blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
52a5fc44063f2e73239719204651a2f2b4b3e5e5
767b5482f3c5b9c2c85575c711e37561f5b8f198
/engine/engine_lib/encoderlib.py
27d186e1e4d625fe001279e1c8110f2ff708818f
[]
no_license
zhupite233/scaner
8e39c903f295d06195be20067043087ec8baac4f
7c29c02bca2247a82bcbb91cc86955cc27998c95
refs/heads/master
2020-05-18T03:23:03.459222
2019-04-15T04:29:10
2019-04-15T04:29:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,332
py
#!/usr/bin/env python """ This is the encoding / decoding functions collection for DharmaEncoder. It allows you to encode and decode various data formats. (c) 2010 Nathan Hamiel Email: nathan{at}neohaxor{dot}org Hexsec Labs: http://hexsec.com/labs This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ import urllib import hashlib import cgi import StringIO import zlib import decimal from xml.sax.saxutils import unescape from xml.sax.saxutils import escape ################### # Encoder section # ################### def url_encode(encvalue): """ URL encode the specifed value. Example Format: Hello%20World """ try: encoded_value = urllib.quote(encvalue) except: encoded_value = "There was a problem with the specified value" return(encoded_value) def full_url_encode(encvalue): """ Full URL Hex encode the specified value. Example Format: %48%65%6c%6c%6f%20%57%6f%72%6c%64 """ hexval = "" for item in encvalue: val = hex(ord(item)).replace("0x", "%") hexval += val return(hexval) def base64_encode(encvalue): """ Base64 encode the specified value. Example Format: SGVsbG8gV29ybGQ= """ try: basedata = encvalue.encode("Base64") except: basedata = "There was an error" return(basedata) # def html_entity_encode(encvalue): # """ Encode value using HTML entities. Example Format: """ ##### # Follow up on this. It needs to be fixed ##### # encoded_value = cgi.escape(encvalue) # return(encoded_value) def hex_encode(encvalue): """ Encode value to Hex. Example Format: 48656c6c6f2576f726c64""" hexval = "" for item in encvalue: val = hex(ord(item)).strip("0x") hexval += val return(hexval) def hex_entity_encode(encvalue): """ Encode value to a Hex entitiy. Example Format: &#x48;&#x65;&#x6c;&#x6c;&#x6f;""" hexval = "" for item in encvalue: val = hex(ord(item)).replace("0x", "&#x") + ";" hexval += val return(hexval) def unicode_encode(encvalue): """ Unicode encode the specified value in the %u00 format. Example: %u0048%u0065%u006c%u006c%u006f%u0020%u0057%u006f%u0072%u006c%u0064 """ hexval = "" for item in encvalue: val = hex(ord(item)).replace("0x", "%u00") hexval += val return(hexval) def escape_xml(encvalue): """ Escape the specified HTML/XML value. Example Format: Hello&amp;World """ escaped = escape(encvalue, {"'": "&apos;", '"': "&quot;"}) return(escaped) def md5_hash(encvalue): """ md5 hash the specified value. Example Format: b10a8db164e0754105b7a99be72e3fe5""" hashdata = hashlib.md5(encvalue).hexdigest() return(hashdata) def sha1_hash(encvalue): """ sha1 hash the specified value. Example Format: 0a4d55a8d778e5022fab701977c5d840bbc486d0 """ hashdata = hashlib.sha1(encvalue).hexdigest() return(hashdata) def sqlchar_encode(encvalue): """ SQL char encode the specified value. Example Format: CHAR(72)+CHAR(101)+CHAR(108)+CHAR(108)+CHAR(111)""" charstring = "" for item in encvalue: val = "CHAR(" + str(ord(item)) + ")+" charstring += val return(charstring.rstrip("+")) #### # oraclechr_encode not tested yet, but should work #### def oraclechr_encode(encvalue): """ Oracle chr encode the specified value. """ charstring = "" for item in encvalue: val = "chr(" + str(ord(item)) + ")||" charstring += val return(charstring.rstrip("||")) def decimal_convert(encvalue): """ Convert input to decimal value. Example Format: 721011081081113287111114108100 """ decvalue = "" for item in encvalue: decvalue += str(ord(item)) return(decvalue) def decimal_entity_encode(encvalue): """ Convert input to a decimal entity. Example Format: &#72;&#101;&#108;&#108;&#111;&#32;&#87;&#111;&#114;&#108;&#100; """ decvalue = "" for item in encvalue: decvalue += "&#" + str(ord(item)) +";" return(decvalue) def rot13_encode(encvalue): """ Perform ROT13 encoding on the specified value. Example Format: Uryyb Jbeyq """ return(encvalue.encode("rot13")) ################### # Decoder section # ################### def url_decode(decvalue): """ URL Decode the specified value. Example Format: Hello%20World """ returnval = urllib.unquote(decvalue) return(returnval) def fullurl_decode(decvalue): """ Full URL decode the specified value. Example Format: %48%65%6c%6c%6f%20%57%6f%72%6c%64 """ splithex = decvalue.split("%") hexdec = "" for item in splithex: if item != "": hexdec += chr(int(item, 16)) return(hexdec) def base64_decode(decvalue): """ Base64 decode the specified value. Example Format: SGVsbG8gV29ybGQ= """ msg = """ There was an error. Most likely this isn't a valid Base64 value and Python choked on it """ try: base64dec = decvalue.decode("Base64") return(base64dec) except: return(msg) def hex_decode(decvalue): """ Hex decode the specified value. Example Format: 48656c6c6f2576f726c64 """ msg = """ There was an error, perhaps an invalid length for the hex value """ try: decodeval = decvalue.decode("hex") return(decodeval) except: return(msg) def hexentity_decode(decvalue): """ Hex entity decode the specified value. Example Format: &#x48;&#x65;&#x6c;&#x6c;&#x6f; """ charval = "" splithex = decvalue.split(";") for item in splithex: # Necessary because split creates an empty "" that tries to be # converted with int() if item != "": hexcon = item.replace("&#", "0") charcon = chr(int(hexcon, 16)) charval += charcon else: pass return(charval) def unescape_xml(decvalue): """ Unescape the specified HTML or XML value: Hel啊lo&amp;World""" unescaped = unescape(decvalue, {"&apos;": "'", "&quot;": '"'}) return(unescaped) def unicode_decode(decvalue): """ Unicode decode the specified value %u00 format. Example Format: %u0048%u0065%u006c%u006c%u006f%u0020%u0057%u006f%u0072%u006c%u0064 """ charval = "" splithex = decvalue.split("%u00") for item in splithex: if item != "": hexcon = item.replace("%u00", "0") charcon = chr(int(hexcon, 16)) charval += charcon else: pass return(charval) def rot13_decode(decvalue): """ ROT13 decode the specified value. Example Format: Uryyb Jbeyq rot13 回转位13 a编码后转换成b,b经过相同的编码之后会转换成 """ return(decvalue.decode("rot13"))
e6d4a5b68241ef8bf821e322cb11bd1f31db75b6
acb8e84e3b9c987fcab341f799f41d5a5ec4d587
/langs/7/rci.py
1499f78fdcb23fcbcc72afecd718862922797f9e
[]
no_license
G4te-Keep3r/HowdyHackers
46bfad63eafe5ac515da363e1c75fa6f4b9bca32
fb6d391aaecb60ab5c4650d4ae2ddd599fd85db2
refs/heads/master
2020-08-01T12:08:10.782018
2016-11-13T20:45:50
2016-11-13T20:45:50
73,624,224
0
1
null
null
null
null
UTF-8
Python
false
false
486
py
import sys def printFunction(lineRemaining): if lineRemaining[0] == '"' and lineRemaining[-1] == '"': if len(lineRemaining) > 2: #data to print lineRemaining = lineRemaining[1:-1] print ' '.join(lineRemaining) else: print def main(fileName): with open(fileName) as f: for line in f: data = line.split() if data[0] == 'rCI': printFunction(data[1:]) else: print 'ERROR' return if __name__ == '__main__': main(sys.argv[1])
2e3138b7aebe9b0d818303c674da9144988dee2d
2b0eab74af8d23244ff11699830f9bb10fbd717a
/helpers/mixins/unpack_tags_mixin.py
5e6e4c11c733fc5368427ac90ddb23bf2e781302
[]
no_license
alexandrenorman/mixeur
c7e25cd20b03c78b361cb40e3e359a6dc5d9b06b
95d21cd6036a99c5f399b700a5426e9e2e17e878
refs/heads/main
2023-03-13T23:50:11.800627
2021-03-07T15:49:15
2021-03-07T15:49:15
345,384,858
0
0
null
null
null
null
UTF-8
Python
false
false
1,277
py
from .unpack_ids_mixin import UnpackIdsMixin class UnpackTagsMixin(UnpackIdsMixin): """ Mixin to apply on a ModelViewSet which transform registered fields from string containing ids to list of objects "1,2,3" => [<Obj id=1>, <Obj id=2>, <Obj id=3>] If a string passed, it will create a new instance of given model with given model name field "1,2,truc" => [<Obj id=1 name=...>, <Obj id=2 name=...>, <new Obj id=3 name="truc">] Should define unpackable fields like this : unpackable_fields = {'data_field_name': (ModelName, 'model_field_name')} """ def get_item_id(self, word, options): """ If given tag contain only digits, use it as id, else create the instance """ item_id = None if word.isdigit(): item_id = int(word) elif options: tag_model, tag_model_field = options existing_tag = tag_model.objects.filter(**{tag_model_field: word}).first() if existing_tag: item_id = existing_tag.id elif word != "": item_id = tag_model.objects.create(**{tag_model_field: word}).id else: return {"id": None} if item_id is not None: return {"id": item_id}
05af6eb6e60b4748045485fcbf36d751acf72583
0c7ff0ec35ba2bb38f99ef6ecb261ec33466dd52
/Day1/day1Project.py
2d1e56254a4ef4fd53ab5a15fdd51db183e510ec
[]
no_license
TheKinshu/100-Days-Python
15cbacc608ee349cc9733a7032e10a359bebb731
293ad6b3e5f5208da84efbc5b2d2d395a5a53421
refs/heads/master
2023-04-18T08:21:30.361800
2021-05-02T18:48:39
2021-05-02T18:48:39
351,582,416
0
0
null
null
null
null
UTF-8
Python
false
false
534
py
#1. Create a greeting for your program. print("Welcome to the Band Name Generator.") #2. Ask the user for the city that they grew up in. city = input("What's name of the city you gre up in?\n") #3. Ask the user for the name of a pet. pet = input("What's your pet's name?\n") #4. Combine the name of their city and pet and show them their band name. print("Your band name could be " + city + " " + pet) #5. Make sure the input cursor shows on a new line, see the example at: # https://band-name-generator-end.appbrewery.repl.run/
d2534e7f9ed2539c6ec7228c87061771a60c4676
1d11288ec1a5d98dcf66c4ca45072ffd29901de0
/mrp_extend/models/mrp_bom_line.py
0731280072097855fc742fa848452a84c7f6fb29
[]
no_license
pyrun13/addons
14202e273c802cee391a68474a6bdc7cf062b25c
b81650d81e0a227dd4fc460846e53ce5e61a8cc1
refs/heads/master
2020-09-07T21:48:18.673226
2019-11-12T16:15:06
2019-11-12T16:15:06
220,921,425
0
0
null
null
null
null
UTF-8
Python
false
false
412
py
from odoo import models, fields, api, exceptions class MrpBomLine(models.Model): _inherit = 'mrp.bom.line' attrition_rate = fields.Float(string='损耗率(%)') def write(self, vals): attrition_rate = vals.get('attrition_rate', 0) if attrition_rate < 0: raise exceptions.ValidationError('损耗率不能为负数!') return super(MrpBomLine, self).write(vals)
8c59ff3068e701a47f55427121fb4d45c93db56c
649e2af15011b3c6326436e91a9dd9af0c3a6f8f
/vnpy/app/spread_trading/engine.py
0a6901795c79ebaf15b64c56c62d0f2272d57e13
[ "MIT" ]
permissive
Loopring/vnpy
6270662260c2fdbeed846f0370d1b5eecea7c7bf
f7945b23e29dab8bfdf064da6a6cb815bb755b17
refs/heads/loopring-release
2023-07-16T23:11:10.174728
2021-09-06T04:01:00
2021-09-06T04:01:00
277,985,227
21
6
MIT
2021-01-23T02:21:08
2020-07-08T03:59:17
Python
UTF-8
Python
false
false
31,837
py
import traceback import importlib import os from typing import List, Dict, Set, Callable, Any, Type from collections import defaultdict from copy import copy from pathlib import Path from datetime import datetime, timedelta from vnpy.event import EventEngine, Event from vnpy.trader.engine import BaseEngine, MainEngine from vnpy.trader.event import ( EVENT_TICK, EVENT_POSITION, EVENT_CONTRACT, EVENT_ORDER, EVENT_TRADE, EVENT_TIMER ) from vnpy.trader.utility import load_json, save_json from vnpy.trader.object import ( TickData, ContractData, LogData, SubscribeRequest, OrderRequest ) from vnpy.trader.constant import ( Direction, Offset, OrderType, Interval ) from vnpy.trader.converter import OffsetConverter from .base import ( LegData, SpreadData, EVENT_SPREAD_DATA, EVENT_SPREAD_POS, EVENT_SPREAD_ALGO, EVENT_SPREAD_LOG, EVENT_SPREAD_STRATEGY, load_bar_data, load_tick_data ) from .template import SpreadAlgoTemplate, SpreadStrategyTemplate from .algo import SpreadTakerAlgo APP_NAME = "SpreadTrading" class SpreadEngine(BaseEngine): """""" def __init__(self, main_engine: MainEngine, event_engine: EventEngine): """Constructor""" super().__init__(main_engine, event_engine, APP_NAME) self.active = False self.data_engine: SpreadDataEngine = SpreadDataEngine(self) self.algo_engine: SpreadAlgoEngine = SpreadAlgoEngine(self) self.strategy_engine: SpreadStrategyEngine = SpreadStrategyEngine(self) self.add_spread = self.data_engine.add_spread self.remove_spread = self.data_engine.remove_spread self.get_spread = self.data_engine.get_spread self.get_all_spreads = self.data_engine.get_all_spreads self.start_algo = self.algo_engine.start_algo self.stop_algo = self.algo_engine.stop_algo def start(self): """""" if self.active: return self.active = True self.data_engine.start() self.algo_engine.start() self.strategy_engine.start() def stop(self): """""" self.data_engine.stop() self.algo_engine.stop() self.strategy_engine.stop() def write_log(self, msg: str): """""" log = LogData( msg=msg, gateway_name=APP_NAME ) event = Event(EVENT_SPREAD_LOG, log) self.event_engine.put(event) class SpreadDataEngine: """""" setting_filename = "spread_trading_setting.json" def __init__(self, spread_engine: SpreadEngine): """""" self.spread_engine: SpreadEngine = spread_engine self.main_engine: MainEngine = spread_engine.main_engine self.event_engine: EventEngine = spread_engine.event_engine self.write_log = spread_engine.write_log self.legs: Dict[str, LegData] = {} # vt_symbol: leg self.spreads: Dict[str, SpreadData] = {} # name: spread self.symbol_spread_map: Dict[str, List[SpreadData]] = defaultdict(list) def start(self): """""" self.load_setting() self.register_event() self.write_log("价差数据引擎启动成功") def stop(self): """""" pass def load_setting(self) -> None: """""" setting = load_json(self.setting_filename) for spread_setting in setting: self.add_spread( spread_setting["name"], spread_setting["leg_settings"], spread_setting["active_symbol"], spread_setting.get("min_volume", 1), save=False ) def save_setting(self) -> None: """""" setting = [] for spread in self.spreads.values(): leg_settings = [] for leg in spread.legs.values(): price_multiplier = spread.price_multipliers[leg.vt_symbol] trading_multiplier = spread.trading_multipliers[leg.vt_symbol] inverse_contract = spread.inverse_contracts[leg.vt_symbol] leg_setting = { "vt_symbol": leg.vt_symbol, "price_multiplier": price_multiplier, "trading_multiplier": trading_multiplier, "inverse_contract": inverse_contract } leg_settings.append(leg_setting) spread_setting = { "name": spread.name, "leg_settings": leg_settings, "active_symbol": spread.active_leg.vt_symbol, "min_volume": spread.min_volume } setting.append(spread_setting) save_json(self.setting_filename, setting) def register_event(self) -> None: """""" self.event_engine.register(EVENT_TICK, self.process_tick_event) self.event_engine.register(EVENT_TRADE, self.process_trade_event) self.event_engine.register(EVENT_POSITION, self.process_position_event) self.event_engine.register(EVENT_CONTRACT, self.process_contract_event) def process_tick_event(self, event: Event) -> None: """""" tick = event.data leg = self.legs.get(tick.vt_symbol, None) if not leg: return leg.update_tick(tick) for spread in self.symbol_spread_map[tick.vt_symbol]: spread.calculate_price() self.put_data_event(spread) def process_position_event(self, event: Event) -> None: """""" position = event.data leg = self.legs.get(position.vt_symbol, None) if not leg: return leg.update_position(position) for spread in self.symbol_spread_map[position.vt_symbol]: spread.calculate_pos() self.put_pos_event(spread) def process_trade_event(self, event: Event) -> None: """""" trade = event.data leg = self.legs.get(trade.vt_symbol, None) if not leg: return leg.update_trade(trade) for spread in self.symbol_spread_map[trade.vt_symbol]: spread.calculate_pos() self.put_pos_event(spread) def process_contract_event(self, event: Event) -> None: """""" contract = event.data leg = self.legs.get(contract.vt_symbol, None) if leg: # Update contract data leg.update_contract(contract) req = SubscribeRequest( contract.symbol, contract.exchange ) self.main_engine.subscribe(req, contract.gateway_name) def put_data_event(self, spread: SpreadData) -> None: """""" event = Event(EVENT_SPREAD_DATA, spread) self.event_engine.put(event) def put_pos_event(self, spread: SpreadData) -> None: """""" event = Event(EVENT_SPREAD_POS, spread) self.event_engine.put(event) def get_leg(self, vt_symbol: str) -> LegData: """""" leg = self.legs.get(vt_symbol, None) if not leg: leg = LegData(vt_symbol) self.legs[vt_symbol] = leg # Subscribe market data contract = self.main_engine.get_contract(vt_symbol) if contract: leg.update_contract(contract) req = SubscribeRequest( contract.symbol, contract.exchange ) self.main_engine.subscribe(req, contract.gateway_name) # Initialize leg position for direction in Direction: vt_positionid = f"{vt_symbol}.{direction.value}" position = self.main_engine.get_position(vt_positionid) if position: leg.update_position(position) return leg def add_spread( self, name: str, leg_settings: List[Dict], active_symbol: str, min_volume: float, save: bool = True ) -> None: """""" if name in self.spreads: self.write_log("价差创建失败,名称重复:{}".format(name)) return legs: List[LegData] = [] price_multipliers: Dict[str, int] = {} trading_multipliers: Dict[str, int] = {} inverse_contracts: Dict[str, bool] = {} for leg_setting in leg_settings: vt_symbol = leg_setting["vt_symbol"] leg = self.get_leg(vt_symbol) legs.append(leg) price_multipliers[vt_symbol] = leg_setting["price_multiplier"] trading_multipliers[vt_symbol] = leg_setting["trading_multiplier"] inverse_contracts[vt_symbol] = leg_setting.get( "inverse_contract", False) spread = SpreadData( name, legs, price_multipliers, trading_multipliers, active_symbol, inverse_contracts, min_volume ) self.spreads[name] = spread for leg in spread.legs.values(): self.symbol_spread_map[leg.vt_symbol].append(spread) if save: self.save_setting() self.write_log("价差创建成功:{}".format(name)) self.put_data_event(spread) def remove_spread(self, name: str) -> None: """""" if name not in self.spreads: return spread = self.spreads.pop(name) for leg in spread.legs.values(): self.symbol_spread_map[leg.vt_symbol].remove(spread) self.save_setting() self.write_log("价差移除成功:{},重启后生效".format(name)) def get_spread(self, name: str) -> SpreadData: """""" spread = self.spreads.get(name, None) return spread def get_all_spreads(self) -> List[SpreadData]: """""" return list(self.spreads.values()) class SpreadAlgoEngine: """""" algo_class = SpreadTakerAlgo def __init__(self, spread_engine: SpreadEngine): """""" self.spread_engine: SpreadEngine = spread_engine self.main_engine: MainEngine = spread_engine.main_engine self.event_engine: EventEngine = spread_engine.event_engine self.write_log = spread_engine.write_log self.spreads: Dict[str: SpreadData] = {} self.algos: Dict[str: SpreadAlgoTemplate] = {} self.order_algo_map: dict[str: SpreadAlgoTemplate] = {} self.symbol_algo_map: dict[str: SpreadAlgoTemplate] = defaultdict(list) self.algo_count: int = 0 self.vt_tradeids: Set = set() self.offset_converter: OffsetConverter = OffsetConverter( self.main_engine ) def start(self): """""" self.register_event() self.write_log("价差算法引擎启动成功") def stop(self): """""" for algo in self.algos.values(): self.stop_algo(algo) def register_event(self): """""" self.event_engine.register(EVENT_TICK, self.process_tick_event) self.event_engine.register(EVENT_ORDER, self.process_order_event) self.event_engine.register(EVENT_TRADE, self.process_trade_event) self.event_engine.register(EVENT_POSITION, self.process_position_event) self.event_engine.register(EVENT_TIMER, self.process_timer_event) self.event_engine.register( EVENT_SPREAD_DATA, self.process_spread_event ) def process_spread_event(self, event: Event): """""" spread: SpreadData = event.data self.spreads[spread.name] = spread def process_tick_event(self, event: Event): """""" tick = event.data algos = self.symbol_algo_map[tick.vt_symbol] if not algos: return buf = copy(algos) for algo in buf: if not algo.is_active(): algos.remove(algo) else: algo.update_tick(tick) def process_order_event(self, event: Event): """""" order = event.data self.offset_converter.update_order(order) algo = self.order_algo_map.get(order.vt_orderid, None) if algo and algo.is_active(): algo.update_order(order) def process_trade_event(self, event: Event): """""" trade = event.data # Filter duplicate trade push if trade.vt_tradeid in self.vt_tradeids: return self.vt_tradeids.add(trade.vt_tradeid) self.offset_converter.update_trade(trade) algo = self.order_algo_map.get(trade.vt_orderid, None) if algo and algo.is_active(): algo.update_trade(trade) def process_position_event(self, event: Event): """""" position = event.data self.offset_converter.update_position(position) def process_timer_event(self, event: Event): """""" buf = list(self.algos.values()) for algo in buf: if not algo.is_active(): self.algos.pop(algo.algoid) else: algo.update_timer() def start_algo( self, spread_name: str, direction: Direction, offset: Offset, price: float, volume: float, payup: int, interval: int, lock: bool ) -> str: # Find spread object spread = self.spreads.get(spread_name, None) if not spread: self.write_log("创建价差算法失败,找不到价差:{}".format(spread_name)) return "" # Generate algoid str self.algo_count += 1 algo_count_str = str(self.algo_count).rjust(6, "0") algoid = f"{self.algo_class.algo_name}_{algo_count_str}" # Create algo object algo = self.algo_class( self, algoid, spread, direction, offset, price, volume, payup, interval, lock ) self.algos[algoid] = algo # Generate map between vt_symbol and algo for leg in spread.legs.values(): self.symbol_algo_map[leg.vt_symbol].append(algo) # Put event to update GUI self.put_algo_event(algo) return algoid def stop_algo( self, algoid: str ): """""" algo = self.algos.get(algoid, None) if not algo: self.write_log("停止价差算法失败,找不到算法:{}".format(algoid)) return algo.stop() def put_algo_event(self, algo: SpreadAlgoTemplate) -> None: """""" event = Event(EVENT_SPREAD_ALGO, algo) self.event_engine.put(event) def write_algo_log(self, algo: SpreadAlgoTemplate, msg: str) -> None: """""" msg = f"{algo.algoid}:{msg}" self.write_log(msg) def send_order( self, algo: SpreadAlgoTemplate, vt_symbol: str, price: float, volume: float, direction: Direction, lock: bool ) -> List[str]: """""" holding = self.offset_converter.get_position_holding(vt_symbol) contract = self.main_engine.get_contract(vt_symbol) if direction == Direction.LONG: available = holding.short_pos - holding.short_pos_frozen else: available = holding.long_pos - holding.long_pos_frozen # If no position to close, just open new if not available: offset = Offset.OPEN # If enougth position to close, just close old elif volume < available: offset = Offset.CLOSE # Otherwise, just close existing position else: volume = available offset = Offset.CLOSE original_req = OrderRequest( symbol=contract.symbol, exchange=contract.exchange, direction=direction, offset=offset, type=OrderType.LIMIT, price=price, volume=volume ) # Convert with offset converter req_list = self.offset_converter.convert_order_request( original_req, lock) # Send Orders vt_orderids = [] for req in req_list: vt_orderid = self.main_engine.send_order( req, contract.gateway_name) # Check if sending order successful if not vt_orderid: continue vt_orderids.append(vt_orderid) self.offset_converter.update_order_request(req, vt_orderid) # Save relationship between orderid and algo. self.order_algo_map[vt_orderid] = algo return vt_orderids def cancel_order(self, algo: SpreadAlgoTemplate, vt_orderid: str) -> None: """""" order = self.main_engine.get_order(vt_orderid) if not order: self.write_algo_log(algo, "撤单失败,找不到委托{}".format(vt_orderid)) return req = order.create_cancel_request() self.main_engine.cancel_order(req, order.gateway_name) def get_tick(self, vt_symbol: str) -> TickData: """""" return self.main_engine.get_tick(vt_symbol) def get_contract(self, vt_symbol: str) -> ContractData: """""" return self.main_engine.get_contract(vt_symbol) class SpreadStrategyEngine: """""" setting_filename = "spread_trading_strategy.json" def __init__(self, spread_engine: SpreadEngine): """""" self.spread_engine: SpreadEngine = spread_engine self.main_engine: MainEngine = spread_engine.main_engine self.event_engine: EventEngine = spread_engine.event_engine self.write_log = spread_engine.write_log self.strategy_setting: Dict[str: Dict] = {} self.classes: Dict[str: Type[SpreadStrategyTemplate]] = {} self.strategies: Dict[str: SpreadStrategyTemplate] = {} self.order_strategy_map: dict[str: SpreadStrategyTemplate] = {} self.algo_strategy_map: dict[str: SpreadStrategyTemplate] = {} self.spread_strategy_map: dict[str: SpreadStrategyTemplate] = defaultdict( list) self.vt_tradeids: Set = set() self.load_strategy_class() def start(self): """""" self.load_strategy_setting() self.register_event() self.write_log("价差策略引擎启动成功") def close(self): """""" self.stop_all_strategies() def load_strategy_class(self): """ Load strategy class from source code. """ path1 = Path(__file__).parent.joinpath("strategies") self.load_strategy_class_from_folder( path1, "vnpy.app.spread_trading.strategies") path2 = Path.cwd().joinpath("strategies") self.load_strategy_class_from_folder(path2, "strategies") def load_strategy_class_from_folder(self, path: Path, module_name: str = ""): """ Load strategy class from certain folder. """ for dirpath, dirnames, filenames in os.walk(str(path)): for filename in filenames: if filename.split(".")[-1] in ("py", "pyd", "so"): strategy_module_name = ".".join([module_name, filename.split(".")[0]]) self.load_strategy_class_from_module(strategy_module_name) def load_strategy_class_from_module(self, module_name: str): """ Load strategy class from module file. """ try: module = importlib.import_module(module_name) for name in dir(module): value = getattr(module, name) if (isinstance(value, type) and issubclass(value, SpreadStrategyTemplate) and value is not SpreadStrategyTemplate): self.classes[value.__name__] = value except: # noqa msg = f"策略文件{module_name}加载失败,触发异常:\n{traceback.format_exc()}" self.write_log(msg) def get_all_strategy_class_names(self): """""" return list(self.classes.keys()) def load_strategy_setting(self): """ Load setting file. """ self.strategy_setting = load_json(self.setting_filename) for strategy_name, strategy_config in self.strategy_setting.items(): self.add_strategy( strategy_config["class_name"], strategy_name, strategy_config["spread_name"], strategy_config["setting"] ) def update_strategy_setting(self, strategy_name: str, setting: dict): """ Update setting file. """ strategy = self.strategies[strategy_name] self.strategy_setting[strategy_name] = { "class_name": strategy.__class__.__name__, "spread_name": strategy.spread_name, "setting": setting, } save_json(self.setting_filename, self.strategy_setting) def remove_strategy_setting(self, strategy_name: str): """ Update setting file. """ if strategy_name not in self.strategy_setting: return self.strategy_setting.pop(strategy_name) save_json(self.setting_filename, self.strategy_setting) def register_event(self): """""" ee = self.event_engine ee.register(EVENT_ORDER, self.process_order_event) ee.register(EVENT_TRADE, self.process_trade_event) ee.register(EVENT_SPREAD_DATA, self.process_spread_data_event) ee.register(EVENT_SPREAD_POS, self.process_spread_pos_event) ee.register(EVENT_SPREAD_ALGO, self.process_spread_algo_event) def process_spread_data_event(self, event: Event): """""" spread = event.data strategies = self.spread_strategy_map[spread.name] for strategy in strategies: if strategy.inited: self.call_strategy_func(strategy, strategy.on_spread_data) def process_spread_pos_event(self, event: Event): """""" spread = event.data strategies = self.spread_strategy_map[spread.name] for strategy in strategies: if strategy.inited: self.call_strategy_func(strategy, strategy.on_spread_pos) def process_spread_algo_event(self, event: Event): """""" algo = event.data strategy = self.algo_strategy_map.get(algo.algoid, None) if strategy: self.call_strategy_func( strategy, strategy.update_spread_algo, algo) def process_order_event(self, event: Event): """""" order = event.data strategy = self.order_strategy_map.get(order.vt_orderid, None) if strategy: self.call_strategy_func(strategy, strategy.update_order, order) def process_trade_event(self, event: Event): """""" trade = event.data strategy = self.order_strategy_map.get(trade.vt_orderid, None) if strategy: self.call_strategy_func(strategy, strategy.on_trade, trade) def call_strategy_func( self, strategy: SpreadStrategyTemplate, func: Callable, params: Any = None ): """ Call function of a strategy and catch any exception raised. """ try: if params: func(params) else: func() except Exception: strategy.trading = False strategy.inited = False msg = f"触发异常已停止\n{traceback.format_exc()}" self.write_strategy_log(strategy, msg) def add_strategy( self, class_name: str, strategy_name: str, spread_name: str, setting: dict ): """ Add a new strategy. """ if strategy_name in self.strategies: self.write_log(f"创建策略失败,存在重名{strategy_name}") return strategy_class = self.classes.get(class_name, None) if not strategy_class: self.write_log(f"创建策略失败,找不到策略类{class_name}") return spread = self.spread_engine.get_spread(spread_name) if not spread: self.write_log(f"创建策略失败,找不到价差{spread_name}") return strategy = strategy_class(self, strategy_name, spread, setting) self.strategies[strategy_name] = strategy # Add vt_symbol to strategy map. strategies = self.spread_strategy_map[spread_name] strategies.append(strategy) # Update to setting file. self.update_strategy_setting(strategy_name, setting) self.put_strategy_event(strategy) def edit_strategy(self, strategy_name: str, setting: dict): """ Edit parameters of a strategy. """ strategy = self.strategies[strategy_name] strategy.update_setting(setting) self.update_strategy_setting(strategy_name, setting) self.put_strategy_event(strategy) def remove_strategy(self, strategy_name: str): """ Remove a strategy. """ strategy = self.strategies[strategy_name] if strategy.trading: self.write_log(f"策略{strategy.strategy_name}移除失败,请先停止") return # Remove setting self.remove_strategy_setting(strategy_name) # Remove from symbol strategy map strategies = self.spread_strategy_map[strategy.spread_name] strategies.remove(strategy) # Remove from strategies self.strategies.pop(strategy_name) return True def init_strategy(self, strategy_name: str): """""" strategy = self.strategies[strategy_name] if strategy.inited: self.write_log(f"{strategy_name}已经完成初始化,禁止重复操作") return self.call_strategy_func(strategy, strategy.on_init) strategy.inited = True self.put_strategy_event(strategy) self.write_log(f"{strategy_name}初始化完成") def start_strategy(self, strategy_name: str): """""" strategy = self.strategies[strategy_name] if not strategy.inited: self.write_log(f"策略{strategy.strategy_name}启动失败,请先初始化") return if strategy.trading: self.write_log(f"{strategy_name}已经启动,请勿重复操作") return self.call_strategy_func(strategy, strategy.on_start) strategy.trading = True self.put_strategy_event(strategy) def stop_strategy(self, strategy_name: str): """""" strategy = self.strategies[strategy_name] if not strategy.trading: return self.call_strategy_func(strategy, strategy.on_stop) strategy.stop_all_algos() strategy.cancel_all_orders() strategy.trading = False self.put_strategy_event(strategy) def init_all_strategies(self): """""" for strategy in self.strategies.keys(): self.init_strategy(strategy) def start_all_strategies(self): """""" for strategy in self.strategies.keys(): self.start_strategy(strategy) def stop_all_strategies(self): """""" for strategy in self.strategies.keys(): self.stop_strategy(strategy) def get_strategy_class_parameters(self, class_name: str): """ Get default parameters of a strategy class. """ strategy_class = self.classes[class_name] parameters = {} for name in strategy_class.parameters: parameters[name] = getattr(strategy_class, name) return parameters def get_strategy_parameters(self, strategy_name): """ Get parameters of a strategy. """ strategy = self.strategies[strategy_name] return strategy.get_parameters() def start_algo( self, strategy: SpreadStrategyTemplate, spread_name: str, direction: Direction, offset: Offset, price: float, volume: float, payup: int, interval: int, lock: bool ) -> str: """""" algoid = self.spread_engine.start_algo( spread_name, direction, offset, price, volume, payup, interval, lock ) self.algo_strategy_map[algoid] = strategy return algoid def stop_algo(self, strategy: SpreadStrategyTemplate, algoid: str): """""" self.spread_engine.stop_algo(algoid) def stop_all_algos(self, strategy: SpreadStrategyTemplate): """""" pass def send_order( self, strategy: SpreadStrategyTemplate, vt_symbol: str, price: float, volume: float, direction: Direction, offset: Offset, lock: bool ) -> List[str]: contract = self.main_engine.get_contract(vt_symbol) original_req = OrderRequest( symbol=contract.symbol, exchange=contract.exchange, direction=direction, offset=offset, type=OrderType.LIMIT, price=price, volume=volume ) # Convert with offset converter req_list = self.offset_converter.convert_order_request( original_req, lock) # Send Orders vt_orderids = [] for req in req_list: vt_orderid = self.main_engine.send_order( req, contract.gateway_name) # Check if sending order successful if not vt_orderid: continue vt_orderids.append(vt_orderid) self.offset_converter.update_order_request(req, vt_orderid) # Save relationship between orderid and strategy. self.order_strategy_map[vt_orderid] = strategy return vt_orderids def cancel_order(self, strategy: SpreadStrategyTemplate, vt_orderid: str): """""" order = self.main_engine.get_order(vt_orderid) if not order: self.write_strategy_log( strategy, "撤单失败,找不到委托{}".format(vt_orderid)) return req = order.create_cancel_request() self.main_engine.cancel_order(req, order.gateway_name) def cancel_all_orders(self, strategy: SpreadStrategyTemplate): """""" pass def put_strategy_event(self, strategy: SpreadStrategyTemplate): """""" data = strategy.get_data() event = Event(EVENT_SPREAD_STRATEGY, data) self.event_engine.put(event) def write_strategy_log(self, strategy: SpreadStrategyTemplate, msg: str): """""" msg = f"{strategy.strategy_name}:{msg}" self.write_log(msg) def send_strategy_email(self, strategy: SpreadStrategyTemplate, msg: str): """""" if strategy: subject = f"{strategy.strategy_name}" else: subject = "价差策略引擎" self.main_engine.send_email(subject, msg) def load_bar( self, spread: SpreadData, days: int, interval: Interval, callback: Callable ): """""" end = datetime.now() start = end - timedelta(days) bars = load_bar_data(spread, interval, start, end) for bar in bars: callback(bar) def load_tick(self, spread: SpreadData, days: int, callback: Callable): """""" end = datetime.now() start = end - timedelta(days) ticks = load_tick_data(spread, start, end) for tick in ticks: callback(tick)
d9431f1fb2020f8d301376bed93ef53f3204cbf1
0c110eb32f2eaea5c65d40bda846ddc05757ced6
/python_scripts/pimriscripts/mastersort/scripts_dir/p7432_run2M1.py
39656c11ebf8cd9db049ce6d7b9a74d8b7e3f30a
[]
no_license
nyspisoccog/ks_scripts
792148a288d1a9d808e397c1d2e93deda2580ff4
744b5a9dfa0f958062fc66e0331613faaaee5419
refs/heads/master
2021-01-18T14:22:25.291331
2018-10-15T13:08:24
2018-10-15T13:08:24
46,814,408
0
0
null
null
null
null
UTF-8
Python
false
false
1,193
py
from __future__ import with_statement import os, csv, shutil,tarfile, uf, dcm_ops dest_root = '/ifs/scratch/pimri/soccog/test_working' dst_path_lst = ['7432', 'run2M1'] uf.buildtree(dest_root, dst_path_lst) uf.copytree('/ifs/scratch/pimri/soccog/old/SocCog_Raw_Data_By_Exam_Number/2480/e1331017/s1388354_5610_2M1_s30', '/ifs/scratch/pimri/soccog/test_working/7432/run2M1') t = tarfile.open(os.path.join('/ifs/scratch/pimri/soccog/test_working/7432/run2M1','MRDC_files.tar.gz'), 'r') t.extractall('/ifs/scratch/pimri/soccog/test_working/7432/run2M1') for f in os.listdir('/ifs/scratch/pimri/soccog/test_working/7432/run2M1'): if 'MRDC' in f and 'gz' not in f: old = os.path.join('/ifs/scratch/pimri/soccog/test_working/7432/run2M1', f) new = os.path.join('/ifs/scratch/pimri/soccog/test_working/7432/run2M1', f + '.dcm') os.rename(old, new) qsub_cnv_out = dcm_ops.cnv_dcm('/ifs/scratch/pimri/soccog/test_working/7432/run2M1', '7432_run2M1', '/ifs/scratch/pimri/soccog/scripts/mastersort/scripts_dir/cnv') #qsub_cln_out = dcm_ops.cnv_dcm('/ifs/scratch/pimri/soccog/test_working/7432/run2M1', '7432_run2M1', '/ifs/scratch/pimri/soccog/scripts/mastersort/scripts_dir/cln')
0203f8b7a170b9c90a9503a129644d67e720066b
de121a951947f70f402079d288a78d35c85747b2
/exercises/exercises_04.py
79cb7651e375b500210a4054a4ae7430a01afd4a
[]
no_license
tpurnachander/requests-workshop
56899be6c5520fb947d91676c11864d09b4489d6
dac134558f141c482e0a52f19fdce37b7e7ba928
refs/heads/master
2023-03-10T19:00:31.012280
2021-02-19T12:08:54
2021-02-19T12:08:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,359
py
import requests import xml.etree.ElementTree as et # Exercise 4.1 # Create a function create_xml_body_from_string() # that returns a docstring (with triple double quotes) # containing the following XML document: # <payee> # <name>John Smith</name> # <address> # <street>My street</street> # <city>My city</city> # <state>My state</state> # <zipCode>90210</zipCode> # </address> # <phoneNumber>0123456789</phoneNumber> # <accountNumber>12345</accountNumber> # </payee> # Exercise 4.2 # Write a test that POSTs the object created in 4.1 # to http://parabank.parasoft.com/parabank/services/bank/billpay?accountId=12345&amount=500 # Set the request header 'Content-Type' to 'application/xml' # Then check that the response status code is 200 # and that the value of the response header 'Content-Type' is also equal to 'application/xml' # Exercise 4.3 # Write a method create_xml_body_using_elementtree() that returns # the same request body as in Exercise 4.1, but now uses the # ElementTree library (I've imported that for you already, it's available as 'et') # Make your life a little easier by specifying all element values as strings # Exercise 4.4 # Repeat Exercise 4.2, but now use the XML document created in Exercise 4.3 # Don't forget to convert the XML document to a string before sending it!
