blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
2cf9a70811ec72e263f4b6c70a8cc1bbd65c0e75
830acb926cc5cf5a12f2045c8497d6f4aa1c2ef2
/HyperNews Portal/Problems/Limitations/task.py
4a672123fc6df90e8780fdc4bcd6bac7ef3634d1
[]
no_license
BuyankinM/JetBrainsAcademyProjects
ca2223875ea4aab3ee7fceedc8e293bdb6e1fdcf
d5f9fcde4298af714960b2755f762141de796694
refs/heads/main
2023-02-26T05:47:26.070972
2021-02-03T22:10:53
2021-02-03T22:10:53
335,762,702
0
0
null
null
null
null
UTF-8
Python
false
false
77
py
import math real_number = float(input()) check = math.isfinite(real_number)
ebebad6c7731a9504ee607513be35017d718188d
8a5ab3d33e3b653c4c64305d81a85f6a4582d7ac
/PySide/QtCore/QPointF.py
2c350c353ea530cc837989441679f71325e61e69
[ "Apache-2.0" ]
permissive
sonictk/python-skeletons
be09526bf490856bb644fed6bf4e801194089f0d
49bc3fa51aacbc2c7f0c7ab86dfb61eefe02781d
refs/heads/master
2020-04-06T04:38:01.918589
2016-06-09T20:37:43
2016-06-09T20:37:43
56,334,503
0
0
null
2016-04-15T16:30:42
2016-04-15T16:30:42
null
UTF-8
Python
false
false
3,951
py
# encoding: utf-8 # module PySide.QtCore # from /corp.blizzard.net/BFD/Deploy/Packages/Published/ThirdParty/Qt4.8.4/2015-05-15.163857/prebuilt/linux_x64_gcc41_python2.7_ucs4/PySide/QtCore.so # by generator 1.138 # no doc # no imports from _Object import _Object class QPointF(_Object): # no doc def isNull(self, *args, **kwargs): # real signature unknown pass def manhattanLength(self, *args, **kwargs): # real signature unknown pass def setX(self, *args, **kwargs): # real signature unknown pass def setY(self, *args, **kwargs): # real signature unknown pass def toPoint(self, *args, **kwargs): # real signature unknown pass def toTuple(self, *args, **kwargs): # real signature unknown pass def x(self, *args, **kwargs): # real signature unknown pass def y(self, *args, **kwargs): # real signature unknown pass def __add__(self, y): # real signature unknown; restored from __doc__ """ x.__add__(y) <==> x+y """ pass def __copy__(self, *args, **kwargs): # real signature unknown pass def __div__(self, y): # real signature unknown; restored from __doc__ """ x.__div__(y) <==> x/y """ pass def __eq__(self, y): # real signature unknown; restored from __doc__ """ x.__eq__(y) <==> x==y """ pass def __ge__(self, y): # real signature unknown; restored from __doc__ """ x.__ge__(y) <==> x>=y """ pass def __gt__(self, y): # real signature unknown; restored from __doc__ """ x.__gt__(y) <==> x>y """ pass def __iadd__(self, y): # real signature unknown; restored from __doc__ """ x.__iadd__(y) <==> x+=y """ pass def __init__(self, *more): # real signature unknown; restored from __doc__ """ x.__init__(...) initializes x; see help(type(x)) for signature """ pass def __isub__(self, y): # real signature unknown; restored from __doc__ """ x.__isub__(y) <==> x-=y """ pass def __le__(self, y): # real signature unknown; restored from __doc__ """ x.__le__(y) <==> x<=y """ pass def __lt__(self, y): # real signature unknown; restored from __doc__ """ x.__lt__(y) <==> x<y """ pass def __mul__(self, y): # real signature unknown; restored from __doc__ """ x.__mul__(y) <==> x*y """ pass def __neg__(self): # real signature unknown; restored from __doc__ """ x.__neg__() <==> -x """ pass def __ne__(self, y): # real signature unknown; restored from __doc__ """ x.__ne__(y) <==> x!=y """ pass def __nonzero__(self): # real signature unknown; restored from __doc__ """ x.__nonzero__() <==> x != 0 """ pass def __radd__(self, y): # real signature unknown; restored from __doc__ """ x.__radd__(y) <==> y+x """ pass def __rdiv__(self, y): # real signature unknown; restored from __doc__ """ x.__rdiv__(y) <==> y/x """ pass def __reduce__(self, *args, **kwargs): # real signature unknown pass def __repr__(self): # real signature unknown; restored from __doc__ """ x.__repr__() <==> repr(x) """ pass def __rmul__(self, y): # real signature unknown; restored from __doc__ """ x.__rmul__(y) <==> y*x """ pass def __rsub__(self, y): # real signature unknown; restored from __doc__ """ x.__rsub__(y) <==> y-x """ pass def __rtruediv__(self, y): # real signature unknown; restored from __doc__ """ x.__rtruediv__(y) <==> y/x """ pass def __sub__(self, y): # real signature unknown; restored from __doc__ """ x.__sub__(y) <==> x-y """ pass def __truediv__(self, y): # real signature unknown; restored from __doc__ """ x.__truediv__(y) <==> x/y """ pass __new__ = None
0b13a187ec32ce7aa897761988d4c15a6c652734
ab3d5ea4bf0e48914ed14fcf16e5b1d752f199ba
/pcg_libraries/src/pcg_gazebo/parsers/sdf/pose.py
c59190b53c6490da0a3566d7aeb02a72a6f5997d
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference", "CC0-1.0", "MIT", "BSD-3-Clause", "LicenseRef-scancode-public-domain" ]
permissive
boschresearch/pcg_gazebo_pkgs
5f1004d0de874d4d1abc4eb695777013027158b2
1c112d01847ca4f8da61ce9b273e13d13bc7eb73
refs/heads/master
2020-06-11T06:28:36.228431
2020-02-07T13:05:28
2020-02-07T13:05:28
193,876,180
44
3
NOASSERTION
2020-02-07T12:00:55
2019-06-26T09:45:05
Python
UTF-8
Python
false
false
2,348
py
# Copyright (c) 2019 - The Procedural Generation for Gazebo authors # For information on the respective copyright owner see the NOTICE file # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..types import XMLVector class Pose(XMLVector): _NAME = 'pose' _TYPE = 'sdf' _ATTRIBUTES = dict( frame='' ) def __init__(self): XMLVector.__init__(self, 6) self.reset() @property def frame(self): return self.attributes['frame'] @frame.setter def frame(self, value): assert isinstance(value, str) self.attributes['frame'] = value @property def pose(self): return self.value @pose.setter def pose(self, value): XMLVector._set_value(self, value) @property def x(self): return self.value[0] @x.setter def x(self, value): assert self._is_scalar(value) self.value[0] = float(value) @property def y(self): return self.value[1] @y.setter def y(self, value): assert self._is_scalar(value) self.value[1] = float(value) @property def z(self): return self.value[2] @z.setter def z(self, value): assert self._is_scalar(value) self.value[2] = float(value) @property def roll(self): return self.value[3] @roll.setter def roll(self, value): assert self._is_scalar(value) self.value[3] = float(value) @property def pitch(self): return self.value[4] @pitch.setter def pitch(self, value): assert self._is_scalar(value) self.value[4] = float(value) @property def yaw(self): return self.value[5] @yaw.setter def yaw(self, value): assert self._is_scalar(value) self.value[5] = float(value)
c623f87b22b649226f52dc2e56f8651ae57fca85
484da6ff9bda06183c3d3bbda70c6d11e1ad6b67
/.history/main_20191007162714.py
3c0a5d2227f2184e32bd46b4e6485a71ab54093b
[]
no_license
Shynar88/TSP
009a88bbddb29214921de4d0cf1761dea61b7b75
889751ab7d6a91469e86c6583f3c91b85857edd9
refs/heads/master
2020-08-06T22:40:49.217474
2020-01-14T13:41:44
2020-01-14T13:41:44
213,185,830
0
0
null
null
null
null
UTF-8
Python
false
false
7,330
py
import argparse import math import random import operator class City(): def __init__(self, index, x_coord, y_coord): self.index = index self.x_coord = x_coord self.y_coord = y_coord def __repr__(self): return "[" + str(self.x_coord) + ", " + str(self.y_coord) + "]" def get_distance_to(self, other): dx = (other.x_coord - self.x_coord) ** 2 dy = (other.y_coord - self.y_coord) ** 2 return math.sqrt(dx + dy) class Instance(): def __init__(self, route): self.route = route self.route_distance = self.get_route_distance() self.fitness = self.get_fitness() def get_route_distance(self): distance = 0 for i in range(len(self.route)): src = self.route[i] dest = self.route[i + 1] if i + 1 < len(self.route) else self.route[0] distance += src.get_distance_to(dest) return distance def get_fitness(self): return 1 / self.route_distance class GeneticAlgorithm(): def __init__(self, population_size, mat_pool_size, tournament_size, elite_size, max_generations, crossover_rate, mutation_rate, cities_list): self.population_size = population_size self.mat_pool_size = mat_pool_size self.tournament_size = tournament_size self.elite_size = elite_size self.max_generations = max_generations self.crossover_rate = crossover_rate self.mutation_rate = mutation_rate self.cities_list = cities_list def generate_instance(self): route = random.sample(self.cities_list, len(self.cities_list)) instance = Instance(route) return instance def create_initial_population(self): initial_population = [] for _ in range(self.population_size): initial_population.append(self.generate_instance()) return initial_population def crossover(self, p1, p2): # proposing good crossover method https://www.hindawi.com/journals/cin/2017/7430125/ #implement simple crossover then try to enhance it #ordered crossover li = 0 hi = 0 while hi <= li: li = int(random.random() * len(p1.route)) hi = int(random.random() * len(p1.route)) chunk = p1.route[li:hi] child_route = [] not_used_el_in_p2 = [el for el in p2.route if el not in chunk] pointer = 0 for _ in range(li): child_route.append(not_used_el_in_p2[pointer]) pointer += 1 child_route += chunk for _ in range(hi, len(p1.route)): child_route.append(not_used_el_in_p2[pointer]) pointer += 1 child = Instance(child_route) return child def mutate(self, instance): instance = instance.route if random.random() < self.mutation_rate: i1, i2 = random.sample(range(len(self.cities_list)), 2) instance[i1], instance[i2] = instance[i2], instance[i1] def selection(self, population): #experiment on selection way #implement the simple one #Tournament selection P/2 size might be better mating_pool = [] while len(mating_pool) < self.mat_pool_size: participants = random.sample(population, self.tournament_size) fittest = max(participants, key=operator.attrgetter('fitness')) mating_pool.append(fittest) return mating_pool def generate_path(self): # Step 1. Create an initial population of P chromosomes. population = self.create_initial_population() # Step 2. Evaluate the fitness of each chromosome. done in create population for generation in range(self.max_generations): print(f"generation number: {generation}") # Step 3. Choose P/2 parents from the current population via proportional selection. mating_pool = self.selection(population) population_sorted = sorted(population, key=lambda instance: instance.fitness, reverse=True) old_elite = population_sorted[:self.elite_size] new_population = old_elite while len(new_population) < self.population_size: # Step 4. Randomly select two parents to create offspring using crossover operator. parents = random.sample(mating_pool, 2) child = self.crossover(parents[0], parents[1]) # Step 5. Apply mutation operators for minor changes in the results. self.mutate(child) new_population.append(child) # Step 6. Repeat Steps  4 and 5 until all parents are selected and mated. # Step 7. Replace old population of chromosomes with new one. population = new_population # Step 8. Evaluate the fitness of each chromosome in the new population. Already done in crossover when creating the child # Step 9. Terminate if the number of generations meets some upper bound; otherwise go to Step  3. return 0 # parses command line arguments #is mating pool size also a hyperparameter??????? def parse_arguments(): parser = argparse.ArgumentParser() parser.add_argument('-p', type=str, default="a280.tsp", help="path to the input file") parser.add_argument('-s', type=int, default=50, help="population size") parser.add_argument('-ms', type=int, default=25, help="mating pool size") parser.add_argument('-ts', type=int, default=5, help="tournament size") parser.add_argument('-e', type=int, default=20, help="elite_size") parser.add_argument('-mg', type=int, default=50, help="max generations") parser.add_argument('-cr', type=float, default=0.3, help="crossover rate") parser.add_argument('-mr', type=float, default=0.1, help="mutation rate") args = parser.parse_args() return args.p, args.s, args.ms, args.ts, args.e, args.mg, args.cr, args.mr # parses file, returns list of city coordinates(ex: [(x1, y1), ...]) def parse(file_path): #coordinates start from the 7th line, end with EOF cities = [] f = open(file_path, "r") for _ in range(6): f.readline() for line in f: line_contents = line.split() if len(line_contents) == 3: cities.append((line_contents[0], line_contents[1], line_contents[2])) f.close() return cities def create_cities(coordinates_list): cities_list = [] for coordinates in coordinates_list: cities_list.append(City(coordinates[0], coordinates[1], coordinates[2])) return cities_list def main(): path, population_size, mat_pool_size, tournament_size, elite_size, max_generations, crossover_rate, mutation_rate = parse_arguments() #delete prints print(path) print(population_size) print(mat_pool_size) print(tournament_size) print(elite_size) print(max_generations) print(crossover_rate) print(mutation_rate) ##### coordinates_list = parse(path) cities_list = create_cities(coordinates_list) gen_algo = GeneticAlgorithm(population_size, mat_pool_size, tournament_size, elite_size, max_generations, crossover_rate, mutation_rate, cities_list) # distance = gen_algo.generate_path() # print(distance) if __name__ == "__main__": main()
ce640e99ab9b4f9311a737f6a8f10585751a2bcf
3ce592352627591346ea33ea0c2665ad879414e2
/References/web-scraping/101scrapetest.py
64aa6f9bfe35ee27d2cbd8684578f2c2e1fafc06
[ "MIT" ]
permissive
royqh1979/python_libs_usage
113df732ef106f4a5faae1343493756fd703c8c0
57546d5648d8a6b7aca7d7ff9481aa7cd4d8f511
refs/heads/master
2021-04-16T18:14:43.835482
2021-01-11T03:55:25
2021-01-11T03:55:25
249,374,754
0
0
null
null
null
null
UTF-8
Python
false
false
290
py
from urllib.request import urlopen from bs4 import BeautifulSoup html = urlopen('http://www.pythonscraping.com/pages/warandpeace.html') bs = BeautifulSoup(html.read(),'html5lib') print(bs.h1) namelist = bs.findAll('span',{'class':'green'}) for name in namelist: print(name.get_text())
04483072d03f682fa80d3014d1f0fa2fc7e36601
1a1b857c67768f20de0df42a7edb87edd57d9a33
/Quick_Sort/Quick_Sort_Practice_November_2.py
1b6901fe97a57dc5b190a20e25f2f70f0af9dfb8
[]
no_license
LilySu/Python_Practice
7c7eb30c549239f27680f410d365289b67813c5e
26767e64742149813ecbc91815454836ffce8b6e
refs/heads/master
2023-07-29T01:14:19.751490
2021-08-15T01:09:41
2021-08-15T01:09:41
279,446,861
1
2
null
2020-10-09T04:10:40
2020-07-14T01:05:55
Jupyter Notebook
UTF-8
Python
false
false
760
py
def swap(a, b, arr): arr[a], arr[b] = arr[b], arr[a] def partition(elements, start, end): pivot_index = start pivot = elements[pivot_index] while start < end: while start < len(elements) and elements[start] <= pivot: start += 1 while elements[end] > pivot: end -= 1 if start < end: swap(start, end, elements) swap(pivot_index, end, elements) return end def quick_sort(elements, start, end): if start < end: pi = partition(elements, start, end) quick_sort(elements, start, pi - 1) quick_sort(elements, pi + 1, end) if __name__ == "__main__": elements = [8, 24, 92, 14, 3, 47] quick_sort(elements, 0, len(elements) - 1) print(elements)
fd9b2b5f03d3dc5bc61de7795ca876950a6683e0
7e0393251012e91213dddfd9c93f6b6b73ca2bfe
/tests/unit/test_drizzle_error.py
e7d05e37e25a68aede0c2312672d6c495e350d23
[ "MIT" ]
permissive
josephhardinee/cloudnetpy
ff4cc0303d7f2ae40f2d3466298257659ff3ccde
c37760db3cdfe62ae769f8090ba621803ec9a92c
refs/heads/master
2021-03-06T15:37:51.529776
2020-02-13T09:05:29
2020-02-13T09:05:29
246,207,849
0
0
MIT
2020-03-10T04:29:48
2020-03-10T04:26:16
null
UTF-8
Python
false
false
3,347
py
import numpy as np import numpy.testing as testing import pytest from cloudnetpy.products import drizzle_error as de DRIZZLE_PARAMETERS = {'Do': np.array([[0.0001, 0.01, 0.000001], [0.001, 0.000001, 0.0001]])} DRIZZLE_INDICES = {'drizzle': np.array([[1, 1, 1], [1, 1, 1]], dtype=bool), 'small': np.array([[1, 0, 0], [0, 0, 1]], dtype=bool), 'tiny': np.array([[0, 0, 1], [0, 1, 0]], dtype=bool)} ERROR_INPUT = (np.array([[0.01, 0.34, 0.5], [0.2, 0.3, 0.56]]), 0.14) BIAS_INPUT = (0.01, 0.57) @pytest.mark.parametrize('key, value', [ ('drizzle', [False, True, True, True]), ('small', [False, True, False, False]), ('tiny', [False, False, False, True])]) def test_get_drizzle_indices(key, value): dia = np.array([-1, 2 * 1e-5, 1, 1e-6]) d = de._get_drizzle_indices(dia) testing.assert_array_equal(d[key], value) @pytest.mark.parametrize('key', [ 'Do_error', 'drizzle_lwc_error', 'drizzle_lwf_error', 'S_error']) def test_calc_parameter_errors(key): x = de._calc_parameter_errors(DRIZZLE_INDICES, ERROR_INPUT) assert key in x.keys() @pytest.mark.parametrize('key', [ 'Do_bias', 'drizzle_lwc_bias', 'drizzle_lwf_bias']) def test_calc_parameter_biases(key): x = de._calc_parameter_biases(BIAS_INPUT) assert key in x.keys() @pytest.fixture def results(): errors = de._calc_parameter_errors(DRIZZLE_INDICES, ERROR_INPUT) biases = de._calc_parameter_biases(BIAS_INPUT) return {**errors, **biases} @pytest.mark.parametrize('key', [ 'drizzle_N_error', 'v_drizzle_error', 'mu_error']) def test_add_supplementary_errors(results, key): x = de._add_supplementary_errors(results, DRIZZLE_INDICES, ERROR_INPUT) assert key in x.keys() def test_calc_v_error(results): results['Do_error'] = np.array([[2, 2, 2], [2, 2, 2]]) x = de._add_supplementary_errors(results, DRIZZLE_INDICES, ERROR_INPUT) testing.assert_almost_equal(x['v_drizzle_error'][DRIZZLE_INDICES['tiny']], 4) @pytest.mark.parametrize('key', [ 'drizzle_N_bias', 'v_drizzle_bias']) def test_add_supplementary_biases(results, key): x = de._add_supplementary_biases(results, BIAS_INPUT) assert key in x.keys() def test_calc_error(): from cloudnetpy.utils import l2norm_weighted compare = l2norm_weighted(ERROR_INPUT, 1, 1) testing.assert_almost_equal(de._calc_error(1, 1, ERROR_INPUT), compare) def test_stack_errors(): DRIZZLE_INDICES['drizzle'] = np.array([[0, 1, 1], [1, 1, 0]], dtype=bool) compare = np.ma.array(ERROR_INPUT[0], mask=[[1, 0, 0], [0, 0, 1]]) x = de._stack_errors(ERROR_INPUT[0], DRIZZLE_INDICES) testing.assert_array_almost_equal(x, compare) @pytest.mark.parametrize("x, result", [ (-1000, -1), (-100, -0.99999), (-10, -0.9), (-1, np.exp(-1 / 10 * np.log(10)) - 1)]) def test_db2lin(x, result): testing.assert_array_almost_equal(de.db2lin(x), result, decimal=5) def test_db2lin_raise(): with pytest.raises(ValueError): de.db2lin(150) @pytest.mark.parametrize("x, result", [ (1e6, 60), (1e5, 50), (1e4, 40)]) def test_lin2db(x, result): testing.assert_array_almost_equal(de.lin2db(x), result, decimal=3) def test_lin2db_raise(): with pytest.raises(ValueError): de.lin2db(-1)
1abc67418dafabbb3f468f4ff08fea5c925b3bde
d86c5aa92a9763510b539776510ad9795d33ae89
/September 2020/03-Multidimensional-Lists/03-Primary-Diagonal.py
cb353fab20268a1b0cc58deae94420f1b386b6f6
[ "MIT" ]
permissive
eclipse-ib/Software-University-Professional-Advanced-Module
42e3bd50ac5f0df8082add29f4113cffb87889e1
636385f9e5521840f680644824d725d074b93c9a
refs/heads/main
2023-02-13T06:02:53.246980
2021-01-06T21:12:14
2021-01-06T21:12:14
306,282,871
0
0
null
null
null
null
UTF-8
Python
false
false
767
py
#Съкратен Вариант с комрехеншън: size = int(input()) matrix = [ [int(el) for el in input().split()] for i in range(size) ] current_sum = sum([matrix[i][i] for i in range(size)]) print(current_sum) #Вариант с range: # size = int(input()) # # matrix = [ # [int(el) for el in input().split()] # for i in range(size) # ] # # current_sum = 0 # for i in range(size): # current_sum += matrix[i][i] # # print(current_sum) # Вариант с ожхождане на матрицата: # size = int(input()) # # matrix = [ # [int(el) for el in input().split()] # for i in range(size) # ] # # index = 0 # current_sum = 0 # for j in matrix: # current_sum += j[index] # index += 1 # print(current_sum)
db89b4926bf8f251c68f068747c97003c1c04fbc
cfac0f4f862180baae078bd7656ac41c8f946006
/Day22/full.py
53638388312ad69de0807e67cf6732d90355eefc
[]
no_license
RaspiKidd/AoC2017
bcf4a8c161b48b2b8f89745d6ff5b741f023b5b7
2be828462cd5d56e2f8a8f636525359bb4de045e
refs/heads/master
2021-09-01T20:07:34.228665
2017-12-28T14:25:08
2017-12-28T14:25:08
112,738,515
0
0
null
null
null
null
UTF-8
Python
false
false
1,634
py
def read(): with open("data.txt") as f: inpt = f.read().splitlines() offset = len(inpt) // 2 infected = set() for r, line in enumerate(inpt): for c, ch in enumerate(line): if ch == '#': infected.add((r - offset, c - offset)) return infected infected = read() dirs = [(-1, 0), (0, -1), (1, 0), (0, 1)] d = 0 virusAt = (0, 0) def burst(): global infected, d, virusAt infectionCaused = False if virusAt in infected: d = (d - 1) % 4 infected.remove(virusAt) else: d = (d + 1) % 4 infected.add(virusAt) infectionCaused = True virusAt = (virusAt[0] + dirs[d][0], virusAt[1] + dirs[d][1]) return infectionCaused numInfections = 0 for i in range(10000): if burst(): numInfections += 1 # Part 1 answer print(numInfections) clean = 0 infected = 1 weak = 2 flagged = 3 state = {k: infected for k in read()} virusAt = (0, 0) def burst2(): global state, d, virusAt infectionCaused = False currentState = state.get(virusAt, 0) if currentState == clean: d = (d + 1) % 4 state[virusAt] = weak elif currentState == weak: state[virusAt] = infected infectionCaused = True elif currentState == infected: d = (d - 1) % 4 state[virusAt] = flagged else: # FLAGGED d = (d + 2) % 4 del state[virusAt] virusAt = (virusAt[0] + dirs[d][0], virusAt[1] + dirs[d][1]) return infectionCaused numInfections = 0 for i in range(10000000): if burst2(): numInfections += 1 # part 2 answer print (numInfections)
286590a9fe52b4359057b9360cd7b7a404aa8d70
fe18994a1880f347d8004383434842286b9dccd3
/python_stack/flask/flask_fundamentals/Dojo_Survey/server.py
335aa9e1c425addeaea0b58be5359da8056a3f95
[]
no_license
Anbousi/Python
682d5b00555ab3183d06afddb4c5f6e1d5739f6c
4f05dd8ec62e80a28ca607feae976d9220a62227
refs/heads/master
2023-05-06T03:37:28.878915
2021-05-30T19:11:28
2021-05-30T19:11:28
364,501,098
0
2
null
null
null
null
UTF-8
Python
false
false
695
py
from flask import Flask , render_template , request , redirect app = Flask(__name__) @app.route('/') def main(): return render_template('index.html') @app.route('/result' , methods=['POST']) def result(): name_form = request.form['name'] location_form = request.form['location'] language_form = request.form['language'] comment_form = request.form['comment'] radio_form = request.form['radio'] check_form = request.form['check'] print(check_form) return render_template('result.html' , name_form = name_form , location_form = location_form , language_form = language_form , comment_form = comment_form ) if __name__ == '__main__': app.run(debug = True)
2ab9f2f34b31a7152edd0e7524c21dddd1269df8
247389d0b916f972297fe3c38d262502a6cfa084
/morse
ef7bed09c034b15fde12125c089eb665e1695bcd
[]
no_license
reteps/raspi
2e69fee4eb96e4a43059f3125c79cf577e2b5bb6
96771f0525b3ad71c9b13a36de49b599c5769310
refs/heads/master
2021-09-28T05:22:32.999241
2017-07-26T13:24:51
2017-07-26T13:24:51
98,200,765
0
0
null
null
null
null
UTF-8
Python
false
false
1,205
#!/usr/bin/env python3 import RPi.GPIO as GPIO import pilights, time def to_morse_code(message): morseAlphabet ={ "A" : ".-", "B" : "-...", "C" : "-.-.", "D" : "-..", "E" : ".", "F" : "..-.", "G" : "--.", "H" : "....", "I" : "..", "J" : ".---", "K" : "-.-", "L" : ".-..", "M" : "--", "N" : "-.", "O" : "---", "P" : ".--.", "Q" : "--.-", "R" : ".-.", "S" : "...", "T" : "-", "U" : "..-", "V" : "...-", "W" : ".--", "X" : "-..-", "Y" : "-.--", "Z" : "--..", " " : "/" } output = "" for letter in message.upper(): output += morseAlphabet[letter] return output pin = 17 lights = pilights.Lights(pin) raw_message = input("Message > ") message = to_morse_code(raw_message) shorttime = 0.1 longtime = 0.4 split = 0.2 word = 0.6 print(message) for character in message: if character == ".": lights.onoff(pin,shorttime) elif character == "/": time.sleep(word) elif character == "-": lights.onoff(pin,longtime) time.sleep(split)
69354a0bd822307b273f6b1b5fdfdcb3a5c10b88
16a5c9c9f0d7519a6808efc61b592b4b614102cf
/Python/16.py
3672e6b7b0f7551a670966ce8b46ac170ca86da6
[]
no_license
kevin851066/Leetcode
c1d86b2e028526231b80c6d4fb6d0be7ae8d39e5
885a9af8a7bee3c228c7ae4e295dca810bd91d01
refs/heads/main
2023-08-10T16:50:12.426440
2021-09-28T15:23:26
2021-09-28T15:23:26
336,277,469
0
0
null
null
null
null
UTF-8
Python
false
false
1,012
py
class Solution: def threeSumClosest(self, nums, target): ''' :type: nums: List[int] :type: target: int :rtype: int ''' nums.sort() dis = float('inf') res = 0 for i in range(len(nums)-2): if i == 0 or nums[i] != nums[i-1]: l, r = i + 1, len(nums) - 1 while r > l: s = nums[i] + nums[r] + nums[l] diff = abs(target - s) if diff < dis: dis = diff res = s if target > s: while r > l and nums[l] == nums[l+1]: l += 1 l += 1 elif target < s: while r > l and nums[r] == nums[r-1]: r -= 1 r -= 1 else: return res return res
89bc553261509785779919691202bc8ff9d94257
5c69e63f3bb1286a79cb81ca70c969bccd65d740
/bocadillo/exceptions.py
e8cfd93892c17f615e36715a36c0bba654f5a71f
[ "MIT" ]
permissive
stjordanis/bocadillo
85dc5895966d3e2031df365db55e4def156e92aa
658cce55b196d60489530aaefde80b066cb8054b
refs/heads/master
2020-04-14T09:36:47.245246
2019-01-01T19:27:37
2019-01-01T19:27:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,196
py
from http import HTTPStatus from typing import Union, Any, List from starlette.websockets import WebSocketDisconnect as _WebSocketDisconnect WebSocketDisconnect = _WebSocketDisconnect class HTTPError(Exception): """Raised when an HTTP error occurs. You can raise this within a view or an error handler to interrupt request processing. # Parameters status (int or HTTPStatus): the status code of the error. detail (any): extra detail information about the error. The exact rendering is determined by the configured error handler for `HTTPError`. # See Also - [HTTP response status codes (MDN web docs)](https://developer.mozilla.org/en-US/docs/Web/HTTP/Status) """ def __init__(self, status: Union[int, HTTPStatus], detail: Any = ""): if isinstance(status, int): status = HTTPStatus(status) else: assert isinstance( status, HTTPStatus ), f"Expected int or HTTPStatus, got {type(status)}" self._status = status self.detail = detail @property def status_code(self) -> int: """Return the HTTP error's status code, e.g. `404`.""" return self._status.value @property def status_phrase(self) -> str: """Return the HTTP error's status phrase, e.g. `"Not Found"`.""" return self._status.phrase @property def title(self) -> str: """Return the HTTP error's title, e.g. `"404 Not Found"`.""" return f"{self.status_code} {self.status_phrase}" def __str__(self): return self.title class UnsupportedMediaType(Exception): """Raised when trying to use an unsupported media type. # Parameters media_type (str): the unsupported media type. available (list of str): a list of supported media types. """ def __init__(self, media_type: str, available: List[str]): self._media_type = media_type self._available = available def __str__(self): return f'{self._media_type} (available: {", ".join(self._available)})' class RouteDeclarationError(Exception): """Raised when a route is ill-declared."""
44c36be3d14151335716e257311f97e0760b11f5
3712a929d1124f514ea7af1ac0d4a1de03bb6773
/开班笔记/个人项目/weather/venv/Scripts/pip3.6-script.py
d64c53761d2ebf358b440b0154196e579055f766
[]
no_license
jiyabing/learning
abd82aa3fd37310b4a98b11ea802c5b0e37b7ad9
6059006b0f86aee9a74cfc116d2284eb44173f41
refs/heads/master
2020-04-02T20:47:33.025331
2018-10-26T05:46:10
2018-10-26T05:46:10
154,779,387
0
0
null
null
null
null
GB18030
Python
false
false
450
py
#!E:\学习文件\python学习资料\开班笔记\个人项目\weather\venv\Scripts\python.exe -x # EASY-INSTALL-ENTRY-SCRIPT: 'pip==10.0.1','console_scripts','pip3.6' __requires__ = 'pip==10.0.1' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==10.0.1', 'console_scripts', 'pip3.6')() )
c6870f0f392d973959a4e8236a2aadf2507635ad
eebb210f13d452822d46432643215a4c8b656906
/bsl_21716/settings.py
f2b659a27d63e57f748807a78ce2ab48d20a787c
[]
no_license
crowdbotics-apps/bsl-21716
5e817b94f0a692469a986f3955cbaf1e813102c9
3e4cb348cdd4f84c5b78c35bf5c4f4f37d58fdbb
refs/heads/master
2023-01-03T18:12:09.360592
2020-10-19T19:11:41
2020-10-19T19:11:41
305,488,134
0
0
null
null
null
null
UTF-8
Python
false
false
5,823
py
""" Django settings for bsl_21716 project. Generated by 'django-admin startproject' using Django 2.2.2. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os import environ import logging env = environ.Env() # SECURITY WARNING: don't run with debug turned on in production! DEBUG = env.bool("DEBUG", default=False) # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = env.str("SECRET_KEY") ALLOWED_HOSTS = env.list("HOST", default=["*"]) SITE_ID = 1 SECURE_PROXY_SSL_HEADER = ("HTTP_X_FORWARDED_PROTO", "https") SECURE_SSL_REDIRECT = env.bool("SECURE_REDIRECT", default=False) # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.sites' ] LOCAL_APPS = [ 'home', 'users.apps.UsersConfig', ] THIRD_PARTY_APPS = [ 'rest_framework', 'rest_framework.authtoken', 'rest_auth', 'rest_auth.registration', 'bootstrap4', 'allauth', 'allauth.account', 'allauth.socialaccount', 'allauth.socialaccount.providers.google', 'django_extensions', 'drf_yasg', ] INSTALLED_APPS += LOCAL_APPS + THIRD_PARTY_APPS MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'bsl_21716.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'bsl_21716.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } if env.str("DATABASE_URL", default=None): DATABASES = { 'default': env.db() } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/' MIDDLEWARE += ['whitenoise.middleware.WhiteNoiseMiddleware'] AUTHENTICATION_BACKENDS = ( 'django.contrib.auth.backends.ModelBackend', 'allauth.account.auth_backends.AuthenticationBackend' ) STATIC_ROOT = os.path.join(BASE_DIR, "staticfiles") STATICFILES_DIRS = [ os.path.join(BASE_DIR, 'static') ] STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage' # allauth / users ACCOUNT_EMAIL_REQUIRED = True ACCOUNT_AUTHENTICATION_METHOD = 'email' ACCOUNT_USERNAME_REQUIRED = False ACCOUNT_EMAIL_VERIFICATION = "optional" ACCOUNT_CONFIRM_EMAIL_ON_GET = True ACCOUNT_LOGIN_ON_EMAIL_CONFIRMATION = True ACCOUNT_UNIQUE_EMAIL = True LOGIN_REDIRECT_URL = "users:redirect" ACCOUNT_ADAPTER = "users.adapters.AccountAdapter" SOCIALACCOUNT_ADAPTER = "users.adapters.SocialAccountAdapter" ACCOUNT_ALLOW_REGISTRATION = env.bool("ACCOUNT_ALLOW_REGISTRATION", True) SOCIALACCOUNT_ALLOW_REGISTRATION = env.bool("SOCIALACCOUNT_ALLOW_REGISTRATION", True) REST_AUTH_SERIALIZERS = { # Replace password reset serializer to fix 500 error "PASSWORD_RESET_SERIALIZER": "home.api.v1.serializers.PasswordSerializer", } REST_AUTH_REGISTER_SERIALIZERS = { # Use custom serializer that has no username and matches web signup "REGISTER_SERIALIZER": "home.api.v1.serializers.SignupSerializer", } # Custom user model AUTH_USER_MODEL = "users.User" EMAIL_HOST = env.str("EMAIL_HOST", "smtp.sendgrid.net") EMAIL_HOST_USER = env.str("SENDGRID_USERNAME", "") EMAIL_HOST_PASSWORD = env.str("SENDGRID_PASSWORD", "") EMAIL_PORT = 587 EMAIL_USE_TLS = True # Swagger settings for api docs SWAGGER_SETTINGS = { "DEFAULT_INFO": f"{ROOT_URLCONF}.api_info", } if DEBUG or not (EMAIL_HOST_USER and EMAIL_HOST_PASSWORD): # output email to console instead of sending if not DEBUG: logging.warning("You should setup `SENDGRID_USERNAME` and `SENDGRID_PASSWORD` env vars to send emails.") EMAIL_BACKEND = "django.core.mail.backends.console.EmailBackend"
928f58c34772c2b4138712fdfcb79215f149fc96
7b4cbaa1e7bab897e34acba06f73ac17760d394a
/sdks/python/client/argo_workflows/model/persistent_volume_claim.py
ed5b44656127c9955f253ef33fcc1405c9aaf6b6
[ "Apache-2.0" ]
permissive
nHurD/argo
0fab7f56179c848ad8a77a9f8981cb62b4a71d09
f4a65b11a184f7429d0615a6fa65bc2cea4cc425
refs/heads/master
2023-01-13T04:39:54.793473
2022-12-18T04:48:37
2022-12-18T04:48:37
227,931,854
0
2
Apache-2.0
2019-12-13T22:24:19
2019-12-13T22:24:18
null
UTF-8
Python
false
false
13,755
py
""" Argo Workflows API Argo Workflows is an open source container-native workflow engine for orchestrating parallel jobs on Kubernetes. For more information, please see https://argoproj.github.io/argo-workflows/ # noqa: E501 The version of the OpenAPI document: VERSION Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from argo_workflows.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, OpenApiModel ) from argo_workflows.exceptions import ApiAttributeError def lazy_import(): from argo_workflows.model.object_meta import ObjectMeta from argo_workflows.model.persistent_volume_claim_spec import PersistentVolumeClaimSpec from argo_workflows.model.persistent_volume_claim_status import PersistentVolumeClaimStatus globals()['ObjectMeta'] = ObjectMeta globals()['PersistentVolumeClaimSpec'] = PersistentVolumeClaimSpec globals()['PersistentVolumeClaimStatus'] = PersistentVolumeClaimStatus class PersistentVolumeClaim(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } @cached_property def additional_properties_type(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded """ lazy_import() return (bool, date, datetime, dict, float, int, list, str, none_type,) # noqa: E501 _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ lazy_import() return { 'api_version': (str,), # noqa: E501 'kind': (str,), # noqa: E501 'metadata': (ObjectMeta,), # noqa: E501 'spec': (PersistentVolumeClaimSpec,), # noqa: E501 'status': (PersistentVolumeClaimStatus,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'api_version': 'apiVersion', # noqa: E501 'kind': 'kind', # noqa: E501 'metadata': 'metadata', # noqa: E501 'spec': 'spec', # noqa: E501 'status': 'status', # noqa: E501 } read_only_vars = { } _composed_schemas = {} @classmethod @convert_js_args_to_python_args def _from_openapi_data(cls, *args, **kwargs): # noqa: E501 """PersistentVolumeClaim - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) api_version (str): APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources. [optional] # noqa: E501 kind (str): Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds. [optional] # noqa: E501 metadata (ObjectMeta): [optional] # noqa: E501 spec (PersistentVolumeClaimSpec): [optional] # noqa: E501 status (PersistentVolumeClaimStatus): [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) self = super(OpenApiModel, cls).__new__(cls) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) return self required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, *args, **kwargs): # noqa: E501 """PersistentVolumeClaim - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) api_version (str): APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources. [optional] # noqa: E501 kind (str): Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds. [optional] # noqa: E501 metadata (ObjectMeta): [optional] # noqa: E501 spec (PersistentVolumeClaimSpec): [optional] # noqa: E501 status (PersistentVolumeClaimStatus): [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) if var_name in self.read_only_vars: raise ApiAttributeError(f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate " f"class with read only attributes.")
92e2ffb6e01ccf60d49d3427184289857918536d
20f951bd927e4e5cde8ef7781813fcf0d51cc3ea
/fossir/web/forms/util.py
1f03bb0a3347fb4b7c709e2715f01c827d7c8c71
[]
no_license
HodardCodeclub/SoftwareDevelopment
60a0fbab045cb1802925d4dd5012d5b030c272e0
6300f2fae830c0c2c73fe0afd9c684383bce63e5
refs/heads/master
2021-01-20T00:30:02.800383
2018-04-27T09:28:25
2018-04-27T09:28:25
101,277,325
0
2
null
null
null
null
UTF-8
Python
false
false
2,463
py
from __future__ import unicode_literals from collections import OrderedDict from copy import deepcopy from wtforms.fields.core import UnboundField def get_form_field_names(form_class): """Returns the list of field names of a WTForm :param form_class: A `Form` subclass """ unbound_fields = form_class._unbound_fields if unbound_fields: return [f[0] for f in unbound_fields] field_names = [] # the following logic has been taken from FormMeta.__call__ for name in dir(form_class): if not name.startswith('_'): unbound_field = getattr(form_class, name) if hasattr(unbound_field, '_formfield'): field_names.append(name) return field_names def inject_validators(form, field_name, validators, early=False): """Add extra validators to a form field. This function may be called from the ``__init__`` method of a form before the ``super().__init__()`` call or on a form class. When using a Form class note that this will modify the class, so all new instances of it will be affected! :param form: the `Form` instance or a `Form` subclass :param field_name: the name of the field to change :param validators: a list of validators to add :param early: whether to inject the validator before any existing validators. this is needed if a field has a validator that stops validation such as DataRequired and the injected one is e.g. HiddenUnless which needs to run even if the field is invalid """ unbound = deepcopy(getattr(form, field_name)) assert isinstance(unbound, UnboundField) if 'validators' in unbound.kwargs: if early: unbound.kwargs['validators'] = validators + unbound.kwargs['validators'] else: unbound.kwargs['validators'] += validators elif len(unbound.args) > 1: if early: validators_arg = validators + unbound.args[1] else: validators_arg = unbound.args[1] + validators unbound.args = unbound.args[:1] + (validators_arg,) + unbound.args[2:] else: unbound.kwargs['validators'] = validators setattr(form, field_name, unbound) if form._unbound_fields is not None: unbound_fields = OrderedDict(form._unbound_fields) unbound_fields[field_name] = unbound form._unbound_fields = unbound_fields.items()
bf25c491d026c56c2680ee54c6c6da0ef243d622
1d96db84225301d972f07cad95c2a13f4fbafa84
/python/my_PyFeyn/testing/pyfeyn-test2.py
82ff7bcb08a3d9741dea8c1a1909d75c7af37668
[]
no_license
mattbellis/matts-work-environment
9eb9b25040dd8fb4a444819b01a80c2d5342b150
41988f3c310f497223445f16e2537e8d1a3f71bc
refs/heads/master
2023-08-23T09:02:37.193619
2023-08-09T05:36:32
2023-08-09T05:36:32
32,194,439
0
0
null
null
null
null
UTF-8
Python
false
false
826
py
#! /usr/bin/env python from pyfeyn.user import * fd = FeynDiagram() p1 = Point(2, -2) p2 = Point(-2, 2) p3 = Vertex(1.25, 1.25, mark=CIRCLE) p4 = p1.midpoint(p2) p5 = p4.midpoint(p1) p6 = p4.midpoint(p2) c1 = Circle(center=p1, radius=0.5, fill=[RED], points=[p1]) c2 = Circle(center=p2, radius=0.3, fill=[GREEN], points=[p2]) e1 = Ellipse(center=p4, xradius=0.5, yradius=1.0, fill=[MIDNIGHTBLUE], points=[p4]) l0a = Fermion(p1, p4) l0b = Fermion(p2, p4) l1 = NamedLine["gluon"](p2, p1).arcThru(x=3, y=0) l2 = NamedLine["photon"](p1, p2).arcThru(x=0, y=-3) l3 = Gluon(p2, p3) l4 = Photon(p1, p3) l5 = Gluon(p5, p6).bend(-p5.distance(p6)/2.0) loop1 = Line(p3, p3).arcThru(x=1.75, y=1.75).addArrow(0.55) l1.addLabel(r"\Pgluon") l2.addLabel(r"\Pphoton") l5.addLabel(r"$\Pgluon_1$") fd.draw("pyfeyn-test2.pdf")
c96e7a60b206a9a0ed2292d388e43a340c284cc5
5c2f520dde0cf8077facc0fcd9a92bc1a96d168b
/from_cpython/Lib/types.py
b8166edf94fcba78305f53822b17e69b61cb466e
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference", "Python-2.0" ]
permissive
nagyist/pyston
b613337a030ef21a3f03708febebe76cedf34c61
14ba2e6e6fb5c7316f66ccca86e6c6a836d96cab
refs/heads/master
2022-12-24T03:56:12.885732
2015-02-25T11:11:08
2015-02-25T11:28:13
31,314,596
0
0
NOASSERTION
2022-12-17T08:15:11
2015-02-25T13:24:41
Python
UTF-8
Python
false
false
2,342
py
"""Define names for all type symbols known in the standard interpreter. Types that are part of optional modules (e.g. array) are not listed. """ import sys # Iterators in Python aren't a matter of type but of protocol. A large # and changing number of builtin types implement *some* flavor of # iterator. Don't check the type! Use hasattr to check for both # "__iter__" and "next" attributes instead. NoneType = type(None) TypeType = type ObjectType = object IntType = int LongType = long FloatType = float BooleanType = bool try: ComplexType = complex except NameError: pass StringType = str # StringTypes is already outdated. Instead of writing "type(x) in # types.StringTypes", you should use "isinstance(x, basestring)". But # we keep around for compatibility with Python 2.2. try: UnicodeType = unicode StringTypes = (StringType, UnicodeType) except NameError: StringTypes = (StringType,) # Pyston change: 'buffer' is not implemented yet # BufferType = buffer TupleType = tuple ListType = list DictType = DictionaryType = dict def _f(): pass FunctionType = type(_f) LambdaType = type(lambda: None) # Same as FunctionType # Pyston change: there is no concept of a "code object" yet: # CodeType = type(_f.func_code) def _g(): yield 1 GeneratorType = type(_g()) class _C: def _m(self): pass ClassType = type(_C) UnboundMethodType = type(_C._m) # Same as MethodType _x = _C() InstanceType = type(_x) MethodType = type(_x._m) BuiltinFunctionType = type(len) BuiltinMethodType = type([].append) # Same as BuiltinFunctionType ModuleType = type(sys) FileType = file XRangeType = xrange # Pyston change: we don't support sys.exc_info yet """ try: raise TypeError except TypeError: tb = sys.exc_info()[2] TracebackType = type(tb) FrameType = type(tb.tb_frame) del tb """ SliceType = slice # Pyston change: don't support this yet # EllipsisType = type(Ellipsis) # Pyston change: don't support this yet # DictProxyType = type(TypeType.__dict__) NotImplementedType = type(NotImplemented) # For Jython, the following two types are identical # Pyston change: don't support these yet # GetSetDescriptorType = type(FunctionType.func_code) # MemberDescriptorType = type(FunctionType.func_globals) del sys, _f, _g, _C, _x # Not for export
39c7a34748c1b3e7fb4a8f0b57485acabb6c4b65
e7efae2b83216d9621bd93390959d652de779c3d
/kyototycoon/tests/test_kyototycoon.py
b7e964c19cda690b27c0b54a0d45f7ae777a268f
[ "BSD-3-Clause", "MIT", "BSD-3-Clause-Modification", "Unlicense", "Apache-2.0", "LGPL-3.0-only", "LicenseRef-scancode-public-domain", "BSD-2-Clause", "CC0-1.0" ]
permissive
DataDog/integrations-core
ee1886cc7655972b2791e6ab8a1c62ab35afdb47
406072e4294edff5b46b513f0cdf7c2c00fac9d2
refs/heads/master
2023-08-31T04:08:06.243593
2023-08-30T18:22:10
2023-08-30T18:22:10
47,203,045
852
1,548
BSD-3-Clause
2023-09-14T16:39:54
2015-12-01T16:41:45
Python
UTF-8
Python
false
false
1,657
py
# (C) Datadog, Inc. 2018-present # All rights reserved # Licensed under a 3-clause BSD style license (see LICENSE) from copy import deepcopy import pytest from datadog_checks.kyototycoon import KyotoTycoonCheck from .common import DEFAULT_INSTANCE, TAGS GAUGES = list(KyotoTycoonCheck.GAUGES.values()) DB_GAUGES = list(KyotoTycoonCheck.DB_GAUGES.values()) TOTALS = list(KyotoTycoonCheck.TOTALS.values()) RATES = list(KyotoTycoonCheck.RATES.values()) # all the RATE type metrics ALL_RATES = TOTALS + RATES def test_check(aggregator, dd_environment): kt = KyotoTycoonCheck('kyototycoon', {}, {}) kt.check(deepcopy(DEFAULT_INSTANCE)) kt.check(deepcopy(DEFAULT_INSTANCE)) _assert_check(aggregator) @pytest.mark.e2e def test_e2e(dd_agent_check): aggregator = dd_agent_check(DEFAULT_INSTANCE, rate=True) _assert_check(aggregator, rate_metric_count=1) def _assert_check(aggregator, rate_metric_count=2): # prefix every metric with check name (kyototycoon.) # no replications, so ignore kyototycoon.replication.delay for mname in GAUGES: if mname != 'replication.delay': aggregator.assert_metric('kyototycoon.{}'.format(mname), tags=TAGS, count=2) for mname in DB_GAUGES: aggregator.assert_metric('kyototycoon.{}'.format(mname), tags=TAGS + ['db:0'], count=2) for mname in ALL_RATES: aggregator.assert_metric('kyototycoon.{}_per_s'.format(mname), tags=TAGS, count=rate_metric_count) # service check aggregator.assert_service_check(KyotoTycoonCheck.SERVICE_CHECK_NAME, status=KyotoTycoonCheck.OK, tags=TAGS, count=2) aggregator.assert_all_metrics_covered()
af984f8b92fa6d9f2f3f4f2529a36de9c3b048da
3ac9cc9f54b1d6c6d5e05317bb0b977f4c1b363d
/profab/main.py
811a78a9ea7a173bb25ab8d19309d19a26ddd8c8
[ "Apache-2.0", "BSL-1.0" ]
permissive
sittisak/profab
5f5a92d8da7a07af80727eee337993929931ba2a
ff3967397b31986c9396f70a44a565d85178e6a6
refs/heads/master
2020-04-05T14:05:47.613997
2016-11-22T02:50:12
2016-11-22T02:50:12
94,763,557
0
1
null
2017-08-21T09:09:46
2017-06-19T10:09:29
Python
UTF-8
Python
false
false
541
py
"""Helper functions for the entry point scripts. """ def process_arguments(*args): """Do the initial argument parse phase. This produces tuples of role instructions """ args = list(args) # Convert tuple to list args.reverse() # We really wanted head() here, but no matter... instructions = [] while len(args): head = args.pop() if head.startswith('--'): instructions.append((head[2:], args.pop())) else: instructions.append((head, None)) return instructions
7892120a6d6a7156cc8d1cd0c3b45f581a21e5bc
b23d294fdffabe72c336644f119860f5ce704eef
/python_1000phone/语言基础-老师代码/day12-生成器和模块/day12-生成器和模块/game/image.py
fd2e2576d1f4c32bae8d829d16fda3308ee0debd
[]
no_license
ikaros274556330/my_code
65232758fd20820e9f4fa8cb5a6c91a1969862a2
92db21c4abcbd88b7bd77e78d9f660b4534b5071
refs/heads/master
2020-11-26T09:43:58.200990
2019-12-23T02:08:39
2019-12-23T02:08:39
229,032,315
1
0
null
null
null
null
UTF-8
Python
false
false
48
py
"""__author__=余婷""" print('image被执行')
156cee855fb4337b19f958444b0a101e766d89a5
cee0df2a184f3f99306193b9f34aba16889cc57c
/pvextractor/utils/wcs_utils.py
88cd249959d5af27eeb395dc415eeb0160e41646
[]
no_license
teuben/pvextractor
169f3317eb2d53013eb981fca18f69d17fa3a8b3
889c108a964d8130b1a17066890c7325b57daf4c
refs/heads/master
2021-01-14T13:16:48.485846
2014-04-18T23:29:17
2014-04-18T23:29:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,278
py
import numpy as np from astropy import units as u from astropy import wcs def get_pixel_scales(mywcs, assert_square=True): # borrowed from aplpy mywcs = mywcs.sub([wcs.WCSSUB_CELESTIAL]) cdelt = np.matrix(mywcs.wcs.get_cdelt()) pc = np.matrix(mywcs.wcs.get_pc()) scale = np.array(cdelt * pc) if (assert_square and (abs(cdelt[0,0]) != abs(cdelt[0,1]) or abs(pc[0,0]) != abs(pc[1,1]) or abs(scale[0,0]) != abs(scale[0,1]))): raise ValueError("Non-square pixels. Please resample data.") return abs(scale[0,0]) def sanitize_wcs(mywcs): pc = np.matrix(mywcs.wcs.get_pc()) if (pc[:,2].sum() != pc[2,2] or pc[2,:].sum() != pc[2,2]): raise ValueError("Non-independent 3rd axis.") axtypes = mywcs.get_axis_types() if ((axtypes[0]['coordinate_type'] != 'celestial' or axtypes[1]['coordinate_type'] != 'celestial' or axtypes[2]['coordinate_type'] != 'spectral')): cunit3 = mywcs.wcs.cunit[2] ctype3 = mywcs.wcs.ctype[2] if cunit3 != '': cunit3 = u.Unit(cunit3) if cunit3.is_equivalent(u.m/u.s): mywcs.wcs.ctype[2] = 'VELO' elif cunit3.is_equivalent(u.Hz): mywcs.wcs.ctype[2] = 'FREQ' elif cunit3.is_equivalent(u.m): mywcs.wcs.ctype[2] = 'WAVE' else: raise ValueError("Could not determine type of 3rd axis.") elif ctype3 != '': if 'VELO' in ctype3: mywcs.wcs.ctype[2] = 'VELO' elif 'FELO' in ctype3: mywcs.wcs.ctype[2] = 'VELO-F2V' elif 'FREQ' in ctype3: mywcs.wcs.ctype[2] = 'FREQ' elif 'WAVE' in ctype3: mywcs.wcs.ctype[2] = 'WAVE' else: raise ValueError("Could not determine type of 3rd axis.") else: raise ValueError("Cube axes not in expected orientation: PPV") return mywcs def wcs_spacing(mywcs, spacing): """ Return spacing in pixels Parameters ---------- wcs : `~astropy.wcs.WCS` spacing : `~astropy.units.Quantity` or float """ if spacing is not None: if hasattr(spacing,'unit'): if not spacing.unit.is_equivalent(u.arcsec): raise TypeError("Spacing is not in angular units.") else: platescale = get_pixel_scales(mywcs) newspacing = spacing.to(u.deg).value / platescale else: # if no units, assume pixels already newspacing = spacing else: # if no spacing, return pixscale newspacing = 1 return newspacing def pixel_to_wcs_spacing(mywcs, pspacing): """ Return spacing in degrees Parameters ---------- wcs : `~astropy.wcs.WCS` spacing : float """ platescale = get_pixel_scales(mywcs) wspacing = platescale * pspacing * u.deg return wspacing def get_wcs_system_name(mywcs): """TODO: move to astropy.wcs.utils""" ct = mywcs.sub([wcs.WCSSUB_CELESTIAL]).wcs.ctype if 'GLON' in ct[0]: return 'galactic' elif 'RA' in ct[0]: return 'icrs' else: raise ValueError("Unrecognized coordinate system")
9b61853924eb18e6ee43387888b12daaf7b0dea5
0b0ca6853f351530384fcb9f3f9c91d4c034512b
/website/opensource/views.py
ba63fbd77e3145251be0ac3cead121e00526bdd4
[]
no_license
thanhleviet/syrusakbary.com
d767129c6b00c092816e3cb58f063d1b052f0df0
ca04f55462db72bb603bfc0453b9404b04ee6687
refs/heads/master
2021-01-18T09:30:31.278757
2012-07-22T20:32:12
2012-07-22T20:32:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
930
py
# Create your views here. #from django.http import HttpResponse #from coffin.template import add_to_builtins #add_to_builtins('jinja2-mediasync.media') #from coffin.shortcuts import render_to_response #from django.shortcuts import render_to_response #from django.template import add_to_builtins #add_to_builtins('mediasync.templatetags.media') #from django.template import RequestContext from django.views.generic import ListView, DetailView from .models import Project class OpenSourceDetailView(DetailView): template_name='opensource/opensource_detail.jade' #queryset = Project.objects.all() queryset = [] class OpenSourceListView(ListView): template_name='opensource/opensource_list.jade' queryset = Project.objects.all() context_object_name = "project_list" #queryset = [] #def index(request): # return render_to_response('projects/index.html',context_instance=RequestContext(request))
2ca98c5399ca4e051f6ba3b6370573ba00678d56
ee3e0a69093e82deff1bddf607f6ce0dde372c48
/ndb769/개념/linked_list.py
96c6f60d40eb889dc16b88a18505851cfabdcac7
[]
no_license
cndqjacndqja/algorithm_python
202f9990ea367629aecdd14304201eb6fa2aa37e
843269cdf8fb9d4c215c92a97fc2d007a8f96699
refs/heads/master
2023-06-24T08:12:29.639424
2021-07-24T05:08:46
2021-07-24T05:08:46
255,552,956
0
0
null
null
null
null
UTF-8
Python
false
false
1,117
py
class Node: def __init__(self, data): self.data = data self.next = None class LinkedList: def __init__(self, data): self.head = Node(data) def append(self, data): cur = self.head while cur.next is not None: cur = cur.next cur.next = Node(data) def get_node(self, index): cnt = 0 node = self.head while cnt < index: cnt += 1 node = node.next return node def add_node(self, index, value): new_node = Node(value) if index == 0: new_node.next = self.head self.head = new_node return node = self.get_node(index - 1) new_node.next = node.next node.next = new_node def delete_node(self, index): if index == 0: self.head = self.head.next return node = self.get_node(index-1) node.next = node.next.next if __name__ == "__main__": data = list(input()) list = LinkedList(data[0]) for i in range(1, len(data)): list.append(data[i])
eff87412bf6ca4715fe05272080cc15cbc15f11a
a9aa0bce4e45b8712ce77045d0ec52eb4014692f
/manage.py
b001c976f32b96704d291a9e4d06d4bf5c399154
[]
no_license
Aleleonel/BionicoBusiness
93431e94a750f86c86d99925952cfc7b7c8cdb6d
85326614f64235d8348aebac8e8b42a9e0764e18
refs/heads/master
2023-08-17T00:41:53.660157
2020-06-01T22:04:06
2020-06-01T22:04:06
268,640,058
0
0
null
2021-06-10T19:24:12
2020-06-01T21:49:19
Python
UTF-8
Python
false
false
627
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'bionico.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
7b095e3e066626392f53c9d6e431e87be22263e4
2a7fe1988b9a9aaf5e301637883319c43d38bcb9
/users/serializers.py
e18ccb36912540ec79d98c4ac36785882da3fc0c
[]
no_license
kenassash/django_rest_notes
65d799b32f520faef2dbd02fae2e05efa8535797
eab022e6e57aaa06918ee5ab80586c8a1a8894c3
refs/heads/master
2023-09-03T19:36:28.304504
2021-10-27T08:19:14
2021-10-27T08:19:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
747
py
from rest_framework.serializers import HyperlinkedModelSerializer # from .models import NoteUser from .models import User class UserModelSerializer(HyperlinkedModelSerializer): class Meta: # model = NoteUser # fields = ('username', 'firstname', 'lastname', 'email') # fields = '__all__' model = User fields = ('id', 'url', 'username', 'first_name', 'last_name', 'email', 'is_superuser', 'is_staff') # fields = ('username', 'first_name', 'last_name', 'email') # fields = '__all__' class UserModelSerializerV2(HyperlinkedModelSerializer): class Meta: model = User # fields = '__all__' fields = ('id', 'url', 'username', 'first_name', 'last_name', 'email')
6da64ddbe8b389fea336607a103d15766e44bd65
3dd58a087b59bdba102f2e6e95b3e200a9530c4c
/django_demo/mysite/polls/tests.py
7d7c15443ccc50f0a7b07c5f29af512cd9f3697e
[]
no_license
natepill/Server-Side-Architecture
b17926cf467083182e96257589dfdc7c3d5ea40e
4765136c5fe9d0eedc6b50a2bbbb0c9458170694
refs/heads/master
2022-12-11T03:41:46.296869
2019-06-24T19:53:15
2019-06-24T19:53:15
189,689,598
0
0
null
2022-12-08T01:22:18
2019-06-01T04:19:09
Python
UTF-8
Python
false
false
5,492
py
import datetime from django.test import TestCase from django.utils import timezone from django.urls import reverse from .models import Question, Choice, def create_question(question_text, days): """ Create a question with the given `question_text` and published the given number of `days` offset to now (negative for questions published in the past, positive for questions that have yet to be published). """ time = timezone.now() + datetime.timedelta(days=days) return Question.objects.create(question_text=question_text, pub_date=time) def add_vote_to_choice(choice): choice.votes += 1 class QuestionModelTests(TestCase): def test_was_published_recently_with_future_question(self): """ was_published_recently() returns False for questions whose pub_date is in the future. """ time = timezone.now() + datetime.timedelta(days=30) future_question = Question(pub_date=time) self.assertIs(future_question.was_published_recently(), False) def test_was_publised_recently_with_old_question(self): """ was_published_recently() returns False for questions whose pub_date is older than 1 day. """ time = timezone.now() - datetime.timedelta(days=1, seconds=1) old_question = Question(pub_date=time) self.assertIs(old_question.was_published_recently(), False) def test_was_published_recently_with_old_question(self): """ was_published_recently() returns False for questions whose pub_date is older than 1 day. """ time = timezone.now() - datetime.timedelta(days=1, seconds=1) old_question = Question(pub_date=time) self.assertIs(old_question.was_published_recently(), False) def test_was_published_recently_with_recent_question(self): """ was_published_recently() returns True for questions whose pub_date is within the last day. """ time = timezone.now() - datetime.timedelta(hours=23, minutes=59, seconds=59) recent_question = Question(pub_date=time) self.assertIs(recent_question.was_published_recently(), True) class QuestionIndexViewTests(TestCase): def test_no_questions(self): """ If no questions exist, an appropriate message is displayed. """ response = self.client.get(reverse('polls:index')) self.assertEqual(response.status_code, 200) self.assertContains(response, "No polls are available.") self.assertQuerysetEqual(response.context['latest_question_list'], []) def test_past_question(self): """ Questions with a pub_date in the past are displayed on the index page. """ create_question(question_text="Past question.", days=-30) response = self.client.get(reverse('polls:index')) self.assertQuerysetEqual( response.context['latest_question_list'], ['<Question: Past question.>'] ) def test_future_question(self): """ Questions with a pub_date in the future aren't displayed on the index page. """ create_question(question_text="Future question.", days=30) response = self.client.get(reverse('polls:index')) self.assertContains(response, "No polls are available.") self.assertQuerysetEqual(response.context['latest_question_list'], []) def test_future_question_and_past_question(self): """ Even if both past and future questions exist, only past questions are displayed. """ create_question(question_text="Past question.", days=-30) create_question(question_text="Future question.", days=30) response = self.client.get(reverse('polls:index')) self.assertQuerysetEqual( response.context['latest_question_list'], ['<Question: Past question.>'] ) def test_two_past_questions(self): """ The questions index page may display multiple questions. """ create_question(question_text="Past question 1.", days=-30) create_question(question_text="Past question 2.", days=-5) response = self.client.get(reverse('polls:index')) self.assertQuerysetEqual( response.context['latest_question_list'], ['<Question: Past question 2.>', '<Question: Past question 1.>'] ) class QuestionDetailViewTests(TestCase): def test_future_question(self): """ The detail view of a question with a pub_date in the future returns a 404 not found. """ future_question = create_question(question_text='Future question.', days=5) url = reverse('polls:detail', args=(future_question.id,)) response = self.client.get(url) self.assertEqual(response.status_code, 404) def test_past_question(self): """ The detail view of a question with a pub_date in the past displays the question's text. """ past_question = create_question(question_text='Past Question.', days=-5) url = reverse('polls:detail', args=(past_question.id,)) response = self.client.get(url) self.assertContains(response, past_question.question_text) class QuestionResultViewTests(TestCase): def test_votes_for_choice(self): new_question = create_question(question_text='Testing that voting for choices work?')
