blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
listlengths
1
1
author_id
stringlengths
1
132
29818ba52762eb59c2db173b8688f4636cf37b75
c4591b23aebde4a1ec262a6b3f5cc124fea0d638
/ExceptionHandling/02-code.py
a072cdaae3db241510b0ae750e404b9e9a643154
[]
no_license
ravi4all/PythonApril_21
b41f2c845c4003d4291d46d52294767741d4f0d8
52a1f538182a7ce78b2c90db3f745d37ea321897
refs/heads/main
2023-05-04T01:48:11.414424
2021-05-24T12:27:30
2021-05-24T12:27:30
356,850,524
4
1
null
null
null
null
UTF-8
Python
false
false
239
py
try: file = open('file_1.txt','w') file.write("Hello") data = file.read() print(data) # file.close() except BaseException as ex: print(ex) finally: print("Finally will always execute") file.close()
547407b8be9ec042211d5cdf47758cab6df9f6e4
2a3743ced45bd79826dcdc55f304da049f627f1b
/venv/lib/python3.7/site-packages/notebook/log.py
3621a70caef590f7d25e7f206b7a6f9826090430
[ "MIT" ]
permissive
Dimasik007/Deribit_funding_rate_indicator
12cc8cd7c0be564d6e34d9eae91940c62492ae2a
3251602ae5249069489834f9afb57b11ff37750e
refs/heads/master
2023-05-26T10:14:20.395939
2019-08-03T11:35:51
2019-08-03T11:35:51
198,705,946
5
3
MIT
2023-05-22T22:29:24
2019-07-24T20:32:19
Python
UTF-8
Python
false
false
1,788
py
#----------------------------------------------------------------------------- # Copyright (c) Jupyter Development Team # # Distributed under the terms of the BSD License. The full license is in # the file COPYING, distributed as part of this software. #----------------------------------------------------------------------------- import json from tornado.log import access_log from .prometheus.log_functions import prometheus_log_method def log_request(handler): """log a bit more information about each request than tornado's default - move static file get success to debug-level (reduces noise) - get proxied IP instead of proxy IP - log referer for redirect and failed requests - log user-agent for failed requests """ status = handler.get_status() request = handler.request if status < 300 or status == 304: # Successes (or 304 FOUND) are debug-level log_method = access_log.debug elif status < 400: log_method = access_log.info elif status < 500: log_method = access_log.warning else: log_method = access_log.error request_time = 1000.0 * handler.request.request_time() ns = dict( status=status, method=request.method, ip=request.remote_ip, uri=request.uri, request_time=request_time, ) msg = "{status} {method} {uri} ({ip}) {request_time:.2f}ms" if status >= 400: # log bad referers ns['referer'] = request.headers.get('Referer', 'None') msg = msg + ' referer={referer}' if status >= 500 and status != 502: # log all headers if it caused an error log_method(json.dumps(dict(request.headers), indent=2)) log_method(msg.format(**ns)) prometheus_log_method(handler)
323b337749b6214dcef22befb999fdc3ec1afa0c
14804b282e567bf45c974b9a55cbdfa1907c5958
/7_Modules/E_from_Import_module.py
f330334ed400c444afaf4beadb73d5e60f834495
[ "MIT" ]
permissive
Oscar-Oliveira/Python-3
cfdcbcf4548144fb2488625f53f76b20e4d8c5b0
fa791225a6810b75890d24407b73c5e1b514acbe
refs/heads/master
2021-09-26T06:27:16.367956
2018-10-27T10:42:21
2018-10-27T10:42:21
101,991,657
0
1
null
null
null
null
UTF-8
Python
false
false
192
py
""" Import module example """ from C_my_module import my_sum, __version__, __sprint__, some_value print(my_sum(1.25, 3.2)) print(__version__) print(__sprint__) print(some_value)
a04ef2491409689efa7fb5b643c15eede0ce6500
2e60017779c5c286629ab5a3a7aeb27a6b19a60b
/python/problem_38.py
7a9e34b9da335053313aef540af6db768d6ad191
[]
no_license
jamesjiang52/10000-Lines-of-Code
f8c7cb4b8d5e441693f3e0f6919731ce4680f60d
3b6c20b288bad1de5390ad672c73272d98e93ae0
refs/heads/master
2020-03-15T03:50:38.104917
2018-05-07T04:41:52
2018-05-07T04:41:52
131,952,232
0
0
null
null
null
null
UTF-8
Python
false
false
700
py
if __name__ == '__main__': import sys sys.path.insert(0, 'C:\\Users\\James Jiang\\Documents\\Project Euler') from functions import * from progress import Progress answers_list = ['dummy'] with open('C:\\Users\\James Jiang\\Documents\\Project Euler\\answers.txt') as answers: for line in answers: answers_list.append(int(line)) progress_ = Progress("Problem 038: Pandigital multiples", 0, 5000) for i in range(10000, 5000, -1): progress_.count = 10000 - i progress_.progress() if is_pandigital(str(i) + str(2*i)): break progress_.count = int(str(i) + str(2*i)) progress_.total = answers_list[38] progress_.progress() if __name__ == '__main__': input()
ef1e26ac2e2027166701c8f393f5f6cbba7dd26a
e23a4f57ce5474d468258e5e63b9e23fb6011188
/125_algorithms/_exercises/templates/_algorithms_challenges/pybites/beginner/beginner-bite-32-dont-mutability-fool-you.py
bb552f90e582a2a3dc772ff09e46161df47d251e
[]
no_license
syurskyi/Python_Topics
52851ecce000cb751a3b986408efe32f0b4c0835
be331826b490b73f0a176e6abed86ef68ff2dd2b
refs/heads/master
2023-06-08T19:29:16.214395
2023-05-29T17:09:11
2023-05-29T17:09:11
220,583,118
3
2
null
2023-02-16T03:08:10
2019-11-09T02:58:47
Python
UTF-8
Python
false
false
606
py
''' In this Bite you are presented with a function that copies the given items data structure. There is a problem though, the tests fail. Can you fix it? This can be done in a one liner. If you know which module to use it will be easy, if not you will learn something new today. Regardless we want you to think about Python's mutability. Have fun! ''' items [{'id': 1, 'name': 'laptop', 'value': 1000}, {'id': 2, 'name': 'chair', 'value': 300}, {'id': 3, 'name': 'book', 'value': 20}] ___ duplicate_items(items r.. items | items_copy items print(id(items print(id(items_copy
dbe92292a15e5a2a15eb70407f835d192eb3601a
63d3a6255f2677f9d92205d62163b9d22a74c5c7
/modules/accounts/migrations/0024_alter_user_protec_sub_pass.py
dbe591a3aaa8fc2e6defef1a0cf0a10b14cdb8ac
[ "Apache-2.0" ]
permissive
GPCRmd/GPCRmd
9204f39b1bfbc800b13512b316e05e54ddd8af23
47d7a4e71025b70e15a0f752760873249932c54e
refs/heads/main
2023-09-04T11:13:44.285629
2023-08-29T13:43:01
2023-08-29T13:43:01
260,036,875
3
1
null
null
null
null
UTF-8
Python
false
false
385
py
# Generated by Django 4.1.5 on 2023-06-19 15:25 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('accounts', '0023_user_protec_sub_pass'), ] operations = [ migrations.AlterField( model_name='user', name='protec_sub_pass', field=models.BinaryField(), ), ]
ec6c5b7a1efe7a36852626b0475450430a86dd61
f4434c85e3814b6347f8f8099c081ed4af5678a5
/sdk/formrecognizer/azure-ai-formrecognizer/azure/ai/formrecognizer/_generated/v2_1_preview_2/operations/_form_recognizer_client_operations.py
225081ac70a14e39e7de6d1cfd0f8eb41d89781e
[ "LicenseRef-scancode-generic-cla", "MIT", "LGPL-2.1-or-later" ]
permissive
yunhaoling/azure-sdk-for-python
5da12a174a37672ac6ed8e3c1f863cb77010a506
c4eb0ca1aadb76ad892114230473034830116362
refs/heads/master
2022-06-11T01:17:39.636461
2020-12-08T17:42:08
2020-12-08T17:42:08
177,675,796
1
0
MIT
2020-03-31T20:35:17
2019-03-25T22:43:40
Python
UTF-8
Python
false
false
82,644
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.core.polling import LROPoller, NoPolling, PollingMethod from azure.core.polling.base_polling import LROBasePolling from .. import models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, IO, Iterable, List, Optional, TypeVar, Union T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class FormRecognizerClientOperationsMixin(object): def _train_custom_model_async_initial( self, train_request, # type: "models.TrainRequest" **kwargs # type: Any ): # type: (...) -> None cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._train_custom_model_async_initial.metadata['url'] # type: ignore path_format_arguments = { 'endpoint': self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(train_request, 'TrainRequest') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [201]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.ErrorResponse, response) raise HttpResponseError(response=response, model=error) response_headers = {} response_headers['Location']=self._deserialize('str', response.headers.get('Location')) if cls: return cls(pipeline_response, None, response_headers) _train_custom_model_async_initial.metadata = {'url': '/custom/models'} # type: ignore def begin_train_custom_model_async( self, train_request, # type: "models.TrainRequest" **kwargs # type: Any ): # type: (...) -> LROPoller[None] """Train Custom Model. Create and train a custom model. The request must include a source parameter that is either an externally accessible Azure storage blob container Uri (preferably a Shared Access Signature Uri) or valid path to a data folder in a locally mounted drive. When local paths are specified, they must follow the Linux/Unix path format and be an absolute path rooted to the input mount configuration setting value e.g., if '{Mounts:Input}' configuration setting value is '/input' then a valid source path would be '/input/contosodataset'. All data to be trained is expected to be under the source folder or sub folders under it. Models are trained using documents that are of the following content type - 'application/pdf', 'image/jpeg', 'image/png', 'image/tiff'. Other type of content is ignored. :param train_request: Training request parameters. :type train_request: ~azure.ai.formrecognizer.models.TrainRequest :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', False) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._train_custom_model_async_initial( train_request=train_request, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'endpoint': self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True), } if polling is True: polling_method = LROBasePolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_train_custom_model_async.metadata = {'url': '/custom/models'} # type: ignore def get_custom_model( self, model_id, # type: str include_keys=False, # type: Optional[bool] **kwargs # type: Any ): # type: (...) -> "models.Model" """Get Custom Model. Get detailed information about a custom model. :param model_id: Model identifier. :type model_id: str :param include_keys: Include list of extracted keys in model information. :type include_keys: bool :keyword callable cls: A custom type or function that will be passed the direct response :return: Model, or the result of cls(response) :rtype: ~azure.ai.formrecognizer.models.Model :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.Model"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) accept = "application/json" # Construct URL url = self.get_custom_model.metadata['url'] # type: ignore path_format_arguments = { 'endpoint': self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True), 'modelId': self._serialize.url("model_id", model_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] if include_keys is not None: query_parameters['includeKeys'] = self._serialize.query("include_keys", include_keys, 'bool') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.ErrorResponse, response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('Model', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_custom_model.metadata = {'url': '/custom/models/{modelId}'} # type: ignore def delete_custom_model( self, model_id, # type: str **kwargs # type: Any ): # type: (...) -> None """Delete Custom Model. Mark model for deletion. Model artifacts will be permanently removed within a predetermined period. :param model_id: Model identifier. :type model_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) accept = "application/json" # Construct URL url = self.delete_custom_model.metadata['url'] # type: ignore path_format_arguments = { 'endpoint': self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True), 'modelId': self._serialize.url("model_id", model_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.ErrorResponse, response) raise HttpResponseError(response=response, model=error) if cls: return cls(pipeline_response, None, {}) delete_custom_model.metadata = {'url': '/custom/models/{modelId}'} # type: ignore def _analyze_with_custom_model_initial( self, model_id, # type: str include_text_details=False, # type: Optional[bool] file_stream=None, # type: Optional[Union[IO, "models.SourcePath"]] **kwargs # type: Any ): # type: (...) -> None cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._analyze_with_custom_model_initial.metadata['url'] # type: ignore path_format_arguments = { 'endpoint': self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True), 'modelId': self._serialize.url("model_id", model_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] if include_text_details is not None: query_parameters['includeTextDetails'] = self._serialize.query("include_text_details", include_text_details, 'bool') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] if header_parameters['Content-Type'].split(";")[0] in ['application/pdf', 'image/jpeg', 'image/png', 'image/tiff']: body_content_kwargs['stream_content'] = file_stream elif header_parameters['Content-Type'].split(";")[0] in ['application/json']: if file_stream is not None: body_content = self._serialize.body(file_stream, 'SourcePath') else: body_content = None body_content_kwargs['content'] = body_content else: raise ValueError( "The content_type '{}' is not one of the allowed values: " "['application/pdf', 'image/jpeg', 'image/png', 'image/tiff', 'application/json']".format(header_parameters['Content-Type']) ) request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.ErrorResponse, response) raise HttpResponseError(response=response, model=error) response_headers = {} response_headers['Operation-Location']=self._deserialize('str', response.headers.get('Operation-Location')) if cls: return cls(pipeline_response, None, response_headers) _analyze_with_custom_model_initial.metadata = {'url': '/custom/models/{modelId}/analyze'} # type: ignore def begin_analyze_with_custom_model( self, model_id, # type: str include_text_details=False, # type: Optional[bool] file_stream=None, # type: Optional[Union[IO, "models.SourcePath"]] **kwargs # type: Any ): # type: (...) -> LROPoller[None] """Analyze Form. Extract key-value pairs, tables, and semantic values from a given document. The input document must be of one of the supported content types - 'application/pdf', 'image/jpeg', 'image/png' or 'image/tiff'. Alternatively, use 'application/json' type to specify the location (Uri or local path) of the document to be analyzed. :param model_id: Model identifier. :type model_id: str :param include_text_details: Include text lines and element references in the result. :type include_text_details: bool :param file_stream: .json, .pdf, .jpg, .png or .tiff type file stream. :type file_stream: IO or ~azure.ai.formrecognizer.models.SourcePath :keyword str content_type: Media type of the body sent to the API. Default value is "application/json". Allowed values are: "application/pdf", "image/jpeg", "image/png", "image/tiff", "application/json". :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', False) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._analyze_with_custom_model_initial( model_id=model_id, include_text_details=include_text_details, file_stream=file_stream, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'endpoint': self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True), 'modelId': self._serialize.url("model_id", model_id, 'str'), } if polling is True: polling_method = LROBasePolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_analyze_with_custom_model.metadata = {'url': '/custom/models/{modelId}/analyze'} # type: ignore def get_analyze_form_result( self, model_id, # type: str result_id, # type: str **kwargs # type: Any ): # type: (...) -> "models.AnalyzeOperationResult" """Get Analyze Form Result. Obtain current status and the result of the analyze form operation. :param model_id: Model identifier. :type model_id: str :param result_id: Analyze operation result identifier. :type result_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: AnalyzeOperationResult, or the result of cls(response) :rtype: ~azure.ai.formrecognizer.models.AnalyzeOperationResult :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.AnalyzeOperationResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) accept = "application/json" # Construct URL url = self.get_analyze_form_result.metadata['url'] # type: ignore path_format_arguments = { 'endpoint': self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True), 'modelId': self._serialize.url("model_id", model_id, 'str'), 'resultId': self._serialize.url("result_id", result_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.ErrorResponse, response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('AnalyzeOperationResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_analyze_form_result.metadata = {'url': '/custom/models/{modelId}/analyzeResults/{resultId}'} # type: ignore def _copy_custom_model_initial( self, model_id, # type: str copy_request, # type: "models.CopyRequest" **kwargs # type: Any ): # type: (...) -> None cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._copy_custom_model_initial.metadata['url'] # type: ignore path_format_arguments = { 'endpoint': self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True), 'modelId': self._serialize.url("model_id", model_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(copy_request, 'CopyRequest') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.ErrorResponse, response) raise HttpResponseError(response=response, model=error) response_headers = {} response_headers['Operation-Location']=self._deserialize('str', response.headers.get('Operation-Location')) if cls: return cls(pipeline_response, None, response_headers) _copy_custom_model_initial.metadata = {'url': '/custom/models/{modelId}/copy'} # type: ignore def begin_copy_custom_model( self, model_id, # type: str copy_request, # type: "models.CopyRequest" **kwargs # type: Any ): # type: (...) -> LROPoller[None] """Copy Custom Model. Copy custom model stored in this resource (the source) to user specified target Form Recognizer resource. :param model_id: Model identifier. :type model_id: str :param copy_request: Copy request parameters. :type copy_request: ~azure.ai.formrecognizer.models.CopyRequest :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', False) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._copy_custom_model_initial( model_id=model_id, copy_request=copy_request, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'endpoint': self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True), 'modelId': self._serialize.url("model_id", model_id, 'str'), } if polling is True: polling_method = LROBasePolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_copy_custom_model.metadata = {'url': '/custom/models/{modelId}/copy'} # type: ignore def get_custom_model_copy_result( self, model_id, # type: str result_id, # type: str **kwargs # type: Any ): # type: (...) -> "models.CopyOperationResult" """Get Custom Model Copy Result. Obtain current status and the result of a custom model copy operation. :param model_id: Model identifier. :type model_id: str :param result_id: Copy operation result identifier. :type result_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: CopyOperationResult, or the result of cls(response) :rtype: ~azure.ai.formrecognizer.models.CopyOperationResult :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.CopyOperationResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) accept = "application/json" # Construct URL url = self.get_custom_model_copy_result.metadata['url'] # type: ignore path_format_arguments = { 'endpoint': self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True), 'modelId': self._serialize.url("model_id", model_id, 'str'), 'resultId': self._serialize.url("result_id", result_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.ErrorResponse, response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('CopyOperationResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_custom_model_copy_result.metadata = {'url': '/custom/models/{modelId}/copyResults/{resultId}'} # type: ignore def generate_model_copy_authorization( self, **kwargs # type: Any ): # type: (...) -> "models.CopyAuthorizationResult" """Generate Copy Authorization. Generate authorization to copy a model into the target Form Recognizer resource. :keyword callable cls: A custom type or function that will be passed the direct response :return: CopyAuthorizationResult, or the result of cls(response) :rtype: ~azure.ai.formrecognizer.models.CopyAuthorizationResult :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.CopyAuthorizationResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) accept = "application/json" # Construct URL url = self.generate_model_copy_authorization.metadata['url'] # type: ignore path_format_arguments = { 'endpoint': self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.post(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [201]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.ErrorResponse, response) raise HttpResponseError(response=response, model=error) response_headers = {} response_headers['Location']=self._deserialize('str', response.headers.get('Location')) deserialized = self._deserialize('CopyAuthorizationResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, response_headers) return deserialized generate_model_copy_authorization.metadata = {'url': '/custom/models/copyAuthorization'} # type: ignore def _compose_custom_models_async_initial( self, compose_request, # type: "models.ComposeRequest" **kwargs # type: Any ): # type: (...) -> None cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop("content_type", "application/json") accept = "application/json, text/json" # Construct URL url = self._compose_custom_models_async_initial.metadata['url'] # type: ignore path_format_arguments = { 'endpoint': self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(compose_request, 'ComposeRequest') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [201]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.ErrorResponse, response) raise HttpResponseError(response=response, model=error) response_headers = {} response_headers['Location']=self._deserialize('str', response.headers.get('Location')) if cls: return cls(pipeline_response, None, response_headers) _compose_custom_models_async_initial.metadata = {'url': '/custom/models/compose'} # type: ignore def begin_compose_custom_models_async( self, compose_request, # type: "models.ComposeRequest" **kwargs # type: Any ): # type: (...) -> LROPoller[None] """Compose trained with labels models into one composed model. Compose request would include list of models ids. It would validate what all models either trained with labels model or composed model. It would validate limit of models put together. :param compose_request: Compose models. :type compose_request: ~azure.ai.formrecognizer.models.ComposeRequest :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', False) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._compose_custom_models_async_initial( compose_request=compose_request, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'endpoint': self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True), } if polling is True: polling_method = LROBasePolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_compose_custom_models_async.metadata = {'url': '/custom/models/compose'} # type: ignore def _analyze_business_card_async_initial( self, include_text_details=False, # type: Optional[bool] locale=None, # type: Optional[Union[str, "models.Locale"]] file_stream=None, # type: Optional[Union[IO, "models.SourcePath"]] **kwargs # type: Any ): # type: (...) -> None cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._analyze_business_card_async_initial.metadata['url'] # type: ignore path_format_arguments = { 'endpoint': self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] if include_text_details is not None: query_parameters['includeTextDetails'] = self._serialize.query("include_text_details", include_text_details, 'bool') if locale is not None: query_parameters['locale'] = self._serialize.query("locale", locale, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] if header_parameters['Content-Type'].split(";")[0] in ['application/pdf', 'image/bmp', 'image/jpeg', 'image/png', 'image/tiff']: body_content_kwargs['stream_content'] = file_stream elif header_parameters['Content-Type'].split(";")[0] in ['application/json']: if file_stream is not None: body_content = self._serialize.body(file_stream, 'SourcePath') else: body_content = None body_content_kwargs['content'] = body_content else: raise ValueError( "The content_type '{}' is not one of the allowed values: " "['application/pdf', 'image/bmp', 'image/jpeg', 'image/png', 'image/tiff', 'application/json']".format(header_parameters['Content-Type']) ) request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.ErrorResponse, response) raise HttpResponseError(response=response, model=error) response_headers = {} response_headers['Operation-Location']=self._deserialize('str', response.headers.get('Operation-Location')) if cls: return cls(pipeline_response, None, response_headers) _analyze_business_card_async_initial.metadata = {'url': '/prebuilt/businessCard/analyze'} # type: ignore def begin_analyze_business_card_async( self, include_text_details=False, # type: Optional[bool] locale=None, # type: Optional[Union[str, "models.Locale"]] file_stream=None, # type: Optional[Union[IO, "models.SourcePath"]] **kwargs # type: Any ): # type: (...) -> LROPoller[None] """Analyze Business Card. Extract field text and semantic values from a given business card document. The input document must be of one of the supported content types - 'application/pdf', 'image/jpeg', 'image/png' or 'image/tiff'. Alternatively, use 'application/json' type to specify the location (Uri) of the document to be analyzed. :param include_text_details: Include text lines and element references in the result. :type include_text_details: bool :param locale: Locale of the input document. Supported locales include: en-AU, en-CA, en-GB, en-IN, en-US(default). :type locale: str or ~azure.ai.formrecognizer.models.Locale :param file_stream: .json, .pdf, .jpg, .png or .tiff type file stream. :type file_stream: IO or ~azure.ai.formrecognizer.models.SourcePath :keyword str content_type: Media type of the body sent to the API. Default value is "application/json". Allowed values are: "application/pdf", "image/bmp", "image/jpeg", "image/png", "image/tiff", "application/json". :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', False) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._analyze_business_card_async_initial( include_text_details=include_text_details, locale=locale, file_stream=file_stream, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'endpoint': self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True), } if polling is True: polling_method = LROBasePolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_analyze_business_card_async.metadata = {'url': '/prebuilt/businessCard/analyze'} # type: ignore def get_analyze_business_card_result( self, result_id, # type: str **kwargs # type: Any ): # type: (...) -> "models.AnalyzeOperationResult" """Get Analyze Business Card Result. Track the progress and obtain the result of the analyze business card operation. :param result_id: Analyze operation result identifier. :type result_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: AnalyzeOperationResult, or the result of cls(response) :rtype: ~azure.ai.formrecognizer.models.AnalyzeOperationResult :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.AnalyzeOperationResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) accept = "application/json" # Construct URL url = self.get_analyze_business_card_result.metadata['url'] # type: ignore path_format_arguments = { 'endpoint': self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True), 'resultId': self._serialize.url("result_id", result_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.ErrorResponse, response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('AnalyzeOperationResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_analyze_business_card_result.metadata = {'url': '/prebuilt/businessCard/analyzeResults/{resultId}'} # type: ignore def _analyze_invoice_async_initial( self, include_text_details=False, # type: Optional[bool] locale=None, # type: Optional[Union[str, "models.Locale"]] file_stream=None, # type: Optional[Union[IO, "models.SourcePath"]] **kwargs # type: Any ): # type: (...) -> None cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._analyze_invoice_async_initial.metadata['url'] # type: ignore path_format_arguments = { 'endpoint': self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] if include_text_details is not None: query_parameters['includeTextDetails'] = self._serialize.query("include_text_details", include_text_details, 'bool') if locale is not None: query_parameters['locale'] = self._serialize.query("locale", locale, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] if header_parameters['Content-Type'].split(";")[0] in ['application/pdf', 'image/bmp', 'image/jpeg', 'image/png', 'image/tiff']: body_content_kwargs['stream_content'] = file_stream elif header_parameters['Content-Type'].split(";")[0] in ['application/json']: if file_stream is not None: body_content = self._serialize.body(file_stream, 'SourcePath') else: body_content = None body_content_kwargs['content'] = body_content else: raise ValueError( "The content_type '{}' is not one of the allowed values: " "['application/pdf', 'image/bmp', 'image/jpeg', 'image/png', 'image/tiff', 'application/json']".format(header_parameters['Content-Type']) ) request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.ErrorResponse, response) raise HttpResponseError(response=response, model=error) response_headers = {} response_headers['Operation-Location']=self._deserialize('str', response.headers.get('Operation-Location')) if cls: return cls(pipeline_response, None, response_headers) _analyze_invoice_async_initial.metadata = {'url': '/prebuilt/invoice/analyze'} # type: ignore def begin_analyze_invoice_async( self, include_text_details=False, # type: Optional[bool] locale=None, # type: Optional[Union[str, "models.Locale"]] file_stream=None, # type: Optional[Union[IO, "models.SourcePath"]] **kwargs # type: Any ): # type: (...) -> LROPoller[None] """Analyze Invoice Document. Extract field text and semantic values from a given invoice document. The input document must be of one of the supported content types - 'application/pdf', 'image/jpeg', 'image/png' or 'image/tiff'. Alternatively, use 'application/json' type to specify the location (Uri) of the document to be analyzed. :param include_text_details: Include text lines and element references in the result. :type include_text_details: bool :param locale: Locale of the input document. Supported locales include: en-AU, en-CA, en-GB, en-IN, en-US(default). :type locale: str or ~azure.ai.formrecognizer.models.Locale :param file_stream: .json, .pdf, .jpg, .png or .tiff type file stream. :type file_stream: IO or ~azure.ai.formrecognizer.models.SourcePath :keyword str content_type: Media type of the body sent to the API. Default value is "application/json". Allowed values are: "application/pdf", "image/bmp", "image/jpeg", "image/png", "image/tiff", "application/json". :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', False) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._analyze_invoice_async_initial( include_text_details=include_text_details, locale=locale, file_stream=file_stream, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'endpoint': self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True), } if polling is True: polling_method = LROBasePolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_analyze_invoice_async.metadata = {'url': '/prebuilt/invoice/analyze'} # type: ignore def get_analyze_invoice_result( self, result_id, # type: str **kwargs # type: Any ): # type: (...) -> "models.AnalyzeOperationResult" """Get Analyze Invoice Result. Track the progress and obtain the result of the analyze invoice operation. :param result_id: Analyze operation result identifier. :type result_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: AnalyzeOperationResult, or the result of cls(response) :rtype: ~azure.ai.formrecognizer.models.AnalyzeOperationResult :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.AnalyzeOperationResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) accept = "application/json" # Construct URL url = self.get_analyze_invoice_result.metadata['url'] # type: ignore path_format_arguments = { 'endpoint': self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True), 'resultId': self._serialize.url("result_id", result_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.ErrorResponse, response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('AnalyzeOperationResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_analyze_invoice_result.metadata = {'url': '/prebuilt/invoice/analyzeResults/{resultId}'} # type: ignore def _analyze_receipt_async_initial( self, include_text_details=False, # type: Optional[bool] locale=None, # type: Optional[Union[str, "models.Locale"]] file_stream=None, # type: Optional[Union[IO, "models.SourcePath"]] **kwargs # type: Any ): # type: (...) -> None cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._analyze_receipt_async_initial.metadata['url'] # type: ignore path_format_arguments = { 'endpoint': self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] if include_text_details is not None: query_parameters['includeTextDetails'] = self._serialize.query("include_text_details", include_text_details, 'bool') if locale is not None: query_parameters['locale'] = self._serialize.query("locale", locale, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] if header_parameters['Content-Type'].split(";")[0] in ['application/pdf', 'image/bmp', 'image/jpeg', 'image/png', 'image/tiff']: body_content_kwargs['stream_content'] = file_stream elif header_parameters['Content-Type'].split(";")[0] in ['application/json']: if file_stream is not None: body_content = self._serialize.body(file_stream, 'SourcePath') else: body_content = None body_content_kwargs['content'] = body_content else: raise ValueError( "The content_type '{}' is not one of the allowed values: " "['application/pdf', 'image/bmp', 'image/jpeg', 'image/png', 'image/tiff', 'application/json']".format(header_parameters['Content-Type']) ) request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.ErrorResponse, response) raise HttpResponseError(response=response, model=error) response_headers = {} response_headers['Operation-Location']=self._deserialize('str', response.headers.get('Operation-Location')) if cls: return cls(pipeline_response, None, response_headers) _analyze_receipt_async_initial.metadata = {'url': '/prebuilt/receipt/analyze'} # type: ignore def begin_analyze_receipt_async( self, include_text_details=False, # type: Optional[bool] locale=None, # type: Optional[Union[str, "models.Locale"]] file_stream=None, # type: Optional[Union[IO, "models.SourcePath"]] **kwargs # type: Any ): # type: (...) -> LROPoller[None] """Analyze Receipt. Extract field text and semantic values from a given receipt document. The input document must be of one of the supported content types - 'application/pdf', 'image/jpeg', 'image/png' or 'image/tiff'. Alternatively, use 'application/json' type to specify the location (Uri) of the document to be analyzed. :param include_text_details: Include text lines and element references in the result. :type include_text_details: bool :param locale: Locale of the input document. Supported locales include: en-AU, en-CA, en-GB, en-IN, en-US(default). :type locale: str or ~azure.ai.formrecognizer.models.Locale :param file_stream: .json, .pdf, .jpg, .png or .tiff type file stream. :type file_stream: IO or ~azure.ai.formrecognizer.models.SourcePath :keyword str content_type: Media type of the body sent to the API. Default value is "application/json". Allowed values are: "application/pdf", "image/bmp", "image/jpeg", "image/png", "image/tiff", "application/json". :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', False) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._analyze_receipt_async_initial( include_text_details=include_text_details, locale=locale, file_stream=file_stream, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'endpoint': self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True), } if polling is True: polling_method = LROBasePolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_analyze_receipt_async.metadata = {'url': '/prebuilt/receipt/analyze'} # type: ignore def get_analyze_receipt_result( self, result_id, # type: str **kwargs # type: Any ): # type: (...) -> "models.AnalyzeOperationResult" """Get Analyze Receipt Result. Track the progress and obtain the result of the analyze receipt operation. :param result_id: Analyze operation result identifier. :type result_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: AnalyzeOperationResult, or the result of cls(response) :rtype: ~azure.ai.formrecognizer.models.AnalyzeOperationResult :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.AnalyzeOperationResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) accept = "application/json" # Construct URL url = self.get_analyze_receipt_result.metadata['url'] # type: ignore path_format_arguments = { 'endpoint': self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True), 'resultId': self._serialize.url("result_id", result_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.ErrorResponse, response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('AnalyzeOperationResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_analyze_receipt_result.metadata = {'url': '/prebuilt/receipt/analyzeResults/{resultId}'} # type: ignore def _analyze_layout_async_initial( self, language=None, # type: Optional[Union[str, "models.Language"]] pages=None, # type: Optional[List[str]] file_stream=None, # type: Optional[Union[IO, "models.SourcePath"]] **kwargs # type: Any ): # type: (...) -> None cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._analyze_layout_async_initial.metadata['url'] # type: ignore path_format_arguments = { 'endpoint': self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] if language is not None: query_parameters['language'] = self._serialize.query("language", language, 'str') if pages is not None: query_parameters['Pages'] = self._serialize.query("pages", pages, '[str]', div=',') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] if header_parameters['Content-Type'].split(";")[0] in ['application/pdf', 'image/bmp', 'image/jpeg', 'image/png', 'image/tiff']: body_content_kwargs['stream_content'] = file_stream elif header_parameters['Content-Type'].split(";")[0] in ['application/json']: if file_stream is not None: body_content = self._serialize.body(file_stream, 'SourcePath') else: body_content = None body_content_kwargs['content'] = body_content else: raise ValueError( "The content_type '{}' is not one of the allowed values: " "['application/pdf', 'image/bmp', 'image/jpeg', 'image/png', 'image/tiff', 'application/json']".format(header_parameters['Content-Type']) ) request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.ErrorResponse, response) raise HttpResponseError(response=response, model=error) response_headers = {} response_headers['Operation-Location']=self._deserialize('str', response.headers.get('Operation-Location')) if cls: return cls(pipeline_response, None, response_headers) _analyze_layout_async_initial.metadata = {'url': '/layout/analyze'} # type: ignore def begin_analyze_layout_async( self, language=None, # type: Optional[Union[str, "models.Language"]] pages=None, # type: Optional[List[str]] file_stream=None, # type: Optional[Union[IO, "models.SourcePath"]] **kwargs # type: Any ): # type: (...) -> LROPoller[None] """Analyze Layout. Extract text and layout information from a given document. The input document must be of one of the supported content types - 'application/pdf', 'image/jpeg', 'image/png', 'image/tiff' or 'image/bmp'. Alternatively, use 'application/json' type to specify the location (Uri or local path) of the document to be analyzed. :param language: The BCP-47 language code of the text in the document. Currently, only English ('en'), Dutch (‘nl’), French (‘fr’), German (‘de’), Italian (‘it’), Portuguese (‘pt'), simplified Chinese ('zh-Hans') and Spanish ('es') are supported (print – nine languages and handwritten – English only). Layout supports auto language identification and multi language documents, so only provide a language code if you would like to force the documented to be processed as that specific language. :type language: str or ~azure.ai.formrecognizer.models.Language :param pages: Custom page numbers for multi-page documents(PDF/TIFF), input the number of the pages you want to get OCR result. For a range of pages, use a hyphen. Separate each page or range with a comma or space. :type pages: list[str] :param file_stream: .json, .pdf, .jpg, .png or .tiff type file stream. :type file_stream: IO or ~azure.ai.formrecognizer.models.SourcePath :keyword str content_type: Media type of the body sent to the API. Default value is "application/json". Allowed values are: "application/pdf", "image/bmp", "image/jpeg", "image/png", "image/tiff", "application/json". :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', False) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._analyze_layout_async_initial( language=language, pages=pages, file_stream=file_stream, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'endpoint': self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True), } if polling is True: polling_method = LROBasePolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_analyze_layout_async.metadata = {'url': '/layout/analyze'} # type: ignore def get_analyze_layout_result( self, result_id, # type: str **kwargs # type: Any ): # type: (...) -> "models.AnalyzeOperationResult" """Get Analyze Layout Result. Track the progress and obtain the result of the analyze layout operation. :param result_id: Analyze operation result identifier. :type result_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: AnalyzeOperationResult, or the result of cls(response) :rtype: ~azure.ai.formrecognizer.models.AnalyzeOperationResult :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.AnalyzeOperationResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) accept = "application/json" # Construct URL url = self.get_analyze_layout_result.metadata['url'] # type: ignore path_format_arguments = { 'endpoint': self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True), 'resultId': self._serialize.url("result_id", result_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.ErrorResponse, response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('AnalyzeOperationResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_analyze_layout_result.metadata = {'url': '/layout/analyzeResults/{resultId}'} # type: ignore def list_custom_models( self, **kwargs # type: Any ): # type: (...) -> Iterable["models.Models"] """List Custom Models. Get information about all custom models. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either Models or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.ai.formrecognizer.models.Models] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.Models"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) op = "full" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_custom_models.metadata['url'] # type: ignore path_format_arguments = { 'endpoint': self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['op'] = self._serialize.query("op", op, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] path_format_arguments = { 'endpoint': self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True), } url = self._client.format_url(url, **path_format_arguments) request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('Models', pipeline_response) list_of_elem = deserialized.model_list if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize(models.ErrorResponse, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error) return pipeline_response return ItemPaged( get_next, extract_data ) list_custom_models.metadata = {'url': '/custom/models'} # type: ignore def get_custom_models( self, **kwargs # type: Any ): # type: (...) -> "models.Models" """Get Custom Models. Get information about all custom models. :keyword callable cls: A custom type or function that will be passed the direct response :return: Models, or the result of cls(response) :rtype: ~azure.ai.formrecognizer.models.Models :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.Models"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) op = "summary" accept = "application/json" # Construct URL url = self.get_custom_models.metadata['url'] # type: ignore path_format_arguments = { 'endpoint': self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['op'] = self._serialize.query("op", op, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.ErrorResponse, response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('Models', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_custom_models.metadata = {'url': '/custom/models'} # type: ignore
8c9aa6151183c5a58c9b2f4629ee57dc75958092
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_204/193.py
e70d2b19de1b0addcc2ca7ee2d5b7e204e5ad372
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,054
py
import math def make_kits(num_ingredients, num_packages, ingredients_proportion, packages): for i in xrange(0, num_ingredients): packages[i].sort() counter = 0 pointers = [0]*num_ingredients for i in xrange(0, num_packages): num_servings = serving(packages[0][i], ingredients_proportion[0]) # print "i: ", i, " num_servings: ", num_servings for num_serving in xrange(num_servings[0], num_servings[1]+1): flag = 0 for j in xrange(1, num_ingredients): while pointers[j] < num_packages and too_little(packages[j][pointers[j]], ingredients_proportion[j], num_serving): pointers[j] = pointers[j]+1 if pointers[j] == num_packages or too_much(packages[j][pointers[j]], ingredients_proportion[j], num_serving): flag = -1 break if flag == 0: # print "counter: ", counter # print i, " ", pointers[1] pointers = [x+1 for x in pointers] counter = counter+1 break return counter def serving(weight, unit): res = [] res.append(int(math.ceil(weight/1.1/unit))) res.append(int(math.floor(weight/0.9/unit))) return res def too_little(weight, unit, num_serving): if weight < unit*num_serving*0.9: return True return False def too_much(weight, unit, num_serving): if weight > unit*num_serving*1.1: return True return False # raw_input() reads a string with a line of input, stripping the '\n' (newline) at the end. # This is all you need for most Google Code Jam problems. t = int(raw_input()) # read a line with a single integer for i in xrange(1, t + 1): num_ingredients, num_packages = [int(s) for s in raw_input().split(" ")] # read a list of integers, 2 in this case ingredients_proportion = [int(s) for s in raw_input().split(" ")] packages = [[] for k in xrange(1, num_ingredients+1)] for j in xrange(0, num_ingredients): packages[j] = [int(s) for s in raw_input().split(" ")] res = make_kits(num_ingredients, num_packages, ingredients_proportion, packages) print "Case #{}: {}".format(i, res) # check out .format's specification for more formatting options
b6edd7683db0062d6bd530a81b71c14729977618
f08336ac8b6f8040f6b2d85d0619d1a9923c9bdf
/3-lengthOfLongestSubstring.py
e11ad2357de806386f05b36afa99e4988224ba70
[]
no_license
MarshalLeeeeee/myLeetCodes
fafadcc35eef44f431a008c1be42b1188e7dd852
80e78b153ad2bdfb52070ba75b166a4237847d75
refs/heads/master
2020-04-08T16:07:47.943755
2019-02-21T01:43:16
2019-02-21T01:43:16
159,505,231
0
0
null
null
null
null
UTF-8
Python
false
false
1,156
py
''' 3. Longest Substring Without Repeating Characters Given a string, find the length of the longest substring without repeating characters. Example 1: Input: "abcabcbb" Output: 3 Explanation: The answer is "abc", with the length of 3. Example 2: Input: "bbbbb" Output: 1 Explanation: The answer is "b", with the length of 1. Example 3: Input: "pwwkew" Output: 3 Explanation: The answer is "wke", with the length of 3. Note that the answer must be a substring, "pwke" is a subsequence and not a substring. ''' class Solution: # O(n) def lengthOfLongestSubstring(self, s): """ :type s: str :rtype: int """ l = len(s) hashmap = dict() maxLen = 0 currLen = 0 head = 0 for i in range(l): try: if (hashmap[s[i]] < head): currLen += 1 else: currLen = i - hashmap[s[i]] head = hashmap[s[i]] except: currLen += 1 maxLen = currLen if (currLen > maxLen) else maxLen hashmap[s[i]] = i return maxLen
1b02c0d09ab89fd002e5a0b4d19bc4797f962554
823105ac7d892cf214ed9dcd8eaba315b01c1ed7
/model/unet.py
7105c7f28fcfcc05af73a60055e12a885fd43f39
[]
no_license
jiye-ML/lane_detection_baidu_2019
ccee82a1272bace80f9e128c24ae5ff64b827bd7
6ed35de00a34a8714a32c2a3ff649c4b0b1f1407
refs/heads/master
2022-12-10T20:46:27.983785
2020-08-29T03:26:25
2020-08-29T03:26:25
223,421,841
1
0
null
null
null
null
UTF-8
Python
false
false
2,593
py
import torch import torch.nn as nn from model.network import ResNet101v2 from model.module import Block class UNetConvBlock(nn.Module): def __init__(self, in_chans, out_chans): super(UNetConvBlock, self).__init__() block = [ nn.Conv2d(in_chans, out_chans, kernel_size=3, padding=1), nn.ReLU(), nn.BatchNorm2d(out_chans), nn.Conv2d(out_chans, out_chans, kernel_size=3, padding=1), nn.ReLU(), nn.BatchNorm2d(out_chans) ] self.block = nn.Sequential(*block) def forward(self, x): out = self.block(x) return out class UNetUpBlock(nn.Module): def __init__(self, in_chans, out_chans): super(UNetUpBlock, self).__init__() self.up = nn.Sequential( nn.Upsample(mode='bilinear', scale_factor=2), nn.Conv2d(in_chans, out_chans, kernel_size=1) ) self.conv_block = UNetConvBlock(in_chans, out_chans) @staticmethod def center_crop(layer, target_size): _, _, layer_height, layer_width = layer.size() diff_y = (layer_height - target_size[0]) // 2 diff_x = (layer_width - target_size[1]) // 2 return layer[ :, :, diff_y: (diff_y + target_size[0]), diff_x: (diff_x + target_size[1]) ] def forward(self, x, bridge): up = self.up(x) crop1 = self.center_crop(bridge, up.shape[2:]) out = torch.cat([up, crop1], 1) out = self.conv_block(out) return out class ResNetUNet(nn.Module): def __init__(self, config): super(ResNetUNet, self).__init__() self.n_classes = config.NUM_CLASSES self.encode = ResNet101v2() prev_channels = 2048 self.up_path = nn.ModuleList() for i in range(3): self.up_path.append(UNetUpBlock(prev_channels, prev_channels // 2)) prev_channels //= 2 self.cls_conv_block1 = Block(prev_channels, 32) self.cls_conv_block2 = Block(32, 16) self.last = nn.Conv2d(16, self.n_classes, kernel_size=1) self.init_weight() def forward(self, x): input_size = x.size()[2:] blocks = self.encode(x) x = blocks[-1] for i, up in enumerate(self.up_path): x = up(x, blocks[-i - 2]) x = nn.Upsample(size=input_size, mode='bilinear', align_corners=True)(x) x = self.cls_conv_block1(x) x = self.cls_conv_block2(x) x = self.last(x) return x def init_weight(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0)
e97328b2b234b843a30b30be30a3cb8b6667e23b
90ff4b63aa6cbc90c918d7f1944a719e50fa4dc7
/dnanexus/filter_qc/src/filter_qc.py
f790e100eba87df546e7184db96ecf798762e847
[ "MIT" ]
permissive
kchatzistergos/chip-seq-pipeline
9a3639034f1602d4d3898335f838748ea5de4875
b3ebbbc4fc787849e7cbd7bac5124922540a3bd4
refs/heads/master
2021-01-05T03:09:20.873929
2019-08-07T23:49:14
2019-08-07T23:49:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,389
py
#!/usr/bin/env python # filter_qc 0.0.1 # Generated by dx-app-wizard. # # Basic execution pattern: Your app will run on a single machine from # beginning to end. # # See https://wiki.dnanexus.com/Developer-Portal for documentation and # tutorials on how to modify this file. # # DNAnexus Python Bindings (dxpy) documentation: # http://autodoc.dnanexus.com/bindings/python/current/ import os import subprocess import shlex import re import common import dxpy import logging from pprint import pprint, pformat logger = logging.getLogger(__name__) logger.addHandler(dxpy.DXLogHandler()) logger.propagate = False logger.setLevel(logging.INFO) def dup_parse(fname): with open(fname, 'r') as dup_file: if not dup_file: return None lines = iter(dup_file.read().splitlines()) for line in lines: if line.startswith('## METRICS CLASS'): headers = lines.next().rstrip('\n').lower() metrics = lines.next().rstrip('\n') break headers = headers.split('\t') metrics = metrics.split('\t') headers.pop(0) metrics.pop(0) dup_qc = dict(zip(headers, metrics)) return dup_qc def pbc_parse(fname): with open(fname, 'r') as pbc_file: if not pbc_file: return None lines = pbc_file.read().splitlines() line = lines[0].rstrip('\n') # PBC File output: # TotalReadPairs <tab> # DistinctReadPairs <tab> # OneReadPair <tab> # TwoReadPairs <tab> # NRF=Distinct/Total <tab> # PBC1=OnePair/Distinct <tab> # PBC2=OnePair/TwoPair headers = ['TotalReadPairs', 'DistinctReadPairs', 'OneReadPair', 'TwoReadPairs', 'NRF', 'PBC1', 'PBC2'] metrics = line.split('\t') pbc_qc = dict(zip(headers, metrics)) return pbc_qc def flagstat_parse(fname): with open(fname, 'r') as flagstat_file: if not flagstat_file: return None flagstat_lines = flagstat_file.read().splitlines() qc_dict = { # values are regular expressions, # will be replaced with scores [hiq, lowq] 'in_total': 'in total', 'duplicates': 'duplicates', 'mapped': 'mapped', 'paired_in_sequencing': 'paired in sequencing', 'read1': 'read1', 'read2': 'read2', 'properly_paired': 'properly paired', 'with_self_mate_mapped': 'with itself and mate mapped', 'singletons': 'singletons', # i.e. at the end of the line 'mate_mapped_different_chr': 'with mate mapped to a different chr$', # RE so must escape 'mate_mapped_different_chr_hiQ': 'with mate mapped to a different chr \(mapQ>=5\)' } for (qc_key, qc_pattern) in qc_dict.items(): qc_metrics = next(re.split(qc_pattern, line) for line in flagstat_lines if re.search(qc_pattern, line)) (hiq, lowq) = qc_metrics[0].split(' + ') qc_dict[qc_key] = [int(hiq.rstrip()), int(lowq.rstrip())] return qc_dict @dxpy.entry_point('main') def main(input_bam, paired_end, samtools_params, scrub, debug): if debug: logger.setLevel(logging.DEBUG) else: logger.setLevel(logging.INFO) raw_bam_file = dxpy.DXFile(input_bam) raw_bam_filename = raw_bam_file.name raw_bam_basename = raw_bam_file.name.rstrip('.bam') raw_bam_file_mapstats_filename = raw_bam_basename + '.flagstat.qc' dxpy.download_dxfile(raw_bam_file.get_id(), raw_bam_filename) subprocess.check_output('set -x; ls -l', shell=True) # Generate initial mapping statistics with open(raw_bam_file_mapstats_filename, 'w') as fh: flagstat_command = "samtools flagstat %s" % (raw_bam_filename) logger.info(flagstat_command) subprocess.check_call(shlex.split(flagstat_command), stdout=fh) filt_bam_prefix = raw_bam_basename + ".filt.srt" filt_bam_filename = filt_bam_prefix + ".bam" if paired_end: # ============================= # Remove unmapped, mate unmapped # not primary alignment, reads failing platform # Remove low MAPQ reads # Only keep properly paired reads # Obtain name sorted BAM file # ================== tmp_filt_bam_prefix = "tmp.%s" % (filt_bam_prefix) # was tmp.prefix.nmsrt tmp_filt_bam_filename = tmp_filt_bam_prefix + ".bam" out, err = common.run_pipe([ # filter: -F 1804 FlAG bits to exclude; -f 2 FLAG bits to reqire; # -q 30 exclude MAPQ < 30; -u uncompressed output # exclude FLAG 1804: unmapped, next segment unmapped, secondary # alignments, not passing platform q, PCR or optical duplicates # require FLAG 2: properly aligned "samtools view -F 1804 -f 2 %s -u %s" % (samtools_params, raw_bam_filename), # sort: -n sort by name; - take input from stdin; # out to specified filename # Will produce name sorted BAM "samtools sort -n - %s" % (tmp_filt_bam_prefix)]) if err: logger.error("samtools error: %s" % (err)) # Remove orphan reads (pair was removed) # and read pairs mapping to different chromosomes # Obtain position sorted BAM subprocess.check_output('set -x; ls -l', shell=True) out, err = common.run_pipe([ # fill in mate coordinates, ISIZE and mate-related flags # fixmate requires name-sorted alignment; -r removes secondary and # unmapped (redundant here because already done above?) # - send output to stdout "samtools fixmate -r %s -" % (tmp_filt_bam_filename), # repeat filtering after mate repair "samtools view -F 1804 -f 2 -u -", # produce the coordinate-sorted BAM "samtools sort - %s" % (filt_bam_prefix)]) subprocess.check_output('set -x; ls -l', shell=True) else: # single-end data # ============================= # Remove unmapped, mate unmapped # not primary alignment, reads failing platform # Remove low MAPQ reads # Obtain name sorted BAM file # ================== with open(filt_bam_filename, 'w') as fh: samtools_filter_command = ( "samtools view -F 1804 %s -b %s" % (samtools_params, raw_bam_filename) ) logger.info(samtools_filter_command) subprocess.check_call( shlex.split(samtools_filter_command), stdout=fh) # ======================== # Mark duplicates # ====================== tmp_filt_bam_filename = raw_bam_basename + ".dupmark.bam" dup_file_qc_filename = raw_bam_basename + ".dup.qc" picard_string = ' '.join([ "java -Xmx4G -jar /picard/MarkDuplicates.jar", "INPUT=%s" % (filt_bam_filename), "OUTPUT=%s" % (tmp_filt_bam_filename), "METRICS_FILE=%s" % (dup_file_qc_filename), "VALIDATION_STRINGENCY=LENIENT", "ASSUME_SORTED=true", "REMOVE_DUPLICATES=false" ]) logger.info(picard_string) subprocess.check_output(shlex.split(picard_string)) os.rename(tmp_filt_bam_filename, filt_bam_filename) if paired_end: final_bam_prefix = raw_bam_basename + ".filt.srt.nodup" else: final_bam_prefix = raw_bam_basename + ".filt.nodup.srt" final_bam_filename = final_bam_prefix + ".bam" # To be stored final_bam_index_filename = final_bam_filename + ".bai" # To be stored # QC file final_bam_file_mapstats_filename = final_bam_prefix + ".flagstat.qc" if paired_end: samtools_dedupe_command = \ "samtools view -F 1804 -f2 -b %s" % (filt_bam_filename) else: samtools_dedupe_command = \ "samtools view -F 1804 -b %s" % (filt_bam_filename) # ============================ # Remove duplicates # Index final position sorted BAM # ============================ with open(final_bam_filename, 'w') as fh: logger.info(samtools_dedupe_command) subprocess.check_call( shlex.split(samtools_dedupe_command), stdout=fh) # Index final bam file samtools_index_command = \ "samtools index %s %s" % (final_bam_filename, final_bam_index_filename) logger.info(samtools_index_command) subprocess.check_output(shlex.split(samtools_index_command)) # Generate mapping statistics with open(final_bam_file_mapstats_filename, 'w') as fh: flagstat_command = "samtools flagstat %s" % (final_bam_filename) logger.info(flagstat_command) subprocess.check_call(shlex.split(flagstat_command), stdout=fh) # ============================= # Compute library complexity # ============================= # Sort by name # convert to bedPE and obtain fragment coordinates # sort by position and strand # Obtain unique count statistics pbc_file_qc_filename = final_bam_prefix + ".pbc.qc" # PBC File output # TotalReadPairs [tab] # DistinctReadPairs [tab] # OneReadPair [tab] # TwoReadPairs [tab] # NRF=Distinct/Total [tab] # PBC1=OnePair/Distinct [tab] # PBC2=OnePair/TwoPair if paired_end: steps = [ "samtools sort -no %s -" % (filt_bam_filename), "bamToBed -bedpe -i stdin", r"""awk 'BEGIN{OFS="\t"}{print $1,$2,$4,$6,$9,$10}'"""] else: steps = [ "bamToBed -i %s" % (filt_bam_filename), r"""awk 'BEGIN{OFS="\t"}{print $1,$2,$3,$6}'"""] steps.extend([ "grep -v 'chrM'", "sort", "uniq -c", r"""awk 'BEGIN{mt=0;m0=0;m1=0;m2=0} ($1==1){m1=m1+1} ($1==2){m2=m2+1} {m0=m0+1} {mt=mt+$1} END{printf "%d\t%d\t%d\t%d\t%f\t%f\t%f\n",mt,m0,m1,m2,m0/mt,m1/m0,m1/m2}'""" ]) out, err = common.run_pipe(steps, pbc_file_qc_filename) if err: logger.error("PBC file error: %s" % (err)) output = {} logger.info("Uploading results files to the project") filtered_bam = dxpy.upload_local_file(final_bam_filename) filtered_bam_index = dxpy.upload_local_file(final_bam_index_filename) output.update({ "filtered_bam": dxpy.dxlink(filtered_bam), "filtered_bam_index": dxpy.dxlink(filtered_bam_index) }) # If the scrub parameter is true, pass the bams to the scrub applet. if scrub: scrub_applet = dxpy.find_one_data_object( classname='applet', name='scrub', project=dxpy.PROJECT_CONTEXT_ID, zero_ok=False, more_ok=False, return_handler=True) scrub_subjob = \ scrub_applet.run( {"input_bams": [input_bam, dxpy.dxlink(filtered_bam)]}, name='Scrub bams') scrubbed_unfiltered_bam = scrub_subjob.get_output_ref("scrubbed_bams", index=0) scrubbed_filtered_bam = scrub_subjob.get_output_ref("scrubbed_bams", index=1) # Add the optional scrubbed outputs. output.update({ "scrubbed_unfiltered_bam": dxpy.dxlink(scrubbed_unfiltered_bam), "scrubbed_filtered_bam": dxpy.dxlink(scrubbed_filtered_bam) }) # Upload or calculate the remaining outputs. filtered_mapstats = \ dxpy.upload_local_file(final_bam_file_mapstats_filename) dup_file = dxpy.upload_local_file(dup_file_qc_filename) pbc_file = dxpy.upload_local_file(pbc_file_qc_filename) logger.info("Calcualting QC metrics") dup_qc = dup_parse(dup_file_qc_filename) pbc_qc = pbc_parse(pbc_file_qc_filename) initial_mapstats_qc = flagstat_parse(raw_bam_file_mapstats_filename) final_mapstats_qc = flagstat_parse(final_bam_file_mapstats_filename) if paired_end: useable_fragments = final_mapstats_qc.get('in_total')[0]/2 else: useable_fragments = final_mapstats_qc.get('in_total')[0] logger.info("initial_mapstats_qc: %s" % (initial_mapstats_qc)), logger.info("final_mapstats_qc: %s" % (final_mapstats_qc)), logger.info("dup_qc: %s" % (dup_qc)) logger.info("pbc_qc: %s" % (pbc_qc)) # Return links to the output files and values. output.update({ "filtered_mapstats": dxpy.dxlink(filtered_mapstats), "dup_file_qc": dxpy.dxlink(dup_file), "pbc_file_qc": dxpy.dxlink(pbc_file), "paired_end": paired_end, "n_reads_input": str(initial_mapstats_qc.get('in_total')[0]), "picard_read_pairs_examined": str(dup_qc.get('read_pairs_examined')), "picard_unpaired_reads_examined": str(dup_qc.get('unpaired_reads_examined')), "picard_read_pair_duplicates": str(dup_qc.get('read_pair_duplicates')), "picard_unpaired_read_duplicates": str(dup_qc.get('unpaired_read_duplicates')), "useable_fragments": str(useable_fragments), "NRF": str(pbc_qc.get('NRF')), "PBC1": str(pbc_qc.get('PBC1')), "PBC2": str(pbc_qc.get('PBC2')), "duplicate_fraction": str(dup_qc.get('percent_duplication')) }) logger.info("Exiting with output:\n%s" % (pformat(output))) return output dxpy.run()
aceb1fcdf196d716cb53b0a7e02874bfd259fffa
e2426d7c01500ca4a2df4e4555f217f957baf957
/cows/service/imps/geoplot_wms_backend/slabs/slab_base.py
3375ea42382e0d9856eba9bfa7bb8f66d03e401f
[ "BSD-3-Clause", "BSD-2-Clause" ]
permissive
cedadev/cows
959a5e1ad220cfe0cce48a2131d6971106c765aa
db9ed729c886b271ce85355b97e39243081e8246
refs/heads/master
2020-03-16T15:17:45.710584
2018-05-09T10:35:47
2018-05-09T10:36:37
132,736,968
2
0
null
null
null
null
UTF-8
Python
false
false
5,755
py
# BSD Licence # Copyright (c) 2010, Science & Technology Facilities Council (STFC) # All rights reserved. # # See the LICENSE file in the source distribution of this software for # the full license text. import logging import time import numpy from geoplot.utils import isRangeInLimits import geoplot.colour_scheme as colour_scheme from cows.service.wms_iface import IwmsLayerSlab from cows.service.imps.image_import import Image from cows.service.imps.geoplot_wms_backend.slab_options_parser import SlabOptionsParser from cows.service.imps.geoplot_wms_backend.rendering_option import RenderingOption log = logging.getLogger(__name__) class SlabBase(IwmsLayerSlab): """ A layer slab that implements the IwmsLayerSlab interface and uses geoplot to render the required images. This is an abstract base class and should not be used directly. """ renderingOptions = [ RenderingOption('cmap', "Colour Scheme" ,str,'jet',["bone","jet", "copper", "gray", "winter"] ), RenderingOption('cmap_min', "Legend Min" ,float,None), RenderingOption('cmap_max', "Legend Max" ,float,None), RenderingOption('cmap_scale', "Colour Bar Scale" ,str ,'linear', ['linear','log']), ] """ constructor @param variable: the netcdf variable that contains the data for this slab @param title: the title of the variable that is to be used @param crs: the coordinate refrence system the data is stored in @param dimValues: the dimension values for this slab @param transparent: indicates if the produced image should be transparent or not. @param bbox: the bounds of the data in lat/lon @param renderOpts: the additional parameters recieved by the WMS, may include some custom rendering options. """ def __init__(self, variable, title, crs, dimValues, transparent, bgcolor, bbox, renderOpts): self.title = title self.renderOpts = renderOpts self.bgcolor = bgcolor self.transparent = transparent self.variable = variable #log.debug("renderOpts = %s" % (renderOpts,)) # Check for non-default, but valid, colour map. cmapName = renderOpts.get('cmap', None) self._setUpColourMap(cmapName) self.parser = SlabOptionsParser(self.renderingOptions, renderOpts) self.ld = self._setupLayerDrawer() @classmethod def _setUpColourMap(cls, cmapName): """Adds a colour map to those defined in the rendering options if it is valid and not present already. @param cmapName: name of colour map """ log.debug("Checking for cmap %s" % cmapName) cmapOptions = [r for r in cls.renderingOptions if r.name == 'cmap'][0] if cmapName not in cmapOptions.options: log.debug("Not found in renderingOptions %s" % cmapName) if colour_scheme.isValidCmapName(cmapName): log.debug("Valid cmap name %s" % cmapName) cmapOptions.options.append(cmapName) log.debug("All known cmaps %s" % cmapOptions) """ Creates the layer drawer object so that it can be used in getImage """ def _setupLayerDrawer(self): raise NotImplementedError() """ returns an image of the data constructed using the layer drawer @param bbox: the limits of the image requested @param width: the width in px of the image @param height: the height in px of the image """ def getImage(self, bbox, width, height): """ Create an image of a sub-bbox of a given size. :ivar bbox: A bbox 4-tuple. :ivar width: width in pixels.` :ivar height: height in pixels. :return: A PIL Image object. """ #log.debug("GetImage called with bbox=%s, width=%s, height = %s" % (bbox, width, height,)) xLimits = (bbox[0], bbox[2]) yLimits = (bbox[1], bbox[3]) if sorted(self.variable.getAxisIds()) == sorted(['latitude','longitude']): if not self._areBoundsInLimits(bbox, xLimits, yLimits): img = numpy.zeros((height,width,4), numpy.uint8) pilImage = Image.fromarray(img, 'RGBA') log.debug("empty image used as no data found for id=%s (%sx%s), lon=%s, lat=%s " % \ (self.variable.id, width, height, xLimits, yLimits)) return pilImage st = time.time() im = self.ld.makeImage(xLimits, yLimits, width, height) log.debug("generated contour image id=%s (%sx%s, lon=%s, lat=%s in %.2fs" % \ (self.variable.id, width, height, xLimits, yLimits, time.time() - st,)) return im def _areBoundsInLimits(self, bbox, xLimits, yLimits): if self.variable.getAxisIds()[0] == 'longitude': lonAx, latAx = self.variable.getAxisList() else: latAx, lonAx = self.variable.getAxisList() xRange = [ lonAx.getBounds().min(), lonAx.getBounds().max()] yRange = [ latAx.getBounds().min(), latAx.getBounds().max()] log.debug("xLimits = %s" % (xLimits,)) log.debug("yLimits = %s" % (yLimits,)) log.debug("xRange = %s" % (xRange,)) log.debug("yRange = %s" % (yRange,)) log.debug("x range is circular: %s" % ("True" if lonAx.isCircular() else "False",)) isInLimits = ((lonAx.isCircular() or isRangeInLimits(xRange, xLimits)) and isRangeInLimits(yRange, yLimits)) log.debug("isInLimits = %s" % (isInLimits,)) return isInLimits
406894c61e6011d157c6b62a0eccbe5a91f21124