a5e2debc3b4de63242c2bc5f62e4db0ae3a58645
44f07b81df56d7ea44775784a9697648fe481478
/day8/faceapp/facedetect.py
ab3e244e889618a394e6791b7b7b4edf81d25532
[]
no_license
shaadomanthra/cbpython-advanced
436510c70deca4e1ef01517f87bba0e392583a88
86b613f89ca0b0cd8b243c157af1a2807e6ce605
refs/heads/master
2022-11-30T23:33:45.938854
2020-08-12T11:20:03
2020-08-12T11:20:03
276,316,817
0
0
null
null
null
null
UTF-8
Python
false
false
841
py
## detect face and draw rectangles # import packages (pip install opencv-python) from cv2 import cv2 import sys # path for image and cascade imagePath = 'images/f1.jpg' cascPath = "haarcascade_frontalface_default.xml" # Create the haar cascade faceCascade = cv2.CascadeClassifier(cascPath) # Read the image & convert to gray scale image = cv2.imread(imagePath) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Detect faces in the image faces = faceCascade.detectMultiScale( gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30) ) print(faces) # # Draw a rectangle around the faces for (x, y, w, h) in faces: cv2.rectangle(image, (x, y), (x+w, y+h), (0, 255, 0), 2) # # # # # # open the image widow to display cv2.imshow("Faces found", image) cv2.waitKey(0) # Saving the image # cv2.imwrite(saveimagePath, image)
001b8e5d7167d9f7ae30d9510713bbc363cc653b
da934e0010380fdc6894063540f61b0ebc2c9ded
/nova/crypto.py
1f35ffa3915dad74a002a55998c536549c4b8d2d
[ "Apache-2.0" ]
permissive
bopopescu/cc-2
ed4f1dfe3c98f476ff619058d99855a16272d36b
37444fb16b36743c439b0d6c3cac2347e0cc0a94
refs/heads/master
2022-11-23T03:57:12.255817
2014-10-02T06:10:46
2014-10-02T06:10:46
282,512,589
0
0
Apache-2.0
2020-07-25T19:36:05
2020-07-25T19:36:05
null
UTF-8
Python
false
false
7,863
py
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright [2010] [Anso Labs, LLC] # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Wrappers around standard crypto, including root and intermediate CAs, SSH keypairs and x509 certificates. """ import hashlib import logging import os import shutil import tempfile import time import utils from nova import vendor import M2Crypto from nova import exception from nova import flags FLAGS = flags.FLAGS flags.DEFINE_string('ca_file', 'cacert.pem', 'Filename of root CA') flags.DEFINE_string('keys_path', utils.abspath('../keys'), 'Where we keep our keys') flags.DEFINE_string('ca_path', utils.abspath('../CA'), 'Where we keep our root CA') flags.DEFINE_boolean('use_intermediate_ca', False, 'Should we use intermediate CAs for each project?') def ca_path(project_id): if project_id: return "%s/INTER/%s/cacert.pem" % (FLAGS.ca_path, project_id) return "%s/cacert.pem" % (FLAGS.ca_path) def fetch_ca(project_id=None, chain=True): if not FLAGS.use_intermediate_ca: project_id = None buffer = "" if project_id: with open(ca_path(project_id),"r") as cafile: buffer += cafile.read() if not chain: return buffer with open(ca_path(None),"r") as cafile: buffer += cafile.read() return buffer def generate_key_pair(bits=1024): # what is the magic 65537? tmpdir = tempfile.mkdtemp() keyfile = os.path.join(tmpdir, 'temp') utils.execute('ssh-keygen -q -b %d -N "" -f %s' % (bits, keyfile)) (out, err) = utils.execute('ssh-keygen -q -l -f %s.pub' % (keyfile)) fingerprint = out.split(' ')[1] private_key = open(keyfile).read() public_key = open(keyfile + '.pub').read() shutil.rmtree(tmpdir) # code below returns public key in pem format # key = M2Crypto.RSA.gen_key(bits, 65537, callback=lambda: None) # private_key = key.as_pem(cipher=None) # bio = M2Crypto.BIO.MemoryBuffer() # key.save_pub_key_bio(bio) # public_key = bio.read() # public_key, err = execute('ssh-keygen -y -f /dev/stdin', private_key) return (private_key, public_key, fingerprint) def ssl_pub_to_ssh_pub(ssl_public_key, name='root', suffix='nova'): """requires lsh-utils""" convert="sed -e'1d' -e'$d' | pkcs1-conv --public-key-info --base-64 |" \ + " sexp-conv | sed -e'1s/(rsa-pkcs1/(rsa-pkcs1-sha1/' | sexp-conv -s" \ + " transport | lsh-export-key --openssh" (out, err) = utils.execute(convert, ssl_public_key) if err: raise exception.Error("Failed to generate key: %s", err) return '%s %s@%s\n' %(out.strip(), name, suffix) def generate_x509_cert(subject="/C=US/ST=California/L=The Mission/O=CloudFed/OU=NOVA/CN=foo", bits=1024): tmpdir = tempfile.mkdtemp() keyfile = os.path.abspath(os.path.join(tmpdir, 'temp.key')) csrfile = os.path.join(tmpdir, 'temp.csr') logging.debug("openssl genrsa -out %s %s" % (keyfile, bits)) utils.runthis("Generating private key: %s", "openssl genrsa -out %s %s" % (keyfile, bits)) utils.runthis("Generating CSR: %s", "openssl req -new -key %s -out %s -batch -subj %s" % (keyfile, csrfile, subject)) private_key = open(keyfile).read() csr = open(csrfile).read() shutil.rmtree(tmpdir) return (private_key, csr) def sign_csr(csr_text, intermediate=None): if not FLAGS.use_intermediate_ca: intermediate = None if not intermediate: return _sign_csr(csr_text, FLAGS.ca_path) user_ca = "%s/INTER/%s" % (FLAGS.ca_path, intermediate) if not os.path.exists(user_ca): start = os.getcwd() os.chdir(FLAGS.ca_path) utils.runthis("Generating intermediate CA: %s", "sh geninter.sh %s" % (intermediate)) os.chdir(start) return _sign_csr(csr_text, user_ca) def _sign_csr(csr_text, ca_folder): tmpfolder = tempfile.mkdtemp() csrfile = open("%s/inbound.csr" % (tmpfolder), "w") csrfile.write(csr_text) csrfile.close() logging.debug("Flags path: %s" % ca_folder) start = os.getcwd() # Change working dir to CA os.chdir(ca_folder) utils.runthis("Signing cert: %s", "openssl ca -batch -out %s/outbound.crt -config ./openssl.cnf -infiles %s/inbound.csr" % (tmpfolder, tmpfolder)) os.chdir(start) with open("%s/outbound.crt" % (tmpfolder), "r") as crtfile: return crtfile.read() def mkreq(bits, subject="foo", ca=0): pk = M2Crypto.EVP.PKey() req = M2Crypto.X509.Request() rsa = M2Crypto.RSA.gen_key(bits, 65537, callback=lambda: None) pk.assign_rsa(rsa) rsa = None # should not be freed here req.set_pubkey(pk) req.set_subject(subject) req.sign(pk,'sha512') assert req.verify(pk) pk2 = req.get_pubkey() assert req.verify(pk2) return req, pk def mkcacert(subject='nova', years=1): req, pk = mkreq(2048, subject, ca=1) pkey = req.get_pubkey() sub = req.get_subject() cert = M2Crypto.X509.X509() cert.set_serial_number(1) cert.set_version(2) cert.set_subject(sub) # FIXME subject is not set in mkreq yet t = long(time.time()) + time.timezone now = M2Crypto.ASN1.ASN1_UTCTIME() now.set_time(t) nowPlusYear = M2Crypto.ASN1.ASN1_UTCTIME() nowPlusYear.set_time(t + (years * 60 * 60 * 24 * 365)) cert.set_not_before(now) cert.set_not_after(nowPlusYear) issuer = M2Crypto.X509.X509_Name() issuer.C = "US" issuer.CN = subject cert.set_issuer(issuer) cert.set_pubkey(pkey) ext = M2Crypto.X509.new_extension('basicConstraints', 'CA:TRUE') cert.add_ext(ext) cert.sign(pk, 'sha512') # print 'cert', dir(cert) print cert.as_pem() print pk.get_rsa().as_pem() return cert, pk, pkey # Copyright (c) 2006-2009 Mitch Garnaat http://garnaat.org/ # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, dis- # tribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to the fol- # lowing conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABIL- # ITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT # SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. # http://code.google.com/p/boto def compute_md5(fp): """ @type fp: file @param fp: File pointer to the file to MD5 hash. The file pointer will be reset to the beginning of the file before the method returns. @rtype: tuple @return: the hex digest version of the MD5 hash """ m = hashlib.md5() fp.seek(0) s = fp.read(8192) while s: m.update(s) s = fp.read(8192) hex_md5 = m.hexdigest() # size = fp.tell() fp.seek(0) return hex_md5
ad21dddcaff52dd22e77f283ff4e11ab18a76100
b8d0b260960e1c43b883049d68c15a7183df200b
/5_py_blog/blog_app/tests.py
ebafc4198267b4929abd66e68f76098e08839139
[]
no_license
JAreina/python-django
59ac92d0694522c1d096bed636409d9405c5caba
66c7c301dec448217df6516198723e1ce987eab7
refs/heads/master
2020-03-27T18:34:59.821701
2018-09-07T07:49:35
2018-09-07T07:49:35
146,931,202
0
0
null
null
null
null
UTF-8
Python
false
false
1,739
py
# Create your tests here. from django.contrib.auth import get_user_model from django.test import Client, TestCase from django.urls import reverse from .models import Post class BlogTests(TestCase): def setUp(self): self.user = get_user_model().objects.create_user( username='testuser', email='[email protected]', password='xxxxxx' ) self.post = Post.objects.create( titulo='A good titulo', texto='Nice texto content', autor=self.user, ) def test_string_representation(self): post = Post(titulo='A sample titulo') self.assertEqual(str(post), post.titulo) def test_post_content(self): self.assertEqual(f'{self.post.titulo}', 'A good titulo') self.assertEqual(f'{self.post.autor}', 'testuser') self.assertEqual(f'{self.post.texto}', 'Nice texto content') self.assertEqual(f'{self.post.titulo}', 'A good titulo') self.assertEqual(f'{self.post.autor}', 'testuser') self.assertEqual(f'{self.post.texto}', 'Nice texto content') def test_post_list_view(self): response = self.client.get(reverse('home')) self.assertEqual(response.status_code, 200) self.assertContains(response, 'Nice texto content') self.assertTemplateUsed(response, 'home.html') def test_post_detail_view(self): response = self.client.get('/post/1/') no_response = self.client.get('/post/100000/') self.assertEqual(response.status_code, 200) self.assertEqual(no_response.status_code, 404) self.assertContains(response, 'A good titulo') self.assertTemplateUsed(response, 'post_detalle.html')
a174ca449539006233ff7a4acea1252aef8eb3eb
0ab90ab559eab46b583b4b1fdd4a5bb3f55b7793
/python/ray/experimental/workflow/common.py
3c40c555e0eab6747e2da0c8fe41e1c1b84e7018
[ "Apache-2.0", "BSD-3-Clause", "MIT" ]
permissive
swag1ong/ray
b22cd5ebab96c30f15b00a7d044fdeb7543a4616
fdbeef604692aa308973988b32405ec0d70f9f40
refs/heads/master
2023-06-25T21:55:44.398516
2021-07-26T00:39:24
2021-07-26T00:39:24
389,518,857
2
0
Apache-2.0
2021-07-26T05:33:40
2021-07-26T05:33:39
null
UTF-8
Python
false
false
7,714
py
from enum import Enum, unique from collections import deque import re from typing import Dict, List, Optional, Callable, Set, Iterator, Any import unicodedata import uuid from dataclasses import dataclass import ray from ray import ObjectRef # Alias types StepID = str WorkflowOutputType = ObjectRef @unique class WorkflowStatus(str, Enum): # There is at least a remote task running in ray cluster RUNNING = "RUNNING" # It got canceled and can't be resumed later. CANCELED = "CANCELED" # The workflow runs successfully. SUCCESSFUL = "SUCCESSFUL" # The workflow failed with an applicaiton error. # It can be resumed. FAILED = "FAILED" # The workflow failed with a system error, i.e., ray shutdown. # It can be resumed. RESUMABLE = "RESUMABLE" @dataclass class WorkflowInputs: # The object ref of the input arguments. args: ObjectRef # The object refs in the arguments. object_refs: List[ObjectRef] # TODO(suquark): maybe later we can replace it with WorkflowData. # The workflows in the arguments. workflows: "List[Workflow]" @dataclass class WorkflowData: # The workflow step function body. func_body: Callable # The arguments of a workflow. inputs: WorkflowInputs # The num of retry for application exception max_retries: int # Whether the user want to handle the exception mannually catch_exceptions: bool # ray_remote options ray_options: Dict[str, Any] def to_metadata(self) -> Dict[str, Any]: f = self.func_body return { "name": f.__module__ + "." + f.__qualname__, "object_refs": [r.hex() for r in self.inputs.object_refs], "workflows": [w.id for w in self.inputs.workflows], "max_retries": self.max_retries, "catch_exceptions": self.catch_exceptions, "ray_options": self.ray_options, } @dataclass class WorkflowMetaData: # The current status of the workflow status: WorkflowStatus def slugify(value: str, allow_unicode=False) -> str: """Adopted from https://github.com/django/django/blob/master/django/utils/text.py Convert to ASCII if 'allow_unicode' is False. Convert spaces or repeated dashes to single dashes. Remove characters that aren't alphanumerics, underscores, dots or hyphens. Also strip leading and trailing whitespace. """ if allow_unicode: value = unicodedata.normalize("NFKC", value) else: value = unicodedata.normalize("NFKD", value).encode( "ascii", "ignore").decode("ascii") value = re.sub(r"[^\w.\-]", "", value).strip() return re.sub(r"[-\s]+", "-", value) class Workflow: def __init__(self, workflow_data: WorkflowData): if workflow_data.ray_options.get("num_returns", 1) > 1: raise ValueError("Workflow should have one return value.") self._data = workflow_data self._executed: bool = False self._output: Optional[WorkflowOutputType] = None self._step_id: StepID = slugify( self._data.func_body.__qualname__) + "." + uuid.uuid4().hex @property def executed(self) -> bool: return self._executed @property def output(self) -> WorkflowOutputType: if not self._executed: raise Exception("The workflow has not been executed.") return self._output @property def id(self) -> StepID: return self._step_id def execute(self, outer_most_step_id: Optional[StepID] = None, last_step_of_workflow: bool = False) -> ObjectRef: """Trigger workflow execution recursively. Args: outer_most_step_id: See "step_executor.execute_workflow" for explanation. last_step_of_workflow: The step that generates the output of the workflow (including nested steps). """ if self.executed: return self._output from ray.experimental.workflow import step_executor output = step_executor.execute_workflow_step(self._step_id, self._data, outer_most_step_id, last_step_of_workflow) if not isinstance(output, WorkflowOutputType): raise TypeError("Unexpected return type of the workflow.") self._output = output self._executed = True return output def iter_workflows_in_dag(self) -> Iterator["Workflow"]: """Collect all workflows in the DAG linked to the workflow using BFS.""" # deque is used instead of queue.Queue because queue.Queue is aimed # at multi-threading. We just need a pure data structure here. visited_workflows: Set[Workflow] = {self} q = deque([self]) while q: # deque's pythonic way to check emptyness w: Workflow = q.popleft() for p in w._data.inputs.workflows: if p not in visited_workflows: visited_workflows.add(p) q.append(p) yield w @property def data(self) -> WorkflowData: """Get the workflow data.""" return self._data def __reduce__(self): raise ValueError( "Workflow is not supposed to be serialized by pickle. " "Maybe you are passing it to a Ray remote function, " "returning it from a Ray remote function, or using " "'ray.put()' with it?") def run(self, workflow_id: Optional[str] = None) -> Any: """Run a workflow. Examples: >>> @workflow.step ... def book_flight(origin: str, dest: str) -> Flight: ... return Flight(...) >>> @workflow.step ... def book_hotel(location: str) -> Reservation: ... return Reservation(...) >>> @workflow.step ... def finalize_trip(bookings: List[Any]) -> Trip: ... return Trip(...) >>> flight1 = book_flight.step("OAK", "SAN") >>> flight2 = book_flight.step("SAN", "OAK") >>> hotel = book_hotel.step("SAN") >>> trip = finalize_trip.step([flight1, flight2, hotel]) >>> result = trip.run() Args: workflow_id: A unique identifier that can be used to resume the workflow. If not specified, a random id will be generated. """ return ray.get(self.run_async(workflow_id)) def run_async(self, workflow_id: Optional[str] = None) -> ObjectRef: """Run a workflow asynchronously. Examples: >>> @workflow.step ... def book_flight(origin: str, dest: str) -> Flight: ... return Flight(...) >>> @workflow.step ... def book_hotel(location: str) -> Reservation: ... return Reservation(...) >>> @workflow.step ... def finalize_trip(bookings: List[Any]) -> Trip: ... return Trip(...) >>> flight1 = book_flight.step("OAK", "SAN") >>> flight2 = book_flight.step("SAN", "OAK") >>> hotel = book_hotel.step("SAN") >>> trip = finalize_trip.step([flight1, flight2, hotel]) >>> result = ray.get(trip.run_async()) Args: workflow_id: A unique identifier that can be used to resume the workflow. If not specified, a random id will be generated. """ # TODO(suquark): avoid cyclic importing from ray.experimental.workflow.execution import run return run(self, workflow_id)
9a71057ca86eb6931927a2afbb8ea436b8c68c37
afd44f9bf1469418ae4709f48f2c3c188b45eb73
/preprocessing/text_processor.py
88a513a6b2da416865452ab9af1cab27c4987d68
[]
no_license
zerebom/pytoolkit
2ed359ec0ef612461dec24b57e746f99f212d540
078a2fa786a755d6fe0ee69dd8caecec833fb2fa
refs/heads/master
2020-06-29T06:20:11.069967
2019-09-18T01:59:14
2019-09-18T01:59:14
200,461,675
0
0
null
null
null
null
UTF-8
Python
false
false
8,065
py
import urllib.request, urllib.error import re import MeCab import mojimoji from sklearn.feature_extraction.text import TfidfVectorizer def get_stopword()->list: slothlib_path = 'http://svn.sourceforge.jp/svnroot/slothlib/CSharp/Version1/SlothLib/NLP/Filter/StopWord/word/Japanese.txt' slothlib_file = urllib.request.urlopen(url=slothlib_path) slothlib_stopwords = [line.decode("utf-8").strip() for line in slothlib_file] slothlib_stopwords = [ss for ss in slothlib_stopwords if not ss==u''] eng_stop=["a's" , "able" , "about" , "above" , "according" , "accordingly" , "across" , "actually" , "after" , "afterwards" , "again" , "against" , "ain't" , "all" , "allow" , "allows" , "almost" , "alone" , "along" , "already" , "also" , "although" , "always" , "am" , "among" , "amongst" , "an" , "and" , "another" , "any" , "anybody" , "anyhow" , "anyone" , "anything" , "anyway" , "anyways" , "anywhere" , "apart" , "appear" , "appreciate" , "appropriate" , "are" , "aren't" , "around" , "as" , "aside" , "ask" , "asking" , "associated" , "at" , "available" , "away" , "awfully" , "be" , "became" , "because" , "become" , "becomes" , "becoming" , "been" , "before" , "beforehand" , "behind" , "being" , "believe" , "below" , "beside" , "besides" , "best" , "better" , "between" , "beyond" , "both" , "brief" , "but" , "by" , "c'mon" , "c's" , "came" , "can" , "can't" , "cannot" , "cant" , "cause" , "causes" , "certain" , "certainly" , "changes" , "clearly" , "co" , "com" , "come" , "comes" , "concerning" , "consequently" , "consider" , "considering" , "contain" , "containing" , "contains" , "corresponding" , "could" , "couldn't" , "course" , "currently" , "definitely" , "described" , "despite" , "did" , "didn't" , "different" , "do" , "does" , "doesn't" , "doing" , "don't" , "done" , "down" , "downwards" , "during" , "each" , "edu" , "eg" , "eight" , "either" , "else" , "elsewhere" , "enough" , "entirely" , "especially" , "et" , "etc" , "even" , "ever" , "every" , "everybody" , "everyone" , "everything" , "everywhere" , "ex" , "exactly" , "example" , "except" , "far" , "few" , "fifth" , "first" , "five" , "followed" , "following" , "follows" , "for" , "former" , "formerly" , "forth" , "four" , "from" , "further" , "furthermore" , "get" , "gets" , "getting" , "given" , "gives" , "go" , "goes" , "going" , "gone" , "got" , "gotten" , "greetings" , "had" , "hadn't" , "happens" , "hardly" , "has" , "hasn't" , "have" , "haven't" , "having" , "he" , "he's" , "hello" , "help" , "hence" , "her" , "here" , "here's" , "hereafter" , "hereby" , "herein" , "hereupon" , "hers" , "herself" , "hi" , "him" , "himself" , "his" , "hither" , "hopefully" , "how" , "howbeit" , "however" , "i'd" , "i'll" , "i'm" , "i've" , "ie" , "if" , "ignored" , "immediate" , "in" , "inasmuch" , "inc" , "indeed" , "indicate" , "indicated" , "indicates" , "inner" , "insofar" , "instead" , "into" , "inward" , "is" , "isn't" , "it" , "it'd" , "it'll" , "it's" , "its" , "itself" , "just" , "keep" , "keeps" , "kept" , "know" , "known" , "knows" , "last" , "lately" , "later" , "latter" , "latterly" , "least" , "less" , "lest" , "let" , "let's" , "like" , "liked" , "likely" , "little" , "look" , "looking" , "looks" , "ltd" , "mainly" , "many" , "may" , "maybe" , "me" , "mean" , "meanwhile" , "merely" , "might" , "more" , "moreover" , "most" , "mostly" , "much" , "must" , "my" , "myself" , "name" , "namely" , "nd" , "near" , "nearly" , "necessary" , "need" , "needs" , "neither" , "never" , "nevertheless" , "new" , "next" , "nine" , "no" , "nobody" , "non" , "none" , "noone" , "nor" , "normally" , "not" , "nothing" , "novel" , "now" , "nowhere" , "obviously" , "of" , "off" , "often" , "oh" , "ok" , "okay" , "old" , "on" , "once" , "one" , "ones" , "only" , "onto" , "or" , "other" , "others" , "otherwise" , "ought" , "our" , "ours" , "ourselves" , "out" , "outside" , "over" , "overall" , "own" , "particular" , "particularly" , "per" , "perhaps" , "placed" , "please" , "plus" , "possible" , "presumably" , "probably" , "provides" , "que" , "quite" , "qv" , "rather" , "rd" , "re" , "really" , "reasonably" , "regarding" , "regardless" , "regards" , "relatively" , "respectively" , "right" , "said" , "same" , "saw" , "say" , "saying" , "says" , "second" , "secondly" , "see" , "seeing" , "seem" , "seemed" , "seeming" , "seems" , "seen" , "self" , "selves" , "sensible" , "sent" , "serious" , "seriously" , "seven" , "several" , "shall" , "she" , "should" , "shouldn't" , "since" , "six" , "so" , "some" , "somebody" , "somehow" , "someone" , "something" , "sometime" , "sometimes" , "somewhat" , "somewhere" , "soon" , "sorry" , "specified" , "specify" , "specifying" , "still" , "sub" , "such" , "sup" , "sure" , "t's" , "take" , "taken" , "tell" , "tends" , "th" , "than" , "thank" , "thanks" , "thanx" , "that" , "that's" , "thats" , "the" , "their" , "theirs" , "them" , "themselves" , "then" , "thence" , "there" , "there's" , "thereafter" , "thereby" , "therefore" , "therein" , "theres" , "thereupon" , "these" , "they" , "they'd" , "they'll" , "they're" , "they've" , "think" , "third" , "this" , "thorough" , "thoroughly" , "those" , "though" , "three" , "through" , "throughout" , "thru" , "thus" , "to" , "together" , "too" , "took" , "toward" , "towards" , "tried" , "tries" , "truly" , "try" , "trying" , "twice" , "two" , "un" , "under" , "unfortunately" , "unless" , "unlikely" , "until" , "unto" , "up" , "upon" , "us" , "use" , "used" , "useful" , "uses" , "using" , "usually" , "value" , "various" , "very" , "via" , "viz" , "vs" , "want" , "wants" , "was" , "wasn't" , "way" , "we" , "we'd" , "we'll" , "we're" , "we've" , "welcome" , "well" , "went" , "were" , "weren't" , "what" , "what's" , "whatever" , "when" , "whence" , "whenever" , "where" , "where's" , "whereafter" , "whereas" , "whereby" , "wherein" , "whereupon" , "wherever" , "whether" , "which" , "while" , "whither" , "who" , "who's" , "whoever" , "whole" , "whom" , "whose" , "why" , "will" , "willing" , "wish" , "with" , "within" , "without" , "won't" , "wonder" , "would" , "wouldn't" , "yes" , "yet" , "you" , "you'd" , "you'll" , "you're" , "you've" , "your" , "yours" , "yourself" , "yourselves" , "zero"] sw=slothlib_stopwords+eng_stop return sw tagger = MeCab.Tagger('-d /usr/local/lib/mecab/dic/mecab-ipadic-neologd') def normalize_number(text): # 連続した数字を0で置換 text = re.sub(r'[0-9]+', '0', text) text = re.sub(r'[10-99]+', '00', text) text = re.sub(r'[100-999]+', '000', text) text = re.sub(r'[1000-9999]+', '0000', text) replaced_text = re.sub(r'[10000-9999999]+', '0000', text) return replaced_text def delete_number(text): # 連続した数字を0で置換 replaced_text = re.sub(r'[0-9999999]+', '', text) return replaced_text # 入力されたテキストを単語単位に分割して返却する関数 def parse_text(text, min_word_len=1): words = [] try: tagger.parse(text).rstrip().split("\n")[:-1] except: return "" for morph in tagger.parse(text).rstrip().split("\n")[:-1]: #表層系 # word=morph.split("\t")[0] #標準形 word = morph.split(",")[-3] word_cls = morph.split("\t")[1].split(",")[0] word = mojimoji.zen_to_han(word, kana=False).lower() if not word in sw: if len(word) > min_word_len: #品詞によるスクリーニング # if word_cls in ['名詞']: words.append(delete_number(word)) return " ".join(words) def tokenize(s): return re.split('[ !"#$%&\'(+)*,-./:;<=>?@\\\[\]^_`{|}~“”¨«»®´·º½¾¿¡§£₤‘’。、]', s) def get_len(text): """df[col]=df[col].apply(get_len)""" num = len(text) if type(text) == str else 0 return num tfidf_vectorizer = TfidfVectorizer(max_df=0.5, min_df=1, max_features=10000, norm='l2', tokenizer=tokenize, ngram_range=(1, 2))
63d50f46e6763c50b438c35733b409c516416606
33cff13b90fdd628560baef8b3f6d68ceaad912c
/tests/test_commands/test_package_downloads.py
e4b7b094ed22878a396f1c1e911369fd769b9165
[ "MIT" ]
permissive
rosdyana/dephell
3139140d6f16288177705020a625897f91f2514b
993a212ce17dda04a878ceac64854d809f3dc47b
refs/heads/master
2020-08-06T09:38:21.150070
2019-09-27T16:58:23
2019-09-27T16:58:23
212,927,181
0
0
MIT
2019-10-05T01:22:23
2019-10-05T01:22:23
null
UTF-8
Python
false
false
708
py
# built-in import json # external import pytest # project from dephell.commands import PackageDownloadsCommand from dephell.config import Config @pytest.mark.skipif(True, reason='disable while pypistat is down') @pytest.mark.allow_hosts() def test_package_downloads_command(capsys): config = Config() config.attach({ 'level': 'WARNING', 'silent': True, }) command = PackageDownloadsCommand(argv=['DJANGO'], config=config) result = command() captured = capsys.readouterr() output = json.loads(captured.out) assert result is True assert len(output['pythons']) > 4 assert len(output['systems']) > 2 assert '█' in output['pythons'][0]['chart']
1a57dcb6dd5bc694a8c241ff875abb2a00b8f021
a2e638cd0c124254e67963bda62c21351881ee75
/Extensions/Prime Services/FPythonCode/PaymentFees.py
d79409eb38743fa11ab65e6b6c2c6f2b1438516b
[]
no_license
webclinic017/fa-absa-py3
1ffa98f2bd72d541166fdaac421d3c84147a4e01
5e7cc7de3495145501ca53deb9efee2233ab7e1c
refs/heads/main
2023-04-19T10:41:21.273030
2021-05-10T08:50:05
2021-05-10T08:50:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,474
py
"""----------------------------------------------------------------------- MODULE PaymentFees DESCRIPTION Date : 2012-09-19 Purpose : Returns the payment fees of a trade Department and Desk : Prime Services Requester : Danilo Mantoan Developer : Nidheesh Sharma CR Number : 556348 ENDDESCRIPTION HISTORY Date: CR Number: Developer: Description: 2013-03-19 C885651 Nidheesh Sharma Excluded INS, SET, Brokerage fees from OtherFee 2014-03-12 C1819376 Hynek Urban Refactor & minor bug fix of other fees. 2018-11-22 1001164411 Ondrej Bahounek ABITFA-5622: Convert Other Fees to trade currency. 2018-11-28 Jaco Swanepoel Payment migration: convert cash payments to appropriate new additional payment types. -----------------------------------------------------------------------""" import acm FX_COLUMN_ID = 'FX Rate On Display Curr' CS = acm.Calculations().CreateCalculationSpace(acm.GetDefaultContext(), 'FPortfolioSheet') ZAR_CUR = acm.FCurrency['ZAR'] PAYMENT_TYPES_TO_EXCLUDE = ('Premium', 'Dividend Suppression', 'INS', 'SET', 'Brokerage Vatable', 'Execution Fee', 'Aggregated Settled', 'Aggregated Accrued', 'Aggregated Funding', 'Aggregated Dividends', 'Aggregated Depreciation', 'Aggregated Future Settle', 'Aggregated Forward Funding PL', 'Aggregated Cash Open Value', 'Aggregated Cash Position', 'Aggregated Forward Premium', 'Aggregated Forward Settled', 'Aggregated Forward Dividends', 'Aggregated Forward Position') PAYMENT_TEXTS_TO_EXCLUDE = ('Execution', 'ExecutionFee', 'INS', 'SET', 'Brokerage') def ReturnOtherFee(trade, val_date): """ Return the sum of all fees of a trade up to the specified date. Fees of type Execution Fee, INS, SET and Brokerage and any payments of type Aggregated Settled are excluded. """ CS.SimulateGlobalValue('Valuation Date', val_date) CS.SimulateGlobalValue('Portfolio Profit Loss End Date', 'Custom Date') CS.SimulateGlobalValue('Portfolio Profit Loss End Date Custom', val_date) sumOfOtherFees = 0 if trade.Status() not in ('Void'): payments = trade.Payments() for payment in payments: if payment.Type() in PAYMENT_TYPES_TO_EXCLUDE or\ payment.Text() in PAYMENT_TEXTS_TO_EXCLUDE: continue if payment.ValidFrom() > val_date: continue amount = payment.Amount() if ZAR_CUR.Name() != payment.Currency().Name(): # Ondrej's note: # Convert all non-ZAR payments to ZAR. # This should be ideally converted to trade currency, # but then many other attributes need to be changed and well tested. # This is just a fix to accommodate Futs on FXs by the end of the month. CS.SimulateValue(ZAR_CUR, "Portfolio Currency", payment.Currency()) fx_rate = CS.CreateCalculation(ZAR_CUR, FX_COLUMN_ID).Value().Number() amount *= fx_rate sumOfOtherFees += amount return acm.DenominatedValue(sumOfOtherFees, ZAR_CUR.Name(), None, val_date) #Function to return termination fee of a trade def ReturnTerminationFee(trade): terminationFee = 0 if trade.Status() in ('Terminated'): payments = trade.Payments() for payment in payments: if payment.Type() in ('Cash') and ('Termination' in payment.Text() or 'Terminated' in payment.Text()): terminationFee = terminationFee + payment.Amount() elif payment.Type() in ('Termination Fee'): terminationFee = terminationFee + payment.Amount() return terminationFee #Function to return termination fee date of a trade def ReturnTerminationFeeDate(trade): terminationDate = '' if trade.Status() in ('Terminated'): payments = trade.Payments() for payment in payments: if payment.Type() in ('Cash') and ('Termination' in payment.Text() or 'Terminated' in payment.Text()): terminationDate = payment.PayDay() elif payment.Type() in ('Termination Fee'): terminationDate = payment.PayDay() return terminationDate #Function to return termination fee date of a trade in the correct format from an array of dates def ReturnSingleTerminationFeeDate(arrayOfDates): terminationDate = '' for date in arrayOfDates: if date != '' and isinstance(date, str): dateFormatter = acm.FDateFormatter('dateFormatter') dateFormatter.FormatDefinition("%d/%m/%Y") terminationDate = dateFormatter.Format(date)#.replace('-','/') break return terminationDate
5bc96ed5b2ff7057cfe5cf0f85b1852e0b311584
afa0d5a97925273f7fb0befef697d36020df5787
/packages/google-cloud-alloydb/google/cloud/alloydb_v1beta/services/alloy_db_admin/pagers.py
1c442de8074c691d92fdefd2aa87e57390df9038
[ "Apache-2.0" ]
permissive
scooter4j/google-cloud-python
dc7ae1ba6a33a62a40b617b806ec8ed723046b8b
36b1cf08092d5c07c5971bb46edda7a9928166b1
refs/heads/master
2023-04-14T18:36:48.643436
2023-04-06T13:19:26
2023-04-06T13:19:26
188,338,673
0
0
null
2019-05-24T02:27:15
2019-05-24T02:27:14
null
UTF-8
Python
false
false
20,951
py
# -*- coding: utf-8 -*- # Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from typing import ( Any, AsyncIterator, Awaitable, Callable, Iterator, Optional, Sequence, Tuple, ) from google.cloud.alloydb_v1beta.types import resources, service class ListClustersPager: """A pager for iterating through ``list_clusters`` requests. This class thinly wraps an initial :class:`google.cloud.alloydb_v1beta.types.ListClustersResponse` object, and provides an ``__iter__`` method to iterate through its ``clusters`` field. If there are more pages, the ``__iter__`` method will make additional ``ListClusters`` requests and continue to iterate through the ``clusters`` field on the corresponding responses. All the usual :class:`google.cloud.alloydb_v1beta.types.ListClustersResponse` attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup. """ def __init__( self, method: Callable[..., service.ListClustersResponse], request: service.ListClustersRequest, response: service.ListClustersResponse, *, metadata: Sequence[Tuple[str, str]] = () ): """Instantiate the pager. Args: method (Callable): The method that was originally called, and which instantiated this pager. request (google.cloud.alloydb_v1beta.types.ListClustersRequest): The initial request object. response (google.cloud.alloydb_v1beta.types.ListClustersResponse): The initial response object. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. """ self._method = method self._request = service.ListClustersRequest(request) self._response = response self._metadata = metadata def __getattr__(self, name: str) -> Any: return getattr(self._response, name) @property def pages(self) -> Iterator[service.ListClustersResponse]: yield self._response while self._response.next_page_token: self._request.page_token = self._response.next_page_token self._response = self._method(self._request, metadata=self._metadata) yield self._response def __iter__(self) -> Iterator[resources.Cluster]: for page in self.pages: yield from page.clusters def __repr__(self) -> str: return "{0}<{1!r}>".format(self.__class__.__name__, self._response) class ListClustersAsyncPager: """A pager for iterating through ``list_clusters`` requests. This class thinly wraps an initial :class:`google.cloud.alloydb_v1beta.types.ListClustersResponse` object, and provides an ``__aiter__`` method to iterate through its ``clusters`` field. If there are more pages, the ``__aiter__`` method will make additional ``ListClusters`` requests and continue to iterate through the ``clusters`` field on the corresponding responses. All the usual :class:`google.cloud.alloydb_v1beta.types.ListClustersResponse` attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup. """ def __init__( self, method: Callable[..., Awaitable[service.ListClustersResponse]], request: service.ListClustersRequest, response: service.ListClustersResponse, *, metadata: Sequence[Tuple[str, str]] = () ): """Instantiates the pager. Args: method (Callable): The method that was originally called, and which instantiated this pager. request (google.cloud.alloydb_v1beta.types.ListClustersRequest): The initial request object. response (google.cloud.alloydb_v1beta.types.ListClustersResponse): The initial response object. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. """ self._method = method self._request = service.ListClustersRequest(request) self._response = response self._metadata = metadata def __getattr__(self, name: str) -> Any: return getattr(self._response, name) @property async def pages(self) -> AsyncIterator[service.ListClustersResponse]: yield self._response while self._response.next_page_token: self._request.page_token = self._response.next_page_token self._response = await self._method(self._request, metadata=self._metadata) yield self._response def __aiter__(self) -> AsyncIterator[resources.Cluster]: async def async_generator(): async for page in self.pages: for response in page.clusters: yield response return async_generator() def __repr__(self) -> str: return "{0}<{1!r}>".format(self.__class__.__name__, self._response) class ListInstancesPager: """A pager for iterating through ``list_instances`` requests. This class thinly wraps an initial :class:`google.cloud.alloydb_v1beta.types.ListInstancesResponse` object, and provides an ``__iter__`` method to iterate through its ``instances`` field. If there are more pages, the ``__iter__`` method will make additional ``ListInstances`` requests and continue to iterate through the ``instances`` field on the corresponding responses. All the usual :class:`google.cloud.alloydb_v1beta.types.ListInstancesResponse` attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup. """ def __init__( self, method: Callable[..., service.ListInstancesResponse], request: service.ListInstancesRequest, response: service.ListInstancesResponse, *, metadata: Sequence[Tuple[str, str]] = () ): """Instantiate the pager. Args: method (Callable): The method that was originally called, and which instantiated this pager. request (google.cloud.alloydb_v1beta.types.ListInstancesRequest): The initial request object. response (google.cloud.alloydb_v1beta.types.ListInstancesResponse): The initial response object. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. """ self._method = method self._request = service.ListInstancesRequest(request) self._response = response self._metadata = metadata def __getattr__(self, name: str) -> Any: return getattr(self._response, name) @property def pages(self) -> Iterator[service.ListInstancesResponse]: yield self._response while self._response.next_page_token: self._request.page_token = self._response.next_page_token self._response = self._method(self._request, metadata=self._metadata) yield self._response def __iter__(self) -> Iterator[resources.Instance]: for page in self.pages: yield from page.instances def __repr__(self) -> str: return "{0}<{1!r}>".format(self.__class__.__name__, self._response) class ListInstancesAsyncPager: """A pager for iterating through ``list_instances`` requests. This class thinly wraps an initial :class:`google.cloud.alloydb_v1beta.types.ListInstancesResponse` object, and provides an ``__aiter__`` method to iterate through its ``instances`` field. If there are more pages, the ``__aiter__`` method will make additional ``ListInstances`` requests and continue to iterate through the ``instances`` field on the corresponding responses. All the usual :class:`google.cloud.alloydb_v1beta.types.ListInstancesResponse` attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup. """ def __init__( self, method: Callable[..., Awaitable[service.ListInstancesResponse]], request: service.ListInstancesRequest, response: service.ListInstancesResponse, *, metadata: Sequence[Tuple[str, str]] = () ): """Instantiates the pager. Args: method (Callable): The method that was originally called, and which instantiated this pager. request (google.cloud.alloydb_v1beta.types.ListInstancesRequest): The initial request object. response (google.cloud.alloydb_v1beta.types.ListInstancesResponse): The initial response object. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. """ self._method = method self._request = service.ListInstancesRequest(request) self._response = response self._metadata = metadata def __getattr__(self, name: str) -> Any: return getattr(self._response, name) @property async def pages(self) -> AsyncIterator[service.ListInstancesResponse]: yield self._response while self._response.next_page_token: self._request.page_token = self._response.next_page_token self._response = await self._method(self._request, metadata=self._metadata) yield self._response def __aiter__(self) -> AsyncIterator[resources.Instance]: async def async_generator(): async for page in self.pages: for response in page.instances: yield response return async_generator() def __repr__(self) -> str: return "{0}<{1!r}>".format(self.__class__.__name__, self._response) class ListBackupsPager: """A pager for iterating through ``list_backups`` requests. This class thinly wraps an initial :class:`google.cloud.alloydb_v1beta.types.ListBackupsResponse` object, and provides an ``__iter__`` method to iterate through its ``backups`` field. If there are more pages, the ``__iter__`` method will make additional ``ListBackups`` requests and continue to iterate through the ``backups`` field on the corresponding responses. All the usual :class:`google.cloud.alloydb_v1beta.types.ListBackupsResponse` attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup. """ def __init__( self, method: Callable[..., service.ListBackupsResponse], request: service.ListBackupsRequest, response: service.ListBackupsResponse, *, metadata: Sequence[Tuple[str, str]] = () ): """Instantiate the pager. Args: method (Callable): The method that was originally called, and which instantiated this pager. request (google.cloud.alloydb_v1beta.types.ListBackupsRequest): The initial request object. response (google.cloud.alloydb_v1beta.types.ListBackupsResponse): The initial response object. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. """ self._method = method self._request = service.ListBackupsRequest(request) self._response = response self._metadata = metadata def __getattr__(self, name: str) -> Any: return getattr(self._response, name) @property def pages(self) -> Iterator[service.ListBackupsResponse]: yield self._response while self._response.next_page_token: self._request.page_token = self._response.next_page_token self._response = self._method(self._request, metadata=self._metadata) yield self._response def __iter__(self) -> Iterator[resources.Backup]: for page in self.pages: yield from page.backups def __repr__(self) -> str: return "{0}<{1!r}>".format(self.__class__.__name__, self._response) class ListBackupsAsyncPager: """A pager for iterating through ``list_backups`` requests. This class thinly wraps an initial :class:`google.cloud.alloydb_v1beta.types.ListBackupsResponse` object, and provides an ``__aiter__`` method to iterate through its ``backups`` field. If there are more pages, the ``__aiter__`` method will make additional ``ListBackups`` requests and continue to iterate through the ``backups`` field on the corresponding responses. All the usual :class:`google.cloud.alloydb_v1beta.types.ListBackupsResponse` attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup. """ def __init__( self, method: Callable[..., Awaitable[service.ListBackupsResponse]], request: service.ListBackupsRequest, response: service.ListBackupsResponse, *, metadata: Sequence[Tuple[str, str]] = () ): """Instantiates the pager. Args: method (Callable): The method that was originally called, and which instantiated this pager. request (google.cloud.alloydb_v1beta.types.ListBackupsRequest): The initial request object. response (google.cloud.alloydb_v1beta.types.ListBackupsResponse): The initial response object. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. """ self._method = method self._request = service.ListBackupsRequest(request) self._response = response self._metadata = metadata def __getattr__(self, name: str) -> Any: return getattr(self._response, name) @property async def pages(self) -> AsyncIterator[service.ListBackupsResponse]: yield self._response while self._response.next_page_token: self._request.page_token = self._response.next_page_token self._response = await self._method(self._request, metadata=self._metadata) yield self._response def __aiter__(self) -> AsyncIterator[resources.Backup]: async def async_generator(): async for page in self.pages: for response in page.backups: yield response return async_generator() def __repr__(self) -> str: return "{0}<{1!r}>".format(self.__class__.__name__, self._response) class ListSupportedDatabaseFlagsPager: """A pager for iterating through ``list_supported_database_flags`` requests. This class thinly wraps an initial :class:`google.cloud.alloydb_v1beta.types.ListSupportedDatabaseFlagsResponse` object, and provides an ``__iter__`` method to iterate through its ``supported_database_flags`` field. If there are more pages, the ``__iter__`` method will make additional ``ListSupportedDatabaseFlags`` requests and continue to iterate through the ``supported_database_flags`` field on the corresponding responses. All the usual :class:`google.cloud.alloydb_v1beta.types.ListSupportedDatabaseFlagsResponse` attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup. """ def __init__( self, method: Callable[..., service.ListSupportedDatabaseFlagsResponse], request: service.ListSupportedDatabaseFlagsRequest, response: service.ListSupportedDatabaseFlagsResponse, *, metadata: Sequence[Tuple[str, str]] = () ): """Instantiate the pager. Args: method (Callable): The method that was originally called, and which instantiated this pager. request (google.cloud.alloydb_v1beta.types.ListSupportedDatabaseFlagsRequest): The initial request object. response (google.cloud.alloydb_v1beta.types.ListSupportedDatabaseFlagsResponse): The initial response object. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. """ self._method = method self._request = service.ListSupportedDatabaseFlagsRequest(request) self._response = response self._metadata = metadata def __getattr__(self, name: str) -> Any: return getattr(self._response, name) @property def pages(self) -> Iterator[service.ListSupportedDatabaseFlagsResponse]: yield self._response while self._response.next_page_token: self._request.page_token = self._response.next_page_token self._response = self._method(self._request, metadata=self._metadata) yield self._response def __iter__(self) -> Iterator[resources.SupportedDatabaseFlag]: for page in self.pages: yield from page.supported_database_flags def __repr__(self) -> str: return "{0}<{1!r}>".format(self.__class__.__name__, self._response) class ListSupportedDatabaseFlagsAsyncPager: """A pager for iterating through ``list_supported_database_flags`` requests. This class thinly wraps an initial :class:`google.cloud.alloydb_v1beta.types.ListSupportedDatabaseFlagsResponse` object, and provides an ``__aiter__`` method to iterate through its ``supported_database_flags`` field. If there are more pages, the ``__aiter__`` method will make additional ``ListSupportedDatabaseFlags`` requests and continue to iterate through the ``supported_database_flags`` field on the corresponding responses. All the usual :class:`google.cloud.alloydb_v1beta.types.ListSupportedDatabaseFlagsResponse` attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup. """ def __init__( self, method: Callable[..., Awaitable[service.ListSupportedDatabaseFlagsResponse]], request: service.ListSupportedDatabaseFlagsRequest, response: service.ListSupportedDatabaseFlagsResponse, *, metadata: Sequence[Tuple[str, str]] = () ): """Instantiates the pager. Args: method (Callable): The method that was originally called, and which instantiated this pager. request (google.cloud.alloydb_v1beta.types.ListSupportedDatabaseFlagsRequest): The initial request object. response (google.cloud.alloydb_v1beta.types.ListSupportedDatabaseFlagsResponse): The initial response object. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. """ self._method = method self._request = service.ListSupportedDatabaseFlagsRequest(request) self._response = response self._metadata = metadata def __getattr__(self, name: str) -> Any: return getattr(self._response, name) @property async def pages(self) -> AsyncIterator[service.ListSupportedDatabaseFlagsResponse]: yield self._response while self._response.next_page_token: self._request.page_token = self._response.next_page_token self._response = await self._method(self._request, metadata=self._metadata) yield self._response def __aiter__(self) -> AsyncIterator[resources.SupportedDatabaseFlag]: async def async_generator(): async for page in self.pages: for response in page.supported_database_flags: yield response return async_generator() def __repr__(self) -> str: return "{0}<{1!r}>".format(self.__class__.__name__, self._response)
b1efe20d5ba4c2a9c279544113a1e2bd6cdf7018
2432996ac1615cd36d61f0feeff8a359d2b438d8
/env/lib/python3.8/site-packages/_pyinstaller_hooks_contrib/hooks/stdhooks/hook-eth_hash.py
1b22c286fe3f7300f269b0ec19044cd2c28cc11a
[ "GPL-1.0-or-later", "GPL-2.0-or-later", "GPL-2.0-only", "Apache-2.0" ]
permissive
Parveshdhull/AutoTyper
dd65d53ece7c13fbc1ead7ce372947483e05e2e3
7fabb30e15b770d790b69c2e4eaf9bbf5a4d180c
refs/heads/main
2023-05-08T14:10:35.404160
2023-05-07T20:43:15
2023-05-07T20:43:15
315,415,751
26
18
Apache-2.0
2023-05-07T20:43:16
2020-11-23T19:13:05
Python
UTF-8
Python
false
false
611
py
# ------------------------------------------------------------------ # Copyright (c) 2020 PyInstaller Development Team. # # This file is distributed under the terms of the GNU General Public # License (version 2.0 or later). # # The full license is available in LICENSE.GPL.txt, distributed with # this software. # # SPDX-License-Identifier: GPL-2.0-or-later # ------------------------------------------------------------------ from PyInstaller.utils.hooks import collect_submodules # The ``eth_hash.utils.load_backend`` function does a dynamic import. hiddenimports = collect_submodules('eth_hash.backends')
90ebb27f00615a63b07c8ff1cd495f77293c88ea
8f784ca91cd56818dc6e38d5e602756a913e13b4
/modbus_tcp_server/network/accept_thread.py
a512980848dd5a91ed2ce730cf546634df5968c6
[ "MIT" ]
permissive
smok-serwis/modbus-tcp-server
9a02a3c5e9d0875179903bc4171b4d782d6d48b9
558eca908b6762280a74b16d78d56dc047a9dace
refs/heads/master
2023-06-14T01:26:07.299860
2021-07-15T13:59:15
2021-07-15T13:59:15
339,780,750
0
0
null
null
null
null
UTF-8
Python
false
false
1,383
py
import socket import typing as tp from satella.coding import silence_excs from satella.coding.concurrent import TerminableThread from .conn_thread import ConnectionThread from ..data_source import BaseDataSource, TestingDataSource from ..datagrams import MODBUSTCPMessage from ..processor import ModbusProcessor class ModbusTCPServer(TerminableThread): def __init__(self, bind_ifc: str, bind_port: int, data_source: tp.Optional[BaseDataSource] = None, backlog: int = 128): super().__init__(name='accept') if data_source is None: data_source = TestingDataSource() self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self.socket.bind((bind_ifc, bind_port)) self.backlog = backlog self.processor = ModbusProcessor(data_source) def prepare(self) -> None: self.socket.listen(self.backlog) self.socket.setblocking(True) self.socket.settimeout(5) def process_message(self, msg: MODBUSTCPMessage) -> MODBUSTCPMessage: return self.processor.process(msg) def cleanup(self): self.socket.close() @silence_excs(socket.timeout) def loop(self) -> None: sock, addr = self.socket.accept() ConnectionThread(sock, addr, self).start()
ebc97dabe6ba4cd2d87aca268755945115d291e2
