blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
4fd9bed4328f8591ad62960574eed263df888ec7
f618cb7a1b1f49c02396a2bb969cc7518fd163ab
/doc/_gallery/1_3_1_noisy_chirp_wv.py
ba10a534a72d30bbb4a32f5780d048b7422177fb
[]
no_license
kingjr/pytftb
b968b8e2fc294a19cec8bf63e7d289f368ddf194
0bcacf5eef46bd173d90a23c00a7f4b8ee284b22
refs/heads/master
2021-01-16T22:27:05.587174
2015-06-25T05:16:02
2015-06-25T05:16:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
572
py
#! /usr/bin/env python # -*- coding: utf-8 -*- # vim:fenc=utf-8 # # Copyright © 2015 jaidev <jaidev@newton> # # Distributed under terms of the MIT license. """ """ from tftb.generators import fmlin, sigmerge, noisecg from tftb.processing.cohen import WignerVilleDistribution # Generate a chirp signal n_points = 128 fmin, fmax = 0.0, 0.5 signal, _ = fmlin(n_points, fmin, fmax) # Noisy chirp noisy_signal = sigmerge(signal, noisecg(128), 0) # Wigner-Ville spectrum of noisy chirp. wvd = WignerVilleDistribution(noisy_signal) wvd.run() wvd.plot(kind='contour')
8b26447125e32014c72172e771be247c148428e0
4e5ddba389409b4b62444a4eac9903635b57e230
/rastervision/backend/fastai_utils.py
1df6d269c2d6389ed6483fbf20a6dceac6cbdc25
[ "Apache-2.0", "LicenseRef-scancode-generic-cla" ]
permissive
blessings-h/raster-vision
cc4804e09f8396f861e1fff8bff3e0a4c4f3d048
65647c710e668ba59951081faa5f379397185d67
refs/heads/master
2021-06-29T18:59:23.823567
2021-01-27T02:05:01
2021-01-27T02:05:01
210,014,893
0
0
null
2019-09-21T16:09:08
2019-09-21T16:09:07
null
UTF-8
Python
false
false
10,285
py
import os from os.path import join import zipfile from typing import Any import warnings from fastai.callbacks import CSVLogger, Callback, SaveModelCallback, TrackerCallback from fastai.metrics import add_metrics from fastai.torch_core import dataclass, torch, Tensor, Optional, warn from fastai.basic_train import Learner from torch.utils.tensorboard import SummaryWriter from rastervision.utils.files import (sync_to_dir) class SyncCallback(Callback): """A callback to sync from_dir to to_uri at the end of epochs.""" def __init__(self, from_dir, to_uri, sync_interval=1): self.from_dir = from_dir self.to_uri = to_uri self.sync_interval = sync_interval def on_epoch_end(self, **kwargs): if (kwargs['epoch'] + 1) % self.sync_interval == 0: sync_to_dir(self.from_dir, self.to_uri, delete=True) class ExportCallback(TrackerCallback): """"Exports the model when monitored quantity is best. The exported model is the one used for inference. """ def __init__(self, learn:Learner, model_path:str, monitor:str='valid_loss', mode:str='auto'): self.model_path = model_path super().__init__(learn, monitor=monitor, mode=mode) def on_epoch_end(self, epoch:int, **kwargs:Any)->None: current = self.get_monitor_value() if (epoch == 0 or (current is not None and self.operator(current, self.best))): print(f'Better model found at epoch {epoch} with {self.monitor} value: {current}.') self.best = current print(f'Exporting to {self.model_path}') self.learn.export(self.model_path) class MySaveModelCallback(SaveModelCallback): """Saves the model after each epoch to potentially resume training. Modified from fastai version to delete the previous model that was saved to avoid wasting disk space. """ def on_epoch_end(self, epoch:int, **kwargs:Any)->None: "Compare the value monitored to its best score and maybe save the model." if self.every=="epoch": self.learn.save(f'{self.name}_{epoch}') prev_model_path = self.learn.path/self.learn.model_dir/f'{self.name}_{epoch-1}.pth' if os.path.isfile(prev_model_path): os.remove(prev_model_path) else: #every="improvement" current = self.get_monitor_value() if current is not None and self.operator(current, self.best): print(f'Better model found at epoch {epoch} with {self.monitor} value: {current}.') self.best = current self.learn.save(f'{self.name}') class MyCSVLogger(CSVLogger): """Logs metrics to a CSV file after each epoch. Modified from fastai version to: - flush after each epoch - append to log if already exists """ def __init__(self, learn, filename='history'): super().__init__(learn, filename) def on_train_begin(self, **kwargs): if self.path.exists(): self.file = self.path.open('a') else: super().on_train_begin(**kwargs) def on_epoch_end(self, epoch, smooth_loss, last_metrics, **kwargs): out = super().on_epoch_end( epoch, smooth_loss, last_metrics, **kwargs) self.file.flush() return out # The following are a set of metric callbacks that have been modified from the # original version in fastai to support semantic segmentation, which doesn't # have the class dimension in position -1. It also adds an ignore_idx # which is used to ignore pixels with class equal to ignore_idx. These # would be good to contribute back upstream to fastai -- however we should # wait for their upcoming refactor of the callback architecture. @dataclass class ConfusionMatrix(Callback): "Computes the confusion matrix." # The index of the dimension in the output and target arrays which ranges # over the different classes. This is -1 (the last index) for # classification, but is 1 for semantic segmentation. clas_idx:int=-1 def on_train_begin(self, **kwargs): self.n_classes = 0 def on_epoch_begin(self, **kwargs): self.cm = None def on_batch_end(self, last_output:Tensor, last_target:Tensor, **kwargs): preds = last_output.argmax(self.clas_idx).view(-1).cpu() targs = last_target.view(-1).cpu() if self.n_classes == 0: self.n_classes = last_output.shape[self.clas_idx] self.x = torch.arange(0, self.n_classes) cm = ((preds==self.x[:, None]) & (targs==self.x[:, None, None])).sum(dim=2, dtype=torch.float32) if self.cm is None: self.cm = cm else: self.cm += cm def on_epoch_end(self, **kwargs): self.metric = self.cm @dataclass class CMScores(ConfusionMatrix): "Base class for metrics which rely on the calculation of the precision and/or recall score." average:Optional[str]="binary" # `binary`, `micro`, `macro`, `weighted` or None pos_label:int=1 # 0 or 1 eps:float=1e-9 # If ground truth label is equal to the ignore_idx, it should be ignored # for the sake of evaluation. ignore_idx:int=None def _recall(self): rec = torch.diag(self.cm) / self.cm.sum(dim=1) rec[rec != rec] = 0 # removing potential "nan"s if self.average is None: return rec else: if self.average == "micro": weights = self._weights(avg="weighted") else: weights = self._weights(avg=self.average) return (rec * weights).sum() def _precision(self): prec = torch.diag(self.cm) / self.cm.sum(dim=0) prec[prec != prec] = 0 # removing potential "nan"s if self.average is None: return prec else: weights = self._weights(avg=self.average) return (prec * weights).sum() def _weights(self, avg:str): if self.n_classes != 2 and avg == "binary": avg = self.average = "macro" warn("average=`binary` was selected for a non binary case. Value for average has now been set to `macro` instead.") if avg == "binary": if self.pos_label not in (0, 1): self.pos_label = 1 warn("Invalid value for pos_label. It has now been set to 1.") if self.pos_label == 1: return Tensor([0,1]) else: return Tensor([1,0]) else: if avg == "micro": weights = self.cm.sum(dim=0) / self.cm.sum() if avg == "macro": weights = torch.ones((self.n_classes,)) / self.n_classes if avg == "weighted": weights = self.cm.sum(dim=1) / self.cm.sum() if self.ignore_idx is not None and avg in ["macro", "weighted"]: weights[self.ignore_idx] = 0 weights /= weights.sum() return weights class Recall(CMScores): "Compute the Recall." def on_epoch_end(self, last_metrics, **kwargs): return add_metrics(last_metrics, self._recall()) class Precision(CMScores): "Compute the Precision." def on_epoch_end(self, last_metrics, **kwargs): return add_metrics(last_metrics, self._precision()) @dataclass class FBeta(CMScores): "Compute the F`beta` score." beta:float=2 def on_train_begin(self, **kwargs): self.n_classes = 0 self.beta2 = self.beta ** 2 self.avg = self.average if self.average != "micro": self.average = None def on_epoch_end(self, last_metrics, **kwargs): prec = self._precision() rec = self._recall() metric = (1 + self.beta2) * prec * rec / (prec * self.beta2 + rec + self.eps) metric[metric != metric] = 0 # removing potential "nan"s if self.avg: metric = (self._weights(avg=self.avg) * metric).sum() return add_metrics(last_metrics, metric) def on_train_end(self, **kwargs): self.average = self.avg def zipdir(dir, zip_path): """Create a zip file from a directory. The zip file contains the contents of dir, but not dir itself. Args: dir: (str) the directory with the content to place in zip file zip_path: (str) path to the zip file """ with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as ziph: for root, dirs, files in os.walk(dir): for file in files: ziph.write(join(root, file), join('/'.join(dirs), os.path.basename(file))) # This code was adapted from # https://github.com/Pendar2/fastai-tensorboard-callback/blob/master/fastai_tensorboard_callback/tensorboard_cb.py @dataclass class TensorboardLogger(Callback): learn:Learner run_name:str histogram_freq:int=100 path:str=None def __post_init__(self): self.path = self.path or os.path.join(self.learn.path, "logs") self.log_dir = os.path.join(self.path, self.run_name) def on_train_begin(self, **kwargs): self.writer = SummaryWriter(log_dir=self.log_dir) def on_epoch_end(self, **kwargs): iteration = kwargs["iteration"] metrics = kwargs["last_metrics"] metrics_names = ["valid_loss"] + [o.__class__.__name__ for o in self.learn.metrics] for val, name in zip(metrics, metrics_names): self.writer.add_scalar(name, val, iteration) def on_batch_end(self, **kwargs): iteration = kwargs["iteration"] loss = kwargs["last_loss"] self.writer.add_scalar("learning_rate", self.learn.opt.lr, iteration) self.writer.add_scalar("momentum", self.learn.opt.mom, iteration) self.writer.add_scalar("loss", loss, iteration) if iteration%self.histogram_freq == 0: for name, param in self.learn.model.named_parameters(): self.writer.add_histogram(name, param, iteration) def on_train_end(self, **kwargs): try: with warnings.catch_warnings(): warnings.simplefilter("ignore") dummy_input = next(iter(self.learn.data.train_dl))[0] self.writer.add_graph(self.learn.model, tuple(dummy_input)) except Exception as e: print("Unable to create graph.") print(e) self.writer.close()
c0dd503b1a9ab64668c1bd73cb9fac6abcc20aaf
9c20f53c155a487b2af0110a7388f7b1ae8d6ac0
/JQKA/JQKA/spiders/myselector.py
13a243c755006de1367c0d53a52fc93853ace3af
[]
no_license
xfzhu2003/github
b9f2f2c37b571b7019a2faf02deb5f8d1d5fafc9
2f135849023a89d1514dec236d086e4783aad3df
refs/heads/master
2020-08-08T14:59:03.860049
2018-03-20T01:52:37
2018-03-20T01:52:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,810
py
#-*- coding:utf-8 -*- import re import urllib.parse #from itertools import chain import datetime #import random from user_agent import generate_user_agent from pdfminer.pdfparser import PDFParser,PDFDocument from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter from pdfminer.converter import PDFPageAggregator from pdfminer.layout import LTTextBoxHorizontal,LAParams from pdfminer.pdfinterp import PDFTextExtractionNotAllowed import requests import os from io import BytesIO from win32com import client as wc #from imp import reload s = requests.Session() class Selector(object): def __init__(self): pass @staticmethod def pdfparse(url=None): try: if url: res = s.get(url,headers = {"user-agent":generate_user_agent()}) res.encoding = 'utf-8' f = BytesIO() f.write(res.content) f.seek(0) # path2 = os.getcwd()+"\\%s.txt"%name.split(".")[0] # print(path1) praser = PDFParser(f) doc = PDFDocument() praser.set_document(doc) doc.set_parser(praser) doc.initialize() if not doc.is_extractable: raise PDFTextExtractionNotAllowed else: # 创建PDf 资源管理器 来管理共享资源 # print("a") rsrcmgr = PDFResourceManager() # 创建一个PDF设备对象 laparams = LAParams() device = PDFPageAggregator(rsrcmgr, laparams=laparams) # 创建一个PDF解释器对象 interpreter = PDFPageInterpreter(rsrcmgr, device) text = '' # 循环遍历列表,每次处理一个page的内容 for page in doc.get_pages(): # doc.get_pages() 获取page列表 interpreter.process_page(page) # 接受该页面的LTPage对象 layout = device.get_result() #text = "".join(map(lambda x:x.get_text().strip(" ") if x.get_text() else "",layout)) #print(text) # 这里layout是一个LTPage对象 里面存放着 这个page解析出的各种对象 一般包括LTTextBox, LTFigure, LTImage, LTTextBoxHorizontal 等等 想要获取文本就获得对象的text属性, for x in layout: results = x.get_text() if results: text = text+results.strip('\n') f.close() return text except Exception as e: print(e) @staticmethod def docparse(url): name = url.split("/")[-1] try: path1 = os.getcwd()+"\\%s.doc"%name.split(".")[0] path2 = os.getcwd()+"\\%s.txt"%name.split(".")[0] # print(path1,path2) doc = s.get(url,headers = {"user-agent":generate_user_agent()}) word = wc.Dispatch('Word.Application') with open(path1,"wb") as f: f.write(doc.content) docment = word.Documents.Open(path1) docment.SaveAs(path2, 4) docment.Close() try: with open(path2) as f: workdoc = f.read() except: workdoc = "" os.remove(path1) os.remove(path2) return workdoc except Exception as e: print(e) @classmethod def replace_all(self,content): content = self.replace_html_tag(content) content = self.replace_invalid_html_char(content) content = self.replace_invalid_char(content) return content @staticmethod def changdt(content,dt): if dt == "int": v = int(content) if hasattr(content,'replace') and content.isdigit() else content if isinstance(content,int) else None return v elif dt == "float": try: v = round(float(content),4) return v except: return None if dt == 'str': try: if content: return str(content) except: return None if dt == "date": if content: if re.match("\d{4}-\d+-\d+",content): result = content.split("-") return "{0:0>4}-{1:0>2}-{2:0>2}".format(result[0],result[1],result[2]) else: return content else: return content @staticmethod def select_content(content,config,response=None): selector_type = config['t'] tag = config['v'] try: if hasattr(content,'text'): body = content.text else: body = content except Exception as e: print(e) try: if selector_type == 'meta': return response.meta[tag] elif selector_type == "json": for i in tag.split("/"): if isinstance(content,dict): pass else: raise TypeError("typeError") content = content[i] if i in content else '' v = content return v elif selector_type == "xpath": return content.xpath(tag) elif selector_type == 'xpathList': return content.xpath(tag).extract() elif selector_type == 'xpath_split': v = content.xpath(tag).extract() if v: return ",".join(v) elif selector_type == "xpath_first": v = content.xpath(tag).extract_first() return v elif selector_type == "xpath_join": v = content.xpath(tag).extract() if v: v = "".join(v) else: v = None return v elif selector_type == 'xpathSet': v = content.xpath(tag).extract() v = set(v) return v elif selector_type == "css": v = content.css[tag] if v: return v elif selector_type == "re_first": v = re.search(tag,body) if hasattr(v,"group"): v = v.group(0) else: return '' elif selector_type == "re_findall": v = re.findall(tag,body) return v elif 'splitwith' in selector_type: if hasattr(selector_type,'replace'): b = selector_type.replace('splitwith','') else: raise AttributeError('%s has not attribute replace'%selector_type) if hasattr(content,'split'): try: return content.split(b)[tag] except IndexError as e: print(e) else: raise AttributeError('%s has not attribute split'%content) elif selector_type == "url": if hasattr(response,"url"): return response.url else: raise AttributeError("url is Not Method") elif selector_type =="date": #set tag = "%Y-%m-%d %H:%M:%S" return datetime.datetime.now().strftime(tag) elif selector_type =='abs': return tag elif selector_type == 'url_re': v = re.search(tag,response.url) if v: return v.group(1) elif selector_type == 'url_split': if hasattr(response,"url"): return response.url.split('/')[tag] else: raise AttributeError("url is Not Method") elif selector_type == 'static': return content except Exception as e: print(e) @staticmethod def replace_html_tag(content): if hasattr(content, 'replace'): return re.subn('<[\s\S]*?>','',content)[0] return content @staticmethod def replace_invalid_char(content): if hasattr(content, 'replace'): invalid_chars = {'\t','\r','\n','[',']',' ','--','\u3000','\xa0',"'"} for char in invalid_chars: content = content.replace(char,'') return content @staticmethod def replace_invalid_html_char(content): try: if hasattr(content, 'replace'): chars = {'nbsp': ' ','160': ' ', 'lt': '<', '60':'<', 'gt': '>', '62': '>', 'amp': '&', '38': '&', 'quot': '"', '34': '"', } re_char_entity = re.compile(r'&#?(?P<name>\w+);') sz = re_char_entity.search(content) while sz: key = sz.group('name') try: content = re_char_entity.sub(chars[key], content, 1) sz = re_char_entity.search(content) except KeyError: content = re_char_entity.sub('', content, 1) sz = re_char_entity.search(content) except Exception as e: print(e) return e return content @staticmethod def urljoin(path, url): urlp = urllib.parse.urlparse(url) return urlp.scheme+'://'+urlp.netloc+'/'+path @staticmethod def urljoin2(path, url): urlp = urllib.parse.urlparse(url) return urlp.scheme+'://'+urlp.netloc+path @classmethod def headers(self): return {'User-Agent':generate_user_agent()} if __name__ == "__main__": pass a = Selector.pdfparse("http://www.szse.cn/UpFiles/cfwj/2017-09-20_002638676.pdf") print(a) # a = Selector() # a = a.headers() # print(a) # print(type(a)) # print(a) # a = Selector.replace_all('''<td style="text-align:center">男</td> # <td style="text-align:center">南山区 # # </td> # <td style="text-align:center"> # # <a href="/lawfirm/12e61b22fa6045deb55ca13d8ac5777c" target="_blank">广东君言律师事务所</a> #''') # print(a)
2f60ba606f3f3ff16f6ce61b7441c7944a9a3939
15f365dc711f2230073391687642498305286321
/Figure plotting/FIG_3.9c)_maximal allowable radial offset.py
d3495aa3b0b50f74b8be071296dbfa7a96ad2f13
[]
no_license
Isabelliuqin/Optical_Levitation_Master_project_final
16d177ee0852361745286d4a5af8eea84aad5845
0ebe133a08a84e3c8521b06c6e9eec2584e0b3cc
refs/heads/master
2023-01-03T13:35:05.753240
2020-11-01T10:13:59
2020-11-01T10:13:59
309,067,970
1
0
null
null
null
null
UTF-8
Python
false
false
2,693
py
# -*- coding: utf-8 -*- """ Created on Sun Nov 1 16:31:57 2020 @author: liuqi """ import scipy as sp import numpy as np from mpl_toolkits.mplot3d import axes3d import matplotlib.pylab as plt import scipy.integrate as spi from scipy.integrate import quad import seaborn from scipy.integrate import odeint from scipy.integrate import dblquad import Will_Module_addwdep as TQ import Module_table_parameter as MTP import time integration_method = 'manual' # 'manual' or 'integrated' grid_size = 100 plt.close('all') ########################### #Our sphere g = 9.8 c = 3 * 10**8 w_0 = 0.85 * 10 ** (-6) Lambda = 1.064 * 10**(-6) z_R = np.pi* w_0 ** 2 / Lambda rho = 30 * 10 ** (-6) n_0 = 1 n_s_n = 0.04 k = 7.6097 n_s = n_s_n - k*1j sig_s = 10.49 * 10 ** 3 * (( 3 ** 3 - 2.25 ** 3) / 3 ** 3 ) #density of sphere in kg/m^3 sig_0 = 0 #density of medium in kg/m^3 m = 4/3 * np.pi * rho ** 3 * ( sig_s - sig_0 ) Permittivity = 8.85 * 10**(-12) #P = 0.5 * c * n_0 * Permittivity #total power of the LG01 beam P = 12 #optimal power required to levitate at w0 = 0.85um ############################################ #FIG 3.9c) maximal allowable radial offset ############################################ #x-axis: x-axis radial offset #y-axis: Qx trapping efficiency #key function: TQ.F_total_manual_integration rho_0x = np.linspace(0,2*rho,100) rho_0 = [0,0] w = np.sqrt(2) * rho #optimal beam radius Qoplist = [] for rho_0xe in rho_0x: F_op = TQ.F_total_manual_integration(rho_0xe,rho_0[1], rho, n_0, n_s, w_0, w, z_R, P , target = "reflective", coordinate = 'x', grid_size = grid_size)['force_total'] #compute Qx at optimal beam radius wop, various radial offsets Q_op = F_op * c / ( n_0 * P ) Qoplist.append(Q_op) plt.plot(rho_0x/rho, np.array(Qoplist), lw=2, c="c", label="w/(sqrt(2)rho) = 1") print ((rho_0x/rho)[np.argmin(abs(np.array(Qoplist)))]) #print the inflection point new_ticks1 = np.linspace(0, 2 , 5) # plot axis print(new_ticks1) plt.xticks(new_ticks1,fontsize=20) plt.yticks(np.linspace(-0.1, 0.05, 4),fontsize=20) plt.rc('xtick',labelsize=20) plt.rc('ytick',labelsize=20) ax = plt.gca() ax.spines['top'].set_color('none') ax.spines['right'].set_color('none') ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['bottom'].set_position(('data',0)) plt.legend(loc=1,fontsize=16) plt.xlabel('rho_0x/rho',fontsize=20) plt.ylabel('Qx',fontsize=20) plt.title('rho = 30um, w0 = 0.85um',fontsize=20) plt.grid() plt.show()
a0558eff96171575b90ef92a7b59d2a7abd7f87f
f07a42f652f46106dee4749277d41c302e2b7406
/Data Set/bug-fixing-5/a8ab1a0b200881f52f564d28db90f10730c1f0b5-<latest>-fix.py
34987d8922650e14b77fd72b4e1557dd3181ede0
[]
no_license
wsgan001/PyFPattern
e0fe06341cc5d51b3ad0fe29b84098d140ed54d1
cc347e32745f99c0cd95e79a18ddacc4574d7faa
refs/heads/main
2023-08-25T23:48:26.112133
2021-10-23T14:11:22
2021-10-23T14:11:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,811
py
def latest(module, items, repoq, yum_basecmd, conf_file, en_repos, dis_repos, update_only, installroot='/'): res = { } res['results'] = [] res['msg'] = '' res['changed'] = False res['rc'] = 0 pkgs = { } pkgs['update'] = [] pkgs['install'] = [] updates = { } update_all = False cmd = None if ('*' in items): update_all = True (rc, out, err) = run_check_update(module, yum_basecmd) if ((rc == 0) and update_all): res['results'].append('Nothing to do here, all packages are up to date') return res elif (rc == 100): updates = parse_check_update(out) elif (rc == 1): res['msg'] = err res['rc'] = rc module.fail_json(**res) if update_all: cmd = (yum_basecmd + ['update']) will_update = set(updates.keys()) will_update_from_other_package = dict() else: will_update = set() will_update_from_other_package = dict() for spec in items: if spec.startswith('@'): pkgs['update'].append(spec) will_update.add(spec) continue elif (spec.endswith('.rpm') and ('://' not in spec)): if (not os.path.exists(spec)): res['msg'] += ("No RPM file matching '%s' found on system" % spec) res['results'].append(("No RPM file matching '%s' found on system" % spec)) res['rc'] = 127 module.fail_json(**res) envra = local_envra(spec) if (not is_installed(module, repoq, envra, conf_file, en_repos=en_repos, dis_repos=dis_repos, installroot=installroot)): pkgs['install'].append(spec) continue elif ('://' in spec): package = fetch_rpm_from_url(spec, module=module) envra = local_envra(package) if (not is_installed(module, repoq, envra, conf_file, en_repos=en_repos, dis_repos=dis_repos, installroot=installroot)): pkgs['install'].append(package) continue elif (is_installed(module, repoq, spec, conf_file, en_repos=en_repos, dis_repos=dis_repos, installroot=installroot) or update_only): pkgs['update'].append(spec) else: pkgs['install'].append(spec) pkglist = what_provides(module, repoq, spec, conf_file, en_repos=en_repos, dis_repos=dis_repos, installroot=installroot) if (not pkglist): res['msg'] += ("No package matching '%s' found available, installed or updated" % spec) res['results'].append(("No package matching '%s' found available, installed or updated" % spec)) res['rc'] = 126 module.fail_json(**res) nothing_to_do = True for pkg in pkglist: if ((spec in pkgs['install']) and is_available(module, repoq, pkg, conf_file, en_repos=en_repos, dis_repos=dis_repos, installroot=installroot)): nothing_to_do = False break (pkgname, _, _, _, _) = splitFilename(pkg) if ((spec in pkgs['update']) and (pkgname in updates)): nothing_to_do = False will_update.add(spec) if (spec != pkgname): will_update_from_other_package[spec] = pkgname break if ((not is_installed(module, repoq, spec, conf_file, en_repos=en_repos, dis_repos=dis_repos, installroot=installroot)) and update_only): res['results'].append(('Packages providing %s not installed due to update_only specified' % spec)) continue if nothing_to_do: res['results'].append(('All packages providing %s are up to date' % spec)) continue conflicts = transaction_exists(pkglist) if conflicts: res['msg'] += ('The following packages have pending transactions: %s' % ', '.join(conflicts)) res['results'].append(('The following packages have pending transactions: %s' % ', '.join(conflicts))) res['rc'] = 128 module.fail_json(**res) if module.check_mode: to_update = [] for w in will_update: if w.startswith('@'): to_update.append((w, None)) elif (w not in updates): other_pkg = will_update_from_other_package[w] to_update.append((w, ('because of (at least) %s-%s.%s from %s' % (other_pkg, updates[other_pkg]['version'], updates[other_pkg]['dist'], updates[other_pkg]['repo'])))) else: to_update.append((w, ('%s.%s from %s' % (updates[w]['version'], updates[w]['dist'], updates[w]['repo'])))) res['changes'] = dict(installed=pkgs['install'], updated=to_update) if (will_update or pkgs['install']): res['changed'] = True return res if cmd: (rc, out, err) = module.run_command(cmd) res['changed'] = True elif (pkgs['install'] or will_update): cmd = (((yum_basecmd + ['install']) + pkgs['install']) + pkgs['update']) lang_env = dict(LANG='C', LC_ALL='C', LC_MESSAGES='C') (rc, out, err) = module.run_command(cmd, environ_update=lang_env) out_lower = out.strip().lower() if ((not out_lower.endswith('no packages marked for update')) and (not out_lower.endswith('nothing to do'))): res['changed'] = True else: (rc, out, err) = [0, '', ''] res['rc'] = rc res['msg'] += err res['results'].append(out) if rc: res['failed'] = True return res
188e8503cdd257dd7cab3babad6f8510a254137d
633944f913050debf0764c2a29cf3e88f912670e
/v8/depot_tools/bootstrap-3.8.0b1.chromium.1_bin/python3/lib/python3.8/email/mime/base.py
132e6913d660b6b7b332267152dbc43c4eddb1af
[ "BSD-3-Clause", "bzip2-1.0.6", "SunPro", "Apache-2.0" ]
permissive
bopopescu/V8-lgtm
0474c2ff39baf754f556ef57619ceae93e7320fd
da307e2f7abfca5fa0e860a809de6cd07fd1b72b
refs/heads/master
2022-02-16T19:10:54.008520
2019-09-25T07:51:13
2019-09-25T07:51:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
69
py
../../../../../.cipd/pkgs/2/_current/lib/python3.8/email/mime/base.py
a8cf597841bdc78c1f56b1e0b73d9efdcca7b554
c55bca491632ef98dfd0e39e9e197f86d4ce94f0
/wcoa/migrations/0019_auto_20200922_1837.py
6a1b7fb208ec5b9d7b5906ffb04ffb52f40aa3af
[ "MIT" ]
permissive
Ecotrust/wcoa
420b2e9f03219a72f79e435c1001b87a76233a8b
f6ad1e42fa93560d57043ebeb8464a320befef14
refs/heads/main
2023-08-03T21:02:01.013970
2023-07-28T22:56:03
2023-07-28T22:56:03
196,878,615
1
1
MIT
2021-12-09T19:29:37
2019-07-14T20:07:39
Python
UTF-8
Python
false
false
395
py
# Generated by Django 2.2.9 on 2020-09-22 18:37 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('wcoa', '0018_delete_masonrypage'), ] operations = [ migrations.AlterField( model_name='catalogiframepage', name='source', field=models.URLField(max_length=1999), ), ]
a2f63a96b80b0d24c88cb051e4b93ed7a5134671
2dcf0d5cc921745bd34610162e540632066dd919
/library/framesize.py
200b812e69468c2e02fe0fd9dd27b4a7a38d54b7
[]
no_license
ms412/pyIxia
0aac92cfe2239853e5e815db23816252b1eb6997
17913d810e859fb776882f203bea4135aec72b36
refs/heads/master
2021-06-25T14:53:45.102058
2017-09-11T15:09:06
2017-09-11T15:09:06
103,150,462
0
0
null
null
null
null
UTF-8
Python
false
false
11,825
py
import time from library.ixiaIf import TclClient from tools.logger import Logger class Framesize(object): def __init__(self, *args): self._api = TclClient() self._log = Logger() self._portlist=[] self._tclportlist ='' for item in args: self._portlist.append([self._api.chassisID(),item[0],item[1]]) for item in self._portlist: self._tclportlist = (self._tclportlist + '[list %d %d %d] ' % (item[0], item[1], item[2])) self._tclportlist=('[list %s]'%(self._tclportlist)) def __del__(self): self.disconnect() def createGroup(self): self._api.call('set group 12') self._api.call('portGroup create $group') for _port in self._portlist: self._api.call('portGroup add $group %d %d %d' % (_port[0], _port[1], _port[2])) # self._api.call('port setFactoryDefaults %d %d %d' % (_port[0], _port[1], _port[2])) self._api.call('portGroup write $group') self._api.call('portGroup setCommand $group resetStatistics') # self._api.call('portGroup write $group') time.sleep(2) def port(self,mode): print('port config',self._portlist) # self._api.call('set portlist %s'%(self._TclPortList())) # if self._api.call_rc('ixTakeOwnership portlist force') != 0: if self._api.call_rc('ixTakeOwnership %s force'%(self._tclportlist)) != 0: print('EXIT') exit() for _port in self._portlist: if '1Gbe-opt' in mode: print('config prot',_port) self._api.call('port setDefault') #optisch self._api.call('port setPhyMode 1 %d %d %d'% (_port[0], _port[1], _port[2])) self._api.call('port config -speed 1000') self._api.call('port config -advertise100FullDuplex false') self._api.call('port config -advertise100HalfDuplex false') self._api.call('port config -advertise10FullDuplex false') self._api.call('port config -advertise10HalfDuplex false') self._api.call('port config -advertise1000FullDuplex true') self._api.call('port config -speed 1000') self._api.call('port set %d %d %d' % (_port[0], _port[1], _port[2])) elif '1Gbe-el'in mode: self._api.call('port setDefault') # electrical self._api.call('port setPhyMode 0 %d %d %d' % (_port[0], _port[1], _port[2])) self._api.call('port config -speed 1000') self._api.call('port config -advertise100FullDuplex false') self._api.call('port config -advertise100HalfDuplex false') self._api.call('port config -advertise10FullDuplex false') self._api.call('port config -advertise10HalfDuplex false') self._api.call('port config -advertise1000FullDuplex true') self._api.call('port config -speed 1000') self._api.call('port set %d %d %d' % (_port[0], _port[1], _port[2])) else: print('nothing') def stat(self): for _port in self._portlist: self._api.call('stat setDefault') if self._api.call_rc('stat set %d %d %d' % (_port[0], _port[1], _port[2])) != 0: exit() # self._api.call('stat write %d %d %d' % (_port[0], _port[1], _port[2])) def felxibleTimestamp(self): for _port in self._portlist: self._api.call('flexibleTimestamp setDefault') self._api.call('flexibleTimestamp set %d %d %d' % (_port[0], _port[1], _port[2])) def filter(self): for _port in self._portlist: self._api.call('filter setDefault') self._api.call('filter config -captureTriggerFrameSizeFrom 12') self._api.call('filter config -captureTriggerFrameSizeTo 12') self._api.call('filter config -captureFilterFrameSizeFrom 12') self._api.call('filter config -captureFilterFrameSizeTo 12') self._api.call('filter setDefault') self._api.call('filter set %d %d %d' % (_port[0], _port[1], _port[2])) def filterPallette(self): for _port in self._portlist: self._api.call('filterPallette setDefault') self._api.call('filterPallette set %d %d %d' % (_port[0], _port[1], _port[2])) def capture(self): for _port in self._portlist: self._api.call('capture setDefault') self._api.call('capture set %d %d %d' % (_port[0], _port[1], _port[2])) def interfaceTable(self): # for _port in self._portlist: self._api.call('interfaceTable setDefault') self._api.call('interfaceTable write') self._api.call('interfaceTable write') self._api.call('interfaceTable clearAllInterfaces') self._api.call('interfaceTable write') def protocolServer(self): for _port in self._portlist: self._api.call('protocolServer setDefault') self._api.call('protocolServer set %d %d %d' % (_port[0], _port[1], _port[2])) def stream(self,framesize): self._api.call('stream setDefault') self._api.call('stream config -name %s'% 'TestStream') self._api.call('stream config -framesize %d'% int(framesize)) self._api.call('stream config -ifg 96.0') # self._api.call('stream config -ifgMIN 952.0') #self._api.call('stream config -ifgMAX 1016.0') # self._api.call('stream config -ibg 96.0') self._api.call('stream config -percentPacketRate 100.0') self._api.call('stream config -enableTimestamp true') self._api.call('stream config -patternType patternTypeRandom') self._api.call('stream config -dataPattern allOnes') self._api.call('stream config -pattern "FF FF"') self._api.call('stream config -frameType "FF FF"') self._api.call('stream config -dma stopStream') self._api.call('stream config -numFrames 1000') #required for lartency # self._api.call('stream config -fir true') for _port in self._portlist: self._api.call('stream set %d %d %d %d'%(_port[0], _port[1], _port[2],1)) def pauseFrame(self): self._api.call('stream setDefault') # self._api.call('stream config -name %s'% 'PauseStream') self._api.call('protocol setDefault') self._api.call('protocol config -name PauseStream') self._api.call('protocol config -ethernetType ethernetII') self._api.call('pauseControl setDefault') self._api.call('pauseControl config -da {01 80 C2 00 00 01}') self._api.call('pauseControl config -pauseTime 128') for _port in self._portlist: self._api.call('pauseControl set %d %d %d'%(_port[0], _port[1], _port[2])) for _port in self._portlist: self._api.call('stream set %d %d %d %d'%(_port[0], _port[1], _port[2],1)) def protocol(self): self._api.call('protocol setDefault') def packetGroup(self): self._api.call('packetGroup setDefault') self._api.call('packetGroup config -groupId 1') self._api.call('packetGroup config -groupOffset 16') self._api.call('packetGroup config -sequenceNumberOffset 28') self._api.call('packetGroup config -insertSequenceSignature true') for _port in self._portlist: self._api.call('packetGroup setTx %d %d %d %d'%(_port[0], _port[1], _port[2],1)) def dataInegrity(self): self._api.call('dataInegrity setDefault') self._api.call('dataIntegrity config -signatureOffset 12') self._api.call('dataIntegrity config -signature "08 71 18 00"') def result(self): _result = {} for _port in self._portlist: _str_port = (str(_port[0])+str(_port[1])+str(_port[2])) print(_str_port) _result[_str_port] = {} for _port in self._portlist: self._api.call_rc('capture get %d %d %d' % (_port[0],_port[1], _port[2])) self._api.call('capture cget -nPackets') for _port in self._portlist: self._api.call_rc('captureBuffer get %d %d %d' % (_port[0],_port[1],_port[2])) self._api.call_rc('captureBuffer getStatistics') print('Port %s Latency: %d' % (str(_port), int(self._api.call('captureBuffer cget -averageLatency')[0]))) for _port in self._portlist: self._api.call('stat get statAllStats %d %d %d'% (_port[0], _port[1], _port[2])) # print('Port %s LinkState: %d'% (str(_port), int(self._api.call('stat cget -link')[0]))) # print('Port %s txFrames: %d'% (str(_port), int(self._api.call('stat cget -framesSent')[0]))) # print('Port %s rxFrames: %d'% (str(_port), int(self._api.call('stat cget -framesReceived')[0]))) # print('Port %s txBytes: %d'% (str(_port), int(self._api.call('stat cget -bytesSent')[0]))) # print('Port %s rxBytes: %d'% (str(_port), int(self._api.call('stat cget -bytesReceived')[0]))) # print('Port %s Line Rate: %d'% (str(_port), int(self._api.call('stat cget -lineSpeed')[0]))) # _str_port = (str(_port[0]) + '-' + str(_port[1]) + '-' + str(_port[2])) _testResult = {} _testResult['txFrame'] = int(self._api.call('stat cget -framesSent')[0]) _testResult['rxFrame'] = int(self._api.call('stat cget -framesReceived')[0]) _testResult['txBytes'] = int(self._api.call('stat cget -bytesSent')[0]) _testResult['rxBytes'] = int(self._api.call('stat cget -bytesReceived')[0]) _str_port = (str(_port[0]) + str(_port[1]) + str(_port[2])) _result[_str_port] = _testResult # _testResult['PORT'] = _port # _resultList.append(_testResult) # print('RESULT',_result) return _result def framesizeTest(self,sizelist): _framesizeTest = {} self._api.call('set portList %s' % (self._tclportlist)) self.createGroup() self.port('1Gbe-opt') #self.pauseFrame() # _result = {} for framesize in sizelist: self.stat() self.felxibleTimestamp() self.filter() self.capture() self.filterPallette() self.interfaceTable() self.protocolServer() self.stream(framesize) if self._api.call_rc('ixWriteConfigToHardware portList') != 0: exit() time.sleep(10) if self._api.call_rc('ixCheckLinkState portList') != 0: exit() if self._api.call_rc('ixStartCapture portList') != 0: exit() if self._api.call_rc('ixStartTransmit portList') != 0: exit() time.sleep(10) if self._api.call_rc('ixStopCapture portList') != 0: exit() if self._api.call_rc('ixStopTransmit portList') != 0: exit() # _resultList = self.result() _framesizeTest[framesize] = self.result() # for item in _resultList: # print(item) # _port = item.get('PORT') # _str_port = (str(_port[0]) + '-' + str(_port[1]) + '-' + str(_port[2])) # print(_str_port) # _framesizeTest[_str_port]['FRAMESIZE'][framesize] = _str_port # print(_framesizeTest) # _testresult = self.result() # print('TESTRESULT', _testresult) return _framesizeTest def disconnect(self): if self._api.call_rc('ixClearOwnership %s' % (self._tclportlist)) != 0: exit()
cd9815be7c9cc8ccdc4c8d46f182389f7124895a
0f6581b105ea7eb4b99dbff131378340a634e7ac
/pages/select_mall_page.py
a47f0ce03ea8ce69435593430a96ed74a92a928e
[]
no_license
langdawang678/Se2PO
ded5e9f97a329f39a6de8ffaebe92330eb598eff
96d7eb6b4e1774b06b2fd9a4781f9bee7d8f5ed6
refs/heads/master
2023-03-25T10:44:23.140843
2021-03-23T09:41:39
2021-03-23T09:41:39
346,628,227
0
0
null
null
null
null
UTF-8
Python
false
false
526
py
from selenium.webdriver.support.wait import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from locations.goods_lib_locations import GoodsLibLocations from common.base_page import BasePage class SelectMallPage(BasePage): # 退出元素是否存在 def get_elements_exists(self): try: WebDriverWait(self.driver, 10).until(EC.visibility_of_element_located(GoodsLibLocations.exit_link)) except: return False else: return True
b29cd8cd90efb7cd3c3dcc4d135b53ae21c536a5
f8104b29a8d0dbeb407060e494a206ca69335aeb
/tools/datasets/buildchange/json2coco_city_trainval.py
dabe0ff848ca135aa66f2af774888c1dc40685b2
[]
no_license
Sebastixian/wwtool
c19f665f96e8b942e94af47db590f5bb28072f06
2f462a3d028b766234d62a3ef706a0f08f10680a
refs/heads/master
2023-06-01T04:21:22.066639
2021-06-25T07:40:13
2021-06-25T07:40:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,213
py
import argparse import os import cv2 import json import csv import shutil import numpy as np import wwtool import os import cv2 import mmcv class SIMPLETXT2COCO(): def __init__(self, imgpath=None, annopath=None, imageset_file=None, image_format='.jpg', anno_format='.txt', data_categories=None, data_info=None, data_licenses=None, data_type="instances", groundtruth=True, small_object_area=0, sub_anno_fold=False, cities=None): super(SIMPLETXT2COCO, self).__init__() self.imgpath = imgpath self.annopath = annopath self.image_format = image_format self.anno_format = anno_format self.categories = data_categories self.info = data_info self.licenses = data_licenses self.type = data_type self.small_object_area = small_object_area self.small_object_idx = 0 self.groundtruth = groundtruth self.max_object_num_per_image = 0 self.sub_anno_fold = sub_anno_fold self.imageset_file = imageset_file self.imgpaths, self.annotpaths = [], [] for label_fn in os.listdir(annopath): basename = wwtool.get_basename(label_fn) self.imgpaths.append(os.path.join(imgpath, basename + '.png')) self.annotpaths.append(os.path.join(annopath, basename + '.json')) def get_image_annotation_pairs(self): images = [] annotations = [] index = 0 progress_bar = mmcv.ProgressBar(len(self.imgpaths)) imId = 0 for imgfile, annofile in zip(self.imgpaths, self.annotpaths): # imgpath = os.path.join(self.imgpath, name + self.image_format) # annotpath = os.path.join(self.annopath, name + self.anno_format) name = wwtool.get_basename(imgfile) annotations_coco = self.__generate_coco_annotation__(annofile, imgfile) # if annotation is empty, skip this annotation if annotations_coco != [] or self.groundtruth == False: height, width, channels = 1024, 1024, 3 images.append({"date_captured": "2019", "file_name": name + self.image_format, "id": imId + 1, "license": 1, "url": "http://jwwangchn.cn", "height": height, "width": width}) for annotation in annotations_coco: index = index + 1 annotation["image_id"] = imId + 1 annotation["id"] = index annotations.append(annotation) imId += 1 if imId % 500 == 0: print("\nImage ID: {}, Instance ID: {}, Small Object Counter: {}, Max Object Number: {}".format(imId, index, self.small_object_idx, self.max_object_num_per_image)) progress_bar.update() return images, annotations def __generate_coco_annotation__(self, annotpath, imgpath): """ docstring here :param self: :param annotpath: the path of each annotation :param return: dict() """ objects = self.__simpletxt_parse__(annotpath, imgpath) coco_annotations = [] for object_struct in objects: bbox = object_struct['bbox'] segmentation = object_struct['segmentation'] label = object_struct['label'] roof_bbox = object_struct['roof_bbox'] building_bbox = object_struct['building_bbox'] roof_mask = object_struct['roof_mask'] footprint_mask = object_struct['footprint_mask'] ignore_flag = object_struct['ignore_flag'] offset = object_struct['offset'] iscrowd = object_struct['iscrowd'] width = bbox[2] height = bbox[3] area = height * width if area <= self.small_object_area and self.groundtruth: self.small_object_idx += 1 continue coco_annotation = {} coco_annotation['bbox'] = bbox coco_annotation['segmentation'] = [segmentation] coco_annotation['category_id'] = label coco_annotation['area'] = np.float(area) coco_annotation['roof_bbox'] = roof_bbox coco_annotation['building_bbox'] = building_bbox coco_annotation['roof_mask'] = roof_mask coco_annotation['footprint_mask'] = footprint_mask coco_annotation['ignore_flag'] = ignore_flag coco_annotation['offset'] = offset coco_annotation['iscrowd'] = iscrowd coco_annotations.append(coco_annotation) return coco_annotations def __simpletxt_parse__(self, label_file, image_file): """ (xmin, ymin, xmax, ymax) """ annotations = mmcv.load(label_file)['annotations'] # roof_mask, footprint_mask, roof_bbox, building_bbox, label, ignore, offset objects = [] for annotation in annotations: object_struct = {} roof_mask = annotation['roof'] roof_polygon = wwtool.mask2polygon(roof_mask) roof_bound = roof_polygon.bounds # xmin, ymin, xmax, ymax footprint_mask = annotation['footprint'] footprint_polygon = wwtool.mask2polygon(footprint_mask) footprint_bound = footprint_polygon.bounds building_xmin = np.minimum(roof_bound[0], footprint_bound[0]) building_ymin = np.minimum(roof_bound[1], footprint_bound[1]) building_xmax = np.maximum(roof_bound[2], footprint_bound[2]) building_ymax = np.maximum(roof_bound[3], footprint_bound[3]) building_bound = [building_xmin, building_ymin, building_xmax, building_ymax] xmin, ymin, xmax, ymax = list(roof_bound) bbox_w = xmax - xmin bbox_h = ymax - ymin object_struct['bbox'] = [xmin, ymin, bbox_w, bbox_h] object_struct['roof_bbox'] = object_struct['bbox'] xmin, ymin, xmax, ymax = list(building_bound) bbox_w = xmax - xmin bbox_h = ymax - ymin object_struct['building_bbox'] = [xmin, ymin, bbox_w, bbox_h] object_struct['roof_mask'] = roof_mask object_struct['footprint_mask'] = footprint_mask object_struct['ignore_flag'] = annotation['ignore'] object_struct['offset'] = annotation['offset'] object_struct['segmentation'] = roof_mask object_struct['label'] = 1 object_struct['iscrowd'] = object_struct['ignore_flag'] objects.append(object_struct) return objects def parse_args(): parser = argparse.ArgumentParser(description='MMDet test detector') parser.add_argument( '--imagesets', type=str, nargs='+', choices=['trainval', 'test']) parser.add_argument( '--release_version', default='v1', type=str) args = parser.parse_args() return args if __name__ == "__main__": args = parse_args() # basic dataset information info = {"year" : 2019, "version" : "1.0", "description" : "SIMPLETXT-Building-COCO", "contributor" : "Jinwang Wang", "url" : "jwwangchn.cn", "date_created" : "2019" } licenses = [{"id": 1, "name": "Attribution-NonCommercial", "url": "http://creativecommons.org/licenses/by-nc-sa/2.0/" }] original_simpletxt_class = {'building': 1} converted_simpletxt_class = [{'supercategory': 'none', 'id': 1, 'name': 'building', }] # dataset's information image_format='.png' anno_format='.txt' core_dataset_name = 'buildchange' cities = ['sampling'] # sub_city_folds = {'shanghai': ['arg']} # cities = ['shanghai', 'beijing', 'jinan', 'haerbin', 'chengdu'] release_version = 'v2' groundtruth = True for idx, city in enumerate(cities): anno_name = [core_dataset_name, release_version, 'trainval', city, 'roof_footprint'] print("Begin processing: {}".format("_".join(anno_name))) imgpath = f'./data/{core_dataset_name}/{release_version}/{city}/images' annopath = f'./data/{core_dataset_name}/{release_version}/{city}/labels_json' save_path = f'./data/{core_dataset_name}/{release_version}/coco/annotations' if not os.path.exists(save_path): os.makedirs(save_path) simpletxt2coco = SIMPLETXT2COCO(imgpath=imgpath, annopath=annopath, image_format=image_format, anno_format=anno_format, data_categories=converted_simpletxt_class, data_info=info, data_licenses=licenses, data_type="instances", groundtruth=groundtruth, small_object_area=0, cities=cities) images, annotations = simpletxt2coco.get_image_annotation_pairs() json_data = {"info" : simpletxt2coco.info, "images" : images, "licenses" : simpletxt2coco.licenses, "type" : simpletxt2coco.type, "annotations" : annotations, "categories" : simpletxt2coco.categories} with open(os.path.join(save_path, "_".join(anno_name) + ".json"), "w") as jsonfile: json.dump(json_data, jsonfile, sort_keys=True, indent=4)
c599481b7904761d4e4518acc651183692d4f2d5
2fd087fbc5faf43940153693823969df6c8ec665
/pyc_decrypted/latest/xml/etree/cElementTree.py
cf14d28fc01a58d8e8845641181b34f25ec71840
[]
no_license
mickeystone/DropBoxLibrarySRC
ed132bbffda7f47df172056845e5f8f6c07fb5de
2e4a151caa88b48653f31a22cb207fff851b75f8
refs/heads/master
2021-05-27T05:02:30.255399
2013-08-27T13:16:55
2013-08-27T13:16:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
74
py
#Embedded file name: xml/etree/cElementTree.py from _elementtree import *
3ed16fe01640223215e8ecb9dd68102306c1c59b
592498a0e22897dcc460c165b4c330b94808b714
/1000번/1406_에디터.py
a89e92eec4a01dc869414b5d997fc614f0d9d6f9
[]
no_license
atom015/py_boj
abb3850469b39d0004f996e04aa7aa449b71b1d6
42b737c7c9d7ec59d8abedf2918e4ab4c86cb01d
refs/heads/master
2022-12-18T08:14:51.277802
2020-09-24T15:44:52
2020-09-24T15:44:52
179,933,927
0
0
null
null
null
null
UTF-8
Python
false
false
469
py
from collections import deque import sys ip = sys.stdin.readline lst = deque(list(ip().strip())) rst = deque([]) for i in range(int(ip())): cmd = ip().strip() if cmd[0] == 'L': if len(lst): rst.appendleft(lst.pop()) elif cmd[0] == 'D': if len(rst): lst.append(rst.popleft()) elif cmd[0] == 'B': if len(lst): lst.pop() else: lst.append(cmd[2]) for i in lst+rst: print(i,end='')
e1b448acf3b730cb600a2828622a2b86bc3e47d9
c9f4de7bf63df23325b477d3375a1bfb99865059
/main_a3.py
2a0057fd589f5aa522859a2167872c1f9d5d7b8e
[]
no_license
EliHill/TextAnalysis
440a15dca3f467ab5d79a234582a9ca3b4c7ab10
44b05bd1995290bbbd7972a1f8953aa5e75be37e
refs/heads/master
2020-09-30T16:24:18.911419
2019-12-06T19:52:17
2019-12-06T19:52:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,750
py
"""main_a3.py """ import re import os import math import nltk from nltk.corpus import brown from nltk.corpus import wordnet as wn from nltk.corpus import PlaintextCorpusReader from fsa import FSA # NLTK stoplist with 3136 words (multilingual) STOPLIST = set(nltk.corpus.stopwords.words()) # Vocabulary with 234,377 English words from NLTK ENGLISH_VOCABULARY = set(w.lower() for w in nltk.corpus.words.words()) # The five categories from Brown that we are using BROWN_CATEGORIES = ('adventure', 'fiction', 'government', 'humor', 'news') # Global place to store Brown vocabularies so you calculate them only once BROWN_VOCABULARIES = None def is_content_word(word): """A content word is not on the stoplist and its first character is a letter.""" return word.lower() not in STOPLIST and word[0].isalpha() class Text(object): def __init__(self, path, name=None): """Takes a file path, which is assumed to point to a file or a directory, extracts and stores the raw text and also stores an instance of nltk.text.Text.""" self.name = name if os.path.isfile(path): self.raw = open(path).read() elif os.path.isdir(path): corpus = PlaintextCorpusReader(path, '.*.mrg') self.raw = corpus.raw() self.text = nltk.text.Text( nltk.word_tokenize(self.raw)) def __len__(self): return len(self.text) def __getitem__(self, i): return self.text[i] def __str__(self): name = '' if self.name is None else " '%s'" % self.name return "<Text%s tokens=%s>" % (name, len(self)) def token_count(self): """Just return the length of the text.""" return len(self) def type_count(self): """Returns the type count, with minimal normalization by lower casing.""" # an alternative would be to use the method nltk.text.Text.vocab() return len(set([w.lower() for w in self.text])) def sentence_count(self): """Return number of sentences, using the simplistic measure of counting period, exclamation marks and question marks.""" # could also use nltk.sent.tokenize on self.raw return len([t for t in self.text if t in '.!?']) def most_frequent_content_words(self): """Return a list with the 25 most frequent content words and their frequencies. The list has (word, frequency) pairs and is ordered on the frequency.""" dist = nltk.FreqDist([w for w in self.text if is_content_word(w.lower())]) return dist.most_common(n=25) def most_frequent_bigrams(self, n=25): """Return a list with the 25 most frequent bigrams that only contain content words. The list returned should have pairs where the first element in the pair is the bigram and the second the frequency, as in ((word1, word2), frequency), these should be ordered on frequency.""" filtered_bigrams = [b for b in list(nltk.bigrams(self.text)) if is_content_word(b[0]) and is_content_word(b[1])] dist = nltk.FreqDist([b for b in filtered_bigrams]) return dist.most_common(n=n) def concordance(self, word): self.text.concordance(word) ## new methods for search part of assignment 3 def search(self, pattern): return re.finditer(pattern, self.raw) def find_sirs(self): answer = set() for match in self.search(r"\bSir \S+\b"): answer.add(match.group()) return sorted(answer) def find_brackets(self): answer = set() # use a non-greedy match on the characters between the brackets for match in self.search(r"([\(\[\{]).+?([\)\]\}])"): brackets = "%s%s" % (match.group(1), match.group(2)) # this tests for matching pairs if brackets in ['[]', '{}', '()']: answer.add(match.group()) return sorted(answer) def find_roles(self): answer = set() for match in re.finditer(r"^([A-Z]{2,}[^\:]+): ", self.raw, re.MULTILINE): answer.add(match.group(1)) return sorted(answer) def find_repeated_words(self): answer = set() for match in self.search(r"(\w{3,}) \1 \1"): answer.add(match.group()) return sorted(answer) def apply_fsa(self, fsa): i = 0 results = [] while i < len(self): match = fsa.consume(self.text[i:]) if match: results.append((i, match)) i += len(match) else: i += 1 return results class Vocabulary(): """Class to store all information on a vocabulary, where a vocabulary is created from a text. The vocabulary includes the text, a frequency distribution over that text, the vocabulary items themselves (as a set) and the sizes of the vocabulary and the text. We do not store POS and gloss, for those we rely on WordNet. The vocabulary is contrained to those words that occur in a standard word list. Vocabulary items are not normalized, except for being in lower case.""" def __init__(self, text): self.text = text.text # keeping the unfiltered list around for statistics self.all_items = set([w.lower() for w in text]) self.items = self.all_items.intersection(ENGLISH_VOCABULARY) # restricting the frequency dictionary to vocabulary items self.fdist = nltk.FreqDist(t.lower() for t in text if t.lower() in self.items) self.text_size = len(self.text) self.vocab_size = len(self.items) def __str__(self): return "<Vocabulary size=%d text_size=%d>" % (self.vocab_size, self.text_size) def __len__(self): return self.vocab_size def frequency(self, word): return self.fdist[word] def pos(self, word): # do not volunteer the pos for words not in the vocabulary if word not in self.items: return None synsets = wn.synsets(word) # somewhat arbitrary choice to make unknown words nouns, returning None # or 'UNKNOWN' would have been fine too. return synsets[0].pos() if synsets else 'n' def gloss(self, word): # do not volunteer the gloss (definition) for words not in the vocabulary if word not in self.items: return None synsets = wn.synsets(word) # make a difference between None for words not in vocabulary and words # in the vocabulary that do not have a gloss in WordNet return synsets[0].definition() if synsets else 'NO DEFINITION' def kwic(self, word): self.text.concordance(word)