de826dfae0fa88b16b9f28a90bfb267c18c844c7
ff2b4b972865ab82464d550934329117500d3195
/bfg9000/tools/mkdir_p.py
f12325a7350d79273dadc255603b865d4c34c859
[ "BSD-3-Clause" ]
permissive
juntalis/bfg9000
cd38a9194e6c08a4fbcf3be29f37c00bfa532588
594eb2aa7c259855e7658d69fe84acb6dad890fa
refs/heads/master
2021-08-08T21:35:33.896506
2017-11-11T08:47:57
2017-11-11T08:47:57
110,331,128
0
0
null
2017-11-11T08:46:05
2017-11-11T08:46:04
null
UTF-8
Python
false
false
396
py
from . import tool from .common import SimpleCommand @tool('mkdir_p') class MkdirP(SimpleCommand): def __init__(self, env): default = 'doppel -p' if env.platform.name == 'windows' else 'mkdir -p' SimpleCommand.__init__(self, env, name='mkdir_p', env_var='MKDIR_P', default=default) def _call(self, cmd, path): return cmd + [path]
3cea7cfc0e0c7f0ce28a2297adca573ec9a9e999
eb9c3dac0dca0ecd184df14b1fda62e61cc8c7d7
/google/devtools/cloudbuild/v1/devtools-cloudbuild-v1-py/google/devtools/cloudbuild_v1/services/cloud_build/transports/base.py
36c52c54ceb1c9b4ddd4224c7b0ac3a69084ee44
[ "Apache-2.0" ]
permissive
Tryweirder/googleapis-gen
2e5daf46574c3af3d448f1177eaebe809100c346
45d8e9377379f9d1d4e166e80415a8c1737f284d
refs/heads/master
2023-04-05T06:30:04.726589
2021-04-13T23:35:20
2021-04-13T23:35:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
15,757
py
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import abc import typing import pkg_resources from google import auth # type: ignore from google.api_core import exceptions # type: ignore from google.api_core import gapic_v1 # type: ignore from google.api_core import retry as retries # type: ignore from google.api_core import operations_v1 # type: ignore from google.auth import credentials # type: ignore from google.devtools.cloudbuild_v1.types import cloudbuild from google.longrunning import operations_pb2 as operations # type: ignore from google.protobuf import empty_pb2 as empty # type: ignore try: DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo( gapic_version=pkg_resources.get_distribution( 'google-devtools-cloudbuild', ).version, ) except pkg_resources.DistributionNotFound: DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo() class CloudBuildTransport(abc.ABC): """Abstract transport class for CloudBuild.""" AUTH_SCOPES = ( 'https://www.googleapis.com/auth/cloud-platform', ) def __init__( self, *, host: str = 'cloudbuild.googleapis.com', credentials: credentials.Credentials = None, credentials_file: typing.Optional[str] = None, scopes: typing.Optional[typing.Sequence[str]] = AUTH_SCOPES, quota_project_id: typing.Optional[str] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, **kwargs, ) -> None: """Instantiate the transport. Args: host (Optional[str]): The hostname to connect to. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is mutually exclusive with credentials. scope (Optional[Sequence[str]]): A list of scopes. quota_project_id (Optional[str]): An optional project to use for billing and quota. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. """ # Save the hostname. Default to port 443 (HTTPS) if none is specified. if ':' not in host: host += ':443' self._host = host # Save the scopes. self._scopes = scopes or self.AUTH_SCOPES # If no credentials are provided, then determine the appropriate # defaults. if credentials and credentials_file: raise exceptions.DuplicateCredentialArgs("'credentials_file' and 'credentials' are mutually exclusive") if credentials_file is not None: credentials, _ = auth.load_credentials_from_file( credentials_file, scopes=self._scopes, quota_project_id=quota_project_id ) elif credentials is None: credentials, _ = auth.default(scopes=self._scopes, quota_project_id=quota_project_id) # Save the credentials. self._credentials = credentials def _prep_wrapped_messages(self, client_info): # Precompute the wrapped methods. self._wrapped_methods = { self.create_build: gapic_v1.method.wrap_method( self.create_build, default_timeout=600.0, client_info=client_info, ), self.get_build: gapic_v1.method.wrap_method( self.get_build, default_retry=retries.Retry( initial=0.1, maximum=60.0, multiplier=1.3, predicate=retries.if_exception_type( exceptions.DeadlineExceeded, exceptions.ServiceUnavailable, ), deadline=600.0, ), default_timeout=600.0, client_info=client_info, ), self.list_builds: gapic_v1.method.wrap_method( self.list_builds, default_retry=retries.Retry( initial=0.1, maximum=60.0, multiplier=1.3, predicate=retries.if_exception_type( exceptions.DeadlineExceeded, exceptions.ServiceUnavailable, ), deadline=600.0, ), default_timeout=600.0, client_info=client_info, ), self.cancel_build: gapic_v1.method.wrap_method( self.cancel_build, default_timeout=600.0, client_info=client_info, ), self.retry_build: gapic_v1.method.wrap_method( self.retry_build, default_timeout=600.0, client_info=client_info, ), self.create_build_trigger: gapic_v1.method.wrap_method( self.create_build_trigger, default_timeout=600.0, client_info=client_info, ), self.get_build_trigger: gapic_v1.method.wrap_method( self.get_build_trigger, default_retry=retries.Retry( initial=0.1, maximum=60.0, multiplier=1.3, predicate=retries.if_exception_type( exceptions.DeadlineExceeded, exceptions.ServiceUnavailable, ), deadline=600.0, ), default_timeout=600.0, client_info=client_info, ), self.list_build_triggers: gapic_v1.method.wrap_method( self.list_build_triggers, default_retry=retries.Retry( initial=0.1, maximum=60.0, multiplier=1.3, predicate=retries.if_exception_type( exceptions.DeadlineExceeded, exceptions.ServiceUnavailable, ), deadline=600.0, ), default_timeout=600.0, client_info=client_info, ), self.delete_build_trigger: gapic_v1.method.wrap_method( self.delete_build_trigger, default_retry=retries.Retry( initial=0.1, maximum=60.0, multiplier=1.3, predicate=retries.if_exception_type( exceptions.DeadlineExceeded, exceptions.ServiceUnavailable, ), deadline=600.0, ), default_timeout=600.0, client_info=client_info, ), self.update_build_trigger: gapic_v1.method.wrap_method( self.update_build_trigger, default_timeout=600.0, client_info=client_info, ), self.run_build_trigger: gapic_v1.method.wrap_method( self.run_build_trigger, default_timeout=600.0, client_info=client_info, ), self.receive_trigger_webhook: gapic_v1.method.wrap_method( self.receive_trigger_webhook, default_timeout=None, client_info=client_info, ), self.create_worker_pool: gapic_v1.method.wrap_method( self.create_worker_pool, default_timeout=600.0, client_info=client_info, ), self.get_worker_pool: gapic_v1.method.wrap_method( self.get_worker_pool, default_retry=retries.Retry( initial=0.1, maximum=60.0, multiplier=1.3, predicate=retries.if_exception_type( exceptions.DeadlineExceeded, exceptions.ServiceUnavailable, ), deadline=600.0, ), default_timeout=600.0, client_info=client_info, ), self.delete_worker_pool: gapic_v1.method.wrap_method( self.delete_worker_pool, default_timeout=600.0, client_info=client_info, ), self.update_worker_pool: gapic_v1.method.wrap_method( self.update_worker_pool, default_timeout=600.0, client_info=client_info, ), self.list_worker_pools: gapic_v1.method.wrap_method( self.list_worker_pools, default_retry=retries.Retry( initial=0.1, maximum=60.0, multiplier=1.3, predicate=retries.if_exception_type( exceptions.DeadlineExceeded, exceptions.ServiceUnavailable, ), deadline=600.0, ), default_timeout=600.0, client_info=client_info, ), } @property def operations_client(self) -> operations_v1.OperationsClient: """Return the client designed to process long-running operations.""" raise NotImplementedError() @property def create_build(self) -> typing.Callable[ [cloudbuild.CreateBuildRequest], typing.Union[ operations.Operation, typing.Awaitable[operations.Operation] ]]: raise NotImplementedError() @property def get_build(self) -> typing.Callable[ [cloudbuild.GetBuildRequest], typing.Union[ cloudbuild.Build, typing.Awaitable[cloudbuild.Build] ]]: raise NotImplementedError() @property def list_builds(self) -> typing.Callable[ [cloudbuild.ListBuildsRequest], typing.Union[ cloudbuild.ListBuildsResponse, typing.Awaitable[cloudbuild.ListBuildsResponse] ]]: raise NotImplementedError() @property def cancel_build(self) -> typing.Callable[ [cloudbuild.CancelBuildRequest], typing.Union[ cloudbuild.Build, typing.Awaitable[cloudbuild.Build] ]]: raise NotImplementedError() @property def retry_build(self) -> typing.Callable[ [cloudbuild.RetryBuildRequest], typing.Union[ operations.Operation, typing.Awaitable[operations.Operation] ]]: raise NotImplementedError() @property def create_build_trigger(self) -> typing.Callable[ [cloudbuild.CreateBuildTriggerRequest], typing.Union[ cloudbuild.BuildTrigger, typing.Awaitable[cloudbuild.BuildTrigger] ]]: raise NotImplementedError() @property def get_build_trigger(self) -> typing.Callable[ [cloudbuild.GetBuildTriggerRequest], typing.Union[ cloudbuild.BuildTrigger, typing.Awaitable[cloudbuild.BuildTrigger] ]]: raise NotImplementedError() @property def list_build_triggers(self) -> typing.Callable[ [cloudbuild.ListBuildTriggersRequest], typing.Union[ cloudbuild.ListBuildTriggersResponse, typing.Awaitable[cloudbuild.ListBuildTriggersResponse] ]]: raise NotImplementedError() @property def delete_build_trigger(self) -> typing.Callable[ [cloudbuild.DeleteBuildTriggerRequest], typing.Union[ empty.Empty, typing.Awaitable[empty.Empty] ]]: raise NotImplementedError() @property def update_build_trigger(self) -> typing.Callable[ [cloudbuild.UpdateBuildTriggerRequest], typing.Union[ cloudbuild.BuildTrigger, typing.Awaitable[cloudbuild.BuildTrigger] ]]: raise NotImplementedError() @property def run_build_trigger(self) -> typing.Callable[ [cloudbuild.RunBuildTriggerRequest], typing.Union[ operations.Operation, typing.Awaitable[operations.Operation] ]]: raise NotImplementedError() @property def receive_trigger_webhook(self) -> typing.Callable[ [cloudbuild.ReceiveTriggerWebhookRequest], typing.Union[ cloudbuild.ReceiveTriggerWebhookResponse, typing.Awaitable[cloudbuild.ReceiveTriggerWebhookResponse] ]]: raise NotImplementedError() @property def create_worker_pool(self) -> typing.Callable[ [cloudbuild.CreateWorkerPoolRequest], typing.Union[ cloudbuild.WorkerPool, typing.Awaitable[cloudbuild.WorkerPool] ]]: raise NotImplementedError() @property def get_worker_pool(self) -> typing.Callable[ [cloudbuild.GetWorkerPoolRequest], typing.Union[ cloudbuild.WorkerPool, typing.Awaitable[cloudbuild.WorkerPool] ]]: raise NotImplementedError() @property def delete_worker_pool(self) -> typing.Callable[ [cloudbuild.DeleteWorkerPoolRequest], typing.Union[ empty.Empty, typing.Awaitable[empty.Empty] ]]: raise NotImplementedError() @property def update_worker_pool(self) -> typing.Callable[ [cloudbuild.UpdateWorkerPoolRequest], typing.Union[ cloudbuild.WorkerPool, typing.Awaitable[cloudbuild.WorkerPool] ]]: raise NotImplementedError() @property def list_worker_pools(self) -> typing.Callable[ [cloudbuild.ListWorkerPoolsRequest], typing.Union[ cloudbuild.ListWorkerPoolsResponse, typing.Awaitable[cloudbuild.ListWorkerPoolsResponse] ]]: raise NotImplementedError() __all__ = ( 'CloudBuildTransport', )
[ "bazel-bot-development[bot]@users.noreply.github.com" ]
bazel-bot-development[bot]@users.noreply.github.com
0dc860e73fdb9073bea7b31d75831fe246b55cd2
35c3999aa3f6a9e31ae6f9170ac0235da4fe7e11
/irekua_rest_api/serializers/devices/physical_devices.py
c9b5828b1b4bdec7cd965b6ca25e906f17db16f2
[ "BSD-2-Clause" ]
permissive
CONABIO-audio/irekua-rest-api
28cf9806330c8926437542ae9152b8a7da57714f
35cf5153ed7f54d12ebad2ac07d472585f04e3e7
refs/heads/master
2022-12-12T09:24:18.217032
2020-08-15T21:01:20
2020-08-15T21:01:20
219,046,247
0
4
BSD-4-Clause
2022-12-08T10:54:47
2019-11-01T19:03:10
Python
UTF-8
Python
false
false
2,098
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from rest_framework import serializers from irekua_database.models import PhysicalDevice from irekua_rest_api.serializers.base import IrekuaModelSerializer from irekua_rest_api.serializers.base import IrekuaHyperlinkedModelSerializer from irekua_rest_api.serializers.users import users from . import devices class SelectSerializer(IrekuaModelSerializer): class Meta: model = PhysicalDevice fields = ( 'url', 'id', ) class ListSerializer(IrekuaModelSerializer): type = serializers.CharField( read_only=True, source='device.device_type.name') brand = serializers.CharField( read_only=True, source='device.brand.name') model = serializers.CharField( read_only=True, source='device.model') class Meta: model = PhysicalDevice fields = ( 'url', 'id', 'serial_number', 'type', 'brand', 'model', ) class DetailSerializer(IrekuaHyperlinkedModelSerializer): device = devices.SelectSerializer(many=False, read_only=True) owner = users.SelectSerializer(many=False, read_only=True) class Meta: model = PhysicalDevice fields = ( 'url', 'serial_number', 'owner', 'metadata', 'bundle', 'device', 'created_on', 'modified_on', ) class CreateSerializer(IrekuaModelSerializer): class Meta: model = PhysicalDevice fields = ( 'serial_number', 'device', 'metadata', 'bundle', ) def create(self, validated_data): user = self.context['request'].user validated_data['owner'] = user return super().create(validated_data) class UpdateSerializer(IrekuaModelSerializer): class Meta: model = PhysicalDevice fields = ( 'serial_number', 'metadata', )
dc09c3c13f4ca2119ef4419cf567c1bbe2bf7f42
81bdc1dccfb95877e5f376527c23cb5c72a13922
/pyl2extra/gui/debugger/remote_window.py
05041c0221dd8c677c8b0d68e7c8136c0ee9f4e5
[ "BSD-3-Clause" ]
permissive
TNick/pyl2extra
1fb5be10448bc09018e2b0ac294b2e03fb146a57
323e1ecefeedc7d196de6d7ac6d8eceecb756333
refs/heads/master
2021-01-22T07:04:10.082374
2015-08-11T09:57:17
2015-08-11T09:57:17
34,400,301
0
1
null
2015-04-22T17:19:50
2015-04-22T15:58:21
Python
UTF-8
Python
false
false
2,954
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ @author: Nicu Tofan <[email protected]> """ from PyQt4 import QtGui, QtCore from pyl2extra.gui.guihelpers import center class RemoteDialog(QtGui.QDialog): """ Allows selecting remote in order to debug on that remote. """ def __init__(self, mw): """ Constructor """ super(RemoteDialog, self).__init__() self.mw = mw self.init_ui() def init_ui(self): """ Prepares the GUI. """ self.resize(300, 200) self.setWindowTitle('Connect to remote') center(self) self.button_box = QtGui.QDialogButtonBox(self) self.button_box.setGeometry(QtCore.QRect(150, 250, 341, 32)) self.button_box.setOrientation(QtCore.Qt.Horizontal) self.button_box.setStandardButtons(QtGui.QDialogButtonBox.Cancel|QtGui.QDialogButtonBox.Ok) self.button_box.setObjectName("button_box") lbl_address = QtGui.QLabel('Address') lbl_post_rcv = QtGui.QLabel('Control port') lbl_port_sub = QtGui.QLabel('Broadcast port') le_address = QtGui.QLineEdit() le_address.setPlaceholderText('The address of the remote machine') le_address.setToolTip('This may also be an ip address.') le_address.setText('127.0.0.1') sp_port_rcv = QtGui.QSpinBox() sp_port_rcv.setMinimum(1024) sp_port_rcv.setMaximum(65565) sp_port_rcv.setValue(5955) sp_port_rcv.setToolTip('Port for command and control.') sp_port_sub = QtGui.QSpinBox() sp_port_sub.setMinimum(1024) sp_port_sub.setMaximum(65565) sp_port_sub.setValue(5956) sp_port_sub.setToolTip('Port where the remote debugger publishes information.') grid1 = QtGui.QGridLayout() grid1.setSpacing(10) grid1.addWidget(lbl_address, 1, 0) grid1.addWidget(le_address, 1, 1) grid1.addWidget(lbl_post_rcv, 2, 0) grid1.addWidget(sp_port_rcv, 2, 1) grid1.addWidget(lbl_port_sub, 3, 0) grid1.addWidget(sp_port_sub, 3, 1) grid = QtGui.QVBoxLayout() grid.setSpacing(10) grid.addLayout(grid1) grid.addWidget(self.button_box) self.setLayout(grid) QtCore.QObject.connect(self.button_box, QtCore.SIGNAL("accepted()"), self.accept) QtCore.QObject.connect(self.button_box, QtCore.SIGNAL("rejected()"), self.reject) QtCore.QMetaObject.connectSlotsByName(self) self.le_address = le_address self.sp_port_rcv = sp_port_rcv self.sp_port_sub = sp_port_sub def get_values(self): """ Return the values selected by the user. """ values = {'address': self.le_address.text().strip(), 'rport': self.sp_port_rcv.value(), 'pport': self.sp_port_sub.value()} return values
e452abec56c616eb8b46b78e240cb845aecc2319
6b0d0aec9704d70663fe0edc2a6624a689cc081e
/src/app/pre/wav.py
db52981330702787a0ef82c48d08f68a0e589f2b
[ "BSD-3-Clause" ]
permissive
stefantaubert/tacotron2
086d81b38b2c49655df6b0d8d63c633e7531399a
8475f014391c5066cfe0b92b6c74568639be5e79
refs/heads/master
2023-03-29T21:07:02.266973
2020-11-25T09:57:40
2020-11-25T09:57:40
267,858,113
5
0
BSD-3-Clause
2020-05-29T12:56:56
2020-05-29T12:56:55
null
UTF-8
Python
false
false
3,818
py
import os from functools import partial from typing import Any from src.app.pre.ds import get_ds_dir, load_ds_csv from src.core.common.utils import get_subdir from src.core.pre.wav import (WavData, WavDataList, normalize, preprocess, remove_silence, stereo_to_mono, upsample) _wav_data_csv = "data.csv" def _get_wav_root_dir(ds_dir: str, create: bool = False): return get_subdir(ds_dir, "wav", create) def get_wav_dir(ds_dir: str, wav_name: str, create: bool = False): return get_subdir(_get_wav_root_dir(ds_dir, create), wav_name, create) def load_wav_csv(wav_dir: str) -> WavDataList: path = os.path.join(wav_dir, _wav_data_csv) return WavDataList.load(WavData, path) def save_wav_csv(wav_dir: str, wav_data: WavDataList): path = os.path.join(wav_dir, _wav_data_csv) wav_data.save(path) def preprocess_wavs(base_dir: str, ds_name: str, wav_name: str): print("Preprocessing wavs...") ds_dir = get_ds_dir(base_dir, ds_name) wav_dir = get_wav_dir(ds_dir, wav_name) if os.path.isdir(wav_dir): print("Already exists.") else: data = load_ds_csv(ds_dir) wav_data = preprocess(data) os.makedirs(wav_dir) save_wav_csv(wav_dir, wav_data) def _wav_op(base_dir: str, ds_name: str, origin_wav_name: str, destination_wav_name: str, op: Any): ds_dir = get_ds_dir(base_dir, ds_name) dest_wav_dir = get_wav_dir(ds_dir, destination_wav_name) if os.path.isdir(dest_wav_dir): print("Already exists.") else: orig_wav_dir = get_wav_dir(ds_dir, origin_wav_name) assert os.path.isdir(orig_wav_dir) data = load_wav_csv(orig_wav_dir) os.makedirs(dest_wav_dir) wav_data = op(data, dest_wav_dir) save_wav_csv(dest_wav_dir, wav_data) def wavs_normalize(base_dir: str, ds_name: str, orig_wav_name: str, dest_wav_name: str): print("Normalizing wavs...") op = partial(normalize) _wav_op(base_dir, ds_name, orig_wav_name, dest_wav_name, op) def wavs_upsample(base_dir: str, ds_name: str, orig_wav_name: str, dest_wav_name: str, rate: int): print("Resampling wavs...") op = partial(upsample, new_rate=rate) _wav_op(base_dir, ds_name, orig_wav_name, dest_wav_name, op) def wavs_stereo_to_mono(base_dir: str, ds_name: str, orig_wav_name: str, dest_wav_name: str): print("Converting wavs from stereo to mono...") op = partial(stereo_to_mono) _wav_op(base_dir, ds_name, orig_wav_name, dest_wav_name, op) def wavs_remove_silence(base_dir: str, ds_name: str, orig_wav_name: str, dest_wav_name: str, chunk_size: int, threshold_start: float, threshold_end: float, buffer_start_ms: float, buffer_end_ms: float): print("Removing silence in wavs...") op = partial(remove_silence, chunk_size=chunk_size, threshold_start=threshold_start, threshold_end=threshold_end, buffer_start_ms=buffer_start_ms, buffer_end_ms=buffer_end_ms) _wav_op(base_dir, ds_name, orig_wav_name, dest_wav_name, op) if __name__ == "__main__": preprocess_wavs( base_dir="/datasets/models/taco2pt_v5", ds_name="ljs", wav_name="22050kHz", ) preprocess_wavs( base_dir="/datasets/models/taco2pt_v5", ds_name="thchs", wav_name="16000kHz", ) wavs_normalize( base_dir="/datasets/models/taco2pt_v5", ds_name="thchs", orig_wav_name="16000kHz", dest_wav_name="16000kHz_normalized", ) wavs_remove_silence( base_dir="/datasets/models/taco2pt_v5", ds_name="thchs", orig_wav_name="16000kHz_normalized", dest_wav_name="16000kHz_normalized_nosil", threshold_start=-20, threshold_end=-30, chunk_size=5, buffer_start_ms=100, buffer_end_ms=150 ) wavs_upsample( base_dir="/datasets/models/taco2pt_v5", ds_name="thchs", orig_wav_name="16000kHz_normalized_nosil", dest_wav_name="22050kHz_normalized_nosil", rate=22050, )
541a2bb132c30e724fa65dfdccfd3b3de2e89856
7f651a7dfa7cd101ddf9dd133ff78bfe996eeb3f
/main.py
910916d224daa088ba293871bad373666348f2d1
[ "MIT" ]
permissive
TrendingTechnology/PyPi-Bot
33071b0e789509dfc267ec25a3e11417d60c1395
bc2ee98981af4bc9f415a1f968bf872380d017f0
refs/heads/main
2023-06-30T08:50:57.641601
2021-08-02T13:47:28
2021-08-02T13:47:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,257
py
# Author: Fayas (https://github.com/FayasNoushad) (@FayasNoushad) import os import requests from requests.utils import requote_uri from pyrogram import Client, filters from pyrogram.types import InlineKeyboardMarkup, InlineKeyboardButton API = "https://api.abirhasan.wtf/pypi?query=" START_TEXT = """ Hello {}, I am a pypi package search telegram bot. - Send a pypi package name. - I will send the information of package. Made by @FayasNoushad """ BUTTONS = [InlineKeyboardButton('⚙ Join Updates Channel ⚙', url='https://telegram.me/FayasNoushad')] Bot = Client( "PyPi-Bot", bot_token = os.environ["BOT_TOKEN"], api_id = int(os.environ["API_ID"]), api_hash = os.environ["API_HASH"] ) @Bot.on_message(filters.private & filters.command(["start", "help", "about"])) async def start(bot, update): text = START_TEXT.format(update.from_user.mention) reply_markup = InlineKeyboardMarkup([BUTTONS]) await update.reply_text( text=text, disable_web_page_preview=True, reply_markup=reply_markup, quote=True ) @Bot.on_message(filters.text) async def pypi_info(bot, update): try: query = update.text if update.chat.type == "private" else update.text.split()[1] text = pypi_text(query) reply_markup = InlineKeyboardMarkup([pypi_buttons(query), BUTTONS]) await update.reply_text( text=text, disable_web_page_preview=True, reply_markup=reply_markup, quote=True ) except: pass def pypi(query): r = requests.get(requote_uri(API + query)) info = r.json() return info def pypi_text(query): info = pypi(query) text = "--**Information**--\n" text += f"\n**Package Name:** `{info['PackageName']}`" text += f"\n**Title:** `{info['Title']}`" text += f"\n**About:** `{info['About']}`" text += f"\n**Latest Release Date:** `{info['LatestReleaseDate']}`" text += f"\n**PiP Command:** `{info['PipCommand']}`" return text def pypi_buttons(query): info = pypi(query) buttons = [ InlineKeyboardButton(text="PyPi", url=info['PyPi']), InlineKeyboardButton(text="Home Page", url=info['HomePage']) ] return buttons Bot.run()
d255e8072a01057e097ccaa3a705564e60199c9e
91fe8f479fa921fa84111d19222a5c6aa6eff030
/basis/progr-py/Gui/ShellGui/packdlg_redirect.py
e74111a94ff6ede688ace45c422255376555b419
[]
no_license
romanticair/python
2055c9cdaa46894c9788d5797643283786ed46dd
6f91fe5e7cbedcdf4b8f7baa7641fd615b4d6141
refs/heads/master
2022-11-03T17:17:17.608786
2019-07-05T07:07:29
2019-07-05T07:07:29
195,356,190
0
1
null
2022-10-14T20:51:14
2019-07-05T07:00:33
Python
UTF-8
Python
false
false
496
py
# 将命令行脚本包装到图形界面重定向工具中,输出显示到弹出式窗口中 from tkinter import * from packdlg import runPackDialog from Gui.Tools.guiStreams import redirectedGuiFunc def runPackDialog_Wrapped(): # 在mytools.py中运行的回调函数 redirectedGuiFunc(runPackDialog) # 对整个回调处理程序进行包装 if __name__ == '__main__': root = Tk() Button(root, text='pop', command=runPackDialog_Wrapped).pack(fill=X) root.mainloop()
0b216fd14819d28ed423883d66d0426efdbf220b
d00e68b2c14b44e7cbf13f7ddca284cdfd21c201
/tests/v2_validation/cattlevalidationtest/core/test_services_lb_host_routing_balancer.py
94d5b0c0c6c9e7f67ae8c9ce735a2053a54d1fa2
[ "Apache-2.0", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
guangbochen/validation-tests
db92aff9b48c705115be828de1dc645143f4c9c8
23e7ab95ce76744483a0657f790b42a88a93436d
refs/heads/master
2021-09-11T14:16:57.668817
2018-04-08T19:01:02
2018-04-08T19:01:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
57,937
py
from common_fixtures import * # NOQA logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) STRESS_LB_PORT_RULE_COUNT = os.environ.get( 'STRESS_LB_PORT_RULE_COUNT', "20") def test_lbservice_host_routing_1(client, socat_containers): port = "900" service_scale = 2 lb_scale = 1 service_count = 4 port_rules = [] port_rule = {"hostname": "www.abc1.com", "path": "/service1.html", "serviceId": 0, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"hostname": "www.abc2.com", "path": "/service2.html", "serviceId": 0, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"hostname": "www.abc1.com", "path": "/service1.html", "serviceId": 1, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"hostname": "www.abc2.com", "path": "/service2.html", "serviceId": 1, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"hostname": "www.abc3.com", "path": "/service1.html", "serviceId": 2, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"hostname": "www.abc4.com", "path": "/service2.html", "serviceId": 2, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"hostname": "www.abc3.com", "path": "/service1.html", "serviceId": 3, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"hostname": "www.abc4.com", "path": "/service2.html", "serviceId": 3, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) env, services, lb_service = create_env_with_multiple_svc_and_lb( client, service_scale, lb_scale, [port], service_count, port_rules) wait_for_lb_service_to_become_active(client, services, lb_service) validate_lb_service(client, lb_service, port, [services[0], services[1]], "www.abc1.com", "/service1.html") validate_lb_service(client, lb_service, port, [services[0], services[1]], "www.abc2.com", "/service2.html") validate_lb_service(client, lb_service, port, [services[2], services[3]], "www.abc3.com", "/service1.html") validate_lb_service(client, lb_service, port, [services[2], services[3]], "www.abc4.com", "/service2.html") delete_all(client, [env]) def test_lbservice_host_routing_cross_stack( client, socat_containers): port = "901" service_scale = 2 lb_scale = 1 service_count = 4 port_rules = [] port_rule = {"hostname": "www.abc1.com", "path": "/service1.html", "serviceId": 0, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"hostname": "www.abc2.com", "path": "/service2.html", "serviceId": 0, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"hostname": "www.abc1.com", "path": "/service1.html", "serviceId": 1, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"hostname": "www.abc2.com", "path": "/service2.html", "serviceId": 1, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"hostname": "www.abc3.com", "path": "/service1.html", "serviceId": 2, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"hostname": "www.abc4.com", "path": "/service2.html", "serviceId": 2, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"hostname": "www.abc3.com", "path": "/service1.html", "serviceId": 3, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"hostname": "www.abc4.com", "path": "/service2.html", "serviceId": 3, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) env, services, lb_service = create_env_with_multiple_svc_and_lb( client, service_scale, lb_scale, [port], service_count, port_rules, crosslinking=True) for service in services: service = service.activate() for service in services: service = client.wait_success(service, 120) assert service.state == "active" wait_for_lb_service_to_become_active(client, services, lb_service) validate_lb_service(client, lb_service, port, [services[0], services[1]], "www.abc1.com", "/service1.html") validate_lb_service(client, lb_service, port, [services[0], services[1]], "www.abc2.com", "/service2.html") validate_lb_service(client, lb_service, port, [services[2], services[3]], "www.abc3.com", "/service1.html") validate_lb_service(client, lb_service, port, [services[2], services[3]], "www.abc4.com", "/service2.html") to_delete = [env] for service in services: to_delete.append(get_env(client, service)) delete_all(client, to_delete) def test_lbservice_host_routing_2(client, socat_containers): port = "902" service_scale = 2 lb_scale = 1 service_count = 3 port_rules = [] port_rule = {"hostname": "www.abc1.com", "path": "/service1.html", "serviceId": 0, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"hostname": "www.abc2.com", "path": "/service2.html", "serviceId": 0, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"hostname": "www.abc1.com", "path": "/service1.html", "serviceId": 1, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"hostname": "www.abc2.com", "path": "/service2.html", "serviceId": 1, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"hostname": "www.abc1.com", "path": "/name.html", "serviceId": 2, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"hostname": "www.abc2.com", "path": "/name.html", "serviceId": 2, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) env, services, lb_service = create_env_with_multiple_svc_and_lb( client, service_scale, lb_scale, [port], service_count, port_rules) wait_for_lb_service_to_become_active(client, services, lb_service) validate_lb_service(client, lb_service, port, [services[0], services[1]], "www.abc1.com", "/service1.html") validate_lb_service(client, lb_service, port, [services[0], services[1]], "www.abc2.com", "/service2.html") validate_lb_service(client, lb_service, port, [services[2]], "www.abc1.com", "/name.html") validate_lb_service(client, lb_service, port, [services[2]], "www.abc2.com", "/name.html") validate_lb_service_for_no_access(client, lb_service, port, "www.abc1.com", "/service2.html") validate_lb_service_for_no_access(client, lb_service, port, "www.abc2.com", "/service1.html") delete_all(client, [env]) def test_lbservice_host_routing_scale_up( client, socat_containers): port = "903" service_scale = 2 lb_scale = 1 service_count = 3 port_rules = [] port_rule = {"hostname": "www.abc1.com", "path": "/service1.html", "serviceId": 0, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"hostname": "www.abc2.com", "path": "/service2.html", "serviceId": 0, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"hostname": "www.abc1.com", "path": "/service1.html", "serviceId": 1, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"hostname": "www.abc2.com", "path": "/service2.html", "serviceId": 1, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"hostname": "www.abc1.com", "path": "/name.html", "serviceId": 2, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"hostname": "www.abc2.com", "path": "/name.html", "serviceId": 2, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) env, services, lb_service = create_env_with_multiple_svc_and_lb( client, service_scale, lb_scale, [port], service_count, port_rules) wait_for_lb_service_to_become_active(client, services, lb_service) validate_lb_service(client, lb_service, port, [services[0], services[1]], "www.abc1.com", "/service1.html") validate_lb_service(client, lb_service, port, [services[0], services[1]], "www.abc2.com", "/service2.html") validate_lb_service(client, lb_service, port, [services[2]], "www.abc1.com", "/name.html") validate_lb_service(client, lb_service, port, [services[2]], "www.abc2.com", "/name.html") validate_lb_service_for_no_access(client, lb_service, port, "www.abc1.com", "/service2.html") validate_lb_service_for_no_access(client, lb_service, port, "www.abc2.com", "/service1.html") final_service_scale = 3 final_services = [] for service in services: service = client.update(service, scale=final_service_scale, name=service.name) service = client.wait_success(service, 120) assert service.state == "active" assert service.scale == final_service_scale final_services.append(service) wait_for_lb_service_to_become_active(client, final_services, lb_service) validate_lb_service(client, lb_service, port, [final_services[0], final_services[1]], "www.abc1.com", "/service1.html") validate_lb_service(client, lb_service, port, [final_services[0], final_services[1]], "www.abc2.com", "/service2.html") validate_lb_service(client, lb_service, port, [final_services[2]], "www.abc1.com", "/name.html") validate_lb_service(client, lb_service, port, [final_services[2]], "www.abc2.com", "/name.html") validate_lb_service_for_no_access(client, lb_service, port, "www.abc1.com", "/service2.html") validate_lb_service_for_no_access(client, lb_service, port, "www.abc2.com", "/service1.html") delete_all(client, [env]) def test_lbservice_host_routing_scale_down( client, socat_containers): port = "904" service_scale = 3 lb_scale = 1 service_count = 3 port_rules = [] port_rule = {"hostname": "www.abc1.com", "path": "/service1.html", "serviceId": 0, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"hostname": "www.abc2.com", "path": "/service2.html", "serviceId": 0, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"hostname": "www.abc1.com", "path": "/service1.html", "serviceId": 1, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"hostname": "www.abc2.com", "path": "/service2.html", "serviceId": 1, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"hostname": "www.abc1.com", "path": "/name.html", "serviceId": 2, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"hostname": "www.abc2.com", "path": "/name.html", "serviceId": 2, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) env, services, lb_service = create_env_with_multiple_svc_and_lb( client, service_scale, lb_scale, [port], service_count, port_rules) wait_for_lb_service_to_become_active(client, services, lb_service) validate_lb_service(client, lb_service, port, [services[0], services[1]], "www.abc1.com", "/service1.html") validate_lb_service(client, lb_service, port, [services[0], services[1]], "www.abc2.com", "/service2.html") validate_lb_service(client, lb_service, port, [services[2]], "www.abc1.com", "/name.html") validate_lb_service(client, lb_service, port, [services[2]], "www.abc2.com", "/name.html") validate_lb_service_for_no_access(client, lb_service, port, "www.abc1.com", "/service2.html") validate_lb_service_for_no_access(client, lb_service, port, "www.abc2.com", "/service1.html") final_service_scale = 2 final_services = [] for service in services: service = client.update(service, scale=final_service_scale, name=service.name) service = client.wait_success(service, 120) assert service.state == "active" assert service.scale == final_service_scale final_services.append(service) wait_for_lb_service_to_become_active(client, final_services, lb_service) validate_lb_service(client, lb_service, port, [final_services[0], final_services[1]], "www.abc1.com", "/service1.html") validate_lb_service(client, lb_service, port, [final_services[0], final_services[1]], "www.abc2.com", "/service2.html") validate_lb_service(client, lb_service, port, [final_services[2]], "www.abc1.com", "/name.html") validate_lb_service(client, lb_service, port, [final_services[2]], "www.abc2.com", "/name.html") validate_lb_service_for_no_access(client, lb_service, port, "www.abc1.com", "/service2.html") validate_lb_service_for_no_access(client, lb_service, port, "www.abc2.com", "/service1.html") delete_all(client, [env]) def test_lbservice_host_routing_only_path( client, socat_containers): port = "905" service_scale = 2 lb_scale = 1 service_count = 2 port_rules = [] port_rule = {"path": "/service1.html", "serviceId": 0, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"path": "/service2.html", "serviceId": 1, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) env, services, lb_service = create_env_with_multiple_svc_and_lb( client, service_scale, lb_scale, [port], service_count, port_rules) wait_for_lb_service_to_become_active(client, services, lb_service) validate_lb_service(client, lb_service, port, [services[0]], "www.abc1.com", "/service1.html") validate_lb_service(client, lb_service, port, [services[0]], "www.abc2.com", "/service1.html") validate_lb_service(client, lb_service, port, [services[0]], None, "/service1.html") validate_lb_service(client, lb_service, port, [services[1]], "www.abc3.com", "/service2.html") validate_lb_service(client, lb_service, port, [services[1]], "www.abc2.com", "/service2.html") validate_lb_service(client, lb_service, port, [services[0]], None, "/service1.html") validate_lb_service_for_no_access(client, lb_service, port, "www.abc3.com", "/name.html") delete_all(client, [env]) def test_lbservice_host_routing_only_host( client, socat_containers): port = "906" service_scale = 2 lb_scale = 1 service_count = 2 port_rules = [] port_rule = {"hostname": "www.abc.com", "serviceId": 0, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"hostname": "www.abc1.com", "serviceId": 1, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) env, services, lb_service = create_env_with_multiple_svc_and_lb( client, service_scale, lb_scale, [port], service_count, port_rules) wait_for_lb_service_to_become_active(client, [services[0], services[1]], lb_service) validate_lb_service(client, lb_service, port, [services[0]], "www.abc.com", "/service1.html") validate_lb_service(client, lb_service, port, [services[0]], "www.abc.com", "/service2.html") validate_lb_service(client, lb_service, port, [services[1]], "www.abc1.com", "/name.html") validate_lb_service_for_no_access(client, lb_service, port, "www.abc2.com", "/name.html") delete_all(client, [env]) def test_lbservice_host_routing_3(client, socat_containers): port = "907" service_scale = 2 lb_scale = 1 service_count = 4 port_rules = [] port_rule = {"hostname": "www.abc.com", "serviceId": 0, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"hostname": "www.abc1.com", "serviceId": 1, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"serviceId": 2, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"path": "/service1.html", "serviceId": 3, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) env, services, lb_service = create_env_with_multiple_svc_and_lb( client, service_scale, lb_scale, [port], service_count, port_rules) wait_for_lb_service_to_become_active(client, services, lb_service) validate_lb_service(client, lb_service, port, [services[0]], "www.abc.com", "/service2.html") validate_lb_service(client, lb_service, port, [services[1]], "www.abc1.com", "/name.html") validate_lb_service(client, lb_service, port, [services[2]], "www.abc2.com", "/name.html") validate_lb_service(client, lb_service, port, [services[3]], "www.abc3.com", "/service1.html") delete_all(client, [env]) def test_lbservice_edit_host_routing_3(client, socat_containers): port = "908" service_scale = 2 lb_scale = 1 service_count = 5 port_rules = [] port_rule = {"hostname": "www.abc.com", "serviceId": 0, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"hostname": "www.abc1.com", "serviceId": 1, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"serviceId": 2, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"path": "/service1.html", "serviceId": 3, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) env, services, lb_service = create_env_with_multiple_svc_and_lb( client, service_scale, lb_scale, [port], service_count, port_rules) service_list = [services[0], services[1], services[2], services[3]] wait_for_lb_service_to_become_active(client, service_list, lb_service) validate_lb_service(client, lb_service, port, [services[0]], "www.abc.com", "/service2.html") validate_lb_service(client, lb_service, port, [services[1]], "www.abc1.com", "/name.html") validate_lb_service(client, lb_service, port, [services[2]], "www.abc2.com", "/name.html") validate_lb_service(client, lb_service, port, [services[3]], "www.abc3.com", "/service1.html") # Edit port_rules port_rules = [] port_rule = {"hostname": "www.abc.com", "serviceId": services[0].id, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"serviceId": services[2].id, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"path": "/service2.html", "serviceId": services[3].id, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"hostname": "www.abc.com", "serviceId": services[4].id, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"hostname": "www.abc1.com", "serviceId": services[4].id, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) lb_service = client.update(lb_service, lbConfig=create_lb_config(port_rules)) service_list = [services[0], services[2], services[3], services[4]] wait_for_lb_service_to_become_active(client, service_list, lb_service) validate_lb_service(client, lb_service, port, [services[0], services[4]], "www.abc.com", "/service1.html") validate_lb_service(client, lb_service, port, [services[4]], "www.abc1.com", "/name.html") validate_lb_service(client, lb_service, port, [services[2]], "www.abc2.com", "/name.html") validate_lb_service(client, lb_service, port, [services[3]], "www.abc3.com", "/service2.html") delete_all(client, [env]) def test_lbservice_edit_host_routing_add_host( client, socat_containers): port = "909" service_scale = 2 lb_scale = 1 service_count = 1 port_rules = [] port_rule = {"hostname": "www.abc.com", "serviceId": 0, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) env, services, lb_service = create_env_with_multiple_svc_and_lb( client, service_scale, lb_scale, [port], service_count, port_rules) wait_for_lb_service_to_become_active(client, services, lb_service) validate_lb_service(client, lb_service, port, [services[0]], "www.abc.com", "/service2.html") validate_lb_service_for_no_access(client, lb_service, port, "www.abc2.com", "/name.html") validate_lb_service_for_no_access(client, lb_service, port, "www.abc3.com", "/name.html") port_rule = {"hostname": "www.abc2.com", "serviceId": services[0].id, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) lb_service = client.update(lb_service, lbConfig=create_lb_config(port_rules)) wait_for_lb_service_to_become_active(client, services, lb_service) validate_lb_service(client, lb_service, port, [services[0]], "www.abc.com", "/service2.html") validate_lb_service(client, lb_service, port, [services[0]], "www.abc2.com", "/name.html") validate_lb_service_for_no_access(client, lb_service, port, "www.abc3.com", "/name.html") delete_all(client, [env]) def test_lbservice_edit_host_routing_remove_host( client, socat_containers): port = "910" service_scale = 2 lb_scale = 1 service_count = 1 port_rules = [] port_rule = {"hostname": "www.abc.com", "serviceId": 0, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"hostname": "www.abc2.com", "serviceId": 0, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) env, services, lb_service = create_env_with_multiple_svc_and_lb( client, service_scale, lb_scale, [port], service_count, port_rules) wait_for_lb_service_to_become_active(client, services, lb_service) validate_lb_service(client, lb_service, port, [services[0]], "www.abc.com", "/service2.html") validate_lb_service(client, lb_service, port, [services[0]], "www.abc2.com", "/service2.html") validate_lb_service_for_no_access(client, lb_service, port, "www.abc3.com", "/name.html") # Edit port rules port_rules = [] port_rule = {"hostname": "www.abc.com", "serviceId": services[0].id, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) lb_service = client.update(lb_service, lbConfig=create_lb_config(port_rules)) wait_for_lb_service_to_become_active(client, services, lb_service) validate_lb_service(client, lb_service, port, [services[0]], "www.abc.com", "/service2.html") validate_lb_service_for_no_access(client, lb_service, port, "www.abc2.com", "/name.html") delete_all(client, [env]) def test_lbservice_edit_host_routing_edit_existing_host( client, socat_containers): port = "911" service_scale = 2 lb_scale = 1 service_count = 1 port_rules = [] port_rule = {"hostname": "www.abc.com", "serviceId": 0, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) env, services, lb_service = create_env_with_multiple_svc_and_lb( client, service_scale, lb_scale, [port], service_count, port_rules) wait_for_lb_service_to_become_active(client, services, lb_service) validate_lb_service(client, lb_service, port, [services[0]], "www.abc.com", "/service2.html") validate_lb_service_for_no_access(client, lb_service, port, "www.abc2.com", "/name.html") # Edit port rules port_rules = [] port_rule = {"hostname": "www.abc2.com", "serviceId": services[0].id, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) lb_service = client.update(lb_service, lbConfig=create_lb_config(port_rules)) wait_for_lb_service_to_become_active(client, services, lb_service) validate_lb_service(client, lb_service, port, [services[0]], "www.abc2.com", "/service2.html") validate_lb_service_for_no_access(client, lb_service, port, "www.abc.com", "/name.html") delete_all(client, [env]) def test_lbservice_host_routing_multiple_port_1( client, socat_containers): port1 = "1000" port2 = "1001" port1_target = "80" port2_target = "81" service_scale = 2 lb_scale = 1 service_count = 4 port_rules = [] port_rule = {"hostname": "www.abc1.com", "path": "/service1.html", "serviceId": 0, "sourcePort": port1, "targetPort": port1_target, "protocol": "http" } port_rules.append(port_rule) port_rule = {"hostname": "www.abc1.com", "path": "/service3.html", "serviceId": 0, "sourcePort": port2, "targetPort": port2_target, "protocol": "http" } port_rules.append(port_rule) port_rule = {"hostname": "www.abc2.com", "serviceId": 1, "sourcePort": port1, "targetPort": port1_target, "protocol": "http" } port_rules.append(port_rule) port_rule = {"hostname": "www.abc2.com", "serviceId": 1, "sourcePort": port2, "targetPort": port2_target, "protocol": "http" } port_rules.append(port_rule) port_rule = {"path": "/service1.html", "serviceId": 2, "sourcePort": port1, "targetPort": port1_target, "protocol": "http" } port_rules.append(port_rule) port_rule = {"path": "/service3.html", "serviceId": 2, "sourcePort": port2, "targetPort": port2_target, "protocol": "http" } port_rules.append(port_rule) port_rule = {"serviceId": 3, "sourcePort": port1, "targetPort": port1_target, "protocol": "http"} port_rules.append(port_rule) port_rule = {"serviceId": 3, "sourcePort": port2, "targetPort": port2_target, "protocol": "http"} port_rules.append(port_rule) env, services, lb_service = \ create_env_with_multiple_svc_and_lb( client, service_scale, lb_scale, [port1, port2], service_count, port_rules) wait_for_lb_service_to_become_active(client, services, lb_service) validate_lb_service(client, lb_service, port1, [services[0]], "www.abc1.com", "/service1.html") validate_lb_service(client, lb_service, port1, [services[3]], "www.abc1.com", "/service2.html") validate_lb_service(client, lb_service, port1, [services[1]], "www.abc2.com", "/service1.html") validate_lb_service(client, lb_service, port1, [services[1]], "www.abc2.com", "/service2.html") validate_lb_service(client, lb_service, port2, [services[1]], "www.abc2.com", "/service3.html") validate_lb_service(client, lb_service, port2, [services[0]], "www.abc1.com", "/service3.html") validate_lb_service(client, lb_service, port2, [services[2]], "www.abc4.com", "/service3.html") validate_lb_service(client, lb_service, port2, [services[3]], "www.abc3.com", "/service4.html") delete_all(client, [env]) def test_lbservice_host_routing_multiple_port_2( client, socat_containers): port1 = "1002" port2 = "1003" port1_target = "80" port2_target = "81" service_scale = 2 lb_scale = 1 service_count = 3 port_rules = [] port_rule = {"path": "/81", "serviceId": 0, "sourcePort": port1, "targetPort": port1_target, "protocol": "http" } port_rules.append(port_rule) port_rule = {"path": "/81/service3.html", "serviceId": 1, "sourcePort": port1, "targetPort": port1_target, "protocol": "http" } port_rules.append(port_rule) port_rule = {"path": "/service", "serviceId": 2, "sourcePort": port1, "targetPort": port1_target, "protocol": "http" } port_rules.append(port_rule) port_rule = {"path": "/service", "serviceId": 2, "sourcePort": port2, "targetPort": port2_target, "protocol": "http" } port_rules.append(port_rule) env, services, lb_service = \ create_env_with_multiple_svc_and_lb( client, service_scale, lb_scale, [port1, port2], service_count, port_rules) wait_for_lb_service_to_become_active(client, services, lb_service) validate_lb_service(client, lb_service, port1, [services[2]], "www.abc1.com", "/service1.html") validate_lb_service(client, lb_service, port1, [services[0]], "www.abc1.com", "/81/service4.html") validate_lb_service(client, lb_service, port1, [services[1]], "www.abc1.com", "/81/service3.html") validate_lb_service(client, lb_service, port2, [services[2]], "www.abc1.com", "/service3.html") validate_lb_service(client, lb_service, port2, [services[2]], "www.abc1.com", "/service4.html") delete_all(client, [env]) def test_lbservice_host_routing_multiple_port_3( client, socat_containers): port1 = "1004" port2 = "1005" port1_target = "80" port2_target = "81" service_scale = 2 lb_scale = 1 service_count = 2 port_rules = [] port_rule = {"serviceId": 0, "sourcePort": port1, "targetPort": port1_target, "protocol": "http" } port_rules.append(port_rule) port_rule = {"serviceId": 1, "sourcePort": port2, "targetPort": port2_target, "protocol": "http" } port_rules.append(port_rule) env, services, lb_service = \ create_env_with_multiple_svc_and_lb( client, service_scale, lb_scale, [port1, port2], service_count, port_rules) wait_for_lb_service_to_become_active(client, services, lb_service) validate_lb_service(client, lb_service, port1, [services[0]], "www.abc1.com", "/service1.html") validate_lb_service(client, lb_service, port2, [services[1]], "www.abc1.com", "/service3.html") delete_all(client, [env]) def test_lbservice_external_service(client, socat_containers): port = "1010" lb_scale = 2 env, lb_service, ext_service, con_list = \ create_env_with_ext_svc_and_lb(client, lb_scale, port) ext_service = activate_svc(client, ext_service) lb_service = activate_svc(client, lb_service) validate_lb_service_for_external_services(client, lb_service, port, con_list) delete_all(client, [env]) def test_lbservice_host_routing_tcp_only(client, socat_containers): port = "1011" service_scale = 2 lb_scale = 1 service_count = 2 port_rules = [] port_rule = {"hostname": "www.abc1.com", "path": "/service1.html", "serviceId": 0, "sourcePort": port, "targetPort": "80", "protocol": "tcp" } port_rules.append(port_rule) port_rule = {"hostname": "www.abc2.com", "path": "/service2.html", "serviceId": 1, "sourcePort": port, "targetPort": "80", "protocol": "tcp" } port_rules.append(port_rule) port_rule = {"hostname": "www.abc2.com", "path": "/service2.html", "serviceId": 0, "sourcePort": port, "targetPort": "80", "protocol": "tcp" } port_rules.append(port_rule) env, services, lb_service = create_env_with_multiple_svc_and_lb( client, service_scale, lb_scale, [port], service_count, port_rules) wait_for_lb_service_to_become_active(client, services, lb_service) validate_lb_service(client, lb_service, port, [services[0], services[1]]) delete_all(client, [env]) def test_lbservice_host_routing_tcp_and_http(client, socat_containers): port1 = "1012" port2 = "1013" service_scale = 2 lb_scale = 1 service_count = 2 port_rules = [] port_rule = {"hostname": "www.abc1.com", "path": "/service3.html", "serviceId": 0, "sourcePort": port1, "targetPort": "80", "protocol": "tcp" } port_rules.append(port_rule) port_rule = {"hostname": "www.abc1.com", "path": "/service3.html", "serviceId": 0, "sourcePort": port2, "targetPort": "81", "protocol": "http" } port_rules.append(port_rule) port_rule = {"hostname": "www.abc1.com", "path": "/service4.html", "serviceId": 1, "sourcePort": port1, "targetPort": "80", "protocol": "tcp" } port_rules.append(port_rule) port_rule = {"hostname": "www.abc1.com", "path": "/service4.html", "serviceId": 1, "sourcePort": port2, "targetPort": "81", "protocol": "http" } port_rules.append(port_rule) env, services, lb_service = create_env_with_multiple_svc_and_lb( client, service_scale, lb_scale, [port1, port2], service_count, port_rules) wait_for_lb_service_to_become_active(client, services, lb_service) port1 = "1012" """ validate_lb_service(client, lb_service, port1, [services[0], services[1]]) validate_lb_service(client, lb_service, port1, [services[0], services[1]]) """ validate_lb_service(client, lb_service, port2, [services[0]], "www.abc1.com", "/service3.html") validate_lb_service(client, lb_service, port2, [services[1]], "www.abc1.com", "/service4.html") validate_lb_service_for_no_access(client, lb_service, port2, "www.abc2.com", "/service3.html") delete_all(client, [env]) def test_lbservice_host_routing_wildcard( client, socat_containers): port = "1014" service_scale = 2 lb_scale = 1 service_count = 3 port_rules = [] port_rule = {"hostname": "*.domain.com", "serviceId": 0, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"hostname": "domain.*", "serviceId": 1, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"hostname": "abc.domain.com", "serviceId": 2, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) env, services, lb_service = create_env_with_multiple_svc_and_lb( client, service_scale, lb_scale, [port], service_count, port_rules) wait_for_lb_service_to_become_active(client, services, lb_service) validate_lb_service(client, lb_service, port, [services[2]], "abc.domain.com", "/name.html") validate_lb_service(client, lb_service, port, [services[0]], "abc.def.domain.com", "/service1.html") validate_lb_service(client, lb_service, port, [services[1]], "domain.abc.def.com", "/service1.html") validate_lb_service(client, lb_service, port, [services[1]], "domain.abc.com", "/name.html") delete_all(client, [env]) def test_lbservice_host_routing_wildcard_order( client, socat_containers): port = "1014" service_scale = 2 lb_scale = 1 service_count = 5 port_rules = [] port_rule = {"hostname": "*.domain.com", "serviceId": 0, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"hostname": "domain.*", "serviceId": 1, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"hostname": "abc.domain.com", "serviceId": 2, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"hostname": "abc.domain.com", "path": "/service1.html", "serviceId": 3, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) port_rule = {"hostname": "*.domain.com", "path": "/service1.html", "serviceId": 4, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) env, services, lb_service = create_env_with_multiple_svc_and_lb( client, service_scale, lb_scale, [port], service_count, port_rules) wait_for_lb_service_to_become_active(client, services, lb_service) validate_lb_service(client, lb_service, port, [services[4]], "abc.def.domain.com", "/service1.html") validate_lb_service(client, lb_service, port, [services[0]], "abc.def.domain.com", "/name.html") validate_lb_service(client, lb_service, port, [services[1]], "domain.abc.com", "/service1.html") validate_lb_service(client, lb_service, port, [services[1]], "domain.def.com", "/service1.html") validate_lb_service(client, lb_service, port, [services[2]], "abc.domain.com", "/name.html") validate_lb_service(client, lb_service, port, [services[3]], "abc.domain.com", "/service1.html") delete_all(client, [env]) def test_lbservice_host_routing_priority_override_1( client, socat_containers): port = "1015" service_scale = 2 lb_scale = 1 service_count = 2 port_rules = [] port_rule = {"hostname": "*.com", "path": "/service1.html", "serviceId": 0, "sourcePort": port, "targetPort": "80", "protocol": "http", "priority": 1 } port_rules.append(port_rule) port_rule = {"hostname": "abc.domain.com", "path": "/service1.html", "serviceId": 1, "sourcePort": port, "targetPort": "80", "protocol": "http", "priority": 2 } port_rules.append(port_rule) env, services, lb_service = create_env_with_multiple_svc_and_lb( client, service_scale, lb_scale, [port], service_count, port_rules) wait_for_lb_service_to_become_active(client, services, lb_service) validate_lb_service(client, lb_service, port, [services[0]], "abc.domain.com", "/service1.html") delete_all(client, [env]) def test_lb_with_selector_link_target_portrules(client, socat_containers): port = "20001" # Create Environment env = create_env(client) launch_config_svc = {"imageUuid": LB_HOST_ROUTING_IMAGE_UUID, "labels": {"test1": "value1"}} port_rule1 = { "targetPort": "80", "hostname": "www.abc.com", "path": "/name.html"} port_rule2 = { "targetPort": "80", "hostname": "www.abc1.com", "path": "/service1.html"} # Create Service random_name = random_str() service_name = random_name.replace("-", "") service1 = client.create_service(name=service_name, stackId=env.id, launchConfig=launch_config_svc, scale=1, lbConfig=create_lb_config([port_rule1])) service1 = client.wait_success(service1) assert service1.state == "inactive" random_name = random_str() service2_name = random_name.replace("-", "") service2 = client.create_service(name=service2_name, stackId=env.id, launchConfig=launch_config_svc, scale=1, lbConfig=create_lb_config([port_rule2])) service2 = client.wait_success(service2) assert service2.state == "inactive" launch_config_lb = {"ports": [port], "imageUuid": get_haproxy_image()} port_rule1 = { "sourcePort": port, "selector": "test1=value1"} lb_env = create_env(client) lb_service = client.create_loadBalancerService( name="lb-withselectorlinks", stackId=lb_env.id, launchConfig=launch_config_lb, scale=1, lbConfig=create_lb_config([port_rule1])) lb_service = client.wait_success(lb_service) assert lb_service.state == "inactive" service1 = activate_svc(client, service1) service2 = activate_svc(client, service2) lb_service = activate_svc(client, lb_service) wait_for_lb_service_to_become_active(client, [service1, service2], lb_service) validate_lb_service(client, lb_service, port, [service1], "www.abc.com", "/name.html") validate_lb_service(client, lb_service, port, [service2], "www.abc1.com", "/service1.html") delete_all(client, [env]) @if_stress def test_lbservice_edit_add_multiple_port_rules( client, socat_containers): port = "90" count = int(STRESS_LB_PORT_RULE_COUNT) service_scale = 2 lb_scale = 1 service_count = 1 ports = [port] port_rules = [] port_rule = {"hostname": "www.abc.com", "serviceId": 0, "sourcePort": port, "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) launch_config_lb = {"imageUuid": get_haproxy_image()} env, services, lb_service = create_env_with_multiple_svc_and_lb( client, service_scale, lb_scale, ports, service_count, port_rules) wait_for_lb_service_to_become_active(client, services, lb_service) validate_lb_service(client, lb_service, port, [services[0]], "www.abc.com", "/service2.html") for i in range(0, count): port_rule = {"hostname": "www.abc.com"+str(i), "serviceId": services[0].id, "sourcePort": port+str(i), "targetPort": "80", "protocol": "http" } port_rules.append(port_rule) ports.append(port+str(i)) launch_config_lb["ports"] = ports lb_service = client.update(lb_service, launchConfig=launch_config_lb, lbConfig=create_lb_config(port_rules)) wait_for_lb_service_to_become_active(client, services, lb_service) validate_lb_service(client, lb_service, port, [services[0]], "www.abc.com", "/service2.html") for j in range(0, i): print "Validation after adding " + str(i) + " ports" validate_lb_service(client, lb_service, port+str(j), [services[0]], "www.abc.com"+str(j), "/name.html") delete_all(client, [env])