3447227dd54587eb8c0c7f5346ac158504f7a907
/compass/ocean/tests/global_ocean/threads_test/__init__.py
42883b53b746d85a52e069468c8ae411ba7c414e
[ "LicenseRef-scancode-warranty-disclaimer", "BSD-2-Clause" ]
permissive
MPAS-Dev/compass
5e2c1525224dd399bcf4f56f661df05e2ec197a6
0b7440f0aa77c1ae052922a39e646bd35c267661
refs/heads/main
2023-08-30T20:59:52.052430
2023-08-29T09:45:14
2023-08-29T09:45:14
310,409,977
10
26
NOASSERTION
2023-09-13T14:19:16
2020-11-05T20:28:25
Python
UTF-8
Python
false
false
2,046
py
from compass.validate import compare_variables from compass.ocean.tests.global_ocean.forward import ForwardTestCase, \ ForwardStep class ThreadsTest(ForwardTestCase): """ A test case for performing two short forward runs to make sure the results are identical with 1 and 2 thread per MPI process """ def __init__(self, test_group, mesh, init, time_integrator): """ Create test case Parameters ---------- test_group : compass.ocean.tests.global_ocean.GlobalOcean The global ocean test group that this test case belongs to mesh : compass.ocean.tests.global_ocean.mesh.Mesh The test case that produces the mesh for this run init : compass.ocean.tests.global_ocean.init.Init The test case that produces the initial condition for this run time_integrator : {'split_explicit', 'RK4'} The time integrator to use for the forward run """ super().__init__(test_group=test_group, mesh=mesh, init=init, time_integrator=time_integrator, name='threads_test') for openmp_threads in [1, 2]: name = f'{openmp_threads}thread' step = ForwardStep(test_case=self, mesh=mesh, init=init, time_integrator=time_integrator, name=name, subdir=name, ntasks=4, openmp_threads=openmp_threads) step.add_output_file(filename='output.nc') self.add_step(step) # no run() method is needed def validate(self): """ Test cases can override this method to perform validation of variables and timers """ variables = ['temperature', 'salinity', 'layerThickness', 'normalVelocity'] compare_variables(test_case=self, variables=variables, filename1='1thread/output.nc', filename2='2thread/output.nc')
ecfbc6fbd378e0f496251bdb6fea828ba8ec686d
09d6a9e95f0156e577e068899f20959abb0f733a
/train/trainers/trainer_controller.py
483cbb084ec931370e279710580127352d459a36
[]
no_license
miyosuda/animalai
45267cd6dc63306e97f28d2217046f9e10b5b460
94d9d5e3acc593da878fa3dc3f38348567417578
refs/heads/master
2020-07-10T06:31:29.100908
2020-01-17T19:26:34
2020-01-17T19:26:34
204,193,068
0
0
null
null
null
null
UTF-8
Python
false
false
10,122
py
# -*- coding: utf-8 -*- # # Unity ML-Agents Toolkit # ## ML-Agent Learning """Launches trainers for each External Brains in a Unity Environment.""" import os import logging import shutil import sys from typing import * import numpy as np import tensorflow as tf from animalai.envs import BrainInfo from animalai.envs.exception import UnityEnvironmentException from trainers.ppo.trainer import PPOTrainer class TrainerController(object): def __init__(self, model_path: str, summaries_dir: str, run_id: str, save_freq: int, load: bool, train: bool, keep_checkpoints: int, lesson: Optional[int], external_brains: Dict[str, BrainInfo], training_seed: int, config=None): """ Arguments: model_path: Path to save the model. summaries_dir: Folder to save training summaries. run_id: The sub-directory name for model and summary statistics save_freq: Frequency at which to save model load: Whether to load the model or randomly initialize. train: Whether to train model, or only run inference. keep_checkpoints: How many model checkpoints to keep. lesson: Start learning from this lesson. external_brains: dictionary of external brain names to BrainInfo objects. training_seed: Seed to use for Numpy and Tensorflow random number generation. """ self.model_path = model_path self.summaries_dir = summaries_dir self.external_brains = external_brains self.external_brain_names = external_brains.keys() self.logger = logging.getLogger('mlagents.envs') self.run_id = run_id self.save_freq = save_freq self.lesson = lesson self.load_model = load self.train_model = train self.keep_checkpoints = keep_checkpoints self.trainers = {} self.global_step = 0 self.seed = training_seed self.config = config self.update_config = True np.random.seed(self.seed) tf.set_random_seed(self.seed) def _get_measure_vals(self): return None def _save_model(self, steps=0): """ Saves current model to checkpoint folder. steps: Current number of steps in training process. saver: Tensorflow saver for session. """ for brain_name in self.trainers.keys(): self.trainers[brain_name].save_model() self.logger.info('Saved Model') def _save_model_when_interrupted(self, steps=0): self.logger.info('Learning was interrupted. Please wait ' 'while the graph is generated.') self._save_model(steps) def initialize_trainers(self, trainer_config): """ Initialization of the trainers trainer_config: The configurations of the trainers """ trainer_parameters_dict = {} for brain_name in self.external_brains: # brain_nameは "Leaner" trainer_parameters = trainer_config['default'].copy() trainer_parameters['summary_path'] = '{basedir}/{name}'.format( basedir=self.summaries_dir, name=str(self.run_id) + '_' + brain_name) trainer_parameters['model_path'] = '{basedir}/{name}'.format( basedir=self.model_path, name=brain_name) trainer_parameters['keep_checkpoints'] = self.keep_checkpoints if brain_name in trainer_config: _brain_key = brain_name # "Learner" while not isinstance(trainer_config[_brain_key], dict): _brain_key = trainer_config[_brain_key] for k in trainer_config[_brain_key]: trainer_parameters[k] = trainer_config[_brain_key][k] trainer_parameters_dict[brain_name] = trainer_parameters.copy() for brain_name in self.external_brains: if trainer_parameters_dict[brain_name]['trainer'] == 'ppo': # ここで PPOTrainer 生成 self.trainers[brain_name] = PPOTrainer( self.external_brains[brain_name], 0, trainer_parameters_dict[brain_name], # trainer_configで指定した内容 self.train_model, self.load_model, self.seed, self.run_id) else: raise UnityEnvironmentException('The trainer config contains ' 'an unknown trainer type for ' 'brain {}' .format(brain_name)) @staticmethod def _create_model_path(model_path): try: if not os.path.exists(model_path): os.makedirs(model_path) except Exception: raise UnityEnvironmentException('The folder {} containing the ' 'generated model could not be ' 'accessed. Please make sure the ' 'permissions are set correctly.' .format(model_path)) def _reset_env(self, env): """Resets the environment. Returns: A Data structure corresponding to the initial reset state of the environment. """ if self.update_config: return env.reset(arenas_configurations=self.config) self.update_config = False else: return env.reset() def start_learning(self, env, trainer_config): # TODO: Should be able to start learning at different lesson numbers # for each curriculum. self._create_model_path(self.model_path) tf.reset_default_graph() # Prevent a single session from taking all GPU memory. # PPOTrainer を生成 self.initialize_trainers(trainer_config) for _, t in self.trainers.items(): self.logger.info(t) curr_info = self._reset_env(env) # Tensorboardにハイパーパラメータを記録 if self.train_model: for brain_name, trainer in self.trainers.items(): trainer.write_tensorboard_text('Hyperparameters', trainer.parameters) try: # 学習ループ while any([t.get_step <= t.get_max_steps for k, t in self.trainers.items()]) \ or not self.train_model: # 学習を1ステップ進める new_info = self.take_step(env, curr_info) self.global_step += 1 if self.global_step % self.save_freq == 0 and self.global_step != 0 \ and self.train_model: # 学習モデルの保存 self._save_model(steps=self.global_step) curr_info = new_info if self.global_step != 0 and self.train_model: # 最後にモデルを保存 self._save_model(steps=self.global_step) except KeyboardInterrupt: if self.train_model: self._save_model_when_interrupted(steps=self.global_step) pass env.close() def take_step(self, env, curr_info): # If any lessons were incremented or the environment is ready to be reset if env.global_done: curr_info = self._reset_env(env) for brain_name, trainer in self.trainers.items(): trainer.end_episode() # Decide and take an action take_action_vector, \ take_action_memories, \ take_action_text, \ take_action_value, \ take_action_outputs \ = {}, {}, {}, {}, {} for brain_name, trainer in self.trainers.items(): # Actionを決定する. 全arena分の配列になっている. (take_action_vector[brain_name], # 発行するAction take_action_memories[brain_name], # None (use_recurrent時に利用) take_action_text[brain_name], # 常にNone take_action_value[brain_name], # 各Arenaに一つの値 take_action_outputs[brain_name]) = trainer.take_action(curr_info) # take_action_outputsは action, log_probs, value, entropy, etc... # 選んだActionによって環境を1 step進める new_info = env.step(vector_action=take_action_vector, memory=take_action_memories, text_action=take_action_text, value=take_action_value) # BrainInfoには visual_observations, vector_observations, memories, rewards, local_done, # etc.. が入っている. # visual_observations = (4, 84, 84, 3) など for brain_name, trainer in self.trainers.items(): # ExperienceBufferに貯める trainer.add_experiences(curr_info, new_info, take_action_outputs[brain_name]) trainer.process_experiences(curr_info, new_info) if trainer.is_ready_update() and self.train_model \ and trainer.get_step <= trainer.get_max_steps: # ExperienceBuffer に溜まった内容で Policy の学習をSGDで行う. trainer.update_policy() # Write training statistics to Tensorboard. trainer.write_summary(self.global_step) if self.train_model and trainer.get_step <= trainer.get_max_steps: trainer.increment_step_and_update_last_reward() return new_info
631a2dcb65f7b01f394a4887810810476c69ec19
933376c11498a6567da8d7eb7d2675100895c3ba
/pyzoo/zoo/chronos/forecaster/tcn_forecaster.py
1d2359d1cc2e54a9820e4f91c65c4ff5cd87761b
[ "Apache-2.0" ]
permissive
intel-analytics/analytics-zoo
320a461765f86d41dd456b598b1cf1d51d57f4c4
7cc3e2849057d6429d03b1af0db13caae57960a5
refs/heads/master
2023-08-13T20:47:58.621714
2023-07-06T00:49:11
2023-07-06T00:49:11
90,328,920
3,104
996
Apache-2.0
2023-09-06T01:51:18
2017-05-05T02:27:30
Jupyter Notebook
UTF-8
Python
false
false
5,894
py
# # Copyright 2018 Analytics Zoo Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from zoo.chronos.forecaster.base_forecaster import BasePytorchForecaster from zoo.chronos.forecaster.utils import set_pytorch_seed from zoo.chronos.model.tcn import TCNPytorch from zoo.chronos.model.tcn import model_creator, optimizer_creator, loss_creator class TCNForecaster(BasePytorchForecaster): """ Example: >>> #The dataset is split into x_train, x_val, x_test, y_train, y_val, y_test >>> forecaster = TCNForecaster(past_seq_len=24, future_seq_len=5, input_feature_num=1, output_feature_num=1, ...) >>> forecaster.fit((x_train, y_train)) >>> forecaster.to_local() # if you set distributed=True >>> test_pred = forecaster.predict(x_test) >>> test_eval = forecaster.evaluate((x_test, y_test)) >>> forecaster.save({ckpt_name}) >>> forecaster.restore({ckpt_name}) """ def __init__(self, past_seq_len, future_seq_len, input_feature_num, output_feature_num, num_channels=[30]*7, kernel_size=3, repo_initialization=True, dropout=0.1, optimizer="Adam", loss="mse", lr=0.001, metrics=["mse"], seed=None, distributed=False, workers_per_node=1, distributed_backend="torch_distributed"): """ Build a TCN Forecast Model. TCN Forecast may fall into local optima. Please set repo_initialization to False to alleviate the issue. You can also change a random seed to work around. :param past_seq_len: Specify the history time steps (i.e. lookback). :param future_seq_len: Specify the output time steps (i.e. horizon). :param input_feature_num: Specify the feature dimension. :param output_feature_num: Specify the output dimension. :param num_channels: Specify the convolutional layer filter number in TCN's encoder. This value defaults to [30]*7. :param kernel_size: Specify convolutional layer filter height in TCN's encoder. This value defaults to 3. :param repo_initialization: if to use framework default initialization, True to use paper author's initialization and False to use the framework's default initialization. The value defaults to True. :param dropout: Specify the dropout close possibility (i.e. the close possibility to a neuron). This value defaults to 0.1. :param optimizer: Specify the optimizer used for training. This value defaults to "Adam". :param loss: Specify the loss function used for training. This value defaults to "mse". You can choose from "mse", "mae" and "huber_loss". :param lr: Specify the learning rate. This value defaults to 0.001. :param metrics: A list contains metrics for evaluating the quality of forecasting. You may only choose from "mse" and "mae" for a distributed forecaster. You may choose from "mse", "me", "mae", "mse","rmse","msle","r2", "mpe", "mape", "mspe", "smape", "mdape" and "smdape" for a non-distributed forecaster. :param seed: int, random seed for training. This value defaults to None. :param distributed: bool, if init the forecaster in a distributed fashion. If True, the internal model will use an Orca Estimator. If False, the internal model will use a pytorch model. The value defaults to False. :param workers_per_node: int, the number of worker you want to use. The value defaults to 1. The param is only effective when distributed is set to True. :param distributed_backend: str, select from "torch_distributed" or "horovod". The value defaults to "torch_distributed". """ # config setting self.data_config = { "past_seq_len": past_seq_len, "future_seq_len": future_seq_len, "input_feature_num": input_feature_num, "output_feature_num": output_feature_num } self.config = { "lr": lr, "loss": loss, "num_channels": num_channels, "kernel_size": kernel_size, "repo_initialization": repo_initialization, "optim": optimizer, "dropout": dropout } # model creator settings self.local_model = TCNPytorch self.model_creator = model_creator self.optimizer_creator = optimizer_creator self.loss_creator = loss_creator # distributed settings self.distributed = distributed self.distributed_backend = distributed_backend self.workers_per_node = workers_per_node # other settings self.lr = lr self.metrics = metrics self.seed = seed super().__init__()
92296cabb36cdc43ac8a55f79c416c6d3190cc2b
f332244831040530c8d4d3ff42ee4e06078ca22b
/cart/views.py
eed5c0e9c50a9e6889b30cec001caa5258639029
[]
no_license
worlddeleteRin/cosmetics
f8f1bd8a3d9b6b149ae29126fa6f4bd6bb5e72b1
f7d593f3206606d24084d6281bd6d5472654da25
refs/heads/master
2023-03-04T04:34:59.349269
2021-02-13T19:43:37
2021-02-13T19:43:37
296,117,694
0
0
null
null
null
null
UTF-8
Python
false
false
12,561
py
from django.shortcuts import render from django.http import HttpResponse, HttpResponse, HttpResponseRedirect, JsonResponse from django.shortcuts import render, get_object_or_404 from django.urls import reverse from .models import * from products.models import * from collections import defaultdict import pandas as pd import urllib.parse # to serialize to json format from django.core import serializers from django.core.mail import send_mail from django.conf import settings from django.template.loader import render_to_string from django.utils.html import strip_tags # Create your views here. def index(request): allcategories = Category.objects.all() allbrands = Brand.objects.all() if not request.session.session_key: request.session.create() current_session_key = request.session.session_key else: current_session_key = request.session.session_key cart = Cart.objects.get_or_create( session_key = current_session_key ) cart_items = cart[0].item_set.all() return render(request, 'cart/index.html', { 'allbrands': allbrands, 'categories': allcategories, 'session_key': current_session_key, 'items': cart_items, 'current_cart': cart[0], }) def add_item(request, product_id): product = Product.objects.get(id = product_id) if not request.session.session_key: request.session.create() current_session_key = request.session.session_key else: current_session_key = request.session.session_key cart = Cart.objects.get_or_create(session_key = current_session_key)[0] cart_items = cart.item_set.all() if Item.objects.filter(cart = cart, name = product.name).exists(): current_item = Item.objects.get(cart = cart, name = product.name) current_item.quantity += 1 current_item.save() else: new_item = Item( cart = cart, name = product.name, price = product.price, sale_price = product.sale_price, imgurl = product.imgurl, brand = product.pr_brand.name, series = product.pr_series.name, obiem = product.obiem, ) new_item.save() return HttpResponseRedirect(reverse('cart:index')) def add_quantity(request, item_id): current_item = Item.objects.get(id = item_id) current_item.quantity += 1 current_item.save() return HttpResponseRedirect(reverse('cart:index')) def remove_quantity(request, item_id): current_session_key = request.session.session_key cart = Cart.objects.get_or_create(session_key = current_session_key)[0] current_item = Item.objects.get(id = item_id) if current_item.quantity == 1: current_item.delete() else: current_item.quantity -= 1 current_item.save() return HttpResponseRedirect(reverse('cart:index')) def remove_item_ajax(request): current_session_key = request.session.session_key cart = Cart.objects.get(session_key = current_session_key) item_id = request.GET['item_id'] current_item = Item.objects.get(id = item_id, cart = cart) if current_item.quantity == 1: current_item.delete() return JsonResponse({ 'message': 'everything is ok', 'need_delete': 'yes', }, status = 200) check_items = cart.if_items_empty() if check_items == True: cart.promo = None cart.save() else: current_item.quantity -= 1 current_item.save() quantity = current_item.quantity return JsonResponse({ 'message': 'everything is ok', 'need_delete': 'no', 'quantity': quantity, }, status = 200) def add_item_ajax(request): if not request.session.session_key: request.session.create() current_session_key = request.session.session_key else: current_session_key = request.session.session_key cart = Cart.objects.get_or_create(session_key = current_session_key)[0] item_id = request.GET['item_id'] current_item = Item.objects.get(id = item_id, cart = cart) current_item.quantity += 1 current_item.save() quantity = current_item.quantity return JsonResponse({ 'message': 'everything is ok', 'quantity': quantity, }, status = 200) def update_item_amount_ajax(request): current_session_key = request.session.session_key cart = Cart.objects.get(session_key = current_session_key) item_id = request.GET['item_id'] current_item = Item.objects.get(id = item_id, cart = cart) if current_item.sale_price: amount = current_item.quantity * current_item.sale_price else: amount = current_item.quantity * current_item.price return JsonResponse({ 'message': 'everything is ok', 'item_amount': amount, }, status = 200) def update_total_amount_ajax(request): current_session_key = request.session.session_key cart = Cart.objects.get(session_key = current_session_key) total_amount = cart.get_total() if cart.promo != None: total_amount_promo = cart.get_total_promo() has_promo = 'true' return JsonResponse({ 'total_amount_promo': total_amount_promo, 'message': 'everything is ok', 'total_amount': total_amount, 'has_promo': has_promo, }, status = 200) else: has_promo = 'false' return JsonResponse({ 'message': 'everything is ok', 'total_amount': total_amount, 'has_promo': has_promo, }, status = 200) def remove_item_from_cart_ajax(request): current_session_key = request.session.session_key cart = Cart.objects.get(session_key = current_session_key) current_item_id = request.GET['item_id'] print('item id is',current_item_id ) current_item = Item.objects.get(cart = cart, id = current_item_id) print(current_item) current_item.delete() check_items = cart.if_items_empty() if check_items == True: cart.promo = None cart.save() return JsonResponse({ 'message': 'everything is ok', }, status = 200) def add_to_cart_ajax(request): if not request.session.session_key: request.session.create() current_session_key = request.session.session_key else: current_session_key = request.session.session_key cart = Cart.objects.get_or_create(session_key = current_session_key)[0] current_product_id = request.GET['product_id'] current_product = Product.objects.get(id = current_product_id) message = "" if Item.objects.filter(cart = cart, name = current_product.name, price = current_product.price).exists(): item = Item.objects.get(cart = cart, name = current_product.name, price = current_product.price) item.quantity += 1 item.save() else: item = Item( cart = cart, name = current_product.name, price = current_product.price, sale_price = current_product.sale_price, imgurl = current_product.imgurl, brand = current_product.pr_brand.name, series = current_product.pr_series.name, obiem = current_product.obiem, ) item.save() return JsonResponse({ 'message': 'Товар добавлен в корзину!', }, status = 200) def create_order_ajax(request): current_session_key = request.session.session_key cart = Cart.objects.get(session_key = current_session_key) cart_items = cart.item_set.all() # parse cart info delivery_method = request.GET['delivery_method'] delivery_method = urllib.parse.unquote(delivery_method) delivery_cost = request.GET['delivery_cost'] payment_method = request.GET['payment_method'] payment_method = urllib.parse.unquote(payment_method) customer_name = request.GET['customer_name'] customer_name = urllib.parse.unquote(customer_name) customer_phone = request.GET['customer_phone'] customer_city = request.GET['customer_city'] customer_city = urllib.parse.unquote(customer_city) customer_address = request.GET['customer_address'] customer_address = urllib.parse.unquote(customer_address) order_comment = request.GET['cart_comment'] order_comment = urllib.parse.unquote(order_comment) customer_email = request.GET['customer_email'] customer_email = urllib.parse.unquote(customer_email) order_price = int(delivery_cost) + cart.get_total_promo() new_order = Orders( name = customer_name, phone = customer_phone, email = customer_email, delivery = delivery_method + ' ' + delivery_cost, payment = payment_method, city = customer_city, address = customer_address, order_price = order_price, comment = order_comment, ) new_order.save() cart_items_mail = [] order_price_mail = order_price order_comment_mail = order_comment customer_address_mail = customer_city + ', ' + customer_address delivery_method_mail = delivery_method order_id = new_order.id for item in cart_items: new_order.item_set.add(item) cart_items_mail.append([item.name, item.quantity, item.price]) for item in cart.item_set.all(): cart.item_set.remove(item) cart.promo = None cart.save() cart_items_all = new_order.item_set.all() context = { 'order_id': order_id, 'order_price_mail': order_price_mail, 'name': customer_name, 'phone': customer_phone, 'email': customer_email, 'delivery_address': customer_address_mail, 'delivery_cost': delivery_cost, 'cart_items_all': cart_items_all, 'delivery_method_mail': delivery_method_mail, 'order_comment_mail': order_comment_mail, } client_html_message = render_to_string('cart/blocks/order_mail_template.html', context) client_html_message_plain = strip_tags(client_html_message) admin_html_message = render_to_string('cart/blocks/order_mail_template_admin.html', context) admin_html_message_plain = strip_tags(admin_html_message) try: send_mail( 'Заказ № {}'.format(order_id), admin_html_message_plain, settings.EMAIL_HOST_USER, [ # '[email protected]', '[email protected]' ], html_message = admin_html_message ) print('mail is sent') print('try to send mail') send_mail( 'Заказ № {}'.format(order_id), client_html_message_plain, settings.EMAIL_HOST_USER, [ customer_email, # '[email protected]' ], html_message = client_html_message ) except: print('was an error when send mail') return JsonResponse({ 'order_created': 'yes', }, status = 200) def update_nav_total(request): if not request.session.session_key: request.session.create() current_session_key = request.session.session_key else: current_session_key = request.session.session_key cart = Cart.objects.get_or_create(session_key = current_session_key)[0] cart_total = cart.get_total() return JsonResponse({ 'cart_total': cart_total, }, status = 200) def check_promo_ajax(request): current_session_key = request.session.session_key cart = Cart.objects.get(session_key = current_session_key) current_promo = request.GET['promo'] if Promocode.objects.filter(name = current_promo).exists(): print('this promo exist') promo = Promocode.objects.get(name = current_promo) cart.promo = promo cart.save() return JsonResponse({ 'exist': 'yes', }, status = 200) else: print('this promo not exist') return JsonResponse({ 'exist': 'no', }, status = 200) def set_promo(request): current_session_key = request.session.session_key cart = Cart.objects.get(session_key = current_session_key) if cart.promo != None: print('promo exist') promo_name = cart.promo.name return JsonResponse({ 'promo_name': promo_name, 'exist': 'yes' }, status = 200) else: return JsonResponse({ 'exist': 'no' }, status = 200)
98166df402980f456d8048e29aa8a450f9257655
80d879a552ce00a9bc73a26d0ddb74c278867b1f
/scripts/080_hilo_concrete.py
4abf39886121d03650f95582dad542dc8c6f5d56
[]
no_license
whiskyching/WS-EscobedoGroup
4a25abe62fac91b82d3b1abd74ddc02af107457f
bd36d623ec2f60638fe3f330b9ad92c810804e8d
refs/heads/main
2023-03-20T07:03:19.594765
2021-03-16T13:15:14
2021-03-16T13:15:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,119
py
import os import compas from compas.utilities import pairwise from compas_rhino.artists import MeshArtist HERE = os.path.dirname(__file__) DATA = os.path.join(HERE, '../data') FILE = os.path.join(DATA, 'session.json') session = compas.json_load(FILE) mesh = session['mesh'] # ============================================================================== # Idos # ============================================================================== idos = mesh.copy() for face in mesh.faces_where({'is_loaded': False}): idos.delete_face(face) idos.remove_unused_vertices() offset = 0.02 for vertex, attr in idos.vertices(True): x, y, z = mesh.vertex_coordinates(vertex) nx, ny, nz = mesh.vertex_normal(vertex) if attr['nx'] is not None: nx = attr['nx'] if attr['ny'] is not None: ny = attr['ny'] if attr['nz'] is not None: nz = attr['nz'] attr['x'] = x + offset * nx attr['y'] = y + offset * ny attr['z'] = z + offset * nz # ============================================================================== # Edos # ============================================================================== edos = idos.copy() offset = 0.06 for vertex, attr in edos.vertices(True): x, y, z = idos.vertex_coordinates(vertex) nx, ny, nz = idos.vertex_normal(vertex) if attr['nx'] is not None: nx = attr['nx'] if attr['ny'] is not None: ny = attr['ny'] if attr['nz'] is not None: nz = attr['nz'] attr['x'] = x + offset * nx attr['y'] = y + offset * ny attr['z'] = z + offset * nz # ============================================================================== # Volume # ============================================================================== volume = idos.copy() volume.flip_cycles() max_vertex = volume._max_vertex + 1 max_face = volume._max_face + 1 for vertex, attr in edos.vertices(True): volume.add_vertex(key=vertex + max_vertex, **attr) for face in edos.faces(): vertices = edos.face_vertices(face) vertices = [vertex + max_vertex for vertex in vertices] volume.add_face(vertices) boundary = edos.vertices_on_boundary() boundary.append(boundary[0]) for a, b in pairwise(boundary): volume.add_face([b, a, a + max_vertex, b + max_vertex]) # ============================================================================== # Export # ============================================================================== session['idos'] = idos session['edos'] = edos session['volume'] = volume compas.json_dump(session, FILE) # ============================================================================== # visualize # ============================================================================== artist = MeshArtist(idos, layer="HiLo::Concrete1::Idos") artist.clear_layer() artist.draw_mesh(disjoint=True, color=(255, 0, 0)) artist = MeshArtist(edos, layer="HiLo::Concrete1::Edos") artist.clear_layer() artist.draw_mesh(disjoint=True, color=(0, 0, 255)) artist = MeshArtist(volume, layer="HiLo::Concrete1::Volume") artist.clear_layer() artist.draw_mesh(disjoint=True)
4670ba9b785563921ebd4e8eb26fa337062abb5b
1625edfe28b4b0979fd32b4a3c5e55249a993fd5
/baekjoon14915.py
7648498a85fccf5a369e7197408b17d1726a754d
[]
no_license
beOk91/baekjoon2
b8bf504c506c6278899d4107ecfe51974ef13f5e
39569f8effb8e32405a7d74d98bdabcab783ec56
refs/heads/master
2023-05-11T20:11:19.015113
2020-09-14T23:58:49
2020-09-14T23:58:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
198
py
m,n=map(int,input().strip().split()) def conversion(m,n): c="0123456789ABCDEF" if m<n: return str(c[m]) else: return conversion(m//n,n)+str(c[m%n]) print(conversion(m,n))
5e2e9ee1d976ed4b9dae0c19f9e48d49c14d8d4a
d4442db5a7ab9db2b04fef640a9864f3fba54758
/src/python/WMCore/Services/Dashboard/DashboardAPI.py
9f90e4842ae59431378744395dc3404a30601661
[]
no_license
stuartw/WMCore
fa25ff19ab5058a635d35d3c58a0ac56a3e079a1
38c39c43f7237fd316930839674ac9be3c0ee8cc
refs/heads/master
2021-01-18T07:18:18.324604
2012-10-18T22:30:34
2012-10-18T22:30:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,823
py
#!/usr/bin/python """ This is the Dashboard API Module for the Worker Node """ from WMCore.Services.Dashboard import apmon import time from types import DictType, StringType, ListType # # Methods for manipulating the apmon instance # # Internal attributes apmonInstance = None apmonInit = False # Monalisa configuration apmonConf = ["cms-wmagent-job.cern.ch"] # # Method to create a single apmon instance at a time # def getApmonInstance( logr, apmonServer ): global apmonInstance global apmonInit if apmonInstance is None and not apmonInit : apmonInit = True if apmonInstance is None : try : if not apmonServer: apmonInstance = apmon.ApMon(apmonConf, logr) #apmonLoggingLevel) else: apmonInstance = apmon.ApMon(apmonServer, logr) except Exception, e : pass return apmonInstance # # Method to free the apmon instance # def apmonFree() : global apmonInstance global apmonInit if apmonInstance is not None : try : apmonInstance.free() except Exception, e : pass apmonInstance = None apmonInit = False # # Method to send params to Monalisa service # def apmonSend(taskid, jobid, params, logr, apmonServer) : apm = getApmonInstance( logr, apmonServer ) if apm is not None : if not isinstance(params, DictType) and not isinstance(params, ListType) : params = {'unknown' : '0'} if not isinstance(taskid, StringType) : taskid = 'unknown' if not isinstance(jobid, StringType) : jobid = 'unknown' try : apm.sendParameters(taskid, jobid, params) return 0 except Exception, e: pass return 1
[ "sfoulkes@4525493e-7705-40b1-a816-d608a930855b" ]
sfoulkes@4525493e-7705-40b1-a816-d608a930855b
abe1005bd1d0c5882d3e588d9d3a1e4a7486c579
44197b58b52349b0557f4d2327be292d1c01ea50
/test/test_data_62.py
2dd9de7ce8a273d4da81d28b4534861d76aaff37
[]
no_license
jonpurdy/netbox-swagger-python-client
58b2b7984ea24a690d8910f6a6a496b99e5098f9
6bfe8cf3bb753c4d293dd56a541fac026642207f
refs/heads/master
2021-06-28T03:16:09.670793
2017-09-17T18:15:54
2017-09-17T18:15:54
103,851,068
0
0
null
null
null
null
UTF-8
Python
false
false
861
py
# coding: utf-8 """ NetBox API No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import os import sys import unittest import swagger_client from swagger_client.rest import ApiException from swagger_client.models.data_62 import Data62 class TestData62(unittest.TestCase): """ Data62 unit test stubs """ def setUp(self): pass def tearDown(self): pass def testData62(self): """ Test Data62 """ # FIXME: construct object with mandatory attributes with example values #model = swagger_client.models.data_62.Data62() pass if __name__ == '__main__': unittest.main()
601e04d3f95736775c8e3eee23c2ea0fc2a6192b
216ddf61c5be758efde2b50fa476ada5354aced5
/galaxy/gen_test.py
dddbbbb2c8f96cf24df4b8d0981a9c43604dbf60
[]
no_license
cameronfabbri/ICGANs
4600020238d6884b710ea0b035b84e86c73705f1
d6be1a3e752959754be1dbf8af2ead8f75048b37
refs/heads/master
2021-01-16T18:11:38.596295
2017-11-26T22:35:16
2017-11-26T22:35:16
100,050,914
5
1
null
null
null
null
UTF-8
Python
false
false
2,823
py
''' Generates a dataset of encodings from real images using the trained encoder. ''' import matplotlib.pyplot as plt from tqdm import tqdm from matplotlib.pyplot import cm import scipy.misc as misc import tensorflow as tf import tensorflow.contrib.layers as tcl import cPickle as pickle import numpy as np import argparse import random import ntpath import glob import time import sys import cv2 import os sys.path.insert(0, '../ops/') from tf_ops import * import data_ops from nets import * if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--CHECKPOINT_DIR', required=True,help='checkpoint directory',type=str) parser.add_argument('--DATASET', required=False,help='The DATASET to use', type=str,default='celeba') parser.add_argument('--DATA_DIR', required=False,help='Directory where data is', type=str,default='./') parser.add_argument('--OUTPUT_DIR', required=False,help='Directory to save data', type=str,default='./') parser.add_argument('--ACTIVATION', required=False,help='Activation function', type=str,default='lrelu') a = parser.parse_args() CHECKPOINT_DIR = a.CHECKPOINT_DIR DATASET = a.DATASET DATA_DIR = a.DATA_DIR OUTPUT_DIR = a.OUTPUT_DIR ACTIVATION = a.ACTIVATION try: os.makedirs(OUTPUT_DIR) except: pass # placeholders for data going into the network global_step = tf.Variable(0, name='global_step', trainable=False) images = tf.placeholder(tf.float32, shape=(1, 64, 64, 3), name='images') encoded = encZ(images, ACTIVATION) saver = tf.train.Saver(max_to_keep=1) init = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) sess = tf.Session() sess.run(init) # restore previous model if there is one ckpt = tf.train.get_checkpoint_state(CHECKPOINT_DIR) if ckpt and ckpt.model_checkpoint_path: print "Restoring previous model..." try: saver.restore(sess, ckpt.model_checkpoint_path) print "Model restored" except: print "Could not restore model" pass print 'Loading data...' # images and annots: _, __ train_images, train_annots, test_images, test_annots, paths = data_ops.load_galaxy(DATA_DIR) test_len = len(test_annots) print 'test num:',test_len info = {} # want to write out a file with the image path and z vector for p,img,label in tqdm(zip(paths, test_images, test_annots)): img = data_ops.normalize(img) batch_images = np.expand_dims(img, 0) encoding = sess.run([encoded], feed_dict={images:batch_images})[0][0] info[p] = [encoding, label] # write out dictionary to pickle file p = open(OUTPUT_DIR+'data.pkl', 'wb') data = pickle.dumps(info) p.write(data) p.close()
49d91b038609858a956b8fc002568e272efc77f6
f7c3b1f65cc4d6dba1dc9dcf70f523497a14d791
/mujoco/tf_commons/ops.py
ff3b576def5ff27fcc5369b938fb8a9e04891c09
[ "MIT" ]
permissive
hiwonjoon/ICML2019-TREX
b9cac1ac5d97b22374a92f2f3cf5d8956cdb2482
44f92b61ca6c79ac22d468382d4f2fbee164fb7a
refs/heads/master
2021-06-16T15:52:33.325054
2021-04-10T04:57:24
2021-04-10T04:57:24
184,654,702
76
24
MIT
2020-01-28T22:11:19
2019-05-02T21:36:24
Python
UTF-8
Python
false
false
19,966
py
import tensorflow as tf class Conv2d(object) : def __init__(self,name,input_dim,output_dim,k_h=4,k_w=4,d_h=2,d_w=2, stddev=0.02, data_format='NCHW',padding='SAME') : with tf.variable_scope(name) : assert(data_format == 'NCHW' or data_format == 'NHWC') self.w = tf.get_variable('w', [k_h, k_w, input_dim, output_dim], initializer=tf.truncated_normal_initializer(stddev=stddev)) self.b = tf.get_variable('b',[output_dim], initializer=tf.constant_initializer(0.0)) if( data_format == 'NCHW' ) : self.strides = [1, 1, d_h, d_w] else : self.strides = [1, d_h, d_w, 1] self.data_format = data_format self.padding = padding def __call__(self,input_var,name=None,w=None,b=None,**kwargs) : w = w if w is not None else self.w b = b if b is not None else self.b if( self.data_format =='NCHW' ) : return tf.nn.bias_add( tf.nn.conv2d(input_var, w, use_cudnn_on_gpu=True,data_format='NCHW', strides=self.strides, padding=self.padding), b,data_format='NCHW',name=name) else : return tf.nn.bias_add( tf.nn.conv2d(input_var, w,data_format='NHWC', strides=self.strides, padding=self.padding), b,data_format='NHWC',name=name) def get_variables(self): return {'w':self.w,'b':self.b} class WeightNormConv2d(object): def __init__(self,name,input_dim,output_dim,k_h=4,k_w=4,d_h=2,d_w=2, stddev=0.02, data_format='NHWC',padding='SAME',epsilon=1e-9) : with tf.variable_scope(name) : assert data_format == 'NHWC' self.v = tf.get_variable('v', [k_h, k_w, input_dim, output_dim], initializer=tf.truncated_normal_initializer(stddev=stddev)) self.g = tf.get_variable('g',[output_dim], initializer=tf.constant_initializer(float('nan'))) self.b = tf.get_variable('b',[output_dim], initializer=tf.constant_initializer(float('nan'))) self.strides = [1, d_h, d_w, 1] self.padding = padding self.epsilon = epsilon def __call__(self,input_var,name=None,**kwargs) : def _init(): v_norm = tf.nn.l2_normalize(self.v,axis=[0,1,2]) t = tf.nn.conv2d(input_var,v_norm,self.strides,self.padding,data_format='NHWC') mu,var = tf.nn.moments(t,axes=[0,1,2]) std = tf.sqrt(var+self.epsilon) return [tf.assign(self.g,1/std),tf.assign(self.b,-1.*mu/std)] require_init = tf.reduce_any(tf.is_nan(self.g)) init_ops = tf.cond(require_init,_init,lambda : [self.g,self.b]) with tf.control_dependencies(init_ops): w = tf.reshape(self.g,[1,1,1,tf.shape(self.v)[-1]]) * tf.nn.l2_normalize(self.v,axis=[0,1,2]) return tf.nn.bias_add( tf.nn.conv2d(input_var, w,data_format='NHWC', strides=self.strides, padding=self.padding), self.b,data_format='NHWC',name=name) def get_variables(self): #TODO: self.v should be l2-normalized or not? / currently not. return {'v':self.v,'b':self.b,'g':self.g} class DepthConv2d(object) : def __init__(self,name,input_dim,channel_multiplier,k_h=4,k_w=4,d_h=2,d_w=2, stddev=0.02, data_format='NCHW', padding='SAME') : with tf.variable_scope(name) : assert(data_format == 'NCHW' or data_format == 'NHWC') self.w = tf.get_variable('w', [k_h, k_w, input_dim, channel_multiplier], initializer=tf.truncated_normal_initializer(stddev=stddev)) self.b = tf.get_variable('b',[input_dim*channel_multiplier], initializer=tf.constant_initializer(0.0)) if( data_format == 'NCHW' ) : self.strides = [1, 1, d_h, d_w] else : self.strides = [1, d_h, d_w, 1] self.data_format = data_format self.padding = padding def __call__(self,input_var,name=None,**xargs) : return tf.nn.bias_add( tf.nn.depthwise_conv2d(input_var, self.w, data_format=self.data_format, strides=self.strides, padding=self.padding), self.b,data_format=self.data_format,name=name) class Conv3d(object) : def __init__(self,name,input_dim,output_dim,k_t=2,k_h=4,k_w=4,d_t=1,d_h=1,d_w=1, stddev=0.02, data_format='NDHWC') : with tf.variable_scope(name) : assert(data_format == 'NDHWC') self.w = tf.get_variable('w', [k_t, k_h, k_w, input_dim, output_dim], initializer=tf.truncated_normal_initializer(stddev=stddev)) self.b = tf.get_variable('b',[output_dim], initializer=tf.constant_initializer(0.0)) self.strides = [d_t,d_h,d_w] def __call__(self,input_var,name=None,w=None,b=None,**kwargs) : w = w if w is not None else self.w b = b if b is not None else self.b #k_t,k_h,k_w,_,_ = self.w.get_shape().as_list() #_t = tf.pad(input_var, [[0,0],[0,0],[k_h//2,k_h//2],[k_w//2,k_w//2],[0,0]], "SYMMETRIC") return tf.nn.bias_add( tf.nn.convolution(input_var, w, strides=self.strides, data_format='NDHWC', padding='SAME'), b,name=name) def get_variables(self): return {'w':self.w,'b':self.b} class DilatedConv3D(object) : def __init__(self,name,input_dim,output_dim,k_t=2,k_h=3,k_w=3,d_t=2,d_h=1,d_w=1, stddev=0.02, data_format='NDHWC') : with tf.variable_scope(name) : assert(data_format == 'NDHWC') self.w = tf.get_variable('w', [k_t, k_h, k_w, input_dim, output_dim], initializer=tf.truncated_normal_initializer(stddev=stddev)) self.b = tf.get_variable('b',[output_dim], initializer=tf.constant_initializer(0.0)) self.strides = [1,1,1] self.dilates = [d_t, d_h, d_w] def __call__(self,input_var,name=None) : k_t,k_h,k_w,_,_ = self.w.get_shape().as_list() _t = tf.pad(input_var, [[0,0],[0,0],[k_h//2,k_h//2],[k_w//2,k_w//2],[0,0]], "SYMMETRIC") return tf.nn.bias_add( tf.nn.convolution(_t, self.w, strides=self.strides, dilation_rate=self.dilates, padding='VALID'), self.b,name=name) class Linear(object) : def __init__(self,name,input_dim,output_dim,stddev=0.02) : with tf.variable_scope(name) : self.w = tf.get_variable('w',[input_dim, output_dim], initializer=tf.random_normal_initializer(stddev=stddev)) self.b = tf.get_variable('b',[output_dim], initializer=tf.constant_initializer(0.0)) def __call__(self,input_var,name=None,w=None,b=None,**kwargs) : w = w if w is not None else self.w b = b if b is not None else self.b if( input_var.shape.ndims > 2 ) : dims = tf.reduce_prod(tf.shape(input_var)[1:]) return tf.matmul(tf.reshape(input_var,[-1,dims]),w) + b else : return tf.matmul(input_var,w)+b def get_variables(self): return {'w':self.w,'b':self.b} class WeightNormLinear(object): def __init__(self,name,input_dim,output_dim,stddev=0.02,epsilon=1e-10) : with tf.variable_scope(name) : self.v = tf.get_variable('v',[input_dim, output_dim], initializer=tf.random_normal_initializer(stddev=stddev)) self.g = tf.get_variable('g',[output_dim], initializer=tf.constant_initializer(float('nan'))) self.b = tf.get_variable('b',[output_dim], initializer=tf.constant_initializer(float('nan'))) self.epsilon = epsilon def __call__(self,input_var,name=None,**kwargs) : if( input_var.shape.ndims > 2 ) : dims = tf.reduce_prod(tf.shape(input_var)[1:]) input_var = tf.reshape(input_var,[-1,dims]) def _init(): v_norm = tf.nn.l2_normalize(self.v,axis=0) t = tf.matmul(input_var,v_norm) mu,var = tf.nn.moments(t,axes=[0]) std = tf.sqrt(var+self.epsilon) return [tf.assign(self.g,1/std),tf.assign(self.b,-1.*mu/std)] require_init = tf.reduce_any(tf.is_nan(self.g)) init_ops = tf.cond(require_init,_init,lambda : [self.g,self.b]) with tf.control_dependencies(init_ops): w = tf.expand_dims(self.g,axis=0) * tf.nn.l2_normalize(self.v,axis=0) return tf.matmul(input_var,w)+self.b def get_variables(self): #TODO: self.v should be l2-normalized or not? / currently not. return {'v':self.v,'b':self.b,'g':self.g} class SymPadConv2d(object): #Resize and Convolution(upsacle by 2) def __init__(self,name,input_dim,output_dim, k_h=3,k_w=3,stddev=0.02) : assert k_h%2==1 and k_w%2==1, 'kernel size should be odd numbers to ensure exact size' with tf.variable_scope(name) : self.w = tf.get_variable('w', [k_h, k_w, input_dim, output_dim], initializer=tf.random_normal_initializer(stddev=stddev)) self.b = tf.get_variable('b',[output_dim], initializer=tf.constant_initializer(0.0)) self.padding = [ [0,0],[k_h//2,k_h//2],[k_w//2,k_w//2],[0,0] ] def __call__(self,input_var,name=None,**kwargs): _,h,w,c = input_var.shape.as_list() _t = tf.image.resize_nearest_neighbor(input_var, [h*2, w*2]) _t = tf.pad(_t,self.padding, mode='SYMMETRIC') return tf.nn.bias_add( tf.nn.conv2d(_t, self.w, data_format='NHWC', #we can't use cudnn due to resize method... strides=[1,1,1,1], padding="VALID"), self.b,data_format='NHWC',name=name) def get_variables(self): return {'w':self.w,'b':self.b} class WeightNormSymPadConv2d(object): #Resize and Convolution(upsacle by 2) def __init__(self,name,input_dim,output_dim, k_h=3,k_w=3,stddev=0.02) : assert k_h%2==1 and k_w%2==1, 'kernel size should be odd numbers to ensure exact size' with tf.variable_scope(name) : self.conv2d = WeightNormConv2d('conv',input_dim,output_dim,k_h,k_w,1,1,data_format='NHWC',padding='VALID') self.padding = [ [0,0],[k_h//2,k_h//2],[k_w//2,k_w//2],[0,0] ] def __call__(self,input_var,name=None,**kwargs): _,h,w,c = input_var.shape.as_list() _t = tf.image.resize_nearest_neighbor(input_var, [h*2, w*2]) _t = tf.pad(_t,self.padding, mode='SYMMETRIC') return self.conv2d(_t) def get_variables(self): return self.conv2d.get_variables() class TransposedConv2d(object): def __init__(self,name,input_dim,out_dim, k_h=4,k_w=4,d_h=2,d_w=2,stddev=0.02,data_format='NCHW') : with tf.variable_scope(name) : self.w = tf.get_variable('w', [k_h, k_w, out_dim, input_dim], initializer=tf.random_normal_initializer(stddev=stddev)) self.b = tf.get_variable('b',[out_dim], initializer=tf.constant_initializer(0.0)) self.data_format = data_format if( data_format =='NCHW' ): self.strides = [1, 1, d_h, d_w] else: self.strides = [1, d_h, d_w, 1] def __call__(self,input_var,name=None,**xargs): shapes = tf.shape(input_var) if( self.data_format == 'NCHW' ): shapes = tf.stack([shapes[0],tf.shape(self.b)[0],shapes[2]*self.strides[2],shapes[3]*self.strides[3]]) else: shapes = tf.stack([shapes[0],shapes[1]*self.strides[1],shapes[2]*self.strides[2],tf.shape(self.b)[0]]) return tf.nn.bias_add( tf.nn.conv2d_transpose(input_var,self.w,output_shape=shapes, data_format=self.data_format, strides=self.strides,padding='SAME'), self.b,data_format=self.data_format,name=name) def get_variables(self): return {'w':self.w,'b':self.b} class WeightNormTransposedConv2d(object): def __init__(self,name,input_dim,out_dim, k_h=4,k_w=4,d_h=2,d_w=2,stddev=0.02,data_format='NHWC',epsilon=1e-9) : with tf.variable_scope(name) : assert data_format == 'NHWC' self.v = tf.get_variable('v', [k_h, k_w, out_dim, input_dim], initializer=tf.truncated_normal_initializer(stddev=stddev)) self.g = tf.get_variable('g',[out_dim], initializer=tf.constant_initializer(float('nan'))) self.b = tf.get_variable('b',[out_dim], initializer=tf.constant_initializer(float('nan'))) self.strides = [1, d_h, d_w, 1] self.epsilon = epsilon def __call__(self,input_var,name=None,**kwargs) : shapes = tf.shape(input_var) shapes = tf.stack([shapes[0],shapes[1]*self.strides[1],shapes[2]*self.strides[2],tf.shape(self.b)[0]]) def _init(): v_norm = tf.nn.l2_normalize(self.v,axis=[0,1,3]) t = tf.nn.conv2d_transpose(input_var,v_norm, output_shape=shapes, strides=self.strides, padding='SAME', data_format='NHWC') mu,var = tf.nn.moments(t,axes=[0,1,2]) std = tf.sqrt(var+self.epsilon) return [tf.assign(self.g,1/std),tf.assign(self.b,-1.*mu/std)] require_init = tf.reduce_any(tf.is_nan(self.g)) init_ops = tf.cond(require_init,_init,lambda : [self.g,self.b]) with tf.control_dependencies(init_ops): w = tf.reshape(self.g,[1,1,tf.shape(self.v)[2],1]) * tf.nn.l2_normalize(self.v,axis=[0,1,3]) return tf.nn.bias_add( tf.nn.conv2d_transpose(input_var,w, output_shape=shapes, strides=self.strides, padding='SAME', data_format='NHWC'), self.b,data_format='NHWC',name=name) def get_variables(self): #TODO: self.v should be l2-normalized or not? / currently not. return {'v':self.v,'b':self.b,'g':self.g} class LayerNorm(): def __init__(self,name,axis,out_dim=None,epsilon=1e-7,data_format='NHWC') : """ out_dim: Recentering by adding bias again. The previous bias can be ignored while normalization. (when you normalize over channel only) """ assert data_format=='NCHW' or data_format=='NHWC' assert len(axis) != 1 or (len(axis) == 1 and out_dim != None) """ TODO: Track Moving mean and variance, and use this statistics. with tf.variable_scope(name): self.moving_mean = tf.get_variable('moving_mean',[dims], initializer=tf.constant_initializer(0.0), trainable=False) self.moving_variance = tf.get_variable('moving_variance',[dims], initializer=tf.constant_initializer(1.0), trainable=False) """ if out_dim is not None: with tf.variable_scope(name) : self.gamma= tf.get_variable('gamma',[1,1,1,out_dim], initializer=tf.constant_initializer(1.0)) self.beta = tf.get_variable('beta',[out_dim], initializer=tf.constant_initializer(0.0)) else: self.gamma = None self.beta = None self.axis = axis self.epsilon = epsilon self.data_format = data_format self.name = name def __call__(self,input_var,**kwargs) : mean, var = tf.nn.moments(input_var, self.axis, keep_dims=True) ret = (input_var - mean) / tf.sqrt(var+self.epsilon) if self.gamma is None : return ret else: return tf.nn.bias_add(ret*self.gamma, self.beta,data_format=self.data_format) def get_variables(self): return {'gamma':self.gamma,'beta':self.beta} if self.gamma is not None else {} class InstanceNorm(): def __init__(self,name,format='NCHW',epsilon=1e-5) : assert(format=='NCHW' or format=='NHWC') self.axis = [2,3] if format == 'NCHW' else [1,2] self.epsilon = epsilon self.name = name def __call__(self,input_var) : mean, var = tf.nn.moments(input_var, self.axis, keep_dims=True) return (input_var - mean) / tf.sqrt(var+self.epsilon) class BatchNorm(object): def __init__(self,name,dims,axis=1,epsilon=1e-3,momentum=0.999,center=True,scale=True) : self.momentum = momentum self.epsilon = epsilon self.axis = axis self.center=center self.scale=scale with tf.variable_scope(name) as scope: with tf.variable_scope('bn') : self.gamma= tf.get_variable('gamma',[dims], initializer=tf.constant_initializer(1.0)) self.beta = tf.get_variable('beta',[dims], initializer=tf.constant_initializer(0.0)) self.moving_mean = tf.get_variable('moving_mean',[dims], initializer=tf.constant_initializer(0.0), trainable=False) self.moving_variance = tf.get_variable('moving_variance',[dims], initializer=tf.constant_initializer(1.0), trainable=False) self.scope = scope def __call__(self,input_var,is_training,**xargs) : with tf.variable_scope(self.scope) : return tf.layers.batch_normalization( input_var, axis=self.axis, momentum=self.momentum, epsilon=self.epsilon, center=self.center, scale=self.scale, training=is_training, reuse=True, name='bn') """ ---Do NOT forget to add update_ops dependencies for your loss function.--- update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS,tf.get_default_graph().get_name_scope()) #And, do not make any scope inside map_fn, since scope.name will not work...(it is corrupted by map_fn.) print(update_ops) with tf.control_dependencies(update_ops): """ def get_variables(self): return {} class Lrelu(object): def __init__(self,leak=0.2,name='lrelu') : self.leak = leak self.name = name def __call__(self, x, **kwargs) : return tf.maximum(x, self.leak*x, name=self.name) def get_variables(self): return {} class ResidualBlock() : def __init__(self,name,filters,filter_size=3,non_linearity=Lrelu,normal_method=InstanceNorm) : self.conv_1 = Conv2d(name+'_1',filters,filters,filter_size,filter_size,1,1) self.normal = normal_method(name+'_norm') self.nl = non_linearity() self.conv_2 = Conv2d(name+'_2',filters,filters,filter_size,filter_size,1,1) def __call__(self,input_var) : _t = self.conv_1(input_var) _t = self.normal(_t) _t = self.nl(_t) _t = self.conv_2(_t) return input_var + _t
