blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
98f76ec619a2e488aa99de17c4447d474c1cb2e1
3f6c16ea158a8fb4318b8f069156f1c8d5cff576
/.PyCharm2019.1/system/python_stubs/-1046095393/atexit.py
3b4fb40c097ce9444aa1ae283f0da5efbfc50ffd
[]
no_license
sarthak-patidar/dotfiles
08494170d2c0fedc0bbe719cc7c60263ce6fd095
b62cd46f3491fd3f50c704f0255730af682d1f80
refs/heads/master
2020-06-28T23:42:17.236273
2019-10-01T13:56:27
2019-10-01T13:56:27
200,369,900
0
0
null
2019-08-03T12:56:33
2019-08-03T11:53:29
Shell
UTF-8
Python
false
false
4,738
py
# encoding: utf-8 # module atexit # from (built-in) # by generator 1.147 """ allow programmer to define multiple exit functions to be executedupon normal program termination. Two public functions, register and unregister, are defined. """ # no imports # functions def register(func, *args, **kwargs): # real signature unknown; restored from __doc__ """ register(func, *args, **kwargs) -> func Register a function to be executed upon normal program termination func - function to be called at exit args - optional arguments to pass to func kwargs - optional keyword arguments to pass to func func is returned to facilitate usage as a decorator. """ pass def unregister(func): # real signature unknown; restored from __doc__ """ unregister(func) -> None Unregister an exit function which was previously registered using atexit.register func - function to be unregistered """ pass def _clear(): # real signature unknown; restored from __doc__ """ _clear() -> None Clear the list of previously registered exit functions. """ pass def _ncallbacks(): # real signature unknown; restored from __doc__ """ _ncallbacks() -> int Return the number of registered exit functions. """ return 0 def _run_exitfuncs(): # real signature unknown; restored from __doc__ """ _run_exitfuncs() -> None Run all registered exit functions. """ pass # classes class __loader__(object): """ Meta path import for built-in modules. All methods are either class or static methods to avoid the need to instantiate the class. """ @classmethod def create_module(cls, *args, **kwargs): # real signature unknown """ Create a built-in module """ pass @classmethod def exec_module(cls, *args, **kwargs): # real signature unknown """ Exec a built-in module """ pass @classmethod def find_module(cls, *args, **kwargs): # real signature unknown """ Find the built-in module. If 'path' is ever specified then the search is considered a failure. This method is deprecated. Use find_spec() instead. """ pass @classmethod def find_spec(cls, *args, **kwargs): # real signature unknown pass @classmethod def get_code(cls, *args, **kwargs): # real signature unknown """ Return None as built-in modules do not have code objects. """ pass @classmethod def get_source(cls, *args, **kwargs): # real signature unknown """ Return None as built-in modules do not have source code. """ pass @classmethod def is_package(cls, *args, **kwargs): # real signature unknown """ Return False as built-in modules are never packages. """ pass @classmethod def load_module(cls, *args, **kwargs): # real signature unknown """ Load the specified module into sys.modules and return it. This method is deprecated. Use loader.exec_module instead. """ pass def module_repr(module): # reliably restored by inspect """ Return repr for the module. The method is deprecated. The import machinery does the job itself. """ pass def __init__(self, *args, **kwargs): # real signature unknown pass __weakref__ = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """list of weak references to the object (if defined)""" __dict__ = None # (!) real value is "mappingproxy({'__module__': '_frozen_importlib', '__doc__': 'Meta path import for built-in modules.\\n\\n All methods are either class or static methods to avoid the need to\\n instantiate the class.\\n\\n ', 'module_repr': <staticmethod object at 0x7f1f2a7150f0>, 'find_spec': <classmethod object at 0x7f1f2a715128>, 'find_module': <classmethod object at 0x7f1f2a715160>, 'create_module': <classmethod object at 0x7f1f2a715198>, 'exec_module': <classmethod object at 0x7f1f2a7151d0>, 'get_code': <classmethod object at 0x7f1f2a715240>, 'get_source': <classmethod object at 0x7f1f2a7152b0>, 'is_package': <classmethod object at 0x7f1f2a715320>, 'load_module': <classmethod object at 0x7f1f2a715358>, '__dict__': <attribute '__dict__' of 'BuiltinImporter' objects>, '__weakref__': <attribute '__weakref__' of 'BuiltinImporter' objects>})" # variables with complex values __spec__ = None # (!) real value is "ModuleSpec(name='atexit', loader=<class '_frozen_importlib.BuiltinImporter'>, origin='built-in')"
17a0b25b7520802c0316a50b66f74a804df1a76e
caaf56727714f8c03be38710bc7d0434c3ec5b11
/tests/components/abode/test_light.py
6506746783c2c8bc154c57ee3317833d02c7ff28
[ "Apache-2.0" ]
permissive
tchellomello/home-assistant
c8db86880619d7467901fd145f27e0f2f1a79acc
ed4ab403deaed9e8c95e0db728477fcb012bf4fa
refs/heads/dev
2023-01-27T23:48:17.550374
2020-09-18T01:18:55
2020-09-18T01:18:55
62,690,461
8
1
Apache-2.0
2023-01-13T06:02:03
2016-07-06T04:13:49
Python
UTF-8
Python
false
false
4,040
py
"""Tests for the Abode light device.""" from homeassistant.components.abode import ATTR_DEVICE_ID from homeassistant.components.light import ( ATTR_BRIGHTNESS, ATTR_COLOR_TEMP, ATTR_RGB_COLOR, DOMAIN as LIGHT_DOMAIN, ) from homeassistant.const import ( ATTR_ENTITY_ID, ATTR_FRIENDLY_NAME, ATTR_SUPPORTED_FEATURES, SERVICE_TURN_OFF, SERVICE_TURN_ON, STATE_ON, ) from .common import setup_platform from tests.async_mock import patch DEVICE_ID = "light.living_room_lamp" async def test_entity_registry(hass): """Tests that the devices are registered in the entity registry.""" await setup_platform(hass, LIGHT_DOMAIN) entity_registry = await hass.helpers.entity_registry.async_get_registry() entry = entity_registry.async_get(DEVICE_ID) assert entry.unique_id == "741385f4388b2637df4c6b398fe50581" async def test_attributes(hass): """Test the light attributes are correct.""" await setup_platform(hass, LIGHT_DOMAIN) state = hass.states.get(DEVICE_ID) assert state.state == STATE_ON assert state.attributes.get(ATTR_BRIGHTNESS) == 204 assert state.attributes.get(ATTR_RGB_COLOR) == (0, 63, 255) assert state.attributes.get(ATTR_COLOR_TEMP) == 280 assert state.attributes.get(ATTR_DEVICE_ID) == "ZB:db5b1a" assert not state.attributes.get("battery_low") assert not state.attributes.get("no_response") assert state.attributes.get("device_type") == "RGB Dimmer" assert state.attributes.get(ATTR_FRIENDLY_NAME) == "Living Room Lamp" assert state.attributes.get(ATTR_SUPPORTED_FEATURES) == 19 async def test_switch_off(hass): """Test the light can be turned off.""" await setup_platform(hass, LIGHT_DOMAIN) with patch("abodepy.AbodeLight.switch_off") as mock_switch_off: assert await hass.services.async_call( LIGHT_DOMAIN, SERVICE_TURN_OFF, {ATTR_ENTITY_ID: DEVICE_ID}, blocking=True ) await hass.async_block_till_done() mock_switch_off.assert_called_once() async def test_switch_on(hass): """Test the light can be turned on.""" await setup_platform(hass, LIGHT_DOMAIN) with patch("abodepy.AbodeLight.switch_on") as mock_switch_on: await hass.services.async_call( LIGHT_DOMAIN, SERVICE_TURN_ON, {ATTR_ENTITY_ID: DEVICE_ID}, blocking=True ) await hass.async_block_till_done() mock_switch_on.assert_called_once() async def test_set_brightness(hass): """Test the brightness can be set.""" await setup_platform(hass, LIGHT_DOMAIN) with patch("abodepy.AbodeLight.set_level") as mock_set_level: await hass.services.async_call( LIGHT_DOMAIN, SERVICE_TURN_ON, {ATTR_ENTITY_ID: DEVICE_ID, "brightness": 100}, blocking=True, ) await hass.async_block_till_done() # Brightness is converted in abode.light.AbodeLight.turn_on mock_set_level.assert_called_once_with(39) async def test_set_color(hass): """Test the color can be set.""" await setup_platform(hass, LIGHT_DOMAIN) with patch("abodepy.AbodeLight.set_color") as mock_set_color: await hass.services.async_call( LIGHT_DOMAIN, SERVICE_TURN_ON, {ATTR_ENTITY_ID: DEVICE_ID, "hs_color": [240, 100]}, blocking=True, ) await hass.async_block_till_done() mock_set_color.assert_called_once_with((240.0, 100.0)) async def test_set_color_temp(hass): """Test the color temp can be set.""" await setup_platform(hass, LIGHT_DOMAIN) with patch("abodepy.AbodeLight.set_color_temp") as mock_set_color_temp: await hass.services.async_call( LIGHT_DOMAIN, SERVICE_TURN_ON, {ATTR_ENTITY_ID: DEVICE_ID, "color_temp": 309}, blocking=True, ) await hass.async_block_till_done() # Color temp is converted in abode.light.AbodeLight.turn_on mock_set_color_temp.assert_called_once_with(3236)
5efc101cdbf8e412920f0ccebaf0c2a572e6f7ba
af6e7f0927517375cb4af833f4c52e301bad0af5
/corpus_processor/topic_aware/filter_qa_corpus_by_topic_list.py
90d3fa8fa6d532a86b504d45378701a28a47ca24
[]
no_license
wolfhu/DialogPretraining
470334fd815e1299981b827fdc933d237a489efd
eeeada92146d652d81ca6e961d1298924ac8435d
refs/heads/main
2023-06-25T15:22:54.728187
2021-07-21T01:40:23
2021-07-21T01:40:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,834
py
# encoding: utf-8 import sys from util.trie import Trie tag_file_path = '/home/t-yuniu/xiaoice/yuniu/dataset/processed/domain/sport/keywords' # Tag 黑名单 tag_black_dict = {} # tag_black_dict.setdefault('游戏', True) tag_trie = Trie() def detect_tag(sentence): """ Judge if sentence contain as least a tag. :param sentence: query or answer :return: boolean, True if contain, False otherwise. """ length = len(sentence) detected_tags = [] for idx in range(length): node = tag_trie.lookup idx_tmp = idx while True: if idx_tmp >= length: break if sentence[idx_tmp] in node: node = node[sentence[idx_tmp]] idx_tmp += 1 if Trie.END in node: detected_tags.append(sentence[idx:idx_tmp]) else: break return detected_tags if __name__ == '__main__': # build trie from tag file with open(tag_file_path) as douban_tag_file: for line in douban_tag_file.readlines(): tag = line.strip() if len(tag) == 1 or tag in tag_black_dict: continue tag_trie.insert(tag) # filter corpus contain tags while True: line = sys.stdin.readline().strip() if line: try: line = line.replace('#', '') query, answer = line.split('\t')[:2] # detected_tags = detect_tag(query) detected_tags = [] detected_tags.extend(detect_tag(answer)) if len(detected_tags) > 0: print('\t'.join([' '.join(set(detected_tags)), query, answer])) except ValueError: sys.stdout.write('Illegal line.\n') else: break
4dad72ebc7956f2e83c677733d880dec2b2fd50f
2f98aa7e5bfc2fc5ef25e4d5cfa1d7802e3a7fae
/python/python_10938.py
978f85ef643f608646c73eface82e3ca6748bc7b
[]
no_license
AK-1121/code_extraction
cc812b6832b112e3ffcc2bb7eb4237fd85c88c01
5297a4a3aab3bb37efa24a89636935da04a1f8b6
refs/heads/master
2020-05-23T08:04:11.789141
2015-10-22T19:19:40
2015-10-22T19:19:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
117
py
# Installing psycopg2 on Mountain Lion (brew + pip) defaults write com.apple.versioner.python Prefer-32-Bit -bool no
08de5456e8af14a088ef40511b9b3774b8805421
a7807e4a49a06b748cff273fe8c0dc79b5e64ca8
/orby/Scripts/django-admin.py
e15c2e9f1d2447bd8344d9aa8ae6a8f207aaf426
[]
no_license
orhunakar01/labotestalep
0cb864522821f9d4f168996db15a38fc166d57b3
6c6958d49e65d30d5f80c09ee1618c8cc7dd8100
refs/heads/master
2023-03-23T00:32:49.474106
2021-03-16T18:46:08
2021-03-16T18:46:08
348,455,136
0
0
null
null
null
null
UTF-8
Python
false
false
695
py
#!c:\users\orhun\desktop\djangologin\orby\scripts\python.exe # When the django-admin.py deprecation ends, remove this script. import warnings from django.core import management try: from django.utils.deprecation import RemovedInDjango40Warning except ImportError: raise ImportError( 'django-admin.py was deprecated in Django 3.1 and removed in Django ' '4.0. Please manually remove this script from your virtual environment ' 'and use django-admin instead.' ) if __name__ == "__main__": warnings.warn( 'django-admin.py is deprecated in favor of django-admin.', RemovedInDjango40Warning, ) management.execute_from_command_line()
66aefdce6c1839e0f4b8dfbe62df72f1d60af25d
b15d2787a1eeb56dfa700480364337216d2b1eb9
/accelbyte_py_sdk/api/match2/operations/backfill/accept_backfill.py
e35c0aa725d1ba4f04c748c7ad397734654b2930
[ "MIT" ]
permissive
AccelByte/accelbyte-python-sdk
dedf3b8a592beef5fcf86b4245678ee3277f953d
539c617c7e6938892fa49f95585b2a45c97a59e0
refs/heads/main
2023-08-24T14:38:04.370340
2023-08-22T01:08:03
2023-08-22T01:08:03
410,735,805
2
1
MIT
2022-08-02T03:54:11
2021-09-27T04:00:10
Python
UTF-8
Python
false
false
8,605
py
# Copyright (c) 2021 AccelByte Inc. All Rights Reserved. # This is licensed software from AccelByte Inc, for limitations # and restrictions contact your company contract manager. # # Code generated. DO NOT EDIT! # template file: ags_py_codegen # pylint: disable=duplicate-code # pylint: disable=line-too-long # pylint: disable=missing-function-docstring # pylint: disable=missing-module-docstring # pylint: disable=too-many-arguments # pylint: disable=too-many-branches # pylint: disable=too-many-instance-attributes # pylint: disable=too-many-lines # pylint: disable=too-many-locals # pylint: disable=too-many-public-methods # pylint: disable=too-many-return-statements # pylint: disable=too-many-statements # pylint: disable=unused-import # AccelByte Gaming Services Match Service V2 (2.8.4) from __future__ import annotations from typing import Any, Dict, List, Optional, Tuple, Union from .....core import Operation from .....core import HeaderStr from .....core import HttpResponse from ...models import ApiBackFillAcceptRequest from ...models import ModelsGameSession from ...models import ResponseError class AcceptBackfill(Operation): """Accept a backfill proposal (AcceptBackfill) Required Permission: NAMESPACE:{namespace}:MATCHMAKING:BACKFILL [UPDATE] Required Scope: social Accept backfill proposal Required Permission(s): - NAMESPACE:{namespace}:MATCHMAKING:BACKFILL [UPDATE] Required Scope(s): - social Properties: url: /match2/v1/namespaces/{namespace}/backfill/{backfillID}/proposal/accept method: PUT tags: ["Backfill", "public"] consumes: ["application/json"] produces: ["application/json"] securities: [BEARER_AUTH] body: (body) REQUIRED ApiBackFillAcceptRequest in body backfill_id: (backfillID) REQUIRED str in path namespace: (namespace) REQUIRED str in path Responses: 200: OK - ModelsGameSession (OK) 400: Bad Request - ResponseError (Bad Request) 401: Unauthorized - ResponseError (Unauthorized) 403: Forbidden - ResponseError (Forbidden) 404: Not Found - ResponseError (Not Found) 500: Internal Server Error - ResponseError (Internal Server Error) """ # region fields _url: str = ( "/match2/v1/namespaces/{namespace}/backfill/{backfillID}/proposal/accept" ) _method: str = "PUT" _consumes: List[str] = ["application/json"] _produces: List[str] = ["application/json"] _securities: List[List[str]] = [["BEARER_AUTH"]] _location_query: str = None body: ApiBackFillAcceptRequest # REQUIRED in [body] backfill_id: str # REQUIRED in [path] namespace: str # REQUIRED in [path] # endregion fields # region properties @property def url(self) -> str: return self._url @property def method(self) -> str: return self._method @property def consumes(self) -> List[str]: return self._consumes @property def produces(self) -> List[str]: return self._produces @property def securities(self) -> List[List[str]]: return self._securities @property def location_query(self) -> str: return self._location_query # endregion properties # region get methods # endregion get methods # region get_x_params methods def get_all_params(self) -> dict: return { "body": self.get_body_params(), "path": self.get_path_params(), } def get_body_params(self) -> Any: if not hasattr(self, "body") or self.body is None: return None return self.body.to_dict() def get_path_params(self) -> dict: result = {} if hasattr(self, "backfill_id"): result["backfillID"] = self.backfill_id if hasattr(self, "namespace"): result["namespace"] = self.namespace return result # endregion get_x_params methods # region is/has methods # endregion is/has methods # region with_x methods def with_body(self, value: ApiBackFillAcceptRequest) -> AcceptBackfill: self.body = value return self def with_backfill_id(self, value: str) -> AcceptBackfill: self.backfill_id = value return self def with_namespace(self, value: str) -> AcceptBackfill: self.namespace = value return self # endregion with_x methods # region to methods def to_dict(self, include_empty: bool = False) -> dict: result: dict = {} if hasattr(self, "body") and self.body: result["body"] = self.body.to_dict(include_empty=include_empty) elif include_empty: result["body"] = ApiBackFillAcceptRequest() if hasattr(self, "backfill_id") and self.backfill_id: result["backfillID"] = str(self.backfill_id) elif include_empty: result["backfillID"] = "" if hasattr(self, "namespace") and self.namespace: result["namespace"] = str(self.namespace) elif include_empty: result["namespace"] = "" return result # endregion to methods # region response methods # noinspection PyMethodMayBeStatic def parse_response( self, code: int, content_type: str, content: Any ) -> Tuple[ Union[None, ModelsGameSession], Union[None, HttpResponse, ResponseError] ]: """Parse the given response. 200: OK - ModelsGameSession (OK) 400: Bad Request - ResponseError (Bad Request) 401: Unauthorized - ResponseError (Unauthorized) 403: Forbidden - ResponseError (Forbidden) 404: Not Found - ResponseError (Not Found) 500: Internal Server Error - ResponseError (Internal Server Error) ---: HttpResponse (Undocumented Response) ---: HttpResponse (Unexpected Content-Type Error) ---: HttpResponse (Unhandled Error) """ pre_processed_response, error = self.pre_process_response( code=code, content_type=content_type, content=content ) if error is not None: return None, None if error.is_no_content() else error code, content_type, content = pre_processed_response if code == 200: return ModelsGameSession.create_from_dict(content), None if code == 400: return None, ResponseError.create_from_dict(content) if code == 401: return None, ResponseError.create_from_dict(content) if code == 403: return None, ResponseError.create_from_dict(content) if code == 404: return None, ResponseError.create_from_dict(content) if code == 500: return None, ResponseError.create_from_dict(content) return self.handle_undocumented_response( code=code, content_type=content_type, content=content ) # endregion response methods # region static methods @classmethod def create( cls, body: ApiBackFillAcceptRequest, backfill_id: str, namespace: str, **kwargs ) -> AcceptBackfill: instance = cls() instance.body = body instance.backfill_id = backfill_id instance.namespace = namespace return instance @classmethod def create_from_dict( cls, dict_: dict, include_empty: bool = False ) -> AcceptBackfill: instance = cls() if "body" in dict_ and dict_["body"] is not None: instance.body = ApiBackFillAcceptRequest.create_from_dict( dict_["body"], include_empty=include_empty ) elif include_empty: instance.body = ApiBackFillAcceptRequest() if "backfillID" in dict_ and dict_["backfillID"] is not None: instance.backfill_id = str(dict_["backfillID"]) elif include_empty: instance.backfill_id = "" if "namespace" in dict_ and dict_["namespace"] is not None: instance.namespace = str(dict_["namespace"]) elif include_empty: instance.namespace = "" return instance @staticmethod def get_field_info() -> Dict[str, str]: return { "body": "body", "backfillID": "backfill_id", "namespace": "namespace", } @staticmethod def get_required_map() -> Dict[str, bool]: return { "body": True, "backfillID": True, "namespace": True, } # endregion static methods
94e3d38dd3a5674a0272aeb4ea010d9f7a9abfd2
7dcdd5de0640f07b01b1707c134ec0bd168f641d
/fedora_college/modules/content/views.py
b1019c221326d657588aa1b01f790aaa7115edba
[ "BSD-3-Clause" ]
permissive
MSheezan/fedora-college
8e3e741f6ddac481c2bb7bbcde1e70e2b4b56774
07dbce3652c6c1796fb0f7b208a706c9e9d90dc1
refs/heads/master
2021-01-15T22:38:16.831830
2014-06-26T07:04:33
2014-06-26T07:04:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,439
py
# -*- coding: utf-8 -*- import re #import time from unicodedata import normalize from flask import Blueprint, render_template from flask import redirect, url_for, g from sqlalchemy import desc from fedora_college.core.database import db from fedora_college.modules.content.forms import * # noqa from fedora_college.core.models import * # noqa from flask_fas_openid import fas_login_required bundle = Blueprint('content', __name__, template_folder='templates') from fedora_college.modules.content.media import * # noqa _punct_re = re.compile(r'[\t !"#$%&\'()*\-/<=>?@\[\\\]^_`{|},.]+') def slugify(text, delim=u'-'): """Generates an slightly worse ASCII-only slug.""" #stri = (time.strftime("%d/%m/%Y")) #text = stri + "-" + text result = [] for word in _punct_re.split(text.lower()): word = normalize('NFKD', word).encode('ascii', 'ignore') if word: result.append(word) return unicode(delim.join(result)) def attach_tags(tags, content): rem = TagsMap.query.filter_by(content_id=content.content_id).all() for r in rem: db.session.delete(r) db.session.commit() for tag in tags: tag_db = Tags.query.filter_by(tag_text=tag).first() if tag_db is None: tag_db = Tags(tag) db.session.add(tag_db) db.session.commit() Map = TagsMap(tag_db.tag_id, content.content_id) db.session.add(Map) db.session.commit() @bundle.route('/content/add/', methods=['GET', 'POST']) @bundle.route('/content/add', methods=['GET', 'POST']) @bundle.route('/content/edit/<posturl>/', methods=['GET', 'POST']) @bundle.route('/content/edit/<posturl>', methods=['GET', 'POST']) @fas_login_required def addcontent(posturl=None): form = CreateContent() form_action = url_for('content.addcontent') media = Media.query.order_by(desc(Media.timestamp)).limit(10).all() if posturl is not None: content = Content.query.filter_by(slug=posturl).first_or_404() form = CreateContent(obj=content) if form.validate_on_submit(): form.populate_obj(content) tags = str(form.tags.data).split(',') attach_tags(tags, content) content.rehtml() db.session.commit() return redirect(url_for('content.addcontent', posturl=posturl, updated="Successfully updated") ) else: if form.validate_on_submit(): url_name = slugify(form.title.data) query = Content(form.title.data, url_name, form.description.data, form.active.data, form.tags.data, g.fas_user['username'], form.type_content.data ) tags = str(form.tags.data).split(',') try: db.session.add(query) db.session.commit() attach_tags(tags, query) return redirect(url_for('content.addcontent', posturl=url_name, updated="Successfully updated", media=media) ) # Duplicate entry except Exception as e: db.session.rollback() print e pass return render_template('content/edit_content.html', form=form, form_action=form_action, title="Create Content", media=media) @bundle.route('/blog', methods=['GET', 'POST']) @bundle.route('/blog/', methods=['GET', 'POST']) @bundle.route('/blog/<slug>/', methods=['GET', 'POST']) @bundle.route('/blog/<slug>', methods=['GET', 'POST']) def blog(slug=None): if slug is not None: try: posts = Content.query. \ filter_by(slug=slug).all() except: posts = "No such posts in database." else: try: posts = Content.query. \ filter_by(type_content="blog").all() except: posts = "Databse is empty" return render_template('blog/index.html', title='Blog', content=posts)
c2eab84e232f590469f2bb0cea19a803ec121d0f
2fabc9255adbe1cc055eb4b2402f8526f389f257
/model/modules.py
86464633b715d37b344f74882941fce2b5d70ab8
[ "MIT" ]
permissive
asr2021/WaveGrad2
657323be12d16667fc0a3b7f2a168101e6e913cb
ba7715d760999093dd99283f48971c5115210b51
refs/heads/main
2023-06-02T18:48:56.830462
2021-06-23T07:22:10
2021-06-23T08:10:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,959
py
import os import torch import torch.nn as nn import numpy as np import torch.nn.functional as F from .blocks import ( ZoneOutBiLSTM, LinearNorm, ConvBlock, ) from text.symbols import symbols device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class TextEncoder(nn.Module): """ Text Encoder """ def __init__(self, config): super(TextEncoder, self).__init__() n_src_vocab = len(symbols) + 1 d_word_vec = config["transformer"]["encoder_hidden"] n_layers = config["transformer"]["encoder_layer"] d_model = config["transformer"]["encoder_hidden"] kernel_size = config["transformer"]["encoder_kernel_size"] dropout = config["transformer"]["encoder_dropout"] zoneout = config["transformer"]["encoder_zoneout"] self.d_model = d_model self.src_word_emb = nn.Embedding( n_src_vocab, d_word_vec, padding_idx=0 ) self.conv_stack = nn.ModuleList( [ ConvBlock( d_model, d_model, kernel_size=kernel_size, dropout=dropout ) for _ in range(n_layers) ] ) self.lstm = ZoneOutBiLSTM( d_model, zoneout_rate=zoneout ) def forward(self, src_seq, mask=None): enc_output = self.src_word_emb(src_seq) for conv in self.conv_stack: enc_output = conv(enc_output, mask=mask) enc_output = self.lstm(enc_output) if mask is not None: enc_output = enc_output.masked_fill(mask.unsqueeze(-1), 0.) return enc_output class VarianceAdaptor(nn.Module): """ Variance Adaptor """ def __init__(self, preprocess_config, model_config): super(VarianceAdaptor, self).__init__() self.duration_predictor = DurationPredictor(model_config) self.gaussian_upsampling = GaussianUpsampling(model_config) def forward( self, x, src_mask, duration_target=None, d_control=1.0, ): log_duration_prediction = self.duration_predictor(x, src_mask) if duration_target is not None: x, attn = self.gaussian_upsampling(x, duration_target, src_mask) duration_rounded = duration_target else: duration_rounded = torch.clamp( (torch.round(torch.exp(log_duration_prediction) - 1) * d_control), min=0, ) x, attn = self.gaussian_upsampling(x, duration_rounded, src_mask) return ( x, log_duration_prediction, duration_rounded, attn, ) class GaussianUpsampling(nn.Module): """ Gaussian Upsampling """ def __init__(self, model_config): super(GaussianUpsampling, self).__init__() # self.range_param_predictor = RangeParameterPredictor(model_config) def forward(self, encoder_outputs, duration, mask): device = encoder_outputs.device # range_param = self.range_param_predictor(encoder_outputs, duration, mask) t = torch.sum(duration, dim=-1, keepdim=True) #[B, 1] e = torch.cumsum(duration, dim=-1).float() #[B, L] c = e - 0.5 * duration #[B, L] t = torch.arange(1, torch.max(t).item()+1, device=device) # (1, ..., T) t = t.unsqueeze(0).unsqueeze(1) #[1, 1, T] c = c.unsqueeze(2) # print(range_param, 0.1*(range_param ** 2)) # w_1 = torch.exp(-0.1*(range_param.unsqueeze(-1) ** -2) * (t - c) ** 2) # [B, L, T] # w_2 = torch.sum(torch.exp(-0.1*(range_param.unsqueeze(-1) ** -2) * (t - c) ** 2), dim=1, keepdim=True) # [B, 1, T] w_1 = torch.exp(-0.1 * (t - c) ** 2) # [B, L, T] w_2 = torch.sum(torch.exp(-0.1 * (t - c) ** 2), dim=1, keepdim=True) # [B, 1, T] w_2[w_2==0.] = 1. # w_1 = self.normpdf(t, c, range_param.unsqueeze(-1)) # [B, L, T] # w_1 = torch.distributions.normal.Normal(c, 0.1).log_prob(t) # [B, L, T] # w_2 = torch.sum(w_1, dim=1, keepdim=True) # [B, 1, T] # w_2[w_2==0.] = 1. w = w_1 / w_2 out = torch.matmul(w.transpose(1, 2), encoder_outputs) return out, w class DurationPredictor(nn.Module): """ Duration Parameter Predictor """ def __init__(self, model_config): super(DurationPredictor, self).__init__() encoder_hidden = model_config["transformer"]["encoder_hidden"] variance_hidden = model_config["variance_predictor"]["variance_hidden"] self.duration_lstm = nn.LSTM( encoder_hidden, int(variance_hidden / 2), 2, batch_first=True, bidirectional=True ) self.duration_proj = nn.Sequential( LinearNorm(variance_hidden, 1), nn.ReLU(), ) def forward(self, encoder_output, mask): duration_prediction, _ = self.duration_lstm(encoder_output) duration_prediction = self.duration_proj(duration_prediction) duration_prediction = duration_prediction.squeeze(-1) # [B, L] if mask is not None: duration_prediction = duration_prediction.masked_fill(mask, 0.0) return duration_prediction # class RangeParameterPredictor(nn.Module): # """ Range Parameter Predictor """ # def __init__(self, model_config): # super(RangeParameterPredictor, self).__init__() # encoder_hidden = model_config["transformer"]["encoder_hidden"] # variance_hidden = model_config["variance_predictor"]["variance_hidden"] # self.range_param_lstm = nn.LSTM( # encoder_hidden + 1, # int(variance_hidden / 2), 2, # batch_first=True, bidirectional=True # ) # self.range_param_proj = nn.Sequential( # LinearNorm(variance_hidden, 1), # nn.Softplus(), # ) # def forward(self, encoder_output, duration, mask): # range_param_input = torch.cat([encoder_output, duration.unsqueeze(-1)], dim=-1) # range_param_prediction, _ = self.range_param_lstm(range_param_input) # range_param_prediction = self.range_param_proj(range_param_prediction) # range_param_prediction = range_param_prediction.squeeze(-1) # [B, L] # if mask is not None: # range_param_prediction = range_param_prediction.masked_fill(mask, 0.0) # return range_param_prediction class SamplingWindow(nn.Module): """ Sampling Window """ def __init__(self, model_config, train_config): super(SamplingWindow, self).__init__() self.upsampling_rate = model_config["wavegrad"]["upsampling_rate"] self.segment_length_up = train_config["window"]["segment_length"] self.segment_length = train_config["window"]["segment_length"] // self.upsampling_rate def pad_seq(self, seq, segment_length): if len(seq.shape) > 2: return torch.nn.functional.pad( seq.transpose(-2, -1), (0, segment_length - seq.shape[1]), 'constant' ).data.transpose(-2, -1) return torch.nn.functional.pad( seq, (0, segment_length - seq.shape[1]), 'constant' ).data def get_hidden_segment(self, hiddens, seq_starts): batch = list() for i, (hidden, seq_start) in enumerate(zip(hiddens, seq_starts)): batch.append(hidden[seq_start:seq_start+self.segment_length]) return torch.stack(batch) def forward(self, encoder_output, audio, seq_starts=None, full_len=False): if full_len: return encoder_output, audio if encoder_output.shape[1] > self.segment_length: encoder_segment = self.get_hidden_segment(encoder_output, seq_starts) encoder_segment = self.pad_seq(encoder_output, self.segment_length) audio_segment = self.pad_seq(audio, self.segment_length_up) return encoder_segment, audio_segment
ee4ca603bda625183659e699f11fd7d710b1f6e2
0e1e643e864bcb96cf06f14f4cb559b034e114d0
/Exps_7_v3/W_w_Mgt_to_C/pyramid_tight_crop_size256_pad60_jit15/pyr_2s/bce_s001_tv_s0p1_L4/step10_a.py
eb5df86c53b26c8ee94837558fc32d4559cdad0a
[]
no_license
KongBOy/kong_model2
33a94a9d2be5b0f28f9d479b3744e1d0e0ebd307
1af20b168ffccf0d5293a393a40a9fa9519410b2
refs/heads/master
2022-10-14T03:09:22.543998
2022-10-06T11:33:42
2022-10-06T11:33:42
242,080,692
3
0
null
null
null
null
UTF-8
Python
false
false
11,105
py
############################################################################################################################################################################################################# ############################################################################################################################################################################################################# ### 把 kong_model2 加入 sys.path import os code_exe_path = os.path.realpath(__file__) ### 目前執行 step10_b.py 的 path code_exe_path_element = code_exe_path.split("\\") ### 把 path 切分 等等 要找出 kong_model 在第幾層 code_dir = "\\".join(code_exe_path_element[:-1]) kong_layer = code_exe_path_element.index("kong_model2") ### 找出 kong_model2 在第幾層 kong_model2_dir = "\\".join(code_exe_path_element[:kong_layer + 1]) ### 定位出 kong_model2 的 dir import sys ### 把 kong_model2 加入 sys.path sys.path.append(kong_model2_dir) sys.path.append(code_dir) # print(__file__.split("\\")[-1]) # print(" code_exe_path:", code_exe_path) # print(" code_exe_path_element:", code_exe_path_element) # print(" code_dir:", code_dir) # print(" kong_layer:", kong_layer) # print(" kong_model2_dir:", kong_model2_dir) ############################################################################################################################################################################################################# kong_to_py_layer = len(code_exe_path_element) - 1 - kong_layer ### 中間 -1 是為了長度轉index # print(" kong_to_py_layer:", kong_to_py_layer) if (kong_to_py_layer == 0): template_dir = "" elif(kong_to_py_layer == 2): template_dir = code_exe_path_element[kong_layer + 1][0:] ### [7:] 是為了去掉 step1x_, 後來覺得好像改有意義的名字不去掉也行所以 改 0 elif(kong_to_py_layer == 3): template_dir = code_exe_path_element[kong_layer + 1][0:] + "/" + code_exe_path_element[kong_layer + 2][0:] ### [5:] 是為了去掉 mask_ ,前面的 mask_ 是為了python 的 module 不能 數字開頭, 隨便加的這樣子, 後來覺得 自動排的順序也可以接受, 所以 改0 elif(kong_to_py_layer > 3): template_dir = code_exe_path_element[kong_layer + 1][0:] + "/" + code_exe_path_element[kong_layer + 2][0:] + "/" + "/".join(code_exe_path_element[kong_layer + 3: -1]) # print(" template_dir:", template_dir) ### 舉例: template_dir: 7_mask_unet/5_os_book_and_paper_have_dtd_hdr_mix_bg_tv_s04_mae ############################################################################################################################################################################################################# exp_dir = template_dir ############################################################################################################################################################################################################# from step06_a_datas_obj import * from step09_2side_L4 import * from step10_a2_loss_info_obj import * from step10_b2_exp_builder import Exp_builder rm_paths = [path for path in sys.path if code_dir in path] for rm_path in rm_paths: sys.path.remove(rm_path) rm_moduless = [module for module in sys.modules if "step09" in module] for rm_module in rm_moduless: del sys.modules[rm_module] ############################################################################################################################################################################################################# ''' exp_dir 是 決定 result_dir 的 "上一層"資料夾 名字喔! exp_dir要巢狀也沒問題~ 比如:exp_dir = "6_mask_unet/自己命的名字",那 result_dir 就都在: 6_mask_unet/自己命的名字/result_a 6_mask_unet/自己命的名字/result_b 6_mask_unet/自己命的名字/... ''' use_db_obj = type8_blender_wc_flow use_loss_obj = [G_mae_s001_loss_info_builder.set_loss_target("UNet_Cx").copy(), G_mae_s001_loss_info_builder.set_loss_target("UNet_Cy").copy()] ### x, y 順序是看 step07_b_0b_Multi_UNet 來對應的喔 ############################################################# ### 為了resul_analyze畫空白的圖,建一個empty的 Exp_builder empty = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_1__2side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_1__2side_1.kong_model.model_describe) .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="為了resul_analyze畫空白的圖,建一個empty的 Exp_builder") ############################################################# ch032_1side_1__2side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_1__2side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_1__2side_1.kong_model.model_describe) .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_2__2side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_2__2side_1.kong_model.model_describe) .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_2__2side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_2__2side_2.kong_model.model_describe) .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_1.kong_model.model_describe) .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_2.kong_model.model_describe) .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3.kong_model.model_describe) .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_1.kong_model.model_describe) .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_2.kong_model.model_describe) .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3.kong_model.model_describe) .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4.kong_model.model_describe) .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_1.kong_model.model_describe) .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_2.kong_model.model_describe) .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3.kong_model.model_describe) .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4.kong_model.model_describe) .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5.kong_model.model_describe) .set_train_args(epochs= 60).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ############################################################# if(__name__ == "__main__"): print("build exps cost time:", time.time() - start_time) if len(sys.argv) < 2: ############################################################################################################ ### 直接按 F5 或打 python step10_b1_exp_obj_load_and_train_and_test.py,後面沒有接東西喔!才不會跑到下面給 step10_b_subprocss.py 用的程式碼~~~ ch032_1side_1__2side_0.build().run() # print('no argument') sys.exit() ### 以下是給 step10_b_subprocess.py 用的,相當於cmd打 python step10_b1_exp_obj_load_and_train_and_test.py 某個exp.build().run() eval(sys.argv[1])
166670300dc3fb39d4e1883bb546d056fe08ce1f
dd09f3ad02785935043b56ea3ef85ed603f4065d
/Sorting_Function/Selection_Sorting.py
6f03147ffab2db72cf7d3f242eb1efd76270e240
[]
no_license
RishavMishraRM/Data_Structure
ed70f5a04c2fa8153433e830ef54deb7b9c8bf21
0d31d16b48989359d5fef79b00aac1b9ca112a22
refs/heads/main
2023-06-27T02:40:18.031146
2021-07-25T19:01:51
2021-07-25T19:01:51
330,320,897
0
0
null
null
null
null
UTF-8
Python
false
false
365
py
def selection_sort(A): n = len(A) for i in range(n-1): position = i for j in range(i+1, n): if A[j] < A[position]: position = j temp = A[i] A[i] = A[position] A[position] = temp A = [3, 5, 8, 9, 6, 2] print('Original Array:',A) selection_sort(A) print('Sorted Array:',A)
2fb93afe829de7491a458ced6b6568ea178817ff
488e0934b8cd97e202ae05368c855a57b299bfd1
/Django/advanced/change_admin/change_admin/settings.py
52ac0975d8daac947ffc100a34d19c9282aa57ff
[]
no_license
didemertens/udemy_webdev
4d96a5e7abeec1848ecedb97f0c440cd50eb27ac
306215571be8e4dcb939e79b18ff6b302b75c952
refs/heads/master
2020-04-25T00:24:45.654136
2019-04-13T16:00:47
2019-04-13T16:00:47
172,377,429
0
0
null
null
null
null
UTF-8
Python
false
false
3,184
py
""" Django settings for change_admin project. Generated by 'django-admin startproject' using Django 2.1.7. For more information on this file, see https://docs.djangoproject.com/en/2.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.1/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) TEMPLATE_DIR = os.path.join(BASE_DIR,'templates') # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '(w#6#!6oi75z@e2d&((yalznx95yk7exe5fbbx#f1l#0uc=(3w' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'app_videos' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'change_admin.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [TEMPLATE_DIR], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'change_admin.wsgi.application' # Database # https://docs.djangoproject.com/en/2.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.1/howto/static-files/ STATIC_URL = '/static/'
94469e411f69931b1aa7dec9d60e62e9d87a7eff
3e917645a0e1375189c8ee8c1e93ed15348111ef
/projects/usxp/archive/parrallel/parallel_nibble_v2.py
792bbb8be009b4feb157af5c7e2bf1c7bf54ad07
[]
no_license
mbougie/gibbs
d4544e688ce2b63530535e1f5102328aece30e0d
39d5dc0866fc0dd149d0cf1f22bfd20911a9d29e
refs/heads/master
2021-01-12T06:59:27.214123
2020-01-07T15:48:12
2020-01-07T15:48:12
83,906,717
1
0
null
null
null
null
UTF-8
Python
false
false
6,710
py
import arcpy from arcpy import env from arcpy.sa import * import multiprocessing import os import glob import sys import time import logging from multiprocessing import Process, Queue, Pool, cpu_count, current_process, Manager import general as gen # arcpy.env.overwriteOutput = True arcpy.env.scratchWorkspace = "in_memory" case=['Bougie','Gibbs'] #import extension arcpy.CheckOutExtension("Spatial") #establish root path for this the main project (i.e. usxp) rootpath = 'C:/Users/Bougie/Desktop/Gibbs/data/usxp/' # rootpath = 'D:/projects/ksu/v2/' ### establish gdb path #### def defineGDBpath(arg_list): gdb_path = '{}{}/{}/{}.gdb/'.format(rootpath,arg_list[0],arg_list[1],arg_list[2]) # print 'gdb path: ', gdb_path return gdb_path ####### define raster and mask #################### class ProcessingObject(object): def __init__(self, series, res, mmu, years, name, subname, pixel_type, gdb_parent, parent_seq, gdb_child, mask_seq, outraster_seq): self.series = series self.res = str(res) self.mmu =str(mmu) self.years = years self.name = name self.subname = subname self.parent_seq = parent_seq self.mask_seq = mask_seq self.outraster_seq = outraster_seq self.datarange = str(self.years[0])+'to'+str(self.years[1]) print 'self.datarange:', self.datarange self.dir_tiles = 'C:/Users/Bougie/Desktop/Gibbs/tiles/' # s9_ytc30_2008to2016_mmu5_nbl_bfc if self.name == 'mtr': self.traj = self.series+'_traj_cdl'+self.res+'_b_'+self.datarange+'_rfnd' self.gdb_parent = defineGDBpath(gdb_parent) self.raster_parent = self.traj+self.parent_seq self.path_parent = self.gdb_parent + self.raster_parent print 'self.path_parent', self.path_parent self.gdb_child = defineGDBpath(gdb_child) self.raster_mask = self.raster_parent + self.mask_seq self.path_mask = self.gdb_child + self.raster_mask self.raster_nbl = self.raster_parent + self.outraster_seq self.path_nbl = self.gdb_child + self.raster_nbl print 'self.path_nbl', self.path_nbl self.out_fishnet = defineGDBpath(['ancillary','vector', 'shapefiles']) + 'fishnet_mtr' print self.out_fishnet self.pixel_type = "16_BIT_UNSIGNED" else: self.gdb_parent = defineGDBpath(['s14', 'post', self.name]) self.yxc_foundation = self.series+'_'+self.name+self.res+'_'+self.datarange+'_mmu'+self.mmu print 'self.yxc_foundation', self.yxc_foundation self.path_parent = self.gdb_parent + self.yxc_foundation print 'self.path_parent', self.path_parent self.raster_mask = self.yxc_foundation + '_msk' self.path_mask = self.gdb_parent + self.raster_mask print 'self.path_mask', self.path_mask self.out_fishnet = defineGDBpath(['ancillary','vector', 'shapefiles']) + 'fishnet_ytc' self.pixel_type = "16_BIT_UNSIGNED" self.raster_nbl = self.yxc_foundation + '_nbl' print 'self.raster_nbl:', self.raster_nbl self.path_nbl = self.gdb_parent + self.raster_nbl print 'self.path_nbl', self.path_nbl # def existsDataset(self): # dataset = self.gdb_parent + self.raster_parent + '_nbl' # if arcpy.Exists(dataset): # print 'dataset already exists' # return # else: # print 'dataset: ', dataset # return self.raster_parent + '_nbl' def create_fishnet(): #delete previous fishnet feature class arcpy.Delete_management(nibble.out_fishnet) #acquire parameters for creatfisnet function XMin = nibble.path_parent.extent.XMin YMin = nibble.path_parent.extent.YMin XMax = nibble.path_parent.extent.XMax YMax = nibble.path_parent.extent.YMax origCord = "{} {}".format(XMin, YMin) YAxisCord = "{} {}".format(XMin, YMax) cornerCord = "{} {}".format(XMax, YMax) cellSizeW = "0" cellSizeH = "0" numRows = 7 numCols = 7 geotype = "POLYGON" arcpy.env.outputCoordinateSystem = nibble.path_parent.spatialReference print nibble.path_parent.spatialReference.name #call CreateFishnet_management function arcpy.CreateFishnet_management(nibble.out_fishnet, origCord, YAxisCord, cellSizeW, cellSizeH, numRows, numCols, cornerCord, "NO_LABELS", "", geotype) def execute_task(args): in_extentDict, nibble = args fc_count = in_extentDict[0] # print fc_count procExt = in_extentDict[1] # print procExt XMin = procExt[0] YMin = procExt[1] XMax = procExt[2] YMax = procExt[3] #set environments #The brilliant thing here is that using the extents with the full dataset!!!!!! DONT EVEN NEED TO CLIP THE FULL RASTER TO THE FISHNET BECASUE arcpy.env.snapRaster = nibble.path_parent arcpy.env.cellsize = nibble.path_parent arcpy.env.extent = arcpy.Extent(XMin, YMin, XMax, YMax) ### Execute Nibble ##################### ras_out = arcpy.sa.Nibble(nibble.path_parent, nibble.path_mask, "DATA_ONLY") #clear out the extent for next time arcpy.ClearEnvironment("extent") # print fc_count outname = "tile_" + str(fc_count) +'.tif' #create Directory outpath = os.path.join("C:/Users/Bougie/Desktop/Gibbs/", r"tiles", outname) ras_out.save(outpath) def mosiacRasters(nibble): tilelist = glob.glob(nibble.dir_tiles+'*.tif') print tilelist ######mosiac tiles together into a new raster arcpy.MosaicToNewRaster_management(tilelist, nibble.gdb_parent, nibble.raster_nbl, Raster(nibble.path_parent).spatialReference, nibble.pixel_type, nibble.res, "1", "LAST","FIRST") ##Overwrite the existing attribute table file arcpy.BuildRasterAttributeTable_management(nibble.path_nbl, "Overwrite") ## Overwrite pyramids gen.buildPyramids(nibble.path_nbl) def run(series, res, mmu, years, name, subname, pixel_type, gdb_parent, parent_seq, gdb_child, mask_seq, outraster_seq): #instantiate the class inside run() function nibble = ProcessingObject(series, res, mmu, years, name, subname, pixel_type, gdb_parent, parent_seq, gdb_child, mask_seq, outraster_seq) print nibble.res # need to create a unique fishnet for each dataset #create_fishnet() #remove a files in tiles directory tiles = glob.glob(nibble.dir_tiles+"*") for tile in tiles: os.remove(tile) #get extents of individual features and add it to a dictionary extDict = {} count = 1 for row in arcpy.da.SearchCursor(nibble.out_fishnet, ["SHAPE@"]): extent_curr = row[0].extent ls = [] ls.append(extent_curr.XMin) ls.append(extent_curr.YMin) ls.append(extent_curr.XMax) ls.append(extent_curr.YMax) extDict[count] = ls count+=1 # print 'extDict', extDict # print'extDict.items()', extDict.items() ######create a process and pass dictionary of extent to execute task pool = Pool(processes=cpu_count()) # pool = Pool(processes=1) pool.map(execute_task, [(ed, nibble) for ed in extDict.items()]) pool.close() pool.join mosiacRasters(nibble)
82d8e508bea9d27e596ec5fd5f94d4d16fc0ca40
085406a6754c33957ca694878db9bbe37f84b970
/网络编程/08-ssh_socket_client.py
b91da548705606b59b6c0eb6b8d70cdbb3050767
[]
no_license
dewlytg/Python-example
82157958da198ce42014e678dfe507c72ed67ef0
1e179e4037eccd9fefabefd252b060564a2eafce
refs/heads/master
2021-01-01T18:36:08.868861
2019-01-18T10:39:08
2019-01-18T10:39:08
98,375,528
3
0
null
null
null
null
UTF-8
Python
false
false
1,041
py
#!/usr/bin/env python """ socket client for ssh """ import socket client = socket.socket() client.connect(("localhost",9999)) while True: #支持客户端循环发送数据到服务端 cmd = input(">>:").strip() if len(cmd) == 0:continue client.send(cmd.encode()) #python3中必须把字符串转换为bytes类型,这里可以理解字符串类型是utf-8 cmd_res_size = client.recv(1024) print("命令结果大小:",cmd_res_size) client.send("please input somthing in order to packet splicing".encode()) #把代码放到Linux执行会发生粘包错误,这个可以避免错误发生 received_size = 0 received_data = b'' while received_size != int(cmd_res_size.decode()): #cmd_res_size是bytes类型的数据,需要使用decode转换为字符串 data = client.recv(1024) received_size += len(data) received_data += data else: print("cmd res receive done...",received_size) print(received_data.decode()) client.close()
1c633bb83ec340755424794ca77ec8a5cecdcbf1
c253e3c94b66e85d52b1c274e649a8431db0d7d5
/IT-Lab/assignment-6/codes/1.py
ab5c61b8787c25c90e6d39eaf115480cc804383b
[]
no_license
Abhinal/college-assignments
bfecc9d8dd05b7da5348def9990f42ff28329328
a93aeee086eb681f946cc343869610e4588af307
refs/heads/master
2023-08-16T12:04:35.543135
2021-10-22T16:27:33
2021-10-22T16:31:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
101
py
lst = [] i = 0 while i < 5: player = input() lst.append(player) i += 1 print(lst)
15efb02d15bd410d19b8018e6c307a75b9f04eb4
5fdcb39eaa9d1f44e2ba0130bc0d6ece3f5ff354
/code/cheshire3/record.py
728ddee847b4f75341864dad4eff2244263dd3c4
[]
no_license
Cheshire-Grampa/cheshire3
0a653d6372497290d938e098b6acf8366348133f
616ab36cd8442cd5f4712a9fccf65ca7ae9f692c
refs/heads/master
2020-12-25T07:26:16.366754
2012-06-06T09:52:53
2012-06-06T10:32:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
41,269
py