70f33bb40b94725d71df75b5591e7a9b56325cca
f9ed608c620093b9f6b5058bcedf7ae610c09c8d
/329-Longest_Increasing_Path_in_a_Matrix.py
2076972e979562372e23e07d8d2bfd9f51a966ba
[]
no_license
chanyoonzhu/leetcode-python
9b88d7f2749e1ae3ed597759b1bf9f7fa4912c35
085d868ba0458fc8e6b5549aa00fa151c335fa7f
refs/heads/master
2022-05-24T11:20:35.927915
2022-04-16T06:02:33
2022-04-16T06:02:33
166,224,197
0
1
null
null
null
null
UTF-8
Python
false
false
2,114
py
""" - dfs with memoization - note: path is strictly increasing -> no loop -> DAG -> can use dfs - O(mn), O(mn) """ class Solution: def longestIncreasingPath(self, matrix: List[List[int]]) -> int: self.matrix = matrix self.dir = [(1, 0), (-1, 0), (0, 1), (0, -1)] self.m = len(matrix) self.n = len(matrix[0]) self.res = 0 for r in range(self.m): for c in range(self.n): self.dfs(r, c) return self.res @lru_cache(None) def dfs(self, r, c): connected = 0 for i, j in self.dir: nr, nc = r + i, c + j if 0 <= nr < self.m and 0 <= nc < self.n and self.matrix[nr][nc] > self.matrix[r][c]: connected = max(connected, self.dfs(nr, nc)) connected += 1 # itself self.res = max(self.res, connected) return connected """ - topological sorting - O(mn), O(mn) """ class Solution: def longestIncreasingPath(self, matrix: List[List[int]]) -> int: M, N = len(matrix), len(matrix[0]) indegrees = [[0] * N for _ in range(M)] DIR = [(1, 0), (-1, 0), (0, 1), (0, -1)] for r in range(M): for c in range(N): for i, j in DIR: nr, nc = r + i, c + j if 0 <= nr < M and 0 <= nc < N and matrix[nr][nc] > matrix[r][c]: indegrees[r][c] += 1 q = deque() for r in range(M): for c in range(N): if indegrees[r][c] == 0: q.append((r, c)) steps = 0 while q: new_q = deque() while q: r, c = q.popleft() for i, j in DIR: nr, nc = r + i, c + j if 0 <= nr < M and 0 <= nc < N and matrix[nr][nc] < matrix[r][c]: indegrees[nr][nc] -= 1 if indegrees[nr][nc] == 0: new_q.append((nr, nc)) q = new_q steps += 1 return steps
a828a1d10bfc5c4b5cd149e658aca32e30558efa
7f80554c5013ba7bc66a3ec98f804156d977c277
/src/readux/urls.py
d95051dab91bc770f6c85b38826d7a40f9f870b8
[]
no_license
akrahdan/LearnAI
fa89c133dbe3b0c06bfdce720ea6dcb429d1dc57
fbea836a7fc78c8ab92b313c2afa4bdeef59c362
refs/heads/main
2023-07-24T15:07:15.692045
2021-08-20T16:39:44
2021-08-20T16:39:44
376,688,774
0
0
null
null
null
null
UTF-8
Python
false
false
3,083
py
"""readux URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include, re_path from django.conf import settings from allauth.account.views import confirm_email from django.conf.urls.static import static from courses.views import CourseDetailSlugView from projects.views import ProjectDetailView from .views import home_page, CourseLeadView, pricing from files.views import DownloadView, UploadPolicyView, UploadView, UploadCoursePolicy, DownloadCourseView urlpatterns = [ path('admin/', admin.site.urls), path('', home_page, name='home'), path('api/lead/', CourseLeadView.as_view(), name='course_signup'), path('api/pricing/', pricing, name='pricing'), path('api/dashboard/', include(('dashboard.urls', 'dashboard'), namespace="dashboard")), path('api/courses/', include('courses.urls')), path('api/course/<slug:slug>/', CourseDetailSlugView.as_view()), #path('auths/', include(('accounts.urls', 'auths'), 'auths')), path('accounts/', include('allauth.urls')), path('api/accounts/', include('accounts.urls')), path('api/billing/', include(('billing.urls', 'billing'), 'billing')), path('api/instructor/', include(('instructors.urls'))), path('api/students/', include(('students.urls', 'students'), namespace='students')), path('api/upload/', UploadView.as_view()), path('api/upload/policy/', UploadPolicyView.as_view()), path('api/files/<int:id>/download/', DownloadView.as_view()), path('api/orders/', include('orders.urls')), path('rest-auth/', include('rest_auth.urls')), path('api/auth/', include('auths.urls')), path('api/analytics/', include('analytics.urls')), path('api/projects/', include('projects.urls')), path('api/projects/', include('projects.urls')), path('api/project/<slug:slug>/', ProjectDetailView.as_view()), path('api/categories/', include('categories.urls')), path('api/project_categories/', include('project_categories.urls')), re_path(r"^rest-auth/registration/account-confirm-email/(?P<key>[\s\d\w().+-_',:&]+)/$", confirm_email, name="account_confirm_email"), path('rest-auth/registration/', include('rest_auth.registration.urls')), path('api/cart/', include('carts.urls')), ] # if settings.DEBUG: # urlpatterns = urlpatterns + static(settings.STATIC_URL, document_root=settings.STATIC_ROOT) # urlpatterns = urlpatterns + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
15ed8211c8d43131be4eeaa704dbd1400bbea598
59c55725576bbf0e2f6617507ba2f1db639abb3f
/stock_analytic_account/model/analytic_account.py
ea5556d076df6616c951843e5c8ca6abdca7a083
[]
no_license
bmya/eficent-odoo-addons
e3426ebaf1f59e52726253fc1dd36a09d9363059
5d8ddfa384ab4417f42bda103b71d926848035f6
refs/heads/7.0
2021-01-21T16:48:55.312452
2015-11-04T14:11:19
2015-11-04T14:11:19
45,649,141
1
3
null
2015-11-06T00:35:17
2015-11-06T00:35:17
null
UTF-8
Python
false
false
1,957
py
# -*- coding: utf-8 -*- ############################################################################## # # Copyright (C) 2015 Eficent (<http://www.eficent.com/>) # Jordi Ballester Alomar <[email protected]> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## from openerp.osv import fields, osv, orm import openerp.addons.decimal_precision as dp class account_analytic_account(orm.Model): _inherit = "account.analytic.account" _columns = { 'move_ids': fields.one2many('stock.move', 'analytic_account_id', 'Moves for this analytic account', readonly=True), 'use_reserved_stock': fields.boolean( 'Use reserved stock', help="Stock with reference to this analytic account " "is considered to be reserved.") } def copy(self, cr, uid, id, default=None, context=None): if context is None: context = {} if default is None: default = {} default['move_ids'] = [] res = super(account_analytic_account, self).copy(cr, uid, id, default, context) return res
766c006b44f7bca3d96dc1ad604ef9851b7c73be
0a1a95fe0344c27197b677e8f8d1acc05a9813bd
/tests/test_app/test_static.py
9c4549b3036f5029a3b59f6d3252f224e800aa5a
[ "MIT" ]
permissive
hirokiky/uiro
5ddaee966395512919016406c5ed18baed5cb68c
8436976b21ac9b0eac4243768f5ada12479b9e00
refs/heads/master
2023-04-27T00:57:13.953417
2013-11-09T02:15:57
2013-11-09T02:15:57
13,859,983
0
0
MIT
2023-04-15T15:13:52
2013-10-25T12:30:05
Python
UTF-8
Python
false
false
411
py
import pytest from webtest import TestApp @pytest.fixture def target(): from matcha import make_wsgi_app from uiro.static import generate_static_matching from .pkgs import static_app matching = generate_static_matching(static_app) return TestApp(make_wsgi_app(matching)) def test_static(target): resp = target.get('/static/static_app/test.txt') resp.mustcontain('No more work')
b7759d6a6dcb81a63298d8ff7c3583729f1d19eb
7facdc4644fbe4209b5acdad9f2503bfcfb0d534
/ensure/_types.py
d0d2db7350653d2171e927886cffa6eccef0f7f8
[ "Apache-2.0" ]
permissive
KeyWeeUsr/ensure
2a19d2101418f334bb188d299f5368f96aaf7916
47becf82672906d2fcfd4e8e5b0542e43845b3ed
refs/heads/master
2023-06-01T04:11:19.154208
2018-11-06T01:39:11
2018-11-06T01:39:11
165,532,375
0
0
Apache-2.0
2019-01-13T17:14:11
2019-01-13T17:14:10
null
UTF-8
Python
false
false
1,050
py
from __future__ import absolute_import, division, print_function, unicode_literals import sys from six import add_metaclass USING_PYTHON2 = True if sys.version_info < (3, 0) else False if USING_PYTHON2: str = unicode # noqa class NumericStringType(type): _type = str _cast = float def __instancecheck__(self, other): try: if not isinstance(other, self._type): raise TypeError() self._cast(other) return True except (TypeError, ValueError): return False class NumericByteStringType(NumericStringType): _type = bytes class IntegerStringType(NumericStringType): _cast = int class IntegerByteStringType(IntegerStringType): _type = bytes @add_metaclass(NumericStringType) class NumericString(str): pass @add_metaclass(NumericByteStringType) class NumericByteString(bytes): pass @add_metaclass(IntegerStringType) class IntegerString(str): pass @add_metaclass(IntegerByteStringType) class IntegerByteString(bytes): pass
4afc9e26c651892b4c66a8e40b134a2277fdb425
be4759201435054c55ca76d4a973aee8c549e1a6
/sockets/mn_edge_indices_list_socket.py
82fca744d5684176868484ad02929b8ee962b360
[]
no_license
vvFiCKvv/animation-nodes
75f94549f82702b3ac5f548f009dd2202c694240
6988606b8c3601d428fa3fe32c77c7b440eb7c38
refs/heads/master
2021-01-17T00:29:13.299665
2015-04-25T16:46:20
2015-04-25T16:46:20
27,539,581
0
0
null
null
null
null
UTF-8
Python
false
false
657
py
import bpy from animation_nodes.mn_execution import nodePropertyChanged from animation_nodes.mn_node_base import * class mn_EdgeIndicesListSocket(mn_BaseSocket, mn_SocketProperties): bl_idname = "mn_EdgeIndicesListSocket" bl_label = "Edge Indices List Socket" dataType = "Edge Indices List" allowedInputTypes = ["Edge Indices List"] drawColor = (0, 0.55, 0.23, 1) def drawInput(self, layout, node, text): layout.label(text) def getValue(self): return [] def setStoreableValue(self, data): pass def getStoreableValue(self): pass def getCopyValueFunctionString(self): return "return [edgeIndices[:] for edgeIndices in value]"
7887f18e6d71f9eaf61d02aa2d134eb927a02aec
d3638776a2ce455eb42f29c9c06e267392b6815a
/reading/book/migrations/0007_auto_20180703_2156.py
d188bede58a1d3c4590c803e1b5a26ae3aa7e460
[ "MIT" ]
permissive
Family-TreeSY/reading
abce1b5e6047c72867839303ab0181c7a4997913
a35d1242ce3a7303fe125c11de8125bd9afbdb3c
refs/heads/master
2020-03-20T04:53:18.089247
2018-07-09T08:51:32
2018-07-09T08:51:32
137,197,886
2
1
null
null
null
null
UTF-8
Python
false
false
749
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.3 on 2018-07-03 13:56 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('book', '0006_auto_20180619_2116'), ] operations = [ migrations.AddField( model_name='story', name='html', field=models.TextField(default='', help_text='\u6b63\u6587\u53ef\u4ee5\u4f7f\u7528markdown', verbose_name='html\u6e32\u67d3\u540e\u7684\u9875\u9762'), ), migrations.AddField( model_name='story', name='is_markdown', field=models.BooleanField(default=True, verbose_name='\u4f7f\u7528markdown'), ), ]
bb89c0558e9830a7ba414e9cea296ffb578f8509
e49b654d3db99773390c5b9686df9c99fbf92b2a
/linked_lists/linked_list.py
f018e58590e973d2a1aac0516779018498713c0c
[]
no_license
hao89/diary_of_programming_puzzles
467e8264d0ad38768ba5ac3cfb45301293d79943
0e05d3716f28075f99bbd7b433d16a383209e57c
refs/heads/master
2021-01-16T00:49:38.956102
2015-08-25T13:44:53
2015-08-25T13:44:53
41,692,587
1
0
null
2015-08-31T18:20:38
2015-08-31T18:20:36
Python
UTF-8
Python
false
false
455
py
class LinkedListNode: def __init__(self, data): self.next = None self.data = data def __str__(self): node_str = "" current_node = self while current_node: if current_node.next: node_str = node_str + str(current_node.data) + ", " else: node_str = node_str + str(current_node.data) current_node = current_node.next return node_str
7153a4c17d679b6a69da201b4c53f56cfe0c5619
517a904955033092aec11288151d725548226abc
/pandas_tutorial/data_advance/df_column_order.py
bd0d1a7f8f2a20eab540746de7dffb1501d42be3
[]
no_license
MinSu-Kim/python_tutorial
ae0a4e3570aa4cb411626cefbc031777364764d5
ed0c08892822d7054161c9e8f98841370868e82d
refs/heads/master
2021-06-16T16:15:30.349719
2021-05-26T04:59:47
2021-05-26T04:59:47
207,266,202
1
0
null
null
null
null
UTF-8
Python
false
false
1,010
py
import seaborn as sns print("# titanic 데이터셋의 부분을 선택하여 데이터프레임 만들기") titanic = sns.load_dataset('titanic') df = titanic.loc[0:4, 'survived':'age'] print(df, '\n') print("# 열 이름의 리스트 만들기") columns = list(df.columns.values) # 기존 열 이름 print("ssss", sorted(columns, reverse=True), type(sorted(columns, reverse=True))) print("# 열 이름을 알파벳 순으로 정렬하기") columns_sorted = sorted(columns) # 알파벳 순으로 정렬 df_sorted = df[columns_sorted] print(df_sorted, '\n') print(columns_sorted, '\n') print("# 열 이름을 기존 순서의 정반대 역순으로 정렬하기") columns_reversed = list(sorted(columns, reverse=True)) df_reversed = df[columns_reversed] print(df_reversed, '\n') print(columns_reversed, '\n') print("# 열 이름을 사용자가 정의한 임의의 순서로 재배치하기") columns_customed = ['pclass', 'sex', 'age', 'survived'] df_customed = df[columns_customed] print(df_customed)
fd69e5c0ad13bddd3665e157cdd85e17f6da1920
d25003d4e1a1cd3b5eca1525c0119da47579f294
/scripts/sort_double.py
51093694d8a595573520419157b7d218af437429
[]
no_license
rd37/GooglePracticeProjects
ceabcb838bd4bd50397b8fdf775e810db320dbb1
b3543ada39b8c24f688a41cf0b745482013a93d9
refs/heads/master
2016-09-06T16:50:41.303580
2014-12-12T03:23:23
2014-12-12T03:23:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
441
py
''' Created on Dec 10, 2014 @author: ronaldjosephdesmarais ''' ints = [5,8.2,1,7,4.1,13,12,4.1,8.2] print "------use python sorted------" print sorted(ints) print "------use dictionary ------" srt_dict = {} srt_arr = [] for i in ints: if i not in srt_dict: srt_dict[i]=1 else: srt_dict[i]=srt_dict[i]+1 for i_key in srt_dict: for i in range(0,srt_dict[i_key]): srt_arr.append(i_key) print srt_arr
17b011426ea5dd281920f3b73b76457056e5bd1b
4ce6fb5c49ee6ec4b5df9e056040382812a8a591
/product/migrations/0029_auto_20191001_0528.py
2120012f6b7045350592076be1c5027236969a78
[]
no_license
yantrashalait/Multronics
198c807a0bb2b8c1ae7bcc2325436467ee8a90b3
c85b5a263fe1507c994236bba26ad12d93157622
refs/heads/master
2021-02-14T18:28:25.984830
2021-01-18T09:19:21
2021-01-18T09:19:21
244,825,522
0
0
null
null
null
null
UTF-8
Python
false
false
636
py
# Generated by Django 2.2.4 on 2019-10-01 05:28 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('product', '0028_aboutiteam'), ] operations = [ migrations.AddField( model_name='product', name='visibility', field=models.BooleanField(default=True, verbose_name='Make this product visibile?'), ), migrations.AlterField( model_name='aboutiteam', name='logo', field=models.ImageField(help_text='Image size: width=192px height=31px', upload_to='logo/'), ), ]
24567018d6cc56c197cd0f52a9cf7d6b9311506f
349d6ff272a4a113cee5b0ab7849f46305ebfb13
/sc2/game_data.py
2e69241ddf4f3f9265fd5ee0cf9aa760d4ddda4e
[ "MIT" ]
permissive
raimohanska/python-sc2
dafec03d73b905b092c92aefd5ee9d896e8df5e1
fb936be1618b4c8b8bf453d76d3f9894780a0f21
refs/heads/master
2021-09-03T04:04:46.630550
2018-01-05T12:50:11
2018-01-05T12:50:11
116,264,519
0
0
null
2018-01-04T13:41:56
2018-01-04T13:41:55
null
UTF-8
Python
false
false
2,856
py
from functools import lru_cache from .data import Attribute from .ids.unit_typeid import UnitTypeId from .ids.ability_id import AbilityId class GameData(object): def __init__(self, data): self.abilities = {a.ability_id: AbilityData(self, a) for a in data.abilities} self.units = {u.unit_id: UnitTypeData(self, u) for u in data.units if u.available} self.upgrades = {u.upgrade_id: UpgradeData(self, u) for u in data.upgrades} @lru_cache(maxsize=256) def calculate_ability_cost(self, ability): for unit in self.units.values(): if unit.creation_ability == ability: return unit.cost for upgrade in self.upgrades.values(): if upgrade.research_ability == ability: return upgrade.cost return Cost(0, 0) class AbilityData(object): def __init__(self, game_data, proto): self._game_data = game_data self._proto = proto @property def id(self): if self._proto.remaps_to_ability_id: return AbilityId(self._proto.remaps_to_ability_id) return AbilityId(self._proto.ability_id) @property def cost(self): return self._game_data.calculate_ability_cost(self.id) def __repr__(self): return f"AbilityData(name={self._proto.button_name})" class UnitTypeData(object): def __init__(self, game_data, proto): self._game_data = game_data self._proto = proto @property def name(self): return self._proto.name @property def creation_ability(self): return self._game_data.abilities[self._proto.ability_id] @property def attributes(self): return self._proto.attributes @property def has_attribute(self, attr): assert isinstance(attr, Attribute) return attr in self.attributes @property def has_minerals(self): return self._proto.has_minerals @property def has_vespene(self): return self._proto.has_vespene @property def cost(self): return Cost( self._proto.mineral_cost, self._proto.vespene_cost ) class UpgradeData(object): def __init__(self, game_data, proto): self._game_data = game_data self._proto = proto @property def name(self): return self._proto.name @property def research_ability(self): return self._game_data.abilities[self._proto.ability_id] @property def cost(self): return Cost( self._proto.mineral_cost, self._proto.vespene_cost ) class Cost(object): def __init__(self, minerals, vespene, time=None): self.minerals = minerals self.vespene = vespene self.time = time def __repr__(self): return f"Cost({self.minerals}, {self.vespene})"
9f217ec36d8e23186e431bd2f0f1ae0b6ba58f28
b7e6cdf094baaee9d6e5034c2355641fbf9138d7
/test2.py
1d278e6887286acf6ad8073e7a7038fe7af2e13f
[]
no_license
heshibo1994/leetcode-python-2
04296c66cd6d1fe58880062aeafdbe9d474b7d2e
3ea32f03bd453743b9b81de9871fad7ac67ced90
refs/heads/master
2020-05-23T21:49:01.367969
2019-09-30T03:31:27
2019-09-30T03:31:27
186,961,972
0
0
null
null
null
null
UTF-8
Python
false
false
17
py
print(int("343"))
7a286bf190f3a7ccafa0b6a2278c68f4aebdc583
40280c446e21c07ac3ffd20c5eda064a05093698
/easy_module_attribute_getter/custom_transforms.py
4eb9cbf5ed62de0c0da0fdd380f0b4112685e08a
[ "MIT" ]
permissive
KevinMusgrave/easy-module-attribute-getter
884fdee1960b792db49e09edc5de0d268fd6ac8a
e0a733c02f2e6a969191a75c79159f45440c969f
refs/heads/master
2021-07-04T02:18:17.113242
2021-01-21T03:32:22
2021-01-21T03:32:22
218,787,854
9
2
null
null
null
null
UTF-8
Python
false
false
686
py
import torchvision.transforms.functional as F from PIL import Image class ConvertToBGR(object): """ Converts a PIL image from RGB to BGR """ def __init__(self): pass def __call__(self, img): r, g, b = img.split() img = Image.merge("RGB", (b, g, r)) return img def __repr__(self): return "{}()".format(self.__class__.__name__) class Multiplier(object): def __init__(self, multiple): self.multiple = multiple def __call__(self, img): return img*self.multiple def __repr__(self): return "{}(multiple={})".format(self.__class__.__name__, self.multiple)
e9aaecada9a17d7d8b636210f8d990f11a900e07
16631cf7cd4a70f2cd2750851649d3eff5e17724
/2022/day15/part2.py
00daf3f196e692462e068c11a24b226c3febf106
[]
no_license
kynax/AdventOfCode
1dd609a3308d733f2dd7d4ea00508d2da73180b9
36a339241dd7a31ebe08a73e5efa599e5faeea1a
refs/heads/master
2022-12-21T13:32:52.591068
2022-12-16T22:41:30
2022-12-16T22:41:30
48,439,585
0
0
null
null
null
null
UTF-8
Python
false
false
1,241
py
import sys grid = {} sensitivity = [] sensors = [] beacons = [] for l in sys.stdin: l = l.strip().split(' ') sx, sy, bx, by = int(l[2][2:-1]), int(l[3][2:-1]), int(l[8][2:-1]), int(l[9][2:]) grid[(sx,sy)] = 'S' grid[(bx,by)] = 'B' dx,dy = abs(sx-bx), abs(sy-by) md = dx+dy sensitivity.append((sx,sy,md)) sensors.append((sx,sy)) if (bx,by) not in beacons: beacons.append((bx,by)) minx = min([i[0]-i[2] for i in sensitivity])-1 maxx = max([i[0]+i[2] for i in sensitivity])+1 for row in range(4000000): intervals = [] for s in sensitivity: d = abs(s[1] - row) if d > s[2]: continue w = s[2] - d b,e = s[0] - abs(w), s[0] + abs(w) if e < b: b,e = e,b intervals.append((b,e)) ints = sorted(intervals) nints = [ints[0]] for i in range(1, len(ints)): if ints[i][0] <= nints[-1][1]+1: if ints[i][1] <= nints[-1][1]: pass # fully included else: nints[-1] = (nints[-1][0], ints[i][1]) else: nints.append(ints[i]) if len(nints) > 1: print(nints, nints[0][1] + 1, row) print(4000000 * (nints[0][1]+1) + row) break
29f1b6a21401ee236b971d6979bebb602294ee1b
89967e55f8ab4037368972dcf30d2aa2cd8cb0f3
/oop_pedia_classifier.py
8a0939f92a57883e84b9301842adc075e6e28583
[]
no_license
petkraw/classifier
5f487dd51ef70023aa502d69ec402b14bfe6019c
b813ff17013caf4d6d5aa036d6cb45c6c745e3ef
refs/heads/master
2021-01-21T20:54:22.315291
2017-05-18T14:59:12
2017-05-18T14:59:12
92,289,428
0
0
null
2017-05-24T12:23:13
2017-05-24T12:23:13
null
UTF-8
Python
false
false
57,249
py
# -*- coding: utf-8 -*- """ Created on Mon Feb 20 09:56:23 2017 @author: Martin """ import json, os import warnings import numpy as np import sys from matplotlib import pyplot as plt from sklearn import svm from sklearn import preprocessing from sklearn.neural_network import MLPClassifier from sklearn.externals import joblib warnings.filterwarnings("ignore", category=DeprecationWarning) class Sample(object): """common class for all samples. that is the vector of scores describing a sample and its unique identifier case and gene. Attributes: case: The ID of the case to which the vector belongs as a string. gene: The name of the gene this vector describes as a string. gestalt: The gestalt score based on FDNA's analysis of the case's portrait foto as a float. feature: The feature score based on FDNA's analysis of the case's annotated symptoms as a float. cadd_phred: the highest CADDphred scores of the gene (has passed filtering; otherwise it is 0) as a float phenomizer: the phenomizer p-value (*-1) based on the phenomizers analysis of the cases's annotated symptoms in classical mode as a float boqa: the phenomizer score based on the phenomizers analyisis of the of the case's annotated symptoms in BOQA mode as a float pathogenicity: a class label as an integer: 1 means pathogenic, 0 means neutral pedia: an attribute to hold the PEDIA score as a float (initially it is -5) extom: an attribute to hold the extom score based on patients symptoms and exome (no biometry) """ def __init__(self, case='?', gene='?', gestalt=0, feature=0, cadd_phred=0, phenomizer=0, boqa=0, pathogenicity=0, pedia=-5, extom=-5): self.case = case self.gene = gene self.gestalt = gestalt self.feature = feature self.cadd_phred = cadd_phred self.phenomizer = phenomizer self.boqa = boqa self.pathogenicity = pathogenicity self.pedia = pedia self.extom = extom def classify(self): """a function to classify a sample using the classifier and the scaler provided in the respective pkl-files """ clf = joblib.load('pedia_classifier.pkl') scaler = joblib.load('pedia_scaler.pkl') pedia = float(clf.decision_function(scaler.transform(np.array([self.gestalt, self.feature, self.cadd_phred, self.phenomizer, self.boqa])))) print(pedia) class Data: """Common class for a list of instances of the class Samples Attributes: name: name of the data as a string samples: a list of samples as instances of class Sample casedisgene: a list of lists [[case,gene]] containing each case in samples and the respective disease causing gene """ def __init__(self, samples=[], casedisgene=[]): #self.name = name self.samples = list(samples) self.casedisgene = casedisgene def load(self, path): """ loads the samples attribute with the information of the json files in the same directory as instances of the class Samples""" print('loading data') for file_name in os.listdir(path): if file_name.endswith(".json") and file_name != '34159.json' and file_name != '40536.json': file_name = os.path.join(path, file_name) vectors = {} with open(file_name, encoding='utf-8', errors='ignore') as json_data: data = json.load(json_data) pathogene = '?' #gene_omimID='?' if len(data['genomicData']) >0: if 'Gene Name' in data['genomicData'][0]['Test Information']: pathogene = data['genomicData'][0]['Test Information']['Gene Name'] if pathogene == 'MLL2': pathogene = 'KMT2D' elif pathogene == 'MLL': pathogene = 'KMT2A' elif pathogene == 'B3GALTL': pathogene = 'B3GLTC' elif pathogene == 'CASKIN1': pathogene = 'KIAA1306' #gene_omimID=data['genomicData'][0]['Test Information']['Gene Name'] case = data['case_id'] for entry in data['geneList']: gscore = 0 #gestalt score if 'gestalt_score' in entry:# and entry['gestalt_score']>0: #sometimes negative; mistake by FDNA? gscore = entry['gestalt_score'] fscore =0 #feature score if 'feature_score' in entry:# and entry['feature_score']>0: #sometimes negative; mistake by FDNA? fscore = entry['feature_score'] vscore = 0 #variant score if 'cadd_phred_score' in entry: vscore = entry['cadd_phred_score'] pscore = 0 #phenomizer score if 'pheno_score' in entry: pscore = entry['pheno_score'] bscore=0 #boqa score if 'boqa_score' in entry: bscore = entry['boqa_score'] gene = entry['gene_symbol'] patho = 0 #pathogenicity, will serve as class label, 1 is pathogenic mutation; 0 is neutral variant if gene == pathogene: patho = 1 if pathogene != '?':# and (gscore!=0 or fscore!=0 or vscore!=0 or pscore!=0 or bscore!=0): #nullvectors not allowed if case + gene in vectors: # if a gene appears several times in the gene List of a case onnly its highest values will be assigned to its Sample smpl = vectors[case + gene] if gscore > smpl.gestalt: smpl.gestalt = gscore if fscore > smpl.feature: smpl.feature = fscore if vscore > smpl.cadd_phred: smpl.cadd_phred = vscore if pscore > smpl.phenomizer: smpl.phenomizer = pscore if bscore > smpl.boqa: smpl.boqa = bscore if case + gene not in vectors: vectors[case+gene] = Sample(case = case, gene = gene, gestalt = gscore, feature = fscore, cadd_phred = vscore, phenomizer = pscore, boqa = bscore, pathogenicity = patho) for vector in vectors: self.samples.append(vectors[vector]) # loads samples with instances of the class Sample casedisgene = [] cases = [] for smpl in self.samples: if smpl.pathogenicity == 1: casedisgene.append([smpl.case, smpl.gene]) cases.append(smpl.case) for smpl in self.samples: if smpl.case not in cases: cases.append(smpl.case) casedisgene.append([smpl.case, 'healthy?']) self.casedisgene = casedisgene def load2(self, path): """ loads the samples attribute with the information of the json files in the same directory as instances of the class Samples""" print('loading data') for file_name in os.listdir(): if file_name.endswith(".json") and file_name != '34159.json' and file_name != '40536.json': file_name = os.path.join(path, file_name) vectors = {} with open(file_name, encoding = 'utf-8', errors = 'ignore') as json_data: data = json.load(json_data) pathogene='?' #gene_omimID='?' if len(data['genomicData'])>0: if 'Gene Name' in data['genomicData'][0]['Test Information']: pathogene = data['genomicData'][0]['Test Information']['Gene Name'] if pathogene == 'MLL2': pathogene = 'KMT2D' elif pathogene == 'MLL': pathogene = 'KMT2A' elif pathogene == 'B3GALTL': pathogene = 'B3GLTC' elif pathogene == 'CASKIN1': pathogene = 'KIAA1306' #gene_omimID=data['genomicData'][0]['Test Information']['Gene Name'] case = data['case_id'] for entry in data['geneList']: if 'feature_score' in entry or 'pheno_score' in entry or 'boqa_score' in entry or 'cadd_phred_score' in entry : gscore = 0 #gestalt score # if 'gestalt_score' in entry:# and entry['gestalt_score']>0: #sometimes negative; mistake by FDNA? # gscore=entry['gestalt_score'] fscore = 0 #feature score if 'feature_score' in entry:# and entry['feature_score']>0: #sometimes negative; mistake by FDNA? fscore = entry['feature_score'] vscore = 0 #variant score if 'cadd_phred_score' in entry: vscore = entry['cadd_phred_score'] pscore = 0 #phenomizer score if 'pheno_score' in entry: pscore = entry['pheno_score'] bscore = 0 #boqa score if 'boqa_score' in entry: bscore = entry['boqa_score'] gene = entry['gene_symbol'] patho = 0 #pathogenicity, will serve as class label, 1 is pathogenic mutation; 0 is neutral variant if gene == pathogene: patho = 1 if pathogene != '?':# and (gscore!=0 or fscore!=0 or vscore!=0 or pscore!=0 or bscore!=0): #nullvectors not allowed if case+gene in vectors: # if a gene appears several times in the gene List of a case onnly its highest values will be assigned to its Sample smpl=vectors[case + gene] if gscore > smpl.gestalt: smpl.gestalt = gscore if fscore > smpl.feature: smpl.feature = fscore if vscore > smpl.cadd_phred: smpl.cadd_phred = vscore if pscore > smpl.phenomizer: smpl.phenomizer = pscore if bscore > smpl.boqa: smpl.boqa = bscore if case + gene not in vectors: vectors[case + gene] = Sample(case = case, gene = gene, gestalt = gscore, feature = fscore, cadd_phred = vscore, phenomizer = pscore, boqa = bscore, pathogenicity = patho) for vector in vectors: self.samples.append(vectors[vector]) #loads samples with instances ofthe class Sample casedisgene = [] cases = [] for smpl in self.samples: if smpl.pathogenicity == 1: casedisgene.append([smpl.case, smpl.gene]) cases.append(smpl.case) for smpl in self.samples: if smpl.case not in cases: cases.append(smpl.case) casedisgene.append([smpl.case, 'healthy?']) self.casedisgene = casedisgene def filter_gestalt(self): new_samples=[] for smpl in self.samples: if smpl.feature!=0 or smpl.cadd_phred!=0 or smpl.phenomizer!=0 or smpl.boqa!=0: new_samples.append(smpl) self.samples = new_samples def filter_cadd(self): new_samples=[] for smpl in self.samples: if smpl.feature!=0 or smpl.gestalt!=0 or smpl.phenomizer!=0 or smpl.boqa!=0: new_samples.append(smpl) self.samples = new_samples def filter_cadd_gestalt(self): new_samples=[] for smpl in self.samples: if smpl.feature!=0 or smpl.phenomizer!=0 or smpl.boqa!=0: new_samples.append(smpl) self.samples = new_samples def threshold(self, value, score='gestalt'): for smpl in self.samples: if getattr(smpl, score)<value: setattr(smpl, score, 0) def numhit(self, num): """ filters self.samples for only those samples that have num scores featuring values higher than 0, self.samples will be adjusted accordingly""" newsamples = [] for smpl in self.samples: num_scores = 0 if smpl.gestalt != 0: num_scores += 1 if smpl.feature != 0: num_scores += 1 if smpl.cadd_phred > 0: num_scores += 1 if smpl.phenomizer > 0: num_scores += 1 if smpl.boqa > 0: num_scores += 1 if num_scores >= num: newsamples.append(smpl) self.samples = [] self.samples = newsamples def bucketize_data(self): """A function to prepare 10x cross validation It returns a list of len 10. each list (bucket) will contain case IDs. All case IDs featuring a pathogenic mutation in the same gene will be in the same bucket. The size of the buckets will be as similar as possible """ print('creating 10 buckets - same gene same bucket') self.casedisgene.sort() buckets = [] for i in range(10): buckets.append([]) allgenes = [] # a list that will contain the names of all genes that have a pathogenic entry in allscores numgenes = [] # a list that will contain the frequencies by which these genes are pathogentically altered in the data, the indices are corresponding with allgenes for entry in self.casedisgene: case = entry[0] gene = entry[1] # if a gene is not yet assigned to allgenes, an entry will be created, at it # will get the frequency 1 in numgenes if gene not in allgenes: allgenes.append(gene) numgenes.append(1) elif gene in allgenes: #if a gene is in allgenes already... x = 0 # index of that gene for i in allgenes: if i == gene: # ...its index in mungenes will be determined and this index will be # increased by 1 (frequency + 1) numgenes[x] += 1 x += 1 for gene in allgenes: # minbucket is the minimal number of IDs in a bucket its initial size is the number # of cases in the data divideb by 10 plus 2 minbucket = len(self.casedisgene) / 10 + 2 for bucket in buckets: minbucket = min(len(bucket),minbucket) #minbucket is adjusted to the length of the smallest bucket for bucket in buckets: if len(bucket) == minbucket: #(one of) the smallest bucket(s) is selected for entry in self.casedisgene: case = entry[0] dgene = entry[1] if dgene == gene: bucket.append(case) #all the case IDs with a pathogenic mutation in a certain gene are added to this bucket break #print(buckets) return buckets def classify_10xSVM(self, C=1): """ a 10x validation SVM classification of all samples in the instance of Data. The samples' pedia atrribute will be adjusted accordingly. """ buckets = self.bucketize_data() print('10 x cross validation') bn = 1 #bucket number # 10x cross validation, data will be split according to the ID entries in each bucket, # that were created by bucketize_data() for bucket in buckets: print('computing results for bucket ' + str(bn)) X = [] y = [] for smpl in self.samples: # only the data will be used for training that are of cases that are NOT in the topical bucket if smpl.case not in bucket: X.append([smpl.gestalt, smpl.feature, smpl.cadd_phred,smpl.phenomizer, smpl.boqa]) #feature vector y.append(smpl.pathogenicity) #class labels X = np.array(X) #the clf function needs np arrays scaler = preprocessing.MinMaxScaler().fit(X) X = scaler.transform(X) #data is scaled to values between 1 and 0 using minmax scaler y = np.array(y) #the clf function needs np arrays # the classifier is balanced because class 0 exceeds class 1 by far, # (only one pathogenic mutation per case, but several hundred genes per case) clf = svm.SVC(kernel='poly', C=C, degree=2, probability=False, class_weight='balanced') clf.fit(X, y) for smpl in self.samples: # only those samples are tested with the classifier that ARE in the bucket if smpl.case in bucket: smpl.pedia = float(clf.decision_function(scaler.transform(np.array([smpl.gestalt, smpl.feature , smpl.cadd_phred, smpl.phenomizer, smpl.boqa])))) bn += 1 def save_SVM(self, C=1): """ saves the classifier so that it can be reloaded and quickly used for other purposes""" print('loading data') X = [] y = [] for smpl in self.samples: X.append([smpl.gestalt, smpl.feature, smpl.cadd_phred, smpl.phenomizer, smpl.boqa]) y.append([smpl.pathogenicity]) X = np.array(X) scaler = preprocessing.MinMaxScaler().fit(X) X = scaler.transform(X) y = np.array(y) print('training classifier') clf = svm.SVC(kernel='poly', C=C, degree=2, probability=False, class_weight='balanced') clf.fit(X, y) print('saving classifier') joblib.dump(clf, 'pedia_classifier.pkl', compress=9) print('saving scaler') joblib.dump(scaler, 'pedia_scaler.pkl', compress=9) print('done saving') def classify_10xSVM_extom(self): """ a 10x validation SVM classification of all samples in the instance of Data. The samples' pedia atrribute will be adjusted accordingly. """ buckets = self.bucketize_data() print('10 x cross validation') bn = 1 #bucket number for bucket in buckets: #10x cross validation, data will be split according to the ID entries in each bucket, that were created by bucketize_data() print('computing results for bucket ' + str(bn)) X = [] y = [] for smpl in self.samples: if smpl.case not in bucket: #only the data will be used for training that are of cases that are NOT in the topical bucket X.append([smpl.feature,smpl.cadd_phred, smpl.phenomizer, smpl.boqa]) #feature vector y.append(smpl.pathogenicity) #class labels X = np.array(X) #the clf function needs np arrays scaler = preprocessing.MinMaxScaler().fit(X) X = scaler.transform(X) #data is scaled to values between 1 and 0 using minmax scaler y = np.array(y)#the clf function needs np arrays clf = svm.SVC(kernel='poly', C=1, degree=2, probability=False, class_weight='balanced') #the classifier is balanced because class 0 exceeds class 1 by far, (only one pathogenic mutation per case,but several hundred genes per case) clf.fit(X, y) for smpl in self.samples: if smpl.case in bucket: #only those samples are tested with the classifier that ARE in the bucket smpl.extom = float(clf.decision_function(scaler.transform(np.array([smpl.feature, smpl.cadd_phred, smpl.phenomizer, smpl.boqa])))) bn += 1 def classify_10xSVM_sgt(self): #sgt: specific gene testing """ a 10x validation SVM classification of all samples in the instance of Data. The samples' pedia atrribute will be adjusted accordingly. """ buckets = self.bucketize_data() print('10 x cross validation') bn = 1 #bucket number for bucket in buckets: #10x cross validation, data will be split according to the ID entries in each bucket, that were created by bucketize_data() print('computing results for bucket ' + str(bn)) X = [] y = [] for smpl in self.samples: if smpl.case not in bucket: #only the data will be used for training that are of cases that are NOT in the topical bucket X.append([smpl.feature,smpl.gestalt, smpl.phenomizer, smpl.boqa]) #feature vector y.append(smpl.pathogenicity) #class labels X = np.array(X) #the clf function needs np arrays scaler = preprocessing.MinMaxScaler().fit(X) X = scaler.transform(X) #data is scaled to values between 1 and 0 using minmax scaler y = np.array(y)#the clf function needs np arrays clf = svm.SVC(kernel = 'poly', C=1, degree=2, probability=False, class_weight='balanced') #the classifier is balanced because class 0 exceeds class 1 by far, (only one pathogenic mutation per case,but several hundred genes per case) clf.fit(X, y) for smpl in self.samples: if smpl.case in bucket: #only those samples are tested with the classifier that ARE in the bucket smpl.extom = float(clf.decision_function(scaler.transform(np.array([smpl.feature, smpl.gestalt, smpl.phenomizer, smpl.boqa])))) bn += 1 def classify_10xSVM_sympt(self): #sgt: specific gene testing """ a 10x validation SVM classification of all samples in the instance of Data. The samples' pedia atrribute will be adjusted accordingly. """ buckets = self.bucketize_data() print('10 x cross validation') bn = 1 #bucket number for bucket in buckets: #10x cross validation, data will be split according to the ID entries in each bucket, that were created by bucketize_data() print('computing results for bucket ' + str(bn)) X = [] y = [] for smpl in self.samples: if smpl.case not in bucket: #only the data will be used for training that are of cases that are NOT in the topical bucket X.append([smpl.feature,smpl.phenomizer, smpl.boqa]) #feature vector y.append(smpl.pathogenicity) #class labels X = np.array(X) #the clf function needs np arrays scaler = preprocessing.MinMaxScaler().fit(X) X = scaler.transform(X) #data is scaled to values between 1 and 0 using minmax scaler y = np.array(y)#the clf function needs np arrays clf = svm.SVC(kernel='poly', C=1, degree=2, probability=False, class_weight='balanced') #the classifier is balanced because class 0 exceeds class 1 by far, (only one pathogenic mutation per case,but several hundred genes per case) clf.fit(X, y) for smpl in self.samples: if smpl.case in bucket: #only those samples are tested with the classifier that ARE in the bucket smpl.extom = float(clf.decision_function(scaler.transform(np.array([smpl.feature, smpl.phenomizer, smpl.boqa])))) bn += 1 def classify_10xMLP(self): """ a 10x validation SVM classification of all samples in the instance of Data. The samples' pedia atrribute will be adjusted accordingly. """ buckets = self.bucketize_data() print('10 x cross validation') bn = 1 #bucket number for bucket in buckets: #10x cross validation, data will be split according to the ID entries in each bucket, that were created by bucketize_data() print('computing results for bucket ' + str(bn)) X = [] y = [] for smpl in self.samples: if smpl.case not in bucket: #only the data will be used for training that are of cases that are NOT in the topical bucket X.append([smpl.gestalt, smpl.feature, smpl.cadd_phred, smpl.phenomizer, smpl.boqa]) #feature vector y.append(smpl.pathogenicity) #class labels X=np.array(X) #the clf function needs np arrays scaler = preprocessing.MinMaxScaler().fit(X) X=scaler.transform(X) #data is scaled to values between 1 and 0 using minmax scaler y=np.array(y)#the clf function needs np arrays clf = MLPClassifier(hidden_layer_sizes=(4, 3), max_iter=10, alpha=1e-4, solver='sgd', verbose=10, tol=1e-4, random_state=1, learning_rate_init=.1) clf.fit(X,y) for smpl in self.samples: if smpl.case in bucket: #only those samples are tested with the classifier that ARE in the bucket smpl.pedia = float(clf.predict(scaler.transform(np.array([smpl.gestalt, smpl.feature , smpl.cadd_phred, smpl.phenomizer, smpl.boqa])))) bn+=1 def classify_real(self, training_data): """ SVM classification of all samples in the instance of Data against a given training data set that is also an instance of class Data """ print('classification') X = [] y = [] for smpl in training_data.samples: X.append([smpl.gestalt, smpl.feature, smpl.cadd_phred, smpl.phenomizer, smpl.boqa]) #feature vector y.append(smpl.pathogenicity) # class labels X = np.array(X) # the clf function needs np arrays scaler = preprocessing.MinMaxScaler().fit(X) X = scaler.transform(X) # data is scaled to values between 1 and 0 using minmax scaler y = np.array(y) # the clf function needs np arrays # the classifier is balanced because class 0 exceeds class 1 by far, # (only one pathogenic mutation per case,but several hundred genes per case) clf = svm.SVC(kernel='poly', C=1, degree=2, probability=False, class_weight='balanced') clf.fit(X, y) for smpl in self.samples: smpl.pedia = float(clf.decision_function(scaler.transform(np.array([smpl.gestalt, smpl.feature, smpl.cadd_phred, smpl.phenomizer, smpl.boqa])))) def manhattan(self, ID='all', score='pedia'): """ Displays the information in Data as a manhattan plot. If the optional variable ID is set to a string matching a case ID, only the results of this case will be displayed.""" genepos={} chr_sizes=[249250621, 243199373, 198022430, 191154276, 180915260, 171115067, 159138663, 146364022, 141213431, 135534747, 135006516, 133851895, 115169878, 107349540, 102531392, 90354753, 81195210, 78077248, 59128983, 63025520, 48129895, 51304566, 155270560, 59373566, 16571] for line in open('allgenepositions.txt'): fields = line[:-1].split('\t') nm = fields[0] chro = fields[1] pos = fields[2] name = fields[3] if name not in genepos: genepos[name]=[chro,pos] sanos=[] sanos2=[] pathos=[] s_pos=[] s_pos2=[] p_pos=[] names=[] names_x=[] names_y=[] for smpl in self.samples: if smpl.case==ID or ID=='all': if smpl.gene not in genepos and smpl.pathogenicity == 1: print(smpl.gene) if smpl.gene in genepos: chrom=genepos[smpl.gene][0][3:] if chrom=='X': chrom=23 elif chrom=='Y': chrom=24 elif chrom=='M': chrom=25 else: chrom=int(chrom) pos=0 for i in range(chrom-1): pos+=chr_sizes[i]+10**6 pos+=int(genepos[smpl.gene][1]) if smpl.pathogenicity==0: if chrom%2==0: sanos2.append(getattr(smpl, score)) s_pos2.append(pos) else: sanos.append(getattr(smpl, score)) s_pos.append(pos) if smpl.pathogenicity==1: pathos.append(getattr(smpl, score)) p_pos.append(pos) if smpl.gene in names: for i in range(len(names)): if names[i]==smpl.gene: if names_y[i]<getattr(smpl, score): names_y[i]=getattr(smpl, score) if smpl.gene not in names: names.append(smpl.gene) names_x.append(pos) names_y.append(getattr(smpl, score)) plt.scatter(s_pos,sanos, color='#70ACC0', alpha=0.6, marker='o', s=400, label=('neutrals')) #s=30 plt.scatter(s_pos2,sanos2, color='#008B8B', alpha=0.6, marker='o', s=400, label=('neutrals')) #s=30  #385660 plt.scatter(p_pos,pathos, color='#AA1C7D', alpha=0.6, marker='o', s=400, label='pathogenic') #s=30 for i in range(len(names)): plt.annotate(names[i], xy = (names_x[i], names_y[i]), xytext = (names_x[i], names_y[i]), fontsize=70, color='#AA1C7D')#, textcoords = 'offset points') plt.xlabel('chromosomal position', fontsize=30) ticks=[] tick=0 for i in chr_sizes: tick+=i/2 ticks.append(tick) tick+=(i/2)+10**6 plt.xticks(ticks) plt.ylabel( score+' score', fontsize=30) plt.legend(loc='upper left', fontsize=25) frame1=plt.gca() chr_names=[] for i in range(1,26): if i==23: chr_names.append('X') elif i==24: chr_names.append('Y') elif i==25: chr_names.append('M') else: chr_names.append(str(i)) frame1.axes.xaxis.set_ticklabels(chr_names, fontsize=25) frame1.axes.tick_params(axis='x',length=0) frame1.axes.tick_params(axis='y', labelsize=25) y_min=min([min(sanos),min(sanos2),min(pathos)]) y_max=max([max(sanos),max(sanos2),max(pathos)]) plt.ylim(y_min, y_max+(y_max/10)) #ymin-(ymax/30) plt.xlim(0,ticks[-1]+(chr_sizes[-1]/2)+10**6) def ranker(self, col, lab): """A function to evaluate (rank) the results of the classification and put into a plot. only to be used after data was classified.""" # data is what is to be analyzed, it must have the structure of alldatascored in classify() # col is the color of the plot # lab is the label of the plot print('ranking results based on',lab) data = [] for smpl in self.samples: data.append([smpl.case, smpl.pedia, smpl.gestalt, smpl.pathogenicity]) n_cases = len(self.casedisgene) # sorts the data by case ID because it has index 0 in alldatascored, and then by pedia score, # because it has index 1 data.sort() # reverses the data so that each scases starts with the entry with the highest pedia score data.reverse() # a list that will contain lists of the IDs of each case and the rank of the respective # pathogenic variant, ranked by the pedia-score combined_rank = [] rank = 1 case = data[0][0] pathoamongdata = False # is the pathogenic gene still among the data (it had not been filtered out?) npf = 0 # number passed filter for entry in data: currcase = entry[0] patho = entry[-1] if currcase != case: if not pathoamongdata: combined_rank.append([case, 102]) # if the pathogenic gene had not been in that case anymore the case will be assigned # a rank of 105 (so that it is higher than 100 will be regarded as having failed) pathoamongdata = False #pathoamongdata is set back to false rank = 1 case = currcase if patho == 1: combined_rank.append([case, rank]) # assignes the rank of the pathogenic gene to the case pathoamongdata = True # true because there was a pathogenic gene in that case npf += 1 rank += 1 # increased by 1 for each iteration, because the list is sorted by case and than pedia score combined_performance = [] for i in range(101): # will evalute ranks in range 0 to 101) sens = 0 for j in combined_rank: rank = j[1] if rank <= i: sens += 1 # how many cases have a patho rank lower than or eqal to i # the absolute number is divided by the total number of cases, # so that one has the fraction of cases having a patho rank not higher than i sens = (sens/n_cases) # appends sens to i, so that combined rank is a list of floats, each float describing the # fraction of cases that have a pathorank lower or eqaul to its index combined_performance.append(sens) plt.plot(range(1, len(combined_performance)), combined_performance[1:], color=col, alpha=0.6, label=lab, linewidth=3) plt.scatter([1,10,100],[combined_performance[1],combined_performance[10],combined_performance[100]], color=col, alpha=0.6, marker='o', s=50) print(lab, [combined_performance[1], combined_performance[10], combined_performance[100]], 'fraction passed filter:', (npf/n_cases)) plt.ylim(0, 1.01) #the last lines of code are only needed to display the results plt.xlim(0, 100.5) plt.xlabel('rank-cut-off') plt.ylabel('Sensitivity') plt.title('Sensitivity-rank-cut-off-correlation') plt.legend(loc='lower right') def ranker2(self,col,lab, score='pedia'): """A function to evaluate (rank) the results of the classification and put into a plot. only to be used after data was classified.""" #data is what is to be analyzed, it must have the structure of alldatascored in classify() #col is the color of the plot #lab is the label of the plot print('ranking results based on',lab) cases={} combined_rank=[] #a list that will contain lists of the IDs of each case and the rank of the respective pathogenic variant, ranked by the pedia-score n_cases = len(self.casedisgene) npf=0 #number passed filter for smpl in self.samples: if smpl.case in cases: cases[smpl.case].append([getattr(smpl, score), smpl.pathogenicity]) if smpl.case not in cases: cases[smpl.case]=[[getattr(smpl, score), smpl.pathogenicity]] for case in cases: cases[case].sort() cases[case].reverse() ranks=(list(enumerate(cases[case]))) for i in ranks: rank=102 if i[1][1]==1: rank=i[0]+1 npf+=1 combined_rank.append([case,rank]) combined_performance=[] for i in range(101): #will evalute ranks in range 0 to 101) sens=0 for j in combined_rank: rank=j[1] if rank<=i: sens+=1 #how many cases have a patho rank lower than or eqal to i sens=(sens/n_cases) #the absolute number is divided by the total number of cases, so that one has the fraction of cases having a patho rank not higher than i combined_performance.append(sens) #appends sens to i, so that combined rank is a list of floats, each float describing the fraction of cases that have a pathorank lower or eqaul to its index plt.plot(range(1,len(combined_performance)),combined_performance[1:], color=col, alpha=0.6, label=lab, linewidth=3) plt.scatter([1,10,100],[combined_performance[1],combined_performance[10],combined_performance[100]], color=col, alpha=0.6, marker='o', s=50) print(lab,[combined_performance[1],combined_performance[10],combined_performance[100]],'fraction passed filter:',(npf/n_cases)) plt.ylim(0, 1.01) #the last lines of code are only needed to display the results plt.xlim(0, 100.5) plt.xlabel('rank-cut-off') plt.ylabel('Sensitivity') plt.title('Sensitivity-rank-cut-off-correlation') plt.legend(loc='lower right') def ranker_returner(self, lab, score='pedia'): """A function to evaluate (rank) the results of the classification and put into a plot. only to be used after data was classified.""" # data is what is to be analyzed, it must have the structure of alldatascored in classify() # col is the color of the plot # lab is the label of the plot print('ranking results based on', lab) cases = {} # a list that will contain lists of the IDs of each case and the rank of the respective # pathogenic variant, ranked by the pedia-score combined_rank = [] n_cases = len(self.casedisgene) npf = 0 #number passed filter for smpl in self.samples: if smpl.case in cases: cases[smpl.case].append([getattr(smpl, score), smpl.pathogenicity * (-1)]) if smpl.case not in cases: cases[smpl.case] = [[getattr(smpl, score), smpl.pathogenicity * (-1)]] for case in cases: cases[case].sort() cases[case].reverse() ranks = (list(enumerate(cases[case]))) for i in ranks: rank = 102 if i[1][1] == -1: rank = i[0] + 1 npf += 1 combined_rank.append([case, rank]) combined_performance = [] for i in range(101): # will evalute ranks in range 0 to 101 sens = 0 for j in combined_rank: rank = j[1] if rank <= i: sens += 1 # how many cases have a patho rank lower than or eqal to i # the absolute number is divided by the total number of cases, so that one has # the fraction of cases having a patho rank not higher than i sens = (sens/n_cases) # appends sens to i, so that combined rank is a list of floats, each float describing # the fraction of cases that have a pathorank lower or eqaul to its index combined_performance.append(sens) # plt.plot(range(1,len(combined_performance)),combined_performance[1:], color=col, alpha=0.6, label=lab, linewidth=3) # plt.scatter([1,10,100],[combined_performance[1],combined_performance[10],combined_performance[100]], color=col, alpha=0.6, marker='o', s=50) # print(lab,[combined_performance[1],combined_performance[10],combined_performance[100]],'fraction passed filter:',(npf/n_cases)) # plt.ylim(0, 1.01) #the last lines of code are only needed to display the results # plt.xlim(0, 100.5) # plt.xlabel('rank-cut-off') # plt.ylabel('Sensitivity') # plt.title('Sensitivity-rank-cut-off-correlation') # plt.legend(loc='lower right') return([combined_performance[1], combined_performance[10], combined_performance[100]]) def ranker_returner2(self,lab, score='pedia'): """A function to evaluate (rank) the results of the classification and put into a plot. only to be used after data was classified.""" #data is what is to be analyzed, it must have the structure of alldatascored in classify() #col is the color of the plot #lab is the label of the plot print('ranking results based on',lab) cases={} combined_rank=[] #a list that will contain lists of the IDs of each case and the rank of the respective pathogenic variant, ranked by the pedia-score n_cases = len(self.casedisgene) npf=0 #number passed filter for smpl in self.samples: if smpl.case in cases: cases[smpl.case].append([getattr(smpl, score), smpl.pathogenicity*(-1)]) if smpl.case not in cases: cases[smpl.case]=[[getattr(smpl, score), smpl.pathogenicity*(-1)]] for case in cases: cases[case].sort() cases[case].reverse() ranks=(list(enumerate(cases[case]))) print(ranks) for i in ranks: rank=102 if i[1][1]==-1: rank=i[0]+1 npf+=1 combined_rank.append([case,rank]) combined_performance=[] for i in range(101): #will evalute ranks in range 0 to 101) sens=0 for j in combined_rank: rank=j[1] if rank<=i: sens+=1 #how many cases have a patho rank lower than or eqal to i sens=(sens/n_cases) #the absolute number is divided by the total number of cases, so that one has the fraction of cases having a patho rank not higher than i combined_performance.append(sens) #appends sens to i, so that combined rank is a list of floats, each float describing the fraction of cases that have a pathorank lower or eqaul to its index # plt.plot(range(1,len(combined_performance)),combined_performance[1:], color=col, alpha=0.6, label=lab, linewidth=3) # plt.scatter([1,10,100],[combined_performance[1],combined_performance[10],combined_performance[100]], color=col, alpha=0.6, marker='o', s=50) # print(lab,[combined_performance[1],combined_performance[10],combined_performance[100]],'fraction passed filter:',(npf/n_cases)) # plt.ylim(0, 1.01) #the last lines of code are only needed to display the results # plt.xlim(0, 100.5) # plt.xlabel('rank-cut-off') # plt.ylabel('Sensitivity') # plt.title('Sensitivity-rank-cut-off-correlation') # plt.legend(loc='lower right') print([combined_performance[1],combined_performance[10],combined_performance[100]]) def compare(self, score1='pedia', score2='gestalt', score3='extom'): cases={} rank1=1000 rank2=1000 rank5=1000 ranking={} for smpl in self.samples: if smpl.case in cases: cases[smpl.case].append([getattr(smpl, score1), smpl.pathogenicity]) if smpl.case not in cases: cases[smpl.case]=[[getattr(smpl, score1), smpl.pathogenicity]] for case in cases: cases[case].sort() cases[case].reverse() ranks=(list(enumerate(cases[case]))) for i in ranks: if i[1][1]==1: #print(i) ranking[case]=[i[0]+1] #print(case,ranking[case],[i[0]+1]) cases={} for smpl in self.samples: if smpl.case in cases: cases[smpl.case].append([getattr(smpl, score2), smpl.pathogenicity]) if smpl.case not in cases: cases[smpl.case]=[[getattr(smpl, score2), smpl.pathogenicity]] for case in cases: cases[case].sort() cases[case].reverse() ranks=(list(enumerate(cases[case]))) for i in ranks: if i[1][1]==1: ranking[case].append(i[0]+1) cases={} for smpl in self.samples: if smpl.case in cases: cases[smpl.case].append([getattr(smpl, score3), smpl.pathogenicity]) if smpl.case not in cases: cases[smpl.case]=[[getattr(smpl, score3), smpl.pathogenicity]] for case in cases: cases[case].sort() cases[case].reverse() ranks=(list(enumerate(cases[case]))) for i in ranks: if i[1][1]==1: ranking[case].append(i[0]+1) for case in ranking: if ranking[case][0]<ranking[case][2]: print(str(case),ranking[case]) def ranker3(self,col,lab, score='pedia'): """A function to evaluate (rank) the results of the classification and put into a plot. only to be used after data was classified.""" #data is what is to be analyzed, it must have the structure of alldatascored in classify() #col is the color of the plot #lab is the label of the plot print('ranking results based on',lab) genes={} cdg={} for entry in self.casedisgene: genes[entry[1]]=[] cdg[entry[0]]=entry[1] cases={} combined_rank=[] #a list that will contain lists of the IDs of each case and the rank of the respective pathogenic variant, ranked by the pedia-score n_cases = len(self.casedisgene) npf=0 #number passed filter for smpl in self.samples: if smpl.case in cases: cases[smpl.case].append([getattr(smpl, score), smpl.pathogenicity, smpl.gene]) if smpl.case not in cases: cases[smpl.case]=[[getattr(smpl, score), smpl.pathogenicity, smpl.gene]] for case in cases: cases[case].sort() cases[case].reverse() ranks=(list(enumerate(cases[case]))) rank=102 for i in ranks: if i[1][1]==1: rank=i[0]+1 npf+=1 genes[cdg[case]].append(rank) #print('genes:',genes) for gene in genes: # if genes[gene]==[]: # genes[gene]=[102] ranksum=0 for rank in genes[gene]: ranksum+=rank ranksum/=len(genes[gene]) combined_rank.append([gene,ranksum]) print(gene, genes[gene], ranksum) combined_performance=[] for i in range(101): #will evalute ranks in range 0 to 101) sens=0 for j in combined_rank: rank=j[1] if rank<=i: sens+=1 #how many cases have a patho rank lower than or eqal to i sens=(sens/len(genes)) #the absolute number is divided by the total number of cases, so that one has the fraction of cases having a patho rank not higher than i combined_performance.append(sens) #appends sens to i, so that combined rank is a list of floats, each float describing the fraction of cases that have a pathorank lower or eqaul to its index plt.plot(range(1,len(combined_performance)),combined_performance[1:], color=col, alpha=0.6, label=lab, linewidth=3) plt.scatter([1,10,100],[combined_performance[1],combined_performance[10],combined_performance[100]], color=col, alpha=0.6, marker='o', s=50) print(lab,[combined_performance[1],combined_performance[10],combined_performance[100]],'fraction passed filter:',(npf/n_cases)) plt.ylim(0, 1.01) #the last lines of code are only needed to display the results plt.xlim(0, 100.5) plt.xlabel('rank-cut-off') plt.ylabel('Sensitivity') plt.title('Sensitivity-rank-cut-off-correlation') plt.legend(loc='lower right') def save_jsons(self,path): '''a function to save the pedia scores in their respective jsons''' cwd=os.getcwd() os.chdir(path) print('saving results') for file in os.listdir(): if file[-5:]=='.json': print(file) with open(file) as json_data: casedata = json.load(json_data) for smpl in self.samples: for i in casedata['geneList']: if i['gene_symbol']==smpl.gene: i['pedia_score']=smpl.pedia with open(file, 'w') as f: json.dump(casedata, f) os.chdir(cwd) print('finished saving') def hyper_search_helper(self, start=-5, stop=5, step=10, maximum=0, attempts=2, best=[0,[0,0,0]]): for i in range(0, step + 1, 1): exp = start + (i / step * (stop - start)) print('evaluating c-value of 10**' + str(exp) + '\nstep ' + str(i + 1) + ' of ' + str(step)) c_value=10**exp self.classify_10xSVM(c_value) performance = [exp, self.ranker_returner(lab=('c_value = 10**' + str(exp)))] if performance[1][1] > best[1][1]: best = performance elif performance[1][1] == best[1][1]: if performance[1][0] > best[1][0]: best = performance elif performance[1][0] == best[1][0] and performance[1][2] > best[1][2]: best = performance #results.append(performance) print('best', best) #print(results) print('best',best) if best[0] == maximum: attempts -= 1 if best[0] != start and best[0] != stop: result = [best[0] - (2 * ((stop - start) / step)), best[0] + (2 * ((stop-start) / step)), step, attempts, best] else: result=[start - ((stop - start)), stop + ((stop - start)), step, attempts, best] return(result) def hyper_search(self, start=-5, stop=5, step=10, maximum=0, attempts=2, best=[0,[0,0,0]]): iteration = 1 while attempts > 0: print('hyperparameter search round: ' + str(iteration) + ' \nremaining determination attempts ' + str(attempts)) new = self.hyper_search_helper(start, stop, step, maximum, attempts, best) start = new[0] stop = new[1] step = new[2] # not really necessary as step doesnt change in hyper_search_helper attempts = new[3] maximum = new[4][0] best = new[4] iteration += 1 print('hyperparameter search determined best c-value at ' + str(best)) def main(): if len(sys.argv) < 2: sys.exit('Usage: python %s path(simulation data)' % sys.argv[0]) path = sys.argv[1] print('loading 1KG') onekg = Data() onekg.load(path + '/real/train/1KG') onekg.numhit(0) print('loading ExAC') exac = Data() exac.load(path + '/real/train/ExAC') exac.numhit(0) print('loading Iranian') iran = Data() iran.load(path + '/real/train/IRAN') iran.numhit(0) print('loading test data') test = Data() test.load(path + '/real/test') test.numhit(0) print('classifying against 1KG') test.classify_real(onekg) test.ranker('red', '1KG') print('classifying against ExAC') test.classify_real(exac) test.ranker('blue', 'EXAC') print('classifying against Iranian') test.classify_real(iran) test.ranker('purple', 'Iran') plt.savefig('sensitivity_rank_cor.png') results = [] best = [None, [0, 0, 0]] print('loading 1KG') onekg = Data() onekg.load(path + '/1KG/CV') onekg.save_SVM(C=10 ** (-1.45)) onekg.hyper_search(start=-3, stop=3) smpl = Sample() smpl.boqa = 0.5 smpl.phenomizer = 0.7 smpl.cadd_phred = 17 smpl.feature = 0 smpl.gestalt = 1.5 smpl.classify() print('classifying 1KG by SVM') onekg.classify_10xSVM() onekg.manhattan('40639') plt.savefig('10xSVM.png') onekg.ranker2('red', 'PEDIA') onekg.classify_10xSVM_extom() onekg.ranker2('blue', 'extom', score = 'extom') onekg.compare() onekg.classify_10xSVM_extom() onekg.ranker2('blue', 'extom no filter', score = 'extom') onekg.ranker2('green', 'gestalt no filter', score = 'gestalt') onekg2 = Data() onekg2.load2(path + '/1KG/CV') print('classifying 1KG by SVM') onekg2.classify_10xSVM() onekg2.ranker2('black', 'extom sep. loaded') plt.savefig('10xSVM_extom.png') #onekg.ranker2('purple','gestalt',score='gestalt') #onekg.ranker2('orange','cadd_phred',score='cadd_phred') onekg.filter_gestalt() onekg.classify_10xSVM_extom() onekg.ranker3('blue', 'extom post filter', score = 'extom') onekg = Data() onekg.load(path + '/real/train/1KG') test = Data() test.load(path + '/real/test') test.classify_real(onekg) test.ranker2('red', 'PEDIA') onekg.filter_gestalt() test.classify_real(onekg) test.ranker2('blue', 'extom') plt.show() onekgnum = Data() onekgnum.load(path + '/1KG/CV') onekgnum.numhit(2) print('classifying 1KGnum by SVM') onekgnum.classify_10xSVM() onekgnum.ranker3('green', 'PEDIA num') onekgnum.filter_gestalt() onekgnum.classify_10xSVM_extom() onekgnum.ranker3('orange', 'extomnum', score = 'extom') onekg.compare() plt.show() scores=[[30, 0], [7, 0], [346, 0], [9, 0], [65, 0], [39, 0], [87, 0], [124, 0], [39, 1], [30, 0], [-1, 0]] scores.sort() scores.reverse() print(list(enumerate(scores))) print('loading 1KG') onekg = Data() onekg.load(path + '/1KG/CV') onekg.numhit(0) print('loading ExAC') exac = Data() exac.load(path + '/ExAC/CV') exac.numhit(0) print('loading Iranian') iran = Data() iran.load(path + '/IRAN/CV') iran.numhit(0) print('classifying 1KG') onekg.classify_10xSVM() onekg.ranker('red','1KG') print('classifying ExAC') exac.classify_10xSVM() exac.ranker('blue','EXAC') print('classifying Iranian') iran.classify_10xSVM() iran.ranker('purple','Iran') plt.show() test=Data() test.load(path + '/1KG/CV') test.classify_10xSVM() test.manhattan('97147') plt.show() os.chdir(path + '/1KG/CV') for i in os.listdir(): with open(i) as json_data: data = json.load(json_data) print(data['ranks']['combined_rank'], i[:-5]) test=Data() test.load(path + '/real/test') cases=[] patho=0 for smpl in test.samples: if smpl.case not in cases: cases.append(smpl.case) for smpl in test.samples: if smpl.pathogenicity == 1: cases.pop(cases.index(smpl.case)) os.chdir(path + '/real/test') for case in cases: with open(str(case)+'.json') as json_data: data = json.load(json_data) disgene=data['genomicData'][0]['Test Information']['Gene Name'] print(disgene) for entry in data['geneList']: #print(entry['gene_symbol']) if entry['gene_symbol']==disgene: print('here') if __name__ == '__main__': main()
5a9660779063959ecef329d1b58ac42c1dc13e5e
0da3ebae606295ee3c1613004c6f21650e914841
/codestreak/extensions.py
07761de1820e73e03a2ea21169597925d9435969
[]
no_license
mfwarren/codestreak.io
38bac87f2ddc6e7cff56a4bc95b6b1ca4a41ef1a
bd37dd7ad55c9926e7a4752afca5986c08145d34
refs/heads/master
2020-06-11T06:21:27.012529
2019-03-03T15:43:32
2019-03-03T15:43:32
75,747,414
3
1
null
null
null
null
UTF-8
Python
false
false
448
py
# -*- coding: utf-8 -*- """Extensions module. Each extension is initialized in the app factory located in app.py.""" from flask_debugtoolbar import DebugToolbarExtension from flask_migrate import Migrate from raven.contrib.flask import Sentry from flask_sqlalchemy import SQLAlchemy from flask_wtf.csrf import CsrfProtect csrf_protect = CsrfProtect() db = SQLAlchemy() migrate = Migrate() debug_toolbar = DebugToolbarExtension() sentry = Sentry()
d911a1de75e301eed643472356197ac68faf3647
b0fab024e9b7e7bd51c18c5578f0f45314808592
/sine_competition_url/competition_url.py
692142fbbe0f49ea5ac2e79373fac3914a120a1b
[]
no_license
dhecar/SINERGIA
a34d98fda84ce8ca8d2f67b89680bbf19c15fe1b
678cfd41df8045645be130d2f3d51399908b15fd
refs/heads/master
2021-01-23T11:07:48.724177
2017-04-20T10:51:07
2017-04-20T10:51:07
33,182,317
1
7
null
2015-08-31T20:59:43
2015-03-31T11:45:11
Python
UTF-8
Python
false
false
471
py
import openerp.addons.decimal_precision as dp from openerp.tools.translate import _ from openerp.osv import fields, osv import urllib import re class competition_url(osv.osv): _name = 'competition.url' _description = 'URL for competition' _table = 'competition_url' _rec_name = 'url_competition' _columns = { 'url_competition': fields.char('Url ', size=150), 'regex': fields.char('Expression', size=300), } competition_url()
3c2393b7cc3380369cbc4d1b55810fd9d9d82ed4
c16ea32a4cddb6b63ad3bacce3c6db0259d2bacd
/google/cloud/clouddms/v1/clouddms-v1-py/google/cloud/clouddms_v1/services/data_migration_service/transports/grpc.py
27875f61ce4a3548b8ad8719aabf93eec1c8092e
[ "Apache-2.0" ]
permissive
dizcology/googleapis-gen
74a72b655fba2565233e5a289cfaea6dc7b91e1a
478f36572d7bcf1dc66038d0e76b9b3fa2abae63
refs/heads/master
2023-06-04T15:51:18.380826
2021-06-16T20:42:38
2021-06-16T20:42:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
31,544
py
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import warnings from typing import Callable, Dict, Optional, Sequence, Tuple, Union from google.api_core import grpc_helpers # type: ignore from google.api_core import operations_v1 # type: ignore from google.api_core import gapic_v1 # type: ignore import google.auth # type: ignore from google.auth import credentials as ga_credentials # type: ignore from google.auth.transport.grpc import SslCredentials # type: ignore import grpc # type: ignore from google.cloud.clouddms_v1.types import clouddms from google.cloud.clouddms_v1.types import clouddms_resources from google.longrunning import operations_pb2 # type: ignore from .base import DataMigrationServiceTransport, DEFAULT_CLIENT_INFO class DataMigrationServiceGrpcTransport(DataMigrationServiceTransport): """gRPC backend transport for DataMigrationService. Database Migration service This class defines the same methods as the primary client, so the primary client can load the underlying transport implementation and call it. It sends protocol buffers over the wire using gRPC (which is built on top of HTTP/2); the ``grpcio`` package must be installed. """ _stubs: Dict[str, Callable] def __init__(self, *, host: str = 'datamigration.googleapis.com', credentials: ga_credentials.Credentials = None, credentials_file: str = None, scopes: Sequence[str] = None, channel: grpc.Channel = None, api_mtls_endpoint: str = None, client_cert_source: Callable[[], Tuple[bytes, bytes]] = None, ssl_channel_credentials: grpc.ChannelCredentials = None, client_cert_source_for_mtls: Callable[[], Tuple[bytes, bytes]] = None, quota_project_id: Optional[str] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, ) -> None: """Instantiate the transport. Args: host (Optional[str]): The hostname to connect to. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. This argument is ignored if ``channel`` is provided. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is ignored if ``channel`` is provided. scopes (Optional(Sequence[str])): A list of scopes. This argument is ignored if ``channel`` is provided. channel (Optional[grpc.Channel]): A ``Channel`` instance through which to make calls. api_mtls_endpoint (Optional[str]): Deprecated. The mutual TLS endpoint. If provided, it overrides the ``host`` argument and tries to create a mutual TLS channel with client SSL credentials from ``client_cert_source`` or applicatin default SSL credentials. client_cert_source (Optional[Callable[[], Tuple[bytes, bytes]]]): Deprecated. A callback to provide client SSL certificate bytes and private key bytes, both in PEM format. It is ignored if ``api_mtls_endpoint`` is None. ssl_channel_credentials (grpc.ChannelCredentials): SSL credentials for grpc channel. It is ignored if ``channel`` is provided. client_cert_source_for_mtls (Optional[Callable[[], Tuple[bytes, bytes]]]): A callback to provide client certificate bytes and private key bytes, both in PEM format. It is used to configure mutual TLS channel. It is ignored if ``channel`` or ``ssl_channel_credentials`` is provided. quota_project_id (Optional[str]): An optional project to use for billing and quota. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. Raises: google.auth.exceptions.MutualTLSChannelError: If mutual TLS transport creation failed for any reason. google.api_core.exceptions.DuplicateCredentialArgs: If both ``credentials`` and ``credentials_file`` are passed. """ self._grpc_channel = None self._ssl_channel_credentials = ssl_channel_credentials self._stubs: Dict[str, Callable] = {} self._operations_client = None if api_mtls_endpoint: warnings.warn("api_mtls_endpoint is deprecated", DeprecationWarning) if client_cert_source: warnings.warn("client_cert_source is deprecated", DeprecationWarning) if channel: # Ignore credentials if a channel was passed. credentials = False # If a channel was explicitly provided, set it. self._grpc_channel = channel self._ssl_channel_credentials = None else: if api_mtls_endpoint: host = api_mtls_endpoint # Create SSL credentials with client_cert_source or application # default SSL credentials. if client_cert_source: cert, key = client_cert_source() self._ssl_channel_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) else: self._ssl_channel_credentials = SslCredentials().ssl_credentials else: if client_cert_source_for_mtls and not ssl_channel_credentials: cert, key = client_cert_source_for_mtls() self._ssl_channel_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) # The base transport sets the host, credentials and scopes super().__init__( host=host, credentials=credentials, credentials_file=credentials_file, scopes=scopes, quota_project_id=quota_project_id, client_info=client_info, ) if not self._grpc_channel: self._grpc_channel = type(self).create_channel( self._host, credentials=self._credentials, credentials_file=credentials_file, scopes=self._scopes, ssl_credentials=self._ssl_channel_credentials, quota_project_id=quota_project_id, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) # Wrap messages. This must be done after self._grpc_channel exists self._prep_wrapped_messages(client_info) @classmethod def create_channel(cls, host: str = 'datamigration.googleapis.com', credentials: ga_credentials.Credentials = None, credentials_file: str = None, scopes: Optional[Sequence[str]] = None, quota_project_id: Optional[str] = None, **kwargs) -> grpc.Channel: """Create and return a gRPC channel object. Args: host (Optional[str]): The host for the channel to use. credentials (Optional[~.Credentials]): The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is mutually exclusive with credentials. scopes (Optional[Sequence[str]]): A optional list of scopes needed for this service. These are only used when credentials are not specified and are passed to :func:`google.auth.default`. quota_project_id (Optional[str]): An optional project to use for billing and quota. kwargs (Optional[dict]): Keyword arguments, which are passed to the channel creation. Returns: grpc.Channel: A gRPC channel object. Raises: google.api_core.exceptions.DuplicateCredentialArgs: If both ``credentials`` and ``credentials_file`` are passed. """ self_signed_jwt_kwargs = cls._get_self_signed_jwt_kwargs(host, scopes) return grpc_helpers.create_channel( host, credentials=credentials, credentials_file=credentials_file, quota_project_id=quota_project_id, **self_signed_jwt_kwargs, **kwargs ) @property def grpc_channel(self) -> grpc.Channel: """Return the channel designed to connect to this service. """ return self._grpc_channel @property def operations_client(self) -> operations_v1.OperationsClient: """Create the client designed to process long-running operations. This property caches on the instance; repeated calls return the same client. """ # Sanity check: Only create a new client if we do not already have one. if self._operations_client is None: self._operations_client = operations_v1.OperationsClient( self.grpc_channel ) # Return the client from cache. return self._operations_client @property def list_migration_jobs(self) -> Callable[ [clouddms.ListMigrationJobsRequest], clouddms.ListMigrationJobsResponse]: r"""Return a callable for the list migration jobs method over gRPC. Lists migration jobs in a given project and location. Returns: Callable[[~.ListMigrationJobsRequest], ~.ListMigrationJobsResponse]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if 'list_migration_jobs' not in self._stubs: self._stubs['list_migration_jobs'] = self.grpc_channel.unary_unary( '/google.cloud.clouddms.v1.DataMigrationService/ListMigrationJobs', request_serializer=clouddms.ListMigrationJobsRequest.serialize, response_deserializer=clouddms.ListMigrationJobsResponse.deserialize, ) return self._stubs['list_migration_jobs'] @property def get_migration_job(self) -> Callable[ [clouddms.GetMigrationJobRequest], clouddms_resources.MigrationJob]: r"""Return a callable for the get migration job method over gRPC. Gets details of a single migration job. Returns: Callable[[~.GetMigrationJobRequest], ~.MigrationJob]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if 'get_migration_job' not in self._stubs: self._stubs['get_migration_job'] = self.grpc_channel.unary_unary( '/google.cloud.clouddms.v1.DataMigrationService/GetMigrationJob', request_serializer=clouddms.GetMigrationJobRequest.serialize, response_deserializer=clouddms_resources.MigrationJob.deserialize, ) return self._stubs['get_migration_job'] @property def create_migration_job(self) -> Callable[ [clouddms.CreateMigrationJobRequest], operations_pb2.Operation]: r"""Return a callable for the create migration job method over gRPC. Creates a new migration job in a given project and location. Returns: Callable[[~.CreateMigrationJobRequest], ~.Operation]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if 'create_migration_job' not in self._stubs: self._stubs['create_migration_job'] = self.grpc_channel.unary_unary( '/google.cloud.clouddms.v1.DataMigrationService/CreateMigrationJob', request_serializer=clouddms.CreateMigrationJobRequest.serialize, response_deserializer=operations_pb2.Operation.FromString, ) return self._stubs['create_migration_job'] @property def update_migration_job(self) -> Callable[ [clouddms.UpdateMigrationJobRequest], operations_pb2.Operation]: r"""Return a callable for the update migration job method over gRPC. Updates the parameters of a single migration job. Returns: Callable[[~.UpdateMigrationJobRequest], ~.Operation]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if 'update_migration_job' not in self._stubs: self._stubs['update_migration_job'] = self.grpc_channel.unary_unary( '/google.cloud.clouddms.v1.DataMigrationService/UpdateMigrationJob', request_serializer=clouddms.UpdateMigrationJobRequest.serialize, response_deserializer=operations_pb2.Operation.FromString, ) return self._stubs['update_migration_job'] @property def delete_migration_job(self) -> Callable[ [clouddms.DeleteMigrationJobRequest], operations_pb2.Operation]: r"""Return a callable for the delete migration job method over gRPC. Deletes a single migration job. Returns: Callable[[~.DeleteMigrationJobRequest], ~.Operation]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if 'delete_migration_job' not in self._stubs: self._stubs['delete_migration_job'] = self.grpc_channel.unary_unary( '/google.cloud.clouddms.v1.DataMigrationService/DeleteMigrationJob', request_serializer=clouddms.DeleteMigrationJobRequest.serialize, response_deserializer=operations_pb2.Operation.FromString, ) return self._stubs['delete_migration_job'] @property def start_migration_job(self) -> Callable[ [clouddms.StartMigrationJobRequest], operations_pb2.Operation]: r"""Return a callable for the start migration job method over gRPC. Start an already created migration job. Returns: Callable[[~.StartMigrationJobRequest], ~.Operation]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if 'start_migration_job' not in self._stubs: self._stubs['start_migration_job'] = self.grpc_channel.unary_unary( '/google.cloud.clouddms.v1.DataMigrationService/StartMigrationJob', request_serializer=clouddms.StartMigrationJobRequest.serialize, response_deserializer=operations_pb2.Operation.FromString, ) return self._stubs['start_migration_job'] @property def stop_migration_job(self) -> Callable[ [clouddms.StopMigrationJobRequest], operations_pb2.Operation]: r"""Return a callable for the stop migration job method over gRPC. Stops a running migration job. Returns: Callable[[~.StopMigrationJobRequest], ~.Operation]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if 'stop_migration_job' not in self._stubs: self._stubs['stop_migration_job'] = self.grpc_channel.unary_unary( '/google.cloud.clouddms.v1.DataMigrationService/StopMigrationJob', request_serializer=clouddms.StopMigrationJobRequest.serialize, response_deserializer=operations_pb2.Operation.FromString, ) return self._stubs['stop_migration_job'] @property def resume_migration_job(self) -> Callable[ [clouddms.ResumeMigrationJobRequest], operations_pb2.Operation]: r"""Return a callable for the resume migration job method over gRPC. Resume a migration job that is currently stopped and is resumable (was stopped during CDC phase). Returns: Callable[[~.ResumeMigrationJobRequest], ~.Operation]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if 'resume_migration_job' not in self._stubs: self._stubs['resume_migration_job'] = self.grpc_channel.unary_unary( '/google.cloud.clouddms.v1.DataMigrationService/ResumeMigrationJob', request_serializer=clouddms.ResumeMigrationJobRequest.serialize, response_deserializer=operations_pb2.Operation.FromString, ) return self._stubs['resume_migration_job'] @property def promote_migration_job(self) -> Callable[ [clouddms.PromoteMigrationJobRequest], operations_pb2.Operation]: r"""Return a callable for the promote migration job method over gRPC. Promote a migration job, stopping replication to the destination and promoting the destination to be a standalone database. Returns: Callable[[~.PromoteMigrationJobRequest], ~.Operation]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if 'promote_migration_job' not in self._stubs: self._stubs['promote_migration_job'] = self.grpc_channel.unary_unary( '/google.cloud.clouddms.v1.DataMigrationService/PromoteMigrationJob', request_serializer=clouddms.PromoteMigrationJobRequest.serialize, response_deserializer=operations_pb2.Operation.FromString, ) return self._stubs['promote_migration_job'] @property def verify_migration_job(self) -> Callable[ [clouddms.VerifyMigrationJobRequest], operations_pb2.Operation]: r"""Return a callable for the verify migration job method over gRPC. Verify a migration job, making sure the destination can reach the source and that all configuration and prerequisites are met. Returns: Callable[[~.VerifyMigrationJobRequest], ~.Operation]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if 'verify_migration_job' not in self._stubs: self._stubs['verify_migration_job'] = self.grpc_channel.unary_unary( '/google.cloud.clouddms.v1.DataMigrationService/VerifyMigrationJob', request_serializer=clouddms.VerifyMigrationJobRequest.serialize, response_deserializer=operations_pb2.Operation.FromString, ) return self._stubs['verify_migration_job'] @property def restart_migration_job(self) -> Callable[ [clouddms.RestartMigrationJobRequest], operations_pb2.Operation]: r"""Return a callable for the restart migration job method over gRPC. Restart a stopped or failed migration job, resetting the destination instance to its original state and starting the migration process from scratch. Returns: Callable[[~.RestartMigrationJobRequest], ~.Operation]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if 'restart_migration_job' not in self._stubs: self._stubs['restart_migration_job'] = self.grpc_channel.unary_unary( '/google.cloud.clouddms.v1.DataMigrationService/RestartMigrationJob', request_serializer=clouddms.RestartMigrationJobRequest.serialize, response_deserializer=operations_pb2.Operation.FromString, ) return self._stubs['restart_migration_job'] @property def generate_ssh_script(self) -> Callable[ [clouddms.GenerateSshScriptRequest], clouddms.SshScript]: r"""Return a callable for the generate ssh script method over gRPC. Generate a SSH configuration script to configure the reverse SSH connectivity. Returns: Callable[[~.GenerateSshScriptRequest], ~.SshScript]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if 'generate_ssh_script' not in self._stubs: self._stubs['generate_ssh_script'] = self.grpc_channel.unary_unary( '/google.cloud.clouddms.v1.DataMigrationService/GenerateSshScript', request_serializer=clouddms.GenerateSshScriptRequest.serialize, response_deserializer=clouddms.SshScript.deserialize, ) return self._stubs['generate_ssh_script'] @property def list_connection_profiles(self) -> Callable[ [clouddms.ListConnectionProfilesRequest], clouddms.ListConnectionProfilesResponse]: r"""Return a callable for the list connection profiles method over gRPC. Retrieve a list of all connection profiles in a given project and location. Returns: Callable[[~.ListConnectionProfilesRequest], ~.ListConnectionProfilesResponse]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if 'list_connection_profiles' not in self._stubs: self._stubs['list_connection_profiles'] = self.grpc_channel.unary_unary( '/google.cloud.clouddms.v1.DataMigrationService/ListConnectionProfiles', request_serializer=clouddms.ListConnectionProfilesRequest.serialize, response_deserializer=clouddms.ListConnectionProfilesResponse.deserialize, ) return self._stubs['list_connection_profiles'] @property def get_connection_profile(self) -> Callable[ [clouddms.GetConnectionProfileRequest], clouddms_resources.ConnectionProfile]: r"""Return a callable for the get connection profile method over gRPC. Gets details of a single connection profile. Returns: Callable[[~.GetConnectionProfileRequest], ~.ConnectionProfile]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if 'get_connection_profile' not in self._stubs: self._stubs['get_connection_profile'] = self.grpc_channel.unary_unary( '/google.cloud.clouddms.v1.DataMigrationService/GetConnectionProfile', request_serializer=clouddms.GetConnectionProfileRequest.serialize, response_deserializer=clouddms_resources.ConnectionProfile.deserialize, ) return self._stubs['get_connection_profile'] @property def create_connection_profile(self) -> Callable[ [clouddms.CreateConnectionProfileRequest], operations_pb2.Operation]: r"""Return a callable for the create connection profile method over gRPC. Creates a new connection profile in a given project and location. Returns: Callable[[~.CreateConnectionProfileRequest], ~.Operation]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if 'create_connection_profile' not in self._stubs: self._stubs['create_connection_profile'] = self.grpc_channel.unary_unary( '/google.cloud.clouddms.v1.DataMigrationService/CreateConnectionProfile', request_serializer=clouddms.CreateConnectionProfileRequest.serialize, response_deserializer=operations_pb2.Operation.FromString, ) return self._stubs['create_connection_profile'] @property def update_connection_profile(self) -> Callable[ [clouddms.UpdateConnectionProfileRequest], operations_pb2.Operation]: r"""Return a callable for the update connection profile method over gRPC. Update the configuration of a single connection profile. Returns: Callable[[~.UpdateConnectionProfileRequest], ~.Operation]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if 'update_connection_profile' not in self._stubs: self._stubs['update_connection_profile'] = self.grpc_channel.unary_unary( '/google.cloud.clouddms.v1.DataMigrationService/UpdateConnectionProfile', request_serializer=clouddms.UpdateConnectionProfileRequest.serialize, response_deserializer=operations_pb2.Operation.FromString, ) return self._stubs['update_connection_profile'] @property def delete_connection_profile(self) -> Callable[ [clouddms.DeleteConnectionProfileRequest], operations_pb2.Operation]: r"""Return a callable for the delete connection profile method over gRPC. Deletes a single Database Migration Service connection profile. A connection profile can only be deleted if it is not in use by any active migration jobs. Returns: Callable[[~.DeleteConnectionProfileRequest], ~.Operation]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if 'delete_connection_profile' not in self._stubs: self._stubs['delete_connection_profile'] = self.grpc_channel.unary_unary( '/google.cloud.clouddms.v1.DataMigrationService/DeleteConnectionProfile', request_serializer=clouddms.DeleteConnectionProfileRequest.serialize, response_deserializer=operations_pb2.Operation.FromString, ) return self._stubs['delete_connection_profile'] __all__ = ( 'DataMigrationServiceGrpcTransport', )
[ "bazel-bot-development[bot]@users.noreply.github.com" ]
bazel-bot-development[bot]@users.noreply.github.com
752e9f1a6a208543137c36cda179ddf64539f177
b4a0380acd79a21c5596bfa5fac6eb337ef5359a
/build/lib.linux-x86_64-3.8/maskrcnn_benchmark/data/datasets/evaluation/kitchen/__init__.py
262e29603168969af9a493dd19f6620fd1abb4d8
[]
no_license
xiaofeng-c/Morphable-Detector
781104d8a7221eb03c55a67f51f696e46ded4003
3e50bb20493c3e0b99d37971e51487124aa08b5b
refs/heads/master
2023-08-27T20:53:21.606442
2021-10-18T22:28:38
2021-10-18T22:28:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
529
py
import logging from .kitchen_eval import do_kitchen_evaluation def kitchen_evaluation(dataset, predictions, output_folder, box_only, **_): logger = logging.getLogger("maskrcnn_benchmark.inference") if box_only: logger.warning("kitchen evaluation doesn't support box_only, ignored.") logger.info("performing kitchen evaluation, ignored iou_types.") return do_kitchen_evaluation( dataset=dataset, predictions=predictions, output_folder=output_folder, logger=logger, )
52fe5c0ff1bb7e21c43186b82e52b142647c0566
83ed1e2f176133c03a5f6dfa504b8df15ae71efb
/python/secondary/jnet/jnet.py
d29d5ce53337781076ea7ea61b55aca71ca18040
[]
no_license
jmborr/code
319db14f28e1dea27f9fc703be629f171e6bd95f
32720b57699bf01803367566cdc5fff2b6bce810
refs/heads/master
2022-03-09T16:11:07.455402
2019-10-28T15:03:01
2019-10-28T15:03:01
23,627,627
0
0
null
null
null
null
UTF-8
Python
false
false
5,652
py
#!/usr/bin/python import os,sys,re from jobs.job import pastry from inputArgs.inputArgs import inpHand from utilities.small_utilities import Bye,junkName from utilities.codedir import codedir from seq.blastManager import blastRun from seq.fastaManager import importFastaEntry from seq.msa import gen_msa from seq.letters import one2three #create frequency file def createFreqFile(seq,msa): ''' seq: query sequence msa: multiple sequence alignment in a list, in the style of 3590 and e10. msa does not contain the query sequence, and each template sequence is a list item ''' aas='ARNDCQEGHILKMFPSTWYV' #amino acid order to output, assumed by jnet freq=[] #freq[i][j] 0<i<len(seq), 0<j<19 N=len(seq) for i in range(N): freq.append([0]*20) #initialize for i in range(N): #add amino acids of query sequence to the frequency table m=aas.find(seq[i]) #return position in aas corresponding to amino acid seq[i] if m<0:continue #seq[i] character not found in aas (like "X" or "-") freq[i][m]+=1 for seq2 in msa: #do same for sequences in the alignment for i in range(N): m=aas.find(seq2[i]) #return position in aas corresponding to amino acid seq[i] if m<0:continue #seq[i] character not found in aas freq[i][m]+=1 blastffreq=junkName()+'.jnetfreq' out=open(blastffreq,'w') for i in range(N): line='' ; m=0 for j in range(20):m+=freq[i][j] #total number of counts for amino acid at position "i" for j in range(20): freq[i][j]=round( (10.0*freq[i][j])/m ) #rounded to nearest integer line+='%3d'%(freq[i][j]) out.write(line+'\n') #write amino acid frequencies for amino acid at position "i" out.close() return blastffreq ######################################################### # SCRIPT EXECUTION STARTS HERE ######################################################### inpHand('Usage: inprosp.py [options]', ' -a _RA_fastaf sequence file in fasta format', ' -b _A_blasttarf tarred blast output (contains xxxxx.blast,xxxxx.pssm). If not provided, jnet.py will do a psiblast run', ' -c _A_outf output file name (def: ./seq.dat)', ).parse(locals(),sys.argv) currd=os.getcwd() #current directory if not outf: outf=currd+'/seq.dat' #output file workd=currd+'/'+junkName() ;os.system('/bin/mkdir -p '+workd) ; os.chdir(workd) #temp directory header,seq=importFastaEntry(open(fastaf,'r')) pastry('/bin/cp '+fastaf+' .') ;fastaf=os.path.basename(fastaf) #Retrieve/create psiblast outputs if blasttarf:#we passed a *.tar file containing psiblast report and pssm file blastOuts={'outf':'', 'blast':'', 'chk':'', 'fasta':fastaf, 'pssm':''} os.system('tar xf '+blasttarf) blastOuts['blast']=os.popen('ls -1 *.blast').readline().strip() #get name of blast report blastOuts['pssm']=os.popen('ls -1 *pssm.').readline().strip() #get name of pssm file else: blastOuts=blastRun(fastaf) #run blast with default options #create multiple sequence alignment projected to the query sequence (3590 or e10 style) msa=gen_msa(seq,header,Eco=0.0001,maxId=0.85,minId=0.10,red=0.75,blastOuts=blastOuts)['alignments'] #find frequency table from msa, and output to "freq" file. I did this #function because PSIBLAST has evolved and the perl script "getfreq" #provided in the jnet distro does not work. I could use newer script #"parse_psi -freq" but it requires a psiblast report obtained with #blastpgp -m 6, instead of blastpgp -m 0. I don't want to run PSIBLAST #twice and running with -m 6 gives some humongously-sized reports blastffreq=createFreqFile(seq,msa) #remove too short sequences, thenk keep only first M sequences msa2=[] ; N=len(seq) ; Lhalf=N/2 for seqgapped in msa: sequngapped=seqgapped.replace('-','') if len(sequngapped) > Lhalf: msa2.append(sequngapped) M=int(1000*200/N) #maximum number of sequences to use msa=msa2[0:M] #reclaim memory space by liberating the gapped sequences list #output alignment as suitable use for clustalw rootname=junkName() fastasf=rootname+'.aln' ; fpt=open(fastasf,'w') fpt.write('>00000\n'+seq+'\n') for i in range(len(msa)): fpt.write('>'+'%05d\n'%(i+1)+msa[i]+'\n') fpt.close() #run clustalw os.system('clustalw -OUTORDER=INPUT -INFILE='+fastasf+' -OUTPUT=GCG >/dev/null') msf=rootname+'.msf' if not os.path.exists(msf): Bye('ERROR: not msf file generated in jnet.py') #run perl scripts to create the various inputs required by jnet pastry('/bin/cp -r '+codedir+'/bin/jnet/perl .') pastry('/bin/cp -r '+codedir+'/bin/jnet/bin .') os.system('./perl/msf2jnet '+msf) ; msffa=msf+'.fa' #multiple sequence alignment os.system('./perl/gethmm '+msf+' >/dev/null') ; msfhm=msf+'.hmmprof' #hidden-Markov model pssmf=blastOuts['pssm'] os.system('./perl/getpssm '+pssmf+' > '+pssmf+'.jnetpssm') ; pssmf=pssmf+'.jnetpssm' #run jnet and parse to generate seq.dat jnetout=junkName() os.system('./bin/jnet -p '+msffa+' '+msfhm+' '+pssmf+' '+blastffreq+' > '+jnetout) pattern=re.compile(':\s(\S+)\n') ; final='' ; conf='' ss2nn={'-':1, 'H':2, 'E':4} for line in os.popen('grep -P "\sFINAL\t" '+jnetout).readlines(): final+=pattern.search(line).group(1) for line in os.popen('grep -P "\sCONF\t" '+jnetout).readlines(): conf+=pattern.search(line).group(1) out=open(outf,'w') for i in range(N): out.write( '%5d%6s%5d%5d\n'%( i+1, one2three[seq[i]], ss2nn[final[i]], int(conf[i]) ) ) out.close() #clean-up working directory os.chdir(currd) #os.system('/bin/rm -rf '+workd) sys.exit(0)
8873e1b784b24057a8e64655dca5dc3c4d1f3d87
5603625e865a7cfe415c1aae4035a890aeb23864
/bin/mnu.py
a178061c01bb7c57e4e3d48aa0bfeed54f50e963
[]
no_license
msyriac/peakaboo
aa3ac1396c2af0862f9c5891a20a08dddd97068b
8bb8a50262695733b086984f7d89ff4f04187278
refs/heads/master
2021-01-21T13:30:31.434801
2018-05-16T18:53:34
2018-05-16T18:53:34
102,130,912
1
0
null
null
null
null
UTF-8
Python
false
false
4,997
py
import numpy as np from peakaboo import liuSims as ls import orphics.tools.io as io import os,sys import orphics.analysis.flatMaps as fmaps from mpi4py import MPI from orphics.analysis.pipeline import mpi_distribute, MPIStats import orphics.analysis.flatMaps as fmaps from enlib import enmap, resample # Get MPI comm comm = MPI.COMM_WORLD rank = comm.Get_rank() numcores = comm.Get_size() out_dir = os.environ['WWW']+"peakaboo/" #file_root = "/gpfs01/astro/workarea/msyriac/data/sims/jia/output/jia_recon_" file_root = lambda mass,ftype,x,ext: "/gpfs01/astro/workarea/msyriac/data/sims/jia/output/"+mass+"_"+ftype+"_experiment_simple_"+str(x).zfill(9)+"."+ext Ntot = 500 num_each,each_tasks = mpi_distribute(Ntot,numcores) mpibox = MPIStats(comm,num_each,tag_start=333) my_tasks = each_tasks[rank] LCmassless = ls.LiuConvergence(root_dir="/gpfs01/astro/workarea/msyriac/data/sims/jia/cmb/massless/",zstr="1100.00") LCmassive = ls.LiuConvergence(root_dir="/gpfs01/astro/workarea/msyriac/data/sims/jia/cmb/massive/",zstr="1100.00") lbin_edges = np.arange(200,3000,100) for k,i in enumerate(my_tasks): #massive = enmap.read_map(file_root+"massive_"+str(i).zfill(9)+".fits") #massless = enmap.read_map(file_root+"massless_"+str(i).zfill(9)+".fits") massive = enmap.read_map(file_root("massive","kappa_recon",i,"fits")) massless = enmap.read_map(file_root("massless","kappa_recon",i,"fits")) if k==0: qpower = fmaps.QuickPower(massive.modlmap(),lbin_edges) massive_input = LCmassive.get_kappa(i+1) massive_input = enmap.ndmap(resample.resample_fft(massive_input,massive.shape),massive.wcs) massless_input = LCmassless.get_kappa(i+1) massless_input = enmap.ndmap(resample.resample_fft(massless_input,massless.shape),massless.wcs) print massive.shape print massive_input.shape cents, pauto_massive = qpower.calc(massive) cents, pauto_massless = qpower.calc(massless) cents, pcross_massive = qpower.calc(massive,massive_input) cents, pcross_massless = qpower.calc(massless,massless_input) cents, pauto_massive_input = qpower.calc(massive_input) cents, pauto_massless_input = qpower.calc(massless_input) lcents,massive_rkk = np.loadtxt(file_root("massive","auto_n0_subbed",i,"fits"),unpack=True) lcents,massless_rkk = np.loadtxt(file_root("massless","auto_n0_subbed",i,"fits"),unpack=True) mpibox.add_to_stats("massiveAutoN0",massive_rkk) mpibox.add_to_stats("masslessAutoN0",massless_rkk) mpibox.add_to_stats("massiveAuto",pauto_massive) mpibox.add_to_stats("masslessAuto",pauto_massless) mpibox.add_to_stats("masslessCross",pcross_massless) mpibox.add_to_stats("massiveCross",pcross_massive) mpibox.add_to_stats("massiveInput",pauto_massive_input) mpibox.add_to_stats("masslessInput",pauto_massless_input) print rank,i mpibox.get_stats() if rank==0: rm = mpibox.stats["massiveAutoN0"] rm0 = mpibox.stats["masslessAutoN0"] mauto = mpibox.stats["massiveAuto"] m0auto = mpibox.stats["masslessAuto"] m0cross = mpibox.stats["masslessCross"] mcross = mpibox.stats["massiveCross"] mauto_input = mpibox.stats["massiveInput"] m0auto_input = mpibox.stats["masslessInput"] def camb_pred(nu): import orphics.tools.cmb as cmb # camb_cl_prediction cambRoot = "data/jia_"+nu theory = cmb.loadTheorySpectraFromCAMB(cambRoot,unlensedEqualsLensed=False,useTotal=False,TCMB = 2.7255e6,lpad=9000) ellrange = np.arange(2,3000,1) clkk_camb = theory.gCl("kk",ellrange) return ellrange,clkk_camb ellrange,clkk_camb0 = camb_pred("massless") pl = io.Plotter(scaleY='log',labelX="$\\ell$",labelY="$C_{\ell}$") pl.addErr(lcents,rm0['mean'],yerr=rm0['errmean'],marker="o") pl.addErr(cents,m0cross['mean'],yerr=m0cross['errmean'],marker="^") pl.add(cents,m0auto_input['mean'],marker="x",ls="none") pl.add(ellrange,clkk_camb0,label="cl camb",color="k") pl._ax.set_ylim(1.e-9,1.e-6) pl.done(out_dir+"massless.png") ellrange,clkk_camb = camb_pred("massive") pl = io.Plotter(scaleY='log',labelX="$\\ell$",labelY="$C_{\ell}$") pl.addErr(lcents,rm['mean'],yerr=rm['errmean'],marker="o") pl.addErr(cents,mcross['mean'],yerr=mcross['errmean'],marker="^") pl.add(cents,mauto_input['mean'],marker="x",ls="none") pl.add(ellrange,clkk_camb,label="cl camb",color="k") pl._ax.set_ylim(1.e-9,1.e-6) pl.done(out_dir+"massive.png") pdiff = (clkk_camb-clkk_camb0)*100./clkk_camb0 pl = io.Plotter(labelX="$\\ell$",labelY="$100\\Delta C_{\ell}/C_{\ell}$") pl.add(lcents,(rm['mean']-rm0['mean'])*100./rm0['mean'],marker="o",ls="none") pl.add(cents,(mauto_input['mean']-m0auto_input['mean'])*100./m0auto_input['mean'],marker="x",ls="none") pl.add(ellrange,pdiff,label="cl camb",color="k") pl.hline() #pl._ax.set_ylim(-2,1) pl._ax.set_xlim(500,3000) pl.done(out_dir+"mnudiff.png")
50499ed278f1c769e6003b5e965f70ca46dd96e2
8972658ca2c64703e8281db89d7a6ac47cbabbf7
/backend/tests/models.py
db9754be03118136304be7ed51dc6c7b912ed427
[ "MIT" ]
permissive
denisorehovsky/linkanywhere
15721824719cc8a959cdddb4178cfe754eb4862d
e21d6725fbe0e74a7301e40f9d9bdbac17c68e68
refs/heads/master
2022-07-21T16:16:17.412930
2017-08-24T06:32:37
2017-08-24T06:32:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
567
py
import uuid from django.db import models from linkanywhere.apps.base.behaviors import Published class TestModel(models.Model): """ Base for test models that sets app_label, so they play nicely. """ id = models.UUIDField(primary_key=True, default=uuid.uuid4, editable=False) class Meta: app_label = 'tests' abstract = True class BasicModel(TestModel): text = models.CharField(max_length=100) class LikeModel(TestModel): text = models.CharField(max_length=100) class PublishedModel(Published, TestModel): pass
0e8424e290643259e8f4b6854ed2725343d9e5cd
89c4a43a505df8fdf1f0d7386988c4896c2e631b
/google/ads/googleads/v8/resources/types/ad_group.py
243d485134ef74e75b402fb5eb6187f67cf4952e
[ "Apache-2.0" ]
permissive
hurricanelennane/google-ads-python
a0a1fed690776a8bb2e81f637eb7eae10fb4992f
310a488b6fdad9d5beea8fa4b166edce779a2511
refs/heads/master
2023-07-04T03:07:53.344466
2021-07-16T19:06:36
2021-07-16T19:06:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,520
py
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore from google.ads.googleads.v8.common.types import custom_parameter from google.ads.googleads.v8.common.types import ( explorer_auto_optimizer_setting as gagc_explorer_auto_optimizer_setting, ) from google.ads.googleads.v8.common.types import ( targeting_setting as gagc_targeting_setting, ) from google.ads.googleads.v8.enums.types import ad_group_ad_rotation_mode from google.ads.googleads.v8.enums.types import ad_group_status from google.ads.googleads.v8.enums.types import ad_group_type from google.ads.googleads.v8.enums.types import asset_field_type from google.ads.googleads.v8.enums.types import bidding_source from google.ads.googleads.v8.enums.types import targeting_dimension __protobuf__ = proto.module( package="google.ads.googleads.v8.resources", marshal="google.ads.googleads.v8", manifest={"AdGroup",}, ) class AdGroup(proto.Message): r"""An ad group. Attributes: resource_name (str): Immutable. The resource name of the ad group. Ad group resource names have the form: ``customers/{customer_id}/adGroups/{ad_group_id}`` id (int): Output only. The ID of the ad group. name (str): The name of the ad group. This field is required and should not be empty when creating new ad groups. It must contain fewer than 255 UTF-8 full-width characters. It must not contain any null (code point 0x0), NL line feed (code point 0xA) or carriage return (code point 0xD) characters. status (google.ads.googleads.v8.enums.types.AdGroupStatusEnum.AdGroupStatus): The status of the ad group. type_ (google.ads.googleads.v8.enums.types.AdGroupTypeEnum.AdGroupType): Immutable. The type of the ad group. ad_rotation_mode (google.ads.googleads.v8.enums.types.AdGroupAdRotationModeEnum.AdGroupAdRotationMode): The ad rotation mode of the ad group. base_ad_group (str): Output only. For draft or experiment ad groups, this field is the resource name of the base ad group from which this ad group was created. If a draft or experiment ad group does not have a base ad group, then this field is null. For base ad groups, this field equals the ad group resource name. This field is read-only. tracking_url_template (str): The URL template for constructing a tracking URL. url_custom_parameters (Sequence[google.ads.googleads.v8.common.types.CustomParameter]): The list of mappings used to substitute custom parameter tags in a ``tracking_url_template``, ``final_urls``, or ``mobile_final_urls``. campaign (str): Immutable. The campaign to which the ad group belongs. cpc_bid_micros (int): The maximum CPC (cost-per-click) bid. cpm_bid_micros (int): The maximum CPM (cost-per-thousand viewable impressions) bid. target_cpa_micros (int): The target CPA (cost-per-acquisition). cpv_bid_micros (int): Output only. The CPV (cost-per-view) bid. target_cpm_micros (int): Average amount in micros that the advertiser is willing to pay for every thousand times the ad is shown. target_roas (float): The target ROAS (return-on-ad-spend) override. If the ad group's campaign bidding strategy is a standard Target ROAS strategy, then this field overrides the target ROAS specified in the campaign's bidding strategy. Otherwise, this value is ignored. percent_cpc_bid_micros (int): The percent cpc bid amount, expressed as a fraction of the advertised price for some good or service. The valid range for the fraction is [0,1) and the value stored here is 1,000,000 \* [fraction]. explorer_auto_optimizer_setting (google.ads.googleads.v8.common.types.ExplorerAutoOptimizerSetting): Settings for the Display Campaign Optimizer, initially termed "Explorer". display_custom_bid_dimension (google.ads.googleads.v8.enums.types.TargetingDimensionEnum.TargetingDimension): Allows advertisers to specify a targeting dimension on which to place absolute bids. This is only applicable for campaigns that target only the display network and not search. final_url_suffix (str): URL template for appending params to Final URL. targeting_setting (google.ads.googleads.v8.common.types.TargetingSetting): Setting for targeting related features. effective_target_cpa_micros (int): Output only. The effective target CPA (cost- er-acquisition). This field is read-only. effective_target_cpa_source (google.ads.googleads.v8.enums.types.BiddingSourceEnum.BiddingSource): Output only. Source of the effective target CPA. This field is read-only. effective_target_roas (float): Output only. The effective target ROAS (return-on-ad-spend). This field is read-only. effective_target_roas_source (google.ads.googleads.v8.enums.types.BiddingSourceEnum.BiddingSource): Output only. Source of the effective target ROAS. This field is read-only. labels (Sequence[str]): Output only. The resource names of labels attached to this ad group. excluded_parent_asset_field_types (Sequence[google.ads.googleads.v8.enums.types.AssetFieldTypeEnum.AssetFieldType]): The asset field types that should be excluded from this ad group. Asset links with these field types will not be inherited by this ad group from the upper levels. """ resource_name = proto.Field(proto.STRING, number=1,) id = proto.Field(proto.INT64, number=34, optional=True,) name = proto.Field(proto.STRING, number=35, optional=True,) status = proto.Field( proto.ENUM, number=5, enum=ad_group_status.AdGroupStatusEnum.AdGroupStatus, ) type_ = proto.Field( proto.ENUM, number=12, enum=ad_group_type.AdGroupTypeEnum.AdGroupType, ) ad_rotation_mode = proto.Field( proto.ENUM, number=22, enum=ad_group_ad_rotation_mode.AdGroupAdRotationModeEnum.AdGroupAdRotationMode, ) base_ad_group = proto.Field(proto.STRING, number=36, optional=True,) tracking_url_template = proto.Field(proto.STRING, number=37, optional=True,) url_custom_parameters = proto.RepeatedField( proto.MESSAGE, number=6, message=custom_parameter.CustomParameter, ) campaign = proto.Field(proto.STRING, number=38, optional=True,) cpc_bid_micros = proto.Field(proto.INT64, number=39, optional=True,) cpm_bid_micros = proto.Field(proto.INT64, number=40, optional=True,) target_cpa_micros = proto.Field(proto.INT64, number=41, optional=True,) cpv_bid_micros = proto.Field(proto.INT64, number=42, optional=True,) target_cpm_micros = proto.Field(proto.INT64, number=43, optional=True,) target_roas = proto.Field(proto.DOUBLE, number=44, optional=True,) percent_cpc_bid_micros = proto.Field(proto.INT64, number=45, optional=True,) explorer_auto_optimizer_setting = proto.Field( proto.MESSAGE, number=21, message=gagc_explorer_auto_optimizer_setting.ExplorerAutoOptimizerSetting, ) display_custom_bid_dimension = proto.Field( proto.ENUM, number=23, enum=targeting_dimension.TargetingDimensionEnum.TargetingDimension, ) final_url_suffix = proto.Field(proto.STRING, number=46, optional=True,) targeting_setting = proto.Field( proto.MESSAGE, number=25, message=gagc_targeting_setting.TargetingSetting, ) effective_target_cpa_micros = proto.Field( proto.INT64, number=47, optional=True, ) effective_target_cpa_source = proto.Field( proto.ENUM, number=29, enum=bidding_source.BiddingSourceEnum.BiddingSource, ) effective_target_roas = proto.Field(proto.DOUBLE, number=48, optional=True,) effective_target_roas_source = proto.Field( proto.ENUM, number=32, enum=bidding_source.BiddingSourceEnum.BiddingSource, ) labels = proto.RepeatedField(proto.STRING, number=49,) excluded_parent_asset_field_types = proto.RepeatedField( proto.ENUM, number=54, enum=asset_field_type.AssetFieldTypeEnum.AssetFieldType, ) __all__ = tuple(sorted(__protobuf__.manifest))
