blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
4c2bdb7c3c1f0ffd2ca09b91c2b25d6b3bd6dc4c
ebd5c4632bb5f85c9e3311fd70f6f1bf92fae53f
/PORMain/pirates/effects/DarkPortal.py
0cf27ecf8deadbcfe7623641ee7db325b3b0db04
[]
no_license
BrandonAlex/Pirates-Online-Retribution
7f881a64ec74e595aaf62e78a39375d2d51f4d2e
980b7448f798e255eecfb6bd2ebb67b299b27dd7
refs/heads/master
2020-04-02T14:22:28.626453
2018-10-24T15:33:17
2018-10-24T15:33:17
154,521,816
2
1
null
null
null
null
UTF-8
Python
false
false
1,813
py
from panda3d.core import TransparencyAttrib # File: D (Python 2.4) from direct.interval.IntervalGlobal import * from PooledEffect import PooledEffect from EffectController import EffectController from otp.otpbase import OTPRender import random class DarkPortal(PooledEffect, EffectController): def __init__(self): PooledEffect.__init__(self) EffectController.__init__(self) self.speed = 0.75 self.holdTime = 2.5 self.size = 40 self.explosionSequence = 0 self.explosion = loader.loadModel('models/effects/darkPortal') self.explosion.setDepthTest(0) self.setDepthWrite(0) self.explosion.setFogOff() self.explosion.setLightOff() self.explosion.setHpr(0, -90, 0) self.explosion.reparentTo(self) self.hide() self.explosion.hide(OTPRender.MainCameraBitmask) self.explosion.showThrough(OTPRender.EnviroCameraBitmask) self.explosion.setBin('shadow', 0) self.explosion.setTransparency(TransparencyAttrib.MAlpha) self.explosion.setDepthWrite(0) def createTrack(self, rate = 1): self.explosion.setScale(1) self.explosion.setColorScale(1, 1, 1, 0.75) scaleUp = self.explosion.scaleInterval(self.speed, self.size, startScale = 0.0, blendType = 'easeIn', other = render) scaleDown = self.explosion.scaleInterval(self.speed, 0.0, startScale = self.size, blendType = 'easeIn', other = render) self.track = Sequence(Func(self.show), scaleUp, Wait(self.holdTime), scaleDown, Func(self.hide), Func(self.cleanUpEffect)) def cleanUpEffect(self): EffectController.cleanUpEffect(self) self.checkInEffect(self) def destroy(self): EffectController.destroy(self) PooledEffect.destroy(self)
93048f8876fc96b4c7fd4bda1e6719756d628118
222d4f2dfb63a66b5de274b785cb92393a2e0fe9
/after6pm_191113/04.py
17381eb6ff56e9032c7c90fbf870c88dae44464e
[]
no_license
GyuReeKim/PycharmProjects
fd2584c3ff1369510a7f246f2089cefb77035d9d
dd4f0e15b4e72c68b054489c54f24fa0ba5b9ed3
refs/heads/master
2020-07-03T11:44:54.951147
2019-11-21T00:07:43
2019-11-21T00:07:43
201,894,857
0
0
null
null
null
null
UTF-8
Python
false
false
217
py
# 연구소 # 벽세우기 import sys sys.stdin = open('04.txt', 'r') def f(i, j, lab): pass N, M = map(int, input().split()) lab = [list(map(int, input().split())) for _ in range(N)] print(lab) f(0, 0, lab)
524b26645d22e5350ca96393ae4a8f8c7410257e
4c76dbfaa8f2ca33945e303be90b579c79bd4008
/renesola/apps/freight/management/commands/build_angular_js.py
50d8bdd16a9ceccc64c3c8823bb5058badf95821
[]
no_license
fogcitymarathoner/renasola
42c32243df4e4c1246d9a85cfb9251aed2264309
9089dcc0ffc57a76799f5e99244df644256e08ea
refs/heads/master
2021-01-11T00:32:40.358446
2016-10-10T18:49:50
2016-10-10T18:49:50
70,517,907
0
0
null
null
null
null
UTF-8
Python
false
false
362
py
__author__ = 'marc' from django.core.management.base import BaseCommand from django.conf import settings import os from renesola_lib.angular_helpers import build_js class Command(BaseCommand): """ field delimiter ';' text delmiter '"' """ args = '' help = '' def handle(self, *args, **options): build_js()
d54db077ad045ae5605a1a04b178f9fac106b3ab
30a456e3012c663782d2a07a0ff67c377d63790d
/data/ass2json.py
08561f2f6f0db1ff52593268932f24b680e40cf8
[ "MIT" ]
permissive
akx/my-video
41099725fd96f369a1e8e671667e2e7be3256f42
b1135809f81a34026536d1a8532390dc5f1c7945
refs/heads/master
2021-01-24T10:30:53.608241
2016-10-01T18:30:34
2016-10-01T18:30:34
69,733,122
0
0
null
null
null
null
UTF-8
Python
false
false
1,283
py
import argparse import re, json import sys K_RE = re.compile(r'(\{\\k([0-9]+)\})') def parse_time(dt): h, m, s, hs = [float(int(p, 10)) for p in re.split('[:.,]', dt)] return h * 60 * 60 + m * 60 + s * 1 + hs / 100.0 def parse_ass(infp): for line in infp: if not line.startswith('Dialogue:'): continue line = line.split(',', 9) start = parse_time(line[1]) end = parse_time(line[2]) parts = K_RE.split(line[-1])[1:] word_durations = zip([int(s, 10) / 100.0 for s in parts[1::3]], [s.strip() for s in parts[2::3]]) for i, (dur, word) in enumerate(word_durations): d = { 'time': round(start, 3), 'word': word, } if i == 0: d['verse'] = True yield d start += dur def main(): ap = argparse.ArgumentParser() ap.add_argument('file', type=argparse.FileType()) ap.add_argument('-o', '--output', type=argparse.FileType('w'), default=None) ap.add_argument('--indent', default=None, type=int) args = ap.parse_args() json.dump( list(parse_ass(args.file)), (args.output or sys.stdout), indent=args.indent, ) if __name__ == '__main__': main()
cb7fb08c690282edfd833933070c697f756dcb10
0fccee4c738449f5e0a8f52ea5acabf51db0e910
/genfragments/ThirteenTeV/ADD/ADDmonoPhoton_MD_1_d_8_TuneCUETP8M1_13TeV_pythia8_cfi.py
302e89726365a986e9049cc298156fb6aa79d2a4
[]
no_license
cms-sw/genproductions
f308ffaf3586c19b29853db40e6d662e937940ff
dd3d3a3826343d4f75ec36b4662b6e9ff1f270f4
refs/heads/master
2023-08-30T17:26:02.581596
2023-08-29T14:53:43
2023-08-29T14:53:43
11,424,867
69
987
null
2023-09-14T12:41:28
2013-07-15T14:18:33
Python
UTF-8
Python
false
false
1,425
py
import FWCore.ParameterSet.Config as cms from Configuration.Generator.Pythia8CommonSettings_cfi import * from Configuration.Generator.Pythia8CUEP8M1Settings_cfi import * generator = cms.EDFilter("Pythia8GeneratorFilter", maxEventsToPrint = cms.untracked.int32(1), pythiaPylistVerbosity = cms.untracked.int32(1), filterEfficiency = cms.untracked.double(1.0), pythiaHepMCVerbosity = cms.untracked.bool(False), comEnergy = cms.double(13000.), PythiaParameters = cms.PSet( pythia8CommonSettingsBlock, pythia8CUEP8M1SettingsBlock, processParameters = cms.vstring( ## see details on http://home.thep.lu.se/~torbjorn/php8135/ExtraDimensionalProcesses.php?filepath=files/ 'ExtraDimensionsLED:ffbar2Ggamma = on', 'ExtraDimensionsLED:CutOffmode = 1', 'ExtraDimensionsLED:t = 0.5', 'ExtraDimensionsLED:n = 8', 'ExtraDimensionsLED:MD = 1000.', 'ExtraDimensionsLED:LambdaT = 1000.', '5000039:m0 = 1200.', '5000039:mWidth = 1000.', '5000039:mMin = 1.', '5000039:mMax = 13990.', 'PhaseSpace:pTHatMin = 130.' ), parameterSets = cms.vstring('pythia8CommonSettings', 'pythia8CUEP8M1Settings', 'processParameters',) ) )
d4b86ce8c2dcf80ee5ce28fd7f9795ce4bfad495
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/93o6y6WKFpQKoDg4T_18.py
69dd497b116184ce41ce029c7571c5d85d204ef8
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
57
py
def sort_by_length(lst): return sorted(lst, key=len)
45aad19c79479fd3824ea58eb7d7717279b0b008
6858cbebface7beec57e60b19621120da5020a48
/ply/modimport.py
f82d08c44b979f0b39be6a4dfe34acf53fbfc6e1
[]
no_license
ponyatov/PLAI
a68b712d9ef85a283e35f9688068b392d3d51cb2
6bb25422c68c4c7717b6f0d3ceb026a520e7a0a2
refs/heads/master
2020-09-17T01:52:52.066085
2017-03-28T07:07:30
2017-03-28T07:07:30
66,084,244
2
0
null
null
null
null
UTF-8
Python
false
false
233
py
>>> import tokrules >>> lexer = lex.lex(module=tokrules) >>> lexer.input("3 + 4") >>> lexer.token() LexToken(NUMBER,3,1,1,0) >>> lexer.token() LexToken(PLUS,'+',1,2) >>> lexer.token() LexToken(NUMBER,4,1,4) >>> lexer.token() None >>>
4d620495621fd8734bc2f5085f0814fab0602439
db6d37fcf5545acd3dd9910674c0f43c90410e0a
/iterminal/controllers.py
88f3f762f83c05c23a9cf06bbd3546a14f2d520a
[]
no_license
capalmer1013/i
629bb44b4640fc91be883ca2e47c6a3d81f51a0b
4e0bc895ad232cad7dfefefec35a67346da6794b
refs/heads/master
2023-02-23T02:35:44.270400
2022-04-27T03:04:21
2022-04-27T03:04:21
86,883,795
0
0
null
2023-02-16T00:32:58
2017-04-01T04:29:44
Python
UTF-8
Python
false
false
519
py
import curses from iterminal.constants import UP, DOWN, LEFT, RIGHT def inputController(stdscr, p): while True: key = stdscr.getch() #stdscr.addstr(0, 0, str(key)) dirDict = {curses.KEY_UP: UP, curses.KEY_DOWN: DOWN, curses.KEY_LEFT: LEFT, curses.KEY_RIGHT: RIGHT} shootDict = {ord('w'): UP, ord('a'): LEFT, ord('s'): DOWN, ord('d'): RIGHT} if key in dirDict.keys(): p.move(dirDict[key]) elif key in shootDict.keys(): p.shoot(shootDict[key])
5588811602468117dcf4c2c815b823cd9c66efd6
0bb474290e13814c2498c086780da5096453da05
/abc151/C/main.py
de4737e84810f2b025becf5752de28655a3a7833
[]
no_license
ddtkra/atcoder
49b6205bf1bf6a50106b4ae94d2206a324f278e0
eb57c144b5c2dbdd4abc432ecd8b1b3386244e30
refs/heads/master
2022-01-25T15:38:10.415959
2020-03-18T09:22:08
2020-03-18T09:22:08
208,825,724
1
0
null
2022-01-21T20:10:20
2019-09-16T14:51:01
Python
UTF-8
Python
false
false
1,054
py
#!/usr/bin/env python3 import sys sys.setrecursionlimit(10000000) INF = 1<<32 def solve(N: int, M: int, p: "List[int]", S: "List[str]"): dp = [[0, 0] for i in range(N+1)] for i in range(M): if S[i] == 'AC': dp[p[i]][0] = 1 else: if dp[p[i]][0] == 0: dp[p[i]][1] += 1 ac = len([dp[i][0] for i in range(1, N+1) if dp[i][0] > 0]) wa = sum([dp[i][1] for i in range(1, N+1) if dp[i][0] > 0]) # print(dp[:10]) # print([dp[i][0] for i in range(1, N+1)]) print(ac, wa) return def main(): def iterate_tokens(): for line in sys.stdin: for word in line.split(): yield word tokens = iterate_tokens() N = int(next(tokens)) # type: int M = int(next(tokens)) # type: int p = [int()] * (M) # type: "List[int]" S = [str()] * (M) # type: "List[str]" for i in range(M): p[i] = int(next(tokens)) S[i] = next(tokens) solve(N, M, p, S) if __name__ == '__main__': main()
f17025743fc841a91077662b31a3cb066d361be2
a5e5d39f42f468d35f18aab3e78c3c090046b0df
/apps/contacts/forms.py
72c512374bed6f2e74a37ac9c50a2a1151e9ee6e
[]
no_license
WayneLambert/portfolio
66198dfc18b3f254e6bc726575903c3e8f570dc4
7e02165386e4784f81e15bae0325a77cf45f410d
refs/heads/main
2023-02-04T18:08:13.559223
2023-01-29T14:13:59
2023-01-29T14:13:59
180,239,669
5
1
null
2023-02-04T07:07:10
2019-04-08T22:02:22
JavaScript
UTF-8
Python
false
false
568
py
from django import forms from captcha.fields import ReCaptchaField from captcha.widgets import ReCaptchaV3 from apps.contacts.models import Contact class ContactForm(forms.ModelForm): class Meta: model = Contact fields = ('first_name', 'last_name', 'email', 'message') captcha = ReCaptchaField( widget=ReCaptchaV3( attrs={ 'data-theme': 'light', 'data-size': 'invisible', } ) ) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs)
9eeb6493e7ffc4de7c553d77979a09da3caeaa1e
8e1668e35a8df9968ab14d16db089b51dbe6dd51
/python/algorithms/contests/four_divisors.py
77b0e61ed7442f35a879a90753b56c9b384e7f7b
[]
no_license
Chalmiller/competitive_programming
f1ec0184d1ff247201522ab90ca8e66b3f326afc
b437080d1ba977c023baf08b7dc5c3946784e183
refs/heads/master
2021-03-24T05:11:59.383916
2020-08-24T22:07:41
2020-08-24T22:07:41
247,519,998
0
0
null
null
null
null
UTF-8
Python
false
false
557
py
from typing import * class Solution: def sumFourDivisors(self, nums: List[int]) -> int: divisors = 0 for i in nums: num_divisor = [] for j in range(i+1): if len(num_divisor) > 4: break if i%(j+1) == 0: num_divisor.append(j+1) if len(num_divisor) == 4: sum_divisors = sum(num_divisor) divisors += sum_divisors return divisors nums = [21,4,7] obj = Solution() obj.sumFourDivisors(nums)
854a857b9eedc99be8a2332e23c37f43e09f4bc4
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/FjiriGn8gc5RE8Xm2_7.py
efeef575fedcd049a250bbc0cfb0345e324e582a
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
1,014
py
""" Write a function that takes `fuel` (liters), `fuel_usage` (liters/100km), `passengers`, `air_con` (boolean) and returns maximum distance that car can travel. * `fuel` is the number of liters of fuel in the fuel tank. * `fuel_usage` is basic fuel consumption per 100 km (with the driver inside only). * Every additional passenger is increasing basic fuel consumption by 5%. * If the air conditioner is ON `True`, its increasing total (not basic) fuel consumption by 10%. ### Examples total_distance(70.0, 7.0, 0, False) ➞ 1000.0 total_distance(36.1, 8.6, 3, True) ➞ 331.8 total_distance(55.5, 5.5, 5, false) ➞ 807.3 ### Notes * `fuel` and `fuel_usage` are always greater than 1. * `passengers` are always greater or equal to 0. * Round your answer to the nearest tenth. """ def total_distance(fuel, fuel_usage, passengers, air_con): air = 0 if air_con: air = 1 return round((1000*fuel)/(fuel_usage*((0.05*passengers+1)*(air+10))),1)
b65a0d35db9f6025977c8d15e05fa76d1205eabb
ebfa76d74294fa64648146e6726cc69d3e25e23f
/parlai/mturk/tasks/light/light_chat_eval/worlds.py
1ecac1421555897bf2765a369fcd6ba4428df1e3
[ "MIT" ]
permissive
ritvik1512/ContrastiveLearning4Dialogue
17b770a8c777aca9f5be273ff41f02c4530f8ff3
873c20d21ee810750179356c353d2cce244db028
refs/heads/master
2023-03-12T15:17:43.635546
2021-02-24T07:20:27
2021-02-24T07:20:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
15,029
py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from parlai.mturk.core.worlds import MTurkOnboardWorld, MTurkTaskWorld from parlai.mturk.core.agents import ( MTURK_DISCONNECT_MESSAGE, RETURN_MESSAGE, TIMEOUT_MESSAGE, ) import time def is_disconnected(act): return 'text' in act and act['text'] in [ MTURK_DISCONNECT_MESSAGE, RETURN_MESSAGE, TIMEOUT_MESSAGE, ] class LightEvalTestWorld(MTurkOnboardWorld): """ Task world that gives a pre-determined task as a test. Assigns a blocking qualification if the worker fails the test. """ GESTURES = list( map( lambda x: 'gesture ' + x, [ 'applaud', 'blush', 'cry', 'dance', 'frown', 'gasp', 'grin', 'groan', 'growl', 'yawn', 'laugh', 'nod', 'nudge', 'ponder', 'pout', 'scream', 'shrug', 'sigh', 'smile', 'stare', 'wave', 'wink', ], ) ) block_act = {'id': 'System', 'text': "FAILED", 'task_data': {'turn': 'FAILED'}} def block_loop(self): print('Worker {} failed onboarding'.format(self.mturk_agent.worker_id)) self.mturk_agent.observe(self.block_act) self.mturk_agent.mturk_manager.soft_block_worker(self.mturk_agent.worker_id) act = self.mturk_agent.act() while not is_disconnected(act): self.mturk_agent.observe(self.block_act) act = self.mturk_agent.act() return True def __init__(self, opt, mturk_agent): self.mturk_agent = mturk_agent self.opt = opt self.did_complete = False self.wrong = 0 self.episodeDone = False def parley(self): self.mturk_agent.update_agent_id('TestEmote') first_act = { 'id': 'System', 'text': 'FIRST_TURN', 'task_data': { 'wrong': 0, 'turn': 'FIRST_TURN', 'actions': self.GESTURES, 'agent_id': 'Guard', 'text': 'Bahahaha that\'s a great one! Where\'d you get that from?', 'persona': 'I\'m a guard of the royal family. I have a loud laugh, ' 'and people hear it often as I love jokes. I stand up for ' 'rightousness, and have a short temper when it comes to ' 'insults against the king. Sometimes you need to knock ' 'some sense into people.', 'base_name': 'Guard', 'partner_name': 'Jester', 'setting': 'You are in the servants\' quarters. Many people are ' 'sitting around waiting to be called for services. It\'s ' 'cozy, but not cramped. A chest is here. A Jester is here. ' 'You are carrying a spear.', }, } self.mturk_agent.observe(first_act) act = self.mturk_agent.act() if is_disconnected(act): self.episodeDone = True return while act['text'] != 'gesture laugh': self.wrong += 1 if self.wrong > 3: return self.block_loop() first_act['task_data']['wrong'] = self.wrong self.mturk_agent.observe(first_act) act = self.mturk_agent.act() if is_disconnected(act): self.episodeDone = True return self.mturk_agent.update_agent_id('TestSpeech') correct_phrase = ( 'Now you better watch your tongue Jester. ' 'I won\'t have you badmouthing our king.' ) second_act = { 'id': 'System', 'text': 'SECOND_TURN', 'task_data': { 'wrong': 0, 'turn': 'SECOND_TURN', 'curr_message_context': {'action': 'gesture frown'}, 'actions': [ 'You think you can say whatever you want because we\'re alone?', 'Do you want to grab some tea?', 'What makes you think you can stand up to me, silly man? I have three times your strength. I have weapons to the teeth. What would make you think this was a good idea?', # NOQA 'Yeah that guy is something of a jerk', 'I just feel he doesn\'t have the best sense of humor...', 'Yeah landlubber, aye find this is a great hiding spot too.', 'If only you could say that to my face one more time. I\'ve missed you too much...', # NOQA 'One more beer for the gang? I feel like you would be the type to have plenty to drink.', # NOQA 'The servants quarters are pretty tightly packed aren\'t they?', 'I hate being an archer...', correct_phrase, 'Once upon a time I lived for that king, but nowadays I feel like I could go without him. Thats why I\'m here in the servants quarters.', # NOQA 'Hey there little fella, do you think you can get me some food?', 'I know you want more than just some of our wares, I\'m selling everything.', # NOQA 'One more song! I know you know a few more of them!', 'If that isn\'t a good joke, I don\'t know what is? Hahahahaha', 'Three fort nights too late, I will not stand for this! You should have been here sooner!', # NOQA 'Aw sweetheart, I just want you to know how much I care.', 'I have no spells for you! My wizardry is just for me and my acolytes.', # NOQA 'How did you find out the kinds of jokes that the king likes so much?', # NOQA ], }, } self.mturk_agent.observe(second_act) act = self.mturk_agent.act() if is_disconnected(act): self.episodeDone = True return while act['text'] != correct_phrase: self.wrong += 1 if self.wrong > 3: return self.block_loop() second_act['task_data']['wrong'] = self.wrong self.mturk_agent.observe(second_act) act = self.mturk_agent.act() if is_disconnected(act): self.episodeDone = True return self.mturk_agent.update_agent_id('TestAct') third_act = { 'id': 'System', 'text': 'THIRD_TURN', 'task_data': { 'wrong': 0, 'turn': 'THIRD_TURN', 'text': 'You gotta get your senses straight. Hyah! ' 'Consider this a warning...', 'actions': [ 'drop spear', 'wield spear', 'hug Jester', 'examine chest', 'get coins from chest', 'hit Jester', 'steal ball from Jester', ], }, } self.mturk_agent.observe(third_act) act = self.mturk_agent.act() if is_disconnected(act): self.episodeDone = True return if act['text'] != 'hit Jester': self.wrong += 1 if self.wrong > 3: return self.block_loop() third_act['task_data']['wrong'] = self.wrong self.mturk_agent.observe(third_act) act = self.mturk_agent.act() if is_disconnected(act): self.episodeDone = True return self.did_complete = True self.mturk_agent.observe( { 'id': 'System', 'text': 'FINAL_TURN', 'task_data': {'turn': 'FINAL_TURN', 'wrong': 0}, } ) self.episodeDone = True time.sleep(3) return class LightEvalTaskWorld(MTurkTaskWorld): """ Task world steps the worker through a conversation, giving them cands to select from as if they are a retrieval model. """ def __init__(self, opt, mturk_agents, sample, use_train, max_wrong): self.mturk_agent = mturk_agents[0] self.sample_acts = sample self.turn = 0 self.episodeDone = False self.completed = False self.selections = [] self.corrects = [ ex['labels'][0] if 'labels' in ex else ex['eval_labels'] for ex in sample ] self.use_train = use_train self.max_wrong = max_wrong def extract_from_flag(self, text, flag): return text.split(flag)[1] def get_current_turn_context(self): all_lines = [] for act in self.sample_acts[: self.turn]: lines = act['text'].split('\n') if lines[-1].startswith('_self'): lines = lines[:-1] all_lines += lines lines = all_lines + self.sample_acts[self.turn]['text'].split('\n') lines = list(filter(lambda x: len(x) > 0, lines)) setting_name = 'Setting withheld' setting_desc = 'Setting description withheld' self_name = 'Character withheld' partner_name = 'Partner withheld' self_persona = 'Persona withheld' self_act = '' self_text = 'Spoken text withheld' messages = [] self_message = {} partner_message = {} # Handle current turn context separately if lines[-1].startswith('_self'): self_line = lines[-1] lines = lines[:-1] # Extract current turn context if self_line.startswith('_self_say'): self_text = self.extract_from_flag(self_line, '_self_say') elif self_line.startswith('_self_act'): self_act = self.extract_from_flag(self_line, '_self_act') elif self_line.startswith('_self_emote'): self_act = self.extract_from_flag(self_line, '_self_emote') # Construct the rest of the context for line in lines: if line.startswith('_setting_name'): setting_name = self.extract_from_flag(line, '_setting_name') elif line.startswith('_setting_desc'): setting_desc = self.extract_from_flag(line, '_setting_desc') elif line.startswith('_partner_name'): partner_name = self.extract_from_flag(line, '_partner_name') elif line.startswith('_self_name'): self_name = self.extract_from_flag(line, '_self_name') elif line.startswith('_self_persona'): self_persona = self.extract_from_flag(line, '_self_persona') elif line.startswith('_partner'): if 'id' in self_message: messages.append(self_message) self_message = {} if line.startswith('_partner_say'): partner_message['id'] = partner_name partner_message['text'] = self.extract_from_flag( line, '_partner_say' ) if line.startswith('_partner_act'): partner_message['task_data'] = { 'action': self.extract_from_flag(line, '_partner_act') } if line.startswith('_partner_emote'): partner_message['task_data'] = { 'action': 'gesture ' + self.extract_from_flag(line, '_partner_emote') } elif line.startswith('_self'): if 'id' in partner_message: messages.append(partner_message) partner_message = {} if line.startswith('_self_say'): self_message['id'] = self_name self_message['text'] = self.extract_from_flag(line, '_self_say') if line.startswith('_self_act'): self_message['task_data'] = { 'action': self.extract_from_flag(line, '_self_act') } if line.startswith('_self_emote'): self_message['task_data'] = { 'action': 'gesture ' + self.extract_from_flag(line, '_self_emote') } if 'id' in partner_message: messages.append(partner_message) act = { 'id': 'System', 'text': 'TASK_DATA', 'task_data': { 'actions': sorted(self.sample_acts[self.turn]['label_candidates']), 'text': self_text, 'curr_message_context': {'action': self_act}, 'agent_id': self_name, 'base_name': self_name, 'persona': self_persona, 'partner_name': partner_name, 'setting': setting_desc, 'setting_name': setting_name, 'messages': messages, }, } return act def parley(self): self.mturk_agent.observe(self.get_current_turn_context()) act = self.mturk_agent.act() if is_disconnected(act): self.episodeDone = True return self.selections.append(act['text']) self.turn += 1 if self.turn == len(self.sample_acts): self.episodeDone = True self.completed = True wrong = 0 if self.use_train: for i in range(len(self.selections)): if self.selections[i] != self.corrects[i]: wrong += 1 if wrong > self.max_wrong: self.completed = False self.mturk_agent.mturk_manager.soft_block_worker( self.mturk_agent.worker_id ) print('Worker failed in train', self.mturk_agent.worker_id) def episode_done(self): return self.episodeDone def shutdown(self): self.mturk_agent.shutdown() def get_custom_task_data(self): # brings important data together for the task, to later be used for # creating the dataset. If data requires pickling, put it in a field # called 'needs-pickle'. return { 'selections': self.selections, 'corrects': self.corrects, 'episode': self.sample_acts, 'training': self.use_train, }
759453a9942cf164858e0646369370b634ed8630
751300a23242cfe393f86ff489339ffc81319efc
/speaker_spotting/speaker_spotting_oracle_cluster2-dev.py
9ee8cd16ac65ab6ad961b195a92ffb3714d90be2
[]
no_license
yinruiqing/speaker_spotting
bc349791a59c6caa2a840fb39aa1d4c1221f99e9
c2fbdcbf2885d9545abe8bf1e19b2c412b0680ee
refs/heads/master
2021-05-04T14:39:33.213405
2018-05-03T10:28:11
2018-05-03T10:28:11
120,207,231
2
4
null
null
null
null
UTF-8
Python
false
false
4,962
py
# coding: utf-8 # ```bash # $ pip install pyannote.metrics==1.4.1 # $ pip install pyannote.db.odessa.ami==0.5.1 # ``` import clustering import numpy as np from pyannote.audio.features import Precomputed precomputed = Precomputed('/vol/work1/bredin/speaker_spotting/embeddings') from pyannote.database import get_protocol, FileFinder protocol = get_protocol('AMI.SpeakerSpotting.MixHeadset', progress=True) # enrolment consists in summing all relevant embeddings def speaker_spotting_enrol(current_enrolment): enrol_with = current_enrolment['enrol_with'] embeddings = precomputed(current_enrolment) return np.sum(embeddings.crop(enrol_with), axis=0, keepdims=True) models = {} for current_enrolment in protocol.development_enrolment(): model_id = current_enrolment.pop('model_id') models[model_id] = speaker_spotting_enrol(current_enrolment) REFERENCE = {} for current_file in protocol.development(): uri = current_file['uri'] if uri not in REFERENCE: REFERENCE[uri] = Annotation(uri=uri) REFERENCE[uri].update(current_file['annotation']) # Trials from pyannote.core import SlidingWindow, SlidingWindowFeature from pyannote.audio.embedding.utils import cdist from pyannote.core import Annotation,Segment, Timeline # trial consists in comparing each embedding to the target embedding def speaker_spotting_try_system2(current_trial): """ speaker spotting system based on the oracle clustering system """ # target model # record the model embedding vector # and model id model = {} model_id = current_trial['model_id'] model_embedding = models[current_trial['model_id']] model['mid'] = model_id model['embedding'] = model_embedding # where to look for this target try_with = current_trial['try_with'] # precomputed embedding embeddings = precomputed(current_trial) # annotation of current file oracle_diarization = REFERENCE[current_trial['uri']].crop(current_trial['try_with']) # find index of first and last embedding fully included in 'try_with' indices = embeddings.sliding_window.crop(try_with, mode='strict') first, last = indices[0], indices[-1] onlineOracleClustering = clustering.OnlineOracleClustering(current_trial['uri']) start = embeddings.sliding_window[0].start data = np.zeros((len(embeddings.data), 1)) for i, (window, _) in enumerate(embeddings): # make sure the current segment is in 'try_with' if i < first: start = window.end continue if i > last: break so_far = Segment(start, window.end) current_annotation = oracle_diarization.crop(so_far) score = 0. for segment, _, label in current_annotation.itertracks(label=True): example = {} example['label'] = label example['segment'] = segment example['embedding'] = embeddings.crop(segment, mode='center') example['indice'] = [i] # compute the distance with model example['distances'] = {} example['distances'][model['mid']] = list(cdist(example['embedding'], model['embedding'], metric='cosine').flatten()) # update the online oracle clustering onlineOracleClustering.upadateCluster(example) if not onlineOracleClustering.empty(): # compute the current score min_dist = min(onlineOracleClustering.modelDistance(model)) score = max(score, 2-min_dist) data[i] = score start = window.end # transform scores to sliding window features data = data[first:last+1] sliding_window = SlidingWindow(start=embeddings.sliding_window[first].start, duration=embeddings.sliding_window.duration, step=embeddings.sliding_window.step) return SlidingWindowFeature(data, sliding_window) # Depending on the value of the detection threshold, the alarm will be triggered with a different latency. def process_score(scores): min_score = 0 res = [] for (window, score) in scores: if score > min_score: res.append([window.end, score[0]]) min_score = score[0] return res def process_trial(trial, scores): res = {} pscores = process_score(scores) res['uri'] = trial['uri'] res['model_id'] = trial['model_id'] res['scores'] = pscores return res llss = [] for current_trial in protocol.development_trial(): reference = current_trial.pop('reference') hypothesis = speaker_spotting_try_system2(current_trial) llss.append(process_trial(current_trial, hypothesis)) import simplejson as json with open('llss.txt', 'w') as outfile: json.dump(llss, outfile)
537b1e6af4b96fd09dba3bd4344c38fb66b9ca65
d4e9a392d7465a5c10417364dd91cd5dd3c5d935
/app/preprocess.py
d0fbfc80e4a532a5803e9d7632c2c1743c42d9e6
[]
no_license
MaayanLab/harmonizome-ml
045f866bac4683a23dd8a393e48f9f09bb08c35d
5cebd194d771b1d7eabeb65a1c81ce0c78bf7a80
refs/heads/master
2020-03-21T13:26:26.132737
2020-03-05T22:46:38
2020-03-05T22:46:38
138,605,770
1
0
null
null
null
null
UTF-8
Python
false
false
1,905
py
#!/usr/bin/env python import os import nbformat from flask import render_template from . import app from .model import build_fields from .runtime import ipynb_import_from_file from .template.nbtemplate_parse import parse_fields from .util import app_dir, globalContext @app.template_filter('filter') def reverse_filter(arr, attr, val): def maybe_eval(v): if callable(v): return v() return v return [v for v in arr if maybe_eval(getattr(v, attr)) == val] def main(): with app.test_request_context('/'): for _, _, files in os.walk(app_dir + '/templates/ipynb/'): for file in files: file, ext = os.path.splitext(file) if ext != '.ipynb': continue print('Building %s...' % (file)) nb = ipynb_import_from_file( app_dir + '/templates/ipynb/%s.ipynb' % (file) ) context = dict( filename=file, **globalContext, **build_fields(), ) fields = [field for cell in nb.cells for field in parse_fields( cell['source'], context, )] form_out = open(app_dir + '/templates/%s.html' % (file), 'w') try: if os.path.isfile(app_dir + '/templates/ipynb/%s.html' % (file)): # Custom template print( render_template('ipynb/%s.html' % (file), **context, fields=fields, ), file=form_out, ) else: # General template print( render_template('layout/ipynb.j2', **context, fields=fields, ), file=form_out, ) except Exception as e: print(e) finally: form_out.close() break
a99dbdf037c0559627072edbf0cd2f7e24983bb2
01f77b70dfb8817a913414fd25d9ed44ba3cd1f4
/oscar_invoices/urls.py
1bc931c736f24795068621e2e1d47790be762a5e
[]
no_license
luiz158/django-oscar-invoices
ca2cf8b70347000399c5316532aca7e52d0f77a3
9cc3425410641a95832bda93155e4d2bfa95ac7e
refs/heads/master
2023-07-02T22:21:03.318698
2020-10-06T16:01:02
2020-10-06T16:01:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
190
py
from django.urls import re_path from . import views app_name = "oscar_invoices" urlpatterns = [ re_path(r"invoice/(?P<pk>\d+)/", views.InvoicePreviewView.as_view(), name="invoice"), ]
40c7a96a66c6ce84439222e54679cc51149bc0ba
a86293a2033c06410aa8ed19bcbce8ca55ea3c55
/src/client_libraries/python/dynamics/customerinsights/api/models/cds_org_info.py
e414e4e2f31a4ed4afa9f160f9258d839d0aa435
[ "LicenseRef-scancode-generic-cla", "MIT" ]
permissive
ramotheonly/Dynamics365-CustomerInsights-Client-Libraries
a3ca28aa78d2b5509e65d9895ff4a0d42d05f611
e00632f7972717b03e0fb1a9e2667e8f9444a0fe
refs/heads/main
2023-08-02T08:09:04.063030
2021-09-28T22:42:15
2021-09-28T22:42:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,154
py
# coding=utf-8 # -------------------------------------------------------------------------- # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class CdsOrgInfo(Model): """The information for CDS Organization in BAP. :param friendly_name: Gets the Cds Organization Friendly Name :type friendly_name: str :param url: Gets the Cds Organization Url :type url: str :param state: Gets the Cds Organization State :type state: str :param location: Gets region location of Cds Organization :type location: str :param environment_sku: Gets SKU of Cds Organization :type environment_sku: str :param expiration_time: Gets the expiration time of CDS Organization if the SKU is Trial :type expiration_time: datetime :param max_allowed_expiration_time: Gets the max allowed expiration time of CDS Organization if the SKU is Trial :type max_allowed_expiration_time: datetime """ _attribute_map = { 'friendly_name': {'key': 'friendlyName', 'type': 'str'}, 'url': {'key': 'url', 'type': 'str'}, 'state': {'key': 'state', 'type': 'str'}, 'location': {'key': 'location', 'type': 'str'}, 'environment_sku': {'key': 'environmentSku', 'type': 'str'}, 'expiration_time': {'key': 'expirationTime', 'type': 'iso-8601'}, 'max_allowed_expiration_time': {'key': 'maxAllowedExpirationTime', 'type': 'iso-8601'}, } def __init__(self, **kwargs): super(CdsOrgInfo, self).__init__(**kwargs) self.friendly_name = kwargs.get('friendly_name', None) self.url = kwargs.get('url', None) self.state = kwargs.get('state', None) self.location = kwargs.get('location', None) self.environment_sku = kwargs.get('environment_sku', None) self.expiration_time = kwargs.get('expiration_time', None) self.max_allowed_expiration_time = kwargs.get('max_allowed_expiration_time', None)
b92defed3b5e8993f941de86c1d080d39aa48810
c73beb04d101ca8d98c9126b1c47b4f19cc35066
/week1/calculator.py
f7f372af8b41c269b4a182934923f6716834ac12
[]
no_license
fywest/python
a5ecf62e1f8cdf59c936da81b478c371f169aec4
cd97438679d8e129b3cb75d76226b16e7e7850ac
refs/heads/master
2022-12-13T06:15:04.021492
2019-05-28T19:21:18
2019-05-28T19:21:18
130,403,136
0
0
null
2022-12-08T05:08:55
2018-04-20T19:02:57
Python
UTF-8
Python
false
false
929
py
import sys if __name__=='__main__': if len(sys.argv)<2: print("please input salary amount") exit(1) print(sys.argv[1]) try: amount=int(sys.argv[1]) tax=0.0 amount_fortax=0.0 amount_fortax=amount-0-3500 if amount_fortax<=0: tax=0; elif amount_fortax>80000: tax=amount_fortax*0.45-13505 elif amount_fortax>55000: tax=amount_fortax*0.35-5505 elif amount_fortax>35000: tax=amount_fortax*0.30-2755 elif amount_fortax>9000: tax=amount_fortax*0.25-1005 elif amount_fortax>4500: tax=amount_fortax*0.20-555 elif amount_fortax>1500: tax=amount_fortax*0.1-105 else: tax=amount_fortax*0.03-0 print("{0:.2f}".format((tax))) exit(0) except ValueError: print("Parameter Error") exit(1)
ad796b01f49b7944d7c81a65fdb929ca1235c040
64ec8731553aa08c33373b212bbe431b1a23b97c
/test/util/util_spatial.py
74e2b2692deec5adc94efe1ca8e6186db7ba6e48
[ "BSD-3-Clause", "MIT" ]
permissive
ChetanNathwani/pyrolite
98947fde265b25beea839f24495d68bbdb726eed
8de9c67855305115517418e127bf26de84ff062d
refs/heads/master
2023-07-26T18:57:28.024540
2021-07-08T09:19:02
2021-07-08T09:19:02
367,300,779
0
0
NOASSERTION
2021-05-14T09:23:47
2021-05-14T08:35:50
null
UTF-8
Python
false
false
7,785
py
import unittest import pandas as pd import numpy as np import matplotlib.pyplot as plt try: import cartopy.crs as ccrs HAVE_CARTOPY = True except ImportError: HAVE_CARTOPY = False from pyrolite.util.spatial import * from pyrolite.util.math import isclose # nan-equalling isclose class TestGreatCircleDistance(unittest.TestCase): def setUp(self): self.ps = zip( np.array( [ ([0, 0], [0, 0]), # should be 0 ([-170, 0], [170, 0]), # should be 20 ([0, -90], [0, 90]), # should be 180 ([-45, 0], [45.0, 0.0]), # should be 90 ([-90, -90], [90.0, 90.0]), # should be 180 ([-90, -45], [90.0, 45.0]), # should be 180, rotation of above ([-90, -0], [90.0, 0.0]), # should be 180, rotation of above ([-60, 20], [45.0, 15.0]), ([-87.0, 67.0], [34, 14]), ([-45, -45], [45.0, 45.0]), ([-45, -30], [45.0, 30.0]), ] ), [0, 20, 180, 90, 180, 180, 180, None, None, None, None], ) def test_default(self): for ps, expect in self.ps: with self.subTest(ps=ps, expect=expect): distance = great_circle_distance(*ps) distance_r = great_circle_distance(*ps[::-1]) self.assertTrue(isclose(distance, distance_r)) if (ps[0] == ps[1]).all(): self.assertTrue(np.isclose(distance, 0.0)) """ ax = plt.subplot(111, projection=ccrs.Mollweide()) # ccrs.Orthographic(0, 0)) ax.figure.set_size_inches(8, 8) ax.stock_img() ax.plot( *np.array([*ps]).T, color="blue", marker="o", transform=ccrs.Geodetic() ) ax.plot(*np.array([*ps]).T, color="gray", transform=ccrs.PlateCarree()) plt.text( **np.array([*ps])[0] + [5, 5], "{:2.0f}".format(distance), horizontalalignment="left", fontsize=10, transform=ccrs.Geodetic() ) plt.show()""" def test_absolute(self): for ps, expect in self.ps: for absolute in [True, False]: with self.subTest(ps=ps, expect=expect, absolute=absolute): distance = great_circle_distance(*ps, absolute=absolute) distance_r = great_circle_distance(*ps[::-1], absolute=absolute) self.assertTrue(isclose(distance, distance_r)) if (ps[0] == ps[1]).all(): self.assertTrue(np.isclose(distance, 0.0)) def test_degrees(self): for ps, expect in self.ps: for degrees in [True, False]: with self.subTest(ps=ps, expect=expect, degrees=degrees): if not degrees: ps = np.deg2rad( ps ) # convert to radians to give sensible output distance = great_circle_distance(*ps, degrees=degrees) distance_r = great_circle_distance(*ps[::-1], degrees=degrees) self.assertTrue(isclose(distance, distance_r)) if (ps[0] == ps[1]).all(): self.assertTrue(np.isclose(distance, 0.0)) if expect is not None: self.assertTrue(isclose(distance, expect)) def test_Vicenty(self): method = "vicenty" for ps, expect in self.ps: with self.subTest(ps=ps, expect=expect, method=method): distance = great_circle_distance(*ps, method=method) distance_r = great_circle_distance(*ps[::-1], method=method) self.assertTrue(isclose(distance, distance_r)) if (ps[0] == ps[1]).all(): self.assertTrue(np.isclose(distance, 0.0)) if expect is not None: self.assertTrue(isclose(distance, expect)) def test_haversine(self): method = "haversine" for ps, expect in self.ps: with self.subTest(ps=ps, expect=expect, method=method): distance = great_circle_distance(*ps, method=method) distance_r = great_circle_distance(*ps[::-1], method=method) self.assertTrue(isclose(distance, distance_r)) if (ps[0] == ps[1]).all(): self.assertTrue(np.isclose(distance, 0.0)) if expect is not None: self.assertTrue(isclose(distance, expect)) def test_cosines(self): method = "cosines" for ps, expect in self.ps: with self.subTest(ps=ps, expect=expect, method=method): distance = great_circle_distance(*ps, method=method) distance_r = great_circle_distance(*ps[::-1], method=method) self.assertTrue(isclose(distance, distance_r)) if (ps[0] == ps[1]).all(): self.assertTrue(np.isclose(distance, 0.0)) if expect is not None: self.assertTrue(isclose(distance, expect)) class TestPieceWise(unittest.TestCase): def test_pieces(self): x1, x2 = 0.0, 10.0 segment_ranges = [(x1, x2)] for segments in [1, 2, 3]: with self.subTest(segments=segments): result = list(piecewise(segment_ranges, segments=segments)) self.assertTrue(len(result) == segments) def test_multiple_ranges(self): x1, x2 = 0.0, 10.0 segment_ranges = [(x1, x2), (x2, x1), (x1, x2)] segments = 2 result = list(piecewise(segment_ranges, segments=segments)) self.assertTrue(len(result) == segments ** len(segment_ranges)) class TestSpatioTemporalSplit(unittest.TestCase): def test_split(self): x1, x2 = 0, 10 segments = 2 params = dict(age=(0, 10), lat=(-10, 10), lo=(-90, 90)) result = list(spatiotemporal_split(segments=segments, **params)) self.assertTrue([isinstance(item, dict) for item in result]) self.assertTrue(len(result) == segments ** len(params)) class TestNSEW2Bounds(unittest.TestCase): def setUp(self): self.params = { k: v for (k, v) in zip( ["west", "south", "east", "north"], np.random.randint(1, 10, 4) ) } def test_conversion(self): result = NSEW_2_bounds(self.params) self.assertTrue(isinstance(result, list)) def test_order(self): order = ["minx", "maxx", "miny", "maxy"] result = NSEW_2_bounds(self.params, order=order) self.assertTrue(result[1] == self.params["east"]) class TestLevenshteinDistance(unittest.TestCase): def test_string(self): pairs = [ ("bar", "car"), ("bart", "car"), ("Saturday", "Sunday"), ("kitten", "sitting"), ] expect = [1, 2, 3, 3] for pair, exp in zip(pairs, expect): with self.subTest(pair=pair, exp=exp): dist = levenshtein_distance(*pair) self.assertTrue(dist == exp) def test_list(self): pairs = [ ([1, 2, 3], [1, 2, 2]), (["A", "B", "C"], ["A", "B"]), (["A", "B", "C", "D"], ["A", "E", "C"]), ] expect = [1, 1, 2] for pair, exp in zip(pairs, expect): with self.subTest(pair=pair, exp=exp): dist = levenshtein_distance(*pair) self.assertTrue(dist == exp) if __name__ == "__main__": unittest.main()