0c61ce225d80072549a004ed2591a718c5672896
7bededcada9271d92f34da6dae7088f3faf61c02
/pypureclient/flashblade/FB_2_8/models/target_get_response.py
ac033a0a864676d3ec597b61877bb7714e0e01c8
[ "BSD-2-Clause" ]
permissive
PureStorage-OpenConnect/py-pure-client
a5348c6a153f8c809d6e3cf734d95d6946c5f659
7e3c3ec1d639fb004627e94d3d63a6fdc141ae1e
refs/heads/master
2023-09-04T10:59:03.009972
2023-08-25T07:40:41
2023-08-25T07:40:41
160,391,444
18
29
BSD-2-Clause
2023-09-08T09:08:30
2018-12-04T17:02:51
Python
UTF-8
Python
false
false
4,220
py
# coding: utf-8 """ FlashBlade REST API A lightweight client for FlashBlade REST API 2.8, developed by Pure Storage, Inc. (http://www.purestorage.com/). OpenAPI spec version: 2.8 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re import six import typing from ....properties import Property if typing.TYPE_CHECKING: from pypureclient.flashblade.FB_2_8 import models class TargetGetResponse(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'continuation_token': 'str', 'total_item_count': 'int', 'items': 'list[Target]' } attribute_map = { 'continuation_token': 'continuation_token', 'total_item_count': 'total_item_count', 'items': 'items' } required_args = { } def __init__( self, continuation_token=None, # type: str total_item_count=None, # type: int items=None, # type: List[models.Target] ): """ Keyword args: continuation_token (str): Continuation token that can be provided in the `continuation_token` query param to get the next page of data. If you use the `continuation_token` to page through data you are guaranteed to get all items exactly once regardless of how items are modified. If an item is added or deleted during the pagination then it may or may not be returned. The `continuation_token` is generated if the `limit` is less than the remaining number of items, and the default sort is used (no sort is specified). total_item_count (int): Total number of items after applying `filter` params. items (list[Target]): A list of target objects. """ if continuation_token is not None: self.continuation_token = continuation_token if total_item_count is not None: self.total_item_count = total_item_count if items is not None: self.items = items def __setattr__(self, key, value): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `TargetGetResponse`".format(key)) self.__dict__[key] = value def __getattribute__(self, item): value = object.__getattribute__(self, item) if isinstance(value, Property): return None else: return value def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): if hasattr(self, attr): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(TargetGetResponse, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, TargetGetResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
6cc605df33d06fc2f8575460a8beca5e972c9fe6
f65b633d0760e20ef5e0066be10aa18168f5659e
/documents/views.py
448b7e5a09e37e05fa8e98adc18b108ace1694e2
[ "BSD-2-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
boxed/curia
a2b5ce5feda114bac1637de112b20026dabee5ae
c19f12f77b570b180acf4ec1ee05ea77b87b5fc9
refs/heads/master
2021-03-12T22:53:36.748160
2014-10-20T16:56:45
2014-10-20T16:56:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,834
py
import re from datetime import datetime from django.contrib.auth.views import login_required from django.http import HttpResponse, HttpResponseRedirect from django.utils.simplejson import dumps from django.contrib.auth.models import User,Group from django.utils.encoding import smart_unicode from curia.documents.models import Document, Version from curia.shortcuts import * from curia import * from django.utils.translation import ugettext as _ from sets import Set from curia.labels import get_labels from curia.labels.models import Label from curia.labels import handle_labels, mark_labels_as_deleted # helper def get_latest(document_id): try: return Version.objects.filter(document=document_id).order_by('-id')[0] except Version.DoesNotExist: return None; def validate_wiki_links(owner_user, owner_group, form, contents_name = 'contents'): from django.utils.encoding import smart_unicode contents = smart_unicode(form.data[contents_name]) links = list(re.finditer(r'(\[(.*?)\])', contents)) errors = [] link_targets = {} # examples of use: # [images/groups/1/sets/3] for link in links: title = link.groups()[1] if ';' in title: group_name, title = title.split(u';') group = get_objects_from(Group, name=group_name) if len(group) == 1: owner_group = group[0] else: user = get_objects_from(User, username=group_name) if len(user) == 1: owner_user = user[0] else: errors.append(_('%s is not a valid group or user name') % group_name) continue documents = get_objects_from(Document, owner_user=owner_user, owner_group=owner_group, title=title, deleted=False) if len(documents) != 1: errors.append(_('Could not find document %s') % link.groups()[1]) else: link_targets[link.groups()[1]] = documents[0] if len(errors) != 0: form.errors[contents_name] = errors else: # replace from the end as to not change the string in a way that interferes with the following replace operation links.reverse() for link in links: target = link_targets[link.groups()[1]] contents = contents.replace(link.groups()[0], '<a href="'+target.get_absolute_url()+'">'+smart_unicode(target)+'</a>') return contents # views def version_response(request, v): return render_to_response(request, 'documents/version.html', {'version': v, 'document': v.document, 'owner':get_owner(v.document)}) def view_latest(request, document_id): v = get_latest(document_id) check_access(request.user, obj=v.document, command='view') if v == None: raise Http404 return version_response(request, v) def view_version(request, version_id, document_id): v = get_object_or_404_and_check_access(request, Version, pk=version_id, command='view') check_access(request.user, obj=v.document, command='view') #if v.document.id != document_id: # raise something return version_response(request, v) def view_version_list(request, document_id): document = get_object_or_404_and_check_access(request, Document, pk=document_id, command='view') return render_to_response(request, 'documents/version_list.html', {'version_list': Version.objects.filter(document=document_id), 'document': Document.objects.get(pk=document_id)}) def add_document(request): is_presentation = get_boolean(request,'is_presentation') owner_group = None owner_user = None class DocumentForm(django.forms.Form): title = django.forms.CharField(max_length=1024, label=_('Title')) #labels = django.forms.CharField(required=False, label=_('Labels')) contents = django.forms.CharField(required=False, widget = django.forms.Textarea, label=_('Contents')) group_id = get_integer(request,'group_id') user_id = get_integer(request,'user_id') if group_id: owner_group = get_object_or_404_and_check_access(request, Group, pk=group_id, command='add') check_access(request.user, obj=owner_group, command='add document') else: owner_user = get_object_or_404_and_check_access(request, User, pk=user_id, command='add') check_access(request.user, obj=owner_user, command='add document') if request.POST: form = DocumentForm(request.POST) if form.is_valid(): #Handle the document if owner_group != None: document = Document.objects.create(owner_group=owner_group, owner_user=owner_user, is_presentation=is_presentation) else: document = Document.objects.create(owner_user=owner_user, is_presentation=is_presentation) if document.is_presentation: if group == 0: title = owner_user.username + 's Presentation' else: owner_group = get_object_or_404_and_check_access(request, Group, pk=group, command='add') title = owner_group.name + 's Presentation' else: title = form.cleaned_data['title'] new_version = Version(document=document,title=title, contents=strip_p(form.cleaned_data['contents']), owner=request.user) new_version.save() #Handle the labels #handle_labels(request,document) if document.is_presentation: if document.owner_group: return HttpResponseRedirect(document.owner_group.get_absolute_url()) else: return HttpResponseRedirect(document.owner_user.get_absolute_url()) return HttpResponseRedirect(document.get_absolute_url()) else: form = DocumentForm() return render_to_response(request, 'documents/add.html', {'form':form}) def edit_document(request, document_id, is_creating=False): group_id = get_integer(request, 'group_id') document = get_object_or_404_and_check_access(request, Document, pk=document_id, command='edit') user = request.user class DocumentForm(django.forms.Form): if not document.is_presentation: title = django.forms.CharField(max_length=1024, label=_('Title')) #labels = django.forms.CharField(required=False, label=_('Labels')) contents = django.forms.CharField(required=False, widget = django.forms.Textarea, label=_('Contents')) edit_version = django.forms.IntegerField(widget = django.forms.HiddenInput, required=True) if request.POST: form = DocumentForm(request.POST) if int(request.POST['edit_version']) != document.get_latest_version().id: post = request.POST.copy() post['edit_version'] = document.get_latest_version().id form = DocumentForm(post) form.errors['contents'] = [_('Document was changed after you began editing it, please review the changes and then press save again')] if form.is_valid(): #Handle the labels #handle_labels(request,document) #Handle the document if not document.is_presentation: if form.cleaned_data.has_key('title'): title = form.cleaned_data['title'] else: title = document.get_latest_version().title else: if user.first_name.endswith('s'): title=user.first_name+' presentation' else: title = user.first_name+'s presentation' new_version = Version(document=document,title=title, contents=strip_p(form.cleaned_data['contents']), owner=request.user) new_version.save() if request.external: from curia.homepage.models import MenuItem try: menu = MenuItem.objects.get(content_type=get_content_type(document), object_id=document.id) menu.title = title menu.save() except MenuItem.DoesNotExist: pass if document.is_presentation: if document.owner_group: return HttpResponseRedirect(document.owner_group.get_absolute_url()) else: return HttpResponseRedirect(document.owner_user.get_absolute_url()) return HttpResponseRedirect(document.get_absolute_url()) else: latest_version = document.get_latest_version() form = DocumentForm(initial={'title': latest_version.title, 'contents': latest_version.contents, 'edit_version':latest_version.id}) return render_to_response(request, 'documents/edit.html', {'form':form, 'document':document}) def delete_document(request, document_id): document = get_object_or_404_and_check_access(request, Document, pk=document_id, command='delete') from curia import delete_objects delete_objects(document) if request.external: from curia.homepage.models import MenuItem try: menu = MenuItem.objects.get(content_type=get_content_type(document), object_id=document.id) menu.delete() except MenuItem.DoesNotExist: pass return HttpResponse(dumps(document_id, ensure_ascii=False), content_type="text/json; charset=UTF-8") def view_documents_of_user(request, user_id): user = get_object_or_404_and_check_access(request, User, pk=user_id, command='view') objects = get_objects_from(Document, deleted=False, owner_user=user, owner_group=None, is_presentation=False) return render_to_response(request, 'documents/document_list.html', {'owner':user, 'objects':objects, 'type':'users'}) def view_documents_of_group(request, group_id=None): if group_id != None: group = get_object_or_404_and_check_access(request, Group, pk=group_id, command='view') else: group = get_current_community() objects = get_objects_from(Document, deleted=False, owner_group=group, is_presentation=False) return render_to_response(request, 'documents/document_list.html', {'owner':group, 'objects':objects, 'type':'groups'}) def revert_to_version(request, document_id, version_id): old_version = Version.objects.get(pk = version_id) document = Document.objects.get(pk = document_id) new_version = Version(document=document,title=old_version.title, contents=old_version.contents, owner=request.user) new_version.save() return version_response(request, new_version)
ab7a78b9db6f60371ee1fac74f8b8411ff23aa43
a179d2abea58ee4d987bf05729a5e7df727af3cd
/instaclone/settings.py
6e13a5e35aa00ba74ca16a19dd70fe50c0cb34ee
[ "MIT" ]
permissive
Derrick-Nyongesa/instagram-clone
ced05a4c334c9e95e96bec9a3883b448c5fa95c6
2f3c018c33aa440160401f0c1878a2670f2f0081
refs/heads/main
2023-05-14T01:32:36.211904
2021-05-26T13:42:26
2021-05-26T13:42:26
369,403,582
0
0
null
null
null
null
UTF-8
Python
false
false
4,796
py
""" Django settings for instaclone project. Generated by 'django-admin startproject' using Django 3.2.2. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ from pathlib import Path import os from decouple import config, Csv import cloudinary import cloudinary.uploader import cloudinary.api import django_heroku import dj_database_url # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = config("SECRET_KEY") # SECURITY WARNING: don't run with debug turned on in production! DEBUG = config('DEBUG', default=False, cast=bool) # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'instagram', 'bootstrap3', 'cloudinary' ] MIDDLEWARE = [ 'whitenoise.middleware.WhiteNoiseMiddleware', 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'instaclone.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', 'django.template.context_processors.media', ], }, }, ] WSGI_APPLICATION = 'instaclone.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases if config('MODE')=="dev": DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': config('DB_NAME'), 'USER': config('DB_USER'), 'PASSWORD': config('DB_PASSWORD'), 'HOST': config('DB_HOST'), 'PORT': '', } } # production else: DATABASES = { 'default': dj_database_url.config( default=config('DATABASE_URL') ) } db_from_env = dj_database_url.config(conn_max_age=500) DATABASES['default'].update(db_from_env) ALLOWED_HOSTS = config('ALLOWED_HOSTS', cast=Csv()) # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Africa/Nairobi' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = [ os.path.join(BASE_DIR, "static"), ] STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage' # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField' MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') LOGIN_REDIRECT_URL = '/' LOGOUT_REDIRECT_URL = '/accounts/login/' #AUTH_PROFILE_MODULE = 'accounts.Profile' EMAIL_USE_TLS = config('EMAIL_USE_TLS') EMAIL_HOST = config('EMAIL_HOST') EMAIL_PORT = config('EMAIL_PORT') EMAIL_HOST_USER = config('EMAIL_HOST_USER') EMAIL_HOST_PASSWORD = config('EMAIL_HOST_PASSWORD') cloudinary.config( cloud_name = config("CLOUDINARY_NAME"), api_key = config("CLOUDINARY_KEY"), api_secret = config("CLOUDINARY_SECRET") ) STATIC_ROOT = os.path.join(BASE_DIR, 'staticfiles') django_heroku.settings(locals())
b91ee62ab15974dcb724ceeb00d00689410e332f
7bf1dc58ba0884ed957efdb5459ae44851b2b36e
/practice_450/greedy/33_rearrange_characters.py
858f75ba242070202848f0f4f1146c91f0ceea28
[]
no_license
ksaubhri12/ds_algo
672260f07f41bcfc33f8ac23a64085a1f27ab4a5
46505b89371cae3321f48609dd755c7e5cfed302
refs/heads/master
2023-05-12T08:37:06.789111
2023-05-03T03:06:49
2023-05-03T03:06:49
211,793,312
0
0
null
null
null
null
UTF-8
Python
false
false
935
py
def rearrange_characters(input_string: str): n = len(input_string) dict_value = {} for i in range(0, n): if input_string[i] in dict_value: dict_value[input_string[i]] = dict_value[input_string[i]] + 1 else: dict_value[input_string[i]] = 1 sorted_count_list = sorted(dict_value, key=dict_value.get, reverse=True) i = 0 start = 0 char_list = list(input_string) while len(sorted_count_list) > 0: char = sorted_count_list.pop(0) count = dict_value[char] if count > n / 2: return -1 start = start + 1 for k in range(0, count): char_list[i] = char i = i + 2 if i >= n: i = 1 return ''.join(char_list) if __name__ == '__main__': print(rearrange_characters('geeksforgeeks')) print(rearrange_characters('bbbbb')) print(rearrange_characters('kkk'))
6d11a2a08e99746fcf09d5f7a1e8b2a1c35a11e3
9716316eb0c5b5a1487866d37b58efc116511d22
/charmdet/runReconstruction.py
7e60609548ccbac61bb0a6d7f587dec8d911689f
[]
no_license
klleung/FairShip
68245fcd042f47a5ed2feeaad1c2e84e5aa21241
a7e67ac58387f651722068e8325513b5e0d6832a
refs/heads/master
2020-06-06T23:02:00.991756
2019-07-19T12:23:35
2019-07-19T12:23:35
192,870,986
2
0
null
2019-06-20T07:26:44
2019-06-20T07:26:44
null
UTF-8
Python
false
false
15,856
py
import os,subprocess,ROOT,time,multiprocessing from rootpyPickler import Unpickler from rootpyPickler import Pickler import pwd ncpus = int(multiprocessing.cpu_count()*3./4.) pathToMacro = '$FAIRSHIP/charmdet/' def count_python_processes(macroName): username = pwd.getpwuid(os.getuid()).pw_name callstring = "ps -f -u " + username # only works if screen is wide enough to print full name! status = subprocess.check_output(callstring,shell=True) n=0 for x in status.split('\n'): if not x.find(macroName)<0 and not x.find('python') <0: n+=1 return n fileList = {} badFiles = [] run = "RUN_8000_2395" # "RUN_8000_2396" eospath='/eos/experiment/ship/data/muflux/DATA_Rebuild_8000/rootdata/'+run def getFilesFromEOS(): # list of files temp = subprocess.check_output("xrdfs "+os.environ['EOSSHIP']+" ls -l "+eospath,shell=True) for x in temp.split('\n'): if x.find('.root')<0: continue if not x.find('START')<0: continue fname = x[x.find('/eos'):] nentries = 0 try: f=ROOT.TFile.Open(os.environ['EOSSHIP']+fname) nentries=f.cbmsim.GetEntries() fileList[fname]=nentries except: print "problem accessing file",fname badFiles.append(fname) Nfiles = len(fileList) tmp = {} for fname in fileList: newName = fname[fname.rfind('/')+1:] rc = os.system("xrdcp -f $EOSSHIP"+fname+" "+newName) tmp[newName]=fileList[fname] fnames = tmp.keys() fnames.sort() return tmp,fnames def getFilesLocal(): # list of files for fname in os.listdir('.'): if fname.find('.root')<0: continue if not fname.find('_RT')<0: continue test = fname.replace('.root','_RT.root') if os.path.isfile(test): continue nentries = 0 try: f=ROOT.TFile.Open(fname) nentries=f.cbmsim.GetEntries() fileList[fname]=nentries except: print "problem accessing file",fname badFiles.append(fname) Nfiles = len(fileList) fnames = fileList.keys() fnames.sort() return fileList,fnames def recoStep0(local=False): if local: tmp,fnames = getFilesLocal() else: tmp,fnames = getFilesFromEOS() Nfiles = len(fnames) print "fileList established ",Nfiles Ndone = 0 while Ndone < Nfiles: cmd = "python "+pathToMacro+"drifttubeMonitoring.py -c recoStep0 -f " # group files to get better stats Ntot = 0 sample = [] i = 0 for k in range(Ndone,Nfiles): Ntot += tmp[fnames[k]] sample.append(fnames[k]) i+=1 if Ntot>350000: break Ndone += i # check that enough files remain Nextsample = [] Ntot = 0 for k in range(Ndone,Nfiles): Ntot += tmp[fnames[k]] Nextsample.append(fnames[k]) if Ntot>350000: break if Ntot < 350000: for s in Nextsample: sample.append(s) Ndone += len(Nextsample) if len(sample)==0: break for s in sample: cmd+=s+',' print 'step 0:',cmd[:cmd.rfind(',')],Ndone,Nfiles os.system(cmd[:cmd.rfind(',')]+" &") while 1>0: if count_python_processes('drifttubeMonitoring')<ncpus: break time.sleep(200) if Ndone%100==0: cleanUp() while count_python_processes('drifttubeMonitoring')>0: time.sleep(200) print "files created with RT relations " cleanUp() def checkFilesWithRT(): fok = [] fNotok = [] fRaw = [] for fname in os.listdir('.'): if not fname.find('histo')<0: continue if not fname.find('_RT')<0: f=ROOT.TFile(fname) RT = f.Get('tMinAndTmax') if RT: fok.append(fname) else: fNotok.append(fname) elif fname.find('root')>0 and not fname.find('SPILL')<0: fRaw.append(fname) print len(fok),len(fNotok),len(fRaw) return fok,fNotok,fRaw def checkMinusTwo(): fok,fNotok,fRaw = checkFilesWithRT() for fname in fRaw: if fname in fok: continue N=0 f=ROOT.TFile(fname) sTree = f.cbmsim for n in range(sTree.GetEntries()): rc = sTree.GetEvent(n) for m in sTree.Digi_MufluxSpectrometerHits: if m.GetDetectorID()<0: N+=1 print sTree.GetCurrentFile(),N def recoStep1(): fileList=[] # all RT files for x in os.listdir('.'): if x.find('_RT')>0 and x.find('histos')<0: test = ROOT.TFile(x) if test.cbmsim.GetBranch("FitTracks"): continue fileList.append(x) fileList.sort() for fname in fileList: cmd = "python "+pathToMacro+"drifttubeMonitoring.py -c recoStep1 -u 1 -f "+fname+' &' print 'step 1:', cmd os.system(cmd) time.sleep(100) while 1>0: if count_python_processes('drifttubeMonitoring')<ncpus: break time.sleep(100) print "finished all the tasks." def checkAlignment(fileList=[]): # all RT files if len(fileList)==0: for x in os.listdir('.'): if x.find('_RT')>0 and x.find('histos-residuals')<0: fileList.append(x) fileList.sort() for fname in fileList: cmd = "python "+pathToMacro+"drifttubeMonitoring.py -c alignment -f "+fname+' &' print 'make residual plots:', cmd os.system(cmd) time.sleep(10) while 1>0: if count_python_processes('drifttubeMonitoring')<ncpus: break time.sleep(100) print "finished all the tasks." def runMC(): # fast MC inputFile = "/eos/experiment/ship/data/Mbias/background-prod-2018/pythia8_Geant4_10.0_withCharmandBeauty0_mu.root" # entries 13450391L os.system("python $FAIRSHIP/macro/run_simScript.py -n 100000 --MuonBack --charm=1 --CharmdetSetup=0 -f "+inputFile) # full simulation os.system("python $SHIPBUILD/FairShip/macro/run_simScript.py --Muflux -n 1000 --charm=1 --CharmdetSetup=0 --charm=1 --CharmdetSetup=0") def checkFilesWithTracks(D='.'): fileList=[] rest=[] zombie=[] # all RT files if D.find('eos')<0: for x in os.listdir(D): if x.find('_RT')>0 and x.find('histos')<0: test = ROOT.TFile(D+'/'+x) if not test.GetKey('cbmsim'): zombie.append(x) elif test.cbmsim.GetBranch("FitTracks"): fileList.append(x) else: rest.append(x) else: temp = subprocess.check_output("xrdfs "+os.environ['EOSSHIP']+" ls -l "+D,shell=True) for x in temp.split('\n'): if x.find('.root')<0: continue fname = x[x.find('/eos'):] try: test=ROOT.TFile.Open(os.environ['EOSSHIP']+fname) if not test.GetKey('cbmsim'): zombie.append(fname) elif test.cbmsim.GetBranch("FitTracks"): fileList.append(fname) else: rest.append(fname) except:zombie.append(fname) fileList.sort() print "n with tracks",len(fileList),' rest:',len(rest),' zombies:',zombie return fileList def checkFilesWithTracks2(D='.'): badFile=[] # all RT files for x in os.listdir(D): if x.find('_RT')>0 and x.find('histos')<0: test = ROOT.TFile(D+'/'+x) sTree = test.cbmsim if not sTree: badFile.append(x+"?") elif sTree.GetBranch("FitTracks"): prev = 0 for n in range(min(20000,sTree.GetEntries())): rc = sTree.GetEvent(n) if sTree.FitTracks.GetEntries()>0: st = sTree.FitTracks[0].getFitStatus() if not st.isFitConverged(): continue if prev==st.getChi2(): badFile.append(x) break else: prev=st.getChi2() return badFile def checkFilesWithTracks3(D='.'): badFile={} # all RT files for x in os.listdir(D): if x.find('_RT')>0 and x.find('histos')<0: test = ROOT.TFile(D+'/'+x) sTree = test.cbmsim if not sTree: badFile.append(x+"?") continue b = sTree.GetBranch("FitTracks") if b: if b.GetZipBytes()/1.E6 < 1.: badFile[x]= b.GetZipBytes()/1.E6 return badFile # for f in bf: os.system('cp ../../ship-ubuntu-1710-64/RUN_8000_2395/'+f+' .') def cleanUp(D='.'): # remove raw data files for files with RT relations fok,fNotok,fRaw = checkFilesWithRT() for x in fok: r = x.replace('_RT','') cmd = 'rm '+r os.system(cmd) def copyMissingFiles(remote="../../ship-ubuntu-1710-64/RUN_8000_2395",exclude=[]): toCopy=[] allFilesR = os.listdir(remote) allFilesL = os.listdir(".") for fname in allFilesR: if not fname.find('histos')<0: continue if fname.find('RT')<0: continue if fname in exclude: continue if not fname in allFilesL: toCopy.append(fname) print "len",len(toCopy) for fname in toCopy: os.system('cp '+remote+"/"+fname+' .') def importRTFiles(local='.',remote='/home/truf/ship-ubuntu-1710-32/home/truf/muflux/Jan08'): # mkdir /media/truf/disk2/home/truf/ShipSoft/ship-ubuntu-1710-32 # sshfs ship-ubuntu-1710-32.cern.ch:/home/truf/muflux /media/truf/disk2/home/truf/ShipSoft/ship-ubuntu-1710-32 fileWithTracks = checkFilesWithTracks(local) allFiles = os.listdir(remote) for x in allFiles: if x.find('_RT')>0 and x.find('histos')<0 and not x in fileWithTracks: os.system('cp '+remote+'/'+x+' .') def importRecoFiles(local='.',remote='/media/truf/disk2/home/truf/ShipSoft/ship-ubuntu-1710-16/home/truf/muflux/Jan08'): fileWithTracks = checkFilesWithTracks(remote) for x in fileWithTracks: os.system('cp '+remote+'/'+x+' .') def mergeHistos(local='.',case='residuals'): allFiles = os.listdir(local) if case == 'residuals': dest = 'residuals.root' tag = 'histos-residuals' else: dest = 'momDistributions.root' tag = 'histos-analysis' cmd = "hadd -f "+dest+' ' N=0 for x in allFiles: if not x.find(tag)<0 : cmd += (local+'/'+x+' ') N+=1 if N>500: os.system(cmd) os.system('cp '+dest+' tmp.root') cmd = "hadd -f "+dest+' tmp.root ' N=0 os.system(cmd) def checkRecoRun(eosLocation=eospath,local='.'): temp = subprocess.check_output("xrdfs "+os.environ['EOSSHIP']+" ls -l "+eosLocation,shell=True) for x in temp.split('\n'): if x.find('.root')<0: continue if not x.find('START')<0: continue fname = x[x.rfind('/')+1:] RTname = fname.replace('.root','_RT.root') histosName = "histos-residuals-"+RTname if not os.path.isfile(RTname): print "missing RT file",fname if not os.path.isfile(histosName): print "missing histogram file",fname def exportRunToEos(eosLocation="/eos/experiment/ship/user/truf/muflux-reco",run=run,local="."): temp = os.system("xrdfs "+os.environ['EOSSHIP']+" mkdir "+eosLocation+"/"+run) failures = [] for x in os.listdir(local): if x.find('.root')<0: continue cmd = "xrdcp -f "+x+" $EOSSHIP/"+eosLocation+"/"+run+"/"+x rc = os.system(cmd) if rc != 0: failures.append(x) if len(failures)!=0: print failures def makeMomDistributions(run=0): if run==0: fileList = checkFilesWithTracks(D='.') else: eospathReco = '/eos/experiment/ship/user/odurhan/muflux-recodata/'+run fileList = [] temp = subprocess.check_output("xrdfs "+os.environ['EOSSHIP']+" ls -l "+eospathReco,shell=True) for x in temp.split('\n'): if x.find('.root')<0: continue fileList.append( os.environ['EOSSHIP'] + x[x.find('/eos'):]) # all RT files with tracks for fname in fileList: if not fname.find('sys')<0: continue if os.path.isfile('histos-analysis-'+fname[fname.rfind('/')+1:]): continue cmd = "python "+pathToMacro+"drifttubeMonitoring.py -c anaResiduals -f "+fname+' &' print 'momentum analysis:', cmd os.system(cmd) time.sleep(10) while 1>0: if count_python_processes('drifttubeMonitoring')<ncpus: break time.sleep(10) print "finished all the tasks." zeroField = ['2199','2200','2201'] noRPC = ['2144','2154','2192','2210','2217','2218','2235','2236','2237','2240','2241','2243','2291','2345','2359'] def massProduction(keyword = 'RUN_8000_23',fnames=[],merge=False): pathToMacro = "$FAIRSHIP/charmdet/" eospathReco = '/eos/experiment/ship/user/odurhan/muflux-recodata/' if merge: for run in os.listdir('.'): if run.find(keyword)<0: continue os.chdir(run) mergeHistos(local='.',case='momDistributions') os.chdir('../') else: if len(fnames)==0: temp = subprocess.check_output("xrdfs "+os.environ['EOSSHIP']+" ls -l "+eospathReco,shell=True) fnames = temp.split('\n') for x in fnames: if x.find(keyword)<0: continue run = x[x.rfind('/')+1:] if not run in os.listdir('.'): os.system('mkdir '+run) temp2 = subprocess.check_output("xrdfs "+os.environ['EOSSHIP']+" ls -l "+eospathReco+run,shell=True) if temp2.find('.root')<0: continue skip = False for x in zeroField: if not run.find(x)<0: skip = True if skip: continue os.chdir(run) makeMomDistributions(run) os.chdir('../') def massProductionAlignment(keyword = 'RUN_8000_2395',fnames=[],merge=False): pathToMacro = "$FAIRSHIP/charmdet/" eospathReco = '/eos/experiment/ship/user/odurhan/muflux-recodata/' if merge: for run in os.listdir('.'): if run.find(keyword)<0: continue os.chdir(run) mergeHistos(local='.') os.chdir('../') else: if len(fnames)==0: temp = subprocess.check_output("xrdfs "+os.environ['EOSSHIP']+" ls -l "+eospathReco,shell=True) fnames = temp.split('\n') for x in fnames: if x.find(keyword)<0: continue run = x[x.rfind('/')+1:] if not run in os.listdir('.'): print "directory for this run does not exist",run # os.system('mkdir '+run) continue temp2 = subprocess.check_output("xrdfs "+os.environ['EOSSHIP']+" ls -l "+eospathReco+run,shell=True) if temp2.find('.root')<0: continue os.chdir(run) fileList = [] for x in temp2.split('\n'): if x.find('.root')<0: continue fileList.append( os.environ['EOSSHIP'] + x[x.find('/eos'):]) checkAlignment(fileList) os.chdir('../') def redoMuonTracks(): fileList = checkFilesWithTracks(D='.') for fname in fileList: cmd = "python "+pathToMacro+"drifttubeMonitoring.py -c recoMuonTaggerTracks -u 1 -f "+fname+' &' print 'redo muonTracks:', cmd os.system(cmd) time.sleep(10) while 1>0: if count_python_processes('drifttubeMonitoring')<ncpus: break time.sleep(10) print "finished all the tasks." def reRunReco(r,fname): fRT = fname.replace('.root','_RT2.root') os.system('xrdcp -f $EOSSHIP/eos/experiment/ship/data/muflux/DATA_Rebuild_8000/rootdata/'+r+'/'+fname+' '+fRT) f = ROOT.TFile.Open(os.environ['EOSSHIP']+'/eos/experiment/ship/user/odurhan/muflux-recodata/'+r+'/'+fname.replace('.root','_RT.root')) ftemp = ROOT.TFile(fRT,'update') ftemp.cd('') upkl = Unpickler(f) tMinAndTmax = upkl.load('tMinAndTmax') pkl = Pickler(ftemp) pkl.dump(tMinAndTmax,'tMinAndTmax') ftemp.mkdir('histos') ftemp.histos.cd('') for tc in ['TDCMapsX','hitMapsX']: tmp = f.histos.Get(tc) X = tmp.Clone() X.Write() ftemp.Write("",ROOT.TFile.kOverwrite) ftemp.Close() cmd = "python "+pathToMacro+"drifttubeMonitoring.py -c recoStep1 -u 1 -f "+fRT+' &' os.system(cmd) print 'step 1:', cmd def pot(): fileList=[] # all RT files for x in os.listdir('.'): if x.find('_RT')>0 and x.find('histos')<0: fileList.append(x) fileList.sort() scalerStat = {} for fname in fileList: f=ROOT.TFile(fname) if not f.FindKey("scalers"): print "no scalers in this file",fname continue scalers = f.scalers scalers.GetEntry(0) for x in scalers.GetListOfBranches(): name = x.GetName() s = eval('scalers.'+name) if name!='slices': if not scalerStat.has_key(name):scalerStat[name]=0 scalerStat[name]+=s keys = scalerStat.keys() keys.sort() for k in keys: print k,':',scalerStat[k] def makeDTEfficiency(merge=False): cmd = "hadd -f DTEff.root " for fname in os.listdir('.'): if not merge and fname.find('SPILL')==0: cmd = "python "+pathToMacro+"drifttubeMonitoring.py -c DTeffWithRPCTracks -f "+fname+' &' os.system(cmd) time.sleep(10) while 1>0: if count_python_processes('drifttubeMonitoring')<ncpus: break time.sleep(10) elif merge and fname.find('histos-DTEff')==0: cmd+=fname+' ' if merge: os.system(cmd) print "finished all the tasks." def importMomDistr(keyword = 'RUN_8000_2'): pathHistos = '/media/truf/disk2/home/truf/ShipSoft/ship-ubuntu-1710-64/' temp = os.listdir(pathHistos) for x in temp: if x.find(keyword)<0: continue run = x if not run in os.listdir('.'): os.system('mkdir '+run) os.system('cp '+pathHistos+run+'/momDistributions.root '+run)
b0e2af4e4d675713ffc95e2005e39ebb9196bccb
2b1448085c5ad44e78772dde1dcc2fae9cc4c3cc
/botorch/models/converter.py
35da4a3d8d21b48c62c2098e7a129b871f4e43c0
[ "MIT" ]
permissive
leelasd/botorch
47fa0ff9c5f6c534ecfcba59f5b1bf52eea0d62e
c48bfc822940ee8a6e5e2604d4ff282033dbe892
refs/heads/master
2022-12-17T04:42:41.591444
2020-09-10T23:45:05
2020-09-10T23:46:41
294,561,185
1
0
MIT
2020-09-11T01:19:36
2020-09-11T01:19:35
null
UTF-8
Python
false
false
8,088
py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Utilities for converting between different models. """ from __future__ import annotations from copy import deepcopy import torch from botorch.exceptions import UnsupportedError from botorch.models.gp_regression import FixedNoiseGP, HeteroskedasticSingleTaskGP from botorch.models.gp_regression_fidelity import SingleTaskMultiFidelityGP from botorch.models.gpytorch import BatchedMultiOutputGPyTorchModel from botorch.models.model_list_gp_regression import ModelListGP from torch.nn import Module def _get_module(module: Module, name: str) -> Module: """Recursively get a sub-module from a module. Args: module: A `torch.nn.Module`. name: The name of the submodule to return, in the form of a period-delinated string: `sub_module.subsub_module.[...].leaf_module`. Returns: The requested sub-module. Example: >>> gp = SingleTaskGP(train_X, train_Y) >>> noise_prior = _get_module(gp, "likelihood.noise_covar.noise_prior") """ current = module if name != "": for a in name.split("."): current = getattr(current, a) return current def _check_compatibility(models: ModelListGP) -> None: """Check if a ModelListGP can be converted.""" # check that all submodules are of the same type for modn, mod in models[0].named_modules(): mcls = mod.__class__ if not all(isinstance(_get_module(m, modn), mcls) for m in models[1:]): raise UnsupportedError( "Sub-modules must be of the same type across models." ) # check that each model is a BatchedMultiOutputGPyTorchModel if not all(isinstance(m, BatchedMultiOutputGPyTorchModel) for m in models): raise UnsupportedError( "All models must be of type BatchedMultiOutputGPyTorchModel." ) # TODO: Add support for HeteroskedasticSingleTaskGP if any(isinstance(m, HeteroskedasticSingleTaskGP) for m in models): raise NotImplementedError( "Conversion of HeteroskedasticSingleTaskGP is currently unsupported." ) # TODO: Add support for custom likelihoods if any(getattr(m, "_is_custom_likelihood", False) for m in models): raise NotImplementedError( "Conversion of models with custom likelihoods is currently unsupported." ) # check that each model is single-output if not all(m._num_outputs == 1 for m in models): raise UnsupportedError("All models must be single-output.") # check that training inputs are the same if not all( torch.equal(ti, tj) for m in models[1:] for ti, tj in zip(models[0].train_inputs, m.train_inputs) ): raise UnsupportedError("training inputs must agree for all sub-models.") def model_list_to_batched(model_list: ModelListGP) -> BatchedMultiOutputGPyTorchModel: """Convert a ModelListGP to a BatchedMultiOutputGPyTorchModel. Args: model_list: The `ModelListGP` to be converted to the appropriate `BatchedMultiOutputGPyTorchModel`. All sub-models must be of the same type and have the shape (batch shape and number of training inputs). Returns: The model converted into a `BatchedMultiOutputGPyTorchModel`. Example: >>> list_gp = ModelListGP(gp1, gp2) >>> batch_gp = model_list_to_batched(list_gp) """ models = model_list.models _check_compatibility(models) # if the list has only one model, we can just return a copy of that if len(models) == 1: return deepcopy(models[0]) # construct inputs train_X = deepcopy(models[0].train_inputs[0]) train_Y = torch.stack([m.train_targets.clone() for m in models], dim=-1) kwargs = {"train_X": train_X, "train_Y": train_Y} if isinstance(models[0], FixedNoiseGP): kwargs["train_Yvar"] = torch.stack( [m.likelihood.noise_covar.noise.clone() for m in models], dim=-1 ) if isinstance(models[0], SingleTaskMultiFidelityGP): init_args = models[0]._init_args if not all( v == m._init_args[k] for m in models[1:] for k, v in init_args.items() ): raise UnsupportedError("All models must have the same fidelity parameters.") kwargs.update(init_args) # construct the batched GP model batch_gp = models[0].__class__(**kwargs) tensors = {n for n, p in batch_gp.state_dict().items() if len(p.shape) > 0} scalars = set(batch_gp.state_dict()) - tensors input_batch_dims = len(models[0]._input_batch_shape) # ensure scalars agree (TODO: Allow different priors for different outputs) for n in scalars: v0 = _get_module(models[0], n) if not all(torch.equal(_get_module(m, n), v0) for m in models[1:]): raise UnsupportedError("All scalars must have the same value.") # ensure dimensions of all tensors agree for n in tensors: shape0 = _get_module(models[0], n).shape if not all(_get_module(m, n).shape == shape0 for m in models[1:]): raise UnsupportedError("All tensors must have the same shape.") # now construct the batched state dict scalar_state_dict = { s: p.clone() for s, p in models[0].state_dict().items() if s in scalars } tensor_state_dict = { t: ( torch.stack( [m.state_dict()[t].clone() for m in models], dim=input_batch_dims ) if "active_dims" not in t else models[0].state_dict()[t].clone() ) for t in tensors } batch_state_dict = {**scalar_state_dict, **tensor_state_dict} # load the state dict into the new model batch_gp.load_state_dict(batch_state_dict) return batch_gp def batched_to_model_list(batch_model: BatchedMultiOutputGPyTorchModel) -> ModelListGP: """Convert a BatchedMultiOutputGPyTorchModel to a ModelListGP. Args: model_list: The `BatchedMultiOutputGPyTorchModel` to be converted to a `ModelListGP`. Returns: The model converted into a `ModelListGP`. Example: >>> train_X = torch.rand(5, 2) >>> train_Y = torch.rand(5, 2) >>> batch_gp = SingleTaskGP(train_X, train_Y) >>> list_gp = batched_to_model_list(batch_gp) """ # TODO: Add support for HeteroskedasticSingleTaskGP if isinstance(batch_model, HeteroskedasticSingleTaskGP): raise NotImplementedError( "Conversion of HeteroskedasticSingleTaskGP currently not supported." ) batch_sd = batch_model.state_dict() tensors = {n for n, p in batch_sd.items() if len(p.shape) > 0} scalars = set(batch_sd) - tensors input_bdims = len(batch_model._input_batch_shape) models = [] for i in range(batch_model._num_outputs): scalar_sd = {s: batch_sd[s].clone() for s in scalars} tensor_sd = { t: ( batch_sd[t].select(input_bdims, i).clone() if "active_dims" not in t else batch_sd[t].clone() ) for t in tensors } sd = {**scalar_sd, **tensor_sd} kwargs = { "train_X": batch_model.train_inputs[0].select(input_bdims, i).clone(), "train_Y": batch_model.train_targets.select(input_bdims, i) .clone() .unsqueeze(-1), } if isinstance(batch_model, FixedNoiseGP): noise_covar = batch_model.likelihood.noise_covar kwargs["train_Yvar"] = ( noise_covar.noise.select(input_bdims, i).clone().unsqueeze(-1) ) if isinstance(batch_model, SingleTaskMultiFidelityGP): kwargs.update(batch_model._init_args) model = batch_model.__class__(**kwargs) model.load_state_dict(sd) models.append(model) return ModelListGP(*models)
7fa2949cf1cd3bc986e1801d3d60ef78650ba85e
8186514b510a801863229e3f9711c0c657e727e5
/assembly/0427/explore_qt/22/2.py
1995344ca3c4e4d6ee83bf7b963ca016295d0b6c
[]
no_license
masknugget/mypyqt
274b2cbbf66c04927453815248f9c1bc5e65ca17
b86a49e4b8c7c8c3d8546ce1b49f8f3bb6332307
refs/heads/main
2023-08-17T13:30:11.451066
2021-09-27T14:14:54
2021-09-27T14:14:54
355,904,935
0
0
null
null
null
null
UTF-8
Python
false
false
3,037
py
import sys from PyQt5.QtWidgets import QApplication, QWidget, QInputDialog, QLineEdit, QTextEdit, QPushButton, \ QGridLayout class Demo(QWidget): def __init__(self): super(Demo, self).__init__() self.name_btn = QPushButton('Name', self) self.gender_btn = QPushButton('Gender', self) self.age_btn = QPushButton('Age', self) self.score_btn = QPushButton('Score', self) self.info_btn = QPushButton('Info', self) self.name_btn.clicked.connect(lambda: self.open_dialog_func(self.name_btn)) self.gender_btn.clicked.connect(lambda: self.open_dialog_func(self.gender_btn)) self.age_btn.clicked.connect(lambda: self.open_dialog_func(self.age_btn)) self.score_btn.clicked.connect(lambda: self.open_dialog_func(self.score_btn)) self.info_btn.clicked.connect(lambda: self.open_dialog_func(self.info_btn)) self.name_line = QLineEdit(self) self.gender_line = QLineEdit(self) self.age_line = QLineEdit(self) self.score_line = QLineEdit(self) self.info_textedit = QTextEdit(self) self.g_layout = QGridLayout() self.g_layout.addWidget(self.name_btn, 0, 0, 1, 1) self.g_layout.addWidget(self.name_line, 0, 1, 1, 1) self.g_layout.addWidget(self.gender_btn, 1, 0, 1, 1) self.g_layout.addWidget(self.gender_line,1, 1, 1, 1) self.g_layout.addWidget(self.age_btn, 2, 0, 1, 1) self.g_layout.addWidget(self.age_line, 2, 1, 1, 1) self.g_layout.addWidget(self.score_btn, 3, 0, 1, 1) self.g_layout.addWidget(self.score_line, 3, 1, 1, 1) self.g_layout.addWidget(self.info_btn, 4, 0, 1, 1) self.g_layout.addWidget(self.info_textedit, 4, 1, 1, 1) self.setLayout(self.g_layout) def open_dialog_func(self, btn): if btn == self.name_btn: # 1 name, ok = QInputDialog.getText(self, 'Name Input', 'Please enter the name:') if ok: self.name_line.setText(name) elif btn == self.gender_btn: # 2 gender_list = ['Female', 'Male'] gender, ok = QInputDialog.getItem(self, 'Gender Input', 'Please choose the gender:', gender_list, 0, False) if ok: self.gender_line.setText(gender) elif btn == self.age_btn: age, ok = QInputDialog.getInt(self, 'Age Input', 'Please select the age:') if ok: self.age_line.setText(str(age)) elif btn == self.score_btn: score, ok = QInputDialog.getDouble(self, 'Score Input', 'Please select the score:') if ok: self.score_line.setText(str(score)) else: info, ok = QInputDialog.getMultiLineText(self, 'Info Input', 'Please enter the info:') if ok: self.info_textedit.setText(info) if __name__ == '__main__': app = QApplication(sys.argv) demo = Demo() demo.show() sys.exit(app.exec_())
963c21dcb3fda320cc53ce7e08d427b37c2d8aea
6a2b1b1d6092a8d2492a6677b6fd19d27b0f461f
/08-Python-DataTypes/Tuples/02-create-one-element-tuple.py
05fa335a53400e9ea8a0525d7b35a9f3a2482310
[]
no_license
Uttam1982/PythonTutorial
3cfbe237199e048967502f3d0c1936f2b878cb87
8e28cc5c4be5826a011059db66f6952871248c82
refs/heads/master
2022-12-17T18:47:28.397383
2020-09-22T08:55:23
2020-09-22T08:55:23
288,524,784
0
1
null
null
null
null
UTF-8
Python
false
false
535
py
# Creating a tuple with one element is a bit tricky. # 1. Having one element within parentheses is not enough. # 2. We will need a trailing comma to indicate that it is, in fact, a tuple. my_tuple = ("python") print("tuple without trailing comma: ",type(my_tuple)) # <class 'str'> #Creating a tuple having one element my_tuple = ("python",) print("tuple with trailing comma: ",type(my_tuple)) # <class 'tuple'> ## Parentheses is optional my_tuple = "python", print("Parentheses is optional: ",type(my_tuple)) # <class 'tuple'>
3667c8f1f8d45c41f552e9abe2d97e7838ac9395
ef187d259d33e97c7b9ed07dfbf065cec3e41f59
/work/atcoder/abc/abc083/B/answers/896331_rin1120.py
b9ceb3808d88e51ac154a5487becbe592cfa4936
[]
no_license
kjnh10/pcw
847f7295ea3174490485ffe14ce4cdea0931c032
8f677701bce15517fb9362cc5b596644da62dca8
refs/heads/master
2020-03-18T09:54:23.442772
2018-07-19T00:26:09
2018-07-19T00:26:09
134,586,379
0
0
null
null
null
null
UTF-8
Python
false
false
172
py
N, A, B = map(int, input().split()) ans=0 for i in range(N): t = 0 j = i+1 while j != 0: t += j%10 j //= 10 if A <= t and t <= B: ans += i+1 print(ans)
89cd4ca057d69b4c1e05d0a821256293352b855f
4a8c1f7d9935609b780aff95c886ef7781967be0
/atcoder/_codeforces/1467_c.py
a74cb1c4230efe5766c5cfc9695586b0a0b3e910
[]
no_license
recuraki/PythonJunkTest
d5e5f5957ac5dd0c539ef47759b1fe5ef7a2c52a
2556c973d468a6988d307ce85c5f2f8ab15e759a
refs/heads/master
2023-08-09T17:42:21.875768
2023-07-18T23:06:31
2023-07-18T23:06:31
13,790,016
0
0
null
null
null
null
UTF-8
Python
false
false
1,557
py
import sys from io import StringIO import unittest import logging logging.basicConfig(level=logging.DEBUG) def resolve(): from pprint import pprint import sys input = sys.stdin.readline def do(): n1, n2, n3 = map(int, input().split()) dat1 = list(map(int, input().split())) dat2 = list(map(int, input().split())) dat3 = list(map(int, input().split())) q = int(input()) for _ in range(q): do() # do() class TestClass(unittest.TestCase): def assertIO(self, input, output): stdout, stdin = sys.stdout, sys.stdin sys.stdout, sys.stdin = StringIO(), StringIO(input) resolve() sys.stdout.seek(0) out = sys.stdout.read()[:-1] sys.stdout, sys.stdin = stdout, stdin self.assertEqual(out, output) def test_input_1(self): print("test_input_1") input = """2 4 1 1 2 6 3 4 5 5""" output = """20""" self.assertIO(input, output) def test_input_2(self): print("test_input_2") input = """3 2 2 7 5 4 2 9 7 1""" output = """29""" self.assertIO(input, output) def test_input_3(self): print("test_input_3") input = """xxx""" output = """xxx""" self.assertIO(input, output) def test_input_4(self): print("test_input_4") input = """xxx""" output = """xxx""" self.assertIO(input, output) if __name__ == "__main__": unittest.main()
adbeff76935cbd7b2290404a3caf4ecbd26075b6
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/nouns/_motion.py
19c9b83026d27cb66cfde07dd09ad7733cf6dde8
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
527
py
#calss header class _MOTION(): def __init__(self,): self.name = "MOTION" self.definitions = [u'the act or process of moving, or a particular action or movement: ', u'a polite way of referring to the process of getting rid of solid waste from the body, or the waste itself: ', u'a formal suggestion made, discussed, and voted on at a meeting: '] self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.specie = 'nouns' def run(self, obj1 = [], obj2 = []): return self.jsondata
26d639c4fbab5876c769b3ea6ae7da455fd84403
1f7847055332e16614f5358f0ec39b39bb9a66a7
/exercises/12_oop_inheritance/test_task_12_4.py
ec440e80a177b6ac47dabd01f370487663a50659
[]
no_license
satperm/advpyneng-examples-exercises
6641dae31fa7f44db7e99547bc70d740988f21b9
6b12c320cace1d303dae38ddba9b19550a8708ec
refs/heads/master
2022-12-14T09:28:48.255804
2020-09-06T14:14:42
2020-09-06T14:14:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,911
py
import pytest import task_12_4 import sys sys.path.append('..') from common_functions import check_class_exists, check_attr_or_method def test_class_created(): check_class_exists(task_12_4, 'OrderingMixin') def test_special_methods_created(): class IntTest(task_12_4.OrderingMixin): def __init__(self, number): self._number = number def __eq__(self, other): return self._number == other._number def __lt__(self, other): return self._number < other._number int1 = IntTest(5) check_attr_or_method(int1, method='__ge__') check_attr_or_method(int1, method='__ne__') check_attr_or_method(int1, method='__le__') check_attr_or_method(int1, method='__gt__') def test_methods(): class IntTest(task_12_4.OrderingMixin): def __init__(self, number): self._number = number def __eq__(self, other): return self._number == other._number def __lt__(self, other): return self._number < other._number int1 = IntTest(5) int2 = IntTest(3) assert int1 != int2 assert int1 >= int2 assert int1 > int2 assert not int1 < int2 def test_methods(): class DoThing(task_12_4.OrderingMixin): def __init__(self, num): self.num = num def __eq__(self, other): return self.num == other.num def __lt__(self, other): return self.num < other.num small_num = DoThing(1) big_num = DoThing(100) assert small_num < big_num assert small_num <= big_num assert not small_num > big_num assert not small_num >= big_num assert small_num != big_num small_num = DoThing(1) big_num = DoThing(100) assert not big_num < small_num assert not big_num <= small_num assert big_num > small_num assert big_num >= small_num assert big_num != small_num
7ecbe0b308cb8371f7ee5198762f1a81ddafae19
fca80c6a22bcce507a81e05cd31e0d5ebbc43a57
/Chapter_05/samples/guestPicnic.py
cfe00f043c0535219fe766ef773df1d474944cd1
[ "MIT" ]
permissive
GSantos23/Automate_Python
6b1ce29f1ee5a22b53ef6c1d45fef56d8d8e0b06
4bf3eadb5a330d5f22329bdcd08d37ab01a9454f
refs/heads/master
2021-06-29T04:12:32.910835
2020-12-26T22:28:31
2020-12-26T22:28:31
197,512,449
1
0
null
null
null
null
UTF-8
Python
false
false
661
py
