blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
โŒ€
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
โŒ€
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
โŒ€
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
listlengths
1
1
author_id
stringlengths
1
132
e58223496a4579245283ccdb1478dd5d10774f3b
81d635211686b1bc87af5892bd9e0fb95cc2ddb8
/adwords api/googleads-python-lib-master/examples/dfp/v201511/report_service/run_sales_report.py
b3ab57226822fd2a475aea1e43470dcd44e9a4d3
[ "Apache-2.0" ]
permissive
analyticsbot/Python-Code---Part-2
de2f0581258b6c8b8808b4ef2884fe7e323876f0
12bdcfdef4472bcedc77ae61707c25a4a09cba8a
refs/heads/master
2021-06-04T05:10:33.185766
2016-08-31T13:45:45
2016-08-31T13:45:45
66,679,512
3
0
null
null
null
null
UTF-8
Python
false
false
2,017
py
#!/usr/bin/python # # Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This code example runs a report equal to the "Sales by salespersons report." """ import tempfile # Import appropriate modules from the client library. from googleads import dfp from googleads import errors def main(client): # Initialize a DataDownloader. report_downloader = client.GetDataDownloader(version='v201511') # Create report job. report_job = { 'reportQuery': { 'dimensions': ['SALESPERSON_ID', 'SALESPERSON_NAME'], 'columns': ['AD_SERVER_IMPRESSIONS', 'AD_SERVER_CPM_AND_CPC_REVENUE', 'AD_SERVER_WITHOUT_CPD_AVERAGE_ECPM'], 'dateRangeType': 'LAST_MONTH' } } try: # Run the report and wait for it to finish. report_job_id = report_downloader.WaitForReport(report_job) except errors.DfpReportError, e: print 'Failed to generate report. Error was: %s' % e # Change to your preferred export format. export_format = 'CSV_DUMP' report_file = tempfile.NamedTemporaryFile(suffix='.csv.gz', delete=False) # Download report data. report_downloader.DownloadReportToFile( report_job_id, export_format, report_file) report_file.close() # Display results. print 'Report job with id \'%s\' downloaded to:\n%s' % ( report_job_id, report_file.name) if __name__ == '__main__': # Initialize client object. dfp_client = dfp.DfpClient.LoadFromStorage() main(dfp_client)
befe9d9fe8a23849fe477c8c46be22c914bcb4d9
2d0bada349646b801a69c542407279cc7bc25013
/src/vai_quantizer/vai_q_pytorch/example/pruning/torch/cifar10_mynet_pruning.py
755d8ac60ac2669fec756a4529d43f399c7326a7
[ "Apache-2.0", "BSD-2-Clause", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "BSD-3-Clause-Open-MPI", "LicenseRef-scancode-free-unknown", "Libtool-exception", "GCC-exception-3.1", "LicenseRef-scancode-mit-old-style", "OFL-1.1", "JSON", "LGPL-2.1-only", "LGPL-2.0-or-later", "ICU", "LicenseRef-scancode-other-permissive", "GPL-2.0-or-later", "GPL-3.0-only", "LicenseRef-scancode-issl-2018", "MIT", "LGPL-2.1-or-later", "LicenseRef-scancode-unicode", "LGPL-3.0-only", "LicenseRef-scancode-warranty-disclaimer", "GPL-3.0-or-later", "Zlib", "BSD-Source-Code", "ClArtistic", "LicenseRef-scancode-unknown-license-reference", "ISC", "NCSA", "LicenseRef-scancode-proprietary-license", "GPL-2.0-only", "CC-BY-4.0", "FSFULLR", "Minpack", "Unlicense", "BSL-1.0", "NAIST-2003", "LicenseRef-scancode-protobuf", "LicenseRef-scancode-public-domain", "Libpng", "Spencer-94", "Intel", "GPL-1.0-or-later", "MPL-2.0" ]
permissive
Xilinx/Vitis-AI
31e664f7adff0958bb7d149883ab9c231efb3541
f74ddc6ed086ba949b791626638717e21505dba2
refs/heads/master
2023-08-31T02:44:51.029166
2023-07-27T06:50:28
2023-07-27T06:50:28
215,649,623
1,283
683
Apache-2.0
2023-08-17T09:24:55
2019-10-16T21:41:54
Python
UTF-8
Python
false
false
10,659
py
import argparse import os import time import torch import torch.nn as nn import torchvision.datasets as datasets import torchvision.transforms as transforms from pytorch_nndct import get_pruning_runner parser = argparse.ArgumentParser() parser.add_argument( '--method', type=str, default='iterative', help='iterative/one_step') parser.add_argument( '--lr', type=float, default=1e-3, help='Initial learning rate') parser.add_argument( '--sparsity', type=float, default=0.5, help='Sparsity ratio') parser.add_argument( '--ana_subset_len', type=int, default=2000, help='Subset length for evaluating model in analysis, using the whole validation dataset if it is not set' ) parser.add_argument( '--num_subnet', type=int, default=20, help='Total number of subnet') parser.add_argument('--epoches', type=int, default=1, help='Train epoch') parser.add_argument( '--pretrained', type=str, default='mynet.pth', help='Pretrained model filepath') parser.add_argument( '--data_dir', type=str, default='./cifar10', help='Dataset directory') parser.add_argument( '--num_workers', type=int, default=64, help='Number of workers used in dataloading') parser.add_argument('--batch_size', type=int, default=128, help='Batch size') parser.add_argument( '--weight_decay', type=float, default=1e-4, help='Weight decay') parser.add_argument('--momentum', type=float, default=0.9, help='Momentum') args, _ = parser.parse_known_args() class MyNet(nn.Module): def __init__(self): super(MyNet, self).__init__() self.conv1 = nn.Conv2d(3, 32, 3) self.bn1 = nn.BatchNorm2d(32) self.relu1 = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(32, 128, 3, stride=2) self.bn2 = nn.BatchNorm2d(128) self.relu2 = nn.ReLU(inplace=True) self.conv3 = nn.Conv2d(128, 256, 3) self.bn3 = nn.BatchNorm2d(256) self.relu3 = nn.ReLU(inplace=True) self.conv4 = nn.Conv2d(256, 512, 3) self.bn4 = nn.BatchNorm2d(512) self.relu4 = nn.ReLU(inplace=True) self.avgpool1 = nn.AdaptiveAvgPool2d((1,1)) self.fc1 = nn.Linear(512, 32) self.fc = nn.Linear(32, 10) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu1(x) x = self.conv2(x) x = self.bn2(x) x = self.relu2(x) x = self.conv3(x) x = self.bn3(x) x = self.relu3(x) x = self.conv4(x) x = self.bn4(x) x = self.relu4(x) x = self.avgpool1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = self.fc(x) return x class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self, name, fmt=':f'): self.name = name self.fmt = fmt self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def __str__(self): fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})' return fmtstr.format(**self.__dict__) class ProgressMeter(object): def __init__(self, num_batches, meters, prefix=""): self.batch_fmtstr = self._get_batch_fmtstr(num_batches) self.meters = meters self.prefix = prefix def display(self, batch): entries = [self.prefix + self.batch_fmtstr.format(batch)] entries += [str(meter) for meter in self.meters] print('\t'.join(entries)) def _get_batch_fmtstr(self, num_batches): num_digits = len(str(num_batches // 1)) fmt = '{:' + str(num_digits) + 'd}' return '[' + fmt + '/' + fmt.format(num_batches) + ']' def accuracy(output, target, topk=(1,)): """Computes the accuracy over the k top predictions for the specified values of k""" with torch.no_grad(): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].flatten().float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res def adjust_learning_rate(optimizer, epoch, lr): """Sets the learning rate to the initial LR decayed by every 2 epochs""" lr = lr * (0.1**(epoch // 2)) for param_group in optimizer.param_groups: param_group['lr'] = lr def train(train_loader, model, criterion, optimizer, epoch): batch_time = AverageMeter('Time', ':6.3f') data_time = AverageMeter('Data', ':6.3f') losses = AverageMeter('Loss', ':.4e') top1 = AverageMeter('Acc@1', ':6.2f') top5 = AverageMeter('Acc@5', ':6.2f') progress = ProgressMeter( len(train_loader), [batch_time, data_time, losses, top1, top5], prefix="Epoch: [{}]".format(epoch)) # switch to train mode model.train() end = time.time() for i, (images, target) in enumerate(train_loader): # measure data loading time data_time.update(time.time() - end) model = model.cuda() images = images.cuda() target = target.cuda() # compute output output = model(images) loss = criterion(output, target) # measure accuracy and record loss acc1, acc5 = accuracy(output, target, topk=(1, 5)) losses.update(loss.item(), images.size(0)) top1.update(acc1[0], images.size(0)) top5.update(acc5[0], images.size(0)) # compute gradient and do SGD step optimizer.zero_grad() loss.backward() optimizer.step() # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % 10 == 0: progress.display(i) def eval_fn(model, dataloader): top1 = AverageMeter('Acc@1', ':6.2f') model.eval() with torch.no_grad(): for i, (images, targets) in enumerate(dataloader): images = images.cuda() targets = targets.cuda() outputs = model(images) acc1, _ = accuracy(outputs, targets, topk=(1, 5)) top1.update(acc1[0], images.size(0)) return top1.avg def calibration_fn(model, dataloader, number_forward=100): model.train() print("Adaptive BN atart...") with torch.no_grad(): for index, (images, target) in enumerate(dataloader): images = images.cuda() model(images) if index > number_forward: break print("Adaptive BN end...") def evaluate(dataloader, model, criterion): batch_time = AverageMeter('Time', ':6.3f') losses = AverageMeter('Loss', ':.4e') top1 = AverageMeter('Acc@1', ':6.2f') top5 = AverageMeter('Acc@5', ':6.2f') progress = ProgressMeter( len(val_loader), [batch_time, losses, top1, top5], prefix='Test: ') # switch to evaluate mode model.eval() with torch.no_grad(): end = time.time() for i, (images, target) in enumerate(dataloader): model = model.cuda() images = images.cuda(non_blocking=True) target = target.cuda(non_blocking=True) # compute output output = model(images) loss = criterion(output, target) # measure accuracy and record loss acc1, acc5 = accuracy(output, target, topk=(1, 5)) losses.update(loss.item(), images.size(0)) top1.update(acc1[0], images.size(0)) top5.update(acc5[0], images.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % 50 == 0: progress.display(i) # TODO: this should also be done with the ProgressMeter print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'.format( top1=top1, top5=top5)) return top1.avg, top5.avg def load_weights(model, model_path): checkpoint = torch.load(model_path) model.load_state_dict(checkpoint) return model def get_dataloader(): transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) train_dataset = datasets.CIFAR10(root=args.data_dir, train=True, download=True, transform=transform) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers) val_dataset = datasets.CIFAR10(root=args.data_dir, train=False, download=True, transform=transform) val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers) ana_dataset = torch.utils.data.Subset(val_dataset, list(range(args.ana_subset_len))) ana_loader = torch.utils.data.DataLoader( ana_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers, pin_memory=True) return train_loader, val_loader, ana_loader if __name__ == '__main__': model = MyNet() model.cuda() train_loader, val_loader, ana_loader = get_dataloader() criterion = torch.nn.CrossEntropyLoss().cuda() if os.path.exists(args.pretrained): ckpt = torch.load(args.pretrained) model.load_state_dict(ckpt) acc1, acc5 = evaluate(val_loader, model, criterion) else: optimizer = torch.optim.Adam( model.parameters(), args.lr, weight_decay=args.weight_decay) best_acc1 = 0 for epoch in range(args.epoches): #adjust_learning_rate(optimizer, epoch, args.lr) train(train_loader, model, criterion, optimizer, epoch) acc1, acc5 = evaluate(val_loader, model, criterion) if acc1 > best_acc1: best_acc1 = acc1 torch.save(model.state_dict(), args.pretrained) input_signature = torch.randn([1, 3, 32, 32], dtype=torch.float32) input_signature = input_signature.cuda() pruning_runner = get_pruning_runner(model, input_signature, args.method) if args.method == 'iterative': pruning_runner.ana(eval_fn, args=(val_loader,), gpus=['0']) model = pruning_runner.prune(removal_ratio=args.sparsity, mode='sparse') elif args.method == 'one_step': pruning_runner.search( gpus=['0'], calibration_fn=calibration_fn, calib_args=(val_loader,), eval_fn=eval_fn, eval_args=(val_loader,), num_subnet=args.num_subnet, removal_ratio=args.sparsity) # index=None: select optimal subnet automatically model = pruning_runner.prune(removal_ratio=args.sparsity, index=None, mode='slim') optimizer = torch.optim.Adam( model.parameters(), args.lr, weight_decay=args.weight_decay) best_acc1 = 0 for epoch in range(args.epoches): train(train_loader, model, criterion, optimizer, epoch) acc1, acc5 = evaluate(val_loader, model, criterion) # remember best acc@1 and save checkpoint is_best = acc1 > best_acc1 best_acc1 = max(acc1, best_acc1) if is_best: torch.save(model.state_dict(), 'mynet_pruned.pth')
260bf1b93bcd27bc0cb7694536a4ba9c217b4072
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/104/usersdata/228/50746/submittedfiles/av1_2.py
bae0b9ed8cdec01e64f282f927ac05793347dc28
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
470
py
# -*- coding: utf-8 -*- import math n=int(input('digite a dimensรฃo da barra de chocolate seu cuzรฃo:')) x1=int(input('digite a coordenada x da figura 1:')) y1=int(input('digite a coordenada y da figura 1:')) x2=int(input('digite a coordenada x da figura 2:')) y2=int(input('digite a coordenada y da figura 2:')) if x1<=(n/2) and y1<=(n/2) and x2>=(n/2) and y2>=(n/2) or x2<=(n/2) and y2<=(n/2) and x1>=(n/2) and y1>=(n/2): print('S') else: print('N')
099905020c576120fb6232a703a9de83c5c8002b
a7ded5d3d19a98e61a44189cffe3703f7938e0db
/xero_python/payrollau/models/timesheet.py
493b8954d2de30837bd208ee908e652e279ab3d5
[ "MIT" ]
permissive
liseekeralbert/xero-python
dfd1076344f763d74f81f701e32600cf88bcc7b2
d27ab1894ecd84d2a9af0ca91583593756b21ab3
refs/heads/master
2022-12-16T07:41:14.331308
2020-09-18T17:12:35
2020-09-18T17:12:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,740
py
# coding: utf-8 """ Xero Payroll AU This is the Xero Payroll API for orgs in Australia region. # noqa: E501 OpenAPI spec version: 2.3.0 Contact: [email protected] Generated by: https://openapi-generator.tech """ import re # noqa: F401 from xero_python.models import BaseModel class Timesheet(BaseModel): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { "employee_id": "str", "start_date": "date[ms-format]", "end_date": "date[ms-format]", "status": "TimesheetStatus", "hours": "float", "timesheet_id": "str", "timesheet_lines": "list[TimesheetLine]", "updated_date_utc": "datetime[ms-format]", "validation_errors": "list[ValidationError]", } attribute_map = { "employee_id": "EmployeeID", "start_date": "StartDate", "end_date": "EndDate", "status": "Status", "hours": "Hours", "timesheet_id": "TimesheetID", "timesheet_lines": "TimesheetLines", "updated_date_utc": "UpdatedDateUTC", "validation_errors": "ValidationErrors", } def __init__( self, employee_id=None, start_date=None, end_date=None, status=None, hours=None, timesheet_id=None, timesheet_lines=None, updated_date_utc=None, validation_errors=None, ): # noqa: E501 """Timesheet - a model defined in OpenAPI""" # noqa: E501 self._employee_id = None self._start_date = None self._end_date = None self._status = None self._hours = None self._timesheet_id = None self._timesheet_lines = None self._updated_date_utc = None self._validation_errors = None self.discriminator = None self.employee_id = employee_id self.start_date = start_date self.end_date = end_date if status is not None: self.status = status if hours is not None: self.hours = hours if timesheet_id is not None: self.timesheet_id = timesheet_id if timesheet_lines is not None: self.timesheet_lines = timesheet_lines if updated_date_utc is not None: self.updated_date_utc = updated_date_utc if validation_errors is not None: self.validation_errors = validation_errors @property def employee_id(self): """Gets the employee_id of this Timesheet. # noqa: E501 The Xero identifier for an employee # noqa: E501 :return: The employee_id of this Timesheet. # noqa: E501 :rtype: str """ return self._employee_id @employee_id.setter def employee_id(self, employee_id): """Sets the employee_id of this Timesheet. The Xero identifier for an employee # noqa: E501 :param employee_id: The employee_id of this Timesheet. # noqa: E501 :type: str """ if employee_id is None: raise ValueError( "Invalid value for `employee_id`, must not be `None`" ) # noqa: E501 self._employee_id = employee_id @property def start_date(self): """Gets the start_date of this Timesheet. # noqa: E501 Period start date (YYYY-MM-DD) # noqa: E501 :return: The start_date of this Timesheet. # noqa: E501 :rtype: date """ return self._start_date @start_date.setter def start_date(self, start_date): """Sets the start_date of this Timesheet. Period start date (YYYY-MM-DD) # noqa: E501 :param start_date: The start_date of this Timesheet. # noqa: E501 :type: date """ if start_date is None: raise ValueError( "Invalid value for `start_date`, must not be `None`" ) # noqa: E501 self._start_date = start_date @property def end_date(self): """Gets the end_date of this Timesheet. # noqa: E501 Period end date (YYYY-MM-DD) # noqa: E501 :return: The end_date of this Timesheet. # noqa: E501 :rtype: date """ return self._end_date @end_date.setter def end_date(self, end_date): """Sets the end_date of this Timesheet. Period end date (YYYY-MM-DD) # noqa: E501 :param end_date: The end_date of this Timesheet. # noqa: E501 :type: date """ if end_date is None: raise ValueError( "Invalid value for `end_date`, must not be `None`" ) # noqa: E501 self._end_date = end_date @property def status(self): """Gets the status of this Timesheet. # noqa: E501 :return: The status of this Timesheet. # noqa: E501 :rtype: TimesheetStatus """ return self._status @status.setter def status(self, status): """Sets the status of this Timesheet. :param status: The status of this Timesheet. # noqa: E501 :type: TimesheetStatus """ self._status = status @property def hours(self): """Gets the hours of this Timesheet. # noqa: E501 Timesheet total hours # noqa: E501 :return: The hours of this Timesheet. # noqa: E501 :rtype: float """ return self._hours @hours.setter def hours(self, hours): """Sets the hours of this Timesheet. Timesheet total hours # noqa: E501 :param hours: The hours of this Timesheet. # noqa: E501 :type: float """ self._hours = hours @property def timesheet_id(self): """Gets the timesheet_id of this Timesheet. # noqa: E501 The Xero identifier for a Payroll Timesheet # noqa: E501 :return: The timesheet_id of this Timesheet. # noqa: E501 :rtype: str """ return self._timesheet_id @timesheet_id.setter def timesheet_id(self, timesheet_id): """Sets the timesheet_id of this Timesheet. The Xero identifier for a Payroll Timesheet # noqa: E501 :param timesheet_id: The timesheet_id of this Timesheet. # noqa: E501 :type: str """ self._timesheet_id = timesheet_id @property def timesheet_lines(self): """Gets the timesheet_lines of this Timesheet. # noqa: E501 :return: The timesheet_lines of this Timesheet. # noqa: E501 :rtype: list[TimesheetLine] """ return self._timesheet_lines @timesheet_lines.setter def timesheet_lines(self, timesheet_lines): """Sets the timesheet_lines of this Timesheet. :param timesheet_lines: The timesheet_lines of this Timesheet. # noqa: E501 :type: list[TimesheetLine] """ self._timesheet_lines = timesheet_lines @property def updated_date_utc(self): """Gets the updated_date_utc of this Timesheet. # noqa: E501 Last modified timestamp # noqa: E501 :return: The updated_date_utc of this Timesheet. # noqa: E501 :rtype: datetime """ return self._updated_date_utc @updated_date_utc.setter def updated_date_utc(self, updated_date_utc): """Sets the updated_date_utc of this Timesheet. Last modified timestamp # noqa: E501 :param updated_date_utc: The updated_date_utc of this Timesheet. # noqa: E501 :type: datetime """ self._updated_date_utc = updated_date_utc @property def validation_errors(self): """Gets the validation_errors of this Timesheet. # noqa: E501 Displays array of validation error messages from the API # noqa: E501 :return: The validation_errors of this Timesheet. # noqa: E501 :rtype: list[ValidationError] """ return self._validation_errors @validation_errors.setter def validation_errors(self, validation_errors): """Sets the validation_errors of this Timesheet. Displays array of validation error messages from the API # noqa: E501 :param validation_errors: The validation_errors of this Timesheet. # noqa: E501 :type: list[ValidationError] """ self._validation_errors = validation_errors
26a9cb5f30a3cf4c4bf5cd521eeab51868367484
eddb9243d65ff6b0c51502c877e91c034ca5b349
/desktop_new.py
422713fc6c35f00901b3136bbb7e29a4dbabe62e
[]
no_license
cristianmusic7/Donkey-car-image-recognition
1a90b1261f78d986171fab5d13b6f75ceba11c63
e08afc1c250cc563a8a776785c56cb15ef9c3e58
refs/heads/master
2020-09-03T00:38:46.930267
2019-11-04T03:47:28
2019-11-04T03:47:28
219,342,257
0
0
null
null
null
null
UTF-8
Python
false
false
4,299
py
# desktop.py import asyncio import aiohttp import cv2 import json import numpy as np import argparse from imutils.video import FPS import imutils from rtcbot import RTCConnection, Gamepad, CVDisplay # construct the argument parser and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-p", "--prototxt", required=True, help="path to Caffe 'deploy' prototxt file") ap.add_argument("-m", "--model", required=True, help="path to Caffe pre-trained model") ap.add_argument("-c", "--confidence", type=float, default=0.2, help="minimum probability to filter weak detections") args = vars(ap.parse_args()) # load our serialized model from disk print("[INFO] loading model...") net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"]) print("[INFO] loading model done") # initialize the list of class labels MobileNet SSD was trained to # detect, then generate a set of bounding box colors for each class CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"] CONSIDER = set(["dog", "person", "car"]) objCount = {obj: 0 for obj in CONSIDER} disp = CVDisplay() #g = Gamepad() conn = RTCConnection() fps = FPS().start() async def fpsCheck(): while True: await asyncio.sleep(5) if fps: fps.stop() print("[INFO] elasped time: {:.2f}".format(fps.elapsed())) print("[INFO] approx. FPS: {:.2f}".format(fps.fps())) @conn.video.subscribe def onFrame(frame): # Show a 4x larger image so that it is easy to see #resized = cv2.resize(frame, (frame.shape[1], frame.shape[0])) #resized = imutils.resize(frame, width=400) fps.update() frame = imutils.resize(frame, width=400) (h, w) = frame.shape[:2] blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)),0.007843, (300, 300), 127.5) # pass the blob through the network and obtain the detections and # predictions net.setInput(blob) detections = net.forward() # reset the object count for each object in the CONSIDER set objCount = {obj: 0 for obj in CONSIDER} # loop over the detections for i in np.arange(0, detections.shape[2]): # extract the confidence (i.e., probability) associated with # the prediction confidence = detections[0, 0, i, 2] # filter out weak detections by ensuring the confidence is # greater than the minimum confidence if confidence > args["confidence"]: # extract the index of the class label from the # detections idx = int(detections[0, 0, i, 1]) # check to see if the predicted class is in the set of # classes that need to be considered if CLASSES[idx] in CONSIDER: # increment the count of the particular object # detected in the frame objCount[CLASSES[idx]] += 1 # compute the (x, y)-coordinates of the bounding box # for the object box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) (startX, startY, endX, endY) = box.astype("int") # draw the bounding box around the detected object on # the frame cv2.rectangle(frame, (startX, startY), (endX, endY), (255, 0, 0), 2) # draw the object count on the frame label = ", ".join("{}: {}".format(obj, count) for (obj, count) in objCount.items()) cv2.putText(frame, label, (10, h - 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255,0), 2) #cv2.imshow("Home pet location monitor ({})".format(i), frame) disp.put_nowait(frame) async def connect(): localDescription = await conn.getLocalDescription() async with aiohttp.ClientSession() as session: async with session.post( "http://192.168.0.3:8080/connect", data=json.dumps(localDescription) ) as resp: response = await resp.json() await conn.setRemoteDescription(response) # Start sending gamepad controls #g.subscribe(conn) asyncio.ensure_future(fpsCheck()) asyncio.ensure_future(connect()) try: asyncio.get_event_loop().run_forever() finally: fps.stop() conn.close() disp.close() #g.close()
bac6cf0ef69a3305e112f61db28295b9b5055f98
54f352a242a8ad6ff5516703e91da61e08d9a9e6
/Source Codes/CodeJamData/15/02/18.py
7fff1f128ae1ac791095e13e767772b235e64379
[]
no_license
Kawser-nerd/CLCDSA
5cbd8a4c3f65173e4e8e0d7ed845574c4770c3eb
aee32551795763b54acb26856ab239370cac4e75
refs/heads/master
2022-02-09T11:08:56.588303
2022-01-26T18:53:40
2022-01-26T18:53:40
211,783,197
23
9
null
null
null
null
UTF-8
Python
false
false
406
py
import sys import math t = int(sys.stdin.readline().strip()) for i in range(t): d = int(sys.stdin.readline().strip()) p = [int(k) for k in sys.stdin.readline().strip().split()] minm = max(p) j = 1 while j < minm: m = 0 for k in range(d): m += (p[k] + j - 1) / j - 1 minm = min(m + j, minm) j += 1 print "Case #%d: %d" % (i + 1, minm)
b97cc92c79952f82fe2dcbc3881bef415eabfae2
85a9ffeccb64f6159adbd164ff98edf4ac315e33
/pysnmp-with-texts/CISCO-DMN-DSG-PRODUCTION-MIB.py
b5ed607f3ceec754b230a08f00d28aa2ed45f9dd
[ "LicenseRef-scancode-warranty-disclaimer", "LicenseRef-scancode-proprietary-license", "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
agustinhenze/mibs.snmplabs.com
5d7d5d4da84424c5f5a1ed2752f5043ae00019fb
1fc5c07860542b89212f4c8ab807057d9a9206c7
refs/heads/master
2020-12-26T12:41:41.132395
2019-08-16T15:51:41
2019-08-16T15:53:57
237,512,469
0
0
Apache-2.0
2020-01-31T20:41:36
2020-01-31T20:41:35
null
UTF-8
Python
false
false
5,400
py
# # PySNMP MIB module CISCO-DMN-DSG-PRODUCTION-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/CISCO-DMN-DSG-PRODUCTION-MIB # Produced by pysmi-0.3.4 at Wed May 1 11:55:07 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # ObjectIdentifier, OctetString, Integer = mibBuilder.importSymbols("ASN1", "ObjectIdentifier", "OctetString", "Integer") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueRangeConstraint, ValueSizeConstraint, SingleValueConstraint, ConstraintsUnion, ConstraintsIntersection = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueRangeConstraint", "ValueSizeConstraint", "SingleValueConstraint", "ConstraintsUnion", "ConstraintsIntersection") ciscoDSGUtilities, = mibBuilder.importSymbols("CISCO-DMN-DSG-ROOT-MIB", "ciscoDSGUtilities") ObjectGroup, NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "ObjectGroup", "NotificationGroup", "ModuleCompliance") MibScalar, MibTable, MibTableRow, MibTableColumn, iso, Integer32, Counter32, TimeTicks, Counter64, IpAddress, Bits, ModuleIdentity, NotificationType, Unsigned32, MibIdentifier, Gauge32, ObjectIdentity = mibBuilder.importSymbols("SNMPv2-SMI", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "iso", "Integer32", "Counter32", "TimeTicks", "Counter64", "IpAddress", "Bits", "ModuleIdentity", "NotificationType", "Unsigned32", "MibIdentifier", "Gauge32", "ObjectIdentity") DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TextualConvention") ciscoDSGProd = ModuleIdentity((1, 3, 6, 1, 4, 1, 1429, 2, 2, 5, 21)) ciscoDSGProd.setRevisions(('2010-08-24 07:00', '2009-12-20 12:00',)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): if mibBuilder.loadTexts: ciscoDSGProd.setRevisionsDescriptions(('V01.00.01 2010-08-24 Added itmes : prodBoardModelNum, prodBoardModelName, prodBoardCatalogNum, prodBoardCustomerCode and prodBoardFpgaType.', 'V01.00.00 2009-12-20 Initial Version.',)) if mibBuilder.loadTexts: ciscoDSGProd.setLastUpdated('201008240700Z') if mibBuilder.loadTexts: ciscoDSGProd.setOrganization('Cisco Systems, Inc.') if mibBuilder.loadTexts: ciscoDSGProd.setContactInfo('Cisco Systems, Inc. Customer Service Postal: 170 W Tasman Drive San Jose, CA 95134 USA Tel: +1 800 553 NETS E-mail: [email protected]') if mibBuilder.loadTexts: ciscoDSGProd.setDescription('Cisco Production MIB.') prodInfo = MibIdentifier((1, 3, 6, 1, 4, 1, 1429, 2, 2, 5, 21, 1)) prodHostName = MibScalar((1, 3, 6, 1, 4, 1, 1429, 2, 2, 5, 21, 1, 1), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 14))).setMaxAccess("readwrite") if mibBuilder.loadTexts: prodHostName.setStatus('current') if mibBuilder.loadTexts: prodHostName.setDescription('User Configurable hostname of this Unit.') prodTrackingId = MibScalar((1, 3, 6, 1, 4, 1, 1429, 2, 2, 5, 21, 1, 2), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 12))).setMaxAccess("readonly") if mibBuilder.loadTexts: prodTrackingId.setStatus('current') if mibBuilder.loadTexts: prodTrackingId.setDescription('Unit Tracking ID.') prodModelNo = MibScalar((1, 3, 6, 1, 4, 1, 1429, 2, 2, 5, 21, 1, 3), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 49))).setMaxAccess("readonly") if mibBuilder.loadTexts: prodModelNo.setStatus('current') if mibBuilder.loadTexts: prodModelNo.setDescription('Model Number.') prodModelName = MibScalar((1, 3, 6, 1, 4, 1, 1429, 2, 2, 5, 21, 1, 4), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 49))).setMaxAccess("readonly") if mibBuilder.loadTexts: prodModelName.setStatus('current') if mibBuilder.loadTexts: prodModelName.setDescription('Model Name.') prodCatalogNo = MibScalar((1, 3, 6, 1, 4, 1, 1429, 2, 2, 5, 21, 1, 5), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 49))).setMaxAccess("readonly") if mibBuilder.loadTexts: prodCatalogNo.setStatus('current') if mibBuilder.loadTexts: prodCatalogNo.setDescription('Catalogue Number.') prodCustomerCode = MibScalar((1, 3, 6, 1, 4, 1, 1429, 2, 2, 5, 21, 1, 6), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 49))).setMaxAccess("readonly") if mibBuilder.loadTexts: prodCustomerCode.setStatus('current') if mibBuilder.loadTexts: prodCustomerCode.setDescription('Customer Code.') prodLimitVer = MibScalar((1, 3, 6, 1, 4, 1, 1429, 2, 2, 5, 21, 1, 7), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 49))).setMaxAccess("readonly") if mibBuilder.loadTexts: prodLimitVer.setStatus('current') if mibBuilder.loadTexts: prodLimitVer.setDescription('Oldest Compatible Application Version.') prodFPGADesignation = MibScalar((1, 3, 6, 1, 4, 1, 1429, 2, 2, 5, 21, 1, 8), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 0))).setMaxAccess("readonly") if mibBuilder.loadTexts: prodFPGADesignation.setStatus('current') if mibBuilder.loadTexts: prodFPGADesignation.setDescription('Production FPGA Designation.') mibBuilder.exportSymbols("CISCO-DMN-DSG-PRODUCTION-MIB", prodFPGADesignation=prodFPGADesignation, prodHostName=prodHostName, PYSNMP_MODULE_ID=ciscoDSGProd, prodInfo=prodInfo, prodTrackingId=prodTrackingId, prodLimitVer=prodLimitVer, prodModelName=prodModelName, prodCatalogNo=prodCatalogNo, prodCustomerCode=prodCustomerCode, prodModelNo=prodModelNo, ciscoDSGProd=ciscoDSGProd)
b01ad9c8a93447aaab97d72aebb1b10d25c1222b
1b862f34c125ce200244dd79e4fda4b5b605ce2e
/.history/images_20210218100216.py
7b30a0f4a984693ddd55e1ad78ab2b6c5d15a53b
[]
no_license
edwino26/CoreImages
26085a49cf1cb79442ae563a88354b2fdceace87
6bf6e68cac8ab36c87b1e6ea702bfe6882b0f40e
refs/heads/master
2023-06-22T12:53:37.344895
2021-07-21T04:31:44
2021-07-21T04:31:44
309,553,247
0
4
null
2021-04-29T23:23:15
2020-11-03T02:45:07
Lasso
UTF-8
Python
false
false
2,677
py
# # %% import glob import cv2 import os.path import numpy as np import matplotlib.pyplot as plt # %% cores_per_image = 6 uvFiles = glob.glob('./Photos/*.jpg') fname = uvFiles[0][9:25] print(fname) # Picture path img = cv2.imread(uvFiles[0]) a = [] b = [] # %% def oneventlbuttondown(event, x, y, flags, param): if event == cv2.EVENT_LBUTTONDOWN: xy = "%d,%d" % (x, y) a.append(x) b.append(y) cv2.circle(img, (x, y), 10, (0, 0, 255), thickness=-1) # cv2.putText(img, xy, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.0, (0, 0, 0), thickness=1) cv2.imshow("image", img) core_length = 3 vc = [] do = int(fname[0:3]) dn = int(fname[5:8]) for k in range(len(uvFiles)): #Loop through various files containing images for i in range(cores_per_image): if k == 0 and i == 0: cv2.namedWindow("image", cv2.WINDOW_NORMAL) # cv2.resizeWindow("output", 400, 300) cv2.setMouseCallback("image", oneventlbuttondown) cv2.imshow("image", img) print( 'Click 1) left upper corner 2) right lower corner in leftmost core and 3) leftupper corner in second core') cv2.waitKey(0) y = b[0]; x = a[0]; dy = b[1] - b[0]; dx = a[1] - a[0] gap = a[2] - a[1] if i == 3: midgap = gap * 4 else: midgap = 0 if i > 0: x = x + (dx + gap) + midgap crop_img = img[y:y + dy, x:x + dx] if i == 0: vc = crop_img else: vc = cv2.vconcat([vc, crop_img]) crop_name = str(int(fname[0:3]) + (core_length * i)) + ".jpg" path = os.path.join(os.path.relpath('Cropped', start=os.curdir), crop_name) cv2.imwrite(path, crop_img) concat_name = fname[0:3] + "-" + fname[5:8] + ".jpg" path = os.path.join(os.path.relpath('Cropped', start=os.curdir), concat_name) cv2.imwrite(path, vc) p = vc.shape vc_gray = cv2.cvtColor(vc, cv2.COLOR_BGR2GRAY) print(vc.shape) # Dimensions of Image print(vc_gray.shape) # It is already a numpy array print(type(vc_gray)) # print(p[:10, :10, 1 ]) img_log = np.average(vc_gray[:, 80:120], axis=1) depths = np.arange(do, dn, (dn - do) / len(img_log)) plt.figure() # plt.subplot(1, 2, 1) plt.subplot2grid((1, 10), (0, 0), colspan=3) plt.plot(img_log, depths, 'green'); plt.axis([0, 120, do, dn]); plt.gca().invert_yaxis(); plt.gca().invert_xaxis() # plt.subplot(1, 2 ,2) plt.subplot2grid((1, 10), (0, 3), colspan=7) plt.imshow(vc_gray[:, 40:120], aspect='auto', origin='upper'); plt.colorbar() p_50 = np.percentile(img_log, 50) plt.show() # %%
cc2dc649da57f9b2130bd313729257af71306cba
e777b4cd72b6f8eb0eb451943edc2b2cac3a367a
/setup.py
67443f8896345b4dd232e8701ae5f396baad255e
[]
no_license
bannsec/xss_catcher
3620f523d0a44d54116148d2f70fe7faaef366dd
a2b363c0ff98dfd164903a6b42150ce679488b48
refs/heads/master
2021-06-18T19:35:55.816391
2017-06-19T00:11:40
2017-06-19T00:11:40
63,832,134
1
2
null
null
null
null
UTF-8
Python
false
false
1,124
py
# Always prefer setuptools over distutils from setuptools import setup, find_packages # To use a consistent encoding from codecs import open from os import path here = path.abspath(path.dirname(__file__)) long_description = "See website for more info." setup( name='xss_catcher', version='0.0.2', description='Simple pythonic script to catch Cross Site Scripting (XSS) connections', long_description=long_description, url='https://github.com/owlz/xss_catcher', author='Michael Bann', author_email='[email protected]', license='MIT', classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: End Users/Desktop', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3', 'Operating System :: POSIX :: Linux', 'Environment :: Console' ], keywords='xss', packages=find_packages(exclude=['contrib', 'docs', 'tests','dist']), install_requires=[], entry_points={ 'console_scripts': [ 'xss_catcher = xss_catcher.xss_catcher:main', ], }, )
c0ee3d3acb28c074c182de16fb58bda400405331
0f96f24c8682ece3b501904baaa0eef411969bb1
/0x0F-python-object_relational_mapping/6-model_state.py
3b6b8d1e31f9d3168bf63050b77ae4dcab6af4a6
[]
no_license
dkokonkwo/holbertonschool-higher_level_programming
95c5103001e807bd46767f66d97568e23d893e68
5fa97f754afaf7326550113416e80fd942226254
refs/heads/master
2023-03-18T03:38:33.386497
2020-09-28T02:56:13
2020-09-28T02:56:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
368
py
#!/usr/bin/python3 """Start link class to table in database """ import sys from model_state import Base, State from sqlalchemy import (create_engine) if __name__ == "__main__": engine = create_engine('mysql+mysqldb://{}:{}@localhost/{}'.format( sys.argv[1], sys.argv[2], sys.argv[3]), pool_pre_ping=True) Base.metadata.create_all(engine)
bd3f1ffa0841425a78c119759282d4003145b05f
2ee1fa9a5983c057f050a93c46bc894974856179
/botorch/utils/multi_objective/scalarization.py
67a16f8103e1d54fb9a1704949c6f9b1097d21bd
[ "MIT" ]
permissive
jelena-markovic/botorch
8bd9641f165264ed1fea68af0a95f0e37b5e187c
dc868cc569e266abb4e7e112d019bd1bd6af27c4
refs/heads/master
2023-08-17T05:04:03.033178
2020-11-04T23:57:09
2020-11-04T23:58:39
310,691,257
0
0
MIT
2020-11-06T19:45:42
2020-11-06T19:45:41
null
UTF-8
Python
false
false
2,455
py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Helper utilities for constructing scalarizations. References .. [Knowles2005] J. Knowles, "ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems," in IEEE Transactions on Evolutionary Computation, vol. 10, no. 1, pp. 50-66, Feb. 2006. """ from __future__ import annotations from typing import Callable import torch from botorch.exceptions.errors import BotorchTensorDimensionError from botorch.utils.transforms import normalize from torch import Tensor def get_chebyshev_scalarization( weights: Tensor, Y: Tensor, alpha: float = 0.05 ) -> Callable[[Tensor], Tensor]: r"""Construct an augmented Chebyshev scalarization. Outcomes are first normalized to [0,1] and then an augmented Chebyshev scalarization is applied. Augmented Chebyshev scalarization: objective(y) = min(w * y) + alpha * sum(w * y) Note: this assumes maximization. See [Knowles2005]_ for details. This scalarization can be used with qExpectedImprovement to implement q-ParEGO as proposed in [Daulton2020qehvi]_. Args: weights: A `m`-dim tensor of weights. Y: A `n x m`-dim tensor of observed outcomes, which are used for scaling the outcomes to [0,1]. alpha: Parameter governing the influence of the weighted sum term. The default value comes from [Knowles2005]_. Returns: Transform function using the objective weights. Example: >>> weights = torch.tensor([0.75, 0.25]) >>> transform = get_aug_chebyshev_scalarization(weights, Y) """ if weights.shape != Y.shape[-1:]: raise BotorchTensorDimensionError( "weights must be an `m`-dim tensor where Y is `... x m`." f"Got shapes {weights.shape} and {Y.shape}." ) elif Y.ndim > 2: raise NotImplementedError("Batched Y is not currently supported.") Y_bounds = torch.stack([Y.min(dim=-2).values, Y.max(dim=-2).values]) def obj(Y: Tensor) -> Tensor: # scale to [0,1] Y_normalized = normalize(Y, bounds=Y_bounds) product = weights * Y_normalized return product.min(dim=-1).values + alpha * product.sum(dim=-1) return obj
71357d96f44f5b2a00c333e37802a5dd988ffbdd
04c06575a49a3f4e30e4f3f2bf2365585664d2e8
/python_leetcode_2020/Python_Leetcode_2020/1465_max_area_of_pieceofcake_after_cuts.py
84149a9672842b58f898ef87d46a45ad4451afe6
[]
no_license
xiangcao/Leetcode
18da3d5b271ff586fdf44c53f1a677423ca3dfed
d953abe2c9680f636563e76287d2f907e90ced63
refs/heads/master
2022-06-22T04:45:15.446329
2022-06-17T13:03:01
2022-06-17T13:03:01
26,052,392
0
0
null
null
null
null
UTF-8
Python
false
false
1,291
py
""" Given a rectangular cake with height h and width w, and two arrays of integers horizontalCuts and verticalCuts where horizontalCuts[i] is the distance from the top of the rectangular cake to the ith horizontal cut and similarly, verticalCuts[j] is the distance from the left of the rectangular cake to the jth vertical cut. Return the maximum area of a piece of cake after you cut at each horizontal and vertical position provided in the arrays horizontalCuts and verticalCuts. Since the answer can be a huge number, return this modulo 10^9 + 7. Constraints: 2 <= h, w <= 10^9 1 <= horizontalCuts.length < min(h, 10^5) 1 <= verticalCuts.length < min(w, 10^5) 1 <= horizontalCuts[i] < h 1 <= verticalCuts[i] < w It is guaranteed that all elements in horizontalCuts are distinct. It is guaranteed that all elements in verticalCuts are distinct. """ class Solution { public int maxArea(int h, int w, int[] hc, int[] vc) { return (int) ((getMaxDist(h, hc) * getMaxDist(w, vc)) % (Math.pow(10, 9) + 7)); } private long getMaxDist(int end, int[] cuts) { Arrays.sort(cuts); long res = 0, from = 0; for (int c : cuts) { res = Math.max(res, c - from); from = c; } return Math.max(res, end - from); } }
063947a01bf8d4c0106d3e960c33eb7208b143f8
d80ef8c716bcc5ea54e87540dbf0463f15bf44ce
/Proxy/test/mitmproxy/test_version.py
f87b08517cd20bf6f7ab33dd2aa65b4da988f2a7
[ "MIT" ]
permissive
YagiGo/YPTN
5043d22eb131c7164d3fa575f0c4e3d8a963dbf4
d7692a68ee1bf578536b4c09c566272210fc8b69
refs/heads/master
2018-10-16T03:44:18.024169
2018-07-24T08:53:57
2018-07-24T08:53:57
107,633,669
4
1
MIT
2018-06-08T09:04:29
2017-10-20T04:55:22
JavaScript
UTF-8
Python
false
false
248
py
import runpy from mitmproxy import version def test_version(capsys): runpy.run_module('mitmproxy.version', run_name='__main__') stdout, stderr = capsys.readouterr() assert len(stdout) > 0 assert stdout.strip() == version.VERSION
fc6d2a4cbbd5a898cc67e115186e1724231f9eaf
7e7e2c5d327a518a03b2307f7f3ece37517fa361
/ThirdWeek/Task9.py
196edbf3279906c37f30e69bd31f1ff91ba3f5d3
[]
no_license
Midnight1Knight/HSE-course
0fdd995f2e8bf98ecd5fc4ecbcd503e6ef2150ab
9b79c359fc65d260e3d454de5464abd5c89be770
refs/heads/master
2022-09-24T14:36:29.472005
2020-06-04T17:11:37
2020-06-04T17:11:37
269,414,804
0
0
null
null
null
null
UTF-8
Python
false
false
286
py
p = float(0) n = int(input()) x = float(input()) sumX = float counter = 0 while n > 0: k = float(input()) sumX = x counter = n while counter > 1: sumX *= x counter -= 1 p += float(k * sumX) n -= 1 k = float(input()) p += float(k) print(float(p))
13109ecbe3376732d745c55c29a10df925581684
c87b2388fe94dbc081ad01e59f8b66d90f2ded46
/tests/test_project/app_rename_table/migrations/0001_initial.py
ea12d2850c4271965b9e03aa7b2c261527668328
[ "Apache-2.0" ]
permissive
rajuniit/django-migration-linter
f6ac60064cd1feb6a1b6a552ff1656619213a419
8db24f919dd2411d0c7d000ab51a92398771cb24
refs/heads/main
2023-07-26T17:57:03.535454
2021-09-07T05:31:08
2021-09-07T05:31:08
403,851,905
0
0
Apache-2.0
2021-09-07T05:29:01
2021-09-07T05:29:01
null
UTF-8
Python
false
false
709
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.18 on 2019-04-14 15:00 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [] operations = [ migrations.CreateModel( name="A", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("field", models.IntegerField()), ], ) ]
35d8ead869e13c5b0a9da303e4e549be8cada59f
c6f261ec25661c4b454721ab9b727b37eb738ddc
/7_7.py
90ff96474d377802fbd3e5ecc275b96e2ea41ead
[]
no_license
LinearPi/challenge_game
c88c7b2a96e90820abd5c6edf990c31ec8fbc28b
241fbed9c968c282b3d0a627eda724a59701ff95
refs/heads/master
2022-01-13T16:28:35.065079
2019-06-13T07:06:22
2019-06-13T07:06:22
97,297,520
0
0
null
null
null
null
UTF-8
Python
false
false
49
py
print('someone like you but you donor like it')
8867e7d73b6bbba89607d65330e7999f1bbe7e27
2a3a1f103a324bd36e1f557643bf785a782ac5bf
/1097.py
972c97114436ab2cb4c479a435b64015bbca0b26
[]
no_license
dbgkswn7581/python_basic_questions
4c381847c6ab90647cc4dddaca3831210dbbe721
5042ea2a2e84a71e81ab8eccf940abde1e82a68f
refs/heads/master
2023-02-08T04:59:51.654197
2021-01-04T06:54:18
2021-01-04T06:54:18
326,170,578
0
0
null
null
null
null
UTF-8
Python
false
false
597
py
arr = [] b = [] for i in range(19): a = input() for j in a: if j == '0': b.append(0) elif j == '1': b.append(1) arr.append(b) b = [] def rever(x,y): for i in range(19): if arr[x-1][i] == 1: arr[x-1][i] = 0 else: arr[x-1][i] = 1 if arr[i][y-1] == 1: arr[i][y-1] = 0 else: arr[i][y-1] = 1 m = int(input()) for p in range(m): x,y = map(int, input().split()) rever(x,y) for i in arr: for j in range(19): print(i[j], end=' ') print()
e716ca1d7f771038543501f168eb23c014a9c77e
e41633a4816260be9e138e3460c3971716765544
/simple_subtraction.py
7846fd291cf5dcfdb5cc1bfb395007f5400f2eb9
[ "MIT" ]
permissive
pawarspeaks/Python-Projects
c608ed8cc8c938a922b16ff8d4bd03b5f009b5ba
9ba2f21a40e9d2297395cb4e9453687a0de4d754
refs/heads/main
2023-08-22T23:38:41.708153
2021-10-29T19:13:48
2021-10-29T19:13:48
422,687,844
4
0
null
2021-10-29T19:13:20
2021-10-29T19:13:20
null
UTF-8
Python
false
false
117
py
pertama=int(raw_input("Angka pertama=> ")) kedua=int(raw_input("Angka Kedua=> ")) print "Hasil" print pertama-kedua
0ca434186efe591b665ab5be8163b5b376502a87
b373c3b1e9b60f604c5213b8678cc374e4d60621
/tasks.py
429eda6543b1c0d1c4e9ccd8fa56b119ee23974b
[ "MIT" ]
permissive
dgilland/sqlservice
db512bc3328477472298ca5186de3e9d4b0541d4
0be2bb62b2655916f5958e7eccaed63e83f1fe7b
refs/heads/master
2023-05-31T02:35:33.651188
2022-10-12T00:37:13
2022-10-12T00:37:13
59,388,509
173
13
null
2018-08-03T21:23:52
2016-05-22T00:56:21
Python
UTF-8
Python
false
false
3,950
py
""" This module provides the CLI interface for invoke tasks. All tasks can be executed from this file's directory using: $ inv <task> Where <task> is a function defined below with the @task decorator. """ from functools import partial import os from invoke import Exit, UnexpectedExit, run as _run, task PACKAGE_NAME = "sqlservice" PACKAGE_SOURCE = f"src/{PACKAGE_NAME}" TEST_TARGETS = f"{PACKAGE_SOURCE} tests" LINT_TARGETS = f"{TEST_TARGETS} tasks.py" EXIT_EXCEPTIONS = (Exit, UnexpectedExit, SystemExit) # Set pyt=True to enable colored output when available. run = partial(_run, pty=True) @task def black(ctx, quiet=False): """Autoformat code using black.""" run(f"black {LINT_TARGETS}", hide=quiet) @task def isort(ctx, quiet=False): """Autoformat Python imports.""" run(f"isort {LINT_TARGETS}", hide=quiet) @task def docformatter(ctx): """Autoformat docstrings using docformatter.""" run( f"docformatter -r {LINT_TARGETS} " f"--in-place --pre-summary-newline --wrap-descriptions 100 --wrap-summaries 100" ) @task def fmt(ctx): """Autoformat code and docstrings.""" print("Preparing to run formatters: docformatter, isort, black\n") print("Running docformatter") docformatter(ctx) print("Running isort") isort(ctx, quiet=True) print("Running black") black(ctx, quiet=True) @task def flake8(ctx): """Check code for PEP8 violations using flake8.""" run(f"flake8 --format=pylint {LINT_TARGETS}") @task def pylint(ctx): """Check code for static errors using pylint.""" run(f"pylint {LINT_TARGETS}") @task def mypy(ctx): """Check code using mypy type checker.""" run(f"mypy {LINT_TARGETS}") @task def lint(ctx): """Run linters.""" linters = {"flake8": flake8, "pylint": pylint, "mypy": mypy} failures = [] print(f"Preparing to run linters: {', '.join(linters)}\n") for name, linter in linters.items(): print(f"Running {name}") try: linter(ctx) except EXIT_EXCEPTIONS: failures.append(name) result = "FAILED" else: result = "PASSED" print(f"{result}\n") if failures: failed = ", ".join(failures) raise Exit(f"ERROR: Linters that failed: {failed}") @task(help={"args": "Override default pytest arguments"}) def test(ctx, args=f"{TEST_TARGETS} --cov={PACKAGE_NAME}"): """Run unit tests using pytest.""" tox_env_site_packages_dir = os.getenv("TOX_ENV_SITE_PACKAGES_DIR") if tox_env_site_packages_dir: # Re-path package source to match tox env so that we generate proper coverage report. tox_env_pkg_src = os.path.join(tox_env_site_packages_dir, os.path.basename(PACKAGE_SOURCE)) args = args.replace(PACKAGE_SOURCE, tox_env_pkg_src) run(f"pytest {args}") @task def ci(ctx): """Run linters and tests.""" print("Building package") build(ctx) print("Building docs") docs(ctx) print("Checking linters") lint(ctx) print("Running unit tests") test(ctx) @task def docs(ctx, serve=False, bind="127.0.0.1", port=8000): """Build docs.""" run("rm -rf docs/_build") run("sphinx-build -q -W -b html docs docs/_build/html") if serve: print(f"Serving docs on {bind} port {port} (http://{bind}:{port}/) ...") run(f"python -m http.server -b {bind} --directory docs/_build/html {port}", hide=True) @task def build(ctx): """Build Python package.""" run("rm -rf dist build docs/_build") run("python -m build") @task def clean(ctx): """Remove temporary files related to development.""" run("find . -type f -name '*.py[cod]' -delete -o -type d -name __pycache__ -delete") run("rm -rf .tox .coverage .cache .pytest_cache .mypy_cache **/.egg* **/*.egg* dist build") @task(pre=[build]) def release(ctx): """Release Python package.""" run("twine upload dist/*")
a9b1d887ebcfe4a2b8adbc771fbe2a309ca4ab71
37572d62583271b872ec0e8f051701111d8d9230
/migrations/versions/1b2b0d93a8ba_16.py
cd05612485ac7c331d9aa19c6caa6a5372232951
[]
no_license
linwenjunid/flasky
6b4b920b56194b04d2a33b2c843b858c519dffb5
ea1e74bbc1185ade002cdfbee96b99675ee3c22d
refs/heads/master
2020-03-18T23:40:47.958836
2019-03-29T01:27:40
2019-03-29T01:27:40
135,418,770
1
0
null
null
null
null
UTF-8
Python
false
false
663
py
"""16 Revision ID: 1b2b0d93a8ba Revises: 5ae2353a173c Create Date: 2018-08-21 16:10:28.530756 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '1b2b0d93a8ba' down_revision = '5ae2353a173c' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('celery_tasks', sa.Column('task_percent', sa.Float(), nullable=True)) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('celery_tasks', 'task_percent') # ### end Alembic commands ###
7b31e92e4ea4f7d437d2d38e4498703c7211dc33
0fd9cb5e8bfb26fa62b90e65f7fbaa2fd233d3d3
/napalm/python/netmiko/fortinet/fortinet_ssh.py
f20231334f1f3a4dffb086717c2d3a33a95eebde
[]
no_license
levensailor/pip4lambda
0cff15b2dba3ba586652c6cc914252daf01a874b
22a83a43141f9bf72fdd0cd5faee3b88cc7e49fa
refs/heads/master
2022-03-02T05:31:48.894906
2022-02-11T16:38:00
2022-02-11T16:38:00
174,207,440
2
0
null
null
null
null
UTF-8
Python
false
false
3,833
py
from __future__ import unicode_literals import paramiko import time import re from netmiko.cisco_base_connection import CiscoSSHConnection class FortinetSSH(CiscoSSHConnection): def _modify_connection_params(self): """Modify connection parameters prior to SSH connection.""" paramiko.Transport._preferred_kex = ('diffie-hellman-group14-sha1', 'diffie-hellman-group-exchange-sha1', 'diffie-hellman-group-exchange-sha256', 'diffie-hellman-group1-sha1',) def session_preparation(self): """Prepare the session after the connection has been established.""" self._test_channel_read() self.set_base_prompt(alt_prompt_terminator='$') self.disable_paging() # Clear the read buffer time.sleep(.3 * self.global_delay_factor) self.clear_buffer() def disable_paging(self, delay_factor=1): """Disable paging is only available with specific roles so it may fail.""" check_command = "get system status | grep Virtual" output = self.send_command_timing(check_command) self.allow_disable_global = True self.vdoms = False self._output_mode = 'more' if "Virtual domain configuration: enable" in output: self.vdoms = True vdom_additional_command = "config global" output = self.send_command_timing(vdom_additional_command, delay_factor=2) if "Command fail" in output: self.allow_disable_global = False self.remote_conn.close() self.establish_connection(width=100, height=1000) new_output = '' if self.allow_disable_global: self._retrieve_output_mode() disable_paging_commands = ["config system console", "set output standard", "end"] # There is an extra 'end' required if in multi-vdoms are enabled if self.vdoms: disable_paging_commands.append("end") outputlist = [self.send_command_timing(command, delay_factor=2) for command in disable_paging_commands] # Should test output is valid new_output = self.RETURN.join(outputlist) return output + new_output def _retrieve_output_mode(self): """Save the state of the output mode so it can be reset at the end of the session.""" reg_mode = re.compile(r'output\s+:\s+(?P<mode>.*)\s+\n') output = self.send_command("get system console") result_mode_re = reg_mode.search(output) if result_mode_re: result_mode = result_mode_re.group('mode').strip() if result_mode in ['more', 'standard']: self._output_mode = result_mode def cleanup(self): """Re-enable paging globally.""" if self.allow_disable_global: # Return paging state output_mode_cmd = "set output {}".format(self._output_mode) enable_paging_commands = ["config system console", output_mode_cmd, "end"] if self.vdoms: enable_paging_commands.insert(0, "config global") # Should test output is valid for command in enable_paging_commands: self.send_command_timing(command) def config_mode(self, config_command=''): """No config mode for Fortinet devices.""" return '' def exit_config_mode(self, exit_config=''): """No config mode for Fortinet devices.""" return '' def save_config(self, cmd='', confirm=True, confirm_response=''): """Not Implemented""" raise NotImplementedError
75f4afcd3f28a07b31a0169bdacd3a042829807a
fb754d8c5abf560bb0f0c123dde2f6790d71452c
/dataset/dota_coco/dota_generate_test_result.py
44c8f1804bcff723e1dbb5df2e172340c4b1e41e
[ "Apache-2.0" ]
permissive
ellinyang/PaddleDetection
024c256c620949828fd3d2a7592aaebc6e3fef92
993119bbc3de330310083e9487fef5147d82c087
refs/heads/master
2021-11-04T17:56:50.729293
2021-10-28T02:30:12
2021-10-28T02:30:12
222,353,395
3
0
Apache-2.0
2019-11-18T03:11:33
2019-11-18T03:11:32
null
UTF-8
Python
false
false
7,901
py
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import re import glob import numpy as np from multiprocessing import Pool from functools import partial from shapely.geometry import Polygon import argparse nms_thresh = 0.1 class_name_15 = [ 'plane', 'baseball-diamond', 'bridge', 'ground-track-field', 'small-vehicle', 'large-vehicle', 'ship', 'tennis-court', 'basketball-court', 'storage-tank', 'soccer-ball-field', 'roundabout', 'harbor', 'swimming-pool', 'helicopter' ] class_name_16 = [ 'plane', 'baseball-diamond', 'bridge', 'ground-track-field', 'small-vehicle', 'large-vehicle', 'ship', 'tennis-court', 'basketball-court', 'storage-tank', 'soccer-ball-field', 'roundabout', 'harbor', 'swimming-pool', 'helicopter', 'container-crane' ] def rbox_iou(g, p): """ iou of rbox """ g = np.array(g) p = np.array(p) g = Polygon(g[:8].reshape((4, 2))) p = Polygon(p[:8].reshape((4, 2))) g = g.buffer(0) p = p.buffer(0) if not g.is_valid or not p.is_valid: return 0 inter = Polygon(g).intersection(Polygon(p)).area union = g.area + p.area - inter if union == 0: return 0 else: return inter / union def py_cpu_nms_poly_fast(dets, thresh): """ Args: dets: pred results thresh: nms threshold Returns: index of keep """ obbs = dets[:, 0:-1] x1 = np.min(obbs[:, 0::2], axis=1) y1 = np.min(obbs[:, 1::2], axis=1) x2 = np.max(obbs[:, 0::2], axis=1) y2 = np.max(obbs[:, 1::2], axis=1) scores = dets[:, 8] areas = (x2 - x1 + 1) * (y2 - y1 + 1) polys = [] for i in range(len(dets)): tm_polygon = [ dets[i][0], dets[i][1], dets[i][2], dets[i][3], dets[i][4], dets[i][5], dets[i][6], dets[i][7] ] polys.append(tm_polygon) polys = np.array(polys) order = scores.argsort()[::-1] keep = [] while order.size > 0: ovr = [] i = order[0] keep.append(i) xx1 = np.maximum(x1[i], x1[order[1:]]) yy1 = np.maximum(y1[i], y1[order[1:]]) xx2 = np.minimum(x2[i], x2[order[1:]]) yy2 = np.minimum(y2[i], y2[order[1:]]) w = np.maximum(0.0, xx2 - xx1) h = np.maximum(0.0, yy2 - yy1) hbb_inter = w * h hbb_ovr = hbb_inter / (areas[i] + areas[order[1:]] - hbb_inter) # h_keep_inds = np.where(hbb_ovr == 0)[0] h_inds = np.where(hbb_ovr > 0)[0] tmp_order = order[h_inds + 1] for j in range(tmp_order.size): iou = rbox_iou(polys[i], polys[tmp_order[j]]) hbb_ovr[h_inds[j]] = iou # ovr.append(iou) # ovr_index.append(tmp_order[j]) try: if math.isnan(ovr[0]): pdb.set_trace() except: pass inds = np.where(hbb_ovr <= thresh)[0] order = order[inds + 1] return keep def poly2origpoly(poly, x, y, rate): origpoly = [] for i in range(int(len(poly) / 2)): tmp_x = float(poly[i * 2] + x) / float(rate) tmp_y = float(poly[i * 2 + 1] + y) / float(rate) origpoly.append(tmp_x) origpoly.append(tmp_y) return origpoly def nmsbynamedict(nameboxdict, nms, thresh): """ Args: nameboxdict: nameboxdict nms: nms thresh: nms threshold Returns: nms result as dict """ nameboxnmsdict = {x: [] for x in nameboxdict} for imgname in nameboxdict: keep = nms(np.array(nameboxdict[imgname]), thresh) outdets = [] for index in keep: outdets.append(nameboxdict[imgname][index]) nameboxnmsdict[imgname] = outdets return nameboxnmsdict def merge_single(output_dir, nms, pred_class_lst): """ Args: output_dir: output_dir nms: nms pred_class_lst: pred_class_lst class_name: class_name Returns: """ class_name, pred_bbox_list = pred_class_lst nameboxdict = {} for line in pred_bbox_list: splitline = line.split(' ') subname = splitline[0] splitname = subname.split('__') oriname = splitname[0] pattern1 = re.compile(r'__\d+___\d+') x_y = re.findall(pattern1, subname) x_y_2 = re.findall(r'\d+', x_y[0]) x, y = int(x_y_2[0]), int(x_y_2[1]) pattern2 = re.compile(r'__([\d+\.]+)__\d+___') rate = re.findall(pattern2, subname)[0] confidence = splitline[1] poly = list(map(float, splitline[2:])) origpoly = poly2origpoly(poly, x, y, rate) det = origpoly det.append(confidence) det = list(map(float, det)) if (oriname not in nameboxdict): nameboxdict[oriname] = [] nameboxdict[oriname].append(det) nameboxnmsdict = nmsbynamedict(nameboxdict, nms, nms_thresh) # write result dstname = os.path.join(output_dir, class_name + '.txt') with open(dstname, 'w') as f_out: for imgname in nameboxnmsdict: for det in nameboxnmsdict[imgname]: confidence = det[-1] bbox = det[0:-1] outline = imgname + ' ' + str(confidence) + ' ' + ' '.join( map(str, bbox)) f_out.write(outline + '\n') def dota_generate_test_result(pred_txt_dir, output_dir='output', dota_version='v1.0'): """ pred_txt_dir: dir of pred txt output_dir: dir of output dota_version: dota_version v1.0 or v1.5 or v2.0 """ pred_txt_list = glob.glob("{}/*.txt".format(pred_txt_dir)) # step1: summary pred bbox pred_classes = {} class_lst = class_name_15 if dota_version == 'v1.0' else class_name_16 for class_name in class_lst: pred_classes[class_name] = [] for current_txt in pred_txt_list: img_id = os.path.split(current_txt)[1] img_id = img_id.split('.txt')[0] with open(current_txt) as f: res = f.readlines() for item in res: item = item.split(' ') pred_class = item[0] item[0] = img_id pred_bbox = ' '.join(item) pred_classes[pred_class].append(pred_bbox) pred_classes_lst = [] for class_name in pred_classes.keys(): print('class_name: {}, count: {}'.format(class_name, len(pred_classes[class_name]))) pred_classes_lst.append((class_name, pred_classes[class_name])) # step2: merge pool = Pool(len(class_lst)) nms = py_cpu_nms_poly_fast mergesingle_fn = partial(merge_single, output_dir, nms) pool.map(mergesingle_fn, pred_classes_lst) if __name__ == '__main__': parser = argparse.ArgumentParser(description='dota anno to coco') parser.add_argument('--pred_txt_dir', help='path of pred txt dir') parser.add_argument( '--output_dir', help='path of output dir', default='output') parser.add_argument( '--dota_version', help='dota_version, v1.0 or v1.5 or v2.0', type=str, default='v1.0') args = parser.parse_args() # process dota_generate_test_result(args.pred_txt_dir, args.output_dir, args.dota_version) print('done!')