9ab61ddea3a8f45f1f40b9490b41e4da6d9a6544
786de89be635eb21295070a6a3452f3a7fe6712c
/SConsTools/tags/V00-00-16/src/standardExternalPackage.py
f433403d52307a3f120d028b2d80755d194bb0c7
[]
no_license
connectthefuture/psdmrepo
85267cfe8d54564f99e17035efe931077c8f7a37
f32870a987a7493e7bf0f0a5c1712a5a030ef199
refs/heads/master
2021-01-13T03:26:35.494026
2015-09-03T22:22:11
2015-09-03T22:22:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,349
py
#=============================================================================== # # SConscript fuction for standard external package # # $Id$ # #=============================================================================== import os import sys from os.path import join as pjoin from fnmatch import fnmatch from SCons.Defaults import * from SCons.Script import * from SConsTools.trace import * from SConsTools.dependencies import * # # This is an interface package for the external package. We wan to make # symlinks to the include files, libs and binaries # # build package name from prefix and directory def _absdir ( prefix, dir ): if not dir : return None if prefix and not os.path.isabs( dir ) : dir = pjoin( prefix, dir ) if not os.path.isdir( dir ) : dir = None return dir def _glob ( dir, patterns ): if patterns is None : return os.listdir(dir) # patterns could be space-separated string of patterns if isinstance(patterns,(str,unicode)) : patterns = patterns.split() if not patterns : return [] result = [] for l in os.listdir(dir) : for p in patterns : if fnmatch ( l, p ) : result.append(l) return result # # Define all builders for the external package # def standardExternalPackage ( package, **kw ) : """ Understands following keywords (all are optional): PREFIX - top directory of the external package INCDIR - include directory, absolute or relative to PREFIX PYDIR - Python src directory, absolute or relative to PREFIX PYDIRSEP - if present and evaluates to True installs python code to a separate directory arch/$LUSI_ARCH/python/<package> LIBDIR - libraries directory, absolute or relative to PREFIX LINKLIBS - library names to link, or all libs if not present BINDIR - binaries directory, absolute or relative to PREFIX LINKBINS - binary names to link, or all libs if not present PKGLIBS - names of libraries that have to be linked for this package DEPS - names of other packages that we depend upon """ pkg = os.path.basename(os.getcwd()) trace ( "Standard SConscript for external package `"+package+"'", "SConscript", 1 ) env = DefaultEnvironment() prefix = kw.get('PREFIX',None) trace ( "prefix: %s" % prefix, "standardExternalPackage", 3 ) # link include directory inc_dir = _absdir ( prefix, kw.get('INCDIR',None) ) if inc_dir : trace ( "include_dir: %s" % inc_dir, "standardExternalPackage", 5 ) # make 'geninc' directory if not there yet archinc = Dir(env.subst("$ARCHINCDIR")) archinc = str(archinc) if not os.path.isdir( archinc ) : os.makedirs( archinc ) target = pjoin(archinc,package) if not os.path.lexists(target) : os.symlink ( inc_dir, target ) # link python directory py_dir = _absdir ( prefix, kw.get('PYDIR',None) ) if py_dir : trace ( "py_dir: %s" % py_dir, "standardExternalPackage", 5 ) if kw.get('PYDIRSEP',False) : # make a link to the whole dir targ = env.Symlink ( Dir(pjoin(env.subst("$PYDIR"),package)), Dir(py_dir) ) env['ALL_TARGETS']['LIBS'].extend ( targ ) else : # make links for every file in the directory files = os.listdir(py_dir) for f in files : loc = pjoin(py_dir,f) if not os.path.isdir(loc) : targ = env.Symlink ( pjoin(env.subst("$PYDIR"),f), loc ) env['ALL_TARGETS']['LIBS'].extend( targ ) # link all libraries lib_dir = _absdir ( prefix, kw.get('LIBDIR',None) ) if lib_dir : trace ( "lib_dir: %s" % lib_dir, "standardExternalPackage", 5 ) # make a list of libs to link libraries = kw.get('LINKLIBS',None) trace ( "libraries: %s" % libraries, "standardExternalPackage", 5 ) libraries = _glob ( lib_dir, libraries ) trace ( "libraries: %s" % libraries, "standardExternalPackage", 5 ) for f in libraries : loc = pjoin(lib_dir,f) if os.path.isfile(loc) : #targ = env.Install( "$LIBDIR", loc ) targ = env.Symlink ( pjoin(env.subst("$LIBDIR"),f), loc ) trace ( "linklib: %s -> %s" % (str(targ[0]),loc), "standardExternalPackage", 5 ) env['ALL_TARGETS']['LIBS'].extend ( targ ) # link all executables bin_dir = _absdir ( prefix, kw.get('BINDIR',None) ) if bin_dir : trace ( "bin_dir: %s" % bin_dir, "standardExternalPackage", 5 ) # make list of binaries to link binaries = kw.get('LINKBINS',None) binaries = _glob ( bin_dir, binaries ) for f in binaries : loc = pjoin(bin_dir,f) if os.path.isfile(loc) : targ = env.Symlink ( pjoin(env.subst("$BINDIR"),f), loc ) env['ALL_TARGETS']['BINS'].extend ( targ ) # add my libs to a package tree setPkgLibs ( env, package, kw.get('PKGLIBS',[]) ) # add packages that I depend on setPkgDeps ( env, package, kw.get('DEPS',[]) )
[ "salnikov@b967ad99-d558-0410-b138-e0f6c56caec7" ]
salnikov@b967ad99-d558-0410-b138-e0f6c56caec7
80137af34837964be8bf789dbbcf21a7a1f05a3a
3d386ef093427c227f0ba6637eedfbce044a2e9e
/tfbert/optimization/create_optimizer.py
ac6c1abc5c6bf2aebe07f51b89fe61f37dbec2ae
[]
no_license
HaierAI/tfbert
c3eeb77af70e79e925e72c393a3e8229feaf1a4a
3779e59a4ebe7458ae732fef547f1168badbba2b
refs/heads/master
2023-07-09T05:25:19.015760
2021-08-16T12:27:37
2021-08-16T12:27:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,278
py
# -*- coding:utf-8 -*- # @FileName :create_optimizer.py # @Time :2021/1/31 19:58 # @Author :huanghui import tensorflow.compat.v1 as tf from .adamw import AdamWeightDecayOptimizer from .lamb import LAMBOptimizer from .schedule import lr_schedule def create_optimizer( learning_rate, num_train_steps=None, num_warmup_steps=None, optimizer_type='adamw', epsilon=1e-6, momentum=0., weight_decay=0.01, decay_method='poly', mixed_precision=False, init_loss_scale=2 ** 32 ): if decay_method is not None and num_train_steps is not None and num_warmup_steps is not None: num_train_steps = int(num_train_steps) num_warmup_steps = int(num_warmup_steps) learning_rate = lr_schedule( learning_rate, num_train_steps, num_warmup_steps, decay_method=decay_method, optimizer_type=optimizer_type ) if optimizer_type == 'adamw': optimizer = AdamWeightDecayOptimizer( learning_rate=learning_rate, weight_decay_rate=weight_decay, beta_1=0.9, beta_2=0.999, epsilon=epsilon, exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"] ) elif optimizer_type == 'lamb': optimizer = LAMBOptimizer( learning_rate, weight_decay_rate=weight_decay, beta_1=0.9, beta_2=0.999, epsilon=epsilon, exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"] ) elif optimizer_type == 'adam': optimizer = tf.train.AdamOptimizer( learning_rate=learning_rate, beta1=0.9, beta2=0.999, epsilon=epsilon) elif optimizer_type == 'sgd': optimizer = tf.train.GradientDescentOptimizer( learning_rate=learning_rate ) elif optimizer_type == 'adadelta': optimizer = tf.train.AdadeltaOptimizer( learning_rate=learning_rate, rho=0.95, epsilon=epsilon, ) elif optimizer_type == 'adagrad': optimizer = tf.train.AdagradOptimizer( learning_rate=learning_rate, initial_accumulator_value=0.1 ) elif optimizer_type == 'rmsp': optimizer = tf.train.RMSPropOptimizer( learning_rate=learning_rate, decay=0.9, momentum=momentum, epsilon=epsilon, ) else: raise ValueError('Unsupported optimizer option: %s' % optimizer_type) if mixed_precision: loss_scaler = tf.train.experimental.DynamicLossScale( initial_loss_scale=init_loss_scale, increment_period=1000, multiplier=2.0) optimizer = tf.train.experimental.enable_mixed_precision_graph_rewrite(optimizer, loss_scaler) loss_scale_value = tf.identity(loss_scaler(), name="loss_scale") return optimizer def create_train_op( optimizer, grads_and_vars, max_grad=1.0, mixed_precision=False, gradient_accumulation_steps=1): global_step = tf.train.get_or_create_global_step() if gradient_accumulation_steps > 1: local_step = tf.get_variable(name="local_step", shape=[], dtype=tf.int32, trainable=False, initializer=tf.zeros_initializer) batch_finite = tf.get_variable(name="batch_finite", shape=[], dtype=tf.bool, trainable=False, initializer=tf.ones_initializer) accum_vars = [tf.get_variable( name=tvar.name.split(":")[0] + "/accum", shape=tvar.shape.as_list(), dtype=tf.float32, trainable=False, initializer=tf.zeros_initializer()) for tvar in tf.trainable_variables()] reset_step = tf.cast(tf.math.equal(local_step % gradient_accumulation_steps, 0), dtype=tf.bool) local_step = tf.cond(reset_step, lambda: local_step.assign(tf.ones_like(local_step)), lambda: local_step.assign_add(1)) grads_and_vars_and_accums = [(gv[0], gv[1], accum_vars[i]) for i, gv in enumerate(grads_and_vars) if gv[0] is not None] grads, tvars, accum_vars = list(zip(*grads_and_vars_and_accums)) all_are_finite = tf.reduce_all( [tf.reduce_all(tf.is_finite(g)) for g in grads]) if mixed_precision else tf.constant( True, dtype=tf.bool) batch_finite = tf.cond(reset_step, lambda: batch_finite.assign( tf.math.logical_and(tf.constant(True, dtype=tf.bool), all_are_finite)), lambda: batch_finite.assign(tf.math.logical_and(batch_finite, all_are_finite))) # This is how the model was pre-trained. # ensure global norm is a finite number # to prevent clip_by_global_norm from having a hizzy fit. (clipped_grads, _) = tf.clip_by_global_norm( grads, clip_norm=max_grad) accum_vars = tf.cond(reset_step, lambda: [accum_vars[i].assign(grad) for i, grad in enumerate(clipped_grads)], lambda: [accum_vars[i].assign_add(grad) for i, grad in enumerate(clipped_grads)]) def update(accum_vars): return optimizer.apply_gradients(list(zip(accum_vars, tvars))) update_step = tf.identity( tf.cast(tf.math.equal(local_step % gradient_accumulation_steps, 0), dtype=tf.bool), name="update_step") update_op = tf.cond(update_step, lambda: update(accum_vars), lambda: tf.no_op()) new_global_step = tf.cond(tf.math.logical_and(update_step, batch_finite), lambda: global_step + 1, lambda: global_step) new_global_step = tf.identity(new_global_step, name='step_update') train_op = tf.group(update_op, [global_step.assign(new_global_step)]) else: grads_and_vars = [(g, v) for g, v in grads_and_vars if g is not None] grads, tvars = list(zip(*grads_and_vars)) all_are_finite = tf.reduce_all( [tf.reduce_all(tf.is_finite(g)) for g in grads]) if mixed_precision else tf.constant(True, dtype=tf.bool) # This is how the model was pre-trained. # ensure global norm is a finite number # to prevent clip_by_global_norm from having a hizzy fit. (clipped_grads, _) = tf.clip_by_global_norm( grads, clip_norm=max_grad) # 这里不要传入global step,adam内部没有对global step累加 # 而原本adam等tf内置优化器会累加,这样就会造成global step重复增加 train_op = optimizer.apply_gradients( list(zip(clipped_grads, tvars))) new_global_step = tf.cond(all_are_finite, lambda: global_step + 1, lambda: global_step) new_global_step = tf.identity(new_global_step, name='step_update') train_op = tf.group(train_op, [global_step.assign(new_global_step)]) return train_op
84f66a0bf9e3af5d28f84b3115109b132927b474
d66818f4b951943553826a5f64413e90120e1fae
/hackerearth/Algorithms/Chandu and chandni's secret chat/solution.py
5347d87bca861f96880c7fd9b656c67c7b40092f
[ "MIT" ]
permissive
HBinhCT/Q-project
0f80cd15c9945c43e2e17072416ddb6e4745e7fa
19923cbaa3c83c670527899ece5c3ad31bcebe65
refs/heads/master
2023-08-30T08:59:16.006567
2023-08-29T15:30:21
2023-08-29T15:30:21
247,630,603
8
1
MIT
2020-07-22T01:20:23
2020-03-16T06:48:02
Python
UTF-8
Python
false
false
605
py
""" # Sample code to perform I/O: name = input() # Reading input from STDIN print('Hi, %s.' % name) # Writing output to STDOUT # Warning: Printing unwanted or ill-formatted data to output will cause the test cases to fail """ # Write your code here t = int(input()) for _ in range(t): s, k = input().strip().split() k = int(k) idxes = list(range(len(s))) idxes.sort(key=lambda i: s[i], reverse=True) idx = idxes[k - 1] word = '' for _ in range(len(s)): word += s[idx] idx = idxes[idx] word = word[-1] + word[:-1] print(word)
b2b80179d0f8ddc7a76ed005cbc3670219bb8091
28f0dc2b48ed019dfef08d84e842c5d75e116dfc
/Versions/Release.2.x.x/py/OBSOLETE/BibleTable.py
cced9d9f98a8cb768a4c415715efb06a18c3eb2b
[ "MIT", "LicenseRef-scancode-public-domain" ]
permissive
garygriswold/SafeBible
9da0e8d89cb08888b8cf48773b4b3860086c49f7
2d378e84cbd6b81641bcccd6ba66699d24208548
refs/heads/master
2022-02-25T19:41:10.367183
2019-08-22T03:35:02
2019-08-22T03:35:02
34,028,119
0
0
MIT
2019-10-30T07:11:44
2015-04-16T01:40:19
TSQL
UTF-8
Python
false
false
3,942
py
# # This program generates SQL statements to create and populate the Bible table # This was previously called the Version table # import io import os import json out = io.open("sql/bible.sql", mode="w", encoding="utf-8") out.write(u"DROP TABLE IF EXISTS Bible;\n") out.write(u"CREATE TABLE Bible (\n") out.write(u" bibleId TEXT NOT NULL PRIMARY KEY,\n") # info.json filename[5:18] out.write(u" code TEXT NOT NULL,\n") # info.json abbr out.write(u" abbr TEXT NOT NULL,\n") # info.json abbr char 4-6 out.write(u" iso3 TEXT NOT NULL REFERENCES Language(iso3),\n") # info.json lang out.write(u" name TEXT NOT NULL,\n") # info.json name out.write(u" englishName TEXT NULL,\n") # info.json nameEnglish out.write(u" localizedName TEXT NULL,\n") # Google Translate API out.write(u" direction TEXT CHECK (direction IN('ltr','rtl')) default('ltr'),\n") # info.json dir out.write(u" script TEXT NULL,\n") # info.json script out.write(u" country TEXT NULL REFERENCES Country(code),\n") # info.json countryCode out.write(u" s3Bucket TEXT NOT NULL,\n") # this program out.write(u" s3KeyPrefix TEXT NOT NULL,\n") # info.json filename out.write(u" s3Key TEXT NULL,\n") # %I_%O_%B_%C.html # I cannot find program, which generated this template: s3KeyTemplate.py out.write(u" s3CredentialId TEXT NULL,\n") # TBD out.write(u" otDamId TEXT NULL,\n") # BibleUpdateDamId.py out.write(u" ntDamId TEXT NULL,\n") # BibleUpdateDamId.py out.write(u" stylesheet TEXT NOT NULL);\n") # constant stylesheet prefix2 = "INSERT INTO Bible (bibleId, code, abbr, iso3, name, englishName, direction, script, country, s3Bucket, s3KeyPrefix, s3Key, stylesheet) VALUES" stylesheet = "BibleApp2.css" # read and process all info.json files source = "/Users/garygriswold/ShortSands/DBL/FCBH_info/" filelist = sorted(os.listdir(source)) for filename in filelist: #if len(filename) != 28: #print(len(filename), filename) #else: if len(filename) == 28: #print(filename) input2 = io.open(source + filename, mode="r", encoding="utf-8") data = input2.read() bible = json.loads(data) bibleId = filename[5:18] # check type to see if == bible bType = bible['type'] if bType != 'bible': print "?? Type = ", bType # check abbr to see if different from bibleId code = bible['abbr'] # remove lang code from abbr abbr = code[3:] # check that lang == first 3 letters of bibleId iso3 = bible['lang'] if iso3.upper() != code[0:3]: print "?? abbr=", code, " iso3=", iso3 iso3 = iso3.lower() name = bible['name'].replace("'", "''") englishName = bible['nameEnglish'].replace("'", "''") direction = bible['dir'] # convert script to iso 15924 code script = bible.get('script') validScripts = [None, 'Arab', 'Beng', 'Bugi', 'Cans', 'Cyrl', 'Deva', 'Ethi', 'Geor', 'Hans', 'Hant', 'Java', 'Kore', 'Latn', 'Orya', 'Syrc', 'Taml', 'Thai' ] #if validScripts.index(script) < 0: if script in validScripts: a = 1 else: if script == 'Latin': script = 'Latn' elif script == 'Cyrillic': script = 'Cyrl' elif script == 'Arabic': script = 'Arab' elif script == 'Devangari': script = 'Deva' elif script == 'Devanagari (Nagari)': script = 'Deva' elif script == 'CJK': script = None else: print "ERROR: unknown script code", script, filename script = "'" + script + "'" if script != None else 'null' country = bible.get('countryCode') country = "'" + country.upper() + "'" if len(country) > 0 else 'null' bucket = "dbp-prod" keyPrefix = filename.replace("info.json", "").replace(":", "/") s3Key = '%I_%O_%B_%C.html' out.write("%s ('%s', '%s', '%s', '%s', '%s', '%s', '%s', %s, %s, '%s', '%s', '%s', '%s');\n" % (prefix2, bibleId, code, abbr, iso3, name, englishName, direction, script, country, bucket, keyPrefix, s3Key, stylesheet)) out.close()
1f33447947159a11ecf117ebfd09d4a0232c26ed
890a6921b9dbc3d849ee51366c76a791761d35d2
/.qt_for_python/uic/PlacefieldVisualSelectionWidgetBase.py
e5bfd84f65b40625dd5b625a786686f1a3fc1927
[]
no_license
CommanderPho/Spike3D
87e1ea17a76080e18e835e9d015e7fe7bb3426e4
63e5e78c3bcb28f3dbab02d6354e6eb83cbccc2a
refs/heads/master
2023-08-17T10:40:44.389682
2023-08-16T10:57:12
2023-08-16T10:57:12
413,545,455
2
0
null
2022-10-22T05:54:57
2021-10-04T18:48:06
Jupyter Notebook
UTF-8
Python
false
false
4,107
py
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'c:\Users\pho\repos\pyPhoPlaceCellAnalysis\src\pyphoplacecellanalysis\GUI\Qt\PlacefieldVisualSelectionControls\PlacefieldVisualSelectionWidgetBase.ui' # # Created by: PyQt5 UI code generator 5.15.4 # # WARNING: Any manual changes made to this file will be lost when pyuic5 is # run again. Do not edit this file unless you know what you are doing. from PyQt5 import QtCore, QtGui, QtWidgets class Ui_rootForm(object): def setupUi(self, rootForm): rootForm.setObjectName("rootForm") rootForm.resize(94, 126) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(rootForm.sizePolicy().hasHeightForWidth()) rootForm.setSizePolicy(sizePolicy) rootForm.setMinimumSize(QtCore.QSize(50, 0)) rootForm.setBaseSize(QtCore.QSize(50, 126)) rootForm.setStyleSheet("background-color: rgb(71, 58, 46);\n" "border-color: rgb(207, 207, 207);\n" "background-color: rgba(71, 65, 60, 180);\n" "color: rgb(244, 244, 244);\n" "border-color: rgb(0, 0, 0);") self.gridLayout = QtWidgets.QGridLayout(rootForm) self.gridLayout.setContentsMargins(0, 0, 0, 0) self.gridLayout.setSpacing(0) self.gridLayout.setObjectName("gridLayout") self.groupBox = QtWidgets.QGroupBox(rootForm) self.groupBox.setMinimumSize(QtCore.QSize(50, 0)) self.groupBox.setMaximumSize(QtCore.QSize(160, 160)) self.groupBox.setBaseSize(QtCore.QSize(50, 0)) self.groupBox.setAlignment(QtCore.Qt.AlignHCenter|QtCore.Qt.AlignTop) self.groupBox.setFlat(False) self.groupBox.setObjectName("groupBox") self.verticalLayout_2 = QtWidgets.QVBoxLayout(self.groupBox) self.verticalLayout_2.setContentsMargins(2, 0, 2, 4) self.verticalLayout_2.setSpacing(2) self.verticalLayout_2.setObjectName("verticalLayout_2") self.btnTitle = QtWidgets.QPushButton(self.groupBox) self.btnTitle.setObjectName("btnTitle") self.verticalLayout_2.addWidget(self.btnTitle) self.btnColorButton = ColorButton(self.groupBox) self.btnColorButton.setEnabled(False) self.btnColorButton.setMinimumSize(QtCore.QSize(24, 24)) self.btnColorButton.setText("") self.btnColorButton.setObjectName("btnColorButton") self.verticalLayout_2.addWidget(self.btnColorButton) self.chkbtnPlacefield = QtWidgets.QToolButton(self.groupBox) self.chkbtnPlacefield.setCheckable(True) self.chkbtnPlacefield.setChecked(False) self.chkbtnPlacefield.setPopupMode(QtWidgets.QToolButton.DelayedPopup) self.chkbtnPlacefield.setToolButtonStyle(QtCore.Qt.ToolButtonTextBesideIcon) self.chkbtnPlacefield.setObjectName("chkbtnPlacefield") self.verticalLayout_2.addWidget(self.chkbtnPlacefield) self.chkbtnSpikes = QtWidgets.QToolButton(self.groupBox) self.chkbtnSpikes.setCheckable(True) self.chkbtnSpikes.setChecked(False) self.chkbtnSpikes.setPopupMode(QtWidgets.QToolButton.DelayedPopup) self.chkbtnSpikes.setToolButtonStyle(QtCore.Qt.ToolButtonTextBesideIcon) self.chkbtnSpikes.setObjectName("chkbtnSpikes") self.verticalLayout_2.addWidget(self.chkbtnSpikes) self.gridLayout.addWidget(self.groupBox, 0, 0, 1, 1) self.retranslateUi(rootForm) QtCore.QMetaObject.connectSlotsByName(rootForm) def retranslateUi(self, rootForm): _translate = QtCore.QCoreApplication.translate rootForm.setWindowTitle(_translate("rootForm", "Pf")) self.groupBox.setTitle(_translate("rootForm", "pf[i]")) self.btnTitle.setText(_translate("rootForm", "pf[i]")) self.chkbtnPlacefield.setText(_translate("rootForm", "pf")) self.chkbtnSpikes.setText(_translate("rootForm", "spikes")) from pyphoplacecellanalysis.External.pyqtgraph.widgets.ColorButton import ColorButton
274068ca686b8f9e974d3eafdfe1eeb963c21cbf
0e1e643e864bcb96cf06f14f4cb559b034e114d0
/Exps_7_v3/doc3d/Ablation4_ch016_ep003_7_10/Gather2_W_fixGood_C_change/train/pyr_2s/L6/step10_a.py
f0754e9c5056e21c626cfe3e46433c46c93290ba
[]
no_license
KongBOy/kong_model2
33a94a9d2be5b0f28f9d479b3744e1d0e0ebd307
1af20b168ffccf0d5293a393a40a9fa9519410b2
refs/heads/master
2022-10-14T03:09:22.543998
2022-10-06T11:33:42
2022-10-06T11:33:42
242,080,692
3
0
null
null
null
null
UTF-8
Python
false
false
22,317
py
############################################################################################################################################################################################################# ############################################################################################################################################################################################################# ### 把 kong_model2 加入 sys.path import os code_exe_path = os.path.realpath(__file__) ### 目前執行 step10_b.py 的 path code_exe_path_element = code_exe_path.split("\\") ### 把 path 切分 等等 要找出 kong_model 在第幾層 code_dir = "\\".join(code_exe_path_element[:-1]) kong_layer = code_exe_path_element.index("kong_model2") ### 找出 kong_model2 在第幾層 kong_model2_dir = "\\".join(code_exe_path_element[:kong_layer + 1]) ### 定位出 kong_model2 的 dir import sys ### 把 kong_model2 加入 sys.path sys.path.append(kong_model2_dir) sys.path.append(code_dir) # print(__file__.split("\\")[-1]) # print(" code_exe_path:", code_exe_path) # print(" code_exe_path_element:", code_exe_path_element) # print(" code_dir:", code_dir) # print(" kong_layer:", kong_layer) # print(" kong_model2_dir:", kong_model2_dir) ############################################################################################################################################################################################################# kong_to_py_layer = len(code_exe_path_element) - 1 - kong_layer ### 中間 -1 是為了長度轉index # print(" kong_to_py_layer:", kong_to_py_layer) if (kong_to_py_layer == 0): template_dir = "" elif(kong_to_py_layer == 2): template_dir = code_exe_path_element[kong_layer + 1][0:] ### [7:] 是為了去掉 step1x_, 後來覺得好像改有意義的名字不去掉也行所以 改 0 elif(kong_to_py_layer == 3): template_dir = code_exe_path_element[kong_layer + 1][0:] + "/" + code_exe_path_element[kong_layer + 2][0:] ### [5:] 是為了去掉 mask_ ,前面的 mask_ 是為了python 的 module 不能 數字開頭, 隨便加的這樣子, 後來覺得 自動排的順序也可以接受, 所以 改0 elif(kong_to_py_layer > 3): template_dir = code_exe_path_element[kong_layer + 1][0:] + "/" + code_exe_path_element[kong_layer + 2][0:] + "/" + "/".join(code_exe_path_element[kong_layer + 3: -1]) # print(" template_dir:", template_dir) ### 舉例: template_dir: 7_mask_unet/5_os_book_and_paper_have_dtd_hdr_mix_bg_tv_s04_mae ############################################################################################################################################################################################################# exp_dir = template_dir ############################################################################################################################################################################################################# from step06_a_datas_obj import * from step09_2side_L6 import * from step10_a2_loss_info_obj import * from step10_b2_exp_builder import Exp_builder rm_paths = [path for path in sys.path if code_dir in path] for rm_path in rm_paths: sys.path.remove(rm_path) rm_moduless = [module for module in sys.modules if "step09" in module] for rm_module in rm_moduless: del sys.modules[rm_module] import Exps_7_v3.doc3d.Ablation4_ch016_ep003_7_10.W_w_M_to_C_pyr.pyr_2s.L6.step10_a as W_w_M_to_C_p20_pyr from Exps_7_v3.doc3d.Ablation4_ch016_ep003_7_10.I_w_M_to_W_pyr.pyr_3s.L5.step10_a import ch032_1side_6__2side_5__3side_2__ep010 as I_w_M_to_W_p20_3s_L5_Good ############################################################################################################################################################################################################# ''' exp_dir 是 決定 result_dir 的 "上一層"資料夾 名字喔! exp_dir要巢狀也沒問題~ 比如:exp_dir = "6_mask_unet/自己命的名字",那 result_dir 就都在: 6_mask_unet/自己命的名字/result_a 6_mask_unet/自己命的名字/result_b 6_mask_unet/自己命的名字/... ''' use_db_obj = type8_blender_kong_doc3d_v2 use_loss_obj = [mae_s001_sobel_k9_s001_loss_info_builder.set_loss_target("UNet_Wz").copy(), mae_s001_sobel_k9_s001_loss_info_builder.set_loss_target("UNet_Wy").copy(), mae_s001_sobel_k9_s001_loss_info_builder.set_loss_target("UNet_Wx").copy(), mae_s001_sobel_k9_s001_loss_info_builder.set_loss_target("UNet_Cx").copy(), mae_s001_sobel_k9_s001_loss_info_builder.set_loss_target("UNet_Cy").copy()] ### z, y, x 順序是看 step07_b_0b_Multi_UNet 來對應的喔 ############################################################# ### 為了resul_analyze畫空白的圖,建一個empty的 Exp_builder empty = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_1__2side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_1__2side_1_and_1s6_2s6.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="為了resul_analyze畫空白的圖,建一個empty的 Exp_builder") ############################################################# ch032_1side_1__2side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_1__2side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s1__2s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_1__2side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_2__2side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s2__2s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_2__2side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_2__2side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s2__2s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_2__2side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_3__2side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s3__2s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_3__2side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_3__2side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s3__2s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_3__2side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_3__2side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s3__2s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_3__2side_3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s4") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_4, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s5") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_5, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_6 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s6") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_6, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s4") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_4, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s5") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_5, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_6 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s6") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_6, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_7 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s7") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_7, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ############################################################# if(__name__ == "__main__"): print("build exps cost time:", time.time() - start_time) if len(sys.argv) < 2: ############################################################################################################ ### 直接按 F5 或打 python step10_b1_exp_obj_load_and_train_and_test.py,後面沒有接東西喔!才不會跑到下面給 step10_b_subprocss.py 用的程式碼~~~ ch032_1side_1__2side_1.build().run() # print('no argument') sys.exit() ### 以下是給 step10_b_subprocess.py 用的,相當於cmd打 python step10_b1_exp_obj_load_and_train_and_test.py 某個exp.build().run() eval(sys.argv[1])
db8551c3b00fdaa9cea83beff7f976a27482b764
0486b6ccf883e9cd7a24bbd89b5420e7de2172b9
/DRF Study Material/Django REST Code/gs23/manage.py
0fd63ec5bb04d9d85aeb9039d1fb86e9be16bd10
[]
no_license
ajitexl/restfrmaework
2980203d7faa6c8364288283758d32c8f2a37817
9ab203748e623516365d9924dcc68acc786a66e1
refs/heads/main
2023-02-03T08:52:00.672047
2020-12-10T09:50:51
2020-12-10T09:50:51
320,222,997
0
0
null
null
null
null
UTF-8
Python
false
false
682
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): """Run administrative tasks.""" os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'gs23.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
a9d0bc7546f7ca3723a17a3f5fd7ba086d51f28c
21bf726bf895569a41a8b8d2db6772dc51f46cfd
/OTHERS/Interviews/Akuna.py
abba9d6a6b4e54cda0048899107ec10a4fa00cc0
[]
no_license
jeffsnguyen/Python-1
dd924d25337cd6ac21e321d7b2c5ac17c065d94b
463d32a61a760d076656c73c9f8c9fadf262438d
refs/heads/master
2022-03-23T09:50:04.476094
2019-12-23T12:32:49
2019-12-23T12:32:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,844
py
def if_none_trivial(x): if x==0: return 0 else: return 1 def violet_search_icecream_shop(stock, max_capacity,demands,n_days,overnight_fee,price,deliver_fee,total_expense=[],expense=0): delivery_min = max(0,demands[0]-stock) delivery_max = max(0,sum(demands) - stock) for delivery in range(delivery_min,delivery_max+1,1): expense_today = expense + if_none_trivial(delivery)*deliver_fee + delivery*price expense_today = expense_today + max(0,(stock+delivery-max_capacity))*overnight_fee stock_next = stock+delivery-demands[0] print("***********************") print("expense until yesterday: ",expense) print("expense until today: ", expense_today) print(n_days, "remains") if n_days>1: violet_search_icecream_shop(stock_next, max_capacity,demands[1:],n_days-1,overnight_fee,price,deliver_fee,total_expense,expense_today) else: print("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") print("total expense",expense_today) total_expense.append(expense_today) # yield(expense_today) total_expense=[] violet_search_icecream_shop(0,10,[1,2,1,4],4,1,3,4,total_expense=total_expense) print(total_expense) print("the optimum cost:", min(total_expense)) from collections import defaultdict def code_preprocessing(delivery_code): code_dic = defaultdict(list) i = 0 for code in delivery_code: crude = code.split('-',1) code_dic[crude[0]].append((crude[1],i)) i = i+1 print(code_dic) code_dict = code_preprocessing(["123-2","2345-1","123-3","123-5","2345-5"]) def swarm_delivery(code_dict): bee = [] for key,value in code_dict: bee.append(value) print(bee) swarm_delivery(code_dict)
5b771ee4fa02ac609d1a9cff17e724f9d74cdcdc
255e19ddc1bcde0d3d4fe70e01cec9bb724979c9
/all-gists/5041434/snippet.py
a978469c85746091bf61c1a14c4ddfde95ab6244
[ "MIT" ]
permissive
gistable/gistable
26c1e909928ec463026811f69b61619b62f14721
665d39a2bd82543d5196555f0801ef8fd4a3ee48
refs/heads/master
2023-02-17T21:33:55.558398
2023-02-11T18:20:10
2023-02-11T18:20:10
119,861,038
76
19
null
2020-07-26T03:14:55
2018-02-01T16:19:24
Python
UTF-8
Python
false
false
1,470
py
import requests from bs4 import BeautifulSoup, NavigableString def get_review_text(block): """Get just the text of a review from it's DIV""" strings = [] for possible_text in block.children: if isinstance(possible_text, NavigableString): stripped_text = possible_text.strip() if len(stripped_text) > 0: strings.append(stripped_text) return "\n".join(strings) def get_review_texts(review_html): """Get all the reviews on a review page""" soup = BeautifulSoup(review_html) table = soup.find(id="productReviews").tr.td review_blocks = table.find_all("div", recursive=False) return [get_review_text(block) for block in review_blocks] def get_review_page_count(review_html): """Get the number of review pages""" soup = BeautifulSoup(review_html) try: return int(soup.find("span", class_="paging").find_all("a")[-2].text) except: return 1 def get_all_reviews(review_url): """Get all the reviews, given a review page URL""" # sanitize the url review_url = "/".join(review_url.split("/")[:-1]) first_review_page = requests.get(review_url).text review_page_count = get_review_page_count(first_review_page) reviews = [] for i in range(1, review_page_count + 1): url = review_url + "?pageNumber=%d" % i review_html = requests.get(url).text reviews.extend(get_review_texts(review_html)) return reviews
dac74fe07f41bad595f3daece43a0047c4795112
c105570f12f1d56087ffb831f5d34cd763d6c90b
/top/api/rest/HotelRoomImgDeleteRequest.py
55f04fe4e6cf46864d486cf6bd4e5cf9dc7d3abd
[]
no_license
wjianwei126/Alinone
01607423833d7736b2fd3c77e9e21f63c69b4e4c
80144d4657cb049d651c09647eb245405240f12f
refs/heads/master
2020-12-07T05:14:58.746777
2015-05-06T12:48:33
2015-05-06T12:48:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
337
py
''' Created by auto_sdk on 2014-11-09 14:51:18 ''' from top.api.base import RestApi class HotelRoomImgDeleteRequest(RestApi): def __init__(self,domain='gw.api.taobao.com',port=80): RestApi.__init__(self,domain, port) self.gid = None self.position = None def getapiname(self): return 'taobao.hotel.room.img.delete'
38989ea3cc2d9323d7df74726b4cbe4770c237d1
1d0895269d1d93bab6a0b595c806418b1eeda735
/qiskit/providers/ibmq/api/rest/experiment.py
21cea49b8c27b3ce319c61a25cd6e4314e06b812
[ "Apache-2.0" ]
permissive
Qiskit/qiskit-ibmq-provider
3921bf5f77a9621013ada7ea5e18fa199470650c
590f68d9ddb42a45c4ac8a8626ea60da85575b21
refs/heads/master
2023-06-08T03:17:52.745052
2023-06-05T14:20:16
2023-06-05T14:20:16
163,192,893
240
182
Apache-2.0
2023-06-05T14:20:18
2018-12-26T15:22:11
Python
UTF-8
Python
false
false
5,218
py
# This code is part of Qiskit. # # (C) Copyright IBM 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Experiment REST adapter.""" import logging from typing import Dict, Union from .base import RestAdapterBase from ..session import RetrySession logger = logging.getLogger(__name__) class Experiment(RestAdapterBase): """Rest adapter for experiment related endpoints.""" URL_MAP = { 'self': '', 'upload_plots': '/plots' } def __init__(self, session: RetrySession, experiment_uuid: str, url_prefix: str = '') -> None: """Experiment constructor. Args: session: Session to be used in the adaptor. experiment_uuid: UUID of the experiment. url_prefix: URL prefix. """ super().__init__(session, '{}/experiments/{}'.format(url_prefix, experiment_uuid)) def retrieve(self) -> str: """Retrieve the specific experiment. Returns: Experiment data. """ url = self.get_url('self') return self.session.get(url).text def update(self, experiment: str) -> Dict: """Update the experiment. Args: experiment: Experiment to update. Returns: JSON response. """ url = self.get_url('self') return self.session.put(url, data=experiment, headers=self._HEADER_JSON_CONTENT).json() def delete(self) -> Dict: """Delete the experiment. Returns: JSON response. """ url = self.get_url('self') return self.session.delete(url).json() def upload_plot( self, plot: Union[bytes, str], plot_name: str, sync_upload: bool = True ) -> Dict: """Upload a plot for the experiment. Args: plot: Plot file name or data to upload. plot_name: Name of the plot. sync_upload: By default the server will upload the plot file to backend storage asynchronously. Set this to False to use that behavior and not block the upload. Returns: JSON response. """ url = self.get_url('upload_plots') headers = { 'x-sync-upload': str(sync_upload) } if isinstance(plot, str): with open(plot, 'rb') as file: data = {'plot': (plot_name, file)} response = self.session.post(url, files=data, headers=headers).json() else: data = {'plot': (plot_name, plot)} # type: ignore[dict-item] response = self.session.post(url, files=data, headers=headers).json() return response class ExperimentPlot(RestAdapterBase): """Rest adapter for experiment plot related endpoints.""" URL_MAP = { 'self': '' } def __init__( self, session: RetrySession, experiment_uuid: str, plot_name: str, url_prefix: str = '') -> None: """Experiment constructor. Args: session: Session to be used in the adaptor. experiment_uuid: UUID of the experiment. plot_name: Name of the plot. url_prefix: URL prefix. """ super().__init__(session, '{}/experiments/{}/plots/{}'.format( url_prefix, experiment_uuid, plot_name)) self.plot_name = plot_name def retrieve(self) -> bytes: """Retrieve the specific experiment plot. Returns: Plot content. """ url = self.get_url('self') response = self.session.get(url) return response.content def delete(self) -> None: """Delete this experiment plot.""" url = self.get_url('self') self.session.delete(url) def update( self, plot: Union[bytes, str], sync_upload: bool = True ) -> Dict: """Update an experiment plot. Args: plot: Plot file name or data to upload. sync_upload: By default the server will upload the plot file to backend storage asynchronously. Set this to False to use that behavior and not block the upload. Returns: JSON response. """ url = self.get_url('self') headers = { 'x-sync-upload': str(sync_upload) } if isinstance(plot, str): with open(plot, 'rb') as file: data = {'plot': (self.plot_name, file)} response = self.session.put(url, files=data, headers=headers).json() else: data = {'plot': (self.plot_name, plot)} # type: ignore[dict-item] response = self.session.put(url, files=data, headers=headers).json() return response
be022fe3fefde1e08b0c0cafbf8646767f2ba51d
a65103e2f33192d9e6fcf8c8852f263369190175
/core/models.py
c653f88b69de6db591ec935f5bf162047d706249
[]
no_license
dhilipsiva/ircman
e23153572d5f8cf09d4ed7d47c47b90050762489
767b42f321598b155f2fd74729947ed92f8da160
refs/heads/master
2023-07-10T06:42:45.855788
2015-07-22T04:17:00
2015-07-22T04:17:00
35,310,806
6
0
null
2023-09-05T05:15:21
2015-05-09T01:58:04
Python
UTF-8
Python
false
false
7,308
py
#! /usr/bin/env python # -*- coding: utf-8 -*- # # vim: fenc=utf-8 # vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4 # # """ File name: models.py Version: 0.1 Author: dhilipsiva <[email protected]> Date created: 2015-05-09 """ __author__ = "dhilipsiva" __status__ = "development" """ """ # Python imports import datetime from uuid import uuid4 # Django imports from django.utils.timezone import utc from django.contrib.auth.models import AbstractUser from django.db.models import Model, ForeignKey, DateTimeField, UUIDField, \ CharField, TextField, PositiveIntegerField, BooleanField def utc_now(): """ `now` with UTC """ return datetime.datetime.utcnow().replace(tzinfo=utc) class User(AbstractUser): """ A custom user so that we can add permissions easily """ id = UUIDField(primary_key=True, default=uuid4, editable=False) socket = UUIDField(default=uuid4, editable=False) class Meta(AbstractUser.Meta): abstract = False def save(self, *args, **kwargs): if 'pbkdf2_sha256' not in self.password: self.set_password(self.password) super(User, self).save(*args, **kwargs) def to_dict(self, with_sensitive_data=False): """ Dictify user """ d = { 'id': str(self.id), 'username': self.username, 'firstName': self.first_name, 'lastName': self.last_name, } if with_sensitive_data: d.update({ 'socket': str(self.socket), 'email': self.email, }) return d def __str__(self): return self.username def __repr__(self): return "<User: %s>" % self.__str__() class Server(Model): id = UUIDField(primary_key=True, default=uuid4, editable=False) host = CharField(max_length=256) port = PositiveIntegerField(default=6667, blank=True) is_ssl = BooleanField(default=False) is_sasl = BooleanField(default=False) def to_dict(self): """ Dictify user """ return { 'id': str(self.id), 'host': self.host, 'port': self.port, 'isSsl': self.is_ssl, 'isSasl': self.is_sasl, } def __str__(self): return self.host def __repr__(self): return "<Server: %s>" % self.__str__() class UserServer(Model): id = UUIDField(primary_key=True, default=uuid4, editable=False) user = ForeignKey(User, related_name="user_servers") server = ForeignKey(Server, related_name="user_servers") label = CharField(max_length=256, default="My IRC Server") username = CharField(max_length=256) password = CharField(max_length=256, null=True, blank=True) nickname = CharField(max_length=256) realname = CharField(max_length=256, null=True, blank=True) def to_dict(self): """ Dictify user """ return { 'id': str(self.id), 'user': str(self.user_id), 'server': str(self.server_id), 'label': self.label, 'username': self.username, 'password': self.password, 'nickname': self.nickname, 'realname': self.realname, } def __str__(self): return "%s - %s" % (self.user, self.server) def __repr__(self): return "<UserServer: %s>" % self.__str__() class Channel(Model): id = UUIDField(primary_key=True, default=uuid4, editable=False) server = ForeignKey(Server, related_name="channels") name = CharField(max_length=256) def to_dict(self): """ Dictify user """ return { 'id': str(self.id), 'server': str(self.server_id), 'name': self.name, } def __str__(self): return "%s - %s" % (self.server, self.name) def __repr__(self): return "<Channel: %s>" % self.__str__() class UserChannel(Model): id = UUIDField(primary_key=True, default=uuid4, editable=False) user_server = ForeignKey( UserServer, related_name="user_channels", null=True) channel = ForeignKey(Channel, related_name="user_channels") nickname = CharField(max_length=256) password = CharField(max_length=256, null=True, blank=True) mode = CharField(max_length=16, null=True, blank=True) def to_dict(self): """ Dictify user """ return { "id": str(self.id), "userServer": str(self.user_server_id), "channel": str(self.channel_id), "nickname": self.nickname, "password": self.password, "mode": self.mode, } def to_dict_deep(self): """ Deep `to_dict` """ d = self.to_dict() d['userServer'] = self.user_server.to_dict() d['channel'] = self.channel.to_dict() return d def __str__(self): return "%s - %s" % (self.channel, self.nickname) def __repr__(self): return "<UserChannel: %s>" % self.__str__() class BaseMessage(Model): id = UUIDField(primary_key=True, default=uuid4, editable=False) text = TextField() created_on = DateTimeField(auto_now_add=True) def to_dict(self): """ Dictify user """ return { 'id': str(self.id), 'text': self.text, 'createdOn': self.created_on, } class Meta: abstract = True class Message(BaseMessage): channel = ForeignKey(Channel, related_name="messages") user_channel = ForeignKey(UserChannel, related_name="messages") def to_dict(self): """ Dictify user """ d = super(Message, self).to_dict() d.update({ 'channel': str(self.channel_id), 'userChannel': str(self.user_channel_id), }) return d def __str__(self): return "%s" % self.text def __repr__(self): return "<Message: %s>" % self.__str__() class Conversation(Model): id = UUIDField(primary_key=True, default=uuid4, editable=False) user_channel_1 = ForeignKey(UserChannel, related_name='+') user_channel_2 = ForeignKey(UserChannel, related_name='+') def to_dict(self): """ Dictify Conversation """ return { 'id': str(self.id), 'userChannel1': str(self.user_channel_1_id), 'userChannel2': str(self.user_channel_2_id), } def __str__(self): return "%s - %s" % (self.user_channel_1_id, self.user_channel_2_id) def __repr__(self): return "<Conversation: %s>" % self.__str__() class PrivateMessage(BaseMessage): conversation = ForeignKey(Conversation, related_name='private_messages') user_channel = ForeignKey(UserChannel, related_name='private_messages') read = BooleanField(default=False) def to_dict(self): """ Dictify user """ d = super(PrivateMessage, self).to_dict() d.update({ 'conversation': str(self.conversation_id), 'userChannel': str(self.user_channel_id), 'read': self.read, }) return d def __repr__(self): return "<PrivateMessage: %s>" % self.__str__()
26918a548c2f53fe227743b0c90bdc04e5101662
0e27a64e42d87e049284ad263b807e4c64057de9
/tensorflow/python/ops/metrics_impl.py
392bb5ea18c96e2ac1e85c7af7d70fba4d7bbd61
[ "Apache-2.0" ]
permissive
shaayaan16/tensorflow
f721776f322e8e780cd569a7df026886317b9ac5
1ec32ec396d8efebac37325edf94b8948f1397b4
refs/heads/master
2021-01-12T02:04:58.634427
2017-06-07T05:10:35
2017-06-07T05:10:35
78,465,880
0
0
null
2017-01-09T20:25:38
2017-01-09T20:25:38
null
UTF-8
Python
false
false
116,067
py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Implementation of tf.metrics module.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import confusion_matrix from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn from tensorflow.python.ops import sets from tensorflow.python.ops import sparse_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables def _local_variable(initial_value, validate_shape=True, name=None): """Create variable and add it to `GraphKeys.LOCAL_VARIABLES` collection. Args: initial_value: See variables.Variable.__init__. validate_shape: See variables.Variable.__init__. name: See variables.Variable.__init__. Returns: New variable. """ return variables.Variable( initial_value, trainable=False, collections=[ops.GraphKeys.LOCAL_VARIABLES], validate_shape=validate_shape, name=name) def _remove_squeezable_dimensions(labels, predictions, weights): """Internal version of _remove_squeezable_dimensions which handles weights. Squeezes `predictions` and `labels` if their rank differs by 1. Squeezes `weights` if its rank is 1 more than the new rank of `predictions` This will use static shape if available. Otherwise, it will add graph operations, which could result in a performance hit. Args: labels: Label values, a `Tensor` whose dimensions match `predictions`. predictions: Predicted values, a `Tensor` of arbitrary dimensions. weights: Optional weight `Tensor`. It will be squeezed if its rank is 1 more than the new rank of `predictions` Returns: Tuple of `predictions`, `labels` and `weights`, possibly with the last dimension squeezed. """ labels, predictions = confusion_matrix.remove_squeezable_dimensions( labels, predictions) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) if weights is not None: weights = ops.convert_to_tensor(weights) predictions_shape = predictions.get_shape() predictions_rank = predictions_shape.ndims weights_shape = weights.get_shape() weights_rank = weights_shape.ndims if (predictions_rank is not None) and (weights_rank is not None): # Use static rank. if weights_rank - predictions_rank == 1: weights = array_ops.squeeze(weights, [-1]) elif (weights_rank is None) or ( weights_shape.dims[-1].is_compatible_with(1)): # Use dynamic rank weights = control_flow_ops.cond( math_ops.equal(array_ops.rank(weights), math_ops.add(array_ops.rank(predictions), 1)), lambda: array_ops.squeeze(weights, [-1]), lambda: weights) return labels, predictions, weights def _maybe_expand_labels(labels, predictions): """If necessary, expand `labels` along last dimension to match `predictions`. Args: labels: `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels] or [D1, ... DN]. The latter implies num_labels=1, in which case the result is an expanded `labels` with shape [D1, ... DN, 1]. predictions: `Tensor` with shape [D1, ... DN, num_classes]. Returns: `labels` with the same rank as `predictions`. Raises: ValueError: if `labels` has invalid shape. """ with ops.name_scope(None, 'expand_labels', (labels, predictions)) as scope: labels = sparse_tensor.convert_to_tensor_or_sparse_tensor(labels) # If sparse, expand sparse shape. if isinstance(labels, sparse_tensor.SparseTensor): return control_flow_ops.cond( math_ops.equal( array_ops.rank(predictions), array_ops.size(labels.dense_shape) + 1), lambda: sparse_ops.sparse_reshape( # pylint: disable=g-long-lambda labels, shape=array_ops.concat_v2((labels.dense_shape, (1,)), 0), name=scope), lambda: labels) # Otherwise, try to use static shape. labels_rank = labels.get_shape().ndims if labels_rank is not None: predictions_rank = predictions.get_shape().ndims if predictions_rank is not None: if predictions_rank == labels_rank: return labels if predictions_rank == labels_rank + 1: return array_ops.expand_dims(labels, -1, name=scope) raise ValueError( 'Unexpected labels shape %s for predictions shape %s.' % ( labels.get_shape(), predictions.get_shape())) # Otherwise, use dynamic shape. return control_flow_ops.cond( math_ops.equal(array_ops.rank(predictions), array_ops.rank(labels) + 1), lambda: array_ops.expand_dims(labels, -1, name=scope), lambda: labels) def _create_local(name, shape, collections=None, validate_shape=True, dtype=dtypes.float32): """Creates a new local variable. Args: name: The name of the new or existing variable. shape: Shape of the new or existing variable. collections: A list of collection names to which the Variable will be added. validate_shape: Whether to validate the shape of the variable. dtype: Data type of the variables. Returns: The created variable. """ # Make sure local variables are added to tf.GraphKeys.LOCAL_VARIABLES collections = list(collections or []) collections += [ops.GraphKeys.LOCAL_VARIABLES] return variables.Variable( initial_value=array_ops.zeros(shape, dtype=dtype), name=name, trainable=False, collections=collections, validate_shape=validate_shape) def _assert_weights_rank(weights, values): return check_ops.assert_rank_in(weights, (0, array_ops.rank(values))) def _broadcast_weights(weights, values): """Broadcast `weights` to the same shape as `values`. This returns a version of `weights` following the same broadcast rules as `multiply(weights, values)`. When computing a weighted average, use this function to broadcast `weights` before summing them; e.g., `reduce_sum(w * v) / reduce_sum(_broadcast_weights(w, v))`. Args: weights: `Tensor` whose rank is either 0, or the same rank as `values`, and must be broadcastable to `values` (i.e., all dimensions must be either `1`, or the same as the corresponding `values` dimension). values: `Tensor` of any shape. Returns: `weights` broadcast to `values` shape. Raises: ValueError: if `weights` rank is invalid. """ weights_shape = weights.get_shape() values_shape = values.get_shape() if (weights_shape.is_fully_defined() and values_shape.is_fully_defined() and weights_shape.is_compatible_with(values_shape)): return weights with ops.control_dependencies((_assert_weights_rank(weights, values),)): return math_ops.multiply( weights, array_ops.ones_like(values), name='broadcast_weights') def _safe_div(numerator, denominator, name): """Divides two values, returning 0 if the denominator is <= 0. Args: numerator: A real `Tensor`. denominator: A real `Tensor`, with dtype matching `numerator`. name: Name for the returned op. Returns: 0 if `denominator` <= 0, else `numerator` / `denominator` """ return array_ops.where( math_ops.greater(denominator, 0), math_ops.truediv(numerator, denominator), 0, name=name) def _safe_scalar_div(numerator, denominator, name): """Divides two values, returning 0 if the denominator is 0. Args: numerator: A scalar `float64` `Tensor`. denominator: A scalar `float64` `Tensor`. name: Name for the returned op. Returns: 0 if `denominator` == 0, else `numerator` / `denominator` """ numerator.get_shape().with_rank_at_most(1) denominator.get_shape().with_rank_at_most(1) return control_flow_ops.cond( math_ops.equal( array_ops.constant(0.0, dtype=dtypes.float64), denominator), lambda: array_ops.constant(0.0, dtype=dtypes.float64), lambda: math_ops.div(numerator, denominator), name=name) def mean(values, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the (weighted) mean of the given values. The `mean` function creates two local variables, `total` and `count` that are used to compute the average of `values`. This average is ultimately returned as `mean` which is an idempotent operation that simply divides `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `mean`. `update_op` increments `total` with the reduced sum of the product of `values` and `weights`, and it increments `count` with the reduced sum of `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: values: A `Tensor` of arbitrary dimensions. weights: Optional `Tensor` whose rank is either 0, or the same rank as `values`, and must be broadcastable to `values` (i.e., all dimensions must be either `1`, or the same as the corresponding `values` dimension). metrics_collections: An optional list of collections that `mean` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: mean: A `Tensor` representing the current mean, the value of `total` divided by `count`. update_op: An operation that increments the `total` and `count` variables appropriately and whose value matches `mean_value`. Raises: ValueError: If `weights` is not `None` and its shape doesn't match `values`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope(name, 'mean', (values, weights)): values = math_ops.to_float(values) total = _create_local('total', shape=[]) count = _create_local('count', shape=[]) if weights is None: num_values = math_ops.to_float(array_ops.size(values)) else: weights = _broadcast_weights(math_ops.to_float(weights), values) values = math_ops.multiply(values, weights) num_values = math_ops.reduce_sum(weights) total_compute_op = state_ops.assign_add(total, math_ops.reduce_sum(values)) count_compute_op = state_ops.assign_add(count, num_values) mean_t = _safe_div(total, count, 'value') with ops.control_dependencies([total_compute_op, count_compute_op]): update_op = _safe_div(total, count, 'update_op') if metrics_collections: ops.add_to_collections(metrics_collections, mean_t) if updates_collections: ops.add_to_collections(updates_collections, update_op) return mean_t, update_op def accuracy(labels, predictions, weights=None, metrics_collections=None, updates_collections=None, name=None): """Calculates how often `predictions` matches `labels`. The `accuracy` function creates two local variables, `total` and `count` that are used to compute the frequency with which `predictions` matches `labels`. This frequency is ultimately returned as `accuracy`: an idempotent operation that simply divides `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `accuracy`. Internally, an `is_correct` operation computes a `Tensor` with elements 1.0 where the corresponding elements of `predictions` and `labels` match and 0.0 otherwise. Then `update_op` increments `total` with the reduced sum of the product of `weights` and `is_correct`, and it increments `count` with the reduced sum of `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: The ground truth values, a `Tensor` whose shape matches `predictions`. predictions: The predicted values, a `Tensor` of any shape. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `accuracy` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: accuracy: A `Tensor` representing the accuracy, the value of `total` divided by `count`. update_op: An operation that increments the `total` and `count` variables appropriately and whose value matches `accuracy`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ labels, predictions, weights = _remove_squeezable_dimensions( labels, predictions, weights=weights) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) if labels.dtype != predictions.dtype: predictions = math_ops.cast(predictions, labels.dtype) is_correct = math_ops.to_float(math_ops.equal(predictions, labels)) return mean(is_correct, weights, metrics_collections, updates_collections, name or 'accuracy') def _confusion_matrix_at_thresholds( labels, predictions, thresholds, weights=None, includes=None): """Computes true_positives, false_negatives, true_negatives, false_positives. This function creates up to four local variables, `true_positives`, `true_negatives`, `false_positives` and `false_negatives`. `true_positive[i]` is defined as the total weight of values in `predictions` above `thresholds[i]` whose corresponding entry in `labels` is `True`. `false_negatives[i]` is defined as the total weight of values in `predictions` at most `thresholds[i]` whose corresponding entry in `labels` is `True`. `true_negatives[i]` is defined as the total weight of values in `predictions` at most `thresholds[i]` whose corresponding entry in `labels` is `False`. `false_positives[i]` is defined as the total weight of values in `predictions` above `thresholds[i]` whose corresponding entry in `labels` is `False`. For estimation of these metrics over a stream of data, for each metric the function respectively creates an `update_op` operation that updates the variable and returns its value. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: A `Tensor` whose shape matches `predictions`. `labels` will be cast to `bool`. predictions: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. thresholds: A python list or tuple of float thresholds in `[0, 1]`. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). includes: Tuple of keys to return, from 'tp', 'fn', 'tn', fp'. If `None`, default to all four. Returns: values: Dict of variables of shape `[len(thresholds)]`. Keys are from `includes`. update_ops: Dict of operations that increments the `values`. Keys are from `includes`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if `includes` contains invalid keys. """ all_includes = ('tp', 'fn', 'tn', 'fp') if includes is None: includes = all_includes else: for include in includes: if include not in all_includes: raise ValueError('Invaild key: %s.' % include) labels, predictions, weights = _remove_squeezable_dimensions( labels, predictions, weights) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) num_thresholds = len(thresholds) # Reshape predictions and labels. predictions_2d = array_ops.reshape(predictions, [-1, 1]) labels_2d = array_ops.reshape( math_ops.cast(labels, dtype=dtypes.bool), [1, -1]) # Use static shape if known. num_predictions = predictions_2d.get_shape().as_list()[0] # Otherwise use dynamic shape. if num_predictions is None: num_predictions = array_ops.shape(predictions_2d)[0] thresh_tiled = array_ops.tile( array_ops.expand_dims(array_ops.constant(thresholds), [1]), array_ops.stack([1, num_predictions])) # Tile the predictions after thresholding them across different thresholds. pred_is_pos = math_ops.greater( array_ops.tile(array_ops.transpose(predictions_2d), [num_thresholds, 1]), thresh_tiled) if ('fn' in includes) or ('tn' in includes): pred_is_neg = math_ops.logical_not(pred_is_pos) # Tile labels by number of thresholds label_is_pos = array_ops.tile(labels_2d, [num_thresholds, 1]) if ('fp' in includes) or ('tn' in includes): label_is_neg = math_ops.logical_not(label_is_pos) if weights is not None: weights = _broadcast_weights(math_ops.to_float(weights), predictions) weights_tiled = array_ops.tile(array_ops.reshape( weights, [1, -1]), [num_thresholds, 1]) thresh_tiled.get_shape().assert_is_compatible_with( weights_tiled.get_shape()) else: weights_tiled = None values = {} update_ops = {} if 'tp' in includes: true_p = _create_local('true_positives', shape=[num_thresholds]) is_true_positive = math_ops.to_float( math_ops.logical_and(label_is_pos, pred_is_pos)) if weights_tiled is not None: is_true_positive *= weights_tiled update_ops['tp'] = state_ops.assign_add( true_p, math_ops.reduce_sum(is_true_positive, 1)) values['tp'] = true_p if 'fn' in includes: false_n = _create_local('false_negatives', shape=[num_thresholds]) is_false_negative = math_ops.to_float( math_ops.logical_and(label_is_pos, pred_is_neg)) if weights_tiled is not None: is_false_negative *= weights_tiled update_ops['fn'] = state_ops.assign_add( false_n, math_ops.reduce_sum(is_false_negative, 1)) values['fn'] = false_n if 'tn' in includes: true_n = _create_local('true_negatives', shape=[num_thresholds]) is_true_negative = math_ops.to_float( math_ops.logical_and(label_is_neg, pred_is_neg)) if weights_tiled is not None: is_true_negative *= weights_tiled update_ops['tn'] = state_ops.assign_add( true_n, math_ops.reduce_sum(is_true_negative, 1)) values['tn'] = true_n if 'fp' in includes: false_p = _create_local('false_positives', shape=[num_thresholds]) is_false_positive = math_ops.to_float( math_ops.logical_and(label_is_neg, pred_is_pos)) if weights_tiled is not None: is_false_positive *= weights_tiled update_ops['fp'] = state_ops.assign_add( false_p, math_ops.reduce_sum(is_false_positive, 1)) values['fp'] = false_p return values, update_ops def auc(labels, predictions, weights=None, num_thresholds=200, metrics_collections=None, updates_collections=None, curve='ROC', name=None): """Computes the approximate AUC via a Riemann sum. The `auc` function creates four local variables, `true_positives`, `true_negatives`, `false_positives` and `false_negatives` that are used to compute the AUC. To discretize the AUC curve, a linearly spaced set of thresholds is used to compute pairs of recall and precision values. The area under the ROC-curve is therefore computed using the height of the recall values by the false positive rate, while the area under the PR-curve is the computed using the height of the precision values by the recall. This value is ultimately returned as `auc`, an idempotent operation that computes the area under a discretized curve of precision versus recall values (computed using the aforementioned variables). The `num_thresholds` variable controls the degree of discretization with larger numbers of thresholds more closely approximating the true AUC. The quality of the approximation may vary dramatically depending on `num_thresholds`. For best results, `predictions` should be distributed approximately uniformly in the range [0, 1] and not peaked around 0 or 1. The quality of the AUC approximation may be poor if this is not the case. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `auc`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: A `bool` `Tensor` whose shape matches `predictions`. predictions: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). num_thresholds: The number of thresholds to use when discretizing the roc curve. metrics_collections: An optional list of collections that `auc` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. curve: Specifies the name of the curve to be computed, 'ROC' [default] or 'PR' for the Precision-Recall-curve. name: An optional variable_scope name. Returns: auc: A scalar `Tensor` representing the current area-under-curve. update_op: An operation that increments the `true_positives`, `true_negatives`, `false_positives` and `false_negatives` variables appropriately and whose value matches `auc`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope( name, 'auc', (labels, predictions, weights)): if curve != 'ROC' and curve != 'PR': raise ValueError('curve must be either ROC or PR, %s unknown' % (curve)) kepsilon = 1e-7 # to account for floating point imprecisions thresholds = [(i + 1) * 1.0 / (num_thresholds - 1) for i in range(num_thresholds-2)] thresholds = [0.0 - kepsilon] + thresholds + [1.0 + kepsilon] values, update_ops = _confusion_matrix_at_thresholds( labels, predictions, thresholds, weights) # Add epsilons to avoid dividing by 0. epsilon = 1.0e-6 def compute_auc(tp, fn, tn, fp, name): """Computes the roc-auc or pr-auc based on confusion counts.""" rec = math_ops.div(tp + epsilon, tp + fn + epsilon) if curve == 'ROC': fp_rate = math_ops.div(fp, fp + tn + epsilon) x = fp_rate y = rec else: # curve == 'PR'. prec = math_ops.div(tp + epsilon, tp + fp + epsilon) x = rec y = prec return math_ops.reduce_sum(math_ops.multiply( x[:num_thresholds - 1] - x[1:], (y[:num_thresholds - 1] + y[1:]) / 2.), name=name) # sum up the areas of all the trapeziums auc_value = compute_auc( values['tp'], values['fn'], values['tn'], values['fp'], 'value') update_op = compute_auc( update_ops['tp'], update_ops['fn'], update_ops['tn'], update_ops['fp'], 'update_op') if metrics_collections: ops.add_to_collections(metrics_collections, auc_value) if updates_collections: ops.add_to_collections(updates_collections, update_op) return auc_value, update_op def mean_absolute_error(labels, predictions, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the mean absolute error between the labels and predictions. The `mean_absolute_error` function creates two local variables, `total` and `count` that are used to compute the mean absolute error. This average is weighted by `weights`, and it is ultimately returned as `mean_absolute_error`: an idempotent operation that simply divides `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `mean_absolute_error`. Internally, an `absolute_errors` operation computes the absolute value of the differences between `predictions` and `labels`. Then `update_op` increments `total` with the reduced sum of the product of `weights` and `absolute_errors`, and it increments `count` with the reduced sum of `weights` If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: A `Tensor` of the same shape as `predictions`. predictions: A `Tensor` of arbitrary shape. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `mean_absolute_error` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: mean_absolute_error: A `Tensor` representing the current mean, the value of `total` divided by `count`. update_op: An operation that increments the `total` and `count` variables appropriately and whose value matches `mean_absolute_error`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ predictions, labels, weights = _remove_squeezable_dimensions( labels, predictions, weights) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) absolute_errors = math_ops.abs(predictions - labels) return mean(absolute_errors, weights, metrics_collections, updates_collections, name or 'mean_absolute_error') def mean_cosine_distance(labels, predictions, dim, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the cosine distance between the labels and predictions. The `mean_cosine_distance` function creates two local variables, `total` and `count` that are used to compute the average cosine distance between `predictions` and `labels`. This average is weighted by `weights`, and it is ultimately returned as `mean_distance`, which is an idempotent operation that simply divides `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `mean_distance`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: A `Tensor` of arbitrary shape. predictions: A `Tensor` of the same shape as `labels`. dim: The dimension along which the cosine distance is computed. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). Also, dimension `dim` must be `1`. metrics_collections: An optional list of collections that the metric value variable should be added to. updates_collections: An optional list of collections that the metric update ops should be added to. name: An optional variable_scope name. Returns: mean_distance: A `Tensor` representing the current mean, the value of `total` divided by `count`. update_op: An operation that increments the `total` and `count` variables appropriately. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ labels, predictions, weights = _remove_squeezable_dimensions( labels, predictions, weights) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) radial_diffs = math_ops.multiply(predictions, labels) radial_diffs = math_ops.reduce_sum(radial_diffs, reduction_indices=[dim,], keep_dims=True) mean_distance, update_op = mean(radial_diffs, weights, None, None, name or 'mean_cosine_distance') mean_distance = math_ops.subtract(1.0, mean_distance) update_op = math_ops.subtract(1.0, update_op) if metrics_collections: ops.add_to_collections(metrics_collections, mean_distance) if updates_collections: ops.add_to_collections(updates_collections, update_op) return mean_distance, update_op def mean_iou(labels, predictions, num_classes, weights=None, metrics_collections=None, updates_collections=None, name=None): """Calculate per-step mean Intersection-Over-Union (mIOU). Mean Intersection-Over-Union is a common evaluation metric for semantic image segmentation, which first computes the IOU for each semantic class and then computes the average over classes. IOU is defined as follows: IOU = true_positive / (true_positive + false_positive + false_negative). The predictions are accumulated in a confusion matrix, weighted by `weights`, and mIOU is then calculated from it. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `mean_iou`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: A `Tensor` of ground truth labels with shape [batch size] and of type `int32` or `int64`. The tensor will be flattened if its rank > 1. predictions: A `Tensor` of prediction results for semantic labels, whose shape is [batch size] and type `int32` or `int64`. The tensor will be flattened if its rank > 1. num_classes: The possible number of labels the prediction task can have. This value must be provided, since a confusion matrix of dimension = [num_classes, num_classes] will be allocated. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `mean_iou` should be added to. updates_collections: An optional list of collections `update_op` should be added to. name: An optional variable_scope name. Returns: mean_iou: A `Tensor` representing the mean intersection-over-union. update_op: An operation that increments the confusion matrix. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope( name, 'mean_iou', (predictions, labels, weights)): # Check if shape is compatible. predictions.get_shape().assert_is_compatible_with(labels.get_shape()) # Local variable to accumulate the predictions in the confusion matrix. cm_dtype = dtypes.int64 if weights is not None else dtypes.float64 total_cm = _create_local('total_confusion_matrix', shape=[num_classes, num_classes], dtype=cm_dtype) # Cast the type to int64 required by confusion_matrix_ops. predictions = math_ops.to_int64(predictions) labels = math_ops.to_int64(labels) num_classes = math_ops.to_int64(num_classes) # Flatten the input if its rank > 1. if predictions.get_shape().ndims > 1: predictions = array_ops.reshape(predictions, [-1]) if labels.get_shape().ndims > 1: labels = array_ops.reshape(labels, [-1]) if (weights is not None) and (weights.get_shape().ndims > 1): weights = array_ops.reshape(weights, [-1]) # Accumulate the prediction to current confusion matrix. current_cm = confusion_matrix.confusion_matrix( labels, predictions, num_classes, weights=weights, dtype=cm_dtype) update_op = state_ops.assign_add(total_cm, current_cm) def compute_mean_iou(name): """Compute the mean intersection-over-union via the confusion matrix.""" sum_over_row = math_ops.to_float(math_ops.reduce_sum(total_cm, 0)) sum_over_col = math_ops.to_float(math_ops.reduce_sum(total_cm, 1)) cm_diag = math_ops.to_float(array_ops.diag_part(total_cm)) denominator = sum_over_row + sum_over_col - cm_diag # If the value of the denominator is 0, set it to 1 to avoid # zero division. denominator = array_ops.where( math_ops.greater(denominator, 0), denominator, array_ops.ones_like(denominator)) iou = math_ops.div(cm_diag, denominator) return math_ops.reduce_mean(iou, name=name) mean_iou_v = compute_mean_iou('mean_iou') if metrics_collections: ops.add_to_collections(metrics_collections, mean_iou_v) if updates_collections: ops.add_to_collections(updates_collections, update_op) return mean_iou_v, update_op def mean_relative_error(labels, predictions, normalizer, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the mean relative error by normalizing with the given values. The `mean_relative_error` function creates two local variables, `total` and `count` that are used to compute the mean relative absolute error. This average is weighted by `weights`, and it is ultimately returned as `mean_relative_error`: an idempotent operation that simply divides `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `mean_reative_error`. Internally, a `relative_errors` operation divides the absolute value of the differences between `predictions` and `labels` by the `normalizer`. Then `update_op` increments `total` with the reduced sum of the product of `weights` and `relative_errors`, and it increments `count` with the reduced sum of `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: A `Tensor` of the same shape as `predictions`. predictions: A `Tensor` of arbitrary shape. normalizer: A `Tensor` of the same shape as `predictions`. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `mean_relative_error` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: mean_relative_error: A `Tensor` representing the current mean, the value of `total` divided by `count`. update_op: An operation that increments the `total` and `count` variables appropriately and whose value matches `mean_relative_error`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ labels, predictions, weights = _remove_squeezable_dimensions( labels, predictions, weights) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) predictions, normalizer = confusion_matrix.remove_squeezable_dimensions( predictions, normalizer) predictions.get_shape().assert_is_compatible_with(normalizer.get_shape()) relative_errors = array_ops.where( math_ops.equal(normalizer, 0.0), array_ops.zeros_like(labels), math_ops.div(math_ops.abs(labels - predictions), normalizer)) return mean(relative_errors, weights, metrics_collections, updates_collections, name or 'mean_relative_error') def mean_squared_error(labels, predictions, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the mean squared error between the labels and predictions. The `mean_squared_error` function creates two local variables, `total` and `count` that are used to compute the mean squared error. This average is weighted by `weights`, and it is ultimately returned as `mean_squared_error`: an idempotent operation that simply divides `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `mean_squared_error`. Internally, a `squared_error` operation computes the element-wise square of the difference between `predictions` and `labels`. Then `update_op` increments `total` with the reduced sum of the product of `weights` and `squared_error`, and it increments `count` with the reduced sum of `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: A `Tensor` of the same shape as `predictions`. predictions: A `Tensor` of arbitrary shape. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `mean_squared_error` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: mean_squared_error: A `Tensor` representing the current mean, the value of `total` divided by `count`. update_op: An operation that increments the `total` and `count` variables appropriately and whose value matches `mean_squared_error`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ labels, predictions, weights = _remove_squeezable_dimensions( labels, predictions, weights) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) squared_error = math_ops.square(labels - predictions) return mean(squared_error, weights, metrics_collections, updates_collections, name or 'mean_squared_error') def mean_tensor(values, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the element-wise (weighted) mean of the given tensors. In contrast to the `mean` function which returns a scalar with the mean, this function returns an average tensor with the same shape as the input tensors. The `mean_tensor` function creates two local variables, `total_tensor` and `count_tensor` that are used to compute the average of `values`. This average is ultimately returned as `mean` which is an idempotent operation that simply divides `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `mean`. `update_op` increments `total` with the reduced sum of the product of `values` and `weights`, and it increments `count` with the reduced sum of `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: values: A `Tensor` of arbitrary dimensions. weights: Optional `Tensor` whose rank is either 0, or the same rank as `values`, and must be broadcastable to `values` (i.e., all dimensions must be either `1`, or the same as the corresponding `values` dimension). metrics_collections: An optional list of collections that `mean` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: mean: A float `Tensor` representing the current mean, the value of `total` divided by `count`. update_op: An operation that increments the `total` and `count` variables appropriately and whose value matches `mean_value`. Raises: ValueError: If `weights` is not `None` and its shape doesn't match `values`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope(name, 'mean', (values, weights)): values = math_ops.to_float(values) total = _create_local('total_tensor', shape=values.get_shape()) count = _create_local('count_tensor', shape=values.get_shape()) num_values = array_ops.ones_like(values) if weights is not None: weights = _broadcast_weights(math_ops.to_float(weights), values) values = math_ops.multiply(values, weights) num_values = math_ops.multiply(num_values, weights) total_compute_op = state_ops.assign_add(total, values) count_compute_op = state_ops.assign_add(count, num_values) def compute_mean(total, count, name): non_zero_count = math_ops.maximum(count, array_ops.ones_like(count), name=name) return math_ops.truediv(total, non_zero_count, name=name) mean_t = compute_mean(total, count, 'value') with ops.control_dependencies([total_compute_op, count_compute_op]): update_op = compute_mean(total, count, 'update_op') if metrics_collections: ops.add_to_collections(metrics_collections, mean_t) if updates_collections: ops.add_to_collections(updates_collections, update_op) return mean_t, update_op def percentage_below(values, threshold, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the percentage of values less than the given threshold. The `percentage_below` function creates two local variables, `total` and `count` that are used to compute the percentage of `values` that fall below `threshold`. This rate is weighted by `weights`, and it is ultimately returned as `percentage` which is an idempotent operation that simply divides `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `percentage`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: values: A numeric `Tensor` of arbitrary size. threshold: A scalar threshold. weights: Optional `Tensor` whose rank is either 0, or the same rank as `values`, and must be broadcastable to `values` (i.e., all dimensions must be either `1`, or the same as the corresponding `values` dimension). metrics_collections: An optional list of collections that the metric value variable should be added to. updates_collections: An optional list of collections that the metric update ops should be added to. name: An optional variable_scope name. Returns: percentage: A `Tensor` representing the current mean, the value of `total` divided by `count`. update_op: An operation that increments the `total` and `count` variables appropriately. Raises: ValueError: If `weights` is not `None` and its shape doesn't match `values`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ is_below_threshold = math_ops.to_float(math_ops.less(values, threshold)) return mean(is_below_threshold, weights, metrics_collections, updates_collections, name or 'percentage_below_threshold') def _count_condition(values, weights=None, metrics_collections=None, updates_collections=None): """Sums the weights of cases where the given values are True. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: values: A `bool` `Tensor` of arbitrary size. weights: Optional `Tensor` whose rank is either 0, or the same rank as `values`, and must be broadcastable to `values` (i.e., all dimensions must be either `1`, or the same as the corresponding `values` dimension). metrics_collections: An optional list of collections that the metric value variable should be added to. updates_collections: An optional list of collections that the metric update ops should be added to. Returns: value_tensor: A `Tensor` representing the current value of the metric. update_op: An operation that accumulates the error from a batch of data. Raises: ValueError: If `weights` is not `None` and its shape doesn't match `values`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ check_ops.assert_type(values, dtypes.bool) count = _create_local('count', shape=[]) values = math_ops.to_float(values) if weights is not None: with ops.control_dependencies(( check_ops.assert_rank_in(weights, (0, array_ops.rank(values))),)): weights = math_ops.to_float(weights) values = math_ops.multiply(values, weights) value_tensor = array_ops.identity(count) update_op = state_ops.assign_add(count, math_ops.reduce_sum(values)) if metrics_collections: ops.add_to_collections(metrics_collections, value_tensor) if updates_collections: ops.add_to_collections(updates_collections, update_op) return value_tensor, update_op def true_positives(labels, predictions, weights=None, metrics_collections=None, updates_collections=None, name=None): """Sum the weights of true_positives. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: The ground truth values, a `bool` `Tensor` whose dimensions must match `predictions`. predictions: The predicted values, a `bool` `Tensor` of arbitrary dimensions. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that the metric value variable should be added to. updates_collections: An optional list of collections that the metric update ops should be added to. name: An optional variable_scope name. Returns: value_tensor: A `Tensor` representing the current value of the metric. update_op: An operation that accumulates the error from a batch of data. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope( name, 'true_positives', (predictions, labels, weights)): predictions = ops.convert_to_tensor(predictions) labels = ops.convert_to_tensor(labels) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) is_true_positive = math_ops.logical_and(math_ops.equal(labels, 1), math_ops.equal(predictions, 1)) return _count_condition(is_true_positive, weights, metrics_collections, updates_collections) def false_positives(labels, predictions, weights=None, metrics_collections=None, updates_collections=None, name=None): """Sum the weights of false positives. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: The ground truth values, a `bool` `Tensor` whose dimensions must match `predictions`. predictions: The predicted values, a `bool` `Tensor` of arbitrary dimensions. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that the metric value variable should be added to. updates_collections: An optional list of collections that the metric update ops should be added to. name: An optional variable_scope name. Returns: value_tensor: A `Tensor` representing the current value of the metric. update_op: An operation that accumulates the error from a batch of data. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope( name, 'false_positives', (predictions, labels, weights)): predictions = ops.convert_to_tensor(predictions) labels = ops.convert_to_tensor(labels) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) is_false_positive = math_ops.logical_and(math_ops.equal(labels, 0), math_ops.equal(predictions, 1)) return _count_condition(is_false_positive, weights, metrics_collections, updates_collections) def precision(labels, predictions, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the precision of the predictions with respect to the labels. The `precision` function creates two local variables, `true_positives` and `false_positives`, that are used to compute the precision. This value is ultimately returned as `precision`, an idempotent operation that simply divides `true_positives` by the sum of `true_positives` and `false_positives`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `precision`. `update_op` weights each prediction by the corresponding value in `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: The ground truth values, a `bool` `Tensor` whose dimensions must match `predictions`. predictions: The predicted values, a `bool` `Tensor` of arbitrary shape. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `precision` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: precision: Scalar float `Tensor` with the value of `true_positives` divided by the sum of `true_positives` and `false_positives`. update_op: `Operation` that increments `true_positives` and `false_positives` variables appropriately and whose value matches `precision`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope( name, 'precision', (predictions, labels, weights)): labels, predictions, weights = _remove_squeezable_dimensions( labels, predictions, weights) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) true_p, true_positives_update_op = true_positives( labels, predictions, weights, metrics_collections=None, updates_collections=None, name=None) false_p, false_positives_update_op = false_positives( labels, predictions, weights, metrics_collections=None, updates_collections=None, name=None) def compute_precision(name): return array_ops.where( math_ops.greater(true_p + false_p, 0), math_ops.div(true_p, true_p + false_p), 0, name) p = compute_precision('value') with ops.control_dependencies([true_positives_update_op, false_positives_update_op]): update_op = compute_precision('update_op') if metrics_collections: ops.add_to_collections(metrics_collections, p) if updates_collections: ops.add_to_collections(updates_collections, update_op) return p, update_op def precision_at_thresholds(labels, predictions, thresholds, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes precision values for different `thresholds` on `predictions`. The `precision_at_thresholds` function creates four local variables, `true_positives`, `true_negatives`, `false_positives` and `false_negatives` for various values of thresholds. `precision[i]` is defined as the total weight of values in `predictions` above `thresholds[i]` whose corresponding entry in `labels` is `True`, divided by the total weight of values in `predictions` above `thresholds[i]` (`true_positives[i] / (true_positives[i] + false_positives[i])`). For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `precision`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: A `bool` `Tensor` whose shape matches `predictions`. predictions: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. thresholds: A python list or tuple of float thresholds in `[0, 1]`. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `auc` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: precision: A float `Tensor` of shape `[len(thresholds)]`. update_op: An operation that increments the `true_positives`, `true_negatives`, `false_positives` and `false_negatives` variables that are used in the computation of `precision`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope(name, 'precision_at_thresholds', (predictions, labels, weights)): values, update_ops = _confusion_matrix_at_thresholds( labels, predictions, thresholds, weights, includes=('tp', 'fp')) tp = values['tp'] fp = values['fp'] # Avoid division by zero. epsilon = 1e-7 def compute_precision(name): return math_ops.div(tp, epsilon + tp + fp, name='precision_' + name) prec = compute_precision('value') with ops.control_dependencies(update_ops.values()): update_op = compute_precision('update_op') if metrics_collections: ops.add_to_collections(metrics_collections, prec) if updates_collections: ops.add_to_collections(updates_collections, update_op) return prec, update_op def false_negatives(labels, predictions, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the total number of false positives. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: The ground truth values, a `bool` `Tensor` whose dimensions must match `predictions`. predictions: The predicted values, a `bool` `Tensor` of arbitrary dimensions. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that the metric value variable should be added to. updates_collections: An optional list of collections that the metric update ops should be added to. name: An optional variable_scope name. Returns: value_tensor: A `Tensor` representing the current value of the metric. update_op: An operation that accumulates the error from a batch of data. Raises: ValueError: If `weights` is not `None` and its shape doesn't match `values`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope( name, 'false_negatives', (predictions, labels, weights)): predictions = ops.convert_to_tensor(predictions) labels = ops.convert_to_tensor(labels) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) is_false_negative = math_ops.logical_and(math_ops.equal(labels, 1), math_ops.equal(predictions, 0)) return _count_condition(is_false_negative, weights, metrics_collections, updates_collections) def recall(labels, predictions, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the recall of the predictions with respect to the labels. The `recall` function creates two local variables, `true_positives` and `false_negatives`, that are used to compute the recall. This value is ultimately returned as `recall`, an idempotent operation that simply divides `true_positives` by the sum of `true_positives` and `false_negatives`. For estimation of the metric over a stream of data, the function creates an `update_op` that updates these variables and returns the `recall`. `update_op` weights each prediction by the corresponding value in `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: The ground truth values, a `bool` `Tensor` whose dimensions must match `predictions`. predictions: The predicted values, a `bool` `Tensor` of arbitrary shape. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `recall` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: recall: Scalar float `Tensor` with the value of `true_positives` divided by the sum of `true_positives` and `false_negatives`. update_op: `Operation` that increments `true_positives` and `false_negatives` variables appropriately and whose value matches `recall`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope( name, 'recall', (predictions, labels, weights)): labels, predictions, weights = _remove_squeezable_dimensions( labels, predictions, weights) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) true_p, true_positives_update_op = true_positives( labels, predictions, weights, metrics_collections=None, updates_collections=None, name=None) false_n, false_negatives_update_op = false_negatives( labels, predictions, weights, metrics_collections=None, updates_collections=None, name=None) def compute_recall(true_p, false_n, name): return array_ops.where( math_ops.greater(true_p + false_n, 0), math_ops.div(true_p, true_p + false_n), 0, name) rec = compute_recall(true_p, false_n, 'value') with ops.control_dependencies([true_positives_update_op, false_negatives_update_op]): update_op = compute_recall(true_p, false_n, 'update_op') if metrics_collections: ops.add_to_collections(metrics_collections, rec) if updates_collections: ops.add_to_collections(updates_collections, update_op) return rec, update_op def _at_k_name(name, k=None, class_id=None): if k is not None: name = '%s_at_%d' % (name, k) else: name = '%s_at_k' % (name) if class_id is not None: name = '%s_class%d' % (name, class_id) return name def _select_class_id(ids, selected_id): """Filter all but `selected_id` out of `ids`. Args: ids: `int64` `Tensor` or `SparseTensor` of IDs. selected_id: Int id to select. Returns: `SparseTensor` of same dimensions as `ids`. This contains only the entries equal to `selected_id`. """ ids = sparse_tensor.convert_to_tensor_or_sparse_tensor(ids) if isinstance(ids, sparse_tensor.SparseTensor): return sparse_ops.sparse_retain( ids, math_ops.equal(ids.values, selected_id)) # TODO(ptucker): Make this more efficient, maybe add a sparse version of # tf.equal and tf.reduce_any? # Shape of filled IDs is the same as `ids` with the last dim collapsed to 1. ids_shape = array_ops.shape(ids, out_type=dtypes.int64) ids_last_dim = array_ops.size(ids_shape) - 1 filled_selected_id_shape = math_ops.reduced_shape( ids_shape, array_ops.reshape(ids_last_dim, [1])) # Intersect `ids` with the selected ID. filled_selected_id = array_ops.fill( filled_selected_id_shape, math_ops.to_int64(selected_id)) result = sets.set_intersection(filled_selected_id, ids) return sparse_tensor.SparseTensor( indices=result.indices, values=result.values, dense_shape=ids_shape) def _maybe_select_class_id(labels, predictions_idx, selected_id=None): """If class ID is specified, filter all other classes. Args: labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels], where N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `predictions_idx`. predictions_idx: `int64` `Tensor` of class IDs, with shape [D1, ... DN, k] where N >= 1. Commonly, N=1 and `predictions_idx` has shape [batch size, k]. selected_id: Int id to select. Returns: Tuple of `labels` and `predictions_idx`, possibly with classes removed. """ if selected_id is None: return labels, predictions_idx return (_select_class_id(labels, selected_id), _select_class_id(predictions_idx, selected_id)) def _sparse_true_positive_at_k(labels, predictions_idx, class_id=None, weights=None, name=None): """Calculates true positives for recall@k and precision@k. If `class_id` is specified, calculate binary true positives for `class_id` only. If `class_id` is not specified, calculate metrics for `k` predicted vs `n` label classes, where `n` is the 2nd dimension of `labels_sparse`. Args: labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels], where N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `predictions_idx`. predictions_idx: 1-D or higher `int64` `Tensor` with last dimension `k`, top `k` predicted classes. For rank `n`, the first `n-1` dimensions must match `labels`. class_id: Class for which we want binary metrics. weights: `Tensor` whose rank is either 0, or n-1, where n is the rank of `labels`. If the latter, it must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). name: Name of operation. Returns: A [D1, ... DN] `Tensor` of true positive counts. """ with ops.name_scope( name, 'true_positives', (predictions_idx, labels, weights)): labels, predictions_idx = _maybe_select_class_id( labels, predictions_idx, class_id) tp = sets.set_size(sets.set_intersection(predictions_idx, labels)) tp = math_ops.to_double(tp) if weights is not None: with ops.control_dependencies((_assert_weights_rank(weights, tp),)): weights = math_ops.to_double(weights) tp = math_ops.multiply(tp, weights) return tp def _streaming_sparse_true_positive_at_k(labels, predictions_idx, k=None, class_id=None, weights=None, name=None): """Calculates weighted per step true positives for recall@k and precision@k. If `class_id` is specified, calculate binary true positives for `class_id` only. If `class_id` is not specified, calculate metrics for `k` predicted vs `n` label classes, where `n` is the 2nd dimension of `labels`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels], where N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `predictions_idx`. predictions_idx: 1-D or higher `int64` `Tensor` with last dimension `k`, top `k` predicted classes. For rank `n`, the first `n-1` dimensions must match `labels`. k: Integer, k for @k metric. This is only used for default op name. class_id: Class for which we want binary metrics. weights: `Tensor` whose rank is either 0, or n-1, where n is the rank of `labels`. If the latter, it must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). name: Name of new variable, and namespace for other dependent ops. Returns: A tuple of `Variable` and update `Operation`. Raises: ValueError: If `weights` is not `None` and has an incomptable shape. """ with ops.name_scope( name, _at_k_name('true_positive', k, class_id=class_id), (predictions_idx, labels, weights)) as scope: tp = _sparse_true_positive_at_k( predictions_idx=predictions_idx, labels=labels, class_id=class_id, weights=weights) batch_total_tp = math_ops.to_double(math_ops.reduce_sum(tp)) var = _local_variable(array_ops.zeros([], dtype=dtypes.float64), name=scope) return var, state_ops.assign_add(var, batch_total_tp, name='update') def _sparse_false_negative_at_k(labels, predictions_idx, class_id=None, weights=None): """Calculates false negatives for recall@k. If `class_id` is specified, calculate binary true positives for `class_id` only. If `class_id` is not specified, calculate metrics for `k` predicted vs `n` label classes, where `n` is the 2nd dimension of `labels_sparse`. Args: labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels], where N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `predictions_idx`. predictions_idx: 1-D or higher `int64` `Tensor` with last dimension `k`, top `k` predicted classes. For rank `n`, the first `n-1` dimensions must match `labels`. class_id: Class for which we want binary metrics. weights: `Tensor` whose rank is either 0, or n-1, where n is the rank of `labels`. If the latter, it must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). Returns: A [D1, ... DN] `Tensor` of false negative counts. """ with ops.name_scope( None, 'false_negatives', (predictions_idx, labels, weights)): labels, predictions_idx = _maybe_select_class_id(labels, predictions_idx, class_id) fn = sets.set_size(sets.set_difference(predictions_idx, labels, aminusb=False)) fn = math_ops.to_double(fn) if weights is not None: with ops.control_dependencies((_assert_weights_rank(weights, fn),)): weights = math_ops.to_double(weights) fn = math_ops.multiply(fn, weights) return fn def _streaming_sparse_false_negative_at_k(labels, predictions_idx, k, class_id=None, weights=None, name=None): """Calculates weighted per step false negatives for recall@k. If `class_id` is specified, calculate binary true positives for `class_id` only. If `class_id` is not specified, calculate metrics for `k` predicted vs `n` label classes, where `n` is the 2nd dimension of `labels`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels], where N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `predictions_idx`. predictions_idx: 1-D or higher `int64` `Tensor` with last dimension `k`, top `k` predicted classes. For rank `n`, the first `n-1` dimensions must match `labels`. k: Integer, k for @k metric. This is only used for default op name. class_id: Class for which we want binary metrics. weights: `Tensor` whose rank is either 0, or n-1, where n is the rank of `labels`. If the latter, it must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). name: Name of new variable, and namespace for other dependent ops. Returns: A tuple of `Variable` and update `Operation`. Raises: ValueError: If `weights` is not `None` and has an incomptable shape. """ with ops.name_scope( name, _at_k_name('false_negative', k, class_id=class_id), (predictions_idx, labels, weights)) as scope: fn = _sparse_false_negative_at_k( predictions_idx=predictions_idx, labels=labels, class_id=class_id, weights=weights) batch_total_fn = math_ops.to_double(math_ops.reduce_sum(fn)) var = _local_variable(array_ops.zeros([], dtype=dtypes.float64), name=scope) return var, state_ops.assign_add(var, batch_total_fn, name='update') def recall_at_k(labels, predictions, k, class_id=None, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes recall@k of the predictions with respect to sparse labels. If `class_id` is specified, we calculate recall by considering only the entries in the batch for which `class_id` is in the label, and computing the fraction of them for which `class_id` is in the top-k `predictions`. If `class_id` is not specified, we'll calculate recall as how often on average a class among the labels of a batch entry is in the top-k `predictions`. `sparse_recall_at_k` creates two local variables, `true_positive_at_<k>` and `false_negative_at_<k>`, that are used to compute the recall_at_k frequency. This frequency is ultimately returned as `recall_at_<k>`: an idempotent operation that simply divides `true_positive_at_<k>` by total (`true_positive_at_<k>` + `false_negative_at_<k>`). For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `recall_at_<k>`. Internally, a `top_k` operation computes a `Tensor` indicating the top `k` `predictions`. Set operations applied to `top_k` and `labels` calculate the true positives and false negatives weighted by `weights`. Then `update_op` increments `true_positive_at_<k>` and `false_negative_at_<k>` using these values. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels] or [D1, ... DN], where the latter implies num_labels=1. N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `predictions`. Values should be in range [0, num_classes), where num_classes is the last dimension of `predictions`. Values outside this range always count towards `false_negative_at_<k>`. predictions: Float `Tensor` with shape [D1, ... DN, num_classes] where N >= 1. Commonly, N=1 and predictions has shape [batch size, num_classes]. The final dimension contains the logit values for each class. [D1, ... DN] must match `labels`. k: Integer, k for @k metric. class_id: Integer class ID for which we want binary metrics. This should be in range [0, num_classes), where num_classes is the last dimension of `predictions`. If class_id is outside this range, the method returns NAN. weights: `Tensor` whose rank is either 0, or n-1, where n is the rank of `labels`. If the latter, it must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that values should be added to. updates_collections: An optional list of collections that updates should be added to. name: Name of new update operation, and namespace for other dependent ops. Returns: recall: Scalar `float64` `Tensor` with the value of `true_positives` divided by the sum of `true_positives` and `false_negatives`. update_op: `Operation` that increments `true_positives` and `false_negatives` variables appropriately, and whose value matches `recall`. Raises: ValueError: If `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with ops.name_scope( name, _at_k_name('recall', k, class_id=class_id), (predictions, labels, weights)) as scope: labels = _maybe_expand_labels(labels, predictions) _, top_k_idx = nn.top_k(predictions, k) top_k_idx = math_ops.to_int64(top_k_idx) tp, tp_update = _streaming_sparse_true_positive_at_k( predictions_idx=top_k_idx, labels=labels, k=k, class_id=class_id, weights=weights) fn, fn_update = _streaming_sparse_false_negative_at_k( predictions_idx=top_k_idx, labels=labels, k=k, class_id=class_id, weights=weights) metric = math_ops.div(tp, math_ops.add(tp, fn), name=scope) update = math_ops.div( tp_update, math_ops.add(tp_update, fn_update), name='update') if metrics_collections: ops.add_to_collections(metrics_collections, metric) if updates_collections: ops.add_to_collections(updates_collections, update) return metric, update def recall_at_thresholds(labels, predictions, thresholds, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes various recall values for different `thresholds` on `predictions`. The `recall_at_thresholds` function creates four local variables, `true_positives`, `true_negatives`, `false_positives` and `false_negatives` for various values of thresholds. `recall[i]` is defined as the total weight of values in `predictions` above `thresholds[i]` whose corresponding entry in `labels` is `True`, divided by the total weight of `True` values in `labels` (`true_positives[i] / (true_positives[i] + false_negatives[i])`). For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `recall`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: A `bool` `Tensor` whose shape matches `predictions`. predictions: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. thresholds: A python list or tuple of float thresholds in `[0, 1]`. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `recall` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: recall: A float `Tensor` of shape `[len(thresholds)]`. update_op: An operation that increments the `true_positives`, `true_negatives`, `false_positives` and `false_negatives` variables that are used in the computation of `recall`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope(name, 'recall_at_thresholds', (predictions, labels, weights)): values, update_ops = _confusion_matrix_at_thresholds( labels, predictions, thresholds, weights, includes=('tp', 'fn')) tp = values['tp'] fn = values['fn'] # Avoid division by zero. epsilon = 1e-7 def compute_recall(name): return math_ops.div(tp, epsilon + tp + fn, name='recall_' + name) rec = compute_recall('value') with ops.control_dependencies(update_ops.values()): update_op = compute_recall('update_op') if metrics_collections: ops.add_to_collections(metrics_collections, rec) if updates_collections: ops.add_to_collections(updates_collections, update_op) return rec, update_op def root_mean_squared_error(labels, predictions, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the root mean squared error between the labels and predictions. The `root_mean_squared_error` function creates two local variables, `total` and `count` that are used to compute the root mean squared error. This average is weighted by `weights`, and it is ultimately returned as `root_mean_squared_error`: an idempotent operation that takes the square root of the division of `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `root_mean_squared_error`. Internally, a `squared_error` operation computes the element-wise square of the difference between `predictions` and `labels`. Then `update_op` increments `total` with the reduced sum of the product of `weights` and `squared_error`, and it increments `count` with the reduced sum of `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: A `Tensor` of the same shape as `predictions`. predictions: A `Tensor` of arbitrary shape. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `root_mean_squared_error` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: root_mean_squared_error: A `Tensor` representing the current mean, the value of `total` divided by `count`. update_op: An operation that increments the `total` and `count` variables appropriately and whose value matches `root_mean_squared_error`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ labels, predictions, weights = _remove_squeezable_dimensions( labels, predictions, weights) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) value_tensor, update_op = mean_squared_error( labels, predictions, weights, None, None, name or 'root_mean_squared_error') rmse = math_ops.sqrt(value_tensor) with ops.control_dependencies([update_op]): update_op = math_ops.sqrt(update_op) if metrics_collections: ops.add_to_collections(metrics_collections, rmse) if updates_collections: ops.add_to_collections(updates_collections, update_op) return rmse, update_op def sensitivity_at_specificity( labels, predictions, specificity, weights=None, num_thresholds=200, metrics_collections=None, updates_collections=None, name=None): """Computes the specificity at a given sensitivity. The `sensitivity_at_specificity` function creates four local variables, `true_positives`, `true_negatives`, `false_positives` and `false_negatives` that are used to compute the sensitivity at the given specificity value. The threshold for the given specificity value is computed and used to evaluate the corresponding sensitivity. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `sensitivity`. `update_op` increments the `true_positives`, `true_negatives`, `false_positives` and `false_negatives` counts with the weight of each case found in the `predictions` and `labels`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. For additional information about specificity and sensitivity, see the following: https://en.wikipedia.org/wiki/Sensitivity_and_specificity Args: labels: A `bool` `Tensor` whose shape matches `predictions`. predictions: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. specificity: A scalar value in range `[0, 1]`. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). num_thresholds: The number of thresholds to use for matching the given specificity. metrics_collections: An optional list of collections that `sensitivity` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: sensitivity: A scalar `Tensor` representing the sensitivity at the given `specificity` value. update_op: An operation that increments the `true_positives`, `true_negatives`, `false_positives` and `false_negatives` variables appropriately and whose value matches `sensitivity`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, if `weights` is not `None` and its shape doesn't match `predictions`, or if `specificity` is not between 0 and 1, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ if specificity < 0 or specificity > 1: raise ValueError('`specificity` must be in the range [0, 1].') with variable_scope.variable_scope(name, 'sensitivity_at_specificity', (predictions, labels, weights)): kepsilon = 1e-7 # to account for floating point imprecisions thresholds = [(i + 1) * 1.0 / (num_thresholds - 1) for i in range(num_thresholds-2)] thresholds = [0.0 - kepsilon] + thresholds + [1.0 + kepsilon] values, update_ops = _confusion_matrix_at_thresholds( labels, predictions, thresholds, weights) tp = values['tp'] fn = values['fn'] tn = values['tn'] fp = values['fp'] def compute_sensitivity_at_specificity(name): specificities = math_ops.div(tn, tn + fp + kepsilon) tf_index = math_ops.argmin(math_ops.abs(specificities - specificity), 0) tf_index = math_ops.cast(tf_index, dtypes.int32) # Now, we have the implicit threshold, so compute the sensitivity: return math_ops.div(tp[tf_index], tp[tf_index] + fn[tf_index] + kepsilon, name) sensitivity = compute_sensitivity_at_specificity('value') with ops.control_dependencies(update_ops.values()): update_op = compute_sensitivity_at_specificity('update_op') if metrics_collections: ops.add_to_collections(metrics_collections, sensitivity) if updates_collections: ops.add_to_collections(updates_collections, update_op) return sensitivity, update_op def _expand_and_tile(tensor, multiple, dim=0, name=None): """Slice `tensor` shape in 2, then tile along the sliced dimension. A new dimension is inserted in shape of `tensor` before `dim`, then values are tiled `multiple` times along the new dimension. Args: tensor: Input `Tensor` or `SparseTensor`. multiple: Integer, number of times to tile. dim: Integer, dimension along which to tile. name: Name of operation. Returns: `Tensor` result of expanding and tiling `tensor`. Raises: ValueError: if `multiple` is less than 1, or `dim` is not in `[-rank(tensor), rank(tensor)]`. """ if multiple < 1: raise ValueError('Invalid multiple %s, must be > 0.' % multiple) with ops.name_scope( name, 'expand_and_tile', (tensor, multiple, dim)) as scope: # Sparse. tensor = sparse_tensor.convert_to_tensor_or_sparse_tensor(tensor) if isinstance(tensor, sparse_tensor.SparseTensor): if dim < 0: expand_dims = array_ops.reshape( array_ops.size(tensor.dense_shape) + dim, [1]) else: expand_dims = [dim] expanded_shape = array_ops.concat_v2( (array_ops.slice(tensor.dense_shape, [0], expand_dims), [1], array_ops.slice(tensor.dense_shape, expand_dims, [-1])), 0, name='expanded_shape') expanded = sparse_ops.sparse_reshape( tensor, shape=expanded_shape, name='expand') if multiple == 1: return expanded return sparse_ops.sparse_concat( dim - 1 if dim < 0 else dim, [expanded] * multiple, name=scope) # Dense. expanded = array_ops.expand_dims( tensor, dim if (dim >= 0) else (dim - 1), name='expand') if multiple == 1: return expanded ones = array_ops.ones_like(array_ops.shape(tensor)) tile_multiples = array_ops.concat_v2( (ones[:dim], (multiple,), ones[dim:]), 0, name='multiples') return array_ops.tile(expanded, tile_multiples, name=scope) def _num_relevant(labels, k): """Computes number of relevant values for each row in labels. For labels with shape [D1, ... DN, num_labels], this is the minimum of `num_labels` and `k`. Args: labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels], where N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. k: Integer, k for @k metric. Returns: Integer `Tensor` of shape [D1, ... DN], where each value is the number of relevant values for that row. Raises: ValueError: if inputs have invalid dtypes or values. """ if k < 1: raise ValueError('Invalid k=%s.' % k) with ops.name_scope(None, 'num_relevant', (labels,)) as scope: # For SparseTensor, calculate separate count for each row. labels = sparse_tensor.convert_to_tensor_or_sparse_tensor(labels) if isinstance(labels, sparse_tensor.SparseTensor): return math_ops.minimum(sets.set_size(labels), k, name=scope) # For dense Tensor, calculate scalar count based on last dimension, and # tile across labels shape. labels_shape = array_ops.shape(labels) labels_size = labels_shape[-1] num_relevant_scalar = math_ops.minimum(labels_size, k) return array_ops.fill(labels_shape[0:-1], num_relevant_scalar, name=scope) def _sparse_average_precision_at_k(labels, predictions, k): """Computes average precision@k of predictions with respect to sparse labels. From en.wikipedia.org/wiki/Information_retrieval#Average_precision, formula for each row is: AveP = sum_{i=1...k} P_{i} * rel_{i} / num_relevant_items A "row" is the elements in dimension [D1, ... DN] of `predictions`, `labels`, and the result `Tensors`. In the common case, this is [batch_size]. Each row of the results contains the average precision for that row. Internally, a `top_k` operation computes a `Tensor` indicating the top `k` `predictions`. Set operations applied to `top_k` and `labels` calculate the true positives, which are used to calculate the precision ("P_{i}" term, above). Args: labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels] or [D1, ... DN], where the latter implies num_labels=1. N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `predictions`. Values should be in range [0, num_classes), where num_classes is the last dimension of `predictions`. Values outside this range are ignored. predictions: Float `Tensor` with shape [D1, ... DN, num_classes] where N >= 1. Commonly, N=1 and `predictions` has shape [batch size, num_classes]. The final dimension contains the logit values for each class. [D1, ... DN] must match `labels`. k: Integer, k for @k metric. This will calculate an average precision for range `[1,k]`, as documented above. Returns: `float64` `Tensor` of shape [D1, ... DN], where each value is the average precision for that row. Raises: ValueError: if k is invalid. """ if k < 1: raise ValueError('Invalid k=%s.' % k) with ops.name_scope( None, 'average_precision', (predictions, labels, k)) as scope: labels = _maybe_expand_labels(labels, predictions) # Calculate top k indices to produce [D1, ... DN, k] tensor. _, predictions_idx = nn.top_k(predictions, k) predictions_idx = math_ops.to_int64(predictions_idx, name='predictions_idx') # Expand dims to produce [D1, ... DN, k, 1] tensor. This gives us a separate # prediction for each k, so we can calculate separate true positive values # for each k. predictions_idx_per_k = array_ops.expand_dims( predictions_idx, -1, name='predictions_idx_per_k') # Replicate labels k times to produce [D1, ... DN, k, num_labels] tensor. labels_per_k = _expand_and_tile( labels, multiple=k, dim=-1, name='labels_per_k') # The following tensors are all of shape [D1, ... DN, k], containing values # per row, per k value. # `relevant_per_k` (int32) - Relevance indicator, 1 if the prediction at # that k value is correct, 0 otherwise. This is the "rel_{i}" term from # the formula above. # `tp_per_k` (int32) - True positive counts. # `retrieved_per_k` (int32) - Number of predicted values at each k. This is # the precision denominator. # `precision_per_k` (float64) - Precision at each k. This is the "P_{i}" # term from the formula above. # `relevant_precision_per_k` (float64) - Relevant precisions; i.e., # precisions at all k for which relevance indicator is true. relevant_per_k = _sparse_true_positive_at_k( labels_per_k, predictions_idx_per_k, name='relevant_per_k') tp_per_k = math_ops.cumsum(relevant_per_k, axis=-1, name='tp_per_k') retrieved_per_k = math_ops.cumsum( array_ops.ones_like(relevant_per_k), axis=-1, name='retrieved_per_k') precision_per_k = math_ops.div( math_ops.to_double(tp_per_k), math_ops.to_double(retrieved_per_k), name='precision_per_k') relevant_precision_per_k = math_ops.multiply( precision_per_k, math_ops.to_double(relevant_per_k), name='relevant_precision_per_k') # Reduce along k dimension to get the sum, yielding a [D1, ... DN] tensor. precision_sum = math_ops.reduce_sum( relevant_precision_per_k, reduction_indices=(-1,), name='precision_sum') # Divide by number of relevant items to get average precision. These are # the "num_relevant_items" and "AveP" terms from the formula above. num_relevant_items = math_ops.to_double(_num_relevant(labels, k)) return math_ops.div(precision_sum, num_relevant_items, name=scope) def sparse_average_precision_at_k(labels, predictions, k, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes average precision@k of predictions with respect to sparse labels. `sparse_average_precision_at_k` creates two local variables, `average_precision_at_<k>/total` and `average_precision_at_<k>/max`, that are used to compute the frequency. This frequency is ultimately returned as `average_precision_at_<k>`: an idempotent operation that simply divides `average_precision_at_<k>/total` by `average_precision_at_<k>/max`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `precision_at_<k>`. Internally, a `top_k` operation computes a `Tensor` indicating the top `k` `predictions`. Set operations applied to `top_k` and `labels` calculate the true positives and false positives weighted by `weights`. Then `update_op` increments `true_positive_at_<k>` and `false_positive_at_<k>` using these values. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels] or [D1, ... DN], where the latter implies num_labels=1. N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `predictions`. Values should be in range [0, num_classes), where num_classes is the last dimension of `predictions`. Values outside this range are ignored. predictions: Float `Tensor` with shape [D1, ... DN, num_classes] where N >= 1. Commonly, N=1 and `predictions` has shape [batch size, num_classes]. The final dimension contains the logit values for each class. [D1, ... DN] must match `labels`. k: Integer, k for @k metric. This will calculate an average precision for range `[1,k]`, as documented above. weights: `Tensor` whose rank is either 0, or n-1, where n is the rank of `labels`. If the latter, it must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that values should be added to. updates_collections: An optional list of collections that updates should be added to. name: Name of new update operation, and namespace for other dependent ops. Returns: mean_average_precision: Scalar `float64` `Tensor` with the mean average precision values. update: `Operation` that increments variables appropriately, and whose value matches `metric`. """ with ops.name_scope( name, _at_k_name('average_precision', k), (predictions, labels, weights)) as scope: # Calculate per-example average precision, and apply weights. average_precision = _sparse_average_precision_at_k( predictions=predictions, labels=labels, k=k) if weights is not None: weights = _broadcast_weights( math_ops.to_double(weights), average_precision) average_precision = math_ops.multiply(average_precision, weights) # Create accumulation variables and update ops for max average precision and # total average precision. with ops.name_scope(None, 'max', (average_precision,)) as max_scope: # `max` is the max possible precision. Since max for any row is 1.0: # - For the unweighted case, this is just the number of rows. # - For the weighted case, it's the sum of the weights broadcast across # `average_precision` rows. max_var = _local_variable( array_ops.zeros([], dtype=dtypes.float64), name=max_scope) if weights is None: batch_max = math_ops.to_double( array_ops.size(average_precision, name='batch_max')) else: batch_max = math_ops.reduce_sum(weights, name='batch_max') max_update = state_ops.assign_add(max_var, batch_max, name='update') with ops.name_scope(None, 'total', (average_precision,)) as total_scope: total_var = _local_variable( array_ops.zeros([], dtype=dtypes.float64), name=total_scope) batch_total = math_ops.reduce_sum(average_precision, name='batch_total') total_update = state_ops.assign_add(total_var, batch_total, name='update') # Divide total by max to get mean, for both vars and the update ops. mean_average_precision = _safe_scalar_div(total_var, max_var, name='mean') update = _safe_scalar_div(total_update, max_update, name=scope) if metrics_collections: ops.add_to_collections(metrics_collections, mean_average_precision) if updates_collections: ops.add_to_collections(updates_collections, update) return mean_average_precision, update def _sparse_false_positive_at_k(labels, predictions_idx, class_id=None, weights=None): """Calculates false positives for precision@k. If `class_id` is specified, calculate binary true positives for `class_id` only. If `class_id` is not specified, calculate metrics for `k` predicted vs `n` label classes, where `n` is the 2nd dimension of `labels_sparse`. Args: labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels], where N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `predictions_idx`. predictions_idx: 1-D or higher `int64` `Tensor` with last dimension `k`, top `k` predicted classes. For rank `n`, the first `n-1` dimensions must match `labels`. class_id: Class for which we want binary metrics. weights: `Tensor` whose rank is either 0, or n-1, where n is the rank of `labels`. If the latter, it must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). Returns: A [D1, ... DN] `Tensor` of false positive counts. """ with ops.name_scope( None, 'false_positives', (predictions_idx, labels, weights)): labels, predictions_idx = _maybe_select_class_id(labels, predictions_idx, class_id) fp = sets.set_size(sets.set_difference( predictions_idx, labels, aminusb=True)) fp = math_ops.to_double(fp) if weights is not None: with ops.control_dependencies((_assert_weights_rank(weights, fp),)): weights = math_ops.to_double(weights) fp = math_ops.mul(fp, weights) return fp def _streaming_sparse_false_positive_at_k(labels, predictions_idx, k=None, class_id=None, weights=None, name=None): """Calculates weighted per step false positives for precision@k. If `class_id` is specified, calculate binary true positives for `class_id` only. If `class_id` is not specified, calculate metrics for `k` predicted vs `n` label classes, where `n` is the 2nd dimension of `labels`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels], where N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `predictions_idx`. predictions_idx: 1-D or higher `int64` `Tensor` with last dimension `k`, top `k` predicted classes. For rank `n`, the first `n-1` dimensions must match `labels`. k: Integer, k for @k metric. This is only used for default op name. class_id: Class for which we want binary metrics. weights: `Tensor` whose rank is either 0, or n-1, where n is the rank of `labels`. If the latter, it must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). name: Name of new variable, and namespace for other dependent ops. Returns: A tuple of `Variable` and update `Operation`. Raises: ValueError: If `weights` is not `None` and has an incomptable shape. """ with ops.name_scope( name, _at_k_name('false_positive', k, class_id=class_id), (predictions_idx, labels, weights)) as scope: fp = _sparse_false_positive_at_k( predictions_idx=predictions_idx, labels=labels, class_id=class_id, weights=weights) batch_total_fp = math_ops.to_double(math_ops.reduce_sum(fp)) var = _local_variable(array_ops.zeros([], dtype=dtypes.float64), name=scope) return var, state_ops.assign_add(var, batch_total_fp, name='update') def sparse_precision_at_k(labels, predictions, k, class_id=None, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes precision@k of the predictions with respect to sparse labels. If `class_id` is specified, we calculate precision by considering only the entries in the batch for which `class_id` is in the top-k highest `predictions`, and computing the fraction of them for which `class_id` is indeed a correct label. If `class_id` is not specified, we'll calculate precision as how often on average a class among the top-k classes with the highest predicted values of a batch entry is correct and can be found in the label for that entry. `sparse_precision_at_k` creates two local variables, `true_positive_at_<k>` and `false_positive_at_<k>`, that are used to compute the precision@k frequency. This frequency is ultimately returned as `precision_at_<k>`: an idempotent operation that simply divides `true_positive_at_<k>` by total (`true_positive_at_<k>` + `false_positive_at_<k>`). For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `precision_at_<k>`. Internally, a `top_k` operation computes a `Tensor` indicating the top `k` `predictions`. Set operations applied to `top_k` and `labels` calculate the true positives and false positives weighted by `weights`. Then `update_op` increments `true_positive_at_<k>` and `false_positive_at_<k>` using these values. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels] or [D1, ... DN], where the latter implies num_labels=1. N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `predictions`. Values should be in range [0, num_classes), where num_classes is the last dimension of `predictions`. Values outside this range are ignored. predictions: Float `Tensor` with shape [D1, ... DN, num_classes] where N >= 1. Commonly, N=1 and predictions has shape [batch size, num_classes]. The final dimension contains the logit values for each class. [D1, ... DN] must match `labels`. k: Integer, k for @k metric. class_id: Integer class ID for which we want binary metrics. This should be in range [0, num_classes], where num_classes is the last dimension of `predictions`. If `class_id` is outside this range, the method returns NAN. weights: `Tensor` whose rank is either 0, or n-1, where n is the rank of `labels`. If the latter, it must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that values should be added to. updates_collections: An optional list of collections that updates should be added to. name: Name of new update operation, and namespace for other dependent ops. Returns: precision: Scalar `float64` `Tensor` with the value of `true_positives` divided by the sum of `true_positives` and `false_positives`. update_op: `Operation` that increments `true_positives` and `false_positives` variables appropriately, and whose value matches `precision`. Raises: ValueError: If `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with ops.name_scope(name, _at_k_name('precision', k, class_id=class_id), (predictions, labels, weights)) as scope: labels = _maybe_expand_labels(labels, predictions) _, top_k_idx = nn.top_k(predictions, k) top_k_idx = math_ops.to_int64(top_k_idx) tp, tp_update = _streaming_sparse_true_positive_at_k( predictions_idx=top_k_idx, labels=labels, k=k, class_id=class_id, weights=weights) fp, fp_update = _streaming_sparse_false_positive_at_k( predictions_idx=top_k_idx, labels=labels, k=k, class_id=class_id, weights=weights) metric = math_ops.div(tp, math_ops.add(tp, fp), name=scope) update = math_ops.div( tp_update, math_ops.add(tp_update, fp_update), name='update') if metrics_collections: ops.add_to_collections(metrics_collections, metric) if updates_collections: ops.add_to_collections(updates_collections, update) return metric, update def specificity_at_sensitivity( labels, predictions, sensitivity, weights=None, num_thresholds=200, metrics_collections=None, updates_collections=None, name=None): """Computes the specificity at a given sensitivity. The `specificity_at_sensitivity` function creates four local variables, `true_positives`, `true_negatives`, `false_positives` and `false_negatives` that are used to compute the specificity at the given sensitivity value. The threshold for the given sensitivity value is computed and used to evaluate the corresponding specificity. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `specificity`. `update_op` increments the `true_positives`, `true_negatives`, `false_positives` and `false_negatives` counts with the weight of each case found in the `predictions` and `labels`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. For additional information about specificity and sensitivity, see the following: https://en.wikipedia.org/wiki/Sensitivity_and_specificity Args: labels: A `bool` `Tensor` whose shape matches `predictions`. predictions: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. sensitivity: A scalar value in range `[0, 1]`. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). num_thresholds: The number of thresholds to use for matching the given sensitivity. metrics_collections: An optional list of collections that `specificity` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: specificity: A scalar `Tensor` representing the specificity at the given `specificity` value. update_op: An operation that increments the `true_positives`, `true_negatives`, `false_positives` and `false_negatives` variables appropriately and whose value matches `specificity`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, if `weights` is not `None` and its shape doesn't match `predictions`, or if `sensitivity` is not between 0 and 1, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ if sensitivity < 0 or sensitivity > 1: raise ValueError('`sensitivity` must be in the range [0, 1].') with variable_scope.variable_scope(name, 'specificity_at_sensitivity', (predictions, labels, weights)): kepsilon = 1e-7 # to account for floating point imprecisions thresholds = [(i + 1) * 1.0 / (num_thresholds - 1) for i in range(num_thresholds-2)] thresholds = [0.0 - kepsilon] + thresholds + [1.0 - kepsilon] values, update_ops = _confusion_matrix_at_thresholds( labels, predictions, thresholds, weights) tp = values['tp'] fn = values['fn'] tn = values['tn'] fp = values['fp'] def compute_specificity_at_sensitivity(name): """Computes the specificity at the given sensitivity. Args: name: The name of the operation. Returns: The specificity using the aggregated values. """ sensitivities = math_ops.div(tp, tp + fn + kepsilon) # We'll need to use this trick until tf.argmax allows us to specify # whether we should use the first or last index in case of ties. min_val = math_ops.reduce_min(math_ops.abs(sensitivities - sensitivity)) indices_at_minval = math_ops.equal( math_ops.abs(sensitivities - sensitivity), min_val) indices_at_minval = math_ops.to_int64(indices_at_minval) indices_at_minval = math_ops.cumsum(indices_at_minval) tf_index = math_ops.argmax(indices_at_minval, 0) tf_index = math_ops.cast(tf_index, dtypes.int32) # Now, we have the implicit threshold, so compute the specificity: return math_ops.div(tn[tf_index], tn[tf_index] + fp[tf_index] + kepsilon, name) specificity = compute_specificity_at_sensitivity('value') with ops.control_dependencies(update_ops.values()): update_op = compute_specificity_at_sensitivity('update_op') if metrics_collections: ops.add_to_collections(metrics_collections, specificity) if updates_collections: ops.add_to_collections(updates_collections, update_op) return specificity, update_op
86c9b86af42f911790b3c9a9171e90b2a3a6d5ab
6b8c3974d3ce5f7841e51dcb406666c0c5d92155
/heat/heat/tests/mistral/test_mistral_cron_trigger.py
f675a7962563de8a3c4633e373b00471eb251b3b
[ "Apache-2.0" ]
permissive
swjang/cloudexchange
bbbf78a2e7444c1070a55378092c17e8ecb27059
c06ed54f38daeff23166fb0940b27df74c70fc3e
refs/heads/master
2020-12-29T03:18:43.076887
2015-09-21T07:13:22
2015-09-21T07:13:22
42,845,532
1
1
null
2015-09-21T07:13:22
2015-09-21T05:19:35
C++
UTF-8
Python
false
false
4,428
py
# # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock from heat.common import template_format from heat.engine import resources from heat.engine.resources.openstack.mistral import cron_trigger from heat.engine import scheduler from heat.tests import common from heat.tests import utils stack_template = ''' heat_template_version: 2013-05-23 resources: cron_trigger: type: OS::Mistral::CronTrigger properties: name: my_cron_trigger pattern: "* * 0 * *" workflow: {'name': 'get_first_glance_image', 'input': {} } count: 3 first_time: "2015-04-08 06:20" ''' class FakeCronTrigger(object): def __init__(self, name): self.name = name self.next_execution_time = '2015-03-01 00:00:00' self.remaining_executions = 3 self._data = {'trigger': 'info'} class MistralCronTriggerTestResource(cron_trigger.CronTrigger): @classmethod def is_service_available(cls, context): return True class MistralCronTriggerTest(common.HeatTestCase): def setUp(self): super(MistralCronTriggerTest, self).setUp() resources.initialise() utils.setup_dummy_db() self.ctx = utils.dummy_context() t = template_format.parse(stack_template) self.stack = utils.parse_stack(t) resource_defns = self.stack.t.resource_definitions(self.stack) self.rsrc_defn = resource_defns['cron_trigger'] self.client = mock.Mock() self.patchobject(MistralCronTriggerTestResource, 'client', return_value=self.client) def _create_resource(self, name, snippet, stack): ct = MistralCronTriggerTestResource(name, snippet, stack) self.client.cron_triggers.create.return_value = FakeCronTrigger( 'my_cron_trigger') self.client.cron_triggers.get.return_value = FakeCronTrigger( 'my_cron_trigger') scheduler.TaskRunner(ct.create)() args = self.client.cron_triggers.create.call_args[1] self.assertEqual('* * 0 * *', args['pattern']) self.assertEqual('get_first_glance_image', args['workflow_name']) self.assertEqual({}, args['workflow_input']) self.assertEqual('2015-04-08 06:20', args['first_time']) self.assertEqual(3, args['count']) self.assertEqual('my_cron_trigger', ct.resource_id) return ct def test_create(self): ct = self._create_resource('trigger', self.rsrc_defn, self.stack) expected_state = (ct.CREATE, ct.COMPLETE) self.assertEqual(expected_state, ct.state) def test_resource_mapping(self): mapping = cron_trigger.resource_mapping() self.assertEqual(1, len(mapping)) self.assertEqual(cron_trigger.CronTrigger, mapping['OS::Mistral::CronTrigger']) def test_attributes(self): ct = self._create_resource('trigger', self.rsrc_defn, self.stack) self.assertEqual('2015-03-01 00:00:00', ct.FnGetAtt('next_execution_time')) self.assertEqual(3, ct.FnGetAtt('remaining_executions')) self.assertEqual({'trigger': 'info'}, ct.FnGetAtt('show')) def test_delete(self): ct = self._create_resource('trigger', self.rsrc_defn, self.stack) scheduler.TaskRunner(ct.delete)() self.assertEqual((ct.DELETE, ct.COMPLETE), ct.state) self.client.cron_triggers.delete.assert_called_once_with( ct.resource_id) def test_delete_not_found(self): ct = self._create_resource('trigger', self.rsrc_defn, self.stack) self.client.cron_triggers.delete.side_effect = ( self.client.mistral_base.APIException(error_code=404)) scheduler.TaskRunner(ct.delete)() self.assertEqual((ct.DELETE, ct.COMPLETE), ct.state) self.client.cron_triggers.delete.assert_called_once_with( ct.resource_id)
8ebc06ef30a7723e5ccdac18c322c90c8fac7485
dc9cef0a654ba5bf613501c0f11c110231aace18
/easysteps/assign.py
afa552e6b99e0a85abdb5c6063de71be522fad1a
[]
no_license
mxt123/getstartpython
36e297b9b20a9a7942e87f691f13c965c417ca7b
70bf3f4775967449fc7590bbfa470fb6ff5c3b64
refs/heads/master
2021-01-10T19:03:08.035051
2019-01-20T16:29:58
2019-01-20T16:29:58
40,926,639
0
0
null
null
null
null
UTF-8
Python
false
false
61
py
a = 8 b = 4 print('assign values:\t\t','a = ',a,'\tb =',b)
[ "=" ]
=
aba17ae60493775a1cbdd3dc41b31bb2ee9afbcd
669e9241b02bdaa303fbc2fd4023b90d4d179a59
/Cash Register/base.py
272ceeded4ef34a761806bab212fe9e20d79a550
[]
no_license
benjaminpotter/HatchProjects
0854cf46ae7c3781468116a5d63b703dd54ae68c
7f6a948d3474c755d071751b725c059e6c7f3553
refs/heads/master
2022-01-28T16:58:03.449073
2019-08-16T13:47:30
2019-08-16T13:47:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,146
py
def setup(): size(400, 400) bg_color = color(120, 120, 120) bills_and_coins = [100, 50, 20, 10, 5, 2, 1, 0.25, 0.10, 0.5] def draw_cash_registerfunction(): noStroke() fill(50, 50, 50) rect(50, 50, 300, 220, 0) fill(225, 225, 225) rect(87, 130, 225, 35, 0) fill(225, 225, 225) rect(87, 210, 225, 35, 0) fill(225, 225, 225) textSize(20) text("Cash Register", 135, 85) textSize(14) text("Cost", 90, 120) text("Tendered", 90, 200) def draw(): background(bg_color) draw_cash_register() noLoop() cost = prompt("Input cost", "") tendered = prompt("Input tendered amount", "") change = Math.round((tendered - cost) / 0.05) * 0.05 fill(0, 0, 0) text(cost, 95, 152) text(tendered, 95, 232) res = [] for i in range(0, 10): count = 0; while change >= bills_and_coins[i]: count++ change -= bills_and_coins[i] res.append(count) answer = "" for i in range (0, 10): if res[i] > 0: answer += res[i] + "x $" + bills_and_coins[i] + "\n" text(answer, 70, 325)
4077f2c69b513dfbb09a6279cfbd85f564d84ab5
9f9ec8bebfe8b7ac8e60dcaa23153abe976585e6
/dataCommons/postingAPI/tasks.py
1ade94032b03b28ce48f6ba157446b40d942de40
[]
no_license
erikwestra/data-commons
bbf32cd9b4b64ace28bcb049190d8272a23ed891
e3ed33fad104157ff505bb02bc7ae981f8ba3b11
refs/heads/master
2020-04-11T12:03:19.996644
2013-02-14T17:08:24
2013-02-14T17:08:24
8,188,655
1
0
null
null
null
null
UTF-8
Python
false
false
1,043
py
""" dataCommons.postingAPI.tasks This module implements the background tasks run by the Celery task queuing system. """ import logging from celery import task from dataCommons.shared.lib.decorators import print_exceptions_to_stdout from dataCommons.postingAPI import postingProcessor ############################################################################# logger = logging.getLogger(__name__) ############################################################################# @task() @print_exceptions_to_stdout def process_postings(parsed_postings): """ Process the given set of postings. Note that we simply call the posting processor to do all the work, but wrap it up in a Huey command so that the work is queued, and use the 'print_exceptions_to_stdout' decorator so that any exceptions will be logged to stdout rather than written to the Huey log file (which won't exist when the system is deployed to Heroku). """ postingProcessor.process_postings(parsed_postings)
06c1ae158672d9a651a94f2a70faf79cce3232d5
fff54b01b46cef0bbc70a6469c88c01c82af5a57
/network/analyzer/libpcap/actions.py
33f3310aad9a49bdb10846b36e483c86e64304b9
[]
no_license
LimeLinux/Packages
e51deae6c0d1406e31f06caa5aaa7749466bef0b
d492e075d8b051df68b98c315ad0628e33a8fac4
refs/heads/master
2021-01-11T12:37:22.150638
2018-08-30T18:24:32
2018-08-30T18:24:32
77,054,292
5
19
null
2018-02-02T17:24:06
2016-12-21T13:33:45
Python
UTF-8
Python
false
false
853
py
#!/usr/bin/python # -*- coding: utf-8 -*- # # Licensed under the GNU General Public License, version 3. # See the file http://www.gnu.org/licenses/gpl.txt from pisi.actionsapi import autotools from pisi.actionsapi import pisitools from pisi.actionsapi import shelltools from pisi.actionsapi import get def setup(): shelltools.export("CFLAGS", "%s -fPIC" % get.CFLAGS()) autotools.autoreconf("-vfi") autotools.configure("--prefix=/usr \ --enable-ipv6") def build(): autotools.make("all") autotools.make("shared") def install(): autotools.rawInstall('DESTDIR="%s"' % get.installDIR()) # No static libs pisitools.remove("/usr/lib/*.a") # it is needed for ppd etc. pisitools.insinto("/usr/include", "pcap-int.h") pisitools.dodoc("CHANGES", "CREDITS", "README*", "VERSION", "TODO")
0c3ba85209268e4419995bf3b0e59c8dc4ee5a21
1a4bc1a11fdb3f714f22f5e0e826b47aa0569de2
/projects/project02/tests/q1_1.py
61dd4039d3bf8affab16b12c4665cbd175e3a540
[]
no_license
taylorgibson/ma4110-fa21
201af7a044fd7d99140c68c48817306c18479610
a306e1b6e7516def7de968781f6c8c21deebeaf5
refs/heads/main
2023-09-05T21:31:44.259079
2021-11-18T17:42:15
2021-11-18T17:42:15
395,439,687
0
1
null
null
null
null
UTF-8
Python
false
false
243
py
test = { 'name': 'q1_1', 'points': None, 'suites': [{'cases': [{'code': '>>> type(all_unique_causes) in [np.ndarray, list]\nTrue', 'hidden': False, 'locked': False}], 'scored': True, 'setup': '', 'teardown': '', 'type': 'doctest'}]}
872fea6e32fd13b181d5aee64e9711014a9df0d1
cbc5e26bb47ae69e80a3649c90275becf25ce404
/xlsxwriter/test/styles/test_write_num_fmts.py
1445d94a1fdf72bcc2de972b5c46a5085b48cd0d
[ "BSD-2-Clause-Views", "BSD-3-Clause", "MIT" ]
permissive
mst-solar-car/kicad-bom-generator
c3549409c3139f787ad28391372b5cb03791694a
2aae905056d06f3d25343a8d784049c141d05640
refs/heads/master
2021-09-07T14:00:40.759486
2018-02-23T23:21:13
2018-02-23T23:21:13
107,868,801
3
0
null
null
null
null
UTF-8
Python
false
false
1,007
py
############################################################################### # # Tests for XlsxWriter. # # Copyright (c), 2013-2017, John McNamara, [email protected] # import unittest from ...compatibility import StringIO from ...styles import Styles from ...format import Format class TestWriteNumFmts(unittest.TestCase): """ Test the Styles _write_num_fmts() method. """ def setUp(self): self.fh = StringIO() self.styles = Styles() self.styles._set_filehandle(self.fh) def test_write_num_fmts(self): """Test the _write_num_fmts() method""" xf_format = Format() xf_format.num_format_index = 164 xf_format.set_num_format('#,##0.0') self.styles._set_style_properties([[xf_format], None, 0, 1, 0, 0, [], []]) self.styles._write_num_fmts() exp = """<numFmts count="1"><numFmt numFmtId="164" formatCode="#,##0.0"/></numFmts>""" got = self.fh.getvalue() self.assertEqual(got, exp)
84a8d7587333beacb530ca0dc5bd8c795e393d3a
5cb29431ecbba7b61463c67749794b54201907e1
/pelicide/runner.py
688ba9e582ad94aeb3dcda92e73a6b397e49a1ed
[]
no_license
iksteen/pelicide
6a9a88a1fe2df6acb271c465942820ab76ccfa82
5b8a6a919257840fafdcab5c886c81a72b18a6c0
refs/heads/master
2021-05-16T02:39:52.910803
2016-01-06T11:40:51
2016-01-06T11:40:51
34,100,676
16
2
null
2019-10-22T23:49:10
2015-04-17T06:35:34
HTML
UTF-8
Python
false
false
2,958
py
import json import os import sys from twisted.internet import defer, protocol class RunnerProtocol(protocol.ProcessProtocol): def __init__(self, callback): self.callback = callback self.seq = 0 self.buffer = '' self.pending = set() def sendCommand(self, command, args=None): self.seq += 1 self.pending.add(self.seq) self.transport.write('%d %s %s\n' % (self.seq, command, json.dumps(args))) return self.seq def outReceived(self, data): self.buffer += data while '\n' in self.buffer: response, self.buffer = self.buffer.split('\n', 1) self.process_response(response) def process_response(self, response): seq, result, args = response.split(' ', 2) seq = int(seq) if seq in self.pending: self.pending.remove(seq) args = json.loads(args) if self.callback is not None: self.callback(seq, result == '+', args) def processExited(self, reason): pending, self.pending = self.pending, set() while pending: self.callback(pending.pop(), False, reason) class Runner(object): def __init__(self, python, config_path, settings, **kwargs): reactor = kwargs.get('reactor') if reactor is None: from twisted.internet import reactor self.reactor = reactor self.python = python self.config_path = config_path self.init_settings = settings self.settings = None self.d = None self.pending = {} def start(self): self.d = defer.Deferred() runner = os.path.join(os.path.dirname(__file__), 'pelican-runner.py') protocol = RunnerProtocol(self.responseReceived) self.transport = self.reactor.spawnProcess( protocol, self.python, [ self.python, runner, self.config_path, json.dumps(self.init_settings), ], env=None, childFDs={ 0: 'w', 1: 'r', 2: sys.stderr.fileno(), }, ) return self.d def restart(self): return self.command('quit').addCallback(lambda _: self.start()) def command(self, command, args=None): if self.transport.proto is None: self.start() command_id = self.transport.proto.sendCommand(command, args) d = defer.Deferred() self.pending[command_id] = d return d def responseReceived(self, command_seq, success, args): if command_seq == 0: self.settings = args if self.d: self.d.callback(args) self.d = None return d = self.pending.pop(command_seq) if success: d.callback(args) else: d.errback(RuntimeError(args))
4824a2ce716332ac9003208ee8e5242619b3e1e8
fb8f496a0ea0a416a5ee214ca308953392fb08ff
/predict.py
cf0c635b320c85db397e915d78c9e0d26067baed
[]
no_license
Noba1anc3/CH-NER
32ba6138d4344052844698ee917a5910997ec3ed
82f3ab07b2bf7a5b7a4debe6c074c9801b8f2fcf
refs/heads/master
2023-04-05T05:52:29.132299
2020-04-05T10:10:36
2020-04-05T10:10:36
252,642,674
2
0
null
2023-03-24T23:27:38
2020-04-03T05:43:07
HTML
UTF-8
Python
false
false
9,658
py
import numpy as np import tensorflow as tf from tensorflow.contrib.crf import viterbi_decode from copy import deepcopy import re from model import BiLSTM_CRF from utils import train_utils from data_process import read_dictionary import utils.config as cf # 参数部分 params = cf.ConfigPredict('predict', 'config/params.conf') params.load_config() config = tf.ConfigProto() config.gpu_options.allow_growth = True config.gpu_options.per_process_gpu_memory_fraction = 0.3 def predict_one_batch(model, ses, seqs): """ Created by jty 预测引擎,输入句子id和保存好的模型参数进行预测,输出标签id :param ses: 使用会话 :param seqs: 句子id :return: label_list seq_len_list 标签id 句子id """ feed_dict, seq_len_list = train_utils.get_feed_dict(model, seqs, drop_keep=1.0) # transition_params代表转移概率,由crf_log_likelihood方法计算出 log_its, transition_params = ses.run([model.log_its, model.transition_params], feed_dict=feed_dict) label_list = [] # 默认使用CRF for log_it, seq_len in zip(log_its, seq_len_list): vtb_seq, _ = viterbi_decode(log_it[:seq_len], transition_params) label_list.append(vtb_seq) return label_list, seq_len_list def demo_one(model, ses, sent, batch_size, vocab, shuffle, tag2label): """ Created by jty 输入句子,得到预测标签id,并转化为label :param model: 保存好的模型 :param ses: 使用会话 :param sent: 输入要进行实体抽取的句子 :param batch_size: 每次预测的句子数 :param vocab: word2id :param shuffle: 默认为False :return: tag 预测标签 """ # batch_yield就是把输入的句子每个字的id返回,以及每个标签转化为对应的tag2label的值 label_list = [] for seqs, labels in train_utils.batch_yield(sent, batch_size, vocab, tag2label, shuffle): label_list_, _ = predict_one_batch(model, ses, seqs) label_list.extend(label_list_) label2tag = {} for tag, label in tag2label.items(): label2tag[label] = tag if label != 0 else label tag = [label2tag[label] for label in label_list[0]] return tag """ Created by jty 数据后处理 根据输入的tag和句子返回对应的字符 其中包括抽取出对应的人名、地名、组织名 """ def get_entity(tag_seq, char_seq): PER = get_PER_entity(tag_seq, char_seq) LOC = get_LOC_entity(tag_seq, char_seq) ORG = get_ORG_entity(tag_seq, char_seq) return PER, LOC, ORG # 输出PER对应的字符 def get_PER_entity(tag_seq, char_seq): length = len(char_seq) PER = [] for i, (char, tag) in enumerate(zip(char_seq, tag_seq)): if tag == 'B-PER': if 'per' in locals().keys(): PER.append(per) del per per = char if i + 1 == length: per = per.strip() per.replace('\n', '') per.replace('\r', '') PER.append(per) if tag == 'I-PER': per += char if i + 1 == length: per = per.strip() per.replace('\n', '') per.replace('\r', '') PER.append(per) if tag not in ['I-PER', 'B-PER']: if 'per' in locals().keys(): per=per.strip() per.replace('\n', '') per.replace('\r', '') PER.append(per) del per continue return PER # 输出LOC对应的字符 def get_LOC_entity(tag_seq, char_seq): length = len(char_seq) LOC = [] for i, (char, tag) in enumerate(zip(char_seq, tag_seq)): if tag == 'B-LOC': if 'loc' in locals().keys(): LOC.append(loc) del loc loc = char if i + 1 == length: loc = loc.strip() loc.replace('\n', '') loc.replace('\r', '') LOC.append(loc) if tag == 'I-LOC': loc += char if i + 1 == length: loc = loc.strip() loc.replace('\n', '') loc.replace('\r', '') LOC.append(loc) if tag not in ['I-LOC', 'B-LOC']: if 'loc' in locals().keys(): loc = loc.strip() loc.replace('\n', '') loc.replace('\r', '') LOC.append(loc) del loc continue return LOC # 输出ORG对应的字符 def get_ORG_entity(tag_seq, char_seq): length = len(char_seq) ORG = [] for i, (char, tag) in enumerate(zip(char_seq, tag_seq)): if tag == 'B-ORG': if 'org' in locals().keys(): ORG.append(org) del org org = char if i + 1 == length: org = org.strip() org = org.replace('\n', '') org = org.replace('\r', '') ORG.append(org) if tag == 'I-ORG': org += char if i + 1 == length: org = org.strip() org = org.replace('\n', '') org = org.replace('\r', '') ORG.append(org) if tag not in ['I-ORG', 'B-ORG']: if 'org' in locals().keys(): org = org.strip() org = org.replace('\n', '') org = org.replace('\r', '') ORG.append(org) del org continue return ORG def predict(model, batch_size, vocab, tag2label, demo_sent, shuffle=False): """ Created by jty 预测模块总函数。 输入:保存好的模型、每次预测的句子数、word2id字典、交互界面输入的需要实体抽取的句子 输出:实体抽取的结果 :param model: 保存好的模型 :param batch_size: 每次预测的句子数 :param vocab: word2id :param shuffle: 默认为False """ s_id = 1 sent_id = {} ckpt_file = tf.train.latest_checkpoint(params.model_path) print(ckpt_file) saver = tf.train.Saver() with tf.Session(config=config) as sess: # print('============= demo =============') saver.restore(sess, ckpt_file) # print('Please input your sentence:') # demo_sent = input() #demo_sent = '我在北京上北京大学' if demo_sent == '' or demo_sent.isspace(): print('See you next time!') else: # 打上id标签 for word in demo_sent: sent_id[s_id] = word s_id += 1 demo_sent = list(demo_sent.strip()) demo_data = [(demo_sent, ['O'] * len(demo_sent))] tag = demo_one(model, sess, demo_data, batch_size, vocab, shuffle, tag2label) PER, LOC, ORG = get_entity(tag, demo_sent) PER_local = {} LOC_local = {} ORG_local = {} p_id = 1 l_id = 1 o_id = 1 PER_mess = {} LOC_mess = {} ORG_mess = {} # 抽取PER实体长度、位置信息 i = 1 for word in PER: PER_local['item'] = word PER_local['tag'] = 'PER' PER_local['length'] = len(word) for j in range(i, len(sent_id)): if word[0] == sent_id[j]: PER_local['offset'] = j i = j + len(word) break PER_mess[p_id] = deepcopy(PER_local) p_id += 1 # 抽取LOC实体长度、位置信息 i = 1 for word in LOC: LOC_local['item'] = word LOC_local['tag'] = 'LOC' LOC_local['length'] = len(word) for j in range(i, len(sent_id)): if word[0] == sent_id[j]: LOC_local['offset'] = j i = j + len(word) break LOC_mess[l_id] = deepcopy(LOC_local) l_id += 1 # 抽取ORG实体长度、位置信息 i = 1 for word in ORG: ORG_local['item'] = word ORG_local['tag'] = 'ORG' ORG_local['length'] = len(word) for j in range(i, len(sent_id)): if word[0] == sent_id[j]: ORG_local['offset'] = j i = j + len(word) break ORG_mess[o_id] = deepcopy(ORG_local) o_id += 1 #print(PER_mess, LOC_mess, ORG_mess) return PER_mess, LOC_mess, ORG_mess def run(demo_sent, flag=False): embedding_mat = np.random.uniform(-0.25, 0.25, (len(read_dictionary(params.vocab_path)), params.embedding_dim)) embedding_mat = np.float32(embedding_mat) embeddings = embedding_mat num_tags = len(params.tag2label) summary_path = "logs" model = BiLSTM_CRF(embeddings, params.update_embedding, params.hidden_dim, num_tags, params.clip, summary_path, params.optimizer) model.build_graph() PER_mess, LOC_mess, ORG_mess = predict(model, params.batch_size, read_dictionary(params.vocab_path), params.tag2label, demo_sent) if flag: return PER_mess, LOC_mess, ORG_mess #run('我在北京上北京大学,周恩来是中国总理,我喜欢北京。我在清华大学,毛泽东是中国主席,他去过苏联。')
b2d5d706f2f349be03c0c756e348e26475a9300b
ea44a1681e276b3cc85226b53de217f6096a05d4
/fhir/resources/tests/test_specimen.py
bc833ac238d30077aeb6dc9c5c72f3cf16919802
[ "BSD-3-Clause" ]
permissive
stephanie-howson/fhir.resources
69d2a5a6b0fe4387b82e984255b24027b37985c4
126e9dc6e14541f74e69ef7c1a0b8a74aa981905
refs/heads/master
2020-05-04T22:24:49.826585
2019-06-27T15:51:26
2019-06-27T15:51:26
179,511,579
0
0
null
2019-04-04T14:14:53
2019-04-04T14:14:52
null
UTF-8
Python
false
false
13,742
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Generated from FHIR 4.0.0-a53ec6ee1b on 2019-01-17. # 2019, SMART Health IT. import os import pytest import io import unittest import json from .fixtures import force_bytes from .. import specimen from ..fhirdate import FHIRDate @pytest.mark.usefixtures("base_settings") class SpecimenTests(unittest.TestCase): def instantiate_from(self, filename): datadir = os.environ.get('FHIR_UNITTEST_DATADIR') or '' with io.open(os.path.join(datadir, filename), 'r', encoding='utf-8') as handle: js = json.load(handle) self.assertEqual("Specimen", js["resourceType"]) return specimen.Specimen(js) def testSpecimen1(self): inst = self.instantiate_from("specimen-example-serum.json") self.assertIsNotNone(inst, "Must have instantiated a Specimen instance") self.implSpecimen1(inst) js = inst.as_json() self.assertEqual("Specimen", js["resourceType"]) inst2 = specimen.Specimen(js) self.implSpecimen1(inst2) def implSpecimen1(self, inst): self.assertEqual(force_bytes(inst.accessionIdentifier.system), force_bytes("http://acme.com/labs/accession-ids")) self.assertEqual(force_bytes(inst.accessionIdentifier.value), force_bytes("20150816-00124")) self.assertEqual(inst.collection.collectedDateTime.date, FHIRDate("2015-08-16T06:40:17Z").date) self.assertEqual(inst.collection.collectedDateTime.as_json(), "2015-08-16T06:40:17Z") self.assertEqual(force_bytes(inst.container[0].type.coding[0].code), force_bytes("SST")) self.assertEqual(force_bytes(inst.container[0].type.coding[0].display), force_bytes("Serum Separator Tube")) self.assertEqual(force_bytes(inst.container[0].type.coding[0].system), force_bytes("http://acme.com/labs")) self.assertEqual(force_bytes(inst.id), force_bytes("sst")) self.assertEqual(force_bytes(inst.meta.tag[0].code), force_bytes("HTEST")) self.assertEqual(force_bytes(inst.meta.tag[0].display), force_bytes("test health data")) self.assertEqual(force_bytes(inst.meta.tag[0].system), force_bytes("http://terminology.hl7.org/CodeSystem/v3-ActReason")) self.assertEqual(force_bytes(inst.text.status), force_bytes("generated")) self.assertEqual(force_bytes(inst.type.coding[0].code), force_bytes("119364003")) self.assertEqual(force_bytes(inst.type.coding[0].display), force_bytes("Serum sample")) self.assertEqual(force_bytes(inst.type.coding[0].system), force_bytes("http://snomed.info/sct")) def testSpecimen2(self): inst = self.instantiate_from("specimen-example-pooled-serum.json") self.assertIsNotNone(inst, "Must have instantiated a Specimen instance") self.implSpecimen2(inst) js = inst.as_json() self.assertEqual("Specimen", js["resourceType"]) inst2 = specimen.Specimen(js) self.implSpecimen2(inst2) def implSpecimen2(self, inst): self.assertEqual(force_bytes(inst.accessionIdentifier.system), force_bytes("https://vetmed.iastate.edu/vdl")) self.assertEqual(force_bytes(inst.accessionIdentifier.value), force_bytes("20171120-1234")) self.assertEqual(inst.collection.collectedDateTime.date, FHIRDate("2017-11-14").date) self.assertEqual(inst.collection.collectedDateTime.as_json(), "2017-11-14") self.assertEqual(force_bytes(inst.container[0].type.coding[0].code), force_bytes("RTT")) self.assertEqual(force_bytes(inst.container[0].type.coding[0].display), force_bytes("Red Top Tube")) self.assertEqual(force_bytes(inst.container[0].type.coding[0].system), force_bytes("https://vetmed.iastate.edu/vdl")) self.assertEqual(force_bytes(inst.container[0].type.text), force_bytes("Red Top Blood Collection Tube")) self.assertEqual(force_bytes(inst.id), force_bytes("pooled-serum")) self.assertEqual(force_bytes(inst.meta.tag[0].code), force_bytes("HTEST")) self.assertEqual(force_bytes(inst.meta.tag[0].display), force_bytes("test health data")) self.assertEqual(force_bytes(inst.meta.tag[0].system), force_bytes("http://terminology.hl7.org/CodeSystem/v3-ActReason")) self.assertEqual(force_bytes(inst.note[0].text), force_bytes("Pooled serum sample from 30 individuals")) self.assertEqual(force_bytes(inst.text.status), force_bytes("generated")) self.assertEqual(force_bytes(inst.type.coding[0].code), force_bytes("Serum sample, pooled")) self.assertEqual(force_bytes(inst.type.coding[0].display), force_bytes("Serum sample, pooled")) self.assertEqual(force_bytes(inst.type.coding[0].system), force_bytes("https://vetmed.iastate.edu/vdl")) self.assertEqual(force_bytes(inst.type.text), force_bytes("Pooled serum sample")) def testSpecimen3(self): inst = self.instantiate_from("specimen-example.json") self.assertIsNotNone(inst, "Must have instantiated a Specimen instance") self.implSpecimen3(inst) js = inst.as_json() self.assertEqual("Specimen", js["resourceType"]) inst2 = specimen.Specimen(js) self.implSpecimen3(inst2) def implSpecimen3(self, inst): self.assertEqual(force_bytes(inst.accessionIdentifier.system), force_bytes("http://lab.acme.org/specimens/2011")) self.assertEqual(force_bytes(inst.accessionIdentifier.value), force_bytes("X352356")) self.assertEqual(force_bytes(inst.collection.bodySite.coding[0].code), force_bytes("49852007")) self.assertEqual(force_bytes(inst.collection.bodySite.coding[0].display), force_bytes("Structure of median cubital vein (body structure)")) self.assertEqual(force_bytes(inst.collection.bodySite.coding[0].system), force_bytes("http://snomed.info/sct")) self.assertEqual(force_bytes(inst.collection.bodySite.text), force_bytes("Right median cubital vein")) self.assertEqual(inst.collection.collectedDateTime.date, FHIRDate("2011-05-30T06:15:00Z").date) self.assertEqual(inst.collection.collectedDateTime.as_json(), "2011-05-30T06:15:00Z") self.assertEqual(force_bytes(inst.collection.method.coding[0].code), force_bytes("LNV")) self.assertEqual(force_bytes(inst.collection.method.coding[0].system), force_bytes("http://terminology.hl7.org/CodeSystem/v2-0488")) self.assertEqual(force_bytes(inst.collection.quantity.unit), force_bytes("mL")) self.assertEqual(inst.collection.quantity.value, 6) self.assertEqual(force_bytes(inst.contained[0].id), force_bytes("hep")) self.assertEqual(force_bytes(inst.container[0].capacity.unit), force_bytes("mL")) self.assertEqual(inst.container[0].capacity.value, 10) self.assertEqual(force_bytes(inst.container[0].description), force_bytes("Green Gel tube")) self.assertEqual(force_bytes(inst.container[0].identifier[0].value), force_bytes("48736-15394-75465")) self.assertEqual(force_bytes(inst.container[0].specimenQuantity.unit), force_bytes("mL")) self.assertEqual(inst.container[0].specimenQuantity.value, 6) self.assertEqual(force_bytes(inst.container[0].type.text), force_bytes("Vacutainer")) self.assertEqual(force_bytes(inst.id), force_bytes("101")) self.assertEqual(force_bytes(inst.identifier[0].system), force_bytes("http://ehr.acme.org/identifiers/collections")) self.assertEqual(force_bytes(inst.identifier[0].value), force_bytes("23234352356")) self.assertEqual(force_bytes(inst.meta.tag[0].code), force_bytes("HTEST")) self.assertEqual(force_bytes(inst.meta.tag[0].display), force_bytes("test health data")) self.assertEqual(force_bytes(inst.meta.tag[0].system), force_bytes("http://terminology.hl7.org/CodeSystem/v3-ActReason")) self.assertEqual(force_bytes(inst.note[0].text), force_bytes("Specimen is grossly lipemic")) self.assertEqual(inst.receivedTime.date, FHIRDate("2011-03-04T07:03:00Z").date) self.assertEqual(inst.receivedTime.as_json(), "2011-03-04T07:03:00Z") self.assertEqual(force_bytes(inst.status), force_bytes("available")) self.assertEqual(force_bytes(inst.text.status), force_bytes("generated")) self.assertEqual(force_bytes(inst.type.coding[0].code), force_bytes("122555007")) self.assertEqual(force_bytes(inst.type.coding[0].display), force_bytes("Venous blood specimen")) self.assertEqual(force_bytes(inst.type.coding[0].system), force_bytes("http://snomed.info/sct")) def testSpecimen4(self): inst = self.instantiate_from("specimen-example-urine.json") self.assertIsNotNone(inst, "Must have instantiated a Specimen instance") self.implSpecimen4(inst) js = inst.as_json() self.assertEqual("Specimen", js["resourceType"]) inst2 = specimen.Specimen(js) self.implSpecimen4(inst2) def implSpecimen4(self, inst): self.assertEqual(force_bytes(inst.accessionIdentifier.system), force_bytes("http://lab.acme.org/specimens/2015")) self.assertEqual(force_bytes(inst.accessionIdentifier.value), force_bytes("X352356")) self.assertEqual(inst.collection.collectedDateTime.date, FHIRDate("2015-08-18T07:03:00Z").date) self.assertEqual(inst.collection.collectedDateTime.as_json(), "2015-08-18T07:03:00Z") self.assertEqual(force_bytes(inst.container[0].capacity.unit), force_bytes("mls")) self.assertEqual(inst.container[0].capacity.value, 50) self.assertEqual(force_bytes(inst.container[0].specimenQuantity.unit), force_bytes("mls")) self.assertEqual(inst.container[0].specimenQuantity.value, 10) self.assertEqual(force_bytes(inst.container[0].type.text), force_bytes("Non-sterile specimen container")) self.assertEqual(force_bytes(inst.id), force_bytes("vma-urine")) self.assertEqual(force_bytes(inst.meta.tag[0].code), force_bytes("HTEST")) self.assertEqual(force_bytes(inst.meta.tag[0].display), force_bytes("test health data")) self.assertEqual(force_bytes(inst.meta.tag[0].system), force_bytes("http://terminology.hl7.org/CodeSystem/v3-ActReason")) self.assertEqual(force_bytes(inst.processing[0].description), force_bytes("Acidify to pH < 3.0 with 6 N HCl.")) self.assertEqual(force_bytes(inst.processing[0].procedure.coding[0].code), force_bytes("ACID")) self.assertEqual(force_bytes(inst.processing[0].procedure.coding[0].system), force_bytes("http://terminology.hl7.org/CodeSystem/v2-0373")) self.assertEqual(inst.processing[0].timeDateTime.date, FHIRDate("2015-08-18T08:10:00Z").date) self.assertEqual(inst.processing[0].timeDateTime.as_json(), "2015-08-18T08:10:00Z") self.assertEqual(inst.receivedTime.date, FHIRDate("2015-08-18T07:03:00Z").date) self.assertEqual(inst.receivedTime.as_json(), "2015-08-18T07:03:00Z") self.assertEqual(force_bytes(inst.status), force_bytes("available")) self.assertEqual(force_bytes(inst.text.status), force_bytes("generated")) self.assertEqual(force_bytes(inst.type.coding[0].code), force_bytes("RANDU")) self.assertEqual(force_bytes(inst.type.coding[0].display), force_bytes("Urine, Random")) self.assertEqual(force_bytes(inst.type.coding[0].system), force_bytes("http://terminology.hl7.org/CodeSystem/v2-0487")) def testSpecimen5(self): inst = self.instantiate_from("specimen-example-isolate.json") self.assertIsNotNone(inst, "Must have instantiated a Specimen instance") self.implSpecimen5(inst) js = inst.as_json() self.assertEqual("Specimen", js["resourceType"]) inst2 = specimen.Specimen(js) self.implSpecimen5(inst2) def implSpecimen5(self, inst): self.assertEqual(force_bytes(inst.accessionIdentifier.system), force_bytes("http://lab.acme.org/specimens/2011")) self.assertEqual(force_bytes(inst.accessionIdentifier.value), force_bytes("X352356-ISO1")) self.assertEqual(inst.collection.collectedDateTime.date, FHIRDate("2015-08-16T07:03:00Z").date) self.assertEqual(inst.collection.collectedDateTime.as_json(), "2015-08-16T07:03:00Z") self.assertEqual(force_bytes(inst.collection.method.coding[0].code), force_bytes("BAP")) self.assertEqual(force_bytes(inst.collection.method.coding[0].system), force_bytes("http://terminology.hl7.org/CodeSystem/v2-0488")) self.assertEqual(force_bytes(inst.contained[0].id), force_bytes("stool")) self.assertEqual(force_bytes(inst.id), force_bytes("isolate")) self.assertEqual(force_bytes(inst.meta.tag[0].code), force_bytes("HTEST")) self.assertEqual(force_bytes(inst.meta.tag[0].display), force_bytes("test health data")) self.assertEqual(force_bytes(inst.meta.tag[0].system), force_bytes("http://terminology.hl7.org/CodeSystem/v3-ActReason")) self.assertEqual(force_bytes(inst.note[0].text), force_bytes("Patient dropped off specimen")) self.assertEqual(inst.receivedTime.date, FHIRDate("2015-08-18T07:03:00Z").date) self.assertEqual(inst.receivedTime.as_json(), "2015-08-18T07:03:00Z") self.assertEqual(force_bytes(inst.status), force_bytes("available")) self.assertEqual(force_bytes(inst.text.status), force_bytes("generated")) self.assertEqual(force_bytes(inst.type.coding[0].code), force_bytes("429951000124103")) self.assertEqual(force_bytes(inst.type.coding[0].display), force_bytes("Bacterial isolate specimen")) self.assertEqual(force_bytes(inst.type.coding[0].system), force_bytes("http://snomed.info/sct"))