a0cb1eee0ce7279e519465175cbaff109ed4fb60
e3365a497b6f3afa7afc36381f7a7d1752f09610
/.venv/bin/jupyter-notebook
70ee2fde73f1c59914cde9b01c22c06f382ee6ce
[]
no_license
MohamadSheikhAlshabab/Chess_Board-
4229f7044831b79a8b8b6662a2aea5753d11c7dc
ee2e69d4567b69559584d0b074d91a25793db2f7
refs/heads/master
2022-12-08T05:10:59.482582
2020-09-04T16:34:18
2020-09-04T16:34:18
291,529,208
0
0
null
null
null
null
UTF-8
Python
false
false
250
#!/home/mohamad/401/chess_board/.venv/bin/python3 # -*- coding: utf-8 -*- import re import sys from notebook.notebookapp import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
9ad30ee9734df856d50edf0d943d9924d00ca67a
1c8bcd2d8e129a92e3328f47d2a452814c033327
/kaggle/otto-group-product-classification-challenge/script_30.py
2250ea4fb9cf07c4c72a3fb83dcb6c31ab8ca81f
[ "MIT" ]
permissive
josepablocam/janus-public
425334706f9a4519534779b7f089262cf5cf0dee
4713092b27d02386bdb408213d8edc0dc5859eec
refs/heads/main
2023-03-08T15:21:12.461762
2021-02-25T20:53:02
2021-02-25T20:53:02
314,606,918
0
0
null
null
null
null
UTF-8
Python
false
false
3,253
py
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import TfidfTransformer import lightgbm as lgb pd.set_option('display.max_columns', 100) pd.set_option('display.max_rows', 100) dtypes = {f"feat_{i}": "int32" for i in range(1, 94)} dtypes["id"] = "int32" dtypes["target"] = "string" df_train = pd.read_csv( "/kaggle/input/otto-group-product-classification-challenge/train.csv", dtype=dtypes ).set_index("id") class_to_order = dict() order_to_class = dict() for idx, col in enumerate(df_train.target.unique()): order_to_class[idx] = col class_to_order[col] = idx df_train["target_ord"] = df_train["target"].map(class_to_order).astype("int16") feature_columns = [ col for col in df_train.columns if col.startswith("feat_") ] target_column = ["target_ord"] X_train, X_valid, y_train, y_valid = train_test_split( df_train[feature_columns], df_train[target_column], test_size=0.3, random_state=42, stratify=df_train[target_column] ) tfidf = TfidfTransformer() tfidf_feature_train = tfidf.fit_transform(X_train).toarray().astype("float32") tfidf_feature_valid = tfidf.transform(X_valid).toarray().astype("float32") X_train_tfidf = np.hstack((X_train.values, tfidf_feature_train)) X_valid_tfidf = np.hstack((X_valid.values, tfidf_feature_valid)) params = { 'objective': "multiclass", 'metric': {"multi_logloss"}, 'num_class': 9, 'seed': 42, 'lambda_l1': 0.0036682603550733813, 'lambda_l2': 8.924549306063208, 'num_leaves': 113, 'feature_fraction': 0.48000000000000004, 'bagging_fraction': 1.0, 'bagging_freq': 0, 'min_child_samples': 20 } dataset_train = lgb.Dataset(X_train_tfidf, y_train) dataset_valid = lgb.Dataset(X_valid_tfidf, y_valid) booster = lgb.train( params, dataset_train, feature_name=( [f"feat_{i}" for i in range(1, 94)] + [f"tfidf_{i}" for i in range(1, 94)] ), num_boost_round=500, valid_sets=dataset_valid, early_stopping_rounds=20, ) best_iteration = booster.best_iteration print(best_iteration) lgb.plot_importance( booster, max_num_features=30, figsize=(12, 10), dpi=300, ); df_test = pd.read_csv( "/kaggle/input/otto-group-product-classification-challenge/test.csv", dtype=dtypes ).set_index("id") tfidf = TfidfTransformer() tfidf_feature_train_all = tfidf.fit_transform(df_train[feature_columns]).toarray().astype("float32") X_train_all_tfidf = np.hstack((df_train[feature_columns].values, tfidf_feature_train_all)) dataset_train_all = lgb.Dataset(X_train_all_tfidf, df_train[target_column]) booster = lgb.train( params, dataset_train_all, feature_name=( [f"feat_{i}" for i in range(1, 94)] + [f"tfidf_{i}" for i in range(1, 94)] ), num_boost_round=best_iteration, ) df_test tfidf_feature_test = tfidf.transform(df_test).toarray() X_test_tfidf = np.hstack((df_test[feature_columns].values, tfidf_feature_test)) pred = booster.predict(X_test_tfidf) for idx, col in order_to_class.items(): df_test[col] = pred[:,idx] df_test[[f"Class_{i}" for i in range(1, 10)]].to_csv('submission.csv', index=True)
ecbea36070dd712629e55b616938b75491ba10b9
3a8f8bef453f5eb01cc6f22d8bb140d7791024df
/command/tcommand.py
add4fd8bf60184b1755ced53d3534642b3e2870a
[]
no_license
thomasvs/python-command
23a68de2ce596a7eed5a2740a5ee1471f62ed569
4c31072e9f5f68e22c92cdc8f0a02d911b7e5fc0
refs/heads/master
2020-05-02T11:29:24.459355
2014-09-07T22:23:58
2014-09-07T22:23:58
5,668,726
0
3
null
null
null
null
UTF-8
Python
false
false
5,146
py
# -*- Mode: Python -*- # vi:si:et:sw=4:sts=4:ts=4 """ A helper class for Twisted commands. """ from twisted.internet import defer from twisted.python import failure import command class TwistedCommand(command.Command): """ I am a Command that integrates with Twisted and its reactor. Instead of implementing the do() method, subclasses should implement a doLater() method which returns a deferred. """ def installReactor(self, reactor=None): """ Override me to install your own reactor in the parent ReactorCommand. """ self.debug('installing reactor %r in ancestor ReactorCommand', reactor) c = self while c.parentCommand and not isinstance(c, ReactorCommand): c = c.parentCommand if not c: raise AssertionError( '%r does not have a parent ReactorCommand' % self) self.debug('installing reactor %r in ancestor ReactorCommand %r', reactor, c) c.installReactor(reactor) ### command.Command implementations def do(self, args): self.debug('%r: installing reactor using method %r', self, self.installReactor) self.installReactor() d = self.doLater(args) return d ### command.TwistedCommand methods to implement by subclasses def doLater(self, args): """ @rtype: L{defer.Deferred} """ raise NotImplementedError class ReactorCommand(command.Command): """ I am a Command that runs a reactor for its subcommands if they return a L{defer.Deferred} from their doLater() method. """ reactor = None returnValue = None _reactorRunning = False def installReactor(self, reactor=None): """ Override me to install your own reactor. """ self.debug('ReactorCommand: installing reactor %r', reactor) if not reactor: from twisted.internet import reactor self.reactor = reactor ### command.Command overrides def parse(self, argv): """ I will run a reactor to get the non-deferred result. """ self.debug('parse: chain up') try: r = command.Command.parse(self, argv) except Exception: # get a full traceback to debug here f = failure.Failure() self.warning('Exception during %r.parse: %r\n%s\n', self, f.getErrorMessage(), f.getTraceback()) self.stderr.write('Exception: %s\n' % f.value) raise self.debug('parse: result %r', r) # if it's not a deferred, return the result as is if not isinstance(r, defer.Deferred): return r # We have a deferred, so we need to run a reactor d = r # child commands could have installed a reactor if not self.reactor: self.installReactor() def parseCb(ret): if ret is None: self.debug('parse returned None, defaults to exit code 0') ret = 0 elif ret: self.debug('parse returned %r' % ret) elif self.parser.help_printed or self.parser.usage_printed: ret = 0 self.debug('parse: cb: done') self.returnValue = ret if self._reactorRunning: self._reactorRunning = False self.debug('stopping reactor') self.reactor.stop() return ret def parseEb(failure): self.debug('parse: eb: failure: %r\n%s\n', failure.getErrorMessage(), failure.getTraceback()) # we can get here even before we run the reactor below; # so schedule a stop instead of doing it here # self.reactor.stop() self.reactor.callLater(0, self.reactor.stop) if failure.check(command.CommandExited): self.stderr.write(failure.value.output + '\n') reason = failure.value.status self.returnValue = reason return reason self.warning('errback: %r', failure.getErrorMessage()) self.stderr.write('Failure: %s\n' % failure.value) self.returnValue = failure # we handled it by storing it for reraising, so don't # return it return d.addCallback(parseCb) d.addErrback(parseEb) def raiseIfFailure(): if isinstance(self.returnValue, failure.Failure): raise self.returnValue.value if self.returnValue is not None: self.debug('got return value before reactor ran, returning %r' % self.returnValue) raiseIfFailure() return self.returnValue self.debug('running reactor %r', self.reactor) self._reactorRunning = True self.reactor.run() self.debug('ran reactor, got %r' % self.returnValue) raiseIfFailure() self.debug('ran reactor, returning %r' % self.returnValue) return self.returnValue
[ "thomas (at) apestaart (dot) org" ]
thomas (at) apestaart (dot) org
79f50a378ab45f7801f359d695045b821ff47443
b7125b27e564d2cc80a2ce8d0a6f934aa22c8445
/.history/sudoku_20201101154742.py
c093972aa62bcc31bf99b51feb72a76950605747
[]
no_license
JensVL96/Puzzle-solver-for-fun
4c15dcd570c3705b7ac555efb56b52913e81083c
6d8a4378a480372213a596a336a4deca727a00fc
refs/heads/master
2021-07-15T05:19:42.185495
2020-11-08T13:59:49
2020-11-08T13:59:49
224,855,888
1
0
null
null
null
null
UTF-8
Python
false
false
4,829
py
# -*- coding: utf-8 -*- from __future__ import print_function from config import * from create_board import * from solve_bloard import * from display_board import * from string import * from math import floor import pygame as pg import numpy as np # For error highlighting def set_highlight(row, col, blk, lock): global input_lock input_lock = lock global row_index row_index = row global col_index col_index = blk global blk_index blk_index = col def get_cord(pos): global box_index_x box_index_x = (pos[0] - TOP_LX)//BLOCK_SIZE global box_index_y box_index_y = (pos[1] - TOP_LY)//BLOCK_SIZE def valid(grid, x, y, val, increase): input_lock = 0 row = col = blk = (0, 0) for index in range(9): # Check if value in column if grid[x][index] == val: col = (x, index) input_lock = 1 # Check if value in row if grid[index][y] == val: row = (index, y) input_lock = 1 # Finds the block index_x = x // 3 # integer division index_y = y // 3 # Check if value in block for i in range(index_x * 3, index_x * 3 + 3): for j in range (index_y * 3, index_y * 3 + 3): if grid[i][j] == val: blk = (i, j) input_lock = 1 if input_lock == 1: set_highlight(row, col, blk, input_lock) return False return True class Main(): def __init__(self): self.board = [] self.run() def run(self): pg.init() self.screen = pg.display.set_mode(SCREEN_RES) pg.display.set_caption('Sudoku solver') display = Display_board(self.screen) flag1 = 0 val = 0 pos = (0, 0) blink = False input_lock = 0 get_cord((0, 0)) set_highlight((0, 0), (0, 0), (0, 0), input_lock) board = create_board().board while 1: for event in pg.event.get(): if event.type == pg.QUIT or (event.type == pg.KEYDOWN and event.key == pg.K_ESCAPE): exit() if event.type == pg.MOUSEBUTTONDOWN: flag1 = 1 pos = pg.mouse.get_pos() get_cord(pos) blink = True if event.type == pg.KEYDOWN and input_lock != 1: if event.key == pg.K_1: val = 1 if event.key == pg.K_2: val = 2 if event.key == pg.K_3: val = 3 if event.key == pg.K_4: val = 4 if event.key == pg.K_5: val = 5 if event.key == pg.K_6: val = 6 if event.key == pg.K_7: val = 7 if event.key == pg.K_8: val = 8 if event.key == pg.K_9: val = 9 elif event.type == pg.KEYDOWN and input_lock == 1: if event.key == pg.K_BACKSPACE: val = 0 set_highlight((0, 0), (0, 0), (0, 0), 0) if val != 0: display.draw_val(val, box_index_x, box_index_y) if valid(board, int(box_index_x), int(box_index_y), val, display): board[int(box_index_x)][int(box_index_y)] = val else: board[int(box_index_x)][int(box_index_y)] = 0 val = 0 pg.draw.rect(self.screen, BLACK, (0, 0, self.screen.get_width(), self.screen.get_height())) self.screen.fill(BEIGE) display.draw(board) if blink: cell = display.find_cell(box_index_x, box_index_y) alpha = display.blink() print("start pos x: ", floor(cell[0]), "start pos y: ", floor(cell[1]), "end pos x: ", floor(cell[2]), "end pos y: ", floor(cell[3])) cell_width = int(cell[2]) cell_height = int(cell[3]) start_pos_X = int(cell[0]) start_pos_y = int(cell[1]) rect = pg.Surface((cell_width, cell_height)) rect.set_alpha(alpha) # pg.draw.rect(self.screen, GREEN, cell) self.screen.blit(rect, (rect.x, rect.y)) # print(box_index_x, box_index_y) if input_lock == 1: display.update(board, row_index, col_index, blk_index) # display.draw_box() pg.display.update() self.solution = solve_board(board) self.solution.assign_flags(board) if __name__ == '__main__': Main()
17154043547b14982f365d99f3c9ecf178e27f2c
700d4302a675b6aaaa7514a87d87ccd614051712
/electrum_dash/gui/qt/dash_net_dialog.py
99e82390ee338bfa47233139df37e07b96842c65
[ "MIT" ]
permissive
bynicolas/electrum-pac
ce37033c6274f671674bf5d707010d31dab254b5
8c61fc2e14fc307f40d1cc785f2a604ab4a2be04
refs/heads/master
2023-03-11T14:29:36.624470
2021-02-23T23:25:20
2021-02-23T23:25:20
340,194,875
0
0
MIT
2021-02-24T00:02:54
2021-02-18T22:32:44
Python
UTF-8
Python
false
false
17,492
py
# -*- coding: utf-8 -*- import time from enum import IntEnum from PyQt5.QtCore import Qt, QTimer from PyQt5.QtWidgets import (QGridLayout, QDialog, QVBoxLayout, QCheckBox, QTabWidget, QWidget, QLabel, QSpinBox, QLineEdit, QTreeWidget, QTreeWidgetItem, QMenu, QHeaderView) from electrum_dash import constants from electrum_dash.dash_net import MIN_PEERS_LIMIT, MAX_PEERS_LIMIT from electrum_dash.i18n import _ from electrum_dash.logging import get_logger from .util import Buttons, CloseButton _logger = get_logger(__name__) MATCH_STR_CS = Qt.MatchFixedString | Qt.MatchCaseSensitive class DashPeersWidget(QTreeWidget): class Columns(IntEnum): PEER = 0 UAGENT = 1 PING = 2 READ = 3 WRITE = 4 def __init__(self, parent): QTreeWidget.__init__(self) self.parent = parent self.setHeaderLabels([_('Peer'), _('User Agent'), _('Ping time (ms)'), _('Received KiB'), _('Sent KiB')]) h = self.header() mode = QHeaderView.ResizeToContents h.setSectionResizeMode(self.Columns.PEER, mode) h.setSectionResizeMode(self.Columns.UAGENT, mode) h.setSectionResizeMode(self.Columns.PING, mode) h.setSectionResizeMode(self.Columns.READ, mode) h.setSectionResizeMode(self.Columns.WRITE, mode) self.setContextMenuPolicy(Qt.CustomContextMenu) self.customContextMenuRequested.connect(self.create_menu) def create_menu(self, position): item = self.currentItem() if not item: return dash_net = self.parent.network.dash_net peer = item.text(self.Columns.PEER) menu = QMenu() menu.addAction(_('Disconnect'), lambda: self.disconnect(peer)) if not dash_net.use_static_peers: menu.addAction(_('Ban'), lambda: self.disconnect(peer, 'ban from gui')) menu.exec_(self.viewport().mapToGlobal(position)) def disconnect(self, peer, msg=None): dash_net = self.parent.network.dash_net dash_peer = dash_net.peers.get(peer) if dash_peer: if msg: dash_peer.ban(msg) dash_peer.close() def update(self, event=None, args=None): dash_net = self.parent.network.dash_net peers = dash_net.peers if event is None: self.clear() for peer, dash_peer in sorted(list(peers.items())): self.add_peer(peer, dash_peer) elif event == 'dash-peers-updated': action, peer = args if action == 'added': dash_peer = peers.get(peer) if dash_peer: self.add_peer(peer, dash_peer, insert=True) elif action == 'removed': items = self.findItems(peer, MATCH_STR_CS) if items: idx = self.indexOfTopLevelItem(items[0]) self.takeTopLevelItem(idx) elif event == 'dash-net-activity': for peer, dash_peer in sorted(list(peers.items())): items = self.findItems(peer, MATCH_STR_CS) if items: ping_time = str(dash_peer.ping_time) read_kbytes = str(round(dash_peer.read_bytes/1024, 1)) write_kbytes = str(round(dash_peer.write_bytes/1024, 1)) for i in items: i.setText(self.Columns.PING, ping_time) i.setText(self.Columns.READ, read_kbytes) i.setText(self.Columns.WRITE, write_kbytes) super().update() def add_peer(self, peer, dash_peer, insert=False): dash_net = self.parent.network.dash_net peers = dash_net.peers v = dash_peer.version user_agent = v.user_agent.decode('utf-8') ping_time = str(dash_peer.ping_time) read_kbytes = str(round(dash_peer.read_bytes/1024, 1)) write_kbytes = str(round(dash_peer.write_bytes/1024, 1)) peers_item = QTreeWidgetItem([peer, user_agent, ping_time, read_kbytes, write_kbytes]) if peers: sorted_peers = sorted(list(peers.keys())) if peer in sorted_peers: idx = sorted_peers.index(peer) self.insertTopLevelItem(idx, peers_item) else: self.addTopLevelItem(peers_item) else: self.addTopLevelItem(peers_item) class SporksWidget(QTreeWidget): class Columns(IntEnum): NAME = 0 ACTIVE = 1 VALUE = 2 DEFAULT = 3 def __init__(self, parent): QTreeWidget.__init__(self) self.parent = parent self.setHeaderLabels([_('Spork'), _('Active'), _('Value'), '']) h = self.header() mode = QHeaderView.ResizeToContents h.setSectionResizeMode(self.Columns.NAME, mode) h.setSectionResizeMode(self.Columns.ACTIVE, mode) h.setSectionResizeMode(self.Columns.VALUE, mode) h.setSectionResizeMode(self.Columns.DEFAULT, mode) def update(self): dash_net = self.parent.network.dash_net sporks_dict = dash_net.sporks.as_dict() self.clear() for k in sorted(list(sporks_dict.keys())): name = sporks_dict[k]['name'] active = str(sporks_dict[k]['active']) value = str(sporks_dict[k]['value']) default = _('Default') if sporks_dict[k]['default'] else '' spork_item = QTreeWidgetItem([name, active, value, default]) self.addTopLevelItem(spork_item) super().update() class BanlistWidget(QTreeWidget): class Columns(IntEnum): PEER = 0 UA = 1 MSG = 2 AT = 3 def __init__(self, parent): QTreeWidget.__init__(self) self.parent = parent self.setHeaderLabels([_('Peer'), _('User Agent'), _('Message'), _('Ban time')]) h = self.header() mode = QHeaderView.ResizeToContents h.setSectionResizeMode(self.Columns.PEER, mode) h.setSectionResizeMode(self.Columns.UA, mode) h.setSectionResizeMode(self.Columns.MSG, mode) h.setSectionResizeMode(self.Columns.AT, mode) self.setContextMenuPolicy(Qt.CustomContextMenu) self.customContextMenuRequested.connect(self.create_menu) def create_menu(self, position): item = self.currentItem() if not item: return peer = item.text(self.Columns.PEER) menu = QMenu() menu.addAction(_('Remove'), lambda: self.unban(peer)) menu.exec_(self.viewport().mapToGlobal(position)) def unban(self, peer): dash_net = self.parent.network.dash_net if peer: dash_net._remove_banned_peer(peer) def update(self, event=None, args=None): dash_net = self.parent.network.dash_net banlist = dash_net.banlist if event is None: self.clear() for peer in sorted(list(banlist.keys())): self.add_peer(peer) else: action, peer = args if action == 'added': self.add_peer(peer, insert=True) elif action == 'removed': items = self.findItems(peer, MATCH_STR_CS) if items: idx = self.indexOfTopLevelItem(items[0]) self.takeTopLevelItem(idx) super().update() def add_peer(self, peer, insert=False): dash_net = self.parent.network.dash_net banlist = dash_net.banlist ua = banlist[peer]['ua'] at = str(time.ctime(banlist[peer]['at'])) msg = str(banlist[peer]['msg']) banlist_item = QTreeWidgetItem([peer, ua, msg, at]) if banlist: sorted_banlist = sorted(list(banlist.keys())) if peer in sorted_banlist: idx = sorted_banlist.index(peer) self.insertTopLevelItem(idx, banlist_item) else: self.addTopLevelItem(banlist_item) else: self.addTopLevelItem(banlist_item) class DashNetDialogLayout(object): def __init__(self, network, config, parent): self.parent = parent self.network = network self.config = config self.tabs = tabs = QTabWidget() dash_net_tab = QWidget() sporks_tab = QWidget() banlist_tab = QWidget() bls_speed_tab = QWidget() tabs.addTab(dash_net_tab, _('Dash Network')) tabs.addTab(sporks_tab, _('Sporks')) tabs.addTab(banlist_tab, _('Banlist')) if parent.is_testnet: tabs.addTab(bls_speed_tab, _('BLS Speed')) self.min_t = 1000 self.max_t = 0 self.n_measures = -1 def min_str(): return _('Min time') + f': {self.min_t}' def max_str(): return _('Max time') + f': {self.max_t}' self.min_label = QLabel(min_str()) self.max_label = QLabel(max_str()) vbox = QVBoxLayout(bls_speed_tab) vbox.addWidget(self.min_label) vbox.addWidget(self.max_label) self.timer = QTimer() self.timer.setInterval(500) def update_bls_speed(): if self.parent.isVisible() and bls_speed_tab.isVisible(): start_t = time.time() res = self.network.dash_net.test_bls_speed() res_t = time.time() - start_t _logger.info(f'Test BLS Speed: res={res}, time={res_t}') self.min_t = min(self.min_t, res_t) self.max_t = max(self.max_t, res_t) self.min_label.setText(min_str()) self.max_label.setText(max_str()) self.n_measures += 1 if self.n_measures >= 100: self.timer.stop() self.timer.timeout.connect(update_bls_speed) def on_tabs_current_changed(*args): cur_widget = self.tabs.currentWidget() if cur_widget == bls_speed_tab and self.n_measures < 0: self.n_measures = 0 self.timer.start() tabs.currentChanged.connect(on_tabs_current_changed) # Dash Network tab grid = QGridLayout(dash_net_tab) grid.setSpacing(8) dash_net = self.network.dash_net net = self.network # row 0 self.both_kb = QLabel() self.read_kb = QLabel() self.write_kb = QLabel() grid.addWidget(self.both_kb, 0, 0, 1, 2) grid.addWidget(self.read_kb, 0, 2, 1, 2) grid.addWidget(self.write_kb, 0, 4, 1, 2) self.run_dash_net_cb = QCheckBox(_('Enable Dash Network')) self.run_dash_net_cb.setChecked(self.config.get('run_dash_net', True)) run_dash_net_modifiable = self.config.is_modifiable('run_dash_net') self.run_dash_net_cb.setEnabled(run_dash_net_modifiable) def on_run_dash_net_cb_clicked(run_dash_net): self.config.set_key('run_dash_net', run_dash_net, True) net.run_from_another_thread(net.dash_net.set_parameters()) self.run_dash_net_cb.clicked.connect(on_run_dash_net_cb_clicked) grid.addWidget(self.run_dash_net_cb, 0, 6, 1, 2) # row 1 is_cmd_dash_peers = dash_net.is_cmd_dash_peers use_static_peers = dash_net.use_static_peers static_peers_label = QLabel(_('Static Peers:')) grid.addWidget(static_peers_label, 1, 0, 1, 1) self.dash_peers_e = QLineEdit() self.dash_peers_e.setText(dash_net.dash_peers_as_str()) self.dash_peers_e.setReadOnly(is_cmd_dash_peers) def on_dash_peers_editing_end(): if is_cmd_dash_peers: return res = dash_net.dash_peers_from_str(self.dash_peers_e.text()) if type(res) == str: self.err_label.setText(f'Error: {res}') else: self.config.set_key('dash_peers', res, True) if dash_net.use_static_peers: net.run_from_another_thread(net.dash_net.set_parameters()) self.dash_peers_e.editingFinished.connect(on_dash_peers_editing_end) def on_dash_peers_changed(): self.err_label.setText('') self.dash_peers_e.textChanged.connect(on_dash_peers_changed) grid.addWidget(self.dash_peers_e, 1, 1, 1, 5) self.use_static_cb = QCheckBox(_('Use Static Peers')) self.use_static_cb.setChecked(use_static_peers) self.use_static_cb.setEnabled(not is_cmd_dash_peers) def on_use_static_cb_clicked(use_static): self.config.set_key('dash_use_static_peers', use_static, True) net.run_from_another_thread(net.dash_net.set_parameters()) self.use_static_cb.clicked.connect(on_use_static_cb_clicked) grid.addWidget(self.use_static_cb, 1, 6, 1, 2) # row 2 with error msg self.err_label = QLabel('') self.err_label.setObjectName('err-label') grid.addWidget(self.err_label, 2, 0, 1, -1) # row 3 self.status_label = QLabel('') grid.addWidget(self.status_label, 3, 0, 1, 6) max_peers_label = _('Max Peers:') grid.addWidget(QLabel(max_peers_label), 3, 6, 1, 1) self.max_peers = QSpinBox() self.max_peers.setValue(dash_net.max_peers) self.max_peers.setRange(MIN_PEERS_LIMIT, MAX_PEERS_LIMIT) grid.addWidget(self.max_peers, 3, 7, 1, 1) def on_change_max_peers(max_peers): dash_net.max_peers = max_peers self.max_peers.valueChanged.connect(on_change_max_peers) # row 4 self.dash_peers_list = DashPeersWidget(self) grid.addWidget(self.dash_peers_list, 4, 0, 1, -1) # Dash Sporks tab vbox = QVBoxLayout(sporks_tab) sporks_label = QLabel(_('Dash Sporks Values')) self.sporks_list = SporksWidget(self) vbox.addWidget(sporks_label) vbox.addWidget(self.sporks_list) # Dash Banlist tab vbox = QVBoxLayout(banlist_tab) banlist_label = QLabel(_('Banned Dash Peers')) self.banlist_list = BanlistWidget(self) vbox.addWidget(banlist_label) vbox.addWidget(self.banlist_list) # init layout vbox = QVBoxLayout() vbox.addWidget(tabs) self.layout_ = vbox self.update() def update(self, event=None, args=None): is_visible = self.parent.isVisible() if event is not None and not is_visible: return if event is None: self.update_dash_net_tab() self.sporks_list.update() self.banlist_list.update() elif event in ['dash-peers-updated', 'dash-net-activity']: self.update_dash_net_tab(event, args) elif event == 'sporks-activity': self.sporks_list.update() elif event == 'dash-banlist-updated': self.banlist_list.update(event, args) def update_dash_net_tab(self, event=None, args=None): dash_net = self.network.dash_net self.dash_peers_list.update(event, args) if event in [None, 'dash-net-activity']: read_bytes = dash_net.read_bytes write_bytes = dash_net.write_bytes both_kb = round((write_bytes + read_bytes)/1024, 1) read_kb = round(read_bytes/1024, 1) write_kb = round(write_bytes/1024, 1) self.both_kb.setText(_('Total') + f': {both_kb} KiB') self.read_kb.setText(_('Received') + f': {read_kb} KiB') self.write_kb.setText(_('Sent') + f': {write_kb} KiB') if event in [None, 'dash-peers-updated']: status = _('Connected Peers') + f': {len(dash_net.peers)}' self.status_label.setText(status) def layout(self): return self.layout_ class DashNetDialog(QDialog): def __init__(self, network, config, dash_net_sobj): QDialog.__init__(self) self.setWindowTitle(_('Dash Network')) self.setMinimumSize(700, 400) self.is_testnet = constants.net.TESTNET self.network = network self.dnlayout = DashNetDialogLayout(network, config, self) self.dash_net_sobj = dash_net_sobj vbox = QVBoxLayout(self) vbox.addLayout(self.dnlayout.layout()) vbox.addLayout(Buttons(CloseButton(self))) self.dash_net_sobj.dlg.connect(self.on_updated) def show(self): super(DashNetDialog, self).show() if self.network: self.network.dash_net.register_callback(self.on_dash_net, ['dash-peers-updated', 'dash-net-activity', 'sporks-activity', 'dash-banlist-updated']) def closeEvent(self, e): if self.dnlayout.err_label.text(): e.ignore() if self.network: self.network.dash_net.unregister_callback(self.on_dash_net) def on_dash_net(self, event, *args): self.dash_net_sobj.dlg.emit(event, args) def on_updated(self, event=None, args=None): self.dnlayout.update(event, args)
d4533f4cdf53a8a902ef0e5e52f13d6ae690bf32
cfc3fa658f826d02308453e557d82758895399c2
/datasets/id_newspapers_2018/id_newspapers_2018.py
96a294e8fc22502654396c9ba5f85efe68734ddd
[ "Apache-2.0", "CC-BY-4.0" ]
permissive
meehawk/datasets
cac530ec0e17514c01cdff30302521d6303ed93b
b70141e3c5149430951773aaa0155555c5fb3e76
refs/heads/master
2023-03-29T12:51:54.700891
2021-04-08T17:22:53
2021-04-08T17:22:53
355,996,122
9
0
Apache-2.0
2021-04-08T17:31:03
2021-04-08T17:31:02
null
UTF-8
Python
false
false
4,123
py
# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Indonesian Newspapers 2018""" from __future__ import absolute_import, division, print_function import glob import json import os import datasets logger = datasets.logging.get_logger(__name__) _CITATION = """\ @inproceedings{id_newspapers_2018, author = {}, title = {Indonesian Newspapers 2018}, year = {2019}, url = {https://github.com/feryandi/Dataset-Artikel}, } """ _DESCRIPTION = """\ The dataset contains around 500K articles (136M of words) from 7 Indonesian newspapers: Detik, Kompas, Tempo, CNN Indonesia, Sindo, Republika and Poskota. The articles are dated between 1st January 2018 and 20th August 2018 (with few exceptions dated earlier). The size of uncompressed 500K json files (newspapers-json.tgz) is around 2.2GB, and the cleaned uncompressed in a big text file (newspapers.txt.gz) is about 1GB. The original source in Google Drive contains also a dataset in html format which include raw data (pictures, css, javascript, ...) from the online news website """ _HOMEPAGE = "https://github.com/feryandi/Dataset-Artikel" _LICENSE = "Creative Commons Attribution-ShareAlike 4.0 International Public License" _URLs = ["http://cloud.uncool.ai/index.php/s/kF83dQHfGeS2LX2/download"] class IdNewspapers2018Config(datasets.BuilderConfig): """BuilderConfig for IdNewspapers2018""" def __init__(self, **kwargs): """BuilderConfig for IdNewspapers2018. Args: **kwargs: keyword arguments forwarded to super. """ super(IdNewspapers2018Config, self).__init__(**kwargs) class IdNewspapers2018(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ IdNewspapers2018Config( name="id_newspapers_2018", version=VERSION, description="IdNewspapers2018 dataset", ), ] def _info(self): features = datasets.Features( { "id": datasets.Value("string"), "url": datasets.Value("string"), "date": datasets.Value("string"), "title": datasets.Value("string"), "content": datasets.Value("string"), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): my_urls = _URLs[0] data_dir = dl_manager.download_and_extract(my_urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "article_dir": os.path.join(data_dir, "newspapers"), "split": "train", }, ) ] def _generate_examples(self, article_dir, split): logger.info("⏳ Generating %s examples from = %s", split, article_dir) id = 0 for path in sorted(glob.glob(os.path.join(article_dir, "**/*.json"), recursive=True)): with open(path, encoding="utf-8") as f: data = json.load(f) yield id, { "id": str(id), "url": data["url"], "date": data["date"], "title": data["title"], "content": data["content"], } id += 1
94e2c2a401b125a43cee98d701cd7ec13826b551
773dc03117f8b0d51f7a10e2a4577229c8be6ba3
/migrations/models/36_20230108160220_update.py
825e7924ebf0640cde169d23190cb1cc5555254b
[ "LicenseRef-scancode-unknown-license-reference", "MIT" ]
permissive
tcprescott/sahasrahbot
382cdff058d63feb5f42dbbd7729eb4b08c4d1bd
64a125d948873d0faa5ea3f2d306075ad9e013be
refs/heads/master
2023-08-31T15:33:01.533206
2023-08-31T01:58:48
2023-08-31T01:58:48
178,310,225
22
43
MIT
2023-09-01T08:45:52
2019-03-29T01:34:45
Python
UTF-8
Python
false
false
380
py
from tortoise import BaseDBAsyncClient async def upgrade(db: BaseDBAsyncClient) -> str: return """ ALTER TABLE `ranked_choice_election` ADD `private` BOOL NOT NULL DEFAULT 0; DROP TABLE IF EXISTS `twitch_channels`;""" async def downgrade(db: BaseDBAsyncClient) -> str: return """ ALTER TABLE `ranked_choice_election` DROP COLUMN `private`;"""
c2ee27335ec1db4df52d38e9bcdabfb39e334cc2
8239e45b6b031839dcd464bc80a6c8d17ed2f7b7
/cloudarmy/contrib/conditions/environment.py
53177af7d135ab208dc6fbe1359908ca766b4a45
[]
no_license
geeknam/cloudarmy
401efaee8c8e5e916ddff757edcc657698d9687f
4363d5bdf8719a8f8bab8104c8ea7d2247d15746
refs/heads/master
2021-07-11T19:44:41.769661
2016-03-14T12:43:47
2016-03-14T12:43:47
52,852,867
3
1
null
2021-03-25T21:40:17
2016-03-01T06:11:43
Python
UTF-8
Python
false
false
278
py
from troposphere import Ref, Equals class EnvironmentCondition(object): conditions = { "IsProduction": Equals( Ref("EnvironmentType"), "production" ), "IsStaging": Equals( Ref("EnvironmentType"), "staging" ), }
3fe21eecf2598ae7479b29ddce155256c9cd28be
225543bcaa194360aa66c738a99b7ad5c291434b
/main_210610.py
2a8f1f54bfe2a777202b6b4753473944607604b4
[]
no_license
m0100434/zendlijsten
f0eecf12ab3fc90c1db9b5c22f1163a92dcdf6f7
171e1c427db71dad01408072081c85035c57a2b2
refs/heads/main
2023-06-19T05:04:31.619139
2021-07-17T07:51:46
2021-07-17T07:51:46
349,770,868
0
0
null
null
null
null
UTF-8
Python
false
false
10,358
py
# -*- coding: utf-8 -*- """ Created on Wed Jan 6 11:56:59 2021 @author: ArxXi """ from selenium import webdriver import time from selenium import webdriver from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.by import By from selenium.common.exceptions import TimeoutException from selenium.common.exceptions import NoSuchElementException import pickle from datetime import date def save_cookie(driver, path): with open(path, 'wb') as filehandler: pickle.dump(driver.get_cookies(), filehandler) def load_cookie(driver, path): with open(path, 'rb') as cookiesfile: cookies = pickle.load(cookiesfile) for cookie in cookies: driver.add_cookie(cookie) def remove_entry(index): ourtime.pop(index-entries_deleted) # print("time which is going to be deleted = "+ ourtime[index]) # ourtime[index] = "-" """ Een v VTM v Vier v Canvas v Vitaya = vtm 4 v Q2 v Vijf v CAZ = vtm 3 v Zes v Ketnet v La Une v RTL-TVI v AB3 ? La Deux v Club RTL v Plug RTL ? La Trois v Nickelodeon FR ? """ def channel_identifier(anchor_link): tmp = anchor_link.split("/") if(tmp[4] == "een"): return "een" if (tmp[4] == "canvas"): return "canvas" if (tmp[4] == "vtm"): return "vtm" if (tmp[4] == "vier"): return "vier" if (tmp[4] == "vijf"): return "vijf" if (tmp[4] == "zes"): return "zes" if (tmp[4] == "rtl-tvi-hd"): return "RTI TVI HD" if (tmp[4] == "la-une"): return "LA UNE" if (tmp[4] == "la-deux"): return "LA DEUX" if (tmp[4] == "ketnet"): return "KETNET" if (tmp[4] == "vtm2"): return "vtm2" if (tmp[4] == "vtm3"): return "vtm3" if (tmp[4] == "club-rtl"): return "club-rtl" if (tmp[4] == "vtm4"): return "vtm4" if (tmp[4] == "caz-2"): return "caz-2" if (tmp[4] == "la-trois"): return "la-trois" return "null" # options = FirefoxOptions() # options.add_arguments("--headless") # driver = webdriver.Firefox(options=options) #0 click een, canvas,vtm, vier #1 click vjtf #2 click zes #9 click la une , la deux, ketnet, la trois #14 click date_of_movie = "" links_traveresed = 0 default_link = "https://www.demorgen.be/tv-gids/dag/10-06-2021" if(len(default_link.split("/")) ==6): date_of_movie =default_link.split("/")[5] print("got true") else: date_of_movie = date.today() date_of_movie = date_of_movie.strftime('%d/%m/%y') driver = webdriver.Firefox() driver.maximize_window() driver.get(default_link) # driver.implicitly_wait(15) delay = 10 # seconds try: myElem = WebDriverWait(driver, delay).until(EC.presence_of_element_located((By.ID, 'sp_message_iframe_404503'))) print("Iframe element ready") except TimeoutException: print("Iframe not loaded issue") a = driver.find_element_by_tag_name("iframe") driver.switch_to.frame(1) print("switching to iframe done") green_button = driver.find_element_by_xpath('//button[text()="Akkoord"]') green_button.click() time.sleep(10) print("It will be on schedule website") driver.switch_to.default_content() #declarration iteration = 0 ourtime = [] channel_names = [] ad_index = 82 associated_channel_name = [] production_date = [] show_title = [] current_episode = [] total_episode = [] season_number = [] myepisode_number = "" description = [] genre = [] series_movie = [] actors = [] episode_text = " " entries_deleted = 0 number_of_clicks = [0,1,2,6,9,14] links = [] while (iteration != (len(number_of_clicks))): try: myElem = WebDriverWait(driver, delay).until(EC.presence_of_element_located((By.XPATH, '/html/body/main/div/div/div[2]/div/div/div[1]/div[2]/button[2]'))) next_button = driver.find_element_by_xpath("/html/body/main/div/div/div[2]/div/div/div[1]/div[2]/button[2]") for i in range(0, number_of_clicks[iteration]): print("next button should be clicked") next_button.click() driver.implicitly_wait(2) print("Next Button located") except TimeoutException: print("Next Button Not Located") a = driver.find_elements_by_class_name("tvgm-channel__logo-placeholder") #Getting channel names on current page for i in range(0,len(a)): ourlink = a[i].get_property("href") distributed = ourlink.split("/") channel = distributed[4] channel_names.append(channel) #time of shows b = driver.find_elements_by_class_name("tvgm-broadcast-teaser__time") for i in range(0,len(b)): ourtime.append(b[i].text) c = driver.find_elements_by_class_name("tvgm-broadcast-teaser__link") for i in range(0,len(c)): if((c[i].get_property("href")) not in links): links.append(c[i].get_property("href")) #getting link for i in range(links_traveresed,len(links)): tmp = links[i] episode_text = " " if(channel_identifier(tmp) != "null"): associated_channel_name.append(channel_identifier(tmp)) driver.get(tmp) #Page visited try: production_date.append(driver.find_element_by_class_name("tvgm-broadcast-detail__productionyear").text) except NoSuchElementException: print("Production Date not found") production_date.append("-") try: show_title.append(driver.find_element_by_class_name("tvgm-broadcast-detail__title").text) except NoSuchElementException: print("Show title not found") show_title.append("-") try: description.append(driver.find_element_by_class_name("tvgm-broadcast-detail__description").text) except NoSuchElementException: print("Description not found") description.append("-") try: actors.append(driver.find_element_by_class_name("tvgm-broadcast-detail__castandcrew").text) except NoSuchElementException: print("Actors not found") actors.append("-") try: temp = driver.find_element_by_class_name("tvgm-broadcast-detail__info-playable").text temp = temp.split(",") if(len(temp) == 2): series_movie.append(temp[0]) genre.append(temp[1]) print("This got executed (Genre)") if (len(temp) == 1): series_movie.append(temp[0]) genre.append("-") except NoSuchElementException: print("Series/Movie not found") series_movie.append("-") genre.append("-") try: driver.find_element_by_class_name("tvgm-broadcast-detail__episode-numbers") myepisode_number = driver.find_element_by_class_name("tvgm-broadcast-detail__episode-numbers").text tmp = myepisode_number.split(" ") season_number.append(tmp[1]) #changing done if(len(tmp)>2): combined_episode_number = tmp[3].split("/") if(len(combined_episode_number) ==2): current_episode.append(combined_episode_number[0]) total_episode.append(combined_episode_number[1]) print("This got executed (Episodes)") if (len(combined_episode_number) == 1): current_episode.append(combined_episode_number[0]) total_episode.append("-") else: #if both not available total_episode.append("-") current_episode.append("-") print("Epsisode starting and ending exist ") except NoSuchElementException: print("Starting ending Episode not exist") season_number.append("-") current_episode.append("-") total_episode.append("-") #tester #break else: #not interested in this channel remove_entry(i) entries_deleted = entries_deleted +1 print("****** ENTRY SKIPPED ********") links_traveresed = len(links) #tester # if(i == ad_index): # break driver.get(default_link) iteration = iteration+1 driver.close() # print("Starting time = " + ourtime[ad_index]) # print("Actors = " + actors[ad_index]) # print("Associated Channel Name = " + associated_channel_name[ad_index]) # print("Production Date = " + production_date[ad_index]) # print("Show title = " + show_title[ad_index]) # print("Current Episode = " + current_episode[ad_index]) # print("Total Episode = " + total_episode[ad_index]) # print("Genre = " + genre[ad_index]) # print("Series_Movie = " + series_movie[ad_index]) # print("Season Number = " + season_number[ad_index]) # for i in range(0,len(ourtime)): # if(ourtime[i] == "-"): # del(ourtime[i]) print(ourtime) print(actors) print(associated_channel_name) print(production_date) print(show_title) print(current_episode) print(total_episode) print(genre) print(series_movie) print(season_number) print(len(ourtime)) print(len(actors)) print(len(associated_channel_name)) print(len(production_date)) print(len(show_title)) print(len(current_episode)) print(len(total_episode)) print(len(genre)) print(len(series_movie)) print(len(season_number)) import csv with open('channel_data_210610.csv', mode='w',newline='') as employee_file: employee_writer = csv.writer(employee_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) for i in range(0,len(ourtime)): if(i==0): employee_writer.writerow(["Date of Movie","Starting Time","Actors","Channel Name","Production Date","Title of Show","Current Episode","Total Episodes","Genre","Series/Movie","Season Number"]) employee_writer.writerow([date_of_movie,ourtime[i],actors[i],associated_channel_name[i],production_date[i],show_title[i],current_episode[i],total_episode[i],genre[i],series_movie[i],season_number[i]])
95907f7c9ac9ff8ba364dcae91b64148eeed71a5