e0cca15b4698cfcef55c59c32ad1ec019b327f0b
b576ed1ff65700d505f687961cbed86fe94b1c3f
/objectModel/Python/cdm/utilities/copy_data_utils.py
52fd4d1ee5390f942bbde1ef66b2b5cca9e4104f
[ "MIT", "CC-BY-4.0" ]
permissive
AzureMentor/CDM
c80761737c92cf6561d4b982b4882b1b1c5265d3
84d3928995e7ab3bba0a283771e5e26639408643
refs/heads/master
2021-11-30T17:52:42.274900
2021-11-27T18:38:19
2021-11-27T18:38:19
217,569,642
1
0
NOASSERTION
2021-11-27T18:38:20
2019-10-25T16:04:16
Java
UTF-8
Python
false
false
870
py
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information from typing import Union, List, Optional, TYPE_CHECKING if TYPE_CHECKING: from cdm.objectmodel import CdmCollection, CdmObject from cdm.utilities import ResolveOptions, CopyOptions def _array_copy_data(res_opt: 'ResolveOptions', source: Union['CdmCollection', List['CdmObject']], options: 'CopyOptions') -> Optional[List]: """Creates a list object that is a copy of the input IEnumerable object""" if not source: return None casted = [] for elem in source: if elem: from cdm.persistence import PersistenceLayer data = PersistenceLayer.to_data(elem, res_opt, options, PersistenceLayer.CDM_FOLDER) casted.append(data) return casted
eccf91200ca22006ec27e2a110af49ed35f9e3e8
556db265723b0cc30ad2917442ed6dad92fd9044
/tensorflow/python/kernel_tests/linalg/linear_operator_zeros_test.py
8ca4e0f796ff15070fe471e1bafd0e2de2eef998
[ "MIT", "Apache-2.0", "BSD-2-Clause" ]
permissive
graphcore/tensorflow
c1669b489be0e045b3ec856b311b3139858de196
085b20a4b6287eff8c0b792425d52422ab8cbab3
refs/heads/r2.6/sdk-release-3.2
2023-07-06T06:23:53.857743
2023-03-14T13:04:04
2023-03-14T13:48:43
162,717,602
84
17
Apache-2.0
2023-03-25T01:13:37
2018-12-21T13:30:38
C++
UTF-8
Python
false
false
8,721
py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.framework import dtypes from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import variables as variables_module from tensorflow.python.ops.linalg import linalg as linalg_lib from tensorflow.python.ops.linalg import linear_operator_test_util from tensorflow.python.platform import test rng = np.random.RandomState(2016) @test_util.run_all_in_graph_and_eager_modes class LinearOperatorZerosTest( linear_operator_test_util.SquareLinearOperatorDerivedClassTest): """Most tests done in the base class LinearOperatorDerivedClassTest.""" @staticmethod def skip_these_tests(): return [ "cholesky", "cond", "inverse", "log_abs_det", "solve", "solve_with_broadcast" ] @staticmethod def operator_shapes_infos(): shapes_info = linear_operator_test_util.OperatorShapesInfo return [ shapes_info((1, 1)), shapes_info((1, 3, 3)), shapes_info((3, 4, 4)), shapes_info((2, 1, 4, 4))] def operator_and_matrix( self, build_info, dtype, use_placeholder, ensure_self_adjoint_and_pd=False): del ensure_self_adjoint_and_pd del use_placeholder shape = list(build_info.shape) assert shape[-1] == shape[-2] batch_shape = shape[:-2] num_rows = shape[-1] operator = linalg_lib.LinearOperatorZeros( num_rows, batch_shape=batch_shape, dtype=dtype) matrix = array_ops.zeros(shape=shape, dtype=dtype) return operator, matrix def test_assert_positive_definite(self): operator = linalg_lib.LinearOperatorZeros(num_rows=2) with self.assertRaisesOpError("non-positive definite"): operator.assert_positive_definite() def test_assert_non_singular(self): with self.assertRaisesOpError("non-invertible"): operator = linalg_lib.LinearOperatorZeros(num_rows=2) operator.assert_non_singular() def test_assert_self_adjoint(self): with self.cached_session(): operator = linalg_lib.LinearOperatorZeros(num_rows=2) self.evaluate(operator.assert_self_adjoint()) # Should not fail def test_non_scalar_num_rows_raises_static(self): with self.assertRaisesRegex(ValueError, "must be a 0-D Tensor"): linalg_lib.LinearOperatorZeros(num_rows=[2]) with self.assertRaisesRegex(ValueError, "must be a 0-D Tensor"): linalg_lib.LinearOperatorZeros(num_rows=2, num_columns=[2]) def test_non_integer_num_rows_raises_static(self): with self.assertRaisesRegex(TypeError, "must be integer"): linalg_lib.LinearOperatorZeros(num_rows=2.) with self.assertRaisesRegex(TypeError, "must be integer"): linalg_lib.LinearOperatorZeros(num_rows=2, num_columns=2.) def test_negative_num_rows_raises_static(self): with self.assertRaisesRegex(ValueError, "must be non-negative"): linalg_lib.LinearOperatorZeros(num_rows=-2) with self.assertRaisesRegex(ValueError, "must be non-negative"): linalg_lib.LinearOperatorZeros(num_rows=2, num_columns=-2) def test_non_1d_batch_shape_raises_static(self): with self.assertRaisesRegex(ValueError, "must be a 1-D"): linalg_lib.LinearOperatorZeros(num_rows=2, batch_shape=2) def test_non_integer_batch_shape_raises_static(self): with self.assertRaisesRegex(TypeError, "must be integer"): linalg_lib.LinearOperatorZeros(num_rows=2, batch_shape=[2.]) def test_negative_batch_shape_raises_static(self): with self.assertRaisesRegex(ValueError, "must be non-negative"): linalg_lib.LinearOperatorZeros(num_rows=2, batch_shape=[-2]) def test_non_scalar_num_rows_raises_dynamic(self): with self.cached_session(): num_rows = array_ops.placeholder_with_default([2], shape=None) with self.assertRaisesError("must be a 0-D Tensor"): operator = linalg_lib.LinearOperatorZeros( num_rows, assert_proper_shapes=True) self.evaluate(operator.to_dense()) def test_negative_num_rows_raises_dynamic(self): with self.cached_session(): n = array_ops.placeholder_with_default(-2, shape=None) with self.assertRaisesError("must be non-negative"): operator = linalg_lib.LinearOperatorZeros( num_rows=n, assert_proper_shapes=True) self.evaluate(operator.to_dense()) def test_non_1d_batch_shape_raises_dynamic(self): with self.cached_session(): batch_shape = array_ops.placeholder_with_default(2, shape=None) with self.assertRaisesError("must be a 1-D"): operator = linalg_lib.LinearOperatorZeros( num_rows=2, batch_shape=batch_shape, assert_proper_shapes=True) self.evaluate(operator.to_dense()) def test_negative_batch_shape_raises_dynamic(self): with self.cached_session(): batch_shape = array_ops.placeholder_with_default([-2], shape=None) with self.assertRaisesError("must be non-negative"): operator = linalg_lib.LinearOperatorZeros( num_rows=2, batch_shape=batch_shape, assert_proper_shapes=True) self.evaluate(operator.to_dense()) def test_wrong_matrix_dimensions_raises_static(self): operator = linalg_lib.LinearOperatorZeros(num_rows=2) x = rng.randn(3, 3).astype(np.float32) with self.assertRaisesRegex(ValueError, "Dimensions.*not compatible"): operator.matmul(x) def test_wrong_matrix_dimensions_raises_dynamic(self): num_rows = array_ops.placeholder_with_default(2, shape=None) x = array_ops.placeholder_with_default(rng.rand(3, 3), shape=None) with self.cached_session(): with self.assertRaisesError("Dimensions.*not.compatible"): operator = linalg_lib.LinearOperatorZeros( num_rows, assert_proper_shapes=True, dtype=dtypes.float64) self.evaluate(operator.matmul(x)) def test_is_x_flags(self): # The is_x flags are by default all True. operator = linalg_lib.LinearOperatorZeros(num_rows=2) self.assertFalse(operator.is_positive_definite) self.assertFalse(operator.is_non_singular) self.assertTrue(operator.is_self_adjoint) def test_zeros_matmul(self): operator1 = linalg_lib.LinearOperatorIdentity(num_rows=2) operator2 = linalg_lib.LinearOperatorZeros(num_rows=2) self.assertTrue(isinstance( operator1.matmul(operator2), linalg_lib.LinearOperatorZeros)) self.assertTrue(isinstance( operator2.matmul(operator1), linalg_lib.LinearOperatorZeros)) def test_ref_type_shape_args_raises(self): with self.assertRaisesRegex(TypeError, "num_rows.cannot.be.reference"): linalg_lib.LinearOperatorZeros(num_rows=variables_module.Variable(2)) with self.assertRaisesRegex(TypeError, "num_columns.cannot.be.reference"): linalg_lib.LinearOperatorZeros( num_rows=2, num_columns=variables_module.Variable(3)) with self.assertRaisesRegex(TypeError, "batch_shape.cannot.be.reference"): linalg_lib.LinearOperatorZeros( num_rows=2, batch_shape=variables_module.Variable([2])) @test_util.run_all_in_graph_and_eager_modes class LinearOperatorZerosNotSquareTest( linear_operator_test_util.NonSquareLinearOperatorDerivedClassTest): def operator_and_matrix( self, build_info, dtype, use_placeholder, ensure_self_adjoint_and_pd=False): del use_placeholder del ensure_self_adjoint_and_pd shape = list(build_info.shape) batch_shape = shape[:-2] num_rows = shape[-2] num_columns = shape[-1] operator = linalg_lib.LinearOperatorZeros( num_rows, num_columns, is_square=False, is_self_adjoint=False, batch_shape=batch_shape, dtype=dtype) matrix = array_ops.zeros(shape=shape, dtype=dtype) return operator, matrix if __name__ == "__main__": linear_operator_test_util.add_tests(LinearOperatorZerosTest) linear_operator_test_util.add_tests(LinearOperatorZerosNotSquareTest) test.main()
7ff960b1f5fe2ab8db39e70e382084c495881cb8
1b12e6096c47312b67fa6ff223216945d2efb70c
/sandbox/vtk/selection/myinteractor.py
139202e49f1fe0d1418bde34dcae5a42beb929c2
[ "Apache-2.0" ]
permissive
rboman/progs
6e3535bc40f78d692f1f63b1a43193deb60d8d24
03eea35771e37d4b3111502c002e74014ec65dc3
refs/heads/master
2023-09-02T17:12:18.272518
2023-08-31T15:40:04
2023-08-31T15:40:04
32,989,349
5
2
Apache-2.0
2022-06-22T10:58:38
2015-03-27T14:04:01
MATLAB
UTF-8
Python
false
false
4,329
py
# -*- coding: utf-8 -*- import vtk colors = vtk.vtkNamedColors() class MyInteractorStyle(vtk.vtkInteractorStyleTrackballCamera): def __init__(self, parent=None): """register to event listening """ self.AddObserver("LeftButtonPressEvent", self.leftButtonPressEvent) self.selection = None self.selected_mapper = vtk.vtkDataSetMapper() self.selected_actor = vtk.vtkActor() self.dataset = None def select_one(self): # get the mouse click position clickPos = self.GetInteractor().GetEventPosition() # crete a picker and pick at that position picker = vtk.vtkCellPicker() picker.Pick(clickPos[0], clickPos[1], 0, self.GetDefaultRenderer()) print("pick") print(f"\tcell id = {picker.GetCellId()}") print(f"\t3D pick position = {picker.GetPickPosition()}") print(f"\t2D mouse position = {picker.GetSelectionPoint()[:2]}") # the picking could be empty # in that case, we leave the routine if picker.GetDataSet(): print(f"\tdataset = {picker.GetDataSet().GetClassName()}") else: print(f"\tdataset = None") return # no cell has been picked => quit if picker.GetCellId()==-1: return # cell type - we can pick triangles, but also tetras cell_type = picker.GetDataSet().GetCellType( picker.GetCellId() ) print(f"\tcell type = { vtk.vtkCellTypes.GetClassNameFromTypeId( cell_type )}") if(cell_type != vtk.VTK_TRIANGLE ): print("\tWRONG CELL TYPE") return # we can pick the wrong ugrid (the red one) # we store the right one at the first successful picking if self.dataset == None: self.dataset = picker.GetDataSet() if picker.GetDataSet() != self.dataset: print(f"\tPICKED WRONG DATASET!") return # -- cree un "vtkSelectionNode" (données de selection + type de selection) ids = vtk.vtkIdTypeArray() ids.SetNumberOfComponents(1) ids.InsertNextValue(picker.GetCellId()) selectionNode = vtk.vtkSelectionNode() selectionNode.SetFieldType(vtk.vtkSelectionNode.CELL) # CELL,POINT,FIELD,VERTEX,EDGE,ROW selectionNode.SetContentType(vtk.vtkSelectionNode.INDICES) # SELECTIONS,GLOBALIDS,PEDIGREEIDS,VALUES,INDICES,FRUSTUM, # LOCATIONS,THRESHOLDS,BLOCKS,QUERY selectionNode.SetSelectionList(ids) # -- cree une "vtkSelection" (la sélection en elle-même) # c'est un ensemble de "noeuds de selection" if not self.selection: self.selection = vtk.vtkSelection() self.selection.AddNode(selectionNode) else: self.selection.Union(selectionNode) print( f"\tThere are {self.selection.GetNumberOfNodes()} 'selection nodes'.") # -- DISPLAY: cree une "vtkExtractSelection" extractSelection = vtk.vtkExtractSelection() extractSelection.SetInputData(0, picker.GetDataSet()) # extractSelection.SetInputConnection(0, filt.GetOutputPort()) # cas d'un filtre extractSelection.SetInputData(1, self.selection) extractSelection.Update() # build a ugrid for display selected = vtk.vtkUnstructuredGrid() selected.ShallowCopy(extractSelection.GetOutput()) print( f"\tThere are {selected.GetNumberOfPoints()} points in the selection.") print( f"\tThere are {selected.GetNumberOfCells()} cells in the selection.") self.selected_mapper.SetInputData(selected) self.selected_actor.SetMapper(self.selected_mapper) self.selected_actor.GetProperty().EdgeVisibilityOn() self.selected_actor.GetProperty().SetColor( colors.GetColor3d('red') ) self.selected_actor.GetProperty().SetLineWidth(3) self.GetDefaultRenderer().AddActor(self.selected_actor) # global - n'est pas ajouté si il l'a deja été print(f'nb of actors = {self.GetDefaultRenderer().GetActors().GetNumberOfItems()}') def leftButtonPressEvent(self, obj, event): """custom event """ self.select_one() self.OnLeftButtonDown() # calls vtk.vtkInteractorStyleTrackballCamera
9bbe6d6fdb9a744918ebab1c2d430323a7d02271
7c94bd20b7ee069dfb557f41279416aba7d8447a
/exchangelib/folders/roots.py
7b4ec7acd98342333d43a75de5373ee33c2603cf
[ "BSD-2-Clause" ]
permissive
AnkushGupta02/exchangelib
63a42d70fe8254ca2edb6075ac05822a8ccaae01
5430e603a1b42248c6a154ae24270b63e94cc49d
refs/heads/master
2022-08-19T08:34:49.634728
2020-05-28T10:25:33
2020-05-28T10:25:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
14,465
py
import logging from ..errors import ErrorAccessDenied, ErrorFolderNotFound, ErrorNoPublicFolderReplicaAvailable, ErrorItemNotFound, \ ErrorInvalidOperation from ..fields import EffectiveRightsField from ..properties import Fields from ..version import EXCHANGE_2007_SP1, EXCHANGE_2010_SP1 from .collections import FolderCollection from .base import BaseFolder from .known_folders import MsgFolderRoot, NON_DELETEABLE_FOLDERS, WELLKNOWN_FOLDERS_IN_ROOT, \ WELLKNOWN_FOLDERS_IN_ARCHIVE_ROOT from .queryset import SingleFolderQuerySet, SHALLOW log = logging.getLogger(__name__) class RootOfHierarchy(BaseFolder): """Base class for folders that implement the root of a folder hierarchy""" # A list of wellknown, or "distinguished", folders that are belong in this folder hierarchy. See # https://docs.microsoft.com/en-us/dotnet/api/microsoft.exchange.webservices.data.wellknownfoldername # and https://docs.microsoft.com/en-us/exchange/client-developer/web-service-reference/distinguishedfolderid # 'RootOfHierarchy' subclasses must not be in this list. WELLKNOWN_FOLDERS = [] LOCAL_FIELDS = Fields( # This folder type also has 'folder:PermissionSet' on some server versions, but requesting it sometimes causes # 'ErrorAccessDenied', as reported by some users. Ignore it entirely for root folders - it's usefulness is # deemed minimal at best. EffectiveRightsField('effective_rights', field_uri='folder:EffectiveRights', is_read_only=True, supported_from=EXCHANGE_2007_SP1), ) FIELDS = BaseFolder.FIELDS + LOCAL_FIELDS __slots__ = tuple(f.name for f in LOCAL_FIELDS) + ('_account', '_subfolders') # A special folder that acts as the top of a folder hierarchy. Finds and caches subfolders at arbitrary depth. def __init__(self, **kwargs): self._account = kwargs.pop('account', None) # A pointer back to the account holding the folder hierarchy super().__init__(**kwargs) self._subfolders = None # See self._folders_map() @property def account(self): return self._account @property def root(self): return self @property def parent(self): return None def refresh(self): self._subfolders = None super().refresh() @classmethod def register(cls, *args, **kwargs): if cls is not RootOfHierarchy: raise TypeError('For folder roots, custom fields must be registered on the RootOfHierarchy class') return super().register(*args, **kwargs) @classmethod def deregister(cls, *args, **kwargs): if cls is not RootOfHierarchy: raise TypeError('For folder roots, custom fields must be registered on the RootOfHierarchy class') return super().deregister(*args, **kwargs) def get_folder(self, folder_id): return self._folders_map.get(folder_id, None) def add_folder(self, folder): if not folder.id: raise ValueError("'folder' must have an ID") self._folders_map[folder.id] = folder def update_folder(self, folder): if not folder.id: raise ValueError("'folder' must have an ID") self._folders_map[folder.id] = folder def remove_folder(self, folder): if not folder.id: raise ValueError("'folder' must have an ID") try: del self._folders_map[folder.id] except KeyError: pass def clear_cache(self): self._subfolders = None def get_children(self, folder): for f in self._folders_map.values(): if not f.parent: continue if f.parent.id == folder.id: yield f @classmethod def get_distinguished(cls, account): """Gets the distinguished folder for this folder class""" if not cls.DISTINGUISHED_FOLDER_ID: raise ValueError('Class %s must have a DISTINGUISHED_FOLDER_ID value' % cls) try: return cls.resolve( account=account, folder=cls(account=account, name=cls.DISTINGUISHED_FOLDER_ID, is_distinguished=True) ) except ErrorFolderNotFound: raise ErrorFolderNotFound('Could not find distinguished folder %s' % cls.DISTINGUISHED_FOLDER_ID) def get_default_folder(self, folder_cls): # Returns the distinguished folder instance of type folder_cls belonging to this account. If no distinguished # folder was found, try as best we can to return the default folder of type 'folder_cls' if not folder_cls.DISTINGUISHED_FOLDER_ID: raise ValueError("'folder_cls' %s must have a DISTINGUISHED_FOLDER_ID value" % folder_cls) # Use cached distinguished folder instance, but only if cache has already been prepped. This is an optimization # for accessing e.g. 'account.contacts' without fetching all folders of the account. if self._subfolders: for f in self._folders_map.values(): # Require exact class, to not match subclasses, e.g. RecipientCache instead of Contacts if f.__class__ == folder_cls and f.is_distinguished: log.debug('Found cached distinguished %s folder', folder_cls) return f try: log.debug('Requesting distinguished %s folder explicitly', folder_cls) return folder_cls.get_distinguished(root=self) except ErrorAccessDenied: # Maybe we just don't have GetFolder access? Try FindItems instead log.debug('Testing default %s folder with FindItem', folder_cls) fld = folder_cls(root=self, name=folder_cls.DISTINGUISHED_FOLDER_ID, is_distinguished=True) fld.test_access() return self._folders_map.get(fld.id, fld) # Use cached instance if available except ErrorFolderNotFound: # The Exchange server does not return a distinguished folder of this type pass raise ErrorFolderNotFound('No useable default %s folders' % folder_cls) @property def _folders_map(self): if self._subfolders is not None: return self._subfolders # Map root, and all subfolders of root, at arbitrary depth by folder ID. First get distinguished folders, so we # are sure to apply the correct Folder class, then fetch all subfolders of this root. folders_map = {self.id: self} distinguished_folders = [ cls(root=self, name=cls.DISTINGUISHED_FOLDER_ID, is_distinguished=True) for cls in self.WELLKNOWN_FOLDERS if cls.get_folder_allowed and cls.supports_version(self.account.version) ] for f in FolderCollection(account=self.account, folders=distinguished_folders).resolve(): if isinstance(f, (ErrorFolderNotFound, ErrorNoPublicFolderReplicaAvailable)): # This is just a distinguished folder the server does not have continue if isinstance(f, ErrorInvalidOperation): # This is probably a distinguished folder the server does not have. We previously tested the exact # error message (f.value), but some Exchange servers return localized error messages, so that's not # possible to do reliably. continue if isinstance(f, ErrorItemNotFound): # Another way of telling us that this is a distinguished folder the server does not have continue if isinstance(f, ErrorAccessDenied): # We may not have GetFolder access, either to this folder or at all continue if isinstance(f, Exception): raise f folders_map[f.id] = f for f in SingleFolderQuerySet(account=self.account, folder=self).depth( self.DEFAULT_FOLDER_TRAVERSAL_DEPTH ).all(): if isinstance(f, ErrorAccessDenied): # We may not have FindFolder access, or GetFolder access, either to this folder or at all continue if isinstance(f, Exception): raise f if f.id in folders_map: # Already exists. Probably a distinguished folder continue folders_map[f.id] = f self._subfolders = folders_map return folders_map @classmethod def from_xml(cls, elem, account): kwargs = cls._kwargs_from_elem(elem=elem, account=account) cls._clear(elem) return cls(account=account, **kwargs) @classmethod def folder_cls_from_folder_name(cls, folder_name, locale): """Returns the folder class that matches a localized folder name. locale is a string, e.g. 'da_DK' """ for folder_cls in cls.WELLKNOWN_FOLDERS + NON_DELETEABLE_FOLDERS: if folder_name.lower() in folder_cls.localized_names(locale): return folder_cls raise KeyError() def __repr__(self): # Let's not create an infinite loop when printing self.root return self.__class__.__name__ + \ repr((self.account, '[self]', self.name, self.total_count, self.unread_count, self.child_folder_count, self.folder_class, self.id, self.changekey)) class Root(RootOfHierarchy): """The root of the standard folder hierarchy""" DISTINGUISHED_FOLDER_ID = 'root' WELLKNOWN_FOLDERS = WELLKNOWN_FOLDERS_IN_ROOT __slots__ = tuple() @property def tois(self): # 'Top of Information Store' is a folder available in some Exchange accounts. It usually contains the # distinguished folders belonging to the account (inbox, calendar, trash etc.). return self.get_default_folder(MsgFolderRoot) def get_default_folder(self, folder_cls): try: return super().get_default_folder(folder_cls) except ErrorFolderNotFound: pass # Try to pick a suitable default folder. we do this by: # 1. Searching the full folder list for a folder with the distinguished folder name # 2. Searching TOIS for a direct child folder of the same type that is marked as distinguished # 3. Searching TOIS for a direct child folder of the same type that is has a localized name # 4. Searching root for a direct child folder of the same type that is marked as distinguished # 5. Searching root for a direct child folder of the same type that is has a localized name log.debug('Searching default %s folder in full folder list', folder_cls) for f in self._folders_map.values(): # Require exact class to not match e.g. RecipientCache instead of Contacts if f.__class__ == folder_cls and f.has_distinguished_name: log.debug('Found cached %s folder with default distinguished name', folder_cls) return f # Try direct children of TOIS first. TOIS might not exist. try: return self._get_candidate(folder_cls=folder_cls, folder_coll=self.tois.children) except ErrorFolderNotFound: # No candidates, or TOIS does ot exist pass # No candidates in TOIS. Try direct children of root. return self._get_candidate(folder_cls=folder_cls, folder_coll=self.children) def _get_candidate(self, folder_cls, folder_coll): # Get a single the folder of the same type in folder_coll same_type = [f for f in folder_coll if f.__class__ == folder_cls] are_distinguished = [f for f in same_type if f.is_distinguished] if are_distinguished: candidates = are_distinguished else: candidates = [f for f in same_type if f.name.lower() in folder_cls.localized_names(self.account.locale)] if candidates: if len(candidates) > 1: raise ValueError( 'Multiple possible default %s folders: %s' % (folder_cls, [f.name for f in candidates]) ) if candidates[0].is_distinguished: log.debug('Found cached distinguished %s folder', folder_cls) else: log.debug('Found cached %s folder with localized name', folder_cls) return candidates[0] raise ErrorFolderNotFound('No useable default %s folders' % folder_cls) class PublicFoldersRoot(RootOfHierarchy): """The root of the public folders hierarchy. Not available on all mailboxes""" DISTINGUISHED_FOLDER_ID = 'publicfoldersroot' DEFAULT_FOLDER_TRAVERSAL_DEPTH = SHALLOW supported_from = EXCHANGE_2007_SP1 __slots__ = tuple() def get_children(self, folder): # EWS does not allow deep traversal of public folders, so self._folders_map will only populate the top-level # subfolders. To traverse public folders at arbitrary depth, we need to get child folders on demand. # Let's check if this folder already has any cached children. If so, assume we can just return those. children = list(super().get_children(folder=folder)) if children: # Return a generator like our parent does for f in children: yield f return # Also return early if the server told us that there are no child folders. if folder.child_folder_count == 0: return children_map = {} try: for f in SingleFolderQuerySet(account=self.account, folder=folder).depth( self.DEFAULT_FOLDER_TRAVERSAL_DEPTH ).all(): if isinstance(f, Exception): raise f children_map[f.id] = f except ErrorAccessDenied: # No access to this folder pass # Let's update the cache atomically, to avoid partial reads of the cache. self._subfolders.update(children_map) # Child folders have been cached now. Try super().get_children() again. for f in super().get_children(folder=folder): yield f class ArchiveRoot(RootOfHierarchy): """The root of the archive folders hierarchy. Not available on all mailboxes""" DISTINGUISHED_FOLDER_ID = 'archiveroot' supported_from = EXCHANGE_2010_SP1 WELLKNOWN_FOLDERS = WELLKNOWN_FOLDERS_IN_ARCHIVE_ROOT __slots__ = tuple()
bf2df9013b94ee7ca80c35660b101bf47f905569
bd4f8320118c4fb25b95d29193c1adb2f5b55ec6
/contrib/userproperty_lint.py
7d99b16806929b36131ad944ccb545cac48d4c45
[ "Apache-2.0" ]
permissive
Khan/khan-linter
30229d57ec82466af54b539eb3a57770335e0d65
9222e8f8c9aa6dead5c434d1eb7bb326207ed989
refs/heads/master
2023-07-21T05:06:19.757797
2022-07-11T16:54:42
2022-07-11T16:54:42
4,628,579
26
8
Apache-2.0
2023-09-06T21:29:52
2012-06-11T18:29:03
Python
UTF-8
Python
false
false
1,639
py
"""Linter that warns about using the dangerous UserProperty. UserProperty's user_id value can change depending on whether or not Google currently has a Google account registered w/ an email address that matches UserProperty's email property. That means when a user changes email settings in their Google account it can change the behavior of our queries. We don't want that. """ from __future__ import absolute_import import re from shared.testutil import lintutil # This captures any use of UserProperty on a db or ndb model. It will not # capture subclasses of UserProperty, but we don't expect any of those to be # around. _USERPROPERTY_RE = re.compile(r'\bn?db\.UserProperty\(', re.DOTALL) def lint_no_user_property(files_to_lint): """Enforce that nobody uses UserProperty. ...unless marked as an explicitly approved legacy usage via @Nolint. """ files_to_lint = lintutil.filter(files_to_lint, suffix='.py') for filename in files_to_lint: contents = lintutil.file_contents(filename) for fn_match in _USERPROPERTY_RE.finditer(contents): # Make sure there's no @Nolint anywhere around this function. newline = contents.find('\n', fn_match.end()) newline = newline if newline > -1 else len(contents) if '@Nolint' in contents[fn_match.start():newline]: continue linenum = 1 + contents.count('\n', 0, fn_match.start()) yield (filename, linenum, # filename and linenum "Do not use UserProperty, it is not safe. Use UserData's " "key as its foreign key, instead.")
95b5c45037161cace8ce3128cfd2bf49dc2bb7b6
fc6eefb980b53baae393980c46ac40d256687014
/Udacity-Intro-To-Computer-Science/Lesson 1/Lesson 1 - Quizzes/Final Quiz.py
8aa9f447ce3f3fde860303b34c61711a69cb1cb7
[]
no_license
Brian-Mascitello/UCB-Third-Party-Classes
7bc151d348f753f93850f5e286c263639f782b05
e2d26e3d207d364462024759ad2342a8e172f657
refs/heads/master
2021-01-02T09:10:01.146169
2018-10-08T00:19:58
2018-10-08T00:19:58
99,150,324
0
0
null
2018-02-01T06:33:25
2017-08-02T18:47:29
Python
UTF-8
Python
false
false
780
py
# Write Python code that assigns to the # variable url a string that is the value # of the first URL that appears in a link # tag in the string page. # Your code should print http://udacity.com # Make sure that if page were changed to # page = '<a href="http://udacity.com">Hello world</a>' # that your code still assigns the same value to the variable 'url', # and therefore still prints the same thing. # page = contents of a web page page =('<div id="top_bin"><div id="top_content" class="width960">' '<div class="udacity float-left"><a href="http://udacity.com">') start_link = page.find('<a href=') end_link = page.find('>', start_link) start_position = start_link + len('<a href=') + 1 end_position = end_link - 1 url = page[start_position:end_position] print(url)
2c6de1d98469164b77e496a0c33bfd4a67f22e17
1f5420fda4359bfc21b53de3a5f6e6a93b47b996
/ch02/ch02_menu.py
5abfa489c2386f900a6c3f914341bd20f4c6a22b
[]
no_license
fl0wjacky/wxPython
600f5bfccad3ef5589e11573b30cffd1e2708b83
50b3cd5a63750d36065684b73aab0da70ff650a7
refs/heads/master
2022-09-02T04:24:47.540157
2022-08-10T04:13:17
2022-08-10T04:13:17
13,976,582
1
0
null
null
null
null
UTF-8
Python
false
false
1,071
py
#! /usr/bin/env python import wx import wx.py.images as images class ToolbarFrame(wx.Frame): def __init__(self, parent, id): wx.Frame.__init__(self, parent, id, 'Toolbars', size=(300,200)) panel = wx.Panel(self) panel.SetBackgroundColour('White') statusBar = self.CreateStatusBar()#1 toolbar = self.CreateToolBar()#2 toolbar.AddSimpleTool(wx.NewId(),images.getPyBitmap(),"New","Long help for 'New'")#3 toolbar.Realize()#4 menuBar = wx.MenuBar() menu1 = wx.Menu() menuBar.Append(menu1,"&File") menu2 = wx.Menu() #6 menu2.Append(wx.NewId(),"&Copy","Copy in status bar") menu2.Append(wx.NewId(),"C&ut","") menu2.Append(wx.NewId(),"Paste","") menu2.AppendSeparator() menu2.Append(wx.NewId(),"&Options...","Display Options") menuBar.Append(menu2,"&Edit") self.SetMenuBar(menuBar) if __name__ == "__main__": app = wx.PySimpleApp() frame = ToolbarFrame(parent=None, id = -1) frame.Show() app.MainLoop()
9e28e0cd12e58048913b3c3764cd180e05af5636
9e41adf86b2c166a219f0b6d9371089c5f2d7d93
/Exerciciospython2/Função/e100.py
0b47e1bb8952e250e0f02facf33b98bfe7653f2f
[]
no_license
Nadirlene/Exercicios-python
1aaead61dd0efcb5303f6294e765e9e1d54506cc
3fe82e166003922ef749756a249840ed1fe940b0
refs/heads/main
2022-12-25T21:35:06.172839
2020-09-28T15:08:37
2020-09-28T15:08:37
299,343,047
0
0
null
null
null
null
UTF-8
Python
false
false
514
py
from random import randint from time import sleep númerosSorteados = [] def sorteio(lista): print(f'Sorteando {len(lista)} valores da lista:', end=' ') for c in range(0, 5): lista.append(randint(1, 10)) print(lista[c], end=' ') sleep(0.3) print('PRONTO!') def somaPar(lista): soma = 0 for c in lista: if c % 2 == 0: soma += c print(f'Somando os valores pares de {lista}, temos {soma}') sorteio(númerosSorteados) somaPar(númerosSorteados)
b21ef021ca3d6afdf535882ef61eb49b75bf895c
8b7db851e13737d5c44cc00d38a46a2817c7707b
/tests/train.py
788e79cd09e75082a8dc8cf4d75b3dd063b824b5
[ "MIT" ]
permissive
goelshivam1210/gym-novel-gridworlds
b6f24b38cfceb2b44461da9bb7607c56d27f4a9e
c8f419da02e4fd716b9e293fcf0b99ee2eb96367
refs/heads/master
2023-01-15T13:46:23.438199
2020-11-23T14:42:13
2020-11-23T14:42:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,349
py
import os import time import gym import gym_novel_gridworlds import numpy as np from stable_baselines.common.env_checker import check_env from stable_baselines import PPO2 from stable_baselines import DQN from stable_baselines.gail import ExpertDataset from stable_baselines.common.policies import MlpPolicy from stable_baselines.common.vec_env import DummyVecEnv from stable_baselines.common import make_vec_env from stable_baselines.bench import Monitor from stable_baselines.common.callbacks import BaseCallback from stable_baselines.results_plotter import load_results, ts2xy class RenderOnEachStep(BaseCallback): """ Callback for saving a model (the check is done every ``check_freq`` steps) based on the training reward (in practice, we recommend using ``EvalCallback``). """ def __init__(self, env): super(RenderOnEachStep, self).__init__() self.env = env def _on_step(self): self.env.render() # time.sleep(0.5) class SaveOnBestTrainingRewardCallback(BaseCallback): """ Callback for saving a model (the check is done every ``check_freq`` steps) based on the training reward (in practice, we recommend using ``EvalCallback``). """ def __init__(self, check_freq, log_dir, model_name): super(SaveOnBestTrainingRewardCallback, self).__init__() self.check_freq = check_freq self.log_dir = log_dir self.save_path = os.path.join(log_dir, model_name) self.best_mean_reward = -np.inf def _on_step(self): if self.n_calls % self.check_freq == 0: # Retrieve training reward x, y = ts2xy(load_results(self.log_dir), 'timesteps') if len(x) > 0: # Mean training reward over the last 100 episodes mean_reward = np.mean(y[-100:]) # New best model, you could save the agent here if mean_reward > self.best_mean_reward: self.best_mean_reward = mean_reward print("Saving new best model to {}".format(self.save_path)) self.model.save(self.save_path) class RemapActionOnEachStep(BaseCallback): """ Callback for saving a model (the check is done every ``check_freq`` steps) based on the training reward (in practice, we recommend using ``EvalCallback``). """ def __init__(self, env, step_num): super(RemapActionOnEachStep, self).__init__() self.env = env self.step_num = step_num def _on_step(self): if self.n_calls % self.step_num == 0: # self.env = remap_action(self.env) self.env.remap_action() if __name__ == "__main__": env_id = 'NovelGridworld-v3' timesteps = 200000 # 200000 experiment_dir = 'results2' # 'models', results experiment_code1 = env_id + '_' + str(timesteps) experiment_code2 = '_' + '8beams0filled40range3items_in_360degrees_lfd' # lfd model_code = experiment_code1 + experiment_code2 log_dir = experiment_dir + os.sep + env_id + experiment_code2 pretrain = True os.makedirs(log_dir, exist_ok=True) env = gym.make(env_id) env = Monitor(env, log_dir) # callback = RenderOnEachStep(env) callback = SaveOnBestTrainingRewardCallback(1000, log_dir, model_code + '_best_model') # callback = RemapActionOnEachStep(env, 50000) # multiprocess environment # env = make_vec_env('NovelGridworld-v0', n_envs=4) check_env(env, warn=True) # Optional: PPO2 requires a vectorized environment to run # the env is now wrapped automatically when passing it to the constructor # env = DummyVecEnv([lambda: env]) # model = PPO2(MlpPolicy, env, verbose=1) env = DummyVecEnv([lambda: env]) model = PPO2.load('NovelGridworld-v3_200000_8beams0filled40range3items_in_360degrees_lfd_OLD', env) # Pretrain the model from human recored dataset # specify `traj_limitation=-1` for using the whole dataset if pretrain: dataset = ExpertDataset(expert_path='expert_NovelGridworld-v3_50demos2.npz', traj_limitation=-1, batch_size=128) model.pretrain(dataset, n_epochs=2000) model.save(model_code) # model.learn(total_timesteps=timesteps) model.learn(total_timesteps=timesteps, callback=callback) model.save(model_code + '_last_model')
e0bd0c8393e10d70cd1d7736fc15a898d1f059dc
2e858717fbc3b74cc809dc5d60d337a844ae7fed
/codegolf/planets.py
a4f5b0a908013fcda517843121fbb9b541e6773d
[]
no_license
maxbergmark/misc-scripts
95a1b5416c34e65b7e8ef26f5c941f9ba0ae0986
a1b3b889f8f6d28a452969a62af637a6866b69d3
refs/heads/master
2020-03-28T10:32:38.362737
2019-09-20T12:23:14
2019-09-20T12:23:14
148,118,739
0
0
null
null
null
null
UTF-8
Python
false
false
3,108
py
def get_score(l, s): c = 0 for i, e in enumerate(l): c += int(e == s[i]) return c def check_modulo(l, n): mod = [i%n for i in l] s = list(set(mod)) if len(s) == len(l): return 1, get_score(sorted(s), s) return 0, 0 def check_modulo_sq(l, n): mod = [(i*i)%n for i in l] s = list(set(mod)) if len(s) == len(l): return 1, get_score(sorted(s), s) return 0, 0 def check_modulo_cu(l, n): mod = [(i*i*i)%n for i in l] s = list(set(mod)) if len(s) == len(l): return 1, get_score(sorted(s), s) return 0, 0 l0 = [7238995, 32199698004604234, 121437875888467, 126948200247893, 28550423391528270, 448630251845, 495891408214, 1936875853, 7306076016364904775, 474081421652, 34184320687170893, 8031170932136239427, 28489, 1852796749, 107135534003525, 121424973492820, 478695222352, 1936290373, 107088256000328, 27418995543271764] l1 = [358452458835, 5899229669892068223989509551434, 100801060862113215052800339, 103298841739860633878360661, 6211190611757106977975624033614, 1279847143846962159941, 1593728898723042190678, 21780717397762381, 370629223365341456449924529812037959, 1557125307789592521044, 6131964786814545525129908217165, 349859873446802695454943217443430723, 4812617, 21796097591570253, 83970509390754835569210693, 102090063924849785520616020, 1483554806647179537488, 19547570626458181, 87502894712962091220033864, 6687802272730805039891221866836] l2 = [5469550, 20958273942611314, 91678030787182, 93949749261683, 22066581848026725, 297987634280, 371068925299, 1298231923, 5143513717239276645, 362546487662, 21785115176039033, 4855281086163547247, 18799, 1299148654, 76370733396065, 92850372243310, 345417020527, 1165126003, 79583419131233, 23759846615443809] l3 = [474414806382, 9063409245936133368934076540274, 133522356591788631960941166, 139581022297794930405176691, 8036229759209788198835098840677, 1926852259672153551976, 2129837380648217507187, 32495384557351539, 526458259597464047712858951498687589, 2036164201638295527790, 9622030869291023328877655454329, 578706854677080430464104555890308207, 7293295, 31084771269373806, 117796765384867275302989921, 133508170257748661844078446, 2055980324755107837039, 32485561834039667, 117744782670614057051841889, 7717761131972000546125574465889] l4 = [7695955, 33060607136195914, 129142996492627, 129138701525333, 33060598512444750, 500135649605, 504447788374, 1936875853, 8750051408287654215, 500068606292, 34187606587958093, 8391173042187362627, 28489, 1869573709, 129134373069125, 128034844600660, 504464632912, 1936877893, 129112712765768, 32772496317047124] # lt = [l0, l1, l2, l3, l4] lt = [[53, 104]] c0 = 0 c1 = 0 c2 = 0 max_score = 0 for i in range(2, 10000000000): for l in lt: res = check_modulo(l, i) # res_sq = check_modulo_sq(l, i) # res_cu = check_modulo_cu(l, i) res_sq = 0, 0 res_cu = 0, 0 c0 += res[0] c1 += res_sq[0] c2 += res_cu[0] if i % 10000 == 0: print("\r%d (%d %d %d)" % (i, c0, c1, c2), end="") if res[1] > max_score or res_sq[1] > max_score or res_cu[1] > max_score: print("\n%d %s %s %s %d" % (i, res, res_sq, res_cu, len(l))) max_score = max(res[1], res_sq[1], res_cu[1])
b20eb31e621b6af9cf0b1d9291f57832e0b170b2
e00186e71a1f52b394315a0cbc27162254cfffb9
/durga/without_rest_models/testapp/models.py
6cac7e2e06e3e0b26b958a2b5e56c8110c3d2e6b
[]
no_license
anilkumar0470/git_practice
cf132eb7970c40d0d032520d43e6d4a1aca90742
588e7f654f158e974f9893e5018d3367a0d88eeb
refs/heads/master
2023-04-27T04:50:14.688534
2023-04-22T05:54:21
2023-04-22T05:54:21
100,364,712
0
1
null
2021-12-08T19:44:58
2017-08-15T10:02:33
Python
UTF-8
Python
false
false
240
py
from django.db import models # Create your models here class Employee(models.Model): eno = models.IntegerField() ename = models.CharField(max_length=64) esal = models.FloatField() eadd = models.CharField(max_length=64)
3a32e88f924763cebc773b157f5ade3bbf566316
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/9BJzrtpdMP8JFQg74_5.py
54241e25ddb6e70ccec2ec15821dcacf5ef26e29
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
652
py
""" Create a function that given a list, it returns the index where if split in two-subarrays (last element of the first array has index of (foundIndex-1)), the sum of them are equal. ### Examples twins([10, 20, 30, 5, 40, 50, 40, 15]) ➞ 5 # foundIndex 5 : [10+20+30+5+40]=[50+40+15] twins([1, 2, 3, 4, 5, 5]) ➞ 4 # [1, 2, 3, 4] [5, 5] twins([3, 3]) ➞ 1 ### Notes Return only the foundIndex, not the divided list. """ def twins(lst): for i in range(1, len(lst)): temp = [] temp.append(lst[:i]) temp.append(lst[i:]) if sum(temp[0]) == sum(temp[1]): return i
b9c2ab2a145c713904bc1750e4837b1d3b4cc7d7
bbfa3b7ee2008617d33a7c5c7770d22e1aa8836b
/Neural_Network/_base.py
4297021e909f92cc59ba0f6ba4d9070986e15fba
[ "MIT" ]
permissive
luoshao23/ML_algorithm
1a0046ce9c3abed029cceffa35defe57fffa82b2
6e94fdd0718cd892118fd036c7c5851cf3e6d796
refs/heads/master
2021-08-07T08:38:16.102455
2020-03-18T06:49:43
2020-03-18T06:49:43
92,467,636
4
1
MIT
2018-01-16T05:01:29
2017-05-26T03:20:08
Jupyter Notebook
UTF-8
Python
false
false
1,611
py
from scipy.special import expit as logistic_sigmoid import numpy as np def identity(X): return X def logistic(X): return logistic_sigmoid(X, out=X) def tanh(X): return np.tanh(X, out=X) def relu(X): return np.clip(X, 0, np.finfo(X.dtype).max, out=X) def softmax(X): tmp = X - X.max(axis=1)[:, np.newaxis] np.exp(tmp, out=X) X /= X.sum(axis=1)[:, np.newaxis] return X def deriv_identity(a, delta): """nothing""" def deriv_logistic(a, delta): delta *= a delta *= (1.0 - a) def deriv_tanh(a, delta): delta *= (1.0 - a**2) def deriv_relu(a, delta): delta[a <= 0] = 0 def squared_loss(y_true, y_pred): return ((y_true - y_pred) ** 2).mean() / 2 def log_loss(y_true, y_prob): y_prob = np.clip(y_prob, 1e-10, 1 - 1e-10) if y_prob.shape[1] == 1: y_prob = np.append(1 - y_prob, y_prob, axis=1) if y_true.shape[1] == 1: y_true = np.append(1 - y_true, y_true, axis=1) return -np.sum(y_true * np.log(y_prob)) / y_prob.shape[0] def binary_log_loss(y_true, y_prob): y_prob = np.clip(y_prob, 1e-10, 1 - 1e-10) return -np.sum(y_true * np.log(y_prob) + (1 - y_true) * np.log(1 - y_prob)) / y_prob.shape[0] ACTIVATIONS = {'identity': identity, 'logistic': logistic, 'tanh': tanh, 'relu': relu, 'softmax': softmax} DERIVATIVES = {'identity': deriv_identity, 'logistic': deriv_logistic, 'tanh': deriv_tanh, 'relu': deriv_relu} LOSS_FUNCTIONS = {'squared_loss': squared_loss, 'log_loss': log_loss, 'binary_log_loss': binary_log_loss}
1d11db0aa1ed010ab524edc4b7847c5ce929f009
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_089/ch78_2020_04_13_14_24_17_375788.py
f3ffd533ba171b545632219f377a3046205a82d8
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
429
py
jogo = True import math while jogo: a = input("Qual o nome?") if a == "sair": jogo = False else: b = float(input("Aceleracao?")) dic = {a:b} dic2 = {} soma = 0 for e in dic: if e not int dic2: dic2[e] = math.sqrt(200/dic[e]) if dic2[e] > soma: soma = dic2[e] r = ('O vencedor é {0} com tempo de conclusão de {1} s'.format(dic2[e],soma) return r
f2016ead70d10ced68bab597dac0c22bfd28423e
d7641647d67d110e08997767e85bbea081c2537b
/bitmovin_api_sdk/encoding/inputs/udp_multicast/udp_multicast_api.py
59839e170880781ece7571d5ff6cbc19d6ee3393
[ "MIT" ]
permissive
aachenmax/bitmovin-api-sdk-python
d3ded77c459852cbea4927ff28c2a4ad39e6026a
931bcd8c4695a7eb224a7f4aa5a189ba2430e639
refs/heads/master
2022-11-16T08:59:06.830567
2020-07-06T07:16:51
2020-07-06T07:16:51
267,538,689
0
1
MIT
2020-07-06T07:16:52
2020-05-28T08:44:44
Python
UTF-8
Python
false
false
3,377
py
# coding: utf-8 from __future__ import absolute_import from bitmovin_api_sdk.common import BaseApi, BitmovinApiLoggerBase from bitmovin_api_sdk.common.poscheck import poscheck_except from bitmovin_api_sdk.models.response_envelope import ResponseEnvelope from bitmovin_api_sdk.models.response_error import ResponseError from bitmovin_api_sdk.models.udp_multicast_input import UdpMulticastInput from bitmovin_api_sdk.encoding.inputs.udp_multicast.customdata.customdata_api import CustomdataApi from bitmovin_api_sdk.encoding.inputs.udp_multicast.udp_multicast_input_list_query_params import UdpMulticastInputListQueryParams class UdpMulticastApi(BaseApi): @poscheck_except(2) def __init__(self, api_key, tenant_org_id=None, base_url=None, logger=None): # type: (str, str, str, BitmovinApiLoggerBase) -> None super(UdpMulticastApi, self).__init__( api_key=api_key, tenant_org_id=tenant_org_id, base_url=base_url, logger=logger ) self.customdata = CustomdataApi( api_key=api_key, tenant_org_id=tenant_org_id, base_url=base_url, logger=logger ) def create(self, udp_multicast_input, **kwargs): # type: (UdpMulticastInput, dict) -> UdpMulticastInput """Create UDP multicast input :param udp_multicast_input: The UdpMulticastInput to be created :type udp_multicast_input: UdpMulticastInput, required :return: UDP multicast input :rtype: UdpMulticastInput """ return self.api_client.post( '/encoding/inputs/udp-multicast', udp_multicast_input, type=UdpMulticastInput, **kwargs ) def delete(self, input_id, **kwargs): # type: (string_types, dict) -> UdpMulticastInput """Delete UDP multicast input :param input_id: Id of the input :type input_id: string_types, required :return: Id of the input :rtype: UdpMulticastInput """ return self.api_client.delete( '/encoding/inputs/udp-multicast/{input_id}', path_params={'input_id': input_id}, type=UdpMulticastInput, **kwargs ) def get(self, input_id, **kwargs): # type: (string_types, dict) -> UdpMulticastInput """UDP multicast Input Details :param input_id: Id of the input :type input_id: string_types, required :return: UDP multicast input :rtype: UdpMulticastInput """ return self.api_client.get( '/encoding/inputs/udp-multicast/{input_id}', path_params={'input_id': input_id}, type=UdpMulticastInput, **kwargs ) def list(self, query_params=None, **kwargs): # type: (UdpMulticastInputListQueryParams, dict) -> UdpMulticastInput """List UDP multicast inputs :param query_params: Query parameters :type query_params: UdpMulticastInputListQueryParams :return: List of UDP multicast inputs :rtype: UdpMulticastInput """ return self.api_client.get( '/encoding/inputs/udp-multicast', query_params=query_params, pagination_response=True, type=UdpMulticastInput, **kwargs )
62e2055c06bdab8ebe9363f8cb6ba7382d3af888
4577d8169613b1620d70e3c2f50b6f36e6c46993
/students/1798177/homework04/program02.py
2afb7299a76787aa239a4beaaac8f0e9130c4d9e
[]
no_license
Fondamenti18/fondamenti-di-programmazione
cbaf31810a17b5bd2afaa430c4bf85d05b597bf0
031ec9761acb1a425fcc4a18b07884b45154516b
refs/heads/master
2020-03-24T03:25:58.222060
2018-08-01T17:52:06
2018-08-01T17:52:06
142,419,241
0
0
null
null
null
null
UTF-8
Python
false
false
11,331
py
# Il tris è un popolarissimo gioco. Si gioca su una griglia quadrata di 3x3 # caselle. A turno, i due giocatori scelgono una cella vuota e vi disegnano il # proprio simbolo (un giocatore ha come simbolo una 'o' e l'avversario una 'x'). # Vince il giocatore che riesce a disporre tre dei propri simboli in linea retta # orizzontale, verticale o diagonale. Se la griglia viene riempita senza che # nessuno dei giocatori sia riuscito a completare una linea retta di tre # simboli, il gioco finisce in parità. Nel caso in cui il gioco finisse in # parità, la partita è detta "patta". Per convenzione a griglia vuota la prima # mossa spetta sempre al giocatore 'o'. # # Una configurazione del gioco è dunque univocamente determinata dal contenuto # della griglia. # # Nel seguito assumiamo che il contenuto della griglia sia rappresentato tramite # lista di liste. La dimensione della lista di liste M è 3x3 ed M[i][j] contiene # '', 'x', o 'o' a seconda che la cella della griglia appartenente all'iesima # riga e j-ma colonna sia ancora libera, contenga il simbolo 'x' o contenga il # simbolo 'o'. # # Data una configurazione C del gioco, l'albero di gioco per C è l'albero che # si ottiene ricorsivamente partendo dalla configurazione C e assegnando come # figli le configurazioni che è possibile ottenere da C con una mossa ulteriore # del gioco. Ovviamente risulteranno foglie dell'albero i possibili esiti della # partita vale a dire le diverse configurazioni cui è possibile arrivare # partendo da C e che rappresentano patte, vittorie per 'o' o vittorie per 'x'. # Se veda ad esempio l'immagine albero_di_gioco.png che mostra l'albero di # gioco che si ottiene a partire dalla configurazione rappresentata da # [['x', 'o', 'o'], ['x', 'x', 'o'], ['', '', '']]. # # Si consideri la seguente Classe di oggetti: # # class NodoTris: # def __init__(self, griglia): # self.nome = griglia # self.lista_figli = [] # # Bisogna progettare le seguente funzione gen_tree(griglia) che, data la # configurazione di gioco griglia, costruisce l'albero di gioco che si ottiene a # partire dalla configurazione griglia e ne restituisce la radice. I nodi # dell'albero devono essere oggetti della classe NodoTris. # # Per testare la correttezza della vostra implementazione di gen_tree() il grade # utilizzerà quattro metodi della classe NodoTris che dovete comunque # implementare: # # 1) tipo(self) # che, dato un nodo NodoTris, restituisce: # - 'o' se la configurazione rappresentata dal nodo è una configurazione di # vittoria per il giocatore 'o'; # - 'x' se la configurazione rappresentata dal nodo è una configurazione di # vittoria per il giocatore 'x'; # - '-' se la configurazione rappresentata dal nodo è una configurazione di # patta; # - '?' se la configurazione rappresentata dal nodo è una configurazione di # gioco non ancora terminato. # # 2) esiti(self) # che, dato un nodo radice di un albero di gioco, restituisce una tripla con i # possibili esiti della partita che ha come configurazione iniziale quella # rappresentata dal nodo. Più precisamente: il primo elemento della tripla è il # numero di patte possibili, il secondo è il numero di possibili vittorie per # il giocatore 'o' mentre il terzo elemento è il numero di possibili vittorie # per il giocatore 'x'. # # 3) vittorie_livello(self, giocatore, h) # che, dato un nodo radice di un albero di gioco, uno dei due giocatori ed un # intero h, restituisce il numero di nodi che rappresentano una vittoria per il # giocatore e si trovano ad altezza h nell'albero. In altri termini restituisce # il numero di vittorie possibili per giocatore in esattamente h mosse, nella # partita che ha come configurazione iniziale quella rappresentata dalla radice # dell'albero. # # 4) strategia_vincente(self, giocatore) # che, dato un nodo radice di un albero di gioco ed uno dei due giocatori, # restituisce True o False. Restituisce True se giocatore ha una strategia # vincente nella partita che ha come configurazione iniziale quella # rappresentata dal nodo radice, False altrimenti. # # Nota che un giocatore ha una strategia vincente rispetto ad una certa # configurazione se, qualunque siano le mosse dell'avversario ha sempre la # possibilità di rispondere in modo che la partita termini con la sua vittoria. # # Potete ovviamente definire ulteriori funzioni e altri metodi per la Classe # NodiTris se li ritenete utili al fine della risoluzione del compito. # # Potete assumere che le configurazioni di gioco rappresentate da griglia siano # sempre configurazioni lecite (vale a dire ottenute dopo un certo numero di # mosse a parire dalla griglia vuota). # # AVVERTENZE: non usare caratteri non ASCII, come le lettere accentate; non # importare moduli che non sono nella libreria standard. # # ATTENZIONE: i test vengono eseguiti con un timeout globale di 2*N secondi (se # il grader esegue N test). class NodoTris: def __init__(self, grid): self.nome = grid # La griglia con i valori. self.lista_figli = set() # Insieme dei sviluppi del nodo. self.status = '' # Lo stato del nodo ('o', 'x', '?', '-'). self.turn = '' # 0 -> 'o'; 1 -> 'x'. self.score = [] def tipo(self): return self.status # Viene calcolato durante la creazione dell'albero. def esiti(self): result = [0, 0, 0] perform_endings(self, result) return tuple(result) def vittorie_livello(self, player, dest_lvl, current_lvl = 0): if dest_lvl == current_lvl: return int(self.status == player) # Torna 1 o 0. else: # Ancora non si raggiunge 'dest_lvl'. wins = 0 for sub_config in self.lista_figli: wins += sub_config.vittorie_livello(player, dest_lvl, current_lvl + 1) return wins def strategia_vincente(self,giocatore): if giocatore == 'o': opposite = 'x' else: opposite = 'o' result = strategy(self, giocatore, opposite) if result == -1: return False else: return True # ------------------------------------------------------------------------------ def perform_endings(node, result): exit = { '-' : 0, 'o' : 1, 'x' : 2 } if node.status != '?': result[exit[node.status]] += 1 return for sub_config in node.lista_figli: perform_endings(sub_config, result) def score(node, player, opponent): '''Ritorna il punteggio del giocatore sul nodo 'node'.''' if node.status == player: return 1 else: # Se vince il nemico o pareggia è sempre una cosa negativa. return -1 def get_single_score(scores, value): '''Ritorna il punteggio in base a 'value'.''' if value in scores: return value else: return -value # Opposto. def evalutate_strategy(node, opponent, scores): '''Valuta se è presente o meno una strategia vincente su 'node'.''' if node.turn == opponent: return get_single_score(scores, -1) else: return get_single_score(scores, 1) def strategy(node, player, opponent): '''Ritorna la presenza di una strategia vincente per il giocatore.''' if not node.lista_figli: return score(node, player, opponent) scores = set() # Micro-ottimizzazione: la risoluzione dei nomi in Python è molto lenta, # sopratutto in casi di cicli come il for. add = scores.add for sub_config in node.lista_figli: add(strategy(sub_config, player, opponent)) return evalutate_strategy(node, opponent, scores) # ------------------------------------------------------------------------------ GRID_X = 1 GRID_O = 0 GRID_EMPTY = 10 def get_translated_cell(cell): '''Converte la cella dal formato della griglia di partenza a quello con la codifica numerica. Restituisce la cella convertita. ''' if not cell: return GRID_EMPTY return int(cell != 'o') # 0 -> 'o', 1 -> 'x'. def convert_grid(grid): '''Converte la griglia dal formato originale ad uno con le celle codificate in numeri. ''' for row in range(3): for column in range(3): grid[row][column] = get_translated_cell(grid[row][column]) def calculate_sums(grid, sums): '''Calcola i risultati delle somme delle righe, colonne e diagonali e salva tutto sulla lista 'sums'. ''' first_row = 0 second_row = 1 third_row = 2 first_column = 3 second_column = 4 third_column = 5 diag = 6 rdiag = 7 for step in range(0, 3): sums[first_row] += grid[0][step] sums[second_row] += grid[1][step] sums[third_row] += grid[2][step] sums[first_column] += grid[step][0] sums[second_column] += grid[step][1] sums[third_column] += grid[step][2] sums[diag] = grid[0][0] + grid[1][1] + grid[2][2] sums[rdiag] = grid[0][2] + grid[1][1] + grid[2][0] def get_default_status(sums): '''Ritorna il simbolo di patta oppure partita non terminata, in base ai valori di 'sums'. ''' if max(sums) >= GRID_EMPTY: return '?' else: return '-' def get_status(grid): '''Ritorna lo stato delle griglia, che può essere '-', '?', 'x', 'o'.''' sums = [0, 0, 0, 0, 0, 0, 0, 0] calculate_sums(grid, sums) if 3 in sums: # tre 'x' (ossia 1) in fila. return 'x' elif 0 in sums: # tre 'o' (ossa 0) in fila. return 'o' return get_default_status(sums) def get_copy_of(grid): '''Restituisce una copia della griglia.''' new_grid = [] for row in range(3): new_grid += [[grid[row][0], grid[row][1], grid[row][2]]] return new_grid def get_player(player): if player: return 'o' else: return 'x' def next_move(tree, grid, row, column, player): if grid[row][column] == GRID_EMPTY: child_grid = get_copy_of(grid) child_grid[row][column] = player tree.lista_figli.add(get_tree(child_grid, player)) def get_tree(griglia, player): tree = NodoTris(griglia) tree.status = get_status(griglia) tree.turn = get_player(player) if tree.status != '?': return tree player = (player + 1) % 2 for row in range(3): next_move(tree, griglia, row, 0, player) next_move(tree, griglia, row, 1, player) next_move(tree, griglia, row, 2, player) return tree def get_start_player(grid): '''Ritorna il giocatore (codificato in numero) che deve effettuare la mossa al turno successivo rispetto alla griglia 'grid' convertita in numeri. ''' first_row = 0 second_row = 0 third_row = 0 for column in range(3): first_row += grid[0][column] second_row += grid[1][column] third_row += grid[2][column] # La somma di tutti i valori indica chi inizierà per primo. total = first_row + second_row + third_row if total == 90: # Griglia vuota. return 1 else: return total % 2 def gen_tree(griglia): griglia = get_copy_of(griglia) convert_grid(griglia) start_player = get_start_player(griglia) return get_tree(griglia, start_player)
e5edc21a34b45ca67e7abb9b03ee9215880f212d