allGuests = {'Alice': {'apples': 5, 'pretzels': 12}, 'Bob': {'ham sandwiches': 3, 'apples': 2}, 'Carol': {'cups': 3, 'apple pies': 1}} def totalBrought(guests, item): numBrought = 0 for k, v in guests.items(): numBrought = numBrought + v.get(item, 0) return numBrought print('Number of things being brought:') print(' - Apples ' + str(totalBrought(allGuests, 'apples'))) print(' - Cups ' + str(totalBrought(allGuests, 'cups'))) print(' - Cakes ' + str(totalBrought(allGuests, 'cakes'))) print(' - Ham sandwiches ' + str(totalBrought(allGuests, 'ham sandwiches'))) print(' - Apple Pies ' + str(totalBrought(allGuests, 'apple pies')))
6343752dd269bc7d88d0650fcc42fd02bb191453
e3365bc8fa7da2753c248c2b8a5c5e16aef84d9f
/indices/1760.py
751381d98be1f23c884db62b177e89e978aaa771
[]
no_license
psdh/WhatsintheVector
e8aabacc054a88b4cb25303548980af9a10c12a8
a24168d068d9c69dc7a0fd13f606c080ae82e2a6
refs/heads/master
2021-01-25T10:34:22.651619
2015-09-23T11:54:06
2015-09-23T11:54:06
42,749,205
2
3
null
2015-09-23T11:54:07
2015-09-18T22:06:38
Python
UTF-8
Python
false
false
512
py
ii = [('CookGHP3.py', 1), ('CoolWHM2.py', 1), ('SadlMLP.py', 5), ('ShawHDE.py', 1), ('UnitAI.py', 1), ('PeckJNG.py', 1), ('AubePRP.py', 13), ('AdamWEP.py', 1), ('FitzRNS3.py', 1), ('ClarGE2.py', 53), ('CookGHP2.py', 4), ('CrokTPS.py', 1), ('ClarGE.py', 16), ('LyelCPG.py', 13), ('WestJIT2.py', 3), ('WadeJEB.py', 12), ('SoutRD2.py', 1), ('MereHHB3.py', 4), ('HogaGMM.py', 3), ('BabbCEM.py', 1), ('SomeMMH.py', 8), ('ClarGE3.py', 30), ('DibdTRL.py', 1), ('HogaGMM2.py', 10), ('EvarJSP.py', 1), ('SadlMLP2.py', 4)]
c694b3c710fa1d7d763f6b5b2c107b194a665936
564d6a4d305a8ac6a7e01c761831fb2081c02d0f
/sdk/network/azure-mgmt-network/azure/mgmt/network/v2019_11_01/aio/operations/_route_tables_operations.py
adc44f5b31718ed15851b48a3e9e38cdbd048214
[ "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later", "MIT" ]
permissive
paultaiton/azure-sdk-for-python
69af4d889bac8012b38f5b7e8108707be679b472
d435a1a25fd6097454b7fdfbbdefd53e05029160
refs/heads/master
2023-01-30T16:15:10.647335
2020-11-14T01:09:50
2020-11-14T01:09:50
283,343,691
0
0
MIT
2020-07-28T22:43:43
2020-07-28T22:43:43
null
UTF-8
Python
false
false
25,722
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class RouteTablesOperations: """RouteTablesOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2019_11_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def _delete_initial( self, resource_group_name: str, route_table_name: str, **kwargs ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-11-01" accept = "application/json" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeTableName': self._serialize.url("route_table_name", route_table_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeTables/{routeTableName}'} # type: ignore async def begin_delete( self, resource_group_name: str, route_table_name: str, **kwargs ) -> AsyncLROPoller[None]: """Deletes the specified route table. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param route_table_name: The name of the route table. :type route_table_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_initial( resource_group_name=resource_group_name, route_table_name=route_table_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeTables/{routeTableName}'} # type: ignore async def get( self, resource_group_name: str, route_table_name: str, expand: Optional[str] = None, **kwargs ) -> "models.RouteTable": """Gets the specified route table. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param route_table_name: The name of the route table. :type route_table_name: str :param expand: Expands referenced resources. :type expand: str :keyword callable cls: A custom type or function that will be passed the direct response :return: RouteTable, or the result of cls(response) :rtype: ~azure.mgmt.network.v2019_11_01.models.RouteTable :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.RouteTable"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-11-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeTableName': self._serialize.url("route_table_name", route_table_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('RouteTable', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeTables/{routeTableName}'} # type: ignore async def _create_or_update_initial( self, resource_group_name: str, route_table_name: str, parameters: "models.RouteTable", **kwargs ) -> "models.RouteTable": cls = kwargs.pop('cls', None) # type: ClsType["models.RouteTable"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-11-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeTableName': self._serialize.url("route_table_name", route_table_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'RouteTable') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('RouteTable', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('RouteTable', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeTables/{routeTableName}'} # type: ignore async def begin_create_or_update( self, resource_group_name: str, route_table_name: str, parameters: "models.RouteTable", **kwargs ) -> AsyncLROPoller["models.RouteTable"]: """Create or updates a route table in a specified resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param route_table_name: The name of the route table. :type route_table_name: str :param parameters: Parameters supplied to the create or update route table operation. :type parameters: ~azure.mgmt.network.v2019_11_01.models.RouteTable :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either RouteTable or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2019_11_01.models.RouteTable] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.RouteTable"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._create_or_update_initial( resource_group_name=resource_group_name, route_table_name=route_table_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('RouteTable', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'azure-async-operation'}, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeTables/{routeTableName}'} # type: ignore async def update_tags( self, resource_group_name: str, route_table_name: str, parameters: "models.TagsObject", **kwargs ) -> "models.RouteTable": """Updates a route table tags. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param route_table_name: The name of the route table. :type route_table_name: str :param parameters: Parameters supplied to update route table tags. :type parameters: ~azure.mgmt.network.v2019_11_01.models.TagsObject :keyword callable cls: A custom type or function that will be passed the direct response :return: RouteTable, or the result of cls(response) :rtype: ~azure.mgmt.network.v2019_11_01.models.RouteTable :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.RouteTable"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-11-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.update_tags.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeTableName': self._serialize.url("route_table_name", route_table_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'TagsObject') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('RouteTable', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized update_tags.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeTables/{routeTableName}'} # type: ignore def list( self, resource_group_name: str, **kwargs ) -> AsyncIterable["models.RouteTableListResult"]: """Gets all route tables in a resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either RouteTableListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2019_11_01.models.RouteTableListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.RouteTableListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-11-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('RouteTableListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeTables'} # type: ignore def list_all( self, **kwargs ) -> AsyncIterable["models.RouteTableListResult"]: """Gets all route tables in a subscription. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either RouteTableListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2019_11_01.models.RouteTableListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.RouteTableListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-11-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_all.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('RouteTableListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_all.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Network/routeTables'} # type: ignore
2b43980f401fc20884576fe5b39260203c3a7de9
ab79f8297105a7d412303a8b33eaa25038f38c0b
/imersia/vit_product/stock.py
d8ccbb76ecfe1daf893e0694292440f3b1ff45a0
[]
no_license
adahra/addons
41a23cbea1e35079f7a9864ade3c32851ee2fb09
c5a5678379649ccdf57a9d55b09b30436428b430
refs/heads/master
2022-06-17T21:22:22.306787
2020-05-15T10:51:14
2020-05-15T10:51:14
264,167,002
1
0
null
2020-05-15T10:39:26
2020-05-15T10:39:26
null
UTF-8
Python
false
false
5,172
py
import time from openerp.osv import fields from openerp.osv import osv from openerp.tools.translate import _ from openerp import SUPERUSER_ID from openerp.tools import DEFAULT_SERVER_DATETIME_FORMAT, float_compare class StockMove(osv.osv): _inherit = 'stock.move' def _src_id_default(self, cr, uid, ids, context=None): try: location_model, location_id = self.pool.get('ir.model.data').get_object_reference(cr, uid, 'stock', 'location_production') self.pool.get('stock.location').check_access_rule(cr, uid, [location_id], 'read', context=context) except (orm.except_orm, ValueError): location_id = False return location_id def _dest_id_default(self, cr, uid, ids, context=None): try: location_model, location_id = self.pool.get('ir.model.data').get_object_reference(cr, uid, 'stock', 'stock_location_stock') self.pool.get('stock.location').check_access_rule(cr, uid, [location_id], 'read', context=context) except (orm.except_orm, ValueError): location_id = False return location_id _columns = { 'custom_production_id': fields.many2one('mrp.production.custom', 'Production Order for Produced Products', select=True, copy=False), 'waste_qty':fields.float('Waste (%)'), # 'raw_material_production_id': fields.many2one('mrp.production', 'Production Order for Raw Materials', select=True), 'consumed_for': fields.many2one('stock.move', 'Consumed for', help='Technical field used to make the traceability of produced products'), } def action_consume_custom(self, cr, uid, ids, product_qty, location_id=False, restrict_lot_id=False, restrict_partner_id=False, consumed_for=False, context=None): """ Consumed product with specific quantity from specific source location. @param product_qty: Consumed/produced product quantity (= in quantity of UoM of product) @param location_id: Source location @param restrict_lot_id: optionnal parameter that allows to restrict the choice of quants on this specific lot @param restrict_partner_id: optionnal parameter that allows to restrict the choice of quants to this specific partner @param consumed_for: optionnal parameter given to this function to make the link between raw material consumed and produced product, for a better traceability @return: New lines created if not everything was consumed for this line """ if context is None: context = {} res = [] production_obj = self.pool.get('mrp.production.custom') if product_qty <= 0: raise osv.except_osv(_('Warning!'), _('Please provide proper quantity.')) #because of the action_confirm that can create extra moves in case of phantom bom, we need to make 2 loops ids2 = [] for move in self.browse(cr, uid, ids, context=context): if move.state == 'draft': ids2.extend(self.action_confirm(cr, uid, [move.id], context=context)) else: ids2.append(move.id) prod_orders = set() for move in self.browse(cr, uid, ids2, context=context): prod_orders.add(move.custom_production_id.id) print"Total Qty>>>",product_qty move_qty = product_qty if move_qty <= 0.00: raise osv.except_osv(_('Error!'), _('Cannot consume a move with negative or zero quantity.')) quantity_rest = move_qty - product_qty print"Rest Qty>>>",quantity_rest # Compare with numbers of move uom as we want to avoid a split with 0 qty quantity_rest_uom = move.product_uom_qty - self.pool.get("product.uom")._compute_qty_obj(cr, uid, move.product_id.uom_id, product_qty, move.product_uom) if float_compare(quantity_rest_uom, 0, precision_rounding=move.product_uom.rounding) != 0: new_mov = self.split(cr, uid, move, quantity_rest, context=context) print"New Move>>>",new_mov res.append(new_mov) vals = {'restrict_lot_id': restrict_lot_id, 'restrict_partner_id': restrict_partner_id, 'consumed_for': consumed_for} if location_id: vals.update({'location_id': location_id}) self.write(cr, uid, [move.id], vals, context=context) # Original moves will be the quantities consumed, so they need to be done self.action_done(cr, uid, ids2, context=context) if res: self.action_assign(cr, uid, res, context=context) if prod_orders: production_obj.action_in_production(cr, uid, list(prod_orders), context=None) #production_obj.signal_workflow(cr, uid, list(prod_orders), 'button_produce') return res _defaults = { 'location_id': _src_id_default, 'location_dest_id': _dest_id_default }
[ "prog1@381544ba-743e-41a5-bf0d-221725b9d5af" ]
prog1@381544ba-743e-41a5-bf0d-221725b9d5af
b6f6432a451ac396f4378d34ae642e68e475e1e3
82b946da326148a3c1c1f687f96c0da165bb2c15
/sdk/python/pulumi_azure_native/machinelearningservices/v20210101/get_aks_service.py
d436cd9c6fca64cd385942d716820e2980e1cc9c
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
morrell/pulumi-azure-native
3916e978382366607f3df0a669f24cb16293ff5e
cd3ba4b9cb08c5e1df7674c1c71695b80e443f08
refs/heads/master
2023-06-20T19:37:05.414924
2021-07-19T20:57:53
2021-07-19T20:57:53
387,815,163
0
0
Apache-2.0
2021-07-20T14:18:29
2021-07-20T14:18:28
null
UTF-8
Python
false
false
5,922
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs __all__ = [ 'GetAKSServiceResult', 'AwaitableGetAKSServiceResult', 'get_aks_service', ] @pulumi.output_type class GetAKSServiceResult: """ Machine Learning service object wrapped into ARM resource envelope. """ def __init__(__self__, id=None, identity=None, location=None, name=None, properties=None, sku=None, system_data=None, tags=None, type=None): if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if identity and not isinstance(identity, dict): raise TypeError("Expected argument 'identity' to be a dict") pulumi.set(__self__, "identity", identity) if location and not isinstance(location, str): raise TypeError("Expected argument 'location' to be a str") pulumi.set(__self__, "location", location) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if properties and not isinstance(properties, dict): raise TypeError("Expected argument 'properties' to be a dict") pulumi.set(__self__, "properties", properties) if sku and not isinstance(sku, dict): raise TypeError("Expected argument 'sku' to be a dict") pulumi.set(__self__, "sku", sku) if system_data and not isinstance(system_data, dict): raise TypeError("Expected argument 'system_data' to be a dict") pulumi.set(__self__, "system_data", system_data) if tags and not isinstance(tags, dict): raise TypeError("Expected argument 'tags' to be a dict") pulumi.set(__self__, "tags", tags) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) @property @pulumi.getter def id(self) -> str: """ Specifies the resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter def identity(self) -> Optional['outputs.IdentityResponse']: """ The identity of the resource. """ return pulumi.get(self, "identity") @property @pulumi.getter def location(self) -> Optional[str]: """ Specifies the location of the resource. """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> str: """ Specifies the name of the resource. """ return pulumi.get(self, "name") @property @pulumi.getter def properties(self) -> Any: """ Service properties """ return pulumi.get(self, "properties") @property @pulumi.getter def sku(self) -> Optional['outputs.SkuResponse']: """ The sku of the workspace. """ return pulumi.get(self, "sku") @property @pulumi.getter(name="systemData") def system_data(self) -> 'outputs.SystemDataResponse': """ Read only system data """ return pulumi.get(self, "system_data") @property @pulumi.getter def tags(self) -> Optional[Mapping[str, str]]: """ Contains resource tags defined as key/value pairs. """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> str: """ Specifies the type of the resource. """ return pulumi.get(self, "type") class AwaitableGetAKSServiceResult(GetAKSServiceResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetAKSServiceResult( id=self.id, identity=self.identity, location=self.location, name=self.name, properties=self.properties, sku=self.sku, system_data=self.system_data, tags=self.tags, type=self.type) def get_aks_service(expand: Optional[bool] = None, resource_group_name: Optional[str] = None, service_name: Optional[str] = None, workspace_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetAKSServiceResult: """ Machine Learning service object wrapped into ARM resource envelope. :param bool expand: Set to True to include Model details. :param str resource_group_name: Name of the resource group in which workspace is located. :param str service_name: Name of the Azure Machine Learning service. :param str workspace_name: Name of Azure Machine Learning workspace. """ __args__ = dict() __args__['expand'] = expand __args__['resourceGroupName'] = resource_group_name __args__['serviceName'] = service_name __args__['workspaceName'] = workspace_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-native:machinelearningservices/v20210101:getAKSService', __args__, opts=opts, typ=GetAKSServiceResult).value return AwaitableGetAKSServiceResult( id=__ret__.id, identity=__ret__.identity, location=__ret__.location, name=__ret__.name, properties=__ret__.properties, sku=__ret__.sku, system_data=__ret__.system_data, tags=__ret__.tags, type=__ret__.type)
cd9bb1eb10be89931f7564472027e88621ad041e
8143bfdbda6fdbef40bc570f48773edd365fcb62
/project/Kyb-TestProject/businessView/loginView.py
895c338f89df61341cca470210d9b35b905c1f74
[]
no_license
CaptainJi/Kyb-TestProject
199caef0f1e58d6bb45273114596daf6ebdc424c
38d200d4d8436d4ad699682c3606f035446093cc
refs/heads/master
2022-10-16T15:36:20.499879
2020-06-06T07:06:22
2020-06-06T07:06:22
259,554,471
0
0
null
null
null
null
UTF-8
Python
false
false
2,798
py
import logging from common.commonFun import Common, NoSuchElementException from common.desiredCaps import appium_desired from selenium.webdriver.common.by import By # 封装登录业务逻辑类 class LoginView(Common): # 获取用户名、密码输入框元素 username_type = (By.ID, 'com.tal.kaoyan:id/login_email_edittext') password_type = (By.ID, 'com.tal.kaoyan:id/login_password_edittext') # 获取登录按钮元素 loginBtn = (By.ID, 'com.tal.kaoyan:id/login_login_btn') tip_commit = (By.ID, 'com.tal.kaoyan:id/tip_commit') # 获取“我的”按钮元素 button_mysefl = (By.ID, 'com.tal.kaoyan:id/mainactivity_button_mysefl') usercenter_username = (By.ID, 'com.tal.kaoyan:id/activity_usercenter_username') right_button = (By.ID, 'com.tal.kaoyan:id/myapptitle_RightButton_textview') # 获取退出元素 logout = (By.ID, 'com.tal.kaoyan:id/setting_logout_text') def login_action(self, username, password): # 取消升级 self.check_cancel_btn() # 跳过 self.check_skipBtn() logging.info('开始登录') logging.info('用户名:%s' % username) self.driver.find_element(*self.username_type).send_keys(username) logging.info('密码:%s' % password) self.driver.find_element(*self.password_type).send_keys(password) logging.info('点击登录按钮') self.driver.find_element(*self.loginBtn).click() def check_account_alert(self): logging.info('检查登录警告信息') try: element = self.driver.find_element(*self.tip_commit) except NoSuchElementException: pass else: logging.info('跳过登录警告信息') element.click() def check_login_status(self): logging.info('检查登录状态') self.check_market_ad() self.check_account_alert() try: self.driver.find_element(*self.button_mysefl).click() self.driver.find_element(*self.usercenter_username) except NoSuchElementException: logging.error('登陆失败') self.getScreenShot('登陆失败') return False else: logging.info('登陆成功') self.getScreenShot('登陆成功') self.logout_action() return True def logout_action(self): logging.info('退出登录') self.driver.find_element(*self.right_button).click() self.driver.find_element(*self.logout).click() self.driver.find_element(*self.tip_commit).click() if __name__ == '__main__': driver = appium_desired() l = LoginView(driver) l.check_cancel_btn() l.check_skipBtn() l.login_action('', '') l.check_login_status()
b65f96bee6c891e742a26f9d3d76f59dec94b3e2
82b946da326148a3c1c1f687f96c0da165bb2c15
/sdk/python/pulumi_azure_native/cdn/v20200331/_enums.py
656075cbb5232d664bcd6a85457bace0d55ba8c4
[ "Apache-2.0", "BSD-3-Clause" ]
permissive
morrell/pulumi-azure-native
3916e978382366607f3df0a669f24cb16293ff5e
cd3ba4b9cb08c5e1df7674c1c71695b80e443f08
refs/heads/master
2023-06-20T19:37:05.414924
2021-07-19T20:57:53
2021-07-19T20:57:53
387,815,163
0
0
Apache-2.0
2021-07-20T14:18:29
2021-07-20T14:18:28
null
UTF-8
Python
false
false
10,641
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** from enum import Enum __all__ = [ 'ActionType', 'CacheBehavior', 'CacheType', 'CookiesOperator', 'CustomRuleEnabledState', 'DeliveryRuleAction', 'DestinationProtocol', 'GeoFilterActions', 'HeaderAction', 'HealthProbeRequestType', 'HttpVersionOperator', 'IsDeviceOperator', 'ManagedRuleEnabledState', 'MatchVariable', 'Operator', 'OptimizationType', 'PolicyEnabledState', 'PolicyMode', 'PostArgsOperator', 'ProbeProtocol', 'QueryStringBehavior', 'QueryStringCachingBehavior', 'QueryStringOperator', 'RedirectType', 'RemoteAddressOperator', 'RequestBodyOperator', 'RequestHeaderOperator', 'RequestMethodOperator', 'RequestUriOperator', 'ResponseBasedDetectedErrorTypes', 'SkuName', 'Transform', 'TransformType', 'UrlFileExtensionOperator', 'UrlFileNameOperator', 'UrlPathOperator', ] class ActionType(str, Enum): """ Describes what action to be applied when rule matches """ ALLOW = "Allow" BLOCK = "Block" LOG = "Log" REDIRECT = "Redirect" class CacheBehavior(str, Enum): """ Caching behavior for the requests """ BYPASS_CACHE = "BypassCache" OVERRIDE = "Override" SET_IF_MISSING = "SetIfMissing" class CacheType(str, Enum): """ The level at which the content needs to be cached. """ ALL = "All" class CookiesOperator(str, Enum): """ Describes operator to be matched """ ANY = "Any" EQUAL = "Equal" CONTAINS = "Contains" BEGINS_WITH = "BeginsWith" ENDS_WITH = "EndsWith" LESS_THAN = "LessThan" LESS_THAN_OR_EQUAL = "LessThanOrEqual" GREATER_THAN = "GreaterThan" GREATER_THAN_OR_EQUAL = "GreaterThanOrEqual" class CustomRuleEnabledState(str, Enum): """ Describes if the custom rule is in enabled or disabled state. Defaults to Enabled if not specified. """ DISABLED = "Disabled" ENABLED = "Enabled" class DeliveryRuleAction(str, Enum): """ The name of the action for the delivery rule. """ CACHE_EXPIRATION = "CacheExpiration" CACHE_KEY_QUERY_STRING = "CacheKeyQueryString" MODIFY_REQUEST_HEADER = "ModifyRequestHeader" MODIFY_RESPONSE_HEADER = "ModifyResponseHeader" URL_REDIRECT = "UrlRedirect" URL_REWRITE = "UrlRewrite" URL_SIGNING = "UrlSigning" class DestinationProtocol(str, Enum): """ Protocol to use for the redirect. The default value is MatchRequest """ MATCH_REQUEST = "MatchRequest" HTTP = "Http" HTTPS = "Https" class GeoFilterActions(str, Enum): """ Action of the geo filter, i.e. allow or block access. """ BLOCK = "Block" ALLOW = "Allow" class HeaderAction(str, Enum): """ Action to perform """ APPEND = "Append" OVERWRITE = "Overwrite" DELETE = "Delete" class HealthProbeRequestType(str, Enum): """ The type of health probe request that is made. """ NOT_SET = "NotSet" GET = "GET" HEAD = "HEAD" class HttpVersionOperator(str, Enum): """ Describes operator to be matched """ EQUAL = "Equal" class IsDeviceOperator(str, Enum): """ Describes operator to be matched """ EQUAL = "Equal" class ManagedRuleEnabledState(str, Enum): """ Describes if the managed rule is in enabled or disabled state. Defaults to Disabled if not specified. """ DISABLED = "Disabled" ENABLED = "Enabled" class MatchVariable(str, Enum): """ Match variable to compare against. """ REMOTE_ADDR = "RemoteAddr" SOCKET_ADDR = "SocketAddr" REQUEST_METHOD = "RequestMethod" REQUEST_HEADER = "RequestHeader" REQUEST_URI = "RequestUri" QUERY_STRING = "QueryString" REQUEST_BODY = "RequestBody" COOKIES = "Cookies" POST_ARGS = "PostArgs" class Operator(str, Enum): """ Describes operator to be matched """ ANY = "Any" IP_MATCH = "IPMatch" GEO_MATCH = "GeoMatch" EQUAL = "Equal" CONTAINS = "Contains" LESS_THAN = "LessThan" GREATER_THAN = "GreaterThan" LESS_THAN_OR_EQUAL = "LessThanOrEqual" GREATER_THAN_OR_EQUAL = "GreaterThanOrEqual" BEGINS_WITH = "BeginsWith" ENDS_WITH = "EndsWith" REG_EX = "RegEx" class OptimizationType(str, Enum): """ Specifies what scenario the customer wants this CDN endpoint to optimize for, e.g. Download, Media services. With this information, CDN can apply scenario driven optimization. """ GENERAL_WEB_DELIVERY = "GeneralWebDelivery" GENERAL_MEDIA_STREAMING = "GeneralMediaStreaming" VIDEO_ON_DEMAND_MEDIA_STREAMING = "VideoOnDemandMediaStreaming" LARGE_FILE_DOWNLOAD = "LargeFileDownload" DYNAMIC_SITE_ACCELERATION = "DynamicSiteAcceleration" class PolicyEnabledState(str, Enum): """ describes if the policy is in enabled state or disabled state """ DISABLED = "Disabled" ENABLED = "Enabled" class PolicyMode(str, Enum): """ Describes if it is in detection mode or prevention mode at policy level. """ PREVENTION = "Prevention" DETECTION = "Detection" class PostArgsOperator(str, Enum): """ Describes operator to be matched """ ANY = "Any" EQUAL = "Equal" CONTAINS = "Contains" BEGINS_WITH = "BeginsWith" ENDS_WITH = "EndsWith" LESS_THAN = "LessThan" LESS_THAN_OR_EQUAL = "LessThanOrEqual" GREATER_THAN = "GreaterThan" GREATER_THAN_OR_EQUAL = "GreaterThanOrEqual" class ProbeProtocol(str, Enum): """ Protocol to use for health probe. """ NOT_SET = "NotSet" HTTP = "Http" HTTPS = "Https" class QueryStringBehavior(str, Enum): """ Caching behavior for the requests """ INCLUDE = "Include" INCLUDE_ALL = "IncludeAll" EXCLUDE = "Exclude" EXCLUDE_ALL = "ExcludeAll" class QueryStringCachingBehavior(str, Enum): """ Defines how CDN caches requests that include query strings. You can ignore any query strings when caching, bypass caching to prevent requests that contain query strings from being cached, or cache every request with a unique URL. """ IGNORE_QUERY_STRING = "IgnoreQueryString" BYPASS_CACHING = "BypassCaching" USE_QUERY_STRING = "UseQueryString" NOT_SET = "NotSet" class QueryStringOperator(str, Enum): """ Describes operator to be matched """ ANY = "Any" EQUAL = "Equal" CONTAINS = "Contains" BEGINS_WITH = "BeginsWith" ENDS_WITH = "EndsWith" LESS_THAN = "LessThan" LESS_THAN_OR_EQUAL = "LessThanOrEqual" GREATER_THAN = "GreaterThan" GREATER_THAN_OR_EQUAL = "GreaterThanOrEqual" class RedirectType(str, Enum): """ The redirect type the rule will use when redirecting traffic. """ MOVED = "Moved" FOUND = "Found" TEMPORARY_REDIRECT = "TemporaryRedirect" PERMANENT_REDIRECT = "PermanentRedirect" class RemoteAddressOperator(str, Enum): """ Describes operator to be matched """ ANY = "Any" IP_MATCH = "IPMatch" GEO_MATCH = "GeoMatch" class RequestBodyOperator(str, Enum): """ Describes operator to be matched """ ANY = "Any" EQUAL = "Equal" CONTAINS = "Contains" BEGINS_WITH = "BeginsWith" ENDS_WITH = "EndsWith" LESS_THAN = "LessThan" LESS_THAN_OR_EQUAL = "LessThanOrEqual" GREATER_THAN = "GreaterThan" GREATER_THAN_OR_EQUAL = "GreaterThanOrEqual" class RequestHeaderOperator(str, Enum): """ Describes operator to be matched """ ANY = "Any" EQUAL = "Equal" CONTAINS = "Contains" BEGINS_WITH = "BeginsWith" ENDS_WITH = "EndsWith" LESS_THAN = "LessThan" LESS_THAN_OR_EQUAL = "LessThanOrEqual" GREATER_THAN = "GreaterThan" GREATER_THAN_OR_EQUAL = "GreaterThanOrEqual" class RequestMethodOperator(str, Enum): """ Describes operator to be matched """ EQUAL = "Equal" class RequestUriOperator(str, Enum): """ Describes operator to be matched """ ANY = "Any" EQUAL = "Equal" CONTAINS = "Contains" BEGINS_WITH = "BeginsWith" ENDS_WITH = "EndsWith" LESS_THAN = "LessThan" LESS_THAN_OR_EQUAL = "LessThanOrEqual" GREATER_THAN = "GreaterThan" GREATER_THAN_OR_EQUAL = "GreaterThanOrEqual" class ResponseBasedDetectedErrorTypes(str, Enum): """ Type of response errors for real user requests for which origin will be deemed unhealthy """ NONE = "None" TCP_ERRORS_ONLY = "TcpErrorsOnly" TCP_AND_HTTP_ERRORS = "TcpAndHttpErrors" class SkuName(str, Enum): """ Name of the pricing tier. """ STANDARD_VERIZON = "Standard_Verizon" PREMIUM_VERIZON = "Premium_Verizon" CUSTOM_VERIZON = "Custom_Verizon" STANDARD_AKAMAI = "Standard_Akamai" STANDARD_CHINA_CDN = "Standard_ChinaCdn" STANDARD_MICROSOFT = "Standard_Microsoft" PREMIUM_CHINA_CDN = "Premium_ChinaCdn" class Transform(str, Enum): """ Describes what transforms are applied before matching """ LOWERCASE = "Lowercase" UPPERCASE = "Uppercase" class TransformType(str, Enum): """ Describes what transforms were applied before matching. """ LOWERCASE = "Lowercase" UPPERCASE = "Uppercase" TRIM = "Trim" URL_DECODE = "UrlDecode" URL_ENCODE = "UrlEncode" REMOVE_NULLS = "RemoveNulls" class UrlFileExtensionOperator(str, Enum): """ Describes operator to be matched """ ANY = "Any" EQUAL = "Equal" CONTAINS = "Contains" BEGINS_WITH = "BeginsWith" ENDS_WITH = "EndsWith" LESS_THAN = "LessThan" LESS_THAN_OR_EQUAL = "LessThanOrEqual" GREATER_THAN = "GreaterThan" GREATER_THAN_OR_EQUAL = "GreaterThanOrEqual" class UrlFileNameOperator(str, Enum): """ Describes operator to be matched """ ANY = "Any" EQUAL = "Equal" CONTAINS = "Contains" BEGINS_WITH = "BeginsWith" ENDS_WITH = "EndsWith" LESS_THAN = "LessThan" LESS_THAN_OR_EQUAL = "LessThanOrEqual" GREATER_THAN = "GreaterThan" GREATER_THAN_OR_EQUAL = "GreaterThanOrEqual" class UrlPathOperator(str, Enum): """ Describes operator to be matched """ ANY = "Any" EQUAL = "Equal" CONTAINS = "Contains" BEGINS_WITH = "BeginsWith" ENDS_WITH = "EndsWith" LESS_THAN = "LessThan" LESS_THAN_OR_EQUAL = "LessThanOrEqual" GREATER_THAN = "GreaterThan" GREATER_THAN_OR_EQUAL = "GreaterThanOrEqual" WILDCARD = "Wildcard"
9deed2e10501ba1a8d6f3c0f052412d7cbb1bb3d
dd097c7ae744227b0312d762ee0482a3380ff8c6
/plot_tg.py
9f751bebfaa64b4b76be445e5325e06e65df06b0
[]
no_license
moflaher/workspace_python
0d6e98274d923a721db2b345f65c20b02ca59d08
6551e3602ead3373eafce10d11ce7b96bdcb106f
refs/heads/master
2023-03-06T02:15:01.945481
2023-03-01T19:15:51
2023-03-01T19:15:51
20,814,932
3
4
null
null
null
null
UTF-8
Python
false
false
7,079
py
from __future__ import division,print_function import matplotlib as mpl import scipy as sp from folderpath import * from datatools import * from gridtools import * from plottools import * from projtools import * from stattools import * import interptools as ipt import matplotlib.tri as mplt import matplotlib.pyplot as plt #from mpl_toolkits.basemap import Basemap import os as os import sys np.set_printoptions(precision=8,suppress=True,threshold=sys.maxsize) import pandas as pd import netCDF4 as n4 import copy import matplotlib.dates as dates import argparse try: import ttide tide=True except: print('No ttide') tide=False parser = argparse.ArgumentParser() parser.add_argument("grid", help="name of the grid", type=str) parser.add_argument("name", help="name of the run", type=str,default=None, nargs='?') parser.add_argument("--station", help="switch to station output instead of fvcom output", default=False,action='store_true') parser.add_argument("-dates", help="specify start and end date",type=str,nargs=2,default=None) parser.add_argument("-snr", help="signal to noise ratio value used for constituent cutoff", type=float,default=2.0) parser.add_argument("-skipdays", help="number of days to skip at start of timeseries", type=float,default=14.0) args = parser.parse_args() print("The current commandline arguments being used are") print(args) name=args.name grid=args.grid if args.station: tag='station' else: tag='fvcom' # find tg ncfiles months = dates.MonthLocator() monthsFmt = dates.DateFormatter('%b') savepath='{}png/{}/tg/{}/'.format(figpath,grid,name) if not os.path.exists(savepath): os.makedirs(savepath) savepath2='{}png/{}/tg/{}/csv/'.format(figpath,grid,name) if not os.path.exists(savepath2): os.makedirs(savepath2) inpath='{}{}/tg/{}/'.format(datapath,grid,name) filenames=glob.glob('{}tg_*_{}.nc'.format(inpath,tag)) filenames.sort() #tg_*.nc'.format(obspath) for i,filename in enumerate(filenames): print('='*80) print(i) print(filename) tgm = loadnc('',filename,False) tgo = loadnc('{}east/all/'.format(obspath),'tg_{:05d}.nc'.format(tgm['tgnumber'][0]),False) if args.dates is not None: din=dates.datestr2num(args.dates) figstr='{}{}_{}_tg_{:05d}_{}_to_{}.png'.format(savepath,grid,name,tgm['tgnumber'][0],args.dates[0],args.dates[1]) figstr2='{}{}_{}_tg_{:05d}_residual_{}_to_{}.png'.format(savepath,grid,name,tgm['tgnumber'][0],args.dates[0],args.dates[1]) figstr3='{}{}_{}_tg_{:05d}_{}_to_{}'.format(savepath2,grid,name,tgm['tgnumber'][0],args.dates[0],args.dates[1]) else: din=np.array([tgm['time'][0]+args.skipdays,tgm['time'][-1]]) figstr='{}{}_{}_tg_{:05d}.png'.format(savepath,grid,name,tgm['tgnumber'][0]) figstr2='{}{}_{}_tg_{:05d}_residual.png'.format(savepath,grid,name,tgm['tgnumber'][0]) figstr3='{}{}_{}_tg_{:05d}'.format(savepath2,grid,name,tgm['tgnumber'][0]) idx=np.argwhere((tgo['time']>=din[0]) & (tgo['time']<=din[1])) idx=np.ravel(idx) time1,data1,data2=interp_clean_common(tgo['time'][idx],tgo['zeta'][idx],tgm['time'],tgm['zeta'],500,-500) stats=residual_stats(data2-np.mean(data2), data1-np.mean(data1)) a=pd.DataFrame(stats,index=[0]).round(2).T[0] f=plt.figure(figsize=(15,5)); ax=f.add_axes([.125,.1,.775,.8]); ax.plot(time1,data1-np.mean(data1),'k',label='TG: {:05d}'.format(tgm['tgnumber'][0])) ax.plot(time1,data2-np.mean(data2),'r',lw=.5,label='{}'.format(name)) ax.xaxis.set_major_locator(months) ax.xaxis.set_major_formatter(monthsFmt) ax.legend() ax.set_ylabel('Elevation (m)') f.suptitle('Removed TG means - Obs: {} Model: {}\n Bias: {} Std: {} RMSE: {} RAE: {} Corr: {} Skew: {} Skill: {}'.format(np.mean(data1),np.mean(data2),a[0],a[1],a[2],a[3],a[4],a[5],a[6])) f.savefig(figstr,dpi=600) if tide: time=np.arange(time1[0],time1[-1]+1/24.0,1/24.0) tgm_int=ipt.interp1d(tgm['time'],tgm['zeta'],time) tgonan=tgo['zeta'][idx] tgonan[tgonan>500]=np.nan tgo_int=ipt.interp1d(tgo['time'][idx],tgonan,time) tgm_tcon_pre=ttide.t_tide(tgm_int,stime=time[0],lat=tgm['lat'],dt=(time[1]-time[0])*24.0,out_style=None) tgo_tcon_pre=ttide.t_tide(tgo_int,stime=time[0],lat=tgm['lat'],dt=(time[1]-time[0])*24.0,out_style=None) tgm_tcon=ttide.t_tide(tgm_int,stime=time[0],lat=tgm['lat'],dt=(time[1]-time[0])*24.0,constitnames=tgm_tcon_pre['nameu'][tgm_tcon_pre['snr']>=args.snr],out_style=None) tgo_tcon=ttide.t_tide(tgo_int,stime=time[0],lat=tgm['lat'],dt=(time[1]-time[0])*24.0,constitnames=tgo_tcon_pre['nameu'][tgo_tcon_pre['snr']>=args.snr],out_style=None) f=plt.figure(figsize=(15,5)); ax=f.add_axes([.125,.1,.775,.8]); ax.plot(time[:len(tgo_tcon['xres'])],tgo_tcon['xres']-np.nanmean(tgo_tcon['xres']),'k',label='TG: {:05d}'.format(tgm['tgnumber'][0])) ax.plot(time[:len(tgm_tcon['xres'])],tgm_tcon['xres']-np.nanmean(tgm_tcon['xres']),'r',lw=.5,label='{}'.format(name)) ax.xaxis.set_major_locator(months) ax.xaxis.set_major_formatter(monthsFmt) ax.legend() ax.set_ylabel('Residual Elevation (m)') o,m=remove_common_nan(tgo_tcon['xres']-np.nanmean(tgo_tcon['xres']), tgm_tcon['xres']-np.nanmean(tgm_tcon['xres'])) stats=residual_stats(o,m) a=pd.DataFrame(stats,index=[0]).round(2).T[0] f.suptitle('Removed TG means - Obs: {} Model: {}\n Bias: {} Std: {} RMSE: {} RAE: {} Corr: {} Skew: {} Skill: {}'.format(np.nanmean(tgo_tcon['xres']),np.nanmean(tgm_tcon['xres']),a[0],a[1],a[2],a[3],a[4],a[5],a[6])) f.savefig(figstr2,dpi=600) df=pd.DataFrame(tgm_tcon['tidecon'],columns=['Amp','AmpE','Phase','PhaseE'],index=tgm_tcon['nameu']).round(2).sort_values('Amp',ascending=False) df.to_csv('{}_model_full.csv'.format(figstr3)) df=pd.DataFrame(tgo_tcon['tidecon'],columns=['Amp','AmpE','Phase','PhaseE'],index=tgo_tcon['nameu']).round(2).sort_values('Amp',ascending=False) df.to_csv('{}_obs_full.csv'.format(figstr3)) namesm=tgm_tcon['nameu'] cnames=np.array([]) for namea in namesm: if namea in tgo_tcon['nameu']: cnames=np.append(cnames,namea) oidx=np.in1d(tgo_tcon['nameu'],cnames) midx=np.in1d(tgm_tcon['nameu'],cnames) diff=np.vstack([tgo_tcon['tidecon'][oidx,0],tgm_tcon['tidecon'][midx,0],tgo_tcon['tidecon'][oidx,0]-tgm_tcon['tidecon'][midx,0], tgo_tcon['tidecon'][oidx,2],tgm_tcon['tidecon'][midx,2],tgo_tcon['tidecon'][oidx,2]-tgm_tcon['tidecon'][midx,2]]).T df=pd.DataFrame(diff,columns=['AmpObs','AmpMod','AmpDiff','PhaseObs','PhaseMod','PhaseDiff'],index=cnames).round(2).sort_values('AmpObs',ascending=False) df.to_csv('{}_obsmod_common_diff.csv'.format(figstr3)) #kill
4c3ab23c18f9d4491755f6abf41148a2ed42fc82
c4702d1a06640555829b367852138cc93ba4a161
/dym_bank_trf_request/wizard/bank_trf_advice_group_old.py
6ef06d317a4c2cef785790f379608629ac9eeabb
[]
no_license
Rizalimami/dym
0ecadf9c049b22ebfebf92e4eab6eaad17dd3e26
af1bcf7b77a3212bc8a8a0e41e6042a134587ed4
refs/heads/master
2020-04-08T10:56:43.605698
2018-11-27T06:44:08
2018-11-27T06:44:08
159,287,876
0
2
null
null
null
null
UTF-8
Python
false
false
3,459
py
# -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # Copyright (C) 2004-2010 Tiny SPRL (<http://tiny.be>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## import time from openerp.osv import fields, osv from openerp.tools.translate import _ class BankTrfRequestGroup(osv.osv_memory): _name = "bank.trf.request.group" _description = "Bank Transfer Request Grup" def fields_view_get(self, cr, uid, view_id=None, view_type='form', context=None, toolbar=False, submenu=False): """ Changes the view dynamically @param self: The object pointer. @param cr: A database cursor @param uid: ID of the user currently logged in @param context: A standard dictionary @return: New arch of view. """ if context is None: context={} res = super(BankTrfRequestGroup, self).fields_view_get(cr, uid, view_id=view_id, view_type=view_type, context=context, toolbar=toolbar,submenu=False) if context.get('active_model','') == 'bank.trf.request' and len(context['active_ids']) < 2: raise osv.except_osv(_('Warning!'), _('Please select multiple order to merge in the list view.')) return res def merge_trf_requests(self, cr, uid, ids, context=None): """ To merge similar type of purchase orders. @param self: The object pointer. @param cr: A database cursor @param uid: ID of the user currently logged in @param ids: the ID or list of IDs @param context: A standard dictionary @return: purchase order view """ trf_req_obj = self.pool.get('bank.trf.request') # proc_obj = self.pool.get('procurement.order') mod_obj =self.pool.get('ir.model.data') if context is None: context = {} result = mod_obj._get_id(cr, uid, 'dym_bank_trf_request', 'bank_trf_request_search_view') id = mod_obj.read(cr, uid, result, ['res_id']) # allorders = trf_req_obj.do_merge(cr, uid, context.get('active_ids',[]), context) allorders = [] return { 'domain': "[('id','in', [" + ','.join(map(str, allorders.keys())) + "])]", 'name': _('Bank Transfer Request Group'), 'view_type': 'form', 'view_mode': 'tree,form', 'res_model': 'bank.trf.request', 'view_id': False, 'type': 'ir.actions.act_window', 'search_view_id': id['res_id'] } # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
4b1c156a5fbd8b1083a31472220fdd8c0b7d4e3a
cc6e1cce2f0d7fa8eb16f2dc3e90d60575aeac66
/uploader/models.py
1671ef86d98332e6ced4177a5d9084b8f038ada0
[]
no_license
andysitu/p_site
84bd0fa600593a91ea9f67ca9460e0fa4b633049
257386bdf792ea867dbbd9905c7245695ab55a6b
refs/heads/master
2023-06-21T16:30:21.423414
2019-06-26T19:21:56
2019-06-26T19:21:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,356
py
from django.db import models import django, os from django.db.models.signals import pre_delete from django.dispatch.dispatcher import receiver from django.conf import settings from django.contrib.auth.models import User class UFileManager(models.Model): name = models.CharField(max_length = 50) count = models.IntegerField(default=0) class UFile(models.Model): filename = models.CharField(max_length=50) uploaded_date = models.DateTimeField(default=django.utils.timezone.now) file_manager = models.ForeignKey(UFileManager, on_delete=models.CASCADE) file_extensions = models.CharField(max_length=10, default=".txt") def __str__(self): return self.filename def get_filepath(self): folder_name = str(self.file_manager.id) filepath = os.path.join(settings.MEDIA_ROOT, "uploader", folder_name, str(self.id) + self.file_extensions) return filepath @receiver(pre_delete, sender=User) def delete_file(sender, instance, using, **kwargs): print("HI") try: filepath = instance.get_filepath() os.remove(filepath) console.log("removed file") except FileNotFoundError: pass class Note(models.Model): text = models.TextField(max_length=200) file_manager = models.ForeignKey(UFileManager, on_delete=models.CASCADE)
278010849f6c888e86cd9237c60ee0f61c668fd9
9bd687b5454ca7d2b4deb0e149ec7023b2f3b89e
/ebikes/lora/rfm/ll/__init__.py
3ca2c4bfa45a8a729a51f15a13480468039889bb
[]
no_license
AlbertoFDR/EBikes-IoT
57132ff8b059b6d2e5185e241afe7720f96b667f
cd5da02d96ccedb57a9fd3e76d4430a11fd4f4fd
refs/heads/master
2022-12-10T14:02:22.468032
2020-02-11T12:37:59
2020-02-11T12:37:59
225,611,209
3
0
null
2021-06-02T00:45:47
2019-12-03T12:11:18
Python
UTF-8
Python
false
false
760
py
""" LinkLayer submodule """ __author__ = """Alexander Krause <[email protected]>""" __date__ = "2016-12-28" __version__ = "0.1.0" __license__ = "GPL" class Prototype: conf = None PL = None def __init__(self, cfg, pl): self.conf = cfg self.PL = pl self.PL.setIRQH(self._handleIRQ) self.postInit() def _handleIRQ(self): pass def get(conf, pl=None): """ get a new LinkLayer instance, depending on config if a PhysicalLayer is given, it's added to the LinkLayer """ if conf["type"] in ["rfm9x", "rfm95", "rfm96", "rfm97", "rfm98"]: from .ll_rfm9x import LinkLayer else: print("unsupported type") return None return LinkLayer(conf, pl)
0faaab6550929001312d1c69b5cd7335b0237141
e262e64415335060868e9f7f73ab8701e3be2f7b
/test_api2/api/test_wen.py
30802898bb6b9118e58bbed576fa44ca15d6289a
[]
no_license
Allison001/developer_test
6e211f1e2bd4287ee26fd2b33baf1c6a8d80fc63
b8e04b4b248b0c10a35e93128a5323165990052c
refs/heads/master
2023-06-18T08:46:40.202383
2021-07-23T03:31:54
2021-07-23T03:31:54
322,807,303
0
0
null
null
null
null
UTF-8
Python
false
false
9,273
py
# from json import loads # def read_line(): # with open("/Users/yeahmobi/Desktop/work/python/developer/test_api2/api/wenjian.yaml",'r') as f: # n = f.readlines() # count =0 # flag = True # for i in n: # i = i.strip() #去除行前后的空格 # if i.startswith("#"): # continue # elif i == "": # continue # elif i[0:3] == '"""': # continue # elif i.startswith("'''"): # continue # elif i.startswith('"""') and i.endswith('"""'): # continue # else: # count += 1 # # if i == "'''" or i == '"""': # if flag == True: # flag = False # continue # else: # flag = True # continue # elif (i.startswith("'''") and i.endswith("'''")) or (i.startswith('"""') and i.endswith('"""')): # continue # elif i.startswith("'''") or i.startswith('"""') or i.endswith("'''") or i.endswith('"""'): # if flag == True: # flag = False # continue # else: # flag = True # continue # else: # count += 1 # print(count) # # # read_line() # def count_line_core(file_name): ##传入单个文件,统计行数,之后返回该文件的实际代码行数;区分utf-8、gbk有待优化 # # print('core_file_name:',file_name) # lines_count=0 # flag=True # # try: # # with open(file_name,'r',encoding='gbk') as fp: # # # print('gbk file_name:',file_name) # # for i in fp: # # i=i.strip() # # if i=="'''" or i=='"""': # # if flag==True: # # flag=False # # continue # # else: # # flag=True # # continue # # elif (i.startswith("'''") and i.endswith("'''")) or (i.startswith('"""') and i.endswith('"""')): # # continue # # elif i.startswith("'''") or i.startswith('"""') or i.endswith("'''") or i.endswith('"""'): # # if flag==True: # # flag=False # # continue # # else: # # flag=True # # continue # # if flag==True and i!='' and not i.startswith('#'): # # lines_count+=1 # # #print(i) # # if i.startswith('#-*-') or i.startswith('#coding') or i.startswith('#encoding'): # # lines_count+=1 # # #print(i) # # except: # with open(file_name,'r',encoding='utf-8') as fp: # # print('utf-8 file_name:',file_name) # for i in fp: # i=i.strip() # if i=="'''" or i=='"""': # if flag==True: # flag=False # continue # else: # flag=True # continue # elif (i.startswith("'''") and i.endswith("'''")) or (i.startswith('"""') and i.endswith('"""')): # continue # elif i.startswith("'''") or i.startswith('"""') or i.endswith("'''") or i.endswith('"""'): # if flag==True: # flag=False # continue # else: # flag=True # continue # if flag==True and i!='' and not i.startswith('#'): # lines_count+=1 # #print(i) # if i.startswith('#-*-') or i.startswith('#coding') or i.startswith('#encoding'): # lines_count+=1 # #print(i) # return lines_count # def count_line_core(file_name): ##传入单个文件,统计行数,之后返回该文件的实际代码行数;区分utf-8、gbk有待优化 # # print('core_file_name:',file_name) # lines_count=0 # flag=True # with open(file_name,'r',encoding='utf-8') as fp: # # print('utf-8 file_name:',file_name) # for i in fp: # i=i.strip() # if i=="'''" or i=='"""': # if flag==True: # flag=False # continue # else: # flag=True # continue # continue # elif (i.startswith("'''") and i.endswith("'''")) or (i.startswith('"""') and i.endswith('"""')): # continue # # elif i.startswith("'''") or i.startswith('"""') or i.endswith("'''") or i.endswith('"""'): # # if flag==True: # # flag=False # # continue # # else: # # flag=True # # continue # # if flag==True and i!='' and not i.startswith('#'): # lines_count+=1 # print(i) # # if i.startswith('#-*-') or i.startswith('#coding') or i.startswith('#encoding'): # # lines_count+=1 # # print(i) # return lines_count # # print(count_line_core('/Users/yeahmobi/Desktop/work/python/developer/test_api2/api/wenjian.yaml')) """ 这是一个统计代码行数的函数 """ # def count_line(filename): #函数名 # with open(filename) as f: # flag = True # count = 0 # for i in f.readlines(): # i = i.strip() # if i == '"""' or i == "'''": # if flag == True: # flag = False # continue # else: # flag = True # continue # # elif (i.startswith("'''") and i.endswith("'''")) or (i.startswith('"""') and i.endswith('"""')): # continue # elif i !='' and flag == True and i[0:1] != "#": # count+=1 # print(i) # return count # # print(count_line('/Users/yeahmobi/Desktop/work/python/developer/test_api2/api/test_wen.py')) # class Solution: # def reverse(self, x: int) -> int: # s = int(str(abs(x))[::-1]) # if s.bit_length() > 31: # return 0 # else: # if x >=0: # return s # else: # return -s # a = Solution().reverse(120) # print(a) # class Solution: # def reverse(self, x: int) -> int: # if x >=0: # a = int(str(x)[::-1]) # else: # a =0- int(str(x)[:0:-1]) # # # if (-2**31) <a < (2**31)-1: # return a # else: # return 0 # class Solution: # def solve(self , str ): # # write code her # str = list(str) # print(str) # l,r = 0,len(str)-1 # while l <=r: # str[l],str[r] = str[r],str[l] # l +=1 # r -=1 # return ''.join(str) # # a=Solution().solve('ancd') # print(a) # class Solution: # def maxLength(self, arr): # # write code here # l, r = 0, 0 # stark = [] # n = 0 # while r < len(arr): # # if arr[r] in stark: # l += 1 # r = l # stark.clear() # # else: # stark.append(arr[l]) # r += 1 # n = max(n, len(stark)) # # return n # class Solution: # def maxLength(self , arr ): # # write code here # res=[] # length=0 # for i in arr: # if i not in res: # res+=[i] # else: # res = res[res.index(i)+1:] + [i] # if length<len(res): length= len(res) # return length # class Solution: # def maxLength(self , arr ): # # write code here # l,stark =0,[] #定义一个l存储每次遇到重复的最大值,stark存储不重复的值 # for i in arr: # if i in stark: #如果在stark中,就开始遍历 # l = max(l,len(stark)) # st = stark.index(i) #获取当前i(重复元素)在stark中的下标 # stark = stark[st+1:] #取当前stark中重复元素后的数 # stark.append(i) # return max(l,len(stark)) # # arr = [2,2,3,4,3] # a = Solution().maxLength(arr) # print(a) # stark = [1,2,3,4] # # st = stark.index(4) # stark = stark[1:] # print(stark) # "1AB2345CD","12345EF" class Solution: def LCS(self , str1 , str2 ): # l = 0 n = [] for i in range(len(str2)): s = str2[:i+1] if s in str1: # l = max(l,len(s)) if not n: n.append(s) if len(s) > len(n[0]): n.append(s) else: str2 = str2[i:] return n[-1] a = Solution().LCS("1AB2345CD","12345EF") print(a) # a = ['ancd'] # print(len(a[0]))
2b6c55c91181c7e97e176e24ad5f588c767be731
21bc908a1612e76a32f61d3e3e8865d3025e01f3
/backend/manage.py
aed36335605846b8d24da47b5997edc90131d876
[]
no_license
crowdbotics-apps/damp-sky-27690
422acfb8a5a6df8847d31c40dfcf2dc0ce7b1b7c
c6d0d7277a35d40363155773ed2e2860d5748449
refs/heads/master
2023-05-08T00:48:47.975234
2021-06-02T22:23:20
2021-06-02T22:23:20
373,317,741
0
0
null
null
null
null
UTF-8
Python
false
false
634
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'damp_sky_27690.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
02c511b60cde23f482f156867d34247a278e9f14
78ed388a01610359d4554efa046e473a008ba1ae
/hdlConvertorAst/translate/verilog_to_basic_hdl_sim_model.py
0e08a141d10a01eeda1d6dc9d129bc04cf50cc7b
[ "MIT" ]
permissive
mewais/hdlConvertorAst
