blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
listlengths
1
1
author_id
stringlengths
1
132
fdd57a47de5f55ea470232da56fddf9705ce85ae
d442044fca0cb5c2102845c93194246273b3778b
/event_participant_labels/event_participant.py
fa3118b33c26f27f76ace611464af7b6d91e8720
[]
no_license
vertelab/odoo-event-extra
f9d0ee7ac5140ee2cbcb15fbb7af61d1772aaa2e
63dd0b981b23941bae18d2d968b34a7977bc7699
refs/heads/master
2022-07-09T00:26:50.416313
2020-07-01T15:28:58
2020-07-01T15:28:58
47,540,528
2
3
null
null
null
null
UTF-8
Python
false
false
1,562
py
# -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution, third party addon # Copyright (C) 2004-2016 Vertel AB (<http://vertel.se>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## from openerp import models, fields, api, _ import logging _logger = logging.getLogger(__name__) class event_participant(models.Model): _inherit = 'event.participant' parent_name = fields.Char(related="partner_id.parent_id.name") participant_name = fields.Char(related="partner_id.name") event_name = fields.Char(related="event_id.name") #~ event_type = fields.Char(related="event_id.event_type.name") course_leader = fields.Char(related="event_id.course_leader.name") #~ event_date = fields.Datetime(related="event_id.date_start")
2c2813d3ae5577ac8185b8e3feff5f018541b05e
35b59ea3b2800b170f82ccec229c88e102e1f4bd
/calculator/codes/solution/pythonprogs/calc_mul.py
30e609967c7df02a1c063aeb0c570826c1787858
[]
no_license
gadepall/LA1400
efcc47c708efee9bebe8db415cd80997db64e834
bbdccf26b2f1c6a40325c139e8e406f923eb023f
refs/heads/master
2020-03-24T16:32:50.508068
2018-07-30T05:14:02
2018-07-30T05:14:02
142,827,762
0
0
null
null
null
null
UTF-8
Python
false
false
3,687
py
#-*-coding: utf-8-*- #Don't remove the above line #This program uses a C routine for multiplication #in the calculator. Other arithmetic operations are not included. from Tkinter import * from ctypes import * import math class calc: def getandreplace(self): """replace x with * and ÷ with /""" self.expression = self.e.get() self.newtext=self.expression.replace(self.newdiv,'/') self.newtext=self.newtext.replace('x','*') def equals(self): """when the equal button is pressed""" self.getandreplace() try: for i in self.newtext: if(i=='*'): multi=CDLL('./mul.so') y=self.newtext.split('*') a=c_float(float(y[0])) b=c_float(float(y[1])) mul=multi.mul mul.restype=c_float self.value=mul(a,b) except SyntaxError or NameErrror: self.e.delete(0,END) self.e.insert(0,'Invalid Input!') else: self.e.delete(0,END) self.e.insert(0,self.value) def clearall(self): """when clear button is pressed,clears the text input area""" self.e.delete(0,END) def clear1(self): self.txt=self.e.get()[:-1] self.e.delete(0,END) self.e.insert(0,self.txt) def action(self,argi): """pressed button's value is inserted into the end of the text area""" self.e.insert(END,argi) def __init__(self,master): """Constructor method""" master.title('Calulator') master.geometry() self.e = Entry(master) self.e.grid(row=0,column=0,columnspan=6,pady=3) self.e.focus_set() #Sets focus on the input text area self.div='÷' self.newdiv=self.div.decode('utf-8') #Generating Buttons Button(master,text="=",width=10,command=lambda:self.equals()).grid(row=4, column=4,columnspan=2) Button(master,text='AC',width=3,command=lambda:self.clearall()).grid(row=1, column=4) Button(master,text='C',width=3,command=lambda:self.clear1()).grid(row=1, column=5) Button(master,text="+",width=3,command=lambda:self.action('+')).grid(row=4, column=3) Button(master,text="x",width=3,command=lambda:self.action('x')).grid(row=2, column=3) Button(master,text="-",width=3,command=lambda:self.action('-')).grid(row=3, column=3) Button(master,text="÷",width=3,command=lambda:self.action(self.newdiv)).grid(row=1, column=3) Button(master,text="%",width=3,command=lambda:self.action('%')).grid(row=4, column=2) Button(master,text="7",width=3,command=lambda:self.action('7')).grid(row=1, column=0) Button(master,text="8",width=3,command=lambda:self.action(8)).grid(row=1, column=1) Button(master,text="9",width=3,command=lambda:self.action(9)).grid(row=1, column=2) Button(master,text="4",width=3,command=lambda:self.action(4)).grid(row=2, column=0) Button(master,text="5",width=3,command=lambda:self.action(5)).grid(row=2, column=1) Button(master,text="6",width=3,command=lambda:self.action(6)).grid(row=2, column=2) Button(master,text="1",width=3,command=lambda:self.action(1)).grid(row=3, column=0) Button(master,text="2",width=3,command=lambda:self.action(2)).grid(row=3, column=1) Button(master,text="3",width=3,command=lambda:self.action(3)).grid(row=3, column=2) Button(master,text="0",width=3,command=lambda:self.action(0)).grid(row=4, column=0) Button(master,text=".",width=3,command=lambda:self.action('.')).grid(row=4, column=1) Button(master,text="(",width=3,command=lambda:self.action('(')).grid(row=2, column=4) Button(master,text=")",width=3,command=lambda:self.action(')')).grid(row=2, column=5) Button(master,text="√",width=3,command=lambda:self.squareroot()).grid(row=3, column=4) Button(master,text="x²",width=3,command=lambda:self.square()).grid(row=3, column=5) #Main root = Tk() obj=calc(root) #object instantiated root.mainloop()
484d13dc81d16a486d91bb29c9c89c4680416a38
f8933a29319d9062b3f0070d133b9e533efbbc50
/trilpy/ldpnr.py
75544f25ee6722c4f87c617177f690c39f7b0b18
[]
no_license
zimeon/trilpy
13c999eb164c0a935abfdd4c94a7ab842c53cf67
825bd803ed5e5d7b6c906067a4c406a4db18c9c6
refs/heads/master
2021-01-16T23:24:39.374726
2018-07-24T03:28:09
2018-07-24T03:28:09
95,748,971
1
2
null
2018-02-07T20:39:00
2017-06-29T07:07:14
Python
UTF-8
Python
false
false
771
py
"""An LDPNR - LDP Non-RDF Source.""" from .ldpr import LDPR from .namespace import LDP class LDPNR(LDPR): """LDPNR - A binary object. An LDPR whose state is not represented in RDF. For example, these can be binary or text documents that do not have useful RDF representations. See <https://www.w3.org/TR/ldp/#ldpnr>. """ type_label = 'LDPNR' def __init__(self, uri=None, content=None, content_type=None, describedby=None): """Initialize LDPNR.""" super(LDPNR, self).__init__(uri) self.content = content self.content_type = content_type self.describedby = describedby @property def rdf_types(self): """List of RDF types for this resource.""" return([LDP.NonRDFSource])
b4c12bac0b2b9b434698891190b175383559a6af
7742d4ac18867efa9cb976cea831288f9b4887f9
/tensorflow/contrib/estimator/python/estimator/multi_head_test.py
16177aebd53cbff5c8fd727477ac5d18c9f8bce5
[ "Apache-2.0" ]
permissive
liulimin90/tensorflow
cf83a69088329863e5da81a46f550578287ba8a5
daf17e8c041ad9441da57e15e791bfac7553d727
refs/heads/master
2021-08-07T21:18:04.576892
2017-11-08T22:19:12
2017-11-08T22:19:12
110,049,267
1
0
null
2017-11-09T01:05:43
2017-11-09T01:05:43
null
UTF-8
Python
false
false
16,240