c440bcb0e566ed107d198593bfeb482c59276dd8
/advent_of_code/2021/day10_1.py
2d34868acd58b3462cc9f7332e432aea3f23b3a6
[]
no_license
TheCDC/Musings
1ee917bbf2fd39f6fa97b268568053ca6ad7fbbf
7b07e315230248239bbccad5d85d0a5e8a54d5d8
refs/heads/master
2022-11-30T23:37:24.608955
2021-12-19T08:12:03
2021-12-19T08:12:03
175,046,297
0
0
null
2022-11-22T07:20:49
2019-03-11T17:01:54
Python
UTF-8
Python
false
false
1,751
py
from typing import List, Optional, Tuple with open("inputs/day10.txt") as f: lines = f.read().split() openers = "([{<" closers = ")]}>" points_corruption = {")": 3, "]": 57, "}": 1197, ">": 25137} def complete(opens: List[str]): to_complete = opens[:] completion: List[str] = [] while to_complete: c = to_complete.pop() completion.append(closers[openers.find(c)]) return completion def score_corruption(s: str): return points_corruption[s] def is_matched_pair(a: str, b: str): assert len(a) == 1 and len(b) == 1 assert a in openers assert b in closers matching = openers.find(a) == closers.find(b) return matching def doline(line: str): chars = list(reversed(list(enumerate(line)))) left: List[str] = [] right: List[str] = [] corrupted: Optional[Tuple[int, str]] = None while chars: i, c = chars.pop() if c in openers: left.append(c) else: right.append(c) if not is_matched_pair(left[-1], c): corrupted = (i, c) if corrupted is None else corrupted while len(left) and len(right) and is_matched_pair(left[-1], right[-1]): left.pop() right.pop() completion = complete(left) return (left, right, completion, corrupted) def solve(lines): score_total = 0 results = [doline(line) for line in lines] score_total = sum(score_corruption(cor[1]) for l, r, comp, cor in results if cor) return (score_total, results) def main(): solved = solve(lines) print( solved[0], *[tuple("".join(x) for x in (t[0], t[1], t[2])) + (t[3],) for t in solved[1]], sep="\n" ) if __name__ == "__main__": main()
4699041df8bc845885513fbf247fa04518328cbd
14afcc5e2b8bdb3d91b500f6e7985d8a3378e929
/src/68.文本左右对齐.py
b3689a9c97bc0475d281eab692c085002b906bbc
[]
no_license
hysapphire/leetcode-python
8569a0e76f8917165e6b9fb25bfef1afc1186e3c
8e338ee7a5c9f124e897491d6a1f4bcd1d1a6270
refs/heads/master
2022-12-03T15:17:52.557115
2020-08-17T14:19:59
2020-08-17T14:19:59
278,781,919
0
0
null
null
null
null
UTF-8
Python
false
false
1,782
py
# # @lc app=leetcode.cn id=68 lang=python3 # # [68] 文本左右对齐 # # @lc code=start class Solution: def fullJustify(self, words: List[str], maxWidth: int) -> List[str]: splited_words = [] s = [] cnt = 0 for word in words: t = cnt + len(word) if t > maxWidth: splited_words.append(s) s = [word] cnt = len(word) + 1 else: s.append(word) cnt = t + 1 splited_words.append(s) res = [] for splited_word in splited_words[:-1]: s = "" if len(splited_word) == 1: num_space = 0 else: num_space = (maxWidth - sum([len(word) for word in splited_word])) // (len(splited_word) - 1) delta_num_space = (maxWidth - sum([len(word) for word in splited_word])) - (len(splited_word) - 1) * num_space if len(splited_word) == 1: s = "" s += splited_word[0] for _ in range(delta_num_space): s += " " else: for word in splited_word[:-1]: s += word for _ in range(num_space): s += " " if delta_num_space > 0: s += " " delta_num_space -= 1 s += splited_word[-1] res.append(s) s = "" for word in splited_words[-1][:-1]: s += word s += " " s += splited_words[-1][-1] for _ in range(maxWidth - len(s)): s += " " res.append(s) return res # @lc code=end
72222da4ae1741a0fe83d540d008fd9bae0c1a83
51b6d2fc53d5c632fcf01319842baebf13901e84
/atcoder.jp/abc131/abc131_a/Main.py
68ba8c087a27f58b969015b21503fb2ab8a823b3
[]
no_license
mono-0812/procon
35db3b2c21eff74fbd7b52db07f249380f6834ef
68a4b53880a228a0164052b23d1326363efcbc20
refs/heads/master
2023-05-30T17:02:58.935074
2021-06-27T12:15:10
2021-06-27T12:15:10
345,896,553
0
0
null
null
null
null
UTF-8
Python
false
false
103
py
s=input() las="" for i in s: if las==i: print("Bad") exit() las=i print("Good")
2850dbedb93f513dc0ee15666df35c5ff685c000
1302c48beae789b1b7837f34325a8f2b203d69df
/src/byro/bookkeeping/models/account.py
866ae96ca5bbdf954ac3dddf73f44b8cdd0bb526
[]
no_license
grince/byro
b9a8ad0d54b78ee220af6dedee119ab9ec0036df
abe8743c04ba828fdd5ff50c55c43a3b32bc26bd
refs/heads/master
2021-01-25T12:31:12.461853
2018-02-26T17:42:12
2018-02-26T17:42:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,496
py
from django.db import models from django.db.models import Q from django.utils.decorators import classproperty from django.utils.timezone import now from django.utils.translation import ugettext_lazy as _ from byro.common.models.auditable import Auditable from byro.common.models.choices import Choices class AccountCategory(Choices): # Regular Categories MEMBER_DONATION = 'member_donation' MEMBER_FEES = 'member_fees' # Categories for double-entry bookkeeping ASSET = 'asset' LIABILITY = 'liability' INCOME = 'income' EXPENSE = 'expense' @classproperty def choices(cls): return ( (cls.MEMBER_DONATION, _('Donation account')), (cls.MEMBER_FEES, _('Membership fee account')), (cls.ASSET, _('Asset account')), (cls.LIABILITY, _('Liability account')), (cls.INCOME, _('Income account')), (cls.EXPENSE, _('Expense account')), ) class Account(Auditable, models.Model): account_category = models.CharField( choices=AccountCategory.choices, max_length=AccountCategory.max_length, ) name = models.CharField(max_length=300, null=True) # e.g. 'Laser donations' class Meta: unique_together = ( ('account_category', 'name'), ) def __str__(self): if self.name: return self.name return f'{self.account_category} account #{self.id}' @property def transactions(self): from byro.bookkeeping.models import VirtualTransaction return VirtualTransaction.objects.filter( Q(source_account=self) | Q(destination_account=self) ) def total_in(self, start=None, end=now()): qs = self.incoming_transactions if start: qs = qs.filter(value_datetime__gte=start) if end: qs = qs.filter(value_datetime__lte=end) return qs.aggregate(incoming=models.Sum('amount'))['incoming'] or 0 def total_out(self, start=None, end=now()): qs = self.outgoing_transactions if start: qs = qs.filter(value_datetime__gte=start) if end: qs = qs.filter(value_datetime__lte=end) return qs.aggregate(outgoing=models.Sum('amount'))['outgoing'] or 0 def balance(self, start=None, end=now()): incoming_sum = self.total_in(start=start, end=end) outgoing_sum = self.total_out(start=start, end=end) return incoming_sum - outgoing_sum
c8a176d73ce4de43a0c744f3ba4ba152b13f907d
9c968f7cdf390f8417912519b53f1b7f6ea8b7e8
/HJ_AL/brute_force/b1065_brute.py
9f0cd478cfd5e6253c843f1b729ba4e7aabdc19b
[]
no_license
hhongjoon/TIL
aa33ce2973552a0baa0e0da5bd7d20824fd2e322
a33b20af15d3f671ea7c7b2855291e50a9036c1c
refs/heads/master
2021-08-07T17:33:39.722880
2020-04-25T08:11:02
2020-04-25T08:11:02
162,099,245
4
0
null
2019-10-30T09:06:21
2018-12-17T08:34:07
Jupyter Notebook
UTF-8
Python
false
false
427
py
num = int(input()) count=0 for i in range(1,num+1): if len(str(i)) == 1 or len(str(i))==2: count += 1 continue str_num=str(i) judge = True for j in range(0,len(str_num)-2): if int(str_num[j]) - int(str_num[j+1]) == int(str_num[j+1]) - int(str_num[j+2]): continue else: judge = False break if judge == True: count+=1 print(count)
dfa17b78951d1872ed8fc4f817a8579389a5a042
f9d564f1aa83eca45872dab7fbaa26dd48210d08
/huaweicloud-sdk-dws/huaweicloudsdkdws/v2/model/cancel_readonly_cluster_response.py
d682b2b92dc9ed1fe6c03084b6e00be2e4fc2041
[ "Apache-2.0" ]
permissive
huaweicloud/huaweicloud-sdk-python-v3
cde6d849ce5b1de05ac5ebfd6153f27803837d84
f69344c1dadb79067746ddf9bfde4bddc18d5ecf
refs/heads/master
2023-09-01T19:29:43.013318
2023-08-31T08:28:59
2023-08-31T08:28:59
262,207,814
103
44
NOASSERTION
2023-06-22T14:50:48
2020-05-08T02:28:43
Python
UTF-8
Python
false
false
2,467
py
# coding: utf-8 import six from huaweicloudsdkcore.sdk_response import SdkResponse from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class CancelReadonlyClusterResponse(SdkResponse): """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { } attribute_map = { } def __init__(self): """CancelReadonlyClusterResponse The model defined in huaweicloud sdk """ super(CancelReadonlyClusterResponse, self).__init__() self.discriminator = None def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, CancelReadonlyClusterResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
028660a24e92f54b0bc846a5d68b6e90ac21cddf
41710e9133d660739f8f9f17040a2a8a6082e9fb
/python/aa_modules/fitsio_has_errors/eg2.py
d4a0e6e5e75796a2ec451845dfda65e7d12df200
[]
no_license
hanjiangxue007/Programming
591678150e2e300051fdeaf09124d3893076d3a9
7a545ef2300b004497f30d27d1f2aaa032e26af5
refs/heads/master
2020-06-29T18:50:27.776557
2016-10-27T18:31:39
2016-10-27T18:31:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,094
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Author : Bhishan Poudel; Physics PhD Student, Ohio University # Date : Oct-15-2016 Sat # Last update : # # # Imports import fitsio from fitsio import FITS,FITSHDR # Often you just want to quickly read or write data without bothering to # create a FITS object. In that case, you can use the read and write # convienience functions. # read all data from the first hdu with data filename='test.fits' data = fitsio.read(filename) # read a subset of rows and columns from a table data = fitsio.read(filename, rows=[35,1001], columns=['x','y'], ext=2) # read the header, or both at once h = fitsio.read_header(filename, extension) data,h = fitsio.read(filename, ext=ext, header=True) # open the file, write a new binary table extension, and then write the # data from "recarray" into the table. By default a new extension is # added to the file. use clobber=True to overwrite an existing file # instead. To append rows to an existing table, see below. fitsio.write(filename, recarray) # write an image fitsio.write(filename, image)
170ca8d188aacad28ab3a8be69a38b02bb931402
9e4ab50f5822941ab70fefb8ac8f2d91d702d9df
/suorganizer/views.py
a8c5954ad810ac9b24b4425723169efa4e7b3098
[]
no_license
andyk1278/startuptracker
cf3b51a82aa6018b990c605cff47398636b4643c
b2b07db3a6213249588214200b52a705ed50b339
refs/heads/master
2021-01-02T23:00:29.839108
2017-08-13T09:18:51
2017-08-13T09:18:51
99,437,365
0
0
null
null
null
null
UTF-8
Python
false
false
115
py
from django.http import HttpResponseRedirect def redirect_root(request): return HttpResponseRedirect('/blog/')
b65f91b5d0820bef879b4902b41d7a79e7fe245a
33f304bbd8536045a63dea909031576ea3f7b488
/census_area/core.py
c3fe06979410922dd4552eca320be2f8349c5c06
[ "MIT" ]
permissive
LindaLv11/census_area
859c92cd5ca6a8537ff45014b42771804dc29913
48d8bc7e73c12b58e796307e36c93029b1ec0044
refs/heads/master
2020-04-20T08:25:32.838867
2019-01-04T03:00:47
2019-01-04T03:00:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,436
py
import shapely.geometry import shapely.geos import esridump GEO_URLS = { 'tracts' : { 1990 : 'https://gis.uspatial.umn.edu/arcgis/rest/services/nhgis/Census_Tracts_1910_2014/MapServer/8', 2000 : 'https://tigerweb.geo.census.gov/arcgis/rest/services/Census2010/tigerWMS_Census2000/MapServer/6', 2010 : 'https://tigerweb.geo.census.gov/arcgis/rest/services/TIGERweb/tigerWMS_Census2010/MapServer/14', 2011 : 'https://tigerweb.geo.census.gov/arcgis/rest/services/TIGERweb/tigerWMS_Census2010/MapServer/14', 2012 : 'https://tigerweb.geo.census.gov/arcgis/rest/services/TIGERweb/tigerWMS_Census2010/MapServer/14', 2013 : 'https://tigerweb.geo.census.gov/arcgis/rest/services/TIGERweb/tigerWMS_ACS2013/MapServer/8', 2014 : 'https://tigerweb.geo.census.gov/arcgis/rest/services/TIGERweb/tigerWMS_ACS2014/MapServer/8', 2015 : 'https://tigerweb.geo.census.gov/arcgis/rest/services/TIGERweb/tigerWMS_ACS2015/MapServer/8', 2016 : 'https://tigerweb.geo.census.gov/arcgis/rest/services/TIGERweb/tigerWMS_ACS2015/MapServer/8'}, 'block groups' : { 2000 : 'https://tigerweb.geo.census.gov/arcgis/rest/services/Census2010/tigerWMS_Census2000/MapServer/8', 2010 : 'https://tigerweb.geo.census.gov/arcgis/rest/services/TIGERweb/tigerWMS_Census2010/MapServer/16', 2011 : 'https://tigerweb.geo.census.gov/arcgis/rest/services/TIGERweb/tigerWMS_Census2010/MapServer/16', 2012 : 'https://tigerweb.geo.census.gov/arcgis/rest/services/TIGERweb/tigerWMS_Census2010/MapServer/16', 2013 : 'https://tigerweb.geo.census.gov/arcgis/rest/services/TIGERweb/tigerWMS_ACS2013/MapServer/10', 2014 : 'https://tigerweb.geo.census.gov/arcgis/rest/services/TIGERweb/tigerWMS_ACS2014/MapServer/10', 2015 : 'https://tigerweb.geo.census.gov/arcgis/rest/services/TIGERweb/tigerWMS_ACS2015/MapServer/10', 2016 : 'https://tigerweb.geo.census.gov/arcgis/rest/services/TIGERweb/tigerWMS_ACS2015/MapServer/10'}, 'blocks' : { 2000 : 'https://tigerweb.geo.census.gov/arcgis/rest/services/Census2010/tigerWMS_Census2000/MapServer/10', 2010 : 'https://tigerweb.geo.census.gov/arcgis/rest/services/TIGERweb/tigerWMS_Current/MapServer/12'}, 'incorporated places' : { 1990 : 'https://gis.uspatial.umn.edu/arcgis/rest/services/nhgis/Places_1980_2014/MapServer/1', 2000 : 'https://tigerweb.geo.census.gov/arcgis/rest/services/Census2010/tigerWMS_Census2000/MapServer/24', 2010 : 'https://tigerweb.geo.census.gov/arcgis/rest/services/TIGERweb/tigerWMS_Census2010/MapServer/34', 2011 : 'https://tigerweb.geo.census.gov/arcgis/rest/services/TIGERweb/tigerWMS_Census2010/MapServer/34', 2012 : 'https://tigerweb.geo.census.gov/arcgis/rest/services/TIGERweb/tigerWMS_Census2010/MapServer/34', 2013 : 'https://tigerweb.geo.census.gov/arcgis/rest/services/TIGERweb/tigerWMS_ACS2013/MapServer/26', 2014 : 'https://tigerweb.geo.census.gov/arcgis/rest/services/TIGERweb/tigerWMS_ACS2014/MapServer/26', 2015 : 'https://tigerweb.geo.census.gov/arcgis/rest/services/TIGERweb/tigerWMS_ACS2015/MapServer/26', 2016 : 'https://tigerweb.geo.census.gov/arcgis/rest/services/TIGERweb/tigerWMS_ACS2016/MapServer/26'} } class AreaFilter(object): def __init__(self, geojson_geometry, sub_geography_url): self.geo = shapely.geometry.shape(geojson_geometry) geo_query_args = {'geometry': ','.join(str(x) for x in self.geo.bounds), 'geometryType': 'esriGeometryEnvelope', 'spatialRel': 'esriSpatialRelEnvelopeIntersects', 'inSR' : '4326', 'geometryPrecision' : 9, 'orderByFields': 'OID'} self.area_dumper = esridump.EsriDumper(sub_geography_url, extra_query_args = geo_query_args) def __iter__(self): for area in self.area_dumper: area_geo = shapely.geometry.shape(area['geometry']) if self.geo.intersects(area_geo): try: intersection = self.geo.intersection(area_geo) except shapely.geos.TopologicalError: intersection = self.geo.buffer(0).intersection(area_geo.buffer(0)) if intersection.area/area_geo.area > 0.1: yield area
b5a06168a7891d65d6d1f2dc37cc42b31c3f9075
14b8cf0b67104b53534678b8c0e9525ace4714ff
/codeeval/spiral.py
8ce3b47e920f2d0e9c03bbd1d9e3a51d4092b051
[]
no_license
bhfwg/py_learn
bb11898fd81f653643fc61949f43df751d317fcb
eca9da748bada67357961d1581d8ec890a3385f8
refs/heads/master
2020-03-27T15:01:25.881792
2018-06-05T01:36:26
2018-06-05T01:36:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,433
py
from sys import argv def spiral_printing(n, m, one): if n * m == 1: yield one[0] return def point_2_index(x, y): return x * m + y ax = 0 ay = 0 bx = 0 by = m - 1 cx = n - 1 cy = m - 1 dx = n - 1 dy = 0 while 1: for i in xrange(ay, by): index = point_2_index(ax, i) yield one[index] for i in xrange(bx, cx): index = point_2_index(i, cy) yield one[index] for i in xrange(cy, dy, -1): index = point_2_index(dx, i) yield one[index] for i in xrange(dx, ax, -1): index = point_2_index(i, ax) yield one[index] ax += 1 ay += 1 bx += 1 by -= 1 cx -= 1 cy -= 1 dx -= 1 dy += 1 if ay > by or ax > dx: break if ay == by: for i in xrange(bx, cx + 1): index = point_2_index(i, cy) yield one[index] break elif ax == dx: for i in xrange(ay, by + 1): index = point_2_index(ax, i) yield one[index] break f = open(argv[1], 'r') for one in f: one = one.strip() if one: n, m, one = one.split(';') n = int(n) m = int(m) one = one.split(' ') print ' '.join(spiral_printing(n, m, one)) f.close()
6c45e72f32ca223fecfcc490073f0cd0d14b4b65
0130c8b14927097663157846adc4b146d67d2fda
/tests/common/test_run/div_no_nan_run.py
1a2c66c665dc13f6f5900b55ab27ee71b9d67109
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference", "Unlicense", "BSD-3-Clause", "NCSA", "LLVM-exception", "Zlib", "BSD-2-Clause", "MIT" ]
permissive
Shigangli/akg
e8be3e0ee1eafe3e42b4cc4d424c28f08ef4c0bc
3766c54e0b109541932d147a6b5643a334b82403
refs/heads/master
2023-09-06T05:13:40.571583
2021-11-23T03:44:54
2021-11-23T03:44:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,497
py
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from akg.utils import kernel_exec as utils from tests.common.test_op import div_no_nan from tests.common.tensorio import compare_tensor from tests.common.base import get_rtol_atol from tests.common.gen_random import random_gaussian def div_no_nan_execute(shapes, dtype, attrs): exp_output, inputs, args = gen_data(dtype, shapes) mod = div_no_nan_compile(shapes, dtype, attrs) # result_tvm acu_output = utils.mod_launch(mod, args, expect=exp_output) # compare result rtol, atol = get_rtol_atol("div_no_nan", dtype) TestCase_Result = compare_tensor(acu_output, exp_output, rtol=rtol, atol=atol, equal_nan=True) return inputs, acu_output, exp_output, TestCase_Result def gen_data(dtype, shapes): # Result_Numpy data_x = random_gaussian(shapes[0], miu=1, sigma=0.1).astype(dtype) data_y = random_gaussian(shapes[1], miu=0, sigma=2**-64).astype(dtype) if dtype in ["uint8", "int8", "int32"]: is_zero = np.equal(0, data_y) if dtype in ["float16"]: is_zero = np.less(np.abs(data_y), 2**-12) if dtype in ["float32"]: is_zero = np.less(np.abs(data_y), 2**-64) if dtype in ["uint8", "int8", "int32"]: exp_output = np.floor_divide(np.multiply(data_x, (1 - is_zero)), data_y + is_zero) if dtype in ["float16", "float32"]: exp_output = np.true_divide(np.multiply(data_x, (1 - is_zero)), data_y + is_zero) # inputs and output to hold the data output = np.full(exp_output.shape, np.nan, dtype) inputs = [data_x, data_y] args = [data_x, data_y, output] return exp_output, inputs, args def div_no_nan_compile(shapes, dtype, attrs, kernel_name='div_no_nan', runing=False): return utils.op_build_test(div_no_nan.div_no_nan, [shapes[0], shapes[1]], [dtype, dtype], kernel_name=kernel_name, attrs=attrs, tuning=runing)
9fc39c434aeb8db7e69c85650d79dea51a686666
5d2404f62e58d5fd1f6112744ff32c3166183ac7
/Geek University/Seção 4/Exercicios/EX49.py
de8275af5902ac3f09895155461a32956779a2ef
[]
no_license
Leownhart/My_Course_of_python
236cfc84d841c5883e5aa1cc0c0730e7a9a83c40
5abb21f8cdad91ab54247a007d40bf9ecd2cff8c
refs/heads/master
2020-08-28T15:04:33.628086
2020-08-24T19:25:39
2020-08-24T19:25:39
217,733,877
1
0
null
null
null
null
UTF-8
Python
false
false
654
py
''' 49 - Faça um programa que leia um horário (hora, minuto, segundo) de inicio e a duração, em segundos, de uma experiência biológica. O programa de resultar com o novo horário (hora, minuto, segundo) do termino da mesma. from datetime import datetime now = datetime.now() print now.year print now.month print now.day print now.hour print now.minute print now.second ''' # RESPOSTAS from datetime import datetime Hora = int(input('Informe a Hora: ')) Minuto = int(input('Informe os Minutos: ')) Segundos = int(input('Informe os Segundos: ')) print(f'Passaram-se {Hora * 3600 + Minuto * 60 + Segundos} Segundos') print(f'{datetime.now()}')
68eeea5ed3b7b64fa83adeca2d9a513d9c57fd1c
24caa6710105a060fab2e17147e6d56609939011
/06-Importing_Data_in_Python_(Part_2)/01-Importing_data_from_the_Internet/01-Importing_flat_files_from_the_web_your_turn!.py
b845373064884f87b9853e85c1360cd5849f5a64
[]
no_license
inverseundefined/DataCamp
99607022ad3f899d7681ad1f70fcedab290e269a
7226b6b6f41888c3610a884db9a226e013d37e56
refs/heads/master
2022-01-10T00:53:21.714908
2019-07-24T13:27:49
2019-07-24T13:27:49
198,280,648
1
0
null
null
null
null
UTF-8
Python
false
false
1,446
py
''' Importing flat files from the web: your turn! You are about to import your first file from the web! The flat file you will import will be 'winequality-red.csv' from the University of California, Irvine's Machine Learning repository. The flat file contains tabular data of physiochemical properties of red wine, such as pH, alcohol content and citric acid content, along with wine quality rating. The URL of the file is 'https://s3.amazonaws.com/assets.datacamp.com/production/course_1606/datasets/winequality-red.csv' After you import it, you'll check your working directory to confirm that it is there and then you'll load it into a pandas DataFrame. Instructions 100 XP Import the function urlretrieve from the subpackage urllib.request. Assign the URL of the file to the variable url. Use the function urlretrieve() to save the file locally as 'winequality-red.csv'. Execute the remaining code to load 'winequality-red.csv' in a pandas DataFrame and to print its head to the shell. Take Hint (-30 XP) ''' # Import package from urllib.request import urlretrieve # Import pandas import pandas as pd # Assign url of file: url url = 'https://s3.amazonaws.com/assets.datacamp.com/production/course_1606/datasets/winequality-red.csv' # Save file locally urlretrieve(url, 'winequality-red.csv') # Read file into a DataFrame and print its head df = pd.read_csv('winequality-red.csv', sep=';') print(df.head())
af110594bc60b09186afd5627301dc1dbf379ca8
af61044c866eb85ca2c622e082090f7657431206
/webcli/arthur_utils/experiment.py
a2e95ed3a2caacf3035abf7dcdb6607dbfd126af
[]
no_license
leepand/gridpoc
f7959ef099d8a5513c59dfeb682761771ffe7594
4c476cd0241a95a4a7d2abf53a519d3749ecfb94
refs/heads/master
2020-04-28T02:38:49.631595
2019-03-11T02:01:50
2019-03-11T02:01:50
174,906,542
0
0
null
null
null
null
UTF-8
Python
false
false
1,502
py
from _mlflow_object import _MLflowObject class Experiment(_MLflowObject): """ Experiment object. """ DEFAULT_EXPERIMENT_ID = 0 ACTIVE_LIFECYCLE = 'active' DELETED_LIFECYCLE = 'deleted' def __init__(self, experiment_id, name, artifact_location, lifecycle_stage): super(Experiment, self).__init__() self._experiment_id = experiment_id self._name = name self._artifact_location = artifact_location self._lifecycle_stage = lifecycle_stage @property def experiment_id(self): """Integer ID of the experiment.""" return self._experiment_id @property def name(self): """String name of the experiment.""" return self._name def _set_name(self, new_name): self._name = new_name @property def artifact_location(self): """String corresponding to the root artifact URI for the experiment.""" return self._artifact_location @property def lifecycle_stage(self): """Lifecycle stage of the experiment. Can either be 'active' or 'deleted'.""" return self._lifecycle_stage @classmethod def from_proto(cls, proto): return cls(proto.experiment_id, proto.name, proto.artifact_location, proto.lifecycle_stage) @classmethod def _properties(cls): # TODO: Hard coding this list of props for now. There has to be a clearer way... return ["experiment_id", "name", "artifact_location", "lifecycle_stage"]
33667e8b97d6c876c073bc1b32185c8188c271fa
a1614311937bae5204e171b2a3481fb31e61a490
/media/codigos/36/36sol118.py
0e4ccda5dba78b1aa00e7913b2e0c1bb249e5ec9
[]
no_license
alexandre146/avaliar
8d406100ed72f10292a0580edac50ad061ad92e9
3daf247ca68962086592a356e013b07fa1569afe
refs/heads/master
2020-03-21T03:09:29.493919
2018-07-23T11:41:38
2018-07-23T11:41:38
137,883,682
0
0
null
null
null
null
UTF-8
Python
false
false
178
py
n=int(input()) m=int(input()) if(m%n==0): print(m) elif(m%n!=0): x=m%n if((m-x)==n): print("sem multiplos menores que"+str(m)) else: print(m-x)
5d2d9c1ac8f26a527eaf2d08e5cdd9a656e0880c
6fa701cdaa0d83caa0d3cbffe39b40e54bf3d386
/google/cloud/kms/v1/kms-v1-py/google/cloud/kms_v1/services/key_management_service/transports/base.py
0da50e0196d2991964005d561c4193993d0eb0a7
[ "Apache-2.0" ]
permissive
oltoco/googleapis-gen
bf40cfad61b4217aca07068bd4922a86e3bbd2d5
00ca50bdde80906d6f62314ef4f7630b8cdb6e15
refs/heads/master
2023-07-17T22:11:47.848185
2021-08-29T20:39:47
2021-08-29T20:39:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
26,784
py
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import abc from typing import Awaitable, Callable, Dict, Optional, Sequence, Union import packaging.version import pkg_resources import google.auth # type: ignore import google.api_core # type: ignore from google.api_core import exceptions as core_exceptions # type: ignore from google.api_core import gapic_v1 # type: ignore from google.api_core import retry as retries # type: ignore from google.auth import credentials as ga_credentials # type: ignore from google.oauth2 import service_account # type: ignore from google.cloud.kms_v1.types import resources from google.cloud.kms_v1.types import service from google.iam.v1 import iam_policy_pb2 # type: ignore from google.iam.v1 import policy_pb2 # type: ignore try: DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo( gapic_version=pkg_resources.get_distribution( 'google-cloud-kms', ).version, ) except pkg_resources.DistributionNotFound: DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo() try: # google.auth.__version__ was added in 1.26.0 _GOOGLE_AUTH_VERSION = google.auth.__version__ except AttributeError: try: # try pkg_resources if it is available _GOOGLE_AUTH_VERSION = pkg_resources.get_distribution("google-auth").version except pkg_resources.DistributionNotFound: # pragma: NO COVER _GOOGLE_AUTH_VERSION = None class KeyManagementServiceTransport(abc.ABC): """Abstract transport class for KeyManagementService.""" AUTH_SCOPES = ( 'https://www.googleapis.com/auth/cloud-platform', 'https://www.googleapis.com/auth/cloudkms', ) DEFAULT_HOST: str = 'cloudkms.googleapis.com' def __init__( self, *, host: str = DEFAULT_HOST, credentials: ga_credentials.Credentials = None, credentials_file: Optional[str] = None, scopes: Optional[Sequence[str]] = None, quota_project_id: Optional[str] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, always_use_jwt_access: Optional[bool] = False, **kwargs, ) -> None: """Instantiate the transport. Args: host (Optional[str]): The hostname to connect to. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is mutually exclusive with credentials. scopes (Optional[Sequence[str]]): A list of scopes. quota_project_id (Optional[str]): An optional project to use for billing and quota. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. always_use_jwt_access (Optional[bool]): Whether self signed JWT should be used for service account credentials. """ # Save the hostname. Default to port 443 (HTTPS) if none is specified. if ':' not in host: host += ':443' self._host = host scopes_kwargs = self._get_scopes_kwargs(self._host, scopes) # Save the scopes. self._scopes = scopes # If no credentials are provided, then determine the appropriate # defaults. if credentials and credentials_file: raise core_exceptions.DuplicateCredentialArgs("'credentials_file' and 'credentials' are mutually exclusive") if credentials_file is not None: credentials, _ = google.auth.load_credentials_from_file( credentials_file, **scopes_kwargs, quota_project_id=quota_project_id ) elif credentials is None: credentials, _ = google.auth.default(**scopes_kwargs, quota_project_id=quota_project_id) # If the credentials is service account credentials, then always try to use self signed JWT. if always_use_jwt_access and isinstance(credentials, service_account.Credentials) and hasattr(service_account.Credentials, "with_always_use_jwt_access"): credentials = credentials.with_always_use_jwt_access(True) # Save the credentials. self._credentials = credentials # TODO(busunkim): This method is in the base transport # to avoid duplicating code across the transport classes. These functions # should be deleted once the minimum required versions of google-auth is increased. # TODO: Remove this function once google-auth >= 1.25.0 is required @classmethod def _get_scopes_kwargs(cls, host: str, scopes: Optional[Sequence[str]]) -> Dict[str, Optional[Sequence[str]]]: """Returns scopes kwargs to pass to google-auth methods depending on the google-auth version""" scopes_kwargs = {} if _GOOGLE_AUTH_VERSION and ( packaging.version.parse(_GOOGLE_AUTH_VERSION) >= packaging.version.parse("1.25.0") ): scopes_kwargs = {"scopes": scopes, "default_scopes": cls.AUTH_SCOPES} else: scopes_kwargs = {"scopes": scopes or cls.AUTH_SCOPES} return scopes_kwargs def _prep_wrapped_messages(self, client_info): # Precompute the wrapped methods. self._wrapped_methods = { self.list_key_rings: gapic_v1.method.wrap_method( self.list_key_rings, default_retry=retries.Retry( initial=0.1,maximum=60.0,multiplier=1.3, predicate=retries.if_exception_type( core_exceptions.DeadlineExceeded, core_exceptions.ServiceUnavailable, ), deadline=60.0, ), default_timeout=60.0, client_info=client_info, ), self.list_crypto_keys: gapic_v1.method.wrap_method( self.list_crypto_keys, default_retry=retries.Retry( initial=0.1,maximum=60.0,multiplier=1.3, predicate=retries.if_exception_type( core_exceptions.DeadlineExceeded, core_exceptions.ServiceUnavailable, ), deadline=60.0, ), default_timeout=60.0, client_info=client_info, ), self.list_crypto_key_versions: gapic_v1.method.wrap_method( self.list_crypto_key_versions, default_retry=retries.Retry( initial=0.1,maximum=60.0,multiplier=1.3, predicate=retries.if_exception_type( core_exceptions.DeadlineExceeded, core_exceptions.ServiceUnavailable, ), deadline=60.0, ), default_timeout=60.0, client_info=client_info, ), self.list_import_jobs: gapic_v1.method.wrap_method( self.list_import_jobs, default_retry=retries.Retry( initial=0.1,maximum=60.0,multiplier=1.3, predicate=retries.if_exception_type( core_exceptions.DeadlineExceeded, core_exceptions.ServiceUnavailable, ), deadline=60.0, ), default_timeout=60.0, client_info=client_info, ), self.get_key_ring: gapic_v1.method.wrap_method( self.get_key_ring, default_retry=retries.Retry( initial=0.1,maximum=60.0,multiplier=1.3, predicate=retries.if_exception_type( core_exceptions.DeadlineExceeded, core_exceptions.ServiceUnavailable, ), deadline=60.0, ), default_timeout=60.0, client_info=client_info, ), self.get_crypto_key: gapic_v1.method.wrap_method( self.get_crypto_key, default_retry=retries.Retry( initial=0.1,maximum=60.0,multiplier=1.3, predicate=retries.if_exception_type( core_exceptions.DeadlineExceeded, core_exceptions.ServiceUnavailable, ), deadline=60.0, ), default_timeout=60.0, client_info=client_info, ), self.get_crypto_key_version: gapic_v1.method.wrap_method( self.get_crypto_key_version, default_retry=retries.Retry( initial=0.1,maximum=60.0,multiplier=1.3, predicate=retries.if_exception_type( core_exceptions.DeadlineExceeded, core_exceptions.ServiceUnavailable, ), deadline=60.0, ), default_timeout=60.0, client_info=client_info, ), self.get_public_key: gapic_v1.method.wrap_method( self.get_public_key, default_retry=retries.Retry( initial=0.1,maximum=60.0,multiplier=1.3, predicate=retries.if_exception_type( core_exceptions.DeadlineExceeded, core_exceptions.ServiceUnavailable, ), deadline=60.0, ), default_timeout=60.0, client_info=client_info, ), self.get_import_job: gapic_v1.method.wrap_method( self.get_import_job, default_retry=retries.Retry( initial=0.1,maximum=60.0,multiplier=1.3, predicate=retries.if_exception_type( core_exceptions.DeadlineExceeded, core_exceptions.ServiceUnavailable, ), deadline=60.0, ), default_timeout=60.0, client_info=client_info, ), self.create_key_ring: gapic_v1.method.wrap_method( self.create_key_ring, default_retry=retries.Retry( initial=0.1,maximum=60.0,multiplier=1.3, predicate=retries.if_exception_type( core_exceptions.DeadlineExceeded, core_exceptions.ServiceUnavailable, ), deadline=60.0, ), default_timeout=60.0, client_info=client_info, ), self.create_crypto_key: gapic_v1.method.wrap_method( self.create_crypto_key, default_retry=retries.Retry( initial=0.1,maximum=60.0,multiplier=1.3, predicate=retries.if_exception_type( core_exceptions.DeadlineExceeded, core_exceptions.ServiceUnavailable, ), deadline=60.0, ), default_timeout=60.0, client_info=client_info, ), self.create_crypto_key_version: gapic_v1.method.wrap_method( self.create_crypto_key_version, default_timeout=60.0, client_info=client_info, ), self.import_crypto_key_version: gapic_v1.method.wrap_method( self.import_crypto_key_version, default_timeout=60.0, client_info=client_info, ), self.create_import_job: gapic_v1.method.wrap_method( self.create_import_job, default_retry=retries.Retry( initial=0.1,maximum=60.0,multiplier=1.3, predicate=retries.if_exception_type( core_exceptions.DeadlineExceeded, core_exceptions.ServiceUnavailable, ), deadline=60.0, ), default_timeout=60.0, client_info=client_info, ), self.update_crypto_key: gapic_v1.method.wrap_method( self.update_crypto_key, default_retry=retries.Retry( initial=0.1,maximum=60.0,multiplier=1.3, predicate=retries.if_exception_type( core_exceptions.DeadlineExceeded, core_exceptions.ServiceUnavailable, ), deadline=60.0, ), default_timeout=60.0, client_info=client_info, ), self.update_crypto_key_version: gapic_v1.method.wrap_method( self.update_crypto_key_version, default_retry=retries.Retry( initial=0.1,maximum=60.0,multiplier=1.3, predicate=retries.if_exception_type( core_exceptions.DeadlineExceeded, core_exceptions.ServiceUnavailable, ), deadline=60.0, ), default_timeout=60.0, client_info=client_info, ), self.update_crypto_key_primary_version: gapic_v1.method.wrap_method( self.update_crypto_key_primary_version, default_retry=retries.Retry( initial=0.1,maximum=60.0,multiplier=1.3, predicate=retries.if_exception_type( core_exceptions.DeadlineExceeded, core_exceptions.ServiceUnavailable, ), deadline=60.0, ), default_timeout=60.0, client_info=client_info, ), self.destroy_crypto_key_version: gapic_v1.method.wrap_method( self.destroy_crypto_key_version, default_retry=retries.Retry( initial=0.1,maximum=60.0,multiplier=1.3, predicate=retries.if_exception_type( core_exceptions.DeadlineExceeded, core_exceptions.ServiceUnavailable, ), deadline=60.0, ), default_timeout=60.0, client_info=client_info, ), self.restore_crypto_key_version: gapic_v1.method.wrap_method( self.restore_crypto_key_version, default_retry=retries.Retry( initial=0.1,maximum=60.0,multiplier=1.3, predicate=retries.if_exception_type( core_exceptions.DeadlineExceeded, core_exceptions.ServiceUnavailable, ), deadline=60.0, ), default_timeout=60.0, client_info=client_info, ), self.encrypt: gapic_v1.method.wrap_method( self.encrypt, default_retry=retries.Retry( initial=0.1,maximum=60.0,multiplier=1.3, predicate=retries.if_exception_type( core_exceptions.DeadlineExceeded, core_exceptions.ServiceUnavailable, ), deadline=60.0, ), default_timeout=60.0, client_info=client_info, ), self.decrypt: gapic_v1.method.wrap_method( self.decrypt, default_retry=retries.Retry( initial=0.1,maximum=60.0,multiplier=1.3, predicate=retries.if_exception_type( core_exceptions.DeadlineExceeded, core_exceptions.ServiceUnavailable, ), deadline=60.0, ), default_timeout=60.0, client_info=client_info, ), self.asymmetric_sign: gapic_v1.method.wrap_method( self.asymmetric_sign, default_retry=retries.Retry( initial=0.1,maximum=60.0,multiplier=1.3, predicate=retries.if_exception_type( core_exceptions.DeadlineExceeded, core_exceptions.ServiceUnavailable, ), deadline=60.0, ), default_timeout=60.0, client_info=client_info, ), self.asymmetric_decrypt: gapic_v1.method.wrap_method( self.asymmetric_decrypt, default_retry=retries.Retry( initial=0.1,maximum=60.0,multiplier=1.3, predicate=retries.if_exception_type( core_exceptions.DeadlineExceeded, core_exceptions.ServiceUnavailable, ), deadline=60.0, ), default_timeout=60.0, client_info=client_info, ), self.mac_sign: gapic_v1.method.wrap_method( self.mac_sign, default_timeout=None, client_info=client_info, ), self.mac_verify: gapic_v1.method.wrap_method( self.mac_verify, default_timeout=None, client_info=client_info, ), self.generate_random_bytes: gapic_v1.method.wrap_method( self.generate_random_bytes, default_timeout=None, client_info=client_info, ), } @property def list_key_rings(self) -> Callable[ [service.ListKeyRingsRequest], Union[ service.ListKeyRingsResponse, Awaitable[service.ListKeyRingsResponse] ]]: raise NotImplementedError() @property def list_crypto_keys(self) -> Callable[ [service.ListCryptoKeysRequest], Union[ service.ListCryptoKeysResponse, Awaitable[service.ListCryptoKeysResponse] ]]: raise NotImplementedError() @property def list_crypto_key_versions(self) -> Callable[ [service.ListCryptoKeyVersionsRequest], Union[ service.ListCryptoKeyVersionsResponse, Awaitable[service.ListCryptoKeyVersionsResponse] ]]: raise NotImplementedError() @property def list_import_jobs(self) -> Callable[ [service.ListImportJobsRequest], Union[ service.ListImportJobsResponse, Awaitable[service.ListImportJobsResponse] ]]: raise NotImplementedError() @property def get_key_ring(self) -> Callable[ [service.GetKeyRingRequest], Union[ resources.KeyRing, Awaitable[resources.KeyRing] ]]: raise NotImplementedError() @property def get_crypto_key(self) -> Callable[ [service.GetCryptoKeyRequest], Union[ resources.CryptoKey, Awaitable[resources.CryptoKey] ]]: raise NotImplementedError() @property def get_crypto_key_version(self) -> Callable[ [service.GetCryptoKeyVersionRequest], Union[ resources.CryptoKeyVersion, Awaitable[resources.CryptoKeyVersion] ]]: raise NotImplementedError() @property def get_public_key(self) -> Callable[ [service.GetPublicKeyRequest], Union[ resources.PublicKey, Awaitable[resources.PublicKey] ]]: raise NotImplementedError() @property def get_import_job(self) -> Callable[ [service.GetImportJobRequest], Union[ resources.ImportJob, Awaitable[resources.ImportJob] ]]: raise NotImplementedError() @property def create_key_ring(self) -> Callable[ [service.CreateKeyRingRequest], Union[ resources.KeyRing, Awaitable[resources.KeyRing] ]]: raise NotImplementedError() @property def create_crypto_key(self) -> Callable[ [service.CreateCryptoKeyRequest], Union[ resources.CryptoKey, Awaitable[resources.CryptoKey] ]]: raise NotImplementedError() @property def create_crypto_key_version(self) -> Callable[ [service.CreateCryptoKeyVersionRequest], Union[ resources.CryptoKeyVersion, Awaitable[resources.CryptoKeyVersion] ]]: raise NotImplementedError() @property def import_crypto_key_version(self) -> Callable[ [service.ImportCryptoKeyVersionRequest], Union[ resources.CryptoKeyVersion, Awaitable[resources.CryptoKeyVersion] ]]: raise NotImplementedError() @property def create_import_job(self) -> Callable[ [service.CreateImportJobRequest], Union[ resources.ImportJob, Awaitable[resources.ImportJob] ]]: raise NotImplementedError() @property def update_crypto_key(self) -> Callable[ [service.UpdateCryptoKeyRequest], Union[ resources.CryptoKey, Awaitable[resources.CryptoKey] ]]: raise NotImplementedError() @property def update_crypto_key_version(self) -> Callable[ [service.UpdateCryptoKeyVersionRequest], Union[ resources.CryptoKeyVersion, Awaitable[resources.CryptoKeyVersion] ]]: raise NotImplementedError() @property def update_crypto_key_primary_version(self) -> Callable[ [service.UpdateCryptoKeyPrimaryVersionRequest], Union[ resources.CryptoKey, Awaitable[resources.CryptoKey] ]]: raise NotImplementedError() @property def destroy_crypto_key_version(self) -> Callable[ [service.DestroyCryptoKeyVersionRequest], Union[ resources.CryptoKeyVersion, Awaitable[resources.CryptoKeyVersion] ]]: raise NotImplementedError() @property def restore_crypto_key_version(self) -> Callable[ [service.RestoreCryptoKeyVersionRequest], Union[ resources.CryptoKeyVersion, Awaitable[resources.CryptoKeyVersion] ]]: raise NotImplementedError() @property def encrypt(self) -> Callable[ [service.EncryptRequest], Union[ service.EncryptResponse, Awaitable[service.EncryptResponse] ]]: raise NotImplementedError() @property def decrypt(self) -> Callable[ [service.DecryptRequest], Union[ service.DecryptResponse, Awaitable[service.DecryptResponse] ]]: raise NotImplementedError() @property def asymmetric_sign(self) -> Callable[ [service.AsymmetricSignRequest], Union[ service.AsymmetricSignResponse, Awaitable[service.AsymmetricSignResponse] ]]: raise NotImplementedError() @property def asymmetric_decrypt(self) -> Callable[ [service.AsymmetricDecryptRequest], Union[ service.AsymmetricDecryptResponse, Awaitable[service.AsymmetricDecryptResponse] ]]: raise NotImplementedError() @property def mac_sign(self) -> Callable[ [service.MacSignRequest], Union[ service.MacSignResponse, Awaitable[service.MacSignResponse] ]]: raise NotImplementedError() @property def mac_verify(self) -> Callable[ [service.MacVerifyRequest], Union[ service.MacVerifyResponse, Awaitable[service.MacVerifyResponse] ]]: raise NotImplementedError() @property def generate_random_bytes(self) -> Callable[ [service.GenerateRandomBytesRequest], Union[ service.GenerateRandomBytesResponse, Awaitable[service.GenerateRandomBytesResponse] ]]: raise NotImplementedError() @property def set_iam_policy( self, ) -> Callable[ [iam_policy_pb2.SetIamPolicyRequest], Union[policy_pb2.Policy, Awaitable[policy_pb2.Policy]], ]: raise NotImplementedError() @property def get_iam_policy( self, ) -> Callable[ [iam_policy_pb2.GetIamPolicyRequest], Union[policy_pb2.Policy, Awaitable[policy_pb2.Policy]], ]: raise NotImplementedError() @property def test_iam_permissions( self, ) -> Callable[ [iam_policy_pb2.TestIamPermissionsRequest], Union[ iam_policy_pb2.TestIamPermissionsResponse, Awaitable[iam_policy_pb2.TestIamPermissionsResponse], ], ]: raise NotImplementedError() __all__ = ( 'KeyManagementServiceTransport', )
[ "bazel-bot-development[bot]@users.noreply.github.com" ]
bazel-bot-development[bot]@users.noreply.github.com
ec49e6c91ca97068e5bb27f4a55e242b2c3c60c3
d8cbe9ce0469f72b8929af01538b6ceddff10a38
/tests/components/calendar/test_trigger.py
ac2547c81f72bf1d79b0d040948536d8a80702ac
[ "Apache-2.0" ]
permissive
piitaya/home-assistant
9c1ba162dac9604e4d43e035e74bad7bba327f0b
48893738192431f96966998c4ff7a3723a2f8f4a
refs/heads/dev
2023-03-07T16:13:32.117970
2023-01-10T17:47:48
2023-01-10T17:47:48
172,578,293
3
1
Apache-2.0
2023-02-22T06:15:56
2019-02-25T20:19:40
Python
UTF-8
Python
false
false
21,468
py