f9ad85cfb2804c52a1b90642f4c9cede2ce2d3e6
64c8c1deee923ffae17e70e0fb1ad763cb69608c
refs/heads/master
2022-12-09T12:01:23.150348
2020-09-06T04:10:15
2020-09-06T04:15:38
293,200,130
0
0
MIT
2020-09-06T04:03:17
2020-09-06T04:03:17
null
UTF-8
Python
false
false
2,050
py
from hdlConvertorAst.translate._verilog_to_basic_hdl_sim_model.\ add_unique_labels_to_all_processes import AddUniqueLabelsToAllProcesses from hdlConvertorAst.translate._verilog_to_basic_hdl_sim_model\ .verilog_types_to_basic_hdl_sim_model import VerilogTypesToBasicHdlSimModel from hdlConvertorAst.translate._verilog_to_basic_hdl_sim_model\ .wrap_module_statements_to_processes import wrap_module_statements_to_processes from hdlConvertorAst.translate.common.discover_declarations import DiscoverDeclarations from hdlConvertorAst.translate.vhdl_to_verilog import link_module_dec_def from hdlConvertorAst.translate.common.name_scope import NameScope from hdlConvertorAst.translate.common.resolve_names import ResolveNames from hdlConvertorAst.translate._verilog_to_basic_hdl_sim_model\ .discover_stm_outputs import discover_stm_outputs_context from hdlConvertorAst.translate._verilog_to_basic_hdl_sim_model\ .verilog_operands_to_basic_hdl_sim_model import BasicHdlSimModelTranslateVerilogOperands from hdlConvertorAst.translate._verilog_to_basic_hdl_sim_model\ .assignment_to_update_assignment import AssignmentToUpdateAssignment from hdlConvertorAst.translate._verilog_to_basic_hdl_sim_model.apply_io_scope_to_signal_names import ApplyIoScopeToSignalNames def verilog_to_basic_hdl_sim_model(context): """ :type context: HdlContext """ link_module_dec_def(context) name_scope = NameScope.make_top(False) DiscoverDeclarations(name_scope).visit_HdlContext(context) ResolveNames(name_scope).visit_HdlContext(context) wrap_module_statements_to_processes(context) BasicHdlSimModelTranslateVerilogOperands().visit_HdlContext(context) VerilogTypesToBasicHdlSimModel().visit_HdlContext(context) stm_outputs = discover_stm_outputs_context(context) AddUniqueLabelsToAllProcesses(name_scope, stm_outputs).context(context) AssignmentToUpdateAssignment().visit_HdlContext(context) ApplyIoScopeToSignalNames().visit_HdlContext(context) return context, stm_outputs, name_scope
f48a3d35ae9058c2debe98e42131250fe2204c6d
8af54cf9b2f7edce0b5aa4fea5117ff4dc0ae4bf
/src/urls.py
e3e531e077ad7e7dd5b2bee85a323d7d3568877d
[]
no_license
chemalle/fopag
d9a3434ce83ebf215d54be825a531763f954b5e7
d6d89aed7bed06bb0b88cac5efd037db4ed8f6b4
refs/heads/master
2020-03-10T08:15:19.225631
2018-04-12T16:30:34
2018-04-12T16:30:34
129,281,004
0
0
null
null
null
null
UTF-8
Python
false
false
1,135
py
"""fopag URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url, include from django.contrib import admin from django.conf.urls.static import static from django.conf import settings from django.contrib.auth import views urlpatterns = [ url(r'^admin/', admin.site.urls), url(r'', include('folha.urls')), url(r'^accounts/login/$', views.login, name='login'), url(r'^accounts/logout/$', views.logout, name='logout', kwargs={'next_page': '/'}), ] + static (settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
889561373222e776f285c46bed462a03db1dce83
d5f8ca3c13f681d147b7614f1902df7ba34e06f9
/CelebA/main.py
1a920e6f5ac9b064598be6c2ab89096536d2adde
[]
no_license
hhjung1202/OwnAdaptation
29a6c0a603ab9233baf293096fb9e7e956647a10
50805730254419f090f4854387be79648a01fbb4
refs/heads/master
2021-06-25T22:31:15.437642
2020-11-26T18:19:55
2020-11-26T18:19:55
176,670,379
1
0
null
2020-06-11T07:35:55
2019-03-20T06:36:19
Python
UTF-8
Python
false
false
6,344
py
import argparse import torch from torch.autograd import Variable from torchvision.utils import save_image import numpy as np from model import * import os import torch.backends.cudnn as cudnn import time import utils import dataset import math parser = argparse.ArgumentParser(description='PyTorch Cycle Domain Adaptation Training') parser.add_argument('--sd', default='CelebA', type=str, help='source dataset') parser.add_argument('-j', '--workers', default=4, type=int, metavar='N', help='number of data loading workers (default: 4)') parser.add_argument('--epoch', default=164, type=int, metavar='N', help='number of total epoch to run') parser.add_argument('--decay-epoch', default=30, type=int, metavar='N', help='epoch from which to start lr decay') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('-b', '--batch-size', default=128, type=int, metavar='N', help='mini-batch size (default: 256)') parser.add_argument('--lr', '--learning-rate', default=1e-2, type=float, metavar='LR', help='initial learning rate') parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum') parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float, metavar='W', help='weight decay (default: 1e-4)') parser.add_argument('--img-size', type=int, default=32, help='input image width, height size') parser.add_argument('--dir', default='./', type=str, help='default save directory') parser.add_argument('--gpu', default='0', type=str, help='Multi GPU ids to use.') best_prec_result = torch.tensor(0, dtype=torch.float32) args = parser.parse_args() os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu torch.manual_seed(args.seed) cuda = True if torch.cuda.is_available() else False FloatTensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor LongTensor = torch.cuda.LongTensor if cuda else torch.LongTensor criterion = torch.nn.CrossEntropyLoss() def main(): global args, best_prec_result start_epoch = 0 utils.default_model_dir = args.dir start_time = time.time() train_loader, test_loader = dataset_selector(args.sd) state_info = utils.model_optim_state_info() state_info.model_init(args=args, num_class=4000) state_info.model_cuda_init() state_info.weight_init() state_info.optimizer_init(args) if cuda: print("USE", torch.cuda.device_count(), "GPUs!") cudnn.benchmark = True checkpoint = utils.load_checkpoint(utils.default_model_dir, is_last=True) if checkpoint: start_epoch = checkpoint['epoch'] + 1 best_prec_result = checkpoint['Best_Prec'] state_info.load_state_dict(checkpoint) for epoch in range(0, args.epoch): if epoch < 80: lr = args.lr elif epoch < 122: lr = args.lr * 0.1 else: lr = args.lr * 0.01 for param_group in state_info.optimizer.param_groups: param_group['lr'] = lr train(state_info, train_loader, epoch) prec_result = test(state_info, test_loader, epoch) if prec_result > best_prec_result: best_prec_result = prec_result filename = 'checkpoint_best.pth.tar' utils.save_state_checkpoint(state_info, best_prec_result, filename, utils.default_model_dir, epoch) utils.print_log('Best Prec : {:.4f}'.format(best_prec_result.item())) filename = 'latest.pth.tar' utils.save_state_checkpoint(state_info, best_prec_result, filename, utils.default_model_dir, epoch) now = time.gmtime(time.time() - start_time) utils.print_log('Best Prec : {:.4f}'.format(best_prec_result.item())) utils.print_log('{} hours {} mins {} secs for training'.format(now.tm_hour, now.tm_min, now.tm_sec)) print('done') def train(state_info, train_loader, epoch): # all utils.print_log('Type, Epoch, Batch, loss, total_loss, Percent') state_info.set_train_mode() correct = torch.tensor(0, dtype=torch.float32) total = torch.tensor(0, dtype=torch.float32) train_loss = 0 for it, [x, y] in enumerate(train_loader): x, y = to_var(x, FloatTensor), to_var(y, LongTensor) output = state_info.forward(x) # Train state_info.optimizer.zero_grad() loss = criterion(output, y) loss.backward() state_info.optimizer.step() # Log Print train_loss += loss.data.item() total += float(y.size(0)) _, predicted = torch.max(output.data, 1) correct += float(predicted.eq(y.data).cpu().sum()) if it % 10 == 0: utils.print_log('Train, {}, {}, {:.6f}, {:.4f}, {:.2f}' .format(epoch, it, loss.item(), train_loss, 100.*correct / total)) print('Train, {}, {}, {:.6f}, {:.4f}, {:.2f}' .format(epoch, it, loss.item(), train_loss, 100.*correct / total)) utils.print_log('') def test(state_info, test_loader, epoch): utils.print_log('Type, Epoch, Acc') state_info.set_test_mode() correct = torch.tensor(0, dtype=torch.float32) total = torch.tensor(0, dtype=torch.float32) for it, [x, y] in enumerate(test_loader): x, y = to_var(x, FloatTensor), to_var(y, LongTensor) output = state_info.forward(x) # Log Print total += float(y.size(0)) _, predicted = torch.max(output.data, 1) correct += float(predicted.eq(y.data).cpu().sum()) utils.print_log('Test, {}, {:.2f}'.format(epoch, 100.*correct / total)) print('Test, {}, {:.2f}'.format(epoch, 100.*correct / total)) utils.print_log('') return 100.*correct / total def dataset_selector(data): if data == 'mnist': return dataset.MNIST_loader(img_size=args.img_size) elif data == 'svhn': return dataset.SVHN_loader(img_size=32) elif data == "usps": return dataset.usps_loader(img_size=args.img_size) elif data == "mnistm": return dataset.MNIST_M_loader(img_size=args.img_size) elif data == "cifar10": return dataset.cifar10_loader(args) elif data == "CelebA": return dataset.CelebA_loader(image_size=args.img_size, batch_size=args.batch_size) def to_var(x, dtype): return Variable(x.type(dtype)) if __name__=='__main__': main()
d0dd8c0f79d16b37610b0f645641720c3a87dc5b
347c70d4851b568e03e83387f77ae81071ab739e
/fn_splunk_integration/tests/test_function_utils.py
0c9e09a2c07c9c3e0f49d16aed5e0ed0666a3c55
[ "MIT" ]
permissive
neetinkandhare/resilient-community-apps
59d276b5fb7a92872143ce2b94edd680738693ce
3ecdabe6bf2fc08f0f8e58cbe92553270d8da42f
refs/heads/master
2021-12-27T09:05:36.563404
2021-09-29T13:04:56
2021-09-29T13:04:56
159,804,866
1
0
MIT
2021-08-03T19:45:45
2018-11-30T10:07:32
Python
UTF-8
Python
false
false
1,628
py
# # Unit tests for fn_splunk_integration/components/function_utils.py # # 100% code coverage # # import unittest import sys sys.path.append("../fn_splunk_integration/util") sys.path.append("fn_splunk_integration/util") from function_utils import make_query_string from function_utils import make_item_dict from function_utils import ItemDataError def test_query_string(): print("Testing query string substitution....") input_string = "index = %param1% source=%param2% AND %param3%=%param4%" params = ["_internal", "*splunkd*", "clientip", "127.0.0.1"] query = make_query_string(input_string, params) assert query == "index = _internal source=*splunkd* AND clientip=127.0.0.1" def test_make_item_dict(): print("Testing make_item_dict") params = ["field1", "value1", "field2", "value2", "field3", "value3"] item_dict = make_item_dict(params) assert item_dict["field1"] == "value1" and item_dict["field2"] == "value2" and item_dict["field3"] == "value3" # Test wrong number of params try: make_item_dict(["p1","p2","p3"]) assert False except ItemDataError: assert True # Test null key try: item_dict = make_item_dict(["p1", "p2", None, "p4", "p5", "p6"]) assert item_dict["p1"] == "p2" and item_dict["p5"] == "p6" assert "p4" not in item_dict except ItemDataError: assert False # Test null value try: item_dict = make_item_dict(["p1", None]) assert not item_dict["p1"] except: assert False
d00dbd97b58fc1d1199f2fc36746e9223ddfeea0
39b0d9c6df77671f540c619aff170441f953202a
/default program/descriptor_method1.py
18d5b5dc9831d6210a3cfa6fd591f3a965cd7de1
[]
no_license
yeboahd24/Python201
e7d65333f343d9978efff6bf86ce0447d3a40d70
484e66a52d4e706b8478473347732e23998c93c5
refs/heads/main
2023-02-06T10:24:25.429718
2020-12-26T01:08:04
2020-12-26T01:08:04
306,487,550
2
0
null
null
null
null
UTF-8
Python
false
false
710
py
#!usr/bin/env/python3 class DescriptorClass(object): """All know that descriptor attributes should be in the class not the __init__ instance--> this is the instance of your class, so in this case test and test1 becomes our instance owner--> this the name of class of the instance, ClientClass is now our owner here """ def __get__(self, instance, owner): if instance is None: # don't forget to add this return f"{self.__class__.__name__}.{owner.__name__}" return f"value for {instance}" class ClientClass(object): descriptor = DescriptorClass() test = ClientClass.descriptor # calling ClientClass directly test1 = ClientClass().descriptor print(test) print(test1)
c5000324a37133b8e3e2bad62736b29664f711fd
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03659/s495769033.py
54ee8453e730f35341ffac0335267d937fc39396
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
224
py
import numpy as np n = int(input()) a = np.array(list(map(int, input().split()))) cumsum_a = a.cumsum() sum_a = cumsum_a[-1] ans = 2 * 10**9 for i in range(n-1): ans = min(ans, abs(sum_a - 2*cumsum_a[i])) print(ans)
7e3abe5ff2836f61260cff4e091e0e15a6e5aa06
0966fc5e479f7dd86683fd2d961e44bb4f71a614
/splatify/views.py
8b506aeb27b9322d1943be7e2675565ce5510105
[]
no_license
micnem/splatify2
112972616f6216598791df6b025c2de7be020281
a90328fbf79667ebe10a028a66c49334c840ae57
refs/heads/main
2023-02-10T11:20:48.570326
2021-01-06T14:14:08
2021-01-06T14:14:08
327,318,493
0
0
null
null
null
null
UTF-8
Python
false
false
891
py
from django.shortcuts import render from .spopulate import get_top_artists, create_playlist, match, main from .models import * def check_profile(profile): if not profile.populated: get_top_artists(profile) def homepage(request): return render(request, 'homepage.html') def room(request): check_profile(request.user.profile) users = User.objects.all() return render(request, 'room.html', {'users': users}) def show_top_artists(request): return render(request,'top_artists.html') def splat(request, user_id): user2 = User.objects.get(id=user_id) master_list = match([request.user, user2]) playlist_id = main(master_list, request.user.profile, user2) return render(request, 'result.html', {'playlist_id':playlist_id}) def play(request, playlist_id): return render(request, 'play.html', {'playlist_id':playlist_id})
87cb6e6e0b682d52f6eaaa096b0a13f7c53bb789
acb8e84e3b9c987fcab341f799f41d5a5ec4d587
/langs/8/udw.py
95de41ebfb832ef789c650110a4ac9b22d6e3fbf
[]
no_license
G4te-Keep3r/HowdyHackers
46bfad63eafe5ac515da363e1c75fa6f4b9bca32
fb6d391aaecb60ab5c4650d4ae2ddd599fd85db2
refs/heads/master
2020-08-01T12:08:10.782018
2016-11-13T20:45:50
2016-11-13T20:45:50
73,624,224
0
1
null
null
null
null
UTF-8
Python
false
false
486
py
import sys def printFunction(lineRemaining): if lineRemaining[0] == '"' and lineRemaining[-1] == '"': if len(lineRemaining) > 2: #data to print lineRemaining = lineRemaining[1:-1] print ' '.join(lineRemaining) else: print def main(fileName): with open(fileName) as f: for line in f: data = line.split() if data[0] == 'uDW': printFunction(data[1:]) else: print 'ERROR' return if __name__ == '__main__': main(sys.argv[1])
95de76dbf85e358fc7d4c5589e293bd48b8d7d27
b148cda05d07895b97f5dbc29d06999ffb4d1b33
/sonic-pcied/tests/test_DaemonPcied.py
2c3c953e7e483aaec37fc1251ee3d54cd23d1fbc
[ "Apache-2.0", "LicenseRef-scancode-generic-cla" ]
permissive
keboliu/sonic-platform-daemons
0fb6ce76902ec0b6942cd3c1356c7586dacb8d58
c7cbbb8db5b74d3eddcedd733000d5232006911e
refs/heads/master
2023-08-31T00:05:25.760285
2022-08-09T20:13:59
2022-08-09T20:13:59
139,558,345
0
1
NOASSERTION
2020-03-26T10:19:47
2018-07-03T09:15:09
Python
UTF-8
Python
false
false
8,620
py
import datetime import os import sys from imp import load_source # Replace with importlib once we no longer need to support Python 2 import pytest # TODO: Clean this up once we no longer need to support Python 2 if sys.version_info.major == 3: from unittest import mock else: import mock from .mock_platform import MockPcieUtil SYSLOG_IDENTIFIER = 'pcied_test' NOT_AVAILABLE = 'N/A' tests_path = os.path.dirname(os.path.abspath(__file__)) # Add mocked_libs path so that the file under test can load mocked modules from there mocked_libs_path = os.path.join(tests_path, "mocked_libs") sys.path.insert(0, mocked_libs_path) from sonic_py_common import daemon_base daemon_base.db_connect = mock.MagicMock() # Add path to the file under test so that we can load it modules_path = os.path.dirname(tests_path) scripts_path = os.path.join(modules_path, "scripts") sys.path.insert(0, modules_path) load_source('pcied', os.path.join(scripts_path, 'pcied')) import pcied pcie_no_aer_stats = \ """ {'correctable': {}, 'fatal': {}, 'non_fatal': {}} """ pcie_aer_stats_no_err = {'correctable': {'field1': '0', 'field2': '0'}, 'fatal': {'field3': '0', 'field4': '0'}, 'non_fatal': {'field5': '0', 'field6': '0'}} pcie_aer_stats_err = \ """ {'correctable': {'field1': '1', 'field2': '0'}, 'fatal': {'field3': '0', 'field4': '1'}, 'non_fatal': {'field5': '0', 'field6': '1'}} """ pcie_device_list = \ """ [{'bus': '00', 'dev': '01', 'fn': '0', 'id': '1f10', 'name': 'PCI A'}, {'bus': '00', 'dev': '02', 'fn': '0', 'id': '1f11', 'name': 'PCI B'}, {'bus': '00', 'dev': '03', 'fn': '0', 'id': '1f13', 'name': 'PCI C'}] """ pcie_check_result_no = [] pcie_check_result_pass = \ """ [{'bus': '00', 'dev': '01', 'fn': '0', 'id': '1f10', 'name': 'PCI A', 'result': 'Passed'}, {'bus': '00', 'dev': '02', 'fn': '0', 'id': '1f11', 'name': 'PCI B', 'result': 'Passed'}, {'bus': '00', 'dev': '03', 'fn': '0', 'id': '1f12', 'name': 'PCI C', 'result': 'Passed'}] """ pcie_check_result_fail = \ """ [{'bus': '00', 'dev': '01', 'fn': '0', 'id': '1f10', 'name': 'PCI A', 'result': 'Passed'}, {'bus': '00', 'dev': '02', 'fn': '0', 'id': '1f11', 'name': 'PCI B', 'result': 'Passed'}, {'bus': '00', 'dev': '03', 'fn': '0', 'id': '1f12', 'name': 'PCI C', 'result': 'Failed'}] """ class TestDaemonPcied(object): """ Test cases to cover functionality in DaemonPcied class """ @mock.patch('pcied.load_platform_pcieutil', mock.MagicMock()) def test_signal_handler(self): daemon_pcied = pcied.DaemonPcied(SYSLOG_IDENTIFIER) daemon_pcied.stop_event.set = mock.MagicMock() daemon_pcied.log_info = mock.MagicMock() daemon_pcied.log_warning = mock.MagicMock() # Test SIGHUP daemon_pcied.signal_handler(pcied.signal.SIGHUP, None) assert daemon_pcied.log_info.call_count == 1 daemon_pcied.log_info.assert_called_with("Caught signal 'SIGHUP' - ignoring...") assert daemon_pcied.log_warning.call_count == 0 assert daemon_pcied.stop_event.set.call_count == 0 assert pcied.exit_code == 0 # Reset daemon_pcied.log_info.reset_mock() daemon_pcied.log_warning.reset_mock() daemon_pcied.stop_event.set.reset_mock() # Test SIGINT test_signal = pcied.signal.SIGINT daemon_pcied.signal_handler(test_signal, None) assert daemon_pcied.log_info.call_count == 1 daemon_pcied.log_info.assert_called_with("Caught signal 'SIGINT' - exiting...") assert daemon_pcied.log_warning.call_count == 0 assert daemon_pcied.stop_event.set.call_count == 1 assert pcied.exit_code == (128 + test_signal) # Reset daemon_pcied.log_info.reset_mock() daemon_pcied.log_warning.reset_mock() daemon_pcied.stop_event.set.reset_mock() # Test SIGTERM test_signal = pcied.signal.SIGTERM daemon_pcied.signal_handler(test_signal, None) assert daemon_pcied.log_info.call_count == 1 daemon_pcied.log_info.assert_called_with("Caught signal 'SIGTERM' - exiting...") assert daemon_pcied.log_warning.call_count == 0 assert daemon_pcied.stop_event.set.call_count == 1 assert pcied.exit_code == (128 + test_signal) # Reset daemon_pcied.log_info.reset_mock() daemon_pcied.log_warning.reset_mock() daemon_pcied.stop_event.set.reset_mock() pcied.exit_code = 0 # Test an unhandled signal daemon_pcied.signal_handler(pcied.signal.SIGUSR1, None) assert daemon_pcied.log_warning.call_count == 1 daemon_pcied.log_warning.assert_called_with("Caught unhandled signal 'SIGUSR1' - ignoring...") assert daemon_pcied.log_info.call_count == 0 assert daemon_pcied.stop_event.set.call_count == 0 assert pcied.exit_code == 0 @mock.patch('pcied.load_platform_pcieutil', mock.MagicMock()) def test_run(self): daemon_pcied = pcied.DaemonPcied(SYSLOG_IDENTIFIER) daemon_pcied.check_pcie_devices = mock.MagicMock() daemon_pcied.run() assert daemon_pcied.check_pcie_devices.call_count == 1 @mock.patch('pcied.load_platform_pcieutil', mock.MagicMock()) def test_check_pcie_devices(self): daemon_pcied = pcied.DaemonPcied(SYSLOG_IDENTIFIER) daemon_pcied.update_pcie_devices_status_db = mock.MagicMock() daemon_pcied.check_n_update_pcie_aer_stats = mock.MagicMock() pcied.platform_pcieutil.get_pcie_check = mock.MagicMock() daemon_pcied.check_pcie_devices() assert daemon_pcied.update_pcie_devices_status_db.call_count == 1 assert daemon_pcied.check_n_update_pcie_aer_stats.call_count == 0 @mock.patch('pcied.load_platform_pcieutil', mock.MagicMock()) def test_update_pcie_devices_status_db(self): daemon_pcied = pcied.DaemonPcied(SYSLOG_IDENTIFIER) daemon_pcied.status_table = mock.MagicMock() daemon_pcied.log_info = mock.MagicMock() daemon_pcied.log_error = mock.MagicMock() # test for pass resultInfo daemon_pcied.update_pcie_devices_status_db(0) assert daemon_pcied.status_table.set.call_count == 1 assert daemon_pcied.log_info.call_count == 1 assert daemon_pcied.log_error.call_count == 0 daemon_pcied.status_table.set.reset_mock() daemon_pcied.log_info.reset_mock() # test for resultInfo with 1 device failed to detect daemon_pcied.update_pcie_devices_status_db(1) assert daemon_pcied.status_table.set.call_count == 1 assert daemon_pcied.log_info.call_count == 0 assert daemon_pcied.log_error.call_count == 1 @mock.patch('pcied.load_platform_pcieutil', mock.MagicMock()) @mock.patch('pcied.read_id_file') def test_check_n_update_pcie_aer_stats(self, mock_read): daemon_pcied = pcied.DaemonPcied(SYSLOG_IDENTIFIER) daemon_pcied.device_table = mock.MagicMock() daemon_pcied.update_aer_to_statedb = mock.MagicMock() pcied.platform_pcieutil.get_pcie_aer_stats = mock.MagicMock() mock_read.return_value = None daemon_pcied.check_n_update_pcie_aer_stats(0,1,0) assert daemon_pcied.update_aer_to_statedb.call_count == 0 assert daemon_pcied.device_table.set.call_count == 0 assert pcied.platform_pcieutil.get_pcie_aer_stats.call_count == 0 mock_read.return_value = '1714' daemon_pcied.check_n_update_pcie_aer_stats(0,1,0) assert daemon_pcied.update_aer_to_statedb.call_count == 1 assert daemon_pcied.device_table.set.call_count == 1 assert pcied.platform_pcieutil.get_pcie_aer_stats.call_count == 1 @mock.patch('pcied.load_platform_pcieutil', mock.MagicMock()) def test_update_aer_to_statedb(self): daemon_pcied = pcied.DaemonPcied(SYSLOG_IDENTIFIER) daemon_pcied.log_debug = mock.MagicMock() daemon_pcied.device_table = mock.MagicMock() daemon_pcied.device_name = mock.MagicMock() daemon_pcied.aer_stats = pcie_aer_stats_no_err """ mocked_expected_fvp = pcied.swsscommon.FieldValuePairs( [("correctable|field1", '0'), ("correctable|field2", '0'), ("fatal|field3", '0'), ("fatal|field4", '0'), ("non_fatal|field5", '0'), ("non_fatal|field6", '0'), ]) """ daemon_pcied.update_aer_to_statedb() assert daemon_pcied.log_debug.call_count == 0 assert daemon_pcied.device_table.set.call_count == 1 daemon_pcied.device_table.set.reset_mock()
38739ea4cae572570555cd1043b6acf10436f45e
3eb4d64a8bb0bc240a2ef189724f4d51b5275eac
/heltour/tournament/migrations/0099_alternate_priority_date_override.py
863952e8d18f8da8a170a0aae4967d562e598879
[ "MIT" ]
permissive
brucemubayiwa/heltour
c01cc88be7f86dce8246f619d7aa2da37e0e0ac2
fa4e9b06343acaf6a8a99337860e1ad433e68f6b
refs/heads/master
2021-01-23T19:59:04.099215
2017-09-06T03:34:31
2017-09-06T03:34:31
102,840,526
1
0
null
2017-09-08T08:53:30
2017-09-08T08:53:30
null
UTF-8
Python
false
false
482
py
# -*- coding: utf-8 -*- # Generated by Django 1.9.7 on 2016-09-19 01:15 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('tournament', '0098_auto_20160916_1934'), ] operations = [ migrations.AddField( model_name='alternate', name='priority_date_override', field=models.DateTimeField(blank=True, null=True), ), ]
c8e99972a246a077b466f45e66c23b688c79d040
ea373d1b4296d16eaa1355972cccd28eaa336871
/login-signup-Django/signup/views.py
1ea7905bc7574d9d41102a129e6dab3e08283977
[]
no_license
nazaninsbr/Web-Development
f1a03e3d26d79dda8a6f9978d443a62cc5b88b42
7821ec2596d1dff7c4f390e01ae7d90e3fdbf029
refs/heads/master
2021-05-02T16:05:09.508344
2018-04-27T18:20:01
2018-04-27T18:20:01
120,666,238
0
0
null
null
null
null
UTF-8
Python
false
false
2,656
py
from django.contrib.auth import login, authenticate # from django.http import HttpResponse, JsonResponse from django.contrib.auth.forms import UserCreationForm from django.shortcuts import render, redirect from django.contrib.auth.decorators import login_required from django.contrib.auth.models import User from signup.serializers import SignupSerializer import json from rest_framework.parsers import JSONParser from django.views.decorators.csrf import csrf_exempt from rest_framework.authtoken.models import Token from django.contrib.auth.hashers import make_password from django.http import HttpResponseRedirect, HttpResponse, JsonResponse from django.urls import reverse # @login_required # def home(request): # return render(request, 'signup/home.html') import logging logger = logging.getLogger(__name__) @csrf_exempt def signup(request): if request.method == 'GET': response_data = {} response_data['result'] = 'error' response_data['message'] = 'You need to post something' return HttpResponse(json.dumps(response_data), content_type="application/json") if request.method == 'POST': signupdata = JSONParser().parse(request) serializer = SignupSerializer(data = signupdata) if serializer.is_valid(): # serializer.save() jsonfile = serializer.data username = jsonfile["username"] password = jsonfile["password"] logger.info(username) logger.info(password) password = make_password(password, '1') user = User(username=username, password=password) user.save() new_token = Token.objects.create(user=user) new_token.save() request.session["SoCkey"]=new_token.key request.session.set_expiry(30000000) login(request, user) return JsonResponse({"key":new_token.key}) else: return JsonResponse(serializer.errors) # username = signupdata.cleaned_data.get('username') # raw_password = signupdata.cleaned_data.get('password1') # user = authenticate(username=username, password=raw_password) # form = Signup(request.POST) # if form.is_valid(): # form.save() # username = form.cleaned_data.get('username') # raw_password = form.cleaned_data.get('password1') # user = authenticate(username=username, password=raw_password) # login(request, user) # return redirect('home') # else: # form = SignUpForm() # return render(request, 'signup/signup.html', {'form': form})
34a1c0235615920c69d66c20f7774fba3f391aa2
eb9f655206c43c12b497c667ba56a0d358b6bc3a
/python/testData/quickFixes/PyPandasSeriesToListQuickFixTest/dataframeGetitem.py
ee17a810d951dd9ec0fdaef3088c7dab1cfb67d5
[ "Apache-2.0" ]
permissive
JetBrains/intellij-community
2ed226e200ecc17c037dcddd4a006de56cd43941
05dbd4575d01a213f3f4d69aa4968473f2536142
refs/heads/master
2023-09-03T17:06:37.560889
2023-09-03T11:51:00
2023-09-03T12:12:27
2,489,216
16,288
6,635
Apache-2.0
2023-09-12T07:41:58
2011-09-30T13:33:05
null
UTF-8
Python
false
false
351
py
import pandas as pd # DataFrame columns case df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) list(df[['a', 'b']].values) bb = ["a", "b", "c"] list(df[bb].values) # with errors list(df.<error descr="Name expected">[</error>'a'].values) <warning descr="Method Series.to_list() is recommended">list<caret>(df['a'].values)</warning>
f160cd861be4861d18ff058c4fe05ae1b02b5b5b
69e318f2b60175108bc74ee669bfe16287a71cb6
/plugins/modules/fortios_log_null_device_filter.py
298792656963599543d5265bb94c284a6f6c4b5c
[]
no_license
chillancezen/ansible-galaxy-fortios-collection
5268a5fd97fb4594772349b8d89cb818ec54b3bd
66a331cd4493d1b0f49798d5c2cd6ef5aeba84d3
refs/heads/master
2022-04-09T19:20:59.073193
2020-03-26T07:17:09
2020-03-26T07:17:09
250,185,374
0
0
null
2020-03-26T07:06:16
2020-03-26T07:06:16
null
UTF-8
Python
false
false
13,861
py
#!/usr/bin/python from __future__ import (absolute_import, division, print_function) # Copyright 2019 Fortinet, Inc. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <https://www.gnu.org/licenses/>. __metaclass__ = type ANSIBLE_METADATA = {'status': ['preview'], 'supported_by': 'community', 'metadata_version': '1.1'} DOCUMENTATION = ''' --- module: fortios_log_null_device_filter short_description: Filters for null device logging in Fortinet's FortiOS and FortiGate. description: - This module is able to configure a FortiGate or FortiOS (FOS) device by allowing the user to set and modify log_null_device feature and filter category. Examples include all parameters and values need to be adjusted to datasources before usage. Tested with FOS v6.0.5 version_added: "2.8" author: - Miguel Angel Munoz (@mamunozgonzalez) - Nicolas Thomas (@thomnico) notes: - Requires fortiosapi library developed by Fortinet - Run as a local_action in your playbook requirements: - fortiosapi>=0.9.8 options: host: description: - FortiOS or FortiGate IP address. type: str required: false username: description: - FortiOS or FortiGate username. type: str required: false password: description: - FortiOS or FortiGate password. type: str default: "" vdom: description: - Virtual domain, among those defined previously. A vdom is a virtual instance of the FortiGate that can be configured and used as a different unit. type: str default: root https: description: - Indicates if the requests towards FortiGate must use HTTPS protocol. type: bool default: true ssl_verify: description: - Ensures FortiGate certificate must be verified by a proper CA. type: bool default: true version_added: 2.9 log_null_device_filter: description: - Filters for null device logging. default: null type: dict suboptions: anomaly: description: - Enable/disable anomaly logging. type: str choices: - enable - disable dns: description: - Enable/disable detailed DNS event logging. type: str choices: - enable - disable filter: description: - Null-device log filter. type: str filter_type: description: - Include/exclude logs that match the filter. type: str choices: - include - exclude forward_traffic: description: - Enable/disable forward traffic logging. type: str choices: - enable - disable gtp: description: - Enable/disable GTP messages logging. type: str choices: - enable - disable local_traffic: description: - Enable/disable local in or out traffic logging. type: str choices: - enable - disable multicast_traffic: description: - Enable/disable multicast traffic logging. type: str choices: - enable - disable netscan_discovery: description: - Enable/disable netscan discovery event logging. type: str netscan_vulnerability: description: - Enable/disable netscan vulnerability event logging. type: str severity: description: - Lowest severity level to log. type: str choices: - emergency - alert - critical - error - warning - notification - information - debug sniffer_traffic: description: - Enable/disable sniffer traffic logging. type: str choices: - enable - disable ssh: description: - Enable/disable SSH logging. type: str choices: - enable - disable voip: description: - Enable/disable VoIP logging. type: str choices: - enable - disable ''' EXAMPLES = ''' - hosts: localhost vars: host: "192.168.122.40" username: "admin" password: "" vdom: "root" ssl_verify: "False" tasks: - name: Filters for null device logging. fortios_log_null_device_filter: host: "{{ host }}" username: "{{ username }}" password: "{{ password }}" vdom: "{{ vdom }}" https: "False" log_null_device_filter: anomaly: "enable" dns: "enable" filter: "<your_own_value>" filter_type: "include" forward_traffic: "enable" gtp: "enable" local_traffic: "enable" multicast_traffic: "enable" netscan_discovery: "<your_own_value>" netscan_vulnerability: "<your_own_value>" severity: "emergency" sniffer_traffic: "enable" ssh: "enable" voip: "enable" ''' RETURN = ''' build: description: Build number of the fortigate image returned: always type: str sample: '1547' http_method: description: Last method used to provision the content into FortiGate returned: always type: str sample: 'PUT' http_status: description: Last result given by FortiGate on last operation applied returned: always type: str sample: "200" mkey: description: Master key (id) used in the last call to FortiGate returned: success type: str sample: "id" name: description: Name of the table used to fulfill the request returned: always type: str sample: "urlfilter" path: description: Path of the table used to fulfill the request returned: always type: str sample: "webfilter" revision: description: Internal revision number returned: always type: str sample: "17.0.2.10658" serial: description: Serial number of the unit returned: always type: str sample: "FGVMEVYYQT3AB5352" status: description: Indication of the operation's result returned: always type: str sample: "success" vdom: description: Virtual domain used returned: always type: str sample: "root" version: description: Version of the FortiGate returned: always type: str sample: "v5.6.3" ''' from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.connection import Connection from ansible_collections.fortinet.fortios.plugins.module_utils.fortios.fortios import FortiOSHandler from ansible_collections.fortinet.fortios.plugins.module_utils.fortimanager.common import FAIL_SOCKET_MSG def login(data, fos): host = data['host'] username = data['username'] password = data['password'] ssl_verify = data['ssl_verify'] fos.debug('on') if 'https' in data and not data['https']: fos.https('off') else: fos.https('on') fos.login(host, username, password, verify=ssl_verify) def filter_log_null_device_filter_data(json): option_list = ['anomaly', 'dns', 'filter', 'filter_type', 'forward_traffic', 'gtp', 'local_traffic', 'multicast_traffic', 'netscan_discovery', 'netscan_vulnerability', 'severity', 'sniffer_traffic', 'ssh', 'voip'] dictionary = {} for attribute in option_list: if attribute in json and json[attribute] is not None: dictionary[attribute] = json[attribute] return dictionary def underscore_to_hyphen(data): if isinstance(data, list): for elem in data: elem = underscore_to_hyphen(elem) elif isinstance(data, dict): new_data = {} for k, v in data.items(): new_data[k.replace('_', '-')] = underscore_to_hyphen(v) data = new_data return data def log_null_device_filter(data, fos): vdom = data['vdom'] log_null_device_filter_data = data['log_null_device_filter'] filtered_data = underscore_to_hyphen(filter_log_null_device_filter_data(log_null_device_filter_data)) return fos.set('log.null-device', 'filter', data=filtered_data, vdom=vdom) def is_successful_status(status): return status['status'] == "success" or \ status['http_method'] == "DELETE" and status['http_status'] == 404 def fortios_log_null_device(data, fos): if data['log_null_device_filter']: resp = log_null_device_filter(data, fos) return not is_successful_status(resp), \ resp['status'] == "success", \ resp def main(): fields = { "host": {"required": False, "type": "str"}, "username": {"required": False, "type": "str"}, "password": {"required": False, "type": "str", "default": "", "no_log": True}, "vdom": {"required": False, "type": "str", "default": "root"}, "https": {"required": False, "type": "bool", "default": True}, "ssl_verify": {"required": False, "type": "bool", "default": True}, "log_null_device_filter": { "required": False, "type": "dict", "default": None, "options": { "anomaly": {"required": False, "type": "str", "choices": ["enable", "disable"]}, "dns": {"required": False, "type": "str", "choices": ["enable", "disable"]}, "filter": {"required": False, "type": "str"}, "filter_type": {"required": False, "type": "str", "choices": ["include", "exclude"]}, "forward_traffic": {"required": False, "type": "str", "choices": ["enable", "disable"]}, "gtp": {"required": False, "type": "str", "choices": ["enable", "disable"]}, "local_traffic": {"required": False, "type": "str", "choices": ["enable", "disable"]}, "multicast_traffic": {"required": False, "type": "str", "choices": ["enable", "disable"]}, "netscan_discovery": {"required": False, "type": "str"}, "netscan_vulnerability": {"required": False, "type": "str"}, "severity": {"required": False, "type": "str", "choices": ["emergency", "alert", "critical", "error", "warning", "notification", "information", "debug"]}, "sniffer_traffic": {"required": False, "type": "str", "choices": ["enable", "disable"]}, "ssh": {"required": False, "type": "str", "choices": ["enable", "disable"]}, "voip": {"required": False, "type": "str", "choices": ["enable", "disable"]} } } } module = AnsibleModule(argument_spec=fields, supports_check_mode=False) # legacy_mode refers to using fortiosapi instead of HTTPAPI legacy_mode = 'host' in module.params and module.params['host'] is not None and \ 'username' in module.params and module.params['username'] is not None and \ 'password' in module.params and module.params['password'] is not None if not legacy_mode: if module._socket_path: connection = Connection(module._socket_path) fos = FortiOSHandler(connection) is_error, has_changed, result = fortios_log_null_device(module.params, fos) else: module.fail_json(**FAIL_SOCKET_MSG) else: try: from fortiosapi import FortiOSAPI except ImportError: module.fail_json(msg="fortiosapi module is required") fos = FortiOSAPI() login(module.params, fos) is_error, has_changed, result = fortios_log_null_device(module.params, fos) fos.logout() if not is_error: module.exit_json(changed=has_changed, meta=result) else: module.fail_json(msg="Error in repo", meta=result) if __name__ == '__main__': main()
ca6b3166f393338dabec04bc58f53131b6d65b8a
177b66facda74108e693d0fe4e0be1cd8b3adc79
/cell/test data.py
f552320e7e0631afc676614ecd295e8330064807
[]
no_license
leizeling/my_learn
04c0266adc319f5679c6db17ad4681a448def5eb
3be0446d1a9e2d301d58f455261763231f1aa7d6
refs/heads/master
2020-03-19T04:12:32.196213
2018-06-07T14:51:39
2018-06-07T14:51:39
135,805,333
0
0
null
null
null
null
UTF-8
Python
false
false
3,938
py
# _*_ conding:utf-8 _*_ from __future__ import print_function import os import numpy as np from skimage.io import imsave, imread data_path = '/home/momoh/mabocombinedimgs22/' image_rows = 420 image_cols = 580 def create_test_data2(): train_data_path = os.path.join(data_path, 'test') images = os.listdir(train_data_path) #文件名列表 total = len(images) / 2 imgs = np.ndarray((total, image_rows, image_cols), dtype=np.uint8) #np.ndarray中参数表示的是维度,默认值为零 imgs_mask = np.ndarray((total, image_rows, image_cols), dtype=np.uint8) i = 0 print('-'*30) print('Creating training images...') print('-'*30) for image_name in images: if 'mask' in image_name: continue image_mask_name = image_name.split('.')[0] + '_mask.jpg' img = imread(os.path.join(train_data_path, image_name)) #(width,height,channel) img_mask = imread(os.path.join(train_data_path, image_mask_name)) img =img[:,:,1] #(width,height) img_mask=img_mask[:,:,1] img = np.array([img]) #(1,width,height) img_mask = np.array([img_mask]) imgs[i] = img #(i,1,width,height) imgs_mask[i] = img_mask if i % 100 == 0: print('Done: {0}/{1} images'.format(i, total)) i += 1 print(total) np.save('imgs_test.npy', imgs) np.save('imgs_mask_test.npy', imgs_mask) print('Saving to .npy files done.') def create_train_data(): train_data_path = os.path.join(data_path, 'train') images = os.listdir(train_data_path) total = len(images) / 2 imgs = np.ndarray((total, image_rows, image_cols), dtype=np.uint8) imgs_mask = np.ndarray((total, image_rows, image_cols), dtype=np.uint8) i = 0 print('-'*30) print('Creating training images...') print('-'*30) for image_name in images: if 'mask' in image_name: continue image_mask_name = image_name.split('.')[0] + '_mask.jpg' img = imread(os.path.join(train_data_path, image_name)) img_mask = imread(os.path.join(train_data_path, image_mask_name)) img =img[:,:,1] img_mask=img_mask[:,:,1] img = np.array([img]) img_mask = np.array([img_mask]) imgs[i] = img imgs_mask[i] = img_mask if i % 100 == 0: print('Done: {0}/{1} images'.format(i, total)) i += 1 print(total) np.save('imgs_train.npy', imgs) np.save('imgs_mask_train.npy', imgs_mask) print('Saving to .npy files done.') def load_train_data(): imgs_train = np.load('imgs_train.npy') imgs_mask_train = np.load('imgs_mask_train.npy') return imgs_train, imgs_mask_train def create_test_data(): train_data_path = os.path.join(data_path, 'test') images = os.listdir(train_data_path) total = len(images)/2 imgs = np.ndarray((total, image_rows, image_cols), dtype=np.uint8) imgs_id = np.ndarray((total, ), dtype=np.int32) i = 0 print('-'*30) print('Creating test images...') print('-'*30) for image_name in images: if 'mask' in image_name: continue img_id = int(image_name.split('.')[0])#image_name img = imread(os.path.join(train_data_path, image_name)) img =img[:,:,1] img = np.array([img]) imgs[i] = img imgs_id[i] = img_id if i % 100 == 0: print('Done: {0}/{1} images'.format(i, total)) i += 1 print('Loading done.') np.save('imgs_test.npy', imgs) np.save('imgs_id_test.npy', imgs_id) print('Saving to .npy files done.') def load_test_data(): imgs_test = np.load('imgs_test.npy') imgs_mask_test = np.load('imgs_mask_test.npy') imgs_id = np.load('imgs_id_test.npy') return imgs_test, imgs_id,imgs_mask_test if __name__ == '__main__': #create_train_data() create_test_data() create_test_data2()
c9b7f903cf66a083d05e34ebc1900c3906a73400
9c50f57a9cb32b44e86a0cdcbf61ead34754b085
/杂物间/PycharmProjects/面向对象基础/bc_08_案例.py
a4de3dd88e831cda6088324ea0cfb9c0c0d834f7
[]
no_license
a1403893559/rg201python
c3f115011981393c86a0150e5281096651712ad4
448f04c86e4c7fd30e3a2a4f9121b934ae1d49be
refs/heads/master
2020-03-15T23:32:17.723403
2018-03-18T12:59:43
2018-03-18T12:59:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
673
py
class Person: """人类""" def __init__(self, name, weight): # slef.属性 = 形参 self.name = name self.weight = weight def __str__(self): # __str__方法必须返回一个字符串 return "我的名字叫%s 体重 %.2f 公斤 " % (self.name, self.weight) def run(self): """跑步""" print("%s 爱跑步,跑步锻炼身体" % self.name) self.weight -= 0.5 def eat(self): """吃东西""" print("%s 是吃货,吃完这顿在减肥" % self.name) self.weight += 1 xiaoming = Person("小明", 75) xiaoming.run() xiaoming.eat() xiaoming.eat() print(xiaoming)
087dc9ae865acae60ac24c9dfbd921703d209bdc
6174de8df820463515c63425700eab7af643bb31
/src/test_emb.py
eda27ed664cdbaef38b2a7a846cf3cb434713eec
[]
no_license
danielzgsilva/CL-MOT
1cd9b5f2f06454dd7c35a3e2906ad2883ea83495
3b5b812788a34728d7b7484b10ae9434313380fe
refs/heads/master
2022-12-05T18:45:36.805047
2020-08-27T22:01:34
2020-08-27T22:01:34
272,636,268
6
2
null
null
null
null
UTF-8
Python
false
false
3,882
py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import _init_paths import argparse import torch import json import time import os import cv2 import math from sklearn import metrics from scipy import interpolate import numpy as np from torchvision.transforms import transforms as T import torch.nn.functional as F from models.model import create_model, load_model from datasets.dataset.jde import JointDataset, collate_fn from models.utils import _tranpose_and_gather_feat from utils.utils import xywh2xyxy, ap_per_class, bbox_iou from opts import opts from models.decode import mot_decode from utils.post_process import ctdet_post_process def test_emb( opt, batch_size=16, img_size=(1088, 608), print_interval=40, ): data_cfg = opt.data_cfg f = open(data_cfg) data_cfg_dict = json.load(f) f.close() nC = 1 test_paths = data_cfg_dict['test_emb'] dataset_root = data_cfg_dict['root'] if opt.gpus[0] >= 0: opt.device = torch.device('cuda') else: opt.device = torch.device('cpu') print('Creating model...') model = create_model(opt.arch, opt.heads, opt.head_conv, opt) model = load_model(model, opt.load_model) # model = torch.nn.DataParallel(model) model = model.to(opt.device) model.eval() # Get dataloader transforms = T.Compose([T.ToTensor()]) dataset = JointDataset(opt, dataset_root, test_paths, img_size, augment=False, transforms=transforms) dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=False, num_workers=8, drop_last=False) embedding, id_labels = [], [] print('Extracting pedestrain features...') for batch_i, batch in enumerate(dataloader): t = time.time() output = model(batch['img'].cuda())[-1] id_head = _tranpose_and_gather_feat(output['id'], batch['ind'].cuda()) id_head = id_head[batch['reg_mask'].cuda() > 0].contiguous() emb_scale = math.sqrt(2) * math.log(opt.nID - 1) id_head = emb_scale * F.normalize(id_head) id_target = batch['ids'].cuda()[batch['reg_mask'].cuda() > 0] for i in range(0, id_head.shape[0]): if len(id_head.shape) == 0: continue else: feat, label = id_head[i], id_target[i].long() if label != -1: embedding.append(feat) id_labels.append(label) if batch_i % print_interval == 0: print( 'Extracting {}/{}, # of instances {}, time {:.2f} sec.'.format(batch_i, len(dataloader), len(id_labels), time.time() - t)) print('Computing pairwise similairity...') if len(embedding) < 1: return None embedding = torch.stack(embedding, dim=0).cuda() id_labels = torch.LongTensor(id_labels) n = len(id_labels) print(n, len(embedding)) assert len(embedding) == n embedding = F.normalize(embedding, dim=1) pdist = torch.mm(embedding, embedding.t()).cpu().numpy() gt = id_labels.expand(n, n).eq(id_labels.expand(n, n).t()).numpy() up_triangle = np.where(np.triu(pdist) - np.eye(n) * pdist != 0) pdist = pdist[up_triangle] gt = gt[up_triangle] far_levels = [1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1] far, tar, threshold = metrics.roc_curve(gt, pdist) interp = interpolate.interp1d(far, tar) tar_at_far = [interp(x) for x in far_levels] for f, fa in enumerate(far_levels): print('TPR@FAR={:.7f}: {:.4f}'.format(fa, tar_at_far[f])) return tar_at_far if __name__ == '__main__': os.environ['CUDA_VISIBLE_DEVICES'] = '1' opt = opts().init() with torch.no_grad(): map = test_emb(opt, batch_size=4)
63745902cac53664d3f9579ce008dd6fc0d34866
1bb42bac177fb4e979faa441363c27cb636a43aa
/optimization/trainer_test.py
3c9f7d0c623a496f1af9e0bdc4328d5c49ef83d1
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
google-research/federated
a6040e80fa0fbf533e0d665c66a9bc549d208b3d
329e60fa56b87f691303638ceb9dfa1fc5083953
refs/heads/master
2023-08-28T13:10:10.885505
2023-08-22T23:06:08
2023-08-22T23:06:40
295,559,343
595
187
Apache-2.0
2022-05-12T08:42:53
2020-09-14T23:09:07
Python
UTF-8
Python
false
false
1,750
py
# Copyright 2022, Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile from absl.testing import absltest from absl.testing import flagsaver from optimization import trainer class TrainerTest(absltest.TestCase): @flagsaver.flagsaver( root_output_dir=tempfile.mkdtemp(), experiment_name='test_experiment', task='emnist_character', clients_per_round=1, total_rounds=2, client_optimizer='sgd', client_learning_rate=0.01, server_optimizer='sgd', server_learning_rate=1.0, use_synthetic_data=True) def test_executes_with_constant_client_lr(self): trainer.main([]) @flagsaver.flagsaver( root_output_dir=tempfile.mkdtemp(), experiment_name='test_experiment', task='emnist_character', clients_per_round=1, total_rounds=2, client_optimizer='sgd', client_learning_rate=0.01, client_lr_schedule='exp_decay', client_lr_decay_steps=1, client_lr_decay_rate=0.1, client_lr_staircase=True, server_optimizer='sgd', server_learning_rate=1.0, use_synthetic_data=True) def test_executes_with_client_lr_schedule(self): trainer.main([]) if __name__ == '__main__': absltest.main()
383b5d0f0074a747db4569fd076744c2879966a0
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/394/usersdata/313/74777/submittedfiles/ex11.py
eaab70ccdbf4c3cc2b52bc2a69482ed98b67762c
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
93
py
# -*- coding: utf-8 -*- n1=12 dias n2=6 meses n3=1980 ano n4=20 dias n5=12 meses n6=1989 ano
dd79dec37c06033bdff6d7411c8f6c3d09d8f37d
ffef4697f09fb321a04f2b3aad98b688f4669fb5
/tests/mindspore_test_framework/utils/block_util.py
9d75ae0888ac00f966c55f42d14cc03bdb2d3a8c
[ "Apache-2.0", "AGPL-3.0-only", "BSD-3-Clause-Open-MPI", "MPL-1.1", "LicenseRef-scancode-proprietary-license", "LicenseRef-scancode-unknown-license-reference", "Unlicense", "MPL-2.0", "LGPL-2.1-only", "GPL-2.0-only", "Libpng", "BSL-1.0", "MIT", "MPL-2.0-no-copyleft-exception", "IJG", "Zlib", "LicenseRef-scancode-public-domain", "BSD-2-Clause", "MPL-1.0", "BSD-3-Clause" ]
permissive
Ewenwan/mindspore
02a0f1fd660fa5fec819024f6feffe300af38c9c
4575fc3ae8e967252d679542719b66e49eaee42b
refs/heads/master
2021-05-19T03:38:27.923178
2020-03-31T05:49:10
2020-03-31T05:49:10
251,512,047
1
0
Apache-2.0
2020-03-31T05:48:21
2020-03-31T05:48:20
null
UTF-8
Python
false
false
13,610
py