53649e3ecb7023935d612a37ecf5ad45568bbb8d
/Aplikace_1_0/Source/ewitis/gui/DEF_COLUMN.py
e47296468af7ab7e9831c98858c5e460564ed47d
[]
no_license
liuqingchn/ew_aplikace
157fbc7e0564b29ffe4035724c63d8fc3861512f
efaea537385f9fa90e7f4b4bec430a842c9f7ef6
refs/heads/master
2021-01-13T07:20:08.738298
2016-04-26T18:54:51
2016-04-26T18:54:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
19,556
py
# -*- coding: utf-8 -*- ''' Created on 27.12.2011 @author: Meloun ''' """ WIDTHS """ WIDTH_NUMBER_4DIGIT = 40 WIDTH_NUMBER_3DIGIT = 35 """ RUNS """ RUNS = {} """ table collumns """ RUNS['table'] = { "id" : {"index": 0, "name": "id", "default": 0, "width": WIDTH_NUMBER_4DIGIT, "write": False}, #"date" : {"index": 1, "name": "date", "default": "0.0. 2000 00:00:00", "width": 70, "write": True}, #"description" : {"index": 2, "name": "description", "default": "", "width": 10, "write": True} } """ TIMES """ TIMES = {} """ table collumn for times, mode race """ TIMES['table'] = { "id" : {"index": 0, "name": "id", "name_cz": u"id", "type":"number", "default": 0, "width": WIDTH_NUMBER_4DIGIT, "write":False }, "nr" : {"index": 1, "name": "nr", "name_cz": u"Číslo", "type":"number", "default": 0, "width": WIDTH_NUMBER_4DIGIT, "write":True }, "cell" : {"index": 2, "name": "cell", "name_cz": u"Buňka", "default": 250, "width": 35, "write":True }, "status" : {"index": 3, "name": "status", "name_cz": u"Status", "default": "race", "width": 60, "write":True }, "time1" : {"index": 4, "name": "time1", "name_cz": u"Čas1", "default": "", "width": 80, "write":False }, "lap1" : {"index": 5, "name": "lap1", "name_cz": u"Okruhy1", "default": "", "width": 50, "write":False }, "time2" : {"index": 6, "name": "time2", "name_cz": u"Čas2", "default": "", "width": 80, "write":False }, "lap2" : {"index": 7, "name": "lap2", "name_cz": u"Okruhy2", "default": "", "width": 50, "write":False }, "time3" : {"index": 8, "name": "time3", "name_cz": u"Čas3", "default": "", "width": 80, "write":False }, "lap3" : {"index": 9, "name": "lap3", "name_cz": u"Okruhy3", "default": "", "width": 50, "write":False }, "time4" : {"index": 10, "name": "time4", "name_cz": u"Čas4", "default": "", "width": 80, "write":False }, "lap4" : {"index": 11, "name": "lap4", "name_cz": u"Okruhy4", "default": "", "width": 50, "write":False }, "name" : {"index": 12, "name": "name", "name_cz": u"Jméno", "default": "unknow", "width": 150, "write":False }, "category" : {"index": 13, "name": "category", "name_cz": u"Kategorie", "default": "unknown", "width": 100, "write":False }, "order1" : {"index": 14, "name": "order1", "name_cz": u"Pořadí1", "type":"number", "default": "", "width": 60, "write":False }, "order2" : {"index": 15, "name": "order2", "name_cz": u"Pořadí2", "type":"number", "default": "", "width": 60, "write":False }, "order3" : {"index": 16, "name": "order3", "name_cz": u"Pořadí3", "type":"number", "default": "", "width": 60, "write":False }, "start_nr" : {"index": 17, "name": "start", "name_cz": u"Start", "default": 1, "width": 50, "write":False }, "points1" : {"index": 18, "name": "points1", "name_cz": u"Body", "type":"number", "default": "", "width": 60, "write":False }, "points2" : {"index": 19, "name": "points2", "name_cz": u"Body", "type":"number", "default": "", "width": 60, "write":False }, "points3" : {"index": 20, "name": "points3", "name_cz": u"Body", "type":"number", "default": "", "width": 60, "write":False }, "points4" : {"index": 21, "name": "points4", "name_cz": u"Body", "type":"number", "default": "", "width": 60, "write":False }, "points5" : {"index": 22, "name": "points5", "name_cz": u"Body", "type":"number", "default": "", "width": 60, "write":False }, "un1" : {"index": 23, "name": "un1", "name_cz": u"un1", "default": "", "width": WIDTH_NUMBER_3DIGIT, "write":True }, "un2" : {"index": 24, "name": "un2", "name_cz": u"un2", "default": "", "width": WIDTH_NUMBER_3DIGIT, "write":True }, "un3" : {"index": 25, "name": "un3", "name_cz": u"un3", "default": "", "width": WIDTH_NUMBER_3DIGIT, "write":True }, "us1" : {"index": 26, "name": "us1", "name_cz": u"us1", "default": "", "width": 80, "write":True }, #!! nedavat 'time_raw' => stejne jmeno s tabulkou a kreje se "timeraw" : {"index": 27, "name": "timeraw", "name_cz": u"Čas Raw", "default": 161, "width": 100, "write":True }, } """ USERS """ USERS = {} """ table collumns """ USERS['table'] = { "id" : {"index": 0, "name": "id", "name_cz": u"id", "default": 0, "width": WIDTH_NUMBER_4DIGIT, "write":False }, "nr" : {"index": 1, "name": "nr", "name_cz": u"Číslo", "default": 0, "width": WIDTH_NUMBER_4DIGIT, "write":True }, "status" : {"index": 2, "name": "status", "name_cz": u"Status", "default": "race", "width": WIDTH_NUMBER_4DIGIT, "write":True }, "name" : {"index": 3, "name": "name", "name_cz": u"Jméno", "default": "unknown", "width": 100, "write":True }, "first_name" : {"index": 4, "name": "first_name", "name_cz": u"Nevím", "default": "unknown", "width": 100, "write":True }, "category" : {"index": 5, "name": "category", "name_cz": u"Kategorie", "default": "unknown", "width": 100, "write":True }, "club" : {"index": 6, "name": "club", "name_cz": u"Klub", "default": "", "width": 200, "write":True }, "year" : {"index": 7, "name": "year", "name_cz":u"Ročník", "default": "", "width": 70, "write":True }, "sex" : {"index": 8, "name": "sex", "name_cz":u"Pohlaví", "default": "", "width": None, "write":True }, "email" : {"index": 9, "name": "email", "name_cz": u"Email", "default": "", "width": None, "write":True }, "symbol" : {"index": 10, "name": "symbol", "name_cz": u"Nevím", "default": "", "width": None, "write":True }, "paid" : {"index": 11, "name": "paid", "name_cz": u"Nevím", "default": "", "width": None, "write":True }, "note" : {"index": 12, "name": "note", "name_cz": u"Nevím", "default": "", "width": None, "write":True }, "o1" : {"index": 13, "name": "o1", "name_cz":u"#1", "default": "", "width": None, "write":True }, "o2" : {"index": 14, "name": "o2", "name_cz":u"#2", "default": "", "width": None, "write":True }, "o3" : {"index": 15, "name": "o3", "name_cz":u"#3", "default": "", "width": None, "write":True }, "o4" : {"index": 16, "name": "o4", "name_cz":u"#4", "default": "", "width": 10, "write":True }, } """ CATEGORIES """ CATEGORIES = {} """ table collumns """ CATEGORIES['table'] = { "id" : {"index": 0, "name": "id", "default": 0, "width": WIDTH_NUMBER_4DIGIT, "write":False }, "name" : {"index": 1, "name": "name", "default": "unknown", "width": 200, "write":True }, "description" : {"index": 2, "name": "description", "default": "", "width": 350, "write":True }, "start_nr" : {"index": 3, "name": "start_nr", "default": 1, "width": WIDTH_NUMBER_4DIGIT, "write":True }, "g1" : {"index": 4, "name": "g1", "default": 0, "width": WIDTH_NUMBER_4DIGIT, "write":True }, "g2" : {"index": 5, "name": "g2", "default": 0, "width": WIDTH_NUMBER_4DIGIT, "write":True }, "g3" : {"index": 6, "name": "g3", "default": 0, "width": WIDTH_NUMBER_4DIGIT, "write":True }, "g4" : {"index": 7, "name": "g4", "default": 0, "width": WIDTH_NUMBER_4DIGIT, "write":True }, "g5" : {"index": 8, "name": "g5", "default": 0, "width": WIDTH_NUMBER_4DIGIT, "write":True }, "g6" : {"index": 9, "name": "g6", "default": 0, "width": WIDTH_NUMBER_4DIGIT, "write":True }, "g7" : {"index": 10, "name": "g7", "default": 0, "width": WIDTH_NUMBER_4DIGIT, "write":True }, "g8" : {"index": 11, "name": "g8", "default": 0, "width": WIDTH_NUMBER_4DIGIT, "write":True }, "g9" : {"index": 12, "name": "g9", "default": 0, "width": WIDTH_NUMBER_4DIGIT, "write":True }, "g10" : {"index": 13, "name": "g10", "default": 0, "width": WIDTH_NUMBER_4DIGIT, "write":True }, #"#" : {"index": 14, "name": "#", "width":0}, } """ CATEGORY GROUPS """ CGROUPS = {} """ table collumns """ CGROUPS['table'] = { "id" : {"index": 0, "name": "id", "default": 0, "width": WIDTH_NUMBER_4DIGIT, "write":False }, "label" : {"index": 1, "name": "label", "default": "gx", "width": 300, "write":True }, "name" : {"index": 2, "name": "name", "default": "", "width": 300, "write":True }, "description" : {"index": 3, "name": "description", "default": "", "width": 300, "write":True }, } """ TAGS """ TAGS = {} """ table collumns """ TAGS['table'] = { "id" : {"index": 0, "name": "id", "default": 0, "width": WIDTH_NUMBER_4DIGIT, "write":False }, "tag_id" : {"index": 1, "name": "tag_id", "default": 0, "width": 160, "write":True }, "printed_nr" : {"index": 2, "name": "printed_nr", "default": 0, "width": 80, "write":True }, "user_nr" : {"index": 3, "name": "user_nr", "default": 0, "width": 80, "write":True }, #"#1" : {"index": 4, "name": "", "width":80}, } """ ALLTAGS """ ALLTAGS = {} """ database columns """ ALLTAGS['database'] = { "id" : {"index": 0, "name": "id", "default": 0}, "tag_id" : {"index": 1, "name": "tag_id", "default": 0}, "printed_nr" : {"index": 2, "name": "printed_nr", "default": 0}, "description" : {"index": 3, "name": "description", "default": ""} } """ table collumns """ ALLTAGS['table'] = { "id" : {"index": 0, "name": "id", "default": 0, "width": WIDTH_NUMBER_4DIGIT, "write":False }, "tag_id" : {"index": 1, "name": "tag_id", "default": 0, "width": 160, "write":True }, "printed_nr" : {"index": 2, "name": "printed_nr", "default": 0, "width": 100, "write":True }, "description" : {"index": 3, "name": "description", "default": "", "width": 300, "write":True } } """ POINTS """ POINTS = {} """ table collumns """ POINTS['table'] = { "id" : {"index": 0, "name": "id", "default": 0, "width": WIDTH_NUMBER_4DIGIT, "write":False}, "order_" : {"index": 1, "name": "order", "default": 0, "width": WIDTH_NUMBER_4DIGIT, "write":True}, "points" : {"index": 2, "name": "points", "default": 0, "width": WIDTH_NUMBER_4DIGIT, "write":True}, "description" : {"index": 3, "name": "description", "default": "", "width": 160, "write":True}, } """ RACE INFO """ RACEINFO = {} """ table collumns """ RACEINFO['table'] = { "id" : {"index": 0, "name": "id", "default": 0, "width": WIDTH_NUMBER_4DIGIT, "write":False}, "name" : {"index": 1, "name": "id", "default": "unknown", "width": 300, "write":False}, "startlist" : {"index": 2, "name": "startlist", "default": 0, "width": 2*WIDTH_NUMBER_4DIGIT, "write":False}, "dns" : {"index": 3, "name": "dns" , "default": 0, "width": WIDTH_NUMBER_4DIGIT, "write":False}, "finished" : {"index": 4, "name": "finished", "default": 0, "width": 2*WIDTH_NUMBER_4DIGIT, "write":False}, "dnf" : {"index": 5, "name": "dnf", "default": 0, "width": WIDTH_NUMBER_4DIGIT, "write":False}, "dq" : {"index": 6, "name": "dq", "default": 0, "width": WIDTH_NUMBER_4DIGIT, "write":False}, "race" : {"index": 7, "name": "race", "default": 0, "width": 2*WIDTH_NUMBER_4DIGIT, "write":False}, "check" : {"index": 8, "name": "check", "default": 0, "width": WIDTH_NUMBER_4DIGIT, "write":False}, "-" : {"index": 9, "name": "-", "default": 0, "width": WIDTH_NUMBER_4DIGIT, "write":False}, }
04c39588a75c7d1646fb96aeb656bbb9548a976f
c1b56d50c68bf32e900349cbab4bfd043a79a237
/Pythagorean Triplet.py
231f1b5449311249ea7648796d95434b151ff9d6
[]
no_license
divanshu79/GeeksForGeeks-solutions
c7a5f0be04e8376e72f933c35fb2d09641fe7130
caf77aad9c53d5d05c87318806097d750864a6e3
refs/heads/master
2020-03-25T07:56:14.997786
2018-08-05T06:37:22
2018-08-05T06:37:22
143,589,282
0
0
null
null
null
null
UTF-8
Python
false
false
614
py
from collections import defaultdict for _ in range(int(input())): n = int(input()) arr = list(map(int, input().split())) def_dict = defaultdict(int) sq_list = [] for i in arr: def_dict[i*i] = 1 sq_list.append(i*i) sum_list = [] flag = 0 for i in range(n-1): for j in range(i+1, n): if def_dict[sq_list[i] + sq_list[j]] == 1: flag = 1 print(arr[i], arr[j]) break if flag == 1: break if flag == 1: print('Yes') else: print('No')
189638b913ac8e4f95628be830208ded60454bf1
994e5b7156a8c1429238facc1463ad1846f1a89a
/models/official/nlp/xlnet/xlnet_config.py
95ab092442ef4f4b96e61d91ed391051469e8441
[ "Apache-2.0" ]
permissive
TrellixVulnTeam/Felect_M46O
f0c2a9a6c48695705e0b68c92c3a414bacfaa599
6d8b80e216c40233d2c1b9e51fe6f605a3b5ef4b
refs/heads/main
2023-04-22T11:33:59.448117
2021-05-06T13:01:12
2021-05-06T13:01:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,317
py
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utility functions used in XLNet model.""" from __future__ import absolute_import from __future__ import division # from __future__ import google_type_annotations from __future__ import print_function import json import os import tensorflow as tf def create_run_config(is_training, is_finetune, flags): """Helper function for creating RunConfig.""" kwargs = dict( is_training=is_training, use_tpu=flags.use_tpu, dropout=flags.dropout, dropout_att=flags.dropout_att, init_method=flags.init_method, init_range=flags.init_range, init_std=flags.init_std, clamp_len=flags.clamp_len) if not is_finetune: kwargs.update( dict( mem_len=flags.mem_len, reuse_len=flags.reuse_len, bi_data=flags.bi_data, clamp_len=flags.clamp_len, same_length=flags.same_length)) return RunConfig(**kwargs) # TODO(hongkuny): refactor XLNetConfig and RunConfig. class XLNetConfig(object): """Configs for XLNet model. XLNetConfig contains hyperparameters that are specific to a model checkpoint; i.e., these hyperparameters should be the same between pretraining and finetuning. The following hyperparameters are defined: n_layer: int, the number of layers. d_model: int, the hidden size. n_head: int, the number of attention heads. d_head: int, the dimension size of each attention head. d_inner: int, the hidden size in feed-forward layers. ff_activation: str, "relu" or "gelu". untie_r: bool, whether to untie the biases in attention. n_token: int, the vocab size. """ def __init__(self, FLAGS=None, json_path=None, args_dict=None): """Constructing an XLNetConfig. One of FLAGS or json_path should be provided. Args: FLAGS: An FLAGS instance. json_path: A path to a json config file. args_dict: A dict for args. """ assert FLAGS is not None or json_path is not None or args_dict is not None self.keys = [ 'n_layer', 'd_model', 'n_head', 'd_head', 'd_inner', 'ff_activation', 'untie_r', 'n_token' ] if FLAGS is not None: self.init_from_flags(FLAGS) if json_path is not None: self.init_from_json(json_path) if args_dict is not None: self.init_from_dict(args_dict) def init_from_dict(self, args_dict): """Constructs a `BertConfig` from a Python dictionary of parameters.""" for key in self.keys: setattr(self, key, args_dict[key]) def init_from_flags(self, flags): for key in self.keys: setattr(self, key, getattr(flags, key)) def init_from_json(self, json_path): with tf.io.gfile.GFile(json_path) as f: json_data = json.load(f) self.init_from_dict(json_data) def to_json(self, json_path): """Save XLNetConfig to a json file.""" json_data = {} for key in self.keys: json_data[key] = getattr(self, key) json_dir = os.path.dirname(json_path) if not tf.io.gfile.exists(json_dir): tf.io.gfile.makedirs(json_dir) with tf.io.gfile.GFile(json_path, 'w') as f: json.dump(json_data, f, indent=4, sort_keys=True) class RunConfig(object): """Class of RunConfig. RunConfig contains hyperparameters that could be different between pretraining and finetuning. These hyperparameters can also be changed from run to run. We store them separately from XLNetConfig for flexibility. """ def __init__(self, is_training, use_tpu, dropout, dropout_att, init_method='normal', init_range=0.1, init_std=0.02, mem_len=None, reuse_len=None, bi_data=False, clamp_len=-1, same_length=False, use_cls_mask=True): """Initializes RunConfig. Args: is_training: bool, whether in training mode. use_tpu: bool, whether TPUs are used. dropout: float, dropout rate. dropout_att: float, dropout rate on attention probabilities. init_method: str, the initialization scheme, either "normal" or "uniform". init_range: float, initialize the parameters with a uniform distribution in [-init_range, init_range]. Only effective when init="uniform". init_std: float, initialize the parameters with a normal distribution with mean 0 and stddev init_std. Only effective when init="normal". mem_len: int, the number of tokens to cache. reuse_len: int, the number of tokens in the currect batch to be cached and reused in the future. bi_data: bool, whether to use bidirectional input pipeline. Usually set to True during pretraining and False during finetuning. clamp_len: int, clamp all relative distances larger than clamp_len. -1 means no clamping. same_length: bool, whether to use the same attention length for each token. use_cls_mask: bool, whether to introduce cls mask. """ self.init_method = init_method self.init_range = init_range self.init_std = init_std self.is_training = is_training self.dropout = dropout self.dropout_att = dropout_att self.use_tpu = use_tpu self.mem_len = mem_len self.reuse_len = reuse_len self.bi_data = bi_data self.clamp_len = clamp_len self.same_length = same_length self.use_cls_mask = use_cls_mask
bc2ec15906048fc42b645664a4552aa614fffaec
4cbe0eef8694a7f5443e6d276577d3ca08d15456
/cpt1/noneLenDemo.py
a713e854c6074bac6033c4576a506fd818583169
[]
no_license
GSIL-Monitor/PythonLearning
2bf313e366e395df1d27164fe79e16e948094583
3f20f9cdff1cef368baa6a2374e6b2cbe3871aa4
refs/heads/master
2020-04-19T09:11:45.169704
2018-11-28T09:55:01
2018-11-28T09:55:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
134
py
s=None s1 = '' s2 = ' ' print(len(s1)) print(len(s2)) print(len(s2.strip())) # print(len(s)) t1 = t2 = t3 = None print(t1, t2, t3)
29eaf7dca764f8db0e109f82e350645c5ee1f812
c741f04141784a2571d2d27d95e0d994e4584ab1
/learning/py3/连接mysql/PyMySQL/test3.py
f72ccb6eb48887eb51cf2b269456a0e175b90e48
[]
no_license
haodonghui/python
bbdece136620bc6f787b4942d6e1760ed808afd4
365062ba54297c81093b7f378742e76d438658b7
refs/heads/master
2022-02-03T23:52:37.288503
2022-01-27T05:23:25
2022-01-27T05:23:25
191,729,797
0
0
null
null
null
null
UTF-8
Python
false
false
313
py
from pythonmysql3 import DB if __name__ == '__main__': with DB(host='59.110.228.110', port=3306, database='test_tea_uc_0', user='test_tea_uc_0', passwd='L~+SJ*F^kon[t+10l6') as db: db.execute('select * from uc_user limit 0,10') print(db) for i in db: print(i)
3ccbf8883c86965571f090c36bced556f00efdd1
f60ec2c12c6d56be853bec9c222b8ea91b170130
/apps/pig/src/pig/models.py
a38ff955d4c0be321ef26bdb2d085598b63d858f
[ "Apache-2.0" ]
permissive
jackerxff/hue
b33911f62129cc949096dd48b3fdcf0584bbba69
2418050cafd75aab043900c28a867f5c13bc1c0e
refs/heads/master
2020-12-29T02:54:39.947205
2013-04-05T21:25:07
2013-04-05T21:26:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,071
py
#!/usr/bin/env python # Licensed to Cloudera, Inc. under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. Cloudera, Inc. licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. try: import json except ImportError: import simplejson as json import posixpath from django.db import models from django.contrib.auth.models import User from django.utils.translation import ugettext as _, ugettext_lazy as _t from desktop.lib.exceptions_renderable import PopupException from hadoop.fs.hadoopfs import Hdfs from oozie.models import Workflow class Document(models.Model): owner = models.ForeignKey(User, db_index=True, verbose_name=_t('Owner'), help_text=_t('User who can modify the job.')) is_design = models.BooleanField(default=True, db_index=True, verbose_name=_t('Is a user document, not a document submission.'), help_text=_t('If the document is not a submitted job but a real query, script, workflow.')) def is_editable(self, user): return user.is_superuser or self.owner == user def can_edit_or_exception(self, user, exception_class=PopupException): if self.is_editable(user): return True else: raise exception_class(_('Only superusers and %s are allowed to modify this document.') % user) class PigScript(Document): _ATTRIBUTES = ['script', 'name', 'properties', 'job_id', 'parameters', 'resources'] data = models.TextField(default=json.dumps({ 'script': '', 'name': '', 'properties': [], 'job_id': None, 'parameters': [], 'resources': [] })) def update_from_dict(self, attrs): data_dict = self.dict for attr in PigScript._ATTRIBUTES: if attrs.get(attr) is not None: data_dict[attr] = attrs[attr] self.data = json.dumps(data_dict) @property def dict(self): return json.loads(self.data) class Submission(models.Model): script = models.ForeignKey(PigScript) workflow = models.ForeignKey(Workflow) def create_or_update_script(id, name, script, user, parameters, resources, is_design=True): """This take care of security""" try: pig_script = PigScript.objects.get(id=id) pig_script.can_edit_or_exception(user) except: pig_script = PigScript.objects.create(owner=user, is_design=is_design) pig_script.update_from_dict({ 'name': name, 'script': script, 'parameters': parameters, 'resources': resources }) return pig_script def get_scripts(user, max_count=200): scripts = [] for script in PigScript.objects.filter(owner=user).order_by('-id')[:max_count]: data = script.dict massaged_script = { 'id': script.id, 'name': data['name'], 'script': data['script'], 'parameters': data['parameters'], 'resources': data['resources'], 'isDesign': script.is_design, } scripts.append(massaged_script) return scripts def get_workflow_output(oozie_workflow, fs): # TODO: guess from the STORE or parameters output = None if 'workflowRoot' in oozie_workflow.conf_dict: output = oozie_workflow.conf_dict.get('workflowRoot') if output and not fs.exists(output): output = None return output def hdfs_link(url): if url: path = Hdfs.urlsplit(url)[2] if path: if path.startswith(posixpath.sep): return "/filebrowser/view" + path else: return "/filebrowser/home_relative_view/" + path else: return url else: return url
1d1c6159d39366e7b2130cca2ed83d36fab067c6
c96c79bb7ca3e71d609eab20ed8d68cff8ee7fe7
/DataStructurePrograms/bankingCashCounter.py
0049a83ecb8431b52e5fdb75741a8707cd5863a8
[]
no_license
NikhilDusane222/Python
25c9eb50bcd5e0e8679ece41d97129b9100e9a91
0183c4211a28bbddb6792978cf55da89a682f67a
refs/heads/master
2021-05-18T13:07:07.059428
2020-04-12T17:23:57
2020-04-12T17:23:57
251,254,080
0
0
null
null
null
null
UTF-8
Python
false
false
1,721
py
#Class Queue class Queue: def __init__(self): self.balance = 0 print("Welcome to the Bank Cash Counter..") print("This is a Banking portal") #Function for deposite amount def enqueue_deposit(self): amount = int(input("Enter amount to be Deposited: ")) self.balance += amount print("\nAmount Deposited:", amount) #Function for withdraw amount def dequeue_withdraw(self): amount = int(input("Enter amount to be Withdrawn: ")) if self.balance >= amount: self.balance -= amount print("\nYou Withdrew:", amount) else: print("\nInsufficient balance ") #Function for display amount def queue_display(self): print("\nNet Available Balance=", self.balance) #Function for exit def queue_exit(self): exit() #Main function if __name__ == '__main__': q = Queue() try: while True: print("Please Enter the option that you want to make a transaction:") #Choice for Deposite and Withdrawn amount choiceNo = int(input( " 1. Deposite Amount to the account \n 2. Withdraw Amount from the account \n " "3. Display the amount \n 4. Cancel Transaction \n")) if choiceNo == 1: q.enqueue_deposit() elif choiceNo == 2: q.dequeue_withdraw() elif choiceNo == 3: q.queue_display() elif choiceNo == 4: q.queue_exit() else: print("Invalid Choice...!! Press the Correct choice") except ValueError: print("Invalid Choice...!! Press the Correct choice")
fb9d2de4608618a90483dce7880ec25859319581
eb4070d3dda38df8b6d4118343db59d559e58df6
/week-1/Examples/plot_bostonjuly2012temps.py
7106e6e834e9c292ae22013b1fc5392a53e0f201
[]
no_license
RaviTezu/MITx-6.00.2x
df767115085e4f28cfaac20ec90c18453517ed5a
6effafa89e15e1d59c9302c4a3c9f6ce96da0faa
refs/heads/master
2021-01-10T16:15:03.999778
2016-04-20T11:40:46
2016-04-20T11:40:46
53,061,225
0
0
null
null
null
null
UTF-8
Python
false
false
1,099
py
from __future__ import print_function import os import pylab # It is assumed that the 'julyTemps.txt' file is present along the side of this script and this script is # executed at the root. PWD = os.getcwd() FILE_NAME = 'julyTemps.txt' FILE = PWD + '/' + FILE_NAME HIGH = [] LOW = [] def load_file(inFile=FILE): return open(inFile, 'r') def read_data(fd=load_file()): for line in fd.readlines(): fields = line.split() if len(fields) < 3 or not fields[0].isdigit(): pass else: HIGH.append(fields[1]) LOW.append(fields[2]) def calculate_diff(high=HIGH, low=LOW): diff_temps = [int(h) - int(l) for h, l in zip(high, low)] return diff_temps def plotting(diff_temps): length = len(diff_temps) print(length) pylab.figure(1) pylab.title('Day by Day Ranges in Temperature in Boston in July 2012') pylab.xlabel('Days') pylab.ylabel('Temperature Ranges') pylab.plot(range(1, length + 1), diff_temps) pylab.show() if __name__ == "__main__": read_data() plotting(calculate_diff())
03cdb1d4773ac7b2357bc6f611f33df1c00e995b
d5eb2fe5d49b581562ae2bc660d08ca80a03d331
/PythonSandbox/src/leetcode/lc235_lowest_common_ancestor_bst.py
8a95af9b55836848b2011fec66cdb18da8f848ba
[]
no_license
mcxu/code-sandbox
fd5aa2e593057901d281a0e74db8957777b06cf3
a785231582bda8578f79982e2dcddd2f2ab559b4
refs/heads/master
2023-07-10T02:07:24.180947
2023-07-08T03:31:48
2023-07-08T03:31:48
130,493,607
4
2
null
2023-01-15T22:53:29
2018-04-21T16:49:40
Python
UTF-8
Python
false
false
1,624
py
class Solution: def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode': if root == None: return 0 deepestValidDepthSoFar = 0 validNode = root # iterative dfs stack = [(root, 0)] # (node, depth) while stack: currItem = stack.pop(-1) currNode, currDepth = currItem[0], currItem[1] # print("==== Outer DFS from currNode: ", currNode.val if currNode != None else None) if currNode != None: seenValues = set() # print("Running inner dfs on currNode: ", currNode.val) self.verifyPandQExistFromRoot(currNode, p, q, seenValues) # print("seenValues: after: ", seenValues) pqExistsFromRoot = (p.val in seenValues) and (q.val in seenValues) # print("pqExistsFromRoot: ", pqExistsFromRoot) if pqExistsFromRoot and currDepth > deepestValidDepthSoFar: deepestValidDepthSoFar = currDepth validNode = currNode stack.append((currNode.right, currDepth+1)) stack.append((currNode.left, currDepth+1)) return validNode def verifyPandQExistFromRoot(self, root, p, q, seenValues): if root == None: return if p.val in seenValues and q.val in seenValues: return seenValues.add(root.val) self.verifyPandQExistFromRoot(root.left, p, q, seenValues) self.verifyPandQExistFromRoot(root.right, p, q, seenValues)
fe6e9af8a31baddb7805d28634bc057f5808ce14
353def93fa77384ee3a5e3de98cfed318c480634
/.history/week01/hoework01/gettop10frommaoyam01_20200626132705.py
8d63e58baefe42cbcb636035be65bad77d03b90f
[]
no_license
ydbB/Python001-class01
d680abc3ea1ccaeb610751e3488421417d381156
ad80037ccfc68d39125fa94d2747ab7394ac1be8
refs/heads/master
2022-11-25T11:27:45.077139
2020-07-19T12:35:12
2020-07-19T12:35:12
272,783,233
0
0
null
2020-06-16T18:28:15
2020-06-16T18:28:15
null
UTF-8
Python
false
false
4,579
py
# 使用requests,bs4库,爬取猫眼电影top10的电影名称、电影类型、上映时间,并以utf-8的字符集保存到csv文件中 import requests from bs4 import BeautifulSoup as bs maoyanUrl = "https://maoyan.com/board/4"; user_agent = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/74.0.3729.169 Safari/537.36' header = { 'Content-Type': 'text/plain; charset=UTF-8', 'Cookie' : '__mta=251934006.1593072991075.1593100662316.1593100664951.15; uuid_n_v=v1; uuid=2395D3F0B6BC11EA9F28E30FF5FFF73C9A16AE2FA53A448DA75AEAA9D715CB59; _csrf=8557626db9b655cf9050ae7e5b2aab69278c8061c21eca95e1c3cf2130b0b64c; _lxsdk_cuid=172ea8cb247c8-0a73066b1c0a8b-4353760-100200-172ea8cb248c8; _lxsdk=2395D3F0B6BC11EA9F28E30FF5FFF73C9A16AE2FA53A448DA75AEAA9D715CB59; mojo-uuid=c457eacb7c1eb59d3d2f6c1f8d75b9c9; Hm_lvt_703e94591e87be68cc8da0da7cbd0be2=1593072989,1593073002; _lx_utm=utm_source%3Dgoogle%26utm_medium%3Dorganic; __mta=251934006.1593072991075.1593075275703.1593078726963.7; mojo-session-id={"id":"435818e6a726415f46defffa27f7abc6","time":1593100221937}; Hm_lpvt_703e94591e87be68cc8da0da7cbd0be2=1593100665; mojo-trace-id=17; _lxsdk_s=172ec2bff67-0c2-e9f-c64%7C%7C24__mta=251934006.1593072991075.1593100690175.1593100868002.17; uuid_n_v=v1; uuid=2395D3F0B6BC11EA9F28E30FF5FFF73C9A16AE2FA53A448DA75AEAA9D715CB59; _csrf=8557626db9b655cf9050ae7e5b2aab69278c8061c21eca95e1c3cf2130b0b64c; _lxsdk_cuid=172ea8cb247c8-0a73066b1c0a8b-4353760-100200-172ea8cb248c8; _lxsdk=2395D3F0B6BC11EA9F28E30FF5FFF73C9A16AE2FA53A448DA75AEAA9D715CB59; mojo-uuid=c457eacb7c1eb59d3d2f6c1f8d75b9c9; Hm_lvt_703e94591e87be68cc8da0da7cbd0be2=1593072989,1593073002; _lx_utm=utm_source%3Dgoogle%26utm_medium%3Dorganic; __mta=251934006.1593072991075.1593075275703.1593078726963.7; Hm_lpvt_703e94591e87be68cc8da0da7cbd0be2=1593100868; _lxsdk_s=172ee2f4a3e-1c2-3a1-5a4%7C%7C1__mta=251934006.1593072991075.1593133988033.1593140260525.19; uuid_n_v=v1; uuid=2395D3F0B6BC11EA9F28E30FF5FFF73C9A16AE2FA53A448DA75AEAA9D715CB59; _csrf=8557626db9b655cf9050ae7e5b2aab69278c8061c21eca95e1c3cf2130b0b64c; _lxsdk_cuid=172ea8cb247c8-0a73066b1c0a8b-4353760-100200-172ea8cb248c8; _lxsdk=2395D3F0B6BC11EA9F28E30FF5FFF73C9A16AE2FA53A448DA75AEAA9D715CB59; mojo-uuid=c457eacb7c1eb59d3d2f6c1f8d75b9c9; Hm_lvt_703e94591e87be68cc8da0da7cbd0be2=1593072989,1593073002; _lx_utm=utm_source%3Dgoogle%26utm_medium%3Dorganic; __mta=251934006.1593072991075.1593134712257.1593134712989.9; mojo-session-id={"id":"b78cc9fcb57a627220ec165f84d9d5a9","time":1593140260318}; mojo-trace-id=1; Hm_lpvt_703e94591e87be68cc8da0da7cbd0be2=1593140260; _lxsdk_s=172ee8f28d1-560-08-4aa%7C%7C3', # 'Host' : 'http://www.baidu.com', 'Origin': 'https://maoyan.com', 'Referer': 'https://maoyan.com/board/4', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4103.116 Safari/537.36', } def get_urls(url, headers): response = requests.get(url,headers=header) bs_info = bs(response.text,"html.parser") import re films_url = [] for tag in bs_info.find_all('div',): for tag_p in tag.find_all('a',href=re.compile('/films/')) : # 获取top10电影详情页链接 films_url.append(url + tag_p.get('href')) urls = set(films_url) return urls import pandas # 获取详情页 def get_page_info(self,urls,header): films_content = [] for url in urls: content = get_page_content(self,url,header) films_content.append(content) return films_content # 获取单个电影的详情信息 def get_page_brief(url,header): import re response = requests.get(url, headers=header) bs_info = bs(response.text,'html.parser') # print(response.text) atag = bs_info.find('div',attrs={'class':'banner'}) film_name = atag.find('h1').text +" "+ atag.find('div',attrs = {'class' : 'ename ellipsis'}).text film_type = "" for type in atag.find_all('a',attrs={'target':'_blank'}): film_type = film_type + type.text tags = atag.find_all('li') online_time = tags[-1].text brief = [film_name,film_type,online_time] return brief def save_movies(movies): movies_data = pd.DataFrame(data=movies) movies_data.to_csv('./top') def main(): #urls = get_urls(maoyanUrl,header) #contents = get_page_info(self,urls,header) #print(urls) page_1 = 'https://maoyan.com/films/1375' brief = get_page_brief(page_1,header) save_movies(movies) print(brief) if __name__ == '__main__': main()
d21a1e0fda886e68b04b7b6fb2aae7d62a280eea
09e57dd1374713f06b70d7b37a580130d9bbab0d
/benchmark/startQiskit1046.py
63eee4eecc3a2149468ba16560b7bb2f0123e5f6
[ "BSD-3-Clause" ]
permissive
UCLA-SEAL/QDiff
ad53650034897abb5941e74539e3aee8edb600ab
d968cbc47fe926b7f88b4adf10490f1edd6f8819
refs/heads/main
2023-08-05T04:52:24.961998
2021-09-19T02:56:16
2021-09-19T02:56:16
405,159,939
2
0
null
null
null
null
UTF-8
Python
false
false
4,157
py
# qubit number=5 # total number=51 import cirq import qiskit from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import BasicAer, execute, transpile from pprint import pprint from qiskit.test.mock import FakeVigo from math import log2,floor, sqrt, pi import numpy as np import networkx as nx def build_oracle(n: int, f) -> QuantumCircuit: # implement the oracle O_f^\pm # NOTE: use U1 gate (P gate) with \lambda = 180 ==> CZ gate # or multi_control_Z_gate (issue #127) controls = QuantumRegister(n, "ofc") oracle = QuantumCircuit(controls, name="Zf") for i in range(2 ** n): rep = np.binary_repr(i, n) if f(rep) == "1": for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.h(controls[n]) if n >= 2: oracle.mcu1(pi, controls[1:], controls[0]) for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.barrier() return oracle def make_circuit(n:int,f) -> QuantumCircuit: # circuit begin input_qubit = QuantumRegister(n,"qc") classical = ClassicalRegister(n, "qm") prog = QuantumCircuit(input_qubit, classical) prog.h(input_qubit[0]) # number=3 prog.h(input_qubit[1]) # number=4 prog.h(input_qubit[2]) # number=5 prog.h(input_qubit[3]) # number=6 prog.h(input_qubit[0]) # number=38 prog.cz(input_qubit[1],input_qubit[0]) # number=39 prog.h(input_qubit[0]) # number=40 prog.cx(input_qubit[1],input_qubit[0]) # number=45 prog.z(input_qubit[1]) # number=46 prog.h(input_qubit[0]) # number=48 prog.cz(input_qubit[1],input_qubit[0]) # number=49 prog.h(input_qubit[0]) # number=50 prog.h(input_qubit[0]) # number=32 prog.cz(input_qubit[1],input_qubit[0]) # number=33 prog.h(input_qubit[0]) # number=34 prog.h(input_qubit[4]) # number=21 Zf = build_oracle(n, f) repeat = floor(sqrt(2 ** n) * pi / 4) for i in range(repeat): prog.append(Zf.to_gate(), [input_qubit[i] for i in range(n)]) prog.h(input_qubit[0]) # number=1 prog.h(input_qubit[1]) # number=2 prog.h(input_qubit[2]) # number=7 prog.h(input_qubit[3]) # number=8 prog.cx(input_qubit[3],input_qubit[0]) # number=41 prog.z(input_qubit[3]) # number=42 prog.cx(input_qubit[3],input_qubit[0]) # number=43 prog.cx(input_qubit[1],input_qubit[3]) # number=44 prog.x(input_qubit[0]) # number=9 prog.x(input_qubit[1]) # number=10 prog.x(input_qubit[2]) # number=11 prog.cx(input_qubit[0],input_qubit[3]) # number=35 prog.x(input_qubit[3]) # number=36 prog.cx(input_qubit[0],input_qubit[3]) # number=37 if n>=2: prog.mcu1(pi,input_qubit[1:],input_qubit[0]) prog.cx(input_qubit[1],input_qubit[0]) # number=24 prog.x(input_qubit[0]) # number=25 prog.cx(input_qubit[1],input_qubit[0]) # number=26 prog.x(input_qubit[1]) # number=14 prog.x(input_qubit[2]) # number=15 prog.x(input_qubit[3]) # number=16 prog.h(input_qubit[0]) # number=17 prog.h(input_qubit[1]) # number=18 prog.h(input_qubit[2]) # number=19 prog.h(input_qubit[3]) # number=20 prog.x(input_qubit[1]) # number=22 prog.x(input_qubit[1]) # number=23 # circuit end for i in range(n): prog.measure(input_qubit[i], classical[i]) return prog if __name__ == '__main__': key = "00000" f = lambda rep: str(int(rep == key)) prog = make_circuit(5,f) backend = BasicAer.get_backend('qasm_simulator') sample_shot =7924 info = execute(prog, backend=backend, shots=sample_shot).result().get_counts() backend = FakeVigo() circuit1 = transpile(prog,backend,optimization_level=2) writefile = open("../data/startQiskit1046.csv","w") print(info,file=writefile) print("results end", file=writefile) print(circuit1.depth(),file=writefile) print(circuit1,file=writefile) writefile.close()
d178dcc2efeab0bd3fdac83c2c00a2998ac26b5e
0cb970785a746a30f9b44b3e5234157818688197
/Dpython/datatypes/listdatatype/dictionary.py
fdca2679ba3ae6247d7957ec1b3a8f77e78d2354
[]
no_license
charan2108/pythonprojectsNew
4255bbb81b6cf0d47c51c131ed93a0bb331a669c
b2f273d44937ec576daa0235d0d0326ff5149bf8
refs/heads/main
2023-05-03T16:55:33.242693
2021-05-26T11:18:17
2021-05-26T11:18:17
371,001,254
0
0
null
null
null
null
UTF-8
Python
false
false
127
py
d = {101:'q', 102:'w', 103:'r'} print(d) print(type(d)) d[101] = 'alfa' print(d) e = {} d['a']='apple' d['b']='gold' print(e)
98b24527a49dde6f431800e65ba9394fb4c3a89e
503d2f8f5f5f547acb82f7299d86886691966ca5
/atcoder/abc288_e.py
70c4f614907f574c7e19042d8ed2d2ab4cc3fcdb
[]
no_license
Hironobu-Kawaguchi/atcoder
3fcb649cb920dd837a1ced6713bbb939ecc090a9
df4b55cc7d557bf61607ffde8bda8655cf129017
refs/heads/master
2023-08-21T14:13:13.856604
2023-08-12T14:53:03
2023-08-12T14:53:03
197,216,790
0
0
null
null
null
null
UTF-8
Python
false
false
2,214
py