"""Tests for the calendar automation. The tests create calendar based automations, set up a fake set of calendar events, then advance time to exercise that the automation is called. The tests use a fixture that mocks out events returned by the calendar entity, and create events using a relative time offset and then advance the clock forward exercising the triggers. """ from __future__ import annotations from collections.abc import Callable, Generator import datetime import logging import secrets from typing import Any from unittest.mock import patch import pytest from homeassistant.components import calendar import homeassistant.components.automation as automation from homeassistant.components.calendar.trigger import EVENT_END, EVENT_START from homeassistant.core import HomeAssistant from homeassistant.setup import async_setup_component import homeassistant.util.dt as dt_util from tests.common import async_fire_time_changed, async_mock_service _LOGGER = logging.getLogger(__name__) CALENDAR_ENTITY_ID = "calendar.calendar_2" CONFIG = {calendar.DOMAIN: {"platform": "demo"}} TEST_AUTOMATION_ACTION = { "service": "test.automation", "data": { "platform": "{{ trigger.platform }}", "event": "{{ trigger.event }}", "calendar_event": "{{ trigger.calendar_event }}", }, } # The trigger sets two alarms: One based on the next event and one # to refresh the schedule. The test advances the time an arbitrary # amount to trigger either type of event with a small jitter. TEST_TIME_ADVANCE_INTERVAL = datetime.timedelta(minutes=1) TEST_UPDATE_INTERVAL = datetime.timedelta(minutes=7) class FakeSchedule: """Test fixture class for return events in a specific date range.""" def __init__(self, hass, freezer): """Initiailize FakeSchedule.""" self.hass = hass self.freezer = freezer # Map of event start time to event self.events: list[calendar.CalendarEvent] = [] def create_event( self, start: datetime.timedelta, end: datetime.timedelta, summary: str | None = None, description: str | None = None, location: str | None = None, ) -> dict[str, Any]: """Create a new fake event, used by tests.""" event = calendar.CalendarEvent( start=start, end=end, summary=summary if summary else f"Event {secrets.token_hex(16)}", description=description, location=location, ) self.events.append(event) return event.as_dict() async def async_get_events( self, hass: HomeAssistant, start_date: datetime.datetime, end_date: datetime.datetime, ) -> list[calendar.CalendarEvent]: """Get all events in a specific time frame, used by the demo calendar.""" assert start_date < end_date values = [] local_start_date = dt_util.as_local(start_date) local_end_date = dt_util.as_local(end_date) for event in self.events: if ( event.start_datetime_local < local_end_date and local_start_date < event.end_datetime_local ): values.append(event) return values async def fire_time(self, trigger_time: datetime.datetime) -> None: """Fire an alarm and wait.""" _LOGGER.debug(f"Firing alarm @ {trigger_time}") self.freezer.move_to(trigger_time) async_fire_time_changed(self.hass, trigger_time) await self.hass.async_block_till_done() async def fire_until(self, end: datetime.timedelta) -> None: """Simulate the passage of time by firing alarms until the time is reached.""" current_time = dt_util.as_utc(self.freezer()) if (end - current_time) > (TEST_UPDATE_INTERVAL * 2): # Jump ahead to right before the target alarm them to remove # unnecessary waiting, before advancing in smaller increments below. # This leaves time for multiple update intervals to refresh the set # of upcoming events await self.fire_time(end - TEST_UPDATE_INTERVAL * 2) while dt_util.utcnow() < end: self.freezer.tick(TEST_TIME_ADVANCE_INTERVAL) await self.fire_time(dt_util.utcnow()) @pytest.fixture def set_time_zone(hass): """Set the time zone for the tests.""" # Set our timezone to CST/Regina so we can check calculations # This keeps UTC-6 all year round hass.config.set_time_zone("America/Regina") @pytest.fixture def fake_schedule(hass, freezer): """Fixture that tests can use to make fake events.""" # Setup start time for all tests freezer.move_to("2022-04-19 10:31:02+00:00") schedule = FakeSchedule(hass, freezer) with patch( "homeassistant.components.demo.calendar.DemoCalendar.async_get_events", new=schedule.async_get_events, ): yield schedule @pytest.fixture(autouse=True) async def setup_calendar(hass: HomeAssistant, fake_schedule: FakeSchedule) -> None: """Initialize the demo calendar.""" assert await async_setup_component(hass, calendar.DOMAIN, CONFIG) await hass.async_block_till_done() async def create_automation(hass: HomeAssistant, event_type: str, offset=None) -> None: """Register an automation.""" trigger_data = { "platform": calendar.DOMAIN, "entity_id": CALENDAR_ENTITY_ID, "event": event_type, } if offset: trigger_data["offset"] = offset assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": trigger_data, "action": TEST_AUTOMATION_ACTION, "mode": "queued", } }, ) await hass.async_block_till_done() @pytest.fixture def calls(hass: HomeAssistant) -> Callable[[], list]: """Fixture to return payload data for automation calls.""" service_calls = async_mock_service(hass, "test", "automation") def get_trigger_data() -> list: return [c.data for c in service_calls] return get_trigger_data @pytest.fixture(autouse=True) def mock_update_interval() -> Generator[None, None, None]: """Fixture to override the update interval for refreshing events.""" with patch( "homeassistant.components.calendar.trigger.UPDATE_INTERVAL", new=TEST_UPDATE_INTERVAL, ): yield async def test_event_start_trigger(hass, calls, fake_schedule): """Test the a calendar trigger based on start time.""" event_data = fake_schedule.create_event( start=datetime.datetime.fromisoformat("2022-04-19 11:00:00+00:00"), end=datetime.datetime.fromisoformat("2022-04-19 11:30:00+00:00"), ) await create_automation(hass, EVENT_START) assert len(calls()) == 0 await fake_schedule.fire_until( datetime.datetime.fromisoformat("2022-04-19 11:15:00+00:00"), ) assert calls() == [ { "platform": "calendar", "event": EVENT_START, "calendar_event": event_data, } ] @pytest.mark.parametrize( "offset_str, offset_delta", [ ("-01:00", datetime.timedelta(hours=-1)), ("+01:00", datetime.timedelta(hours=1)), ], ) async def test_event_start_trigger_with_offset( hass, calls, fake_schedule, offset_str, offset_delta ): """Test the a calendar trigger based on start time with an offset.""" event_data = fake_schedule.create_event( start=datetime.datetime.fromisoformat("2022-04-19 12:00:00+00:00"), end=datetime.datetime.fromisoformat("2022-04-19 12:30:00+00:00"), ) await create_automation(hass, EVENT_START, offset=offset_str) # No calls yet await fake_schedule.fire_until( datetime.datetime.fromisoformat("2022-04-19 11:55:00+00:00") + offset_delta, ) assert len(calls()) == 0 # Event has started w/ offset await fake_schedule.fire_until( datetime.datetime.fromisoformat("2022-04-19 12:05:00+00:00") + offset_delta, ) assert calls() == [ { "platform": "calendar", "event": EVENT_START, "calendar_event": event_data, } ] async def test_event_end_trigger(hass, calls, fake_schedule): """Test the a calendar trigger based on end time.""" event_data = fake_schedule.create_event( start=datetime.datetime.fromisoformat("2022-04-19 11:00:00+00:00"), end=datetime.datetime.fromisoformat("2022-04-19 12:00:00+00:00"), ) await create_automation(hass, EVENT_END) # Event started, nothing should fire yet await fake_schedule.fire_until( datetime.datetime.fromisoformat("2022-04-19 11:10:00+00:00") ) assert len(calls()) == 0 # Event ends await fake_schedule.fire_until( datetime.datetime.fromisoformat("2022-04-19 12:10:00+00:00") ) assert calls() == [ { "platform": "calendar", "event": EVENT_END, "calendar_event": event_data, } ] @pytest.mark.parametrize( "offset_str, offset_delta", [ ("-01:00", datetime.timedelta(hours=-1)), ("+01:00", datetime.timedelta(hours=1)), ], ) async def test_event_end_trigger_with_offset( hass, calls, fake_schedule, offset_str, offset_delta ): """Test the a calendar trigger based on end time with an offset.""" event_data = fake_schedule.create_event( start=datetime.datetime.fromisoformat("2022-04-19 12:00:00+00:00"), end=datetime.datetime.fromisoformat("2022-04-19 12:30:00+00:00"), ) await create_automation(hass, EVENT_END, offset=offset_str) # No calls yet await fake_schedule.fire_until( datetime.datetime.fromisoformat("2022-04-19 12:05:00+00:00") + offset_delta, ) assert len(calls()) == 0 # Event has started w/ offset await fake_schedule.fire_until( datetime.datetime.fromisoformat("2022-04-19 12:35:00+00:00") + offset_delta, ) assert calls() == [ { "platform": "calendar", "event": EVENT_END, "calendar_event": event_data, } ] async def test_calendar_trigger_with_no_events(hass, calls, fake_schedule): """Test a calendar trigger setup with no events.""" await create_automation(hass, EVENT_START) await create_automation(hass, EVENT_END) # No calls, at arbitrary times await fake_schedule.fire_until( datetime.datetime.fromisoformat("2022-04-19 11:00:00+00:00") ) assert len(calls()) == 0 async def test_multiple_start_events(hass, calls, fake_schedule): """Test that a trigger fires for multiple events.""" event_data1 = fake_schedule.create_event( start=datetime.datetime.fromisoformat("2022-04-19 10:45:00+00:00"), end=datetime.datetime.fromisoformat("2022-04-19 11:00:00+00:00"), ) event_data2 = fake_schedule.create_event( start=datetime.datetime.fromisoformat("2022-04-19 11:00:00+00:00"), end=datetime.datetime.fromisoformat("2022-04-19 11:15:00+00:00"), ) await create_automation(hass, EVENT_START) await fake_schedule.fire_until( datetime.datetime.fromisoformat("2022-04-19 11:30:00+00:00") ) assert calls() == [ { "platform": "calendar", "event": EVENT_START, "calendar_event": event_data1, }, { "platform": "calendar", "event": EVENT_START, "calendar_event": event_data2, }, ] async def test_multiple_end_events(hass, calls, fake_schedule): """Test that a trigger fires for multiple events.""" event_data1 = fake_schedule.create_event( start=datetime.datetime.fromisoformat("2022-04-19 10:45:00+00:00"), end=datetime.datetime.fromisoformat("2022-04-19 11:00:00+00:00"), ) event_data2 = fake_schedule.create_event( start=datetime.datetime.fromisoformat("2022-04-19 11:00:00+00:00"), end=datetime.datetime.fromisoformat("2022-04-19 11:15:00+00:00"), ) await create_automation(hass, EVENT_END) await fake_schedule.fire_until( datetime.datetime.fromisoformat("2022-04-19 11:30:00+00:00") ) assert calls() == [ { "platform": "calendar", "event": EVENT_END, "calendar_event": event_data1, }, { "platform": "calendar", "event": EVENT_END, "calendar_event": event_data2, }, ] async def test_multiple_events_sharing_start_time(hass, calls, fake_schedule): """Test that a trigger fires for every event sharing a start time.""" event_data1 = fake_schedule.create_event( start=datetime.datetime.fromisoformat("2022-04-19 11:00:00+00:00"), end=datetime.datetime.fromisoformat("2022-04-19 11:30:00+00:00"), ) event_data2 = fake_schedule.create_event( start=datetime.datetime.fromisoformat("2022-04-19 11:00:00+00:00"), end=datetime.datetime.fromisoformat("2022-04-19 11:30:00+00:00"), ) await create_automation(hass, EVENT_START) await fake_schedule.fire_until( datetime.datetime.fromisoformat("2022-04-19 11:35:00+00:00") ) assert calls() == [ { "platform": "calendar", "event": EVENT_START, "calendar_event": event_data1, }, { "platform": "calendar", "event": EVENT_START, "calendar_event": event_data2, }, ] async def test_overlap_events(hass, calls, fake_schedule): """Test that a trigger fires for events that overlap.""" event_data1 = fake_schedule.create_event( start=datetime.datetime.fromisoformat("2022-04-19 11:00:00+00:00"), end=datetime.datetime.fromisoformat("2022-04-19 11:30:00+00:00"), ) event_data2 = fake_schedule.create_event( start=datetime.datetime.fromisoformat("2022-04-19 11:15:00+00:00"), end=datetime.datetime.fromisoformat("2022-04-19 11:45:00+00:00"), ) await create_automation(hass, EVENT_START) await fake_schedule.fire_until( datetime.datetime.fromisoformat("2022-04-19 11:20:00+00:00") ) assert calls() == [ { "platform": "calendar", "event": EVENT_START, "calendar_event": event_data1, }, { "platform": "calendar", "event": EVENT_START, "calendar_event": event_data2, }, ] async def test_invalid_calendar_id(hass, caplog): """Test creating a trigger with an invalid calendar id.""" assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "action": TEST_AUTOMATION_ACTION, "trigger": { "platform": calendar.DOMAIN, "entity_id": "invalid-calendar-id", }, } }, ) await hass.async_block_till_done() assert "Entity ID invalid-calendar-id is an invalid entity ID" in caplog.text async def test_legacy_entity_type(hass, caplog): """Test creating a trigger with an invalid calendar id.""" assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "action": TEST_AUTOMATION_ACTION, "trigger": { "platform": calendar.DOMAIN, "entity_id": "calendar.calendar_3", }, } }, ) await hass.async_block_till_done() assert "is not a calendar entity" in caplog.text async def test_update_next_event(hass, calls, fake_schedule): """Test detection of a new event after initial trigger is setup.""" event_data1 = fake_schedule.create_event( start=datetime.datetime.fromisoformat("2022-04-19 11:00:00+00:00"), end=datetime.datetime.fromisoformat("2022-04-19 11:15:00+00:00"), ) await create_automation(hass, EVENT_START) # No calls before event start await fake_schedule.fire_until( datetime.datetime.fromisoformat("2022-04-19 10:45:00+00:00") ) assert len(calls()) == 0 # Create a new event between now and when the event fires event_data2 = fake_schedule.create_event( start=datetime.datetime.fromisoformat("2022-04-19 10:55:00+00:00"), end=datetime.datetime.fromisoformat("2022-04-19 11:05:00+00:00"), ) # Advance past the end of the events await fake_schedule.fire_until( datetime.datetime.fromisoformat("2022-04-19 11:30:00+00:00") ) assert calls() == [ { "platform": "calendar", "event": EVENT_START, "calendar_event": event_data2, }, { "platform": "calendar", "event": EVENT_START, "calendar_event": event_data1, }, ] async def test_update_missed(hass, calls, fake_schedule): """Test that new events are missed if they arrive outside the update interval.""" event_data1 = fake_schedule.create_event( start=datetime.datetime.fromisoformat("2022-04-19 11:00:00+00:00"), end=datetime.datetime.fromisoformat("2022-04-19 11:30:00+00:00"), ) await create_automation(hass, EVENT_START) # Events are refreshed at t+TEST_UPDATE_INTERVAL minutes. A new event is # added, but the next update happens after the event is already over. await fake_schedule.fire_until( datetime.datetime.fromisoformat("2022-04-19 10:38:00+00:00") ) assert len(calls()) == 0 fake_schedule.create_event( start=datetime.datetime.fromisoformat("2022-04-19 10:40:00+00:00"), end=datetime.datetime.fromisoformat("2022-04-19 10:55:00+00:00"), ) # Only the first event is returned await fake_schedule.fire_until( datetime.datetime.fromisoformat("2022-04-19 11:05:00+00:00") ) assert calls() == [ { "platform": "calendar", "event": EVENT_START, "calendar_event": event_data1, }, ] @pytest.mark.parametrize( "create_data,fire_time,payload_data", [ ( { "start": datetime.datetime.fromisoformat("2022-04-19 11:00:00+00:00"), "end": datetime.datetime.fromisoformat("2022-04-19 11:30:00+00:00"), "summary": "Summary", }, datetime.datetime.fromisoformat("2022-04-19 11:15:00+00:00"), { "summary": "Summary", "start": "2022-04-19T11:00:00+00:00", "end": "2022-04-19T11:30:00+00:00", "all_day": False, }, ), ( { "start": datetime.datetime.fromisoformat("2022-04-19 11:00:00+00:00"), "end": datetime.datetime.fromisoformat("2022-04-19 11:30:00+00:00"), "summary": "Summary", "description": "Description", "location": "Location", }, datetime.datetime.fromisoformat("2022-04-19 11:15:00+00:00"), { "summary": "Summary", "start": "2022-04-19T11:00:00+00:00", "end": "2022-04-19T11:30:00+00:00", "all_day": False, "description": "Description", "location": "Location", }, ), ( { "summary": "Summary", "start": datetime.date.fromisoformat("2022-04-20"), "end": datetime.date.fromisoformat("2022-04-21"), }, datetime.datetime.fromisoformat("2022-04-20 00:00:01-06:00"), { "summary": "Summary", "start": "2022-04-20", "end": "2022-04-21", "all_day": True, }, ), ], ids=["basic", "more-fields", "all-day"], ) async def test_event_payload( hass, calls, fake_schedule, set_time_zone, create_data, fire_time, payload_data ): """Test the fields in the calendar event payload are set.""" fake_schedule.create_event(**create_data) await create_automation(hass, EVENT_START) assert len(calls()) == 0 await fake_schedule.fire_until(fire_time) assert calls() == [ { "platform": "calendar", "event": EVENT_START, "calendar_event": payload_data, } ] async def test_trigger_timestamp_window_edge(hass, calls, fake_schedule, freezer): """Test that events in the edge of a scan are included.""" freezer.move_to("2022-04-19 11:00:00+00:00") # Exactly at a TEST_UPDATE_INTERVAL boundary the start time, # making this excluded from the first window. event_data = fake_schedule.create_event( start=datetime.datetime.fromisoformat("2022-04-19 11:14:00+00:00"), end=datetime.datetime.fromisoformat("2022-04-19 11:30:00+00:00"), ) await create_automation(hass, EVENT_START) assert len(calls()) == 0 await fake_schedule.fire_until( datetime.datetime.fromisoformat("2022-04-19 11:20:00+00:00") ) assert calls() == [ { "platform": "calendar", "event": EVENT_START, "calendar_event": event_data, } ]
3a9bf2b914edde4e5c397c7319864fbf32311712
117f066c80f3863ebef74463292bca6444f9758a
/finnhub_swagger_api/finnhub_swagger_api/models/revenue_estimates_info.py
02eb5c15a1e32e1b17eb727157f4a1affeec2537
[]
no_license
cottrell/notebooks
c6de3842cbaeb71457d270cbe6fabc8695a6ee1b
9eaf3d0500067fccb294d064ab78d7aaa03e8b4d
refs/heads/master
2023-08-09T22:41:01.996938
2023-08-04T22:41:51
2023-08-04T22:41:51
26,830,272
3
1
null
2023-03-04T03:58:03
2014-11-18T21:14:23
Python
UTF-8
Python
false
false
7,028
py
# coding: utf-8 """ Finnhub API No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) # noqa: E501 OpenAPI spec version: 1.0.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from finnhub_swagger_api.configuration import Configuration class RevenueEstimatesInfo(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'revenue_avg': 'float', 'revenue_high': 'float', 'revenue_low': 'float', 'number_analysts': 'int', 'period': 'date' } attribute_map = { 'revenue_avg': 'revenueAvg', 'revenue_high': 'revenueHigh', 'revenue_low': 'revenueLow', 'number_analysts': 'numberAnalysts', 'period': 'period' } def __init__(self, revenue_avg=None, revenue_high=None, revenue_low=None, number_analysts=None, period=None, _configuration=None): # noqa: E501 """RevenueEstimatesInfo - a model defined in Swagger""" # noqa: E501 if _configuration is None: _configuration = Configuration() self._configuration = _configuration self._revenue_avg = None self._revenue_high = None self._revenue_low = None self._number_analysts = None self._period = None self.discriminator = None if revenue_avg is not None: self.revenue_avg = revenue_avg if revenue_high is not None: self.revenue_high = revenue_high if revenue_low is not None: self.revenue_low = revenue_low if number_analysts is not None: self.number_analysts = number_analysts if period is not None: self.period = period @property def revenue_avg(self): """Gets the revenue_avg of this RevenueEstimatesInfo. # noqa: E501 Average revenue estimates including Finnhub's proprietary estimates. # noqa: E501 :return: The revenue_avg of this RevenueEstimatesInfo. # noqa: E501 :rtype: float """ return self._revenue_avg @revenue_avg.setter def revenue_avg(self, revenue_avg): """Sets the revenue_avg of this RevenueEstimatesInfo. Average revenue estimates including Finnhub's proprietary estimates. # noqa: E501 :param revenue_avg: The revenue_avg of this RevenueEstimatesInfo. # noqa: E501 :type: float """ self._revenue_avg = revenue_avg @property def revenue_high(self): """Gets the revenue_high of this RevenueEstimatesInfo. # noqa: E501 Highest estimate. # noqa: E501 :return: The revenue_high of this RevenueEstimatesInfo. # noqa: E501 :rtype: float """ return self._revenue_high @revenue_high.setter def revenue_high(self, revenue_high): """Sets the revenue_high of this RevenueEstimatesInfo. Highest estimate. # noqa: E501 :param revenue_high: The revenue_high of this RevenueEstimatesInfo. # noqa: E501 :type: float """ self._revenue_high = revenue_high @property def revenue_low(self): """Gets the revenue_low of this RevenueEstimatesInfo. # noqa: E501 Lowest estimate. # noqa: E501 :return: The revenue_low of this RevenueEstimatesInfo. # noqa: E501 :rtype: float """ return self._revenue_low @revenue_low.setter def revenue_low(self, revenue_low): """Sets the revenue_low of this RevenueEstimatesInfo. Lowest estimate. # noqa: E501 :param revenue_low: The revenue_low of this RevenueEstimatesInfo. # noqa: E501 :type: float """ self._revenue_low = revenue_low @property def number_analysts(self): """Gets the number_analysts of this RevenueEstimatesInfo. # noqa: E501 Number of Analysts. # noqa: E501 :return: The number_analysts of this RevenueEstimatesInfo. # noqa: E501 :rtype: int """ return self._number_analysts @number_analysts.setter def number_analysts(self, number_analysts): """Sets the number_analysts of this RevenueEstimatesInfo. Number of Analysts. # noqa: E501 :param number_analysts: The number_analysts of this RevenueEstimatesInfo. # noqa: E501 :type: int """ self._number_analysts = number_analysts @property def period(self): """Gets the period of this RevenueEstimatesInfo. # noqa: E501 Period. # noqa: E501 :return: The period of this RevenueEstimatesInfo. # noqa: E501 :rtype: date """ return self._period @period.setter def period(self, period): """Sets the period of this RevenueEstimatesInfo. Period. # noqa: E501 :param period: The period of this RevenueEstimatesInfo. # noqa: E501 :type: date """ self._period = period def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(RevenueEstimatesInfo, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, RevenueEstimatesInfo): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, RevenueEstimatesInfo): return True return self.to_dict() != other.to_dict()
26ec2100442d4be7cb84f871f4af39f81f332470
056f10d9f99506bb9b5abf7e91633f3ad0c76061
/CountCSVRows.py
f31ac1a85a8c869736b03a67223274ff65e3ce66
[]
no_license
taers232c/GAM-Scripts3
5f171b620b2ac19514ab7198e39720f59a60ba9e
a59c5adb7b03b6bc9a4e054b9b41eabae2779f13
refs/heads/master
2023-08-31T06:43:57.645295
2023-08-22T17:32:21
2023-08-22T17:32:21
108,921,186
176
46
null
2023-02-28T15:52:32
2017-10-30T23:48:44
Python
UTF-8
Python
false
false
573
py
#!/usr/bin/env python3 """ # Purpose: Count rows in a CSV file # # Python: Use python or python3 below as appropriate to your system; verify that you have version 3 # $ python -V or python3 -V # Python 3.x.y # Usage: # python3 CountCSVRows.py File.csv # """ import csv import sys QUOTE_CHAR = '"' # Adjust as needed if sys.argv[1] != '-': inputFile = open(sys.argv[1], 'r', encoding='utf-8') else: inputFile = sys.stdin rows = 0 for row in csv.DictReader(inputFile, quotechar=QUOTE_CHAR): rows += 1 print(rows) if inputFile != sys.stdin: inputFile.close()
7c4856b94c048615d4958703b69db3191a928ddf
d7195e61bc37f6b90c8bc2d6f164e5e7da98aa77
/landlab/grid/linkstatus.py
6eb74a1aadecb3b7f83bdb0915c210dc93491ae0
[ "MIT" ]
permissive
joeljgeo/landlab
ffaae36b3ad3c5e1377355427bc9cfbb21074f01
1d2651c76a8a36a7a132f139638192df1823f8fb
refs/heads/master
2020-04-05T01:38:11.870170
2018-11-09T16:44:31
2018-11-09T16:44:31
156,443,219
0
0
MIT
2018-11-09T16:44:32
2018-11-06T20:26:54
Python
UTF-8
Python
false
false
5,415
py
#! /usr/bin/env python import numpy as np from .nodestatus import (CLOSED_BOUNDARY, CORE_NODE, FIXED_GRADIENT_BOUNDARY, FIXED_VALUE_BOUNDARY) from ..utils.decorators import (cache_result_in_object, make_return_array_immutable) # Define the link types #: Indicates a link is *active*, and can carry flux ACTIVE_LINK = 0 #: Indicates a link has a fixed (gradient) value, & behaves as a boundary FIXED_LINK = 2 #: Indicates a link is *inactive*, and cannot carry flux INACTIVE_LINK = 4 LINK_STATUS_FLAGS_LIST = [ ACTIVE_LINK, FIXED_LINK, INACTIVE_LINK, ] LINK_STATUS_FLAGS = set(LINK_STATUS_FLAGS_LIST) def is_fixed_link(node_status_at_link): """Find links that are fixed. A link is fixed if it connects a core node with a fixed value boundary node. Parameters ---------- node_status_at_link : ndarray of int, shape `(n_links, 2)` Node status a link tail and head. Returns ------- ndarray of bool, shape `(n_links, )` True if link is fixed. Examples -------- >>> from landlab.grid.diagonals import is_fixed_link >>> from landlab import CORE_NODE, FIXED_GRADIENT_BOUNDARY >>> is_fixed_link([CORE_NODE, FIXED_GRADIENT_BOUNDARY]) array([ True], dtype=bool) >>> from landlab import FIXED_VALUE_BOUNDARY >>> is_fixed_link([CORE_NODE, FIXED_VALUE_BOUNDARY]) array([False], dtype=bool) >>> is_fixed_link([[FIXED_GRADIENT_BOUNDARY, CORE_NODE], ... [CORE_NODE, CORE_NODE]]) array([ True, False], dtype=bool) """ node_status_at_link = np.asarray(node_status_at_link).reshape((-1, 2)) is_core_node = node_status_at_link == CORE_NODE is_fixed_gradient_node = node_status_at_link == FIXED_GRADIENT_BOUNDARY return ((is_core_node[:, 0] & is_fixed_gradient_node[:, 1]) | (is_fixed_gradient_node[:, 0] & is_core_node[:, 1])) def is_inactive_link(node_status_at_link): """Find links that are inactive. A link is inactive if it connects two boundary nodes or one of its nodes is closed. Parameters ---------- node_status_at_link : ndarray of int, shape `(n_links, 2)` Node status a link tail and head. Returns ------- ndarray of bool, shape `(n_links, )` True if link is isactive. Examples -------- >>> from landlab.grid.diagonals import is_inactive_link >>> from landlab import CORE_NODE, FIXED_GRADIENT_BOUNDARY >>> is_inactive_link([CORE_NODE, CLOSED_BOUNDARY]) array([ True], dtype=bool) >>> from landlab import FIXED_VALUE_BOUNDARY >>> is_inactive_link([FIXED_GRADIENT_BOUNDARY, FIXED_VALUE_BOUNDARY]) array([ True], dtype=bool) >>> is_inactive_link([[FIXED_GRADIENT_BOUNDARY, CLOSED_BOUNDARY], ... [CORE_NODE, CORE_NODE]]) array([ True, False], dtype=bool) """ node_status_at_link = np.asarray(node_status_at_link).reshape((-1, 2)) is_core = node_status_at_link == CORE_NODE is_fixed_value = node_status_at_link == FIXED_VALUE_BOUNDARY is_fixed_gradient = node_status_at_link == FIXED_GRADIENT_BOUNDARY is_closed = node_status_at_link == CLOSED_BOUNDARY is_boundary_node = is_fixed_value | is_fixed_gradient | is_closed return ((is_boundary_node[:, 0] & is_boundary_node[:, 1]) | (is_closed[:, 0] & is_core[:, 1]) | (is_core[:, 0] & is_closed[:, 1])) def is_active_link(node_status_at_link): """Find links that are active. A link is active if it connects a core node with another core node or a fixed value boundary. Parameters ---------- node_status_at_link : ndarray of int, shape `(n_links, 2)` Node status a link tail and head. Returns ------- ndarray of bool, shape `(n_links, )` True if link is isactive. Examples -------- >>> from landlab.grid.diagonals import is_active_link >>> from landlab import CORE_NODE, FIXED_GRADIENT_BOUNDARY >>> is_active_link([CORE_NODE, FIXED_GRADIENT_BOUNDARY]) array([False], dtype=bool) >>> from landlab import FIXED_VALUE_BOUNDARY >>> is_active_link([CORE_NODE, FIXED_VALUE_BOUNDARY]) array([ True], dtype=bool) >>> is_active_link([[FIXED_GRADIENT_BOUNDARY, CORE_NODE], ... [CORE_NODE, CORE_NODE]]) array([False, True], dtype=bool) """ node_status_at_link = np.asarray(node_status_at_link).reshape((-1, 2)) is_core_node = node_status_at_link == CORE_NODE is_fixed_value_node = node_status_at_link == FIXED_VALUE_BOUNDARY return ( (is_core_node[:, 0] & is_core_node[:, 1]) | (is_core_node[:, 0] & is_fixed_value_node[:, 1]) | (is_fixed_value_node[:, 0] & is_core_node[:, 1]) ) def set_status_at_link(node_status_at_link, out=None): n_links = len(node_status_at_link) if out is None: out = np.full(n_links, 255, dtype=np.uint8) _is_fixed_link = is_fixed_link(node_status_at_link) _is_active_link = is_active_link(node_status_at_link) _is_inactive_link = is_inactive_link(node_status_at_link) assert np.all(np.sum(np.vstack((_is_active_link, _is_inactive_link, _is_fixed_link)), axis=0) == 1) out[_is_inactive_link] = INACTIVE_LINK out[_is_active_link] = ACTIVE_LINK out[_is_fixed_link] = FIXED_LINK return out
6d8323e3ea02352d65d2f5f99110a013ddd2cc3d
1348885ccdebfcb6010a267a3440a4ccc64373d1
/Examples/IPlugSideChain/scripts/update_installer_version.py
d4c3a9886d1d11e75b3572f01e371d4ebdeff671
[ "LicenseRef-scancode-other-permissive", "LicenseRef-scancode-unknown-license-reference" ]
permissive
ddf/iPlug2
c6565343def57dbf063fefb3b875c6337d363081
d05d20929544b06500369208b9ec81a62eb191fb
refs/heads/master
2022-11-02T04:39:45.019866
2022-10-10T17:15:04
2022-10-10T17:15:04
170,179,953
2
0
NOASSERTION
2019-02-11T18:30:30
2019-02-11T18:30:30
null
UTF-8
Python
false
false
3,091
py
#!/usr/bin/python3 # this script will update the versions in packages and innosetup installer files to match that in config.h import plistlib, os, datetime, fileinput, glob, sys, string scriptpath = os.path.dirname(os.path.realpath(__file__)) projectpath = os.path.abspath(os.path.join(scriptpath, os.pardir)) IPLUG2_ROOT = "../../.." sys.path.insert(0, os.path.join(os.getcwd(), IPLUG2_ROOT + '/Scripts')) from parse_config import parse_config def replacestrs(filename, s, r): files = glob.glob(filename) for line in fileinput.input(files,inplace=1): string.find(line, s) line = line.replace(s, r) sys.stdout.write(line) def main(): demo = 0 if len(sys.argv) != 2: print("Usage: update_installer_version.py demo(0 or 1)") sys.exit(1) else: demo=int(sys.argv[1]) config = parse_config(projectpath) # MAC INSTALLER print("Updating Mac Installer version info...") plistpath = projectpath + "/installer/" + config['BUNDLE_NAME'] + ".pkgproj" with open(plistpath, 'rb') as fp: installer = plistlib.load(fp) # range = number of items in the installer (VST 2, VST 3, app, audiounit, aax) for x in range(0,5): installer['PACKAGES'][x]['PACKAGE_SETTINGS']['VERSION'] = config['FULL_VER_STR'] if demo: installer['PROJECT']['PROJECT_PRESENTATION']['TITLE']['LOCALIZATIONS'][0]['VALUE'] = config['BUNDLE_NAME'] + " Demo" installer['PROJECT']['PROJECT_PRESENTATION']['INTRODUCTION']['LOCALIZATIONS'][0]['VALUE']['PATH'] = "intro-demo.rtf" else: installer['PROJECT']['PROJECT_PRESENTATION']['TITLE']['LOCALIZATIONS'][0]['VALUE'] = config['BUNDLE_NAME'] installer['PROJECT']['PROJECT_PRESENTATION']['INTRODUCTION']['LOCALIZATIONS'][0]['VALUE']['PATH'] = "intro.rtf" with open(plistpath, 'wb') as fp: plistlib.dump(installer, fp) # replacestrs(plistpath, "//Apple//", "//Apple Computer//") # WIN INSTALLER print("Updating Windows Installer version info...") for line in fileinput.input(projectpath + "/installer/" + config['BUNDLE_NAME'] + ".iss",inplace=1): if "AppVersion" in line: line="AppVersion=" + config['FULL_VER_STR'] + "\n" if "OutputBaseFilename" in line: if demo: line="OutputBaseFilename=IPlugSideChain Demo Installer\n" else: line="OutputBaseFilename=IPlugSideChain Installer\n" if 'Source: "readme' in line: if demo: line='Source: "readme-win-demo.rtf"; DestDir: "{app}"; DestName: "readme.rtf"; Flags: isreadme\n' else: line='Source: "readme-win.rtf"; DestDir: "{app}"; DestName: "readme.rtf"; Flags: isreadme\n' if "WelcomeLabel1" in line: if demo: line="WelcomeLabel1=Welcome to the IPlugSideChain Demo installer\n" else: line="WelcomeLabel1=Welcome to the IPlugSideChain installer\n" if "SetupWindowTitle" in line: if demo: line="SetupWindowTitle=IPlugSideChain Demo installer\n" else: line="SetupWindowTitle=IPlugSideChain installer\n" sys.stdout.write(line) if __name__ == '__main__': main()
d021d36f984ab643b089ddca6cf72adba3e0c21e
e3565e1ce607f60745f2a045aae8026661a6b99b
/resources/Onyx-1.0.511/py/onyx/grid/griddy.py
b7fdb67930c51b30bfc7c426ac2a4ed49d48c2c2
[ "Apache-2.0" ]
permissive
eternity668/speechAD
4c08d953b2ed06b3357b1c39d8709dd088a2471c
f270a1be86372b7044615e4fd82032029e123bc1
refs/heads/master
2021-01-12T22:10:33.358500
2014-02-03T16:03:28
2014-02-03T16:03:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,152
py
########################################################################### # # File: griddy.py (directory: ./py/onyx/grid) # Date: 4-Feb-2009 # Author: Hugh Secker-Walker # Description: A function for use in testing by gridgo.py # # This file is part of Onyx http://onyxtools.sourceforge.net # # Copyright 2009 The Johns Hopkins University # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. See the License for the specific language governing # permissions and limitations under the License. # ########################################################################### """ >>> True True """ def my_func(a, b, c): return a, b, c if __name__ == '__main__': from onyx import onyx_mainstartup onyx_mainstartup()
9eb02a16cb5679b043e158e4f36ae3ea11a51e80
162f0a636cab320ead784b33597e583e38ac432f
/1744.py
f339b7b48defbece73a4dddc7bee0dbea7c0d161
[]
no_license
goodsosbva/BOJ_Greedy
fc2450df90f64790f6cc01c168ba7f19ec83e504
98d21af254cacf41632a4b40ca9ef643b29bb104
refs/heads/main
2023-03-31T17:26:33.863396
2021-04-06T07:50:57
2021-04-06T07:50:57
347,081,712
1
0
null
null
null
null
UTF-8
Python
false
false
1,641
py
n = int(input()) sequence = [] negative = [] positive = [] res = 0 for i in range(n): i = int(input()) sequence.append(i) for k in sequence: if k < 0: negative.append(k) elif k > 0: positive.append(k) else: negative.append(k) negative.sort() positive.sort(reverse=True) # print(negative) u = len(negative) if 0 in negative: if u % 2 == 0: for q in range(0, u, 2): res += negative[q] * negative[q + 1] else: for w in range(0, u - 1, 2): res += negative[w] * negative[w + 1] else: if u % 2 == 0: for q in range(0, u, 2): res += negative[q] * negative[q + 1] elif u % 2 != 0 and u != 1: for w in range(0, u - 1, 2): res += negative[w] * negative[w + 1] res += negative[u - 1] else: res += negative[0] # print("음수합:", res) # print(positive) v = len(positive) if 1 in positive: x = positive.count(1) # print(x) if v - 1 > x: if v % 2 == 0: for s in range(0, v - x, 2): res += positive[s] * positive[s + 1] res += x else: for t in range(0, v - x, 2): res += positive[t] * positive[t + 1] res += x else: for h in positive: res += h else: if v % 2 == 0: for r in range(0, v, 2): res += positive[r] * positive[r + 1] else: for f in range(0, v - 1, 2): res += positive[f] * positive[f + 1] res += positive[v - 1] print(res)
f8e9765b859dd527defd2ce06933a55ecb70e041
35fdd5b42b47a1dbe6a25f6fc1865f4e48b842a5
/evalml/tests/component_tests/test_catboost_classifier.py
1ef6fd41a8656a2914d90172ce42a92330d0a24e
[ "BSD-3-Clause" ]
permissive
skvorekn/evalml
41e5426f9f7d5ad625c21b74336009894c79c7de
2cbfa344ec3fdc0fb0f4a0f1093811135b9b97d8
refs/heads/main
2023-03-27T01:42:07.691406
2021-03-19T18:53:43
2021-03-19T18:53:43
349,555,689
0
0
BSD-3-Clause
2021-03-21T14:57:01
2021-03-19T21:08:12
null
UTF-8
Python
false
false
837
py
import pandas as pd from pytest import importorskip from evalml.pipelines.components import CatBoostClassifier from evalml.utils import SEED_BOUNDS importorskip('catboost', reason='Skipping test because catboost not installed') def test_catboost_classifier_random_seed_bounds_seed(X_y_binary): """ensure catboost's RNG doesn't fail for the min/max bounds we support on user-inputted random seeds""" X, y = X_y_binary col_names = ["col_{}".format(i) for i in range(len(X[0]))] X = pd.DataFrame(X, columns=col_names) y = pd.Series(y) clf = CatBoostClassifier(n_estimators=1, max_depth=1, random_seed=SEED_BOUNDS.min_bound) clf.fit(X, y) clf = CatBoostClassifier(n_estimators=1, max_depth=1, random_seed=SEED_BOUNDS.max_bound) fitted = clf.fit(X, y) assert isinstance(fitted, CatBoostClassifier)
0f776e18f96167e136351a53c789777a2a35a629
cbc5e26bb47ae69e80a3649c90275becf25ce404
/xlsxwriter/test/comparison/test_chart_layout04.py
f377a5806721d2af1d65752bac33bb918a5d84f3
[ "BSD-2-Clause-Views", "BSD-3-Clause", "MIT" ]
permissive
mst-solar-car/kicad-bom-generator
c3549409c3139f787ad28391372b5cb03791694a
2aae905056d06f3d25343a8d784049c141d05640
refs/heads/master
2021-09-07T14:00:40.759486
2018-02-23T23:21:13
2018-02-23T23:21:13
107,868,801
3
0
null
null
null
null
UTF-8
Python
false
false
1,764
py
############################################################################### # # Tests for XlsxWriter. # # Copyright (c), 2013-2017, John McNamara, [email protected] # from ..excel_comparsion_test import ExcelComparisonTest from ...workbook import Workbook class TestCompareXLSXFiles(ExcelComparisonTest): """ Test file created by XlsxWriter against a file created by Excel. """ def setUp(self): self.maxDiff = None filename = 'chart_layout04.xlsx' test_dir = 'xlsxwriter/test/comparison/' self.got_filename = test_dir + '_test_' + filename self.exp_filename = test_dir + 'xlsx_files/' + filename self.ignore_files = [] self.ignore_elements = {} def test_create_file(self): """Test the creation of an XlsxWriter file with user defined layout.""" workbook = Workbook(self.got_filename) worksheet = workbook.add_worksheet() chart = workbook.add_chart({'type': 'column'}) chart.axis_ids = [68311296, 69198208] data = [ [1, 2, 3, 4, 5], [2, 4, 6, 8, 10], [3, 6, 9, 12, 15], ] worksheet.write_column('A1', data[0]) worksheet.write_column('B1', data[1]) worksheet.write_column('C1', data[2]) chart.add_series({'values': '=Sheet1!$A$1:$A$5'}) chart.add_series({'values': '=Sheet1!$B$1:$B$5'}) chart.add_series({'values': '=Sheet1!$C$1:$C$5'}) chart.set_title({ 'name': 'Title', 'layout': { 'x': 0.42631933508311465, 'y': 0.14351851851851852, } }) worksheet.insert_chart('E9', chart) workbook.close() self.assertExcelEqual()
48cf0f54c8738ea16878d6beb0a2fd2a8d7aa385
c50e5af8f72de6ef560ee6c0bbfa756087824c96
/刷题/Leetcode/84. 柱状图中最大的矩形/p84_Largest_Rectangle_in_Histogram_暴力.py
7430809260718f7c390d48a5c4dc9f9b4dcaa792
[]
no_license
binghe2402/learnPython
5a1beef9d446d8316aaa65f6cc9d8aee59ab4d1c
2b9e21fe4a8eea0f8826c57287d59f9d8f3c87ce
refs/heads/master
2022-05-27T03:32:12.750854
2022-03-19T08:00:19
2022-03-19T08:00:19
252,106,387
0
0
null
null
null
null
UTF-8
Python
false
false
1,012
py
from typing import List class Solution: # # 遍历不同边界(宽度),根据最小高度 # def largestRectangleArea(self, heights: List[int]) -> int: # area = 0 # for i in range(len(heights)): # for j in range(i, len(heights)): # area = max(area, (j-i+1)*min(heights[i:j+1])) # return area # 遍历不同高度(从每个柱向两侧扩展),根据当前高度的最小宽度(最窄边界) # 当两侧高度小于中央开始起点的高度,即为边界 def largestRectangleArea(self, heights: List[int]) -> int: area = 0 for i in range(len(heights)): left = right = i # 寻找左边界 while left >= 0 and heights[i] <= heights[left]: left -= 1 # 寻找右边界 while right < len(heights) and heights[i] <= heights[right]: right += 1 area = max(area, (right - left - 1)*heights[i]) return area
c6fef081bd46b0cb2875a2870bf64ad4631575c4
baffcef29e33658138c43ef358d7399ab3ea2c0d
/WORKFLOWS/Tools/NEC/NAL/nal-model/rest/test/unit/test_dcs.py
cb088e130c920d2697ba7584fef6500526bdc175
[ "Apache-2.0", "JSON" ]
permissive
openmsa/NO
aa7d4ff000875bfcff0baee24555ec16becdb64e
24df42ee3927415b552b5e5d7326eecd04ebca61
refs/heads/master
2020-03-09T23:21:09.657439
2019-03-29T06:29:07
2019-03-29T06:29:07
129,056,267
0
1
null
null
null
null
UTF-8
Python
false
false
7,271
py
import json import mysql.connector import os import sys import unittest import urllib.request import urllib.parse sys.path.append(os.path.dirname(os.path.abspath(__file__)) + '/../../../') from rest.api import router from rest.conf import config class TestSelectAPI(unittest.TestCase): # Do a test of Select. ID = 0 def setUp(self): # Establish a clean test environment. super(TestSelectAPI, self).setUp() # Insert test data self.create_fixtures() def tearDown(self): """Clear the test environment""" super(TestSelectAPI, self).tearDown() self.destroy_fixtures() def create_fixtures(self): con, cur = self.connect_db() global extension_info extension_info = { 'dc_name': 'dc_namexxxxxxxxxx', 'dc_number': 'dc_numberxxxxxxxxxx' } # Execute SQL param_vals = ['test_create_id-0ac6cb428b23', '2016-12-31 23:59:59', 'test_update_id-0ac6cb428b23', '2016-12-31 23:59:59', 0, 'dc_id-dd7e-0ac6cb428b23', json.dumps(extension_info)] cur.execute("INSERT INTO WIM_DC_MNG(create_id, create_date, " + "update_id, update_date, delete_flg, " + "dc_id, extension_info) VALUES " + "(%s, %s, %s, %s, %s, %s, %s)", param_vals) cur.execute('SELECT last_insert_id() FROM WIM_DC_MNG') global ID ID = cur.fetchall()[0][0] self.cut_db(con, cur) def destroy_fixtures(self): con, cur = self.connect_db() # Execute SQL param_vals = ['test_create_id-0ac6cb428b23'] cur.execute("DELETE FROM WIM_DC_MNG WHERE " + "create_id = %s", param_vals) self.cut_db(con, cur) def connect_db(self): # Connect Database con = mysql.connector.connect( host=getattr(config, 'MYSQL_HOSTNAME', ''), db=getattr(config, 'MYSQL_DBNAME', ''), user=getattr(config, 'MYSQL_USERID', ''), passwd=getattr(config, 'MYSQL_PASSWORD', ''), buffered=True) # Set Autocommit Off con.autocommit = False # Open Cursor cur = con.cursor() return con, cur def cut_db(self, con, cur): # Commit Transaction con.commit() # Close Cursor cur.close() # Close Database con.close() def test_select_api(self): request_params = { 'query': { 'delete_flg': '0', 'ID': ID }, 'resource': 'dcs', 'method': 'GET', 'id': [] } res = router.Router().routing(request_params) status = res['status'] res_data = res['message'].decode('utf-8') res_data = json.loads(res_data) self.assertEqual(status, '200 OK') self.assertEqual(len(res_data), 1) self.assertEqual(res_data[0]['ID'], ID) self.assertEqual(res_data[0]['create_id'], 'test_create_id-0ac6cb428b23') self.assertEqual(res_data[0]['update_id'], 'test_update_id-0ac6cb428b23') self.assertEqual(res_data[0]['delete_flg'], '0') self.assertEqual(res_data[0].get('extension_info', ''), '') for key in extension_info: self.assertEqual(res_data[0].get(key), extension_info[key]) def test_insert_api(self): insert_params = { 'create_id': 'test_create_id-0ac6cb428b23', 'update_id': 'test_create_id-0ac6cb428b23', 'delete_flg': 0, 'dc_id': 'dc_id-bb6d-6bb9bd380a11', 'dc_name': 'dc_name_B', 'dc_number': 1234 } request_params = { 'body': insert_params, 'query': {}, 'resource': 'dcs', 'method': 'POST', 'id': [] } res = router.Router().routing(request_params) status = res['status'] res_data = res['message'].decode('utf-8') res_data = json.loads(res_data) # Assertion self.assertEqual(status, '200 OK') self.assertEqual(len(res_data), 1) self.assertTrue('ID' in res_data) # Assertion(check select) request_params = { 'query': { 'dc_id': 'dc_id-bb6d-6bb9bd380a11', }, 'resource': 'dcs', 'method': 'GET', 'id': [] } res = router.Router().routing(request_params) status = res['status'] res_data = res['message'].decode('utf-8') res_data = json.loads(res_data) self.assertEqual(status, '200 OK') self.assertEqual(len(res_data), 1) for key in insert_params: if key == 'delete_flg': self.assertEqual(res_data[0].get(key), str(insert_params[key])) else: self.assertEqual(res_data[0].get(key), insert_params[key]) def test_update_api(self): update_params = { 'update_id': 'test_update_id-0ac6cb428b23', 'dc_id': 'dc_id-ad4c-4cc6ea276a55', 'dc_name': 'dc_name_C', 'dc_number': 5678 } request_params = { 'body': update_params, 'query': {}, 'resource': 'dcs', 'method': 'PUT', 'id': [ID] } res = router.Router().routing(request_params) status = res['status'] res_data = res['message'].decode('utf-8') res_data = json.loads(res_data) # Assertion self.assertEqual(status, '200 OK') self.assertEqual(res_data, True) # Assertion(check select) request_params = { 'query': { 'dc_id': 'dc_id-ad4c-4cc6ea276a55', }, 'resource': 'dcs', 'method': 'GET', 'id': [] } res = router.Router().routing(request_params) status = res['status'] res_data = res['message'].decode('utf-8') res_data = json.loads(res_data) self.assertEqual(status, '200 OK') self.assertEqual(len(res_data), 1) for key in update_params: if key == 'delete_flg': self.assertEqual(res_data[0].get(key), str(update_params[key])) else: self.assertEqual(res_data[0].get(key), update_params[key]) def test_delete_api(self): request_params = { 'body': {}, 'query': {}, 'resource': 'dcs', 'method': 'DELETE', 'id': [ID] } res = router.Router().routing(request_params) status = res['status'] res_data = res['message'].decode('utf-8') res_data = json.loads(res_data) # Assertion self.assertEqual(status, '200 OK') self.assertEqual(res_data, True) # Assertion(Select Check) con, cur = self.connect_db() cur.execute("SELECT ID FROM WIM_DC_MNG " + "WHERE ID = %s", [ID]) self.assertEqual(cur.fetchall(), []) self.cut_db(con, cur)
fbd49bfeec9947ef6f83b1e9787a0081f6be9f05
57775b4c245723078fd43abc35320cb16f0d4cb6
/Data structure/linked-list/delete-node-given-position.py
cc4164b336e8f1ad6093479327c26ce5514d4106
[]
no_license
farhapartex/code-ninja
1757a7292ac4cdcf1386fe31235d315a4895f072
168fdc915a4e3d3e4d6f051c798dee6ee64ea290
refs/heads/master
2020-07-31T16:10:43.329468
2020-06-18T07:00:34
2020-06-18T07:00:34
210,668,245
0
0
null
null
null
null
UTF-8
Python
false
false
2,394
py
""" Given a ‘key’, delete the first occurrence of this key in linked list. To delete a node from linked list, we need to do following steps. 1) Find previous node of the node to be deleted. 2) Change the next of previous node. 3) Free memory for the node to be deleted. """ class Node: def __init__(self, data): self.data = data self.next = None class LinkedList: def __init__(self): self.head = None def print_list(self): temp = self.head while temp: print(temp.data) temp = temp.next def push_front(self, node): new_node = Node(node) new_node.next = self.head self.head = new_node def insert_after(self, prev_node, new_node): if prev_node is None: print("Previous node must be in a LinkedList") return new_node = Node(new_node) new_node.next = prev_node.next prev_node.next = new_node def append(self, new_data): new_node = Node(new_data) if self.head is None: self.head = new_node return last = self.head while last.next: last = last.next last.next = new_node def deleteNodeGivenPosition(self, position): if self.head is None: return temp = self.head if position == 0: self.head = temp.next temp = None return # Find previous node of the node to be deleted for i in range(position-1): temp = temp.next if temp is None: break # If position is more than number of nodes if temp is None: return if temp.next is None: return # Node temp.next is the node to be deleted # store pointer to the next of node to be deleted next = temp.next.next temp.next=None # Unlink the node from linked list temp.next = next if __name__ == "__main__": llist = LinkedList() llist.append(6) llist.push_front(10) llist.push_front(6) llist.push_front(11) llist.append(20) llist.insert_after(llist.head.next, 8) llist.print_list() llist.deleteNodeGivenPosition(2) print("Linked List after Deletion at 2:") llist.print_list()
ca0bf818f5d797fe169d26f5876caf9e6873172e
197b10d75ba44b22fca29f8d69c2922b72cb8ca5
/ship/api.py
ae8690dc1a4da94d2c96e6f66ac78b8994a82a42
[]
no_license
webbyfox/py_master
c713c87cf4fd7d2697765211cdaefd7b49f96adc
e4b3ef5ea618b8f91c363d7f51d0e7b7064762a9
refs/heads/master
2021-01-11T14:45:15.060075
2017-01-27T13:24:58
2017-01-27T13:24:58
80,209,118
0
0
null
null
null
null
UTF-8
Python
false
false
2,519
py
# -*- coding: utf-8 -*- from rest_framework import viewsets, mixins, status from rest_framework.pagination import LimitOffsetPagination from rest_framework.permissions import IsAuthenticated from rest_framework.response import Response from assessment.auth import TokenAuthSupportQueryString from .injection_setup import logic from .serializers import ShipSerializer class ShipViewSet( mixins.CreateModelMixin, mixins.ListModelMixin, mixins.RetrieveModelMixin, mixins.DestroyModelMixin, viewsets.GenericViewSet ): authentication_classes = (TokenAuthSupportQueryString,) permission_classes = (IsAuthenticated,) pagination_class = LimitOffsetPagination serializer_class = ShipSerializer default_limit = 20 def list(self, request): # pylint: disable=unused-argument ships = self.get_queryset() page = self.paginate_queryset(ships) return self.get_paginated_response(page) def get_queryset(self): user = self.request.user user_ids = [user.id] + self.request.query_params.getlist('user_id') query_kwargs = { 'user_ids': user_ids, 'id': self.request.query_params.get('id'), 'ids': self.request.query_params.getlist('ids'), 'status': self.request.query_params.get('status'), 'order_by': self.request.query_params.get('order_by'), } ships, __ = logic.get_ships(**query_kwargs) return ships def create(self, request): data = self.request.data.copy() # We want to override the user ID to be the authenticated user. data['user_id'] = self.request.user.id serializer = self.serializer_class(data=data) if serializer.is_valid(): serializer.save() return Response(status=status.HTTP_204_NO_CONTENT) else: return Response( serializer.errors, status=status.HTTP_400_BAD_REQUEST ) def retrieve(self, request, pk=None): ships, __ = logic.get_ships( id=pk, user_ids=[request.user.id], ) return Response(self.serializer_class(ships[0]).data) def update(self, request, pk=None): raise NotImplementedError( 'Please implement ``ship.api:ShipViewSet.update``' ) def destroy(self, request, pk=None): # pylint: disable=unused-argument logic.delete_ship(id=pk) return Response(status=status.HTTP_204_NO_CONTENT)
e7cbec8407c61c7b724171aa967674dbf244853b
89bae02f23e787416fda894a128c9abfb4986515
/metalearning/allennlp/tests/modules/matrix_attention/cosine_matrix_attention_test.py
cff481ba8ea3a77de780b912867c54cef1eb849c
[ "Apache-2.0" ]
permissive
asheverdin/multilingual-interference
f2e64cebfffc749b080fa64860659922224e6e65
7bc1b5918142e3c84bea83c5a7f39e3f245172e9
refs/heads/main
2023-05-12T13:07:19.997696
2021-05-28T22:16:26
2021-05-28T22:16:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,518
py
import torch from numpy.testing import assert_almost_equal import numpy from allennlp.common import Params from allennlp.common.testing.test_case import AllenNlpTestCase from allennlp.modules.matrix_attention import CosineMatrixAttention from allennlp.modules.matrix_attention.matrix_attention import MatrixAttention class TestCosineMatrixAttention(AllenNlpTestCase): def test_can_init_cosine(self): legacy_attention = MatrixAttention.from_params(Params({"type": "cosine"})) isinstance(legacy_attention, CosineMatrixAttention) def test_cosine_similarity(self): # example use case: a batch of size 2. # With a time element component (e.g. sentences of length 2) each word is a vector of length 3. # It is comparing this with another input of the same type output = CosineMatrixAttention()( torch.FloatTensor([[[0, 0, 0], [4, 5, 6]], [[-7, -8, -9], [10, 11, 12]]]), torch.FloatTensor([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]), ) # For the first batch there is # no correlation between the first words of the input matrix # but perfect correlation for the second word # For the second batch there is # negative correlation for the first words # correlation for the second word assert_almost_equal( output.numpy(), numpy.array([[[0, 0], [0.97, 1]], [[-1, -0.99], [0.99, 1]]]), decimal=2 )
d2462ea0d850cd6935ccb6c60eff3fbb00faf7d7
07917881310fc81d85a2cbdf27c9b3c4fa03c694
/python1812/python_1/17_测试_收发邮件_二维码/代码/04_验证码生成器.py
4d493eee3597ce7e1c156d58c53c29845e19966c
[]
no_license
zaoyuaner/Learning-materials
9bc9a127d1c6478fb6cebbb6371b1fd85427c574
1f468a6f63158758f7cbfe7b5df17f51e3205f04
refs/heads/master
2020-05-18T11:38:45.771271
2019-05-20T09:07:44
2019-05-20T09:07:44
184,384,050
2
3
null
null
null
null
UTF-8
Python
false
false
2,363
py
import datetime import hashlib from PIL import ImageFont,ImageDraw,Image from random import randint class VerifyCode: def __init__(self,width=100,height=40,size=4): """ :param width: 验证码的宽度 :param height: 验证码的高度 :param size: 验证码的长度 """ self.width = width if width > 0 else 100 self.height = height if height > 0 else 40 self.size = size if size > 0 else 4 self.pen = None # 画笔 self.code = "" # 保存验证码字符串 # @property # def code(self): # return self.__code # @code.setter # def code(self,code): # self.__code = code def generate(self): # 1.生成画布 # 越靠近255的颜色越浅 im = Image.new("RGB",(self.width,self.height),self.randColor(160,255)) # 2.生成画笔 self.pen = ImageDraw.Draw(im) # 3.生成随机字符串 self.randString() # 4.画字符串 self.__drawCode() # 5.画干扰点 self.__drawPoint() # 6.画干扰线 self.__drawLine() # 7.保存图片 im.save("vc.jpg") def __drawLine(self): """ 画干扰线 :return: """ for i in range(6): start = (randint(1,self.width-1),randint(1,self.height-1)) end = (randint(1,self.width-1),randint(1,self.height-1)) self.pen.line([start,end],fill=self.randColor(50,150),width = 1) def __drawPoint(self): """ 画干扰点 :return: """ for i in range(200): x = randint(1,self.width-1) y = randint(1,self.height-1) self.pen.point((x,y),fill= self.randColor(30,100)) def __drawCode(self): """ 画字符串 :return: """ myFont = ImageFont.truetype("MSYH.TTF",size=20,encoding="UTF-8") for i in range(self.size): x = 15 + i*(self.width - 20)/self.size # 为每个字符均匀分配位置 y = randint(5,10) # 随机高度 self.pen.text((x,y),self.code[i],fill = self.randColor(0,60),font = myFont) def randString(self): """ 产生随机整数字符串 :return: """ result = "" for i in range(self.size): result += str(randint(0,9)) self.code = result def randColor(self,low,high): # 随机背景颜色 return randint(low,high),randint(low,high),randint(low,high) # class StrCode(VerifyCode): # def randString(self): # s1 =hashlib.md5(b"2314").hexdigest() # print(s1) # self.code = s1[:self.size] if __name__ == "__main__": vc = VerifyCode() # vc = StrCode() vc.generate() print(vc.code)
edfcd0b67010b318be752683aea47602efef2e0e
9b57429efa72dbfa2ead9ae8d98a148475264aef
/dataservice/zmq/UPcomputer_part/data_process_0mqsubsys/codetestfile.py
5b92ab166e2e97779e29006953d6456126db19c8
[]
no_license
Scottars/nis_website
7d78b1ab8647ebf17bc2b020660a56ac6f6a039f
2025e428dd65dba06c95738233978604ee011570
refs/heads/master
2022-03-07T19:04:15.565128
2021-01-19T16:03:50
2021-01-19T16:03:50
218,421,853
0
0
null
2022-03-02T06:49:57
2019-10-30T01:58:29
JavaScript
UTF-8
Python
false
false
155
py
import struct b = b'exp' + struct.pack('!f', 12) print(b) print(b[0:3]) if b[0:3] == b'exp': exp_id = struct.unpack('!f', b[3:7])[0] print(exp_id)
82ecfd01834d11e1c0de1b980af3a9cafb7d5d79
d0fec74acfbfdee1b662736731c1cc988e2ba2ee
/problem_44/p044.py
45a4578f96261bb8aeac04304edbc1ab5ebc2014
[]
no_license
msztylko/project-Euler
fdd0cfefbe88b63f6dbd2d08f1cd59270b9e1735
b3f5ce828ccc6662c100dd27fa295fc8afa22f6e
refs/heads/master
2021-11-23T02:50:19.333259
2021-10-31T17:52:28
2021-10-31T17:52:28
195,980,596
1
0
null
null
null
null
UTF-8
Python
false
false
1,851
py
import itertools, sys if sys.version_info.major == 2: range = xrange def compute(): pentanum = PentagonalNumberHelper() min_d = None # None means not found yet, positive number means found a candidate # For each upper pentagonal number index, going upward for i in itertools.count(2): pent_i = pentanum.term(i) # If the next number down is at least as big as a found difference, then conclude searching if min_d is not None and pent_i - pentanum.term(i - 1) >= min_d: break # For each lower pentagonal number index, going downward for j in range(i - 1, 0, -1): pent_j = pentanum.term(j) diff = pent_i - pent_j # If the difference is at least as big as a found difference, then stop testing lower pentagonal numbers if min_d is not None and diff >= min_d: break elif pentanum.is_term(pent_i + pent_j) and pentanum.is_term(diff): min_d = diff # Found a smaller difference return str(min_d) # Provides memoization for generating and testing pentagonal numbers. class PentagonalNumberHelper(object): def __init__(self): self.term_list = [0] self.term_set = set() def term(self, x): assert x > 0 while len(self.term_list) <= x: n = len(self.term_list) term = (n * (n * 3 - 1)) >> 1 self.term_list.append(term) self.term_set.add(term) return self.term_list[x] def is_term(self, y): assert y > 0 while self.term_list[-1] < y: n = len(self.term_list) term = (n * (n * 3 - 1)) >> 1 self.term_list.append(term) self.term_set.add(term) return y in self.term_set if __name__ == "__main__": print(compute())
81678e4f401442962478ab90127c24b61b21e897
c074ce302e0a2a09ebe8b0a94e342380afbaa911
/beakjoon_PS/no2579_2.py
7c00e40144c179d3cbf2eca5fbd8ec8eb8d546f6
[]
no_license
elrion018/CS_study
eeea7a48e9e9b116ddf561ebf10633670d305722
3d5478620c4d23343ae0518d27920b3211f686fd
refs/heads/master
2021-06-10T13:35:20.258335
2021-04-25T10:12:17
2021-04-25T10:12:17
169,424,097
1
0
null
null
null
null
UTF-8
Python
false
false
555
py
import sys N = int(sys.stdin.readline()) stair = [] for _ in range(N): stair.append(int(sys.stdin.readline())) dp = [[0, 0] for _ in range(N)] if N > 2: dp[0][0] = stair[0] dp[1][0] = stair[1] dp[1][1] = stair[0] + stair[1] dp[2][0] = stair[0] + stair[2] dp[2][1] = stair[1] + stair[2] for i in range(2, N): dp[i][0] = max(dp[i-2][0], dp[i-2][1]) + stair[i] dp[i][1] = dp[i-1][0] + stair[i] print(max(dp[N-1][0], dp[N-1][1])) elif N == 2: print(stair[0]+stair[1]) elif N == 1: print(stair[0])
24fa38cb1a5db921dd96c5f040aa58a9b77b65e4
7950e35b32e252690a82faf5aefc06e433e9bd34
/cleverhans/serial.py
9fc379d763ec15b0686422d9d09b7d66f61d0654
[]
no_license
machanic/cleverhans_adversarial_example_gen
b717da4b803cec2b67d0fc730392b137d20682d5
d5300f8a1228b4c9fe26568a956f06c36df03627
refs/heads/master
2022-11-21T19:10:01.258478
2020-07-21T15:45:03
2020-07-21T15:45:03
173,035,907
5
0
null
null
null
null
UTF-8
Python
false
false
8,230
py