py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for head.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import six from tensorflow.contrib.estimator.python.estimator import head as head_lib from tensorflow.contrib.estimator.python.estimator import multi_head as multi_head_lib from tensorflow.core.framework import summary_pb2 from tensorflow.python.estimator import model_fn from tensorflow.python.estimator.canned import metric_keys from tensorflow.python.estimator.canned import prediction_keys from tensorflow.python.framework import constant_op from tensorflow.python.framework import ops from tensorflow.python.ops import string_ops from tensorflow.python.platform import test from tensorflow.python.saved_model import signature_constants _DEFAULT_SERVING_KEY = signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY def _initialize_variables(test_case, scaffold): scaffold.finalize() test_case.assertIsNone(scaffold.init_feed_dict) test_case.assertIsNone(scaffold.init_fn) scaffold.init_op.run() scaffold.ready_for_local_init_op.eval() scaffold.local_init_op.run() scaffold.ready_op.eval() test_case.assertIsNotNone(scaffold.saver) def _assert_simple_summaries(test_case, expected_summaries, summary_str, tol=1e-6): """Assert summary the specified simple values. Args: test_case: test case. expected_summaries: Dict of expected tags and simple values. summary_str: Serialized `summary_pb2.Summary`. tol: Tolerance for relative and absolute. """ summary = summary_pb2.Summary() summary.ParseFromString(summary_str) test_case.assertAllClose(expected_summaries, { v.tag: v.simple_value for v in summary.value }, rtol=tol, atol=tol) def _assert_no_hooks(test_case, spec): test_case.assertAllEqual([], spec.training_chief_hooks) test_case.assertAllEqual([], spec.training_hooks) def _sigmoid(logits): return 1 / (1 + np.exp(-logits)) class MultiHeadTest(test.TestCase): def setUp(self): ops.reset_default_graph() def test_no_heads(self): with self.assertRaisesRegexp( ValueError, r'Must specify heads\. Given: \[\]'): multi_head_lib.multi_head(heads=[]) def test_head_name_missing(self): head1 = head_lib.multi_label_head(n_classes=2, name='head1') head2 = head_lib.multi_label_head(n_classes=3) with self.assertRaisesRegexp( ValueError, r'All given heads must have name specified\.'): multi_head_lib.multi_head([head1, head2]) def test_head_weights_wrong_size(self): head1 = head_lib.multi_label_head(n_classes=2, name='head1') head2 = head_lib.multi_label_head(n_classes=3, name='head2') with self.assertRaisesRegexp( ValueError, r'heads and head_weights must have the same size\. ' r'Given len\(heads\): 2. Given len\(head_weights\): 1\.'): multi_head_lib.multi_head([head1, head2], head_weights=[1.]) def test_name(self): head1 = head_lib.multi_label_head(n_classes=2, name='head1') head2 = head_lib.multi_label_head(n_classes=3, name='head2') multi_head = multi_head_lib.multi_head([head1, head2]) self.assertEqual('head1_head2', multi_head.name) def test_predict_two_heads(self): head1 = head_lib.multi_label_head(n_classes=2, name='head1') head2 = head_lib.multi_label_head(n_classes=3, name='head2') multi_head = multi_head_lib.multi_head([head1, head2]) logits = { 'head1': np.array([[-1., 1.], [-1.5, 1.]], dtype=np.float32), 'head2': np.array([[2., -2., 2.], [-3., 2., -2.]], dtype=np.float32) } expected_probabilities = { 'head1': _sigmoid(logits['head1']), 'head2': _sigmoid(logits['head2']), } spec = multi_head.create_estimator_spec( features={'x': np.array(((42,),), dtype=np.int32)}, mode=model_fn.ModeKeys.PREDICT, logits=logits) self.assertItemsEqual( (_DEFAULT_SERVING_KEY, 'head1', 'classification/head1', 'predict/head1', 'head2', 'classification/head2', 'predict/head2'), spec.export_outputs.keys()) # Assert predictions and export_outputs. with self.test_session() as sess: _initialize_variables(self, spec.scaffold) self.assertIsNone(spec.scaffold.summary_op) predictions = sess.run(spec.predictions) self.assertAllClose( logits['head1'], predictions[('head1', prediction_keys.PredictionKeys.LOGITS)]) self.assertAllClose( logits['head2'], predictions[('head2', prediction_keys.PredictionKeys.LOGITS)]) self.assertAllClose( expected_probabilities['head1'], predictions[('head1', prediction_keys.PredictionKeys.PROBABILITIES)]) self.assertAllClose( expected_probabilities['head2'], predictions[('head2', prediction_keys.PredictionKeys.PROBABILITIES)]) self.assertAllClose( expected_probabilities['head1'], sess.run(spec.export_outputs[_DEFAULT_SERVING_KEY].scores)) self.assertAllClose( expected_probabilities['head1'], sess.run(spec.export_outputs['head1'].scores)) self.assertAllClose( expected_probabilities['head2'], sess.run(spec.export_outputs['head2'].scores)) def test_eval_two_heads_with_weights(self): head1 = head_lib.multi_label_head(n_classes=2, name='head1') head2 = head_lib.multi_label_head(n_classes=3, name='head2') multi_head = multi_head_lib.multi_head( [head1, head2], head_weights=[1., 2.]) logits = { 'head1': np.array([[-10., 10.], [-15., 10.]], dtype=np.float32), 'head2': np.array([[20., -20., 20.], [-30., 20., -20.]], dtype=np.float32), } labels = { 'head1': np.array([[1, 0], [1, 1]], dtype=np.int64), 'head2': np.array([[0, 1, 0], [1, 1, 0]], dtype=np.int64), } # For large logits, sigmoid cross entropy loss is approximated as: # loss = labels * (logits < 0) * (-logits) + # (1 - labels) * (logits > 0) * logits => # head1: expected_unweighted_loss = [[10., 10.], [15., 0.]] # head2: expected_unweighted_loss = [[20., 20., 20.], [30., 0., 0]] # Average over classes, weighted sum over batch and heads. expected_loss_head1 = 17.5 expected_loss_head2 = 30.0 expected_loss = 1. * expected_loss_head1 + 2. * expected_loss_head2 spec = multi_head.create_estimator_spec( features={'x': np.array(((42,),), dtype=np.int32)}, mode=model_fn.ModeKeys.EVAL, logits=logits, labels=labels) keys = metric_keys.MetricKeys expected_metrics = { # Average loss over examples. keys.LOSS_MEAN + '/head1': expected_loss_head1 / 2, keys.LOSS_MEAN + '/head2': expected_loss_head2 / 2, # auc and auc_pr cannot be reliably calculated for only 4-6 samples, but # this assert tests that the algorithm remains consistent. keys.AUC + '/head1': 0.1667, keys.AUC + '/head2': 0.3333, keys.AUC_PR + '/head1': 0.6667, keys.AUC_PR + '/head2': 0.5000, } # Assert spec contains expected tensors. self.assertIsNotNone(spec.loss) self.assertItemsEqual(expected_metrics.keys(), spec.eval_metric_ops.keys()) self.assertIsNone(spec.train_op) self.assertIsNone(spec.export_outputs) _assert_no_hooks(self, spec) # Assert predictions, loss, and metrics. tol = 1e-3 with self.test_session() as sess: _initialize_variables(self, spec.scaffold) self.assertIsNone(spec.scaffold.summary_op) value_ops = {k: spec.eval_metric_ops[k][0] for k in spec.eval_metric_ops} update_ops = {k: spec.eval_metric_ops[k][1] for k in spec.eval_metric_ops} loss, metrics = sess.run((spec.loss, update_ops)) self.assertAllClose(expected_loss, loss, rtol=tol, atol=tol) # Check results of both update (in `metrics`) and value ops. self.assertAllClose(expected_metrics, metrics, rtol=tol, atol=tol) self.assertAllClose( expected_metrics, {k: value_ops[k].eval() for k in value_ops}, rtol=tol, atol=tol) def test_train_create_loss_one_head(self): head1 = head_lib.multi_label_head(n_classes=2, name='head1') multi_head = multi_head_lib.multi_head([head1]) logits = {'head1': np.array([[-10., 10.], [-15., 10.]], dtype=np.float32)} labels = {'head1': np.array([[1, 0], [1, 1]], dtype=np.int64)} loss = multi_head.create_loss( features={'x': np.array(((42,),), dtype=np.int32)}, mode=model_fn.ModeKeys.TRAIN, logits=logits, labels=labels)[0] tol = 1e-3 with self.test_session(): # Unreduced loss of the head is [[(10 + 10) / 2], (15 + 0) / 2] # (averaged over classes, sum-reduced over examples). self.assertAllClose(17.5, loss.eval(), rtol=tol, atol=tol) def test_train_create_loss_two_heads_with_weights(self): # Use different example weighting for each head weighting. weights1 = np.array([[1.], [2.]], dtype=np.float32) weights2 = np.array([[2.], [3.]]) head1 = head_lib.multi_label_head(n_classes=2, name='head1', weight_column='weights1') head2 = head_lib.multi_label_head(n_classes=3, name='head2', weight_column='weights2') multi_head = multi_head_lib.multi_head( [head1, head2], head_weights=[1., 2.]) logits = { 'head1': np.array([[-10., 10.], [-15., 10.]], dtype=np.float32), 'head2': np.array([[20., -20., 20.], [-30., 20., -20.]], dtype=np.float32), } labels = { 'head1': np.array([[1, 0], [1, 1]], dtype=np.int64), 'head2': np.array([[0, 1, 0], [1, 1, 0]], dtype=np.int64), } weighted_sum_loss, example_weight_sum, _ = multi_head.create_loss( features={ 'x': np.array(((42,),), dtype=np.int32), 'weights1': weights1, 'weights2': weights2 }, mode=model_fn.ModeKeys.TRAIN, logits=logits, labels=labels) tol = 1e-3 with self.test_session(): # loss of the first head is [[(10 + 10) / 2], [(15 + 0) / 2]] # = [10, 7.5] # weighted_sum_loss = 1 * 10 + 2 * 7.5 = 25 # loss of the second head is [[(20 + 20 + 20) / 3], [(30 + 0 + 0) / 3]] # = [20, 10] # weighted_sum_loss = 2 * 20 + 3 * 10 = 70 # head-weighted merge = 1 * 25 + 2 * 70 = 165 self.assertAllClose(165, weighted_sum_loss.eval(), rtol=tol, atol=tol) # example_weight_sum = 1 * (1 + 2) + 2 * (2 + 3) = 13 self.assertAllClose(13., example_weight_sum.eval(), rtol=tol, atol=tol) def test_train_one_head(self): head1 = head_lib.multi_label_head(n_classes=2, name='head1') multi_head = multi_head_lib.multi_head([head1]) logits = {'head1': np.array([[-10., 10.], [-15., 10.]], dtype=np.float32)} labels = {'head1': np.array([[1, 0], [1, 1]], dtype=np.int64)} # For large logits, sigmoid cross entropy loss is approximated as: # loss = labels * (logits < 0) * (-logits) + # (1 - labels) * (logits > 0) * logits => # expected_unweighted_loss = [[10., 10.], [15., 0.]] # Average over classes, sum over weights. expected_loss = 17.5 expected_train_result = 'my_train_op' def _train_op_fn(loss): return string_ops.string_join( [constant_op.constant(expected_train_result), string_ops.as_string(loss, precision=3)]) spec = multi_head.create_estimator_spec( features={'x': np.array(((42,),), dtype=np.int32)}, mode=model_fn.ModeKeys.TRAIN, logits=logits, labels=labels, train_op_fn=_train_op_fn) self.assertIsNotNone(spec.loss) self.assertEqual({}, spec.eval_metric_ops) self.assertIsNotNone(spec.train_op) self.assertIsNone(spec.export_outputs) _assert_no_hooks(self, spec) # Assert predictions, loss, train_op, and summaries. tol = 1e-3 with self.test_session() as sess: _initialize_variables(self, spec.scaffold) self.assertIsNotNone(spec.scaffold.summary_op) loss, train_result, summary_str = sess.run((spec.loss, spec.train_op, spec.scaffold.summary_op)) self.assertAllClose(expected_loss, loss, rtol=tol, atol=tol) self.assertEqual( six.b('{0:s}{1:.3f}'.format(expected_train_result, expected_loss)), train_result) _assert_simple_summaries(self, { metric_keys.MetricKeys.LOSS + '/head1': expected_loss, # Average loss over examples. metric_keys.MetricKeys.LOSS_MEAN + '/head1': expected_loss / 2, }, summary_str, tol) def test_train_two_heads_with_weights(self): head1 = head_lib.multi_label_head(n_classes=2, name='head1') head2 = head_lib.multi_label_head(n_classes=3, name='head2') multi_head = multi_head_lib.multi_head( [head1, head2], head_weights=[1., 2.]) logits = { 'head1': np.array([[-10., 10.], [-15., 10.]], dtype=np.float32), 'head2': np.array([[20., -20., 20.], [-30., 20., -20.]], dtype=np.float32), } labels = { 'head1': np.array([[1, 0], [1, 1]], dtype=np.int64), 'head2': np.array([[0, 1, 0], [1, 1, 0]], dtype=np.int64), } # For large logits, sigmoid cross entropy loss is approximated as: # loss = labels * (logits < 0) * (-logits) + # (1 - labels) * (logits > 0) * logits => # head1: expected_unweighted_loss = [[10., 10.], [15., 0.]] # head2: expected_unweighted_loss = [[20., 20., 20.], [30., 0., 0]] # Average over classes, weighted sum over batch and heads. expected_loss_head1 = 17.5 expected_loss_head2 = 30.0 expected_loss = 1. * expected_loss_head1 + 2. * expected_loss_head2 expected_train_result = 'my_train_op' def _train_op_fn(loss): return string_ops.string_join( [constant_op.constant(expected_train_result), string_ops.as_string(loss, precision=3)]) spec = multi_head.create_estimator_spec( features={'x': np.array(((42,),), dtype=np.int32)}, mode=model_fn.ModeKeys.TRAIN, logits=logits, labels=labels, train_op_fn=_train_op_fn) self.assertIsNotNone(spec.loss) self.assertEqual({}, spec.eval_metric_ops) self.assertIsNotNone(spec.train_op) self.assertIsNone(spec.export_outputs) _assert_no_hooks(self, spec) # Assert predictions, loss, train_op, and summaries. tol = 1e-3 with self.test_session() as sess: _initialize_variables(self, spec.scaffold) self.assertIsNotNone(spec.scaffold.summary_op) loss, train_result, summary_str = sess.run((spec.loss, spec.train_op, spec.scaffold.summary_op)) self.assertAllClose(expected_loss, loss, rtol=tol, atol=tol) self.assertEqual( six.b('{0:s}{1:.3f}'.format(expected_train_result, expected_loss)), train_result) _assert_simple_summaries(self, { metric_keys.MetricKeys.LOSS + '/head1': expected_loss_head1, metric_keys.MetricKeys.LOSS + '/head2': expected_loss_head2, # Average loss over examples. metric_keys.MetricKeys.LOSS_MEAN + '/head1': expected_loss_head1 / 2, metric_keys.MetricKeys.LOSS_MEAN + '/head2': expected_loss_head2 / 2, }, summary_str, tol) if __name__ == '__main__': test.main()
8968aa043a78587dbecbfc6589d1382d05f98626
814992618962991b1b6dd6f1cdf2853687cbfcd0
/quantarhei/qm/propagators/svpropagator.py
e235da8d523f349c30ad53ed9290882148e6a24d
[ "MIT" ]
permissive
MichalPt/quantarhei
a5db7916405236dc78778e4ef378141a19a28ff2
536d4f39bb7f7d6893664520351d93eac2bc90f1
refs/heads/master
2022-12-15T09:36:53.108896
2022-07-28T09:44:12
2022-07-28T09:44:12
226,359,238
1
0
MIT
2019-12-06T15:37:24
2019-12-06T15:37:23
null
UTF-8
Python
false
false
2,624
py