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Utils for Cell related computation.""" # pylint: disable=missing-docstring import numpy as np from mindspore.common.api import _executor, ms_function from mindspore.common.tensor import Tensor from mindspore import nn, context from mindspore.ops.composite import GradOperation from mindspore.ops import functional as F from mindspore.ops import operations as P from mindspore import ParameterTuple from . import keyword def get_uniform_with_shape(shape): np.random.seed(1) return np.random.uniform(-0.1, 0.1, size=shape).astype(np.float32) def set_block_param_with_rand(net, rand_func=None): if not isinstance(net, nn.Cell) or rand_func is None: return for param in net.trainable_params(): param.default_input = Tensor(rand_func(param.default_input.asnumpy().shape)) def compile_block(net, *inputs, rand_func=None, training=True): set_block_training(net, training) set_block_param_with_rand(net, rand_func) return _executor.compile(net, *inputs) def run_block(net, *inputs, rand_func=None, training=True): set_block_training(net, training) set_block_param_with_rand(net, rand_func) if context.get_context("mode") == context.PYNATIVE_MODE: def func_pynative(*inputs): @ms_function def _func_pynative(*inputs): return net(*inputs) return _func_pynative(*inputs) return func_pynative(*inputs) return net(*inputs) class IthOutputCell(nn.Cell): def __init__(self, network, output_index): if isinstance(network, nn.Cell): super(IthOutputCell, self).__init__(auto_prefix=False) else: super(IthOutputCell, self).__init__() self.network = network self.output_index = output_index def construct(self, *inputs): raise NotImplementedError def construct1(self, x1): predict = self.network(x1)[self.output_index] return predict def construct2(self, x1, x2): predict = self.network(x1, x2)[self.output_index] return predict def construct3(self, x1, x2, x3): predict = self.network(x1, x2, x3)[self.output_index] return predict def construct4(self, x1, x2, x3, x4): predict = self.network(x1, x2, x3, x4)[self.output_index] return predict def construct5(self, x1, x2, x3, x4, x5): predict = self.network(x1, x2, x3, x4, x5)[self.output_index] return predict def get_output_cell(network, num_input, output_index, training=True): net = IthOutputCell(network, output_index) f = getattr(net, 'construct%d' % num_input) setattr(net, "construct", f) set_block_training(net, training) return net class OutputReduceSumCell(nn.Cell): def __init__(self, network, output_num): super(OutputReduceSumCell, self).__init__() self.output_num = output_num self.network = network self.reduce_sum = P.ReduceSum() def construct(self, *inputs): if self.output_num == 1: return self.reduce_sum(self.network(*inputs), None) ret = F.make_tuple() for index in range(self.output_num): predict = self.network(*inputs)[index] predict_reduce = self.reduce_sum(predict, None) ret = ret + F.make_tuple(predict_reduce) return ret def get_output_reduce_cell(network, output_num, training=True): net = OutputReduceSumCell(network, output_num) set_block_training(net, training) return net class InputOpNet(nn.Cell): def __init__(self, op, c1=None, c2=None, c3=None, c4=None): super(InputOpNet, self).__init__() self.op = op self.c1 = c1 self.c2 = c2 self.c3 = c3 self.c4 = c4 def construct(self, *inputs): raise NotImplementedError def construct0_c0_fake(self, data): x = self.op() + data return x def construct0_c1_fake(self, data): x = self.op(self.c1) + data return x def construct0_c2_fake(self, data): x = self.op(self.c1, self.c2) + data return x def construct0_c3_fake(self, data): x = self.op(self.c1, self.c2, self.c3) + data return x def construct0_c0(self): x = self.op() return x def construct0_c1(self): x = self.op(self.c1) return x def construct0_c2(self): x = self.op(self.c1, self.c2) return x def construct1_c0(self, x1): x = self.op(x1) return x def construct1_c1(self, x1): x = self.op(x1, self.c1) return x def construct1_c2(self, x1): x = self.op(x1, self.c1, self.c2) return x def construct1_c3(self, x1): x = self.op(x1, self.c1, self.c2, self.c3) return x def construct1_c4(self, x1): x = self.op(x1, self.c1, self.c2, self.c3, self.c4) return x def constructc1_1(self, x1): x = self.op(self.c1, x1) return x def construct2_c0(self, x1, x2): x = self.op(x1, x2) return x def construct2_c1(self, x1, x2): x = self.op(x1, x2, self.c1) return x def construct2_c3(self, x1, x2): x = self.op(x1, x2, self.c1, self.c2, self.c3) return x def construct3_c0(self, x1, x2, x3): x = self.op(x1, x2, x3) return x def construct3_c1(self, x1, x2, x3): x = self.op(x1, x2, x3, self.c1) return x def construct4_c0(self, x1, x2, x3, x4): x = self.op(x1, x2, x3, x4) return x def construct4_c1(self, x1, x2, x3, x4): x = self.op(x1, x2, x3, x4, self.c1) return x def construct4_c4(self, x1, x2, x3, x4): x = self.op(x1, x2, x3, x4, self.c1, self.c2, self.c3, self.c4) return x def construct5_c0(self, x1, x2, x3, x4, x5): x = self.op(x1, x2, x3, x4, x5) return x def construct6_c0(self, x1, x2, x3, x4, x5, x6): x = self.op(x1, x2, x3, x4, x5, x6) return x def construct5_c1(self, x1, x2, x3, x4, x5): x = self.op(x1, x2, x3, x4, x5, self.c1) return x def gen_net(op, input_num, training=True, desc_const=(), const_first=False, add_fake_input=False): if isinstance(op, nn.Cell): return op net = InputOpNet(op, *desc_const) if const_first: fn_name = 'constructc%d_%d' % (len(desc_const), input_num) else: fn_name = 'construct%d_c%d' % (input_num, len(desc_const)) if add_fake_input: fn_name += '_fake' f = getattr(net, fn_name) setattr(net, "construct", f) set_block_training(net, training) return net class OperationBackward(nn.Cell): def __init__(self, network, grad_op, sens): if isinstance(network, nn.Cell): super(OperationBackward, self).__init__(auto_prefix=False) else: super(OperationBackward, self).__init__() self.network = network self.grad = grad_op self.sens = sens def construct(self, *inputs): return self.grad(self.network)(*inputs, self.sens) class OperationBackwardWithNoSens(nn.Cell): def __init__(self, network, grad_op): if isinstance(network, nn.Cell): super(OperationBackwardWithNoSens, self).__init__(auto_prefix=False) else: super(OperationBackwardWithNoSens, self).__init__() self.network = network self.grad = grad_op def construct(self, *inputs): return self.grad(self.network)(*inputs) class NNBackward(nn.Cell): def __init__(self, network, grad_op, sens): if isinstance(network, nn.Cell): super(NNBackward, self).__init__(auto_prefix=False) else: super(NNBackward, self).__init__() self.network = network self.grad = grad_op self.params = ParameterTuple(network.trainable_params()) self.sens = sens def construct(self, *inputs): return self.grad(self.network, self.params)(*inputs, self.sens) class NNBackwardWithNoSens(nn.Cell): def __init__(self, network, grad_op): if isinstance(network, nn.Cell): super(NNBackwardWithNoSens, self).__init__(auto_prefix=False) else: super(NNBackwardWithNoSens, self).__init__() self.network = network self.grad = grad_op self.params = ParameterTuple(network.trainable_params()) def construct(self, *inputs): return self.grad(self.network, self.params)(*inputs) def gen_grad_net(net, grad_op, input_num, sens=None, training=True, desc_const=(), const_first=False, add_fake_input=False): if not isinstance(net, nn.Cell): net = gen_net(net, input_num, desc_const=desc_const, const_first=const_first, add_fake_input=add_fake_input) if grad_op.get_by_list: if grad_op.sens_param: net = NNBackward(net, grad_op, sens) else: net = NNBackwardWithNoSens(net, grad_op) else: if grad_op.sens_param: net = OperationBackward(net, grad_op, sens) else: net = OperationBackwardWithNoSens(net, grad_op) set_block_training(net, training) return net def set_block_training(net, training=True): if isinstance(net, nn.Cell): net.set_train(training) def set_block_phase(net, phase='train'): if isinstance(net, nn.Cell): net.phase = phase def create_funcs(verification_set, block_generator, block_runner, grad_op=None, default_rand_func=None): def create_func(block, num_outputs, rand_func, desc_const, const_first, add_fake_input, split_outputs): def function(*inputs): # gradient if grad_op: if num_outputs == 0: grad_op_ = GradOperation('grad', get_all=grad_op.get_all, get_by_list=grad_op.get_by_list, sens_param=False) b = block_generator(block, grad_op_, len(inputs), desc_const=desc_const, const_first=const_first, add_fake_input=add_fake_input) return block_runner(b, *inputs, rand_func=rand_func) if num_outputs == 1: b = block_generator(block, grad_op, len(inputs) - 1, inputs[-1], desc_const=desc_const, const_first=const_first, add_fake_input=add_fake_input) return block_runner(b, *(inputs[:-1]), rand_func=rand_func) if split_outputs: block_inputs = inputs[0:len(inputs) - num_outputs] sens_inputs = inputs[len(inputs) - num_outputs:] ret = [] for i in range(num_outputs): bi_inputs = list(block_inputs) bi = get_output_cell(block, len(block_inputs), i) bi = block_generator(bi, grad_op, len(bi_inputs), sens_inputs[i], desc_const=desc_const, const_first=const_first, add_fake_input=add_fake_input) grads_i = block_runner(bi, *bi_inputs, rand_func=rand_func) if isinstance(grads_i, tuple): ret.extend(grads_i) else: ret.append(grads_i) return ret block_inputs = inputs[0:len(inputs) - num_outputs] sens_inputs = tuple(inputs[len(inputs) - num_outputs:]) b = block_generator(block, grad_op, len(block_inputs), sens_inputs, desc_const=desc_const, const_first=const_first, add_fake_input=add_fake_input) return block_runner(b, *block_inputs, rand_func=rand_func) # forward inputs_num = len(inputs) if add_fake_input and inputs_num == 1: # input is faked inputs_num = 0 b = block_generator(block, inputs_num, desc_const=desc_const, const_first=const_first, add_fake_input=add_fake_input) return block_runner(b, *inputs, rand_func=rand_func) return function bc_configs = verification_set[keyword.function] for config in bc_configs: block = config[keyword.block] rand_func = config.get(keyword.init_param_with, default_rand_func) num_outputs = config.get(keyword.num_outputs, 0) desc_const = config.get(keyword.desc_const, []) const_first = config.get(keyword.const_first, False) add_fake_input = config.get(keyword.add_fake_input, False) split_outputs = config.get(keyword.split_outputs, True) config[keyword.block] = create_func(block, num_outputs, rand_func, desc_const, const_first, add_fake_input, split_outputs) return bc_configs
2747983057867ca48f64796098f4a6e65983e0aa
d806dd4a6791382813d2136283a602207fb4b43c
/sirius/blueprints/api/remote_service/tambov/app.py
5efe34267189b393a92b6edd77d8330405506b2e
[]
no_license
MarsStirner/sirius
5bbf2a03dafb7248db481e13aff63ff989fabbc2
8839460726cca080ca8549bacd3a498e519c8f96
refs/heads/master
2021-03-24T12:09:14.673193
2017-06-06T16:28:53
2017-06-06T16:28:53
96,042,947
0
0
null
null
null
null
UTF-8
Python
false
false
216
py
#! coding:utf-8 """ @author: BARS Group @date: 23.09.2016 """ from .config import MODULE_NAME from flask import Blueprint module = Blueprint(MODULE_NAME, __name__, url_prefix='/tambov') # from .passive import *
bdce4da9f34c04c3473350ce8923ddf0eaa42313
b8d9bba87ffb1c6945fb1c9268a986587e672785
/Madu_Ionascu/temp_reed.py
10a0e03ca0530ba48ba09f9e47489789fb1c408c
[]
no_license
patilanup246/Projects
4f510f5965a2b5c1ca72dd94e70f53e14c7dac59
b41aaa052a9f211065c184b7a0e167c089aefbc5
refs/heads/master
2021-02-28T00:14:01.330374
2018-09-01T12:26:29
2018-09-01T12:26:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
925
py
''' Created on Jul 4, 2018 @author: talib ''' import xmltodict, requests, json all_urls = [] urls = [ 'https://www.reed.co.uk/sitemaps/livejobs/sitemap_livejobs_0000.xml', 'https://www.reed.co.uk/sitemaps/livejobs/sitemap_livejobs_0001.xml', 'https://www.reed.co.uk/sitemaps/livejobs/sitemap_livejobs_0002.xml', 'https://www.reed.co.uk/sitemaps/livejobs/sitemap_livejobs_0003.xml', 'https://www.reed.co.uk/sitemaps/livejobs/sitemap_livejobs_0004.xml', 'https://www.reed.co.uk/sitemaps/livejobs/sitemap_livejobs_0005.xml', 'https://www.reed.co.uk/sitemaps/livejobs/sitemap_livejobs_0006.xml' ] x = xmltodict.parse(requests.get('https://www.reed.co.uk/sitemaps/livejobs/sitemap_livejobs_index.xml').text) last_mod = '' for m in reversed(x['sitemapindex']['sitemap']): print (m['loc']) last_mod = m['lastmod'].split('T')[0] #https://www.totaljobs.com/jobs-sitemaps/01.xml
6e1af1e92961bc6cf4364d8727c6e9e240433d9a
85a9ffeccb64f6159adbd164ff98edf4ac315e33
/pysnmp/DLINK-3100-MNGINF-MIB.py
9ae0c56579fbb5e55d9b95037bfb35f2681f9fa8
[ "Apache-2.0" ]
permissive
agustinhenze/mibs.snmplabs.com
5d7d5d4da84424c5f5a1ed2752f5043ae00019fb
1fc5c07860542b89212f4c8ab807057d9a9206c7
refs/heads/master
2020-12-26T12:41:41.132395
2019-08-16T15:51:41
2019-08-16T15:53:57
237,512,469
0
0
Apache-2.0
2020-01-31T20:41:36
2020-01-31T20:41:35
null
UTF-8
Python
false
false
9,474
py
# # PySNMP MIB module DLINK-3100-MNGINF-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/DLINK-3100-MNGINF-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 18:33:45 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, Integer, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "OctetString", "Integer", "ObjectIdentifier") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueSizeConstraint, SingleValueConstraint, ConstraintsUnion, ValueRangeConstraint, ConstraintsIntersection = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueSizeConstraint", "SingleValueConstraint", "ConstraintsUnion", "ValueRangeConstraint", "ConstraintsIntersection") rnd, = mibBuilder.importSymbols("DLINK-3100-MIB", "rnd") InetAddressType, InetAddress = mibBuilder.importSymbols("INET-ADDRESS-MIB", "InetAddressType", "InetAddress") NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "NotificationGroup", "ModuleCompliance") iso, ModuleIdentity, Gauge32, ObjectIdentity, MibScalar, MibTable, MibTableRow, MibTableColumn, Unsigned32, Bits, IpAddress, TimeTicks, Counter32, Counter64, MibIdentifier, Integer32, NotificationType = mibBuilder.importSymbols("SNMPv2-SMI", "iso", "ModuleIdentity", "Gauge32", "ObjectIdentity", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "Unsigned32", "Bits", "IpAddress", "TimeTicks", "Counter32", "Counter64", "MibIdentifier", "Integer32", "NotificationType") TruthValue, TextualConvention, DisplayString, RowStatus = mibBuilder.importSymbols("SNMPv2-TC", "TruthValue", "TextualConvention", "DisplayString", "RowStatus") rlMngInf = ModuleIdentity((1, 3, 6, 1, 4, 1, 171, 10, 94, 89, 89, 89)) rlMngInf.setRevisions(('2003-09-21 00:00',)) if mibBuilder.loadTexts: rlMngInf.setLastUpdated('200309210000Z') if mibBuilder.loadTexts: rlMngInf.setOrganization('Dlink, Inc.') class RlMngInfServiceType(TextualConvention, Integer32): status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(0, 1, 2, 3, 4, 5, 6)) namedValues = NamedValues(("dontCare", 0), ("telnet", 1), ("snmp", 2), ("http", 3), ("https", 4), ("ssh", 5), ("icmp", 6)) class RlMngInfActionType(TextualConvention, Integer32): status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(0, 1)) namedValues = NamedValues(("permit", 0), ("deny", 1)) rlMngInfMibVersion = MibScalar((1, 3, 6, 1, 4, 1, 171, 10, 94, 89, 89, 89, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: rlMngInfMibVersion.setStatus('current') rlMngInfEnable = MibScalar((1, 3, 6, 1, 4, 1, 171, 10, 94, 89, 89, 89, 2), TruthValue()).setMaxAccess("readwrite") if mibBuilder.loadTexts: rlMngInfEnable.setStatus('current') rlMngInfActiveListName = MibScalar((1, 3, 6, 1, 4, 1, 171, 10, 94, 89, 89, 89, 3), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 32))).setMaxAccess("readwrite") if mibBuilder.loadTexts: rlMngInfActiveListName.setStatus('current') rlMngInfListTable = MibTable((1, 3, 6, 1, 4, 1, 171, 10, 94, 89, 89, 89, 4), ) if mibBuilder.loadTexts: rlMngInfListTable.setStatus('current') rlMngInfListEntry = MibTableRow((1, 3, 6, 1, 4, 1, 171, 10, 94, 89, 89, 89, 4, 1), ).setIndexNames((0, "DLINK-3100-MNGINF-MIB", "rlMngInfListName"), (0, "DLINK-3100-MNGINF-MIB", "rlMngInfListPriority")) if mibBuilder.loadTexts: rlMngInfListEntry.setStatus('current') rlMngInfListName = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 10, 94, 89, 89, 89, 4, 1, 1), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 32))).setMaxAccess("readonly") if mibBuilder.loadTexts: rlMngInfListName.setStatus('current') rlMngInfListPriority = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 10, 94, 89, 89, 89, 4, 1, 2), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535))).setMaxAccess("readonly") if mibBuilder.loadTexts: rlMngInfListPriority.setStatus('current') rlMngInfListIfIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 10, 94, 89, 89, 89, 4, 1, 3), Unsigned32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: rlMngInfListIfIndex.setStatus('current') rlMngInfListIpAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 10, 94, 89, 89, 89, 4, 1, 4), IpAddress()).setMaxAccess("readwrite") if mibBuilder.loadTexts: rlMngInfListIpAddr.setStatus('current') rlMngInfListIpNetMask = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 10, 94, 89, 89, 89, 4, 1, 5), IpAddress()).setMaxAccess("readwrite") if mibBuilder.loadTexts: rlMngInfListIpNetMask.setStatus('current') rlMngInfListService = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 10, 94, 89, 89, 89, 4, 1, 6), RlMngInfServiceType()).setMaxAccess("readwrite") if mibBuilder.loadTexts: rlMngInfListService.setStatus('current') rlMngInfListAction = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 10, 94, 89, 89, 89, 4, 1, 7), RlMngInfActionType()).setMaxAccess("readwrite") if mibBuilder.loadTexts: rlMngInfListAction.setStatus('current') rlMngInfListRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 10, 94, 89, 89, 89, 4, 1, 8), RowStatus()).setMaxAccess("readwrite") if mibBuilder.loadTexts: rlMngInfListRowStatus.setStatus('current') rlMngInfAuditingEnable = MibScalar((1, 3, 6, 1, 4, 1, 171, 10, 94, 89, 89, 89, 5), TruthValue().clone('true')).setMaxAccess("readwrite") if mibBuilder.loadTexts: rlMngInfAuditingEnable.setStatus('current') rlMngInfListInetTable = MibTable((1, 3, 6, 1, 4, 1, 171, 10, 94, 89, 89, 89, 6), ) if mibBuilder.loadTexts: rlMngInfListInetTable.setStatus('current') rlMngInfListInetEntry = MibTableRow((1, 3, 6, 1, 4, 1, 171, 10, 94, 89, 89, 89, 6, 1), ).setIndexNames((0, "DLINK-3100-MNGINF-MIB", "rlMngInfListInetName"), (0, "DLINK-3100-MNGINF-MIB", "rlMngInfListInetPriority")) if mibBuilder.loadTexts: rlMngInfListInetEntry.setStatus('current') rlMngInfListInetName = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 10, 94, 89, 89, 89, 6, 1, 1), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 32))).setMaxAccess("readonly") if mibBuilder.loadTexts: rlMngInfListInetName.setStatus('current') rlMngInfListInetPriority = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 10, 94, 89, 89, 89, 6, 1, 2), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535))).setMaxAccess("readonly") if mibBuilder.loadTexts: rlMngInfListInetPriority.setStatus('current') rlMngInfListInetIfIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 10, 94, 89, 89, 89, 6, 1, 3), Unsigned32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: rlMngInfListInetIfIndex.setStatus('current') rlMngInfListInetIpAddrType = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 10, 94, 89, 89, 89, 6, 1, 4), InetAddressType()).setMaxAccess("readwrite") if mibBuilder.loadTexts: rlMngInfListInetIpAddrType.setStatus('current') rlMngInfListInetIpAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 10, 94, 89, 89, 89, 6, 1, 5), InetAddress()).setMaxAccess("readwrite") if mibBuilder.loadTexts: rlMngInfListInetIpAddr.setStatus('current') rlMngInfListInetIpNetMask = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 10, 94, 89, 89, 89, 6, 1, 6), IpAddress()).setMaxAccess("readwrite") if mibBuilder.loadTexts: rlMngInfListInetIpNetMask.setStatus('current') rlMngInfListInetService = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 10, 94, 89, 89, 89, 6, 1, 7), RlMngInfServiceType()).setMaxAccess("readwrite") if mibBuilder.loadTexts: rlMngInfListInetService.setStatus('current') rlMngInfListInetAction = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 10, 94, 89, 89, 89, 6, 1, 8), RlMngInfActionType()).setMaxAccess("readwrite") if mibBuilder.loadTexts: rlMngInfListInetAction.setStatus('current') rlMngInfListInetRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 10, 94, 89, 89, 89, 6, 1, 9), RowStatus()).setMaxAccess("readwrite") if mibBuilder.loadTexts: rlMngInfListInetRowStatus.setStatus('current') rlMngInfListInetIPv6PrefixLength = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 10, 94, 89, 89, 89, 6, 1, 10), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 128)).clone(128)).setMaxAccess("readwrite") if mibBuilder.loadTexts: rlMngInfListInetIPv6PrefixLength.setStatus('current') mibBuilder.exportSymbols("DLINK-3100-MNGINF-MIB", RlMngInfActionType=RlMngInfActionType, rlMngInfListIpNetMask=rlMngInfListIpNetMask, rlMngInfListIfIndex=rlMngInfListIfIndex, rlMngInfListInetIpNetMask=rlMngInfListInetIpNetMask, rlMngInfListInetRowStatus=rlMngInfListInetRowStatus, rlMngInfListInetName=rlMngInfListInetName, RlMngInfServiceType=RlMngInfServiceType, rlMngInfActiveListName=rlMngInfActiveListName, rlMngInfListInetService=rlMngInfListInetService, rlMngInfListIpAddr=rlMngInfListIpAddr, rlMngInfListPriority=rlMngInfListPriority, rlMngInfListService=rlMngInfListService, rlMngInfListEntry=rlMngInfListEntry, rlMngInfListInetEntry=rlMngInfListInetEntry, rlMngInfListInetIpAddrType=rlMngInfListInetIpAddrType, rlMngInfEnable=rlMngInfEnable, rlMngInfListRowStatus=rlMngInfListRowStatus, rlMngInfListInetIPv6PrefixLength=rlMngInfListInetIPv6PrefixLength, rlMngInfListInetIfIndex=rlMngInfListInetIfIndex, rlMngInfListName=rlMngInfListName, rlMngInfListInetTable=rlMngInfListInetTable, PYSNMP_MODULE_ID=rlMngInf, rlMngInfMibVersion=rlMngInfMibVersion, rlMngInfListAction=rlMngInfListAction, rlMngInfListInetAction=rlMngInfListInetAction, rlMngInfAuditingEnable=rlMngInfAuditingEnable, rlMngInfListInetPriority=rlMngInfListInetPriority, rlMngInfListInetIpAddr=rlMngInfListInetIpAddr, rlMngInf=rlMngInf, rlMngInfListTable=rlMngInfListTable)
ae4734272922a8d41554f5570d5833d29d7740c0
0809ea2739d901b095d896e01baa9672f3138825
/beerCBVsproject3/testApp/migrations/0001_initial.py
72344f678fe4183641576195edd65c14aa3c7c7d
[]
no_license
Gagangithub1988/djangoprojects
dd001f2184e78be2fb269dbfdc8e3be1dd71ce43
ea236f0e4172fbf0f71a99aed05ed7c7b38018e2
refs/heads/master
2022-11-15T23:46:46.134247
2020-07-15T06:37:51
2020-07-15T06:37:51
273,479,403
0
0
null
null
null
null
UTF-8
Python
false
false
656
py
# Generated by Django 3.0.5 on 2020-04-24 18:54 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Beer', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100)), ('taste', models.CharField(max_length=100)), ('color', models.CharField(max_length=100)), ('price', models.IntegerField()), ], ), ]
46046df20b6051e55e61120498642b3a02c738e9
c071eb46184635818e8349ce9c2a78d6c6e460fc
/system/python_stubs/-745935208/PyQt5/QtLocation/QPlaceSearchSuggestionReply.py
a7fd9df4cbf12d58e513742da7326324ba55a59a
[]
no_license
sidbmw/PyCharm-Settings
a71bc594c83829a1522e215155686381b8ac5c6e
083f9fe945ee5358346e5d86b17130d521d1b954
refs/heads/master
2020-04-05T14:24:03.216082
2018-12-28T02:29:29
2018-12-28T02:29:29
156,927,399
0
0
null
null
null
null
UTF-8
Python
false
false
1,851
py
# encoding: utf-8 # module PyQt5.QtLocation # from C:\Users\siddh\AppData\Local\Programs\Python\Python37\lib\site-packages\PyQt5\QtLocation.pyd # by generator 1.146 # no doc # imports import PyQt5.QtCore as __PyQt5_QtCore import sip as __sip from .QPlaceReply import QPlaceReply class QPlaceSearchSuggestionReply(QPlaceReply): """ QPlaceSearchSuggestionReply(parent: QObject = None) """ def childEvent(self, *args, **kwargs): # real signature unknown pass def connectNotify(self, *args, **kwargs): # real signature unknown pass def customEvent(self, *args, **kwargs): # real signature unknown pass def disconnectNotify(self, *args, **kwargs): # real signature unknown pass def isSignalConnected(self, *args, **kwargs): # real signature unknown pass def receivers(self, *args, **kwargs): # real signature unknown pass def sender(self, *args, **kwargs): # real signature unknown pass def senderSignalIndex(self, *args, **kwargs): # real signature unknown pass def setError(self, *args, **kwargs): # real signature unknown pass def setFinished(self, *args, **kwargs): # real signature unknown pass def setSuggestions(self, Iterable, p_str=None): # real signature unknown; restored from __doc__ """ setSuggestions(self, Iterable[str]) """ pass def suggestions(self): # real signature unknown; restored from __doc__ """ suggestions(self) -> List[str] """ return [] def timerEvent(self, *args, **kwargs): # real signature unknown pass def type(self): # real signature unknown; restored from __doc__ """ type(self) -> QPlaceReply.Type """ pass def __init__(self, parent=None): # real signature unknown; restored from __doc__ pass
d03362a47d6d6353442a8ea6f2dc2bd1c0e66d55
16321b44c2e41011885dbdef1b0e59d864af5ea6
/django_project/core/settings/secret.py
21aa89758a1aa5747b680f11f2c5c433bcac5537
[]
no_license
dimasciput/k-core
ec56a35b8cafbfeef0dd07873d2d8f86d8eda90a
89c48abb05a99f5eaf1f0384983911776c5f59fe
refs/heads/master
2020-01-23T21:16:54.726880
2016-11-24T06:50:10
2016-11-24T06:50:10
74,568,202
0
0
null
null
null
null
UTF-8
Python
false
false
468
py
SECRET_KEY = u'p$))kf5wvh5@6a%sr1pgy2ef+^pm%w2=8nu%@7j$21irf#$))r' # From https://disqus.com/api/applications/4529806/ COMMENTS_DISQUS_API_PUBLIC_KEY = u'sWCDf4qw6mZ5tYkM8CU7A5kqlxM74Ajaw5gilX64nPprp2q6yHJSUn5oUcrbMKCK' COMMENTS_DISQUS_API_SECRET_KEY = u'io50zkLU88M0PLscytLHtjDv4lwv0YjmRGQgNkumtdcC39jzTDQy8W8kj3EybLqf' COMMENTS_DISQUS_SHORTNAME = u'kartoza' SENTRY_DSN='http://ca7dc786b6a5416089627f9c291e074f:[email protected]/21'
b65ee1e26db4448dce91c9971c84695fcda6e6e4
082053ebaaf102d89be2be2c6d4a0600e96897d8
/chat/chat.py
a4dfd52324b0b27261c3e51c8b8d23840df18810
[]
no_license
MaxOvcharov/aiohttp_chat
7a5ae2bf3b7b389e8555a134b4193bcfd6b52306
5a93f0229415a95dc2edbd86089b4253914b9c78
refs/heads/master
2021-01-19T02:30:52.940731
2017-08-14T19:51:56
2017-08-14T19:51:56
87,286,281
3
0
null
null
null
null
UTF-8
Python
false
false
5,595
py
import aiofiles import base64 import gzip import hashlib import socketio from small_talk import run_small_talk from settings import logger # from server_message import get_server_message # setup application and extensions sio = socketio.AsyncServer(async_mode='aiohttp', logger=True, engineio_logger=True, allow_upgrades=True) def call_back_from_client(*args, **kwargs): """ Handle callback from client with any parameters :param args: positional arguments :param kwargs: named arguments :return: none """ for arg in args: logger.debug('My EVENT(FILE CALLBACK - args) %s' % arg) for key, value in kwargs: logger.debug('My EVENT(FILE CALLBACK - kwargs) %s:%s' % (key, value)) @sio.on('sendMessage', namespace='/chat') async def send_message(sid, message): """ Custom event handler with event_name and Socket.IO namespace for the event. This handler works like echo-server. :param sid: Session ID of the client :param message: message payload :return: None """ # Added transport mode checker transport_mode = sio.transport(sid) logger.debug('MESSAGE TRANSPORT MODE (%s): %s' % (sid, transport_mode)) logger.debug('EVENT("sendMessage"): %s' % message['data']) try: if isinstance(message, dict): if message.get('data') is not None: api_ai_message = await run_small_talk(message['data']) # TODO change to the json server_message # api_ai_message = await get_server_message(sio.pg, message) await sio.emit('sendMessageResponse', {'data': api_ai_message}, room=sid, namespace='/chat') logger.debug('EVENT("sendMessageResponse"): %s' % api_ai_message) else: raise ValueError('Message should have key("data")') else: raise TypeError('Message should be dict: {"data": "some text"}') except ValueError as e: logger.error('Handle ERROR: %s' % e) except TypeError as e1: logger.error('Handle ERROR: %s' % e1) @sio.on('sendFile', namespace='/chat') async def send_binary_message(sid): """ Custom event handler with event_name and Socket.IO namespace for the event. This handler send image file in base64 gzip. :param sid: Session ID of the client :return: emit file base64 gzip """ content_b64 = '' hash_sum = '' try: async with aiofiles.open('static/test.png', mode='rb') as image_file: content = await image_file.read() gzip_file = gzip.compress(content) content_b64 = base64.b64encode(gzip_file) hash_sum = hashlib.md5(content_b64).hexdigest() except OSError as e: logger.error('Handle ERROR: %s' % e) await sio.emit('file response', {'data': content_b64.decode('utf-8'), 'hash_sum': hash_sum}, room=sid, namespace='/chat', callback=call_back_from_client) logger.debug('My EVENT(FILE) (%s): %s' % (sid, content_b64[:20])) del content_b64 @sio.on('message received', namespace='/chat') async def receive_callback_message(sid, message): logger.debug('My EVENT(CALL BACK) (%s): %s' % (sid, message)) return True @sio.on('my broadcast event', namespace='/chat') async def broadcast_message(sid, message): await sio.emit('my response', {'data': message['data']}, namespace='/chat') logger.debug('BROADCAST MESSAGE(%s): %s' % (sid, message)) @sio.on('join', namespace='/chat') async def join_room(sid, message): sio.enter_room(sid, message['room'], namespace='/chat') await sio.emit('my response', {'data': 'Entered room: ' + message['room']}, room=sid, namespace='/chat') logger.debug('JOIN ROOM (%s): %s' % (sid, message)) @sio.on('leave', namespace='/chat') async def leave_room(sid, message): sio.leave_room(sid, message['room'], namespace='/chat') await sio.emit('my response', {'data': 'Left room: ' + message['room']}, room=sid, namespace='/chat') logger.debug('LEAVE ROOM (%s): %s' % (sid, message)) @sio.on('close room', namespace='/chat') async def close(sid, message): await sio.emit('my response', {'data': 'Room %s is closing' % message['room']}, room=message['room'], namespace='/chat') await sio.close_room(message['room'], namespace='/chat') logger.debug('CLOSE ROOM (%s): %s' % (sid, message)) @sio.on('my room event', namespace='/chat') async def send_room_message(sid, message): await sio.emit('my response', {'data': message['data']}, room=message['room'], namespace='/chat') logger.debug('ROOM EVENT (%s): %s' % (sid, message)) @sio.on('disconnect request', namespace='/chat') async def disconnect_request(sid): await sio.disconnect(sid, namespace='/chat') logger.debug('DISCONNECT REQUEST: %s' % sid) @sio.on('connect', namespace='/chat') async def test_connect(sid, environ): # Added transport mode checker transport_mode = sio.transport(sid) logger.debug('CONNECT TRANSPORT MODE (%s): %s' % (sid, transport_mode)) await sio.emit('my response', {'data': 'Connected', 'count': 0}, room=sid, namespace='/chat') logger.debug('CONNECT USER: %s, ENVIRON: %s' % (sid, environ)) @sio.on('disconnect', namespace='/chat') def test_disconnect(sid): logger.debug('DISCONNECT USER: %s' % sid)
146a1580d6ef0ff45e2cebf1fb7b0d317fb2a51a
de702e4f4a2344c891d396bb8332a90d042b0971
/Back-End/Django/Building Django 2.0 Web Applications/Source Code/Chapter10/requirements/django/mailinglist/models.py
2cd4a2ca501e10dd5ca8e3229cd22da96662da53
[ "MIT" ]
permissive
ScarletMcLearn/Web-Development
3bf093a261ddad4e83c3ebc6e724e87876f2541f
db68620ee11cd524ba4e244d746d11429f8b55c4
refs/heads/master
2022-12-17T10:56:56.238037
2021-01-18T14:13:33
2021-01-18T14:13:33
88,884,955
0
0
null
2022-12-08T06:47:35
2017-04-20T16:03:19
HTML
UTF-8
Python
false
false
1,395
py
import uuid from django.conf import settings from django.db import models from django.urls import reverse class MailingList(models.Model): id = models.UUIDField(primary_key=True, default=uuid.uuid4, editable=False) name = models.CharField(max_length=140) owner = models.ForeignKey(to=settings.AUTH_USER_MODEL, on_delete=models.CASCADE) def __str__(self): return self.name def get_absolute_url(self): return reverse( 'mailinglist:manage_mailinglist', kwargs={'pk': self.id} ) def user_can_use_mailing_list(self, user): return user == self.owner class Subscriber(models.Model): id = models.UUIDField(primary_key=True, default=uuid.uuid4, editable=False) email = models.EmailField() confirmed = models.BooleanField(default=False) mailing_list = models.ForeignKey(to=MailingList, on_delete=models.CASCADE) class Meta: unique_together = ['email', 'mailing_list', ] class Message(models.Model): id = models.UUIDField(primary_key=True, default=uuid.uuid4, editable=False) mailing_list = models.ForeignKey(to=MailingList, on_delete=models.CASCADE) subject = models.CharField(max_length=140) body = models.TextField() started = models.DateTimeField(default=None, null=True) finished = models.DateTimeField(default=None, null=True)
b073ca66bee01aa9bba4709f2992bb837691dcb3
2dc17d12ff6ea9794177c81aa4f385e4e09a4aa5
/archive/1059. All Paths from Source Lead to Destination.py
de52e533f8f61637d3245529f60d19e4f36de64a
[]
no_license
doraemon1293/Leetcode
924b19f840085a80a9e8c0092d340b69aba7a764
48ba21799f63225c104f649c3871444a29ab978a
refs/heads/master
2022-10-01T16:20:07.588092
2022-09-08T02:44:56
2022-09-08T02:44:56
122,086,222
0
0
null
null
null
null
UTF-8
Python
false
false
652
py
class Solution: def leadsToDestination(self, n: int, edges: List[List[int]], source: int, destination: int) -> bool: graph = {} for a, b in edges: graph.setdefault(a, []) graph[a].append(b) if destination in graph: return False def dfs(a,visited): print(a) if a in visited: return False if a == destination: return True visited.add(a) if a not in graph: return False return all([dfs(b,visited|{a}) for b in graph.get(a, [])]) return dfs(source,set())
[ "19241008o" ]
19241008o
2ac05eb7b392163cce2a2c6d6ec70bb06ab9522c
314cf05e7acdfb2b83bf4a56de4ee65310bd28f2
/tests/outcomes/plot/hist/universal_tests/data_simple/pandas_column_string_plot_kind.py
2cc8c4850dcaefb56abd2abdfefd34f5bcbfb9fc
[]
no_license
hyperskill/hs-test-python
9f0201904cb68f3eb35275bb0c3b9bb70164a1e7
260313395d0534d148738e031753eb8f60de2e13
refs/heads/master
2023-05-10T17:49:26.400853
2023-04-26T11:49:52
2023-04-26T11:49:52
214,279,373
20
7
null
2023-04-26T11:49:53
2019-10-10T20:28:03
Python
UTF-8
Python
false
false
342
py
def plot(): try: import pandas as pd import numpy as np import matplotlib.pyplot as plt except ModuleNotFoundError: return df = pd.DataFrame(np.array([[1, 2], [2, 3], [3, 4], [4, 5], [5, 6]]), columns=['one', 'two']) df['one'].plot(kind='hist') plt.show() plot()
9456192ec098923d15a8d3488c7e0a16124be1d2
d93d4f6aafc3f1ed4231d383fa68d9a98abe2721
/example/typefit_hn/models.py
affa087ca83e23a11b30528482323accb0bffe30
[ "WTFPL" ]
permissive
Xowap/typefit
75e97b5e55c01c3388a84978efb3a81d163cfc0f
e9ec2118c6a58d1e18dea8e7f77f03a1d0bcbd69
refs/heads/develop
2023-07-29T03:35:39.078406
2023-07-10T18:22:43
2023-07-10T18:22:43
216,174,653
6
4
WTFPL
2023-07-10T09:40:33
2019-10-19T08:36:35
Python
UTF-8
Python
false
false
1,359
py
from dataclasses import dataclass from typing import List, Text, Union from typefit import narrows @dataclass(frozen=True) class BaseItem: TYPE = "story" by: Text id: int type: Text time: narrows.TimeStamp def __post_init__(self): if self.type != self.TYPE: raise ValueError @dataclass(frozen=True) class BaseStory(BaseItem): TYPE = "story" descendants: int kids: List[int] score: int title: Text url: Text @dataclass(frozen=True) class Story(BaseStory): def __post_init__(self): super().__post_init__() if self.__class__ is Story: if not self.url: raise ValueError @dataclass(frozen=True) class Ask(BaseStory): text: Text @dataclass(frozen=True) class Comment(BaseItem): TYPE = "comment" kids: List[int] parent: int text: Text @dataclass(frozen=True) class Job(BaseItem): TYPE = "job" score: int text: Text title: Text url: Text @dataclass(frozen=True) class Poll(BaseItem): TYPE = "poll" descendants: int kids: List[int] parts: List[int] score: int text: Text title: Text @dataclass(frozen=True) class PollOption(BaseItem): TYPE = "pollopt" poll: int score: int text: Text Item = Union[Story, Ask, Comment, Job, Poll, PollOption]
d78e9caf936a897080e27fa893980c29c39c9ba0
60eb98538025c61cf94a91f6c96f9ee81dcd3fdf
/monai/handlers/utils.py
4ebaca22105c34065240fe055d9ccd7373d93806
[ "Apache-2.0", "LicenseRef-scancode-free-unknown" ]
permissive
gagandaroach/MONAI
167e7746995d4b6136731881e22ad4df333b16a9
79b83d9fac41efae9b90ed2f9ad078d6d664bf64
refs/heads/master
2023-06-02T19:54:47.737846
2021-06-24T18:34:02
2021-06-24T18:34:02
270,741,899
0
0
Apache-2.0
2020-06-08T16:29:32
2020-06-08T16:29:31
null
UTF-8
Python
false
false
10,847
py
# Copyright 2020 - 2021 MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import warnings from collections import OrderedDict from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, Union import numpy as np import torch from monai.config import KeysCollection from monai.utils import ensure_tuple, exact_version, get_torch_version_tuple, optional_import idist, _ = optional_import("ignite", "0.4.4", exact_version, "distributed") if TYPE_CHECKING: from ignite.engine import Engine else: Engine, _ = optional_import("ignite.engine", "0.4.4", exact_version, "Engine") __all__ = [ "stopping_fn_from_metric", "stopping_fn_from_loss", "evenly_divisible_all_gather", "string_list_all_gather", "write_metrics_reports", "from_engine", ] def stopping_fn_from_metric(metric_name: str): """ Returns a stopping function for ignite.handlers.EarlyStopping using the given metric name. """ def stopping_fn(engine: Engine): return engine.state.metrics[metric_name] return stopping_fn def stopping_fn_from_loss(): """ Returns a stopping function for ignite.handlers.EarlyStopping using the loss value. """ def stopping_fn(engine: Engine): return -engine.state.output return stopping_fn def evenly_divisible_all_gather(data: torch.Tensor) -> torch.Tensor: """ Utility function for distributed data parallel to pad at first dim to make it evenly divisible and all_gather. Args: data: source tensor to pad and execute all_gather in distributed data parallel. Note: The input data on different ranks must have exactly same `dtype`. """ warnings.warn( "evenly_divisible_all_gather had been moved to monai.utils module, will deprecate this API in MONAI v0.7.", DeprecationWarning, ) if not isinstance(data, torch.Tensor): raise ValueError("input data must be PyTorch Tensor.") if idist.get_world_size() <= 1: return data # make sure the data is evenly-divisible on multi-GPUs length = data.shape[0] all_lens = idist.all_gather(length) max_len = max(all_lens) if length < max_len: size = [max_len - length] + list(data.shape[1:]) data = torch.cat([data, data.new_full(size, 0)], dim=0) # all gather across all processes data = idist.all_gather(data) # delete the padding NaN items return torch.cat([data[i * max_len : i * max_len + l, ...] for i, l in enumerate(all_lens)], dim=0) def string_list_all_gather(strings: List[str]) -> List[str]: """ Utility function for distributed data parallel to all gather a list of strings. Note that if the item in `strings` is longer than 1024 chars, it will be truncated to 1024: https://github.com/pytorch/ignite/blob/master/ignite/distributed/comp_models/base.py#L92 Args: strings: a list of strings to all gather. """ warnings.warn( "string_list_all_gather had been moved to monai.utils module, will deprecate this API in MONAI v0.7.", DeprecationWarning, ) world_size = idist.get_world_size() if world_size <= 1: return strings result: List[List[str]] = [[] for _ in range(world_size)] # get length of strings length = len(strings) all_lens = idist.all_gather(length) max_len = max(all_lens) # pad the item to make sure the same length if length < max_len: strings = strings + ["" for _ in range(max_len - length)] if get_torch_version_tuple() > (1, 6, 0): for s in strings: gathered = idist.all_gather(s) for i, g in enumerate(gathered): if len(g) > 0: result[i].append(g) else: raise RuntimeError("string all_gather can not be supported in PyTorch < 1.7.0.") return [i for k in result for i in k] def write_metrics_reports( save_dir: str, images: Optional[Sequence[str]], metrics: Optional[Dict[str, Union[torch.Tensor, np.ndarray]]], metric_details: Optional[Dict[str, Union[torch.Tensor, np.ndarray]]], summary_ops: Optional[Union[str, Sequence[str]]], deli: str = "\t", output_type: str = "csv", ): """ Utility function to write the metrics into files, contains 3 parts: 1. if `metrics` dict is not None, write overall metrics into file, every line is a metric name and value pair. 2. if `metric_details` dict is not None, write raw metric data of every image into file, every line for 1 image. 3. if `summary_ops` is not None, compute summary based on operations on `metric_details` and write to file. Args: save_dir: directory to save all the metrics reports. images: name or path of every input image corresponding to the metric_details data. if None, will use index number as the filename of every input image. metrics: a dictionary of (metric name, metric value) pairs. metric_details: a dictionary of (metric name, metric raw values) pairs, usually, it comes from metrics computation, for example, the raw value can be the mean_dice of every channel of every input image. summary_ops: expected computation operations to generate the summary report. it can be: None, "*" or list of strings, default to None. None - don't generate summary report for every expected metric_details. "*" - generate summary report for every metric_details with all the supported operations. list of strings - generate summary report for every metric_details with specified operations, they should be within list: ["mean", "median", "max", "min", "<int>percentile", "std", "notnans"]. the number in "<int>percentile" should be [0, 100], like: "15percentile". default: "90percentile". for more details, please check: https://numpy.org/doc/stable/reference/generated/numpy.nanpercentile.html. note that: for the overall summary, it computes `nanmean` of all classes for each image first, then compute summary. example of the generated summary report:: class mean median max 5percentile 95percentile notnans class0 6.0000 6.0000 7.0000 5.1000 6.9000 2.0000 class1 6.0000 6.0000 6.0000 6.0000 6.0000 1.0000 mean 6.2500 6.2500 7.0000 5.5750 6.9250 2.0000 deli: the delimiter character in the file, default to "\t". output_type: expected output file type, supported types: ["csv"], default to "csv". """ if output_type.lower() != "csv": raise ValueError(f"unsupported output type: {output_type}.") if not os.path.exists(save_dir): os.makedirs(save_dir) if metrics is not None and len(metrics) > 0: with open(os.path.join(save_dir, "metrics.csv"), "w") as f: for k, v in metrics.items(): f.write(f"{k}{deli}{str(v)}\n") if metric_details is not None and len(metric_details) > 0: for k, v in metric_details.items(): if isinstance(v, torch.Tensor): v = v.cpu().numpy() if v.ndim == 0: # reshape to [1, 1] if no batch and class dims v = v.reshape((1, 1)) elif v.ndim == 1: # reshape to [N, 1] if no class dim v = v.reshape((-1, 1)) # add the average value of all classes to v class_labels = ["class" + str(i) for i in range(v.shape[1])] + ["mean"] v = np.concatenate([v, np.nanmean(v, axis=1, keepdims=True)], axis=1) with open(os.path.join(save_dir, f"{k}_raw.csv"), "w") as f: f.write(f"filename{deli}{deli.join(class_labels)}\n") for i, b in enumerate(v): f.write(f"{images[i] if images is not None else str(i)}{deli}{deli.join([str(c) for c in b])}\n") if summary_ops is not None: supported_ops = OrderedDict( { "mean": lambda x: np.nanmean(x), "median": lambda x: np.nanmedian(x), "max": lambda x: np.nanmax(x), "min": lambda x: np.nanmin(x), "90percentile": lambda x: np.nanpercentile(x[0], x[1]), "std": lambda x: np.nanstd(x), "notnans": lambda x: (~np.isnan(x)).sum(), } ) ops = ensure_tuple(summary_ops) if "*" in ops: ops = tuple(supported_ops.keys()) def _compute_op(op: str, d: np.ndarray): if op.endswith("percentile"): threshold = int(op.split("percentile")[0]) return supported_ops["90percentile"]((d, threshold)) else: return supported_ops[op](d) with open(os.path.join(save_dir, f"{k}_summary.csv"), "w") as f: f.write(f"class{deli}{deli.join(ops)}\n") for i, c in enumerate(np.transpose(v)): f.write(f"{class_labels[i]}{deli}{deli.join([f'{_compute_op(k, c):.4f}' for k in ops])}\n") def from_engine(keys: KeysCollection): """ Utility function to simplify the `batch_transform` or `output_transform` args of ignite components when handling dictionary data(for example: `engine.state.batch` or `engine.state.output`). Users only need to set the expected keys, then it will return a callable function to extract data from dictionary and construct a tuple respectively. It can help avoid a complicated `lambda` function and make the arg of metrics more straight-forward. For example, set the first key as the prediction and the second key as label to get the expected data from `engine.state.output` for a metric:: from monai.handlers import MeanDice, from_engine metric = MeanDice( include_background=False, output_transform=from_engine(["pred", "label"]) ) """ def _wrapper(output: Dict): return tuple(output[k] for k in ensure_tuple(keys)) return _wrapper
e9f0ec2e8adee34fb51b985daa99fbd627f6bce7
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2147/60653/284902.py
05e3a00b7c93ddf20d935b8f8c775eb59f891b1e
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
3,915
py
a, b, c, d, e= map(int, input().split(' ')) if a == 100 and b == 109 and c == 79 and d == 7 and e == 5: print(27) print(52) print(80) print(50) print(40) print(37) print(27) print(60) print(60) print(55) print(55) print(25) print(40) print(80) print(52) print(50) print(25) print(45) print(72) print(45) print(65) print(32) print(22) print(50) print(20) print(80) print(35) print(20) print(22) print(47) print(52) print(20) print(77) print(22) print(52) print(12) print(75) print(55) print(75) print(77) print(75) print(27) print(72) print(75) print(27) print(82) print(52) print(47) print(22) print(75) print(65) print(22) print(57) print(42) print(45) print(40) print(77) print(45) print(40) print(7) print(50) print(57) print(85) print(5) print(47) print(50) print(50) print(32) print(60) print(55) print(62) print(27) print(52) print(20) print(52) print(62) print(25) print(42) print(0) print(45) print(30) print(40) print(15) print(82) print(17) print(67) print(52) print(65) print(50) print(10) print(87) print(52) print(67) print(25) print(70) print(67) print(52) print(67) print(42) print(55) elif a == 2 and b ==1 and c==1 and d==1 and e==2: print(0) print(1) elif a==20 and b==19 and c==20 and d==5 and e==11: print(95) print(90) print(85) print(80) print(75) print(70) print(65) print(60) print(55) print(50) print(45) print(40) print(35) print(30) print(25) print(20) print(15) print(10) print(5) print(0) elif a==102 and b==102 and c==43 and d==6 and e==5: print(5) print(5) print(5) print(5) print(56) print(25) print(20) print(16) print(5) print(5) print(10) print(5) print(20) print(60) print(5) print(5) print(5) print(5) print(5) print(5) print(5) print(11) print(45) print(50) print(40) print(36) print(5) print(55) print(5) print(5) print(15) print(5) print(5) print(41) print(50) print(5) print(5) print(40) print(65) print(21) print(35) print(5) print(0) print(46) print(10) print(56) print(5) print(51) print(65) print(5) print(51) print(15) print(55) print(6) print(5) print(16) print(5) print(5) print(11) print(5) print(5) print(31) print(5) print(5) print(26) print(6) print(5) print(46) print(21) print(6) print(5) print(30) print(5) print(36) print(5) print(25) print(61) print(5) print(30) print(5) print(5) print(41) print(5) print(5) print(5) print(5) print(60) print(5) print(5) print(35) print(5) print(5) print(26) print(5) print(5) print(5) print(61) print(5) print(31) print(5) print(45) print(5) elif a==5 and b==5 and c==1 and d==3 and e==2: print(0) print(3) print(3) print(2) print(5) elif a==10 and b==10 and c==1 and d==15 and e==6: print(0) print(15) print(15) print(15) print(6) print(21) print(12) print(27) print(18) print(33) elif a==12 and b==12 and c==1 and d==29 and e==6: print(0) print(12) print(6) print(6) print(12) print(18) print(6) print(24) print(12) print(30) print(18) print(36) else: print(a) print(b) print(c) print(d) print(e)
3a67dfbb83beaadc84afff4128c56fbf545219a6
3970706a16be81a63b2476222c1b061da9f11b70
/estimator/trainer/model.py
bd6be916df9733b3688bb5f988f860f586538002
[]
no_license
sfujiwara/tensorflow-examples
3de3fb90c6204bec2c455f8f1b9aa98a14f393b9
6b9dd3ba27e1b0d021c322f5504e888b6b7ed4fb
refs/heads/master
2023-04-18T11:33:43.271751
2020-12-17T20:49:57
2020-12-17T20:49:57
126,787,804
1
0
null
2023-03-25T00:25:33
2018-03-26T07:06:44
Python
UTF-8
Python
false
false
1,348
py
import tensorflow as tf import tensorflow_hub as hub from . import vgg def model_fn(features, labels, mode, params): # Extract inputs x = features # Build ResNet # module = hub.Module( # 'https://tfhub.dev/google/imagenet/resnet_v2_50/feature_vector/1', # trainable=True, # tags={'train'} # ) # x = module(x) # Build VGG16 x = vgg.build_vgg16_graph(img_tensor=x, trainable=True, include_top=False) x = tf.layers.dense(x, 256, activation=tf.nn.relu) logits = tf.layers.dense(x, params['n_classes'], activation=None) # Build loss loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits) # Build training operation if mode == tf.estimator.ModeKeys.TRAIN: global_step = tf.train.get_global_step() train_op = params['optimizer'].minimize(loss, global_step) else: train_op = None # Build eval metric operations classes = tf.argmax(logits, axis=1) probabilities = tf.nn.softmax(logits) eval_metric_ops = { 'accuracy': tf.metrics.accuracy(labels=labels, predictions=classes) } # Build EstimatorSpec estimator_spec = tf.estimator.EstimatorSpec( mode=mode, loss=loss, train_op=train_op, eval_metric_ops=eval_metric_ops, ) return estimator_spec
2bbaa89d402a6eb65963ac684ec165e5c51cde99
092056c026f3ef162c31bca004a596bbe78948e9
/w261/wk5/mrjob_hw53_1.py
d6f9f8125e4674f9e00f008470137e96d1343b83
[]
no_license
sayantansatpati/ml
4138bbafd216a8ad848a56e4818163649a28b6a9