842861fff402dd09ab5a9f2cfa8e490d1b842ff7
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03696/s669152949.py
6ffe317a8dbd760aeaf50530708cdf2ac5bd88ad
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
162
py
N=int(input()) S=input() A=0 #( B=0 #) for s in S: if s=='(': A+=1 elif s==')' and A>0: A-=1 else: B+=1 print('('*B+S+')'*A)
3d710bc135abe8b2f05ed2957e0e98fee42cc9fd
287a10a6f28517003728aebbd7ed097af13a8d18
/exp_170727_neuroproof/pipeline.py
569d93db858b5d701c70c85039b00a3960cdd7df
[]
no_license
jhennies/nmmp_experiments
05c78c6068fa0f6df0002e57529cd7b8d1daa456
7c06a5818a5176fa0dc17a42ba22b2262239d91d
refs/heads/master
2021-04-06T12:01:25.537695
2017-09-22T13:42:51
2017-09-22T13:42:51
83,289,168
0
0
null
null
null
null
UTF-8
Python
false
false
11,023
py
import os import vigra import cPickle as pickle import numpy as np import sys sys.path.append( '/export/home/jhennies/src/nature_methods_multicut_pipeline_devel/nature_methods_multicut_pipeline/software/') from multicut_src import DataSet from multicut_src import lifted_multicut_workflow from multicut_src import load_dataset from multicut_src import compute_false_merges from multicut_src import resolve_merges_with_lifted_edges_global, resolve_merges_with_lifted_edges from multicut_src import RandomForest from multicut_src import ExperimentSettings from multicut_src import merge_small_segments import logging logger = logging.getLogger(__name__) def init_dataset( meta_folder, name, raw_filepath, raw_name, probs_filepath, probs_name, seg_filepath, seg_name, gt_filepath=None, gt_name=None, make_cutouts=False ): # Init the dataset ds = DataSet(meta_folder, name) # Add data ds.add_raw(raw_filepath, raw_name) ds.add_input(probs_filepath, probs_name) ds.add_seg(seg_filepath, seg_name) if gt_filepath is not None: ds.add_gt(gt_filepath, gt_name) # add cutouts for lifted multicut training if make_cutouts: shape = ds.shape z_offset = 10 ds.make_cutout([0, 0, 0], [shape[0], shape[1], z_offset]) ds.make_cutout([0, 0, z_offset], [shape[0], shape[1], shape[2] - z_offset]) ds.make_cutout([0, 0, shape[2] - z_offset], [shape[0], shape[1], shape[2]]) def init_datasets( meta_folder, names, raw_path, raw_files, raw_names, probs_path, probs_files, probs_names, seg_path, seg_files, seg_names, gt_path, gt_files, gt_names, make_cutouts=None ): assert len(raw_files) == len(raw_names) assert len(probs_files) == len(raw_files) assert len(probs_names) == len(raw_files) assert len(seg_files) == len(raw_files) assert len(seg_names) == len(raw_files) assert len(gt_files) == len(raw_files) assert len(gt_names) == len(raw_files) if make_cutouts is None: make_cutouts = [False] * len(raw_files) for idx, train_name in enumerate(names): if not os.path.exists(os.path.join(meta_folder, train_name)): print 'Dataset {} is being created ...'.format(train_name) raw_file = raw_files[idx] probs_file = probs_files[idx] seg_file = seg_files[idx] gt_file = gt_files[idx] raw_name = raw_names[idx] probs_name = probs_names[idx] seg_name = seg_names[idx] gt_name = gt_names[idx] init_dataset( meta_folder, train_name, raw_path + raw_file, raw_name, probs_path + probs_file, probs_name, seg_path + seg_file, seg_name, gt_filepath=gt_path + gt_file, gt_name=gt_name, make_cutouts=make_cutouts[idx] ) else: print 'Training set {} exists, nothing to do.'.format(train_name) def run_lifted_mc( meta_folder, train_folder, ds_train_names, ds_test_name, save_path, results_name, pre_save_path=None ): assert os.path.exists(os.path.split(save_path)[0]), "Please choose an existing folder to save your results" merge_segments = True compute_mc = True if os.path.isfile(save_path): # Nothing to do compute_mc = False merge_segments = False else: # Final result needs to be computed if pre_save_path is not None: if os.path.isfile(pre_save_path): compute_mc = False if compute_mc: seg_id = 0 feature_list = ['raw', 'prob', 'reg'] feature_list_lifted = ['cluster', 'reg'] gamma = 2. ds_train = [load_dataset(train_folder, name) for name in ds_train_names if name != ds_test_name] ds_test = load_dataset(meta_folder, ds_test_name) mc_nodes, _, _, _ = lifted_multicut_workflow( ds_train, ds_test, seg_id, seg_id, feature_list, feature_list_lifted, gamma=gamma ) segmentation = ds_test.project_mc_result(seg_id, mc_nodes) # Save in case sth in the following function goes wrong if pre_save_path is not None: vigra.writeHDF5(segmentation, pre_save_path, results_name, compression='gzip') if merge_segments: if not compute_mc: assert pre_save_path is not None, 'Investigate code, this must not happen!' segmentation = vigra.readHDF5(pre_save_path, results_name) # # Relabel with connected components # segmentation = vigra.analysis.labelVolume(segmentation.astype('uint32')) # Merge small segments segmentation = merge_small_segments(segmentation.astype('uint32'), 100) # Store the final result vigra.writeHDF5(segmentation, save_path, results_name, compression = 'gzip') def find_false_merges( ds_test_name, ds_train_names, meta_folder, test_seg_path, test_seg_key, train_segs_paths, train_segs_keys ): ds_train = [load_dataset(meta_folder, name) for name in ds_train_names if name != ds_test_name] ds_test = load_dataset(meta_folder, ds_test_name) # Path folders test_paths_cache_folder = os.path.join(meta_folder, ds_test_name, 'path_data') train_paths_cache_folder = os.path.join(meta_folder, 'train_path_data') # logger.info('Starting compute_false_merges...') _, false_merge_probs, _ = compute_false_merges( ds_train, ds_test, train_segs_paths, train_segs_keys, test_seg_path, test_seg_key, test_paths_cache_folder, train_paths_cache_folder ) with open(os.path.join(test_paths_cache_folder, 'false_paths_predictions.pkl'), 'w') as f: pickle.dump(false_merge_probs, f) def resolve_false_merges( ds_name, ds_names, meta_folder, rf_cache_folder, new_nodes_filepath, pre_seg_filepath, pre_seg_key, min_prob_thresh, max_prob_thresh, exclude_objs_with_larger_thresh, global_resolve=True ): # Path folders paths_cache_folder = os.path.join(meta_folder, ds_name, 'path_data') # TODO Change here weight_filepath = os.path.join(meta_folder, ds_name, 'probs_to_energies_0_z_16.0_0.5_rawprobreg.h5') lifted_filepath = os.path.join(meta_folder, ds_name, 'lifted_probs_to_energies_0_3_0.5_2.0.h5') ds_train = [load_dataset(meta_folder, name) for name in ds_names if name != ds_name] rf_cache_name = 'rf_merges_%s' % '_'.join([ds.ds_name for ds in ds_train]) ds = load_dataset(meta_folder, ds_name) seg_id = 0 path_data_filepath = os.path.join(paths_cache_folder, 'paths_ds_{}.h5'.format(ds_name)) # with open(os.path.join(paths_cache_folder, 'paths_ds_{}.pkl'.format(ds_name))) as f: # path_data = pickle.load(f) paths = vigra.readHDF5(path_data_filepath, 'all_paths') if paths.size: paths = np.array([path.reshape((len(path) / 3, 3)) for path in paths]) paths_to_objs = vigra.readHDF5(path_data_filepath, 'paths_to_objs') with open(os.path.join(paths_cache_folder, 'false_paths_predictions.pkl')) as f: false_merge_probs = pickle.load(f) # Find objects where probability >= min_prob_thresh and <= max_prob_thresh objs_with_prob_greater_thresh = np.unique( np.array(paths_to_objs)[ np.logical_and( false_merge_probs >= min_prob_thresh, false_merge_probs <= max_prob_thresh ) ] ) if exclude_objs_with_larger_thresh: objs_to_exclude = np.unique( np.array(paths_to_objs)[ false_merge_probs > max_prob_thresh ] ) objs_with_prob_greater_thresh = np.setdiff1d(objs_with_prob_greater_thresh, objs_to_exclude) # Extract all paths for each of the found objects false_paths = {} for obj in objs_with_prob_greater_thresh: # print paths_to_objs == obj false_paths[obj] = np.array(paths)[paths_to_objs == obj] rf_filepath = os.path.join(rf_cache_folder, rf_cache_name) # with open(rf_filepath) as f: # path_rf = pickle.load(f) path_rf = RandomForest.load_from_file(rf_filepath, 'rf', ExperimentSettings().n_threads) mc_segmentation = vigra.readHDF5(pre_seg_filepath, pre_seg_key) mc_weights_all = vigra.readHDF5(weight_filepath, "data") lifted_weights_all = vigra.readHDF5(lifted_filepath, "data") if global_resolve: new_node_labels = resolve_merges_with_lifted_edges_global( ds, seg_id, false_paths, path_rf, mc_segmentation, mc_weights_all, paths_cache_folder=paths_cache_folder, lifted_weights_all=lifted_weights_all ) else: new_node_labels = resolve_merges_with_lifted_edges( ds, ds_train, seg_id, false_paths, path_rf, mc_segmentation, mc_weights_all, paths_cache_folder=paths_cache_folder, lifted_weights_all=lifted_weights_all ) with open(new_nodes_filepath, 'w') as f: pickle.dump(new_node_labels, f) def project_new_result( ds_name, meta_folder, new_nodes_filepath, save_path, results_name ): ds = load_dataset(meta_folder, ds_name) seg_id = 0 # Load resolving result with open(new_nodes_filepath) as f: new_node_labels = pickle.load(f) # project the result back to the volume mc_seg = ds.project_mc_result(seg_id, new_node_labels) # Write the result vigra.writeHDF5(mc_seg, save_path, results_name, compression = 'gzip') import nifty_with_cplex.graph.rag as nrag def project_resolved_objects_to_segmentation( meta_folder, ds_name, mc_seg_filepath, mc_seg_key, new_nodes_filepath, save_path, results_name ): ds = load_dataset(meta_folder, ds_name) seg_id = 0 mc_segmentation = vigra.readHDF5(mc_seg_filepath, mc_seg_key) # Load resolving result with open(new_nodes_filepath) as f: resolved_objs = pickle.load(f) rag = ds.rag(seg_id) mc_labeling = nrag.gridRagAccumulateLabels(rag, mc_segmentation) new_label_offset = np.max(mc_labeling) + 1 for obj in resolved_objs: resolved_nodes = resolved_objs[obj] for node_id in resolved_nodes: mc_labeling[node_id] = new_label_offset + resolved_nodes[node_id] new_label_offset += np.max(resolved_nodes.values()) + 1 mc_segmentation = nrag.projectScalarNodeDataToPixels(rag, mc_labeling, ExperimentSettings().n_threads) # Write the result vigra.writeHDF5(mc_segmentation, save_path, results_name, compression = 'gzip')
1ee7dc2b9ca208d6002aaa8adfe393e5b25d084f
88be4d5657d19462eb1d74d2d4d98180b423a889
/robolearn/torch/policies/weighted_multi_policy_selector.py
e0cb8481457f36ea0e1a6161526cff851f74721d
[ "BSD-3-Clause" ]
permissive
domingoesteban/robolearn
bc58278fe38894f4ca9ec9e657ee13a479a368b7
0d20125425c352b80ef2eeed1c0b11ab6497b11a
refs/heads/master
2020-04-15T22:38:25.343229
2019-01-29T17:01:42
2019-01-29T17:01:42
165,080,647
1
1
null
null
null
null
UTF-8
Python
false
false
1,021
py
from robolearn.torch.core import PyTorchModule from robolearn.models.policies import ExplorationPolicy class WeightedMultiPolicySelector(PyTorchModule, ExplorationPolicy): def __init__(self, multipolicy, idx): self.save_init_params(locals()) super(WeightedMultiPolicySelector, self).__init__() ExplorationPolicy.__init__(self, multipolicy.action_dim) self._multipolicy = multipolicy self.idx = idx def get_action(self, *args, **kwargs): kwargs['pol_idx'] = self.idx action, policy_info = self._multipolicy.get_action(*args, **kwargs) return action, policy_info def get_actions(self, *args, **kwargs): kwargs['pol_idx'] = self.idx action, policy_info = self._multipolicy.get_actions(*args, **kwargs) return action, policy_info def forward(self, *nn_input, **kwargs): kwargs['pol_idx'] = self.idx action, policy_info = self._multipolicy(*nn_input, **kwargs) return action, policy_info
8ae9fb9ae54b014300cf7675e7bfdbabcd0e5011
836d5f7190f6b4503e758c87c71598f18fdfce14
/12-Veri-Tabanı/sqlite-database-2/database.py
d5adc5a68ad53c2351607d67672c1ff0cbb2b0b7
[]
no_license
S-Oktay-Bicici/PYTHON-PROGRAMMING
cf452723fd3e7e8ec2aadc7980208d747c502e9a
22e864f89544249d6309d6f4570a4104bf47346b
refs/heads/main
2021-11-30T00:19:21.158084
2021-11-16T15:44:29
2021-11-16T15:44:29
316,716,147
1
0
null
null
null
null
UTF-8
Python
false
false
446
py
import sqlite3 veriler = [ ("Ahmet Ümit","İstanbul Hatırası"), ("Yaşar Kemal","İnce Memed"), ("Paulo Coelho","Simyacı"), ("Paulo Coelho","Aldatmak")] db = sqlite3.connect("kitaplar.db") imlec = db.cursor() imlec.execute("CREATE TABLE IF NOT EXISTS 'kitaplık tablosu' (yazar,kitap)") for veri in veriler: imlec.execute("INSERT INTO 'kitaplık tablosu' VALUES (?,?)",veri) db.commit() db.close()
263e5accf9c46da5bf018e6fe716b80de9ee55da
4e0ff785b993b6bae70745434e61f27ca82e88f0
/229-Majority-Element-II/solution.py
1b9494257f4bd6ea4a55db58f2ad57d67a4ef1ec
[]
no_license
NobodyWHU/Leetcode
2ee557dd77c65c5fa8ca938efb6de3793b4de261
d284fa3daab02531e5300867463b293d44737e32
refs/heads/master
2021-01-23T14:05:28.161062
2016-09-23T11:51:51
2016-09-23T11:51:51
58,898,114
1
0
null
null
null
null
UTF-8
Python
false
false
621
py
class Solution(object): def majorityElement(self, nums): """ :type nums: List[int] :rtype: List[int] """ n1 = n2 = None c1 = c2 = 0 for num in nums: if n1 == num: c1 += 1 elif n2 == num: c2 += 1 elif c1 == 0: n1, c1 = num, 1 elif c2 == 0: n2, c2 = num, 1 else: c1, c2 = c1 - 1, c2 - 1 size = len(nums) return [n for n in (n1, n2) if n is not None and nums.count(n) > size / 3]
4490d298cb083a520e91f8cd046242f7439b10be
60cf5de97160c0c104b447879edd0ea1ca9724e8
/q29.py
34fb2528f462f89c7b3226061a2fd7f1d74bc2cd
[]
no_license
VinayHaryan/String
6f6b7924ab87ac8ea5509edefaa3aeda795b0de0
089dcf02a8d26afcae0ac2b23c640be5a6079095
refs/heads/main
2023-05-27T22:15:31.792837
2021-06-17T08:39:42
2021-06-17T08:39:42
377,736,749
2
0
null
null
null
null
UTF-8
Python
false
false
1,557
py
''' RUN LENGTH ENCODING IN PYTHON given an input string, write a function that returns string for the input string For example, if the input string is ‘wwwwaaadexxxxxx’, then the function should return ‘w4a3d1e1x6’. Examples: Input : str = 'wwwwaaadexxxxxx' Output : 'w4a3d1e1x6' ''' # python code for run length encoding # from collections import OrderedDict # def runlength(input): # # generate ordered dictionary of all lower # # case alphabets, its output will be # # dict = {'w':0, 'a':0, 'd':0, 'e':0, 'x':0} # dict = OrderedDict.fromkeys(input,0) # # now iterate through input string to calculate # # frquency of each character, its output will be # # dict = {'w':4,'a':3,'d':1,'e':1,'x':6} # for ch in input: # dict[ch] += 1 # # now iterate through dictionary to make # # output string from (key,value) pairs # output = '' # for key,value in dict.items(): # output = output + key + str(value) # return output # # Driver function # if __name__ == '__main__': # input="wwwwaaadexxxxxx" # print (runlength(input)) from collections import OrderedDict def runlengthencoding(input): dict = OrderedDict.fromkeys(input,0) for ch in input: dict[ch] += 1 output = '' for key, value in dict.items(): output = output + key + str(value) return output # Driver function if __name__ == '__main__': input = 'wwwwaaadexxxxxx' print(runlengthencoding(input))
c9903269bc89b02fe42b2a38a1a00e60006fd0f3
aa6e1dd07a71a73bc08574b76f9e57a3ce8c8286
/077.Test_BeeWare_windows/beeware-tutorial/beeware-venv/Lib/site-packages/pip/_internal/wheel_builder.py
fa08016bdfb189f76aa4603f52684ae94fb20a25
[ "MIT" ]
permissive
IvanaXu/PyTools
0aff5982f50bb300bfa950405192c78473b69537
358ae06eef418fde35f424909d4f13049ca9ec7b
refs/heads/master
2023-06-07T21:45:44.242363
2023-06-06T16:00:25
2023-06-06T16:00:25
163,940,845
60
8
MIT
2022-12-23T02:49:05
2019-01-03T07:54:16
Python
UTF-8
Python
false
false
9,522
py
"""Orchestrator for building wheels from InstallRequirements. """ import logging import os.path import re import shutil from pip._internal.models.link import Link from pip._internal.operations.build.wheel import build_wheel_pep517 from pip._internal.operations.build.wheel_legacy import build_wheel_legacy from pip._internal.utils.logging import indent_log from pip._internal.utils.misc import ensure_dir, hash_file, is_wheel_installed from pip._internal.utils.setuptools_build import make_setuptools_clean_args from pip._internal.utils.subprocess import call_subprocess from pip._internal.utils.temp_dir import TempDirectory from pip._internal.utils.typing import MYPY_CHECK_RUNNING from pip._internal.utils.urls import path_to_url from pip._internal.vcs import vcs if MYPY_CHECK_RUNNING: from typing import ( Any, Callable, Iterable, List, Optional, Tuple, ) from pip._internal.cache import WheelCache from pip._internal.req.req_install import InstallRequirement BinaryAllowedPredicate = Callable[[InstallRequirement], bool] BuildResult = Tuple[List[InstallRequirement], List[InstallRequirement]] logger = logging.getLogger(__name__) _egg_info_re = re.compile(r'([a-z0-9_.]+)-([a-z0-9_.!+-]+)', re.IGNORECASE) def _contains_egg_info(s): # type: (str) -> bool """Determine whether the string looks like an egg_info. :param s: The string to parse. E.g. foo-2.1 """ return bool(_egg_info_re.search(s)) def _should_build( req, # type: InstallRequirement need_wheel, # type: bool check_binary_allowed, # type: BinaryAllowedPredicate ): # type: (...) -> bool """Return whether an InstallRequirement should be built into a wheel.""" if req.constraint: # never build requirements that are merely constraints return False if req.is_wheel: if need_wheel: logger.info( 'Skipping %s, due to already being wheel.', req.name, ) return False if need_wheel: # i.e. pip wheel, not pip install return True # From this point, this concerns the pip install command only # (need_wheel=False). if req.editable or not req.source_dir: return False if not check_binary_allowed(req): logger.info( "Skipping wheel build for %s, due to binaries " "being disabled for it.", req.name, ) return False if not req.use_pep517 and not is_wheel_installed(): # we don't build legacy requirements if wheel is not installed logger.info( "Using legacy 'setup.py install' for %s, " "since package 'wheel' is not installed.", req.name, ) return False return True def should_build_for_wheel_command( req, # type: InstallRequirement ): # type: (...) -> bool return _should_build( req, need_wheel=True, check_binary_allowed=_always_true ) def should_build_for_install_command( req, # type: InstallRequirement check_binary_allowed, # type: BinaryAllowedPredicate ): # type: (...) -> bool return _should_build( req, need_wheel=False, check_binary_allowed=check_binary_allowed ) def _should_cache( req, # type: InstallRequirement ): # type: (...) -> Optional[bool] """ Return whether a built InstallRequirement can be stored in the persistent wheel cache, assuming the wheel cache is available, and _should_build() has determined a wheel needs to be built. """ if req.editable or not req.source_dir: # never cache editable requirements return False if req.link and req.link.is_vcs: # VCS checkout. Do not cache # unless it points to an immutable commit hash. assert not req.editable assert req.source_dir vcs_backend = vcs.get_backend_for_scheme(req.link.scheme) assert vcs_backend if vcs_backend.is_immutable_rev_checkout(req.link.url, req.source_dir): return True return False assert req.link base, ext = req.link.splitext() if _contains_egg_info(base): return True # Otherwise, do not cache. return False def _get_cache_dir( req, # type: InstallRequirement wheel_cache, # type: WheelCache ): # type: (...) -> str """Return the persistent or temporary cache directory where the built wheel need to be stored. """ cache_available = bool(wheel_cache.cache_dir) assert req.link if cache_available and _should_cache(req): cache_dir = wheel_cache.get_path_for_link(req.link) else: cache_dir = wheel_cache.get_ephem_path_for_link(req.link) return cache_dir def _always_true(_): # type: (Any) -> bool return True def _build_one( req, # type: InstallRequirement output_dir, # type: str build_options, # type: List[str] global_options, # type: List[str] ): # type: (...) -> Optional[str] """Build one wheel. :return: The filename of the built wheel, or None if the build failed. """ try: ensure_dir(output_dir) except OSError as e: logger.warning( "Building wheel for %s failed: %s", req.name, e, ) return None # Install build deps into temporary directory (PEP 518) with req.build_env: return _build_one_inside_env( req, output_dir, build_options, global_options ) def _build_one_inside_env( req, # type: InstallRequirement output_dir, # type: str build_options, # type: List[str] global_options, # type: List[str] ): # type: (...) -> Optional[str] with TempDirectory(kind="wheel") as temp_dir: assert req.name if req.use_pep517: assert req.metadata_directory wheel_path = build_wheel_pep517( name=req.name, backend=req.pep517_backend, metadata_directory=req.metadata_directory, build_options=build_options, tempd=temp_dir.path, ) else: wheel_path = build_wheel_legacy( name=req.name, setup_py_path=req.setup_py_path, source_dir=req.unpacked_source_directory, global_options=global_options, build_options=build_options, tempd=temp_dir.path, ) if wheel_path is not None: wheel_name = os.path.basename(wheel_path) dest_path = os.path.join(output_dir, wheel_name) try: wheel_hash, length = hash_file(wheel_path) shutil.move(wheel_path, dest_path) logger.info('Created wheel for %s: ' 'filename=%s size=%d sha256=%s', req.name, wheel_name, length, wheel_hash.hexdigest()) logger.info('Stored in directory: %s', output_dir) return dest_path except Exception as e: logger.warning( "Building wheel for %s failed: %s", req.name, e, ) # Ignore return, we can't do anything else useful. if not req.use_pep517: _clean_one_legacy(req, global_options) return None def _clean_one_legacy(req, global_options): # type: (InstallRequirement, List[str]) -> bool clean_args = make_setuptools_clean_args( req.setup_py_path, global_options=global_options, ) logger.info('Running setup.py clean for %s', req.name) try: call_subprocess(clean_args, cwd=req.source_dir) return True except Exception: logger.error('Failed cleaning build dir for %s', req.name) return False def build( requirements, # type: Iterable[InstallRequirement] wheel_cache, # type: WheelCache build_options, # type: List[str] global_options, # type: List[str] ): # type: (...) -> BuildResult """Build wheels. :return: The list of InstallRequirement that succeeded to build and the list of InstallRequirement that failed to build. """ if not requirements: return [], [] # Build the wheels. logger.info( 'Building wheels for collected packages: %s', ', '.join(req.name for req in requirements), # type: ignore ) with indent_log(): build_successes, build_failures = [], [] for req in requirements: cache_dir = _get_cache_dir(req, wheel_cache) wheel_file = _build_one( req, cache_dir, build_options, global_options ) if wheel_file: # Update the link for this. req.link = Link(path_to_url(wheel_file)) req.local_file_path = req.link.file_path assert req.link.is_wheel build_successes.append(req) else: build_failures.append(req) # notify success/failure if build_successes: logger.info( 'Successfully built %s', ' '.join([req.name for req in build_successes]), # type: ignore ) if build_failures: logger.info( 'Failed to build %s', ' '.join([req.name for req in build_failures]), # type: ignore ) # Return a list of requirements that failed to build return build_successes, build_failures
9d5e381b6742e606d841d20ce2e6480a9029a65d
e3af1769d017fa5b20677b1228fd3ab42afc8927
/projet/IBPackage/operations.py
481a6a5755012665fb4d06ee741c5fdef5d684ad
[]
no_license
komi24/IB201116
08e8692a72badb82eecc79af753e1cf5c4021380
924c6540978b0308686eac867c16a3f6d1725f65
refs/heads/master
2023-01-19T11:34:32.627342
2020-11-20T15:24:31
2020-11-20T15:24:31
313,242,433
0
0
null
null
null
null
UTF-8
Python
false
false
258
py
# -*- coding: utf-8 -*- def ajoute_2(a): return a + 2 def addition(a, b): return a + b def produit(a, b): return a * b # def moyenne(liste, operation, init): # somme = init # for i in liste: # somme = operation(i, somme)
77b73a4c62c781666aa6f58703e8ed6973d129db
c61145e8771724575f67ae5738dd6cbb9626a706
/blog/models.py
b885ebd7fe878c0266a464c1da35eb04d96169e5
[]
no_license
Seredyak1/test_task
1399dd082f4281ca6f72d036f4df4c1c6945dafe
a5d433b827df46ffa95dd6dd91245b204884674f
refs/heads/master
2020-04-16T08:03:04.521740
2019-01-16T09:33:47
2019-01-16T09:33:47
165,409,648
0
0
null
null
null
null
UTF-8
Python
false
false
1,118
py
from django.contrib.auth.models import User from django.db import models class Post(models.Model): class Meta: verbose_name_plural = 'Posts' ordering = ('-updated_at',) user = models.ForeignKey(User, on_delete=models.CASCADE) title = models.CharField(max_length=128, blank=True, null=True) body = models.TextField(blank=True, null=True) created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) def __str__(self): return self.title @property def like_count(self): """Show the number of likes in the Post""" return self.like_set.count() def add_like(self, user): """Add like to this Post""" Like.objects.get_or_create(user=user, post=self) def unlike(self, user): """Delete like to this Post""" Like.objects.filter(user=user, post=self).delete() class Like(models.Model): user = models.ForeignKey(User, on_delete=models.CASCADE) post = models.ForeignKey(Post, on_delete=models.CASCADE) created = models.DateTimeField(auto_now_add=True)
8ae1215e7351323fa30e296d34e9cf8d769a78c1
6c50175e82974fdb0ccabd544a40e013e6672cb0
/LoginReg_Bootstrap/settings.py
fbcb01abea32951e3eba4b4872bb9626432a3aa4
[]
no_license
Jallnutt1/LoginReg_Bootstrap
9515878688ac6a16efaba18345b90b389a6c6213
60532872f1e04a5809f65745665e2f16df0a913e
refs/heads/main
2023-05-26T05:02:59.124607
2021-06-04T01:50:46
2021-06-04T01:50:46
373,688,654
0
0
null
null
null
null
UTF-8
Python
false
false
3,151
py
""" Django settings for LoginReg_Bootstrap project. Generated by 'django-admin startproject' using Django 2.2. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '!lgvb3n$coe(bg@64j#p)&r^u6+o&y!vjmh=1c&iph=j%%&ylu' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'LoginReg', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'LoginReg_Bootstrap.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'LoginReg_Bootstrap.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'America/New_York' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/'
[ "{ID}+{username}@users.noreply.github.com" ]
{ID}+{username}@users.noreply.github.com
c006ca77594cce7b285e3cb5b9081c678b8e1f01
668dad44beb30cadb170e32a8a7f0a57c42e653c
/denormalize_to_csv.py
d2910eec545e9f6d62c1a4e254eb4424ae66ed54
[]
no_license
SEL-Columbia/ss_data_analysis
22b72540732b03836423e18462495b2252a2cca8
dfb8c2670cddbddbb693e5a3243bc829bccf5ae0
refs/heads/master
2016-09-05T12:31:00.546458
2013-10-21T23:01:34
2013-10-21T23:01:34
13,162,453
0
0
null
null
null
null
UTF-8
Python
false
false
4,354
py
import os import datetime import csv import sys """ denormalize_to_csv.py usage: python denormalize_to_csv.py logs_dir description: Script to take a directory of sharedsolar log files in csv format and denormalizes them such that they can be concatenated together into "one big table" of the same structure without losing any information (while duplicating some...hence "denormalize") """ FIELD_MAP = { 'Time Stamp': 'time_stamp', 'Watts': 'watts', 'Volts': 'volts', 'Amps': 'amps', 'Watt Hours SC20': 'watt_hours_sc20', 'Watt Hours Today': 'watt_hours_today', 'Max Watts': 'max_watts', 'Max Volts': 'max_volts', 'Max Amps': 'max_amps', 'Min Watts': 'min_watts', 'Min Volts': 'min_volts', 'Min Amps': 'min_amps', 'Power Factor': 'power_factor', 'Power Cycle': 'power_cycle', 'Frequency': 'frequency', 'Volt Amps': 'volt_amps', 'Relay Not Closed': 'relay_not_closed', 'Send Rate': 'send_rate', 'Machine ID': 'machine_id', 'Type': 'circuit_type', 'Credit': 'credit' } def write_denormalized_csv(logfile, site, ip): outfile = logfile.replace(".log", ".csv") with open(logfile,'r') as csvinput: with open(outfile, 'w') as csvoutput: first_line = csvinput.readline() # Simple check for properly formatted file (NOTE: MAINS files will not have a credit field at the end) if (first_line.startswith("Time Stamp,Watts,Volts,Amps,Watt Hours SC20,Watt Hours Today,Max Watts,Max Volts,Max Amps,Min Watts,Min Volts,Min Amps,Power Factor,Power Cycle,Frequency,Volt Amps,Relay Not Closed,Send Rate,Machine ID,Type")): # reset read ptr csvinput.seek(0) reader = csv.reader(csvinput) writer = csv.writer(csvoutput, lineterminator='\n') all = [] has_credit = True # handle the header row existing_header_row = next(reader) new_header_row = [] # add the new denormalized fields to the new header new_header_row.append('line_num') new_header_row.append('site_id') new_header_row.append('ip_addr') # If the header row doesn't contain the Credit field, add it if existing_header_row[-1] != 'Credit': existing_header_row.append('Credit') has_credit = False # convert field names for field in existing_header_row: if field not in FIELD_MAP: sys.stderr.write("Erroneous field: %s in file: %s skipping..." % (field, logfile)) else: new_header_row.append(FIELD_MAP[field]) all.append(new_header_row) line_num = 0 for row in reader: row.insert(0, line_num) row.insert(1, site) row.insert(2, ip) # in case there was no credit field in the input file, make it 0 if not has_credit: row.append("0") all.append(row) line_num = line_num + 1 writer.writerows(all) line_num = 0 else: sys.stderr.write("Empty or corrupted file: %s\n" % logfile) def denormalize_to_csv(logs_dir): for (dirpath,dirnames,filenames) in os.walk(logs_dir): for f in filenames: if f.endswith(".log"): dir_info = dirpath.split("/") # Note: dir_info contents are blah/Site/YYYY/MM/DD/HH site = dir_info[-5] # get the site from the dir (site is always 5 dirs up in the path) ip = f[0:f.find(".")] # get the ip from the filename full_filename = os.path.join(dirpath, f) write_denormalized_csv(full_filename, site, ip) if __name__=="__main__": import sys assert len(sys.argv) == 2, \ "Usage: python denormalize_to_csv.py logs_dir" logs_dir = sys.argv[1] denormalize_to_csv(logs_dir)
5d2c18d1ea37c56236232061cf2a19e8e6d11fac
ca75f7099b93d8083d5b2e9c6db2e8821e63f83b
/z2/part2/interactive/jm/random_normal_1/561870518.py
e07b9173fe09044ec19d2a4fbff66e5550b7c929
[ "MIT" ]
permissive
kozakusek/ipp-2020-testy
210ed201eaea3c86933266bd57ee284c9fbc1b96
09aa008fa53d159672cc7cbf969a6b237e15a7b8
refs/heads/master
2022-10-04T18:55:37.875713
2020-06-09T21:15:37
2020-06-09T21:15:37
262,290,632
0
0
MIT
2020-06-09T21:15:38
2020-05-08T10:10:47
C
UTF-8
Python
false
false
7,951
py
from part1 import ( gamma_board, gamma_busy_fields, gamma_delete, gamma_free_fields, gamma_golden_move, gamma_golden_possible, gamma_move, gamma_new, ) """ scenario: test_random_actions uuid: 561870518 """ """ random actions, total chaos """ board = gamma_new(6, 8, 4, 15) assert board is not None assert gamma_move(board, 1, 0, 2) == 1 assert gamma_move(board, 1, 4, 2) == 1 assert gamma_move(board, 2, 3, 7) == 1 assert gamma_move(board, 2, 2, 7) == 1 assert gamma_busy_fields(board, 2) == 2 assert gamma_move(board, 3, 3, 4) == 1 assert gamma_free_fields(board, 3) == 43 board700952916 = gamma_board(board) assert board700952916 is not None assert board700952916 == ("..22..\n" "......\n" "......\n" "...3..\n" "......\n" "1...1.\n" "......\n" "......\n") del board700952916 board700952916 = None assert gamma_move(board, 1, 0, 0) == 1 assert gamma_move(board, 2, 2, 4) == 1 assert gamma_free_fields(board, 2) == 41 assert gamma_move(board, 3, 1, 7) == 1 assert gamma_move(board, 3, 0, 5) == 1 assert gamma_move(board, 4, 3, 3) == 1 assert gamma_move(board, 4, 0, 5) == 0 assert gamma_move(board, 1, 5, 5) == 1 assert gamma_move(board, 1, 4, 3) == 1 assert gamma_move(board, 2, 4, 7) == 1 assert gamma_move(board, 3, 3, 5) == 1 assert gamma_move(board, 3, 2, 0) == 1 assert gamma_move(board, 4, 4, 4) == 1 assert gamma_move(board, 4, 1, 1) == 1 assert gamma_move(board, 1, 3, 5) == 0 assert gamma_free_fields(board, 1) == 31 assert gamma_move(board, 2, 5, 1) == 1 assert gamma_busy_fields(board, 3) == 5 assert gamma_move(board, 4, 4, 1) == 1 assert gamma_move(board, 1, 6, 2) == 0 assert gamma_busy_fields(board, 1) == 5 assert gamma_move(board, 2, 1, 3) == 1 assert gamma_move(board, 3, 3, 2) == 1 assert gamma_move(board, 3, 1, 5) == 1 assert gamma_move(board, 4, 3, 0) == 1 assert gamma_golden_possible(board, 1) == 1 assert gamma_move(board, 2, 4, 1) == 0 assert gamma_move(board, 2, 1, 7) == 0 assert gamma_free_fields(board, 2) == 25 assert gamma_move(board, 3, 2, 2) == 1 assert gamma_move(board, 3, 2, 0) == 0 assert gamma_free_fields(board, 3) == 24 assert gamma_move(board, 4, 6, 1) == 0 assert gamma_golden_possible(board, 4) == 1 assert gamma_move(board, 1, 7, 0) == 0 assert gamma_move(board, 2, 6, 3) == 0 assert gamma_move(board, 3, 1, 0) == 1 assert gamma_move(board, 4, 6, 5) == 0 board137299271 = gamma_board(board) assert board137299271 is not None assert board137299271 == (".3222.\n" "......\n" "33.3.1\n" "..234.\n" ".2.41.\n" "1.331.\n" ".4..42\n" "1334..\n") del board137299271 board137299271 = None assert gamma_move(board, 1, 2, 1) == 1 assert gamma_move(board, 1, 3, 5) == 0 assert gamma_move(board, 2, 0, 4) == 1 assert gamma_move(board, 2, 5, 4) == 1 assert gamma_busy_fields(board, 2) == 8 assert gamma_move(board, 3, 2, 5) == 1 assert gamma_move(board, 4, 0, 5) == 0 assert gamma_move(board, 4, 1, 2) == 1 assert gamma_move(board, 1, 5, 4) == 0 assert gamma_golden_possible(board, 1) == 1 assert gamma_move(board, 2, 6, 5) == 0 assert gamma_move(board, 2, 5, 6) == 1 assert gamma_move(board, 3, 1, 4) == 1 assert gamma_move(board, 3, 5, 7) == 1 assert gamma_move(board, 4, 4, 6) == 1 assert gamma_move(board, 1, 6, 3) == 0 assert gamma_move(board, 1, 2, 2) == 0 assert gamma_move(board, 2, 2, 5) == 0 assert gamma_move(board, 2, 4, 4) == 0 assert gamma_golden_possible(board, 2) == 1 assert gamma_golden_move(board, 2, 1, 1) == 1 assert gamma_move(board, 3, 7, 0) == 0 assert gamma_move(board, 3, 0, 7) == 1 assert gamma_golden_possible(board, 4) == 1 assert gamma_move(board, 1, 1, 3) == 0 assert gamma_move(board, 1, 5, 5) == 0 assert gamma_move(board, 2, 6, 0) == 0 assert gamma_move(board, 4, 1, 3) == 0 assert gamma_move(board, 4, 2, 3) == 1 assert gamma_move(board, 1, 1, 7) == 0 assert gamma_move(board, 1, 1, 5) == 0 assert gamma_move(board, 2, 1, 0) == 0 assert gamma_free_fields(board, 2) == 12 assert gamma_move(board, 3, 1, 0) == 0 assert gamma_move(board, 4, 1, 3) == 0 assert gamma_move(board, 4, 0, 6) == 1 assert gamma_move(board, 1, 6, 1) == 0 assert gamma_move(board, 1, 1, 3) == 0 assert gamma_move(board, 2, 6, 1) == 0 assert gamma_move(board, 2, 0, 4) == 0 assert gamma_move(board, 3, 6, 1) == 0 assert gamma_move(board, 3, 2, 4) == 0 assert gamma_move(board, 4, 2, 5) == 0 assert gamma_move(board, 1, 4, 1) == 0 assert gamma_move(board, 1, 4, 5) == 1 assert gamma_move(board, 2, 1, 2) == 0 assert gamma_busy_fields(board, 2) == 10 assert gamma_move(board, 3, 1, 0) == 0 assert gamma_move(board, 3, 2, 3) == 0 assert gamma_busy_fields(board, 3) == 13 assert gamma_move(board, 4, 0, 4) == 0 assert gamma_busy_fields(board, 1) == 7 assert gamma_golden_possible(board, 1) == 1 assert gamma_move(board, 2, 1, 0) == 0 assert gamma_free_fields(board, 2) == 10 assert gamma_move(board, 3, 2, 0) == 0 assert gamma_move(board, 3, 0, 6) == 0 assert gamma_busy_fields(board, 3) == 13 assert gamma_move(board, 4, 1, 3) == 0 assert gamma_move(board, 1, 2, 2) == 0 assert gamma_move(board, 1, 5, 4) == 0 assert gamma_move(board, 2, 2, 7) == 0 assert gamma_golden_possible(board, 2) == 0 assert gamma_move(board, 3, 4, 7) == 0 assert gamma_move(board, 3, 0, 4) == 0 assert gamma_move(board, 4, 3, 5) == 0 assert gamma_move(board, 4, 1, 5) == 0 assert gamma_busy_fields(board, 4) == 8 assert gamma_golden_possible(board, 4) == 1 assert gamma_move(board, 2, 0, 5) == 0 assert gamma_move(board, 2, 2, 7) == 0 assert gamma_busy_fields(board, 2) == 10 assert gamma_move(board, 3, 3, 5) == 0 assert gamma_busy_fields(board, 3) == 13 assert gamma_golden_possible(board, 4) == 1 assert gamma_move(board, 1, 1, 4) == 0 assert gamma_move(board, 2, 4, 1) == 0 assert gamma_move(board, 3, 0, 4) == 0 assert gamma_move(board, 4, 0, 3) == 1 assert gamma_golden_move(board, 4, 6, 5) == 0 assert gamma_move(board, 1, 1, 0) == 0 board301797101 = gamma_board(board) assert board301797101 is not None assert board301797101 == ("332223\n" "4...42\n" "333311\n" "232342\n" "42441.\n" "14331.\n" ".21.42\n" "1334..\n") del board301797101 board301797101 = None assert gamma_move(board, 2, 1, 3) == 0 assert gamma_golden_possible(board, 2) == 0 assert gamma_move(board, 3, 3, 5) == 0 assert gamma_move(board, 3, 0, 0) == 0 assert gamma_free_fields(board, 3) == 9 assert gamma_move(board, 1, 4, 7) == 0 assert gamma_move(board, 2, 6, 1) == 0 assert gamma_free_fields(board, 2) == 9 assert gamma_move(board, 3, 0, 1) == 1 assert gamma_move(board, 4, 0, 5) == 0 assert gamma_move(board, 1, 3, 5) == 0 assert gamma_move(board, 2, 0, 5) == 0 assert gamma_golden_possible(board, 2) == 0 assert gamma_move(board, 3, 3, 2) == 0 assert gamma_move(board, 3, 1, 7) == 0 assert gamma_move(board, 4, 3, 5) == 0 assert gamma_move(board, 4, 2, 7) == 0 assert gamma_move(board, 1, 0, 0) == 0 assert gamma_move(board, 2, 4, 6) == 0 assert gamma_golden_possible(board, 2) == 0 assert gamma_move(board, 3, 6, 2) == 0 assert gamma_golden_possible(board, 3) == 1 assert gamma_move(board, 4, 1, 3) == 0 assert gamma_move(board, 4, 4, 5) == 0 assert gamma_move(board, 1, 5, 0) == 1 assert gamma_golden_possible(board, 1) == 1 assert gamma_move(board, 2, 6, 1) == 0 assert gamma_move(board, 2, 2, 1) == 0 assert gamma_move(board, 3, 6, 1) == 0 assert gamma_busy_fields(board, 3) == 14 assert gamma_golden_possible(board, 3) == 1 assert gamma_move(board, 4, 6, 3) == 0 assert gamma_busy_fields(board, 4) == 9 assert gamma_move(board, 1, 6, 1) == 0 assert gamma_move(board, 1, 1, 4) == 0 board493510436 = gamma_board(board) assert board493510436 is not None assert board493510436 == ("332223\n" "4...42\n" "333311\n" "232342\n" "42441.\n" "14331.\n" "321.42\n" "1334.1\n") del board493510436 board493510436 = None assert gamma_move(board, 2, 6, 3) == 0 assert gamma_move(board, 3, 0, 4) == 0 assert gamma_move(board, 4, 2, 5) == 0 gamma_delete(board)
4660ea0d2890f4a7ae7e8f48cbe1f776c8393822
de428c011b56db862f05ec0ceab17b85f83f94b1
/pythongame/scenes_game/player_environment_interactions.py
bfdfdb4eea733e83b0f61229bf7c9e6e1f382640
[]
no_license
risooonho/python-2d-game
c6d1fceaf09c72a6f7573230a4a899bf79164b7f
24b02646ed56f9017069b243b774e0ee46951aea
refs/heads/master
2021-05-17T06:02:13.538699
2020-02-15T23:59:54
2020-02-15T23:59:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,646
py
import sys from typing import Optional, Any, List, Tuple from pythongame.core.game_data import CONSUMABLES, PORTALS from pythongame.core.game_state import GameState, NonPlayerCharacter, LootableOnGround, Portal, WarpPoint, \ ConsumableOnGround, ItemOnGround, Chest, Shrine from pythongame.core.game_state import WorldEntity from pythongame.core.item_data import build_item_name, create_item_description, get_item_data from pythongame.core.math import boxes_intersect, is_x_and_y_within_distance, \ get_manhattan_distance_between_rects from pythongame.core.npc_behaviors import has_npc_dialog from pythongame.core.view.game_world_view import EntityActionText, EntityActionTextStyle from pythongame.scenes_game.game_engine import GameEngine class PlayerInteractionsState: def __init__(self): self.entity_to_interact_with: Any = None def handle_nearby_entities(self, player_entity: WorldEntity, game_state: GameState, game_engine: GameEngine): self.entity_to_interact_with = None player_position = player_entity.get_position() distance_to_closest_entity = sys.maxsize for npc in game_state.non_player_characters: if has_npc_dialog(npc.npc_type): close_to_player = is_x_and_y_within_distance(player_position, npc.world_entity.get_position(), 75) distance = get_manhattan_distance_between_rects(player_entity.rect(), npc.world_entity.rect()) if close_to_player and distance < distance_to_closest_entity: self.entity_to_interact_with = npc distance_to_closest_entity = distance lootables_on_ground: List[LootableOnGround] = list(game_state.items_on_ground) lootables_on_ground += game_state.consumables_on_ground for lootable in lootables_on_ground: if boxes_intersect(player_entity.rect(), lootable.world_entity.rect()): self.entity_to_interact_with = lootable distance_to_closest_entity = 0 for portal in game_state.portals: close_to_player = is_x_and_y_within_distance(player_position, portal.world_entity.get_position(), 75) distance = get_manhattan_distance_between_rects(player_entity.rect(), portal.world_entity.rect()) if close_to_player: game_engine.handle_being_close_to_portal(portal) if close_to_player and distance < distance_to_closest_entity: self.entity_to_interact_with = portal distance_to_closest_entity = distance for warp_point in game_state.warp_points: close_to_player = is_x_and_y_within_distance(player_position, warp_point.world_entity.get_position(), 75) distance = get_manhattan_distance_between_rects(player_entity.rect(), warp_point.world_entity.rect()) if close_to_player and distance < distance_to_closest_entity: self.entity_to_interact_with = warp_point distance_to_closest_entity = distance for chest in game_state.chests: close_to_player = is_x_and_y_within_distance(player_position, chest.world_entity.get_position(), 75) distance = get_manhattan_distance_between_rects(player_entity.rect(), chest.world_entity.rect()) if close_to_player and distance < distance_to_closest_entity: self.entity_to_interact_with = chest distance_to_closest_entity = distance for shrine in game_state.shrines: close_to_player = is_x_and_y_within_distance(player_position, shrine.world_entity.get_position(), 75) distance = get_manhattan_distance_between_rects(player_entity.rect(), shrine.world_entity.rect()) if close_to_player and distance < distance_to_closest_entity: self.entity_to_interact_with = shrine distance_to_closest_entity = distance def get_entity_to_interact_with(self): return self.entity_to_interact_with def get_entity_action_text(self, is_shift_key_held_down: bool) -> Optional[EntityActionText]: if self.entity_to_interact_with is None: return None return _get_entity_action_text(self.entity_to_interact_with, is_shift_key_held_down) def _get_entity_action_text(ready_entity: Any, is_shift_key_held_down: bool) -> Optional[EntityActionText]: if isinstance(ready_entity, NonPlayerCharacter): return EntityActionText(ready_entity.world_entity, "...", []) elif isinstance(ready_entity, LootableOnGround): name, style = _get_loot_name(ready_entity) if is_shift_key_held_down: loot_details = _get_loot_details(ready_entity) else: loot_details = [] return EntityActionText(ready_entity.world_entity, name, loot_details, style=style) elif isinstance(ready_entity, Portal): if ready_entity.is_enabled: data = PORTALS[ready_entity.portal_id] return EntityActionText(ready_entity.world_entity, data.destination_name, []) else: return EntityActionText(ready_entity.world_entity, "???", []) elif isinstance(ready_entity, WarpPoint): return EntityActionText(ready_entity.world_entity, "Warp", []) elif isinstance(ready_entity, Chest): return EntityActionText(ready_entity.world_entity, "Open", []) elif isinstance(ready_entity, Shrine): if ready_entity.has_been_used: return None else: return EntityActionText(ready_entity.world_entity, "Touch", []) else: raise Exception("Unhandled entity: " + str(ready_entity)) def _get_loot_name(lootable: LootableOnGround) -> Tuple[str, EntityActionTextStyle]: if isinstance(lootable, ConsumableOnGround): name = CONSUMABLES[lootable.consumable_type].name return name, EntityActionTextStyle.PLAIN if isinstance(lootable, ItemOnGround): name = build_item_name(lootable.item_id) if lootable.item_id.suffix_id is not None: style = EntityActionTextStyle.LOOT_RARE elif get_item_data(lootable.item_id).is_unique: style = EntityActionTextStyle.LOOT_UNIQUE else: style = EntityActionTextStyle.PLAIN return name, style def _get_loot_details(lootable: LootableOnGround) -> List[str]: if isinstance(lootable, ConsumableOnGround): return [CONSUMABLES[lootable.consumable_type].description] if isinstance(lootable, ItemOnGround): # TODO Render suffix lines differently? return [line.text for line in create_item_description(lootable.item_id)]
f4018757458a86a63df44d42374c69ea3d612194
de4d3fed2b538587124ad855c8ba2f30933e7edf
/backend/sparepart_main/sparepart_main/asgi.py
597f5430d993ea910e06c11dd1b1488e41205dd3
[]
no_license
zahydakhan/project_spare
aaea130edefa95630f73b3026de6c32800b0bc7f
850374c270fd5ad2897bf9b6f0afb93b9e171059
refs/heads/master
2023-03-11T17:13:13.103574
2021-02-23T06:40:52
2021-02-23T06:40:52
339,530,703
0
0
null
null
null
null
UTF-8
Python
false
false
405
py
""" ASGI config for sparepart_main project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'sparepart_main.settings') application = get_asgi_application()
4913c2722dadc4eab70e690b9fb6b88e0097a781
f576f0ea3725d54bd2551883901b25b863fe6688
/sdk/applicationinsights/azure-mgmt-applicationinsights/azure/mgmt/applicationinsights/v2022_06_15/aio/_application_insights_management_client.py
8b411d38bef302c4b99c3ad09e97a57e5267f2e1
[ "LicenseRef-scancode-generic-cla", "MIT", "LGPL-2.1-or-later" ]
permissive
Azure/azure-sdk-for-python
02e3838e53a33d8ba27e9bcc22bd84e790e4ca7c
c2ca191e736bb06bfbbbc9493e8325763ba990bb
refs/heads/main
2023-09-06T09:30:13.135012
2023-09-06T01:08:06
2023-09-06T01:08:06
4,127,088
4,046
2,755
MIT
2023-09-14T21:48:49
2012-04-24T16:46:12
Python
UTF-8
Python
false
false
4,161
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from copy import deepcopy from typing import Any, Awaitable, TYPE_CHECKING from azure.core.rest import AsyncHttpResponse, HttpRequest from azure.mgmt.core import AsyncARMPipelineClient from .. import models as _models from ..._serialization import Deserializer, Serializer from ._configuration import ApplicationInsightsManagementClientConfiguration from .operations import WebTestsOperations if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from azure.core.credentials_async import AsyncTokenCredential class ApplicationInsightsManagementClient: # pylint: disable=client-accepts-api-version-keyword """Composite Swagger for Application Insights Management Client. :ivar web_tests: WebTestsOperations operations :vartype web_tests: azure.mgmt.applicationinsights.v2022_06_15.aio.operations.WebTestsOperations :param credential: Credential needed for the client to connect to Azure. Required. :type credential: ~azure.core.credentials_async.AsyncTokenCredential :param subscription_id: The ID of the target subscription. Required. :type subscription_id: str :param base_url: Service URL. Default value is "https://management.azure.com". :type base_url: str :keyword api_version: Api Version. Default value is "2022-06-15". Note that overriding this default value may result in unsupported behavior. :paramtype api_version: str """ def __init__( self, credential: "AsyncTokenCredential", subscription_id: str, base_url: str = "https://management.azure.com", **kwargs: Any ) -> None: self._config = ApplicationInsightsManagementClientConfiguration( credential=credential, subscription_id=subscription_id, **kwargs ) self._client: AsyncARMPipelineClient = AsyncARMPipelineClient(base_url=base_url, config=self._config, **kwargs) client_models = {k: v for k, v in _models.__dict__.items() if isinstance(v, type)} self._serialize = Serializer(client_models) self._deserialize = Deserializer(client_models) self._serialize.client_side_validation = False self.web_tests = WebTestsOperations(self._client, self._config, self._serialize, self._deserialize) def _send_request(self, request: HttpRequest, **kwargs: Any) -> Awaitable[AsyncHttpResponse]: """Runs the network request through the client's chained policies. >>> from azure.core.rest import HttpRequest >>> request = HttpRequest("GET", "https://www.example.org/") <HttpRequest [GET], url: 'https://www.example.org/'> >>> response = await client._send_request(request) <AsyncHttpResponse: 200 OK> For more information on this code flow, see https://aka.ms/azsdk/dpcodegen/python/send_request :param request: The network request you want to make. Required. :type request: ~azure.core.rest.HttpRequest :keyword bool stream: Whether the response payload will be streamed. Defaults to False. :return: The response of your network call. Does not do error handling on your response. :rtype: ~azure.core.rest.AsyncHttpResponse """ request_copy = deepcopy(request) request_copy.url = self._client.format_url(request_copy.url) return self._client.send_request(request_copy, **kwargs) async def close(self) -> None: await self._client.close() async def __aenter__(self) -> "ApplicationInsightsManagementClient": await self._client.__aenter__() return self async def __aexit__(self, *exc_details: Any) -> None: await self._client.__aexit__(*exc_details)
58917f325490ea31f0266642594353b9a3a355ea
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_135/2992.py
b11dac90d43eb4458792e75c04fcfe2c80575061
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
874
py
def read_case(file): answer = int(file.readline()) - 1 for skip in range(4): line = file.readline() if skip is answer: result = set(line.split()) return result def read_input(filename): with open(filename, "r") as in_file: n_cases = int(in_file.readline().split()[0]) for case in range(n_cases): yield case + 1, read_case(in_file), read_case(in_file) def solve_case(first, second): answer = first & second if len(answer) == 1: return "".join(answer) elif answer: return "Bad magician!" else: return "Volunteer cheated!" cases = read_input("A-small-attempt0.in") outfile = open("output.txt", "w+") for case, first, second in cases: result = solve_case(first, second) outfile.write("Case #{}: {}\n".format(case, result))
70ec64d86ed5c0c271e847db24f5640fba8b206c
d6f95f4347c2bd934393603819787acf70aaf4eb
/2018年11月15日福建省/gg.py
af58924762c19caec1070c8e9830667202198a39
[]
no_license
moto-faith/work
531804bca7b6ecb6d9776ed2086bbf9952e2043b
e77e40dbbb7dbb80bd2bc2584a6d1d020f92d2b4
refs/heads/master
2020-04-08T11:20:37.533419
2019-03-18T08:09:27
2019-03-18T08:09:27
159,302,505
1
1
null
null
null
null
UTF-8
Python
false
false
1,942
py
#!/usr/bin/env python #coding=utf-8 import time import datetime import re import json import requests import time import redis import sys from urlparse import urljoin from db import DB reload (sys) import copy import MySQLdb sys.setdefaultencoding ("utf-8") import htmlparser from PIL import Image def handle_post(post): post = copy.deepcopy(post) for k,v in post.iteritems(): print k,v if isinstance(v, unicode): v = v.encode("utf8") if not isinstance(v,str) and not isinstance(v, int) and not isinstance(v, float): v = json.dumps(v) try:v = MySQLdb.escape_string(v) except:pass post.update({k:v}) return post db = DB ().create ('mysql://zhxg:[email protected]:3306/sjk') table = "list_info" result1 = "list_model_filter" urls = db.table(table).where('''siteName = "福建省公共资源交易中心"''').find() dict_page_info = [url for url in urls if url is not None] print "********-->", len (dict_page_info) for str_urls in dict_page_info: dict_post = str_urls # print isinstance(dict_post,dict) # dict_post = json.loads(dict_post) # for k,v in dict_post.items(): # print k,v # dd = dict_post.get("detailUrl") dict_post["tf"]="1" dict_post["irepeat"]="1" dict_post["service"]="勘察设计" dict_post["industry"]="industry" dic = handle_post (dict_post) try: db.table (result1).add (dic) except Exception as e: print e # for k,v in dict_post.items(): # print k,v # detailUrl = dict_post.get ("detailUrl") if __name__ == "__main__": pass