0e4d12400d385371006b7ad61680b902e236e83c
dc42a65f63ca8327ee74675c7606a9b6e3b39d40
/tpdatasrc/co8fixes/scr/py00081spugnoir.py
9d67ab60fadca2c1158c5ab7df6dfd15a16fc507
[ "MIT" ]
permissive
anatoliy-savchak/TemplePlus
03cda558de2fd30d34305b7e5b548d202ba97f76
50922bb14cc2d7dcf8fceeccf45c3b905c1b512f
refs/heads/master_old
2023-04-28T12:01:06.205497
2021-09-25T13:03:51
2021-09-25T13:03:51
172,583,383
2
0
MIT
2019-02-25T20:56:01
2019-02-25T20:56:00
null
UTF-8
Python
false
false
3,263
py
from toee import * from utilities import * from combat_standard_routines import * def san_dialog( attachee, triggerer ): if (game.global_flags[819] == 1): attachee.attack(triggerer) return SKIP_DEFAULT if (attachee.leader_get() != OBJ_HANDLE_NULL): triggerer.begin_dialog( attachee, 100 ) ## spugnoir in party elif (game.global_vars[913] == 32): triggerer.begin_dialog( attachee, 140 ) ## have attacked 3 or more farm animals with spugnoir in party elif (game.leader.reputation_has(32) == 1 or game.leader.reputation_has(30) == 1 or game.leader.reputation_has(29) == 1): attachee.float_line(11004,triggerer) ## have lawbreaker or convict or banished from hommlet rep else: triggerer.begin_dialog( attachee, 1 ) ## none of the above return SKIP_DEFAULT def san_first_heartbeat( attachee, triggerer ): if (attachee.leader_get() == OBJ_HANDLE_NULL): if (game.global_vars[501] == 4 or game.global_vars[501] == 5 or game.global_vars[501] == 6 or game.global_vars[510] == 2): attachee.object_flag_set(OF_OFF) else: attachee.object_flag_unset(OF_OFF) if (attachee.leader_get() == OBJ_HANDLE_NULL and not game.combat_is_active()): game.global_vars[712] = 0 return RUN_DEFAULT def san_dying( attachee, triggerer ): if should_modify_CR( attachee ): modify_CR( attachee, get_av_level() ) attachee.float_line(12014,triggerer) if (attachee.leader_get() != OBJ_HANDLE_NULL): game.global_vars[29] = game.global_vars[29] + 1 return RUN_DEFAULT def san_enter_combat( attachee, triggerer ): print "Spugnoir Enter Combat" ProtectTheInnocent( attachee, triggerer) return RUN_DEFAULT def san_heartbeat( attachee, triggerer ): if (game.global_vars[712] == 0 and attachee.leader_get() == OBJ_HANDLE_NULL and not game.combat_is_active()) and game.party_alignment & ALIGNMENT_GOOD == 0: attachee.cast_spell(spell_mage_armor, attachee) attachee.spells_pending_to_memorized() game.global_vars[712] = 1 if (not game.combat_is_active()): if (game.global_vars[913] >= 3): if (attachee != OBJ_HANDLE_NULL): leader = attachee.leader_get() if (leader != OBJ_HANDLE_NULL): leader.follower_remove(attachee) attachee.float_line(22000,triggerer) return RUN_DEFAULT def san_join( attachee, triggerer ): create_item_in_inventory( 4645, attachee) create_item_in_inventory( 4647, attachee) create_item_in_inventory( 4224, attachee) create_item_in_inventory( 12848, attachee) game.new_sid = 0 return RUN_DEFAULT def san_new_map( attachee, triggerer ): if ((attachee.map == 5006) and (game.global_vars[695] == 1 or game.global_vars[695] == 2)): attachee.float_line(12070,triggerer) elif ((attachee.map == 5024) and (is_daytime() != 1)): attachee.float_line(10019,triggerer) return RUN_DEFAULT def equip_transfer( attachee, triggerer ): itemA = attachee.item_find(6081) if (itemA != OBJ_HANDLE_NULL): itemA.destroy() create_item_in_inventory( 6081, triggerer ) itemB = attachee.item_find(6023) if (itemB != OBJ_HANDLE_NULL): itemB.destroy() create_item_in_inventory( 6023, triggerer ) itemC = attachee.item_find(4060) if (itemC != OBJ_HANDLE_NULL): itemC.destroy() create_item_in_inventory( 4060, triggerer ) create_item_in_inventory( 7001, attachee ) return RUN_DEFAULT
[ "doug1234@unknown" ]
doug1234@unknown
28043124ed5ef8d6e19e6a791c78390a5bf65db4
2c74bb301f1ed83b79254944183ac5a18a639fdf
/tests/components/flux_led/test_config_flow.py
3f1704f7e8c9309afe03ed25f06afd83a44ad0d9
[ "Apache-2.0" ]
permissive
Adminiuga/home-assistant
5bec93007ddac1a268cc359bf7e48530c5f73b38
dcf68d768e4f628d038f1fdd6e40bad713fbc222
refs/heads/dev
2023-02-22T22:03:31.013931
2022-11-09T00:27:20
2022-11-09T00:27:20
123,929,062
5
4
Apache-2.0
2023-02-22T06:14:31
2018-03-05T14:11:09
Python
UTF-8
Python
false
false
25,829
py
"""Define tests for the Flux LED/Magic Home config flow.""" from __future__ import annotations from unittest.mock import patch import pytest from homeassistant import config_entries from homeassistant.components import dhcp from homeassistant.components.flux_led.const import ( CONF_CUSTOM_EFFECT_COLORS, CONF_CUSTOM_EFFECT_SPEED_PCT, CONF_CUSTOM_EFFECT_TRANSITION, CONF_MINOR_VERSION, CONF_MODEL_DESCRIPTION, CONF_MODEL_INFO, CONF_MODEL_NUM, CONF_REMOTE_ACCESS_ENABLED, CONF_REMOTE_ACCESS_HOST, CONF_REMOTE_ACCESS_PORT, DOMAIN, TRANSITION_JUMP, TRANSITION_STROBE, ) from homeassistant.const import CONF_DEVICE, CONF_HOST, CONF_MODEL from homeassistant.core import HomeAssistant from homeassistant.data_entry_flow import FlowResultType from . import ( DEFAULT_ENTRY_TITLE, DHCP_DISCOVERY, FLUX_DISCOVERY, FLUX_DISCOVERY_PARTIAL, IP_ADDRESS, MAC_ADDRESS, MAC_ADDRESS_ONE_OFF, MODEL, MODEL_DESCRIPTION, MODEL_NUM, MODULE, _patch_discovery, _patch_wifibulb, ) from tests.common import MockConfigEntry MAC_ADDRESS_DIFFERENT = "ff:bb:ff:dd:ee:ff" async def test_discovery(hass: HomeAssistant): """Test setting up discovery.""" with _patch_discovery(), _patch_wifibulb(): result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) await hass.async_block_till_done() assert result["type"] == "form" assert result["step_id"] == "user" assert not result["errors"] result2 = await hass.config_entries.flow.async_configure(result["flow_id"], {}) await hass.async_block_till_done() assert result2["type"] == "form" assert result2["step_id"] == "pick_device" assert not result2["errors"] # test we can try again result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["step_id"] == "user" assert not result["errors"] result2 = await hass.config_entries.flow.async_configure(result["flow_id"], {}) await hass.async_block_till_done() assert result2["type"] == "form" assert result2["step_id"] == "pick_device" assert not result2["errors"] with _patch_discovery(), _patch_wifibulb(), patch( f"{MODULE}.async_setup", return_value=True ) as mock_setup, patch( f"{MODULE}.async_setup_entry", return_value=True ) as mock_setup_entry: result3 = await hass.config_entries.flow.async_configure( result["flow_id"], {CONF_DEVICE: MAC_ADDRESS}, ) await hass.async_block_till_done() assert result3["type"] == "create_entry" assert result3["title"] == DEFAULT_ENTRY_TITLE assert result3["data"] == { CONF_MINOR_VERSION: 4, CONF_HOST: IP_ADDRESS, CONF_MODEL: MODEL, CONF_MODEL_NUM: MODEL_NUM, CONF_MODEL_INFO: MODEL, CONF_MODEL_DESCRIPTION: MODEL_DESCRIPTION, CONF_REMOTE_ACCESS_ENABLED: True, CONF_REMOTE_ACCESS_HOST: "the.cloud", CONF_REMOTE_ACCESS_PORT: 8816, CONF_MINOR_VERSION: 0x04, } mock_setup.assert_called_once() mock_setup_entry.assert_called_once() # ignore configured devices result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["step_id"] == "user" assert not result["errors"] with _patch_discovery(), _patch_wifibulb(): result2 = await hass.config_entries.flow.async_configure(result["flow_id"], {}) await hass.async_block_till_done() assert result2["type"] == "abort" assert result2["reason"] == "no_devices_found" async def test_discovery_legacy(hass: HomeAssistant): """Test setting up discovery with a legacy device.""" with _patch_discovery(device=FLUX_DISCOVERY_PARTIAL), _patch_wifibulb(): result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) await hass.async_block_till_done() assert result["type"] == "form" assert result["step_id"] == "user" assert not result["errors"] result2 = await hass.config_entries.flow.async_configure(result["flow_id"], {}) await hass.async_block_till_done() assert result2["type"] == "form" assert result2["step_id"] == "pick_device" assert not result2["errors"] # test we can try again result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["step_id"] == "user" assert not result["errors"] result2 = await hass.config_entries.flow.async_configure(result["flow_id"], {}) await hass.async_block_till_done() assert result2["type"] == "form" assert result2["step_id"] == "pick_device" assert not result2["errors"] with _patch_discovery(), _patch_wifibulb(), patch( f"{MODULE}.async_setup", return_value=True ) as mock_setup, patch( f"{MODULE}.async_setup_entry", return_value=True ) as mock_setup_entry: result3 = await hass.config_entries.flow.async_configure( result["flow_id"], {CONF_DEVICE: MAC_ADDRESS}, ) await hass.async_block_till_done() assert result3["type"] == "create_entry" assert result3["title"] == DEFAULT_ENTRY_TITLE assert result3["data"] == { CONF_MINOR_VERSION: 4, CONF_HOST: IP_ADDRESS, CONF_MODEL: MODEL, CONF_MODEL_NUM: MODEL_NUM, CONF_MODEL_INFO: MODEL, CONF_MODEL_DESCRIPTION: MODEL_DESCRIPTION, CONF_REMOTE_ACCESS_ENABLED: True, CONF_REMOTE_ACCESS_HOST: "the.cloud", CONF_REMOTE_ACCESS_PORT: 8816, CONF_MINOR_VERSION: 0x04, } mock_setup.assert_called_once() mock_setup_entry.assert_called_once() # ignore configured devices result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["step_id"] == "user" assert not result["errors"] with _patch_discovery(), _patch_wifibulb(): result2 = await hass.config_entries.flow.async_configure(result["flow_id"], {}) await hass.async_block_till_done() assert result2["type"] == "abort" assert result2["reason"] == "no_devices_found" async def test_discovery_with_existing_device_present(hass: HomeAssistant): """Test setting up discovery.""" config_entry = MockConfigEntry( domain=DOMAIN, data={CONF_HOST: "127.0.0.2"}, unique_id="dd:dd:dd:dd:dd:dd" ) config_entry.add_to_hass(hass) with _patch_discovery(), _patch_wifibulb(no_device=True): await hass.config_entries.async_setup(config_entry.entry_id) await hass.async_block_till_done() result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["step_id"] == "user" assert not result["errors"] with _patch_discovery(), _patch_wifibulb(): result2 = await hass.config_entries.flow.async_configure(result["flow_id"], {}) await hass.async_block_till_done() assert result2["type"] == "form" assert result2["step_id"] == "pick_device" assert not result2["errors"] # Now abort and make sure we can start over result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["step_id"] == "user" assert not result["errors"] with _patch_discovery(), _patch_wifibulb(): result2 = await hass.config_entries.flow.async_configure(result["flow_id"], {}) await hass.async_block_till_done() assert result2["type"] == "form" assert result2["step_id"] == "pick_device" assert not result2["errors"] with _patch_discovery(), _patch_wifibulb(), patch( f"{MODULE}.async_setup_entry", return_value=True ) as mock_setup_entry: result3 = await hass.config_entries.flow.async_configure( result["flow_id"], {CONF_DEVICE: MAC_ADDRESS} ) assert result3["type"] == "create_entry" assert result3["title"] == DEFAULT_ENTRY_TITLE assert result3["data"] == { CONF_MINOR_VERSION: 4, CONF_HOST: IP_ADDRESS, CONF_MODEL: MODEL, CONF_MODEL_NUM: MODEL_NUM, CONF_MODEL_INFO: MODEL, CONF_MODEL_DESCRIPTION: MODEL_DESCRIPTION, CONF_REMOTE_ACCESS_ENABLED: True, CONF_REMOTE_ACCESS_HOST: "the.cloud", CONF_REMOTE_ACCESS_PORT: 8816, CONF_MINOR_VERSION: 0x04, } await hass.async_block_till_done() mock_setup_entry.assert_called_once() # ignore configured devices result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["step_id"] == "user" assert not result["errors"] with _patch_discovery(), _patch_wifibulb(): result2 = await hass.config_entries.flow.async_configure(result["flow_id"], {}) await hass.async_block_till_done() assert result2["type"] == "abort" assert result2["reason"] == "no_devices_found" async def test_discovery_no_device(hass: HomeAssistant): """Test discovery without device.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) with _patch_discovery(no_device=True), _patch_wifibulb(): result2 = await hass.config_entries.flow.async_configure(result["flow_id"], {}) await hass.async_block_till_done() assert result2["type"] == "abort" assert result2["reason"] == "no_devices_found" async def test_manual_working_discovery(hass: HomeAssistant): """Test manually setup.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["step_id"] == "user" assert not result["errors"] # Cannot connect (timeout) with _patch_discovery(no_device=True), _patch_wifibulb(no_device=True): result2 = await hass.config_entries.flow.async_configure( result["flow_id"], {CONF_HOST: IP_ADDRESS} ) await hass.async_block_till_done() assert result2["type"] == "form" assert result2["step_id"] == "user" assert result2["errors"] == {"base": "cannot_connect"} # Success with _patch_discovery(), _patch_wifibulb(), patch( f"{MODULE}.async_setup", return_value=True ), patch(f"{MODULE}.async_setup_entry", return_value=True): result4 = await hass.config_entries.flow.async_configure( result["flow_id"], {CONF_HOST: IP_ADDRESS} ) await hass.async_block_till_done() assert result4["type"] == "create_entry" assert result4["title"] == DEFAULT_ENTRY_TITLE assert result4["data"] == { CONF_MINOR_VERSION: 4, CONF_HOST: IP_ADDRESS, CONF_MODEL: MODEL, CONF_MODEL_NUM: MODEL_NUM, CONF_MODEL_INFO: MODEL, CONF_MODEL_DESCRIPTION: MODEL_DESCRIPTION, CONF_REMOTE_ACCESS_ENABLED: True, CONF_REMOTE_ACCESS_HOST: "the.cloud", CONF_REMOTE_ACCESS_PORT: 8816, CONF_MINOR_VERSION: 0x04, } # Duplicate result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) with _patch_discovery(no_device=True), _patch_wifibulb(no_device=True): result2 = await hass.config_entries.flow.async_configure( result["flow_id"], {CONF_HOST: IP_ADDRESS} ) await hass.async_block_till_done() assert result2["type"] == "abort" assert result2["reason"] == "already_configured" async def test_manual_no_discovery_data(hass: HomeAssistant): """Test manually setup without discovery data.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["step_id"] == "user" assert not result["errors"] with _patch_discovery(no_device=True), _patch_wifibulb(), patch( f"{MODULE}.async_setup", return_value=True ), patch(f"{MODULE}.async_setup_entry", return_value=True): result = await hass.config_entries.flow.async_configure( result["flow_id"], {CONF_HOST: IP_ADDRESS} ) await hass.async_block_till_done() assert result["type"] == "create_entry" assert result["data"] == { CONF_HOST: IP_ADDRESS, CONF_MODEL_NUM: MODEL_NUM, CONF_MODEL_DESCRIPTION: MODEL_DESCRIPTION, } async def test_discovered_by_discovery_and_dhcp(hass): """Test we get the form with discovery and abort for dhcp source when we get both.""" with _patch_discovery(), _patch_wifibulb(): result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_INTEGRATION_DISCOVERY}, data=FLUX_DISCOVERY, ) await hass.async_block_till_done() assert result["type"] == FlowResultType.FORM assert result["errors"] is None with _patch_discovery(), _patch_wifibulb(): result2 = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_DHCP}, data=DHCP_DISCOVERY, ) await hass.async_block_till_done() assert result2["type"] == FlowResultType.ABORT assert result2["reason"] == "already_in_progress" with _patch_discovery(), _patch_wifibulb(): result3 = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_DHCP}, data=dhcp.DhcpServiceInfo( hostname="any", ip=IP_ADDRESS, macaddress="00:00:00:00:00:00", ), ) await hass.async_block_till_done() assert result3["type"] == FlowResultType.ABORT assert result3["reason"] == "already_in_progress" async def test_discovered_by_discovery(hass): """Test we can setup when discovered from discovery.""" with _patch_discovery(), _patch_wifibulb(): result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_INTEGRATION_DISCOVERY}, data=FLUX_DISCOVERY, ) await hass.async_block_till_done() assert result["type"] == FlowResultType.FORM assert result["errors"] is None with _patch_discovery(), _patch_wifibulb(), patch( f"{MODULE}.async_setup", return_value=True ) as mock_async_setup, patch( f"{MODULE}.async_setup_entry", return_value=True ) as mock_async_setup_entry: result2 = await hass.config_entries.flow.async_configure(result["flow_id"], {}) await hass.async_block_till_done() assert result2["type"] == "create_entry" assert result2["data"] == { CONF_MINOR_VERSION: 4, CONF_HOST: IP_ADDRESS, CONF_MODEL: MODEL, CONF_MODEL_NUM: MODEL_NUM, CONF_MODEL_INFO: MODEL, CONF_MODEL_DESCRIPTION: MODEL_DESCRIPTION, CONF_REMOTE_ACCESS_ENABLED: True, CONF_REMOTE_ACCESS_HOST: "the.cloud", CONF_REMOTE_ACCESS_PORT: 8816, CONF_MINOR_VERSION: 0x04, } assert mock_async_setup.called assert mock_async_setup_entry.called async def test_discovered_by_dhcp_udp_responds(hass): """Test we can setup when discovered from dhcp but with udp response.""" with _patch_discovery(), _patch_wifibulb(): result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_DHCP}, data=DHCP_DISCOVERY ) await hass.async_block_till_done() assert result["type"] == FlowResultType.FORM assert result["errors"] is None with _patch_discovery(), _patch_wifibulb(), patch( f"{MODULE}.async_setup", return_value=True ) as mock_async_setup, patch( f"{MODULE}.async_setup_entry", return_value=True ) as mock_async_setup_entry: result2 = await hass.config_entries.flow.async_configure(result["flow_id"], {}) await hass.async_block_till_done() assert result2["type"] == "create_entry" assert result2["data"] == { CONF_MINOR_VERSION: 4, CONF_HOST: IP_ADDRESS, CONF_MODEL: MODEL, CONF_MODEL_NUM: MODEL_NUM, CONF_MODEL_INFO: MODEL, CONF_MODEL_DESCRIPTION: MODEL_DESCRIPTION, CONF_REMOTE_ACCESS_ENABLED: True, CONF_REMOTE_ACCESS_HOST: "the.cloud", CONF_REMOTE_ACCESS_PORT: 8816, CONF_MINOR_VERSION: 0x04, } assert mock_async_setup.called assert mock_async_setup_entry.called async def test_discovered_by_dhcp_no_udp_response(hass): """Test we can setup when discovered from dhcp but no udp response.""" with _patch_discovery(no_device=True), _patch_wifibulb(): result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_DHCP}, data=DHCP_DISCOVERY ) await hass.async_block_till_done() assert result["type"] == FlowResultType.FORM assert result["errors"] is None with _patch_discovery(no_device=True), _patch_wifibulb(), patch( f"{MODULE}.async_setup", return_value=True ) as mock_async_setup, patch( f"{MODULE}.async_setup_entry", return_value=True ) as mock_async_setup_entry: result2 = await hass.config_entries.flow.async_configure(result["flow_id"], {}) await hass.async_block_till_done() assert result2["type"] == "create_entry" assert result2["data"] == { CONF_HOST: IP_ADDRESS, CONF_MODEL_NUM: MODEL_NUM, CONF_MODEL_DESCRIPTION: MODEL_DESCRIPTION, } assert mock_async_setup.called assert mock_async_setup_entry.called async def test_discovered_by_dhcp_partial_udp_response_fallback_tcp(hass): """Test we can setup when discovered from dhcp but part of the udp response is missing.""" with _patch_discovery(no_device=True), _patch_wifibulb(): result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_DHCP}, data=DHCP_DISCOVERY ) await hass.async_block_till_done() assert result["type"] == FlowResultType.FORM assert result["errors"] is None with _patch_discovery(device=FLUX_DISCOVERY_PARTIAL), _patch_wifibulb(), patch( f"{MODULE}.async_setup", return_value=True ) as mock_async_setup, patch( f"{MODULE}.async_setup_entry", return_value=True ) as mock_async_setup_entry: result2 = await hass.config_entries.flow.async_configure(result["flow_id"], {}) await hass.async_block_till_done() assert result2["type"] == "create_entry" assert result2["data"] == { CONF_HOST: IP_ADDRESS, CONF_MODEL_NUM: MODEL_NUM, CONF_MODEL_DESCRIPTION: MODEL_DESCRIPTION, } assert result2["title"] == "Bulb RGBCW DDEEFF" assert mock_async_setup.called assert mock_async_setup_entry.called async def test_discovered_by_dhcp_no_udp_response_or_tcp_response(hass): """Test we can setup when discovered from dhcp but no udp response or tcp response.""" with _patch_discovery(no_device=True), _patch_wifibulb(no_device=True): result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_DHCP}, data=DHCP_DISCOVERY ) await hass.async_block_till_done() assert result["type"] == FlowResultType.ABORT assert result["reason"] == "cannot_connect" @pytest.mark.parametrize( "source, data", [ (config_entries.SOURCE_DHCP, DHCP_DISCOVERY), (config_entries.SOURCE_INTEGRATION_DISCOVERY, FLUX_DISCOVERY), ], ) async def test_discovered_by_dhcp_or_discovery_adds_missing_unique_id( hass, source, data ): """Test we can setup when discovered from dhcp or discovery.""" config_entry = MockConfigEntry(domain=DOMAIN, data={CONF_HOST: IP_ADDRESS}) config_entry.add_to_hass(hass) with _patch_discovery(), _patch_wifibulb(): result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": source}, data=data ) await hass.async_block_till_done() assert result["type"] == FlowResultType.ABORT assert result["reason"] == "already_configured" assert config_entry.unique_id == MAC_ADDRESS async def test_mac_address_off_by_one_updated_via_discovery(hass): """Test the mac address is updated when its off by one from integration discovery.""" config_entry = MockConfigEntry( domain=DOMAIN, data={CONF_HOST: IP_ADDRESS}, unique_id=MAC_ADDRESS_ONE_OFF ) config_entry.add_to_hass(hass) with _patch_discovery(), _patch_wifibulb(): result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_INTEGRATION_DISCOVERY}, data=FLUX_DISCOVERY, ) await hass.async_block_till_done() assert result["type"] == FlowResultType.ABORT assert result["reason"] == "already_configured" assert config_entry.unique_id == MAC_ADDRESS async def test_mac_address_off_by_one_not_updated_from_dhcp(hass): """Test the mac address is NOT updated when its off by one from dhcp discovery.""" config_entry = MockConfigEntry( domain=DOMAIN, data={CONF_HOST: IP_ADDRESS}, unique_id=MAC_ADDRESS_ONE_OFF ) config_entry.add_to_hass(hass) with _patch_discovery(), _patch_wifibulb(): result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_DHCP}, data=DHCP_DISCOVERY ) await hass.async_block_till_done() assert result["type"] == FlowResultType.ABORT assert result["reason"] == "already_configured" assert config_entry.unique_id == MAC_ADDRESS_ONE_OFF @pytest.mark.parametrize( "source, data", [ (config_entries.SOURCE_DHCP, DHCP_DISCOVERY), (config_entries.SOURCE_INTEGRATION_DISCOVERY, FLUX_DISCOVERY), ], ) async def test_discovered_by_dhcp_or_discovery_mac_address_mismatch_host_already_configured( hass, source, data ): """Test we abort if the host is already configured but the mac does not match.""" config_entry = MockConfigEntry( domain=DOMAIN, data={CONF_HOST: IP_ADDRESS}, unique_id=MAC_ADDRESS_DIFFERENT ) config_entry.add_to_hass(hass) with _patch_discovery(), _patch_wifibulb(): result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": source}, data=data ) await hass.async_block_till_done() assert result["type"] == FlowResultType.ABORT assert result["reason"] == "already_configured" assert config_entry.unique_id == MAC_ADDRESS_DIFFERENT async def test_options(hass: HomeAssistant): """Test options flow.""" config_entry = MockConfigEntry( domain=DOMAIN, data={CONF_HOST: IP_ADDRESS}, title=IP_ADDRESS, options={ CONF_CUSTOM_EFFECT_COLORS: "[255,0,0], [0,0,255]", CONF_CUSTOM_EFFECT_SPEED_PCT: 30, CONF_CUSTOM_EFFECT_TRANSITION: TRANSITION_STROBE, }, unique_id=MAC_ADDRESS, ) config_entry.add_to_hass(hass) with _patch_discovery(), _patch_wifibulb(): assert await hass.config_entries.async_setup(config_entry.entry_id) await hass.async_block_till_done() result = await hass.config_entries.options.async_init(config_entry.entry_id) assert result["type"] == "form" assert result["step_id"] == "init" user_input = { CONF_CUSTOM_EFFECT_COLORS: "[0,0,255], [255,0,0]", CONF_CUSTOM_EFFECT_SPEED_PCT: 50, CONF_CUSTOM_EFFECT_TRANSITION: TRANSITION_JUMP, } with _patch_discovery(), _patch_wifibulb(): result2 = await hass.config_entries.options.async_configure( result["flow_id"], user_input ) await hass.async_block_till_done() assert result2["type"] == "create_entry" assert result2["data"] == user_input assert result2["data"] == config_entry.options assert hass.states.get("light.bulb_rgbcw_ddeeff") is not None @pytest.mark.parametrize( "source, data", [ (config_entries.SOURCE_DHCP, DHCP_DISCOVERY), (config_entries.SOURCE_INTEGRATION_DISCOVERY, FLUX_DISCOVERY), ], ) async def test_discovered_can_be_ignored(hass, source, data): """Test we abort if the mac was already ignored.""" config_entry = MockConfigEntry( domain=DOMAIN, data={}, unique_id=MAC_ADDRESS, source=config_entries.SOURCE_IGNORE, ) config_entry.add_to_hass(hass) with _patch_discovery(), _patch_wifibulb(): result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": source}, data=data ) await hass.async_block_till_done() assert result["type"] == FlowResultType.ABORT assert result["reason"] == "already_configured"
3264f45ff99ac37d6e6a01b5f9e165a75bcb3531
39d3af3e67a00b93d4325ecd6942b021bf4acbba
/deployTest1/wsgi.py
0e2c9f328e4ad3751809c8a8c259b2991f57ade7
[]
no_license
dmhburke/DeployTest1GIT
51fcc1405eaf8420aed60ab42c2e21a4a1a36f59
002d06e9dca5bc9d032fd7953fcb1ea16fb8994e
refs/heads/master
2020-05-04T03:03:59.969438
2019-04-02T17:07:58
2019-04-02T17:07:58
178,936,800
0
0
null
null
null
null
UTF-8
Python
false
false
399
py
""" WSGI config for deployTest1 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'deployTest1.settings') application = get_wsgi_application()
c3d04162029b2999ba7cd3a187103bbfa97e48c4
e1525596c75925dd5f711bbf95fb90acff440339
/tests/hwsim/test_p2p_channel.py
316f6b6a3675b5f24ab49294064c9fb77d48a74e
[ "BSD-3-Clause" ]
permissive
kimocoder/hostap-wpa3
1a414dfe21ed0395ea0f1c52f7e4ebc7b26561df
2a0c65b3caa898d0720eb89a937c0c4ca5360548
refs/heads/master
2023-04-26T05:08:13.139108
2018-11-24T21:52:52
2018-11-24T21:52:52
180,796,283
0
0
NOASSERTION
2023-04-24T01:42:29
2019-04-11T13:18:19
C
UTF-8
Python
false
false
57,169
py
# P2P channel selection test cases # Copyright (c) 2014, Jouni Malinen <[email protected]> # # This software may be distributed under the terms of the BSD license. # See README for more details. from remotehost import remote_compatible import logging logger = logging.getLogger() import os import subprocess import time import hostapd import hwsim_utils from tshark import run_tshark from wpasupplicant import WpaSupplicant from hwsim import HWSimRadio from p2p_utils import * def set_country(country, dev=None): subprocess.call(['iw', 'reg', 'set', country]) time.sleep(0.1) if dev: for i in range(10): ev = dev.wait_global_event(["CTRL-EVENT-REGDOM-CHANGE"], timeout=15) if ev is None: raise Exception("No regdom change event seen") if "type=COUNTRY alpha2=" + country in ev: return raise Exception("No matching regdom event seen for set_country(%s)" % country) def test_p2p_channel_5ghz(dev): """P2P group formation with 5 GHz preference""" try: set_country("US", dev[0]) [i_res, r_res] = go_neg_pin_authorized(i_dev=dev[0], i_intent=15, r_dev=dev[1], r_intent=0, test_data=False) check_grpform_results(i_res, r_res) freq = int(i_res['freq']) if freq < 5000: raise Exception("Unexpected channel %d MHz - did not follow 5 GHz preference" % freq) remove_group(dev[0], dev[1]) finally: set_country("00") dev[1].flush_scan_cache() def test_p2p_channel_5ghz_no_vht(dev): """P2P group formation with 5 GHz preference when VHT channels are disallowed""" try: set_country("US", dev[0]) dev[0].global_request("P2P_SET disallow_freq 5180-5240") [i_res, r_res] = go_neg_pin_authorized(i_dev=dev[0], i_intent=15, r_dev=dev[1], r_intent=0, test_data=False) check_grpform_results(i_res, r_res) freq = int(i_res['freq']) if freq < 5000: raise Exception("Unexpected channel %d MHz - did not follow 5 GHz preference" % freq) remove_group(dev[0], dev[1]) finally: set_country("00") dev[0].global_request("P2P_SET disallow_freq ") dev[1].flush_scan_cache() def test_p2p_channel_random_social(dev): """P2P group formation with 5 GHz preference but all 5 GHz channels disabled""" try: set_country("US", dev[0]) dev[0].global_request("SET p2p_oper_channel 11") dev[0].global_request("P2P_SET disallow_freq 5000-6000,2462") [i_res, r_res] = go_neg_pin_authorized(i_dev=dev[0], i_intent=15, r_dev=dev[1], r_intent=0, test_data=False) check_grpform_results(i_res, r_res) freq = int(i_res['freq']) if freq not in [ 2412, 2437, 2462 ]: raise Exception("Unexpected channel %d MHz - did not pick random social channel" % freq) remove_group(dev[0], dev[1]) finally: set_country("00") dev[0].global_request("P2P_SET disallow_freq ") dev[1].flush_scan_cache() def test_p2p_channel_random(dev): """P2P group formation with 5 GHz preference but all 5 GHz channels and all social channels disabled""" try: set_country("US", dev[0]) dev[0].global_request("SET p2p_oper_channel 11") dev[0].global_request("P2P_SET disallow_freq 5000-6000,2412,2437,2462") [i_res, r_res] = go_neg_pin_authorized(i_dev=dev[0], i_intent=15, r_dev=dev[1], r_intent=0, test_data=False) check_grpform_results(i_res, r_res) freq = int(i_res['freq']) if freq > 2500 or freq in [ 2412, 2437, 2462 ]: raise Exception("Unexpected channel %d MHz" % freq) remove_group(dev[0], dev[1]) finally: set_country("00") dev[0].global_request("P2P_SET disallow_freq ") dev[1].flush_scan_cache() def test_p2p_channel_random_social_with_op_class_change(dev, apdev, params): """P2P group formation using random social channel with oper class change needed""" try: set_country("US", dev[0]) logger.info("Start group on 5 GHz") [i_res, r_res] = go_neg_pin_authorized(i_dev=dev[0], i_intent=15, r_dev=dev[1], r_intent=0, test_data=False) check_grpform_results(i_res, r_res) freq = int(i_res['freq']) if freq < 5000: raise Exception("Unexpected channel %d MHz - did not pick 5 GHz preference" % freq) remove_group(dev[0], dev[1]) logger.info("Disable 5 GHz and try to re-start group based on 5 GHz preference") dev[0].global_request("SET p2p_oper_reg_class 115") dev[0].global_request("SET p2p_oper_channel 36") dev[0].global_request("P2P_SET disallow_freq 5000-6000") [i_res, r_res] = go_neg_pin_authorized(i_dev=dev[0], i_intent=15, r_dev=dev[1], r_intent=0, test_data=False) check_grpform_results(i_res, r_res) freq = int(i_res['freq']) if freq not in [ 2412, 2437, 2462 ]: raise Exception("Unexpected channel %d MHz - did not pick random social channel" % freq) remove_group(dev[0], dev[1]) out = run_tshark(os.path.join(params['logdir'], "hwsim0.pcapng"), "wifi_p2p.public_action.subtype == 0") if out is not None: last = None for l in out.splitlines(): if "Operating Channel:" not in l: continue last = l if last is None: raise Exception("Could not find GO Negotiation Request") if "Operating Class 81" not in last: raise Exception("Unexpected operating class: " + last.strip()) finally: set_country("00") dev[0].global_request("P2P_SET disallow_freq ") dev[0].global_request("SET p2p_oper_reg_class 0") dev[0].global_request("SET p2p_oper_channel 0") dev[1].flush_scan_cache() def test_p2p_channel_avoid(dev): """P2P and avoid frequencies driver event""" try: set_country("US", dev[0]) if "OK" not in dev[0].request("DRIVER_EVENT AVOID_FREQUENCIES 5000-6000,2412,2437,2462"): raise Exception("Could not simulate driver event") ev = dev[0].wait_event(["CTRL-EVENT-AVOID-FREQ"], timeout=10) if ev is None: raise Exception("No CTRL-EVENT-AVOID-FREQ event") [i_res, r_res] = go_neg_pin_authorized(i_dev=dev[0], i_intent=15, r_dev=dev[1], r_intent=0, test_data=False) check_grpform_results(i_res, r_res) freq = int(i_res['freq']) if freq > 2500 or freq in [ 2412, 2437, 2462 ]: raise Exception("Unexpected channel %d MHz" % freq) if "OK" not in dev[0].request("DRIVER_EVENT AVOID_FREQUENCIES"): raise Exception("Could not simulate driver event(2)") ev = dev[0].wait_event(["CTRL-EVENT-AVOID-FREQ"], timeout=10) if ev is None: raise Exception("No CTRL-EVENT-AVOID-FREQ event") ev = dev[0].wait_group_event(["P2P-REMOVE-AND-REFORM-GROUP", "AP-CSA-FINISHED"], timeout=1) if ev is not None: raise Exception("Unexpected + " + ev + " event") if "OK" not in dev[0].request("DRIVER_EVENT AVOID_FREQUENCIES " + str(freq)): raise Exception("Could not simulate driver event(3)") ev = dev[0].wait_event(["CTRL-EVENT-AVOID-FREQ"], timeout=10) if ev is None: raise Exception("No CTRL-EVENT-AVOID-FREQ event") ev = dev[0].wait_group_event(["P2P-REMOVE-AND-REFORM-GROUP", "AP-CSA-FINISHED"], timeout=10) if ev is None: raise Exception("No P2P-REMOVE-AND-REFORM-GROUP or AP-CSA-FINISHED event") finally: set_country("00") dev[0].request("DRIVER_EVENT AVOID_FREQUENCIES") dev[1].flush_scan_cache() def test_p2p_channel_avoid2(dev): """P2P and avoid frequencies driver event on 5 GHz""" try: set_country("US", dev[0]) [i_res, r_res] = go_neg_pin_authorized(i_dev=dev[0], i_intent=15, r_dev=dev[1], r_intent=0, test_data=False, i_max_oper_chwidth=80, i_ht40=True, i_vht=True) check_grpform_results(i_res, r_res) freq = int(i_res['freq']) if freq < 5000: raise Exception("Unexpected channel %d MHz" % freq) if "OK" not in dev[0].request("DRIVER_EVENT AVOID_FREQUENCIES " + str(freq)): raise Exception("Could not simulate driver event(2)") ev = dev[0].wait_event(["CTRL-EVENT-AVOID-FREQ"], timeout=10) if ev is None: raise Exception("No CTRL-EVENT-AVOID-FREQ event") ev = dev[0].wait_group_event(["CTRL-EVENT-CHANNEL-SWITCH"], timeout=10) if ev is None: raise Exception("No channel switch event seen") if "ch_width=80 MHz" not in ev: raise Exception("Could not move to a VHT80 channel") ev = dev[0].wait_group_event(["AP-CSA-FINISHED"], timeout=1) if ev is None: raise Exception("No AP-CSA-FINISHED event seen") finally: set_country("00") dev[0].request("DRIVER_EVENT AVOID_FREQUENCIES") dev[1].flush_scan_cache() def test_p2p_channel_avoid3(dev): """P2P and avoid frequencies driver event on 5 GHz""" try: set_country("CN", dev[0]) form(dev[0], dev[1]) set_country("CN", dev[0]) [i_res, r_res] = invite_from_go(dev[0], dev[1], terminate=False, extra="ht40 vht") freq = int(i_res['freq']) if freq < 5000: raise Exception("Unexpected channel %d MHz" % freq) if "OK" not in dev[0].request("DRIVER_EVENT AVOID_FREQUENCIES 5180-5320,5500-5640"): raise Exception("Could not simulate driver event(2)") ev = dev[0].wait_event(["CTRL-EVENT-AVOID-FREQ"], timeout=10) if ev is None: raise Exception("No CTRL-EVENT-AVOID-FREQ event") ev = dev[0].wait_group_event(["CTRL-EVENT-CHANNEL-SWITCH"], timeout=10) if ev is None: raise Exception("No channel switch event seen") if "ch_width=80 MHz" not in ev: raise Exception("Could not move to a VHT80 channel") ev = dev[0].wait_group_event(["AP-CSA-FINISHED"], timeout=1) if ev is None: raise Exception("No AP-CSA-FINISHED event seen") finally: set_country("00") dev[0].request("DRIVER_EVENT AVOID_FREQUENCIES") dev[1].flush_scan_cache() @remote_compatible def test_autogo_following_bss(dev, apdev): """P2P autonomous GO operate on the same channel as station interface""" if dev[0].get_mcc() > 1: logger.info("test mode: MCC") dev[0].global_request("SET p2p_no_group_iface 0") channels = { 3 : "2422", 5 : "2432", 9 : "2452" } for key in channels: hapd = hostapd.add_ap(apdev[0], { "ssid" : 'ap-test', "channel" : str(key) }) dev[0].connect("ap-test", key_mgmt="NONE", scan_freq=str(channels[key])) res_go = autogo(dev[0]) if res_go['freq'] != channels[key]: raise Exception("Group operation channel is not the same as on connected station interface") hwsim_utils.test_connectivity(dev[0], hapd) dev[0].remove_group(res_go['ifname']) @remote_compatible def test_go_neg_with_bss_connected(dev, apdev): """P2P channel selection: GO negotiation when station interface is connected""" dev[0].flush_scan_cache() dev[1].flush_scan_cache() dev[0].global_request("SET p2p_no_group_iface 0") hapd = hostapd.add_ap(apdev[0], { "ssid": 'bss-2.4ghz', "channel": '5' }) dev[0].connect("bss-2.4ghz", key_mgmt="NONE", scan_freq="2432") #dev[0] as GO [i_res, r_res] = go_neg_pbc(i_dev=dev[0], i_intent=10, r_dev=dev[1], r_intent=1) check_grpform_results(i_res, r_res) if i_res['role'] != "GO": raise Exception("GO not selected according to go_intent") if i_res['freq'] != "2432": raise Exception("Group formed on a different frequency than BSS") hwsim_utils.test_connectivity(dev[0], hapd) dev[0].remove_group(i_res['ifname']) dev[1].wait_go_ending_session() if dev[0].get_mcc() > 1: logger.info("Skip as-client case due to MCC being enabled") return #dev[0] as client [i_res2, r_res2] = go_neg_pbc(i_dev=dev[0], i_intent=1, r_dev=dev[1], r_intent=10) check_grpform_results(i_res2, r_res2) if i_res2['role'] != "client": raise Exception("GO not selected according to go_intent") if i_res2['freq'] != "2432": raise Exception("Group formed on a different frequency than BSS") hwsim_utils.test_connectivity(dev[0], hapd) dev[1].remove_group(r_res2['ifname']) dev[0].wait_go_ending_session() dev[0].request("DISCONNECT") hapd.disable() dev[0].flush_scan_cache() dev[1].flush_scan_cache() def test_autogo_with_bss_on_disallowed_chan(dev, apdev): """P2P channel selection: Autonomous GO with BSS on a disallowed channel""" with HWSimRadio(n_channels=2) as (radio, iface): wpas = WpaSupplicant(global_iface='/tmp/wpas-wlan5') wpas.interface_add(iface) wpas.global_request("SET p2p_no_group_iface 0") if wpas.get_mcc() < 2: raise Exception("New radio does not support MCC") try: hapd = hostapd.add_ap(apdev[0], { "ssid": 'bss-2.4ghz', "channel": '1' }) wpas.global_request("P2P_SET disallow_freq 2412") wpas.connect("bss-2.4ghz", key_mgmt="NONE", scan_freq="2412") res = autogo(wpas) if res['freq'] == "2412": raise Exception("GO set on a disallowed channel") hwsim_utils.test_connectivity(wpas, hapd) finally: wpas.global_request("P2P_SET disallow_freq ") def test_go_neg_with_bss_on_disallowed_chan(dev, apdev): """P2P channel selection: GO negotiation with station interface on a disallowed channel""" with HWSimRadio(n_channels=2) as (radio, iface): wpas = WpaSupplicant(global_iface='/tmp/wpas-wlan5') wpas.interface_add(iface) wpas.global_request("SET p2p_no_group_iface 0") if wpas.get_mcc() < 2: raise Exception("New radio does not support MCC") try: hapd = hostapd.add_ap(apdev[0], { "ssid": 'bss-2.4ghz', "channel": '1' }) # make sure PBC overlap from old test cases is not maintained dev[1].flush_scan_cache() wpas.connect("bss-2.4ghz", key_mgmt="NONE", scan_freq="2412") wpas.global_request("P2P_SET disallow_freq 2412") #wpas as GO [i_res, r_res] = go_neg_pbc(i_dev=wpas, i_intent=10, r_dev=dev[1], r_intent=1) check_grpform_results(i_res, r_res) if i_res['role'] != "GO": raise Exception("GO not selected according to go_intent") if i_res['freq'] == "2412": raise Exception("Group formed on a disallowed channel") hwsim_utils.test_connectivity(wpas, hapd) wpas.remove_group(i_res['ifname']) dev[1].wait_go_ending_session() dev[1].flush_scan_cache() wpas.dump_monitor() dev[1].dump_monitor() #wpas as client [i_res2, r_res2] = go_neg_pbc(i_dev=wpas, i_intent=1, r_dev=dev[1], r_intent=10) check_grpform_results(i_res2, r_res2) if i_res2['role'] != "client": raise Exception("GO not selected according to go_intent") if i_res2['freq'] == "2412": raise Exception("Group formed on a disallowed channel") hwsim_utils.test_connectivity(wpas, hapd) dev[1].remove_group(r_res2['ifname']) wpas.wait_go_ending_session() ev = dev[1].wait_global_event(["P2P-GROUP-REMOVED"], timeout=5) if ev is None: raise Exception("Group removal not indicated") wpas.request("DISCONNECT") hapd.disable() finally: wpas.global_request("P2P_SET disallow_freq ") def test_autogo_force_diff_channel(dev, apdev): """P2P autonomous GO and station interface operate on different channels""" with HWSimRadio(n_channels=2) as (radio, iface): wpas = WpaSupplicant(global_iface='/tmp/wpas-wlan5') wpas.interface_add(iface) if wpas.get_mcc() < 2: raise Exception("New radio does not support MCC") wpas.global_request("SET p2p_no_group_iface 0") hapd = hostapd.add_ap(apdev[0], {"ssid" : 'ap-test', "channel" : '1'}) wpas.connect("ap-test", key_mgmt = "NONE", scan_freq = "2412") wpas.dump_monitor() channels = { 2 : 2417, 5 : 2432, 9 : 2452 } for key in channels: res_go = autogo(wpas, channels[key]) wpas.dump_monitor() hwsim_utils.test_connectivity(wpas, hapd) if int(res_go['freq']) == 2412: raise Exception("Group operation channel is: 2412 excepted: " + res_go['freq']) wpas.remove_group(res_go['ifname']) wpas.dump_monitor() def test_go_neg_forced_freq_diff_than_bss_freq(dev, apdev): """P2P channel selection: GO negotiation with forced freq different than station interface""" with HWSimRadio(n_channels=2) as (radio, iface): wpas = WpaSupplicant(global_iface='/tmp/wpas-wlan5') wpas.interface_add(iface) if wpas.get_mcc() < 2: raise Exception("New radio does not support MCC") # Clear possible PBC session overlap from previous test case dev[1].flush_scan_cache() wpas.global_request("SET p2p_no_group_iface 0") hapd = hostapd.add_ap(apdev[0], { "country_code": 'US', "ssid": 'bss-5ghz', "hw_mode": 'a', "channel": '40' }) wpas.connect("bss-5ghz", key_mgmt="NONE", scan_freq="5200") # GO and peer force the same freq, different than BSS freq, # wpas to become GO [i_res, r_res] = go_neg_pbc(i_dev=dev[1], i_intent=1, i_freq=5180, r_dev=wpas, r_intent=14, r_freq=5180) check_grpform_results(i_res, r_res) if i_res['freq'] != "5180": raise Exception("P2P group formed on unexpected frequency: " + i_res['freq']) if r_res['role'] != "GO": raise Exception("GO not selected according to go_intent") hwsim_utils.test_connectivity(wpas, hapd) wpas.remove_group(r_res['ifname']) dev[1].wait_go_ending_session() dev[1].flush_scan_cache() # GO and peer force the same freq, different than BSS freq, wpas to # become client [i_res2, r_res2] = go_neg_pbc(i_dev=dev[1], i_intent=14, i_freq=2422, r_dev=wpas, r_intent=1, r_freq=2422) check_grpform_results(i_res2, r_res2) if i_res2['freq'] != "2422": raise Exception("P2P group formed on unexpected frequency: " + i_res2['freq']) if r_res2['role'] != "client": raise Exception("GO not selected according to go_intent") hwsim_utils.test_connectivity(wpas, hapd) wpas.request("DISCONNECT") hapd.request("DISABLE") subprocess.call(['iw', 'reg', 'set', '00']) wpas.flush_scan_cache() @remote_compatible def test_go_pref_chan_bss_on_diff_chan(dev, apdev): """P2P channel selection: Station on different channel than GO configured pref channel""" dev[0].global_request("SET p2p_no_group_iface 0") try: hapd = hostapd.add_ap(apdev[0], { "ssid": 'bss-2.4ghz', "channel": '1' }) dev[0].global_request("SET p2p_pref_chan 81:2") dev[0].connect("bss-2.4ghz", key_mgmt="NONE", scan_freq="2412") res = autogo(dev[0]) if res['freq'] != "2412": raise Exception("GO channel did not follow BSS") hwsim_utils.test_connectivity(dev[0], hapd) finally: dev[0].global_request("SET p2p_pref_chan ") def test_go_pref_chan_bss_on_disallowed_chan(dev, apdev): """P2P channel selection: Station interface on different channel than GO configured pref channel, and station channel is disallowed""" with HWSimRadio(n_channels=2) as (radio, iface): wpas = WpaSupplicant(global_iface='/tmp/wpas-wlan5') wpas.interface_add(iface) if wpas.get_mcc() < 2: raise Exception("New radio does not support MCC") wpas.global_request("SET p2p_no_group_iface 0") try: hapd = hostapd.add_ap(apdev[0], { "ssid": 'bss-2.4ghz', "channel": '1' }) wpas.global_request("P2P_SET disallow_freq 2412") wpas.global_request("SET p2p_pref_chan 81:2") wpas.connect("bss-2.4ghz", key_mgmt="NONE", scan_freq="2412") res2 = autogo(wpas) if res2['freq'] != "2417": raise Exception("GO channel did not follow pref_chan configuration") hwsim_utils.test_connectivity(wpas, hapd) finally: wpas.global_request("P2P_SET disallow_freq ") wpas.global_request("SET p2p_pref_chan ") @remote_compatible def test_no_go_freq(dev, apdev): """P2P channel selection: no GO freq""" try: dev[0].global_request("SET p2p_no_go_freq 2412") # dev[0] as client, channel 1 is ok [i_res, r_res] = go_neg_pbc(i_dev=dev[0], i_intent=1, r_dev=dev[1], r_intent=14, r_freq=2412) check_grpform_results(i_res, r_res) if i_res['freq'] != "2412": raise Exception("P2P group not formed on forced freq") dev[1].remove_group(r_res['ifname']) dev[0].wait_go_ending_session() dev[0].flush_scan_cache() fail = False # dev[0] as GO, channel 1 is not allowed try: dev[0].global_request("SET p2p_no_go_freq 2412") [i_res2, r_res2] = go_neg_pbc(i_dev=dev[0], i_intent=14, r_dev=dev[1], r_intent=1, r_freq=2412) check_grpform_results(i_res2, r_res2) fail = True except: pass if fail: raise Exception("GO set on a disallowed freq") finally: dev[0].global_request("SET p2p_no_go_freq ") @remote_compatible def test_go_neg_peers_force_diff_freq(dev, apdev): """P2P channel selection when peers for different frequency""" try: [i_res2, r_res2] = go_neg_pbc(i_dev=dev[0], i_intent=14, i_freq=5180, r_dev=dev[1], r_intent=0, r_freq=5200) except Exception, e: return raise Exception("Unexpected group formation success") @remote_compatible def test_autogo_random_channel(dev, apdev): """P2P channel selection: GO instantiated on random channel 1, 6, 11""" freqs = [] go_freqs = ["2412", "2437", "2462"] for i in range(0, 20): result = autogo(dev[0]) if result['freq'] not in go_freqs: raise Exception("Unexpected frequency selected: " + result['freq']) if result['freq'] not in freqs: freqs.append(result['freq']) if len(freqs) == 3: break dev[0].remove_group(result['ifname']) if i == 20: raise Exception("GO created 20 times and not all social channels were selected. freqs not selected: " + str(list(set(go_freqs) - set(freqs)))) @remote_compatible def test_p2p_autogo_pref_chan_disallowed(dev, apdev): """P2P channel selection: GO preferred channels are disallowed""" try: dev[0].global_request("SET p2p_pref_chan 81:1,81:3,81:6,81:9,81:11") dev[0].global_request("P2P_SET disallow_freq 2412,2422,2437,2452,2462") for i in range(0, 5): res = autogo(dev[0]) if res['freq'] in [ "2412", "2422", "2437", "2452", "2462" ]: raise Exception("GO channel is disallowed") dev[0].remove_group(res['ifname']) finally: dev[0].global_request("P2P_SET disallow_freq ") dev[0].global_request("SET p2p_pref_chan ") def test_p2p_autogo_pref_chan_not_in_regulatory(dev, apdev): """P2P channel selection: GO preferred channel not allowed in the regulatory rules""" try: set_country("US", dev[0]) dev[0].global_request("SET p2p_pref_chan 124:149") res = autogo(dev[0], persistent=True) if res['freq'] != "5745": raise Exception("Unexpected channel selected: " + res['freq']) dev[0].remove_group(res['ifname']) netw = dev[0].list_networks(p2p=True) if len(netw) != 1: raise Exception("Unexpected number of network blocks: " + str(netw)) id = netw[0]['id'] set_country("SE", dev[0]) res = autogo(dev[0], persistent=id) if res['freq'] == "5745": raise Exception("Unexpected channel selected(2): " + res['freq']) dev[0].remove_group(res['ifname']) finally: dev[0].global_request("SET p2p_pref_chan ") set_country("00") def run_autogo(dev, param): if "OK" not in dev.global_request("P2P_GROUP_ADD " + param): raise Exception("P2P_GROUP_ADD failed: " + param) ev = dev.wait_global_event(["P2P-GROUP-STARTED"], timeout=10) if ev is None: raise Exception("GO start up timed out") res = dev.group_form_result(ev) dev.remove_group() return res def _test_autogo_ht_vht(dev): res = run_autogo(dev[0], "ht40") res = run_autogo(dev[0], "vht") res = run_autogo(dev[0], "freq=2") freq = int(res['freq']) if freq < 2412 or freq > 2462: raise Exception("Unexpected freq=2 channel: " + str(freq)) res = run_autogo(dev[0], "freq=5") freq = int(res['freq']) if freq < 5000 or freq >= 6000: raise Exception("Unexpected freq=5 channel: " + str(freq)) res = run_autogo(dev[0], "freq=5 ht40 vht") logger.info(str(res)) freq = int(res['freq']) if freq < 5000 or freq >= 6000: raise Exception("Unexpected freq=5 ht40 vht channel: " + str(freq)) def test_autogo_ht_vht(dev): """P2P autonomous GO with HT/VHT parameters""" try: set_country("US", dev[0]) _test_autogo_ht_vht(dev) finally: set_country("00") def test_p2p_listen_chan_optimize(dev, apdev): """P2P listen channel optimization""" wpas = WpaSupplicant(global_iface='/tmp/wpas-wlan5') wpas.interface_add("wlan5") addr5 = wpas.p2p_dev_addr() try: if "OK" not in wpas.global_request("SET p2p_optimize_listen_chan 1"): raise Exception("Failed to set p2p_optimize_listen_chan") wpas.p2p_listen() if not dev[0].discover_peer(addr5): raise Exception("Could not discover peer") peer = dev[0].get_peer(addr5) lfreq = peer['listen_freq'] wpas.p2p_stop_find() dev[0].p2p_stop_find() channel = "1" if lfreq != '2412' else "6" freq = "2412" if lfreq != '2412' else "2437" params = { "ssid": "test-open", "channel": channel } hapd = hostapd.add_ap(apdev[0], params) id = wpas.connect("test-open", key_mgmt="NONE", scan_freq=freq) wpas.p2p_listen() if "OK" not in dev[0].global_request("P2P_FLUSH"): raise Exception("P2P_FLUSH failed") if not dev[0].discover_peer(addr5): raise Exception("Could not discover peer") peer = dev[0].get_peer(addr5) lfreq2 = peer['listen_freq'] if lfreq == lfreq2: raise Exception("Listen channel did not change") if lfreq2 != freq: raise Exception("Listen channel not on AP's operating channel") wpas.p2p_stop_find() dev[0].p2p_stop_find() wpas.request("DISCONNECT") wpas.wait_disconnected() # for larger coverage, cover case of current channel matching wpas.select_network(id) wpas.wait_connected() wpas.request("DISCONNECT") wpas.wait_disconnected() lchannel = "1" if channel != "1" else "6" lfreq3 = "2412" if channel != "1" else "2437" if "OK" not in wpas.global_request("P2P_SET listen_channel " + lchannel): raise Exception("Failed to set listen channel") wpas.select_network(id) wpas.wait_connected() wpas.p2p_listen() if "OK" not in dev[0].global_request("P2P_FLUSH"): raise Exception("P2P_FLUSH failed") if not dev[0].discover_peer(addr5): raise Exception("Could not discover peer") peer = dev[0].get_peer(addr5) lfreq4 = peer['listen_freq'] if lfreq4 != lfreq3: raise Exception("Unexpected Listen channel after configuration") wpas.p2p_stop_find() dev[0].p2p_stop_find() finally: wpas.global_request("SET p2p_optimize_listen_chan 0") def test_p2p_channel_5ghz_only(dev): """P2P GO start with only 5 GHz band allowed""" try: set_country("US", dev[0]) dev[0].global_request("P2P_SET disallow_freq 2400-2500") res = autogo(dev[0]) freq = int(res['freq']) if freq < 5000: raise Exception("Unexpected channel %d MHz" % freq) dev[0].remove_group() finally: set_country("00") dev[0].global_request("P2P_SET disallow_freq ") def test_p2p_channel_5ghz_165_169_us(dev): """P2P GO and 5 GHz channels 165 (allowed) and 169 (disallowed) in US""" try: set_country("US", dev[0]) res = dev[0].p2p_start_go(freq=5825) if res['freq'] != "5825": raise Exception("Unexpected frequency: " + res['freq']) dev[0].remove_group() res = dev[0].global_request("P2P_GROUP_ADD freq=5845") if "FAIL" not in res: raise Exception("GO on channel 169 allowed unexpectedly") finally: set_country("00") def wait_go_down_up(dev): ev = dev.wait_group_event(["AP-DISABLED"], timeout=5) if ev is None: raise Exception("AP-DISABLED not seen after P2P-REMOVE-AND-REFORM-GROUP") ev = dev.wait_group_event(["AP-ENABLED"], timeout=5) if ev is None: raise Exception("AP-ENABLED not seen after P2P-REMOVE-AND-REFORM-GROUP") def test_p2p_go_move_reg_change(dev, apdev): """P2P GO move due to regulatory change""" try: set_country("US") dev[0].global_request("P2P_SET disallow_freq 2400-5000") res = autogo(dev[0]) freq1 = int(res['freq']) if freq1 < 5000: raise Exception("Unexpected channel %d MHz" % freq1) dev[0].global_request("P2P_SET disallow_freq ") # GO move is not allowed while waiting for initial client connection connect_cli(dev[0], dev[1], freq=freq1) dev[1].remove_group() freq = dev[0].get_group_status_field('freq') if int(freq) < 5000: raise Exception("Unexpected freq after initial client: " + freq) dev[0].dump_monitor() set_country("00") ev = dev[0].wait_group_event(["P2P-REMOVE-AND-REFORM-GROUP", "AP-CSA-FINISHED"], timeout=10) if ev is None: raise Exception("P2P-REMOVE-AND-REFORM-GROUP or AP-CSA-FINISHED not seen") if "P2P-REMOVE-AND-REFORM-GROUP" in ev: wait_go_down_up(dev[0]) freq2 = dev[0].get_group_status_field('freq') if freq1 == freq2: raise Exception("Unexpected freq after group reform=" + freq2) dev[0].remove_group() finally: dev[0].global_request("P2P_SET disallow_freq ") set_country("00") def test_p2p_go_move_active(dev, apdev): """P2P GO stays in freq although SCM is possible""" with HWSimRadio(n_channels=2) as (radio, iface): wpas = WpaSupplicant(global_iface='/tmp/wpas-wlan5') wpas.interface_add(iface) if wpas.get_mcc() < 2: raise Exception("New radio does not support MCC") ndev = [ wpas, dev[1] ] _test_p2p_go_move_active(ndev, apdev) def _test_p2p_go_move_active(dev, apdev): dev[0].global_request("SET p2p_no_group_iface 0") try: dev[0].global_request("P2P_SET disallow_freq 2430-6000") hapd = hostapd.add_ap(apdev[0], { "ssid" : 'ap-test', "channel" : '11' }) dev[0].connect("ap-test", key_mgmt="NONE", scan_freq="2462") res = autogo(dev[0]) freq = int(res['freq']) if freq > 2430: raise Exception("Unexpected channel %d MHz" % freq) # GO move is not allowed while waiting for initial client connection connect_cli(dev[0], dev[1], freq=freq) dev[1].remove_group() freq = dev[0].get_group_status_field('freq') if int(freq) > 2430: raise Exception("Unexpected freq after initial client: " + freq) dev[0].dump_monitor() dev[0].global_request("P2P_SET disallow_freq ") ev = dev[0].wait_group_event(["P2P-REMOVE-AND-REFORM-GROUP", "AP-CSA-FINISHED"], timeout=10) if ev is not None: raise Exception("Unexpected P2P-REMOVE-AND-REFORM-GROUP or AP-CSA-FINISHED seen") dev[0].remove_group() finally: dev[0].global_request("P2P_SET disallow_freq ") def test_p2p_go_move_scm(dev, apdev): """P2P GO move due to SCM operation preference""" with HWSimRadio(n_channels=2) as (radio, iface): wpas = WpaSupplicant(global_iface='/tmp/wpas-wlan5') wpas.interface_add(iface) if wpas.get_mcc() < 2: raise Exception("New radio does not support MCC") ndev = [ wpas, dev[1] ] _test_p2p_go_move_scm(ndev, apdev) def _test_p2p_go_move_scm(dev, apdev): dev[0].global_request("SET p2p_no_group_iface 0") try: dev[0].global_request("P2P_SET disallow_freq 2430-6000") hapd = hostapd.add_ap(apdev[0], { "ssid" : 'ap-test', "channel" : '11' }) dev[0].connect("ap-test", key_mgmt="NONE", scan_freq="2462") dev[0].global_request("SET p2p_go_freq_change_policy 0") res = autogo(dev[0]) freq = int(res['freq']) if freq > 2430: raise Exception("Unexpected channel %d MHz" % freq) # GO move is not allowed while waiting for initial client connection connect_cli(dev[0], dev[1], freq=freq) dev[1].remove_group() freq = dev[0].get_group_status_field('freq') if int(freq) > 2430: raise Exception("Unexpected freq after initial client: " + freq) dev[0].dump_monitor() dev[0].global_request("P2P_SET disallow_freq ") ev = dev[0].wait_group_event(["P2P-REMOVE-AND-REFORM-GROUP", "AP-CSA-FINISHED"], timeout=3) if ev is None: raise Exception("P2P-REMOVE-AND-REFORM-GROUP or AP-CSA-FINISHED not seen") if "P2P-REMOVE-AND-REFORM-GROUP" in ev: wait_go_down_up(dev[0]) freq = dev[0].get_group_status_field('freq') if freq != '2462': raise Exception("Unexpected freq after group reform=" + freq) dev[0].remove_group() finally: dev[0].global_request("P2P_SET disallow_freq ") dev[0].global_request("SET p2p_go_freq_change_policy 2") def test_p2p_go_move_scm_peer_supports(dev, apdev): """P2P GO move due to SCM operation preference (peer supports)""" with HWSimRadio(n_channels=2) as (radio, iface): wpas = WpaSupplicant(global_iface='/tmp/wpas-wlan5') wpas.interface_add(iface) if wpas.get_mcc() < 2: raise Exception("New radio does not support MCC") ndev = [ wpas, dev[1] ] _test_p2p_go_move_scm_peer_supports(ndev, apdev) def _test_p2p_go_move_scm_peer_supports(dev, apdev): try: dev[0].global_request("SET p2p_go_freq_change_policy 1") set_country("US", dev[0]) dev[0].global_request("SET p2p_no_group_iface 0") [i_res, r_res] = go_neg_pin_authorized(i_dev=dev[0], i_intent=15, r_dev=dev[1], r_intent=0, test_data=False) check_grpform_results(i_res, r_res) freq = int(i_res['freq']) if freq < 5000: raise Exception("Unexpected channel %d MHz - did not follow 5 GHz preference" % freq) hapd = hostapd.add_ap(apdev[0], { "ssid" : 'ap-test', "channel" : '11' }) logger.info('Connecting client to to an AP on channel 11') dev[0].connect("ap-test", key_mgmt="NONE", scan_freq="2462") ev = dev[0].wait_group_event(["P2P-REMOVE-AND-REFORM-GROUP", "AP-CSA-FINISHED"], timeout=3) if ev is None: raise Exception("P2P-REMOVE-AND-REFORM-GROUP or AP-CSA-FINISHED not seen") if "P2P-REMOVE-AND-REFORM-GROUP" in ev: wait_go_down_up(dev[0]) freq = dev[0].get_group_status_field('freq') if freq != '2462': raise Exception("Unexpected freq after group reform=" + freq) dev[0].remove_group() finally: dev[0].global_request("SET p2p_go_freq_change_policy 2") set_country("00") def test_p2p_go_move_scm_peer_does_not_support(dev, apdev): """No P2P GO move due to SCM operation (peer does not supports)""" with HWSimRadio(n_channels=2) as (radio, iface): wpas = WpaSupplicant(global_iface='/tmp/wpas-wlan5') wpas.interface_add(iface) if wpas.get_mcc() < 2: raise Exception("New radio does not support MCC") ndev = [ wpas, dev[1] ] _test_p2p_go_move_scm_peer_does_not_support(ndev, apdev) def _test_p2p_go_move_scm_peer_does_not_support(dev, apdev): try: dev[0].global_request("SET p2p_go_freq_change_policy 1") set_country("US", dev[0]) dev[0].global_request("SET p2p_no_group_iface 0") if "OK" not in dev[1].request("DRIVER_EVENT AVOID_FREQUENCIES 2400-2500"): raise Exception("Could not simulate driver event") [i_res, r_res] = go_neg_pin_authorized(i_dev=dev[0], i_intent=15, r_dev=dev[1], r_intent=0, test_data=False) check_grpform_results(i_res, r_res) freq = int(i_res['freq']) if freq < 5000: raise Exception("Unexpected channel %d MHz - did not follow 5 GHz preference" % freq) hapd = hostapd.add_ap(apdev[0], { "ssid" : 'ap-test', "channel" : '11' }) logger.info('Connecting client to to an AP on channel 11') dev[0].connect("ap-test", key_mgmt="NONE", scan_freq="2462") ev = dev[0].wait_group_event(["P2P-REMOVE-AND-REFORM-GROUP", "AP-CSA-FINISHED"], timeout=10) if ev is not None: raise Exception("Unexpected P2P-REMOVE-AND-REFORM-GROUP or AP-CSA-FINISHED seen") dev[0].remove_group() finally: dev[0].global_request("SET p2p_go_freq_change_policy 2") dev[1].request("DRIVER_EVENT AVOID_FREQUENCIES") set_country("00") def test_p2p_go_move_scm_multi(dev, apdev): """P2P GO move due to SCM operation preference multiple times""" with HWSimRadio(n_channels=2) as (radio, iface): wpas = WpaSupplicant(global_iface='/tmp/wpas-wlan5') wpas.interface_add(iface) if wpas.get_mcc() < 2: raise Exception("New radio does not support MCC") ndev = [ wpas, dev[1] ] _test_p2p_go_move_scm_multi(ndev, apdev) def _test_p2p_go_move_scm_multi(dev, apdev): dev[0].request("SET p2p_no_group_iface 0") try: dev[0].global_request("P2P_SET disallow_freq 2430-6000") hapd = hostapd.add_ap(apdev[0], { "ssid" : 'ap-test-1', "channel" : '11' }) dev[0].connect("ap-test-1", key_mgmt="NONE", scan_freq="2462") dev[0].global_request("SET p2p_go_freq_change_policy 0") res = autogo(dev[0]) freq = int(res['freq']) if freq > 2430: raise Exception("Unexpected channel %d MHz" % freq) # GO move is not allowed while waiting for initial client connection connect_cli(dev[0], dev[1], freq=freq) dev[1].remove_group() freq = dev[0].get_group_status_field('freq') if int(freq) > 2430: raise Exception("Unexpected freq after initial client: " + freq) dev[0].dump_monitor() dev[0].global_request("P2P_SET disallow_freq ") ev = dev[0].wait_group_event(["P2P-REMOVE-AND-REFORM-GROUP", "AP-CSA-FINISHED"], timeout=3) if ev is None: raise Exception("P2P-REMOVE-AND-REFORM-GROUP or AP-CSA-FINISHED not seen") if "P2P-REMOVE-AND-REFORM-GROUP" in ev: wait_go_down_up(dev[0]) freq = dev[0].get_group_status_field('freq') if freq != '2462': raise Exception("Unexpected freq after group reform=" + freq) hapd = hostapd.add_ap(apdev[0], { "ssid" : 'ap-test-2', "channel" : '6' }) dev[0].connect("ap-test-2", key_mgmt="NONE", scan_freq="2437") ev = dev[0].wait_group_event(["P2P-REMOVE-AND-REFORM-GROUP", "AP-CSA-FINISHED"], timeout=5) if ev is None: raise Exception("(2) P2P-REMOVE-AND-REFORM-GROUP or AP-CSA-FINISHED not seen") if "P2P-REMOVE-AND-REFORM-GROUP" in ev: wait_go_down_up(dev[0]) freq = dev[0].get_group_status_field('freq') if freq != '2437': raise Exception("(2) Unexpected freq after group reform=" + freq) dev[0].remove_group() finally: dev[0].global_request("P2P_SET disallow_freq ") dev[0].global_request("SET p2p_go_freq_change_policy 2") def test_p2p_delay_go_csa(dev, apdev, params): """P2P GO CSA delayed when inviting a P2P Device to an active P2P Group""" with HWSimRadio(n_channels=2) as (radio, iface): wpas = WpaSupplicant(global_iface='/tmp/wpas-wlan5') wpas.interface_add(iface) wpas.global_request("SET p2p_no_group_iface 0") if wpas.get_mcc() < 2: raise Exception("New radio does not support MCC") addr0 = wpas.p2p_dev_addr() addr1 = dev[1].p2p_dev_addr() try: dev[1].p2p_listen() if not wpas.discover_peer(addr1, social=True): raise Exception("Peer " + addr1 + " not found") wpas.p2p_stop_find() hapd = hostapd.add_ap(apdev[0], { "ssid": 'bss-2.4ghz', "channel": '1' }) wpas.connect("bss-2.4ghz", key_mgmt="NONE", scan_freq="2412") wpas.global_request("SET p2p_go_freq_change_policy 0") wpas.dump_monitor() logger.info("Start GO on channel 6") res = autogo(wpas, freq=2437) if res['freq'] != "2437": raise Exception("GO set on a freq=%s instead of 2437" % res['freq']) # Start find on dev[1] to run scans with dev[2] in parallel dev[1].p2p_find(social=True) # Use another client device to stop the initial client connection # timeout on the GO if not dev[2].discover_peer(addr0, social=True): raise Exception("Peer2 did not find the GO") dev[2].p2p_stop_find() pin = dev[2].wps_read_pin() wpas.p2p_go_authorize_client(pin) dev[2].global_request("P2P_CONNECT " + addr0 + " " + pin + " join freq=2437") ev = dev[2].wait_global_event(["P2P-GROUP-STARTED"], timeout=10) if ev is None: raise Exception("Peer2 did not get connected") if not dev[1].discover_peer(addr0, social=True): raise Exception("Peer did not find the GO") pin = dev[1].wps_read_pin() dev[1].global_request("P2P_CONNECT " + addr0 + " " + pin + " join auth") dev[1].p2p_listen() # Force P2P GO channel switch on successful invitation signaling wpas.group_request("SET p2p_go_csa_on_inv 1") logger.info("Starting invitation") wpas.p2p_go_authorize_client(pin) wpas.global_request("P2P_INVITE group=" + wpas.group_ifname + " peer=" + addr1) ev = dev[1].wait_global_event(["P2P-INVITATION-RECEIVED", "P2P-GROUP-STARTED"], timeout=10) if ev is None: raise Exception("Timeout on invitation on peer") if "P2P-INVITATION-RECEIVED" in ev: raise Exception("Unexpected request to accept pre-authorized invitation") # A P2P GO move is not expected at this stage, as during the # invitation signaling, the P2P GO includes only its current # operating channel in the channel list, and as the invitation # response can only include channels that were also in the # invitation request channel list, the group common channels # includes only the current P2P GO operating channel. ev = wpas.wait_group_event(["P2P-REMOVE-AND-REFORM-GROUP", "AP-CSA-FINISHED"], timeout=1) if ev is not None: raise Exception("Unexpected + " + ev + " event") finally: wpas.global_request("SET p2p_go_freq_change_policy 2") def test_p2p_channel_vht80(dev): """P2P group formation with VHT 80 MHz""" try: set_country("FI", dev[0]) [i_res, r_res] = go_neg_pin_authorized(i_dev=dev[0], i_intent=15, i_freq=5180, i_max_oper_chwidth=80, i_ht40=True, i_vht=True, r_dev=dev[1], r_intent=0, test_data=False) check_grpform_results(i_res, r_res) freq = int(i_res['freq']) if freq < 5000: raise Exception("Unexpected channel %d MHz - did not follow 5 GHz preference" % freq) sig = dev[1].group_request("SIGNAL_POLL").splitlines() if "FREQUENCY=5180" not in sig: raise Exception("Unexpected SIGNAL_POLL value(1): " + str(sig)) if "WIDTH=80 MHz" not in sig: raise Exception("Unexpected SIGNAL_POLL value(2): " + str(sig)) remove_group(dev[0], dev[1]) finally: set_country("00") dev[1].flush_scan_cache() def test_p2p_channel_vht80p80(dev): """P2P group formation and VHT 80+80 MHz channel""" try: set_country("US", dev[0]) [i_res, r_res] = go_neg_pin_authorized(i_dev=dev[0], i_intent=15, i_freq=5180, i_freq2=5775, i_max_oper_chwidth=160, i_ht40=True, i_vht=True, r_dev=dev[1], r_intent=0, test_data=False) check_grpform_results(i_res, r_res) freq = int(i_res['freq']) if freq < 5000: raise Exception("Unexpected channel %d MHz - did not follow 5 GHz preference" % freq) sig = dev[1].group_request("SIGNAL_POLL").splitlines() if "FREQUENCY=5180" not in sig: raise Exception("Unexpected SIGNAL_POLL value(1): " + str(sig)) if "WIDTH=80+80 MHz" not in sig: raise Exception("Unexpected SIGNAL_POLL value(2): " + str(sig)) if "CENTER_FRQ1=5210" not in sig: raise Exception("Unexpected SIGNAL_POLL value(3): " + str(sig)) if "CENTER_FRQ2=5775" not in sig: raise Exception("Unexpected SIGNAL_POLL value(4): " + str(sig)) remove_group(dev[0], dev[1]) finally: set_country("00") dev[1].flush_scan_cache() def test_p2p_channel_vht80p80_autogo(dev): """P2P autonomous GO and VHT 80+80 MHz channel""" addr0 = dev[0].p2p_dev_addr() try: set_country("US", dev[0]) if "OK" not in dev[0].global_request("P2P_GROUP_ADD vht freq=5180 freq2=5775"): raise Exception("Could not start GO") ev = dev[0].wait_global_event(["P2P-GROUP-STARTED"], timeout=5) if ev is None: raise Exception("GO start up timed out") dev[0].group_form_result(ev) pin = dev[1].wps_read_pin() dev[0].p2p_go_authorize_client(pin) dev[1].global_request("P2P_CONNECT " + addr0 + " " + pin + " join freq=5180") ev = dev[1].wait_global_event(["P2P-GROUP-STARTED"], timeout=10) if ev is None: raise Exception("Peer did not get connected") dev[1].group_form_result(ev) sig = dev[1].group_request("SIGNAL_POLL").splitlines() if "FREQUENCY=5180" not in sig: raise Exception("Unexpected SIGNAL_POLL value(1): " + str(sig)) if "WIDTH=80+80 MHz" not in sig: raise Exception("Unexpected SIGNAL_POLL value(2): " + str(sig)) if "CENTER_FRQ1=5210" not in sig: raise Exception("Unexpected SIGNAL_POLL value(3): " + str(sig)) if "CENTER_FRQ2=5775" not in sig: raise Exception("Unexpected SIGNAL_POLL value(4): " + str(sig)) remove_group(dev[0], dev[1]) finally: set_country("00") dev[1].flush_scan_cache() def test_p2p_channel_vht80_autogo(dev): """P2P autonomous GO and VHT 80 MHz channel""" addr0 = dev[0].p2p_dev_addr() try: set_country("US", dev[0]) if "OK" not in dev[0].global_request("P2P_GROUP_ADD vht freq=5180 max_oper_chwidth=80"): raise Exception("Could not start GO") ev = dev[0].wait_global_event(["P2P-GROUP-STARTED"], timeout=5) if ev is None: raise Exception("GO start up timed out") dev[0].group_form_result(ev) pin = dev[1].wps_read_pin() dev[0].p2p_go_authorize_client(pin) dev[1].global_request("P2P_CONNECT " + addr0 + " " + pin + " join freq=5180") ev = dev[1].wait_global_event(["P2P-GROUP-STARTED"], timeout=10) if ev is None: raise Exception("Peer did not get connected") dev[1].group_form_result(ev) sig = dev[1].group_request("SIGNAL_POLL").splitlines() if "FREQUENCY=5180" not in sig: raise Exception("Unexpected SIGNAL_POLL value(1): " + str(sig)) if "WIDTH=80 MHz" not in sig: raise Exception("Unexpected SIGNAL_POLL value(2): " + str(sig)) remove_group(dev[0], dev[1]) finally: set_country("00") dev[1].flush_scan_cache() def test_p2p_channel_vht80p80_persistent(dev): """P2P persistent group re-invocation and VHT 80+80 MHz channel""" addr0 = dev[0].p2p_dev_addr() form(dev[0], dev[1]) try: set_country("US", dev[0]) invite(dev[0], dev[1], extra="vht freq=5745 freq2=5210") [go_res, cli_res] = check_result(dev[0], dev[1]) sig = dev[1].group_request("SIGNAL_POLL").splitlines() if "FREQUENCY=5745" not in sig: raise Exception("Unexpected SIGNAL_POLL value(1): " + str(sig)) if "WIDTH=80+80 MHz" not in sig: raise Exception("Unexpected SIGNAL_POLL value(2): " + str(sig)) if "CENTER_FRQ1=5775" not in sig: raise Exception("Unexpected SIGNAL_POLL value(3): " + str(sig)) if "CENTER_FRQ2=5210" not in sig: raise Exception("Unexpected SIGNAL_POLL value(4): " + str(sig)) remove_group(dev[0], dev[1]) finally: set_country("00") dev[1].flush_scan_cache() def test_p2p_channel_drv_pref_go_neg(dev): """P2P GO Negotiation with GO device channel preference""" dev[0].global_request("SET get_pref_freq_list_override 3:2417 4:2422") [i_res, r_res] = go_neg_pin_authorized(i_dev=dev[0], i_intent=15, r_dev=dev[1], r_intent=0, test_data=False) check_grpform_results(i_res, r_res) freq = int(i_res['freq']) if freq != 2417: raise Exception("Unexpected channel selected: %d" % freq) remove_group(dev[0], dev[1]) def test_p2p_channel_drv_pref_go_neg2(dev): """P2P GO Negotiation with P2P client device channel preference""" dev[0].global_request("SET get_pref_freq_list_override 3:2417,2422") dev[1].global_request("SET get_pref_freq_list_override 4:2422") [i_res, r_res] = go_neg_pin_authorized(i_dev=dev[0], i_intent=15, r_dev=dev[1], r_intent=0, test_data=False) check_grpform_results(i_res, r_res) freq = int(i_res['freq']) if freq != 2422: raise Exception("Unexpected channel selected: %d" % freq) remove_group(dev[0], dev[1]) def test_p2p_channel_drv_pref_go_neg3(dev): """P2P GO Negotiation with GO device channel preference""" dev[1].global_request("SET get_pref_freq_list_override 3:2417,2427 4:2422") [i_res, r_res] = go_neg_pin_authorized(i_dev=dev[0], i_intent=0, r_dev=dev[1], r_intent=15, test_data=False) check_grpform_results(i_res, r_res) freq = int(i_res['freq']) if freq != 2417: raise Exception("Unexpected channel selected: %d" % freq) remove_group(dev[0], dev[1]) def test_p2p_channel_drv_pref_go_neg4(dev): """P2P GO Negotiation with P2P client device channel preference""" dev[0].global_request("SET get_pref_freq_list_override 3:2417,2422,5180") dev[1].global_request("P2P_SET override_pref_op_chan 115:36") [i_res, r_res] = go_neg_pin_authorized(i_dev=dev[0], i_intent=15, r_dev=dev[1], r_intent=0, test_data=False) check_grpform_results(i_res, r_res) freq = int(i_res['freq']) if freq != 2417: raise Exception("Unexpected channel selected: %d" % freq) remove_group(dev[0], dev[1]) def test_p2p_channel_drv_pref_go_neg5(dev): """P2P GO Negotiation with P2P client device channel preference""" dev[0].global_request("SET get_pref_freq_list_override 3:2417") dev[1].global_request("SET get_pref_freq_list_override 4:2422") dev[1].global_request("P2P_SET override_pref_op_chan 115:36") [i_res, r_res] = go_neg_pin_authorized(i_dev=dev[0], i_intent=15, r_dev=dev[1], r_intent=0, test_data=False) check_grpform_results(i_res, r_res) freq = int(i_res['freq']) if freq != 2417: raise Exception("Unexpected channel selected: %d" % freq) remove_group(dev[0], dev[1]) def test_p2p_channel_drv_pref_autogo(dev): """P2P autonomous GO with driver channel preference""" dev[0].global_request("SET get_pref_freq_list_override 3:2417,2422,5180") res_go = autogo(dev[0]) if res_go['freq'] != "2417": raise Exception("Unexpected operating frequency: " + res_go['freq'])
260b0f3bafcd890c3109cd70051c8239142693c3
27d670c976ce0771087008c74e8960e25c4b2b01
/src/main/resources/script_templates/Hadim_Scripts/Preprocessing/Preprocess_TIRF_Images.py
bd2a01cd42ed7c27cae7045060318000cfffdb88
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference", "MIT" ]
permissive
hadim/Hadim_Scripts
2f068ead5df4a299e2ff871ebff4ddc6fdb4a39f
dc44a12e294402ac3c76062197f391dad1ebcaaf
refs/heads/master
2022-12-31T08:47:49.386465
2020-10-07T15:51:29
2020-10-07T15:51:29
29,701,480
2
3
BSD-3-Clause
2019-05-17T03:06:59
2015-01-22T21:35:15
Python
UTF-8
Python
false
false
1,592
py
# @Float(label="Sigma 1", value=6) sigma1 # @Float(label="Sigma 2", value=2) sigma2 # @Float(label="Gaussian Filter Size", value=50) gaussian_filter_size # @Boolean(label="Iterate XY plane (reduce memory usage)", value=False) iterate_plane # @Boolean(label="Save Preprocessed Image", value=False) save_image # @Dataset data # @CommandService cs # @ModuleService ms # @PluginService ps from sc.fiji.plugin.hadimscripts import DOGFilterCommand from sc.fiji.plugin.hadimscripts import PseudoFlatFieldCorrectionCommand def runCommand(inputs, command, showOutputs=False): from org.scijava.module.process import PreprocessorPlugin from org.scijava.module.process import PostprocessorPlugin command = cs.getCommand(command) pre = ps.createInstancesOfType(PreprocessorPlugin) post = ps.createInstancesOfType(PostprocessorPlugin) if showOutputs: module = ms.waitFor(ms.run(command, pre, post, inputs)) else: module = ms.waitFor(ms.run(command, pre, None, inputs)) return module inputs = {"input": data, "sigma1": sigma1, "sigma2": sigma2, "normalizeIntensity": True, "saveImage": False, "suffix": ""} module = runCommand(inputs, DOGFilterCommand, showOutputs=False) filtered_dataset = module.getOutput("output") inputs = {"input": filtered_dataset, "gaussianFilterSize": gaussian_filter_size, "normalizeIntensity": True, "iteratePlane": iterate_plane, "saveImage": save_image, "suffix": "-Preprocessed"} module = runCommand(inputs, PseudoFlatFieldCorrectionCommand, showOutputs=True)
53603194cbdad317cab36c3658300ab37fce1e8f