"""Serialization functionality. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import warnings import joblib import tensorflow as tf from cleverhans.model import Model from cleverhans.utils import ordered_union from cleverhans.utils import safe_zip class PicklableVariable(object): """ A wrapper around a Variable that makes it picklable. The name of the Variable will not be reliable, only the value. Models intended to be picklable should identify variables by referencing Python objects rather than by using TensorFlow's names. TensorFlow Variables have different values associated with each Session. For this class, the value associated with the default Session will be used for both saving and loading, so both operations require that a default Session has been selected. Pickle is not secure. Unpickle only files you made yourself. See cleverhans_tutorials/mnist_tutorial_picklable.py for examples of a complete model training, pickling, and unpickling process using PicklableVariable. See cleverhans.picklable_model for models built using PicklableVariable. """ def __init__(self, *args, **kwargs): self.var = tf.Variable(*args, **kwargs) def __getstate__(self): sess = tf.get_default_session() if sess is None: raise RuntimeError("PicklableVariable requires a default " "TensorFlow session") return {'var': sess.run(self.var)} def __setstate__(self, d): self.var = tf.Variable(d['var']) sess = tf.get_default_session() if sess is None: raise RuntimeError("PicklableVariable requires a default " "TensorFlow session") sess.run(self.var.initializer) class NoRefModel(Model): """ A Model that can be pickled because it contains no references to any Variables (e.g. it identifies Variables only by name). The Model must be able to find all of its Variables via get_vars for them to be pickled. Note that NoRefModel may have different Variable names after it is restored, e.g. if the unpickling is run with a different enclosing scope. NoRefModel will still work in these circumstances as long as get_params returns the same order of Variables after unpickling as it did before pickling. See also cleverhans.picklable_model for a different, complementary pickling strategy: models that can be pickled because they use *only* references to Variables and work regardless of Variable names. """ def __getstate__(self): # Serialize everything except the Variables out = self.__dict__.copy() # The base Model class adds this tf reference to self # We mustn't pickle anything tf, this will need to be # regenerated after the model is reloaded. if "_dummy_input" in out: del out["_dummy_input"] # Add the Variables sess = tf.get_default_session() if sess is None: raise RuntimeError("NoRefModel requires a default " "TensorFlow session") tf_variables = self.get_vars() out[VARS] = sess.run(tf_variables) out[VAR_NAMES] = [var.name for var in tf_variables] return out def __setstate__(self, d): tf_variables = d[VARS] del d[VARS] tf_variable_names = None # older joblib files may not have "_tf_variable_names" if VAR_NAMES in d: tf_variable_names = d[VAR_NAMES] del d[VAR_NAMES] else: warnings.warn("This joblib file has no " + VAR_NAMES + " field. " "The field may become required on or after 2019-04-11." "You can make your file compatible with the new format by" " loading the file and re-saving it.") # Deserialize everything except the Variables self.__dict__ = d # Deserialize the Variables sess = tf.get_default_session() if sess is None: raise RuntimeError("NoRefModel requires a default " "TensorFlow session") cur_vars = self.get_vars() if len(cur_vars) != len(tf_variables): print("Model format mismatch") print("Current model has " + str(len(cur_vars)) + " variables") print("Saved model has " + str(len(tf_variables)) + " variables") print("Names of current vars:") for var in cur_vars: print("\t" + var.name) if tf_variable_names is not None: print("Names of saved vars:") for name in tf_variable_names: print("\t" + name) else: print("Saved vars use old format, no names available for them") assert False found = [False] * len(cur_vars) if tf_variable_names is not None: # New version using the names to handle changes in ordering for value, name in safe_zip(tf_variables, tf_variable_names): value_found = False for idx, cur_var in enumerate(cur_vars): if cur_var.name == name: assert not found[idx] value_found = True found[idx] = True cur_var.load(value, sess) break assert value_found assert all(found) else: # Old version that works if and only if the order doesn't change for var, value in safe_zip(cur_vars, tf_variables): var.load(value, sess) def get_vars(self): """ Provides access to the model's Variables. This may include Variables that are not parameters, such as batch norm running moments. :return: A list of all Variables defining the model. """ # Catch eager execution and assert function overload. try: if tf.executing_eagerly(): raise NotImplementedError("For Eager execution - get_vars " "must be overridden.") except AttributeError: pass done = False tried_to_make_params = False while not done: # Most models in cleverhans use only trainable variables and do not # make sure the other collections are updated correctly. trainable_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, self.scope + "/") # When wrapping other code, such as the CIFAR 10 challenge models, # we need to make sure we get the batch norm running averages as well # as the trainable variables. model_vars = tf.get_collection(tf.GraphKeys.MODEL_VARIABLES, self.scope + "/") scope_vars = ordered_union(trainable_vars, model_vars) if len(scope_vars) > 0: done = True else: assert not tried_to_make_params tried_to_make_params = True self.make_params() # Make sure no variables have been added or removed if hasattr(self, "num_vars"): assert self.num_vars == len(scope_vars) else: self.num_vars = len(scope_vars) return scope_vars def save(filepath, obj): """Saves an object to the specified filepath using joblib. joblib is like pickle but will save NumPy arrays as separate files for greater efficiency. :param filepath: str, path to save to :obj filepath: object to save """ joblib.dump(obj, filepath) def load(filepath): """Returns an object stored via `save` """ obj = joblib.load(filepath) return obj VARS = "_tf_variables" VAR_NAMES = "_tf_variable_names"
f2e9286044675907e079b6077b71208aafa5528d
a9b8f84c55aa64d4721de11e34e6fc300453be1b
/public/packages/pymongo/v28/pymongo/common.py
7c53646dd809b43309aad38e4e69fa55b96ca912
[]
no_license
xuning992/tfty
f17273db407bb5ca87f583b114a42eb8e83d67fc
20785621b933d2d6bdc293e953710faef4268bf6
refs/heads/master
2022-12-13T22:39:14.696326
2017-11-19T15:23:11
2017-11-19T15:23:11
111,306,251
0
0
null
2022-07-05T21:08:37
2017-11-19T15:11:40
Python
UTF-8
Python
false
false
27,865
py
# Copyright 2011-2014 MongoDB, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you # may not use this file except in compliance with the License. You # may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. See the License for the specific language governing # permissions and limitations under the License. """Functions and classes common to multiple pymongo modules.""" import sys import warnings from . import read_preferences from .auth import MECHANISMS from .read_preferences import ReadPreference from .errors import ConfigurationError from ..bson.binary import (OLD_UUID_SUBTYPE, UUID_SUBTYPE, JAVA_LEGACY, CSHARP_LEGACY) HAS_SSL = True try: import ssl except ImportError: HAS_SSL = False # Jython 2.7 includes an incomplete ssl module. See PYTHON-498. if sys.platform.startswith('java'): HAS_SSL = False # Defaults until we connect to a server and get updated limits. MAX_BSON_SIZE = 16 * (1024 ** 2) MAX_MESSAGE_SIZE = 2 * MAX_BSON_SIZE MIN_WIRE_VERSION = 0 MAX_WIRE_VERSION = 0 MAX_WRITE_BATCH_SIZE = 1000 # What this version of PyMongo supports. MIN_SUPPORTED_WIRE_VERSION = 0 MAX_SUPPORTED_WIRE_VERSION = 3 # mongod/s 2.6 and above return code 59 when a # command doesn't exist. mongod versions previous # to 2.6 and mongos 2.4.x return no error code # when a command does exist. mongos versions previous # to 2.4.0 return code 13390 when a command does not # exist. COMMAND_NOT_FOUND_CODES = (59, 13390, None) def raise_config_error(key, dummy): """Raise ConfigurationError with the given key name.""" raise ConfigurationError("Unknown option %s" % (key,)) # Mapping of URI uuid representation options to valid subtypes. _UUID_SUBTYPES = { 'standard': UUID_SUBTYPE, 'pythonLegacy': OLD_UUID_SUBTYPE, 'javaLegacy': JAVA_LEGACY, 'csharpLegacy': CSHARP_LEGACY } def validate_boolean(option, value): """Validates that 'value' is 'true' or 'false'. """ if isinstance(value, bool): return value elif isinstance(value, basestring): if value not in ('true', 'false'): raise ConfigurationError("The value of %s must be " "'true' or 'false'" % (option,)) return value == 'true' raise TypeError("Wrong type for %s, value must be a boolean" % (option,)) def validate_integer(option, value): """Validates that 'value' is an integer (or basestring representation). """ if isinstance(value, (int, long)): return value elif isinstance(value, basestring): if not value.isdigit(): raise ConfigurationError("The value of %s must be " "an integer" % (option,)) return int(value) raise TypeError("Wrong type for %s, value must be an integer" % (option,)) def validate_positive_integer(option, value): """Validate that 'value' is a positive integer. """ val = validate_integer(option, value) if val < 0: raise ConfigurationError("The value of %s must be " "a positive integer" % (option,)) return val def validate_readable(option, value): """Validates that 'value' is file-like and readable. """ if value is None: return value # First make sure its a string py3.3 open(True, 'r') succeeds # Used in ssl cert checking due to poor ssl module error reporting value = validate_basestring(option, value) open(value, 'r').close() return value def validate_cert_reqs(option, value): """Validate the cert reqs are valid. It must be None or one of the three values ``ssl.CERT_NONE``, ``ssl.CERT_OPTIONAL`` or ``ssl.CERT_REQUIRED``""" if value is None: return value if HAS_SSL: if value in (ssl.CERT_NONE, ssl.CERT_OPTIONAL, ssl.CERT_REQUIRED): return value raise ConfigurationError("The value of %s must be one of: " "`ssl.CERT_NONE`, `ssl.CERT_OPTIONAL` or " "`ssl.CERT_REQUIRED" % (option,)) else: raise ConfigurationError("The value of %s is set but can't be " "validated. The ssl module is not available" % (option,)) def validate_positive_integer_or_none(option, value): """Validate that 'value' is a positive integer or None. """ if value is None: return value return validate_positive_integer(option, value) def validate_basestring(option, value): """Validates that 'value' is an instance of `basestring`. """ if isinstance(value, basestring): return value raise TypeError("Wrong type for %s, value must be an " "instance of %s" % (option, basestring.__name__)) def validate_basestring_or_none(option, value): """Validates that 'value' is an instance of `basestring` or `None`. """ if value is None: return value return validate_basestring(option, value) def validate_int_or_basestring(option, value): """Validates that 'value' is an integer or string. """ if isinstance(value, (int, long)): return value elif isinstance(value, basestring): if value.isdigit(): return int(value) return value raise TypeError("Wrong type for %s, value must be an " "integer or a string" % (option,)) def validate_positive_float(option, value): """Validates that 'value' is a float, or can be converted to one, and is positive. """ err = ConfigurationError("%s must be a positive int or float" % (option,)) try: value = float(value) except (ValueError, TypeError): raise err # float('inf') doesn't work in 2.4 or 2.5 on Windows, so just cap floats at # one billion - this is a reasonable approximation for infinity if not 0 < value < 1e9: raise err return value def validate_timeout_or_none(option, value): """Validates a timeout specified in milliseconds returning a value in floating point seconds. """ if value is None: return value return validate_positive_float(option, value) / 1000.0 def validate_read_preference(dummy, value): """Validate read preference for a ReplicaSetConnection. """ if value in read_preferences.modes: return value # Also allow string form of enum for uri_parser try: return read_preferences.mongos_enum(value) except ValueError: raise ConfigurationError("Not a valid read preference") def validate_tag_sets(dummy, value): """Validate tag sets for a ReplicaSetConnection. """ if value is None: return [{}] if not isinstance(value, list): raise ConfigurationError(( "Tag sets %s invalid, must be a list") % repr(value)) if len(value) == 0: raise ConfigurationError(( "Tag sets %s invalid, must be None or contain at least one set of" " tags") % repr(value)) for tags in value: if not isinstance(tags, dict): raise ConfigurationError( "Tag set %s invalid, must be a dict" % repr(tags)) return value def validate_auth_mechanism(option, value): """Validate the authMechanism URI option. """ # CRAM-MD5 is for server testing only. Undocumented, # unsupported, may be removed at any time. You have # been warned. if value not in MECHANISMS and value != 'CRAM-MD5': raise ConfigurationError("%s must be in " "%s" % (option, MECHANISMS)) return value def validate_uuid_representation(dummy, value): """Validate the uuid representation option selected in the URI. """ if value not in _UUID_SUBTYPES.keys(): raise ConfigurationError("%s is an invalid UUID representation. " "Must be one of " "%s" % (value, _UUID_SUBTYPES.keys())) return _UUID_SUBTYPES[value] def validate_uuid_subtype(dummy, value): """Validate the uuid subtype option, a numerical value whose acceptable values are defined in bson.binary.""" if value not in _UUID_SUBTYPES.values(): raise ConfigurationError("Not a valid setting for uuid_subtype.") return value _MECHANISM_PROPS = frozenset(['SERVICE_NAME']) def validate_auth_mechanism_properties(option, value): """Validate authMechanismProperties.""" value = validate_basestring(option, value) props = {} for opt in value.split(','): try: key, val = opt.split(':') if key not in _MECHANISM_PROPS: raise ConfigurationError("%s is not a supported auth " "mechanism property. Must be one of " "%s." % (key, tuple(_MECHANISM_PROPS))) props[key] = val except ValueError: raise ConfigurationError("auth mechanism properties must be " "key:value pairs like SERVICE_NAME:" "mongodb, not %s." % (opt,)) return props # jounal is an alias for j, # wtimeoutms is an alias for wtimeout, # readpreferencetags is an alias for tag_sets. VALIDATORS = { 'replicaset': validate_basestring_or_none, 'slaveok': validate_boolean, 'slave_okay': validate_boolean, 'safe': validate_boolean, 'w': validate_int_or_basestring, 'wtimeout': validate_integer, 'wtimeoutms': validate_integer, 'fsync': validate_boolean, 'j': validate_boolean, 'journal': validate_boolean, 'connecttimeoutms': validate_timeout_or_none, 'sockettimeoutms': validate_timeout_or_none, 'waitqueuetimeoutms': validate_timeout_or_none, 'waitqueuemultiple': validate_positive_integer_or_none, 'ssl': validate_boolean, 'ssl_keyfile': validate_readable, 'ssl_certfile': validate_readable, 'ssl_cert_reqs': validate_cert_reqs, 'ssl_ca_certs': validate_readable, 'readpreference': validate_read_preference, 'read_preference': validate_read_preference, 'readpreferencetags': validate_tag_sets, 'tag_sets': validate_tag_sets, 'secondaryacceptablelatencyms': validate_positive_float, 'secondary_acceptable_latency_ms': validate_positive_float, 'auto_start_request': validate_boolean, 'use_greenlets': validate_boolean, 'authmechanism': validate_auth_mechanism, 'authsource': validate_basestring, 'gssapiservicename': validate_basestring, 'authmechanismproperties': validate_auth_mechanism_properties, 'uuidrepresentation': validate_uuid_representation, 'socketkeepalive': validate_boolean } _AUTH_OPTIONS = frozenset(['gssapiservicename', 'authmechanismproperties']) def validate_auth_option(option, value): """Validate optional authentication parameters. """ lower, value = validate(option, value) if lower not in _AUTH_OPTIONS: raise ConfigurationError('Unknown ' 'authentication option: %s' % (option,)) return lower, value def validate(option, value): """Generic validation function. """ lower = option.lower() validator = VALIDATORS.get(lower, raise_config_error) value = validator(option, value) return lower, value SAFE_OPTIONS = frozenset([ 'w', 'wtimeout', 'wtimeoutms', 'fsync', 'j', 'journal' ]) class WriteConcern(dict): def __init__(self, *args, **kwargs): """A subclass of dict that overrides __setitem__ to validate write concern options. """ super(WriteConcern, self).__init__(*args, **kwargs) def __setitem__(self, key, value): if key not in SAFE_OPTIONS: raise ConfigurationError("%s is not a valid write " "concern option." % (key,)) key, value = validate(key, value) super(WriteConcern, self).__setitem__(key, value) class BaseObject(object): """A base class that provides attributes and methods common to multiple pymongo classes. SHOULD NOT BE USED BY DEVELOPERS EXTERNAL TO MONGODB. """ def __init__(self, **options): self.__slave_okay = False self.__read_pref = ReadPreference.PRIMARY self.__tag_sets = [{}] self.__secondary_acceptable_latency_ms = 15 self.__safe = None self.__uuid_subtype = OLD_UUID_SUBTYPE self.__write_concern = WriteConcern() self.__set_options(options) if (self.__read_pref == ReadPreference.PRIMARY and self.__tag_sets != [{}]): raise ConfigurationError( "ReadPreference PRIMARY cannot be combined with tags") # If safe hasn't been implicitly set by write concerns then set it. if self.__safe is None: if options.get("w") == 0: self.__safe = False else: self.__safe = validate_boolean('safe', options.get("safe", True)) # Note: 'safe' is always passed by Connection and ReplicaSetConnection # Always do the most "safe" thing, but warn about conflicts. if self.__safe and options.get('w') == 0: warnings.warn("Conflicting write concerns: %s. Write concern " "options were configured, but w=0 disables all " "other options." % self.write_concern, UserWarning) def __set_safe_option(self, option, value): """Validates and sets getlasterror options for this object (Connection, Database, Collection, etc.) """ if value is None: self.__write_concern.pop(option, None) else: self.__write_concern[option] = value if option != "w" or value != 0: self.__safe = True def __set_options(self, options): """Validates and sets all options passed to this object.""" for option, value in options.iteritems(): if option in ('slave_okay', 'slaveok'): self.__slave_okay = validate_boolean(option, value) elif option in ('read_preference', "readpreference"): self.__read_pref = validate_read_preference(option, value) elif option in ('tag_sets', 'readpreferencetags'): self.__tag_sets = validate_tag_sets(option, value) elif option == 'uuidrepresentation': self.__uuid_subtype = validate_uuid_subtype(option, value) elif option in ( 'secondaryacceptablelatencyms', 'secondary_acceptable_latency_ms' ): self.__secondary_acceptable_latency_ms = \ validate_positive_float(option, value) elif option in SAFE_OPTIONS: if option == 'journal': self.__set_safe_option('j', value) elif option == 'wtimeoutms': self.__set_safe_option('wtimeout', value) else: self.__set_safe_option(option, value) def __set_write_concern(self, value): """Property setter for write_concern.""" if not isinstance(value, dict): raise ConfigurationError("write_concern must be an " "instance of dict or a subclass.") # Make a copy here to avoid users accidentally setting the # same dict on multiple instances. wc = WriteConcern() for k, v in value.iteritems(): # Make sure we validate each option. wc[k] = v self.__write_concern = wc def __get_write_concern(self): """The default write concern for this instance. Supports dict style access for getting/setting write concern options. Valid options include: - `w`: (integer or string) If this is a replica set, write operations will block until they have been replicated to the specified number or tagged set of servers. `w=<int>` always includes the replica set primary (e.g. w=3 means write to the primary and wait until replicated to **two** secondaries). **Setting w=0 disables write acknowledgement and all other write concern options.** - `wtimeout`: (integer) Used in conjunction with `w`. Specify a value in milliseconds to control how long to wait for write propagation to complete. If replication does not complete in the given timeframe, a timeout exception is raised. - `j`: If ``True`` block until write operations have been committed to the journal. Cannot be used in combination with `fsync`. Prior to MongoDB 2.6 this option was ignored if the server was running without journaling. Starting with MongoDB 2.6 write operations will fail with an exception if this option is used when the server is running without journaling. - `fsync`: If ``True`` and the server is running without journaling, blocks until the server has synced all data files to disk. If the server is running with journaling, this acts the same as the `j` option, blocking until write operations have been committed to the journal. Cannot be used in combination with `j`. >>> m = pymongo.MongoClient() >>> m.write_concern {} >>> m.write_concern = {'w': 2, 'wtimeout': 1000} >>> m.write_concern {'wtimeout': 1000, 'w': 2} >>> m.write_concern['j'] = True >>> m.write_concern {'wtimeout': 1000, 'j': True, 'w': 2} >>> m.write_concern = {'j': True} >>> m.write_concern {'j': True} >>> # Disable write acknowledgement and write concern ... >>> m.write_concern['w'] = 0 .. note:: Accessing :attr:`write_concern` returns its value (a subclass of :class:`dict`), not a copy. .. warning:: If you are using :class:`~pymongo.connection.Connection` or :class:`~pymongo.replica_set_connection.ReplicaSetConnection` make sure you explicitly set ``w`` to 1 (or a greater value) or :attr:`safe` to ``True``. Unlike calling :meth:`set_lasterror_options`, setting an option in :attr:`write_concern` does not implicitly set :attr:`safe` to ``True``. """ # To support dict style access we have to return the actual # WriteConcern here, not a copy. return self.__write_concern write_concern = property(__get_write_concern, __set_write_concern) def __get_slave_okay(self): """DEPRECATED. Use :attr:`read_preference` instead. .. versionchanged:: 2.1 Deprecated slave_okay. .. versionadded:: 2.0 """ return self.__slave_okay def __set_slave_okay(self, value): """Property setter for slave_okay""" warnings.warn("slave_okay is deprecated. Please use " "read_preference instead.", DeprecationWarning, stacklevel=2) self.__slave_okay = validate_boolean('slave_okay', value) slave_okay = property(__get_slave_okay, __set_slave_okay) def __get_read_pref(self): """The read preference mode for this instance. See :class:`~pymongo.read_preferences.ReadPreference` for available options. .. versionadded:: 2.1 """ return self.__read_pref def __set_read_pref(self, value): """Property setter for read_preference""" self.__read_pref = validate_read_preference('read_preference', value) read_preference = property(__get_read_pref, __set_read_pref) def __get_acceptable_latency(self): """Any replica-set member whose ping time is within secondary_acceptable_latency_ms of the nearest member may accept reads. Defaults to 15 milliseconds. See :class:`~pymongo.read_preferences.ReadPreference`. .. versionadded:: 2.3 .. note:: ``secondary_acceptable_latency_ms`` is ignored when talking to a replica set *through* a mongos. The equivalent is the localThreshold_ command line option. .. _localThreshold: http://docs.mongodb.org/manual/reference/mongos/#cmdoption-mongos--localThreshold """ return self.__secondary_acceptable_latency_ms def __set_acceptable_latency(self, value): """Property setter for secondary_acceptable_latency_ms""" self.__secondary_acceptable_latency_ms = (validate_positive_float( 'secondary_acceptable_latency_ms', value)) secondary_acceptable_latency_ms = property( __get_acceptable_latency, __set_acceptable_latency) def __get_tag_sets(self): """Set ``tag_sets`` to a list of dictionaries like [{'dc': 'ny'}] to read only from members whose ``dc`` tag has the value ``"ny"``. To specify a priority-order for tag sets, provide a list of tag sets: ``[{'dc': 'ny'}, {'dc': 'la'}, {}]``. A final, empty tag set, ``{}``, means "read from any member that matches the mode, ignoring tags." ReplicaSetConnection tries each set of tags in turn until it finds a set of tags with at least one matching member. .. seealso:: `Data-Center Awareness <http://www.mongodb.org/display/DOCS/Data+Center+Awareness>`_ .. versionadded:: 2.3 """ return self.__tag_sets def __set_tag_sets(self, value): """Property setter for tag_sets""" self.__tag_sets = validate_tag_sets('tag_sets', value) tag_sets = property(__get_tag_sets, __set_tag_sets) def __get_uuid_subtype(self): """This attribute specifies which BSON Binary subtype is used when storing UUIDs. Historically UUIDs have been stored as BSON Binary subtype 3. This attribute is used to switch to the newer BSON Binary subtype 4. It can also be used to force legacy byte order and subtype compatibility with the Java and C# drivers. See the :mod:`bson.binary` module for all options.""" return self.__uuid_subtype def __set_uuid_subtype(self, value): """Sets the BSON Binary subtype to be used when storing UUIDs.""" self.__uuid_subtype = validate_uuid_subtype("uuid_subtype", value) uuid_subtype = property(__get_uuid_subtype, __set_uuid_subtype) def __get_safe(self): """**DEPRECATED:** Use the 'w' :attr:`write_concern` option instead. Use getlasterror with every write operation? .. versionadded:: 2.0 """ return self.__safe def __set_safe(self, value): """Property setter for safe""" warnings.warn("safe is deprecated. Please use the" " 'w' write_concern option instead.", DeprecationWarning, stacklevel=2) self.__safe = validate_boolean('safe', value) safe = property(__get_safe, __set_safe) def get_lasterror_options(self): """DEPRECATED: Use :attr:`write_concern` instead. Returns a dict of the getlasterror options set on this instance. .. versionchanged:: 2.4 Deprecated get_lasterror_options. .. versionadded:: 2.0 """ warnings.warn("get_lasterror_options is deprecated. Please use " "write_concern instead.", DeprecationWarning, stacklevel=2) return self.__write_concern.copy() def set_lasterror_options(self, **kwargs): """DEPRECATED: Use :attr:`write_concern` instead. Set getlasterror options for this instance. Valid options include j=<bool>, w=<int/string>, wtimeout=<int>, and fsync=<bool>. Implies safe=True. :Parameters: - `**kwargs`: Options should be passed as keyword arguments (e.g. w=2, fsync=True) .. versionchanged:: 2.4 Deprecated set_lasterror_options. .. versionadded:: 2.0 """ warnings.warn("set_lasterror_options is deprecated. Please use " "write_concern instead.", DeprecationWarning, stacklevel=2) for key, value in kwargs.iteritems(): self.__set_safe_option(key, value) def unset_lasterror_options(self, *options): """DEPRECATED: Use :attr:`write_concern` instead. Unset getlasterror options for this instance. If no options are passed unsets all getlasterror options. This does not set `safe` to False. :Parameters: - `*options`: The list of options to unset. .. versionchanged:: 2.4 Deprecated unset_lasterror_options. .. versionadded:: 2.0 """ warnings.warn("unset_lasterror_options is deprecated. Please use " "write_concern instead.", DeprecationWarning, stacklevel=2) if len(options): for option in options: self.__write_concern.pop(option, None) else: self.__write_concern = WriteConcern() def _get_wc_override(self): """Get write concern override. Used in internal methods that **must** do acknowledged write ops. We don't want to override user write concern options if write concern is already enabled. """ if self.safe and self.__write_concern.get('w') != 0: return {} return {'w': 1} def _get_write_mode(self, safe=None, **options): """Get the current write mode. Determines if the current write is safe or not based on the passed in or inherited safe value, write_concern values, or passed options. :Parameters: - `safe`: check that the operation succeeded? - `**options`: overriding write concern options. .. versionadded:: 2.3 """ if safe is not None: warnings.warn("The safe parameter is deprecated. Please use " "write concern options instead.", DeprecationWarning, stacklevel=3) validate_boolean('safe', safe) # Passed options override collection level defaults. if safe is not None or options: if safe or options: if not options: options = self.__write_concern.copy() # Backwards compatability edge case. Call getLastError # with no options if safe=True was passed but collection # level defaults have been disabled with w=0. # These should be equivalent: # Connection(w=0).foo.bar.insert({}, safe=True) # MongoClient(w=0).foo.bar.insert({}, w=1) if options.get('w') == 0: return True, {} # Passing w=0 overrides passing safe=True. return options.get('w') != 0, options return False, {} # Fall back to collection level defaults. # w=0 takes precedence over self.safe = True if self.__write_concern.get('w') == 0: return False, {} elif self.safe or self.__write_concern.get('w', 0) != 0: return True, self.__write_concern.copy() return False, {}
aa4c1d64ab5007478c6035cf4a0c3268d542695f
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/nouns/_tow.py
bbb4161da8d142413231367d45dc13fd41964c06
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
369
py
#calss header class _TOW(): def __init__(self,): self.name = "TOW" self.definitions = [u"to pull someone's vehicle using a rope or chain tied to your vehicle: ", u'being pulled along: '] self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.specie = 'nouns' def run(self, obj1 = [], obj2 = []): return self.jsondata
1345cc0e0a984974cc45d265fb5e248b561053c2
b503e79ccfca67c8114f5bd7a215f5ae993a0ba4
/airflow/providers/amazon/aws/sensors/glue.py
21a82da9ee9d040fd45ccda5044d467bf7c6b4c3
[ "Apache-2.0", "BSD-3-Clause", "Python-2.0", "MIT" ]
permissive
github/incubator-airflow
df1d9780f862ea1df8261ea6015dd50a4583f983
73f70e00b9fd294057f8ca6b714a85622f6d5dd5
refs/heads/gh-2.0.2
2023-07-29T18:08:43.140580
2022-09-14T18:23:42
2022-09-14T18:23:42
80,634,006
24
27
Apache-2.0
2023-04-18T04:24:36
2017-02-01T15:34:55
Python
UTF-8
Python
false
false
2,398
py
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from airflow.exceptions import AirflowException from airflow.providers.amazon.aws.hooks.glue import AwsGlueJobHook from airflow.sensors.base import BaseSensorOperator from airflow.utils.decorators import apply_defaults class AwsGlueJobSensor(BaseSensorOperator): """ Waits for an AWS Glue Job to reach any of the status below 'FAILED', 'STOPPED', 'SUCCEEDED' :param job_name: The AWS Glue Job unique name :type job_name: str :param run_id: The AWS Glue current running job identifier :type run_id: str """ template_fields = ('job_name', 'run_id') @apply_defaults def __init__(self, *, job_name: str, run_id: str, aws_conn_id: str = 'aws_default', **kwargs): super().__init__(**kwargs) self.job_name = job_name self.run_id = run_id self.aws_conn_id = aws_conn_id self.success_states = ['SUCCEEDED'] self.errored_states = ['FAILED', 'STOPPED', 'TIMEOUT'] def poke(self, context): hook = AwsGlueJobHook(aws_conn_id=self.aws_conn_id) self.log.info("Poking for job run status :for Glue Job %s and ID %s", self.job_name, self.run_id) job_state = hook.get_job_state(job_name=self.job_name, run_id=self.run_id) if job_state in self.success_states: self.log.info("Exiting Job %s Run State: %s", self.run_id, job_state) return True elif job_state in self.errored_states: job_error_message = "Exiting Job " + self.run_id + " Run State: " + job_state raise AirflowException(job_error_message) else: return False
925de84479dcf1d87e11ce81b0c8dc7b15d21acd
8a495b823576b5c0bb39decd44575de20b1dc43d
/hydrus/client/db/ClientDBFilesStorage.py
79d2c246ceddf3d6d68933dbb19b89d0713923d8
[ "WTFPL" ]
permissive
Treadder/hydrus
f8c11e9798316cc5457497e9bff56236727862e0
ca2f5f161214aa6df3900809f9ca18339c3e1f9a
refs/heads/master
2023-09-06T08:46:05.694446
2021-11-17T21:22:27
2021-11-17T21:22:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
33,781
py
import collections import sqlite3 import typing from hydrus.core import HydrusConstants as HC from hydrus.core import HydrusData from hydrus.core import HydrusDB from hydrus.client import ClientConstants as CC from hydrus.client import ClientSearch from hydrus.client.db import ClientDBMaster from hydrus.client.db import ClientDBModule from hydrus.client.db import ClientDBServices def GenerateFilesTableNames( service_id: int ) -> typing.Tuple[ str, str, str, str ]: suffix = str( service_id ) current_files_table_name = 'main.current_files_{}'.format( suffix ) deleted_files_table_name = 'main.deleted_files_{}'.format( suffix ) pending_files_table_name = 'main.pending_files_{}'.format( suffix ) petitioned_files_table_name = 'main.petitioned_files_{}'.format( suffix ) return ( current_files_table_name, deleted_files_table_name, pending_files_table_name, petitioned_files_table_name ) def GenerateFilesTableName( service_id: int, status: int ) -> str: ( current_files_table_name, deleted_files_table_name, pending_files_table_name, petitioned_files_table_name ) = GenerateFilesTableNames( service_id ) if status == HC.CONTENT_STATUS_CURRENT: return current_files_table_name elif status == HC.CONTENT_STATUS_DELETED: return deleted_files_table_name elif status == HC.CONTENT_STATUS_PENDING: return pending_files_table_name else: return petitioned_files_table_name class DBLocationSearchContext( object ): def __init__( self, location_search_context: ClientSearch.LocationSearchContext ): self.location_search_context = location_search_context self.files_table_name = None def GetLocationSearchContext( self ) -> ClientSearch.LocationSearchContext: return self.location_search_context def GetTableJoinIteratedByFileDomain( self, table_phrase: str ): if self.location_search_context.IsAllKnownFiles(): return table_phrase else: return '{} CROSS JOIN {} USING ( hash_id )'.format( self.files_table_name, table_phrase ) def GetTableJoinLimitedByFileDomain( self, table_phrase: str ): if self.location_search_context.IsAllKnownFiles(): return table_phrase else: return '{} CROSS JOIN {} USING ( hash_id )'.format( table_phrase, self.files_table_name ) class ClientDBFilesStorage( ClientDBModule.ClientDBModule ): def __init__( self, cursor: sqlite3.Cursor, modules_services: ClientDBServices.ClientDBMasterServices, modules_texts: ClientDBMaster.ClientDBMasterTexts ): self.modules_services = modules_services self.modules_texts = modules_texts ClientDBModule.ClientDBModule.__init__( self, 'client file locations', cursor ) self.temp_file_storage_table_name = None def _GetInitialTableGenerationDict( self ) -> dict: return { 'main.local_file_deletion_reasons' : ( 'CREATE TABLE IF NOT EXISTS {} ( hash_id INTEGER PRIMARY KEY, reason_id INTEGER );', 400 ) } def _GetServiceIndexGenerationDict( self, service_id ) -> dict: ( current_files_table_name, deleted_files_table_name, pending_files_table_name, petitioned_files_table_name ) = GenerateFilesTableNames( service_id ) index_generation_dict = {} index_generation_dict[ current_files_table_name ] = [ ( [ 'timestamp' ], False, 447 ) ] index_generation_dict[ deleted_files_table_name ] = [ ( [ 'timestamp' ], False, 447 ), ( [ 'original_timestamp' ], False, 447 ) ] index_generation_dict[ petitioned_files_table_name ] = [ ( [ 'reason_id' ], False, 447 ) ] return index_generation_dict def _GetServiceTableGenerationDict( self, service_id ) -> dict: ( current_files_table_name, deleted_files_table_name, pending_files_table_name, petitioned_files_table_name ) = GenerateFilesTableNames( service_id ) return { current_files_table_name : ( 'CREATE TABLE IF NOT EXISTS {} ( hash_id INTEGER PRIMARY KEY, timestamp INTEGER );', 447 ), deleted_files_table_name : ( 'CREATE TABLE IF NOT EXISTS {} ( hash_id INTEGER PRIMARY KEY, timestamp INTEGER, original_timestamp INTEGER );', 447 ), pending_files_table_name : ( 'CREATE TABLE IF NOT EXISTS {} ( hash_id INTEGER PRIMARY KEY );', 447 ), petitioned_files_table_name : ( 'CREATE TABLE IF NOT EXISTS {} ( hash_id INTEGER PRIMARY KEY, reason_id INTEGER );', 447 ) } def _GetServiceIdsWeGenerateDynamicTablesFor( self ): return self.modules_services.GetServiceIds( HC.SPECIFIC_FILE_SERVICES ) def AddFiles( self, service_id, insert_rows ): ( current_files_table_name, deleted_files_table_name, pending_files_table_name, petitioned_files_table_name ) = GenerateFilesTableNames( service_id ) self._ExecuteMany( 'INSERT OR IGNORE INTO {} VALUES ( ?, ? );'.format( current_files_table_name ), ( ( hash_id, timestamp ) for ( hash_id, timestamp ) in insert_rows ) ) self._ExecuteMany( 'DELETE FROM {} WHERE hash_id = ?;'.format( pending_files_table_name ), ( ( hash_id, ) for ( hash_id, timestamp ) in insert_rows ) ) pending_changed = self._GetRowCount() > 0 return pending_changed def ClearDeleteRecord( self, service_id, hash_ids ): deleted_files_table_name = GenerateFilesTableName( service_id, HC.CONTENT_STATUS_DELETED ) self._ExecuteMany( 'DELETE FROM {} WHERE hash_id = ?;'.format( deleted_files_table_name ), ( ( hash_id, ) for hash_id in hash_ids ) ) num_deleted = self._GetRowCount() return num_deleted def ClearFilesTables( self, service_id: int, keep_pending = False ): ( current_files_table_name, deleted_files_table_name, pending_files_table_name, petitioned_files_table_name ) = GenerateFilesTableNames( service_id ) self._Execute( 'DELETE FROM {};'.format( current_files_table_name ) ) self._Execute( 'DELETE FROM {};'.format( deleted_files_table_name ) ) if not keep_pending: self._Execute( 'DELETE FROM {};'.format( pending_files_table_name ) ) self._Execute( 'DELETE FROM {};'.format( petitioned_files_table_name ) ) def ClearLocalDeleteRecord( self, hash_ids = None ): # we delete from everywhere, but not for files currently in the trash service_ids_to_nums_cleared = {} local_non_trash_service_ids = self.modules_services.GetServiceIds( ( HC.COMBINED_LOCAL_FILE, HC.LOCAL_FILE_DOMAIN ) ) if hash_ids is None: trash_current_files_table_name = GenerateFilesTableName( self.modules_services.trash_service_id, HC.CONTENT_STATUS_CURRENT ) for service_id in local_non_trash_service_ids: deleted_files_table_name = GenerateFilesTableName( service_id, HC.CONTENT_STATUS_DELETED ) self._Execute( 'DELETE FROM {} WHERE hash_id NOT IN ( SELECT hash_id FROM {} );'.format( deleted_files_table_name, trash_current_files_table_name ) ) num_cleared = self._GetRowCount() service_ids_to_nums_cleared[ service_id ] = num_cleared self._Execute( 'DELETE FROM local_file_deletion_reasons WHERE hash_id NOT IN ( SELECT hash_id FROM {} );'.format( trash_current_files_table_name ) ) else: trashed_hash_ids = self.FilterCurrentHashIds( self.modules_services.trash_service_id, hash_ids ) ok_to_clear_hash_ids = set( hash_ids ).difference( trashed_hash_ids ) if len( ok_to_clear_hash_ids ) > 0: for service_id in local_non_trash_service_ids: deleted_files_table_name = GenerateFilesTableName( service_id, HC.CONTENT_STATUS_DELETED ) self._ExecuteMany( 'DELETE FROM {} WHERE hash_id = ?;'.format( deleted_files_table_name ), ( ( hash_id, ) for hash_id in ok_to_clear_hash_ids ) ) num_cleared = self._GetRowCount() service_ids_to_nums_cleared[ service_id ] = num_cleared self._ExecuteMany( 'DELETE FROM local_file_deletion_reasons WHERE hash_id = ?;', ( ( hash_id, ) for hash_id in ok_to_clear_hash_ids ) ) return service_ids_to_nums_cleared def DeletePending( self, service_id: int ): ( current_files_table_name, deleted_files_table_name, pending_files_table_name, petitioned_files_table_name ) = GenerateFilesTableNames( service_id ) self._Execute( 'DELETE FROM {};'.format( pending_files_table_name ) ) self._Execute( 'DELETE FROM {};'.format( petitioned_files_table_name ) ) def DropFilesTables( self, service_id: int ): ( current_files_table_name, deleted_files_table_name, pending_files_table_name, petitioned_files_table_name ) = GenerateFilesTableNames( service_id ) self._Execute( 'DROP TABLE IF EXISTS {};'.format( current_files_table_name ) ) self._Execute( 'DROP TABLE IF EXISTS {};'.format( deleted_files_table_name ) ) self._Execute( 'DROP TABLE IF EXISTS {};'.format( pending_files_table_name ) ) self._Execute( 'DROP TABLE IF EXISTS {};'.format( petitioned_files_table_name ) ) def FilterAllCurrentHashIds( self, hash_ids, just_these_service_ids = None ): if just_these_service_ids is None: service_ids = self.modules_services.GetServiceIds( HC.SPECIFIC_FILE_SERVICES ) else: service_ids = just_these_service_ids current_hash_ids = set() with self._MakeTemporaryIntegerTable( hash_ids, 'hash_id' ) as temp_hash_ids_table_name: for service_id in service_ids: current_files_table_name = GenerateFilesTableName( service_id, HC.CONTENT_STATUS_CURRENT ) hash_id_iterator = self._STI( self._Execute( 'SELECT hash_id FROM {} CROSS JOIN {} USING ( hash_id );'.format( temp_hash_ids_table_name, current_files_table_name ) ) ) current_hash_ids.update( hash_id_iterator ) return current_hash_ids def FilterAllPendingHashIds( self, hash_ids, just_these_service_ids = None ): if just_these_service_ids is None: service_ids = self.modules_services.GetServiceIds( HC.SPECIFIC_FILE_SERVICES ) else: service_ids = just_these_service_ids pending_hash_ids = set() with self._MakeTemporaryIntegerTable( hash_ids, 'hash_id' ) as temp_hash_ids_table_name: for service_id in service_ids: pending_files_table_name = GenerateFilesTableName( service_id, HC.CONTENT_STATUS_PENDING ) hash_id_iterator = self._STI( self._Execute( 'SELECT hash_id FROM {} CROSS JOIN {} USING ( hash_id );'.format( temp_hash_ids_table_name, pending_files_table_name ) ) ) pending_hash_ids.update( hash_id_iterator ) return pending_hash_ids def FilterCurrentHashIds( self, service_id, hash_ids ): if service_id == self.modules_services.combined_file_service_id: return set( hash_ids ) with self._MakeTemporaryIntegerTable( hash_ids, 'hash_id' ) as temp_hash_ids_table_name: current_files_table_name = GenerateFilesTableName( service_id, HC.CONTENT_STATUS_CURRENT ) current_hash_ids = self._STS( self._Execute( 'SELECT hash_id FROM {} CROSS JOIN {} USING ( hash_id );'.format( temp_hash_ids_table_name, current_files_table_name ) ) ) return current_hash_ids def FilterPendingHashIds( self, service_id, hash_ids ): if service_id == self.modules_services.combined_file_service_id: return set( hash_ids ) with self._MakeTemporaryIntegerTable( hash_ids, 'hash_id' ) as temp_hash_ids_table_name: pending_files_table_name = GenerateFilesTableName( service_id, HC.CONTENT_STATUS_PENDING ) pending_hash_ids = self._STS( self._Execute( 'SELECT hash_id FROM {} CROSS JOIN {} USING ( hash_id );'.format( temp_hash_ids_table_name, pending_files_table_name ) ) ) return pending_hash_ids def GenerateFilesTables( self, service_id: int ): table_generation_dict = self._GetServiceTableGenerationDict( service_id ) for ( table_name, ( create_query_without_name, version_added ) ) in table_generation_dict.items(): self._Execute( create_query_without_name.format( table_name ) ) index_generation_dict = self._GetServiceIndexGenerationDict( service_id ) for ( table_name, columns, unique, version_added ) in self._FlattenIndexGenerationDict( index_generation_dict ): self._CreateIndex( table_name, columns, unique = unique ) def GetAPendingHashId( self, service_id ): pending_files_table_name = GenerateFilesTableName( service_id, HC.CONTENT_STATUS_PENDING ) result = self._Execute( 'SELECT hash_id FROM {};'.format( pending_files_table_name ) ).fetchone() if result is None: return None else: ( hash_id, ) = result return hash_id def GetAPetitionedHashId( self, service_id ): petitioned_files_table_name = GenerateFilesTableName( service_id, HC.CONTENT_STATUS_PETITIONED ) result = self._Execute( 'SELECT hash_id FROM {};'.format( petitioned_files_table_name ) ).fetchone() if result is None: return None else: ( hash_id, ) = result return hash_id def GetCurrentFilesCount( self, service_id, only_viewable = False ): current_files_table_name = GenerateFilesTableName( service_id, HC.CONTENT_STATUS_CURRENT ) if only_viewable: # hashes to mimes result = self._Execute( 'SELECT COUNT( * ) FROM {} CROSS JOIN files_info USING ( hash_id ) WHERE mime IN {};'.format( current_files_table_name, HydrusData.SplayListForDB( HC.SEARCHABLE_MIMES ) ) ).fetchone() else: result = self._Execute( 'SELECT COUNT( * ) FROM {};'.format( current_files_table_name ) ).fetchone() ( count, ) = result return count def GetCurrentFilesInboxCount( self, service_id ): current_files_table_name = GenerateFilesTableName( service_id, HC.CONTENT_STATUS_CURRENT ) result = self._Execute( 'SELECT COUNT( * ) FROM {} CROSS JOIN file_inbox USING ( hash_id );'.format( current_files_table_name ) ).fetchone() ( count, ) = result return count def GetCurrentHashIdsList( self, service_id ): current_files_table_name = GenerateFilesTableName( service_id, HC.CONTENT_STATUS_CURRENT ) hash_ids = self._STL( self._Execute( 'SELECT hash_id FROM {};'.format( current_files_table_name ) ) ) return hash_ids def GetCurrentFilesTotalSize( self, service_id ): current_files_table_name = GenerateFilesTableName( service_id, HC.CONTENT_STATUS_CURRENT ) # hashes to size result = self._Execute( 'SELECT SUM( size ) FROM {} CROSS JOIN files_info USING ( hash_id );'.format( current_files_table_name ) ).fetchone() ( count, ) = result return count def GetCurrentHashIdsToTimestamps( self, service_id, hash_ids ): current_files_table_name = GenerateFilesTableName( service_id, HC.CONTENT_STATUS_CURRENT ) with self._MakeTemporaryIntegerTable( hash_ids, 'hash_id' ) as temp_hash_ids_table_name: rows = dict( self._Execute( 'SELECT hash_id, timestamp FROM {} CROSS JOIN {} USING ( hash_id );'.format( temp_hash_ids_table_name, current_files_table_name ) ) ) return rows def GetCurrentTimestamp( self, service_id: int, hash_id: int ): current_files_table_name = GenerateFilesTableName( service_id, HC.CONTENT_STATUS_CURRENT ) result = self._Execute( 'SELECT timestamp FROM {} WHERE hash_id = ?;'.format( current_files_table_name ), ( hash_id, ) ).fetchone() if result is None: return None else: ( timestamp, ) = result return timestamp def GetDeletedFilesCount( self, service_id: int ) -> int: deleted_files_table_name = GenerateFilesTableName( service_id, HC.CONTENT_STATUS_DELETED ) result = self._Execute( 'SELECT COUNT( * ) FROM {};'.format( deleted_files_table_name ) ).fetchone() ( count, ) = result return count def GetDeletionStatus( self, service_id, hash_id ): # can have a value here and just be in trash, so we fetch it whatever the end result result = self._Execute( 'SELECT reason_id FROM local_file_deletion_reasons WHERE hash_id = ?;', ( hash_id, ) ).fetchone() if result is None: file_deletion_reason = 'Unknown deletion reason.' else: ( reason_id, ) = result file_deletion_reason = self.modules_texts.GetText( reason_id ) deleted_files_table_name = GenerateFilesTableName( service_id, HC.CONTENT_STATUS_DELETED ) is_deleted = False timestamp = None result = self._Execute( 'SELECT timestamp FROM {} WHERE hash_id = ?;'.format( deleted_files_table_name ), ( hash_id, ) ).fetchone() if result is not None: is_deleted = True ( timestamp, ) = result return ( is_deleted, timestamp, file_deletion_reason ) def GetDBLocationSearchContext( self, location_search_context: ClientSearch.LocationSearchContext ): if not location_search_context.SearchesAnything(): location_search_context = ClientSearch.LocationSearchContext( current_service_keys = [ CC.COMBINED_FILE_SERVICE_KEY ] ) db_location_search_context = DBLocationSearchContext( location_search_context ) if location_search_context.IsAllKnownFiles(): # no table set, obviously return db_location_search_context table_names = [] for current_service_key in location_search_context.current_service_keys: service_id = self.modules_services.GetServiceId( current_service_key ) table_names.append( GenerateFilesTableName( service_id, HC.CONTENT_STATUS_CURRENT ) ) for deleted_service_key in location_search_context.deleted_service_keys: service_id = self.modules_services.GetServiceId( deleted_service_key ) table_names.append( GenerateFilesTableName( service_id, HC.CONTENT_STATUS_DELETED ) ) if len( table_names ) == 1: table_name = table_names[0] db_location_search_context.files_table_name = table_name else: # while I could make a VIEW of the UNION SELECT, we'll populate an indexed single column table to help query planner later on # we're hardcoding the name to this class for now, so a limit of one db_location_search_context at a time _for now_ # we make change this in future to use wrapper temp int tables, we'll see # maybe I should stick this guy in 'temp' to live through db connection resets, but we'll see I guess. it is generally ephemeral, not going to linger through weird vacuum maintenance or anything right? if self.temp_file_storage_table_name is None: self.temp_file_storage_table_name = 'mem.temp_file_storage_hash_id' self._Execute( 'CREATE TABLE IF NOT EXISTS {} ( hash_id INTEGER PRIMARY KEY );'.format( self.temp_file_storage_table_name ) ) else: self._Execute( 'DELETE FROM {};'.format( self.temp_file_storage_table_name ) ) select_query = ' UNION '.join( ( 'SELECT hash_id FROM {}'.format( table_name ) for table_name in table_names ) ) self._Execute( 'INSERT OR IGNORE INTO {} ( hash_id ) SELECT hash_id FROM {};'.format( self.temp_file_storage_table_name, select_query ) ) db_location_search_context.files_table_name = self.temp_file_storage_table_name return db_location_search_context def GetHashIdsToCurrentServiceIds( self, temp_hash_ids_table_name ): hash_ids_to_current_file_service_ids = collections.defaultdict( list ) for service_id in self.modules_services.GetServiceIds( HC.SPECIFIC_FILE_SERVICES ): current_files_table_name = GenerateFilesTableName( service_id, HC.CONTENT_STATUS_CURRENT ) for hash_id in self._STI( self._Execute( 'SELECT hash_id FROM {} CROSS JOIN {} USING ( hash_id );'.format( temp_hash_ids_table_name, current_files_table_name ) ) ): hash_ids_to_current_file_service_ids[ hash_id ].append( service_id ) return hash_ids_to_current_file_service_ids def GetHashIdsToServiceInfoDicts( self, temp_hash_ids_table_name ): hash_ids_to_current_file_service_ids_and_timestamps = collections.defaultdict( list ) hash_ids_to_deleted_file_service_ids_and_timestamps = collections.defaultdict( list ) hash_ids_to_pending_file_service_ids = collections.defaultdict( list ) hash_ids_to_petitioned_file_service_ids = collections.defaultdict( list ) for service_id in self.modules_services.GetServiceIds( HC.SPECIFIC_FILE_SERVICES ): ( current_files_table_name, deleted_files_table_name, pending_files_table_name, petitioned_files_table_name ) = GenerateFilesTableNames( service_id ) for ( hash_id, timestamp ) in self._Execute( 'SELECT hash_id, timestamp FROM {} CROSS JOIN {} USING ( hash_id );'.format( temp_hash_ids_table_name, current_files_table_name ) ): hash_ids_to_current_file_service_ids_and_timestamps[ hash_id ].append( ( service_id, timestamp ) ) for ( hash_id, timestamp, original_timestamp ) in self._Execute( 'SELECT hash_id, timestamp, original_timestamp FROM {} CROSS JOIN {} USING ( hash_id );'.format( temp_hash_ids_table_name, deleted_files_table_name ) ): hash_ids_to_deleted_file_service_ids_and_timestamps[ hash_id ].append( ( service_id, timestamp, original_timestamp ) ) for hash_id in self._Execute( 'SELECT hash_id FROM {} CROSS JOIN {} USING ( hash_id );'.format( temp_hash_ids_table_name, pending_files_table_name ) ): hash_ids_to_pending_file_service_ids[ hash_id ].append( service_id ) for hash_id in self._Execute( 'SELECT hash_id FROM {} CROSS JOIN {} USING ( hash_id );'.format( temp_hash_ids_table_name, petitioned_files_table_name ) ): hash_ids_to_petitioned_file_service_ids[ hash_id ].append( service_id ) return ( hash_ids_to_current_file_service_ids_and_timestamps, hash_ids_to_deleted_file_service_ids_and_timestamps, hash_ids_to_pending_file_service_ids, hash_ids_to_petitioned_file_service_ids ) def GetNumLocal( self, service_id: int ) -> int: current_files_table_name = GenerateFilesTableName( service_id, HC.CONTENT_STATUS_CURRENT ) combined_local_current_files_table_name = GenerateFilesTableName( self.modules_services.combined_local_file_service_id, HC.CONTENT_STATUS_CURRENT ) ( num_local, ) = self._Execute( 'SELECT COUNT( * ) FROM {} CROSS JOIN {} USING ( hash_id );'.format( current_files_table_name, combined_local_current_files_table_name ) ).fetchone() return num_local def GetPendingFilesCount( self, service_id: int ) -> int: pending_files_table_name = GenerateFilesTableName( service_id, HC.CONTENT_STATUS_PENDING ) result = self._Execute( 'SELECT COUNT( * ) FROM {};'.format( pending_files_table_name ) ).fetchone() ( count, ) = result return count def GetPetitionedFilesCount( self, service_id: int ) -> int: petitioned_files_table_name = GenerateFilesTableName( service_id, HC.CONTENT_STATUS_PETITIONED ) result = self._Execute( 'SELECT COUNT( * ) FROM {};'.format( petitioned_files_table_name ) ).fetchone() ( count, ) = result return count def GetServiceIdCounts( self, hash_ids ) -> typing.Dict[ int, int ]: with self._MakeTemporaryIntegerTable( hash_ids, 'hash_id' ) as temp_hash_ids_table_name: service_ids_to_counts = {} for service_id in self.modules_services.GetServiceIds( HC.SPECIFIC_FILE_SERVICES ): current_files_table_name = GenerateFilesTableName( service_id, HC.CONTENT_STATUS_CURRENT ) # temp hashes to files ( count, ) = self._Execute( 'SELECT COUNT( * ) FROM {} CROSS JOIN {} USING ( hash_id );'.format( temp_hash_ids_table_name, current_files_table_name ) ).fetchone() service_ids_to_counts[ service_id ] = count return service_ids_to_counts def GetSomePetitionedRows( self, service_id: int ): petitioned_files_table_name = GenerateFilesTableName( service_id, HC.CONTENT_STATUS_PETITIONED ) petitioned_rows = list( HydrusData.BuildKeyToListDict( self._Execute( 'SELECT reason_id, hash_id FROM {} ORDER BY reason_id LIMIT 100;'.format( petitioned_files_table_name ) ) ).items() ) return petitioned_rows def GetTableJoinIteratedByFileDomain( self, service_id, table_name, status ): files_table_name = GenerateFilesTableName( service_id, status ) return '{} CROSS JOIN {} USING ( hash_id )'.format( files_table_name, table_name ) def GetTableJoinLimitedByFileDomain( self, service_id, table_name, status ): files_table_name = GenerateFilesTableName( service_id, status ) return '{} CROSS JOIN {} USING ( hash_id )'.format( table_name, files_table_name ) def GetTablesAndColumnsThatUseDefinitions( self, content_type: int ) -> typing.List[ typing.Tuple[ str, str ] ]: tables_and_columns = [] if HC.CONTENT_TYPE_HASH: for service_id in self.modules_services.GetServiceIds( HC.SPECIFIC_FILE_SERVICES ): ( current_files_table_name, deleted_files_table_name, pending_files_table_name, petitioned_files_table_name ) = GenerateFilesTableNames( service_id ) tables_and_columns.extend( [ ( current_files_table_name, 'hash_id' ), ( deleted_files_table_name, 'hash_id' ), ( pending_files_table_name, 'hash_id' ), ( petitioned_files_table_name, 'hash_id' ) ] ) return tables_and_columns def GetUndeleteRows( self, service_id, hash_ids ): deleted_files_table_name = GenerateFilesTableName( service_id, HC.CONTENT_STATUS_DELETED ) with self._MakeTemporaryIntegerTable( hash_ids, 'hash_id' ) as temp_hash_ids_table_name: rows = self._Execute( 'SELECT hash_id, original_timestamp FROM {} CROSS JOIN {} USING ( hash_id );'.format( temp_hash_ids_table_name, deleted_files_table_name ) ).fetchall() return rows def PendFiles( self, service_id, hash_ids ): pending_files_table_name = GenerateFilesTableName( service_id, HC.CONTENT_STATUS_PENDING ) self._ExecuteMany( 'INSERT OR IGNORE INTO {} ( hash_id ) VALUES ( ? );'.format( pending_files_table_name ), ( ( hash_id, ) for hash_id in hash_ids ) ) def PetitionFiles( self, service_id, reason_id, hash_ids ): petitioned_files_table_name = GenerateFilesTableName( service_id, HC.CONTENT_STATUS_PETITIONED ) self._ExecuteMany( 'DELETE FROM {} WHERE hash_id = ?;'.format( petitioned_files_table_name ), ( ( hash_id, ) for hash_id in hash_ids ) ) self._ExecuteMany( 'INSERT OR IGNORE INTO {} ( hash_id, reason_id ) VALUES ( ?, ? );'.format( petitioned_files_table_name ), ( ( hash_id, reason_id ) for hash_id in hash_ids ) ) def RecordDeleteFiles( self, service_id, insert_rows ): deleted_files_table_name = GenerateFilesTableName( service_id, HC.CONTENT_STATUS_DELETED ) now = HydrusData.GetNow() self._ExecuteMany( 'INSERT OR IGNORE INTO {} ( hash_id, timestamp, original_timestamp ) VALUES ( ?, ?, ? );'.format( deleted_files_table_name ), ( ( hash_id, now, original_timestamp ) for ( hash_id, original_timestamp ) in insert_rows ) ) num_new_deleted_files = self._GetRowCount() return num_new_deleted_files def RescindPendFiles( self, service_id, hash_ids ): pending_files_table_name = GenerateFilesTableName( service_id, HC.CONTENT_STATUS_PENDING ) self._ExecuteMany( 'DELETE FROM {} WHERE hash_id = ?;'.format( pending_files_table_name ), ( ( hash_id, ) for hash_id in hash_ids ) ) def RescindPetitionFiles( self, service_id, hash_ids ): petitioned_files_table_name = GenerateFilesTableName( service_id, HC.CONTENT_STATUS_PETITIONED ) self._ExecuteMany( 'DELETE FROM {} WHERE hash_id = ?;'.format( petitioned_files_table_name ), ( ( hash_id, ) for hash_id in hash_ids ) ) def RemoveFiles( self, service_id, hash_ids ): ( current_files_table_name, deleted_files_table_name, pending_files_table_name, petitioned_files_table_name ) = GenerateFilesTableNames( service_id ) self._ExecuteMany( 'DELETE FROM {} WHERE hash_id = ?;'.format( current_files_table_name ), ( ( hash_id, ) for hash_id in hash_ids ) ) self._ExecuteMany( 'DELETE FROM {} WHERE hash_id = ?;'.format( petitioned_files_table_name ), ( ( hash_id, ) for hash_id in hash_ids ) ) pending_changed = self._GetRowCount() > 0 return pending_changed def SetFileDeletionReason( self, hash_ids, reason ): reason_id = self.modules_texts.GetTextId( reason ) self._ExecuteMany( 'REPLACE INTO local_file_deletion_reasons ( hash_id, reason_id ) VALUES ( ?, ? );', ( ( hash_id, reason_id ) for hash_id in hash_ids ) )