# -*- coding: utf-8 -*- """ StateVector propagator """ import numpy from .statevectorevolution import StateVectorEvolution from ..hilbertspace.evolutionoperator import EvolutionOperator from ... import REAL class StateVectorPropagator: def __init__(self, timeaxis, ham): self.timeaxis = timeaxis self.ham = ham self.Odt = self.timeaxis.data[1]-self.timeaxis.data[0] self.dt = self.Odt self.Nref = 1 self.Nt = self.timeaxis.length N = self.ham.data.shape[0] self.N = N self.data = numpy.zeros((self.Nt,N),dtype=numpy.complex64) def setDtRefinement(self, Nref): """ The TimeAxis object specifies at what times the propagation should be stored. We can tell the propagator to use finer time step for the calculation by setting the refinement. The refinement is an integer by which the TimeAxis time step should be devided to get the finer time step. In the code below, we have dt = 10 in the TimeAxis, but we want to calculate with dt = 1 >>> HH = numpy.array([[0.0, 0.0],[0.0,1.0]]) >>> times = numpy.linspace(0,1000,10) >>> pr = StateVectorPropagator(HH,times) >>> pr.setDtRefinement(10) """ self.Nref = Nref self.dt = self.Odt/self.Nref def propagate(self, psii): return self._propagate_short_exp(psii,L=4) def get_evolution_operator(self): eop = 0.0 return EvolutionOperator(self.timeaxis, data=eop) def _propagate_short_exp(self, psii, L=4): """ Short exp integration """ pr = StateVectorEvolution(self.timeaxis, psii) psi1 = psii.data psi2 = psii.data # # RWA is applied here # if self.ham.has_rwa: HH = self.ham.get_RWA_data() else: HH = self.ham.data indx = 1 for ii in range(1,self.Nt): for jj in range(0,self.Nref): for ll in range(1,L+1): pref = (self.dt/ll) psi1 = -1j*pref*numpy.dot(HH,psi1) psi2 = psi2 + psi1 psi1 = psi2 pr.data[indx,:] = psi2 indx += 1 if self.ham.has_rwa: pr.is_in_rwa = True return pr
f7c48c6551b9cc700832df0bd94985a171d283a6
8c643886e810f09a2c596066911300ceec64605b
/exercises/chapter03/data/simple2_solution.py
ad2ae388f43b368e5a606e792400b47e8732cef7
[ "MIT" ]
permissive
matt-gardner/test-allennlp-course
fea62c18c983e5a76927a2e8b97ba30081f6838a
15b18144c30cfcdbe9acf5ad9bb30e24f6522d11
refs/heads/master
2023-01-28T05:10:03.787036
2019-06-13T20:16:12
2019-06-13T20:16:12
191,823,476
6
1
MIT
2023-01-11T20:28:39
2019-06-13T19:44:21
CSS
UTF-8
Python
false
false
1,214
py
from allennlp.data.fields import TextField from allennlp.data.token_indexers import SingleIdTokenIndexer, TokenCharactersIndexer from allennlp.data.tokenizers import WordTokenizer, CharacterTokenizer from allennlp.data import Vocabulary # Splits text into characters (instead of words or wordpieces). tokenizer = CharacterTokenizer() # Represents each token (which is a _character_) with a single id from a vocabulary. token_indexer = SingleIdTokenIndexer(namespace='character_vocab') vocab = Vocabulary() vocab.add_tokens_to_namespace(['T', 'h', 'i', 's', ' ', 'o', 'm', 'e', 't', 'x', '.'], namespace='character_vocab') text = "This is some text." tokens = tokenizer.tokenize(text) print(tokens) text_field = TextField(tokens, {'token_characters': token_indexer}) # In order to convert the token strings into integer ids, we need to tell the # TextField what Vocabulary to use. text_field.index(vocab) # We typically batch things together when making tensors, which requires some # padding computation. Don't worry too much about the padding for now. padding_lengths = text_field.get_padding_lengths() tensor_dict = text_field.as_tensor(padding_lengths) print(tensor_dict)
4e618625235505db5cacd9c840d94bebff946ac7
75d8667735782cd1d0eb4877e52c89da5cd92dde
/nova/scheduler/driver.py
da8568c970018cf13ea07a0bcacab608bf2c9ac6
[ "Apache-2.0" ]
permissive
bopopescu/nova-token
ffecfd3ec561936b7d9d7e691bc57383cde05436
ec98f69dea7b3e2b9013b27fd55a2c1a1ac6bfb2
refs/heads/master
2022-11-22T09:53:31.073483
2016-05-14T02:47:01
2016-05-15T22:02:55
282,105,621
0
0
Apache-2.0
2020-07-24T02:42:19
2020-07-24T02:42:18
null
UTF-8
Python
false
false
4,264
py
begin_unit comment|'# Copyright (c) 2010 OpenStack Foundation' nl|'\n' comment|'# Copyright 2010 United States Government as represented by the' nl|'\n' comment|'# Administrator of the National Aeronautics and Space Administration.' nl|'\n' comment|'# All Rights Reserved.' nl|'\n' comment|'#' nl|'\n' comment|'# Licensed under the Apache License, Version 2.0 (the "License"); you may' nl|'\n' comment|'# not use this file except in compliance with the License. You may obtain' nl|'\n' comment|'# a copy of the License at' nl|'\n' comment|'#' nl|'\n' comment|'# http://www.apache.org/licenses/LICENSE-2.0' nl|'\n' comment|'#' nl|'\n' comment|'# Unless required by applicable law or agreed to in writing, software' nl|'\n' comment|'# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT' nl|'\n' comment|'# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the' nl|'\n' comment|'# License for the specific language governing permissions and limitations' nl|'\n' comment|'# under the License.' nl|'\n' nl|'\n' string|'"""\nScheduler base class that all Schedulers should inherit from\n"""' newline|'\n' nl|'\n' name|'import' name|'abc' newline|'\n' nl|'\n' name|'from' name|'oslo_log' name|'import' name|'log' name|'as' name|'logging' newline|'\n' name|'import' name|'six' newline|'\n' name|'from' name|'stevedore' name|'import' name|'driver' newline|'\n' nl|'\n' name|'import' name|'nova' op|'.' name|'conf' newline|'\n' name|'from' name|'nova' name|'import' name|'objects' newline|'\n' name|'from' name|'nova' name|'import' name|'servicegroup' newline|'\n' nl|'\n' DECL|variable|CONF name|'CONF' op|'=' name|'nova' op|'.' name|'conf' op|'.' name|'CONF' newline|'\n' nl|'\n' DECL|variable|LOG name|'LOG' op|'=' name|'logging' op|'.' name|'getLogger' op|'(' name|'__name__' op|')' newline|'\n' nl|'\n' nl|'\n' op|'@' name|'six' op|'.' name|'add_metaclass' op|'(' name|'abc' op|'.' name|'ABCMeta' op|')' newline|'\n' DECL|class|Scheduler name|'class' name|'Scheduler' op|'(' name|'object' op|')' op|':' newline|'\n' indent|' ' string|'"""The base class that all Scheduler classes should inherit from."""' newline|'\n' nl|'\n' DECL|member|__init__ name|'def' name|'__init__' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'self' op|'.' name|'host_manager' op|'=' name|'driver' op|'.' name|'DriverManager' op|'(' nl|'\n' string|'"nova.scheduler.host_manager"' op|',' nl|'\n' name|'CONF' op|'.' name|'scheduler_host_manager' op|',' nl|'\n' name|'invoke_on_load' op|'=' name|'True' op|')' op|'.' name|'driver' newline|'\n' name|'self' op|'.' name|'servicegroup_api' op|'=' name|'servicegroup' op|'.' name|'API' op|'(' op|')' newline|'\n' nl|'\n' DECL|member|run_periodic_tasks dedent|'' name|'def' name|'run_periodic_tasks' op|'(' name|'self' op|',' name|'context' op|')' op|':' newline|'\n' indent|' ' string|'"""Manager calls this so drivers can perform periodic tasks."""' newline|'\n' name|'pass' newline|'\n' nl|'\n' DECL|member|hosts_up dedent|'' name|'def' name|'hosts_up' op|'(' name|'self' op|',' name|'context' op|',' name|'topic' op|')' op|':' newline|'\n' indent|' ' string|'"""Return the list of hosts that have a running service for topic."""' newline|'\n' nl|'\n' name|'services' op|'=' name|'objects' op|'.' name|'ServiceList' op|'.' name|'get_by_topic' op|'(' name|'context' op|',' name|'topic' op|')' newline|'\n' name|'return' op|'[' name|'service' op|'.' name|'host' nl|'\n' name|'for' name|'service' name|'in' name|'services' nl|'\n' name|'if' name|'self' op|'.' name|'servicegroup_api' op|'.' name|'service_is_up' op|'(' name|'service' op|')' op|']' newline|'\n' nl|'\n' dedent|'' op|'@' name|'abc' op|'.' name|'abstractmethod' newline|'\n' DECL|member|select_destinations name|'def' name|'select_destinations' op|'(' name|'self' op|',' name|'context' op|',' name|'spec_obj' op|')' op|':' newline|'\n' indent|' ' string|'"""Must override select_destinations method.\n\n :return: A list of dicts with \'host\', \'nodename\' and \'limits\' as keys\n that satisfies the request_spec and filter_properties.\n """' newline|'\n' name|'return' op|'[' op|']' newline|'\n' dedent|'' dedent|'' endmarker|'' end_unit