658e2e3cb8a4d5343a125f7deed19c9ebf06fa68
/course_DE/data-engineering-nanodegree-master/4-data-pipelines-with-airflow/L2_exercises/exercise3.py
f0b82c490da3c700ec1b44526eff4e1861fa0d42
[]
no_license
yennanliu/analysis
3f0018809cdc2403f4fbfe4b245df1ad73fa08a5
643ad3fed41961cddd006fadceb0e927f1db1f23
refs/heads/master
2021-01-23T21:48:58.572269
2020-10-13T22:47:12
2020-10-13T22:47:12
57,648,676
11
9
null
null
null
null
UTF-8
Python
false
false
2,315
py
#Instructions #1 - Modify the bikeshare DAG to load data month by month, instead of loading it all at once, every time. #2 - Use time partitioning to parallelize the execution of the DAG. import datetime import logging from airflow import DAG from airflow.contrib.hooks.aws_hook import AwsHook from airflow.hooks.postgres_hook import PostgresHook from airflow.operators.postgres_operator import PostgresOperator from airflow.operators.python_operator import PythonOperator import sql_statements def load_trip_data_to_redshift(*args, **kwargs): aws_hook = AwsHook("aws_credentials") credentials = aws_hook.get_credentials() redshift_hook = PostgresHook("redshift") # # # execution_date = datetime.datetime.strptime(kwargs["ds"], '%Y-%m-%d') # # # sql_stmt = sql_statements.COPY_MONTHLY_TRIPS_SQL.format( credentials.access_key, credentials.secret_key, year=execution_date.year, month=execution_date.month ) redshift_hook.run(sql_stmt) def load_station_data_to_redshift(*args, **kwargs): aws_hook = AwsHook("aws_credentials") credentials = aws_hook.get_credentials() redshift_hook = PostgresHook("redshift") sql_stmt = sql_statements.COPY_STATIONS_SQL.format( credentials.access_key, credentials.secret_key, ) redshift_hook.run(sql_stmt) dag = DAG( 'lesson2.exercise3', start_date=datetime.datetime(2018, 1, 1, 0, 0, 0, 0), end_date=datetime.datetime(2019, 1, 1, 0, 0, 0, 0), schedule_interval='@monthly', max_active_runs=1 ) create_trips_table = PostgresOperator( task_id="create_trips_table", dag=dag, postgres_conn_id="redshift", sql=sql_statements.CREATE_TRIPS_TABLE_SQL ) copy_trips_task = PythonOperator( task_id='load_trips_from_s3_to_redshift', dag=dag, python_callable=load_trip_data_to_redshift, provide_context=True ) create_stations_table = PostgresOperator( task_id="create_stations_table", dag=dag, postgres_conn_id="redshift", sql=sql_statements.CREATE_STATIONS_TABLE_SQL, ) copy_stations_task = PythonOperator( task_id='load_stations_from_s3_to_redshift', dag=dag, python_callable=load_station_data_to_redshift, ) create_trips_table >> copy_trips_task create_stations_table >> copy_stations_task
76a9353851b054c98e8378600f4307a284e242c9
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02662/s484498630.py
e29ce3a687f8624090192e32bfac0f5f683a21d9
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
417
py
import numpy as np n,s = map(int,input().split()) a = list(map(int,input().split())) dp = np.zeros(s+1, dtype=np.int64) """ dp[i][j] := i็•ช็›ฎใพใงใ‚’้ธใ‚“ใงใ€ๅ’ŒใŒใกใ‚‡ใ†ใฉjใฎใจใใฎๅ ดๅˆใฎๆ•ฐ ้ท็งป โ†’ 1ๅข—ใˆใ‚‹ใจๅ…จไฝ“้›†ๅˆใซ้ธใถ, Aใซใฏ้ธใฐใชใ„, Aใซ้ธใถใฎ3็จฎ้กž. """ mod = 998244353 dp[0] = 1 for i in range(n): p = (dp * 2) % mod p[a[i]:] += dp[:-a[i]] dp = p % mod print(dp[s])
37533e7e38a05044b0bdae8d1f37b6698f44c722
b53816386ea9ec52e7fce862a06fd065928c0083
/EpExtractor.py
aa1b30688f6534562cb53a1d826dfc6f5830a2be
[]
no_license
grburgess/mnEpFit
3e3bcbfca1e244029f04144e67e3d86a65853219
c7008f3a71ebd9dade7e4746507024868ede7d3a
refs/heads/master
2021-05-30T01:21:23.896379
2015-05-20T07:50:46
2015-05-20T07:50:46
35,933,877
0
1
null
null
null
null
UTF-8
Python
false
false
742
py
import json import matplotlib.pyplot as plt class EpExtractor(object): def __init__(self,file,ext_name=""): self.ext_name = ext_name self._ReadFile(file) self._PrepareData() print self._tbins[0] plt.loglog(self._tbins,self._Ep) self._WriteJSON() def _ReadFile(self,file): ''' Virtual function ''' pass def _WriteJSON(self): outdata = {"Ep":self._Ep,\ "EpErr":self._EpErr,\ "tbins":self._tbins} f = open("%sep_save_file.json" % self.ext_name,'w') json.dump(outdata,f) # Write to a JSON file f.close()
58ddad151756db23c9a9cf8a848d1e2796b0cd70
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/nouns/_elderly.py
e148c0716dce29ed715268660229fed3e87d894e
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
316
py
#calss header class _ELDERLY(): def __init__(self,): self.name = "ELDERLY" self.definitions = [u'old people considered as a group: '] self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.specie = 'nouns' def run(self, obj1 = [], obj2 = []): return self.jsondata
f9a2749282d1c35368f740f61adfa1e06a07cfa0
131caeecc070839555b95382fe9c6ea77a618dce
/.history/Classiles/light_switch_20210614212521.py
c23dce879e163a83c076bdb9319ed48fee6b9b64
[ "Unlicense" ]
permissive
minefarmer/Coding101-OOP
f128e34c95f5362b3d9a53bbac3d862c3f256263
d5655977559e3bd1acf6a4f185a6121cc3b05ce4
refs/heads/main
2023-05-22T18:42:37.769345
2021-06-18T00:28:06
2021-06-18T00:28:06
376,620,545
0
0
null
null
null
null
UTF-8
Python
false
false
291
py
"""[Practice: Light Switch] Variable name class name ("instance") ice = Ice) """ class Light: def toggle(self): print self.on = not self.on def __init__(self): self.on = False def is_on(sel): return self.on
c6486839fa928e444c6ac41aad0403ed310a77f4
67d9310435d8f99fc1c76f1374da97e4af1137a6
/myProject/settings.py
3587bb0cc665c5955134e27fe93c8dfe4c86bb87
[]
no_license
coralisland-git/Account-app
a99c400b9ceb469626843e5b6441700f72e2c5ef
dbac5f677860fdbc03ebf4878c030542746b214f
refs/heads/master
2021-06-18T13:09:07.360079
2017-06-23T15:18:35
2017-06-23T15:18:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,946
py
""" Django settings for myProject project. Generated by 'django-admin startproject' using Django 1.8.7. For more information on this file, see https://docs.djangoproject.com/en/1.8/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.8/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.8/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'a6-gzpe_89pwr@0)s2bv_%92*p&*sm11s6(nui7+ngpqn!1o5n' STATICFILES_STORAGE = 'whitenoise.django.GzipManifestStaticFilesStorage' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'mydemo', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.security.SecurityMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'myProject.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'myProject.wsgi.application' # Database # https://docs.djangoproject.com/en/1.8/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Internationalization # https://docs.djangoproject.com/en/1.8/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.8/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = [ os.path.join(BASE_DIR, "static") ] ADMIN_NAME = "rubyadmin" ADMIN_PASSWORD = "rubyadmin" adminName = "ruby" adminpassword = "rubyhome1127password"
ba4c496e73c24377a0a74528dc5b31c715cbf133
10717fe6f68c4ee9bcf27ee62e89581f4a030b8e
/extractor/douyutv.py
1560c79cb11ad6615149dcf68205d73daa098fda
[]
no_license
HagerHosny199/Testing_Project
ff7f9a54b7a213c9d9ade0c5192845c2a29adc8b
9bc170263e239cc24ccfb2aa33b9913ff799ffe9
refs/heads/master
2020-05-17T20:57:01.750640
2019-05-08T22:13:06
2019-05-08T22:13:06
183,954,736
0
0
null
null
null
null
UTF-8
Python
false
false
6,876
py
# coding: utf-8 from __future__ import unicode_literals import time import hashlib import re from .common import InfoExtractor from utils import ( ExtractorError, unescapeHTML, unified_strdate, urljoin, ) class DouyuTVIE(InfoExtractor): IE_DESC = 'ๆ–—้ฑผ' _VALID_URL = r'https?://(?:www\.)?douyu(?:tv)?\.com/(?:[^/]+/)*(?P<id>[A-Za-z0-9]+)' _TESTS = [{ 'url': 'http://www.douyutv.com/iseven', 'info_dict': { 'id': '17732', 'display_id': 'iseven', 'ext': 'flv', 'title': 're:^ๆธ…ๆ™จ้†’่„‘๏ผๆ นๆœฌๅœไธไธ‹ๆฅ๏ผ [0-9]{4}-[0-9]{2}-[0-9]{2} [0-9]{2}:[0-9]{2}$', 'description': r're:.*m7show@163\.com.*', 'thumbnail': r're:^https?://.*\.jpg$', 'uploader': '7ๅธˆๅ‚…', 'is_live': True, }, 'params': { 'skip_download': True, }, }, { 'url': 'http://www.douyutv.com/85982', 'info_dict': { 'id': '85982', 'display_id': '85982', 'ext': 'flv', 'title': 're:^ๅฐๆผ ไปŽ้›ถๅ•ๆŽ’่ฎฐ๏ผโ€”โ€”CSOL2่บฒ็Œซ็Œซ [0-9]{4}-[0-9]{2}-[0-9]{2} [0-9]{2}:[0-9]{2}$', 'description': 'md5:746a2f7a253966a06755a912f0acc0d2', 'thumbnail': r're:^https?://.*\.jpg$', 'uploader': 'douyuๅฐๆผ ', 'is_live': True, }, 'params': { 'skip_download': True, }, 'skip': 'Room not found', }, { 'url': 'http://www.douyutv.com/17732', 'info_dict': { 'id': '17732', 'display_id': '17732', 'ext': 'flv', 'title': 're:^ๆธ…ๆ™จ้†’่„‘๏ผๆ นๆœฌๅœไธไธ‹ๆฅ๏ผ [0-9]{4}-[0-9]{2}-[0-9]{2} [0-9]{2}:[0-9]{2}$', 'description': r're:.*m7show@163\.com.*', 'thumbnail': r're:^https?://.*\.jpg$', 'uploader': '7ๅธˆๅ‚…', 'is_live': True, }, 'params': { 'skip_download': True, }, }, { 'url': 'http://www.douyu.com/xiaocang', 'only_matching': True, }, { # \"room_id\" 'url': 'http://www.douyu.com/t/lpl', 'only_matching': True, }] def _real_extract(self, url): video_id = self._match_id(url) if video_id.isdigit(): room_id = video_id else: page = self._download_webpage(url, video_id) room_id = self._html_search_regex( r'"room_id\\?"\s*:\s*(\d+),', page, 'room id') # Grab metadata from mobile API room = self._download_json( 'http://m.douyu.com/html5/live?roomId=%s' % room_id, video_id, note='Downloading room info')['data'] # 1 = live, 2 = offline if room.get('show_status') == '2': raise ExtractorError('Live stream is offline', expected=True) # Grab the URL from PC client API # The m3u8 url from mobile API requires re-authentication every 5 minutes tt = int(time.time()) signContent = 'lapi/live/thirdPart/getPlay/%s?aid=pcclient&rate=0&time=%d9TUk5fjjUjg9qIMH3sdnh' % (room_id, tt) sign = hashlib.md5(signContent.encode('ascii')).hexdigest() video_url = self._download_json( 'http://coapi.douyucdn.cn/lapi/live/thirdPart/getPlay/' + room_id, video_id, note='Downloading video URL info', query={'rate': 0}, headers={ 'auth': sign, 'time': str(tt), 'aid': 'pcclient' })['data']['live_url'] title = self._live_title(unescapeHTML(room['room_name'])) description = room.get('show_details') thumbnail = room.get('room_src') uploader = room.get('nickname') return { 'id': room_id, 'display_id': video_id, 'url': video_url, 'title': title, 'description': description, 'thumbnail': thumbnail, 'uploader': uploader, 'is_live': True, } class DouyuShowIE(InfoExtractor): _VALID_URL = r'https?://v(?:mobile)?\.douyu\.com/show/(?P<id>[0-9a-zA-Z]+)' _TESTS = [{ 'url': 'https://v.douyu.com/show/rjNBdvnVXNzvE2yw', 'md5': '0c2cfd068ee2afe657801269b2d86214', 'info_dict': { 'id': 'rjNBdvnVXNzvE2yw', 'ext': 'mp4', 'title': '้™ˆไธ€ๅ‘ๅ„ฟ๏ผš็ ’้œœ ๆˆ‘ๆœ‰ไธชๅฎคๅ‹็ณปๅˆ—๏ผ04-01 22็‚นๅœบ', 'duration': 7150.08, 'thumbnail': r're:^https?://.*\.jpg$', 'uploader': '้™ˆไธ€ๅ‘ๅ„ฟ', 'uploader_id': 'XrZwYelr5wbK', 'uploader_url': 'https://v.douyu.com/author/XrZwYelr5wbK', 'upload_date': '20170402', }, }, { 'url': 'https://vmobile.douyu.com/show/rjNBdvnVXNzvE2yw', 'only_matching': True, }] def _real_extract(self, url): url = url.replace('vmobile.', 'v.') video_id = self._match_id(url) webpage = self._download_webpage(url, video_id) room_info = self._parse_json(self._search_regex( r'var\s+\$ROOM\s*=\s*({.+});', webpage, 'room info'), video_id) video_info = None for trial in range(5): # Sometimes Douyu rejects our request. Let's try it more times try: video_info = self._download_json( 'https://vmobile.douyu.com/video/getInfo', video_id, query={'vid': video_id}, headers={ 'Referer': url, 'x-requested-with': 'XMLHttpRequest', }) break except ExtractorError: self._sleep(1, video_id) if not video_info: raise ExtractorError('Can\'t fetch video info') formats = self._extract_m3u8_formats( video_info['data']['video_url'], video_id, entry_protocol='m3u8_native', ext='mp4') upload_date = unified_strdate(self._html_search_regex( r'<em>ไธŠไผ ๆ—ถ้—ด๏ผš</em><span>([^<]+)</span>', webpage, 'upload date', fatal=False)) uploader = uploader_id = uploader_url = None mobj = re.search( r'(?m)<a[^>]+href="/author/([0-9a-zA-Z]+)".+?<strong[^>]+title="([^"]+)"', webpage) if mobj: uploader_id, uploader = mobj.groups() uploader_url = urljoin(url, '/author/' + uploader_id) return { 'id': video_id, 'title': room_info['name'], 'formats': formats, 'duration': room_info.get('duration'), 'thumbnail': room_info.get('pic'), 'upload_date': upload_date, 'uploader': uploader, 'uploader_id': uploader_id, 'uploader_url': uploader_url, }
a52be94d2d29ec70efb3833b2e39a16938664fb2
1beb0d3a73a97c5367cc54d37b34a7536b975d68
/object/LocateDealOrderObject.py
3ce43eb2ac775bea904fa2525cfb92d284d3714e
[]
no_license
Hardworking-tester/HuaYing
a24aa271afe81c95241818586b1d1d5abd6b4282
4dd065806f20bfdec885fa2b40f2c22e5a8d4f15
refs/heads/master
2021-06-03T10:06:33.604494
2017-06-22T09:32:13
2017-06-22T09:32:13
42,507,030
0
0
null
null
null
null
UTF-8
Python
false
false
5,034
py
#encoding:utf-8 from Data import get_number_by_data,ReadExcel from selenium import webdriver from object import OperateDealOrderObject from selenium.webdriver.common.by import By from PublicMethod.LocateElementCommonClass import CommonClass class LocateDealOrderObject(): def getElementList(self,br,testcaseId): testcase_id=testcaseId excel=ReadExcel.ReadExcel() excel_path="F:\\pytest\\xebest-autotest\\Data\\deal_order.xls" excel_sheet=excel.getTableBySheetName(excel_path,"objname_locatemethod_locatedata") rows=excel_sheet.nrows element_list=[] for i in range(1,rows): element_list.append(excel_sheet.cell_value(i,0)) for element in element_list: #่ฐƒ็”จๅˆคๆ–ญๅ…ƒ็ด ๆ˜ฏๅฆๆ“ไฝœ็š„ๆ–นๆณ• if self.judgeElementIsOperate(element,testcase_id): #่ฐƒ็”จๅฎšไฝๅ…ƒ็ด ็š„ๆ–นๆณ• self.getLocateMethodAndData(br,element) else: print ("ๅ…ƒ็ด ๏ผš%sไธ้œ€่ฆๆ“ไฝœ" %element) def judgeElementIsOperate(self,element,testcase_id): excel=ReadExcel.ReadExcel() excel_path="F:\\pytest\\xebest-autotest\\Data\\deal_order.xls" excel_sheet=excel.getTableBySheetName(excel_path,"isoperateElement") #ๅพ—ๅˆฐๅ…ƒ็ด ๆ‰€ๅœจ็š„่กŒๅท row_index=get_number_by_data.GetRowAndColNumber().getRowAndColNumber(excel_path,"isoperateElement",element)[0] #ๅพ—ๅˆฐๆต‹่ฏ•็”จไพ‹ๆ‰€ๅœจ็š„ๅˆ—ๅท col_index=get_number_by_data.GetRowAndColNumber().getRowAndColNumber(excel_path,"isoperateElement",testcase_id)[1] operateFlag=excel_sheet.cell_value(row_index,col_index) if operateFlag=="Y": return True else: return False def getLocateMethodAndData(self,br,element): element=element excel=ReadExcel.ReadExcel() object_excel_path="F:\\pytest\\xebest-autotest\\Data\\deal_order.xls" object_sheet=excel.getTableBySheetName(object_excel_path,"objname_locatemethod_locatedata") #ๅพ—ๅˆฐๅ…ƒ็ด ๆ‰€ๅœจ่กŒ row_index=get_number_by_data.GetRowAndColNumber().getRowAndColNumber(object_excel_path,"objname_locatemethod_locatedata",element)[0] #ๅพ—ๅˆฐๅฎšไฝๆ–นๅผๆ‰€ๅœจๅˆ— locateMethod_Key=u"ๅฎšไฝๆ–นๅผ็ฎ€่ฟฐ" locateMethod_colNumber=get_number_by_data.GetRowAndColNumber().getRowAndColNumber(object_excel_path,"objname_locatemethod_locatedata",locateMethod_Key)[1] #ๅพ—ๅˆฐๅฎšไฝๆ‰€้œ€ๆ•ฐๆฎๆ‰€ๅœจๅˆ— locateData_key=u"ๅฎšไฝๆ‰€้œ€ๆ•ฐๆฎ" locateData_colNumber=get_number_by_data.GetRowAndColNumber().getRowAndColNumber(object_excel_path,"objname_locatemethod_locatedata",locateData_key)[1] #ๅพ—ๅˆฐๅˆคๆ–ญๅ…ƒ็ด ๆ˜ฏๅฆ้œ€่ฆไบŒๆฌกๅฎšไฝ็š„ๅˆคๆ–ญๆกไปถๆ‰€ๅœจๅˆ— isSecondLocate_key=u"ๆ˜ฏๅฆ้œ€่ฆไบŒๆฌกๅฎšไฝ" SecondLocate_key_colNumber=get_number_by_data.GetRowAndColNumber().getRowAndColNumber(object_excel_path,"objname_locatemethod_locatedata",isSecondLocate_key)[1] #ๅญ˜ๅ‚จไปŽexcel่กจไธญๅ–ๅ‡บ็š„ๅฎšไฝๆ–นๅผๅ’Œๅฎšไฝๆ•ฐๆฎ,ไปฅๅŠๅˆคๆ–ญๆ˜ฏๅฆ้œ€่ฆไบŒๆฌกๅฎšไฝ็š„ๆกไปถ old_how=object_sheet.cell_value(row_index,locateMethod_colNumber) old_what=object_sheet.cell_value(row_index,locateData_colNumber) secondLocate=object_sheet.cell_value(row_index,SecondLocate_key_colNumber) locate_method_dict={'id':By.ID,'css':By.CSS_SELECTOR,'xpath':By.XPATH,'linktext':By.LINK_TEXT} if not(CommonClass().judgeSecondLocateElement(secondLocate)): if old_how=="switchHandle": index=int(old_what) CommonClass().switchHandle(br,index) else: new_how=locate_method_dict[old_how] located_element=CommonClass().findElement(br,new_how,old_what) OperateDealOrderObject.OperateDealOrderObject().operateLocatedElement(element,located_element) else: new_first_how=locate_method_dict[old_how] #ๅพ—ๅˆฐไบŒๆฌกๅฎšไฝๆ–นๅผ็š„ๅ€ผๆ‰€ๅœจๅˆ— secondLocatemethod_key=u"ไบŒๆฌกๅฎšไฝ็š„ๆ–นๅผ" secondLocate_colNumber=get_number_by_data.GetRowAndColNumber().getRowAndColNumber(object_excel_path,"objname_locatemethod_locatedata",secondLocatemethod_key)[1] old_second_how=object_sheet.cell_value(row_index,secondLocate_colNumber) #ๅพ—ๅˆฐไบŒๆฌกๅฎšไฝๆ‰€้œ€ๅ€ผ secondLocateData_key=u"ไบŒๆฌกๅฎšไฝๆ‰€้œ€ๆ•ฐๆฎ" secondLocateData_colNumber=get_number_by_data.GetRowAndColNumber().getRowAndColNumber(object_excel_path,"objname_locatemethod_locatedata",secondLocateData_key)[1] secondLocate_what=object_sheet.cell_value(row_index,secondLocateData_colNumber) new_second_how=locate_method_dict[old_second_how] second_located_element=CommonClass().locateElementIndirectly(br,new_first_how,old_what,new_second_how,secondLocate_what) OperateDealOrderObject.OperateDealOrderObject().operateLocatedElement(element,second_located_element)
1e8d43e99c4a6c18af0fa23b95b9988a735d38cb
437e905d8c214dc25c559b1dc03eaf9f0c85326f
/is28/beresnev28/beresnev_lr/zadanie_2-16.py
c09833e26b9950e9eca8f7d7c177ee605c551572
[]
no_license
AnatolyDomrachev/karantin
542ca22c275e39ef3491b1c0d9838e922423b5a9
0d9f60207e80305eb713fd43774e911fdbb9fbad
refs/heads/master
2021-03-29T03:42:43.954727
2020-05-27T13:24:36
2020-05-27T13:24:36
247,916,390
0
1
null
null
null
null
UTF-8
Python
false
false
352
py
a=[[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]] b=[[],[],[],] print(a[0]) print(a[1]) print(a[2]) print(a[3]) i=(int(input('ะฒะฒะตะดะธั‚e ะฝะพะผะตั€ ัั‚ั€ะพะบะธ = '))-1) k=(int(input('ะฒะฒะตะดะธั‚ะต ะฝะพะผะตั€ ัั‚ะพะปะฑั†ะฐ = '))-1) for f in range(4): a[f][k]=0 for t in range(4): a[i][t]=0 print(a[0]) print(a[1]) print(a[2]) print(a[3])
99520ba9383618cd1f2b8302fea12bb4177eff2a
8f8ac99fd3ed9ceb36778b404f6fdd0b6899d3f4
/pyobjc-framework-FileProviderUI/PyObjCTest/test_fpuiactionextensioncontext.py
5cce4d7ed43ae4829e41889ea9bd508810e4738a
[ "MIT" ]
permissive
strogo/pyobjc
ac4201c7742eb75348328eeecb7eedf4e3458de3
2579c5eaf44b0c5af77ee195c417d2c65e72dfda
refs/heads/master
2023-07-13T00:41:56.448005
2021-08-24T06:42:53
2021-08-24T06:42:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
698
py
import FileProviderUI from PyObjCTools.TestSupport import TestCase, min_os_level class TestFPUIActionExtensionContext(TestCase): def test_constants(self): self.assertEqual(FileProviderUI.FPUIExtensionErrorCodeUserCancelled, 0) self.assertEqual(FileProviderUI.FPUIExtensionErrorCodeFailed, 1) @min_os_level("10.15") def test_constants10_15(self): self.assertIsInstance(FileProviderUI.FPUIErrorDomain, str) @min_os_level("10.15") def test_methods10_15(self): self.assertArgIsBlock( FileProviderUI.FPUIActionExtensionContext.completeRequestReturningItems_completionHandler_, # noqa: B950 1, b"vZ", )
4feae1113ac543f26e086b2e4dd8be4307a102f4
08bb74d61a8bd8da07784f1146b6a2461f56b02a
/demo_python/p_1/tm.py
406a15bead40a566d612b61596980efdcf5e7757
[]
no_license
hphp/demo
6ee25df2e6b4f33e5c2c4b276ec394ea1a0f817c
f83cd0ce569d92410ca1320e229cde0e88561ec8
refs/heads/master
2021-05-16T02:04:47.979776
2016-09-19T13:16:10
2016-09-19T13:16:10
9,994,208
1
1
null
null
null
null
UTF-8
Python
false
false
1,779
py
#!/usr/local/bin/python import os import time import _mysql def hp_query(query): con = None version = -1 try : con = _mysql.connect('localhost','root','','ip_distribution') con.query(query) result = con.use_result() v = [] while True: rows = result.fetch_row() if not rows : break v.append(rows[0]) for i in enumerate(v): version = i[1][0] print version except _mysql.Error, e : print "Error %d: %s" % (e.args[0] , e.args[1]) sys.exit(1) finally: if con: con.close() return version while True : version = -1 version = hp_query("select max(version) from configure where state = 1 ") print 'hi' + format(version) if version < 0 : time.sleep(6) print "no state = 1 -- pause" continue ''' query = "select count(*) from step_display where version = %d and if_stored = 0 " % (version) cnt = hp_query(query) if(cnt > 0) ''' file = time.gmtime() file_name = format(file.tm_year) + format(file.tm_mon) + format(file.tm_mday) + format(file.tm_hour) + format(file.tm_min) + format(file.tm_sec) print file_name out_file = "/root/happyhan/ip_distribution/tm.out" + file_name print out_file f_tm_in = open("/root/happyhan/ip_distribution/tm.in","r+") content = format(version) + "\n100 100 0.85\n4\n1000\n0\n1\n1\n" f_tm_in.write(content) f_tm_in = open("/root/happyhan/ip_distribution/tm.in","r") print f_tm_in.readlines() cmd_2 = "/root/happyhan/ip_distribution/tm > " + out_file + " < /root/happyhan/ip_distribution/tm.in" print cmd_2 os.system(cmd_2) time.sleep(6)
e7c4de9a6b3d90e5b4be81f8597dbcefe813443e
b980c0bae0cff8533253c135449beb6e09759dca
/Grader_Exercise/08_Dict/08_Dict_23.py
82d1da939f42f32157d3dff8a5303588ffde5419
[]
no_license
manhanton/COM-PROG
1f76985b3f3fea54057a0da1d3911dc91998c5be
7a4f2c62ecd6677ec1f818a5d115aa0fb182b3a2
refs/heads/main
2023-06-18T10:25:26.448133
2021-07-16T07:46:45
2021-07-16T07:46:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
402
py
def reverse(d): nd = {} for key,value in d.items() : nd[value] = key return nd d = {} for i in range(int(input())) : x = input().split() d[x[0]+' '+x[1]] = x[2] rd = reverse(d) for i in range(int(input())) : y = input() if y in d.keys() : print('%s --> %s' % (y,d[y])) elif y in rd.keys() : print('%s --> %s' % (y,rd[y])) else : print('%s --> %s' % (y,'Not found'))
0429e2284d15b50a7b4df5b5e76249314c694204
2d01e5d2da7bf0836bd0ebb9185469e041e0f577
/script/script_scrape_symbol_ard_marketwatch.py
2fe5444add389a69002f5f70bd7ee5400c2687ef
[]
no_license
kozzion/rivernode_finance
434c0f668a3131ad0bf94b9d57c1886c32ac6d5e
17e88f990c9f5e65dc3fe892a28c163a4e6769f2
refs/heads/master
2022-11-15T03:44:14.936657
2020-06-22T15:44:22
2020-06-22T15:44:22
254,896,067
1
1
null
null
null
null
UTF-8
Python
false
false
1,538
py
import sys import os import json import hashlib sys.path.append(os.path.abspath('../../rivernode_core')) from rivernode_core.system_config import SystemConfig from rivernode_core.persistency.table_object_loader_disk import TableObjectLoaderDisk sys.path.append(os.path.abspath('../../rivernode_finance')) from rivernode_finance.client_marketwatch import ClientMarketwatch from rivernode_finance.persistency_quote import PersistencyQuote system_config = SystemConfig() loader_table = TableObjectLoaderDisk(system_config.load_path_dir_database()) pq = PersistencyQuote(loader_table.load_table_for_list_key(['trading'])) client = ClientMarketwatch() ## scrape # client.scape_symbol(pq) ## clean up # pq.delete_tag('sector_') # pq.replace_tag('country_trade_de&amp;iso=xber', 'country_trade_de') # pq.replace_tag('country_trade_de&amp;iso=xfra', 'country_trade_de') # pq.replace_tag('country_trade_de&amp;iso=xstu', 'country_trade_de') # pq.replace_tag('country_trade_de&amp;iso=xdus', 'country_trade_de') # pq.replace_tag('country_trade_de&amp;iso=xham', 'country_trade_de') # pq.replace_tag('country_trade_de&amp;iso=xhan', 'country_trade_de') # pq.replace_tag('country_trade_de&amp;iso=xmun', 'country_trade_de') pq.add_tag_default() # # country_ar = 'argentina' list_symbol = pq.load_list_symbol_for_tag_all(['country_work_pe', 'exchange_xnys']) for symbol in list_symbol: print(symbol) list_symbol = pq.load_list_symbol_for_tag_all(['country_work_pe', 'exchange_xnas']) for symbol in list_symbol: print(symbol)
a74dca56a62b18a2bb84892722b4cfe1650e9df0
2709e527c217a8264b48e2f549b3284e5ccb9551
/0x0F-python-object_relational_mapping/relationship_state.py
d28e8a488307b18586655ba4e87563fc4629fed4
[]
no_license
kwhit2/holbertonschool-higher_level_programming
489d6b88ed14b9f2efd4637d8a71ae569b5027f6
2660516b12fee0f03c4025ba1d8d2762a8880a06
refs/heads/main
2023-05-22T17:57:02.035803
2021-06-12T18:43:54
2021-06-12T18:43:54
319,346,696
0
2
null
null
null
null
UTF-8
Python
false
false
533
py
#!/usr/bin/python3 """ Improved the file model_state.py with relationship class attribute """ from sqlalchemy import Column, Integer, String, ForeignKey from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import relationship Base = declarative_base() class State(Base): """ class State that inherits from Base """ __tablename__ = 'states' id = Column(Integer, primary_key=True, nullable=False) name = Column(String(128), nullable=False) cities = relationship('City', backref='state')
64c3eb71437a4c5058884aa72b33396beb0067b1
18a1a72b5f2f1c4a668a96a6365daabe35729750
/user/social_views.py
e457377a82d90aadc07ff6d46f278b3873719d25
[]
no_license
AktanKasymaliev/django-ashar-app-backend
200d0af0fd60d90834895f2c8924d0f5fe3a03c5
0b8d59203399487a1ee4dcae24ed6c716960380c
refs/heads/main
2023-07-02T06:55:26.903742
2021-08-04T14:54:03
2021-08-04T14:54:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
358
py
from allauth.socialaccount.providers.google.views import GoogleOAuth2Adapter from allauth.socialaccount.providers.facebook.views import FacebookOAuth2Adapter from user.views import SocialLoginView class GoogleLogin(SocialLoginView): adapter_class = GoogleOAuth2Adapter class FacebookLogin(SocialLoginView): adapter_class = FacebookOAuth2Adapter
c2839fdaac33d51f5cc655bfc494acba3ed70d91
9a819fc91e17ef9a44e45cf68e76cf696381d06d
/api_gateway_examples/.env/lib/python3.6/site-packages/aws_cdk/aws_cloudwatch/__init__.py
dbbfba21e77e6539b687f68d85f00e427ce6fce1
[]
no_license
Gautam3994/Dark-Knight
aef1d6383e0785130db75e80ed40f544a120579e
327b2d58851a42da1b707addea73e40fac6a61cc
refs/heads/master
2022-12-01T11:58:39.857379
2020-09-05T18:07:51
2020-09-05T18:07:55
203,866,327
0
1
null
2022-11-24T09:16:18
2019-08-22T20:14:43
Python
UTF-8
Python
false
false
213,882
py
""" ## Amazon CloudWatch Construct Library <!--BEGIN STABILITY BANNER-->--- ![Stability: Stable](https://img.shields.io/badge/stability-Stable-success.svg?style=for-the-badge) --- <!--END STABILITY BANNER--> ## Metric objects Metric objects represent a metric that is emitted by AWS services or your own application, such as `CPUUsage`, `FailureCount` or `Bandwidth`. Metric objects can be constructed directly or are exposed by resources as attributes. Resources that expose metrics will have functions that look like `metricXxx()` which will return a Metric object, initialized with defaults that make sense. For example, `lambda.Function` objects have the `fn.metricErrors()` method, which represents the amount of errors reported by that Lambda function: ```python # Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826 errors = fn.metric_errors() ``` ### Instantiating a new Metric object If you want to reference a metric that is not yet exposed by an existing construct, you can instantiate a `Metric` object to represent it. For example: ```python # Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826 metric = Metric( namespace="MyNamespace", metric_name="MyMetric", dimensions={ "ProcessingStep": "Download" } ) ``` ### Metric Math Math expressions are supported by instantiating the `MathExpression` class. For example, a math expression that sums two other metrics looks like this: ```python # Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826 all_problems = MathExpression( expression="errors + faults", using_metrics={ "errors": my_construct.metric_errors(), "faults": my_construct.metric_faults() } ) ``` You can use `MathExpression` objects like any other metric, including using them in other math expressions: ```python # Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826 problem_percentage = MathExpression( expression="(problems / invocations) * 100", using_metrics={ "problems": all_problems, "invocations": my_construct.metric_invocations() } ) ``` ### Aggregation To graph or alarm on metrics you must aggregate them first, using a function like `Average` or a percentile function like `P99`. By default, most Metric objects returned by CDK libraries will be configured as `Average` over `300 seconds` (5 minutes). The exception is if the metric represents a count of discrete events, such as failures. In that case, the Metric object will be configured as `Sum` over `300 seconds`, i.e. it represents the number of times that event occurred over the time period. If you want to change the default aggregation of the Metric object (for example, the function or the period), you can do so by passing additional parameters to the metric function call: ```python # Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826 minute_error_rate = fn.metric_errors( statistic="avg", period=Duration.minutes(1), label="Lambda failure rate" ) ``` This function also allows changing the metric label or color (which will be useful when embedding them in graphs, see below). > Rates versus Sums > > The reason for using `Sum` to count discrete events is that *some* events are > emitted as either `0` or `1` (for example `Errors` for a Lambda) and some are > only emitted as `1` (for example `NumberOfMessagesPublished` for an SNS > topic). > > In case `0`-metrics are emitted, it makes sense to take the `Average` of this > metric: the result will be the fraction of errors over all executions. > > If `0`-metrics are not emitted, the `Average` will always be equal to `1`, > and not be very useful. > > In order to simplify the mental model of `Metric` objects, we default to > aggregating using `Sum`, which will be the same for both metrics types. If you > happen to know the Metric you want to alarm on makes sense as a rate > (`Average`) you can always choose to change the statistic. ## Alarms Alarms can be created on metrics in one of two ways. Either create an `Alarm` object, passing the `Metric` object to set the alarm on: ```python # Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826 Alarm(self, "Alarm", metric=fn.metric_errors(), threshold=100, evaluation_periods=2 ) ``` Alternatively, you can call `metric.createAlarm()`: ```python # Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826 fn.metric_errors().create_alarm(self, "Alarm", threshold=100, evaluation_periods=2 ) ``` The most important properties to set while creating an Alarms are: * `threshold`: the value to compare the metric against. * `comparisonOperator`: the comparison operation to use, defaults to `metric >= threshold`. * `evaluationPeriods`: how many consecutive periods the metric has to be breaching the the threshold for the alarm to trigger. ### A note on units In CloudWatch, Metrics datums are emitted with units, such as `seconds` or `bytes`. When `Metric` objects are given a `unit` attribute, it will be used to *filter* the stream of metric datums for datums emitted using the same `unit` attribute. In particular, the `unit` field is *not* used to rescale datums or alarm threshold values (for example, it cannot be used to specify an alarm threshold in *Megabytes* if the metric stream is being emitted as *bytes*). You almost certainly don't want to specify the `unit` property when creating `Metric` objects (which will retrieve all datums regardless of their unit), unless you have very specific requirements. Note that in any case, CloudWatch only supports filtering by `unit` for Alarms, not in Dashboard graphs. Please see the following GitHub issue for a discussion on real unit calculations in CDK: https://github.com/aws/aws-cdk/issues/5595 ## Dashboards Dashboards are set of Widgets stored server-side which can be accessed quickly from the AWS console. Available widgets are graphs of a metric over time, the current value of a metric, or a static piece of Markdown which explains what the graphs mean. The following widgets are available: * `GraphWidget` -- shows any number of metrics on both the left and right vertical axes. * `AlarmWidget` -- shows the graph and alarm line for a single alarm. * `SingleValueWidget` -- shows the current value of a set of metrics. * `TextWidget` -- shows some static Markdown. ### Graph widget A graph widget can display any number of metrics on either the `left` or `right` vertical axis: ```python # Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826 dashboard.add_widgets(GraphWidget( title="Executions vs error rate", left=[execution_count_metric], right=[error_count_metric.with( statistic="average", label="Error rate", color="00FF00" )] )) ``` ### Alarm widget An alarm widget shows the graph and the alarm line of a single alarm: ```python # Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826 dashboard.add_widgets(AlarmWidget( title="Errors", alarm=error_alarm )) ``` ### Single value widget A single-value widget shows the latest value of a set of metrics (as opposed to a graph of the value over time): ```python # Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826 dashboard.add_widgets(SingleValueWidget( metrics=[visitor_count, purchase_count] )) ``` ### Text widget A text widget shows an arbitrary piece of MarkDown. Use this to add explanations to your dashboard: ```python # Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826 dashboard.add_widgets(TextWidget( markdown="# Key Performance Indicators" )) ``` ### Dashboard Layout The widgets on a dashboard are visually laid out in a grid that is 24 columns wide. Normally you specify X and Y coordinates for the widgets on a Dashboard, but because this is inconvenient to do manually, the library contains a simple layout system to help you lay out your dashboards the way you want them to. Widgets have a `width` and `height` property, and they will be automatically laid out either horizontally or vertically stacked to fill out the available space. Widgets are added to a Dashboard by calling `add(widget1, widget2, ...)`. Widgets given in the same call will be laid out horizontally. Widgets given in different calls will be laid out vertically. To make more complex layouts, you can use the following widgets to pack widgets together in different ways: * `Column`: stack two or more widgets vertically. * `Row`: lay out two or more widgets horizontally. * `Spacer`: take up empty space """ import abc import builtins import datetime import enum import typing import jsii import jsii.compat import publication import aws_cdk.aws_iam import aws_cdk.core __jsii_assembly__ = jsii.JSIIAssembly.load("@aws-cdk/aws-cloudwatch", "1.20.0", __name__, "[email protected]") @jsii.data_type(jsii_type="@aws-cdk/aws-cloudwatch.AlarmActionConfig", jsii_struct_bases=[], name_mapping={'alarm_action_arn': 'alarmActionArn'}) class AlarmActionConfig(): def __init__(self, *, alarm_action_arn: str): """Properties for an alarm action. :param alarm_action_arn: Return the ARN that should be used for a CloudWatch Alarm action. """ self._values = { 'alarm_action_arn': alarm_action_arn, } @builtins.property def alarm_action_arn(self) -> str: """Return the ARN that should be used for a CloudWatch Alarm action.""" return self._values.get('alarm_action_arn') def __eq__(self, rhs) -> bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs) -> bool: return not (rhs == self) def __repr__(self) -> str: return 'AlarmActionConfig(%s)' % ', '.join(k + '=' + repr(v) for k, v in self._values.items()) @jsii.implements(aws_cdk.core.IInspectable) class CfnAlarm(aws_cdk.core.CfnResource, metaclass=jsii.JSIIMeta, jsii_type="@aws-cdk/aws-cloudwatch.CfnAlarm"): """A CloudFormation ``AWS::CloudWatch::Alarm``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html cloudformationResource: :cloudformationResource:: AWS::CloudWatch::Alarm """ def __init__(self, scope: aws_cdk.core.Construct, id: str, *, comparison_operator: str, evaluation_periods: jsii.Number, actions_enabled: typing.Optional[typing.Union[typing.Optional[bool], typing.Optional[aws_cdk.core.IResolvable]]]=None, alarm_actions: typing.Optional[typing.List[str]]=None, alarm_description: typing.Optional[str]=None, alarm_name: typing.Optional[str]=None, datapoints_to_alarm: typing.Optional[jsii.Number]=None, dimensions: typing.Optional[typing.Union[typing.Optional[aws_cdk.core.IResolvable], typing.Optional[typing.List[typing.Union[aws_cdk.core.IResolvable, "DimensionProperty"]]]]]=None, evaluate_low_sample_count_percentile: typing.Optional[str]=None, extended_statistic: typing.Optional[str]=None, insufficient_data_actions: typing.Optional[typing.List[str]]=None, metric_name: typing.Optional[str]=None, metrics: typing.Optional[typing.Union[typing.Optional[aws_cdk.core.IResolvable], typing.Optional[typing.List[typing.Union[aws_cdk.core.IResolvable, "MetricDataQueryProperty"]]]]]=None, namespace: typing.Optional[str]=None, ok_actions: typing.Optional[typing.List[str]]=None, period: typing.Optional[jsii.Number]=None, statistic: typing.Optional[str]=None, threshold: typing.Optional[jsii.Number]=None, threshold_metric_id: typing.Optional[str]=None, treat_missing_data: typing.Optional[str]=None, unit: typing.Optional[str]=None) -> None: """Create a new ``AWS::CloudWatch::Alarm``. :param scope: - scope in which this resource is defined. :param id: - scoped id of the resource. :param comparison_operator: ``AWS::CloudWatch::Alarm.ComparisonOperator``. :param evaluation_periods: ``AWS::CloudWatch::Alarm.EvaluationPeriods``. :param actions_enabled: ``AWS::CloudWatch::Alarm.ActionsEnabled``. :param alarm_actions: ``AWS::CloudWatch::Alarm.AlarmActions``. :param alarm_description: ``AWS::CloudWatch::Alarm.AlarmDescription``. :param alarm_name: ``AWS::CloudWatch::Alarm.AlarmName``. :param datapoints_to_alarm: ``AWS::CloudWatch::Alarm.DatapointsToAlarm``. :param dimensions: ``AWS::CloudWatch::Alarm.Dimensions``. :param evaluate_low_sample_count_percentile: ``AWS::CloudWatch::Alarm.EvaluateLowSampleCountPercentile``. :param extended_statistic: ``AWS::CloudWatch::Alarm.ExtendedStatistic``. :param insufficient_data_actions: ``AWS::CloudWatch::Alarm.InsufficientDataActions``. :param metric_name: ``AWS::CloudWatch::Alarm.MetricName``. :param metrics: ``AWS::CloudWatch::Alarm.Metrics``. :param namespace: ``AWS::CloudWatch::Alarm.Namespace``. :param ok_actions: ``AWS::CloudWatch::Alarm.OKActions``. :param period: ``AWS::CloudWatch::Alarm.Period``. :param statistic: ``AWS::CloudWatch::Alarm.Statistic``. :param threshold: ``AWS::CloudWatch::Alarm.Threshold``. :param threshold_metric_id: ``AWS::CloudWatch::Alarm.ThresholdMetricId``. :param treat_missing_data: ``AWS::CloudWatch::Alarm.TreatMissingData``. :param unit: ``AWS::CloudWatch::Alarm.Unit``. """ props = CfnAlarmProps(comparison_operator=comparison_operator, evaluation_periods=evaluation_periods, actions_enabled=actions_enabled, alarm_actions=alarm_actions, alarm_description=alarm_description, alarm_name=alarm_name, datapoints_to_alarm=datapoints_to_alarm, dimensions=dimensions, evaluate_low_sample_count_percentile=evaluate_low_sample_count_percentile, extended_statistic=extended_statistic, insufficient_data_actions=insufficient_data_actions, metric_name=metric_name, metrics=metrics, namespace=namespace, ok_actions=ok_actions, period=period, statistic=statistic, threshold=threshold, threshold_metric_id=threshold_metric_id, treat_missing_data=treat_missing_data, unit=unit) jsii.create(CfnAlarm, self, [scope, id, props]) @jsii.member(jsii_name="inspect") def inspect(self, inspector: aws_cdk.core.TreeInspector) -> None: """Examines the CloudFormation resource and discloses attributes. :param inspector: - tree inspector to collect and process attributes. stability :stability: experimental """ return jsii.invoke(self, "inspect", [inspector]) @jsii.member(jsii_name="renderProperties") def _render_properties(self, props: typing.Mapping[str,typing.Any]) -> typing.Mapping[str,typing.Any]: """ :param props: - """ return jsii.invoke(self, "renderProperties", [props]) @jsii.python.classproperty @jsii.member(jsii_name="CFN_RESOURCE_TYPE_NAME") def CFN_RESOURCE_TYPE_NAME(cls) -> str: """The CloudFormation resource type name for this resource class.""" return jsii.sget(cls, "CFN_RESOURCE_TYPE_NAME") @builtins.property @jsii.member(jsii_name="attrArn") def attr_arn(self) -> str: """ cloudformationAttribute: :cloudformationAttribute:: Arn """ return jsii.get(self, "attrArn") @builtins.property @jsii.member(jsii_name="cfnProperties") def _cfn_properties(self) -> typing.Mapping[str,typing.Any]: return jsii.get(self, "cfnProperties") @builtins.property @jsii.member(jsii_name="comparisonOperator") def comparison_operator(self) -> str: """``AWS::CloudWatch::Alarm.ComparisonOperator``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-alarms-comparisonoperator """ return jsii.get(self, "comparisonOperator") @comparison_operator.setter def comparison_operator(self, value: str): jsii.set(self, "comparisonOperator", value) @builtins.property @jsii.member(jsii_name="evaluationPeriods") def evaluation_periods(self) -> jsii.Number: """``AWS::CloudWatch::Alarm.EvaluationPeriods``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-alarms-evaluationperiods """ return jsii.get(self, "evaluationPeriods") @evaluation_periods.setter def evaluation_periods(self, value: jsii.Number): jsii.set(self, "evaluationPeriods", value) @builtins.property @jsii.member(jsii_name="actionsEnabled") def actions_enabled(self) -> typing.Optional[typing.Union[typing.Optional[bool], typing.Optional[aws_cdk.core.IResolvable]]]: """``AWS::CloudWatch::Alarm.ActionsEnabled``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-alarms-actionsenabled """ return jsii.get(self, "actionsEnabled") @actions_enabled.setter def actions_enabled(self, value: typing.Optional[typing.Union[typing.Optional[bool], typing.Optional[aws_cdk.core.IResolvable]]]): jsii.set(self, "actionsEnabled", value) @builtins.property @jsii.member(jsii_name="alarmActions") def alarm_actions(self) -> typing.Optional[typing.List[str]]: """``AWS::CloudWatch::Alarm.AlarmActions``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-alarms-alarmactions """ return jsii.get(self, "alarmActions") @alarm_actions.setter def alarm_actions(self, value: typing.Optional[typing.List[str]]): jsii.set(self, "alarmActions", value) @builtins.property @jsii.member(jsii_name="alarmDescription") def alarm_description(self) -> typing.Optional[str]: """``AWS::CloudWatch::Alarm.AlarmDescription``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-alarms-alarmdescription """ return jsii.get(self, "alarmDescription") @alarm_description.setter def alarm_description(self, value: typing.Optional[str]): jsii.set(self, "alarmDescription", value) @builtins.property @jsii.member(jsii_name="alarmName") def alarm_name(self) -> typing.Optional[str]: """``AWS::CloudWatch::Alarm.AlarmName``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-alarms-alarmname """ return jsii.get(self, "alarmName") @alarm_name.setter def alarm_name(self, value: typing.Optional[str]): jsii.set(self, "alarmName", value) @builtins.property @jsii.member(jsii_name="datapointsToAlarm") def datapoints_to_alarm(self) -> typing.Optional[jsii.Number]: """``AWS::CloudWatch::Alarm.DatapointsToAlarm``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-alarm-datapointstoalarm """ return jsii.get(self, "datapointsToAlarm") @datapoints_to_alarm.setter def datapoints_to_alarm(self, value: typing.Optional[jsii.Number]): jsii.set(self, "datapointsToAlarm", value) @builtins.property @jsii.member(jsii_name="dimensions") def dimensions(self) -> typing.Optional[typing.Union[typing.Optional[aws_cdk.core.IResolvable], typing.Optional[typing.List[typing.Union[aws_cdk.core.IResolvable, "DimensionProperty"]]]]]: """``AWS::CloudWatch::Alarm.Dimensions``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-alarms-dimension """ return jsii.get(self, "dimensions") @dimensions.setter def dimensions(self, value: typing.Optional[typing.Union[typing.Optional[aws_cdk.core.IResolvable], typing.Optional[typing.List[typing.Union[aws_cdk.core.IResolvable, "DimensionProperty"]]]]]): jsii.set(self, "dimensions", value) @builtins.property @jsii.member(jsii_name="evaluateLowSampleCountPercentile") def evaluate_low_sample_count_percentile(self) -> typing.Optional[str]: """``AWS::CloudWatch::Alarm.EvaluateLowSampleCountPercentile``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-alarms-evaluatelowsamplecountpercentile """ return jsii.get(self, "evaluateLowSampleCountPercentile") @evaluate_low_sample_count_percentile.setter def evaluate_low_sample_count_percentile(self, value: typing.Optional[str]): jsii.set(self, "evaluateLowSampleCountPercentile", value) @builtins.property @jsii.member(jsii_name="extendedStatistic") def extended_statistic(self) -> typing.Optional[str]: """``AWS::CloudWatch::Alarm.ExtendedStatistic``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-alarms-extendedstatistic """ return jsii.get(self, "extendedStatistic") @extended_statistic.setter def extended_statistic(self, value: typing.Optional[str]): jsii.set(self, "extendedStatistic", value) @builtins.property @jsii.member(jsii_name="insufficientDataActions") def insufficient_data_actions(self) -> typing.Optional[typing.List[str]]: """``AWS::CloudWatch::Alarm.InsufficientDataActions``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-alarms-insufficientdataactions """ return jsii.get(self, "insufficientDataActions") @insufficient_data_actions.setter def insufficient_data_actions(self, value: typing.Optional[typing.List[str]]): jsii.set(self, "insufficientDataActions", value) @builtins.property @jsii.member(jsii_name="metricName") def metric_name(self) -> typing.Optional[str]: """``AWS::CloudWatch::Alarm.MetricName``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-alarms-metricname """ return jsii.get(self, "metricName") @metric_name.setter def metric_name(self, value: typing.Optional[str]): jsii.set(self, "metricName", value) @builtins.property @jsii.member(jsii_name="metrics") def metrics(self) -> typing.Optional[typing.Union[typing.Optional[aws_cdk.core.IResolvable], typing.Optional[typing.List[typing.Union[aws_cdk.core.IResolvable, "MetricDataQueryProperty"]]]]]: """``AWS::CloudWatch::Alarm.Metrics``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-alarm-metrics """ return jsii.get(self, "metrics") @metrics.setter def metrics(self, value: typing.Optional[typing.Union[typing.Optional[aws_cdk.core.IResolvable], typing.Optional[typing.List[typing.Union[aws_cdk.core.IResolvable, "MetricDataQueryProperty"]]]]]): jsii.set(self, "metrics", value) @builtins.property @jsii.member(jsii_name="namespace") def namespace(self) -> typing.Optional[str]: """``AWS::CloudWatch::Alarm.Namespace``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-alarms-namespace """ return jsii.get(self, "namespace") @namespace.setter def namespace(self, value: typing.Optional[str]): jsii.set(self, "namespace", value) @builtins.property @jsii.member(jsii_name="okActions") def ok_actions(self) -> typing.Optional[typing.List[str]]: """``AWS::CloudWatch::Alarm.OKActions``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-alarms-okactions """ return jsii.get(self, "okActions") @ok_actions.setter def ok_actions(self, value: typing.Optional[typing.List[str]]): jsii.set(self, "okActions", value) @builtins.property @jsii.member(jsii_name="period") def period(self) -> typing.Optional[jsii.Number]: """``AWS::CloudWatch::Alarm.Period``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-alarms-period """ return jsii.get(self, "period") @period.setter def period(self, value: typing.Optional[jsii.Number]): jsii.set(self, "period", value) @builtins.property @jsii.member(jsii_name="statistic") def statistic(self) -> typing.Optional[str]: """``AWS::CloudWatch::Alarm.Statistic``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-alarms-statistic """ return jsii.get(self, "statistic") @statistic.setter def statistic(self, value: typing.Optional[str]): jsii.set(self, "statistic", value) @builtins.property @jsii.member(jsii_name="threshold") def threshold(self) -> typing.Optional[jsii.Number]: """``AWS::CloudWatch::Alarm.Threshold``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-alarms-threshold """ return jsii.get(self, "threshold") @threshold.setter def threshold(self, value: typing.Optional[jsii.Number]): jsii.set(self, "threshold", value) @builtins.property @jsii.member(jsii_name="thresholdMetricId") def threshold_metric_id(self) -> typing.Optional[str]: """``AWS::CloudWatch::Alarm.ThresholdMetricId``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-alarms-dynamic-threshold """ return jsii.get(self, "thresholdMetricId") @threshold_metric_id.setter def threshold_metric_id(self, value: typing.Optional[str]): jsii.set(self, "thresholdMetricId", value) @builtins.property @jsii.member(jsii_name="treatMissingData") def treat_missing_data(self) -> typing.Optional[str]: """``AWS::CloudWatch::Alarm.TreatMissingData``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-alarms-treatmissingdata """ return jsii.get(self, "treatMissingData") @treat_missing_data.setter def treat_missing_data(self, value: typing.Optional[str]): jsii.set(self, "treatMissingData", value) @builtins.property @jsii.member(jsii_name="unit") def unit(self) -> typing.Optional[str]: """``AWS::CloudWatch::Alarm.Unit``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-alarms-unit """ return jsii.get(self, "unit") @unit.setter def unit(self, value: typing.Optional[str]): jsii.set(self, "unit", value) @jsii.data_type(jsii_type="@aws-cdk/aws-cloudwatch.CfnAlarm.DimensionProperty", jsii_struct_bases=[], name_mapping={'name': 'name', 'value': 'value'}) class DimensionProperty(): def __init__(self, *, name: str, value: str): """ :param name: ``CfnAlarm.DimensionProperty.Name``. :param value: ``CfnAlarm.DimensionProperty.Value``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-dimension.html """ self._values = { 'name': name, 'value': value, } @builtins.property def name(self) -> str: """``CfnAlarm.DimensionProperty.Name``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-dimension.html#cfn-cloudwatch-alarm-dimension-name """ return self._values.get('name') @builtins.property def value(self) -> str: """``CfnAlarm.DimensionProperty.Value``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-dimension.html#cfn-cloudwatch-alarm-dimension-value """ return self._values.get('value') def __eq__(self, rhs) -> bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs) -> bool: return not (rhs == self) def __repr__(self) -> str: return 'DimensionProperty(%s)' % ', '.join(k + '=' + repr(v) for k, v in self._values.items()) @jsii.data_type(jsii_type="@aws-cdk/aws-cloudwatch.CfnAlarm.MetricDataQueryProperty", jsii_struct_bases=[], name_mapping={'id': 'id', 'expression': 'expression', 'label': 'label', 'metric_stat': 'metricStat', 'return_data': 'returnData'}) class MetricDataQueryProperty(): def __init__(self, *, id: str, expression: typing.Optional[str]=None, label: typing.Optional[str]=None, metric_stat: typing.Optional[typing.Union[typing.Optional[aws_cdk.core.IResolvable], typing.Optional["CfnAlarm.MetricStatProperty"]]]=None, return_data: typing.Optional[typing.Union[typing.Optional[bool], typing.Optional[aws_cdk.core.IResolvable]]]=None): """ :param id: ``CfnAlarm.MetricDataQueryProperty.Id``. :param expression: ``CfnAlarm.MetricDataQueryProperty.Expression``. :param label: ``CfnAlarm.MetricDataQueryProperty.Label``. :param metric_stat: ``CfnAlarm.MetricDataQueryProperty.MetricStat``. :param return_data: ``CfnAlarm.MetricDataQueryProperty.ReturnData``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cloudwatch-alarm-metricdataquery.html """ self._values = { 'id': id, } if expression is not None: self._values["expression"] = expression if label is not None: self._values["label"] = label if metric_stat is not None: self._values["metric_stat"] = metric_stat if return_data is not None: self._values["return_data"] = return_data @builtins.property def id(self) -> str: """``CfnAlarm.MetricDataQueryProperty.Id``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cloudwatch-alarm-metricdataquery.html#cfn-cloudwatch-alarm-metricdataquery-id """ return self._values.get('id') @builtins.property def expression(self) -> typing.Optional[str]: """``CfnAlarm.MetricDataQueryProperty.Expression``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cloudwatch-alarm-metricdataquery.html#cfn-cloudwatch-alarm-metricdataquery-expression """ return self._values.get('expression') @builtins.property def label(self) -> typing.Optional[str]: """``CfnAlarm.MetricDataQueryProperty.Label``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cloudwatch-alarm-metricdataquery.html#cfn-cloudwatch-alarm-metricdataquery-label """ return self._values.get('label') @builtins.property def metric_stat(self) -> typing.Optional[typing.Union[typing.Optional[aws_cdk.core.IResolvable], typing.Optional["CfnAlarm.MetricStatProperty"]]]: """``CfnAlarm.MetricDataQueryProperty.MetricStat``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cloudwatch-alarm-metricdataquery.html#cfn-cloudwatch-alarm-metricdataquery-metricstat """ return self._values.get('metric_stat') @builtins.property def return_data(self) -> typing.Optional[typing.Union[typing.Optional[bool], typing.Optional[aws_cdk.core.IResolvable]]]: """``CfnAlarm.MetricDataQueryProperty.ReturnData``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cloudwatch-alarm-metricdataquery.html#cfn-cloudwatch-alarm-metricdataquery-returndata """ return self._values.get('return_data') def __eq__(self, rhs) -> bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs) -> bool: return not (rhs == self) def __repr__(self) -> str: return 'MetricDataQueryProperty(%s)' % ', '.join(k + '=' + repr(v) for k, v in self._values.items()) @jsii.data_type(jsii_type="@aws-cdk/aws-cloudwatch.CfnAlarm.MetricProperty", jsii_struct_bases=[], name_mapping={'dimensions': 'dimensions', 'metric_name': 'metricName', 'namespace': 'namespace'}) class MetricProperty(): def __init__(self, *, dimensions: typing.Optional[typing.Union[typing.Optional[aws_cdk.core.IResolvable], typing.Optional[typing.List[typing.Union[aws_cdk.core.IResolvable, "CfnAlarm.DimensionProperty"]]]]]=None, metric_name: typing.Optional[str]=None, namespace: typing.Optional[str]=None): """ :param dimensions: ``CfnAlarm.MetricProperty.Dimensions``. :param metric_name: ``CfnAlarm.MetricProperty.MetricName``. :param namespace: ``CfnAlarm.MetricProperty.Namespace``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cloudwatch-alarm-metric.html """ self._values = { } if dimensions is not None: self._values["dimensions"] = dimensions if metric_name is not None: self._values["metric_name"] = metric_name if namespace is not None: self._values["namespace"] = namespace @builtins.property def dimensions(self) -> typing.Optional[typing.Union[typing.Optional[aws_cdk.core.IResolvable], typing.Optional[typing.List[typing.Union[aws_cdk.core.IResolvable, "CfnAlarm.DimensionProperty"]]]]]: """``CfnAlarm.MetricProperty.Dimensions``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cloudwatch-alarm-metric.html#cfn-cloudwatch-alarm-metric-dimensions """ return self._values.get('dimensions') @builtins.property def metric_name(self) -> typing.Optional[str]: """``CfnAlarm.MetricProperty.MetricName``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cloudwatch-alarm-metric.html#cfn-cloudwatch-alarm-metric-metricname """ return self._values.get('metric_name') @builtins.property def namespace(self) -> typing.Optional[str]: """``CfnAlarm.MetricProperty.Namespace``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cloudwatch-alarm-metric.html#cfn-cloudwatch-alarm-metric-namespace """ return self._values.get('namespace') def __eq__(self, rhs) -> bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs) -> bool: return not (rhs == self) def __repr__(self) -> str: return 'MetricProperty(%s)' % ', '.join(k + '=' + repr(v) for k, v in self._values.items()) @jsii.data_type(jsii_type="@aws-cdk/aws-cloudwatch.CfnAlarm.MetricStatProperty", jsii_struct_bases=[], name_mapping={'metric': 'metric', 'period': 'period', 'stat': 'stat', 'unit': 'unit'}) class MetricStatProperty(): def __init__(self, *, metric: typing.Union[aws_cdk.core.IResolvable, "CfnAlarm.MetricProperty"], period: jsii.Number, stat: str, unit: typing.Optional[str]=None): """ :param metric: ``CfnAlarm.MetricStatProperty.Metric``. :param period: ``CfnAlarm.MetricStatProperty.Period``. :param stat: ``CfnAlarm.MetricStatProperty.Stat``. :param unit: ``CfnAlarm.MetricStatProperty.Unit``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cloudwatch-alarm-metricstat.html """ self._values = { 'metric': metric, 'period': period, 'stat': stat, } if unit is not None: self._values["unit"] = unit @builtins.property def metric(self) -> typing.Union[aws_cdk.core.IResolvable, "CfnAlarm.MetricProperty"]: """``CfnAlarm.MetricStatProperty.Metric``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cloudwatch-alarm-metricstat.html#cfn-cloudwatch-alarm-metricstat-metric """ return self._values.get('metric') @builtins.property def period(self) -> jsii.Number: """``CfnAlarm.MetricStatProperty.Period``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cloudwatch-alarm-metricstat.html#cfn-cloudwatch-alarm-metricstat-period """ return self._values.get('period') @builtins.property def stat(self) -> str: """``CfnAlarm.MetricStatProperty.Stat``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cloudwatch-alarm-metricstat.html#cfn-cloudwatch-alarm-metricstat-stat """ return self._values.get('stat') @builtins.property def unit(self) -> typing.Optional[str]: """``CfnAlarm.MetricStatProperty.Unit``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cloudwatch-alarm-metricstat.html#cfn-cloudwatch-alarm-metricstat-unit """ return self._values.get('unit') def __eq__(self, rhs) -> bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs) -> bool: return not (rhs == self) def __repr__(self) -> str: return 'MetricStatProperty(%s)' % ', '.join(k + '=' + repr(v) for k, v in self._values.items()) @jsii.data_type(jsii_type="@aws-cdk/aws-cloudwatch.CfnAlarmProps", jsii_struct_bases=[], name_mapping={'comparison_operator': 'comparisonOperator', 'evaluation_periods': 'evaluationPeriods', 'actions_enabled': 'actionsEnabled', 'alarm_actions': 'alarmActions', 'alarm_description': 'alarmDescription', 'alarm_name': 'alarmName', 'datapoints_to_alarm': 'datapointsToAlarm', 'dimensions': 'dimensions', 'evaluate_low_sample_count_percentile': 'evaluateLowSampleCountPercentile', 'extended_statistic': 'extendedStatistic', 'insufficient_data_actions': 'insufficientDataActions', 'metric_name': 'metricName', 'metrics': 'metrics', 'namespace': 'namespace', 'ok_actions': 'okActions', 'period': 'period', 'statistic': 'statistic', 'threshold': 'threshold', 'threshold_metric_id': 'thresholdMetricId', 'treat_missing_data': 'treatMissingData', 'unit': 'unit'}) class CfnAlarmProps(): def __init__(self, *, comparison_operator: str, evaluation_periods: jsii.Number, actions_enabled: typing.Optional[typing.Union[typing.Optional[bool], typing.Optional[aws_cdk.core.IResolvable]]]=None, alarm_actions: typing.Optional[typing.List[str]]=None, alarm_description: typing.Optional[str]=None, alarm_name: typing.Optional[str]=None, datapoints_to_alarm: typing.Optional[jsii.Number]=None, dimensions: typing.Optional[typing.Union[typing.Optional[aws_cdk.core.IResolvable], typing.Optional[typing.List[typing.Union[aws_cdk.core.IResolvable, "CfnAlarm.DimensionProperty"]]]]]=None, evaluate_low_sample_count_percentile: typing.Optional[str]=None, extended_statistic: typing.Optional[str]=None, insufficient_data_actions: typing.Optional[typing.List[str]]=None, metric_name: typing.Optional[str]=None, metrics: typing.Optional[typing.Union[typing.Optional[aws_cdk.core.IResolvable], typing.Optional[typing.List[typing.Union[aws_cdk.core.IResolvable, "CfnAlarm.MetricDataQueryProperty"]]]]]=None, namespace: typing.Optional[str]=None, ok_actions: typing.Optional[typing.List[str]]=None, period: typing.Optional[jsii.Number]=None, statistic: typing.Optional[str]=None, threshold: typing.Optional[jsii.Number]=None, threshold_metric_id: typing.Optional[str]=None, treat_missing_data: typing.Optional[str]=None, unit: typing.Optional[str]=None): """Properties for defining a ``AWS::CloudWatch::Alarm``. :param comparison_operator: ``AWS::CloudWatch::Alarm.ComparisonOperator``. :param evaluation_periods: ``AWS::CloudWatch::Alarm.EvaluationPeriods``. :param actions_enabled: ``AWS::CloudWatch::Alarm.ActionsEnabled``. :param alarm_actions: ``AWS::CloudWatch::Alarm.AlarmActions``. :param alarm_description: ``AWS::CloudWatch::Alarm.AlarmDescription``. :param alarm_name: ``AWS::CloudWatch::Alarm.AlarmName``. :param datapoints_to_alarm: ``AWS::CloudWatch::Alarm.DatapointsToAlarm``. :param dimensions: ``AWS::CloudWatch::Alarm.Dimensions``. :param evaluate_low_sample_count_percentile: ``AWS::CloudWatch::Alarm.EvaluateLowSampleCountPercentile``. :param extended_statistic: ``AWS::CloudWatch::Alarm.ExtendedStatistic``. :param insufficient_data_actions: ``AWS::CloudWatch::Alarm.InsufficientDataActions``. :param metric_name: ``AWS::CloudWatch::Alarm.MetricName``. :param metrics: ``AWS::CloudWatch::Alarm.Metrics``. :param namespace: ``AWS::CloudWatch::Alarm.Namespace``. :param ok_actions: ``AWS::CloudWatch::Alarm.OKActions``. :param period: ``AWS::CloudWatch::Alarm.Period``. :param statistic: ``AWS::CloudWatch::Alarm.Statistic``. :param threshold: ``AWS::CloudWatch::Alarm.Threshold``. :param threshold_metric_id: ``AWS::CloudWatch::Alarm.ThresholdMetricId``. :param treat_missing_data: ``AWS::CloudWatch::Alarm.TreatMissingData``. :param unit: ``AWS::CloudWatch::Alarm.Unit``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html """ self._values = { 'comparison_operator': comparison_operator, 'evaluation_periods': evaluation_periods, } if actions_enabled is not None: self._values["actions_enabled"] = actions_enabled if alarm_actions is not None: self._values["alarm_actions"] = alarm_actions if alarm_description is not None: self._values["alarm_description"] = alarm_description if alarm_name is not None: self._values["alarm_name"] = alarm_name if datapoints_to_alarm is not None: self._values["datapoints_to_alarm"] = datapoints_to_alarm if dimensions is not None: self._values["dimensions"] = dimensions if evaluate_low_sample_count_percentile is not None: self._values["evaluate_low_sample_count_percentile"] = evaluate_low_sample_count_percentile if extended_statistic is not None: self._values["extended_statistic"] = extended_statistic if insufficient_data_actions is not None: self._values["insufficient_data_actions"] = insufficient_data_actions if metric_name is not None: self._values["metric_name"] = metric_name if metrics is not None: self._values["metrics"] = metrics if namespace is not None: self._values["namespace"] = namespace if ok_actions is not None: self._values["ok_actions"] = ok_actions if period is not None: self._values["period"] = period if statistic is not None: self._values["statistic"] = statistic if threshold is not None: self._values["threshold"] = threshold if threshold_metric_id is not None: self._values["threshold_metric_id"] = threshold_metric_id if treat_missing_data is not None: self._values["treat_missing_data"] = treat_missing_data if unit is not None: self._values["unit"] = unit @builtins.property def comparison_operator(self) -> str: """``AWS::CloudWatch::Alarm.ComparisonOperator``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-alarms-comparisonoperator """ return self._values.get('comparison_operator') @builtins.property def evaluation_periods(self) -> jsii.Number: """``AWS::CloudWatch::Alarm.EvaluationPeriods``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-alarms-evaluationperiods """ return self._values.get('evaluation_periods') @builtins.property def actions_enabled(self) -> typing.Optional[typing.Union[typing.Optional[bool], typing.Optional[aws_cdk.core.IResolvable]]]: """``AWS::CloudWatch::Alarm.ActionsEnabled``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-alarms-actionsenabled """ return self._values.get('actions_enabled') @builtins.property def alarm_actions(self) -> typing.Optional[typing.List[str]]: """``AWS::CloudWatch::Alarm.AlarmActions``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-alarms-alarmactions """ return self._values.get('alarm_actions') @builtins.property def alarm_description(self) -> typing.Optional[str]: """``AWS::CloudWatch::Alarm.AlarmDescription``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-alarms-alarmdescription """ return self._values.get('alarm_description') @builtins.property def alarm_name(self) -> typing.Optional[str]: """``AWS::CloudWatch::Alarm.AlarmName``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-alarms-alarmname """ return self._values.get('alarm_name') @builtins.property def datapoints_to_alarm(self) -> typing.Optional[jsii.Number]: """``AWS::CloudWatch::Alarm.DatapointsToAlarm``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-alarm-datapointstoalarm """ return self._values.get('datapoints_to_alarm') @builtins.property def dimensions(self) -> typing.Optional[typing.Union[typing.Optional[aws_cdk.core.IResolvable], typing.Optional[typing.List[typing.Union[aws_cdk.core.IResolvable, "CfnAlarm.DimensionProperty"]]]]]: """``AWS::CloudWatch::Alarm.Dimensions``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-alarms-dimension """ return self._values.get('dimensions') @builtins.property def evaluate_low_sample_count_percentile(self) -> typing.Optional[str]: """``AWS::CloudWatch::Alarm.EvaluateLowSampleCountPercentile``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-alarms-evaluatelowsamplecountpercentile """ return self._values.get('evaluate_low_sample_count_percentile') @builtins.property def extended_statistic(self) -> typing.Optional[str]: """``AWS::CloudWatch::Alarm.ExtendedStatistic``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-alarms-extendedstatistic """ return self._values.get('extended_statistic') @builtins.property def insufficient_data_actions(self) -> typing.Optional[typing.List[str]]: """``AWS::CloudWatch::Alarm.InsufficientDataActions``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-alarms-insufficientdataactions """ return self._values.get('insufficient_data_actions') @builtins.property def metric_name(self) -> typing.Optional[str]: """``AWS::CloudWatch::Alarm.MetricName``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-alarms-metricname """ return self._values.get('metric_name') @builtins.property def metrics(self) -> typing.Optional[typing.Union[typing.Optional[aws_cdk.core.IResolvable], typing.Optional[typing.List[typing.Union[aws_cdk.core.IResolvable, "CfnAlarm.MetricDataQueryProperty"]]]]]: """``AWS::CloudWatch::Alarm.Metrics``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-alarm-metrics """ return self._values.get('metrics') @builtins.property def namespace(self) -> typing.Optional[str]: """``AWS::CloudWatch::Alarm.Namespace``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-alarms-namespace """ return self._values.get('namespace') @builtins.property def ok_actions(self) -> typing.Optional[typing.List[str]]: """``AWS::CloudWatch::Alarm.OKActions``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-alarms-okactions """ return self._values.get('ok_actions') @builtins.property def period(self) -> typing.Optional[jsii.Number]: """``AWS::CloudWatch::Alarm.Period``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-alarms-period """ return self._values.get('period') @builtins.property def statistic(self) -> typing.Optional[str]: """``AWS::CloudWatch::Alarm.Statistic``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-alarms-statistic """ return self._values.get('statistic') @builtins.property def threshold(self) -> typing.Optional[jsii.Number]: """``AWS::CloudWatch::Alarm.Threshold``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-alarms-threshold """ return self._values.get('threshold') @builtins.property def threshold_metric_id(self) -> typing.Optional[str]: """``AWS::CloudWatch::Alarm.ThresholdMetricId``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-alarms-dynamic-threshold """ return self._values.get('threshold_metric_id') @builtins.property def treat_missing_data(self) -> typing.Optional[str]: """``AWS::CloudWatch::Alarm.TreatMissingData``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-alarms-treatmissingdata """ return self._values.get('treat_missing_data') @builtins.property def unit(self) -> typing.Optional[str]: """``AWS::CloudWatch::Alarm.Unit``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-alarms-unit """ return self._values.get('unit') def __eq__(self, rhs) -> bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs) -> bool: return not (rhs == self) def __repr__(self) -> str: return 'CfnAlarmProps(%s)' % ', '.join(k + '=' + repr(v) for k, v in self._values.items()) @jsii.implements(aws_cdk.core.IInspectable) class CfnAnomalyDetector(aws_cdk.core.CfnResource, metaclass=jsii.JSIIMeta, jsii_type="@aws-cdk/aws-cloudwatch.CfnAnomalyDetector"): """A CloudFormation ``AWS::CloudWatch::AnomalyDetector``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-anomalydetector.html cloudformationResource: :cloudformationResource:: AWS::CloudWatch::AnomalyDetector """ def __init__(self, scope: aws_cdk.core.Construct, id: str, *, metric_name: str, namespace: str, stat: str, configuration: typing.Optional[typing.Union[typing.Optional[aws_cdk.core.IResolvable], typing.Optional["ConfigurationProperty"]]]=None, dimensions: typing.Optional[typing.Union[typing.Optional[aws_cdk.core.IResolvable], typing.Optional[typing.List[typing.Union[aws_cdk.core.IResolvable, "DimensionProperty"]]]]]=None) -> None: """Create a new ``AWS::CloudWatch::AnomalyDetector``. :param scope: - scope in which this resource is defined. :param id: - scoped id of the resource. :param metric_name: ``AWS::CloudWatch::AnomalyDetector.MetricName``. :param namespace: ``AWS::CloudWatch::AnomalyDetector.Namespace``. :param stat: ``AWS::CloudWatch::AnomalyDetector.Stat``. :param configuration: ``AWS::CloudWatch::AnomalyDetector.Configuration``. :param dimensions: ``AWS::CloudWatch::AnomalyDetector.Dimensions``. """ props = CfnAnomalyDetectorProps(metric_name=metric_name, namespace=namespace, stat=stat, configuration=configuration, dimensions=dimensions) jsii.create(CfnAnomalyDetector, self, [scope, id, props]) @jsii.member(jsii_name="inspect") def inspect(self, inspector: aws_cdk.core.TreeInspector) -> None: """Examines the CloudFormation resource and discloses attributes. :param inspector: - tree inspector to collect and process attributes. stability :stability: experimental """ return jsii.invoke(self, "inspect", [inspector]) @jsii.member(jsii_name="renderProperties") def _render_properties(self, props: typing.Mapping[str,typing.Any]) -> typing.Mapping[str,typing.Any]: """ :param props: - """ return jsii.invoke(self, "renderProperties", [props]) @jsii.python.classproperty @jsii.member(jsii_name="CFN_RESOURCE_TYPE_NAME") def CFN_RESOURCE_TYPE_NAME(cls) -> str: """The CloudFormation resource type name for this resource class.""" return jsii.sget(cls, "CFN_RESOURCE_TYPE_NAME") @builtins.property @jsii.member(jsii_name="cfnProperties") def _cfn_properties(self) -> typing.Mapping[str,typing.Any]: return jsii.get(self, "cfnProperties") @builtins.property @jsii.member(jsii_name="metricName") def metric_name(self) -> str: """``AWS::CloudWatch::AnomalyDetector.MetricName``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-anomalydetector.html#cfn-cloudwatch-anomalydetector-metricname """ return jsii.get(self, "metricName") @metric_name.setter def metric_name(self, value: str): jsii.set(self, "metricName", value) @builtins.property @jsii.member(jsii_name="namespace") def namespace(self) -> str: """``AWS::CloudWatch::AnomalyDetector.Namespace``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-anomalydetector.html#cfn-cloudwatch-anomalydetector-namespace """ return jsii.get(self, "namespace") @namespace.setter def namespace(self, value: str): jsii.set(self, "namespace", value) @builtins.property @jsii.member(jsii_name="stat") def stat(self) -> str: """``AWS::CloudWatch::AnomalyDetector.Stat``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-anomalydetector.html#cfn-cloudwatch-anomalydetector-stat """ return jsii.get(self, "stat") @stat.setter def stat(self, value: str): jsii.set(self, "stat", value) @builtins.property @jsii.member(jsii_name="configuration") def configuration(self) -> typing.Optional[typing.Union[typing.Optional[aws_cdk.core.IResolvable], typing.Optional["ConfigurationProperty"]]]: """``AWS::CloudWatch::AnomalyDetector.Configuration``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-anomalydetector.html#cfn-cloudwatch-anomalydetector-configuration """ return jsii.get(self, "configuration") @configuration.setter def configuration(self, value: typing.Optional[typing.Union[typing.Optional[aws_cdk.core.IResolvable], typing.Optional["ConfigurationProperty"]]]): jsii.set(self, "configuration", value) @builtins.property @jsii.member(jsii_name="dimensions") def dimensions(self) -> typing.Optional[typing.Union[typing.Optional[aws_cdk.core.IResolvable], typing.Optional[typing.List[typing.Union[aws_cdk.core.IResolvable, "DimensionProperty"]]]]]: """``AWS::CloudWatch::AnomalyDetector.Dimensions``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-anomalydetector.html#cfn-cloudwatch-anomalydetector-dimensions """ return jsii.get(self, "dimensions") @dimensions.setter def dimensions(self, value: typing.Optional[typing.Union[typing.Optional[aws_cdk.core.IResolvable], typing.Optional[typing.List[typing.Union[aws_cdk.core.IResolvable, "DimensionProperty"]]]]]): jsii.set(self, "dimensions", value) @jsii.data_type(jsii_type="@aws-cdk/aws-cloudwatch.CfnAnomalyDetector.ConfigurationProperty", jsii_struct_bases=[], name_mapping={'excluded_time_ranges': 'excludedTimeRanges', 'metric_time_zone': 'metricTimeZone'}) class ConfigurationProperty(): def __init__(self, *, excluded_time_ranges: typing.Optional[typing.Union[typing.Optional[aws_cdk.core.IResolvable], typing.Optional[typing.List[typing.Union[aws_cdk.core.IResolvable, "CfnAnomalyDetector.RangeProperty"]]]]]=None, metric_time_zone: typing.Optional[str]=None): """ :param excluded_time_ranges: ``CfnAnomalyDetector.ConfigurationProperty.ExcludedTimeRanges``. :param metric_time_zone: ``CfnAnomalyDetector.ConfigurationProperty.MetricTimeZone``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cloudwatch-anomalydetector-configuration.html """ self._values = { } if excluded_time_ranges is not None: self._values["excluded_time_ranges"] = excluded_time_ranges if metric_time_zone is not None: self._values["metric_time_zone"] = metric_time_zone @builtins.property def excluded_time_ranges(self) -> typing.Optional[typing.Union[typing.Optional[aws_cdk.core.IResolvable], typing.Optional[typing.List[typing.Union[aws_cdk.core.IResolvable, "CfnAnomalyDetector.RangeProperty"]]]]]: """``CfnAnomalyDetector.ConfigurationProperty.ExcludedTimeRanges``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cloudwatch-anomalydetector-configuration.html#cfn-cloudwatch-anomalydetector-configuration-excludedtimeranges """ return self._values.get('excluded_time_ranges') @builtins.property def metric_time_zone(self) -> typing.Optional[str]: """``CfnAnomalyDetector.ConfigurationProperty.MetricTimeZone``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cloudwatch-anomalydetector-configuration.html#cfn-cloudwatch-anomalydetector-configuration-metrictimezone """ return self._values.get('metric_time_zone') def __eq__(self, rhs) -> bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs) -> bool: return not (rhs == self) def __repr__(self) -> str: return 'ConfigurationProperty(%s)' % ', '.join(k + '=' + repr(v) for k, v in self._values.items()) @jsii.data_type(jsii_type="@aws-cdk/aws-cloudwatch.CfnAnomalyDetector.DimensionProperty", jsii_struct_bases=[], name_mapping={'name': 'name', 'value': 'value'}) class DimensionProperty(): def __init__(self, *, name: str, value: str): """ :param name: ``CfnAnomalyDetector.DimensionProperty.Name``. :param value: ``CfnAnomalyDetector.DimensionProperty.Value``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cloudwatch-anomalydetector-dimension.html """ self._values = { 'name': name, 'value': value, } @builtins.property def name(self) -> str: """``CfnAnomalyDetector.DimensionProperty.Name``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cloudwatch-anomalydetector-dimension.html#cfn-cloudwatch-anomalydetector-dimension-name """ return self._values.get('name') @builtins.property def value(self) -> str: """``CfnAnomalyDetector.DimensionProperty.Value``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cloudwatch-anomalydetector-dimension.html#cfn-cloudwatch-anomalydetector-dimension-value """ return self._values.get('value') def __eq__(self, rhs) -> bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs) -> bool: return not (rhs == self) def __repr__(self) -> str: return 'DimensionProperty(%s)' % ', '.join(k + '=' + repr(v) for k, v in self._values.items()) @jsii.data_type(jsii_type="@aws-cdk/aws-cloudwatch.CfnAnomalyDetector.RangeProperty", jsii_struct_bases=[], name_mapping={'end_time': 'endTime', 'start_time': 'startTime'}) class RangeProperty(): def __init__(self, *, end_time: str, start_time: str): """ :param end_time: ``CfnAnomalyDetector.RangeProperty.EndTime``. :param start_time: ``CfnAnomalyDetector.RangeProperty.StartTime``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cloudwatch-anomalydetector-range.html """ self._values = { 'end_time': end_time, 'start_time': start_time, } @builtins.property def end_time(self) -> str: """``CfnAnomalyDetector.RangeProperty.EndTime``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cloudwatch-anomalydetector-range.html#cfn-cloudwatch-anomalydetector-range-endtime """ return self._values.get('end_time') @builtins.property def start_time(self) -> str: """``CfnAnomalyDetector.RangeProperty.StartTime``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cloudwatch-anomalydetector-range.html#cfn-cloudwatch-anomalydetector-range-starttime """ return self._values.get('start_time') def __eq__(self, rhs) -> bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs) -> bool: return not (rhs == self) def __repr__(self) -> str: return 'RangeProperty(%s)' % ', '.join(k + '=' + repr(v) for k, v in self._values.items()) @jsii.data_type(jsii_type="@aws-cdk/aws-cloudwatch.CfnAnomalyDetectorProps", jsii_struct_bases=[], name_mapping={'metric_name': 'metricName', 'namespace': 'namespace', 'stat': 'stat', 'configuration': 'configuration', 'dimensions': 'dimensions'}) class CfnAnomalyDetectorProps(): def __init__(self, *, metric_name: str, namespace: str, stat: str, configuration: typing.Optional[typing.Union[typing.Optional[aws_cdk.core.IResolvable], typing.Optional["CfnAnomalyDetector.ConfigurationProperty"]]]=None, dimensions: typing.Optional[typing.Union[typing.Optional[aws_cdk.core.IResolvable], typing.Optional[typing.List[typing.Union[aws_cdk.core.IResolvable, "CfnAnomalyDetector.DimensionProperty"]]]]]=None): """Properties for defining a ``AWS::CloudWatch::AnomalyDetector``. :param metric_name: ``AWS::CloudWatch::AnomalyDetector.MetricName``. :param namespace: ``AWS::CloudWatch::AnomalyDetector.Namespace``. :param stat: ``AWS::CloudWatch::AnomalyDetector.Stat``. :param configuration: ``AWS::CloudWatch::AnomalyDetector.Configuration``. :param dimensions: ``AWS::CloudWatch::AnomalyDetector.Dimensions``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-anomalydetector.html """ self._values = { 'metric_name': metric_name, 'namespace': namespace, 'stat': stat, } if configuration is not None: self._values["configuration"] = configuration if dimensions is not None: self._values["dimensions"] = dimensions @builtins.property def metric_name(self) -> str: """``AWS::CloudWatch::AnomalyDetector.MetricName``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-anomalydetector.html#cfn-cloudwatch-anomalydetector-metricname """ return self._values.get('metric_name') @builtins.property def namespace(self) -> str: """``AWS::CloudWatch::AnomalyDetector.Namespace``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-anomalydetector.html#cfn-cloudwatch-anomalydetector-namespace """ return self._values.get('namespace') @builtins.property def stat(self) -> str: """``AWS::CloudWatch::AnomalyDetector.Stat``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-anomalydetector.html#cfn-cloudwatch-anomalydetector-stat """ return self._values.get('stat') @builtins.property def configuration(self) -> typing.Optional[typing.Union[typing.Optional[aws_cdk.core.IResolvable], typing.Optional["CfnAnomalyDetector.ConfigurationProperty"]]]: """``AWS::CloudWatch::AnomalyDetector.Configuration``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-anomalydetector.html#cfn-cloudwatch-anomalydetector-configuration """ return self._values.get('configuration') @builtins.property def dimensions(self) -> typing.Optional[typing.Union[typing.Optional[aws_cdk.core.IResolvable], typing.Optional[typing.List[typing.Union[aws_cdk.core.IResolvable, "CfnAnomalyDetector.DimensionProperty"]]]]]: """``AWS::CloudWatch::AnomalyDetector.Dimensions``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-anomalydetector.html#cfn-cloudwatch-anomalydetector-dimensions """ return self._values.get('dimensions') def __eq__(self, rhs) -> bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs) -> bool: return not (rhs == self) def __repr__(self) -> str: return 'CfnAnomalyDetectorProps(%s)' % ', '.join(k + '=' + repr(v) for k, v in self._values.items()) @jsii.implements(aws_cdk.core.IInspectable) class CfnDashboard(aws_cdk.core.CfnResource, metaclass=jsii.JSIIMeta, jsii_type="@aws-cdk/aws-cloudwatch.CfnDashboard"): """A CloudFormation ``AWS::CloudWatch::Dashboard``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-dashboard.html cloudformationResource: :cloudformationResource:: AWS::CloudWatch::Dashboard """ def __init__(self, scope: aws_cdk.core.Construct, id: str, *, dashboard_body: str, dashboard_name: typing.Optional[str]=None) -> None: """Create a new ``AWS::CloudWatch::Dashboard``. :param scope: - scope in which this resource is defined. :param id: - scoped id of the resource. :param dashboard_body: ``AWS::CloudWatch::Dashboard.DashboardBody``. :param dashboard_name: ``AWS::CloudWatch::Dashboard.DashboardName``. """ props = CfnDashboardProps(dashboard_body=dashboard_body, dashboard_name=dashboard_name) jsii.create(CfnDashboard, self, [scope, id, props]) @jsii.member(jsii_name="inspect") def inspect(self, inspector: aws_cdk.core.TreeInspector) -> None: """Examines the CloudFormation resource and discloses attributes. :param inspector: - tree inspector to collect and process attributes. stability :stability: experimental """ return jsii.invoke(self, "inspect", [inspector]) @jsii.member(jsii_name="renderProperties") def _render_properties(self, props: typing.Mapping[str,typing.Any]) -> typing.Mapping[str,typing.Any]: """ :param props: - """ return jsii.invoke(self, "renderProperties", [props]) @jsii.python.classproperty @jsii.member(jsii_name="CFN_RESOURCE_TYPE_NAME") def CFN_RESOURCE_TYPE_NAME(cls) -> str: """The CloudFormation resource type name for this resource class.""" return jsii.sget(cls, "CFN_RESOURCE_TYPE_NAME") @builtins.property @jsii.member(jsii_name="cfnProperties") def _cfn_properties(self) -> typing.Mapping[str,typing.Any]: return jsii.get(self, "cfnProperties") @builtins.property @jsii.member(jsii_name="dashboardBody") def dashboard_body(self) -> str: """``AWS::CloudWatch::Dashboard.DashboardBody``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-dashboard.html#cfn-cloudwatch-dashboard-dashboardbody """ return jsii.get(self, "dashboardBody") @dashboard_body.setter def dashboard_body(self, value: str): jsii.set(self, "dashboardBody", value) @builtins.property @jsii.member(jsii_name="dashboardName") def dashboard_name(self) -> typing.Optional[str]: """``AWS::CloudWatch::Dashboard.DashboardName``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-dashboard.html#cfn-cloudwatch-dashboard-dashboardname """ return jsii.get(self, "dashboardName") @dashboard_name.setter def dashboard_name(self, value: typing.Optional[str]): jsii.set(self, "dashboardName", value) @jsii.data_type(jsii_type="@aws-cdk/aws-cloudwatch.CfnDashboardProps", jsii_struct_bases=[], name_mapping={'dashboard_body': 'dashboardBody', 'dashboard_name': 'dashboardName'}) class CfnDashboardProps(): def __init__(self, *, dashboard_body: str, dashboard_name: typing.Optional[str]=None): """Properties for defining a ``AWS::CloudWatch::Dashboard``. :param dashboard_body: ``AWS::CloudWatch::Dashboard.DashboardBody``. :param dashboard_name: ``AWS::CloudWatch::Dashboard.DashboardName``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-dashboard.html """ self._values = { 'dashboard_body': dashboard_body, } if dashboard_name is not None: self._values["dashboard_name"] = dashboard_name @builtins.property def dashboard_body(self) -> str: """``AWS::CloudWatch::Dashboard.DashboardBody``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-dashboard.html#cfn-cloudwatch-dashboard-dashboardbody """ return self._values.get('dashboard_body') @builtins.property def dashboard_name(self) -> typing.Optional[str]: """``AWS::CloudWatch::Dashboard.DashboardName``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-dashboard.html#cfn-cloudwatch-dashboard-dashboardname """ return self._values.get('dashboard_name') def __eq__(self, rhs) -> bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs) -> bool: return not (rhs == self) def __repr__(self) -> str: return 'CfnDashboardProps(%s)' % ', '.join(k + '=' + repr(v) for k, v in self._values.items()) @jsii.implements(aws_cdk.core.IInspectable) class CfnInsightRule(aws_cdk.core.CfnResource, metaclass=jsii.JSIIMeta, jsii_type="@aws-cdk/aws-cloudwatch.CfnInsightRule"): """A CloudFormation ``AWS::CloudWatch::InsightRule``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-insightrule.html cloudformationResource: :cloudformationResource:: AWS::CloudWatch::InsightRule """ def __init__(self, scope: aws_cdk.core.Construct, id: str, *, rule_body: str, rule_name: str, rule_state: str) -> None: """Create a new ``AWS::CloudWatch::InsightRule``. :param scope: - scope in which this resource is defined. :param id: - scoped id of the resource. :param rule_body: ``AWS::CloudWatch::InsightRule.RuleBody``. :param rule_name: ``AWS::CloudWatch::InsightRule.RuleName``. :param rule_state: ``AWS::CloudWatch::InsightRule.RuleState``. """ props = CfnInsightRuleProps(rule_body=rule_body, rule_name=rule_name, rule_state=rule_state) jsii.create(CfnInsightRule, self, [scope, id, props]) @jsii.member(jsii_name="inspect") def inspect(self, inspector: aws_cdk.core.TreeInspector) -> None: """Examines the CloudFormation resource and discloses attributes. :param inspector: - tree inspector to collect and process attributes. stability :stability: experimental """ return jsii.invoke(self, "inspect", [inspector]) @jsii.member(jsii_name="renderProperties") def _render_properties(self, props: typing.Mapping[str,typing.Any]) -> typing.Mapping[str,typing.Any]: """ :param props: - """ return jsii.invoke(self, "renderProperties", [props]) @jsii.python.classproperty @jsii.member(jsii_name="CFN_RESOURCE_TYPE_NAME") def CFN_RESOURCE_TYPE_NAME(cls) -> str: """The CloudFormation resource type name for this resource class.""" return jsii.sget(cls, "CFN_RESOURCE_TYPE_NAME") @builtins.property @jsii.member(jsii_name="attrArn") def attr_arn(self) -> str: """ cloudformationAttribute: :cloudformationAttribute:: Arn """ return jsii.get(self, "attrArn") @builtins.property @jsii.member(jsii_name="attrRuleName") def attr_rule_name(self) -> str: """ cloudformationAttribute: :cloudformationAttribute:: RuleName """ return jsii.get(self, "attrRuleName") @builtins.property @jsii.member(jsii_name="cfnProperties") def _cfn_properties(self) -> typing.Mapping[str,typing.Any]: return jsii.get(self, "cfnProperties") @builtins.property @jsii.member(jsii_name="ruleBody") def rule_body(self) -> str: """``AWS::CloudWatch::InsightRule.RuleBody``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-insightrule.html#cfn-cloudwatch-insightrule-rulebody """ return jsii.get(self, "ruleBody") @rule_body.setter def rule_body(self, value: str): jsii.set(self, "ruleBody", value) @builtins.property @jsii.member(jsii_name="ruleName") def rule_name(self) -> str: """``AWS::CloudWatch::InsightRule.RuleName``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-insightrule.html#cfn-cloudwatch-insightrule-rulename """ return jsii.get(self, "ruleName") @rule_name.setter def rule_name(self, value: str): jsii.set(self, "ruleName", value) @builtins.property @jsii.member(jsii_name="ruleState") def rule_state(self) -> str: """``AWS::CloudWatch::InsightRule.RuleState``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-insightrule.html#cfn-cloudwatch-insightrule-rulestate """ return jsii.get(self, "ruleState") @rule_state.setter def rule_state(self, value: str): jsii.set(self, "ruleState", value) @jsii.data_type(jsii_type="@aws-cdk/aws-cloudwatch.CfnInsightRuleProps", jsii_struct_bases=[], name_mapping={'rule_body': 'ruleBody', 'rule_name': 'ruleName', 'rule_state': 'ruleState'}) class CfnInsightRuleProps(): def __init__(self, *, rule_body: str, rule_name: str, rule_state: str): """Properties for defining a ``AWS::CloudWatch::InsightRule``. :param rule_body: ``AWS::CloudWatch::InsightRule.RuleBody``. :param rule_name: ``AWS::CloudWatch::InsightRule.RuleName``. :param rule_state: ``AWS::CloudWatch::InsightRule.RuleState``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-insightrule.html """ self._values = { 'rule_body': rule_body, 'rule_name': rule_name, 'rule_state': rule_state, } @builtins.property def rule_body(self) -> str: """``AWS::CloudWatch::InsightRule.RuleBody``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-insightrule.html#cfn-cloudwatch-insightrule-rulebody """ return self._values.get('rule_body') @builtins.property def rule_name(self) -> str: """``AWS::CloudWatch::InsightRule.RuleName``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-insightrule.html#cfn-cloudwatch-insightrule-rulename """ return self._values.get('rule_name') @builtins.property def rule_state(self) -> str: """``AWS::CloudWatch::InsightRule.RuleState``. see :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-insightrule.html#cfn-cloudwatch-insightrule-rulestate """ return self._values.get('rule_state') def __eq__(self, rhs) -> bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs) -> bool: return not (rhs == self) def __repr__(self) -> str: return 'CfnInsightRuleProps(%s)' % ', '.join(k + '=' + repr(v) for k, v in self._values.items()) @jsii.data_type(jsii_type="@aws-cdk/aws-cloudwatch.CommonMetricOptions", jsii_struct_bases=[], name_mapping={'account': 'account', 'color': 'color', 'dimensions': 'dimensions', 'label': 'label', 'period': 'period', 'region': 'region', 'statistic': 'statistic', 'unit': 'unit'}) class CommonMetricOptions(): def __init__(self, *, account: typing.Optional[str]=None, color: typing.Optional[str]=None, dimensions: typing.Optional[typing.Mapping[str,typing.Any]]=None, label: typing.Optional[str]=None, period: typing.Optional[aws_cdk.core.Duration]=None, region: typing.Optional[str]=None, statistic: typing.Optional[str]=None, unit: typing.Optional["Unit"]=None): """Options shared by most methods accepting metric options. :param account: Account which this metric comes from. Default: Deployment account. :param color: Color for this metric when added to a Graph in a Dashboard. :param dimensions: Dimensions of the metric. Default: - No dimensions. :param label: Label for this metric when added to a Graph in a Dashboard. :param period: The period over which the specified statistic is applied. Default: Duration.minutes(5) :param region: Region which this metric comes from. Default: Deployment region. :param statistic: What function to use for aggregating. Can be one of the following: - "Minimum" | "min" - "Maximum" | "max" - "Average" | "avg" - "Sum" | "sum" - "SampleCount | "n" - "pNN.NN" Default: Average :param unit: Unit used to filter the metric stream. Only refer to datums emitted to the metric stream with the given unit and ignore all others. Only useful when datums are being emitted to the same metric stream under different units. The default is to use all matric datums in the stream, regardless of unit, which is recommended in nearly all cases. CloudWatch does not honor this property for graphs. Default: All metric datums in the given metric stream """ self._values = { } if account is not None: self._values["account"] = account if color is not None: self._values["color"] = color if dimensions is not None: self._values["dimensions"] = dimensions if label is not None: self._values["label"] = label if period is not None: self._values["period"] = period if region is not None: self._values["region"] = region if statistic is not None: self._values["statistic"] = statistic if unit is not None: self._values["unit"] = unit @builtins.property def account(self) -> typing.Optional[str]: """Account which this metric comes from. default :default: Deployment account. """ return self._values.get('account') @builtins.property def color(self) -> typing.Optional[str]: """Color for this metric when added to a Graph in a Dashboard.""" return self._values.get('color') @builtins.property def dimensions(self) -> typing.Optional[typing.Mapping[str,typing.Any]]: """Dimensions of the metric. default :default: - No dimensions. """ return self._values.get('dimensions') @builtins.property def label(self) -> typing.Optional[str]: """Label for this metric when added to a Graph in a Dashboard.""" return self._values.get('label') @builtins.property def period(self) -> typing.Optional[aws_cdk.core.Duration]: """The period over which the specified statistic is applied. default :default: Duration.minutes(5) """ return self._values.get('period') @builtins.property def region(self) -> typing.Optional[str]: """Region which this metric comes from. default :default: Deployment region. """ return self._values.get('region') @builtins.property def statistic(self) -> typing.Optional[str]: """What function to use for aggregating. Can be one of the following: - "Minimum" | "min" - "Maximum" | "max" - "Average" | "avg" - "Sum" | "sum" - "SampleCount | "n" - "pNN.NN" default :default: Average """ return self._values.get('statistic') @builtins.property def unit(self) -> typing.Optional["Unit"]: """Unit used to filter the metric stream. Only refer to datums emitted to the metric stream with the given unit and ignore all others. Only useful when datums are being emitted to the same metric stream under different units. The default is to use all matric datums in the stream, regardless of unit, which is recommended in nearly all cases. CloudWatch does not honor this property for graphs. default :default: All metric datums in the given metric stream """ return self._values.get('unit') def __eq__(self, rhs) -> bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs) -> bool: return not (rhs == self) def __repr__(self) -> str: return 'CommonMetricOptions(%s)' % ', '.join(k + '=' + repr(v) for k, v in self._values.items()) @jsii.enum(jsii_type="@aws-cdk/aws-cloudwatch.ComparisonOperator") class ComparisonOperator(enum.Enum): """Comparison operator for evaluating alarms.""" GREATER_THAN_OR_EQUAL_TO_THRESHOLD = "GREATER_THAN_OR_EQUAL_TO_THRESHOLD" GREATER_THAN_THRESHOLD = "GREATER_THAN_THRESHOLD" LESS_THAN_THRESHOLD = "LESS_THAN_THRESHOLD" LESS_THAN_OR_EQUAL_TO_THRESHOLD = "LESS_THAN_OR_EQUAL_TO_THRESHOLD" @jsii.data_type(jsii_type="@aws-cdk/aws-cloudwatch.CreateAlarmOptions", jsii_struct_bases=[], name_mapping={'evaluation_periods': 'evaluationPeriods', 'threshold': 'threshold', 'actions_enabled': 'actionsEnabled', 'alarm_description': 'alarmDescription', 'alarm_name': 'alarmName', 'comparison_operator': 'comparisonOperator', 'datapoints_to_alarm': 'datapointsToAlarm', 'evaluate_low_sample_count_percentile': 'evaluateLowSampleCountPercentile', 'period': 'period', 'statistic': 'statistic', 'treat_missing_data': 'treatMissingData'}) class CreateAlarmOptions(): def __init__(self, *, evaluation_periods: jsii.Number, threshold: jsii.Number, actions_enabled: typing.Optional[bool]=None, alarm_description: typing.Optional[str]=None, alarm_name: typing.Optional[str]=None, comparison_operator: typing.Optional["ComparisonOperator"]=None, datapoints_to_alarm: typing.Optional[jsii.Number]=None, evaluate_low_sample_count_percentile: typing.Optional[str]=None, period: typing.Optional[aws_cdk.core.Duration]=None, statistic: typing.Optional[str]=None, treat_missing_data: typing.Optional["TreatMissingData"]=None): """Properties needed to make an alarm from a metric. :param evaluation_periods: The number of periods over which data is compared to the specified threshold. :param threshold: The value against which the specified statistic is compared. :param actions_enabled: Whether the actions for this alarm are enabled. Default: true :param alarm_description: Description for the alarm. Default: No description :param alarm_name: Name of the alarm. Default: Automatically generated name :param comparison_operator: Comparison to use to check if metric is breaching. Default: GreaterThanOrEqualToThreshold :param datapoints_to_alarm: The number of datapoints that must be breaching to trigger the alarm. This is used only if you are setting an "M out of N" alarm. In that case, this value is the M. For more information, see Evaluating an Alarm in the Amazon CloudWatch User Guide. Default: ``evaluationPeriods`` :param evaluate_low_sample_count_percentile: Specifies whether to evaluate the data and potentially change the alarm state if there are too few data points to be statistically significant. Used only for alarms that are based on percentiles. Default: - Not configured. :param period: The period over which the specified statistic is applied. Default: Duration.minutes(5) :param statistic: What function to use for aggregating. Can be one of the following: - "Minimum" | "min" - "Maximum" | "max" - "Average" | "avg" - "Sum" | "sum" - "SampleCount | "n" - "pNN.NN" Default: Average :param treat_missing_data: Sets how this alarm is to handle missing data points. Default: TreatMissingData.Missing """ self._values = { 'evaluation_periods': evaluation_periods, 'threshold': threshold, } if actions_enabled is not None: self._values["actions_enabled"] = actions_enabled if alarm_description is not None: self._values["alarm_description"] = alarm_description if alarm_name is not None: self._values["alarm_name"] = alarm_name if comparison_operator is not None: self._values["comparison_operator"] = comparison_operator if datapoints_to_alarm is not None: self._values["datapoints_to_alarm"] = datapoints_to_alarm if evaluate_low_sample_count_percentile is not None: self._values["evaluate_low_sample_count_percentile"] = evaluate_low_sample_count_percentile if period is not None: self._values["period"] = period if statistic is not None: self._values["statistic"] = statistic if treat_missing_data is not None: self._values["treat_missing_data"] = treat_missing_data @builtins.property def evaluation_periods(self) -> jsii.Number: """The number of periods over which data is compared to the specified threshold.""" return self._values.get('evaluation_periods') @builtins.property def threshold(self) -> jsii.Number: """The value against which the specified statistic is compared.""" return self._values.get('threshold') @builtins.property def actions_enabled(self) -> typing.Optional[bool]: """Whether the actions for this alarm are enabled. default :default: true """ return self._values.get('actions_enabled') @builtins.property def alarm_description(self) -> typing.Optional[str]: """Description for the alarm. default :default: No description """ return self._values.get('alarm_description') @builtins.property def alarm_name(self) -> typing.Optional[str]: """Name of the alarm. default :default: Automatically generated name """ return self._values.get('alarm_name') @builtins.property def comparison_operator(self) -> typing.Optional["ComparisonOperator"]: """Comparison to use to check if metric is breaching. default :default: GreaterThanOrEqualToThreshold """ return self._values.get('comparison_operator') @builtins.property def datapoints_to_alarm(self) -> typing.Optional[jsii.Number]: """The number of datapoints that must be breaching to trigger the alarm. This is used only if you are setting an "M out of N" alarm. In that case, this value is the M. For more information, see Evaluating an Alarm in the Amazon CloudWatch User Guide. default :default: ``evaluationPeriods`` see :see: https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html#alarm-evaluation """ return self._values.get('datapoints_to_alarm') @builtins.property def evaluate_low_sample_count_percentile(self) -> typing.Optional[str]: """Specifies whether to evaluate the data and potentially change the alarm state if there are too few data points to be statistically significant. Used only for alarms that are based on percentiles. default :default: - Not configured. """ return self._values.get('evaluate_low_sample_count_percentile') @builtins.property def period(self) -> typing.Optional[aws_cdk.core.Duration]: """The period over which the specified statistic is applied. default :default: Duration.minutes(5) """ return self._values.get('period') @builtins.property def statistic(self) -> typing.Optional[str]: """What function to use for aggregating. Can be one of the following: - "Minimum" | "min" - "Maximum" | "max" - "Average" | "avg" - "Sum" | "sum" - "SampleCount | "n" - "pNN.NN" default :default: Average """ return self._values.get('statistic') @builtins.property def treat_missing_data(self) -> typing.Optional["TreatMissingData"]: """Sets how this alarm is to handle missing data points. default :default: TreatMissingData.Missing """ return self._values.get('treat_missing_data') def __eq__(self, rhs) -> bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs) -> bool: return not (rhs == self) def __repr__(self) -> str: return 'CreateAlarmOptions(%s)' % ', '.join(k + '=' + repr(v) for k, v in self._values.items()) @jsii.data_type(jsii_type="@aws-cdk/aws-cloudwatch.AlarmProps", jsii_struct_bases=[CreateAlarmOptions], name_mapping={'evaluation_periods': 'evaluationPeriods', 'threshold': 'threshold', 'actions_enabled': 'actionsEnabled', 'alarm_description': 'alarmDescription', 'alarm_name': 'alarmName', 'comparison_operator': 'comparisonOperator', 'datapoints_to_alarm': 'datapointsToAlarm', 'evaluate_low_sample_count_percentile': 'evaluateLowSampleCountPercentile', 'period': 'period', 'statistic': 'statistic', 'treat_missing_data': 'treatMissingData', 'metric': 'metric'}) class AlarmProps(CreateAlarmOptions): def __init__(self, *, evaluation_periods: jsii.Number, threshold: jsii.Number, actions_enabled: typing.Optional[bool]=None, alarm_description: typing.Optional[str]=None, alarm_name: typing.Optional[str]=None, comparison_operator: typing.Optional["ComparisonOperator"]=None, datapoints_to_alarm: typing.Optional[jsii.Number]=None, evaluate_low_sample_count_percentile: typing.Optional[str]=None, period: typing.Optional[aws_cdk.core.Duration]=None, statistic: typing.Optional[str]=None, treat_missing_data: typing.Optional["TreatMissingData"]=None, metric: "IMetric"): """Properties for Alarms. :param evaluation_periods: The number of periods over which data is compared to the specified threshold. :param threshold: The value against which the specified statistic is compared. :param actions_enabled: Whether the actions for this alarm are enabled. Default: true :param alarm_description: Description for the alarm. Default: No description :param alarm_name: Name of the alarm. Default: Automatically generated name :param comparison_operator: Comparison to use to check if metric is breaching. Default: GreaterThanOrEqualToThreshold :param datapoints_to_alarm: The number of datapoints that must be breaching to trigger the alarm. This is used only if you are setting an "M out of N" alarm. In that case, this value is the M. For more information, see Evaluating an Alarm in the Amazon CloudWatch User Guide. Default: ``evaluationPeriods`` :param evaluate_low_sample_count_percentile: Specifies whether to evaluate the data and potentially change the alarm state if there are too few data points to be statistically significant. Used only for alarms that are based on percentiles. Default: - Not configured. :param period: The period over which the specified statistic is applied. Default: Duration.minutes(5) :param statistic: What function to use for aggregating. Can be one of the following: - "Minimum" | "min" - "Maximum" | "max" - "Average" | "avg" - "Sum" | "sum" - "SampleCount | "n" - "pNN.NN" Default: Average :param treat_missing_data: Sets how this alarm is to handle missing data points. Default: TreatMissingData.Missing :param metric: The metric to add the alarm on. Metric objects can be obtained from most resources, or you can construct custom Metric objects by instantiating one. """ self._values = { 'evaluation_periods': evaluation_periods, 'threshold': threshold, 'metric': metric, } if actions_enabled is not None: self._values["actions_enabled"] = actions_enabled if alarm_description is not None: self._values["alarm_description"] = alarm_description if alarm_name is not None: self._values["alarm_name"] = alarm_name if comparison_operator is not None: self._values["comparison_operator"] = comparison_operator if datapoints_to_alarm is not None: self._values["datapoints_to_alarm"] = datapoints_to_alarm if evaluate_low_sample_count_percentile is not None: self._values["evaluate_low_sample_count_percentile"] = evaluate_low_sample_count_percentile if period is not None: self._values["period"] = period if statistic is not None: self._values["statistic"] = statistic if treat_missing_data is not None: self._values["treat_missing_data"] = treat_missing_data @builtins.property def evaluation_periods(self) -> jsii.Number: """The number of periods over which data is compared to the specified threshold.""" return self._values.get('evaluation_periods') @builtins.property def threshold(self) -> jsii.Number: """The value against which the specified statistic is compared.""" return self._values.get('threshold') @builtins.property def actions_enabled(self) -> typing.Optional[bool]: """Whether the actions for this alarm are enabled. default :default: true """ return self._values.get('actions_enabled') @builtins.property def alarm_description(self) -> typing.Optional[str]: """Description for the alarm. default :default: No description """ return self._values.get('alarm_description') @builtins.property def alarm_name(self) -> typing.Optional[str]: """Name of the alarm. default :default: Automatically generated name """ return self._values.get('alarm_name') @builtins.property def comparison_operator(self) -> typing.Optional["ComparisonOperator"]: """Comparison to use to check if metric is breaching. default :default: GreaterThanOrEqualToThreshold """ return self._values.get('comparison_operator') @builtins.property def datapoints_to_alarm(self) -> typing.Optional[jsii.Number]: """The number of datapoints that must be breaching to trigger the alarm. This is used only if you are setting an "M out of N" alarm. In that case, this value is the M. For more information, see Evaluating an Alarm in the Amazon CloudWatch User Guide. default :default: ``evaluationPeriods`` see :see: https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html#alarm-evaluation """ return self._values.get('datapoints_to_alarm') @builtins.property def evaluate_low_sample_count_percentile(self) -> typing.Optional[str]: """Specifies whether to evaluate the data and potentially change the alarm state if there are too few data points to be statistically significant. Used only for alarms that are based on percentiles. default :default: - Not configured. """ return self._values.get('evaluate_low_sample_count_percentile') @builtins.property def period(self) -> typing.Optional[aws_cdk.core.Duration]: """The period over which the specified statistic is applied. default :default: Duration.minutes(5) """ return self._values.get('period') @builtins.property def statistic(self) -> typing.Optional[str]: """What function to use for aggregating. Can be one of the following: - "Minimum" | "min" - "Maximum" | "max" - "Average" | "avg" - "Sum" | "sum" - "SampleCount | "n" - "pNN.NN" default :default: Average """ return self._values.get('statistic') @builtins.property def treat_missing_data(self) -> typing.Optional["TreatMissingData"]: """Sets how this alarm is to handle missing data points. default :default: TreatMissingData.Missing """ return self._values.get('treat_missing_data') @builtins.property def metric(self) -> "IMetric": """The metric to add the alarm on. Metric objects can be obtained from most resources, or you can construct custom Metric objects by instantiating one. """ return self._values.get('metric') def __eq__(self, rhs) -> bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs) -> bool: return not (rhs == self) def __repr__(self) -> str: return 'AlarmProps(%s)' % ', '.join(k + '=' + repr(v) for k, v in self._values.items()) class Dashboard(aws_cdk.core.Resource, metaclass=jsii.JSIIMeta, jsii_type="@aws-cdk/aws-cloudwatch.Dashboard"): """A CloudWatch dashboard.""" def __init__(self, scope: aws_cdk.core.Construct, id: str, *, dashboard_name: typing.Optional[str]=None, end: typing.Optional[str]=None, period_override: typing.Optional["PeriodOverride"]=None, start: typing.Optional[str]=None, widgets: typing.Optional[typing.List[typing.List["IWidget"]]]=None) -> None: """ :param scope: - :param id: - :param dashboard_name: Name of the dashboard. If set, must only contain alphanumerics, dash (-) and underscore (_) Default: - automatically generated name :param end: The end of the time range to use for each widget on the dashboard when the dashboard loads. If you specify a value for end, you must also specify a value for start. Specify an absolute time in the ISO 8601 format. For example, 2018-12-17T06:00:00.000Z. Default: When the dashboard loads, the end date will be the current time. :param period_override: Use this field to specify the period for the graphs when the dashboard loads. Specifying ``Auto`` causes the period of all graphs on the dashboard to automatically adapt to the time range of the dashboard. Specifying ``Inherit`` ensures that the period set for each graph is always obeyed. Default: Auto :param start: The start of the time range to use for each widget on the dashboard. You can specify start without specifying end to specify a relative time range that ends with the current time. In this case, the value of start must begin with -P, and you can use M, H, D, W and M as abbreviations for minutes, hours, days, weeks and months. For example, -PT8H shows the last 8 hours and -P3M shows the last three months. You can also use start along with an end field, to specify an absolute time range. When specifying an absolute time range, use the ISO 8601 format. For example, 2018-12-17T06:00:00.000Z. Default: When the dashboard loads, the start time will be the default time range. :param widgets: Initial set of widgets on the dashboard. One array represents a row of widgets. Default: - No widgets """ props = DashboardProps(dashboard_name=dashboard_name, end=end, period_override=period_override, start=start, widgets=widgets) jsii.create(Dashboard, self, [scope, id, props]) @jsii.member(jsii_name="addWidgets") def add_widgets(self, *widgets: "IWidget") -> None: """Add a widget to the dashboard. Widgets given in multiple calls to add() will be laid out stacked on top of each other. Multiple widgets added in the same call to add() will be laid out next to each other. :param widgets: - """ return jsii.invoke(self, "addWidgets", [*widgets]) @jsii.data_type(jsii_type="@aws-cdk/aws-cloudwatch.DashboardProps", jsii_struct_bases=[], name_mapping={'dashboard_name': 'dashboardName', 'end': 'end', 'period_override': 'periodOverride', 'start': 'start', 'widgets': 'widgets'}) class DashboardProps(): def __init__(self, *, dashboard_name: typing.Optional[str]=None, end: typing.Optional[str]=None, period_override: typing.Optional["PeriodOverride"]=None, start: typing.Optional[str]=None, widgets: typing.Optional[typing.List[typing.List["IWidget"]]]=None): """ :param dashboard_name: Name of the dashboard. If set, must only contain alphanumerics, dash (-) and underscore (_) Default: - automatically generated name :param end: The end of the time range to use for each widget on the dashboard when the dashboard loads. If you specify a value for end, you must also specify a value for start. Specify an absolute time in the ISO 8601 format. For example, 2018-12-17T06:00:00.000Z. Default: When the dashboard loads, the end date will be the current time. :param period_override: Use this field to specify the period for the graphs when the dashboard loads. Specifying ``Auto`` causes the period of all graphs on the dashboard to automatically adapt to the time range of the dashboard. Specifying ``Inherit`` ensures that the period set for each graph is always obeyed. Default: Auto :param start: The start of the time range to use for each widget on the dashboard. You can specify start without specifying end to specify a relative time range that ends with the current time. In this case, the value of start must begin with -P, and you can use M, H, D, W and M as abbreviations for minutes, hours, days, weeks and months. For example, -PT8H shows the last 8 hours and -P3M shows the last three months. You can also use start along with an end field, to specify an absolute time range. When specifying an absolute time range, use the ISO 8601 format. For example, 2018-12-17T06:00:00.000Z. Default: When the dashboard loads, the start time will be the default time range. :param widgets: Initial set of widgets on the dashboard. One array represents a row of widgets. Default: - No widgets """ self._values = { } if dashboard_name is not None: self._values["dashboard_name"] = dashboard_name if end is not None: self._values["end"] = end if period_override is not None: self._values["period_override"] = period_override if start is not None: self._values["start"] = start if widgets is not None: self._values["widgets"] = widgets @builtins.property def dashboard_name(self) -> typing.Optional[str]: """Name of the dashboard. If set, must only contain alphanumerics, dash (-) and underscore (_) default :default: - automatically generated name """ return self._values.get('dashboard_name') @builtins.property def end(self) -> typing.Optional[str]: """The end of the time range to use for each widget on the dashboard when the dashboard loads. If you specify a value for end, you must also specify a value for start. Specify an absolute time in the ISO 8601 format. For example, 2018-12-17T06:00:00.000Z. default :default: When the dashboard loads, the end date will be the current time. """ return self._values.get('end') @builtins.property def period_override(self) -> typing.Optional["PeriodOverride"]: """Use this field to specify the period for the graphs when the dashboard loads. Specifying ``Auto`` causes the period of all graphs on the dashboard to automatically adapt to the time range of the dashboard. Specifying ``Inherit`` ensures that the period set for each graph is always obeyed. default :default: Auto """ return self._values.get('period_override') @builtins.property def start(self) -> typing.Optional[str]: """The start of the time range to use for each widget on the dashboard. You can specify start without specifying end to specify a relative time range that ends with the current time. In this case, the value of start must begin with -P, and you can use M, H, D, W and M as abbreviations for minutes, hours, days, weeks and months. For example, -PT8H shows the last 8 hours and -P3M shows the last three months. You can also use start along with an end field, to specify an absolute time range. When specifying an absolute time range, use the ISO 8601 format. For example, 2018-12-17T06:00:00.000Z. default :default: When the dashboard loads, the start time will be the default time range. """ return self._values.get('start') @builtins.property def widgets(self) -> typing.Optional[typing.List[typing.List["IWidget"]]]: """Initial set of widgets on the dashboard. One array represents a row of widgets. default :default: - No widgets """ return self._values.get('widgets') def __eq__(self, rhs) -> bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs) -> bool: return not (rhs == self) def __repr__(self) -> str: return 'DashboardProps(%s)' % ', '.join(k + '=' + repr(v) for k, v in self._values.items()) @jsii.data_type(jsii_type="@aws-cdk/aws-cloudwatch.Dimension", jsii_struct_bases=[], name_mapping={'name': 'name', 'value': 'value'}) class Dimension(): def __init__(self, *, name: str, value: typing.Any): """Metric dimension. :param name: Name of the dimension. :param value: Value of the dimension. """ self._values = { 'name': name, 'value': value, } @builtins.property def name(self) -> str: """Name of the dimension.""" return self._values.get('name') @builtins.property def value(self) -> typing.Any: """Value of the dimension.""" return self._values.get('value') def __eq__(self, rhs) -> bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs) -> bool: return not (rhs == self) def __repr__(self) -> str: return 'Dimension(%s)' % ', '.join(k + '=' + repr(v) for k, v in self._values.items()) @jsii.data_type(jsii_type="@aws-cdk/aws-cloudwatch.HorizontalAnnotation", jsii_struct_bases=[], name_mapping={'value': 'value', 'color': 'color', 'fill': 'fill', 'label': 'label', 'visible': 'visible'}) class HorizontalAnnotation(): def __init__(self, *, value: jsii.Number, color: typing.Optional[str]=None, fill: typing.Optional["Shading"]=None, label: typing.Optional[str]=None, visible: typing.Optional[bool]=None): """Horizontal annotation to be added to a graph. :param value: The value of the annotation. :param color: Hex color code to be used for the annotation. Default: Automatic color :param fill: Add shading above or below the annotation. Default: No shading :param label: Label for the annotation. Default: No label :param visible: Whether the annotation is visible. Default: true """ self._values = { 'value': value, } if color is not None: self._values["color"] = color if fill is not None: self._values["fill"] = fill if label is not None: self._values["label"] = label if visible is not None: self._values["visible"] = visible @builtins.property def value(self) -> jsii.Number: """The value of the annotation.""" return self._values.get('value') @builtins.property def color(self) -> typing.Optional[str]: """Hex color code to be used for the annotation. default :default: Automatic color """ return self._values.get('color') @builtins.property def fill(self) -> typing.Optional["Shading"]: """Add shading above or below the annotation. default :default: No shading """ return self._values.get('fill') @builtins.property def label(self) -> typing.Optional[str]: """Label for the annotation. default :default: No label """ return self._values.get('label') @builtins.property def visible(self) -> typing.Optional[bool]: """Whether the annotation is visible. default :default: true """ return self._values.get('visible') def __eq__(self, rhs) -> bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs) -> bool: return not (rhs == self) def __repr__(self) -> str: return 'HorizontalAnnotation(%s)' % ', '.join(k + '=' + repr(v) for k, v in self._values.items()) @jsii.interface(jsii_type="@aws-cdk/aws-cloudwatch.IAlarm") class IAlarm(aws_cdk.core.IResource, jsii.compat.Protocol): @builtins.staticmethod def __jsii_proxy_class__(): return _IAlarmProxy @builtins.property @jsii.member(jsii_name="alarmArn") def alarm_arn(self) -> str: """ attribute: :attribute:: true """ ... @builtins.property @jsii.member(jsii_name="alarmName") def alarm_name(self) -> str: """ attribute: :attribute:: true """ ... class _IAlarmProxy(jsii.proxy_for(aws_cdk.core.IResource)): __jsii_type__ = "@aws-cdk/aws-cloudwatch.IAlarm" @builtins.property @jsii.member(jsii_name="alarmArn") def alarm_arn(self) -> str: """ attribute: :attribute:: true """ return jsii.get(self, "alarmArn") @builtins.property @jsii.member(jsii_name="alarmName") def alarm_name(self) -> str: """ attribute: :attribute:: true """ return jsii.get(self, "alarmName") @jsii.implements(IAlarm) class Alarm(aws_cdk.core.Resource, metaclass=jsii.JSIIMeta, jsii_type="@aws-cdk/aws-cloudwatch.Alarm"): """An alarm on a CloudWatch metric.""" def __init__(self, scope: aws_cdk.core.Construct, id: str, *, metric: "IMetric", evaluation_periods: jsii.Number, threshold: jsii.Number, actions_enabled: typing.Optional[bool]=None, alarm_description: typing.Optional[str]=None, alarm_name: typing.Optional[str]=None, comparison_operator: typing.Optional["ComparisonOperator"]=None, datapoints_to_alarm: typing.Optional[jsii.Number]=None, evaluate_low_sample_count_percentile: typing.Optional[str]=None, period: typing.Optional[aws_cdk.core.Duration]=None, statistic: typing.Optional[str]=None, treat_missing_data: typing.Optional["TreatMissingData"]=None) -> None: """ :param scope: - :param id: - :param metric: The metric to add the alarm on. Metric objects can be obtained from most resources, or you can construct custom Metric objects by instantiating one. :param evaluation_periods: The number of periods over which data is compared to the specified threshold. :param threshold: The value against which the specified statistic is compared. :param actions_enabled: Whether the actions for this alarm are enabled. Default: true :param alarm_description: Description for the alarm. Default: No description :param alarm_name: Name of the alarm. Default: Automatically generated name :param comparison_operator: Comparison to use to check if metric is breaching. Default: GreaterThanOrEqualToThreshold :param datapoints_to_alarm: The number of datapoints that must be breaching to trigger the alarm. This is used only if you are setting an "M out of N" alarm. In that case, this value is the M. For more information, see Evaluating an Alarm in the Amazon CloudWatch User Guide. Default: ``evaluationPeriods`` :param evaluate_low_sample_count_percentile: Specifies whether to evaluate the data and potentially change the alarm state if there are too few data points to be statistically significant. Used only for alarms that are based on percentiles. Default: - Not configured. :param period: The period over which the specified statistic is applied. Default: Duration.minutes(5) :param statistic: What function to use for aggregating. Can be one of the following: - "Minimum" | "min" - "Maximum" | "max" - "Average" | "avg" - "Sum" | "sum" - "SampleCount | "n" - "pNN.NN" Default: Average :param treat_missing_data: Sets how this alarm is to handle missing data points. Default: TreatMissingData.Missing """ props = AlarmProps(metric=metric, evaluation_periods=evaluation_periods, threshold=threshold, actions_enabled=actions_enabled, alarm_description=alarm_description, alarm_name=alarm_name, comparison_operator=comparison_operator, datapoints_to_alarm=datapoints_to_alarm, evaluate_low_sample_count_percentile=evaluate_low_sample_count_percentile, period=period, statistic=statistic, treat_missing_data=treat_missing_data) jsii.create(Alarm, self, [scope, id, props]) @jsii.member(jsii_name="fromAlarmArn") @builtins.classmethod def from_alarm_arn(cls, scope: aws_cdk.core.Construct, id: str, alarm_arn: str) -> "IAlarm": """ :param scope: - :param id: - :param alarm_arn: - """ return jsii.sinvoke(cls, "fromAlarmArn", [scope, id, alarm_arn]) @jsii.member(jsii_name="addAlarmAction") def add_alarm_action(self, *actions: "IAlarmAction") -> None: """Trigger this action if the alarm fires. Typically the ARN of an SNS topic or ARN of an AutoScaling policy. :param actions: - """ return jsii.invoke(self, "addAlarmAction", [*actions]) @jsii.member(jsii_name="addInsufficientDataAction") def add_insufficient_data_action(self, *actions: "IAlarmAction") -> None: """Trigger this action if there is insufficient data to evaluate the alarm. Typically the ARN of an SNS topic or ARN of an AutoScaling policy. :param actions: - """ return jsii.invoke(self, "addInsufficientDataAction", [*actions]) @jsii.member(jsii_name="addOkAction") def add_ok_action(self, *actions: "IAlarmAction") -> None: """Trigger this action if the alarm returns from breaching state into ok state. Typically the ARN of an SNS topic or ARN of an AutoScaling policy. :param actions: - """ return jsii.invoke(self, "addOkAction", [*actions]) @jsii.member(jsii_name="toAnnotation") def to_annotation(self) -> "HorizontalAnnotation": """Turn this alarm into a horizontal annotation. This is useful if you want to represent an Alarm in a non-AlarmWidget. An ``AlarmWidget`` can directly show an alarm, but it can only show a single alarm and no other metrics. Instead, you can convert the alarm to a HorizontalAnnotation and add it as an annotation to another graph. This might be useful if: - You want to show multiple alarms inside a single graph, for example if you have both a "small margin/long period" alarm as well as a "large margin/short period" alarm. - You want to show an Alarm line in a graph with multiple metrics in it. """ return jsii.invoke(self, "toAnnotation", []) @builtins.property @jsii.member(jsii_name="alarmArn") def alarm_arn(self) -> str: """ARN of this alarm. attribute: :attribute:: true """ return jsii.get(self, "alarmArn") @builtins.property @jsii.member(jsii_name="alarmName") def alarm_name(self) -> str: """Name of this alarm. attribute: :attribute:: true """ return jsii.get(self, "alarmName") @builtins.property @jsii.member(jsii_name="metric") def metric(self) -> "IMetric": """The metric object this alarm was based on.""" return jsii.get(self, "metric") @jsii.interface(jsii_type="@aws-cdk/aws-cloudwatch.IAlarmAction") class IAlarmAction(jsii.compat.Protocol): """Interface for objects that can be the targets of CloudWatch alarm actions.""" @builtins.staticmethod def __jsii_proxy_class__(): return _IAlarmActionProxy @jsii.member(jsii_name="bind") def bind(self, scope: aws_cdk.core.Construct, alarm: "IAlarm") -> "AlarmActionConfig": """ :param scope: - :param alarm: - """ ... class _IAlarmActionProxy(): """Interface for objects that can be the targets of CloudWatch alarm actions.""" __jsii_type__ = "@aws-cdk/aws-cloudwatch.IAlarmAction" @jsii.member(jsii_name="bind") def bind(self, scope: aws_cdk.core.Construct, alarm: "IAlarm") -> "AlarmActionConfig": """ :param scope: - :param alarm: - """ return jsii.invoke(self, "bind", [scope, alarm]) @jsii.interface(jsii_type="@aws-cdk/aws-cloudwatch.IMetric") class IMetric(jsii.compat.Protocol): """Interface for metrics.""" @builtins.staticmethod def __jsii_proxy_class__(): return _IMetricProxy @jsii.member(jsii_name="toAlarmConfig") def to_alarm_config(self) -> "MetricAlarmConfig": """Turn this metric object into an alarm configuration. deprecated :deprecated: Use ``toMetricsConfig()`` instead. stability :stability: deprecated """ ... @jsii.member(jsii_name="toGraphConfig") def to_graph_config(self) -> "MetricGraphConfig": """Turn this metric object into a graph configuration. deprecated :deprecated: Use ``toMetricsConfig()`` instead. stability :stability: deprecated """ ... @jsii.member(jsii_name="toMetricConfig") def to_metric_config(self) -> "MetricConfig": """Inspect the details of the metric object.""" ... class _IMetricProxy(): """Interface for metrics.""" __jsii_type__ = "@aws-cdk/aws-cloudwatch.IMetric" @jsii.member(jsii_name="toAlarmConfig") def to_alarm_config(self) -> "MetricAlarmConfig": """Turn this metric object into an alarm configuration. deprecated :deprecated: Use ``toMetricsConfig()`` instead. stability :stability: deprecated """ return jsii.invoke(self, "toAlarmConfig", []) @jsii.member(jsii_name="toGraphConfig") def to_graph_config(self) -> "MetricGraphConfig": """Turn this metric object into a graph configuration. deprecated :deprecated: Use ``toMetricsConfig()`` instead. stability :stability: deprecated """ return jsii.invoke(self, "toGraphConfig", []) @jsii.member(jsii_name="toMetricConfig") def to_metric_config(self) -> "MetricConfig": """Inspect the details of the metric object.""" return jsii.invoke(self, "toMetricConfig", []) @jsii.interface(jsii_type="@aws-cdk/aws-cloudwatch.IWidget") class IWidget(jsii.compat.Protocol): """A single dashboard widget.""" @builtins.staticmethod def __jsii_proxy_class__(): return _IWidgetProxy @builtins.property @jsii.member(jsii_name="height") def height(self) -> jsii.Number: """The amount of vertical grid units the widget will take up.""" ... @builtins.property @jsii.member(jsii_name="width") def width(self) -> jsii.Number: """The amount of horizontal grid units the widget will take up.""" ... @jsii.member(jsii_name="position") def position(self, x: jsii.Number, y: jsii.Number) -> None: """Place the widget at a given position. :param x: - :param y: - """ ... @jsii.member(jsii_name="toJson") def to_json(self) -> typing.List[typing.Any]: """Return the widget JSON for use in the dashboard.""" ... class _IWidgetProxy(): """A single dashboard widget.""" __jsii_type__ = "@aws-cdk/aws-cloudwatch.IWidget" @builtins.property @jsii.member(jsii_name="height") def height(self) -> jsii.Number: """The amount of vertical grid units the widget will take up.""" return jsii.get(self, "height") @builtins.property @jsii.member(jsii_name="width") def width(self) -> jsii.Number: """The amount of horizontal grid units the widget will take up.""" return jsii.get(self, "width") @jsii.member(jsii_name="position") def position(self, x: jsii.Number, y: jsii.Number) -> None: """Place the widget at a given position. :param x: - :param y: - """ return jsii.invoke(self, "position", [x, y]) @jsii.member(jsii_name="toJson") def to_json(self) -> typing.List[typing.Any]: """Return the widget JSON for use in the dashboard.""" return jsii.invoke(self, "toJson", []) @jsii.implements(IWidget) class Column(metaclass=jsii.JSIIMeta, jsii_type="@aws-cdk/aws-cloudwatch.Column"): """A widget that contains other widgets in a vertical column. Widgets will be laid out next to each other """ def __init__(self, *widgets: "IWidget") -> None: """ :param widgets: - """ jsii.create(Column, self, [*widgets]) @jsii.member(jsii_name="position") def position(self, x: jsii.Number, y: jsii.Number) -> None: """Place the widget at a given position. :param x: - :param y: - """ return jsii.invoke(self, "position", [x, y]) @jsii.member(jsii_name="toJson") def to_json(self) -> typing.List[typing.Any]: """Return the widget JSON for use in the dashboard.""" return jsii.invoke(self, "toJson", []) @builtins.property @jsii.member(jsii_name="height") def height(self) -> jsii.Number: """The amount of vertical grid units the widget will take up.""" return jsii.get(self, "height") @builtins.property @jsii.member(jsii_name="width") def width(self) -> jsii.Number: """The amount of horizontal grid units the widget will take up.""" return jsii.get(self, "width") @jsii.implements(IWidget) class ConcreteWidget(metaclass=jsii.JSIIAbstractClass, jsii_type="@aws-cdk/aws-cloudwatch.ConcreteWidget"): """A real CloudWatch widget that has its own fixed size and remembers its position. This is in contrast to other widgets which exist for layout purposes. """ @builtins.staticmethod def __jsii_proxy_class__(): return _ConcreteWidgetProxy def __init__(self, width: jsii.Number, height: jsii.Number) -> None: """ :param width: - :param height: - """ jsii.create(ConcreteWidget, self, [width, height]) @jsii.member(jsii_name="position") def position(self, x: jsii.Number, y: jsii.Number) -> None: """Place the widget at a given position. :param x: - :param y: - """ return jsii.invoke(self, "position", [x, y]) @jsii.member(jsii_name="toJson") @abc.abstractmethod def to_json(self) -> typing.List[typing.Any]: """Return the widget JSON for use in the dashboard.""" ... @builtins.property @jsii.member(jsii_name="height") def height(self) -> jsii.Number: """The amount of vertical grid units the widget will take up.""" return jsii.get(self, "height") @builtins.property @jsii.member(jsii_name="width") def width(self) -> jsii.Number: """The amount of horizontal grid units the widget will take up.""" return jsii.get(self, "width") @builtins.property @jsii.member(jsii_name="x") def _x(self) -> typing.Optional[jsii.Number]: return jsii.get(self, "x") @_x.setter def _x(self, value: typing.Optional[jsii.Number]): jsii.set(self, "x", value) @builtins.property @jsii.member(jsii_name="y") def _y(self) -> typing.Optional[jsii.Number]: return jsii.get(self, "y") @_y.setter def _y(self, value: typing.Optional[jsii.Number]): jsii.set(self, "y", value) class _ConcreteWidgetProxy(ConcreteWidget): @jsii.member(jsii_name="toJson") def to_json(self) -> typing.List[typing.Any]: """Return the widget JSON for use in the dashboard.""" return jsii.invoke(self, "toJson", []) class AlarmWidget(ConcreteWidget, metaclass=jsii.JSIIMeta, jsii_type="@aws-cdk/aws-cloudwatch.AlarmWidget"): """Display the metric associated with an alarm, including the alarm line.""" def __init__(self, *, alarm: "IAlarm", left_y_axis: typing.Optional["YAxisProps"]=None, height: typing.Optional[jsii.Number]=None, region: typing.Optional[str]=None, title: typing.Optional[str]=None, width: typing.Optional[jsii.Number]=None) -> None: """ :param alarm: The alarm to show. :param left_y_axis: Left Y axis. :param height: Height of the widget. Default: Depends on the type of widget :param region: The region the metrics of this graph should be taken from. Default: Current region :param title: Title for the graph. :param width: Width of the widget, in a grid of 24 units wide. Default: 6 """ props = AlarmWidgetProps(alarm=alarm, left_y_axis=left_y_axis, height=height, region=region, title=title, width=width) jsii.create(AlarmWidget, self, [props]) @jsii.member(jsii_name="toJson") def to_json(self) -> typing.List[typing.Any]: """Return the widget JSON for use in the dashboard.""" return jsii.invoke(self, "toJson", []) class GraphWidget(ConcreteWidget, metaclass=jsii.JSIIMeta, jsii_type="@aws-cdk/aws-cloudwatch.GraphWidget"): """A dashboard widget that displays metrics.""" def __init__(self, *, left: typing.Optional[typing.List["IMetric"]]=None, left_annotations: typing.Optional[typing.List["HorizontalAnnotation"]]=None, left_y_axis: typing.Optional["YAxisProps"]=None, right: typing.Optional[typing.List["IMetric"]]=None, right_annotations: typing.Optional[typing.List["HorizontalAnnotation"]]=None, right_y_axis: typing.Optional["YAxisProps"]=None, stacked: typing.Optional[bool]=None, height: typing.Optional[jsii.Number]=None, region: typing.Optional[str]=None, title: typing.Optional[str]=None, width: typing.Optional[jsii.Number]=None) -> None: """ :param left: Metrics to display on left Y axis. :param left_annotations: Annotations for the left Y axis. :param left_y_axis: Left Y axis. :param right: Metrics to display on right Y axis. :param right_annotations: Annotations for the right Y axis. :param right_y_axis: Right Y axis. :param stacked: Whether the graph should be shown as stacked lines. :param height: Height of the widget. Default: Depends on the type of widget :param region: The region the metrics of this graph should be taken from. Default: Current region :param title: Title for the graph. :param width: Width of the widget, in a grid of 24 units wide. Default: 6 """ props = GraphWidgetProps(left=left, left_annotations=left_annotations, left_y_axis=left_y_axis, right=right, right_annotations=right_annotations, right_y_axis=right_y_axis, stacked=stacked, height=height, region=region, title=title, width=width) jsii.create(GraphWidget, self, [props]) @jsii.member(jsii_name="toJson") def to_json(self) -> typing.List[typing.Any]: """Return the widget JSON for use in the dashboard.""" return jsii.invoke(self, "toJson", []) @jsii.implements(IMetric) class MathExpression(metaclass=jsii.JSIIMeta, jsii_type="@aws-cdk/aws-cloudwatch.MathExpression"): """A math expression built with metric(s) emitted by a service. The math expression is a combination of an expression (x+y) and metrics to apply expression on. It also contains metadata which is used only in graphs, such as color and label. It makes sense to embed this in here, so that compound constructs can attach that metadata to metrics they expose. This class does not represent a resource, so hence is not a construct. Instead, MathExpression is an abstraction that makes it easy to specify metrics for use in both alarms and graphs. """ def __init__(self, *, expression: str, using_metrics: typing.Mapping[str,"IMetric"], color: typing.Optional[str]=None, label: typing.Optional[str]=None, period: typing.Optional[aws_cdk.core.Duration]=None) -> None: """ :param expression: The expression defining the metric. :param using_metrics: The metrics used in the expression, in a map. The key is the identifier that represents the given metric in the expression, and the value is the actual Metric object. :param color: Color for this metric when added to a Graph in a Dashboard. Default: - Automatic color :param label: Label for this metric when added to a Graph in a Dashboard. Default: - Expression value is used as label :param period: The period over which the expression's statistics are applied. This period overrides all periods in the metrics used in this math expression. Default: Duration.minutes(5) """ props = MathExpressionProps(expression=expression, using_metrics=using_metrics, color=color, label=label, period=period) jsii.create(MathExpression, self, [props]) @jsii.member(jsii_name="createAlarm") def create_alarm(self, scope: aws_cdk.core.Construct, id: str, *, evaluation_periods: jsii.Number, threshold: jsii.Number, actions_enabled: typing.Optional[bool]=None, alarm_description: typing.Optional[str]=None, alarm_name: typing.Optional[str]=None, comparison_operator: typing.Optional["ComparisonOperator"]=None, datapoints_to_alarm: typing.Optional[jsii.Number]=None, evaluate_low_sample_count_percentile: typing.Optional[str]=None, period: typing.Optional[aws_cdk.core.Duration]=None, statistic: typing.Optional[str]=None, treat_missing_data: typing.Optional["TreatMissingData"]=None) -> "Alarm": """Make a new Alarm for this metric. Combines both properties that may adjust the metric (aggregation) as well as alarm properties. :param scope: - :param id: - :param evaluation_periods: The number of periods over which data is compared to the specified threshold. :param threshold: The value against which the specified statistic is compared. :param actions_enabled: Whether the actions for this alarm are enabled. Default: true :param alarm_description: Description for the alarm. Default: No description :param alarm_name: Name of the alarm. Default: Automatically generated name :param comparison_operator: Comparison to use to check if metric is breaching. Default: GreaterThanOrEqualToThreshold :param datapoints_to_alarm: The number of datapoints that must be breaching to trigger the alarm. This is used only if you are setting an "M out of N" alarm. In that case, this value is the M. For more information, see Evaluating an Alarm in the Amazon CloudWatch User Guide. Default: ``evaluationPeriods`` :param evaluate_low_sample_count_percentile: Specifies whether to evaluate the data and potentially change the alarm state if there are too few data points to be statistically significant. Used only for alarms that are based on percentiles. Default: - Not configured. :param period: The period over which the specified statistic is applied. Default: Duration.minutes(5) :param statistic: What function to use for aggregating. Can be one of the following: - "Minimum" | "min" - "Maximum" | "max" - "Average" | "avg" - "Sum" | "sum" - "SampleCount | "n" - "pNN.NN" Default: Average :param treat_missing_data: Sets how this alarm is to handle missing data points. Default: TreatMissingData.Missing """ props = CreateAlarmOptions(evaluation_periods=evaluation_periods, threshold=threshold, actions_enabled=actions_enabled, alarm_description=alarm_description, alarm_name=alarm_name, comparison_operator=comparison_operator, datapoints_to_alarm=datapoints_to_alarm, evaluate_low_sample_count_percentile=evaluate_low_sample_count_percentile, period=period, statistic=statistic, treat_missing_data=treat_missing_data) return jsii.invoke(self, "createAlarm", [scope, id, props]) @jsii.member(jsii_name="toAlarmConfig") def to_alarm_config(self) -> "MetricAlarmConfig": """Turn this metric object into an alarm configuration.""" return jsii.invoke(self, "toAlarmConfig", []) @jsii.member(jsii_name="toGraphConfig") def to_graph_config(self) -> "MetricGraphConfig": """Turn this metric object into a graph configuration.""" return jsii.invoke(self, "toGraphConfig", []) @jsii.member(jsii_name="toMetricConfig") def to_metric_config(self) -> "MetricConfig": """Inspect the details of the metric object.""" return jsii.invoke(self, "toMetricConfig", []) @jsii.member(jsii_name="toString") def to_string(self) -> str: """Returns a string representation of an object.""" return jsii.invoke(self, "toString", []) @jsii.member(jsii_name="with") def with_(self, *, color: typing.Optional[str]=None, label: typing.Optional[str]=None, period: typing.Optional[aws_cdk.core.Duration]=None) -> "MathExpression": """Return a copy of Metric with properties changed. All properties except namespace and metricName can be changed. :param color: Color for this metric when added to a Graph in a Dashboard. Default: - Automatic color :param label: Label for this metric when added to a Graph in a Dashboard. Default: - Expression value is used as label :param period: The period over which the expression's statistics are applied. This period overrides all periods in the metrics used in this math expression. Default: Duration.minutes(5) """ props = MathExpressionOptions(color=color, label=label, period=period) return jsii.invoke(self, "with", [props]) @builtins.property @jsii.member(jsii_name="expression") def expression(self) -> str: """The expression defining the metric.""" return jsii.get(self, "expression") @builtins.property @jsii.member(jsii_name="period") def period(self) -> aws_cdk.core.Duration: """Aggregation period of this metric.""" return jsii.get(self, "period") @builtins.property @jsii.member(jsii_name="usingMetrics") def using_metrics(self) -> typing.Mapping[str,"IMetric"]: """The metrics used in the expression as KeyValuePair <id, metric>.""" return jsii.get(self, "usingMetrics") @builtins.property @jsii.member(jsii_name="color") def color(self) -> typing.Optional[str]: """Color for this metric when added to a Graph.""" return jsii.get(self, "color") @builtins.property @jsii.member(jsii_name="label") def label(self) -> typing.Optional[str]: """Label for this metric when added to a Graph.""" return jsii.get(self, "label") @jsii.data_type(jsii_type="@aws-cdk/aws-cloudwatch.MathExpressionOptions", jsii_struct_bases=[], name_mapping={'color': 'color', 'label': 'label', 'period': 'period'}) class MathExpressionOptions(): def __init__(self, *, color: typing.Optional[str]=None, label: typing.Optional[str]=None, period: typing.Optional[aws_cdk.core.Duration]=None): """Configurable options for MathExpressions. :param color: Color for this metric when added to a Graph in a Dashboard. Default: - Automatic color :param label: Label for this metric when added to a Graph in a Dashboard. Default: - Expression value is used as label :param period: The period over which the expression's statistics are applied. This period overrides all periods in the metrics used in this math expression. Default: Duration.minutes(5) """ self._values = { } if color is not None: self._values["color"] = color if label is not None: self._values["label"] = label if period is not None: self._values["period"] = period @builtins.property def color(self) -> typing.Optional[str]: """Color for this metric when added to a Graph in a Dashboard. default :default: - Automatic color """ return self._values.get('color') @builtins.property def label(self) -> typing.Optional[str]: """Label for this metric when added to a Graph in a Dashboard. default :default: - Expression value is used as label """ return self._values.get('label') @builtins.property def period(self) -> typing.Optional[aws_cdk.core.Duration]: """The period over which the expression's statistics are applied. This period overrides all periods in the metrics used in this math expression. default :default: Duration.minutes(5) """ return self._values.get('period') def __eq__(self, rhs) -> bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs) -> bool: return not (rhs == self) def __repr__(self) -> str: return 'MathExpressionOptions(%s)' % ', '.join(k + '=' + repr(v) for k, v in self._values.items()) @jsii.data_type(jsii_type="@aws-cdk/aws-cloudwatch.MathExpressionProps", jsii_struct_bases=[MathExpressionOptions], name_mapping={'color': 