7358cda3629e79200fe58e47c0f254cdd0af3523
1d7ae7f6e7a0df98d92f9ec5f277752d14924a94
/fake-very-small-test/wrong_case/pytorch_bike_dqn_test-small-with-former-a-trick.py
5916cee0a242517a8af7ef2d2c50f65db11824f0
[]
no_license
lindsaymorgan/Mobike-Bike-Sharing-System-Dispatch-Optimization-Using-Reinforcement-Learning
1e6b1aa3c64d2ff2e31b5d9dcc4abdc11e10679c
6c8a329fae5c2ac8db45a3d8c55b308aae8ad804
refs/heads/master
2023-05-02T07:39:49.089459
2021-05-23T02:26:14
2021-05-23T02:26:14
279,467,461
2
0
null
null
null
null
UTF-8
Python
false
false
15,003
py
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch import optim import matplotlib.pyplot as plt import pandas as pd import random import time # hyper parameters EPSILON = 0.85 GAMMA = 0.99 LR = 0.001 MEMORY_CAPACITY = 3000 Q_NETWORK_ITERATION = 2000 BATCH_SIZE = 128 EPISODES = 20000 need = pd.read_csv('../fake_4region_trip_20170510.csv') ts=int(time.time()) class Env(object): def __init__(self, region_num, move_amount_limit, eps_num): self.region_num = region_num self.move_amount_limit = move_amount_limit self.action_dim = region_num * (2 * move_amount_limit + 1) self.obs_dim = 2 * region_num + 1 self.episode_num = eps_num self.start_region = need.groupby('start_region') self.end_region = need.groupby('end_region') self.t_index = {i: str(i) for i in range(eps_num)} self.out_nums = np.array([self.start_region[str(i)].agg(np.sum) for i in range(eps_num)]) self.in_nums = np.array([self.end_region[str(i)].agg(np.sum) for i in range(eps_num)]) self.t = 0 self.obs_init = np.array([15, 15, 15, 15, 0, 0,0,0,15, 15, 15, 15, 0, 0]) # 各方格单车量+货车位置+货车上的单车量 self.obs_init[-self.region_num-2:-2] -= self.out_nums[0, ] def init(self): self.obs = self.obs_init.copy() self.t = 0 return np.append(self.obs, self.t) def step(self, action): # 更新时间状态 self.t += 1 if self.t == self.episode_num-1: done = True else: done = False self.obs[:self.region_num+2]=self.obs[-self.region_num-2:] #更新状态 region = int(np.floor(action / (2 * self.move_amount_limit + 1))) move = action % (2 * self.move_amount_limit + 1) - self.move_amount_limit # 更新单车分布状态 # 处理上时段骑入 self.obs[-self.region_num-2:-2] += self.in_nums[self.t - 1, ] reward = 0 # 筛选不合理情况 若合理 按照推算移动车辆 更新货车状态 若不合理则不采取任何操作 if move + self.obs[-self.region_num-2+region] >= 0 and move <= self.obs[-1] \ and (self.obs[-self.region_num-2+region]- self.out_nums[self.t,region])*move<=0: self.obs[-self.region_num-2+region] += move # 更新货车状态 self.obs[-1] -= move # 更新货车上的单车数 self.obs[-2] = region # 更新货车位置 # 更新之前的动作历史 self.obs[-self.region_num-2-1] = move # 搬动的单车数 self.obs[-self.region_num-2-2] = region # 货车位置 self.obs[-self.region_num-2:-2] -= self.out_nums[self.t, ] reward = np.sum(self.obs[-self.region_num-2:-2][self.obs [-self.region_num-2:-2]< 0]) self.obs[-self.region_num-2:-2][self.obs [-self.region_num-2:-2]< 0] = 0 return np.append(self.obs, self.t), reward, done class Net(nn.Module): def __init__(self, NUM_STATES): super(Net, self).__init__() EMB_SIZE = 10 OTHER_SIZE = NUM_STATES-2 # fixme: update this value based on the input self.fc1 = nn.Linear(OTHER_SIZE + EMB_SIZE * 4, 256).cuda() # self.fc1.weight.data.normal_(0, 0.1) self.fc2 = nn.Linear(256, 64).cuda() # self.fc2.weight.data.normal_(0, 0.1) self.fc3 = nn.Linear(64, 1).cuda() # self.fc3.weight.data.normal_(0, 0.1) self.m = nn.Dropout(p=0.2).cuda() self.emb = nn.Embedding(NUM_STATES, EMB_SIZE).cuda() def forward(self, x: torch.cuda.FloatTensor, stations: torch.cuda.LongTensor): emb = self.emb(stations).flatten(start_dim=1) x = torch.cat([x, emb], 1) x = self.fc1(x) x = F.relu(x) # x = self.m(x) x = self.fc2(x) x = F.relu(x) # x = self.m(x) x = self.fc3(x) return x class Dqn(): def __init__(self, NUM_STATES, NUM_ACTIONS, region_num,move_amount_limit, eps_num): self.eval_net, self.target_net = Net(NUM_STATES), Net(NUM_STATES) self.target_net.load_state_dict(self.eval_net.state_dict()) self.memory = np.zeros((MEMORY_CAPACITY, NUM_STATES * 2 + 2)) # state, action ,reward and next state self.memory_counter = 0 self.learn_counter = 0 self.optimizer = optim.Adam(self.eval_net.parameters(), LR) self.loss = nn.MSELoss() self.NUM_ACTIONS = NUM_ACTIONS self.NUM_STATES = NUM_STATES self.move_amount_limit = move_amount_limit self.region_num=region_num self.fig, self.ax = plt.subplots() self.start_region = need.groupby('start_region') self.end_region = need.groupby('end_region') self.t_index = {i: str(i) for i in range(eps_num)} self.out_nums = np.array([self.start_region[str(i)].agg(np.sum) for i in range(eps_num)]) def store_trans(self, state, action, reward, next_state): if self.memory_counter % 10 == 0: print("The experience pool collects {} time experience".format(self.memory_counter)) index = self.memory_counter % MEMORY_CAPACITY trans = np.hstack((state, [action], [reward], next_state)) self.memory[index,] = trans self.memory_counter += 1 def choose_action(self, state,EPSILON): # notation that the function return the action's index nor the real action # EPSILON # state = torch.unsqueeze(torch.FloatTensor(state) ,0) # feasible action # print(EPSILON) if random.random() > EPSILON: action=self.predict(state) else: feasible_action = list() for action in range(self.NUM_ACTIONS): move = action % (2 * self.move_amount_limit + 1) - self.move_amount_limit region = int(np.floor(action / (2 * self.move_amount_limit + 1))) if move + state[-self.region_num - 2 + region] >= 0 and move <= state[-2] and \ (state[-self.region_num-2+region]- self.out_nums[state[-1],region])*move<=0: feasible_action.append(action) action = random.choice(feasible_action) return action def predict(self, state): # notation that the function return the action's index nor the real action # EPSILON # feasible action feasible_action = list() state_1 = [j for i, j in enumerate(state) if i not in [self.region_num, self.region_num + 2, 2 * self.region_num + 4]] state_2 = [j for i, j in enumerate(state) if i in [self.region_num, self.region_num + 2, 2 * self.region_num + 4]] tmp_x = list() tmp_y = list() for action in range(self.NUM_ACTIONS): move = action % (2 * self.move_amount_limit + 1) - self.move_amount_limit region = int(np.floor(action / (2 * self.move_amount_limit + 1))) if move + state[-self.region_num - 2 + region] >= 0 and move <= state[-2]\ and (state[-self.region_num-2+region]- self.out_nums[state[-1],region])*move<=0: feasible_action.append(action) tmp_x.append(np.concatenate([state_1, np.array([move])])) tmp_y.append(np.concatenate([state_2, np.array([region])])) x = torch.FloatTensor(tmp_x).cuda() station = torch.LongTensor(tmp_y).cuda() action_val = self.target_net.forward(x, station) max_indice = [i for i, j in enumerate([i[0] for i in action_val]) if j == np.max([i[0] for i in action_val])] # 找最大index action = feasible_action[random.choice(max_indice)] # 如果有多个index随机选一个,获得对应action return action def plot(self, ax, x): ax.cla() ax.set_xlabel("episode") ax.set_ylabel("total reward") ax.plot(x, 'b-') plt.pause(0.000000000000001) def learn(self): # learn 100 times then the target network update if self.learn_counter % Q_NETWORK_ITERATION == 0: self.target_net.load_state_dict(self.eval_net.state_dict()) self.learn_counter += 1 if self.learn_counter % 50 == 0: test_x=torch.FloatTensor([[11,12,12,7,0,0,5,5,3,0,0,1,-5],[5,5,3,0,0,0,10,11,0,3,0,2,-10], [11,12,12,7,0,-1,4,5,3,0,1,1,-5],[10,8,0,3,3,3,8,9,0,0,0,3,-9]]).cuda() test_station=torch.LongTensor([[0,3,3,0],[3,0,0,0],[0,0,0,0],[1,3,3,0]]).cuda() action_val = self.target_net.forward(test_x, test_station) print(np.mean(action_val.cpu().detach().numpy()), file=open(f"result_history/actionless_output_action_value_{ts}.txt", "a")) sample_index = np.random.choice(MEMORY_CAPACITY, BATCH_SIZE) # 切取sars切片 batch_memory = self.memory[sample_index, :] batch_reward = torch.FloatTensor(batch_memory[:, self.NUM_STATES + 1: self.NUM_STATES + 2]).cuda() x=torch.FloatTensor(np.delete(batch_memory[:, :self.NUM_STATES], [self.region_num,self.region_num+2,self.region_num*2+4], 1)).cuda() move = torch.FloatTensor([[i[0] % (2 * self.move_amount_limit + 1) - self.move_amount_limit] for i in batch_memory[:, self.NUM_STATES:self.NUM_STATES + 1]]).cuda() x = torch.cat((x, move), 1) y=torch.LongTensor(batch_memory[:, [self.region_num,self.region_num+2,self.region_num*2+4]]).cuda() region = torch.LongTensor([[int(np.floor(i[0] / (2 * self.move_amount_limit + 1)))] for i in batch_memory[:, self.NUM_STATES:self.NUM_STATES + 1]]).cuda() y = torch.cat((y, region), 1) q_eval = self.eval_net(x, y) tmp_q_next = list() for state in batch_memory[:, -self.NUM_STATES:]: feasible_action = list() m_r_list=list() for action in range(self.NUM_ACTIONS): move = action % (2 * self.move_amount_limit + 1) - self.move_amount_limit region = int(np.floor(action / (2 * self.move_amount_limit + 1))) if move + state[-self.region_num-2+region] >= 0 and move <= state[-2]\ and (state[-self.region_num-2+region]- self.out_nums[int(state[-1]),region])*move<=0: feasible_action.append(action) m_r_list.append((move,region)) tmp_x = list() tmp_y = list() # 对每个feasible action算value state_1 = [j for i, j in enumerate(state) if i not in [self.region_num, self.region_num + 2, 2 * self.region_num + 4]] state_2 = [j for i, j in enumerate(state) if i in [self.region_num, self.region_num + 2, 2 * self.region_num + 4]] for move,region in m_r_list: # move = action % (2 * self.move_amount_limit + 1) - self.move_amount_limit # region = int(np.floor(action / (2 * self.move_amount_limit + 1))) tmp_x.append(np.concatenate([state_1, np.array([move])])) tmp_y.append(np.concatenate([state_2, np.array([region])])) x = torch.FloatTensor(tmp_x).cuda() station = torch.LongTensor(tmp_y).cuda() action_val = self.target_net.forward(x, station) tmp_q_next.append([float(action_val.max(1)[0].max().cpu().detach().numpy())]) q_next = torch.FloatTensor(tmp_q_next).cuda() # q_target = batch_reward + GAMMA*q_next.max(1)[0].view(BATCH_SIZE, 1) q_target = batch_reward + GAMMA * q_next loss = self.loss(q_eval, q_target) print(loss.item(), file=open(f"result_history/actionless_output_loss_{ts}.txt", "a")) self.optimizer.zero_grad() loss.backward() self.optimizer.step() # 评估 agent, 跑 5 个episode,总reward求平均 def evaluate(self, env, render=False): eval_reward = [] for i in range(1): obs = env.init() episode_reward = 0 while True: action = self.predict(obs) # 预测动作,只选最优动作 obs, reward, done = env.step(action) episode_reward += reward print(f"obs:{obs[:-1]} action:{action} reward:{reward} reward_sum:{episode_reward} t:{obs[-1]}") print( f"obs:{obs[:-1]} t:{obs[-1]} region:{int(np.floor(action / (2 * self.move_amount_limit + 1)))} " f"move:{action % (2 * self.move_amount_limit + 1) - self.move_amount_limit} reward:{reward} " f"reward_sum:{episode_reward}", file=open(f"result_action/actionless_output_action_{ts}.txt", "a")) # if render: # env.render() if done: break eval_reward.append(episode_reward) return np.mean(eval_reward) def main(): eps_num = 5 EPSILON = 0.9 EPS_DECAY = 0.99 env = Env(region_num=4, move_amount_limit=10, eps_num=eps_num) NUM_ACTIONS = (2 * env.move_amount_limit + 1) * env.region_num # [-500,500]*4个方块 NUM_STATES = 2*env.region_num + 7 # MountainCar-v0: (2,) net = Dqn(NUM_STATES, NUM_ACTIONS, env.region_num, env.move_amount_limit, eps_num) print("The DQN is collecting experience...") step_counter_list = [] for episode in range(EPISODES): state = env.init() step_counter = 0 reward_sum = 0 while True: step_counter += 1 # env.render() EPSILON = max(EPSILON * EPS_DECAY, 0.01) action = net.choose_action(state,EPSILON) # print("the action is {}".format(action)) next_state, reward, done = env.step(action) net.store_trans(state, action, reward, next_state) reward_sum += reward if net.memory_counter >= 5*BATCH_SIZE: net.learn() if done: print("episode {}, the reward is {}".format(episode, round(reward_sum, 3))) print(f"{round(reward_sum, 3)}", file=open(f"result_history/actionless_output_result_{ts}.txt", "a")) if done: step_counter_list.append(step_counter) net.plot(net.ax, step_counter_list) break state = next_state print(net.evaluate(env)) if __name__ == '__main__': main()
1dbae09a882980f310395543b799670a7ed4e9c9
8217d63b4f8875598cc8e01c9cdf4c92e35e4e62
/tools/pypmmn/pypmmn/pypmmn.py
4d38dc5e8ba1cdc93e9037397c8102e80acbeff2
[]
no_license
bubbafix/munin-contrib
d5bdfa156cbebbec73a3851349859bf7caa137eb
b9ec8fbb040808bf4930bea6b065ce5564fbd77d
refs/heads/master
2021-01-16T19:58:11.309579
2013-05-22T09:02:23
2013-05-22T09:02:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
12,683
py
#!/usr/bin/python """ A very simple munin-node written in pure python (no external libraries required) """ from datetime import datetime from logging.handlers import RotatingFileHandler from optparse import OptionParser from os import listdir, access, X_OK, getpid from os.path import join, isdir, abspath, dirname, exists from subprocess import Popen, PIPE from time import sleep import logging import socket import sys LOG = logging.getLogger(__name__) LOG_FORMAT = '%(asctime)s - %(name)s - %(levelname)s - %(message)s' SESSION_TIMEOUT = 10 # Amount of seconds until an unused session is closed from daemon import createDaemon __version__ = '1.0b1' class CmdHandler(object): """ This handler defines the protocol between munin and this munin node. Each method starting with ``do_`` responds to the corresponding munin command. """ def __init__(self, get_fun, put_fun, options): """ Constructor :param get_fun: The function used to receive a message from munin :param put_fun: The function used to send a message back to munin :param options: The command-line options object """ self.get_fun = get_fun self.put_fun = put_fun self.options = options def do_version(self, arg): """ Prints the version of this instance. """ LOG.debug('Command "version" executed with args: %r' % arg) self.put_fun('# munin node at %s\n' % ( self.options.host, )) def do_nodes(self, arg): """ Prints this hostname """ LOG.debug('Command "nodes" executed with args: %r' % arg) self.put_fun('%s\n' % self.options.host) self.put_fun('.\n') def do_quit(self, arg): """ Stops this process """ LOG.debug('Command "quit" executed with args: %r' % arg) sys.exit(0) def do_list(self, arg): """ Print a list of plugins """ LOG.debug('Command "list" executed with args: %r' % arg) try: LOG.debug('Listing files inside %s' % self.options.plugin_dir) for filename in listdir(self.options.plugin_dir): if not access(join(self.options.plugin_dir, filename), X_OK): LOG.warning('Non-executable plugin %s found!' % filename) continue LOG.debug('Found plugin: %s' % filename) self.put_fun("%s " % filename) except OSError, exc: self.put_fun("# ERROR: %s" % exc) self.put_fun("\n") def _caf(self, plugin, cmd): """ handler for ``config``, ``alert`` and ``fetch`` Calls the plugin with ``cmd`` as only argument. :param plugin: The plugin name :param cmd: The command which is to passed to the plugin """ plugin_filename = join(self.options.plugin_dir, plugin) # Sanity checks if isdir(plugin_filename) or not access(plugin_filename, X_OK): msg = "# Unknown plugin [%s] for %s" % (plugin, cmd) LOG.warning(msg) self.put_fun(msg) return # for 'fetch' we don't need to pass a command to the plugin if cmd == 'fetch': plugin_arg = '' else: plugin_arg = cmd try: cmd = [plugin_filename, plugin_arg] LOG.debug('Executing %r' % cmd) output = Popen(cmd, stdout=PIPE).communicate()[0] except OSError, exc: LOG.exception() self.put_fun("# ERROR: %s\n" % exc) return self.put_fun(output) self.put_fun('.\n') def do_alert(self, arg): """ Handle command "alert" """ LOG.debug('Command "alert" executed with args: %r' % arg) self._caf(arg, 'alert') def do_fetch(self, arg): """ Handles command "fetch" """ LOG.debug('Command "fetch" executed with args: %r' % arg) self._caf(arg, 'fetch') def do_config(self, arg): """ Handles command "config" """ LOG.debug('Command "config" executed with args: %r' % arg) self._caf(arg, 'config') def do_cap(self, arg): """ Handles command "cap" """ LOG.debug('Command "cap" executed with args: %r' % arg) self.put_fun("cap ") if self.options.spoolfetch_dir: self.put_fun("spool") else: LOG.debug('No spoolfetch_dir specified. Result spooling disabled') self.put_fun("\n") def do_spoolfetch(self, arg): """ Handles command "spoolfetch" """ LOG.debug('Command "spellfetch" executed with args: %r' % arg) output = Popen(['%s/spoolfetch_%s' % (self.options.spoolfetch_dir, self.options.host), arg]).communicate()[0] self.put_fun(output) self.put_fun('.\n') # aliases do_exit = do_quit def handle_input(self, line): """ Handles one input line and sends any result back using ``put_fun`` """ line = line.strip() line = line.split(' ') cmd = line[0] if len(line) == 1: arg = '' elif len(line) == 2: arg = line[1] else: self.put_fun('# Invalid input: %s\n' % line) return if not cmd: return func = getattr(self, 'do_%s' % cmd, None) if not func: # Give the client a list of supported commands. commands = [_[3:] for _ in dir(self) if _.startswith('do_')] self.put_fun("# Unknown command. Supported commands: %s\n" % ( commands)) return func(arg) def is_timed_out(self): return (datetime.now() - self._last_command).seconds > SESSION_TIMEOUT def reset_time(self): self._last_command = datetime.now() def usage(option, opt, value, parser): """ Prints the command usage and exits """ parser.print_help() sys.exit(0) def get_options(): """ Parses command-line arguments. """ parser = OptionParser(add_help_option=False) parser.add_option('-p', '--port', dest='port', default=None, help='TCP Port to listen on. (If not specified, use stdin/stdout)') parser.add_option('-d', '--plugin-dir', dest='plugin_dir', default='plugins', help=('The directory containing the munin-plugins.' ' Default: <current working dir>/plugins')) parser.add_option('-h', '--host', dest='host', help=('The hostname which will be reported in the plugins.' ' Default: %s' % socket.gethostname()), default=socket.gethostname()) parser.add_option('-n', '--no-daemon', dest='no_daemon', default=False, action='store_true', help='Run in foreground. Do not daemonize. ' 'Will also enable debug logging to stdout.') parser.add_option('-l', '--log-dir', dest='log_dir', default=None, help='The log folder. Default: disabled') parser.add_option('-s', '--spoolfech-dir', dest='spoolfetch_dir', default=None, help='The spoolfetch folder. Default: disabled') parser.add_option('--help', action='callback', callback=usage, help='Shows this help') options, args = parser.parse_args() # ensure we are using absolute paths (for daemonizing) if options.log_dir: options.log_dir = abspath(options.log_dir) if options.spoolfetch_dir: options.spoolfetch_dir = abspath(options.spoolfetch_dir) if options.plugin_dir: options.plugin_dir = abspath(options.plugin_dir) return (options, args) def process_stdin(options): """ Process commands by reading from stdin """ rfhandler = RotatingFileHandler( join(abspath(dirname(__file__)), 'log', 'pypmmn.log'), maxBytes=100 * 1024, backupCount=5 ) rfhandler.setFormatter(logging.Formatter(LOG_FORMAT)) logging.getLogger().addHandler(rfhandler) handler = CmdHandler(sys.stdin.read, sys.stdout.write, options) handler.do_version(None) LOG.info('STDIN handler opened') while True: data = sys.stdin.readline().strip() if not data: return handler.handle_input(data) def process_socket(options): """ Process socket connections. .. note:: This is not a multithreaded process. So only one connection can be handled at any given time. But given the nature of munin, this is Good Enough. """ retcode = 0 if options.no_daemon: # set up on-screen-logging console_handler = logging.StreamHandler(sys.stdout) console_handler.setFormatter(logging.Formatter(LOG_FORMAT)) logging.getLogger().addHandler(console_handler) else: # fork fork retcode = createDaemon() # set up a rotating file log rfhandler = RotatingFileHandler( join(options.log_dir, 'daemon.log'), maxBytes=100 * 1024, backupCount=5 ) rfhandler.setFormatter(logging.Formatter(LOG_FORMAT)) logging.getLogger().addHandler(rfhandler) # write down some house-keeping information LOG.info('New process PID: %d' % getpid()) pidfile = open(join(options.log_dir, 'pypmmn.pid'), 'w') pidfile.write(str(getpid())) pidfile.close() LOG.info('PID file created in %s' % join(options.log_dir, 'pypmmn.pid')) LOG.info('Socket handler started.') host = '' # listens on all addresses TODO: make this configurable port = int(options.port) s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) s.bind((host, port)) s.listen(1) LOG.info('Listening on host %r, port %r' % (host, port)) conn, addr = s.accept() handler = CmdHandler(conn.recv, conn.send, options) handler.do_version(None) handler.reset_time() LOG.info("Accepting incoming connection from %s" % (addr, )) while True: data = conn.recv(1024) if not data.strip(): sleep(1) if handler.is_timed_out(): LOG.info('Session timeout.') conn.shutdown(socket.SHUT_RDWR) conn.close() LOG.info('Listening on host %r, port %r' % (host, port)) conn, addr = s.accept() handler.reset_time() handler.get_fun = conn.recv handler.put_fun = conn.send handler.do_version(None) LOG.info("Accepting incoming connection from %s" % (addr, )) try: data = conn.recv(1024) except socket.error, exc: LOG.warning("Socket error. Reinitialising.: %s" % exc) conn, addr = s.accept() handler.reset_time() handler.get_fun = conn.recv handler.put_fun = conn.send handler.do_version(None) LOG.info("Accepting incoming connection from %s" % (addr, )) if data.strip() == 'quit': LOG.info('Client requested session end. Closing connection.') conn.shutdown(socket.SHUT_RDWR) conn.close() LOG.info('Listening on host %r, port %r' % (host, port)) conn, addr = s.accept() handler.reset_time() handler.get_fun = conn.recv handler.put_fun = conn.send handler.do_version(None) LOG.info("Accepting incoming connection from %s" % (addr, )) continue handler.handle_input(data) sys.exit(retcode) def main(): """ The main entry point of the application """ options, args = get_options() # Handle logging as early as possible. if options.log_dir: if not exists(options.log_dir): raise IOError('[Errno 2] No such file or directory: %r' % ( options.log_dir)) # set up logging if requested root_logger = logging.getLogger() root_logger.setLevel(logging.NOTSET) # TODO: Make configurable # Start either the "stdin" interface, or the socked daemon. Depending on # whether a port was given on startup or not. if not options.port: process_stdin(options) else: process_socket(options) if __name__ == '__main__': main()
816ccf13d545d21c6a8991fbbd5db56841a3fd65
4eab1bd9e1b00155872e44963a5df0532cb5341f
/menus/menuTwo.py
ebbc521d4e91603c346648b2c0ccb7a4a9256571
[]
no_license
soheilpaper/python-gui
9b067467ca41d27092e5817d0a49162b10c37de6
4e6bcad319829dd2c0fdc328520a55a7932060c7
refs/heads/master
2020-12-31T04:29:16.798703
2016-04-08T08:41:59
2016-04-08T08:41:59
55,763,643
0
1
null
null
null
null
UTF-8
Python
false
false
1,595
py
import wx ######################################################################## class MyForm(wx.Frame): """""" #---------------------------------------------------------------------- def __init__(self): """Constructor""" wx.Frame.__init__(self, None, title="wx.Menu Tutorial") self.panel = wx.Panel(self, wx.ID_ANY) # create the menubar menuBar = wx.MenuBar() # create the first menu (starting on left) carMenu = wx.Menu() carMenu.Append(101, "&Ford", "An American Automaker") carMenu.Append(102, "&Nissan", "") carMenu.Append(103, "&Toyota", "Buy Japanese!") carMenu.Append(104, "&Close", "Close the application") # add a picture to a menu picMenu = wx.Menu() item = wx.MenuItem(picMenu, wx.ID_ANY, "Snake", "This menu has a picture!") img = wx.Image('snake32.bmp', wx.BITMAP_TYPE_ANY) item.SetBitmap(wx.BitmapFromImage(img)) picMenu.AppendItem(item) # add menus to menubar menuBar.Append(carMenu, "&Vehicles") menuBar.Append(picMenu, "&Picture") self.SetMenuBar(menuBar) #---------------------------------------------------------------------- def onExit(self, event): """""" self.Close() #---------------------------------------------------------------------- # Run the program if __name__ == "__main__": app = wx.App(False) frame = MyForm().Show() app.MainLoop()
5ea8085f35c9778a5a1d4aae6dc84dacc2eb3e30
62e58c051128baef9452e7e0eb0b5a83367add26
/edifact/D08A/MOVINSD08AUN.py
546f7086b78b82989b1b35deabc5ccb25f908114
[]
no_license
dougvanhorn/bots-grammars
2eb6c0a6b5231c14a6faf194b932aa614809076c
09db18d9d9bd9d92cefbf00f1c0de1c590fe3d0d
refs/heads/master
2021-05-16T12:55:58.022904
2019-05-17T15:22:23
2019-05-17T15:22:23
105,274,633
0
0
null
2017-09-29T13:21:21
2017-09-29T13:21:21
null
UTF-8
Python
false
false
1,740
py
#Generated by bots open source edi translator from UN-docs. from bots.botsconfig import * from edifact import syntax from recordsD08AUN import recorddefs structure = [ {ID: 'UNH', MIN: 1, MAX: 1, LEVEL: [ {ID: 'BGM', MIN: 1, MAX: 1}, {ID: 'DTM', MIN: 1, MAX: 1}, {ID: 'RFF', MIN: 0, MAX: 9, LEVEL: [ {ID: 'DTM', MIN: 0, MAX: 9}, ]}, {ID: 'NAD', MIN: 0, MAX: 9, LEVEL: [ {ID: 'CTA', MIN: 0, MAX: 9, LEVEL: [ {ID: 'COM', MIN: 0, MAX: 9}, ]}, ]}, {ID: 'TDT', MIN: 1, MAX: 3, LEVEL: [ {ID: 'LOC', MIN: 1, MAX: 1}, {ID: 'DTM', MIN: 1, MAX: 99}, {ID: 'RFF', MIN: 0, MAX: 1}, {ID: 'FTX', MIN: 0, MAX: 1}, ]}, {ID: 'HAN', MIN: 0, MAX: 99999, LEVEL: [ {ID: 'LOC', MIN: 0, MAX: 99999, LEVEL: [ {ID: 'RFF', MIN: 1, MAX: 99}, {ID: 'FTX', MIN: 0, MAX: 9}, {ID: 'MEA', MIN: 0, MAX: 9}, {ID: 'DIM', MIN: 0, MAX: 9}, {ID: 'LOC', MIN: 0, MAX: 9}, {ID: 'NAD', MIN: 1, MAX: 99}, {ID: 'TMP', MIN: 0, MAX: 1, LEVEL: [ {ID: 'RNG', MIN: 0, MAX: 1}, ]}, {ID: 'EQD', MIN: 0, MAX: 99, LEVEL: [ {ID: 'EQN', MIN: 0, MAX: 1}, ]}, {ID: 'EQA', MIN: 0, MAX: 99, LEVEL: [ {ID: 'EQN', MIN: 0, MAX: 1}, ]}, {ID: 'GID', MIN: 0, MAX: 9999, LEVEL: [ {ID: 'GDS', MIN: 0, MAX: 1}, ]}, {ID: 'RFF', MIN: 0, MAX: 999, LEVEL: [ {ID: 'DGS', MIN: 1, MAX: 99, LEVEL: [ {ID: 'FTX', MIN: 0, MAX: 1}, ]}, ]}, ]}, ]}, {ID: 'UNT', MIN: 1, MAX: 1}, ]}, ]
82b102860dad12c81b3575f99ab5d3102e7229e3
927d23e5fbcbd7001b1007990b9a28014bfb8219
/mnist_classification.py
373bf1d62d3f945e2554161b608f5dc3b439098b
[]
no_license
minar09/tensorflow-practices
5822cf784063223bc0a5a62570fa0a5548cf1ef0
7982860ce2ec6df0c57a5389711464cbddad89fe
refs/heads/master
2020-03-28T21:09:32.658650
2018-10-08T15:25:08
2018-10-08T15:25:08
149,133,679
0
0
null
null
null
null
UTF-8
Python
false
false
2,725
py
#### MNIST classification ### # Hide the warning messages about CPU/GPU import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # Import libraries import tensorflow as tf import time import numpy as np old_v = tf.logging.get_verbosity() tf.logging.set_verbosity(tf.logging.ERROR) # Download/Read MNIST from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) # Hide the warning messages about deprecations of MNIST data read tf.logging.set_verbosity(old_v) # Initialize parameters t1 = time.time() num_steps = 5000 batch_size = 128 display_step = 500 n_hidden_1 = 256 n_hidden_2 = 256 n_hidden_3 = 256 num_input = 784 num_classes = 10 # Define placeholder x = tf.placeholder("float", [None, num_input]) y = tf.placeholder("float", [None, num_classes]) # Define Weight and Bias for linear regression weights = { 'h1' : tf.Variable(tf.random_normal([num_input, n_hidden_1])), 'h2' : tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])), 'h3' : tf.Variable(tf.random_normal([n_hidden_2, n_hidden_3])), 'out' : tf.Variable(tf.random_normal([n_hidden_1, num_classes])) } biases = { 'b1' : tf.Variable(tf.random_normal([n_hidden_1])), 'b2' : tf.Variable(tf.random_normal([n_hidden_2])), 'b3' : tf.Variable(tf.random_normal([n_hidden_3])), 'out' : tf.Variable(tf.random_normal([num_classes])) } # Initialize the model def mlp(x): l1 = tf.nn.relu(tf.add(tf.matmul(x, weights['h1']), biases['b1'])) l2 = tf.nn.relu(tf.add(tf.matmul(l1, weights['h2']), biases['b2'])) l3 = tf.nn.relu(tf.add(tf.matmul(l2, weights['h3']), biases['b3'])) lout = tf.add(tf.matmul(l3, weights['out']), biases['out']) return lout # Define hypothesis, cost and optimization functions logits = mlp(x) cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits, labels=y)) optimizer = tf.train.AdamOptimizer(learning_rate=0.01).minimize(cost) prediction = tf.nn.softmax(logits) correct_prediction = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # Launch graph/Initialize session with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for step in range(1, num_steps+1): batch_train_images, batch_train_labels = mnist.train.next_batch(batch_size) sess.run(optimizer, feed_dict={x: batch_train_images, y: batch_train_labels}) if step % display_step == 0 or step == 1: print("Step " + str(step) + " out of " + str(num_steps)) print("Optimization finished!") t2 = time.time() print("Testing accuracy: ", sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels})*100, "%") print("Learning time: " + str(t2-t1) + " seconds")
088dc88aa4aeb64878d97237118802a64edf1d5f
48db7bebad4309a7bca8b7dec2cc9193551f46a3
/returns/_generated/pointfree/bind_io.pyi
192094dd7cdfecddb6d6bb7c83451e2b4d7e27ae
[ "BSD-2-Clause" ]
permissive
kenjihiraoka/returns
bff6196a059d411b6c36f4a2e284e4439d24fd73
4589973520d7226b18acd7295d1a9a10ff032759
refs/heads/master
2022-11-20T13:20:41.094871
2020-07-07T08:23:05
2020-07-07T08:23:05
277,863,697
0
0
BSD-2-Clause
2020-07-07T16:09:25
2020-07-07T16:09:25
null
UTF-8
Python
false
false
1,779
pyi
from typing import Callable, TypeVar, overload from typing_extensions import Protocol from returns.context import RequiresContextFutureResult, RequiresContextIOResult from returns.future import Future, FutureResult from returns.io import IO, IOResult _ValueType = TypeVar('_ValueType', contravariant=True) _ErrorType = TypeVar('_ErrorType') _NewValueType = TypeVar('_NewValueType', covariant=True) _EnvType = TypeVar('_EnvType', contravariant=True) class _BindIO(Protocol[_ValueType, _NewValueType]): """ Helper class to represent type overloads for ret_type based on a value type. Contains all containers we have. It does not exist in runtime. It is also completely removed from typing with the help of the mypy plugin. """ @overload def __call__( self, container: RequiresContextIOResult[_EnvType, _ValueType, _ErrorType], ) -> RequiresContextIOResult[_EnvType, _NewValueType, _ErrorType]: ... @overload def __call__( self, container: RequiresContextFutureResult[ _EnvType, _ValueType, _ErrorType, ], ) -> RequiresContextFutureResult[_EnvType, _NewValueType, _ErrorType]: ... @overload def __call__( self, container: IOResult[_ValueType, _ErrorType], ) -> IOResult[_NewValueType, _ErrorType]: ... @overload def __call__( self, container: Future[_ValueType], ) -> Future[_NewValueType]: ... @overload def __call__( self, container: FutureResult[_ValueType, _ErrorType], ) -> FutureResult[_NewValueType, _ErrorType]: ... def _bind_io( function: Callable[[_ValueType], IO[_NewValueType]], ) -> _BindIO[_ValueType, _NewValueType]: ...
70237c341ae1c9585377c6c6ec289173ce92bdae
148044ba8412cfe9227201e82360770d6a7e9780
/check_screen.py
095f92651215f811b52a37d88fe1c3fbc9022209
[]
no_license
mwaskom/sticks_experiment
9e0b2af851e20f82cd8a3011b08ac061b0061191
fcfd98cb4528e9011168be27b2121a96514b3fa3
refs/heads/master
2023-08-24T06:22:27.939464
2015-08-28T23:53:16
2015-08-31T04:38:24
38,704,521
0
0
null
null
null
null
UTF-8
Python
false
false
424
py
import sys from psychopy import visual, event import cregg def main(arglist): p = cregg.Params("scan") p.set_by_cmdline(arglist) win = cregg.launch_window(p) visual.Circle(win, p.array_radius, edges=128, lineColor="white", lineWidth=2).draw() win.flip() event.waitKeys(keyList=p.quit_keys) if __name__ == "__main__": main(sys.argv[1:])
4a010a42bfbd615afad1fd018c160396fa4dbd69
40f4626ec26f23923c2b19d7ed24f3c512495182
/src/kangqi/task/compQA/model/module/cross_attention_indirect.py
3606a67410715c49755b69f8e4e28061ab9a5fcc
[]
no_license
Zjhao666/CompQA
c937c382a2f0a0fce4fdda8efda7c916b3e4c978
4bb2abc40428373481909e02543062a7388615bd
refs/heads/master
2023-02-09T02:28:09.966576
2020-12-31T21:18:32
2020-12-31T21:18:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,278
py
""" Author: Kangqi Luo Goal: Combine the structure of ABCNN-1 and AF-attention (A Decomposable Attention Model for Natural Language Inference) We are using the module in compQA scenario, where the rhs (path) is represented by both pwords and preds. Therefore, we send'em together into the module, making it a little bit more complex than a normal CrossAtt layer. """ import tensorflow as tf from . import att_layer from kangqi.util.LogUtil import LogInfo class IndirectCrossAttention: def __init__(self, lf_max_len, rt_max_len, dim_att_hidden, att_func): self.lf_max_len = lf_max_len self.rt_max_len = rt_max_len self.dim_att_hidden = dim_att_hidden LogInfo.logs('IndirectCrossAttention: lf_max_len = %d, rt_max_len = %d, dim_att_hidden = %d, att_func = %s.', lf_max_len, rt_max_len, dim_att_hidden, att_func) assert att_func in ('dot', 'bilinear', 'bahdanau', 'bdot') self.att_func = getattr(att_layer, 'cross_att_' + att_func) def forward(self, lf_input, lf_mask, rt_input, rt_mask): """ :param lf_input: (ds, lf_max_len, dim_hidden) :param lf_mask: (ds, lf_max_len) as float32 :param rt_input: (ds, rt_max_len, dim_hidden) :param rt_mask: (ds, rt_max_len) as float32 """ with tf.variable_scope('cross_att_indirect', reuse=tf.AUTO_REUSE): lf_cube_mask = tf.stack([lf_mask] * self.rt_max_len, axis=-1, name='lf_cube_mask') # (ds, lf_max_len, rt_max_len) rt_cube_mask = tf.stack([rt_mask] * self.lf_max_len, axis=1, name='rt_cube_mask') # (ds, lf_max_len, rt_max_len) cube_mask = tf.multiply(lf_cube_mask, rt_cube_mask, name='cube_mask') """ Calculate cross attention matrix """ raw_att_mat = self.att_func(lf_input=lf_input, rt_input=rt_input, lf_max_len=self.lf_max_len, rt_max_len=self.rt_max_len, dim_att_hidden=self.dim_att_hidden) masked_att_mat = raw_att_mat * cube_mask + tf.float32.min * (1. - cube_mask) # padding: -inf """ Attention normalize & produce att_repr """ att_norm_for_lf = tf.nn.softmax(masked_att_mat, dim=2, name='att_norm_for_lf') att_norm_for_rt = tf.nn.softmax(masked_att_mat, dim=1, name='att_norm_for_rt') # for_lf: sum_j A[:,j] = 1. # for_rt: sum_i A[i,:] = 1. lf_att_repr = tf.matmul(att_norm_for_lf, rt_input, name='lf_att_repr') # (ds, lf_max_len, dim_emb) rt_att_repr = tf.matmul(tf.transpose(att_norm_for_rt, perm=[0, 2, 1]), # (ds, rt_max_len, lf_max_len) lf_input, name='rt_att_repr') # (ds, rt_max_len, dim_emb) return lf_att_repr, rt_att_repr, raw_att_mat # @staticmethod # def att_norm_col_wise(att_mat): # sum_of_cols = 1e-4 + tf.reduce_mean(att_mat, axis=1, name='sum_of_cols') # (ds, rt_max_len) # sum_of_cols = tf.expand_dims(sum_of_cols, axis=1) # (ds, 1, rt_max_len) # att_norm = tf.div(att_mat, sum_of_cols, name='att_norm_col_wise') # # (ds, lf_max_len, rt_max_len), sum(att_norm[:, j]) = 1 # # att_norm[:, j]: the distribution over left words for each word-j at right side # return att_norm # # @staticmethod # def att_norm_row_wise(att_mat): # sum_of_rows = 1e-4 + tf.reduce_sum(att_mat, axis=2, name='sum_of_rows') # (ds, lf_max_len) # sum_of_rows = tf.expand_dims(sum_of_rows, axis=2) # (ds, lf_max_len, 1) # att_norm = tf.div(att_mat, sum_of_rows, name='att_norm_row_wise') # # (ds, lf_max_len, rt_max_len), sum(att_norm[i, :]) = 1 # # att_norm[i, :]: the distribution over right words for each word-i at left side # return att_norm # # def construct_att_weights(self, att_mat): # """ # Parikh: Go through formula (2) in AF-attention paper # :param att_mat: (ds, q_max_len, p_max_len + pw_max_len) # :return: 3 attention weights (q, p, pw) and the split attention matrices # """ # """ Naive v.s. Parikh: just different from the normalizing direction!! """ # p_att_mat, pw_att_mat = tf.split(value=att_mat, # num_or_size_splits=[self.p_max_len, self.pw_max_len], # axis=2) # (ds, q_max_len, p_max_len | pw_max_len) # if self.att_norm_mode == 'parikh': # att_wt_q = self.att_norm_col_wise(att_mat=att_mat) # (ds, q_max_len, p_max_len+pw_max_len) # att_wt_p = self.att_norm_row_wise(att_mat=p_att_mat) # (ds, q_max_len, p_max_len) # att_wt_pw = self.att_norm_row_wise(att_mat=pw_att_mat) # (ds, q_max_len, pw_max_len) # else: # naive # att_wt_q = self.att_norm_row_wise(att_mat=att_mat) # att_wt_p = self.att_norm_col_wise(att_mat=p_att_mat) # att_wt_pw = self.att_norm_col_wise(att_mat=pw_att_mat) # return p_att_mat, pw_att_mat, att_wt_q, att_wt_p, att_wt_pw
dc34c1f11f334a3d915def0a7e3345ee0781e7e9
38ea041a35d6e1bbdcb875cfff1a313b02476e81
/appModules/AddContact.py
515d8116725ef529922d9747efd7df54bad352c6
[]
no_license
saraliuhou/DataDriverTestFrameWork
1824d0b771c20a87ce3d0b5cebf5cf1e70b4226b
5f243026e9f03e96fa010f945fb31b7545759798
refs/heads/master
2020-06-01T00:19:32.435417
2019-06-12T09:10:09
2019-06-12T09:10:09
190,554,542
0
0
null
2019-06-06T09:29:50
2019-06-06T09:29:50
null
UTF-8
Python
false
false
2,262
py
from pageObjects.HomePage import HomePage from pageObjects.NewContact import AddContactPage from selenium.webdriver.support.wait import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from util.ParseConfigurationFile import ParseConfigFile class NewContactPersonAction(object): def __init__(self): pass @staticmethod def addressLink(driver): ''' 点击通讯录按钮 :param driver: :return: ''' homePage = HomePage(driver) # 点击通讯录 homePage.addressLink().click() @staticmethod def addContact(driver, contactName, contactMail, isSatr, contactPhone, contactComment): ''' 添加联系人场景 :param driver: :param contactName: :param contactMail: :param isSatr: :param contactPhone: :param contactComment: :return: ''' # 点击新建联系人 addContact = AddContactPage(driver) # 调试的时候这边有时候会报错。点击不到[新建联系人]这个按钮,所以加了一个显示等待 by, locator = ParseConfigFile().getElementValue('126mail_addContactPage', 'addContactPage.newContact') WebDriverWait(driver, 30).until(EC.element_to_be_clickable((by, locator))) addContact.newContact().click() if contactName: # 非必填项 addContact.addName().send_keys(contactName) # 必填项 addContact.addMail().send_keys(contactMail) if isSatr == '是': addContact.markStar().click() if contactPhone: addContact.addPhone().send_keys(contactPhone) if contactComment: addContact.addContent().send_keys(contactComment) addContact.clickCommitBtn().click() if __name__=='__main__': from appModules.LoginAction import LoginAction import time from selenium import webdriver driver = webdriver.Firefox() driver.get('https://mail.126.com') time.sleep(5) LoginAction.login(driver, 'linux', 'chao') NewContactPersonAction.addressLink(driver) NewContactPersonAction.addContact(driver, '','[email protected]', '是', '','') time.sleep(5) driver.quit()
6872ae8eb5ec75cbb2419ad2d62cff26fed5eae2
1a31dfb66512aa66c407484f2ea8b0fb370669a4
/dstt/urls.py
ea10b8d0b93dbfa3fb49d2bb5b02982685ef0ae0
[]
no_license
nisha-eng/dstt
790129f2918e0210421039baba0a4e8c877a7627
bab89000242aec3a1a6fb05447ec52b14722809f
refs/heads/main
2023-03-01T02:50:20.767421
2021-02-05T05:23:08
2021-02-05T05:23:08
336,171,818
0
0
null
null
null
null
UTF-8
Python
false
false
1,056
py
"""dstt URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path,include from django.conf import Settings, settings from django.conf.urls.static import static urlpatterns = [ path('admin/', admin.site.urls), path('account/',include('account.urls')), path('administration/',include('administration.urls')), path('employee/',include('employee.urls')) ]+static(settings.STATIC_URL,document_root=settings.MEDIA_ROOT)
d8f3167c34525042bfc9833d02d8d53673ff7978
79aa4b99a48bb16a907916ad63c902443420541a
/0019.py
e1253c96f9a4ecabdca22315f7ecd7d39377a98c
[]
no_license
mach8686devops/leetcode-100
62dec66c719d7cfa120ca9505701df49d8d5b982
f90526c9b073165b86b933cdf7d1dc496e68f2c6
refs/heads/main
2023-04-11T06:28:15.059587
2021-04-13T12:11:54
2021-04-13T12:11:54
329,346,572
0
0
null
null
null
null
UTF-8
Python
false
false
375
py
# Definition for singly-linked list. class ListNode: def __init__(self, x): self.val = x self.next = None class Solution: def removeNthFromEnd(self, head: ListNode, n: int) -> ListNode: l = [] while head: l, head = l + [head], head.next if n != len(l): l[-n - 1].next = l[-n].next del l[-n] return l and l[0]
abee20e74748f84b81263b5a7dca482647bdac3d
acb8e84e3b9c987fcab341f799f41d5a5ec4d587
/langs/9/v4g.py
947f100ab07df7782ca283e84a091c434fd16de6
[]
no_license
G4te-Keep3r/HowdyHackers
46bfad63eafe5ac515da363e1c75fa6f4b9bca32
fb6d391aaecb60ab5c4650d4ae2ddd599fd85db2
refs/heads/master
2020-08-01T12:08:10.782018
2016-11-13T20:45:50
2016-11-13T20:45:50
73,624,224
0
1
null
null
null
null
UTF-8
Python
false
false
486
py
import sys def printFunction(lineRemaining): if lineRemaining[0] == '"' and lineRemaining[-1] == '"': if len(lineRemaining) > 2: #data to print lineRemaining = lineRemaining[1:-1] print ' '.join(lineRemaining) else: print def main(fileName): with open(fileName) as f: for line in f: data = line.split() if data[0] == 'v4G': printFunction(data[1:]) else: print 'ERROR' return if __name__ == '__main__': main(sys.argv[1])
2132ca489839efb59eecac3da30efd56457831e6
18eac94ff076c1eecd72870ef93ae656906e8673
/supervised_learning/0x06-keras/13-predict.py
e2426676d174b5ff52b5fd6940693d363bda35a2
[]
no_license
dgquintero/holbertonschool-machine_learning
c1331ff87e053f9c143a0e503e8db177dfc7aafe
c80073d0ef68deeedbe2d991e296ef75f58a220f
refs/heads/master
2022-12-19T21:49:10.581793
2020-10-15T14:56:22
2020-10-15T14:56:22
279,329,167
0
1
null
2020-09-25T19:11:52
2020-07-13T14:42:03
Python
UTF-8
Python
false
false
574
py
#!/usr/bin/env python3 """function predict""" import tensorflow.keras as K def predict(network, data, verbose=False): """ function that tests a neural network Arguments: network: the network model to test data: the input data to test the model with labels: are the correct one-hot labels of data verbose: is a boolean that determines if output should be printed during the testing process Returns: the prediction for the data """ prediction = network.predict(data, verbose=verbose) return prediction
c4a498197bd65892c63d8b651006a2e100b27e0c
48e124e97cc776feb0ad6d17b9ef1dfa24e2e474
/sdk/python/pulumi_azure_native/media/v20210601/get_transform.py
2d5107073354128ca98d5c3db8d4db0c9a68f79d
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
bpkgoud/pulumi-azure-native
0817502630062efbc35134410c4a784b61a4736d
a3215fe1b87fba69294f248017b1591767c2b96c
refs/heads/master
2023-08-29T22:39:49.984212
2021-11-15T12:43:41
2021-11-15T12:43:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,036
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs __all__ = [ 'GetTransformResult', 'AwaitableGetTransformResult', 'get_transform', 'get_transform_output', ] @pulumi.output_type class GetTransformResult: """ A Transform encapsulates the rules or instructions for generating desired outputs from input media, such as by transcoding or by extracting insights. After the Transform is created, it can be applied to input media by creating Jobs. """ def __init__(__self__, created=None, description=None, id=None, last_modified=None, name=None, outputs=None, system_data=None, type=None): if created and not isinstance(created, str): raise TypeError("Expected argument 'created' to be a str") pulumi.set(__self__, "created", created) if description and not isinstance(description, str): raise TypeError("Expected argument 'description' to be a str") pulumi.set(__self__, "description", description) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if last_modified and not isinstance(last_modified, str): raise TypeError("Expected argument 'last_modified' to be a str") pulumi.set(__self__, "last_modified", last_modified) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if outputs and not isinstance(outputs, list): raise TypeError("Expected argument 'outputs' to be a list") pulumi.set(__self__, "outputs", outputs) if system_data and not isinstance(system_data, dict): raise TypeError("Expected argument 'system_data' to be a dict") pulumi.set(__self__, "system_data", system_data) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) @property @pulumi.getter def created(self) -> str: """ The UTC date and time when the Transform was created, in 'YYYY-MM-DDThh:mm:ssZ' format. """ return pulumi.get(self, "created") @property @pulumi.getter def description(self) -> Optional[str]: """ An optional verbose description of the Transform. """ return pulumi.get(self, "description") @property @pulumi.getter def id(self) -> str: """ Fully qualified resource ID for the resource. Ex - /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName} """ return pulumi.get(self, "id") @property @pulumi.getter(name="lastModified") def last_modified(self) -> str: """ The UTC date and time when the Transform was last updated, in 'YYYY-MM-DDThh:mm:ssZ' format. """ return pulumi.get(self, "last_modified") @property @pulumi.getter def name(self) -> str: """ The name of the resource """ return pulumi.get(self, "name") @property @pulumi.getter def outputs(self) -> Sequence['outputs.TransformOutputResponse']: """ An array of one or more TransformOutputs that the Transform should generate. """ return pulumi.get(self, "outputs") @property @pulumi.getter(name="systemData") def system_data(self) -> 'outputs.SystemDataResponse': """ The system metadata relating to this resource. """ return pulumi.get(self, "system_data") @property @pulumi.getter def type(self) -> str: """ The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or "Microsoft.Storage/storageAccounts" """ return pulumi.get(self, "type") class AwaitableGetTransformResult(GetTransformResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetTransformResult( created=self.created, description=self.description, id=self.id, last_modified=self.last_modified, name=self.name, outputs=self.outputs, system_data=self.system_data, type=self.type) def get_transform(account_name: Optional[str] = None, resource_group_name: Optional[str] = None, transform_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetTransformResult: """ A Transform encapsulates the rules or instructions for generating desired outputs from input media, such as by transcoding or by extracting insights. After the Transform is created, it can be applied to input media by creating Jobs. :param str account_name: The Media Services account name. :param str resource_group_name: The name of the resource group within the Azure subscription. :param str transform_name: The Transform name. """ __args__ = dict() __args__['accountName'] = account_name __args__['resourceGroupName'] = resource_group_name __args__['transformName'] = transform_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-native:media/v20210601:getTransform', __args__, opts=opts, typ=GetTransformResult).value return AwaitableGetTransformResult( created=__ret__.created, description=__ret__.description, id=__ret__.id, last_modified=__ret__.last_modified, name=__ret__.name, outputs=__ret__.outputs, system_data=__ret__.system_data, type=__ret__.type) @_utilities.lift_output_func(get_transform) def get_transform_output(account_name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, transform_name: Optional[pulumi.Input[str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetTransformResult]: """ A Transform encapsulates the rules or instructions for generating desired outputs from input media, such as by transcoding or by extracting insights. After the Transform is created, it can be applied to input media by creating Jobs. :param str account_name: The Media Services account name. :param str resource_group_name: The name of the resource group within the Azure subscription. :param str transform_name: The Transform name. """ ...