3746bcad6abb98b4692490cc69798029096ca777
2ff7e53d5e512cd762217ca54317982e07a2bb0c
/eve/client/script/ui/shared/neocom/attributes.py
8ba6cb12ed61f8ac0ac1c5e816617ba2ad9a4bc9
[]
no_license
nanxijw/Clara-Pretty-One-Dick
66d3d69426642b79e8fd4cc8e0bec23adeeca6d6
50de3488a2140343c364efc2615cf6e67f152be0
refs/heads/master
2021-01-19T09:25:07.555284
2015-02-17T21:49:33
2015-02-17T21:49:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
22,035
py
#Embedded file name: eve/client/script/ui/shared/neocom\attributes.py """ This file contains the UI needed to view and respec your attributes independently from the character sheet """ import blue import uiprimitives import uicontrols import util import form from carbonui.primitives.container import Container from carbonui.primitives.layoutGrid import LayoutGrid from carbonui.primitives.line import Line from eve.client.script.ui.control.buttons import Button from eve.client.script.ui.control.eveLabel import EveLabelMedium import uthread import uicls import carbonui.const as uiconst import localization class AttributeRespecWindow(uicontrols.Window): __guid__ = 'form.attributeRespecWindow' __notifyevents__ = ['OnSessionChanged'] default_windowID = 'attributerespecification' default_iconNum = 'res:/ui/Texture/WindowIcons/attributes.png' def ApplyAttributes(self, attributes): uicontrols.Window.ApplyAttributes(self, attributes) self.readOnly = attributes.readOnly self.MakeUnResizeable() self.SetCaption(localization.GetByLabel('UI/CharacterSheet/CharacterSheetWindow/NavScroll/Attributes')) self.SetWndIcon(self.iconNum) self.godma = sm.StartService('godma') self.skillHandler = self.godma.GetSkillHandler() uicontrols.WndCaptionLabel(text=localization.GetByLabel('UI/CharacterSheet/CharacterSheetWindow/Attributes/NeuralRemapping'), subcaption=localization.GetByLabel('UI/CharacterSheet/CharacterSheetWindow/Attributes/NeuralRemappingTagline'), parent=self.sr.topParent, align=uiconst.RELATIVE) self.attributes = [const.attributePerception, const.attributeMemory, const.attributeWillpower, const.attributeIntelligence, const.attributeCharisma] self.implantTypes = [19540, 19551, 19553, 19554, 19555] self.attributeIcons = ['ui_22_32_5', 'ui_22_32_4', 'ui_22_32_2', 'ui_22_32_3', 'ui_22_32_1'] self.attributeLabels = [localization.GetByLabel('UI/CharacterSheet/CharacterSheetWindow/Attributes/AttributePerception'), localization.GetByLabel('UI/CharacterSheet/CharacterSheetWindow/Attributes/AttributeMemory'), localization.GetByLabel('UI/CharacterSheet/CharacterSheetWindow/Attributes/AttributeWillpower'), localization.GetByLabel('UI/CharacterSheet/CharacterSheetWindow/Attributes/AttributeIntelligence'), localization.GetByLabel('UI/CharacterSheet/CharacterSheetWindow/Attributes/AttributeCharisma')] self.currentAttributes = {} self.implantModifier = {} self.unspentPts = 0 self.ConstructLayout() self.Load() def OnSessionChanged(self, isRemote, session, change): self.skillHandler = self.godma.GetSkillHandler() def Load(self, *args): """ Performs the initialization of the window's data by loading the current session's character's base attributes, clamping them to conform to basic business rules (for the player's convenience), and setting up the UI's initial display data. """ if not eve.session.charid or self.destroyed: return dogmaLM = self.godma.GetDogmaLM() attrDict = dogmaLM.GetCharacterBaseAttributes() unspentPts = const.respecTotalRespecPoints for x in xrange(0, 5): attr = self.attributes[x] if attr in attrDict: attrValue = attrDict[attr] if attrValue > const.respecMaximumAttributeValue: attrValue = const.respecMaximumAttributeValue if attrValue < const.respecMinimumAttributeValue: attrValue = const.respecMinimumAttributeValue self.currentAttributes[attr] = attrValue self.respecBar[x].SetValue(attrValue - const.respecMinimumAttributeValue) unspentPts -= attrValue modifiers = self.skillHandler.GetCharacterAttributeModifiers(attr) implantBonus = 0 for itemID, typeID, operation, value in modifiers: categoryID = cfg.invtypes.Get(typeID).categoryID if categoryID == const.categoryImplant: implantBonus += value totalAttributesText = localization.formatters.FormatNumeric(int(self.currentAttributes[attr]) + implantBonus, decimalPlaces=0) self.totalLabels[x].text = totalAttributesText self.implantModifier[x] = implantBonus label, icon = self.implantLabels[x] if implantBonus == 0: icon.SetAlpha(0.5) label.text = localization.GetByLabel('UI/CharacterSheet/CharacterSheetWindow/Attributes/ImplantBonusZero') label.SetAlpha(0.5) else: label.text = localization.GetByLabel('UI/CharacterSheet/CharacterSheetWindow/Attributes/ImplantBonus', implantBonus=int(implantBonus)) if not self.readOnly: self.unspentPts = unspentPts self.sr.unassignedBar.SetValue(unspentPts) unspentPtsText = localization.formatters.FormatNumeric(self.unspentPts, decimalPlaces=0) self.availableLabel.text = unspentPtsText if self.unspentPts <= 0: self.sr.saveWarningText.state = uiconst.UI_HIDDEN else: self.sr.saveWarningText.state = uiconst.UI_DISABLED def ConstructLayout(self): """ This method lays out the elements that comprise the respecification window, assigning them initial display values that make sense in the case that Load() later fails. Performs no data initialization. """ self.implantLabels = [] self.respecBar = [] self.totalLabels = [] iconsize = 32 buttonSize = 24 boxWidth = 6 boxHeight = 12 boxMargin = 1 boxSpacing = 1 numBoxes = const.respecMaximumAttributeValue - const.respecMinimumAttributeValue barWidth = numBoxes * boxSpacing + 2 * boxMargin + numBoxes * boxWidth - 1 barHeight = boxHeight + 2 * boxMargin backgroundColor = (0.0, 0.0, 0.0, 0.0) colorDict = {uicls.ClickableBoxBar.COLOR_UNSELECTED: (0.2, 0.2, 0.2, 1.0), uicls.ClickableBoxBar.COLOR_SELECTED: (0.2, 0.8, 0.2, 1.0)} headerText = EveLabelMedium(parent=self.sr.main, text=localization.GetByLabel('UI/CharacterSheet/CharacterSheetWindow/Attributes/CharacterRespecMessage'), state=uiconst.UI_NORMAL, align=uiconst.TOTOP, padding=8) self.headerText = headerText if self.readOnly: columns = 7 else: columns = 9 mainGrid = LayoutGrid(parent=self.sr.main, columns=columns, cellPadding=4, left=6, top=6, OnGridSizeChanged=self.OnMainGridSizeChanged) self.mainGrid = mainGrid for labelPath, colSpan in (('UI/CharacterSheet/CharacterSheetWindow/NavScroll/Attributes', 2), ('UI/CharacterSheet/CharacterSheetWindow/Attributes/BaseStatPoints', 