'color', 'label': 'label', 'period': 'period', 'expression': 'expression', 'using_metrics': 'usingMetrics'}) class MathExpressionProps(MathExpressionOptions): def __init__(self, *, color: typing.Optional[str]=None, label: typing.Optional[str]=None, period: typing.Optional[aws_cdk.core.Duration]=None, expression: str, using_metrics: typing.Mapping[str,"IMetric"]): """Properties for a MathExpression. :param color: Color for this metric when added to a Graph in a Dashboard. Default: - Automatic color :param label: Label for this metric when added to a Graph in a Dashboard. Default: - Expression value is used as label :param period: The period over which the expression's statistics are applied. This period overrides all periods in the metrics used in this math expression. Default: Duration.minutes(5) :param expression: The expression defining the metric. :param using_metrics: The metrics used in the expression, in a map. The key is the identifier that represents the given metric in the expression, and the value is the actual Metric object. """ self._values = { 'expression': expression, 'using_metrics': using_metrics, } if color is not None: self._values["color"] = color if label is not None: self._values["label"] = label if period is not None: self._values["period"] = period @builtins.property def color(self) -> typing.Optional[str]: """Color for this metric when added to a Graph in a Dashboard. default :default: - Automatic color """ return self._values.get('color') @builtins.property def label(self) -> typing.Optional[str]: """Label for this metric when added to a Graph in a Dashboard. default :default: - Expression value is used as label """ return self._values.get('label') @builtins.property def period(self) -> typing.Optional[aws_cdk.core.Duration]: """The period over which the expression's statistics are applied. This period overrides all periods in the metrics used in this math expression. default :default: Duration.minutes(5) """ return self._values.get('period') @builtins.property def expression(self) -> str: """The expression defining the metric.""" return self._values.get('expression') @builtins.property def using_metrics(self) -> typing.Mapping[str,"IMetric"]: """The metrics used in the expression, in a map. The key is the identifier that represents the given metric in the expression, and the value is the actual Metric object. """ return self._values.get('using_metrics') def __eq__(self, rhs) -> bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs) -> bool: return not (rhs == self) def __repr__(self) -> str: return 'MathExpressionProps(%s)' % ', '.join(k + '=' + repr(v) for k, v in self._values.items()) @jsii.implements(IMetric) class Metric(metaclass=jsii.JSIIMeta, jsii_type="@aws-cdk/aws-cloudwatch.Metric"): """A metric emitted by a service. The metric is a combination of a metric identifier (namespace, name and dimensions) and an aggregation function (statistic, period and unit). It also contains metadata which is used only in graphs, such as color and label. It makes sense to embed this in here, so that compound constructs can attach that metadata to metrics they expose. This class does not represent a resource, so hence is not a construct. Instead, Metric is an abstraction that makes it easy to specify metrics for use in both alarms and graphs. """ def __init__(self, *, metric_name: str, namespace: str, account: typing.Optional[str]=None, color: typing.Optional[str]=None, dimensions: typing.Optional[typing.Mapping[str,typing.Any]]=None, label: typing.Optional[str]=None, period: typing.Optional[aws_cdk.core.Duration]=None, region: typing.Optional[str]=None, statistic: typing.Optional[str]=None, unit: typing.Optional["Unit"]=None) -> None: """ :param metric_name: Name of the metric. :param namespace: Namespace of the metric. :param account: Account which this metric comes from. Default: Deployment account. :param color: Color for this metric when added to a Graph in a Dashboard. :param dimensions: Dimensions of the metric. Default: - No dimensions. :param label: Label for this metric when added to a Graph in a Dashboard. :param period: The period over which the specified statistic is applied. Default: Duration.minutes(5) :param region: Region which this metric comes from. Default: Deployment region. :param statistic: What function to use for aggregating. Can be one of the following: - "Minimum" | "min" - "Maximum" | "max" - "Average" | "avg" - "Sum" | "sum" - "SampleCount | "n" - "pNN.NN" Default: Average :param unit: Unit used to filter the metric stream. Only refer to datums emitted to the metric stream with the given unit and ignore all others. Only useful when datums are being emitted to the same metric stream under different units. The default is to use all matric datums in the stream, regardless of unit, which is recommended in nearly all cases. CloudWatch does not honor this property for graphs. Default: All metric datums in the given metric stream """ props = MetricProps(metric_name=metric_name, namespace=namespace, account=account, color=color, dimensions=dimensions, label=label, period=period, region=region, statistic=statistic, unit=unit) jsii.create(Metric, self, [props]) @jsii.member(jsii_name="grantPutMetricData") @builtins.classmethod def grant_put_metric_data(cls, grantee: aws_cdk.aws_iam.IGrantable) -> aws_cdk.aws_iam.Grant: """Grant permissions to the given identity to write metrics. :param grantee: The IAM identity to give permissions to. """ return jsii.sinvoke(cls, "grantPutMetricData", [grantee]) @jsii.member(jsii_name="attachTo") def attach_to(self, scope: aws_cdk.core.Construct) -> "Metric": """Attach the metric object to the given construct scope. Returns a Metric object that uses the account and region from the Stack the given construct is defined in. If the metric is subsequently used in a Dashboard or Alarm in a different Stack defined in a different account or region, the appropriate 'region' and 'account' fields will be added to it. If the scope we attach to is in an environment-agnostic stack, nothing is done and the same Metric object is returned. :param scope: - """ return jsii.invoke(self, "attachTo", [scope]) @jsii.member(jsii_name="createAlarm") def create_alarm(self, scope: aws_cdk.core.Construct, id: str, *, evaluation_periods: jsii.Number, threshold: jsii.Number, actions_enabled: typing.Optional[bool]=None, alarm_description: typing.Optional[str]=None, alarm_name: typing.Optional[str]=None, comparison_operator: typing.Optional["ComparisonOperator"]=None, datapoints_to_alarm: typing.Optional[jsii.Number]=None, evaluate_low_sample_count_percentile: typing.Optional[str]=None, period: typing.Optional[aws_cdk.core.Duration]=None, statistic: typing.Optional[str]=None, treat_missing_data: typing.Optional["TreatMissingData"]=None) -> "Alarm": """Make a new Alarm for this metric. Combines both properties that may adjust the metric (aggregation) as well as alarm properties. :param scope: - :param id: - :param evaluation_periods: The number of periods over which data is compared to the specified threshold. :param threshold: The value against which the specified statistic is compared. :param actions_enabled: Whether the actions for this alarm are enabled. Default: true :param alarm_description: Description for the alarm. Default: No description :param alarm_name: Name of the alarm. Default: Automatically generated name :param comparison_operator: Comparison to use to check if metric is breaching. Default: GreaterThanOrEqualToThreshold :param datapoints_to_alarm: The number of datapoints that must be breaching to trigger the alarm. This is used only if you are setting an "M out of N" alarm. In that case, this value is the M. For more information, see Evaluating an Alarm in the Amazon CloudWatch User Guide. Default: ``evaluationPeriods`` :param evaluate_low_sample_count_percentile: Specifies whether to evaluate the data and potentially change the alarm state if there are too few data points to be statistically significant. Used only for alarms that are based on percentiles. Default: - Not configured. :param period: The period over which the specified statistic is applied. Default: Duration.minutes(5) :param statistic: What function to use for aggregating. Can be one of the following: - "Minimum" | "min" - "Maximum" | "max" - "Average" | "avg" - "Sum" | "sum" - "SampleCount | "n" - "pNN.NN" Default: Average :param treat_missing_data: Sets how this alarm is to handle missing data points. Default: TreatMissingData.Missing """ props = CreateAlarmOptions(evaluation_periods=evaluation_periods, threshold=threshold, actions_enabled=actions_enabled, alarm_description=alarm_description, alarm_name=alarm_name, comparison_operator=comparison_operator, datapoints_to_alarm=datapoints_to_alarm, evaluate_low_sample_count_percentile=evaluate_low_sample_count_percentile, period=period, statistic=statistic, treat_missing_data=treat_missing_data) return jsii.invoke(self, "createAlarm", [scope, id, props]) @jsii.member(jsii_name="toAlarmConfig") def to_alarm_config(self) -> "MetricAlarmConfig": """Turn this metric object into an alarm configuration.""" return jsii.invoke(self, "toAlarmConfig", []) @jsii.member(jsii_name="toGraphConfig") def to_graph_config(self) -> "MetricGraphConfig": """Turn this metric object into a graph configuration.""" return jsii.invoke(self, "toGraphConfig", []) @jsii.member(jsii_name="toMetricConfig") def to_metric_config(self) -> "MetricConfig": """Inspect the details of the metric object.""" return jsii.invoke(self, "toMetricConfig", []) @jsii.member(jsii_name="toString") def to_string(self) -> str: """Returns a string representation of an object.""" return jsii.invoke(self, "toString", []) @jsii.member(jsii_name="with") def with_(self, *, account: typing.Optional[str]=None, color: typing.Optional[str]=None, dimensions: typing.Optional[typing.Mapping[str,typing.Any]]=None, label: typing.Optional[str]=None, period: typing.Optional[aws_cdk.core.Duration]=None, region: typing.Optional[str]=None, statistic: typing.Optional[str]=None, unit: typing.Optional["Unit"]=None) -> "Metric": """Return a copy of Metric with properties changed. All properties except namespace and metricName can be changed. :param account: Account which this metric comes from. Default: Deployment account. :param color: Color for this metric when added to a Graph in a Dashboard. :param dimensions: Dimensions of the metric. Default: - No dimensions. :param label: Label for this metric when added to a Graph in a Dashboard. :param period: The period over which the specified statistic is applied. Default: Duration.minutes(5) :param region: Region which this metric comes from. Default: Deployment region. :param statistic: What function to use for aggregating. Can be one of the following: - "Minimum" | "min" - "Maximum" | "max" - "Average" | "avg" - "Sum" | "sum" - "SampleCount | "n" - "pNN.NN" Default: Average :param unit: Unit used to filter the metric stream. Only refer to datums emitted to the metric stream with the given unit and ignore all others. Only useful when datums are being emitted to the same metric stream under different units. The default is to use all matric datums in the stream, regardless of unit, which is recommended in nearly all cases. CloudWatch does not honor this property for graphs. Default: All metric datums in the given metric stream """ props = MetricOptions(account=account, color=color, dimensions=dimensions, label=label, period=period, region=region, statistic=statistic, unit=unit) return jsii.invoke(self, "with", [props]) @builtins.property @jsii.member(jsii_name="metricName") def metric_name(self) -> str: return jsii.get(self, "metricName") @builtins.property @jsii.member(jsii_name="namespace") def namespace(self) -> str: return jsii.get(self, "namespace") @builtins.property @jsii.member(jsii_name="period") def period(self) -> aws_cdk.core.Duration: return jsii.get(self, "period") @builtins.property @jsii.member(jsii_name="statistic") def statistic(self) -> str: return jsii.get(self, "statistic") @builtins.property @jsii.member(jsii_name="account") def account(self) -> typing.Optional[str]: """Account which this metric comes from. default :default: Deployment account. """ return jsii.get(self, "account") @builtins.property @jsii.member(jsii_name="color") def color(self) -> typing.Optional[str]: return jsii.get(self, "color") @builtins.property @jsii.member(jsii_name="dimensions") def dimensions(self) -> typing.Optional[typing.Mapping[str,typing.Any]]: return jsii.get(self, "dimensions") @builtins.property @jsii.member(jsii_name="label") def label(self) -> typing.Optional[str]: return jsii.get(self, "label") @builtins.property @jsii.member(jsii_name="region") def region(self) -> typing.Optional[str]: """Region which this metric comes from. default :default: Deployment region. """ return jsii.get(self, "region") @builtins.property @jsii.member(jsii_name="unit") def unit(self) -> typing.Optional["Unit"]: """Unit of the metric. default :default: None """ return jsii.get(self, "unit") @jsii.data_type(jsii_type="@aws-cdk/aws-cloudwatch.MetricAlarmConfig", jsii_struct_bases=[], name_mapping={'metric_name': 'metricName', 'namespace': 'namespace', 'period': 'period', 'dimensions': 'dimensions', 'extended_statistic': 'extendedStatistic', 'statistic': 'statistic', 'unit': 'unit'}) class MetricAlarmConfig(): def __init__(self, *, metric_name: str, namespace: str, period: jsii.Number, dimensions: typing.Optional[typing.List["Dimension"]]=None, extended_statistic: typing.Optional[str]=None, statistic: typing.Optional["Statistic"]=None, unit: typing.Optional["Unit"]=None): """Properties used to construct the Metric identifying part of an Alarm. :param metric_name: Name of the metric. :param namespace: Namespace of the metric. :param period: How many seconds to aggregate over. :param dimensions: The dimensions to apply to the alarm. :param extended_statistic: Percentile aggregation function to use. :param statistic: Simple aggregation function to use. :param unit: The unit of the alarm. deprecated :deprecated: Replaced by MetricConfig stability :stability: deprecated """ self._values = { 'metric_name': metric_name, 'namespace': namespace, 'period': period, } if dimensions is not None: self._values["dimensions"] = dimensions if extended_statistic is not None: self._values["extended_statistic"] = extended_statistic if statistic is not None: self._values["statistic"] = statistic if unit is not None: self._values["unit"] = unit @builtins.property def metric_name(self) -> str: """Name of the metric. stability :stability: deprecated """ return self._values.get('metric_name') @builtins.property def namespace(self) -> str: """Namespace of the metric. stability :stability: deprecated """ return self._values.get('namespace') @builtins.property def period(self) -> jsii.Number: """How many seconds to aggregate over. stability :stability: deprecated """ return self._values.get('period') @builtins.property def dimensions(self) -> typing.Optional[typing.List["Dimension"]]: """The dimensions to apply to the alarm. stability :stability: deprecated """ return self._values.get('dimensions') @builtins.property def extended_statistic(self) -> typing.Optional[str]: """Percentile aggregation function to use. stability :stability: deprecated """ return self._values.get('extended_statistic') @builtins.property def statistic(self) -> typing.Optional["Statistic"]: """Simple aggregation function to use. stability :stability: deprecated """ return self._values.get('statistic') @builtins.property def unit(self) -> typing.Optional["Unit"]: """The unit of the alarm. stability :stability: deprecated """ return self._values.get('unit') def __eq__(self, rhs) -> bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs) -> bool: return not (rhs == self) def __repr__(self) -> str: return 'MetricAlarmConfig(%s)' % ', '.join(k + '=' + repr(v) for k, v in self._values.items()) @jsii.data_type(jsii_type="@aws-cdk/aws-cloudwatch.MetricConfig", jsii_struct_bases=[], name_mapping={'math_expression': 'mathExpression', 'metric_stat': 'metricStat', 'rendering_properties': 'renderingProperties'}) class MetricConfig(): def __init__(self, *, math_expression: typing.Optional["MetricExpressionConfig"]=None, metric_stat: typing.Optional["MetricStatConfig"]=None, rendering_properties: typing.Optional[typing.Mapping[str,typing.Any]]=None): """Properties of a rendered metric. :param math_expression: In case the metric is a math expression, the details of the math expression. Default: - unset :param metric_stat: In case the metric represents a query, the details of the query. Default: - unset :param rendering_properties: Additional properties which will be rendered if the metric is used in a dashboard. Examples are 'label' and 'color', but any key in here will be added to dashboard graphs. Default: {} """ if isinstance(math_expression, dict): math_expression = MetricExpressionConfig(**math_expression) if isinstance(metric_stat, dict): metric_stat = MetricStatConfig(**metric_stat) self._values = { } if math_expression is not None: self._values["math_expression"] = math_expression if metric_stat is not None: self._values["metric_stat"] = metric_stat if rendering_properties is not None: self._values["rendering_properties"] = rendering_properties @builtins.property def math_expression(self) -> typing.Optional["MetricExpressionConfig"]: """In case the metric is a math expression, the details of the math expression. default :default: - unset """ return self._values.get('math_expression') @builtins.property def metric_stat(self) -> typing.Optional["MetricStatConfig"]: """In case the metric represents a query, the details of the query. default :default: - unset """ return self._values.get('metric_stat') @builtins.property def rendering_properties(self) -> typing.Optional[typing.Mapping[str,typing.Any]]: """Additional properties which will be rendered if the metric is used in a dashboard. Examples are 'label' and 'color', but any key in here will be added to dashboard graphs. default :default: {} """ return self._values.get('rendering_properties') def __eq__(self, rhs) -> bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs) -> bool: return not (rhs == self) def __repr__(self) -> str: return 'MetricConfig(%s)' % ', '.join(k + '=' + repr(v) for k, v in self._values.items()) @jsii.data_type(jsii_type="@aws-cdk/aws-cloudwatch.MetricExpressionConfig", jsii_struct_bases=[], name_mapping={'expression': 'expression', 'using_metrics': 'usingMetrics'}) class MetricExpressionConfig(): def __init__(self, *, expression: str, using_metrics: typing.Mapping[str,"IMetric"]): """Properties for a concrete metric. :param expression: Math expression for the metric. :param using_metrics: Metrics used in the math expression. """ self._values = { 'expression': expression, 'using_metrics': using_metrics, } @builtins.property def expression(self) -> str: """Math expression for the metric.""" return self._values.get('expression') @builtins.property def using_metrics(self) -> typing.Mapping[str,"IMetric"]: """Metrics used in the math expression.""" return self._values.get('using_metrics') def __eq__(self, rhs) -> bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs) -> bool: return not (rhs == self) def __repr__(self) -> str: return 'MetricExpressionConfig(%s)' % ', '.join(k + '=' + repr(v) for k, v in self._values.items()) @jsii.data_type(jsii_type="@aws-cdk/aws-cloudwatch.MetricGraphConfig", jsii_struct_bases=[], name_mapping={'metric_name': 'metricName', 'namespace': 'namespace', 'period': 'period', 'rendering_properties': 'renderingProperties', 'color': 'color', 'dimensions': 'dimensions', 'label': 'label', 'statistic': 'statistic', 'unit': 'unit'}) class MetricGraphConfig(): def __init__(self, *, metric_name: str, namespace: str, period: jsii.Number, rendering_properties: "MetricRenderingProperties", color: typing.Optional[str]=None, dimensions: typing.Optional[typing.List["Dimension"]]=None, label: typing.Optional[str]=None, statistic: typing.Optional[str]=None, unit: typing.Optional["Unit"]=None): """Properties used to construct the Metric identifying part of a Graph. :param metric_name: Name of the metric. :param namespace: Namespace of the metric. :param period: How many seconds to aggregate over. :param rendering_properties: Rendering properties override yAxis parameter of the widget object. :param color: Color for the graph line. :param dimensions: The dimensions to apply to the alarm. :param label: Label for the metric. :param statistic: Aggregation function to use (can be either simple or a percentile). :param unit: The unit of the alarm. deprecated :deprecated: Replaced by MetricConfig stability :stability: deprecated """ if isinstance(rendering_properties, dict): rendering_properties = MetricRenderingProperties(**rendering_properties) self._values = { 'metric_name': metric_name, 'namespace': namespace, 'period': period, 'rendering_properties': rendering_properties, } if color is not None: self._values["color"] = color if dimensions is not None: self._values["dimensions"] = dimensions if label is not None: self._values["label"] = label if statistic is not None: self._values["statistic"] = statistic if unit is not None: self._values["unit"] = unit @builtins.property def metric_name(self) -> str: """Name of the metric. stability :stability: deprecated """ return self._values.get('metric_name') @builtins.property def namespace(self) -> str: """Namespace of the metric. stability :stability: deprecated """ return self._values.get('namespace') @builtins.property def period(self) -> jsii.Number: """How many seconds to aggregate over. deprecated :deprecated: Use ``period`` in ``renderingProperties`` stability :stability: deprecated """ return self._values.get('period') @builtins.property def rendering_properties(self) -> "MetricRenderingProperties": """Rendering properties override yAxis parameter of the widget object. stability :stability: deprecated """ return self._values.get('rendering_properties') @builtins.property def color(self) -> typing.Optional[str]: """Color for the graph line. deprecated :deprecated: Use ``color`` in ``renderingProperties`` stability :stability: deprecated """ return self._values.get('color') @builtins.property def dimensions(self) -> typing.Optional[typing.List["Dimension"]]: """The dimensions to apply to the alarm. stability :stability: deprecated """ return self._values.get('dimensions') @builtins.property def label(self) -> typing.Optional[str]: """Label for the metric. deprecated :deprecated: Use ``label`` in ``renderingProperties`` stability :stability: deprecated """ return self._values.get('label') @builtins.property def statistic(self) -> typing.Optional[str]: """Aggregation function to use (can be either simple or a percentile). deprecated :deprecated: Use ``stat`` in ``renderingProperties`` stability :stability: deprecated """ return self._values.get('statistic') @builtins.property def unit(self) -> typing.Optional["Unit"]: """The unit of the alarm. deprecated :deprecated: not used in dashboard widgets stability :stability: deprecated """ return self._values.get('unit') def __eq__(self, rhs) -> bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs) -> bool: return not (rhs == self) def __repr__(self) -> str: return 'MetricGraphConfig(%s)' % ', '.join(k + '=' + repr(v) for k, v in self._values.items()) @jsii.data_type(jsii_type="@aws-cdk/aws-cloudwatch.MetricOptions", jsii_struct_bases=[CommonMetricOptions], name_mapping={'account': 'account', 'color': 'color', 'dimensions': 'dimensions', 'label': 'label', 'period': 'period', 'region': 'region', 'statistic': 'statistic', 'unit': 'unit'}) class MetricOptions(CommonMetricOptions): def __init__(self, *, account: typing.Optional[str]=None, color: typing.Optional[str]=None, dimensions: typing.Optional[typing.Mapping[str,typing.Any]]=None, label: typing.Optional[str]=None, period: typing.Optional[aws_cdk.core.Duration]=None, region: typing.Optional[str]=None, statistic: typing.Optional[str]=None, unit: typing.Optional["Unit"]=None): """Properties of a metric that can be changed. :param account: Account which this metric comes from. Default: Deployment account. :param color: Color for this metric when added to a Graph in a Dashboard. :param dimensions: Dimensions of the metric. Default: - No dimensions. :param label: Label for this metric when added to a Graph in a Dashboard. :param period: The period over which the specified statistic is applied. Default: Duration.minutes(5) :param region: Region which this metric comes from. Default: Deployment region. :param statistic: What function to use for aggregating. Can be one of the following: - "Minimum" | "min" - "Maximum" | "max" - "Average" | "avg" - "Sum" | "sum" - "SampleCount | "n" - "pNN.NN" Default: Average :param unit: Unit used to filter the metric stream. Only refer to datums emitted to the metric stream with the given unit and ignore all others. Only useful when datums are being emitted to the same metric stream under different units. The default is to use all matric datums in the stream, regardless of unit, which is recommended in nearly all cases. CloudWatch does not honor this property for graphs. Default: All metric datums in the given metric stream """ self._values = { } if account is not None: self._values["account"] = account if color is not None: self._values["color"] = color if dimensions is not None: self._values["dimensions"] = dimensions if label is not None: self._values["label"] = label if period is not None: self._values["period"] = period if region is not None: self._values["region"] = region if statistic is not None: self._values["statistic"] = statistic if unit is not None: self._values["unit"] = unit @builtins.property def account(self) -> typing.Optional[str]: """Account which this metric comes from. default :default: Deployment account. """ return self._values.get('account') @builtins.property def color(self) -> typing.Optional[str]: """Color for this metric when added to a Graph in a Dashboard.""" return self._values.get('color') @builtins.property def dimensions(self) -> typing.Optional[typing.Mapping[str,typing.Any]]: """Dimensions of the metric. default :default: - No dimensions. """ return self._values.get('dimensions') @builtins.property def label(self) -> typing.Optional[str]: """Label for this metric when added to a Graph in a Dashboard.""" return self._values.get('label') @builtins.property def period(self) -> typing.Optional[aws_cdk.core.Duration]: """The period over which the specified statistic is applied. default :default: Duration.minutes(5) """ return self._values.get('period') @builtins.property def region(self) -> typing.Optional[str]: """Region which this metric comes from. default :default: Deployment region. """ return self._values.get('region') @builtins.property def statistic(self) -> typing.Optional[str]: """What function to use for aggregating. Can be one of the following: - "Minimum" | "min" - "Maximum" | "max" - "Average" | "avg" - "Sum" | "sum" - "SampleCount | "n" - "pNN.NN" default :default: Average """ return self._values.get('statistic') @builtins.property def unit(self) -> typing.Optional["Unit"]: """Unit used to filter the metric stream. Only refer to datums emitted to the metric stream with the given unit and ignore all others. Only useful when datums are being emitted to the same metric stream under different units. The default is to use all matric datums in the stream, regardless of unit, which is recommended in nearly all cases. CloudWatch does not honor this property for graphs. default :default: All metric datums in the given metric stream """ return self._values.get('unit') def __eq__(self, rhs) -> bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs) -> bool: return not (rhs == self) def __repr__(self) -> str: return 'MetricOptions(%s)' % ', '.join(k + '=' + repr(v) for k, v in self._values.items()) @jsii.data_type(jsii_type="@aws-cdk/aws-cloudwatch.MetricProps", jsii_struct_bases=[CommonMetricOptions], name_mapping={'account': 'account', 'color': 'color', 'dimensions': 'dimensions', 'label': 'label', 'period': 'period', 'region': 'region', 'statistic': 'statistic', 'unit': 'unit', 'metric_name': 'metricName', 'namespace': 'namespace'}) class MetricProps(CommonMetricOptions): def __init__(self, *, account: typing.Optional[str]=None, color: typing.Optional[str]=None, dimensions: typing.Optional[typing.Mapping[str,typing.Any]]=None, label: typing.Optional[str]=None, period: typing.Optional[aws_cdk.core.Duration]=None, region: typing.Optional[str]=None, statistic: typing.Optional[str]=None, unit: typing.Optional["Unit"]=None, metric_name: str, namespace: str): """Properties for a metric. :param account: Account which this metric comes from. Default: Deployment account. :param color: Color for this metric when added to a Graph in a Dashboard. :param dimensions: Dimensions of the metric. Default: - No dimensions. :param label: Label for this metric when added to a Graph in a Dashboard. :param period: The period over which the specified statistic is applied. Default: Duration.minutes(5) :param region: Region which this metric comes from. Default: Deployment region. :param statistic: What function to use for aggregating. Can be one of the following: - "Minimum" | "min" - "Maximum" | "max" - "Average" | "avg" - "Sum" | "sum" - "SampleCount | "n" - "pNN.NN" Default: Average :param unit: Unit used to filter the metric stream. Only refer to datums emitted to the metric stream with the given unit and ignore all others. Only useful when datums are being emitted to the same metric stream under different units. The default is to use all matric datums in the stream, regardless of unit, which is recommended in nearly all cases. CloudWatch does not honor this property for graphs. Default: All metric datums in the given metric stream :param metric_name: Name of the metric. :param namespace: Namespace of the metric. """ self._values = { 'metric_name': metric_name, 'namespace': namespace, } if account is not None: self._values["account"] = account if color is not None: self._values["color"] = color if dimensions is not None: self._values["dimensions"] = dimensions if label is not None: self._values["label"] = label if period is not None: self._values["period"] = period if region is not None: self._values["region"] = region if statistic is not None: self._values["statistic"] = statistic if unit is not None: self._values["unit"] = unit @builtins.property def account(self) -> typing.Optional[str]: """Account which this metric comes from. default :default: Deployment account. """ return self._values.get('account') @builtins.property def color(self) -> typing.Optional[str]: """Color for this metric when added to a Graph in a Dashboard.""" return self._values.get('color') @builtins.property def dimensions(self) -> typing.Optional[typing.Mapping[str,typing.Any]]: """Dimensions of the metric. default :default: - No dimensions. """ return self._values.get('dimensions') @builtins.property def label(self) -> typing.Optional[str]: """Label for this metric when added to a Graph in a Dashboard.""" return self._values.get('label') @builtins.property def period(self) -> typing.Optional[aws_cdk.core.Duration]: """The period over which the specified statistic is applied. default :default: Duration.minutes(5) """ return self._values.get('period') @builtins.property def region(self) -> typing.Optional[str]: """Region which this metric comes from. default :default: Deployment region. """ return self._values.get('region') @builtins.property def statistic(self) -> typing.Optional[str]: """What function to use for aggregating. Can be one of the following: - "Minimum" | "min" - "Maximum" | "max" - "Average" | "avg" - "Sum" | "sum" - "SampleCount | "n" - "pNN.NN" default :default: Average """ return self._values.get('statistic') @builtins.property def unit(self) -> typing.Optional["Unit"]: """Unit used to filter the metric stream. Only refer to datums emitted to the metric stream with the given unit and ignore all others. Only useful when datums are being emitted to the same metric stream under different units. The default is to use all matric datums in the stream, regardless of unit, which is recommended in nearly all cases. CloudWatch does not honor this property for graphs. default :default: All metric datums in the given metric stream """ return self._values.get('unit') @builtins.property def metric_name(self) -> str: """Name of the metric.""" return self._values.get('metric_name') @builtins.property def namespace(self) -> str: """Namespace of the metric.""" return self._values.get('namespace') def __eq__(self, rhs) -> bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs) -> bool: return not (rhs == self) def __repr__(self) -> str: return 'MetricProps(%s)' % ', '.join(k + '=' + repr(v) for k, v in self._values.items()) @jsii.data_type(jsii_type="@aws-cdk/aws-cloudwatch.MetricRenderingProperties", jsii_struct_bases=[], name_mapping={'period': 'period', 'color': 'color', 'label': 'label', 'stat': 'stat'}) class MetricRenderingProperties(): def __init__(self, *, period: jsii.Number, color: typing.Optional[str]=None, label: typing.Optional[str]=None, stat: typing.Optional[str]=None): """Custom rendering properties that override the default rendering properties specified in the yAxis parameter of the widget object. :param period: How many seconds to aggregate over. :param color: Color for the graph line. :param label: Label for the metric. :param stat: Aggregation function to use (can be either simple or a percentile). deprecated :deprecated: Replaced by MetricConfig. stability :stability: deprecated """ self._values = { 'period': period, } if color is not None: self._values["color"] = color if label is not None: self._values["label"] = label if stat is not None: self._values["stat"] = stat @builtins.property def period(self) -> jsii.Number: """How many seconds to aggregate over. stability :stability: deprecated """ return self._values.get('period') @builtins.property def color(self) -> typing.Optional[str]: """Color for the graph line. stability :stability: deprecated """ return self._values.get('color') @builtins.property def label(self) -> typing.Optional[str]: """Label for the metric. stability :stability: deprecated """ return self._values.get('label') @builtins.property def stat(self) -> typing.Optional[str]: """Aggregation function to use (can be either simple or a percentile). stability :stability: deprecated """ return self._values.get('stat') def __eq__(self, rhs) -> bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs) -> bool: return not (rhs == self) def __repr__(self) -> str: return 'MetricRenderingProperties(%s)' % ', '.join(k + '=' + repr(v) for k, v in self._values.items()) @jsii.data_type(jsii_type="@aws-cdk/aws-cloudwatch.MetricStatConfig", jsii_struct_bases=[], name_mapping={'metric_name': 'metricName', 'namespace': 'namespace', 'period': 'period', 'statistic': 'statistic', 'account': 'account', 'dimensions': 'dimensions', 'region': 'region', 'unit_filter': 'unitFilter'}) class MetricStatConfig(): def __init__(self, *, metric_name: str, namespace: str, period: aws_cdk.core.Duration, statistic: str, account: typing.Optional[str]=None, dimensions: typing.Optional[typing.List["Dimension"]]=None, region: typing.Optional[str]=None, unit_filter: typing.Optional["Unit"]=None): """Properties for a concrete metric. NOTE: ``unit`` is no longer on this object since it is only used for ``Alarms``, and doesn't mean what one would expect it to mean there anyway. It is most likely to be misused. :param metric_name: Name of the metric. :param namespace: Namespace of the metric. :param period: How many seconds to aggregate over. :param statistic: Aggregation function to use (can be either simple or a percentile). :param account: Account which this metric comes from. Default: Deployment account. :param dimensions: The dimensions to apply to the alarm. Default: [] :param region: Region which this metric comes from. Default: Deployment region. :param unit_filter: Unit used to filter the metric stream. Only refer to datums emitted to the metric stream with the given unit and ignore all others. Only useful when datums are being emitted to the same metric stream under different units. This field has been renamed from plain ``unit`` to clearly communicate its purpose. Default: - Refer to all metric datums """ self._values = { 'metric_name': metric_name, 'namespace': namespace, 'period': period, 'statistic': statistic, } if account is not None: self._values["account"] = account if dimensions is not None: self._values["dimensions"] = dimensions if region is not None: self._values["region"] = region if unit_filter is not None: self._values["unit_filter"] = unit_filter @builtins.property def metric_name(self) -> str: """Name of the metric.""" return self._values.get('metric_name') @builtins.property def namespace(self) -> str: """Namespace of the metric.""" return self._values.get('namespace') @builtins.property def period(self) -> aws_cdk.core.Duration: """How many seconds to aggregate over.""" return self._values.get('period') @builtins.property def statistic(self) -> str: """Aggregation function to use (can be either simple or a percentile).""" return self._values.get('statistic') @builtins.property def account(self) -> typing.Optional[str]: """Account which this metric comes from. default :default: Deployment account. """ return self._values.get('account') @builtins.property def dimensions(self) -> typing.Optional[typing.List["Dimension"]]: """The dimensions to apply to the alarm. default :default: [] """ return self._values.get('dimensions') @builtins.property def region(self) -> typing.Optional[str]: """Region which this metric comes from. default :default: Deployment region. """ return self._values.get('region') @builtins.property def unit_filter(self) -> typing.Optional["Unit"]: """Unit used to filter the metric stream. Only refer to datums emitted to the metric stream with the given unit and ignore all others. Only useful when datums are being emitted to the same metric stream under different units. This field has been renamed from plain ``unit`` to clearly communicate its purpose. default :default: - Refer to all metric datums """ return self._values.get('unit_filter') def __eq__(self, rhs) -> bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs) -> bool: return not (rhs == self) def __repr__(self) -> str: return 'MetricStatConfig(%s)' % ', '.join(k + '=' + repr(v) for k, v in self._values.items()) @jsii.data_type(jsii_type="@aws-cdk/aws-cloudwatch.MetricWidgetProps", jsii_struct_bases=[], name_mapping={'height': 'height', 'region': 'region', 'title': 'title', 'width': 'width'}) class MetricWidgetProps(): def __init__(self, *, height: typing.Optional[jsii.Number]=None, region: typing.Optional[str]=None, title: typing.Optional[str]=None, width: typing.Optional[jsii.Number]=None): """Basic properties for widgets that display metrics. :param height: Height of the widget. Default: Depends on the type of widget :param region: The region the metrics of this graph should be taken from. Default: Current region :param title: Title for the graph. :param width: Width of the widget, in a grid of 24 units wide. Default: 6 """ self._values = { } if height is not None: self._values["height"] = height if region is not None: self._values["region"] = region if title is not None: self._values["title"] = title if width is not None: self._values["width"] = width @builtins.property def height(self) -> typing.Optional[jsii.Number]: """Height of the widget. default :default: Depends on the type of widget """ return self._values.get('height') @builtins.property def region(self) -> typing.Optional[str]: """The region the metrics of this graph should be taken from. default :default: Current region """ return self._values.get('region') @builtins.property def title(self) -> typing.Optional[str]: """Title for the graph.""" return self._values.get('title') @builtins.property def width(self) -> typing.Optional[jsii.Number]: """Width of the widget, in a grid of 24 units wide. default :default: 6 """ return self._values.get('width') def __eq__(self, rhs) -> bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs) -> bool: return not (rhs == self) def __repr__(self) -> str: return 'MetricWidgetProps(%s)' % ', '.join(k + '=' + repr(v) for k, v in self._values.items()) @jsii.data_type(jsii_type="@aws-cdk/aws-cloudwatch.AlarmWidgetProps", jsii_struct_bases=[MetricWidgetProps], name_mapping={'height': 'height', 'region': 'region', 'title': 'title', 'width': 'width', 'alarm': 'alarm', 'left_y_axis': 'leftYAxis'}) class AlarmWidgetProps(MetricWidgetProps): def __init__(self, *, height: typing.Optional[jsii.Number]=None, region: typing.Optional[str]=None, title: typing.Optional[str]=None, width: typing.Optional[jsii.Number]=None, alarm: "IAlarm", left_y_axis: typing.Optional["YAxisProps"]=None): """Properties for an AlarmWidget. :param height: Height of the widget. Default: Depends on the type of widget :param region: The region the metrics of this graph should be taken from. Default: Current region :param title: Title for the graph. :param width: Width of the widget, in a grid of 24 units wide. Default: 6 :param alarm: The alarm to show. :param left_y_axis: Left Y axis. """ if isinstance(left_y_axis, dict): left_y_axis = YAxisProps(**left_y_axis) self._values = { 'alarm': alarm, } if height is not None: self._values["height"] = height if region is not None: self._values["region"] = region if title is not None: self._values["title"] = title if width is not None: self._values["width"] = width if left_y_axis is not None: self._values["left_y_axis"] = left_y_axis @builtins.property def height(self) -> typing.Optional[jsii.Number]: """Height of the widget. default :default: Depends on the type of widget """ return self._values.get('height') @builtins.property def region(self) -> typing.Optional[str]: """The region the metrics of this graph should be taken from. default :default: Current region """ return self._values.get('region') @builtins.property def title(self) -> typing.Optional[str]: """Title for the graph.""" return self._values.get('title') @builtins.property def width(self) -> typing.Optional[jsii.Number]: """Width of the widget, in a grid of 24 units wide. default :default: 6 """ return self._values.get('width') @builtins.property def alarm(self) -> "IAlarm": """The alarm to show.""" return self._values.get('alarm') @builtins.property def left_y_axis(self) -> typing.Optional["YAxisProps"]: """Left Y axis.""" return self._values.get('left_y_axis') def __eq__(self, rhs) -> bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs) -> bool: return not (rhs == self) def __repr__(self) -> str: return 'AlarmWidgetProps(%s)' % ', '.join(k + '=' + repr(v) for k, v in self._values.items()) @jsii.data_type(jsii_type="@aws-cdk/aws-cloudwatch.GraphWidgetProps", jsii_struct_bases=[MetricWidgetProps], name_mapping={'height': 'height', 'region': 'region', 'title': 'title', 'width': 'width', 'left': 'left', 'left_annotations': 'leftAnnotations', 'left_y_axis': 'leftYAxis', 'right': 'right', 'right_annotations': 'rightAnnotations', 'right_y_axis': 'rightYAxis', 'stacked': 'stacked'}) class GraphWidgetProps(MetricWidgetProps): def __init__(self, *, height: typing.Optional[jsii.Number]=None, region: typing.Optional[str]=None, title: typing.Optional[str]=None, width: typing.Optional[jsii.Number]=None, left: typing.Optional[typing.List["IMetric"]]=None, left_annotations: typing.Optional[typing.List["HorizontalAnnotation"]]=None, left_y_axis: typing.Optional["YAxisProps"]=None, right: typing.Optional[typing.List["IMetric"]]=None, right_annotations: typing.Optional[typing.List["HorizontalAnnotation"]]=None, right_y_axis: typing.Optional["YAxisProps"]=None, stacked: typing.Optional[bool]=None): """Properties for a GraphWidget. :param height: Height of the widget. Default: Depends on the type of widget :param region: The region the metrics of this graph should be taken from. Default: Current region :param title: Title for the graph. :param width: Width of the widget, in a grid of 24 units wide. Default: 6 :param left: Metrics to display on left Y axis. :param left_annotations: Annotations for the left Y axis. :param left_y_axis: Left Y axis. :param right: Metrics to display on right Y axis. :param right_annotations: Annotations for the right Y axis. :param right_y_axis: Right Y axis. :param stacked: Whether the graph should be shown as stacked lines. """ if isinstance(left_y_axis, dict): left_y_axis = YAxisProps(**left_y_axis) if isinstance(right_y_axis, dict): right_y_axis = YAxisProps(**right_y_axis) self._values = { } if height is not None: self._values["height"] = height if region is not None: self._values["region"] = region if title is not None: self._values["title"] = title if width is not None: self._values["width"] = width if left is not None: self._values["left"] = left if left_annotations is not None: self._values["left_annotations"] = left_annotations if left_y_axis is not None: self._values["left_y_axis"] = left_y_axis if right is not None: self._values["right"] = right if right_annotations is not None: self._values["right_annotations"] = right_annotations if right_y_axis is not None: self._values["right_y_axis"] = right_y_axis if stacked is not None: self._values["stacked"] = stacked @builtins.property def height(self) -> typing.Optional[jsii.Number]: """Height of the widget. default :default: Depends on the type of widget """ return self._values.get('height') @builtins.property def region(self) -> typing.Optional[str]: """The region the metrics of this graph should be taken from. default :default: Current region """ return self._values.get('region') @builtins.property def title(self) -> typing.Optional[str]: """Title for the graph.""" return self._values.get('title') @builtins.property def width(self) -> typing.Optional[jsii.Number]: """Width of the widget, in a grid of 24 units wide. default :default: 6 """ return self._values.get('width') @builtins.property def left(self) -> typing.Optional[typing.List["IMetric"]]: """Metrics to display on left Y axis.""" return self._values.get('left') @builtins.property def left_annotations(self) -> typing.Optional[typing.List["HorizontalAnnotation"]]: """Annotations for the left Y axis.""" return self._values.get('left_annotations') @builtins.property def left_y_axis(self) -> typing.Optional["YAxisProps"]: """Left Y axis.""" return self._values.get('left_y_axis') @builtins.property def right(self) -> typing.Optional[typing.List["IMetric"]]: """Metrics to display on right Y axis.""" return self._values.get('right') @builtins.property def right_annotations(self) -> typing.Optional[typing.List["HorizontalAnnotation"]]: """Annotations for the right Y axis.""" return self._values.get('right_annotations') @builtins.property def right_y_axis(self) -> typing.Optional["YAxisProps"]: """Right Y axis.""" return self._values.get('right_y_axis') @builtins.property def stacked(self) -> typing.Optional[bool]: """Whether the graph should be shown as stacked lines.""" return self._values.get('stacked') def __eq__(self, rhs) -> bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs) -> bool: return not (rhs == self) def __repr__(self) -> str: return 'GraphWidgetProps(%s)' % ', '.join(k + '=' + repr(v) for k, v in self._values.items()) @jsii.enum(jsii_type="@aws-cdk/aws-cloudwatch.PeriodOverride") class PeriodOverride(enum.Enum): AUTO = "AUTO" INHERIT = "INHERIT" @jsii.implements(IWidget) class Row(metaclass=jsii.JSIIMeta, jsii_type="@aws-cdk/aws-cloudwatch.Row"): """A widget that contains other widgets in a horizontal row. Widgets will be laid out next to each other """ def __init__(self, *widgets: "IWidget") -> None: """ :param widgets: - """ jsii.create(Row, self, [*widgets]) @jsii.member(jsii_name="position") def position(self, x: jsii.Number, y: jsii.Number) -> None: """Place the widget at a given position. :param x: - :param y: - """ return jsii.invoke(self, "position", [x, y]) @jsii.member(jsii_name="toJson") def to_json(self) -> typing.List[typing.Any]: """Return the widget JSON for use in the dashboard.""" return jsii.invoke(self, "toJson", []) @builtins.property @jsii.member(jsii_name="height") def height(self) -> jsii.Number: """The amount of vertical grid units the widget will take up.""" return jsii.get(self, "height") @builtins.property @jsii.member(jsii_name="width") def width(self) -> jsii.Number: """The amount of horizontal grid units the widget will take up.""" return jsii.get(self, "width") @jsii.enum(jsii_type="@aws-cdk/aws-cloudwatch.Shading") class Shading(enum.Enum): NONE = "NONE" """Don't add shading.""" ABOVE = "ABOVE" """Add shading above the annotation.""" BELOW = "BELOW" """Add shading below the annotation.""" class SingleValueWidget(ConcreteWidget, metaclass=jsii.JSIIMeta, jsii_type="@aws-cdk/aws-cloudwatch.SingleValueWidget"): """A dashboard widget that displays the most recent value for every metric.""" def __init__(self, *, metrics: typing.List["IMetric"], set_period_to_time_range: typing.Optional[bool]=None, height: typing.Optional[jsii.Number]=None, region: typing.Optional[str]=None, title: typing.Optional[str]=None, width: typing.Optional[jsii.Number]=None) -> None: """ :param metrics: Metrics to display. :param set_period_to_time_range: Whether to show the value from the entire time range. Default: false :param height: Height of the widget. Default: Depends on the type of widget :param region: The region the metrics of this graph should be taken from. Default: Current region :param title: Title for the graph. :param width: Width of the widget, in a grid of 24 units wide. Default: 6 """ props = SingleValueWidgetProps(metrics=metrics, set_period_to_time_range=set_period_to_time_range, height=height, region=region, title=title, width=width) jsii.create(SingleValueWidget, self, [props]) @jsii.member(jsii_name="toJson") def to_json(self) -> typing.List[typing.Any]: """Return the widget JSON for use in the dashboard.""" return jsii.invoke(self, "toJson", []) @jsii.data_type(jsii_type="@aws-cdk/aws-cloudwatch.SingleValueWidgetProps", jsii_struct_bases=[MetricWidgetProps], name_mapping={'height': 'height', 'region': 'region', 'title': 'title', 'width': 'width', 'metrics': 'metrics', 'set_period_to_time_range': 'setPeriodToTimeRange'}) class SingleValueWidgetProps(MetricWidgetProps): def __init__(self, *, height: typing.Optional[jsii.Number]=None, region: typing.Optional[str]=None, title: typing.Optional[str]=None, width: typing.Optional[jsii.Number]=None, metrics: typing.List["IMetric"], set_period_to_time_range: typing.Optional[bool]=None): """Properties for a SingleValueWidget. :param height: Height of the widget. Default: Depends on the type of widget :param region: The region the metrics of this graph should be taken from. Default: Current region :param title: Title for the graph. :param width: Width of the widget, in a grid of 24 units wide. Default: 6 :param metrics: Metrics to display. :param set_period_to_time_range: Whether to show the value from the entire time range. Default: false """ self._values = { 'metrics': metrics, } if height is not None: self._values["height"] = height if region is not None: self._values["region"] = region if title is not None: self._values["title"] = title if width is not None: self._values["width"] = width if set_period_to_time_range is not None: self._values["set_period_to_time_range"] = set_period_to_time_range @builtins.property def height(self) -> typing.Optional[jsii.Number]: """Height of the widget. default :default: Depends on the type of widget """ return self._values.get('height') @builtins.property def region(self) -> typing.Optional[str]: """The region the metrics of this graph should be taken from. default :default: Current region """ return self._values.get('region') @builtins.property def title(self) -> typing.Optional[str]: """Title for the graph.""" return self._values.get('title') @builtins.property def width(self) -> typing.Optional[jsii.Number]: """Width of the widget, in a grid of 24 units wide. default :default: 6 """ return self._values.get('width') @builtins.property def metrics(self) -> typing.List["IMetric"]: """Metrics to display.""" return self._values.get('metrics') @builtins.property def set_period_to_time_range(self) -> typing.Optional[bool]: """Whether to show the value from the entire time range. default :default: false """ return self._values.get('set_period_to_time_range') def __eq__(self, rhs) -> bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs) -> bool: return not (rhs == self) def __repr__(self) -> str: return 'SingleValueWidgetProps(%s)' % ', '.join(k + '=' + repr(v) for k, v in self._values.items()) @jsii.implements(IWidget) class Spacer(metaclass=jsii.JSIIMeta, jsii_type="@aws-cdk/aws-cloudwatch.Spacer"): """A widget that doesn't display anything but takes up space.""" def __init__(self, *, height: typing.Optional[jsii.Number]=None, width: typing.Optional[jsii.Number]=None) -> None: """ :param height: Height of the spacer. Default: : 1 :param width: Width of the spacer. Default: 1 """ props = SpacerProps(height=height, width=width) jsii.create(Spacer, self, [props]) @jsii.member(jsii_name="position") def position(self, _x: jsii.Number, _y: jsii.Number) -> None: """Place the widget at a given position. :param _x: - :param _y: - """ return jsii.invoke(self, "position", [_x, _y]) @jsii.member(jsii_name="toJson") def to_json(self) -> typing.List[typing.Any]: """Return the widget JSON for use in the dashboard.""" return jsii.invoke(self, "toJson", []) @builtins.property @jsii.member(jsii_name="height") def height(self) -> jsii.Number: """The amount of vertical grid units the widget will take up.""" return jsii.get(self, "height") @builtins.property @jsii.member(jsii_name="width") def width(self) -> jsii.Number: """The amount of horizontal grid units the widget will take up.""" return jsii.get(self, "width") @jsii.data_type(jsii_type="@aws-cdk/aws-cloudwatch.SpacerProps", jsii_struct_bases=[], name_mapping={'height': 'height', 'width': 'width'}) class SpacerProps(): def __init__(self, *, height: typing.Optional[jsii.Number]=None, width: typing.Optional[jsii.Number]=None): """Props of the spacer. :param height: Height of the spacer. Default: : 1 :param width: Width of the spacer. Default: 1 """ self._values = { } if height is not None: self._values["height"] = height if width is not None: self._values["width"] = width @builtins.property def height(self) -> typing.Optional[jsii.Number]: """Height of the spacer. default :default: : 1 """ return self._values.get('height') @builtins.property def width(self) -> typing.Optional[jsii.Number]: """Width of the spacer. default :default: 1 """ return self._values.get('width') def __eq__(self, rhs) -> bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs) -> bool: return not (rhs == self) def __repr__(self) -> str: return 'SpacerProps(%s)' % ', '.join(k + '=' + repr(v) for k, v in self._values.items()) @jsii.enum(jsii_type="@aws-cdk/aws-cloudwatch.Statistic") class Statistic(enum.Enum): """Statistic to use over the aggregation period.""" SAMPLE_COUNT = "SAMPLE_COUNT" AVERAGE = "AVERAGE" SUM = "SUM" MINIMUM = "MINIMUM" MAXIMUM = "MAXIMUM" class TextWidget(ConcreteWidget, metaclass=jsii.JSIIMeta, jsii_type="@aws-cdk/aws-cloudwatch.TextWidget"): """A dashboard widget that displays MarkDown.""" def __init__(self, *, markdown: str, height: typing.Optional[jsii.Number]=None, width: typing.Optional[jsii.Number]=None) -> None: """ :param markdown: The text to display, in MarkDown format. :param height: Height of the widget. Default: 2 :param width: Width of the widget, in a grid of 24 units wide. Default: 6 """ props = TextWidgetProps(markdown=markdown, height=height, width=width) jsii.create(TextWidget, self, [props]) @jsii.member(jsii_name="position") def position(self, x: jsii.Number, y: jsii.Number) -> None: """Place the widget at a given position. :param x: - :param y: - """ return jsii.invoke(self, "position", [x, y]) @jsii.member(jsii_name="toJson") def to_json(self) -> typing.List[typing.Any]: """Return the widget JSON for use in the dashboard.""" return jsii.invoke(self, "toJson", []) @jsii.data_type(jsii_type="@aws-cdk/aws-cloudwatch.TextWidgetProps", jsii_struct_bases=[], name_mapping={'markdown': 'markdown', 'height': 'height', 'width': 'width'}) class TextWidgetProps(): def __init__(self, *, markdown: str, height: typing.Optional[jsii.Number]=None, width: typing.Optional[jsii.Number]=None): """Properties for a Text widget. :param markdown: The text to display, in MarkDown format. :param height: Height of the widget. Default: 2 :param width: Width of the widget, in a grid of 24 units wide. Default: 6 """ self._values = { 'markdown': markdown, } if height is not None: self._values["height"] = height if width is not None: self._values["width"] = width @builtins.property def markdown(self) -> str: """The text to display, in MarkDown format.""" return self._values.get('markdown') @builtins.property def height(self) -> typing.Optional[jsii.Number]: """Height of the widget. default :default: 2 """ return self._values.get('height') @builtins.property def width(self) -> typing.Optional[jsii.Number]: """Width of the widget, in a grid of 24 units wide. default :default: 6 """ return self._values.get('width') def __eq__(self, rhs) -> bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs) -> bool: return not (rhs == self) def __repr__(self) -> str: return 'TextWidgetProps(%s)' % ', '.join(k + '=' + repr(v) for k, v in self._values.items()) @jsii.enum(jsii_type="@aws-cdk/aws-cloudwatch.TreatMissingData") class TreatMissingData(enum.Enum): """Specify how missing data points are treated during alarm evaluation.""" BREACHING = "BREACHING" """Missing data points are treated as breaching the threshold.""" NOT_BREACHING = "NOT_BREACHING" """Missing data points are treated as being within the threshold.""" IGNORE = "IGNORE" """The current alarm state is maintained.""" MISSING = "MISSING" """The alarm does not consider missing data points when evaluating whether to change state.""" @jsii.enum(jsii_type="@aws-cdk/aws-cloudwatch.Unit") class Unit(enum.Enum): """Unit for metric.""" SECONDS = "SECONDS" MICROSECONDS = "MICROSECONDS" MILLISECONDS = "MILLISECONDS" BYTES = "BYTES" KILOBYTES = "KILOBYTES" MEGABYTES = "MEGABYTES" GIGABYTES = "GIGABYTES" TERABYTES = "TERABYTES" BITS = "BITS" KILOBITS = "KILOBITS" MEGABITS = "MEGABITS" GIGABITS = "GIGABITS" TERABITS = "TERABITS" PERCENT = "PERCENT" COUNT = "COUNT" BYTES_PER_SECOND = "BYTES_PER_SECOND" KILOBYTES_PER_SECOND = "KILOBYTES_PER_SECOND" MEGABYTES_PER_SECOND = "MEGABYTES_PER_SECOND" GIGABYTES_PER_SECOND = "GIGABYTES_PER_SECOND" TERABYTES_PER_SECOND = "TERABYTES_PER_SECOND" BITS_PER_SECOND = "BITS_PER_SECOND" KILOBITS_PER_SECOND = "KILOBITS_PER_SECOND" MEGABITS_PER_SECOND = "MEGABITS_PER_SECOND" GIGABITS_PER_SECOND = "GIGABITS_PER_SECOND" TERABITS_PER_SECOND = "TERABITS_PER_SECOND" COUNT_PER_SECOND = "COUNT_PER_SECOND" NONE = "NONE" @jsii.data_type(jsii_type="@aws-cdk/aws-cloudwatch.YAxisProps", jsii_struct_bases=[], name_mapping={'label': 'label', 'max': 'max', 'min': 'min', 'show_units': 'showUnits'}) class YAxisProps(): def __init__(self, *, label: typing.Optional[str]=None, max: typing.Optional[jsii.Number]=None, min: typing.Optional[jsii.Number]=None, show_units: typing.Optional[bool]=None): """Properties for a Y-Axis. :param label: The label. Default: No label :param max: The max value. Default: No maximum value :param min: The min value. Default: 0 :param show_units: Whether to show units. Default: true """ self._values = { } if label is not None: self._values["label"] = label if max is not None: self._values["max"] = max if min is not None: self._values["min"] = min if show_units is not None: self._values["show_units"] = show_units @builtins.property def label(self) -> typing.Optional[str]: """The label. default :default: No label """ return self._values.get('label') @builtins.property def max(self) -> typing.Optional[jsii.Number]: """The max value. default :default: No maximum value """ return self._values.get('max') @builtins.property def min(self) -> typing.Optional[jsii.Number]: """The min value. default :default: 0 """ return self._values.get('min') @builtins.property def show_units(self) -> typing.Optional[bool]: """Whether to show units. default :default: true """ return self._values.get('show_units') def __eq__(self, rhs) -> bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs) -> bool: return not (rhs == self) def __repr__(self) -> str: return 'YAxisProps(%s)' % ', '.join(k + '=' + repr(v) for k, v in self._values.items()) __all__ = ["Alarm", "AlarmActionConfig", "AlarmProps", "AlarmWidget", "AlarmWidgetProps", "CfnAlarm", "CfnAlarmProps", "CfnAnomalyDetector", "CfnAnomalyDetectorProps", "CfnDashboard", "CfnDashboardProps", "CfnInsightRule", "CfnInsightRuleProps", "Column", "CommonMetricOptions", "ComparisonOperator", "ConcreteWidget", "CreateAlarmOptions", "Dashboard", "DashboardProps", "Dimension", "GraphWidget", "GraphWidgetProps", "HorizontalAnnotation", "IAlarm", "IAlarmAction", "IMetric", "IWidget", "MathExpression", "MathExpressionOptions", "MathExpressionProps", "Metric", "MetricAlarmConfig", "MetricConfig", "MetricExpressionConfig", "MetricGraphConfig", "MetricOptions", "MetricProps", "MetricRenderingProperties", "MetricStatConfig", "MetricWidgetProps", "PeriodOverride", "Row", "Shading", "SingleValueWidget", "SingleValueWidgetProps", "Spacer", "SpacerProps", "Statistic", "TextWidget", "TextWidgetProps", "TreatMissingData", "Unit", "YAxisProps", "__jsii_assembly__"] publication.publish()
2f970ad0404436ed1c8ea829b0d349c8cf94ea3e
09bb17f07b127ac7d7d44969d55c92fa979111e2
/.PyCharmCE2019.2/system/python_stubs/-1448197883/PIL/_imagingcms.py
627fb7996c066f82fdbeb37c708d6041179e88c7
[]
no_license
Tusharec82/ROCKY
ea19201275f853603870a68275bdf7d1e64a6084
d9812b0fefde8c3d9ffe7947cf331af12dd25ab5
refs/heads/master
2020-08-09T00:34:50.707405
2019-10-09T18:13:26
2019-10-09T18:13:26
213,957,191
0
0
null
null
null
null
UTF-8
Python
false
false
6,810
py
# encoding: utf-8 # module PIL._imagingcms # from /usr/lib/python3/dist-packages/PIL/_imagingcms.cpython-36m-x86_64-linux-gnu.so # by generator 1.147 # no doc # no imports # Variables with simple values littlecms_version = '20.90' # functions def buildProofTransform(*args, **kwargs): # real signature unknown pass def buildTransform(*args, **kwargs): # real signature unknown pass def createProfile(*args, **kwargs): # real signature unknown pass def profile_frombytes(*args, **kwargs): # real signature unknown pass def profile_fromstring(*args, **kwargs): # real signature unknown pass def profile_open(*args, **kwargs): # real signature unknown pass def profile_tobytes(*args, **kwargs): # real signature unknown pass # classes class CmsProfile(object): # no doc def is_intent_supported(self, *args, **kwargs): # real signature unknown pass def __init__(self, *args, **kwargs): # real signature unknown pass @staticmethod # known case of __new__ def __new__(*args, **kwargs): # real signature unknown """ Create and return a new object. See help(type) for accurate signature. """ pass attributes = property(lambda self: object(), lambda self, v: None, lambda self: None) # default blue_colorant = property(lambda self: object(), lambda self, v: None, lambda self: None) # default blue_primary = property(lambda self: object(), lambda self, v: None, lambda self: None) # default chromaticity = property(lambda self: object(), lambda self, v: None, lambda self: None) # default chromatic_adaptation = property(lambda self: object(), lambda self, v: None, lambda self: None) # default clut = property(lambda self: object(), lambda self, v: None, lambda self: None) # default colorant_table = property(lambda self: object(), lambda self, v: None, lambda self: None) # default colorant_table_out = property(lambda self: object(), lambda self, v: None, lambda self: None) # default colorimetric_intent = property(lambda self: object(), lambda self, v: None, lambda self: None) # default color_space = property(lambda self: object(), lambda self, v: None, lambda self: None) # default connection_space = property(lambda self: object(), lambda self, v: None, lambda self: None) # default copyright = property(lambda self: object(), lambda self, v: None, lambda self: None) # default creation_date = property(lambda self: object(), lambda self, v: None, lambda self: None) # default device_class = property(lambda self: object(), lambda self, v: None, lambda self: None) # default green_colorant = property(lambda self: object(), lambda self, v: None, lambda self: None) # default green_primary = property(lambda self: object(), lambda self, v: None, lambda self: None) # default header_flags = property(lambda self: object(), lambda self, v: None, lambda self: None) # default header_manufacturer = property(lambda self: object(), lambda self, v: None, lambda self: None) # default header_model = property(lambda self: object(), lambda self, v: None, lambda self: None) # default icc_measurement_condition = property(lambda self: object(), lambda self, v: None, lambda self: None) # default icc_version = property(lambda self: object(), lambda self, v: None, lambda self: None) # default icc_viewing_condition = property(lambda self: object(), lambda self, v: None, lambda self: None) # default intent_supported = property(lambda self: object(), lambda self, v: None, lambda self: None) # default is_matrix_shaper = property(lambda self: object(), lambda self, v: None, lambda self: None) # default luminance = property(lambda self: object(), lambda self, v: None, lambda self: None) # default manufacturer = property(lambda self: object(), lambda self, v: None, lambda self: None) # default media_black_point = property(lambda self: object(), lambda self, v: None, lambda self: None) # default media_white_point = property(lambda self: object(), lambda self, v: None, lambda self: None) # default media_white_point_temperature = property(lambda self: object(), lambda self, v: None, lambda self: None) # default model = property(lambda self: object(), lambda self, v: None, lambda self: None) # default pcs = property(lambda self: object(), lambda self, v: None, lambda self: None) # default perceptual_rendering_intent_gamut = property(lambda self: object(), lambda self, v: None, lambda self: None) # default product_copyright = property(lambda self: object(), lambda self, v: None, lambda self: None) # default product_desc = property(lambda self: object(), lambda self, v: None, lambda self: None) # default product_description = property(lambda self: object(), lambda self, v: None, lambda self: None) # default product_manufacturer = property(lambda self: object(), lambda self, v: None, lambda self: None) # default product_model = property(lambda self: object(), lambda self, v: None, lambda self: None) # default profile_description = property(lambda self: object(), lambda self, v: None, lambda self: None) # default profile_id = property(lambda self: object(), lambda self, v: None, lambda self: None) # default red_colorant = property(lambda self: object(), lambda self, v: None, lambda self: None) # default red_primary = property(lambda self: object(), lambda self, v: None, lambda self: None) # default rendering_intent = property(lambda self: object(), lambda self, v: None, lambda self: None) # default saturation_rendering_intent_gamut = property(lambda self: object(), lambda self, v: None, lambda self: None) # default screening_description = property(lambda self: object(), lambda self, v: None, lambda self: None) # default target = property(lambda self: object(), lambda self, v: None, lambda self: None) # default technology = property(lambda self: object(), lambda self, v: None, lambda self: None) # default version = property(lambda self: object(), lambda self, v: None, lambda self: None) # default viewing_condition = property(lambda self: object(), lambda self, v: None, lambda self: None) # default xcolor_space = property(lambda self: object(), lambda self, v: None, lambda self: None) # default # variables with complex values __loader__ = None # (!) real value is '<_frozen_importlib_external.ExtensionFileLoader object at 0x7f610258f860>' __spec__ = None # (!) real value is "ModuleSpec(name='PIL._imagingcms', loader=<_frozen_importlib_external.ExtensionFileLoader object at 0x7f610258f860>, origin='/usr/lib/python3/dist-packages/PIL/_imagingcms.cpython-36m-x86_64-linux-gnu.so')"
73d8ba35ec791beffc2e3f13c980754b8a857f23
f445450ac693b466ca20b42f1ac82071d32dd991
/generated_tempdir_2019_09_15_163300/generated_part003405.py
5a684c947584fd60604a2244ef648e9a15ca31ab
[]
no_license
Upabjojr/rubi_generated
76e43cbafe70b4e1516fb761cabd9e5257691374
cd35e9e51722b04fb159ada3d5811d62a423e429
refs/heads/master
2020-07-25T17:26:19.227918
2019-09-15T15:41:48
2019-09-15T15:41:48
208,357,412
4
1
null
null
null
null
UTF-8
Python
false
false
2,655
py
from sympy.abc import * from matchpy.matching.many_to_one import CommutativeMatcher from matchpy import * from matchpy.utils import VariableWithCount from collections import deque from multiset import Multiset from sympy.integrals.rubi.constraints import * from sympy.integrals.rubi.utility_function import * from sympy.integrals.rubi.rules.miscellaneous_integration import * from sympy import * class CommutativeMatcher37493(CommutativeMatcher): _instance = None patterns = { 0: (0, Multiset({0: 1}), [ (VariableWithCount('i2.2.1.2.2.2.1.0', 1, 1, S(1)), Mul) ]) } subjects = {} subjects_by_id = {} bipartite = BipartiteGraph() associative = Mul max_optional_count = 1 anonymous_patterns = set() def __init__(self): self.add_subject(None) @staticmethod def get(): if CommutativeMatcher37493._instance is None: CommutativeMatcher37493._instance = CommutativeMatcher37493() return CommutativeMatcher37493._instance @staticmethod def get_match_iter(subject): subjects = deque([subject]) if subject is not None else deque() subst0 = Substitution() # State 37492 if len(subjects) >= 1 and isinstance(subjects[0], Pow): tmp1 = subjects.popleft() subjects2 = deque(tmp1._args) # State 37494 if len(subjects2) >= 1: tmp3 = subjects2.popleft() subst1 = Substitution(subst0) try: subst1.try_add_variable('i2.2.1.1', tmp3) except ValueError: pass else: pass # State 37495 if len(subjects2) >= 1: tmp5 = subjects2.popleft() subst2 = Substitution(subst1) try: subst2.try_add_variable('i2.2.1.2', tmp5) except ValueError: pass else: pass # State 37496 if len(subjects2) == 0: pass # State 37497 if len(subjects) == 0: pass # 0: x**j yield 0, subst2 subjects2.appendleft(tmp5) subjects2.appendleft(tmp3) subjects.appendleft(tmp1) return yield from collections import deque
82c1c52804b41ca95993b01dc43ebd395f50a466
7ae44f6975561ff5542cd369dcd04d53093db887
/Data Structures and Algorithms in Python/11_Linked_List_2/test.py
23bb821782d5d54fb6567da6bc799dcb4f68d659
[]
no_license
ashisharora24/learning_tutorials_practice
89208a77ad162265c6573ca4559ebf6f4a6f8f18
57f461908d0c4d58d831ec375c428179fa69cb3f
refs/heads/master
2020-05-21T05:32:26.397725
2019-07-23T10:36:06
2019-07-23T10:36:06
185,923,049
0
0
null
null
null
null
UTF-8
Python
false
false
326
py
from time import * t2 = perf_counter() t1 = perf_counter() counter = 0 for i in range(10000): counter += 1 print(i, end=" ") # r = req... if counter == 61: t2 = perf_counter() print("\n sleeping \n",10 - t2 + t1) sleep(10 - t2 + t1) counter = 1 t1 = perf_counter()
40f837d965c2f999a465970c392b061e920b701f
c808be39b3c2cb89cc8214a9ce979381a8c2e9e9
/kosh/exec_graphs/__init__.py
8af6b4730ee8b1efa4cc5de97c239afa15c54a99
[ "MIT" ]
permissive
LLNL/kosh
aff088e0907873f29fd5b5e07c6b44e295a65314
d2fda80cf8ecea9e49b44658127538ce89b20301
refs/heads/stable
2023-05-10T19:09:24.149298
2023-05-05T21:06:42
2023-05-05T21:06:42
299,369,568
7
2
MIT
2022-03-15T14:39:31
2020-09-28T16:35:09
Python
UTF-8
Python
false
false
74
py
from .core import KoshExecutionGraph, populate, find_network_ends # noqa
996eb7912cb82e037205e02ff650c6061318278d
266947fd84eed629ed0c21f6d91134239512afd9
/BeginnerContest_B/147.py
1181ff0ecd9ce31a917fcf62e9df63d19fa0c9c8
[]
no_license
SkiMsyk/AtCoder
c86adeec4fa470ec14c1be7400c9fc8b3fb301cd
8102b99cf0fb6d7fa304edb942d21cf7016cba7d
refs/heads/master
2022-09-03T01:23:10.748038
2022-08-15T01:19:55
2022-08-15T01:19:55
239,656,752
0
0
null
null
null
null
UTF-8
Python
false
false
207
py