# https://atcoder.jp/contests/abc288/tasks/abc288_d # from numba import njit # from functools import lru_cache import sys input = sys.stdin.buffer.readline INF = 1001001001001001 N, M = map(int, input().split()) A = list(map(int, (input().split()))) C = list(map(int, (input().split()))) X = list(map(int, (input().split()))) dp = [[INF]*(N+1) for _ in range(N+1)] dp[0][0] = 0 # for i in range(N+1): # dp[i][0] = 0 cost = [[0]*N for _ in range(N)] for i in range(N): for j in range(i+1): if j==0: cost[i][j] = C[i] else: cost[i][j] = min(cost[i][j-1], C[i-j]) # for i in range(N): # print(cost[i]) idx = 0 for i in range(N): for j in range(i+1): dp[i+1][j+1] = min(dp[i+1][j+1], dp[i][j] + A[i] + cost[i][j]) if idx<M and i==X[idx]-1: continue dp[i+1][j] = min(dp[i+1][j], dp[i][j]) if idx<M and i==X[idx]-1: idx += 1 # for i in range(N+1): # print(dp[i]) ans = INF for j in range(M, N+1): ans = min(ans, dp[N][j]) # for i in range(M): # ans += A[X[i]-1] print(ans) # WA # import sys # input = sys.stdin.buffer.readline # # def input(): return sys.stdin.readline().rstrip() # # sys.setrecursionlimit(10 ** 7) # import copy # N, M = map(int, input().split()) # A = list(map(int, (input().split()))) # C = list(map(int, (input().split()))) # X = list(map(int, (input().split()))) # ans = 0 # for i in range(M): # ans += A[X[i]-1] # pre = [[]] # idx = 0 # for i in range(N): # jj = 0 # if i==X[idx]-1: # v = C[X[idx]-1] # u = X[idx] - 1 # for j in range(idx): # if C[X[idx]-1-j]<v: # v = C[X[idx]-1-j] # u = X[idx] - 1 # for j in range(len(pre[u])): # # print(u, j, pre[u]) # if j<jj: # if C[u-j-1]: break # v = C[u-j-1] # else: # if v<pre[u][j]+C[u-j-1]: break # v = pre[u][j]+C[u-j-1] # jj = max(jj, j+1) # ans += v # print(ans, idx, v, u) # idx += 1 # pre.append(copy.copy(pre[-1])) # pre[-1].append(A[i] + C[i]) # pre[-1].sort() # # print(pre) # print(ans)
89938fbcb47e0b7757adcf91ed9a35f11cc37eeb
a27e43d263375f1ea42d496e18af01f5ad46990e
/modules/initialize.py
d7767bbf8a118b8f1b6dc24808d627c54abdcc1f
[]
no_license
Klim314/Quetzalcoatl
74565556a26d548f28118137e81866f7dc7a4e7a
0d78183235207bc9c44c7c099722f5a7203e1d9c
refs/heads/master
2016-08-06T08:57:19.802511
2015-06-24T08:29:53
2015-06-24T08:29:53
36,220,505
0
1
null
null
null
null
UTF-8
Python
false
false
366
py
#!/usr/bin/env python3 """ initialize.py loads the pubdip.ini file returns a dictionary containing all terms """ def execute(target): res = dict() with open(target) as f: for i in f: if i[0] == '#': continue temp = i.split('=') res[temp[0]] = temp[1].strip() return res if __name__ == "__main__": path = "../pubdip.ini" print(execute(path))
91a5b6e81692b41a2ffffebed1fa5a58a9cc4ca7
2097293065bb28452b221a5f635bac63c69a3e80
/pizza.py
60599550eb351267a25b0b28131179907e104ba8
[ "MIT" ]
permissive
kafkoders/hashcode-pizza
eb2ca3944f62c9c21853b8d0dc2cd34a984984bf
513452f35299885f396a49113264523a0a6cceae
refs/heads/master
2020-04-23T22:16:53.542636
2019-02-24T19:46:38
2019-02-24T19:46:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,483
py
import pandas as pd import numpy as np import math input_files = ['d_big'] def create_pizza_dataset(file_): flag = False elements_ = [] with open(file_ + '.in') as input_: for line in input_: if flag is False: rows, cols, min_ingredients, max_cells = line.split(' ') flag = True else: elements_.append(np.array(list(line.rstrip()))) df = pd.DataFrame(elements_) pizza_ = df.replace(['M', 'T'], [1, 0]) total_tomatoes = len(pizza_[pizza_.values == 0]) total_mushrooms = len(pizza_[pizza_.values == 1]) less_ingredient = 'tomatoes' if total_tomatoes < total_mushrooms else 'mushrooms' return pizza_, rows, cols, min_ingredients, max_cells, less_ingredient def maximize_cuts(max_): possible_cuts = list() for j in range(max_, (int(min_ingredients) * 2) - 1, -1): for i in range(j, 0, -1): if (j % i) == 0: item_x = [int(j / i), i] item_y = [i, int(j / i)] if item_x not in possible_cuts: possible_cuts.append(item_x) if item_y not in possible_cuts: possible_cuts.append(item_y) return possible_cuts class pizzaSlice: slice_ = None value_ = 0 def __init__(self, slice_): self.slice_ = slice_ self.value_ = self.calc_value() def calc_value(self): mushrooms = 0 tomatoes = 0 for val in self.slice_: if pizza_.at[val[0], val[1]] == 1: mushrooms += 1 elif pizza_.at[val[0], val[1]] == 0: tomatoes += 1 if less_ingredient == 'tomatoes': return tomatoes else: return mushrooms def matches_condition(pizza_, pizza_slices): if not pizza_slices: return None else: min_slice = None max_cells = 0 for pizza_slice in pizza_slices: tomatoes = 0 mushrooms = 0 for cell_slice in pizza_slice.slice_: if pizza_.at[cell_slice[0], cell_slice[1]] == 1: mushrooms += 1 elif pizza_.at[cell_slice[0], cell_slice[1]] == 0: tomatoes += 1 if mushrooms >= int(min_ingredients) and tomatoes >= int(min_ingredients): if min_slice is None: min_slice = pizza_slice if min_slice.value_ > pizza_slice.value_ and max_cells < len(pizza_slice.slice_): max_cells = len(pizza_slice.slice_) min_slice = pizza_slice if min_slice is not None: return min_slice.slice_ else: return None def check_cuts(x, y, min_, max_, cuts_): slices_ = list() for cut in cuts_: slice_ = list() invalid = False for i in range(cut[0]): for j in range(cut[1]): if x + i < pizza_.shape[0] and y + j < pizza_.shape[1] and pizza_.at[x + i, y + j] != 5: slice_.append([x + i, y + j]) else: invalid = True if invalid is False: slices_.append(pizzaSlice(slice_)) return slices_ if __name__ == '__main__': for file_ in input_files: pizza_, rows, cols, min_ingredients, max_cells, less_ingredient = create_pizza_dataset(file_) good_slices = list() possible_cuts = maximize_cuts(int(max_cells)) for row_ in range(pizza_.shape[0]): for col_ in range(pizza_.shape[1]): if pizza_.at[row_, col_] != 5: slices_ = check_cuts(row_, col_, int(min_ingredients), int(max_cells), possible_cuts) slice_ = matches_condition(pizza_, slices_) if slice_ is not None: col_final = len(slice_) good_slices.append([row_, slice_[col_final - 1][0], col_, slice_[col_final - 1][1]]) for element in slice_: pizza_.at[element[0], element[1]] = 5 with open(file_ + '.out', 'w') as f_: f_.write(str(len(good_slices)) + "\n") for value_ in good_slices: f_.write(str(value_[0]) + " " + str(value_[2]) + " " + str(value_[1]) + " " + str(value_[3]) + "\n")
34a80c8dab37022c77f53a2aea2077a2f51aa81b
a0e33f22ed416429e5ed003896d410ab0e82d3eb
/polymodels/managers.py
a08e4ba298a2da0d63b9bcbbeaadcc69656423fd
[ "MIT" ]
permissive
fusionbox/django-polymodels
37982506c6ea58ae85f44da676cd990b4babc6fd
0e6caf3932b2d8337d15f9755983c94743317e12
refs/heads/master
2020-12-25T10:59:02.520899
2016-01-22T00:13:22
2016-01-22T00:13:22
50,145,841
0
0
null
2016-01-22T00:13:14
2016-01-22T00:13:14
null
UTF-8
Python
false
false
2,968
py
from __future__ import unicode_literals from django.core.exceptions import ImproperlyConfigured from django.db import models class PolymorphicQuerySet(models.query.QuerySet): def select_subclasses(self, *models): self.type_cast = True relateds = set() accessors = self.model.subclass_accessors if models: subclasses = set() for model in models: if not issubclass(model, self.model): raise TypeError( "%r is not a subclass of %r" % (model, self.model) ) subclasses.update(model.subclass_accessors) # Collect all `select_related` required lookups for subclass in subclasses: # Avoid collecting ourself and proxy subclasses related = accessors[subclass][2] if related: relateds.add(related) queryset = self.filter( **self.model.content_type_lookup(*tuple(subclasses)) ) else: # Collect all `select_related` required relateds for accessor in accessors.values(): # Avoid collecting ourself and proxy subclasses related = accessor[2] if accessor[2]: relateds.add(related) queryset = self if relateds: queryset = queryset.select_related(*relateds) return queryset def exclude_subclasses(self): return self.filter(**self.model.content_type_lookup()) def _clone(self, *args, **kwargs): kwargs.update(type_cast=getattr(self, 'type_cast', False)) return super(PolymorphicQuerySet, self)._clone(*args, **kwargs) def iterator(self): iterator = super(PolymorphicQuerySet, self).iterator() if getattr(self, 'type_cast', False): for obj in iterator: yield obj.type_cast() else: # yield from iterator for obj in iterator: yield obj class PolymorphicManager(models.Manager.from_queryset(PolymorphicQuerySet)): use_for_related_fields = True def contribute_to_class(self, model, name): # Avoid circular reference from .models import BasePolymorphicModel if not issubclass(model, BasePolymorphicModel): raise ImproperlyConfigured( '`%s` can only be used on ' '`BasePolymorphicModel` subclasses.' % self.__class__.__name__ ) return super(PolymorphicManager, self).contribute_to_class(model, name) def get_queryset(self): queryset = super(PolymorphicManager, self).get_queryset() model = self.model opts = model._meta if opts.proxy: # Select only associated model and its subclasses. queryset = queryset.filter(**self.model.subclasses_lookup()) return queryset
2ee2dcf3dcd8da231a4ddae3d99e7792e2185f23
acb8e84e3b9c987fcab341f799f41d5a5ec4d587
/langs/0/3o.py
6d08125d0b91f6c1763e4b9719945ab4e63276fb
[]
no_license
G4te-Keep3r/HowdyHackers
46bfad63eafe5ac515da363e1c75fa6f4b9bca32
fb6d391aaecb60ab5c4650d4ae2ddd599fd85db2
refs/heads/master
2020-08-01T12:08:10.782018
2016-11-13T20:45:50
2016-11-13T20:45:50
73,624,224
0
1
null
null
null
null
UTF-8
Python
false
false
485
py
import sys def printFunction(lineRemaining): if lineRemaining[0] == '"' and lineRemaining[-1] == '"': if len(lineRemaining) > 2: #data to print lineRemaining = lineRemaining[1:-1] print ' '.join(lineRemaining) else: print def main(fileName): with open(fileName) as f: for line in f: data = line.split() if data[0] == '3O': printFunction(data[1:]) else: print 'ERROR' return if __name__ == '__main__': main(sys.argv[1])
90b417bedd17743c79571e8607da6f6a022d1f12
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03024/s808391195.py
bd7e39cfcdbb36cf608ec3f0dbb696430bf5c305
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
163
py
s = list(input()) counter = 0 k = len(s) for i in range(k): if s[i] == "o": counter += 1 if counter+(15-k) >= 8: print("YES") else: print("NO")
6e69b5b44498b70dbb7ec604c2bc824d7cd54d73
31e10d5f9bbdf768a2b6aae68af0c2105b43120c
/web+多线程/miniweb框架/web服务器/application/utils.py
fc5a398094a52747dd43aa00a08d209b8d724c5b
[]
no_license
664120817/python-test
6d0ce82923b3e7974f393fc8590c5e47e4117781
418085378ca0db8019e4fa3b5564daebed0e6163
refs/heads/master
2023-02-16T13:10:55.403774
2022-08-02T17:01:52
2022-08-02T17:01:52
200,843,808
8
11
null
2023-02-15T16:53:44
2019-08-06T12:08:19
Python
UTF-8
Python
false
false
435
py
def create_http_response(status,response_body): # 拼接响应 request_line = "HTTP/1.1 {}\r\n".format(status) # 请求行 request_header = "Server:python80WS/2.1;charset=UTF-8 \r\n" # 请求头 request_header += "Content-Type:text/html\r\n" request_blank = "\r\n" # 请求空行 request_data = (request_line + request_header + request_blank).encode() + response_body # 整体拼接 return request_data
ee9ea4d11f545f46aa88dcf699a6500010c37f2d
c6d9e353d19e0b92da72602ce274493dbb179525
/Setup_custom.py
ca095135168082bb68b2205c98650d75d777c9fc
[ "BSL-1.0", "Python-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
davidbrownell/Common_cpp_Common
a337f0d589316f28950e93acd518d4e82b7cc14a
7346273b79628514af1c584c447003a638def15d
refs/heads/master
2022-03-01T19:31:12.571884
2022-01-03T17:56:37
2022-01-03T17:56:37
187,749,343
0
0
null
null
null
null
UTF-8
Python
false
false
7,579
py
# ---------------------------------------------------------------------- # | # | Setup_custom.py # | # | David Brownell <[email protected]> # | 2018-05-03 22:12:13 # | # ---------------------------------------------------------------------- # | # | Copyright David Brownell 2018-22. # | Distributed under the Boost Software License, Version 1.0. # | (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) # | # ---------------------------------------------------------------------- """Performs repository-specific setup activities.""" # ---------------------------------------------------------------------- # | # | To setup an environment, run: # | # | Setup(.cmd|.ps1|.sh) [/debug] [/verbose] [/configuration=<config_name>]* # | # ---------------------------------------------------------------------- import os import shutil import sys from collections import OrderedDict import CommonEnvironment # ---------------------------------------------------------------------- _script_fullpath = CommonEnvironment.ThisFullpath() _script_dir, _script_name = os.path.split(_script_fullpath) # ---------------------------------------------------------------------- # <Missing function docstring> pylint: disable = C0111 # <Line too long> pylint: disable = C0301 # <Wrong hanging indentation> pylint: disable = C0330 # <Class '<name>' has no '<attr>' member> pylint: disable = E1103 # <Unreachable code> pylint: disable = W0101 # <Wildcard import> pylint: disable = W0401 # <Unused argument> pylint: disable = W0613 fundamental_repo = os.getenv("DEVELOPMENT_ENVIRONMENT_FUNDAMENTAL") assert os.path.isdir(fundamental_repo), fundamental_repo sys.path.insert(0, fundamental_repo) from RepositoryBootstrap import * # <Unused import> pylint: disable = W0614 from RepositoryBootstrap.SetupAndActivate import CurrentShell # <Unused import> pylint: disable = W0614 from RepositoryBootstrap.SetupAndActivate.Configuration import * # <Unused import> pylint: disable = W0614 del sys.path[0] from _custom_data import _CUSTOM_DATA # ---------------------------------------------------------------------- # There are two types of repositories: Standard and Mixin. Only one standard # repository may be activated within an environment at a time while any number # of mixin repositories can be activated within a standard repository environment. # Standard repositories may be dependent on other repositories (thereby inheriting # their functionality), support multiple configurations, and specify version # information for tools and libraries in themselves or its dependencies. # # Mixin repositories are designed to augment other repositories. They cannot # have configurations or dependencies and may not be activated on their own. # # These difference are summarized in this table: # # Standard Mixin # -------- ----- # Can be activated in isolation X # Supports configurations X # Supports VersionSpecs X # Can be dependent upon other repositories X # Can be activated within any other Standard X # repository # # Consider a script that wraps common Git commands. This functionality is useful # across a number of different repositories, yet doesn't have functionality that # is useful on its own; it provides functionality that augments other repositories. # This functionality should be included within a repository that is classified # as a mixin repository. # # To classify a repository as a Mixin repository, decorate the GetDependencies method # with the MixinRepository decorator. # # @MixinRepository # <-- Uncomment this line to classify this repository as a mixin repository def GetDependencies(): """ Returns information about the dependencies required by this repository. The return value should be an OrderedDict if the repository supports multiple configurations (aka is configurable) or a single Configuration if not. """ d = OrderedDict() if CurrentShell.CategoryName == "Windows": architectures = ["x64", "x86"] else: # Cross compiling on Linux is much more difficult on Linux than it is on # Windows. Only support the current architecture. architectures = [CurrentShell.Architecture] for architecture in architectures: d[architecture] = Configuration( architecture, [ Dependency( "0EAA1DCF22804F90AD9F5A3B85A5D706", "Common_Environment", "python36", "https://github.com/davidbrownell/Common_Environment_v3.git", ) ], ) return d # ---------------------------------------------------------------------- def GetCustomActions(debug, verbose, explicit_configurations): """ Returns an action or list of actions that should be invoked as part of the setup process. Actions are generic command line statements defined in <Common_Environment>/Libraries/Python/CommonEnvironment/v1.0/CommonEnvironment/Shell/Commands/__init__.py that are converted into statements appropriate for the current scripting language (in most cases, this is Bash on Linux systems and Batch or PowerShell on Windows systems. """ actions = [] for tool, version_infos in _CUSTOM_DATA: for version, operating_system_infos in version_infos: for operating_system, hash in operating_system_infos: if CurrentShell.CategoryName != operating_system: continue tool_dir = os.path.join( _script_dir, "Tools", tool, version, operating_system, ) assert os.path.isdir(tool_dir), tool_dir actions += [ CurrentShell.Commands.Execute( 'python "{script}" Install "{tool} - {version}" "{uri}" "{dir}" "/unique_id={hash}" /unique_id_is_hash'.format( script=os.path.join( os.getenv("DEVELOPMENT_ENVIRONMENT_FUNDAMENTAL"), "RepositoryBootstrap", "SetupAndActivate", "AcquireBinaries.py", ), tool=tool, version=version, uri=CommonEnvironmentImports.FileSystem.FilenameToUri( os.path.join(tool_dir, "Install.7z"), ), dir=tool_dir, hash=hash, ), ), ] # Perform actions that must be completed after all other actions have completed actions.append( CurrentShell.Commands.Execute( 'python "{}"'.format(os.path.join(_script_dir, "Setup_epilogue.py")), ), ) return actions
24053881224fa4eeef0ad6eded09146927976cc0
5b3d8f56f4d18dc8809f9f5aa7d2a7089cdbf489
/.c9/metadata/workspace/FrequenciesMain/PMchecksSPINT.py
3fc1d903ca16a8e76e8844d6096538a62339ba3c
[]
no_license
heyliljill/edpsych-cloned
89ba1a827ed66651b7387b25bc2c188ff344e8d1
ba02e4789e390bb6488b11608b994ee5678a4b30
refs/heads/master
2020-07-26T00:51:41.004018
2019-09-14T17:26:45
2019-09-14T17:26:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,118
py
{"filter":false,"title":"PMchecksSPINT.py","tooltip":"/FrequenciesMain/PMchecksSPINT.py","undoManager":{"mark":18,"position":18,"stack":[[{"start":{"row":2,"column":18},"end":{"row":2,"column":19},"action":"insert","lines":["S"],"id":2}],[{"start":{"row":2,"column":19},"end":{"row":2,"column":20},"action":"insert","lines":["P"],"id":3}],[{"start":{"row":2,"column":20},"end":{"row":2,"column":21},"action":"insert","lines":["I"],"id":4}],[{"start":{"row":2,"column":21},"end":{"row":2,"column":22},"action":"insert","lines":["N"],"id":5}],[{"start":{"row":2,"column":22},"end":{"row":2,"column":23},"action":"insert","lines":["T"],"id":6}],[{"start":{"row":6,"column":0},"end":{"row":7,"column":0},"action":"insert","lines":["",""],"id":7}],[{"start":{"row":7,"column":0},"end":{"row":8,"column":0},"action":"insert","lines":["",""],"id":8}],[{"start":{"row":8,"column":0},"end":{"row":19,"column":4},"action":"insert","lines":["for i in range(0,2):"," ## SELECT HIGH INTEREST ## "," filtersign = [\"~=\",\"=\"]"," if mathread == \"m\":"," spint = \"mathspint\""," elif mathread == \"r\":"," spint = \"readspint\""," "," filterText = \"\"\"USE ALL. \\nCOMPUTE filter_$=(\"\"\"+spint+filtersign[i]+ \"2\"+\"\"\"). \\nVARIABLE LABELS filter_$ '\"\"\" + spint+filtersign[i]+ \"2\" +\"\"\"(FILTER)'. \\nVALUE LABELS filter_$ 0 'Not Selected' 1 'Selected'. \\nFORMATS filter_$ (f1.0). \\nFILTER BY filter_$. \\nEXECUTE.\\n\\n\"\"\""," "," f.write(filterText)"," "],"id":9}],[{"start":{"row":19,"column":0},"end":{"row":19,"column":4},"action":"insert","lines":[" "],"id":10},{"start":{"row":20,"column":0},"end":{"row":20,"column":4},"action":"insert","lines":[" "]},{"start":{"row":21,"column":0},"end":{"row":21,"column":4},"action":"insert","lines":[" "]},{"start":{"row":22,"column":0},"end":{"row":22,"column":4},"action":"insert","lines":[" "]},{"start":{"row":23,"column":0},"end":{"row":23,"column":4},"action":"insert","lines":[" "]},{"start":{"row":24,"column":0},"end":{"row":24,"column":4},"action":"insert","lines":[" "]},{"start":{"row":25,"column":0},"end":{"row":25,"column":4},"action":"insert","lines":[" "]},{"start":{"row":26,"column":0},"end":{"row":26,"column":4},"action":"insert","lines":[" "]},{"start":{"row":27,"column":0},"end":{"row":27,"column":4},"action":"insert","lines":[" "]},{"start":{"row":28,"column":0},"end":{"row":28,"column":4},"action":"insert","lines":[" "]},{"start":{"row":29,"column":0},"end":{"row":29,"column":4},"action":"insert","lines":[" "]},{"start":{"row":30,"column":0},"end":{"row":30,"column":4},"action":"insert","lines":[" "]},{"start":{"row":31,"column":0},"end":{"row":31,"column":4},"action":"insert","lines":[" "]},{"start":{"row":32,"column":0},"end":{"row":32,"column":4},"action":"insert","lines":[" "]},{"start":{"row":33,"column":0},"end":{"row":33,"column":4},"action":"insert","lines":[" "]},{"start":{"row":34,"column":0},"end":{"row":34,"column":4},"action":"insert","lines":[" "]},{"start":{"row":35,"column":0},"end":{"row":35,"column":4},"action":"insert","lines":[" "]},{"start":{"row":36,"column":0},"end":{"row":36,"column":4},"action":"insert","lines":[" "]},{"start":{"row":37,"column":0},"end":{"row":37,"column":4},"action":"insert","lines":[" "]},{"start":{"row":38,"column":0},"end":{"row":38,"column":4},"action":"insert","lines":[" "]},{"start":{"row":39,"column":0},"end":{"row":39,"column":4},"action":"insert","lines":[" "]},{"start":{"row":40,"column":0},"end":{"row":40,"column":4},"action":"insert","lines":[" "]},{"start":{"row":41,"column":0},"end":{"row":41,"column":4},"action":"insert","lines":[" "]},{"start":{"row":42,"column":0},"end":{"row":42,"column":4},"action":"insert","lines":[" "]},{"start":{"row":43,"column":0},"end":{"row":43,"column":4},"action":"insert","lines":[" "]},{"start":{"row":44,"column":0},"end":{"row":44,"column":4},"action":"insert","lines":[" "]},{"start":{"row":45,"column":0},"end":{"row":45,"column":4},"action":"insert","lines":[" "]},{"start":{"row":46,"column":0},"end":{"row":46,"column":4},"action":"insert","lines":[" "]},{"start":{"row":47,"column":0},"end":{"row":47,"column":4},"action":"insert","lines":[" "]},{"start":{"row":48,"column":0},"end":{"row":48,"column":4},"action":"insert","lines":[" "]},{"start":{"row":49,"column":0},"end":{"row":49,"column":4},"action":"insert","lines":[" "]},{"start":{"row":50,"column":0},"end":{"row":50,"column":4},"action":"insert","lines":[" "]},{"start":{"row":51,"column":0},"end":{"row":51,"column":4},"action":"insert","lines":[" "]},{"start":{"row":52,"column":0},"end":{"row":52,"column":4},"action":"insert","lines":[" "]},{"start":{"row":53,"column":0},"end":{"row":53,"column":4},"action":"insert","lines":[" "]},{"start":{"row":54,"column":0},"end":{"row":54,"column":4},"action":"insert","lines":[" "]},{"start":{"row":55,"column":0},"end":{"row":55,"column":4},"action":"insert","lines":[" "]},{"start":{"row":56,"column":0},"end":{"row":56,"column":4},"action":"insert","lines":[" "]},{"start":{"row":57,"column":0},"end":{"row":57,"column":4},"action":"insert","lines":[" "]},{"start":{"row":58,"column":0},"end":{"row":58,"column":4},"action":"insert","lines":[" "]},{"start":{"row":59,"column":0},"end":{"row":59,"column":4},"action":"insert","lines":[" "]}],[{"start":{"row":59,"column":62},"end":{"row":60,"column":0},"action":"insert","lines":["",""],"id":11},{"start":{"row":60,"column":0},"end":{"row":60,"column":8},"action":"insert","lines":[" "]}],[{"start":{"row":60,"column":8},"end":{"row":61,"column":0},"action":"insert","lines":["",""],"id":12},{"start":{"row":61,"column":0},"end":{"row":61,"column":8},"action":"insert","lines":[" "]}],[{"start":{"row":61,"column":8},"end":{"row":62,"column":0},"action":"insert","lines":["",""],"id":13},{"start":{"row":62,"column":0},"end":{"row":62,"column":8},"action":"insert","lines":[" "]}],[{"start":{"row":62,"column":4},"end":{"row":62,"column":8},"action":"remove","lines":[" "],"id":14}],[{"start":{"row":62,"column":0},"end":{"row":62,"column":4},"action":"remove","lines":[" "],"id":15}],[{"start":{"row":62,"column":0},"end":{"row":64,"column":12},"action":"insert","lines":["f.write(\"\"\"FILTER OFF.","USE ALL.","EXECUTE.\"\"\")"],"id":16}],[{"start":{"row":7,"column":0},"end":{"row":8,"column":0},"action":"insert","lines":["",""],"id":17}],[{"start":{"row":8,"column":0},"end":{"row":9,"column":0},"action":"insert","lines":["",""],"id":18}],[{"start":{"row":8,"column":0},"end":{"row":8,"column":15},"action":"insert","lines":["mathread == \"m\""],"id":19}],[{"start":{"row":8,"column":10},"end":{"row":8,"column":11},"action":"remove","lines":["="],"id":20}]]},"ace":{"folds":[],"scrolltop":0,"scrollleft":0,"selection":{"start":{"row":8,"column":0},"end":{"row":20,"column":23},"isBackwards":true},"options":{"guessTabSize":true,"useWrapMode":false,"wrapToView":true},"firstLineState":0},"timestamp":1456345978891,"hash":"4ea48e1405f9aea3952e15cbcbc5d2706399170d"}
be89e3bb2bcbb432edbcf5ef7805532ee5823d5d
30dc32fd39cf71c76fc24d53b68a8393adcac149
/OWDTestToolkit/apps/Marketplace/__main.py
a24d1a6405e92cfdd242bbf8fe55cd7389288a89
[]
no_license
carlosmartineztoral/OWD_TEST_TOOLKIT
448caefdc95bc3e54aad97df0bff7046ffb37be1
50768f79488735eba8355824f5aa3686a71d560a
refs/heads/master
2021-01-15T17:14:03.614981
2013-06-11T12:48:18
2013-06-11T12:48:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,357
py
from OWDTestToolkit.global_imports import * import installApp ,\ searchForApp ,\ selectSearchResultApp class Marketplace ( installApp.main, searchForApp.main, selectSearchResultApp.main): def __init__(self, p_parent): self.apps = p_parent.apps self.data_layer = p_parent.data_layer self.parent = p_parent self.marionette = p_parent.marionette self.UTILS = p_parent.UTILS def launch(self): # # Launch the app. # self.apps.kill_all() # WARNING: Marketplace is in a weird place - you need to use "Marketplace Dev"!! # self.app = self.apps.launch(self.__class__.__name__) self.UTILS.logResult("info", "About to launch the marketplace app from the dev server. " + \ "If it's \"not found\" then either try again later, or contact #marketplace mozilla irc channel.") self.app = self.apps.launch("Marketplace Dev") self.UTILS.waitForNotElements(DOM.Market.market_loading_icon, self.__class__.__name__ + " app - loading icon", True, 30)
6d2f69de2487fa86a348999f7695b0190ce4b725
78d7d7aeb78a8cea6d0e10b89fc4aa6c46c95227
/3995.py
a3eefaf7f66a32547cbdcc5db18db51791b52a02
[]
no_license
GenryEden/kpolyakovName
97db13ef93061a8c2afc6cc5acd91337f79063f1
c5d7f631ae7ec8770e56170574b82ea2b7d8a4d9
refs/heads/master
2023-05-23T21:22:51.983756
2021-06-21T08:56:49
2021-06-21T08:56:49
350,466,773
0
0
null
null
null
null
UTF-8
Python
false
false
267
py
def check(x): if sum([int(s) for s in oct(x)[2:]]) % 19 != 0: return False m = 1 for s in oct(x)[2:]: m *= int(s) return m % 5 == 0 cnt = 0 minimal = 0 for x in range(12345, 67890+1): if check(x): cnt += 1 if cnt == 1: minimal = x print(cnt, minimal)
4220d040287852ff2cb51884d1f88a13f9e80009
af9268e1ead8cdb491868c14a2240d9e44fb3b56
/last-minute-env/lib/python2.7/site-packages/django/contrib/admin/templatetags/admin_static.py
62b8691f9c135756c86c3975ad0fb508ab08de89
[]
no_license
frosqh/Cousinade2017
d5154c24c93ca8089eeba26b53c594e92cb6bd82
c34d5707af02402bf2bb7405eddc91297da399ff
refs/heads/master
2021-01-20T07:57:34.586476
2017-10-22T18:42:45
2017-10-22T18:42:45
90,074,802
1
0
null
null
null
null
UTF-8
Python
false
false
315
py
from django.template import Library from django.templatetags.static import static as _static register = Library() @register.simple_tag def static(path): # Backwards compatibility alias for django.templatetags.static.static(). # Deprecation should start in Django 2.0. return _static(path)
558a6dcac84f11a72034f4701f4143645c0414fd
63b864deda44120067eff632bbb4969ef56dd573
/object_detection/fast rcnn/roi.py
f7f8c76fbc257a5e40c8450b8615c8b335e4a852
[]
no_license
lizhe960118/Deep-Learning
d134592c327decc1db12cbe19d9a1c85a5056086
7d2c4f3a0512ce4bd2f86c9f455da9866d16dc3b
refs/heads/master
2021-10-29T06:15:04.749917
2019-07-19T15:27:25
2019-07-19T15:27:25
152,355,392
5
2
null
2021-10-12T22:19:33
2018-10-10T03:06:44
Jupyter Notebook
UTF-8
Python
false
false
1,310
py
import numpy as np import torch import torch.nn as nn class ROIPool(nn.Module): def __init__(self, output_size): super().__init__() self.maxpool = nn.AdaptiveMaxPool2d(output_size) self.size = output_size def forward(self, images, rois, roi_idx): # images:特征图 image_batchsize * channels * h * w # rois:[[x1,y1,x2,y2], ...] n * 4 # roi_idx:[4,5,8,7] n * 1, roi_idx[i]保存的是rois[i]对应的是哪个特征图 n = rois.shape[0] # 有多少个建议框 h = images.size(2) w = images.size(3) x1 = rois[:,0] # 提取框的位置,此处缩放为到(0,1) y1 = rois[:,1] x2 = rois[:,2] y2 = rois[:,3] x1 = np.floor(x1 * w).astype(int) # 回归到特征图的位置 x2 = np.ceil(x2 * w).astype(int) y1 = np.floor(y1 * h).astype(int) y2 = np.ceil(y2 * h).astype(int) res = [] for i in range(n): img = images[roi_idx[i]].unsqueeze(0) img = img[:, :, y1[i]:y2[i], x1[i]:x2[i]] img = self.maxpool(img) # 调用的self.maxpool直接输出output_size*output_size大小的特征图 res.append(img) res = torch.cat(res, dim=0) # n * output_size * output_size return res
bd6d1d5a395d1a59e39358b8164d34d56dbcb1cb
82e78f606f8c203cb77b1e3e8fd3b13158f31af8
/thenewboston/transactions/validation.py
8612d11da9a8ba93fe0d80accb79bbd627413987
[ "MIT" ]
permissive
rajat4665/thenewboston-python
1f0b8aea02fb8dbfb2eea60cd1ef07ac12fad667
df842c793fe7bfd8731fd8746abf25747c9e569e
refs/heads/master
2022-11-26T00:46:54.848608
2020-07-26T00:12:06
2020-07-26T00:12:06
283,263,021
0
0
MIT
2020-07-28T16:07:08
2020-07-28T16:07:07
null
UTF-8
Python
false
false
403
py
def validate_transaction_exists(*, amount, error, recipient, txs): """ Check for the existence of a Tx """ tx = next((tx for tx in txs if tx.get('amount') == amount and tx.get('recipient') == recipient), None) if not tx: raise error({ 'error_message': 'Tx not found', 'expected_amount': amount, 'expected_recipient': recipient })
df9384d60dcde3fb318a9b646d98debfab15d79a
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03578/s404612965.py
ac57b84158a4259a926ce398a0358c3c359d58d5
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
740
py
# -*- coding: utf-8 -*- import sys from collections import deque, defaultdict from math import sqrt, factorial # def input(): return sys.stdin.readline()[:-1] # warning not \n # def input(): return sys.stdin.buffer.readline().strip() # warning bytes # def input(): return sys.stdin.buffer.readline().decode('utf-8') def solve(): n = int(input()) d = defaultdict(int) a = [int(x) for x in input().split()] for e in a: d[e] += 1 m = int(input()) t = [int(x) for x in input().split()] for e in t: if d[e]: d[e] -= 1 else: print("NO") return print("YES") t = 1 # t = int(input()) for case in range(1,t+1): ans = solve() """ 1 + k """
69c5f69164eed21cf0ed953345f5fed4d702daf5
1633258aff76252b660534eae6d70a9e95a468ec
/cost_management/urls.py
4443c8d4c8e5ca1952519e7048671ed5a7cfe38d
[]
no_license
kxplorer/banglai-django
7077117f66128cb2bbaa8d50c1a28c076b303987
0d764f744ef165b078e856eb9374dba93cb614e8
refs/heads/master
2021-09-24T20:27:14.726832
2018-09-16T08:50:42
2018-09-16T08:50:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
341
py
from django.urls import path from . import views urlpatterns = [ path('list/', views.my_expense, name='cost-list'), path('add/', views.add_expense, name='add-expense'), path('edit/<int:expense_id>/', views.edit_expense, name='edit-expense'), path('delete/<int:expense_id>/', views.delete_expense, name='delete-expense'), ]
ed531ac39f4e836f0ef9223d8913f55327376982
8c825730f6fd253e58902b150a9800de8f766943
/capture/noworkflow/now/cmd/cmd_history.py
2e5d8da0a5ca9eab5b4e964956f6cef37e97c90f
[ "MIT" ]
permissive
rmparanhos/noworkflow
aeb92695c34e65edf9cc4d4dc31d80467b085773
8f703a14503345568e91957659b43654036f8154
refs/heads/master
2020-05-17T12:39:04.231204
2019-06-21T03:42:49
2019-06-21T03:42:49
183,716,529
0
0
null
2019-04-27T01:58:31
2019-04-27T01:58:31
null
UTF-8
Python
false
false
1,849
py
# Copyright (c) 2016 Universidade Federal Fluminense (UFF) # Copyright (c) 2016 Polytechnic Institute of New York University. # This file is part of noWorkflow. # Please, consult the license terms in the LICENSE file. """'now history' command""" from __future__ import (absolute_import, print_function, division, unicode_literals) import os from ..ipython.converter import create_ipynb from ..persistence.models.history import History as HistoryModel from ..persistence import persistence_config from .command import NotebookCommand class History(NotebookCommand): """Show project history""" def add_arguments(self): add_arg = self.add_argument add_arg("-s", "--script", type=str, default="*", help="show history of specific script") add_arg("-e", "--status", type=str, default="*", choices=["*", "finished", "unfinished", "backup"], help="show only trials in a specific status") add_arg("--dir", type=str, help="set demo path. Default to CWD/demo<number>" "where <number> is the demo identification") def execute(self, args): persistence_config.connect_existing(args.dir or os.getcwd()) history = HistoryModel(script=args.script, status=args.status) print(history) def execute_export(self, args): code = ("%load_ext noworkflow\n" "import noworkflow.now.ipython as nip\n" "# <codecell>\n" "history = nip.History()\n" "# history.graph.width = 700\n" "# history.graph.height = 300\n" "# history.script = '*'\n" "# history.status = '*'\n" "# <codecell>\n" "history") create_ipynb("History.ipynb", code)
cb0abb7803753d6eb75cdac081833a6020167949
821f403a3afc9055d40893eca033c369a4c3831e
/Easy/No206.py
c2200da24597a13f4e107a7fd6caac6856ee93e2
[]
no_license
kikihiter/LeetCode2
29f91b6992a01ba23e7da04b2b2c862410cc563b
7167f1a7c6cb16cca63675c80037682752ee2a7d
refs/heads/master
2023-05-01T03:45:44.482932
2021-05-19T13:12:16
2021-05-19T13:12:16
277,283,525
4
0
null
null
null
null
UTF-8
Python
false
false
519
py
# Definition for singly-linked list. # class ListNode(object): # def __init__(self, x): # self.val = x # self.next = None class Solution(object): def reverseList(self, head): """ :type head: ListNode :rtype: ListNode """ temp = None # 空,用来存储上一个节点信息 while head != None: nextNode = head.next head.next = temp temp = head head = nextNode return temp
dff0eb2acf4da0a475156ff795a327f9c89bcde3
a5ada23f0c9d429cd7afa2351368e46bc23255e4
/meta_models/meta_layers/conv3d_meta_layer.py
b3542d2d43a0dafcd10873c1e253f60dafba31d8
[ "MIT" ]
permissive
AnacletoLAB/meta_models
ef6df0205f88832897e7ebdcd8057635b90024a9
9c70eb0bf080f0ec4bd24b7764f0f71d92d467d5
refs/heads/master
2023-04-11T14:01:47.678710
2021-04-27T08:25:53
2021-04-27T08:25:53
286,005,232
0
0
null
null
null
null
UTF-8
Python
false
false
5,515
py
"""Class implementing meta-model for a Conv3D Layer.""" from typing import Dict from tensorflow.keras.layers import (Activation, BatchNormalization, Conv3D, Layer) from .regularized_meta_layer import RegularizedMetaLayer from ..utils import distributions class Conv3DMetaLayer(RegularizedMetaLayer): """Class implementing meta-layer for tri-dimensional convolutional layers. Private members ------------------------ _min_filters: int, Minimum number of filters to use for the layer. _max_filters: int, Maximum number of filters to use for the layer. _min_x_kernel_size: int, Minimum size of the kernel on the lenght axis. _max_x_kernel_size: int, Maximum size of the kernel on the lenght axis. _min_y_kernel_size: int, Minimum size of the kernel on the depth axis. _max_y_kernel_size: int, Maximum size of the kernel on the depth axis. _min_z_kernel_size: int, Minimum size of the kernel on the height axis. _max_z_kernel_size: int, Maximum size of the kernel on the height axis. _activation: str, The activation function to use for the layer. """ def __init__( self, min_filters: int = 0, max_filters: int = 256, min_x_kernel_size: int = 1, max_x_kernel_size: int = 5, min_y_kernel_size: int = 1, max_y_kernel_size: int = 5, min_z_kernel_size: int = 1, max_z_kernel_size: int = 5, activation: str = "relu", **kwargs: Dict ): """Create new Conv3DResidualLayer meta-model object. Parameters ---------------------- min_filters: int = 0, Minimum number of filters (neurons) in each layer. If the tuning process passes 0, then the layer is skipped. max_filters: int = 256, Maximum number of filters (neurons) in each layer. min_x_kernel_size: int = 1, Minimum size of the kernel on the lenght axis. max_x_kernel_size: int = 5, Maximum size of the kernel on the lenght axis. min_y_kernel_size: int = 1, Minimum size of the kernel on the depth axis. max_y_kernel_size: int = 5, Maximum size of the kernel on the depth axis. min_z_kernel_size: int = 1, Minimum size of the kernel on the height axis. max_z_kernel_size: int = 5, Maximum size of the kernel on the height axis. activation: str = "relu", The activation function to use for the layer. **kwargs: Dict, Dictionary of keyword parameters to be passed to parent class. """ super().__init__(**kwargs) self._min_filters = min_filters self._max_filters = max_filters self._min_x_kernel_size = min_x_kernel_size self._max_x_kernel_size = max_x_kernel_size self._min_y_kernel_size = min_y_kernel_size self._max_y_kernel_size = max_y_kernel_size self._min_z_kernel_size = min_z_kernel_size self._max_z_kernel_size = max_z_kernel_size self._activation = activation def _space(self) -> Dict: """Return hyper parameters of the layer.""" return { "filters": (distributions.integer, self._min_filters, self._max_filters), "x_kernel_size": (distributions.integer, self._min_x_kernel_size, self._max_x_kernel_size), "y_kernel_size": (distributions.integer, self._min_y_kernel_size, self._max_y_kernel_size), "z_kernel_size": (distributions.integer, self._min_z_kernel_size, self._max_z_kernel_size), **super()._space() } def _build( self, input_layers: Layer, filters: int, x_kernel_size: int, y_kernel_size: int, z_kernel_size: int, strides: int = (1, 1, 1), **kwargs: Dict ) -> Layer: """Return built Conv3D layer block. If the given filters number is equal to 0, the layer is skipped. Parameters -------------------------- input_layers: Layer, The input layer of the current layer. filters: int, The number of neurons of the layer. x_kernel_size: int, The dimension of the kernel for the layer, on the length axis. y_kernel_size: int, The dimension of the kernel for the layer, on the depth axis. z_kernel_size: int, The dimension of the kernel for the layer, on the height axis. strides: int = (1, 1), Strides for the convolutional layer. **kwargs: Dict, The kwargs to pass to the kernel regularizers. Returns -------------------------- Output layer of the block. """ filters = round(filters) x_kernel_size = round(x_kernel_size) y_kernel_size = round(y_kernel_size) z_kernel_size = round(z_kernel_size) if filters == 0: return input_layers layer = Conv3D( filters=filters, kernel_size=(x_kernel_size, y_kernel_size, z_kernel_size), strides=strides, padding="same", **self._build_regularizers(**kwargs) )(input_layers) if self._batch_normalization: layer = BatchNormalization()(layer) activation = Activation(self._activation)(layer) return activation
04747c7c8266e99f1a85acf17f1ae88fef5da79d
03d68f032ab0e8cf269413d0309fc6d36281504f
/src/l2hmc/utils/tensorflow/history.py
d66fe35509b67f88da6d0b9dd0b405dac0889a21