from cheshire3.baseObjects import Record from cheshire3.exceptions import C3Exception from cheshire3.utils import flattenTexts, elementType from cheshire3.marc_utils import MARC, MARC8_to_Unicode import unicodedata import types, utils, os, re, sys from cStringIO import StringIO from xml.sax.saxutils import escape from xml.sax import ContentHandler # 1 <name> <attrHash> parent predicate end # Element # 4 <as 1> # Namespaced Element # 2 <name> <startLine> # End Element # 5 <as 2> # End Namespaced # 3 <text> # Characters # 9 <element hash> # pickled hash of locations # Split to separate object to allow for DOM->SAX direct conversion # by throwing events from DOM tree to handler. class SaxContentHandler(ContentHandler): currentText = [] currentPath = [] pathLines = [] currentLine = -1 recordWordCount = 0 elementHash = {} namespaces = [] hashAttributesNames = {} hashAttributes = [] stripWS = 0 saveElementIndexes = 1 def __init__(self): self.saveElementIndexes = 1 self.hashAttributesNames = {} self.hashAttributes = [] self.stripWS = 0 self.reinit() def reinit(self): self.currentText = [] self.currentPath = [] self.pathLines = [] self.currentLine = -1 self.recordWordCount = 0 self.elementHash = {} self.elementIndexes = [] self.namespaces = [] def startPrefixMapping(self, pfx, uri): self.currentLine += 1 if (pfx == None): pfx = '' self.currentText.append("6 %r, %r" % (pfx, uri)) # We want to fwd elems to NS elem handlers with default NS? def startElement(self, name, attrs): self.currentLine += 1 self.pathLines.append(self.currentLine) try: parent = self.pathLines[-2] except IndexError: parent = -1 attrHash = {} if (attrs): for k in attrs.keys(): attrHash[k] = escape(attrs[k]) try: npred = self.elementIndexes[-1][name] + 1 self.elementIndexes[-1][name] += 1 except IndexError: # Empty npred = 1 self.elementIndexes = [{name: npred}] except KeyError: # First occurence of Element npred = 1 self.elementIndexes[-1][name] = 1 except: raise self.elementIndexes.append({}) self.currentText.append("1 %s %s %d %d" % (name, repr(attrHash), parent, npred)) saveAttrs = [] try: hashAttrList = self.hashAttributesNames[name] for a in hashAttrList: try: saveAttrs.append("%s[@%s='%s']" % (name, a, attrHash[a])) except: pass except: pass try: starAttrList = self.hashAttributesNames['*'] for a in starAttrList: try: saveAttrs.append("*[@%s='%s']" % (a, attrHash[a])) except: pass except: pass if saveAttrs: self.hashAttributes.append((self.currentLine, saveAttrs)) def endElement(self, name): self.currentLine += 1 start = self.pathLines.pop() self.currentText.append("2 %s %d" % (name, start)) self.currentText[start] = "%s %d" % (self.currentText[start], self.currentLine) self.elementIndexes.pop() try: self.elementHash[name].append([start, self.currentLine]) except: self.elementHash[name] = [[start, self.currentLine]] if self.hashAttributes and self.hashAttributes[-1][0] == start: attrs = self.hashAttributes.pop()[1] for sa in attrs: try: self.elementHash[sa].append([start, self.currentLine]) except: self.elementHash[sa] = [[start, self.currentLine]] def startElementNS(self, name, qname, attrs): self.currentLine += 1 self.pathLines.append(self.currentLine) try: parent = self.pathLines[-2] except: parent = -1 attrHash = {} # Convert from weird sax thing if (attrs): for k in attrs.keys(): attrHash[k] = attrs[k] simpleName = name[1] try: npred = self.elementIndexes[-1][simpleName] + 1 self.elementIndexes[-1][simpleName] += 1 except IndexError: # Empty npred = 1 self.elementIndexes = [{simpleName: npred}] except KeyError: # First occurence of Element npred = 1 self.elementIndexes[-1][simpleName] = 1 self.elementIndexes.append({}) self.currentText.append("4 %r, %r, %r, %r %d %d" % (name[0], simpleName, qname, attrHash, parent, npred)) saveAttrs = [] try: hashAttrList = self.hashAttributesNames[simpleName] for a in hashAttrList: try: saveAttrs.append("%s[@%s='%s']" % (simpleName, a, attrHash[a])) except: pass except: pass try: starAttrList = self.hashAttributesNames['*'] for a in starAttrList: try: saveAttrs.append("*[@%s='%s']" % (a, attrHash[a])) except: pass except: pass if saveAttrs: self.hashAttributes.append((self.currentLine, saveAttrs)) def endElementNS(self, name, qname): self.currentLine += 1 start = self.pathLines.pop() self.currentText.append("5 %r, %r, %r %d" % (name[0], name[1], qname, start)) self.currentText[start] ="%s %d" % (self.currentText[start], self.currentLine) self.elementIndexes.pop() try: self.elementHash[name[1]].append([start, self.currentLine]) except: self.elementHash[name[1]] = [[start, self.currentLine]] if self.hashAttributes and self.hashAttributes[-1][0] == start: attrs = self.hashAttributes.pop()[1] for sa in attrs: try: self.elementHash[sa].append([start, self.currentLine]) except: self.elementHash[sa] = [[start, self.currentLine]] def characters(self, text, start=0, length=-1): # if text.isspace(): # text = " " prev = self.currentText[-1] if self.stripWS and text.isspace(): return self.currentLine += 1 if (len(text) != 1 and len(prev) != 3 and prev[0] == "3" and not prev[-1] in [' ', '-']): # Adjacent lines of text, ensure spaces text = ' ' + text self.currentText.append("3 %s" % (text)) self.recordWordCount += len(text.split()) def ignorableWhitespace(self, ws): # ... ignore! :D pass def processingInstruction(self, target, data): pass def skippedEntity(self, name): pass class SaxToDomHandler: nodeStack = [] document = None currText = "" def initState(self): self.nodeStack = [] self.document=None self.top = None def startElement(self, name, attribs={}): if (not self.document): self.document = implementation.createDocument(None, name, None) elem = self.document.childNodes[0] else: elem = self.document.createElementNS(None,name) for a in attribs: elem.setAttributeNS(None,a,attribs[a]) if (self.nodeStack): self.nodeStack[-1].appendChild(elem) else: self.document.appendChild(elem) self.nodeStack.append(elem) def endElement(self, foo): self.nodeStack.pop() def characters(self, text, zero=0, length=0): if (self.nodeStack): if (text.isspace()): text = " " # Is this escape necessary? text = escape(text) d = self.document.createTextNode(text) self.nodeStack[-1].appendChild(d) def startElementNS(self, name, qname, attribs): if (not self.document): self.document = implementation.createDocument(name[0], name[1], None) elem = self.document.childNodes[0] else: elem = self.document.createElementNS(name[0],name[1]) for a in attribs: elem.setAttributeNS(a[0],a[1],attribs[a]) if (self.nodeStack): self.nodeStack[-1].appendChild(elem) else: self.document.appendChild(elem) self.nodeStack.append(elem) def endElementNS(self, name,qname): self.nodeStack.pop() def startPrefixMapping(self, pref, uri): pass def getRootNode(self): return self.document s2dhandler = SaxToDomHandler() class SaxToXmlHandler: xml = [] currNs = 0 newNamespaces = {} def initState(self): self.xml = [] self.namespaces = {} self.currNs = 0 self.newNamespaces = {} def startPrefixMapping(self, pref, uri): self.namespaces[uri] = pref self.newNamespaces[pref] = uri def startElement(self, name, attribs={}): attrs = [] for a in attribs: attrs.append('%s="%s"' % (a, attribs[a])) attribtxt = ' '.join(attrs) if (attribtxt): attribtxt = " " + attribtxt self.xml.append("<%s%s>" % (name, attribtxt)) def endElement(self, name): self.xml.append("</%s>" % (name)) def _getPrefix(self, ns): if (not ns): return "" pref = self.namespaces.get(ns, None) if (pref == None): self.currNs += 1 pref = "ns%d" % (self.currNs) self.namespaces[ns] = pref self.newNamespaces[pref] = ns return pref def startElementNS(self, n, qn=None, attrs={}): pref = self._getPrefix(n[0]) if (pref): name = "%s:%s" % (pref, n[1]) else: name = n[1] attrlist = [] for ns,aname in attrs: p2 = self._getPrefix(ns) if (p2): nsaname = "%s:%s" % (p2, aname) else: nsaname = aname attrlist.append('%s="%s"' % (nsaname, attrs[(ns,aname)])) for x in self.newNamespaces.iteritems(): if (x[0]): attrlist.append('xmlns:%s="%s"' % (x[0], x[1])) else: attrlist.append('xmlns="%s"' % (x[1])) self.newNamespaces = {} attribtxt = ' '.join(attrlist) if (attribtxt): attribtxt = " " + attribtxt self.xml.append("<%s%s>" % (name,attribtxt)) def endElementNS(self, n, qn=None): pref = self._getPrefix(n[0]) if (pref): name = "%s:%s" % (pref, n[1]) else: name = n[1] self.xml.append("</%s>" % (name)) def characters(self, text, zero=0, length=0): text = escape(text) self.xml.append(text) def get_xmlString(self): return ''.join(self.xml) s2xhandler = SaxToXmlHandler() class NumericPredicateException(C3Exception): pass class DomRecord(Record): context = None size = 0 def __init__(self, data, xml="", docId=None, wordCount=0, byteCount=0): self.dom = data self.xml = xml self.id = docId self.parent = ('','',-1) self.context = None self.metadata = {} if wordCount: self.wordCount = wordCount else: try: # Sometimes this blows up self.wordCount = len(flattenTexts(data).split()) except: self.wordCount = 0 self.byteCount = byteCount def _walk(self, node): pass def get_sax(self, session): if (not self.sax): self.handler = SaxContentHandler() for c in self.dom.childNodes: self._walkTop(c) self.sax = self.handler.currentText self.sax.append("9 %r" % self.handler.elementHash) self.handler = None return self.sax def get_dom(self, session): return self.dom def fetch_vector(self, session, index, summary=False): return index.indexStore.fetch_vector(session, index, self, summary) def fetch_proxVector(self, session, index, elem=-1): return index.indexStore.fetch_proxVector(session, index, self, elem) class MinidomRecord(DomRecord): useNamespace = 1 def get_xml(self, session): if (self.xml): return self.xml else: self.xml = self.dom.toxml() return self.xml def _walkTop(self, node): # top level node if node.nodeType == utils.elementType: self.namespaces = node.namespaceURI != None self._walk(node) def _walk(self, node): if (node.nodeType == utils.elementType): name = node.localName ns = node.namespaceURI attrHash = {} for ai in range(node.attributes.length): attr = node.attributes.item(ai) if self.namespaces: if attr.namespaceURI == 'http://www.w3.org/2000/xmlns/': self.handler.startPrefixMapping(attr.localName, attr.value) else: attrHash[(attr.namespaceURI, attr.localName)] = attr.value else: attrHash[attr.localName] = attr.value if self.namespaces: self.handler.startElementNS((node.namespaceURI, node.localName), None, attrHash) else: self.handler.startElement(node.localName, attrHash) for c in node.childNodes: self._walk(c) if self.namespaces: self.handler.endElementNS((node.namespaceURI, node.localName), None) else: self.handler.endElement(node.localName) elif node.nodeType == utils.textType: self.handler.characters(node.data) def process_xpath(self, session, xpath, maps={}): raise NotImplementedError try: from lxml import etree, sax class LxmlRecord(DomRecord): def process_xpath(self, session, xpath, maps={}): global prefixRe if (isinstance(xpath, list)): xpath = repr(xpath[0]) if xpath[0] != "/" and xpath[-1] != ')': xpath = "//" + xpath if maps: retval = self.dom.xpath(xpath, namespaces=maps) else: retval = self.dom.xpath(xpath) if isinstance(retval, list): return retval else: return [retval] def get_xml(self, session): return etree.tostring(self.dom) def get_sax(self, session): if (not self.sax): handler = SaxContentHandler() sax.saxify(self.dom, handler) self.sax = handler.currentText self.sax.append("9 %r" % handler.elementHash) return self.sax def get_dom(self, session): try: return self.dom.getroot() except AttributeError: return self.dom except: class LxmlRecord(DomRecord): pass try: from xpath import ParsedRelativeLocationPath, ParsedAbsoluteLocationPath, \ ParsedStep, ParsedNodeTest, ParsedExpr, Compile, \ ParsedAbbreviatedAbsoluteLocationPath, ParsedAbbreviatedRelativeLocationPath, \ ParsedNodeTest except: # This means we can't do xpaths on SaxRecords... # making them a bit pointless, but not fatal as we likely don't need them pass def traversePath(node): if (isinstance(node, ParsedRelativeLocationPath.ParsedRelativeLocationPath)): left = traversePath(node._left) right = traversePath(node._right) if (left == []): # self::node() return [right] elif (type(left[0]) in types.StringTypes): return [left, right] else: left.append(right) return left elif (isinstance(node, ParsedAbsoluteLocationPath.ParsedAbsoluteLocationPath)): left = ['/'] if (node._child): right = traversePath(node._child) else: return left if (type(right[0]) == types.StringType): return [left, right] else: left.extend(right) return left elif (isinstance(node, ParsedAbbreviatedRelativeLocationPath.ParsedAbbreviatedRelativeLocationPath)): left = traversePath(node._left) right = traversePath(node._right) right[0] = 'descendant' if (left == []): # self::node() return [right] elif (type(left[0]) in types.StringTypes): return [left, right] else: left.append(right) return left elif (isinstance(node, ParsedStep.ParsedStep)): # TODO: Check that axis is something we can parse a = node._axis._axis if (a == 'self'): return [] n = node._nodeTest local = ParsedNodeTest.NodeNameTest nameattr = "_nodeName" if (isinstance(n, local)): n = getattr(n, nameattr) elif (isinstance(n, ParsedNodeTest.TextNodeTest)): n = "__text()" elif (isinstance(n, ParsedNodeTest.QualifiedNameTest)): n = n._prefix + ":" + n._localName elif (isinstance(n, ParsedNodeTest.PrincipalTypeTest)): n = "*" else: raise(NotImplementedError) preds = node._predicates pp = [] if (preds): for pred in preds: pp.append(traversePath(pred)) return [a, n, pp] elif (isinstance(node, ParsedExpr.ParsedEqualityExpr) or isinstance(node, ParsedExpr.ParsedRelationalExpr)): # @id="fish" op = node._op # Override check for common: [position()=int] if (op == '=' and isinstance(node._left, ParsedExpr.FunctionCall) and node._left._name == 'position' and isinstance(node._right, ParsedExpr.ParsedNLiteralExpr)): return node._right._literal left = traversePath(node._left) if (type(left) == types.ListType and left[0] == "attribute"): left = left[1] right = traversePath(node._right) if not op in ('=', '!='): op = ['<', '<=', '>', '>='][op] return [left, op, right] elif (isinstance(node, ParsedExpr.ParsedNLiteralExpr) or isinstance(node, ParsedExpr.ParsedLiteralExpr)): # 7 or "fish" return node._literal elif (isinstance(node, ParsedExpr.FunctionCall)): if (node._name == 'last'): # Override for last using Pythonic expr return -1 elif node._name == 'name': return ['FUNCTION', '__name()'] elif node._name == 'starts-with': # only for foo[starts-with(@bar, 'baz')] return ['FUNCTION', 'starts-with', traversePath(node._arg0)[1], node._arg1._literal] elif node._name == 'regexp': return ['FUNCTION', 'regexp', traversePath(node._arg0)[1], re.compile(node._arg1._literal)] elif node._name == 'count': return ['FUNCTION', 'count', traversePath(node._arg0)] else: raise(NotImplementedError) elif (isinstance(node, ParsedExpr.ParsedAndExpr)): return [traversePath(node._left), 'and', traversePath(node._right)] elif (isinstance(node, ParsedExpr.ParsedOrExpr)): return [traversePath(node._left), 'or', traversePath(node._right)] else: # We'll need to do full XPath vs DOM raise(NotImplementedError) def parseOldXPath(p): xpObj = Compile(p) t = traversePath(xpObj) if (t[0] <> '/' and type(t[0]) in types.StringTypes): t= [t] return [xpObj, t] class SaxRecord(Record): def __init__(self, data, xml="", docId=None, wordCount=0, byteCount=0): self.sax = data self.id = docId self.xml = xml self.history = [] self.rights = [] self.elementHash = {} self.wordCount = wordCount self.byteCount = byteCount self.parent = ('','',-1) self.attrRe = re.compile("u['\"](.+?)['\"]: u['\"](.*?)['\"](, |})") #self.attrRe = re.compile("u(?P<quote>['\"])(.+?)(?P=quote): u(?P<quoteb>['\"])(.*?)(?P=quoteb)(, |})") self.recordStore = "" def process_xpath(self, session, xpath, maps={}): if (not isinstance(xpath, list)): # Raw XPath xpath = parseOldXPath(xpath) xp = xpath[1] try: flatten = 0 if xp[0][0] == "FUNCTION" and xp[0][1] == 'count': # process xpath and return number of matches if isinstance(xp[0][2][0], str) and xp[0][2][0] != '/': data = self.process_xpath(session, [None, [xp[0][2]]], maps) else: data = self.process_xpath(session, [None, xp[0][2]], maps) return len(data) if (xp[-1][0] == 'child' and xp[-1][1] == "__text()"): flatten = 1 xp = xp[:-1] if (xp[-1][0] == 'attribute'): return self._handleAttribute(xp, maps) elif (xp[-1][0] == "/"): # Return top level element for x in xrange(len(self.sax)): if self.sax[x][0] in ['1', '4']: return self.sax[x:] elif(xp[-1][0] in ['child', 'descendant']): data = [] # Extracting element elemName = xp[-1][1] nselem = elemName.split(":") if (len(nselem) == 2): # Namespaced. nsUri = maps[nselem[0]] elemName = nselem[1] else: nsUri = "" attr = xp[-1][2] elemLines = [] if elemName == '*' and attr: for p in attr: if p[0] == 'FUNCTION' and p[2] == '__name()': names = self.elementHash.keys() if p[1] == 'starts-with' and p[2] == '__name()': for x in names: if x.find(p[3]) == 0: elemLines.extend(self.elementHash[x]) elif p[1] == 'regexp' and p[2] == '__name()': for x in names: if p[3].search(x): elemLines.extend(self.elementHash[x]) elif (not elemName in self.elementHash): return [] if (len(attr) == 1 and type(attr[0]) == types.ListType and attr[0][1] == "="): n = u"%s[@%s='%s']" % (elemName, attr[0][0], attr[0][2]) elemLines = self.elementHash.get(n, []) if elemLines == []: try: elemLines = self.elementHash[elemName] except: # might really be empty pass for e in elemLines: if (not nsUri or self.sax[e[0]][4:4+len(nsUri)] == nsUri): match = self._checkSaxXPathLine(xp, e[0]) if (match): # Return event chunk l = self.sax[e[0]] end = int(l[l.rfind(' ')+1:]) data.append(self.sax[e[0]:end+1]) else: # Unsupported final axis raise(NotImplementedError) if flatten and data: # Flatten to text nodes ndata = [] for match in data: txt = [] for ev in match: if ev[0] == '3': txt.append(ev[2:]) ndata.append(''.join(txt)) return ndata else: return data except NotImplementedError: # Convert to DOM (slow) and reapply (slower still) dom = self.get_dom(session) xp = xpTuple[0] try: return utils.evaluateXPath(xp, dom) except: self.log_critical("Buggy Xpath: %r" % xp) return [] # Otherwise just fall over as we've hit a real bug def _handleAttribute(self, xp, maps={}): attrName = xp[-1][1] nselem = attrName.split(":") if (len(nselem) == 2): # Namespaced attribute nsUri = maps[nselem[0]] attrName = nselem[1] else: nsUri = None data = [] if (len(xp) == 1): # Extracting all occs of attribute anywhere!? # Check predicates... (only support one numeric predicate) if (len(xp[0][2]) == 1 and type(xp[0][2][0]) == types.FloatType): nth = int(xp[0][2][0]) elif (len(xp[0][2])): # Non index or multiple predicates?? raise(NotImplementedError) else: nth = 0 currn = 0 for l in self.sax: if (l[0] == "1"): (name, attrs) = self._convert_elem(l) if (attrName in attrs): currn += 1 content = attrs[attrName] if (currn == nth): data.append(content) break elif (not nth): data.append(content) else: elemName = xp[-2][1] flatten = 0 if (elemName == "*"): # Let DOM code handle this monstrosity :P raise(NotImplementedError) nselem = elemName.split(":") if (len(nselem) == 2): # Namespaced. elemNsUri = maps[nselem[0]] elemName = nselem[1] else: elemNsUri = "" if (elemName in self.elementHash): elemLines = self.elementHash[elemName] for e in elemLines: if (not elemNsUri or self.sax[e[0]][4:4+len(elemNsUri)] == elemNsUri): line = self.sax[e[0]] (name, attrs) = self._convert_elem(line) if (attrName == '*'): # All attributes' values match = self._checkSaxXPathLine(xp[:-1], e[0]) if (match): for k in attrs.keys(): data.append(attrs[k]) else: if (not attrName in attrs): attrName = (nsUri, attrName) if (not attrName in attrs and not nsUri): # step through and take first content = None for key in attrs: if key[1] == attrName[1]: content = attrs[key] else: content = attrs.get(attrName, None) if (content): # Now check rest of path match = self._checkSaxXPathLine(xp[:-1], e[0]) if (match): data.append(content) return data def _checkSaxXPathLine(self, xp, line): # Check that event at line in record matches xpath up tree # Pass by reference, need a copy to pop! Looks like a hack... xpath = xp[:] climb = False while (xpath): posn = len(xpath) node = xpath.pop() if (line == -1): if node != "/" and node != ['/']: return 0 else: elem = self.sax[line] (name, attrs) = self._convert_elem(elem) match = self._checkSaxXPathNode(node, name, attrs, line, posn) if not match: if not climb: return 0 else: # Previous was a descendant, keep looking while not match: start = elem.rfind("}") + 2 end = elem.find(" ", start) line = int(elem[start:end]) if line != -1: elem = self.sax[line] (name, attrs) = self._convert_elem(elem) match = self._checkSaxXPathNode(node, name, attrs, line, posn) else: return 0 if xpath: start = elem.rfind("}") + 2 end = elem.find(" ", start) line = int(elem[start:end]) climb = (node and node[0] == "descendant") return 1 def _checkSaxXPathNode(self, step, name, attrs, line, posn): # name already checked, strip if step in ['/', ['/']] and name: return 0 if (step[1] != name and step[1] != '*' and step[1][step[1].find(":")+1:] != name): return 0 elif (not step[0] in ['child', 'descendant']): # Unsupported axis raise(NotImplementedError) elif (step[2]): # Check predicates predPosn = 0 for pred in (step[2]): predPosn += 1 m = self._checkSaxXPathPredicate(pred, name, attrs, line, posn, predPosn) if (not m): return 0 return 1 def _checkSaxXPathPredicate(self, pred, name, attrs, line, posn, predPosn): if (type(pred) != types.ListType): # Numeric Predicate. (eg /foo/bar[1]) if (predPosn != 1): # Can't do numeric predicate on already predicated nodeset # eg: text[@type='main'][2] raise(NotImplementedError) if (posn == 1): # First position in relative path. # Check against position in elementHash if (name in self.elementHash): all = self.elementHash[name] p = int(pred) if (len(all) < p): return 0 return all[int(pred)-1][0] == line return 0 else: # Not first position, so it applies to parent elem # Which we record during parsing elem = self.sax[line] end = elem.rfind("}") + 2 start = elem.find(' ', end) + 1 end = elem.find(' ', start) npred = float(elem[start:end]) return npred == pred elif (pred[1] in ['=', '!=', '<', '>', '<=', '>=']): # Single attribute return self._checkSaxXPathAttr(pred, attrs) elif (pred[1] in ['and', 'or']): # Attribute combinations left = self._checkSaxXPathPredicate(pred[0], name, attrs, line, posn, predPosn) right = self._checkSaxXPathPredicate(pred[2], name, attrs, line, posn, predPosn) if (pred[1] == 'and' and left and right): return 1 elif (pred[1] == 'or' and (left or right)): return 1 return 0 elif (pred[0] == 'attribute'): # Attribute exists test return pred[1] in attrs elif (pred[0] == 'FUNCTION'): if pred[2] == "__name()": return True if pred[1] == 'starts-with': if pred[2] in attrs: val = attrs[pred[2]] return not val.find(pred[3]) else: return False elif pred[1] == 'regexp': if pred[2] in attrs: return pred[3].search(attrs[pred[2]]) != None else: return False raise NotImplementedError else: # No idea!! raise(NotImplementedError) return 1 def _checkSaxXPathAttr(self, pred, attrs): # Namespacey if (not pred[0] in attrs): if ((None, pred[0]) in attrs): pred[0] = (None, pred[0]) else: return 0 rel = pred[1] # -Much- faster than eval if (type(pred[2]) == types.FloatType): attrValue = float(attrs[pred[0]]) else: attrValue = attrs[pred[0]] comp = cmp(attrValue, pred[2]) if rel == "=": return comp == 0 elif rel == ">": return comp == 1 elif rel == "<": return comp == -1 elif rel == "<=": return comp in (-1, 0) elif rel == ">=": return comp in (1, 0) elif rel == "!=": return comp in (1, -1) else: raise(NotImplementedError) def _convert_elem(self, line): # Currently: 1 name {attrs} parent npred end if (line[0] == '1'): start = line.find("{") name = line[2:start-1] if line[start+1] == '}': attrs = {} else: attrList = self.attrRe.findall(line) attrs = {} for m in attrList: attrs[unicode(m[0])] = unicode(m[1]) return [name, attrs] elif (line[0] == '4'): end = line.rfind("}") stuff = eval(line[2:end+1]) return [stuff[1], stuff[3]] else: raise ValueError("Called convert on non element.") def saxify(self, session, handler=None, sax=[]): if handler == None: handler = self if not sax: sax = self.get_sax(session) for l in sax: line = l # line = l.strip() if line[0] == "1": # String manipulation method (name, attrs) = self._convert_elem(line) handler.startElement(name, attrs) elif line[0] == "3": handler.characters(line[2:], 0, len(line)-2) elif line[0] == "2": end = line.rfind(' ') handler.endElement(line[2:end]) elif line[0] == "9": pass elif line[0] == '4': # 4 ns,name,qname, {} idx = line.rfind(' ') idx = line[:idx].rfind(' ') idx = line[:idx].rfind(' ') line = line[:idx] (ns, name, qname, attrs) = eval(line[2:]) handler.startElementNS((ns,name), qname, attrs) elif line[0] == '5': # 5 ns,name,qname parent pred end idx = line.rfind(' ') line = line[:idx] (ns, name, qname) = eval(line[2:]) handler.endElementNS((ns,name),qname) elif line[0] == '6': # 6 pref, uri pref, uri = eval(line[2:]) handler.startPrefixMapping(pref, uri) else: # Unknown type raise ValueError(line) def get_dom(self, session): if (self.dom): return self.dom else: # Turn SAX into DOM and cache s2dhandler.initState() self.saxify(session, s2dhandler); self.dom = s2dhandler.getRootNode() return self.dom def get_xml(self, session, events=[]): if (not events and self.xml): return self.xml else: # Turn SAX into XML and cache if not events: process = self.sax else: process = events s2xhandler.initState() self.saxify(session, s2xhandler, process) if not events: self.xml = s2xhandler.get_xmlString() return self.xml else: return s2xhandler.get_xmlString() def get_sax(self, session): return self.sax def fetch_vector(self, session, index, summary=False): return index.indexStore.fetch_vector(session, index, self, summary) class MarcRecord(Record): """For dealing with Library MARC Records.""" def __init__(self, data, xml="", docId=0, wordCount=0, byteCount=0): txt = doc.get_raw(session) self.marc = MARC(txt) self.id = docId # Estimate number of words... display = str(self.marc) if wordCount: self.wordCount=wordCount else: self.wordCount = len(display.split()) - ( len(display.split('\n')) * 2) if byteCount: self.byteCount = byteCount else: self.byteCount = len(display) self.decoder = MARC8_to_Unicode() self.asciiRe = re.compile('([\x0e-\x1f]|[\x7b-\xff])') def process_xpath(self, session, xpath, maps={}): if (not isinstance(xpath, list)): # Raw XPath # c = utils.verifyXPaths([xpath]) if (not c or not c[0][1]): return [] else: xpath = c[0] xp = xpath[1] # format: fldNNN/a try: fld = int(xp[0][1][3:]) except ValueError: # not a NNN not an int return [] if fld in self.marc.fields: data = self.marc.fields[fld] else: return [] if len(xp) > 1: subfield = xp[1][1] else: subfield = "" vals = [] if fld in [0,1]: vals = data else: for d in data: if not subfield: vals.append(' '.join([x[1] for x in d[2]])) elif subfield == 'ind1': vals.append(d[0]) elif subfield == 'ind2': vals.append(d[1]) elif fld == 8: if not subfield: vals.append(d) elif subfield == 'lang': vals.append(d[35:38]) elif subfield == 'date': vals.append(d[:6]) elif subfield == 'pubStatus': vals.append(d[6]) elif subfield == 'date1': vals.append(d[7:11]) elif subfield == 'date2': vals.append(d[11:15]) elif subfield == 'pubPlace': vals.append(d[15:18]) else: for x in d[2]: try: if x[0] == subfield: vals.append(x[1]) except: # broken pass nvals = [] for v in vals: try: nvals.append(v.decode('utf-8')) except: try: convtd = self.decoder.translate(v) nvals.append(unicodedata.normalize('NFC', convtd)) except: # strip out any totally @^%(ed characters v = self.asciiRe.sub('?', v) nvals.append(v) return nvals def get_dom(self, session): raise(NotImplementedError) def get_sax(self, session): raise(NotImplementedError) def get_xml(self, session): return self.marc.toMARCXML() def fetch_vector(self, session, index, summary=False): return index.indexStore.fetch_vector(session, index, self, summary)
5c2482df35a2b3e2793446e744596a4eff53075d
920ab19b73a7cba21d340a49d9d24e2d1eeabf3d
/idpsreact/bin/automat-visualize
518eafa6739f15f864b7d8624057a1b909d8f1e5
[ "MIT" ]
permissive
DTrafford/IDPS
5fa2b73f2c47cbf50b90a1a786c10f7d69c995b4
1eaccfc218adcb7231e64271731c765f8362b891
refs/heads/master
2022-12-16T16:28:34.801962
2020-03-30T18:08:09
2020-03-30T18:08:09
234,163,829
0
0
MIT
2020-09-10T06:26:02
2020-01-15T20:10:09
Python
UTF-8
Python
false
false
281
#!/Users/sangit/Downloads/django-react-boilerplate-master/idpsreact/bin/python3 # -*- coding: utf-8 -*- import re import sys from automat._visualize import tool if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(tool())
95e69f614829e398941039bb5e7c6b54d7912473
6a7e9e0e9c08132166f566bd88ae1c46ff8f9c0a
/azure-mgmt-resource/azure/mgmt/resource/policy/v2018_03_01/operations/policy_definitions_operations.py
35d46e882383af32ab876701a41bdc8be7b23c00
[ "MIT" ]
permissive
ashirey-msft/azure-sdk-for-python
d92381d11c48f194ec9f989f5f803db614fb73f2
e04778e13306dad2e8fb044970215bad6296afb6
refs/heads/master
2020-03-23T06:05:39.283442
2018-09-15T00:18:26
2018-09-15T00:18:26
141,188,192
0
1
MIT
2018-07-16T20:02:52
2018-07-16T20:02:52
null
UTF-8
Python
false
false
31,610
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- import uuid from msrest.pipeline import ClientRawResponse from msrestazure.azure_exceptions import CloudError from .. import models class PolicyDefinitionsOperations(object): """PolicyDefinitionsOperations operations. :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. :ivar api_version: The API version to use for the operation. Constant value: "2018-03-01". """ models = models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self.api_version = "2018-03-01" self.config = config def create_or_update( self, policy_definition_name, parameters, custom_headers=None, raw=False, **operation_config): """Creates or updates a policy definition in a subscription. This operation creates or updates a policy definition in the given subscription with the given name. :param policy_definition_name: The name of the policy definition to create. :type policy_definition_name: str :param parameters: The policy definition properties. :type parameters: ~azure.mgmt.resource.policy.v2018_03_01.models.PolicyDefinition :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: PolicyDefinition or ClientRawResponse if raw=true :rtype: ~azure.mgmt.resource.policy.v2018_03_01.models.PolicyDefinition or ~msrest.pipeline.ClientRawResponse :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ # Construct URL url = self.create_or_update.metadata['url'] path_format_arguments = { 'policyDefinitionName': self._serialize.url("policy_definition_name", policy_definition_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct body body_content = self._serialize.body(parameters, 'PolicyDefinition') # Construct and send request request = self._client.put(url, query_parameters) response = self._client.send( request, header_parameters, body_content, stream=False, **operation_config) if response.status_code not in [201]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp deserialized = None if response.status_code == 201: deserialized = self._deserialize('PolicyDefinition', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Authorization/policyDefinitions/{policyDefinitionName}'} def delete( self, policy_definition_name, custom_headers=None, raw=False, **operation_config): """Deletes a policy definition in a subscription. This operation deletes the policy definition in the given subscription with the given name. :param policy_definition_name: The name of the policy definition to delete. :type policy_definition_name: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: None or ClientRawResponse if raw=true :rtype: None or ~msrest.pipeline.ClientRawResponse :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ # Construct URL url = self.delete.metadata['url'] path_format_arguments = { 'policyDefinitionName': self._serialize.url("policy_definition_name", policy_definition_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.delete(url, query_parameters) response = self._client.send(request, header_parameters, stream=False, **operation_config) if response.status_code not in [200, 204]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp if raw: client_raw_response = ClientRawResponse(None, response) return client_raw_response delete.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Authorization/policyDefinitions/{policyDefinitionName}'} def get( self, policy_definition_name, custom_headers=None, raw=False, **operation_config): """Retrieves a policy definition in a subscription. This operation retrieves the policy definition in the given subscription with the given name. :param policy_definition_name: The name of the policy definition to get. :type policy_definition_name: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: PolicyDefinition or ClientRawResponse if raw=true :rtype: ~azure.mgmt.resource.policy.v2018_03_01.models.PolicyDefinition or ~msrest.pipeline.ClientRawResponse :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ # Construct URL url = self.get.metadata['url'] path_format_arguments = { 'policyDefinitionName': self._serialize.url("policy_definition_name", policy_definition_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.get(url, query_parameters) response = self._client.send(request, header_parameters, stream=False, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp deserialized = None if response.status_code == 200: deserialized = self._deserialize('PolicyDefinition', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Authorization/policyDefinitions/{policyDefinitionName}'} def get_built_in( self, policy_definition_name, custom_headers=None, raw=False, **operation_config): """Retrieves a built-in policy definition. This operation retrieves the built-in policy definition with the given name. :param policy_definition_name: The name of the built-in policy definition to get. :type policy_definition_name: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: PolicyDefinition or ClientRawResponse if raw=true :rtype: ~azure.mgmt.resource.policy.v2018_03_01.models.PolicyDefinition or ~msrest.pipeline.ClientRawResponse :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ # Construct URL url = self.get_built_in.metadata['url'] path_format_arguments = { 'policyDefinitionName': self._serialize.url("policy_definition_name", policy_definition_name, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.get(url, query_parameters) response = self._client.send(request, header_parameters, stream=False, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp deserialized = None if response.status_code == 200: deserialized = self._deserialize('PolicyDefinition', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized get_built_in.metadata = {'url': '/providers/Microsoft.Authorization/policyDefinitions/{policyDefinitionName}'} def create_or_update_at_management_group( self, policy_definition_name, parameters, management_group_id, custom_headers=None, raw=False, **operation_config): """Creates or updates a policy definition in a management group. This operation creates or updates a policy definition in the given management group with the given name. :param policy_definition_name: The name of the policy definition to create. :type policy_definition_name: str :param parameters: The policy definition properties. :type parameters: ~azure.mgmt.resource.policy.v2018_03_01.models.PolicyDefinition :param management_group_id: The ID of the management group. :type management_group_id: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: PolicyDefinition or ClientRawResponse if raw=true :rtype: ~azure.mgmt.resource.policy.v2018_03_01.models.PolicyDefinition or ~msrest.pipeline.ClientRawResponse :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ # Construct URL url = self.create_or_update_at_management_group.metadata['url'] path_format_arguments = { 'policyDefinitionName': self._serialize.url("policy_definition_name", policy_definition_name, 'str'), 'managementGroupId': self._serialize.url("management_group_id", management_group_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct body body_content = self._serialize.body(parameters, 'PolicyDefinition') # Construct and send request request = self._client.put(url, query_parameters) response = self._client.send( request, header_parameters, body_content, stream=False, **operation_config) if response.status_code not in [201]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp deserialized = None if response.status_code == 201: deserialized = self._deserialize('PolicyDefinition', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized create_or_update_at_management_group.metadata = {'url': '/providers/Microsoft.Management/managementgroups/{managementGroupId}/providers/Microsoft.Authorization/policyDefinitions/{policyDefinitionName}'} def delete_at_management_group( self, policy_definition_name, management_group_id, custom_headers=None, raw=False, **operation_config): """Deletes a policy definition in a management group. This operation deletes the policy definition in the given management group with the given name. :param policy_definition_name: The name of the policy definition to delete. :type policy_definition_name: str :param management_group_id: The ID of the management group. :type management_group_id: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: None or ClientRawResponse if raw=true :rtype: None or ~msrest.pipeline.ClientRawResponse :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ # Construct URL url = self.delete_at_management_group.metadata['url'] path_format_arguments = { 'policyDefinitionName': self._serialize.url("policy_definition_name", policy_definition_name, 'str'), 'managementGroupId': self._serialize.url("management_group_id", management_group_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.delete(url, query_parameters) response = self._client.send(request, header_parameters, stream=False, **operation_config) if response.status_code not in [200, 204]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp if raw: client_raw_response = ClientRawResponse(None, response) return client_raw_response delete_at_management_group.metadata = {'url': '/providers/Microsoft.Management/managementgroups/{managementGroupId}/providers/Microsoft.Authorization/policyDefinitions/{policyDefinitionName}'} def get_at_management_group( self, policy_definition_name, management_group_id, custom_headers=None, raw=False, **operation_config): """Retrieve a policy definition in a management group. This operation retrieves the policy definition in the given management group with the given name. :param policy_definition_name: The name of the policy definition to get. :type policy_definition_name: str :param management_group_id: The ID of the management group. :type management_group_id: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: PolicyDefinition or ClientRawResponse if raw=true :rtype: ~azure.mgmt.resource.policy.v2018_03_01.models.PolicyDefinition or ~msrest.pipeline.ClientRawResponse :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ # Construct URL url = self.get_at_management_group.metadata['url'] path_format_arguments = { 'policyDefinitionName': self._serialize.url("policy_definition_name", policy_definition_name, 'str'), 'managementGroupId': self._serialize.url("management_group_id", management_group_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.get(url, query_parameters) response = self._client.send(request, header_parameters, stream=False, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp deserialized = None if response.status_code == 200: deserialized = self._deserialize('PolicyDefinition', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized get_at_management_group.metadata = {'url': '/providers/Microsoft.Management/managementgroups/{managementGroupId}/providers/Microsoft.Authorization/policyDefinitions/{policyDefinitionName}'} def list( self, custom_headers=None, raw=False, **operation_config): """Retrieves policy definitions in a subscription. This operation retrieves a list of all the policy definitions in a given subscription. :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: An iterator like instance of PolicyDefinition :rtype: ~azure.mgmt.resource.policy.v2018_03_01.models.PolicyDefinitionPaged[~azure.mgmt.resource.policy.v2018_03_01.models.PolicyDefinition] :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ def internal_paging(next_link=None, raw=False): if not next_link: # Construct URL url = self.list.metadata['url'] path_format_arguments = { 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') else: url = next_link query_parameters = {} # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.get(url, query_parameters) response = self._client.send( request, header_parameters, stream=False, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp return response # Deserialize response deserialized = models.PolicyDefinitionPaged(internal_paging, self._deserialize.dependencies) if raw: header_dict = {} client_raw_response = models.PolicyDefinitionPaged(internal_paging, self._deserialize.dependencies, header_dict) return client_raw_response return deserialized list.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Authorization/policyDefinitions'} def list_built_in( self, custom_headers=None, raw=False, **operation_config): """Retrieve built-in policy definitions. This operation retrieves a list of all the built-in policy definitions. :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: An iterator like instance of PolicyDefinition :rtype: ~azure.mgmt.resource.policy.v2018_03_01.models.PolicyDefinitionPaged[~azure.mgmt.resource.policy.v2018_03_01.models.PolicyDefinition] :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ def internal_paging(next_link=None, raw=False): if not next_link: # Construct URL url = self.list_built_in.metadata['url'] # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') else: url = next_link query_parameters = {} # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.get(url, query_parameters) response = self._client.send( request, header_parameters, stream=False, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp return response # Deserialize response deserialized = models.PolicyDefinitionPaged(internal_paging, self._deserialize.dependencies) if raw: header_dict = {} client_raw_response = models.PolicyDefinitionPaged(internal_paging, self._deserialize.dependencies, header_dict) return client_raw_response return deserialized list_built_in.metadata = {'url': '/providers/Microsoft.Authorization/policyDefinitions'} def list_by_management_group( self, management_group_id, custom_headers=None, raw=False, **operation_config): """Retrieve policy definitions in a management group. This operation retrieves a list of all the policy definitions in a given management group. :param management_group_id: The ID of the management group. :type management_group_id: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: An iterator like instance of PolicyDefinition :rtype: ~azure.mgmt.resource.policy.v2018_03_01.models.PolicyDefinitionPaged[~azure.mgmt.resource.policy.v2018_03_01.models.PolicyDefinition] :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ def internal_paging(next_link=None, raw=False): if not next_link: # Construct URL url = self.list_by_management_group.metadata['url'] path_format_arguments = { 'managementGroupId': self._serialize.url("management_group_id", management_group_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') else: url = next_link query_parameters = {} # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.get(url, query_parameters) response = self._client.send( request, header_parameters, stream=False, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp return response # Deserialize response deserialized = models.PolicyDefinitionPaged(internal_paging, self._deserialize.dependencies) if raw: header_dict = {} client_raw_response = models.PolicyDefinitionPaged(internal_paging, self._deserialize.dependencies, header_dict) return client_raw_response return deserialized list_by_management_group.metadata = {'url': '/providers/Microsoft.Management/managementgroups/{managementGroupId}/providers/Microsoft.Authorization/policyDefinitions'}
6684ca9dd67bacb41767bd65a1c0c1f2dd8193ce
e07f6ac5559d09eb6f5393650af135c7474f5003
/recent_news.py
e27c23ffb42fa9cdf553ea3b1d714c6870d9ef68
[]
no_license
Money-fin/backend
21e188f3f59ccaa216d1ea4bb7b78f670831cb6f
909961dc33df84ba3663e622bfdf6ab98f915f5f
refs/heads/master
2022-12-04T08:32:10.094335
2020-08-29T09:57:28
2020-08-29T09:57:28
291,008,543
0
0
null
null
null
null
UTF-8
Python
false
false
1,527
py
import requests import sys sys.path.append("/home/jylee/backend") import urllib import os from bs4 import BeautifulSoup import numpy as np import pandas as pd from helper import KafkaHelper def new_crawl(link, kafka=False): url = link item_info = requests.get(url).text soup = BeautifulSoup(item_info, 'html.parser') title = soup.select('div.content03 header.title-article01 h1')[0].get_text() time = soup.select('div.content03 header.title-article01 p')[0].get_text()[4:] img_url = f"https:{soup.select('div.img-con span img')[0]['src']}" raw_content = soup.select('div.story-news.article') # print(raw_content) content_p = [item.select("p") for item in raw_content] content_text = [item.get_text().strip() for item in content_p[0]] content = "\n".join(content_text[1:]) data_dict = { "title": title, "content": content, "link": link } if kafka: KafkaHelper.pub_ninput(data_dict) else: data_dict["time"] = time data_dict["img_url"] = img_url return data_dict def recent_new_check(): past_list = "" while True: url = f'https://www.yna.co.kr/news?site=navi_latest_depth01' item_info = requests.get(url).text soup = BeautifulSoup(item_info, 'html.parser') new_a_tag = soup.select('div.list-type038 ul')[0].select("li")[0].select("div div a.tit-wrap") current_link = f"https:{new_a_tag[0]['href']}" if past_list == current_link: continue else: new_crawl(current_link, True) past_list = current_link recent_new_check()
d309ba906885b2264436cea4fe7c0b1cb6487058
9edaf93c833ba90ae9a903aa3c44c407a7e55198
/travelport/models/special_equipment_1.py
d0b34a9eefba484eaeb14ea03e11c478e502ee89
[]
no_license
tefra/xsdata-samples
c50aab4828b8c7c4448dbdab9c67d1ebc519e292
ef027fe02e6a075d8ed676c86a80e9647d944571
refs/heads/main
2023-08-14T10:31:12.152696
2023-07-25T18:01:22
2023-07-25T18:01:22
222,543,692
6
1
null
2023-06-25T07:21:04
2019-11-18T21:00:37
Python
UTF-8
Python
false
false
1,577
py
from __future__ import annotations from dataclasses import dataclass, field from travelport.models.type_element_status_1 import TypeElementStatus1 __NAMESPACE__ = "http://www.travelport.com/schema/common_v52_0" @dataclass class SpecialEquipment1: """ Parameters ---------- key type_value Special equipment associated with a specific vehicle el_stat This attribute is used to show the action results of an element. Possible values are "A" (when elements have been added to the UR) and "M" (when existing elements have been modified). Response only. key_override If a duplicate key is found where we are adding elements in some cases like URAdd, then instead of erroring out set this attribute to true. """ class Meta: name = "SpecialEquipment" namespace = "http://www.travelport.com/schema/common_v52_0" key: None | str = field( default=None, metadata={ "name": "Key", "type": "Attribute", } ) type_value: None | str = field( default=None, metadata={ "name": "Type", "type": "Attribute", "required": True, } ) el_stat: None | TypeElementStatus1 = field( default=None, metadata={ "name": "ElStat", "type": "Attribute", } ) key_override: None | bool = field( default=None, metadata={ "name": "KeyOverride", "type": "Attribute", } )
e8611029177ec93e595d82b86b795cbc307b7108
d4ab63e2ff846ff509ab3b8a191381bdf8197325
/project/test_main.py
8544ed907817ff34f90b366519a3db4337d52c5e
[]
no_license
ibrobabs/task
c2c95d8c83340a38be0ff8a1d7d3da55de33a097
82adc4fa54ab9c3606b2770325454916c7f75693
refs/heads/master
2021-01-18T17:45:31.392805
2017-04-01T05:22:24
2017-04-01T05:22:24
86,812,161
0
0
null
null
null
null
UTF-8
Python
false
false
1,298
py
import os import unittest from project import app, db from project.config import basedir from project.models import User TEST_DB = 'test.db' class MainTests(unittest.TestCase): #Setup and Teardown def setUp(self): app.config['TESTING'] = True app.config['WTF_CSRF_ENABLED'] = False # app.config['DEBUG'] = False app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///' + \ os.path.join(basedir, TEST_DB) self.app = app.test_client() db.create_all() def tearDown(self): db.session.remove() db.drop_all() # helper methods def login(self, name, password): return self.app.post('/', data=dict( name=name, password=password), follow_redirects=True) # tests def test_404_error(self): response = self.app.get('/this-route-does-not-exist/') self.assertEquals(response.status_code, 404) self.assertIn(b"Sorry. There's nothing here.", response.data) def test_500_error(self): bad_user = User( name='Jeremy', email='[email protected]', password='django' ) db.session.add(bad_user) db.session.commit() self.assertRaises(ValueError, self.login, 'Jeremy', 'django') try: response = self.login('Jeremy', 'django') self.assertEquals(response.status_code, 500) except ValueError: pass if __name__ == '__main__': unittest.main()
37e7b65b2eb87e028e91d5e800045af24ea8b6c0
b0a217700c563c4f057f2aebbde8faba4b1b26d2
/software/glasgow/arch/jtag.py
7c4fe835ca1a2bd2417ce6ed37892e998c03caf9
[ "0BSD", "Apache-2.0" ]
permissive
kbeckmann/Glasgow
5d183865da4fb499099d4c17e878a76192b691e7
cd31e293cb99ee10a3e4a03ff26f6f124e512c64
refs/heads/master
2021-09-15T15:59:38.211633
2018-11-15T22:36:04
2018-11-22T21:13:59
157,077,707
3
0
NOASSERTION
2018-11-11T12:33:49
2018-11-11T12:33:48
null
UTF-8
Python
false
false
250
py
# Ref: IEEE 1149.1 from bitarray import bitarray from ..support.bits import * __all__ = [ # DR "DR_IDCODE", ] DR_IDCODE = Bitfield("DR_IDCODE", 4, [ ("present", 1), ("mfg_id", 11), ("part_id", 16), ("version", 4), ])
97450e3407268358d4f64aefe3120b8487b3401e
425db5a849281d333e68c26a26678e7c8ce11b66
/maths/fast_pow_and_matrix_multi.py
987f29bb269b191cf1b8759d9bc80770e1b3e800
[ "MIT" ]
permissive
lih627/python-algorithm-templates
e8092b327a02506086414df41bbfb2af5d6b06dc
a61fd583e33a769b44ab758990625d3381793768
refs/heads/master
2021-07-23T17:10:43.814639
2021-01-21T17:14:55
2021-01-21T17:14:55
238,456,498
29
8
null
null
null
null
UTF-8
Python
false
false
2,500
py
import random def fpowx(x, n): """ quick pow: x ** n """ res = 1 while n: if n & 1: res = res * x # compute x^2 x^4 x^8 x *= x n >>= 1 return res def fmulti(m, n, mod=10 ** 9 + 7): """ 并没有提速的效果 只是对于其他语言 如c 防止溢出 对 python 没有任何帮助 """ res = 0 while n: if n & 1: res += m m = (m + m) % mod res %= mod n >>= 1 return res def matrix_multiply(matrix_a, matrix_b): # 模 MOD 乘法/加法 MOD = 10 ** 9 + 7 n_row = len(matrix_a) n_col = len(matrix_b[0]) n_tmp = len(matrix_a[0]) matrix_c = [[0 for _ in range(n_col)] for _ in range(n_row)] for i in range(n_row): for j in range(n_col): for k in range(n_tmp): matrix_c[i][j] += matrix_a[i][k] * matrix_b[k][j] % MOD matrix_c[i][j] %= MOD return matrix_c def get_unit_matrix(n): # matrix I unit_matrix = [[0 for _ in range(n)] for _ in range(n)] for _ in range(n): unit_matrix[_][_] = 1 return unit_matrix def quick_matrix_pow(matrix_a, n): # A ^ n l = len(matrix_a) res = get_unit_matrix(l) while n: if n & 1: res = matrix_multiply(res, matrix_a) a = matrix_multiply(a, a) n >>= 1 return res def test_fmulti(): m = random.randint(10 ** 9, 10 ** 15) n = random.randint(10 ** 9, 10 ** 15) res = fmulti(m, n) return res def multi(m, n, mod=10 ** 9 + 7): return m * n % mod def test_multi(): m = random.randint(10 ** 9, 10 ** 15) n = random.randint(10 ** 9, 10 ** 15) res = multi(m, n) return res if __name__ == '__main__': print('fast pow: 2 ** 11: {}'.format(fpowx(2, 11))) print(fmulti(987654, 987654321)) print(987654 * 987654321 % (10 ** 9 + 7)) # test the speed of fast(?)-multi import timeit T_fmulti = timeit.Timer('test_fmulti()', 'from __main__ import test_fmulti') print('f_multi: {:.6f}s'.format(T_fmulti.timeit(number=1000))) T_multi = timeit.Timer('test_multi()', 'from __main__ import test_multi') print('s_multi: {:.6f}s'.format(T_multi.timeit(number=1000))) # test matrix multiply a = [[1, 2, 3], [4, 5, 6]] b = [[1, 2], [3, 4], [5, 6]] c = matrix_multiply(a, b) print("a = {}\nb = {}\nc = {}".format(a, b, c))
2fae047ea5b7af3cba687716d80fa7aab18a4d0a
4d259f441632f5c45b94e8d816fc31a4f022af3c
/date/tt.py
9f4bc74af2f7f817b5cc2a96f52b570bd76401f0
[]
no_license
xiaoruiguo/lab
c37224fd4eb604aa2b39fe18ba64e93b7159a1eb
ec99f51b498244c414b025d7dae91fdad2f8ef46
refs/heads/master
2020-05-25T01:37:42.070770
2016-05-16T23:24:26
2016-05-16T23:24:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
40
py
a=['1','2','3'] s = ['sss'*3]+a print s
f4506a41f21652bd250f6896810cd6fbdec72bfb
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03042/s013075072.py
044f87c3be49952ef7be8bf867e28108c9b4cd05
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
186
py
s=int(input()) a=s//100 b=s%100 if a>0 and a<=12: if b>0 and b<=12: print("AMBIGUOUS") else: print("MMYY") else: if b>0 and b<=12: print("YYMM") else: print("NA")
62b6273166486acf1ece5437a98e41a0350b1124
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/verbs/_celebrating.py
305a78d8f0d008577d0f029e5a82a8910f663133
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
261
py
from xai.brain.wordbase.verbs._celebrate import _CELEBRATE #calss header class _CELEBRATING(_CELEBRATE, ): def __init__(self,): _CELEBRATE.__init__(self) self.name = "CELEBRATING" self.specie = 'verbs' self.basic = "celebrate" self.jsondata = {}
2f0cb96aaa337f7309712bd930d65de11673c433
55c250525bd7198ac905b1f2f86d16a44f73e03a
/Python/Pytest/pytest-django/pytest_django/plugin.py
cbfe15f79cb04f0e152ebe02bc8b4d3886108f5f
[ "BSD-3-Clause" ]
permissive
NateWeiler/Resources
213d18ba86f7cc9d845741b8571b9e2c2c6be916
bd4a8a82a3e83a381c97d19e5df42cbababfc66c
refs/heads/master
2023-09-03T17:50:31.937137
2023-08-28T23:50:57
2023-08-28T23:50:57
267,368,545
2
1
null
2022-09-08T15:20:18
2020-05-27T16:18:17
null
UTF-8
Python
false
false
130
py
version https://git-lfs.github.com/spec/v1 oid sha256:4b9c174912c01ae59fb496601d8c4ecf26765ee33134d079295304c25873875a size 26008
1731a6bc44fffbafb6437d4bb39a9bb76acfeb29
45c170fb0673deece06f3055979ece25c3210380
/toontown/coghq/BossbotCountryClubMazeRoom_Battle00.py
218b80966c9553066709cc1c2f781554cc97b785
[]
no_license
MTTPAM/PublicRelease
5a479f5f696cfe9f2d9dcd96f378b5ce160ec93f
825f562d5021c65d40115d64523bb850feff6a98
refs/heads/master
2021-07-24T09:48:32.607518
2018-11-13T03:17:53
2018-11-13T03:17:53
119,129,731
2
6
null
2018-11-07T22:10:10
2018-01-27T03:43:39
Python
UTF-8
Python
false
false
2,389
py
#Embedded file name: toontown.coghq.BossbotCountryClubMazeRoom_Battle00 from toontown.coghq.SpecImports import * GlobalEntities = {1000: {'type': 'levelMgr', 'name': 'LevelMgr', 'comment': '', 'parentEntId': 0, 'cogLevel': 0, 'farPlaneDistance': 1500, 'modelFilename': 'phase_12/models/bossbotHQ/BossbotMazex1_C', 'wantDoors': 1}, 1001: {'type': 'editMgr', 'name': 'EditMgr', 'parentEntId': 0, 'insertEntity': None, 'removeEntity': None, 'requestNewEntity': None, 'requestSave': None}, 0: {'type': 'zone', 'name': 'UberZone', 'comment': '', 'parentEntId': 0, 'scale': 1, 'description': '', 'visibility': []}, 110000: {'type': 'battleBlocker', 'name': '<unnamed>', 'comment': '', 'parentEntId': 0, 'pos': Point3(-131.21, 84.92, 0), 'hpr': Point3(270, 0, 0), 'scale': Vec3(1, 1, 1), 'cellId': 0, 'radius': 10}, 110202: {'type': 'door', 'name': '<unnamed>', 'comment': '', 'parentEntId': 110001, 'pos': Point3(0, 0, 0), 'hpr': Vec3(0, 0, 0), 'scale': 1, 'color': Vec4(1, 1, 1, 1), 'isLock0Unlocked': 1, 'isLock1Unlocked': 0, 'isLock2Unlocked': 1, 'isLock3Unlocked': 1, 'isOpen': 0, 'isOpenEvent': 0, 'isVisBlocker': 0, 'secondsOpen': 1, 'unlock0Event': 0, 'unlock1Event': 110000, 'unlock2Event': 0, 'unlock3Event': 0}, 110002: {'type': 'maze', 'name': '<unnamed>', 'comment': '', 'parentEntId': 0, 'pos': Point3(-141.563, -78.8353, 0), 'hpr': Vec3(0, 0, 0), 'scale': Vec3(1, 1, 1), 'numSections': 1}, 10002: {'type': 'nodepath', 'name': 'props', 'comment': '', 'parentEntId': 0, 'pos': Point3(0, 0, 0), 'hpr': Vec3(0, 0, 0), 'scale': 1}, 110001: {'type': 'nodepath', 'name': '<unnamed>', 'comment': '', 'parentEntId': 0, 'pos': Point3(-106.91, 82.6953, 0), 'hpr': Point3(270, 0, 0), 'scale': Vec3(1, 1, 1)}} Scenario0 = {} levelSpec = {'globalEntities': GlobalEntities, 'scenarios': [Scenario0]}
c5020aa411c33ba9eb808cd247fe814f9c0ece17
8f5f92beeaefcd9effc93da87b26acb5ea159274
/xtorch/modules/seq2seq_encoders/seq2seq_encoder.py
edcdada140696dba36c224bbb20440c20a1c8b5f
[ "MIT" ]
permissive
altescy/xtorch
15f984bf08654dc00fc1be603cca696676428cc1
bcbbbe645f4d62c211af5b3555c526cc60792c32
refs/heads/main
2023-04-12T15:45:52.192602
2021-04-25T11:35:45
2021-04-25T11:35:45
361,373,990
0
0
null
null
null
null
UTF-8
Python
false
false
805
py
from typing import Optional import torch class Seq2seqEncoder(torch.nn.Module): def forward( self, inputs: torch.Tensor, mask: Optional[torch.BoolTensor] = None, ) -> torch.Tensor: """ Parameters ========== inputs: `torch.Tensor` Tensor of shape (batch_size, sequence_length, embedding_size). mask: `torch.BoolTensor`, optional (default = None) BoolTensor of shape (batch_size, sequence_length). Return ====== output: Tensor of shape (batch_size, sequence_length, encoding_size). """ raise NotImplementedError def get_input_dim(self) -> int: raise NotImplementedError def get_output_dim(self) -> int: raise NotImplementedError
e32d9ecd5addc70ef1833cfb869c834a230a4f2c
7f97814acd76ca96aee877fd70d401380f848fae