1), ('UI/CharacterSheet/CharacterSheetWindow/Attributes/CharacterImplants', 2), ('UI/CharacterSheet/CharacterSheetWindow/Attributes/RemappableStat', 1 if self.readOnly else 3), ('UI/CharacterSheet/CharacterSheetWindow/Attributes/StatTotal', 1)): label = EveLabelMedium(text=localization.GetByLabel(labelPath), align=uiconst.CENTER) mainGrid.AddCell(cellObject=label, colSpan=colSpan, cellPadding=(10, 2, 10, 2)) line = Line(align=uiconst.TOTOP) mainGrid.AddCell(cellObject=line, colSpan=mainGrid.columns) for x in xrange(5): uicontrols.Icon(parent=mainGrid, width=iconsize, height=iconsize, size=iconsize, icon=self.attributeIcons[x], align=uiconst.TOPLEFT) EveLabelMedium(text=self.attributeLabels[x], parent=mainGrid, state=uiconst.UI_DISABLED, align=uiconst.CENTERLEFT) minText = localization.formatters.FormatNumeric(const.respecMinimumAttributeValue, decimalPlaces=0) EveLabelMedium(text=minText, parent=mainGrid, state=uiconst.UI_DISABLED, align=uiconst.CENTER, bold=True) icon = uicontrols.Icon(parent=mainGrid, width=32, height=32, size=32, icon=util.IconFile(cfg.invtypes.Get(self.implantTypes[x]).iconID), align=uiconst.TOPLEFT, ignoreSize=True) implantLabel = EveLabelMedium(text='0', parent=mainGrid, align=uiconst.CENTERLEFT) self.implantLabels.append((implantLabel, icon)) if not self.readOnly: minusText = localization.GetByLabel('UI/Common/Buttons/Minus') Button(parent=mainGrid, label=minusText, fixedwidth=buttonSize, func=self.DecreaseAttribute, args=(x,), align=uiconst.CENTERRIGHT) bar = Container(parent=mainGrid, align=uiconst.CENTER, width=barWidth, height=barHeight, state=uiconst.UI_PICKCHILDREN) bar = uicls.ClickableBoxBar(parent=bar, numBoxes=numBoxes, boxWidth=boxWidth, boxHeight=boxHeight, boxMargin=boxMargin, boxSpacing=boxSpacing, backgroundColor=backgroundColor, colorDict=colorDict) bar.OnValueChanged = self.OnMemberBoxClick bar.OnAttemptBoxClicked = self.ValidateBoxClick self.respecBar.append(bar) if not self.readOnly: plusText = localization.GetByLabel('UI/Common/Buttons/Plus') Button(parent=mainGrid, label=plusText, fixedwidth=buttonSize, func=self.IncreaseAttribute, args=(x,), align=uiconst.CENTERLEFT) totalLabel = EveLabelMedium(text='0', parent=mainGrid, left=8, align=uiconst.CENTERRIGHT, bold=True) self.totalLabels.append(totalLabel) if not self.readOnly: line = Line(align=uiconst.TOTOP) mainGrid.AddCell(cellObject=line, colSpan=mainGrid.columns) textObj = EveLabelMedium(text=localization.GetByLabel('UI/CharacterSheet/CharacterSheetWindow/Attributes/UnassignedAttributePoints')) mainGrid.AddCell(cellObject=textObj, colSpan=6) numBoxes = const.respecTotalRespecPoints - const.respecMinimumAttributeValue * 5 barWidth = numBoxes * boxSpacing + 2 * boxMargin + numBoxes * boxWidth - 1 unassignedBarParent = Container(align=uiconst.TOPLEFT, width=barWidth, height=barHeight, state=uiconst.UI_PICKCHILDREN) mainGrid.AddCell(cellObject=unassignedBarParent, colSpan=2) self.sr.unassignedBar = uicls.ClickableBoxBar(parent=unassignedBarParent, numBoxes=numBoxes, boxWidth=boxWidth, boxHeight=boxHeight, boxMargin=boxMargin, boxSpacing=boxSpacing, backgroundColor=backgroundColor, colorDict=colorDict, readonly=True, hintFormat='UI/CharacterSheet/CharacterSheetWindow/Attributes/UnassignedPointsHint') self.availableLabel = EveLabelMedium(parent=mainGrid, align=uiconst.CENTERRIGHT, left=8) mainGrid.FillRow() self.sr.saveWarningText = EveLabelMedium(text=localization.GetByLabel('UI/CharacterSheet/CharacterSheetWindow/Attributes/CannotSaveUnassignedPoints'), color=(1.0, 0.0, 0.0, 0.9)) mainGrid.AddCell(cellObject=self.sr.saveWarningText, colSpan=mainGrid.columns) if not self.readOnly: uicontrols.ButtonGroup(btns=[[localization.GetByLabel('UI/CharacterSheet/CharacterSheetWindow/Attributes/SaveStatChanges'), self.SaveChanges, (), None], [localization.GetByLabel('UI/Common/Buttons/Cancel'), self.CloseByUser, (), None]], parent=self.sr.main, idx=0) def OnMainGridSizeChanged(self, width, height, *args, **kwds): self.mainGrid.top = self.headerText.height + self.headerText.padTop + self.headerText.padBottom self.SetMinSize([width + 12, self.mainGrid.top + height + 110], refresh=1) def SaveChanges(self, *args): """ This method is called when the user clicks the "Save Changes" button in the UI. It performs basic sanity checks (primarily on the ranges of the user's desired attribute values) and then forwards the request to the server. It also forces the UI to no-op if the user didn't change anything, so the user doesn't waste a respec by doing nothing. """ totalAttrs = 0 newAttributes = {} for x in xrange(0, 5): newAttributes[self.attributes[x]] = const.respecMinimumAttributeValue + self.respecBar[x].GetValue() for attrValue in newAttributes.itervalues(): if attrValue < const.respecMinimumAttributeValue: raise UserError('RespecAttributesTooLow') elif attrValue > const.respecMaximumAttributeValue: raise UserError('RespecAttributesTooHigh') totalAttrs += attrValue if totalAttrs != const.respecTotalRespecPoints or self.sr.unassignedBar.GetValue() > 0: self.sr.saveWarningText.state = uiconst.UI_DISABLED raise UserError('RespecAttributesMisallocated') allSame = True for attr in self.attributes: if int(self.currentAttributes[attr]) != int(newAttributes[attr]): allSame = False break if not allSame: respecInfo = sm.GetService('skills').GetRespecInfo() freeRespecs = respecInfo['freeRespecs'] if respecInfo['nextTimedRespec'] is None or respecInfo['nextTimedRespec'] <= blue.os.GetWallclockTime(): if eve.Message('ConfirmRespec2', {'months': int(const.respecTimeInterval / const.MONTH30)}, uiconst.YESNO) != uiconst.ID_YES: return elif freeRespecs > 0: if eve.Message('ConfirmRespecFree', {'freerespecs': int(respecInfo['freeRespecs']) - 1}, uiconst.YESNO) != uiconst.ID_YES: return else: raise UserError('RespecTooSoon', {'nextTime': respecInfo['nextTimedRespec']}) self.skillHandler.RespecCharacter(newAttributes[const.attributeCharisma], newAttributes[const.attributeIntelligence], newAttributes[const.attributeMemory], newAttributes[const.attributePerception], newAttributes[const.attributeWillpower]) self.CloseByUser() def IncreaseAttribute(self, attribute, *args): """ This method is called when the user clicks on one of the "+" buttons to increase an attribute. It ensures that the user has a point to spend and won't exceed the maximum permissible value, then modifies the remaining points and updates the UI. The ID of the attribute to increase is passed in as an argument. """ if self.respecBar[attribute].GetValue() >= const.respecMaximumAttributeValue - const.respecMinimumAttributeValue: return if self.unspentPts <= 0: raise UserError('RespecCannotIncrementNotEnoughPoints') if not self.respecBar[attribute].Increment(): raise UserError('RespecAttributesTooHigh') def DecreaseAttribute(self, attribute, *args): """ This method is called when the user clicks on one of the "-" buttons to decrease an attribute. It ensures that the user has a point to spend and won't fall below the minimum permissible value, then modifies the remaining points and updates the UI. The