[ "Apache-2.0" ]
permissive
saforem2/l2hmc-qcd
560026cd4d63f786247170a2b8641a7402b7e81e
46ada488bc5c8b0a31be0bf23ea11b95b3b06767
refs/heads/main
2023-09-06T03:20:19.577196
2023-08-23T19:26:58
2023-08-23T19:26:58
176,870,361
57
8
Apache-2.0
2023-08-23T18:56:02
2019-03-21T04:32:54
Jupyter Notebook
UTF-8
Python
false
false
1,812
py
""" tensorflow/history.py Implements tfHistory, containing minor modifications from base History class. """ from __future__ import absolute_import, print_function, division, annotations from typing import Any import tensorflow as tf import numpy as np from l2hmc.utils.history import BaseHistory class History(BaseHistory): def update(self, metrics: dict) -> dict: avgs = {} era = metrics.get('era', 0) for key, val in metrics.items(): avg = None if isinstance(val, (float, int)): avg = val else: if isinstance(val, dict): for k, v in val.items(): key = f'{key}/{k}' try: avg = self._update(key=key, val=v) # TODO: Figure out how to deal with exception except tf.errors.InvalidArgumentError: continue else: avg = self._update(key=key, val=val) if avg is not None: avgs[key] = avg try: self.era_metrics[str(era)][key].append(avg) except KeyError: self.era_metrics[str(era)][key] = [avg] return avgs def _update(self, key: str, val: Any) -> float: if val is None: raise ValueError(f'None encountered: {key}: {val}') if isinstance(val, list): val = np.array(val) try: self.history[key].append(val) except KeyError: self.history[key] = [val] if isinstance(val, (float, int)): return val try: return tf.reduce_mean(val) except Exception: return val
2bc39bcc1beee6e7c11228aeb0f44298cf6663e7
50fb142226d75ed4a9d991555b9ee266f02260e5
/include/HydrusThreading.py
bb9db952a7e15cd4f0b5f668c9b9a4383f881b68
[ "WTFPL" ]
permissive
codelizard42/hydrus
85a4ee0f90f96de01e2fcc0336d8bc57dcf418fe
4bb6c317040819c87bf6085f74620441587ef2d1
refs/heads/master
2020-04-05T22:48:40.514900
2018-12-12T22:15:46
2018-12-12T22:15:46
30,299,239
1
0
null
2015-02-04T13:09:35
2015-02-04T13:09:34
null
UTF-8
Python
false
false
17,836
py
import bisect import collections import HydrusExceptions import Queue import random import threading import time import traceback import HydrusData import HydrusGlobals as HG import os NEXT_THREAD_CLEAROUT = 0 THREADS_TO_THREAD_INFO = {} THREAD_INFO_LOCK = threading.Lock() def ClearOutDeadThreads(): with THREAD_INFO_LOCK: all_threads = list( THREADS_TO_THREAD_INFO.keys() ) for thread in all_threads: if not thread.is_alive(): del THREADS_TO_THREAD_INFO[ thread ] def GetThreadInfo( thread = None ): global NEXT_THREAD_CLEAROUT if HydrusData.TimeHasPassed( NEXT_THREAD_CLEAROUT ): ClearOutDeadThreads() NEXT_THREAD_CLEAROUT = HydrusData.GetNow() + 600 if thread is None: thread = threading.current_thread() with THREAD_INFO_LOCK: if thread not in THREADS_TO_THREAD_INFO: thread_info = {} thread_info[ 'shutting_down' ] = False THREADS_TO_THREAD_INFO[ thread ] = thread_info return THREADS_TO_THREAD_INFO[ thread ] def IsThreadShuttingDown(): me = threading.current_thread() if isinstance( me, DAEMON ): if HG.view_shutdown: return True else: if HG.model_shutdown: return True thread_info = GetThreadInfo() return thread_info[ 'shutting_down' ] def ShutdownThread( thread ): thread_info = GetThreadInfo( thread ) thread_info[ 'shutting_down' ] = True class DAEMON( threading.Thread ): def __init__( self, controller, name ): threading.Thread.__init__( self, name = name ) self._controller = controller self._name = name self._event = threading.Event() self._controller.sub( self, 'wake', 'wake_daemons' ) self._controller.sub( self, 'shutdown', 'shutdown' ) def _DoPreCall( self ): if HG.daemon_report_mode: HydrusData.ShowText( self._name + ' doing a job.' ) def GetCurrentJobSummary( self ): return 'unknown job' def GetName( self ): return self._name def shutdown( self ): ShutdownThread( self ) self.wake() def wake( self ): self._event.set() class DAEMONWorker( DAEMON ): def __init__( self, controller, name, callable, topics = None, period = 3600, init_wait = 3, pre_call_wait = 0 ): if topics is None: topics = [] DAEMON.__init__( self, controller, name ) self._callable = callable self._topics = topics self._period = period self._init_wait = init_wait self._pre_call_wait = pre_call_wait for topic in topics: self._controller.sub( self, 'set', topic ) self.start() def _CanStart( self, time_started_waiting ): return self._PreCallWaitIsDone( time_started_waiting ) and self._ControllerIsOKWithIt() def _ControllerIsOKWithIt( self ): return True def _PreCallWaitIsDone( self, time_started_waiting ): # just shave a bit off so things that don't have any wait won't somehow have to wait a single accidentaly cycle time_to_start = ( float( time_started_waiting ) - 0.1 ) + self._pre_call_wait return HydrusData.TimeHasPassed( time_to_start ) def GetCurrentJobSummary( self ): return self._callable def run( self ): self._event.wait( self._init_wait ) while True: if IsThreadShuttingDown(): return time_started_waiting = HydrusData.GetNow() while not self._CanStart( time_started_waiting ): time.sleep( 1 ) if IsThreadShuttingDown(): return self._DoPreCall() try: self._callable( self._controller ) except HydrusExceptions.ShutdownException: return except Exception as e: HydrusData.ShowText( 'Daemon ' + self._name + ' encountered an exception:' ) HydrusData.ShowException( e ) if IsThreadShuttingDown(): return self._event.wait( self._period ) self._event.clear() def set( self, *args, **kwargs ): self._event.set() # Big stuff like DB maintenance that we don't want to run while other important stuff is going on, like user interaction or vidya on another process class DAEMONBackgroundWorker( DAEMONWorker ): def _ControllerIsOKWithIt( self ): return self._controller.GoodTimeToDoBackgroundWork() # Big stuff that we want to run when the user sees, but not at the expense of something else, like laggy session load class DAEMONForegroundWorker( DAEMONWorker ): def _ControllerIsOKWithIt( self ): return self._controller.GoodTimeToDoForegroundWork() class THREADCallToThread( DAEMON ): def __init__( self, controller, name ): DAEMON.__init__( self, controller, name ) self._callable = None self._queue = Queue.Queue() self._currently_working = True # start off true so new threads aren't used twice by two quick successive calls def CurrentlyWorking( self ): return self._currently_working def GetCurrentJobSummary( self ): return self._callable def put( self, callable, *args, **kwargs ): self._currently_working = True self._queue.put( ( callable, args, kwargs ) ) self._event.set() def run( self ): while True: try: while self._queue.empty(): if IsThreadShuttingDown(): return self._event.wait( 1200 ) self._event.clear() self._DoPreCall() ( callable, args, kwargs ) = self._queue.get() self._callable = ( callable, args, kwargs ) callable( *args, **kwargs ) self._callable = None del callable except HydrusExceptions.ShutdownException: return except Exception as e: HydrusData.Print( traceback.format_exc() ) HydrusData.ShowException( e ) finally: self._currently_working = False time.sleep( 0.00001 ) class JobScheduler( threading.Thread ): def __init__( self, controller ): threading.Thread.__init__( self, name = 'Job Scheduler' ) self._controller = controller self._waiting = [] self._waiting_lock = threading.Lock() self._new_job_arrived = threading.Event() self._current_job = None self._cancel_filter_needed = threading.Event() self._sort_needed = threading.Event() self._controller.sub( self, 'shutdown', 'shutdown' ) def _FilterCancelled( self ): with self._waiting_lock: self._waiting = [ job for job in self._waiting if not job.IsCancelled() ] def _GetLoopWaitTime( self ): with self._waiting_lock: if len( self._waiting ) == 0: return 0.2 next_job = self._waiting[0] time_delta_until_due = next_job.GetTimeDeltaUntilDue() return min( 1.0, time_delta_until_due ) def _NoWorkToStart( self ): with self._waiting_lock: if len( self._waiting ) == 0: return True next_job = self._waiting[0] if next_job.IsDue(): return False else: return True def _SortWaiting( self ): # sort the waiting jobs in ascending order of expected work time with self._waiting_lock: # this uses __lt__ to sort self._waiting.sort() def _StartWork( self ): jobs_started = 0 while True: with self._waiting_lock: if len( self._waiting ) == 0: break if jobs_started >= 10: # try to avoid spikes break next_job = self._waiting[0] if next_job.IsDue(): next_job = self._waiting.pop( 0 ) next_job.StartWork() jobs_started += 1 else: break # all the rest in the queue are not due def AddJob( self, job ): with self._waiting_lock: bisect.insort( self._waiting, job ) self._new_job_arrived.set() def ClearOutDead( self ): with self._waiting_lock: self._waiting = [ job for job in self._waiting if not job.IsDead() ] def GetName( self ): return 'Job Scheduler' def GetCurrentJobSummary( self ): with self._waiting_lock: return HydrusData.ToHumanInt( len( self._waiting ) ) + ' jobs' def GetPrettyJobSummary( self ): with self._waiting_lock: num_jobs = len( self._waiting ) job_lines = [ repr( job ) for job in self._waiting ] lines = [ HydrusData.ToHumanInt( num_jobs ) + ' jobs:' ] + job_lines text = os.linesep.join( lines ) return text def JobCancelled( self ): self._cancel_filter_needed.set() def shutdown( self ): ShutdownThread( self ) def WorkTimesHaveChanged( self ): self._sort_needed.set() def run( self ): while True: try: while self._NoWorkToStart(): if IsThreadShuttingDown(): return # if self._cancel_filter_needed.is_set(): self._FilterCancelled() self._cancel_filter_needed.clear() if self._sort_needed.is_set(): self._SortWaiting() self._sort_needed.clear() continue # if some work is now due, let's do it! # wait_time = self._GetLoopWaitTime() self._new_job_arrived.wait( wait_time ) self._new_job_arrived.clear() self._StartWork() except HydrusExceptions.ShutdownException: return except Exception as e: HydrusData.Print( traceback.format_exc() ) HydrusData.ShowException( e ) time.sleep( 0.00001 ) class SchedulableJob( object ): def __init__( self, controller, scheduler, initial_delay, work_callable ): self._controller = controller self._scheduler = scheduler self._work_callable = work_callable self._next_work_time = HydrusData.GetNowFloat() + initial_delay self._work_lock = threading.Lock() self._currently_working = threading.Event() self._is_cancelled = threading.Event() def __lt__( self, other ): # for the scheduler to do bisect.insort noice return self._next_work_time < other._next_work_time def __repr__( self ): return repr( self.__class__ ) + ': ' + repr( self._work_callable ) + ' next in ' + HydrusData.TimeDeltaToPrettyTimeDelta( self._next_work_time - HydrusData.GetNowFloat() ) def _BootWorker( self ): self._controller.CallToThread( self.Work ) def Cancel( self ): self._is_cancelled.set() self._scheduler.JobCancelled() def CurrentlyWorking( self ): return self._currently_working.is_set() def GetTimeDeltaUntilDue( self ): return HydrusData.GetTimeDeltaUntilTimeFloat( self._next_work_time ) def IsCancelled( self ): return self._is_cancelled.is_set() def IsDead( self ): return False def IsDue( self ): return HydrusData.TimeHasPassedFloat( self._next_work_time ) def StartWork( self ): if self._is_cancelled.is_set(): return self._currently_working.set() self._BootWorker() def Wake( self, next_work_time = None ): if next_work_time is None: next_work_time = HydrusData.GetNowFloat() self._next_work_time = next_work_time self._scheduler.WorkTimesHaveChanged() def Work( self ): try: with self._work_lock: self._work_callable() finally: self._currently_working.clear() class RepeatingJob( SchedulableJob ): def __init__( self, controller, scheduler, initial_delay, period, work_callable ): SchedulableJob.__init__( self, controller, scheduler, initial_delay, work_callable ) self._period = period self._stop_repeating = threading.Event() def Cancel( self ): SchedulableJob.Cancel( self ) self._stop_repeating.set() def Delay( self, delay ): self._next_work_time = HydrusData.GetNowFloat() + delay self._scheduler.WorkTimesHaveChanged() def IsFinishedWorking( self ): return self._stop_repeating.is_set() def SetPeriod( self, period ): if period > 10.0: period += random.random() # smooth out future spikes if ten of these all fire at the same time self._period = period def StartWork( self ): if self._stop_repeating.is_set(): return SchedulableJob.StartWork( self ) def Work( self ): SchedulableJob.Work( self ) if not self._stop_repeating.is_set(): self._next_work_time = HydrusData.GetNowFloat() + self._period self._scheduler.AddJob( self )
ef89ebbee0f0db544ff5bf1b817aff77405ecae0
7d274ce8dae971228a23157a409b561020c22f66
/tools/packages/SCons/Tool/sunc++.py
00fb8c85284d59226fd62f3cfb8e577783661690
[]
no_license
Eigenlabs/EigenD-Contrib
a212884d4fdf9ae0e1aeb73f6311606212e02f94
586fe17471571802295c792697f255e6cab51b17
refs/heads/master
2020-05-17T07:54:48.668925
2013-02-05T10:20:56
2013-02-05T10:20:56
3,239,072
3
2
null
null
null
null
UTF-8
Python
false
false
4,744
py
"""SCons.Tool.sunc++ Tool-specific initialization for C++ on SunOS / Solaris. There normally shouldn't be any need to import this module directly. It will usually be imported through the generic SCons.Tool.Tool() selection method. """ # # Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 The SCons Foundation # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # __revision__ = "src/engine/SCons/Tool/sunc++.py 4577 2009/12/27 19:43:56 scons" import SCons import os import re import subprocess cplusplus = __import__('c++', globals(), locals(), []) package_info = {} def get_package_info(package_name, pkginfo, pkgchk): try: return package_info[package_name] except KeyError: version = None pathname = None try: sadm_contents = open('/var/sadm/install/contents', 'r').read() except EnvironmentError: pass else: sadm_re = re.compile('^(\S*/bin/CC)(=\S*)? %s$' % package_name, re.M) sadm_match = sadm_re.search(sadm_contents) if sadm_match: pathname = os.path.dirname(sadm_match.group(1)) try: p = subprocess.Popen([pkginfo, '-l', package_name], stdout=subprocess.PIPE, stderr=open('/dev/null', 'w')) except EnvironmentError: pass else: pkginfo_contents = p.communicate()[0] version_re = re.compile('^ *VERSION:\s*(.*)$', re.M) version_match = version_re.search(pkginfo_contents) if version_match: version = version_match.group(1) if pathname is None: try: p = subprocess.Popen([pkgchk, '-l', package_name], stdout=subprocess.PIPE, stderr=open('/dev/null', 'w')) except EnvironmentError: pass else: pkgchk_contents = p.communicate()[0] pathname_re = re.compile(r'^Pathname:\s*(.*/bin/CC)$', re.M) pathname_match = pathname_re.search(pkgchk_contents) if pathname_match: pathname = os.path.dirname(pathname_match.group(1)) package_info[package_name] = (pathname, version) return package_info[package_name] # use the package installer tool lslpp to figure out where cppc and what # version of it is installed def get_cppc(env): cxx = env.subst('$CXX') if cxx: cppcPath = os.path.dirname(cxx) else: cppcPath = None cppcVersion = None pkginfo = env.subst('$PKGINFO') pkgchk = env.subst('$PKGCHK') for package in ['SPROcpl']: path, version = get_package_info(package, pkginfo, pkgchk) if path and version: cppcPath, cppcVersion = path, version break return (cppcPath, 'CC', 'CC', cppcVersion) def generate(env): """Add Builders and construction variables for SunPRO C++.""" path, cxx, shcxx, version = get_cppc(env) if path: cxx = os.path.join(path, cxx) shcxx = os.path.join(path, shcxx) cplusplus.generate(env) env['CXX'] = cxx env['SHCXX'] = shcxx env['CXXVERSION'] = version env['SHCXXFLAGS'] = SCons.Util.CLVar('$CXXFLAGS -KPIC') env['SHOBJPREFIX'] = 'so_' env['SHOBJSUFFIX'] = '.o' def exists(env): path, cxx, shcxx, version = get_cppc(env) if path and cxx: cppc = os.path.join(path, cxx) if os.path.exists(cppc): return cppc return None # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
541e437fb4ea37f3049fb19b4f1687b8576a3ff7
b9ffd9b9e88d497ee904e42dfd825080ee7713a9
/files_from_working_server/waterscan-api/venv/bin/virtualenv
a6ba8866dbc0c5dce7c6083a719ce94eacc20629
[]
no_license
naturalis/waterscan-ecosoft
a3d8e91d6634108b585a71c051f15216c8c3fdf4
a2bcc3e656bbfb6ca08cd7e8ef7f119f0004d049
refs/heads/master
2021-06-15T05:26:15.457593
2019-06-21T09:39:22
2019-06-21T09:39:22
191,738,087
0
0
null
2021-05-06T19:36:36
2019-06-13T10:01:34
Python
UTF-8
Python
false
false
239
#!/home/ubuntu/waterscan-api/venv/bin/python3 # -*- coding: utf-8 -*- import re import sys from virtualenv import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
74aeddee7276ced1388155ecfd993003fe1085f4
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/NhPYFqfQcFXWvdH8t_5.py
f7d2eb52db8c7a1424e591f89c82b393d52cea0d
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
1,614
py
""" A positive integer multiplied times its inverse is always equal to 1: `17*(1/17)==1`. Modular arithmetic has a similar inverse function, although, for modulus `m`, we are confined to integers from 0 to m-1. The modular multiplicative inverse of 3 modulus 5 is equal to 2 because `(3*2)%5==1`. Another example: the modular inverse of 17 modulus 1000007 is equal to 58824 because `(17*58824)%1000007==1`. The modular inverse, if it exists, must always be in the range 0 to m-1. Create a function that has arguments integer `n` and modulus `m`. The function will return the modular inverse of `n` mod `m`. If the modular inverse does not exist, return `False`. ### Examples mod_inv(2, 3) ➞ 2 mod_inv(12, 47) ➞ 4 mod_inv(11, 33) ➞ False mod_inv(55, 678) ➞ 37 mod_inv(81, 3455) ➞ 2346 ### Notes * Some of the test cases have rather large integers, so if you attempt to do a brute force search of the entire modular field, you may not be successful due to the 12 second time limit imposed by the server. See **Resources** for a more efficient approach. * The modular inverse of a number `n` modulus `m` exists only if `n` and `m` are coprime (i.e. they have no common factors other than 1). * One practical use of modular inverse is in public-key cryptography like RSA where it can be used to determine the value of the private key. """ def egcd(j, k): if j == 0: return (k, 0, 1) h, y, x = egcd(k%j,j) return (h, x - (k//j) * y, y) def mod_inv(j, m): h, x, y = egcd(j, m) if h != 1: return False return x%m
654671700188a0cf97b551f4f3716dcebb0ade85
48832d27da16256ee62c364add45f21b968ee669
/res/scripts/client/gui/wgnc/events.py
7291b9a2e8cb59d82254603badc1df9740d57f17
[]
no_license
webiumsk/WOT-0.9.15.1
0752d5bbd7c6fafdd7f714af939ae7bcf654faf7
17ca3550fef25e430534d079876a14fbbcccb9b4
refs/heads/master
2021-01-20T18:24:10.349144
2016-08-04T18:08:34
2016-08-04T18:08:34
64,955,694
0
0
null
null
null
null
WINDOWS-1250
Python
false
false
957
py
# 2016.08.04 19:53:34 Střední Evropa (letní čas) # Embedded file name: scripts/client/gui/wgnc/events.py import Event class _WGNCEvents(object): __slots__ = ('__eManager', 'onItemShowByDefault', 'onItemShowByAction', 'onItemUpdatedByAction', 'onProxyDataItemShowByDefault') def __init__(self): super(_WGNCEvents, self).__init__() self.__eManager = Event.EventManager() self.onItemShowByDefault = Event.Event(self.__eManager) self.onItemShowByAction = Event.Event(self.__eManager) self.onItemUpdatedByAction = Event.Event(self.__eManager) self.onProxyDataItemShowByDefault = Event.Event(self.__eManager) def clear(self): self.__eManager.clear() g_wgncEvents = _WGNCEvents() # okay decompyling c:\Users\PC\wotsources\files\originals\res\scripts\client\gui\wgnc\events.pyc # decompiled 1 files: 1 okay, 0 failed, 0 verify failed # 2016.08.04 19:53:34 Střední Evropa (letní čas)
7dd5572eb2f7345c5c19117511b278a267f52dbb
0cf7dd2c3c0b28b52f1273e8fe2ea0a87cacc6af
/calc_area_circum.py
2bd6a681d10b6c96d0890ec76ce91d3e8c64ef23
[]
no_license
EngrDevDom/Everyday-Coding-in-Python
61b0e4fcbc6c7f399587deab2fa55763c9d519b5
93329ad485a25e7c6afa81d7229147044344736c
refs/heads/master
2023-02-25T05:04:50.051111
2021-01-30T02:43:40
2021-01-30T02:43:40
274,971,215
1
0
null
null
null
null
UTF-8
Python
false
false
95
py
R = 7 PI = 3.141592654 print("The area is", R**2 * PI) print("The circumference is", 2*R*PI)
66c71b03c28c724553f740d6e72d6d54448e2888
9b64f0f04707a3a18968fd8f8a3ace718cd597bc
/huaweicloud-sdk-bcs/huaweicloudsdkbcs/v2/model/show_blockchain_detail_request.py
0799bf411b855abd953b527d517b0231e35885cf
[ "Apache-2.0" ]
permissive
jaminGH/huaweicloud-sdk-python-v3
eeecb3fb0f3396a475995df36d17095038615fba
83ee0e4543c6b74eb0898079c3d8dd1c52c3e16b
refs/heads/master
2023-06-18T11:49:13.958677
2021-07-16T07:57:47
2021-07-16T07:57:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,836
py
# coding: utf-8 import re import six class ShowBlockchainDetailRequest: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'blockchain_id': 'str' } attribute_map = { 'blockchain_id': 'blockchain_id' } def __init__(self, blockchain_id=None): """ShowBlockchainDetailRequest - a model defined in huaweicloud sdk""" self._blockchain_id = None self.discriminator = None self.blockchain_id = blockchain_id @property def blockchain_id(self): """Gets the blockchain_id of this ShowBlockchainDetailRequest. blockchainID :return: The blockchain_id of this ShowBlockchainDetailRequest. :rtype: str """ return self._blockchain_id @blockchain_id.setter def blockchain_id(self, blockchain_id): """Sets the blockchain_id of this ShowBlockchainDetailRequest. blockchainID :param blockchain_id: The blockchain_id of this ShowBlockchainDetailRequest. :type: str """ self._blockchain_id = blockchain_id def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): import simplejson as json return json.dumps(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ShowBlockchainDetailRequest): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
1345771bc1b47bd1670f09a40a36343b34214e39
f3110c8d0d1a232a0511ec559695882c1eb8594e
/DJANGO/quiz/views.py
884b75847a4fa12c352577e3ce03ff8523cc36d7
[]
no_license
SeungWookHan/Flutter-DRF
feb1394d52961824eac2a6e88c667a0e03375c47
c793ccdacee1a4053a33471c226ff2ce8c5797dc
refs/heads/master
2023-02-04T23:15:45.945139
2020-12-29T15:50:02
2020-12-29T15:50:02
324,955,539
3
0
null
null
null
null
UTF-8
Python
false
false
570
py
from rest_framework.response import Response from rest_framework.decorators import api_view from .models import Quiz from .serializers import QuizSerializer import random # Create your views here. @api_view(['GET']) def helloAPI(request): return Response("hello world!") @api_view(['GET']) def randomQuiz(request, id): totalQuizs = Quiz.objects.all() randomQuizs = random.sample(list(totalQuizs), id) serializer = QuizSerializer(randomQuizs, many=True) #many 부분을 통해 다량의 데이터도 직렬화 진행 return Response(serializer.data)
ba1076a3246d6802d9ea52c4729fe3b0503f4722
60448d1467b5a2531bab91e8bc721294a397e754
/nmrpyschedule/generator.py
6ae0f758186b260b88d0c9eb2eb10be36e7e9cae
[]
no_license
mattfenwick/NMRPySchedule
8c7fda460b32f09138f08f15d302df4096075fb9
22e3399e9964137cb3e382b5805d457bb82e751f
refs/heads/master
2021-01-18T16:32:23.013635
2013-06-11T15:36:29
2013-06-11T15:36:29
10,610,035
0
1
null
null
null
null
UTF-8
Python
false
false
2,688
py
''' @author: matt ''' import itertools import math def uniform(ranges): ''' Generate a table of n-dimensional points containing all grid points within the given ranges. Includes both boundaries. ''' theNums = [range(low, high + 1) for (low, high) in ranges] return itertools.product(*theNums) _primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] def _haltonNumber(index, base): result = 0 f = 1. / base i = index while i > 0: result = result + f * (i % base) i = int(i / base) f = f / base return result def _scaledHaltonNumber(factor, shift, index, prime): return int(factor * _haltonNumber(index, prime)) + shift def halton(ranges): ''' Generate subrandom sequence of n-dimensional points according to the Halton sequence. Returns a generator of an infinite sequence. ''' scalingFactors = [max(x) - min(x) for x in ranges] shifts = [min(x) for x in ranges] if len(ranges) > len(_primes): raise ValueError("not enough primes defined: please define more or reduce the dimensionality") ix = 0 while True: pt = [] for (sf, s, p) in zip(scalingFactors, shifts, _primes): pt.append(_scaledHaltonNumber(sf, s, ix, p)) yield pt ix += 1 def _distance(pt, origin): zipped = zip(pt, origin) sumSquares = sum([abs(a - b) ** 2 for (a, b) in zipped]) dist = math.sqrt(sumSquares) return dist def _myDist(pt, origin, width, maxDeviation): dist = _distance(pt, origin) ratio = dist / width return abs(ratio - round(ratio)) * width <= maxDeviation def concentricShell(ranges, shellSpacing, maxDeviation): ''' Generate all points whose distance from the origin is close to a multiple of an arbitrary number. The origin is defined as the point whose coordinates are the low end of each dimension's range. ''' points = uniform(ranges) origin = [r[0] for r in ranges] return [pt for pt in points if _myDist(pt, origin, shellSpacing, maxDeviation)] def _myFilter(pt, origin, offsetAngle, degreeGap, tolerance): y,x = pt[0] - origin[0], pt[1] - origin[1] theta = m.atan2(x, y) * 180. / m.pi # angle in degrees ratio = (theta + offsetAngle) / degreeGap return abs(ratio - round(ratio)) * degreeGap < tolerance def radial(ranges, offsetAngle, gapAngle, maximumDeviation): ''' Generate coordinates of points, where the points lie along 'spokes' radiating out from the origin. ''' allPoints = uniform(ranges) origin = [r[0] for r in ranges] return [pt for pt in allPoints if _myFilter(pt, origin, offsetAngle, gapAngle, maximumDeviation)]
3b4f8d5f9825913e31189eddb81b7034aebe454f
46669c775591b38f71382f690cb93a4879366595
/src/020_create_xml.py
2cdeed0319fdbdfe0862a1c99e4fb20e25ad7850
[ "CC-BY-4.0" ]
permissive
kouigenjimonogatari/kouigenjimonogatari.github.io
e234abe0e4145bbe879756f6af19a546c01a2ff4
c0ec798d550bda5670d8af15c4028ff925e6495d
refs/heads/master
2022-10-12T19:52:05.229525
2022-10-04T09:34:51
2022-10-04T09:34:51
223,747,725
0
0
null
null
null
null
UTF-8
Python
false
false
5,077
py
import sys import urllib import json import argparse import urllib.request import unicodedata import collections import os import xml.etree.ElementTree as ET import csv import glob import urllib.parse def get_mdata(manifest): print(manifest) res = urllib.request.urlopen(manifest) # json_loads() でPythonオブジェクトに変換 data = json.loads(res.read().decode('utf-8')) canvases = data["sequences"][0]["canvases"] map = {} for i in range(len(canvases)): canvas = canvases[i] canvas_id = canvas["@id"] width = canvas["width"] height = canvas["height"] url = canvas["images"][0]["resource"]["@id"] map[canvas_id] = { "width": width, "height": height, "url": url } return map vols = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 ,13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54] m_map = {} for vol in vols: prefix = ".//{http://www.tei-c.org/ns/1.0}" xml = ".//{http://www.w3.org/XML/1998/namespace}" tmp_path = "data/template.xml" tree = ET.parse(tmp_path) ET.register_namespace('', "http://www.tei-c.org/ns/1.0") ET.register_namespace('xml', "http://www.w3.org/XML/1998/namespace") root = tree.getroot() para = root.find(prefix + "body").find(prefix + "p") files = glob.glob("../api/items/*.json") surfaceGrp = root.find(prefix+"surfaceGrp") with open("../api/item_sets/"+str(vol).zfill(2)+".json", 'r') as f: rdf_collection = json.load(f) manifest = rdf_collection[0]["http://www.w3.org/2000/01/rdf-schema#seeAlso"][0]["@id"] title = rdf_collection[0]["http://www.w3.org/2000/01/rdf-schema#label"][0]["@value"] surfaceGrp.set("facs", manifest) if manifest not in m_map: m_map[manifest] = get_mdata(manifest) canvas_data = m_map[manifest] prev_page = -1 canvas_map = {} for file in sorted(files): with open(file, 'r') as f: data = json.load(f) # print(file) value = data[0]["http://www.w3.org/2000/01/rdf-schema#label"][0]["@value"] # if "http://example.org/冊数名" not in data[0]: # continue vol_ = int(data[0]["http://purl.org/dc/terms/isPartOf"][0]["@id"].split("/")[-1].split(".")[0]) if vol != vol_: continue root.find(prefix + "title").text = "校異源氏物語・"+ title id = data[0]["@id"] page = data[0]["https://w3id.org/kouigenjimonogatari/api/property/page"][0]["@value"] # 新しい頁 if page != prev_page: prev_page = page lb = ET.Element( "{http://www.tei-c.org/ns/1.0}lb") para.append(lb) pb = ET.Element( "{http://www.tei-c.org/ns/1.0}pb") pb.set("n", str(page)) pb.set("facs", "#zone_"+str(page).zfill(4)) para.append(pb) relation = data[0]["http://purl.org/dc/terms/relation"][0]["@id"] relation = urllib.parse.unquote(relation) canvas_id = relation.split("canvas=")[1] obj = canvas_data[canvas_id] if canvas_id not in canvas_map: canvas_map[canvas_id] = { "url": obj["url"], "zones": [] } if page % 2 == 0: lrx = obj["width"] ulx = int(lrx / 2) else: lrx = int(obj["width"] / 2) ulx = 0 zone = ET.Element( "{http://www.tei-c.org/ns/1.0}zone") zone.set("xml:id", "zone_"+str(page).zfill(4)) zone.set("lrx", str(lrx)) zone.set("lry", str(obj["height"])) zone.set("ulx", str(ulx)) zone.set("uly", str(0)) canvas_map[canvas_id]["zones"].append(zone) lb = ET.Element( "{http://www.tei-c.org/ns/1.0}lb") para.append(lb) line = ET.Element( "{http://www.tei-c.org/ns/1.0}seg") line.set("corresp", id) line.text = value # para.append(line) para.append(line) for canvas_id in canvas_map: obj = canvas_map[canvas_id] surface = ET.Element( "{http://www.tei-c.org/ns/1.0}surface") surfaceGrp.append(surface) graphic = ET.Element( "{http://www.tei-c.org/ns/1.0}graphic") graphic.set("n", canvas_id) graphic.set("url", obj["url"]) surface.append(graphic) for zone in obj["zones"]: surface.append(zone) tree.write("../tei/"+str(vol).zfill(2)+".xml", encoding="utf-8")
7920769fb9df2c743760034190be86dff1f1947a
65c0ef56c2e2c3e1646a610f49e6dd06f2c6102d
/src/libs/cmd/implement/emulator/fastboot.py
e8c8437bb490f5e1cb28f6289ccb8449e2873cad
[ "MIT" ]
permissive
VirtualVFix/AndroidTestFramework
d3411f328a793ee7b007c4736983204aae81b739
1feb769c6aca39a78e6daefd6face0a1e4d62cd4
refs/heads/master
2020-08-11T14:48:12.454415
2019-10-12T10:20:43
2019-10-12T10:20:43
214,582,560
0
0
null
null
null
null
UTF-8
Python
false
false
648
py
# All rights reserved by forest fairy. # You cannot modify or share anything without sacrifice. # If you don't agree, keep calm and don't look at code bellow! __author__ = "VirtualV <https://github.com/virtualvfix>" __date__ = "09/22/17 14:27" from .cmd import Cmd from libs.cmd.implement.base.fastboot import Fastboot from libs.cmd.implement.base.cmd import Cmd as CmdBase #: Replace :class:`implement.base.cmd.Cmd` class by :class:`implement.emulator.cmd.Cmd` #: After class replace Fastboot emulator class have same signature as Fastboot base Fastboot.__bases__ = tuple([x if not issubclass(x, CmdBase) else Cmd for x in Fastboot.__bases__])
[ "github.com/virtualvfix" ]
github.com/virtualvfix
1926722da71183f936fd15d9c412fe2e5f789af4
35fb71dd7b67fcee5e01e090e5f2a04dbbf30a15
/network_base/week01/day02/lqueue.py
a2b102948e76f64e135371e6dfc924f57c1832a7
[]
no_license
zlz2013/zlz
3119795848ed9cc43708482a2aa3e764c1312394
228d04a30b0782d859323e507ddd0c7459635bfb
refs/heads/master
2020-06-05T17:44:47.975328
2019-09-10T11:57:23
2019-09-10T11:57:23
192,500,784
1
1
null
null
null
null
UTF-8
Python
false
false
967
py
""" lqueue.py 链式队列 重点代码 思路分析: 1.基于链表模型完成链式栈 2.链表开端作为队头,尾端作为队尾 """ class LQueueError(Exception): pass class Node: def __init__(self,data,next=None): self.data=data self.next=next #链式队列类 class LQueue: def __init__(self): #初始头尾指向一个没有实际意义的节点 self.front=self.rear=Node(None) def is_empty(self): return self.front==self.rear #入队 尾动 def enqueue(self,elem): self.rear.next=Node(elem) self.rear=self.rear.next #出队 头动 def dequeue(self): if self.front==self.rear: raise LQueueError("Queue is empty") self.front=self.front.next return self.front.data if __name__=="__main__": lq=LQueue() lq.enqueue(10) lq.enqueue(20) lq.enqueue(30) while not lq.is_empty(): print(lq.dequeue())
1e738f57abaf2f4bade3d418917aad39cbae070f
7649278f4bda14aaf4ec02b7ae58094e16d98618
/Project/scripts/cartpole_eval.py
61018275f50b4f2d739e06cf8596805d284be6f9
[]
no_license
peng00bo00/optlearningcontrol
1877381ca749f17caf75ede02a5cb263cbddaa79
44eff6d17e4da0b0adc85e5e84cf4b8edb8a1bb8
refs/heads/master
2021-01-06T18:44:58.981575
2020-05-19T17:44:34
2020-05-19T17:44:34
241,445,231
0
0
null
2020-02-18T19:11:08
2020-02-18T19:11:08
null
UTF-8
Python
false
false
1,121
py
import numpy as np import tensorflow as tf import gym from gym import wrappers import os import matplotlib.pyplot as plt ## environment env = gym.make('CartPole-v0') env = wrappers.Monitor(env, '../animations/', force=True) env.reset() ## GPU configuration gpus = tf.config.experimental.list_physical_devices('GPU') for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) def play(env, policy): x = env.reset() terminal = False rewards = [] while not terminal: env.render() u = policy.predict(x.reshape([1, -1])) u = np.argmax(u) x, r, terminal, _ = env.step(u) rewards.append(r) return np.sum(rewards) # DQN policy = tf.keras.models.load_model("../models/DQN_q_network.h5") play(env, policy) ## Double DQN policy = tf.keras.models.load_model("../models/DoubleDQN_q_network.h5") play(env, policy) ## Prioritized Experience Replay policy = tf.keras.models.load_model("../models/PrioritizedDQN_q_network.h5") play(env, policy) ## Deuling DQN policy = tf.keras.models.load_model("../models/DeulDQN_q_network.h5") play(env, policy)
874a69d989a964f5f0210a7eafbf994cd3c38d0c
6ddcdda679089b228d55ef098addfe8193287d88
/py/lpthw/test.py
500c610d2d9010ee315cb403153222d93a1680c9
[ "MIT" ]
permissive
danyfang/SourceCode
518e4715a062ed1ad071dea023ff4785ce03b068
8168f6058648f2a330a7354daf3a73a4d8a4e730
refs/heads/master
2021-06-06T16:36:50.999324
2021-04-23T08:52:20
2021-04-23T08:52:20
120,310,634
0
0
null
null
null
null
UTF-8
Python
false
false
547
py
#!/usr/bin/python from __future__ import division #lambda function to calculate factor x = int(raw_input("Please input an integer\n > ")) print reduce(lambda x,y: x*y, range(1,x+1)) def add(x,y): return x+y def sub(x,y): return x-y def mul(x,y): return x*y def div(x,y): return x/y operator = {"+":add, "-":sub, "*":mul, "/":div} if __name__ == "__main__": x = raw_input("Please input a numebr\n > ") o = raw_input("Please input an operator\n > ") y = raw_input("Please input a numebr\n > ") print operator.get(o)(int(x), int(y))
1672bbe239bcd2a87c3e5ce0491dc2f82dea0321
24d8cf871b092b2d60fc85d5320e1bc761a7cbe2
/BitPim/rev3177-3275/right-branch-3275/phones/com_lgvx3200.py
70be5ade0e3af9b75b64ff382802597ba2e16621
[]
no_license
joliebig/featurehouse_fstmerge_examples
af1b963537839d13e834f829cf51f8ad5e6ffe76
1a99c1788f0eb9f1e5d8c2ced3892d00cd9449ad
refs/heads/master
2016-09-05T10:24:50.974902
2013-03-28T16:28:47
2013-03-28T16:28:47
9,080,611
3
2
null
null
null
null
UTF-8
Python
false
false
18,894
py
