986 0.759677 1381 1 0.692802 0.688681 0.83969 1685 1 0.591732 0.605232 0.783895 1502 1 0.806664 0.620073 0.755237 1506 1 0.687197 0.579718 0.718171 1284 1 0.755947 0.656601 0.803306 2031 1 0.815658 0.694659 0.750771 1276 1 0.66148 0.596556 0.832512 467 1 0.767114 0.611796 0.923382 548 1 0.800147 0.642933 0.861604 281 1 0.667749 0.72696 0.690307 1294 1 0.871224 0.534836 0.683524 328 1 0.978836 0.701912 0.891677 1167 1 0.847938 0.574088 0.844833 60 1 0.53087 0.43073 0.624876 363 1 0.907213 0.600264 0.741446 297 1 0.666264 0.154307 0.96782 477 1 0.960423 0.771998 0.862278 1971 1 0.879848 0.637288 0.80628 82 1 0.616038 0.736001 0.740945 2022 1 0.672083 0.783633 0.635101 1867 1 0.588371 0.801604 0.642202 1503 1 0.576942 0.680643 0.753432 1251 1 0.525791 0.677914 0.555646 423 1 0.536438 0.951394 0.776204 966 1 0.634259 0.838418 0.791615 937 1 0.547089 0.891373 0.731655 93 1 0.569126 0.816298 0.755189 112 1 0.648617 0.804638 0.720339 595 1 0.720284 0.787503 0.700461 1527 1 0.761958 0.718478 0.695965 176 1 0.839432 0.833272 0.781952 1667 1 0.86884 0.765142 0.751589 1264 1 0.761865 0.700521 0.874952 442 1 0.789577 0.765148 0.745754 1186 1 0.868379 0.809507 0.905477 1152 1 0.579705 0.378546 0.964244 1253 1 0.942858 0.90589 0.685272 1691 1 0.902807 0.682 0.736139 755 1 0.772264 0.86997 0.728641 413 1 0.916279 0.829547 0.709457 847 1 0.910532 0.744459 0.697283 1985 1 0.87382 0.777604 0.830337 39 1 0.616868 0.867571 0.714815 2044 1 0.806046 0.282729 0.606431 646 1 0.524346 0.156758 1.00103 1084 1 0.633428 0.785225 0.992185 858 1 0.679851 0.0667317 0.674555 1584 1 0.9456 0.623491 0.846892 378 1 0.608054 0.932541 0.767727 6 1 0.534963 0.920318 0.866501 1558 1 0.717908 0.027077 0.730777 108 1 0.798496 0.866061 0.665486 1047 1 0.697961 0.866343 0.726006 1377 1 0.66292 0.0587611 0.767673 944 1 0.706379 0.897997 0.793339 704 1 0.59598 0.953199 0.834119 1212 1 0.865888 0.0485696 0.657892 665 1 0.801811 0.0446937 0.702307 846 1 0.873354 0.981978 0.774042 1180 1 0.927237 0.868148 0.773477 1225 1 0.824989 0.951378 0.84053 318 1 0.559201 0.818841 0.981914 196 1 0.686392 0.945092 0.941915 1326 1 0.85812 0.901394 0.753126 73 1 0.874588 0.0621303 0.727006 1157 1 0.868557 0.986238 0.699985 558 1 0.858681 0.909617 0.682 338 1 0.541901 0.997055 0.839636 491 1 0.591509 0.00845036 0.967258 1213 1 0.541029 0.0443004 0.919259 1922 1 0.506514 0.111112 0.602188 764 1 0.655435 0.0857838 0.851712 326 1 0.635067 0.125969 0.761947 1546 1 0.884201 0.332005 0.510082 258 1 0.739383 0.964526 0.808312 38 1 0.794424 0.0086675 0.779912 451 1 0.72411 0.289248 0.501549 208 1 0.736512 0.0156676 0.938333 1873 1 0.773651 0.946992 0.94629 306 1 0.779366 0.993608 0.865163 1134 1 0.606222 0.99705 0.901587 1990 1 0.508571 0.598876 0.898456 1400 1 0.771321 0.997185 0.511213 1705 1 0.78686 0.402781 0.522951 1164 1 0.98434 0.365319 0.823219 273 1 0.805551 0.0539324 0.969469 1672 1 0.984758 0.0434965 0.856426 1232 1 0.709161 0.651476 0.989754 178 1 0.880561 0.0493261 0.910877 1331 1 0.936316 0.981537 0.801721 879 1 0.919658 0.114291 0.928676 1840 1 0.597231 0.152129 0.916261 1188 1 0.548434 0.388733 0.881048 88 1 0.986749 0.917096 0.557872 664 1 0.947823 0.481956 0.995222 