ID of the attribute to decrease is passed in as an argument. """ if self.respecBar[attribute].GetValue() <= 0: return if not self.respecBar[attribute].Decrement(): raise UserError('RespecAttributesTooLow') def ValidateBoxClick(self, oldValue, newValue): """ This is an override of a method used in the clickableboxbar. A CBB calls this method before attempting to change a value, allowing us to perform business logic related to changing the value of the bar. Here, we use it for validation. """ if self.readOnly: return False if oldValue >= newValue: return True if self.unspentPts < newValue - oldValue: return False return True def OnMemberBoxClick(self, oldValue, newValue): """ This is an override of a method on a clickableboxbar. It is called whenever the value of a clickableboxbar changes. """ if oldValue is None or oldValue == newValue: return if self.readOnly: return self.unspentPts -= newValue - oldValue self.sr.unassignedBar.SetValue(self.unspentPts) unspentPtsText = localization.formatters.FormatNumeric(self.unspentPts, decimalPlaces=0) self.availableLabel.text = unspentPtsText for x in xrange(0, 5): totalPts = const.respecMinimumAttributeValue + self.respecBar[x].GetValue() + self.implantModifier[x] totalPtsText = localization.formatters.FormatNumeric(int(totalPts), decimalPlaces=0) self.totalLabels[x].text = totalPtsText if self.unspentPts <= 0: self.sr.saveWarningText.state = uiconst.UI_HIDDEN class AttributeRespecEntry(uicontrols.SE_BaseClassCore): __guid__ = 'listentry.AttributeRespec' default_showHilite = False ENTRYHEIGHT = 44 def Startup(self, *args): """ This method lays out the elements used to display a character's next respec time. """ self.OnSelectCallback = None self.sr.label = uicontrols.EveLabelSmall(text=localization.GetByLabel('UI/Neocom/NextDNAModification'), parent=self, left=8, top=4, maxLines=1) self.sr.respecTime = uicontrols.EveLabelMedium(text='', parent=self, left=8, top=18, maxLines=1) self.sr.numberOfRemaps = uicontrols.EveLabelMedium(text='', parent=self, left=8, top=38, maxLines=1, state=uiconst.UI_HIDDEN) self.sr.respecButton = uicontrols.Button(parent=self, label=localization.GetByLabel('UI/CharacterSheet/CharacterSheetWindow/Attributes/RemapStatsNow'), align=uiconst.TOPRIGHT, pos=(2, 16, 0, 0), func=self.OpenRespecWindow, args=(False,)) self.hint = localization.GetByLabel('UI/CharacterSheet/CharacterSheetWindow/Attributes/CharacterSheetHint') def Load(self, node): """ This method loads in the data needed to display a character's next respec time and sets the UI's display data as a result of checking the loaded data. It also launches the UI refresh thread in the case that the character cannot respec yet. Node must contain: nextTimedRespec - A bluetime indicating when the next respec is available. freeRespecs - An integer indicating how many free/bonus respecs the character has. """ self.sr.node = node freeRespecs = node.Get('freeRespecs', 0) nextRespecTime = node.Get('nextTimedRespec', None) canRemap = False if nextRespecTime is None or nextRespecTime <= blue.os.GetWallclockTime(): self.sr.respecTime.text = localization.GetByLabel('UI/Generic/Now') canRemap = True else: self.sr.respecTime.text = util.FmtDate(node.nextTimedRespec) self.refreshThread = uthread.new(self.RefreshThread) if freeRespecs > 0: canRemap = True lbl = localization.GetByLabel('UI/CharacterSheet/CharacterSheetWindow/Attributes/BonusRemapsAvailable', remapsAvailable=freeRespecs) self.sr.numberOfRemaps.text = lbl if nextRespecTime is not None and nextRespecTime > blue.os.GetWallclockTime(): self.hint = localization.GetByLabel('UI/CharacterSheet/CharacterSheetWindow/Attributes/CharacterSheetHintFree') else: self.hint = localization.GetByLabel('UI/CharacterSheet/CharacterSheetWindow/Attributes/CharacterSheetHintFreeTimed') self.sr.numberOfRemaps.state = uiconst.UI_DISABLED if not canRemap: self.sr.respecButton.SetLabel(localization.GetByLabel('UI/CharacterSheet/CharacterSheetWindow/Attributes/AttributesOverview')) self.sr.respecButton.args = (True,) def OpenRespecWindow(self, readOnly, *args): """ This method is called when a user clicks the "Respec Now" (currently "Modify DNA") button. It maximizes/foregrounds the attribute respec window if it's already open; otherwise, it creates and displays the window. """ wnd = form.attributeRespecWindow.GetIfOpen() if wnd is not None and not wnd.destroyed: wnd.Maximize() else: form.attributeRespecWindow.Open(readOnly=readOnly) def RefreshThread(self): """ This thread is launched when the UI opens and the character cannot yet respec. It loops, sleeping for a second before checking if the respec time has passed. If it has passed, it displays the Respec button, updates the UI text to "now" and halts. If the respec time is still in the future, it continues sleeping. """ if not self or self.destroyed: return sleepMsec = max(self.sr.node.nextTimedRespec - blue.os.GetWallclockTime(), 0) / 10000L sleepMsec = min(sleepMsec, 60000) while sleepMsec > 0: blue.pyos.synchro.SleepWallclock(sleepMsec) if not self or self.destroyed: return sleepMsec = max(self.sr.node.nextTimedRespec - blue.os.GetWallclockTime(), 0) / 10000L sleepMsec = min(sleepMsec, 60000) if not self or self.destroyed: return self.sr.respecButton.state = uiconst.UI_NORMAL self.sr.respecTime.text = localization.GetByLabel('UI/Generic/Now')
3aa77a9c0f183d217f06a630f4191d7fb841a73d
ca3ff0bc4f7e9e8fcf677afa3a1a18dd2129a5d4
/daily_problems/problem_0_to_100/problem_86.py
42defc172f8b8a0ea3af081435c7fda161acd383
[ "MIT" ]
permissive
rrwt/daily-coding-challenge
d9b23a82a1a3c4824b8f1aeacf6584afc5189ce7
4dcd59eaff021be0b9b1aba1dda73248c81454b7
refs/heads/master
2022-05-29T04:32:44.406196
2022-05-25T01:12:01
2022-05-25T01:12:01
181,972,357
1
0
MIT
2021-04-20T19:58:43
2019-04-17T21:41:25
Python
UTF-8
Python
false
false
1,125
py
""" Given a string of parentheses, write a function to compute the minimum number of parentheses to be removed to make the string valid (i.e. each open parenthesis is eventually closed). For example, given the string "()())()", you should return 1. Given the string ")(", you should return 2, since we must remove all of them. """ def count_remove_parenthesis(text: str) -> int: count_removal = 0 stack = [] for char in text: if char == "(": stack.append(char) elif char == ")": if not stack or stack[-1] == ")": count_removal += 1 else: stack.pop() else: raise AssertionError(f"{char} is unacceptable as a parenthesis") return count_removal + len(stack) if __name__ == "__main__": assert count_remove_parenthesis("()())()") == 1 assert count_remove_parenthesis(")(") == 2 assert count_remove_parenthesis("") == 0 assert count_remove_parenthesis("((()))") == 0 assert count_remove_parenthesis("()(") == 1 assert count_remove_parenthesis("((()())())()()()(())") == 0
42ea4f4a66ce8ed2ede113d9666e461fe30a5244
af43615e07f2bfaa908d6d96b4c90f98ce3ad47b
/rdr_service/lib_fhir/fhirclient_1_0_6/models/deviceusestatement.py
642e4f165a8b132be219bba1db9b4de5dc7ab412
[ "BSD-3-Clause" ]
permissive
all-of-us/raw-data-repository