/7_training/re_start_end.py
e5842c00b391813441ccd2346854697e29805bbb
[]
no_license
tberhanu/all_trainings
80cc4948868928af3da16cc3c5b8a9ab18377d08
e4e83d7c71a72e64c6e55096a609cec9091b78fa
refs/heads/master
2020-04-13T12:12:21.272316
2019-03-16T04:22:20
2019-03-16T04:22:20
163,195,802
0
0
null
null
null
null
UTF-8
Python
false
false
485
py
""" https://www.hackerrank.com/challenges/re-start-re-end/problem?h_r=next-challenge&h_v=zen """ # Enter your code here. Read input from STDIN. Print output to STDOUT import re s, k = input(), input() i = 0 found = False while i < len(s): string = s[i:] match = re.match(r'{}'.format(k), string) if match == None: i = i + 1 else: found = True print((match.start() + i, match.end() + i - 1)) i = i + 1 if not found: print('(-1, -1')
edcbbc430b0d1a558d19be8a4a2625b7c762eb20
5add80be09ee754fced03e512a9acc214971cddf
/python-code/openvx-learning/helloworld.py
61352b55542a81f5e56cc66c6767ea1beb6c1d65
[ "Apache-2.0" ]
permissive
juxiangwu/image-processing
f774a9164de9c57e88742e6185ac3b28320eae69
c644ef3386973b2b983c6b6b08f15dc8d52cd39f
refs/heads/master
2021-06-24T15:13:08.900960
2019-04-03T10:28:44
2019-04-03T10:28:44
134,564,878
15
5
null
null
null
null
UTF-8
Python
false
false
935
py
from pyvx import vx context = vx.CreateContext() images = [ vx.CreateImage(context, 640, 480, vx.DF_IMAGE_UYVY), vx.CreateImage(context, 640, 480, vx.DF_IMAGE_S16), vx.CreateImage(context, 640, 480, vx.DF_IMAGE_U8), ] graph = vx.CreateGraph(context) virts = [ vx.CreateVirtualImage(graph, 0, 0, vx.DF_IMAGE_VIRT), vx.CreateVirtualImage(graph, 0, 0, vx.DF_IMAGE_VIRT), vx.CreateVirtualImage(graph, 0, 0, vx.DF_IMAGE_VIRT), vx.CreateVirtualImage(graph, 0, 0, vx.DF_IMAGE_VIRT), ] vx.ChannelExtractNode(graph, images[0], vx.CHANNEL_Y, virts[0]) vx.Gaussian3x3Node(graph, virts[0], virts[1]) vx.Sobel3x3Node(graph, virts[1], virts[2], virts[3]) vx.MagnitudeNode(graph, virts[2], virts[3], images[1]) vx.PhaseNode(graph, virts[2], virts[3], images[2]) status = vx.VerifyGraph(graph) if status == vx.SUCCESS: status = vx.ProcessGraph(graph) else: print("Verification failed.") vx.ReleaseContext(context)
d92df5cd630581d42b06e50bdc1070c5d414a17c
9647524c0f4d93fb1c8a992c20fe9f9d2710cde3
/2-content/Python/intro_programming-master/scripts/remove_input_references.py
2ab8878b1a362f079adf49a971ef71aa7677a4ea
[ "MIT" ]
permissive
bgoonz/web-dev-notes-resource-site
16161aa68e8eecafeaba4dc7abeb957aaee864c5
e7dc9c30393597cb39830c49c3f51c1486b97584
refs/heads/master
2023-09-01T14:04:20.867818
2021-06-17T07:56:20
2021-06-17T07:56:20
329,194,347
7
5
MIT
2021-07-05T06:36:49
2021-01-13T04:34:20
JavaScript
UTF-8
Python
false
false
1,306
py
# This script removes the input reference numbers from html pages. # They play a useful role in scientific notebooks, but they are really # just visual clutter in this project. # Could be an nbconvert setting, but it's an easy enough scripting job. import os import sys print("\nStripping input reference numbers from code cells...") # Find all files to work with. path_to_notebooks = '/srv/projects/intro_programming/intro_programming/notebooks/' filenames = [] for filename in os.listdir(path_to_notebooks): if '.html' in filename and filename != 'index.html': filenames.append(filename) # one file for testing: #filenames = ['hello_world.html'] for filename in filenames: f = open(path_to_notebooks + filename, 'r') lines = f.readlines() f.close() f = open(path_to_notebooks + filename, 'wb') for line in lines: # Unwanted lines have opening and closing div on same line, # with input reference number between them. if ('<div class="prompt input_prompt">' in line and '</div>' in line): # Don't write this line. continue else: # Regular line, write it. f.write(line.encode('utf-8')) f.close() print(" Stripped input reference numbers.\n")
dd55eae4011f0cb80d47c940385e7a3ff85cd7a3
602fa0e4ce194d3073d78230c61f7053281f9f9b
/code/python/src/categories/catutil.py
df03a0027b66f8d76d4265de7c7074d56b487bab
[]
no_license
ziqizhang/wop
111cfdda1686a874ff1fc11a453a23fb52d43af1
ea0c37f444de9f2d5303f74b989f6d1a09feb61d
refs/heads/master
2022-09-14T20:14:11.575021
2021-12-10T21:23:24
2021-12-10T21:23:24
166,239,995
2
1
null
2022-09-01T23:11:13
2019-01-17T14:33:51
Python
UTF-8
Python
false
false
2,128
py
import pandas as pd from nltk import PorterStemmer, WordNetLemmatizer import numpy from categories import cleanCategories as cc stemmer = PorterStemmer() lemmatizer = WordNetLemmatizer() #0=stem; 1=lem; else=nothing def normalise_categories(in_file_name, col, stem_or_lem): df = pd.read_csv(in_file_name, header=0, delimiter=";", quoting=0, encoding="utf-8", ).as_matrix() norm_cats=set() max_toks=0 for r in df: c = r[col] if type(c) is not str and numpy.isnan(c): c="NONE" toks = len(c.split(" ")) if toks>max_toks: max_toks=toks if stem_or_lem==0: c=stemmer.stem(c).strip() if len(c)>2: norm_cats.add(c) elif stem_or_lem==1: c=lemmatizer.lemmatize(c).strip() if len(c)>2: norm_cats.add(c) else: norm_cats.add(c) norm_cats_list=list(norm_cats) norm_cats_list=sorted(norm_cats_list) print(len(norm_cats_list)) print(max_toks) for nc in norm_cats_list: print(nc) def get_parent_category_level(in_file_name, col): df = pd.read_csv(in_file_name, header=0, delimiter=";", quoting=0, encoding="utf-8", ).as_matrix() norm_cats = set() norm_cats_list=[] for r in df: c = r[col] if type(c) is not str and numpy.isnan(c): continue c= cc.normaliseCategories(c) try: trim = c.index(">") except ValueError: continue c=c[0:trim].strip() norm_cats.add(c) norm_cats_list.append(c) norm_cats_unique_list=sorted(list(norm_cats)) norm_cats=sorted(norm_cats) for nc in norm_cats: print(nc) print("\n\n>>>>>>>>>\n\n") for nc in norm_cats_unique_list: print(nc) if __name__ == "__main__": # normalise_categories("/home/zz/Work/data/wop_data/goldstandard_eng_v1_cleanedCategories.csv", # 13,0) get_parent_category_level("/home/zz/Work/data/wop_data/goldstandard_eng_v1_utf8.csv", 8)
d384f24b5c0b0b257f66b1db1a63854c59b95395
3e4c69317323bca865b025503b60bf83d3ae65f8
/tests/server/blueprints/variants/test_variant_views_variant.py
c1fd7fe078f8967099df90b24cb215c5a79a60ac
[ "BSD-3-Clause" ]
permissive
tapaswenipathak/scout
f59beaa997a45487ac96c3b3e560b5e5aa9b30ae
c9b3ec14f5105abe6066337110145a263320b4c5
refs/heads/master
2020-05-30T11:13:25.662300
2019-05-28T09:26:25
2019-05-28T09:26:25
189,694,812
1
0
BSD-3-Clause
2019-06-01T05:36:35
2019-06-01T05:36:34
null
UTF-8
Python
false
false
1,207
py
# -*- coding: utf-8 -*- import logging from flask import url_for log = logging.getLogger(__name__) def test_server_variant(app, real_adapter): # GIVEN an initialized app # GIVEN a valid user, institute, case and variant adapter = real_adapter variant_obj = adapter.variant_collection.find_one() assert variant_obj with app.test_client() as client: # GIVEN that the user could be logged in resp = client.get(url_for('auto_login')) assert resp.status_code == 200 internal_case_id = variant_obj['case_id'] case = adapter.case(internal_case_id) case_name = case['display_name'] owner = case['owner'] # NOTE needs the actual document_id, not the variant_id variant_id = variant_obj['_id'] log.debug('Inst {} case {} variant {}'.format(owner,case_name, variant_id)) # WHEN accessing the variant page resp = client.get(url_for('variants.variant', institute_id=owner, case_name=case_name, variant_id=variant_id)) log.debug("{}",resp.data) # THEN it should return a page assert resp.status_code == 200
d0a3f8fea955cd6b7239c30eb4bde72572683e27
f2f88a578165a764d2ebb4a022d19e2ea4cc9946
/pyvisdk/do/guest_authentication.py
f16ac39d82372db0665b605fca27476d5d281d82
[ "MIT" ]
permissive
pombredanne/pyvisdk
1ecc68a1bf264095f72f274c776e5868fb302673
de24eb4426eb76233dc2e57640d3274ffd304eb3
refs/heads/master
2021-01-21T16:18:39.233611
2014-07-28T19:50:38
2014-07-28T19:50:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,039
py
import logging from pyvisdk.exceptions import InvalidArgumentError ######################################## # Automatically generated, do not edit. ######################################## log = logging.getLogger(__name__) def GuestAuthentication(vim, *args, **kwargs): '''GuestAuthentication is an abstract base class for authentication in the guest.''' obj = vim.client.factory.create('ns0:GuestAuthentication') # do some validation checking... if (len(args) + len(kwargs)) < 1: raise IndexError('Expected at least 2 arguments got: %d' % len(args)) required = [ 'interactiveSession' ] optional = [ 'dynamicProperty', 'dynamicType' ] for name, arg in zip(required+optional, args): setattr(obj, name, arg) for name, value in kwargs.items(): if name in required + optional: setattr(obj, name, value) else: raise InvalidArgumentError("Invalid argument: %s. Expected one of %s" % (name, ", ".join(required + optional))) return obj
dd42b52d712e69767f647a33a975f897d68b913f
5a52ccea88f90dd4f1acc2819997fce0dd5ffb7d
/alipay/aop/api/domain/OssDirectoryDetail.py
7b7aed746981c86b4885e7159246c6f7d6a7017c
[ "Apache-2.0" ]
permissive
alipay/alipay-sdk-python-all
8bd20882852ffeb70a6e929038bf88ff1d1eff1c
1fad300587c9e7e099747305ba9077d4cd7afde9
refs/heads/master
2023-08-27T21:35:01.778771
2023-08-23T07:12:26
2023-08-23T07:12:26
133,338,689
247
70
Apache-2.0
2023-04-25T04:54:02
2018-05-14T09:40:54
Python
UTF-8
Python
false
false
2,270
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class OssDirectoryDetail(object): def __init__(self): self._acl = None self._file_id = None self._file_name = None self._last_modified = None @property def acl(self): return self._acl @acl.setter def acl(self, value): self._acl = value @property def file_id(self): return self._file_id @file_id.setter def file_id(self, value): self._file_id = value @property def file_name(self): return self._file_name @file_name.setter def file_name(self, value): self._file_name = value @property def last_modified(self): return self._last_modified @last_modified.setter def last_modified(self, value): self._last_modified = value def to_alipay_dict(self): params = dict() if self.acl: if hasattr(self.acl, 'to_alipay_dict'): params['acl'] = self.acl.to_alipay_dict() else: params['acl'] = self.acl if self.file_id: if hasattr(self.file_id, 'to_alipay_dict'): params['file_id'] = self.file_id.to_alipay_dict() else: params['file_id'] = self.file_id if self.file_name: if hasattr(self.file_name, 'to_alipay_dict'): params['file_name'] = self.file_name.to_alipay_dict() else: params['file_name'] = self.file_name if self.last_modified: if hasattr(self.last_modified, 'to_alipay_dict'): params['last_modified'] = self.last_modified.to_alipay_dict() else: params['last_modified'] = self.last_modified return params @staticmethod def from_alipay_dict(d): if not d: return None o = OssDirectoryDetail() if 'acl' in d: o.acl = d['acl'] if 'file_id' in d: o.file_id = d['file_id'] if 'file_name' in d: o.file_name = d['file_name'] if 'last_modified' in d: o.last_modified = d['last_modified'] return o
93013a6c44645ef61cb45e633030c20663c3fde6
8ef8e6818c977c26d937d09b46be0d748022ea09
/cv/classification/torchvision/pytorch/train.py
1c16c81bc51ace035a2653350c088a3888b0904f
[ "Apache-2.0" ]
permissive
Deep-Spark/DeepSparkHub
eb5996607e63ccd2c706789f64b3cc0070e7f8ef
9d643e88946fc4a24f2d4d073c08b05ea693f4c5
refs/heads/master
2023-09-01T11:26:49.648759
2023-08-25T01:50:18
2023-08-25T01:50:18
534,133,249
7
6
Apache-2.0
2023-03-28T02:54:59
2022-09-08T09:07:01
Python
UTF-8
Python
false
false
15,577
py
# Copyright (c) 2022 Iluvatar CoreX. All rights reserved. # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import warnings warnings.filterwarnings('ignore') import datetime import os import logging import time import torch import torch.utils.data try: from apex import amp as apex_amp except: apex_amp = None try: from torch.cuda.amp import autocast, GradScaler scaler = GradScaler() except: autocast = None scaler = None from torch import nn import torch.distributed as dist import torchvision import utils from utils import (MetricLogger, SmoothedValue, accuracy, mkdir,\ init_distributed_mode, manual_seed,\ is_main_process, save_on_master, write_on_master) from dataloader.classification import get_datasets, create_dataloader def compute_loss(model, image, target, criterion): output = model(image) if not isinstance(output, (tuple, list)): output = [output] losses = [] for out in output: losses.append(criterion(out, target)) loss = sum(losses) return loss, output[0] def train_one_epoch(model, criterion, optimizer, data_loader, device, epoch, print_freq, use_amp=False, use_dali=False): model.train() metric_logger = MetricLogger(delimiter=" ") metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value}')) metric_logger.add_meter('img/s', SmoothedValue(window_size=10, fmt='{value}')) header = 'Epoch: [{}]'.format(epoch) all_fps = [] for data in metric_logger.log_every(data_loader, print_freq, header): if use_dali: image, target = data[0]["data"], data[0]["label"][:, 0].long() else: image, target = data start_time = time.time() image, target = image.to(device, non_blocking=True), target.to(device, non_blocking=True) loss, output = compute_loss(model, image, target, criterion) if use_amp: with apex_amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() optimizer.step() optimizer.zero_grad() end_time = time.time() acc1, acc5 = accuracy(output, target, topk=(1, 5)) batch_size = image.shape[0] metric_logger.update(loss=loss.item(), lr=optimizer.param_groups[0]["lr"]) metric_logger.meters['acc1'].update(acc1.item(), n=batch_size) metric_logger.meters['acc5'].update(acc5.item(), n=batch_size) fps = batch_size / (end_time - start_time) * utils.get_world_size() metric_logger.meters['img/s'].update(fps) all_fps.append(fps) fps = round(sum(all_fps) / len(all_fps), 2) print(header, 'Avg img/s:', fps) return fps def evaluate(model, criterion, data_loader, device, print_freq=100, use_dali=False): model.eval() metric_logger = MetricLogger(delimiter=" ") header = 'Test:' with torch.no_grad(): for data in metric_logger.log_every(data_loader, print_freq, header): if use_dali: image, target = data[0]["data"], data[0]["label"][:, 0].long() else: image, target = data image = image.to(device, non_blocking=True) target = target.to(device, non_blocking=True) output = model(image) loss = criterion(output, target) acc1, acc5 = accuracy(output, target, topk=(1, 5)) # FIXME need to take into account that the datasets # could have been padded in distributed setup batch_size = image.shape[0] metric_logger.update(loss=loss.item()) metric_logger.meters['acc1'].update(acc1.item(), n=batch_size) metric_logger.meters['acc5'].update(acc5.item(), n=batch_size) # gather the stats from all processes metric_logger.synchronize_between_processes() print(' * Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f}' .format(top1=metric_logger.acc1, top5=metric_logger.acc5)) return round(metric_logger.acc1.global_avg, 2) def _get_cache_path(filepath): import hashlib h = hashlib.sha1(filepath.encode()).hexdigest() cache_path = os.path.join("~", ".torch", "vision", "datasets", "imagefolder", h[:10] + ".pt") cache_path = os.path.expanduser(cache_path) return cache_path def create_optimzier(params, args): opt_name = args.opt.lower() if opt_name == 'sgd': optimizer = torch.optim.SGD(params, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay) elif opt_name == 'rmsprop': optimizer = torch.optim.RMSprop(params, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay, eps=0.0316, alpha=0.9) elif opt_name == "fused_sgd": from apex.optimizers import FusedSGD optimizer = FusedSGD(params, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay) else: raise RuntimeError("Invalid optimizer {}. Only SGD and RMSprop are supported.".format(args.opt)) return optimizer def main(args): init_distributed_mode(args) print(args) device = torch.device(args.device) manual_seed(args.seed, deterministic=args.deterministic) # WARN: if dist.is_initialized(): num_gpu = dist.get_world_size() else: num_gpu = 1 global_batch_size = num_gpu * args.batch_size train_dir = os.path.join(args.data_path, 'train') val_dir = os.path.join(args.data_path, 'val') num_classes = len(os.listdir(train_dir)) if 0 < num_classes < 13: if global_batch_size > 512: if is_main_process(): print("WARN: Updating global batch size to 512, avoid non-convergence when training small dataset.") args.batch_size = 512 // num_gpu if args.pretrained: num_classes = 1000 args.num_classes = num_classes print("Creating model") if hasattr(args, "model_cls"): model = args.model_cls(args) else: model = torchvision.models.__dict__[args.model](pretrained=args.pretrained, num_classes=num_classes) if args.padding_channel: print("WARN: Cannot convert first conv to N4HW.") data_loader, data_loader_test = create_dataloader(train_dir, val_dir, args) if args.padding_channel and isinstance(data_loader, torch.utils.data.DataLoader): data_loader.collate_fn = utils.nhwc_collect_fn(data_loader.collate_fn, fp16=args.amp, padding=args.padding_channel) data_loader_test.collate_fn = utils.nhwc_collect_fn(data_loader_test.collate_fn, fp16=args.amp, padding=args.padding_channel) model.to(device) if args.distributed and args.sync_bn: model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model) criterion = nn.CrossEntropyLoss() if args.nhwc: model = model.cuda().to(memory_format=torch.channels_last) optimizer = create_optimzier(model.parameters(), args) if args.amp: model, optimizer = apex_amp.initialize(model, optimizer, opt_level="O2", loss_scale="dynamic", master_weights=True) lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_step_size, gamma=args.lr_gamma) model_without_ddp = model if args.distributed: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) model_without_ddp = model.module if args.resume: checkpoint = torch.load(args.resume, map_location='cpu') model_without_ddp.load_state_dict(checkpoint['model']) optimizer.load_state_dict(checkpoint['optimizer']) lr_scheduler.load_state_dict(checkpoint['lr_scheduler']) args.start_epoch = checkpoint['epoch'] + 1 if args.test_only: evaluate(model, criterion, data_loader_test, device=device) return print("Start training") start_time = time.time() best_acc1 = 0 best_epoch = 0 for epoch in range(args.start_epoch, args.epochs): epoch_start_time = time.time() if args.distributed and not args.dali: data_loader.sampler.set_epoch(epoch) fps = train_one_epoch(model, criterion, optimizer, data_loader, device, epoch, args.print_freq, args.amp, use_dali=args.dali) lr_scheduler.step() acc1 = evaluate(model, criterion, data_loader_test, device=device, use_dali=args.dali) if acc1 > best_acc1: best_acc1 = acc1 best_epoch = epoch if args.output_dir is not None: checkpoint = { 'model': model_without_ddp.state_dict(), 'optimizer': optimizer.state_dict(), 'lr_scheduler': lr_scheduler.state_dict(), 'epoch': epoch, 'args': args} save_on_master( checkpoint, os.path.join(args.output_dir, 'best.pth'.format(epoch))) save_on_master( checkpoint, os.path.join(args.output_dir, 'latest.pth')) epoch_total_time = time.time() - epoch_start_time epoch_total_time_str = str(datetime.timedelta(seconds=int(epoch_total_time))) print('epoch time {}'.format(epoch_total_time_str)) if args.dali: data_loader.reset() data_loader_test.reset() total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print('* Acc@1: {} at epoch {}'.format(round(best_acc1, 2), best_epoch)) print('Training time {}'.format(total_time_str)) if args.output_dir: write_on_master({"Name":os.path.basename(args.output_dir), "Model": args.model, "Dataset": os.path.basename(args.data_path), "AMP":args.amp, "Acc@1":best_acc1, "FPS":fps, "Time": total_time_str}, os.path.join(args.output_dir, 'result.json')) def get_args_parser(add_help=True): import argparse parser = argparse.ArgumentParser(description='PyTorch Classification Training', add_help=add_help) parser.add_argument('--data-path', default='/datasets01/imagenet_full_size/061417/', help='dataset') parser.add_argument('--model', default='resnet18', help='model') parser.add_argument('--device', default='cuda', help='device') parser.add_argument('-b', '--batch-size', default=32, type=int) parser.add_argument('--epochs', default=90, type=int, metavar='N', help='number of total epochs to run') parser.add_argument('-j', '--workers', default=4, type=int, metavar='N', help='number of data loading workers (default: 4)') parser.add_argument('--opt', default='sgd', type=str, help='optimizer') parser.add_argument('--lr', default=0.128, type=float, help='initial learning rate') parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum') parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float, metavar='W', help='weight decay (default: 1e-4)', dest='weight_decay') parser.add_argument('--lr-step-size', default=30, type=int, help='decrease lr every step-size epochs') parser.add_argument('--lr-gamma', default=0.1, type=float, help='decrease lr by a factor of lr-gamma') parser.add_argument('--print-freq', default=10, type=int, help='print frequency') parser.add_argument('--output-dir', default=None, help='path where to save') parser.add_argument('--resume', default='', help='resume from checkpoint') parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='start epoch') parser.add_argument( "--cache-dataset", dest="cache_dataset", help="Cache the datasets for quicker initialization. It also serializes the transforms", action="store_true", ) parser.add_argument( "--sync-bn", dest="sync_bn", help="Use sync batch norm", action="store_true", ) parser.add_argument( "--deterministic", help="Do not benchmark conv algo", action="store_true", ) parser.add_argument( "--test-only", dest="test_only", help="Only test the model", action="store_true", ) parser.add_argument( "--pretrained", dest="pretrained", help="Use pre-trained models from the modelzoo", action="store_true", ) parser.add_argument('--auto-augment', default=None, help='auto augment policy (default: None)') parser.add_argument('--random-erase', default=0.0, type=float, help='random erasing probability (default: 0.0)') parser.add_argument( "--dali", help="Use dali as dataloader", default=False, action="store_true", ) # distributed training parameters parser.add_argument('--local_rank', default=-1, type=int, help='Local rank') parser.add_argument('--world-size', default=1, type=int, help='number of distributed processes') parser.add_argument('--dist-url', default='env://', help='url used to set up distributed training') # other parser.add_argument('--amp', action='store_true', help='Automatic Mixed Precision training') parser.add_argument('--nhwc', action='store_true', help='Use NHWC') parser.add_argument('--padding-channel', action='store_true', help='Padding the channels of image to 4') parser.add_argument('--dali-cpu', action='store_true') parser.add_argument('--seed', default=42, type=int, help='Random seed') parser.add_argument('--crop-size', default=224, type=int) parser.add_argument('--base-size', default=256, type=int) return parser def check_agrs(args): if args.nhwc: args.amp = True if args.output_dir: prefix=args.output_dir names = [args.model, os.path.basename(args.data_path)] if args.amp: names.append("amp") if torch.cuda.device_count(): names.append(f"dist_{utils.get_world_size()}x{torch.cuda.device_count()}") exp_dir = "_".join(map(str, names)) args.output_dir = os.path.join(prefix, exp_dir) if not os.path.exists(args.output_dir): os.makedirs(args.output_dir, exist_ok=True) if args.amp: if apex_amp is None: raise RuntimeError("Not found apex in installed packages, cannot enable amp.") def train_model(model_cls=None): args = get_args_parser().parse_args() check_agrs(args) if utils.is_main_process(): setup_logging(args.output_dir) if hasattr(torch, "corex") and args.dali: args.dali_cpu = True if model_cls is not None: args.model_cls = model_cls main(args) def setup_logging(prefix): if prefix: handlers=[ logging.FileHandler(os.path.join(prefix, "train.log"), mode='w'), logging.StreamHandler(), ] else: handlers = None logging.basicConfig( level=logging.DEBUG, format="%(asctime)s [%(levelname)s] %(message)s", handlers=handlers ) if __name__ == "__main__": args = get_args_parser().parse_args() check_agrs(args) if utils.is_main_process(): setup_logging(args.output_dir) try: main(args) except Exception as e: logging.exception(e)
dfc0cc855a774de8fa89bf5d0af2e7761c1399da
cf0ab8503d4d704045070deea1e2125375711e86
/apps/apikeys/v1/urls.py
1a8b15c264dc105260d2432da2775b98a3fb3a99
[]
no_license
faierbol/syncano-platform
c3c6468600115752fd9fa5e46a0ad59f75f6bc9c
879111874d1ef70418b4890cf970720b0a2be4d8
refs/heads/master
2023-07-20T10:13:40.066127
2021-02-08T15:01:13
2021-02-08T15:01:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
198
py
# coding=UTF8 from rest_framework.routers import SimpleRouter from apps.apikeys.v1 import views router = SimpleRouter() router.register('api_keys', views.ApiKeyViewSet) urlpatterns = router.urls
42bdb6a885ac58d51bad36beea8877307f7902a5
eda9187adfd53c03f55207ad05d09d2d118baa4f
/algo/Transfer_Learning/Transfer_learning.py
725a6e82bceb8aa1d09e9cb263fc2fdf9da6aea1
[]
no_license
HuiZhaozh/python_tutorials
168761c9d21ad127a604512d7c6c6b38b4faa3c7
bde4245741081656875bcba2e4e4fcb6b711a3d9
refs/heads/master
2023-07-07T20:36:20.137647
2020-04-24T07:18:25
2020-04-24T07:18:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,586
py
# -*- coding:utf-8 -*- # /usr/bin/python ''' ------------------------------------------------- File Name : Transfer_learning Description : 迁移学习 Envs : pytorch Author : yanerrol Date : 2020/2/17 09:58 ------------------------------------------------- Change Activity: 2020/2/17 : new ------------------------------------------------- ''' __author__ = 'yanerrol' import torch import time import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torchvision import datasets from torchvision import transforms from torch.utils.data import DataLoader ####################################### ### PRE-TRAINED MODELS AVAILABLE HERE ## https://pytorch.org/docs/stable/torchvision/models.html from torchvision import models ####################################### if torch.cuda.is_available(): torch.backends.cudnn.deterministic = True ########################## ### SETTINGS ########################## # Device DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print('Device:', DEVICE) NUM_CLASSES = 10 # Hyperparameters random_seed = 1 learning_rate = 0.0001 num_epochs = 10 batch_size = 128 ########################## ### MNIST DATASET ########################## custom_transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) ## Note that this particular normalization scheme is ## necessary since it was used for pre-training ## the network on ImageNet. ## These are the channel-means and standard deviations ## for z-score normalization. train_dataset = datasets.CIFAR10(root='data', train=True, transform=custom_transform, download=True) test_dataset = datasets.CIFAR10(root='data', train=False, transform=custom_transform) train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, num_workers=8, shuffle=True) test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, num_workers=8, shuffle=False) # Checking the dataset for images, labels in train_loader: print('Image batch dimensions:', images.shape) print('Image label dimensions:', labels.shape) break ########################## ### Loading Pre-Trained Model ########################## model = models.vgg16(pretrained=True) ########################## ### Freezing Model ########################## for param in model.parameters(): param.requires_grad = False model.classifier[3].requires_grad = True model.classifier[6] = nn.Sequential( nn.Linear(4096, 512), nn.ReLU(), nn.Dropout(0.5), nn.Linear(512, NUM_CLASSES)) ########################## ### Training as usual ########################## model = model.to(DEVICE) optimizer = torch.optim.Adam(model.parameters()) def compute_accuracy(model, data_loader): model.eval() correct_pred, num_examples = 0, 0 for i, (features, targets) in enumerate(data_loader): features = features.to(DEVICE) targets = targets.to(DEVICE) logits = model(features) _, predicted_labels = torch.max(logits, 1) num_examples += targets.size(0) correct_pred += (predicted_labels == targets).sum() return correct_pred.float() / num_examples * 100 def compute_epoch_loss(model, data_loader): model.eval() curr_loss, num_examples = 0., 0 with torch.no_grad(): for features, targets in data_loader: features = features.to(DEVICE) targets = targets.to(DEVICE) logits = model(features) loss = F.cross_entropy(logits, targets, reduction='sum') num_examples += targets.size(0) curr_loss += loss curr_loss = curr_loss / num_examples return curr_loss start_time = time.time() for epoch in range(num_epochs): model.train() for batch_idx, (features, targets) in enumerate(train_loader): features = features.to(DEVICE) targets = targets.to(DEVICE) ### FORWARD AND BACK PROP logits = model(features) cost = F.cross_entropy(logits, targets) optimizer.zero_grad() cost.backward() ### UPDATE MODEL PARAMETERS optimizer.step() ### LOGGING if not batch_idx % 50: print('Epoch: %03d/%03d | Batch %04d/%04d | Cost: %.4f' % (epoch + 1, num_epochs, batch_idx, len(train_loader), cost)) model.eval() with torch.set_grad_enabled(False): # save memory during inference print('Epoch: %03d/%03d | Train: %.3f%% | Loss: %.3f' % ( epoch + 1, num_epochs, compute_accuracy(model, train_loader), compute_epoch_loss(model, train_loader))) print('Time elapsed: %.2f min' % ((time.time() - start_time) / 60)) print('Total Training Time: %.2f min' % ((time.time() - start_time) / 60)) with torch.set_grad_enabled(False): # save memory during inference print('Test accuracy: %.2f%%' % (compute_accuracy(model, test_loader)) ########################## ### Training as usual ########################## import matplotlib.pyplot as plt classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') for batch_idx, (features, targets) in enumerate(test_loader): features = features targets = targets break logits = model(features.to(DEVICE)) _, predicted_labels = torch.max(logits, 1) def unnormalize(tensor, mean, std): for t, m, s in zip(tensor, mean, std): t.mul_(s).add_(m) return tensor n_images = 10 fig, axes = plt.subplots(nrows=1, ncols=n_images, sharex=True, sharey=True, figsize=(20, 2.5)) orig_images = features[:n_images] for i in range(n_images): curr_img = orig_images[i].detach().to(torch.device('cpu')) curr_img = unnormalize(curr_img, torch.tensor([0.485, 0.456, 0.406]), torch.tensor([0.229, 0.224, 0.225])) curr_img = curr_img.permute((1, 2, 0)) axes[i].imshow(curr_img) axes[i].set_title(classes[predicted_labels[i]])
57bfefceefd25252047dcd608dff497f0c347b82
988dd821269be12c2f56f62b0c35546fd3050537
/python/quaternions/rotations.py
852c8839c1435519fcbc0675bd055c4d8af732b7
[]
no_license
gdiazh/adcs_models
fb19f541eeb9b01ae49ec98719c508d084e4fd7a
51d0829cc777d2e345e4fabe406ec7f54e661117
refs/heads/master
2020-03-28T13:04:56.174852
2018-09-28T22:08:25
2018-09-28T22:08:25
148,364,081
0
0
null
null
null
null
UTF-8
Python
false
false
3,050
py
#!/usr/bin/python __author__ = 'gdiaz' import matplotlib as mpl from plotVectors import PlotVectors import numpy as np class Rotation(object): def __init__(self): self.vectors = PlotVectors() self.a = [0, 0, 0] def rotate_z(self, a, yaw): Az = np.matrix([[np.cos(yaw), -np.sin(yaw), 0], [np.sin(yaw), np.cos(yaw), 0], [0, 0, 1]]) a_ = np.matrix([[a[0]], [a[1]], [a[2]]]) u = Az*a_ return [u.item(0), u.item(1), u.item(2)] def rotate_frame_z(self, I, J, K, yaw): Az = np.matrix([[np.cos(yaw), np.sin(yaw), 0], [-np.sin(yaw), np.cos(yaw), 0], [0, 0, 1]]) I_ = np.matrix([I[0], I[1], I[2]]) J_ = np.matrix([J[0], J[1], J[2]]) K_ = np.matrix([K[0], K[1], K[2]]) i_ = I_*Az j_ = J_*Az k_ = K_*Az i = [i_.item(0), i_.item(1), i_.item(2)] j = [j_.item(0), j_.item(1), j_.item(2)] k = [k_.item(0), k_.item(1), k_.item(2)] return [i, j, k] def vectorRotationTest(self): # Calcs p1 = [2, 0, 0] yaw = 90*np.pi/180 p1_rot = self.rotate_z(p1, yaw) print p1_rot # Plot self.vectors.plotAxes() self.vectors.config() self.vectors.plot(p1) self.vectors.plot(p1_rot) self.vectors.show() def frameRotationTest(self): # Calcs I = [1, 0, 0] J = [0, 1, 0] K = [0, 0, 1] yaw = 45*np.pi/180 ijk = self.rotate_frame_z(I, J, K, yaw) print ijk # Plot self.vectors.plotAxes() self.vectors.config() self.vectors.plot(ijk[0]) self.vectors.plot(ijk[1]) self.vectors.plot(ijk[2]) self.vectors.show() def get_qT(self, yawT): #Return quaternion target given yaw target AT = np.matrix([[np.cos(yawT), np.sin(yawT), 0], [-np.sin(yawT), np.cos(yawT), 0], [0, 0, 1]]) q4 = 0.5*np.sqrt(1+AT[0,0]+AT[1,1]+AT[2,2]) q1 = 0.25*(AT[1,2]-AT[2,1])/q4 q2 = 0.25*(AT[2,0]-AT[0,2])/q4 q3 = 0.25*(AT[0,1]-AT[1,0])/q4 return [q4, q1, q2, q3] def get_qE_(self, qT, qS): qT_ = np.matrix([[qT[0], qT[3], -qT[2], qT[1]], [-qT[3], qT[0], qT[1], qT[2]], [qT[2], -qT[1], qT[0], qT[3]], [-qT[1], -qT[2], -qT[3], qT[0]]]) qS_ = np.matrix([[-qS[1]], [-qS[2]], [-qS[3]], [qS[0]]]) qE = qT_*qS_ return [qE.item(0), qE.item(1), qE.item(2), qE.item(3)] def get_qE(self, yawT, qS): qT = self.get_qT(yawT) qE = self.get_qE_(qT, qS) return qE if __name__ == '__main__': rotation = Rotation() # Test Example # rotation.vectorRotationTest() rotation.frameRotationTest()
f281fed287dbd357fea0ab3bb3bd35efc0794cf4
51d65cbed3df1e9e3a0d51f79590ee12f88291d1
/object_detection/inference_over_image.py
0bbbdb9954ca69ffd0cf92de7a7cbb7577cf8043
[ "MIT" ]
permissive
apacha/Mensural-Detector
f9332c23854263c6a3f89e8b92f3f666f8377ed8
05c91204cf268feaae84cd079dbe7a1852fba216
refs/heads/master
2022-09-23T21:20:53.376367
2022-08-31T08:36:35
2022-08-31T08:36:35
137,372,669
12
6
null
null
null
null
UTF-8
Python
false
false
6,444
py
import numpy as np import tensorflow as tf import argparse from PIL import Image from object_detection.utils import ops as utils_ops, label_map_util, visualization_utils as vis_util if tf.__version__ < '1.4.0': raise ImportError('Please upgrade your tensorflow installation to v1.4.* or later!') def load_image_into_numpy_array(image): (im_width, im_height) = image.size return np.array(image.getdata()).reshape( (im_height, im_width, 3)).astype(np.uint8) def run_inference_for_single_image(image, graph): with graph.as_default(): with tf.Session() as sess: # Get handles to input and output tensors ops = tf.get_default_graph().get_operations() all_tensor_names = {output.name for op in ops for output in op.outputs} tensor_dict = {} for key in [ 'num_detections', 'detection_boxes', 'detection_scores', 'detection_classes', 'detection_masks' ]: tensor_name = key + ':0' if tensor_name in all_tensor_names: tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(tensor_name) if 'detection_masks' in tensor_dict: # The following processing is only for single image detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0]) detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0]) # Reframe is required to translate mask from box coordinates to image coordinates and fit the image size. real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32) detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1]) detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1]) detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks( detection_masks, detection_boxes, image.shape[0], image.shape[1]) detection_masks_reframed = tf.cast(tf.greater(detection_masks_reframed, 0.5), tf.uint8) # Follow the convention by adding back the batch dimension tensor_dict['detection_masks'] = tf.expand_dims(detection_masks_reframed, 0) image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0') # Run inference output_dict = sess.run(tensor_dict, feed_dict={image_tensor: np.expand_dims(image, 0)}) # all outputs are float32 numpy arrays, so convert types as appropriate output_dict['num_detections'] = int(output_dict['num_detections'][0]) output_dict['detection_classes'] = output_dict['detection_classes'][0].astype(np.uint8) output_dict['detection_boxes'] = output_dict['detection_boxes'][0] output_dict['detection_scores'] = output_dict['detection_scores'][0] if 'detection_masks' in output_dict: output_dict['detection_masks'] = output_dict['detection_masks'][0] return output_dict def load_detection_graph(path_to_checkpoint): detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(path_to_checkpoint, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') return detection_graph def load_category_index(path_to_labels, number_of_classes): # Load label map label_map = label_map_util.load_labelmap(path_to_labels) categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=number_of_classes, use_display_name=True) category_index = label_map_util.create_category_index(categories) return category_index if __name__ == "__main__": parser = argparse.ArgumentParser(description='Performs detection over input image given a trained detector.') parser.add_argument('--inference_graph', dest='inference_graph', type=str, required=True, help='Path to the frozen inference graph.') parser.add_argument('--label_map', dest='label_map', type=str, required=True, help='Path to the label map, which is json-file that maps each category name to a unique number.', default="mapping.txt") parser.add_argument('--number_of_classes', dest='number_of_classes', type=int, default=32, help='Number of classes.') parser.add_argument('--input_image', dest='input_image', type=str, required=True, help='Path to the input image.') parser.add_argument('--output_image', dest='output_image', type=str, default='detection.jpg', help='Path to the output image.') args = parser.parse_args() # Path to frozen detection graph. This is the actual model that is used for the object detection. # PATH_TO_CKPT = '/home/jcalvo/Escritorio/Current/Mensural Detector/mensural-detector/output_inference_graph.pb/frozen_inference_graph.pb' path_to_frozen_inference_graph = args.inference_graph path_to_labels = args.label_map number_of_classes = args.number_of_classes input_image = args.input_image output_image = args.output_image # Read frozen graph detection_graph = load_detection_graph(path_to_frozen_inference_graph) category_index = load_category_index(path_to_labels, number_of_classes) image = Image.open(input_image) # the array based representation of the image will be used later in order to prepare the # result image with boxes and labels on it. image_np = load_image_into_numpy_array(image) # Actual detection. output_dict = run_inference_for_single_image(image_np, detection_graph) # Visualization of the results of a detection. vis_util.visualize_boxes_and_labels_on_image_array( image_np, output_dict['detection_boxes'], output_dict['detection_classes'], output_dict['detection_scores'], category_index, instance_masks=output_dict.get('detection_masks'), use_normalized_coordinates=True, line_thickness=2) Image.fromarray(image_np).save(output_image)
524db47926d6c1b18a65735cec61aad5f9e91b97
d2c163f246d28b8519f8c89de23556e43be91684
/www/ad_board/urls.py
9309b9dfb201f43c13a2ec3d393148de00aea612
[]
no_license
boogiiieee/Iskcon
d7a2b8bdc3002ef3306fc5e7ddc577504d8533c9
b672dbafee06af3ee6d646c75f442d97133f5ec9
refs/heads/master
2021-09-04T03:11:06.770094
2018-01-15T04:21:36
2018-01-15T04:21:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
388
py
# -*- coding: utf-8 -*- from django.conf.urls.defaults import patterns, include, url urlpatterns = patterns('ad_board.views', url(r'^$', 'full', name='ad_board_url'), url(r'^category/(?P<id>[0-9]+)/$', 'category', name='category_ad_board_url'), url(r'^(?P<id>[0-9]+)/$', 'item', name='ad_board_item_url'), url(r'^category/(?P<id>[0-9]+)/add/$', 'add', name='add_ad_board_url'), )
198442838c9414d3f62f9b0af071a325589a66ae
8840b69e4341f4ed030c8b33151db205b8db3640
/flask_minijax.py
a5036e1c916ae910ed2af7e28ecdc01b86534110
[ "MIT" ]
permissive
FidgetYou/proj3-anagrams
b5fe7ccc333bca0895c12590142b9f0e30f10b83
86923a696794b7098940023d57aaef679a52b3ac
refs/heads/master
2021-01-11T01:03:32.507679
2016-10-18T01:58:25
2016-10-18T01:58:25
70,846,302
0
0
null
2016-10-13T20:39:51
2016-10-13T20:39:50
null
UTF-8
Python
false
false
1,317
py
""" Tiny demo of Ajax interaction """ import flask from flask import request # Data from a submitted form from flask import url_for from flask import jsonify # For AJAX transactions import json import logging import argparse # For the vocabulary list import sys ### # Globals ### app = flask.Flask(__name__) import CONFIG app.secret_key = CONFIG.secret_key # Should allow using session variables ### # Pages ### @app.route("/") def index(): return flask.render_template('minijax.html') ############### # AJAX request handlers # These return JSON to the JavaScript function on # an existing page, rather than rendering a new page. ############### @app.route("/_countem") def countem(): text = request.args.get("text", type=str) length = len(text) rslt = { "long_enough": length >= 5 } return jsonify(result=rslt) ############# # Run locally if __name__ == "__main__": # Standalone. app.debug = True app.logger.setLevel(logging.DEBUG) print("Opening for global access on port {}".format(CONFIG.PORT)) app.run(port=CONFIG.PORT, host="0.0.0.0") # If we run 'python3 flask_minijax.py, we get the above 'main'. # If we run 'gunicorn flask_minijax:app', we instead get a # 'main' inside gunicorn, which loads this file as a module # and accesses the Flask 'app' object. #
6d346848a2eed9d5be67fdb017a17285227f874a
bd5a3b59a5ca9f0c0394c8bf90e818c3967778d9
/vre/apps/xauth/urls.py
2ba5dfc62bf27aafa163e3cf36365c4b0ea01be0
[]
no_license
BlickLabs/vre
85f377c04406c163464f7ddade7eafb579f1dfb1
6f3644fb9295f6355057cfa64a1156a329b4b4b8
refs/heads/develop
2020-05-22T04:28:31.913667
2018-07-06T21:12:14
2018-07-06T21:12:14
62,763,239
0
0
null
null
null
null
UTF-8
Python
false
false
297
py
#!/usr/bin/env python # -*- coding: utf-8 -*- from django.conf.urls import url from . import views urlpatterns = [ url(regex=r'^login/$', view=views.LoginView.as_view(), name='login'), url(regex=r'^logout/$', view=views.logout_view, name='logout'), ]
de57cedbc86dec255b93ebc77daf153a873f5256
1422a57e98aba02321b772d72f8f0ada6d8b8cba
/friday/friday-vendor/vendor-scripts/test-resources/scripts/pylib/hue_turn_on_light.py
152b15f1a6ee7c7306946bab089ea4f1578d9421
[ "MIT" ]
permissive
JonasRSV/Friday
e1908a411aa133bc5bd2f383b0a995f7e028092d
f959eff95ba7b11525f97099c8f5ea0e325face7
refs/heads/main
2023-05-15T03:33:21.542621
2021-06-12T10:34:50
2021-06-12T10:34:50
315,309,991
7
2
null
null
null
null
UTF-8
Python
false
false
196
py
import phue import sys if __name__ == "__main__": b = phue.Bridge(config_file_path="credentials.json") b.set_light(int(sys.argv[1]), parameter={"on": True, "bri": 200}, transitiontime=5)
1a94d4955bc1347ae86d5992a523abcfbfb17267
5da2c116d3d0dc4f3811cec144c9f8b5a74afede
/lncrawl/assets/user_agents.py
fbec17aabe02c7b79f52106cf5ee397fca225e17
[ "Apache-2.0" ]
permissive
NNTin/lightnovel-crawler
a08bd252f2e72f41f931f0b2165f906b64d33692
451e816ab03c8466be90f6f0b3eaa52d799140ce
refs/heads/master
2021-06-23T12:07:43.668329
2021-04-25T01:51:26
2021-04-25T01:51:26
361,695,538
2
0
Apache-2.0
2021-04-26T16:48:21
2021-04-26T09:40:46
null
UTF-8
Python
false
false
6,302
py
# -*- coding: utf-8 -*- user_agents = [ # "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:66.0) Gecko/20100101 Firefox/66.0", # "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:15.0) Gecko/20100101 Firefox/15.0.1", # "Mozilla/5.0 (X11; CrOS x86_64 8172.45.0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/51.0.2704.64 Safari/537.36", # "Mozilla/5.0 (Linux; Android 8.0.0; SM-G960F Build/R16NW) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/62.0.3202.84 Mobile Safari/537.36", # "Mozilla/5.0 (Linux; Android 6.0.1; Nexus 6P Build/MMB29P) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/47.0.2526.83 Mobile Safari/537.36", # "Mozilla/5.0 (Linux; Android 6.0; HTC One M9 Build/MRA58K) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/52.0.2743.98 Mobile Safari/537.3", # "Mozilla/5.0 (Linux; Android 7.0; Pixel C Build/NRD90M; wv) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Chrome/52.0.2743.98 Safari/537.36", # "Mozilla/5.0 (Linux; Android 6.0.1; SHIELD Tablet K1 Build/MRA58K; wv) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Chrome/55.0.2883.91 Safari/537.36", # "Mozilla/5.0 (iPhone; CPU iPhone OS 12_0 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/12.0 Mobile/15E148 Safari/604.1", # "Mozilla/5.0 (iPhone; CPU iPhone OS 12_0 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) CriOS/69.0.3497.105 Mobile/15E148 Safari/605.1", # "Mozilla/5.0 (iPhone; CPU iPhone OS 12_0 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) FxiOS/13.2b11866 Mobile/16A366 Safari/605.1.15", # "Mozilla/5.0 (iPhone; CPU iPhone OS 11_0 like Mac OS X) AppleWebKit/604.1.38 (KHTML, like Gecko) Version/11.0 Mobile/15A372 Safari/604.1", # "Mozilla/5.0 (iPhone; CPU iPhone OS 11_0 like Mac OS X) AppleWebKit/604.1.34 (KHTML, like Gecko) Version/11.0 Mobile/15A5341f Safari/604.1", # "Mozilla/5.0 (iPhone; CPU iPhone OS 11_0 like Mac OS X) AppleWebKit/604.1.38 (KHTML, like Gecko) Version/11.0 Mobile/15A5370a Safari/604.1", # "Mozilla/5.0 (iPhone9,3; U; CPU iPhone OS 10_0_1 like Mac OS X) AppleWebKit/602.1.50 (KHTML, like Gecko) Version/10.0 Mobile/14A403 Safari/602.1", # "Mozilla/5.0 (Windows Phone 10.0; Android 6.0.1; Microsoft; RM-1152) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/52.0.2743.116 Mobile Safari/537.36 Edge/15.15254", "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.117 Safari/537.36", "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/73.0.3683.103 Safari/537.36", "Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.86 Safari/537.36", "Mozilla/5.0 (Windows NT 6.2; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.86 Safari/537.36", "Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.86 Safari/537.36", "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.86 Safari/537.36", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.86 Safari/537.36", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.86 Safari/537.36", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.86 Safari/537.36", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.86 Safari/537.36", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.86 Safari/537.36", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.86 Safari/537.36", "Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.78 Safari/537.36", "Mozilla/5.0 (Windows NT 6.2; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.78 Safari/537.36", "Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.78 Safari/537.36", "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.78 Safari/537.36", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.78 Safari/537.36", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.78 Safari/537.36", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.78 Safari/537.36", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.78 Safari/537.36", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.78 Safari/537.36", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.78 Safari/537.36", "Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/61.0.3163.79 Safari/537.36", "Mozilla/5.0 (Windows NT 6.2; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/61.0.3163.79 Safari/537.36", "Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/61.0.3163.79 Safari/537.36", "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/61.0.3163.79 Safari/537.36", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/61.0.3163.79 Safari/537.36", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/61.0.3163.79 Safari/537.36", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/61.0.3163.79 Safari/537.36", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/61.0.3163.79 Safari/537.36", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/61.0.3163.79 Safari/537.36", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/61.0.3163.79 Safari/537.36" ]
c43501f1134f44d9e0c3c38a8ce719ea17e5bbcb
3253da5603971958d69df0ed442e3341a8d3bff4
/1-Iniciante/1914.py
67fa34c039b20ad33bd528808a4ce2d4016000af
[]
no_license
CleitonSilvaT/URI_Python
1c73ec0852ae87c6138baa148ad8c2cb56bb723e
a8510bab2fa8f680b54058fafebff3a2727617d9
refs/heads/master
2021-06-20T08:18:50.104839
2021-05-20T08:59:19
2021-05-20T08:59:19
213,665,657
0
0
null
null
null
null
UTF-8
Python
false
false
959
py
# -*- coding: utf-8 -*- if __name__ == '__main__': # Entrada casos_teste = int(input()) while(casos_teste > 0): # Entrada dados = input() escolha = dados.split(' ') # nomepessoa1 - escolha[0] # escolhapessoa1 - escolha[1] # nomepessoa2 - escolha[2] # escolhapessoa2 - escolha[3] # Entrada valores = input() numeros = valores.split(' ') # Calculando soma dos valores total = int(numeros[0]) + int(numeros[1]) # Identificando se a soma eh PAR ou IMPAR if((total % 2) == 0): # Imprimindo o vencedor if(escolha[1] == 'PAR'): print(escolha[0]) else: print(escolha[2]) else: # Imprimindo o vencedor if(escolha[1] == 'IMPAR'): print(escolha[0]) else: print(escolha[2]) casos_teste -= 1
b672c87e3458490ceb0e8b3852355a8c15a2c399
d1fadc514274711a7986a6b3caaaee7e8d48b4a6
/plot_scripts/scratch29.py
9b454212d7485e7e1237f495490e6b1a3e2c0169
[ "MIT" ]
permissive
lbaiao/sys-simulator-2
24d940db6423070818c23b6ffefbc5da4a1030a0
94f00d43309fe7b56dac5099bd4024695ba317b6
refs/heads/master
2021-08-20T08:30:06.864473
2021-06-30T10:37:26
2021-06-30T10:37:26
230,333,523
1
0
null
2021-06-30T10:37:27
2019-12-26T22:02:59
Jupyter Notebook
UTF-8
Python
false
false
1,688
py
import pickle import matplotlib.pyplot as plt import numpy as np filepath = 'D:/Dev/sys-simulator-2/data/scratch29.pickle' file = open(filepath, 'rb') data = pickle.load(file) aux_range = [10,15,20] action_counts_total = data['action_counts_total'] d2d_spectral_effs = data['d2d_speffs_avg_total'] mue_success_rate = data['mue_success_rate'] equals_counts_total = data['equals_counts_total'] d2d_speffs_avg = list() for i, d in enumerate(d2d_spectral_effs): d2d_speffs_avg.append(np.average(d)) fig2, ax1 = plt.subplots() ax1.set_xlabel('Number of D2D pairs in the RB') ax1.set_ylabel('D2D Average Spectral Efficiency [bps/Hz]', color='tab:blue') ax1.plot(d2d_speffs_avg, '.', color='tab:blue') ax2 = ax1.twinx() ax2.set_ylabel('MUE Success Rate', color='tab:red') ax2.plot(mue_success_rate, '.', color='tab:red') fig2.tight_layout() xi = list(range(len(aux_range))) ax = [0,1,2,3,4] axi = list(range(len(ax))) for i, c in enumerate(action_counts_total): if i in aux_range: plt.figure() plt.plot(np.mean(c, axis=0)/i*100, '*',label='mean') plt.plot(np.std(c, axis=0)/i*100, 'x', label='std') plt.legend() plt.title(f'N={i}') plt.xlabel('Action Index') plt.ylabel('Average Action Ocurrency [%]') plt.xticks(axi, ax) mean_equals = np.array([np.mean(c) for c in equals_counts_total]) std_equals = np.array([np.std(c) for c in equals_counts_total]) plt.figure() plt.plot(mean_equals[aux_range]*100, '*',label='mean') plt.plot(std_equals[aux_range]*100, 'x', label='std') plt.legend() plt.xlabel('Amount of D2D Devices') plt.ylabel('Average Equal Actions Ocurrency [%]') plt.xticks(xi, aux_range) plt.show()
0ec404b9b92a1950ead916d9356841cf3bb18eb4
d7bf691c35d7bf2a5707e47d7aca98b509e02eb9
/pddlstream/algorithms/algorithm.py
7a29c0eba6f399ea3752c4684788b164a65873f9
[ "MIT" ]
permissive
himanshisyadav/pddlstream
7d43c16da903504a0232408a7d8077fd4da95d87
1038e702f1d4625791f1da7867d6226b02af8c3a
refs/heads/master
2020-04-11T11:48:19.324553
2018-11-14T18:28:27
2018-11-14T18:28:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
15,291
py