58fb8cebdb51a83c6afd29f6b0d745d07ccfb441
/Cmonitor/statTasks/tasks.py
be2edf49342afdb91b45469ba2b8bd66d0a2a4b2
[]
no_license
amonlong/Cmonitor
7980baabc139a62f9870fe0110076b761b7890b6
6cf1ec84db69236c9ff79c7bc475a0fa26e40e12
refs/heads/master
2020-03-09T22:39:58.661338
2018-04-23T06:01:56
2018-04-23T06:01:56
129,039,637
0
0
null
null
null
null
UTF-8
Python
false
false
2,420
py
#-*- coding: utf-8 -*- from __future__ import absolute_import,unicode_literals import uuid import time from celery import states from apps.record.models import TaskState, TaskItem from statTasks.celery import app from statTasks.subtasks import index, userInfo, business, risk, uniId def makeRecord(taskname, stime, state, memo): task = TaskItem.objects.filter(taskname=taskname) if task: sname = taskname + str(time.time()) ts = TaskState( task_id = uuid.uuid3(uuid.NAMESPACE_DNS, sname), taskname = task[0], state = state, memo = memo, runtime = time.time() - stime ) ts.save() #index mession @app.task def indexHead(taskname): stime = time.time() state, memo = index.indexHead() makeRecord(taskname, stime, state, memo) return state, memo @app.task def indexHopper(taskname): stime = time.time() state, memo = index.indexHopper() makeRecord(taskname, stime, state, memo) return state, memo @app.task def indexPlace(taskname): stime = time.time() state, memo = index.indexPlace() makeRecord(taskname, stime, state, memo) return state, memo #userInfo mession @app.task def userIncrease(taskname): stime = time.time() state, memo = userInfo.userIncrease() makeRecord(taskname, stime, state, memo) return state, memo @app.task def userAge(taskname): stime = time.time() state, memo = userInfo.userAge() makeRecord(taskname, stime, state, memo) return state, memo #business @app.task def flowLoanMoneyNO(taskname): stime = time.time() state, memo = business.flowLoanMoneyNO() makeRecord(taskname, stime, state, memo) return state, memo @app.task def flowRepayMoney(taskname): stime = time.time() state, memo = business.flowRepayMoney() makeRecord(taskname, stime, state, memo) return state, memo @app.task def flowDelayRate(taskname): stime = time.time() state, memo = business.flowDelayRate() makeRecord(taskname, stime, state, memo) return state, memo #risk mession @app.task def passRate(taskname): stime = time.time() state, memo = risk.passRate() makeRecord(taskname, stime, state, memo) return state, memo @app.task def overdueRate(taskname): stime = time.time() state, memo = risk.overdueRate() makeRecord(taskname, stime, state, memo) return state, memo #uniId def productFirm(taskname): stime = time.time() state, memo = uniId.productFirm() makeRecord(taskname, stime, state, memo) return state, memo
0e1c132f5b2b42abc4a92492dce22887936f8ee9
fe7d80aa667ea7f34b60fc927e54d279f7bf81cb
/history/myslim/nets/mobilenet_v1.py
dca7ac604253d03b809107330d7b021f6449a5eb
[]
no_license
qq191513/myRecognize
3b20b8ca7f1935d6b177b368eb72f0282db8799e
8a183ca1e8ababd4f52b87a86f92c78eda5f4dc5
refs/heads/master
2020-03-21T18:26:24.286107
2019-06-26T08:21:40
2019-06-26T08:21:40
138,891,701
0
0
null
null
null
null
UTF-8
Python
false
false
22,301
py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """MobileNet v1. MobileNet is a general architecture and can be used for multiple use cases. Depending on the use case, it can use different input layer size and different head (for example: embeddings, localization and classification). As described in https://arxiv.org/abs/1704.04861. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam 100% Mobilenet V1 (base) with input size 224x224: See mobilenet_v1() Layer params macs -------------------------------------------------------------------------------- MobilenetV1/Conv2d_0/Conv2D: 864 10,838,016 MobilenetV1/Conv2d_1_depthwise/depthwise: 288 3,612,672 MobilenetV1/Conv2d_1_pointwise/Conv2D: 2,048 25,690,112 MobilenetV1/Conv2d_2_depthwise/depthwise: 576 1,806,336 MobilenetV1/Conv2d_2_pointwise/Conv2D: 8,192 25,690,112 MobilenetV1/Conv2d_3_depthwise/depthwise: 1,152 3,612,672 MobilenetV1/Conv2d_3_pointwise/Conv2D: 16,384 51,380,224 MobilenetV1/Conv2d_4_depthwise/depthwise: 1,152 903,168 MobilenetV1/Conv2d_4_pointwise/Conv2D: 32,768 25,690,112 MobilenetV1/Conv2d_5_depthwise/depthwise: 2,304 1,806,336 MobilenetV1/Conv2d_5_pointwise/Conv2D: 65,536 51,380,224 MobilenetV1/Conv2d_6_depthwise/depthwise: 2,304 451,584 MobilenetV1/Conv2d_6_pointwise/Conv2D: 131,072 25,690,112 MobilenetV1/Conv2d_7_depthwise/depthwise: 4,608 903,168 MobilenetV1/Conv2d_7_pointwise/Conv2D: 262,144 51,380,224 MobilenetV1/Conv2d_8_depthwise/depthwise: 4,608 903,168 MobilenetV1/Conv2d_8_pointwise/Conv2D: 262,144 51,380,224 MobilenetV1/Conv2d_9_depthwise/depthwise: 4,608 903,168 MobilenetV1/Conv2d_9_pointwise/Conv2D: 262,144 51,380,224 MobilenetV1/Conv2d_10_depthwise/depthwise: 4,608 903,168 MobilenetV1/Conv2d_10_pointwise/Conv2D: 262,144 51,380,224 MobilenetV1/Conv2d_11_depthwise/depthwise: 4,608 903,168 MobilenetV1/Conv2d_11_pointwise/Conv2D: 262,144 51,380,224 MobilenetV1/Conv2d_12_depthwise/depthwise: 4,608 225,792 MobilenetV1/Conv2d_12_pointwise/Conv2D: 524,288 25,690,112 MobilenetV1/Conv2d_13_depthwise/depthwise: 9,216 451,584 MobilenetV1/Conv2d_13_pointwise/Conv2D: 1,048,576 51,380,224 -------------------------------------------------------------------------------- Total: 3,185,088 567,716,352 75% Mobilenet V1 (base) with input size 128x128: See mobilenet_v1_075() Layer params macs -------------------------------------------------------------------------------- MobilenetV1/Conv2d_0/Conv2D: 648 2,654,208 MobilenetV1/Conv2d_1_depthwise/depthwise: 216 884,736 MobilenetV1/Conv2d_1_pointwise/Conv2D: 1,152 4,718,592 MobilenetV1/Conv2d_2_depthwise/depthwise: 432 442,368 MobilenetV1/Conv2d_2_pointwise/Conv2D: 4,608 4,718,592 MobilenetV1/Conv2d_3_depthwise/depthwise: 864 884,736 MobilenetV1/Conv2d_3_pointwise/Conv2D: 9,216 9,437,184 MobilenetV1/Conv2d_4_depthwise/depthwise: 864 221,184 MobilenetV1/Conv2d_4_pointwise/Conv2D: 18,432 4,718,592 MobilenetV1/Conv2d_5_depthwise/depthwise: 1,728 442,368 MobilenetV1/Conv2d_5_pointwise/Conv2D: 36,864 9,437,184 MobilenetV1/Conv2d_6_depthwise/depthwise: 1,728 110,592 MobilenetV1/Conv2d_6_pointwise/Conv2D: 73,728 4,718,592 MobilenetV1/Conv2d_7_depthwise/depthwise: 3,456 221,184 MobilenetV1/Conv2d_7_pointwise/Conv2D: 147,456 9,437,184 MobilenetV1/Conv2d_8_depthwise/depthwise: 3,456 221,184 MobilenetV1/Conv2d_8_pointwise/Conv2D: 147,456 9,437,184 MobilenetV1/Conv2d_9_depthwise/depthwise: 3,456 221,184 MobilenetV1/Conv2d_9_pointwise/Conv2D: 147,456 9,437,184 MobilenetV1/Conv2d_10_depthwise/depthwise: 3,456 221,184 MobilenetV1/Conv2d_10_pointwise/Conv2D: 147,456 9,437,184 MobilenetV1/Conv2d_11_depthwise/depthwise: 3,456 221,184 MobilenetV1/Conv2d_11_pointwise/Conv2D: 147,456 9,437,184 MobilenetV1/Conv2d_12_depthwise/depthwise: 3,456 55,296 MobilenetV1/Conv2d_12_pointwise/Conv2D: 294,912 4,718,592 MobilenetV1/Conv2d_13_depthwise/depthwise: 6,912 110,592 MobilenetV1/Conv2d_13_pointwise/Conv2D: 589,824 9,437,184 -------------------------------------------------------------------------------- Total: 1,800,144 106,002,432 """ # Tensorflow mandates these. from __future__ import absolute_import from __future__ import division from __future__ import print_function from collections import namedtuple import functools import tensorflow as tf slim = tf.contrib.slim # Conv and DepthSepConv namedtuple define layers of the MobileNet architecture # Conv defines 3x3 convolution layers # DepthSepConv defines 3x3 depthwise convolution followed by 1x1 convolution. # stride is the stride of the convolution # depth is the number of channels or filters in a layer Conv = namedtuple('Conv', ['kernel', 'stride', 'depth']) DepthSepConv = namedtuple('DepthSepConv', ['kernel', 'stride', 'depth']) # _CONV_DEFS specifies the MobileNet body _CONV_DEFS = [ Conv(kernel=[3, 3], stride=2, depth=32), DepthSepConv(kernel=[3, 3], stride=1, depth=64), DepthSepConv(kernel=[3, 3], stride=2, depth=128), DepthSepConv(kernel=[3, 3], stride=1, depth=128), DepthSepConv(kernel=[3, 3], stride=2, depth=256), DepthSepConv(kernel=[3, 3], stride=1, depth=256), DepthSepConv(kernel=[3, 3], stride=2, depth=512), DepthSepConv(kernel=[3, 3], stride=1, depth=512), DepthSepConv(kernel=[3, 3], stride=1, depth=512), DepthSepConv(kernel=[3, 3], stride=1, depth=512), DepthSepConv(kernel=[3, 3], stride=1, depth=512), DepthSepConv(kernel=[3, 3], stride=1, depth=512), DepthSepConv(kernel=[3, 3], stride=2, depth=1024), DepthSepConv(kernel=[3, 3], stride=1, depth=1024) ] def _fixed_padding(inputs, kernel_size, rate=1): """Pads the input along the spatial dimensions independently of input size. Pads the input such that if it was used in a convolution with 'VALID' padding, the output would have the same dimensions as if the unpadded input was used in a convolution with 'SAME' padding. Args: inputs: A tensor of size [batch, height_in, width_in, channels]. kernel_size: The kernel to be used in the conv2d or max_pool2d operation. rate: An integer, rate for atrous convolution. Returns: output: A tensor of size [batch, height_out, width_out, channels] with the input, either intact (if kernel_size == 1) or padded (if kernel_size > 1). """ kernel_size_effective = [kernel_size[0] + (kernel_size[0] - 1) * (rate - 1), kernel_size[0] + (kernel_size[0] - 1) * (rate - 1)] pad_total = [kernel_size_effective[0] - 1, kernel_size_effective[1] - 1] pad_beg = [pad_total[0] // 2, pad_total[1] // 2] pad_end = [pad_total[0] - pad_beg[0], pad_total[1] - pad_beg[1]] padded_inputs = tf.pad(inputs, [[0, 0], [pad_beg[0], pad_end[0]], [pad_beg[1], pad_end[1]], [0, 0]]) return padded_inputs def mobilenet_v1_base(inputs, final_endpoint='Conv2d_13_pointwise', min_depth=8, depth_multiplier=1.0, conv_defs=None, output_stride=None, use_explicit_padding=False, scope=None): """Mobilenet v1. Constructs a Mobilenet v1 network from inputs to the given final endpoint. Args: inputs: a tensor of shape [batch_size, height, width, channels]. final_endpoint: specifies the endpoint to construct the network up to. It can be one of ['Conv2d_0', 'Conv2d_1_pointwise', 'Conv2d_2_pointwise', 'Conv2d_3_pointwise', 'Conv2d_4_pointwise', 'Conv2d_5'_pointwise, 'Conv2d_6_pointwise', 'Conv2d_7_pointwise', 'Conv2d_8_pointwise', 'Conv2d_9_pointwise', 'Conv2d_10_pointwise', 'Conv2d_11_pointwise', 'Conv2d_12_pointwise', 'Conv2d_13_pointwise']. min_depth: Minimum depth value (number of channels) for all convolution ops. Enforced when depth_multiplier < 1, and not an active constraint when depth_multiplier >= 1. depth_multiplier: Float multiplier for the depth (number of channels) for all convolution ops. The value must be greater than zero. Typical usage will be to set this value in (0, 1) to reduce the number of parameters or computation cost of the model. conv_defs: A list of ConvDef namedtuples specifying the net architecture. output_stride: An integer that specifies the requested ratio of input to output spatial resolution. If not None, then we invoke atrous convolution if necessary to prevent the network from reducing the spatial resolution of the activation maps. Allowed values are 8 (accurate fully convolutional mode), 16 (fast fully convolutional mode), 32 (classification mode). use_explicit_padding: Use 'VALID' padding for convolutions, but prepad inputs so that the output dimensions are the same as if 'SAME' padding were used. scope: Optional variable_scope. Returns: tensor_out: output tensor corresponding to the final_endpoint. end_points: a set of activations for external use, for example summaries or losses. Raises: ValueError: if final_endpoint is not set to one of the predefined values, or depth_multiplier <= 0, or the target output_stride is not allowed. """ depth = lambda d: max(int(d * depth_multiplier), min_depth) end_points = {} # Used to find thinned depths for each layer. if depth_multiplier <= 0: raise ValueError('depth_multiplier is not greater than zero.') if conv_defs is None: conv_defs = _CONV_DEFS if output_stride is not None and output_stride not in [8, 16, 32]: raise ValueError('Only allowed output_stride values are 8, 16, 32.') padding = 'SAME' if use_explicit_padding: padding = 'VALID' with tf.variable_scope(scope, 'MobilenetV1', [inputs]): with slim.arg_scope([slim.conv2d, slim.separable_conv2d], padding=padding): # The current_stride variable keeps track of the output stride of the # activations, i.e., the running product of convolution strides up to the # current network layer. This allows us to invoke atrous convolution # whenever applying the next convolution would result in the activations # having output stride larger than the target output_stride. current_stride = 1 # The atrous convolution rate parameter. rate = 1 net = inputs for i, conv_def in enumerate(conv_defs): end_point_base = 'Conv2d_%d' % i if output_stride is not None and current_stride == output_stride: # If we have reached the target output_stride, then we need to employ # atrous convolution with stride=1 and multiply the atrous rate by the # current unit's stride for use in subsequent layers. layer_stride = 1 layer_rate = rate rate *= conv_def.stride else: layer_stride = conv_def.stride layer_rate = 1 current_stride *= conv_def.stride if isinstance(conv_def, Conv): end_point = end_point_base if use_explicit_padding: net = _fixed_padding(net, conv_def.kernel) net = slim.conv2d(net, depth(conv_def.depth), conv_def.kernel, stride=conv_def.stride, normalizer_fn=slim.batch_norm, scope=end_point) end_points[end_point] = net if end_point == final_endpoint: return net, end_points elif isinstance(conv_def, DepthSepConv): end_point = end_point_base + '_depthwise' # By passing filters=None # separable_conv2d produces only a depthwise convolution layer if use_explicit_padding: net = _fixed_padding(net, conv_def.kernel, layer_rate) net = slim.separable_conv2d(net, None, conv_def.kernel, depth_multiplier=1, stride=layer_stride, rate=layer_rate, normalizer_fn=slim.batch_norm, scope=end_point) end_points[end_point] = net if end_point == final_endpoint: return net, end_points end_point = end_point_base + '_pointwise' net = slim.conv2d(net, depth(conv_def.depth), [1, 1], stride=1, normalizer_fn=slim.batch_norm, scope=end_point) end_points[end_point] = net if end_point == final_endpoint: return net, end_points else: raise ValueError('Unknown convolution type %s for layer %d' % (conv_def.ltype, i)) raise ValueError('Unknown final endpoint %s' % final_endpoint) def mobilenet_v1(inputs, num_classes=1000, dropout_keep_prob=0.999, is_training=True, min_depth=8, depth_multiplier=1.0, conv_defs=None, prediction_fn=tf.contrib.layers.softmax, spatial_squeeze=True, reuse=None, scope='MobilenetV1', global_pool=False): """Mobilenet v1 model for classification. Args: inputs: a tensor of shape [batch_size, height, width, channels]. num_classes: number of predicted classes. If 0 or None, the logits layer is omitted and the input features to the logits layer (before dropout) are returned instead. dropout_keep_prob: the percentage of activation values that are retained. is_training: whether is training or not. min_depth: Minimum depth value (number of channels) for all convolution ops. Enforced when depth_multiplier < 1, and not an active constraint when depth_multiplier >= 1. depth_multiplier: Float multiplier for the depth (number of channels) for all convolution ops. The value must be greater than zero. Typical usage will be to set this value in (0, 1) to reduce the number of parameters or computation cost of the model. conv_defs: A list of ConvDef namedtuples specifying the net architecture. prediction_fn: a function to get predictions out of logits. spatial_squeeze: if True, logits is of shape is [B, C], if false logits is of shape [B, 1, 1, C], where B is batch_size and C is number of classes. reuse: whether or not the network and its variables should be reused. To be able to reuse 'scope' must be given. scope: Optional variable_scope. global_pool: Optional boolean flag to control the avgpooling before the logits layer. If false or unset, pooling is done with a fixed window that reduces default-sized inputs to 1x1, while larger inputs lead to larger outputs. If true, any input size is pooled down to 1x1. Returns: net: a 2D Tensor with the logits (pre-softmax activations) if num_classes is a non-zero integer, or the non-dropped-out input to the logits layer if num_classes is 0 or None. end_points: a dictionary from components of the network to the corresponding activation. Raises: ValueError: Input rank is invalid. """ input_shape = inputs.get_shape().as_list() if len(input_shape) != 4: raise ValueError('Invalid input tensor rank, expected 4, was: %d' % len(input_shape)) with tf.variable_scope(scope, 'MobilenetV1', [inputs], reuse=reuse) as scope: with slim.arg_scope([slim.batch_norm, slim.dropout], is_training=is_training): net, end_points = mobilenet_v1_base(inputs, scope=scope, min_depth=min_depth, depth_multiplier=depth_multiplier, conv_defs=conv_defs) with tf.variable_scope('Logits'): if global_pool: # Global average pooling. net = tf.reduce_mean(net, [1, 2], keep_dims=True, name='global_pool') end_points['global_pool'] = net else: # Pooling with a fixed kernel size. kernel_size = _reduced_kernel_size_for_small_input(net, [7, 7]) net = slim.avg_pool2d(net, kernel_size, padding='VALID', scope='AvgPool_1a') end_points['AvgPool_1a'] = net if not num_classes: return net, end_points # 1 x 1 x 1024 net = slim.dropout(net, keep_prob=dropout_keep_prob, scope='Dropout_1b') logits = slim.conv2d(net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, scope='Conv2d_1c_1x1') if spatial_squeeze: logits = tf.squeeze(logits, [1, 2], name='SpatialSqueeze') end_points['Logits'] = logits if prediction_fn: end_points['Predictions'] = prediction_fn(logits, scope='Predictions') return logits, end_points mobilenet_v1.default_image_size = 32 def wrapped_partial(func, *args, **kwargs): partial_func = functools.partial(func, *args, **kwargs) functools.update_wrapper(partial_func, func) return partial_func mobilenet_v1_075 = wrapped_partial(mobilenet_v1, depth_multiplier=0.75) mobilenet_v1_050 = wrapped_partial(mobilenet_v1, depth_multiplier=0.50) mobilenet_v1_025 = wrapped_partial(mobilenet_v1, depth_multiplier=0.25) def _reduced_kernel_size_for_small_input(input_tensor, kernel_size): """Define kernel size which is automatically reduced for small input. If the shape of the input images is unknown at graph construction time this function assumes that the input images are large enough. Args: input_tensor: input tensor of size [batch_size, height, width, channels]. kernel_size: desired kernel size of length 2: [kernel_height, kernel_width] Returns: a tensor with the kernel size. """ shape = input_tensor.get_shape().as_list() if shape[1] is None or shape[2] is None: kernel_size_out = kernel_size else: kernel_size_out = [min(shape[1], kernel_size[0]), min(shape[2], kernel_size[1])] return kernel_size_out def mobilenet_v1_arg_scope(is_training=True, weight_decay=0.00004, stddev=0.09, regularize_depthwise=False, batch_norm_decay=0.9997, batch_norm_epsilon=0.001): """Defines the default MobilenetV1 arg scope. Args: is_training: Whether or not we're training the model. weight_decay: The weight decay to use for regularizing the model. stddev: The standard deviation of the trunctated normal weight initializer. regularize_depthwise: Whether or not apply regularization on depthwise. batch_norm_decay: Decay for batch norm moving average. batch_norm_epsilon: Small float added to variance to avoid dividing by zero in batch norm. Returns: An `arg_scope` to use for the mobilenet v1 model. """ batch_norm_params = { 'is_training': is_training, 'center': True, 'scale': True, 'decay': batch_norm_decay, 'epsilon': batch_norm_epsilon, } # Set weight_decay for weights in Conv and DepthSepConv layers. weights_init = tf.truncated_normal_initializer(stddev=stddev) regularizer = tf.contrib.layers.l2_regularizer(weight_decay) if regularize_depthwise: depthwise_regularizer = regularizer else: depthwise_regularizer = None with slim.arg_scope([slim.conv2d, slim.separable_conv2d], weights_initializer=weights_init, activation_fn=tf.nn.relu6, normalizer_fn=slim.batch_norm): with slim.arg_scope([slim.batch_norm], **batch_norm_params): with slim.arg_scope([slim.conv2d], weights_regularizer=regularizer): with slim.arg_scope([slim.separable_conv2d], weights_regularizer=depthwise_regularizer) as sc: return sc
11061c8608613ee3897a45acfe68832ba4ec274e
77900cdd9a815caf1cd04705321ca93f5072179f
/Project2/Project2/.history/blog/admin_20211115153912.py
aabc2adbfaef442cdd6a022985cdf4696abffa70
[]
no_license
Bom19990111/helloword_python
717799d994223d65de5adaeabecf396ff2bc1fb7
2ee2e67a60043f03c1ce4b070470c7d2dcdc72a7
refs/heads/master
2023-09-06T04:17:02.057628
2021-11-21T20:00:46
2021-11-21T20:00:46
407,063,273
0
1
null
2021-11-21T20:00:47
2021-09-16T07:18:35
Python
UTF-8
Python
false
false
570
py
from django.contrib import admin from .models import Blog from django import forms from ckeditor_uploader.widgets import CKEditorUploadingWidget # Register your models here. class LessonForm(forms.Mode): content = forms.CharField(widget=CKEditorUploadingWidget) class Meta: model = Blog fields = '__all__' class BlogAdmin(admin.ModelAdmin): forms = LessonForm list_display = ('title', 'slug', 'status', 'created_on') list_filter = ('status',) search_field = ['title', 'content'] admin.site.register(Blog, BlogAdmin)
2a428d4157e23eb314c57e4cb9f438c38a5c599d
3bae1ed6460064f997264091aca0f37ac31c1a77
/apps/cloud_api_generator/generatedServer/tasklets/sso/changeAgentPassword/sso_changeAgentPassword.py
6e7965e0ea2c880b5f9870c2b34e27563455236e
[]
no_license
racktivity/ext-pylabs-core
04d96b80ac1942754257d59e91460c3a141f0a32
53d349fa6bee0ccead29afd6676979b44c109a61
refs/heads/master
2021-01-22T10:33:18.523799
2017-06-08T09:09:28
2017-06-08T09:09:28
54,314,984
0
0
null
2017-06-08T09:09:29
2016-03-20T11:55:01
Python
UTF-8
Python
false
false
186
py
__author__ = 'aserver' __tags__ = 'sso', 'changeAgentPassword' __priority__= 3 def main(q, i, params, tags): params['result'] = '' def match(q, i, params, tags): return True
[ "devnull@localhost" ]
devnull@localhost
dc87b8ec1e10aade6ad80e91571d12ee9671758b
c5b062551f2131b4d9d68de44d0eceebb57403d9
/tests/refresh_token/test_shortcuts.py
1a69514235e1294ddcef5bd8aed414ebeb26f760
[ "MIT" ]
permissive
PedroBern/django-graphql-jwt
e78437257e6d948ba48c32107596742c4e9753b9
6e816445b72e7582d0595fda9e7e5d0486026045
refs/heads/master
2020-12-05T10:12:20.893450
2019-12-05T15:28:42
2019-12-05T15:28:42
232,077,280
1
0
MIT
2020-01-06T10:28:28
2020-01-06T10:28:28
null
UTF-8
Python
false
false
521
py
from graphql_jwt import shortcuts from graphql_jwt.exceptions import JSONWebTokenError from ..testcases import UserTestCase class ShortcutsTests(UserTestCase): def test_get_refresh_token(self): refresh_token = shortcuts.create_refresh_token(self.user) user = shortcuts.get_refresh_token(refresh_token).user self.assertEqual(user, self.user) def test_get_refresh_token_error(self): with self.assertRaises(JSONWebTokenError): shortcuts.get_refresh_token('invalid')
e6293c0f6d02105de2139fc70ed4a725fedec707
7c19fbfe632d6fc32b1d2ba4f53aac17f9351483
/test.py
b312087306712d3d8e304f240172b11d2a06c079
[]
no_license
ymsk-sky/capture_tube
3cdea1e0634d6252a8980aa685f963cc3de12518
bc6e9bb5c88e4b9212c02b249eef8b40f1e5aa24
refs/heads/master
2020-12-27T16:27:04.528906
2020-04-08T11:08:16
2020-04-08T11:08:16
237,970,818
0
0
null
null
null
null
UTF-8
Python
false
false
1,158
py
# -*- coding: utf-8 -*- import cv2 import pafy import youtube_dl def main(): src = 'test.mp4' video = cv2.VideoCapture(src) if not video.isOpened(): return # fpsを取得 fps = int(video.get(cv2.CAP_PROP_FPS)) # 分類器を作成 cascade_file = 'lbpcascade_animeface.xml' clf = cv2.CascadeClassifier(cascade_file) # 1フレームごとに処理を行なう while video.isOpened(): ret, frame = video.read() if not ret: break # グレイスケール→二値化 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 検出 faces = clf.detectMultiScale(gray) # 描画 for x, y, w, h in faces: cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 0 ,255), 2) cv2.imshow('tube', frame) key = cv2.waitKey(fps) & 0xFF if key == ord('q'): break video.release() cv2.destroyAllWindows() def dl(url): ydl = youtube_dl.YoutubeDL({'outtmple': '%(id)s%(ext)s', 'format': '137'}) with ydl: result = ydl.extract_info(url, download=True) if __name__ == '__main__': main()
13b88e53752bbfb7de8405c6c5af6b3a53d11bd7
3d4a6bd2297ac04b112bc8d24fa1118f692a4e2b
/procon_python/src/atcoder/abc/past/B_044_BeautifulStrings.py
5bc6369e3357ba32fb294ba56744f3eb855c7957
[]
no_license
WAT36/procon_work
beba626d9b9c1effded8c9b9f56fbc37abd13636
2e6bc42e6f25938afe740682ad7b6c21a0838d42
refs/heads/master
2021-08-16T11:56:25.048392
2021-06-17T14:13:10
2021-06-17T14:13:10
162,991,707
1
0
null
null
null
null
UTF-8
Python
false
false
253
py
w = input() word = {} l = len(w) for i in range(l): n = word.get(w[i], 0) n = n+1 word[w[i]] = n flag = True for i in word.values(): if(i % 2 == 1): flag = False break if(flag): print("Yes") else: print("No")
1f9d11610567675172e7807ed1c7ec80be28c1f8
623f4682aac5a5dca3e59edfb3595e4c5a718933
/torch/_dynamo/eval_frame.py
33a59e7ea5197afee65b3e9d250f12a2ac69257d
[ "BSD-2-Clause", "LicenseRef-scancode-secret-labs-2011", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "BSL-1.0", "Apache-2.0" ]
permissive
1div0/pytorch
e06297660a99499ab3f3eb4d1a6e87e6993f5071
01b662bafe54dfda561d442015dc512edf8b1564
refs/heads/master
2023-09-03T20:10:11.831755
2023-09-02T17:37:36
2023-09-02T17:37:36
149,109,844
0
0
null
2018-09-17T10:39:50
2018-09-17T10:39:49
null
UTF-8
Python
false
false
51,992
py
from __future__ import annotations import contextlib import dis import functools import inspect import logging import os import sys import textwrap import threading import traceback import types import warnings from enum import Enum from os.path import dirname, join from typing import ( Any, Callable, Dict, List, NamedTuple, Optional, Set, Tuple, TYPE_CHECKING, Union, ) from unittest.mock import patch import torch import torch.fx import torch.utils._pytree as pytree import torch.utils.checkpoint from torch import _guards from torch._subclasses import fake_tensor from torch.export import Constraint from torch.fx.experimental.proxy_tensor import make_fx, maybe_disable_fake_tensor_mode from torch.fx.graph import _PyTreeCodeGen, _PyTreeInfo from torch.nn.parallel.distributed import DistributedDataParallel from ..fx import GraphModule from .backends.registry import CompilerFn, lookup_backend from .hooks import Hooks if TYPE_CHECKING: from torch._C._dynamo.eval_frame import ( # noqa: F401 reset_code, set_eval_frame, set_guard_error_hook, set_guard_fail_hook, skip_code, unsupported, ) else: for name in dir(torch._C._dynamo.eval_frame): if name.startswith("__"): continue globals()[name] = getattr(torch._C._dynamo.eval_frame, name) from . import config, convert_frame, external_utils, skipfiles, utils from .exc import CondOpArgsMismatchError, ResetRequired, UserError, UserErrorType from .mutation_guard import install_generation_tagging_init from .types import DynamoCallback from .utils import compile_times log = logging.getLogger(__name__) from torch._dispatch.python import enable_python_dispatcher from torch.utils._python_dispatch import _disable_current_modes always_optimize_code_objects = utils.ExactWeakKeyDictionary() null_context = contextlib.nullcontext import sympy from torch.fx.experimental.symbolic_shapes import ConstraintViolationError # See https://github.com/python/typing/pull/240 class Unset(Enum): token = 0 unset = Unset.token compile_lock = threading.RLock() most_recent_backend: Optional[CompilerFn] = None DONT_WRAP_FILES = { # For tracing into fx modules inspect.getsourcefile(GraphModule), join(dirname(dirname(__file__)), "onnx/_internal/fx/dynamo_graph_extractor.py"), } # This class has a `check_fn` field for the guard, # and a `code` field for the code object. CacheEntry = torch._C._dynamo.eval_frame._CacheEntry def _debug_get_cache_entry_list( code: Union[types.CodeType, Callable[..., Any]] ) -> List[CacheEntry]: # type: ignore[valid-type] """ Given a code object or a callable object, retrieve the cache entries stored in this code. """ if callable(code): code = code.__code__ cache_head = torch._C._dynamo.eval_frame._debug_get_cache_entry_list(code) cache_list = [] while cache_head is not None: cache_list.append(cache_head) cache_head = cache_head.next return cache_list class OptimizedModule(torch.nn.Module): """ Wraps the original nn.Module object and later patches its forward method to optimized self.forward method. """ def __init__(self, mod: torch.nn.Module, dynamo_ctx): super().__init__() # Installs the params/buffer self._orig_mod = mod self.dynamo_ctx = dynamo_ctx self._initialize() def _initialize(self): # Do this stuff in constructor to lower overhead slightly if isinstance(self._orig_mod.forward, types.MethodType) and skipfiles.check( inspect.getsourcefile(self._orig_mod.forward) ): # This may be a torch.nn.* instance in skipfiles.py which # won't trigger a frame evaluation workaround to add an extra # frame we can capture self.forward = self.dynamo_ctx(external_utils.wrap_inline(self._orig_mod)) else: # Invoke hooks outside of dynamo then pickup the inner frame self.forward = self.dynamo_ctx(self._orig_mod.__call__) if hasattr(self._orig_mod, "_initialize_hook"): self._forward = self.forward self.forward = self._call_lazy_check def __getstate__(self): state = dict(self.__dict__) state.pop("forward", None) state.pop("__call__", None) return state def __setstate__(self, state): self.__dict__ = state self._initialize() def __getattr__(self, name): if name == "_orig_mod": return self._modules["_orig_mod"] return getattr(self._orig_mod, name) def _call_lazy_check(self, *args, **kwargs): if hasattr(self._orig_mod, "_initialize_hook"): # In the case of a lazy module, we want to run # the pre-hooks which initialize it. # Afterwards, lazy module deletes its pre-hooks # to avoid treating it as lazy on subsequent recompile. assert len(kwargs) == 0 self._orig_mod._infer_parameters(self._orig_mod, args) return self._forward(*args, **kwargs) def __dir__(self): orig_mod_attrs = self._orig_mod.__dir__() return orig_mod_attrs + [ attr for attr in super().__dir__() if attr not in orig_mod_attrs ] def remove_from_cache(f): """ Make sure f.__code__ is not cached to force a recompile """ if isinstance(f, types.CodeType): reset_code(f) elif hasattr(f, "__code__"): reset_code(f.__code__) elif hasattr(getattr(f, "forward", None), "__code__"): reset_code(f.forward.__code__) else: from . import reset # type: ignore[attr-defined] reset() log.warning("could not determine __code__ for %s", f) def nothing(): pass def innermost_fn(fn): """ In case of nesting of _TorchDynamoContext calls, find the innermost function. TorchDynamo caches on fn.__code__ object, so its necessary to find the innermost function to pass on the optimize, run, disable etc. """ unaltered_fn = fn while hasattr(unaltered_fn, "_torchdynamo_orig_callable"): unaltered_fn = unaltered_fn._torchdynamo_orig_callable assert callable(unaltered_fn) return unaltered_fn @contextlib.contextmanager def enable_dynamic(enable: Optional[bool] = None, export: bool = False): if enable is None: yield elif enable: # Assume everything is dynamic by deafult with config.patch(assume_static_by_default=False): yield else: with config.patch( automatic_dynamic_shapes=False, assume_static_by_default=True ): yield class _TorchDynamoContext: def __init__( self, callback: DynamoCallback, on_enter=nothing, backend_ctx_ctor=null_context, patch_fn=nothing, first_ctx=False, *, export=False, dynamic=None, compiler_config=None, ): super().__init__() assert callable(callback) or callback is False or callback is None self.callback: DynamoCallback = callback self.prior: Union[Unset, DynamoCallback] = unset self.on_enter = on_enter self.extra_ctx_ctor = backend_ctx_ctor self.first_ctx = first_ctx self.export = export self.dynamic = dynamic self.compiler_config = compiler_config patch_fn() def __enter__(self): if config.raise_on_ctx_manager_usage: raise RuntimeError( "torch._dynamo.optimize(...) is used with a context manager. " "Please refer to https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html " "to use torch._dynamo.optimize(...) as an annotation/decorator. " ) self.on_enter() self.prior = set_eval_frame(self.callback) self.backend_ctx = self.extra_ctx_ctor() self.backend_ctx.__enter__() self.dynamic_ctx = enable_dynamic(self.dynamic, self.export) self.dynamic_ctx.__enter__() def __exit__(self, exc_type, exc_val, exc_tb): assert self.prior is not unset set_eval_frame(self.prior) self.prior = unset # TODO: This is totally not the right way to chain contexts manually self.dynamic_ctx.__exit__(exc_type, exc_val, exc_tb) self.backend_ctx.__exit__(exc_type, exc_val, exc_tb) def __call__(self, fn): # public api for compiler config/options def get_compiler_config(): return self.compiler_config fn = innermost_fn(fn) # Optimize the forward method of torch.nn.Module object if isinstance(fn, torch.nn.Module): mod = fn new_mod = OptimizedModule(mod, self) # Save the function pointer to find the original callable while nesting # of decorators. new_mod._torchdynamo_orig_callable = mod.forward # when compiling torch.nn.Module, # provide public api OptimizedModule.get_compiler_config() assert not hasattr(new_mod, "get_compiler_config") new_mod.get_compiler_config = get_compiler_config # type: ignore[attr-defined] return new_mod assert callable(fn) try: filename = inspect.getsourcefile(fn) except TypeError: filename = None if ( (filename is None or skipfiles.check(filename)) and ( getattr(fn, "__name__", "") not in ["_call_impl", "_wrapped_call_impl"] ) and filename not in DONT_WRAP_FILES ): # call to a builtin without a frame for us to capture fn = external_utils.wrap_inline(fn) callback = self.callback on_enter = self.on_enter backend_ctx_ctor = self.extra_ctx_ctor @functools.wraps(fn) def _fn(*args, **kwargs): if ( not isinstance(self, DisableContext) and torch.fx._symbolic_trace.is_fx_tracing() ): if config.error_on_nested_fx_trace: raise RuntimeError( "Detected that you are using FX to symbolically trace " "a dynamo-optimized function. This is not supported at the moment." ) else: return fn(*args, **kwargs) on_enter() prior = set_eval_frame(callback) backend_ctx = backend_ctx_ctor() backend_ctx.__enter__() dynamic_ctx = enable_dynamic(self.dynamic, self.export) dynamic_ctx.__enter__() try: return fn(*args, **kwargs) finally: set_eval_frame(prior) dynamic_ctx.__exit__(None, None, None) backend_ctx.__exit__(None, None, None) # hooks to properly handle inlining if isinstance(self, DisableContext): _fn._torchdynamo_disable = True # type: ignore[attr-defined] else: _fn._torchdynamo_inline = fn # type: ignore[attr-defined] # Save the function pointer to find the original callable while nesting # of decorators. _fn._torchdynamo_orig_callable = fn # type: ignore[attr-defined] # when compiling user function instead of nn.Module # provide public api _fn.get_compiler_config() assert not hasattr(_fn, "get_compiler_config") _fn.get_compiler_config = get_compiler_config # type: ignore[attr-defined] # If the function is called using torch._dynamo.optimize decorator, we # should prevent any type of skipping. if callback not in (None, False): if not hasattr(fn, "__code__"): raise RuntimeError( textwrap.dedent( """ torch._dynamo.optimize is called on a non function object. If this is a callable class, please wrap the relevant code into a function and optimize the wrapper function. >> class CallableClass: >> def __init__(self): >> super().__init__() >> self.relu = torch.nn.ReLU() >> >> def __call__(self, x): >> return self.relu(torch.sin(x)) >> >> def print_hello(self): >> print("Hello world") >> >> mod = CallableClass() If you want to optimize the __call__ function and other code, wrap that up in a function >> def wrapper_fn(x): >> y = mod(x) >> return y.sum() and then optimize the wrapper_fn >> opt_wrapper_fn = torch._dynamo.optimize(wrapper_fn) """ ) ) always_optimize_code_objects[fn.__code__] = True return _fn class OptimizeContext(_TorchDynamoContext): @staticmethod def _different_backend(old, new): return not (old == new or old is None) def __init__( self, callback, backend_ctx_ctor, first_ctx=False, *, export=False, dynamic=None, compiler_config=None, ): def on_enter(): global most_recent_backend if OptimizeContext._different_backend(most_recent_backend, compiler_fn): if config.raise_on_backend_change: raise ResetRequired() else: warnings.warn( "changing options to `torch.compile()` may require " "calling `torch._dynamo.reset()` to take effect" ) most_recent_backend = compiler_fn install_generation_tagging_init() compiler_fn = innermost_fn(callback) super().__init__( callback=callback, on_enter=on_enter, backend_ctx_ctor=backend_ctx_ctor, patch_fn=TorchPatcher.patch, first_ctx=first_ctx, export=export, dynamic=dynamic, compiler_config=compiler_config, ) class RunOnlyContext(_TorchDynamoContext): def __init__(self): # cudagraph trees relies on generation increment def on_enter(): torch._dynamo.mutation_guard.GenerationTracker.generation += 1 super().__init__(callback=False, on_enter=on_enter) class DisableContext(_TorchDynamoContext): def __init__(self): super().__init__(callback=None) def first_real_inst_idx(code): if sys.version_info < (3, 11): return 0 for inst in dis.get_instructions(code): if inst.opname == "RESUME": return inst.offset // 2 raise RuntimeError("RESUME instruction not found in code") def catch_errors_wrapper(callback, hooks: Hooks): @functools.wraps(callback) def catch_errors(frame, cache_entry, frame_state): assert frame_state is not None if ( # TODO: the first condition is not covered by any test frame.f_lasti >= first_real_inst_idx(frame.f_code) or skipfiles.check(frame.f_code.co_filename) or config.disable ): log.debug("skipping %s %s", frame.f_code.co_name, frame.f_code.co_filename) return None if frame.f_code.co_filename == "<string>" and frame.f_code.co_name == "__new__": # nametuple constructor return None if config.optimize_ddp: ddp_module = DistributedDataParallel._get_active_ddp_module() if ddp_module: with compile_lock: from torch._dynamo.backends.distributed import DDPOptimizer ddp_optimizer = DDPOptimizer( bucket_bytes_cap=ddp_module.bucket_bytes_cap, backend_compile_fn=callback._torchdynamo_orig_callable, ) assert hasattr( callback, "_clone_with_backend" ), "DDPOptimizer only supports callback fns that know how to clone themselves." hijacked_callback = callback._clone_with_backend( ddp_optimizer.compile_fn, ) return hijacked_callback(frame, cache_entry, hooks, frame_state) with compile_lock, _disable_current_modes(): return callback(frame, cache_entry, hooks, frame_state) catch_errors._torchdynamo_orig_callable = callback # type: ignore[attr-defined] return catch_errors def _optimize_catch_errors( compile_fn, hooks: Hooks, backend_ctx_ctor=null_context, export=False, dynamic=None, compiler_config=None, ): return OptimizeContext( catch_errors_wrapper(compile_fn, hooks), backend_ctx_ctor=backend_ctx_ctor, first_ctx=True, export=export, dynamic=dynamic, compiler_config=compiler_config, ) def get_compiler_fn(compiler_fn): from .repro.after_dynamo import wrap_backend_debug if hasattr(compiler_fn, "compiler_name"): compiler_str = compiler_fn.compiler_name elif isinstance(compiler_fn, str): compiler_str = compiler_fn else: compiler_str = None compiler_fn = lookup_backend(compiler_fn) return wrap_backend_debug(compiler_fn, compiler_str) class _NullDecorator(contextlib.nullcontext): # type: ignore[type-arg] def __call__(self, fn): assert callable(fn) return fn def check_if_dynamo_supported(): if sys.platform == "win32": raise RuntimeError("Windows not yet supported for torch.compile") if sys.version_info >= (3, 12): raise RuntimeError("Python 3.12+ not yet supported for torch.compile") def is_dynamo_supported(): try: check_if_dynamo_supported() return True except Exception: return False def optimize( backend="inductor", *, nopython=False, guard_export_fn=None, guard_fail_fn=None, disable=False, dynamic=None, ): """ The main entrypoint of TorchDynamo. Do graph capture and call backend() to optimize extracted graphs. Args: backend: One of the two things: - Either, a function/callable taking a torch.fx.GraphModule and example_inputs and returning a python callable that runs the graph faster. One can also provide additional context for the backend, like torch.jit.fuser("fuser2"), by setting the backend_ctx_ctor attribute. See AOTAutogradMemoryEfficientFusionWithContext for the usage. - Or, a string backend name in `torch._dynamo.list_backends()` nopython: If True, graph breaks will be errors and there will be a single whole-program graph. disable: If True, turn this decorator into a no-op dynamic: If True, upfront compile as dynamic a kernel as possible. If False, disable all dynamic shapes support (always specialize). If None, automatically detect when sizes vary and generate dynamic kernels upon recompile. Example Usage:: @torch._dynamo.optimize() def toy_example(a, b): ... """ check_if_dynamo_supported() # Note: The hooks object could be global instead of passed around, *however* that would make # for a confusing API usage and plumbing story wherein we nest multiple .optimize calls. # There is some prior art around this, w/r/t nesting backend calls are enforced to be the same # compiler, however, this feels onerous for callback and hooks, and it feels better to give our users an # easier to understand UX at the cost of a little more plumbing on our end. hooks = Hooks(guard_export_fn=guard_export_fn, guard_fail_fn=guard_fail_fn) torch._C._log_api_usage_once("torch._dynamo.optimize") if disable or os.environ.get("TORCHDYNAMO_DISABLE", "") == "1": return _NullDecorator() backend = get_compiler_fn(backend) # Find if backend has any extra context manager backend_ctx_ctor = getattr(backend, "backend_ctx_ctor", null_context) if nopython: return optimize_assert( backend, dynamic=dynamic, hooks=hooks, ) return _optimize_catch_errors( convert_frame.convert_frame(backend, hooks=hooks), hooks, backend_ctx_ctor, dynamic=dynamic, compiler_config=backend.get_compiler_config() if hasattr(backend, "get_compiler_config") else None, ) # TODO(voz): Consider making "explain" output alongside a run / part of a run @patch("torch._dynamo.symbolic_convert.explain", True) def explain(f, *extra_args, **extra_kwargs): def inner(*args, **kwargs): # TODO(voz): Do we want a decorator for this? from . import reset # type: ignore[attr-defined] reset() graphs: List[torch.fx.GraphModule] = [] break_reasons: List[Any] = [] op_count: int = 0 ops_per_graph: List[torch.fx.Node] = [] out_guards: List[_guards.Guard] = [] def dynamo_graph_accumulating_compiler( gm: torch.fx.GraphModule, example_inputs ): from .backends.debugging import _explain_graph_detail nonlocal graphs nonlocal op_count nonlocal ops_per_graph nonlocal break_reasons gm, graphs, op_count, ops_per_graph, break_reasons = _explain_graph_detail( gm, graphs, op_count, ops_per_graph, break_reasons ) return gm.forward def guard_export_print(guards): nonlocal out_guards out_guards.extend(guards) with patch(f"{__name__}.most_recent_backend", None): opt_f = optimize( dynamo_graph_accumulating_compiler, nopython=False, guard_export_fn=guard_export_print, )(f) # TODO(voz): We may have instances of `f` that mutate inputs, we should track sideffects and reject. opt_f(*args, **kwargs) graph_count = len(graphs) # For the explanation summary, dedupe reasons by the innermost stack frame and dedupe by it. deduped_reasons = {} for reason in break_reasons: innermost_frame = reason.user_stack[-1] # __repr__ uniquely identifies a FrameSummary so we can use it for deduping deduped_reasons[repr(innermost_frame)] = reason formatted_list = "" for idx, break_reason in enumerate(deduped_reasons.values()): formatted_stack = "".join(traceback.format_list(break_reason.user_stack)) msg = f"{idx + 1}. Reason: {break_reason.reason}\n User Stack: {formatted_stack}\n" formatted_list += msg graph_break_count = graph_count - 1 compile_time = compile_times(repr="str") # TODO(voz): Do we want a decorator for this? reset() from .backends.debugging import ExplainOutput return ExplainOutput( graphs, graph_count, graph_break_count, break_reasons, op_count, ops_per_graph, out_guards, compile_time, ) if extra_args or extra_kwargs: warnings.warn( "explain(f, *args, **kwargs) is deprecated, use explain(f)(*args, **kwargs) instead. " "If you don't migrate, we may break your explain call in the future if your user defined kwargs " "conflict with future kwargs added to explain(f)." ) return inner(*extra_args, **extra_kwargs) else: return inner class FlattenInputOutputSignature(torch.fx.interpreter.Transformer): def __init__( self, m: torch.fx.GraphModule, flat_args: Tuple[Any], matched_input_elements_positions: List[int], matched_output_elements_positions: List[int], example_fake_inputs: List[torch.Tensor], fake_mode: Optional[fake_tensor.FakeTensorMode] = None, ): super().__init__(m) matched_input_elements_to_fake = { val: example_fake_inputs[ix] for ix, val in enumerate(matched_input_elements_positions) } self.new_args = [] for i in range(0, len(flat_args)): arg = super().placeholder(f"arg{i}", (), {}) if i in matched_input_elements_to_fake: arg.node.meta["val"] = matched_input_elements_to_fake[i] else: # Fill node.mata["val"] with faketensor from the input, # if it's not found in matched_input_elements_positions if fake_mode is not None and isinstance(flat_args[i], torch.Tensor): arg.node.meta["val"] = fake_mode.from_tensor(flat_args[i]) self.new_args.append(arg) self.old_args_gen = (self.new_args[i] for i in matched_input_elements_positions) self.matched_output_elements_positions = matched_output_elements_positions def placeholder(self, target, args, kwargs): arg = next(self.old_args_gen) if "val" in self.current_node.meta: arg.node.meta["val"] = self.current_node.meta["val"] if "tensor_dict" in self.current_node.meta: arg.node.meta["tensor_dict"] = self.current_node.meta["tensor_dict"] return arg def output(self, target, args, kwargs): dynamo_result_flat = args[0] lookup = [*dynamo_result_flat, *self.new_args] new_result_flat = [lookup[i] for i in self.matched_output_elements_positions] return super().output(target, (new_result_flat,), {}) def run_node(self, n): self.current_node = n r = super().run_node(n) if "val" in self.current_node.meta: r.node.meta["val"] = self.current_node.meta["val"] return r class ExportResult(NamedTuple): graph_module: torch.fx.GraphModule guards: Set[_guards.Guard] # NB: Do not add new fields without overriding __iter__; people are # destructuring so it is BC-breaking def check_signature_rewritable(graph): input_errors = [] for node in graph.graph.nodes: if node.op == "placeholder": assert hasattr(node, "_dynamo_source") source = node._dynamo_source user_stacks = graph._source_to_user_stacks.get(source) if user_stacks is None: continue assert len(user_stacks) > 0 # In some cases we may not have a useful stack. Look for a # useful stack stack = None for s in user_stacks: if len(s) == 0: continue stack = s break if stack is None: msg = f"{source.name()}, a closed over free variable" else: tb = "".join(traceback.format_list(stack)) extra = "" if len(user_stacks) > 1: extra = f"(elided {len(user_stacks)-1} more accesses)" msg = f"{source.name()}, accessed at:\n{tb}{extra}" # TODO: option to print ALL of the stack traces at once input_errors.append(msg) if input_errors: raise UserError( UserErrorType.INVALID_INPUT, "Cannot export model which references tensors that are neither " "buffers/parameters/constants nor are direct inputs. For each tensor, if you'd " "like this tensor to be an explicit input, add it as a dummy argument " "to the top-level model definition you are exporting; if you would " "like its value to be embedded as an exported constant, wrap its access " "in a function marked with @assume_constant_result.\n\n" + "\n\n".join(input_errors), ) def rewrite_signature( f_sig, graph, fake_mode, flat_args, in_spec, example_fake_inputs, graph_captured_input, graph_captured_output, dynamo_traced_result, ): orig_args, orig_kwargs = pytree.tree_unflatten(flat_args, in_spec) def produce_matching(sources, candidates): source_types = " or ".join( [ desc + " (" + ", ".join([str(type(arg)) for arg in args]) + ")" for desc, args in sources.items() ] ) source_args = [arg for args in sources.values() for arg in args] matched_elements_positions = [] dict_of_source_args = dict() for i, arg in enumerate(source_args): dict_of_source_args[id(arg)] = i for candidate_desc, candidate_args in candidates.items(): for i, arg in enumerate(candidate_args): # 1-element tensor arg can be unspec int/float if isinstance(arg, torch.Tensor) and torch.numel(arg) == 1: if id(arg) in dict_of_source_args: matched_elements_positions.append(dict_of_source_args[id(arg)]) elif id(arg.item()) in dict_of_source_args: matched_elements_positions.append( dict_of_source_args[id(arg.item())] ) else: raise AssertionError( f"{candidate_desc} #{i} ({type(arg)}) is not among {source_types}" ) else: if id(arg) not in dict_of_source_args: raise AssertionError( f"{candidate_desc} #{i} ({type(arg)}) is not among {source_types}" ) matched_elements_positions.append(dict_of_source_args[id(arg)]) return matched_elements_positions matched_input_elements_positions = produce_matching( sources={"original args": flat_args}, candidates={"graph-captured input": graph_captured_input}, ) flat_results_traced, out_spec_traced = pytree.tree_flatten(dynamo_traced_result) assert graph_captured_output is not None matched_output_elements_positions = produce_matching( sources={ "graph-captured outputs": list(graph_captured_output), "original args": flat_args, }, candidates={"traced result": flat_results_traced}, ) new_graph = FlattenInputOutputSignature( graph, flat_args, matched_input_elements_positions, matched_output_elements_positions, example_fake_inputs, fake_mode, ).transform() # Make dynamo graph to have same input/output spec as user code def argument_names(f_sig, args, kwargs) -> List[str]: def signature_to_fullargspec(sig: inspect.Signature): # Get a list of Parameter objects from the Signature object params = list(sig.parameters.values()) # Separate positional arguments, keyword-only arguments and varargs/varkw args = [ p.name for p in params if p.kind == inspect.Parameter.POSITIONAL_OR_KEYWORD ] kwonlyargs = [ p.name for p in params if p.kind == inspect.Parameter.KEYWORD_ONLY ] varargs = next( (p.name for p in params if p.kind == inspect.Parameter.VAR_POSITIONAL), None, ) varkw = next( (p.name for p in params if p.kind == inspect.Parameter.VAR_KEYWORD), None, ) # Get default values for positional arguments and keyword-only arguments defaults = tuple( p.default for p in params if p.kind == inspect.Parameter.POSITIONAL_OR_KEYWORD and p.default is not inspect.Parameter.empty ) kwonlydefaults = { p.name: p.default for p in params if p.kind == inspect.Parameter.KEYWORD_ONLY and p.default is not inspect.Parameter.empty } # Get annotations for parameters and return value annotations = {} if sig.return_annotation: annotations = {"return": sig.return_annotation} for parameter in params: annotations[parameter.name] = parameter.annotation # Return a FullArgSpec object with the extracted attributes return inspect.FullArgSpec( args, varargs, varkw, defaults, kwonlyargs, kwonlydefaults, annotations ) fullargspec = signature_to_fullargspec(f_sig) # 1. Map `args` 1-to-1 to positional arguments in original signature. input_strs = fullargspec.args[: len(args)] if len(args) > len(fullargspec.args): # 2. If there are more arguments left in `args`, they map to varargs in original # signature. Assign names as {varargs}_0, {varargs}_1, ... assert fullargspec.varargs is not None, "More arguments than expected" input_strs += [ f"{fullargspec.varargs}_{i}" for i in range(0, len(args) - len(input_strs)) ] elif len(args) < len(fullargspec.args): # 3. If there are fewer arguments in `args` than `fullargspec.args`, # it implies these are arguments either with default values, or provided in # `kwargs`. The former can be safely ignored. Because Dynamo.export does not # export them as part of the function signature. The latter will be handled # in the next step. for unprovided_arg in fullargspec.args[ len(args) : -len(fullargspec.defaults or []) ]: assert unprovided_arg in kwargs, f"Missing argument {unprovided_arg}" # 4. Keyword arguments provided in `kwargs`. input_strs += list(kwargs.keys()) # 5. Keyword-only arguments with default values if not provided are not exported # as part of the function signature. for kwonly_arg in fullargspec.kwonlyargs: kwonlydefaults = fullargspec.kwonlydefaults or {} assert ( kwonly_arg in kwargs or kwonly_arg in kwonlydefaults ), f"Missing keyword only argument {kwonly_arg}" return input_strs new_graph.graph._codegen = _PyTreeCodeGen( _PyTreeInfo( argument_names(f_sig, orig_args, orig_kwargs), in_spec, out_spec_traced, ) ) new_graph.recompile() return new_graph def export( f: Callable[..., Any], *extra_args, aten_graph: bool = False, pre_dispatch: bool = False, decomposition_table: Optional[ Dict[torch._ops.OpOverload, Callable[..., Any]] ] = None, tracing_mode: str = "symbolic", constraints: Optional[List[Constraint]] = None, assume_static_by_default: bool = False, same_signature: bool = True, **extra_kwargs, ) -> Callable[..., ExportResult]: """ Export an input function f to a format that can be executed outside of PyTorch using the FX graph. Args: f (callable): A PyTorch function to be exported. aten_graph (bool): If True, exports a graph with ATen operators. If False, exports a graph with Python operators. Default is False. pre_dispatch (bool): If True, exports a graph with ATen operators, but before any logic in the PyTorch dispatcher has run. This can be useful if you want to apply further transformations on a graph before running it through autograd, autocast, or any other functionalities that are integrated into the dispatcher. This flag is only valid if aten_graph=True is set. Default is False. decomposition_table (dict): A dictionary that maps operators to their decomposition functions. Required if aten_graph or tracing_mode is specified. Default is None. tracing_mode (str): If "symbolic", turn on dynamic shapes support. Default is "symbolic". same_signature (bool): If True, rewrite the returned graph's signature to be the same as f. Returns: A function that given args and kwargs, returns a tuple of (graph, guards) Graph: An FX graph representing the execution of the input PyTorch function with the provided arguments and options. Guards: The guards we accumulated during tracing f above Raises: AssertionError: If decomposition_table is specified without setting aten_graph=True, or if graph breaks during tracing in export. AssertionError: If Dynamo input and output is not consistent with traced input/output. Note - this headerdoc was authored by ChatGPT, with slight modifications by the author. """ # Deal with "local variable referenced before assignment" _f = f _assume_static_by_default = assume_static_by_default def inner(*args, **kwargs): f = _f assume_static_by_default = _assume_static_by_default check_if_dynamo_supported() torch._C._log_api_usage_once("torch._dynamo.export") if decomposition_table is not None: assert ( aten_graph ), "Specifying a decomposition_table table or tracing mode is illegal without setting aten_graph=True" if pre_dispatch: assert aten_graph, "pre_dispatch=True can only be used when aten_graph=True" f = innermost_fn(f) call_to_inspect = f.forward if isinstance(f, torch.nn.Module) else f original_signature = inspect.signature(call_to_inspect) graph = None out_guards = None graph_captured_input = None graph_captured_result: Optional[Tuple[torch.Tensor, ...]] = None fake_mode = None def guard_export_print(guards: Set[_guards.Guard]): nonlocal out_guards assert ( out_guards is None ), "whole graph export entails exactly one guard export" out_guards = guards example_inputs = [] def dynamo_normalization_capturing_compiler( gm: torch.fx.GraphModule, inner_example_inputs ): nonlocal graph assert ( graph is None ), "Tried to emit a second graph during export. Tracing through 'f' must produce a single graph." graph = gm nonlocal fake_mode, example_inputs # NB: do NOT pass inner_example_inputs here, we are detecting the # Dynamo allocated fake mode, which should be DISTINCT from a # potential outer ambient fake mode which the user provided. # example_inputs is always the user specified inputs, so they # would have the wrong fake mode attached to them fake_mode = _guards.detect_fake_mode() example_inputs = inner_example_inputs def result_capturing_wrapper(*graph_inputs): nonlocal graph_captured_result nonlocal graph_captured_input graph_captured_input = graph_inputs assert graph is not None named_parameters = dict(graph.named_parameters(remove_duplicate=False)) named_buffers = dict(graph.named_buffers(remove_duplicate=False)) ambient_fake_mode = ( _guards.detect_fake_mode(graph_inputs) if _guards.detect_fake_mode(graph_inputs) is not None else fake_mode ) with ambient_fake_mode, enable_python_dispatcher(): params_and_buffers = { **dict(named_parameters), **dict(named_buffers), } fake_params_buffers = dict() for name, value in params_and_buffers.items(): fake_params_buffers[name] = ambient_fake_mode.from_tensor( value, static_shapes=True ) fake_graph_inputs = pytree.tree_map( ambient_fake_mode.from_tensor, graph_inputs ) graph_captured_result = torch.func.functional_call( graph, fake_params_buffers, fake_graph_inputs ) return graph_captured_result return result_capturing_wrapper # Note: This is needed by rewrite_signature. We need to put it before # optimize_assert since user program may mutate the inputs. flat_args, in_spec = pytree.tree_flatten((args, kwargs)) remove_from_cache(f) constraint_violation_error = None if tracing_mode != "symbolic": assume_static_by_default = True with patch(f"{__name__}.most_recent_backend", None), config.patch( specialize_int=True, assume_static_by_default=assume_static_by_default, automatic_dynamic_shapes=False, capture_dynamic_output_shape_ops=True, capture_scalar_outputs=True, ): opt_f = optimize_assert( dynamo_normalization_capturing_compiler, hooks=Hooks( guard_export_fn=guard_export_print, guard_fail_fn=None, ), export=True, export_constraints=constraints, )(f) # TODO(voz): We may have instances of `f` that mutate inputs, we should track sideffects and reject. try: result_traced = opt_f(*args, **kwargs) except ConstraintViolationError as e: constraint_violation_error = e remove_from_cache(f) if ( (shape_env := getattr(fake_mode, "shape_env", None)) is not None and (dim_constraints := shape_env.dim_constraints) is not None and not skipfiles.check(inspect.getsourcefile(call_to_inspect)) ): dim_constraints.solve() dim_constraints.remove_redundant_dynamic_results() msg = dim_constraints.prettify_results(original_signature) forced_specializations = dim_constraints.forced_specializations() if forced_specializations: msg = ( "Some dynamic dimensions need to be specialized because " "the constraints inferred for them are too complex to specify.\n" f"{forced_specializations}\n{msg}" ) if constraint_violation_error: constraint_violation_error.args = ( constraint_violation_error.args[0] + msg, ) else: if forced_specializations: constraint_violation_error = ConstraintViolationError(msg) else: log.info( "Summary of dimension constraints:%s", msg, ) # Error if we have any constraints on static values for k in shape_env.var_to_range.keys(): if isinstance(k, sympy.Integer): constraint_violation_error = ConstraintViolationError( f"{''.join(traceback.format_list(shape_env.var_to_stack[k]))}\n" "It appears that you're trying to set a constraint on a " f"value which we evaluated to have a static value of {k}. " "Scroll up to see where this constraint was set." ) if constraint_violation_error: raise constraint_violation_error assert ( graph is not None ), "Failed to produce a graph during tracing. Tracing through 'f' must produce a single graph." assert hasattr(graph, "_source_to_user_stacks") assert out_guards is not None, "Failed to produce guards during tracing" assert fake_mode is not None # This check need to happend before aten_graph # because placeholder's _source_node attribute is not preserved by make_fx if same_signature: check_signature_rewritable(graph) # NB: This is mostly hitting the cache; Dynamo already converted these example_fake_inputs = [fake_mode.from_tensor(t) for t in example_inputs] if aten_graph: # Running graph with interpreter is needed for propagating the stack_trace def graph_with_interpreter(*args): with torch.fx.traceback.preserve_node_meta(): return torch.fx.Interpreter(graph).run(*args) with maybe_disable_fake_tensor_mode(), enable_python_dispatcher(), ( fake_mode ): try: graph = make_fx( graph_with_interpreter, decomposition_table=decomposition_table, tracing_mode="real", _allow_non_fake_inputs=True, pre_dispatch=pre_dispatch, _allow_fake_constant=False, )(*example_fake_inputs) except CondOpArgsMismatchError as e: # Wrap the internal error to the user-facing error raise UserError(UserErrorType.DYNAMIC_CONTROL_FLOW, str(e)) if same_signature: graph = rewrite_signature( original_signature, graph, fake_mode, flat_args, in_spec, example_fake_inputs, graph_captured_input, graph_captured_result, result_traced, ) # Store constraints and inputs as metadata for user passes, e.g. turn constraints to runtime check graph.meta["input_shape_constraints"] = ( [constraint.serializable_spec for constraint in constraints] if constraints else [] ) return ExportResult(graph, out_guards) if extra_args or extra_kwargs: warnings.warn( "export(f, *args, **kwargs) is deprecated, use export(f)(*args, **kwargs) instead. " "If you don't migrate, we may break your export call in the future if your user defined kwargs " "conflict with future kwargs added to export(f)." ) return inner(*extra_args, **extra_kwargs) else: return inner def optimize_assert( backend, *, hooks=Hooks(None, None), export=False, export_constraints=None, dynamic=None, ): """ The same as `torch._dynamo.optimize(backend, nopython=True)` """ backend = get_compiler_fn(backend) # Find if backend has any extra context manager backend_ctx_ctor = getattr(backend, "backend_ctx_ctor", null_context) return _optimize_catch_errors( convert_frame.convert_frame_assert( backend, export=export, export_constraints=export_constraints ), hooks, backend_ctx_ctor, export=export, dynamic=dynamic, ) class TorchPatcher: @staticmethod @functools.lru_cache(None) def patch(): # A better way to disable the following would be decorate the source # functions with @torch._disable_dynamo. However, this causes issues # with torch.deploy internally. from .decorators import disable torch.jit.trace = disable(torch.jit.trace) torch.jit.trace_module = disable(torch.jit.trace_module) torch.jit._get_trace_graph = disable(torch.jit._get_trace_graph) torch.fx._symbolic_trace.Tracer.trace = disable( torch.fx._symbolic_trace.Tracer.trace ) torch.distributions.Distribution.set_default_validate_args(False) from ..optim import ( adadelta, adagrad, adam, adamax, adamw, asgd, lbfgs, nadam, radam, rmsprop, rprop, sgd, sparse_adam, ) optimizer_modules = { adadelta, adagrad, adam, adamax, adamw, asgd, lbfgs, nadam, radam, rmsprop, rprop, sgd, sparse_adam, } disabled_multi_tensor_opt_modules = { adamax, nadam, radam, # data-dependent control flow sgd, # for now, until we can speed up compilation (this affects the benchmarks) } for opt_mod in optimizer_modules: opt_name = opt_mod.__name__.split(".")[-1] multi_tensor_fn_name = f"_multi_tensor_{opt_name}" fused_fn_name = f"_fused_{opt_name}" if ( hasattr(opt_mod, multi_tensor_fn_name) and opt_mod in disabled_multi_tensor_opt_modules ): setattr( opt_mod, multi_tensor_fn_name, disable(getattr(opt_mod, multi_tensor_fn_name)), ) if hasattr(opt_mod, fused_fn_name): setattr( opt_mod, fused_fn_name, disable(getattr(opt_mod, fused_fn_name)) ) optimizer_classes = [ opt for opt in torch.optim.__dict__.values() if inspect.isclass(opt) and issubclass(opt, torch.optim.Optimizer) ] # Note: we don't support sparsity, data-dependent control, or tracing through backwards excluded_optimizer_classes = { torch.optim.SparseAdam, torch.optim.RAdam, torch.optim.LBFGS, } for opt in optimizer_classes: if opt in excluded_optimizer_classes: opt.step = disable(opt.step) if hasattr(opt, "_init_group"): opt._init_group = disable(opt._init_group) # disable any currently set hooks # Note: we only want to disable the profiling hook # which is the *last* hook applied, we want to keep the no_grad hook hooked = getattr(opt.step, "hooked", False) if hooked: unwrapped_step = getattr(opt.step, "__wrapped__", None) if unwrapped_step: opt.step = unwrapped_step # disable future hooking opt.step.hooked = True torch._dynamo.variables.lists._register_dynamo_list_to_tree_spec() torch._dynamo.variables.lists._register_dynamo_tuple_to_tree_spec() torch._dynamo.variables.dicts._register_dynamo_dict_to_tree_spec() @staticmethod def suppress_torch_distributed_warnings(fn): def inner_fn(*args, **kwargs): warnings.filterwarnings( "ignore", category=UserWarning, module="torch.distributed" ) return fn(*args, **kwargs) return inner_fn
3c2e5aaa02755fa348d33bdb44613ba9ceabf258
07c4c39a3f43aa41327702329cddf555ac489f0e
/.PyCharmCE2019.1/system/python_stubs/1499390420/typed_ast/_ast27/Import.py
bcab2971d027f20d058802751dc4c2363981afe7
[]
no_license
shirotakoki/teran
a2ba42c2d2c605c7421b35dc1dfa5f51baec0fd7
13c5e8d7484d148c3490726aa860d5a10165381b
refs/heads/master
2023-02-04T21:18:51.829188
2020-09-27T08:26:54
2020-09-27T08:26:54
323,551,048
0
0
null
null
null
null
UTF-8
Python
false
false
370
py
# encoding: utf-8 # module typed_ast._ast27 # from C:\Users\teran\AppData\Roaming\Python\Python37\site-packages\typed_ast\_ast27.cp37-win_amd64.pyd # by generator 1.147 # no doc # no imports from .stmt import stmt class Import(stmt): # no doc def __init__(self, *args, **kwargs): # real signature unknown pass _fields = ( 'names', )
bb4f37c64f211df4f9a73f5b49800a64ada951c9
f925499f896b012624118cfafd02fef76ff5075a
/src/testcase/GN_Y201J/input_case/GN_Y201J_Over_Day.py
227028df3fa47b789517261bde3cd7c1da6899a7
[ "Apache-2.0" ]
permissive
maiyajj/AutoTest_script-Appium_Connect
f7c06db1d2f58682d1a9d6f534f7dd5fb65d766d
f9c2c42c281a9e2f984acb4a72dda0694b053f22
HEAD
2019-07-26T01:39:48.413753
2018-04-11T02:11:38
2018-04-11T02:11:38
112,449,369
30
22
null
null
null
null
UTF-8
Python
false
false
653
py