4aeb5076c559a2d62968ac097e20666249770856
03f9b8bdea312636afb4df3737b55cb0cc4b21ff
/CanIWin.py
3d81f1f782f454808169ef87a967ad9bee42ec2d
[]
no_license
ellinx/LC-python
f29dd17bbe15407ba0d06ad68386efdc9a343b56
9190d3d178f1733aa226973757ee7e045b7bab00
refs/heads/master
2021-06-01T15:21:24.379811
2020-10-29T04:37:07
2020-10-29T04:37:07
132,704,788
1
1
null
2019-05-15T03:26:11
2018-05-09T05:13:26
Python
UTF-8
Python
false
false
2,052
py
""" In the "100 game," two players take turns adding, to a running total, any integer from 1..10. The player who first causes the running total to reach or exceed 100 wins. What if we change the game so that players cannot re-use integers? For example, two players might take turns drawing from a common pool of numbers of 1..15 without replacement until they reach a total >= 100. Given an integer maxChoosableInteger and another integer desiredTotal, determine if the first player to move can force a win, assuming both players play optimally. You can always assume that maxChoosableInteger will not be larger than 20 and desiredTotal will not be larger than 300. Example Input: maxChoosableInteger = 10 desiredTotal = 11 Output: false Explanation: No matter which integer the first player choose, the first player will lose. The first player can choose an integer from 1 up to 10. If the first player choose 1, the second player can only choose integers from 2 up to 10. The second player will win by choosing 10 and get a total = 11, which is >= desiredTotal. Same with other integers chosen by the first player, the second player will always win. """ class Solution: def canIWin(self, maxChoosableInteger, desiredTotal): """ :type maxChoosableInteger: int :type desiredTotal: int :rtype: bool """ def dfs(nums, diff, mm): if diff<=0: return False key = ",".join(nums)+" "+str(diff) if key in mm: return mm[key] for i,num in enumerate(nums): if not dfs(nums[:i]+nums[i+1:], diff-int(num), mm): mm[key] = True return True mm[key] = False return False if desiredTotal<=1: return True if (1+maxChoosableInteger)*maxChoosableInteger//2<desiredTotal: return False nums = [ str(i) for i in range(1,maxChoosableInteger+1)] mm = dict() return dfs(nums, desiredTotal, mm)
6276ed8fbaf501f6fe6c7314d1eee780a50c0c89
270d7f88e47683abd55c0191466c80513b2aa9f9
/tests/test_tta.py
9d0ba17296509b58febeed4a4f4c0b193716299d
[ "MIT" ]
permissive
williamberrios/pytorch-toolbelt
abdf8e455a4ffc79d2afbc92e80005a821fb97a9
4a24e6324b8270d31c08b8b2f667d740b9823377
refs/heads/master
2023-07-06T06:35:24.197821
2021-08-12T07:47:20
2021-08-12T07:47:20
400,866,088
1
0
MIT
2021-08-28T18:43:12
2021-08-28T18:43:12
null
UTF-8
Python
false
false
4,994
py
from collections import defaultdict import cv2 import torch import numpy as np import pytest from torch import nn from pytorch_toolbelt.inference import tta from pytorch_toolbelt.modules import GlobalAvgPool2d from pytorch_toolbelt.utils.torch_utils import to_numpy from pytorch_toolbelt.zoo import resnet34_unet64_s4 skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="CUDA is not available") class NoOp(nn.Module): def __init__(self): super().__init__() def forward(self, input): return input class SumAll(nn.Module): def __init__(self): super().__init__() def forward(self, input): return input.sum(dim=[1, 2, 3]) def test_d4_image2mask(): x = torch.rand((4, 3, 224, 224)) model = NoOp() output = tta.d4_image2mask(model, x) np.testing.assert_allclose(to_numpy(output), to_numpy(x), atol=1e-6, rtol=1e-6) def test_d4_image2mask_v2(): x = torch.rand((4, 3, 224, 224)) x_a = tta.d4_image_augment(x) y = tta.d4_image_deaugment(x_a) np.testing.assert_allclose(to_numpy(y), to_numpy(x), atol=1e-6, rtol=1e-6) @torch.no_grad() @skip_if_no_cuda() def test_d4_speed(): df = defaultdict(list) n = 100 model = resnet34_unet64_s4().cuda().eval() x = torch.rand((4, 3, 224, 224)).float().cuda() y1 = tta.d4_image2mask(model, x) y2 = tta.d4_image_deaugment(model(tta.d4_image_augment(x))) np.testing.assert_allclose(to_numpy(y1), to_numpy(y2), atol=1e-6, rtol=1e-6) for deterministic in [False, True]: for benchmark in [False, True]: for dtype in [torch.float16, torch.float32]: torch.cuda.empty_cache() torch.backends.cuda.deterministic = deterministic torch.backends.cuda.benchmark = benchmark model = resnet34_unet64_s4().to(dtype).cuda().eval() speed_v1 = 0 speed_v2 = 0 for i in range(n): x = torch.rand((4, 3, 224, 224)).to(dtype).cuda(non_blocking=False) start = cv2.getTickCount() y = tta.d4_image2mask(model, x) v = y.sum().item() finish = cv2.getTickCount() speed_v1 += finish - start np.testing.assert_allclose(v, v, atol=1e-6, rtol=1e-6) for i in range(n): x = torch.rand((4, 3, 224, 224)).to(dtype).cuda(non_blocking=False) start = cv2.getTickCount() x_a = tta.d4_image_augment(x) x_a = model(x_a) y = tta.d4_image_deaugment(x_a) v = y.sum().item() finish = cv2.getTickCount() speed_v2 += finish - start np.testing.assert_allclose(v, v, atol=1e-6, rtol=1e-6) df["mode"].append("fp16" if dtype == torch.float16 else "fp32") df["deterministic"].append(deterministic) df["benchmark"].append(benchmark) df["d4_image2mask (ms)"].append(1000.0 * speed_v1 / (cv2.getTickFrequency() * n)) df["d4_augment (ms)"].append(1000.0 * speed_v2 / (cv2.getTickFrequency() * n)) import pandas as pd df = pd.DataFrame.from_dict(df) pd.set_option("display.max_columns", None) pd.set_option("display.max_rows", None) print(df) df.to_csv("tta_eval.csv", index=False) def test_fliplr_image2mask(): x = torch.rand((4, 3, 224, 224)) model = NoOp() output = tta.fliplr_image2mask(model, x) np.testing.assert_allclose(to_numpy(output), to_numpy(x), atol=1e-6, rtol=1e-6) def test_d4_image2label(): x = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8], [9, 0, 1, 2], [3, 4, 5, 6]]).unsqueeze(0).unsqueeze(0).float() model = SumAll() output = tta.d4_image2label(model, x) expected = int(x.sum()) assert int(output) == expected def test_fliplr_image2label(): x = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8], [9, 0, 1, 2], [3, 4, 5, 6]]).unsqueeze(0).unsqueeze(0).float() model = SumAll() output = tta.fliplr_image2label(model, x) expected = int(x.sum()) assert int(output) == expected def test_fivecrop_image2label(): x = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8], [9, 0, 1, 2], [3, 4, 5, 6]]).unsqueeze(0).unsqueeze(0).float() model = SumAll() output = tta.fivecrop_image2label(model, x, (2, 2)) expected = ((1 + 2 + 5 + 6) + (3 + 4 + 7 + 8) + (9 + 0 + 3 + 4) + (1 + 2 + 5 + 6) + (6 + 7 + 0 + 1)) / 5 assert int(output) == expected def test_tencrop_image2label(): x = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8], [9, 0, 1, 2], [3, 4, 5, 6]]).unsqueeze(0).unsqueeze(0).float() model = SumAll() output = tta.tencrop_image2label(model, x, (2, 2)) expected = (2 * ((1 + 2 + 5 + 6) + (3 + 4 + 7 + 8) + (9 + 0 + 3 + 4) + (1 + 2 + 5 + 6) + (6 + 7 + 0 + 1))) / 10 assert int(output) == expected
2f876f6a85661251f0ba85f749269bb1b2e63c24
e2efa339cf6fb017e1d1898325b363a69c227409
/app.py
6367bcdbeda570b322259488161e00e0d12605db
[]
no_license
lm10pulkit/update_delete
201b22b3816606640ab22a0f63c7bf2d58ed6295
c9c935e070f555c006dca00fd0940863fcc0790d
refs/heads/master
2020-04-15T18:32:53.239716
2019-01-09T19:07:40
2019-01-09T19:07:40
164,915,990
0
0
null
null
null
null
UTF-8
Python
false
false
3,733
py
from flask import Flask ,session, render_template, request, redirect,url_for,g from flask_mysqldb import MySQL from flask_bcrypt import Bcrypt import os # intializing the app app = Flask(__name__) #secret key app.secret_key= os.urandom(24) # setting up database app.config['MYSQL_HOST']='localhost' app.config['MYSQL_USER']='root' app.config['MYSQL_PASSWORD']= '' app.config['MYSQL_DB']='crud' mysql = MySQL(app) #bcrypt for hashing passwords to keep database secure bcrypt= Bcrypt(app) @app.route('/',methods=['GET','POST']) def index(): if request.method=='GET': return render_template('login.html') else: form= request.form username=form['username'] password=form['password'] if username=='admin' and password=='admin': session['user']=username return redirect(url_for('data')) else: return redirect(url_for('index')) @app.route('/list',methods=['GET']) def data(): if 'user' in session: cur = mysql.connection.cursor() resultValue = cur.execute(" select * from employee") userDetails = cur.fetchall() return render_template('list.html', employee=userDetails) else: return redirect(url_for('index')) @app.route('/add',methods=['GET','POST']) def add(): if 'user' in session: if request.method == 'GET': return render_template('add.html') else: form = request.form print(form) firstname = form['firstname'] lastname = form['lastname'] address = form['address'] email = form['email'] contact = form['contact'] argo = [firstname, lastname, address, email, int(contact)] cur = mysql.connection.cursor() cur.execute("INSERT INTO employee(firstname,lastname,address,email,contact) values (%s,%s,%s,%s,%s)", argo) mysql.connection.commit() cur.close() return redirect(url_for('data')) else: return redirect(url_for('index')) @app.route('/delete/<id>',methods=['GET']) def delete(id=None): if 'user' in session: query='delete from employee where id = %s' params=[id] cur = mysql.connection.cursor() cur.execute(query,params) mysql.connection.commit() cur.close() return redirect(url_for('data')) else: return redirect(url_for('index')) @app.route('/edit/<id>',methods=['POST','GET']) def edit(id=None): if 'user' in session: if request.method=='POST': form = request.form params=[form['firstname'],form['lastname'],form['address'],form['email'],form['contact'],id] query ='update employee set firstname= %s , lastname = %s , address= %s , email= %s, contact= %s where id = %s ' cur = mysql.connection.cursor() cur.execute(query, params) mysql.connection.commit() cur.close() return redirect(url_for('data')) else: query = 'select * from employee where id = %s' params=[id] cur = mysql.connection.cursor() resultValue=cur.execute(query, params) if resultValue>0: userDetails = cur.fetchall() return render_template('edit.html',user=userDetails[0]) else: return 'invalid id' else: return redirect(url_for('index')) @app.route('/logout',methods=['GET']) def logout(): session.pop('user', None) return redirect(url_for('index')) if __name__=='__main__': app.run(debug=True)
d5e1939f099cf3e03251eb29a08dac4f28524a6f
7eedbe5c7d0a0d602d03bfe7d73878adca4c61e4
/src_old/calculus.py
20c434bac11cde88912e6138766eb575a8dce5ea
[ "MIT" ]
permissive
johndpope/GeLaTo
da413da5e718ed67b620af313ba99abb87b49c4e
e00577924b7d13f3d5d387583f457caf8065b004
refs/heads/master
2020-03-29T23:05:27.981692
2018-07-30T15:16:54
2018-07-30T15:16:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
17,757
py
# coding: utf-8 # TODO add action of diff operators on sympy known functions import numpy as np from itertools import groupby from collections import OrderedDict #from sympy.core.sympify import sympify from sympy.simplify.simplify import simplify from sympy import Symbol from sympy import Lambda from sympy import Function from sympy import bspline_basis from sympy import lambdify from sympy import cos from sympy import sin from sympy import Rational from sympy import diff from sympy import Matrix, ImmutableDenseMatrix from sympy import latex from sympy import Integral from sympy import I as sympy_I from sympy.core import Basic from sympy.core.singleton import S from sympy.simplify.simplify import nsimplify from sympy.utilities.lambdify import implemented_function from sympy.matrices.dense import MutableDenseMatrix from sympy import Mul, Add from sympy import postorder_traversal from sympy import preorder_traversal from sympy.core.expr import Expr from sympy.core.containers import Tuple from sympy import Integer, Float from sympy import Add, Mul from sympy import preorder_traversal, Expr from sympy import simplify from sympy import S from sympy.core.compatibility import is_sequence from sympy import Basic from sympy import Indexed, IndexedBase # ... class LinearOperator(CalculusFunction): """ Examples ======== """ nargs = None name = 'Grad' is_commutative = True def __new__(cls, *args, **options): # (Try to) sympify args first if options.pop('evaluate', True): r = cls.eval(*args) else: r = None if r is None: return Basic.__new__(cls, *args, **options) else: return r def __getitem__(self, indices, **kw_args): if is_sequence(indices): # Special case needed because M[*my_tuple] is a syntax error. return Indexed(self, *indices, **kw_args) else: return Indexed(self, indices, **kw_args) @classmethod def eval(cls, *_args): """.""" if not _args: return expr = _args[0] if isinstance(expr, Add): args = expr.args args = [cls.eval(a) for a in expr.args] return Add(*args) if isinstance(expr, Mul): coeffs = [a for a in expr.args if isinstance(a, _coeffs_registery)] vectors = [a for a in expr.args if not(a in coeffs)] a = S.One if coeffs: a = Mul(*coeffs) b = S.One if vectors: b = cls(Mul(*vectors), evaluate=False) return Mul(a, b) return cls(expr, evaluate=False) # ... # ... class DifferentialOperator(LinearOperator): """ This class is a linear operator that applies the Leibniz formula Examples ======== """ coordinate = None @classmethod def eval(cls, *_args): """.""" expr = _args[0] if isinstance(expr, Add): args = expr.args args = [cls.eval(a) for a in expr.args] return Add(*args) if isinstance(expr, Mul): coeffs = [a for a in expr.args if isinstance(a, _coeffs_registery)] vectors = [a for a in expr.args if not(a in coeffs)] c = S.One if coeffs: c = Mul(*coeffs) V = S.One if vectors: if len(vectors) == 1: V = cls(Mul(vectors[0]), evaluate=False) elif len(vectors) == 2: a = vectors[0] b = vectors[1] fa = cls(a, evaluate=False) fb = cls(b, evaluate=False) V = a * fb + fa * b else: V = cls(Mul(*vectors), evaluate=False) return Mul(c, V) return cls(expr, evaluate=False) # ... # ... class dx(DifferentialOperator): coordinate = 'x' grad_index = 0 # index in grad pass class dy(DifferentialOperator): coordinate = 'y' grad_index = 1 # index in grad pass class dz(DifferentialOperator): coordinate = 'z' grad_index = 2 # index in grad pass _partial_derivatives = (dx, dy, dz) # ... # ... def find_partial_derivatives(expr): """ returns all partial derivative expressions """ if isinstance(expr, (Add, Mul)): return find_partial_derivatives(expr.args) elif isinstance(expr, (list, tuple, Tuple)): args = [] for a in expr: args += find_partial_derivatives(a) return args elif isinstance(expr, _partial_derivatives): return [expr] return [] # ... # ... def get_number_derivatives(expr): """ returns the number of partial derivatives in expr. this is still an experimental version, and it assumes that expr is of the form d(a) where a is a single atom. """ n = 0 if isinstance(expr, _partial_derivatives): assert(len(expr.args) == 1) n += 1 + get_number_derivatives(expr.args[0]) return n # ... # ... def sort_partial_derivatives(expr): """returns the partial derivatives of an expression, sorted. """ ls = [] args = find_partial_derivatives(expr) # # ... Note # # group by is given the wrong answer for expr =mu * u + dx(u) + dx(dx(u)) # for key, group in groupby(args, lambda x: get_number_derivatives(x)): # g = [a for a in group] # for a in group: # ls.append(a) # # ... # ... d = {} for a in args: n = get_number_derivatives(a) if n in d.keys(): d[n] += [a] else: d[n] = [a] # ... # ... if not d: return [] # ... # ... sort keys from high to low keys = np.asarray(list(d.keys())) keys.sort() keys = keys[::-1] # ... # ... construct a list of partial derivatives from high to low order ls = [] for k in keys: ls += d[k] # ... return ls # ... # ... def get_index_derivatives(expr): """ """ coord = ['x','y','z'] d = OrderedDict() for c in coord: d[c] = 0 ops = [a for a in preorder_traversal(expr) if isinstance(a, _partial_derivatives)] for i in ops: op = type(i) if isinstance(i, dx): d['x'] += 1 elif isinstance(i, dy): d['y'] += 1 elif isinstance(i, dz): d['z'] += 1 return d # ... # ... def get_atom_derivatives(expr): """ """ if isinstance(expr, _partial_derivatives): assert(len(expr.args) == 1) return get_atom_derivatives(expr.args[0]) elif isinstance(expr, _calculus_operators): raise TypeError('remove this raise later') else: return expr # ... # ... class DotBasic(CalculusFunction): """ Examples ======== """ nargs = None name = 'Dot' def __new__(cls, *args, **options): # (Try to) sympify args first if options.pop('evaluate', True): r = cls.eval(*args) else: r = None if r is None: return Basic.__new__(cls, *args, **options) else: return r class Dot_1d(DotBasic): """ Examples ======== """ @classmethod def eval(cls, *_args): """.""" if not _args: return if not( len(_args) == 2): raise ValueError('Expecting two arguments') u = _args[0] v = _args[1] return u * v class Dot_2d(DotBasic): """ Examples ======== """ @classmethod def eval(cls, *_args): """.""" if not _args: return if not( len(_args) == 2): raise ValueError('Expecting two arguments') u = _args[0] v = _args[1] if isinstance(u, (Matrix, ImmutableDenseMatrix)): if isinstance(v, (Matrix, ImmutableDenseMatrix)): raise NotImplementedError('TODO') else: return Tuple(u[0,0]*v[0] + u[0,1]*v[1], u[1,0]*v[0] + u[1,1]*v[1]) else: if isinstance(v, (Matrix, ImmutableDenseMatrix)): raise NotImplementedError('TODO') else: return u[0]*v[0] + u[1]*v[1] class Dot_3d(DotBasic): """ Examples ======== """ @classmethod def eval(cls, *_args): """.""" if not _args: return if not( len(_args) == 2): raise ValueError('Expecting two arguments') u = _args[0] v = _args[1] if isinstance(u, (Matrix, ImmutableDenseMatrix)): if isinstance(v, (Matrix, ImmutableDenseMatrix)): raise NotImplementedError('TODO') else: return Tuple(u[0,0]*v[0] + u[0,1]*v[1] + u[0,2]*v[2], u[1,0]*v[0] + u[1,1]*v[1] + u[1,2]*v[2], u[2,0]*v[0] + u[2,1]*v[1] + u[2,2]*v[2]) else: if isinstance(v, (Matrix, ImmutableDenseMatrix)): raise NotImplementedError('TODO') else: return u[0]*v[0] + u[1]*v[1] + u[2]*v[2] # ... # ... class CrossBasic(CalculusFunction): """ Examples ======== """ nargs = None name = 'Cross' def __new__(cls, *args, **options): # (Try to) sympify args first if options.pop('evaluate', True): r = cls.eval(*args) else: r = None if r is None: return Basic.__new__(cls, *args, **options) else: return r class Cross_2d(CrossBasic): """ Examples ======== """ @classmethod def eval(cls, *_args): """.""" if not _args: return u = _args[0] v = _args[1] return u[0]*v[1] - u[1]*v[0] class Cross_3d(CrossBasic): """ Examples ======== """ def __getitem__(self, indices, **kw_args): if is_sequence(indices): # Special case needed because M[*my_tuple] is a syntax error. return Indexed(self, *indices, **kw_args) else: return Indexed(self, indices, **kw_args) @classmethod def eval(cls, *_args): """.""" if not _args: return u = _args[0] v = _args[1] return Tuple(u[1]*v[2] - u[2]*v[1], u[2]*v[0] - u[0]*v[2], u[0]*v[1] - u[1]*v[0]) # ... # ... class GradBasic(CalculusFunction): """ Examples ======== """ nargs = None name = 'Grad' def __new__(cls, *args, **options): # (Try to) sympify args first if options.pop('evaluate', True): r = cls.eval(*args) else: r = None if r is None: return Basic.__new__(cls, *args, **options) else: return r def __getitem__(self, indices, **kw_args): if is_sequence(indices): # Special case needed because M[*my_tuple] is a syntax error. return Indexed(self, *indices, **kw_args) else: return Indexed(self, indices, **kw_args) class Grad_1d(GradBasic): """ Examples ======== """ @classmethod def eval(cls, *_args): """.""" if not _args: return u = _args[0] return dx(u) class Grad_2d(GradBasic): """ Examples ======== """ @classmethod def eval(cls, *_args): """.""" if not _args: return u = _args[0] return Tuple(dx(u), dy(u)) class Grad_3d(GradBasic): """ Examples ======== """ @classmethod def eval(cls, *_args): """.""" if not _args: return u = _args[0] return Tuple(dx(u), dy(u), dz(u)) # ... # ... class CurlBasic(CalculusFunction): """ Examples ======== """ nargs = None name = 'Curl' def __new__(cls, *args, **options): # (Try to) sympify args first if options.pop('evaluate', True): r = cls.eval(*args) else: r = None if r is None: return Basic.__new__(cls, *args, **options) else: return r def __getitem__(self, indices, **kw_args): if is_sequence(indices): # Special case needed because M[*my_tuple] is a syntax error. return Indexed(self, *indices, **kw_args) else: return Indexed(self, indices, **kw_args) class Curl_2d(CurlBasic): """ Examples ======== """ @classmethod def eval(cls, *_args): """.""" if not _args: return u = _args[0] return Tuple( dy(u), -dx(u)) class Curl_3d(CurlBasic): """ Examples ======== """ @classmethod def eval(cls, *_args): """.""" if not _args: return u = _args[0] return Tuple(dy(u[2]) - dz(u[1]), dz(u[0]) - dx(u[2]), dx(u[1]) - dy(u[0])) # ... # ... class Rot_2d(CalculusFunction): """ Examples ======== """ nargs = None name = 'Grad' def __new__(cls, *args, **options): # (Try to) sympify args first if options.pop('evaluate', True): r = cls.eval(*args) else: r = None if r is None: return Basic.__new__(cls, *args, **options) else: return r def __getitem__(self, indices, **kw_args): if is_sequence(indices): # Special case needed because M[*my_tuple] is a syntax error. return Indexed(self, *indices, **kw_args) else: return Indexed(self, indices, **kw_args) @classmethod def eval(cls, *_args): """.""" if not _args: return u = _args[0] return dy(u[0]) - dx(u[1]) # ... # ... class DivBasic(CalculusFunction): """ Examples ======== """ nargs = None name = 'Div' def __new__(cls, *args, **options): # (Try to) sympify args first if options.pop('evaluate', True): r = cls.eval(*args) else: r = None if r is None: return Basic.__new__(cls, *args, **options) else: return r def __getitem__(self, indices, **kw_args): if is_sequence(indices): # Special case needed because M[*my_tuple] is a syntax error. return Indexed(self, *indices, **kw_args) else: return Indexed(self, indices, **kw_args) class Div_1d(DivBasic): """ Examples ======== """ @classmethod def eval(cls, *_args): """.""" if not _args: return u = _args[0] return dx(u) class Div_2d(DivBasic): """ Examples ======== """ @classmethod def eval(cls, *_args): """.""" if not _args: return u = _args[0] return dx(u[0]) + dy(u[1]) class Div_3d(DivBasic): """ Examples ======== """ @classmethod def eval(cls, *_args): """.""" if not _args: return u = _args[0] return dx(u[0]) + dy(u[1]) + dz(u[2]) # ... # ... _coord_registery = ['x', 'y', 'z'] # ... # ... _operators_1d = [Dot_1d, Grad_1d, Div_1d] _operators_2d = [Dot_2d, Cross_2d, Grad_2d, Curl_2d, Rot_2d, Div_2d] _operators_3d = [Dot_3d, Cross_3d, Grad_3d, Curl_3d, Div_3d] # ... # ... generic operators class GenericFunction(CalculusFunction): def __getitem__(self, indices, **kw_args): if is_sequence(indices): # Special case needed because M[*my_tuple] is a syntax error. return Indexed(self, *indices, **kw_args) else: return Indexed(self, indices, **kw_args) class Dot(GenericFunction): pass class Cross(GenericFunction): pass class Grad(GenericFunction): pass class Curl(GenericFunction): pass class Rot(GenericFunction): pass class Div(GenericFunction): pass _generic_ops = (Dot, Cross, Grad, Curl, Rot, Div) # ... # ... alias for ufl compatibility cross = Cross dot = Dot Inner = Dot # TODO do we need to add the Inner class Function? inner = Inner grad = Grad curl = Curl rot = Rot div = Div _calculus_operators = (Grad, Dot, Inner, Cross, Rot, Curl, Div) # ... # ... def partial_derivative_as_symbol(expr, name=None, dim=None): """Returns a Symbol from a partial derivative expression.""" if not isinstance(expr, _partial_derivatives): raise TypeError('Expecting a partial derivative expression') index = get_index_derivatives(expr) var = get_atom_derivatives(expr) if not isinstance(var, (Symbol, Indexed)): print(type(var)) raise TypeError('Expecting a Symbol, Indexed') code = '' for k,n in list(index.items()): code += k*n if var.is_Indexed: if name is None: name = var.base indices = ''.join('{}'.format(i) for i in var.indices) name = '{name}_{code}'.format(name=name, code=code) shape = None if dim: shape = [dim] return IndexedBase(name, shape=shape)[indices] else: if name is None: name = var.name name = '{name}_{code}'.format(name=name, code=code) return Symbol(name) # ...
3ad6b6e4e9387b3b9cc5855347a729c5a5d8be58
49caef1f93bd4673530e0a4c54c59028fb7b54e6
/npg7/web_printscreen_zb/controllers.py
f5da2a2deb809c478d12f54592606a9e2f4de36e
[]
no_license
slevenhagen/addons-extra7.0
7622024198c0cf637f3f4767eb2b955532af3710
85611a86a0e1522fd88b5e6fbb217f425c4ae12d
refs/heads/master
2020-03-17T14:12:42.082766
2018-05-16T13:02:05
2018-05-16T13:02:05
133,663,372
0
0
null
null
null
null
UTF-8
Python
false
false
7,142
py
# -*- encoding: utf-8 -*- ############################################################################## # # Copyright (c) 2013 ZestyBeanz Technologies Pvt. Ltd. # (http://wwww.zbeanztech.com) # [email protected] # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## try: import json except ImportError: import simplejson as json import web.http as openerpweb from web.controllers.main import ExcelExport from web.controllers.main import Export import re from cStringIO import StringIO from lxml import etree import trml2pdf import time, os import locale import openerp.tools as tools try: import xlwt except ImportError: xlwt = None class ZbExcelExport(ExcelExport): _cp_path = '/web/export/zb_excel_export' def from_data(self, fields, rows): workbook = xlwt.Workbook() worksheet = workbook.add_sheet('Sheet 1') style = xlwt.easyxf('align: wrap yes') font = xlwt.Font() font.bold = True style.font = font ignore_index = [] count = 0 for i, fieldname in enumerate(fields): if fieldname.get('header_data_id', False): field_name = fieldname.get('header_name', '') worksheet.write(0, i-count, field_name, style) worksheet.col(i).width = 8000 else: count += 1 ignore_index.append(i) style = xlwt.easyxf('align: wrap yes') bold_style = xlwt.easyxf('align: wrap yes') font = xlwt.Font() font.bold = True bold_style.font = font for row_index, row in enumerate(rows): count = 0 for cell_index, cell_value in enumerate(row): if cell_index not in ignore_index: cell_style = style if cell_value.get('bold', False): cell_style = bold_style cellvalue = cell_value.get('data', '') if isinstance(cellvalue, basestring): cellvalue = re.sub("\r", " ", cellvalue) if cell_value.get('number', False) and cellvalue: cellvalue = float(cellvalue) if cellvalue is False: cellvalue = None worksheet.write(row_index + 1, cell_index - count, cellvalue, cell_style) else: count += 1 fp = StringIO() workbook.save(fp) fp.seek(0) data = fp.read() fp.close() return data @openerpweb.httprequest def index(self, req, data, token): data = json.loads(data) return req.make_response( self.from_data(data.get('headers', []), data.get('rows', [])), headers=[ ('Content-Disposition', 'attachment; filename="%s"' % data.get('model', 'Export.xls')), ('Content-Type', self.content_type) ], cookies={'fileToken': token} ) class ExportPdf(Export): _cp_path = '/web/export/zb_pdf' fmt = { 'tag': 'pdf', 'label': 'PDF', 'error': None } @property def content_type(self): return 'application/pdf' def filename(self, base): return base + '.pdf' def from_data(self, uid, fields, rows, company_name): pageSize=[210.0,297.0] new_doc = etree.Element("report") config = etree.SubElement(new_doc, 'config') def _append_node(name, text): n = etree.SubElement(config, name) n.text = text _append_node('date', time.strftime(str(locale.nl_langinfo(locale.D_FMT).replace('%y', '%Y')))) _append_node('PageSize', '%.2fmm,%.2fmm' % tuple(pageSize)) _append_node('PageWidth', '%.2f' % (pageSize[0] * 2.8346,)) _append_node('PageHeight', '%.2f' %(pageSize[1] * 2.8346,)) _append_node('PageFormat', 'a4') _append_node('header-date', time.strftime(str(locale.nl_langinfo(locale.D_FMT).replace('%y', '%Y')))) _append_node('company', company_name) l = [] t = 0 temp = [] tsum = [] skip_index = [] header = etree.SubElement(new_doc, 'header') i = 0 for f in fields: if f.get('header_data_id', False): value = f.get('header_name', "") field = etree.SubElement(header, 'field') field.text = tools.ustr(value) else: skip_index.append(i) i += 1 lines = etree.SubElement(new_doc, 'lines') for row_lines in rows: node_line = etree.SubElement(lines, 'row') j = 0 for row in row_lines: if not j in skip_index: para = "yes" tree = "no" value = row.get('data', '') if row.get('bold', False): para = "group" if row.get('number', False): tree = "float" col = etree.SubElement(node_line, 'col', para=para, tree=tree) col.text = tools.ustr(value) j += 1 transform = etree.XSLT( etree.parse(os.path.join(tools.config['root_path'], 'addons/base/report/custom_new.xsl'))) rml = etree.tostring(transform(new_doc)) self.obj = trml2pdf.parseNode(rml, title='Printscreen') return self.obj class ZbPdfExport(ExportPdf): _cp_path = '/web/export/zb_pdf_export' @openerpweb.httprequest def index(self, req, data, token): data = json.loads(data) uid = data.get('uid', False) return req.make_response(self.from_data(uid, data.get('headers', []), data.get('rows', []), data.get('company_name','')), headers=[('Content-Disposition', 'attachment; filename=PDF Export'), ('Content-Type', self.content_type)], cookies={'fileToken': int(token)}) # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
19edfb5d48f61044424ab6c2a3dd832edbd0612a
daae0cf103b6c9f26065f7546a7dc79281fc0bde
/16/3.py
297df94c2bd4b2df86a41fbc8e26d6952e1e12d4
[]
no_license
oc0de/pyEPI
97a5d4db91d5459f407c9d414fc999de56885124
2b7cedecdd5b8665ab4f1ca4762a3fd5adcc9864
refs/heads/master
2021-09-05T09:32:53.646441
2018-01-26T03:58:10
2018-01-26T03:58:10
119,003,665
0
0
null
null
null
null
UTF-8
Python
false
false
371
py
def number_of_ways(n, m): cache = {} def helper(x,y): if x == y == 0: return 1 if (x,y) not in cache: ways_top = 0 if x == 0 else helper(x-1, y) ways_left = 0 if y == 0 else helper(x, y-1) cache[(x,y)] = ways_top + ways_left return cache[(x,y)] return helper(n-1, m-1) print number_of_ways(5, 5)
70429f73bbca6c8c28bbffeb622ee490018c69d8
95f21bdadb48a25321f76980ba72887255033343
/torch/fx/graph.py
0975962ff45a803dd2244f6ce861e2ca16d18f36
[ "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "BSL-1.0", "Apache-2.0", "BSD-2-Clause" ]
permissive
chen-chentao/pytorch
e4f5215270aeb25c61ec700c4e142962ac1e56de
caa377f546306f8885fba1df230ae4db91dea2a4
refs/heads/master
2023-03-08T06:26:15.628237
2021-02-24T00:29:34
2021-02-24T00:32:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
39,433
py
from .node import Node, Argument, Target, map_arg, _type_repr, _get_qualified_name from typing import Callable, Any, List, Dict, NamedTuple, Optional, Tuple, Set, FrozenSet from dataclasses import dataclass from contextlib import contextmanager import torch import keyword import re import builtins import math # Mapping of builtins to their `typing` equivalent. _origin_type_map = { list: List, dict: Dict, set: Set, frozenset: FrozenSet, tuple: Tuple, } class _CustomBuiltin(NamedTuple): """Additional objs that we add to every graph's globals. The repr() for some standard library objects is not valid Python code without an import. For common objects of this sort, we bundle them in the globals of every FX graph. """ # How to import this object from the standard library. import_str: str # The actual object, produced from that import string. obj: Any _custom_builtins: Dict[str, _CustomBuiltin] = {} def _register_custom_builtin(name: str, import_str: str, obj: Any): _custom_builtins[name] = _CustomBuiltin(import_str, obj) _register_custom_builtin('inf', 'from math import inf', math.inf) _register_custom_builtin('nan', 'from math import nan', math.nan) _register_custom_builtin('NoneType', 'NoneType = type(None)', type(None)) _register_custom_builtin('torch', 'import torch', torch) def _is_magic(x: str) -> bool: return x.startswith('__') and x.endswith('__') def _snake_case(s: str) -> str: """ Transforms the given string ``s`` to a Python-style variable name Examples: ``mod.snake_case`` -> ``mod.snake_case`` ``mod.pascalCase``-> ``mod.pascal_case`` ``mod.ALL_CAPS`` -> ``mod.all_caps`` """ chars = [] prev_lower = False for c in s: if prev_lower and c.isupper(): chars.append('_') chars.append(c.lower()) prev_lower = c.islower() return ''.join(chars) def _is_from_torch(obj: Any) -> bool: module_name = getattr(obj, '__module__', None) if module_name is not None: base_module = module_name.partition('.')[0] return base_module == 'torch' name = getattr(obj, '__name__', None) # exclude torch because torch.torch.torch.torch works. idk mang if name is not None and name != 'torch': for guess in [torch, torch.nn.functional]: if getattr(guess, name, None) is obj: return True return False class _Namespace: """A context for associating names uniquely with objects. The following invariants are enforced: - Each object gets a single name. - Each name is unique within a given namespace. - Names generated do not shadow builtins, unless the object is indeed that builtin. """ def __init__(self): self._obj_to_name: Dict[Any, str] = {} self._unassociated_names = set() self._used_names: Dict[str, int] = {} def create_name(self, candidate: str, obj: Optional[Any]) -> str: """Create a unique name. Arguments: candidate: used as the basis for the unique name, relevant to the user. obj: If not None, an object that will be associated with the unique name. """ if obj is not None and obj in self._obj_to_name: return self._obj_to_name[obj] # delete all characters that are illegal in a Python identifier candidate = re.sub('[^0-9a-zA-Z_]+', '_', candidate) if candidate[0].isdigit(): candidate = f'_{candidate}' while candidate in self._used_names or self._is_illegal_name(candidate, obj): match = re.match(r"(.*)_(\d+)$", candidate) if match is None: candidate = candidate + '_1' else: base, num = match.group(1, 2) candidate = f'{base}_{int(num) + 1}' self._used_names.setdefault(candidate) if obj is None: self._unassociated_names.add(candidate) else: self._obj_to_name[obj] = candidate return candidate def associate_name_with_obj(self, name: str, obj: Any): """Associate a unique name with an object. Neither `name` nor `obj` should be associated already. """ assert obj not in self._obj_to_name assert name in self._unassociated_names self._obj_to_name[obj] = name self._unassociated_names.remove(name) def _is_illegal_name(self, name: str, obj: Any) -> bool: # 1. keywords are never allowed as names. if name in keyword.kwlist: return True # 2. Can't shadow a builtin name, unless you *are* that builtin. if name in builtins.__dict__: return obj is not builtins.__dict__[name] # 3. Can't shadow our custom builtins either if name in _custom_builtins: return obj is not _custom_builtins[name].obj return False @dataclass class PythonCode: """Represents all the information necessary to exec or save a graph as Python code.""" # Python source code for the forward function definition. src: str # Values in global scope during exection of `src_def`. globals: Dict[str, Any] def _format_args(args: Tuple[Argument, ...], kwargs: Dict[str, Argument]) -> str: args_s = ', '.join(repr(a) for a in args) kwargs_s = ', '.join(f'{k} = {repr(v)}' for k, v in kwargs.items()) if args_s and kwargs_s: return f'{args_s}, {kwargs_s}' return args_s or kwargs_s def _format_target(base: str, target: str) -> str: elems = target.split('.') r = base for e in elems: if not e.isidentifier(): r = f'getattr({r}, "{e}")' else: r = f'{r}.{e}' return r class _InsertPoint: def __init__(self, graph, new_insert): self.graph = graph self.orig_insert, graph._insert = graph._insert, new_insert def __enter__(self): pass def __exit__(self, type, value, tb): self.graph._insert = self.orig_insert class _node_list: def __init__(self, graph: 'Graph', direction: str = '_next'): assert direction in ['_next', '_prev'] self.graph = graph self.direction = direction def __len__(self): return self.graph._len def __iter__(self): root, direction = self.graph._root, self.direction cur = getattr(root, direction) while cur is not root: if not cur._erased: yield cur cur = getattr(cur, direction) def __reversed__(self): return _node_list(self.graph, '_next' if self.direction == '_prev' else '_prev') class Graph: """ ``Graph`` is the main data structure used in the FX Intermediate Representation. It consists of a series of ``Node`` s, each representing callsites (or other syntactic constructs). The list of ``Node`` s, taken together, constitute a valid Python function. For example, the following code .. code-block:: python import torch import torch.fx class MyModule(torch.nn.Module): def __init__(self): super().__init__() self.param = torch.nn.Parameter(torch.rand(3, 4)) self.linear = torch.nn.Linear(4, 5) def forward(self, x): return torch.topk(torch.sum(self.linear(x + self.linear.weight).relu(), dim=-1), 3) m = MyModule() gm = torch.fx.symbolic_trace(m) Will produce the following Graph:: print(gm.graph) .. code-block:: text graph(x): %linear_weight : [#users=1] = self.linear.weight %add_1 : [#users=1] = call_function[target=operator.add](args = (%x, %linear_weight), kwargs = {}) %linear_1 : [#users=1] = call_module[target=linear](args = (%add_1,), kwargs = {}) %relu_1 : [#users=1] = call_method[target=relu](args = (%linear_1,), kwargs = {}) %sum_1 : [#users=1] = call_function[target=torch.sum](args = (%relu_1,), kwargs = {dim: -1}) %topk_1 : [#users=1] = call_function[target=torch.topk](args = (%sum_1, 3), kwargs = {}) return topk_1 For the semantics of operations represented in the ``Graph``, please see :class:`Node`. """ def __init__(self): """ Construct an empty Graph. """ self._root : Node = Node(self, '', 'root', '', (), {}) self._used_names : Dict[str, int] = {} # base name -> number self._insert = self._root.prepend self._len = 0 self._graph_namespace = _Namespace() @property def nodes(self) -> _node_list: """ Get the list of Nodes that constitute this Graph. Note that this ``Node`` list representation is a doubly-linked list. Mutations during iteration (e.g. delete a Node, add a Node) are safe. Returns: A doubly-linked list of Nodes. Note that ``reversed`` can be called on this list to switch iteration order. """ return _node_list(self) def graph_copy(self, g : 'Graph', val_map : Dict[Node, Node]) -> 'Optional[Argument]': """ Copy all nodes from a given graph into ``self``. Args: g (Graph): The source graph from which to copy Nodes. val_map (Dict[Node, Node]): a dictionary that will be populated with a mapping from nodes in ``g`` to nodes in ``self``. Note that ``val_map`` can be passed in with values in it already to override copying of certain values. Returns: The value in ``self`` that is now equivalent to the output value in ``g``, if ``g`` had an ``output`` node. ``None`` otherwise. """ for node in g.nodes: if node in val_map: continue if node.op == 'output': rv = map_arg(node.args[0], lambda n: val_map[n]) return rv val_map[node] = self.node_copy(node, lambda n : val_map[n]) return None def __deepcopy__(self, memo=None) -> 'Graph': """ Explicitly implement __deepcopy__ to prevent excessive recursion depth from the default implementation. This uses graph_copy to copy the nodes in an iterative way, rather than recursive. It also populates the memoization table to prevent unnecessary copies (e.g. references to nodes or other parts of the Graph from a custom GraphModule implementation """ memo = memo if memo else {} g = Graph() output_val = g.graph_copy(self, val_map=memo) g.output(output_val) return g def create_node(self, op: str, target: 'Target', args: Optional[Tuple['Argument', ...]] = None, kwargs: Optional[Dict[str, 'Argument']] = None, name: Optional[str] = None, type_expr: Optional[Any] = None) -> Node: """ Create a ``Node`` and add it to the ``Graph`` at the current insert-point. Note that the current insert-point can be set via :meth:`Graph.inserting_before` and :meth:`Graph.inserting_after`. Args: op (str): the opcode for this Node. One of 'call_function', 'call_method', 'get_attr', 'call_module', 'placeholder', or 'output'. The semantics of these opcodes are described in the ``Graph`` docstring. args (Optional[Tuple[Argument, ...]]): is a tuple of arguments to this node. kwargs (Optional[Dict[str, Argument]]): the kwargs of this Node name (Optional[str]): an optional string name for the ``Node``. This will influence the name of the value assigned to in the Python generated code. type_expr (Optional[Any]): an optional type annotation representing the Python type the output of this node will have. Returns: The newly-created and inserted node. """ assert op in ('call_function', 'call_method', 'get_attr', 'call_module', 'placeholder', 'output') args = () if args is None else args kwargs = {} if kwargs is None else kwargs assert isinstance(args, tuple), "args must be a tuple" assert isinstance(kwargs, dict), "kwargs must be a dict" candidate = name if name is not None else self._target_to_str(target) name = self._graph_namespace.create_name(candidate, None) n = Node(self, name, op, target, args, kwargs, type_expr) self._graph_namespace.associate_name_with_obj(name, n) self._insert(n) self._len += 1 return n def erase_node(self, to_erase : Node) -> None: """ Erases a ``Node`` from the ``Graph``. Throws an exception if there are still users of that node in the ``Graph``. Args: to_erase (Node): The ``Node`` to erase from the ``Graph``. """ if len(to_erase.users) > 0: raise RuntimeError(f'Tried to erase Node {to_erase} but it still had {len(to_erase.users)} ' f'users in the graph: {to_erase.users}!') to_erase._remove_from_list() to_erase._erased = True # iterators may retain handles to erased nodes self._len -= 1 # Null out this Node's argument nodes so that the Nodes referred to # can update their ``users`` accordingly new_args = map_arg(to_erase.args, lambda n: None) assert isinstance(new_args, tuple) to_erase.args = new_args new_kwargs = map_arg(to_erase.kwargs, lambda n: None) assert isinstance(new_kwargs, dict) to_erase.kwargs = new_kwargs def inserting_before(self, n: Optional[Node] = None): """Set the point at which create_node and companion methods will insert into the graph. When used within a 'with' statement, this will temporary set the insert point and then restore it when the with statement exits:: with g.inserting_before(n): ... # inserting before node n ... # insert point restored to what it was previously g.inserting_before(n) # set the insert point permanently Args: n (Optional[Node]): The node before which to insert. If None this will insert before the beginning of the entire graph. Returns: A resource manager that will restore the insert point on ``__exit__``. """ if n is None: return self.inserting_after(self._root) assert n.graph == self, "Node to insert before is not in graph." return _InsertPoint(self, n.prepend) def inserting_after(self, n: Optional[Node] = None): """Set the point at which create_node and companion methods will insert into the graph. When used within a 'with' statement, this will temporary set the insert point and then restore it when the with statement exits:: with g.inserting_after(n): ... # inserting after node n ... # insert point restored to what it was previously g.inserting_after(n) # set the insert point permanently Args: n (Optional[Node]): The node before which to insert. If None this will insert after the beginning of the entire graph. Returns: A resource manager that will restore the insert point on ``__exit__``. """ if n is None: return self.inserting_before(self._root) assert n.graph == self, "Node to insert after is not in graph." return _InsertPoint(self, n.append) # sugar for create_node when you know the op def placeholder(self, name: str, type_expr: Optional[Any] = None) -> Node: """ Insert a ``placeholder`` node into the Graph. A ``placeholder`` represents a function input. Args: name (str): A name for the input value. This corresponds to the name of the positional argument to the function this ``Graph`` represents. type_expr (Optional[Any]): an optional type annotation representing the Python type the output of this node will have. This is needed in some cases for proper code generation (e.g. when the function is used subsequently in TorchScript compilation). .. note:: The same insertion point and type expression rules apply for this method as ``Graph.create_node``. """ return self.create_node('placeholder', name, type_expr=type_expr) def get_attr(self, qualified_name: str, type_expr: Optional[Any] = None) -> Node: """ Insert a ``get_attr`` node into the Graph. A ``get_attr`` ``Node`` represents the fetch of an attribute from the ``Module`` hierarchy. Args: qualified_name (str): the fully-qualified name of the attribute to be retrieved. For example, if the traced Module has a submodule named ``foo``, which has a submodule named ``bar``, which has an attribute named ``baz``, the qualified name ``foo.bar.baz`` should be passed as ``qualified_name``. type_expr (Optional[Any]): an optional type annotation representing the Python type the output of this node will have. Returns: The newly-created and inserted ``get_attr`` node. .. note:: The same insertion point and type expression rules apply for this method as ``Graph.create_node``. """ return self.create_node('get_attr', qualified_name, type_expr=type_expr) def call_module(self, module_name: str, args: Optional[Tuple['Argument', ...]] = None, kwargs: Optional[Dict[str, 'Argument']] = None, type_expr: Optional[Any] = None) -> Node: """ Insert a ``call_module`` ``Node`` into the ``Graph``. A ``call_module`` node represents a call to the forward() function of a ``Module`` in the ``Module`` hierarchy. Args: module_name (str): The qualified name of the ``Module`` in the ``Module`` hierarchy to be called. For example, if the traced ``Module`` has a submodule named ``foo``, which has a submodule named ``bar``, the qualified name ``foo.bar`` should be passed as ``module_name`` to call that module. args (Optional[Tuple[Argument, ...]]): The positional arguments to be passed to the called method. Note that this should *not* include a ``self`` argument. kwargs (Optional[Dict[str, Argument]]): The keyword arguments to be passed to the called method type_expr (Optional[Any]): an optional type annotation representing the Python type the output of this node will have. Returns: The newly-created and inserted ``call_module`` node. .. note:: The same insertion point and type expression rules apply for this method as :meth:`Graph.create_node`. """ return self.create_node('call_module', module_name, args, kwargs, type_expr=type_expr) def call_method(self, method_name: str, args: Optional[Tuple['Argument', ...]] = None, kwargs: Optional[Dict[str, 'Argument']] = None, type_expr: Optional[Any] = None) -> Node: """ Insert a ``call_method`` ``Node`` into the ``Graph``. A ``call_method`` node represents a call to a given method on the 0th element of ``args``. Args: method_name (str): The name of the method to apply to the self argument. For example, if args[0] is a ``Node`` representing a ``Tensor``, then to call ``relu()`` on that ``Tensor``, pass ``relu`` to ``method_name``. args (Optional[Tuple[Argument, ...]]): The positional arguments to be passed to the called method. Note that this *should* include a ``self`` argument. kwargs (Optional[Dict[str, Argument]]): The keyword arguments to be passed to the called method type_expr (Optional[Any]): an optional type annotation representing the Python type the output of this node will have. Returns: The newly created and inserted ``call_method`` node. .. note:: The same insertion point and type expression rules apply for this method as :meth:`Graph.create_node`. """ return self.create_node('call_method', method_name, args, kwargs, type_expr=type_expr) def call_function(self, the_function: Callable[..., Any], args: Optional[Tuple['Argument', ...]] = None, kwargs: Optional[Dict[str, 'Argument']] = None, type_expr: Optional[Any] = None) -> Node: """ Insert a ``call_function`` ``Node`` into the ``Graph``. A ``call_function`` node represents a call to a Python callable, specified by ``the_function``. ``the_function`` can be Args: the_function (Callable[..., Any]): The function to be called. Can be any PyTorch operator, Python function, or member of the ``builtins`` or ``operator`` namespaces. args (Optional[Tuple[Argument, ...]]): The positional arguments to be passed to the called function. kwargs (Optional[Dict[str, Argument]]): The keyword arguments to be passed to the called function type_expr (Optional[Any]): an optional type annotation representing the Python type the output of this node will have. Returns The newly created and inserted ``call_function`` node. .. note:: The same insertion point and type expression rules apply for this method as :meth:`Graph.create_node`. """ return self.create_node('call_function', the_function, args, kwargs, type_expr=type_expr) def node_copy(self, node: Node, arg_transform: Callable[[Node], 'Argument'] = lambda x: x) -> Node: """ Copy a node from one graph into another. ``arg_transform`` needs to transform arguments from the graph of node to the graph of self. Example:: # Copying all the nodes in `g` into `new_graph` g : torch.fx.Graph = ... new_graph = torch.fx.graph() value_remap = {} for node in g.nodes: value_remap[node] = new_graph.node_copy(node, lambda n : value_remap[n]) Args: node (Node): The node to copy into ``self``. arg_transform (Callable[[Node], Argument]): A function that transforms ``Node`` arguments in node's ``args`` and ``kwargs`` into the equivalent argument in ``self``. In the simplest case, this should retrieve a value out of a table mapping Nodes in the original graph to ``self``. """ args = map_arg(node.args, arg_transform) kwargs = map_arg(node.kwargs, arg_transform) assert isinstance(args, tuple) assert isinstance(kwargs, dict) return self.create_node(node.op, node.target, args, kwargs, node.name, node.type) def output(self, result: 'Argument', type_expr: Optional[Any] = None): """ Insert an ``output`` ``Node`` into the ``Graph``. An ``output`` node represents a ``return`` statement in Python code. ``result`` is the value that should be returned. Args: result (Argument): The value to be returned. type_expr (Optional[Any]): an optional type annotation representing the Python type the output of this node will have. .. note:: The same insertion point and type expression rules apply for this method as ``Graph.create_node``. """ return self.create_node(op='output', target='output', args=(result,), type_expr=type_expr) def _target_to_str(self, target : Target) -> str: if callable(target): op = target.