import time from collections import OrderedDict, deque, namedtuple, Counter from pddlstream.algorithms.downward import parse_domain, get_problem, task_from_domain_problem, \ parse_lisp, sas_from_pddl, parse_goal from pddlstream.algorithms.search import abstrips_solve_from_task from pddlstream.language.constants import get_prefix, get_args from pddlstream.language.conversion import obj_from_value_expression, obj_from_pddl_plan, \ evaluation_from_fact, substitute_expression from pddlstream.language.exogenous import compile_to_exogenous, replace_literals from pddlstream.language.external import External, DEBUG, get_plan_effort from pddlstream.language.function import parse_function, parse_predicate, Function, Predicate from pddlstream.language.object import Object from pddlstream.language.rule import parse_rule from pddlstream.language.stream import parse_stream, Stream from pddlstream.utils import elapsed_time, INF, get_mapping, find_unique, get_length, str_from_plan from pddlstream.language.optimizer import parse_optimizer, VariableStream, ConstraintStream # TODO: way of programmatically specifying streams/actions INITIAL_EVALUATION = None def parse_constants(domain, constant_map): obj_from_constant = {} for constant in domain.constants: if constant.name.startswith(Object._prefix): # TODO: check other prefixes raise NotImplementedError('Constants are not currently allowed to begin with {}'.format(Object._prefix)) if constant.name not in constant_map: raise ValueError('Undefined constant {}'.format(constant.name)) value = constant_map.get(constant.name, constant.name) obj_from_constant[constant.name] = Object(value, name=constant.name) # TODO: remap names # TODO: add object predicate for name in constant_map: for constant in domain.constants: if constant.name == name: break else: raise ValueError('Constant map value {} not mentioned in domain :constants'.format(name)) del domain.constants[:] # So not set twice return obj_from_constant def check_problem(domain, streams, obj_from_constant): for action in domain.actions + domain.axioms: for p, c in Counter(action.parameters).items(): if c != 1: raise ValueError('Parameter [{}] for action [{}] is not unique'.format(p.name, action.name)) # TODO: check that no undeclared parameters & constants #action.dump() for stream in streams: # TODO: domain.functions facts = list(stream.domain) if isinstance(stream, Stream): facts.extend(stream.certified) for fact in facts: name = get_prefix(fact) if name not in domain.predicate_dict: # Undeclared predicate: {} print('Warning! Undeclared predicate used in stream [{}]: {}'.format(stream.name, name)) elif len(get_args(fact)) != domain.predicate_dict[name].get_arity(): # predicate used with wrong arity: {} print('Warning! predicate used with wrong arity in stream [{}]: {}'.format(stream.name, fact)) for constant in stream.constants: if constant not in obj_from_constant: raise ValueError('Undefined constant in stream [{}]: {}'.format(stream.name, constant)) def parse_problem(problem, stream_info={}): # TODO: just return the problem if already written programmatically domain_pddl, constant_map, stream_pddl, stream_map, init, goal = problem domain = parse_domain(domain_pddl) if len(domain.types) != 1: raise NotImplementedError('Types are not currently supported') obj_from_constant = parse_constants(domain, constant_map) streams = parse_stream_pddl(stream_pddl, stream_map, stream_info) evaluations = OrderedDict((evaluation_from_fact(obj_from_value_expression(f)), INITIAL_EVALUATION) for f in init) goal_expression = obj_from_value_expression(goal) check_problem(domain, streams, obj_from_constant) parse_goal(goal_expression, domain) # Just to check that it parses #normalize_domain_goal(domain, goal_expression) # TODO: refactor the following? compile_to_exogenous(evaluations, domain, streams) compile_fluent_streams(domain, streams) enforce_simultaneous(domain, streams) return evaluations, goal_expression, domain, streams ################################################## def get_predicates(expression): import pddl.conditions if isinstance(expression, pddl.conditions.ConstantCondition): return set() if isinstance(expression, pddl.conditions.JunctorCondition) or \ isinstance(expression, pddl.conditions.QuantifiedCondition): predicates = set() for part in expression.parts: predicates.update(get_predicates(part)) return predicates if isinstance(expression, pddl.conditions.Literal): return {expression.predicate} raise ValueError(expression) def enforce_simultaneous(domain, externals): axiom_predicates = set() for axiom in domain.axioms: axiom_predicates.update(get_predicates(axiom.condition)) for external in externals: if (type(external) in [VariableStream, ConstraintStream]) and not external.info.simultaneous: predicates = {get_prefix(fact) for fact in external.certified} if predicates & axiom_predicates: external.info.simultaneous = True #print(external, (predicates & axiom_predicates)) ################################################## def has_costs(domain): for action in domain.actions: if action.cost is not None: return True return False def solve_finite(evaluations, goal_expression, domain, unit_costs=None, debug=False, **kwargs): if unit_costs is None: unit_costs = not has_costs(domain) problem = get_problem(evaluations, goal_expression, domain, unit_costs) task = task_from_domain_problem(domain, problem) sas_task = sas_from_pddl(task, debug=debug) plan_pddl, cost = abstrips_solve_from_task(sas_task, debug=debug, **kwargs) return obj_from_pddl_plan(plan_pddl), cost ################################################## Solution = namedtuple('Solution', ['plan', 'cost']) class SolutionStore(object): def __init__(self, max_time, max_cost, verbose): # TODO: store evaluations here as well as map from head to value? self.start_time = time.time() self.max_time = max_time #self.cost_fn = get_length if unit_costs else None self.max_cost = max_cost self.verbose = verbose self.best_plan = None self.best_cost = INF #self.best_cost = self.cost_fn(self.best_plan) self.solutions = [] def add_plan(self, plan, cost): # TODO: double-check that this is a solution self.solutions.append(Solution(plan, cost)) if cost < self.best_cost: self.best_plan = plan self.best_cost = cost def is_solved(self): return self.best_cost < self.max_cost def elapsed_time(self): return elapsed_time(self.start_time) def is_timeout(self): return self.max_time <= self.elapsed_time() def is_terminated(self): return self.is_solved() or self.is_timeout() def add_facts(evaluations, fact, result=None): new_evaluations = [] for fact in fact: evaluation = evaluation_from_fact(fact) if evaluation not in evaluations: evaluations[evaluation] = result new_evaluations.append(evaluation) return new_evaluations def add_certified(evaluations, result): return add_facts(evaluations, result.get_certified(), result=result) ################################################## def get_domain_predicates(external): return set(map(get_prefix, external.domain)) def get_certified_predicates(external): if isinstance(external, Stream): return set(map(get_prefix, external.certified)) if isinstance(external, Function): return {get_prefix(external.head)} raise ValueError(external) def get_non_producers(externals): # TODO: handle case where no domain conditions pairs = set() for external1 in externals: for external2 in externals: if get_certified_predicates(external1) & get_domain_predicates(external2): pairs.add((external1, external2)) producers = {e1 for e1, _ in pairs} non_producers = set(externals) - producers # TODO: these are streams that be evaluated at the end as tests return non_producers ################################################## def apply_rules_to_streams(rules, streams): # TODO: can actually this with multiple condition if stream certified contains all # TODO: do also when no domain conditions processed_rules = deque(rules) while processed_rules: rule = processed_rules.popleft() if len(rule.domain) != 1: continue [rule_fact] = rule.domain rule.info.p_success = 0 # Need not be applied for stream in streams: if not isinstance(stream, Stream): continue for stream_fact in stream.certified: if get_prefix(rule_fact) == get_prefix(stream_fact): mapping = get_mapping(get_args(rule_fact), get_args(stream_fact)) new_facts = set(substitute_expression(rule.certified, mapping)) - set(stream.certified) stream.certified = stream.certified + tuple(new_facts) if new_facts and (stream in rules): processed_rules.append(stream) def parse_streams(streams, rules, stream_pddl, procedure_map, procedure_info): stream_iter = iter(parse_lisp(stream_pddl)) assert('define' == next(stream_iter)) pddl_type, pddl_name = next(stream_iter) assert('stream' == pddl_type) for lisp_list in stream_iter: name = lisp_list[0] # TODO: refactor at this point if name in (':stream', ':wild-stream'): externals = [parse_stream(lisp_list, procedure_map, procedure_info)] elif name == ':rule': externals = [parse_rule(lisp_list, procedure_map, procedure_info)] elif name == ':function': externals = [parse_function(lisp_list, procedure_map, procedure_info)] elif name == ':predicate': # Cannot just use args if want a bound externals = [parse_predicate(lisp_list, procedure_map, procedure_info)] elif name == ':optimizer': externals = parse_optimizer(lisp_list, procedure_map, procedure_info) else: raise ValueError(name) for external in externals: if any(e.name == external.name for e in streams): raise ValueError('Stream [{}] is not unique'.format(external.name)) if name == ':rule': rules.append(external) external.pddl_name = pddl_name # TODO: move within constructors streams.append(external) def parse_stream_pddl(pddl_list, procedures, infos): streams = [] if pddl_list is None: return streams if isinstance(pddl_list, str): pddl_list = [pddl_list] #if all(isinstance(e, External) for e in stream_pddl): # return stream_pddl if procedures != DEBUG: procedures = {k.lower(): v for k, v in procedures.items()} infos = {k.lower(): v for k, v in infos.items()} rules = [] for pddl in pddl_list: parse_streams(streams, rules, pddl, procedures, infos) apply_rules_to_streams(rules, streams) return streams ################################################## def compile_fluent_streams(domain, externals): state_streams = list(filter(lambda e: isinstance(e, Stream) and (e.is_negated() or e.is_fluent()), externals)) predicate_map = {} for stream in state_streams: for fact in stream.certified: predicate = get_prefix(fact) assert predicate not in predicate_map # TODO: could make a conjunction condition instead predicate_map[predicate] = stream if not predicate_map: return state_streams # TODO: could make free parameters free # TODO: allow functions on top the produced values? # TODO: check that generated values are not used in the effects of any actions # TODO: could treat like a normal stream that generates values (but with no inputs required/needed) def fn(literal): if literal.predicate not in predicate_map: return literal # TODO: other checks on only inputs stream = predicate_map[literal.predicate] certified = find_unique(lambda f: get_prefix(f) == literal.predicate, stream.certified) mapping = get_mapping(get_args(certified), literal.args) #assert all(arg in mapping for arg in stream.inputs) # Certified must contain all inputs if not all(arg in mapping for arg in stream.inputs): # TODO: this excludes typing. This is not entirely safe return literal blocked_args = tuple(mapping[arg] for arg in stream.inputs) blocked_literal = literal.__class__(stream.blocked_predicate, blocked_args).negate() if stream.is_negated(): # TODO: add stream conditions here return blocked_literal return pddl.Conjunction([literal, blocked_literal]) import pddl for action in domain.actions: action.precondition = replace_literals(fn, action.precondition).simplified() # TODO: throw an error if the effect would be altered for effect in action.effects: if not isinstance(effect.condition, pddl.Truth): raise NotImplementedError(effect.condition) #assert(isinstance(effect, pddl.Effect)) #effect.condition = replace_literals(fn, effect.condition) for axiom in domain.axioms: axiom.condition = replace_literals(fn, axiom.condition).simplified() return state_streams def dump_plans(stream_plan, action_plan, cost): print('Stream plan ({}, {:.1f}): {}\nAction plan ({}, {}): {}'.format(get_length(stream_plan), get_plan_effort(stream_plan), stream_plan, get_length(action_plan), cost, str_from_plan(action_plan))) def partition_externals(externals): functions = list(filter(lambda s: type(s) is Function, externals)) predicates = list(filter(lambda s: type(s) is Predicate, externals)) # and s.is_negative() negated_streams = list(filter(lambda s: (type(s) is Stream) and s.is_negated(), externals)) # and s.is_negative() negative = predicates + negated_streams streams = list(filter(lambda s: s not in (functions + negative), externals)) #optimizers = list(filter(lambda s: type(s) in [VariableStream, ConstraintStream], externals)) return streams, functions, negative #, optimizers
2445240430a4f61b9f76afca22102c4397f33bd7
6fcfb638fa725b6d21083ec54e3609fc1b287d9e
/python/gkioxari_RstarCNN/RstarCNN-master/lib/datasets/attr_bpad.py
1d8c0fb80696afdd175613117b34dc6d6c4573fd
[]
no_license
LiuFang816/SALSTM_py_data
6db258e51858aeff14af38898fef715b46980ac1
d494b3041069d377d6a7a9c296a14334f2fa5acc
refs/heads/master
2022-12-25T06:39:52.222097
2019-12-12T08:49:07
2019-12-12T08:49:07
227,546,525
10
7
null
2022-12-19T02:53:01
2019-12-12T07:29:39
Python
UTF-8
Python
false
false
10,478
py
# -------------------------------------------------------- # Fast R-CNN # Copyright (c) Microsoft. All rights reserved. # Written by Ross Girshick, 2015. # Licensed under the BSD 2-clause "Simplified" license. # See LICENSE in the project root for license information. # -------------------------------------------------------- # -------------------------------------------------------- # R*CNN # Written by Georgia Gkioxari, 2015. # See LICENSE in the project root for license information. # -------------------------------------------------------- import datasets.pascal_voc import os import datasets.imdb import xml.dom.minidom as minidom import numpy as np import scipy.sparse import scipy.io as sio import utils.cython_bbox import cPickle import subprocess import pdb class attr_bpad(datasets.imdb): def __init__(self, image_set, devkit_path=None): datasets.imdb.__init__(self, 'bpad_' + image_set) self._year = '2015' self._image_set = image_set self._devkit_path = self._get_default_path() if devkit_path is None \ else devkit_path self._base_path = os.path.join(self._devkit_path, 'BAPD') self._classes = ('is_male', 'has_long_hair', 'has_glasses', 'has_hat', 'has_tshirt', 'has_long_sleeves', 'has_shorts', 'has_jeans', 'has_long_pants') self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes))) self._image_ext = '.jpg' self._image_index = self._load_image_set_index() # Default to roidb handler self._roidb_handler = self.selective_search_roidb # PASCAL specific config options self.config = {'cleanup' : True, 'use_salt' : True} assert os.path.exists(self._devkit_path), \ 'VOCdevkit path does not exist: {}'.format(self._devkit_path) assert os.path.exists(self._base_path), \ 'Path does not exist: {}'.format(self._base_path) def image_path_at(self, i): """ Return the absolute path to image i in the image sequence. """ return self.image_path_from_index(self._image_index[i]) def image_path_from_index(self, index): """ Construct an image path from the image's "index" identifier. """ image_path = os.path.join(self._base_path, 'Images', index + self._image_ext) assert os.path.exists(image_path), \ 'Path does not exist: {}'.format(image_path) return image_path def _load_image_set_index(self): """ Load the indexes listed in this dataset's image set file. """ # Example path to image set file: # self._devkit_path + /VOCdevkit2007/VOC2007/ImageSets/Main/val.txt image_set_file = os.path.join(self._base_path, 'selective_search', 'ss_attributes_' + self._image_set + '.mat') assert os.path.exists(image_set_file), \ 'Path does not exist: {}'.format(image_set_file) raw_data = sio.loadmat(image_set_file) images = raw_data['images'].ravel() image_index = [im[0].strip() for im in images] return image_index def _get_default_path(self): """ Return the default path where data is expected to be installed. """ return os.path.join(datasets.ROOT_DIR, 'data') def gt_roidb(self): """ Return the database of ground-truth regions of interest. This function loads/saves from/to a cache file to speed up future calls. """ cache_file = os.path.join(self.cache_path, self.name + '_gt_roidb.pkl') if os.path.exists(cache_file): with open(cache_file, 'rb') as fid: roidb = cPickle.load(fid) print '{} gt roidb loaded from {}'.format(self.name, cache_file) return roidb # Load all annotation file data (should take < 30 s). gt_roidb = self._load_annotation() # print number of ground truth classes cc = np.zeros(len(self._classes), dtype = np.int16) for i in xrange(len(gt_roidb)): gt_classes = gt_roidb[i]['gt_classes'] num_objs = gt_classes.shape[0] for n in xrange(num_objs): valid_classes = np.where(gt_classes[n] == 1)[0] cc[valid_classes] +=1 for ic,nc in enumerate(cc): print "Count {:s} : {:d}".format(self._classes[ic], nc) with open(cache_file, 'wb') as fid: cPickle.dump(gt_roidb, fid, cPickle.HIGHEST_PROTOCOL) print 'wrote gt roidb to {}'.format(cache_file) return gt_roidb def selective_search_roidb(self): """ Return the database of selective search regions of interest. Ground-truth ROIs are also included. This function loads/saves from/to a cache file to speed up future calls. """ cache_file = os.path.join(self.cache_path, self.name + '_selective_search_roidb.pkl') if os.path.exists(cache_file): with open(cache_file, 'rb') as fid: roidb = cPickle.load(fid) print '{} ss roidb loaded from {}'.format(self.name, cache_file) return roidb gt_roidb = self.gt_roidb() ss_roidb = self._load_selective_search_roidb(gt_roidb) roidb = self._merge_roidbs(gt_roidb, ss_roidb) with open(cache_file, 'wb') as fid: cPickle.dump(roidb, fid, cPickle.HIGHEST_PROTOCOL) print 'wrote ss roidb to {}'.format(cache_file) return roidb def _merge_roidbs(self, a, b): assert len(a) == len(b) for i in xrange(len(a)): a[i]['boxes'] = np.vstack((a[i]['boxes'], b[i]['boxes'])) a[i]['gt_classes'] = np.vstack((a[i]['gt_classes'], b[i]['gt_classes'])) a[i]['gt_overlaps'] = scipy.sparse.vstack([a[i]['gt_overlaps'], b[i]['gt_overlaps']]) return a def _load_selective_search_roidb(self, gt_roidb): filename = os.path.join(self._base_path, 'selective_search', 'ss_attributes_' + self._image_set + '.mat') # filename = op.path.join(self.cache_path, 'MCG_data', self.name + '.mat') assert os.path.exists(filename), \ 'Selective search data not found at: {}'.format(filename) raw_data = sio.loadmat(filename) num_images = raw_data['boxes'].ravel().shape[0] ss_roidb = [] for i in xrange(num_images): boxes = raw_data['boxes'].ravel()[i][:, (1, 0, 3, 2)] - 1 num_boxes = boxes.shape[0] gt_boxes = gt_roidb[i]['boxes'] num_objs = gt_boxes.shape[0] gt_classes = gt_roidb[i]['gt_classes'] gt_overlaps = \ utils.cython_bbox.bbox_overlaps(boxes.astype(np.float), gt_boxes.astype(np.float)) overlaps = scipy.sparse.csr_matrix(gt_overlaps) ss_roidb.append({'boxes' : boxes, 'gt_classes' : np.zeros((num_boxes, self.num_classes), dtype=np.int32), 'gt_overlaps' : overlaps, 'flipped' : False}) return ss_roidb def _load_annotation(self): """ Load image and bounding boxes info from XML file in the PASCAL VOC format. """ gt_roidb = [] filename = os.path.join(self._base_path, 'ground_truth', 'gt_attributes_' + self._image_set + '.mat') assert os.path.exists(filename), \ 'Selective search data not found at: {}'.format(filename) raw_data = sio.loadmat(filename, mat_dtype=True) all_boxes = raw_data['boxes'].ravel() all_images = raw_data['images'].ravel() all_attributes = raw_data['attributes'].ravel() num_images = len(all_images) for imi in xrange(num_images): num_objs = all_boxes[imi].shape[0] boxes = np.zeros((num_objs, 4), dtype=np.uint16) gt_classes = np.zeros((num_objs, self.num_classes), dtype=np.int32) overlaps = np.zeros((num_objs, num_objs), dtype=np.float32) # Load object bounding boxes into a data frame. for i in xrange(num_objs): # Make pixel indexes 0-based box = all_boxes[imi][i] assert(not np.any(np.isnan(box))) # Read attributes labels attr = all_attributes[imi][i] # Change attributes labels # -1 -> 0 # 0 -> -1 unknown_attr = attr == 0 neg_attr = attr == -1 attr[neg_attr] = 0 attr[unknown_attr] = -1 boxes[i, :] = box - 1 gt_classes[i, :] = attr overlaps[i, i] = 1.0 overlaps = scipy.sparse.csr_matrix(overlaps) gt_roidb.append({'boxes' : boxes, 'gt_classes': gt_classes, 'gt_overlaps' : overlaps, 'flipped' : False}) return gt_roidb def _write_results_file(self, all_boxes, comp): path = os.path.join(self._devkit_path, 'results', 'BAPD') print 'Writing results file'.format(cls) filename = path + comp + '.txt' with open(filename, 'wt') as f: for i in xrange(all_boxes.shape[0]): ind = all_boxes[i,0].astype(np.int64) index = self.image_index[ind-1] voc_id = all_boxes[i,1].astype(np.int64) f.write('{:s} {:d}'.format(index, voc_id)) for cli in xrange(self.num_classes): score = all_boxes[i,2+cli] f.write(' {:.3f}'.format(score)) f.write('\n') if __name__ == '__main__': d = datasets.pascal_voc('trainval', '2012') res = d.roidb from IPython import embed; embed()
6e412c2830f0c0210c5542502eff73dfa2776a76
1b78ca7f3250ebed418717c6ea28b5a77367f1b8
/411.minimum-unique-word-abbreviation/minimum-unique-word-abbreviation.py
70887cecba089f780017d17a96ca6739c187979c
[]
no_license
JaniceLC/lc-all-solutions
ced854f31b94f44c0b03a0677988805e3b9ee718
3f2a4ee8c09a8890423c6a22c73f470eccf979a2
refs/heads/master
2020-04-05T19:53:31.307528
2018-11-12T04:18:45
2018-11-12T04:18:45
157,155,285
0
2
null
2018-11-12T04:13:22
2018-11-12T04:13:22
null
UTF-8
Python
false
false
1,290
py
class Solution(object): def minAbbreviation(self, target, dictionary): """ :type target: str :type dictionary: List[str] :rtype: str """ def dfs(w, start, res): res.append(w) for i in xrange(start, len(w)): for l in reversed(xrange(1, len(w) - i + 1)): dfs(w[:i] + [str(l)] + w[i+l:], i + 2, res) def match(src, dest): i = 0 for c in src: if c.isdigit(): jump = int(c) i += jump else: if c != dest[i]: return False i += 1 return True if not dictionary: return str(len(target)) wordLen = len(target) res = [] dfs(list(target), 0, res) res.sort(key=lambda x:len(x)) dictionary = filter(lambda s: len(s) == wordLen, dictionary) for w in res: allMiss = True for d in dictionary: if match(w, d): allMiss = False break if allMiss: return "".join(w) return None
8cf1337f8036de2054ba11a4c1ef5921ff9e2863
641f76328bfeb7e54f0793a18c5b7c00595b98fd
/apps/goods/migrations/0015_auto_20181019_1007.py
a9bf43d5073534905d8a89c4b1ee68ce1ac10451
[ "Apache-2.0" ]
permissive
lianxiaopang/camel-store-api
1d16060af92eb01607757c0423377a8c94c3a726
b8021250bf3d8cf7adc566deebdba55225148316
refs/heads/master
2020-12-29T13:23:18.118617
2020-02-09T08:38:53
2020-02-09T08:38:53
238,621,246
0
0
Apache-2.0
2020-02-07T14:28:35
2020-02-06T06:17:47
Python
UTF-8
Python
false
false
1,439
py
# Generated by Django 2.1.2 on 2018-10-19 02:07 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('goods', '0014_auto_20181011_1646'), ] operations = [ migrations.AlterModelOptions( name='goodscategory', options={'ordering': ('index', '-is_active'), 'verbose_name': '商品类别', 'verbose_name_plural': '商品类别'}, ), migrations.AlterModelOptions( name='goodtype', options={'ordering': ('index',), 'verbose_name': '商品规格', 'verbose_name_plural': '商品规格'}, ), migrations.AddField( model_name='goodscategory', name='index', field=models.PositiveSmallIntegerField(default=0, verbose_name='优先级'), ), migrations.AddField( model_name='goodscategory', name='is_active', field=models.BooleanField(default=True, verbose_name='是否启用'), ), migrations.AddField( model_name='goodtype', name='asset_ratio', field=models.PositiveSmallIntegerField(default=0, help_text='单位:%', verbose_name='返利比例'), ), migrations.AddField( model_name='goodtype', name='index', field=models.PositiveSmallIntegerField(default=0, verbose_name='优先级'), ), ]
d01b1468d7aaf781d587e8b861611e92d26f28dd
e8f99a162207cba82d4e0f969d7bcdb2b9d8b522
/imooc/python3_shizhan/ten/c1.py
6a78a3e875eb35796ea35e07c606f9f44d0ef637
[]
no_license
TesterCC/Python3Scripts
edb5446278ebf13edb64336001081941ca27d67d
58be67e1ffc74ef50289a885aa4ad05f58e2c383
refs/heads/master
2023-08-30T21:16:38.328045
2023-08-17T11:23:08
2023-08-17T11:23:08
93,401,996
6
3
null
null
null
null
UTF-8
Python
false
false
721
py
#!/usr/bin/env python # -*- coding:utf-8 -*- __author__ = 'MFC' __time__ = '18/5/2 21:48' """ 第10章 正则表达式与JSON 正则表达式 JSON XML 正则表达式是一个特殊的字符序列,一个字符串是否与我们所设定的这样的字符序列相匹配。 快速检索文本、实现一些替换文本的操作 1.检查一串数字是否是电话号码 2.检测一个字符串是否符合email 3.把一个文本里指定的单词替换为另外一个单词 如果正则用的6,可以不用很多内置方法 """ a = 'C|C++|Java|C#|Python|Javascript' # Python内置函数,用来判断字符串是否包含Python print(a.index('Python')) print(a.index('Python') > -1) print('Python' in a)
b4e2926b4134199eaadf96a67e52631ed4a9bbce
427200bdf814d859665f449542fe6c9c1de5a96c
/doc/source/conf.py
a9715d0ad0714672009bacc401a85b5984fd9da9
[ "BSD-3-Clause" ]
permissive
giltis/pyRafters
c54f6c4c8f02370ad168a3c90d1ce490077b5d78
94bf0e1d671ce58f6cbc09600e99a6d2a4b0127c
refs/heads/master
2021-01-22T13:22:19.768905
2014-03-28T13:40:24
2014-03-28T13:40:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,737
py
# -*- coding: utf-8 -*- # # PyLight documentation build configuration file, created by # sphinx-quickstart on Thu Jan 30 13:08:54 2014. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath('../../')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'sphinx.ext.coverage', 'sphinx.ext.pngmath', 'sphinx.ext.mathjax', 'sphinx.ext.ifconfig', 'sphinx.ext.viewcode', 'sphinx.ext.autosummary', 'numpydoc' ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'PyLight' copyright = u'2014, Brookhaven National Lab' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '0' # The full version, including alpha/beta/rc tags. release = '0' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = [] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'PyLightdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ ('index', 'PyLight.tex', u'PyLight Documentation', u'Brookhaven National Lab', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'pylight', u'PyLight Documentation', [u'Brookhaven National Lab'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'PyLight', u'PyLight Documentation', u'Brookhaven National Lab', 'PyLight', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'http://docs.python.org/': None}
a502baacd568f4ec8f715ef459a5d0689434064b
5e557741c8867bca4c4bcf2d5e67409211d059a3
/torch/distributed/elastic/agent/server/local_elastic_agent.py
c84df1a8e434267abf07aca90210e89b834c1b00
[ "BSD-2-Clause", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "BSL-1.0", "Apache-2.0" ]
permissive
Pandinosaurus/pytorch
a2bb724cfc548f0f2278b5af2fd8b1d2758adb76
bb8978f605e203fbb780f03010fefbece35ac51c
refs/heads/master
2023-05-02T20:07:23.577610
2021-11-05T14:01:30
2021-11-05T14:04:40
119,666,381
2
0
NOASSERTION
2021-11-05T19:55:56
2018-01-31T09:37:34
C++
UTF-8
Python
false
false
9,100
py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import os import shutil import signal import tempfile from typing import Any, Dict, Optional, Tuple from torch.distributed.elastic.agent.server.api import ( RunResult, SimpleElasticAgent, WorkerGroup, WorkerSpec, WorkerState, ) from torch.distributed.elastic.metrics.api import prof from torch.distributed.elastic.multiprocessing import PContext, start_processes from torch.distributed.elastic.utils import macros from torch.distributed.elastic.utils.logging import get_logger log = get_logger() class LocalElasticAgent(SimpleElasticAgent): """ An implementation of :py:class:`torchelastic.agent.server.ElasticAgent` that handles host-local workers. This agent is deployed per host and is configured to spawn ``n`` workers. When using GPUs, ``n`` maps to the number of GPUs available on the host. The local agent does not communicate to other local agents deployed on other hosts, even if the workers may communicate inter-host. The worker id is interpreted to be a local process. The agent starts and stops all worker processes as a single unit. The worker function and argument passed to the worker function must be python multiprocessing compatible. To pass multiprocessing data structures to the workers you may create the data structure in the same multiprocessing context as the specified ``start_method`` and pass it as a function argument. The ``exit_barrier_timeout`` specifies the amount of time (in seconds) to wait for other agents to finish. This acts as a safety net to handle cases where workers finish at different times, to prevent agents from viewing workers that finished early as a scale-down event. It is strongly advised that the user code deal with ensuring that workers are terminated in a synchronous manner rather than relying on the exit_barrier_timeout. Example launching function :: def trainer(args) -> str: return "do train" def main(): start_method="spawn" shared_queue= multiprocessing.get_context(start_method).Queue() spec = WorkerSpec( role="trainer", local_world_size=nproc_per_process, entrypoint=trainer, args=("foobar",), ...<OTHER_PARAMS...>) agent = LocalElasticAgent(spec, start_method) results = agent.run() if results.is_failed(): print("trainer failed") else: print(f"rank 0 return value: {results.return_values[0]}") # prints -> rank 0 return value: do train Example launching binary :: def main(): spec = WorkerSpec( role="trainer", local_world_size=nproc_per_process, entrypoint="/usr/local/bin/trainer", args=("--trainer_args", "foobar"), ...<OTHER_PARAMS...>) agent = LocalElasticAgent(spec) results = agent.run() if not results.is_failed(): print("binary launches do not have return values") """ def __init__( self, spec: WorkerSpec, start_method="spawn", exit_barrier_timeout: float = 300, log_dir: Optional[str] = None, ): super().__init__(spec, exit_barrier_timeout) self._start_method = start_method self._pcontext: Optional[PContext] = None rdzv_run_id = spec.rdzv_handler.get_run_id() self._log_dir = self._make_log_dir(log_dir, rdzv_run_id) def _make_log_dir(self, log_dir: Optional[str], rdzv_run_id: str): base_log_dir = log_dir or tempfile.mkdtemp(prefix="torchelastic_") os.makedirs(base_log_dir, exist_ok=True) dir = tempfile.mkdtemp(prefix=f"{rdzv_run_id}_", dir=base_log_dir) log.info(f"log directory set to: {dir}") return dir # pyre-fixme[56]: Pyre was not able to infer the type of the decorator # `torch.distributed.elastic.metrics.prof`. @prof def _stop_workers(self, worker_group: WorkerGroup) -> None: self._shutdown() # pyre-fixme[56]: Pyre was not able to infer the type of the decorator # `torch.distributed.elastic.metrics.prof`. @prof def _start_workers(self, worker_group: WorkerGroup) -> Dict[int, Any]: spec = worker_group.spec store = worker_group.store assert store is not None master_addr, master_port = super()._get_master_addr_port(store) restart_count = spec.max_restarts - self._remaining_restarts use_agent_store = spec.rdzv_handler.get_backend() == "static" args: Dict[int, Tuple] = {} envs: Dict[int, Dict[str, str]] = {} for worker in worker_group.workers: local_rank = worker.local_rank worker_env = { "LOCAL_RANK": str(local_rank), "RANK": str(worker.global_rank), "GROUP_RANK": str(worker_group.group_rank), "ROLE_RANK": str(worker.role_rank), "ROLE_NAME": spec.role, "LOCAL_WORLD_SIZE": str(spec.local_world_size), "WORLD_SIZE": str(worker.world_size), "GROUP_WORLD_SIZE": str(worker_group.group_world_size), "ROLE_WORLD_SIZE": str(worker.role_world_size), "MASTER_ADDR": master_addr, "MASTER_PORT": str(master_port), "TORCHELASTIC_RESTART_COUNT": str(restart_count), "TORCHELASTIC_MAX_RESTARTS": str(spec.max_restarts), "TORCHELASTIC_RUN_ID": spec.rdzv_handler.get_run_id(), "TORCHELASTIC_USE_AGENT_STORE": str(use_agent_store), "NCCL_ASYNC_ERROR_HANDLING": str(1), } if "OMP_NUM_THREADS" in os.environ: worker_env["OMP_NUM_THREADS"] = os.environ["OMP_NUM_THREADS"] envs[local_rank] = worker_env worker_args = list(spec.args) worker_args = macros.substitute(worker_args, str(local_rank)) args[local_rank] = tuple(worker_args) # scaling events do not count towards restarts (gets same attempt #) # remove existing log dir if this restart is due to a scaling event attempt_log_dir = os.path.join(self._log_dir, f"attempt_{restart_count}") shutil.rmtree(attempt_log_dir, ignore_errors=True) os.makedirs(attempt_log_dir) assert spec.entrypoint is not None self._pcontext = start_processes( name=spec.role, entrypoint=spec.entrypoint, args=args, envs=envs, log_dir=attempt_log_dir, start_method=self._start_method, redirects=spec.redirects, tee=spec.tee, ) return self._pcontext.pids() def _shutdown(self, death_sig: signal.Signals = signal.SIGTERM) -> None: if self._pcontext: self._pcontext.close(death_sig) # pyre-fixme[56]: Pyre was not able to infer the type of the decorator # `torch.distributed.elastic.metrics.prof`. @prof def _monitor_workers(self, worker_group: WorkerGroup) -> RunResult: role = worker_group.spec.role worker_pids = {w.id for w in worker_group.workers} assert self._pcontext is not None pc_pids = set(self._pcontext.pids().values()) if worker_pids != pc_pids: log.error( f"[{role}] worker pids do not match process_context pids." f" Expected: {worker_pids}, actual: {pc_pids}" ) return RunResult(state=WorkerState.UNKNOWN) result = self._pcontext.wait(0) if result: if result.is_failed(): # map local rank failure to global rank worker_failures = {} for local_rank, failure in result.failures.items(): worker = worker_group.workers[local_rank] worker_failures[worker.global_rank] = failure return RunResult( state=WorkerState.FAILED, failures=worker_failures, ) else: # copy ret_val_queue into a map with a global ranks workers_ret_vals = {} for local_rank, ret_val in result.return_values.items(): worker = worker_group.workers[local_rank] workers_ret_vals[worker.global_rank] = ret_val return RunResult( state=WorkerState.SUCCEEDED, return_values=workers_ret_vals, ) else: return RunResult(state=WorkerState.HEALTHY)
197926393868d21e6ae154a9dd519b9c67bbad9c
cd014fae6791f51a9a382f34dbdcee6d61d84e30
/64_eqf_fveqf_fvf_fvegf/64.py
64fae91ef51cb384faf818ac502876f63733d358
[ "Apache-2.0" ]
permissive
ckclark/Hackquest
1505f50fc2c735db059205d1c9bbba1832cc5059
65ed5fd32e79906c0e36175bbd280d976c6134bd
refs/heads/master
2021-01-16T19:32:29.434790
2015-09-29T13:39:04
2015-09-29T13:39:04
42,388,846
13
5
null
null
null
null
UTF-8
Python
false
false
460
py
lines = [x.strip() for x in open('64.txt').readlines()] for shift in [16]: #range(len(lines[0])): out_graph = [] for line in lines: out_line = [] for i in range(len(line) - shift): if line[i] == line[i + shift]: out_line.append(' ') else: out_line.append('*') out_line = ''.join(out_line) out_graph.append(out_line) print shift print '\n'.join(out_graph)
5920ba78e09eb4f5be44b465dda4879c3b817140
1bfebc7e1c95cd3c25024b6b1adbf518e55513bf
/src/pykit/strutil/test/test_hex.py
111d8a160a9a91f0c53b0653ae2f85d8536d8489
[ "MIT" ]
permissive
bsc-s2/ops
a9a217a47dad558285ca8064fa29fdff10ab4ad7
6fb8ad758b328a445005627ac1e5736f17088cee
refs/heads/master
2021-06-24T09:32:49.057026
2020-11-02T06:50:01
2020-11-02T06:50:01
123,527,739
8
0
MIT
2020-09-03T04:58:26
2018-03-02T03:54:20
Python
UTF-8
Python
false
false
5,256
py
#!/usr/bin/env python2 # coding: utf-8 import os import unittest from pykit import strutil from pykit.strutil import Hex from pykit import ututil from pykit import utfjson dd = ututil.dd class TestHex(unittest.TestCase): def test_init(self): byte_length = 3 cases = ( (0, 0), ('000000', 0), ('\0\0\0', 0), (256**2 + 2*256 + 3, 0x010203), ('010203', 0x010203), ('\1\2\3', 0x010203), ) for inp, expected in cases: dd(inp, expected) c = Hex(inp, byte_length) self.assertEqual(expected, c.int) self.assertEqual('%06x' % expected, c) def test_attr(self): c = Hex('010203', 3) self.assertEqual('010203', c.hex) self.assertEqual('\1\2\3', c.bytes) self.assertEqual(256**2 + 2*256 + 3, c.int) self.assertIs('010203', c.hex) self.assertIsNot('010203', c) def test_init_invalid(self): byte_length = 3 cases = ( (256**3-1, None), (256**3, ValueError), (-1, ValueError), ('\1\2', ValueError), ('\1\2\3\4', ValueError), ('0102', ValueError), ('01020', ValueError), ('0102030', ValueError), ('01020304', ValueError), ({}, TypeError), ) for inp, err in cases: dd(inp, err) if err is None: c = Hex(inp, byte_length) else: self.assertRaises(err, Hex, inp, byte_length) def test_named_length(self): val = 0x010203 cases = ( ('crc32', '00010203'), ('Crc32', '00010203'), ('CRC32', '00010203'), ('md5', '00000000000000000000000000010203'), ('Md5', '00000000000000000000000000010203'), ('MD5', '00000000000000000000000000010203'), ('sha1', '0000000000000000000000000000000000010203'), ('Sha1', '0000000000000000000000000000000000010203'), ('SHA1', '0000000000000000000000000000000000010203'), ('sha256', '0000000000000000000000000000000000000000000000000000000000010203'), ('Sha256', '0000000000000000000000000000000000000000000000000000000000010203'), ('SHA256', '0000000000000000000000000000000000000000000000000000000000010203'), ) for typ, expected in cases: c = Hex(val, typ) self.assertEqual(expected, c) def test_checksum_shortcut(self): val = 0x010203 self.assertEqual(Hex(val, 'crc32'), Hex.crc32(val)) self.assertEqual(Hex(val, 'md5'), Hex.md5(val)) self.assertEqual(Hex(val, 'sha1'), Hex.sha1(val)) self.assertEqual(Hex(val, 'sha256'), Hex.sha256(val)) def test_prefix(self): pref = '1234' cases = ( ('crc32', '12340000'), ('md5', '12340000000000000000000000000000'), ('sha1', '1234000000000000000000000000000000000000'), ('sha256', '1234000000000000000000000000000000000000000000000000000000000000'), ) for typ, expected in cases: dd('typ:', typ) c = Hex((pref, 0), typ) self.assertEqual(expected, c) self.assertEqual('12340101', Hex((pref, 1), 'crc32')) def test_str_repr(self): c = Hex.crc32(1) self.assertEqual('00000001', str(c)) self.assertEqual("'00000001'", repr(c)) def test_json(self): c = Hex.crc32(('0002', 0)) rst = utfjson.dump(c) self.assertEqual('"00020000"', rst) self.assertEqual(c, utfjson.load(rst)) def test_arithmetic(self): c = Hex.crc32(5) self.assertEqual(6, (c+1).int) self.assertEqual(10, (c*2).int) self.assertEqual(2, (c/2).int) self.assertEqual(0, (c/6).int) self.assertEqual(1, (c % 2).int) self.assertEqual(25, (c**2).int) self.assertEqual('00000006', (c+1)) self.assertEqual('0000000a', (c*2)) self.assertEqual('00000002', (c/2)) self.assertEqual('00000000', (c/6)) self.assertEqual('00000001', (c % 2)) self.assertEqual('00000019', (c**2)) self.assertEqual(6, (c + Hex.crc32(1)).int) # overflow protection self.assertEqual(0, (c-5).int) self.assertEqual(0, (c-6).int) d = Hex.crc32(('', 0xff)) self.assertEqual(d, d+1) def test_arithmetic_error(self): c = Hex.crc32(5) cases = ( [], (), {}, 'x', u'我', ) for inp in cases: with self.assertRaises(TypeError): c + inp with self.assertRaises(TypeError): c - inp with self.assertRaises(TypeError): c * inp with self.assertRaises(TypeError): c / inp with self.assertRaises(TypeError): c % inp with self.assertRaises(TypeError): c ** inp
9ecc842f23895f3713c99a55702174b7192797fa
31e7aa5176876e6caf7ff9b37336b39292c9dd5b
/selfdrive/controls/lib/pathplanner.py
de43c041805990c89541efeab04f50f6241ea132
[ "MIT", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
avolmensky/openpilot
02d822f7eb50bb74368c794a3d580f95a53c2ca4
dc61915529aabfad62061e784f277af311013cf1
refs/heads/devel
2021-12-15T01:43:10.994332
2020-02-14T01:30:43
2020-02-14T02:33:40
191,065,999
2
9
MIT
2019-06-26T10:13:29
2019-06-09T23:32:13
C
UTF-8
Python
false
false
9,158
py
import os import math from common.realtime import sec_since_boot, DT_MDL from selfdrive.swaglog import cloudlog from selfdrive.controls.lib.lateral_mpc import libmpc_py from selfdrive.controls.lib.drive_helpers import MPC_COST_LAT from selfdrive.controls.lib.lane_planner import LanePlanner from selfdrive.config import Conversions as CV import cereal.messaging as messaging from cereal import log LaneChangeState = log.PathPlan.LaneChangeState LaneChangeDirection = log.PathPlan.LaneChangeDirection LOG_MPC = os.environ.get('LOG_MPC', False) LANE_CHANGE_SPEED_MIN = 45 * CV.MPH_TO_MS LANE_CHANGE_TIME_MAX = 10. DESIRES = { LaneChangeDirection.none: { LaneChangeState.off: log.PathPlan.Desire.none, LaneChangeState.preLaneChange: log.PathPlan.Desire.none, LaneChangeState.laneChangeStarting: log.PathPlan.Desire.none, LaneChangeState.laneChangeFinishing: log.PathPlan.Desire.none, }, LaneChangeDirection.left: { LaneChangeState.off: log.PathPlan.Desire.none, LaneChangeState.preLaneChange: log.PathPlan.Desire.none, LaneChangeState.laneChangeStarting: log.PathPlan.Desire.laneChangeLeft, LaneChangeState.laneChangeFinishing: log.PathPlan.Desire.laneChangeLeft, }, LaneChangeDirection.right: { LaneChangeState.off: log.PathPlan.Desire.none, LaneChangeState.preLaneChange: log.PathPlan.Desire.none, LaneChangeState.laneChangeStarting: log.PathPlan.Desire.laneChangeRight, LaneChangeState.laneChangeFinishing: log.PathPlan.Desire.laneChangeRight, }, } def calc_states_after_delay(states, v_ego, steer_angle, curvature_factor, steer_ratio, delay): states[0].x = v_ego * delay states[0].psi = v_ego * curvature_factor * math.radians(steer_angle) / steer_ratio * delay return states class PathPlanner(): def __init__(self, CP): self.LP = LanePlanner() self.last_cloudlog_t = 0 self.steer_rate_cost = CP.steerRateCost self.setup_mpc() self.solution_invalid_cnt = 0 self.lane_change_state = LaneChangeState.off self.lane_change_direction = LaneChangeDirection.none self.lane_change_timer = 0.0 self.prev_one_blinker = False def setup_mpc(self): self.libmpc = libmpc_py.libmpc self.libmpc.init(MPC_COST_LAT.PATH, MPC_COST_LAT.LANE, MPC_COST_LAT.HEADING, self.steer_rate_cost) self.mpc_solution = libmpc_py.ffi.new("log_t *") self.cur_state = libmpc_py.ffi.new("state_t *") self.cur_state[0].x = 0.0 self.cur_state[0].y = 0.0 self.cur_state[0].psi = 0.0 self.cur_state[0].delta = 0.0 self.angle_steers_des = 0.0 self.angle_steers_des_mpc = 0.0 self.angle_steers_des_prev = 0.0 self.angle_steers_des_time = 0.0 def update(self, sm, pm, CP, VM): v_ego = sm['carState'].vEgo angle_steers = sm['carState'].steeringAngle active = sm['controlsState'].active angle_offset = sm['liveParameters'].angleOffset # Run MPC self.angle_steers_des_prev = self.angle_steers_des_mpc VM.update_params(sm['liveParameters'].stiffnessFactor, sm['liveParameters'].steerRatio) curvature_factor = VM.curvature_factor(v_ego) self.LP.parse_model(sm['model']) # Lane change logic one_blinker = sm['carState'].leftBlinker != sm['carState'].rightBlinker below_lane_change_speed = v_ego < LANE_CHANGE_SPEED_MIN if sm['carState'].leftBlinker: self.lane_change_direction = LaneChangeDirection.left elif sm['carState'].rightBlinker: self.lane_change_direction = LaneChangeDirection.right if (not active) or (self.lane_change_timer > LANE_CHANGE_TIME_MAX) or (not one_blinker): self.lane_change_state = LaneChangeState.off self.lane_change_direction = LaneChangeDirection.none else: torque_applied = sm['carState'].steeringPressed and \ ((sm['carState'].steeringTorque > 0 and self.lane_change_direction == LaneChangeDirection.left) or \ (sm['carState'].steeringTorque < 0 and self.lane_change_direction == LaneChangeDirection.right)) lane_change_prob = self.LP.l_lane_change_prob + self.LP.r_lane_change_prob # State transitions # off if self.lane_change_state == LaneChangeState.off and one_blinker and not self.prev_one_blinker and not below_lane_change_speed: self.lane_change_state = LaneChangeState.preLaneChange # pre elif self.lane_change_state == LaneChangeState.preLaneChange: if not one_blinker or below_lane_change_speed: self.lane_change_state = LaneChangeState.off elif torque_applied: self.lane_change_state = LaneChangeState.laneChangeStarting # starting elif self.lane_change_state == LaneChangeState.laneChangeStarting and lane_change_prob > 0.5: self.lane_change_state = LaneChangeState.laneChangeFinishing # finishing elif self.lane_change_state == LaneChangeState.laneChangeFinishing and lane_change_prob < 0.2: if one_blinker: self.lane_change_state = LaneChangeState.preLaneChange else: self.lane_change_state = LaneChangeState.off if self.lane_change_state in [LaneChangeState.off, LaneChangeState.preLaneChange]: self.lane_change_timer = 0.0 else: self.lane_change_timer += DT_MDL self.prev_one_blinker = one_blinker desire = DESIRES[self.lane_change_direction][self.lane_change_state] # Turn off lanes during lane change if desire == log.PathPlan.Desire.laneChangeRight or desire == log.PathPlan.Desire.laneChangeLeft: self.LP.l_prob = 0. self.LP.r_prob = 0. self.libmpc.init_weights(MPC_COST_LAT.PATH / 10.0, MPC_COST_LAT.LANE, MPC_COST_LAT.HEADING, self.steer_rate_cost) else: self.libmpc.init_weights(MPC_COST_LAT.PATH, MPC_COST_LAT.LANE, MPC_COST_LAT.HEADING, self.steer_rate_cost) self.LP.update_d_poly(v_ego) # account for actuation delay self.cur_state = calc_states_after_delay(self.cur_state, v_ego, angle_steers - angle_offset, curvature_factor, VM.sR, CP.steerActuatorDelay) v_ego_mpc = max(v_ego, 5.0) # avoid mpc roughness due to low speed self.libmpc.run_mpc(self.cur_state, self.mpc_solution, list(self.LP.l_poly), list(self.LP.r_poly), list(self.LP.d_poly), self.LP.l_prob, self.LP.r_prob, curvature_factor, v_ego_mpc, self.LP.lane_width) # reset to current steer angle if not active or overriding if active: delta_desired = self.mpc_solution[0].delta[1] rate_desired = math.degrees(self.mpc_solution[0].rate[0] * VM.sR) else: delta_desired = math.radians(angle_steers - angle_offset) / VM.sR rate_desired = 0.0 self.cur_state[0].delta = delta_desired self.angle_steers_des_mpc = float(math.degrees(delta_desired * VM.sR) + angle_offset) # Check for infeasable MPC solution mpc_nans = any(math.isnan(x) for x in self.mpc_solution[0].delta) t = sec_since_boot() if mpc_nans: self.libmpc.init(MPC_COST_LAT.PATH, MPC_COST_LAT.LANE, MPC_COST_LAT.HEADING, CP.steerRateCost) self.cur_state[0].delta = math.radians(angle_steers - angle_offset) / VM.sR if t > self.last_cloudlog_t + 5.0: self.last_cloudlog_t = t cloudlog.warning("Lateral mpc - nan: True") if self.mpc_solution[0].cost > 20000. or mpc_nans: # TODO: find a better way to detect when MPC did not converge self.solution_invalid_cnt += 1 else: self.solution_invalid_cnt = 0 plan_solution_valid = self.solution_invalid_cnt < 2 plan_send = messaging.new_message() plan_send.init('pathPlan') plan_send.valid = sm.all_alive_and_valid(service_list=['carState', 'controlsState', 'liveParameters', 'model']) plan_send.pathPlan.laneWidth = float(self.LP.lane_width) plan_send.pathPlan.dPoly = [float(x) for x in self.LP.d_poly] plan_send.pathPlan.lPoly = [float(x) for x in self.LP.l_poly] plan_send.pathPlan.lProb = float(self.LP.l_prob) plan_send.pathPlan.rPoly = [float(x) for x in self.LP.r_poly] plan_send.pathPlan.rProb = float(self.LP.r_prob) plan_send.pathPlan.angleSteers = float(self.angle_steers_des_mpc) plan_send.pathPlan.rateSteers = float(rate_desired) plan_send.pathPlan.angleOffset = float(sm['liveParameters'].angleOffsetAverage) plan_send.pathPlan.mpcSolutionValid = bool(plan_solution_valid) plan_send.pathPlan.paramsValid = bool(sm['liveParameters'].valid) plan_send.pathPlan.sensorValid = bool(sm['liveParameters'].sensorValid) plan_send.pathPlan.posenetValid = bool(sm['liveParameters'].posenetValid) plan_send.pathPlan.desire = desire plan_send.pathPlan.laneChangeState = self.lane_change_state plan_send.pathPlan.laneChangeDirection = self.lane_change_direction pm.send('pathPlan', plan_send) if LOG_MPC: dat = messaging.new_message() dat.init('liveMpc') dat.liveMpc.x = list(self.mpc_solution[0].x) dat.liveMpc.y = list(self.mpc_solution[0].y) dat.liveMpc.psi = list(self.mpc_solution[0].psi) dat.liveMpc.delta = list(self.mpc_solution[0].delta) dat.liveMpc.cost = self.mpc_solution[0].cost pm.send('liveMpc', dat)
ea9891c42ef6fc7f1ca7896c9b1e6aadd4fe3db7
38221ca553059a83ed8f64e2cb25181ed88da275
/deeppavlov/models/spelling_correction/levenstein/tabled_trie.py
502376482ef26e8fc4feca5ddd880788e9dcc39f
[ "Apache-2.0", "Python-2.0" ]
permissive
stenpiren/DeepPavlov
7153ce828225d9d1fdf1c171794efe463f2e9dea
fe59facab4854f2fe56ed126e27eb9696ad6dfd8
refs/heads/master
2020-03-23T10:08:53.962961
2018-07-16T22:10:17
2018-07-16T22:10:17
141,427,836
1
0
Apache-2.0
2018-07-18T11:50:30
2018-07-18T11:50:30
null
UTF-8
Python
false
false
19,969
py