"""Communicate with the LG VX3200 cell phone The VX3200 is somewhat similar to the VX4400 """ import time import cStringIO import sha import re import common import copy import p_lgvx3200 import com_lgvx4400 import com_brew import com_phone import com_lg import prototypes import phone_media_codec import conversions media_codec=phone_media_codec.codec_name class Phone(com_lgvx4400.Phone): "Talk to the LG VX3200 cell phone" desc="LG-VX3200" wallpaperindexfilename="download/dloadindex/brewImageIndex.map" ringerindexfilename="download/dloadindex/brewRingerIndex.map" protocolclass=p_lgvx3200 serialsname='lgvx3200' imagelocations=( ( 11, "download/dloadindex/brewImageIndex.map", "download", "images", 3) , ) ringtonelocations=( ( 27, "download/dloadindex/brewRingerIndex.map", "user/sound/ringer", "ringers", 30), ) builtinimages= ('Sport 1', 'Sport 2', 'Nature 1', 'Nature 2', 'Animal', 'Martini', 'Goldfish', 'Umbrellas', 'Mountain climb', 'Country road') builtinringtones= ('Ring 1', 'Ring 2', 'Ring 3', 'Ring 4', 'Ring 5', 'Ring 6', 'Ring 7', 'Ring 8', 'Annen Polka', 'Pachelbel Canon', 'Hallelujah', 'La Traviata', 'Leichte Kavallerie Overture', 'Mozart Symphony No.40', 'Bach Minuet', 'Farewell', 'Mozart Piano Sonata', 'Sting', 'O solemio', 'Pizzicata Polka', 'Stars and Stripes Forever', 'Pineapple Rag', 'When the Saints Go Marching In', 'Latin', 'Carol 1', 'Carol 2') def __init__(self, logtarget, commport): com_lgvx4400.Phone.__init__(self,logtarget,commport) self.mode=self.MODENONE self.mediacache=self.DirCache(self) def makeentry(self, counter, entry, dict): e=com_lgvx4400.Phone.makeentry(self, counter, entry, dict) e.entrysize=0x202 return e def getindex(self, indexfile): "Read an index file" index={} if re.search("ImageIndex", indexfile) is not None: ind=0 for ifile in 'wallpaper', 'poweron', 'poweroff': ifilefull="download/"+ifile+".bit" try: mediafiledata=self.mediacache.readfile(ifilefull) if len(mediafiledata)!=0: index[ind]=ifile ind = ind + 1 self.log("Index file "+indexfile+" entry added: "+ifile) except: pass else: try: buf=prototypes.buffer(self.getfilecontents(indexfile)) except com_brew.BrewNoSuchFileException: return index g=self.protocolclass.indexfile() g.readfrombuffer(buf, logtitle="Read index file "+indexfile) for i in g.items: if i.index!=0xffff: ifile=re.sub("\.mid|\.MID", "", i.name) self.log("Index file "+indexfile+" entry added: "+ifile) index[i.index]=ifile return index def getmedia(self, maps, result, key): """Returns the contents of media as a dict where the key is a name as returned by getindex, and the value is the contents of the media""" media={} type=None for offset,indexfile,location,type,maxentries in maps: index=self.getindex(indexfile) for i in index: if type=="images": mediafilename=index[i]+".bit" else: mediafilename=index[i]+".mid" try: media[index[i]]=self.mediacache.readfile(location+"/"+mediafilename) except com_brew.BrewNoSuchFileException: self.log("Missing index file: "+location+"/"+mediafilename) result[key]=media return result def savemedia(self, mediakey, mediaindexkey, maps, results, merge, reindexfunction): """Actually saves out the media @param mediakey: key of the media (eg 'wallpapers' or 'ringtone') @param mediaindexkey: index key (eg 'wallpaper-index') @param maps: list index files and locations @param results: results dict @param merge: are we merging or overwriting what is there? @param reindexfunction: the media is re-indexed at the end. this function is called to do it """ print results.keys() wp=results[mediakey].copy() wpi=results[mediaindexkey].copy() for k in wp.keys(): wp[k]['name']=re.sub("\....$", "", wp[k]['name']) for k in wpi.keys(): if wpi[k]['origin']=='builtin': del wpi[k] init={} for offset,indexfile,location,type,maxentries in maps: init[type]={} for k in wpi.keys(): if wpi[k]['origin']==type: index=k-offset name=wpi[k]['name'] data=None del wpi[k] for w in wp.keys(): if wp[w]['name']==name and wp[w]['origin']==type: data=wp[w]['data'] del wp[w] if not merge and data is None: continue init[type][index]={'name': name, 'data': data} print init.keys() for w in wp.keys(): o=wp[w].get("origin", "") if o is not None and len(o) and o in init: idx=-1 while idx in init[o]: idx-=1 init[o][idx]=wp[w] del wp[w] for offset,indexfile,location,type,maxentries in maps: if type=="camera": break index=init[type] try: dirlisting=self.getfilesystem(location) except com_brew.BrewNoSuchDirectoryException: self.mkdirs(location) dirlisting={} for i in dirlisting.keys(): dirlisting[i[len(location)+1:]]=dirlisting[i] del dirlisting[i] dellist=[] if not merge: wpi=results[mediaindexkey] for i in wpi: entry=wpi[i] if entry['origin']==type: delit=True for idx in index: if index[idx]['name']==entry['name']: delit=False break if delit: if type=="ringers": entryname=entry['name']+".mid" else: entryname=entry['name']+".bit" if entryname in dirlisting: dellist.append(entryname) else: self.log("%s in %s index but not filesystem" % (entryname, type)) print "deleting",dellist for f in dellist: self.mediacache.rmfile(location+"/"+f) if type=="images": losem=[] wpi=results[mediaindexkey] for idx in index: delit=True for i in wpi: entry=wpi[i] if entry['origin']==type: if index[idx]['name']==entry['name']: delit=False break if delit: self.log("Inhibited upload of illegit image (not originally on phone): "+index[idx]['name']) losem.append(idx) for idx in losem: del index[idx] while len(index)<maxentries and len(wp): idx=-1 while idx in index: idx-=1 k=wp.keys()[0] index[idx]=wp[k] del wp[k] index=self._normaliseindices(index) # hey look, I called a function! if len(index)>maxentries: keys=index.keys() keys.sort() for k in keys[maxentries:]: idx=-1 while idx in wp: idx-=1 wp[idx]=index[k] del index[k] for k in index.keys(): if type=="ringers": index[k]['name']=index[k]['name']+".mid" else: index[k]['name']=index[k]['name']+".bit" keys=index.keys() keys.sort() ifile=self.protocolclass.indexfile() ifile.numactiveitems=len(keys) for k in keys: entry=self.protocolclass.indexentry() entry.index=k entry.name=index[k]['name'] ifile.items.append(entry) while len(ifile.items)<maxentries: ifile.items.append(self.protocolclass.indexentry()) buffer=prototypes.buffer() ifile.writetobuffer(buffer, autolog=False) if type!="images": self.logdata("Updated index file "+indexfile, buffer.getvalue(), ifile) self.writefile(indexfile, buffer.getvalue()) for k in keys: entry=index[k] entryname=entry['name'] data=entry.get("data", None) if type=="images": if entryname!="wallpaper.bit" and entryname!="poweron.bit" and entryname!="poweroff.bit": self.log("The wallpaper files can only be wallpaper.bmp, poweron.bmp or poweroff.bmp. "+entry['name']+" does not conform - skipping upload.") continue if data is None: if entryname not in dirlisting: self.log("Index error. I have no data for "+entryname+" and it isn't already in the filesystem - skipping upload.") continue if type=="images" and data[0:2]=="BM": data=conversions.convertbmptolgbit(data) if data is None: self.log("The wallpaper BMP images must be 8BPP or 24BPP, "+entry['name']+", does not comply - skipping upload.") continue if type=="images" and (common.LSBUint16(data[0:2])!=128 or common.LSBUint16(data[2:4])!=128): self.log("The wallpaper must be 128x128, "+entry['name']+", does not comply - skipping upload.") continue if type!="images": if entryname in dirlisting and len(data)==dirlisting[entryname]['size']: self.log("Skipping writing %s/%s as there is already a file of the same length" % (location,entryname)) continue self.mediacache.writefile(location+"/"+entryname, data) self.log("Wrote media file: "+location+"/"+entryname) if len(wp): for k in wp: self.log("Unable to put %s on the phone as there weren't any spare index entries" % (wp[k]['name'],)) del results[mediakey] # done with it reindexfunction(results) return results my_model='AX3200' parentprofile=com_lgvx4400.Profile class Profile(parentprofile): protocolclass=Phone.protocolclass serialsname=Phone.serialsname phone_manufacturer='LG Electronics Inc' phone_model='VX3200' phone_manufacturer='LG Electronics Inc.' phone_model='VX3200 107' usbids=com_lgvx4400.Profile.usbids_usbtoserial def convertphonebooktophone(self, helper, data): """Converts the data to what will be used by the phone @param data: contains the dict returned by getfundamentals as well as where the results go""" results={} speeds={} self.normalisegroups(helper, data) for pbentry in data['phonebook']: if len(results)==self.protocolclass.NUMPHONEBOOKENTRIES: break e={} # entry out entry=data['phonebook'][pbentry] # entry in try: serial1=helper.getserial(entry.get('serials', []), self.serialsname, data['uniqueserial'], 'serial1', 0) serial2=helper.getserial(entry.get('serials', []), self.serialsname, data['uniqueserial'], 'serial2', serial1) e['serial1']=serial1 e['serial2']=serial2 for ss in entry["serials"]: if ss["sourcetype"]=="bitpim": e['bitpimserial']=ss assert e['bitpimserial'] e['name']=helper.getfullname(entry.get('names', []),1,1,22)[0] cat=helper.makeone(helper.getcategory(entry.get('categories', []),0,1,22), None) if cat is None: e['group']=0 else: key,value=self._getgroup(cat, data['groups']) if key is not None: if key>5: e['group']=0 print "Custom Groups in PB not supported - setting to No Group for "+e['name'] else: e['group']=key else: e['group']=0 emails=helper.getemails(entry.get('emails', []) ,0,self.protocolclass.NUMEMAILS,48) e['emails']=helper.filllist(emails, self.protocolclass.NUMEMAILS, "") e['url']=helper.makeone(helper.geturls(entry.get('urls', []), 0,1,48), "") e['memo']=helper.makeone(helper.getmemos(entry.get('memos', []), 0, 1, self.protocolclass.MEMOLENGTH-1), "") minnumbers=1 if len(emails): minnumbers=0 numbers=helper.getnumbers(entry.get('numbers', []),minnumbers,self.protocolclass.NUMPHONENUMBERS) e['numbertypes']=[] e['numbers']=[] for numindex in range(len(numbers)): num=numbers[numindex] b4=len(e['numbertypes']) type=num['type'] for i,t in enumerate(self.protocolclass.numbertypetab): if type==t: if i in e['numbertypes'] and t[-1]!='2': type+='2' continue e['numbertypes'].append(i) break if t=='none': # conveniently last entry e['numbertypes'].append(i) break if len(e['numbertypes'])==b4: continue number=self.phonize(num['number']) if len(number)==0: continue if len(number)>48: # get this number from somewhere sensible number=number[:48] # truncate for moment e['numbers'].append(number) sd=num.get("speeddial", -1) if self.protocolclass.NUMSPEEDDIALS: if sd>=self.protocolclass.FIRSTSPEEDDIAL and sd<=self.protocolclass.LASTSPEEDDIAL: speeds[sd]=(e['bitpimserial'], numindex) e['numbertypes']=helper.filllist(e['numbertypes'], 5, 0) e['numbers']=helper.filllist(e['numbers'], 5, "") ecring=helper.getringtone(entry.get('ringtones', []), 'call', None) if ecring is not None: if ecring not in Phone.builtinringtones: print "Ringers past Carol 2 in PB not supported - setting to Default Ringer for "+e['name']+" id was: "+ecring ecring=None e['ringtone']=ecring emring=helper.getringtone(entry.get('ringtones', []), 'message', None) if emring is not None: if emring not in Phone.builtinringtones: print "Ringers past Carol 2 in PB not supported - setting to Default MsgRinger for "+e['name']+" id was: "+emring emring=None e['msgringtone']=emring ewall=helper.getwallpaper(entry.get('wallpapers', []), 'call', None) if ewall is not None: print "Custom Wallpapers in PB not supported - setting to Default Wallpaper for "+e['name'] e['wallpaper']=None e['secret']=helper.getflag(entry.get('flags',[]), 'secret', False) results[pbentry]=e except helper.ConversionFailed: continue if self.protocolclass.NUMSPEEDDIALS: data['speeddials']=speeds data['phonebook']=results return data _supportedsyncs=( ('phonebook', 'read', None), # all phonebook reading ('calendar', 'read', None), # all calendar reading ('wallpaper', 'read', None), # all wallpaper reading ('ringtone', 'read', None), # all ringtone reading ('phonebook', 'write', 'OVERWRITE'), # only overwriting phonebook ('calendar', 'write', 'OVERWRITE'), # only overwriting calendar ('wallpaper', 'write', 'OVERWRITE'), # merge and overwrite wallpaper ('ringtone', 'write', 'MERGE'), # merge and overwrite ringtone ('ringtone', 'write', 'OVERWRITE'), ('call_history', 'read', None), ('memo', 'read', None), # all memo list reading DJP ('memo', 'write', 'OVERWRITE'), # all memo list writing DJP ('sms', 'read', None), ('sms', 'write', 'OVERWRITE'), ) WALLPAPER_WIDTH=128 WALLPAPER_HEIGHT=128 MAX_WALLPAPER_BASENAME_LENGTH=19 WALLPAPER_FILENAME_CHARS="abcdefghijklmnopqrstuvwxyz0123456789 ." WALLPAPER_CONVERT_FORMAT="bmp" MAX_RINGTONE_BASENAME_LENGTH=19 RINGTONE_FILENAME_CHARS="abcdefghijklmnopqrstuvxwyz0123456789 ." imageorigins={} imageorigins.update(common.getkv(parentprofile.stockimageorigins, "images")) def GetImageOrigins(self): return self.imageorigins imagetargets={} imagetargets.update(common.getkv(parentprofile.stockimagetargets, "wallpaper", {'width': 128, 'height': 128, 'format': "BMP"})) def GetTargetsForImageOrigin(self, origin): return self.imagetargets def __init__(self): parentprofile.__init__(self)
57e2ee283d3febe993b10065b968ba9f581b5a55
6a52db9b913c3677dfbcd55776e1a14cddde359d
/parceiros/migrations/0006_auto_20181117_0309.py
3ab094723e58de570f6ab1ca3fb06592a7e4d342
[]
no_license
tiagocordeiro/casaconceito-sie
47a2922f328fa7c9e13e84dae1b6a9135edd6236
892e42a655bb4ef08952c5be167e281720f40b49
refs/heads/master
2023-08-31T14:48:21.396973
2021-05-11T18:18:07
2021-05-11T18:18:07
140,175,770
0
0
null
2023-09-13T15:14:42
2018-07-08T14:38:35
HTML
UTF-8
Python
false
false
497
py
# Generated by Django 2.1.3 on 2018-11-17 05:09 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('parceiros', '0005_auto_20181117_0251'), ] operations = [ migrations.AlterField( model_name='indicacaopagamentos', name='indicacao', field=models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to='parceiros.Indicacao'), ), ]
20da8a1571be3297fdc2a8720ab6d9c6f804eede
a0801d0e7325b31f0383fc68517e208680bb36d6
/Kattis/anagramcounting.py
362adbaa6dfaa8948b5b2fb3c59253bb2a0f31b6
[]
no_license
conormccauley1999/CompetitiveProgramming
bd649bf04438817c7fa4755df2c2c7727273b073
a7e188767364be40f625612af3d16182f2d8d4de
refs/heads/master
2023-05-14T13:19:32.678134
2023-05-11T16:07:33
2023-05-11T16:07:33
179,089,010
0
0
null
null
null
null
UTF-8
Python
false
false
340
py
from collections import Counter _f = { 0: 1 } def f(n): if n not in _f: _f[n] = n * f(n - 1) return _f[n] def g(s): cs = Counter(s) vs = cs.values() l = len(s) r = f(l) for v in vs: r //= f(v) return r while True: try: i = input() print(g(i)) except: break
aab5320af9b48f92a2e321db7cb26674e6d0a401
24f2696aab87f1632705a7c8b2d3b866e26aa3ee
/LCA_236.py
281941167ef5ab53585044747e11fcdfbd20eb5e
[]
no_license
adiggo/leetcode_py
44a77a0b029f4d92bd0d8e24cad21ceea52e7794
4aa3a3a0da8b911e140446352debb9b567b6d78b
refs/heads/master
2020-04-06T07:05:21.770518
2016-07-01T16:00:40
2016-07-01T16:00:40
30,397,276
0
0
null
null
null
null
UTF-8
Python
false
false
637
py
# Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution(object): def lowestCommonAncestor(self, root, p, q): """ :type root: TreeNode :type p: TreeNode :type q: TreeNode :rtype: TreeNode """ if not root or root == p or root == q: return root left = self.lowestCommonAncestor(root.left, p, q) right = self.lowestCommonAncestor(root.right, p, q) return right if not left else left if not right else root
a22da995080be9b7137906676c4dc3cf0bb0d461
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_203/ch11_2019_08_15_11_47_33_547429.py
e6e08c29c09dcae0bbe100b081717e5f1418ada4
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
100
py
def celsius_para_fahrenheit (x) : y = 1.8*x+32 return y celsius_para_farenheit (7) print (x)
4af9fff107581efba17158a157bc33c7f8d43be6
f5390652068c736aea061a0979f27ba32b51784f
/Web/Web/views.py
dfd74dd32a7e1fe8b04516a9a481ccbc516c7484
[]
no_license
kho903/Project_Reflux
172c9bd7062f4cc9f84c576412557435f63906b5
0f1cdab08bc71d4c219b34839f63cc96f7c90d47
refs/heads/master
2022-12-14T03:29:21.008229
2020-09-02T09:24:16
2020-09-02T09:24:16
286,716,990
0
1
null
null
null
null
UTF-8
Python
false
false
512
py
from django.contrib.auth.forms import UserCreationForm from django.urls import reverse_lazy from django.views.generic.base import TemplateView from django.views.generic import CreateView class HomeView(TemplateView): template_name = 'home.html' class UserCreateView(CreateView): template_name = 'registration/register.html' form_class = UserCreationForm success_url = reverse_lazy('register_done') class UserCreateDoneTV(TemplateView): template_name = 'registration/register_done.html'
8ad3db0ec4061062900fc2e03cbbae10b8f45f56
498d889585187ca56018b15f38880b8a671442b8
/utils.py
5c6fc73da2244ffe9d611253c389cb6fc386f278
[]
no_license
mandasdasdasd/excel-fe
b89b06681bd7c91000f491a5f85f0c8577ac0fc3
a81eb0085192c0932992745284c24efda9859241
refs/heads/master
2022-12-24T01:53:03.351947
2019-12-04T10:09:14
2019-12-04T10:09:14
205,658,439
0
0
null
2022-12-11T05:10:56
2019-09-01T10:01:07
Vue
UTF-8
Python
false
false
218
py
import hmac, random class Encryption(object): def __init__(self): self.key = "bigdata" def hmac_md5(self, s): return hmac.new(self.key.encode('utf-8'), s.encode('utf-8'), 'MD5').hexdigest()
e966a809733c647ed153d31bbebf7df6fc19afa7
b66304878239ecea3e38593112bcb861fe9815db
/project_template/project_template/urls.py
ff276fbbe3737f276113407e1c2fa281c94dbdfe
[]
no_license
cowhite/django_pymongo_admin
e8ecd9fd193cf43489b9ac19d6a0444c719c7e42
8d814b248d82d7572e167be5ed2a2418d5eddd42
refs/heads/master
2020-07-03T02:12:26.559308
2016-11-19T15:18:04
2016-11-19T15:18:04
74,205,196
0
0
null
null
null
null
UTF-8
Python
false
false
903
py
"""project_template URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.10/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url, include from django.contrib import admin urlpatterns = [ url(r'^admin/', admin.site.urls), url(r'^admin/pymongo/', include("django_pymongo_admin.urls", namespace="django-pymongo-admin")), ]
c9ec417f68e16aaa3a781bc04a7e47b8cffff73c
c8c0d3e83dbec83ccb89a751dc3e656bb482a2ce
/ZombieGame/modules/coordinates.py
2e949bd8c3dcf4cac12328f9fe1025eaec8889dd
[]
no_license
Yamase31/python-zombie-game
80658bcfcb05b819265dfc75c5563391f19b1861
dfd931ecf5caac9348b652862fc0b018979491d9
refs/heads/main
2023-07-07T08:58:43.314898
2021-08-10T00:33:36
2021-08-10T00:33:36
394,479,044
0
0
null
null
null
null
UTF-8
Python
false
false
1,382
py
# Quick coordinate class to contain both x and y # Overrides == for easy comparison class Coordinates(object): def __init__(self, x, y): self.x = x self.y = y def __eq__(self, other): return self.x == other.x and self.y == other.y def __sub__(self, other): if type(other) == int: return Coordinates(self.x - other, self.y - other) if type(other) == Coordinates: return Coordinates(self.x - other.x, self.y - other.y) if type(other) == tuple: return Coordinates(self.x - other[0], self.y - other[1]) def __add__(self, other): if type(other) == int: return Coordinates(self.x + other, self.y + other) if type(other) == Coordinates: return Coordinates(self.x + other.x, self.y + other.y) if type(other) == tuple: return Coordinates(self.x + other[0], self.y + other[1]) def __len__(self): return 2 def __iter__(self): self.current = 0 return self def __next__(self): if self.current >= len(self): raise StopIteration else: self.current += 1 if self.current == 1: return self.x else: return self.y if __name__ == '__main__': c = Coordinates(5,6) print(*c)
a01b71e2dae640d49f54d02cf08acedbab149c70
961931333838aebe8bd17c30c19f3994e32d76ce
/src/leetcode/bfs/279. Perfect Squares.py
128380fcb8630cd5d95ab5e6415f0e7e36e9fcdd
[]
no_license
MTGTsunami/LeetPython
5161f9e31dc2ab1855123c2a3a151eb6f4d889bc
f7f3839f631f08a9e5bf8a02398b940f82e43e67
refs/heads/master
2023-04-17T16:59:45.621291
2021-04-26T07:24:50
2021-04-26T07:24:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,624
py
""" Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 16, ...) which sum to n. Example 1: Input: n = 12 Output: 3 Explanation: 12 = 4 + 4 + 4. Example 2: Input: n = 13 Output: 2 Explanation: 13 = 4 + 9. """ class MySolution(object): # A little bit larger than O(n) time def numSquares(self, n): """ :type n: int :rtype: int """ square = [float("inf")] * n for i in range(1, n + 1): sqrt = i ** 0.5 floor = int(sqrt) if sqrt - floor == 0: square[i - 1] = 1 nearest = floor else: while floor >= 1: square[i - 1] = min(square[i - floor ** 2 - 1] + 1, square[i - 1]) floor -= 1 return square[-1] class SolutionDP(object): def numSquares(self, n): """ :type n: int :rtype: int """ square = [float("inf")] * (n + 1) square[0] = 0 for i in range(1, n + 1): j = 1 while j * j <= i: square[i] = min(square[i - j * j] + 1, square[i]) j += 1 return square[-1] class SolutionMath(object): def numSquares(self, n): """ :type n: int :rtype: int """ def isSquare(n): return (n ** 0.5 - int(n ** 0.5)) == 0 # Based on Lagrange's Four Square theorem, there # are only 4 possible results: 1, 2, 3, 4. # If n is a perfect square, return 1. if isSquare(n): return 1 # The result is 4 if and only if n can be written in the form of 4^k*(8*m + 7). # Please refer to Legendre's four-square theorem. while n % 4 == 0: n /= 4 if n % 8 == 7: return 4 for i in range(1, int(n ** 0.5) + 1): if isSquare(n - i * i): return 2 return 3 class SolutionBFS(object): # Important def numSquares(self, n): """ :type n: int :rtype: int """ depth = 0 nodes = set([n]) edges = [i * i for i in range(1, int(n ** 0.5) + 1)] while True: depth += 1 nextLevel = set() for node in nodes: for edge in edges: if edge == node: return depth elif edge < node: nextLevel.add(node - edge) else: break nodes = nextLevel
2c12a85637d4448821f4e08fab01976870d8fdca
b3330bd3365767b89afb9c432f4deb722b39ac1c
/python/sort/selection_sort/selection_sort_10.py
d0142c054e2de0f2b0945ab15e296cef179f94f5
[]
no_license
hguochen/algorithms
944df332d5b39220bd59cbd62dc74b12e335fb9e
703e71a5cd9e002d800340df879ed475a404d092
refs/heads/master
2022-02-27T12:11:10.607042
2022-02-18T21:04:00
2022-02-18T21:04:00
13,767,503
5
7
null
null
null
null
UTF-8
Python
false
false
733
py
# selection sort def selection_sort(array): """ Divides the array into unsorted and sorted sublist. Left sublist contains list of sorted elements, right sublist contains list of unsorted elements. Find the least element in unsorted list and put in sorted list. """ # traverse the array for i in xrange(len(array)): # initialize min index min_index = i # find the least element in unsorted list and update min index for j in xrange(i+1, len(array)): if array[j] < array[min_index]: min_index = j # swap current element with min index value array[i], array[min_index] = array[min_index], array[i] # return array return array
83b9398ebef1b2841d29cff940e0595b3f5478ce
aa03bf381871d69fd93143c1697cdcd421cbe7e8
/src/imageqa_visprior.py
8c75929f9f66ec24a11fe8b9521fbd7954f5eb17
[ "MIT" ]
permissive
standardgalactic/imageqa-public
369073d2e3a9a454986533bb872445c8cafab95f
4e3ceb092495fb8c1056e55b870631907bb31d46
refs/heads/master
2023-06-22T11:59:09.031307
2016-03-23T21:56:07
2016-03-23T21:56:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
17,898
py
import sys import os import numpy as np import nn import imageqa_test as it from nltk.corpus import wordnet lexnameDict = {} def lookupLexname(word): if lexnameDict.has_key(word): return lexnameDict[word] else: synsets = wordnet.synsets(word) # Just pick the first definition if len(synsets) > 0: lexname = synsets[0].lexname() lexnameDict[word] = lexname return lexname else: return None def locateObjLocation(data, questionDict, questionIdict): """ Locate the object of where questions. Very naive heuristic: take the noun immediately after "where". """ where = questionDict['where'] for t in range(data.shape[0] - 1): if data[t, 0] == where: for u in range(t + 1, data.shape[0]): word = questionIdict[data[u, 0] - 1] lexname = lookupLexname(word) if (lexname is not None and \ lexname.startswith('noun')) or \ (lexname is None): return data[u, 0] print 'not found' return data[-1, 0] def locateObjNumberNoun(data, questionDict, questionIdict): """ Locate the object of how many questions. Very naive heuristic: take the noun immediately after "how many". """ how = questionDict['how'] many = questionDict['many'] for t in range(data.shape[0] - 2): if data[t, 0] == how and \ data[t + 1, 0] == many: for u in range(t + 2, data.shape[0]): word = questionIdict[data[u, 0] - 1] lexname = lookupLexname(word) if (lexname is not None and \ lexname.startswith('noun')) or \ (lexname is None): return data[u, 0] print 'not found' return data[-1, 0] def locateObjNumber(data, questionDict): """ Locate the object of how many questions. Very naive heuristic: take the word immediately after "how many". """ how = questionDict['how'] many = questionDict['many'] for t in range(data.shape[0] - 2): if data[t, 0] == how and \ data[t + 1, 0] == many: return data[t + 2, 0] print 'not found' def locateObjColor(data): tmp = 0 for i in range(data.shape[0]): if data[i, 0] != 0: tmp = data[i, 0] else: return tmp def extractObjId( data, questionType, questionDict, questionIdict): objIds = [] for n in range(data.shape[0]): if questionType == 'color': objId = locateObjColor(data[n]) elif questionType == 'number': objId = locateObjNumberNoun(data[n], questionDict, questionIdict) elif questionType == 'location': objId = locateObjLocation(data[n], questionDict, questionIdict) objIds.append(objId) return np.array(objIds, dtype='int') def reindexObjId( inputData, objDict, questionDict, questionIdict, questionType): questionIdictArray = np.array(questionIdict, dtype='object') objIds = extractObjId( inputData, questionType, questionDict, questionIdict) objIds = objIds - 1 obj = questionIdictArray[objIds] objIds2 = np.zeros(objIds.shape, dtype='int') for i in range(obj.shape[0]): if objDict.has_key(obj[i]): objIds2[i] = objDict[obj[i]] else: objIds2[i] = objDict['UNK'] return objIds2 def buildObjDict( trainData, questionType, questionDict, questionIdict): objDict = {} objIdict = [] objIds = extractObjId( trainData[0], questionType, questionDict, questionIdict) objIds = objIds - 1 questionIdictArray = np.array(questionIdict, dtype='object') objList = questionIdictArray[objIds] for obj in objList: if not objDict.has_key(obj): objDict[obj] = len(objIdict) objIdict.append(obj) objDict['UNK'] = len(objIdict) objIdict.append('UNK') return objDict, objIdict def trainCount( trainData, questionType, questionDict, questionIdict, objDict, objIdict, numAns): """ Calculates count(w, a), count(a) """ count_wa = np.zeros((len(objIdict), numAns)) count_a = np.zeros((numAns)) objIds = extractObjId( trainData[0], questionType, questionDict, questionIdict) for i in range(objIds.shape[0]): objId = objIds[i] obj = questionIdict[objId - 1] ansId = trainData[1][i, 0] objId2 = objDict[obj] count_wa[objId2, ansId] += 1 count_a[ansId] += 1 # Add UNK count count_a[-1] += 1 return count_wa, count_a def runVisPriorOnce( objId, count_wa, count_a, modelOutput, delta): P_w_a = count_wa[objId, :] P_w_a /= count_a[:] P_w_a += delta P_w_a /= (modelOutput.shape[1] * delta + 1) # (n, c) P_a_i = modelOutput # (n, c) P_wai = P_w_a * P_a_i P_a_wi = P_wai / np.sum(P_wai, axis=1).reshape(P_wai.shape[0], 1) return P_a_wi def calcRate(output, target): outputMax = np.argmax(output, axis=-1) outputMax = outputMax.reshape(outputMax.size) targetReshape = target.reshape(target.size) equals = (outputMax == targetReshape).astype('int') rate = np.sum(equals) / \ float(target.size) return rate, outputMax, equals def validDelta( trainData, validData, preVisModelOutput, questionDict, questionIdict, numAns, deltas, questionType): objDict, objIdict = buildObjDict( trainData, questionType, questionDict, questionIdict) count_wa, count_a = trainCount( trainData, questionType, questionDict, questionIdict, objDict, objIdict, numAns) print count_wa # Reindex valid set validInput = validData[0] validTarget = validData[1] validTargetReshape = validTarget.reshape(validTarget.size) validObjId = reindexObjId( validInput, objDict, questionDict, questionIdict, questionType) # Run vis model on valid set validOutput = nn.test(preVisModel, validInput) print 'Before Prior Valid Accuracy:', rate, _, __ = calcRate(validOutput, validTarget) print rate # Determine best delta bestRate = 0.0 bestDelta = 0.0 for delta in deltas: visPriorOutput = runVisPriorOnce( validObjId, count_wa, count_a, validOutput, delta) print 'delta=%f Valid Accuracy:' % delta, rate, _, __ = calcRate(visPriorOutput, validTarget) print rate if rate > bestRate: bestRate = rate bestDelta = delta print 'Best Delta:', bestDelta return bestDelta def runVisPrior( trainData, testData, questionType, visModel, questionDict, questionIdict, numAns, delta): objDict, objIdict = buildObjDict( trainData, questionType, questionDict, questionIdict) count_wa, count_a = trainCount( trainData, questionType, questionDict, questionIdict, objDict, objIdict, numAns) print count_wa # Reindex test set testInput = testData[0] testTarget = testData[1] testTargetReshape = testTarget.reshape(testTarget.size) testObjId = reindexObjId( testInput, objDict, questionDict, questionIdict, questionType) # Run vis model on test set testOutput = nn.test(visModel, testInput) print 'Before Prior Test Accuracy:', rate, _, __ = calcRate(testOutput, testTarget) print rate # Run on test set visPriorOutput = runVisPriorOnce( testObjId, count_wa, count_a, testOutput, delta) print 'delta=%f Test Accuracy:' % delta, rate, _, __ = calcRate(visPriorOutput, testTarget) print rate return visPriorOutput def combineTrainValid(trainData, validData): trainDataAll = (np.concatenate((trainData[0], validData[0]), axis=0), np.concatenate((trainData[1], validData[1]), axis=0)) return trainDataAll def calcAdaBoostAlpha(testOutput, testTarget): print 'Calculating alpha for boosting...' rate, _, correct = calcRate(testOutput, testTarget) alpha = np.log(rate / (1 - rate)) + np.log(float(testOutput.shape[1] - 1)) print 'alpha:', alpha return alpha def calcAdaBoostWeights(trainOutput, trainTarget, alpha): print 'Calculating weights for boosting...' rate, _, correct = calcRate(trainOutput, trainTarget) print correct print 'Train set rate:', rate correct2 = -(correct.astype('float32') - 0.5) * 2 weights = np.exp(correct2 * alpha) weights /= np.sum(weights) weights *= weights.shape[0] print 'weights:', weights return weights if __name__ == '__main__': """ Usage: python imageqa_visprior.py -pvid {preVisModelId} -vid {visModelId} -mid {mainModelId} -bid {boostModelId} -vd[ata] {visDataFolder} -md[ata] {mainDataFolder} -r[esults] {resultsFolder} -qtype {color/number/location} -o[utweights] {outputFolder} """ questionType = 'color' visModelId = None mainModelId = None boostModelId = None outputWeightsFolder = None for i, flag in enumerate(sys.argv): if flag == '-pvid': preVisModelId = sys.argv[i + 1] elif flag == '-vid': visModelId = sys.argv[i + 1] elif flag == '-mid': mainModelId = sys.argv[i + 1] elif flag == '-bid': boostModelId = sys.argv[i + 1] elif flag == '-vd' or flag == '-vdata': visDataFolder = sys.argv[i + 1] elif flag == '-md' or flag == '-mdata': mainDataFolder = sys.argv[i + 1] elif flag == '-r' or flag == '-results': resultsFolder = sys.argv[i + 1] elif flag == '-qtype': questionType = sys.argv[i + 1] elif flag == '-o' or flag == '-outweights': outputWeightsFolder = sys.argv[i + 1] data = it.loadDataset(visDataFolder) testInput = data['testData'][0] testTarget = data['testData'][1] deltas = \ [0.000001, 0.000005, 0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0] preVisModel = it.loadModel(preVisModelId, resultsFolder) print 'Num answer', len(data['ansIdict']) bestDelta = validDelta( data['trainData'], data['validData'], preVisModel, data['questionDict'], data['questionIdict'], len(data['ansIdict']), deltas, questionType) trainDataAll = combineTrainValid(data['trainData'], data['validData']) visModel = it.loadModel(visModelId, resultsFolder) visTestOutput = runVisPrior(trainDataAll, data['testData'], questionType, visModel, data['questionDict'], data['questionIdict'], len(data['ansIdict']), bestDelta) visModelFolder = os.path.join(resultsFolder, visModelId) answerFilename = os.path.join(visModelFolder, visModelId + '_prior.test.o.txt') truthFilename = os.path.join(visModelFolder, visModelId + '_prior.test.t.txt') it.outputTxt( visTestOutput, testTarget, data['ansIdict'], answerFilename, truthFilename, topK=1, outputProb=False) it.runWups(answerFilename, truthFilename) if mainModelId is not None: data_m = it.loadDataset(mainDataFolder) ansDict_m = data_m['ansDict'] ansIdict = data['ansIdict'] questionDict_m = data_m['questionDict'] questionIdict = data['questionIdict'] newTestInput = np.zeros(testInput.shape, dtype='int') for n in range(testInput.shape[0]): newTestInput[n, 0, 0] = testInput[n, 0, 0] for t in range(1, testInput.shape[1]): if testInput[n, t, 0] != 0: word = questionIdict[testInput[n, t, 0] - 1] newTestInput[n, t, 0] = questionDict_m[word] else: break mainModel = it.loadModel(mainModelId, resultsFolder) mainTestOutput = nn.test(mainModel, newTestInput) # Need to extract the class output from mainTestOutput classNewId = [] for ans in ansIdict: classNewId.append(ansDict_m[ans]) classNewId = np.array(classNewId, dtype='int') mainTestOutput = mainTestOutput[:, classNewId] for i in range(len(ansIdict)): mixRatio = i / 10.0 ensTestOutput = mixRatio * visTestOutput + \ (1 - mixRatio) * mainTestOutput print '%.2f VIS+PRIOR & %.2f VIS+BLSTM Accuracy:' % \ (mixRatio, 1 - mixRatio), rate, _, __ = calcRate(ensTestOutput, testTarget) print rate if boostModelId is not None: boostModel = it.loadModel(boostModelId, resultsFolder) boostTestOutput = nn.test(boostModel, testInput) alpha = calcAdaBoostAlpha(visTestOutput, testTarget) alphaBoost = calcAdaBoostAlpha(boostTestOutput, testTarget) finalTestOutput = (alpha * visTestOutput + \ alphaBoost * boostTestOutput) / \ (alpha + alphaBoost) rate, _, __ = calcRate(finalTestOutput, testTarget) answerFilename = os.path.join(visModelFolder, visModelId + '_boost.test.o.txt') truthFilename = os.path.join(visModelFolder, visModelId + '_boost.test.t.txt') it.outputTxt( finalTestOutput, testTarget, data['ansIdict'], answerFilename, truthFilename, topK=1, outputProb=False) it.runWups(answerFilename, truthFilename) if outputWeightsFolder is not None: if not os.path.exists(outputWeightsFolder): os.makedirs(outputWeightsFolder) alpha = calcAdaBoostAlpha(visTestOutput, testTarget) visTrainOutput = runVisPrior(trainDataAll, trainDataAll, questionType, visModel, data['questionDict'], data['questionIdict'], len(data['ansIdict']), bestDelta) weights = calcAdaBoostWeights(visTrainOutput, trainDataAll[1], alpha) trainWeights = weights[:data['trainData'][1].shape[0]] validWeights = weights[trainWeights.shape[0]:] np.save(os.path.join(outputWeightsFolder, 'adb-weights-train.npy'), trainWeights) np.save(os.path.join(outputWeightsFolder, 'adb-weights-valid.npy'), validWeights)
2db11fc713334d1c4d17ecf444cf9726e26cc5dd
055cf8aeec011f67580bf92a83d94ee6919648cd
/migrations/versions/ad28a44f93c4_initial_migration.py
18999b6182f1570c2b30ca638cbdbed3b8a6a43e
[ "MIT", "LicenseRef-scancode-other-permissive" ]
permissive
RisperAkinyi/BlogPost
df82c8fec558425ca1bbce65aa90464176aefb87
f8ee4c887fceae8e70410b66a12bc5680cf26044
refs/heads/master
2022-09-30T19:09:27.969983
2019-08-13T07:36:26
2019-08-13T07:36:26
201,879,164
0
0
MIT
2022-09-16T18:07:44
2019-08-12T07:22:39
Python
UTF-8
Python
false
false
2,128
py
"""Initial Migration Revision ID: ad28a44f93c4 Revises: Create Date: 2019-08-09 11:05:50.912878 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'ad28a44f93c4' down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('users', sa.Column('id', sa.Integer(), nullable=False), sa.Column('username', sa.String(length=255), nullable=True), sa.Column('email', sa.String(length=255), nullable=True), sa.Column('bio', sa.String(length=255), nullable=True), sa.Column('profile_pic_path', sa.String(), nullable=True), sa.Column('password_hash', sa.String(length=255), nullable=True), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_users_email'), 'users', ['email'], unique=True) op.create_index(op.f('ix_users_username'), 'users', ['username'], unique=False) op.create_table('comments', sa.Column('id', sa.Integer(), nullable=False), sa.Column('comments', sa.String(), nullable=True), sa.Column('post_id', sa.Integer(), nullable=True), sa.Column('posted', sa.DateTime(), nullable=True), sa.Column('user_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['user_id'], ['users.id'], ), sa.PrimaryKeyConstraint('id') ) op.create_table('posts', sa.Column('id', sa.Integer(), nullable=False), sa.Column('title', sa.String(), nullable=True), sa.Column('description', sa.String(), nullable=True), sa.Column('posted', sa.DateTime(), nullable=True), sa.Column('user_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['user_id'], ['users.id'], ), sa.PrimaryKeyConstraint('id') ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table('posts') op.drop_table('comments') op.drop_index(op.f('ix_users_username'), table_name='users') op.drop_index(op.f('ix_users_email'), table_name='users') op.drop_table('users') # ### end Alembic commands ###
08a41f586570d5ba0baa10410a977b1169ac947f
4be9a5bdb8e051001b78c8f127ccc1a7f85c14e7
/mapping/migrations/0033_auto_20170129_0939.py
90fce4536a94b43eded5f95299f301669aa5c874
[]
no_license
quentin-david/heimdall
f72a85606e7ab53683df2023ef5eaba762198211
84a429ee52e1891bc2ee4eb07a084dff209c789c
refs/heads/master
2021-01-21T10:26:28.895663
2017-07-21T19:19:46
2017-07-21T19:19:46
83,432,596
0
0
null
null
null
null
UTF-8
Python
false
false
503
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.4 on 2017-01-29 09:39 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('mapping', '0032_servicewebserver_reverse_proxy'), ] operations = [ migrations.AlterField( model_name='servicereverseproxy', name='servername', field=models.CharField(blank=True, max_length=30, null=True), ), ]
22f6c9a8e5f0d726c42869ef47714dc1722c3f56
1d230df0e7b96bdb9d0b56f6f14ac5379915ed4f
/tensorflow/python/keras/metrics.py
b18f12612a849d8d8b7e2465ff8075d35764000e
[ "Apache-2.0" ]
permissive
plddxr/tensorflow
afc5404ca9c089ca84700f9f055ef2bdc6c824f5
611edc8c515678c1d1b95ece09e6a374c9790716
refs/heads/master
2020-03-25T21:49:46.011109
2018-08-09T18:38:42
2018-08-09T18:43:28
144,191,426
1
0
Apache-2.0
2018-08-09T18:48:44
2018-08-09T18:48:43
null
UTF-8
Python
false
false
21,647
py