# Palindrome-philia # input S = input() # solve if len(S) % 2 != 0: S = S[:len(S)//2] + S[len(S)//2 + 1:] res = sum([i != j for i, j in zip(S[:len(S)//2], S[len(S)//2:][-1::-1])]) # output print(res)
8a2ff5c31ecbccf07f06b151a8aae5d8e32aa02a
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/21/usersdata/69/7600/submittedfiles/exercicio24.py
7231844c7a7561c81bde56eb4f4805952f045a09
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
243
py
# -*- coding: utf-8 -*- from __future__ import division import math a=int(input('Digite o valor de a:')) b=int(input('Digite o valor de b:')) i=1 c=0 if a>=b: while i<=b: if a%i==0 and b%i==0: i=c i=i+1 print c
aee318c6b0606346facce9b35398fcde1d8aefe0
08ee36e0bb1c250f7f2dfda12c1a73d1984cd2bc
/src/mnistk/networks/conv3dtanh_20.py
5ceab17b3a130f554d3b8d621403d7c98fcfe4f2
[]
no_license
ahgamut/mnistk
58dadffad204602d425b18549e9b3d245dbf5486
19a661185e6d82996624fc6fcc03de7ad9213eb0
refs/heads/master
2021-11-04T07:36:07.394100
2021-10-27T18:37:12
2021-10-27T18:37:12
227,103,881
2
1
null
2020-02-19T22:07:24
2019-12-10T11:33:09
Python
UTF-8
Python
false
false
1,600
py
# -*- coding: utf-8 -*- """ conv3dtanh_20.py :copyright: (c) 2019 by Gautham Venkatasubramanian. :license: MIT """ import torch from torch import nn class Conv3dTanh_20(nn.Module): def __init__(self): nn.Module.__init__(self) self.f0 = nn.Conv3d(in_channels=1, out_channels=13, kernel_size=(7, 7, 7), stride=(1, 1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), groups=1, bias=True, padding_mode='zeros') self.f1 = nn.Tanh() self.f2 = nn.Conv3d(in_channels=13, out_channels=25, kernel_size=(1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), groups=1, bias=True, padding_mode='zeros') self.f3 = nn.Conv3d(in_channels=25, out_channels=64, kernel_size=(1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), groups=1, bias=False, padding_mode='zeros') self.f4 = nn.Conv3d(in_channels=64, out_channels=28, kernel_size=(1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), groups=1, bias=False, padding_mode='zeros') self.f5 = nn.Tanh() self.f6 = nn.Conv3d(in_channels=28, out_channels=10, kernel_size=(10, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), groups=1, bias=False, padding_mode='zeros') self.f7 = nn.LogSoftmax(dim=1) def forward(self, *inputs): x = inputs[0] x = x.view(x.shape[0],1,16,7,7) x = self.f0(x) x = self.f1(x) x = self.f2(x) x = self.f3(x) x = self.f4(x) x = self.f5(x) x = self.f6(x) x = x.view(x.shape[0],10) x = self.f7(x) return x
86298f50d044ed13be501c49ad6bcf4ba3d5ffaf
b99f518e5289da9d068154cefd7b9f13c8d6564f
/VSCode_work/chapter16/chapter16_16_5.py
98addd58a6f830d481ce26f5bae44635ea5d202a
[ "MIT" ]
permissive
yangyahu-1994/Python-Crash-Course
e6a81feba4bdbef297387577ea36b7027bf61c8f
6f8ef7fe8466d88931a0d3cc423ba5d966663b9d
refs/heads/master
2023-07-29T22:29:06.151253
2021-10-05T14:04:32
2021-10-05T14:04:32
313,314,086
18
12
null
null
null
null
UTF-8
Python
false
false
1,423
py
# ๅฏผๅ…ฅๅฟ…่ฆ็š„ๆจกๅ— import json import pygal_maps_world.maps from chapter16_16_5_country_codes import get_country_code from pygal.style import RotateStyle # ๅฐ†ๆ•ฐๆฎๅŠ ่ฝฝๅˆฐๅˆ—่กจไธญ filename = '/home/yyh/Documents/VSCode_work/chapter16/population_data.json' with open(filename) as f: pop_data = json.load(f) # ๅˆ›ๅปบไธ€ไธชๅŒ…ๅซไบบๅฃๆ•ฐ้‡็š„ๅญ—ๅ…ธ cc_populations = {} for pop_dict in pop_data: # ๅฐ†ๆฏไธชๅญ—ๅ…ธไพๆฌกๅญ˜ๅ‚จๅœจpop_dictไธญ if pop_dict['Year'] == '2010': country = pop_dict['Country Name'] population = int(float(pop_dict['Value'])) code = get_country_code(country) if code: cc_populations[code] = population # ๆ นๆฎไบบๅฃๆ•ฐ้‡ๅฐ†ๆ‰€ๆœ‰็š„ๅ›ฝๅฎถๅˆ†ๆˆไธ‰็ป„ cc_pops_1, cc_pops_2, cc_pops_3 = {}, {}, {} for cc, pop in cc_populations.items(): if pop < 10000000: cc_pops_1[cc] = pop elif pop < 1000000000: cc_pops_2[cc] = pop else: cc_pops_3[cc] = pop # ็œ‹็œ‹ๆฏ็ป„ๅˆ†ๅˆซๅŒ…ๅซๅคšๅฐ‘ไธชๅ›ฝๅฎถ print(len(cc_pops_1), len(cc_pops_2), len(cc_pops_3)) wm = pygal_maps_world.maps.World() wm_style = RotateStyle('#336699') # ๅˆ›ๅปบๅฎžไพ‹ wm = pygal_maps_world.maps.World(style=wm_style) wm.title = 'World Population in 2010, by Country' wm.add('0-10m', cc_pops_1) wm.add('10m-1bn', cc_pops_2) wm.add('>1bn', cc_pops_3) wm.render_to_file('/home/yyh/Documents/VSCode_work/chapter16/world_population_16_5.svg')
c7e7f24927496acf6bd5567a6c1947d2a8713bd1
100fdb7bc25acda0953f238c6d1104fda786ee7a
/probreg/callbacks.py
17c2290b8cc732327fb23d0422177f6903656178
[ "MIT" ]
permissive
Yellowshuohahaha/probreg
1f219821fe4706b58aaf70f040aea3bc660bc103
31cade406af7f20a20a85e2e3764c55e5b9e986f
refs/heads/master
2022-11-16T08:54:45.610504
2020-07-18T02:30:28
2020-07-18T02:30:58
283,975,360
1
0
MIT
2020-07-31T07:46:06
2020-07-31T07:46:06
null
UTF-8
Python
false
false
3,385
py
import copy import open3d as o3 import matplotlib.pyplot as plt class Plot2DCallback(object): """Display the 2D registration result of each iteration. Args: source (numpy.ndarray): Source point cloud data. target (numpy.ndarray): Target point cloud data. save (bool, optional): If this flag is True, each iteration image is saved in a sequential number. """ def __init__(self, source, target, save=False, keep_window=True): self._source = source self._target = target self._result = copy.deepcopy(self._source) self._save = save self._cnt = 0 plt.axis('equal') plt.plot(self._source[:, 0], self._source[:, 1], 'ro', label='source') plt.plot(self._target[:, 0], self._target[:, 1], 'g^', label='taget') plt.plot(self._result[:, 0], self._result[:, 1], 'bo', label='result') plt.legend() plt.draw() def __call__(self, transformation): self._result = transformation.transform(self._source) plt.cla() plt.axis('equal') plt.plot(self._source[:, 0], self._source[:, 1], 'ro', label='source') plt.plot(self._target[:, 0], self._target[:, 1], 'g^', label='taget') plt.plot(self._result[:, 0], self._result[:, 1], 'bo', label='result') plt.legend() if self._save: plt.savefig('image_%04d.png' % self._cnt) plt.draw() plt.pause(0.001) self._cnt += 1 class Open3dVisualizerCallback(object): """Display the 3D registration result of each iteration. Args: source (numpy.ndarray): Source point cloud data. target (numpy.ndarray): Target point cloud data. save (bool, optional): If this flag is True, each iteration image is saved in a sequential number. keep_window (bool, optional): If this flag is True, the drawing window blocks after registration is finished. fov: Field of view (degree). """ def __init__(self, source, target, save=False, keep_window=True, fov=None): self._vis = o3.visualization.Visualizer() self._vis.create_window() self._source = source self._target = target self._result = copy.deepcopy(self._source) self._save = save self._keep_window = keep_window self._source.paint_uniform_color([1, 0, 0]) self._target.paint_uniform_color([0, 1, 0]) self._result.paint_uniform_color([0, 0, 1]) self._vis.add_geometry(self._source) self._vis.add_geometry(self._target) self._vis.add_geometry(self._result) if not fov is None: ctr = self._vis.get_view_control() ctr.change_field_of_view(step=fov) self._cnt = 0 def __del__(self): if self._keep_window: self._vis.run() self._vis.destroy_window() def __call__(self, transformation): self._result.points = transformation.transform(self._source.points) self._vis.update_geometry(self._source) self._vis.update_geometry(self._target) self._vis.update_geometry(self._result) self._vis.poll_events() self._vis.update_renderer() if self._save: self._vis.capture_screen_image("image_%04d.jpg" % self._cnt) self._cnt += 1
b848fd06d86f2f7fb6045ef2703e6d9bcb764ab3
c208954de92470c0144fad2e07a92ed1822edd59
/visit_wd/out_dis.py
72e792a11c66f6d1ddcd7225401dccb0a3f16ed6
[ "MIT" ]
permissive
rendy026/reverse-enginnering
4217f3b723569fb792bac0f22a56a305199db1dc
f04cec0bf518a2617fc4fd7155f755fafc2af799
refs/heads/master
2023-01-07T15:49:15.791052
2020-10-13T09:22:02
2020-10-13T09:22:02
303,575,571
0
0
MIT
2020-10-13T09:41:59
2020-10-13T03:17:42
Python
UTF-8
Python
false
false
39,462
py
# FileNames : <zen_ezz> # Python Bytecode : 3.8.5 # Selector <module> In Line 1 file out.pyc # Timestamp In Code : (2020-08-24 02:27:49) # Method Name: <module> # Filename: <zen_ezz> # Argument count: 0 # Position-only argument count: 0 # Keyword-only arguments: 0 # Number of locals: 0 # Stack size: 9 # Flags: 0x00000040 (NOFREE) # First Line: 1 # Constants: # 0: 0 # 1: ('TelegramClient', 'sync', 'events') # 2: ('GetHistoryRequest', 'GetBotCallbackAnswerRequest') # 3: ('SessionPasswordNeededError',) # 4: ('sleep',) # 5: ('BeautifulSoup',) # 6: None # 7: 'cfg.json' # 8: 'r' # 9: 'walletltc' # 10: 'walletdoge' # 11: 'walletzec' # 12: 'walletbch' # 13: 'walletbtc' # 14: <code object mengetik at 0xae3a56a0, file "<zen_ezz>", line 16> # 15: 'mengetik' # 16: <code object tunggu at 0xae5a7df0, file "<zen_ezz>", line 22> # 17: 'tunggu' # 18: '\x1b[1;35m\n \neeeee eeeee e e eeee eeeee e eeeee \n8 8 8 8 8 8 8 " 8 8 8 8 \n8eee8e 8eee8 8eeee8 8eee eeee8 8e 8e 8 \n88 8 88 8 88 88 88 88 88 8 \n88 8 88 8 88 88ee 88ee8 88 88ee8 \n eeeee\n\x1b[1;36m=============================================\n\x1b[1;32m ~ [email protected] - t.me/rayez_id \n\x1b[1;36m=============================================\n' # 19: 'clear' # 20: '\x1b[1;35mCONFIGURATION SETTING \x1b[1;36m: AUTO VISIT & WD CLICKBOT' # 21: <code object password at 0xae33b708, file "<zen_ezz>", line 48> # 22: 'password' # 23: '\x1b[1;35mINPUT CURRENCY \x1b[1;36m: ' # 24: 'doge' # 25: 'ltc' # 26: 'zec' # 27: 'btc' # 28: 'bch' # 29: '\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n' # 30: '\x1b[1;35mSTATUS \x1b[1;36m: Wrong Input \n' # 31: False # 32: <code object animate at 0xae33b840, file "<zen_ezz>", line 81> # 33: 'animate' # 34: ('target',) # 35: 2 # 36: True # 37: ' Jangan lupa bahagia, tersenyumlah =)' # 38: '' # 39: ('end',) # 40: 0.1 # 41: '\n' # 42: 'session' # 43: 'https://ipinfo.io/json' # 44: '\x1b[1;35mYOUR LOCATION\t: \x1b[1;36m{1}\t({2})\n\x1b[1;35mYOUR OWN IP\t: \x1b[1;36m{0}' # 45: 'ip' # 46: '[NO DATA]' # 47: 'region' # 48: 'country' # 49: '\x1b[1;35mWELCOME TO BOT :\x1b[1;36m Visit and Withdraw Clickbot\n\x1b[1;35mNOTE :\x1b[1;36m This Script Is not for sale !\n' # 50: 'User-Agent' # 51: 'Mozilla/5.0 (Windows NT 10.0; Win32; x86) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36' # 52: 800812 # 53: 'db55ad67a98df35667ca788b97f771f5' # 54: <code object withdraw at 0xae33b8a8, file "<zen_ezz>", line 118> # 55: 'withdraw' # 56: <code object visit at 0xae33b910, file "<zen_ezz>", line 144> # 57: 'visit' # 58: 'list.txt' # 59: '\x1b[1;36m===============================================\n' # 60: '\x1b[1;35mYOUR NUMBER : \x1b[1;36m' # 61: 'session/' # 62: '\x1b[1;35mVERIF CODE : \x1b[1;36m' # 63: '\x1b[1;35m2FA CODE : \x1b[1;36m' # 64: '\r\x1b[1;35mSTATUS : \x1b[1;36mSomething Wrong happened !\n' # 65: '@Dogecoin_click_bot' # 66: 'DOGE' # 67: '@Litecoin_click_bot' # 68: 'LTC' # 69: '@Zcash_click_bot' # 70: 'ZEC' # 71: '@BCH_clickbot' # 72: 'BCH' # 73: '@BitcoinClick_bot' # 74: 'BTC' # 75: '\r\x1b[1;35mSTATUS AKUN : \x1b[1;36mSomething Wrong happened !\n\n' # 76: 1 # Names: # 0: telethon # 1: TelegramClient # 2: sync # 3: events # 4: telethon.tl.functions.messages # 5: GetHistoryRequest # 6: GetBotCallbackAnswerRequest # 7: telethon.errors # 8: SessionPasswordNeededError # 9: time # 10: sleep # 11: bs4 # 12: BeautifulSoup # 13: re # 14: sys # 15: os # 16: colorama # 17: random # 18: json # 19: threading # 20: itertools # 21: requests # 22: open # 23: fh # 24: read # 25: json_str # 26: loads # 27: json_value # 28: ltcwallet # 29: dogewallet # 30: zecwallet # 31: bchwallet # 32: btcwallet # 33: mengetik # 34: tunggu # 35: banner # 36: system # 37: print # 38: password # 39: input # 40: currency # 41: exit # 42: ansi # 43: clear_screen # 44: done # 45: animate # 46: Thread # 47: t # 48: start # 49: lines # 50: line # 51: c # 52: stdout # 53: flush # 54: path # 55: exists # 56: makedirs # 57: get # 58: r # 59: text # 60: data # 61: format # 62: ua # 63: api_id # 64: api_hash # 65: withdraw # 66: visit # 67: f # 68: len # 69: readlines # 70: baris # 71: close # 72: range # 73: i # 74: strip # 75: phone_number # 76: client # 77: connect # 78: is_user_authorized # 79: send_code_request # 80: sign_in # 81: me # 82: passw # 83: Exception # 84: write # 85: get_me # 86: myself # 87: disconnect # 88: get_entity # 89: channel_entity # 90: channel_username # 91: cr # 92: wallet 1 0 LOAD_CONST 0 (0) 2 LOAD_CONST 1 (('TelegramClient', 'sync', 'events')) 4 IMPORT_NAME 0 (telethon) 6 IMPORT_FROM 1 (TelegramClient) 8 STORE_NAME 1 (TelegramClient) 10 IMPORT_FROM 2 (sync) 12 STORE_NAME 2 (sync) 14 IMPORT_FROM 3 (events) 16 STORE_NAME 3 (events) 18 POP_TOP 2 20 LOAD_CONST 0 (0) 22 LOAD_CONST 2 (('GetHistoryRequest', 'GetBotCallbackAnswerRequest')) 24 IMPORT_NAME 4 (telethon.tl.functions.messages) 26 IMPORT_FROM 5 (GetHistoryRequest) 28 STORE_NAME 5 (GetHistoryRequest) 30 IMPORT_FROM 6 (GetBotCallbackAnswerRequest) 32 STORE_NAME 6 (GetBotCallbackAnswerRequest) 34 POP_TOP 3 36 LOAD_CONST 0 (0) 38 LOAD_CONST 3 (('SessionPasswordNeededError',)) 40 IMPORT_NAME 7 (telethon.errors) 42 IMPORT_FROM 8 (SessionPasswordNeededError) 44 STORE_NAME 8 (SessionPasswordNeededError) 46 POP_TOP 4 48 LOAD_CONST 0 (0) 50 LOAD_CONST 4 (('sleep',)) 52 IMPORT_NAME 9 (time) 54 IMPORT_FROM 10 (sleep) 56 STORE_NAME 10 (sleep) 58 POP_TOP 5 60 LOAD_CONST 0 (0) 62 LOAD_CONST 5 (('BeautifulSoup',)) 64 IMPORT_NAME 11 (bs4) 66 IMPORT_FROM 12 (BeautifulSoup) 68 STORE_NAME 12 (BeautifulSoup) 70 POP_TOP 6 72 LOAD_CONST 0 (0) 74 LOAD_CONST 6 (None) 76 IMPORT_NAME 13 (re) 78 STORE_NAME 13 (re) 80 LOAD_CONST 0 (0) 82 LOAD_CONST 6 (None) 84 IMPORT_NAME 14 (sys) 86 STORE_NAME 14 (sys) 88 LOAD_CONST 0 (0) 90 LOAD_CONST 6 (None) 92 IMPORT_NAME 15 (os) 94 STORE_NAME 15 (os) 96 LOAD_CONST 0 (0) 98 LOAD_CONST 6 (None) 100 IMPORT_NAME 9 (time) 102 STORE_NAME 9 (time) 104 LOAD_CONST 0 (0) 106 LOAD_CONST 6 (None) 108 IMPORT_NAME 16 (colorama) 110 STORE_NAME 16 (colorama) 112 LOAD_CONST 0 (0) 114 LOAD_CONST 6 (None) 116 IMPORT_NAME 17 (random) 118 STORE_NAME 17 (random) 120 LOAD_CONST 0 (0) 122 LOAD_CONST 6 (None) 124 IMPORT_NAME 18 (json) 126 STORE_NAME 18 (json) 128 LOAD_CONST 0 (0) 130 LOAD_CONST 6 (None) 132 IMPORT_NAME 19 (threading) 134 STORE_NAME 19 (threading) 136 LOAD_CONST 0 (0) 138 LOAD_CONST 6 (None) 140 IMPORT_NAME 20 (itertools) 142 STORE_NAME 20 (itertools) 144 LOAD_CONST 0 (0) 146 LOAD_CONST 6 (None) 148 IMPORT_NAME 21 (requests) 150 STORE_NAME 21 (requests) 7 152 LOAD_NAME 22 (open) 154 LOAD_CONST 7 ('cfg.json') 156 LOAD_CONST 8 ('r') 158 CALL_FUNCTION 2 160 SETUP_WITH 64 (to 226) 162 STORE_NAME 23 (fh) 8 164 LOAD_NAME 23 (fh) 166 LOAD_METHOD 24 (read) 168 CALL_METHOD 0 170 STORE_NAME 25 (json_str) 9 172 LOAD_NAME 18 (json) 174 LOAD_METHOD 26 (loads) 176 LOAD_NAME 25 (json_str) 178 CALL_METHOD 1 180 STORE_NAME 27 (json_value) 10 182 LOAD_NAME 27 (json_value) 184 LOAD_CONST 9 ('walletltc') 186 BINARY_SUBSCR 188 STORE_NAME 28 (ltcwallet) 11 190 LOAD_NAME 27 (json_value) 192 LOAD_CONST 10 ('walletdoge') 194 BINARY_SUBSCR 196 STORE_NAME 29 (dogewallet) 12 198 LOAD_NAME 27 (json_value) 200 LOAD_CONST 11 ('walletzec') 202 BINARY_SUBSCR 204 STORE_NAME 30 (zecwallet) 13 206 LOAD_NAME 27 (json_value) 208 LOAD_CONST 12 ('walletbch') 210 BINARY_SUBSCR 212 STORE_NAME 31 (bchwallet) 14 214 LOAD_NAME 27 (json_value) 216 LOAD_CONST 13 ('walletbtc') 218 BINARY_SUBSCR 220 STORE_NAME 32 (btcwallet) 222 POP_BLOCK 224 BEGIN_FINALLY >> 226 WITH_CLEANUP_START 228 WITH_CLEANUP_FINISH 230 END_FINALLY from telethon import TelegramClient, sync, events from telethon.tl.functions.messages import GetHistoryRequest, GetBotCallbackAnswerRequest from telethon.errors import SessionPasswordNeededError from time import sleep from bs4 import BeautifulSoup import re, sys, os, time, colorama, random, json, threading, itertools, requests with open('cfg.json', 'r') as fh: json_str = fh.read() json_value = json.loads(json_str) ltcwallet = json_value['walletltc'] dogewallet = json_value['walletdoge'] zecwallet = json_value['walletzec'] bchwallet = json_value['walletbch'] btcwallet = json_value['walletbtc'] 16 232 LOAD_CONST 14 (<code object mengetik at 0xae3a56a0, file "<zen_ezz>", line 16>) 234 LOAD_CONST 15 ('mengetik') 236 MAKE_FUNCTION 0 238 STORE_NAME 33 (mengetik) def mengetik(): 22 240 LOAD_CONST 16 (<code object tunggu at 0xae5a7df0, file "<zen_ezz>", line 22>) 242 LOAD_CONST 17 ('tunggu') 244 MAKE_FUNCTION 0 246 STORE_NAME 34 (tunggu) def tunggu(): 32 248 LOAD_CONST 18 ('\x1b[1;35m\n \neeeee eeeee e e eeee eeeee e eeeee \n8 8 8 8 8 8 8 " 8 8 8 8 \n8eee8e 8eee8 8eeee8 8eee eeee8 8e 8e 8 \n88 8 88 8 88 88 88 88 88 8 \n88 8 88 8 88 88ee 88ee8 88 88ee8 \n eeeee\n\x1b[1;36m=============================================\n\x1b[1;32m ~ [email protected] - t.me/rayez_id \n\x1b[1;36m=============================================\n') 250 STORE_NAME 35 (banner) 44 252 LOAD_NAME 15 (os) 254 LOAD_METHOD 36 (system) 256 LOAD_CONST 19 ('clear') 258 CALL_METHOD 1 260 POP_TOP 45 262 LOAD_NAME 37 (print) 264 LOAD_NAME 35 (banner) 266 CALL_FUNCTION 1 268 POP_TOP 46 270 LOAD_NAME 37 (print) 272 LOAD_CONST 20 ('\x1b[1;35mCONFIGURATION SETTING \x1b[1;36m: AUTO VISIT & WD CLICKBOT') 274 CALL_FUNCTION 1 276 POP_TOP banner = '\x1b[1;35m\n \neeeee eeeee e e eeee eeeee e eeeee \n8 8 8 8 8 8 8 " 8 8 8 8 \n8eee8e 8eee8 8eeee8 8eee eeee8 8e 8e 8 \n88 8 88 8 88 88 88 88 88 8 \n88 8 88 8 88 88ee 88ee8 88 88ee8 \n eeeee\n\x1b[1;36m=============================================\n\x1b[1;32m ~ [email protected] - t.me/rayez_id \n\x1b[1;36m=============================================\n' os.system('clear') print(banner) print('\x1b[1;35mCONFIGURATION SETTING \x1b[1;36m: AUTO VISIT & WD CLICKBOT') 48 278 LOAD_CONST 21 (<code object password at 0xae33b708, file "<zen_ezz>", line 48>) 280 LOAD_CONST 22 ('password') 282 MAKE_FUNCTION 0 284 STORE_NAME 38 (password) def password(): 71 286 LOAD_NAME 38 (password) 288 CALL_FUNCTION 0 290 POP_TOP password() 72 292 LOAD_NAME 39 (input) 294 LOAD_CONST 23 ('\x1b[1;35mINPUT CURRENCY \x1b[1;36m: ') 296 CALL_FUNCTION 1 298 STORE_NAME 40 (currency) 73 300 LOAD_NAME 40 (currency) 302 LOAD_CONST 24 ('doge') 304 COMPARE_OP 2 (==) 306 EXTENDED_ARG 1 308 POP_JUMP_IF_TRUE 350 310 LOAD_NAME 40 (currency) 312 LOAD_CONST 25 ('ltc') 314 COMPARE_OP 2 (==) 316 EXTENDED_ARG 1 318 POP_JUMP_IF_TRUE 350 320 LOAD_NAME 40 (currency) 322 LOAD_CONST 26 ('zec') 324 COMPARE_OP 2 (==) 326 EXTENDED_ARG 1 328 POP_JUMP_IF_TRUE 350 330 LOAD_NAME 40 (currency) 332 LOAD_CONST 27 ('btc') 334 COMPARE_OP 2 (==) 336 EXTENDED_ARG 1 338 POP_JUMP_IF_TRUE 350 340 LOAD_NAME 40 (currency) 342 LOAD_CONST 28 ('bch') 344 COMPARE_OP 2 (==) 346 EXTENDED_ARG 1 348 POP_JUMP_IF_FALSE 360 74 >> 350 LOAD_NAME 37 (print) 352 LOAD_CONST 29 ('\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n') 354 CALL_FUNCTION 1 356 POP_TOP 358 JUMP_FORWARD 16 (to 376) 76 >> 360 LOAD_NAME 37 (print) 362 LOAD_CONST 30 ('\x1b[1;35mSTATUS \x1b[1;36m: Wrong Input \n') 364 CALL_FUNCTION 1 366 POP_TOP 77 368 LOAD_NAME 14 (sys) 370 LOAD_METHOD 41 (exit) 372 CALL_METHOD 0 374 POP_TOP 78 >> 376 LOAD_NAME 37 (print) 378 LOAD_NAME 16 (colorama) 380 LOAD_ATTR 42 (ansi) 382 LOAD_METHOD 43 (clear_screen) 384 CALL_METHOD 0 386 CALL_FUNCTION 1 388 POP_TOP 79 390 LOAD_CONST 31 (False) 392 STORE_NAME 44 (done) currency = input('\x1b[1;35mINPUT CURRENCY \x1b[1;36m: ') if currency == 'doge' or currency == 'ltc' or currency == 'zec' or currency == 'btc' or currency == 'bch': print('\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n') else: print('\x1b[1;35mSTATUS \x1b[1;36m: Wrong Input \n') sys.exit() print(colorama.ansi.clear_screen()) done = False 81 394 LOAD_CONST 32 (<code object animate at 0xae33b840, file "<zen_ezz>", line 81>) 396 LOAD_CONST 33 ('animate') 398 MAKE_FUNCTION 0 400 STORE_NAME 45 (animate) def animate(): 89 402 LOAD_NAME 19 (threading) 404 LOAD_ATTR 46 (Thread) 406 LOAD_NAME 45 (animate) 408 LOAD_CONST 34 (('target',)) 410 CALL_FUNCTION_KW 1 412 STORE_NAME 47 (t) 90 414 LOAD_NAME 47 (t) 416 LOAD_METHOD 48 (start) 418 CALL_METHOD 0 420 POP_TOP 91 422 LOAD_NAME 9 (time) 424 LOAD_METHOD 10 (sleep) 426 LOAD_CONST 35 (2) 428 CALL_METHOD 1 430 POP_TOP 92 432 LOAD_CONST 36 (True) 434 STORE_NAME 44 (done) 94 436 LOAD_CONST 37 (' Jangan lupa bahagia, tersenyumlah =)') 93 438 BUILD_LIST 1 440 STORE_NAME 49 (lines) 95 442 LOAD_NAME 49 (lines) 444 GET_ITER >> 446 FOR_ITER 66 (to 514) 448 STORE_NAME 50 (line) 96 450 LOAD_NAME 50 (line) 452 GET_ITER >> 454 FOR_ITER 38 (to 494) 456 STORE_NAME 51 (c) 97 458 LOAD_NAME 37 (print) 460 LOAD_NAME 51 (c) 462 LOAD_CONST 38 ('') 464 LOAD_CONST 39 (('end',)) 466 CALL_FUNCTION_KW 2 468 POP_TOP 98 470 LOAD_NAME 14 (sys) 472 LOAD_ATTR 52 (stdout) 474 LOAD_METHOD 53 (flush) 476 CALL_METHOD 0 478 POP_TOP 99 480 LOAD_NAME 9 (time) 482 LOAD_METHOD 10 (sleep) 484 LOAD_CONST 40 (0.1) 486 CALL_METHOD 1 488 POP_TOP 490 EXTENDED_ARG 1 492 JUMP_ABSOLUTE 454 t = threading.Thread(target=animate) t.start() time.sleep(2) done = True lines = [ ' Jangan lupa bahagia, tersenyumlah =)'] for line in lines: for c in line: print(c, end='') sys.stdout.flush() time.sleep(0.1) 100 >> 494 LOAD_NAME 37 (print) 496 LOAD_CONST 41 ('\n') 498 CALL_FUNCTION 1 500 POP_TOP 101 502 LOAD_NAME 10 (sleep) 504 LOAD_CONST 35 (2) 506 CALL_FUNCTION 1 508 POP_TOP 510 EXTENDED_ARG 1 512 JUMP_ABSOLUTE 446 print('\n') sleep(2) 103 >> 514 LOAD_NAME 15 (os) 516 LOAD_ATTR 54 (path) 518 LOAD_METHOD 55 (exists) 520 LOAD_CONST 42 ('session') 522 CALL_METHOD 1 524 EXTENDED_ARG 2 526 POP_JUMP_IF_TRUE 538 104 528 LOAD_NAME 15 (os) 530 LOAD_METHOD 56 (makedirs) 532 LOAD_CONST 42 ('session') 534 CALL_METHOD 1 536 POP_TOP 106 >> 538 LOAD_NAME 15 (os) 540 LOAD_METHOD 36 (system) 542 LOAD_CONST 19 ('clear') 544 CALL_METHOD 1 546 POP_TOP 107 548 LOAD_NAME 21 (requests) 550 LOAD_METHOD 57 (get) 552 LOAD_CONST 43 ('https://ipinfo.io/json') 554 CALL_METHOD 1 556 STORE_NAME 58 (r) 108 558 LOAD_NAME 18 (json) 560 LOAD_METHOD 26 (loads) 562 LOAD_NAME 58 (r) 564 LOAD_ATTR 59 (text) 566 CALL_METHOD 1 568 STORE_NAME 60 (data) 109 570 LOAD_CONST 44 ('\x1b[1;35mYOUR LOCATION\t: \x1b[1;36m{1}\t({2})\n\x1b[1;35mYOUR OWN IP\t: \x1b[1;36m{0}') 572 STORE_NAME 59 (text) 110 574 LOAD_NAME 59 (text) 576 LOAD_METHOD 61 (format) 578 LOAD_NAME 60 (data) 580 LOAD_METHOD 57 (get) 582 LOAD_CONST 45 ('ip') 584 LOAD_CONST 46 ('[NO DATA]') 586 CALL_METHOD 2 588 LOAD_NAME 60 (data) 590 LOAD_METHOD 57 (get) 592 LOAD_CONST 47 ('region') 594 LOAD_CONST 46 ('[NO DATA]') 596 CALL_METHOD 2 598 LOAD_NAME 60 (data) 600 LOAD_METHOD 57 (get) 602 LOAD_CONST 48 ('country') 604 LOAD_CONST 46 ('[NO DATA]') 606 CALL_METHOD 2 608 CALL_METHOD 3 610 STORE_NAME 59 (text) 111 612 LOAD_NAME 37 (print) 614 LOAD_NAME 35 (banner) 616 CALL_FUNCTION 1 618 POP_TOP 112 620 LOAD_NAME 33 (mengetik) 622 LOAD_NAME 59 (text) 624 CALL_FUNCTION 1 626 POP_TOP 113 628 LOAD_NAME 33 (mengetik) 630 LOAD_CONST 49 ('\x1b[1;35mWELCOME TO BOT :\x1b[1;36m Visit and Withdraw Clickbot\n\x1b[1;35mNOTE :\x1b[1;36m This Script Is not for sale !\n') 632 CALL_FUNCTION 1 634 POP_TOP 114 636 LOAD_CONST 50 ('User-Agent') 638 LOAD_CONST 51 ('Mozilla/5.0 (Windows NT 10.0; Win32; x86) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36') 640 BUILD_MAP 1 642 STORE_NAME 62 (ua) 115 644 LOAD_CONST 52 (800812) 646 STORE_NAME 63 (api_id) 116 648 LOAD_CONST 53 ('db55ad67a98df35667ca788b97f771f5') 650 STORE_NAME 64 (api_hash) os.path.exists('session') or os.makedirs('session') os.system('clear') r = requests.get('https://ipinfo.io/json') data = json.loads(r.text) text = '\x1b[1;35mYOUR LOCATION\t: \x1b[1;36m{1}\t({2})\n\x1b[1;35mYOUR OWN IP\t: \x1b[1;36m{0}' text = text.format(data.get('ip', '[NO DATA]'), data.get('region', '[NO DATA]'), data.get('country', '[NO DATA]')) print(banner) mengetik(text) mengetik('\x1b[1;35mWELCOME TO BOT :\x1b[1;36m Visit and Withdraw Clickbot\n\x1b[1;35mNOTE :\x1b[1;36m This Script Is not for sale !\n') ua = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win32; x86) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36'} api_id = 800812 api_hash = 'db55ad67a98df35667ca788b97f771f5' 118 652 LOAD_CONST 54 (<code object withdraw at 0xae33b8a8, file "<zen_ezz>", line 118>) 654 LOAD_CONST 55 ('withdraw') 656 MAKE_FUNCTION 0 658 STORE_NAME 65 (withdraw) def withdraw(): 144 660 LOAD_CONST 56 (<code object visit at 0xae33b910, file "<zen_ezz>", line 144>) 662 LOAD_CONST 57 ('visit') 664 MAKE_FUNCTION 0 666 STORE_NAME 66 (visit) def visit(): 221 668 LOAD_NAME 22 (open) 670 LOAD_CONST 58 ('list.txt') 672 CALL_FUNCTION 1 674 STORE_NAME 67 (f) 222 676 LOAD_NAME 68 (len) 678 LOAD_NAME 67 (f) 680 LOAD_METHOD 69 (readlines) 682 CALL_METHOD 0 684 CALL_FUNCTION 1 686 STORE_NAME 70 (baris) 223 688 LOAD_NAME 67 (f) 690 LOAD_METHOD 71 (close) 692 CALL_METHOD 0 694 POP_TOP 225 696 LOAD_NAME 72 (range) 698 LOAD_NAME 70 (baris) 700 CALL_FUNCTION 1 702 GET_ITER >> 704 EXTENDED_ARG 1 706 FOR_ITER 460 (to 1168) 708 STORE_NAME 73 (i) 226 710 LOAD_NAME 22 (open) 712 LOAD_CONST 58 ('list.txt') 714 CALL_FUNCTION 1 716 STORE_NAME 67 (f) 227 718 LOAD_NAME 67 (f) 720 LOAD_METHOD 69 (readlines) 722 CALL_METHOD 0 724 LOAD_NAME 73 (i) 726 BINARY_SUBSCR 728 LOAD_METHOD 74 (strip) 730 CALL_METHOD 0 732 STORE_NAME 75 (phone_number) 228 734 LOAD_NAME 67 (f) 736 LOAD_METHOD 71 (close) 738 CALL_METHOD 0 740 POP_TOP f = open('list.txt') baris = len(f.readlines()) f.close() for i in range(baris): f = open('list.txt') phone_number = f.readlines()[i].strip() f.close() 229 742 LOAD_NAME 33 (mengetik) 744 LOAD_CONST 59 ('\x1b[1;36m===============================================\n') 746 CALL_FUNCTION 1 748 POP_TOP 230 750 LOAD_NAME 37 (print) 752 LOAD_CONST 60 ('\x1b[1;35mYOUR NUMBER : \x1b[1;36m') 754 LOAD_NAME 75 (phone_number) 756 FORMAT_VALUE 0 758 BUILD_STRING 2 760 CALL_FUNCTION 1 762 POP_TOP 231 764 LOAD_NAME 1 (TelegramClient) 766 LOAD_CONST 61 ('session/') 768 LOAD_NAME 75 (phone_number) 770 BINARY_ADD 772 LOAD_NAME 63 (api_id) 774 LOAD_NAME 64 (api_hash) 776 CALL_FUNCTION 3 778 STORE_NAME 76 (client) 232 780 LOAD_NAME 76 (client) 782 LOAD_METHOD 77 (connect) 784 CALL_METHOD 0 786 POP_TOP 233 788 LOAD_NAME 76 (client) 790 LOAD_METHOD 78 (is_user_authorized) 792 CALL_METHOD 0 794 EXTENDED_ARG 3 796 POP_JUMP_IF_TRUE 912 mengetik('\x1b[1;36m===============================================\n') print(f"\x1b[1;35mYOUR NUMBER : \x1b[1;36m{phone_number}") client = TelegramClient('session/' + phone_number, api_id, api_hash) client.connect() client.is_user_authorized() 234 798 SETUP_FINALLY 30 (to 830) try: 235 800 LOAD_NAME 76 (client) 802 LOAD_METHOD 79 (send_code_request) 804 LOAD_NAME 75 (phone_number) 806 CALL_METHOD 1 808 POP_TOP 236 810 LOAD_NAME 76 (client) 812 LOAD_METHOD 80 (sign_in) 814 LOAD_NAME 75 (phone_number) 816 LOAD_NAME 39 (input) 818 LOAD_CONST 62 ('\x1b[1;35mVERIF CODE : \x1b[1;36m') 820 CALL_FUNCTION 1 822 CALL_METHOD 2 824 STORE_NAME 81 (me) 826 POP_BLOCK 828 JUMP_FORWARD 82 (to 912) client.send_code_request(phone_number) me = client.sign_in(phone_number, input('\x1b[1;35mVERIF CODE : \x1b[1;36m')) 237 >> 830 DUP_TOP 832 LOAD_NAME 8 (SessionPasswordNeededError) 834 COMPARE_OP 10 (exception match) 836 EXTENDED_ARG 3 838 POP_JUMP_IF_FALSE 870 840 POP_TOP 842 POP_TOP 844 POP_TOP 238 846 LOAD_NAME 39 (input) 848 LOAD_CONST 63 ('\x1b[1;35m2FA CODE : \x1b[1;36m') 850 CALL_FUNCTION 1 852 STORE_NAME 82 (passw) 239 854 LOAD_NAME 76 (client) 856 LOAD_METHOD 48 (start) 858 LOAD_NAME 75 (phone_number) 860 LOAD_NAME 82 (passw) 862 CALL_METHOD 2 864 STORE_NAME 81 (me) 866 POP_EXCEPT 868 JUMP_FORWARD 42 (to 912) except (SessionPasswordNeededError): passw = input('\x1b[1;35m2FA CODE : \x1b[1;36m') me = client.start(phone_number, passw) 240 >> 870 DUP_TOP 872 LOAD_NAME 83 (Exception) 874 COMPARE_OP 10 (exception match) 876 EXTENDED_ARG 3 878 POP_JUMP_IF_FALSE 910 880 POP_TOP 882 POP_TOP 884 POP_TOP except Exception: 241 886 LOAD_NAME 14 (sys) 888 LOAD_ATTR 52 (stdout) 890 LOAD_METHOD 84 (write) 892 LOAD_CONST 64 ('\r\x1b[1;35mSTATUS : \x1b[1;36mSomething Wrong happened !\n') 894 CALL_METHOD 1 896 POP_TOP sys.stdout.write('\r\x1b[1;35mSTATUS : \x1b[1;36mSomething Wrong happened !\n') 242 898 POP_EXCEPT 900 POP_TOP 902 EXTENDED_ARG 4 904 JUMP_ABSOLUTE 1168 906 POP_EXCEPT 908 JUMP_FORWARD 2 (to 912) >> 910 END_FINALLY 243 >> 912 LOAD_NAME 76 (client) 914 LOAD_METHOD 85 (get_me) 916 CALL_METHOD 0 918 STORE_NAME 86 (myself) myself = client.get_me() 244 920 SETUP_FINALLY 232 (to 1154) 922 SETUP_FINALLY 184 (to 1108) try: 245 924 LOAD_NAME 40 (currency) 926 LOAD_CONST 24 ('doge') 928 COMPARE_OP 2 (==) 930 EXTENDED_ARG 3 932 POP_JUMP_IF_FALSE 958 246 934 LOAD_NAME 76 (client) 936 LOAD_METHOD 88 (get_entity) 938 LOAD_CONST 65 ('@Dogecoin_click_bot') 940 CALL_METHOD 1 942 STORE_NAME 89 (channel_entity) 247 944 LOAD_CONST 65 ('@Dogecoin_click_bot') 946 STORE_NAME 90 (channel_username) 248 948 LOAD_CONST 66 ('DOGE') 950 STORE_NAME 91 (cr) 249 952 LOAD_NAME 29 (dogewallet) 954 STORE_NAME 92 (wallet) 956 JUMP_FORWARD 134 (to 1092) if currency == 'doge': channel_entity = client.get_entity('@Dogecoin_click_bot') channel_username = '@Dogecoin_click_bot' cr = 'DOGE' wallet = dogewallet 250 >> 958 LOAD_NAME 40 (currency) 960 LOAD_CONST 25 ('ltc') 962 COMPARE_OP 2 (==) 964 EXTENDED_ARG 3 966 POP_JUMP_IF_FALSE 992 251 968 LOAD_NAME 76 (client) 970 LOAD_METHOD 88 (get_entity) 972 LOAD_CONST 67 ('@Litecoin_click_bot') 974 CALL_METHOD 1 976 STORE_NAME 89 (channel_entity) 252 978 LOAD_CONST 67 ('@Litecoin_click_bot') 980 STORE_NAME 90 (channel_username) 253 982 LOAD_CONST 68 ('LTC') 984 STORE_NAME 91 (cr) 254 986 LOAD_NAME 28 (ltcwallet) 988 STORE_NAME 92 (wallet) 990 JUMP_FORWARD 100 (to 1092) elif currency == 'ltc': channel_entity = client.get_entity('@Litecoin_click_bot') channel_username = '@Litecoin_click_bot' cr = 'LTC' wallet = ltcwallet 255 >> 992 LOAD_NAME 40 (currency) 994 LOAD_CONST 26 ('zec') 996 COMPARE_OP 2 (==) 998 EXTENDED_ARG 4 1000 POP_JUMP_IF_FALSE 1026 256 1002 LOAD_NAME 76 (client) 1004 LOAD_METHOD 88 (get_entity) 1006 LOAD_CONST 69 ('@Zcash_click_bot') 1008 CALL_METHOD 1 1010 STORE_NAME 89 (channel_entity) 257 1012 LOAD_CONST 69 ('@Zcash_click_bot') 1014 STORE_NAME 90 (channel_username) 258 1016 LOAD_CONST 70 ('ZEC') 1018 STORE_NAME 91 (cr) 259 1020 LOAD_NAME 30 (zecwallet) 1022 STORE_NAME 92 (wallet) 1024 JUMP_FORWARD 66 (to 1092) elif currency == 'zec': channel_entity = client.get_entity('@Zcash_click_bot') channel_username = '@Zcash_click_bot' cr = 'ZEC' wallet = zecwallet 260 >> 1026 LOAD_NAME 40 (currency) 1028 LOAD_CONST 28 ('bch') 1030 COMPARE_OP 2 (==) 1032 EXTENDED_ARG 4 1034 POP_JUMP_IF_FALSE 1060 261 1036 LOAD_NAME 76 (client) 1038 LOAD_METHOD 88 (get_entity) 1040 LOAD_CONST 71 ('@BCH_clickbot') 1042 CALL_METHOD 1 1044 STORE_NAME 89 (channel_entity) 262 1046 LOAD_CONST 71 ('@BCH_clickbot') 1048 STORE_NAME 90 (channel_username) 263 1050 LOAD_CONST 72 ('BCH') 1052 STORE_NAME 91 (cr) 264 1054 LOAD_NAME 31 (bchwallet) 1056 STORE_NAME 92 (wallet) 1058 JUMP_FORWARD 32 (to 1092) elif currency == 'bch': channel_entity = client.get_entity('@BCH_clickbot') channel_username = '@BCH_clickbot' cr = 'BCH' wallet = bchwallet 265 >> 1060 LOAD_NAME 40 (currency) 1062 LOAD_CONST 27 ('btc') 1064 COMPARE_OP 2 (==) 1066 EXTENDED_ARG 4 1068 POP_JUMP_IF_FALSE 1092 266 1070 LOAD_NAME 76 (client) 1072 LOAD_METHOD 88 (get_entity) 1074 LOAD_CONST 73 ('@BitcoinClick_bot') 1076 CALL_METHOD 1 1078 STORE_NAME 89 (channel_entity) 267 1080 LOAD_CONST 73 ('@BitcoinClick_bot') 1082 STORE_NAME 90 (channel_username) 268 1084 LOAD_CONST 74 ('BTC') 1086 STORE_NAME 91 (cr) 269 1088 LOAD_NAME 32 (btcwallet) 1090 STORE_NAME 92 (wallet) elif currency == 'btc': channel_entity = client.get_entity('@BitcoinClick_bot') channel_username = '@BitcoinClick_bot' cr = 'BTC' wallet = btcwallet 270 >> 1092 LOAD_NAME 66 (visit) 1094 CALL_FUNCTION 0 1096 POP_TOP visit() 271 1098 LOAD_NAME 65 (withdraw) 1100 CALL_FUNCTION 0 1102 POP_TOP 1104 POP_BLOCK 1106 JUMP_FORWARD 42 (to 1150) withdraw() 272 >> 1108 DUP_TOP 1110 LOAD_NAME 83 (Exception) 1112 COMPARE_OP 10 (exception match) 1114 EXTENDED_ARG 4 1116 POP_JUMP_IF_FALSE 1148 1118 POP_TOP 1120 POP_TOP 1122 POP_TOP 273 1124 LOAD_NAME 14 (sys) 1126 LOAD_ATTR 52 (stdout) 1128 LOAD_METHOD 84 (write) 1130 LOAD_CONST 75 ('\r\x1b[1;35mSTATUS AKUN : \x1b[1;36mSomething Wrong happened !\n\n') 1132 CALL_METHOD 1 1134 POP_TOP 274 1136 LOAD_NAME 10 (sleep) 1138 LOAD_CONST 76 (1) 1140 CALL_FUNCTION 1 1142 POP_TOP 1144 POP_EXCEPT 1146 JUMP_FORWARD 2 (to 1150) >> 1148 END_FINALLY >> 1150 POP_BLOCK 1152 BEGIN_FINALLY else: pass 276 >> 1154 LOAD_NAME 76 (client) 1156 LOAD_METHOD 87 (disconnect) 1158 CALL_METHOD 0 1160 POP_TOP 1162 END_FINALLY # <- pass? 1164 EXTENDED_ARG 2 1166 JUMP_ABSOLUTE 704 >> 1168 LOAD_CONST 6 (None) 1170 RETURN_VALUE except Exception: sys.stdout.write('\r\x1b[1;35mSTATUS AKUN : \x1b[1;36mSomething Wrong happened !\n\n') sleep(1) client.disconnect()
02c7a58b6b502e705b6ff5ff30e1577c75b11799
b4cc597f7efa74d3bdea48aaeca7c675235351d6
/param_files/0.0eV/reps_files/file_format_Hz.py
39e4383d427caaa7151dd4a352dab909becdb16d
[]
no_license
franciscovillaescusa/Euclid_neutrino_comparison
52de9fc72b1240319bd63341b94abb82471c721a
9483de6512693d7303c51b371e8746425ea9c3aa
refs/heads/master
2023-04-19T21:45:42.932627
2021-04-29T17:54:32
2021-04-29T17:54:32
303,197,191
3
0
null
null
null
null
UTF-8
Python
false
false
1,072
py
import numpy as np import sys ########################## create Hz file ################################### f_in = '0.0eV_hubble.txt' #file provided by Matteo f_out = 'Hz.txt' #file to be used by Gadget bins = 1000 #number of bins in the new file z_max = 127.0 #maximum redshift of the new file z_min = 0.0 #minimum redshift of the new file #read original file; H(z) in km/s/Mpc z,Hz = np.loadtxt(f_in,unpack=True) #create a new (1+z) array z_new = np.logspace(np.log10(1.0+z_min),np.log10(1.0+z_max),bins) #interpolate from the original table. The H(z) has to be in Gadget units: #km/s/(kpc/h), thus we need to multiply the Hz of Matteo by 1.0/(1000.0*h) Hz_new = np.interp(z_new-1,z,Hz)/(Hz[0]/100.0)/1000.0 #create the w=-1 array w = np.ones(bins)*(-1.0) #the format of the H(z) file is 1+z,w,H(z), where 1+z should be decreasing np.savetxt(f_out,np.transpose([z_new[::-1],w,Hz_new[::-1]])) #############################################################################
a245e763e652cab4a89be27f2d41294d4526d33a
a9dc42e9f54b549fcdd695817e347abfd8f2869f
/old/old_bin/cru_ts323_prism_update_launcher.py
9f4c80bba7d44a96d914f80d42d3712c30f99745
[ "MIT" ]
permissive
yusheng-wang/downscale
2e77d070115ead3034c154d29f1c533976228f13
3fe8ea1774cf82149d19561ce5f19b25e6cba6fb
refs/heads/master
2023-04-10T03:25:08.806859
2019-09-21T17:34:35
2019-09-21T17:34:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,713
py
# SCRIPT TO RUN THE CRU TS3.1 BUILT SCRIPT OVER THE CRU TS3.2.3 UPDATE (SEPT.2015) # WHICH EXTENDS THE SERIES TO 12/2014. # THIS IS CURRENTLY WORKING FOR CLD, TMP, VAP, AND MORE TO COME! # # # # # # Author: Michael Lindgren ([email protected]) # # # # # # CURRENTLY SETUP TO RUN ON EOS. # # CLD # import os # os.chdir( '/workspace/Shared/Tech_Projects/ALFRESCO_Inputs/project_data/CODE/tem_ar5_inputs/downscale_cmip5/bin' ) # ncores = '14' # base_path = '/workspace/Shared/Tech_Projects/ALFRESCO_Inputs/project_data/TEM_Data/cru_ts323_prism' # cru_ts31 = '/workspace/Shared/Tech_Projects/ALFRESCO_Inputs/project_data/TEM_Data/cru_ts323/cru_ts3.23.1901.2014.cld.dat.nc' # cl20_path = '/workspace/Shared/Tech_Projects/ALFRESCO_Inputs/project_data/TEM_Data/cru_october_final/cru_cl20/cld/akcan' # template_raster_fn = '/workspace/Shared/Tech_Projects/ALFRESCO_Inputs/project_data/TEM_Data/templates/tas_mean_C_AR5_GFDL-CM3_historical_01_1860.tif' # anomalies_calc_type = 'relative' # downscaling_operation = 'mult' # climatology_begin = '1961' # climatology_end = '1990' # year_begin = '1901' # year_end = '2014' # variable = 'cld' # metric = 'pct' # args_tuples = [ ('hi', cru_ts31), ('ci', cl20_path), ('tr', template_raster_fn), # ('base', base_path), ('bt', year_begin), ('et', year_end), # ('cbt', climatology_begin), ('cet', climatology_end), # ('nc', ncores), ('at', anomalies_calc_type), ('m', metric), # ('dso', downscaling_operation), ('v', variable) ] # args = ''.join([ ' -'+flag+' '+value for flag, value in args_tuples ]) # os.system( 'ipython2.7 -- tas_cld_cru_ts31_to_cl20_downscaling.py ' + args ) # TAS import os os.chdir( '/workspace/Shared/Tech_Projects/ALFRESCO_Inputs/project_data/CODE/tem_ar5_inputs/downscale_cmip5/bin' ) ncores = '14' base_path = '/workspace/Shared/Tech_Projects/ALFRESCO_Inputs/project_data/TEM_Data/cru_ts323_prism' cru_ts31 = '/workspace/Shared/Tech_Projects/ALFRESCO_Inputs/project_data/TEM_Data/cru_ts323/cru_ts3.23.1901.2014.tmp.dat.nc' cl20_path = '/Data/Base_Data/Climate/AK_CAN_2km/historical/singleBand/prism/AK_CAN_2km_PRISM/AK_CAN_geotiffs/tas/ak83albers' template_raster_fn = '/workspace/Shared/Tech_Projects/ALFRESCO_Inputs/project_data/TEM_Data/templates/tas_mean_C_AR5_GFDL-CM3_historical_01_1860.tif' anomalies_calc_type = 'absolute' downscaling_operation = 'add' climatology_begin = '1971' climatology_end = '2000' year_begin = '1901' year_end = '2014' variable = 'tas' metric = 'C' args_tuples = [ ('hi', cru_ts31), ('ci', cl20_path), ('tr', template_raster_fn), ('base', base_path), ('bt', year_begin), ('et', year_end), ('cbt', climatology_begin), ('cet', climatology_end), ('nc', ncores), ('at', anomalies_calc_type), ('m', metric), ('dso', downscaling_operation), ('v', variable) ] args = ''.join([ ' -'+flag+' '+value for flag, value in args_tuples ]) os.system( 'ipython2.7 -- tas_cld_cru_ts31_to_cl20_downscaling.py ' + args ) # VAP (HUR) import os os.chdir( '/workspace/Shared/Tech_Projects/ALFRESCO_Inputs/project_data/CODE/tem_ar5_inputs/downscale_cmip5/bin' ) ncores = '14' base_path = '/workspace/Shared/Tech_Projects/ALFRESCO_Inputs/project_data/TEM_Data/cru_ts323' cru_ts31_vap = '/workspace/Shared/Tech_Projects/ALFRESCO_Inputs/project_data/TEM_Data/cru_ts323/cru_ts3.23.1901.2014.vap.dat.nc' cru_ts31_tas = '/workspace/Shared/Tech_Projects/ALFRESCO_Inputs/project_data/TEM_Data/cru_ts323/cru_ts3.23.1901.2014.tmp.dat.nc' cl20_path = '/workspace/Shared/Tech_Projects/ALFRESCO_Inputs/project_data/TEM_Data/cru_october_final/cru_cl20/hur/akcan' # hur template_raster_fn = '/workspace/Shared/Tech_Projects/ALFRESCO_Inputs/project_data/TEM_Data/templates/tas_mean_C_AR5_GFDL-CM3_historical_01_1860.tif' anomalies_calc_type = 'relative' downscaling_operation = 'mult' climatology_begin = '1961' climatology_end = '1990' year_begin = '1901' year_end = '2014' variable = 'hur' metric = 'pct' args_tuples = [ ('hhi', cru_ts31_vap), ('thi', cru_ts31_tas), ('ci', cl20_path), ('tr', template_raster_fn), ('base', base_path), ('bt', year_begin), ('et', year_end), ('cbt', climatology_begin), ('cet', climatology_end), ('nc', ncores), ('at', anomalies_calc_type), ('m', metric), ('dso', downscaling_operation), ('v', variable) ] args = ''.join([ ' -'+flag+' '+value for flag, value in args_tuples ]) os.system( 'ipython2.7 -i -- hur_cru_ts31_to_cl20_downscaling.py ' + args ) # PRECIP import os os.chdir( '/workspace/Shared/Tech_Projects/ALFRESCO_Inputs/project_data/CODE/tem_ar5_inputs/downscale_cmip5/bin' ) ncores = '14' base_path = '/workspace/Shared/Tech_Projects/ALFRESCO_Inputs/project_data/TEM_Data/cru_ts323' cru_ts31 = '/workspace/Shared/Tech_Projects/ALFRESCO_Inputs/project_data/TEM_Data/cru_ts323/cru_ts3.23.1901.2014.pre.dat.nc' cl20_path = '/workspace/Shared/Tech_Projects/ALFRESCO_Inputs/project_data/TEM_Data/cru_october_final/cru_cl20/pre/akcan' template_raster_fn = '/workspace/Shared/Tech_Projects/ALFRESCO_Inputs/project_data/TEM_Data/templates/tas_mean_C_AR5_GFDL-CM3_historical_01_1860.tif' anomalies_calc_type = 'relative' downscaling_operation = 'mult' climatology_begin = '1961' climatology_end = '1990' year_begin = '1901' year_end = '2014' variable = 'pre' metric = 'mm' args_tuples = [ ('hi', cru_ts31), ('ci', cl20_path), ('tr', template_raster_fn), ('base', base_path), ('bt', year_begin), ('et', year_end), ('cbt', climatology_begin), ('cet', climatology_end), ('nc', ncores), ('at', anomalies_calc_type), ('m', metric), ('dso', downscaling_operation), ('v', variable) ] args = ''.join([ ' -'+flag+' '+value for flag, value in args_tuples ]) os.system( 'ipython2.7 -- tas_cld_cru_ts31_to_cl20_downscaling.py ' + args )
3bb4882df0c8b66b1d985109247e95926e438367
28dbe47aba287ed94ef7bba734203736bcc06249
/.history/dmac_20200713134926.py
e0c5592f917f60de87f93354003a2b45895781c6
[]
no_license
ntung88/Trading_Algorithms
242fd816b19df95e02e9fcd8c5c91c862d2ede40
d96488b1754e3751f739d9c3f094a8f8dc54a0a9
refs/heads/master
2022-11-19T16:04:07.800344
2020-07-17T21:14:10
2020-07-17T21:14:10
276,239,640
1
0
null
null
null
null
UTF-8
Python
false
false
6,330
py
import yfinance as yf import numpy as np import pandas as pd from pandasgui import show from scipy.optimize import minimize import matplotlib.pyplot as plt ''' A library for running Dual Moving Average Crossover trading strategy, with backtesting, period optimization, and vizualization tools. ''' #Period of time (in years) that we look back when optimizing in return calculation HINDSIGHT = 2 def clean_data(data): ''' Removes row (days) with no data from dataframe or series ''' incomplete_idxs = False if isinstance(data, pd.DataFrame): for col in data.columns: incomplete_idxs |= np.isnan(data[col]) else: incomplete_idxs |= np.isnan(data) return data[~incomplete_idxs] def calc_crossovers(sma, lma): ''' Returns a dataframe containing only the rows where a crossover of the sma and lma is detected. 1 indicates a buy point (sma moving above lma), -1 a sell point ''' num_points = len(clean_data(lma)) high = (sma > lma)[-num_points:] crossovers = high.astype(int).diff()[1:] trimmed = crossovers[crossovers != 0] return trimmed def profit(data, crossovers): ''' Calculates profit assuming data covers a continuous time period with the given crossovers ''' if len(crossovers) == 0: return 0 total = 0 # If first crossover is a sell point assume implicit buy point at very start of data if crossovers.iloc[0] == -1: total += data.loc[crossovers.index[0]] - data.iloc[0] # Add the difference between value at sell points and value at buy points to our profit for i in range(1,len(crossovers)): left_bound = crossovers.index[i-1] if crossovers.loc[left_bound] == 1: right_bound = crossovers.index[i] total += data.loc[right_bound] - data.loc[left_bound] # If last crossover is a buy point assume implicit sell point at end of data (include # profit we have made on current holding) if crossovers.iloc[-1] == 1: total += data.iloc[-1] - data.loc[crossovers.index[-1]] return total def optimize(data): ''' Uses scipy's convex minimization library to find optimal short period and long period for moving averages. Because the profit certainly isn't a truly convex function I use a wide range of seeds as initial guesses in hopes of detecting all the local minimums and comparing them to get a good guess of the global min ''' cons = ({'type': 'ineq', 'fun': lambda x: x[1] - x[0]}, {'type': 'ineq', 'fun': lambda x: x[0] - 5}) # Ranges of initial guesses for short and long periods #30 and 40 step size for max accuracy, larger for faster runtime short_seeds = range(5, 300, 50) long_seeds = range(20, 800, 70) # short_seeds = [100] # long_seeds = [750] minimum = float('inf') best_short = 0 best_long = 0 for short_seed in short_seeds: for long_seed in long_seeds: # Use all combinations of ranges where long_seed > short_seed as initial guesses if long_seed > short_seed: res = minimize(lambda x, data: -1 * run_analysis(x, data), [short_seed, long_seed], args=(data,), method='COBYLA', constraints=cons, options={'rhobeg': 10.0, 'catol': 0.0}) if res.fun < minimum: best_short = res.x[0] best_long = res.x[1] minimum = res.fun return (int(round(best_short)), int(round(best_long)), minimum) def run_analysis(periods, data): ''' Objective function for minimization, runs profit calculation with given periods and data Returns negative profit for minimization (maximization of profit) ''' short_period = int(round(periods[0])) long_period = int(round(periods[1])) sma = data.rolling(short_period).mean() lma = data.rolling(long_period).mean() crossovers = calc_crossovers(sma, lma) return profit(data, crossovers) def visualize(data, short_period, long_period): ''' Useful for visualizing the algorithm's decisions. Plots the stock price with colored vertical bars at buy and sell points ''' sma = data.rolling(short_period).mean() lma = data.rolling(long_period).mean() crossovers = calc_crossovers(sma, lma) buys = pd.DataFrame(crossovers[crossovers == 1.0]) sells = pd.DataFrame(crossovers[crossovers == -1.0]) data.plot(color='black') for buy in buys.index: plt.axvline(buy, color="green") for sell in sells.index: plt.axvline(sell, color="red") plt.show() def split_year(data): ''' Split dataframe into a list of dataframes, each corresponding to the data for each year ''' years = np.unique(data.index.year) split = [] for year in years: split.append(data[data.index.year == year]) return split def calc_returns(split_data): ''' Calculate annual returns for periods optimized over slices (of size HINDSIGHT) of past data. Gives an idea of what kind of results to realistically expect ''' annual_returns = [] max_return = float('-inf') min_return = float('inf') for i in range(2, len(split_data)): test_year = split_data[i] optimize_period = pd.DataFrame(np.concatenate(split_data[i-HINDSIGHT:i])) periods = optimize(optimize_period) profit = run_analysis(periods, test_year) annual_returns.append(profit) if profit > max_return: max_return = profit if profit < min_return: min_return = profit return annual_returns, max_return, min_return def main(): ''' Main's current functionality: Find optimal windows for TSLA and print them, along with profit since 6/29/2010 ''' ticker = yf.Ticker('PSV') # data = yf.download(tickers, period='max', group_by='ticker') data = ticker.history(period="max") dirty = pd.DataFrame(data) #Currently using only closing prices frame = clean_data(dirty)['Close'] # split_year(frame) # periods = optimize(frame) print('optimizing') results = calc_returns(split_year(frame)) print(results) # visualize(frame, periods[0], periods[1]) if __name__ == "__main__": main() ''' how to quantify number of shares you want to buy (steepness of trend, volatility, top 20 stocks?) '''
c6a8b0b84a6a412e24430e7c5dcbbac95110038a
e4e1d12269cea35451bbe552af3262a9a428faa1
/trainer/trainer_lm.py
2da3166825d2ea23258bb8cdeaf7dff9f50eedd5
[ "Apache-2.0" ]
permissive
12341123/pylon
286e033623b13846ca9dd5d9b84c7788f6c70a1c
e26202b2c1cfbb8b5c444f840763f0ce839f048a
refs/heads/master
2023-05-07T20:25:22.134413
2021-06-08T03:51:29
2021-06-08T03:51:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
994
py
import torch.nn.functional as F from .trainer_base import * from .callbacks.start import * class LMTrainer(BaseTrainer): """language modeling trainer """ def on_ep_begin(self, **kwargs): self.hidden = None def forward_pass(self, data): x, y = data pred, hidden = self.net(x, self.hidden) self.hidden = detach(hidden) # flatten pred and target before loss t, b, n_token = pred.shape loss = F.cross_entropy(pred.view(-1, n_token), y.view(-1)) with torch.no_grad(): ppl = torch.exp(loss) return { 'x': x, 'y': y, 'pred': pred, 'loss': loss, 'ppl': ppl, 'hidden': self.hidden, 'n': y.shape[0] * y.shape[1] } def make_default_callbacks(self): return super().make_default_callbacks() + [MovingAvgCb(['loss', 'ppl'])] def __repr__(self): return f'<LMTrainer {self.looper.state}>'
8f5086512825812a077bc0c8c1f29b3a00095003
a14af281ab0c6189d5b6c48a25732fb286f34c8d
/rbac/__init__.py
c51b6a735b7d3bac790f423527d6132e53670915
[ "MIT" ]
permissive
jackeyGao/simple-rbac
62112301fbad8d8bdc6639b4a3038bc0de3a7638
967dee94be4ad6c93999ce52655eada2477c9046
refs/heads/master
2020-04-14T15:31:43.655283
2019-01-03T06:20:22
2019-01-03T06:20:22
163,929,777
2
0
MIT
2019-01-03T06:01:11
2019-01-03T06:01:10
null
UTF-8
Python
false
false
161
py
from __future__ import absolute_import """Simple RBAC This is a simple role based access control utility in Python. """ __all__ = ["acl", "context", "proxy"]
4c633e20b0ec5f68658ba51e9e74fa3d3f7c6cd4
e6a8793b1b12d47e57f00485350d122946618245
/services/models.py
8dad81c83ffca9da8fcc511e7630e1ee93c018e7
[]
no_license
Fabricourt/school
70b2eba2c0b8ff9b9290eb0f68d730698a6d3a63
dad80c36be34b432dfadef195eb9e867f82cafff
refs/heads/main
2023-01-01T15:48:43.760288
2020-10-26T11:15:32
2020-10-26T11:15:32
305,829,630
0
0
null
null
null
null
UTF-8
Python
false
false
1,678
py
from django.db import models from django.utils import timezone from django.contrib.auth.models import User from django.urls import reverse from ckeditor.fields import RichTextField from django.utils.html import mark_safe from PIL import Image class Service(models.Model): title1 = models.CharField(max_length=200, blank=False, null=True) title2 = models.CharField(max_length=200, blank=False, null=True) title3 = models.CharField(max_length=200, blank=False, null=True) title4 = models.CharField(max_length=200, blank=False, null=True) subtitle1 = models.CharField(max_length=200, blank=False, null=True) subtitle2 = models.CharField(max_length=200, blank=False, null=True) subtitle3 = models.CharField(max_length=200, blank=False, null=True) subtitle4 = models.CharField(max_length=200, blank=False, null=True) statement1 = models.CharField(max_length=50, blank=False, null=True) statement2 = models.CharField(max_length=50, blank=False, null=True) statement3 = models.CharField(max_length=50, blank=False, null=True) statement4 = models.CharField(max_length=50, blank=False, null=True) icon1 = models.CharField(max_length=200, blank=False, null=True) icon2 = models.CharField(max_length=200, blank=False, null=True) icon3 = models.CharField(max_length=200, blank=False, null=True) icon4 = models.CharField(max_length=200, blank=False, null=True) date_posted = models.DateTimeField(default=timezone.now) is_published = models.BooleanField(default=True) #image = models.ImageField(upload_to='Service/%Y/%m/%d/', null=True, blank=False) def __str__(self): return str(self.title1)
c3a894ab35a0f429bdb265a780ff7a2714455edc
ef998914b19f34f8f85cd784b6470147d73a93e0
/worldometers/worldometers/settings.py
7b61c87b7bbe8488246874f4ebaf1191a148c970
[]
no_license
dilipksahu/Web_Scraping_Using_Python
9f586704a779fda551c5e3d15902591648663870
e6d3031f89b1b5d4bfa0377c11e87037772c460d
refs/heads/master
2023-01-30T14:36:00.702440
2020-12-17T16:10:25
2020-12-17T16:10:25
316,200,913
1
0
null
null
null
null
UTF-8
Python
false
false
3,123
py
# Scrapy settings for worldometers project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # https://docs.scrapy.org/en/latest/topics/settings.html # https://docs.scrapy.org/en/latest/topics/downloader-middleware.html # https://docs.scrapy.org/en/latest/topics/spider-middleware.html BOT_NAME = 'worldometers' SPIDER_MODULES = ['worldometers.spiders'] NEWSPIDER_MODULE = 'worldometers.spiders' # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'worldometers (+http://www.yourdomain.com)' # Obey robots.txt rules ROBOTSTXT_OBEY = True # Configure maximum concurrent requests performed by Scrapy (default: 16) #CONCURRENT_REQUESTS = 32 # Configure a delay for requests for the same website (default: 0) # See https://docs.scrapy.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs #DOWNLOAD_DELAY = 3 # The download delay setting will honor only one of: #CONCURRENT_REQUESTS_PER_DOMAIN = 16 #CONCURRENT_REQUESTS_PER_IP = 16 # Disable cookies (enabled by default) #COOKIES_ENABLED = False # Disable Telnet Console (enabled by default) #TELNETCONSOLE_ENABLED = False # Override the default request headers: #DEFAULT_REQUEST_HEADERS = { # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', # 'Accept-Language': 'en', #} # Enable or disable spider middlewares # See https://docs.scrapy.org/en/latest/topics/spider-middleware.html #SPIDER_MIDDLEWARES = { # 'worldometers.middlewares.WorldometersSpiderMiddleware': 543, #} # Enable or disable downloader middlewares # See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html #DOWNLOADER_MIDDLEWARES = { # 'worldometers.middlewares.WorldometersDownloaderMiddleware': 543, #} # Enable or disable extensions # See https://docs.scrapy.org/en/latest/topics/extensions.html #EXTENSIONS = { # 'scrapy.extensions.telnet.TelnetConsole': None, #} # Configure item pipelines # See https://docs.scrapy.org/en/latest/topics/item-pipeline.html #ITEM_PIPELINES = { # 'worldometers.pipelines.WorldometersPipeline': 300, #} # Enable and configure the AutoThrottle extension (disabled by default) # See https://docs.scrapy.org/en/latest/topics/autothrottle.html #AUTOTHROTTLE_ENABLED = True # The initial download delay #AUTOTHROTTLE_START_DELAY = 5 # The maximum download delay to be set in case of high latencies #AUTOTHROTTLE_MAX_DELAY = 60 # The average number of requests Scrapy should be sending in parallel to # each remote server #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received: #AUTOTHROTTLE_DEBUG = False # Enable and configure HTTP caching (disabled by default) # See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings #HTTPCACHE_ENABLED = True #HTTPCACHE_EXPIRATION_SECS = 0 #HTTPCACHE_DIR = 'httpcache' #HTTPCACHE_IGNORE_HTTP_CODES = [] #HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
c799710f27d097dea81aebba892ed99561c9b17d
9aa7d3c6d563a434595141f5b4dd8c54252a4d40
/tweets/migrations/0013_post_image.py
93841f7f324a2610760c5b2d94d0924b9898e049
[]
no_license
akhad97/Test-Web-App
9e200fc6d394cf6d52e72cb5f360d013e777fa9c
eb9b3480732c86f836748967bcfd6201dac6a6ee
refs/heads/master
2023-07-19T12:24:26.400998
2021-09-06T11:55:20
2021-09-06T11:55:20
402,657,324
1
0
null
null
null
null
UTF-8
Python
false
false
485
py
# Generated by Django 2.2.13 on 2021-07-31 05:30 from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('tweets', '0012_auto_20210730_2226'), ] operations = [ migrations.AddField( model_name='post', name='image', field=models.ImageField(default=django.utils.timezone.now, upload_to='post'), preserve_default=False, ), ]
811e71674e45e86b8f44ddac7576883ae69df87c
b33ad1c8560fc22a7e4ae9dec7f3c778b70941fa
/abc180/c.py
95d7109f8ff66c38bc7f9687872ddbacdf95636a
[]
no_license
Tommy-somen/atcoder_record
36f226ffe6465dd5f8ae4986195510d00da46ffb
0e549a72cec3b87accefc52d5cd56420251361b9
refs/heads/master
2023-08-16T10:23:39.609512
2021-09-27T11:38:57
2021-09-27T11:38:57
410,585,072
0
0
null
null
null
null
UTF-8
Python
false
false
191
py
n = int(input()) front,back = [],[] i = 1 while i*i <= n: if n%i == 0: front.append(i) if i != n//i: back.append(n//i) i += 1 front.extend(back[::-1]) for k in front: print(k)
f8c09a385fefe6b5064760cdcaa4f6f4794a0e07
52b5773617a1b972a905de4d692540d26ff74926
/.history/new_20200709211421.py
be8abece3db7727532968727ef71c47945c6b598
[]
no_license
MaryanneNjeri/pythonModules
56f54bf098ae58ea069bf33f11ae94fa8eedcabc
f4e56b1e4dda2349267af634a46f6b9df6686020
refs/heads/master
2022-12-16T02:59:19.896129
2020-09-11T12:05:22
2020-09-11T12:05:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
737
py
# [3,4] [1,2,7,7,0] # --> new set {1,2,7,7} # 4-3 = 1 # [5,9] [1,2,6,7] # smaller = 5 # # ---> 3 # left = {1:4,2:5,7:10,0:3} # ---> 4 # right = {1:5,2:6,7:11,0:4} # # newArr = sorted(min[[1,0],[2,1]]) # newArr =[2,6] # if newArr[0] == 0: # # 2,6 # "not possible" # 13,4 - [1,2,3,6,14] ''' smaller = 4 answer = 4+1+2 = 7 4+1+3 = 8 4+1+6 = 11 4+1+14 = 19 answer = 13+1=14 13+2 = 15 13+3 = 16 13+6 = 19 continue 4+2+3 = 9 4+2+6 = 12 4+2+14 = 20 4+3+6 = 13 [6,2] [1,10,6,5] 2-6 = 4 # sort -->[1,5,6,10] 2 + 1 = 3 2+5 = 7 ''' # bigger = scale[0] # smaller = scale[1] # diff = 9 # find two values that add up to 9 # --> weight[i] + weights[i+1] == diff: # newArr # return "not possible"
4c4af7c1fc3dd62c467f8350dc9f109165a94352
82fce9aae9e855a73f4e92d750e6a8df2ef877a5
/Lab/venv/lib/python3.8/site-packages/OpenGL/raw/GL/SGIX/shadow_ambient.py
883eef870fb602d8947fba66023b3d22c72e48fc
[]
no_license
BartoszRudnik/GK
1294f7708902e867dacd7da591b9f2e741bfe9e5
6dc09184a3af07143b9729e42a6f62f13da50128
refs/heads/main
2023-02-20T19:02:12.408974
2021-01-22T10:51:14
2021-01-22T10:51:14
307,847,589
0
0
null
null
null
null
UTF-8
Python
false
false
468
py
'''Autogenerated by xml_generate script, do not edit!''' from OpenGL import platform as _p from OpenGL.constant import Constant as _C # Code generation uses this # End users want this... from OpenGL.raw.GL import _errors _EXTENSION_NAME = 'GL_SGIX_shadow_ambient' def _f(function): return _p.createFunction(function, _p.PLATFORM.GL, 'GL_SGIX_shadow_ambient', error_checker=_errors._error_checker) GL_SHADOW_AMBIENT_SGIX = _C('GL_SHADOW_AMBIENT_SGIX', 0x80BF)
ca0d87e4e07ec3f3cdd5b7c6d054ff6ef5957b87
325fde42058b2b82f8a4020048ff910cfdf737d7
/src/storage-blob-preview/azext_storage_blob_preview/vendored_sdks/azure_storage_blob/v2019_12_12/aio/_blob_service_client_async.py
ab2e8a0defc727617d464dcde63e9049d06c006a
[ "LicenseRef-scancode-generic-cla", "MIT" ]
permissive
ebencarek/azure-cli-extensions
46b0d18fe536fe5884b00d7ffa30f54c7d6887d1
42491b284e38f8853712a5af01836f83b04a1aa8
refs/heads/master
2023-04-12T00:28:44.828652
2021-03-30T22:34:13
2021-03-30T22:34:13
261,621,934
2
5
MIT
2020-10-09T18:21:52
2020-05-06T01:25:58
Python
UTF-8
Python
false
false
30,285
py
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- # pylint: disable=invalid-overridden-method import functools from typing import ( # pylint: disable=unused-import Union, Optional, Any, Iterable, Dict, List, TYPE_CHECKING ) from azure.core.tracing.decorator import distributed_trace from azure.core.pipeline import AsyncPipeline from azure.core.tracing.decorator_async import distributed_trace_async from azure.core.async_paging import AsyncItemPaged from .._shared.models import LocationMode from .._shared.policies_async import ExponentialRetry from .._shared.base_client_async import AsyncStorageAccountHostsMixin, AsyncTransportWrapper from .._shared.response_handlers import return_response_headers, process_storage_error from .._shared.parser import _to_utc_datetime from .._shared.response_handlers import parse_to_internal_user_delegation_key from .._generated import VERSION from .._generated.aio import AzureBlobStorage from .._generated.models import StorageErrorException, StorageServiceProperties, KeyInfo from .._blob_service_client import BlobServiceClient as BlobServiceClientBase from ._container_client_async import ContainerClient from ._blob_client_async import BlobClient from .._models import ContainerProperties from .._deserialize import service_stats_deserialize, service_properties_deserialize from .._serialize import get_api_version from ._models import ContainerPropertiesPaged, FilteredBlobPaged if TYPE_CHECKING: from datetime import datetime from azure.core.pipeline.transport import HttpTransport from azure.core.pipeline.policies import HTTPPolicy from .._shared.models import AccountSasPermissions, ResourceTypes, UserDelegationKey from ._lease_async import BlobLeaseClient from .._models import ( BlobProperties, PublicAccess, BlobAnalyticsLogging, Metrics, CorsRule, RetentionPolicy, StaticWebsite, ) class BlobServiceClient(AsyncStorageAccountHostsMixin, BlobServiceClientBase): """A client to interact with the Blob Service at the account level. This client provides operations to retrieve and configure the account properties as well as list, create and delete containers within the account. For operations relating to a specific container or blob, clients for those entities can also be retrieved using the `get_client` functions. :param str account_url: The URL to the blob storage account. Any other entities included in the URL path (e.g. container or blob) will be discarded. This URL can be optionally authenticated with a SAS token. :param credential: The credentials with which to authenticate. This is optional if the account URL already has a SAS token. The value can be a SAS token string, an account shared access key, or an instance of a TokenCredentials class from azure.identity. If the URL already has a SAS token, specifying an explicit credential will take priority. :keyword str api_version: The Storage API version to use for requests. Default value is '2019-07-07'. Setting to an older version may result in reduced feature compatibility. .. versionadded:: 12.2.0 :keyword str secondary_hostname: The hostname of the secondary endpoint. :keyword int max_block_size: The maximum chunk size for uploading a block blob in chunks. Defaults to 4*1024*1024, or 4MB. :keyword int max_single_put_size: If the blob size is less than or equal max_single_put_size, then the blob will be uploaded with only one http PUT request. If the blob size is larger than max_single_put_size, the blob will be uploaded in chunks. Defaults to 64*1024*1024, or 64MB. :keyword int min_large_block_upload_threshold: The minimum chunk size required to use the memory efficient algorithm when uploading a block blob. Defaults to 4*1024*1024+1. :keyword bool use_byte_buffer: Use a byte buffer for block blob uploads. Defaults to False. :keyword int max_page_size: The maximum chunk size for uploading a page blob. Defaults to 4*1024*1024, or 4MB. :keyword int max_single_get_size: The maximum size for a blob to be downloaded in a single call, the exceeded part will be downloaded in chunks (could be parallel). Defaults to 32*1024*1024, or 32MB. :keyword int max_chunk_get_size: The maximum chunk size used for downloading a blob. Defaults to 4*1024*1024, or 4MB. .. admonition:: Example: .. literalinclude:: ../samples/blob_samples_authentication_async.py :start-after: [START create_blob_service_client] :end-before: [END create_blob_service_client] :language: python :dedent: 8 :caption: Creating the BlobServiceClient with account url and credential. .. literalinclude:: ../samples/blob_samples_authentication_async.py :start-after: [START create_blob_service_client_oauth] :end-before: [END create_blob_service_client_oauth] :language: python :dedent: 8 :caption: Creating the BlobServiceClient with Azure Identity credentials. """ def __init__( self, account_url, # type: str credential=None, # type: Optional[Any] **kwargs # type: Any ): # type: (...) -> None kwargs['retry_policy'] = kwargs.get('retry_policy') or ExponentialRetry(**kwargs) super(BlobServiceClient, self).__init__( account_url, credential=credential, **kwargs) self._client = AzureBlobStorage(url=self.url, pipeline=self._pipeline) self._client._config.version = get_api_version(kwargs, VERSION) # pylint: disable=protected-access self._loop = kwargs.get('loop', None) @distributed_trace_async async def get_user_delegation_key(self, key_start_time, # type: datetime key_expiry_time, # type: datetime **kwargs # type: Any ): # type: (...) -> UserDelegationKey """ Obtain a user delegation key for the purpose of signing SAS tokens. A token credential must be present on the service object for this request to succeed. :param ~datetime.datetime key_start_time: A DateTime value. Indicates when the key becomes valid. :param ~datetime.datetime key_expiry_time: A DateTime value. Indicates when the key stops being valid. :keyword int timeout: The timeout parameter is expressed in seconds. :return: The user delegation key. :rtype: ~azure.storage.blob.UserDelegationKey """ key_info = KeyInfo(start=_to_utc_datetime(key_start_time), expiry=_to_utc_datetime(key_expiry_time)) timeout = kwargs.pop('timeout', None) try: user_delegation_key = await self._client.service.get_user_delegation_key(key_info=key_info, timeout=timeout, **kwargs) # type: ignore except StorageErrorException as error: process_storage_error(error) return parse_to_internal_user_delegation_key(user_delegation_key) # type: ignore @distributed_trace_async async def get_account_information(self, **kwargs): # type: (Any) -> Dict[str, str] """Gets information related to the storage account. The information can also be retrieved if the user has a SAS to a container or blob. The keys in the returned dictionary include 'sku_name' and 'account_kind'. :returns: A dict of account information (SKU and account type). :rtype: dict(str, str) .. admonition:: Example: .. literalinclude:: ../samples/blob_samples_service_async.py :start-after: [START get_blob_service_account_info] :end-before: [END get_blob_service_account_info] :language: python :dedent: 12 :caption: Getting account information for the blob service. """ try: return await self._client.service.get_account_info(cls=return_response_headers, **kwargs) # type: ignore except StorageErrorException as error: process_storage_error(error) @distributed_trace_async async def get_service_stats(self, **kwargs): # type: (Any) -> Dict[str, Any] """Retrieves statistics related to replication for the Blob service. It is only available when read-access geo-redundant replication is enabled for the storage account. With geo-redundant replication, Azure Storage maintains your data durable in two locations. In both locations, Azure Storage constantly maintains multiple healthy replicas of your data. The location where you read, create, update, or delete data is the primary storage account location. The primary location exists in the region you choose at the time you create an account via the Azure Management Azure classic portal, for example, North Central US. The location to which your data is replicated is the secondary location. The secondary location is automatically determined based on the location of the primary; it is in a second data center that resides in the same region as the primary location. Read-only access is available from the secondary location, if read-access geo-redundant replication is enabled for your storage account. :keyword int timeout: The timeout parameter is expressed in seconds. :return: The blob service stats. :rtype: Dict[str, Any] .. admonition:: Example: .. literalinclude:: ../samples/blob_samples_service_async.py :start-after: [START get_blob_service_stats] :end-before: [END get_blob_service_stats] :language: python :dedent: 12 :caption: Getting service stats for the blob service. """ timeout = kwargs.pop('timeout', None) try: stats = await self._client.service.get_statistics( # type: ignore timeout=timeout, use_location=LocationMode.SECONDARY, **kwargs) return service_stats_deserialize(stats) except StorageErrorException as error: process_storage_error(error) @distributed_trace_async async def get_service_properties(self, **kwargs): # type: (Any) -> Dict[str, Any] """Gets the properties of a storage account's Blob service, including Azure Storage Analytics. :keyword int timeout: The timeout parameter is expressed in seconds. :returns: An object containing blob service properties such as analytics logging, hour/minute metrics, cors rules, etc. :rtype: Dict[str, Any] .. admonition:: Example: .. literalinclude:: ../samples/blob_samples_service_async.py :start-after: [START get_blob_service_properties] :end-before: [END get_blob_service_properties] :language: python :dedent: 12 :caption: Getting service properties for the blob service. """ timeout = kwargs.pop('timeout', None) try: service_props = await self._client.service.get_properties(timeout=timeout, **kwargs) return service_properties_deserialize(service_props) except StorageErrorException as error: process_storage_error(error) @distributed_trace_async async def set_service_properties( self, analytics_logging=None, # type: Optional[BlobAnalyticsLogging] hour_metrics=None, # type: Optional[Metrics] minute_metrics=None, # type: Optional[Metrics] cors=None, # type: Optional[List[CorsRule]] target_version=None, # type: Optional[str] delete_retention_policy=None, # type: Optional[RetentionPolicy] static_website=None, # type: Optional[StaticWebsite] **kwargs ): # type: (...) -> None """Sets the properties of a storage account's Blob service, including Azure Storage Analytics. If an element (e.g. analytics_logging) is left as None, the existing settings on the service for that functionality are preserved. :param analytics_logging: Groups the Azure Analytics Logging settings. :type analytics_logging: ~azure.storage.blob.BlobAnalyticsLogging :param hour_metrics: The hour metrics settings provide a summary of request statistics grouped by API in hourly aggregates for blobs. :type hour_metrics: ~azure.storage.blob.Metrics :param minute_metrics: The minute metrics settings provide request statistics for each minute for blobs. :type minute_metrics: ~azure.storage.blob.Metrics :param cors: You can include up to five CorsRule elements in the list. If an empty list is specified, all CORS rules will be deleted, and CORS will be disabled for the service. :type cors: list[~azure.storage.blob.CorsRule] :param str target_version: Indicates the default version to use for requests if an incoming request's version is not specified. :param delete_retention_policy: The delete retention policy specifies whether to retain deleted blobs. It also specifies the number of days and versions of blob to keep. :type delete_retention_policy: ~azure.storage.blob.RetentionPolicy :param static_website: Specifies whether the static website feature is enabled, and if yes, indicates the index document and 404 error document to use. :type static_website: ~azure.storage.blob.StaticWebsite :keyword int timeout: The timeout parameter is expressed in seconds. :rtype: None .. admonition:: Example: .. literalinclude:: ../samples/blob_samples_service_async.py :start-after: [START set_blob_service_properties] :end-before: [END set_blob_service_properties] :language: python :dedent: 12 :caption: Setting service properties for the blob service. """ props = StorageServiceProperties( logging=analytics_logging, hour_metrics=hour_metrics, minute_metrics=minute_metrics, cors=cors, default_service_version=target_version, delete_retention_policy=delete_retention_policy, static_website=static_website ) timeout = kwargs.pop('timeout', None) try: await self._client.service.set_properties(props, timeout=timeout, **kwargs) except StorageErrorException as error: process_storage_error(error) @distributed_trace def list_containers( self, name_starts_with=None, # type: Optional[str] include_metadata=False, # type: Optional[bool] **kwargs ): # type: (...) -> AsyncItemPaged[ContainerProperties] """Returns a generator to list the containers under the specified account. The generator will lazily follow the continuation tokens returned by the service and stop when all containers have been returned. :param str name_starts_with: Filters the results to return only containers whose names begin with the specified prefix. :param bool include_metadata: Specifies that container metadata to be returned in the response. The default value is `False`. :keyword int results_per_page: The maximum number of container names to retrieve per API call. If the request does not specify the server will return up to 5,000 items. :keyword int timeout: The timeout parameter is expressed in seconds. :returns: An iterable (auto-paging) of ContainerProperties. :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.storage.blob.ContainerProperties] .. admonition:: Example: .. literalinclude:: ../samples/blob_samples_service_async.py :start-after: [START bsc_list_containers] :end-before: [END bsc_list_containers] :language: python :dedent: 16 :caption: Listing the containers in the blob service. """ include = ['metadata'] if include_metadata else [] timeout = kwargs.pop('timeout', None) results_per_page = kwargs.pop('results_per_page', None) command = functools.partial( self._client.service.list_containers_segment, prefix=name_starts_with, include=include, timeout=timeout, **kwargs) return AsyncItemPaged( command, prefix=name_starts_with, results_per_page=results_per_page, page_iterator_class=ContainerPropertiesPaged ) @distributed_trace def find_blobs_by_tags(self, filter_expression, **kwargs): # type: (str, **Any) -> AsyncItemPaged[FilteredBlob] """The Filter Blobs operation enables callers to list blobs across all containers whose tags match a given search expression. Filter blobs searches across all containers within a storage account but can be scoped within the expression to a single container. :param str filter_expression: The expression to find blobs whose tags matches the specified condition. eg. "\"yourtagname\"='firsttag' and \"yourtagname2\"='secondtag'" To specify a container, eg. "@container='containerName' and \"Name\"='C'" :keyword int results_per_page: The max result per page when paginating. :keyword int timeout: The timeout parameter is expressed in seconds. :returns: An iterable (auto-paging) response of BlobProperties. :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.storage.blob.FilteredBlob] """ results_per_page = kwargs.pop('results_per_page', None) timeout = kwargs.pop('timeout', None) command = functools.partial( self._client.service.filter_blobs, where=filter_expression, timeout=timeout, **kwargs) return AsyncItemPaged( command, results_per_page=results_per_page, page_iterator_class=FilteredBlobPaged) @distributed_trace_async async def create_container( self, name, # type: str metadata=None, # type: Optional[Dict[str, str]] public_access=None, # type: Optional[Union[PublicAccess, str]] **kwargs ): # type: (...) -> ContainerClient """Creates a new container under the specified account. If the container with the same name already exists, a ResourceExistsError will be raised. This method returns a client with which to interact with the newly created container. :param str name: The name of the container to create. :param metadata: A dict with name-value pairs to associate with the container as metadata. Example: `{'Category':'test'}` :type metadata: dict(str, str) :param public_access: Possible values include: 'container', 'blob'. :type public_access: str or ~azure.storage.blob.PublicAccess :keyword container_encryption_scope: Specifies the default encryption scope to set on the container and use for all future writes. .. versionadded:: 12.2.0 :paramtype container_encryption_scope: dict or ~azure.storage.blob.ContainerEncryptionScope :keyword int timeout: The timeout parameter is expressed in seconds. :rtype: ~azure.storage.blob.aio.ContainerClient .. admonition:: Example: .. literalinclude:: ../samples/blob_samples_service_async.py :start-after: [START bsc_create_container] :end-before: [END bsc_create_container] :language: python :dedent: 16 :caption: Creating a container in the blob service. """ container = self.get_container_client(name) timeout = kwargs.pop('timeout', None) kwargs.setdefault('merge_span', True) await container.create_container( metadata=metadata, public_access=public_access, timeout=timeout, **kwargs) return container @distributed_trace_async async def delete_container( self, container, # type: Union[ContainerProperties, str] lease=None, # type: Optional[Union[BlobLeaseClient, str]] **kwargs ): # type: (...) -> None """Marks the specified container for deletion. The container and any blobs contained within it are later deleted during garbage collection. If the container is not found, a ResourceNotFoundError will be raised. :param container: The container to delete. This can either be the name of the container, or an instance of ContainerProperties. :type container: str or ~azure.storage.blob.ContainerProperties :param lease: If specified, delete_container only succeeds if the container's lease is active and matches this ID. Required if the container has an active lease. :paramtype lease: ~azure.storage.blob.aio.BlobLeaseClient or str :keyword ~datetime.datetime if_modified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has been modified since the specified time. :keyword ~datetime.datetime if_unmodified_since: A DateTime value. Azure expects the date value passed in to be UTC. If timezone is included, any non-UTC datetimes will be converted to UTC. If a date is passed in without timezone info, it is assumed to be UTC. Specify this header to perform the operation only if the resource has not been modified since the specified date/time. :keyword str etag: An ETag value, or the wildcard character (*). Used to check if the resource has changed, and act according to the condition specified by the `match_condition` parameter. :keyword ~azure.core.MatchConditions match_condition: The match condition to use upon the etag. :keyword int timeout: The timeout parameter is expressed in seconds. :rtype: None .. admonition:: Example: .. literalinclude:: ../samples/blob_samples_service_async.py :start-after: [START bsc_delete_container] :end-before: [END bsc_delete_container] :language: python :dedent: 16 :caption: Deleting a container in the blob service. """ container = self.get_container_client(container) # type: ignore kwargs.setdefault('merge_span', True) timeout = kwargs.pop('timeout', None) await container.delete_container( # type: ignore lease=lease, timeout=timeout, **kwargs) @distributed_trace_async async def _undelete_container(self, deleted_container_name, deleted_container_version, new_name=None, **kwargs): # type: (str, str, str, **Any) -> ContainerClient """Restores soft-deleted container. Operation will only be successful if used within the specified number of days set in the delete retention policy. .. versionadded:: 12.4.0 This operation was introduced in API version '2019-12-12'. :param str deleted_container_name: Specifies the name of the deleted container to restore. :param str deleted_container_version: Specifies the version of the deleted container to restore. :param str new_name: The new name for the deleted container to be restored to. :keyword int timeout: The timeout parameter is expressed in seconds. :rtype: ~azure.storage.blob.aio.ContainerClient """ container = self.get_container_client(new_name or deleted_container_name) try: await container._client.container.restore(deleted_container_name=deleted_container_name, # pylint: disable = protected-access deleted_container_version=deleted_container_version, timeout=kwargs.pop('timeout', None), **kwargs) return container except StorageErrorException as error: process_storage_error(error) def get_container_client(self, container): # type: (Union[ContainerProperties, str]) -> ContainerClient """Get a client to interact with the specified container. The container need not already exist. :param container: The container. This can either be the name of the container, or an instance of ContainerProperties. :type container: str or ~azure.storage.blob.ContainerProperties :returns: A ContainerClient. :rtype: ~azure.storage.blob.aio.ContainerClient .. admonition:: Example: .. literalinclude:: ../samples/blob_samples_service_async.py :start-after: [START bsc_get_container_client] :end-before: [END bsc_get_container_client] :language: python :dedent: 12 :caption: Getting the container client to interact with a specific container. """ try: container_name = container.name except AttributeError: container_name = container _pipeline = AsyncPipeline( transport=AsyncTransportWrapper(self._pipeline._transport), # pylint: disable = protected-access policies=self._pipeline._impl_policies # pylint: disable = protected-access ) return ContainerClient( self.url, container_name=container_name, credential=self.credential, api_version=self.api_version, _configuration=self._config, _pipeline=_pipeline, _location_mode=self._location_mode, _hosts=self._hosts, require_encryption=self.require_encryption, key_encryption_key=self.key_encryption_key, key_resolver_function=self.key_resolver_function, loop=self._loop) def get_blob_client( self, container, # type: Union[ContainerProperties, str] blob, # type: Union[BlobProperties, str] snapshot=None # type: Optional[Union[Dict[str, Any], str]] ): # type: (...) -> BlobClient """Get a client to interact with the specified blob. The blob need not already exist. :param container: The container that the blob is in. This can either be the name of the container, or an instance of ContainerProperties. :type container: str or ~azure.storage.blob.ContainerProperties :param blob: The blob with which to interact. This can either be the name of the blob, or an instance of BlobProperties. :type blob: str or ~azure.storage.blob.BlobProperties :param snapshot: The optional blob snapshot on which to operate. This can either be the ID of the snapshot, or a dictionary output returned by :func:`~azure.storage.blob.aio.BlobClient.create_snapshot()`. :type snapshot: str or dict(str, Any) :returns: A BlobClient. :rtype: ~azure.storage.blob.aio.BlobClient .. admonition:: Example: .. literalinclude:: ../samples/blob_samples_service_async.py :start-after: [START bsc_get_blob_client] :end-before: [END bsc_get_blob_client] :language: python :dedent: 16 :caption: Getting the blob client to interact with a specific blob. """ try: container_name = container.name except AttributeError: container_name = container try: blob_name = blob.name except AttributeError: blob_name = blob _pipeline = AsyncPipeline( transport=AsyncTransportWrapper(self._pipeline._transport), # pylint: disable = protected-access policies=self._pipeline._impl_policies # pylint: disable = protected-access ) return BlobClient( # type: ignore self.url, container_name=container_name, blob_name=blob_name, snapshot=snapshot, credential=self.credential, api_version=self.api_version, _configuration=self._config, _pipeline=_pipeline, _location_mode=self._location_mode, _hosts=self._hosts, require_encryption=self.require_encryption, key_encryption_key=self.key_encryption_key, key_resolver_function=self.key_resolver_function, loop=self._loop)