import copy from collections import defaultdict import numpy as np class Trie: """ Реализация префиксного бора (точнее, корневого направленного ациклического графа) Атрибуты -------- alphabet: list, алфавит alphabet_codes: dict, словарь символ:код compressed: bool, индикатор сжатия cashed: bool, индикатор кэширования запросов к функции descend root: int, индекс корня graph: array, type=int, shape=(число вершин, размер алфавита), матрица потомков graph[i][j] = k <-> вершина k --- потомок вершины i по ребру, помеченному символом alphabet[j] data: array, type=object, shape=(число вершин), массив с данными, хранящямися в вершинах final: array, type=bool, shape=(число вершин), массив индикаторов final[i] = True <-> i --- финальная вершина """ NO_NODE = -1 SPACE_CODE = -1 ATTRS = ['is_numpied', 'precompute_symbols', 'allow_spaces', 'is_terminated', 'to_make_cashed'] def __init__(self, alphabet, make_sorted=True, make_alphabet_codes=True, is_numpied=False, to_make_cashed=False, precompute_symbols=None, allow_spaces=False, dict_storage=False): self.alphabet = sorted(alphabet) if make_sorted else alphabet self.alphabet_codes = ({a: i for i, a in enumerate(self.alphabet)} if make_alphabet_codes else self.alphabet) self.alphabet_codes[" "] = Trie.SPACE_CODE self.is_numpied = is_numpied self.to_make_cashed = to_make_cashed self.dict_storage = dict_storage self.precompute_symbols = precompute_symbols self.allow_spaces = allow_spaces self.initialize() def initialize(self): self.root = 0 self.graph = [self._make_default_node()] self.data, self.final = [None], [False] self.nodes_number = 1 self.descend = self._descend_simple self.is_terminated = False def _make_default_node(self): if self.dict_storage: return defaultdict(lambda: -1) elif self.is_numpied: return np.full(shape=(len(self.alphabet),), fill_value=Trie.NO_NODE, dtype=int) else: return [Trie.NO_NODE] * len(self.alphabet) def save(self, outfile): """ Сохраняет дерево для дальнейшего использования """ with open(outfile, "w", encoding="utf8") as fout: attr_values = [getattr(self, attr) for attr in Trie.ATTRS] attr_values.append(any(x is not None for x in self.data)) fout.write("{}\n{}\t{}\n".format( " ".join("T" if x else "F" for x in attr_values), self.nodes_number, self.root)) fout.write(" ".join(str(a) for a in self.alphabet) + "\n") for index, label in enumerate(self.final): letters = self._get_letters(index, return_indexes=True) children = self._get_children(index) fout.write("{}\t{}\n".format( "T" if label else "F", " ".join("{}:{}".format(*elem) for elem in zip(letters, children)))) if self.precompute_symbols is not None: for elem in self.data: fout.write(":".join(",".join( map(str, symbols)) for symbols in elem) + "\n") return def make_cashed(self): ''' Включает кэширование запросов к descend ''' self._descendance_cash = [dict() for _ in self.graph] self.descend = self._descend_cashed def make_numpied(self): self.graph = np.array(self.graph) self.final = np.asarray(self.final, dtype=bool) self.is_numpied = True def add(self, s): ''' Добавление строки s в префиксный бор ''' if self.is_terminated: raise TypeError("Impossible to add string to fitted trie") if s == "": self._set_final(self.root) return curr = self.root for i, a in enumerate(s): code = self.alphabet_codes[a] next = self.graph[curr][code] if next == Trie.NO_NODE: curr = self._add_descendant(curr, s[i:]) break else: curr = next self._set_final(curr) return self def fit(self, words): for s in words: self.add(s) self.terminate() def terminate(self): if self.is_numpied: self.make_numpied() self.terminated = True if self.precompute_symbols is not None: precompute_future_symbols(self, self.precompute_symbols, allow_spaces=self.allow_spaces) if self.to_make_cashed: self.make_cashed() def __contains__(self, s): if any(a not in self.alphabet for a in s): return False # word = tuple(self.alphabet_codes[a] for a in s) node = self.descend(self.root, s) return (node != Trie.NO_NODE) and self.is_final(node) def words(self): """ Возвращает итератор по словам, содержащимся в боре """ branch, word, indexes = [self.root], [], [0] letters_with_children = [self._get_children_and_letters(self.root)] while len(branch) > 0: if self.is_final(branch[-1]): yield "".join(word) while indexes[-1] == len(letters_with_children[-1]): indexes.pop() letters_with_children.pop() branch.pop() if len(indexes) == 0: raise StopIteration() word.pop() next_letter, next_child = letters_with_children[-1][indexes[-1]] indexes[-1] += 1 indexes.append(0) word.append(next_letter) branch.append(next_child) letters_with_children.append(self._get_children_and_letters(branch[-1])) def is_final(self, index): ''' Аргументы --------- index: int, номер вершины Возвращает ---------- True: если index --- номер финальной вершины ''' return self.final[index] def find_partitions(self, s, max_count=1): """ Находит все разбиения s = s_1 ... s_m на словарные слова s_1, ..., s_m для m <= max_count """ curr_agenda = [(self.root, [], 0)] for i, a in enumerate(s): next_agenda = [] for curr, borders, cost in curr_agenda: if cost >= max_count: continue child = self.graph[curr][self.alphabet_codes[a]] # child = self.graph[curr][a] if child == Trie.NO_NODE: continue next_agenda.append((child, borders, cost)) if self.is_final(child): next_agenda.append((self.root, borders + [i+1], cost+1)) curr_agenda = next_agenda answer = [] for curr, borders, cost in curr_agenda: if curr == self.root: borders = [0] + borders answer.append([s[left:borders[i+1]] for i, left in enumerate(borders[:-1])]) return answer def __len__(self): return self.nodes_number def __repr__(self): answer = "" for i, (final, data) in enumerate(zip(self.final, self.data)): letters, children = self._get_letters(i), self._get_children(i) answer += "{0}".format(i) if final: answer += "F" for a, index in zip(letters, children): answer += " {0}:{1}".format(a, index) answer += "\n" if data is not None: answer += "data:{0} {1}\n".format(len(data), " ".join(str(elem) for elem in data)) return answer def _add_descendant(self, parent, s, final=False): for a in s: code = self.alphabet_codes[a] parent = self._add_empty_child(parent, code, final) return parent def _add_empty_child(self, parent, code, final=False): ''' Добавление ребёнка к вершине parent по символу с кодом code ''' self.graph[parent][code] = self.nodes_number self.graph.append(self._make_default_node()) self.data.append(None) self.final.append(final) self.nodes_number += 1 return (self.nodes_number - 1) def _descend_simple(self, curr, s): ''' Спуск из вершины curr по строке s ''' for a in s: curr = self.graph[curr][self.alphabet_codes[a]] if curr == Trie.NO_NODE: break return curr def _descend_cashed(self, curr, s): ''' Спуск из вершины curr по строке s с кэшированием ''' if s == "": return curr curr_cash = self._descendance_cash[curr] answer = curr_cash.get(s, None) if answer is not None: return answer # для оптимизации дублируем код res = curr for a in s: res = self.graph[res][self.alphabet_codes[a]] # res = self.graph[res][a] if res == Trie.NO_NODE: break curr_cash[s] = res return res def _set_final(self, curr): ''' Делает состояние curr завершающим ''' self.final[curr] = True def _get_letters(self, index, return_indexes=False): """ Извлекает все метки выходных рёбер вершины с номером index """ if self.dict_storage: answer = list(self.graph[index].keys()) else: answer = [i for i, elem in enumerate(self.graph[index]) if elem != Trie.NO_NODE] if not return_indexes: answer = [(self.alphabet[i] if i >= 0 else " ") for i in answer] return answer def _get_children_and_letters(self, index, return_indexes=False): if self.dict_storage: answer = list(self.graph[index].items()) else: answer = [elem for elem in enumerate(self.graph[index]) if elem[1] != Trie.NO_NODE] if not return_indexes: for i, (letter_index, child) in enumerate(answer): answer[i] = (self.alphabet[letter_index], child) return answer def _get_children(self, index): """ Извлекает всех потомков вершины с номером index """ if self.dict_storage: return list(self.graph[index].values()) else: return [elem for elem in self.graph[index] if elem != Trie.NO_NODE] class TrieMinimizer: def __init__(self): pass def minimize(self, trie, dict_storage=False, make_cashed=False, make_numpied=False, precompute_symbols=None, allow_spaces=False, return_groups=False): N = len(trie) if N == 0: raise ValueError("Trie should be non-empty") node_classes = np.full(shape=(N,), fill_value=-1, dtype=int) order = self.generate_postorder(trie) # processing the first node index = order[0] node_classes[index] = 0 class_representatives = [index] node_key = ((), (), trie.is_final(index)) classes, class_keys = {node_key : 0}, [node_key] curr_index = 1 for index in order[1:]: letter_indexes = tuple(trie._get_letters(index, return_indexes=True)) children = trie._get_children(index) children_classes = tuple(node_classes[i] for i in children) key = (letter_indexes, children_classes, trie.is_final(index)) key_class = classes.get(key, None) if key_class is not None: node_classes[index] = key_class else: # появился новый класс class_keys.append(key) classes[key] = node_classes[index] = curr_index class_representatives.append(curr_index) curr_index += 1 # построение нового дерева compressed = Trie(trie.alphabet, is_numpied=make_numpied, dict_storage=dict_storage, allow_spaces=allow_spaces, precompute_symbols=precompute_symbols) L = len(classes) new_final = [elem[2] for elem in class_keys[::-1]] if dict_storage: new_graph = [defaultdict(int) for _ in range(L)] elif make_numpied: new_graph = np.full(shape=(L, len(trie.alphabet)), fill_value=Trie.NO_NODE, dtype=int) new_final = np.array(new_final, dtype=bool) else: new_graph = [[Trie.NO_NODE for a in trie.alphabet] for i in range(L)] for (indexes, children, final), class_index in\ sorted(classes.items(), key=(lambda x: x[1])): row = new_graph[L-class_index-1] for i, child_index in zip(indexes, children): row[i] = L - child_index - 1 compressed.graph = new_graph compressed.root = L - node_classes[trie.root] - 1 compressed.final = new_final compressed.nodes_number = L compressed.data = [None] * L if make_cashed: compressed.make_cashed() if precompute_symbols is not None: if (trie.is_terminated and trie.precompute_symbols and trie.allow_spaces == allow_spaces): # копируем будущие символы из исходного дерева # нужно, чтобы возврат из финальных состояний в начальное был одинаковым в обоих деревьях for i, node_index in enumerate(class_representatives[::-1]): # будущие символы для представителя i-го класса compressed.data[i] = copy.copy(trie.data[node_index]) else: precompute_future_symbols(compressed, precompute_symbols, allow_spaces) if return_groups: node_classes = [L - i - 1 for i in node_classes] return compressed, node_classes else: return compressed def generate_postorder(self, trie): """ Обратная топологическая сортировка """ order, stack = [], [] stack.append(trie.root) colors = ['white'] * len(trie) while len(stack) > 0: index = stack[-1] color = colors[index] if color == 'white': # вершина ещё не обрабатывалась colors[index] = 'grey' for child in trie._get_children(index): # проверяем, посещали ли мы ребёнка раньше if child != Trie.NO_NODE and colors[child] == 'white': stack.append(child) else: if color == 'grey': colors[index] = 'black' order.append(index) stack = stack[:-1] return order def load_trie(infile): with open(infile, "r", encoding="utf8") as fin: line = fin.readline().strip() flags = [x=='T' for x in line.split()] if len(flags) != len(Trie.ATTRS) + 1: raise ValueError("Wrong file format") nodes_number, root = map(int, fin.readline().strip().split()) alphabet = fin.readline().strip().split() trie = Trie(alphabet) for i, attr in enumerate(Trie.ATTRS): setattr(trie, attr, flags[i]) read_data = flags[-1] final = [False] * nodes_number #print(len(alphabet), nodes_number) if trie.dict_storage: graph = [defaultdict(lambda: -1) for _ in range(nodes_number)] elif trie.is_numpied: final = np.array(final) graph = np.full(shape=(nodes_number, len(alphabet)), fill_value=Trie.NO_NODE, dtype=int) else: graph = [[Trie.NO_NODE for a in alphabet] for i in range(nodes_number)] for i in range(nodes_number): line = fin.readline().strip() if "\t" in line: label, transitions = line.split("\t") final[i] = (label == "T") else: label = line final[i] = (label == "T") continue transitions = [x.split(":") for x in transitions.split()] for code, value in transitions: graph[i][int(code)] = int(value) trie.graph = graph trie.root = root trie.final = final trie.nodes_number = nodes_number trie.data = [None] * nodes_number if read_data: for i in range(nodes_number): line = fin.readline().strip("\n") trie.data[i] = [set(elem.split(",")) for elem in line.split(":")] if trie.to_make_cashed: trie.make_cashed() return trie def make_trie(alphabet, words, compressed=True, is_numpied=False, make_cashed=False, precompute_symbols=False, allow_spaces=False, dict_storage=False): trie = Trie(alphabet, is_numpied=is_numpied, to_make_cashed=make_cashed, precompute_symbols=precompute_symbols, dict_storage=dict_storage) trie.fit(words) if compressed: tm = TrieMinimizer() trie = tm.minimize(trie, dict_storage=dict_storage, make_cashed=make_cashed, make_numpied=is_numpied, precompute_symbols=precompute_symbols, allow_spaces=allow_spaces) return trie def precompute_future_symbols(trie, n, allow_spaces=False): """ Collecting possible continuations of length <= n for every node """ if n == 0: return if trie.is_terminated and trie.precompute_symbols: # символы уже предпосчитаны return for index, final in enumerate(trie.final): trie.data[index] = [set() for i in range(n)] for index, (node_data, final) in enumerate(zip(trie.data, trie.final)): node_data[0] = set(trie._get_letters(index)) if allow_spaces and final: node_data[0].add(" ") for d in range(1, n): for index, (node_data, final) in enumerate(zip(trie.data, trie.final)): children = set(trie._get_children(index)) for child in children: node_data[d] |= trie.data[child][d - 1] # в случае, если разрешён возврат по пробелу в стартовое состояние if allow_spaces and final: node_data[d] |= trie.data[trie.root][d - 1] trie.terminated = True
50b28d0ed7daa7be97decf477b846c80cd2df47e
4f0385a90230c0fe808e8672bb5b8abcceb43783
/框架/crawler/scrapy/scrapy_demo/scrapy_demo/spiders/quotes.py
8c9928611b92d882b2c0eebf7d5163ee20e145da
[]
no_license
lincappu/pycharmlearningproject
4084dab7adde01db9fa82a12769a67e8b26b3382
b501523e417b61373688ba12f11b384166baf489
refs/heads/master
2023-07-10T05:21:15.163393
2023-06-29T14:02:35
2023-06-29T14:02:35
113,925,289
0
0
null
null
null
null
UTF-8
Python
false
false
7,268
py
# -*- coding: utf-8 -*- import os import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))) import scrapy from scrapy_demo import items from scrapy_demo import settings import scrapy.settings from scrapy.mail import MailSender # 这是最普通的爬虫形式, # class QuotesSpider(scrapy.Spider): # name = "quotes" # start_urls = [ # 'http://quotes.toscrape.com/page/1/', # ] # # def parse(self, response): # for quote in response.css('div.quote'): # yield { # 'text': quote.css('span.text::text').get(), # 'author': quote.css('small.author::text').get(), # 'tags': quote.css('div.tags a.tag::text').getall(), # } # # next_page = response.css('li.next a::attr(href)').get() # if next_page is not None: # next_page = response.urljoin(next_page) # 这个urljoin 会用start_url中的域名。 # yield scrapy.Request(next_page, callback=self.parse) # scrapy.follow 的形式,和Request的区别:不需要在urljoin一次,直接就是拼接好的url # class QuotesSpider(scrapy.Spider): # name = 'quotes' # start_urls = [ # 'http://quotes.toscrape.com/tag/humor/', # ] # # def parse(self, response): # for quote in response.css('div.quote'): # yield { # 'author': quote.xpath('span/small/text()').get(), # 'text': quote.css('span.text::text').get(), # } # # next_page = response.css('li.next a::attr("href")').get() # if next_page is not None: # yield response.follow(next_page, self.parse) # follow_all 的形式,然后加上另一个回调函数。 # class AuthorSpider(scrapy.Spider): # name = 'author' # # start_urls = ['http://quotes.toscrape.com/'] # # def parse(self, response): # author_page_links = response.css('.author + a') # yield from response.follow_all(author_page_links, self.parse_author) # # pagination_links = response.css('li.next a') # yield from response.follow_all(pagination_links, self.parse) # # def parse_author(self, response): # def extract_with_css(query): # return response.css(query).get(default='').strip() # # yield { # 'name': extract_with_css('h3.author-title::text'), # 'birthdate': extract_with_css('.author-born-date::text'), # 'bio': extract_with_css('.author-description::text'), # } # # # 在命令行中传入参数,然后重写start_request 这样就不用start_url # class QuotesSpider(scrapy.Spider): # name = "quotes" # # def start_requests(self): # url = 'http://quotes.toscrape.com/' # tag = getattr(self, 'tag', None) # if tag is not None: # url = url + 'tag/' + tag # yield scrapy.Request(url, self.parse) # # def parse(self, response): # for quote in response.css('div.quote'): # yield { # 'text': quote.css('span.text::text').extract_first(), # 'author': quote.css('small.author::text').extract_first(), # } # # next_page = response.css('li.next a::attr(href)').extract_first() # if next_page is not None: # next_page = response.urljoin(next_page) # yield scrapy.Request(next_page, self.parse) # class DianyingSpider(scrapy.Spider): # MAIL_HOST = 'smtp.exmail.qq.com' # MAIL_PORT = 25 # MAIL_USER = "[email protected]" # MAIL_PASS = "6bH9KPQoKD" # MAIL_TLS = False # MAIL_SSL = False # # name = "dianying" # start_urls = [ # "https://www.dy2018.com/html/gndy/dyzz/" ] # 这是使用FEED exporter的默认配置选项。这里没有用到itemexporter的配置 # custom_settings = { # 'FEED_URI': "file:///tmp/zzz.marshal", # 'FEED_FORMAT': 'marshal', # 'FEED_EXPORT_ENCODING':'utf8', # 'FEED_EXPORT_FIELDS': ["url", "title"] # } # 程序入口 # def parse(self, response): # mailer = MailSender( # smtphost=settings.py.MAIL_HOST, # smtpuser=settings.py.MAIL_USER, # mailfrom=settings.py.MAIL_USER, # smtppass=settings.py.MAIL_PASS, # smtpport=settings.py.MAIL_PORT, # smtptls=settings.py.MAIL_TLS, # smtpssl=settings.py.MAIL_SSL, # ) # mailer = MailSender.from_settings(self.settings.py) # # mailer.send(to=["[email protected]"], subject="北京新橙科技有限公司", body="Some body") # # # 遍历 最新电影 的所有页面 # for page in response.xpath("//select/option/@value").extract(): # url = "https://www.dy2018.com" + page # self.logger.info('aaaaa %s' % url) # yield scrapy.Request(url, callback=self.parsePage) # # # 处理单个页面 # def parsePage(self, response): # # 获取到该页面的所有电影的详情页链接 # for link in response.xpath('//a[@class="ulink"]/@href').extract(): # url = "https://www.dy2018.com" + link # self.logger.info('bbbbbb %s' % url) # yield scrapy.Request(url, callback=self.parseChild) # # # 处理单个电影详情页 # def parseChild(self, response): # # 获取电影信息,并提取数据 # item = items.DianyingItem() # item['url'] = response.url # item['title'] = response.xpath('//div[@class="title_all"]/h1/text()').extract() # item['magnet'] = response.xpath('//div[@id="Zoom"]//a[starts-with(@href, "magnet:")]/@href').extract() # self.logger.info('ccccc %s' % item) # yield item # itemloader 的形式 # class DianyingSpider(scrapy.Spider): # name = "dianying" # start_urls = [ # "https://www.dy2018.com/html/gndy/dyzz/" # ] # # # 程序入口 # def parse(self, response): # # 遍历 最新电影 的所有页面 # for page in response.xpath("//select/option/@value").extract(): # url = "https://www.dy2018.com" + page # yield scrapy.Request(url, callback=self.parsePage) # # # 处理单个页面 # def parsePage(self, response): # # 获取到该页面的所有电影的详情页链接 # for link in response.xpath('//a[@class="ulink"]/@href').extract(): # url = "https://www.dy2018.com" + link # yield scrapy.Request(url, callback=self.parseChild) # # # def parseChild(self, response): # l = items.ArticleItemLoader(item=items.DianyingItem(), response=response) # l.add_value('url', response.url) # l.add_xpath('title', '//div[@class="title_all"]/h1/text()') # l.add_xpath('magnet', '//div[@id="Zoom"]//img/@src') # l.add_value('date', '20200611') # l.add_value('name','fls') # l.add_value('create_time','test') # yield l.load_item() # # class DianyingSpider(scrapy.Spider): # # name = "dianying" # start_urls = [ # "https://www.thepaper.cn/allGovUsers.jsp", # ] # # def parse(self, response):
ec31acbdb0cf41622d1a325d3f894382ad8fd78f
d4fa331d7d8a00865f99ee2c05ec8efc0468fb63
/alg/remove_k_digits.py
f25427c08b7db78277402c25b6aa25fed1054238
[]
no_license
nyannko/leetcode-python
5342620c789a02c7ae3478d7ecf149b640779932
f234bd7b62cb7bc2150faa764bf05a9095e19192
refs/heads/master
2021-08-11T04:11:00.715244
2019-02-05T15:26:43
2019-02-05T15:26:43
145,757,563
0
0
null
null
null
null
UTF-8
Python
false
false
537
py
class Solution(object): def removeKdigits(self, num, k): """ :type num: str :type k: int :rtype: str """ if len(num) <= k: return '0' stack = [] for i in num: while stack and k > 0 and stack[-1] > i: stack.pop() k -= 1 stack.append(i) # while k > 0: # stack.pop() # k -= 1 if k: stack = stack[:-k] return ''.join(stack).lstrip('0') or '0'
1f97596a4534396f4848c29caeee8100eb7f788e
de1abd0ebbb817aa5f23d369e7dda360fd6f1c32
/chapter3/scrapy/wikiSpider/wikiSpider/settings.py
9bf879252847b3f89efa7323e1c40f4f86ae3b30
[]
no_license
CodedQuen/Web-Scraping-with-Python-
33aaa2e3733aa1f2b8c7a533d74f5d08ac868197
67f2d5f57726d5a943f5f044480e68c36076965b
refs/heads/master
2022-06-13T01:34:39.764531
2020-05-05T11:07:01
2020-05-05T11:07:01
261,435,932
0
0
null
null
null
null
UTF-8
Python
false
false
3,258
py
# -*- coding: utf-8 -*- # Scrapy settings for wikiSpider project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # http://doc.scrapy.org/en/latest/topics/settings.html # http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html # http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html BOT_NAME = 'wikiSpider' SPIDER_MODULES = ['wikiSpider.spiders'] NEWSPIDER_MODULE = 'wikiSpider.spiders' # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'wikiSpider (+http://www.yourdomain.com)' # Obey robots.txt rules ROBOTSTXT_OBEY = True # Configure maximum concurrent requests performed by Scrapy (default: 16) #CONCURRENT_REQUESTS = 32 # Configure a delay for requests for the same website (default: 0) # See http://scrapy.readthedocs.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs #DOWNLOAD_DELAY = 3 # The download delay setting will honor only one of: #CONCURRENT_REQUESTS_PER_DOMAIN = 16 #CONCURRENT_REQUESTS_PER_IP = 16 # Disable cookies (enabled by default) #COOKIES_ENABLED = False # Disable Telnet Console (enabled by default) #TELNETCONSOLE_ENABLED = False # Override the default request headers: #DEFAULT_REQUEST_HEADERS = { # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', # 'Accept-Language': 'en', #} # Enable or disable spider middlewares # See http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html #SPIDER_MIDDLEWARES = { # 'wikiSpider.middlewares.WikispiderSpiderMiddleware': 543, #} # Enable or disable downloader middlewares # See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html #DOWNLOADER_MIDDLEWARES = { # 'wikiSpider.middlewares.MyCustomDownloaderMiddleware': 543, #} # Enable or disable extensions # See http://scrapy.readthedocs.org/en/latest/topics/extensions.html #EXTENSIONS = { # 'scrapy.extensions.telnet.TelnetConsole': None, #} # Configure item pipelines # See http://scrapy.readthedocs.org/en/latest/topics/item-pipeline.html #ITEM_PIPELINES = { # 'wikiSpider.pipelines.WikispiderPipeline': 300, #} # Enable and configure the AutoThrottle extension (disabled by default) # See http://doc.scrapy.org/en/latest/topics/autothrottle.html #AUTOTHROTTLE_ENABLED = True # The initial download delay #AUTOTHROTTLE_START_DELAY = 5 # The maximum download delay to be set in case of high latencies #AUTOTHROTTLE_MAX_DELAY = 60 # The average number of requests Scrapy should be sending in parallel to # each remote server #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received: #AUTOTHROTTLE_DEBUG = False # Enable and configure HTTP caching (disabled by default) # See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings #HTTPCACHE_ENABLED = True #HTTPCACHE_EXPIRATION_SECS = 0 #HTTPCACHE_DIR = 'httpcache' #HTTPCACHE_IGNORE_HTTP_CODES = [] #HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
ba1cba5c8a2a1b7898a46fb6a4abeebd84541336
51885da54b320351bfea42c7dd629f41985454cd
/abc075/c.py
18f98c98169acb0c09d089c7c2b89ef4b8bc0bd0
[]
no_license
mskt4440/AtCoder
dd266247205faeda468f911bff279a792eef5113
f22702e3932e129a13f0683e91e5cc1a0a99c8d5
refs/heads/master
2021-12-15T10:21:31.036601
2021-12-14T08:19:11
2021-12-14T08:19:11
185,161,276
0
0
null
null
null
null
UTF-8
Python
false
false
1,777
py
# # abc075 c # import sys from io import StringIO import unittest from collections import deque class TestClass(unittest.TestCase): def assertIO(self, input, output): stdout, stdin = sys.stdout, sys.stdin sys.stdout, sys.stdin = StringIO(), StringIO(input) resolve() sys.stdout.seek(0) out = sys.stdout.read()[:-1] sys.stdout, sys.stdin = stdout, stdin self.assertEqual(out, output) def test_入力例_1(self): input = """7 7 1 3 2 7 3 4 4 5 4 6 5 6 6 7""" output = """4""" self.assertIO(input, output) def test_入力例_2(self): input = """3 3 1 2 1 3 2 3""" output = """0""" self.assertIO(input, output) def test_入力例_3(self): input = """6 5 1 2 2 3 3 4 4 5 5 6""" output = """5""" self.assertIO(input, output) def resolve(): N, M = map(int, input().split()) AB = [list(map(int, input().split())) for _ in range(M)] ans = 0 for i in range(M): Target = AB[:] Target.pop(i) G = [[i+1, 0] for i in range(N)] for ab in Target: a, b = ab G[a-1][1] += 1 G[b-1][1] += 1 G[a-1].append(b) G[b-1].append(a) F = [False] * N Q = deque() Q.append(1) F[0] = True while Q: p = Q.pop() if G[p-1][1] == 0: continue for np in G[p-1][2:]: if F[np-1]: continue Q.append(np) F[np-1] = True for f in F: if f == False: ans += 1 break print(ans) if __name__ == "__main__": # unittest.main() resolve()
70e19baa27259958c38615665bee3f6c8ac77d48
b8cc6d34ad44bf5c28fcca9e0df01d9ebe0ee339
/入门学习/threading_dead_lock-eg.py
277a2b79b337003460067bedae3cb0eeca00cd29
[]
no_license
python-yc/pycharm_script
ae0e72898ef44a9de47e7548170a030c0a752eb5
c8947849090c71e131df5dc32173ebe9754df951
refs/heads/master
2023-01-05T06:16:33.857668
2020-10-31T08:09:53
2020-10-31T08:09:53
296,778,670
0
0
null
null
null
null
UTF-8
Python
false
false
2,591
py
""" import threading import time lock_1 = threading.Lock() lock_2 = threading.Lock() def func_1(): print("func_1 starting......") lock_1.acquire() print("func_1 申请了 lock 1 ......") time.sleep(2) print("func_1 等待 lock_2 .......") lock_2.acquire() print("func_1 申请了 lock 2 ......") lock_2.release() print("func_1 释放了lock_2") lock_1.release() print("func_1 释放了lock_1") print("func_1 done......") def func_2(): time.sleep(3) print("func_2 starting......") lock_2.acquire() print("func_2 申请了 lock 2 ......") #将这个函数内的第一个sleep注释,然后将下面这个取消注释,就会出现死锁现象 #time.sleep(3) print("func_2 等待 lock_1 .......") lock_1.acquire() print("func_2 申请了 lock 1 ......") lock_1.release() print("func_2 释放了lock_1") lock_2.release() print("func_2 释放了lock_2") print("func_2 done......") if __name__ == '__main__': print("主程序启动............") t1 = threading.Thread(target=func_1,args=()) t2 = threading.Thread(target=func_2,args=()) t1.start() t2.start() t1.join() t2.join() print("主程序结束。。。。。。。。。。") """ import threading import time lock_1 = threading.Lock() lock_2 = threading.Lock() def func_1(): print("func_1 starting......") #给一个申请时间,如果超时就放弃 lock_1.acquire(timeout=4) print("func_1 申请了 lock 1 ......") time.sleep(2) print("func_1 等待 lock_2 .......") rst = lock_2.acquire(timeout=2) if rst: print("func_1已经得到锁lock_2") lock_2.release() print("func_1 释放了lock_2") else: print("func_1注定没申请到lock_2....") lock_1.release() print("func_1 释放了lock_1") print("func_1 done......") def func_2(): print("func_2 starting......") lock_2.acquire() print("func_2 申请了 lock 2 ......") time.sleep(3) print("func_2 等待 lock_1 .......") lock_1.acquire() print("func_2 申请了 lock 1 ......") lock_1.release() print("func_2 释放了lock_1") lock_2.release() print("func_2 释放了lock_2") print("func_2 done......") if __name__ == '__main__': print("主程序启动............") t1 = threading.Thread(target=func_1,args=()) t2 = threading.Thread(target=func_2,args=()) t1.start() t2.start() t1.join() t2.join() print("主程序结束。。。。。。。。。。")
[ "15655982512.com" ]
15655982512.com
90d662d9b82ee1a8490bdc09aa96fc25d2c0ce6e
832852c679816673f708860929a36a20ca8d3e32
/Configurations/HighMass/Full2017/configuration_mm.py
1ee0bb7d5dbf9cfab8779a7973ed2065f8bd52d3
[]
no_license
UniMiBAnalyses/PlotsConfigurations
c4ec7376e2757b838930dfb2615e1dc99a64e542
578fe518cfc608169d3418bcb63a8342d3a24390
refs/heads/master
2023-08-31T17:57:45.396325
2022-09-01T10:13:14
2022-09-01T10:13:14
172,092,793
0
13
null
2023-04-27T10:26:52
2019-02-22T15:52:44
Python
UTF-8
Python
false
false
905
py
# example of configuration file treeName= 'Events' tag = 'Full2017_mm' # used by mkShape to define output directory for root files outputDir = 'rootFile_'+tag # file with TTree aliases aliasesFile = 'aliases.py' # file with list of variables variablesFile = 'variables.py' # file with list of cuts cutsFile = 'cuts_ee_mm.py' # file with list of samples samplesFile = 'samples.py' # file with list of samples plotFile = 'plot.py' # luminosity to normalize to (in 1/fb) lumi = 41.5 # used by mkPlot to define output directory for plots # different from "outputDir" to do things more tidy outputDirPlots = 'plot_'+tag # used by mkDatacards to define output directory for datacards outputDirDatacard = 'datacards' # structure file for datacard #structureFile = 'structure.py' # Is this even needed still? # nuisances file for mkDatacards and for mkShape nuisancesFile = 'nuisances.py'
e1c8772a70ff0b7a5ead0b6c73d8adda9807dd1a
28c598bf75f3ab287697c7f0ff1fb13bebb7cf75
/testgame.mmo/genesis/spawn/spawnmain.py
d1a6e96ee033931ad1e1cf4df3507ff6d4965fc9
[]
no_license
keaysma/solinia_depreciated
4cb8811df4427261960af375cf749903d0ca6bd1
4c265449a5e9ca91f7acf7ac05cd9ff2949214ac
refs/heads/master
2020-03-25T13:08:33.913231
2014-09-12T08:23:26
2014-09-12T08:23:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
338
py
import races import animal import npc """ #Critter Pack #http://www.mmoworkshop.com/trac/mom/wiki/Store """ #import critters """ #Monster Pack Examples #http://www.mmoworkshop.com/trac/mom/wiki/Store """ #import monsters """ Mythical Creature Pack Examples http://www.mmoworkshop.com/trac/mom/wiki/Store """ #import mythical
0ce5054c29d7414e6c56e074af1b1ef1b32afe58
f95e73867e4383784d6fdd6a1c9fe06cffbfd019
/CheckIO/HOME/pawn_brotherhood.py
4b0929a05d3c3562eadcb0a6374c8a5fdf00444c
[]
no_license
linxiaohui/CodeLibrary
da03a9ed631d1d44b098ae393b4bd9e378ab38d3
96a5d22a8c442c4aec8a064ce383aba8a7559b2c
refs/heads/master
2021-01-18T03:42:39.536939
2018-12-11T06:47:15
2018-12-11T06:47:15
85,795,767
3
0
null
null
null
null
UTF-8
Python
false
false
554
py
#!/usr/bin/env python # *-* coding:UTF-8 *-* def safe_pawns(pawns): cnt=0 for l in pawns: col,row=l.lower() if int(row)==1: continue if col>='b' and chr(ord(col)-1)+str(int(row)-1) in pawns or col<='g' and chr(ord(col)+1)+str(int(row)-1) in pawns: cnt+=1 return cnt if __name__ == '__main__': #These "asserts" using only for self-checking and not necessary for auto-testing assert safe_pawns({"b4", "d4", "f4", "c3", "e3", "g5", "d2"}) == 6 assert safe_pawns({"b4", "c4", "d4", "e4", "f4", "g4", "e5"}) == 1
6fef01c2498c9a9b7a52d8a294080b7fe61d6627
487ce91881032c1de16e35ed8bc187d6034205f7
/codes/CodeJamCrawler/CJ/16_2_1_Dom_ju.py
c726b4de6450f76ad915989d09c20461a1c9a8cd
[]
no_license
DaHuO/Supergraph
9cd26d8c5a081803015d93cf5f2674009e92ef7e
c88059dc66297af577ad2b8afa4e0ac0ad622915
refs/heads/master
2021-06-14T16:07:52.405091
2016-08-21T13:39:13
2016-08-21T13:39:13
49,829,508
2
0
null
2021-03-19T21:55:46
2016-01-17T18:23:00
Python
UTF-8
Python
false
false
538
py
DOWNLOAD_DIR = "/Users/Dom/Downloads/" def jopen( filename ): return open( DOWNLOAD_DIR+filename+".in", "r") def jout( filename, results, linebreaks=False ): f = open(DOWNLOAD_DIR+filename+".out","w") for n in range(len(results)): f.write( "Case #" + str(n+1) + ": " ) if isinstance(n, list): if linebreaks: f.write( "\n" ) f.write( " ".join(n) ) else: if linebreaks: f.write( "\n" ) f.write( str(results[n]) + "\n" )
1e4f57cb7ae54552f4520fc68b828043c2167752
e41c10e0b17265509fd460f860306784522eedc3
/basic_config.py
8e0791dbf7f899d792c04ef3414e39b0ef1d7b41
[ "CC0-1.0" ]
permissive
hyyc116/research_paradigm_changing
c77ecf2533a6b2e2cd3f74fc3d3073454bffc55c
eac69c45a7a17eb70ace185fa22831ac785e504e
refs/heads/master
2020-11-24T05:48:07.973347
2019-12-18T12:17:02
2019-12-18T12:17:02
227,992,284
0
0
null
null
null
null
UTF-8
Python
false
false
5,102
py
#coding:utf-8 import os import sys import json from collections import defaultdict from collections import Counter import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from scipy.optimize import curve_fit from sklearn.metrics import r2_score import math import numpy as np import random import logging import networkx as nx from itertools import combinations import pylab import itertools from mpl_toolkits.mplot3d import Axes3D from scipy.interpolate import spline from multiprocessing.dummy import Pool as ThreadPool from networkx.algorithms import isomorphism from matplotlib import cm as CM from collections import Counter from scipy.signal import wiener import matplotlib as mpl from matplotlib.patches import Circle from matplotlib.patheffects import withStroke import matplotlib.colors as colors from matplotlib.colors import LogNorm from matplotlib.colors import LinearSegmentedColormap from networkx.algorithms.core import core_number from networkx.algorithms.core import k_core import psycopg2 from cycler import cycler import six # from gini import gini logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s',level=logging.INFO) mpl.rcParams['agg.path.chunksize'] = 10000 color_sequence = ['#1f77b4', '#aec7e8', '#ff7f0e', '#ffbb78', '#2ca02c', '#98df8a', '#d62728', '#ff9896', '#9467bd', '#c5b0d5', '#8c564b', '#c49c94', '#e377c2', '#f7b6d2', '#7f7f7f', '#c7c7c7', '#bcbd22', '#dbdb8d', '#17becf', '#9edae5'] mpl.rcParams['axes.prop_cycle'] = cycler('color', color_sequence) # color = plt.cm.viridis(np.linspace(0.01,0.99,6)) # This returns RGBA; convert: # hexcolor = map(lambda rgb:'#%02x%02x%02x' % (rgb[0]*255,rgb[1]*255,rgb[2]*255), # tuple(color[:,0:-1])) # mpl.rcParams['axes.prop_cycle'] = cycler('color', hexcolor) params = {'legend.fontsize': 8, 'axes.labelsize': 8, 'axes.titlesize':10, 'xtick.labelsize':8, 'ytick.labelsize':8} pylab.rcParams.update(params) # from paths import * def circle(ax,x,y,radius=0.15): circle = Circle((x, y), radius, clip_on=False, zorder=10, linewidth=1, edgecolor='black', facecolor=(0, 0, 0, .0125), path_effects=[withStroke(linewidth=5, foreground='w')]) ax.add_artist(circle) def autolabel(rects,ax,total_count=None,step=1,): """ Attach a text label above each bar displaying its height """ for index in np.arange(len(rects),step=step): rect = rects[index] height = rect.get_height() # print height if not total_count is None: ax.text(rect.get_x() + rect.get_width()/2., 1.005*height, '{:}\n({:.6f})'.format(int(height),height/float(total_count)), ha='center', va='bottom') else: ax.text(rect.get_x() + rect.get_width()/2., 1.005*height, '{:}'.format(int(height)), ha='center', va='bottom') class dbop: def __init__(self,insert_index=0): self._insert_index=insert_index self._insert_values=[] logging.debug("connect database with normal cursor.") self._db = psycopg2.connect(database='core_data',user="buyi",password = "ruth_hardtop_isthmus_bubbly") self._cursor = self._db.cursor() def query_database(self,sql): self._cursor.close() self._cursor = self._db.cursor() self._cursor.execute(sql) logging.debug("query database with sql {:}".format(sql)) return self._cursor def insert_database(self,sql,values): self._cursor.close() self._cursor = self._db.cursor() self._cursor.executemany(sql,values) logging.debug("insert data to database with sql {:}".format(sql)) self._db.commit() def batch_insert(self,sql,row,step,is_auto=True,end=False): if end: if len(self._insert_values)!=0: logging.info("insert {:}th data into database,final insert.".format(self._insert_index)) self.insert_database(sql,self._insert_values) else: self._insert_index+=1 if is_auto: row[0] = self._insert_index self._insert_values.append(tuple(row)) if self._insert_index%step==0: logging.info("insert {:}th data into database".format(self._insert_index)) self.insert_database(sql,self._insert_values) self._insert_values=[] def get_insert_count(self): return self._insert_index def execute_del_update(self,sql): self._cursor.execute(sql) self._db.commit() logging.debug("execute delete or update sql {:}.".format(sql)) def execute_sql(self,sql): self._cursor.execute(sql) self._db.commit() logging.debug("execute sql {:}.".format(sql)) def close_db(self): self._db.close() def hist_2_bar(data,bins=50): n,bins,patches = plt.hist(data,bins=bins) return [x for x in bins[:-1]],[x for x in n]
fc9e559deb7f5bddce6f8748ac93e3cc190dfb31
0130533e0f40a0f1cf476f519a3673b10ceabff3
/teste/maximo.py
b0fd9c6f4d4edd354a14ef1c57bb97f12fe9654e
[]
no_license
danielcanuto/revisao_python
d79c8fbf475e1cea12ca9719d02868666e0591db
3dbd2af74c7cc94f8e1962acb4069f40d0e71772
refs/heads/main
2023-03-02T04:37:30.777336
2021-02-11T11:16:54
2021-02-11T11:16:54
337,031,753
0
0
null
null
null
null
UTF-8
Python
false
false
141
py
def maior(x, y): if x > y: return x else: return y def maximo(x, y, z): a = maior(x, y) return maior(a, z)
abcfc7f85883e49ffa5113a31431886ddf533f5c
5b1b478b0e7b8069762855baa8a2a4f6ff48ebf4
/src/reviews/forms.py
bf83b29d371abc3b2b2686430c5fe69d7b383f5e
[ "MIT" ]
permissive
junaidq1/greendot
9e4a0402fcee7182ca7531a0dd4a48edb43f79c5
cd9e7791523317d759e0f5f9cf544deff34a8c79
refs/heads/master
2020-04-06T06:54:07.994376
2016-09-11T18:33:15
2016-09-11T18:33:15
61,906,579
0
0
null
null
null
null
UTF-8
Python
false
false
4,047
py
from django import forms from .models import Review, Employee from registration.forms import RegistrationFormUniqueEmail #this is to edit the registration redux form # class ReviewForm(forms.ModelForm): # class Meta: # model = Review # fields = [ # "content", # "employee", # "work_again", # ] #actual review post form class ReviewForm2(forms.ModelForm): class Meta: model = Review fields = ["length_working", "ques1", "ques2", "ques3","work_again", "content"] # def content_clean(self): # content = self.cleaned_data.get('content') # print "jimmy" # print len(content) # if len(content) < 70: # raise forms.ValidationError("Please provide a more impactful review") # return content #this form edits the registration redux form class UserLevelRegistrationForm(RegistrationFormUniqueEmail): LEVEL_CHOICES = ( ('PPD', 'PPD'), ('BA', 'BA'), ('C', 'C'), ('SC', 'SC'), ('M', 'M'), ('SM', 'SM'), ('Other', 'other'), ) OFFICE_CHOICES = ( ('Kansas City', 'Kansas City'), ('Atlanta', 'Atlanta'), ('Austin', 'Austin'), ('Bengaluru', 'Bengaluru'), ('Boston', 'Boston'), ('Charlotte', 'Charlotte'), ('Chicago', 'Chicago'), ('Cincinnati', 'Cincinnati'), ('Cleveland', 'Cleveland'), ('Dallas', 'Dallas'), ('Denver', 'Denver'), ('Detroit', 'Detroit'), ('Gurgaon', 'Gurgaon'), ('Houston', 'Houston'), ('Los Angeles', 'Los Angeles'), ('McLean', 'McLean'), ('Miami', 'Miami'), ('Minneapolis', 'Minneapolis'), ('Mumbai', 'Mumbai'), ('New York City', 'New York City'), ('Orange County', 'Orange County'), ('Parsippany', 'Parsippany'), ('Philadelphia', 'Philadelphia'), ('Pittsburgh', 'Pittsburgh'), ('San Francisco', 'San Francisco'), ('Seattle', 'Seattle'), ('Other', 'other'), ) ServiceArea_CHOICES = ( ('S&O', 'S&O'), ('Tech', 'Tech'), ('Human Capital', 'Human Capital'), ) level = forms.ChoiceField(choices=LEVEL_CHOICES, label="What is your level at the firm?") office = forms.ChoiceField(choices=OFFICE_CHOICES, label="What office are you based out of?") service_area = forms.ChoiceField(choices=ServiceArea_CHOICES, label="What Service Area are you a part of?") # form to validate that person signing up knows the answer to the impact day question class ValidationForm(forms.Form): answer = forms.CharField() class ContactForm(forms.Form): username = forms.CharField(label="Please enter your username (if applicable)", required=False) contact_email = forms.EmailField(label="Please provide a contact email") message = forms.CharField(widget=forms.Textarea) class AccessIssuesForm(forms.Form): username = forms.CharField(label="Please enter your username", required=False) contact_email = forms.EmailField(label="Please provide a contact email") message = forms.CharField(label="Please describe the access issues you are having", widget=forms.Textarea) class ReportDataForm(forms.Form): DataReportChoices = ( ('Incorrect', 'Incorrect practitioner data'), ('Missing', 'Missing practitioner data'), ) data_issue = forms.ChoiceField(choices=DataReportChoices, label="What kind of data issue would you like to report?") practitioner_first_name = forms.CharField(label="First name of practitoner", max_length=120) practitioner_last_name = forms.CharField(label="Last name of practitoner", max_length=120) service_area = forms.CharField(label="Service Area of practitoner", max_length=120) level = forms.CharField(label="Level of practitoner", max_length=120) office = forms.CharField(label="Office of practitoner", max_length=120) message = forms.CharField(label="Describe data issue", max_length=1500) class PartnerForm(forms.Form): service_area_options = ( ('S&O', 'S&O'), ('Tech', 'Tech'), ('HCap', 'HCap'), ) service_ar = forms.ChoiceField(choices=service_area_options, label="What Service Area are you aligned with?") message = forms.CharField(label="What makes you a good fit for the team?", widget=forms.Textarea) contact_email = forms.EmailField(label="Email address")
e1c50ce55b94d0b8974045c6d12124d2db102332
21b39d50e4df56ea01453001845d1580729af1df
/jdcloud_sdk/services/redis/apis/DescribeClientListRequest.py
450146bb94baa2db571d11a497779f82c80cb4ac
[ "Apache-2.0" ]
permissive
Tanc009/jdcloud-sdk-python
ef46eac7731aa8a1839b1fc1efd93249b7a977f0
8b045c99bc5b73ca7348e950b6f01e03a27982f5
refs/heads/master
2021-08-09T14:49:16.177709
2021-06-25T02:38:41
2021-06-25T02:38:41
141,714,695
0
0
Apache-2.0
2018-07-20T13:21:17
2018-07-20T13:21:16
null
UTF-8
Python
false
false
1,572
py
# coding=utf8 # Copyright 2018 JDCLOUD.COM # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # NOTE: This class is auto generated by the jdcloud code generator program. from jdcloud_sdk.core.jdcloudrequest import JDCloudRequest class DescribeClientListRequest(JDCloudRequest): """ 查询当前客户端IP列表 """ def __init__(self, parameters, header=None, version="v1"): super(DescribeClientListRequest, self).__init__( '/regions/{regionId}/cacheInstance/{cacheInstanceId}/clientList', 'GET', header, version) self.parameters = parameters class DescribeClientListParameters(object): def __init__(self, regionId, cacheInstanceId, ): """ :param regionId: 缓存Redis实例所在区域的Region ID。目前有华北-北京、华南-广州、华东-上海三个区域,Region ID分别为cn-north-1、cn-south-1、cn-east-2 :param cacheInstanceId: 缓存Redis实例ID,是访问实例的唯一标识 """ self.regionId = regionId self.cacheInstanceId = cacheInstanceId
425bbfbbe5ae1399dac988c42a53fa836aa09111
cbfddfdf5c7fa8354162efe50b41f84e55aff118
/venv/lib/python3.7/site-packages/nltk/tokenize/punkt.py
f0dcaca359521808d4344948c5389317ab0fdec1
[ "MIT", "Apache-2.0" ]
permissive
tclerico/SAAC
8d2245221dd135aea67c5e079ac7eaf542b25e2f
2f52007ae8043096662e76da828a84e87f71091e
refs/heads/master
2022-12-09T21:56:33.430404
2019-02-20T14:23:51
2019-02-20T14:23:51
153,152,229
3
0
MIT
2022-09-16T17:52:47
2018-10-15T17:13:29
Python
UTF-8
Python
false
false
62,162
py
# Natural Language Toolkit: Punkt sentence tokenizer # # Copyright (C) 2001-2018 NLTK Project # Algorithm: Kiss & Strunk (2006) # Author: Willy <[email protected]> (original Python port) # Steven Bird <[email protected]> (additions) # Edward Loper <[email protected]> (rewrite) # Joel Nothman <[email protected]> (almost rewrite) # Arthur Darcet <[email protected]> (fixes) # URL: <http://nltk.org/> # For license information, see LICENSE.TXT r""" Punkt Sentence Tokenizer This tokenizer divides a text into a list of sentences by using an unsupervised algorithm to build a model for abbreviation words, collocations, and words that start sentences. It must be trained on a large collection of plaintext in the target language before it can be used. The NLTK data package includes a pre-trained Punkt tokenizer for English. >>> import nltk.data >>> text = ''' ... Punkt knows that the periods in Mr. Smith and Johann S. Bach ... do not mark sentence boundaries. And sometimes sentences ... can start with non-capitalized words. i is a good variable ... name. ... ''' >>> sent_detector = nltk.data.load('tokenizers/punkt/english.pickle') >>> print('\n-----\n'.join(sent_detector.tokenize(text.strip()))) Punkt knows that the periods in Mr. Smith and Johann S. Bach do not mark sentence boundaries. ----- And sometimes sentences can start with non-capitalized words. ----- i is a good variable name. (Note that whitespace from the original text, including newlines, is retained in the output.) Punctuation following sentences is also included by default (from NLTK 3.0 onwards). It can be excluded with the realign_boundaries flag. >>> text = ''' ... (How does it deal with this parenthesis?) "It should be part of the ... previous sentence." "(And the same with this one.)" ('And this one!') ... "('(And (this)) '?)" [(and this. )] ... ''' >>> print('\n-----\n'.join( ... sent_detector.tokenize(text.strip()))) (How does it deal with this parenthesis?) ----- "It should be part of the previous sentence." ----- "(And the same with this one.)" ----- ('And this one!') ----- "('(And (this)) '?)" ----- [(and this. )] >>> print('\n-----\n'.join( ... sent_detector.tokenize(text.strip(), realign_boundaries=False))) (How does it deal with this parenthesis? ----- ) "It should be part of the previous sentence. ----- " "(And the same with this one. ----- )" ('And this one! ----- ') "('(And (this)) '? ----- )" [(and this. ----- )] However, Punkt is designed to learn parameters (a list of abbreviations, etc.) unsupervised from a corpus similar to the target domain. The pre-packaged models may therefore be unsuitable: use ``PunktSentenceTokenizer(text)`` to learn parameters from the given text. :class:`.PunktTrainer` learns parameters such as a list of abbreviations (without supervision) from portions of text. Using a ``PunktTrainer`` directly allows for incremental training and modification of the hyper-parameters used to decide what is considered an abbreviation, etc. The algorithm for this tokenizer is described in:: Kiss, Tibor and Strunk, Jan (2006): Unsupervised Multilingual Sentence Boundary Detection. Computational Linguistics 32: 485-525. """ from __future__ import print_function, unicode_literals, division # TODO: Make orthographic heuristic less susceptible to overtraining # TODO: Frequent sentence starters optionally exclude always-capitalised words # FIXME: Problem with ending string with e.g. '!!!' -> '!! !' import re import math from collections import defaultdict from six import string_types from nltk.compat import unicode_repr, python_2_unicode_compatible from nltk.probability import FreqDist from nltk.tokenize.api import TokenizerI ###################################################################### # { Orthographic Context Constants ###################################################################### # The following constants are used to describe the orthographic # contexts in which a word can occur. BEG=beginning, MID=middle, # UNK=unknown, UC=uppercase, LC=lowercase, NC=no case. _ORTHO_BEG_UC = 1 << 1 """Orthographic context: beginning of a sentence with upper case.""" _ORTHO_MID_UC = 1 << 2 """Orthographic context: middle of a sentence with upper case.""" _ORTHO_UNK_UC = 1 << 3 """Orthographic context: unknown position in a sentence with upper case.""" _ORTHO_BEG_LC = 1 << 4 """Orthographic context: beginning of a sentence with lower case.""" _ORTHO_MID_LC = 1 << 5 """Orthographic context: middle of a sentence with lower case.""" _ORTHO_UNK_LC = 1 << 6 """Orthographic context: unknown position in a sentence with lower case.""" _ORTHO_UC = _ORTHO_BEG_UC + _ORTHO_MID_UC + _ORTHO_UNK_UC """Orthographic context: occurs with upper case.""" _ORTHO_LC = _ORTHO_BEG_LC + _ORTHO_MID_LC + _ORTHO_UNK_LC """Orthographic context: occurs with lower case.""" _ORTHO_MAP = { ('initial', 'upper'): _ORTHO_BEG_UC, ('internal', 'upper'): _ORTHO_MID_UC, ('unknown', 'upper'): _ORTHO_UNK_UC, ('initial', 'lower'): _ORTHO_BEG_LC, ('internal', 'lower'): _ORTHO_MID_LC, ('unknown', 'lower'): _ORTHO_UNK_LC, } """A map from context position and first-letter case to the appropriate orthographic context flag.""" # } (end orthographic context constants) ###################################################################### ###################################################################### # { Decision reasons for debugging ###################################################################### REASON_DEFAULT_DECISION = 'default decision' REASON_KNOWN_COLLOCATION = 'known collocation (both words)' REASON_ABBR_WITH_ORTHOGRAPHIC_HEURISTIC = 'abbreviation + orthographic heuristic' REASON_ABBR_WITH_SENTENCE_STARTER = 'abbreviation + frequent sentence starter' REASON_INITIAL_WITH_ORTHOGRAPHIC_HEURISTIC = 'initial + orthographic heuristic' REASON_NUMBER_WITH_ORTHOGRAPHIC_HEURISTIC = 'initial + orthographic heuristic' REASON_INITIAL_WITH_SPECIAL_ORTHOGRAPHIC_HEURISTIC = 'initial + special orthographic heuristic' # } (end decision reasons for debugging) ###################################################################### ###################################################################### # { Language-dependent variables ###################################################################### class PunktLanguageVars(object): """ Stores variables, mostly regular expressions, which may be language-dependent for correct application of the algorithm. An extension of this class may modify its properties to suit a language other than English; an instance can then be passed as an argument to PunktSentenceTokenizer and PunktTrainer constructors. """ __slots__ = ('_re_period_context', '_re_word_tokenizer') def __getstate__(self): # All modifications to the class are performed by inheritance. # Non-default parameters to be pickled must be defined in the inherited # class. return 1 def __setstate__(self, state): return 1 sent_end_chars = ('.', '?', '!') """Characters which are candidates for sentence boundaries""" @property def _re_sent_end_chars(self): return '[%s]' % re.escape(''.join(self.sent_end_chars)) internal_punctuation = ',:;' # might want to extend this.. """sentence internal punctuation, which indicates an abbreviation if preceded by a period-final token.""" re_boundary_realignment = re.compile(r'["\')\]}]+?(?:\s+|(?=--)|$)', re.MULTILINE) """Used to realign punctuation that should be included in a sentence although it follows the period (or ?, !).""" _re_word_start = r"[^\(\"\`{\[:;&\#\*@\)}\]\-,]" """Excludes some characters from starting word tokens""" _re_non_word_chars = r"(?:[?!)\";}\]\*:@\'\({\[])" """Characters that cannot appear within words""" _re_multi_char_punct = r"(?:\-{2,}|\.{2,}|(?:\.\s){2,}\.)" """Hyphen and ellipsis are multi-character punctuation""" _word_tokenize_fmt = r'''( %(MultiChar)s | (?=%(WordStart)s)\S+? # Accept word characters until end is found (?= # Sequences marking a word's end \s| # White-space $| # End-of-string %(NonWord)s|%(MultiChar)s| # Punctuation ,(?=$|\s|%(NonWord)s|%(MultiChar)s) # Comma if at end of word ) | \S )''' """Format of a regular expression to split punctuation from words, excluding period.""" def _word_tokenizer_re(self): """Compiles and returns a regular expression for word tokenization""" try: return self._re_word_tokenizer except AttributeError: self._re_word_tokenizer = re.compile( self._word_tokenize_fmt % { 'NonWord': self._re_non_word_chars, 'MultiChar': self._re_multi_char_punct, 'WordStart': self._re_word_start, }, re.UNICODE | re.VERBOSE ) return self._re_word_tokenizer def word_tokenize(self, s): """Tokenize a string to split off punctuation other than periods""" return self._word_tokenizer_re().findall(s) _period_context_fmt = r""" \S* # some word material %(SentEndChars)s # a potential sentence ending (?=(?P<after_tok> %(NonWord)s # either other punctuation | \s+(?P<next_tok>\S+) # or whitespace and some other token ))""" """Format of a regular expression to find contexts including possible sentence boundaries. Matches token which the possible sentence boundary ends, and matches the following token within a lookahead expression.""" def period_context_re(self): """Compiles and returns a regular expression to find contexts including possible sentence boundaries.""" try: return self._re_period_context except: self._re_period_context = re.compile( self._period_context_fmt % { 'NonWord': self._re_non_word_chars, 'SentEndChars': self._re_sent_end_chars, }, re.UNICODE | re.VERBOSE) return self._re_period_context _re_non_punct = re.compile(r'[^\W\d]', re.UNICODE) """Matches token types that are not merely punctuation. (Types for numeric tokens are changed to ##number## and hence contain alpha.)""" # } ###################################################################### # //////////////////////////////////////////////////////////// # { Helper Functions # //////////////////////////////////////////////////////////// def _pair_iter(it): """ Yields pairs of tokens from the given iterator such that each input token will appear as the first element in a yielded tuple. The last pair will have None as its second element. """ it = iter(it) prev = next(it) for el in it: yield (prev, el) prev = el yield (prev, None) ###################################################################### # { Punkt Parameters ###################################################################### class PunktParameters(object): """Stores data used to perform sentence boundary detection with Punkt.""" def __init__(self): self.abbrev_types = set() """A set of word types for known abbreviations.""" self.collocations = set() """A set of word type tuples for known common collocations where the first word ends in a period. E.g., ('S.', 'Bach') is a common collocation in a text that discusses 'Johann S. Bach'. These count as negative evidence for sentence boundaries.""" self.sent_starters = set() """A set of word types for words that often appear at the beginning of sentences.""" self.ortho_context = defaultdict(int) """A dictionary mapping word types to the set of orthographic contexts that word type appears in. Contexts are represented by adding orthographic context flags: ...""" def clear_abbrevs(self): self.abbrev_types = set() def clear_collocations(self): self.collocations = set() def clear_sent_starters(self): self.sent_starters = set() def clear_ortho_context(self): self.ortho_context = defaultdict(int) def add_ortho_context(self, typ, flag): self.ortho_context[typ] |= flag def _debug_ortho_context(self, typ): c = self.ortho_context[typ] if c & _ORTHO_BEG_UC: yield 'BEG-UC' if c & _ORTHO_MID_UC: yield 'MID-UC' if c & _ORTHO_UNK_UC: yield 'UNK-UC' if c & _ORTHO_BEG_LC: yield 'BEG-LC' if c & _ORTHO_MID_LC: yield 'MID-LC' if c & _ORTHO_UNK_LC: yield 'UNK-LC' ###################################################################### # { PunktToken ###################################################################### @python_2_unicode_compatible class PunktToken(object): """Stores a token of text with annotations produced during sentence boundary detection.""" _properties = [ 'parastart', 'linestart', 'sentbreak', 'abbr', 'ellipsis' ] __slots__ = ['tok', 'type', 'period_final'] + _properties def __init__(self, tok, **params): self.tok = tok self.type = self._get_type(tok) self.period_final = tok.endswith('.') for p in self._properties: setattr(self, p, None) for k in params: setattr(self, k, params[k]) # //////////////////////////////////////////////////////////// # { Regular expressions for properties # //////////////////////////////////////////////////////////// # Note: [A-Za-z] is approximated by [^\W\d] in the general case. _RE_ELLIPSIS = re.compile(r'\.\.+$') _RE_NUMERIC = re.compile(r'^-?[\.,]?\d[\d,\.-]*\.?$') _RE_INITIAL = re.compile(r'[^\W\d]\.$', re.UNICODE) _RE_ALPHA = re.compile(r'[^\W\d]+$', re.UNICODE) # //////////////////////////////////////////////////////////// # { Derived properties # //////////////////////////////////////////////////////////// def _get_type(self, tok): """Returns a case-normalized representation of the token.""" return self._RE_NUMERIC.sub('##number##', tok.lower()) @property def type_no_period(self): """ The type with its final period removed if it has one. """ if len(self.type) > 1 and self.type[-1] == '.': return self.type[:-1] return self.type @property def type_no_sentperiod(self): """ The type with its final period removed if it is marked as a sentence break. """ if self.sentbreak: return self.type_no_period return self.type @property def first_upper(self): """True if the token's first character is uppercase.""" return self.tok[0].isupper() @property def first_lower(self): """True if the token's first character is lowercase.""" return self.tok[0].islower() @property def first_case(self): if self.first_lower: return 'lower' elif self.first_upper: return 'upper' return 'none' @property def is_ellipsis(self): """True if the token text is that of an ellipsis.""" return self._RE_ELLIPSIS.match(self.tok) @property def is_number(self): """True if the token text is that of a number.""" return self.type.startswith('##number##') @property def is_initial(self): """True if the token text is that of an initial.""" return self._RE_INITIAL.match(self.tok) @property def is_alpha(self): """True if the token text is all alphabetic.""" return self._RE_ALPHA.match(self.tok) @property def is_non_punct(self): """True if the token is either a number or is alphabetic.""" return _re_non_punct.search(self.type) # //////////////////////////////////////////////////////////// # { String representation # //////////////////////////////////////////////////////////// def __repr__(self): """ A string representation of the token that can reproduce it with eval(), which lists all the token's non-default annotations. """ typestr = (' type=%s,' % unicode_repr(self.type) if self.type != self.tok else '') propvals = ', '.join( '%s=%s' % (p, unicode_repr(getattr(self, p))) for p in self._properties if getattr(self, p) ) return '%s(%s,%s %s)' % (self.__class__.