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=unused-import """Built-in metrics. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from abc import ABCMeta from abc import abstractmethod import types import six from tensorflow.python.eager import context from tensorflow.python.eager import function from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.keras import backend as K from tensorflow.python.keras.engine.base_layer import Layer from tensorflow.python.keras.losses import binary_crossentropy from tensorflow.python.keras.losses import categorical_crossentropy from tensorflow.python.keras.losses import cosine_proximity from tensorflow.python.keras.losses import hinge from tensorflow.python.keras.losses import kullback_leibler_divergence from tensorflow.python.keras.losses import logcosh from tensorflow.python.keras.losses import mean_absolute_error from tensorflow.python.keras.losses import mean_absolute_percentage_error from tensorflow.python.keras.losses import mean_squared_error from tensorflow.python.keras.losses import mean_squared_logarithmic_error from tensorflow.python.keras.losses import poisson from tensorflow.python.keras.losses import sparse_categorical_crossentropy from tensorflow.python.keras.losses import squared_hinge from tensorflow.python.keras.utils.generic_utils import deserialize_keras_object from tensorflow.python.keras.utils.generic_utils import serialize_keras_object from tensorflow.python.ops import array_ops from tensorflow.python.ops import confusion_matrix from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn from tensorflow.python.ops import state_ops from tensorflow.python.ops import variable_scope as vs from tensorflow.python.ops import weights_broadcast_ops from tensorflow.python.training import distribute as distribute_lib from tensorflow.python.util import tf_decorator from tensorflow.python.util.tf_export import tf_export def check_is_tensor_or_operation(x, name): """Raises type error if the given input is not a tensor or operation.""" if not (isinstance(x, ops.Tensor) or isinstance(x, ops.Operation)): raise TypeError('{0} must be a Tensor or Operation, given: {1}'.format( name, x)) def update_state_wrapper(update_state_fn): """Decorator to wrap metric `update_state()` with `defun()`, `add_update()`. Args: update_state_fn: function that accumulates metric statistics. Returns: If eager execution is enabled, returns None. If graph execution is enabled, returns an update op. This op should be executed to update the metric state with the given inputs. """ def decorated(metric_obj, *args, **kwargs): """Decorated function with `defun()` and `add_update()`.""" # Converting update_state_fn() into a graph function, so that # we can return a single op that performs all of the variable updates. # Assigning to a different method name to avoid reference cycle. defuned_update_state_fn = function.defun(update_state_fn) update_op = defuned_update_state_fn(*args, **kwargs) if update_op is not None: # update_op will be None in eager execution. metric_obj.add_update(update_op, inputs=True) check_is_tensor_or_operation( update_op, 'Metric {0}\'s update'.format(metric_obj.name)) return update_op return tf_decorator.make_decorator(update_state_fn, decorated) def result_wrapper(result_fn): """Decorator to wrap metric `result()` function in `merge_call()`. Result computation is an idempotent operation that simply calculates the metric value using the state variables. If metric state variables are distributed across towers/devices and `result()` is requested from the context of one device - This function wraps `result()` in a distribution strategy `merge_call()`. With this, the metric state variables will be aggregated across devices. Args: result_fn: function that computes the metric result. Returns: The metric result tensor. """ def decorated(metric_obj, *args): """Decorated function with merge_call.""" tower_context = distribute_lib.get_tower_context() if tower_context is None: # if in cross tower context already result_t = result_fn(*args) else: # TODO(psv): Test distribution of metrics using different distribution # strategies. # Creating a wrapper for merge_fn. merge_call invokes the given merge_fn # with distribution object as the first parameter. We create a wrapper # here so that the result function need not have that parameter. def merge_fn_wrapper(distribution, merge_fn, *args): # We will get `PerDevice` merge function. Taking the first one as all # are identical copies of the function that we had passed below. return distribution.unwrap(merge_fn)[0](*args) # Wrapping result in merge_call. merge_call is used when we want to leave # tower mode and compute a value in cross tower mode. result_t = tower_context.merge_call(merge_fn_wrapper, result_fn, *args) check_is_tensor_or_operation(result_t, 'Metric {0}\'s result'.format(metric_obj.name)) return result_t return tf_decorator.make_decorator(result_fn, decorated) def safe_div(numerator, denominator): """Divides two tensors element-wise, returning 0 if the denominator is <= 0. Args: numerator: A `Tensor`. denominator: A `Tensor`, with dtype matching `numerator`. Returns: 0 if `denominator` <= 0, else `numerator` / `denominator` """ t = math_ops.truediv(numerator, denominator) zero = array_ops.zeros_like(t, dtype=denominator.dtype) condition = math_ops.greater(denominator, zero) zero = math_ops.cast(zero, t.dtype) return array_ops.where(condition, t, zero) def squeeze_or_expand_dimensions(y_pred, y_true, sample_weight): """Squeeze or expand last dimension if needed. 1. Squeezes last dim of `y_pred` or `y_true` if their rank differs by 1 (using `confusion_matrix.remove_squeezable_dimensions`). 2. Squeezes or expands last dim of `sample_weight` if its rank differs by 1 from the new rank of `y_pred`. If `sample_weight` is scalar, it is kept scalar. This will use static shape if available. Otherwise, it will add graph operations, which could result in a performance hit. Args: y_pred: Predicted values, a `Tensor` of arbitrary dimensions. y_true: Optional label `Tensor` whose dimensions match `y_pred`. sample_weight: Optional weight scalar or `Tensor` whose dimensions match `y_pred`. Returns: Tuple of `y_pred`, `y_true` and `sample_weight`. Each of them possibly has the last dimension squeezed, `sample_weight` could be extended by one dimension. """ if y_true is not None: # squeeze last dim of `y_pred` or `y_true` if their rank differs by 1 y_true, y_pred = confusion_matrix.remove_squeezable_dimensions( y_true, y_pred) y_pred.get_shape().assert_is_compatible_with(y_true.get_shape()) if sample_weight is None: return y_pred, y_true, None sample_weight = ops.convert_to_tensor(sample_weight) weights_shape = sample_weight.get_shape() weights_rank = weights_shape.ndims if weights_rank == 0: # If weights is scalar, do nothing. return y_pred, y_true, sample_weight y_pred_shape = y_pred.get_shape() y_pred_rank = y_pred_shape.ndims if (y_pred_rank is not None) and (weights_rank is not None): # Use static rank. if weights_rank - y_pred_rank == 1: sample_weight = array_ops.squeeze(sample_weight, [-1]) elif y_pred_rank - weights_rank == 1: sample_weight = array_ops.expand_dims(sample_weight, [-1]) return y_pred, y_true, sample_weight # Use dynamic rank. weights_rank_tensor = array_ops.rank(sample_weight) rank_diff = weights_rank_tensor - array_ops.rank(y_pred) maybe_squeeze_weights = lambda: array_ops.squeeze(sample_weight, [-1]) def _maybe_expand_weights(): return control_flow_ops.cond( math_ops.equal(rank_diff, -1), lambda: array_ops.expand_dims(sample_weight, [-1]), lambda: sample_weight) def _maybe_adjust_weights(): return control_flow_ops.cond( math_ops.equal(rank_diff, 1), maybe_squeeze_weights, _maybe_expand_weights) # squeeze or expand last dim of `sample_weight` if its rank differs by 1 # from the new rank of `y_pred`. sample_weight = control_flow_ops.cond( math_ops.equal(weights_rank_tensor, 0), lambda: sample_weight, _maybe_adjust_weights) return y_pred, y_true, sample_weight class Metric(Layer): """Encapsulates metric logic and state. Usage with eager execution: ```python m = SomeMetric(...) for input in ...: m.update_state(input) print('Final result: ', m.result().numpy()) ``` Usage with graph execution: ```python m = SomeMetric(...) init_op = tf.global_variables_initializer() # Initialize variables with tf.Session() as sess: sess.run(init_op) for input in ...: update_op = m.update_state(input) sess.run(update_op) print('Final result: ', sess.run(m.result())) ``` To be implemented by subclasses: * `__init__()`: All state variables should be created in this method by calling `self.add_weight()` like: `self.var = self.add_weight(...)` * `update_state()`: Has all updates to the state variables like: self.var.assign_add(...). * `result()`: Computes and returns a value for the metric from the state variables. Example subclass implementation: ``` class BinaryTruePositives(Metric): def __init__(self, name='binary-true-positives', dtype=None): super(BinaryTruePositives, self).__init__(name=name, dtype=dtype) self.true_positives = self.add_weight( 'true_positives', initializer=init_ops.zeros_initializer) def update_state(self, y_true, y_pred, sample_weight=None): y_true = math_ops.cast(y_true, dtypes.bool) y_pred = math_ops.cast(y_pred, dtypes.bool) y_pred, y_true, sample_weight = squeeze_or_expand_dimensions( y_pred, y_true, sample_weight) values = math_ops.logical_and( math_ops.equal(y_true, True), math_ops.equal(y_pred, True)) values = math_ops.cast(values, self._dtype) if sample_weight is not None: sample_weight = math_ops.cast(sample_weight, self._dtype) values = math_ops.multiply(values, sample_weight) state_ops.assign_add(self.true_positives, math_ops.reduce_sum(values)) def result(self): return array_ops.identity(self.true_positives) ``` """ __metaclass__ = ABCMeta def __init__(self, name=None, dtype=None): super(Metric, self).__init__(name=name, dtype=dtype) self.stateful = True # All metric layers are stateful. self.built = True self._dtype = K.floatx() if dtype is None else dtypes.as_dtype(dtype).name def __new__(cls, *args, **kwargs): obj = super(Metric, cls).__new__(cls, *args, **kwargs) obj.update_state = types.MethodType( update_state_wrapper(obj.update_state), obj) obj.result = types.MethodType(result_wrapper(obj.result), obj) return obj def __call__(self, *args, **kwargs): """Accumulates statistics and then computes metric result value. Args: *args: **kwargs: A mini-batch of inputs to the Metric, passed on to `update_state()`. Returns: The metric value tensor. """ update_op = self.update_state(*args, **kwargs) # pylint: disable=not-callable with ops.control_dependencies([update_op]): return self.result() # pylint: disable=not-callable def reset_states(self): """Resets all of the metric state variables. This function is called between epochs/steps, when a metric is evaluated during training. """ for v in self.variables: K.set_value(v, 0) @abstractmethod def update_state(self, *args, **kwargs): """Accumulates statistics for the metric. Note: This function is executed as a graph function in graph mode. This means: a) Operations on the same resource are executed in textual order. This should make it easier to do things like add the updated value of a variable to another, for example. b) You don't need to worry about collecting the update ops to execute. All update ops added to the graph by this function will be executed. As a result, code should generally work the same way with graph or eager execution. and adds the update op to the metric layer. Args: *args: **kwargs: A mini-batch of inputs to the Metric. """ NotImplementedError('Must be implemented in subclasses.') @abstractmethod def result(self): """Computes and returns the metric value tensor. Result computation is an idempotent operation that simply calculates the metric value using the state variables. """ NotImplementedError('Must be implemented in subclasses.') ### For use by subclasses ### def add_weight(self, name, shape=(), aggregation=vs.VariableAggregation.SUM, synchronization=vs.VariableSynchronization.ON_READ, initializer=None): """Adds state variable. Only for use by subclasses.""" return super(Metric, self).add_weight( name=name, shape=shape, dtype=self._dtype, trainable=False, initializer=initializer, synchronization=synchronization, aggregation=aggregation) ### End: For use by subclasses ### class Mean(Metric): """Computes the (weighted) mean of the given values. This metric creates two variables, `total` and `count` that are used to compute the average of `values`. This average is ultimately returned as `mean` which is an idempotent operation that simply divides `total` by `count`. If `sample_weight` is `None`, weights default to 1. Use `sample_weight` of 0 to mask values. """ def __init__(self, name='mean', dtype=None): """Creates a `Mean` instance. Args: name: (Optional) string name of the metric instance. dtype: (Optional) data type of the metric result. """ super(Mean, self).__init__(name=name, dtype=dtype) # Create new state variables self.total = self.add_weight( 'total', initializer=init_ops.zeros_initializer) self.count = self.add_weight( 'count', initializer=init_ops.zeros_initializer) def update_state(self, values, sample_weight=None): """Accumulates statistics for computing the mean. For example, if `values` is [1, 3, 5, 7] then the mean is 4. If the `sample_weight` is specified as [1, 1, 0, 0] then the mean would be 2. Args: values: Per-example value. sample_weight: Optional weighting of each example. Defaults to 1. """ values = math_ops.cast(values, self._dtype) if sample_weight is None: num_values = math_ops.cast(array_ops.size(values), self._dtype) else: sample_weight = math_ops.cast(sample_weight, self._dtype) # Update dimensions of weights to match with values if possible. values, _, sample_weight = squeeze_or_expand_dimensions( values, None, sample_weight) try: # Broadcast weights if possible. sample_weight = weights_broadcast_ops.broadcast_weights( sample_weight, values) except ValueError: # Reduce values to same ndim as weight array ndim = K.ndim(values) weight_ndim = K.ndim(sample_weight) values = math_ops.reduce_mean( values, axis=list(range(weight_ndim, ndim))) num_values = math_ops.reduce_sum(sample_weight) values = math_ops.multiply(values, sample_weight) values = math_ops.reduce_sum(values) # Update state variables state_ops.assign_add(self.total, values) state_ops.assign_add(self.count, num_values) def result(self): return safe_div(self.total, self.count) class MeanMetricWrapper(Mean): """Wraps a stateless metric function with the Mean metric.""" def __init__(self, fn, name=None, dtype=None, **kwargs): """Creates a `MeanMetricWrapper` instance. Args: fn: The metric function to wrap, with signature `fn(y_true, y_pred, **kwargs)`. name: (Optional) string name of the metric instance. dtype: (Optional) data type of the metric result. **kwargs: The keyword arguments that are passed on to `fn`. """ super(MeanMetricWrapper, self).__init__(name=name, dtype=dtype) self._fn = fn self._fn_kwargs = kwargs def update_state(self, y_true, y_pred, sample_weight=None): """Accumulates metric statistics. `y_true` and `y_pred` should have the same shape. Args: y_true: The ground truth values. y_pred: The predicted values. sample_weight: Optional weighting of each example. Defaults to 1. Can be a `Tensor` whose rank is either 0, or the same rank as `y_true`, and must be broadcastable to `y_true`. """ y_true = math_ops.cast(y_true, self._dtype) y_pred = math_ops.cast(y_pred, self._dtype) y_pred, y_true, sample_weight = squeeze_or_expand_dimensions( y_pred, y_true, sample_weight) matches = self._fn(y_true, y_pred, **self._fn_kwargs) super(MeanMetricWrapper, self).update_state( matches, sample_weight=sample_weight) def get_config(self): config = self._fn_kwargs base_config = super(MeanMetricWrapper, self).get_config() return dict(list(base_config.items()) + list(config.items())) class BinaryAccuracy(MeanMetricWrapper): """Calculates how often predictions matches labels. This metric creates two local variables, `total` and `count` that are used to compute the frequency with which `y_pred` matches `y_true`. This frequency is ultimately returned as `binary accuracy`: an idempotent operation that simply divides `total` by `count`. If `sample_weight` is `None`, weights default to 1. Use `sample_weight` of 0 to mask values. """ def __init__(self, name='binary-accuracy', dtype=None, threshold=0.5): """Creates a `BinaryAccuracy` instance. Args: name: (Optional) string name of the metric instance. dtype: (Optional) data type of the metric result. threshold: (Optional) Float representing the threshold for deciding whether prediction values are 1 or 0. """ super(BinaryAccuracy, self).__init__( binary_accuracy, name, dtype=dtype, threshold=threshold) @tf_export('keras.metrics.binary_accuracy') def binary_accuracy(y_true, y_pred, threshold=0.5): threshold = math_ops.cast(threshold, y_pred.dtype) y_pred = math_ops.cast(y_pred > threshold, y_pred.dtype) return K.mean(math_ops.equal(y_true, y_pred), axis=-1) @tf_export('keras.metrics.categorical_accuracy') def categorical_accuracy(y_true, y_pred): return math_ops.cast( math_ops.equal( math_ops.argmax(y_true, axis=-1), math_ops.argmax(y_pred, axis=-1)), K.floatx()) def sparse_categorical_accuracy(y_true, y_pred): return math_ops.cast( math_ops.equal( math_ops.reduce_max(y_true, axis=-1), math_ops.cast(math_ops.argmax(y_pred, axis=-1), K.floatx())), K.floatx()) @tf_export('keras.metrics.top_k_categorical_accuracy') def top_k_categorical_accuracy(y_true, y_pred, k=5): return K.mean( nn.in_top_k(y_pred, math_ops.argmax(y_true, axis=-1), k), axis=-1) @tf_export('keras.metrics.sparse_top_k_categorical_accuracy') def sparse_top_k_categorical_accuracy(y_true, y_pred, k=5): return K.mean( nn.in_top_k(y_pred, math_ops.cast(math_ops.reduce_max(y_true, axis=-1), 'int32'), k), axis=-1) # Aliases mse = MSE = mean_squared_error mae = MAE = mean_absolute_error mape = MAPE = mean_absolute_percentage_error msle = MSLE = mean_squared_logarithmic_error cosine = cosine_proximity @tf_export('keras.metrics.serialize') def serialize(metric): return serialize_keras_object(metric) @tf_export('keras.metrics.deserialize') def deserialize(config, custom_objects=None): return deserialize_keras_object( config, module_objects=globals(), custom_objects=custom_objects, printable_module_name='metric function') @tf_export('keras.metrics.get') def get(identifier): if isinstance(identifier, dict): config = {'class_name': str(identifier), 'config': {}} return deserialize(config) elif isinstance(identifier, six.string_types): return deserialize(str(identifier)) elif callable(identifier): return identifier else: raise ValueError('Could not interpret ' 'metric function identifier: %s' % identifier)
6be743b4b02d6eb6d7f62aab46ff57260ffa042b
f92dfdebb4bf6bc108f51783333520c35afa66da
/api-web/src/www/application/management/commands/publish_rabbitmq_genome_gene.py
23f7465ee4e41b1adf971b243ae030a6a568b6ea
[]
no_license
duytran92-cse/nas-genodata
4d8659a135913d226842ff6a013324714ead0458
80c88f42145f729c5862a5293012e71548182e1d
refs/heads/master
2022-11-13T17:24:03.769605
2020-06-14T18:59:36
2020-06-14T18:59:36
272,264,593
0
0
null
null
null
null
UTF-8
Python
false
false
5,305
py
import json, pika, os from application.models import * from urad_api import registry from urad_api_standard.commands import Command as BaseCommand from django.conf import settings import json from application.modules.gene import components as gene_components from django.db import connection class Command(BaseCommand): ## PUBLISH def publish_to_queue(self, iterator, genome_queue, rabbitmq_host, rabbitmq_port): credentials = pika.PlainCredentials('guest', 'guest') connection = pika.BlockingConnection(pika.ConnectionParameters(rabbitmq_host, rabbitmq_port, '/', credentials)) channel = connection.channel() channel.queue_declare(queue=genome_queue) for x in iterator: channel.basic_publish(exchange='', routing_key=genome_queue, body=json.dumps(x)) connection.close() def process(self, params = {}): # DECLARE VARIABLE GENOME_QUEUE = settings.GENOME_QUEUE RABBITMQ_HOST = settings.RABBITMQ_HOST RABBITMQ_PORT = int(settings.RABBITMQ_PORT) # Starting print "[x] Publish data to rabbitmq" ########################## ## Gene print "[***] Publish GENE data to rabbitmq" isDone = False start = 0 gene_manager = gene_components.DataManager() while not isDone: end = start + 5000 print 'start: %s, end: %s' % (start, end) gene = Gene.objects.all()[start:end] start = end + 1 if gene.count() <= 0: isDone = True x = [] for var in gene: y = ['gene', var.code] try: data = gene_manager.get(var.code) values = {} arr_disease = [] asso_disease = [] asso_pub = [] for field, value in data.items(): if field in ['synonyms', 'effects','start', 'end','num_exon','chromosome','protein_product','description'] and value['value'] != None: values[field] = value['value'] # disease field if field == 'disgenet-diseases' and value['value'] != None: arr_disease.extend(value['value']) rs = [ item['disease'] for item in value['value'] ] asso_disease.extend(rs) if field == 'gwas-diseases' and value['value'] != None: try: for k in value['value']: arr_disease.append({ 'disease': k.get('disease',''), 'pubmedid': k.get('pmid',''), 'sentence': k.get('sentence', '') }) except Exception as e: pass rs = [ item['disease'] for item in value['value'] ] asso_disease.extend(rs) if field == 'ctdbase-diseases' and value['value'] != None: try: for k in value['value']: arr_disease.append({ 'disease': k.get('disease',''), 'pubmedid': k.get('pmid',''), 'sentence': k.get('evidence', '') }) except Exception as e: pass rs = [ item['disease'] for item in value['value'] ] asso_disease.extend(rs) if len(arr_disease) > 0: values['disgenet-diseases'] = arr_disease if len(asso_disease) > 0: values['associated_diseases'] = asso_disease # publications if field == 'publications' and value['value'] != None: values[field] = value['value'] try: for k in value['value']: asso_pub.append({ 'pmid': k['pmid'], 'title': k['title'] }) except Exception as e: pass if field == 'gwas-publications' and value['value'] != None: asso_pub.extend(value['value']) if len(asso_pub) > 0: values['associated_publications'] = asso_pub if values: y.append(values) x.append(y) except Exception as e: pass # Publish rabbitMQ self.publish_to_queue(x, GENOME_QUEUE, RABBITMQ_HOST, RABBITMQ_PORT) print "[***] DONE gene" print "[x] Sent data to RabbitMQ"
a43e6873d5770d466c0143a8d8e3abdff3975ac4
4bc19f4dd098ebedcb6ee78af0ae12cb633671fe
/static/views.py
608e8568b487fbee9eb1251fbf226fbe6d45ec5b
[]
no_license
StanislavKraev/rekvizitka
958ab0e002335613a724fb14a8e4123f49954446
ac1f30e7bb2e987b3b0bda4c2a8feda4d3f5497f
refs/heads/master
2021-01-01T05:44:56.372748
2016-04-27T19:20:26
2016-04-27T19:20:26
57,240,406
0
0
null
null
null
null
UTF-8
Python
false
false
514
py
from django.http import Http404 from django.shortcuts import render_to_response from rek.static.models import StaticPage from django.template.context import RequestContext def render(request, page_alias=''): page = StaticPage.objects.get(alias=page_alias, enabled=True) if not page: raise Http404() return render_to_response('static_page_with_sidebar.html', {'page' : page}, context_instance=RequestContext(request))
e2a4d4248d4f5b48e5c69c52e0dad41e541340ba
33cfcb4561e7320ae0e893fbe774c7eb0a2effe8
/eg15.01.py
c94d345080db1688fdbb1a237e7fd737f5e8db93
[]
no_license
Jueee/aByteOfPython
9c8bc01f0707daef29e52467db0c3f5a94747119
ae1a4a4b181612463ccdcd0d89c961f22f7ece20
refs/heads/master
2021-05-31T14:26:00.790823
2016-02-17T05:41:20
2016-02-17T05:41:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
877
py
#!/usr/bin/python # Filename: list_comprehension.py # 通过列表综合,可以从一个已有的列表导出一个新的列表。 listone = [2, 3, 4] listtwo = [2*i for i in listone if i > 2] print(listtwo) # 在函数中接收元组和列表 # 当要使函数接收元组或字典形式的参数的时候,有一种特殊的方法,它分别使用*和**前缀。 # 这种方法在函数需要获取可变数量的参数的时候特别有用。 # 由于在args变量前有*前缀,所有多余的函数参数都会作为一个元组存储在args中。 # 如果使用的是**前缀,多余的参数则会被认为是一个字典的键/值对。 def powersum(power, *args): '''Return the sum of each argument raised to specified power.''' total = 0 for i in args: total += pow(i, power) return total print(powersum(2,3,4,5)) print(powersum(2,10,100,1000))
[ "hellojue @foxmail.com" ]
hellojue @foxmail.com
5da2bd8dc2830c9ae5ea68845892e133cd447295
09e57dd1374713f06b70d7b37a580130d9bbab0d
/benchmark/startCirq2210.py
06f183066edd0d13b690b7e34154e944725a31e0
[ "BSD-3-Clause" ]
permissive
UCLA-SEAL/QDiff
ad53650034897abb5941e74539e3aee8edb600ab
d968cbc47fe926b7f88b4adf10490f1edd6f8819
refs/heads/main
2023-08-05T04:52:24.961998
2021-09-19T02:56:16
2021-09-19T02:56:16
405,159,939
2
0
null
null
null
null
UTF-8
Python
false
false
2,734
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 5/15/20 4:49 PM # @File : grover.py # qubit number=4 # total number=28 import cirq import cirq.google as cg from typing import Optional import sys from math import log2 import numpy as np #thatsNoCode from cirq.contrib.svg import SVGCircuit # Symbols for the rotation angles in the QAOA circuit. def make_circuit(n: int, input_qubit): c = cirq.Circuit() # circuit begin c.append(cirq.H.on(input_qubit[0])) # number=9 c.append(cirq.rx(-1.9069467407290044).on(input_qubit[2])) # number=20 c.append(cirq.H.on(input_qubit[3])) # number=21 c.append(cirq.H.on(input_qubit[1])) # number=2 c.append(cirq.H.on(input_qubit[2])) # number=3 c.append(cirq.H.on(input_qubit[3])) # number=4 c.append(cirq.Y.on(input_qubit[2])) # number=13 c.append(cirq.rx(0.13823007675795101).on(input_qubit[2])) # number=24 c.append(cirq.H.on(input_qubit[0])) # number=5 c.append(cirq.H.on(input_qubit[1])) # number=6 c.append(cirq.H.on(input_qubit[2])) # number=7 c.append(cirq.H.on(input_qubit[3])) # number=8 c.append(cirq.X.on(input_qubit[3])) # number=1 c.append(cirq.rx(-1.9352210746113125).on(input_qubit[3])) # number=14 c.append(cirq.CNOT.on(input_qubit[1],input_qubit[2])) # number=22 c.append(cirq.Y.on(input_qubit[2])) # number=10 c.append(cirq.H.on(input_qubit[1])) # number=17 c.append(cirq.CZ.on(input_qubit[3],input_qubit[1])) # number=18 c.append(cirq.H.on(input_qubit[1])) # number=19 c.append(cirq.Y.on(input_qubit[2])) # number=11 c.append(cirq.H.on(input_qubit[0])) # number=25 c.append(cirq.CZ.on(input_qubit[1],input_qubit[0])) # number=26 c.append(cirq.H.on(input_qubit[0])) # number=27 c.append(cirq.CNOT.on(input_qubit[1],input_qubit[0])) # number=16 c.append(cirq.Z.on(input_qubit[3])) # number=23 # circuit end c.append(cirq.measure(*input_qubit, key='result')) return c def bitstring(bits): return ''.join(str(int(b)) for b in bits) if __name__ == '__main__': qubit_count = 4 input_qubits = [cirq.GridQubit(i, 0) for i in range(qubit_count)] circuit = make_circuit(qubit_count,input_qubits) circuit = cg.optimized_for_sycamore(circuit, optimizer_type='sqrt_iswap') circuit_sample_count =2000 simulator = cirq.Simulator() result = simulator.run(circuit, repetitions=circuit_sample_count) frequencies = result.histogram(key='result', fold_func=bitstring) writefile = open("../data/startCirq2210.csv","w+") print(format(frequencies),file=writefile) print("results end", file=writefile) print(circuit.__len__(), file=writefile) print(circuit,file=writefile) writefile.close()
01b5228bafb4cd7e36afa383714ca0ce95b4d5dd
3d19e1a316de4d6d96471c64332fff7acfaf1308
/Users/A/anlangner/cordis_v3.py
c960031a72d020159d2fc051da824933e00894a7
[]
no_license
BerilBBJ/scraperwiki-scraper-vault
4e98837ac3b1cc3a3edb01b8954ed00f341c8fcc
65ea6a943cc348a9caf3782b900b36446f7e137d
refs/heads/master
2021-12-02T23:55:58.481210
2013-09-30T17:02:59
2013-09-30T17:02:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
14,592
py
import scraperwiki import scrapemark import feedparser import csv import re import urllib2,sys import requests import lxml.html from BeautifulSoup import BeautifulSoup, NavigableString # extract project page links from the result page "url" def extract_links(url): atom_feed = feedparser.parse(url) link_list = [] for entry in atom_feed.entries: print entry.title #+ " - " + entry.link print entry.link # experiment with data structure data = { 'TITLE' : entry.title, 'LINK' : entry.link } print data #scraperwiki.sqlite.save(unique_keys=['TITLE'], data=data) link_list.append(entry.link) #csvwriter.writerow([entry.title] + [entry.link]) return link_list # open details page for "object" and parse the results def parse_object(object): html = urllib2.urlopen(object).read() soup = BeautifulSoup(html) project_id = soup.find('input', attrs={'name':"REF"}).get('value') print "Project-ID: " + str(project_id) detail_url = "http://cordis.europa.eu/newsearch/getDoc?doctype=PROJ&xslt-template=projects/xsl/projectdet_en.xslt&rcn=" + str(project_id) print "***" + detail_url details = requests.get(detail_url) detail_page = details.content content = BeautifulSoup(detail_page, convertEntities="html", smartQuotesTo="html", fromEncoding="utf-8") # extract content data_info = content.find(attrs={'class':'projdates'}) data_coordinator = content.find(attrs={'class': 'projcoord'}) data_details = content.find(attrs={'class': 'projdet'}) data_participants = content.find(attrs={'class': 'participants'}) data_footer = content.find(attrs={'id': 'recinfo'}) # data_tech = content.find(attrs={'class': 'tech'}) # trying to find project description: display all content print ">>> " str(content) data_info = lxml.html.fromstring(str(data_info)) data_info = data_info.text_content() data_coordinator = lxml.html.fromstring(str(data_coordinator)) data_coordinator = data_coordinator.text_content() data_details = lxml.html.fromstring(str(data_details)) data_details = data_details.text_content() data_participants = lxml.html.fromstring(str(data_participants)) data_participants = data_participants.text_content() data_footer = lxml.html.fromstring(str(data_footer)) data_footer = data_footer.text_content() # REGEXP for fields # Start date in YYYY-MM-DD: (?<=From\s).{1,}(?=\sto) # End date in YYYY-MM-DD: (?<=to\s).{1,}(?=\s\|) # Coordinator: (?<=Coordinator\s).{1,}(?=\s\(\+\)) # Coordinator contact: (?<=Administrative contact:\s).{1,}(?!\n) # Project title in caps: (?<=\|\s).{1,}(?=\swebsite) # Cost in EUR: (?<=EUR\s)\d{1,2}(\s\d{3}){1,2} # EU Contribution: (?<=EU contribution: EUR\s)\d{1,2}(\s\d{3}){1,2}(?!Programme) # Programme acronym: (?<=Programme acronym:\s)(\w{1,}.){2} # Contract type: (?<=Contract type:\s).{1,} # Subprogramme type: (?<=Subprogramme area:\s).{1,}(?=Contract) # Participants: (?<=\n).{1,}?\n.{1,}?(?=\s\n) # Participant contact: (?<=Administrative contact:\s).{1,}\n.{1,}(?=Email) # Record number: (?<=Record number:\s)\d{1,}(?=\s\/) field_regexp = { 'Title' : '(?<=\|\s).{1,}(?=\swebsite)', 'Start date' : '(?<=From\s).{1,}(?=\sto)', 'End date' : '(?<=to\s).{1,}(?=\s\|)', 'Coordinator' : '(?<=Coordinator\n\n).{1,}(?=\n)', 'Coordinator contact' : '(?<=Administrative contact:\s).{1,}\n.{1,}(?!Email)', 'Project cost' : '(?<=EUR\s)\d{1,2}(\s\d{3}){1,2}', 'EU contribution' : '(?<=EU contribution: EUR\s)\d{1,2}(\s\d{3}){1,2}(?!Programme)', 'Programme' : '(?<=Programme acronym:\s\n)(\w{1,}.){2}', 'Subprogramme' : '(?<=Subprogramme area:\s\n).{1,}(?=\n)', 'Contract' : '(?<=Contract type:\s\n).{1,}', 'Participants' : '(?<=\n).{1,}?\n.{1,}?(?=\s\n)', 'Participant contact' : '(?<=Administrative contact:\s).{1,}\n.{1,}(?=Email)', 'Record number' : '(?<=Record number:\s)\d{1,}(?=\s\/)' } # WAAAAH, das hier ist unsagbar hässlich! project_title = re.search(field_regexp['Title'], data_info) project_title = project_title.group() project_start = re.search(field_regexp['Start date'], data_info) project_start = project_start.group() project_end = re.search(field_regexp['End date'], data_info) project_end = project_end.group() project_coordinator = re.search(field_regexp['Coordinator'], data_coordinator) project_coordinator = project_coordinator.group() project_coord_con = re.search(field_regexp['Coordinator contact'], data_coordinator) project_coord_con = project_coord_con.group() project_cost = re.search(field_regexp['Project cost'], data_details) project_cost = project_cost.group() project_cost = project_cost.replace(" ", "") project_contribution = re.search(field_regexp['EU contribution'], data_details) project_contribution = project_contribution.group() project_contribution = project_contribution.replace(" ", "") project_programme = re.search(field_regexp['Programme'], data_details) project_programme = project_programme.group() project_subprogramme = re.search(field_regexp['Subprogramme'], data_details) project_subprogramme = project_subprogramme.group() project_contract = re.search(field_regexp['Contract'], data_details) project_contract = project_contract.group() project_participants = re.findall(field_regexp['Participants'], data_participants) #project_participants = project_participants.group() project_part_con = re.findall(field_regexp['Participant contact'], data_participants) #project_part_con = project_part_con.group() project_reference = re.search(field_regexp['Record number'], data_footer) project_reference = project_reference.group() project_desc = { 'Title' : project_title, 'Start date' : project_start, 'End date' : project_end, 'Coordinator' : project_coordinator, 'Coordinator contact' : project_coord_con, 'Project cost' : project_cost, 'EU contribution' : project_contribution, 'Programme' : project_programme, 'Subprogramme' : project_subprogramme, 'Contract' : project_contract, #'Participants' : project_participants[0], #'Participant contact' : project_part_con[0], 'Reference' : project_reference } scraperwiki.sqlite.save(unique_keys=['Title'], data=project_desc) print ">>> CORDIS scraper <<<" applicants = ["rexroth"] URL_1 = "http://cordis.europa.eu/newsearch/download.cfm?action=query&collection=EN_PROJ&text=%28" URL_2="%29&sort=all&querySummary=quick&fieldText=%28MATCH%7BCORDIS%2CWEBPAGESEUROPA%7D%3ASOURCE%29&ENGINE_ID=CORDIS_ENGINE_ID&SEARCH_TYPE_ID=CORDIS_SEARCH_ID&descr=" URL_3 = ";%20Projects" print "Number of searches: " + str(len(applicants)) # Open CSV file with open ('output.csv', 'w') as csvfile: csvwriter = csv.writer(open ('output.csv', 'a')) for applicant in applicants: list_url = URL_1 + applicant + URL_2 + applicant + URL_3 result_links = extract_links(list_url) for link in result_links: parse_object(link)import scraperwiki import scrapemark import feedparser import csv import re import urllib2,sys import requests import lxml.html from BeautifulSoup import BeautifulSoup, NavigableString # extract project page links from the result page "url" def extract_links(url): atom_feed = feedparser.parse(url) link_list = [] for entry in atom_feed.entries: print entry.title #+ " - " + entry.link print entry.link # experiment with data structure data = { 'TITLE' : entry.title, 'LINK' : entry.link } print data #scraperwiki.sqlite.save(unique_keys=['TITLE'], data=data) link_list.append(entry.link) #csvwriter.writerow([entry.title] + [entry.link]) return link_list # open details page for "object" and parse the results def parse_object(object): html = urllib2.urlopen(object).read() soup = BeautifulSoup(html) project_id = soup.find('input', attrs={'name':"REF"}).get('value') print "Project-ID: " + str(project_id) detail_url = "http://cordis.europa.eu/newsearch/getDoc?doctype=PROJ&xslt-template=projects/xsl/projectdet_en.xslt&rcn=" + str(project_id) print "***" + detail_url details = requests.get(detail_url) detail_page = details.content content = BeautifulSoup(detail_page, convertEntities="html", smartQuotesTo="html", fromEncoding="utf-8") # extract content data_info = content.find(attrs={'class':'projdates'}) data_coordinator = content.find(attrs={'class': 'projcoord'}) data_details = content.find(attrs={'class': 'projdet'}) data_participants = content.find(attrs={'class': 'participants'}) data_footer = content.find(attrs={'id': 'recinfo'}) # data_tech = content.find(attrs={'class': 'tech'}) # trying to find project description: display all content print ">>> " str(content) data_info = lxml.html.fromstring(str(data_info)) data_info = data_info.text_content() data_coordinator = lxml.html.fromstring(str(data_coordinator)) data_coordinator = data_coordinator.text_content() data_details = lxml.html.fromstring(str(data_details)) data_details = data_details.text_content() data_participants = lxml.html.fromstring(str(data_participants)) data_participants = data_participants.text_content() data_footer = lxml.html.fromstring(str(data_footer)) data_footer = data_footer.text_content() # REGEXP for fields # Start date in YYYY-MM-DD: (?<=From\s).{1,}(?=\sto) # End date in YYYY-MM-DD: (?<=to\s).{1,}(?=\s\|) # Coordinator: (?<=Coordinator\s).{1,}(?=\s\(\+\)) # Coordinator contact: (?<=Administrative contact:\s).{1,}(?!\n) # Project title in caps: (?<=\|\s).{1,}(?=\swebsite) # Cost in EUR: (?<=EUR\s)\d{1,2}(\s\d{3}){1,2} # EU Contribution: (?<=EU contribution: EUR\s)\d{1,2}(\s\d{3}){1,2}(?!Programme) # Programme acronym: (?<=Programme acronym:\s)(\w{1,}.){2} # Contract type: (?<=Contract type:\s).{1,} # Subprogramme type: (?<=Subprogramme area:\s).{1,}(?=Contract) # Participants: (?<=\n).{1,}?\n.{1,}?(?=\s\n) # Participant contact: (?<=Administrative contact:\s).{1,}\n.{1,}(?=Email) # Record number: (?<=Record number:\s)\d{1,}(?=\s\/) field_regexp = { 'Title' : '(?<=\|\s).{1,}(?=\swebsite)', 'Start date' : '(?<=From\s).{1,}(?=\sto)', 'End date' : '(?<=to\s).{1,}(?=\s\|)', 'Coordinator' : '(?<=Coordinator\n\n).{1,}(?=\n)', 'Coordinator contact' : '(?<=Administrative contact:\s).{1,}\n.{1,}(?!Email)', 'Project cost' : '(?<=EUR\s)\d{1,2}(\s\d{3}){1,2}', 'EU contribution' : '(?<=EU contribution: EUR\s)\d{1,2}(\s\d{3}){1,2}(?!Programme)', 'Programme' : '(?<=Programme acronym:\s\n)(\w{1,}.){2}', 'Subprogramme' : '(?<=Subprogramme area:\s\n).{1,}(?=\n)', 'Contract' : '(?<=Contract type:\s\n).{1,}', 'Participants' : '(?<=\n).{1,}?\n.{1,}?(?=\s\n)', 'Participant contact' : '(?<=Administrative contact:\s).{1,}\n.{1,}(?=Email)', 'Record number' : '(?<=Record number:\s)\d{1,}(?=\s\/)' } # WAAAAH, das hier ist unsagbar hässlich! project_title = re.search(field_regexp['Title'], data_info) project_title = project_title.group() project_start = re.search(field_regexp['Start date'], data_info) project_start = project_start.group() project_end = re.search(field_regexp['End date'], data_info) project_end = project_end.group() project_coordinator = re.search(field_regexp['Coordinator'], data_coordinator) project_coordinator = project_coordinator.group() project_coord_con = re.search(field_regexp['Coordinator contact'], data_coordinator) project_coord_con = project_coord_con.group() project_cost = re.search(field_regexp['Project cost'], data_details) project_cost = project_cost.group() project_cost = project_cost.replace(" ", "") project_contribution = re.search(field_regexp['EU contribution'], data_details) project_contribution = project_contribution.group() project_contribution = project_contribution.replace(" ", "") project_programme = re.search(field_regexp['Programme'], data_details) project_programme = project_programme.group() project_subprogramme = re.search(field_regexp['Subprogramme'], data_details) project_subprogramme = project_subprogramme.group() project_contract = re.search(field_regexp['Contract'], data_details) project_contract = project_contract.group() project_participants = re.findall(field_regexp['Participants'], data_participants) #project_participants = project_participants.group() project_part_con = re.findall(field_regexp['Participant contact'], data_participants) #project_part_con = project_part_con.group() project_reference = re.search(field_regexp['Record number'], data_footer) project_reference = project_reference.group() project_desc = { 'Title' : project_title, 'Start date' : project_start, 'End date' : project_end, 'Coordinator' : project_coordinator, 'Coordinator contact' : project_coord_con, 'Project cost' : project_cost, 'EU contribution' : project_contribution, 'Programme' : project_programme, 'Subprogramme' : project_subprogramme, 'Contract' : project_contract, #'Participants' : project_participants[0], #'Participant contact' : project_part_con[0], 'Reference' : project_reference } scraperwiki.sqlite.save(unique_keys=['Title'], data=project_desc) print ">>> CORDIS scraper <<<" applicants = ["rexroth"] URL_1 = "http://cordis.europa.eu/newsearch/download.cfm?action=query&collection=EN_PROJ&text=%28" URL_2="%29&sort=all&querySummary=quick&fieldText=%28MATCH%7BCORDIS%2CWEBPAGESEUROPA%7D%3ASOURCE%29&ENGINE_ID=CORDIS_ENGINE_ID&SEARCH_TYPE_ID=CORDIS_SEARCH_ID&descr=" URL_3 = ";%20Projects" print "Number of searches: " + str(len(applicants)) # Open CSV file with open ('output.csv', 'w') as csvfile: csvwriter = csv.writer(open ('output.csv', 'a')) for applicant in applicants: list_url = URL_1 + applicant + URL_2 + applicant + URL_3 result_links = extract_links(list_url) for link in result_links: parse_object(link)
39f29b37f7444cf60b0b9e2cbd3307132c1c48c6
d094ba0c8a9b1217fbf014aa79a283a49aabe88c
/env/lib/python3.6/site-packages/pandas/tests/io/parser/test_skiprows.py
1df2ca4fad4d87539cdcdee874cb25a6cd3ce18e
[ "Apache-2.0" ]
permissive
Raniac/NEURO-LEARN
d9274e0baadd97bb02da54bdfcf6ca091fc1c703
3c3acc55de8ba741e673063378e6cbaf10b64c7a
refs/heads/master
2022-12-25T23:46:54.922237
2020-09-06T03:15:14
2020-09-06T03:15:14
182,013,100
9
2
Apache-2.0
2022-12-09T21:01:00
2019-04-18T03:57:00
CSS
UTF-8
Python
false
false
6,948
py