# coding=utf-8 try: from src.testcase.GN_Y201J.case.GN_Y201J_OVER_DAY.GN_Y201J_OVER_DAY_001 import * from src.testcase.GN_Y201J.case.GN_Y201J_OVER_DAY.GN_Y201J_OVER_DAY_002 import * from src.testcase.GN_Y201J.case.GN_Y201J_OVER_DAY.GN_Y201J_OVER_DAY_003 import * from src.testcase.GN_Y201J.case.GN_Y201J_OVER_DAY.GN_Y201J_OVER_DAY_004 import * from src.testcase.GN_Y201J.case.GN_Y201J_OVER_DAY.GN_Y201J_OVER_DAY_005 import * from src.testcase.GN_Y201J.case.GN_Y201J_OVER_DAY.GN_Y201J_OVER_DAY_006 import * from src.testcase.GN_Y201J.case.GN_Y201J_OVER_DAY.GN_Y201J_OVER_DAY_007 import * except ImportError as e: print(e)
fb01fad045d376f95d097d9da88e8099c7a6cfdd
36bdbbf1be53ba5f09b9a2b1dd15e91f8f6b0da1
/restaurants/migrations/0062_auto_20181226_0610.py
3d00e07850b262bdc620a65cc97e2a5a2c9e49af
[]
no_license
phufoxy/fotourNew
801ab2518424118020dc6e5f31a7ba90a654e56a
6048c24f5256c8c5a0d18dc7b38c106a7c92a29c
refs/heads/master
2023-04-13T01:34:22.510717
2018-12-26T03:46:09
2018-12-26T03:46:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
464
py
# Generated by Django 2.1.4 on 2018-12-26 06:10 import datetime from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('restaurants', '0061_auto_20181226_0609'), ] operations = [ migrations.AlterField( model_name='comment_restaurant', name='date', field=models.DateTimeField(default=datetime.datetime(2018, 12, 26, 6, 9, 58, 878970)), ), ]
1e1c0f99075f01def2a23ac3fa4b1465b418cc2a
e44c83395d2ddd1e1b7c1e521d360f2ef8d585d0
/gitlab-new/landchina/landchina.py
8b8fd2fccd158e28a5533e0137c4282c437ec99c
[]
no_license
zhoujx4/Crawls
63ebcac5b4c0bbccdde56e6a2f5efbc4091d03e0
94b3ac88d7e49cb4a03e7b211a9437709d1c371c
refs/heads/master
2020-12-23T15:25:48.041965
2020-01-30T10:35:19
2020-01-30T10:35:19
237,189,197
3
1
null
null
null
null
UTF-8
Python
false
false
6,121
py
import fitz import datetime import time from time import sleep import re import os import sys import csv import socket import random from urllib import parse from collections.abc import Iterable from collections.abc import Mapping from PIL import Image from landchina.settings import settings sys.path.append("..") from library.commonmethodclass import CommonMethodClass class LandchinaSpider(object): """ 爬取https://www.landchina.com/default.aspx?tabid=263页面 备注: 1、20190808采用chrome webdriver爬取失败(失败的现象是在webdriver驱动的 浏览器内可以输入“广东省”等关键词;但是点击“查询”以后加载1秒钟以后就终止 加载了。) 2、20190812采用scrapy爬取,没有写完代码就放弃了。决心使用下面第3种方法爬取 3、采用图像识别和抓包工具配合爬取;使用了C++, Python, 和JScript;基本实现 无人值守。 """ name = "landchina" now = None today = None settings = None root_path = None log_dir = None main_log_file_path = None debug = False crawled_dir = None html_dir = None output_folder_name = None input_folder_name = None base_uri = None browser = None tabid_list = None input_keyword_dict = None list_csv_file_path = None wait_time = None missed_url_file_name = "" input_box_dict = { 263: "TAB_QuerySubmitConditionData", 226: "TAB_queryTblEnumItem_75", } keyword_english = {} replace_list = ["市本级", "市", "县", "区" ] def __init__(self ): self.init_self_attributes( ) def init_self_attributes(self): self.now = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") self.today = datetime.datetime.now().strftime("%Y%m%d") self.settings = settings self.root_path = self.settings.get( name="PROJECT_PATH", default="" ) self.log_dir = self.settings.get( name="LOG_DIR", default="" ) self.main_log_file_path = os.path.join( self.log_dir, self.settings.get( name="MAIN_LOG_FILE_NAME", default="" ) ) self.debug = self.settings.get( name = "PROJECT_DEBUG", default=False ) self.crawled_dir = self.settings.get( name="CRAWLED_DIR", default = "" ) self.html_dir = self.settings.get( name="HTML_DIR", default = "" ) self.output_folder_name = self.settings.get( name = "OUTPUT_FOLDER_NAME", default="" ) self.input_folder_name = self.settings.get( name = "INPUT_FOLDER_NAME", default="" ) self.base_uri = self.settings.get( name = "BASE_URI", default="" ) self.browser = self.settings.get( name = "BROWSER", default="" ) self.tabid_list = self.settings.get( name = "TABID_LIST", default="" ) self.input_keyword_dict = self.settings.get( name = "INPUT_KEYWORD_DICT", default="" ) self.list_csv_file_path = os.path.join( self.crawled_dir, f"landchina_list_{self.today}.csv" ) self.wait_time = 2 if self.debug else 3 self.maximal_requests = self.settings.get( name = "MAXIMAL_REQUESTS", default=50 ) self.missed_url_file_name = self.settings.get( name = "MISSED_URL_FILE_NAME", default="" ) self.keyword_english = self.settings.get( name = "KEYWORD_ENGLISH", default={} ) def make_uri_list(self): url_list = [] for one_id in self.tabid_list: url_list.append( f"{self.base_uri}?tabid={one_id}" ) return url_list def send_keywords(self): """ revision: 20190813 """ url_list = self.make_uri_list() log_file_path = os.path.join( self.log_dir, self.missed_url_file_name ) for index, one_url in enumerate(url_list): tabid = self.tabid_list[ index ] keyword_list = self.input_keyword_dict[tabid] input_box_xpath = self.input_box_dict[tabid] for keyword in keyword_list: keyword_en = self.keyword_english[keyword] if keyword in self.keyword_english.keys() else keyword def parse_one_index_page_response_field(self, webdriver = None ): info_list = [] if webdriver is None: return info_list tr_list = webdriver.find_elements_by_xpath( "//table[@id='TAB_contentTable']/tbody/tr[not(@class='gridHeader')]" ) for one_tr in tr_list: td_list = one_tr.find_elements_by_xpath("./td") value_list = [] this_row_dict = {} link = "" for one_td in td_list: value_list.append( one_td.text ) link_a = self.get_element( webdriver = one_td, xpath = "./a", elements_bool = False, use_id = False ) if link_a is not None and 1 > len(link): link = link_a.get_attribute("href") if 4 == len( value_list ): this_row_dict["序号"] = value_list[0].replace(".", "") this_row_dict["行政区代码"] = value_list[1] this_row_dict["标题"] = value_list[2] this_row_dict["发布时间"] = value_list[3] this_row_dict["detailed_url"] = link info_list.append(this_row_dict) return info_list def execute(self): if type(self.tabid_list) not in [list] or type(self.input_keyword_dict) not in [dict] or 1 > len( self.tabid_list ): error_msg = f"self.tabid_list or self.input_keyword_dict is NOT correct: {self.tabid_list}, {self.input_keyword_dict}" content = f"Inside Method {sys._getframe().f_code.co_name} of Class {self.__class__.__name__}, {error_msg}" CommonMethodClass.write_log( content = content, log_file_path = self.main_log_file_path ) return False for one_category in self.tabid_list: if one_category not in self.input_keyword_dict.keys(): error_msg = f"{one_category} is NOT in {self.input_keyword_dict.keys()}" content = f"Inside Method {sys._getframe().f_code.co_name} of Class {self.__class__.__name__}, {error_msg}" CommonMethodClass.write_log( content = content, log_file_path = self.main_log_file_path ) return False counter = self.do_requests( ) content = f"At {self.now}, {counter} requests have been sent" CommonMethodClass.write_log( content = content, log_file_path = self.main_log_file_path ) def test(self): path = self.whereis_chromedriver() print( path ) # print( self.district_name_dict ) # district_list = ["南澳县", "佛山市本级", "连南瑶族自治县", "梅州市本级", "雷州市", ] # self.check_district_names( district_list = district_list, keyword = "广东省" ) if __name__=='__main__': app = LandchinaSpider( ) # app.test() app.execute()
00a0f660b96836d3c0823a3c10c5289c90c74ab4
82ef9a0dd1618a28770597227acfc0150b948af2
/wearnow/plugins/sidebar/categorysidebar.py
a878520c4e392dca2b4a5ca6025627ff95349c32
[]
no_license
bmcage/wearnow
ef32a7848472e79e56763b38551835aa97864b21
c8dfa75e1ea32b0c021d71c4f366ab47104c207e
refs/heads/master
2021-01-16T00:27:59.597812
2016-01-19T11:55:03
2016-01-19T11:55:03
37,195,574
0
0
null
null
null
null
UTF-8
Python
false
false
7,347
py
# # Gramps - a GTK+/GNOME based genealogy program # # Copyright (C) 2005-2007 Donald N. Allingham # Copyright (C) 2008 Brian G. Matherly # Copyright (C) 2009 Benny Malengier # Copyright (C) 2010 Nick Hall # Copyright (C) 2011 Tim G L Lyons # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # #------------------------------------------------------------------------- # # GNOME modules # #------------------------------------------------------------------------- from gi.repository import Gtk #------------------------------------------------------------------------- # # GRAMPS modules # #------------------------------------------------------------------------- from wearnow.tex.config import config from wearnow.gui.basesidebar import BaseSidebar from wearnow.gui.viewmanager import get_available_views, views_to_show #------------------------------------------------------------------------- # # Constants # #------------------------------------------------------------------------- UICATEGORY = '''<ui> <toolbar name="ToolBar"> <placeholder name="ViewsInCategory">%s </placeholder> </toolbar> </ui> ''' #------------------------------------------------------------------------- # # CategorySidebar class # #------------------------------------------------------------------------- class CategorySidebar(BaseSidebar): """ A sidebar displaying a column of toggle buttons that allows the user to change the current view. """ def __init__(self, dbstate, uistate, categories, views): self.viewmanager = uistate.viewmanager self.buttons = [] self.button_handlers = [] self.ui_category = {} self.merge_ids = [] self.window = Gtk.ScrolledWindow() vbox = Gtk.Box(orientation=Gtk.Orientation.VERTICAL) self.window.add(vbox) self.window.set_policy(Gtk.PolicyType.NEVER, Gtk.PolicyType.AUTOMATIC) self.window.show() use_text = config.get('interface.sidebar-text') for cat_num, cat_name, cat_icon in categories: # create the button and add it to the sidebar button = self.__make_sidebar_button(use_text, cat_num, cat_name, cat_icon) vbox.pack_start(button, False, True, 0) # Enable view switching during DnD button.drag_dest_set(0, [], 0) button.connect('drag_motion', self.cb_switch_page_on_dnd, cat_num) # toollbar buttons for switching views in a category uitoolitems = '' for view_num, view_name, view_icon in views[cat_num]: pageid = 'page_%i_%i' % (cat_num, view_num) uitoolitems += '\n<toolitem action="%s"/>' % pageid if len(views[cat_num]) > 1: self.ui_category[cat_num] = UICATEGORY % uitoolitems vbox.show_all() def get_top(self): """ Return the top container widget for the GUI. """ return self.window def view_changed(self, cat_num, view_num): """ Called when the active view is changed. """ # Add buttons to the toolbar for the different view in the category uimanager = self.viewmanager.uimanager list(map(uimanager.remove_ui, self.merge_ids)) if cat_num in self.ui_category: mergeid = uimanager.add_ui_from_string(self.ui_category[cat_num]) self.merge_ids.append(mergeid) # Set new button as selected self.__handlers_block() for index, button in enumerate(self.buttons): if index == cat_num: button.set_active(True) else: button.set_active(False) self.__handlers_unblock() def __handlers_block(self): """ Block signals to the buttons to prevent spurious events. """ for idx in range(len(self.buttons)): self.buttons[idx].handler_block(self.button_handlers[idx]) def __handlers_unblock(self): """ Unblock signals to the buttons. """ for idx in range(len(self.buttons)): self.buttons[idx].handler_unblock(self.button_handlers[idx]) def cb_view_clicked(self, radioaction, current, cat_num): """ Called when a button causes a view change. """ view_num = radioaction.get_current_value() self.viewmanager.goto_page(cat_num, view_num) def __category_clicked(self, button, cat_num): """ Called when a button causes a category change. """ # Make the button active. If it was already active the category will # not change. button.set_active(True) self.viewmanager.goto_page(cat_num, None) def __make_sidebar_button(self, use_text, index, page_title, page_stock): """ Create the sidebar button. The page_title is the text associated with the button. """ # create the button button = Gtk.ToggleButton() button.set_relief(Gtk.ReliefStyle.NONE) self.buttons.append(button) # add the tooltip button.set_tooltip_text(page_title) # connect the signal, along with the index as user data handler_id = button.connect('clicked', self.__category_clicked, index) self.button_handlers.append(handler_id) button.show() # add the image. If we are using text, use the BUTTON (larger) size. # otherwise, use the smaller size hbox = Gtk.Box() hbox.show() image = Gtk.Image() if use_text: image.set_from_icon_name(page_stock, Gtk.IconSize.BUTTON) else: image.set_from_icon_name(page_stock, Gtk.IconSize.DND) image.show() hbox.pack_start(image, False, False, 0) hbox.set_spacing(4) # add text if requested if use_text: label = Gtk.Label(label=page_title) label.show() hbox.pack_start(label, False, True, 0) button.add(hbox) return button def cb_switch_page_on_dnd(self, widget, context, xpos, ypos, time, page_no): """ Switches the page based on drag and drop. """ self.__handlers_block() if self.viewmanager.notebook.get_current_page() != page_no: self.viewmanager.notebook.set_current_page(page_no) self.__handlers_unblock() def inactive(self): """ Called when the sidebar is hidden. """ uimanager = self.viewmanager.uimanager list(map(uimanager.remove_ui, self.merge_ids))
989d249c6266a0283ffbc88c2776a2ecdb833eca
c25f64f43660d5a5065327f258f3e7348d93e438
/asyncio_redis/encoders.py
68a493e85b54bf349b6f1c61466fd292929b58c3
[ "BSD-2-Clause-Views" ]
permissive
jonathanslenders/asyncio-redis
96735d4270453eaa8435e8e39b5c536abb1a7d86
50d71a53798967f7fdf1be36b8447e322dedc5ee
refs/heads/master
2022-04-06T16:06:50.671959
2020-06-12T21:18:37
2020-08-11T13:56:51
13,547,040
495
83
NOASSERTION
2021-01-11T13:44:37
2013-10-13T21:31:36
Python
UTF-8
Python
false
false
2,095
py
""" The redis protocol only knows about bytes, but we like to have strings inside Python. This file contains some helper classes for decoding the bytes to strings and encoding the other way around. We also have a `BytesEncoder`, which provides raw access to the redis server. """ __all__ = ("BaseEncoder", "BytesEncoder", "UTF8Encoder") class BaseEncoder: """ Abstract base class for all encoders. """ #: The native Python type from which we encode, or to which we decode. native_type = None def encode_from_native(self, data): """ Encodes the native Python type to network bytes. Usually this will encode a string object to bytes using the UTF-8 encoding. You can either override this function, or set the `encoding` attribute. """ raise NotImplementedError def decode_to_native(self, data): """ Decodes network bytes to a Python native type. It should always be the reverse operation of `encode_from_native`. """ raise NotImplementedError class BytesEncoder(BaseEncoder): """ For raw access to the Redis database. """ #: The native Python type from which we encode, or to which we decode. native_type = bytes def encode_from_native(self, data): return data def decode_to_native(self, data): return data class StringEncoder(BaseEncoder): """ Abstract base class for all string encoding encoders. """ #: Redis keeps all values in binary. Set the encoding to be used to #: decode/encode Python string values from and to binary. encoding = None #: The native Python type from which we encode, or to which we decode. native_type = str def encode_from_native(self, data): """ string to bytes """ return data.encode(self.encoding) def decode_to_native(self, data): """ bytes to string """ return data.decode(self.encoding) class UTF8Encoder(StringEncoder): """ Encode strings to and from utf-8 bytes. """ encoding = "utf-8"
a794664d21b2877b6ebe81762c14babbf6aa8140
6fa701cdaa0d83caa0d3cbffe39b40e54bf3d386
/google/cloud/shell/v1/shell-v1-py/scripts/fixup_shell_v1_keywords.py
c4b2aa4ae9e1c4e9409492197cc740fab3accbec
[ "Apache-2.0" ]
permissive
oltoco/googleapis-gen
bf40cfad61b4217aca07068bd4922a86e3bbd2d5
00ca50bdde80906d6f62314ef4f7630b8cdb6e15
refs/heads/master
2023-07-17T22:11:47.848185
2021-08-29T20:39:47
2021-08-29T20:39:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,211
py
#! /usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import argparse import os import libcst as cst import pathlib import sys from typing import (Any, Callable, Dict, List, Sequence, Tuple) def partition( predicate: Callable[[Any], bool], iterator: Sequence[Any] ) -> Tuple[List[Any], List[Any]]: """A stable, out-of-place partition.""" results = ([], []) for i in iterator: results[int(predicate(i))].append(i) # Returns trueList, falseList return results[1], results[0] class shellCallTransformer(cst.CSTTransformer): CTRL_PARAMS: Tuple[str] = ('retry', 'timeout', 'metadata') METHOD_TO_PARAMS: Dict[str, Tuple[str]] = { 'add_public_key': ('environment', 'key', ), 'authorize_environment': ('name', 'access_token', 'id_token', 'expire_time', ), 'get_environment': ('name', ), 'remove_public_key': ('environment', 'key', ), 'start_environment': ('name', 'access_token', 'public_keys', ), } def leave_Call(self, original: cst.Call, updated: cst.Call) -> cst.CSTNode: try: key = original.func.attr.value kword_params = self.METHOD_TO_PARAMS[key] except (AttributeError, KeyError): # Either not a method from the API or too convoluted to be sure. return updated # If the existing code is valid, keyword args come after positional args. # Therefore, all positional args must map to the first parameters. args, kwargs = partition(lambda a: not bool(a.keyword), updated.args) if any(k.keyword.value == "request" for k in kwargs): # We've already fixed this file, don't fix it again. return updated kwargs, ctrl_kwargs = partition( lambda a: not a.keyword.value in self.CTRL_PARAMS, kwargs ) args, ctrl_args = args[:len(kword_params)], args[len(kword_params):] ctrl_kwargs.extend(cst.Arg(value=a.value, keyword=cst.Name(value=ctrl)) for a, ctrl in zip(ctrl_args, self.CTRL_PARAMS)) request_arg = cst.Arg( value=cst.Dict([ cst.DictElement( cst.SimpleString("'{}'".format(name)), cst.Element(value=arg.value) ) # Note: the args + kwargs looks silly, but keep in mind that # the control parameters had to be stripped out, and that # those could have been passed positionally or by keyword. for name, arg in zip(kword_params, args + kwargs)]), keyword=cst.Name("request") ) return updated.with_changes( args=[request_arg] + ctrl_kwargs ) def fix_files( in_dir: pathlib.Path, out_dir: pathlib.Path, *, transformer=shellCallTransformer(), ): """Duplicate the input dir to the output dir, fixing file method calls. Preconditions: * in_dir is a real directory * out_dir is a real, empty directory """ pyfile_gen = ( pathlib.Path(os.path.join(root, f)) for root, _, files in os.walk(in_dir) for f in files if os.path.splitext(f)[1] == ".py" ) for fpath in pyfile_gen: with open(fpath, 'r') as f: src = f.read() # Parse the code and insert method call fixes. tree = cst.parse_module(src) updated = tree.visit(transformer) # Create the path and directory structure for the new file. updated_path = out_dir.joinpath(fpath.relative_to(in_dir)) updated_path.parent.mkdir(parents=True, exist_ok=True) # Generate the updated source file at the corresponding path. with open(updated_path, 'w') as f: f.write(updated.code) if __name__ == '__main__': parser = argparse.ArgumentParser( description="""Fix up source that uses the shell client library. The existing sources are NOT overwritten but are copied to output_dir with changes made. Note: This tool operates at a best-effort level at converting positional parameters in client method calls to keyword based parameters. Cases where it WILL FAIL include A) * or ** expansion in a method call. B) Calls via function or method alias (includes free function calls) C) Indirect or dispatched calls (e.g. the method is looked up dynamically) These all constitute false negatives. The tool will also detect false positives when an API method shares a name with another method. """) parser.add_argument( '-d', '--input-directory', required=True, dest='input_dir', help='the input directory to walk for python files to fix up', ) parser.add_argument( '-o', '--output-directory', required=True, dest='output_dir', help='the directory to output files fixed via un-flattening', ) args = parser.parse_args() input_dir = pathlib.Path(args.input_dir) output_dir = pathlib.Path(args.output_dir) if not input_dir.is_dir(): print( f"input directory '{input_dir}' does not exist or is not a directory", file=sys.stderr, ) sys.exit(-1) if not output_dir.is_dir(): print( f"output directory '{output_dir}' does not exist or is not a directory", file=sys.stderr, ) sys.exit(-1) if os.listdir(output_dir): print( f"output directory '{output_dir}' is not empty", file=sys.stderr, ) sys.exit(-1) fix_files(input_dir, output_dir)
[ "bazel-bot-development[bot]@users.noreply.github.com" ]
bazel-bot-development[bot]@users.noreply.github.com
15855cb736dc27f1def8b56d28bc287b6cac6fdf
1207c58fa92dad30050b9f3bcc1173d7e7034c73
/train_mnist/train.py
3259594eb13f1d915ccdf55d49383f85fcb36d13
[]
no_license
chagge/rethinking-generalization
b49cf59c8d4d2c3607fa2074a80f86d8e682150c
317c1ae29ae119d7399e8e04e95eb903f4d1c045
refs/heads/master
2021-01-22T09:04:55.449746
2017-02-12T16:41:09
2017-02-12T16:41:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,745
py
import numpy as np import os, sys, time, math from chainer import cuda from chainer import functions as F import pandas as pd sys.path.append(os.path.split(os.getcwd())[0]) import dataset from progress import Progress from mnist_tools import load_train_images, load_test_images from model import model from args import args def compute_accuracy(image_batch, label_batch): num_data = image_batch.shape[0] images_l_segments = np.split(image_batch, num_data // 500) label_ids_l_segments = np.split(label_batch, num_data // 500) sum_accuracy = 0 for image_batch, label_batch in zip(images_l_segments, label_ids_l_segments): distribution = model.discriminate(image_batch, apply_softmax=True, test=True) accuracy = F.accuracy(distribution, model.to_variable(label_batch)) sum_accuracy += float(accuracy.data) return sum_accuracy / len(images_l_segments) def main(): # load MNIST images images, labels = dataset.load_train_images() # config config = model.config # settings max_epoch = 1000 num_trains_per_epoch = 500 num_validation_data = 10000 batchsize = 128 # seed np.random.seed(args.seed) if args.gpu_device != -1: cuda.cupy.random.seed(args.seed) # save validation accuracy per epoch csv_results = [] # create semi-supervised split training_images, training_labels, validation_images, validation_labels = dataset.split_data(images, labels, num_validation_data, seed=args.seed) # training progress = Progress() for epoch in xrange(1, max_epoch): progress.start_epoch(epoch, max_epoch) sum_loss = 0 for t in xrange(num_trains_per_epoch): # sample from data distribution image_batch, label_batch = dataset.sample_data(training_images, training_labels, batchsize, binarize=False) distribution = model.discriminate(image_batch, apply_softmax=False) loss = F.softmax_cross_entropy(distribution, model.to_variable(label_batch)) sum_loss += float(loss.data) model.backprop(loss) if t % 10 == 0: progress.show(t, num_trains_per_epoch, {}) model.save(args.model_dir) train_accuracy = compute_accuracy(training_images, training_labels) validation_accuracy = compute_accuracy(validation_images, validation_labels) progress.show(num_trains_per_epoch, num_trains_per_epoch, { "loss": sum_loss / num_trains_per_epoch, "accuracy (validation)": validation_accuracy, "accuracy (train)": train_accuracy, }) # write accuracy to csv csv_results.append([epoch, validation_accuracy, progress.get_total_time()]) data = pd.DataFrame(csv_results) data.columns = ["epoch", "accuracy", "min"] data.to_csv("{}/result.csv".format(args.model_dir)) if __name__ == "__main__": main()
056345d4c6d7aad110c67c6acea795d071247950
7d7d37a66e970af3cc0beca3babba9ef18f8d7c1
/Searching Algorithms/LinearSearch.py
42f93963971baac2bab579ee83d77359c8443b40
[ "MIT" ]
permissive
DrakeEntity/DataStructureAndAlgorithm
762e4d01024252754c1308e642803cccaa461fb0
9c942217e1a31f143e739682680c12f67d717ee3
refs/heads/master
2022-04-21T02:25:39.318888
2020-04-24T15:32:33
2020-04-24T15:32:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,092
py
class Search: """ True : If searching objet found in list it will return True False : If Searching object not found in list it will return False """ def __init__(self,list,search_for): self.list = list self.search_for = search_for def __len__(self): return len(self.list) def linear_search(self): """ In this type of search, a sequential search is made over all items one by one. Every Item is checked. If a match is found then that particular item is returned, otherwise the search continue till the end of the data-strucutre """ search_at = 0 search_res = False # match the value with each data point while search_at < len(self.list) and search_res is False: if self.list[search_at] == self.search_for: search_res = True else: search_at = search_at + 1 print(f'{search_res}') l = [4,534,646,3,6,6,33,6,34,643,32,4,43,6] result = Search(l,5) result.linear_search()
764cdd64ee9f866e42d940df2f06f450d0e88fd7
f889bc01147869459c0a516382e7b95221295a7b
/test/test_catalog_data_custom_option_interface.py
ca5ca581745279b4da16c3436707fa9b39887277
[]
no_license
wildatheart/magento2-api-client
249a86f5c0289743f8df5b0324ccabd76f326512
e6a707f85b37c6c3e4ef3ff78507a7deb8f71427
refs/heads/master
2021-07-14T16:01:17.644472
2017-10-18T13:33:08
2017-10-18T13:33:08
107,412,121
1
1
null
null
null
null
UTF-8
Python
false
false
1,085
py
# coding: utf-8 """ Magento Community No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: 2.2 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import os import sys import unittest import swagger_client from swagger_client.rest import ApiException from swagger_client.models.catalog_data_custom_option_interface import CatalogDataCustomOptionInterface class TestCatalogDataCustomOptionInterface(unittest.TestCase): """ CatalogDataCustomOptionInterface unit test stubs """ def setUp(self): pass def tearDown(self): pass def testCatalogDataCustomOptionInterface(self): """ Test CatalogDataCustomOptionInterface """ # FIXME: construct object with mandatory attributes with example values #model = swagger_client.models.catalog_data_custom_option_interface.CatalogDataCustomOptionInterface() pass if __name__ == '__main__': unittest.main()
7a5bc213722fdefb013d9c11de37ab21381a8ff8
bb150497a05203a718fb3630941231be9e3b6a32
/framework/e2e/jit/test_Softsign_base.py
206436de22ef7510496f8c5810e52b215c72787a
[]
no_license
PaddlePaddle/PaddleTest
4fb3dec677f0f13f7f1003fd30df748bf0b5940d
bd3790ce72a2a26611b5eda3901651b5a809348f
refs/heads/develop
2023-09-06T04:23:39.181903
2023-09-04T11:17:50
2023-09-04T11:17:50
383,138,186
42
312
null
2023-09-13T11:13:35
2021-07-05T12:44:59
Python
UTF-8
Python
false
false
623
py
#!/bin/env python # -*- coding: utf-8 -*- # encoding=utf-8 vi:ts=4:sw=4:expandtab:ft=python """ test jit cases """ import os import sys sys.path.append(os.path.abspath(os.path.dirname(os.getcwd()))) sys.path.append(os.path.join(os.path.abspath(os.path.dirname(os.getcwd())), "utils")) from utils.yaml_loader import YamlLoader from jittrans import JitTrans yaml_path = os.path.join(os.path.abspath(os.path.dirname(os.getcwd())), "yaml", "nn.yml") yml = YamlLoader(yaml_path) def test_Softsign_base(): """test Softsign_base""" jit_case = JitTrans(case=yml.get_case_info("Softsign_base")) jit_case.jit_run()
179ce3c3fb1728e12287ef4537916aafa8484c19
09a6d8dbad5b92f93791948b5bf9b75f5cb2e5ce
/pennylane/qchem/structure.py
1d9fe6bfe7f3dbbe62dadcec32ca9482ab05c3dd
[ "Apache-2.0" ]
permissive
PennyLaneAI/pennylane
458efd5d9457e90ada31ca2ef0fb6bb96a24e9a7
0843183ff15a013c2622af5e61fea431d18076d3
refs/heads/master
2023-09-03T17:00:43.105784
2023-09-01T16:15:07
2023-09-01T16:15:07
129,936,360
1,431
410
Apache-2.0
2023-09-14T21:30:56
2018-04-17T16:45:42
Python
UTF-8
Python
false
false
21,010
py
# Copyright 2018-2020 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This module contains functions to read the structure of molecules, build a Hartree-Fock state, build an active space and generate single and double excitations. """ # pylint: disable=too-many-locals import os import re from shutil import copyfile from pennylane import numpy as np # Bohr-Angstrom correlation coefficient (https://physics.nist.gov/cgi-bin/cuu/Value?bohrrada0) bohr_angs = 0.529177210903 def read_structure(filepath, outpath="."): r"""Read the structure of the polyatomic system from a file and returns a list with the symbols of the atoms in the molecule and a 1D array with their positions :math:`[x_1, y_1, z_1, x_2, y_2, z_2, \dots]` in atomic units (Bohr radius = 1). The atomic coordinates in the file must be in Angstroms. The `xyz <https://en.wikipedia.org/wiki/XYZ_file_format>`_ format is supported. Additionally, the new file ``structure.xyz``, containing the input geometry, is created in a directory with path given by ``outpath``. Args: filepath (str): name of the molecular structure file in the working directory or the absolute path to the file if it is located in a different folder outpath (str): path to the output directory Returns: tuple[list, array]: symbols of the atoms in the molecule and a 1D array with their positions in atomic units. **Example** >>> symbols, coordinates = read_structure('h2.xyz') >>> print(symbols, coordinates) ['H', 'H'] [0. 0. -0.66140414 0. 0. 0.66140414] """ file_in = filepath.strip() file_out = os.path.join(outpath, "structure.xyz") copyfile(file_in, file_out) symbols = [] coordinates = [] with open(file_out, encoding="utf-8") as f: for line in f.readlines()[2:]: symbol, x, y, z = line.split() symbols.append(symbol) coordinates.append(float(x)) coordinates.append(float(y)) coordinates.append(float(z)) return symbols, np.array(coordinates) / bohr_angs def active_space(electrons, orbitals, mult=1, active_electrons=None, active_orbitals=None): r"""Build the active space for a given number of active electrons and active orbitals. Post-Hartree-Fock (HF) electron correlation methods expand the many-body wave function as a linear combination of Slater determinants, commonly referred to as configurations. This configurations are generated by exciting electrons from the occupied to the unoccupied HF orbitals as sketched in the figure below. Since the number of configurations increases combinatorially with the number of electrons and orbitals this expansion can be truncated by defining an active space. The active space is created by classifying the HF orbitals as core, active and external orbitals: - Core orbitals are always occupied by two electrons - Active orbitals can be occupied by zero, one, or two electrons - The external orbitals are never occupied | .. figure:: ../../_static/qchem/sketch_active_space.png :align: center :width: 50% | .. note:: The number of active *spin*-orbitals ``2*active_orbitals`` determines the number of qubits required to perform the quantum simulations of the electronic structure of the many-electron system. Args: electrons (int): total number of electrons orbitals (int): total number of orbitals mult (int): Spin multiplicity :math:`\mathrm{mult}=N_\mathrm{unpaired} + 1` for :math:`N_\mathrm{unpaired}` unpaired electrons occupying the HF orbitals. Possible values for ``mult`` are :math:`1, 2, 3, \ldots`. If not specified, a closed-shell HF state is assumed. active_electrons (int): Number of active electrons. If not specified, all electrons are treated as active. active_orbitals (int): Number of active orbitals. If not specified, all orbitals are treated as active. Returns: tuple: lists of indices for core and active orbitals **Example** >>> electrons = 4 >>> orbitals = 4 >>> core, active = active_space(electrons, orbitals, active_electrons=2, active_orbitals=2) >>> print(core) # core orbitals [0] >>> print(active) # active orbitals [1, 2] """ # pylint: disable=too-many-branches if active_electrons is None: ncore_orbs = 0 core = [] else: if active_electrons <= 0: raise ValueError( f"The number of active electrons ({active_electrons}) " f"has to be greater than 0." ) if active_electrons > electrons: raise ValueError( f"The number of active electrons ({active_electrons}) " f"can not be greater than the total " f"number of electrons ({electrons})." ) if active_electrons < mult - 1: raise ValueError( f"For a reference state with multiplicity {mult}, " f"the number of active electrons ({active_electrons}) should be " f"greater than or equal to {mult - 1}." ) if mult % 2 == 1: if active_electrons % 2 != 0: raise ValueError( f"For a reference state with multiplicity {mult}, " f"the number of active electrons ({active_electrons}) should be even." ) else: if active_electrons % 2 != 1: raise ValueError( f"For a reference state with multiplicity {mult}, " f"the number of active electrons ({active_electrons}) should be odd." ) ncore_orbs = (electrons - active_electrons) // 2 core = list(range(ncore_orbs)) if active_orbitals is None: active = list(range(ncore_orbs, orbitals)) else: if active_orbitals <= 0: raise ValueError( f"The number of active orbitals ({active_orbitals}) " f"has to be greater than 0." ) if ncore_orbs + active_orbitals > orbitals: raise ValueError( f"The number of core ({ncore_orbs}) + active orbitals ({active_orbitals}) cannot " f"be greater than the total number of orbitals ({orbitals})" ) homo = (electrons + mult - 1) / 2 if ncore_orbs + active_orbitals <= homo: raise ValueError( f"For n_active_orbitals={active_orbitals}, there are no virtual orbitals " f"in the active space." ) active = list(range(ncore_orbs, ncore_orbs + active_orbitals)) return core, active def excitations(electrons, orbitals, delta_sz=0): r"""Generate single and double excitations from a Hartree-Fock reference state. Single and double excitations can be generated by acting with the operators :math:`\hat T_1` and :math:`\hat T_2` on the Hartree-Fock reference state: .. math:: && \hat{T}_1 = \sum_{r \in \mathrm{occ} \\ p \in \mathrm{unocc}} \hat{c}_p^\dagger \hat{c}_r \\ && \hat{T}_2 = \sum_{r>s \in \mathrm{occ} \\ p>q \in \mathrm{unocc}} \hat{c}_p^\dagger \hat{c}_q^\dagger \hat{c}_r \hat{c}_s. In the equations above the indices :math:`r, s` and :math:`p, q` run over the occupied (occ) and unoccupied (unocc) *spin* orbitals and :math:`\hat c` and :math:`\hat c^\dagger` are the electron annihilation and creation operators, respectively. | .. figure:: ../../_static/qchem/sd_excitations.png :align: center :width: 80% | Args: electrons (int): Number of electrons. If an active space is defined, this is the number of active electrons. orbitals (int): Number of *spin* orbitals. If an active space is defined, this is the number of active spin-orbitals. delta_sz (int): Specifies the selection rules ``sz[p] - sz[r] = delta_sz`` and ``sz[p] + sz[p] - sz[r] - sz[s] = delta_sz`` for the spin-projection ``sz`` of the orbitals involved in the single and double excitations, respectively. ``delta_sz`` can take the values :math:`0`, :math:`\pm 1` and :math:`\pm 2`. Returns: tuple(list, list): lists with the indices of the spin orbitals involved in the single and double excitations **Example** >>> electrons = 2 >>> orbitals = 4 >>> singles, doubles = excitations(electrons, orbitals) >>> print(singles) [[0, 2], [1, 3]] >>> print(doubles) [[0, 1, 2, 3]] """ if not electrons > 0: raise ValueError( f"The number of active electrons has to be greater than 0 \n" f"Got n_electrons = {electrons}" ) if orbitals <= electrons: raise ValueError( f"The number of active spin-orbitals ({orbitals}) " f"has to be greater than the number of active electrons ({electrons})." ) if delta_sz not in (0, 1, -1, 2, -2): raise ValueError( f"Expected values for 'delta_sz' are 0, +/- 1 and +/- 2 but got ({delta_sz})." ) # define the spin projection 'sz' of the single-particle states sz = np.array([0.5 if (i % 2 == 0) else -0.5 for i in range(orbitals)]) singles = [ [r, p] for r in range(electrons) for p in range(electrons, orbitals) if sz[p] - sz[r] == delta_sz ] doubles = [ [s, r, q, p] for s in range(electrons - 1) for r in range(s + 1, electrons) for q in range(electrons, orbitals - 1) for p in range(q + 1, orbitals) if (sz[p] + sz[q] - sz[r] - sz[s]) == delta_sz ] return singles, doubles def hf_state(electrons, orbitals): r"""Generate the occupation-number vector representing the Hartree-Fock state. The many-particle wave function in the Hartree-Fock (HF) approximation is a `Slater determinant <https://en.wikipedia.org/wiki/Slater_determinant>`_. In Fock space, a Slater determinant for :math:`N` electrons is represented by the occupation-number vector: .. math:: \vert {\bf n} \rangle = \vert n_1, n_2, \dots, n_\mathrm{orbs} \rangle, n_i = \left\lbrace \begin{array}{ll} 1 & i \leq N \\ 0 & i > N \end{array} \right., where :math:`n_i` indicates the occupation of the :math:`i`-th orbital. Args: electrons (int): Number of electrons. If an active space is defined, this is the number of active electrons. orbitals (int): Number of *spin* orbitals. If an active space is defined, this is the number of active spin-orbitals. Returns: array: NumPy array containing the vector :math:`\vert {\bf n} \rangle` **Example** >>> state = hf_state(2, 6) >>> print(state) [1 1 0 0 0 0] """ if electrons <= 0: raise ValueError( f"The number of active electrons has to be larger than zero; " f"got 'electrons' = {electrons}" ) if electrons > orbitals: raise ValueError( f"The number of active orbitals cannot be smaller than the number of active electrons;" f" got 'orbitals'={orbitals} < 'electrons'={electrons}" ) state = np.where(np.arange(orbitals) < electrons, 1, 0) return np.array(state) def excitations_to_wires(singles, doubles, wires=None): r"""Map the indices representing the single and double excitations generated with the function :func:`~.excitations` to the wires that the Unitary Coupled-Cluster (UCCSD) template will act on. Args: singles (list[list[int]]): list with the indices ``r``, ``p`` of the two qubits representing the single excitation :math:`\vert r, p \rangle = \hat{c}_p^\dagger \hat{c}_r \vert \mathrm{HF}\rangle` doubles (list[list[int]]): list with the indices ``s``, ``r``, ``q``, ``p`` of the four qubits representing the double excitation :math:`\vert s, r, q, p \rangle = \hat{c}_p^\dagger \hat{c}_q^\dagger \hat{c}_r \hat{c}_s \vert \mathrm{HF}\rangle` wires (Iterable[Any]): Wires of the quantum device. If None, will use consecutive wires. The indices :math:`r, s` and :math:`p, q` in these lists correspond, respectively, to the occupied and virtual orbitals involved in the generated single and double excitations. Returns: tuple[list[list[Any]], list[list[list[Any]]]]: lists with the sequence of wires, resulting from the single and double excitations, that the Unitary Coupled-Cluster (UCCSD) template will act on. **Example** >>> singles = [[0, 2], [1, 3]] >>> doubles = [[0, 1, 2, 3]] >>> singles_wires, doubles_wires = excitations_to_wires(singles, doubles) >>> print(singles_wires) [[0, 1, 2], [1, 2, 3]] >>> print(doubles_wires) [[[0, 1], [2, 3]]] >>> wires=['a0', 'b1', 'c2', 'd3'] >>> singles_wires, doubles_wires = excitations_to_wires(singles, doubles, wires=wires) >>> print(singles_wires) [['a0', 'b1', 'c2'], ['b1', 'c2', 'd3']] >>> print(doubles_wires) [[['a0', 'b1'], ['c2', 'd3']]] """ if (not singles) and (not doubles): raise ValueError( f"'singles' and 'doubles' lists can not be both empty; " f"got singles = {singles}, doubles = {doubles}" ) expected_shape = (2,) for single_ in singles: if np.array(single_).shape != expected_shape: raise ValueError( f"Expected entries of 'singles' to be of shape (2,); got {np.array(single_).shape}" ) expected_shape = (4,) for double_ in doubles: if np.array(double_).shape != expected_shape: raise ValueError( f"Expected entries of 'doubles' to be of shape (4,); got {np.array(double_).shape}" ) max_idx = 0 if singles: max_idx = np.max(singles) if doubles: max_idx = max(np.max(doubles), max_idx) if wires is None: wires = range(max_idx + 1) elif len(wires) != max_idx + 1: raise ValueError(f"Expected number of wires is {max_idx + 1}; got {len(wires)}") singles_wires = [] for r, p in singles: s_wires = [wires[i] for i in range(r, p + 1)] singles_wires.append(s_wires) doubles_wires = [] for s, r, q, p in doubles: d1_wires = [wires[i] for i in range(s, r + 1)] d2_wires = [wires[i] for i in range(q, p + 1)] doubles_wires.append([d1_wires, d2_wires]) return singles_wires, doubles_wires def mol_data(identifier, identifier_type="name"): r"""Obtain symbols and geometry of a compound from the PubChem Database. The `PubChem <https://pubchem.ncbi.nlm.nih.gov>`__ database is one of the largest public repositories for information on chemical substances from which symbols and geometry can be retrieved for a compound by its name, SMILES, InChI, InChIKey, or PubChem Compound ID (CID) to build a molecule object for Hartree-Fock calculations. The retrieved atomic coordinates will be converted to `atomic units <https://en.wikipedia.org/wiki/Bohr_radius>`__ for consistency. Args: identifier (str or int): compound's identifier as required by the PubChem database identifier_type (str): type of the provided identifier - name, CAS, CID, SMILES, InChI, InChIKey Returns: Tuple(list[str], array[float]): symbols and geometry (in Bohr radius) of the compound **Example** >>> mol_data("BeH2") (['Be', 'H', 'H'], tensor([[ 4.79404621, 0.29290755, 0. ], [ 3.77945225, -0.29290755, 0. ], [ 5.80882913, -0.29290755, 0. ]], requires_grad=True)) >>> mol_data(223, "CID") (['N', 'H', 'H', 'H', 'H'], tensor([[ 0. , 0. , 0. ], [ 1.82264085, 0.52836742, 0.40402345], [ 0.01417295, -1.67429735, -0.98038991], [-0.98927163, -0.22714508, 1.65369933], [-0.84773114, 1.373075 , -1.07733286]], requires_grad=True)) .. details:: ``mol_data`` can also be used with other chemical identifiers - CAS, SMILES, InChI, InChIKey: >>> mol_data("74-82-8", "CAS") (['C', 'H', 'H', 'H', 'H'], tensor([[ 0. , 0. , 0. ], [ 1.04709725, 1.51102501, 0.93824902], [ 1.29124986, -1.53710323, -0.47923455], [-1.47058487, -0.70581271, 1.26460472], [-0.86795121, 0.7320799 , -1.7236192 ]], requires_grad=True)) >>> mol_data("[C]", "SMILES") (['C', 'H', 'H', 'H', 'H'], tensor([[ 0. , 0. , 0. ], [ 1.04709725, 1.51102501, 0.93824902], [ 1.29124986, -1.53710323, -0.47923455], [-1.47058487, -0.70581271, 1.26460472], [-0.86795121, 0.7320799 , -1.7236192 ]], requires_grad=True)) >>> mol_data("InChI=1S/CH4/h1H4", "InChI") (['C', 'H', 'H', 'H', 'H'], tensor([[ 0. , 0. , 0. ], [ 1.04709725, 1.51102501, 0.93824902], [ 1.29124986, -1.53710323, -0.47923455], [-1.47058487, -0.70581271, 1.26460472], [-0.86795121, 0.7320799 , -1.7236192 ]], requires_grad=True)) >>> mol_data("VNWKTOKETHGBQD-UHFFFAOYSA-N", "InChIKey") (['C', 'H', 'H', 'H', 'H'], tensor([[ 0. , 0. , 0. ], [ 1.04709725, 1.51102501, 0.93824902], [ 1.29124986, -1.53710323, -0.47923455], [-1.47058487, -0.70581271, 1.26460472], [-0.86795121, 0.7320799 , -1.7236192 ]], requires_grad=True)) """ try: # pylint: disable=import-outside-toplevel, unused-import, multiple-imports import pubchempy as pcp except ImportError as Error: raise ImportError( "This feature requires pubchempy.\nIt can be installed with: pip install pubchempy." ) from Error # https://gist.github.com/lsauer/1312860/264ae813c2bd2c27a769d261c8c6b38da34e22fb#file-smiles_inchi_annotated-js identifier_patterns = { "name": re.compile(r"^[a-zA-Z0-9_+-]+$"), "cas": re.compile(r"^\d{1,7}\-\d{2}\-\d$"), "smiles": re.compile( r"^(?!InChI=)(?!\d{1,7}\-\d{2}\-\d)(?![A-Z]{14}\-[A-Z]{10}(\-[A-Z])?)[^J][a-zA-Z0-9@+\-\[\]\(\)\\\/%=#$]{1,}$" ), "inchi": re.compile( r"^InChI\=1S?\/[A-Za-z0-9\.]+(\+[0-9]+)?(\/[cnpqbtmsih][A-Za-z0-9\-\+\(\)\,\/\?\;\.]+)*$" ), "inchikey": re.compile(r"^[A-Z]{14}\-[A-Z]{10}(\-[A-Z])?"), } if identifier_type.lower() == "cid": cid = int(identifier) else: if identifier_type.lower() not in identifier_patterns: raise ValueError( "Specified identifier type is not supported. Supported type are: name, CAS, SMILES, InChI, InChIKey." ) try: if identifier_patterns[identifier_type.lower()].search(identifier): if identifier_type.lower() == "cas": identifier_type = "name" cid = pcp.get_cids(identifier, namespace=identifier_type.lower())[0] else: raise ValueError( f"Specified identifier doesn't seem to match type: {identifier_type}." ) except (IndexError, pcp.NotFoundError) as exc: raise ValueError("Specified molecule does not exist in the PubChem Database.") from exc try: pcp_molecule = pcp.Compound.from_cid(cid, record_type="3d") except pcp.NotFoundError: pcp_molecule = pcp.Compound.from_cid(cid, record_type="2d") except ValueError as exc: raise ValueError("Provided CID (or Identifier) is None.") from exc data_mol = pcp_molecule.to_dict(properties=["atoms"]) symbols = [atom["element"] for atom in data_mol["atoms"]] geometry = ( np.array([[atom["x"], atom["y"], atom.get("z", 0.0)] for atom in data_mol["atoms"]]) / bohr_angs ) return symbols, geometry
7dba6a3289087fe713494551fb12554582fca39e
05824d96edf28918e25886716f0a5f904868a872
/diff_tool.py
d638d6c9b4a4e50b342d048a3f0bb7a0f2ba7f91
[ "MIT" ]
permissive
DahlitzFlorian/diff-tool-video-snippets
d7c5fb8616fc06f71566d7c9eae9be9e5ec1bf7d
0cd457abe43e63732810dbfec2e90cfb17d3d0a8
refs/heads/master
2023-08-27T06:46:36.789501
2021-10-29T06:55:07
2021-10-29T06:55:07
420,377,905
5
1
null
null
null
null
UTF-8
Python
false
false
1,084
py
# diff_tool.py import argparse import difflib import sys from pathlib import Path def create_diff(old_file: Path, new_file: Path, output_file: Path = None): file_1 = open(old_file).readlines() file_2 = open(new_file).readlines() if output_file: delta = difflib.HtmlDiff().make_file( file_1, file_2, old_file.name, new_file.name ) with open(output_file, "w") as f: f.write(delta) else: delta = difflib.unified_diff(file_1, file_2, old_file.name, new_file.name) sys.stdout.writelines(delta) def main(): parser = argparse.ArgumentParser() parser.add_argument("old_file_version") parser.add_argument("new_file_version") parser.add_argument("--html", help="specify html to write to") args = parser.parse_args() old_file = Path(args.old_file_version) new_file = Path(args.new_file_version) if args.html: output_file = Path(args.html) else: output_file = None create_diff(old_file, new_file, output_file) if __name__ == "__main__": main()
ac0bdc20ef03692d0dfb49b0a9c2a5916f19c954
06685fa3aceb620ea13b593ddc52bba53300b93a
/ssh/__init__.py
2dd7cdbecddeb86fdb56377ffe072425eef11b83
[]
no_license
66laps/kokki-cookbooks
a900f958d346e35a35a05ed6cbb12bbe2f5bf4a4
6c059f8cda577c765083dfe92688094bc38dfd4b
refs/heads/master
2021-01-01T17:00:28.952170
2010-11-20T13:39:52
2010-11-20T13:39:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
350
py
from kokki import * from kokki.cookbooks.ssh.providers import SSHKnownHostProvider, SSHAuthorizedKeyProvider from kokki.cookbooks.ssh.resources import SSHKnownHost, SSHAuthorizedKey def SSHConfig(name, hosts, mode=0600, **kwargs): File(name, mode = mode, content = Template("ssh/config.j2", {'hosts': hosts}), **kwargs)
9859b409527d7034606e1203ba46e1b8cf065b5a
f4fdb0c1213bbb403b87c2dbbde390918ac08861
/fix_cite_date.py
deff0147b7c52b04e42582406ca609f000af3565
[]
no_license
benwing2/RuNounChanges
0d5076e576237f10b50049ed52b91f96c95cca95
048dfed5abe09b8d5629c5772292027ce0a170f2
refs/heads/master
2023-09-03T22:48:06.972127
2023-09-03T06:27:56
2023-09-03T06:27:56
41,480,942
3
0
null
null
null
null
UTF-8
Python
false
false
2,627
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Replace dates of the form "1 January, 2012" with "1 January 2012" # (remove the comma) in quotation/citation templates. import pywikibot, re, sys, argparse import mwparserfromhell as mw import blib from blib import getparam, rmparam, set_template_name, msg, errmsg, site import rulib replace_templates = [ "cite-book", "cite-journal", "cite-newsgroup", "cite-video game", "cite-web", "quote-book", "quote-hansard", "quote-journal", "quote-newsgroup", "quote-song", "quote-us-patent", "quote-video", "quote-web", "quote-wikipedia" ] months = ["January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December", "Jan", "Feb", "Mar", "Apr", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"] month_re = "(?:%s)" % "|".join(months) def process_page(page, index, parsed): pagetitle = str(page.title()) def pagemsg(txt): msg("Page %s %s: %s" % (index, pagetitle, txt)) pagemsg("Processing") if not page.exists(): pagemsg("WARNING: Page doesn't exist") return if ":" in pagetitle and not re.search( "^(Citations|Appendix|Reconstruction|Transwiki|Talk|Wiktionary|[A-Za-z]+ talk):", pagetitle): pagemsg("WARNING: Colon in page title and not a recognized namespace to include, skipping page") return text = str(page.text) notes = [] parsed = blib.parse_text(text) for t in parsed.filter_templates(): tname = str(t.name) origt = str(t) if tname.strip() in replace_templates: date = getparam(t, "date") if date.strip(): newdate = re.sub(r"^(\s*[0-9]+\s+%s\s*),(\s*[0-9]+\s*)$" % month_re, r"\1\2", date) if date != newdate: # We do this instead of t.add() because if there's a final newline, # it will appear in the value but t.add() will try to preserve the # newline separately and you'll get two newlines. t.get("date").value = newdate pagemsg(("Replacing %s with %s" % (origt, str(t))).replace("\n", r"\n")) notes.append("fix date in %s" % tname.strip()) return str(parsed), notes if __name__ == "__main__": parser = blib.create_argparser("Fix date in cite/quote templates", include_pagefile=True) args = parser.parse_args() start, end = blib.parse_start_end(args.start, args.end) blib.do_pagefile_cats_refs(args, start, end, process_page, edit=True, # FIXME, had includelinks= for references, which we don't have a flag for now default_refs=["Template:%s" % template for template in replace_templates])
89c3ca5f36c3d748b35e14008fd3349a8572e530
0cf3a74494ed92bcdeaf0220ad44475c1b6b2c1c
/tests/providers/google/cloud/hooks/test_stackdriver.py
4d9a2b0dab008947fa28b6b99409866323b7afc0
[ "Apache-2.0", "BSD-3-Clause", "MIT" ]
permissive
bolkedebruin/airflow
064a0c32dff267f586c3fd4dc4beaae12273d180
e1fe30c70d0fe9c033db9daf9d4420f7fa815b2d
refs/heads/master
2023-06-09T11:37:57.734560
2022-02-23T12:38:27
2022-02-23T12:38:27
38,505,714
2
7
Apache-2.0
2022-03-01T01:22:16
2015-07-03T18:27:44
Python
UTF-8
Python
false
false
17,729
py
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import json import unittest from unittest import mock from google.api_core.gapic_v1.method import DEFAULT from google.cloud.monitoring_v3 import AlertPolicy, NotificationChannel from google.protobuf.field_mask_pb2 import FieldMask from airflow.providers.google.cloud.hooks import stackdriver PROJECT_ID = "sd-project" CREDENTIALS = "sd-credentials" TEST_FILTER = "filter" TEST_ALERT_POLICY_1 = { "combiner": "OR", "name": "projects/sd-project/alertPolicies/12345", "enabled": True, "display_name": "test display", "conditions": [ { "condition_threshold": { "comparison": "COMPARISON_GT", "aggregations": [{"alignment_period": {'seconds': 60}, "per_series_aligner": "ALIGN_RATE"}], }, "display_name": "Condition display", "name": "projects/sd-project/alertPolicies/123/conditions/456", } ], } TEST_ALERT_POLICY_2 = { "combiner": "OR", "name": "projects/sd-project/alertPolicies/6789", "enabled": False, "display_name": "test display", "conditions": [ { "condition_threshold": { "comparison": "COMPARISON_GT", "aggregations": [{"alignment_period": {'seconds': 60}, "per_series_aligner": "ALIGN_RATE"}], }, "display_name": "Condition display", "name": "projects/sd-project/alertPolicies/456/conditions/789", } ], } TEST_NOTIFICATION_CHANNEL_1 = { "display_name": "sd", "enabled": True, "labels": {"auth_token": "top-secret", "channel_name": "#channel"}, "name": "projects/sd-project/notificationChannels/12345", "type_": "slack", } TEST_NOTIFICATION_CHANNEL_2 = { "display_name": "sd", "enabled": False, "labels": {"auth_token": "top-secret", "channel_name": "#channel"}, "name": "projects/sd-project/notificationChannels/6789", "type_": "slack", } class TestStackdriverHookMethods(unittest.TestCase): @mock.patch( 'airflow.providers.google.common.hooks.base_google.GoogleBaseHook._get_credentials_and_project_id', return_value=(CREDENTIALS, PROJECT_ID), ) @mock.patch('airflow.providers.google.cloud.hooks.stackdriver.StackdriverHook._get_policy_client') def test_stackdriver_list_alert_policies(self, mock_policy_client, mock_get_creds_and_project_id): method = mock_policy_client.return_value.list_alert_policies hook = stackdriver.StackdriverHook() hook.list_alert_policies( filter_=TEST_FILTER, project_id=PROJECT_ID, ) method.assert_called_once_with( request=dict(name=f'projects/{PROJECT_ID}', filter=TEST_FILTER, order_by=None, page_size=None), retry=DEFAULT, timeout=None, metadata=(), ) @mock.patch( 'airflow.providers.google.common.hooks.base_google.GoogleBaseHook._get_credentials_and_project_id', return_value=(CREDENTIALS, PROJECT_ID), ) @mock.patch('airflow.providers.google.cloud.hooks.stackdriver.StackdriverHook._get_policy_client') def test_stackdriver_enable_alert_policy(self, mock_policy_client, mock_get_creds_and_project_id): hook = stackdriver.StackdriverHook() alert_policy_enabled = AlertPolicy(**TEST_ALERT_POLICY_1) alert_policy_disabled = AlertPolicy(**TEST_ALERT_POLICY_2) alert_policies = [alert_policy_enabled, alert_policy_disabled] mock_policy_client.return_value.list_alert_policies.return_value = alert_policies hook.enable_alert_policies( filter_=TEST_FILTER, project_id=PROJECT_ID, ) mock_policy_client.return_value.list_alert_policies.assert_called_once_with( request=dict(name=f'projects/{PROJECT_ID}', filter=TEST_FILTER, order_by=None, page_size=None), retry=DEFAULT, timeout=None, metadata=(), ) mask = FieldMask(paths=["enabled"]) alert_policy_disabled.enabled = True mock_policy_client.return_value.update_alert_policy.assert_called_once_with( request=dict(alert_policy=alert_policy_disabled, update_mask=mask), retry=DEFAULT, timeout=None, metadata=(), ) @mock.patch( 'airflow.providers.google.common.hooks.base_google.GoogleBaseHook._get_credentials_and_project_id', return_value=(CREDENTIALS, PROJECT_ID), ) @mock.patch('airflow.providers.google.cloud.hooks.stackdriver.StackdriverHook._get_policy_client') def test_stackdriver_disable_alert_policy(self, mock_policy_client, mock_get_creds_and_project_id): hook = stackdriver.StackdriverHook() alert_policy_enabled = AlertPolicy(**TEST_ALERT_POLICY_1) alert_policy_disabled = AlertPolicy(**TEST_ALERT_POLICY_2) mock_policy_client.return_value.list_alert_policies.return_value = [ alert_policy_enabled, alert_policy_disabled, ] hook.disable_alert_policies( filter_=TEST_FILTER, project_id=PROJECT_ID, ) mock_policy_client.return_value.list_alert_policies.assert_called_once_with( request=dict(name=f'projects/{PROJECT_ID}', filter=TEST_FILTER, order_by=None, page_size=None), retry=DEFAULT, timeout=None, metadata=(), ) mask = FieldMask(paths=["enabled"]) alert_policy_enabled.enabled = False mock_policy_client.return_value.update_alert_policy.assert_called_once_with( request=dict(alert_policy=alert_policy_enabled, update_mask=mask), retry=DEFAULT, timeout=None, metadata=(), ) @mock.patch( 'airflow.providers.google.common.hooks.base_google.GoogleBaseHook._get_credentials_and_project_id', return_value=(CREDENTIALS, PROJECT_ID), ) @mock.patch('airflow.providers.google.cloud.hooks.stackdriver.StackdriverHook._get_policy_client') @mock.patch('airflow.providers.google.cloud.hooks.stackdriver.StackdriverHook._get_channel_client') def test_stackdriver_upsert_alert_policy( self, mock_channel_client, mock_policy_client, mock_get_creds_and_project_id ): hook = stackdriver.StackdriverHook() existing_alert_policy = AlertPolicy(**TEST_ALERT_POLICY_1) alert_policy_to_create = AlertPolicy(**TEST_ALERT_POLICY_2) mock_policy_client.return_value.list_alert_policies.return_value = [existing_alert_policy] mock_channel_client.return_value.list_notification_channels.return_value = [] hook.upsert_alert( alerts=json.dumps({"policies": [TEST_ALERT_POLICY_1, TEST_ALERT_POLICY_2], "channels": []}), project_id=PROJECT_ID, ) mock_channel_client.return_value.list_notification_channels.assert_called_once_with( request=dict( name=f'projects/{PROJECT_ID}', filter=None, order_by=None, page_size=None, ), retry=DEFAULT, timeout=None, metadata=(), ) mock_policy_client.return_value.list_alert_policies.assert_called_once_with( request=dict(name=f'projects/{PROJECT_ID}', filter=None, order_by=None, page_size=None), retry=DEFAULT, timeout=None, metadata=(), ) alert_policy_to_create.name = None alert_policy_to_create.creation_record = None alert_policy_to_create.mutation_record = None alert_policy_to_create.conditions[0].name = None mock_policy_client.return_value.create_alert_policy.assert_called_once_with( request=dict( name=f'projects/{PROJECT_ID}', alert_policy=alert_policy_to_create, ), retry=DEFAULT, timeout=None, metadata=(), ) existing_alert_policy.creation_record = None existing_alert_policy.mutation_record = None mock_policy_client.return_value.update_alert_policy.assert_called_once_with( request=dict(alert_policy=existing_alert_policy), retry=DEFAULT, timeout=None, metadata=() ) @mock.patch( 'airflow.providers.google.common.hooks.base_google.GoogleBaseHook._get_credentials_and_project_id', return_value=(CREDENTIALS, PROJECT_ID), ) @mock.patch('airflow.providers.google.cloud.hooks.stackdriver.StackdriverHook._get_policy_client') @mock.patch('airflow.providers.google.cloud.hooks.stackdriver.StackdriverHook._get_channel_client') def test_stackdriver_upsert_alert_policy_without_channel( self, mock_channel_client, mock_policy_client, mock_get_creds_and_project_id ): hook = stackdriver.StackdriverHook() existing_alert_policy = AlertPolicy(**TEST_ALERT_POLICY_1) mock_policy_client.return_value.list_alert_policies.return_value = [existing_alert_policy] mock_channel_client.return_value.list_notification_channels.return_value = [] hook.upsert_alert( alerts=json.dumps({"policies": [TEST_ALERT_POLICY_1, TEST_ALERT_POLICY_2]}), project_id=PROJECT_ID, ) mock_channel_client.return_value.list_notification_channels.assert_called_once_with( request=dict(name=f'projects/{PROJECT_ID}', filter=None, order_by=None, page_size=None), metadata=(), retry=DEFAULT, timeout=None, ) mock_policy_client.return_value.list_alert_policies.assert_called_once_with( request=dict(name=f'projects/{PROJECT_ID}', filter=None, order_by=None, page_size=None), retry=DEFAULT, timeout=None, metadata=(), ) existing_alert_policy.creation_record = None existing_alert_policy.mutation_record = None mock_policy_client.return_value.update_alert_policy.assert_called_once_with( request=dict(alert_policy=existing_alert_policy), retry=DEFAULT, timeout=None, metadata=() ) @mock.patch( 'airflow.providers.google.common.hooks.base_google.GoogleBaseHook._get_credentials_and_project_id', return_value=(CREDENTIALS, PROJECT_ID), ) @mock.patch('airflow.providers.google.cloud.hooks.stackdriver.StackdriverHook._get_policy_client') def test_stackdriver_delete_alert_policy(self, mock_policy_client, mock_get_creds_and_project_id): hook = stackdriver.StackdriverHook() hook.delete_alert_policy( name='test-alert', ) mock_policy_client.return_value.delete_alert_policy.assert_called_once_with( request=dict(name='test-alert'), retry=DEFAULT, timeout=None, metadata=(), ) @mock.patch( 'airflow.providers.google.common.hooks.base_google.GoogleBaseHook._get_credentials_and_project_id', return_value=(CREDENTIALS, PROJECT_ID), ) @mock.patch('airflow.providers.google.cloud.hooks.stackdriver.StackdriverHook._get_channel_client') def test_stackdriver_list_notification_channel(self, mock_channel_client, mock_get_creds_and_project_id): hook = stackdriver.StackdriverHook() hook.list_notification_channels( filter_=TEST_FILTER, project_id=PROJECT_ID, ) mock_channel_client.return_value.list_notification_channels.assert_called_once_with( request=dict(name=f'projects/{PROJECT_ID}', filter=TEST_FILTER, order_by=None, page_size=None), retry=DEFAULT, timeout=None, metadata=(), ) @mock.patch( 'airflow.providers.google.common.hooks.base_google.GoogleBaseHook._get_credentials_and_project_id', return_value=(CREDENTIALS, PROJECT_ID), ) @mock.patch('airflow.providers.google.cloud.hooks.stackdriver.StackdriverHook._get_channel_client') def test_stackdriver_enable_notification_channel( self, mock_channel_client, mock_get_creds_and_project_id ): hook = stackdriver.StackdriverHook() notification_channel_enabled = NotificationChannel(**TEST_NOTIFICATION_CHANNEL_1) notification_channel_disabled = NotificationChannel(**TEST_NOTIFICATION_CHANNEL_2) mock_channel_client.return_value.list_notification_channels.return_value = [ notification_channel_enabled, notification_channel_disabled, ] hook.enable_notification_channels( filter_=TEST_FILTER, project_id=PROJECT_ID, ) notification_channel_disabled.enabled = True mask = FieldMask(paths=['enabled']) mock_channel_client.return_value.update_notification_channel.assert_called_once_with( request=dict(notification_channel=notification_channel_disabled, update_mask=mask), retry=DEFAULT, timeout=None, metadata=(), ) @mock.patch( 'airflow.providers.google.common.hooks.base_google.GoogleBaseHook._get_credentials_and_project_id', return_value=(CREDENTIALS, PROJECT_ID), ) @mock.patch('airflow.providers.google.cloud.hooks.stackdriver.StackdriverHook._get_channel_client') def test_stackdriver_disable_notification_channel( self, mock_channel_client, mock_get_creds_and_project_id ): hook = stackdriver.StackdriverHook() notification_channel_enabled = NotificationChannel(**TEST_NOTIFICATION_CHANNEL_1) notification_channel_disabled = NotificationChannel(**TEST_NOTIFICATION_CHANNEL_2) mock_channel_client.return_value.list_notification_channels.return_value = [ notification_channel_enabled, notification_channel_disabled, ] hook.disable_notification_channels( filter_=TEST_FILTER, project_id=PROJECT_ID, ) notification_channel_enabled.enabled = False mask = FieldMask(paths=['enabled']) mock_channel_client.return_value.update_notification_channel.assert_called_once_with( request=dict(notification_channel=notification_channel_enabled, update_mask=mask), retry=DEFAULT, timeout=None, metadata=(), ) @mock.patch( 'airflow.providers.google.common.hooks.base_google.GoogleBaseHook._get_credentials_and_project_id', return_value=(CREDENTIALS, PROJECT_ID), ) @mock.patch('airflow.providers.google.cloud.hooks.stackdriver.StackdriverHook._get_channel_client') def test_stackdriver_upsert_channel(self, mock_channel_client, mock_get_creds_and_project_id): hook = stackdriver.StackdriverHook() existing_notification_channel = NotificationChannel(**TEST_NOTIFICATION_CHANNEL_1) notification_channel_to_be_created = NotificationChannel(**TEST_NOTIFICATION_CHANNEL_2) mock_channel_client.return_value.list_notification_channels.return_value = [ existing_notification_channel ] hook.upsert_channel( channels=json.dumps({"channels": [TEST_NOTIFICATION_CHANNEL_1, TEST_NOTIFICATION_CHANNEL_2]}), project_id=PROJECT_ID, ) mock_channel_client.return_value.list_notification_channels.assert_called_once_with( request=dict(name=f'projects/{PROJECT_ID}', filter=None, order_by=None, page_size=None), retry=DEFAULT, timeout=None, metadata=(), ) mock_channel_client.return_value.update_notification_channel.assert_called_once_with( request=dict(notification_channel=existing_notification_channel), retry=DEFAULT, timeout=None, metadata=(), ) notification_channel_to_be_created.name = None mock_channel_client.return_value.create_notification_channel.assert_called_once_with( request=dict( name=f'projects/{PROJECT_ID}', notification_channel=notification_channel_to_be_created ), retry=DEFAULT, timeout=None, metadata=(), ) @mock.patch( 'airflow.providers.google.common.hooks.base_google.GoogleBaseHook._get_credentials_and_project_id', return_value=(CREDENTIALS, PROJECT_ID), ) @mock.patch('airflow.providers.google.cloud.hooks.stackdriver.StackdriverHook._get_channel_client') def test_stackdriver_delete_notification_channel( self, mock_channel_client, mock_get_creds_and_project_id ): hook = stackdriver.StackdriverHook() hook.delete_notification_channel( name='test-channel', ) mock_channel_client.return_value.delete_notification_channel.assert_called_once_with( request=dict(name='test-channel'), retry=DEFAULT, timeout=None, metadata=() )
9d468379d6252e0193cf1aa21ee3dd194eb34613
55692ac1b8a1b00750c0b9caf7ebba53f1dde78b
/server/toolkits/migrations/tip.py
c3783643ffc06de90010c34ded47ec1e4a3f1e4f
[]
no_license
Soopro/julolo
8d9dea62aa055318f891d200614314e402bda1eb
73cc67f378f45c0da40911bac5e5e038f63588ab
refs/heads/master
2021-10-26T08:50:58.940548
2019-04-11T15:41:12
2019-04-11T15:41:12
107,217,845
0
0
null
null
null
null
UTF-8
Python
false
false
708
py
# coding=utf-8 from __future__ import absolute_import from mongokit import DocumentMigration class TipMigration(DocumentMigration): pass # def allmigration01_remove_complete(self): # self.target = {'verification': {'$exists': True}} # if not self.status: # self.update = { # '$unset': { # 'verification': False # }, # '$set': { # 'verified': False # } # } # self.collection.update(self.target, # self.update, # multi=True, # safe=True)
81de7e98002c913886831f84a4f671f56499c8f8
7d5047dae4df06f10752b7a3ec6e663f296457d3
/Programmers/Level 2/영어 끝말잇기.py
fb829b110405b798b97e5b1c0d629d4794df69a9
[]
no_license
soulgchoi/Algorithm
a73e3e8e3a256d4cf1c8b5fa3c7dc35a325a6e9a
a88b2c2a0f0d75ca59269dd815ee8d30dd270ce7
refs/heads/master
2022-02-05T18:08:09.271443
2022-01-20T02:36:37
2022-01-20T02:36:37
228,958,329
3
0
null
null
null
null
UTF-8
Python
false
false
466
py
def solution(n, words): answer = [0, 0] for i in range(1, len(words)): if words[i][0] != words[i-1][-1] or words.index(words[i]) < i: answer = [i % n + 1, i // n + 1] break return answer def solution(n, words): answer = [0, 0] for i in range(1, len(words)): if words[i][0] != words[i-1][-1] or words[i] in words[:i]: answer = [i % n + 1, i // n + 1] break return answer
fb7213b98d2e792b11a08e891b2cde8ae6a46d14
bc6508a1dde1e61a8b2f61e70044c074aeeb4406
/whoiser/servers/XN__G6W251D.py
36b0bcbef1eb19e54daf5967aaf73f97ffed1542
[]
no_license
krikulis/whoiser
7eca72260dc061a91c7630901557264b80c5263e
27af46d6ffcf2bacc5e5b837883ab5fab7ac9b40
refs/heads/master
2021-01-10T19:10:53.915622
2012-06-24T23:50:28
2012-06-24T23:50:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
196
py
from servers.generic import GenericWhoisQuery class WhoisQuery(GenericWhoisQuery): def query(self, query): raise NotImplementedError(u"TLD XN--G6W251D has no Whois server available")
1c3c444acf1973ede408349bd8384cc01093b4f8
129710acb68187f1ef4aab97cd9eecbc3b620a6b
/venv/lib/python2.7/site-packages/aldryn_people/models.py
1e5deda6b5737b0e5734e1661eaa9631a4070937
[]
no_license
frankip/cmsaldryn_blog
8f62c3853e1459caad3fb6ab1e6dbde93900e4b9
7ea6c9cb3fd8e8d16d617a167a0e33af08ec3b32
refs/heads/master
2021-01-18T19:30:41.464504
2016-06-20T09:03:34
2016-06-20T09:03:34
61,532,376
0
0
null
null
null
null
UTF-8
Python
false
false
14,304