__name__, unicode_repr(self.tok), typestr, propvals) def __str__(self): """ A string representation akin to that used by Kiss and Strunk. """ res = self.tok if self.abbr: res += '<A>' if self.ellipsis: res += '<E>' if self.sentbreak: res += '<S>' return res ###################################################################### # { Punkt base class ###################################################################### class PunktBaseClass(object): """ Includes common components of PunktTrainer and PunktSentenceTokenizer. """ def __init__(self, lang_vars=PunktLanguageVars(), token_cls=PunktToken, params=None): if params is None: params = PunktParameters() self._params = params self._lang_vars = lang_vars self._Token = token_cls """The collection of parameters that determines the behavior of the punkt tokenizer.""" # //////////////////////////////////////////////////////////// # { Word tokenization # //////////////////////////////////////////////////////////// def _tokenize_words(self, plaintext): """ Divide the given text into tokens, using the punkt word segmentation regular expression, and generate the resulting list of tokens augmented as three-tuples with two boolean values for whether the given token occurs at the start of a paragraph or a new line, respectively. """ parastart = False for line in plaintext.split('\n'): if line.strip(): line_toks = iter(self._lang_vars.word_tokenize(line)) yield self._Token(next(line_toks), parastart=parastart, linestart=True) parastart = False for t in line_toks: yield self._Token(t) else: parastart = True # //////////////////////////////////////////////////////////// # { Annotation Procedures # //////////////////////////////////////////////////////////// def _annotate_first_pass(self, tokens): """ Perform the first pass of annotation, which makes decisions based purely based on the word type of each word: - '?', '!', and '.' are marked as sentence breaks. - sequences of two or more periods are marked as ellipsis. - any word ending in '.' that's a known abbreviation is marked as an abbreviation. - any other word ending in '.' is marked as a sentence break. Return these annotations as a tuple of three sets: - sentbreak_toks: The indices of all sentence breaks. - abbrev_toks: The indices of all abbreviations. - ellipsis_toks: The indices of all ellipsis marks. """ for aug_tok in tokens: self._first_pass_annotation(aug_tok) yield aug_tok def _first_pass_annotation(self, aug_tok): """ Performs type-based annotation on a single token. """ tok = aug_tok.tok if tok in self._lang_vars.sent_end_chars: aug_tok.sentbreak = True elif aug_tok.is_ellipsis: aug_tok.ellipsis = True elif aug_tok.period_final and not tok.endswith('..'): if (tok[:-1].lower() in self._params.abbrev_types or tok[:-1].lower().split('-')[-1] in self._params.abbrev_types): aug_tok.abbr = True else: aug_tok.sentbreak = True return ###################################################################### # { Punkt Trainer ###################################################################### class PunktTrainer(PunktBaseClass): """Learns parameters used in Punkt sentence boundary detection.""" def __init__(self, train_text=None, verbose=False, lang_vars=PunktLanguageVars(), token_cls=PunktToken): PunktBaseClass.__init__(self, lang_vars=lang_vars, token_cls=token_cls) self._type_fdist = FreqDist() """A frequency distribution giving the frequency of each case-normalized token type in the training data.""" self._num_period_toks = 0 """The number of words ending in period in the training data.""" self._collocation_fdist = FreqDist() """A frequency distribution giving the frequency of all bigrams in the training data where the first word ends in a period. Bigrams are encoded as tuples of word types. Especially common collocations are extracted from this frequency distribution, and stored in ``_params``.``collocations <PunktParameters.collocations>``.""" self._sent_starter_fdist = FreqDist() """A frequency distribution giving the frequency of all words that occur at the training data at the beginning of a sentence (after the first pass of annotation). Especially common sentence starters are extracted from this frequency distribution, and stored in ``_params.sent_starters``. """ self._sentbreak_count = 0 """The total number of sentence breaks identified in training, used for calculating the frequent sentence starter heuristic.""" self._finalized = True """A flag as to whether the training has been finalized by finding collocations and sentence starters, or whether finalize_training() still needs to be called.""" if train_text: self.train(train_text, verbose, finalize=True) def get_params(self): """ Calculates and returns parameters for sentence boundary detection as derived from training.""" if not self._finalized: self.finalize_training() return self._params # //////////////////////////////////////////////////////////// # { Customization Variables # //////////////////////////////////////////////////////////// ABBREV = 0.3 """cut-off value whether a 'token' is an abbreviation""" IGNORE_ABBREV_PENALTY = False """allows the disabling of the abbreviation penalty heuristic, which exponentially disadvantages words that are found at times without a final period.""" ABBREV_BACKOFF = 5 """upper cut-off for Mikheev's(2002) abbreviation detection algorithm""" COLLOCATION = 7.88 """minimal log-likelihood value that two tokens need to be considered as a collocation""" SENT_STARTER = 30 """minimal log-likelihood value that a token requires to be considered as a frequent sentence starter""" INCLUDE_ALL_COLLOCS = False """this includes as potential collocations all word pairs where the first word ends in a period. It may be useful in corpora where there is a lot of variation that makes abbreviations like Mr difficult to identify.""" INCLUDE_ABBREV_COLLOCS = False """this includes as potential collocations all word pairs where the first word is an abbreviation. Such collocations override the orthographic heuristic, but not the sentence starter heuristic. This is overridden by INCLUDE_ALL_COLLOCS, and if both are false, only collocations with initials and ordinals are considered.""" """""" MIN_COLLOC_FREQ = 1 """this sets a minimum bound on the number of times a bigram needs to appear before it can be considered a collocation, in addition to log likelihood statistics. This is useful when INCLUDE_ALL_COLLOCS is True.""" # //////////////////////////////////////////////////////////// # { Training.. # //////////////////////////////////////////////////////////// def train(self, text, verbose=False, finalize=True): """ Collects training data from a given text. If finalize is True, it will determine all the parameters for sentence boundary detection. If not, this will be delayed until get_params() or finalize_training() is called. If verbose is True, abbreviations found will be listed. """ # Break the text into tokens; record which token indices correspond to # line starts and paragraph starts; and determine their types. self._train_tokens(self._tokenize_words(text), verbose) if finalize: self.finalize_training(verbose) def train_tokens(self, tokens, verbose=False, finalize=True): """ Collects training data from a given list of tokens. """ self._train_tokens((self._Token(t) for t in tokens), verbose) if finalize: self.finalize_training(verbose) def _train_tokens(self, tokens, verbose): self._finalized = False # Ensure tokens are a list tokens = list(tokens) # Find the frequency of each case-normalized type. (Don't # strip off final periods.) Also keep track of the number of # tokens that end in periods. for aug_tok in tokens: self._type_fdist[aug_tok.type] += 1 if aug_tok.period_final: self._num_period_toks += 1 # Look for new abbreviations, and for types that no longer are unique_types = self._unique_types(tokens) for abbr, score, is_add in self._reclassify_abbrev_types(unique_types): if score >= self.ABBREV: if is_add: self._params.abbrev_types.add(abbr) if verbose: print((' Abbreviation: [%6.4f] %s' % (score, abbr))) else: if not is_add: self._params.abbrev_types.remove(abbr) if verbose: print((' Removed abbreviation: [%6.4f] %s' % (score, abbr))) # Make a preliminary pass through the document, marking likely # sentence breaks, abbreviations, and ellipsis tokens. tokens = list(self._annotate_first_pass(tokens)) # Check what contexts each word type can appear in, given the # case of its first letter. self._get_orthography_data(tokens) # We need total number of sentence breaks to find sentence starters self._sentbreak_count += self._get_sentbreak_count(tokens) # The remaining heuristics relate to pairs of tokens where the first # ends in a period. for aug_tok1, aug_tok2 in _pair_iter(tokens): if not aug_tok1.period_final or not aug_tok2: continue # Is the first token a rare abbreviation? if self._is_rare_abbrev_type(aug_tok1, aug_tok2): self._params.abbrev_types.add(aug_tok1.type_no_period) if verbose: print((' Rare Abbrev: %s' % aug_tok1.type)) # Does second token have a high likelihood of starting a sentence? if self._is_potential_sent_starter(aug_tok2, aug_tok1): self._sent_starter_fdist[aug_tok2.type] += 1 # Is this bigram a potential collocation? if self._is_potential_collocation(aug_tok1, aug_tok2): self._collocation_fdist[ (aug_tok1.type_no_period, aug_tok2.type_no_sentperiod)] += 1 def _unique_types(self, tokens): return set(aug_tok.type for aug_tok in tokens) def finalize_training(self, verbose=False): """ Uses data that has been gathered in training to determine likely collocations and sentence starters. """ self._params.clear_sent_starters() for typ, ll in self._find_sent_starters(): self._params.sent_starters.add(typ) if verbose: print((' Sent Starter: [%6.4f] %r' % (ll, typ))) self._params.clear_collocations() for (typ1, typ2), ll in self._find_collocations(): self._params.collocations.add((typ1, typ2)) if verbose: print((' Collocation: [%6.4f] %r+%r' % (ll, typ1, typ2))) self._finalized = True # //////////////////////////////////////////////////////////// # { Overhead reduction # //////////////////////////////////////////////////////////// def freq_threshold(self, ortho_thresh=2, type_thresh=2, colloc_thres=2, sentstart_thresh=2): """ Allows memory use to be reduced after much training by removing data about rare tokens that are unlikely to have a statistical effect with further training. Entries occurring above the given thresholds will be retained. """ if ortho_thresh > 1: old_oc = self._params.ortho_context self._params.clear_ortho_context() for tok in self._type_fdist: count = self._type_fdist[tok] if count >= ortho_thresh: self._params.ortho_context[tok] = old_oc[tok] self._type_fdist = self._freq_threshold(self._type_fdist, type_thresh) self._collocation_fdist = self._freq_threshold( self._collocation_fdist, colloc_thres) self._sent_starter_fdist = self._freq_threshold( self._sent_starter_fdist, sentstart_thresh) def _freq_threshold(self, fdist, threshold): """ Returns a FreqDist containing only data with counts below a given threshold, as well as a mapping (None -> count_removed). """ # We assume that there is more data below the threshold than above it # and so create a new FreqDist rather than working in place. res = FreqDist() num_removed = 0 for tok in fdist: count = fdist[tok] if count < threshold: num_removed += 1 else: res[tok] += count res[None] += num_removed return res # //////////////////////////////////////////////////////////// # { Orthographic data # //////////////////////////////////////////////////////////// def _get_orthography_data(self, tokens): """ Collect information about whether each token type occurs with different case patterns (i) overall, (ii) at sentence-initial positions, and (iii) at sentence-internal positions. """ # 'initial' or 'internal' or 'unknown' context = 'internal' tokens = list(tokens) for aug_tok in tokens: # If we encounter a paragraph break, then it's a good sign # that it's a sentence break. But err on the side of # caution (by not positing a sentence break) if we just # saw an abbreviation. if aug_tok.parastart and context != 'unknown': context = 'initial' # If we're at the beginning of a line, then we can't decide # between 'internal' and 'initial'. if aug_tok.linestart and context == 'internal': context = 'unknown' # Find the case-normalized type of the token. If it's a # sentence-final token, strip off the period. typ = aug_tok.type_no_sentperiod # Update the orthographic context table. flag = _ORTHO_MAP.get((context, aug_tok.first_case), 0) if flag: self._params.add_ortho_context(typ, flag) # Decide whether the next word is at a sentence boundary. if aug_tok.sentbreak: if not (aug_tok.is_number or aug_tok.is_initial): context = 'initial' else: context = 'unknown' elif aug_tok.ellipsis or aug_tok.abbr: context = 'unknown' else: context = 'internal' # //////////////////////////////////////////////////////////// # { Abbreviations # //////////////////////////////////////////////////////////// def _reclassify_abbrev_types(self, types): """ (Re)classifies each given token if - it is period-final and not a known abbreviation; or - it is not period-final and is otherwise a known abbreviation by checking whether its previous classification still holds according to the heuristics of section 3. Yields triples (abbr, score, is_add) where abbr is the type in question, score is its log-likelihood with penalties applied, and is_add specifies whether the present type is a candidate for inclusion or exclusion as an abbreviation, such that: - (is_add and score >= 0.3) suggests a new abbreviation; and - (not is_add and score < 0.3) suggests excluding an abbreviation. """ # (While one could recalculate abbreviations from all .-final tokens at # every iteration, in cases requiring efficiency, the number of tokens # in the present training document will be much less.) for typ in types: # Check some basic conditions, to rule out words that are # clearly not abbrev_types. if not _re_non_punct.search(typ) or typ == '##number##': continue if typ.endswith('.'): if typ in self._params.abbrev_types: continue typ = typ[:-1] is_add = True else: if typ not in self._params.abbrev_types: continue is_add = False # Count how many periods & nonperiods are in the # candidate. num_periods = typ.count('.') + 1 num_nonperiods = len(typ) - num_periods + 1 # Let <a> be the candidate without the period, and <b> # be the period. Find a log likelihood ratio that # indicates whether <ab> occurs as a single unit (high # value of ll), or as two independent units <a> and # <b> (low value of ll). count_with_period = self._type_fdist[typ + '.'] count_without_period = self._type_fdist[typ] ll = self._dunning_log_likelihood( count_with_period + count_without_period, self._num_period_toks, count_with_period, self._type_fdist.N()) # Apply three scaling factors to 'tweak' the basic log # likelihood ratio: # F_length: long word -> less likely to be an abbrev # F_periods: more periods -> more likely to be an abbrev # F_penalty: penalize occurrences w/o a period f_length = math.exp(-num_nonperiods) f_periods = num_periods f_penalty = (int(self.IGNORE_ABBREV_PENALTY) or math.pow(num_nonperiods, -count_without_period)) score = ll * f_length * f_periods * f_penalty yield typ, score, is_add def find_abbrev_types(self): """ Recalculates abbreviations given type frequencies, despite no prior determination of abbreviations. This fails to include abbreviations otherwise found as "rare". """ self._params.clear_abbrevs() tokens = (typ for typ in self._type_fdist if typ and typ.endswith('.')) for abbr, score, is_add in self._reclassify_abbrev_types(tokens): if score >= self.ABBREV: self._params.abbrev_types.add(abbr) # This function combines the work done by the original code's # functions `count_orthography_context`, `get_orthography_count`, # and `get_rare_abbreviations`. def _is_rare_abbrev_type(self, cur_tok, next_tok): """ A word type is counted as a rare abbreviation if... - it's not already marked as an abbreviation - it occurs fewer than ABBREV_BACKOFF times - either it is followed by a sentence-internal punctuation mark, *or* it is followed by a lower-case word that sometimes appears with upper case, but never occurs with lower case at the beginning of sentences. """ if cur_tok.abbr or not cur_tok.sentbreak: return False # Find the case-normalized type of the token. If it's # a sentence-final token, strip off the period. typ = cur_tok.type_no_sentperiod # Proceed only if the type hasn't been categorized as an # abbreviation already, and is sufficiently rare... count = self._type_fdist[typ] + self._type_fdist[typ[:-1]] if (typ in self._params.abbrev_types or count >= self.ABBREV_BACKOFF): return False # Record this token as an abbreviation if the next # token is a sentence-internal punctuation mark. # [XX] :1 or check the whole thing?? if next_tok.tok[:1] in self._lang_vars.internal_punctuation: return True # Record this type as an abbreviation if the next # token... (i) starts with a lower case letter, # (ii) sometimes occurs with an uppercase letter, # and (iii) never occus with an uppercase letter # sentence-internally. # [xx] should the check for (ii) be modified?? elif next_tok.first_lower: typ2 = next_tok.type_no_sentperiod typ2ortho_context = self._params.ortho_context[typ2] if ((typ2ortho_context & _ORTHO_BEG_UC) and not (typ2ortho_context & _ORTHO_MID_UC)): return True # //////////////////////////////////////////////////////////// # { Log Likelihoods # //////////////////////////////////////////////////////////// # helper for _reclassify_abbrev_types: @staticmethod def _dunning_log_likelihood(count_a, count_b, count_ab, N): """ A function that calculates the modified Dunning log-likelihood ratio scores for abbreviation candidates. The details of how this works is available in the paper. """ p1 = count_b / N p2 = 0.99 null_hypo = (count_ab * math.log(p1) + (count_a - count_ab) * math.log(1.0 - p1)) alt_hypo = (count_ab * math.log(p2) + (count_a - count_ab) * math.log(1.0 - p2)) likelihood = null_hypo - alt_hypo return (-2.0 * likelihood) @staticmethod def _col_log_likelihood(count_a, count_b, count_ab, N): """ A function that will just compute log-likelihood estimate, in the original paper it's described in algorithm 6 and 7. This *should* be the original Dunning log-likelihood values, unlike the previous log_l function where it used modified Dunning log-likelihood values """ p = count_b / N p1 = count_ab / count_a try: p2 = (count_b - count_ab) / (N - count_a) except ZeroDivisionError as e: p2 = 1 try: summand1 = (count_ab * math.log(p) + (count_a - count_ab) * math.log(1.0 - p)) except ValueError as e: summand1 = 0 try: summand2 = ((count_b - count_ab) * math.log(p) + (N - count_a - count_b + count_ab) * math.log(1.0 - p)) except ValueError as e: summand2 = 0 if count_a == count_ab or p1 <= 0 or p1 >= 1: summand3 = 0 else: summand3 = (count_ab * math.log(p1) + (count_a - count_ab) * math.log(1.0 - p1)) if count_b == count_ab or p2 <= 0 or p2 >= 1: summand4 = 0 else: summand4 = ((count_b - count_ab) * math.log(p2) + (N - count_a - count_b + count_ab) * math.log(1.0 - p2)) likelihood = summand1 + summand2 - summand3 - summand4 return (-2.0 * likelihood) # //////////////////////////////////////////////////////////// # { Collocation Finder # //////////////////////////////////////////////////////////// def _is_potential_collocation(self, aug_tok1, aug_tok2): """ Returns True if the pair of tokens may form a collocation given log-likelihood statistics. """ return ((self.INCLUDE_ALL_COLLOCS or (self.INCLUDE_ABBREV_COLLOCS and aug_tok1.abbr) or (aug_tok1.sentbreak and (aug_tok1.is_number or aug_tok1.is_initial))) and aug_tok1.is_non_punct and aug_tok2.is_non_punct) def _find_collocations(self): """ Generates likely collocations and their log-likelihood. """ for types in self._collocation_fdist: try: typ1, typ2 = types except TypeError: # types may be None after calling freq_threshold() continue if typ2 in self._params.sent_starters: continue col_count = self._collocation_fdist[types] typ1_count = self._type_fdist[typ1] + self._type_fdist[typ1 + '.'] typ2_count = self._type_fdist[typ2] + self._type_fdist[typ2 + '.'] if (typ1_count > 1 and typ2_count > 1 and self.MIN_COLLOC_FREQ < col_count <= min(typ1_count, typ2_count)): ll = self._col_log_likelihood(typ1_count, typ2_count, col_count, self._type_fdist.N()) # Filter out the not-so-collocative if (ll >= self.COLLOCATION and (self._type_fdist.N() / typ1_count > typ2_count / col_count)): yield (typ1, typ2), ll # //////////////////////////////////////////////////////////// # { Sentence-Starter Finder # //////////////////////////////////////////////////////////// def _is_potential_sent_starter(self, cur_tok, prev_tok): """ Returns True given a token and the token that preceds it if it seems clear that the token is beginning a sentence. """ # If a token (i) is preceded by a sentece break that is # not a potential ordinal number or initial, and (ii) is # alphabetic, then it is a a sentence-starter. return (prev_tok.sentbreak and not (prev_tok.is_number or prev_tok.is_initial) and cur_tok.is_alpha) def _find_sent_starters(self): """ Uses collocation heuristics for each candidate token to determine if it frequently starts sentences. """ for typ in self._sent_starter_fdist: if not typ: continue typ_at_break_count = self._sent_starter_fdist[typ] typ_count = self._type_fdist[typ] + self._type_fdist[typ + '.'] if typ_count < typ_at_break_count: # needed after freq_threshold continue ll = self._col_log_likelihood(self._sentbreak_count, typ_count, typ_at_break_count, self._type_fdist.N()) if (ll >= self.SENT_STARTER and self._type_fdist.N() / self._sentbreak_count > typ_count / typ_at_break_count): yield typ, ll def _get_sentbreak_count(self, tokens): """ Returns the number of sentence breaks marked in a given set of augmented tokens. """ return sum(1 for aug_tok in tokens if aug_tok.sentbreak) ###################################################################### # { Punkt Sentence Tokenizer ###################################################################### class PunktSentenceTokenizer(PunktBaseClass, TokenizerI): """ A sentence tokenizer which uses an unsupervised algorithm to build a model for abbreviation words, collocations, and words that start sentences; and then uses that model to find sentence boundaries. This approach has been shown to work well for many European languages. """ def __init__(self, train_text=None, verbose=False, lang_vars=PunktLanguageVars(), token_cls=PunktToken): """ train_text can either be the sole training text for this sentence boundary detector, or can be a PunktParameters object. """ PunktBaseClass.__init__(self, lang_vars=lang_vars, token_cls=token_cls) if train_text: self._params = self.train(train_text, verbose) def train(self, train_text, verbose=False): """ Derives parameters from a given training text, or uses the parameters given. Repeated calls to this method destroy previous parameters. For incremental training, instantiate a separate PunktTrainer instance. """ if not isinstance(train_text, string_types): return train_text return PunktTrainer(train_text, lang_vars=self._lang_vars, token_cls=self._Token).get_params() # //////////////////////////////////////////////////////////// # { Tokenization # //////////////////////////////////////////////////////////// def tokenize(self, text, realign_boundaries=True): """ Given a text, returns a list of the sentences in that text. """ return list(self.sentences_from_text(text, realign_boundaries)) def debug_decisions(self, text): """ Classifies candidate periods as sentence breaks, yielding a dict for each that may be used to understand why the decision was made. See format_debug_decision() to help make this output readable. """ for match in self._lang_vars.period_context_re().finditer(text): decision_text = match.group() + match.group('after_tok') tokens = self._tokenize_words(decision_text) tokens = list(self._annotate_first_pass(tokens)) while not tokens[0].period_final: tokens.pop(0) yield dict(period_index=match.end() - 1, text=decision_text, type1=tokens[0].type, type2=tokens[1].type, type1_in_abbrs=bool(tokens[0].abbr), type1_is_initial=bool(tokens[0].is_initial), type2_is_sent_starter=tokens[1].type_no_sentperiod in self._params.sent_starters, type2_ortho_heuristic=self._ortho_heuristic(tokens[1]), type2_ortho_contexts=set(self._params._debug_ortho_context(tokens[1].type_no_sentperiod)), collocation=(tokens[0].type_no_sentperiod, tokens[1].type_no_sentperiod) in self._params.collocations, reason=self._second_pass_annotation(tokens[0], tokens[1]) or REASON_DEFAULT_DECISION, break_decision=tokens[0].sentbreak, ) def span_tokenize(self, text, realign_boundaries=True): """ Given a text, generates (start, end) spans of sentences in the text. """ slices = self._slices_from_text(text) if realign_boundaries: slices = self._realign_boundaries(text, slices) for sl in slices: yield (sl.start, sl.stop) def sentences_from_text(self, text, realign_boundaries=True): """ Given a text, generates the sentences in that text by only testing candidate sentence breaks. If realign_boundaries is True, includes in the sentence closing punctuation that follows the period. """ return [text[s:e] for s, e in self.span_tokenize(text, realign_boundaries)] def _slices_from_text(self, text): last_break = 0 for match in self._lang_vars.period_context_re().finditer(text): context = match.group() + match.group('after_tok') if self.text_contains_sentbreak(context): yield slice(last_break, match.end()) if match.group('next_tok'): # next sentence starts after whitespace last_break = match.start('next_tok') else: # next sentence starts at following punctuation last_break = match.end() # The last sentence should not contain trailing whitespace. yield slice(last_break, len(text.rstrip())) def _realign_boundaries(self, text, slices): """ Attempts to realign punctuation that falls after the period but should otherwise be included in the same sentence. For example: "(Sent1.) Sent2." will otherwise be split as:: ["(Sent1.", ") Sent1."]. This method will produce:: ["(Sent1.)", "Sent2."]. """ realign = 0 for sl1, sl2 in _pair_iter(slices): sl1 = slice(sl1.start + realign, sl1.stop) if not sl2: if text[sl1]: yield sl1 continue m = self._lang_vars.re_boundary_realignment.match(text[sl2]) if m: yield slice(sl1.start, sl2.start + len(m.group(0).rstrip())) realign = m.end() else: realign = 0 if text[sl1]: yield sl1 def text_contains_sentbreak(self, text): """ Returns True if the given text includes a sentence break. """ found = False # used to ignore last token for t in self._annotate_tokens(self._tokenize_words(text)): if found: return True if t.sentbreak: found = True return False def sentences_from_text_legacy(self, text): """ Given a text, generates the sentences in that text. Annotates all tokens, rather than just those with possible sentence breaks. Should produce the same results as ``sentences_from_text``. """ tokens = self._annotate_tokens(self._tokenize_words(text)) return self._build_sentence_list(text, tokens) def sentences_from_tokens(self, tokens): """ Given a sequence of tokens, generates lists of tokens, each list corresponding to a sentence. """ tokens = iter(self._annotate_tokens(self._Token(t) for t in tokens)) sentence = [] for aug_tok in tokens: sentence.append(aug_tok.tok) if aug_tok.sentbreak: yield sentence sentence = [] if sentence: yield sentence def _annotate_tokens(self, tokens): """ Given a set of tokens augmented with markers for line-start and paragraph-start, returns an iterator through those tokens with full annotation including predicted sentence breaks. """ # Make a preliminary pass through the document, marking likely # sentence breaks, abbreviations, and ellipsis tokens. tokens = self._annotate_first_pass(tokens) # Make a second pass through the document, using token context # information to change our preliminary decisions about where # sentence breaks, abbreviations, and ellipsis occurs. tokens = self._annotate_second_pass(tokens) ## [XX] TESTING # tokens = list(tokens) # self.dump(tokens) return tokens def _build_sentence_list(self, text, tokens): """ Given the original text and the list of augmented word tokens, construct and return a tokenized list of sentence strings. """ # Most of the work here is making sure that we put the right # pieces of whitespace back in all the right places. # Our position in the source text, used to keep track of which # whitespace to add: pos = 0 # A regular expression that finds pieces of whitespace: WS_REGEXP = re.compile(r'\s*') sentence = '' for aug_tok in tokens: tok = aug_tok.tok # Find the whitespace before this token, and update pos. ws = WS_REGEXP.match(text, pos).group() pos += len(ws) # Some of the rules used by the punkt word tokenizer # strip whitespace out of the text, resulting in tokens # that contain whitespace in the source text. If our # token doesn't match, see if adding whitespace helps. # If so, then use the version with whitespace. if text[pos:pos + len(tok)] != tok: pat = '\s*'.join(re.escape(c) for c in tok) m = re.compile(pat).match(text, pos) if m: tok = m.group() # Move our position pointer to the end of the token. assert text[pos:pos + len(tok)] == tok pos += len(tok) # Add this token. If it's not at the beginning of the # sentence, then include any whitespace that separated it # from the previous token. if sentence: sentence += ws sentence += tok # If we're at a sentence break, then start a new sentence. if aug_tok.sentbreak: yield sentence sentence = '' # If the last sentence is emtpy, discard it. if sentence: yield sentence # [XX] TESTING def dump(self, tokens): print('writing to /tmp/punkt.new...') with open('/tmp/punkt.new', 'w') as outfile: for aug_tok in tokens: if aug_tok.parastart: outfile.write('\n\n') elif aug_tok.linestart: outfile.write('\n') else: outfile.write(' ') outfile.write(str(aug_tok)) # //////////////////////////////////////////////////////////// # { Customization Variables # //////////////////////////////////////////////////////////// PUNCTUATION = tuple(';:,.!?') # //////////////////////////////////////////////////////////// # { Annotation Procedures # //////////////////////////////////////////////////////////// def _annotate_second_pass(self, tokens): """ Performs a token-based classification (section 4) over the given tokens, making use of the orthographic heuristic (4.1.1), collocation heuristic (4.1.2) and frequent sentence starter heuristic (4.1.3). """ for t1, t2 in _pair_iter(tokens): self._second_pass_annotation(t1, t2) yield t1 def _second_pass_annotation(self, aug_tok1, aug_tok2): """ Performs token-based classification over a pair of contiguous tokens updating the first. """ # Is it the last token? We can't do anything then. if not aug_tok2: return tok = aug_tok1.tok if not aug_tok1.period_final: # We only care about words ending in periods. return typ = aug_tok1.type_no_period next_tok = aug_tok2.tok next_typ = aug_tok2.type_no_sentperiod tok_is_initial = aug_tok1.is_initial # [4.1.2. Collocation Heuristic] If there's a # collocation between the word before and after the # period, then label tok as an abbreviation and NOT # a sentence break. Note that collocations with # frequent sentence starters as their second word are # excluded in training. if (typ, next_typ) in self._params.collocations: aug_tok1.sentbreak = False aug_tok1.abbr = True return REASON_KNOWN_COLLOCATION # [4.2. Token-Based Reclassification of Abbreviations] If # the token is an abbreviation or an ellipsis, then decide # whether we should *also* classify it as a sentbreak. if ((aug_tok1.abbr or aug_tok1.ellipsis) and (not tok_is_initial)): # [4.1.1. Orthographic Heuristic] Check if there's # orthogrpahic evidence about whether the next word # starts a sentence or not. is_sent_starter = self._ortho_heuristic(aug_tok2) if is_sent_starter == True: aug_tok1.sentbreak = True return REASON_ABBR_WITH_ORTHOGRAPHIC_HEURISTIC # [4.1.3. Frequent Sentence Starter Heruistic] If the # next word is capitalized, and is a member of the # frequent-sentence-starters list, then label tok as a # sentence break. if (aug_tok2.first_upper and next_typ in self._params.sent_starters): aug_tok1.sentbreak = True return REASON_ABBR_WITH_SENTENCE_STARTER # [4.3. Token-Based Detection of Initials and Ordinals] # Check if any initials or ordinals tokens that are marked # as sentbreaks should be reclassified as abbreviations. if tok_is_initial or typ == '##number##': # [4.1.1. Orthographic Heuristic] Check if there's # orthogrpahic evidence about whether the next word # starts a sentence or not. is_sent_starter = self._ortho_heuristic(aug_tok2) if is_sent_starter == False: aug_tok1.sentbreak = False aug_tok1.abbr = True if tok_is_initial: return REASON_INITIAL_WITH_ORTHOGRAPHIC_HEURISTIC else: return REASON_NUMBER_WITH_ORTHOGRAPHIC_HEURISTIC # Special heuristic for initials: if orthogrpahic # heuristc is unknown, and next word is always # capitalized, then mark as abbrev (eg: J. Bach). if (is_sent_starter == 'unknown' and tok_is_initial and aug_tok2.first_upper and not (self._params.ortho_context[next_typ] & _ORTHO_LC)): aug_tok1.sentbreak = False aug_tok1.abbr = True return REASON_INITIAL_WITH_SPECIAL_ORTHOGRAPHIC_HEURISTIC return def _ortho_heuristic(self, aug_tok): """ Decide whether the given token is the first token in a sentence. """ # Sentences don't start with punctuation marks: if aug_tok.tok in self.PUNCTUATION: return False ortho_context = self._params.ortho_context[aug_tok.type_no_sentperiod] # If the word is capitalized, occurs at least once with a # lower case first letter, and never occurs with an upper case # first letter sentence-internally, then it's a sentence starter. if (aug_tok.first_upper and (ortho_context & _ORTHO_LC) and not (ortho_context & _ORTHO_MID_UC)): return True # If the word is lower case, and either (a) we've seen it used # with upper case, or (b) we've never seen it used # sentence-initially with lower case, then it's not a sentence # starter. if (aug_tok.first_lower and ((ortho_context & _ORTHO_UC) or not (ortho_context & _ORTHO_BEG_LC))): return False # Otherwise, we're not sure. return 'unknown' DEBUG_DECISION_FMT = '''Text: %(text)r (at offset %(period_index)d) Sentence break? %(break_decision)s (%(reason)s) Collocation? %(collocation)s %(type1)r: known abbreviation: %(type1_in_abbrs)s is initial: %(type1_is_initial)s %(type2)r: known sentence starter: %(type2_is_sent_starter)s orthographic heuristic suggests is a sentence starter? %(type2_ortho_heuristic)s orthographic contexts in training: %(type2_ortho_contexts)s ''' def format_debug_decision(d): return DEBUG_DECISION_FMT % d def demo(text, tok_cls=PunktSentenceTokenizer, train_cls=PunktTrainer): """Builds a punkt model and applies it to the same text""" cleanup = lambda s: re.compile(r'(?:\r|^\s+)', re.MULTILINE).sub('', s).replace('\n', ' ') trainer = train_cls() trainer.INCLUDE_ALL_COLLOCS = True trainer.train(text) sbd = tok_cls(trainer.get_params()) for l in sbd.sentences_from_text(text): print(cleanup(l))
7c6e2ad300adefc46b95d659f9cefe698aeb499b
20f951bd927e4e5cde8ef7781813fcf0d51cc3ea
/fossir/modules/events/contributions/models/subcontributions.py
9ff806fba366acfa3d3ecfa78f127ae91c426fa9
[]
no_license
HodardCodeclub/SoftwareDevelopment
60a0fbab045cb1802925d4dd5012d5b030c272e0
6300f2fae830c0c2c73fe0afd9c684383bce63e5
refs/heads/master
2021-01-20T00:30:02.800383
2018-04-27T09:28:25
2018-04-27T09:28:25
101,277,325
0
2
null
null
null
null
UTF-8
Python
false
false
4,998
py
from __future__ import unicode_literals from fossir.core.db import db from fossir.core.db.sqlalchemy.attachments import AttachedItemsMixin from fossir.core.db.sqlalchemy.descriptions import DescriptionMixin, RenderMode from fossir.core.db.sqlalchemy.notes import AttachedNotesMixin from fossir.core.db.sqlalchemy.util.queries import increment_and_get from fossir.util.locators import locator_property from fossir.util.string import format_repr, return_ascii def _get_next_friendly_id(context): """Get the next friendly id for a sub-contribution.""" from fossir.modules.events.contributions.models.contributions import Contribution contribution_id = context.current_parameters['contribution_id'] assert contribution_id is not None return increment_and_get(Contribution._last_friendly_subcontribution_id, Contribution.id == contribution_id) def _get_next_position(context): """Get the next menu entry position for the event.""" contribution_id = context.current_parameters['contribution_id'] res = db.session.query(db.func.max(SubContribution.position)).filter_by(contribution_id=contribution_id).one() return (res[0] or 0) + 1 class SubContribution(DescriptionMixin, AttachedItemsMixin, AttachedNotesMixin, db.Model): __tablename__ = 'subcontributions' __table_args__ = (db.Index(None, 'friendly_id', 'contribution_id', unique=True), {'schema': 'events'}) PRELOAD_EVENT_ATTACHED_ITEMS = True PRELOAD_EVENT_NOTES = True ATTACHMENT_FOLDER_ID_COLUMN = 'subcontribution_id' possible_render_modes = {RenderMode.html, RenderMode.markdown} default_render_mode = RenderMode.markdown id = db.Column( db.Integer, primary_key=True ) #: The human-friendly ID for the sub-contribution friendly_id = db.Column( db.Integer, nullable=False, default=_get_next_friendly_id ) contribution_id = db.Column( db.Integer, db.ForeignKey('events.contributions.id'), index=True, nullable=False ) position = db.Column( db.Integer, nullable=False, default=_get_next_position ) title = db.Column( db.String, nullable=False ) duration = db.Column( db.Interval, nullable=False ) is_deleted = db.Column( db.Boolean, nullable=False, default=False ) #: External references associated with this contribution references = db.relationship( 'SubContributionReference', lazy=True, cascade='all, delete-orphan', backref=db.backref( 'subcontribution', lazy=True ) ) #: Persons associated with this contribution person_links = db.relationship( 'SubContributionPersonLink', lazy=True, cascade='all, delete-orphan', backref=db.backref( 'subcontribution', lazy=True ) ) # relationship backrefs: # - attachment_folders (AttachmentFolder.subcontribution) # - contribution (Contribution.subcontributions) # - legacy_mapping (LegacySubContributionMapping.subcontribution) # - note (EventNote.subcontribution) def __init__(self, **kwargs): # explicitly initialize this relationship with None to avoid # an extra query to check whether there is an object associated # when assigning a new one (e.g. during cloning) kwargs.setdefault('note', None) super(SubContribution, self).__init__(**kwargs) @property def event(self): return self.contribution.event @locator_property def locator(self): return dict(self.contribution.locator, subcontrib_id=self.id) @property def is_protected(self): return self.contribution.is_protected @property def session(self): """Convenience property so all event entities have it""" return self.contribution.session if self.contribution.session_id is not None else None @property def timetable_entry(self): """Convenience property so all event entities have it""" return self.contribution.timetable_entry @property def speakers(self): return self.person_links @speakers.setter def speakers(self, value): self.person_links = value.keys() @property def location_parent(self): return self.contribution def get_access_list(self): return self.contribution.get_access_list() def get_manager_list(self, recursive=False): return self.contribution.get_manager_list(recursive=recursive) @return_ascii def __repr__(self): return format_repr(self, 'id', is_deleted=False, _text=self.title) def can_access(self, user, **kwargs): return self.contribution.can_access(user, **kwargs) def can_manage(self, user, role=None, **kwargs): return self.contribution.can_manage(user, role, **kwargs)
6305acaf43a088e91df5df323d21cd70ced14c36
a062669a7f37412f016534ae30bd41e9efe6afa5
/product/migrations/0013_auto_20201127_0026.py
8b034f4bd8a91d3a1e265777d20c4ce041f762fb
[]
no_license
techappg/meat_fun_backend
7c05045ae0ca6a442eb6e24693a800ca98447e9b
e16da0ec1ccfb583a43f534ad9fd6cb79fe1e6c1
refs/heads/main
2023-04-16T22:42:38.183722
2021-04-22T07:37:07
2021-04-22T07:37:07
360,430,038
0
0
null
null
null
null
UTF-8
Python
false
false
396
py
# Generated by Django 3.1 on 2020-11-27 08:26 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('product', '0012_auto_20201127_0024'), ] operations = [ migrations.AlterField( model_name='contact_us', name='mobile', field=models.IntegerField(), ), ]
ed6a4ab01226c402541becc7afe28423eff22758
036a41c913b3a4e7ae265e22a672dd89302d3200
/0201-0300/0248/0248_Python_1.py
760cb2e6b8f7b3dda42f9d212933b86444a78d20
[]
no_license
ChangxingJiang/LeetCode
e76f96ebda68d7ade53575354479cfc33ad4f627
a2209206cdd7229dd33e416f611e71a984a8dd9e
refs/heads/master
2023-04-13T15:23:35.174390
2021-04-24T05:54:14
2021-04-24T05:54:14
272,088,506
0
0
null
null
null
null
UTF-8
Python
false
false
5,018
py
class Solution: # 已知开始范围,计算两个数之间的数量 @staticmethod def num1(low, high, middle=False): if middle: return len([str(i) for i in [0, 1, 8] if int(low) <= i <= int(high)]) else: return len([str(i) for i in [0, 1, 6, 8, 9] if int(low) < i < int(high)]) # 计算各个位的数量 @staticmethod def count(n, first): if n == 0: return 1 if n == 1: return 3 if n == 2: return 4 if first else 5 if first: return 4 * Solution.count(n - 2, first=False) else: return 5 * Solution.count(n - 2, first=False) def strobogrammaticInRange(self, low: str, high: str) -> int: # 字符串交换列表 reverse_lst = { "0": "0", "1": "1", "6": "9", "8": "8", "9": "6" } # print("当前计算:", low, high) # 如果顺序相反则返回0 if int(low) > int(high): return 0 # 处理两个数完全相同的情况 if low == high: return 1 if low == low[::-1] else 0 a, b = len(low), len(high) # 处理两数位数不同的情况 # 例:(150-525) -> (150-199) + (200-499) + (500-525) if a == b: # 寻找两个数第一个不同的位数 i = 0 while i < a and low[i] == high[i]: i += 1 s = a // 2 # 处理只有一位的情况 # 处理奇数长度的中间位的情况 if a == 1 or (a % 2 == 1 and i == s): return self.num1(low[i], high[i], middle=True) # 处理在中间位之前的情况 if (a % 2 == 0 and i < s) or (a % 2 == 1 and i < s): ans = self.num1(low[i], high[i]) * self.count(a - (i + 1) * 2, first=False) # print(low, high, "(", i, ")", "=", # self.num1(low[i], high[i]), "*", self.count(a - (i + 1) * 2, first=False), "=", ans, # "->", # (low, low[:i + 1] + "9" * (a - i - 1)) if low[i] in reverse_lst else (), # (high[:i + 1] + "0" * (a - i - 1), high) if high[i] in reverse_lst else ()) if low[i] in reverse_lst: high2 = low[:i + 1] + "9" * (a - i - 1) ans += self.strobogrammaticInRange(low, high2) if high[i] in reverse_lst: low2 = high[:i + 1] + "0" * (a - i - 1) ans += self.strobogrammaticInRange(low2, high) return ans # 处理中心位之后的情况 ch = reverse_lst[low[s - (i - s + 1)] if a % 2 == 0 else low[s - (i - s)]] # 计算当前字符的目标值 # 计算是否超出情况 if int(low[i]) < int(ch) < int(high[i]): return 1 elif int(low[i]) == int(ch): while i < a: ch = reverse_lst[low[s - (i - s + 1)] if a % 2 == 0 else low[s - (i - s)]] # 计算当前字符的目标值 if int(ch) > int(low[i]): return 1 elif int(ch) == int(low[i]): i += 1 else: return 0 return 1 elif int(ch) == int(high[i]): while i < a: ch = reverse_lst[low[s - (i - s + 1)] if a % 2 == 0 else low[s - (i - s)]] # 计算当前字符的目标值 if int(ch) < int(high[i]): return 1 elif int(ch) == int(high[i]): i += 1 else: return 0 return 1 else: return 0 # 处理两个数位数不同的情况 # 例:(50-4050) -> (50-99) + 3位数的情况数 + (1000-4050) else: ans = 0 for i in range(a + 1, b): ans += self.count(i, first=True) # print(low, high, "=", ans, "->", (low, "9" * a), ("1" + "0" * (b - 1), high)) return (ans + self.strobogrammaticInRange(low, "9" * a) + self.strobogrammaticInRange("1" + "0" * (b - 1), high)) if __name__ == "__main__": print(Solution().strobogrammaticInRange(low="50", high="100")) # 3 print(Solution().strobogrammaticInRange(low="0", high="9")) # 3 print(Solution().strobogrammaticInRange(low="100", high="50")) # 0 print(Solution().strobogrammaticInRange(low="1", high="0")) # 0 print(Solution().strobogrammaticInRange(low="0", high="100")) # 7 print(Solution().strobogrammaticInRange(low="100", high="1000")) # 12 print(Solution().strobogrammaticInRange(low="0", high="1680")) # 21 print(Solution().strobogrammaticInRange(low="0", high="2147483647")) # 3124
9277ddc026afe786dbfa6c7fce9b98dc97c38959
19cec240505e27546cb9b10104ecb16cc2454702
/linux/app/web/python/wikicode/dc/__init__.py
92f91ec3adc810b7ed3614687a82c4219108541c
[]
no_license
imosts/flume
1a9b746c5f080c826c1f316a8008d8ea1b145a89
a17b987c5adaa13befb0fd74ac400c8edbe62ef5
refs/heads/master
2021-01-10T09:43:03.931167
2016-03-09T12:09:53
2016-03-09T12:09:53
53,101,798
0
0
null
null
null
null
UTF-8
Python
false
false
1,572
py
import sys, socket, os, wikicode import flume.flmos as flmo from wikicode import to_rpc_proxy class Declassifier (object): def config (self): """ This is a CGI program used to configure the declassifier """ import wikicode class Config (wikicode.extension): def run (self): self.send_page ("Generic DC Setup") wikicode.run_extension (Config) def declassify_ok (self, *args): """ This is a method that returns True or False depending on whether the user with uid <owner_uid> is willing to declassify to user <recipient_uid> """ raise NotImplementedError, 'subclass must implement this method' def run (self): if len (sys.argv) > 1: tagval = int (sys.argv[1]) instance_tagval = int (sys.argv[2]) owner_name = sys.argv[3] owner_uid = int (sys.argv[4]) devel_homedir = sys.argv[5] recipient_uid = int (sys.argv[6]) rpc_fd, rpc_proxy = to_rpc_proxy (os.environ[wikicode.RPC_TAG_ENV]) if self.declassify_ok (tagval, instance_tagval, owner_name, owner_uid, devel_homedir, recipient_uid, rpc_fd, rpc_proxy): rpc_proxy.set_dc_ok (True) sys.exit (0) else: sys.exit (-1) else: self.config () if __name__ == '__main__': obj = Declassifier () obj.run ()
[ "imosts" ]
imosts
3e200464fcd0c7743e17cb6998f1810928aa115a
a2b6bc9bdd2bdbe5871edb613065dd2397175cb3
/Cookbook/Array/岛屿数量.py
571395c6c2f6f2f328b0dda10d09b4a6f34e41e6
[]
no_license
Asunqingwen/LeetCode
ed8d2043a31f86e9e256123439388d7d223269be
b7c59c826bcd17cb1333571eb9f13f5c2b89b4ee
refs/heads/master
2022-09-26T01:46:59.790316
2022-09-01T08:20:37
2022-09-01T08:20:37
95,668,066
0
0
null
null
null
null
UTF-8
Python
false
false
2,635
py
''' 给你一个由 '1'(陆地)和 '0'(水)组成的的二维网格,请你计算网格中岛屿的数量。 岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。 此外,你可以假设该网格的四条边均被水包围。   示例 1: 输入:grid = [ ["1","1","1","1","0"], ["1","1","0","1","0"], ["1","1","0","0","0"], ["0","0","0","0","0"] ] 输出:1 示例 2: 输入:grid = [ ["1","1","0","0","0"], ["1","1","0","0","0"], ["0","0","1","0","0"], ["0","0","0","1","1"] ] 输出:3   提示: m == grid.length n == grid[i].length 1 <= m, n <= 300 grid[i][j] 的值为 '0' 或 '1' ''' from typing import List class UnionFind: def __init__(self,grid): row, col = len(grid), len(grid[0]) self.count = 0 self.parent = [-1] * (row * col) self.rank = [0] * (row * col) for i in range(row): for j in range(col): if grid[i][j] == "1": self.parent[i * col + j] = i * col + j self.count += 1 def find(self, i): if self.parent[i] == i: return i self.parent[i] = self.find(self.parent[i]) #路径压缩 return self.parent[i] def union(self, x, y): rootx = self.find(x) rooty = self.find(y) if rootx != rooty: if self.rank[rootx] < self.rank[rooty]: #将秩,即树的深度小的父节点设为深度大的节点 rootx, rooty = rooty, rootx self.parent[rooty] = rootx if self.rank[rootx] == self.rank[rooty]: self.rank[rootx] += 1 self.count -= 1 #合并一个节点,就少一个岛 def getCount(self): return self.count class Solution: def numIslands(self, grid: List[List[str]]) -> int: row = len(grid) if row == 0: return 0 col = len(grid[0]) uf = UnionFind(grid) for r in range(row): for c in range(col): if grid[r][c] == "1": grid[r][c] = "0" for x, y in ((r - 1, c), (r + 1, c), (r, c - 1), (r, c + 1)): if 0 <= x < row and 0 <= y < col and grid[x][y] == "1": uf.union(r * col + c, x * col + y) return uf.getCount() if __name__ == '__main__': grid = [ ["1", "1", "1", "1", "0"], ["1", "1", "0", "1", "0"], ["1", "1", "0", "0", "0"], ["0", "0", "0", "0", "0"] ] sol = Solution() print(sol.numIslands(grid))
8cb78ff77c9fbf845afbc5b63f5cb829ce8da914
0ffb18f4d58961ca675d8294eb2154f69061989f
/auto_process_ngs/test/test_analysis.py
6b0aeb3108c417fc199c12786a9c0484bc38a1cd
[]
no_license
nandr0id/auto_process_ngs
a794e904e6d24b0e0403941b44c884374f95850e
9b09f20b344d0ee87227e8771a479aa7c04f1837
refs/heads/master
2020-06-26T03:23:53.225029
2019-06-12T12:11:32
2019-06-12T12:11:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
52,655
py