# -*- coding: utf-8 -*- """ Tests that skipped rows are properly handled during parsing for all of the parsers defined in parsers.py """ from datetime import datetime import numpy as np import pytest from pandas.compat import StringIO, lrange, range from pandas.errors import EmptyDataError from pandas import DataFrame, Index import pandas.util.testing as tm @pytest.mark.parametrize("skiprows", [lrange(6), 6]) def test_skip_rows_bug(all_parsers, skiprows): # see gh-505 parser = all_parsers text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ result = parser.read_csv(StringIO(text), skiprows=skiprows, header=None, index_col=0, parse_dates=True) index = Index([datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)], name=0) expected = DataFrame(np.arange(1., 10.).reshape((3, 3)), columns=[1, 2, 3], index=index) tm.assert_frame_equal(result, expected) def test_deep_skip_rows(all_parsers): # see gh-4382 parser = all_parsers data = "a,b,c\n" + "\n".join([",".join([str(i), str(i + 1), str(i + 2)]) for i in range(10)]) condensed_data = "a,b,c\n" + "\n".join([ ",".join([str(i), str(i + 1), str(i + 2)]) for i in [0, 1, 2, 3, 4, 6, 8, 9]]) result = parser.read_csv(StringIO(data), skiprows=[6, 8]) condensed_result = parser.read_csv(StringIO(condensed_data)) tm.assert_frame_equal(result, condensed_result) def test_skip_rows_blank(all_parsers): # see gh-9832 parser = all_parsers text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ data = parser.read_csv(StringIO(text), skiprows=6, header=None, index_col=0, parse_dates=True) index = Index([datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)], name=0) expected = DataFrame(np.arange(1., 10.).reshape((3, 3)), columns=[1, 2, 3], index=index) tm.assert_frame_equal(data, expected) @pytest.mark.parametrize("data,kwargs,expected", [ ("""id,text,num_lines 1,"line 11 line 12",2 2,"line 21 line 22",2 3,"line 31",1""", dict(skiprows=[1]), DataFrame([[2, "line 21\nline 22", 2], [3, "line 31", 1]], columns=["id", "text", "num_lines"])), ("a,b,c\n~a\n b~,~e\n d~,~f\n f~\n1,2,~12\n 13\n 14~", dict(quotechar="~", skiprows=[2]), DataFrame([["a\n b", "e\n d", "f\n f"]], columns=["a", "b", "c"])), (("Text,url\n~example\n " "sentence\n one~,url1\n~" "example\n sentence\n two~,url2\n~" "example\n sentence\n three~,url3"), dict(quotechar="~", skiprows=[1, 3]), DataFrame([['example\n sentence\n two', 'url2']], columns=["Text", "url"])) ]) def test_skip_row_with_newline(all_parsers, data, kwargs, expected): # see gh-12775 and gh-10911 parser = all_parsers result = parser.read_csv(StringIO(data), **kwargs) tm.assert_frame_equal(result, expected) def test_skip_row_with_quote(all_parsers): # see gh-12775 and gh-10911 parser = all_parsers data = """id,text,num_lines 1,"line '11' line 12",2 2,"line '21' line 22",2 3,"line '31' line 32",1""" exp_data = [[2, "line '21' line 22", 2], [3, "line '31' line 32", 1]] expected = DataFrame(exp_data, columns=[ "id", "text", "num_lines"]) result = parser.read_csv(StringIO(data), skiprows=[1]) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("data,exp_data", [ ("""id,text,num_lines 1,"line \n'11' line 12",2 2,"line \n'21' line 22",2 3,"line \n'31' line 32",1""", [[2, "line \n'21' line 22", 2], [3, "line \n'31' line 32", 1]]), ("""id,text,num_lines 1,"line '11\n' line 12",2 2,"line '21\n' line 22",2 3,"line '31\n' line 32",1""", [[2, "line '21\n' line 22", 2], [3, "line '31\n' line 32", 1]]), ("""id,text,num_lines 1,"line '11\n' \r\tline 12",2 2,"line '21\n' \r\tline 22",2 3,"line '31\n' \r\tline 32",1""", [[2, "line '21\n' \r\tline 22", 2], [3, "line '31\n' \r\tline 32", 1]]), ]) def test_skip_row_with_newline_and_quote(all_parsers, data, exp_data): # see gh-12775 and gh-10911 parser = all_parsers result = parser.read_csv(StringIO(data), skiprows=[1]) expected = DataFrame(exp_data, columns=["id", "text", "num_lines"]) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("line_terminator", [ "\n", # "LF" "\r\n", # "CRLF" "\r" # "CR" ]) def test_skiprows_lineterminator(all_parsers, line_terminator): # see gh-9079 parser = all_parsers data = "\n".join(["SMOSMANIA ThetaProbe-ML2X ", "2007/01/01 01:00 0.2140 U M ", "2007/01/01 02:00 0.2141 M O ", "2007/01/01 04:00 0.2142 D M "]) expected = DataFrame([["2007/01/01", "01:00", 0.2140, "U", "M"], ["2007/01/01", "02:00", 0.2141, "M", "O"], ["2007/01/01", "04:00", 0.2142, "D", "M"]], columns=["date", "time", "var", "flag", "oflag"]) if parser.engine == "python" and line_terminator == "\r": pytest.skip("'CR' not respect with the Python parser yet") data = data.replace("\n", line_terminator) result = parser.read_csv(StringIO(data), skiprows=1, delim_whitespace=True, names=["date", "time", "var", "flag", "oflag"]) tm.assert_frame_equal(result, expected) def test_skiprows_infield_quote(all_parsers): # see gh-14459 parser = all_parsers data = "a\"\nb\"\na\n1" expected = DataFrame({"a": [1]}) result = parser.read_csv(StringIO(data), skiprows=2) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("kwargs,expected", [ (dict(), DataFrame({"1": [3, 5]})), (dict(header=0, names=["foo"]), DataFrame({"foo": [3, 5]})) ]) def test_skip_rows_callable(all_parsers, kwargs, expected): parser = all_parsers data = "a\n1\n2\n3\n4\n5" result = parser.read_csv(StringIO(data), skiprows=lambda x: x % 2 == 0, **kwargs) tm.assert_frame_equal(result, expected) def test_skip_rows_skip_all(all_parsers): parser = all_parsers data = "a\n1\n2\n3\n4\n5" msg = "No columns to parse from file" with pytest.raises(EmptyDataError, match=msg): parser.read_csv(StringIO(data), skiprows=lambda x: True) def test_skip_rows_bad_callable(all_parsers): msg = "by zero" parser = all_parsers data = "a\n1\n2\n3\n4\n5" with pytest.raises(ZeroDivisionError, match=msg): parser.read_csv(StringIO(data), skiprows=lambda x: 1 / 0)
c6f9bfe889eb0278f68b7a17049662d5605c5285
5af277b5819d74e61374d1d78c303ac93c831cf5
/axial/logging_utils.py
ef723570c0f02a331ebfc7220811665417690c53
[ "Apache-2.0" ]
permissive
Ayoob7/google-research
a2d215afb31513bd59bc989e09f54667fe45704e
727ec399ad17b4dd1f71ce69a26fc3b0371d9fa7
refs/heads/master
2022-11-11T03:10:53.216693
2020-06-26T17:13:45
2020-06-26T17:13:45
275,205,856
2
0
Apache-2.0
2020-06-26T16:58:19
2020-06-26T16:58:18
null
UTF-8
Python
false
false
4,459
py
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import io import time from absl import logging import numpy as np import PIL.Image import tensorflow.compat.v1 as tf from tensorflow.compat.v1 import gfile from tensorflow.compat.v1.core.framework.summary_pb2 import Summary from tensorflow.compat.v1.core.util.event_pb2 import Event def pack_images(images, rows, cols): """Helper utility to make a tiled field of images from numpy arrays. Taken from Jaxboard. Args: images: Image tensor in shape [N, W, H, C]. rows: Number of images per row in tiled image. cols: Number of images per column in tiled image. Returns: A tiled image of shape [W * rows, H * cols, C]. Truncates incomplete rows. """ shape = np.shape(images) width, height, depth = shape[-3:] images = np.reshape(images, (-1, width, height, depth)) batch = np.shape(images)[0] rows = np.minimum(rows, batch) cols = np.minimum(batch // rows, cols) images = images[:rows * cols] images = np.reshape(images, (rows, cols, width, height, depth)) images = np.transpose(images, [0, 2, 1, 3, 4]) images = np.reshape(images, [rows * width, cols * height, depth]) return images class SummaryWriter(object): """Tensorflow summary writer inspired by Jaxboard. This version doesn't try to avoid Tensorflow dependencies, because this project uses Tensorflow. """ def __init__(self, dir, write_graph=True): if not gfile.IsDirectory(dir): gfile.MakeDirs(dir) self.writer = tf.summary.FileWriter( dir, graph=tf.get_default_graph() if write_graph else None) def flush(self): self.writer.flush() def close(self): self.writer.close() def _write_event(self, summary_value, step): self.writer.add_event( Event( wall_time=round(time.time()), step=step, summary=Summary(value=[summary_value]))) def scalar(self, tag, value, step): self._write_event(Summary.Value(tag=tag, simple_value=float(value)), step) def image(self, tag, image, step): image = np.asarray(image) if image.ndim == 2: image = image[:, :, None] if image.shape[-1] == 1: image = np.repeat(image, 3, axis=-1) bytesio = io.BytesIO() PIL.Image.fromarray(image).save(bytesio, 'PNG') image_summary = Summary.Image( encoded_image_string=bytesio.getvalue(), colorspace=3, height=image.shape[0], width=image.shape[1]) self._write_event(Summary.Value(tag=tag, image=image_summary), step) def images(self, tag, images, step, square=True): """Saves (rows, cols) tiled images from onp.ndarray. This truncates the image batch rather than padding if it doesn't fill the final row. """ images = np.asarray(images) n_images = len(images) if square: rows = cols = int(np.sqrt(n_images)) else: rows = 1 cols = n_images tiled_images = pack_images(images, rows, cols) self.image(tag, tiled_images, step=step) class Log(object): """Logging to Tensorboard and the Python logger at the same time.""" def __init__(self, logdir, write_graph=True): self.logdir = logdir # Tensorboard self.summary_writer = SummaryWriter(logdir, write_graph=write_graph) def write(self, key_prefix, info_dicts, step): log_items = [] for key in info_dicts[-1]: # average the log values over time key_with_prefix = '{}/{}'.format(key_prefix, key) avg_val = np.mean([info[key] for info in info_dicts]) # absl log log_items.append('{}={:.6f}'.format(key_with_prefix, avg_val)) # tensorboard self.summary_writer.scalar(key_with_prefix, avg_val, step=step) self.summary_writer.flush() logging.info('step={:08d} {}'.format(step, ' '.join(log_items)))
54157e46485cfe84e785669c8a896e72e4eba04c
22fc34523f4de64a1e1eea707e01da79e425a043
/srtmprofile/core/urls.py
3eb617af2639a39dc20d463863e4fff390506028
[ "MIT" ]
permissive
marcellobenigno/srtmprofile
04cdcf4a1f127462dd37d94ec5f368b0f304b932
52a2550976ce4ecad2921e53a72ac2ec8a8459b5
refs/heads/master
2021-04-03T05:25:54.097968
2018-03-15T11:05:02
2018-03-15T11:05:02
124,605,246
1
0
null
null
null
null
UTF-8
Python
false
false
261
py
from django.conf.urls import url from . import views app_name = 'core' urlpatterns = [ url(r'^$', views.home, name='home'), url(r'^roads.geojson$', views.roads_geojson, name='roads_geojson'), url(r'^(?P<pk>\d+)/$', views.detail, name='detail'), ]
6a6d137d3c8dc70d14aa023a752ffba6f170d4fd
91af1af67ed219e583b209b40ae5dd34d6f7f355
/train_net.py
90d770c1765c7f52a585ded8af49a5bf767545db
[]
no_license
jack20951948/Deep-Clustering
d6f5bfdd97be1f07f114371eafd9f8643ebb6e30
4dd8b4d3fef72e597cd142406d343450cf2dd517
refs/heads/main
2023-06-28T02:18:58.915727
2021-07-18T07:18:10
2021-07-18T07:18:10
387,109,398
2
0
null
null
null
null
UTF-8
Python
false
false
6,555
py
''' Script to train the model ''' from __future__ import absolute_import from __future__ import division from __future__ import print_function from datetime import datetime import os.path import time import numpy as np import tensorflow as tf import ipdb from datagenerator2 import DataGenerator from model import Model from GlobalConstont import * # the .pkl file lists of data set pkl_list = ['deep-clustering-master/pkl_folder/train.pkl'] # ['../dcdata/' + str(i) + '.pkl' for i in range(1, 12)] val_list = ['deep-clustering-master/pkl_folder/val.pkl'] sum_dir = 'deep-clustering-master/sum' train_dir = 'deep-clustering-master/model' lr = 1e-3 n_hidden = 300 max_steps = 20000000 batch_size = 128 def train(): with tf.Graph().as_default(): # dropout keep probability p_keep_ff = tf.placeholder(tf.float32, shape=None) p_keep_rc = tf.placeholder(tf.float32, shape=None) # generator for training set and validation set data_generator = DataGenerator(pkl_list, batch_size) val_generator = DataGenerator(val_list, batch_size) # placeholder for input log spectrum, VAD info., # and speaker indicator function in_data = tf.placeholder( tf.float32, shape=[batch_size, FRAMES_PER_SAMPLE, NEFF]) VAD_data = tf.placeholder( tf.float32, shape=[batch_size, FRAMES_PER_SAMPLE, NEFF]) Y_data = tf.placeholder( tf.float32, shape=[batch_size, FRAMES_PER_SAMPLE, NEFF, 2]) # init the model BiModel = Model(n_hidden, batch_size, p_keep_ff, p_keep_rc) # build the net structure embedding = BiModel.inference(in_data) Y_data_reshaped = tf.reshape(Y_data, [-1, NEFF, 2]) VAD_data_reshaped = tf.reshape(VAD_data, [-1, NEFF]) # compute the loss loss = BiModel.loss(embedding, Y_data_reshaped, VAD_data_reshaped) # get the train operation train_op = BiModel.train(loss, lr) saver = tf.train.Saver(tf.all_variables()) summary_op = tf.summary.merge_all() sess = tf.Session() # either train from scratch or a trained model # saver.restore(sess, 'train/model.ckpt-492000') # val_loss = np.fromfile('val_loss').tolist() # init_step = 56001 init = tf.initialize_all_variables() sess.run(init) init_step = 0 summary_writer = tf.summary.FileWriter( sum_dir, sess.graph) # val_loss = [] last_epoch = data_generator.epoch for step in range(init_step, init_step + max_steps): start_time = time.time() data_batch = data_generator.gen_batch() # concatenate the samples into batch data in_data_np = np.concatenate( [np.reshape(item['Sample'], [1, FRAMES_PER_SAMPLE, NEFF]) for item in data_batch]) VAD_data_np = np.concatenate( [np.reshape(item['VAD'], [1, FRAMES_PER_SAMPLE, NEFF]) for item in data_batch]) VAD_data_np = VAD_data_np.astype('int') Y_data_np = np.concatenate( [np.reshape(item['Target'], [1, FRAMES_PER_SAMPLE, NEFF, 2]) for item in data_batch]) Y_data_np = Y_data_np.astype('int') # train the model loss_value, _, summary_str = sess.run( [loss, train_op, summary_op], feed_dict={in_data: in_data_np, VAD_data: VAD_data_np, Y_data: Y_data_np, p_keep_ff: 1 - P_DROPOUT_FF, p_keep_rc: 1 - P_DROPOUT_RC}) summary_writer.add_summary(summary_str, step) duration = time.time() - start_time # if np.isnan(loss_value): # import ipdb; ipdb.set_trace() assert not np.isnan(loss_value) if step % 100 == 0: # show training progress every 100 steps num_examples_per_step = batch_size examples_per_sec = num_examples_per_step / duration sec_per_batch = float(duration) format_str = ( '%s: step %d, loss = %.2f (%.1f examples/sec; %.3f ' 'sec/batch, epoch %d)') print (format_str % (datetime.now(), step, loss_value, examples_per_sec, sec_per_batch, data_generator.epoch)) if step % 4000 == 0: # save model every 4000 steps checkpoint_path = os.path.join(train_dir, 'model.ckpt') saver.save(sess, checkpoint_path, global_step=step) if last_epoch != data_generator.epoch: # doing validation every training epoch print('Doing validation') val_epoch = val_generator.epoch count = 0 loss_sum = 0 # average the validation loss while(val_epoch == val_generator.epoch): count += 1 data_batch = val_generator.gen_batch() in_data_np = np.concatenate( [np.reshape(item['Sample'], [1, FRAMES_PER_SAMPLE, NEFF]) for item in data_batch]) VAD_data_np = np.concatenate( [np.reshape(item['VAD'], [1, FRAMES_PER_SAMPLE, NEFF]) for item in data_batch]) VAD_data_np = VAD_data_np.astype('int') Y_data_np = np.concatenate( [np.reshape(item['Target'], [1, FRAMES_PER_SAMPLE, NEFF, 2]) for item in data_batch]) Y_data_np = Y_data_np.astype('int') loss_value, = sess.run( [loss], feed_dict={in_data: in_data_np, VAD_data: VAD_data_np, Y_data: Y_data_np, p_keep_ff: 1, p_keep_rc: 1}) loss_sum += loss_value val_loss.append(loss_sum / count) print ('validation loss: %.3f' % (loss_sum / count)) np.array(val_loss).tofile('val_loss') last_epoch = data_generator.epoch print('%s start' % datetime.now()) train()
073baf122d23c22628502336b5d6cf068590df1b
259cc507d97bfeff84d21de3a0ab56640676a9eb
/venv1/Lib/site-packages/tensorflow/python/training/session_manager.py
06084b1d7b3fc728396e775179f7ce788d696e65
[ "MIT", "Apache-2.0" ]
permissive
Soum-Soum/Tensorflow_Face_Finder
c3ef71b6f718f6720b80f8760d28b6ca6e11e6d2
fec6c15d2df7012608511ad87f4b55731bf99478
refs/heads/master
2020-03-22T20:31:39.606644
2018-07-12T13:47:56
2018-07-12T13:47:56
140,607,068
0
0
null
null
null
null
UTF-8
Python
false
false
21,336
py
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Training helper that checkpoints models and creates session.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import time import numpy as np from tensorflow.python.client import session from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.platform import tf_logging as logging from tensorflow.python.training import saver as saver_mod from tensorflow.python.util.tf_export import tf_export def _maybe_name(obj): """Returns object name if it has one, or a message otherwise. This is useful for names that apper in error messages. Args: obj: Object to get the name of. Returns: name, "None", or a "no name" message. """ if obj is None: return "None" elif hasattr(obj, "name"): return obj.name else: return "<no name for %s>" % type(obj) @tf_export("train.SessionManager") class SessionManager(object): """Training helper that restores from checkpoint and creates session. This class is a small wrapper that takes care of session creation and checkpoint recovery. It also provides functions that to facilitate coordination among multiple training threads or processes. * Checkpointing trained variables as the training progresses. * Initializing variables on startup, restoring them from the most recent checkpoint after a crash, or wait for checkpoints to become available. ### Usage: ```python with tf.Graph().as_default(): ...add operations to the graph... # Create a SessionManager that will checkpoint the model in '/tmp/mydir'. sm = SessionManager() sess = sm.prepare_session(master, init_op, saver, checkpoint_dir) # Use the session to train the graph. while True: sess.run(<my_train_op>) ``` `prepare_session()` initializes or restores a model. It requires `init_op` and `saver` as an argument. A second process could wait for the model to be ready by doing the following: ```python with tf.Graph().as_default(): ...add operations to the graph... # Create a SessionManager that will wait for the model to become ready. sm = SessionManager() sess = sm.wait_for_session(master) # Use the session to train the graph. while True: sess.run(<my_train_op>) ``` `wait_for_session()` waits for a model to be initialized by other processes. """ def __init__(self, local_init_op=None, ready_op=None, ready_for_local_init_op=None, graph=None, recovery_wait_secs=30): """Creates a SessionManager. The `local_init_op` is an `Operation` that is run always after a new session was created. If `None`, this step is skipped. The `ready_op` is an `Operation` used to check if the model is ready. The model is considered ready if that operation returns an empty 1D string tensor. If the operation returns a non empty 1D string tensor, the elements are concatenated and used to indicate to the user why the model is not ready. The `ready_for_local_init_op` is an `Operation` used to check if the model is ready to run local_init_op. The model is considered ready if that operation returns an empty 1D string tensor. If the operation returns a non empty 1D string tensor, the elements are concatenated and used to indicate to the user why the model is not ready. If `ready_op` is `None`, the model is not checked for readiness. `recovery_wait_secs` is the number of seconds between checks that the model is ready. It is used by processes to wait for a model to be initialized or restored. Defaults to 30 seconds. Args: local_init_op: An `Operation` run immediately after session creation. Usually used to initialize tables and local variables. ready_op: An `Operation` to check if the model is initialized. ready_for_local_init_op: An `Operation` to check if the model is ready to run local_init_op. graph: The `Graph` that the model will use. recovery_wait_secs: Seconds between checks for the model to be ready. Raises: ValueError: If ready_for_local_init_op is not None but local_init_op is None """ # Sets default values of arguments. if graph is None: graph = ops.get_default_graph() self._local_init_op = local_init_op self._ready_op = ready_op self._ready_for_local_init_op = ready_for_local_init_op self._graph = graph self._recovery_wait_secs = recovery_wait_secs self._target = None if ready_for_local_init_op is not None and local_init_op is None: raise ValueError("If you pass a ready_for_local_init_op " "you must also pass a local_init_op " ", ready_for_local_init_op [%s]" % ready_for_local_init_op) def _restore_checkpoint(self, master, saver=None, checkpoint_dir=None, checkpoint_filename_with_path=None, wait_for_checkpoint=False, max_wait_secs=7200, config=None): """Creates a `Session`, and tries to restore a checkpoint. Args: master: `String` representation of the TensorFlow master to use. saver: A `Saver` object used to restore a model. checkpoint_dir: Path to the checkpoint files. The latest checkpoint in the dir will be used to restore. checkpoint_filename_with_path: Full file name path to the checkpoint file. wait_for_checkpoint: Whether to wait for checkpoint to become available. max_wait_secs: Maximum time to wait for checkpoints to become available. config: Optional `ConfigProto` proto used to configure the session. Returns: A pair (sess, is_restored) where 'is_restored' is `True` if the session could be restored, `False` otherwise. Raises: ValueError: If both checkpoint_dir and checkpoint_filename_with_path are set. """ self._target = master sess = session.Session(self._target, graph=self._graph, config=config) if checkpoint_dir and checkpoint_filename_with_path: raise ValueError("Can not provide both checkpoint_dir and " "checkpoint_filename_with_path.") # If either saver or checkpoint_* is not specified, cannot restore. Just # return. if not saver or not (checkpoint_dir or checkpoint_filename_with_path): return sess, False if checkpoint_filename_with_path: saver.restore(sess, checkpoint_filename_with_path) return sess, True # Waits up until max_wait_secs for checkpoint to become available. wait_time = 0 ckpt = saver_mod.get_checkpoint_state(checkpoint_dir) while not ckpt or not ckpt.model_checkpoint_path: if wait_for_checkpoint and wait_time < max_wait_secs: logging.info("Waiting for checkpoint to be available.") time.sleep(self._recovery_wait_secs) wait_time += self._recovery_wait_secs ckpt = saver_mod.get_checkpoint_state(checkpoint_dir) else: return sess, False # Loads the checkpoint. saver.restore(sess, ckpt.model_checkpoint_path) saver.recover_last_checkpoints(ckpt.all_model_checkpoint_paths) return sess, True def prepare_session(self, master, init_op=None, saver=None, checkpoint_dir=None, checkpoint_filename_with_path=None, wait_for_checkpoint=False, max_wait_secs=7200, config=None, init_feed_dict=None, init_fn=None): """Creates a `Session`. Makes sure the model is ready to be used. Creates a `Session` on 'master'. If a `saver` object is passed in, and `checkpoint_dir` points to a directory containing valid checkpoint files, then it will try to recover the model from checkpoint. If no checkpoint files are available, and `wait_for_checkpoint` is `True`, then the process would check every `recovery_wait_secs`, up to `max_wait_secs`, for recovery to succeed. If the model cannot be recovered successfully then it is initialized by either running the provided `init_op`, or calling the provided `init_fn`. The local_init_op is also run after init_op and init_fn, regardless of whether the model was recovered successfully, but only if ready_for_local_init_op passes. It is an error if the model cannot be recovered and no `init_op` or `init_fn` or `local_init_op` are passed. Args: master: `String` representation of the TensorFlow master to use. init_op: Optional `Operation` used to initialize the model. saver: A `Saver` object used to restore a model. checkpoint_dir: Path to the checkpoint files. The latest checkpoint in the dir will be used to restore. checkpoint_filename_with_path: Full file name path to the checkpoint file. wait_for_checkpoint: Whether to wait for checkpoint to become available. max_wait_secs: Maximum time to wait for checkpoints to become available. config: Optional `ConfigProto` proto used to configure the session. init_feed_dict: Optional dictionary that maps `Tensor` objects to feed values. This feed dictionary is passed to the session `run()` call when running the init op. init_fn: Optional callable used to initialize the model. Called after the optional `init_op` is called. The callable must accept one argument, the session being initialized. Returns: A `Session` object that can be used to drive the model. Raises: RuntimeError: If the model cannot be initialized or recovered. Raises: ValueError: If both checkpoint_dir and checkpoint_filename_with_path are set. """ sess, is_loaded_from_checkpoint = self._restore_checkpoint( master, saver, checkpoint_dir=checkpoint_dir, checkpoint_filename_with_path=checkpoint_filename_with_path, wait_for_checkpoint=wait_for_checkpoint, max_wait_secs=max_wait_secs, config=config) if not is_loaded_from_checkpoint: if init_op is None and not init_fn and self._local_init_op is None: raise RuntimeError("Model is not initialized and no init_op or " "init_fn or local_init_op was given") if init_op is not None: sess.run(init_op, feed_dict=init_feed_dict) if init_fn: init_fn(sess) local_init_success, msg = self._try_run_local_init_op(sess) if not local_init_success: raise RuntimeError( "Init operations did not make model ready for local_init. " "Init op: %s, init fn: %s, error: %s" % (_maybe_name(init_op), init_fn, msg)) is_ready, msg = self._model_ready(sess) if not is_ready: raise RuntimeError( "Init operations did not make model ready. " "Init op: %s, init fn: %s, local_init_op: %s, error: %s" % (_maybe_name(init_op), init_fn, self._local_init_op, msg)) return sess def recover_session(self, master, saver=None, checkpoint_dir=None, checkpoint_filename_with_path=None, wait_for_checkpoint=False, max_wait_secs=7200, config=None): """Creates a `Session`, recovering if possible. Creates a new session on 'master'. If the session is not initialized and can be recovered from a checkpoint, recover it. Args: master: `String` representation of the TensorFlow master to use. saver: A `Saver` object used to restore a model. checkpoint_dir: Path to the checkpoint files. The latest checkpoint in the dir will be used to restore. checkpoint_filename_with_path: Full file name path to the checkpoint file. wait_for_checkpoint: Whether to wait for checkpoint to become available. max_wait_secs: Maximum time to wait for checkpoints to become available. config: Optional `ConfigProto` proto used to configure the session. Returns: A pair (sess, initialized) where 'initialized' is `True` if the session could be recovered and initialized, `False` otherwise. Raises: ValueError: If both checkpoint_dir and checkpoint_filename_with_path are set. """ sess, is_loaded_from_checkpoint = self._restore_checkpoint( master, saver, checkpoint_dir=checkpoint_dir, checkpoint_filename_with_path=checkpoint_filename_with_path, wait_for_checkpoint=wait_for_checkpoint, max_wait_secs=max_wait_secs, config=config) # Always try to run local_init_op local_init_success, msg = self._try_run_local_init_op(sess) if not is_loaded_from_checkpoint: # Do not need to run checks for readiness return sess, False restoring_file = checkpoint_dir or checkpoint_filename_with_path if not local_init_success: logging.info( "Restoring model from %s did not make model ready for local init:" " %s", restoring_file, msg) return sess, False is_ready, msg = self._model_ready(sess) if not is_ready: logging.info("Restoring model from %s did not make model ready: %s", restoring_file, msg) return sess, False logging.info("Restored model from %s", restoring_file) return sess, is_loaded_from_checkpoint def wait_for_session(self, master, config=None, max_wait_secs=float("Inf")): """Creates a new `Session` and waits for model to be ready. Creates a new `Session` on 'master'. Waits for the model to be initialized or recovered from a checkpoint. It's expected that another thread or process will make the model ready, and that this is intended to be used by threads/processes that participate in a distributed training configuration where a different thread/process is responsible for initializing or recovering the model being trained. NB: The amount of time this method waits for the session is bounded by max_wait_secs. By default, this function will wait indefinitely. Args: master: `String` representation of the TensorFlow master to use. config: Optional ConfigProto proto used to configure the session. max_wait_secs: Maximum time to wait for the session to become available. Returns: A `Session`. May be None if the operation exceeds the timeout specified by config.operation_timeout_in_ms. Raises: tf.DeadlineExceededError: if the session is not available after max_wait_secs. """ self._target = master if max_wait_secs is None: max_wait_secs = float("Inf") timer = _CountDownTimer(max_wait_secs) while True: sess = session.Session(self._target, graph=self._graph, config=config) not_ready_msg = None not_ready_local_msg = None local_init_success, not_ready_local_msg = self._try_run_local_init_op( sess) if local_init_success: # Successful if local_init_op is None, or ready_for_local_init_op passes is_ready, not_ready_msg = self._model_ready(sess) if is_ready: return sess self._safe_close(sess) # Do we have enough time left to try again? remaining_ms_after_wait = ( timer.secs_remaining() - self._recovery_wait_secs) if remaining_ms_after_wait < 0: raise errors.DeadlineExceededError( None, None, "Session was not ready after waiting %d secs." % (max_wait_secs,)) logging.info("Waiting for model to be ready. " "Ready_for_local_init_op: %s, ready: %s", not_ready_local_msg, not_ready_msg) time.sleep(self._recovery_wait_secs) def _safe_close(self, sess): """Closes a session without raising an exception. Just like sess.close() but ignores exceptions. Args: sess: A `Session`. """ # pylint: disable=broad-except try: sess.close() except Exception: # Intentionally not logging to avoid user complaints that # they get cryptic errors. We really do not care that Close # fails. pass # pylint: enable=broad-except def _model_ready(self, sess): """Checks if the model is ready or not. Args: sess: A `Session`. Returns: A tuple (is_ready, msg), where is_ready is True if ready and False otherwise, and msg is `None` if the model is ready, a `String` with the reason why it is not ready otherwise. """ return _ready(self._ready_op, sess, "Model not ready") def _model_ready_for_local_init(self, sess): """Checks if the model is ready to run local_init_op. Args: sess: A `Session`. Returns: A tuple (is_ready, msg), where is_ready is True if ready to run local_init_op and False otherwise, and msg is `None` if the model is ready to run local_init_op, a `String` with the reason why it is not ready otherwise. """ return _ready(self._ready_for_local_init_op, sess, "Model not ready for local init") def _try_run_local_init_op(self, sess): """Tries to run _local_init_op, if not None, and is ready for local init. Args: sess: A `Session`. Returns: A tuple (is_successful, msg), where is_successful is True if _local_init_op is None, or we ran _local_init_op, and False otherwise; and msg is a `String` with the reason why the model was not ready to run local init. """ if self._local_init_op is not None: is_ready_for_local_init, msg = self._model_ready_for_local_init(sess) if is_ready_for_local_init: logging.info("Running local_init_op.") sess.run(self._local_init_op) logging.info("Done running local_init_op.") return True, None else: return False, msg return True, None def _ready(op, sess, msg): """Checks if the model is ready or not, as determined by op. Args: op: An op, either _ready_op or _ready_for_local_init_op, which defines the readiness of the model. sess: A `Session`. msg: A message to log to warning if not ready Returns: A tuple (is_ready, msg), where is_ready is True if ready and False otherwise, and msg is `None` if the model is ready, a `String` with the reason why it is not ready otherwise. """ if op is None: return True, None else: try: ready_value = sess.run(op) # The model is considered ready if ready_op returns an empty 1-D tensor. # Also compare to `None` and dtype being int32 for backward # compatibility. if (ready_value is None or ready_value.dtype == np.int32 or ready_value.size == 0): return True, None else: # TODO(sherrym): If a custom ready_op returns other types of tensor, # or strings other than variable names, this message could be # confusing. non_initialized_varnames = ", ".join( [i.decode("utf-8") for i in ready_value]) return False, "Variables not initialized: " + non_initialized_varnames except errors.FailedPreconditionError as e: if "uninitialized" not in str(e): logging.warning("%s : error [%s]", msg, str(e)) raise e return False, str(e) class _CountDownTimer(object): def __init__(self, duration_secs): self._start_time_secs = time.time() self._duration_secs = duration_secs def secs_remaining(self): diff = self._duration_secs - (time.time() - self._start_time_secs) return max(0, diff)
92c3a0d5822904b02ee02cf30204b593268f8d36
ded10c2f2f5f91c44ec950237a59225e8486abd8
/.history/2/matrix_squaring_20200413235341.py
1cded98ea6504881b7ef71c0979704ed33286f9f
[]
no_license
jearistiz/Statistical-Physics-Projects
276a86407b32ded4e06b32efb2fadbd8eff8daed
d9c5b16a50856e148dc8604d92b6de3ea21fc552
refs/heads/master
2022-11-05T03:41:23.623050
2020-06-28T06:36:05
2020-06-28T06:36:05
254,909,897
1
0
null
null
null
null
UTF-8
Python
false
false
8,000
py
# -*- coding: utf-8 -*- from __future__ import division import numpy as np import matplotlib.pyplot as plt from time import time import pandas as pd def rho_free(x,xp,beta): """ Uso: devuelve elemento de matriz dsnsidad para el caso de una partícula libre en un toro infinito. """ return (2.*np.pi*beta)**(-0.5) * np.exp(-(x-xp)**2 / (2 * beta) ) def harmonic_potential(x): """Devuelve valor del potencial harmónico para una posición x dada""" return 0.5*x**2 def anharmonic_potential(x): """Devuelve valor de potencial anharmónico para una posición x dada""" # return np.abs(x)*(1+np.cos(x)) #el resultado de este potencial es interesante return 0.5*x**2 - x**3 + x**4 def QHO_canonical_ensemble(x,beta): """ Uso: calcula probabilidad teórica cuántica de encontrar al osciladoe armónico (presente en un baño térmico) en la posición x. Recibe: x: float -> posición beta: float -> inverso de temperatura en unidades reducidas beta = 1/T. Devuelve: probabilidad teórica cuántica en posición dada para temperatura T dada. """ return (np.tanh(beta/2.)/np.pi)**0.5 * np.exp(- x**2 * np.tanh(beta/2.)) def rho_trotter(x_max = 5., nx = 101, beta=1, potential=harmonic_potential): """ Uso: devuelve matriz densidad en aproximación de Trotter para altas temperaturas y bajo el potencial "potential". Recibe: xmax: float -> los valores de x estarán en el intervalo (-xmax,xmax). nx: int -> número de valores de x considerados. beta: float -> inverso de temperatura en unidades reducidas. potential: func -> potencial de interacción, debe ser una función de x. Devuelve: rho: numpy array, shape=(nx,nx) -> matriz densidad en aproximación de Trotter para altas temperaturas y potencial dado. grid_x: numpy array, shape=(nx,) -> valores de x en los que está evaluada rho. dx: float -> separación entre valores contiguos de grid_x """ dx = 2. * x_max / (nx - 1) grid_x = np.array([i*dx for i in range(-int((nx-1)/2), int(nx/2 + 1))]) rho = np.array([ [ rho_free(x , xp, beta) * np.exp(-0.5*beta*(potential(x)+potential(xp))) for x in grid_x] for xp in grid_x]) return rho, grid_x, dx def density_matrix_squaring(rho, grid_x, N_iter = 1, beta_ini = 1, print_steps=True): """ Uso: devuelve matriz densidad luego de aplicarle algoritmo matrix squaring N_iter veces. El sistema asociado a la matriz densidad obtenida (al final de aplicar el algoritmo) está a temperatura inversa beta_fin = beta_ini * 2**(N_iter). Recibe: rho: numpy array, shape=(nx,nx) -> matriz densidad en aproximación de Trotter para altas temperaturas y potencial dado. grid_x: numpy array, shape=(nx,) -> valores de x en los que está evaluada "rho". N_iter: int -> número de iteraciones del algoritmo. beta_ini: float -> valor de inverso de temperatura asociado a la matriz densidad "rho". print_steps: bool -> muestra valores de beta en cada iteración Devuelve: rho: numpy array, shape=(nx,nx) -> matriz densidad de estado "rho" a temperatura inversa igual a "beta_fin". trace_rho: int -> traza de la matriz densidad a temperatura inversa igual a "beta_fin". Por la definición que tomamos de "rho", ésta es equivalente a la función partición en dicha temperatura. beta_fin: float -> temperatura inversa del sistema asociado a "rho". """ dx = grid_x[1] - grid_x[0] beta_fin = beta_ini * 2 ** N_iter print('\nbeta_ini = %.3f'%beta_ini, '\n----------------------------------------------------------------') for i in range(N_iter): rho = dx * np.dot(rho,rho) if print_steps==True: print(u'Iteration %d) 2^%d * beta_ini --> 2^%d * beta_ini'%(i, i, i+1)) trace_rho = np.trace(rho)*dx return rho, trace_rho, beta_fin def save_pi_x_csv(grid_x, x_weights, file_name, relevant_info, print_data=True): """ Uso: guarda datos de la distribución pi(x;beta) Recibe: grid_x: numpy array, shape=(nx,) -> valores de x en los que está evaluada pi(x;beta). x_weights: numpy array, shape=(nx,) -> """ pi_x_data = {'Position x': grid_x, 'Prob. density': x_weights} pi_x_data = pd.DataFrame(data=pi_x_data) with open(file_name,mode='w') as rho_csv: rho_csv.write(relevant_info+'\n') rho_csv.close() with open(file_name,mode='a') as rho_csv: pi_x_data.to_csv(rho_csv) rho_csv.close() if print_data==True: print(pi_x_data) return pi_x_data def run_pi_x_squaring(x_max=5., nx=201, N_iter=7, beta_fin=4, potential=harmonic_potential, potential_string = 'harmonic_potential', print_steps=True, save_data=True, plot=True, save_plot=True, show_plot=True): beta_ini = beta_fin * 2**(-N_iter) # Cálculo de rho con aproximación de Trotter rho, grid_x, dx = rho_trotter(x_max, nx, beta_ini, potential) # Aproximación de rho con matrix squaring iterado N_iter veces. rho, trace_rho, beta_fin_2 = density_matrix_squaring(rho, grid_x, N_iter, beta_ini, print_steps) print('----------------------------------------------------------------\n', u'beta_fin = %.3f Z(beta_fin) = Tr(rho(beta_fin)) ≈ %.3E \n'%(beta_fin_2,trace_rho)) # Normalización de rho y cálculo de densidades de probabilidad para valores en grid_x rho_normalized = rho/trace_rho x_weights = np.diag(rho_normalized) if save_data==True: # Nombre del archivo csv en el que guardamos valores de pi(x;beta_fin) file_name = u'pi_x-%s-x_max_%.3f-nx_%d-N_iter_%d-beta_fin_%.3f.csv'\ %(potential_string,x_max,nx,N_iter,beta_fin) # Información relevante para agregar como comentario al archivo csv relevant_info = u'# %s x_max = %.3f nx = %d '%(potential_string,x_max,nx) + \ u'N_iter = %d beta_ini = %.3f '%(N_iter,beta_ini,) + \ u'beta_fin = %.3f'%beta_fin # Guardamos valores de pi(x;beta_fin) en archivo csv save_pi_x_csv(grid_x, x_weights, file_name, relevant_info, print_data=0) # Gráfica y comparación con teoría if plot == True: plt.figure(figsize=(8,5)) plt.plot(grid_x, x_weights, label = 'Matrix squaring +\nfórmula de Trotter.\n$N=%d$ iteraciones\n$dx=%.3E$'%(N_iter,dx)) plt.plot(grid_x, QHO_canonical_ensemble(grid_x,beta_fin), label=u'Valor teórico QHO') plt.xlabel(u'x') plt.ylabel(u'$\pi^{(Q)}(x;\\beta)$') plt.legend(loc='best',title=u'$\\beta=%.2f$'%beta_fin) plt.tight_layout() if save_plot==True: plot_name = u'pi_x-plot-%s-x_max_%.3f-nx_%d-N_iter_%d-beta_fin_%.3f.eps'\ %(potential_string,x_max,nx,N_iter,beta_fin) plt.savefig(plot_name) if show_plot==True: plt.show() plt.close() return 0 plt.rcParams.update({'font.size':15}) run_pi_x_squaring(potential = harmonic_potential, potential_string = 'harmonic_potential', save_data=True, save_plot=False, show_plot=True)