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals import base64 import six from aldryn_people.vcard import Vcard try: import urlparse except ImportError: from urllib import parse as urlparse import warnings from reversion.revisions import ( default_revision_manager, RegistrationError ) from distutils.version import LooseVersion from django import get_version from django.contrib.auth import get_user_model from django.conf import settings from django.core.urlresolvers import reverse, NoReverseMatch from django.db import models from django.utils.encoding import python_2_unicode_compatible try: # Python>=2.7 from importlib import import_module except ImportError: # Python==2.6 with warnings.catch_warnings(): warnings.simplefilter("ignore", DeprecationWarning) from django.utils.importlib import import_module from django.utils.translation import ugettext_lazy as _, override, force_text from six import text_type from aldryn_common.admin_fields.sortedm2m import SortedM2MModelField from aldryn_translation_tools.models import ( TranslatedAutoSlugifyMixin, TranslationHelperMixin, ) from cms.models.pluginmodel import CMSPlugin from cms.utils.i18n import get_current_language, get_default_language from djangocms_text_ckeditor.fields import HTMLField from filer.fields.image import FilerImageField from parler.models import TranslatableModel, TranslatedFields from aldryn_reversion.core import version_controlled_content from .utils import get_additional_styles # NOTE: We use LooseVersion and not StrictVersion because sometimes Aldryn uses # patched build with version numbers of the form X.Y.Z.postN. loose_version = LooseVersion(get_version()) if loose_version < LooseVersion('1.7.0'): # Prior to 1.7 it is pretty straight forward user_model = get_user_model() if user_model not in default_revision_manager.get_registered_models(): default_revision_manager.register(user_model) else: # otherwise it is a pain, but thanks to solution of getting model from # https://github.com/django-oscar/django-oscar/commit/c479a1 # we can do almost the same thing from the different side. from django.apps import apps from django.apps.config import MODELS_MODULE_NAME from django.core.exceptions import AppRegistryNotReady def get_model(app_label, model_name): """ Fetches a Django model using the app registry. This doesn't require that an app with the given app label exists, which makes it safe to call when the registry is being populated. All other methods to access models might raise an exception about the registry not being ready yet. Raises LookupError if model isn't found. """ try: return apps.get_model(app_label, model_name) except AppRegistryNotReady: if apps.apps_ready and not apps.models_ready: # If this function is called while `apps.populate()` is # loading models, ensure that the module that defines the # target model has been imported and try looking the model up # in the app registry. This effectively emulates # `from path.to.app.models import Model` where we use # `Model = get_model('app', 'Model')` instead. app_config = apps.get_app_config(app_label) # `app_config.import_models()` cannot be used here because it # would interfere with `apps.populate()`. import_module('%s.%s' % (app_config.name, MODELS_MODULE_NAME)) # In order to account for case-insensitivity of model_name, # look up the model through a private API of the app registry. return apps.get_registered_model(app_label, model_name) else: # This must be a different case (e.g. the model really doesn't # exist). We just re-raise the exception. raise # now get the real user model user_model = getattr(settings, 'AUTH_USER_MODEL', 'auth.User') model_app_name, model_model = user_model.split('.') user_model_object = get_model(model_app_name, model_model) # and try to register, if we have a registration error - that means that # it has been registered already try: default_revision_manager.register(user_model_object) except RegistrationError: pass @version_controlled_content @python_2_unicode_compatible class Group(TranslationHelperMixin, TranslatedAutoSlugifyMixin, TranslatableModel): slug_source_field_name = 'name' translations = TranslatedFields( name=models.CharField(_('name'), max_length=255, help_text=_("Provide this group's name.")), description=HTMLField(_('description'), blank=True), slug=models.SlugField(_('slug'), max_length=255, default='', blank=True, help_text=_("Leave blank to auto-generate a unique slug.")), ) address = models.TextField( verbose_name=_('address'), blank=True) postal_code = models.CharField( verbose_name=_('postal code'), max_length=20, blank=True) city = models.CharField( verbose_name=_('city'), max_length=255, blank=True) phone = models.CharField( verbose_name=_('phone'), null=True, blank=True, max_length=100) fax = models.CharField( verbose_name=_('fax'), null=True, blank=True, max_length=100) email = models.EmailField( verbose_name=_('email'), blank=True, default='') website = models.URLField( verbose_name=_('website'), null=True, blank=True) @property def company_name(self): warnings.warn( '"Group.company_name" has been refactored to "Group.name"', DeprecationWarning ) return self.safe_translation_getter('name') @property def company_description(self): warnings.warn( '"Group.company_description" has been refactored to ' '"Group.description"', DeprecationWarning ) return self.safe_translation_getter('description') class Meta: verbose_name = _('Group') verbose_name_plural = _('Groups') def __str__(self): return self.safe_translation_getter( 'name', default=_('Group: {0}').format(self.pk)) def get_absolute_url(self, language=None): if not language: language = get_current_language() or get_default_language() slug, language = self.known_translation_getter( 'slug', None, language_code=language) if slug: kwargs = {'slug': slug} else: kwargs = {'pk': self.pk} with override(language): return reverse('aldryn_people:group-detail', kwargs=kwargs) @version_controlled_content(follow=['groups', 'user']) @python_2_unicode_compatible class Person(TranslationHelperMixin, TranslatedAutoSlugifyMixin, TranslatableModel): slug_source_field_name = 'name' translations = TranslatedFields( name=models.CharField(_('name'), max_length=255, blank=False, default='', help_text=_("Provide this person's name.")), slug=models.SlugField(_('unique slug'), max_length=255, blank=True, default='', help_text=_("Leave blank to auto-generate a unique slug.")), function=models.CharField(_('role'), max_length=255, blank=True, default=''), description=HTMLField(_('description'), blank=True, default='') ) phone = models.CharField( verbose_name=_('phone'), null=True, blank=True, max_length=100) mobile = models.CharField( verbose_name=_('mobile'), null=True, blank=True, max_length=100) fax = models.CharField( verbose_name=_('fax'), null=True, blank=True, max_length=100) email = models.EmailField( verbose_name=_("email"), blank=True, default='') website = models.URLField( verbose_name=_('website'), null=True, blank=True) groups = SortedM2MModelField( 'aldryn_people.Group', default=None, blank=True, related_name='people', help_text=_('Choose and order the groups for this person, the first ' 'will be the "primary group".')) visual = FilerImageField( null=True, blank=True, default=None, on_delete=models.SET_NULL) vcard_enabled = models.BooleanField( verbose_name=_('enable vCard download'), default=True) user = models.OneToOneField( getattr(settings, 'AUTH_USER_MODEL', 'auth.User'), null=True, blank=True, related_name='persons') class Meta: verbose_name = _('Person') verbose_name_plural = _('People') def __str__(self): pkstr = str(self.pk) if six.PY2: pkstr = six.u(pkstr) name = self.safe_translation_getter( 'name', default='', any_language=True ).strip() return name if len(name) > 0 else pkstr @property def primary_group(self): """Simply returns the first in `groups`, if any, else None.""" return self.groups.first() @property def comment(self): return self.safe_translation_getter('description', '') def get_absolute_url(self, language=None): if not language: language = get_current_language() slug, language = self.known_translation_getter( 'slug', None, language_code=language) if slug: kwargs = {'slug': slug} else: kwargs = {'pk': self.pk} with override(language): # do not fail with 500 error so that if detail view can't be # resolved we still can use plugins. try: url = reverse('aldryn_people:person-detail', kwargs=kwargs) except NoReverseMatch: url = '' return url def get_vcard_url(self, language=None): if not language: language = get_current_language() slug = self.safe_translation_getter( 'slug', None, language_code=language, any_language=False) if slug: kwargs = {'slug': slug} else: kwargs = {'pk': self.pk} with override(language): return reverse('aldryn_people:download_vcard', kwargs=kwargs) def get_vcard(self, request=None): vcard = Vcard() function = self.safe_translation_getter('function') safe_name = self.safe_translation_getter( 'name', default="Person: {0}".format(self.pk)) vcard.add_line('FN', safe_name) vcard.add_line('N', [None, safe_name, None, None, None]) if self.visual: ext = self.visual.extension.upper() try: with open(self.visual.path, 'rb') as f: data = force_text(base64.b64encode(f.read())) vcard.add_line('PHOTO', data, TYPE=ext, ENCODING='b') except IOError: if request: url = urlparse.urljoin(request.build_absolute_uri(), self.visual.url), vcard.add_line('PHOTO', url, TYPE=ext) if self.email: vcard.add_line('EMAIL', self.email) if function: vcard.add_line('TITLE', self.function) if self.phone: vcard.add_line('TEL', self.phone, TYPE='WORK') if self.mobile: vcard.add_line('TEL', self.mobile, TYPE='CELL') if self.fax: vcard.add_line('TEL', self.fax, TYPE='FAX') if self.website: vcard.add_line('URL', self.website) if self.primary_group: group_name = self.primary_group.safe_translation_getter( 'name', default="Group: {0}".format(self.primary_group.pk)) if group_name: vcard.add_line('ORG', group_name) if (self.primary_group.address or self.primary_group.city or self.primary_group.postal_code): vcard.add_line('ADR', ( None, None, self.primary_group.address, self.primary_group.city, None, self.primary_group.postal_code, None, ), TYPE='WORK') if self.primary_group.phone: vcard.add_line('TEL', self.primary_group.phone, TYPE='WORK') if self.primary_group.fax: vcard.add_line('TEL', self.primary_group.fax, TYPE='FAX') if self.primary_group.website: vcard.add_line('URL', self.primary_group.website) return str(vcard) @python_2_unicode_compatible class BasePeoplePlugin(CMSPlugin): STYLE_CHOICES = [ ('standard', _('Standard')), ('feature', _('Feature')) ] + get_additional_styles() style = models.CharField( _('Style'), choices=STYLE_CHOICES, default=STYLE_CHOICES[0][0], max_length=50) people = SortedM2MModelField( Person, blank=True, help_text=_('Select and arrange specific people, or, leave blank to ' 'select all.') ) class Meta: abstract = True def copy_relations(self, oldinstance): self.people = oldinstance.people.all() def get_selected_people(self): return self.people.select_related('visual') def __str__(self): return text_type(self.pk) class PeoplePlugin(BasePeoplePlugin): group_by_group = models.BooleanField( verbose_name=_('group by group'), default=True, help_text=_('Group people by their group.') ) show_ungrouped = models.BooleanField( verbose_name=_('show ungrouped'), default=False, help_text=_('When using "group by group", show ungrouped people too.') ) show_links = models.BooleanField( verbose_name=_('Show links to Detail Page'), default=False) show_vcard = models.BooleanField( verbose_name=_('Show links to download vCard'), default=False) class Meta: abstract = False
fd0f71e1297eb6aea740278e25eb6fb47249e785
3ea45d6acd362a646e906eac31ab6d3ea019d727
/qaeval/tests/metric_test.py
f55aac1947adabbf36a8c37e2b70b19c3a004a2f
[ "Apache-2.0" ]
permissive
rajhans/qaeval
9747dea5dd0a234cc3df7837d6cbc0406b5d1b03
dd7273183dd1b2c9995115310ef041daa953ca81
refs/heads/master
2023-07-10T04:15:05.399369
2021-08-03T02:22:15
2021-08-03T02:22:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
12,814
py
import json import os import pytest import unittest from typing import List from qaeval import QAEval, FIXTURES_ROOT @pytest.mark.skipif( "GENERATION_MODEL" not in os.environ, reason="`GENERATION_MODEL` environment variable not set", ) @pytest.mark.skipif( "ANSWERING_MODEL" not in os.environ, reason="`ANSWERING_MODEL` environment variable not set", ) class TestQAEval(unittest.TestCase): def setUp(self) -> None: self.summaries = [] self.references_list = [] with open(f"{FIXTURES_ROOT}/multiling2011.jsonl", "r") as f: for line in f: data = json.loads(line) summary = data["summary"]["text"] references = [reference["text"] for reference in data["references"]] self.summaries.append(summary) self.references_list.append(references) def _check_output(self, metric: QAEval, expected_output: List) -> None: actual_output = metric.score_batch(self.summaries, self.references_list) assert len(expected_output) == len(actual_output) for expected, actual in zip(expected_output, actual_output): assert len(expected) == len(actual) == 1 expected = expected["qa-eval"] actual = actual["qa-eval"] assert len(expected) == len(actual) for metric in expected.keys(): assert expected[metric] == pytest.approx(actual[metric], abs=1e-5) def test_qaeval(self): # This is a regression test, not necessarily a test for correctness metric = QAEval( generation_model_path=os.environ["GENERATION_MODEL"], answering_model_dir=os.environ["ANSWERING_MODEL"], ) expected_output = [ { "qa-eval": { "is_answered": 0.2171952736318408, "em": 0.03078358208955224, "f1": 0.05688114487088367, } }, { "qa-eval": { "is_answered": 0.2706778606965174, "em": 0.08286691542288557, "f1": 0.11367400349443259, } }, { "qa-eval": { "is_answered": 0.4552238805970149, "em": 0.05223880597014925, "f1": 0.10360696517412935, } }, { "qa-eval": { "is_answered": 0.2671408582089552, "em": 0.04582555970149253, "f1": 0.05402803689883914, } }, { "qa-eval": { "is_answered": 0.17126063232225966, "em": 0.025276841598459315, "f1": 0.04173576561636263, } }, { "qa-eval": { "is_answered": 0.3291829383548209, "em": 0.029159756771697066, "f1": 0.0543755246092705, } }, { "qa-eval": { "is_answered": 0.34836235489220563, "em": 0.05223880597014925, "f1": 0.09381412591922542, } }, { "qa-eval": { "is_answered": 0.4337987481945113, "em": 0.04537794896485315, "f1": 0.12145356515842792, } }, { "qa-eval": { "is_answered": 0.44427039821776665, "em": 0.06434837092731831, "f1": 0.10272833079850623, } }, { "qa-eval": { "is_answered": 0.40391255917571706, "em": 0.09642160957950431, "f1": 0.13482779720666102, } }, { "qa-eval": { "is_answered": 0.5345864661654135, "em": 0.12349624060150374, "f1": 0.16393273976257167, } }, { "qa-eval": { "is_answered": 0.5204365079365079, "em": 0.12678571428571428, "f1": 0.16151234567901235, } }, ] self._check_output(metric, expected_output) @pytest.mark.skipif( "LERC_MODEL" not in os.environ, reason="`LERC_MODEL` environment variable not set", ) @pytest.mark.skipif( "LERC_PRETRAINED_MODEL" not in os.environ, reason="`LERC_PRETRAINED_MODEL` environment variable not set", ) def test_qaeval_with_lerc(self): # This is a regression test, not necessarily a test for correctness metric = QAEval( generation_model_path=os.environ["GENERATION_MODEL"], answering_model_dir=os.environ["ANSWERING_MODEL"], use_lerc=True, lerc_model_path=os.environ["LERC_MODEL"], lerc_pretrained_model_path=os.environ["LERC_PRETRAINED_MODEL"], ) expected_output = [ { "qa-eval": { "is_answered": 0.2171952736318408, "em": 0.03078358208955224, "f1": 0.05688114487088367, "lerc": 0.5280342313984585, } }, { "qa-eval": { "is_answered": 0.2706778606965174, "em": 0.08286691542288557, "f1": 0.11367400349443259, "lerc": 0.8588525844061404, } }, { "qa-eval": { "is_answered": 0.4552238805970149, "em": 0.05223880597014925, "f1": 0.10360696517412935, "lerc": 1.2307390170310861, } }, { "qa-eval": { "is_answered": 0.2671408582089552, "em": 0.04582555970149253, "f1": 0.05402803689883914, "lerc": 0.6782244059549116, } }, { "qa-eval": { "is_answered": 0.17126063232225966, "em": 0.025276841598459315, "f1": 0.04173576561636263, "lerc": 0.40871678001285994, } }, { "qa-eval": { "is_answered": 0.3291829383548209, "em": 0.029159756771697066, "f1": 0.0543755246092705, "lerc": 0.6477515654560587, } }, { "qa-eval": { "is_answered": 0.34836235489220563, "em": 0.05223880597014925, "f1": 0.09381412591922542, "lerc": 0.947292007320556, } }, { "qa-eval": { "is_answered": 0.4337987481945113, "em": 0.04537794896485315, "f1": 0.12145356515842792, "lerc": 1.2629075305115793, } }, { "qa-eval": { "is_answered": 0.44427039821776665, "em": 0.06434837092731831, "f1": 0.10272833079850623, "lerc": 1.1977039740821571, } }, { "qa-eval": { "is_answered": 0.40391255917571706, "em": 0.09642160957950431, "f1": 0.13482779720666102, "lerc": 1.2360802221434326, } }, { "qa-eval": { "is_answered": 0.5345864661654135, "em": 0.12349624060150374, "f1": 0.16393273976257167, "lerc": 1.5575424717221045, } }, { "qa-eval": { "is_answered": 0.5204365079365079, "em": 0.12678571428571428, "f1": 0.16151234567901235, "lerc": 1.4713040575976408, } }, ] self._check_output(metric, expected_output) @pytest.mark.skipif( "LERC_MODEL" not in os.environ, reason="`LERC_MODEL` environment variable not set", ) @pytest.mark.skipif( "LERC_PRETRAINED_MODEL" not in os.environ, reason="`LERC_PRETRAINED_MODEL` environment variable not set", ) def test_return_qa_pairs(self): metric = QAEval( generation_model_path=os.environ["GENERATION_MODEL"], answering_model_dir=os.environ["ANSWERING_MODEL"], use_lerc=True, lerc_model_path=os.environ["LERC_MODEL"], lerc_pretrained_model_path=os.environ["LERC_PRETRAINED_MODEL"], ) summaries = [ "Dan walked to the bakery this morning.", "He bought some scones today", ] references_list = [ ["Dan went to buy scones earlier this morning."], ["Dan went to buy scones earlier this morning."], ] results_list = metric.score_batch(summaries, references_list, return_qa_pairs=True) assert len(results_list) == 2 metrics, qa_pairs_list = results_list[0] assert metrics["qa-eval"]["is_answered"] == 1.0 assert metrics["qa-eval"]["em"] == 0.5 assert metrics["qa-eval"]["f1"] == 0.5 self.assertAlmostEqual(metrics["qa-eval"]["lerc"], 3.171376943588257, places=4) assert len(qa_pairs_list) == 1 qa_pairs = qa_pairs_list[0] assert len(qa_pairs) == 2 assert ( qa_pairs[0]["question"]["question"] == "Who went to buy scones earlier this morning?" ) assert qa_pairs[0]["prediction"]["prediction"] == "Dan" assert qa_pairs[0]["prediction"]["start"] == 0 assert qa_pairs[0]["prediction"]["end"] == 3 assert qa_pairs[0]["prediction"]["is_answered"] == 1.0 assert qa_pairs[0]["prediction"]["em"] == 1.0 assert qa_pairs[0]["prediction"]["f1"] == 1.0 self.assertAlmostEqual( qa_pairs[0]["prediction"]["lerc"], 5.035197734832764, places=4 ) assert ( qa_pairs[1]["question"]["question"] == "What did Dan go to buy earlier this morning?" ) assert qa_pairs[1]["prediction"]["prediction"] == "bakery" assert qa_pairs[1]["prediction"]["start"] == 18 assert qa_pairs[1]["prediction"]["end"] == 24 assert qa_pairs[1]["prediction"]["is_answered"] == 1.0 assert qa_pairs[1]["prediction"]["em"] == 0.0 assert qa_pairs[1]["prediction"]["f1"] == 0.0 self.assertAlmostEqual( qa_pairs[1]["prediction"]["lerc"], 1.30755615234375, places=4 ) metrics, qa_pairs_list = results_list[1] assert metrics["qa-eval"]["is_answered"] == 0.5 assert metrics["qa-eval"]["em"] == 0.5 assert metrics["qa-eval"]["f1"] == 0.5 self.assertAlmostEqual(metrics["qa-eval"]["lerc"], 2.492440700531006, places=4) assert len(qa_pairs_list) == 1 qa_pairs = qa_pairs_list[0] assert len(qa_pairs) == 2 assert ( qa_pairs[0]["question"]["question"] == "Who went to buy scones earlier this morning?" ) assert qa_pairs[0]["prediction"]["prediction"] == "He" assert qa_pairs[0]["prediction"]["start"] == 0 assert qa_pairs[0]["prediction"]["end"] == 2 assert qa_pairs[0]["prediction"]["is_answered"] == 0.0 assert qa_pairs[0]["prediction"]["em"] == 0.0 assert qa_pairs[0]["prediction"]["f1"] == 0.0 assert qa_pairs[0]["prediction"]["lerc"] == 0.0 assert ( qa_pairs[1]["question"]["question"] == "What did Dan go to buy earlier this morning?" ) assert qa_pairs[1]["prediction"]["prediction"] == "scones" assert qa_pairs[1]["prediction"]["start"] == 15 assert qa_pairs[1]["prediction"]["end"] == 21 assert qa_pairs[1]["prediction"]["is_answered"] == 1.0 assert qa_pairs[1]["prediction"]["em"] == 1.0 assert qa_pairs[1]["prediction"]["f1"] == 1.0 self.assertAlmostEqual( qa_pairs[1]["prediction"]["lerc"], 4.984881401062012, places=4 )
8a312b438fc15bf78d0eae6a7849064a7eaaf7e8
f3997f566695a78d09fcab688db88499223dca17
/coil_phase/det_coil_phase.py
c1f4d76d095a147236a45d3f938cbc97af0f839b
[]
no_license
melampyge/CollectiveFilament
600d7a426d88a7f8f31702edb2b1fea7691372d2
7d2659bee85c955c680eda019cbff6e2b93ecff2
refs/heads/master
2020-07-23T05:58:55.383746
2017-06-25T14:55:14
2017-06-25T14:55:14
94,351,294
0
0
null
null
null
null
UTF-8
Python
false
false
4,003
py
#!/usr/local/bin/python2.7 import matplotlib as mpl mpl.use('Agg') import sys import numpy as np import math import matplotlib.pyplot as plt from scipy import stats ##################################################################### ### define / read in some global variables gamma = 2.0 # viscosity kT = 1.0 # thermal energy ifile = open('scale_params.data') line = ifile.readline() line = line.split() L = float(line[-1]) # polymer length line = ifile.readline() line = line.split() dt = float(line[-1]) # simulation timestep ##################################################################### def read_coilicity(): """ read in the coilcity""" t = [] c = [] ifile = open('coilicity.data') ifile.readline() ifile.readline() for line in ifile: line = line.split() try: t.append(float(line[0])) c.append(float(line[2])) except: pass ifile.close() t = np.array(t) c = np.array(c) # transform time and coility units ttrans = gamma*L**3/6./kT t *= dt/ttrans c *= L/2/np.pi return t,c ##################################################################### def read_cacf(): """ read in the coilicity autocorrelation function""" tacf = [] cacf = [] ifile = open('coil2_acf.data', 'r') ifile.readline() for line in ifile: line = line.split() tacf.append(float(line[0])) cacf.append(float(line[1])) ifile.close() tacf = np.array(tacf) cacf = np.array(cacf) # transform time units ttrans = gamma*L**3/6./kT tacf *= dt/ttrans return tacf,cacf ##################################################################### def compute_moments(c): """ compute the coil moments""" n = len(c) cav = np.average(c) cav_std = np.std(c)/np.sqrt(n) csq = np.average(c**2) csq_std = np.std(c**2)/np.sqrt(n) curt = stats.kurtosis(c, fisher = False) # compute mirrored statistics cm = -np.copy(c) cboth = np.append(c,cm) curt2 = stats.kurtosis(cboth, fisher = False) return cav, cav_std, csq, csq_std,curt,curt2 ##################################################################### def compute_thalf(tacf,cacf): """ check where the autocorrelation function drops below 0.5""" n = len(tacf) thalf = -1 for i in range(n): if cacf[i] < 0.5: thalf = tacf[i] break plt.plot(tacf, cacf) plt.savefig('coilicity_acf.png') plt.close() return thalf ##################################################################### def main(): """ main function""" # read in the coilicity t,c = read_coilicity() # read in the time autocorrelation function tacf, cacf = read_cacf() # compute the moments and standard deviations cav, cav_std, csq, csq_std,curt,curt2 = compute_moments(c) # compute the moments for only the second part of the array n = len(c) cavh, cav_stdh, csqh, csq_stdh, curth, curt2h = compute_moments(c[n/2:]) # compute the time where the acf drops below 0.5 thalf = compute_thalf(tacf,cacf) # write results to file ofile = open('coil_phase.data', 'w') ofile.write('Information required to identify coil phase\n\n') ofile.write('cav\tcav_std\tcsq\tcsq_std\tthalf\tcurt\tcurt2\n') ofile.write(str(cav) + '\t' + str(cav_std) + '\t' + str(csq) + '\t' + str(csq_std) + '\t' + str(thalf) + '\t' + str(curt) + '\t' + str(curt2) + '\n') ofile.close() ofile = open('coil_phaseh.data', 'w') ofile.write('Information required to identify coil phase\n\n') ofile.write('cav\tcav_std\tcsq\tcsq_std\tthalf\tcurt\tcurt2\n') ofile.write(str(cavh) + '\t' + str(cav_stdh) + '\t' + str(csqh) + '\t' + str(csq_stdh) + '\t' + str(thalf) + '\t' + str(curth) + '\t' + str(curt2h) + '\n') ofile.close() return ##################################################################### if __name__ == '__main__': main()
d9a39023ff5913ca3b3d1a074f52ca0bb921f5aa
22bb398d1d9af678e25ccf39350f90f109c74256
/tests/test_utils/output/ifabsents.py
03eb882c4e349ece90efcb33534eaf4c040188a6
[ "CC0-1.0" ]
permissive
rajshruti18/biolinkml
45a0848512e00d0ce66ad17684f26909a3ad3953
451e71c9d3fd11aa3b08c6a713d9ab8b127ece77
refs/heads/master
2023-03-14T05:57:22.399803
2020-08-11T15:42:49
2020-08-11T15:42:49
287,549,421
0
0
CC0-1.0
2020-08-14T14:16:53
2020-08-14T14:16:52
null
UTF-8
Python
false
false
7,050
py
# Auto generated from ifabsents.yaml by pythongen.py version: 0.4.0 # Generation date: 2020-08-04 09:40 # Schema: ifabsent # # id: http://example.org/tests/ifabsent # description: # license: https://creativecommons.org/publicdomain/zero/1.0/ import dataclasses import sys from typing import Optional, List, Union, Dict, ClassVar, Any from dataclasses import dataclass from biolinkml.utils.slot import Slot from biolinkml.utils.metamodelcore import empty_list, empty_dict, bnode from biolinkml.utils.yamlutils import YAMLRoot, extended_str, extended_float, extended_int if sys.version_info < (3, 7, 6): from biolinkml.utils.dataclass_extensions_375 import dataclasses_init_fn_with_kwargs else: from biolinkml.utils.dataclass_extensions_376 import dataclasses_init_fn_with_kwargs from biolinkml.utils.formatutils import camelcase, underscore, sfx from rdflib import Namespace, URIRef from biolinkml.utils.curienamespace import CurieNamespace from biolinkml.utils.metamodelcore import Bool, ElementIdentifier, NCName, NodeIdentifier, URI, URIorCURIE, XSDDate, XSDDateTime, XSDTime metamodel_version = "1.5.3" # Overwrite dataclasses _init_fn to add **kwargs in __init__ dataclasses._init_fn = dataclasses_init_fn_with_kwargs # Namespaces SHEX = CurieNamespace('shex', 'http://www.w3.org/ns/shex#') SKOS = CurieNamespace('skos', 'http://www.w3.org/2004/02/skos/core#') TEST = CurieNamespace('test', 'http://example.org/test/') XSD = CurieNamespace('xsd', 'http://www.w3.org/2001/XMLSchema#') DEFAULT_ = TEST # Types class String(str): """ A character string """ type_class_uri = XSD.string type_class_curie = "xsd:string" type_name = "string" type_model_uri = TEST.String class Integer(int): """ An integer """ type_class_uri = XSD.integer type_class_curie = "xsd:integer" type_name = "integer" type_model_uri = TEST.Integer class Boolean(Bool): """ A binary (true or false) value """ type_class_uri = XSD.boolean type_class_curie = "xsd:boolean" type_name = "boolean" type_model_uri = TEST.Boolean class Float(float): """ A real number that conforms to the xsd:float specification """ type_class_uri = XSD.float type_class_curie = "xsd:float" type_name = "float" type_model_uri = TEST.Float class Double(float): """ A real number that conforms to the xsd:double specification """ type_class_uri = XSD.double type_class_curie = "xsd:double" type_name = "double" type_model_uri = TEST.Double class Time(XSDTime): """ A time object represents a (local) time of day, independent of any particular day """ type_class_uri = XSD.dateTime type_class_curie = "xsd:dateTime" type_name = "time" type_model_uri = TEST.Time class Date(XSDDate): """ a date (year, month and day) in an idealized calendar """ type_class_uri = XSD.date type_class_curie = "xsd:date" type_name = "date" type_model_uri = TEST.Date class Datetime(XSDDateTime): """ The combination of a date and time """ type_class_uri = XSD.dateTime type_class_curie = "xsd:dateTime" type_name = "datetime" type_model_uri = TEST.Datetime class Uriorcurie(URIorCURIE): """ a URI or a CURIE """ type_class_uri = XSD.anyURI type_class_curie = "xsd:anyURI" type_name = "uriorcurie" type_model_uri = TEST.Uriorcurie class Uri(URI): """ a complete URI """ type_class_uri = XSD.anyURI type_class_curie = "xsd:anyURI" type_name = "uri" type_model_uri = TEST.Uri class Ncname(NCName): """ Prefix part of CURIE """ type_class_uri = XSD.string type_class_curie = "xsd:string" type_name = "ncname" type_model_uri = TEST.Ncname class Objectidentifier(ElementIdentifier): """ A URI or CURIE that represents an object in the model. """ type_class_uri = SHEX.iri type_class_curie = "shex:iri" type_name = "objectidentifier" type_model_uri = TEST.Objectidentifier class Nodeidentifier(NodeIdentifier): """ A URI, CURIE or BNODE that represents a node in a model. """ type_class_uri = SHEX.nonLiteral type_class_curie = "shex:nonLiteral" type_name = "nodeidentifier" type_model_uri = TEST.Nodeidentifier # Class references @dataclass class C1(YAMLRoot): _inherited_slots: ClassVar[List[str]] = [] class_class_uri: ClassVar[URIRef] = TEST.C1 class_class_curie: ClassVar[str] = "test:C1" class_name: ClassVar[str] = "c1" class_model_uri: ClassVar[URIRef] = TEST.C1 s1: Optional[str] = True s1p: Optional[str] = True s2: Optional[str] = False s2p: Optional[str] = False slot_uri: Optional[str] = None slot_curie: Optional[str] = None class_uri: Optional[str] = None class_curie: Optional[str] = None bnode: Optional[str] = bnode() txt: Optional[str] = "penguins\"doves" int: Optional[str] = -1403 dfltrange: Optional[str] = None dfltns: Optional[str] = None # Slots class slots: pass slots.s1 = Slot(uri=TEST.s1, name="s1", curie=TEST.curie('s1'), model_uri=TEST.s1, domain=None, range=Optional[str]) slots.s1p = Slot(uri=TEST.s1p, name="s1p", curie=TEST.curie('s1p'), model_uri=TEST.s1p, domain=None, range=Optional[str]) slots.s2 = Slot(uri=TEST.s2, name="s2", curie=TEST.curie('s2'), model_uri=TEST.s2, domain=None, range=Optional[str]) slots.s2p = Slot(uri=TEST.s2p, name="s2p", curie=TEST.curie('s2p'), model_uri=TEST.s2p, domain=None, range=Optional[str]) slots.slot_uri = Slot(uri=TEST.slot_uri, name="slot_uri", curie=TEST.curie('slot_uri'), model_uri=TEST.slot_uri, domain=None, range=Optional[str]) slots.slot_curie = Slot(uri=TEST.slot_curie, name="slot_curie", curie=TEST.curie('slot_curie'), model_uri=TEST.slot_curie, domain=None, range=Optional[str]) slots.class_uri = Slot(uri=TEST.class_uri, name="class_uri", curie=TEST.curie('class_uri'), model_uri=TEST.class_uri, domain=None, range=Optional[str]) slots.class_curie = Slot(uri=TEST.class_curie, name="class_curie", curie=TEST.curie('class_curie'), model_uri=TEST.class_curie, domain=None, range=Optional[str]) slots.bnode = Slot(uri=TEST.bnode, name="bnode", curie=TEST.curie('bnode'), model_uri=TEST.bnode, domain=None, range=Optional[str]) slots.txt = Slot(uri=TEST.txt, name="txt", curie=TEST.curie('txt'), model_uri=TEST.txt, domain=None, range=Optional[str]) slots.int = Slot(uri=TEST.int, name="int", curie=TEST.curie('int'), model_uri=TEST.int, domain=None, range=Optional[str]) slots.dfltrange = Slot(uri=TEST.dfltrange, name="dfltrange", curie=TEST.curie('dfltrange'), model_uri=TEST.dfltrange, domain=None, range=Optional[str]) slots.dfltns = Slot(uri=TEST.dfltns, name="dfltns", curie=TEST.curie('dfltns'), model_uri=TEST.dfltns, domain=None, range=Optional[str])
f4145e6b8b24944fa2ee4b82009ad6b9a3c1facb
ec0b8bfe19b03e9c3bb13d9cfa9bd328fb9ca3f1
/res/packages/scripts/scripts/client/account_helpers/settings_core/SettingsCache.py
c8feafae4411fe1391ea440ca86c25272b1f67dd
[]
no_license
webiumsk/WOT-0.9.20.0
de3d7441c5d442f085c47a89fa58a83f1cd783f2
811cb4e1bca271372a1d837a268b6e0e915368bc
refs/heads/master
2021-01-20T22:11:45.505844
2017-08-29T20:11:38
2017-08-29T20:11:38
101,803,045
0
1
null
null
null
null
WINDOWS-1250
Python
false
false
2,564
py
# 2017.08.29 21:43:24 Střední Evropa (letní čas) # Embedded file name: scripts/client/account_helpers/settings_core/SettingsCache.py from Event import Event from adisp import async from gui.ClientUpdateManager import g_clientUpdateManager from gui.shared.utils.requesters.IntSettingsRequester import IntSettingsRequester from account_helpers.settings_core.settings_constants import VERSION from skeletons.account_helpers.settings_core import ISettingsCache class SettingsCache(ISettingsCache): def __init__(self): self.__intSettings = IntSettingsRequester() self.__waitForSync = False self.onSyncStarted = Event() self.onSyncCompleted = Event() def init(self): g_clientUpdateManager.addCallbacks({'intUserSettings': self._onResync}) def fini(self): self.onSyncStarted.clear() self.onSyncCompleted.clear() g_clientUpdateManager.removeObjectCallbacks(self) @property def waitForSync(self): return self.__waitForSync @property def settings(self): return self.__intSettings def _onResync(self, *args): self.__invalidateData() @async def update(self, callback = None): self.__invalidateData(callback) def getSectionSettings(self, section, defaultValue = 0): return self.__intSettings.getSetting(section, defaultValue) def setSectionSettings(self, section, value): self.__intSettings.setSetting(section, value) def setSettings(self, settings): self.__intSettings.setSettings(settings) def getSetting(self, key, defaultValue = 0): return self.__intSettings.getSetting(key, defaultValue) def getVersion(self, defaultValue = 0): return self.__intSettings.getSetting(VERSION, defaultValue) def setVersion(self, value): self.__intSettings.setSetting(VERSION, value) def __invalidateData(self, callback = lambda *args: None): def cbWrapper(*args): self.__waitForSync = False self.onSyncCompleted() callback(*args) self.__waitForSync = True self.onSyncStarted() import BattleReplay if BattleReplay.g_replayCtrl.isPlaying: cbWrapper(dict()) return self.__intSettings.request()(cbWrapper) # okay decompyling c:\Users\PC\wotmods\files\originals\res\packages\scripts\scripts\client\account_helpers\settings_core\SettingsCache.pyc # decompiled 1 files: 1 okay, 0 failed, 0 verify failed # 2017.08.29 21:43:24 Střední Evropa (letní čas)
a008c9830e1db80a44abf7e5e9088150db092ed9
24a9bbc1c8000f080958570c513d1d249c3514fd
/models/resnet_50.py
898b31c4c982d6933630de58afae99afeb9cad85
[]
no_license
CoderHHX/DGRL_OPFE
e74640693152ce4256dc54d3c0e4703fd6fcef4d
40d2f1a87714d7924e0931f8f7da6487acd1634d
refs/heads/master
2020-09-17T09:22:34.589899
2018-09-29T14:54:53
2018-09-29T14:54:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,672
py
import torch.nn as nn import math import torch.utils.model_zoo as model_zoo import torch.nn.functional as F import torch import numpy as np __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152'] model_urls = { 'resnet50': '/home/zhengxiawu/.torch/models/resnet50-19c8e357.pth', } # model_urls = { # 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', # 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', # 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', # 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', # 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', # } def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, block, layers, **kwargs): self.inplanes = 64 super(ResNet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=False) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.avg_pool = nn.AvgPool2d(7, stride=1) self.global_avg_pool = nn.AdaptiveAvgPool2d((1, 1)) self.global_max_pool = nn.AdaptiveMaxPool2d((1, 1)) self.class_fc = nn.Linear(512 * block.expansion * 2, kwargs['num_class']) #normalze the weight with self.is_train = bool(kwargs['is_train']) self.saliency = str(kwargs['saliency']) self.pool_type = str(kwargs['pool_type']) self.scale = int(kwargs['scale']) self.threshold = float(kwargs['threshold']) if kwargs.has_key('threshold') else 'none' self.phase = str(kwargs['phase']) if kwargs.has_key('phase') else 'none' for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def extract_conv_feature(self,x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) return x def forward(self, x): #**kwargs form #pool_type:default max_avg, can be set max, avg #scale: int default 128 #scda:True or false, if use saliency #is_train x = self.extract_conv_feature(x) if self.saliency=='scda': scda_x = torch.sum(x,1,keepdim=True) mean_x = torch.mean(scda_x.view(scda_x.size(0),-1),1,True) scda_x = scda_x - mean_x scda_x = scda_x>0 scda_x = scda_x.float() x = x * scda_x elif self.saliency == 'oc_mask': object_tive_ness = torch.sum(x,1,keepdim=True) max_object_score = 2* torch.mean(object_tive_ness.view(object_tive_ness.size(0),-1),1,True) object_tive_ness = object_tive_ness / max_object_score _,_, size_w, size_h = object_tive_ness.shape prior_feature = np.indices((size_w,size_h)) prior_feature = prior_feature + 1 prior_feature = np.transpose(prior_feature, axes=(1, 2, 0)) prior_feature = prior_feature - (np.array((size_w,size_h)) / 2.) sigma = size_h if size_h < size_w else size_w sigma = sigma / 3. prior_feature = np.exp(-1 * np.sum(prior_feature ** 2, axis=2) / (2 * (sigma ** 2))) prior_feature = np.reshape(prior_feature,(1,1,size_w,size_h)) prior_feature_tensor = torch.Tensor(prior_feature).cuda() indicate_mat = object_tive_ness + prior_feature_tensor> self.threshold indicate_mat = indicate_mat.float() x = x * indicate_mat if self.phase == 'extract_conv_feature': return x if self.pool_type == 'max_avg': avg_x = self.global_avg_pool(x) avg_x = avg_x.view(avg_x.size(0), -1) avg_x = F.normalize(avg_x,p=2,dim=1) max_x = self.global_max_pool(x) max_x = max_x.view(max_x.size(0), -1) max_x = F.normalize(max_x,p=2,dim=1) x = torch.cat((avg_x,max_x),dim=1) x = x * self.scale # the last fc layer can be treat as distance compute if self.is_train: fc_weight_relu = self.relu(self.class_fc.weight) self.class_fc.weight.data = fc_weight_relu x = self.class_fc(x) return x,fc_weight_relu return x def resnet_50(pretrained=False,**kwargs): """Constructs a ResNet-50 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs) if pretrained: pretrained_dict = torch.load(model_urls['resnet50']) model_dict = model.state_dict() pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict} model_dict.update(pretrained_dict) model.load_state_dict(model_dict) # if pretrained: # model.load_state_dict(model_zoo.load_url(model_urls['resnet50'])) return model
647e11cca2a8aa827a45288dc54739ade950f14d
f889bc01147869459c0a516382e7b95221295a7b
/swagger_client/models/customer_data_group_extension_interface.py
3806a3f11578732561fab75c8a5c20d9992130f3
[]
no_license
wildatheart/magento2-api-client
249a86f5c0289743f8df5b0324ccabd76f326512
e6a707f85b37c6c3e4ef3ff78507a7deb8f71427
refs/heads/master
2021-07-14T16:01:17.644472
2017-10-18T13:33:08
2017-10-18T13:33:08
107,412,121
1
1
null
null
null
null
UTF-8
Python
false
false
2,453
py
# coding: utf-8 """ Magento Community No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: 2.2 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class CustomerDataGroupExtensionInterface(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { } attribute_map = { } def __init__(self): """ CustomerDataGroupExtensionInterface - a model defined in Swagger """ def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, CustomerDataGroupExtensionInterface): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
56775bad4d09bedb696e213784acf2be07894eb5
ed5961c9a3ae027a37913047bd149296955a7497
/metrics/Evaluator.py
2a9a61abc94289acdd8c4ee1653a21000c630eb5
[ "MIT", "BSD-3-Clause", "LGPL-2.1-or-later", "GPL-3.0-only", "Apache-2.0" ]
permissive
microsoft/NeuronBlocks
c3de6b1afc431521e70c04ce82b54e7a3292f3aa
47e03e09589e86d16c609511bf875bd3e3ff3a3e
refs/heads/master
2023-08-30T08:51:20.228137
2022-11-28T19:10:10
2022-11-28T19:10:10
181,388,576
1,308
195
MIT
2023-07-22T03:07:56
2019-04-15T01:01:24
Python
UTF-8
Python
false
false
13,651
py
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT license. from sklearn import metrics from sklearn.metrics import mean_squared_error from .conlleval import countChunks, evaluate, to_conll_format from .slot_tagging_metrics import get_ner_BIOES, get_ner_BIO from settings import TaggingSchemes import numpy as np import re import string from collections import Counter class Evaluator(object): def __init__(self, metrics, pos_label=1, first_metric=None, tagging_scheme=None, label_indices=None): """ Args: metrics: pos_label: the positive label for auc metric first_metric: tagging_scheme: label_indices: label to index dictionary, for auc@average or auc@some_type metric """ self.__metrics = metrics self.__pos_label = pos_label if first_metric is None: self.__first_metric = metrics[0] else: self.__first_metric = first_metric self.__tagging_scheme = tagging_scheme self.__label_indices = label_indices self.has_auc_type_specific = False # if True, the recorder needs to record the pred score of all types supported_metrics = self.get_supported_metrics() for metric in metrics: if not metric in supported_metrics: if metric.find('@') != -1: field, target = metric.split('@') if field != 'auc' or (self.__label_indices and (not target in self.__label_indices) and target != 'average'): raise Exception("The metric %s is not supported. Supported metrics are: %s" % (metric, supported_metrics)) else: self.has_auc_type_specific = True def evaluate(self, y_true, y_pred, y_pred_pos_score=None, y_pred_scores_all=None, formatting=False): """ evalution Args: y_true: y_pred: y_pred_pos_score: formatting: Returns: """ result = dict() for metric in self.__metrics: if metric == 'auc': result[metric] = getattr(self, metric)(y_true, y_pred_pos_score) elif metric.startswith('auc@'): field, target = metric.split('@') if target == 'average': results = [] for i in range(len(y_pred_scores_all[0])): results.append(self.auc(y_true, np.array(y_pred_scores_all)[:, i])) result[metric] = np.mean(results) else: result[metric] = self.auc(y_true, np.array(y_pred_scores_all)[:, self.__label_indices[target]]) else: result[metric] = getattr(self, metric)(y_true, y_pred) self.__last_result = result if formatting is True: ret = self.format_result(result) else: ret = result return ret def compare(self, current_result, previous_result, metric=None): """ Args: current_result: previous_result: metric: Returns: current better than previous: 1 current worse than previous: -1 current equal to previous: 0 """ if previous_result is None: return 1 if metric is None: metric = self.__first_metric # by default, metrics are the bigger, the better small_better_metrics = set(['MSE', 'RMSE']) if not metric in small_better_metrics: if current_result > previous_result: return 1 elif current_result < previous_result: return -1 else: return 0 else: if current_result > previous_result: return -1 elif current_result < previous_result: return 1 else: return 0 def get_first_metric_result(self): return self.__last_result[self.__first_metric] def get_supported_metrics(self): except_methods = ["evaluate", "format_result", "get_supported_metrics", "get_first_metric_result", "normalize_answer"] supported_metrics = [] for name in dir(self): if callable(getattr(self, name)) and name.startswith("_") is False and not name in except_methods: supported_metrics.append(name) return supported_metrics def format_result(self, result): return "; ".join(["%s: %.6f" % (metric, result[metric]) for metric in self.__metrics]) def auc(self, y_true, y_pred_pos_score): assert y_pred_pos_score is not None, "Prediction confidence of positive label should not be None for auc metric!" fpr, tpr, thresholds = metrics.roc_curve(y_true, y_pred_pos_score, pos_label=self.__pos_label) return metrics.auc(fpr, tpr) def accuracy(self, y_true, y_pred): return metrics.accuracy_score(y_true, y_pred) def seq_tag_f1(self, y_ture, y_pred): ''' :param y_ture: :param y_pred: :return: ''' assert self.__tagging_scheme is not None, "Please define tagging scheme!" sent_num = len(y_pred) golden_full = [] predict_full = [] right_full = [] for idx in range(0, sent_num): golden_list = y_ture[idx] predict_list = y_pred[idx] if self.__tagging_scheme == "BMES" or self.__tagging_scheme == "BIOES": gold_matrix = get_ner_BIOES(golden_list) pred_matrix = get_ner_BIOES(predict_list) elif self.__tagging_scheme == "BIO": gold_matrix = get_ner_BIO(golden_list) pred_matrix = get_ner_BIO(predict_list) else: # raise Exception("DETECT UNKNOWN TAGGING SCHEMES! YOU CAN USE OUR SCRIPT TO CONVERT TAG SCHEME!") raise Exception("DETECT UNKNOWN TAGGING SCHEMES!") right_ner = list(set(gold_matrix).intersection(set(pred_matrix))) golden_full += gold_matrix predict_full += pred_matrix right_full += right_ner right_num = len(right_full) golden_num = len(golden_full) predict_num = len(predict_full) if predict_num == 0: precision = -1 else: precision = (right_num + 0.0) / predict_num if golden_num == 0: recall = -1 else: recall = (right_num + 0.0) / golden_num if (precision == -1) or (recall == -1) or (precision + recall) <= 0.: f_measure = -1 else: f_measure = 2 * precision * recall / (precision + recall) return f_measure def seq_tag_accuracy(self, y_ture, y_pred): ''' :param y_ture: :param y_pred: :return: ''' sent_num = len(y_pred) right_tag = 0 all_tag = 0 for idx in range(0, sent_num): golden_list = y_ture[idx] predict_list = y_pred[idx] for idy in range(len(golden_list)): if golden_list[idy] == predict_list[idy]: right_tag += 1 all_tag += len(golden_list) accuracy = (right_tag + 0.0) / all_tag return accuracy def macro_f1(self, y_true, y_pred): """ For classification task, calculate f1-score for each label, and find their unweighted mean. This does not take label imbalance into account. Args: y_true: y_pred: Returns: """ return metrics.f1_score(y_true, y_pred, average='macro') def macro_precision(self, y_true, y_pred): """ Calculate precision for each label, and find their unweighted mean. This does not take label imbalance into account. Args: y_true: y_pred: Returns: """ return metrics.precision_score(y_true, y_pred, average='macro') def macro_recall(self, y_true, y_pred): """ Calculate recall for each label, and find their unweighted mean. This does not take label imbalance into account. Args: y_true: y_pred: Returns: """ return metrics.recall_score(y_true, y_pred, average='macro') def micro_f1(self, y_true, y_pred): """ For classification task, calculate f1-score globally by counting the total true positives, false negatives and false positives. Args: y_true: y_pred: Returns: """ return metrics.f1_score(y_true, y_pred, average='micro') def f1(self, y_true, y_pred): """ For classification task, calculate f1-score Only report results for the class specified by pos_label. This is applicable only if targets (y_{true,pred}) are binary.. Args: y_true: y_pred: Returns: """ return metrics.f1_score(y_true, y_pred) def micro_precision(self, y_true, y_pred): """ Calculate precision globally by counting the total true positives, false negatives and false positives. Args: y_true: y_pred: Returns: """ return metrics.precision_score(y_true, y_pred, average='micro') def micro_recall(self, y_true, y_pred): """ Calculate recall globally by counting the total true positives, false negatives and false positives. Args: y_true: y_pred: Returns: """ return metrics.recall_score(y_true, y_pred, average='micro') def weighted_f1(self, y_true, y_pred): """ Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). This alters ‘macro’ to account for label imbalance; it can result in an F-score that is not between precision and recall. Args: y_true: y_pred: Returns: """ return metrics.f1_score(y_true, y_pred, average='weighted') def weighted_precision(self, y_true, y_pred): """ Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). This alters ‘macro’ to account for label imbalance; it can result in an F-score that is not between precision and recall. Args: y_true: y_pred: Returns: """ return metrics.precision_score(y_true, y_pred, average='weighted') def weighted_recall(self, y_true, y_pred): """ Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). This alters ‘macro’ to account for label imbalance; it can result in an F-score that is not between precision and recall. Args: y_true: y_pred: Returns: """ return metrics.recall_score(y_true, y_pred, average='weighted') def MSE(self, y_true, y_pred): """ mean square error Args: y_true: true score y_pred: predict score Returns: """ return mean_squared_error(y_true, y_pred) def RMSE(self, y_true, y_pred): """ root mean square error Args: y_true: true score y_pred: predict score Returns: """ return np.sqrt(mean_squared_error(y_true, y_pred)) def normalize_answer(self, s): """Lower text and remove punctuation, articles and extra whitespace.""" def remove_articles(text): return re.sub(r'\b(a|an|the)\b', ' ', text) def white_space_fix(text): return ' '.join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return ''.join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s)))) def mrc_f1(self, y_true, y_pred): ''' compute mrc task metric F1 :param y_true: type list. ground thruth answer text :param y_pred: type list. length is same as y_true, model output answer text. :return: mrc task F1 score ''' f1 = total = 0 for single_true, single_pred in zip(y_true, y_pred): total += 1 prediction_tokens = self.normalize_answer(single_pred).split() ground_truth_tokens = self.normalize_answer(single_true).split() common = Counter(prediction_tokens) & Counter(ground_truth_tokens) num_same = sum(common.values()) if num_same == 0: continue precision = 1.0 * num_same / len(prediction_tokens) recall = 1.0 * num_same / len(ground_truth_tokens) f1 += (2*precision*recall) / (precision+recall) return 100.0 * f1 / total def mrc_em(self, y_true, y_pred): ''' compute mrc task metric EM :param y_true: :param y_pred: :return: mrc task EM score ''' em = total = 0 for single_true, single_pred in zip(y_true, y_pred): total += 1 em += (self.normalize_answer(single_true) == self.normalize_answer(single_pred)) return 100.0 * em / total if __name__ == '__main__': evaluator = Evaluator(['auc', 'accuracy']) print(evaluator.get_supported_metrics())
21daa653eb1721f4470a8e23b1c4e3f4ac9d37c7
1b86187256acfeca198c6683324a6ba37acc378c
/scripts/telocate/telocate_run.py
5e4b9df1e139b29933a09e26718f2cfeef85f5ff
[ "BSD-2-Clause" ]
permissive
paa49/mcclintock
6359e5942913a98290dcfdd6e643f18de0eb0a61
10fc9c563911659f34656d06091e8b240c422490
refs/heads/master
2022-11-16T06:18:32.217877
2020-07-10T17:02:02
2020-07-10T17:02:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,527
py
import os import sys import subprocess sys.path.append(snakemake.config['args']['mcc_path']) import scripts.mccutils as mccutils import config.telocate.telocate_run as config def main(): te_gff = snakemake.input.te_gff sam = snakemake.input.sam ref_fasta = snakemake.input.ref median_insert_size_file = snakemake.input.median_insert_size log = snakemake.params.log mccutils.log("te-locate","running TE-Locate", log=log) with open(log,"a") as l: l.write("TE GFF: "+te_gff+"\n") l.write("SAM: "+sam+"\n") l.write("reference fasta: "+ref_fasta+"\n") telocate = snakemake.params.run_script out_dir = snakemake.params.out_dir sam_dir = out_dir+"/sam/" mccutils.mkdir(sam_dir) te_locate_sam = sam_dir+"te-locate.sam" if os.path.exists(te_locate_sam): os.remove(te_locate_sam) os.symlink(sam, te_locate_sam) os.chdir(os.path.dirname(telocate)) median_insert_size = mccutils.get_median_insert_size(median_insert_size_file) distance = (median_insert_size * config.MIN_DISTANCE) command = ["perl", telocate, str(config.MAX_MEM), sam_dir, te_gff, ref_fasta, out_dir, str(distance), str(config.MIN_SUPPORT_READS), str(config.MIN_SUPPORT_INDIVIDUALS)] mccutils.run_command(command, log=log) mccutils.run_command(["cp", out_dir+"_"+str(distance)+"_reads3_acc1.info", out_dir+"te-locate-raw.info"]) mccutils.log("te-locate", "TE-Locate complete") if __name__ == "__main__": main()
11826ecb99f3fd727a22ab7dbcd2f75000e497b0
9b54e3d58447e917a238b85891020c392c4ac601
/acmicpc/15921/15921.py
2ab1ca2cb457c55845667d86a94d84560f016d91
[ "MIT" ]
permissive
love-adela/algorithm-ps
ea0ebcd641a4c309348b389b8618daa83973f4b2
c92d105d8ad344def001160367115ecf99d81c0d
refs/heads/master
2023-05-11T03:37:11.750692
2023-04-30T17:31:30
2023-04-30T17:31:30
174,651,672
0
0
null
null
null
null
UTF-8
Python
false
false
188
py
# 연습기록들의 평균값 / 연습 기록들 중 하나를 균일한 확률로 뽑을 때의 기댓값 n = int(input()) if n == 0: print('divide by zero') else: print('1.00')
97526d54617bd8d4a7ba932dd17601495af62fa6
b1b77bb1ed47586f96d8f2554a65bcbd0c7162cc
/SPOTIFY/crtauth/crtauth/msgpack_protocol.py
cc458fe3d3c4303eb316a3f064fa1e41a1a39e25
[ "Apache-2.0" ]
permissive
DanHefrman/stuff
b3624d7089909972ee806211666374a261c02d08
b98a5c80cfe7041d8908dcfd4230cf065c17f3f6
refs/heads/master
2023-07-10T09:47:04.780112
2021-08-13T09:55:17
2021-08-13T09:55:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,988
py
# Copyright (c) 2014-2017 Spotify AB # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import hashlib import hmac import io import msgpack from crtauth import exceptions from crtauth.constant_time_compare import constant_time_compare PROTOCOL_VERSION = 1 HMAC_HASH_ALGORITHM = hashlib.sha256 HMAC_SIZE = HMAC_HASH_ALGORITHM().digest_size class TypeInfo(object): """ TypeInfo instances contains extra information about the type of a field """ def __init__(self, data_type, size=None, binary=False): self._data_type = data_type self._size = size self._packer = msgpack.Packer(use_bin_type=binary) def validate(self, data, name): if not isinstance(data, self._data_type): raise ValueError("Value for field %s should have been of %s" % (name, self._data_type)) def pack(self, value, stream): stream.write(self._packer.pack(value)) class MessageBase(object): """ Base class with common functionality for Message and AuthenticatedMessage """ __fields__ = None __magic__ = None def __init__(self, **kw): if len(kw) != len(self.__fields__): raise RuntimeError("Wrong number of constructor parameters, " "expected %d got %d", len(self.__fields__), len(kw)) for key, _ in self.__fields__: val = kw.get(key, None) if val is None: raise RuntimeError( "Missing required argument '%s'" % key) setattr(self, key, val) def _do_serialize(self): if self.__magic__ is None or self.__fields__ is None: raise RuntimeError( "Serialization can only be performed on classes implementing " "__fields__ and __magic__") buf = io.BytesIO() msgpack.pack(PROTOCOL_VERSION, buf) msgpack.pack(self.__magic__, buf) for name, type_info in self.__fields__: value = getattr(self, name) type_info.validate(value, name) type_info.pack(value, buf) return buf @classmethod def _do_deserialize(cls, serialized): stream = io.BytesIO(serialized) unpacker = msgpack.Unpacker(stream) version = unpacker.unpack() if version != PROTOCOL_VERSION: raise exceptions.ProtocolError( "Wrong version, expected %d got %d" % (PROTOCOL_VERSION, version)) magic = unpacker.unpack() if magic != cls.__magic__: raise exceptions.ProtocolError( "Wrong magic, expected %d got %d" % (cls.__magic__, magic)) kw = dict() for name, type_info in cls.__fields__: kw[name] = unpacker.unpack() return cls(**kw), unpacker @classmethod def deserialize(cls, serialized): return cls._do_deserialize(serialized)[0] class Message(MessageBase): """ Base class for messages not authenticated with a HMAC code """ def serialize(self): return self._do_serialize().getvalue() class AuthenticatedMessage(MessageBase): """ Base class for messages authenticated with a HMAC code """ def serialize(self, hmac_secret): """ Serialises this instance into the serialization format and appends a SHA256 HMAC at the end computed using the provided hmac_secret """ buf = self._do_serialize() offset = buf.tell() buf.seek(0) mac = hmac.new(hmac_secret, buf.read(), HMAC_HASH_ALGORITHM) buf.seek(offset) buf.write(msgpack.Packer(use_bin_type=True).pack(mac.digest())) return buf.getvalue() @classmethod def deserialize_authenticated(cls, serialized, hmac_secret): """ Deserialises instances of this class, validating the HMAC appended at the end using the provided hmac_secret """ instance, unpacker = cls._do_deserialize(serialized) # the extra 2 bytes taken off is the serialization overhead of byte # strings shorter than 256 bytes. calculated_mac = hmac.new(hmac_secret, serialized[:-HMAC_SIZE-2], HMAC_HASH_ALGORITHM).digest() stored_mac = unpacker.unpack() if not constant_time_compare(calculated_mac, stored_mac): # TODO better exception, perhaps? raise exceptions.BadResponse("Invalid authentication code") return instance class Challenge(AuthenticatedMessage): """ A challenge. """ __magic__ = ord('c') __fields__ = ( ("unique_data", TypeInfo(str, 20, binary=True)), ("valid_from", TypeInfo(int)), ("valid_to", TypeInfo(int)), ("fingerprint", TypeInfo(str, 6, binary=True)), ("server_name", TypeInfo(str)), ("username", TypeInfo(str)) ) class Response(Message): """ A response (a copy of the challenge plus a signature) """ __magic__ = ord('r') __fields__ = ( ("challenge", TypeInfo(str, binary=True)), ("signature", TypeInfo(str, binary=True)), ) class Token(AuthenticatedMessage): """ Represents a token used to authenticate the user """ __magic__ = ord("t") __fields__ = ( ("valid_from", TypeInfo(int)), ("valid_to", TypeInfo(int)), ("username", TypeInfo(str)) )
005031d4c1b14983cc629f1a19fc91dbd91a81a9
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02725/s568490525.py
2affcb786486d1c8e87015b5691b632584056eb6
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
146
py
K,N=map(int,input().split()) A=list(map(int,input().split())) B=[0]*N for i in range(N-1): B[i]=A[i+1]-A[i] B[N-1]=K-A[N-1]+A[0] print(K-max(B))
1cbaa703c33b556e2bd7081dd2bb80906cb5e97f
55540f3e86f1d5d86ef6b5d295a63518e274efe3
/toolchain/riscv/MSYS/python/Tools/scripts/pyvenv.py
f84f4c78c804cdf82c673b71cf914dfb40eba39c
[ "Apache-2.0", "bzip2-1.0.6", "LicenseRef-scancode-proprietary-license", "OpenSSL", "Python-2.0", "LicenseRef-scancode-newlib-historical", "TCL", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
bouffalolab/bl_iot_sdk
bc5eaf036b70f8c65dd389439062b169f8d09daa
b90664de0bd4c1897a9f1f5d9e360a9631d38b34
refs/heads/master
2023-08-31T03:38:03.369853
2023-08-16T08:50:33
2023-08-18T09:13:27
307,347,250
244
101
Apache-2.0
2023-08-28T06:29:02
2020-10-26T11:16:30
C
UTF-8
Python
false
false
454
py
#!/usr/bin/env python3 if __name__ == '__main__': import sys import pathlib executable = pathlib.Path(sys.executable or 'python3').name print('WARNING: the pyenv script is deprecated in favour of ' f'`{executable} -m venv`', file=sys.stderr) rc = 1 try: import venv venv.main() rc = 0 except Exception as e: print('Error: %s' % e, file=sys.stderr) sys.exit(rc)
165628f55fbde0ee362db96cde96f48396556eb5
fae2430e2e7717704f9c454f75ec1cd17e0831a9
/tf_quant_finance/math/integration/integration_test.py
803aa92c54cf378a36efe302e9b332d8ccac46f8
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference", "BSD-3-Clause", "LicenseRef-scancode-generic-cla" ]
permissive
gsamarakoon/tf-quant-finance
ae00f12ab5f8bbf85c515a53379db234bd619802
7873ea202ec50059014836b950881239e7d154fa
refs/heads/master
2020-09-06T06:42:49.670227
2019-11-07T16:20:44
2019-11-07T16:21:10
220,354,269
1
0
Apache-2.0
2019-11-08T00:28:13
2019-11-08T00:28:12
null
UTF-8
Python
false
false
6,555
py
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python2, python3 """Tests for numeric integration methods.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import numpy as np from scipy import special import tensorflow as tf import tf_quant_finance as tff tff_int = tff.math.integration IntegrationTestCase = collections.namedtuple('IntegrationTestCase', [ 'func', 'lower', 'upper', 'antiderivative', ]) # pylint:disable=g-long-lambda BASIC_TEST_CASES = [ IntegrationTestCase( func=lambda x: tf.exp(2 * x + 1), lower=1.0, upper=3.0, antiderivative=lambda x: np.exp(2 * x + 1) / 2, ), IntegrationTestCase( func=lambda x: x**5, lower=-10.0, upper=100.0, antiderivative=lambda x: x**6 / 6, ), IntegrationTestCase( func=lambda x: (x**3 + x**2 - 4 * x + 1) / (x**2 + 1)**2, lower=0.0, upper=10.0, antiderivative=lambda x: sum([ 2.5 / (x**2 + 1), 0.5 * np.log(x**2 + 1), np.arctan(x), ]), ), IntegrationTestCase( func=lambda x: (tf.sinh(2 * x) + 3 * tf.sinh(x)) / (tf.cosh(x)**2 + 2 * tf.cosh(0.5 * x)**2), lower=2.0, upper=4.0, antiderivative=lambda x: sum([ np.log(np.cosh(x)**2 + np.cosh(x) + 1), (4 / np.sqrt(3)) * np.arctan((1 + 2 * np.cosh(x)) / np.sqrt(3.0)), ]), ), IntegrationTestCase( func=lambda x: tf.exp(2 * x) * tf.math.sqrt(tf.exp(x) + tf.exp(2 * x)), lower=2.0, upper=4.0, antiderivative=lambda x: sum([ np.sqrt((np.exp(x) + np.exp(2 * x))**3) / 3, -(1 + 2 * np.exp(x)) * np.sqrt(np.exp(x) + np.exp(2 * x)) / 8, np.log(np.sqrt(1 + np.exp(x)) + np.exp(0.5 * x)) / 8, ]), ), IntegrationTestCase( func=lambda x: tf.exp(-x**2), lower=0.0, upper=1.0, antiderivative=lambda x: 0.5 * np.sqrt(np.pi) * special.erf(x), ), ] TEST_CASE_RAPID_CHANGE = IntegrationTestCase( func=lambda x: 1.0 / tf.sqrt(x + 1e-6), lower=0.0, upper=1.0, antiderivative=lambda x: 2.0 * np.sqrt(x + 1e-6), ) class IntegrationTest(tf.test.TestCase): def _test_batches_and_types(self, integrate_function, args): """Checks handling batches and dtypes.""" dtypes = [np.float32, np.float64, np.complex64, np.complex128] a = [[0.0, 0.0], [0.0, 0.0]] b = [[np.pi / 2, np.pi], [1.5 * np.pi, 2 * np.pi]] a = [a, a] b = [b, b] k = tf.constant([[[[1.0]]], [[[2.0]]]]) func = lambda x: tf.cast(k, dtype=x.dtype) * tf.sin(x) ans = [[[1.0, 2.0], [1.0, 0.0]], [[2.0, 4.0], [2.0, 0.0]]] results = [] for dtype in dtypes: lower = tf.constant(a, dtype=dtype) upper = tf.constant(b, dtype=dtype) results.append(integrate_function(func, lower, upper, **args)) results = self.evaluate(results) for i in range(len(results)): assert results[i].dtype == dtypes[i] assert np.allclose(results[i], ans, atol=1e-3) def _test_accuracy(self, integrate_function, args, test_case, max_rel_error): func = test_case.func lower = tf.constant(test_case.lower, dtype=tf.float64) upper = tf.constant(test_case.upper, dtype=tf.float64) exact = test_case.antiderivative( test_case.upper) - test_case.antiderivative(test_case.lower) approx = integrate_function(func, lower, upper, **args) approx = self.evaluate(approx) assert np.abs(approx - exact) <= np.abs(exact) * max_rel_error def _test_gradient(self, integrate_function, args): """Checks that integration result can be differentiated.""" # We consider I(a) = int_0^1 cos(ax) dx. # Then dI/da = (a*cos(a) - sin(a))/a^2. def integral(a): return integrate_function( lambda x: tf.cos(a * x), 0.0, 1.0, dtype=tf.float64, **args) a = tf.constant(0.5, dtype=tf.float64) di_da = tff.math.fwd_gradient(integral, a) true_di_da = lambda a: (a * np.cos(a) - np.sin(a)) / (a**2) self.assertAllClose(self.evaluate(di_da), true_di_da(0.5)) def test_integrate_batches_and_types(self): self._test_batches_and_types(tff_int.integrate, {}) for method in tff_int.IntegrationMethod: self._test_batches_and_types(tff_int.integrate, {'method': method}) def test_integrate_accuracy(self): for test_case in BASIC_TEST_CASES: self._test_accuracy(tff_int.integrate, {}, test_case, 1e-8) for method in tff_int.IntegrationMethod: self._test_accuracy(tff_int.integrate, {'method': method}, test_case, 1e-8) def test_integrate_gradient(self): for method in tff_int.IntegrationMethod: self._test_gradient(tff_int.integrate, {'method': method}) def test_integrate_int_limits(self): for method in tff_int.IntegrationMethod: result = tff_int.integrate(tf.sin, 0, 1, method=method, dtype=tf.float64) result = self.evaluate(result) self.assertAllClose(0.459697694, result) def test_simpson_batches_and_types(self): self._test_batches_and_types(tff_int.simpson, {}) def test_simpson_accuracy(self): for test_case in BASIC_TEST_CASES: self._test_accuracy(tff_int.simpson, {}, test_case, 1e-8) def test_simpson_rapid_change(self): self._test_accuracy(tff_int.simpson, {'num_points': 1001}, TEST_CASE_RAPID_CHANGE, 2e-1) self._test_accuracy(tff_int.simpson, {'num_points': 10001}, TEST_CASE_RAPID_CHANGE, 3e-2) self._test_accuracy(tff_int.simpson, {'num_points': 100001}, TEST_CASE_RAPID_CHANGE, 5e-4) self._test_accuracy(tff_int.simpson, {'num_points': 1000001}, TEST_CASE_RAPID_CHANGE, 3e-6) def test_simpson_gradient(self): self._test_gradient(tff_int.simpson, {}) if __name__ == '__main__': tf.test.main()
b8cd5d4e2ecee18362ea956d197bd10a0d9c3445
856a1d6c6737ee3d42888831d7da3142ec11d75a
/cpt2wgt.py
0a2649be8d41ac38c2172f78249af3222274b850
[ "MIT" ]
permissive
kevincao91/Tools
81d499dcac04987724142d6c7e77fa2629707f3c
9de429d066b4c601afd32ba09360995297736d2f
refs/heads/master
2023-05-12T07:41:26.736274
2023-05-05T08:29:49
2023-05-05T08:29:49
225,775,272
0
0
null
null
null
null
UTF-8
Python
false
false
808
py
import pickle import os,sys cptPath=sys.argv[1] wgtPath=cptPath with open(cptPath,'rb') as f: data = pickle.load(f,encoding='latin1') keys = data['blobs'].keys() # needs = ['conv','res','fpn',] not_needs = ['fc1000','momentum'] output_dic={'blobs':{}} print('filtered out:') for key in keys: keep = True # for need in needs: # if key.startswith(need): # keep=True for not_need in not_needs: if not_need in key: keep=False break if keep: # if 'score' in key: # print(key) output_dic['blobs'][key] = data['blobs'][key] #print(key) else: print(' - '+key) #print(output_dic['blobs'].keys()) with open(wgtPath,'wb') as f: pickle.dump(output_dic,f,protocol=0)
1891b8efa206d3ac3a27653452945bb1c3676750
84ebacfa7c91348f1275f3945f7ee3567b91d458
/MusicObjectDetector/image_color_inverter.py
31eb7267ffda5824a9d056a90cab11ed330bdde6
[ "MIT", "Apache-2.0" ]
permissive
apacha/MusicObjectDetector-TF
4f40f639ac1240150dcbf5e489569f80878d2008
d32cf96575c995f4d5b634e4dbb876845e3bcd2a
refs/heads/master
2022-11-01T03:33:31.589657
2022-10-09T20:26:52
2022-10-09T20:26:52
112,597,906
83
32
Apache-2.0
2022-10-09T20:26:53
2017-11-30T10:25:08
Python
UTF-8
Python
false
false
1,621
py
import argparse import os from glob import glob from PIL import Image, ImageOps from tqdm import tqdm class ImageColorInverter: """ Class for inverting white-on-black images to black-on-white images """ def __init__(self) -> None: super().__init__() def invert_images(self, image_directory: str, image_file_ending: str): """ In-situ converts the white on black images of a directory to black on white images :param image_directory: The directory, that contains the images :param image_file_ending: The pattern for finding files in the image_directory """ image_paths = [y for x in os.walk(image_directory) for y in glob(os.path.join(x[0], image_file_ending))] for image_path in tqdm(image_paths, desc="Inverting all images in directory {0}".format(image_directory)): white_on_black_image = Image.open(image_path).convert("L") black_on_white_image = ImageOps.invert(white_on_black_image) black_on_white_image.save(os.path.splitext(image_path)[0] + ".png") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--image_directory", type=str, default="../data/fornes_raw", help="The directory, where a dataset can be found, that needs to be inverted, e.g. the original Fornés dataset") parser.add_argument("--image_file_ending", type=str, default="*.bmp", ) flags, unparsed = parser.parse_known_args() image_inverter = ImageColorInverter() image_inverter.invert_images(flags.image_directory, flags.image_file_ending)
837cfc52b7ee3e3a72063c4fa5e18a1c4da0b41c
e97ddcfba5fe4b002fe86b960f1c696aa87c10c0
/tests/test_ec2/test_vm_import.py
ef3e5e1a5702deac471b36f73ecf21d46df530d6
[ "Apache-2.0" ]
permissive
flozano/moto
5488bc0849f9c767c7ed1af35f358e3a1043c6dd
dacf9afd2d3346ce2a23dfa6a2621fe69aba0b03
refs/heads/master
2021-01-21T00:56:53.527482
2013-07-17T15:31:31
2013-07-17T15:31:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
110
py
import boto import sure # flake8: noqa from moto import mock_ec2 @mock_ec2 def test_vm_import(): pass
a6170160382a184522bd7e3775027053bd5cd7db
364ec3089ac2dcdab887518ac1b816f1c0d2858e
/Fase10/Desafios/Desafio_032.py
b67d2c478d6671e29f0745ef3f89062e5b767c47
[]
no_license
loc-dev/CursoEmVideo-Python
20488925da782677b9849944f9bbfd0d862e2b8f
d1eafebbfa88ca70ea0681e45edce6924a9c26d5
refs/heads/master
2022-12-05T22:35:23.056806
2020-08-26T20:20:00
2020-08-26T20:20:00
255,226,590
0
0
null
null
null
null
UTF-8
Python
false
false
757
py