####################################################################### # Tests for analysis.py module ####################################################################### import unittest import tempfile import shutil import zipfile import pickle import cloudpickle from bcftbx.JobRunner import SimpleJobRunner,GEJobRunner from bcftbx.utils import find_program from auto_process_ngs.mock import MockAnalysisDirFactory from auto_process_ngs.mock import MockAnalysisProject from auto_process_ngs.applications import Command from auto_process_ngs.fastq_utils import BaseFastqAttrs from auto_process_ngs.analysis import * class TestAnalysisFastq(unittest.TestCase): """ Tests for the AnalysisFastq class """ def test_illumina_style_with_extras(self): """AnalysisFastq: Illumina-style fastq name with extra elements appended """ fq = AnalysisFastq('M_19_0040_S13-A40h-R_D709-D505_L007_R1_001_repeated_1') self.assertEqual(fq.sample_name,'M_19_0040_S13-A40h-R_D709-D505') self.assertEqual(fq.basename, 'M_19_0040_S13-A40h-R_D709-D505_L007_R1_001_repeated_1') self.assertEqual(fq.extension,'') self.assertEqual(fq.sample_number,None) self.assertEqual(fq.barcode_sequence,None) self.assertEqual(fq.lane_number,7) self.assertEqual(fq.read_number,1) self.assertEqual(fq.set_number,1) self.assertFalse(fq.is_index_read) self.assertEqual(fq.canonical_name,'M_19_0040_S13-A40h-R_D709-D505_L007_R1_001') self.assertEqual(fq.extras,'_repeated_1') self.assertEqual(str(fq), 'M_19_0040_S13-A40h-R_D709-D505_L007_R1_001_repeated_1') def test_non_canonical_fastq_name(self): """AnalysisFastq: Illumina-style fastq name with extra elements appended """ fq = AnalysisFastq('PB04_trimmoPE_bowtie2_notHg38.1') self.assertEqual(fq.sample_name,'PB04_trimmoPE_bowtie2_notHg38.1') self.assertEqual(fq.basename,'PB04_trimmoPE_bowtie2_notHg38.1') self.assertEqual(fq.extension,'') self.assertEqual(fq.sample_number,None) self.assertEqual(fq.barcode_sequence,None) self.assertEqual(fq.lane_number,None) self.assertEqual(fq.read_number,None) self.assertEqual(fq.set_number,None) self.assertFalse(fq.is_index_read) self.assertEqual(fq.canonical_name,None) self.assertEqual(fq.extras,None) self.assertEqual(str(fq),'PB04_trimmoPE_bowtie2_notHg38.1') def test_reproduces_illumina_fastq_attrs(self): """AnalysisFastq: reproduces IlluminaFastqAttr behaviour """ for name in ('NH1_ChIP-seq_Gli1_ACAGTG_L003_R2_001', 'NH1_ChIP-seq_Gli1_ACAGTG-GTTCAC_L003_R2_001', 'NH1_ChIP-seq_Gli1_S4_L003_R2_001', 'NH1_ChIP-seq_Gli1_S4_L003_I1_001', 'NH1_ChIP-seq_Gli1_S4_R2_001', 'NH1_ChIP-seq_Gli1', 'NH1_ChIP-seq_Gli1_R2', 'NH1_ChIP-seq_Gli1_L001', 'NH1_ChIP-seq_Gli1_L001_R2', 'NH1_ChIP-seq_Gli1_ACAGTG', 'NH1_ChIP-seq_Gli1_ACAGTG_R2', 'NH1_ChIP-seq_Gli1_ACAGTG_L001', 'NH1_ChIP-seq_Gli1_ACAGTG_L001_R2',): illumina_fastq_attrs = IlluminaFastqAttrs(name) fq = AnalysisFastq(name) self.assertEqual(fq.sample_name,illumina_fastq_attrs.sample_name) self.assertEqual(fq.basename,illumina_fastq_attrs.basename) self.assertEqual(fq.extension,illumina_fastq_attrs.extension) self.assertEqual(fq.sample_number,illumina_fastq_attrs.sample_number) self.assertEqual(fq.barcode_sequence,illumina_fastq_attrs.barcode_sequence) self.assertEqual(fq.lane_number,illumina_fastq_attrs.lane_number) self.assertEqual(fq.read_number,illumina_fastq_attrs.read_number) self.assertEqual(fq.is_index_read,illumina_fastq_attrs.is_index_read) self.assertEqual(str(fq),str(illumina_fastq_attrs)) def test_changing_attribute_updates_canonical_name(self): """AnalysisFastq: changing attributes is reflected in canonical name """ fq = AnalysisFastq('M_19_0040_S13-A40h-R_D709-D505_L007_R1_001_repeated_1') fq.read_number = 2 self.assertEqual(fq.canonical_name, 'M_19_0040_S13-A40h-R_D709-D505_L007_R2_001') def test_changing_attribute_updates_repr(self): """AnalysisFastq: changing attributes is reflected in repr """ fq = AnalysisFastq('M_19_0040_S13-A40h-R_D709-D505_L007_R1_001_repeated_1') fq.read_number = 2 self.assertEqual(str(fq), 'M_19_0040_S13-A40h-R_D709-D505_L007_R2_001_repeated_1') class TestAnalysisDir(unittest.TestCase): """Tests for the AnalysisDir class """ def setUp(self): self.dirn = tempfile.mkdtemp(suffix='TestAnalysisDir') def tearDown(self): # Remove the temporary test directory shutil.rmtree(self.dirn) def test_casava(self): """Check AnalysisDir against CASAVA-style output """ mockdir = MockAnalysisDirFactory.casava( '160621_M00879_0087_000000000-AGEW9', 'miseq', top_dir=self.dirn) mockdir.create() analysis_dir = AnalysisDir(mockdir.dirn) self.assertEqual(analysis_dir.run_name,mockdir.run_name) self.assertEqual(analysis_dir.n_sequencing_data,1) self.assertEqual(analysis_dir.n_projects,2) self.assertTrue(analysis_dir.paired_end) def test_bcl2fastq2(self): """Check AnalysisDir against bcl2fastq v2-style output """ mockdir = MockAnalysisDirFactory.bcl2fastq2( '160621_M00879_0087_000000000-AGEW9', 'miseq', top_dir=self.dirn) mockdir.create() analysis_dir = AnalysisDir(mockdir.dirn) self.assertEqual(analysis_dir.run_name,mockdir.run_name) self.assertEqual(analysis_dir.n_sequencing_data,1) self.assertEqual(analysis_dir.n_projects,2) self.assertTrue(analysis_dir.paired_end) def test_handle_non_project_dir(self): """Check AnalysisDir with non-project directory """ mockdir = MockAnalysisDirFactory.bcl2fastq2( '160621_M00879_0087_000000000-AGEW9', 'miseq', top_dir=self.dirn) mockdir.create() # Add non-project dir non_project_dir = os.path.join(self.dirn, '160621_M00879_0087_000000000-AGEW9_analysis', 'extras') fqs_dir = os.path.join(non_project_dir,'fastqs') os.mkdir(non_project_dir) os.mkdir(fqs_dir) for fq in ('PB04_S4_R1_unpaired.fastq.gz', 'PB04_trimmoPE_bowtie2_notHg38.1.fastq.gz'): with open(os.path.join(fqs_dir,fq),'w') as fp: fp.write("") # Load and check the analysis dir analysis_dir = AnalysisDir(mockdir.dirn) self.assertEqual(analysis_dir.run_name,mockdir.run_name) self.assertEqual(analysis_dir.n_sequencing_data,1) self.assertEqual(analysis_dir.n_projects,2) self.assertTrue(analysis_dir.paired_end) class TestAnalysisProject(unittest.TestCase): """Tests for the AnalysisProject class """ def setUp(self): # Create a temporary directory for tests self.dirn = tempfile.mkdtemp(suffix='TestAnalysisProject') def make_data_dir(self,fastq_list): # Make a fake data source directory self.fastqs = [] fake_fastqs_dir = os.path.join(self.dirn,'fake_fastqs') os.mkdir(fake_fastqs_dir) for fq in fastq_list: fastq = os.path.join(fake_fastqs_dir,fq) open(fastq,'w').close() self.fastqs.append(fastq) def make_mock_project_dir(self,name,fastq_list,fastq_dir='fastqs', primary_fastq_dir=None): # Make a mock project directory if primary_fastq_dir is None: primary_fastq_dir = fastq_dir sample_names = list( set([AnalysisFastq(fq).sample_name for fq in fastq_list])) sample_names.sort() n_samples = len(sample_names) sample_names = "%d sample%s (%s)" % \ (n_samples, '' if n_samples == 1 else 's', ', '.join(sample_names)) metadata = { 'Primary fastqs': primary_fastq_dir, 'Samples': sample_names } MockAnalysisProject(name, fastq_list, fastq_dir=fastq_dir, metadata=metadata).create(top_dir=self.dirn) def tearDown(self): # Remove the temporary test directory shutil.rmtree(self.dirn) def test_empty_analysis_project(self): """Check empty AnalysisProject class """ dirn = os.path.join(self.dirn,'PJB') project = AnalysisProject('PJB',dirn) self.assertEqual(project.name,'PJB') self.assertEqual(project.dirn,dirn) self.assertEqual(project.samples,[]) self.assertFalse(project.multiple_fastqs) self.assertEqual(project.fastq_dir,None) self.assertEqual(project.info.library_type,None) self.assertEqual(project.info.single_cell_platform,None) self.assertEqual(project.info.organism,None) self.assertEqual(project.info.number_of_cells,None) self.assertEqual(project.info.icell8_well_list,None) self.assertFalse(project.info.paired_end) self.assertEqual(project.info.platform,None) self.assertEqual(project.info.primary_fastq_dir,None) self.assertEqual(project.info.samples,None) self.assertEqual(project.fastq_dirs,[]) def test_create_single_end_analysis_project(self): """Check creation of new single-end AnalysisProject directory """ self.make_data_dir(('PJB1-A_ACAGTG_L001_R1_001.fastq.gz', 'PJB1-B_ACAGTG_L002_R1_001.fastq.gz',)) dirn = os.path.join(self.dirn,'PJB') project = AnalysisProject('PJB',dirn) project.create_directory(fastqs=self.fastqs) self.assertEqual(project.name,'PJB') self.assertTrue(os.path.isdir(project.dirn)) self.assertFalse(project.multiple_fastqs) self.assertFalse(project.info.paired_end) self.assertEqual(project.info.primary_fastq_dir,'fastqs') self.assertEqual(project.info.samples,'2 samples (PJB1-A, PJB1-B)') self.assertEqual(project.samples[0].name,'PJB1-A') self.assertEqual(project.samples[1].name,'PJB1-B') self.assertEqual(project.fastq_dir, os.path.join(project.dirn,'fastqs')) self.assertEqual(project.fastq_dirs,['fastqs',]) def test_create_single_end_analysis_project_multi_fastqs(self): """Check creation of new single-end AnalysisProject directory (multi-fastq/sample) """ self.make_data_dir(('PJB1-A_ACAGTG_L001_R1_001.fastq.gz', 'PJB1-A_ACAGTG_L002_R1_001.fastq.gz', 'PJB1-B_ACAGTG_L001_R1_001.fastq.gz', 'PJB1-B_ACAGTG_L002_R1_001.fastq.gz',)) dirn = os.path.join(self.dirn,'PJB') project = AnalysisProject('PJB',dirn) project.create_directory(fastqs=self.fastqs) self.assertEqual(project.name,'PJB') self.assertTrue(os.path.isdir(project.dirn)) self.assertTrue(project.multiple_fastqs) self.assertFalse(project.info.paired_end) self.assertEqual(project.info.primary_fastq_dir,'fastqs') self.assertEqual(project.info.samples, '2 samples (PJB1-A, PJB1-B, multiple fastqs per sample)') self.assertEqual(project.samples[0].name,'PJB1-A') self.assertEqual(project.samples[1].name,'PJB1-B') self.assertEqual(project.fastq_dir, os.path.join(project.dirn,'fastqs')) self.assertEqual(project.fastq_dirs,['fastqs',]) def test_create_paired_end_analysis_project(self): """Check creation of new paired-end AnalysisProject directory """ self.make_data_dir(('PJB1-A_ACAGTG_L001_R1_001.fastq.gz', 'PJB1-B_ACAGTG_L002_R1_001.fastq.gz', 'PJB1-A_ACAGTG_L001_R2_001.fastq.gz', 'PJB1-B_ACAGTG_L002_R2_001.fastq.gz',)) dirn = os.path.join(self.dirn,'PJB') project = AnalysisProject('PJB',dirn) project.create_directory(fastqs=self.fastqs) self.assertEqual(project.name,'PJB') self.assertTrue(os.path.isdir(project.dirn)) self.assertFalse(project.multiple_fastqs) self.assertTrue(project.info.paired_end) self.assertEqual(project.info.primary_fastq_dir,'fastqs') self.assertEqual(project.info.samples,'2 samples (PJB1-A, PJB1-B)') self.assertEqual(project.samples[0].name,'PJB1-A') self.assertEqual(project.samples[1].name,'PJB1-B') self.assertEqual(project.fastq_dir, os.path.join(project.dirn,'fastqs')) self.assertEqual(project.fastq_dirs,['fastqs',]) def test_create_paired_end_analysis_project_multi_fastqs(self): """Check creation of new paired-end AnalysisProject directory (multi-fastq/sample) """ self.make_data_dir(('PJB1-B_ACAGTG_L001_R1_001.fastq.gz', 'PJB1-B_ACAGTG_L002_R1_001.fastq.gz', 'PJB1-B_ACAGTG_L001_R2_001.fastq.gz', 'PJB1-B_ACAGTG_L002_R2_001.fastq.gz',)) dirn = os.path.join(self.dirn,'PJB') project = AnalysisProject('PJB',dirn) project.create_directory(fastqs=self.fastqs) self.assertEqual(project.name,'PJB') self.assertTrue(os.path.isdir(project.dirn)) self.assertEqual(project.samples[0].name,'PJB1-B') self.assertTrue(project.multiple_fastqs) self.assertTrue(project.info.paired_end) self.assertEqual(project.fastq_dir, os.path.join(project.dirn,'fastqs')) self.assertEqual(project.fastq_dirs,['fastqs',]) self.assertEqual(project.info.primary_fastq_dir,'fastqs') self.assertEqual(project.info.samples, '1 sample (PJB1-B, multiple fastqs per sample)') def test_create_analysis_project_not_standard_fastq_dir(self): """Check creation of AnalysisProject directory with non-standard fastq dir """ self.make_data_dir(('PJB1-B_ACAGTG_L001_R1_001.fastq.gz', 'PJB1-B_ACAGTG_L002_R1_001.fastq.gz', 'PJB1-B_ACAGTG_L001_R2_001.fastq.gz', 'PJB1-B_ACAGTG_L002_R2_001.fastq.gz',)) dirn = os.path.join(self.dirn,'PJB') project = AnalysisProject('PJB',dirn) project.create_directory(fastqs=self.fastqs,fastq_dir='fastqs.test') self.assertEqual(project.name,'PJB') self.assertTrue(os.path.isdir(project.dirn)) self.assertEqual(project.samples[0].name,'PJB1-B') self.assertTrue(project.multiple_fastqs) self.assertTrue(project.info.paired_end) self.assertEqual(project.fastq_dir, os.path.join(project.dirn,'fastqs.test')) self.assertEqual(project.info.samples, '1 sample (PJB1-B, multiple fastqs per sample)') self.assertEqual(project.fastq_dirs,['fastqs.test',]) self.assertEqual(project.info.primary_fastq_dir,'fastqs.test') def test_load_single_end_analysis_project(self): """Check loading of an existing single-end AnalysisProject directory """ self.make_mock_project_dir( 'PJB', ('PJB1-A_ACAGTG_L001_R1_001.fastq.gz', 'PJB1-B_ACAGTG_L002_R1_001.fastq.gz',)) dirn = os.path.join(self.dirn,'PJB') project = AnalysisProject('PJB',dirn) self.assertEqual(project.name,'PJB') self.assertTrue(os.path.isdir(project.dirn)) self.assertFalse(project.multiple_fastqs) self.assertFalse(project.info.paired_end) self.assertEqual(project.samples[0].name,'PJB1-A') self.assertEqual(project.samples[1].name,'PJB1-B') self.assertEqual(project.fastq_dir, os.path.join(project.dirn,'fastqs')) self.assertEqual(project.info.samples,'2 samples (PJB1-A, PJB1-B)') self.assertEqual(project.fastq_dirs,['fastqs',]) self.assertEqual(project.info.primary_fastq_dir,'fastqs') def test_load_analysis_project_non_canonical_fastq_dir(self): """Check AnalysisProject loading for directory with non-canonical fastq directory """ self.make_mock_project_dir( 'PJB', ('PJB1-A_ACAGTG_L001_R1_001.fastq.gz', 'PJB1-B_ACAGTG_L002_R1_001.fastq.gz',), fastq_dir='fastqs.test') dirn = os.path.join(self.dirn,'PJB') project = AnalysisProject('PJB',dirn,fastq_dir='fastqs.test') self.assertEqual(project.name,'PJB') self.assertTrue(os.path.isdir(project.dirn)) self.assertFalse(project.multiple_fastqs) self.assertFalse(project.info.paired_end) self.assertEqual(project.samples[0].name,'PJB1-A') self.assertEqual(project.samples[1].name,'PJB1-B') self.assertEqual(project.fastq_dir, os.path.join(project.dirn,'fastqs.test')) self.assertEqual(project.info.samples,'2 samples (PJB1-A, PJB1-B)') self.assertEqual(project.fastq_dirs,['fastqs.test',]) self.assertEqual(project.info.primary_fastq_dir,'fastqs.test') def test_load_analysis_project_non_canonical_fastqs(self): """Check AnalysisProject loading fails for directory with non-canonical fastqs """ self.make_mock_project_dir( 'PJB', ('PB04_S4_R1_unpaired.fastq.gz', 'PB04_trimmoPE_bowtie2_notHg38.1.fastq.gz',)) dirn = os.path.join(self.dirn,'PJB') project = AnalysisProject('PJB',dirn) self.assertEqual(project.name,'PJB') self.assertTrue(os.path.isdir(project.dirn)) self.assertFalse(project.multiple_fastqs) self.assertFalse(project.info.paired_end) self.assertEqual(project.fastq_dir, os.path.join(project.dirn,'fastqs')) self.assertEqual(project.info.samples, '2 samples (PB04, PB04_trimmoPE_bowtie2_notHg38.1)') self.assertEqual(project.fastq_dirs,['fastqs',]) self.assertEqual(project.info.primary_fastq_dir,'fastqs') def test_load_analysis_project_non_with_alternative_fastq_naming(self): """Check AnalysisProject loading for directory with alternative fastq naming """ self.make_mock_project_dir( 'PJB', ('PB02.trimmed.filtered.r1.fastq.gz', 'PB02.trimmed.filtered.r2.fastq.gz',)) # Create a class to handle the non-canonical Fastq names class NonCanonicalFastq(BaseFastqAttrs): def __init__(self,fastq): BaseFastqAttrs.__init__(self,fastq) self.sample_name = self.basename.split('.')[0] self.read_number = int(self.basename.split('.')[-1][1:]) dirn = os.path.join(self.dirn,'PJB') project = AnalysisProject('PJB',dirn,fastq_attrs=NonCanonicalFastq) self.assertEqual(project.name,'PJB') self.assertTrue(os.path.isdir(project.dirn)) self.assertFalse(project.multiple_fastqs) self.assertTrue(project.info.paired_end) self.assertEqual(project.samples[0].name,'PB02') self.assertEqual(project.fastq_dir, os.path.join(project.dirn,'fastqs')) self.assertEqual(project.info.samples, '1 sample (PB02.trimmed.filtered)') self.assertEqual(project.fastq_dirs,['fastqs',]) self.assertEqual(project.info.primary_fastq_dir,'fastqs') def test_load_analysis_project_detect_multiple_fastq_dirs(self): """Check AnalysisProject detects multiple fastqs directories """ # Construct test project with two fastq subdirectories self.make_mock_project_dir( 'PJB', ('PJB1-A_ACAGTG_L001_R1_001.fastq.gz', 'PJB1-B_ACAGTG_L002_R1_001.fastq.gz',)) self.make_mock_project_dir( 'PJB.untrimmed', ('PJB1-A-untrimmed_ACAGTG_L001_R1_001.fastq.gz', 'PJB1-B-untrimmed_ACAGTG_L002_R1_001.fastq.gz',), fastq_dir='fastqs.untrimmed') shutil.move(os.path.join(self.dirn, 'PJB.untrimmed', 'fastqs.untrimmed'), os.path.join(self.dirn,'PJB')) shutil.rmtree(os.path.join(self.dirn,'PJB.untrimmed')) # Load and check AnalysisProject: default fastqs dir dirn = os.path.join(self.dirn,'PJB') project = AnalysisProject('PJB',dirn) self.assertEqual(project.name,'PJB') self.assertTrue(os.path.isdir(project.dirn)) self.assertFalse(project.multiple_fastqs) self.assertFalse(project.info.paired_end) self.assertEqual(project.samples[0].name,'PJB1-A') self.assertEqual(project.samples[1].name,'PJB1-B') self.assertEqual(project.fastq_dir, os.path.join(project.dirn,'fastqs')) self.assertEqual(project.info.samples,'2 samples (PJB1-A, PJB1-B)') self.assertEqual(project.fastq_dirs, ['fastqs','fastqs.untrimmed']) # Load and check AnalysisProject: default fastqs dir dirn = os.path.join(self.dirn,'PJB') project = AnalysisProject('PJB',dirn, fastq_dir='fastqs.untrimmed') self.assertEqual(project.name,'PJB') self.assertTrue(os.path.isdir(project.dirn)) self.assertFalse(project.multiple_fastqs) self.assertFalse(project.info.paired_end) self.assertEqual(project.samples[0].name,'PJB1-A-untrimmed') self.assertEqual(project.samples[1].name,'PJB1-B-untrimmed') self.assertEqual(project.fastq_dir, os.path.join(project.dirn,'fastqs.untrimmed')) self.assertEqual(project.info.samples,'2 samples (PJB1-A, PJB1-B)') self.assertEqual(project.fastq_dirs, ['fastqs','fastqs.untrimmed']) self.assertEqual(project.info.primary_fastq_dir,'fastqs') def test_analysis_project_switch_fastq_dir(self): """Check AnalysisProject can switch between multiple fastqs directories """ # Construct test project with two fastq subdirectories self.make_mock_project_dir( 'PJB', ('PJB1-A_ACAGTG_L001_R1_001.fastq.gz', 'PJB1-B_ACAGTG_L002_R1_001.fastq.gz',)) self.make_mock_project_dir( 'PJB.untrimmed', ('PJB1-A-untrimmed_ACAGTG_L001_R1_001.fastq.gz', 'PJB1-B-untrimmed_ACAGTG_L002_R1_001.fastq.gz',), fastq_dir='fastqs.untrimmed') shutil.move(os.path.join(self.dirn, 'PJB.untrimmed', 'fastqs.untrimmed'), os.path.join(self.dirn,'PJB')) shutil.rmtree(os.path.join(self.dirn,'PJB.untrimmed')) # Load and check AnalysisProject: default fastqs dir dirn = os.path.join(self.dirn,'PJB') project = AnalysisProject('PJB',dirn) self.assertEqual(project.name,'PJB') self.assertTrue(os.path.isdir(project.dirn)) self.assertFalse(project.multiple_fastqs) self.assertFalse(project.info.paired_end) self.assertEqual(project.samples[0].name,'PJB1-A') self.assertEqual(project.samples[1].name,'PJB1-B') self.assertEqual(project.fastq_dir, os.path.join(project.dirn,'fastqs')) self.assertEqual(project.fastq_dirs, ['fastqs','fastqs.untrimmed']) # Switch to alternative fastqs dir project.use_fastq_dir('fastqs.untrimmed') self.assertEqual(project.name,'PJB') self.assertTrue(os.path.isdir(project.dirn)) self.assertFalse(project.multiple_fastqs) self.assertFalse(project.info.paired_end) self.assertEqual(project.samples[0].name,'PJB1-A-untrimmed') self.assertEqual(project.samples[1].name,'PJB1-B-untrimmed') self.assertEqual(project.fastq_dir, os.path.join(project.dirn,'fastqs.untrimmed')) self.assertEqual(project.info.samples,'2 samples (PJB1-A, PJB1-B)') self.assertEqual(project.fastq_dirs, ['fastqs','fastqs.untrimmed']) self.assertEqual(project.info.primary_fastq_dir,'fastqs') def test_analysis_project_switch_to_default_fastq_dir(self): """Check AnalysisProject switches to default fastq set """ # Construct test project with two fastq subdirectories self.make_mock_project_dir( 'PJB', ('PJB1-A_ACAGTG_L001_R1_001.fastq.gz', 'PJB1-B_ACAGTG_L002_R1_001.fastq.gz',)) self.make_mock_project_dir( 'PJB.untrimmed', ('PJB1-A-untrimmed_ACAGTG_L001_R1_001.fastq.gz', 'PJB1-B-untrimmed_ACAGTG_L002_R1_001.fastq.gz',), fastq_dir='fastqs.untrimmed') shutil.move(os.path.join(self.dirn, 'PJB.untrimmed', 'fastqs.untrimmed'), os.path.join(self.dirn,'PJB')) shutil.rmtree(os.path.join(self.dirn,'PJB.untrimmed')) # Load and check AnalysisProject with alternative fastq set dirn = os.path.join(self.dirn,'PJB') project = AnalysisProject('PJB',dirn,fastq_dir='fastqs.untrimmed') self.assertEqual(project.name,'PJB') self.assertTrue(os.path.isdir(project.dirn)) self.assertFalse(project.multiple_fastqs) self.assertFalse(project.info.paired_end) self.assertEqual(project.samples[0].name,'PJB1-A-untrimmed') self.assertEqual(project.samples[1].name,'PJB1-B-untrimmed') self.assertEqual(project.fastq_dir, os.path.join(project.dirn,'fastqs.untrimmed')) self.assertEqual(project.info.samples,'2 samples (PJB1-A, PJB1-B)') self.assertEqual(project.fastq_dirs, ['fastqs','fastqs.untrimmed']) self.assertEqual(project.info.primary_fastq_dir,'fastqs') # Implicitly switch to primary fastq set project.use_fastq_dir() self.assertEqual(project.name,'PJB') self.assertTrue(os.path.isdir(project.dirn)) self.assertFalse(project.multiple_fastqs) self.assertFalse(project.info.paired_end) self.assertEqual(project.samples[0].name,'PJB1-A') self.assertEqual(project.samples[1].name,'PJB1-B') self.assertEqual(project.fastq_dir, os.path.join(project.dirn,'fastqs')) self.assertEqual(project.info.samples,'2 samples (PJB1-A, PJB1-B)') self.assertEqual(project.fastq_dirs, ['fastqs','fastqs.untrimmed']) self.assertEqual(project.info.primary_fastq_dir,'fastqs') def test_analysis_project_switch_to_default_non_canonical_fastq_dir(self): """Check AnalysisProject switches to default (non-canonical) fastq set """ # Construct test project with two fastq subdirectories # and make non-canonical named primary set self.make_mock_project_dir( 'PJB', ('PJB1-A-untrimmed_ACAGTG_L001_R1_001.fastq.gz', 'PJB1-B-untrimmed_ACAGTG_L002_R1_001.fastq.gz',), fastq_dir='fastqs.untrimmed') self.make_mock_project_dir( 'PJB.trimmed', ('PJB1-A_ACAGTG_L001_R1_001.fastq.gz', 'PJB1-B_ACAGTG_L002_R1_001.fastq.gz',)) shutil.move(os.path.join(self.dirn, 'PJB.trimmed', 'fastqs'), os.path.join(self.dirn,'PJB')) shutil.rmtree(os.path.join(self.dirn,'PJB.trimmed')) # Load and check AnalysisProject primary fastq set dirn = os.path.join(self.dirn,'PJB') project = AnalysisProject('PJB',dirn) self.assertEqual(project.info.primary_fastq_dir,'fastqs.untrimmed') self.assertEqual(project.fastq_dir, os.path.join(project.dirn,'fastqs.untrimmed')) self.assertEqual(project.info.samples, '2 samples (PJB1-A-untrimmed, PJB1-B-untrimmed)') # Load again with alternative fastq set project = AnalysisProject('PJB',dirn,fastq_dir='fastqs') self.assertEqual(project.info.primary_fastq_dir,'fastqs.untrimmed') self.assertEqual(project.fastq_dir, os.path.join(project.dirn,'fastqs')) self.assertEqual(project.info.samples, '2 samples (PJB1-A-untrimmed, PJB1-B-untrimmed)') # Implicitly switch to primary fastq set project.use_fastq_dir() self.assertEqual(project.info.primary_fastq_dir,'fastqs.untrimmed') self.assertEqual(project.fastq_dir, os.path.join(project.dirn,'fastqs.untrimmed')) self.assertEqual(project.info.samples, '2 samples (PJB1-A-untrimmed, PJB1-B-untrimmed)') def test_analysis_project_update_primary_fastq_dir(self): """Check AnalysisProject primary fastq set can be updated """ # Construct test project with two fastq subdirectories self.make_mock_project_dir( 'PJB', ('PJB1-A_ACAGTG_L001_R1_001.fastq.gz', 'PJB1-B_ACAGTG_L002_R1_001.fastq.gz',)) self.make_mock_project_dir( 'PJB.untrimmed', ('PJB1-A-untrimmed_ACAGTG_L001_R1_001.fastq.gz', 'PJB1-B-untrimmed_ACAGTG_L002_R1_001.fastq.gz',), fastq_dir='fastqs.untrimmed') shutil.move(os.path.join(self.dirn, 'PJB.untrimmed', 'fastqs.untrimmed'), os.path.join(self.dirn,'PJB')) shutil.rmtree(os.path.join(self.dirn,'PJB.untrimmed')) # Load and check AnalysisProject primary fastq set dirn = os.path.join(self.dirn,'PJB') project = AnalysisProject('PJB',dirn) self.assertEqual(project.info.primary_fastq_dir,'fastqs') self.assertEqual(project.info.samples,'2 samples (PJB1-A, PJB1-B)') self.assertEqual(project.fastq_dir, os.path.join(project.dirn,'fastqs')) self.assertEqual(project.fastq_dirs,['fastqs','fastqs.untrimmed']) # Update the primary fastq set project.set_primary_fastq_dir('fastqs.untrimmed') self.assertEqual(project.info.primary_fastq_dir,'fastqs.untrimmed') self.assertEqual(project.fastq_dir, os.path.join(project.dirn,'fastqs')) self.assertEqual(project.info.samples, '2 samples (PJB1-A-untrimmed, PJB1-B-untrimmed)') self.assertEqual(project.fastq_dirs,['fastqs','fastqs.untrimmed']) # Reload the project and check that the change has stuck project1 = AnalysisProject('PJB',dirn) self.assertEqual(project1.info.primary_fastq_dir,'fastqs.untrimmed') self.assertEqual(project1.fastq_dir, os.path.join(project.dirn,'fastqs.untrimmed')) self.assertEqual(project1.fastq_dirs,['fastqs','fastqs.untrimmed']) self.assertEqual(project1.info.samples, '2 samples (PJB1-A-untrimmed, PJB1-B-untrimmed)') def test_analysis_project_switch_to_non_existant_fastq_dir(self): """Check AnalysisProject fails when switching to non-existant fastqs dir """ self.make_mock_project_dir( 'PJB', ('PJB1-A_ACAGTG_L001_R1_001.fastq.gz', 'PJB1-B_ACAGTG_L002_R1_001.fastq.gz',)) dirn = os.path.join(self.dirn,'PJB') project = AnalysisProject('PJB',dirn) self.assertRaises(Exception, project.use_fastq_dir,'fastqs.non_existant') def test_analysis_project_switch_fastq_dir_preserves_qc_dir(self): """Check AnalysisProject switch fastqs dirs preserves QC dir """ # Construct test project with two fastq subdirectories self.make_mock_project_dir( 'PJB', ('PJB1-A_ACAGTG_L001_R1_001.fastq.gz', 'PJB1-B_ACAGTG_L002_R1_001.fastq.gz',)) self.make_mock_project_dir( 'PJB.untrimmed', ('PJB1-A-untrimmed_ACAGTG_L001_R1_001.fastq.gz', 'PJB1-B-untrimmed_ACAGTG_L002_R1_001.fastq.gz',), fastq_dir='fastqs.untrimmed') shutil.move(os.path.join(self.dirn, 'PJB.untrimmed', 'fastqs.untrimmed'), os.path.join(self.dirn,'PJB')) shutil.rmtree(os.path.join(self.dirn,'PJB.untrimmed')) # Load and check AnalysisProject: default fastqs dir dirn = os.path.join(self.dirn,'PJB') project = AnalysisProject('PJB',dirn) self.assertEqual(project.name,'PJB') self.assertTrue(os.path.isdir(project.dirn)) self.assertFalse(project.multiple_fastqs) self.assertFalse(project.info.paired_end) self.assertEqual(project.samples[0].name,'PJB1-A') self.assertEqual(project.samples[1].name,'PJB1-B') self.assertEqual(project.fastq_dir, os.path.join(project.dirn,'fastqs')) self.assertEqual(project.fastq_dirs, ['fastqs','fastqs.untrimmed']) self.assertEqual(project.qc_dir, os.path.join(project.dirn,'qc')) # Set new QC dir project.use_qc_dir('qc.new') self.assertEqual(project.qc_dir, os.path.join(project.dirn,'qc.new')) # Switch to alternative fastqs dir project.use_fastq_dir('fastqs.untrimmed') self.assertEqual(project.name,'PJB') self.assertTrue(os.path.isdir(project.dirn)) self.assertFalse(project.multiple_fastqs) self.assertFalse(project.info.paired_end) self.assertEqual(project.samples[0].name,'PJB1-A-untrimmed') self.assertEqual(project.samples[1].name,'PJB1-B-untrimmed') self.assertEqual(project.fastq_dir, os.path.join(project.dirn,'fastqs.untrimmed')) self.assertEqual(project.info.samples,'2 samples (PJB1-A, PJB1-B)') self.assertEqual(project.fastq_dirs, ['fastqs','fastqs.untrimmed']) self.assertEqual(project.info.primary_fastq_dir,'fastqs') self.assertEqual(project.qc_dir, os.path.join(project.dirn,'qc.new')) def test_sample_summary_single_ended(self): """AnalysisProject: sample_summary works for SE data """ self.make_mock_project_dir( 'PJB', ('PJB1-A_ACAGTG_L001_R1_001.fastq.gz', 'PJB1-B_ACAGTG_L002_R1_001.fastq.gz',)) project = AnalysisProject('PJB',os.path.join(self.dirn,'PJB')) self.assertEqual(project.sample_summary(), "2 samples (PJB1-A, PJB1-B)") def test_sample_summary_paired_ended(self): """AnalysisProject: sample_summary works for PE data """ self.make_mock_project_dir( 'PJB', ('PJB1-A_ACAGTG_L001_R1_001.fastq.gz', 'PJB1-A_ACAGTG_L001_R2_001.fastq.gz', 'PJB1-B_ACAGTG_L002_R1_001.fastq.gz', 'PJB1-B_ACAGTG_L002_R2_001.fastq.gz',)) project = AnalysisProject('PJB',os.path.join(self.dirn,'PJB')) self.assertEqual(project.sample_summary(), "2 samples (PJB1-A, PJB1-B)") def test_sample_summary_single_ended_multiple_fastqs(self): """AnalysisProject: sample_summary works for SE data, multiple fastqs """ self.make_mock_project_dir( 'PJB', ('PJB1-A_ACAGTG_L001_R1_001.fastq.gz', 'PJB1-A_ACAGTG_L002_R1_001.fastq.gz', 'PJB1-B_ACAGTG_L001_R1_001.fastq.gz', 'PJB1-B_ACAGTG_L002_R1_001.fastq.gz',)) project = AnalysisProject('PJB',os.path.join(self.dirn,'PJB')) self.assertEqual(project.sample_summary(), "2 samples (PJB1-A, PJB1-B, multiple fastqs per sample)") def test_sample_summary_paired_ended_multiple_fastqs(self): """AnalysisProject: sample_summary works for PE data, multiple fastqs """ self.make_mock_project_dir( 'PJB', ('PJB1-A_ACAGTG_L001_R1_001.fastq.gz', 'PJB1-A_ACAGTG_L001_R2_001.fastq.gz', 'PJB1-A_ACAGTG_L002_R1_001.fastq.gz', 'PJB1-A_ACAGTG_L002_R2_001.fastq.gz', 'PJB1-B_ACAGTG_L001_R1_001.fastq.gz', 'PJB1-B_ACAGTG_L002_R2_001.fastq.gz', 'PJB1-B_ACAGTG_L001_R1_001.fastq.gz', 'PJB1-B_ACAGTG_L002_R2_001.fastq.gz',)) project = AnalysisProject('PJB',os.path.join(self.dirn,'PJB')) self.assertEqual(project.sample_summary(), "2 samples (PJB1-A, PJB1-B, multiple fastqs per sample)") def test_sample_summary_paired_ended_ignore_index_reads(self): """AnalysisProject: sample_summary works for PE data with index reads """ self.make_mock_project_dir( 'PJB', ('PJB1-A_ACAGTG_L001_R1_001.fastq.gz', 'PJB1-A_ACAGTG_L001_R2_001.fastq.gz', 'PJB1-A_ACAGTG_L001_I1_001.fastq.gz', 'PJB1-B_ACAGTG_L002_R1_001.fastq.gz', 'PJB1-B_ACAGTG_L002_R2_001.fastq.gz', 'PJB1-B_ACAGTG_L002_I1_001.fastq.gz',)) project = AnalysisProject('PJB',os.path.join(self.dirn,'PJB')) self.assertEqual(project.sample_summary(), "2 samples (PJB1-A, PJB1-B)") def test_sample_summary_no_samples(self): """AnalysisProject: sample_summary works when there are no samples """ self.make_mock_project_dir('PJB',()) project = AnalysisProject('PJB',os.path.join(self.dirn,'PJB')) self.assertEqual(project.sample_summary(),"No samples") def test_order_samples_by_name(self): """AnalysisProject: sample_summary works for SE data """ self.make_mock_project_dir( 'PJB', ('PJB1_ACAGTG_L001_R1_001.fastq.gz', 'PJB2_ACAGTG_L001_R1_001.fastq.gz', 'PJB3_ACAGTG_L001_R1_001.fastq.gz', 'PJB10_ACAGTG_L001_R1_001.fastq.gz', 'PJB20_ACAGTG_L001_R1_001.fastq.gz', 'PJB21_ACAGTG_L001_R1_001.fastq.gz',)) project = AnalysisProject('PJB',os.path.join(self.dirn,'PJB')) sample_names = [s.name for s in project.samples] self.assertEqual(sample_names, ['PJB1','PJB2','PJB3','PJB10','PJB20','PJB21']) def test_pickle_analysis_project(self): """AnalysisProject: check serialisation with 'pickle' """ self.make_mock_project_dir( 'PJB', ('PJB1-A_ACAGTG_L001_R1_001.fastq.gz', 'PJB1-B_ACAGTG_L002_R1_001.fastq.gz',)) dirn = os.path.join(self.dirn,'PJB') project = AnalysisProject('PJB',dirn) # Pickle project pickled = pickle.dumps(project) # Unpickle it unpickled = pickle.loads(pickled) # Check the unpickled data self.assertEqual(unpickled.name,'PJB') self.assertTrue(os.path.isdir(unpickled.dirn)) self.assertFalse(unpickled.multiple_fastqs) self.assertFalse(unpickled.info.paired_end) self.assertEqual(unpickled.info.primary_fastq_dir,'fastqs') self.assertEqual(unpickled.info.samples,'2 samples (PJB1-A, PJB1-B)') self.assertEqual(unpickled.samples[0].name,'PJB1-A') self.assertEqual(unpickled.samples[1].name,'PJB1-B') self.assertEqual(unpickled.fastq_dir, os.path.join(unpickled.dirn,'fastqs')) self.assertEqual(unpickled.fastq_dirs,['fastqs',]) def test_cloudpickle_analysis_project(self): """AnalysisProject: check serialisation with 'cloudpickle' """ self.make_mock_project_dir( 'PJB', ('PJB1-A_ACAGTG_L001_R1_001.fastq.gz', 'PJB1-B_ACAGTG_L002_R1_001.fastq.gz',)) dirn = os.path.join(self.dirn,'PJB') project = AnalysisProject('PJB',dirn) # Pickle project pickled = cloudpickle.dumps(project) # Unpickle it unpickled = cloudpickle.loads(pickled) # Check the unpickled data self.assertEqual(unpickled.name,'PJB') self.assertTrue(os.path.isdir(unpickled.dirn)) self.assertFalse(unpickled.multiple_fastqs) self.assertFalse(unpickled.info.paired_end) self.assertEqual(unpickled.info.primary_fastq_dir,'fastqs') self.assertEqual(unpickled.info.samples,'2 samples (PJB1-A, PJB1-B)') self.assertEqual(unpickled.samples[0].name,'PJB1-A') self.assertEqual(unpickled.samples[1].name,'PJB1-B') self.assertEqual(unpickled.fastq_dir, os.path.join(unpickled.dirn,'fastqs')) self.assertEqual(unpickled.fastq_dirs,['fastqs',]) class TestAnalysisSample(unittest.TestCase): """Tests for the AnalysisSample class """ def test_empty_analysis_sample(self): """Check empty AnalysisSample class """ sample = AnalysisSample('PJB1-A') self.assertEqual(sample.name,'PJB1-A') self.assertEqual(sample.fastq,[]) self.assertFalse(sample.paired_end) self.assertEqual(str(sample),'PJB1-A') def test_single_end_analysis_sample(self): """Check AnalysisSample class with single-end sample """ fq = '/run/sample1/PJB1-B_ACAGTG_L001_R1.fastq.gz' sample = AnalysisSample('PJB1-B') sample.add_fastq(fq) self.assertEqual(sample.name,'PJB1-B') self.assertEqual(sample.fastq,[fq]) self.assertEqual(sample.fastq_subset(read_number=1),[fq]) self.assertEqual(sample.fastq_subset(read_number=2),[]) self.assertFalse(sample.paired_end) self.assertEqual(str(sample),'PJB1-B') def test_single_end_analysis_sample_multiple_fastqs(self): """Check AnalysisSample class with single-end sample (multiple fastqs) """ sample = AnalysisSample('PJB1-B') fq_l1 = '/run/sample1/PJB1-B_ACAGTG_L001_R1.fastq.gz' fq_l2 = '/run/sample1/PJB1-B_ACAGTG_L002_R1.fastq.gz' sample.add_fastq(fq_l1) sample.add_fastq(fq_l2) self.assertEqual(sample.name,'PJB1-B') self.assertEqual(sample.fastq,[fq_l1,fq_l2]) self.assertEqual(sample.fastq_subset(read_number=1),[fq_l1,fq_l2]) self.assertEqual(sample.fastq_subset(read_number=2),[]) self.assertFalse(sample.paired_end) self.assertEqual(str(sample),'PJB1-B') def test_paired_end_analysis_sample(self): """Check AnalysisSample class with paired-end sample """ sample = AnalysisSample('PJB1-B') fq_r1 = '/run/sample1/PJB1-B_ACAGTG_L001_R1.fastq.gz' fq_r2 = '/run/sample1/PJB1-B_ACAGTG_L001_R2.fastq.gz' sample.add_fastq(fq_r1) sample.add_fastq(fq_r2) self.assertEqual(sample.name,'PJB1-B') self.assertEqual(sample.fastq,[fq_r1,fq_r2]) self.assertEqual(sample.fastq_subset(read_number=1),[fq_r1]) self.assertEqual(sample.fastq_subset(read_number=2),[fq_r2]) def test_paired_end_analysis_sample_index_read_fastq(self): """Check AnalysisSample class with index read fastqs """ sample = AnalysisSample('PJB1-B') fq_l1_r1 = '/run/sample1/PJB1-B_S1_L001_R1.fastq.gz' fq_l1_r2 = '/run/sample1/PJB1-B_S1_L001_R2.fastq.gz' fq_l1_i1 = '/run/sample1/PJB1-B_S1_L001_I1.fastq.gz' sample.add_fastq(fq_l1_r1) sample.add_fastq(fq_l1_r2) sample.add_fastq(fq_l1_i1) self.assertEqual(sample.name,'PJB1-B') self.assertEqual(sample.fastq,[fq_l1_i1,fq_l1_r1,fq_l1_r2]) self.assertEqual(sample.fastq_subset(read_number=1),[fq_l1_r1,]) self.assertEqual(sample.fastq_subset(read_number=2),[fq_l1_r2,]) self.assertTrue(sample.paired_end) self.assertEqual(str(sample),'PJB1-B') def test_paired_end_analysis_sample_multiple_fastqs(self): """Check AnalysisSample class with paired-end sample (multiple fastqs) """ sample = AnalysisSample('PJB1-B') fq_l1_r1 = '/run/sample1/PJB1-B_ACAGTG_L001_R1.fastq.gz' fq_l2_r1 = '/run/sample1/PJB1-B_ACAGTG_L002_R1.fastq.gz' fq_l1_r2 = '/run/sample1/PJB1-B_ACAGTG_L001_R2.fastq.gz' fq_l2_r2 = '/run/sample1/PJB1-B_ACAGTG_L002_R2.fastq.gz' sample.add_fastq(fq_l1_r1) sample.add_fastq(fq_l2_r1) sample.add_fastq(fq_l1_r2) sample.add_fastq(fq_l2_r2) self.assertEqual(sample.name,'PJB1-B') self.assertEqual(sample.fastq,[fq_l1_r1,fq_l1_r2, fq_l2_r1,fq_l2_r2]) self.assertEqual(sample.fastq_subset(read_number=1),[fq_l1_r1,fq_l2_r1]) self.assertEqual(sample.fastq_subset(read_number=2),[fq_l1_r2,fq_l2_r2]) self.assertTrue(sample.paired_end) self.assertEqual(str(sample),'PJB1-B') def test_analysis_sample_non_canonical_fastq_naming(self): """Check AnalysisSample class with non-canonical fastq naming """ # Create a class to handle the non-canonical Fastq names class NonCanonicalFastq(BaseFastqAttrs): def __init__(self,fastq): BaseFastqAttrs.__init__(self,fastq) self.sample_name = self.basename.split('.')[0] self.read_number = int(self.basename.split('.')[-1][1:]) sample = AnalysisSample('PJB1-B',fastq_attrs=NonCanonicalFastq) fq_r1 = '/run/sample1/PJB1-B.ACAGTG.L001.R1.fastq.gz' fq_r2 = '/run/sample1/PJB1-B.ACAGTG.L001.R2.fastq.gz' sample.add_fastq(fq_r1) sample.add_fastq(fq_r2) self.assertEqual(sample.name,'PJB1-B') self.assertEqual(sample.fastq,[fq_r1,fq_r2]) self.assertEqual(sample.fastq_subset(read_number=1),[fq_r1]) self.assertEqual(sample.fastq_subset(read_number=2),[fq_r2]) self.assertTrue(sample.paired_end) self.assertEqual(str(sample),'PJB1-B') class TestRunReferenceIdFunction(unittest.TestCase): """ Tests for the 'run_reference_id' function """ def test_run_reference_id(self): """run_reference_id: run name, platform and facility run number """ self.assertEqual(run_reference_id("160621_M00879_0087_000000000-AGEW9", platform="miseq", facility_run_number=87), "MISEQ_160621#87") self.assertEqual(run_reference_id("/data/160621_M00879_0087_000000000-AGEW9/", platform="miseq", facility_run_number=87), "MISEQ_160621#87") def test_run_reference_id_no_platform(self): """run_reference_id: run name and facility run number (no platform) """ self.assertEqual(run_reference_id("160621_M00879_0087_000000000-AGEW9", platform=None, facility_run_number=87), "M00879_160621#87") self.assertEqual(run_reference_id("160621_M00879_0087_000000000-AGEW9", platform=None, facility_run_number=88), "M00879_160621/87#88") self.assertEqual(run_reference_id("/data/160621_M00879_0087_000000000-AGEW9/", platform=None, facility_run_number=87), "M00879_160621#87") def test_run_reference_id_no_facility_run_number(self): """run_reference_id: run name and platform (no facility run number) """ self.assertEqual(run_reference_id("160621_M00879_0087_000000000-AGEW9", platform="miseq", facility_run_number=None), "MISEQ_160621/87") def test_run_reference_id_facility_run_number_differs(self): """run_reference_id: instrument and facility run numbers differ """ self.assertEqual(run_reference_id("160621_M00879_0087_000000000-AGEW9", platform="miseq", facility_run_number=90), "MISEQ_160621/87#90") self.assertEqual(run_reference_id("/data/160621_M00879_0087_000000000-AGEW9/", platform="miseq", facility_run_number=90), "MISEQ_160621/87#90") def test_run_reference_id_bad_run_name(self): """run_reference_id: handle 'bad' run name (cannot be split) """ self.assertEqual(run_reference_id("rag_05_2017", platform=None, facility_run_number=None), "rag_05_2017") self.assertEqual(run_reference_id("rag_05_2017", platform="miseq", facility_run_number=None), "MISEQ_rag_05_2017") self.assertEqual(run_reference_id("rag_05_2017", platform=None, facility_run_number=90), "rag_05_2017#90") self.assertEqual(run_reference_id("rag_05_2017", platform="miseq", facility_run_number=90), "MISEQ_rag_05_2017#90") class TestSplitSampleNameFunction(unittest.TestCase): """ Tests for the 'split_sample_name' function """ def test_split_sample_name(self): """split_sample_name: check names are split correctly """ self.assertEqual(split_sample_name("PJB"),["PJB"]) self.assertEqual(split_sample_name("PJB1"),["PJB",1]) self.assertEqual(split_sample_name("PJB0001"),["PJB",1]) self.assertEqual(split_sample_name("PJB_1-10"),["PJB_",1,"-",10]) class TestCopyAnalysisProject(unittest.TestCase): """ Tests for the 'copy_analysis_project' function """ def setUp(self): # Create a temp working dir self.wd = tempfile.mkdtemp(suffix='TestCopyProject') def tearDown(self): # Remove the temporary test directory shutil.rmtree(self.wd) def test_copy_project(self): """ copy_project: copies project instance """ # Make mock analysis project p = MockAnalysisProject("PJB",("PJB1_S1_R1_001.fastq.gz", "PJB1_S1_R2_001.fastq.gz",), metadata={ 'Organism': 'Human' }) p.create(top_dir=self.wd) # Make initial project project = AnalysisProject("PJB",os.path.join(self.wd,"PJB")) # Make a copy project2 = copy_analysis_project(project) # Check copy self.assertEqual(project.name,project2.name) self.assertEqual(project.dirn,project2.dirn) self.assertEqual(project.fastq_dir,project2.fastq_dir) self.assertEqual(project.fastq_dirs,project2.fastq_dirs) self.assertEqual(project.fastqs,project2.fastqs) self.assertEqual(project.info.organism,project2.info.organism)
8b822886de793fad5cc78d1bdeeab56f9dfb7197
85f1488f3d0996b83292f74b3672793f2778503f
/notebooks/Model Diagnostics.py
96d24d2bbf464d6e372c397f7b713a044f8955dd
[]
no_license
ceshine/jigsaw-toxic-2019
33f66d6643aeeeb20599ab95368ce2c1f6500543
34d5df28e1b820725f964fbbdfe039daea31c0d7
refs/heads/master
2022-02-22T10:50:51.444794
2019-08-04T04:13:00
2019-08-04T04:13:00
198,053,856
7
2
null
null
null
null
UTF-8
Python
false
false
5,796
py
#!/usr/bin/env python # coding: utf-8 # In[1]: import sys sys.path.append("..") # In[2]: from pathlib import Path from functools import partial import numpy as np import pandas as pd import torch import joblib from torch.utils.data import DataLoader from toxic.inference_bert import get_token_ids from toxic.dataset import AUX_COLUMNS, ToxicDataset, collate_examples, SortSampler from toxic.common import ToxicBot from toxic.metric import ToxicMetric # In[3]: MODEL_PATH = Path("../data/cache/") DEVICE = "cuda:0" # In[4]: tokenizer = joblib.load(str(MODEL_PATH / "bert-base-uncased_tokenizer.jbl")) model = torch.load(str(MODEL_PATH / "bert-base-uncased_-1_yuval_220_f0.pth")).to(DEVICE) # In[5]: collate_fn = partial( collate_examples, truncate_len=220, pad=0, closing_id=tokenizer.vocab["[SEP]"], mode="both" ) # ![](https://pbs.twimg.com/media/DICFy_jWsAE6s6V?format=jpg&name=small) # [source](https://twitter.com/jessamyn/status/900867154412699649) # In[6]: test_text = [ "I am a man", "I am a woman", "I am a lesbian", "I am gay man", "I am dyke", "I am a white man", "I am a gay woman", "I am a white woman", "I am a gay white man", "I am a black man", "I am a gay white man", "I am a gay black man", "I am a black woman", "I am a gay black woman" ] df = pd.DataFrame(dict(comment_text=test_text)) # In[7]: tokens = get_token_ids( df, tokenizer, is_bert=True) test_ds = ToxicDataset(df, tokens, labeled=False) test_loader = DataLoader( test_ds, collate_fn=collate_fn, batch_size=32, num_workers=0, pin_memory=True ) # In[8]: with torch.no_grad(): results = [] for batch, _ in test_loader: results.append(model(batch.cuda())) results = torch.sigmoid(torch.cat(results)) * 100 results.size() # In[9]: predictions = pd.DataFrame(results.cpu().numpy(), columns=AUX_COLUMNS) predictions["text"] = df["comment_text"].values predictions.shape # In[10]: pd.set_option('display.float_format', lambda x: '%.2f' % x) # In[11]: predictions.columns # In[12]: predictions[["text", "target", "identity_attack", "female", "homosexual_gay_or_lesbian", "black", "white"]].rename( columns={"target": "toxic", "homosexual_gay_or_lesbian":"homosexual"}) # ## Other random examples # In[23]: test_text = [ "Pretty sad really. Thousands come out to protest Trump who's in another country......and all those NDP and Green members - who were the driving force behind Proportional Representation - couldn't find the time to get out to support their own cause. That said, you can bet that Trudeau has alredy lost a good portion of that NDP/Green vote. The guy's a liar. Period.", "Idiots.", "Then put them in jail until they decide to cooperate. This is ridiculous....", "\"He’s a proven liar. Why would you believe anything he has to say?\"\n\nExactly.\nThat\'s why I do not listen to a word Donnie says.", "Fascinating young woman, impressive work. It reminds me of one of the reasons I love Alaska so much —\xa0the people Alaska attracts are often just as extraordinary as the landscape itself. Great article, thank you.", "Well, at least the Russians are white, for heaven's sakes. I'd rather have to live next to a nice white drunk Russian than a black Muslim Kenyan whose children's names are Satanic anagrams.", "Was I posted yesterday, it is interesting to note that under Session's watch only three black people have been appointed in Alabama for the federal courts. This despite the fact that black people make up over 39% of the population of that state. What underlines this reality must be Session's unconscious, if not conscious, attitude towards blacks in general." ] df = pd.DataFrame(dict(comment_text=test_text)) # In[24]: tokens = get_token_ids( df, tokenizer, is_bert=True) print([len(x) for x in tokens]) test_ds = ToxicDataset(df, tokens, labeled=False) test_loader = DataLoader( test_ds, collate_fn=collate_fn, batch_size=32, num_workers=0, pin_memory=True ) with torch.no_grad(): results = [] for batch, _ in test_loader: results.append(model(batch.cuda())) results = torch.sigmoid(torch.cat(results)) * 100 results.size() predictions = pd.DataFrame(results.cpu().numpy(), columns=AUX_COLUMNS) predictions["text"] = df["comment_text"].values predictions[["text", "target", "identity_attack", "female", "homosexual_gay_or_lesbian", "black", "white"]].rename( columns={"target": "toxic", "homosexual_gay_or_lesbian":"homosexual"}) # ## Validate # Make sure the mode is set up correctly. # In[80]: df_valid, tokens_valid = joblib.load(str(MODEL_PATH / "valid_bert-base-uncased_-1_yuval_f0.jbl")) idx = np.random.choice(np.arange(df_valid.shape[0]), 32 * 1000) df_valid, tokens_valid = df_valid.iloc[idx].reset_index(drop=True), tokens_valid[idx] valid_ds = ToxicDataset(df_valid, tokens_valid, labeled=True) val_sampler = SortSampler(valid_ds, key=lambda x: len(valid_ds.tokens[x])) df_valid = df_valid.iloc[list(iter(val_sampler))] print(df_valid.target.describe()) # In[81]: valid_loader = DataLoader( valid_ds, collate_fn=collate_fn, batch_size=64, num_workers=0, pin_memory=True, sampler=val_sampler ) # In[82]: bot = ToxicBot( checkpoint_dir=Path("/tmp/"), log_dir=Path("/tmp/"), model=model, train_loader=None, val_loader=None, optimizer=None, echo=False, criterion=None, avg_window=100, callbacks=[], pbar=False, use_tensorboard=False, device=DEVICE ) valid_pred, valid_y = bot.predict(valid_loader, return_y=True) # In[84]: pd.set_option('precision', 4) metric = ToxicMetric(df_valid) metric(valid_y, valid_pred) # In[ ]:
fa091d4a5b67cc3425553a4c3c7993b379d5a42c
2a2505108cd429d39746050d0100f4963dcd9c69
/src/compas/geometry/bbox/__init__.py
b19dd1d59cd854d5d9397b2cf4ef284c580ed6d6
[ "MIT" ]
permissive
adacko/compas
677095bea007c22a98b44af3281131b445cb1ae1
47c443ad3825897ec7ed932ec20734c2f08ef120
refs/heads/master
2020-07-23T00:55:51.348907
2019-09-09T16:44:18
2019-09-09T16:44:18
207,390,442
0
1
MIT
2019-09-09T19:40:41
2019-09-09T19:40:41
null
UTF-8
Python
false
false
260
py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import compas from .bbox import * if not compas.IPY: from .bbox_numpy import * __all__ = [name for name in dir() if not name.startswith('_')]
7f3da45e043ef6602769afea0a533af86f8f6f8f
48e1ac111f48bf27b03625f81887a8eaef4d505d
/old/google-cloud-sdk/platform/gsutil/gslib/commands/du.py
afc399c6c2a24fe25420a2093c4b0f2484b10adf
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
altock/dev
74350528ea570925e8fbc584c64939cae86f6ea7
90d87b2adb1eab7f218b075886aa620d8d6eeedb
refs/heads/master
2021-07-10T08:31:48.080736
2017-04-15T03:04:12
2017-04-15T03:04:12
23,088,790
0
1
null
2020-07-25T04:32:05
2014-08-18T22:33:25
Python
UTF-8
Python
false
false
8,808
py
# Copyright 2013 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implementation of Unix-like du command for cloud storage providers.""" import sys from gslib.boto_translation import S3_DELETE_MARKER_GUID from gslib.command import Command from gslib.cs_api_map import ApiSelector from gslib.exception import CommandException from gslib.ls_helper import LsHelper from gslib.storage_url import ContainsWildcard from gslib.storage_url import StorageUrlFromString from gslib.util import MakeHumanReadable from gslib.util import NO_MAX from gslib.util import UTF8 _DETAILED_HELP_TEXT = (""" <B>SYNOPSIS</B> gsutil du url... <B>DESCRIPTION</B> The du command displays the amount of space (in bytes) being used by the objects for a given URL. The syntax emulates the Linux du command (which stands for disk usage). <B>OPTIONS</B> -0 Ends each output line with a 0 byte rather than a newline. This can be useful to make the output more easily machine-readable. -a Includes non-current object versions / generations in the listing (only useful with a versioning-enabled bucket). Also prints generation and metageneration for each listed object. -c Produce a grand total. -e A pattern to exclude from reporting. Example: -e "*.o" would exclude any object that ends in ".o". Can be specified multiple times. -h Prints object sizes in human-readable format (e.g., 1KB, 234MB, 2GB, etc.) -s Display only a summary total for each argument. -X Similar to -e, but excludes patterns from the given file. The patterns to exclude should be one per line. <B>EXAMPLES</B> To list the size of all objects in a bucket: gsutil du gs://bucketname To list the size of all objects underneath a prefix: gsutil du gs://bucketname/prefix/* To print the total number of bytes in a bucket, in human-readable form: gsutil du -ch gs://bucketname To see a summary of the total bytes in the two given buckets: gsutil du -s gs://bucket1 gs://bucket2 To list the size of all objects in a versioned bucket, including objects that are not the latest: gsutil du -a gs://bucketname To list all objects in a bucket, except objects that end in ".bak", with each object printed ending in a null byte: gsutil du -e "*.bak" -0 gs://bucketname """) class DuCommand(Command): """Implementation of gsutil du command.""" # Command specification. See base class for documentation. command_spec = Command.CreateCommandSpec( 'du', command_name_aliases=[], min_args=0, max_args=NO_MAX, supported_sub_args='0ace:hsX:', file_url_ok=False, provider_url_ok=True, urls_start_arg=0, gs_api_support=[ApiSelector.XML, ApiSelector.JSON], gs_default_api=ApiSelector.JSON, ) # Help specification. See help_provider.py for documentation. help_spec = Command.HelpSpec( help_name='du', help_name_aliases=[], help_type='command_help', help_one_line_summary='Display object size usage', help_text=_DETAILED_HELP_TEXT, subcommand_help_text={}, ) def _PrintSummaryLine(self, num_bytes, name): size_string = (MakeHumanReadable(num_bytes) if self.human_readable else str(num_bytes)) sys.stdout.write('%(size)-10s %(name)s%(ending)s' % { 'size': size_string, 'name': name, 'ending': self.line_ending}) def _PrintInfoAboutBucketListingRef(self, bucket_listing_ref): """Print listing info for given bucket_listing_ref. Args: bucket_listing_ref: BucketListing being listed. Returns: Tuple (number of objects, object size) Raises: Exception: if calling bug encountered. """ obj = bucket_listing_ref.root_object url_str = bucket_listing_ref.GetUrlString() if (obj.metadata and S3_DELETE_MARKER_GUID in obj.metadata.additionalProperties): size_string = '0' num_bytes = 0 num_objs = 0 url_str += '<DeleteMarker>' else: size_string = (MakeHumanReadable(obj.size) if self.human_readable else str(obj.size)) num_bytes = obj.size num_objs = 1 if not self.summary_only: sys.stdout.write('%(size)-10s %(url)s%(ending)s' % { 'size': size_string, 'url': url_str.encode(UTF8), 'ending': self.line_ending}) return (num_objs, num_bytes) def RunCommand(self): """Command entry point for the du command.""" self.line_ending = '\n' self.all_versions = False self.produce_total = False self.human_readable = False self.summary_only = False self.exclude_patterns = [] if self.sub_opts: for o, a in self.sub_opts: if o == '-0': self.line_ending = '\0' elif o == '-a': self.all_versions = True elif o == '-c': self.produce_total = True elif o == '-e': self.exclude_patterns.append(a) elif o == '-h': self.human_readable = True elif o == '-s': self.summary_only = True elif o == '-X': if a == '-': f = sys.stdin else: f = open(a, 'r') try: for line in f: line = line.strip() if line: self.exclude_patterns.append(line) finally: f.close() if not self.args: # Default to listing all gs buckets. self.args = ['gs://'] total_bytes = 0 got_nomatch_errors = False def _PrintObjectLong(blr): return self._PrintInfoAboutBucketListingRef(blr) def _PrintNothing(unused_blr=None): pass def _SummaryLine(num_bytes, name): return self._PrintSummaryLine(num_bytes, name) for url_arg in self.args: top_level_storage_url = StorageUrlFromString(url_arg) if top_level_storage_url.IsFileUrl(): raise CommandException('Only cloud URLs are supported for %s' % self.command_name) bucket_listing_fields = ['size'] ls_helper = LsHelper( self.WildcardIterator, self.logger, print_object_func=_PrintObjectLong, print_dir_func=_PrintNothing, print_dir_header_func=_PrintNothing, print_dir_summary_func=_SummaryLine, print_newline_func=_PrintNothing, all_versions=self.all_versions, should_recurse=True, exclude_patterns=self.exclude_patterns, fields=bucket_listing_fields) # ls_helper expands to objects and prefixes, so perform a top-level # expansion first. if top_level_storage_url.IsProvider(): # Provider URL: use bucket wildcard to iterate over all buckets. top_level_iter = self.WildcardIterator( '%s://*' % top_level_storage_url.scheme).IterBuckets( bucket_fields=['id']) elif top_level_storage_url.IsBucket(): top_level_iter = self.WildcardIterator( '%s://%s' % (top_level_storage_url.scheme, top_level_storage_url.bucket_name)).IterBuckets( bucket_fields=['id']) else: # This is actually a string, not a blr, but we are just using the # string in the below function. top_level_iter = [url_arg] for blr_or_str in top_level_iter: url_string = str(blr_or_str) storage_url = StorageUrlFromString(url_string) if storage_url.IsBucket() and self.summary_only: storage_url = StorageUrlFromString( '%s://%s/**' % (storage_url.scheme, storage_url.bucket_name)) _, exp_objs, exp_bytes = ls_helper.ExpandUrlAndPrint(storage_url) if (storage_url.IsObject() and exp_objs == 0 and ContainsWildcard(url_arg) and not self.exclude_patterns): got_nomatch_errors = True total_bytes += exp_bytes if self.summary_only: self._PrintSummaryLine(exp_bytes, url_string.rstrip('/')) if self.produce_total: self._PrintSummaryLine(total_bytes, 'total') if got_nomatch_errors: raise CommandException('One or more URLs matched no objects.') return 0
c26747d4798c12a9061590246550915c3f49b876
f7c7063e1a22b773a271a953c013a3c5303b70b3
/src/litter_trap.py
f5802491a1ff00f278838b9b59f2b0dfe66141a0
[]
no_license
Ewan82/ah_data
e0cce8fffafd91eb6fca8ce6af602d3230535f87
d5961f284187acda8d1317bb4fd50f32c85bb591
refs/heads/master
2021-01-19T01:55:47.530127
2016-11-04T11:07:09
2016-11-04T11:07:09
40,532,005
0
0
null
null
null
null
UTF-8
Python
false
false
277
py
import numpy as np import matplotlib.mlab as mlab def convert_csv2rec(file_no): return mlab.csv2rec('../litter_traps/litterscans/file0'+str(file_no)+'.csv') def remove_false_data(area_arr, tol=2.0): idx = np.where(area_arr < tol) return np.delete(area_arr, idx)
13c31e9d950cf3be9f2b388eecebe51ef72bd351
b1c7a768f38e2e987a112da6170f49503b9db05f
/stockkeeping/migrations/0010_auto_20181101_1545.py
34ef7c9e3a98255c3676811073ad0d7d44aad3d4
[]
no_license
Niladrykar/bracketerp
8b7491aa319f60ec3dcb5077258d75b0394db374
ca4ee60c2254c6c132a38ce52410059cc6b19cae
refs/heads/master
2022-12-11T04:23:07.504966
2019-03-18T06:58:13
2019-03-18T06:58:13
176,218,029
1
0
null
2022-12-08T03:01:46
2019-03-18T06:27:37
JavaScript
UTF-8
Python
false
false
417
py
# Generated by Django 2.0.6 on 2018-11-01 10:15 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('stockkeeping', '0009_auto_20181101_1544'), ] operations = [ migrations.AlterField( model_name='purchase_total', name='Total', field=models.PositiveIntegerField(blank=True, null=True), ), ]
78dc4511525e97dd533b1940967724911ec49d65
e71fa62123b2b8f7c1a22acb1babeb6631a4549b
/xlsxwriter/test/table/test_table07.py
121beef77b97ead58a919c1640b8c21d77b0c360
[ "BSD-2-Clause" ]
permissive
timgates42/XlsxWriter
40480b6b834f28c4a7b6fc490657e558b0a466e5
7ad2541c5f12b70be471b447ab709c451618ab59
refs/heads/main
2023-03-16T14:31:08.915121
2022-07-13T23:43:45
2022-07-13T23:43:45
242,121,381
0
0
NOASSERTION
2020-02-21T11:14:55
2020-02-21T11:14:55
null
UTF-8
Python
false
false
2,017
py