3f6e4ee13b6391fbdcae1d4ce6f0e96b1d7d1ae6
70fa6468c768d4ec9b4b14fc94fa785da557f1b5
/lib/googlecloudsdk/command_lib/meta/regen.py
19ec509f43fa92f3587e9fbdab809d6f1a30549a
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
kylewuolle/google-cloud-sdk
d43286ef646aec053ecd7eb58566ab2075e04e76
75f09ebe779e99fdc3fd13b48621fe12bfaa11aa
refs/heads/master
2020-04-20T22:10:41.774132
2019-01-26T09:29:26
2019-01-26T09:29:26
169,131,028
0
0
NOASSERTION
2019-02-04T19:04:40
2019-02-04T18:58:36
Python
UTF-8
Python
false
false
1,013
py
# -*- coding: utf-8 -*- # # Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities for the gcloud meta apis surface.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from googlecloudsdk.core import exceptions class Error(exceptions.Error): pass class UnknownApi(Error): """Raised when api is not found.""" class ConfigFileError(Error): pass class DiscoveryDocError(Error): pass
644f6c6ccb4805245ea968549b49decd927c466f
fc1b227f04158c0929b1e66106e0acd842844a88
/pipeline/processor/Mosher.py
7222950af17cc29b9752bfe9e9e1be70b3c550af
[]
no_license
csboling/pi-rt-video
72603a8c5bac6e2edf7e3e0b55d0b87bbd95bd30
274b0fb3837b04958f229e6a96934561f5da9f05
refs/heads/master
2021-05-09T00:09:39.798926
2018-04-18T04:37:16
2018-04-18T04:37:16
119,735,150
1
0
null
null
null
null
UTF-8
Python
false
false
482
py
from abc import abstractmethod from itertools import islice import numpy as np from pipeline.processor.pure import PureFunction class Mosher(PureFunction): def __call__(self, frame): raw = frame.tobytes() count = len(raw) moshed = b''.join(self.mosh(raw))[:count] return np.frombuffer( moshed, dtype=frame.dtype ).reshape( frame.shape ) @abstractmethod def mosh(self, in_bytes): pass
62e01aea21bf490cea497e6ff15c24b5f8fc9c89
65f9576021285bc1f9e52cc21e2d49547ba77376
/adsp_proc/platform/build/qaic.py
81c8d353dccce591f0fa71a9587f5df3ecbdda4d
[ "BSD-3-Clause", "BSD-1-Clause", "LicenseRef-scancode-unknown-license-reference", "BSD-2-Clause-Views", "LicenseRef-scancode-public-domain" ]
permissive
AVCHD/qcs605_root_qcom
183d7a16e2f9fddc9df94df9532cbce661fbf6eb
44af08aa9a60c6ca724c8d7abf04af54d4136ccb
refs/heads/main
2023-03-18T21:54:11.234776
2021-02-26T11:03:59
2021-02-26T11:03:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,742
py
#=============================================================================== # Copyrigha (c) 2012 by Qualcomm Technologies, Incorporated. # All Rights Reserved. # QUALCOMM Proprietary/GTDR #=============================================================================== import sys import os import subprocess import string import SCons.Action from SCons.Script import * excluded_images = [] excluded_images_for_header_gen = [] if os.environ.get('CHIPSET') in ['sdm670', 'sdm710', 'sm6150', 'qcs405']: excluded_images = [ 'DAL_DEVCFG_IMG', 'DEVCFG_IMG', 'devcfg_img', # 'SENSOR_IMG', # 'AVS_ADSP_USER', 'AVS_ADSP_ROOT', 'CORE_USER_LIBS', ] excluded_images_for_header_gen = [ 'CORE_ROOT_LIBS', 'CORE_QDSP6_SW', 'devcfg_img', 'DAL_DEVCFG_IMG', 'DEVCFG_IMG', 'PLATFORM_SLPI_ROOT', 'SSC_SLPI_USER', 'FASTRPC_SHELL_IMG', 'PLATFORM_LIBS', 'AVS_ADSP_USER', 'SENSOR_IMG', ] else: excluded_images = [ 'DAL_DEVCFG_IMG', 'DEVCFG_IMG', 'devcfg_img', 'SENSOR_IMG', 'AVS_ADSP_ROOT', 'CORE_USER_LIBS', ] excluded_images_for_header_gen = [ 'CORE_ROOT_LIBS', 'CORE_QDSP6_SW', 'devcfg_img', 'DAL_DEVCFG_IMG', 'DEVCFG_IMG', 'PLATFORM_SLPI_ROOT', 'SSC_SLPI_USER', 'FASTRPC_SHELL_IMG', 'PLATFORM_LIBS', 'AVS_ADSP_USER', ] excluded_images_for_skel_gen = [ 'DAL_DEVCFG_IMG', 'DEVCFG_IMG', 'devcfg_img', # 'SENSOR_IMG', 'AVS_ADSP_ROOT', 'CORE_USER_LIBS', ] def qaic_header_gen(target, source, env, for_signature ): qaic_exe = env.FindQaicExe() flags = env.subst('$_CPPINCFLAGS') target_dir = os.path.dirname(str(target[0])) source_file = str(source[0]) env.Depends(target, qaic_exe) return ( "%s %s -ho -o %s %s" % (qaic_exe, flags, target_dir, source_file)) def qaic_ro_gen(target, source, env, for_signature ): qaic_exe = env.FindQaicExe() flags = env.subst('$_CPPINCFLAGS') target_dir = os.path.dirname(str(target[0])) source_file = str(source[0]) env.Depends(target, qaic_exe) return ("%s %s -ro -o %s %s" % (qaic_exe, flags, target_dir, source_file)) #find a file in cpppath array, errors out if there are multiple results #TODO: cache the results? def find_in_cpppath(env, fname): paths = env['CPPPATH'] path = None tried = [] for dname in paths: dname = env.subst(dname) tpath = os.path.join(dname , fname) tried.append(tpath) if(os.path.isfile(tpath)): if(path != None): env.PrintError("find_in_cpppath: found duplicate path for %s, in %s and %s, adjust your required apis" % (fname, path, tpath)) Exit(1) else: path = tpath return (path,tried) #Finds the build folder that contains the scons file # responsible for building the input idl def find_build_folder(fname): path = os.path.dirname(fname) while True: newdir = os.path.normpath(os.path.join(path ,'build')) if os.path.isdir(newdir): return newdir else: path = os.path.join(path,os.pardir) def exists(env): return env.Detect('qaic') def add_qaic_header_dep(env, deps, idlname): idls = idlname if type(idls) != list: idls = [idls] hfiles = [] for idl in idls: idlfile,tried = env.FindInCPPPath(idl + ".idl") if None == idlfile: env.PrintError("qaic builder: couldn't find idl file %s.idl. tried: %s" % (idl, str(tried))) Exit(1) if env['IMAGE_NAME'] in excluded_images_for_header_gen: build_folder = os.path.join(find_build_folder(idlfile), env['QC_BUILDPATH']) else: build_folder = os.path.join(find_build_folder(idlfile), env['SHORT_BUILDPATH']) hfiles.append(os.path.join(build_folder , idl + '.h')) # Add path env.AppendUnique(CPPPATH = [os.path.normpath(build_folder)]) deplist = deps if type(deps) != list: deplist = [deps] for depname in deplist: for hfile in hfiles: env.Depends(depname, hfile) return deps #adds a header builder dependency to sources #returns the dependency(ies) def qaic_header_from_idl(env, idlname): if env['IMAGE_NAME'] in excluded_images: return idlfile,tried = env.FindInCPPPath(idlname + ".idl") if None == idlfile: env.PrintError("qaic builder: couldn't find idl file %s.idl. tried: %s" % (idlname, str(tried))) Exit(1) if env['IMAGE_NAME'] in excluded_images_for_header_gen: hfile = os.path.join(find_build_folder(idlfile), env['QC_BUILDPATH'], idlname + ".h") else: hfile = os.path.join(find_build_folder(idlfile), env['SHORT_BUILDPATH'], idlname + ".h") return env.QaicHeaderBuilder(target = hfile, source = idlfile) def qaic_stub_from_idl(env, idlname): if env['IMAGE_NAME'] in excluded_images: return idlfile,tried = env.FindInCPPPath(idlname + ".idl") if None == idlfile: env.PrintError("qaic builder: couldn't find idl file %s.idl. tried: %s" % (idlname, str(tried))) Exit(1) stub = os.path.join(find_build_folder(idlfile), env['QC_BUILDPATH'], idlname + "_stub.c") env.QaicHeaderFromIdl(idlname) env.QaicStubBuilder(target = stub, source = idlfile) return env.AddQaicHeaderDep(stub, idlname) def qaic_skel_from_idl(env, idlname): if env['IMAGE_NAME'] in excluded_images_for_skel_gen: return idlfile,tried = env.FindInCPPPath(idlname + ".idl") if None == idlfile: env.PrintError("qaic builder: couldn't find idl file %s.idl. tried: %s" % (idlname, str(tried))) Exit(1) skel = os.path.join(find_build_folder(idlfile), env['QC_BUILDPATH'], idlname + "_skel.c") env.QaicSkelBuilder(target = skel, source = idlfile) env.QaicHeaderFromIdl(idlname) return env.AddQaicHeaderDep(skel, idlname) #is there a way to cache this for all the envs, or is it ok to do this per env? def find_qaic_exe(env): if not env.subst('$QAIC_EXE'): env.RequirePublicApi('QAIC') qaic_exes = ["Darwin/qaic", "Ubuntu16/qaic", "Ubuntu18/qaic", "Linux_DoNotShip/qaic", "WinNT/qaic.exe"] qaic_exe = None tried = [] for ename in qaic_exes: tn,tns = env.FindInCPPPath(ename) if tn != None: try: #using execmds generates a bunch of error output, it wouild be nice if that could be supressed #data, err, rv = env.ExecCmds("%s -v" % tn) tried.append(tn) rv = subprocess.Popen([("%s" % tn), "-v"], stderr = subprocess.PIPE, stdout = subprocess.PIPE) rv.wait() if 0 == rv.returncode: qaic_exe = tn break; except: pass if None == qaic_exe: env.PrintError("qaic builder: couldn't find qaic exe for your host. tried: %s" % str(tried)) Exit(1) env.Append(QAIC_EXE = qaic_exe) return env.subst('$QAIC_EXE') def generate(env): #public methods # This method adds a dependency on the header that is generated from the IDL by qaic. # Note: This method DOES NOT generate the header. The owner of the IDL has to call one # of QaicHeaderFromIdl, QaicStubFromIdl or QaicSkelFromIdl to generate the header. env.AddMethod(add_qaic_header_dep, "AddQaicHeaderDep") #This method calls qaic to generate the header from the IDL. env.AddMethod(qaic_header_from_idl, "QaicHeaderFromIdl") # This method calls qaic to generate the stub AND the HEADER from the IDL. # It also adds a dependency between the stub and the generated header. env.AddMethod(qaic_stub_from_idl, "QaicStubFromIdl") # This method calls qaic to generate the skel AND the HEADER from the IDL. # It also adds a dependency between the skel and the generated header. env.AddMethod(qaic_skel_from_idl, "QaicSkelFromIdl") #private #do these need a _ prefix? env.AddMethod(find_in_cpppath, "FindInCPPPath") env.AddMethod(find_qaic_exe, "FindQaicExe") qaic_ho = Builder(name = "QaicHeaderBuilder", generator = qaic_header_gen) qaic_stub = Builder(name = "QaicStubBuilder", generator = qaic_ro_gen) qaic_skel = Builder(name = "QaicSkelBuilder", generator = qaic_ro_gen) env['BUILDERS']['QaicHeaderBuilder'] = qaic_ho env['BUILDERS']['QaicStubBuilder'] = qaic_stub env['BUILDERS']['QaicSkelBuilder'] = qaic_skel
582ace8306bee507b0cff36687afe334967ec8bd
209a7a4023a9a79693ec1f6e8045646496d1ea71
/COMP0016_2020_21_Team12-datasetsExperimentsAna/pwa/FADapp/pythonScripts/venv/Lib/site-packages/pandas/_config/config.py
d9ec1c9ac3fa05c9eb82b90b28c8ea934632b051
[ "MIT" ]
permissive
anzhao920/MicrosoftProject15_Invictus
5e2347015411bbffbdf0ceb059df854661fb240c
15f44eebb09561acbbe7b6730dfadf141e4c166d
refs/heads/main
2023-04-16T13:24:39.332492
2021-04-27T00:47:13
2021-04-27T00:47:13
361,913,170
0
0
MIT
2021-04-26T22:41:56
2021-04-26T22:41:55
null
UTF-8
Python
false
false
24,553
py
""" The config module holds package-wide configurables and provides a uniform API for working with them. Overview ======== This module supports the following requirements: - options are referenced using keys in dot.notation, e.g. "x.y.option - z". - keys are case-insensitive. - functions should accept partial/regex keys, when unambiguous. - options can be registered by modules at import time. - options can be registered at init-time (via core.config_init) - options have a default value, and (optionally) a description and validation function associated with them. - options can be deprecated, in which case referencing them should produce a warning. - deprecated options can optionally be rerouted to a replacement so that accessing a deprecated option reroutes to a differently named option. - options can be reset to their default value. - all option can be reset to their default value at once. - all options in a certain sub - namespace can be reset at once. - the user can set / get / reset or ask for the description of an option. - a developer can register and mark an option as deprecated. - you can register a callback to be invoked when the option value is set or reset. Changing the stored value is considered misuse, but is not verboten. Implementation ============== - Data is stored using nested dictionaries, and should be accessed through the provided API. - "Registered options" and "Deprecated options" have metadata associated with them, which are stored in auxiliary dictionaries keyed on the fully-qualified key, e.g. "x.y.z.option". - the config_init module is imported by the package's __init__.py file. placing any register_option() calls there will ensure those options are available as soon as pandas is loaded. If you use register_option in a module, it will only be available after that module is imported, which you should be aware of. - `config_prefix` is a context_manager (for use with the `with` keyword) which can save developers some typing, see the docstring. """ from collections import namedtuple from contextlib import ContextDecorator, contextmanager import re from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Type, cast import warnings from pandas._typing import F DeprecatedOption = namedtuple("DeprecatedOption", "key msg rkey removal_ver") RegisteredOption = namedtuple("RegisteredOption", "key defval doc validator cb") # holds deprecated option metadata _deprecated_options: Dict[str, DeprecatedOption] = {} # holds registered option metadata _registered_options: Dict[str, RegisteredOption] = {} # holds the current values for registered options _global_config: Dict[str, Any] = {} # keys which have a special meaning _reserved_keys: List[str] = ["all"] class OptionError(AttributeError, KeyError): """ Exception for pandas.options, backwards compatible with KeyError checks """ # # User API def _get_single_key(pat: str, silent: bool) -> str: keys = _select_options(pat) if len(keys) == 0: if not silent: _warn_if_deprecated(pat) raise OptionError(f"No such keys(s): {repr(pat)}") if len(keys) > 1: raise OptionError("Pattern matched multiple keys") key = keys[0] if not silent: _warn_if_deprecated(key) key = _translate_key(key) return key def _get_option(pat: str, silent: bool = False): key = _get_single_key(pat, silent) # walk the nested dict root, k = _get_root(key) return root[k] def _set_option(*args, **kwargs) -> None: # must at least 1 arg deal with constraints later nargs = len(args) if not nargs or nargs % 2 != 0: raise ValueError("Must provide an even number of non-keyword arguments") # default to false silent = kwargs.pop("silent", False) if kwargs: kwarg = list(kwargs.keys())[0] raise TypeError(f'_set_option() got an unexpected keyword argument "{kwarg}"') for k, v in zip(args[::2], args[1::2]): key = _get_single_key(k, silent) o = _get_registered_option(key) if o and o.validator: o.validator(v) # walk the nested dict root, k = _get_root(key) root[k] = v if o.cb: if silent: with warnings.catch_warnings(record=True): o.cb(key) else: o.cb(key) def _describe_option(pat: str = "", _print_desc: bool = True): keys = _select_options(pat) if len(keys) == 0: raise OptionError("No such keys(s)") s = "\n".join([_build_option_description(k) for k in keys]) if _print_desc: print(s) else: return s def _reset_option(pat: str, silent: bool = False) -> None: keys = _select_options(pat) if len(keys) == 0: raise OptionError("No such keys(s)") if len(keys) > 1 and len(pat) < 4 and pat != "all": raise ValueError( "You must specify at least 4 characters when " "resetting multiple keys, use the special keyword " '"all" to reset all the options to their default value' ) for k in keys: _set_option(k, _registered_options[k].defval, silent=silent) def get_default_val(pat: str): key = _get_single_key(pat, silent=True) return _get_registered_option(key).defval class DictWrapper: """ provide attribute-style access to a nested dict""" def __init__(self, d: Dict[str, Any], prefix: str = ""): object.__setattr__(self, "d", d) object.__setattr__(self, "prefix", prefix) def __setattr__(self, key: str, val: Any) -> None: prefix = object.__getattribute__(self, "prefix") if prefix: prefix += "." prefix += key # you can't set new keys # can you can't overwrite subtrees if key in self.d and not isinstance(self.d[key], dict): _set_option(prefix, val) else: raise OptionError("You can only set the value of existing options") def __getattr__(self, key: str): prefix = object.__getattribute__(self, "prefix") if prefix: prefix += "." prefix += key try: v = object.__getattribute__(self, "d")[key] except KeyError as err: raise OptionError("No such option") from err if isinstance(v, dict): return DictWrapper(v, prefix) else: return _get_option(prefix) def __dir__(self) -> Iterable[str]: return list(self.d.keys()) # For user convenience, we'd like to have the available options described # in the docstring. For dev convenience we'd like to generate the docstrings # dynamically instead of maintaining them by hand. To this, we use the # class below which wraps functions inside a callable, and converts # __doc__ into a property function. The doctsrings below are templates # using the py2.6+ advanced formatting syntax to plug in a concise list # of options, and option descriptions. class CallableDynamicDoc: def __init__(self, func, doc_tmpl): self.__doc_tmpl__ = doc_tmpl self.__func__ = func def __call__(self, *args, **kwds): return self.__func__(*args, **kwds) @property def __doc__(self): opts_desc = _describe_option("all", _print_desc=False) opts_list = pp_options_list(list(_registered_options.keys())) return self.__doc_tmpl__.format(opts_desc=opts_desc, opts_list=opts_list) _get_option_tmpl = """ get_option(pat) Retrieves the value of the specified option. Available options: {opts_list} Parameters ---------- pat : str Regexp which should match a single option. Note: partial matches are supported for convenience, but unless you use the full option name (e.g. x.y.z.option_name), your code may break in future versions if new options with similar names are introduced. Returns ------- result : the value of the option Raises ------ OptionError : if no such option exists Notes ----- The available options with its descriptions: {opts_desc} """ _set_option_tmpl = """ set_option(pat, value) Sets the value of the specified option. Available options: {opts_list} Parameters ---------- pat : str Regexp which should match a single option. Note: partial matches are supported for convenience, but unless you use the full option name (e.g. x.y.z.option_name), your code may break in future versions if new options with similar names are introduced. value : object New value of option. Returns ------- None Raises ------ OptionError if no such option exists Notes ----- The available options with its descriptions: {opts_desc} """ _describe_option_tmpl = """ describe_option(pat, _print_desc=False) Prints the description for one or more registered options. Call with not arguments to get a listing for all registered options. Available options: {opts_list} Parameters ---------- pat : str Regexp pattern. All matching keys will have their description displayed. _print_desc : bool, default True If True (default) the description(s) will be printed to stdout. Otherwise, the description(s) will be returned as a unicode string (for testing). Returns ------- None by default, the description(s) as a unicode string if _print_desc is False Notes ----- The available options with its descriptions: {opts_desc} """ _reset_option_tmpl = """ reset_option(pat) Reset one or more options to their default value. Pass "all" as argument to reset all options. Available options: {opts_list} Parameters ---------- pat : str/regex If specified only options matching `prefix*` will be reset. Note: partial matches are supported for convenience, but unless you use the full option name (e.g. x.y.z.option_name), your code may break in future versions if new options with similar names are introduced. Returns ------- None Notes ----- The available options with its descriptions: {opts_desc} """ # bind the functions with their docstrings into a Callable # and use that as the functions exposed in pd.api get_option = CallableDynamicDoc(_get_option, _get_option_tmpl) set_option = CallableDynamicDoc(_set_option, _set_option_tmpl) reset_option = CallableDynamicDoc(_reset_option, _reset_option_tmpl) describe_option = CallableDynamicDoc(_describe_option, _describe_option_tmpl) options = DictWrapper(_global_config) # # Functions for use by pandas developers, in addition to User - api class option_context(ContextDecorator): """ Context manager to temporarily set options in the `with` statement context. You need to invoke as ``option_context(pat, val, [(pat, val), ...])``. Examples -------- >>> with option_context('display.max_rows', 10, 'display.max_columns', 5): ... ... """ def __init__(self, *args): if len(args) % 2 != 0 or len(args) < 2: raise ValueError( "Need to invoke as option_context(pat, val, [(pat, val), ...])." ) self.ops = list(zip(args[::2], args[1::2])) def __enter__(self): self.undo = [(pat, _get_option(pat, silent=True)) for pat, val in self.ops] for pat, val in self.ops: _set_option(pat, val, silent=True) def __exit__(self, *args): if self.undo: for pat, val in self.undo: _set_option(pat, val, silent=True) def register_option( key: str, defval: object, doc: str = "", validator: Optional[Callable[[Any], Any]] = None, cb: Optional[Callable[[str], Any]] = None, ) -> None: """ Register an option in the package-wide pandas config object Parameters ---------- key : str Fully-qualified key, e.g. "x.y.option - z". defval : object Default value of the option. doc : str Description of the option. validator : Callable, optional Function of a single argument, should raise `ValueError` if called with a value which is not a legal value for the option. cb a function of a single argument "key", which is called immediately after an option value is set/reset. key is the full name of the option. Raises ------ ValueError if `validator` is specified and `defval` is not a valid value. """ import keyword import tokenize key = key.lower() if key in _registered_options: raise OptionError(f"Option '{key}' has already been registered") if key in _reserved_keys: raise OptionError(f"Option '{key}' is a reserved key") # the default value should be legal if validator: validator(defval) # walk the nested dict, creating dicts as needed along the path path = key.split(".") for k in path: if not re.match("^" + tokenize.Name + "$", k): raise ValueError(f"{k} is not a valid identifier") if keyword.iskeyword(k): raise ValueError(f"{k} is a python keyword") cursor = _global_config msg = "Path prefix to option '{option}' is already an option" for i, p in enumerate(path[:-1]): if not isinstance(cursor, dict): raise OptionError(msg.format(option=".".join(path[:i]))) if p not in cursor: cursor[p] = {} cursor = cursor[p] if not isinstance(cursor, dict): raise OptionError(msg.format(option=".".join(path[:-1]))) cursor[path[-1]] = defval # initialize # save the option metadata _registered_options[key] = RegisteredOption( key=key, defval=defval, doc=doc, validator=validator, cb=cb ) def deprecate_option( key: str, msg: Optional[str] = None, rkey: Optional[str] = None, removal_ver=None ) -> None: """ Mark option `key` as deprecated, if code attempts to access this option, a warning will be produced, using `msg` if given, or a default message if not. if `rkey` is given, any access to the key will be re-routed to `rkey`. Neither the existence of `key` nor that if `rkey` is checked. If they do not exist, any subsequence access will fail as usual, after the deprecation warning is given. Parameters ---------- key : str Name of the option to be deprecated. must be a fully-qualified option name (e.g "x.y.z.rkey"). msg : str, optional Warning message to output when the key is referenced. if no message is given a default message will be emitted. rkey : str, optional Name of an option to reroute access to. If specified, any referenced `key` will be re-routed to `rkey` including set/get/reset. rkey must be a fully-qualified option name (e.g "x.y.z.rkey"). used by the default message if no `msg` is specified. removal_ver : optional Specifies the version in which this option will be removed. used by the default message if no `msg` is specified. Raises ------ OptionError If the specified key has already been deprecated. """ key = key.lower() if key in _deprecated_options: raise OptionError(f"Option '{key}' has already been defined as deprecated.") _deprecated_options[key] = DeprecatedOption(key, msg, rkey, removal_ver) # # functions internal to the module def _select_options(pat: str) -> List[str]: """ returns a list of keys matching `pat` if pat=="all", returns all registered options """ # short-circuit for exact key if pat in _registered_options: return [pat] # else look through all of them keys = sorted(_registered_options.keys()) if pat == "all": # reserved key return keys return [k for k in keys if re.search(pat, k, re.I)] def _get_root(key: str) -> Tuple[Dict[str, Any], str]: path = key.split(".") cursor = _global_config for p in path[:-1]: cursor = cursor[p] return cursor, path[-1] def _is_deprecated(key: str) -> bool: """ Returns True if the given option has been deprecated """ key = key.lower() return key in _deprecated_options def _get_deprecated_option(key: str): """ Retrieves the metadata for a deprecated option, if `key` is deprecated. Returns ------- DeprecatedOption (namedtuple) if key is deprecated, None otherwise """ try: d = _deprecated_options[key] except KeyError: return None else: return d def _get_registered_option(key: str): """ Retrieves the option metadata if `key` is a registered option. Returns ------- RegisteredOption (namedtuple) if key is deprecated, None otherwise """ return _registered_options.get(key) def _translate_key(key: str) -> str: """ if key id deprecated and a replacement key defined, will return the replacement key, otherwise returns `key` as - is """ d = _get_deprecated_option(key) if d: return d.rkey or key else: return key def _warn_if_deprecated(key: str) -> bool: """ Checks if `key` is a deprecated option and if so, prints a warning. Returns ------- bool - True if `key` is deprecated, False otherwise. """ d = _get_deprecated_option(key) if d: if d.msg: print(d.msg) warnings.warn(d.msg, FutureWarning) else: msg = f"'{key}' is deprecated" if d.removal_ver: msg += f" and will be removed in {d.removal_ver}" if d.rkey: msg += f", please use '{d.rkey}' instead." else: msg += ", please refrain from using it." warnings.warn(msg, FutureWarning) return True return False def _build_option_description(k: str) -> str: """ Builds a formatted description of a registered option and prints it """ o = _get_registered_option(k) d = _get_deprecated_option(k) s = f"{k} " if o.doc: s += "\n".join(o.doc.strip().split("\n")) else: s += "No description available." if o: s += f"\n [default: {o.defval}] [currently: {_get_option(k, True)}]" if d: rkey = d.rkey or "" s += "\n (Deprecated" s += f", use `{rkey}` instead." s += ")" return s def pp_options_list(keys: Iterable[str], width=80, _print: bool = False): """ Builds a concise listing of available options, grouped by prefix """ from itertools import groupby from textwrap import wrap def pp(name: str, ks: Iterable[str]) -> List[str]: pfx = "- " + name + ".[" if name else "" ls = wrap( ", ".join(ks), width, initial_indent=pfx, subsequent_indent=" ", break_long_words=False, ) if ls and ls[-1] and name: ls[-1] = ls[-1] + "]" return ls ls: List[str] = [] singles = [x for x in sorted(keys) if x.find(".") < 0] if singles: ls += pp("", singles) keys = [x for x in keys if x.find(".") >= 0] for k, g in groupby(sorted(keys), lambda x: x[: x.rfind(".")]): ks = [x[len(k) + 1 :] for x in list(g)] ls += pp(k, ks) s = "\n".join(ls) if _print: print(s) else: return s # # helpers @contextmanager def config_prefix(prefix): """ contextmanager for multiple invocations of API with a common prefix supported API functions: (register / get / set )__option Warning: This is not thread - safe, and won't work properly if you import the API functions into your module using the "from x import y" construct. Example ------- import pandas._config.config as cf with cf.config_prefix("display.font"): cf.register_option("color", "red") cf.register_option("size", " 5 pt") cf.set_option(size, " 6 pt") cf.get_option(size) ... etc' will register options "display.font.color", "display.font.size", set the value of "display.font.size"... and so on. """ # Note: reset_option relies on set_option, and on key directly # it does not fit in to this monkey-patching scheme global register_option, get_option, set_option, reset_option def wrap(func: F) -> F: def inner(key: str, *args, **kwds): pkey = f"{prefix}.{key}" return func(pkey, *args, **kwds) return cast(F, inner) _register_option = register_option _get_option = get_option _set_option = set_option set_option = wrap(set_option) get_option = wrap(get_option) register_option = wrap(register_option) yield None set_option = _set_option get_option = _get_option register_option = _register_option # These factories and methods are handy for use as the validator # arg in register_option def is_type_factory(_type: Type[Any]) -> Callable[[Any], None]: """ Parameters ---------- `_type` - a type to be compared against (e.g. type(x) == `_type`) Returns ------- validator - a function of a single argument x , which raises ValueError if type(x) is not equal to `_type` """ def inner(x) -> None: if type(x) != _type: raise ValueError(f"Value must have type '{_type}'") return inner def is_instance_factory(_type) -> Callable[[Any], None]: """ Parameters ---------- `_type` - the type to be checked against Returns ------- validator - a function of a single argument x , which raises ValueError if x is not an instance of `_type` """ if isinstance(_type, (tuple, list)): _type = tuple(_type) type_repr = "|".join(map(str, _type)) else: type_repr = f"'{_type}'" def inner(x) -> None: if not isinstance(x, _type): raise ValueError(f"Value must be an instance of {type_repr}") return inner def is_one_of_factory(legal_values) -> Callable[[Any], None]: callables = [c for c in legal_values if callable(c)] legal_values = [c for c in legal_values if not callable(c)] def inner(x) -> None: if x not in legal_values: if not any(c(x) for c in callables): uvals = [str(lval) for lval in legal_values] pp_values = "|".join(uvals) msg = f"Value must be one of {pp_values}" if len(callables): msg += " or a callable" raise ValueError(msg) return inner def is_nonnegative_int(value: Optional[int]) -> None: """ Verify that value is None or a positive int. Parameters ---------- value : None or int The `value` to be checked. Raises ------ ValueError When the value is not None or is a negative integer """ if value is None: return elif isinstance(value, int): if value >= 0: return msg = "Value must be a nonnegative integer or None" raise ValueError(msg) # common type validators, for convenience # usage: register_option(... , validator = is_int) is_int = is_type_factory(int) is_bool = is_type_factory(bool) is_float = is_type_factory(float) is_str = is_type_factory(str) is_text = is_instance_factory((str, bytes)) def is_callable(obj) -> bool: """ Parameters ---------- `obj` - the object to be checked Returns ------- validator - returns True if object is callable raises ValueError otherwise. """ if not callable(obj): raise ValueError("Value must be a callable") return True
97dd05a028b4a33a6d447d46642a0deaecd17029
60acb606318869410d7437bf6c1a16fd6762b6b4
/app/api/img/image_info.py
65775a862d3bc5708bec535f36d2bce928fd5b49
[ "Apache-2.0" ]
permissive
heraclitusj/mgek_imgbed
8fb0c69599fab3fce06684f659dfd5c0b4c5f866
d8a77ba1401f42237adda1b3ea8611f6464a704e
refs/heads/master
2022-07-28T01:48:51.314094
2020-05-20T05:35:52
2020-05-20T05:35:52
265,461,338
0
0
null
2020-05-20T05:31:37
2020-05-20T05:31:37
null
UTF-8
Python
false
false
755
py
# -*- coding: utf-8 -*- # @Author: Landers # @Github: Landers1037 # @File: image_info.py # @Date: 2020-05-14 from app.api.img import img from app.utils import format_response from flask import request from app.database import database from app import global_config @img.route('/api/image_info') def image_info(): # ๆ นๆฎๅ›พ็‰‡็š„id่Žทๅ–ๅ›พ็‰‡ไฟกๆฏ try: name = request.json["name"] img = database().get(global_config.engine,'image',name) if img: return format_response('ok',img) else: return format_response('error','ๅ›พ็‰‡ไฟกๆฏ่Žทๅ–ๅคฑ่ดฅ') except Exception as e: return format_response('error', 'ๅ›พ็‰‡ไฟกๆฏ่Žทๅ–ๅคฑ่ดฅ')
a6f5e5981efd1440e11604556dda3322676ef081
4364fb1fec2ebda2cd240ddc19ef89243812c122
/tensorflow_datasets/core/utils/version_test.py
29f7c9e85799c708ef7350ffb36ccf426741908b
[ "Apache-2.0" ]
permissive
undeadinu/datasets
67ebbe6c20462ed6f58713ccd8dc1d67db89f4d9
a6f1bce86404d534b7343fb90f0ebfd6d098c346
refs/heads/master
2020-04-16T03:31:37.564934
2019-01-11T10:12:42
2019-01-11T10:13:12
165,234,637
0
0
Apache-2.0
2019-01-11T11:44:44
2019-01-11T11:41:26
Python
UTF-8
Python
false
false
2,090
py
# coding=utf-8 # Copyright 2018 The TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for tensorflow_datasets.core.utils.version.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from tensorflow_datasets.core.utils import version class VersionTest(tf.test.TestCase): def test_version(self): """Test the zip nested function.""" self.assertEqual(version.Version(), version.Version(0, 0, 0)) self.assertEqual(version.Version('1.3.534'), version.Version(1, 3, 534)) self.assertEqual( version.Version(major=1, minor=3, patch=5), version.Version(1, 3, 5)) self.assertEqual(version.Version('latest'), version.Version.LATEST) self.assertEqual( version.Version(version.Version('1.3.5')), version.Version(1, 3, 5)) self.assertEqual(str(version.Version(10, 2, 3)), '10.2.3') self.assertEqual(str(version.Version()), '0.0.0') with self.assertRaisesWithPredicateMatch(ValueError, 'Format should be '): version.Version('1.3.-534') with self.assertRaisesWithPredicateMatch(ValueError, 'Format should be '): version.Version('1.3') with self.assertRaisesWithPredicateMatch(ValueError, 'Format should be '): version.Version('1.3.') with self.assertRaisesWithPredicateMatch(ValueError, 'Format should be '): version.Version('1..5') with self.assertRaisesWithPredicateMatch(ValueError, 'Format should be '): version.Version('a.b.c') if __name__ == '__main__': tf.test.main()
11446499dcc2fcc6f3086f797eac1521364b3182
0a530e71f248f0f731c6a3f28f090d1bb26b55e3
/apps/testdatas/migrations/0045_iframebodyinputtext.py
64f33a379d95c61ef45c53a1b937676f5cd9d202
[]
no_license
wawj901124/fuwuqi
cca9935f7b110dfdf38c93d59602a596ecac0d58
e388fd10cf4fdb889d6566b7a30702b7c7351750
refs/heads/master
2022-12-13T13:12:10.854319
2020-01-18T00:42:52
2020-01-18T00:42:52
209,901,486
0
0
null
2022-11-22T02:40:33
2019-09-21T00:23:51
Python
UTF-8
Python
false
false
3,286
py
# Generated by Django 2.0.5 on 2019-11-12 15:40 import datetime from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('testdatas', '0044_newaddandcheck_depend_new_add_and_check_case'), ] operations = [ migrations.CreateModel( name='IframeBodyInputText', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('iframe_ele_find', models.CharField(blank=True, default='xpath', help_text='ๅ…ƒ็ด ๆŸฅๆ‰พ้ฃŽๆ ผ๏ผšidใ€nameใ€class_nameใ€tag_nameใ€link_textใ€partial_link_textใ€css_selectorใ€xpath', max_length=100, null=True, verbose_name='iframeๆŸฅๆ‰พ้ฃŽๆ ผ')), ('iframe_ele_find_value', models.CharField(blank=True, default='', max_length=1000, null=True, verbose_name='iframeๆŸฅๆ‰พ้ฃŽๆ ผ็š„็กฎๅˆ‡ๅ€ผ')), ('input_ele_find', models.CharField(blank=True, default='xpath', help_text='ๅ…ƒ็ด ๆŸฅๆ‰พ้ฃŽๆ ผ๏ผšidใ€nameใ€class_nameใ€tag_nameใ€link_textใ€partial_link_textใ€css_selectorใ€xpath', max_length=100, null=True, verbose_name='่พ“ๅ…ฅๆก†ๆŸฅๆ‰พ้ฃŽๆ ผ')), ('input_ele_find_value', models.CharField(blank=True, default='', max_length=1000, null=True, verbose_name='่พ“ๅ…ฅๆก†ๆŸฅๆ‰พ้ฃŽๆ ผ็š„็กฎๅˆ‡ๅ€ผ')), ('is_auto_input', models.BooleanField(default=False, verbose_name='ๆ˜ฏๅฆ่‡ชๅŠจ่พ“ๅ…ฅ')), ('auto_input_type', models.CharField(blank=True, choices=[('1', 'ๆ•ฐๅญ—'), ('2', 'ๅญ—ๆฏ๏ผˆๅฐๅ†™๏ผ‰'), ('3', 'ๅญ—ๆฏ๏ผˆๅคงๅ†™๏ผ‰'), ('4', '็‰นๆฎŠ็ฌฆๅท'), ('5', 'ๆ•ฐๅญ—ๅ’Œๅญ—ๆฏ๏ผˆๅฐๅ†™๏ผ‰'), ('6', 'ๆ•ฐๅญ—ๅ’Œๅญ—ๆฏ๏ผˆๅคงๅ†™๏ผ‰'), ('7', 'ๅญ—ๆฏ๏ผˆๅคงๅฐๅ†™๏ผ‰'), ('8', 'ๆ•ฐๅญ—ๅ’Œๅญ—ๆฏ๏ผˆๅคงๅฐๅ†™๏ผ‰'), ('9', 'ๆ•ฐๅญ—ๅ’Œๅญ—ๆฏๅ’Œ็‰นๆฎŠ็ฌฆๅท'), ('10', 'ๆ•ฐๅญ—ๅ’Œๅญ—ๆฏๅ’Œ็‰นๆฎŠ็ฌฆๅทๅ’Œ็ฉบ็™ฝๅญ—็ฌฆ'), ('11', 'ๆฑ‰ๅญ—'), ('12', 'ๆ‰‹ๆœบๅท'), ('13', '่บซไปฝ่ฏๅท')], default='11', max_length=10, null=True, verbose_name='่‡ชๅŠจ่พ“ๅ…ฅๅญ—็ฌฆ็š„็ฑปๅž‹')), ('auto_input_long', models.CharField(blank=True, default='300', help_text='ๅญ—็ฌฆ็š„ไธชๆ•ฐ๏ผŒ่ฏทๅกซๅ†™ๆ•ฐๅญ—๏ผŒไพ‹ๅฆ‚๏ผš1ใ€2ใ€3', max_length=100, null=True, verbose_name='่‡ชๅŠจ่พ“ๅ…ฅ็š„ๅญ—็ฌฆ็š„ไธชๆ•ฐ')), ('input_text', models.CharField(blank=True, default='', max_length=300, null=True, verbose_name='่พ“ๅ…ฅๆก†ไธญ่ฆ่พ“ๅ…ฅ็š„ๅ†…ๅฎน')), ('is_with_time', models.BooleanField(default=True, verbose_name='ๆ˜ฏๅฆๅธฆๆ—ถ้—ดไธฒ')), ('is_check', models.BooleanField(default=True, verbose_name='ๆ˜ฏๅฆ่ฟ›่กŒ้ชŒ่ฏ')), ('add_time', models.DateTimeField(auto_now_add=True, null=True, verbose_name='ๆทปๅŠ ๆ—ถ้—ด')), ('update_time', models.DateTimeField(blank=True, default=datetime.datetime.now, null=True, verbose_name='ๆ›ดๆ–ฐๆ—ถ้—ด')), ('newaddandcheck', models.ForeignKey(blank=True, default='', null=True, on_delete=django.db.models.deletion.PROTECT, to='testdatas.NewAddAndCheck', verbose_name='ไพ่ต–็š„ๆทปๅŠ ๅœบๆ™ฏ')), ], options={ 'verbose_name': 'ๅฏŒๆ–‡ๆœฌ่พ“ๅ…ฅๆก†็›ธๅ…ณๅ†…ๅฎน', 'verbose_name_plural': 'ๅฏŒๆ–‡ๆœฌ่พ“ๅ…ฅๆก†็›ธๅ…ณๅ†…ๅฎน', }, ), ]
[ "wawj900805" ]
wawj900805
380ab96a78fd2ad55b5dc0cb5388595bfce7478f
58b05123d46ce78d35e5ef0cad88b80c5d16939c
/test/test_binary.py
83aad9dbb98f13b696e2120dbb2d22c2984ac9ae
[ "MIT" ]
permissive
vibhatha/CrypTen
eab2b7243f55140b440bcd0fc04276ab65e770ce
e550a35aaa0615b5744fdd735a994622c87b47ae
refs/heads/master
2020-09-23T02:00:44.446982
2019-12-02T12:49:26
2019-12-02T12:49:26
225,373,781
0
0
MIT
2019-12-02T12:48:37
2019-12-02T12:48:36
null
UTF-8
Python
false
false
16,452
py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import itertools import logging import unittest from test.multiprocess_test_case import MultiProcessTestCase, get_random_test_tensor import crypten import torch from crypten.common.tensor_types import is_int_tensor from crypten.mpc.primitives import BinarySharedTensor class TestBinary(MultiProcessTestCase): """ This class tests all functions of BinarySharedTensor. """ benchmarks_enabled = False def setUp(self): super().setUp() # We don't want the main process (rank -1) to initialize the communcator if self.rank >= 0: crypten.init() def _check(self, encrypted_tensor, reference, msg, tolerance=None): if tolerance is None: tolerance = getattr(self, "default_tolerance", 0.05) tensor = encrypted_tensor.get_plain_text() # Check sizes match self.assertTrue(tensor.size() == reference.size(), msg) self.assertTrue(is_int_tensor(reference), "reference must be a long") test_passed = (tensor == reference).all().item() == 1 if not test_passed: logging.info(msg) logging.info("Result = %s;\nreference = %s" % (tensor, reference)) self.assertTrue(test_passed, msg=msg) def test_encrypt_decrypt(self): """ Tests tensor encryption and decryption for both positive and negative values. """ sizes = [ (), (1,), (5,), (1, 1), (1, 5), (5, 1), (5, 5), (1, 5, 5), (5, 1, 5), (5, 5, 1), (5, 5, 5), (1, 3, 32, 32), (5, 3, 32, 32), ] for size in sizes: reference = get_random_test_tensor(size=size, is_float=False) with self.benchmark(tensor_type="BinarySharedTensor") as bench: for _ in bench.iters: encrypted_tensor = BinarySharedTensor(reference) self._check(encrypted_tensor, reference, "en/decryption failed") def test_transpose(self): sizes = [ (1,), (5,), (1, 1), (1, 5), (5, 1), (5, 5), (1, 5, 5), (5, 1, 5), (5, 5, 1), (5, 5, 5), (1, 3, 32, 32), (5, 3, 32, 32), ] for size in sizes: tensor = get_random_test_tensor(size=size, is_float=False) encrypted_tensor = BinarySharedTensor(tensor) if len(size) == 2: # t() asserts dim == 2 reference = tensor.t() with self.benchmark(niters=10) as bench: for _ in bench.iters: encrypted_out = encrypted_tensor.t() self._check(encrypted_out, reference, "t() failed") for dim0 in range(len(size)): for dim1 in range(len(size)): reference = tensor.transpose(dim0, dim1) with self.benchmark(niters=10) as bench: for _ in bench.iters: encrypted_out = encrypted_tensor.transpose(dim0, dim1) self._check(encrypted_out, reference, "transpose failed") def test_XOR(self): """Test bitwise-XOR function on BinarySharedTensor""" for tensor_type in [lambda x: x, BinarySharedTensor]: tensor = get_random_test_tensor(is_float=False) tensor2 = get_random_test_tensor(is_float=False) reference = tensor ^ tensor2 encrypted_tensor = BinarySharedTensor(tensor) encrypted_tensor2 = tensor_type(tensor2) with self.benchmark(tensor_type=tensor_type.__name__) as bench: for _ in bench.iters: encrypted_out = encrypted_tensor ^ encrypted_tensor2 self._check(encrypted_out, reference, "%s XOR failed" % tensor_type) def test_AND(self): """Test bitwise-AND function on BinarySharedTensor""" for tensor_type in [lambda x: x, BinarySharedTensor]: tensor = get_random_test_tensor(is_float=False) tensor2 = get_random_test_tensor(is_float=False) reference = tensor & tensor2 encrypted_tensor = BinarySharedTensor(tensor) encrypted_tensor2 = tensor_type(tensor2) with self.benchmark(tensor_type=tensor_type.__name__) as bench: for _ in bench.iters: encrypted_out = encrypted_tensor & encrypted_tensor2 self._check(encrypted_out, reference, "%s AND failed" % tensor_type) def test_OR(self): """Test bitwise-OR function on BinarySharedTensor""" for tensor_type in [lambda x: x, BinarySharedTensor]: tensor = get_random_test_tensor(is_float=False) tensor2 = get_random_test_tensor(is_float=False) reference = tensor | tensor2 encrypted_tensor = BinarySharedTensor(tensor) encrypted_tensor2 = tensor_type(tensor2) with self.benchmark(tensor_type=tensor_type.__name__) as bench: for _ in bench.iters: encrypted_out = encrypted_tensor | encrypted_tensor2 self._check(encrypted_out, reference, "%s OR failed" % tensor_type) def test_bitwise_broadcasting(self): """Tests bitwise function broadcasting""" bitwise_ops = ["__and__", "__or__", "__xor__"] sizes = [ (), (1,), (2,), (1, 1), (1, 2), (2, 1), (2, 2), (1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1), (2, 2, 2), (1, 1, 1, 1), (1, 1, 1, 2), (1, 1, 2, 1), (1, 2, 1, 1), (2, 1, 1, 1), (2, 2, 2, 2), ] for tensor_type in [lambda x: x, BinarySharedTensor]: for op in bitwise_ops: for size1, size2 in itertools.combinations(sizes, 2): tensor1 = get_random_test_tensor(size=size1, is_float=False) tensor2 = get_random_test_tensor(size=size2, is_float=False) encrypted_tensor1 = BinarySharedTensor(tensor1) tensor2_transformed = tensor_type(tensor2) if isinstance(tensor2_transformed, BinarySharedTensor): tensor2_transformed_type = "private" else: tensor2_transformed_type = "public" self._check( getattr(encrypted_tensor1, op)(tensor2_transformed), getattr(tensor1, op)(tensor2), f"{tensor2_transformed_type} {op} broadcasting " f"failed with sizes {size1}, {size2}", ) def test_invert(self): """Test bitwise-invert function on BinarySharedTensor""" tensor = get_random_test_tensor(is_float=False) encrypted_tensor = BinarySharedTensor(tensor) reference = ~tensor with self.benchmark() as bench: for _ in bench.iters: encrypted_out = ~encrypted_tensor self._check(encrypted_out, reference, "invert failed") def test_add(self): """Tests add using binary shares""" for tensor_type in [lambda x: x, BinarySharedTensor]: tensor = get_random_test_tensor(is_float=False) tensor2 = get_random_test_tensor(is_float=False) reference = tensor + tensor2 encrypted_tensor = BinarySharedTensor(tensor) encrypted_tensor2 = tensor_type(tensor2) with self.benchmark(tensor_type=tensor_type.__name__) as bench: for _ in bench.iters: encrypted_out = encrypted_tensor + encrypted_tensor2 self._check(encrypted_out, reference, "%s AND failed" % tensor_type) def test_sum(self): """Tests sum using binary shares""" tensor = get_random_test_tensor(size=(5, 5, 5), is_float=False) encrypted = BinarySharedTensor(tensor) self._check(encrypted.sum(), tensor.sum(), "sum failed") for dim in [0, 1, 2]: reference = tensor.sum(dim) with self.benchmark(type="sum", dim=dim) as bench: for _ in bench.iters: encrypted_out = encrypted.sum(dim) self._check(encrypted_out, reference, "sum failed") def test_get_set(self): for tensor_type in [lambda x: x, BinarySharedTensor]: for size in range(1, 5): # Test __getitem__ tensor = get_random_test_tensor(size=(size, size), is_float=False) reference = tensor[:, 0] encrypted_tensor = BinarySharedTensor(tensor) encrypted_out = encrypted_tensor[:, 0] self._check(encrypted_out, reference, "getitem failed") reference = tensor[0, :] encrypted_out = encrypted_tensor[0, :] self._check(encrypted_out, reference, "getitem failed") # Test __setitem__ tensor2 = get_random_test_tensor(size=(size,), is_float=False) reference = tensor.clone() reference[:, 0] = tensor2 encrypted_out = BinarySharedTensor(tensor) encrypted2 = tensor_type(tensor2) encrypted_out[:, 0] = encrypted2 self._check( encrypted_out, reference, "%s setitem failed" % type(encrypted2) ) reference = tensor.clone() reference[0, :] = tensor2 encrypted_out = BinarySharedTensor(tensor) encrypted2 = tensor_type(tensor2) encrypted_out[0, :] = encrypted2 self._check( encrypted_out, reference, "%s setitem failed" % type(encrypted2) ) def test_share_attr(self): """Tests share attribute getter and setter""" for is_float in (True, False): reference = get_random_test_tensor(is_float=is_float) encrypted_tensor = BinarySharedTensor(reference) self.assertTrue( torch.equal(encrypted_tensor.share, encrypted_tensor.share), "share getter failed", ) new_share = get_random_test_tensor(is_float=False) encrypted_tensor.share = new_share self.assertTrue( torch.equal(encrypted_tensor.share, new_share), "share setter failed" ) def test_inplace(self): """Test inplace vs. out-of-place functions""" for op in ["__xor__", "__and__", "__or__"]: for tensor_type in [lambda x: x, BinarySharedTensor]: tensor1 = get_random_test_tensor(is_float=False) tensor2 = get_random_test_tensor(is_float=False) reference = getattr(tensor1, op)(tensor2) encrypted1 = BinarySharedTensor(tensor1) encrypted2 = tensor_type(tensor2) input_plain_id = id(encrypted1.share) input_encrypted_id = id(encrypted1) # Test that out-of-place functions do not modify the input private = isinstance(encrypted2, BinarySharedTensor) encrypted_out = getattr(encrypted1, op)(encrypted2) self._check( encrypted1, tensor1, "%s out-of-place %s modifies input" % ("private" if private else "public", op), ) self._check( encrypted_out, reference, "%s out-of-place %s produces incorrect output" % ("private" if private else "public", op), ) self.assertFalse(id(encrypted_out.share) == input_plain_id) self.assertFalse(id(encrypted_out) == input_encrypted_id) # Test that in-place functions modify the input inplace_op = op[:2] + "i" + op[2:] encrypted_out = getattr(encrypted1, inplace_op)(encrypted2) self._check( encrypted1, reference, "%s in-place %s does not modify input" % ("private" if private else "public", inplace_op), ) self._check( encrypted_out, reference, "%s in-place %s produces incorrect output" % ("private" if private else "public", inplace_op), ) self.assertTrue(id(encrypted_out.share) == input_plain_id) self.assertTrue(id(encrypted_out) == input_encrypted_id) def test_control_flow_failure(self): """Tests that control flow fails as expected""" tensor = get_random_test_tensor(is_float=False) encrypted_tensor = BinarySharedTensor(tensor) with self.assertRaises(RuntimeError): if encrypted_tensor: pass with self.assertRaises(RuntimeError): tensor = 5 if encrypted_tensor else 0 with self.assertRaises(RuntimeError): if False: pass elif encrypted_tensor: pass def test_src_failure(self): """Tests that out-of-bounds src fails as expected""" tensor = get_random_test_tensor(is_float=True) for src in [None, "abc", -2, self.world_size]: with self.assertRaises(AssertionError): BinarySharedTensor(tensor, src=src) def test_src_match_input_data(self): """Tests incorrect src in BinarySharedTensor fails as expected""" tensor = get_random_test_tensor(is_float=True) tensor.src = 0 for testing_src in [None, "abc", -2, self.world_size]: with self.assertRaises(AssertionError): BinarySharedTensor(tensor, src=testing_src) def test_where(self): """Tests where() conditional element selection""" sizes = [(10,), (5, 10), (1, 5, 10)] y_types = [lambda x: x, BinarySharedTensor] for size, y_type in itertools.product(sizes, y_types): tensor1 = get_random_test_tensor(size=size, is_float=False) encrypted_tensor1 = BinarySharedTensor(tensor1) tensor2 = get_random_test_tensor(size=size, is_float=False) encrypted_tensor2 = y_type(tensor2) condition_tensor = ( get_random_test_tensor(max_value=1, size=[1], is_float=False) + 1 ) condition_encrypted = BinarySharedTensor(condition_tensor) condition_bool = condition_tensor.bool() reference_out = tensor1 * condition_tensor + tensor2 * ( 1 - condition_tensor ) encrypted_out = encrypted_tensor1.where(condition_bool, encrypted_tensor2) y_is_private = y_type == BinarySharedTensor self._check( encrypted_out, reference_out, f"{'private' if y_is_private else 'public'} y " "where failed with public condition", ) encrypted_out = encrypted_tensor1.where( condition_encrypted, encrypted_tensor2 ) self._check( encrypted_out, reference_out, f"{'private' if y_is_private else 'public'} y " "where failed with private condition", ) # TODO: Write the following unit tests @unittest.skip("Test not implemented") def test_gather_scatter(self): pass @unittest.skip("Test not implemented") def test_split(self): pass # This code only runs when executing the file outside the test harness (e.g. # via the buck target test_mpc_benchmark) if __name__ == "__main__": TestBinary.benchmarks_enabled = True unittest.main()
9a14bed785bfa237ff5c6773094106b0f1003dfd
0c0168a4676bce7453836a7509e7133044aa8975
/byceps/services/board/dbmodels/last_topic_view.py
bf001ad5b4d7e1f3890dc09d3263e58d53b1050d
[ "BSD-3-Clause" ]
permissive
byceps/byceps
0aad3c4d974f76c6f8c3674d5539a80c9107b97a
eaee2b7fdc08c76c16ddf7f436110e0b5f1812e5
refs/heads/main
2023-09-01T04:03:13.365687
2023-09-01T03:28:18
2023-09-01T03:28:18
40,150,239
44
23
BSD-3-Clause
2023-05-16T18:41:32
2015-08-03T22:05:23
Python
UTF-8
Python
false
false
1,280
py
""" byceps.services.board.dbmodels.last_topic_view ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :Copyright: 2014-2023 Jochen Kupperschmidt :License: Revised BSD (see `LICENSE` file for details) """ from datetime import datetime from byceps.database import db from byceps.services.board.models import TopicID from byceps.typing import UserID from byceps.util.instances import ReprBuilder from .topic import DbTopic class DbLastTopicView(db.Model): """The last time a user looked into specific topic.""" __tablename__ = 'board_topics_lastviews' user_id = db.Column(db.Uuid, db.ForeignKey('users.id'), primary_key=True) topic_id = db.Column( db.Uuid, db.ForeignKey('board_topics.id'), primary_key=True ) topic = db.relationship(DbTopic) occurred_at = db.Column(db.DateTime, nullable=False) def __init__( self, user_id: UserID, topic_id: TopicID, occurred_at: datetime ) -> None: self.user_id = user_id self.topic_id = topic_id self.occurred_at = occurred_at def __repr__(self) -> str: return ( ReprBuilder(self) .add_with_lookup('user_id') .add('topic', self.topic.title) .add_with_lookup('occurred_at') .build() )
d6a6a6f115d922ccb5f1b7753846a7efdb2e2a9f
86bfb43636b24eef7ea580544797a5f84bf555b5
/DjangoBlog/tests.py
47fda838a1c4eca60f51314e7e57e8f125b6da98
[ "MIT" ]
permissive
kongnyc/DjangoBlog
3e83af3b5e96706055964c3554cdff1b0b80f06e
38173bf3b47bafa82fadc9e7a95fad0c959c3dd5
refs/heads/master
2023-08-22T10:01:36.074884
2021-10-18T08:29:29
2021-10-18T08:29:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
845
py
#!/usr/bin/env python # encoding: utf-8 """ @version: ?? @author: liangliangyy @license: MIT Licence @contact: [email protected] @site: https://www.lylinux.net/ @software: PyCharm @file: tests.py @time: 2017/10/25 ไธ‹ๅˆ10:16 """ from django.test import TestCase from DjangoBlog.utils import * class DjangoBlogTest(TestCase): def setUp(self): pass def test_utils(self): md5 = get_sha256('test') self.assertIsNotNone(md5) c = CommonMarkdown.get_markdown(''' # Title1 ```python import os ``` [url](https://www.lylinux.net/) [ddd](http://www.baidu.com) ''') self.assertIsNotNone(c) d = { 'd': 'key1', 'd2': 'key2' } data = parse_dict_to_url(d) self.assertIsNotNone(data)
cae778a22518efc67a593ae11d6e3eae36f3c314
9693f521acf87faa6406f071db432a248fbaa731
/API_CRUD/asgi.py
e8ba240642e4df756cdd613ee48fb1a816350b0c
[]
no_license
musfiqraihan/Django_API_CRUD
a8678c4ed04ada73139cbc20740e5e1471f11ef0
1405fc867a797580ae0d3753fc6f09914d008d3d
refs/heads/master
2023-02-11T16:56:24.290716
2020-12-30T11:13:40
2020-12-30T11:13:40
325,232,539
0
0
null
null
null
null
UTF-8
Python
false
false
393
py
""" ASGI config for API_CRUD project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'API_CRUD.settings') application = get_asgi_application()
b7f5069628cdc9ce0511d09d0286eda67f188636
b1bc2e54f8cd35c9abb6fc4adb35b386c12fe6b4
/toontown/src/coghq/DistributedMintBattle.py
01664f0a9ce6d947852b03f28be3e5495ec65230
[]
no_license
satire6/Anesidora
da3a44e2a49b85252b87b612b435fb4970469583
0e7bfc1fe29fd595df0b982e40f94c30befb1ec7
refs/heads/master
2022-12-16T20:05:13.167119
2020-09-11T16:58:04
2020-09-11T17:02:06
294,751,966
89
32
null
null
null
null
UTF-8
Python
false
false
2,711
py
from pandac.PandaModules import * from direct.interval.IntervalGlobal import * from toontown.battle.BattleBase import * from toontown.coghq import DistributedLevelBattle from direct.directnotify import DirectNotifyGlobal from toontown.toon import TTEmote from otp.avatar import Emote from toontown.battle import SuitBattleGlobals import random from toontown.suit import SuitDNA from direct.fsm import State from direct.fsm import ClassicFSM, State from toontown.toonbase import ToontownGlobals class DistributedMintBattle(DistributedLevelBattle.DistributedLevelBattle): notify = DirectNotifyGlobal.directNotify.newCategory('DistributedMintBattle') def __init__(self, cr): """ cr is a ClientRepository. """ DistributedLevelBattle.DistributedLevelBattle.__init__(self,cr) # Add a new reward state to the battle ClassicFSM self.fsm.addState(State.State('MintReward', self.enterMintReward, self.exitMintReward, ['Resume'])) offState = self.fsm.getStateNamed('Off') offState.addTransition('MintReward') playMovieState = self.fsm.getStateNamed('PlayMovie') playMovieState.addTransition('MintReward') ##### MintReward state ##### def enterMintReward(self, ts): self.notify.debug('enterMintReward()') self.disableCollision() self.delayDeleteMembers() if (self.hasLocalToon()): NametagGlobals.setMasterArrowsOn(0) if self.bossBattle: messenger.send('localToonConfrontedMintBoss') self.movie.playReward(ts, self.uniqueName('building-reward'), self.__handleMintRewardDone) def __handleMintRewardDone(self): self.notify.debug('mint reward done') if (self.hasLocalToon()): self.d_rewardDone(base.localAvatar.doId) self.movie.resetReward() # Now request our local battle object enter the Resume state, # which frees us from the battle. The distributed object may # not enter the Resume state yet (it has to wait until all the # toons involved have reported back up), but there's no reason # we have to wait around for that. self.fsm.request('Resume') def exitMintReward(self): self.notify.debug('exitMintReward()') # In case we're observing and the server cuts us off # this guarantees all final animations get started and things # get cleaned up self.movie.resetReward(finish=1) self._removeMembersKeep() NametagGlobals.setMasterArrowsOn(1)
15fa2494c7c4baa6af4b59cd81d061f6ba182f0b
4fee81e2fa833911ea2f65ee975cf7cc1724b6a2
/venv/Lib/site-packages/pyrogram/raw/functions/help/set_bot_updates_status.py
5092c28d617adc3e734574de9c35af707d2a2493
[]
no_license
devID767/Farm_Duel_Bot
453628d2bcaba27dab01338d9368e6727781901e
aaab3c16ec6626f5196f24f741bfeecc63492116
refs/heads/master
2023-08-14T22:06:06.705300
2021-10-08T13:50:15
2021-10-08T13:50:15
360,924,958
3
0
null
null
null
null
UTF-8
Python
false
false
2,468
py
# Pyrogram - Telegram MTProto API Client Library for Python # Copyright (C) 2017-2021 Dan <https://github.com/delivrance> # # This file is part of Pyrogram. # # Pyrogram is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Pyrogram is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with Pyrogram. If not, see <http://www.gnu.org/licenses/>. from io import BytesIO from pyrogram.raw.core.primitives import Int, Long, Int128, Int256, Bool, Bytes, String, Double, Vector from pyrogram.raw.core import TLObject from pyrogram import raw from typing import List, Union, Any # # # # # # # # # # # # # # # # # # # # # # # # # !!! WARNING !!! # # This is a generated file! # # All changes made in this file will be lost! # # # # # # # # # # # # # # # # # # # # # # # # # class SetBotUpdatesStatus(TLObject): # type: ignore """Telegram API method. Details: - Layer: ``126`` - ID: ``0xec22cfcd`` Parameters: pending_updates_count: ``int`` ``32-bit`` message: ``str`` Returns: ``bool`` """ __slots__: List[str] = ["pending_updates_count", "message"] ID = 0xec22cfcd QUALNAME = "functions.help.SetBotUpdatesStatus" def __init__(self, *, pending_updates_count: int, message: str) -> None: self.pending_updates_count = pending_updates_count # int self.message = message # string @staticmethod def read(data: BytesIO, *args: Any) -> "SetBotUpdatesStatus": # No flags pending_updates_count = Int.read(data) message = String.read(data) return SetBotUpdatesStatus(pending_updates_count=pending_updates_count, message=message) def write(self) -> bytes: data = BytesIO() data.write(Int(self.ID, False)) # No flags data.write(Int(self.pending_updates_count)) data.write(String(self.message)) return data.getvalue()
cfec3e3f9e181f7560fa29eacbdd7626ae414e3b
16ac02b8f427bd622af1564f1236e4913ed63521
/Codes/Version 1.9.1/force_sorter.py
c3a4f9e16eb12403d6897fbe06a5af0f0c70f7b5
[ "MIT" ]
permissive
gharib85/Brownian-dynamics-in-a-time-varying-force-field
20660665747310e1201e8ca7d404acc15ec7a3bd
1dce268fcc4f27e066be0ec0b511178cbc1437c5
refs/heads/main
2023-08-16T03:47:51.957137
2021-10-23T19:09:50
2021-10-23T19:09:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,583
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on March 6, 2021 @author: Mohammad Asif Zaman - May 28, 2021 - Functionalized fluid velocity """ import numpy as np import pylab as py import matplotlib as plt import time from scipy import interpolate from parameters import * from geometry_def_sorter import * # Module global Parameters: # ============================================================================= # Setting fluid flow velocity # vx_flow = 120e-6 # vy_flow = 0e-6 # vz_flow = 0e-6 def vel_lm(xin, yin, zin): # linear model of fluid velocity Np = xin.size v_out = np.zeros((3,Np)) v_out[0,:] = 150e-6 v_out[1,:] = 0 v_out[2,:] = 0 v_out[1,np.where( (xin > 170e-6) & (yin >= 30e-6 ) )] = 30e-6 v_out[1,np.where( (xin > 170e-6) & (yin <= -30e-6 ) )] = -30e-6 return v_out # def fluid_vel(r_in, t): # Np = r_in[0,:].size # xin = r_in[0,:] # yin = r_in[1,:] # zin = r_in[2,:] # v_fluid = np.zeros((3,Np)) # v_fluid[0,:] = 120e-6 # v_fluid[1,:] = 0 # v_fluid[2,:] = 0 # v_fluid[1,np.where( (xin > 170e-6) & (yin >= 30e-6 ) )] = 30e-6 # v_fluid[1,np.where( (xin > 170e-6) & (yin <= -30e-6 ) )] = -30e-6 # return v_fluid def fluid_vel(r_in, t): Np = r_in[0,:].size xi = r_in[0,:] yi = r_in[1,:] zi = r_in[2,:] d = 10e-6 # temporary variables v1 = np.zeros((3,Np)) v2 = np.zeros((3,Np)) # Moving average smoothing of fluid velocity # number of points per axis over which to average the velocity predicted by the linear velocity model N_avg_points = 15 # must be an odd number for m in range(int((N_avg_points-1)/2 + 1)): v1 = v1 + vel_lm(xi+d*m,yi,zi) + vel_lm(xi-d*m,yi,zi) if m > 0 else v1 + vel_lm(xi,yi,zi) v2 = v2 + vel_lm(xi,yi+d*m,zi) + vel_lm(xi,yi-d*m,zi) if m > 0 else v2 + vel_lm(xi,yi,zi) v_fluid = (v1 + v2)/(2*N_avg_points) return v_fluid # Read force data from data file Mdata = np.genfromtxt('Fy_XY_grid2.csv',delimiter=',',skip_header=9) xdata = Mdata[:,0]*1e-6 ydata = Mdata[:,1]*1e-6 points = np.array( (xdata, ydata)).T Fydata = Mdata[:,2]*1e-12 # This is function that is called from the main program # Simplified spring force model def force_profile(r_in, t): # Np = r_in[0,:].size Np, ro, tfinal, x_lim, y_lim, z_lim, xi_lim, yi_lim, zi_lim = time_pos_ax_limits() temp = [.7,-0.25] od_ev = np.array(int(Np/2)*[temp]).flatten() xin = r_in[0,:] yin = r_in[1,:] fy = interpolate.griddata(points,Fydata,(xin,abs(yin)),method='linear',fill_value = 0)*np.sign(yin) fz = -od_ev*.3e-12 fm = np.zeros((3,Np)) fm[1,:] = fy*od_ev fm[2,:] = fz return fm # force_plot() # Np = 1 # # # xin = [1, 4, 2, 3] # # # xin = np.array(xin) # # # v_temp = np.zeros(Np) # # # v_temp[np.where(xin > 2)] = 7 # r = np.random.rand(3,Np,2) # rin = r[:,:,0] # t = 0 # rin[0] = 176e-6 # rin[1] = 50e-6 # vf = fluid_vel(rin,t) # # print(rin) # print(vf) # # vf = fluid_vel([[170e-6,40e-6,2e-6]],t) # # print(vf) # # interpolation speed test # start_time = time.time() # print('\n\n===========================================\n') # Np = 24 # r = np.random.rand(3,Np,2) # rin = r[:,:,0] # t = 0 # tt= force_profile(rin,t) # print("Execution time = %1.2f seconds \n" % (time.time() - start_time)) # print('\n===========================================\n')
ae355ce430c65d2fdcab3685713278f7881f618e
32dda10669e459cf37c31f426fa709001d2c75b0
/leetcode_cn/solved/pg_926.py
f858309b00cdcbf0e1b7e35377b4344e80aca5d1
[]
no_license
fastso/learning-python
3300f50d06871245d0bfcbe9d201224580f70852
d21dbd1b9f31017cdb1ed9b9ffd1e53ffe326572
refs/heads/master
2023-02-10T14:43:53.726247
2023-01-26T10:14:59
2023-01-26T10:14:59
193,454,718
0
0
null
null
null
null
UTF-8
Python
false
false
215
py
class Solution: def minFlipsMonoIncr(self, s: str) -> int: p = [0] for c in s: p.append(p[-1] + int(c)) return min(p[i] + len(s) - i - (p[-1] - p[i]) for i in range(len(p)))
01ad1462bd75d8419ef238415f086483904f0de2
e23a4f57ce5474d468258e5e63b9e23fb6011188
/110_concurrency_parallelism/_examples/Learn Parallel Computing in Python/004_condition_variables/stingy_spendy_cond_variable.py
790010e66a70ddcb69293dc906896900f0e63fe9
[]
no_license
syurskyi/Python_Topics
52851ecce000cb751a3b986408efe32f0b4c0835
be331826b490b73f0a176e6abed86ef68ff2dd2b
refs/heads/master
2023-06-08T19:29:16.214395
2023-05-29T17:09:11
2023-05-29T17:09:11
220,583,118
3
2
null
2023-02-16T03:08:10
2019-11-09T02:58:47
Python
UTF-8
Python
false
false
791
py
import time from threading import Thread, Condition class StingySpendy: money = 100 cv = Condition() def stingy(self): for i in range(1000000): self.cv.acquire() self.money += 10 self.cv.notify() self.cv.release() print("Stingy Done") def spendy(self): for i in range(500000): self.cv.acquire() while self.money < 20: self.cv.wait() self.money -= 20 if self.money < 0: print("Money in bank", self.money) self.cv.release() print("Spendy Done") ss = StingySpendy() Thread(target=ss.stingy, args=()).start() Thread(target=ss.spendy, args=()).start() time.sleep(5) print("Money in the end", ss.money)
0b4478a24e878754d3ce2b47225c1fcdeda4363b
53edf6b0f4262ee76bb4e3b943394cfeafe54865
/linear_theory/Non_linear_stuff/geopack_test.py
8885c66e0b3c6e38a6be562edce45df4d3d234f6
[]
no_license
Yoshi2112/hybrid
f86265a2d35cb0a402ba6ab5f718717d8eeb740c
85f3051be9368bced41af7d73b4ede9c3e15ff16
refs/heads/master
2023-07-07T21:47:59.791167
2023-06-27T23:09:23
2023-06-27T23:09:23
82,878,960
0
1
null
2020-04-16T18:03:59
2017-02-23T03:14:49
Python
UTF-8
Python
false
false
3,948
py