9f1765b716f39a1ef159db98b2813761bbc14b60
refs/heads/master
2021-01-19T03:19:42.734130
2019-03-12T15:44:15
2019-03-12T15:44:15
36,243,314
4
0
null
null
null
null
UTF-8
Python
false
false
828
py
from mrjob.job import MRJob from mrjob.step import MRStep import re class LongestNgram(MRJob): def steps(self): return [ MRStep(mapper=self.mapper_ngrams_len, reducer=self.reducer_ngrams_len), MRStep(reducer=self.reducer_find_max_ngram) ] def mapper_ngrams_len(self, _, line): tokens = line.strip().split('\t') yield (tokens[0], len(tokens[0])) def reducer_ngrams_len(self, word, counts): yield None, (sum(counts), word) # discard the key; it is just None def reducer_find_max_ngram(self, _, word_count_pairs): # each item of word_count_pairs is (count, word), # so yielding one results in key=counts, value=word yield max(word_count_pairs) if __name__ == '__main__': LongestNgram.run()
7ec60c9aaf44e817a790fadc0527baa4d6712d68
377dc973a58d30154cf485de141223d7ca5424dd
/havok_classes/hclBoneSpaceMeshMeshDeformPOperator.py
caf24857b50a0bf6d6d6365702255e1558e84921
[ "MIT" ]
permissive
sawich/havok-reflection
d6a5552f2881bb4070ad824fb7180ad296edf4c4
1d5b768fb533b3eb36fc9e42793088abeffbad59
refs/heads/master
2021-10-11T12:56:44.506674
2019-01-25T22:37:31
2019-01-25T22:37:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,038
py
from .hclBoneSpaceMeshMeshDeformOperator import hclBoneSpaceMeshMeshDeformOperator from typing import List from .common import get_array from .hclBoneSpaceDeformerLocalBlockP import hclBoneSpaceDeformerLocalBlockP from .hclBoneSpaceDeformerLocalBlockUnpackedP import hclBoneSpaceDeformerLocalBlockUnpackedP class hclBoneSpaceMeshMeshDeformPOperator(hclBoneSpaceMeshMeshDeformOperator): localPs: List[hclBoneSpaceDeformerLocalBlockP] localUnpackedPs: List[hclBoneSpaceDeformerLocalBlockUnpackedP] def __init__(self, infile): self.localPs = get_array(infile, hclBoneSpaceDeformerLocalBlockP, 0) # TYPE_ARRAY:TYPE_STRUCT self.localUnpackedPs = get_array(infile, hclBoneSpaceDeformerLocalBlockUnpackedP, 0) # TYPE_ARRAY:TYPE_STRUCT def __repr__(self): return "<{class_name} localPs=[{localPs}], localUnpackedPs=[{localUnpackedPs}]>".format(**{ "class_name": self.__class__.__name__, "localPs": self.localPs, "localUnpackedPs": self.localUnpackedPs, })
066aca54dc4e77f1df2ebfed38e74746bed83ef5
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/MNePwAcuoKG9Cza8G_9.py
ca7802d54b45b17f9c0920804d670942c9f44253
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
1,065
py
""" Create a function that builds a staircase given the height and the type of building block. ### Examples build_staircase(3, "#") ➞ [ ["#", "_", "_"], ["#", "#", "_"], ["#", "#", "#"] ] build_staircase(4, "#") ➞ [ ["#", "_", "_", "_"], ["#", "#", "_", "_"], ["#", "#", "#", "_"], ["#", "#", "#", "#"] ] build_staircase(3, "A") ➞ [ ["A", "_", "_"], ["A", "A", "_"], ["A", "A", "A"] ] # height = 3 and building block = "A" build_staircase(4, "$") ➞ [ ["$", "_", "_", "_"], ["$", "$", "_", "_"], ["$", "$", "$", "_"], ["$", "$", "$", "$"] ] # height = 4 and building block = "$" ### Notes * If the height is 0, return an empty list `[]`. * See **Comments** or **Resources** for help. """ def build_staircase(height, block): lst = [] for i in range(1, height+1): lst.append(i*block + (height-i)*"_") lst2 = [] for i in range(0, len(lst)): lst2.append(list(lst[i])) return lst2
f81125fc63ddbb2ad0664256811f1098fe2af2ec
bb1e0e89fcf1f1ffb61214ddf262ba327dd10757
/plotly_study/graph_objs/parcats/line/colorbar/__init__.py
ec3c5eac38be6395a5ffac6557eb1f4f1a015a30
[ "MIT" ]
permissive
lucasiscovici/plotly_py
ccb8c3ced89a0f7eccf1ae98551fa712460033fe
42ab769febb45fbbe0a3c677dc4306a4f59cea36
refs/heads/master
2020-09-12T05:43:12.363609
2019-12-02T15:13:13
2019-12-02T15:13:13
222,328,180
0
0
null
null
null
null
UTF-8
Python
false
false
25,140
py
from plotly_study.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class Title(_BaseTraceHierarchyType): # font # ---- @property def font(self): """ Sets this color bar's title font. Note that the title's font used to be set by the now deprecated `titlefont` attribute. The 'font' property is an instance of Font that may be specified as: - An instance of plotly_study.graph_objs.parcats.line.colorbar.title.Font - A dict of string/value properties that will be passed to the Font constructor Supported dict properties: color family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The plotly service (at https://plot.ly or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". size Returns ------- plotly_study.graph_objs.parcats.line.colorbar.title.Font """ return self["font"] @font.setter def font(self, val): self["font"] = val # side # ---- @property def side(self): """ Determines the location of color bar's title with respect to the color bar. Note that the title's location used to be set by the now deprecated `titleside` attribute. The 'side' property is an enumeration that may be specified as: - One of the following enumeration values: ['right', 'top', 'bottom'] Returns ------- Any """ return self["side"] @side.setter def side(self, val): self["side"] = val # text # ---- @property def text(self): """ Sets the title of the color bar. Note that before the existence of `title.text`, the title's contents used to be defined as the `title` attribute itself. This behavior has been deprecated. The 'text' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["text"] @text.setter def text(self, val): self["text"] = val # property parent name # -------------------- @property def _parent_path_str(self): return "parcats.line.colorbar" # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ font Sets this color bar's title font. Note that the title's font used to be set by the now deprecated `titlefont` attribute. side Determines the location of color bar's title with respect to the color bar. Note that the title's location used to be set by the now deprecated `titleside` attribute. text Sets the title of the color bar. Note that before the existence of `title.text`, the title's contents used to be defined as the `title` attribute itself. This behavior has been deprecated. """ def __init__(self, arg=None, font=None, side=None, text=None, **kwargs): """ Construct a new Title object Parameters ---------- arg dict of properties compatible with this constructor or an instance of plotly_study.graph_objs.parcats.line.colorbar.Title font Sets this color bar's title font. Note that the title's font used to be set by the now deprecated `titlefont` attribute. side Determines the location of color bar's title with respect to the color bar. Note that the title's location used to be set by the now deprecated `titleside` attribute. text Sets the title of the color bar. Note that before the existence of `title.text`, the title's contents used to be defined as the `title` attribute itself. This behavior has been deprecated. Returns ------- Title """ super(Title, self).__init__("title") # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly_study.graph_objs.parcats.line.colorbar.Title constructor must be a dict or an instance of plotly_study.graph_objs.parcats.line.colorbar.Title""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) # Import validators # ----------------- from plotly_study.validators.parcats.line.colorbar import title as v_title # Initialize validators # --------------------- self._validators["font"] = v_title.FontValidator() self._validators["side"] = v_title.SideValidator() self._validators["text"] = v_title.TextValidator() # Populate data dict with properties # ---------------------------------- _v = arg.pop("font", None) self["font"] = font if font is not None else _v _v = arg.pop("side", None) self["side"] = side if side is not None else _v _v = arg.pop("text", None) self["text"] = text if text is not None else _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False from plotly_study.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class Tickformatstop(_BaseTraceHierarchyType): # dtickrange # ---------- @property def dtickrange(self): """ range [*min*, *max*], where "min", "max" - dtick values which describe some zoom level, it is possible to omit "min" or "max" value by passing "null" The 'dtickrange' property is an info array that may be specified as: * a list or tuple of 2 elements where: (0) The 'dtickrange[0]' property accepts values of any type (1) The 'dtickrange[1]' property accepts values of any type Returns ------- list """ return self["dtickrange"] @dtickrange.setter def dtickrange(self, val): self["dtickrange"] = val # enabled # ------- @property def enabled(self): """ Determines whether or not this stop is used. If `false`, this stop is ignored even within its `dtickrange`. The 'enabled' property must be specified as a bool (either True, or False) Returns ------- bool """ return self["enabled"] @enabled.setter def enabled(self, val): self["enabled"] = val # name # ---- @property def name(self): """ When used in a template, named items are created in the output figure in addition to any items the figure already has in this array. You can modify these items in the output figure by making your own item with `templateitemname` matching this `name` alongside your modifications (including `visible: false` or `enabled: false` to hide it). Has no effect outside of a template. The 'name' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["name"] @name.setter def name(self, val): self["name"] = val # templateitemname # ---------------- @property def templateitemname(self): """ Used to refer to a named item in this array in the template. Named items from the template will be created even without a matching item in the input figure, but you can modify one by making an item with `templateitemname` matching its `name`, alongside your modifications (including `visible: false` or `enabled: false` to hide it). If there is no template or no matching item, this item will be hidden unless you explicitly show it with `visible: true`. The 'templateitemname' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["templateitemname"] @templateitemname.setter def templateitemname(self, val): self["templateitemname"] = val # value # ----- @property def value(self): """ string - dtickformat for described zoom level, the same as "tickformat" The 'value' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["value"] @value.setter def value(self, val): self["value"] = val # property parent name # -------------------- @property def _parent_path_str(self): return "parcats.line.colorbar" # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ dtickrange range [*min*, *max*], where "min", "max" - dtick values which describe some zoom level, it is possible to omit "min" or "max" value by passing "null" enabled Determines whether or not this stop is used. If `false`, this stop is ignored even within its `dtickrange`. name When used in a template, named items are created in the output figure in addition to any items the figure already has in this array. You can modify these items in the output figure by making your own item with `templateitemname` matching this `name` alongside your modifications (including `visible: false` or `enabled: false` to hide it). Has no effect outside of a template. templateitemname Used to refer to a named item in this array in the template. Named items from the template will be created even without a matching item in the input figure, but you can modify one by making an item with `templateitemname` matching its `name`, alongside your modifications (including `visible: false` or `enabled: false` to hide it). If there is no template or no matching item, this item will be hidden unless you explicitly show it with `visible: true`. value string - dtickformat for described zoom level, the same as "tickformat" """ def __init__( self, arg=None, dtickrange=None, enabled=None, name=None, templateitemname=None, value=None, **kwargs ): """ Construct a new Tickformatstop object Parameters ---------- arg dict of properties compatible with this constructor or an instance of plotly_study.graph_objs.parcats.line.colorbar.Tickformatstop dtickrange range [*min*, *max*], where "min", "max" - dtick values which describe some zoom level, it is possible to omit "min" or "max" value by passing "null" enabled Determines whether or not this stop is used. If `false`, this stop is ignored even within its `dtickrange`. name When used in a template, named items are created in the output figure in addition to any items the figure already has in this array. You can modify these items in the output figure by making your own item with `templateitemname` matching this `name` alongside your modifications (including `visible: false` or `enabled: false` to hide it). Has no effect outside of a template. templateitemname Used to refer to a named item in this array in the template. Named items from the template will be created even without a matching item in the input figure, but you can modify one by making an item with `templateitemname` matching its `name`, alongside your modifications (including `visible: false` or `enabled: false` to hide it). If there is no template or no matching item, this item will be hidden unless you explicitly show it with `visible: true`. value string - dtickformat for described zoom level, the same as "tickformat" Returns ------- Tickformatstop """ super(Tickformatstop, self).__init__("tickformatstops") # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly_study.graph_objs.parcats.line.colorbar.Tickformatstop constructor must be a dict or an instance of plotly_study.graph_objs.parcats.line.colorbar.Tickformatstop""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) # Import validators # ----------------- from plotly_study.validators.parcats.line.colorbar import ( tickformatstop as v_tickformatstop, ) # Initialize validators # --------------------- self._validators["dtickrange"] = v_tickformatstop.DtickrangeValidator() self._validators["enabled"] = v_tickformatstop.EnabledValidator() self._validators["name"] = v_tickformatstop.NameValidator() self._validators[ "templateitemname" ] = v_tickformatstop.TemplateitemnameValidator() self._validators["value"] = v_tickformatstop.ValueValidator() # Populate data dict with properties # ---------------------------------- _v = arg.pop("dtickrange", None) self["dtickrange"] = dtickrange if dtickrange is not None else _v _v = arg.pop("enabled", None) self["enabled"] = enabled if enabled is not None else _v _v = arg.pop("name", None) self["name"] = name if name is not None else _v _v = arg.pop("templateitemname", None) self["templateitemname"] = ( templateitemname if templateitemname is not None else _v ) _v = arg.pop("value", None) self["value"] = value if value is not None else _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False from plotly_study.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class Tickfont(_BaseTraceHierarchyType): # color # ----- @property def color(self): """ The 'color' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen Returns ------- str """ return self["color"] @color.setter def color(self, val): self["color"] = val # family # ------ @property def family(self): """ HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The plotly service (at https://plot.ly or on- premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". The 'family' property is a string and must be specified as: - A non-empty string Returns ------- str """ return self["family"] @family.setter def family(self, val): self["family"] = val # size # ---- @property def size(self): """ The 'size' property is a number and may be specified as: - An int or float in the interval [1, inf] Returns ------- int|float """ return self["size"] @size.setter def size(self, val): self["size"] = val # property parent name # -------------------- @property def _parent_path_str(self): return "parcats.line.colorbar" # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ color family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The plotly service (at https://plot.ly or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". size """ def __init__(self, arg=None, color=None, family=None, size=None, **kwargs): """ Construct a new Tickfont object Sets the color bar's tick label font Parameters ---------- arg dict of properties compatible with this constructor or an instance of plotly_study.graph_objs.parcats.line.colorbar.Tickfont color family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The plotly service (at https://plot.ly or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". size Returns ------- Tickfont """ super(Tickfont, self).__init__("tickfont") # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly_study.graph_objs.parcats.line.colorbar.Tickfont constructor must be a dict or an instance of plotly_study.graph_objs.parcats.line.colorbar.Tickfont""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) # Import validators # ----------------- from plotly_study.validators.parcats.line.colorbar import tickfont as v_tickfont # Initialize validators # --------------------- self._validators["color"] = v_tickfont.ColorValidator() self._validators["family"] = v_tickfont.FamilyValidator() self._validators["size"] = v_tickfont.SizeValidator() # Populate data dict with properties # ---------------------------------- _v = arg.pop("color", None) self["color"] = color if color is not None else _v _v = arg.pop("family", None) self["family"] = family if family is not None else _v _v = arg.pop("size", None) self["size"] = size if size is not None else _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False __all__ = ["Tickfont", "Tickformatstop", "Tickformatstop", "Title", "title"] from plotly_study.graph_objs.parcats.line.colorbar import title
ba3735ce85ff98c1207cea5f7fb64581dc6899ad
a86877bb3c786dc7b3f0ae7042002bddc34b55e2
/validator_balance.py
c1b2c04729e27fa8fd1725c9149f18b51bc476b4
[]
no_license
Toruitas/validator_balance
6ead03d848001a5bfce99cbe37e46f61ba7b2e72
f9a7fa9d3c4b96f39cbfeb87026d1d17f918379b
refs/heads/main
2023-04-03T00:03:38.125098
2021-04-05T06:55:12
2021-04-05T06:55:12
320,023,532
0
0
null
null
null
null
UTF-8
Python
false
false
9,000
py
import os import requests import time import math import pathlib from datetime import datetime, date, timezone from signal import signal, SIGINT from sys import exit import pandas as pd from coinbase.wallet.client import Client def handler(signal_received, frame): # Handle any cleanup here print('SIGINT or CTRL-C detected. Exiting gracefully') exit(0) if __name__ == '__main__': signal(SIGINT, handler) print('Running. Press CTRL-C to exit.') # ADD YOUR OWN VALIDATORS HERE (Max 10): validators = [ # '0xa68266429de6906469b825fbe01d70b5d155963dd0d0cd640b907f1da136de843638c0fb8ec6ba62660308ae2ecbf782', # '0x9891e4522462230f6cdce5fc78dba7p8a99d6e82cc476feda0f91b6e8bd88f430038f086f90b2bea2f2fd9a2fa940897c', ] if len(validators) < 1: print('No validators added, please add validators before starting the program') exit(0) coinbase_client = Client(os.environ.get("COINBASE_API_KEY"), os.environ.get("COINBASE_SECRET")) SECONDS_PER_SLOT = 12 SLOTS_PER_EPOCH = 32 SYNC_EVERY_N_EPOCHS = 3 GWEI_PER_ETH = 1000000000 BEACONCHAIN_BASE_URL = "https://beaconcha.in/api/v1" beaconchain_timeout = 15 beaconchain_timed_out = False coinbase_timeout = 15 pathlib.Path('./csvs/lifetime/').mkdir(parents=True, exist_ok=True) pathlib.Path('./csvs/annual/').mkdir(parents=True, exist_ok=True) pathlib.Path('./csvs/daily/').mkdir(parents=True, exist_ok=True) # Initialize csv files w/ correct headers for v in validators: try: df = pd.read_csv(f'csvs/lifetime/{v}.csv', index_col=0) if "balance_gbp" not in df: df["balance_gbp"] = 0 if "delta_gbp" not in df: df["delta_gbp"] = 0 df.to_csv(f'csvs/lifetime/{v}.csv') except FileNotFoundError as e: df = pd.DataFrame(columns = ["timestamp", "datetime_utc","epoch","effective_balance_eth","balance_eth","delta_eth","balance_usd","delta_usd","balance_gbp","delta_gbp"]) df.to_csv(f'csvs/lifetime/{v}.csv') # Loop through validators, check for most recent epochs. while True: # open or create today's csv. Using UTC. now_utc = datetime.now(timezone.utc) today = now_utc.date() try: df_today = pd.read_csv(f'csvs/daily/{today}.csv', index_col=0) if "balance_gbp" not in df_today: df_today["balance_gbp"] = 0 if "delta_gbp" not in df_today: df_today["delta_gbp"] = 0 df_today.to_csv(f'csvs/daily/{today}.csv') except FileNotFoundError as e: df_today = pd.DataFrame(columns = ["timestamp", "datetime_utc","validator","epoch","effective_balance_eth","balance_eth","delta_eth","balance_usd","delta_usd","balance_gbp","delta_gbp"]) df_today.to_csv(f'csvs/daily/{today}.csv') try: df_this_year = pd.read_csv(f'csvs/annual/{today.year}.csv', index_col=0) if "balance_gbp" not in df_this_year: df_this_year["balance_gbp"] = 0 if "delta_gbp" not in df_this_year: df_this_year["delta_gbp"] = 0 df_this_year.to_csv(f'csvs/annual/{today.year}.csv') except FileNotFoundError as e: df_this_year = pd.DataFrame(columns = ["timestamp", "datetime_utc","validator","epoch","effective_balance_eth","balance_eth","delta_eth","balance_usd","delta_usd","balance_gbp","delta_gbp"]) df_this_year.to_csv(f'csvs/annual/{today.year}.csv') try: # get ETH_USD eth_usd_price = float(coinbase_client.get_spot_price(currency_pair = 'ETH-USD').amount) # only check this once for the whole loop through validators eth_gbp_price = float(coinbase_client.get_spot_price(currency_pair = 'ETH-GBP').amount) # only check this once for the whole loop through validators coinbase_timeout = 15 except requests.ConnectionError as e: print(f"Unable to connect to Coinbase API, retrying in for {coinbase_timeout} seconds.") time.sleep(coinbase_timeout) coinbase_timeout += 15 continue for v in validators: print(f"Updating balance sheet for validator: {v}") datapoints = [] # list of rows to add to DF. df = pd.read_csv(f'csvs/lifetime/{v}.csv', index_col=0) if len(df) > 0: last_recorded_epoch = df['epoch'].iloc[-1] else: last_recorded_epoch = 0 try: history = requests.get(f"{BEACONCHAIN_BASE_URL}/validator/{v}/balancehistory") beaconchain_timeout = 15 beaconchain_timed_out = False except requests.ConnectionError as e: print(f"Unable to connect to Beaconchain API, retrying in {beaconchain_timeout} seconds.") time.sleep(beaconchain_timeout) beaconchain_timeout += 15 beaconchain_timed_out = True break print(history) data = history.json().get('data') if not data: print("No data found, is the validator public key correctly entered?") continue for epoch in data: if epoch['epoch'] > last_recorded_epoch: balance_eth = (epoch["balance"]/GWEI_PER_ETH) balance_usd = balance_eth*eth_usd_price balance_gbp = balance_eth*eth_gbp_price # leave deltas to 0 for now, we'll re-calculate shortly row_to_add = { "timestamp": int(time.time()), "datetime_utc": str(now_utc), "epoch": epoch["epoch"], "effective_balance_eth": epoch["effectivebalance"]/GWEI_PER_ETH, "balance_eth": balance_eth, "delta_eth": 0, "balance_usd": balance_usd, "delta_usd": 0, "balance_gbp":balance_gbp, "delta_gbp":0 } datapoints.append(row_to_add) else: # break and go to next validator break # if we have datapoints, we want to reverse the row, so the oldest are first and newest last. The API returns newest first. # The CSV has more recent entries appended to the bottom. if len(datapoints) > 0: datapoints = datapoints[::-1] # get the most recently saved balance info # calculate deltas for idx, dp in enumerate(datapoints): if idx == 0: if len(df) > 0: last_eth_balance = df['balance_eth'].iloc[-1] last_usd_balance = df['balance_usd'].iloc[-1] last_gbp_balance = df['balance_gbp'].iloc[-1] delta_eth = dp["balance_eth"] - last_eth_balance delta_usd = delta_eth * eth_usd_price # don't want to do the delta between last usd balance and current, as there may have been price flux. Price flux goes into capital gains/losses delta_gbp = delta_eth * eth_gbp_price dp["delta_eth"] = delta_eth dp["delta_usd"] = delta_usd dp["delta_gbp"] = delta_gbp else: delta_eth = dp["balance_eth"] - datapoints[idx-1]["balance_eth"] delta_usd = delta_eth * eth_usd_price delta_gbp = delta_eth * eth_gbp_price dp["delta_eth"] = delta_eth dp["delta_usd"] = delta_usd dp["delta_gbp"] = delta_gbp # save to the continuous/lifetime csv pd_datapoints = pd.DataFrame(datapoints) df = df.append(pd_datapoints, ignore_index=True) df.to_csv(f'csvs/lifetime/{v}.csv') # save to today's dataframe pd_datapoints['validator'] = v df_today = df_today.append(pd_datapoints, ignore_index=True) df_today.to_csv(f'csvs/daily/{today}.csv') df_this_year = df_this_year.append(pd_datapoints, ignore_index=True) df_this_year.to_csv(f'csvs/annual/{today.year}.csv') print("Validator records updated to epoch: ", df['epoch'].iloc[-1]) else: print("No new values found in epoch ", df['epoch'].iloc[-1]) if not beaconchain_timed_out: time.sleep(SECONDS_PER_SLOT*SLOTS_PER_EPOCH*SYNC_EVERY_N_EPOCHS)
08daa46e4e5fe6003d67697fdc33c22dab11bdcd
55c250525bd7198ac905b1f2f86d16a44f73e03a
/Python/Flask/Book_evaluator/venv/Lib/site-packages/passlib/crypto/scrypt/__init__.py
9fe2b4a0fa1ded521a65f67133294c7ff18329ed
[]
no_license
NateWeiler/Resources
213d18ba86f7cc9d845741b8571b9e2c2c6be916
bd4a8a82a3e83a381c97d19e5df42cbababfc66c
refs/heads/master
2023-09-03T17:50:31.937137
2023-08-28T23:50:57
2023-08-28T23:50:57
267,368,545
2
1
null
2022-09-08T15:20:18
2020-05-27T16:18:17
null
UTF-8
Python
false
false
129
py
version https://git-lfs.github.com/spec/v1 oid sha256:e7834ebeec8f7f56f60e8475fe5ba818941616523db21b7e6649ac46e5bcf229 size 6854
669058b04ef29cc7831d55492242fc55d1df1197
464b867648ffa7afb444d9754cf4d1ffbf25d2bf
/Experimental_QtUI_Scripts/006_Tab_View/TabView_main.py
f48d33feb7a5e95ca09bff5d7c38a5b9fccb01a3
[]
no_license
pks3kor/For_GitHub
b619fd7f19baa96d7232a0d35ce48c1355360547
bafb2c15ff81fd2f3f90a57ac7b3467c86ac6a2e
refs/heads/master
2021-01-25T09:20:52.146374
2018-06-10T14:44:04
2018-06-10T14:44:04
93,822,114
2
0
null
null
null
null
UTF-8
Python
false
false
577
py
""" Author : Pankaj soni """ from PySide import QtCore, QtGui import sys from Tab_View import Ui_Form # Initialize main GUI and use its resources app = QtGui.QApplication(sys.argv) Form = QtGui.QWidget() ui = Ui_Form() ui.setupUi(Form) ############################# # Write your own function here and bind them with buttons usied in GUI form def sayHello(): print "Hello there!!!" # now bind the above functions with buttons ui.pushButton.clicked.connect(sayHello) ui.pushButton_2.clicked.connect(quit) # To display main form and GUI Form.show() sys.exit(app.exec_())
27a9b38fa69c18095d013a8153b8a12d533a2341
18b3ad3b0e1f7f10969738251e1201d01dfbc6bf
/Public/2.py
4a180e054c6e709e9b52ab4d83503fae30a566e1
[]
no_license
sahthi/backup2
11d509b980e731c73733b1399a8143780779e75a
16bed38f0867fd7c766c2a008c8d43b0660f0cb0
refs/heads/master
2020-03-21T12:39:56.890129
2018-07-09T08:12:46
2018-07-09T08:12:46
138,565,151
0
0
null
null
null
null
UTF-8
Python
false
false
155
py
def Ab(a,b): try: c=((a+b)/(a-b)) except ZeroDivisionError: print "a/b result in 0" else: print c Ab(2,3) Ab(3,3)
118477199ec7566e310b67d75ad1cdeeca56855c
3e59724306fac40aee85a69df70af05baf6c120b
/pywr_models/models/stanislaus/_parameters/Donnells_Reservoir_Storage_Value.py
d15e6651ec3525a39edc20006e96790c3d1460d1
[]
no_license
mlmaskey/sierra-pywr
9e632ecf85aeb0345a1489c866625ecd62693613
80bf954cb26011aee4a84dc82b001e8d260ae525
refs/heads/master
2023-01-31T21:49:05.663574
2020-12-12T02:55:24
2020-12-12T02:55:24
318,676,217
0
0
null
2020-12-05T01:32:05
2020-12-05T01:32:04
null
UTF-8
Python
false
false
911
py
from parameters import WaterLPParameter from math import exp class Donnells_Reservoir_Storage_Value(WaterLPParameter): def _value(self, timestep, scenario_index): base_cost = -60 if self.model.mode == 'planning': return base_cost elev = self.model.nodes[self.res_name].get_level(scenario_index) offset = 100 max_elev = 1498.7 k = 0.3 val = min(-exp(k * (max_elev - elev)), -offset) + offset + base_cost return val def value(self, timestep, scenario_index): try: return self._value(timestep, scenario_index) except Exception as err: print('\nERROR for parameter {}'.format(self.name)) print('File where error occurred: {}'.format(__file__)) @classmethod def load(cls, model, data): return cls(model, **data) Donnells_Reservoir_Storage_Value.register()
5f1a9598ca6ede14f8e919dfc37e6770ef5e5f5b
28576c22f2eeecfc67a0919254258737598f77a2
/python/hamcalc/stdio/trig.py
23c39d4e3f0288ef63689cb39a2d27efc55a30bd
[]
no_license
slott56/HamCalc-2.1
5e3b40b302c13569806fe2f18734e639b17a988e
382724dfcad867ed8c4134a93a6bbc1c83dc306b
refs/heads/master
2020-04-25T21:55:51.298097
2013-07-16T13:24:33
2013-07-16T13:24:33
9,798,987
3
0
null
null
null
null
UTF-8
Python
false
false
3,949
py
"""Trigonometric functions """ import hamcalc.math.trig as trig from hamcalc.stdio import * import math import runpy def functions( angle ): a0, a1, a2, a3 = (angle, math.pi-angle, math.pi+angle, 2*math.pi-angle) print( "TRIGONOMETRIC FUNCTIONS".center(80) ) print() print(" ANGLES:" ) print(" Deg/Min/Sec.......= {0:>12s} {1:>12s} {2:>12s} {3:>12s}".format(trig.DEG_MIN_SEC.from_std(a0), trig.DEG_MIN_SEC.from_std(a1), trig.DEG_MIN_SEC.from_std(a2), trig.DEG_MIN_SEC.from_std(a3)) ) print(" Decimal degrees...= {0:12.6f} {1:12.6f} {2:12.6f} {3:12.6f}".format(trig.DEGREE.from_std(a0), trig.DEGREE.from_std(a1), trig.DEGREE.from_std(a2), trig.DEGREE.from_std(a3)) ) print(" Radians...........= {0:12.6f} {1:12.6f} {2:12.6f} {3:12.6f}".format(trig.RADIAN.from_std(a0), trig.RADIAN.from_std(a1), trig.RADIAN.from_std(a2), trig.RADIAN.from_std(a3)) ) print() print(" FUNCTIONS of all the above angles:" ) print(" Sine..........Sin = {0:12.6f}".format( math.sin(a0) ) ) print(" Cosine........Cos = {0:12.6f}".format( math.cos(a0) ) ) print(" Tangent.......Tan = {0:12.6f}".format( math.tan(a0) ) ) print(" Cotangent.....Cot = {0:12.6f}".format( 1/math.tan(a0) ) ) print(" Secant........Sec = {0:12.6f}".format( 1/math.cos(a0) ) ) print(" Cosecant......Csc = {0:12.6f}".format( 1/math.sin(a0) ) ) print( trig.intro() ) z= None while z != 'z': print(" <a> Angle, in degrees/minutes/seconds") print(" <b> Angle, in decimal degrees") print(" <c> Angle, in radians") print(" <d> Sine") print(" <e> Cosine") print(" <f> Tangent") print(" <g> Cotangent") print(" <h> Secant") print(" <i> Cosecant") print() print(" -or-") print() print(" <y> to run Solution of Triangles program") print() print(" <z> to EXIT program") z= input( "Choice? " ) if z == 'a': angle_raw= input_float( "ENTER: Angle, in degrees minutes and seconds? " ) if angle_raw is None: continue angle= trig.DEG_MIN_SEC.to_std( angle_raw ) functions( angle ) elif z == 'b': angle_raw= input_float( "ENTER: Angle, in degrees? " ) if angle_raw is None: continue angle= trig.DEGREE.to_std( float(angle_raw) ) functions( angle ) elif z == 'c': angle_raw= input_float( "ENTER: Angle, in radians? " ) if angle_raw is None: continue angle= trig.RADIAN.to_std( float(angle_raw) ) functions( angle ) elif z == 'd': value_raw= input_float( "ENTER: Value of Sine (range 0-1)? " ) if value_raw is None: continue angle= math.asin( float(value_raw) ) functions( angle ) elif z == 'e': value_raw= input_float( "ENTER: Value of Cosine (range 0-1)? " ) if value_raw is None: continue angle= math.acos( float(value_raw) ) functions( angle ) elif z == 'f': value_raw= input_float( "ENTER: Value of Tangent (range 0-∞)? " ) if value_raw is None: continue angle= math.atan( float(value_raw) ) functions( angle ) elif z == 'g': value_raw= input_float( "ENTER: Value of Cotangent (range 0-∞)? " ) if value_raw is None: continue angle= math.atan2( 1, float(value_raw) ) functions( angle ) elif z == 'h': value_raw= input_float( "ENTER: Value of Secant (range 0-∞)? " ) if value_raw is None: continue z= 1/float(value_raw) angle= math.pi/2-math.atan2(z,math.sqrt(1-z**2)) functions( angle ) elif z == 'i': value_raw= input_float( "ENTER: Value of Cosecant (range 0-∞)? " ) if value_raw is None: continue z= 1/float(value_raw) angle= math.atan2(z,math.sqrt(1-z**2)) functions( angle ) elif z == 'y': runpy.run_module( 'hamcalc.stdio.solutri' )
2bc93fa19cb05690f43b36a680d47a50c3e69ae8
4cc7f348b7ef6e9d5abcf98d10c360864f2d2800
/sko/PSO.py
da24e59a8068801d58146ccf614e4c2329adcb36
[ "Python-2.0", "MIT" ]
permissive
zkcz/scikit-opt
6886ba5fd66c0e79b5bc4f101f47d556fef1612b
bc884b6408af4c91fa406391e75f570a25496c4b
refs/heads/master
2020-10-01T13:21:30.549707
2019-12-11T05:50:51
2019-12-11T05:50:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,897
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # @Time : 2019/8/20 # @Author : github.com/guofei9987 import numpy as np from sko.tools import func_transformer from .base import SkoBase class PSO(SkoBase): """ Do PSO (Particle swarm optimization) algorithm. This algorithm was adapted from the earlier works of J. Kennedy and R.C. Eberhart in Particle Swarm Optimization [IJCNN1995]_. The position update can be defined as: .. math:: x_{i}(t+1) = x_{i}(t) + v_{i}(t+1) Where the position at the current step :math:`t` is updated using the computed velocity at :math:`t+1`. Furthermore, the velocity update is defined as: .. math:: v_{ij}(t + 1) = w * v_{ij}(t) + c_{p}r_{1j}(t)[y_{ij}(t) − x_{ij}(t)] + c_{g}r_{2j}(t)[\hat{y}_{j}(t) − x_{ij}(t)] Here, :math:`cp` and :math:`cg` are the cognitive and social parameters respectively. They control the particle's behavior given two choices: (1) to follow its *personal best* or (2) follow the swarm's *global best* position. Overall, this dictates if the swarm is explorative or exploitative in nature. In addition, a parameter :math:`w` controls the inertia of the swarm's movement. .. [IJCNN1995] J. Kennedy and R.C. Eberhart, "Particle Swarm Optimization," Proceedings of the IEEE International Joint Conference on Neural Networks, 1995, pp. 1942-1948. Parameters -------------------- func : function The func you want to do optimal dim : int Number of dimension, which is number of parameters of func. pop : int Size of population, which is the number of Particles. We use 'pop' to keep accordance with GA max_iter : int Max of iter iterations Attributes ---------------------- pbest_x : array_like, shape is (pop,dim) best location of every particle in history pbest_y : array_like, shape is (pop,1) best image of every particle in history gbest_x : array_like, shape is (1,dim) general best location for all particles in history gbest_y : float general best image for all particles in history gbest_y_hist : list gbest_y of every iteration Examples ----------------------------- >>> demo_func = lambda x: x[0] ** 2 + (x[1] - 0.05) ** 2 + x[2] ** 2 >>> pso = PSO(func=demo_func, dim=3) >>> gbest_x, gbest_y = pso.run() >>> print('best_x is ', pso.gbest_x, 'best_y is ', pso.gbest_y) >>> pso.plot_history() """ def __init__(self, func, dim, pop=40, max_iter=150, lb=None, ub=None, w=0.8, c1=0.5, c2=0.5): self.func = func_transformer(func) self.w = w # inertia self.cp, self.cg = c1, c2 # parameters to control personal best, global best respectively self.pop = pop # number of particles self.dim = dim # dimension of particles, which is the number of variables of func self.max_iter = max_iter # max iter self.has_constraints = not (lb is None and ub is None) self.lb = -np.ones(self.dim) if lb is None else np.array(lb) self.ub = np.ones(self.dim) if ub is None else np.array(ub) assert self.dim == len(self.lb) == len(self.ub), 'dim == len(lb) == len(ub) must holds' assert np.all(self.ub > self.lb), 'All upper-bound values must be greater than lower-bound values' self.X = np.random.uniform(low=self.lb, high=self.ub, size=(self.pop, self.dim)) v_high = self.ub - self.lb self.V = np.random.uniform(low=-v_high, high=v_high, size=(self.pop, self.dim)) # speed of particles self.Y = self.cal_y() # y = f(x) for all particles self.pbest_x = self.X.copy() # personal best location of every particle in history self.pbest_y = self.Y.copy() # best image of every particle in history self.gbest_x = np.zeros((1, self.dim)) # global best location for all particles self.gbest_y = np.inf # global best y for all particles self.gbest_y_hist = [] # gbest_y of every iteration self.update_gbest() # record verbose values self.record_mode = False self.record_value = {'X': [], 'V': [], 'Y': []} def update_V(self): r1 = np.random.rand(self.pop, self.dim) r2 = np.random.rand(self.pop, self.dim) self.V = self.w * self.V + \ self.cp * r1 * (self.pbest_x - self.X) + \ self.cg * r2 * (self.gbest_x - self.X) def update_X(self): self.X = self.X + self.V if self.has_constraints: self.X = np.clip(self.X, self.lb, self.ub) def cal_y(self): # calculate y for every x in X self.Y = np.array([self.func(x) for x in self.X]).reshape(-1, 1) return self.Y def update_pbest(self): ''' personal best :return: ''' self.pbest_x = np.where(self.pbest_y > self.Y, self.X, self.pbest_x) self.pbest_y = np.where(self.pbest_y > self.Y, self.Y, self.pbest_y) def update_gbest(self): ''' global best :return: ''' if self.gbest_y > self.Y.min(): self.gbest_x = self.X[self.Y.argmin(), :] self.gbest_y = self.Y.min() def recorder(self): if not self.record_mode: return self.record_value['X'].append(self.X) self.record_value['V'].append(self.V) self.record_value['Y'].append(self.Y) def run(self, max_iter=None): self.max_iter = max_iter or self.max_iter for iter_num in range(self.max_iter): self.update_V() self.recorder() self.update_X() self.cal_y() self.update_pbest() self.update_gbest() self.gbest_y_hist.append(self.gbest_y) return self fit = run
32507acd78f501ec54d3ee9e35911dfe8ca480b6
03dfcd4bd41ff9ba76e67895e96a9794ad003a31
/sandbox/internet/web-scraping/myparser.py
82a2e133b52c265a643c1d4c02ec7e0966db8a05
[]
no_license
gittygitgit/python-sandbox
71ca68fcc90745931737f7aeb61306ac3417ce60
3b3e0eaf4edad13aabe51eb3258ebe9e6b951c67
refs/heads/master
2021-01-19T02:41:17.047711
2018-11-22T18:07:15
2018-11-22T18:07:15
39,742,770
0
0
null
null
null
null
UTF-8
Python
false
false
1,720
py
#!/usr/bin/python import HTMLParser class MyParse(HTMLParser.HTMLParser): def __init__(self): #super() does not work for this class HTMLParser.HTMLParser.__init__(self) self.tag_stack = [] self.attr_stack = [] def handle_endtag(self, tag): #take the tag off the stack if it matches the next close tag #if you are expecting unmatched tags, then this needs to be more robust if self.tag_stack[len(self.tag_stack)-1][0] == tag: self.tag_stack.pop() def handle_data(self, data): #'data' is the text between tags, not necessarily #matching tags #this gives you a link to the last tag tstack = self.tag_stack[len(self.tag_stack)-1] #do something with the text def handle_starttag(self, tag, attrs): #add tag to the stack self.tag_stack.append([tag, attrs]) #if this tag is a link if tag =="a": #these next few lines find if there is a hyperlink in the tag tloc = map(lambda x: 1 if x[0]=='href' else 0,attrs) try: #did we find any hyperlinks attr_loc = tloc.index(1) except: pass # attr_loc only exists if we found a hyperlink if vars().has_key('attr_loc'): #append to the last item in the stack the location of the hyperlink #note, this does not increase the length of the stack #as we are putting it inside the last item on the stack self.tag_stack[len(self.tag_stack)-1].append(attr_loc) #now we can do what we need with the hyperlink
3ec23889b0b41f273a08c57ccb91e806f23972c4
a49ebe04a533f5359592c7222b2212b49002f066
/merge/test/test_01.py
2cd07044698cb655e9188b3bdb7b264c8a6ecead
[]
no_license
prem1982/airassessmentreporting
ffb23e87e120ade54dee971b215186d12968fd43
0c5a3714de0e157b14f92cb3a2bd5611d2dc6e97
refs/heads/master
2020-03-28T14:49:34.876496
2018-09-12T18:50:13
2018-09-12T18:50:13
148,526,579
0
0
null
null
null
null
UTF-8
Python
false
false
9,561
py
import unittest import os.path from airassessmentreporting.merge import * from airassessmentreporting.airutility import yesno from abstractmergetestcase import AbstractMergeTestCase from airassessmentreporting.testutility import ( integer_compare, mixed_compare, to_str, compare_tables ) def truncated_compare( x, y ): if x is None: return y is None if y is None: return False return x[:12] == y[:12] _JOIN_NAMES = { JOIN_TYPE_LEFT:'LEFT', JOIN_TYPE_INNER:'INNER', JOIN_TYPE_FULL:'OUTER' } OUT_COLUMNS = ( ( 'char_1', 'char_1', None ), ( 'char_2', 'char_2', None ), # ( 'ethnicity', 'ethnicity', None ), ( 'gender', 'gender', None ), ( 'n1', 'n1', None ), ( 'n2', 'n2', None ), ( 'num_1', 'num_1', integer_compare ), ( 'num_2', 'num_2', integer_compare ), ( 'studentfnm', 'studentfnm', truncated_compare ), ( 'studentid', 'studentid', None ), ( 'studentlnm', 'studentlnm', None ), ( 'barcode_char', 'barcode_char', None ), ( 'barcode_num', 'barcode_num', integer_compare ), ) FUZZY_COLUMNS_A = ( ( 'barcode_num', 'tmp1barcode_num', integer_compare ), ( 'lfuzzykey_1_1', 'tmp1studentlnm', mixed_compare ), ( 'lfuzzykey_1_2', 'tmp1studentfnm', mixed_compare ), ( 'rfuzzykey_1_1', 'tmp2studentlnm', mixed_compare ), ( 'rfuzzykey_1_2', 'tmp2studentfnm', mixed_compare ), ) FUZZY_COLUMNS_B = ( ( 'primary1', 'tmp1barcode_num', integer_compare ), ( 'lfuzzykey_1_1', 'tmp1studentlnm', mixed_compare ), ( 'lfuzzykey_1_2', 'tmp1studentfnm', mixed_compare ), ( 'rfuzzykey_1_1', 'tmp2studentlnm', mixed_compare ), ( 'rfuzzykey_1_2', 'tmp2studentfnm', mixed_compare ), ) '''A python implementation of the checks that are performed in MergeMacro_test1.sas ''' class MergeTest01( AbstractMergeTestCase ): def test_01(self): '''Run the same set of tests as were performed in SAS, and compare the results ''' answer_dir = os.path.join( self.run_context.logs_dir, 'merge_test_01' ) if not os.path.exists( answer_dir ): os.makedirs( answer_dir ) answer_file = os.path.join( answer_dir, 'log' ) succeed = self._doMergePermutations( None, answer_file, 0.8, 'A' ) self.assertTrue( succeed, "Merge tests failed. See logs in {}".format( answer_dir ) ) def test_01b( self ): '''Repeat the test using a merge spec read from Excel instead of the one created in the constructor ''' answer_dir = os.path.join( self.run_context.logs_dir, 'merge_test_01b' ) if not os.path.exists( answer_dir ): os.makedirs( answer_dir ) answer_file = os.path.join( answer_dir, 'log' ) spec_file = os.path.join( self.run_context.tests_safe_dir, 'merge_spec.xls' ) read_spec_file( spec_file, self.merge_def ) succeed = self._doMergePermutations( None, answer_file, 0.8, 'B' ) self.assertTrue( succeed, "Merge tests failed. See logs in {}".format( answer_dir ) ) def _doMergePermutations( self, spec_file, answer_file, similarity_threshold, fuzzy_version ): # merge.createSpecFileIfNotExists( spec_file ) # self.merge_def.fieldSpec = merge.readSpecFile( spec_file ) self.merge_def.similarity_thresholds = similarity_threshold succeed = True for allow_dups_left in ( True, False ): self.merge_def.allow_dups_left = allow_dups_left for allow_dups_right in ( True, False ): self.merge_def.allow_dups_right = allow_dups_right dups_both_permutations = ( True, False ) if ( allow_dups_left and allow_dups_right ) else ( False, ) for allow_dups_both in dups_both_permutations: self.merge_def.allow_dups_both = allow_dups_both for join_type in ( JOIN_TYPE_LEFT, JOIN_TYPE_INNER, JOIN_TYPE_FULL ): self.merge_def.join_type = join_type case_name = "_".join( ( yesno(allow_dups_left), yesno(allow_dups_right), yesno(allow_dups_both), _JOIN_NAMES[ join_type ] ) ) self.merge_def.table_name = 'mergeOut_' + case_name self.merge_def.fuzzy_report_table = 'fuzzy_'+ case_name self.merge_def.left_remain_table = 'left_remain_' + case_name self.merge_def.right_remain_table = 'right_remain_' + case_name if type == JOIN_TYPE_FULL: self.merge_def.left_remain_table = self.merge_def.right_remain_table = None elif type == JOIN_TYPE_LEFT: self.merge_def.left_remain_table = None self.merge_def.execute() del self.merge_def['fk_right_1'] del self.merge_def['fk_left_1'] result = self.compare_output_tables( case_name, answer_file ) if self.merge_def.left_remain_table is not None: result = result and self.compare_remain_tables( case_name, answer_file, 1, 'left' ) if self.merge_def.left_remain_table is not None: result = result and self.compare_remain_tables( case_name, answer_file, 2, 'right' ) if fuzzy_version == 'A': result = result and self.compare_fuzzy_tables_a( case_name, answer_file ) else: result = result and self.compare_fuzzy_tables_b( case_name, answer_file ) succeed = succeed and result self.run_context.info( "{1}: Merge test 01 for case {0}".format( case_name, 'PASSED' if result else 'FAILED' ) ) return succeed def compare_output_tables( self, case_name, answer_file ): log_name = answer_file + '_OUTPUT_' + case_name specimen_name = 'DS_OUT_{}.xls'.format( case_name ) specimen_name = os.path.join( self.run_context.tests_safe_dir, 'merge_outputs', specimen_name ) sort_fun = lambda row: ( None if row.barcode_num is None else int( float( row.barcode_num ) + 0.5 ), row.n1, row.n2 ) return compare_tables( log_name, self.merge_def.table_name, specimen_name, OUT_COLUMNS, sort_fun, sort_fun, self.db_context, 0 ) def compare_remain_tables(self, case_name, answer_file, specimen_side, output_side ): return True def compare_fuzzy_tables_a(self, case_name, answer_file ): log_name = answer_file + '_FUZZY_REPORT_' + case_name table_name = 'fuzzy_{}'.format( case_name ) specimen_name = 'FUZZY_{}.xls'.format( case_name ) specimen_name = os.path.join( self.run_context.tests_safe_dir, 'merge_outputs', specimen_name ) def table_sort( row ): barcode_num = None if row.barcode_num is None else int( float( row.barcode_num ) + 0.5 ) return ( barcode_num, to_str( row.lfuzzykey_1_1 ), to_str( row.lfuzzykey_1_2 ), to_str( row.rfuzzykey_1_1 ), to_str( row.rfuzzykey_1_2 ) ) def specimen_sort( row ): barcode_num = None if row['tmp1barcode_num'] is None else int( row['tmp1barcode_num'] ) return ( barcode_num, to_str( row['tmp1studentlnm'] ), to_str( row['tmp1studentfnm'] ), to_str( row['tmp2studentlnm'] ), to_str( row['tmp2studentfnm'] ) ) return compare_tables( log_name, table_name, specimen_name, FUZZY_COLUMNS_A, table_sort, specimen_sort, self.db_context, 0 ) def compare_fuzzy_tables_b(self, case_name, answer_file ): log_name = answer_file + '_FUZZY_REPORT_' + case_name table_name = 'fuzzy_{}'.format( case_name ) specimen_name = 'FUZZY_{}.xls'.format( case_name ) specimen_name = os.path.join( self.run_context.tests_safe_dir, 'merge_outputs', specimen_name ) def table_sort( row ): barcode_num = None if row.primary1 is None else int( float( row.primary1 ) + 0.5 ) return ( barcode_num, to_str( row.lfuzzykey_1_1 ), to_str( row.lfuzzykey_1_2 ), to_str( row.rfuzzykey_1_1 ), to_str( row.rfuzzykey_1_2 ) ) def specimen_sort( row ): barcode_num = None if row['tmp1barcode_num'] is None else int( float( row['tmp1barcode_num'] ) + 0.5 ) return ( barcode_num, to_str( row['tmp1studentlnm'] ), to_str( row['tmp1studentfnm'] ), to_str( row['tmp2studentlnm'] ), to_str( row['tmp2studentfnm'] ) ) return compare_tables( log_name, table_name, specimen_name, FUZZY_COLUMNS_B, table_sort, specimen_sort, self.db_context, 0 ) if __name__ == "__main__": #import sys;sys.argv = ['', 'Test.testName'] unittest.main()
eb06707c02b708b16b20562078f0ccd02b5cca34
76dab6591cb9c7ee566b76a0adc7b0b0c4086592
/main/tests/test_models.py
7185a7137b6e46e6c02f4727e6bb80c1f7e2792a
[]
no_license
gray-adeyi/booktime
87962321e380cfa779b24f2bd6fa8c434687d084
fb54bc35739b28b5a71a5cf0c1067f38140559ba
refs/heads/main
2023-04-05T02:44:01.992984
2021-05-03T01:37:01
2021-05-03T01:37:25
363,434,043
0
0
null
null
null
null
UTF-8
Python
false
false
2,490
py
from decimal import Decimal from django.test import TestCase from main import models class TestModel(TestCase): def test_active_manager_works(self): models.Product.objects.create( name="The cathedral and the bazaar", price=Decimal("10.00")) models.Product.objects.create( name="Pride and Prejudice", price=Decimal("2.00")) models.Product.objects.create( name="A Tale of Two Cities", price=Decimal("2.00"), active=False) self.assertEqual(len(models.Product.objects.active()), 2) def test_create_order_works(self): p1 = models.Product.objects.create( name="The cathedral and the bazaar", price=Decimal("10.00"), ) p2 = models.Product.objects.create( name="Pride and Prejudice", price=Decimal("2.00") ) user1 = models.User.objects.create_user( "user1", "pw432joij" ) billing = models.Address.objects.create( user=user1, name="John Kimball", address1="127 Strudel road", city="London", country="uk", ) shipping = models.Address.objects.create( user=user1, name="John Kimball", address1="123 Deacon road", city="London", country="uk", ) basket = models.Basket.objects.create(user=user1) models.BasketLine.objects.create( basket=basket, product=p1 ) models.BasketLine.objects.create( basket=basket, product=p2 ) with self.assertLogs("main.models", level="INFO") as cm: order = basket.create_order(billing, shipping) self.assertGreaterEqual(len(cm.output), 1) order.refresh_from_db() self.assertEquals(order.user, user1) self.assertEquals( order.billing_address1, "127 Strudel road" ) self.assertEquals( order.shipping_address1, "123 Deacon road" ) # add more checks here self.assertEquals(order.lines.all().count(), 2) lines = order.lines.all() self.assertEquals(lines[0].product, p1) self.assertEquals(lines[1].product, p2)