# Fase 10 - Condições ( Parte 1 ) # Desafio 32 # Faça um programa que leia três números # e mostre qual é maior e qual é o menor. n1 = int(input('Digite o primeiro número: ')) n2 = int(input('Digite o segundo número: ')) n3 = int(input('Digite o terceiro número: ')) if n1 > n2: if n1 > n3: print('O maior número é {}'.format(n1)) print('O menor número é {}'.format(n3)) else: print('O maior número é {}'.format(n3)) print('O menor número é {}'.format(n2)) else: if n2 > n3: print('O maior número é {}'.format(n2)) print('O menor número é {}'.format(n1)) else: print('O maior número é {}'.format(n3)) print('O menor número é {}'.format(n1))
ee2b759f34b601d9e0a5b19d7e40fdfbbb995092
4cc285b0c585241ff4404087e6fbb901195639be
/NeuralNetworkNumbers/venv/Lib/site-packages/tensorflow/_api/v2/compat/v2/autodiff/__init__.py
9aff8afae8ce5d4673c70fa11a102c5053d8bfc3
[]
no_license
strazhg/NeuralNetworksPython
815542f4ddbb86e918e657f783158f8c078de514
15038e44a5a6c342336c119cdd2abdeffd84b5b1
refs/heads/main
2023-04-16T18:51:29.602644
2021-04-27T14:46:55
2021-04-27T14:46:55
361,944,482
0
0
null
null
null
null
UTF-8
Python
false
false
128
py
version https://git-lfs.github.com/spec/v1 oid sha256:460dbd09fb995b71b073b0f30f23ef0db5586ce34f01294ee54ca7d366f974a1 size 413
820b9f97995a650d7f84aa1abfefe03c929c296e
4ff8676136167cdd81d7a983272102fff86360e8
/python/404. 左叶子之和.py
3f7495600a4a204120f687388c5274a274da8162
[]
no_license
geniuscynic/leetcode
0ec256af2377d19fee22ce736462a7e95e3f4e67
379a8f27f8213951ee8be41bd56598036995d267
refs/heads/master
2023-07-19T07:22:20.001770
2021-09-07T14:50:40
2021-09-07T14:50:40
297,277,833
0
0
null
null
null
null
UTF-8
Python
false
false
2,137
py
import sys from collections import defaultdict from collections import Counter from collections import deque # Definition for a binary tree node. class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right class Solution: def helper(self, root: TreeNode, parentNode): if not root: return 0 if not root.left and not root.right and parentNode.left and parentNode.left == root: return root.val return self.helper(root.left, root) + self.helper(root.right, root) def sumOfLeftLeaves(self, root: TreeNode) -> int: return self.helper(root, root) def isleaf(self, root: TreeNode): if not root.left and not root.right: return True return False def sumOfLeftLeaves_1(self, root: TreeNode) -> int: if not root: return 0 #if not root.left and not root.right: #return root.val res = 0 if root.left: res += root.left.val if self.isleaf(root.left) else self.sumOfLeftLeaves_1(root.left) if root.right and not self.isleaf(root.right): res += self.sumOfLeftLeaves_1(root.right) return res def coverttoTree(): ls =deque([-6,8,-4,8,-5,-1,None,-9,9,8,8,None,None,-5,6,None,None,None,-4,None,4,None,None,8,8,None,None,None,5,None,None,None,None,None,-9]) temp = TreeNode(ls.popleft()) res = deque() res.append(temp) while ls: left = ls.popleft() right = ls.popleft() node = res.popleft() #print(node.val, left, right) if left != None: node.left = TreeNode(left) res.append(node.left) if right != None: node.right = TreeNode(right) res.append(node.right) return temp if __name__ == "__main__": solution = Solution() nums1 = coverttoTree() m = TreeNode(2) nums2 = TreeNode(4) n = 3 result = solution.sumOfLeftLeaves_1(nums1) #print(solution.ls) print(result)
b77a8520217da5787c934d1d79e6e0b831e46e6d
039c5b793ace774bb815f4061a273ff098efd475
/service/venv/bin/easy_install-3.5
b8d6d4e653a8969421dd255380f763334d7b2df5
[]
no_license
zzyzx4/soft
b7872a1c1e2dc91912f22aaaf96f2cedaf1423c1
264c399ddef2b55efd8a1a8b796320f72c6dec7c
refs/heads/master
2022-12-16T20:50:45.512689
2019-07-01T11:38:12
2019-07-01T11:38:12
184,214,960
0
0
null
2022-12-08T05:07:18
2019-04-30T07:38:24
null
UTF-8
Python
false
false
446
5
#!/home/user/PycharmProjects/service/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==39.1.0','console_scripts','easy_install-3.5' __requires__ = 'setuptools==39.1.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==39.1.0', 'console_scripts', 'easy_install-3.5')() )
a6fdcba7f9380ceaab8bb1fef39cbc7f2713c220
8ac36a81c150432a989ac20c622d41f3e0d88625
/recruitment/recruitment/doctype/type/type.py
12aca933d5ba6247e8a6ade2221095ece4b498af
[ "MIT" ]
permissive
asoral/recruitment
ed85fd4ef2fa7f16ec0098cb80dd67e792fc3ead
bcfdfd9ffe6b493cc79565b0bc1055bee6299645
refs/heads/master
2021-01-04T10:33:08.573635
2020-01-09T13:15:12
2020-01-09T13:15:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
245
py
# -*- coding: utf-8 -*- # Copyright (c) 2019, VHRS and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe from frappe.model.document import Document class Type(Document): pass
23f246e57df6bb3cbf79901d0d81e4121278878e
4ce0f35c6aa01f5041a11979a8b5662d8ad08962
/learning_machine/brain.py
27f04210e42fe2f21713eb36f846e0542c11fc30
[]
no_license
lanlanzky/tt
f125785b00b51774c9033492117305dfba19fb8f
4666af6a250a48200f5af9ef9692da53bbfcd79d
refs/heads/master
2016-09-06T02:19:18.492453
2014-09-01T13:26:55
2014-09-01T13:26:55
23,542,631
0
1
null
null
null
null
UTF-8
Python
false
false
1,895
py
#coding=utf8 from numpy import * from django.http import HttpResponse from django.shortcuts import render_to_response from stock.models import New_stock from pybrain.datasets import SupervisedDataSet from pybrain.tools.shortcuts import buildNetwork #归一化函数处理 def normal(record): return [ "%.5f" % round(float((i-min(record)))/(max(record)-min(record)),4) for i in record] #返归一化 def backnormal(backdata,outdata): large=max(backdata) small=min(backdata) bizhi=large-small for i in range(len(outdata)): for j in range(len(outdata[1])): outdata[i][j]=outdata[i][j]*bizhi+small return outdata #实验数据归一化处理 def newalldate(alldate,len): newalldate=[] allopen=[] allhigh=[] alllow=[] allclose=[] allvolumn=[] alladjclose=[] for date in alldate: allopen.append(date.open) allhigh.append(date.high) alllow.append(date.low) allclose.append(date.close) allvolumn.append(date.volume) alladjclose.append(date.adjclose) newallopen=normal([ float(i) for i in allopen]) newallhigh=normal([ float(i) for i in allhigh]) newalllow=normal([ float(i) for i in alllow]) newallclose=normal([ float(i) for i in allclose]) newallvolume=normal([ float(i) for i in allvolumn]) newalladjclose=normal([ float(i) for i in alladjclose]) for i in range(len): new=[] new.append(newallopen[i]) new.append(newallhigh[i]) new.append(newalllow[i]) new.append(newallclose[i]) new.append(newallvolume[i]) new.append(newalladjclose[i]) newalldate.append(new) return newalldate # 用神经网络来预测最大值 # 用神经网络来预测最小值
15a49b8d9a456333def2e0f3c0135a0c1957b1bc
529833339de2d1f78ec79d4bbe7e6f174fd66779
/alignments/select.py
0387674d35b0808a4fa574902bfe1447bb5ef0f1
[]
no_license
standage/EmexAssemblyMay2016
01f98c69b481e9c7670d35a82c62628b53747927
7a22a17fa0ff6b28262b5da5e906a9554862bcac
refs/heads/master
2021-01-18T10:44:31.587771
2016-05-20T16:20:44
2016-05-20T16:20:44
59,306,317
0
0
null
null
null
null
UTF-8
Python
false
false
537
py
#!/usr/bin/env python import sys from __future__ import print_function def parse(data): name, seq = None, [] for line in data: line = line.rstrip() if line.startswith('>'): if name: yield (name, ''.join(seq)) name, seq = line, [] else: seq.append(line) if name: yield (name, ''.join(seq)) if __name__ == '__main__': for defline, seq in parse(sys.stdin): if len(seq) > 250000: print(defline) print(seq)
c73e7e538899e34cc1dd877afb850c40d7e3a7f6
e8fa46e0e5318c229a49b2803910e12e4d29884e
/interviewbit/Hashing/2-SumBook.py
8bd2842ecf7da92e021b911c43628a7a180a5bea
[]
no_license
igorbragaia/algorithms
e6bc71b0612a65b2650c259aa2cdec593b9f6c53
0b4204c5a11d736c7299bd8c485e325eed630a19
refs/heads/master
2021-12-12T13:49:13.226739
2021-11-27T02:51:23
2021-11-27T02:51:23
106,027,078
3
1
null
null
null
null
UTF-8
Python
false
false
703
py
class Solution: # @param A : tuple of integers # @param B : integer # @return a list of integers def twoSum(self, A, B): lista = [] new_hash = {} for i in range(len(A)): if A[i] not in new_hash: new_hash[A[i]] = [i] else: new_hash[A[i]].append(i) for i in range(len(A)): if B - A[i] in new_hash: temp = [x for x in new_hash[B - A[i]] if x > i] if len(temp) > 0: lista.append((min(temp) + 1, i +1)) lista = sorted(lista) if lista != []: return (lista[0][1], lista[0][0]) return lista
6e84d40880efd0710dc18b037665f1bc62c15700
f523e7bdd7f616267b82a7f00f2b7cae132dc6b9
/dicodile/utils/plot_config.py
402d82f7377e42f69177aa8ef32b9abae42dcd3c
[ "BSD-3-Clause" ]
permissive
tomMoral/dicodile
2d7da76be7d32fb05502cbb358fcda0018e5c00c
5a64fbe456f3a117275c45ee1f10c60d6e133915
refs/heads/main
2023-05-25T11:58:05.596455
2023-05-19T14:35:04
2023-05-19T14:35:04
167,703,861
17
8
BSD-3-Clause
2023-05-19T14:35:06
2019-01-26T15:26:24
Python
UTF-8
Python
false
false
742
py
STYLES = { 'lgcd': { 'color': 'C1', 'linestyle': 'o-', 'hatch': '//', 'label': 'LGCD', 'label_p': 'DiCoDiLe$_Z$' }, 'greedy': { 'color': 'C0', 'linestyle': 's-', 'hatch': None, 'label': 'Greedy', 'label_p': 'Dicod' }, 'cyclic': { 'color': 'C2', 'linestyle': '^-', 'hatch': None, 'label': 'Cyclic', 'label_p': 'Cyclic' }, } def get_style(name, *keys, parallel=False): all_style = STYLES[name] style = { 'label': all_style['label_p'] if parallel else all_style['label'], 'color': all_style['color'] } for k in keys: style[k] = all_style[k] return style
075948fe95a02e474ee41679d278ff9a4a2253ec
6ac0aeea8229c4e2c7a041e85c3afeeb106c6b01
/mark_big_words.py
acf70f3d66db359248c9b464095c9d13919c5604
[]
no_license
waiteb15/py3intro
325dafaaa642052280d6c050eacf8b406b40e01d
68b30f147e7408220490a46d3e595acd60513e9e
refs/heads/master
2020-03-27T10:50:25.928836
2019-02-28T21:47:11
2019-02-28T21:47:11
146,448,412
1
0
null
null
null
null
UTF-8
Python
false
false
381
py
#!/usr/bin/env python import re input_file_name = 'DATA/parrot.txt' output_file_name = 'bigwords.txt' pattern = r'\w{8,}' def doit(m): return f"**{m.group(0)}**" with open(input_file_name) as parrot_in: with open(output_file_name, 'w') as bigwords_out: text = parrot_in.read() new_text = re.sub(pattern, doit, text) bigwords_out.write(new_text)
93bff11c5085d5d9b492a51224c4a331395ffe4b
f6c6e0ebc18b7b1a28c23367f62c960e86194c88
/pythonmisc/qimage2ndarray/qt_driver.py
483cd287af1976d6c665860fa84d3304ece7273d
[]
no_license
TheGrim1/python_work
9316d6fbb71a4be9bd901f104e939949dfd91174
5b34277aed4c06b62276644160e0aa97a4260233
refs/heads/master
2021-01-11T13:54:54.366575
2019-03-12T12:38:39
2019-03-12T12:38:39
94,876,671
0
0
null
null
null
null
UTF-8
Python
false
false
4,663
py
# Copyright 2014-2014 Hans Meine <[email protected]> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This module contains a wrapper around three different Qt python bindings. It will dynamically decide which one to use: * First, the environment variable QT_DRIVER is checked (may be one of 'PyQt5', 'PyQt4', 'PySide', 'PythonQt'). * If unset, previously imported binding modules are detected (in sys.modules). * If no bindings are loaded, the environment variable QT_API is checked (used by ETS and ipython, may be 'pyside' or 'pyqt'). In order to have compatible behavior between the different bindings, PyQt4 (if used) is configured as follows:: sip.setapi("QString", 2) sip.setapi("QVariant", 2) Furthermore, there is a 'getprop' function that solves the following problem: PythonQt exports Qt properties as Python properties *and* gives the precedence over getters with the same name. Instead of calling getters with parentheses (which must not be used in PythonQt, but are required in PyQt and PySide), one may e.g. write `getprop(widget.width)`. """ import sys, os def getprop_PythonQt(prop): """getprop(property_or_getter) Used on getters that have the same name as a corresponding property. For PythonQt, this version will just return the argument, which is assumed to be (the value of) a python property through which PythonQt exposes Qt properties.""" return prop def getprop_other(getter): """getprop(property_or_getter) Used on getters that have the same name as a corresponding property. For Qt bindings other than PythonQt, this version will return the result of calling the argument, which is assumed to be a Qt getter function. (With PythonQt, properties override getters and no calling must be done.)""" return getter() class QtDriver(object): DRIVERS = ('PyQt5', 'PyQt4', 'PySide', 'PythonQt') DEFAULT = 'PyQt4' @classmethod def detect_qt(cls): for drv in cls.DRIVERS: if drv in sys.modules: return drv if '_PythonQt' in sys.modules: return 'PythonQt' return None def name(self): return self._drv def getprop(self): return getprop_PythonQt if self._drv == 'PythonQt' else getprop_other def __init__(self, drv = os.environ.get('QT_DRIVER')): """Supports QT_API (used by ETS and ipython)""" if drv is None: drv = self.detect_qt() if drv is None: drv = os.environ.get('QT_API') if drv is None: drv = self.DEFAULT drv = {'pyside' : 'PySide', 'pyqt' : 'PyQt4', 'pyqt5' : 'PyQt5'}.get(drv, drv) # map ETS syntax assert drv in self.DRIVERS self._drv = drv @staticmethod def _initPyQt4(): """initialize PyQt4 to be compatible with PySide""" if 'PyQt4.QtCore' in sys.modules: # too late to configure API pass else: import sip sip.setapi("QString", 2) sip.setapi("QVariant", 2) @staticmethod def requireCompatibleAPI(): """If PyQt4's API should be configured to be compatible with PySide's (i.e. QString and QVariant should not be explicitly exported, cf. documentation of sip.setapi()), call this function to check that the PyQt4 was properly imported. (It will always be configured this way by this module, but it could have been imported before we got a hand on doing so.) """ if 'PyQt4.QtCore' in sys.modules: import sip for api in ('QVariant', 'QString'): if sip.getapi(api) != 2: raise RuntimeError('%s API already set to V%d, but should be 2' % (api, sip.getapi(api))) def importMod(self, mod): if self._drv == 'PyQt4': self._initPyQt4() qt = __import__('%s.%s' % (self._drv, mod)) return getattr(qt, mod) def __getattr__(self, name): if name.startswith('Qt'): return self.importMod(name) return super(QtDriver, self).__getattr__(name)
4f7c48e8a99a701068ab27a5eeb99bafc6831225
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/312/usersdata/287/75300/submittedfiles/esferas.py
970420237374c04f7c3159b9f92c411be16ac468
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
283
py
# -*- coding: utf-8 -*- A=int(input('Digite o peso da esfera A: ')) B=int(input('Digite o peso da esfera B: ')) C=int(input('Digite o peso da esfera C: ')) D=int(input('Digite o peso da esfera D: ')) if A==B+C+D and B+C==D and B==C: print('S') else: print('N')
f79a69fdebbb591c2349e3a4bd097ab47249f04a
0f77deeffc1526d3befcb777ba4faebe2059e0bb
/lstm.py
27295908eec7e8550fc16f3602f31bf6a21b5d7c
[]
no_license
akshay1997/TRUMP-TWITTER-BOT
6d082a45ca939ce2f41c9cba8cd6198dadb54428
01f781fe2f7eeb71f11d932906b39b26776eafec
refs/heads/master
2021-01-01T16:44:19.137215
2017-07-21T04:59:01
2017-07-21T04:59:01
97,906,651
0
0
null
null
null
null
UTF-8
Python
false
false
1,735
py
import numpy #3563 = 2850+713 1426 2139 2850 from keras.models import Sequential from keras.layers import Dense from keras.layers import Dropout from keras.layers import LSTM from keras.callbacks import ModelCheckpoint from keras.utils import np_utils lines = [] with open ('realDonaldTrump.txt','r') as filename: for line in filename: lines.append(line) lines1 = lines[0:713] lines2 = lines[713:1426] lines3 = lines[1426:2139] lines4 = lines[2139:2850] lines5 = lines[2850:] raw_text = lines1 raw_text = raw_text.lower() chars = sorted(list(set(raw_text))) char_to_int = dict((c, i) for i, c in enumerate(chars)) n_chars = len(raw_text) n_vocab = len(chars) print "Total Characters: ", n_chars print "Total Vocab: ", n_vocab seq_length = 20 dataX = [] dataY = [] for i in range(0, n_chars - seq_length, 1): seq_in = raw_text[i:i + seq_length] seq_out = raw_text[i + seq_length] dataX.append([char_to_int[char] for char in seq_in]) dataY.append(char_to_int[seq_out]) n_patterns = len(dataX) print "Total Patterns: ", n_patterns X = numpy.reshape(dataX, (n_patterns, seq_length, 1)) X = X / float(n_vocab) y = np_utils.to_categorical(dataY) model = Sequential() model.add(LSTM(256, input_shape=(X.shape[1], X.shape[2]), return_sequences=True)) model.add(Dropout(0.2)) model.add(LSTM(256)) model.add(Dropout(0.2)) model.add(Dense(y.shape[1], activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam') filepath="weights-improvement-{epoch:02d}-{loss:.4f}-bigger.hdf5" checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=True, mode='min') callbacks_list = [checkpoint] model.fit(X, y, nb_epoch=1, batch_size=64, callbacks=callbacks_list)
fda13f1054a9ca0c6d68fb3f5fb4a24adb1d5213
74482894c61156c13902044b4d39917df8ed9551
/cryptoapis/model/list_transactions_by_block_hash_response_item_blockchain_specific_litecoin_vin.py
ad098de141271999edecf068c597aae890279310
[ "MIT" ]
permissive
xan187/Crypto_APIs_2.0_SDK_Python
bb8898556ba014cc7a4dd31b10e24bec23b74a19
a56c75df54ef037b39be1315ed6e54de35bed55b
refs/heads/main
2023-06-22T15:45:08.273635
2021-07-21T03:41:05
2021-07-21T03:41:05
387,982,780
1
0
NOASSERTION
2021-07-21T03:35:29
2021-07-21T03:35:29
null
UTF-8
Python
false
false
8,985
py
""" CryptoAPIs Crypto APIs 2.0 is a complex and innovative infrastructure layer that radically simplifies the development of any Blockchain and Crypto related applications. Organized around REST, Crypto APIs 2.0 can assist both novice Bitcoin/Ethereum enthusiasts and crypto experts with the development of their blockchain applications. Crypto APIs 2.0 provides unified endpoints and data, raw data, automatic tokens and coins forwardings, callback functionalities, and much more. # noqa: E501 The version of the OpenAPI document: 2.0.0 Contact: [email protected] Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from cryptoapis.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, ) def lazy_import(): from cryptoapis.model.get_transaction_details_by_transaction_id_response_item_blockchain_specific_litecoin_script_sig import GetTransactionDetailsByTransactionIDResponseItemBlockchainSpecificLitecoinScriptSig globals()['GetTransactionDetailsByTransactionIDResponseItemBlockchainSpecificLitecoinScriptSig'] = GetTransactionDetailsByTransactionIDResponseItemBlockchainSpecificLitecoinScriptSig class ListTransactionsByBlockHashResponseItemBlockchainSpecificLitecoinVin(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } additional_properties_type = None _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ lazy_import() return { 'addresses': ([str],), # noqa: E501 'script_sig': (GetTransactionDetailsByTransactionIDResponseItemBlockchainSpecificLitecoinScriptSig,), # noqa: E501 'sequence': (str,), # noqa: E501 'txid': (str,), # noqa: E501 'txinwitness': ([str],), # noqa: E501 'value': (str,), # noqa: E501 'vout': (int,), # noqa: E501 'coinbase': (str,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'addresses': 'addresses', # noqa: E501 'script_sig': 'scriptSig', # noqa: E501 'sequence': 'sequence', # noqa: E501 'txid': 'txid', # noqa: E501 'txinwitness': 'txinwitness', # noqa: E501 'value': 'value', # noqa: E501 'vout': 'vout', # noqa: E501 'coinbase': 'coinbase', # noqa: E501 } _composed_schemas = {} required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, addresses, script_sig, sequence, txid, txinwitness, value, vout, *args, **kwargs): # noqa: E501 """ListTransactionsByBlockHashResponseItemBlockchainSpecificLitecoinVin - a model defined in OpenAPI Args: addresses ([str]): script_sig (GetTransactionDetailsByTransactionIDResponseItemBlockchainSpecificLitecoinScriptSig): sequence (str): Represents the script sequence number. txid (str): Represents the reference transaction identifier. txinwitness ([str]): value (str): Represents the sent/received amount. vout (int): It refers to the index of the output address of this transaction. The index starts from 0. Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) coinbase (str): Represents the coinbase hex.. [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.addresses = addresses self.script_sig = script_sig self.sequence = sequence self.txid = txid self.txinwitness = txinwitness self.value = value self.vout = vout for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value)
1cbaac8e46e28a8e424d041eb4c906491546cbea
936dee544c471013bd1788b441042e22c3522633
/deploy_tools/fabfile.py
ba1a955ef64a555f54ad8ba7f9d51b656ec4899d
[]
no_license
k5766273/test
bdaa808e1f10112a3f751a499e5890350d9ff733
b947d5d2b69b510bb17df1f66b9b03c821f141c9
refs/heads/master
2023-05-19T20:11:34.849263
2021-06-06T01:51:10
2021-06-06T01:51:10
356,159,062
0
0
null
null
null
null
UTF-8
Python
true
false
2,325
py
from fabric.contrib.files import append, exists, sed from fabric.api import env, local, run import random REPO_URL = 'https://github.com/k5766273/test' #env.use_ssh_config = True def deploy(): site_folder = f'/home/ubuntu/sites/{env.host}' source_folder = site_folder + '/suplerlists' _create_directory_structure_if_necessary(site_folder) _get_latest_source(source_folder) _update_settings(source_folder, env.host) _update_virtualenv(source_folder) _update_static_files(source_folder) _update_database(source_folder) def _create_directory_structure_if_necessary(site_folder): for subfolder in ('database', 'static', 'virtualenv', 'suplerlists'): run(f'mkdir -p {site_folder}/{subfolder}') def _get_latest_source(source_folder): if exists(source_folder + '/.git'): run(f'cd {source_folder} && git fetch') else: run(f'git clone {REPO_URL} {source_folder}') current_commit = local("git log -n 1 --format=%H", capture=True) run(f'cd {source_folder} && git reset --hard {current_commit}') def _update_settings(source_folder, site_name): settings_path = source_folder + '/suplerlists/settings.py' sed(settings_path, "DEBUG = True", "DEBUG = False") sed(settings_path,'ALLOWED_HOSTS =.+$',f'ALLOWED_HOSTS = ["{site_name}"]' ) secret_key_file = source_folder + '/suplerlists/secret_key.py' if not exists(secret_key_file): chars = 'abcdefghijklmnopqrstuvwxyz0123456789!@#$%^&*(-_=+)' key = ''.join(random.SystemRandom().choice(chars) for _ in range(50)) append(secret_key_file, f'SECRET_KEY = "{key}"') append(settings_path, '\nfrom .secret_key import SECRET_KEY') def _update_virtualenv(source_folder): virtualenv_folder = source_folder + '/../virtualenv' if not exists(virtualenv_folder + '/bin/pip'): run(f'python3.6 -m venv {virtualenv_folder}') run(f'{virtualenv_folder}/bin/pip install -r {source_folder}/requirements.txt') def _update_static_files(source_folder): run( f'cd {source_folder}' ' && ../virtualenv/bin/python manage.py collectstatic --noinput' ) def _update_database(source_folder): run( f'cd {source_folder}' ' && ../virtualenv/bin/python manage.py migrate --noinput' )
688f4172210d8b670a6bc922eef372027e2123bf
24fe1f54fee3a3df952ca26cce839cc18124357a
/servicegraph/lib/python2.7/site-packages/acimodel-4.0_3d-py2.7.egg/cobra/modelimpl/stp/rtstpifpol.py
c74118f5914bc4cd48e40179c05611a98540fed7
[]
no_license
aperiyed/servicegraph-cloudcenter
4b8dc9e776f6814cf07fe966fbd4a3481d0f45ff
9eb7975f2f6835e1c0528563a771526896306392
refs/heads/master
2023-05-10T17:27:18.022381
2020-01-20T09:18:28
2020-01-20T09:18:28
235,065,676
0
0
null
2023-05-01T21:19:14
2020-01-20T09:36:37
Python
UTF-8
Python
false
false
5,225
py
# coding=UTF-8 # ********************************************************************** # Copyright (c) 2013-2019 Cisco Systems, Inc. All rights reserved # written by zen warriors, do not modify! # ********************************************************************** from cobra.mit.meta import ClassMeta from cobra.mit.meta import StatsClassMeta from cobra.mit.meta import CounterMeta from cobra.mit.meta import PropMeta from cobra.mit.meta import Category from cobra.mit.meta import SourceRelationMeta from cobra.mit.meta import NamedSourceRelationMeta from cobra.mit.meta import TargetRelationMeta from cobra.mit.meta import DeploymentPathMeta, DeploymentCategory from cobra.model.category import MoCategory, PropCategory, CounterCategory from cobra.mit.mo import Mo # ################################################## class RtStpIfPol(Mo): """ A target relation to the spanning-tree protocol interface policy. """ meta = TargetRelationMeta("cobra.model.stp.RtStpIfPol", "cobra.model.infra.AccGrp") meta.moClassName = "stpRtStpIfPol" meta.rnFormat = "rtinfraStpIfPol-[%(tDn)s]" meta.category = MoCategory.RELATIONSHIP_FROM_LOCAL meta.label = "Abstraction of Leaf Access Policy Group" meta.writeAccessMask = 0x4100000000001 meta.readAccessMask = 0x4100000000011 meta.isDomainable = False meta.isReadOnly = True meta.isConfigurable = False meta.isDeletable = False meta.isContextRoot = False meta.parentClasses.add("cobra.model.stp.IfPol") meta.superClasses.add("cobra.model.reln.From") meta.superClasses.add("cobra.model.reln.Inst") meta.superClasses.add("cobra.model.pol.NFromRef") meta.rnPrefixes = [ ('rtinfraStpIfPol-', True), ] prop = PropMeta("str", "childAction", "childAction", 4, PropCategory.CHILD_ACTION) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("deleteAll", "deleteall", 16384) prop._addConstant("deleteNonPresent", "deletenonpresent", 8192) prop._addConstant("ignore", "ignore", 4096) meta.props.add("childAction", prop) prop = PropMeta("str", "dn", "dn", 1, PropCategory.DN) prop.label = "None" prop.isDn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("dn", prop) prop = PropMeta("str", "lcOwn", "lcOwn", 9, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "local" prop._addConstant("implicit", "implicit", 4) prop._addConstant("local", "local", 0) prop._addConstant("policy", "policy", 1) prop._addConstant("replica", "replica", 2) prop._addConstant("resolveOnBehalf", "resolvedonbehalf", 3) meta.props.add("lcOwn", prop) prop = PropMeta("str", "modTs", "modTs", 7, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "never" prop._addConstant("never", "never", 0) meta.props.add("modTs", prop) prop = PropMeta("str", "rn", "rn", 2, PropCategory.RN) prop.label = "None" prop.isRn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("rn", prop) prop = PropMeta("str", "status", "status", 3, PropCategory.STATUS) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("created", "created", 2) prop._addConstant("deleted", "deleted", 8) prop._addConstant("modified", "modified", 4) meta.props.add("status", prop) prop = PropMeta("str", "tCl", "tCl", 13244, PropCategory.REGULAR) prop.label = "Target-class" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 4387 prop.defaultValueStr = "infraAccGrp" prop._addConstant("infraAccBndlGrp", None, 4406) prop._addConstant("infraAccBndlPolGrp", None, 6102) prop._addConstant("infraAccGrp", None, 4387) prop._addConstant("infraAccPortGrp", None, 4409) prop._addConstant("unspecified", "unspecified", 0) meta.props.add("tCl", prop) prop = PropMeta("str", "tDn", "tDn", 13243, PropCategory.REGULAR) prop.label = "Target-dn" prop.isConfig = True prop.isAdmin = True prop.isCreateOnly = True prop.isNaming = True meta.props.add("tDn", prop) meta.namingProps.append(getattr(meta.props, "tDn")) getattr(meta.props, "tDn").needDelimiter = True # Deployment Meta meta.deploymentQuery = True meta.deploymentType = "Ancestor" meta.deploymentQueryPaths.append(DeploymentPathMeta("stpIfPolToPortGroups", "Portgroups", "cobra.model.vmm.EpPD")) meta.deploymentQueryPaths.append(DeploymentPathMeta("stpIfPolToVirtualMachines", "Virtual Machines", "cobra.model.comp.Vm")) meta.deploymentQueryPaths.append(DeploymentPathMeta("L2IfPolToEthIf", "Interface", "cobra.model.l1.EthIf")) def __init__(self, parentMoOrDn, tDn, markDirty=True, **creationProps): namingVals = [tDn] Mo.__init__(self, parentMoOrDn, markDirty, *namingVals, **creationProps) # End of package file # ##################################################
a22bbe274b90794f62ec8b4f2d459c7a5e30f250
8e7c006a81ebbbc60c6750dbb562ebb071a1d8aa
/base/05_basic_convnet.py
310ef0b149be15f8da82789d0b20368fdd76131c
[]
no_license
xueyangfu/tensorflow-learning
8b65dbc0e3a437ed2a14b4987c8fe7848ed2a6c4
ec477ac02ae5c2506819a7f8c147e3774baa3a4a
refs/heads/master
2021-05-15T16:32:05.194502
2017-01-30T12:24:46
2017-01-30T12:24:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,864
py
# -*- coding: utf-8 -*- """Simple tutorial following the TensorFlow example of a Convolutional Network. Parag K. Mital, Jan. 2016""" # %% Imports import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data from libs.utils import * import matplotlib.pyplot as plt # %% Setup input to the network and true output label. These are # simply placeholders which we'll fill in later. mnist = input_data.read_data_sets('../datas/mnist/', one_hot=True) x = tf.placeholder(tf.float32, [None, 784]) y = tf.placeholder(tf.float32, [None, 10]) # %% Since x is currently [batch, height*width], we need to reshape to a # 4-D tensor to use it in a convolutional graph. If one component of # `shape` is the special value -1, the size of that dimension is # computed so that the total size remains constant. Since we haven't # defined the batch dimension's shape yet, we use -1 to denote this # dimension should not change size. x_tensor = tf.reshape(x, [-1, 28, 28, 1]) # %% We'll setup the first convolutional layer # Weight matrix is [height x width x input_channels x output_channels] filter_size = 5 n_filters_1 = 16 W_conv1 = weight_variable([filter_size, filter_size, 1, n_filters_1]) # %% Bias is [output_channels] b_conv1 = bias_variable([n_filters_1]) # %% Now we can build a graph which does the first layer of convolution: # we define our stride as batch x height x width x channels # instead of pooling, we use strides of 2 and more layers # with smaller filters. h_conv1 = tf.nn.relu( tf.nn.conv2d(input=x_tensor, filter=W_conv1, strides=[1, 2, 2, 1], padding='SAME') + b_conv1) # %% And just like the first layer, add additional layers to create # a deep net n_filters_2 = 16 W_conv2 = weight_variable([filter_size, filter_size, n_filters_1, n_filters_2]) b_conv2 = bias_variable([n_filters_2]) h_conv2 = tf.nn.relu( tf.nn.conv2d(input=h_conv1, filter=W_conv2, strides=[1, 2, 2, 1], padding='SAME') + b_conv2) # %% We'll now reshape so we can connect to a fully-connected layer: h_conv2_flat = tf.reshape(h_conv2, [-1, 7 * 7 * n_filters_2]) # %% Create a fully-connected layer: n_fc = 1024 W_fc1 = weight_variable([7 * 7 * n_filters_2, n_fc]) b_fc1 = bias_variable([n_fc]) h_fc1 = tf.nn.relu(tf.matmul(h_conv2_flat, W_fc1) + b_fc1) # %% We can add dropout for regularizing and to reduce overfitting like so: keep_prob = tf.placeholder(tf.float32) h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) # %% And finally our softmax layer: W_fc2 = weight_variable([n_fc, 10]) b_fc2 = bias_variable([10]) y_pred = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) # %% Define loss/eval/training functions cross_entropy = -tf.reduce_sum(y * tf.log(y_pred)) optimizer = tf.train.AdamOptimizer().minimize(cross_entropy) # %% Monitor accuracy correct_prediction = tf.equal(tf.argmax(y_pred, 1), tf.argmax(y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float')) # %% We now create a new session to actually perform the initialization the # variables: sess = tf.Session() sess.run(tf.initialize_all_variables()) # %% We'll train in minibatches and report accuracy: batch_size = 100 n_epochs = 5 for epoch_i in range(n_epochs): for batch_i in range(mnist.train.num_examples // batch_size): batch_xs, batch_ys = mnist.train.next_batch(batch_size) sess.run(optimizer, feed_dict={ x: batch_xs, y: batch_ys, keep_prob: 0.5}) print(sess.run(accuracy, feed_dict={ x: mnist.validation.images, y: mnist.validation.labels, keep_prob: 1.0 })) # %% Let's take a look at the kernels we've learned W = sess.run(W_conv1) plt.imshow(montage(W / np.max(W)), cmap='coolwarm')
4be5eaa27be78cccdfc542abce5822a37f988c94
d2884c24be412a3f04b31e042bc7ee99cda37a96
/爬虫10/爬虫/chian/chian/middlewares.py
1acd74b0f58b9e0227b5ef2353a5b25c7e5b7e60
[]
no_license
a1403893559/xigong
95c2b24b3e365bff275758901b7315c3255a8f05
b07f5c26e8bcc7a56bacb4202d266ad56daa182b
refs/heads/master
2021-10-09T03:18:32.123278
2018-12-20T13:03:42
2018-12-20T13:03:42
116,777,919
0
0
null
null
null
null
UTF-8
Python
false
false
3,595
py
# -*- coding: utf-8 -*- # Define here the models for your spider middleware # # See documentation in: # https://doc.scrapy.org/en/latest/topics/spider-middleware.html from scrapy import signals class ChianSpiderMiddleware(object): # Not all methods need to be defined. If a method is not defined, # scrapy acts as if the spider middleware does not modify the # passed objects. @classmethod def from_crawler(cls, crawler): # This method is used by Scrapy to create your spiders. s = cls() crawler.signals.connect(s.spider_opened, signal=signals.spider_opened) return s def process_spider_input(self, response, spider): # Called for each response that goes through the spider # middleware and into the spider. # Should return None or raise an exception. return None def process_spider_output(self, response, result, spider): # Called with the results returned from the Spider, after # it has processed the response. # Must return an iterable of Request, dict or Item objects. for i in result: yield i def process_spider_exception(self, response, exception, spider): # Called when a spider or process_spider_input() method # (from other spider middleware) raises an exception. # Should return either None or an iterable of Response, dict # or Item objects. pass def process_start_requests(self, start_requests, spider): # Called with the start requests of the spider, and works # similarly to the process_spider_output() method, except # that it doesn’t have a response associated. # Must return only requests (not items). for r in start_requests: yield r def spider_opened(self, spider): spider.logger.info('Spider opened: %s' % spider.name) class ChianDownloaderMiddleware(object): # Not all methods need to be defined. If a method is not defined, # scrapy acts as if the downloader middleware does not modify the # passed objects. @classmethod def from_crawler(cls, crawler): # This method is used by Scrapy to create your spiders. s = cls() crawler.signals.connect(s.spider_opened, signal=signals.spider_opened) return s def process_request(self, request, spider): # Called for each request that goes through the downloader # middleware. # Must either: # - return None: continue processing this request # - or return a Response object # - or return a Request object # - or raise IgnoreRequest: process_exception() methods of # installed downloader middleware will be called return None def process_response(self, request, response, spider): # Called with the response returned from the downloader. # Must either; # - return a Response object # - return a Request object # - or raise IgnoreRequest return response def process_exception(self, request, exception, spider): # Called when a download handler or a process_request() # (from other downloader middleware) raises an exception. # Must either: # - return None: continue processing this exception # - return a Response object: stops process_exception() chain # - return a Request object: stops process_exception() chain pass def spider_opened(self, spider): spider.logger.info('Spider opened: %s' % spider.name)
7582910eaa393cc51825e953f774977c6c676280
3d19e1a316de4d6d96471c64332fff7acfaf1308
/Users/T/tmayor/test-3.py
df783a0fb6ae2cb6a043ea259a571331baf5e15d
[]
no_license
BerilBBJ/scraperwiki-scraper-vault
4e98837ac3b1cc3a3edb01b8954ed00f341c8fcc
65ea6a943cc348a9caf3782b900b36446f7e137d
refs/heads/master
2021-12-02T23:55:58.481210
2013-09-30T17:02:59
2013-09-30T17:02:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,422
py
# lxml is a complete library for parsing xml and html files. http://codespeak.net/lxml/ # The interface is not totally intuitive, but it is very effective to use, # especially with cssselect. import lxml.etree import lxml.html print help(lxml.html.parse) # create an example case samplehtml = """<html><body> <h1>hi</h1> <p class="cccc">something <strong>good</strong> <p>Another paragraph</p> <ul class="LLL"> <li class="1">first</li> <li class="2">second</li> <li class="1" id="nimble">third <b>jjj</b></li>junk </ul> </body></html>""" #root = lxml.html.fromstring(samplehtml) # an lxml.etree.Element object # To load directly from a url, use root = lxml.html.parse('http://www.guardian.co.uk/news/gallery/2010/oct/12/1').getroot() # Whenever you have an lxml element, you can convert it back to a string like so: #print lxml.etree.tostring(root) # Use cssselect to select elements by their css code #print root.cssselect("li.initially-off") # returns 2 elements #print root.cssselect("ul #nimble") # returns 1 element #print root.cssselect(".LLL li") # returns 3 elements # extracting text from a single element linimble = root.cssselect("li.initially-off")[0] #help(linimble) # prints the documentation for the object print lxml.etree.tostring(linimble) # note how this includes trailing text 'junk' #print linimble.text # just the text between the tag #print linimble.tail # the trailing text #print list(linimble) # prints the <b> object # This recovers all the code inside the object, including any text markups like <b> #print linimble.text + "".join(map(lxml.etree.tostring, list(linimble))) # lxml is a complete library for parsing xml and html files. http://codespeak.net/lxml/ # The interface is not totally intuitive, but it is very effective to use, # especially with cssselect. import lxml.etree import lxml.html print help(lxml.html.parse) # create an example case samplehtml = """<html><body> <h1>hi</h1> <p class="cccc">something <strong>good</strong> <p>Another paragraph</p> <ul class="LLL"> <li class="1">first</li> <li class="2">second</li> <li class="1" id="nimble">third <b>jjj</b></li>junk </ul> </body></html>""" #root = lxml.html.fromstring(samplehtml) # an lxml.etree.Element object # To load directly from a url, use root = lxml.html.parse('http://www.guardian.co.uk/news/gallery/2010/oct/12/1').getroot() # Whenever you have an lxml element, you can convert it back to a string like so: #print lxml.etree.tostring(root) # Use cssselect to select elements by their css code #print root.cssselect("li.initially-off") # returns 2 elements #print root.cssselect("ul #nimble") # returns 1 element #print root.cssselect(".LLL li") # returns 3 elements # extracting text from a single element linimble = root.cssselect("li.initially-off")[0] #help(linimble) # prints the documentation for the object print lxml.etree.tostring(linimble) # note how this includes trailing text 'junk' #print linimble.text # just the text between the tag #print linimble.tail # the trailing text #print list(linimble) # prints the <b> object # This recovers all the code inside the object, including any text markups like <b> #print linimble.text + "".join(map(lxml.etree.tostring, list(linimble)))
7bf833a1e59a609e71791510c143929fed4b9090
de479d4a8af0e070b2bcae4186b15a8eb74971fb
/cn/iceknc/study/h_python_web_server/__init__.py
4c443bf5e4053a05fd09d03cb7e0b34b24ee6f4b
[]
no_license
iceknc/python_study_note
1d8f6e38be57e4dc41a661c0a84d6ee223c5a878
730a35890b77ecca3d267fc875a68e96febdaa85
refs/heads/master
2020-05-19T18:44:55.957392
2019-09-27T01:15:54
2019-09-27T01:15:54
185,160,232
0
0
null
null
null
null
UTF-8
Python
false
false
152
py
# -*- coding: utf-8 -*- # @Author: 徐志鹏 # @Date : 2019/5/15 # @Desc : def main(): pass if __name__ == "__main__": main()
eee8bf0ebe7dad15987813d9178a9e6fc7e754d2
33602d2bf63bb038f29f22383c912a06045d7e00
/v15_pong_supervised/utils.py
d000d2b3eec684a2fc88e0a73247edc928d1c2f5
[]
no_license
evanthebouncy/nnprog
26af89726a915d7d3f78131c4f8733cdceb6100e
576ea87469df2135bf133325d22c23ec4b196a92
refs/heads/master
2020-07-06T00:32:23.949875
2017-12-06T20:50:18
2017-12-06T20:50:18
66,980,038
2
2
null
null
null
null
UTF-8
Python
false
false
5,127
py
import numpy as np import gym import random import pickle import gym.envs.atari import draw # Preprocesses the given image: # (1) remove the scoreboard # (2) make it monochromatic # (3) make the background black # # obs: Image # return: Image # Image = np.array([n_rows, n_cols]) def preprocess(obs): obs = obs[34:194] obs = obs[::2,::2,0] obs[obs == 144] = 0 return obs.astype(np.float) def lose_color(proccessed_obs): return np.clip(proccessed_obs, 0, 1) # Assumes that the pixels of the given value in the given image # exactly form a rectangle (or else there are no pixels of that color). # Returns the rectangle if it exists, or else None. # # val: int # obs: Image # return: None | Rectangle # Image = np.array([n_rows, n_cols]) def _get_rectangle(obs, val): min_val = np.argmax(obs.ravel() == val) max_val = len(obs.ravel()) - np.argmax(np.flip(obs.ravel(), 0) == val) - 1 x_pos = min_val % obs.shape[1] y_pos = min_val / obs.shape[1] x_len = (max_val % obs.shape[1]) - x_pos + 1 y_len = (max_val / obs.shape[1]) - y_pos + 1 return None if x_pos == 0 and y_pos == 0 and x_len == obs.shape[1] and y_len == obs.shape[0] else np.array([x_pos + x_len/2, y_pos + y_len/2]) # Retrieves the rectangle representing our paddle. def get_our_paddle(obs): obs = preprocess(obs) return _get_rectangle(obs, 92) # Retrieves the rectangle representing the ball. def get_ball(obs): obs = preprocess(obs) return _get_rectangle(obs, 236) def same_line_print(message): sys.stdout.write("\r" + message) sys.stdout.flush() def render_state(env, state): env.reset() env.restore_full_state(state) def get_up_down_signal(ob1, ob2): default_val = np.array([1.0, 0.0, 0.0]) if ob2 is None: return default_val # obs = preprocess(obs) paddle = get_our_paddle(ob2) ball = get_ball(ob2) if ball is None or paddle is None: return default_val return np.array([0.0, 1.0, 0.0]) if paddle[1] >= ball[1] else np.array([0.0, 0.0, 1.0]) def get_simple_signal(ob1, ob2): def _state1(ob1, ob2): default_val = np.array([1.0, 0.0, 0.0]) if ob1 is None or ob2 is None: return default_val # obs = preprocess(obs) paddle = get_our_paddle(ob2) ball = get_ball(ob2) if ball is None or paddle is None or ball[0] < 50: return default_val return np.array([0.0, 1.0, 0.0]) if paddle[1] >= ball[1] else np.array([0.0, 0.0, 1.0]) def _state2(ob1, ob2): default_val = np.array([1.0, 0.0]) if ob1 is None or ob2 is None: return default_val paddle = get_our_paddle(ob2) if 38 <= paddle[1] <= 42: return np.array([0.0, 1.0]) return default_val return np.concatenate([_state1(ob1,ob2), _state2(ob1,ob2)]) def get_signal(obs, prev_obs, prev_move): default_val = np.array([0.0 for i in range(9)]) if obs is None or prev_obs is None: return default_val # obs = preprocess(obs) paddle = get_our_paddle(obs) ball = get_ball(obs) prev_ball = get_ball(prev_obs) prev_paddle = get_our_paddle(prev_obs) if ball is None or paddle is None or prev_ball is None or prev_paddle is None: return default_val # print "some stuff " # print "prev ball ", prev_ball # print "ball ", ball # print "paddle ", paddle # older paddle = paddle[1:] / 80.0 prev_paddle = prev_paddle[1:] / 80.0 diff = ball - prev_ball # print "diff ", diff diff = diff / float(np.max(abs(diff))) if np.max(abs(diff)) > 0 else np.array([0.0, 0.0]) ball = ball / 80.0 prev_move = np.array([1.0, 0.0] if prev_move == 2 else [0.0, 1.0]) care = 1.0 if ball[0] >= 60.0 / 80.0 and ball[0] <= 71.0 / 80.0 else 0.0 # print "ball ", ball signal = np.concatenate([paddle, prev_paddle, ball, diff, prev_move, [care]]) signal = signal * care # newer # print ball, prev_ball # diff = ball - prev_ball # print "diff ", diff # a = 1.0 if paddle[1] > ball[1] else -1.0 # b = diff[0] # signal = np.array([a,b, 0.0, 0.0, 0.0, 0.0]) return signal def get_signal_full_image(obs, prev_obs): if obs is None or prev_obs is None: return None obs = lose_color(preprocess(obs)) prev_obs = lose_color(preprocess(prev_obs)) # obs_diff = obs - prev_obs # draw.draw(obs_diff, "obs.png") return obs, prev_obs # generate a pong trace, the actor takes in the last 2 states as inputs def generate_pong_trace(env, start_state, agent, n=200, do_render=True): env.reset() env.restore_full_state(start_state) trace = [] all_obs = [None, None] all_actions = [2] for i in range(n): action = agent.act((all_obs[-2], all_obs[-1],all_actions[-1]), show_prob = do_render) obs, reward, done, comments = env.step(action) if do_render: env.render() trace.append(((all_obs[-2], all_obs[-1],all_actions[-1]), action, reward)) all_obs.append(obs) all_actions.append(action) if done: break return trace def get_random_state(env, start_state): env.reset() env.restore_full_state(start_state) for i in range(random.randint(100, 500)): _, a, b, c = env.step(random.choice([2,3])) state = env.clone_full_state() return state
b43a0ea6840af2ffc73bc3ec3411ff7e6682262b
5ba3115523fb052d32db827e09443248ec5f6629
/algorithm/PycharmProjects/week2/셀렉션 알고리즘.py
ea0f1342ff0818baef2e0b87e8900f027e4bd11d
[]
no_license
oliviaspark0825/TIL
841095003ae794e14bd8c7e8c883826667c25f37
8bc66836f9a1eea5f42e9e1172f81f005abc042d
refs/heads/master
2023-01-10T22:14:15.341489
2019-08-22T09:09:52
2019-08-22T09:09:52
162,099,057
0
0
null
2023-01-04T07:52:28
2018-12-17T08:32:43
Jupyter Notebook
UTF-8
Python
false
false
645
py
# k 번만큼 골라서 제일 작은 거를 찾아서 바꾼다, 교환 횟수가 작음 # # def select(list, k): # for i in range(0, k): # minInex = for j in range ( i+1, len(list)): # if list[minIndex] > list[j]: # minIndex = j # list[i], list[minIndex] = list[minIndex], list[i] # return list[k -1] def selectionSort(a): for i in range(0, len(a) -1): # 0부터 n-1 까지 min = i for j in range(i+1, len(a)): if a[min] > a[j]: min = j a[i], a[min] = a[min], a[i] data = [64, 25, 10, 22, 11] selectionSort(data) print(data)
2dc4b913336525af52c6bd856739646b091e1ebd
af4b5830b2a23d1f3d126297c7eb057bb3f8e42f
/pymatflow/cp2k/base/pw_dft.py
fd0c25c249ac97dad547a452ce45111dd806c4d6
[ "MIT" ]
permissive
mukhtarbayerouniversity/pymatflow
de2b2d573ceed68c1dd3c149c538588394029137
9ab61e56659519cd6c83d5bd32da1262f44da065
refs/heads/master
2023-02-13T01:50:32.993401
2021-01-13T15:19:36
2021-01-13T15:19:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,477
py
#!/usr/bin/evn python # _*_ coding: utf-8 _*_ import numpy as np import sys import os import shutil from pymatflow.cp2k.base.pw_dft_control import cp2k_pw_dft_control from pymatflow.cp2k.base.pw_dft_iterative_solver import cp2k_pw_dft_iterative_solver from pymatflow.cp2k.base.pw_dft_mixer import cp2k_pw_dft_mixer from pymatflow.cp2k.base.pw_dft_parameters import cp2k_pw_dft_parameters """ usage: """ # ============================================ # CP2K / PW_DFT #============================================= class cp2k_pw_dft: """ """ def __init__(self): """ """ self.params = { } self.status = False self.control = cp2k_pw_dft_control() self.iterative_solver = cp2k_pw_dft_iterative_solver() self.mixer = cp2k_pw_dft_mixer() self.parameters = cp2k_pw_dft_parameters() # basic setting self.control.status = True self.iterative_solver.status = True self.mixer.status = True self.parameters.status = True def to_input(self, fout): """ fout: a file stream for writing """ fout.write("\t&PW_DFT\n") for item in self.params: if self.params[item] is not None: fout.write("\t\t%s %s\n" % (item, self.params[item])) if self.control.status == True: self.control.to_input(fout) if self.iterative_solver.status == True: self.iterative_solver.to_input(fout) if self.mixer.status == True: self.mixer.to_input(fout) if self.parameters.status == True: self.parameters.to_input(fout) fout.write("\t&END PW_DFT\n") def set_params(self, params): for item in params: if len(item.split("-")) == 2: self.params[item.split("-")[-1]] = params[item] elif item.split("-")[1] == "CONTROL": self.control.set_params({item: params[item]}) elif item.split("-")[1] == "ITERATIVE_SOLVER": self.iterative_solver.set_params({item: params[item]}) elif item.split("-")[1] == "MIXER": self.mixer.set_params({item: params[item]}) elif item.split("-")[1] == "PARAMETERS": self.parameters.set_params({item: params[item]}) else: pass
875b4f27d8e18a7e9ec795653c633190e9d41156
a7c35b3b94d768a5a6e0fbe87722192d7c41452d
/pyNastran/op2/tables/geom/edom.py
a63e42075f3e62732d486627dbbea5b4e3343c31
[]
no_license
jpdeslich/pyNastran
0ed891298647563f05fa9002b5207d9997464fcf
a09a9e40f8403633bc9d4dc89eb1c29c51ceb3fa
refs/heads/master
2022-12-18T21:54:04.787376
2020-09-28T18:54:00
2020-09-28T18:54:00
299,397,732
0
0
null
2020-09-28T18:29:57
2020-09-28T18:29:57
null
UTF-8
Python
false
false
71,587
py
""" defines readers for BDF objects in the OP2 EDOM/EDOMS table """ from struct import Struct from typing import Tuple, List, Union import numpy as np from pyNastran.op2.tables.geom.geom_common import GeomCommon from pyNastran.op2.op2_interface.op2_reader import mapfmt, reshape_bytes_block, reshape_bytes_block_size from .utils import get_minus1_start_end #if TYPE_CHECKING: # pragma: no cover from pyNastran.bdf.cards.optimization import DVPREL1, DVPREL2, DVMREL2 DSCREEN_INT_TO_RTYPE = { 3 : 'LAMA', 4 : 'EIGN', 5 : 'DISP', 6 : 'STRESS', } DSCREEN_RTYPE_TO_INT = {value: key for key, value in DSCREEN_INT_TO_RTYPE.items()} class EDOM(GeomCommon): """defines methods for reading op2 properties""" def _read_edom4_4(self, data, ndata): """ reads the EDOM table SOL 200 design optimization and sensitivity analysis bulk entries. """ return self._read_geom_4(self._edom_map, data, ndata) def __init__(self): GeomCommon.__init__(self) # F:\work\pyNastran\pyNastran\master2\pyNastran\bdf\test\nx_spike\out_altmdtku4.op2 # F:\work\pyNastran\pyNastran\master2\pyNastran\bdf\test\nx_spike\out_altd200x7.op2 # F:\work\pyNastran\pyNastran\master2\pyNastran\bdf\test\nx_spike\out_mdtku1.op2 # F:\work\pyNastran\pyNastran\master2\pyNastran\bdf\test\nx_spike\out_mcso14.op2 # F:\work\pyNastran\pyNastran\master2\pyNastran\bdf\test\nx_spike\out_ds105.op2 # F:\work\pyNastran\pyNastran\master2\pyNastran\bdf\test\nx_spike\out_altcc574.op2 # F:\work\pyNastran\pyNastran\master2\pyNastran\bdf\test\nx_spike\out_adjoint.op2 # F:\work\pyNastran\pyNastran\master2\pyNastran\bdf\test\nx_spike\out_mcso18.op2 # F:\work\pyNastran\pyNastran\master2\pyNastran\bdf\test\nx_spike\out_cqr4optstdis.op2 # F:\work\pyNastran\pyNastran\master2\pyNastran\bdf\test\nx_spike\out_d200ce12.op2 #: Optimization Table (I think this is NX-specifc) self._edom_map = { # are these 3 really EDOM? #MAT1DOM(103,1,9944) #MAT10DOM(2801,28,9945) #MODTRAK(6006,60,477) (103, 1, 9944) : ['MAT1DOM', self._read_mat1dom], (304, 3, 276) : ['DSCONS', self._read_dscons], (404, 4, 277) : ['DVAR', self._read_dvar], (504, 5, 246) : ['DVSET', self._read_dvset], (4106, 41, 362) : ['DCONSTR', self._read_dconstr], #DDVAL(7000,70,563) #DRESP3(6700,67,433) #(504, 5, 246) : ['???', self._read_fake], #(504, 5, 246) : ['???', self._read_fake], #(504, 5, 246) : ['???', self._read_fake], #(504, 5, 246) : ['???', self._read_fake], #(504, 5, 246) : ['???', self._read_fake], (3106, 31, 352) : ['DESVAR', self._read_desvar], (3206, 32, 353) : ['DLINK', self._read_dlink], (3306, 33, 354) : ['DVPREL1', self._read_dvprel1], (3406, 34, 355) : ['DVPREL2', self._read_dvprel2], #DOPTPRM(4306,43,364) (3706, 37, 358) : ['DTABLE', self._read_dtable], #(3806, 38, 359) : ['DRESP1', self._read_dresp1], (3806, 38, 359) : ['DRESP1', self._read_fake], (3906, 39, 360) : ['DRESP2', self._read_fake], (4206, 42, 363) : ['DSCREEN', self._read_dscreen], (4306, 43, 364) : ['DOPTPRM', self._read_doptprm], (4406, 44, 372) : ['DVGRID', self._read_dvgrid], #DVSHAP(5006,50,470) (5106, 51, 471) : ['DCONADD', self._read_fake], #DVBSHAP(5806,58,474) #DVGEOM(5906,59,356) (6006, 60, 477) : ['MODTRAK', self._read_fake], #DRESP3(6700,67,433) (6100, 61, 429) : ['DVCREL1', self._read_fake], (6200, 62, 430) : ['DVCREL2', self._read_fake], (6300, 63, 431) : ['DVMREL1', self._read_dvmrel1], (6400, 64, 432) : ['DVMREL2', self._read_dvmrel2], (6006, 60, 477) : ['???', self._read_fake], (7000, 70, 563) : ['DCONSTR/DDVAL?', self._read_fake], } def _read_dconstr(self, data: bytes, n: int) -> int: """ Record – DCONSTR(4106,41,362) Design constraints. Word Name Type Description 1 DCID I Design constraint set identification number 2 RID I DRESPi entry identification number 3 LALLOW RS Lower bound on the response quantity. Undefined if LTID is nonzero 4 UALLOW RS Upper bound on the response quantity. Undefined if UTID is nonzero 5 LOWFQ RS Low end of frequency range in Hz 6 HIGHFQ RS High end of frequency range in Hz 7 LTID I Identification number of TABLEDi entry giving lower bound on the response quantity as a function of frequency or 0 if not specified 8 UTID I Identification number of TABLEDi entry giving upper bound on the response quantity as a function of frequency or 0 if not specified data = (50, 2, 0.0016, 0.0018, 0.0, 1.0e+20, 0, 0) """ ntotal = 32 * self.factor # 8 * 4 struct1 = Struct(mapfmt(self._endian + b'ii 4f ii', self.size)) ndatai = len(data) - n ncards = ndatai // ntotal for unused_icard in range(ncards): edata = data[n:n+ntotal] out = struct1.unpack(edata) oid, dresp_id, lallow, uallow, lowfq, highfq, ltid, utid = out #print(oid, dresp_id, lallow, uallow, lowfq, highfq, ltid, utid) lid = ltid if ltid != 0 else lallow uid = utid if utid != 0 else uallow dconstr = self.add_dconstr(oid, dresp_id, lid=lid, uid=uid, lowfq=lowfq, highfq=highfq) dconstr.validate() str(dconstr) #print(dconstr) n += ntotal return n def _read_dscreen(self, data: bytes, n: int) -> int: """ DSCREEN(4206, 42, 363) Design constraint screening data. Word Name Type Description 1 RTYPE I Response type for which the screening criteria apply 2 TRS RS Truncation threshold 3 NSTR I Maximum number of constraints to be retained per region per load case data = (5, -0.70, 10) """ ntotal = 12 * self.factor # 3*4 struct1 = Struct(mapfmt(self._endian + b'ifi', self.size)) ndatai = len(data) - n ncards = ndatai // ntotal msg = '' for unused_icard in range(ncards): edata = data[n:n+ntotal] out = struct1.unpack(edata) rtype_int, trs, nstr = out n += ntotal if rtype_int in DSCREEN_INT_TO_RTYPE: rtype = DSCREEN_INT_TO_RTYPE[rtype_int] elif rtype_int == 7: # STRAIN/FORCE/EQUA? # C:\MSC.Software\simcenter_nastran_2019.2\tpl_post1\mereiglc.op2 #DSCREEN,DISP,-1000.0,20 #DSCREEN,STRESS,-1000.0,20 #DSCREEN,STRAIN,-1000.0,20 #DSCREEN,FORCE,-1000.0,20 #DSCREEN,EQUA,-1000.0,20 #DSCREEN,EIGN,-1000.0 #DSCREEN,LAMA,-1000.0 rtype = 'STRAIN?' msg += f'rtype_int={rtype_int}? trs={trs} nstr={nstr}\n' continue elif rtype_int == 8: # STRAIN/FORCE/EQUA? rtype = 'FORCE?' msg += f'rtype_int={rtype_int}? trs={trs} nstr={nstr}\n' continue elif rtype_int == 91: # STRAIN/FORCE/EQUA? rtype = 'EQUA?' #DSCREEN,FORCE,-1000.0,20 #DSCREEN,EQUA,-1000.0,20 msg += f'rtype_int={rtype_int}? trs={trs} nstr={nstr}\n' continue else: rtype = "?" msg += f'rtype_int={rtype_int}? trs={trs} nstr={nstr}\n' continue #raise NotImplementedError(f'rtype_int={rtype_int}? trs={trs} nstr={nstr}') dscreen = self.add_dscreen(rtype, trs=trs, nstr=nstr) dscreen.validate() str(dscreen) #print(dscreen.rstrip()) if msg: msg2 = 'Error reading DSCREEN\n' + msg self.log.error(msg2) #raise RuntimeError(msg2) return n def _read_doptprm(self, data: bytes, n: int) -> int: """ Record – DOPTPRM(4306,43,364) Design optimization parameters. Word Name Type Description 1 APRCOD I Approximation method 2 IPRINT I Print control during approximate optimization phase with DOT 3 DESMAX I Maximum number of design cycles 4 METHOD I DOT optimization method 5 DELP RS Fractional change allowed in each property during any optimization design cycle 6 DPMIN RS Minimum move limit imposed 7 PTOL RS Maximum tolerance on differences allowed between the property values on property entries and the property values calculated from the design variable values on the DESVAR entry 8 CONV1 RS Relative objective function convergence criterion 9 CONV2 RS Absolute objective function convergence criterion 10 GMAX RS Maximum constraint violation allowed at the converged optimum 11 DELX RS Fractional change allowed in each design variable during any optimization cycle 12 DXMIN RS Minimum absolute limit on design variable move 13 DELB RS Relative finite difference move parameter 14 GSCAL RS Constraint normalization factor 15 CONVDV RS Relative convergence criterion on design variables 16 CONVPR RS Relative convergence criterion on properties 17 P1 I Design cycles in which output is printed 18 P2 I Items to be printed at the design cycles defined by P1 19 CT RS Constraint tolerance 20 CTMIN RS Constraint violation threshold 21 DABOBJ RS DOT absolute objective function convergence criterion 22 DELOBJ RS DOT relative objective function convergence criterion 23 DOBJ1 RS DOT 1–D search absolute objective limit 24 DOBJ2 RS DOT 1–D search relative objective limit 25 DX1 RS DOT 1–D search absolute DV limit 26 DX2 RS DOT 1–D search relative DV limit 27 ISCAL I Design variables are rescaled every ISCAL iterations 28 ITMAX I Maximum DOT MFD iterations per cycle 29 ITRMOP I Maximum consecutive DOT MFD iterations at convergence 30 IWRITE I File number for DOT optimizer printout 31 IGMAX I Active constraint counter 32 JTMAX I Maximum DOT SLP iterations per cycle 33 ITRMST I Maximum consecutive DOT SLP iterations at convergence 34 JPRINT I SLP subproblem print within DOT 35 IPRNT1 I Print scaling factors for design variable vector within DOT 36 IPRNT2 I DOT 1–D search or miscellaneous information print 37 JWRITE I File number on which iteration history is written within DOT 38 STPSCL RS Scale factor for shape finite difference step sizes applied to all shape design variables 39 FSDMAX I Number of FSD cycles to be performed 40 FSDALP RS Relaxation parameter applied in FSD 41 DISCOD I Discrete processing method code 42 DISBEG I Design cycle ID for discrete variable processing initiation 43 PLVIOL I Flag for handling property limit violation 44 P2RSET I ID of a SET1 entry listing constrained responses to be printed if retained 45 EDVOUT RS Fraction of DVEREL1 DESVARs to be output in f06 file 46 MXCRTRSP I Flag to handle CSV output """ #if self.size == 4: ntotal = 184 * self.factor # 46 * 4 struct1 = Struct(mapfmt(self._endian + b'4i 12f 2i 8f 11i f i f 4i f i', self.size)) ndatai = len(data) - n ncards = ndatai // ntotal for unused_icard in range(ncards): edata = data[n:n+ntotal] out = struct1.unpack(edata) (aprcod, iprint, desmax, method, # ints delp, dpmin, ptol, conv1, conv2, gmax, delx, dxmin, delb, gscal, convdv, convpr, # floats p1, p2, # ints ct, ctmin, dabobj, delobj, dobj1, dobj2, dx1, dx2, # floats iscal, itmax, itrmop, iwrite, igmax, jtmax, itrmst, jprint, iprnt1, iprnt2, jwrite, # ints stpscl, # float fsdmax, # int fsdalp, # float discod, disbeg, plviol, p2rset, # ints edvout, # float mxcrtrsp) = out # int params = { # ints 'APRCOD' : aprcod, 'IPRINT' : iprint, 'DESMAX' : desmax, 'METHOD' : method, # floats 'DELP' : delp, 'DPMIN' : dpmin, 'PTOL' : ptol, 'CONV1' : conv1, 'CONV2' : conv2, 'GMAX' : gmax, 'DELX' : delx, 'DXMIN' : dxmin, 'DELB' : delb, 'GSCAL' : gscal, 'CONVDV' : convdv, 'CONVPR' : convpr, # ints 'P1' : p1, 'P2' : p2, # floats 'CT' : ct, 'CTMIN' : ctmin, 'DABOBJ' : dabobj, 'DELOBJ' : delobj, 'DOBJ1' : dobj1, 'DOBJ2' : dobj2, 'DX1' : dx1, 'DX2' : dx2, # ints 'ISCAL' : iscal, 'ITMAX' : itmax, 'ITRMOP' : itrmop, 'IWRITE' : iwrite, 'IGMAX' : igmax, 'JTMAX' : jtmax, 'ITRMST' : itrmst, 'JPRINT' : jprint, 'IPRNT1' : iprnt1, 'IPRNT2' : iprnt2, 'JWRITE' : jwrite, 'STPSCL' : stpscl, # float 'FSDMAX' : fsdmax, 'FSDALP' : fsdalp, # float 'DISCOD' : discod, 'DISBEG' : disbeg, 'PLVIOL' : plviol, 'P2RSET' : p2rset, 'EDVOUT' : edvout, # float 'MXCRTRSP' : mxcrtrsp, } doptprm = self.add_doptprm(params) for key, default_value in doptprm.defaults.items(): if default_value is None: continue if key not in params: continue value_actual = params[key] assert isinstance(default_value, type(value_actual)), f'key={key!r} value={default_value!r} value_actual={value_actual!r}' if isinstance(value_actual, int) and value_actual == default_value: del doptprm.params[key] elif isinstance(default_value, float) and np.allclose(value_actual, default_value): del doptprm.params[key] str(doptprm) n += ntotal self.card_count['DOPTPRM'] = ncards return n def _read_dtable(self, data: bytes, n: int) -> int: """ Record – DTABLE(3706,37,358) Table constants. Word Name Type Description 1 LABLi(2) CHAR4 Label for the constant 3 VALUi RS Value of the constant Words 1 thru 3 repeat until -1 occurs """ if self.size == 4: struct1 = Struct(self._endian + b'8s f') else: aaa ints = np.frombuffer(data[n:], self.idtype8).copy() #floats = np.frombuffer(data[n:], self.fdtype8).copy() istart, iend = get_minus1_start_end(ints) ncards = 0 size = self.size ntotal = 12 * self.factor # 3*4 for (i0, i1) in zip(istart, iend): assert ints[i1] == -1, ints[i1] default_values = {} nfields = (i1 - i0) // 3 for unused_i in range(nfields): edata = data[n:n+ntotal] key_bytes, value = struct1.unpack(edata) if size == 4: key = key_bytes.decode('latin1').rstrip() default_values[key] = value n += ntotal assert n <= len(data), n dtable = self.add_dtable(default_values) str(dtable) n += size ncards += 1 self.card_count['DTABLE'] = ncards return n def _read_mat1dom(self, data: bytes, n: int) -> int: """ If one or more properties from a MAT1 entry are used as design variables, the MAT1DOM record is written to the EDOM data block. This is different than the MAT1 record in the MPT data block. Word Name Type Description 1 MID I MAT1 identification number 2 FTE I Format code for Young’s modulus 3 FTG I Format code for shear modulus 4 FTNU I Format code for Poisson’s ratio (2, 2, 0, 2) """ assert len(data) == 28, len(data) return len(data) def _read_dvgrid(self, data: bytes, n: int) -> int: """ Design variable to grid point relation. Word Name Type Description 1 DVID I DESVAR entry identification number 2 GID I Grid point or geometric point identification number 3 CID I Coordinate system identification number 4 COEFF RS Multiplier of the vector defined by N(3) 5 N1 RS Component of the vector measured in the coordinate system defined by CID 6 N2 RS Component of the vector measured in the coordinate system defined by CID 7 N3 RS Component of the vector measured in the coordinate system defined by CID """ ntotal = 28 * self.factor # 7*4 struct1 = Struct(mapfmt(self._endian + b'3i 4f', self.size)) ncards = (len(data) - n) // ntotal for unused_i in range(ncards): edata = data[n:n + ntotal] dvgrid_id, nid, cid, coeff, *dxyz = struct1.unpack(edata) assert len(dxyz) == 3, dxyz dvgrid = self.add_dvgrid(dvgrid_id, nid, dxyz, cid=cid, coeff=coeff) dvgrid.write_card_16() n += ntotal return n def _read_dvprel1(self, data: bytes, n: int) -> int: """ Word Name Type Description 1 ID I Unique identification number 2 TYPE(2) CHAR4 Name of a property entry 4 PID I Property entry identification number 5 FID I FID number input. Otherwise, either 0 if property name is input, or frequency (RS) if entry is for frequency dependent property. (See Words 9 and 10) 6 PMIN RS Minimum value allowed for this property 7 PMAX RS Maximum value allowed for this property 8 C0 RS Constant term of relation 9 PNAME1 CHAR4 First word of property name, if any, or blanks if FID number is nonzero in Word 5 10 PNAME2 CHAR4 Second word of property name, if any. Otherwise, either blanks if FID number is nonzero in Word 5, or frequency (RS) if entry is for frequency dependent property. (See Word 5) 11 DVIDi I DESVAR entry identification number 12 COEFi RS Coefficient of linear relation Words 11 and 12 repeat until -1 occurs """ ints = np.frombuffer(data[n:], self.idtype8).copy() floats = np.frombuffer(data[n:], self.fdtype8).copy() iminus1 = np.where(ints == -1)[0] ncards = 0 istart = [0] + list(iminus1[:-1] + 1) iend = iminus1 size = self.size for (i0, i1) in zip(istart, iend): assert ints[i1] == -1, ints[i1] dvprel_id = ints[i0] type_bytes = data[n+size:n+3*size] property_name_bytes = data[n+8*size:n+10*size] prop_type = reshape_bytes_block_size(type_bytes, size=size) pid, fid = ints[i0+3:i0+5] pmin, pmax, c0 = floats[i0+5:i0+8] if fid == 0: fid = reshape_bytes_block_size(property_name_bytes, size=size) # fid = fidi #print(dvprel_id, prop_type, pid, fid, (pmin, pmax, c0)) desvar_ids = ints[i0+10:i1:2] coeffs = floats[i0+11:i1:2] # 2 TYPE(2) CHAR4 Name of a property entry # 4 PID I Property entry identification number # 5 FID I FID number input. Otherwise, either 0 if property # name is input, or frequency (RS) if entry is for # frequency dependent property. (See Words 9 and 10) # 6 PMIN RS Minimum value allowed for this property # 7 PMAX RS Maximum value allowed for this property # 8 C0 RS Constant term of relation dvprel = DVPREL1(dvprel_id, prop_type, pid, fid, desvar_ids, coeffs, p_min=pmin, p_max=pmax, c0=c0, validate=True) if dvprel_id in self.dvprels: dvprel_old = self.dvprels[dvprel_id] if dvprel == dvprel_old: pass else: self._add_dvprel_object(dvprel) ncards += 1 dvprel.write_card_16() n += (i1 - i0 + 1) * size self.card_count['DVPREL1'] = ncards return n def _read_dvmrel1(self, data: bytes, n: int) -> int: """ Design variable to material relation. Word Name Type Description 1 ID I Unique identification number 2 TYPE(2) CHAR4 Name of a material property entry 4 MID I Material identification number 5 FID I Entry is 0 6 MPMIN RS Minimum value allowed for this property 7 MPMAX RS Maximum value allowed for this property 8 C0 RS Constant term of relation 9 MPNAME(2) CHAR4 Name of material property 11 DVIDi I DESVAR entry identification number 12 COEFi RS Coefficient of linear relation Words 11 and 12 repeat until -1 occurs """ ints = np.frombuffer(data[n:], self.idtype8).copy() floats = np.frombuffer(data[n:], self.fdtype8).copy() istart, iend = get_minus1_start_end(ints) size = self.size for (i0, i1) in zip(istart, iend): #self.show_data(data[n+i0*size:n+i1*size], types='ifs') assert ints[i1] == -1, ints[i1] dvmrel_id = ints[i0] mat_type_bytes = data[n+size:n+3*size] mid = ints[i0+3] mp_name_bytes = data[n+8*size:n+10*size] mat_type = reshape_bytes_block_size(mat_type_bytes, size=size) mp_name = reshape_bytes_block_size(mp_name_bytes, size=size) pid, fid = ints[i0+3:i0+5] mp_min, mp_max, c0 = floats[i0+5:i0+8] assert fid == 0, (dvmrel_id, mid, mat_type_bytes, mp_name, pid, fid) #print(dvmrel_id, mid, mat_type_bytes, mp_name, pid, fid) desvar_ids = ints[i0+10:i1:2] coeffs = floats[i0+11:i1:2] dvmrel = self.add_dvmrel1(dvmrel_id, mat_type, mid, mp_name, desvar_ids, coeffs, mp_min=mp_min, mp_max=mp_max, c0=c0, validate=True) dvmrel.write_card_16() n += (i1 - i0 + 1) * size return n def _read_dvprel2(self, data: bytes, n: int) -> int: """ Record – DVPREL2(3406,34,355) Design variable to property relation based on a user-supplied equation. Word Name Type Description 1 ID I Unique identification number 2 TYPE(2) CHAR4 Name of a property entry 4 PID I Property entry identification number 5 FID I FID number input. Otherwise, either 0 if property name is input, or frequency (RS) if entry is for frequency dependent property. (See Words 9 and 10) 6 PMIN RS Minimum value allowed for this property 7 PMAX RS Maximum value allowed for this property 8 EQID I DEQATN entry identification number 9 PNAME1 CHAR4 First word of property name, if any, or blank if FID number is nonzero (Word 5) 10 PNAME2 CHAR4 Second word of property name, if any. Otherwise, either blanks if FID number is nonzero (See Word 5), or frequency (RS) if entry is for frequency dependent property. (See Word 5) 11 FLAG I DESVAR/DTABLE FLAG = 1000 DESVAR 12 DVIDi I A DESVAR entry identification number Word 12 repeats until -1000 FLAG = 2000 DTABLE 12 LABLi(2) CHAR4 Label for a constant on the DTABLE entry Words 12 and 13 repeat until -2000 End flag when -1 occurs data = (2, PROD, 101, 4, -1.0e+35, 1.0e+20, 2, '', 1000, 2, -1000, 2000, L1, -2000) """ #return self._read_dvxrel2(data, n, DVPREL2) n0 = n ints = np.frombuffer(data[n:], self.idtype8).copy() floats = np.frombuffer(data[n:], self.fdtype8).copy() istart, iend = get_minus1_start_end(ints) size = self.size for (i0, i1) in zip(istart, iend): #self.show_data(data[n+i0*size:n+i1*size], types='ifs') assert ints[i1] == -1, ints[i1] dvprel_id = ints[i0] prop_type_bytes = data[n0+(i0+1)*size:n0+(i0+3)*size] pid, fid = ints[i0+3:i0+5] p_min, p_max = floats[i0+5:i0+7] deqation = ints[i0+7] #data[n0+iflag*size:n0+(iflag+1)*size]) prop_name_bytes = data[n0+(i0+8)*size:n0+(i0+10)*size] if size == 4: prop_type = prop_type_bytes.decode('latin1').rstrip() prop_name = prop_name_bytes.decode('latin1').rstrip() else: asdf if prop_name_bytes == b' ': assert fid != 0 pname_fid = fid else: assert fid == 0, f'fid={fid} prop_name_bytes={prop_name_bytes}' pname_fid = prop_name #print(dvprel_id, prop_type, pid, pname_fid, deqation) iend, dvids, labels = _read_dvxrel2_flag(data, n0, i0, i1, size, ints) #print(dvids, labels) dvprel = self.add_dvprel2(dvprel_id, prop_type, pid, pname_fid, deqation, dvids=dvids, labels=labels, p_min=p_min, p_max=p_max, validate=True) dvprel.validate() #print(dvprel) #print('--------------------') dvprel.write_card_16() n += (i1 - i0 + 1) * size return n def _read_dvmrel2(self, data: bytes, n: int) -> int: """ Record – DVMREL2(6400,64,432) Design variable to material relation based on a user-supplied equation. Word Name Type Description 1 ID I Unique identification number 2 TYPE(2) CHAR4 Name of a material property entry 4 MID I Material identification number 5 FID I Entry is 0 6 MPMIN RS Minimum value allowed for this property 7 MPMAX RS Maximum value allowed for this property 8 EQID I DEQATN entry identification number 9 MPNAME(2) CHAR4 Name of material property 11 FLAG I DESVAR/DTABLE FLAG = 1000 DESVAR 12 DVIDi I A DESVAR entry identification number Word 12 repeats until -1000 FLAG = 2000 DTABLE 12 LABLi(2) CHAR4 Label for a constant on the DTABLE entry Words 12 and 13 repeat until -2000 End flag when -1 occurs """ cls = DVMREL2 #return self._read_dvxrel2(data, n, DVMREL2) #def _read_dvxrel2(self, data: bytes, n: int, cls) -> int: n0 = n ints = np.frombuffer(data[n:], self.idtype8).copy() floats = np.frombuffer(data[n:], self.fdtype8).copy() iminus1 = np.where(ints == -1)[0] istart = [0] + list(iminus1[:-1] + 1) iend = iminus1 size = self.size for (i0, i1) in zip(istart, iend): #self.show_data(data[n+i0*size:n+i1*size], types='ifs') assert ints[i1] == -1, ints[i1] dvmrel_id = ints[i0] mat_type_bytes = data[n0+(i0+1)*size:n0+(i0+3)*size] mid, fid = ints[i0+3:i0+5] mp_min, mp_max = floats[i0+5:i0+7] deqation = ints[i0+7] #data[n0+iflag*size:n0+(iflag+1)*size]) mp_name_bytes = data[n0+(i0+8)*size:n0+(i0+10)*size] if size == 4: mat_type = mat_type_bytes.decode('latin1').rstrip() mp_name = mp_name_bytes.decode('latin1').rstrip() else: asdf if mp_name_bytes == b' ': assert fid != 0 mpname_fid = fid else: assert fid == 0, f'fid={fid} mp_name_bytes={mp_name_bytes}' #print(dvmrel_id, mat_type, (mid, fid), (mp_min, mp_max), deqation, mp_name, flag) iend, dvids, labels = _read_dvxrel2_flag(data, n0, i0, i1, size, ints) #labels = labels. #print(dvids, labels) card_name = cls.type if card_name == 'DVPREL2': pid = mid dvprel_id = dvmrel_id prop_type = mat_type pname_fid = mp_name dvxrel = self.add_dvprel2(dvprel_id, prop_type, pid, pname_fid, deqation, dvids=dvids, labels=labels, p_min=mp_min, p_max=mp_max, validate=True) elif card_name == 'DVMREL2': dvxrel = self.add_dvmrel2(dvmrel_id, mat_type, mid, mp_name, deqation, dvids=dvids, labels=labels, mp_min=mp_min, mp_max=mp_max, validate=True) dvxrel.validate() #print(dvxrel) #print('--------------------') dvxrel.write_card_16() n += (i1 - i0 + 1) * size return n def _read_dresp1(self, data: bytes, n: int) -> int: """ Word Name Type Description 1 ID I Unique entry identifier 2 LABEL(2) CHAR4 User-defined label 4 FLAG I Flag indicating response type FLAG = 1 WEIGHT 5 UNDEF(2) None 7 REGION I Region identifier for constraint screening 8 ATTA I Response attribute (-10 for DWEIGHT which is the topology optimization design weight 9 ATTB I Response attribute 10 MONE I Entry is -1 FLAG = 2 VOLUME 5 UNDEF(2) None 7 REGION I Region identifier for constraint screening 8 ATTA I Response attribute 9 ATTB I Response attribute 10 MONE I Entry is -1 FLAG = 3 LAMA 5 UNDEF(2) None 7 REGION I Region identifier for constraint screening 8 ATTA I Response attribute 9 ATTB I Response attribute 10 MONE I Entry is -1 FLAG = 4 EIGN 5 UNDEF(2) None 7 REGION I Region identifier for constraint screening 8 ATTA I Response attribute 9 ATTB I Response attribute 10 MONE I Entry is -1 FLAG = 5 DISP 5 UNDEF(2) None 7 REGION I Region identifier for constraint screening 8 ATTA I Response attribute 9 ATTB I Response attribute 10 ATTi I Grid point IDs Word 10 repeats until -1 occurs FLAG = 6 STRESS 5 PTYPE(2) CHAR4 Element flag (ELEM) or property entry name 7 REGION I Region identifier for constraint screening 8 ATTA I Response attribute 9 ATTB I Response attribute 10 ATTi I Element numbers (if Word 5 is ELEM) or property IDs Word 10 repeats until -1 occurs FLAG = 7 STRAIN 5 PTYPE(2) CHAR4 Element flag (ELEM) or property entry name 7 REGION I Region identifier for constraint screening 8 ATTA I Response attribute 9 ATTB I Response attribute 10 ATTi I Element numbers (if Word 5 is ELEM) or property IDs Word 10 repeats until -1 occurs FLAG = 8 FORCE 5 PTYPE(2) CHAR4 Element flag (ELEM) or property entry name 7 REGION I Region identifier for constraint screening 8 ATTA I Response attribute 9 ATTB I Response attribute 10 ATTi I Element numbers (if Word 5 is ELEM) or property IDs Word 10 repeats until -1 occurs FLAG = 9 CFAILURE 5 PTYPE(2) CHAR4 Element flag (ELEM) or composite property entry name 7 REGION I Region identifier for constraint screening 8 ATTA I Response attribute 9 ATTB I Response attribute 10 ATTi I Element numbers (if Word 5 is ELEM) or composite property IDs Word 10 repeats until -1 occurs FLAG = 10 CSTRESS 5 PTYPE(2) CHAR4 Element flag (ELEM) or composite property entry name 7 REGION I Region identifier for constraint screening 8 ATTA I Response attribute 9 ATTB I Response attribute 10 ATTi I Element numbers (if Word 5 is ELEM) or composite property IDs Word 10 repeats until -1 occurs FLAG = 11 CSTRAIN 5 PTYPE(2) CHAR4 Element flag (ELEM) or composite property entry name 7 REGION I Region identifier for constraint screening 8 ATTA I Response attribute 9 ATTB I Response attribute 10 ATTi I Element numbers (if Word 5 is ELEM) or composite property IDs Word 10 repeats until -1 occurs FLAG = 12 FREQ 5 UNDEF(2) None 7 REGION I Region identifier for constraint screening 8 ATTA I Response attribute 9 ATTB I Response attribute 10 MONE I Entry is -1 FLAG = 13 SPCFORCE 5 UNDEF(2) None 7 REGION I Region identifier for constraint screening 8 ATTA I Response attribute 9 ATTB I Response attribute 10 ATTi I Grid point IDs Word 10 repeats until -1 occurs FLAG = 14 ESE 5 PTYPE(2) CHAR4 Element flag (ELEM) or property entry name 7 REGION I Region identifier for constraint screening 8 ATTA I Response attribute 9 ATTB I Response attribute 10 ATTi I Element numbers (if Word 5 is ELEM) or property IDs Word 10 repeats until -1 occurs FLAG = 15 CEIG 5 UNDEF(2) None 7 REGION I Region identifier for constraint screening 8 ATTA I Response attribute 9 ATTB I Response attribute 10 MONE I Entry is -1 FLAG = 17 Compliance 5 UNDEF(2) None 7 UNDEF I Reserved for SEID for compliance DRESP1 8 UNDEF(2) None 10 MONE I Entry is -1 FLAG = 19 ERP 5 UNDEF(2) None 7 REGION I Region identifier 8 ATTA I Response attribute 9 ATTB I Frequency or real code for character input, or -1=spawn) 10 ATTi I Panel SET3 IDs Word 10 repeats until -1 occurs FLAG = 20 FRDISP 5 UNDEF(2) None 7 REGION I Region identifier for constraint screening 8 ATTA I Response attribute 9 ATTB RS Frequency value; -1 (integer) spawn for all frequencies in set; -1.10000E+08 for SUM; -1.20000E+08 for AVG; -1.30000E+08 for SSQ; -1.40000E+08 for RSS; -1.50000E+08 for MAX; -1.60000E+08 for MIN 10 ATTi I Grid point IDs Word 10 repeats until -1 occurs FLAG = 21 FRVELO 5 UNDEF(2) None 7 REGION I Region identifier for constraint screening 8 ATTA I Response attribute 9 ATTB RS Frequency value; -1 (integer) spawn for all frequencies in set; -1.10000E+08 for SUM; -1.20000E+08 for AVG; -1.30000E+08 for SSQ; -1.40000E+08 for RSS; -1.50000E+08 for MAX; -1.60000E+08 for MIN 10 ATTi I Grid point IDs Word 10 repeats until -1 occurs FLAG = 22 FRACCL 5 UNDEF(2) None 7 REGION I Region identifier for constraint screening 8 ATTA I Response attribute 9 ATTB RS Frequency value; -1 (integer) spawn for all frequencies in set; -1.10000E+08 for SUM; -1.20000E+08 for AVG; -1.30000E+08 for SSQ; -1.40000E+08 for RSS; -1.50000E+08 for MAX; -1.60000E+08 for MIN 10 ATTi I Grid point IDs Word 10 repeats until -1 occurs FLAG = 23 FRSPCF 5 UNDEF(2) None 7 REGION I Region identifier for constraint screening 8 ATTA I Response attribute 9 ATTB RS Frequency value; -1 (integer) spawn for all frequencies in set; -1.10000E+08 for SUM; -1.20000E+08 for AVG; -1.30000E+08 for SSQ; -1.40000E+08 for RSS; -1.50000E+08 for MAX; -1.60000E+08 for MIN 10 ATTi I Grid point IDs Word 10 repeats until -1 occurs FLAG = 24 FRSTRE 5 PTYPE(2) CHAR4 Element flag (ELEM) or property entry name 7 REGION I Region identifier for constraint screening 8 ATTA I Response attribute 9 ATTB RS Frequency value; -1 (integer) spawn for all frequencies in set; -1.10000E+08 for SUM; -1.20000E+08 for AVG; -1.30000E+08 for SSQ; -1.40000E+08 for RSS; -1.50000E+08 for MAX; -1.60000E+08 for MIN 10 ATTi I Element numbers (if Word 5 is ELEM) or property IDs Word 10 repeats until -1 occurs FLAG = 25 FRFORC 5 PTYPE(2) CHAR4 Element flag (ELEM) or property entry name 7 REGION I Region identifier for constraint screening 8 ATTA I Response attribute 9 ATTB RS Frequency value; -1 (integer) spawn for all frequencies in set; -1.10000E+08 for SUM; -1.20000E+08 for AVG; -1.30000E+08 for SSQ; -1.40000E+08 for RSS; -1.50000E+08 for MAX; -1.60000E+08 for MIN 10 ATTi I Element numbers (if Word 5 is ELEM) or property IDs Word 10 repeats until -1 occurs FLAG = 26 RMSDISP 5 UNDEF(2) None 7 REGION I Region identifier for constraint screening 8 ATTA I Response attribute 9 ATTB I Random ID 10 ATTi I Grid point IDs Word 10 repeats until -1 occurs FLAG = 27 RMSVELO 5 UNDEF(2) None 7 REGION I Region identifier for constraint screening 8 ATTA I Response attribute 9 ATTB I Random ID 10 ATTi I Grid point IDs Word 10 repeats until -1 occurs FLAG = 28 RMSACCL 5 UNDEF(2) None 7 REGION I Region identifier for constraint screening 8 ATTA I Response attribute 9 ATTB I Random ID 10 ATTi I Grid point IDs Word 10 repeats until -1 occurs FLAG = 29 PSDDISP 5 UNDEF None 6 PTYPE I Random ID 7 REGION I Region identifier for constraint screening 8 ATTA I Response attribute 9 ATTB RS Frequency value; -1 (integer) spawn for all frequencies in set; -1.10000E+08 for SUM; -1.20000E+08 for AVG; -1.30000E+08 for SSQ; -1.40000E+08 for RSS; -1.50000E+08 for MAX; -1.60000E+08 for MIN 10 ATTi I Grid point IDs Word 10 repeats until -1 occurs FLAG = 30 PSDVELO 5 UNDEF None 6 PTYPE I Random ID 7 REGION I Region identifier for constraint screening 8 ATTA I Response attribute 9 ATTB RS Frequency value; -1 (integer) spawn for all frequencies in set; -1.10000E+08 for SUM; -1.20000E+08 for AVG; -1.30000E+08 for SSQ; -1.40000E+08 for RSS; -1.50000E+08 for MAX; -1.60000E+08 for MIN 10 ATTi I Grid point IDs Word 10 repeats until -1 occurs FLAG = 31 PSDACCL 5 UNDEF None 6 PTYPE I Random ID 7 REGION I Region identifier for constraint screening 8 ATTA I Response attribute 9 ATTB RS Frequency value; -1 (integer) spawn for all frequencies in set; -1.10000E+08 for SUM; -1.20000E+08 for AVG; -1.30000E+08 for SSQ; -1.40000E+08 for RSS; -1.50000E+08 for MAX; -1.60000E+08 for MIN 10 ATTi I Grid point IDs Word 10 repeats until -1 occurs FLAG = 60 TDISP 5 UNDEF(2) None 7 REGION I Region identifier for constraint screening 8 ATTA I Response attribute 9 ATTB RS Time value; -1 (integer) spawn for all time steps in set; -1.10000E+08 for SUM; -1.20000E+08 for AVG; -1.30000E+08 for SSQ; -1.40000E+08 for RSS; -1.50000E+08 for MAX; -1.60000E+08 for MIN 10 ATTi I Grid point IDs Word 10 repeats until -1 occurs FLAG = 61 TVELO 5 UNDEF(2) None 7 REGION I Region identifier for constraint screening 8 ATTA I Response attribute 9 ATTB RS Time value; -1 (integer) spawn for all time steps in set; -1.10000E+08 for SUM; -1.20000E+08 for AVG; -1.30000E+08 for SSQ; -1.40000E+08 for RSS; -1.50000E+08 for MAX; -1.60000E+08 for MIN 10 ATTi I Grid point IDs Word 10 repeats until -1 occurs FLAG = 62 TACCL """ flag_to_resp = { 1 : 'WEIGHT', 2 : 'VOLUME', 3 : 'LAMA', 4 : 'EIGN', 5 : 'DISP', 6 : 'STRESS', 7 : 'STRAIN', 8 : 'FORCE', 9 : 'CFAILURE', 10 : 'CSTRESS', 11 : 'CSTRAIN', 12 : 'FREQ', 13 : 'SPCFORCE', 14 : 'ESE', 15 : 'CEIG', 17 : 'Compliance', 19 : 'ERP', 20: 'FRDISP', 21: 'FRVELO', 22: 'FRACCL', 23: 'FRSPCF', 24: 'FRSTRE', 25: 'FRFORC', 26: 'RMSDISP', 27: 'RMSVELO', 28: 'RMSACCL', 29: 'PSDDISP', 30: 'PSDVELO', 31: 'PSDACCL', 60 : 'TDISP', 61 : 'TVELO', 62 : 'TACCL', } #self.show_data(data[n:], types='qds') ints = np.frombuffer(data[n:], self.idtype8).copy() floats = np.frombuffer(data[n:], self.fdtype8).copy() istart, iend = get_minus1_start_end(ints) #if self.size == 4: #struct1 = Struct(self._endian + b'i 8s i') #strs = np.frombuffer(data[n:], dtype='|S4') #else: #struct1 = Struct(self._endian + b'q 16s q') #strs = np.frombuffer(data[n:], dtype='|S8') #6i #ntotal1 = 16 * self.factor # 4*4 size = self.size def _pick_attbi_attbf(attbi: int, attbf: float) -> Union[float, str]: """ 9 ATTB RS Frequency value; -1 (integer) spawn for all frequencies in set; -1.10000E+08 for SUM; -1.20000E+08 for AVG; -1.30000E+08 for SSQ; -1.40000E+08 for RSS; -1.50000E+08 for MAX; -1.60000E+08 for MIN """ if attbi == -1: attb = 'ALL' else: attb = attbf assert attb > -1.0e+8, attb #print(attbf) #ddd return attb size = self.size for (i0, i1) in zip(istart, iend): assert ints[i1] == -1, ints[i1] #print(i0, i1) dresp_id = ints[i0] label_bytes = data[n+size:n+3*size] label = reshape_bytes_block_size(label_bytes, size=size) flag = ints[i0+3] response_type = flag_to_resp[flag] #print(dresp_id, flag, label) if flag == 1: # WEIGHT # 5 UNDEF(2) None # 7 REGION I Region identifier for constraint screening # 8 ATTA I Response attribute (-10 for DWEIGHT which is the topology optimization design weight # 9 ATTB I Response attribute # 10 MONE I Entry is -1 region, atta, attb = ints[i0+6:i0+9] property_type = None #response_type = 'WEIGHT' assert atta == 33, atta assert attb == -9999, attb atta = None attb = None atti = None elif flag == 2: # FLAG = 2 VOLUME # 5 UNDEF(2) None # 7 REGION I Region identifier for constraint screening # 8 ATTA I Response attribute # 9 ATTB I Response attribute # 10 MONE I Entry is -1 property_type = None region, atta, attb = ints[i0+6:i0+9] atti = None attb = None elif flag == 3: # FLAG = 3 LAMA # 5 UNDEF(2) None # 7 REGION I Region identifier for constraint screening # 8 ATTA I Response attribute # 9 ATTB I Response attribute # 10 MONE I Entry is -1 print(response_type, ints[i0+6:i1], floats[i0+6:i1]) region, atta, attb = ints[i0+6:i0+9] property_type = None #response_type = 'EIGN' assert atta == 1, atta assert attb == 0, attb atti = None elif flag == 4: # FLAG = 4 EIGN # 5 UNDEF(2) None # 7 REGION I Region identifier for constraint screening # 8 ATTA I Response attribute # 9 ATTB I Response attribute # 10 MONE I Entry is -1 region, atta, attb = ints[i0+6:i0+9] property_type = None #response_type = 'EIGN' #assert atta == 1, atta assert attb == 0, attb atti = None #atta = None #attb = None elif flag == 5: # DISP # 5 UNDEF(2) None # 7 REGION I Region identifier for constraint screening # 8 ATTA I Response attribute # 9 ATTB I Response attribute # 10 ATTi I Grid point IDs # Word 10 repeats until -1 occurs property_type = None response_type = 'DISP' region, atta, attb = ints[i0+6:i0+9] atti = ints[i0+9:i1].tolist() elif flag in [6, 7, 11]: # FLAG = 6 STRESS # 5 PTYPE(2) CHAR4 Element flag (ELEM) or property entry name # 7 REGION I Region identifier for constraint screening # 8 ATTA I Response attribute # 9 ATTB I Response attribute # 10 ATTi I Element numbers (if Word 5 is ELEM) or property IDs # Word 10 repeats until -1 occurs property_type_bytes = data[n+4*size:n+6*size] property_type = reshape_bytes_block_size(property_type_bytes, size=size) region, atta, attb = ints[i0+6:i0+9] atti = ints[i0+9:i1].tolist() #print('ptype =', property_type) #print('region =', region) #print(atta, attb, atti) #response_type = 'STRESS' #elif flag == 7: # FLAG = 7 STRAIN # 5 PTYPE(2) CHAR4 Element flag (ELEM) or property entry name # 7 REGION I Region identifier for constraint screening # 8 ATTA I Response attribute # 9 ATTB I Response attribute # 10 ATTi I Element numbers (if Word 5 is ELEM) or property IDs # Word 10 repeats until -1 occurs #elif flag == 11: # FLAG = 11 CSTRAIN # 5 PTYPE(2) CHAR4 Element flag (ELEM) or composite property entry name # 7 REGION I Region identifier for constraint screening # 8 ATTA I Response attribute # 9 ATTB I Response attribute # 10 ATTi I Element numbers (if Word 5 is ELEM) or composite property IDs # Word 10 repeats until -1 occurs elif flag == 12: # FLAG = 12 FREQ # 5 UNDEF(2) None # 7 REGION I Region identifier for constraint screening # 8 ATTA I Response attribute # 9 ATTB I Response attribute # 10 MONE I Entry is -1 property_type = None region, atta, attb = ints[i0+6:i0+9] atti = None elif flag == 15: # FLAG = 15 CEIG # 5 UNDEF(2) None # 7 REGION I Region identifier for constraint screening # 8 ATTA I Response attribute # 9 ATTB I Response attribute # 10 MONE I Entry is -1 #print(ints[i0+6:i1]) #print(floats[i0+6:i1]) property_type = None region, atta, attb = ints[i0+6:i0+9] atti = None elif flag == 19: # FLAG = 19 ERP # 5 UNDEF(2) None # 7 REGION I Region identifier # 8 ATTA I Response attribute # 9 ATTB I Frequency or real code for character input, or -1=spawn) # 10 ATTi I Panel SET3 IDs # Word 10 repeats until -1 occurs property_type = None region, atta, attb = ints[i0+6:i0+9] atti = ints[i0+9:i1].tolist() elif flag == 20: property_type = None # FLAG = 20 FRDISP # 5 UNDEF(2) None # 7 REGION I Region identifier for constraint screening # 8 ATTA I Response attribute # 9 ATTB RS Frequency value; -1 (integer) spawn for all # frequencies in set; -1.10000E+08 for SUM; # -1.20000E+08 for AVG; -1.30000E+08 for SSQ; # -1.40000E+08 for RSS; -1.50000E+08 for MAX; # -1.60000E+08 for MIN # 10 ATTi I Grid point IDs # Word 10 repeats until -1 occurs #print(ints[i0+5:i1]) #print(floats[i0+5:i1]) #print(ints[i0+6:i1]) #print(floats[i0+6:i1]) region, atta, attbi = ints[i0+6:i0+9] attbf = floats[i0+8] atti = ints[i0+9:i1].tolist() attb = _pick_attbi_attbf(attbi, attbf) #print(region, atta, attb, atti) elif flag == 22: # FLAG = 22 FRACCL # 5 UNDEF(2) None # 7 REGION I Region identifier for constraint screening # 8 ATTA I Response attribute # 9 ATTB RS Frequency value; -1 (integer) spawn for all # frequencies in set; -1.10000E+08 for SUM; # -1.20000E+08 for AVG; -1.30000E+08 for SSQ; # -1.40000E+08 for RSS; -1.50000E+08 for MAX; # -1.60000E+08 for MIN # 10 ATTi I Grid point IDs # Word 10 repeats until -1 occurs property_type = None region, atta, attbi = ints[i0+6:i0+9] attbf = floats[i0+8] attb = _pick_attbi_attbf(attbi, attbf) atti = ints[i0+9:i1].tolist() elif flag in [24, 25]: # FLAG = 24 FRSTRE # 5 PTYPE(2) CHAR4 Element flag (ELEM) or property entry name # 7 REGION I Region identifier for constraint screening # 8 ATTA I Response attribute # 9 ATTB RS Frequency value; -1 (integer) spawn for all # frequencies in set; -1.10000E+08 for SUM; # -1.20000E+08 for AVG; -1.30000E+08 for SSQ; # -1.40000E+08 for RSS; -1.50000E+08 for MAX; # -1.60000E+08 for MIN # 10 ATTi I Element numbers (if Word 5 is ELEM) or property IDs # Word 10 repeats until -1 occurs property_type_bytes = data[n+4*size:n+6*size] property_type = reshape_bytes_block_size(property_type_bytes, size=size) region, atta, attbi = ints[i0+6:i0+9] attbf = floats[i0+8] attb = _pick_attbi_attbf(attbi, attbf) atti = ints[i0+9:i1].tolist() #print(property_type, region, atta, attb, atti) #elif flag == 25: # FRDISP # 5 PTYPE(2) CHAR4 Element flag (ELEM) or property entry name # 7 REGION I Region identifier for constraint screening # 8 ATTA I Response attribute # 9 ATTB RS Frequency value; -1 (integer) spawn for all # frequencies in set; -1.10000E+08 for SUM; # -1.20000E+08 for AVG; -1.30000E+08 for SSQ; # -1.40000E+08 for RSS; -1.50000E+08 for MAX; # -1.60000E+08 for MIN # 10 ATTi I Element numbers (if Word 5 is ELEM) or property IDs # Word 10 repeats until -1 occurs elif flag == 29: #FLAG = 29 PSDDISP # 5 UNDEF None # 6 PTYPE I Random ID # 7 REGION I Region identifier for constraint screening # 8 ATTA I Response attribute # 9 ATTB RS Frequency value; -1 (integer) spawn for all # frequencies in set; -1.10000E+08 for SUM; # -1.20000E+08 for AVG; -1.30000E+08 for SSQ; # -1.40000E+08 for RSS; -1.50000E+08 for MAX; # -1.60000E+08 for MIN # 10 ATTi I Grid point IDs # Word 10 repeats until -1 occurs property_type, region, atta, attbi = ints[i0+5:i0+9] print(ints[i0+4:i1+5]) print(floats[i0+4:i1+5]) attbf = floats[i0+8] attb = _pick_attbi_attbf(attbi, attbf) atti = ints[i0+9:i1].tolist() else: raise NotImplementedError(flag) print(response_type) if atta == 0: atta = None if attb == 0: attb = None if atta is not None: atta = int(atta) print(dresp_id, label, response_type, property_type, region, atta, attb, atti) dresp1 = self.add_dresp1(dresp_id, label, response_type, property_type, region, atta, attb, atti, validate=True) dresp1.write_card_16() n += (i1 - i0 + 1) * self.size del dresp_id, label, response_type, property_type, region, atta, attb, atti #for i in range(10): #edata = data[n:n+ntotal1] #dresp1_id, label_bytes, flag = struct1.unpack(edata) ##, undef1, undef2, atta, attb, mone #label = reshape_bytes_block(label_bytes).decode('latin1').rstrip() #print(dresp1_id, label, flag) #self.show_data #ddd return n def _read_dvset(self, data: bytes, n: int) -> int: """ DVSET 13013 PSHELL 4 .02 1.0 13013 DVSET 13016 PSHELL 4 .02 1.0 13016 (11013, 902, 9, 4, 2, 1.0, 1.0, 11013, -1) (11014, 902, 9, 4, 2, 1.0, 1.0, 11014, -1) (13013, 2302, 23, 4, 2, 0.02, 1.0, 13013, -1) (13016, 2302, 23, 4, 2, 0.02, 1.0, 13016, -1) MSC 2018.2 Word Name Type Description 1 VID I 2 TYPE(2) I 4 FIELD I 5 I =1 6 PREF I 7 ALPHA I =2 6 PREF RS 7 ALPHA RS End 8 PID I Word 8 repeats until End of Record data = ( 41, 902, 9, 4, 2, 1.0, 1.0, 21, -1, 42, 302, 3, 5, 2, 1.0, 1.0, 22, -1, 43, 902, 9, 4, 2, 1.0, 1.0, 23, -1, 44, 902, 9, 4, 2, 1.0, 1.0, 24, -1, 45, 302, 3, 5, 2, 1.0, 1.0, 25, -1, 46, 902, 9, 4, 2, 1.0, 1.0, 26, -1, 47, 52, 20, 4, 2, 1.0, 1.0, 27, -1, 48, 5402, 54, -7, 2, 1.0, 1.0, 28, -1, 48, 5402, 54, -167, 2, 1.0, 1.0, 28, -1, 49, 5402, 54, -7, 2, 1.0, 1.0, 29, -1, 49, 5402, 54, -167, 2, 1.0, 1.0, 29, -1, 50, 52, 20, 4, 2, 1.0, 1.0, 30, -1, 99, 52, 20, 3, 1, 91, 0/0.0, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, -1, 99, 5402, 54, 3, 1, 91, 0/0.0, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, -1, 99, 902, 9, 3, 1, 91, 0/0.0, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, -1, 100, 402, 4, 3, 3, 538976288, 1.0, 100, -1, ??? PMASS,None,None 100, 402, 4, 3, 3, 1.3563156426940112e-19, 1.0, 100, -1, ??? 410, 902, 9, 4, 2, 1.0, -1.0, 21, -1, 430, 902, 9, 4, 2, 1.0, -1.0, 23, -1, 440, 902, 9, 4, 2, 1.0, -1.0, 24, -1, 460, 902, 9, 4, 2, 1.0, -1.0, 26, -1, 470, 52, 20, 4, 2, 1.0, -1.0, 27, -1, 480, 5402, 54, -7, 2, 1.0, -1.0, 28, -1, 480, 5402, 54, -167, 2, 1.0, -1.0, 28, -1, 490, 5402, 54, -7, 2, 1.0, -1.0, 29, -1, 490, 5402, 54, -167, 2, 1.0, -1.0, 29, -1, 500, 52, 20, 4, 2, 1.0, -1.0, 30, -1, 999, 52, 20, 3, 1, 91, 0/0.0, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, -1, ) 999, 302, 3, 3, 3, 538976288, 1.0, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, -1, ??? 999, 302, 3, 3, 3, 1.3563156426940112e-19, 1.0, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, -1, ??? 999, 5402, 54, 3, 1, 91, 0/0.0, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, -1, 999, 902, 9, 3, 1, 91, 0/0.0, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, -1) """ #self.show_data(data[12:50], types='ifs') n0 = n size = self.size structi = Struct(self._endian + b'iii ii ff ii') ints = np.frombuffer(data[n:], self.idtype8).copy() floats = np.frombuffer(data[n:], self.fdtype8).copy() istart, iend = get_minus1_start_end(ints) for (i0, i1) in zip(istart, iend): assert ints[i1] == -1, ints[i1] #edata = data[n:n + ntotal] #out = structi.unpack(edata) #print(out) dvset_id, dvset_ptype1, dvset_ptype2, field, flag = ints[i0:i0+5] if flag == 1: pref, alpha = ints[i0+5:i0+7] elif flag == 2: pref, alpha = floats[i0+5:i0+7] elif flag == 3: #print(dvset_id, dvset_ptype1, dvset_ptype2, field, flag) #print(' ? =', ints[i0+5:i0+7], floats[i0+5:i0+7], data[n0+(i0+4)*size:n0+(i0+7)*size]) #pref, alpha = '???', '???' pref = None alpha = None #flag3 else: print(dvset_id, dvset_ptype1, dvset_ptype2, field, flag) raise NotImplementedError(flag) pids = ints[i0+7:i1].tolist() #assert field in [3, 4], field dvset_ptype = (dvset_ptype1, dvset_ptype2) #if dvset_ptype == (902, 9): #ptype = 'PSHELL' if dvset_ptype == (902, 9): ptype = 'PROD' elif dvset_ptype == (5402, 54): ptype = 'PBEAM' elif dvset_ptype == (302, 3): ptype = 'PELAS' elif dvset_ptype == (52, 20): ptype = 'PBAR' elif dvset_ptype == (402, 4): ptype = 'PMASS' elif dvset_ptype == (2302, 23): ptype = 'PSHELL' elif dvset_ptype == (1002, 10): ptype = 'PSHEAR' #elif dvset_ptype == (402, 4): #ptype = 'PMASS' #elif dvset_ptype == (402, 4): #ptype = 'PMASS' #elif dvset_ptype == (2302, 23): #ptype = 'PROD' #elif dvset_ptype == (1002, 10): #ptype = 'PSHEAR' else: raise NotImplementedError(f'DVSET={dvset_id} dvset_ptype={dvset_ptype}') #print(dvset_id, (ptype, field), flag, (pref, alpha), pids) self.add_dvset(dvset_id, ptype, field, pref, pids, alpha=alpha) n += (i1 - i0 + 1) * size #self.log.info(f'skipping {self.card_name} in {self.table_name}; ndata={len(data)-12}') return n def _read_dvar(self, data: bytes, n: int) -> int: """ DVAR 13013 SPARPNL .01 13013 data = (404, 4, 277, 11013, 'SPARPNL ', 0.01, 11013, -1) """ ntotal = 24 ndatai = len(data) - n ncards = ndatai // ntotal assert ndatai % ntotal == 0 structi = Struct(self._endian + b'i 8s fii') for unused_i in range(ncards): edata = data[n:n + ntotal] #self.show_data(edata, types='ifs') #(11013, b'SPRCAPS ', 0.01, 11013, -1) #(11014, b'SPRCAPS ', 0.01, 11014, -1) #(11015, b'SPRCAPS ', 0.01, 11015, -1) #(11016, b'SPRCAPS ', 0.01, 11016, -1) out = structi.unpack(edata) bid, label_bytes, deltab, vid, minus1 = out assert minus1 == -1, out assert isinstance(deltab, float), deltab label = label_bytes.decode('latin1').rstrip() vids = [vid] self.add_dvar(bid, label, vids, deltab=deltab) n += ntotal return n def _read_dscons(self, data: bytes, n: int) -> int: """DSCONS DSCONS 110131 SPRCAPS STRESS 11013 2 25000. MAX """ ndatai = len(data) - n # !12 ntotal = 32 ncards = ndatai // ntotal assert ndatai % ntotal == 0 structi = Struct(self._endian + b'i 8s i 2i fi') constraint_map = { 1 : 'DISP', 2 : 'STRESS', 3 : 'FORCE', 4 : 'LAMA', 5 : 'FREQ', } for unused_i in range(ncards): edata = data[n:n + ntotal] #self.show_data(edata, types='ifs') #(110131, b'SPRCAPS ', 2, 11013, 2, 25000.0, 0) #(110132, b'SPRCAPS ', 2, 11013, 2, -25000.0, 1) #(110141, b'SPRCAPS ', 2, 11014, 2, 25000.0, 0) #(110142, b'SPRCAPS ', 2, 11014, 2, -25000.0, 1) #(110151, b'SPRCAPS ', 2, 11015, 2, 25000.0, 0) #(110152, b'SPRCAPS ', 2, 11015, 2, -25000.0, 1) #(110161, b'SPRCAPS ', 2, 11016, 2, 25000.0, 0) out = structi.unpack(edata) dscid, label_bytes, constraint_int, nid_eid, comp, limit, min_max = out label = label_bytes.decode('latin1').rstrip() try: constraint_type = constraint_map[constraint_int] except KeyError: raise NotImplementedError(f'disp_stress_force={disp_stress_force} out={out}') assert min_max in [0, 1], min_max out = list(out) #print(dscid, label, constraint_type, nid_eid, comp, limit, min_max) if min_max == 0: opt = 'MAX' elif min_max == 1: opt = 'MIN' layer_id = 1 self.add_dscons(dscid, label, constraint_type, nid_eid, comp, limit=limit, opt=opt, layer_id=layer_id) n += ntotal return n def _read_dlink(self, data: bytes, n: int) -> int: """ DLINK(3206,32,353) Word Name Type Description 1 ID I 2 DVID I 3 C0 RS 4 CMULT RS 5 INDV I 6 C RS Words 5 through 6 repeat until End of Record ints = (1, 2, 0, 1.0, 1, 1.0, -1) floats = (1, 2, 0.0, 1.0, 1, 1.0, nan) """ ints = np.frombuffer(data[n:], self.idtype8).copy() floats = np.frombuffer(data[n:], self.fdtype8).copy() istart, iend = get_minus1_start_end(ints) for (i0, i1) in zip(istart, iend): assert ints[i1] == -1, ints[i1] dlink_id, dependent_desvar = ints[i0:i0+2] c0, cmult = floats[i0+2:i0+4] independent_desvars = ints[i0+4:i1:2] coeffs = floats[i0+5:i1:2] #print(dlink_id, dependent_desvar, c0, cmult) #print(independent_desvars, coeffs) assert len(independent_desvars) == len(coeffs) assert len(independent_desvars) > 0, independent_desvars dlink = self.add_dlink(dlink_id, dependent_desvar, independent_desvars, coeffs, c0=c0, cmult=cmult) #print(dlink) str(dlink) n += (i1 - i0 + 1) * self.size return n def _read_desvar(self, data: bytes, n: int) -> int: """ (3106, 31, 352) Word Name Type Description 1 ID I Unique design variable identification number 2 LABEL(2) CHAR4 User-supplied name for printing purposes 4 XINIT RS Initial value 5 XLB RS Lower bound 6 XUB RS Upper bound 7 DELXV RS Fractional change allowed for the design variable during approximate optimization 8 DDVAL I ID of a DDVAL entry that provides a set of allowable discrete values """ if self.size == 4: ntotal = 32 # 8*4 structi = Struct(self._endian + b'i8s ffff i') else: ntotal = 64 structi = Struct(self._endian + b'q16s dddd q') ncards = (len(data) - n) // ntotal for unused_i in range(ncards): edata = data[n:n + ntotal] desvar_id, blabel, xinit, xlb, xub, delx, ddval = structi.unpack(edata) label = blabel.decode('ascii') if delx == 0: delx = None if ddval == 0: ddval = None if desvar_id not in self.desvars: desvar = self.add_desvar(desvar_id, label, xinit, xlb=xlb, xub=xub, delx=delx, ddval=ddval, comment='') else: # duplicate DESVAR desvar_temp = self.add_desvar(1.0, label, xinit, xlb=xlb, xub=xub, delx=delx, ddval=ddval, comment='') del self.desvars[1.0] desvar_temp.desvar_id = desvar_id assert desvar_temp == self.desvars[desvar_id] n += ntotal #print(desvar) self.card_count['DESVAR'] = ncards return n def _read_dvxrel2_flag(data: bytes, n0: int, i0: int, i1: int, size: int, ints: np.ndarray) -> Tuple[List[int], List[str]]: """reads the DVxREL2 flag table""" flag = ints[i0+10] #print(ints[i0+11:]) #print(floats[i0+11:]) assert flag in [1000, 2000], flag iflag = i0 + 10 dvids = [] labels = [] flags_found = [] while flag != -1: flags_found.append(flag) #print(f'i0={i0} iflag={iflag} i1={i1}') flag2 = ints[iflag] assert flag == flag2 flag_test, = Struct(b'i').unpack(data[n0+iflag*size:n0+(iflag+1)*size]) assert flag == flag_test, f'flag={flag} flag_test={flag_test}; n={n}' if flag == 1000: assert ints[iflag] == 1000, ints[iflag] #print(' ', ints[iflag:i1]) iend = np.where(ints[iflag+1:i1] == -1000)[0][0] + (iflag+1) dvids = ints[iflag+1:iend].tolist() assert ints[iend] == -1000, ints[iflag+1:i1] elif flag == 2000: #print(' ', ints[iflag:i1]) iend = np.where(ints[iflag+1:i1] == -2000)[0][0] + (iflag+1) assert ints[iflag] == 2000, ints[iflag] assert ints[iend] == -2000, ints[iflag+1:i1] labels_bytes = data[n0+(iflag+1)*size:n0+iend*size] labels_bytes2 = data[n0+(iflag+1)*size:n0+(iend+1)*size] #print('labels_bytes =', labels_bytes) nbytes = len(labels_bytes) nlabels = nbytes // 8 assert nbytes % 8 == 0 assert nlabels > 0, nlabels for ilabel in range(nlabels): #print(ilabel*size*2, (ilabel+2)*size) labels_bytesi = labels_bytes[ilabel*size*2:(ilabel+2)*size] label = labels_bytesi.decode('latin1').rstrip() assert 1 <= len(str(label)) <= 8, f'label={label}; labels_bytesi={labels_bytesi} labels_bytes={labels_bytes2}' labels.append(label) #print(labels) else: raise RuntimeError(flag) iflag = iend + 1 flag = ints[iflag] #print(f'\nflag={flag}') assert len(flags_found) in [1, 2], flags_found return iend, dvids, labels
60c7d7d9db98b0d667465b77b3854c83adfa511e
d20d1d6a88dc8140673d79475554bde5e3145e68
/tdsr-20200101/alibabacloud_tdsr20200101/models.py
fd33d1e3881b080e9bb3901270a402d449998280
[ "Apache-2.0" ]
permissive
realVegetable/alibabacloud-python-sdk
e455c36478aad993d6b5b1dd570ff3d155447148
12b3e90a9722bacf7b9004b4bd1e3337724672de
refs/heads/master
2023-06-02T07:49:20.900358
2021-06-18T03:33:30
2021-06-18T03:33:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
271,070
py
# -*- coding: utf-8 -*- # This file is auto-generated, don't edit it. Thanks. from Tea.model import TeaModel from typing import List, Dict, Any class GetSingleConnDataRequest(TeaModel): def __init__( self, sub_scene_id: str = None, ): # 子场景ID self.sub_scene_id = sub_scene_id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.sub_scene_id is not None: result['SubSceneId'] = self.sub_scene_id return result def from_map(self, m: dict = None): m = m or dict() if m.get('SubSceneId') is not None: self.sub_scene_id = m.get('SubSceneId') return self class GetSingleConnDataResponseBodyList(TeaModel): def __init__( self, id: str = None, map_id: str = None, type: str = None, ): # ID self.id = id # 关联ID self.map_id = map_id # outer:外关联 inner:内关联 stair:楼梯关联 self.type = type def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.id is not None: result['Id'] = self.id if self.map_id is not None: result['MapId'] = self.map_id if self.type is not None: result['Type'] = self.type return result def from_map(self, m: dict = None): m = m or dict() if m.get('Id') is not None: self.id = m.get('Id') if m.get('MapId') is not None: self.map_id = m.get('MapId') if m.get('Type') is not None: self.type = m.get('Type') return self class GetSingleConnDataResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, version: str = None, list: List[GetSingleConnDataResponseBodyList] = None, ): # 请求ID,与入参requestId对应 self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message # 版本 self.version = version # 关联信息 self.list = list def validate(self): if self.list: for k in self.list: if k: k.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message if self.version is not None: result['Version'] = self.version result['List'] = [] if self.list is not None: for k in self.list: result['List'].append(k.to_map() if k else None) return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') if m.get('Version') is not None: self.version = m.get('Version') self.list = [] if m.get('List') is not None: for k in m.get('List'): temp_model = GetSingleConnDataResponseBodyList() self.list.append(temp_model.from_map(k)) return self class GetSingleConnDataResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: GetSingleConnDataResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = GetSingleConnDataResponseBody() self.body = temp_model.from_map(m['body']) return self class GetTaskStatusRequest(TeaModel): def __init__( self, task_id: str = None, ): # 任务ID self.task_id = task_id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.task_id is not None: result['TaskId'] = self.task_id return result def from_map(self, m: dict = None): m = m or dict() if m.get('TaskId') is not None: self.task_id = m.get('TaskId') return self class GetTaskStatusResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, status: str = None, type: str = None, error_code: str = None, error_msg: str = None, ): # 请求ID,与入参requestId对应 self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message # 未开始 :init 处理中 : processing 失败 :failure 完成 :succeed 取消 :canceled self.status = status # 墙线预测: wall_line 切图: cut_image 重建: build 直角优化:right_angle_optimization 其他:other self.type = type # 任务执行失败错误码 self.error_code = error_code # 任务执行失败错误消息 self.error_msg = error_msg def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message if self.status is not None: result['Status'] = self.status if self.type is not None: result['Type'] = self.type if self.error_code is not None: result['ErrorCode'] = self.error_code if self.error_msg is not None: result['ErrorMsg'] = self.error_msg return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') if m.get('Status') is not None: self.status = m.get('Status') if m.get('Type') is not None: self.type = m.get('Type') if m.get('ErrorCode') is not None: self.error_code = m.get('ErrorCode') if m.get('ErrorMsg') is not None: self.error_msg = m.get('ErrorMsg') return self class GetTaskStatusResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: GetTaskStatusResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = GetTaskStatusResponseBody() self.body = temp_model.from_map(m['body']) return self class GetSceneDataRequest(TeaModel): def __init__( self, token: str = None, ): self.token = token def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.token is not None: result['Token'] = self.token return result def from_map(self, m: dict = None): m = m or dict() if m.get('Token') is not None: self.token = m.get('Token') return self class GetSceneDataResponseBody(TeaModel): def __init__( self, request_id: str = None, object_string: str = None, data: Dict[str, Any] = None, err_message: str = None, success: bool = None, ): self.request_id = request_id self.object_string = object_string self.data = data self.err_message = err_message self.success = success def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.object_string is not None: result['ObjectString'] = self.object_string if self.data is not None: result['Data'] = self.data if self.err_message is not None: result['ErrMessage'] = self.err_message if self.success is not None: result['Success'] = self.success return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('ObjectString') is not None: self.object_string = m.get('ObjectString') if m.get('Data') is not None: self.data = m.get('Data') if m.get('ErrMessage') is not None: self.err_message = m.get('ErrMessage') if m.get('Success') is not None: self.success = m.get('Success') return self class GetSceneDataResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: GetSceneDataResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = GetSceneDataResponseBody() self.body = temp_model.from_map(m['body']) return self class LinkImageRequest(TeaModel): def __init__( self, sub_scene_id: str = None, file_name: str = None, camera_height: int = None, ): # 子场景ID self.sub_scene_id = sub_scene_id # 图片或者视频名称xxx.jpg self.file_name = file_name # 相机高度 单位 cm self.camera_height = camera_height def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.sub_scene_id is not None: result['SubSceneId'] = self.sub_scene_id if self.file_name is not None: result['FileName'] = self.file_name if self.camera_height is not None: result['CameraHeight'] = self.camera_height return result def from_map(self, m: dict = None): m = m or dict() if m.get('SubSceneId') is not None: self.sub_scene_id = m.get('SubSceneId') if m.get('FileName') is not None: self.file_name = m.get('FileName') if m.get('CameraHeight') is not None: self.camera_height = m.get('CameraHeight') return self class LinkImageResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, resource_id: str = None, ): # 请求ID,与入参requestId对应 self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message # 图片/视频ID self.resource_id = resource_id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message if self.resource_id is not None: result['ResourceId'] = self.resource_id return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') if m.get('ResourceId') is not None: self.resource_id = m.get('ResourceId') return self class LinkImageResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: LinkImageResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = LinkImageResponseBody() self.body = temp_model.from_map(m['body']) return self class AddSceneRequest(TeaModel): def __init__( self, type: str = None, name: str = None, project_id: str = None, ): # 场景类型 3D模型:MODEL_3D 全景图片:PIC 全景视频:VIDEO self.type = type # 场景名称 self.name = name # 项目ID self.project_id = project_id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.type is not None: result['Type'] = self.type if self.name is not None: result['Name'] = self.name if self.project_id is not None: result['ProjectId'] = self.project_id return result def from_map(self, m: dict = None): m = m or dict() if m.get('Type') is not None: self.type = m.get('Type') if m.get('Name') is not None: self.name = m.get('Name') if m.get('ProjectId') is not None: self.project_id = m.get('ProjectId') return self class AddSceneResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, id: str = None, ): # 请求ID,与入参requestId对应 self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message # 场景ID self.id = id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message if self.id is not None: result['Id'] = self.id return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') if m.get('Id') is not None: self.id = m.get('Id') return self class AddSceneResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: AddSceneResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = AddSceneResponseBody() self.body = temp_model.from_map(m['body']) return self class UpdateConnDataRequest(TeaModel): def __init__( self, scene_id: str = None, conn_data: str = None, ): # 场景ID self.scene_id = scene_id # 关联数据 self.conn_data = conn_data def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.scene_id is not None: result['SceneId'] = self.scene_id if self.conn_data is not None: result['ConnData'] = self.conn_data return result def from_map(self, m: dict = None): m = m or dict() if m.get('SceneId') is not None: self.scene_id = m.get('SceneId') if m.get('ConnData') is not None: self.conn_data = m.get('ConnData') return self class UpdateConnDataResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, ): # 请求ID,与入参requestId对应 self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') return self class UpdateConnDataResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: UpdateConnDataResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = UpdateConnDataResponseBody() self.body = temp_model.from_map(m['body']) return self class BucketIsExistRequest(TeaModel): def __init__( self, bucket_name: str = None, ): # bucket名称 self.bucket_name = bucket_name def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.bucket_name is not None: result['BucketName'] = self.bucket_name return result def from_map(self, m: dict = None): m = m or dict() if m.get('BucketName') is not None: self.bucket_name = m.get('BucketName') return self class BucketIsExistResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, is_exist: bool = None, ): # Id of the request self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message # bucket是否存在 self.is_exist = is_exist def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message if self.is_exist is not None: result['IsExist'] = self.is_exist return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') if m.get('IsExist') is not None: self.is_exist = m.get('IsExist') return self class BucketIsExistResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: BucketIsExistResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = BucketIsExistResponseBody() self.body = temp_model.from_map(m['body']) return self class RectifyImageRequest(TeaModel): def __init__( self, url: str = None, camera_height: int = None, ): # 图片地址 self.url = url # 相机高度 单位 cm self.camera_height = camera_height def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.url is not None: result['Url'] = self.url if self.camera_height is not None: result['CameraHeight'] = self.camera_height return result def from_map(self, m: dict = None): m = m or dict() if m.get('Url') is not None: self.url = m.get('Url') if m.get('CameraHeight') is not None: self.camera_height = m.get('CameraHeight') return self class RectifyImageResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, task_id: str = None, sub_scene_id: str = None, ): # 请求ID,与入参requestId对应 self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message # 任务ID self.task_id = task_id # 子场景ID self.sub_scene_id = sub_scene_id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message if self.task_id is not None: result['TaskId'] = self.task_id if self.sub_scene_id is not None: result['SubSceneId'] = self.sub_scene_id return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') if m.get('TaskId') is not None: self.task_id = m.get('TaskId') if m.get('SubSceneId') is not None: self.sub_scene_id = m.get('SubSceneId') return self class RectifyImageResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: RectifyImageResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = RectifyImageResponseBody() self.body = temp_model.from_map(m['body']) return self class LabelBuildRequest(TeaModel): def __init__( self, scene_id: str = None, ): # 场景ID self.scene_id = scene_id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.scene_id is not None: result['SceneId'] = self.scene_id return result def from_map(self, m: dict = None): m = m or dict() if m.get('SceneId') is not None: self.scene_id = m.get('SceneId') return self class LabelBuildResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, task_id: str = None, ): # 请求ID,与入参requestId对应 self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message # 重建任务ID self.task_id = task_id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message if self.task_id is not None: result['TaskId'] = self.task_id return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') if m.get('TaskId') is not None: self.task_id = m.get('TaskId') return self class LabelBuildResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: LabelBuildResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = LabelBuildResponseBody() self.body = temp_model.from_map(m['body']) return self class DropSceneRequest(TeaModel): def __init__( self, id: str = None, ): # 主场景id self.id = id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.id is not None: result['Id'] = self.id return result def from_map(self, m: dict = None): m = m or dict() if m.get('Id') is not None: self.id = m.get('Id') return self class DropSceneResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, ): # 请求ID,与入参requestId对应 self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') return self class DropSceneResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: DropSceneResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DropSceneResponseBody() self.body = temp_model.from_map(m['body']) return self class OptimizeRightAngleRequest(TeaModel): def __init__( self, sub_scene_id: str = None, ): # 子场景ID self.sub_scene_id = sub_scene_id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.sub_scene_id is not None: result['SubSceneId'] = self.sub_scene_id return result def from_map(self, m: dict = None): m = m or dict() if m.get('SubSceneId') is not None: self.sub_scene_id = m.get('SubSceneId') return self class OptimizeRightAngleResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, task_id: str = None, ): # 请求ID,与入参requestId对应 self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message # 任务ID self.task_id = task_id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message if self.task_id is not None: result['TaskId'] = self.task_id return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') if m.get('TaskId') is not None: self.task_id = m.get('TaskId') return self class OptimizeRightAngleResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: OptimizeRightAngleResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = OptimizeRightAngleResponseBody() self.body = temp_model.from_map(m['body']) return self class AddRelativePositionRequest(TeaModel): def __init__( self, scene_id: str = None, relative_position: str = None, ): # 场景ID self.scene_id = scene_id # 相对位置信息 self.relative_position = relative_position def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.scene_id is not None: result['SceneId'] = self.scene_id if self.relative_position is not None: result['RelativePosition'] = self.relative_position return result def from_map(self, m: dict = None): m = m or dict() if m.get('SceneId') is not None: self.scene_id = m.get('SceneId') if m.get('RelativePosition') is not None: self.relative_position = m.get('RelativePosition') return self class AddRelativePositionResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, ): # 请求ID,与入参requestId对应 self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') return self class AddRelativePositionResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: AddRelativePositionResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = AddRelativePositionResponseBody() self.body = temp_model.from_map(m['body']) return self class DetailSceneRequest(TeaModel): def __init__( self, id: str = None, ): # 场景Id self.id = id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.id is not None: result['Id'] = self.id return result def from_map(self, m: dict = None): m = m or dict() if m.get('Id') is not None: self.id = m.get('Id') return self class DetailSceneResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, id: str = None, name: str = None, type: str = None, sub_scene_num: int = None, source_num: int = None, published: bool = None, gmt_create: int = None, gmt_modified: int = None, preview_token: str = None, ): # 请求ID,与入参requestId对应 self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message # 主场景Id self.id = id # 场景名称 self.name = name # 场景类型 self.type = type # 子场景数 self.sub_scene_num = sub_scene_num # 资源数 self.source_num = source_num # 是否已发布 true:已发布:false:未发布 self.published = published # 创建时间 self.gmt_create = gmt_create # 最后修改时间 self.gmt_modified = gmt_modified # 预览Token self.preview_token = preview_token def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message if self.id is not None: result['Id'] = self.id if self.name is not None: result['Name'] = self.name if self.type is not None: result['Type'] = self.type if self.sub_scene_num is not None: result['SubSceneNum'] = self.sub_scene_num if self.source_num is not None: result['SourceNum'] = self.source_num if self.published is not None: result['Published'] = self.published if self.gmt_create is not None: result['GmtCreate'] = self.gmt_create if self.gmt_modified is not None: result['GmtModified'] = self.gmt_modified if self.preview_token is not None: result['PreviewToken'] = self.preview_token return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') if m.get('Id') is not None: self.id = m.get('Id') if m.get('Name') is not None: self.name = m.get('Name') if m.get('Type') is not None: self.type = m.get('Type') if m.get('SubSceneNum') is not None: self.sub_scene_num = m.get('SubSceneNum') if m.get('SourceNum') is not None: self.source_num = m.get('SourceNum') if m.get('Published') is not None: self.published = m.get('Published') if m.get('GmtCreate') is not None: self.gmt_create = m.get('GmtCreate') if m.get('GmtModified') is not None: self.gmt_modified = m.get('GmtModified') if m.get('PreviewToken') is not None: self.preview_token = m.get('PreviewToken') return self class DetailSceneResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: DetailSceneResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DetailSceneResponseBody() self.body = temp_model.from_map(m['body']) return self class CreateSceneRequest(TeaModel): def __init__( self, name: str = None, project_id: str = None, ): self.name = name self.project_id = project_id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.name is not None: result['Name'] = self.name if self.project_id is not None: result['ProjectId'] = self.project_id return result def from_map(self, m: dict = None): m = m or dict() if m.get('Name') is not None: self.name = m.get('Name') if m.get('ProjectId') is not None: self.project_id = m.get('ProjectId') return self class CreateSceneResponseBody(TeaModel): def __init__( self, scene_id: int = None, request_id: str = None, preview_token: str = None, err_message: str = None, success: bool = None, ): self.scene_id = scene_id self.request_id = request_id self.preview_token = preview_token self.err_message = err_message self.success = success def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.scene_id is not None: result['SceneId'] = self.scene_id if self.request_id is not None: result['RequestId'] = self.request_id if self.preview_token is not None: result['PreviewToken'] = self.preview_token if self.err_message is not None: result['ErrMessage'] = self.err_message if self.success is not None: result['Success'] = self.success return result def from_map(self, m: dict = None): m = m or dict() if m.get('SceneId') is not None: self.scene_id = m.get('SceneId') if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('PreviewToken') is not None: self.preview_token = m.get('PreviewToken') if m.get('ErrMessage') is not None: self.err_message = m.get('ErrMessage') if m.get('Success') is not None: self.success = m.get('Success') return self class CreateSceneResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: CreateSceneResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = CreateSceneResponseBody() self.body = temp_model.from_map(m['body']) return self class DeleteFileRequest(TeaModel): def __init__( self, param_file: str = None, sub_scene_uuid: str = None, ): self.param_file = param_file self.sub_scene_uuid = sub_scene_uuid def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.param_file is not None: result['ParamFile'] = self.param_file if self.sub_scene_uuid is not None: result['SubSceneUuid'] = self.sub_scene_uuid return result def from_map(self, m: dict = None): m = m or dict() if m.get('ParamFile') is not None: self.param_file = m.get('ParamFile') if m.get('SubSceneUuid') is not None: self.sub_scene_uuid = m.get('SubSceneUuid') return self class DeleteFileResponseBody(TeaModel): def __init__( self, request_id: str = None, err_message: str = None, success: bool = None, ): self.request_id = request_id self.err_message = err_message self.success = success def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.err_message is not None: result['ErrMessage'] = self.err_message if self.success is not None: result['Success'] = self.success return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('ErrMessage') is not None: self.err_message = m.get('ErrMessage') if m.get('Success') is not None: self.success = m.get('Success') return self class DeleteFileResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: DeleteFileResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DeleteFileResponseBody() self.body = temp_model.from_map(m['body']) return self class CheckResourceRequest(TeaModel): def __init__( self, country: str = None, interrupt: bool = None, invoker: str = None, pk: str = None, bid: str = None, hid: int = None, task_identifier: str = None, task_extra_data: str = None, gmt_wakeup: str = None, success: bool = None, message: str = None, level: int = None, url: str = None, prompt: str = None, ): self.country = country self.interrupt = interrupt self.invoker = invoker self.pk = pk self.bid = bid self.hid = hid self.task_identifier = task_identifier self.task_extra_data = task_extra_data self.gmt_wakeup = gmt_wakeup self.success = success self.message = message self.level = level self.url = url self.prompt = prompt def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.country is not None: result['Country'] = self.country if self.interrupt is not None: result['Interrupt'] = self.interrupt if self.invoker is not None: result['Invoker'] = self.invoker if self.pk is not None: result['Pk'] = self.pk if self.bid is not None: result['Bid'] = self.bid if self.hid is not None: result['Hid'] = self.hid if self.task_identifier is not None: result['TaskIdentifier'] = self.task_identifier if self.task_extra_data is not None: result['TaskExtraData'] = self.task_extra_data if self.gmt_wakeup is not None: result['GmtWakeup'] = self.gmt_wakeup if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message if self.level is not None: result['Level'] = self.level if self.url is not None: result['Url'] = self.url if self.prompt is not None: result['Prompt'] = self.prompt return result def from_map(self, m: dict = None): m = m or dict() if m.get('Country') is not None: self.country = m.get('Country') if m.get('Interrupt') is not None: self.interrupt = m.get('Interrupt') if m.get('Invoker') is not None: self.invoker = m.get('Invoker') if m.get('Pk') is not None: self.pk = m.get('Pk') if m.get('Bid') is not None: self.bid = m.get('Bid') if m.get('Hid') is not None: self.hid = m.get('Hid') if m.get('TaskIdentifier') is not None: self.task_identifier = m.get('TaskIdentifier') if m.get('TaskExtraData') is not None: self.task_extra_data = m.get('TaskExtraData') if m.get('GmtWakeup') is not None: self.gmt_wakeup = m.get('GmtWakeup') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') if m.get('Level') is not None: self.level = m.get('Level') if m.get('Url') is not None: self.url = m.get('Url') if m.get('Prompt') is not None: self.prompt = m.get('Prompt') return self class CheckResourceResponseBody(TeaModel): def __init__( self, gmt_wakeup: str = None, hid: int = None, message: str = None, task_identifier: str = None, request_id: str = None, success: bool = None, url: str = None, interrupt: bool = None, invoker: str = None, task_extra_data: str = None, country: str = None, prompt: str = None, level: int = None, pk: str = None, bid: str = None, ): self.gmt_wakeup = gmt_wakeup self.hid = hid self.message = message self.task_identifier = task_identifier self.request_id = request_id self.success = success self.url = url self.interrupt = interrupt self.invoker = invoker self.task_extra_data = task_extra_data self.country = country self.prompt = prompt self.level = level self.pk = pk self.bid = bid def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.gmt_wakeup is not None: result['GmtWakeup'] = self.gmt_wakeup if self.hid is not None: result['Hid'] = self.hid if self.message is not None: result['Message'] = self.message if self.task_identifier is not None: result['TaskIdentifier'] = self.task_identifier if self.request_id is not None: result['RequestId'] = self.request_id if self.success is not None: result['Success'] = self.success if self.url is not None: result['Url'] = self.url if self.interrupt is not None: result['Interrupt'] = self.interrupt if self.invoker is not None: result['Invoker'] = self.invoker if self.task_extra_data is not None: result['TaskExtraData'] = self.task_extra_data if self.country is not None: result['Country'] = self.country if self.prompt is not None: result['Prompt'] = self.prompt if self.level is not None: result['Level'] = self.level if self.pk is not None: result['Pk'] = self.pk if self.bid is not None: result['Bid'] = self.bid return result def from_map(self, m: dict = None): m = m or dict() if m.get('GmtWakeup') is not None: self.gmt_wakeup = m.get('GmtWakeup') if m.get('Hid') is not None: self.hid = m.get('Hid') if m.get('Message') is not None: self.message = m.get('Message') if m.get('TaskIdentifier') is not None: self.task_identifier = m.get('TaskIdentifier') if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Url') is not None: self.url = m.get('Url') if m.get('Interrupt') is not None: self.interrupt = m.get('Interrupt') if m.get('Invoker') is not None: self.invoker = m.get('Invoker') if m.get('TaskExtraData') is not None: self.task_extra_data = m.get('TaskExtraData') if m.get('Country') is not None: self.country = m.get('Country') if m.get('Prompt') is not None: self.prompt = m.get('Prompt') if m.get('Level') is not None: self.level = m.get('Level') if m.get('Pk') is not None: self.pk = m.get('Pk') if m.get('Bid') is not None: self.bid = m.get('Bid') return self class CheckResourceResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: CheckResourceResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = CheckResourceResponseBody() self.body = temp_model.from_map(m['body']) return self class ListSceneRequest(TeaModel): def __init__( self, name: str = None, project_id: str = None, page_num: int = None, page_size: int = None, ): # 主场景名称 self.name = name # 所有项目Id self.project_id = project_id # 当前页 self.page_num = page_num # 页长 self.page_size = page_size def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.name is not None: result['Name'] = self.name if self.project_id is not None: result['ProjectId'] = self.project_id if self.page_num is not None: result['PageNum'] = self.page_num if self.page_size is not None: result['PageSize'] = self.page_size return result def from_map(self, m: dict = None): m = m or dict() if m.get('Name') is not None: self.name = m.get('Name') if m.get('ProjectId') is not None: self.project_id = m.get('ProjectId') if m.get('PageNum') is not None: self.page_num = m.get('PageNum') if m.get('PageSize') is not None: self.page_size = m.get('PageSize') return self class ListSceneResponseBodyList(TeaModel): def __init__( self, id: str = None, name: str = None, type: str = None, sub_scene_num: int = None, source_num: int = None, published: bool = None, gmt_create: int = None, gmt_modified: int = None, preview_token: str = None, ): # 主场景Id self.id = id # 场景名称 self.name = name # 场景类型 3D模型:MODEL_3D 全景图片:PIC 全景视频:VIDEO self.type = type # 子场景数 self.sub_scene_num = sub_scene_num # 资源数 self.source_num = source_num # 是否已发布 true:已发布:false:未发布 self.published = published # 创建时间 self.gmt_create = gmt_create # 最后修改时间 self.gmt_modified = gmt_modified # 预览Token self.preview_token = preview_token def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.id is not None: result['Id'] = self.id if self.name is not None: result['Name'] = self.name if self.type is not None: result['Type'] = self.type if self.sub_scene_num is not None: result['SubSceneNum'] = self.sub_scene_num if self.source_num is not None: result['SourceNum'] = self.source_num if self.published is not None: result['Published'] = self.published if self.gmt_create is not None: result['GmtCreate'] = self.gmt_create if self.gmt_modified is not None: result['GmtModified'] = self.gmt_modified if self.preview_token is not None: result['PreviewToken'] = self.preview_token return result def from_map(self, m: dict = None): m = m or dict() if m.get('Id') is not None: self.id = m.get('Id') if m.get('Name') is not None: self.name = m.get('Name') if m.get('Type') is not None: self.type = m.get('Type') if m.get('SubSceneNum') is not None: self.sub_scene_num = m.get('SubSceneNum') if m.get('SourceNum') is not None: self.source_num = m.get('SourceNum') if m.get('Published') is not None: self.published = m.get('Published') if m.get('GmtCreate') is not None: self.gmt_create = m.get('GmtCreate') if m.get('GmtModified') is not None: self.gmt_modified = m.get('GmtModified') if m.get('PreviewToken') is not None: self.preview_token = m.get('PreviewToken') return self class ListSceneResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, has_next: bool = None, current_page: int = None, total_page: int = None, count: int = None, list: List[ListSceneResponseBodyList] = None, ): # 请求ID,与入参requestId对应 self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message # 是否有下一页 self.has_next = has_next # 当前页 self.current_page = current_page # 总页数 self.total_page = total_page # 数据总数 self.count = count # 主场景数据 self.list = list def validate(self): if self.list: for k in self.list: if k: k.