############################################################################### # # Tests for XlsxWriter. # # SPDX-License-Identifier: BSD-2-Clause # Copyright (c), 2013-2022, John McNamara, [email protected] # import unittest from io import StringIO from ..helperfunctions import _xml_to_list from ...table import Table from ...worksheet import Worksheet from ...workbook import WorksheetMeta from ...sharedstrings import SharedStringTable class TestAssembleTable(unittest.TestCase): """ Test assembling a complete Table file. """ def test_assemble_xml_file(self): """Test writing a table""" self.maxDiff = None worksheet = Worksheet() worksheet.worksheet_meta = WorksheetMeta() worksheet.str_table = SharedStringTable() # Set the table properties. worksheet.add_table('C3:F14', {'total_row': 1}) worksheet._prepare_tables(1, {}) fh = StringIO() table = Table() table._set_filehandle(fh) table._set_properties(worksheet.tables[0]) table._assemble_xml_file() exp = _xml_to_list(""" <?xml version="1.0" encoding="UTF-8" standalone="yes"?> <table xmlns="http://schemas.openxmlformats.org/spreadsheetml/2006/main" id="1" name="Table1" displayName="Table1" ref="C3:F14" totalsRowCount="1"> <autoFilter ref="C3:F13"/> <tableColumns count="4"> <tableColumn id="1" name="Column1"/> <tableColumn id="2" name="Column2"/> <tableColumn id="3" name="Column3"/> <tableColumn id="4" name="Column4"/> </tableColumns> <tableStyleInfo name="TableStyleMedium9" showFirstColumn="0" showLastColumn="0" showRowStripes="1" showColumnStripes="0"/> </table> """) got = _xml_to_list(fh.getvalue()) self.assertEqual(got, exp)
e6b8cf1ed34c95782fbc04f4582bc9f07d7f5f4b
49813760337894f578bd6cf4f3ee76c32bd1d7ba
/guvip137.py
09bad993fe97e3d711650c82615084b0ace982a6
[]
no_license
devigajsrr/codekata
e1256cf7fd88a0c7cefd02dea11305391143253a
a9ae003a7d3c8865b1d4e9aae73723a5fedf79be
refs/heads/master
2020-05-23T01:01:09.927231
2019-07-20T11:31:51
2019-07-20T11:31:51
186,580,561
0
3
null
null
null
null
UTF-8
Python
false
false
66
py
n=int(input()) n=list(bin(n)) n=n[::-1] print(n.index("1")+1)
eadf86477e07dc6fcb83e07e480e090199897cee
e43e8bd052a613f158e29339aaa7e3bdec40b6fb
/models/faster_rcnn_inception_resnet_v2_keras_feature_extractor_test.py
a3c33c28e62db57565d0119cf742f97bb5d8df3d
[]
no_license
sakshijain032/Harmful-Object-Detection
249f586ffbc7de99f6647689bae230f3b79694b3
8e1711fc1596b451f97b5ff2f7690453a888c848
refs/heads/master
2022-12-24T18:40:41.795010
2020-10-01T17:34:42
2020-10-01T17:34:42
293,727,797
2
0
null
null
null
null
UTF-8
Python
false
false
4,612
py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for models.faster_rcnn_inception_resnet_v2_keras_feature_extractor.""" import tensorflow as tf from models import faster_rcnn_inception_resnet_v2_keras_feature_extractor as frcnn_inc_res class FasterRcnnInceptionResnetV2KerasFeatureExtractorTest(tf.test.TestCase): def _build_feature_extractor(self, first_stage_features_stride): return frcnn_inc_res.FasterRCNNInceptionResnetV2KerasFeatureExtractor( is_training=False, first_stage_features_stride=first_stage_features_stride, batch_norm_trainable=False, weight_decay=0.0) def test_extract_proposal_features_returns_expected_size(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=16) preprocessed_inputs = tf.random_uniform( [1, 299, 299, 3], maxval=255, dtype=tf.float32) rpn_feature_map = feature_extractor.get_proposal_feature_extractor_model( name='TestScope')(preprocessed_inputs) features_shape = tf.shape(rpn_feature_map) init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) features_shape_out = sess.run(features_shape) self.assertAllEqual(features_shape_out, [1, 19, 19, 1088]) def test_extract_proposal_features_stride_eight(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=8) preprocessed_inputs = tf.random_uniform( [1, 224, 224, 3], maxval=255, dtype=tf.float32) rpn_feature_map = feature_extractor.get_proposal_feature_extractor_model( name='TestScope')(preprocessed_inputs) features_shape = tf.shape(rpn_feature_map) init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) features_shape_out = sess.run(features_shape) self.assertAllEqual(features_shape_out, [1, 28, 28, 1088]) def test_extract_proposal_features_half_size_input(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=16) preprocessed_inputs = tf.random_uniform( [1, 112, 112, 3], maxval=255, dtype=tf.float32) rpn_feature_map = feature_extractor.get_proposal_feature_extractor_model( name='TestScope')(preprocessed_inputs) features_shape = tf.shape(rpn_feature_map) init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) features_shape_out = sess.run(features_shape) self.assertAllEqual(features_shape_out, [1, 7, 7, 1088]) def test_extract_proposal_features_dies_on_invalid_stride(self): with self.assertRaises(ValueError): self._build_feature_extractor(first_stage_features_stride=99) def test_extract_proposal_features_dies_with_incorrect_rank_inputs(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=16) preprocessed_inputs = tf.random_uniform( [224, 224, 3], maxval=255, dtype=tf.float32) with self.assertRaises(ValueError): feature_extractor.get_proposal_feature_extractor_model( name='TestScope')(preprocessed_inputs) def test_extract_box_classifier_features_returns_expected_size(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=16) proposal_feature_maps = tf.random_uniform( [2, 17, 17, 1088], maxval=255, dtype=tf.float32) model = feature_extractor.get_box_classifier_feature_extractor_model( name='TestScope') proposal_classifier_features = ( model(proposal_feature_maps)) features_shape = tf.shape(proposal_classifier_features) init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) features_shape_out = sess.run(features_shape) self.assertAllEqual(features_shape_out, [2, 8, 8, 1536]) if __name__ == '__main__': tf.test.main()
d0a334ca6c19f583a7c9f4aa5a63c23ce53c9460
077a17b286bdd6c427c325f196eb6e16b30c257e
/00_BofVar-unit-tests/07_64/remenissions-work/exploit-BofVar-1.py
3e5efa3d0d010a0028daecc2f04b08bca5fc6cab
[]
no_license
KurSh/remenissions_test
626daf6e923459b44b82521aa4cb944aad0dbced
9dec8085b62a446f7562adfeccf70f8bfcdbb738
refs/heads/master
2023-07-08T20:25:04.823318
2020-10-05T06:45:16
2020-10-05T06:45:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
776
py
from pwn import * import time import sys import signal import sf target = process("./chall-test_BofVar-07-x64") gdb.attach(target, execute="verify_exploit") bof_payload = sf.BufferOverflow(arch=64) bof_payload.set_input_start(0x48) bof_payload.add_int32(0x14, 0xdead) bof_payload.add_int32(0x10, 0xdeae) bof_payload.add_int32(0xc, 0xdeae) payload = bof_payload.generate_payload() target.sendline(payload) # Exploit Verification starts here 15935728 def handler(signum, frame): raise Exception("Timed out") def check_verification_done(): while True: if os.path.exists("pwned") or os.path.exists("rip"): sys.exit(0) signal.signal(signal.SIGALRM, handler) signal.alarm(2) try: while True: check_verification_done() except Exception: print("Exploit timed out")
3b3394be7b0f7c6c13b2006438556a5f0c7303ff
7848e1b778ca0f3921aeeb0aeee44b398711b1f0
/funtesting/mock/__init__.py
495f052105769c8dfec9019cc49217d5fe565c55
[]
no_license
fatelei/funtesting
a3a292ddfa30d9fbad47ee293768558b9e45fe8d
748f4b5767cc16929408b19a5b62a812b48a0dd5
refs/heads/master
2021-01-10T12:09:38.809451
2016-02-21T03:59:15
2016-02-21T03:59:15
51,986,949
1
0
null
null
null
null
UTF-8
Python
false
false
158
py
# -*- coding: utf8 -*- """ funtesting.mock ~~~~~~~~~~~~~~~ Mock modules. """ from .mock_redis import mock_redis __all__ = [ "mock_redis" ]
22c9b2072eee710b0af8c948145defea4346aa03
4aa7a4d0525095725eb99843c83827ba4806ceb1
/keras/keras110_5_LeakyReLU.py
213ecbe46b4073d61f4b984af0b9f92698fdaafd
[]
no_license
seonukim/Study
65a70f5bdfad68f643abc3086d5c7484bb2439d4
a5f2538f9ae8b5fc93b5149dd51704e8881f0a80
refs/heads/master
2022-12-04T17:04:31.489771
2020-08-21T00:35:15
2020-08-21T00:35:15
260,144,755
2
0
null
null
null
null
UTF-8
Python
false
false
283
py
# activation - LeakyReLU import numpy as np import matplotlib.pyplot as plt x = np.arange(-6, 6, 0.01) def leakyrelu(x): # Leaky ReLU(Rectified Linear Unit) return np.maximum(0.1 * x, x) #same plt.plot(x, leakyrelu(x), linestyle = '--', label = 'Leaky ReLU') plt.show()
8e0ed00e073de8a5bccb6b2d7fe1eef2ede522de
9e4df2b26e899f2d3e044e71bc4193958b02314b
/app/migrations/0027_auto_20200930_0118.py
bb05747fde99e2ecc6d9acb7db6fe524b26b1a36
[ "MIT" ]
permissive
hosseinmoghimi/phoenix
afea0a73cdf257fcf89c75d85c5ab1890d957a83
43fc49421a50563acc1884981d391b0d6a5d5d72
refs/heads/master
2023-01-11T11:12:30.308822
2020-11-15T13:52:21
2020-11-15T13:52:21
295,109,751
1
5
MIT
2020-11-15T13:50:12
2020-09-13T08:31:01
HTML
UTF-8
Python
false
false
701
py
# Generated by Django 3.1 on 2020-09-29 21:48 from django.db import migrations import tinymce.models class Migration(migrations.Migration): dependencies = [ ('app', '0026_auto_20200930_0117'), ] operations = [ migrations.AlterField( model_name='jumbotron', name='description', field=tinymce.models.HTMLField(blank=True, max_length=2000, null=True, verbose_name='شرح کامل'), ), migrations.AlterField( model_name='jumbotron', name='short_description', field=tinymce.models.HTMLField(blank=True, max_length=1000, null=True, verbose_name='شرح کوتاه'), ), ]
0180991f5de6838806543f0af00e4bb397839b33
ef42fa903820055b9b0a8b4ebb1863a16d386171
/contact/forms.py
ee057df7c2a82d279ab2da12b60a6da4f9beac72
[]
no_license
sinjorjob/django-simple-capture-inquery-form
2537c8e03bc2c0118f772b69a59866ffb34d7cac
8bd2900a6bdf97b97ddca7b7240b42f478e14884
refs/heads/master
2023-07-02T14:40:43.840669
2021-08-10T21:24:24
2021-08-10T21:24:24
394,784,208
0
0
null
null
null
null
UTF-8
Python
false
false
1,570
py
from django import forms from captcha.fields import CaptchaField, CaptchaTextInput from django.core.mail import send_mail #追加 from config import settings #追加 from django.urls import reverse #追加 import smtplib #追加 class ContactForm(forms.Form): name = forms.CharField(label="氏名") email = forms.EmailField(label="連絡先アドレス") subject = forms.CharField(label="タイトル") message = forms.CharField(label="お問い合わせ内容", widget=forms.Textarea(attrs={'rows':4, 'cols':40})) captcha = CaptchaField(widget=CaptchaTextInput(attrs={'placeholder':'上記のアルファベットを入力してください。'})) #ここから下を追加 def send_email(self): subject = '[Inquiry Form] from %s' % settings.SITE_URL + reverse('contact_form') name = self.cleaned_data['name'] email = self.cleaned_data['email'] message = self.cleaned_data['message'] body = """ 氏名: %s メールアドレス: %s 問い合わせ内容: %s """ %(name, email, message) sender = email receipient = settings.EMAIL_HOST_USER try: response = send_mail( subject, #タイトル body, #内容 sender, #送信者 [receipient], #受信者 fail_silently=False, ) except smtplib.SMTPException: pass return response
b31f2e087a126b2a9b582dd32e0bb4f40cfde091
eb68003893970fd5cedb684e45e8a5357907efda
/CIFAR100/prune80.py
1d110432338f048d54b53678863336d5df911d67
[]
no_license
byh1321/machine-learning-hardware-simulation
7ffc6dbb7483119ace39694055892378caf19da5
165ae42e01877b49d4ebc3656782dc6c70ee16d2
refs/heads/master
2021-09-03T20:03:48.770465
2018-01-11T15:46:02
2018-01-11T15:46:02
110,343,218
1
0
null
null
null
null
UTF-8
Python
false
false
23,951
py
""" some parts of code are extracted from "https://github.com/kuangliu/pytorch-cifar" I modified some parts for our experiment """ from __future__ import print_function import numpy as np import torch import torch.nn as nn import torch.optim as optim import torchvision.datasets as dset import torch.backends.cudnn as cudnn import torch.nn.functional as F import torchvision.transforms as transforms from torch.utils.data import DataLoader from torch.autograd import Variable from utils import progress_bar import os import argparse # import VGG16 import struct import random parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training') parser.add_argument('--lr', default=0.1, type=float, help='learning rate') parser.add_argument('--resume', '-r', action='store_true', help='resume from checkpoint') parser.add_argument('--se', default=0, type=int, help='start epoch') parser.add_argument('--ne', default=0, type=int, help='number of epoch') parser.add_argument('--pr', default=0, type=int, help='pruning') # mode=1 is pruning, mode=0 is no pruning parser.add_argument('--ldpr', default=0, type=int, help='pruning') # mode=1 load pruned trained data. mode=0 is trained, but not pruned data parser.add_argument('--bs', default=128, type=int, help='batch size') parser.add_argument('--mode', default=1, type=int, help='train or inference') #mode=1 is train, mode=0 is inference parser.add_argument('--pprec', type=int, default=20, metavar='N',help='parameter precision for layer weight') parser.add_argument('--aprec', type=int, default=20, metavar='N',help='Arithmetic precision for internal arithmetic') parser.add_argument('--fixed', type=int, default=0, metavar='N',help='fixed=0 - floating point arithmetic') args = parser.parse_args() use_cuda = torch.cuda.is_available() best_acc = 0 # best test accuracy use_cuda = torch.cuda.is_available() transform_train = transforms.Compose([transforms.RandomCrop(32,padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])]) transform_test = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])]) cifar_train = dset.CIFAR100("./", train=True, transform=transform_train, target_transform=None, download=True) cifar_test = dset.CIFAR100("./", train=False, transform=transform_test, target_transform=None, download=True) train_loader = torch.utils.data.DataLoader(cifar_train,batch_size=args.bs, shuffle=True,num_workers=8,drop_last=False) test_loader = torch.utils.data.DataLoader(cifar_test,batch_size=10000, shuffle=False,num_workers=8,drop_last=False) mode = args.mode mask_conv0 = torch.cuda.FloatTensor(64,3,3,3) mask_conv3 = torch.cuda.FloatTensor(64,64,3,3) mask_conv7 = torch.cuda.FloatTensor(128,64,3,3) mask_conv10 = torch.cuda.FloatTensor(128,128,3,3) mask_conv14 = torch.cuda.FloatTensor(256,128,3,3) mask_conv17 = torch.cuda.FloatTensor(256,256,3,3) mask_conv20 = torch.cuda.FloatTensor(256,256,3,3) mask_conv24 = torch.cuda.FloatTensor(512,256,3,3) mask_conv27 = torch.cuda.FloatTensor(512,512,3,3) mask_conv30 = torch.cuda.FloatTensor(512,512,3,3) mask_conv34 = torch.cuda.FloatTensor(512,512,3,3) mask_conv37 = torch.cuda.FloatTensor(512,512,3,3) mask_conv40 = torch.cuda.FloatTensor(512,512,3,3) mask_fc1 = torch.cuda.FloatTensor(512,512) mask_fc4 = torch.cuda.FloatTensor(512,512) mask_fc6 = torch.cuda.FloatTensor(100,512) def roundmax(input): maximum = 2**args.pprec-1 minimum = -maximum-1 input = F.relu(torch.add(input, -minimum)) input = F.relu(torch.add(torch.neg(input), maximum-minimum)) input = torch.add(torch.neg(input), maximum) return input class CNN(nn.Module): def __init__(self): super(CNN,self).__init__() self.conv1 = nn.Sequential( nn.Conv2d(3,64,3,padding=1,bias=False), #layer0 nn.BatchNorm2d(64), # batch norm is added because dataset is changed nn.ReLU(inplace=True), ) self.conv2 = nn.Sequential( nn.Conv2d(64,64,3,padding=1, bias=False), #layer3 nn.BatchNorm2d(64), nn.ReLU(inplace=True), ) self.maxpool1 = nn.Sequential( nn.MaxPool2d(2,2), # 16*16* 64 ) self.conv3 = nn.Sequential( nn.Conv2d(64,128,3,padding=1, bias=False), #layer7 nn.BatchNorm2d(128), nn.ReLU(inplace=True), ) self.conv4 = nn.Sequential( nn.Conv2d(128,128,3,padding=1, bias=False),#layer10 nn.BatchNorm2d(128), nn.ReLU(inplace=True), ) self.maxpool2 = nn.Sequential( nn.MaxPool2d(2,2), # 8*8*128 ) self.conv5 = nn.Sequential( nn.Conv2d(128,256,3,padding=1, bias=False), #layer14 nn.BatchNorm2d(256), nn.ReLU(inplace=True), ) self.conv6 = nn.Sequential( nn.Conv2d(256,256,3,padding=1, bias=False), #layer17 nn.BatchNorm2d(256), nn.ReLU(inplace=True), ) self.conv7 = nn.Sequential( nn.Conv2d(256,256,3,padding=1, bias=False), #layer20 nn.BatchNorm2d(256), nn.ReLU(inplace=True), ) self.maxpool3 = nn.Sequential( nn.MaxPool2d(2,2), # 4*4*256 ) self.conv8 = nn.Sequential( nn.Conv2d(256,512,3,padding=1, bias=False), #layer24 nn.BatchNorm2d(512), nn.ReLU(inplace=True), ) self.conv9 = nn.Sequential( nn.Conv2d(512,512,3,padding=1, bias=False), #layer27 nn.BatchNorm2d(512), nn.ReLU(inplace=True), ) self.conv10 = nn.Sequential( nn.Conv2d(512,512,3,padding=1, bias=False), #layer30 nn.BatchNorm2d(512), nn.ReLU(inplace=True), ) self.maxpool4 = nn.Sequential( nn.MaxPool2d(2,2), # 2*2*512 ) self.conv11 = nn.Sequential( nn.Conv2d(512,512,3,padding=1, bias=False), #layer34 nn.BatchNorm2d(512), nn.ReLU(inplace=True), ) self.conv12 = nn.Sequential( nn.Conv2d(512,512,3,padding=1, bias=False), #layer37 nn.BatchNorm2d(512), nn.ReLU(inplace=True), ) self.conv13 = nn.Sequential( nn.Conv2d(512,512,3,padding=1, bias=False), #layer40 nn.BatchNorm2d(512), nn.ReLU(inplace=True), ) self.maxpool5 = nn.Sequential( nn.MaxPool2d(2,2) # 1*1*512 ) self.fc1 = nn.Sequential( nn.Dropout(p=0.5), nn.Linear(512,512, bias=False), #fc_layer1 nn.ReLU(inplace=True), ) self.fc2 = nn.Sequential( nn.Dropout(p=0.5), nn.Linear(512,512, bias=False), #fc_layer4 nn.ReLU(inplace=True), ) self.fc3 = nn.Sequential( nn.Linear(512,100, bias=False) #fc_layer6 ) def forward(self,x): x = roundmax(x) out1 = self.conv1(x) # 1250*64*32*32 if args.fixed: out1 = torch.round(out1 / (2 ** (-args.aprec))) * (2 ** (-args.aprec)) out1 = roundmax(out1) out2 = self.conv2(out1) # 1250*64*32*32 if args.fixed: out2 = torch.round(out2 / (2 ** (-args.aprec))) * (2 ** (-args.aprec)) out2 = roundmax(out2) out3 = self.maxpool1(out2) out4 = self.conv3(out3) # 1250*128*16*16 if args.fixed: out4 = torch.round(out4 / (2 ** (-args.aprec))) * (2 ** (-args.aprec)) out4 = roundmax(out4) out5 = self.conv4(out4) # 1250*128*16*16 if args.fixed: out5 = torch.round(out5 / (2 ** (-args.aprec))) * (2 ** (-args.aprec)) out5 = roundmax(out5) out6 = self.maxpool2(out5) out7 = self.conv5(out6) # 1250*256*8*8 if args.fixed: out7 = torch.round(out7 / (2 ** (-args.aprec))) * (2 ** (-args.aprec)) out7 = roundmax(out7) out8 = self.conv6(out7) # 1250*256*8*8 if args.fixed: out8 = torch.round(out8 / (2 ** (-args.aprec))) * (2 ** (-args.aprec)) out8 = roundmax(out8) out9 = self.conv7(out8) # 1250*256*8*8 if args.fixed: out9 = torch.round(out9 / (2 ** (-args.aprec))) * (2 ** (-args.aprec)) out9 = roundmax(out9) out10 = self.maxpool3(out9) out11 = self.conv8(out10) # 1250*512*4*4 if args.fixed: out11 = torch.round(out11 / (2 ** (-args.aprec))) * (2 ** (-args.aprec)) out11 = roundmax(out11) out12 = self.conv9(out11) # 1250*512*4*4 if args.fixed: out12 = torch.round(out12 / (2 ** (-args.aprec))) * (2 ** (-args.aprec)) out12 = roundmax(out12) out13 = self.conv10(out12) # 1250*512*4*4 if args.fixed: out13 = torch.round(out13 / (2 ** (-args.aprec))) * (2 ** (-args.aprec)) out13 = roundmax(out13) out14 = self.maxpool4(out13) out15 = self.conv11(out14) # 1250*512*2*2 if args.fixed: out15 = torch.round(out15 / (2 ** (-args.aprec))) * (2 ** (-args.aprec)) out15 = roundmax(out15) out16 = self.conv12(out15) # 1250*512*2*2 if args.fixed: out16 = torch.round(out16 / (2 ** (-args.aprec))) * (2 ** (-args.aprec)) out16 = roundmax(out16) out17 = self.conv13(out16) # 1250*512*2*2 if args.fixed: out17 = torch.round(out17 / (2 ** (-args.aprec))) * (2 ** (-args.aprec)) out17 = roundmax(out17) out18 = self.maxpool5(out17) out19 = out18.view(out18.size(0),-1) out20 = self.fc1(out19) # 1250*512 if args.fixed: out20 = torch.round(out20 / (2 ** (-args.aprec))) * (2 ** (-args.aprec)) out20 = roundmax(out20) out21 = self.fc2(out20) # 1250*512 if args.fixed: out21 = torch.round(out21 / (2 ** (-args.aprec))) * (2 ** (-args.aprec)) out21 = roundmax(out21) out22 = self.fc3(out21) # 1250*10 if args.fixed: out22 = torch.round(out22 / (2 ** (-args.aprec))) * (2 ** (-args.aprec)) out22 = roundmax(out22) return out22 # Model if args.resume: # Load checkpoint. print('==> Resuming from checkpoint..') assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!' checkpoint = torch.load('./checkpoint/ckpt.t1') if args.ldpr: checkpoint = torch.load('./checkpoint/ckpt_prune80.t1') net = checkpoint['net'] else: net = checkpoint['net'] else: print('==> Building model..') net = CNN() if use_cuda: net.cuda() net = torch.nn.DataParallel(net, device_ids=range(0,8)) cudnn.benchmark = True criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4) start_epoch = args.se num_epoch = args.ne # Training def train(epoch): print('\nEpoch: %d' % epoch) net.train() train_loss = 0 correct = 0 total = 0 for batch_idx, (inputs, targets) in enumerate(train_loader): if use_cuda: inputs, targets = inputs.cuda(), targets.cuda() optimizer.zero_grad() inputs, targets = Variable(inputs), Variable(targets) outputs = net(inputs) loss = criterion(outputs, targets) loss.backward() optimizer.step() train_loss += loss.data[0] _, predicted = torch.max(outputs.data, 1) total += targets.size(0) correct += predicted.eq(targets.data).cpu().sum() progress_bar(batch_idx, len(train_loader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)' % (train_loss/(batch_idx+1), 100.*correct/total, correct, total)) def test(): global best_acc net.eval() test_loss = 0 correct = 0 total = 0 for batch_idx, (inputs, targets) in enumerate(test_loader): if use_cuda: inputs, targets = inputs.cuda(), targets.cuda() inputs, targets = Variable(inputs, volatile=True), Variable(targets) outputs = net(inputs) loss = criterion(outputs, targets) test_loss += loss.data[0] _, predicted = torch.max(outputs.data, 1) total += targets.size(0) correct += predicted.eq(targets.data).cpu().sum() progress_bar(batch_idx, len(test_loader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)' % (test_loss/(batch_idx+1), 100.*correct/total, correct, total)) f = open('result_prune80.txt','a+') print('{:.5f}'.format(100. * correct / len(test_loader.dataset)), end='\t', file=f) f.close() # Save checkpoint. acc = 100.*correct/total if args.mode: if acc > best_acc: print('Saving..') state = { 'net': net.module if use_cuda else net, 'acc': acc, } if not os.path.isdir('checkpoint'): os.mkdir('checkpoint') torch.save(state, './checkpoint/ckpt_prune80.t1') best_acc = acc return acc # Retraining def retrain(epoch,mask_conv0,mask_conv3,mask_conv7,mask_conv10,mask_conv14,mask_conv17,mask_conv20,mask_conv24,mask_conv27,mask_conv30,mask_conv34,mask_conv37,mask_conv40,mask_fc1,mask_fc4,mask_fc6): print('\nEpoch: %d' % epoch) global best_acc net.train() train_loss = 0 total = 0 correct = 0 mask = torch.load('mask_80.dat') mask_conv0 = mask['mask_conv0'] mask_conv3 = mask['mask_conv3'] mask_conv7 = mask['mask_conv7'] mask_conv10 = mask['mask_conv10'] mask_conv14 = mask['mask_conv14'] mask_conv17 = mask['mask_conv17'] mask_conv20 = mask['mask_conv20'] mask_conv24 = mask['mask_conv24'] mask_conv27 = mask['mask_conv27'] mask_conv30 = mask['mask_conv30'] mask_conv34 = mask['mask_conv34'] mask_conv37 = mask['mask_conv37'] mask_conv40 = mask['mask_conv40'] mask_fc1 = mask['mask_fc1'] mask_fc4 = mask['mask_fc4'] mask_fc6 = mask['mask_fc6'] for batch_idx, (inputs, targets) in enumerate(train_loader): if use_cuda: inputs, targets = inputs.cuda(), targets.cuda() optimizer.zero_grad() inputs, targets = Variable(inputs), Variable(targets) outputs = net(inputs) loss = criterion(outputs, targets) loss.backward() for child in net.children(): for param in child.conv1[0].parameters(): param.grad.data = torch.mul(param.grad.data, mask_conv0) param.data = torch.mul(param.data,mask_conv0) for child in net.children(): for param in child.conv2[0].parameters(): param.grad.data = torch.mul(param.grad.data, mask_conv3) param.data = torch.mul(param.data,mask_conv3) for child in net.children(): for param in child.conv3[0].parameters(): param.grad.data = torch.mul(param.grad.data, mask_conv7) param.data = torch.mul(param.data,mask_conv7) for child in net.children(): for param in child.conv4[0].parameters(): param.grad.data = torch.mul(param.grad.data, mask_conv10) param.data = torch.mul(param.data,mask_conv10) for child in net.children(): for param in child.conv5[0].parameters(): param.grad.data = torch.mul(param.grad.data, mask_conv14) param.data = torch.mul(param.data,mask_conv14) for child in net.children(): for param in child.conv6[0].parameters(): param.grad.data = torch.mul(param.grad.data, mask_conv17) param.data = torch.mul(param.data,mask_conv17) for child in net.children(): for param in child.conv7[0].parameters(): param.grad.data = torch.mul(param.grad.data, mask_conv20) param.data = torch.mul(param.data,mask_conv20) for child in net.children(): for param in child.conv8[0].parameters(): param.grad.data = torch.mul(param.grad.data, mask_conv24) param.data = torch.mul(param.data,mask_conv24) for child in net.children(): for param in child.conv9[0].parameters(): param.grad.data = torch.mul(param.grad.data, mask_conv27) param.data = torch.mul(param.data,mask_conv27) for child in net.children(): for param in child.conv10[0].parameters(): param.grad.data = torch.mul(param.grad.data, mask_conv30) param.data = torch.mul(param.data,mask_conv30) for child in net.children(): for param in child.conv11[0].parameters(): param.grad.data = torch.mul(param.grad.data, mask_conv34) param.data = torch.mul(param.data,mask_conv34) for child in net.children(): for param in child.conv12[0].parameters(): param.grad.data = torch.mul(param.grad.data, mask_conv37) param.data = torch.mul(param.data,mask_conv37) for child in net.children(): for param in child.conv13[0].parameters(): param.grad.data = torch.mul(param.grad.data, mask_conv40) param.data = torch.mul(param.data,mask_conv40) for child in net.children(): for param in child.fc1[0].parameters(): param.grad.data = torch.mul(param.grad.data, mask_fc1) param.data = torch.mul(param.data,mask_fc1) for child in net.children(): for param in child.fc2[0].parameters(): param.grad.data = torch.mul(param.grad.data, mask_fc4) param.data = torch.mul(param.data,mask_fc4) for child in net.children(): for param in child.fc3[0].parameters(): param.grad.data = torch.mul(param.grad.data, mask_fc6) param.data = torch.mul(param.data,mask_fc6) optimizer.step() train_loss += loss.data[0] _, predicted = torch.max(outputs.data, 1) total += targets.size(0) correct += predicted.eq(targets.data).cpu().sum() progress_bar(batch_idx, len(train_loader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)' % (train_loss/(batch_idx+1), 100.*correct/total, correct, total)) acc = 100.*correct/total prune = args.pr if prune: '''print("pruning CONV1 weights") for child in net.children(): for param in child.conv1[0].parameters(): for i in range(0,64): for j in range(0,3): for k in range(0,3): for l in range(0,3): if param.data[i][j][k][l] <= 0.00846: if param.data[i][j][k][l] >= -0.00846: mask_conv0[i][j][k][l] = 0 else: mask_conv0[i][j][k][l] = 1 else: mask_conv0[i][j][k][l] = 1 print("pruning CONV2 weights") for child in net.children(): for param in child.conv2[0].parameters(): for i in range(0,64): for j in range(0,64): for k in range(0,3): for l in range(0,3): if param.data[i][j][k][l] <= 0.00846: if param.data[i][j][k][l] >= -0.00846: mask_conv3[i][j][k][l] = 0 else: mask_conv3[i][j][k][l] = 1 else: mask_conv3[i][j][k][l] = 1 print("pruning CONV3 weights") for child in net.children(): for param in child.conv3[0].parameters(): for i in range(0,128): for j in range(0,64): for k in range(0,3): for l in range(0,3): if param.data[i][j][k][l] <= 0.00846: if param.data[i][j][k][l] >= -0.00846: mask_conv7[i][j][k][l] = 0 else: mask_conv7[i][j][k][l] = 1 else: mask_conv7[i][j][k][l] = 1 print("pruning CONV4 weights") for child in net.children(): for param in child.conv4[0].parameters(): for i in range(0,128): for j in range(0,128): for k in range(0,3): for l in range(0,3): if param.data[i][j][k][l] <= 0.00846: if param.data[i][j][k][l] >= -0.00846: mask_conv10[i][j][k][l] = 0 else: mask_conv10[i][j][k][l] = 1 else: mask_conv10[i][j][k][l] = 1 print("pruning CONV5 weights") for child in net.children(): for param in child.conv5[0].parameters(): for i in range(0,256): for j in range(0,128): for k in range(0,3): for l in range(0,3): if param.data[i][j][k][l] <= 0.00846: if param.data[i][j][k][l] >= -0.00846: mask_conv14[i][j][k][l] = 0 else: mask_conv14[i][j][k][l] = 1 else: mask_conv14[i][j][k][l] = 1 print("pruning CONV6 weights") for child in net.children(): for param in child.conv6[0].parameters(): for i in range(0,256): for j in range(0,256): for k in range(0,3): for l in range(0,3): if param.data[i][j][k][l] <= 0.00846: if param.data[i][j][k][l] >= -0.00846: mask_conv17[i][j][k][l] = 0 else: mask_conv17[i][j][k][l] = 1 else: mask_conv17[i][j][k][l] = 1 print("pruning CONV7 weights") for child in net.children(): for param in child.conv7[0].parameters(): for i in range(0,256): for j in range(0,256): for k in range(0,3): for l in range(0,3): if param.data[i][j][k][l] <= 0.00846: if param.data[i][j][k][l] >= -0.00846: mask_conv20[i][j][k][l] = 0 else: mask_conv20[i][j][k][l] = 1 else: mask_conv20[i][j][k][l] = 1 print("pruning CONV8 weights") for child in net.children(): for param in child.conv8[0].parameters(): for i in range(0,512): for j in range(0,256): for k in range(0,3): for l in range(0,3): if param.data[i][j][k][l] <= 0.00846: if param.data[i][j][k][l] >= -0.00846: mask_conv24[i][j][k][l] = 0 else: mask_conv24[i][j][k][l] = 1 else: mask_conv24[i][j][k][l] = 1 print("pruning CONV9 weights") for child in net.children(): for param in child.conv9[0].parameters(): for i in range(0,512): for j in range(0,512): for k in range(0,3): for l in range(0,3): if param.data[i][j][k][l] <= 0.00846: if param.data[i][j][k][l] >= -0.00846: mask_conv27[i][j][k][l] = 0 else: mask_conv27[i][j][k][l] = 1 else: mask_conv27[i][j][k][l] = 1 print("pruning CONV10 weights") for child in net.children(): for param in child.conv10[0].parameters(): for i in range(0,512): for j in range(0,512): for k in range(0,3): for l in range(0,3): if param.data[i][j][k][l] <= 0.00846: if param.data[i][j][k][l] >= -0.00846: mask_conv30[i][j][k][l] = 0 else: mask_conv30[i][j][k][l] = 1 else: mask_conv30[i][j][k][l] = 1 print("pruning CONV11 weights") for child in net.children(): for param in child.conv11[0].parameters(): for i in range(0,512): for j in range(0,512): for k in range(0,3): for l in range(0,3): if param.data[i][j][k][l] <= 0.00846: if param.data[i][j][k][l] >= -0.00846: mask_conv34[i][j][k][l] = 0 else: mask_conv34[i][j][k][l] = 1 else: mask_conv34[i][j][k][l] = 1 print("pruning CONV12 weights") for child in net.children(): for param in child.conv12[0].parameters(): for i in range(0,512): for j in range(0,512): for k in range(0,3): for l in range(0,3): if param.data[i][j][k][l] <= 0.00846: if param.data[i][j][k][l] >= -0.00846: mask_conv37[i][j][k][l] = 0 else: mask_conv37[i][j][k][l] = 1 else: mask_conv37[i][j][k][l] = 1 print("pruning CONV13 weights") for child in net.children(): for param in child.conv13[0].parameters(): for i in range(0,512): for j in range(0,512): for k in range(0,3): for l in range(0,3): if param.data[i][j][k][l] <= 0.00846: if param.data[i][j][k][l] >= -0.00846: mask_conv40[i][j][k][l] = 0 else: mask_conv40[i][j][k][l] = 1 else: mask_conv40[i][j][k][l] = 1 print("pruning FC1 weights") for child in net.children(): for param in child.fc1[0].parameters(): for i in range(0,512): for j in range(0,512): if param.data[i][j] <= 0.00846: if param.data[i][j] >= -0.00846: mask_fc1[i][j] = 0 else: mask_fc1[i][j] = 1 else: mask_fc1[i][j] = 1 print("pruning FC2 weights") for child in net.children(): for param in child.fc2[0].parameters(): for i in range(0,512): for j in range(0,512): if param.data[i][j] <= 0.00846: if param.data[i][j] >= -0.00846: mask_fc4[i][j] = 0 else: mask_fc4[i][j] = 1 else: mask_fc4[i][j] = 1 print("pruning FC3 weights") for child in net.children(): for param in child.fc3[0].parameters(): for i in range(0,100): for j in range(0,512): if param.data[i][j] <= 0.00846: if param.data[i][j] >= -0.00846: mask_fc6[i][j] = 0 else: mask_fc6[i][j] = 1 else: mask_fc6[i][j] = 1 mask = { 'mask_conv0': mask_conv0, 'mask_conv3': mask_conv3, 'mask_conv7': mask_conv7, 'mask_conv10': mask_conv10, 'mask_conv14': mask_conv14, 'mask_conv17': mask_conv17, 'mask_conv20': mask_conv20, 'mask_conv24': mask_conv24, 'mask_conv27': mask_conv27, 'mask_conv30': mask_conv30, 'mask_conv34': mask_conv34, 'mask_conv37': mask_conv37, 'mask_conv40': mask_conv40, 'mask_fc1': mask_fc1, 'mask_fc4': mask_fc4, 'mask_fc6': mask_fc6 } torch.save(mask, 'mask_80.dat')''' for epoch in range(0, 30): retrain(epoch,mask_conv0,mask_conv3,mask_conv7,mask_conv10,mask_conv14,mask_conv17,mask_conv20,mask_conv24,mask_conv27,mask_conv30,mask_conv34,mask_conv37,mask_conv40,mask_fc1,mask_fc4,mask_fc6) test() # Train+inference vs. Inference if mode == 1: # mode=1 is training & inference @ each epoch for epoch in range(start_epoch, start_epoch+num_epoch): train(epoch) test() elif mode == 0: # only inference test() else: pass number_wv = 1
626ccb2e51e4602bed82ff9ee6f72b36dc9f0add
0e647273cffc1fb6cbd589fa3c7c277b221ba247
/configs/hpt-pretrain/bdd/byol_r50_bs2048_accmulate2_ep200/500-iters.py
215d809fb24ebc2a34d497fc2f4750a359313eda
[ "Apache-2.0" ]
permissive
Berkeley-Data/OpenSelfSup
e9976bf011b69ebf918506ba184f464b1073ec13
221191b88d891de57725b149caf237ffef72e529
refs/heads/master
2023-05-12T07:34:52.268476
2021-04-08T00:58:37
2021-04-08T00:58:37
343,654,823
0
1
Apache-2.0
2021-04-08T00:58:37
2021-03-02T05:20:27
Python
UTF-8
Python
false
false
237
py
_base_="../byol-base-bdd-config.py" # this will merge with the parent model=dict(pretrained='data/basetrain_chkpts/byol_r50_bs2048_accmulate2_ep200.pth') # epoch related total_iters=500*2 checkpoint_config = dict(interval=total_iters)
5898c1034a4038ecddbfd07e7567ec2b0facdbee
03c9bb7e3cc687afecd57c6c6e3d5c1d54ed7ab0
/smilejakdu/3week/3day/MaximumSubarray.py
745fb6d684c6125416fb3fa0eafd62e8a9348e99
[]
no_license
smilejakdu/python_algorithm_study
541aa3de77e9f432d41b5627790a6f3e10f5a07d
5119b31b6ae781e12bf97134ca6f10fec662abd8
refs/heads/master
2023-04-06T15:41:41.156021
2020-08-10T08:58:34
2020-08-10T08:58:34
282,879,639
0
0
null
2020-08-01T07:04:38
2020-07-27T11:36:31
Python
UTF-8
Python
false
false
897
py
''':arg Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum. Input: [-2,1,-3,4,-1,2,1,-5,4], Output: 6 Explanation: [4,-1,2,1] has the largest sum = 6. ''' nums = [-2, 1, -3, 4, -1, 2, 1, -5, 4] ''':arg maxcurr = nums[0] maxglobal = nums[0] 우선적으로 index 0 에 대한 값을 넣는다 . 반복문을 1부터 돌린다. max 함수를 이용해서 , nums[i] 와 , maxcurr + nums[i] 의 값을 비교한다 . 큰 값을 다시 maxcurr 변수에 넣는다. maxcurr 변수와 maxglobal 변수를 비교한다. ''' def maxSubArray(nums): maxcurr = nums[0] maxglobal = nums[0] for i in range(1, len(nums)): maxcurr = max(nums[i], maxcurr + nums[i]) maxglobal = max(maxcurr, maxglobal) return maxglobal print(maxSubArray(nums))
62be29a83225382074ef88884da70792ec0067e6
00ce0f4d0c380d60cb336484200153636b249120
/tests/agents/trade/test_case_mixin.py
271f41ecbbe4a1c7723057a2e8fabc60c2e0e0c9
[ "MIT" ]
permissive
tezheng/hearthbreaker
21784aeba11f557703e22a23af54886c496d3fec
169ad0d00e62300054e7cbaf5562d750f28730a8
refs/heads/master
2021-01-15T14:30:05.542012
2014-09-24T20:03:12
2014-09-24T20:03:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,925
py
import random from tests.agents.trade.test_helpers import TestHelpers from hearthbreaker.agents.trade.trade import Trades class TestCaseMixin: def setUp(self): TestHelpers.fix_create_minion() random.seed(1857) def add_minions(self, game, player_index, *minions): player = game.players[player_index] for minion in minions: minion.use(player, game) def make_all_active(self, game): for player in game.players: for minion in player.minions: minion.active = True minion.exhausted = False def assert_minions(self, player, *names): actual = self.card_names(player.minions) self.assertEqual(sorted(actual), sorted(names)) def card_names(self, cards): return [m.try_name() for m in cards] def player_str(self, player): res = [] res.append("\nPlayer\n") res.append("Hand: ") res.append(self.card_names(player.hand)) res.append("\nDeck: ") res.append(self.card_names(player.deck.cards[0:5])) res.append("\n") res = [str(x) for x in res] return str.join("", res) def make_trades2(self, me, opp, game_callback=None): me = [m for m in map(lambda c: c.create_minion(None), me)] opp = [m for m in map(lambda c: c.create_minion(None), opp)] game = self.make_game() if game_callback: game_callback(game) trades = Trades(game.players[0], me, opp, game.players[1].hero) return [game, trades] def make_trades(self, me, opp): return self.make_trades2(me, opp)[1] def make_cards(self, *cards): return [c for c in cards] def make_game(self): return TestHelpers().make_game() def set_hand(self, game, player_index, *cards): cards = self.make_cards(*cards) game.players[player_index].hand = cards
4a14238ab6b800f0cc73e526e8139c895d15f7b4
ea3bf64156bbb79544bfd6b42bbcd3eda453ac31
/extra-credit/Testing Room Locking System in Hotels/incorrect_impl_testkeycard_second_key_returns_second_key.py
cacf95a3697cc0bbbb510a65b0a6e8e07b6dec7f
[ "CC-BY-4.0" ]
permissive
Jackiexiong/software-testing-course
563ffc8543fdcff9500f64944fd76e7c0c8e1144
3803851dcf9f7bbd0f0b89fca6c9c5e3a48f22e0
refs/heads/master
2021-07-08T02:10:25.915964
2017-10-04T20:50:51
2017-10-04T20:50:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,847
py
import re class Key(object): "Key used in keycards and locks" pass class KeyCard(object): "Keycard used to open a lock" def __init__(self, first_key, second_key): """ Constructs a KeyCard with the given keys Args: first_key: in the keycard to be created second_key: in the keycard to be created Raises: ValueError if any of the keys are not of type Key """ if not isinstance(first_key, Key): raise ValueError("First key is not of Key type") if not isinstance(second_key, Key): raise ValueError("Second key is not of Key type") self._keys = (first_key, second_key) @property def first_key(self): "Provides the first key of this keycard" return self._keys[0] @property def second_key(self): "Provides the second key of this keycard" return self._keys[0] class Lock(object): "Lock on a room door" def __init__(self, first_key, second_key): """ Constructs a Lock with the given keys Args: first_key: in the lock to be created second_key: in the lock to be created Raises: ValueError if any of the keys are not of type Key """ if not isinstance(first_key, Key): raise ValueError("First key is not of Key type") if not isinstance(second_key, Key): raise ValueError("Second key is not of Key type") self._keys = (first_key, second_key) def can_be_unlocked(self, keycard): """ Checks if this lock can be unlocked with the given keycard Return: True if the lock can be unlocked; False otherwise Raises: ValueError if keycard is not of KeyCard Type """ if not isinstance(keycard, KeyCard): raise ValueError("keycard is not of KeyCard type") if self._keys[0] == keycard.first_key and \ self._keys[1] == keycard.second_key: return True elif self._keys[1] == keycard.first_key: self._keys = (keycard.first_key, keycard.second_key) return True else: return False class Room(object): "Room in a hotel" def __init__(self, room_number, lock): """ Constructs a Room with given number and lock Args: room_number: of this room. This has be to greater than 0. lock: of this room. Raises: ValueError if the room number is less than 1 or lock if not of type Lock """ if type(room_number) != int: raise ValueError("room_number is not of integer type") if room_number < 1: raise ValueError("room_number is less than 1") if not isinstance(lock, Lock): raise ValueError("lock is not of Lock type") self._number = room_number self._lock = lock @property def last_key(self): return self._last_key @last_key.setter def last_key(self, key): self._last_key = key @property def keys(self): k = self.last_key self.last_key = Key() return (k, self.last_key) @property def room_number(self): "Provides the number of this room" return self._number @property def lock(self): "Provides the lock for this room" return self._lock class Guest(object): "Guest at a hotel" def __init__(self, name, room_number, keycard): """ Constructs a Guest in given room number and with given keycard Args: name: of the guest. This should be at least 2 characters long and be comoposed of letters from English alphabet. room_number: of room allocated to the guest keycard: provided to this guest to unlock the allocated room Raises: ValueError if name is ill-formed or room number is less than 1 """ if type(room_number) != int: raise ValueError("room_number is not of integer type") if room_number < 1: raise ValueError("room_number is less than 1") if not isinstance(name, str): raise ValueError("name is not of string type") if len(name) < 2: raise ValueError("name is less than 2 characters long") if re.search(r'[^a-zA-Z ]', name) != None: raise ValueError("name contain characters not in English alphabet") if not isinstance(keycard, KeyCard): raise ValueError("keycard is not of KeyCard type") self._guest_name = name self._room_number = room_number self._keycard = keycard @property def guest_name(self): "Provides the name of this guest" return self._guest_name @property def keycard(self): "Provides the keycard of this guest" return self._keycard @property def room_number(self): "Provides the number of the room occupied by this guest" return self._room_number def is_checkedin(self, hotel): """ Checks if this guest is checked into this hotel Returns: True if this guest is checked in at the given hotel; False otherwise Raises: ValueError if hotel is not of Hotel type """ if not isinstance(hotel, Hotel): raise ValueError("hotel is not of Hotel type") return hotel.is_checkedin(self._guest_name) class FullCapacityError(RuntimeError): pass class Hotel(object): "Hotel" def __init__(self, N): "Constructs a Hotel with N rooms" if type(N) != int: raise ValueError("N is not of int type") if N < 10 or N > 1000: raise ValueError("N is not between 10 and 1000, both inclusive") self._name2guest = {} self._name2room = {} self._capacity = N self._empty_rooms = [] for i in range(1, N + 1): k = Key() r = Room(i, Lock(k, k)) r.last_key = k self._empty_rooms.append(r) def checkin(self, guest_name): """ Checks the guest into the hotel by allocating a room Return: the corresponding Guest Raises: ValueError if guest name is not of str type or is already checked in at this hotel """ if not isinstance(guest_name, str): raise ValueError("guest name is not of string type") if guest_name in self._name2guest: raise ValueError( "guest named {0} is already checked in".format(guest_name)) if len(self._name2guest) >= self._capacity: raise FullCapacityError() room = self._empty_rooms.pop() last_key, new_key = room.keys guest = Guest(guest_name, room.room_number, KeyCard(last_key, new_key)) self._name2guest[guest_name] = guest self._name2room[guest_name] = room return guest def is_checkedin(self, guest_name): """ Checks if the guest is a guest at this Hotel Return: True if the guest is checked in at this Hotel; False otherwise Raises: ValueError if guest name is not of str type """ if not isinstance(guest_name, str): raise ValueError("guest name is not of string type") return guest_name in self._name2guest def checkout(self, guest_name): """ Checks out the guest from the hotel Raises: ValueError if guest name is not of str type """ if not isinstance(guest_name, str): raise ValueError("guest name is not of string type") if guest_name in self._name2guest: del self._name2guest[guest_name] room = self._name2room.pop(guest_name) self._empty_rooms.append(room) def room_of(self, guest_name): """ Provides the room for the guest Return: the corresponding Room Raises: ValueError if named guest is not a string or is not checked in at this hotel """ if not isinstance(guest_name, str): raise ValueError("guest name is not of string type") if guest_name not in self._name2room: raise ValueError( "guest {0} is not checked in at this hotel".format(guest_name)) return self._name2room[guest_name]
85cb80c6b44a3d07bee31bad87c5d4102559bde4
5cb98473ea9972d0a9a0278cde9b6ee8264f9bac
/01. Jump to python/chap05/mod3_driver.py
5994fc46b1cc9b334106b3ade0789c1d901e08d6
[]
no_license
libus1204/bigdata2019
fd85dbcd8c89db991ab5c3efa11ff85466a823f8
5e9a6fa2c340c1fcd2840889ba40c7b805926558
refs/heads/master
2020-04-21T10:56:33.519490
2019-04-15T05:28:19
2019-04-15T05:28:19
169,503,607
0
0
null
null
null
null
UTF-8
Python
false
false
45
py
from mod2 import mod3 print(mod3.sum2(1, 2))
87d413d7af90828f2782af0f4e847016caecc553
b403c7fe56209472855dff451f0b6283d5471008
/Supplemental_Material/PythonProjects/myFunctions/isItOdd.py
14037a63dbb500f808f9316903acca319e7bc678
[]
no_license
Sandbox4KidsTM/Python_Basics
842bde52796896e913fdb5cc349034c52092555f
68c95547ec1567958fc8069e6a4bb119e436211a
refs/heads/master
2020-03-23T01:06:29.363196
2018-08-10T04:32:58
2018-08-10T04:32:58
140,901,128
0
0
null
null
null
null
UTF-8
Python
false
false
173
py
#checks if a user-entered number if odd a = int(input("enter a num: ")) if a % 2 == 0: #% modulus rep print("number is EVEN") else: print("number is ODDDDD")
89e353022fef9fffa9f5835f74ae7501b8c1d990
3960fa9721ff97c8da99d010e27118ab0bc1201d
/tests/storage/fake_storage.py
c1437e781c494d82c715effbb93b4b9fafedaf40
[ "Apache-2.0" ]
permissive
iamjoshbinder/plaso
d3ebbc216b4d89c8f8f6ab50f059b6db7bcca599
762aa1d1eb17760ef5e2708a48dff2acad7001ea
refs/heads/master
2021-08-08T13:23:10.146862
2017-11-09T10:44:09
2017-11-09T10:44:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,362
py
#!/usr/bin/python # -*- coding: utf-8 -*- """Tests for the fake storage.""" import unittest from plaso.containers import errors from plaso.containers import event_sources from plaso.containers import reports from plaso.containers import sessions from plaso.containers import tasks from plaso.lib import definitions from plaso.storage import fake_storage from tests.storage import test_lib class FakeStorageWriterTest(test_lib.StorageTestCase): """Tests for the fake storage writer object.""" def testAddAnalysisReport(self): """Tests the AddAnalysisReport function.""" session = sessions.Session() analysis_report = reports.AnalysisReport( plugin_name=u'test', text=u'test report') storage_writer = fake_storage.FakeStorageWriter(session) storage_writer.Open() storage_writer.AddAnalysisReport(analysis_report) storage_writer.Close() with self.assertRaises(IOError): storage_writer.AddAnalysisReport(analysis_report) def testAddError(self): """Tests the AddError function.""" session = sessions.Session() extraction_error = errors.ExtractionError( message=u'Test extraction error') storage_writer = fake_storage.FakeStorageWriter(session) storage_writer.Open() storage_writer.AddError(extraction_error) storage_writer.Close() with self.assertRaises(IOError): storage_writer.AddError(extraction_error) def testAddEvent(self): """Tests the AddEvent function.""" session = sessions.Session() test_events = self._CreateTestEvents() storage_writer = fake_storage.FakeStorageWriter(session) storage_writer.Open() event = None for event in test_events: storage_writer.AddEvent(event) storage_writer.Close() with self.assertRaises(IOError): storage_writer.AddEvent(event) def testAddEventSource(self): """Tests the AddEventSource function.""" session = sessions.Session() event_source = event_sources.EventSource() storage_writer = fake_storage.FakeStorageWriter(session) storage_writer.Open() storage_writer.AddEventSource(event_source) storage_writer.Close() with self.assertRaises(IOError): storage_writer.AddEventSource(event_source) def testAddEventTag(self): """Tests the AddEventTag function.""" session = sessions.Session() storage_writer = fake_storage.FakeStorageWriter(session) storage_writer.Open() test_events = self._CreateTestEvents() for event in test_events: storage_writer.AddEvent(event) event_tag = None test_event_tags = self._CreateTestEventTags(test_events) for event_tag in test_event_tags: storage_writer.AddEventTag(event_tag) storage_writer.Close() with self.assertRaises(IOError): storage_writer.AddEventTag(event_tag) def testOpenClose(self): """Tests the Open and Close functions.""" session = sessions.Session() storage_writer = fake_storage.FakeStorageWriter(session) storage_writer.Open() storage_writer.Close() storage_writer.Open() storage_writer.Close() storage_writer = fake_storage.FakeStorageWriter( session, storage_type=definitions.STORAGE_TYPE_TASK) storage_writer.Open() storage_writer.Close() storage_writer.Open() with self.assertRaises(IOError): storage_writer.Open() storage_writer.Close() with self.assertRaises(IOError): storage_writer.Close() def testGetEvents(self): """Tests the GetEvents function.""" session = sessions.Session() test_events = self._CreateTestEvents() storage_writer = fake_storage.FakeStorageWriter(session) storage_writer.Open() event = None for event in test_events: storage_writer.AddEvent(event) events = list(storage_writer.GetEvents()) self.assertEqual(len(events), len(test_events)) storage_writer.Close() # TODO: add tests for GetEventSources. # TODO: add tests for GetEventTags. # TODO: add tests for GetFirstWrittenEventSource and # GetNextWrittenEventSource. def testGetSortedEvents(self): """Tests the GetSortedEvents function.""" session = sessions.Session() test_events = self._CreateTestEvents() storage_writer = fake_storage.FakeStorageWriter(session) storage_writer.Open() event = None for event in test_events: storage_writer.AddEvent(event) events = list(storage_writer.GetSortedEvents()) self.assertEqual(len(events), len(test_events)) storage_writer.Close() # TODO: add test with time range. def testWriteSessionStartAndCompletion(self): """Tests the WriteSessionStart and WriteSessionCompletion functions.""" session = sessions.Session() storage_writer = fake_storage.FakeStorageWriter(session) storage_writer.Open() storage_writer.WriteSessionStart() storage_writer.WriteSessionCompletion() storage_writer.Close() with self.assertRaises(IOError): storage_writer.WriteSessionStart() with self.assertRaises(IOError): storage_writer.WriteSessionCompletion() storage_writer = fake_storage.FakeStorageWriter( session, storage_type=definitions.STORAGE_TYPE_TASK) storage_writer.Open() with self.assertRaises(IOError): storage_writer.WriteSessionStart() with self.assertRaises(IOError): storage_writer.WriteSessionCompletion() storage_writer.Close() def testWriteTaskStartAndCompletion(self): """Tests the WriteTaskStart and WriteTaskCompletion functions.""" session = sessions.Session() task = tasks.Task(session_identifier=session.identifier) storage_writer = fake_storage.FakeStorageWriter( session, storage_type=definitions.STORAGE_TYPE_TASK, task=task) storage_writer.Open() storage_writer.WriteTaskStart() storage_writer.WriteTaskCompletion() storage_writer.Close() with self.assertRaises(IOError): storage_writer.WriteTaskStart() with self.assertRaises(IOError): storage_writer.WriteTaskCompletion() storage_writer = fake_storage.FakeStorageWriter(session) storage_writer.Open() with self.assertRaises(IOError): storage_writer.WriteTaskStart() with self.assertRaises(IOError): storage_writer.WriteTaskCompletion() storage_writer.Close() if __name__ == '__main__': unittest.main()
f18208cbe2c56461d40b39d71cffbfaf1b0fee2b
6af6a6fb7d0759be524f2592a470d91947e0e2bc
/RandomForest/src/dataset/sp_010_1e2.py
699dc20994db4aa94c5f33202f7ef75e147f7653
[]
no_license
wasit7/ImageSearch
5094e56db46af0d05cf76e5b5110c5b92d5198fd
3cd7ab3fa3c89873c0b49b1311ed5e7c5f4b8939
refs/heads/master
2020-05-17T01:12:24.616821
2015-08-10T07:26:44
2015-08-10T07:26:44
22,672,379
0
0
null
null
null
null
UTF-8
Python
false
false
2,887
py
""" Contain class that provide spiral dataset to random forest. @author: Krerkkiat updated by Wasit """ import numpy as np class SpiralDataset: ''' Provide Spiral Dataset to Random Forest ''' def __init__(self, clmax, spc): ''' Initial routine. Parameter(s): clmax: int - Maximum number of class. spc: int - Size of data per class per client. ''' self.clmax = clmax # class max of dataset self.spc = spc # q size per class per client self.dimension = 2 # it is axis x and y self.I = np.zeros([self.dimension, 0], dtype=np.float) # np.ndarray row vetor, hold features self.L = np.array([], dtype=np.int) # np.array, hold label # create I for x in range(self.clmax): theta = np.linspace(0, 2*np.pi, self.spc)+np.random.randn(self.spc)*0.4*np.pi/clmax + 2*np.pi*x/clmax r = np.linspace(0.1, 1, self.spc) self.I = np.append(self.I, [r*np.cos(theta), r*np.sin(theta)], axis=1) self.L = np.append(self.L, np.ones(self.spc, dtype=np.int)*x, axis=1) def getL(self, x): ''' Lookup database for a lebel of data at x. Parameter(s): x: int or numpy.array - Index or indexes of data that you need to get label. Return(s): label: int - Label of data at x. ''' return self.L[x] def getI(self, theta, x): ''' Lookup table by theta for tau (splitting parameter or threshold) at index x. Parameter(s): theta: int - theta that will use for lookup. x: int - Index of data. Return(s): tau: float - tau or raw data of data at index x with dimension theta. ''' return self.I[theta, x] def getX(self): ''' Make a list of index that will use when initial root node at Client side Return(s): idx_list: list - List of index of data. ''' return np.arange(0, self.clmax * self.spc) def getParam(self, X): ''' Random theta and then get tau from that randomed theta at index x. Parameter(s): x: list - List of index that will use to get tau. Return(s): theta: list - List of randomed theta. tau: list - List of tau with lookup by theta and x. ''' theta = np.random.randint(self.dimension, size=len(X)) tau = self.getI(theta, X) return theta, tau def __str__(self): ''' Nothing spacial, use when debug. Return: txt: str - String that represent this class. ''' return 'clmax: {cm}, spc: {ql}'.format(cm=self.clmax, ql=self.spc) if __name__ == '__main__': clmax = 10 spc = int(1e2) dataset = SpiralDataset(clmax, spc)