1292 1 0.554998 0.31495 0.848863 752 1 0.735216 0.227318 0.951168 1091 1 0.659619 0.209637 0.920709 688 1 0.517064 0.429833 0.700928 1886 1 0.646558 0.273073 0.895628 1214 1 0.75679 0.0924929 0.913584 268 1 0.692569 0.140581 0.90474 309 1 0.643674 0.221446 0.847769 269 1 0.993284 0.0646117 0.72927 1565 1 0.789374 0.471216 0.949687 1893 1 0.803793 0.259809 0.950523 1231 1 0.819384 0.168429 0.981877 64 1 0.981484 0.619324 0.702998 773 1 0.988946 0.192135 0.931953 1147 1 0.757887 0.578422 0.996833 14 1 0.928125 0.632449 0.509114 737 1 0.955647 0.209901 0.864099 1846 1 0.834408 0.122573 0.908774 581 1 0.916053 0.0899415 0.85611 1777 1 0.9103 0.170055 0.977609 129 1 0.895524 0.245399 0.761346 693 1 0.515144 0.805138 0.596885 685 1 0.638528 0.35348 0.898075 1787 1 0.510941 0.270014 0.889022 962 1 0.592991 0.344761 0.791346 1465 1 0.600109 0.451889 0.907111 783 1 0.721961 0.346708 0.906568 262 1 0.661918 0.382155 0.987645 1727 1 0.851149 0.453497 0.905989 1298 1 0.690721 0.165635 0.508619 1063 1 0.743821 0.381037 0.986581 1597 1 0.899196 0.413201 0.956347 584 1 0.802683 0.391056 0.928937 272 1 0.978746 0.21846 0.746806 1185 1 0.838287 0.34789 0.965959 1410 1 0.531723 0.797258 0.693143 295 1 0.971422 0.317249 0.928457 437 1 0.895538 0.42687 0.853395 234 1 0.817972 0.538132 0.969291 466 1 0.935642 0.286783 0.863866 1190 1 0.90972 0.562428 0.810085 302 1 0.964287 0.536638 0.924341 1559 1 0.555514 0.101467 0.957445 1534 1 0.855437 0.26955 0.519918 482 1 0.6536 0.50156 0.81797 1917 1 0.625009 0.436183 0.733543 1300 1 0.597353 0.440823 0.830159 563 1 0.692049 0.409789 0.850016 1811 1 0.744709 0.476535 0.874649 1149 1 0.551051 0.502115 0.909212 59 1 0.551464 0.322886 0.926047 1526 1 0.716761 0.427038 0.932988 1402 1 0.769628 0.449263 0.71495 9 1 0.776475 0.659057 0.980018 856 1 0.78455 0.55607 0.823834 1096 1 0.839157 0.486629 0.834474 42 1 0.691915 0.824132 0.838506 452 1 0.725005 0.583332 0.860547 1426 1 0.921892 0.426431 0.550688 469 1 0.640011 0.505474 0.547451 411 1 0.554889 0.496842 0.653587 1013 1 0.90937 0.97946 0.875006 1809 1 0.894568 0.503392 0.892775 1019 1 0.945777 0.459902 0.917683 92 1 0.672074 0.990034 0.519626 833 1 0.885763 0.501649 0.969936 1851 1 0.830888 0.992372 0.918673 602 1 0.975549 0.526828 0.83994 435 1 0.677995 0.503556 0.919028 1200 1 0.524239 0.612216 0.816075 831 1 0.640135 0.640818 0.900945 76 1 0.500632 0.717522 0.953753 1516 1 0.843621 0.430676 0.989205 37 1 0.949392 0.87721 0.51184 416 1 0.623939 0.524302 0.965858 1879 1 0.691421 0.580003 0.962315 1342 1 0.566584 0.362441 0.620717 171 1 0.734849 0.72528 0.937881 660 1 0.714851 0.755242 0.86095 1057 1 0.981016 0.111467 0.971121 358 1 0.836844 0.617 0.96022 1043 1 0.86983 0.663899 0.872741 1074 1 0.905853 0.0533773 0.975576 1436 1 0.983998 0.738113 0.794001 1820 1 0.665659 0.734217 0.569936 1640 1 0.996235 0.583757 0.890362 1905 1 0.945044 0.632168 0.914389 598 1 0.890733 0.668239 0.973634 1379 1 0.639998 0.0636397 0.939914 788 1 0.89087 0.575585 0.914071 179 1 0.683553 0.80059 0.920256 1974 1 0.616322 0.843362 0.931805 1444 1 0.561497 0.777949 0.915814 1337 1 0.568701 0.668627 0.833545 1642 1 0.566995 0.875606 0.798783 131 1 0.612467 0.809244 