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message if self.has_next is not None: result['HasNext'] = self.has_next if self.current_page is not None: result['CurrentPage'] = self.current_page if self.total_page is not None: result['TotalPage'] = self.total_page if self.count is not None: result['Count'] = self.count result['List'] = [] if self.list is not None: for k in self.list: result['List'].append(k.to_map() if k else None) return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') if m.get('HasNext') is not None: self.has_next = m.get('HasNext') if m.get('CurrentPage') is not None: self.current_page = m.get('CurrentPage') if m.get('TotalPage') is not None: self.total_page = m.get('TotalPage') if m.get('Count') is not None: self.count = m.get('Count') self.list = [] if m.get('List') is not None: for k in m.get('List'): temp_model = ListSceneResponseBodyList() self.list.append(temp_model.from_map(k)) return self class ListSceneResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: ListSceneResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ListSceneResponseBody() self.body = temp_model.from_map(m['body']) return self class PublishHotspotRequest(TeaModel): def __init__( self, param_tag: str = None, sub_scene_uuid: str = None, ): self.param_tag = param_tag self.sub_scene_uuid = sub_scene_uuid def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.param_tag is not None: result['ParamTag'] = self.param_tag if self.sub_scene_uuid is not None: result['SubSceneUuid'] = self.sub_scene_uuid return result def from_map(self, m: dict = None): m = m or dict() if m.get('ParamTag') is not None: self.param_tag = m.get('ParamTag') if m.get('SubSceneUuid') is not None: self.sub_scene_uuid = m.get('SubSceneUuid') return self class PublishHotspotResponseBody(TeaModel): def __init__( self, request_id: str = None, data: Dict[str, Any] = None, err_message: str = None, success: bool = None, ): self.request_id = request_id self.data = data self.err_message = err_message self.success = success def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.data is not None: result['Data'] = self.data if self.err_message is not None: result['ErrMessage'] = self.err_message if self.success is not None: result['Success'] = self.success return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Data') is not None: self.data = m.get('Data') if m.get('ErrMessage') is not None: self.err_message = m.get('ErrMessage') if m.get('Success') is not None: self.success = m.get('Success') return self class PublishHotspotResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: PublishHotspotResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = PublishHotspotResponseBody() self.body = temp_model.from_map(m['body']) return self class UpdateSceneRequest(TeaModel): def __init__( self, id: str = None, name: str = None, ): # 场景Id self.id = id # 场景名称 self.name = name def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.id is not None: result['Id'] = self.id if self.name is not None: result['Name'] = self.name return result def from_map(self, m: dict = None): m = m or dict() if m.get('Id') is not None: self.id = m.get('Id') if m.get('Name') is not None: self.name = m.get('Name') return self class UpdateSceneResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, ): # 请求ID,与入参requestId对应 self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') return self class UpdateSceneResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: UpdateSceneResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = UpdateSceneResponseBody() self.body = temp_model.from_map(m['body']) return self class UpdateLayoutDataRequest(TeaModel): def __init__( self, sub_scene_id: str = None, layout_data: str = None, ): # 子场景ID self.sub_scene_id = sub_scene_id # 标注数据 self.layout_data = layout_data def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.sub_scene_id is not None: result['SubSceneId'] = self.sub_scene_id if self.layout_data is not None: result['LayoutData'] = self.layout_data return result def from_map(self, m: dict = None): m = m or dict() if m.get('SubSceneId') is not None: self.sub_scene_id = m.get('SubSceneId') if m.get('LayoutData') is not None: self.layout_data = m.get('LayoutData') return self class UpdateLayoutDataResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, ): # 请求ID,与入参requestId对应 self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') return self class UpdateLayoutDataResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: UpdateLayoutDataResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = UpdateLayoutDataResponseBody() self.body = temp_model.from_map(m['body']) return self class SaveHotspotTagRequest(TeaModel): def __init__( self, param_tag: str = None, sub_scene_uuid: str = None, ): self.param_tag = param_tag self.sub_scene_uuid = sub_scene_uuid def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.param_tag is not None: result['ParamTag'] = self.param_tag if self.sub_scene_uuid is not None: result['SubSceneUuid'] = self.sub_scene_uuid return result def from_map(self, m: dict = None): m = m or dict() if m.get('ParamTag') is not None: self.param_tag = m.get('ParamTag') if m.get('SubSceneUuid') is not None: self.sub_scene_uuid = m.get('SubSceneUuid') return self class SaveHotspotTagResponseBody(TeaModel): def __init__( self, request_id: str = None, err_message: str = None, success: bool = None, ): self.request_id = request_id self.err_message = err_message self.success = success def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.err_message is not None: result['ErrMessage'] = self.err_message if self.success is not None: result['Success'] = self.success return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('ErrMessage') is not None: self.err_message = m.get('ErrMessage') if m.get('Success') is not None: self.success = m.get('Success') return self class SaveHotspotTagResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: SaveHotspotTagResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = SaveHotspotTagResponseBody() self.body = temp_model.from_map(m['body']) return self class CheckPermissionRequest(TeaModel): def __init__( self, aliyun_id: str = None, ): self.aliyun_id = aliyun_id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.aliyun_id is not None: result['AliyunId'] = self.aliyun_id return result def from_map(self, m: dict = None): m = m or dict() if m.get('AliyunId') is not None: self.aliyun_id = m.get('AliyunId') return self class CheckPermissionResponseBody(TeaModel): def __init__( self, request_id: str = None, err_message: str = None, success: bool = None, ): self.request_id = request_id self.err_message = err_message self.success = success def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.err_message is not None: result['ErrMessage'] = self.err_message if self.success is not None: result['Success'] = self.success return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('ErrMessage') is not None: self.err_message = m.get('ErrMessage') if m.get('Success') is not None: self.success = m.get('Success') return self class CheckPermissionResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: CheckPermissionResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = CheckPermissionResponseBody() self.body = temp_model.from_map(m['body']) return self class DeleteProjectRequest(TeaModel): def __init__( self, project_id: str = None, ): self.project_id = project_id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.project_id is not None: result['ProjectId'] = self.project_id return result def from_map(self, m: dict = None): m = m or dict() if m.get('ProjectId') is not None: self.project_id = m.get('ProjectId') return self class DeleteProjectResponseBody(TeaModel): def __init__( self, request_id: str = None, err_message: str = None, success: bool = None, ): self.request_id = request_id self.err_message = err_message self.success = success def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.err_message is not None: result['ErrMessage'] = self.err_message if self.success is not None: result['Success'] = self.success return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('ErrMessage') is not None: self.err_message = m.get('ErrMessage') if m.get('Success') is not None: self.success = m.get('Success') return self class DeleteProjectResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: DeleteProjectResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DeleteProjectResponseBody() self.body = temp_model.from_map(m['body']) return self class RectVerticalRequest(TeaModel): def __init__( self, sub_scene_id: str = None, vertical_rect: str = None, detect_door: bool = None, count_detect_door: int = None, ): # 子场景ID self.sub_scene_id = sub_scene_id # 矫正数据 self.vertical_rect = vertical_rect # 是否开启门预测 self.detect_door = detect_door # 需要预测的门的数量 self.count_detect_door = count_detect_door def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.sub_scene_id is not None: result['SubSceneId'] = self.sub_scene_id if self.vertical_rect is not None: result['VerticalRect'] = self.vertical_rect if self.detect_door is not None: result['DetectDoor'] = self.detect_door if self.count_detect_door is not None: result['CountDetectDoor'] = self.count_detect_door return result def from_map(self, m: dict = None): m = m or dict() if m.get('SubSceneId') is not None: self.sub_scene_id = m.get('SubSceneId') if m.get('VerticalRect') is not None: self.vertical_rect = m.get('VerticalRect') if m.get('DetectDoor') is not None: self.detect_door = m.get('DetectDoor') if m.get('CountDetectDoor') is not None: self.count_detect_door = m.get('CountDetectDoor') return self class RectVerticalResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, ): # 请求ID,与入参requestId对应 self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') return self class RectVerticalResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: RectVerticalResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = RectVerticalResponseBody() self.body = temp_model.from_map(m['body']) return self class PredImageRequest(TeaModel): def __init__( self, sub_scene_id: str = None, detect_door: bool = None, count_detect_door: int = None, correct_vertical: bool = None, ): # 子场景ID self.sub_scene_id = sub_scene_id # 是否门预测 self.detect_door = detect_door # 门数量(DetectDoor为false时,可为0) self.count_detect_door = count_detect_door # 是否垂直矫正 self.correct_vertical = correct_vertical def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.sub_scene_id is not None: result['SubSceneId'] = self.sub_scene_id if self.detect_door is not None: result['DetectDoor'] = self.detect_door if self.count_detect_door is not None: result['CountDetectDoor'] = self.count_detect_door if self.correct_vertical is not None: result['CorrectVertical'] = self.correct_vertical return result def from_map(self, m: dict = None): m = m or dict() if m.get('SubSceneId') is not None: self.sub_scene_id = m.get('SubSceneId') if m.get('DetectDoor') is not None: self.detect_door = m.get('DetectDoor') if m.get('CountDetectDoor') is not None: self.count_detect_door = m.get('CountDetectDoor') if m.get('CorrectVertical') is not None: self.correct_vertical = m.get('CorrectVertical') return self class PredImageResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, task_id: str = None, ): # 请求ID,与入参requestId对应 self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message # 任务ID self.task_id = task_id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message if self.task_id is not None: result['TaskId'] = self.task_id return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') if m.get('TaskId') is not None: self.task_id = m.get('TaskId') return self class PredImageResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: PredImageResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = PredImageResponseBody() self.body = temp_model.from_map(m['body']) return self class GetOssPolicyRequest(TeaModel): def __init__( self, sub_scene_id: str = None, ): # 子场景ID self.sub_scene_id = sub_scene_id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.sub_scene_id is not None: result['SubSceneId'] = self.sub_scene_id return result def from_map(self, m: dict = None): m = m or dict() if m.get('SubSceneId') is not None: self.sub_scene_id = m.get('SubSceneId') return self class GetOssPolicyResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, access_id: str = None, policy: str = None, signature: str = None, dir: str = None, host: str = None, expire: str = None, callback: str = None, ): # 请求ID,与入参requestId对应 self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message # accessId self.access_id = access_id # 授权 self.policy = policy # 签名 self.signature = signature # 授权路径 self.dir = dir # 上传地址 self.host = host # 授权失效时间(s) self.expire = expire # 上传回调 self.callback = callback def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message if self.access_id is not None: result['AccessId'] = self.access_id if self.policy is not None: result['Policy'] = self.policy if self.signature is not None: result['Signature'] = self.signature if self.dir is not None: result['Dir'] = self.dir if self.host is not None: result['Host'] = self.host if self.expire is not None: result['Expire'] = self.expire if self.callback is not None: result['Callback'] = self.callback return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') if m.get('AccessId') is not None: self.access_id = m.get('AccessId') if m.get('Policy') is not None: self.policy = m.get('Policy') if m.get('Signature') is not None: self.signature = m.get('Signature') if m.get('Dir') is not None: self.dir = m.get('Dir') if m.get('Host') is not None: self.host = m.get('Host') if m.get('Expire') is not None: self.expire = m.get('Expire') if m.get('Callback') is not None: self.callback = m.get('Callback') return self class GetOssPolicyResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: GetOssPolicyResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = GetOssPolicyResponseBody() self.body = temp_model.from_map(m['body']) return self class GetConnDataRequest(TeaModel): def __init__( self, scene_id: str = None, ): # 场景ID self.scene_id = scene_id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.scene_id is not None: result['SceneId'] = self.scene_id return result def from_map(self, m: dict = None): m = m or dict() if m.get('SceneId') is not None: self.scene_id = m.get('SceneId') return self class GetConnDataResponseBodyList(TeaModel): def __init__( self, id: str = None, map_id: str = None, type: str = None, ): # ID self.id = id # 关联的ID self.map_id = map_id # outer:外关联 inner:内关联 stair:楼梯关联 self.type = type def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.id is not None: result['Id'] = self.id if self.map_id is not None: result['MapId'] = self.map_id if self.type is not None: result['Type'] = self.type return result def from_map(self, m: dict = None): m = m or dict() if m.get('Id') is not None: self.id = m.get('Id') if m.get('MapId') is not None: self.map_id = m.get('MapId') if m.get('Type') is not None: self.type = m.get('Type') return self class GetConnDataResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, version: str = None, extend: str = None, list: List[GetConnDataResponseBodyList] = None, ): # Id of the request self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message # 版本 self.version = version # 扩展信息 self.extend = extend # 关联信息 self.list = list def validate(self): if self.list: for k in self.list: if k: k.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message if self.version is not None: result['Version'] = self.version if self.extend is not None: result['Extend'] = self.extend result['List'] = [] if self.list is not None: for k in self.list: result['List'].append(k.to_map() if k else None) return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') if m.get('Version') is not None: self.version = m.get('Version') if m.get('Extend') is not None: self.extend = m.get('Extend') self.list = [] if m.get('List') is not None: for k in m.get('List'): temp_model = GetConnDataResponseBodyList() self.list.append(temp_model.from_map(k)) return self class GetConnDataResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: GetConnDataResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = GetConnDataResponseBody() self.body = temp_model.from_map(m['body']) return self class TempPreviewStatusRequest(TeaModel): def __init__( self, key: str = None, ): # 任务ID self.key = key def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.key is not None: result['Key'] = self.key return result def from_map(self, m: dict = None): m = m or dict() if m.get('Key') is not None: self.key = m.get('Key') return self class TempPreviewStatusResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, status: str = None, ): # 请求ID,与入参requestId对应 self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message # processing:处理中 success:成功 failed:失败 self.status = status def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message if self.status is not None: result['Status'] = self.status return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') if m.get('Status') is not None: self.status = m.get('Status') return self class TempPreviewStatusResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: TempPreviewStatusResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = TempPreviewStatusResponseBody() self.body = temp_model.from_map(m['body']) return self class AddProjectRequest(TeaModel): def __init__( self, business_id: int = None, name: str = None, ): # 业务id self.business_id = business_id # 项目名称 self.name = name def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.business_id is not None: result['BusinessId'] = self.business_id if self.name is not None: result['Name'] = self.name return result def from_map(self, m: dict = None): m = m or dict() if m.get('BusinessId') is not None: self.business_id = m.get('BusinessId') if m.get('Name') is not None: self.name = m.get('Name') return self class AddProjectResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, id: str = None, ): # 请求ID,与入参requestId对应 self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message # 项目ID self.id = id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message if self.id is not None: result['Id'] = self.id return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') if m.get('Id') is not None: self.id = m.get('Id') return self class AddProjectResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: AddProjectResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = AddProjectResponseBody() self.body = temp_model.from_map(m['body']) return self class ListMainScenesRequest(TeaModel): def __init__( self, query_name: str = None, ): self.query_name = query_name def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.query_name is not None: result['QueryName'] = self.query_name return result def from_map(self, m: dict = None): m = m or dict() if m.get('QueryName') is not None: self.query_name = m.get('QueryName') return self class ListMainScenesResponseBody(TeaModel): def __init__( self, request_id: str = None, object_string: str = None, data: str = None, err_message: str = None, success: bool = None, ): self.request_id = request_id self.object_string = object_string self.data = data self.err_message = err_message self.success = success def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.object_string is not None: result['ObjectString'] = self.object_string if self.data is not None: result['Data'] = self.data if self.err_message is not None: result['ErrMessage'] = self.err_message if self.success is not None: result['Success'] = self.success return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('ObjectString') is not None: self.object_string = m.get('ObjectString') if m.get('Data') is not None: self.data = m.get('Data') if m.get('ErrMessage') is not None: self.err_message = m.get('ErrMessage') if m.get('Success') is not None: self.success = m.get('Success') return self class ListMainScenesResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: ListMainScenesResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ListMainScenesResponseBody() self.body = temp_model.from_map(m['body']) return self class DetailSubSceneRequest(TeaModel): def __init__( self, id: str = None, ): # 子场景ID self.id = id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.id is not None: result['Id'] = self.id return result def from_map(self, m: dict = None): m = m or dict() if m.get('Id') is not None: self.id = m.get('Id') return self class DetailSubSceneResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, id: str = None, name: str = None, resource_id: str = None, url: str = None, cover_url: str = None, status: int = None, gmt_create: int = None, gmt_modified: int = None, ): # 请求ID,与入参requestId对应 self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message # 子场景id self.id = id # 子场景名称 self.name = name # 图片ID/视频ID self.resource_id = resource_id # 图片路径/视频路径 self.url = url # 图片路径/视频封面路径 self.cover_url = cover_url # 子场景状态 self.status = status # 创建时间 self.gmt_create = gmt_create # 最后修改时间 self.gmt_modified = gmt_modified def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message if self.id is not None: result['Id'] = self.id if self.name is not None: result['Name'] = self.name if self.resource_id is not None: result['ResourceId'] = self.resource_id if self.url is not None: result['Url'] = self.url if self.cover_url is not None: result['CoverUrl'] = self.cover_url if self.status is not None: result['Status'] = self.status if self.gmt_create is not None: result['GmtCreate'] = self.gmt_create if self.gmt_modified is not None: result['GmtModified'] = self.gmt_modified return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') if m.get('Id') is not None: self.id = m.get('Id') if m.get('Name') is not None: self.name = m.get('Name') if m.get('ResourceId') is not None: self.resource_id = m.get('ResourceId') if m.get('Url') is not None: self.url = m.get('Url') if m.get('CoverUrl') is not None: self.cover_url = m.get('CoverUrl') if m.get('Status') is not None: self.status = m.get('Status') if m.get('GmtCreate') is not None: self.gmt_create = m.get('GmtCreate') if m.get('GmtModified') is not None: self.gmt_modified = m.get('GmtModified') return self class DetailSubSceneResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: DetailSubSceneResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DetailSubSceneResponseBody() self.body = temp_model.from_map(m['body']) return self class ListSubSceneRequest(TeaModel): def __init__( self, scene_id: str = None, page_num: int = None, page_size: int = None, ): # 场景ID self.scene_id = scene_id # 页码 self.page_num = page_num # 页长 self.page_size = page_size def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.scene_id is not None: result['SceneId'] = self.scene_id if self.page_num is not None: result['PageNum'] = self.page_num if self.page_size is not None: result['PageSize'] = self.page_size return result def from_map(self, m: dict = None): m = m or dict() if m.get('SceneId') is not None: self.scene_id = m.get('SceneId') if m.get('PageNum') is not None: self.page_num = m.get('PageNum') if m.get('PageSize') is not None: self.page_size = m.get('PageSize') return self class ListSubSceneResponseBodyList(TeaModel): def __init__( self, id: str = None, name: str = None, resource_id: str = None, url: str = None, cover_url: str = None, status: int = None, gmt_create: int = None, gmt_modified: int = None, ): # 子场景ID self.id = id # 子场景名称 self.name = name # 图片ID/视频ID self.resource_id = resource_id # 图片路径/视频路径 self.url = url # 图片路径/视频封面路径 self.cover_url = cover_url # 子场景状态 1.未重建, * 2.中间模型重建中, * 3.中间模型重建完成, * 4.待重建, * 5.服务商重建中, * 6.服务商重建完成, * 7.已发布 * 8.发布中 self.status = status # 创建时间 self.gmt_create = gmt_create # 最后修改时间 self.gmt_modified = gmt_modified def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.id is not None: result['Id'] = self.id if self.name is not None: result['Name'] = self.name if self.resource_id is not None: result['ResourceId'] = self.resource_id if self.url is not None: result['Url'] = self.url if self.cover_url is not None: result['CoverUrl'] = self.cover_url if self.status is not None: result['Status'] = self.status if self.gmt_create is not None: result['GmtCreate'] = self.gmt_create if self.gmt_modified is not None: result['GmtModified'] = self.gmt_modified return result def from_map(self, m: dict = None): m = m or dict() if m.get('Id') is not None: self.id = m.get('Id') if m.get('Name') is not None: self.name = m.get('Name') if m.get('ResourceId') is not None: self.resource_id = m.get('ResourceId') if m.get('Url') is not None: self.url = m.get('Url') if m.get('CoverUrl') is not None: self.cover_url = m.get('CoverUrl') if m.get('Status') is not None: self.status = m.get('Status') if m.get('GmtCreate') is not None: self.gmt_create = m.get('GmtCreate') if m.get('GmtModified') is not None: self.gmt_modified = m.get('GmtModified') return self class ListSubSceneResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, has_next: bool = None, current_page: int = None, total_page: int = None, count: int = None, list: List[ListSubSceneResponseBodyList] = None, ): # 请求ID,与入参requestId对应 self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message # 是否有下一页 self.has_next = has_next # 当前页 self.current_page = current_page # 总页数 self.total_page = total_page # 数据总条数 self.count = count # 子场景列表集 self.list = list def validate(self): if self.list: for k in self.list: if k: k.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message if self.has_next is not None: result['HasNext'] = self.has_next if self.current_page is not None: result['CurrentPage'] = self.current_page if self.total_page is not None: result['TotalPage'] = self.total_page if self.count is not None: result['Count'] = self.count result['List'] = [] if self.list is not None: for k in self.list: result['List'].append(k.to_map() if k else None) return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') if m.get('HasNext') is not None: self.has_next = m.get('HasNext') if m.get('CurrentPage') is not None: self.current_page = m.get('CurrentPage') if m.get('TotalPage') is not None: self.total_page = m.get('TotalPage') if m.get('Count') is not None: self.count = m.get('Count') self.list = [] if m.get('List') is not None: for k in m.get('List'): temp_model = ListSubSceneResponseBodyList() self.list.append(temp_model.from_map(k)) return self class ListSubSceneResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: ListSubSceneResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ListSubSceneResponseBody() self.body = temp_model.from_map(m['body']) return self class UpdateSubSceneRequest(TeaModel): def __init__( self, id: str = None, name: str = None, ): # 子场景ID self.id = id # 子场景名称 self.name = name def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.id is not None: result['Id'] = self.id if self.name is not None: result['Name'] = self.name return result def from_map(self, m: dict = None): m = m or dict() if m.get('Id') is not None: self.id = m.get('Id') if m.get('Name') is not None: self.name = m.get('Name') return self class UpdateSubSceneResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, ): # 请求ID,与入参requestId对应 self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') return self class UpdateSubSceneResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: UpdateSubSceneResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = UpdateSubSceneResponseBody() self.body = temp_model.from_map(m['body']) return self class CreateProjectRequest(TeaModel): def __init__( self, name: str = None, business_id: str = None, business_user_id_list: str = None, gather_user_id_list: str = None, builder_user_id_list: str = None, ): self.name = name self.business_id = business_id self.business_user_id_list = business_user_id_list self.gather_user_id_list = gather_user_id_list self.builder_user_id_list = builder_user_id_list def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.name is not None: result['Name'] = self.name if self.business_id is not None: result['BusinessId'] = self.business_id if self.business_user_id_list is not None: result['BusinessUserIdList'] = self.business_user_id_list if self.gather_user_id_list is not None: result['GatherUserIdList'] = self.gather_user_id_list if self.builder_user_id_list is not None: result['BuilderUserIdList'] = self.builder_user_id_list return result def from_map(self, m: dict = None): m = m or dict() if m.get('Name') is not None: self.name = m.get('Name') if m.get('BusinessId') is not None: self.business_id = m.get('BusinessId') if m.get('BusinessUserIdList') is not None: self.business_user_id_list = m.get('BusinessUserIdList') if m.get('GatherUserIdList') is not None: self.gather_user_id_list = m.get('GatherUserIdList') if m.get('BuilderUserIdList') is not None: self.builder_user_id_list = m.get('BuilderUserIdList') return self class CreateProjectResponseBody(TeaModel): def __init__( self, request_id: str = None, id: int = None, err_message: str = None, success: bool = None, name: str = None, ): self.request_id = request_id self.id = id self.err_message = err_message self.success = success self.name = name def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.id is not None: result['Id'] = self.id if self.err_message is not None: result['ErrMessage'] = self.err_message if self.success is not None: result['Success'] = self.success if self.name is not None: result['Name'] = self.name return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Id') is not None: self.id = m.get('Id') if m.get('ErrMessage') is not None: self.err_message = m.get('ErrMessage') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Name') is not None: self.name = m.get('Name') return self class CreateProjectResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: CreateProjectResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = CreateProjectResponseBody() self.body = temp_model.from_map(m['body']) return self class DropBucketRequest(TeaModel): def __init__( self, id: str = None, ): # bucket数据ID self.id = id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.id is not None: result['Id'] = self.id return result def from_map(self, m: dict = None): m = m or dict() if m.get('Id') is not None: self.id = m.get('Id') return self class DropBucketResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, status: bool = None, ): # Id of the request self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message # 操作是否成功 self.status = status def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message if self.status is not None: result['Status'] = self.status return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') if m.get('Status') is not None: self.status = m.get('Status') return self class DropBucketResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: DropBucketResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DropBucketResponseBody() self.body = temp_model.from_map(m['body']) return self class GetUserBucketConfigResponseBodyConfigInput(TeaModel): def __init__( self, id: str = None, bucket_name: str = None, location: str = None, ): self.id = id # bucket名称(3-63位字符) self.bucket_name = bucket_name # oss地域 self.location = location def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.id is not None: result['Id'] = self.id if self.bucket_name is not None: result['BucketName'] = self.bucket_name if self.location is not None: result['Location'] = self.location return result def from_map(self, m: dict = None): m = m or dict() if m.get('Id') is not None: self.id = m.get('Id') if m.get('BucketName') is not None: self.bucket_name = m.get('BucketName') if m.get('Location') is not None: self.location = m.get('Location') return self class GetUserBucketConfigResponseBodyConfigOutput(TeaModel): def __init__( self, id: str = None, bucket_name: str = None, location: str = None, ): self.id = id # bucket名称(3-63位字符) self.bucket_name = bucket_name # oss地域 self.location = location def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.id is not None: result['Id'] = self.id if self.bucket_name is not None: result['BucketName'] = self.bucket_name if self.location is not None: result['Location'] = self.location return result def from_map(self, m: dict = None): m = m or dict() if m.get('Id') is not None: self.id = m.get('Id') if m.get('BucketName') is not None: self.bucket_name = m.get('BucketName') if m.get('Location') is not None: self.location = m.get('Location') return self class GetUserBucketConfigResponseBodyConfig(TeaModel): def __init__( self, input: GetUserBucketConfigResponseBodyConfigInput = None, output: GetUserBucketConfigResponseBodyConfigOutput = None, ): self.input = input self.output = output def validate(self): if self.input: self.input.validate() if self.output: self.output.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.input is not None: result['Input'] = self.input.to_map() if self.output is not None: result['Output'] = self.output.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('Input') is not None: temp_model = GetUserBucketConfigResponseBodyConfigInput() self.input = temp_model.from_map(m['Input']) if m.get('Output') is not None: temp_model = GetUserBucketConfigResponseBodyConfigOutput() self.output = temp_model.from_map(m['Output']) return self class GetUserBucketConfigResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, config: GetUserBucketConfigResponseBodyConfig = None, ): # Id of the request self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message self.config = config def validate(self): if self.config: self.config.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message if self.config is not None: result['Config'] = self.config.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') if m.get('Config') is not None: temp_model = GetUserBucketConfigResponseBodyConfig() self.config = temp_model.from_map(m['Config']) return self class GetUserBucketConfigResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: GetUserBucketConfigResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = GetUserBucketConfigResponseBody() self.body = temp_model.from_map(m['body']) return self class AddBucketRequest(TeaModel): def __init__( self, bucket_name: str = None, type: int = None, ): # bucket名称 self.bucket_name = bucket_name # 输入或输出类型(1,2) self.type = type def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.bucket_name is not None: result['BucketName'] = self.bucket_name if self.type is not None: result['Type'] = self.type return result def from_map(self, m: dict = None): m = m or dict() if m.get('BucketName') is not None: self.bucket_name = m.get('BucketName') if m.get('Type') is not None: self.type = m.get('Type') return self class AddBucketResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, status: bool = None, ): # Id of the request self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message # 是否成功 self.status = status def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message if self.status is not None: result['Status'] = self.status return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') if m.get('Status') is not None: self.status = m.get('Status') return self class AddBucketResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: AddBucketResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = AddBucketResponseBody() self.body = temp_model.from_map(m['body']) return self class SaveHotspotConfigRequest(TeaModel): def __init__( self, param_tag: str = None, preview_token: str = None, ): self.param_tag = param_tag self.preview_token = preview_token def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.param_tag is not None: result['ParamTag'] = self.param_tag if self.preview_token is not None: result['PreviewToken'] = self.preview_token return result def from_map(self, m: dict = None): m = m or dict() if m.get('ParamTag') is not None: self.param_tag = m.get('ParamTag') if m.get('PreviewToken') is not None: self.preview_token = m.get('PreviewToken') return self class SaveHotspotConfigResponseBody(TeaModel): def __init__( self, request_id: str = None, err_message: str = None, success: bool = None, ): self.request_id = request_id self.err_message = err_message self.success = success def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.err_message is not None: result['ErrMessage'] = self.err_message if self.success is not None: result['Success'] = self.success return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('ErrMessage') is not None: self.err_message = m.get('ErrMessage') if m.get('Success') is not None: self.success = m.get('Success') return self class SaveHotspotConfigResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: SaveHotspotConfigResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = SaveHotspotConfigResponseBody() self.body = temp_model.from_map(m['body']) return self class GetWindowConfigRequest(TeaModel): def __init__( self, preview_token: str = None, ): self.preview_token = preview_token def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.preview_token is not None: result['PreviewToken'] = self.preview_token return result def from_map(self, m: dict = None): m = m or dict() if m.get('PreviewToken') is not None: self.preview_token = m.get('PreviewToken') return self class GetWindowConfigResponseBody(TeaModel): def __init__( self, request_id: str = None, object_string: str = None, data: Dict[str, Any] = None, err_message: str = None, success: bool = None, ): self.request_id = request_id self.object_string = object_string self.data = data self.err_message = err_message self.success = success def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.object_string is not None: result['ObjectString'] = self.object_string if self.data is not None: result['Data'] = self.data if self.err_message is not None: result['ErrMessage'] = self.err_message if self.success is not None: result['Success'] = self.success return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('ObjectString') is not None: self.object_string = m.get('ObjectString') if m.get('Data') is not None: self.data = m.get('Data') if m.get('ErrMessage') is not None: self.err_message = m.get('ErrMessage') if m.get('Success') is not None: self.success = m.get('Success') return self class GetWindowConfigResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: GetWindowConfigResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = GetWindowConfigResponseBody() self.body = temp_model.from_map(m['body']) return self class StatisQueryByTypeRequest(TeaModel): def __init__( self, start_time: int = None, end_time: int = None, ): # 开始时间 self.start_time = start_time # 结束时间 self.end_time = end_time def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.start_time is not None: result['StartTime'] = self.start_time if self.end_time is not None: result['EndTime'] = self.end_time return result def from_map(self, m: dict = None): m = m or dict() if m.get('StartTime') is not None: self.start_time = m.get('StartTime') if m.get('EndTime') is not None: self.end_time = m.get('EndTime') return self class StatisQueryByTypeResponseBodyList(TeaModel): def __init__( self, type: int = None, count: int = None, ): # 0:默认类型(增加type字段时默认值) 1:3D模型 2:全景图片3:全景视频 self.type = type # 当前日期主场景数量 self.count = count def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.type is not None: result['Type'] = self.type if self.count is not None: result['Count'] = self.count return result def from_map(self, m: dict = None): m = m or dict() if m.get('Type') is not None: self.type = m.get('Type') if m.get('Count') is not None: self.count = m.get('Count') return self class StatisQueryByTypeResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, list: List[StatisQueryByTypeResponseBodyList] = None, ): # Id of the request self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message # 返回集合 self.list = list def validate(self): if self.list: for k in self.list: if k: k.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message result['List'] = [] if self.list is not None: for k in self.list: result['List'].append(k.to_map() if k else None) return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') self.list = [] if m.get('List') is not None: for k in m.get('List'): temp_model = StatisQueryByTypeResponseBodyList() self.list.append(temp_model.from_map(k)) return self class StatisQueryByTypeResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: StatisQueryByTypeResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = StatisQueryByTypeResponseBody() self.body = temp_model.from_map(m['body']) return self class StatisExportSceneInfoRequest(TeaModel): def __init__( self, start_time: int = None, end_time: int = None, ): # 开始时间 self.start_time = start_time # 结束时间 self.end_time = end_time def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.start_time is not None: result['StartTime'] = self.start_time if self.end_time is not None: result['EndTime'] = self.end_time return result def from_map(self, m: dict = None): m = m or dict() if m.get('StartTime') is not None: self.start_time = m.get('StartTime') if m.get('EndTime') is not None: self.end_time = m.get('EndTime') return self class StatisExportSceneInfoResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, url: str = None, ): # Id of the request self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message # excel下载地址 self.url = url def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message if self.url is not None: result['Url'] = self.url return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') if m.get('Url') is not None: self.url = m.get('Url') return self class StatisExportSceneInfoResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: StatisExportSceneInfoResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = StatisExportSceneInfoResponseBody() self.body = temp_model.from_map(m['body']) return self class GetHotspotConfigRequest(TeaModel): def __init__( self, preview_token: str = None, ): self.preview_token = preview_token def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.preview_token is not None: result['PreviewToken'] = self.preview_token return result def from_map(self, m: dict = None): m = m or dict() if m.get('PreviewToken') is not None: self.preview_token = m.get('PreviewToken') return self class GetHotspotConfigResponseBody(TeaModel): def __init__( self, request_id: str = None, object_string: str = None, data: str = None, err_message: str = None, success: bool = None, ): self.request_id = request_id self.object_string = object_string self.data = data self.err_message = err_message self.success = success def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.object_string is not None: result['ObjectString'] = self.object_string if self.data is not None: result['Data'] = self.data if self.err_message is not None: result['ErrMessage'] = self.err_message if self.success is not None: result['Success'] = self.success return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('ObjectString') is not None: self.object_string = m.get('ObjectString') if m.get('Data') is not None: self.data = m.get('Data') if m.get('ErrMessage') is not None: self.err_message = m.get('ErrMessage') if m.get('Success') is not None: self.success = m.get('Success') return self class GetHotspotConfigResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: GetHotspotConfigResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = GetHotspotConfigResponseBody() self.body = temp_model.from_map(m['body']) return self class GetSceneBuildTaskStatusRequest(TeaModel): def __init__( self, scene_id: str = None, ): # 场景ID self.scene_id = scene_id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.scene_id is not None: result['SceneId'] = self.scene_id return result def from_map(self, m: dict = None): m = m or dict() if m.get('SceneId') is not None: self.scene_id = m.get('SceneId') return self class GetSceneBuildTaskStatusResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, id: str = None, scene_id: str = None, status: str = None, type: str = None, error_code: str = None, error_msg: str = None, ): # 请求ID,与入参requestId对应 self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message # 任务ID self.id = id # 场景ID self.scene_id = scene_id # 未开始 init 处理中 失败 failure processing 完成 succeed 取消 canceled self.status = status # 墙线预测: wall_line 切图: cut_image 重建: build 直角优化:right_angle_optimization 其他:other self.type = type # 任务失败错误码 self.error_code = error_code # 任务失败错误消息 self.error_msg = error_msg def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message if self.id is not None: result['Id'] = self.id if self.scene_id is not None: result['SceneId'] = self.scene_id if self.status is not None: result['Status'] = self.status if self.type is not None: result['Type'] = self.type if self.error_code is not None: result['ErrorCode'] = self.error_code if self.error_msg is not None: result['ErrorMsg'] = self.error_msg return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') if m.get('Id') is not None: self.id = m.get('Id') if m.get('SceneId') is not None: self.scene_id = m.get('SceneId') if m.get('Status') is not None: self.status = m.get('Status') if m.get('Type') is not None: self.type = m.get('Type') if m.get('ErrorCode') is not None: self.error_code = m.get('ErrorCode') if m.get('ErrorMsg') is not None: self.error_msg = m.get('ErrorMsg') return self class GetSceneBuildTaskStatusResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: GetSceneBuildTaskStatusResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = GetSceneBuildTaskStatusResponseBody() self.body = temp_model.from_map(m['body']) return self class TempPreviewRequest(TeaModel): def __init__( self, id: str = None, ): # 场景ID self.id = id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.id is not None: result['Id'] = self.id return result def from_map(self, m: dict = None): m = m or dict() if m.get('Id') is not None: self.id = m.get('Id') return self class TempPreviewResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, preview_url: str = None, key: str = None, ): # 请求ID,与入参requestId对应 self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message # 预览链接 self.preview_url = preview_url # 任务ID self.key = key def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message if self.preview_url is not None: result['PreviewUrl'] = self.preview_url if self.key is not None: result['Key'] = self.key return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') if m.get('PreviewUrl') is not None: self.preview_url = m.get('PreviewUrl') if m.get('Key') is not None: self.key = m.get('Key') return self class TempPreviewResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: TempPreviewResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = TempPreviewResponseBody() self.body = temp_model.from_map(m['body']) return self class PublishSceneRequest(TeaModel): def __init__( self, scene_id: str = None, ): # 场景ID self.scene_id = scene_id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.scene_id is not None: result['SceneId'] = self.scene_id return result def from_map(self, m: dict = None): m = m or dict() if m.get('SceneId') is not None: self.scene_id = m.get('SceneId') return self class PublishSceneResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, preview_url: str = None, ): # 请求ID,与入参requestId对应 self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message # 预览链接 self.preview_url = preview_url def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message if self.preview_url is not None: result['PreviewUrl'] = self.preview_url return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') if m.get('PreviewUrl') is not None: self.preview_url = m.get('PreviewUrl') return self class PublishSceneResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: PublishSceneResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = PublishSceneResponseBody() self.body = temp_model.from_map(m['body']) return self class DetailProjectRequest(TeaModel): def __init__( self, id: str = None, ): # 项目Id self.id = id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.id is not None: result['Id'] = self.id return result def from_map(self, m: dict = None): m = m or dict() if m.get('Id') is not None: self.id = m.get('Id') return self class DetailProjectResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, id: str = None, name: str = None, business_id: int = None, business_name: str = None, gmt_create: int = None, gmt_modified: int = None, token: str = None, ): # 请求ID,与入参requestId对应 self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message # 项目ID self.id = id # 项目名称 self.name = name # 业务ID self.business_id = business_id # 业务名称 self.business_name = business_name # 创建时间 self.gmt_create = gmt_create # 最后修改时间 self.gmt_modified = gmt_modified # Token self.token = token def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message if self.id is not None: result['Id'] = self.id if self.name is not None: result['Name'] = self.name if self.business_id is not None: result['BusinessId'] = self.business_id if self.business_name is not None: result['BusinessName'] = self.business_name if self.gmt_create is not None: result['GmtCreate'] = self.gmt_create if self.gmt_modified is not None: result['GmtModified'] = self.gmt_modified if self.token is not None: result['Token'] = self.token return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') if m.get('Id') is not None: self.id = m.get('Id') if m.get('Name') is not None: self.name = m.get('Name') if m.get('BusinessId') is not None: self.business_id = m.get('BusinessId') if m.get('BusinessName') is not None: self.business_name = m.get('BusinessName') if m.get('GmtCreate') is not None: self.gmt_create = m.get('GmtCreate') if m.get('GmtModified') is not None: self.gmt_modified = m.get('GmtModified') if m.get('Token') is not None: self.token = m.get('Token') return self class DetailProjectResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: DetailProjectResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DetailProjectResponseBody() self.body = temp_model.from_map(m['body']) return self class ListScenesRequest(TeaModel): def __init__( self, project_id: str = None, is_publish_query: bool = None, ): self.project_id = project_id self.is_publish_query = is_publish_query def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.project_id is not None: result['ProjectId'] = self.project_id if self.is_publish_query is not None: result['IsPublishQuery'] = self.is_publish_query return result def from_map(self, m: dict = None): m = m or dict() if m.get('ProjectId') is not None: self.project_id = m.get('ProjectId') if m.get('IsPublishQuery') is not None: self.is_publish_query = m.get('IsPublishQuery') return self class ListScenesResponseBodyData(TeaModel): def __init__( self, scene_id: str = None, ): self.scene_id = scene_id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.scene_id is not None: result['SceneId'] = self.scene_id return result def from_map(self, m: dict = None): m = m or dict() if m.get('SceneId') is not None: self.scene_id = m.get('SceneId') return self class ListScenesResponseBody(TeaModel): def __init__( self, request_id: str = None, data: List[ListScenesResponseBodyData] = None, err_message: str = None, success: bool = None, ): self.request_id = request_id self.data = data self.err_message = err_message self.success = success def validate(self): if self.data: for k in self.data: if k: k.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id result['Data'] = [] if self.data is not None: for k in self.data: result['Data'].append(k.to_map() if k else None) if self.err_message is not None: result['ErrMessage'] = self.err_message if self.success is not None: result['Success'] = self.success return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') self.data = [] if m.get('Data') is not None: for k in m.get('Data'): temp_model = ListScenesResponseBodyData() self.data.append(temp_model.from_map(k)) if m.get('ErrMessage') is not None: self.err_message = m.get('ErrMessage') if m.get('Success') is not None: self.success = m.get('Success') return self class ListScenesResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: ListScenesResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ListScenesResponseBody() self.body = temp_model.from_map(m['body']) return self class DropSubSceneRequest(TeaModel): def __init__( self, id: str = None, ): # 子场景ID self.id = id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.id is not None: result['Id'] = self.id return result def from_map(self, m: dict = None): m = m or dict() if m.get('Id') is not None: self.id = m.get('Id') return self class DropSubSceneResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, ): # 请求ID,与入参requestId对应 self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') return self class DropSubSceneResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: DropSubSceneResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DropSubSceneResponseBody() self.body = temp_model.from_map(m['body']) return self class IsEnableOssRequest(TeaModel): def __init__( self, is_enable: bool = None, ): # 是否启用 self.is_enable = is_enable def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.is_enable is not None: result['IsEnable'] = self.is_enable return result def from_map(self, m: dict = None): m = m or dict() if m.get('IsEnable') is not None: self.is_enable = m.get('IsEnable') return self class IsEnableOssResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, status: bool = None, ): # Id of the request self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message # 操作是否成功 self.status = status def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message if self.status is not None: result['Status'] = self.status return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') if m.get('Status') is not None: self.status = m.get('Status') return self class IsEnableOssResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: IsEnableOssResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = IsEnableOssResponseBody() self.body = temp_model.from_map(m['body']) return self class GetHotspotTagRequest(TeaModel): def __init__( self, preview_token: str = None, sub_scene_uuid: str = None, type: str = None, ): self.preview_token = preview_token self.sub_scene_uuid = sub_scene_uuid self.type = type def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.preview_token is not None: result['PreviewToken'] = self.preview_token if self.sub_scene_uuid is not None: result['SubSceneUuid'] = self.sub_scene_uuid if self.type is not None: result['Type'] = self.type return result def from_map(self, m: dict = None): m = m or dict() if m.get('PreviewToken') is not None: self.preview_token = m.get('PreviewToken') if m.get('SubSceneUuid') is not None: self.sub_scene_uuid = m.get('SubSceneUuid') if m.get('Type') is not None: self.type = m.get('Type') return self class GetHotspotTagResponseBody(TeaModel): def __init__( self, request_id: str = None, object_string: str = None, data: str = None, err_message: str = None, success: bool = None, ): self.request_id = request_id self.object_string = object_string self.data = data self.err_message = err_message self.success = success def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.object_string is not None: result['ObjectString'] = self.object_string if self.data is not None: result['Data'] = self.data if self.err_message is not None: result['ErrMessage'] = self.err_message if self.success is not None: result['Success'] = self.success return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('ObjectString') is not None: self.object_string = m.get('ObjectString') if m.get('Data') is not None: self.data = m.get('Data') if m.get('ErrMessage') is not None: self.err_message = m.get('ErrMessage') if m.get('Success') is not None: self.success = m.get('Success') return self class GetHotspotTagResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: GetHotspotTagResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = GetHotspotTagResponseBody() self.body = temp_model.from_map(m['body']) return self class DropProjectRequest(TeaModel): def __init__( self, project_id: str = None, ): # 项目ID self.project_id = project_id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.project_id is not None: result['ProjectId'] = self.project_id return result def from_map(self, m: dict = None): m = m or dict() if m.get('ProjectId') is not None: self.project_id = m.get('ProjectId') return self class DropProjectResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, ): # 请求ID与入参中requestId对应 self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') return self class DropProjectResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: DropProjectResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DropProjectResponseBody() self.body = temp_model.from_map(m['body']) return self class GetUserOssStatusResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, status: bool = None, ): # Id of the request self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message # 是否启用oss self.status = status def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message if self.status is not None: result['Status'] = self.status return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') if m.get('Status') is not None: self.status = m.get('Status') return self class GetUserOssStatusResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: GetUserOssStatusResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = GetUserOssStatusResponseBody() self.body = temp_model.from_map(m['body']) return self class ListProjectRequest(TeaModel): def __init__( self, page_num: int = None, page_size: int = None, name: str = None, ): # 页码 self.page_num = page_num # 页长 self.page_size = page_size # 项目名称(使用name%搜索) self.name = name def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.page_num is not None: result['PageNum'] = self.page_num if self.page_size is not None: result['PageSize'] = self.page_size if self.name is not None: result['Name'] = self.name return result def from_map(self, m: dict = None): m = m or dict() if m.get('PageNum') is not None: self.page_num = m.get('PageNum') if m.get('PageSize') is not None: self.page_size = m.get('PageSize') if m.get('Name') is not None: self.name = m.get('Name') return self class ListProjectResponseBodyList(TeaModel): def __init__( self, id: str = None, name: str = None, business_id: int = None, business_name: str = None, create_time: int = None, modified_time: int = None, token: str = None, ): # 项目ID self.id = id # 项目名称 self.name = name # 业务ID self.business_id = business_id # 业务名称 self.business_name = business_name # 创建时间 self.create_time = create_time # 最后修改时间 self.modified_time = modified_time # Token self.token = token def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.id is not None: result['Id'] = self.id if self.name is not None: result['Name'] = self.name if self.business_id is not None: result['BusinessId'] = self.business_id if self.business_name is not None: result['BusinessName'] = self.business_name if self.create_time is not None: result['CreateTime'] = self.create_time if self.modified_time is not None: result['ModifiedTime'] = self.modified_time if self.token is not None: result['Token'] = self.token return result def from_map(self, m: dict = None): m = m or dict() if m.get('Id') is not None: self.id = m.get('Id') if m.get('Name') is not None: self.name = m.get('Name') if m.get('BusinessId') is not None: self.business_id = m.get('BusinessId') if m.get('BusinessName') is not None: self.business_name = m.get('BusinessName') if m.get('CreateTime') is not None: self.create_time = m.get('CreateTime') if m.get('ModifiedTime') is not None: self.modified_time = m.get('ModifiedTime') if m.get('Token') is not None: self.token = m.get('Token') return self class ListProjectResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, has_next: bool = None, current_page: int = None, total_page: int = None, count: int = None, list: List[ListProjectResponseBodyList] = None, ): # 请求ID,与入参requestId对应 self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message # 是否有下一页 self.has_next = has_next # 当前页 self.current_page = current_page # 总页数 self.total_page = total_page # count self.count = count # 项目数据 self.list = list def validate(self): if self.list: for k in self.list: if k: k.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message if self.has_next is not None: result['HasNext'] = self.has_next if self.current_page is not None: result['CurrentPage'] = self.current_page if self.total_page is not None: result['TotalPage'] = self.total_page if self.count is not None: result['Count'] = self.count result['List'] = [] if self.list is not None: for k in self.list: result['List'].append(k.to_map() if k else None) return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') if m.get('HasNext') is not None: self.has_next = m.get('HasNext') if m.get('CurrentPage') is not None: self.current_page = m.get('CurrentPage') if m.get('TotalPage') is not None: self.total_page = m.get('TotalPage') if m.get('Count') is not None: self.count = m.get('Count') self.list = [] if m.get('List') is not None: for k in m.get('List'): temp_model = ListProjectResponseBodyList() self.list.append(temp_model.from_map(k)) return self class ListProjectResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: ListProjectResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ListProjectResponseBody() self.body = temp_model.from_map(m['body']) return self class GetOriginLayoutDataRequest(TeaModel): def __init__( self, sub_scene_id: str = None, ): # 子场景ID self.sub_scene_id = sub_scene_id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.sub_scene_id is not None: result['SubSceneId'] = self.sub_scene_id return result def from_map(self, m: dict = None): m = m or dict() if m.get('SubSceneId') is not None: self.sub_scene_id = m.get('SubSceneId') return self class GetOriginLayoutDataResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, data: str = None, ): # 请求ID,与入参requestId对应 self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message # 标注数据 self.data = data def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message if self.data is not None: result['Data'] = self.data return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') if m.get('Data') is not None: self.data = m.get('Data') return self class GetOriginLayoutDataResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: GetOriginLayoutDataResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = GetOriginLayoutDataResponseBody() self.body = temp_model.from_map(m['body']) return self class StatisListSceneInfoRequest(TeaModel): def __init__( self, start_time: int = None, end_time: int = None, page_num: int = None, page_size: int = None, ): # 开始时间 self.start_time = start_time # 结束时间 self.end_time = end_time # 页码 self.page_num = page_num # 一页显示数量 self.page_size = page_size def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.start_time is not None: result['StartTime'] = self.start_time if self.end_time is not None: result['EndTime'] = self.end_time if self.page_num is not None: result['PageNum'] = self.page_num if self.page_size is not None: result['PageSize'] = self.page_size return result def from_map(self, m: dict = None): m = m or dict() if m.get('StartTime') is not None: self.start_time = m.get('StartTime') if m.get('EndTime') is not None: self.end_time = m.get('EndTime') if m.get('PageNum') is not None: self.page_num = m.get('PageNum') if m.get('PageSize') is not None: self.page_size = m.get('PageSize') return self class StatisListSceneInfoResponseBodyList(TeaModel): def __init__( self, scene_type: int = None, publish_time: str = None, scene_name: str = None, res_count: int = None, project_name: str = None, measure_count: int = None, publish_status: int = None, create_time: str = None, scene_id: int = None, project_id: int = None, ): # 0:默认类型(增加type字段时默认值) 1:3D模型 2:全景图片3:全景视频 self.scene_type = scene_type # 发布时间到秒 self.publish_time = publish_time # 主场景名称 self.scene_name = scene_name # 资源数量 self.res_count = res_count # 项目名称 self.project_name = project_name # 计费量 self.measure_count = measure_count # statustinyin是否已发布 0:未发布 1:已发布 self.publish_status = publish_status # 主场景创建时间 self.create_time = create_time # 主场景id self.scene_id = scene_id # 项目Id self.project_id = project_id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.scene_type is not None: result['SceneType'] = self.scene_type if self.publish_time is not None: result['PublishTime'] = self.publish_time if self.scene_name is not None: result['SceneName'] = self.scene_name if self.res_count is not None: result['ResCount'] = self.res_count if self.project_name is not None: result['ProjectName'] = self.project_name if self.measure_count is not None: result['MeasureCount'] = self.measure_count if self.publish_status is not None: result['PublishStatus'] = self.publish_status if self.create_time is not None: result['CreateTime'] = self.create_time if self.scene_id is not None: result['SceneId'] = self.scene_id if self.project_id is not None: result['ProjectId'] = self.project_id return result def from_map(self, m: dict = None): m = m or dict() if m.get('SceneType') is not None: self.scene_type = m.get('SceneType') if m.get('PublishTime') is not None: self.publish_time = m.get('PublishTime') if m.get('SceneName') is not None: self.scene_name = m.get('SceneName') if m.get('ResCount') is not None: self.res_count = m.get('ResCount') if m.get('ProjectName') is not None: self.project_name = m.get('ProjectName') if m.get('MeasureCount') is not None: self.measure_count = m.get('MeasureCount') if m.get('PublishStatus') is not None: self.publish_status = m.get('PublishStatus') if m.get('CreateTime') is not None: self.create_time = m.get('CreateTime') if m.get('SceneId') is not None: self.scene_id = m.get('SceneId') if m.get('ProjectId') is not None: self.project_id = m.get('ProjectId') return self class StatisListSceneInfoResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, list: List[StatisListSceneInfoResponseBodyList] = None, page_num: int = None, page_size: int = None, total_count: int = None, total_pages: int = None, ): # Id of the request self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message # 返回集合 self.list = list # 页码 self.page_num = page_num # 一页显示数量 self.page_size = page_size # 总数 self.total_count = total_count # 总页数 self.total_pages = total_pages def validate(self): if self.list: for k in self.list: if k: k.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message result['List'] = [] if self.list is not None: for k in self.list: result['List'].append(k.to_map() if k else None) if self.page_num is not None: result['PageNum'] = self.page_num if self.page_size is not None: result['PageSize'] = self.page_size if self.total_count is not None: result['TotalCount'] = self.total_count if self.total_pages is not None: result['TotalPages'] = self.total_pages return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') self.list = [] if m.get('List') is not None: for k in m.get('List'): temp_model = StatisListSceneInfoResponseBodyList() self.list.append(temp_model.from_map(k)) if m.get('PageNum') is not None: self.page_num = m.get('PageNum') if m.get('PageSize') is not None: self.page_size = m.get('PageSize') if m.get('TotalCount') is not None: self.total_count = m.get('TotalCount') if m.get('TotalPages') is not None: self.total_pages = m.get('TotalPages') return self class StatisListSceneInfoResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: StatisListSceneInfoResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = StatisListSceneInfoResponseBody() self.body = temp_model.from_map(m['body']) return self class ScenePublishRequest(TeaModel): def __init__( self, scene_id: str = None, ): # 场景ID self.scene_id = scene_id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.scene_id is not None: result['SceneId'] = self.scene_id return result def from_map(self, m: dict = None): m = m or dict() if m.get('SceneId') is not None: self.scene_id = m.get('SceneId') return self class ScenePublishResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, preview_url: str = None, ): # 请求ID,与入参requestId对应 self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message # 预览链接 self.preview_url = preview_url def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message if self.preview_url is not None: result['PreviewUrl'] = self.preview_url return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') if m.get('PreviewUrl') is not None: self.preview_url = m.get('PreviewUrl') return self class ScenePublishResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: ScenePublishResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ScenePublishResponseBody() self.body = temp_model.from_map(m['body']) return self class SaveFileRequest(TeaModel): def __init__( self, param_file: str = None, sub_scene_uuid: str = None, ): self.param_file = param_file self.sub_scene_uuid = sub_scene_uuid def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.param_file is not None: result['ParamFile'] = self.param_file if self.sub_scene_uuid is not None: result['SubSceneUuid'] = self.sub_scene_uuid return result def from_map(self, m: dict = None): m = m or dict() if m.get('ParamFile') is not None: self.param_file = m.get('ParamFile') if m.get('SubSceneUuid') is not None: self.sub_scene_uuid = m.get('SubSceneUuid') return self class SaveFileResponseBody(TeaModel): def __init__( self, request_id: str = None, object_string: str = None, data: str = None, err_message: str = None, success: bool = None, ): self.request_id = request_id self.object_string = object_string self.data = data self.err_message = err_message self.success = success def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.object_string is not None: result['ObjectString'] = self.object_string if self.data is not None: result['Data'] = self.data if self.err_message is not None: result['ErrMessage'] = self.err_message if self.success is not None: result['Success'] = self.success return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('ObjectString') is not None: self.object_string = m.get('ObjectString') if m.get('Data') is not None: self.data = m.get('Data') if m.get('ErrMessage') is not None: self.err_message = m.get('ErrMessage') if m.get('Success') is not None: self.success = m.get('Success') return self class SaveFileResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: SaveFileResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = SaveFileResponseBody() self.body = temp_model.from_map(m['body']) return self class GetRectifyImageRequest(TeaModel): def __init__( self, sub_scene_id: str = None, ): # 子场景ID self.sub_scene_id = sub_scene_id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.sub_scene_id is not None: result['SubSceneId'] = self.sub_scene_id return result def from_map(self, m: dict = None): m = m or dict() if m.get('SubSceneId') is not None: self.sub_scene_id = m.get('SubSceneId') return self class GetRectifyImageResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, url: str = None, ): # 请求ID,与入参requestId对应 self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message # 图片地址 self.url = url def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message if self.url is not None: result['Url'] = self.url return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') if m.get('Url') is not None: self.url = m.get('Url') return self class GetRectifyImageResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: GetRectifyImageResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = GetRectifyImageResponseBody() self.body = temp_model.from_map(m['body']) return self class UpdateProjectRequest(TeaModel): def __init__( self, id: str = None, name: str = None, business_id: str = None, ): # 项目id self.id = id # 项目名称 self.name = name # 业务Id self.business_id = business_id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.id is not None: result['Id'] = self.id if self.name is not None: result['Name'] = self.name if self.business_id is not None: result['BusinessId'] = self.business_id return result def from_map(self, m: dict = None): m = m or dict() if m.get('Id') is not None: self.id = m.get('Id') if m.get('Name') is not None: self.name = m.get('Name') if m.get('BusinessId') is not None: self.business_id = m.get('BusinessId') return self class UpdateProjectResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, ): # 请求ID,与入参requestId对应 self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') return self class UpdateProjectResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: UpdateProjectResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = UpdateProjectResponseBody() self.body = temp_model.from_map(m['body']) return self class UpdateBucketRequest(TeaModel): def __init__( self, id: str = None, new_bucket_name: str = None, ): self.id = id # bucket名称 self.new_bucket_name = new_bucket_name def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.id is not None: result['Id'] = self.id if self.new_bucket_name is not None: result['NewBucketName'] = self.new_bucket_name return result def from_map(self, m: dict = None): m = m or dict() if m.get('Id') is not None: self.id = m.get('Id') if m.get('NewBucketName') is not None: self.new_bucket_name = m.get('NewBucketName') return self class UpdateBucketResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, status: bool = None, ): # Id of the request self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message # 是否更新成功 self.status = status def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message if self.status is not None: result['Status'] = self.status return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') if m.get('Status') is not None: self.status = m.get('Status') return self class UpdateBucketResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: UpdateBucketResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = UpdateBucketResponseBody() self.body = temp_model.from_map(m['body']) return self class StatisQueryByDayRequest(TeaModel): def __init__( self, start_time: int = None, end_time: int = None, ): # 开始时间 self.start_time = start_time # 结束时间 self.end_time = end_time def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.start_time is not None: result['StartTime'] = self.start_time if self.end_time is not None: result['EndTime'] = self.end_time return result def from_map(self, m: dict = None): m = m or dict() if m.get('StartTime') is not None: self.start_time = m.get('StartTime') if m.get('EndTime') is not None: self.end_time = m.get('EndTime') return self class StatisQueryByDayResponseBodyList(TeaModel): def __init__( self, status: int = None, count: int = None, day: str = None, ): # 是否已发布 0:未发布 1:已发布 self.status = status # 当前类型数量 self.count = count # 日期格式yyyy-MM-dd self.day = day def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.status is not None: result['Status'] = self.status if self.count is not None: result['Count'] = self.count if self.day is not None: result['Day'] = self.day return result def from_map(self, m: dict = None): m = m or dict() if m.get('Status') is not None: self.status = m.get('Status') if m.get('Count') is not None: self.count = m.get('Count') if m.get('Day') is not None: self.day = m.get('Day') return self class StatisQueryByDayResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, list: List[StatisQueryByDayResponseBodyList] = None, ): # Id of the request self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message # 返回集合 self.list = list def validate(self): if self.list: for k in self.list: if k: k.