# -*- coding: utf-8 -*- """ Created on Sun Jan 31 11:17:17 2021 @author: Yoshi """ import pdb import matplotlib.pyplot as plt import numpy as np import geopack as gp # Want to use geopack to give me a trace of the magnetic field alone a field # line, and somehow convert (x, y, z) in GSM (?) to an s-value # Would it be easier to trace out the field line first and output (x,yz) at # standard intervals along the line, then retrieve the fields at those points # using whatever? That seems like the easy part (if each point has MLAT, r) def read_QIN_file(filepath): ''' Hard-coded because I'm too lazy to learn JSON ''' # Could potentially be hardcoded with n_lines = 1440 but this is safer print('Reading', filepath) n_lines = 0 with open(filepath) as f: for line in f: if line[0] != '#': n_lines += 1 # Initialize arrays year, month, day, hour, minute, second, ByIMF, BzIMF, Vsw, den_P, Pdyn, \ ByIMF_status, BzIMF_status, Vsw_status, den_P_status, Pdyn_status, \ Kp, akp3, Dst, = [np.zeros(n_lines) for _ in range(19)] epoch = np.zeros((n_lines), dtype=str) G = np.zeros((n_lines, 3)) G_status = np.zeros((n_lines, 3)) Bz = np.zeros((n_lines, 6)) W = np.zeros((n_lines, 6)) W_status = np.zeros((n_lines, 6)) # Pack in dict? Do later with open(filepath) as f: ii = 0 for line in f: if line[0] != '#': A = line.split() epoch[ii] = A[0] year[ii] = int(A[1]) month[ii] = int(A[2]) day[ii] = int(A[3]) hour[ii] = int(A[4]) minute[ii] = int(A[5]) second[ii] = int(A[6]) ByIMF[ii] = float(A[7]) BzIMF[ii] = float(A[8]) Vsw[ii] = float(A[9]) den_P[ii] = float(A[10]) Pdyn[ii] = float(A[11]) G[ii, 0] = float(A[12]) G[ii, 1] = float(A[13]) G[ii, 2] = float(A[14]) ByIMF_status[ii] = float(A[15]) BzIMF_status[ii] = float(A[16]) Vsw_status[ii] = float(A[17]) den_P_status[ii] = float(A[18]) Pdyn_status[ii] = float(A[19]) G_status[ii, 0] = float(A[20]) G_status[ii, 1] = float(A[21]) G_status[ii, 2] = float(A[22]) Kp[ii] = float(A[23]) akp3[ii] = float(A[24]) Dst[ii] = float(A[25]) Bz[ii, 0] = float(A[26]); Bz[ii, 1] = float(A[27]); Bz[ii, 2] = float(A[28]) Bz[ii, 3] = float(A[29]); Bz[ii, 4] = float(A[30]); Bz[ii, 5] = float(A[31]) W[ii, 0] = float(A[32]); W[ii, 1] = float(A[33]); W[ii, 2] = float(A[34]) W[ii, 3] = float(A[35]); W[ii, 4] = float(A[36]); W[ii, 5] = float(A[37]) W_status[ii, 0] = float(A[38]); W_status[ii, 1] = float(A[39]) W_status[ii, 2] = float(A[40]); W_status[ii, 3] = float(A[41]) W_status[ii, 4] = float(A[42]); W_status[ii, 5] = float(A[43]) ii += 1 return if __name__ == '__main__': FPATH = 'G://DATA//QIN_DENTON//2020//QinDenton_20200101_1min.txt' read_QIN_file(FPATH) L_value = 6 # GSM: (L, 0, 0) would be the equatorial point xf, yf, zf, xn, yn, zn=gp.geopack.trace(L_value, 0.0, 0.0, -1) xf, yf, zf, xs, ys, zs=gp.geopack.trace(L_value, 0.0, 0.0, 1) # Check radius: r = np.sqrt(xf ** 2 + yf ** 2 + zf ** 2) earth = plt.Circle((0, 0), 1.0, color='k', fill=False) # Plot field fig, ax = plt.subplots() ax.scatter(xn, zn) ax.scatter(xs, zs) ax.add_patch(earth) ax.axis('equal')
4c9df45b6b637fcd01d083c271d5cbf9cfbc3413
c7e028d71b5dd72eb18b72c6733e7e98a969ade6
/src/demos/datastructures/expressioneval.py
30185336f42de290841e528b0e3f0eb704a41207
[ "MIT" ]
permissive
antoniosarosi/algoritmia
da075a7ac29cc09cbb31e46b82ae0b0ea8ee992f
22b7d61e34f54a3dee03bf9e3de7bb4dd7daa31b
refs/heads/master
2023-01-24T06:09:37.616107
2020-11-19T16:34:09
2020-11-19T16:34:09
314,302,653
8
1
null
null
null
null
UTF-8
Python
false
false
2,609
py
#coding: latin1 from algoritmia.problems.traversals.treetraversals import PostorderTreeTraverser #[]dos from algoritmia.datastructures.queues import Lifo #[pre from algoritmia.datastructures.trees import ListOfListsTree class ExpressionEvaluator: def __init__(self, createLifo=lambda: Lifo()): self.createLifo = createLifo def tokenize(self, expression: "str") -> "Iterable<str>": i = 0 while i < len(expression): lexeme = [] if '0' <= expression[i] <= '9': while i < len(expression) and '0' <= expression[i] <= '9': lexeme.append(expression[i]) i += 1 yield int(''.join(lexeme)) elif expression[i] in '+*-/()': yield expression[i] i += 1 else: i += 1 def parse(self, expression: "str") -> "ITree<str>": S = self.createLifo() tree = [] op = {'+': 0, '-': 0, '*': 1, '/': 1} for token in self.tokenize(expression): if type(token) == int: tree.append([token]) elif token in op: while len(S) > 0 and S.top() in op and op[token] <= op[S.top()]: tree[-2:] = [[S.pop(), tree[-2], tree[-1]]] S.push(token) elif token == '(': S.push('(') elif token == ')': while S.top() != '(': tree[-2:] = [[S.pop(), tree[-2], tree[-1]]] S.pop() while len(S) > 0: tree[-2:] = [[S.pop(), tree[-2], tree[-1]]] return ListOfListsTree(tree[0]) #]pre def evaluate(self, exp: "str") -> "int": #[dos tree = self.parse(exp) stack = self.createLifo() visitor = lambda t: self.process_root(t, stack=stack) for dummy in PostorderTreeTraverser().traverse(tree, visitor): pass return stack.pop() def process_root(self, tree: "ITree<str>", stack: "Lifo"): if isinstance(tree.root, str) and tree.root in "+-*/": a, b = stack.pop(), stack.pop() if tree.root == '+': stack.push(b + a) elif tree.root == '-': stack.push(b - a) elif tree.root == '*': stack.push(b * a) else: stack.push(b // a) else: stack.push(tree.root) #]dos if __name__ == "__main__": #[tres ee = ExpressionEvaluator() exp = "2 - 5 + 3 * 6" print('{} -> {}'.format(ee.parse(exp), ee.evaluate(exp))) #]tres
[ "amarzal@localhost" ]
amarzal@localhost
529e7a1ad3229cb026b3acc0d8c25e1c1d835045
2125593138c50b1fba5e46cd4d88d6c04d0b417a
/์•Œ๊ณ ๋ฆฌ์ฆ˜-ํŒŒ์ด์ฐธ/๋ฐฑ์ค€/code_Test/LZW ์••์ถ•.py
19315db3a2344d4ff8407c1596119911f4df610c
[]
no_license
minkishome/TIL-master
5f0e6ef61b34a2983961ccf44f7523603ccb5907
d8edc0ff8abff3b2239a2d751eee263b722013a6
refs/heads/master
2023-01-21T00:43:30.165535
2020-08-25T14:56:18
2020-08-25T14:56:18
203,070,283
0
1
null
2023-01-05T01:08:10
2019-08-19T00:18:31
Python
UTF-8
Python
false
false
895
py
from string import ascii_uppercase def solution(msg): answer = [] ls_abc = [0] + list(ascii_uppercase) idx = 0 flag = len(msg) # print(ls_abc.index('AA')) while idx < flag: word = '' for i in range(idx, flag): word += msg[i] idx += 1 if word in ls_abc: continue else: # ์—†์„ ๊ฒฝ์šฐ ls_abc.append(word) idx -= 1 break # ls_abc.append(word) if idx == flag: answer.append(ls_abc.index(word)) else: answer.append(ls_abc.index(word[:-1])) # print(word) # print(ls_abc) # print(answer) # print(idx) # answer.append(ls_abc.index(word[:-1])) # print(answer) # print(len(msg)) return answer solution('KAKAO') solution('TOBEORNOTTOBEORTOBEORNOT')
41028d5c4ae422f93009422780b1acaf80ec0334
96d77068d6762bad6847a2c74dfd6c220a3fdd75
/features/generate_wordvector_distances.py
d3514741c4fc634bd2fd297014510fcb474f002a
[ "MIT" ]
permissive
SunnyMarkLiu/Kaggle_Quora_Question_Pairs_Intent
402cc2c4eaf40d25794dd6ff0b583411865f884b
1b6914cd08d1bb3e815aacdf0f220458f5d75f7c
refs/heads/master
2021-05-05T12:08:51.823673
2017-10-05T10:42:52
2017-10-05T10:42:52
104,720,649
0
0
null
null
null
null
UTF-8
Python
false
false
4,489
py
#!/usr/local/miniconda2/bin/python # _*_ coding: utf-8 _*_ """ @author: MarkLiu @time : 17-10-5 ไธŠๅˆ11:28 """ from __future__ import absolute_import, division, print_function import os import sys module_path = os.path.abspath(os.path.join('..')) sys.path.append(module_path) import cPickle import numpy as np from utils import data_utils, jobs from sklearn.metrics.pairwise import cosine_distances, euclidean_distances from optparse import OptionParser from conf.configure import Configure def generate_word_vector_map(): """ build index mapping words in the embeddings set to their embedding vector """ embeddings_index = {} embeddings_index_path = '/d_2t/lq/kaggle/Kaggle_Quora_Question_Pairs_Intent/embeddings_index.pkl' if os.path.exists(embeddings_index_path): with open(embeddings_index_path, "rb") as f: embeddings_index = cPickle.load(f) return embeddings_index f = open(Configure.pretrained_wordvectors) for line in f: values = line.split() word = values[0] coefs = np.asarray(values[1:], dtype='float32') embeddings_index[word] = coefs f.close() with open(embeddings_index_path, "wb") as f: cPickle.dump(embeddings_index, f, -1) return embeddings_index def get_wordvector(word): embedding_vector = embeddings_index.get(word) embedding_vector = embedding_vector if embedding_vector is not None else [0] * 300 return embedding_vector def generate_wordvectors_features(df): df['cleaned_question1_vcs'] = df['cleaned_question1'].map(lambda x: [get_wordvector(word) for word in str(x).split()]) df['cq1_sentence_vector'] = df['cleaned_question1_vcs'].map(lambda x: np.mean(x, axis=0) if len(x) > 0 else [0] * 300) del df['cleaned_question1_vcs'] df['cleaned_question2_vcs'] = df['cleaned_question2'].map(lambda x: [get_wordvector(word) for word in str(x).split()]) df['cq2_sentence_vector'] = df['cleaned_question2_vcs'].map(lambda x: np.mean(x, axis=0) if len(x) > 0 else [0] * 300) del df['cleaned_question2_vcs'] return df def generate_wordvector_distance(df): df['cp1_mean_vector'] = df['cq1_sentence_vector'].map(lambda x: np.mean(x, axis=0)) df['cp2_mean_vector'] = df['cq2_sentence_vector'].map(lambda x: np.mean(x, axis=0)) df['cp_wordvector_cosine_distances'] = df.apply(lambda row: cosine_distances(np.array(row['cq1_sentence_vector']).reshape(1, -1), np.array(row['cq2_sentence_vector']).reshape(1, -1))[0][0], axis=1) df['cp_wordvector_euclidean_distances'] = df.apply(lambda row: euclidean_distances(np.array(row['cq1_sentence_vector']).reshape(1, -1), np.array(row['cq2_sentence_vector']).reshape(1, -1))[0][0], axis=1) del df['cq1_sentence_vector'] del df['cq2_sentence_vector'] return df parser = OptionParser() parser.add_option( "-d", "--base_data_dir", dest="base_data_dir", default="perform_stem_words", help="""base dataset dir: perform_stem_words, perform_no_stem_words, full_data_perform_stem_words, full_data_perform_no_stem_words""" ) options, _ = parser.parse_args() print("========== generate word vector features ==========") base_data_dir = options.base_data_dir op_scope = 5 if os.path.exists(Configure.processed_train_path.format(base_data_dir, op_scope + 1)): exit() print("---> load datasets from scope {}".format(op_scope)) train, test = data_utils.load_dataset(base_data_dir, op_scope) print("train: {}, test: {}".format(train.shape, test.shape)) print('---> generate word vector mapping') embeddings_index = generate_word_vector_map() print('---> generate wordvectors features') train = jobs.parallelize_dataframe(train, generate_wordvectors_features) test = jobs.parallelize_dataframe(test, generate_wordvectors_features) print('---> generate wordvector distance features') train = jobs.parallelize_dataframe(train, generate_wordvector_distance) test = jobs.parallelize_dataframe(test, generate_wordvector_distance) print("train: {}, test: {}".format(train.shape, test.shape)) print("---> save datasets") data_utils.save_dataset(base_data_dir, train, test, op_scope + 1)
0a0065801350f7189f26c180481a975d51f3d661
abef98cfa3fb2c4626eb8c0a77c1080992d9b11b
/c/python-interface/spam/test-spam.py
c714b78481ecb371933cc40cde3dd794cddbcf59
[]
no_license
mikebentley15/sandbox
ff88ed9dc4b9ac37668142a319d0a8162e88e9e3
4f5869544de18be21f415a9d6f9b71c362307f27
refs/heads/main
2023-04-14T00:22:34.623441
2023-03-24T21:43:56
2023-03-24T21:43:56
116,987,549
6
3
null
2022-10-26T03:02:06
2018-01-10T17:14:54
C++
UTF-8
Python
false
false
947
py
#!/usr/bin/env python3 import spam print() status = spam.system("ls -l | wc") print("status: ", status) print() print('Expect spam.SpamError') try: status = spam.check_system("false") print("status: ", status) except spam.SpamError as ex: print(' ', ex) print(' ignored') print() s = spam.Spam("Real brand of SPAM") s.print() print(s) print() n1 = spam.Noddy1() print(n1) print() n2 = spam.Noddy2(first="Mike", last="Bentley") print(n2) print("Name: ", n2.name()) print() n2 = spam.Noddy2(first=2) print(n2) print("Name: ", n2.name()) print() n3 = spam.Noddy3(first="Mike", last="Bentley") print(n3) print("Name: ", n3.name()) print() print('Expect TypeError') try: spam.Noddy3(first=3) except TypeError as ex: print(' ', ex) print(' ignored') print() n4 = spam.Noddy4(first="Mike", last="Bentley") print(n4) print("Name: ", n4.name()) print() n4 = spam.Noddy4(first=2) print(n4) print("Name: ", n4.name())
f2795230818272b8a213a4a39e164aa72cffeb1a
0629ada6a00ceff0dc567b965ec021278ca27a7f
/pyhon_zh_web/pageobject/Home_page.py
b0428c5fb1c75ac098c54857b75b2147cf16d303
[]
no_license
zhaozongzhao/sqbj_web
48310e41dc914ae82bc3fa919b63a9ffea04f22e
7d33acbaca18b6764f80e2247ff631e46d5b0b89
refs/heads/master
2020-04-09T18:22:49.280922
2019-09-26T10:01:53
2019-09-26T10:01:53
160,510,366
0
0
null
null
null
null
UTF-8
Python
false
false
1,277
py
from selenium import webdriver import time from selenium.webdriver.support.ui import WebDriverWait import traceback from Util.ParsePageObjectRepository import * from Util.var import * from Util.ObjectMap import * from selenium.webdriver.support.ui import Select class HomePage(object): def __init__(self,driver): self.driver = driver self.paser_page_object = ParsePageObjectRepository('PageObjectRepository') self.login_iteim = self.paser_page_object.getItemSection('zh_page_home') self.wait = WebDriverWait(self.driver,10,0.2) #ๅฎšไฝ็‰ฉไธšๆ”ถ่ดน def open_charge(self): locateType, locateExpression = self.login_iteim['page.charge'].split('>') charge = getElement(self.driver,locateType,locateExpression) return charge #ๅฎšไฝๅŸบ็ก€ๆœๅŠก def open_basic(self): locateType, locateExpression = self.login_iteim['page.basic_services'].split('>') charge = getElement(self.driver,locateType,locateExpression) return charge def get_login_name(self): locateType, locateExpression = self.login_iteim['page.personal'].split('>') time.sleep(1) name = getElement(self.driver,locateType,locateExpression).text print(name) return name
1851b1294e96a418b521d90051a6aa7ba5f128fc
efd8628adc042ae2d58fa89cc31a5c1c80aa94f6
/data/stochastic_dataset_script/load_save_data.py
faf224b7b20e02dfae644277e27d62b61bfaff04
[]
no_license
Xharlie/stochast_dynamic_for_video_infilling
d7e0bfaf8b71cf3f39170793e5a1a50b289aee40
a825de4c5178f7084925817f0631ac331073866f
refs/heads/master
2021-03-27T09:11:15.478067
2019-10-23T17:59:25
2019-10-23T17:59:25
110,137,739
6
1
null
null
null
null
UTF-8
Python
false
false
5,896
py
import tensorflow as tf import numpy as np import imageio import cv2 def vids_2_frames(tfiles, data_path, image_size_h, image_size_w, channel): vids=[] actions=[] for i in xrange(len(tfiles)): f_name = tfiles[i] tokens = f_name.split() vid_path = data_path + tokens[0] + ("_uncomp.avi" if channel ==1 else "") print "vid_path:", vid_path try: vid = imageio.get_reader(vid_path, "ffmpeg") if len(tokens) < 2: low = 1 high = vid.get_length() else: low = int(tokens[1]) high = np.min([int(tokens[2]), vid.get_length()]) seq = np.zeros((image_size_h, image_size_w, high - low + 1, channel), dtype=np.uint8) for t in xrange(high - low + 1): if channel == 1: # w,h not h,w here! img = cv2.cvtColor(cv2.resize(vid.get_data(t), (image_size_w, image_size_h)), cv2.COLOR_RGB2GRAY) else: img = cv2.resize(vid.get_data(t),(image_size_w, image_size_h)) # print img.shape, seq.shape if len(img.shape) == 2: seq[:, :, t, :] = img[:, :, None] else: seq[:, :, t, :] = img[:, :, :] print tokens[0] if (len(tokens[0].split("_"))) > 0: actions.append(tokens[0].split("_")[1]) vids.append(seq) except KeyError: print KeyError.message continue return vids, actions def save_data2record(tfiles, data_path, image_size_h, image_size_w, tf_record_dir, channel): vids, actions = vids_2_frames(tfiles, data_path, image_size_h, image_size_w, channel) print actions tfrecords_filename = 'tfrecords' writer = tf.python_io.TFRecordWriter(tf_record_dir + tfrecords_filename) for i in xrange(len(vids)): vids_record = tf.train.Example(features=tf.train.Features( feature={ 'height': _int64_feature(image_size_h), 'width': _int64_feature(image_size_w), 'depth': _int64_feature(vids[i].shape[2]), 'channels': _int64_feature(channel), 'action': _bytes_feature(actions[i]), 'vid': _bytes_feature(vids[i].tostring()) } )) writer.write(vids_record.SerializeToString()) print "finish writing video{} to {}".format(i, tf_record_dir + tfrecords_filename) writer.close() return vids def save_data2records(tfiles, data_path, image_size_h, image_size_w, tf_record_dir, channel): tf_size = 800 start = 0 end = 0 files=[] while start <= len(tfiles): end = min(start + tf_size, len(tfiles) + 1) if end + tf_size / 4 > len(tfiles): end = len(tfiles) + 1 print "file start and end:",start,end vids, actions = vids_2_frames(tfiles[start:end], data_path, image_size_h, image_size_w, channel) tfrecords_filename = 'tfrecords' + str(start / tf_size) writer = tf.python_io.TFRecordWriter(tf_record_dir + tfrecords_filename) for i in xrange(len(vids)): vids_record = tf.train.Example(features=tf.train.Features( feature={ 'height': _int64_feature(image_size_h), 'width': _int64_feature(image_size_w), 'depth': _int64_feature(vids[i].shape[2]), 'channels': _int64_feature(channel), 'action': _bytes_feature(actions[i]), 'vid': _bytes_feature(vids[i].tostring()) } )) writer.write(vids_record.SerializeToString()) print "finish writing video{} to {}".format(i, tf_record_dir + tfrecords_filename) files.append(tf_record_dir + tfrecords_filename) writer.close() start = end return files def load_records(tf_record_files, length=None): vids = [] for i in xrange(len(tf_record_files)): print "loading {}".format(tf_record_files[i]) record_iterator = tf.python_io.tf_record_iterator(path=tf_record_files[i]) for string_record in record_iterator: example = tf.train.Example() example.ParseFromString(string_record) height = int(example.features.feature['height'] .int64_list .value[0]) width = int(example.features.feature['width'] .int64_list .value[0]) depth = int(example.features.feature['depth'] .int64_list .value[0]) vid_string = (example.features.feature['vid'] .bytes_list .value[0]) vid_raw = np.fromstring(vid_string, dtype=np.uint8) vid = vid_raw.reshape((height, width, depth, -1)) if length is not None and vid.shape[-2] < length: print length, vid.shape[-2] continue vids.append(vid) print "finish {}".format(tf_record_files[i]) print len(vids), " videos in total" return vids def load_record_inbatch(file_queue): reader = tf.TFRecordReader() _, serialized_example = reader.read(file_queue) features = tf.parse_single_example(serialized_example, features={ 'depth': tf.FixedLenFeature([1], tf.int64), 'vid': tf.FixedLenFeature([],tf.string), } ) depth = tf.cast(features['depth'], tf.int32) return features["vid"], depth def _int64_feature(value): return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) def _bytes_feature(value): return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
ad5dc2ef13c059d6e792cddc072b9046d03f772e
e6172246d02ab175f7490e2791ef691d670c72b1
/.history/data-comparaison_20210202103348.py
2e42eeed44f3b2e04b3eea2508fc1273d7527ee5
[]
no_license
PaulSouille/rendu-data-tp1
2711ddd7f96eb7c1cf5ca350c0b0c40f767e5d43
8dcb85e4f5db38420be6f12bd18efb945d570aa2
refs/heads/master
2023-02-23T12:57:28.089782
2021-02-02T12:09:29
2021-02-02T12:09:29
327,024,559
0
0
null
null
null
null
UTF-8
Python
false
false
8,881
py
import matplotlib matplotlib.use("TkAgg") import matplotlib.pyplot as plt import numpy as np import glob from tkinter import * from matplotlib.backends.backend_tkagg import ( FigureCanvasTkAgg, NavigationToolbar2Tk) from matplotlib.backend_bases import key_press_handler import pandas as pd from pandas import ExcelWriter from pandas import ExcelFile array_csv = glob.glob("data/*.xlsx") array_df = [] for file in array_csv: df = pd.read_excel(file, skiprows = 2, nrows= 32, usecols = 'C:O',sheet_name=0) df = df.drop(df.index[0]) df.drop(df.columns[0], axis=1, inplace=True) array_df.append(df) def clear_data(array): for index,data in enumerate(array, start=1): # Get current value of our index current = data # Retrieve the value of the next day if(index < len(array) and is_float_try(current)): if(not is_float_try(array[index+1]) or abs(array[index+1]-float(current)) > 15): next_ = float(array[index+2]) else: next_ = float(array[index+1]) # Check if the current index isn't a String and if so convert it to the average value of the day before/after if(not is_float_try(current)): average = float((previous + next_)/2) array[index]=average # If the absolute difference between next day and previous day is > 15ยฐC then it's considered as an error # We check values and the average difference is 15ยฐC expect for records if(index > 1): if(not is_float_try(array[index-1]) and abs(array[index-1]-float(current)) > 15): previous = float(array[index-2]) else: previous = float(array[index-1]) if(not is_float_try(current) or abs(previous-float(current)) > 15 or abs(next_-float(current)) > 15): average = (previous + next_)/2 print(str(index) + " : " + str(current)) print(str(previous) + " : " + str(next_)) array[index]=average def is_float_try(str): try: float(str) return True except ValueError: return False def config_plot(): fig, ax = plt.subplots() return (fig, ax) class matplotlibSwitchGraphs: def __init__(self, master): self.master = master self.frame = Frame(self.master) self.fig, self.ax = config_plot() self.graphIndex = 0 self.canvas = FigureCanvasTkAgg(self.fig, self.master) self.config_window() self.draw_graph('janvier') self.frame.pack(expand=YES, fill=BOTH) def config_window(self): self.canvas.mpl_connect("key_press_event", self.on_key_press) toolbar = NavigationToolbar2Tk(self.canvas, self.master) toolbar.update() self.canvas.get_tk_widget().pack(side=TOP, fill=BOTH, expand=1) self.button = Button(self.master, text="Quit", command=self._quit) self.button.pack(side=BOTTOM) self.button_back = Button(self.master, text="Graphique prรฉcรฉdent", command=self.back_graph) self.button_back.pack(side=BOTTOM) self.button_next = Button(self.master, text="Graphique suivant", command=self.next_graph) self.button_next.pack(side=BOTTOM) def draw_graph(self, month): if(month == 'annรฉe'): df_temp = pd.DataFrame(columns = ['Tempรฉrature']) df_temp_error = pd.DataFrame(columns = ['Tempรฉrature']) for column in df: for value in df[column]: df_temp = df_temp.append({'Tempรฉrature':value},ignore_index=True) for column in df_error: for value in df_error[column]: df_temp_error = df_temp_error.append({'Tempรฉrature':value},ignore_index=True) df_temp.dropna() df_temp_error.dropna() self.ax.clear() self.ax.plot(df_temp['Tempรฉrature']) self.ax.plot(df_temp_error['Tempรฉrature']) self.ax.set(title='Annรฉe') self.canvas.draw() else: for df,index in enumerate(array_df): clear_data(df[month]) self.ax.clear() self.ax.plot(df[month],label=array_csv[index]) self.ax.plot(df[month],label='Jeux de donnรฉes propre') self.ax.legend() self.ax.set(title=month) self.canvas.draw() def on_key_press(event): key_press_handler(event, self.canvas, toolbar) def _quit(self): self.master.quit() def next_graph(self): if self.graphIndex == 0: self.draw_graph('fรฉvrier') self.graphIndex = 1 elif self.graphIndex == 1: self.draw_graph('mars') self.graphIndex = 2 elif self.graphIndex == 2: self.draw_graph('avril') self.graphIndex = 3 elif self.graphIndex == 3: self.draw_graph('mai') self.graphIndex = 4 elif self.graphIndex == 4: self.draw_graph('juin') self.graphIndex = 5 elif self.graphIndex == 5: self.draw_graph('juillet') self.graphIndex = 6 elif self.graphIndex == 6: self.draw_graph('aoรปt') self.graphIndex = 7 elif self.graphIndex == 7: self.draw_graph('septembre') self.graphIndex = 8 elif self.graphIndex == 8: self.draw_graph('octobre') self.graphIndex = 9 elif self.graphIndex == 9: self.draw_graph('novembre') self.graphIndex = 10 elif self.graphIndex == 10: self.draw_graph('dรฉcembre') self.graphIndex = 11 elif self.graphIndex == 11: self.draw_graph('janvier') self.graphIndex = 12 elif self.graphIndex == 12: self.draw_graph('annรฉe') self.graphIndex = 0 def back_graph(self): if self.graphIndex == 0: self.draw_graph('dรฉcembre') self.graphIndex = 11 elif self.graphIndex == 11: self.draw_graph('novembre') self.graphIndex = 10 elif self.graphIndex == 10: self.draw_graph('octobre') self.graphIndex = 9 elif self.graphIndex == 9: self.draw_graph('septembre') self.graphIndex = 8 elif self.graphIndex == 8: self.draw_graph('aoรปt') self.graphIndex = 7 elif self.graphIndex == 7: self.draw_graph('juillet') self.graphIndex = 6 elif self.graphIndex == 6: self.draw_graph('juin') self.graphIndex = 5 elif self.graphIndex == 5: self.draw_graph('mai') self.graphIndex = 4 elif self.graphIndex == 4: self.draw_graph('avril') self.graphIndex = 3 elif self.graphIndex == 3: self.draw_graph('mars') self.graphIndex = 2 elif self.graphIndex == 2: self.draw_graph('fรฉvrier') self.graphIndex = 1 elif self.graphIndex == 1: self.draw_graph('janvier') self.graphIndex = 12 elif self.graphIndex == 12: self.draw_graph('annรฉe') self.graphIndex = 0 def main(): root = Tk() matplotlibSwitchGraphs(root) root.mainloop() def show_graph(): main() fenetre = Tk() fenetre.title("Data tp 1") fenetre.geometry('800x800') canvas=Canvas(fenetre,bg='#FFFFFF',width=800,height=800,scrollregion=(0,0,1500,1500)) hbar=Scrollbar(fenetre,orient=HORIZONTAL) hbar.pack(side=BOTTOM,fill=X) hbar.config(command=canvas.xview) vbar=Scrollbar(fenetre,orient=VERTICAL) vbar.pack(side=RIGHT,fill=Y) vbar.config(command=canvas.yview) canvas.config(width=800,height=800) canvas.config(xscrollcommand=hbar.set, yscrollcommand=vbar.set) canvas.pack(side=LEFT,expand=True,fill=BOTH) canvas.create_text(100,20,fill="black",font="Times 15 bold", text="Jeux de donnรฉes base") for index,df in enumerate(array_df): canvas.create_text(400+(index*300),20,fill="black",font="Times 15 bold", text=array_csv[index]) for index_, column in enumerate(df): canvas.create_text(400,50+index_*40,fill="black",font="Times 15 bold", text="Mois : "+str(column)) b = Button(fenetre, text="Afficher les graphiques", width=10, command=show_graph,background="white",foreground="black",activebackground="white",activeforeground="black") b.place(x=600, y=20, anchor="nw", width=150, height=30) fenetre.mainloop()
28d5878f4c2a1cf00f7f31d34b8e4562a84581ec
347f0db8fa1d2d589fd20bffd52f1a1b2030aa0b
/docs/conf.py
d9d82c156cbb01277f482730530c9b5b822443f0
[ "MIT" ]
permissive
szymanskirafal/tryread
45879f8f4867851dc5f8697e1dc98bf68c1a58e4
f7e395c318e33de84992c79eaa5844028c378a2d
refs/heads/master
2021-07-21T11:50:51.702422
2018-10-05T13:37:34
2018-10-05T13:37:34
134,755,211
0
0
null
null
null
null
UTF-8
Python
false
false
7,904
py
# Tryread documentation build configuration file, created by # sphinx-quickstart. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import os import sys # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # sys.path.insert(0, os.path.abspath('.')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # The suffix of source filenames. source_suffix = ".rst" # The encoding of source files. # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = "index" # General information about the project. project = "Tryread" copyright = """2018, Rafal Szymanski""" # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = "0.1" # The full version, including alpha/beta/rc tags. release = "0.1" # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ["_build"] # The reST default role (used for this markup: `text`) to use for all documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = "sphinx" # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = "default" # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". # html_title = None # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = "tryreaddoc" # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # 'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ( "index", "tryread.tex", "Tryread Documentation", """Rafal Szymanski""", "manual", ) ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # If true, show page references after internal links. # latex_show_pagerefs = False # If true, show URL addresses after external links. # latex_show_urls = False # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ( "index", "tryread", "Tryread Documentation", ["""Rafal Szymanski"""], 1, ) ] # If true, show URL addresses after external links. # man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ( "index", "tryread", "Tryread Documentation", """Rafal Szymanski""", "Tryread", """Paas for readers and writers.""", "Miscellaneous", ) ] # Documents to append as an appendix to all manuals. # texinfo_appendices = [] # If false, no module index is generated. # texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. # texinfo_show_urls = 'footnote'
263512d0be279d0f6bd225b8a3da8f787fa2f742
57ac8a6a7b61d2d740f877d29cab5f208ba74bfc
/thinc/neural/ids2vecs.py
d617e567bac12e3aeb506b92dcd53f8e081b1007
[ "MIT" ]
permissive
kootenpv/thinc
0a75509733aa5afb1b59115a13a78aa6d3a88c24
6de95eff2079a4fb880e9de6d756be9aa59db480
refs/heads/master
2021-01-11T20:52:03.566727
2017-01-16T17:29:15
2017-01-16T17:29:15
79,200,645
0
0
null
2017-01-17T07:25:58
2017-01-17T07:25:58
null
UTF-8
Python
false
false
55
py
from ._classes.window_encode import MaxoutWindowEncode
4d33d5ef634b5714a020bc5477a6c0a495e1ad47
fa3d19403750d300a4228fa0fc414c88c49a6d35
/bin/pfurl
37f78b8d6bb0f06d9b056bd75cde10fb8222b4ab
[ "MIT" ]
permissive
priyakapadia/pfurl
2c700217d0f2c623e5fddde62c96f10502eebb49
3392347b5874fc4af7f1f3798e692bd0e3733351
refs/heads/master
2021-01-20T02:24:47.745713
2017-04-21T19:36:07
2017-04-21T19:36:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,075
#!/usr/bin/env python3.5 # # (c) 2017 Fetal-Neonatal Neuroimaging & Developmental Science Center # Boston Children's Hospital # # http://childrenshospital.org/FNNDSC/ # [email protected] # import sys, os sys.path.insert(1, os.path.join(os.path.dirname(__file__), '..')) import socket import json import sys import pfurl from argparse import RawTextHelpFormatter from argparse import ArgumentParser from pfurl._colors import Colors str_defIP = [l for l in ([ip for ip in socket.gethostbyname_ex(socket.gethostname())[2] if not ip.startswith("127.")][:1], [[(s.connect(('8.8.8.8', 53)), s.getsockname()[0], s.close()) for s in [socket.socket(socket.AF_INET, socket.SOCK_DGRAM)]][0][1]]) if l][0][0] str_defPort = '5055' str_version = "1.1.1" str_desc = Colors.CYAN + """ __ _ / _| | | _ __ | |_ _ _ _ __| | | '_ \| _| | | | '__| | | |_) | | | |_| | | | | | .__/|_| \__,_|_| |_| | | |_| Process-File-over-URL A simple URL-based communication and control script. -- version """ + \ Colors.YELLOW + str_version + Colors.CYAN + """ -- 'pfurl' sends REST conforming commands and data to remote services, similar in some ways to the well-known CLI tool, 'curl' or the Python tool, 'httpie' 'pfurl' not only sends curl type payloads, but can also zip and unzip entire directories of files for transmission and reception. 'pfurl' is designed to be part of the ChRIS/CHIPS framework. """ + \ Colors.BLINK_RED + """ +---------------------------------------------------------+ | NOTE THAT 'pfurl' COMMS ARE NOT NATIVELY ENCRYPTED! | | USE AN SSH TUNNEL IF YOU NEED SECURE DATA TRANSMISSION. | +---------------------------------------------------------+ """ + Colors.NO_COLOUR parser = ArgumentParser(description = str_desc, formatter_class = RawTextHelpFormatter) parser.add_argument( '--msg', action = 'store', dest = 'msg', default = '', help = 'Message to send to pman or similar listener.' ) parser.add_argument( '--verb', action = 'store', dest = 'verb', default = 'POST', help = 'REST verb.' ) parser.add_argument( '--http', action = 'store', dest = 'http', default = '%s:%s' % (str_defIP, str_defPort), help = 'HTTP string: <IP>[:<port>]</some/path/>' ) parser.add_argument( '--auth', action = 'store', dest = 'auth', default = '', help = 'user:passwd authorization' ) parser.add_argument( '--jsonwrapper', action = 'store', dest = 'jsonwrapper', default = '', help = 'wrap msg in optional field' ) parser.add_argument( '--quiet', help = 'if specified, only echo final JSON output returned from server', dest = 'b_quiet', action = 'store_true', default = False ) parser.add_argument( '--raw', help = 'if specified, do not wrap return data from remote call in json field', dest = 'b_raw', action = 'store_true', default = False ) parser.add_argument( '--oneShot', help = 'if specified, transmit a shutdown ctl to the remote service after event', dest = 'b_oneShot', action = 'store_true', default = False ) parser.add_argument( '--man', help = 'request help: --man commands', dest = 'man', action = 'store', default = '' ) parser.add_argument( '--content-type', help = 'content type', dest = 'contentType', action = 'store', default = '' ) parser.add_argument( '--jsonpprintindent', help = 'pretty print json-formatted payloads', dest = 'jsonpprintindent', action = 'store', default = 0 ) parser.add_argument( '--httpResponse', help = 'if specified, return HTTP responses', dest = 'b_httpResponse', action = 'store_true', default = False ) parser.add_argument( '--version', help = 'if specified, print version number', dest = 'b_version', action = 'store_true', default = False ) args = parser.parse_args() if args.b_version: print("Version: %s" % str_version) sys.exit(1) pfurl = pfurl.Pfurl( msg = args.msg, http = args.http, verb = args.verb, contentType = args.contentType, auth = args.auth, b_raw = args.b_raw, b_quiet = args.b_quiet, b_oneShot = args.b_oneShot, b_httpResponse = args.b_httpResponse, jsonwrapper = args.jsonwrapper, man = args.man, startFromCLI = True, desc = str_desc ) if not args.jsonpprintindent: print(pfurl()) else: print(json.dumps(json.loads(pfurl()), indent=int(args.jsonpprintindent))) sys.exit(0)
7638f5b06086fd4352f99f4e28e29719f59c1a59
3b786d3854e830a4b46ee55851ca186becbfa650
/SystemTesting/pylib/nsx/vsm/edge/edge_firewall_schema/edge_firewall_rule_application_schema.py
e6b475f52d5dcc3b1981baeeef177e822df242aa
[]
no_license
Cloudxtreme/MyProject
d81f8d38684333c22084b88141b712c78b140777
5b55817c050b637e2747084290f6206d2e622938
refs/heads/master
2021-05-31T10:26:42.951835
2015-12-10T09:57:04
2015-12-10T09:57:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
674
py
import base_schema from edge_firewall_rule_application_service_schema import FirewallRuleApplicationServiceSchema class FirewallRuleApplicationSchema(base_schema.BaseSchema): _schema_name = "application" def __init__(self, py_dict=None): """ Constructor to create FirewallRuleApplicationSchema object @param py_dict : python dictionary to construct this object """ super(FirewallRuleApplicationSchema, self).__init__() self.set_data_type('xml') self.applicationId = None self.service = FirewallRuleApplicationServiceSchema() if py_dict is not None: self.get_object_from_py_dict(py_dict)
02519f538cf828be80054c0bca5864505200a4ce
9e0c8ee707cba341ccfd5007cc94ab122687ac4c
/isho/apps.py
9983d2dc520fb2b9938c45e5508ee6897e50a61b
[]
no_license
rakib06/POS
a9eb467a4528c6d6956acf42c73314626b858418
e1390c3353280fb9cbabf4ed957d92a4f0852b3f
refs/heads/master
2020-12-21T11:10:33.888058
2020-01-28T13:11:12
2020-01-28T13:11:12
236,414,785
0
0
null
null
null
null
UTF-8
Python
false
false
83
py
from django.apps import AppConfig class IshoConfig(AppConfig): name = 'isho'
7108aea2c66162999af1e28d09bad1a12b17d561
6a403251befa23a48229831baf58af247db7b855
/src/utils.py
bce4a71b16ecbc75c38d215f0361be0c32f2568f
[]
no_license
huasmc/RemindMeBot
0003fde7f4be24beae76659082619e0a38f2d48b
ad3d5749935a71973be88985059ad7f94f73ad6e
refs/heads/master
2023-03-01T19:46:42.901881
2021-02-09T03:49:29
2021-02-09T03:49:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,214
py
import re import discord_logging import dateparser from dateutil.relativedelta import relativedelta from dateparser.search import search_dates import parsedatetime import pytz from datetime import datetime from datetime import timedelta import urllib.parse import urllib3 import prawcore import requests import counters import static log = discord_logging.get_logger() debug_time = None cal = parsedatetime.Calendar() def process_error(message, exception, traceback): is_transient = \ isinstance(exception, prawcore.exceptions.ServerError) or \ isinstance(exception, prawcore.exceptions.ResponseException) or \ isinstance(exception, prawcore.exceptions.RequestException) or \ isinstance(exception, requests.exceptions.Timeout) or \ isinstance(exception, requests.exceptions.ReadTimeout) or \ isinstance(exception, requests.exceptions.RequestException) or \ isinstance(exception, urllib3.exceptions.ReadTimeoutError) log.warning(f"{message}: {type(exception).__name__} : {exception}") if is_transient: log.info(traceback) counters.errors.labels(type='api').inc() else: log.warning(traceback) counters.errors.labels(type='other').inc() return is_transient def find_reminder_message(body, trigger): line_match = re.search( r'(?:{trigger}.+)(?:(?:\[)([^\]]+?)(?:\])|(?:\")([^\"]+?)(?:\")|(?:โ€œ)([^โ€]*?)(?:โ€))(?:[^(]|\n|$)'.format( trigger=trigger), body, flags=re.IGNORECASE) if line_match: return line_match.group(1) or line_match.group(2) or line_match.group(3) match = re.search( r'(?:(?:\[)([^\]]+?)(?:\])|(?:\")([^\"]+?)(?:\")|(?:โ€œ)([^โ€]*?)(?:โ€))(?:[^(]|\n|$)', body, flags=re.IGNORECASE) if match: return match.group(1) or match.group(2) or match.group(3) else: return None def find_reminder_time(body, trigger): regex_string = r'(?:{trigger}.? +)(.*?)(?:\[|\n|\"|โ€œ|$)'.format(trigger=trigger) times = re.findall(regex_string, body, flags=re.IGNORECASE) if len(times) > 0 and times[0] != "": return times[0][:80] regex_string = r'(?:{trigger}.? *)(.*?)(?:\[|\n|\"|โ€œ|$)'.format(trigger=trigger) times = re.findall(regex_string, body, flags=re.IGNORECASE) if len(times) > 0 and times[0] != "": return times[0][:80] else: return None def parse_time(time_string, base_time, timezone_string): base_time = datetime_as_timezone(base_time, timezone_string) try: date_time = dateparser.parse( time_string, languages=['en'], settings={"PREFER_DATES_FROM": 'future', "RELATIVE_BASE": base_time.replace(tzinfo=None)}) except Exception: date_time = None if date_time is None: try: results = search_dates( time_string, languages=['en'], settings={"PREFER_DATES_FROM": 'future', "RELATIVE_BASE": base_time.replace(tzinfo=None)}) if results is not None: temp_time = results[0][1] if temp_time.tzinfo is None: temp_time = datetime_force_utc(temp_time) if temp_time > base_time: date_time = results[0][1] else: date_time = None except Exception: date_time = None if date_time is None: try: date_time, result_code = cal.parseDT(time_string, base_time) if result_code == 0: date_time = None except Exception: date_time = None if date_time is None: return None if date_time.tzinfo is None: if timezone_string is not None: date_time = pytz.timezone(timezone_string).localize(date_time) else: date_time = datetime_force_utc(date_time) date_time = datetime_as_utc(date_time) return date_time def render_time(date_time, user=None, format_string=None): timezone = user.timezone if user is not None else None time_format = user.time_format if user is not None else None if format_string is None: if time_format == "12": format_string = "%Y-%m-%d %I:%M:%S %p %Z" else: format_string = "%Y-%m-%d %H:%M:%S %Z" bldr = str_bldr() bldr.append("[**") bldr.append(datetime_as_timezone(date_time, timezone).strftime(format_string)) bldr.append("**](http://www.wolframalpha.com/input/?i=") bldr.append(date_time.strftime('%Y-%m-%d %H:%M:%S %Z').replace(" ", "%20")) bldr.append(" To Local Time".replace(" ", "%20")) bldr.append(")") return ''.join(bldr) def render_time_diff(start_date, end_date): seconds = int((end_date - start_date).total_seconds()) if seconds > 59: try: adjusted_end_date = start_date + relativedelta(seconds=int(min(seconds * 1.02, seconds + 60 * 60 * 24))) except OverflowError: adjusted_end_date = datetime_force_utc(datetime(year=9999, month=12, day=31)) delta = relativedelta(adjusted_end_date, start_date) else: delta = relativedelta(end_date, start_date) if delta.years > 0: return f"{delta.years} year{('s' if delta.years > 1 else '')}" elif delta.months > 0: return f"{delta.months} month{('s' if delta.months > 1 else '')}" elif delta.days > 0: return f"{delta.days} day{('s' if delta.days > 1 else '')}" elif delta.hours > 0: return f"{delta.hours} hour{('s' if delta.hours > 1 else '')}" elif delta.minutes > 0: return f"{delta.minutes} minute{('s' if delta.minutes > 1 else '')}" elif delta.seconds > 0: return f"{delta.seconds} second{('s' if delta.seconds > 1 else '')}" else: return "" def message_link(message_id, np=False): return f"https://{('np' if np else 'www')}.reddit.com/message/messages/{message_id}" def reddit_link(slug, np=False): return f"https://{('np' if np else 'www')}.reddit.com{slug}" def id_from_fullname(fullname): return re.sub(r't\d_', "", fullname) def datetime_as_timezone(date_time, timezone_string): if timezone_string is None: return date_time else: return date_time.astimezone(pytz.timezone(timezone_string)) def datetime_as_utc(date_time): return date_time.astimezone(pytz.utc) def datetime_force_utc(date_time): return pytz.utc.localize(date_time) def time_offset(date_time, hours=0, minutes=0, seconds=0): if date_time is None: return True return date_time < datetime_now() - timedelta(hours=hours, minutes=minutes, seconds=seconds) def add_years(date_time, years): try: return date_time.replace(year=date_time.year + years) except ValueError: return date_time + (datetime(date_time.year + years, 3, 1) - datetime(date_time.year, 3, 1)) def get_next_anniversary(account_created_utc): if account_created_utc is None: log.info("Account creation date is none") return datetime_now() account_created = datetime_from_timestamp(account_created_utc) next_anniversary = add_years(account_created, datetime_now().year - account_created.year) if next_anniversary < datetime_now(): next_anniversary = add_years(next_anniversary, 1) log.debug( f"Account created {get_datetime_string(account_created)}, anniversary {get_datetime_string(next_anniversary)}") return next_anniversary def datetime_now(): if debug_time is None: return datetime_force_utc(datetime.utcnow().replace(microsecond=0)) else: return debug_time def datetime_from_timestamp(timestamp): return datetime_force_utc(datetime.utcfromtimestamp(timestamp)) def get_datetime_string(date_time, convert_utc=True, format_string="%Y-%m-%d %H:%M:%S"): if date_time is None: return "" if convert_utc: date_time = datetime_as_utc(date_time) return date_time.strftime(format_string) def parse_datetime_string(date_time_string, force_utc=True, format_string="%Y-%m-%d %H:%M:%S"): if date_time_string is None or date_time_string == "None" or date_time_string == "": return None date_time = datetime.strptime(date_time_string, format_string) if force_utc: date_time = datetime_force_utc(date_time) return date_time def html_encode(message): return urllib.parse.quote(message, safe='') def build_message_link(recipient, subject, content=None): base = "https://np.reddit.com/message/compose/?" bldr = str_bldr() bldr.append(f"to={recipient}") bldr.append(f"subject={html_encode(subject)}") if content is not None: bldr.append(f"message={html_encode(content)}") return base + '&'.join(bldr) def replace_np(link): return re.sub(r"(www|old|new)\.reddit\.com", "np.reddit.com", link) def get_footer(bldr=None): if bldr is None: bldr = str_bldr() bldr.append("\n\n") bldr.append("*****") bldr.append("\n\n") bldr.append("|[^(Info)](") bldr.append(replace_np(static.INFO_POST)) bldr.append(")|[^(Custom)](") bldr.append(build_message_link( static.ACCOUNT_NAME, "Reminder", f"[Link or message inside square brackets]\n\n{static.TRIGGER}! Time period here" )) bldr.append(")") bldr.append("|[^(Your Reminders)](") bldr.append(build_message_link( static.ACCOUNT_NAME, "List Of Reminders", "MyReminders!" )) bldr.append(")") bldr.append("|[^(Feedback)](") bldr.append(build_message_link( static.OWNER, "RemindMeBot Feedback" )) bldr.append(")") bldr.append("|\n|-|-|-|-|") return bldr def str_bldr(): return [] def bldr_length(bldr): length = 0 for item in bldr: length += len(item) return length def requests_available(requests_pending): if requests_pending == 0: return 0 elif requests_pending < 200: return 30 else: return min(1000, int(requests_pending / 5)) def check_append_context_to_link(link): if re.search(r"reddit\.com/r/\w+/comments/(\w+/){3}", link): return link + "?context=3" else: return link
6653fd7aae6111569cd0976c391af665848be25d
3ae62276c9aad8b9612d3073679b5cf3cb695e38
/easyleetcode/leetcodes/Leetcode_677_Map_Sum_Pairs.py
11d79eb447c4cfb0764b3abcb7c2c672576f0286
[ "Apache-2.0" ]
permissive
gongtian1234/easy_leetcode
bc0b33c3c4f61d58a6111d76707903efe0510cb4
d2b8eb5d2cafc71ee1ca633ce489c1a52bcc39ce
refs/heads/master
2022-11-16T17:48:33.596752
2020-07-13T02:55:03
2020-07-13T02:55:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
35
py
print('Leetcode_677_Map_Sum_Pairs')
80abf2358c23c7ec917b6220f31a5fdcbd57bea4
29fc11636bf5053feb113ad837ec42ffe3f09bfd
/Terra_2/Bug_10/latex.py
eda6df4ac9865f2fa2bb86cbe2736f49d77c29c6
[]
no_license
deyh2020/Bugs4Q
8446db4a8efcf3541ba740b7d658b6812d56fe3e
b6e306e12bd1c5fdec126655ad008c386340ab57
refs/heads/master
2023-05-31T03:41:28.576877
2021-06-17T15:08:03
2021-06-17T15:08:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
37,775
py
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=invalid-name """latex circuit visualization backends.""" import collections import io import json import math import re try: from pylatexenc.latexencode import utf8tolatex HAS_PYLATEX = True except ImportError: HAS_PYLATEX = False import numpy as np from qiskit.visualization import qcstyle as _qcstyle from qiskit.visualization import exceptions from .tools.pi_check import pi_check class QCircuitImage: """This class contains methods to create \\LaTeX circuit images. The class targets the \\LaTeX package Q-circuit (https://arxiv.org/pdf/quant-ph/0406003). Thanks to Eric Sabo for the initial implementation for Qiskit. """ def __init__(self, qubits, clbits, ops, scale, style=None, plot_barriers=True, reverse_bits=False, layout=None): """QCircuitImage initializer. Args: qubits (list[Qubit]): list of qubits clbits (list[Clbit]): list of clbits ops (list[list[DAGNode]]): list of circuit instructions, grouped by layer scale (float): image scaling style (dict or str): dictionary of style or file name of style file reverse_bits (bool): When set to True reverse the bit order inside registers for the output visualization. plot_barriers (bool): Enable/disable drawing barriers in the output circuit. Defaults to True. layout (Layout or None): If present, the layout information will be included. Raises: ImportError: If pylatexenc is not installed """ if not HAS_PYLATEX: raise ImportError('The latex and latex_source drawers need ' 'pylatexenc installed. Run "pip install ' 'pylatexenc" before using the latex or ' 'latex_source drawers.') # style sheet self._style = _qcstyle.BWStyle() if style: if isinstance(style, dict): self._style.set_style(style) elif isinstance(style, str): with open(style, 'r') as infile: dic = json.load(infile) self._style.set_style(dic) # list of lists corresponding to layers of the circuit self.ops = ops # image scaling self.scale = scale # Map of qregs to sizes self.qregs = {} # Map of cregs to sizes self.cregs = {} # List of qregs and cregs in order of appearance in code and image self.ordered_regs = [] # Map from registers to the list they appear in the image self.img_regs = {} # Array to hold the \\LaTeX commands to generate a circuit image. self._latex = [] # Variable to hold image depth (width) self.img_depth = 0 # Variable to hold image width (height) self.img_width = 0 # Variable to hold total circuit depth self.sum_column_widths = 0 # Variable to hold total circuit width self.sum_row_heights = 0 # em points of separation between circuit columns self.column_separation = 1 # em points of separation between circuit row self.row_separation = 0 # presence of "box" or "target" determines row spacing self.has_box = False self.has_target = False self.reverse_bits = reverse_bits self.layout = layout self.plot_barriers = plot_barriers ################################# self.qregs = _get_register_specs(qubits) self.qubit_list = qubits self.ordered_regs = qubits + clbits self.cregs = _get_register_specs(clbits) self.clbit_list = clbits self.img_regs = {bit: ind for ind, bit in enumerate(self.ordered_regs)} self.img_width = len(self.img_regs) self.wire_type = {} for bit in self.ordered_regs: self.wire_type[bit] = bit.register in self.cregs.keys() def latex(self, aliases=None): """Return LaTeX string representation of circuit. This method uses the LaTeX Qconfig package to create a graphical representation of the circuit. Returns: string: for writing to a LaTeX file. """ self._initialize_latex_array(aliases) self._build_latex_array(aliases) header_1 = r"""% \documentclass[preview]{standalone} % If the image is too large to fit on this documentclass use \documentclass[draft]{beamer} """ beamer_line = "\\usepackage[size=custom,height=%d,width=%d,scale=%.1f]{beamerposter}\n" header_2 = r"""% instead and customize the height and width (in cm) to fit. % Large images may run out of memory quickly. % To fix this use the LuaLaTeX compiler, which dynamically % allocates memory. \usepackage[braket, qm]{qcircuit} \usepackage{amsmath} \pdfmapfile{+sansmathaccent.map} % \usepackage[landscape]{geometry} % Comment out the above line if using the beamer documentclass. \begin{document} \begin{equation*}""" qcircuit_line = r""" \Qcircuit @C=%.1fem @R=%.1fem @!R { """ output = io.StringIO() output.write(header_1) output.write('%% img_width = %d, img_depth = %d\n' % (self.img_width, self.img_depth)) output.write(beamer_line % self._get_beamer_page()) output.write(header_2) output.write(qcircuit_line % (self.column_separation, self.row_separation)) for i in range(self.img_width): output.write("\t \t") for j in range(self.img_depth + 1): cell_str = self._latex[i][j] # Don't truncate offset float if drawing a barrier if 'barrier' in cell_str: output.write(cell_str) else: # floats can cause "Dimension too large" latex error in # xymatrix this truncates floats to avoid issue. cell_str = re.sub(r'[-+]?\d*\.\d{2,}|\d{2,}', _truncate_float, cell_str) output.write(cell_str) if j != self.img_depth: output.write(" & ") else: output.write(r'\\' + '\n') output.write('\t }\n') output.write('\\end{equation*}\n\n') output.write('\\end{document}') contents = output.getvalue() output.close() return contents def _initialize_latex_array(self, aliases=None): del aliases # unused self.img_depth, self.sum_column_widths = self._get_image_depth() self.sum_row_heights = self.img_width # choose the most compact row spacing, while not squashing them if self.has_box: self.row_separation = 0.0 elif self.has_target: self.row_separation = 0.2 else: self.row_separation = 1.0 self._latex = [ ["\\cw" if self.wire_type[self.ordered_regs[j]] else "\\qw" for _ in range(self.img_depth + 1)] for j in range(self.img_width)] self._latex.append([" "] * (self.img_depth + 1)) for i in range(self.img_width): if self.wire_type[self.ordered_regs[i]]: self._latex[i][0] = "\\lstick{" + self.ordered_regs[i].register.name + \ "_{" + str(self.ordered_regs[i].index) + "}" + \ ": 0}" else: if self.layout is None: self._latex[i][0] = "\\lstick{{ {}_{{{}}} : \\ket{{0}} }}".format( self.ordered_regs[i].register.name, self.ordered_regs[i].index) else: self._latex[i][0] = "\\lstick{{({}_{{{}}})~q_{{{}}} : \\ket{{0}} }}".format( self.layout[self.ordered_regs[i].index].register.name, self.layout[self.ordered_regs[i].index].index, self.ordered_regs[i].index) def _get_image_depth(self): """Get depth information for the circuit. Returns: int: number of columns in the circuit int: total size of columns in the circuit """ max_column_widths = [] # Determine row spacing before image depth for layer in self.ops: for op in layer: # useful information for determining row spacing boxed_gates = ['u0', 'u1', 'u2', 'u3', 'x', 'y', 'z', 'h', 's', 'sdg', 't', 'tdg', 'rx', 'ry', 'rz', 'ch', 'cy', 'crz', 'cu3', 'id'] target_gates = ['cx', 'ccx'] if op.name in boxed_gates: self.has_box = True if op.name in target_gates: self.has_target = True for layer in self.ops: # store the max width for the layer current_max = 0 for op in layer: # update current op width arg_str_len = 0 # the wide gates for arg in op.op.params: arg_str = re.sub(r'[-+]?\d*\.\d{2,}|\d{2,}', _truncate_float, str(arg)) arg_str_len += len(arg_str) # the width of the column is the max of all the gates in the column current_max = max(arg_str_len, current_max) max_column_widths.append(current_max) # wires in the beginning and end columns = 2 # all gates take up 1 column except from those with labels (cu1) which take 2 columns += sum([2 if nd.name == 'cu1' else 1 for layer in self.ops for nd in layer]) # every 3 characters is roughly one extra 'unit' of width in the cell # the gate name is 1 extra 'unit' # the qubit/cbit labels plus initial states is 2 more # the wires poking out at the ends is 2 more sum_column_widths = sum(1 + v / 3 for v in max_column_widths) max_reg_name = 3 for reg in self.ordered_regs: max_reg_name = max(max_reg_name, len(reg.register.name)) sum_column_widths += 5 + max_reg_name / 3 # could be a fraction so ceil return columns, math.ceil(sum_column_widths) def _get_beamer_page(self): """Get height, width & scale attributes for the beamer page. Returns: tuple: (height, width, scale) desirable page attributes """ # PIL python package limits image size to around a quarter gigabyte # this means the beamer image should be limited to < 50000 # if you want to avoid a "warning" too, set it to < 25000 PIL_limit = 40000 # the beamer latex template limits each dimension to < 19 feet # (i.e. 575cm) beamer_limit = 550 # columns are roughly twice as big as rows aspect_ratio = self.sum_row_heights / self.sum_column_widths # choose a page margin so circuit is not cropped margin_factor = 1.5 height = min(self.sum_row_heights * margin_factor, beamer_limit) width = min(self.sum_column_widths * margin_factor, beamer_limit) # if too large, make it fit if height * width > PIL_limit: height = min(np.sqrt(PIL_limit * aspect_ratio), beamer_limit) width = min(np.sqrt(PIL_limit / aspect_ratio), beamer_limit) # if too small, give it a minimum size height = max(height, 10) width = max(width, 10) return (height, width, self.scale) def _get_mask(self, creg_name): mask = 0 for index, cbit in enumerate(self.clbit_list): if creg_name == cbit.register: mask |= (1 << index) return mask def _build_latex_array(self, aliases=None): """Returns an array of strings containing \\LaTeX for this circuit. If aliases is not None, aliases contains a dict mapping the current qubits in the circuit to new qubit names. We will deduce the register names and sizes from aliases. """ # Rename qregs if necessary if aliases: qregdata = {} for q in aliases.values(): if q[0] not in qregdata: qregdata[q[0]] = q[1] + 1 elif qregdata[q[0]] < q[1] + 1: qregdata[q[0]] = q[1] + 1 else: qregdata = self.qregs column = 1 for layer in self.ops: num_cols_used = 1 for op in layer: if op.condition: mask = self._get_mask(op.condition[0]) cl_reg = self.clbit_list[self._ffs(mask)] if_reg = cl_reg.register pos_2 = self.img_regs[cl_reg] if_value = format(op.condition[1], 'b').zfill(self.cregs[if_reg])[::-1] if op.name not in ['measure', 'barrier', 'snapshot', 'load', 'save', 'noise']: nm = utf8tolatex(op.name).replace(" ", "\\,") qarglist = op.qargs if aliases is not None: qarglist = map(lambda x: aliases[x], qarglist) if len(qarglist) == 1: pos_1 = self.img_regs[qarglist[0]] if op.condition: mask = self._get_mask(op.condition[0]) cl_reg = self.clbit_list[self._ffs(mask)] if_reg = cl_reg.register pos_2 = self.img_regs[cl_reg] if nm == "x": self._latex[pos_1][column] = "\\gate{X}" elif nm == "y": self._latex[pos_1][column] = "\\gate{Y}" elif nm == "z": self._latex[pos_1][column] = "\\gate{Z}" elif nm == "h": self._latex[pos_1][column] = "\\gate{H}" elif nm == "s": self._latex[pos_1][column] = "\\gate{S}" elif nm == "sdg": self._latex[pos_1][column] = "\\gate{S^\\dag}" elif nm == "t": self._latex[pos_1][column] = "\\gate{T}" elif nm == "tdg": self._latex[pos_1][column] = "\\gate{T^\\dag}" elif nm == "u0": self._latex[pos_1][column] = "\\gate{U_0(%s)}" % ( pi_check(op.op.params[0], output='latex')) elif nm == "u1": self._latex[pos_1][column] = "\\gate{U_1(%s)}" % ( pi_check(op.op.params[0], output='latex')) elif nm == "u2": self._latex[pos_1][column] = \ "\\gate{U_2\\left(%s,%s\\right)}" % ( pi_check(op.op.params[0], output='latex'), pi_check(op.op.params[1], output='latex')) elif nm == "u3": self._latex[pos_1][column] = ("\\gate{U_3(%s,%s,%s)}" % ( pi_check(op.op.params[0], output='latex'), pi_check(op.op.params[1], output='latex'), pi_check(op.op.params[2], output='latex'))) elif nm == "rx": self._latex[pos_1][column] = "\\gate{R_x(%s)}" % ( pi_check(op.op.params[0], output='latex')) elif nm == "ry": self._latex[pos_1][column] = "\\gate{R_y(%s)}" % ( pi_check(op.op.params[0], output='latex')) elif nm == "rz": self._latex[pos_1][column] = "\\gate{R_z(%s)}" % ( pi_check(op.op.params[0], output='latex')) else: self._latex[pos_1][column] = ("\\gate{%s}" % nm) gap = pos_2 - pos_1 for i in range(self.cregs[if_reg]): if if_value[i] == '1': self._latex[pos_2 + i][column] = \ "\\control \\cw \\cwx[-" + str(gap) + "]" gap = 1 else: self._latex[pos_2 + i][column] = \ "\\controlo \\cw \\cwx[-" + str(gap) + "]" gap = 1 else: if nm == "x": self._latex[pos_1][column] = "\\gate{X}" elif nm == "y": self._latex[pos_1][column] = "\\gate{Y}" elif nm == "z": self._latex[pos_1][column] = "\\gate{Z}" elif nm == "h": self._latex[pos_1][column] = "\\gate{H}" elif nm == "s": self._latex[pos_1][column] = "\\gate{S}" elif nm == "sdg": self._latex[pos_1][column] = "\\gate{S^\\dag}" elif nm == "t": self._latex[pos_1][column] = "\\gate{T}" elif nm == "tdg": self._latex[pos_1][column] = "\\gate{T^\\dag}" elif nm == "u0": self._latex[pos_1][column] = "\\gate{U_0(%s)}" % ( pi_check(op.op.params[0], output='latex')) elif nm == "u1": self._latex[pos_1][column] = "\\gate{U_1(%s)}" % ( pi_check(op.op.params[0], output='latex')) elif nm == "u2": self._latex[pos_1][column] = \ "\\gate{U_2\\left(%s,%s\\right)}" % ( pi_check(op.op.params[0], output='latex'), pi_check(op.op.params[1], output='latex')) elif nm == "u3": self._latex[pos_1][column] = ("\\gate{U_3(%s,%s,%s)}" % ( pi_check(op.op.params[0], output='latex'), pi_check(op.op.params[1], output='latex'), pi_check(op.op.params[2], output='latex'))) elif nm == "rx": self._latex[pos_1][column] = "\\gate{R_x(%s)}" % ( pi_check(op.op.params[0], output='latex')) elif nm == "ry": self._latex[pos_1][column] = "\\gate{R_y(%s)}" % ( pi_check(op.op.params[0], output='latex')) elif nm == "rz": self._latex[pos_1][column] = "\\gate{R_z(%s)}" % ( pi_check(op.op.params[0], output='latex')) elif nm == "reset": self._latex[pos_1][column] = ( "\\push{\\rule{.6em}{0em}\\ket{0}\\" "rule{.2em}{0em}} \\qw") else: self._latex[pos_1][column] = ("\\gate{%s}" % nm) elif len(qarglist) == 2: pos_1 = self.img_regs[qarglist[0]] pos_2 = self.img_regs[qarglist[1]] if op.condition: pos_3 = self.img_regs[(if_reg, 0)] temp = [pos_1, pos_2, pos_3] temp.sort(key=int) bottom = temp[1] gap = pos_3 - bottom for i in range(self.cregs[if_reg]): if if_value[i] == '1': self._latex[pos_3 + i][column] = \ "\\control \\cw \\cwx[-" + str(gap) + "]" gap = 1 else: self._latex[pos_3 + i][column] = \ "\\controlo \\cw \\cwx[-" + str(gap) + "]" gap = 1 if nm == "cx": self._latex[pos_1][column] = \ "\\ctrl{" + str(pos_2 - pos_1) + "}" self._latex[pos_2][column] = "\\targ" elif nm == "cz": self._latex[pos_1][column] = \ "\\ctrl{" + str(pos_2 - pos_1) + "}" self._latex[pos_2][column] = "\\control\\qw" elif nm == "cy": self._latex[pos_1][column] = \ "\\ctrl{" + str(pos_2 - pos_1) + "}" self._latex[pos_2][column] = "\\gate{Y}" elif nm == "ch": self._latex[pos_1][column] = \ "\\ctrl{" + str(pos_2 - pos_1) + "}" self._latex[pos_2][column] = "\\gate{H}" elif nm == "swap": self._latex[pos_1][column] = "\\qswap" self._latex[pos_2][column] = \ "\\qswap \\qwx[" + str(pos_1 - pos_2) + "]" elif nm == "crz": self._latex[pos_1][column] = \ "\\ctrl{" + str(pos_2 - pos_1) + "}" self._latex[pos_2][column] = \ "\\gate{R_z(%s)}" % (pi_check(op.op.params[0], output='latex')) elif nm == "cu1": self._latex[pos_1][column] = "\\ctrl{" + str( pos_2 - pos_1) + "}" self._latex[pos_2][column] = "\\control \\qw" self._latex[min(pos_1, pos_2)][column + 1] = \ "\\dstick{%s}\\qw" % (pi_check(op.op.params[0], output='latex')) self._latex[max(pos_1, pos_2)][column + 1] = "\\qw" # this is because this gate takes up 2 columns, # and we have just written to the next column num_cols_used = 2 elif nm == "cu3": self._latex[pos_1][column] = \ "\\ctrl{" + str(pos_2 - pos_1) + "}" self._latex[pos_2][column] = \ "\\gate{U_3(%s,%s,%s)}" % \ (pi_check(op.op.params[0], output='latex'), pi_check(op.op.params[1], output='latex'), pi_check(op.op.params[2], output='latex')) else: temp = [pos_1, pos_2] temp.sort(key=int) if nm == "cx": self._latex[pos_1][column] = "\\ctrl{" + str( pos_2 - pos_1) + "}" self._latex[pos_2][column] = "\\targ" elif nm == "cz": self._latex[pos_1][column] = "\\ctrl{" + str( pos_2 - pos_1) + "}" self._latex[pos_2][column] = "\\control\\qw" elif nm == "cy": self._latex[pos_1][column] = "\\ctrl{" + str( pos_2 - pos_1) + "}" self._latex[pos_2][column] = "\\gate{Y}" elif nm == "ch": self._latex[pos_1][column] = "\\ctrl{" + str( pos_2 - pos_1) + "}" self._latex[pos_2][column] = "\\gate{H}" elif nm == "swap": self._latex[pos_1][column] = "\\qswap" self._latex[pos_2][column] = \ "\\qswap \\qwx[" + str(pos_1 - pos_2) + "]" elif nm == "crz": self._latex[pos_1][column] = "\\ctrl{" + str( pos_2 - pos_1) + "}" self._latex[pos_2][column] = \ "\\gate{R_z(%s)}" % (pi_check(op.op.params[0], output='latex')) elif nm == "cu1": self._latex[pos_1][column] = "\\ctrl{" + str( pos_2 - pos_1) + "}" self._latex[pos_2][column] = "\\control \\qw" self._latex[min(pos_1, pos_2)][column + 1] = \ "\\dstick{%s}\\qw" % (pi_check(op.op.params[0], output='latex')) self._latex[max(pos_1, pos_2)][column + 1] = "\\qw" num_cols_used = 2 elif nm == "cu3": self._latex[pos_1][column] = "\\ctrl{" + str( pos_2 - pos_1) + "}" self._latex[pos_2][column] = \ ("\\gate{U_3(%s,%s,%s)}" % (pi_check(op.op.params[0], output='latex'), pi_check(op.op.params[1], output='latex'), pi_check(op.op.params[2], output='latex'))) else: start_pos = min([pos_1, pos_2]) stop_pos = max([pos_1, pos_2]) if stop_pos - start_pos >= 2: delta = stop_pos - start_pos self._latex[start_pos][column] = ("\\multigate{%s}{%s}" % (delta, nm)) for i_pos in range(start_pos + 1, stop_pos + 1): self._latex[i_pos][column] = ("\\ghost{%s}" % nm) else: self._latex[start_pos][column] = ("\\multigate{1}{%s}" % nm) self._latex[stop_pos][column] = ("\\ghost{%s}" % nm) elif len(qarglist) == 3: pos_1 = self.img_regs[qarglist[0]] pos_2 = self.img_regs[qarglist[1]] pos_3 = self.img_regs[qarglist[2]] if op.condition: pos_4 = self.img_regs[(if_reg, 0)] temp = [pos_1, pos_2, pos_3, pos_4] temp.sort(key=int) bottom = temp[2] gap = pos_4 - bottom for i in range(self.cregs[if_reg]): if if_value[i] == '1': self._latex[pos_4 + i][column] = \ "\\control \\cw \\cwx[-" + str(gap) + "]" gap = 1 else: self._latex[pos_4 + i][column] = \ "\\controlo \\cw \\cwx[-" + str(gap) + "]" gap = 1 if nm == "ccx": self._latex[pos_1][column] = "\\ctrl{" + str( pos_2 - pos_1) + "}" self._latex[pos_2][column] = "\\ctrl{" + str( pos_3 - pos_2) + "}" self._latex[pos_3][column] = "\\targ" if nm == "cswap": self._latex[pos_1][column] = "\\ctrl{" + str( pos_2 - pos_1) + "}" self._latex[pos_2][column] = "\\qswap" self._latex[pos_3][column] = \ "\\qswap \\qwx[" + str(pos_2 - pos_3) + "]" else: if nm == "ccx": self._latex[pos_1][column] = "\\ctrl{" + str( pos_2 - pos_1) + "}" self._latex[pos_2][column] = "\\ctrl{" + str( pos_3 - pos_2) + "}" self._latex[pos_3][column] = "\\targ" elif nm == "cswap": self._latex[pos_1][column] = "\\ctrl{" + str( pos_2 - pos_1) + "}" self._latex[pos_2][column] = "\\qswap" self._latex[pos_3][column] = \ "\\qswap \\qwx[" + str(pos_2 - pos_3) + "]" else: start_pos = min([pos_1, pos_2, pos_3]) stop_pos = max([pos_1, pos_2, pos_3]) if stop_pos - start_pos >= 3: delta = stop_pos - start_pos self._latex[start_pos][column] = ("\\multigate{%s}{%s}" % (delta, nm)) for i_pos in range(start_pos + 1, stop_pos + 1): self._latex[i_pos][column] = ("\\ghost{%s}" % nm) else: self._latex[pos_1][column] = ("\\multigate{2}{%s}" % nm) self._latex[pos_2][column] = ("\\ghost{%s}" % nm) self._latex[pos_3][column] = ("\\ghost{%s}" % nm) elif len(qarglist) > 3: nbits = len(qarglist) pos_array = [self.img_regs[qarglist[0]]] for i in range(1, nbits): pos_array.append(self.img_regs[qarglist[i]]) pos_start = min(pos_array) pos_stop = max(pos_array) self._latex[pos_start][column] = ("\\multigate{%s}{%s}" % (nbits - 1, nm)) for pos in range(pos_start + 1, pos_stop + 1): self._latex[pos][column] = ("\\ghost{%s}" % nm) elif op.name == "measure": if (len(op.cargs) != 1 or len(op.qargs) != 1 or op.op.params): raise exceptions.VisualizationError("bad operation record") if op.condition: raise exceptions.VisualizationError( "If controlled measures currently not supported.") if aliases: newq = aliases[(qname, qindex)] qname = newq[0] qindex = newq[1] pos_1 = self.img_regs[op.qargs[0]] pos_2 = self.img_regs[op.cargs[0]] try: self._latex[pos_1][column] = "\\meter" self._latex[pos_2][column] = \ "\\cw \\cwx[-" + str(pos_2 - pos_1) + "]" except Exception as e: raise exceptions.VisualizationError( 'Error during Latex building: %s' % str(e)) elif op.name in ['barrier', 'snapshot', 'load', 'save', 'noise']: if self.plot_barriers: qarglist = op.qargs indexes = [self._get_qubit_index(x) for x in qarglist] indexes.sort() if aliases is not None: qarglist = map(lambda x: aliases[x], qarglist) first = last = indexes[0] for index in indexes[1:]: if index - 1 == last: last = index else: pos = self.img_regs[self.qubit_list[first]] self._latex[pos][column - 1] += " \\barrier[0em]{" + str( last - first) + "}" self._latex[pos][column] = "\\qw" first = last = index pos = self.img_regs[self.qubit_list[first]] self._latex[pos][column - 1] += " \\barrier[0em]{" + str( last - first) + "}" self._latex[pos][column] = "\\qw" else: raise exceptions.VisualizationError("bad node data") # increase the number of columns by the number of columns this layer used column += num_cols_used def _get_qubit_index(self, qubit): """Get the index number for a quantum bit. Args: qubit (tuple): The tuple of the bit of the form (register_name, bit_number) Returns: int: The index in the bit list Raises: VisualizationError: If the bit isn't found """ for i, bit in enumerate(self.qubit_list): if qubit == bit: qindex = i break else: raise exceptions.VisualizationError("unable to find bit for operation") return qindex def _ffs(self, mask): """Find index of first set bit. Args: mask (int): integer to search Returns: int: index of the first set bit. """ origin = (mask & (-mask)).bit_length() return origin - 1 def _get_register_specs(bits): """Get the number and size of unique registers from bits list. Args: bits (list[Bit]): this list is of the form:: [Qubit(v0, 0), Qubit(v0, 1), Qubit(v0, 2), Qubit(v0, 3), Qubit(v1, 0)] which indicates a size-4 register and a size-1 register Returns: OrderedDict: ordered map of Registers to their sizes """ regs = collections.OrderedDict([(bit.register, bit.register.size) for bit in bits]) return regs def _truncate_float(matchobj, ndigits=3): """Truncate long floats Args: matchobj (re.Match): contains original float ndigits (int): Number of digits to print Returns: str: returns truncated float """ if matchobj.group(0): return '%.{}g'.format(ndigits) % float(matchobj.group(0)) return ''
58668ff0ee439f72a7abb030a5a1180a8f974d1e
7882860350c714e6c08368288dab721288b8d9db
/1์ผ์ฐจ/func(1๋ฒˆ๋ฌธ์ œ).py
30e5d8dec0d211d9db0a6a342ba840820f468502
[]
no_license
park-seonju/Algorithm
682fca984813a54b92a3f2ab174e4f05a95921a8
30e5bcb756e9388693624e8880e57bc92bfda969
refs/heads/master
2023-08-11T18:23:49.644259
2021-09-27T10:07:49
2021-09-27T10:07:49
388,741,922
0
0
null
null
null
null
UTF-8
Python
false
false
388
py
# def abc(t): # for i in range(len(t)): # if t[i] != t[len(t)-1-i]: # return False # return True # word = input() # print(word) # if abc(word): # print("์ž…๋ ฅํ•˜์‹  ๋‹จ์–ด๋Š” ํšŒ๋ฌธ(Palindrome)์ž…๋‹ˆ๋‹ค.") # else : # print("์ž…๋ ฅํ•˜์‹  ๋‹จ์–ด๋Š” ํšŒ๋ฌธ(Palindrome)์ด ์•„๋‹™๋‹ˆ๋‹ค.") a=input() b=str(reversed(a)) print(type(b)) if a==b: print('O')
f8e1c79af7f8ff238e4aa312ef2ee68f1e70f4a8
03c00aa07607c1f206c0fb3cf00fc5c510d7a4bf
/Infoplus/apis/carrier_service_api.py
3666fa7df7e4744314451fd9fceb448261b997ef
[]
no_license
infopluscommerce/infoplus-python-client
748cc9af739615036c52adce70aa7f4303601b97
bde657057fedb5396ecf6c42e8ba668456bd1c43
refs/heads/master
2023-08-23T11:32:01.160320
2017-03-17T14:43:15
2017-03-17T14:43:15
58,404,638
2
2
null
null
null
null
UTF-8
Python
false
false
7,611
py
# coding: utf-8 """ CarrierServiceApi.py Copyright 2016 SmartBear Software Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from __future__ import absolute_import import sys import os # python 2 and python 3 compatibility library from six import iteritems from ..configuration import Configuration from ..api_client import ApiClient class CarrierServiceApi(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. Ref: https://github.com/swagger-api/swagger-codegen """ def __init__(self, api_client=None): config = Configuration() if api_client: self.api_client = api_client else: if not config.api_client: config.api_client = ApiClient() self.api_client = config.api_client def get_carrier_service_by_id(self, carrier_service_id, **kwargs): """ Get a carrierService by id Returns the carrierService identified by the specified id. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_carrier_service_by_id(carrier_service_id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str carrier_service_id: Id of carrierService to be returned. (required) :return: CarrierService If the method is called asynchronously, returns the request thread. """ all_params = ['carrier_service_id'] all_params.append('callback') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_carrier_service_by_id" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'carrier_service_id' is set if ('carrier_service_id' not in params) or (params['carrier_service_id'] is None): raise ValueError("Missing the required parameter `carrier_service_id` when calling `get_carrier_service_by_id`") resource_path = '/beta/carrierService/{carrierServiceId}'.replace('{format}', 'json') path_params = {} if 'carrier_service_id' in params: path_params['carrierServiceId'] = params['carrier_service_id'] query_params = {} header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) if not header_params['Accept']: del header_params['Accept'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type([]) # Authentication setting auth_settings = ['api_key'] response = self.api_client.call_api(resource_path, 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='CarrierService', auth_settings=auth_settings, callback=params.get('callback')) return response def get_carrier_service_by_search_text(self, **kwargs): """ Search carrierServices Returns the list of carrierServices that match the given searchText. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_carrier_service_by_search_text(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str search_text: Search text, used to filter results. :param int page: Result page number. Defaults to 1. :param int limit: Maximum results per page. Defaults to 20. Max allowed value is 250. :return: list[CarrierService] If the method is called asynchronously, returns the request thread. """ all_params = ['search_text', 'page', 'limit'] all_params.append('callback') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_carrier_service_by_search_text" % key ) params[key] = val del params['kwargs'] resource_path = '/beta/carrierService/search'.replace('{format}', 'json') path_params = {} query_params = {} if 'search_text' in params: query_params['searchText'] = params['search_text'] if 'page' in params: query_params['page'] = params['page'] if 'limit' in params: query_params['limit'] = params['limit'] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) if not header_params['Accept']: del header_params['Accept'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type([]) # Authentication setting auth_settings = ['api_key'] response = self.api_client.call_api(resource_path, 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='list[CarrierService]', auth_settings=auth_settings, callback=params.get('callback')) return response
5964837f4eff397b07abd2f9cf033fbca7a302c2
6540f5a1ba587fb06067a09e67d0603e22305631
/apps/users/admin.py
7a124deede616de4741134a5ccf003d45c473533
[]
no_license
bluehawkarthur/ebil
3ff8171672baaebeacfd95f8fb68c9df3e0d54ad
9d3d5291f2aa3f0822047cd88d398add4b987c54
refs/heads/master
2021-01-17T11:18:24.173696
2016-10-06T22:20:53
2016-10-06T22:20:53
46,352,506
0
0
null
null
null
null
UTF-8
Python
false
false
139
py
from django.contrib import admin from .models import User, Personajuridica admin.site.register(User) admin.site.register(Personajuridica)