__name__ else: assert isinstance(target, str) op = target if _is_magic(op): op = op[2:-2] op = _snake_case(op) return op def python_code(self, root_module: str) -> PythonCode: """ Turn this ``Graph`` into valid Python code. Args: root_module (str): The name of the root module on which to look-up qualified name targets. This is usually 'self'. Returns: A PythonCode object, consisting of two fields: src: the Python source code representing the object globals: a dictionary of global names in `src` -> the objects that they reference. """ # NOTE: [Graph Namespaces] # # There are two types of symbols in generated Python source code: # locals and globals. # Locals are locally defined by the output of a node in the Graph. # Globals are references to external objects, like functions or types. # # When generating Python code, we need to make sure to name things # appropriately. In particular: # - All names should be unique, to avoid weird shadowing bugs. # - These names need to be consistent, e.g. a object should always be # referenced by the same name. # # To do this, we create a new namespace just for this source. All names # that get printed must come from this namespace. # # Why can't we re-use node.name? Because it was generated within the # namespace `self._graph_namespace`. In order to provide uniqueness # over both locals (node.name) *and* globals, we create a completely # new namespace to put all identifiers in. namespace = _Namespace() # Override Node's repr to generate a valid name within our namespace. # Since repr() is designed to produce a valid Python expression, it # makes sense to re-use it. This way, it's easy to print something like # Tuple[Node, Node] by simply calling repr() on it. Node's __repr__ is # implemented cooperatively to allow this. def node_repr(n: Node): return namespace.create_name(n.name, n) @contextmanager def override_node_repr(graph: Graph): orig_repr_fns = {} for node in graph.nodes: orig_repr_fns[node] = node._repr_fn node._repr_fn = node_repr try: yield None finally: # restore the original repr functions for node in graph.nodes: node._repr_fn = orig_repr_fns[node] with override_node_repr(self): return self._python_code(root_module, namespace) def _python_code(self, root_module: str, namespace: _Namespace) -> PythonCode: free_vars: List[str] = [] body: List[str] = [] globals_: Dict[str, Any] = {} # Wrap string in list to pass by reference maybe_return_annotation : List[str] = [''] def add_global(name_hint: str, obj: Any): """Add an obj to be tracked as a global. We call this for names that reference objects external to the Graph, like functions or types. Returns: the global name that should be used to reference 'obj' in generated source. """ if _is_from_torch(obj): # HACK: workaround for how torch custom ops are registered. We # can't import them like normal modules so they must retain their # fully qualified name. return _get_qualified_name(obj) # normalize the name hint to get a proper identifier global_name = namespace.create_name(name_hint, obj) if global_name in globals_: assert globals_[global_name] is obj return global_name globals_[global_name] = obj return global_name # Pre-fill the globals table with registered builtins. for name, (_, obj) in _custom_builtins.items(): add_global(name, obj) def type_repr(o : Any): typename = _type_repr(o) # This is a generic type, e.g. typing.List[torch.Tensor] if hasattr(o, '__origin__'): origin_type = _origin_type_map.get(o.__origin__, o.__origin__) origin_typename = add_global(_type_repr(origin_type), origin_type) # Assign global names for each of the inner type variables. args = [type_repr(arg) for arg in o.__args__] return f'{origin_typename}[{",".join(args)}]' # Common case: this is a regular module name like 'foo.bar.baz' return add_global(typename, o) # Run through reverse nodes and record the first instance of a use # of a given node. This represents the *last* use of the node in the # execution order of the program, which we will use to free unused # values node_to_last_use : Dict[Node, Node] = {} user_to_last_uses : Dict[Node, List[Node]] = {} def register_last_uses(n : Node, user : Node): if n not in node_to_last_use: node_to_last_use[n] = user user_to_last_uses.setdefault(user, []).append(n) for node in reversed(self.nodes): map_arg(node.args, lambda n: register_last_uses(n, node)) map_arg(node.kwargs, lambda n: register_last_uses(n, node)) def delete_unused_values(user : Node): """ Delete values after their last use. This ensures that values that are not used in the remainder of the code are freed and the memory usage of the code is optimal. """ if user.op == 'placeholder': return if user.op == 'output': body.append('\n') return nodes_to_delete = user_to_last_uses.get(user, []) if len(nodes_to_delete): to_delete_str = ' = '.join([repr(n) for n in nodes_to_delete] + ['None']) body.append(f'; {to_delete_str}\n') else: body.append('\n') def emit_node(node : Node): if node.op == 'placeholder': assert isinstance(node.target, str) maybe_type_annotation = '' if node.type is None else f' : {type_repr(node.type)}' maybe_default_arg = '' if not node.args else f' = {repr(node.args[0])}' free_vars.append(f'{node.target}{maybe_type_annotation}{maybe_default_arg}') raw_name = node.target.replace('*', '') if raw_name != repr(node): body.append(f'{repr(node)} = {raw_name}\n') return elif node.op == 'call_method': assert isinstance(node.target, str) body.append( f'{repr(node)} = {_format_target(repr(node.args[0]), node.target)}' f'({_format_args(node.args[1:], node.kwargs)})') return elif node.op == 'call_function': assert callable(node.target) # pretty print operators if node.target.__module__ == '_operator' and node.target.__name__ in magic_methods: assert isinstance(node.args, tuple) body.append(f'{repr(node)} = {magic_methods[node.target.__name__].format(*(repr(a) for a in node.args))}') return qualified_name = _get_qualified_name(node.target) global_name = add_global(qualified_name, node.target) if global_name == 'getattr' and \ isinstance(node.args, tuple) and \ isinstance(node.args[1], str) and \ node.args[1].isidentifier(): # pretty print attribute access body.append(f'{repr(node)} = {_format_target(repr(node.args[0]), node.args[1])}') return body.append(f'{repr(node)} = {global_name}({_format_args(node.args, node.kwargs)})') return elif node.op == 'call_module': assert isinstance(node.target, str) body.append(f'{repr(node)} = {_format_target(root_module, node.target)}({_format_args(node.args, node.kwargs)})') return elif node.op == 'get_attr': assert isinstance(node.target, str) body.append(f'{repr(node)} = {_format_target(root_module, node.target)}') return elif node.op == 'output': if node.type is not None: maybe_return_annotation[0] = f" -> {type_repr(node.type)}" body.append(f'return {repr(node.args[0])}') return raise NotImplementedError(f'node: {node.op} {node.target}') for node in self.nodes: # NOTE: emit_node does not emit a string with newline. It depends # on delete_unused_values to append one emit_node(node) delete_unused_values(node) # repr() for inf and nan floating point values aren't parseable by # python as literals. Explicitly import the names from the ``math`` module. if len(body) == 0: # If the Graph has no non-placeholder nodes, no lines for the body # have been emitted. To continue to have valid Python code, emit a # single pass statement body.append('pass\n') code = ''.join(body) code = '\n'.join(' ' + line for line in code.split('\n')) fn_code = f""" def forward(self, {', '.join(free_vars)}){maybe_return_annotation[0]}: {code}""" return PythonCode(fn_code, globals_) def __str__(self) -> str: """ Print a human-readable (not machine-readable) string representation of this Graph """ placeholder_names : List[str] = [] # This is a one-element array just so ``format_node`` can modify the closed # over value maybe_return_typename : List[str] = [''] node_strs = [node.format_node(placeholder_names) for node in self.nodes] param_str = ', '.join(placeholder_names) s = f'graph({param_str}){maybe_return_typename[0]}:' for node_str in node_strs: if node_str: s += '\n ' + node_str return s def print_tabular(self): """ Prints the intermediate representation of the graph in tabular format. """ try: from tabulate import tabulate except ImportError: print("`print_tabular` relies on the library `tabulate`, " "which could not be found on this machine. Run `pip " "install tabulate` to install the library.") node_specs = [[n.op, n.name, n.target, n.args, n.kwargs] for n in self.nodes] print(tabulate(node_specs, headers=['opcode', 'name', 'target', 'args', 'kwargs'])) def lint(self, root : Optional[torch.nn.Module] = None): """ Runs various checks on this Graph to make sure it is well-formed. In particular: - Checks Nodes have correct ownership (owned by this graph) - Checks Nodes appear in topological order - If ``root`` is provided, checks that targets exist in ``root`` Args: root (Optional[torch.nn.Module]): The root module with which to check for targets. This is equivalent to the ``root`` argument that is passed when constructing a ``GraphModule``. """ # Check topo order def check_arg(arg : Node, n : Optional[Node] = None) -> None: context_str = f' of Node \'{n}\' ' if n else ' ' if arg.graph is not self: raise RuntimeError(f'Argument \'{arg}\'{context_str}does not belong to this Graph, ' f'but was used as an argument! If you are copying nodes from another graph, make ' f'sure to use ``arg_transform`` on node_copy() to remap values\n{self}') if arg not in seen_values: raise RuntimeError(f'Argument \'{arg}\'{context_str}was used before it has been ' f'defined! Please check that Nodes in the graph are topologically ordered\n{self}') seen_names : Set[str] = set() seen_values : Set[Node] = set() for node in self.nodes: if node.op not in ['placeholder', 'call_method', 'call_module', 'call_function', 'get_attr', 'output']: raise RuntimeError(f'Node {node} had unknown opcode {node.op}!') if node.graph is not self: raise RuntimeError(f'Node \'{node}\' does not belong to this Graph!') map_arg(node.args, lambda arg: check_arg(arg, node)) map_arg(node.kwargs, lambda arg: check_arg(arg, node)) seen_values.add(node) if node.name in seen_names: raise RuntimeError(f'Node redefined name {node.name}!') seen_names.add(node.name) # Check targets are legit if root: for node in self.nodes: if node.op in ['get_attr', 'call_module']: assert isinstance(node.target, str) target_atoms = node.target.split('.') m_itr = root for i, atom in enumerate(target_atoms): m_itr = getattr(m_itr, atom, None) if m_itr is None: seen_qualname = '.'.join(target_atoms[:i]) raise RuntimeError(f'Node {node} target {node.target} references nonexistent attribute ' f'{atom} of {seen_qualname}') reflectable_magic_methods = { 'add': '{} + {}', 'sub': '{} - {}', 'mul': '{} * {}', 'floordiv': '{} // {}', 'truediv': '{} / {}', 'div': '{} / {}', 'mod': '{} % {}', 'pow': '{} ** {}', 'lshift': '{} << {}', 'rshift': '{} >> {}', 'and': '{} & {}', 'or': '{} | {}', 'xor': '{} ^ {}', 'getitem': '{}[{}]' } magic_methods = dict({ 'eq': '{} == {}', 'ne': '{} != {}', 'lt': '{} < {}', 'gt': '{} > {}', 'le': '{} <= {}', 'ge': '{} >= {}', 'pos': '+{}', 'neg': '-{}', 'invert': '~{}'}, **reflectable_magic_methods)
e11630ca7d98b098071e4dbe2e4d7ccbd0e87332
525dc175d55c2f5f33f87df6915f3633537da17c
/oas_dev/notebooks/eusaari/02-02-Sizedistrib/02-02-sizedistribution_allstations-sec_and_mod_separately.py
d470894aa30e6884b01c96e3bce822ef6d69d6b6
[ "CC0-1.0" ]
permissive
sarambl/OAS-DEV
1b4c020ff862075034536ea38f30a131968791fb
8dec6d29ef23dee8135bc937cd6ee1ef5b64d304
refs/heads/master
2023-04-09T07:59:31.051158
2021-10-26T12:20:04
2021-10-26T12:20:04
310,578,324
0
0
null
null
null
null
UTF-8
Python
false
false
16,442
py
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: percent # format_version: '1.3' # jupytext_version: 1.3.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # %% import xarray as xr from oas_dev.util.Nd.sizedist_class_v2 import SizedistributionStation from oas_dev.util.eusaar_data.eusaar_noresm import compute_all_subsets_percs_flag, get_all_distc_noresm from useful_scit.util.make_folders import make_folders # %% [markdown] # ## Cases: # %% # Case names: cases_sec = ['SECTv21_ctrl_koagD']#, 'SECTv21_ctrl']#,'SECTv11_redSOA_LVnuc','SECTv11_incBVOC']#'PD_SECT_CHC7_diur_ricc']#, 'PD_SECT_CHC7_diurnal']# , 'PD_SECT_CHC7_diur_ricc_incC'] cases_orig = ['noSECTv21_default_dd','noSECTv21_ox_ricc_dd']#'noSECTv11_ctrl']#,'PD_noSECT_nudgeERA_eq20']#'Original eq.20'] # , 'Original eq.18','Original eq.20, 1.5xBVOC','Original eq.20, rednuc'] cases = cases_sec + cases_orig # %% [markdown] # ## Settings # %% from_t = '2008-01-01' to_t = '2010-01-01' nr_of_bins = 5 maxDiameter = 39.6 # 23.6 #e-9 minDiameter = 5.0 # e-9 time_resolution = 'hour' history_field='.h1.' # %% [markdown] # ### EUSAAR subset: # %% year_subset='BOTH' # %% [markdown] # ## Load datasets: # %% [markdown] # ### Models # %% dic_finish = {} for case_name in cases: #_ds = dic_mod_all[case_name] ds = get_all_distc_noresm(case_name, from_t, to_t) dic_finish[case_name] = ds # %% [markdown] # ## make sectional not sum of mode and sectional # %% [markdown] # for case in cases_sec: # _ds = dic_finish[case] # _ds['dNdlogD_mod_mod'] = _ds['dNdlogD_mod'].where(_ds['diameter']>=39.6, other=0) # _ds['dNdlogD'] = _ds['dNdlogD_sec'] + _ds['dNdlogD_mod_mod'] # dic_finish[case] = _ds # %% dic_finish import numpy as np for key in cases: dic_finish[key]['dNdlog10dp'] = dic_finish[key]['dNdlogD']*np.log(10) # %% dic_finish['SECTv21_ctrl_koagD'] # %% [markdown] # ### Eusaar: # %% # # %load_ext autoreload # # %autoreload 2 import numpy as np from oas_dev.util.eusaar_data import distc_var # import load_var_as_dtframe import matplotlib.pyplot as plt from useful_scit.plot import get_cmap_dic # %% ds_eusaar = distc_var.get_distc_xarray_all(from_nc=True) # %% # select bottom layer for case in dic_finish.keys(): ds = dic_finish[case] if 'lev' in ds.coords: dic_finish[case] = ds.isel(lev=-1) # %% ds_eusaar # %% ds_eusaar = ds_eusaar.sel(year=year_subset) # %% dic_finish['eusaar'] = ds_eusaar # %% [markdown] # ### Various functions: # %% from oas_dev.constants import collocate_locations, paths_plotsave, collocate_locations, collocate_locations # %% coll_ltr = collocate_locations.transpose() # %% from useful_scit.util.pd_fix import pd_custom_sort_values #pd_custom_sort_values(coll_ltr, sorter, dall_c) #coll_ltr # %% dall_c = "Dall'Osto 2018 categories" sorter = ['North','Center','South (spring)', 'South (winter)', 'Overlap'] def make_new_cat(): """ Make new category """ coll_ltr = collocate_locations.transpose() td = { 'Low altitude sites (less than 1000 m a.s.l.)': 'LA', 'High altitude sites (over 1000 m a.s.l.)': 'HA' } coll_ltr['AC'] = coll_ltr['Altitude category'].apply(lambda x: td[x]) coll_ltr['new_cat'] = coll_ltr['AC'] + ': ' + coll_ltr['Region'] coll_ltr = coll_ltr.sort_values('new_cat', ascending=False) return coll_ltr def get_ordered_stations(): coll_ltr = make_new_cat() coll_ltr=pd_custom_sort_values(coll_ltr, sorter, dall_c) return coll_ltr.index list(get_ordered_stations()) # %% # %% coll_ltr = collocate_locations.transpose() # %% # %% from oas_dev.data_info import get_nice_name_case # %% from useful_scit.plot import get_cmap_dic from oas_dev.constants import collocate_locations, paths_plotsave, collocate_locations, collocate_locations from oas_dev.util.plot.colors import get_case_col def plot_grid(dic_finish, subs = 'TOT', st_ls=None, name='all_stations', ylim=[5,8.8e3], yscale='linear', plot_sec=True,nr_col=4, figsize=None, ylim_ZEP=[0,500]): colors_source = get_cmap_dic(dic_finish.keys()) colors_source['EUSAAR']='k' dic_ds = dic_finish t_cs =dic_ds[ list(dic_ds.keys())[0]] st_ls =list(get_ordered_stations()) # st_ls = list(loc_tr[loc_tr['Region']==reg].index) print(list(st_ls)) if len(st_ls)>nr_col: nr_row = int(np.ceil(len(st_ls)/nr_col)) else: nr_row=1 nr_col=len(st_ls) if figsize is None: figsize = [10 / 4 * nr_col, 10 / 6 * nr_row] fig, axs = plt.subplots(nr_row, nr_col , sharex=True,sharey=True, figsize=figsize ) axs_nf = axs if nr_row>1: axs = axs.flatten() for station, ax in zip(st_ls, axs): lines=[] labels= [] for key in dic_finish.keys(): _ds = dic_finish[key] #if 'dNdlog10dp_sec' in _ds: # plt_perc(dic_finish[key]['dNdlog10dp_sec'], station, key, # color=get_case_col(key), # ax=ax, # subs=subs, percs=[16,84], yscale=yscale, ylim=ylim) ## plt_perc(dic_finish[key]['dNdlog10dp_mod'], station, key, # color=get_case_col(key), # ax=ax, # subs=subs, percs=[16,84], yscale=yscale, ylim=ylim) #else: plt_perc(dic_finish[key]['dNdlog10dp'], station, key, color=get_case_col(key), ax=ax, subs=subs, percs=[16,84], yscale=yscale, ylim=ylim) for key in dic_finish.keys(): _ds = dic_finish[key] #if 'dNdlog10dp_sec' in _ds: # line =plt_median(dic_finish[key]['dNdlog10dp_sec'], station, key, # color=get_case_col(key), # ax=ax, # subs=subs, percs=[16,84], yscale=yscale, ylim=ylim) # line =plt_median(dic_finish[key]['dNdlog10dp_mod'], station, key, # color=get_case_col(key), # ax=ax, # subs=subs, percs=[16,84], yscale=yscale, ylim=ylim) #else: if 'dNdlog10dp_sec' in _ds: line =plt_median(dic_finish[key]['dNdlog10dp_sec'].where(dic_finish[key]['dNdlog10dp_sec']>0), station, key, color=get_case_col(key), ax=ax, subs=subs, percs=[16,84], yscale=yscale, ylim=ylim, plt_kwargs = {'linestyle':'dashed'}) line =plt_median(dic_finish[key]['dNdlog10dp'], station, key, color=get_case_col(key), ax=ax, subs=subs, percs=[16,84], yscale=yscale, ylim=ylim) lines = lines+line labels.append(get_nice_name_case(key)) if station=='ZEP': axins = insert_ZEP(ax) for key in dic_finish.keys(): plt_perc(dic_finish[key]['dNdlog10dp'], station, key, color=get_case_col(key), ax=axins, subs=subs, percs=[16,84], yscale=yscale, ylim=ylim_ZEP) for key in dic_finish.keys(): plt_median(dic_finish[key]['dNdlog10dp'], station, key, color=get_case_col(key), ax=axins, subs=subs, percs=[16,84], yscale=yscale, ylim=ylim_ZEP) if 'dNdlog10dp_sec' in _ds: plt_median(dic_finish[key]['dNdlog10dp_sec'], station, key, color=get_case_col(key), ax=axins, subs=subs, percs=[16,84], yscale=yscale, ylim=ylim_ZEP) ax.indicate_inset_zoom(axins,edgecolor='r',) fix_ins(axins) if subs=='TOT': cat = coll_ltr.loc[station, dall_c] ax.set_title(station)#+' '+cat) else: cat = coll_ltr.loc[station, dall_c] ax.set_title(station+' '+ subs)#+', '+cat) ax.grid(True) ax.spines['left'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.tick_params(axis=u'y', which=u'both',length=0) if nr_row>1: for ii in range(nr_row): for jj in range(nr_col): if ii !=nr_row-1: axs_nf[ii,jj].set_xlabel('') if jj!=0: axs_nf[ii,jj].set_ylabel('') else: axs_nf[ii,jj].set_ylabel('dN/dlog$_{10}$D [cm$^{-3}$]') fig.tight_layout() lgn = fig.legend(lines, labels, bbox_to_anchor=(0, 1., 1, 0.5), # (0, -0.04, 1., .1), loc='lower center', ncol=4, # mode="expand", borderaxespad=0., fontsize=11, frameon=False) # bbox_to_anchor=(0, 1., 1, 0.5)) #fig.legend(lines, labels, bbox_to_anchor=(0,1.,1,0.5),#(0, -0.04, 1., .1), # loc='lower center', ncol=4, # #mode="expand", # borderaxespad=0., fontsize=11, frameon=False)# bbox_to_anchor=(0, 1., 1, 0.5)) fn = paths_plotsave['eusaar'] + '/sizedist/%s_overview_yscale_%s_sec%s_%s.'%(name.replace(' ','-'),yscale, plot_sec, subs) print(fn) make_folders(fn) plt.savefig(fn+'png', bbox_extra_artists=(lgn,), bbox_inches='tight') plt.savefig(fn+'pdf', bbox_extra_artists=(lgn,), bbox_inches='tight') plt.show() # %% def plt_median(ds, station, label, percs=[5, 95], ax=None, ylim=[1, 8e3], xlim=[5, 5e2], yscale='linear', color='k', subs='TOT', year='2008', plt_kwargs={}): if ax is None: fig, ax= plt.subplots(1) da = ds.sel(subset=subs) _da50 = da.sel(station=station, percentile='50th percentile')# lines = _da50.plot(yscale=yscale,xscale='log', label=label+', %s'%station, color=color , ax=ax,**plt_kwargs) return lines def plt_perc(ds, station, label, percs=[5, 95], ax=None, ylim=[1, 8e3], xlim=[5, 5e2], yscale='linear', color='k', subs='TOT', year='2008'): if ax is None: fig, ax= plt.subplots(1) da = ds.sel(subset=subs) _da95 = da.sel(station=station, percentile='%sth percentile'%percs[1]) _da5 = da.sel(station=station, percentile='%sth percentile'%percs[0]) ax.fill_between(da.diameter.values, _da5,_da95, alpha=.2 , color = color) ax.set_ylim(ylim) ax.set_xlim(xlim) return # %% def plt_median_perc(ds, station, label, percs=[5, 95], ax=None, ylim=[1, 8e3], xlim=[5, 5e2], yscale='linear', color='k', subs='TOT', year='2008'): if ax is None: fig, ax= plt.subplots(1) da = ds.sel(subset=subs) _da50 = da.sel(station=station, percentile='50th percentile')# lines = _da50.plot(yscale=yscale,xscale='log', label=label+', %s'%station,color=color , ax=ax) _da95 = da.sel(station=station, percentile='%sth percentile'%percs[1]) _da5 = da.sel(station=station, percentile='%sth percentile'%percs[0]) ax.fill_between(da.diameter.values, _da5,_da95, alpha=.2 , color = color) ax.set_ylim(ylim) ax.set_xlim(xlim) return lines # %% def insert_ZEP(ax): axins = ax.inset_axes([0.23, 0.2, 0.67, 0.67])#zoomed_inset_axes(ax, zoom=1, loc='upper right') return axins def fix_ins(axins): axins.set_xticklabels('') axins.grid(False) axins.yaxis.label.set_color('red') axins.tick_params(axis='y', colors='red') # #axins.tick_params(axis=u'both', which=u'both',length=1) axins.spines['left'].set_color('r') axins.spines['right'].set_color('r') axins.spines['bottom'].set_color('r') axins.spines['top'].set_color('r') axins.set_title('') axins.set_xlabel('') axins.set_ylabel('') # %% dic_clean={} _ds_eu = dic_finish['eusaar'] _ds_eu = _ds_eu.where(_ds_eu!=-1).drop('year') # %% for key in cases: dic_clean[key] = dic_finish[key].where(_ds_eu.notnull()) if 'dNdlog10dp_sec' in dic_finish[key]: dic_clean[key]['dNdlog10dp_sec']=dic_finish[key]['dNdlog10dp_sec'] dic_clean['eusaar'] = _ds_eu # %% plot_grid(dic_clean) # %% plot_grid(dic_clean,subs = 'SUM', ylim=[0,1e4]) # %% plot_grid(dic_clean,subs = 'WIN', ylim=[0,5e3]) # %% plot_grid(dic_clean,subs = 'SPR', ylim=[0,8e3]) # %% plot_grid(dic_clean,subs = 'AUT', ylim=[0,8e3]) # %% plot_grid(dic_finish) # %% plot_grid(dic_finish,subs = 'SUM', ylim=[0,1e4]) # %% plot_grid(dic_finish,subs = 'WIN', ylim=[0,8e3]) # %% plot_grid(dic_finish,subs = 'SPR', ylim=[0,8e3]) # %% plot_grid(dic_finish,subs = 'AUT', ylim=[0,8e3]) # %% from oas_dev.constants import collocate_locations station='ASP' colors_source = get_cmap_dic(dic_finish.keys()) colors_source['EUSAAR']='k' for station in dic_finish[cases[0]].coords['station'].values: fig, axs = plt.subplots(2,2) seasons = ['SPR', 'SUM','AUT','WIN'] for seas, ax in zip(seasons, axs.flatten()): for key in dic_finish.keys(): plt_median_perc(dic_clean[key]['dNdlog10dp'], station, key, color=get_case_col(key), ax=ax, subs=seas, percs=[16,84], yscale='log', ylim=[10,1e4]) ax.set_title(station+', '+ seas) plt.legend() plt.show() # %% from oas_dev.constants import collocate_locations station='ASP' colors_source = get_cmap_dic(dic_finish.keys()) colors_source['EUSAAR']='k' for station in dic_finish[cases[0]].coords['station'].values: fig, axs = plt.subplots(2,2) seasons = ['SPR', 'SUM','AUT','WIN'] for seas, ax in zip(seasons, axs.flatten()): for key in dic_finish.keys(): plt_median_perc(dic_finish[key]['dNdlog10dp'], station, key, color=get_case_col(key), ax=ax, subs=seas, percs=[16,84], yscale='linear', ylim=[10,1e4]) ax.set_title(station+', '+ seas) plt.legend() plt.show() # %% # %% # %% # %% #for station in dic_finish[cases[0]].coords['station'].values: fig, axs = plt.subplots(1,2, figsize=[10,5]) period = ['DAY', 'NIG'] for seas, ax in zip(period, axs.flatten()): for key in dic_finish.keys(): dic_finish[key]['dNdlog10dp'].median('station').sel(subset=seas, percentile='50th percentile').plot(color=get_case_col(key), xscale='log', ax=ax, label=key) #plt_median_perc(dic_finish[key]['dNdlog10dp'], station, key, # color=get_case_col(key), # ax=ax, # subs=seas, percs=[16,84], yscale='linear') ax.set_title(station+', '+ seas) plt.legend() plt.show() # %% #for station in dic_finish[cases[0]].coords['station'].values: fig, axs = plt.subplots(1,4, figsize=[20,5]) period = seasons for seas, ax in zip(period, axs.flatten()): for key in dic_finish.keys(): for station in dic_finish[key].station.values: _plt_da=dic_finish[key]['dNdlog10dp'].sel(subset=seas,station=station, percentile='50th percentile')# _plt_da.plot(color=get_case_col(key), xscale='log', ax=ax, label=key, linewidth=.5, alpha=.8) #plt_median_perc(dic_finish[key]['dNdlog10dp'], station, key, # color=get_case_col(key), # ax=ax, # subs=seas, percs=[16,84], yscale='linear') ax.set_title(station+', '+ seas) ax.set_xlim([4,800]) #plt.legend() plt.show() # %% for station in dic_finish[cases[0]].coords['station'].values: print(station) fig, axs = plt.subplots(1,2) period = ['DAY', 'NIG'] for seas, ax in zip(period, axs.flatten()): for key in dic_finish.keys(): plt_median_perc(dic_finish[key]['dNdlog10dp'], station, key, color=get_case_col(key), ax=ax, subs=seas, percs=[16,84], yscale='linear') ax.set_title(station+', '+ seas) plt.legend() plt.show()
e0b7367a019a91e2fa1bcd3bff959a74b8b7323a
e8cc4cd00990a4f8a75e538ca68fa77456f37e3c
/telebot/apps.py
f6201278a2003ae19e1031d371370381cf66d2e3
[]
no_license
devRayanwv/djangoTest
950b5d54a3a53f52f615e2ed0a99bac975fb0db9
71bb9377f70fde5b28c5685e8800c4209f265a9f
refs/heads/master
2020-04-06T04:28:08.942379
2017-02-24T22:20:08
2017-02-24T22:20:08
82,883,125
0
0
null
null
null
null
UTF-8
Python
false
false
130
py
from __future__ import unicode_literals from django.apps import AppConfig class TelebotConfig(AppConfig): name = 'telebot'
24d2af17dd3749befa8832fee7ee08d62a1a9063
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/JgYPQrYdivmqN4KKX_18.py
51bf0ca4c9e57c6e4d4df644268825f4357b96e2
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
530
py
def BMI(weight, height): if "kilos" in weight: fBmi = round(float(weight.split()[0]) / float(height.split()[0])**2,1) else : a = (float(weight.split()[0])) * 0.453592 b = (float(height.split()[0])) * 0.0254 fBmi = round(a/b**2,1) if fBmi < 18.5: return "{0} Underweight".format(fBmi) elif fBmi >= 18.5 and fBmi < 24.9: return "{0} Normal weight".format(fBmi) elif fBmi >= 25 and fBmi < 29.9: return "{0} Overweight".format(fBmi) elif fBmi >= 30: return "{0} Obesity".format(fBmi)
9ed3302317bb7901f6b3244ef26fc1ecb990a599
5b9f9b4ea1494943e6f7f842df55909599ed1304
/python/onshape_client/oas/models/bt_shaded_render_document_response.py
7f8e89af07f0ac165d25afbbf29e6536706ff134
[]
no_license
jenniferyoung02/onshape-clients
f50534f033428027515b7fc0b801b1caab4d0aec
8ee31a17d7af32f105b851e45f69fd4a3006e1ba
refs/heads/master
2020-09-07T06:44:37.682545
2019-10-08T18:52:06
2019-10-08T18:52:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,884
py
# coding: utf-8 """ Onshape REST API The Onshape REST API consumed by all clients. # noqa: E501 The version of the OpenAPI document: 1.104 Contact: [email protected] Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six class BTShadedRenderDocumentResponse(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'image_data': 'list[str]', 'status': 'BTNodeStatus' } attribute_map = { 'image_data': 'imageData', 'status': 'status' } def __init__(self, image_data=None, status=None): # noqa: E501 """BTShadedRenderDocumentResponse - a model defined in OpenAPI""" # noqa: E501 self._image_data = None self._status = None self.discriminator = None if image_data is not None: self.image_data = image_data if status is not None: self.status = status @property def image_data(self): """Gets the image_data of this BTShadedRenderDocumentResponse. # noqa: E501 :return: The image_data of this BTShadedRenderDocumentResponse. # noqa: E501 :rtype: list[str] """ return self._image_data @image_data.setter def image_data(self, image_data): """Sets the image_data of this BTShadedRenderDocumentResponse. :param image_data: The image_data of this BTShadedRenderDocumentResponse. # noqa: E501 :type: list[str] """ self._image_data = image_data @property def status(self): """Gets the status of this BTShadedRenderDocumentResponse. # noqa: E501 :return: The status of this BTShadedRenderDocumentResponse. # noqa: E501 :rtype: BTNodeStatus """ return self._status @status.setter def status(self, status): """Sets the status of this BTShadedRenderDocumentResponse. :param status: The status of this BTShadedRenderDocumentResponse. # noqa: E501 :type: BTNodeStatus """ self._status = status def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, BTShadedRenderDocumentResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
262e1d9f54429dd7118716daf6cfbc910a323686
4fb9150b08a128571ed4a84897c8c95afb76ccb6
/healthy/migrations/0002_labdetail.py
e6624ae565d211b7af58232ca3a06dfcfe941dd7
[]
no_license
eduarde/ChunkyMonkeys
815feb7f3e6e2085babb61d12f2255ea2cb46ada
34f30e6aaeef6af15aa12e6d599f55d67c6fb7d7
refs/heads/master
2021-07-09T21:30:49.084584
2016-12-05T10:42:04
2016-12-05T10:42:04
58,738,867
1
1
null
null
null
null
UTF-8
Python
false
false
1,175
py
# -*- coding: utf-8 -*- # Generated by Django 1.9.11 on 2016-11-14 11:38 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('healthy', '0001_initial'), ] operations = [ migrations.CreateModel( name='LabDetail', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('reason', models.TextField(blank=True, null=True, verbose_name='Reason')), ('cause', models.TextField(blank=True, null=True, verbose_name='Cause')), ('action', models.TextField(blank=True, null=True, verbose_name='Action')), ('lab_ref', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='LabDet', to='healthy.Lab')), ('user_ref', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
eb53a990da835beaca9e9cc878481161831bfb1f
1bb2a9150de01c618163bbb8f872bdce6f14df4f
/BaekJoon/2981_검문.py
acbbec8e742ffdac47cb7a67e0dc300dcd8ab895
[]
no_license
whyj107/Algorithm
a1c9a49a12a067366bd0f93abf9fa35ebd62102e
aca83908cee49ba638bef906087ab3559b36b146
refs/heads/master
2023-04-14T12:59:52.761752
2021-05-01T03:53:31
2021-05-01T03:53:31
240,014,212
4
0
null
null
null
null
UTF-8
Python
false
false
989
py
# 문제 # 검문 # https://www.acmicpc.net/problem/2981 # 풀이 from sys import stdin N = int(stdin.readline()) M = [int(stdin.readline()) for i in range(N)] M.sort() tmp = M[-1] - M[0] y = [] for i in range(2, int(tmp**0.5)+1): if tmp % i == 0: y.append(i) if tmp//i not in y: y.append(tmp//i) y.sort() y.append(tmp) for i in y: for n in range(N): if n == N-1: print(i, end=" ") elif M[n] % i != M[n+1] % i: break # 다른 사람의 풀이 """ import sys input = sys.stdin.readline def gcd(a, b): return gcd(b, a % b) if a % b else b n = int(input()) num = sorted([int(input()) for _ in range(n)]) get = num[1] - num[0] for i in range(2, n): get = gcd(get, num[i]-num[i-1]) res = set() for i in range(2, int(get**0.5)+1): if get % i == 0: res.add(i) res.add(get//i) res.add(get) res = sorted(list(res)) print(' '.join(map(str, res))) """
2ce9a1b049459c79da30b6a1c77b1b59475eaa01
2f260fa01c744d93aacfe592b62b1cee08b469de
/sphinx/tello/source/_static/code/python/control-program/tello.py
5b7390453ddf2deefede00ae55943829785944fd
[ "CC-BY-4.0" ]
permissive
oneoffcoder/books
2c1b9b5c97d3eaaf47bafcb1af884b1adcc23bba
35c69915a2a54f62c2c3a542045719cf5540f6ba
refs/heads/master
2023-06-25T16:00:10.926072
2023-06-20T03:40:09
2023-06-20T03:40:09
216,915,443
50
3
null
2023-03-07T01:27:50
2019-10-22T21:46:03
Jupyter Notebook
UTF-8
Python
false
false
8,757
py
import socket import threading import time class Tello(object): """ Wrapper class to interact with the Tello drone. """ def __init__(self, local_ip, local_port, imperial=False, command_timeout=.3, tello_ip='192.168.10.1', tello_port=8889): """ Binds to the local IP/port and puts the Tello into command mode. :param local_ip: Local IP address to bind. :param local_port: Local port to bind. :param imperial: If True, speed is MPH and distance is feet. If False, speed is KPH and distance is meters. :param command_timeout: Number of seconds to wait for a response to a command. :param tello_ip: Tello IP. :param tello_port: Tello port. """ self.abort_flag = False self.command_timeout = command_timeout self.imperial = imperial self.response = None self.socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) self.tello_address = (tello_ip, tello_port) self.last_height = 0 self.socket.bind((local_ip, local_port)) # thread for receiving cmd ack self.receive_thread = threading.Thread(target=self._receive_thread) self.receive_thread.daemon = True self.receive_thread.start() self.socket.sendto(b'command', self.tello_address) print ('sent: command') def __del__(self): """ Closes the local socket. :return: None. """ self.socket.close() def _receive_thread(self): """ Listen to responses from the Tello. Runs as a thread, sets self.response to whatever the Tello last returned. :return: None. """ while True: try: self.response, _ = self.socket.recvfrom(3000) except socket.error as exc: print(f'Caught exception socket.error : {exc}') def send_command(self, command): """ Send a command to the Tello and wait for a response. :param command: Command to send. :return: Response from Tello. """ print(f'>> send cmd: {command}') self.abort_flag = False timer = threading.Timer(self.command_timeout, self.set_abort_flag) self.socket.sendto(command.encode('utf-8'), self.tello_address) timer.start() while self.response is None: if self.abort_flag is True: break timer.cancel() if self.response is None: response = 'none_response' else: response = self.response.decode('utf-8') self.response = None return response def set_abort_flag(self): """ Sets self.abort_flag to True. Used by the timer in Tello.send_command() to indicate to that a response timeout has occurred. :return: None. """ self.abort_flag = True def takeoff(self): """ Initiates take-off. :return: Response from Tello, 'OK' or 'FALSE'. """ return self.send_command('takeoff') def set_speed(self, speed): """ Sets speed. This method expects KPH or MPH. The Tello API expects speeds from 1 to 100 centimeters/second. Metric: .1 to 3.6 KPH Imperial: .1 to 2.2 MPH :param speed: Speed. :return: Response from Tello, 'OK' or 'FALSE'. """ speed = float(speed) if self.imperial is True: speed = int(round(speed * 44.704)) else: speed = int(round(speed * 27.7778)) return self.send_command(f'speed {speed}') def rotate_cw(self, degrees): """ Rotates clockwise. :param degrees: Degrees to rotate, 1 to 360. :return:Response from Tello, 'OK' or 'FALSE'. """ return self.send_command(f'cw {degrees}') def rotate_ccw(self, degrees): """ Rotates counter-clockwise. :param degrees: Degrees to rotate, 1 to 360. :return: Response from Tello, 'OK' or 'FALSE'. """ return self.send_command(f'ccw {degrees}') def flip(self, direction): """ Flips. :param direction: Direction to flip, 'l', 'r', 'f', 'b'. :return: Response from Tello, 'OK' or 'FALSE'. """ return self.send_command(f'flip {direction}') def get_response(self): """ Returns response of tello. :return: Response of tello. """ response = self.response return response def get_height(self): """ Returns height(dm) of tello. :return: Height(dm) of tello. """ height = self.send_command('height?') height = str(height) height = filter(str.isdigit, height) try: height = int(height) self.last_height = height except: height = self.last_height pass return height def get_battery(self): """ Returns percent battery life remaining. :return: Percent battery life remaining. """ battery = self.send_command('battery?') try: battery = int(battery) except: pass return battery def get_flight_time(self): """ Returns the number of seconds elapsed during flight. :return: Seconds elapsed during flight. """ flight_time = self.send_command('time?') try: flight_time = int(flight_time) except: pass return flight_time def get_speed(self): """ Returns the current speed. :return: Current speed in KPH or MPH. """ speed = self.send_command('speed?') try: speed = float(speed) if self.imperial is True: speed = round((speed / 44.704), 1) else: speed = round((speed / 27.7778), 1) except: pass return speed def land(self): """ Initiates landing. :return: Response from Tello, 'OK' or 'FALSE'. """ return self.send_command('land') def move(self, direction, distance): """ Moves in a direction for a distance. This method expects meters or feet. The Tello API expects distances from 20 to 500 centimeters. Metric: .02 to 5 meters Imperial: .7 to 16.4 feet :param direction: Direction to move, 'forward', 'back', 'right' or 'left'. :param distance: Distance to move. :return: Response from Tello, 'OK' or 'FALSE'. """ distance = float(distance) if self.imperial is True: distance = int(round(distance * 30.48)) else: distance = int(round(distance * 100)) return self.send_command(f'{direction} {distance}') def move_backward(self, distance): """ Moves backward for a distance. See comments for Tello.move(). :param distance: Distance to move. :return: Response from Tello, 'OK' or 'FALSE'. """ return self.move('back', distance) def move_down(self, distance): """ Moves down for a distance. See comments for Tello.move(). :param distance: Distance to move. :return: Response from Tello, 'OK' or 'FALSE'. """ return self.move('down', distance) def move_forward(self, distance): """ Moves forward for a distance. See comments for Tello.move(). :param distance: Distance to move. :return: Response from Tello, 'OK' or 'FALSE'. """ return self.move('forward', distance) def move_left(self, distance): """ Moves left for a distance. See comments for Tello.move(). :param distance: Distance to move. :return: Response from Tello, 'OK' or 'FALSE'. """ return self.move('left', distance) def move_right(self, distance): """ Moves right for a distance. See comments for Tello.move(). :param distance: Distance to move. :return: Response from Tello, 'OK' or 'FALSE'. """ return self.move('right', distance) def move_up(self, distance): """ Moves up for a distance. See comments for Tello.move(). :param distance: Distance to move. :return: Response from Tello, 'OK' or 'FALSE'. """ return self.move('up', distance)
43170fa8f7fc5a3560607c4b21a1cb123096b586
f6c1a4593859ad75000e726414f25fbf02766143
/setup.py
7edb29cfc794fbf5f917801018c219ab2e44a25c
[]
no_license
jbeezley/metadata_extractor
b753ce6f9e55e5bc92f16b5decfbab5b992ac621
1401127bf572119353e3c504278ff7436e077c9e
refs/heads/master
2020-03-20T00:57:52.713434
2018-06-12T13:49:54
2018-06-12T13:49:54
137,062,489
0
0
null
null
null
null
UTF-8
Python
false
false
1,917
py
#!/usr/bin/env python # -*- coding: utf-8 -*- ############################################################################### # Copyright 2013 Kitware Inc. # # Licensed under the Apache License, Version 2.0 ( the "License" ); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################### from setuptools import setup, find_packages # perform the install setup( name='girder-plugin-metadata-extractor', version='0.2.0', description='Enables the extraction of metadata from uploaded files', author='Kitware, Inc.', author_email='[email protected]', url='https://github.com/girder/metadata_extractor', license='Apache 2.0', classifiers=[ 'Development Status :: 4 - Beta', 'Environment :: Web Environment', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', ], package_data={ '': ['web_client/**'] }, packages=find_packages(exclude=['test']), zip_safe=False, install_requires=[ 'girder', 'hachoir-core', 'hachoir-metadata', 'hachoir-parser' ], entry_points={ 'girder.plugin': [ 'metadata_extractor = girder_plugin_metadata_extractor:MetadataExtractorPlugin' ] } )
af7e89df385ab20dc1f91bac730a8ca9b629cf3f
1316cd6763e784811c769c1de577235c921af0de
/Apps/qscan/pyth2p7/scanner.py
fe77520db52aa55bf64dc1ebb7679cf1b63d600f
[]
no_license
VELA-CLARA-software/Software
a6fb6b848584e5893fd6939a447d23134ce636cc
2e2a88ac0b2b03a495c868d2e11e6481e05097c3
refs/heads/master
2023-02-05T07:40:58.260798
2023-01-27T09:39:09
2023-01-27T09:39:09
69,860,536
7
3
null
2021-04-07T14:17:07
2016-10-03T10:20:46
Mathematica
UTF-8
Python
false
false
9,766
py
from PyQt4 import QtGui, QtCore from PyQt4.QtCore import pyqtSignal from PyQt4.QtCore import pyqtSlot import sys,os #import view import numpy as np sys.path.append("\\\\apclara1\\ControlRoomApps\\Controllers\\bin\\stage\\") #sys.path.append("\\\\apclara1\\ControlRoomApps\\Controllers\\bin\\stage\\Python3_x64\\") #sys.path.append("\\\\apclara1.dl.ac.uk\\ControlRoomApps\\Controllers\\bin\\stage\\Python3_x64\\") # #for item in sys.path: # print item #0# import VELA_CLARA_PILaser_Control as pil import time #0# pil_init = pil.init() #pil_init.setVerbose() #0# pil_control = pil_init.physical_PILaser_Controller() #import lasmover as lm import math as ma import numpy as np import time timestr = time.strftime("%Y%m%d-%H%M%S") import VELA_CLARA_LLRF_Control as rf rfinit = rf.init() therf = rfinit.physical_CLARA_LRRG_LLRF_Controller() import VELA_CLARA_BPM_Control as bpm bpminit = bpm.init() bpminit.setVerbose() bpms = bpminit.physical_CLARA_PH1_BPM_Controller() import VELA_CLARA_General_Monitor as mon monini = mon.init() charge = monini.connectPV('CLA-S01-DIA-WCM-01:Q') lasE = monini.connectPV('CLA-LAS-DIA-EM-01:E') vcsump = monini.connectPV('CLA-VCA-DIA-CAM-01:ANA:Intensity_RBV') # NEW section to get llrf stuff. Tried copying from Duncan charge app. therf2 = rfinit.getLLRFController(rf.MACHINE_MODE.PHYSICAL,rf.LLRF_TYPE.CLARA_LRRG) ##therf2.getCavFwdPwr() ##therf2.getCavRevPwr() ##print("hello!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!",therf2.getCavFwdPwr()) #exit() class chargescanner(QtCore.QObject): changedval = pyqtSignal(float, float, float, float) changedlogtxt = pyqtSignal(str) # lo, hi and the min and max values of the area on the VC to scan # values are mm from bottom left of the VC imagecollector # nx,y is number of points to stop and measure charge at in x,y xlo = 3 xhi = 7 ylo = 3 yhi = 7 nx = 3 ny = 3 xrange = np.linspace(xlo,xhi,nx) yrange = np.linspace(ylo,yhi,ny) def setxrange(self,dumxlo,dumxhi,dumnx): self.xrange = np.linspace(dumxlo,dumxhi,dumnx) def setyrange(self,dumylo,dumyhi,dumyx): self.yrange = np.linspace(dumylo,dumyhi,dumny) def doscan(self,xxlo,xxhi,xxn,yylo,yyhi,yyn): self.xrange = np.linspace(xxlo,xxhi,xxn) self.yrange = np.linspace(yylo,yyhi,yyn) print('IN DOSCAN',self.xrange) print('IN DOSCAN',self.yrange) print(therf.getPhiDEG()) print('***********************************************************') print('!!!!!!!!!!!!!!!!!!!!!PLEASE READ!!!!!!!!!!!!!!!!!!!!!!!!!!!') print('***********************************************************\n') print('This is a script to scan the laser over the cathode (via VC)') print('and measure the charge on the WCM \n') print('Please have imagecollector open on the VC and check that the') print('mask feedback is switched on, and that the mask follows the VC laser spot') print('throughout the scan.\n') print('the x locations where charge will be measured are', self.xrange, ' mm') print('the y locations where charge will be measured are', self.yrange, ' mm') print('the total number of scan points is', self.nx*self.ny) print('the wcm reading at each point will be recorded in the file qscan.txt') print('which is created whereever you run this script from') # write results to work folder. timestr = time.strftime("%H%M%S") dir = '\\\\fed.cclrc.ac.uk\\Org\\NLab\\ASTeC\\Projects\\VELA\\Work\\'+time.strftime("%Y\\%m\\%d")+'\\' try: os.makedirs(dir) except OSError: if not os.path.isdir(dir): self.logger.emit('Error creating directory - saving to local directory') dir = '.' filename = dir+'qscan'+str(timestr)+'.txt' f = open(filename,'a') # f = open('qscan'+str(timestr)+'.txt','a') #exit() #0# pil_control.setMaskFeedBackOn_VC() #xrange = [5.5] #yrange = [4.5] # # next section of code to access data from PI Contoller (code c/o Duncan) # # from this we can get individual peices of hardware, let's store them in a dictionary called hardware # hardware = {} # # VC camera image object object # vc_image = "vc_image" # hardware[vc_image] = pil_control.getImageObj() # # to access the vc_image object just call: hardware[vc_image] # # image data / anmalaysis # vc_image_data= "vc_image_data" # hardware[vc_image_data] = pil_control.getVCDataObjConstRef() # # the VC camera # vc_cam= "vc_cam" # hardware[vc_cam] = pil_control.getCameraObj() # # laser mirror object # mirror = "mirror" # # the PI laser object (from here you can get Q, laser energy ...) # pil = "pil" # hardware[pil] = pil_control.getPILObjConstRef() # #number of shots: # num_shots_to_average = 12 # pil_control.setAllRSBufferSize(num_shots_to_average) # # Check the buffer size for the Q # print("getRSBufferSize = ",hardware[pil].max_buffer_count) # # some constants, (probably should save once for each run ) # x_pix_scale_factor = hardware[vc_image].x_pix_scale_factor # y_pix_scale_factor = hardware[vc_image].y_pix_scale_factor # x_pix_to_mm = hardware[vc_image].x_pix_to_mm # y_pix_to_mm = hardware[vc_image].y_pix_to_mm # num_pix_x = hardware[vc_image].num_pix_x # num_pix_y = hardware[vc_image].num_pix_y # # ++ others?? ix = 0 chargebest = 0 for x in self.xrange: if ix % 2 == 0: dumyrange = self.yrange print('going up', dumyrange) else: dumyrange = self.yrange[::-1] print('going up', dumyrange) ix = ix + 1 for y in dumyrange: print(x, y, '\n') #l a = pil_control.setVCPos(x,y) #l # monitor this paramter to know when ity has finished #l set_pos_succes = False #l# exit() #l #l while 1: #l set_pos_state = pil_control.getSetVCPosState() #l print 'success status', set_pos_state #l if set_pos_state == pil.VC_SET_POS_STATE.SUCCESS: #l set_pos_succes = True #l break #l else: #l print set_pos_state #l time.sleep(1) #l print("Set Position Finished",pil_control.getSetVCPosState()) # exit() # mylasmove.setposition(x,y,5,0.1) # raw_input("Press Enter to continue...")0 # # get the qscan quantities at this point (c.o Duncan for the code) # # set next-position # # when at next position # print("At next_positoin, getting some data") # pil_control.clearRunningValues() # # wait for buffer to fill, we will just check against the Q buffer # while hardware[pil].Q_full == False: # suggest for pil_control, we could do with a isRFBufferNOTFull function(!) # print("Waiting for running stat buffer to fill, ", hardware[pil].Q_n) # time.sleep(0.5) # print("Buffer Is Full, ",hardware[pil].Q_n," getting data") # # mean and (standard deviation) sd for Q # Q_mean = hardware[pil].Q_mean # Q_sd = hardware[pil].Q_sd # # mean and sd for energy # energy_mean = hardware[pil].energy_mean # energy_sd = hardware[pil].energy_sd # # laser x position mean and sd # x_pix_mean = hardware[vc_image_data].x_pix_mean # x_pix_sd = hardware[vc_image_data].x_pix_sd # # laser y position mean and sd # y_pix_mean = hardware[vc_image_data].y_pix_mean # y_pix_sd = hardware[vc_image_data].y_pix_sd # # laser x width mean and sd # sig_x_pix_mean = hardware[vc_image_data].sig_x_pix_mean # sig_x_pix_sd = hardware[vc_image_data].sig_x_pix_sd # # y position mean and sd # sig_y_pix_mean = hardware[vc_image_data].sig_y_pix_mean # sig_y_pix_sd = hardware[vc_image_data].sig_y_pix_sd chargenow = 1.1 # chargenow = monini.getValue(charge) lasEnow = 1.1 # lasEnow = monini.getValue(lasE) vcsumpnow = monini.getValue(vcsump) # f.write('str(x)+' '+str(x_pix_mean)+' '+str(x_pix_sd)+' '+str(y)+' '+str(y_pix_mean)+' '+str(y_pix_sd)+' '+str(Q_mean)+' '+str(Q_sd)+' ' '+'str(Q_mean)+' '+str(Q_sd)') # f.write('RF phase '+str(therf.getPhiDEG())+' vcx '+str(x)+' vcy '+str(y)+' charge '+str(chargenow)+' laserE '+str(lasEnow)+' VCintens '+str(vcsumpnow)+'\n') f.flush() self.changedval.emit(x,y,chargenow,lasEnow) iterstring = "hello string signal" print(iterstring) self.changedlogtxt.emit(iterstring) print("charge now", chargenow, " best charge ", chargebest) if chargenow > chargebest: chargebest = chargenow print("got a higher charge") print('finished the scan, the higher charge was', chargebest) f.close()
c56a3f8d77a5d05be57428bbda596c5e31709503
241724e83f5c12ed9d7dd3b825dfe4e2b1b0f777
/examples/boundary_conditions.py
a73111c7860a10c82ddfefc46005d3f0954a7718
[ "MIT" ]
permissive
xuanxu/py-pde
d8be358ab76d4060b14afc74bc7d836591c6188e
de33d938aea8680eff872ae1b64569895662a248
refs/heads/master
2021-03-09T21:37:13.920717
2020-03-10T12:18:03
2020-03-10T12:18:03
246,382,909
0
0
MIT
2020-03-10T18:54:22
2020-03-10T18:54:22
null
UTF-8
Python
false
false
521
py
#!/usr/bin/env python3 from pde import UnitGrid, ScalarField, DiffusionPDE grid = UnitGrid([16, 16], periodic=[False, True]) # generate grid state = ScalarField.random_uniform(grid, 0.2, 0.3) # generate initial condition # set boundary conditions `bc` for all axes bc_x_left = {'type': 'derivative', 'value': 0.1} bc_x_right = {'type': 'value', 'value': 0} bc_x = [bc_x_left, bc_x_right] bc_y = 'periodic' eq = DiffusionPDE(bc=[bc_x, bc_y]) result = eq.solve(state, t_range=10, dt=0.005) result.plot(show=True)
fb833a786a0d20f87937019f8e9caa12a42bd37f
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02859/s282657113.py
e434f658756ad3e7e51c07a4f92cf7ee39d78ef2
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
33
py
N = int(input()) print(int(N**2))