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message result['List'] = [] if self.list is not None: for k in self.list: result['List'].append(k.to_map() if k else None) return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') self.list = [] if m.get('List') is not None: for k in m.get('List'): temp_model = StatisQueryByDayResponseBodyList() self.list.append(temp_model.from_map(k)) return self class StatisQueryByDayResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: StatisQueryByDayResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = StatisQueryByDayResponseBody() self.body = temp_model.from_map(m['body']) return self class GetSceneListRequest(TeaModel): def __init__( self, account_id: str = None, ): self.account_id = account_id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.account_id is not None: result['AccountId'] = self.account_id return result def from_map(self, m: dict = None): m = m or dict() if m.get('AccountId') is not None: self.account_id = m.get('AccountId') return self class GetSceneListResponseBody(TeaModel): def __init__( self, request_id: str = None, data: Dict[str, Any] = None, err_message: str = None, success: bool = None, ): self.request_id = request_id self.data = data self.err_message = err_message self.success = success def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.data is not None: result['Data'] = self.data if self.err_message is not None: result['ErrMessage'] = self.err_message if self.success is not None: result['Success'] = self.success return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Data') is not None: self.data = m.get('Data') if m.get('ErrMessage') is not None: self.err_message = m.get('ErrMessage') if m.get('Success') is not None: self.success = m.get('Success') return self class GetSceneListResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: GetSceneListResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = GetSceneListResponseBody() self.body = temp_model.from_map(m['body']) return self class GetSubSceneTaskStatusRequest(TeaModel): def __init__( self, sub_scene_id: str = None, ): # 子场景ID self.sub_scene_id = sub_scene_id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.sub_scene_id is not None: result['SubSceneId'] = self.sub_scene_id return result def from_map(self, m: dict = None): m = m or dict() if m.get('SubSceneId') is not None: self.sub_scene_id = m.get('SubSceneId') return self class GetSubSceneTaskStatusResponseBodyList(TeaModel): def __init__( self, id: str = None, scene_id: str = None, sub_scene_id: str = None, status: str = None, type: str = None, error_code: str = None, error_msg: str = None, ): # 任务ID self.id = id # 场景ID self.scene_id = scene_id # 子场景ID self.sub_scene_id = sub_scene_id # 未开始 init 处理中 processing 失败 failure 完成 succeed 取消 canceled self.status = status # 墙线预测: wall_line 切图: cut_image 重建: build 直角优化:right_angle_optimization 其他:other self.type = type # 任务失败错误码 self.error_code = error_code # 任务失败错误信息 self.error_msg = error_msg def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.id is not None: result['Id'] = self.id if self.scene_id is not None: result['SceneId'] = self.scene_id if self.sub_scene_id is not None: result['SubSceneId'] = self.sub_scene_id if self.status is not None: result['Status'] = self.status if self.type is not None: result['Type'] = self.type if self.error_code is not None: result['ErrorCode'] = self.error_code if self.error_msg is not None: result['ErrorMsg'] = self.error_msg return result def from_map(self, m: dict = None): m = m or dict() if m.get('Id') is not None: self.id = m.get('Id') if m.get('SceneId') is not None: self.scene_id = m.get('SceneId') if m.get('SubSceneId') is not None: self.sub_scene_id = m.get('SubSceneId') if m.get('Status') is not None: self.status = m.get('Status') if m.get('Type') is not None: self.type = m.get('Type') if m.get('ErrorCode') is not None: self.error_code = m.get('ErrorCode') if m.get('ErrorMsg') is not None: self.error_msg = m.get('ErrorMsg') return self class GetSubSceneTaskStatusResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, list: List[GetSubSceneTaskStatusResponseBodyList] = None, ): # 请求ID,与入参requestId对应 self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message # 任务信息 self.list = list def validate(self): if self.list: for k in self.list: if k: k.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message result['List'] = [] if self.list is not None: for k in self.list: result['List'].append(k.to_map() if k else None) return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') self.list = [] if m.get('List') is not None: for k in m.get('List'): temp_model = GetSubSceneTaskStatusResponseBodyList() self.list.append(temp_model.from_map(k)) return self class GetSubSceneTaskStatusResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: GetSubSceneTaskStatusResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = GetSubSceneTaskStatusResponseBody() self.body = temp_model.from_map(m['body']) return self class PredictionWallLineRequest(TeaModel): def __init__( self, url: str = None, camera_height: int = None, ): # 图片地址 self.url = url # 相机高度 单位 cm self.camera_height = camera_height def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.url is not None: result['Url'] = self.url if self.camera_height is not None: result['CameraHeight'] = self.camera_height return result def from_map(self, m: dict = None): m = m or dict() if m.get('Url') is not None: self.url = m.get('Url') if m.get('CameraHeight') is not None: self.camera_height = m.get('CameraHeight') return self class PredictionWallLineResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, task_id: str = None, sub_scene_id: str = None, ): # 请求ID,与入参requestId对应 self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message # 任务ID self.task_id = task_id # 子场景ID self.sub_scene_id = sub_scene_id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message if self.task_id is not None: result['TaskId'] = self.task_id if self.sub_scene_id is not None: result['SubSceneId'] = self.sub_scene_id return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') if m.get('TaskId') is not None: self.task_id = m.get('TaskId') if m.get('SubSceneId') is not None: self.sub_scene_id = m.get('SubSceneId') return self class PredictionWallLineResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: PredictionWallLineResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = PredictionWallLineResponseBody() self.body = temp_model.from_map(m['body']) return self class GetPolicyRequest(TeaModel): def __init__( self, sub_scene_uuid: str = None, type: str = None, ): self.sub_scene_uuid = sub_scene_uuid self.type = type def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.sub_scene_uuid is not None: result['SubSceneUuid'] = self.sub_scene_uuid if self.type is not None: result['Type'] = self.type return result def from_map(self, m: dict = None): m = m or dict() if m.get('SubSceneUuid') is not None: self.sub_scene_uuid = m.get('SubSceneUuid') if m.get('Type') is not None: self.type = m.get('Type') return self class GetPolicyResponseBody(TeaModel): def __init__( self, request_id: str = None, object_string: str = None, data: Dict[str, Any] = None, err_message: str = None, success: bool = None, ): self.request_id = request_id self.object_string = object_string self.data = data self.err_message = err_message self.success = success def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.object_string is not None: result['ObjectString'] = self.object_string if self.data is not None: result['Data'] = self.data if self.err_message is not None: result['ErrMessage'] = self.err_message if self.success is not None: result['Success'] = self.success return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('ObjectString') is not None: self.object_string = m.get('ObjectString') if m.get('Data') is not None: self.data = m.get('Data') if m.get('ErrMessage') is not None: self.err_message = m.get('ErrMessage') if m.get('Success') is not None: self.success = m.get('Success') return self class GetPolicyResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: GetPolicyResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = GetPolicyResponseBody() self.body = temp_model.from_map(m['body']) return self class AddSubSceneRequest(TeaModel): def __init__( self, scene_id: str = None, name: str = None, ): # 场景ID self.scene_id = scene_id # 子场景名称 self.name = name def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.scene_id is not None: result['SceneId'] = self.scene_id if self.name is not None: result['Name'] = self.name return result def from_map(self, m: dict = None): m = m or dict() if m.get('SceneId') is not None: self.scene_id = m.get('SceneId') if m.get('Name') is not None: self.name = m.get('Name') return self class AddSubSceneResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, id: str = None, ): # 请求ID,与入参requestId对应 self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message # 子场景ID self.id = id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message if self.id is not None: result['Id'] = self.id return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') if m.get('Id') is not None: self.id = m.get('Id') return self class AddSubSceneResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: AddSubSceneResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = AddSubSceneResponseBody() self.body = temp_model.from_map(m['body']) return self class GetLayoutDataRequest(TeaModel): def __init__( self, sub_scene_id: str = None, ): # 子场景ID self.sub_scene_id = sub_scene_id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.sub_scene_id is not None: result['SubSceneId'] = self.sub_scene_id return result def from_map(self, m: dict = None): m = m or dict() if m.get('SubSceneId') is not None: self.sub_scene_id = m.get('SubSceneId') return self class GetLayoutDataResponseBody(TeaModel): def __init__( self, request_id: str = None, code: int = None, success: bool = None, message: str = None, data: str = None, ): # 请求ID,与入参requestId对应 self.request_id = request_id # 返回码 self.code = code # 是否请求成功 self.success = success # 错误消息 self.message = message # 标注信息 self.data = data def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code is not None: result['Code'] = self.code if self.success is not None: result['Success'] = self.success if self.message is not None: result['Message'] = self.message if self.data is not None: result['Data'] = self.data return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Code') is not None: self.code = m.get('Code') if m.get('Success') is not None: self.success = m.get('Success') if m.get('Message') is not None: self.message = m.get('Message') if m.get('Data') is not None: self.data = m.get('Data') return self class GetLayoutDataResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: GetLayoutDataResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = GetLayoutDataResponseBody() self.body = temp_model.from_map(m['body']) return self
5bb21c48e760efd194306a2d24666e8b1469ffc2
f576f0ea3725d54bd2551883901b25b863fe6688
/sdk/storage/azure-mgmt-storage/azure/mgmt/storage/v2022_09_01/aio/operations/_object_replication_policies_operations.py
c4c082d4f5bd5760b77da7ef3067ba85098539f8
[ "LicenseRef-scancode-generic-cla", "MIT", "LGPL-2.1-or-later" ]
permissive
Azure/azure-sdk-for-python
02e3838e53a33d8ba27e9bcc22bd84e790e4ca7c
c2ca191e736bb06bfbbbc9493e8325763ba990bb
refs/heads/main
2023-09-06T09:30:13.135012
2023-09-06T01:08:06
2023-09-06T01:08:06
4,127,088
4,046
2,755
MIT
2023-09-14T21:48:49
2012-04-24T16:46:12
Python
UTF-8
Python
false
false
22,798
py
# pylint: disable=too-many-lines # coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from io import IOBase from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, overload import urllib.parse from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ( ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, ResourceNotModifiedError, map_error, ) from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from azure.core.tracing.decorator_async import distributed_trace_async from azure.core.utils import case_insensitive_dict from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models as _models from ..._vendor import _convert_request from ...operations._object_replication_policies_operations import ( build_create_or_update_request, build_delete_request, build_get_request, build_list_request, ) T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class ObjectReplicationPoliciesOperations: """ .. warning:: **DO NOT** instantiate this class directly. Instead, you should access the following operations through :class:`~azure.mgmt.storage.v2022_09_01.aio.StorageManagementClient`'s :attr:`object_replication_policies` attribute. """ models = _models def __init__(self, *args, **kwargs) -> None: input_args = list(args) self._client = input_args.pop(0) if input_args else kwargs.pop("client") self._config = input_args.pop(0) if input_args else kwargs.pop("config") self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") self._api_version = input_args.pop(0) if input_args else kwargs.pop("api_version") @distributed_trace def list( self, resource_group_name: str, account_name: str, **kwargs: Any ) -> AsyncIterable["_models.ObjectReplicationPolicy"]: """List the object replication policies associated with the storage account. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. Required. :type resource_group_name: str :param account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower-case letters only. Required. :type account_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ObjectReplicationPolicy or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.storage.v2022_09_01.models.ObjectReplicationPolicy] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._api_version or "2022-09-01")) cls: ClsType[_models.ObjectReplicationPolicies] = kwargs.pop("cls", None) error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) def prepare_request(next_link=None): if not next_link: request = build_list_request( resource_group_name=resource_group_name, account_name=account_name, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.list.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: # make call to next link with the client's api-version _parsed_next_link = urllib.parse.urlparse(next_link) _next_request_params = case_insensitive_dict( { key: [urllib.parse.quote(v) for v in value] for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() } ) _next_request_params["api-version"] = self._config.api_version request = HttpRequest( "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params ) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request async def extract_data(pipeline_response): deserialized = self._deserialize("ObjectReplicationPolicies", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) # type: ignore return None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=_stream, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged(get_next, extract_data) list.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Storage/storageAccounts/{accountName}/objectReplicationPolicies" } @distributed_trace_async async def get( self, resource_group_name: str, account_name: str, object_replication_policy_id: str, **kwargs: Any ) -> _models.ObjectReplicationPolicy: """Get the object replication policy of the storage account by policy ID. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. Required. :type resource_group_name: str :param account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower-case letters only. Required. :type account_name: str :param object_replication_policy_id: For the destination account, provide the value 'default'. Configure the policy on the destination account first. For the source account, provide the value of the policy ID that is returned when you download the policy that was defined on the destination account. The policy is downloaded as a JSON file. Required. :type object_replication_policy_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ObjectReplicationPolicy or the result of cls(response) :rtype: ~azure.mgmt.storage.v2022_09_01.models.ObjectReplicationPolicy :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._api_version or "2022-09-01")) cls: ClsType[_models.ObjectReplicationPolicy] = kwargs.pop("cls", None) request = build_get_request( resource_group_name=resource_group_name, account_name=account_name, object_replication_policy_id=object_replication_policy_id, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.get.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=_stream, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize("ObjectReplicationPolicy", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Storage/storageAccounts/{accountName}/objectReplicationPolicies/{objectReplicationPolicyId}" } @overload async def create_or_update( self, resource_group_name: str, account_name: str, object_replication_policy_id: str, properties: _models.ObjectReplicationPolicy, *, content_type: str = "application/json", **kwargs: Any ) -> _models.ObjectReplicationPolicy: """Create or update the object replication policy of the storage account. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. Required. :type resource_group_name: str :param account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower-case letters only. Required. :type account_name: str :param object_replication_policy_id: For the destination account, provide the value 'default'. Configure the policy on the destination account first. For the source account, provide the value of the policy ID that is returned when you download the policy that was defined on the destination account. The policy is downloaded as a JSON file. Required. :type object_replication_policy_id: str :param properties: The object replication policy set to a storage account. A unique policy ID will be created if absent. Required. :type properties: ~azure.mgmt.storage.v2022_09_01.models.ObjectReplicationPolicy :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ObjectReplicationPolicy or the result of cls(response) :rtype: ~azure.mgmt.storage.v2022_09_01.models.ObjectReplicationPolicy :raises ~azure.core.exceptions.HttpResponseError: """ @overload async def create_or_update( self, resource_group_name: str, account_name: str, object_replication_policy_id: str, properties: IO, *, content_type: str = "application/json", **kwargs: Any ) -> _models.ObjectReplicationPolicy: """Create or update the object replication policy of the storage account. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. Required. :type resource_group_name: str :param account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower-case letters only. Required. :type account_name: str :param object_replication_policy_id: For the destination account, provide the value 'default'. Configure the policy on the destination account first. For the source account, provide the value of the policy ID that is returned when you download the policy that was defined on the destination account. The policy is downloaded as a JSON file. Required. :type object_replication_policy_id: str :param properties: The object replication policy set to a storage account. A unique policy ID will be created if absent. Required. :type properties: IO :keyword content_type: Body Parameter content-type. Content type parameter for binary body. Default value is "application/json". :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ObjectReplicationPolicy or the result of cls(response) :rtype: ~azure.mgmt.storage.v2022_09_01.models.ObjectReplicationPolicy :raises ~azure.core.exceptions.HttpResponseError: """ @distributed_trace_async async def create_or_update( self, resource_group_name: str, account_name: str, object_replication_policy_id: str, properties: Union[_models.ObjectReplicationPolicy, IO], **kwargs: Any ) -> _models.ObjectReplicationPolicy: """Create or update the object replication policy of the storage account. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. Required. :type resource_group_name: str :param account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower-case letters only. Required. :type account_name: str :param object_replication_policy_id: For the destination account, provide the value 'default'. Configure the policy on the destination account first. For the source account, provide the value of the policy ID that is returned when you download the policy that was defined on the destination account. The policy is downloaded as a JSON file. Required. :type object_replication_policy_id: str :param properties: The object replication policy set to a storage account. A unique policy ID will be created if absent. Is either a ObjectReplicationPolicy type or a IO type. Required. :type properties: ~azure.mgmt.storage.v2022_09_01.models.ObjectReplicationPolicy or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ObjectReplicationPolicy or the result of cls(response) :rtype: ~azure.mgmt.storage.v2022_09_01.models.ObjectReplicationPolicy :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._api_version or "2022-09-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.ObjectReplicationPolicy] = kwargs.pop("cls", None) content_type = content_type or "application/json" _json = None _content = None if isinstance(properties, (IOBase, bytes)): _content = properties else: _json = self._serialize.body(properties, "ObjectReplicationPolicy") request = build_create_or_update_request( resource_group_name=resource_group_name, account_name=account_name, object_replication_policy_id=object_replication_policy_id, subscription_id=self._config.subscription_id, api_version=api_version, content_type=content_type, json=_json, content=_content, template_url=self.create_or_update.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=_stream, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize("ObjectReplicationPolicy", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized create_or_update.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Storage/storageAccounts/{accountName}/objectReplicationPolicies/{objectReplicationPolicyId}" } @distributed_trace_async async def delete( # pylint: disable=inconsistent-return-statements self, resource_group_name: str, account_name: str, object_replication_policy_id: str, **kwargs: Any ) -> None: """Deletes the object replication policy associated with the specified storage account. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. Required. :type resource_group_name: str :param account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower-case letters only. Required. :type account_name: str :param object_replication_policy_id: For the destination account, provide the value 'default'. Configure the policy on the destination account first. For the source account, provide the value of the policy ID that is returned when you download the policy that was defined on the destination account. The policy is downloaded as a JSON file. Required. :type object_replication_policy_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None or the result of cls(response) :rtype: None :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._api_version or "2022-09-01")) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( resource_group_name=resource_group_name, account_name=account_name, object_replication_policy_id=object_replication_policy_id, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.delete.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=_stream, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) delete.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Storage/storageAccounts/{accountName}/objectReplicationPolicies/{objectReplicationPolicyId}" }
770a4f0fac37204c56e7b46b9d6c7531262723e9
dc99adb79f15b3889a7ef6139cfe5dfc614889b8
/Aplikace_1_0/Source/ewitis/gui/dfTableRaceInfo.py
43c2a4ae52ddd807c9956e0ae4200b57071eb4be
[]
no_license
meloun/ew_aplikace
95d1e4063a149a10bb3a96f372691b5110c26b7b
f890c020ad8d3d224f796dab3f1f222c1f6ba0eb
refs/heads/master
2023-04-28T06:43:12.252105
2023-04-18T19:59:36
2023-04-18T19:59:36
2,674,595
0
2
null
null
null
null
UTF-8
Python
false
false
4,188
py
# -*- coding: utf-8 -*- import time import pandas as pd import pandas.io.sql as psql from PyQt4 import QtCore, QtGui from ewitis.gui.aTab import MyTab from libs.myqt.DataframeTableModel import DataframeTableModel, ModelUtils from ewitis.gui.dfTable import DfTable from ewitis.gui.dfTableTimes import tableTimes from ewitis.gui.dfTableUsers import tableUsers from ewitis.gui.dfTableCategories import tableCategories from ewitis.data.dstore import dstore class DfModelRaceInfo(DataframeTableModel): """ RaceInfo table states: - race (default) - dns (manually set) - dq (manually set) - dnf (manually set) - finished (time received) NOT finally results: - only finished Finally results: - finished = with time - race + dnf = DNF - dns = DNS - dq = DQ """ def __init__(self, table): super(DfModelRaceInfo, self).__init__(table) def getDefaultTableRow(self): row = pd.Series() row["id"] = 0 row["name"] = "NOTDEF" row["cell#1"] = "-" row["cell#2"] = "-" row["cell#3"] = "-" row["cell#4"] = "-" row["cell#5"] = "-" row["cell#250"] = "-" return row #virtual function to override def GetDataframe(self): row_id = 1 rows = pd.DataFrame() #check if df is alread available if tableTimes.model.df.empty: return pd.DataFrame() '''ADD TOTAL''' #group by cell and get size serTimesByCell_size = tableTimes.model.df.groupby("cell", as_index=False).size() #create new row row = self.getDefaultTableRow() row["id"] = row_id row["name"] = "Total" for (k,v) in serTimesByCell_size.iteritems(): key = "cell#"+str(k) row[key] = v #append new row rows = rows.append(row, ignore_index=True) row_id = row_id + 1 '''ADD CATEGORIES''' #group by category and get size gbTimesByCategory = tableTimes.model.df.groupby("category") for category, dfTimesInCategory in gbTimesByCategory: serTimesForCategoryByCell_size = dfTimesInCategory.groupby("cell").size() #create new row row = self.getDefaultTableRow() row["id"] = row_id row["name"] = category for (k,v) in serTimesForCategoryByCell_size.iteritems(): key = "cell#"+str(k) row[key] = v #add new row and increment id rows = rows.append(row, ignore_index=True) row_id = row_id + 1 df = pd.DataFrame(rows, columns=row.keys()) return df ''' Proxy Model ''' class DfProxymodelRaceInfo(QtGui.QSortFilterProxyModel, ModelUtils): def __init__(self, parent = None): QtGui.QSortFilterProxyModel.__init__(self, parent) #This property holds whether the proxy model is dynamically sorted and filtered whenever the contents of the source model change. self.setDynamicSortFilter(True) #This property holds the column where the key used to filter the contents of the source model is read from. #The default value is 0. If the value is -1, the keys will be read from all columns. self.setFilterKeyColumn(-1) # view <- proxymodel <- model class DfTableRaceInfo(DfTable): def __init__(self): DfTable.__init__(self, "RaceInfo") def Init(self): DfTable.Init(self) self.gui['view'].sortByColumn(0, QtCore.Qt.AscendingOrder) #v modelu tahle funkce šahá do db, raceinfo nema tabulku v db def updateDbCounter(self): pass tableRaceInfo = DfTableRaceInfo() tabRaceInfo = MyTab(tables = [tableRaceInfo,])
48ae5f9162dd9fe01cfd9e5c0cec8a2cdd326f8c
fa841ab3564e0e0fd6065201846fb6f305c43719
/jalon.elasticsearch/jalon/elasticsearch/content/__init__.py
a3203a25b32d84426596f95eb518017ad7ff902d
[]
no_license
suipnice/Jalon
dc008232baba6c1295cb8a6d6001147e22e03c2a
bc003d10ed15d6ecc5f15fdb3809e9dd53b568bd
refs/heads/master
2021-01-08T05:46:55.757385
2016-06-13T11:58:31
2016-06-13T11:58:31
241,926,067
0
0
null
null
null
null
UTF-8
Python
false
false
26
py
import jalonelasticsearch
ec4e390fde2b57c9278f907fe4e06f6e1b2ec1af
eaa7b4fd05624bea164f5ac897f8f4a9700f5c24
/CACLA code/log-files/V-rep_AL5D_no_sim/Jan-22_15.45.30_best_sim/main.py
e960c03efe35e1e98d9d8c361916897c217a2a7a
[]
no_license
benquick123/CACLA-python
de187d387b53d338874e5b94f134bb557cd95ed5
eb74c928b8b097c4ae42fd918385adbf3e867262
refs/heads/master
2020-03-30T06:35:50.717106
2019-03-21T22:54:46
2019-03-21T22:54:46
150,873,461
4
0
null
null
null
null
UTF-8
Python
false
false
8,592
py
import gym import numpy as np import time from cacla import Cacla from utils import Logger from datetime import datetime import pickle import copy import vrep_arm3 as arm env_name = "V-rep_AL5D_no_sim" now = datetime.utcnow().strftime("%b-%d_%H.%M.%S") # for unique directories logger = None def run_episode(model, episode, animate=False): """ The core of data collection. For each movement (until the variable done == True) calculates value function at time T0 and T1, based on explored action a0 ~ A0 + exploration. Fits critic and actor according to learning rule. Saves each step into variable trajectory, and at the end returns full list of steps. """ done = False trajectory = [] observation0 = model.env.reset() # iteration_n = 0 # print("RESET observation", observation0) # scale, offset = scaler.get() while not done: if model.env.simulation: model.env.render() V0 = model.critic.predict(np.array([observation0])) A0 = model.actor.predict(np.array([observation0])) joint_positions0 = model.env.get_joint_positions() # print("BEFORE STEP joint positions", joint_positions0.tolist()) a0 = model.sample(A0[0], model.exploration_factor) a0 = [a0] # print("EXPLORING ACTION", a0) # env_state0 = copy.deepcopy(model.env) observation1, reward, done, info = model.env.step(a0[0]) a0 = info["actual_action"] # print("AFTER STEP observation, reward", observation1.tolist(), reward) V1 = model.critic.predict(np.array([observation1])) delta = reward + model.gamma * V1 - V0 # print("DELTA", delta) # fit critic model.critic.fit(np.array([observation0]), [reward + model.gamma * V1], batch_size=1, verbose=0) # print("FITTING CRITIC") if delta > 0: # if delta is positive, fit actor model.actor.fit(np.array([observation0]), [a0], batch_size=1, verbose=0) observation0 = observation1 # print("FITTING ACTOR; SEE IF OBSERVATION IS CHANGED") else: # otherwise set things to how they were before model.env.step(). model.env.set_joint_positions(joint_positions0) # print("OBSERVATION SHOULD BE THE SAME AS BEFORE") # model.env = env_state0 step = {"observation0": observation0, "observation1": observation1, # "observation_unscaled": observation_unscaled, "V0": V0[0], "V1": V1[0], "A0": A0[0][:], "a0": a0[0][:], "reward": reward, "delta": delta[0][0]} trajectory.append(step) # print("OBSERVATION AT END", observation0.tolist()) # if iteration_n >= 50: # break # iteration_n += 1 return trajectory def run_batch(model, batch_size, episode, animate=False): """ Accepts CACLA model, scaler and batch size. Runs number of episodes equal to batch_size. Logs the rewards and at the end returns all traversed trajectories. """ trajectories = [] total_steps = 0 for _ in range(batch_size): trajectory = run_episode(model, episode, animate=animate) total_steps += len(trajectory) trajectories.append(trajectory) last_rewards = [trajectory[-1]["reward"] for trajectory in trajectories] logger.log({"_MeanReward": np.mean([t["reward"] for trajectory in trajectories for t in trajectory]), # "_MeanReward": np.mean([np.sum([t["reward"] for t in trajectory]) for trajectory in trajectories]), "Steps": total_steps, "mean_last_reward": np.mean(last_rewards), "_std_last_reward": np.std(last_rewards), "_min_last_reward": np.min(last_rewards), "_max_last_reward": np.max(last_rewards)}) return trajectories def log_batch_stats(trajectories, episode, alpha, beta, exploration_factor): """ Creates dictionary with values to log. return dictionary of those values, if they are to be used somewhere else. """ rewards = [t["reward"] for trajectory in trajectories for t in trajectory] actions_0 = [t["A0"] for trajectory in trajectories for t in trajectory] policy_loss = [np.square(np.array(t["a0"]) - np.array(t["A0"])).mean() for trajectory in trajectories for t in trajectory] deltas = [np.square(np.array(t["delta"])).mean() for trajectory in trajectories for t in trajectory] observations = [t["observation0"] for trajectory in trajectories for t in trajectory] d = {"_min_reward": np.min(rewards), "_max_reward": np.max(rewards), "_mean_reward": np.mean(rewards), "_std_reward": np.std(rewards), "_min_action": np.min(actions_0), "_max_action": np.max(actions_0), "_mean_action": np.mean(actions_0), "_std_action": np.std(actions_0), "_min_observation": np.min(observations), "_max_observation": np.max(observations), "_mean_observation": np.mean(observations), "_std_observations": np.std(observations), "_min_value_loss": np.min(deltas), "_max_value_loss": np.max(deltas), "mean_value_loss": np.mean(deltas), "_std_value_loss": np.std(deltas), "_min_policy_loss": np.min(policy_loss), "_max_policy_loss": np.max(policy_loss), "mean_policy_loss": np.mean(policy_loss), "_std_policy_loss": np.std(policy_loss), "policy_lr": alpha, "value_lr": beta, "exploration_factor": exploration_factor, "_episode": episode} logger.log(d) return d def train(model, n_episodes, batch_size, animate=False): """ Accepts model (CACLA in our case), number of all episodes, batch size and optional argument to run GUI. Trains the actor and critic for number of episodes. """ episode = 0 best_reward = 0 while episode < n_episodes: # compute trajectories, that CACLA will use to train critic and actor. trajectories = run_batch(model, batch_size, episode, animate) episode += batch_size # save logging data d = log_batch_stats(trajectories, episode, model.alpha, model.beta, model.exploration_factor) if d["_mean_reward"] >= best_reward: best_reward = d["_mean_reward"] pickle.dump(model, open(logger.path + "/model.pickle", "wb")) logger.write(display=True) # update learning and exploration rates for the algorithm. model.update_lr(model.lr_decay) # if model.exploration_factor < 0.04: # exploration_decay = (n_episodes - episode) / (n_episodes - episode + batch_size) model.update_exploration() # model.update_exploration() pickle.dump(model, open(logger.path + "/model_final.pickle", "wb")) logger.close() def test(model, n): # model.env = gym.make(env_name) success = 0 for i in range(n): observation = model.env.reset() done = False while not done: if model.env.simulation: model.env.render() action = model.actor.predict(np.array([observation])) observation, reward, done, info = model.env.step(action[0]) print("iteration:", i, "reward:", reward, "distance:", info["distance"], "done:", done) if info["distance"] < 0.01: success += 1 time.sleep(3) print("success rate:", success / n) if __name__ == "__main__": action_multiplier = 0.1 env = arm.VrepArm(action_multiplier=action_multiplier) # cacla = pickle.load(open("C:/Users/Jonathan/Documents/School/Project_Farkas/CACLA code/log-files/V-rep_AL5D_no_sim/Jan-21_00.49.49/model_final.pickle", "rb")) # cacla.env = env # test(cacla, 20) # exit() input_dim = env.observation_space.shape[0] output_dim = env.action_space.shape[0] alpha = 0.0007 # learning rate for actor beta = 0.001 # learning rate for critic lr_decay = 0.997 # lr decay exploration_decay = 0.997 # exploration decay gamma = 0.0 # discount factor exploration_factor = 0.15 n_episodes = 20000 batch_size = 50 logger = Logger(logname=env_name, now=now) cacla = Cacla(env, input_dim, output_dim, alpha, beta, gamma, lr_decay, exploration_decay, exploration_factor) train(cacla, n_episodes, batch_size) input("Continue?") env = arm.VrepArm(simulation=True, action_multiplier=action_multiplier) cacla.env = env test(cacla, 10)
5b16b645adc70ad58e2d3385d3f9776e44594bf6
44a7330dfa4fe321eb432ee57a32328578dec109
/milk/supervised/gridsearch.py
265712ad1d69da0ae0eb8f9345e6471362c1c126
[ "MIT" ]
permissive
tzuryby/milk
7cb6760fad600e9e0d0c9216dc749db289b596fb
a7159b748414d4d095741978fb994c4affcf6b9b
refs/heads/master
2020-12-29T02:45:33.044864
2011-03-15T20:23:29
2011-03-15T20:25:11
1,485,748
2
0
null
null
null
null
UTF-8
Python
false
false
5,128
py
# -*- coding: utf-8 -*- # Copyright (C) 2008-2011, Luis Pedro Coelho <[email protected]> # vim: set ts=4 sts=4 sw=4 expandtab smartindent: # # License: MIT. See COPYING.MIT file in the milk distribution from __future__ import division import numpy as np from .classifier import normaliselabels __all__ = [ 'gridminimise', 'gridsearch', ] def _allassignments(options): try: from itertools import product except ImportError: def product(*args, **kwds): # from http://docs.python.org/library/itertools.html#itertools.product pools = map(tuple, args) * kwds.get('repeat', 1) result = [[]] for pool in pools: result = [x+[y] for x in result for y in pool] for prod in result: yield tuple(prod) from itertools import repeat, izip for ks,vs in izip(repeat(options.keys()), product(*options.values())): yield zip(ks,vs) def _set_assignment(obj,assignments): for k,v in assignments: obj.set_option(k,v) def gridminimise(learner, features, labels, params, measure=None, nfolds=10): ''' best = gridminimise(learner, features, labels, params, measure={0/1 loss}) Grid search for the settings of parameters that maximises a given measure This function is equivalent to searching the grid, but does not actually search the whole grid. Parameters ---------- learner : a classifier object features : sequence of features labels : sequence of labels params : dictionary of sequences keys are the options to change, values are sequences of corresponding elements to try measure : function, optional a function that takes labels and outputs and returns the loss. Default: 0/1 loss. This must be an *additive* function. nfolds : integer, optional nr of folds to run, default: 10 Returns ------- best : a sequence of assignments ''' # The algorithm is as follows: # # for all assignments: error = 0, next_iteration = 0 # # at each iteration: # look for assignment with smallest error # if that is done: return it # else: perform one more iteration # # When the function returns, that assignment has the lowest error of all # assignments and all the iterations are done. Therefore, other assignments # could only be worse even if we never computed the whole error! from ..measures.nfoldcrossvalidation import foldgenerator if measure is None: def measure(real, preds): return np.sum(np.asarray(real) != np.asarray(preds)) labels,_ = normaliselabels(labels) allassignments = list(_allassignments(params)) N = len(allassignments) iteration = np.zeros(N, int) error = np.zeros(N, float) folds = [(Tr.copy(), Te.copy()) for Tr,Te in foldgenerator(labels, nfolds)] # foldgenerator might actually decide on a smaller number of folds, # depending on the distribution of class sizes: nfolds = len(folds) while True: next_pos = (error == error.min()) iter = iteration[next_pos].max() if iter == nfolds: (besti,) = np.where(next_pos & (iteration == iter)) besti = besti[0] return allassignments[besti] (ps,) = np.where(next_pos & (iteration == iter)) p = ps[0] _set_assignment(learner, allassignments[p]) train, test = folds[iter] model = learner.train(features[train], labels[train], normalisedlabels=True) preds = [model.apply(f) for f in features[test]] error[p] += measure(labels[test], preds) iteration[p] += 1 class gridsearch(object): ''' G = gridsearch(base, measure=accuracy, nfolds=10, params={ 'param1 : [...], param2 : [...]}) Perform a grid search for the best parameter values. When G.train() is called, then for each combination of p1 in param1, p2 in param2, ... it performs:: base_classifier.param1 = p1 base_classifier.param2 = p2 ... value[p1, p2,...] = measure(crossvaliation(base_classifier) it then picks the highest set of parameters and re-learns a model on the whole data. Parameters ----------- base_classifier : classifier to use measure : function, optional a function that takes labels and outputs and returns the loss. Default: 0/1 loss. This must be an *additive* function. nfolds : integer, optional Nr of folds params : dictionary ''' def __init__(self, base, measure=None, nfolds=10, params={}): self.params = params self.base = base self.nfolds = 10 self.measure = measure def is_multi_class(self): return self.base.is_multi_class() def train(self, features, labels, normalisedlabels=False): self.best = gridminimise(self.base, features, labels, self.params, self.measure, self.nfolds) _set_assignment(self.base, self.best) return self.base.train(features, labels, normalisedlabels=normalisedlabels)
deec8d033bdd63658b11e459446f53fd82d72ea6
fd4510e0bf959de7527bd0c62d3b4fb3f78cee5e
/drivers/hot.py
c4607b3bd6c73821e3566c20a1a2b3c2605203d1
[]
no_license
RuoAndo/nii-cyber-security-admin
8dde8ab68b0f7fa882adbe8e828546aa1739e685
e77b9d581e124f9fd5f721e18cd77d3bccecad19
refs/heads/master
2022-12-13T21:40:46.330389
2022-12-07T14:01:00
2022-12-07T14:01:00
71,614,880
5
1
null
2020-10-13T08:40:46
2016-10-22T03:41:30
Python
UTF-8
Python
false
false
465
py
# -*- coding:utf-8 -*- import psycopg2 conn = psycopg2.connect( host = "192.168.1.1", port = 5432, database="xen460", user="postgres", password="") cur = conn.cursor() sql = "SELECT relname, n_tup_upd, n_tup_hot_upd, round(n_tup_hot_upd*100/n_tup_upd, 2) AS hot_upd_ratio FROM pg_stat_user_tables WHERE n_tup_upd > 0 ORDER BY hot_upd_ratio;" cur.execute(sql) ans =cur.fetchall() print ans #conn.commit() cur.close() conn.close()
1a8a4b1ec31cbf8dbe7046d88ecb72043feede10
8096e140f0fd38b9492e0fcf307990b1a5bfc3dd
/Python/madlibs/version3.py
68bb0d07fff518a717900d9beeaf33fbb77b915a
[]
no_license
perennialAutodidact/PDXCodeGuild_Projects
0cacd44499c0bdc0c157555fe5466df6d8eb09b6
28a8258eba41e1fe6c135f54b230436ea7d28678
refs/heads/master
2022-11-15T22:26:45.775550
2020-07-07T17:13:01
2020-07-07T17:13:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,322
py
game_over = False while(game_over == False): print("\nPlease enter:") adjectives = input("Five adjectives, separated by commas, then press enter: ").replace(' ', '').split(",") gerunds = input("Two \"-ing\" verbs, separated by commas: ").replace(' ', '').split(",") place = input("A place: ") plural_noun = input("A plural noun: ") noun = input("A noun: ") adjective_1 = adjectives[0] adjective_2 = adjectives[1] adjective_3 = adjectives[2] adjective_4 = adjectives[3] adjective_5 = adjectives[4] verb_1 = gerunds[0] verb_2 = gerunds[1] f"\nResult: \n\nIf you go to some {adjective_1} place like {place} , you must know how to deal with wild animals such as bears, wolves and{plural_noun} . The most important of these is the bear. There are three kinds of bear, the grizzly bear, the {adjective_2} bear and the {adjective_3} bear. Bears spend most of their time {verb_1} or {verb_2} . They look very {adjective_4} , but if you make them {adjective_5} , they might bite your {noun} ." play_again = input("\n\nWould you like to play again? Enter \"y\" for Yes and \"n\" for No: ") if play_again == "y": print("\nOkay, let's do it!") game_over = False elif play_again == "n": print("Okay, goodbye!") game_over = True
43cff66ffbaeb8e9ebc37fe1c4ddde3bf3d93ec0
613152f5e19ab472974f0c8a87a38c1bb1c792fc
/users/migrations/0002_auto_20190529_1957.py
2650af02ec1518e6067eddb54c7ad539ae9ac4a7
[]
no_license
KIM-JAEHYUNG/boro-wang
ed19181b2282f47a5ba1fe0f84f74f3a76b9902b
544bbbcc8b589ab0dfb936734d999c172a201864
refs/heads/master
2022-12-12T00:53:22.740279
2019-08-09T19:22:54
2019-08-09T19:22:54
201,409,510
0
1
null
2022-12-08T05:59:44
2019-08-09T06:54:13
HTML
UTF-8
Python
false
false
668
py
# Generated by Django 2.0.13 on 2019-05-29 10:57 from django.conf import settings from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0001_initial'), ] operations = [ migrations.AddField( model_name='user', name='followers', field=models.ManyToManyField(related_name='_user_followers_+', to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='user', name='followings', field=models.ManyToManyField(related_name='_user_followings_+', to=settings.AUTH_USER_MODEL), ), ]
fc2230059a02ace7499e2412070bd52ff2ab1e5d
f9a2e67dd2f40b37d8ff81bf6cdce47c38d2dee4
/.c9/metadata/environment/clean_architecture/clean_architecture_resources/fb_post_clean_arch/models/comment.py
4656363266106d471c438dc540263751c8e923a2
[]
no_license
mohan277/backend_repo
4eae065cf0fffa29866a2b549028cb8df4c97643
25dbb4d0f1c174b6da95f4c73737e49db9978429
refs/heads/master
2022-11-13T00:08:37.600743
2020-07-09T04:36:44
2020-07-09T04:36:44
278,259,585
0
0
null
null
null
null
UTF-8
Python
false
false
489
py
{"filter":false,"title":"comment.py","tooltip":"/clean_architecture/clean_architecture_resources/fb_post_clean_arch/models/comment.py","undoManager":{"mark":-1,"position":-1,"stack":[]},"ace":{"folds":[],"scrolltop":0,"scrollleft":0,"selection":{"start":{"row":9,"column":8},"end":{"row":9,"column":8},"isBackwards":false},"options":{"guessTabSize":true,"useWrapMode":false,"wrapToView":true},"firstLineState":0},"timestamp":1589532198411,"hash":"81351de4359a22cfbdbd6a9630eb6cdf91baa396"}
35d64fcc70ce2f581774ee385e08a42d750180c6
19d43cac1c70ad7c1e202486bd6d0951d774c7ab
/a_social_project/settings/__init__.py
14b4ac3405b477a70dc3201e2ace18a69ab7c397
[]
no_license
Raju-Pinnam/raju-social-app
e75d6f11964d08103ce2df85fc49ff5141ce346f
b809745df2e7a26a32b5ff151c414f68c83112ed
refs/heads/master
2023-02-20T23:45:42.649867
2021-01-24T18:19:37
2021-01-24T18:19:37
331,834,150
0
0
null
null
null
null
UTF-8
Python
false
false
129
py
from .base import * if config('ENV') == 'LOCAL': from .local import * elif config('ENV') == 'PROD': from .prod import *
f4bc23d4d623902bcf8c8e4cd2238b727839d0e9
3b786d3854e830a4b46ee55851ca186becbfa650
/SystemTesting/pylib/nsx/nvp/transport_node/schema/nvp_transport_node_schema.py
ad2bff5982153948e66bc22e6ea73f016294ab8c
[]
no_license
Cloudxtreme/MyProject
d81f8d38684333c22084b88141b712c78b140777
5b55817c050b637e2747084290f6206d2e622938
refs/heads/master
2021-05-31T10:26:42.951835
2015-12-10T09:57:04
2015-12-10T09:57:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,113
py
import base_schema import credential_schema import transport_connector_schema import nvp_transport_zone_binding_schema import nvp_tag_schema class TransportNode(base_schema.BaseSchema): _schema_name = "transportNode" def __init__(self, py_dict=None): super(TransportNode, self).__init__() self.display_name = None self.transport_connectors = [transport_connector_schema.TransportConnector()] self.uuid = None self.tags = [nvp_tag_schema.Tag()] self.integration_bridge_id = None self.mgmt_rendezvous_client = None self.mgmt_rendezvous_server = None self.credential = credential_schema.Credential() self.tunnel_probe_random_vlan = None self.zone_forwarding = None if py_dict is not None: self.get_object_from_py_dict(py_dict) self._uuid_meta = {'isReq':False,'type':'string'} self._tags_meta = {'isReq':False,'type':'array','maxLen':5} self._display_name_meta = {'isReq':False,'type':'string', 'default':'<uuid>','maxLen':40} self._transport_connectors_meta = {'isReq':False,'type':'array'} self._integration_bridge_id_meta = {'isReq':False,'type':'string'} self._mgmt_rendezvous_client_meta = {'isReq':False,'type':'boolean', 'default':False} self._mgmt_rendezvous_server_meta = {'isReq':False,'type':'boolean', 'default':False} self._credential_meta = {'isReq':False,'type':'object'} self._tunnel_probe_random_vlan_meta = {'isReq':False,'type':'boolean', 'default':False} self._zone_forwarding_meta = {'isReq':False,'type':'boolean', 'default':False} def add_transport_connector(self, transport_connetor): self.transport_connectors.append(transport_connector) def add_tag(self, tag): self.tags.append(tag) if __name__=='__main__': pass
6301dd36de7e57837bd0faca3facc53b2efcd28b
9360aeefb3605a3fe0c5e512e52ec3bc0942903f
/bin/jupyter-kernel
52f4f4b2c7281de7c9de88b24087c584be53a550
[ "LicenseRef-scancode-warranty-disclaimer", "MIT" ]
permissive
eliaswalyba/facebound
1ff7dc32cc4bf50d14f2e6434af2adfb14300245
92500e61b1bc50702ea339563ee8b38b55a31169
refs/heads/master
2022-07-01T17:42:02.360416
2020-05-08T15:23:03
2020-05-08T15:23:03
262,851,606
0
0
MIT
2020-05-10T18:37:03
2020-05-10T18:37:02
null
UTF-8
Python
false
false
264
#!/Users/fodediop/dev/deep-learning/facebound/bin/python3.7 # -*- coding: utf-8 -*- import re import sys from jupyter_client.kernelapp import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
b5d47fab88804b7fb68fcbecbdf9db94a8054a2a
b6475b69ae89f5a2ffb3c03c21d747bc6fddbdd2
/facility/urls.py
c7d25fdaceb3e173d5a1a1b442d033ca3d0ba1c2
[]
no_license
LeeSuHa98/14-2nd-SHABANG-backend
3718516abc1a423da7e97d9363c61bfc7dd5ec4f
13cc50c80aca273277bae8d8b15a1623b860ce55
refs/heads/main
2023-02-18T05:57:27.863525
2021-01-19T04:47:20
2021-01-19T04:47:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
142
py
from django.urls import path from facility.views import NearFacilityView urlpatterns = [ path("/<int:id>", NearFacilityView.as_view()) ]
83a592cb4e501fdef642301cc6c4b81c6f8e086a
c2ee51902020596e08aacd4462ab44715432c8f8
/pyapprox/tests/test_mixture_model.py
817c0ce729c40dff37793eefee398f5e6f383587
[ "MIT" ]
permissive
ConnectedSystems/pyapprox
bb1462aa8ee54258ee559d734f7bffb744e09c78
4f405654c707cba83d211f327c0f0fdbc95efa29
refs/heads/master
2021-09-13T09:49:59.048327
2021-08-29T03:38:43
2021-08-29T03:38:43
252,080,343
0
0
MIT
2020-04-01T05:26:29
2020-04-01T05:26:29
null
UTF-8
Python
false
false
4,778
py
import unittest from functools import partial from scipy import stats import numpy as np from pyapprox.mixture_model import \ get_leja_univariate_quadrature_rules_of_beta_mixture, sample_mixture, \ get_mixture_sparse_grid_quadrature_rule, \ get_mixture_tensor_product_gauss_quadrature, \ compute_grammian_of_mixture_models_using_sparse_grid_quadrature from pyapprox.univariate_polynomials.quadrature import leja_growth_rule from pyapprox.multivariate_polynomials import PolynomialChaosExpansion, \ define_poly_options_from_variable_transformation from pyapprox.variable_transformations import \ define_iid_random_variable_transformation from pyapprox.indexing import compute_hyperbolic_indices class TestMixtureModel(unittest.TestCase): def test_mixture_model_sparse_grid_quadrature(self): num_vars = 2 level = 5 rv_params = [[2, 4], [4, 2]] rv_params = [[2, 6], [6, 2]] # rv_params = [[6,2]] num_mixtures = len(rv_params) def function(x): return np.array( [np.sum(x**2, axis=0), np.sum(x**3, axis=0)+x[0, :]*x[1, :]]).T mixture_samplers = [] for ii in range(num_mixtures): def lambda_sampler(a, b, nn): return 2 * \ np.random.beta(a, b, (num_vars, nn))-1 # partial is needed to make sure correct alpha and beta parameters # are used and not overwritten sampler = partial( lambda_sampler, rv_params[ii][0], rv_params[ii][1]) mixture_samplers.append(sampler) mc_samples = sample_mixture(mixture_samplers, num_vars, int(1e6)) mc_integral = function(mc_samples).mean(axis=0) # print ('mc',mc_integral) leja_basename = None mixtures, mixture_univariate_quadrature_rules = \ get_leja_univariate_quadrature_rules_of_beta_mixture( rv_params, leja_growth_rule, leja_basename) mixture_univariate_growth_rules = [leja_growth_rule]*num_mixtures sg_samples, sg_weights = get_mixture_sparse_grid_quadrature_rule( mixture_univariate_quadrature_rules, mixture_univariate_growth_rules, num_vars, level) sg_integral = function(sg_samples).T.dot(sg_weights) # print ('sg',sg_integral) print('todo: replace with exact analytical integral') assert np.allclose(sg_integral, mc_integral, atol=1e-2) mixtures, mixture_univariate_quadrature_rules = \ get_leja_univariate_quadrature_rules_of_beta_mixture( rv_params, leja_growth_rule, leja_basename, return_weights_for_all_levels=False) nquad_samples_1d = leja_growth_rule(level) tp_samples, tp_weights = get_mixture_tensor_product_gauss_quadrature( mixture_univariate_quadrature_rules, nquad_samples_1d, num_vars) tp_integral = function(sg_samples).T.dot(sg_weights) # print ('tp',tp_integral) assert np.allclose(tp_integral, mc_integral, atol=1e-2) def test_compute_grammian_of_mixture_models_using_sparse_grid_quadrature( self): num_vars = 2 degree = 3 # rv_params = [[6,2],[2,6]] rv_params = [[1, 1]] leja_basename = None mixtures, mixture_univariate_quadrature_rules = \ get_leja_univariate_quadrature_rules_of_beta_mixture( rv_params, leja_growth_rule, leja_basename) poly = PolynomialChaosExpansion() var_trans = define_iid_random_variable_transformation( stats.uniform(-1, 2), num_vars) poly_opts = define_poly_options_from_variable_transformation(var_trans) indices = compute_hyperbolic_indices(num_vars, degree, 1.0) poly.configure(poly_opts) poly.set_indices(indices) num_mixtures = len(rv_params) mixture_univariate_growth_rules = [leja_growth_rule]*num_mixtures grammian_matrix = \ compute_grammian_of_mixture_models_using_sparse_grid_quadrature( poly.basis_matrix, indices, mixture_univariate_quadrature_rules, mixture_univariate_growth_rules, num_vars) assert (np.all(np.isfinite(grammian_matrix))) if num_mixtures == 1: II = np.where(abs(grammian_matrix) > 1e-8) # check only non-zero inner-products are along diagonal, i.e. # for integrals of indices multiplied by themselves assert np.allclose( II, np.tile(np.arange(indices.shape[1]), (2, 1))) if __name__ == "__main__": mixture_model_test_suite = unittest.TestLoader().loadTestsFromTestCase( TestMixtureModel) unittest.TextTestRunner(verbosity=2).run(mixture_model_test_suite)
142e1232f03e6245fe3538cf1dbe1a8210792eef
3cc7def40ac121c25105ffac6b33e7f12d1c7f97
/muddery/typeclasses/locked_exit.py
3d5d615a7bdff60213ec1a33bb047d9f5236e029
[ "BSD-3-Clause" ]
permissive
ming-inside/muddery
8a6d8c9f25fed6137616d109904788927a1059e1
8442d6339d4776b8fb81827bcfe0138cf0bc73b5
refs/heads/master
2020-03-31T11:13:30.792060
2018-10-08T16:49:58
2018-10-08T16:49:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,615
py
""" Exits Exits are connectors between Rooms. An exit always has a destination property set and has a single command defined on itself with the same name as its key, for allowing Characters to traverse the exit to its destination. """ from __future__ import print_function import traceback from muddery.utils import utils from muddery.statements.statement_handler import STATEMENT_HANDLER from muddery.utils.localized_strings_handler import _ from muddery.mappings.typeclass_set import TYPECLASS from evennia.utils import logger from django.conf import settings class MudderyLockedExit(TYPECLASS("EXIT")): """ Characters must unlock these exits to pass it. The view and commands of locked exits are different from unlocked exits. """ typeclass_key = "LOCKED_EXIT" typeclass_name = _("Locked Exit", "typeclasses") def after_data_loaded(self): """ Set data_info to the object." """ super(MudderyLockedExit, self).after_data_loaded() self.unlock_condition = getattr(self.dfield, "unlock_condition", "") self.unlock_verb = getattr(self.dfield, "unlock_verb", "") self.locked_desc = getattr(self.dfield, "locked_desc", "") self.auto_unlock = getattr(self.dfield, "auto_unlock", False) def at_before_traverse(self, traversing_object): """ Called just before an object uses this object to traverse to another object (i.e. this object is a type of Exit) Args: traversing_object (Object): The object traversing us. Notes: The target destination should normally be available as `self.destination`. If this method returns False/None, the traverse is cancelled before it is even started. """ if not super(MudderyLockedExit, self).at_before_traverse(traversing_object): return False # Only can pass exits which have already unlockde. if traversing_object.is_exit_unlocked(self.get_data_key()): return True if self.auto_unlock: if self.can_unlock(traversing_object): # Automatically unlock the exit when a character looking at it. traversing_object.unlock_exit(self) return True # Show the object's appearance. appearance = self.get_appearance(traversing_object) traversing_object.msg({"look_obj": appearance}) return False def can_unlock(self, caller): """ Unlock an exit. """ # Only can unlock exits which match there conditions. return STATEMENT_HANDLER.match_condition(self.unlock_condition, caller, self) def get_appearance(self, caller): """ This is a convenient hook for a 'look' command to call. """ # Get name and description. if caller.is_exit_unlocked(self.get_data_key()): # If is unlocked, use common appearance. return super(MudderyLockedExit, self).get_appearance(caller) can_unlock = self.can_unlock(caller) if self.auto_unlock and can_unlock: # Automatically unlock the exit when a character looking at it. caller.unlock_exit(self) # If is unlocked, use common appearance. return super(MudderyLockedExit, self).get_appearance(caller) cmds = [] if can_unlock: # show unlock command verb = self.unlock_verb if not verb: verb = _("Unlock") cmds = [{"name": verb, "cmd": "unlock_exit", "args": self.dbref}] info = {"dbref": self.dbref, "name": self.name, "desc": self.locked_desc, "cmds": cmds} return info def get_available_commands(self, caller): """ This returns a list of available commands. "args" must be a string without ' and ", usually it is self.dbref. """ if caller.is_exit_unlocked(self.get_data_key()): # If is unlocked, use common commands. return super(MudderyLockedExit, self).get_available_commands(caller) cmds = [] can_unlock = STATEMENT_HANDLER.match_condition(self.unlock_condition, caller, self) if can_unlock: # show unlock command verb = self.unlock_verb if not verb: verb = _("Unlock") cmds = [{"name": verb, "cmd": "unlock", "args": self.dbref}] return cmds
279113e81590ca7d8b73b237349369281db91a6c
72880d033c9948098291efebf934255635f8c6ea
/pythonexamples/createdirectories.py
4bf20074931112e5bb2cf8c33503cb0686a91f22
[]
no_license
manutdmohit/mypythonexamples
729347aec300bda01f629224337c84d5838a71f2
b189c201d07b1a345478699bbb3852c02eb96ce5
refs/heads/master
2023-04-18T01:55:22.026867
2021-05-13T05:59:09
2021-05-13T05:59:09
366,946,854
0
0
null
null
null
null
UTF-8
Python
false
false
83
py
import os os.mkdir('valmiki') print('valkimi created in current working directory')
efd659f109141d794d98452979ad0f7016c59ad0
a54007706a09b387690f79fd7ffd889decad42f1
/day11/code/03_pygame框架使用.py
500591bf438640322dcfd73908d34c025d1fabd3
[]
no_license
lvah/201903python
d425534544a1f91e5b80b5ff0de5ca34037fe6e9
1415fcb7697dfa2884d94dcd8963477e12fe0624
refs/heads/master
2020-07-06T16:45:37.882819
2019-09-08T10:13:07
2019-09-08T10:13:07
203,082,401
5
0
null
null
null
null
UTF-8
Python
false
false
782
py
import pygame import sys pygame.init() # 初始化pygame size = width, height = 320, 240 # 设置窗口大小 screen = pygame.display.set_mode(size) # 显示窗口 while True: # 死循环确保窗口一直显示 for event in pygame.event.get(): # 遍历所有事件 if event.type == pygame.QUIT: # 如果单击关闭窗口,则退出 # exit(0) --- 结束程序, 0代表正常退出, sys.exit(0) # pygame.KEYDOWN: 代表按下键盘 elif event.type == pygame.KEYDOWN: if event.key == pygame.K_UP: print("UP") elif event.key == pygame.K_DOWN: print('DOWN') elif event.key == pygame.K_q: # Q sys.exit(0) pygame.quit() # 退出pygame
90413f84cf6b0e827f63c0a6370c22e5db575ae4
a8062308fb3bf6c8952257504a50c3e97d801294
/test/test_524_longest_word_in_dictionary_through_deleting.py
dd8614be77d386c33da05a8c850208c59e040bcc
[]
no_license
wan-catherine/Leetcode
650d697a873ad23c0b64d08ad525bf9fcdb62b1b
238995bd23c8a6c40c6035890e94baa2473d4bbc
refs/heads/master
2023-09-01T00:56:27.677230
2023-08-31T00:49:31
2023-08-31T00:49:31
143,770,000
5
0
null
null
null
null
UTF-8
Python
false
false
612
py
from unittest import TestCase from problems.N524_Longest_Word_In_Dictionary_Through_Deleting import Solution class TestSolution(TestCase): def test_findLongestWord(self): self.assertEqual("apple", Solution().findLongestWord(s = "abpcplea", d = ["ale","apple","monkey","plea"])) def test_findLongestWord_1(self): self.assertEqual("a", Solution().findLongestWord(s = "abpcplea", d = ["a","b","c"])) def test_findLongestWord_2(self): s = "wordgoodgoodgoodbestword" d = ["word", "good", "best", "good"] self.assertEqual("best", Solution().findLongestWord(s, d))
b3f79671754cfe80ab04743bc318dc84ee6f0b93
c3e47ce05f1d6a237a03742ce431d6958ca388b2
/crowd/plug-in/bkp/whatIsCmd.py
c65eacdc5846cdb8491ebdd3b6694ae6e3f60396
[]
no_license
fsanges/subins_tutorials
27426ac71365124c28e924c502484c5bb172f715
9c50ec8e3200c29f1c7141ca013cbb0a5b4f8e4e
refs/heads/master
2020-09-16T04:38:43.696690
2019-11-23T13:06:51
2019-11-23T13:06:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,481
py
""" To use, make sure that whatIsCmd.py is in your MAYA_PLUG_IN_PATH (and the C++ version is not) then do the following: import maya.cmds maya.cmds.loadPlugin("whatIsCmd.py") maya.cmds.spWhatIs() """ import sys import maya.OpenMaya as OpenMaya import maya.OpenMayaMPx as OpenMayaMPx # command class WhatIsCmd(OpenMayaMPx.MPxCommand): kPluginCmdName = "spWhatIs" def __init__(self): OpenMayaMPx.MPxCommand.__init__(self) @staticmethod def cmdCreator(): return OpenMayaMPx.asMPxPtr( WhatIsCmd() ) def doIt(self, args): selectList = OpenMaya.MSelectionList() OpenMaya.MGlobal.getActiveSelectionList( selectList ) node = OpenMaya.MObject() depFn = OpenMaya.MFnDependencyNode() iter = OpenMaya.MItSelectionList(selectList) while (iter.isDone() == 0): iter.getDependNode( node ) depFn.setObject(node) name = depFn.name() types = [] OpenMaya.MGlobal.getFunctionSetList( node, types ) print "Name: %s" % name print "Type: %s" % node.apiTypeStr() sys.stdout.write( "Function Sets: " ) sys.stdout.write(", ".join(types) + '\n') iter.next() # Initialize the script plug-in def initializePlugin(plugin): pluginFn = OpenMayaMPx.MFnPlugin(plugin) try: pluginFn.registerCommand( WhatIsCmd.kPluginCmdName, WhatIsCmd.cmdCreator ) except: sys.stderr.write( "Failed to register command: %s\n" % WhatIsCmd.kPluginCmdName ) raise # Uninitialize the script plug-in def uninitializePlugin(plugin): pluginFn = OpenMayaMPx.MFnPlugin(plugin) try: pluginFn.deregisterCommand(WhatIsCmd.kPluginCmdName) except: sys.stderr.write( "Failed to unregister command: %s\n" % WhatIsCmd.kPluginCmdName ) raise #- # ========================================================================== # Copyright (C) 2011 Autodesk, Inc. and/or its licensors. All # rights reserved. # # The coded instructions, statements, computer programs, and/or related # material (collectively the "Data") in these files contain unpublished # information proprietary to Autodesk, Inc. ("Autodesk") and/or its # licensors, which is protected by U.S. and Canadian federal copyright # law and by international treaties. # # The Data is provided for use exclusively by You. You have the right # to use, modify, and incorporate this Data into other products for # purposes authorized by the Autodesk software license agreement, # without fee. # # The copyright notices in the Software and this entire statement, # including the above license grant, this restriction and the # following disclaimer, must be included in all copies of the # Software, in whole or in part, and all derivative works of # the Software, unless such copies or derivative works are solely # in the form of machine-executable object code generated by a # source language processor. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND. # AUTODESK DOES NOT MAKE AND HEREBY DISCLAIMS ANY EXPRESS OR IMPLIED # WARRANTIES INCLUDING, BUT NOT LIMITED TO, THE WARRANTIES OF # NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR # PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE, OR # TRADE PRACTICE. IN NO EVENT WILL AUTODESK AND/OR ITS LICENSORS # BE LIABLE FOR ANY LOST REVENUES, DATA, OR PROFITS, OR SPECIAL, # DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES, EVEN IF AUTODESK # AND/OR ITS LICENSORS HAS BEEN ADVISED OF THE POSSIBILITY # OR PROBABILITY OF SUCH DAMAGES. # # ========================================================================== #+