0.86512 1211 1 0.733087 0.827899 0.777767 1415 1 0.685482 0.902528 0.871782 1141 1 0.778223 0.881251 0.801653 695 1 0.510744 0.539793 0.817708 1631 1 0.67885 0.970982 0.876005 1462 1 0.631475 0.716075 0.869993 1808 1 0.807033 0.769163 0.823936 1304 1 0.72551 0.935149 0.735228 1984 1 0.817648 0.689414 0.928526 1729 1 0.891836 0.909898 0.895171 1363 1 0.817116 0.864426 0.884641 377 1 0.891298 0.735195 0.890412 1166 1 0.734726 0.861623 0.914906 984 1 0.954562 0.979519 0.580757 938 1 0.908114 0.840601 0.841892 609 1 0.868677 0.782678 0.518677 994 1 0.932985 0.707574 0.829057 1648 1 0.945498 0.827879 0.912995 47 1 0.618846 0.886571 0.854396 23 1 0.659866 0.961623 0.802359 792 1 0.549056 0.970245 0.92409 940 1 0.602324 0.924131 0.927946 567 1 0.629161 0.0255365 0.830368 541 1 0.901191 0.937784 0.600856 2041 1 0.543315 0.859191 0.903105 1862 1 0.888072 0.783177 0.966459 180 1 0.848938 0.0287615 0.8411 958 1 0.766653 0.818082 0.854854 913 1 0.755397 0.708676 0.554973 1625 1 0.541261 0.811012 0.836937 1992 1 0.987439 0.903024 0.754873 575 1 0.996184 0.728197 0.719436 1572 1 0.502182 0.247736 0.591546 1317 1 0.49962 0.00343709 0.965863 988 1 0.992795 0.524164 0.690209 2026 1 0.517106 0.840671 0.506215 310 1 0.953446 0.555779 0.995529 369 1 0.85318 0.654951 0.500881 1769 1 0.551821 0.286594 0.988603
3033e6d1836363f7bb5afdf44a0c0c1d5e093bf0
ad372f7753c70e3997d035097ee03f740a5fb068
/pygym/custom_storage.py
83d139b7b163479af1d7152929f4ca060d13b04d
[]
no_license
Insper/servidor-de-desafios
a5f09fe9368887b06b98800f2bb8f35ff13f80a9
9875e9b9248c14237161ca73983595f7d929e963
refs/heads/master
2022-12-14T17:28:42.963112
2022-09-12T19:18:36
2022-09-12T19:18:36
167,026,050
3
42
null
2022-12-08T07:36:47
2019-01-22T16:19:46
Python
UTF-8
Python
false
false
1,053
py
# Source: https://github.com/druids/django-chamber/blob/master/chamber/storages/boto3.py from django.core.files.base import ContentFile from storages.backends.s3boto3 import S3Boto3Storage def force_bytes_content(content, blocksize=1024): """Returns a tuple of content (file-like object) and bool indicating wheter the content has been casted or not""" block = content.read(blocksize) content.seek(0) if not isinstance(block, bytes): _content = bytes( content.read(), 'utf-8' if not hasattr(content, 'encoding') or content.encoding is None else content.encoding, ) return ContentFile(_content), True return content, False class MediaStorage(S3Boto3Storage): bucket_name = 'softdes-static' location = 'media' def _clean_name(self, name): # pathlib support return super()._clean_name(str(name)) def save(self, name, content, max_length=None): content, _ = force_bytes_content(content) return super().save(name, content, max_length)
e6aaeb095bc5f80a528def54a281d8534449f9a1
a1566f5733611a930c82990e4c7c5d05664c1eb0
/jspy1/test.py
8809144780e3fc2a8e4db10d0a0ba8223aaefaa0
[]
no_license
sjbrown/misc_work
95e7020c9fb0a2fe840c7a4e25bf30a30b26aaea
4215e3d612811426686b1a90db4f975052c4023d
refs/heads/master
2022-10-21T02:05:04.928161
2022-10-12T23:43:56
2022-10-12T23:43:56
18,151,228
5
3
null
2021-05-29T21:47:17
2014-03-26T19:38:07
Python
UTF-8
Python
false
false
47
py
import os def foo(): return False foo()