11aa25385543f5f8ef706663b79ce181775c1c9a
461ae46aeda21d54de8a91aa5ef677676d5db541
refs/heads/devel
2023-09-01T06:47:25.710651
2023-09-01T01:18:56
2023-09-01T01:18:56
66,000,771
46
22
BSD-3-Clause
2023-09-14T21:06:38
2016-08-18T13:47:08
Python
UTF-8
Python
false
false
3,846
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Generated from FHIR 1.0.2.7202 (http://hl7.org/fhir/StructureDefinition/DeviceUseStatement) on 2016-06-23. # 2016, SMART Health IT. from . import domainresource class DeviceUseStatement(domainresource.DomainResource): """ None. A record of a device being used by a patient where the record is the result of a report from the patient or another clinician. """ resource_name = "DeviceUseStatement" def __init__(self, jsondict=None, strict=True): """ Initialize all valid properties. :raises: FHIRValidationError on validation errors, unless strict is False :param dict jsondict: A JSON dictionary to use for initialization :param bool strict: If True (the default), invalid variables will raise a TypeError """ self.bodySiteCodeableConcept = None """ Target body site. Type `CodeableConcept` (represented as `dict` in JSON). """ self.bodySiteReference = None """ Target body site. Type `FHIRReference` referencing `BodySite` (represented as `dict` in JSON). """ self.device = None """ None. Type `FHIRReference` referencing `Device` (represented as `dict` in JSON). """ self.identifier = None """ None. List of `Identifier` items (represented as `dict` in JSON). """ self.indication = None """ None. List of `CodeableConcept` items (represented as `dict` in JSON). """ self.notes = None """ None. List of `str` items. """ self.recordedOn = None """ None. Type `FHIRDate` (represented as `str` in JSON). """ self.subject = None """ None. Type `FHIRReference` referencing `Patient` (represented as `dict` in JSON). """ self.timingDateTime = None """ None. Type `FHIRDate` (represented as `str` in JSON). """ self.timingPeriod = None """ None. Type `Period` (represented as `dict` in JSON). """ self.timingTiming = None """ None. Type `Timing` (represented as `dict` in JSON). """ self.whenUsed = None """ None. Type `Period` (represented as `dict` in JSON). """ super(DeviceUseStatement, self).__init__(jsondict=jsondict, strict=strict) def elementProperties(self): js = super(DeviceUseStatement, self).elementProperties() js.extend([ ("bodySiteCodeableConcept", "bodySiteCodeableConcept", codeableconcept.CodeableConcept, False, "bodySite", False), ("bodySiteReference", "bodySiteReference", fhirreference.FHIRReference, False, "bodySite", False), ("device", "device", fhirreference.FHIRReference, False, None, True), ("identifier", "identifier", identifier.Identifier, True, None, False), ("indication", "indication", codeableconcept.CodeableConcept, True, None, False), ("notes", "notes", str, True, None, False), ("recordedOn", "recordedOn", fhirdate.FHIRDate, False, None, False), ("subject", "subject", fhirreference.FHIRReference, False, None, True), ("timingDateTime", "timingDateTime", fhirdate.FHIRDate, False, "timing", False), ("timingPeriod", "timingPeriod", period.Period, False, "timing", False), ("timingTiming", "timingTiming", timing.Timing, False, "timing", False), ("whenUsed", "whenUsed", period.Period, False, None, False), ]) return js from . import codeableconcept from . import fhirdate from . import fhirreference from . import identifier from . import period from . import timing
316f82491c8f735a152f72a405f04e15d34d706e
0cf054b1740339b22d3211695e44e11e68c81328
/suggestion/analysis_util.py
d03d3e3988a20faeabe5cc43261d257a8d83659e
[ "LicenseRef-scancode-warranty-disclaimer", "MIT" ]
permissive
kcarnold/sentiment-slant-gi18
076aaf557c8e33c84349f78a883c0fa3210e9ada
6028b42627e3eec14a1f27986f8925d8b1e6ad9c
refs/heads/master
2022-07-01T10:20:50.314847
2017-09-13T23:03:14
2017-09-13T23:03:14
125,105,730
0
0
null
null
null
null
UTF-8
Python
false
false
5,623
py
import os try: import ujson as json except ImportError: import json import re import numpy as np from suggestion.util import mem from suggestion.paths import paths import subprocess # # Data for decoding surveys. # skip_col_re = re.compile( r'Great.job|Q_\w+|nextURL|clientId|Timing.*|Browser.*|Location.*|Recipient.*|Response.+|ExternalDataReference|Finished|Status|IPAddress|StartDate|EndDate|Welcome.+|Display Order|Demographic Questions|Closing Survey.+|revisionDesc|prewrite') prefix_subs = { "How much do you agree with the following statements about the suggestions that the system gave?-They ": "suggs-", "How much do you agree with the following statements?-The suggestions ": "suggs-", "How much do you agree with the following statements about the words or phrases that the keyboard...-They ": "suggs-", "Now think about the brainstorming you did before the final writing. How much do you agree with th...-": "brainstorm-", "Think about when you were typing out your ${e://Field/revisionDesc}. How much do you agree with t...-": "final-", "How Accurately Can You Describe Yourself? Describe yourself as you generally are now, not as you...-": "pers-", "Describe yourself as you generally are now, not as you wish to be in the future. Describe yoursel...-": "pers-", } decode_scales = { "Strongly disagree": 1, "Disagree": 2, "Somewhat disagree": 3, "Neither agree nor disagree": 4, "Somewhat agree": 5, "Agree": 6, "Strongly agree": 7, "Very Inaccurate": 1, "Moderately Inaccurate": 2, "Neither Accurate Nor Inaccurate": 3, "Moderately Accurate": 4, "Very Accurate": 5} def get_rev(logpath): with open(logpath) as logfile: for line in logfile: line = json.loads(line) if 'rev' in line: return line['rev'] def checkout_old_code(git_rev): import shutil by_rev = paths.parent / 'old-code' rev_root = by_rev / git_rev if not os.path.isdir(rev_root): print("Checking out repository at", git_rev) subprocess.check_call(['git', 'clone', '..', git_rev], cwd=by_rev) subprocess.check_call(['git', 'checkout', git_rev], cwd=rev_root) print("Installing npm packages") subprocess.check_call(['yarn'], cwd=os.path.join(rev_root, 'frontend')) @mem.cache def get_log_analysis_raw(logpath, logfile_size, git_rev=None, analysis_files=None): # Ignore analysis_files; just use them to know when to invalidate the cache. checkout_old_code(git_rev) analyzer_path = os.path.join(paths.parent, 'frontend', 'analysis') with open(logpath) as logfile: result = subprocess.check_output([analyzer_path], stdin=logfile) assert len(result) > 0 return result def get_log_analysis(participant, git_rev=None): analysis_files = { name: open(paths.parent / 'frontend' / name).read() for name in ['analyze.js', 'analysis', 'src/Analyzer.js'] } logpath = paths.parent / 'logs' / (participant+'.jsonl') if git_rev is None: git_rev = get_rev(logpath) logfile_size = os.path.getsize(logpath) result = get_log_analysis_raw(logpath, logfile_size, git_rev=git_rev, analysis_files=analysis_files) analyzed = json.loads(result) analyzed['git_rev'] = git_rev return analyzed def classify_annotated_event(evt): typ = evt['type'] if typ in {'externalAction', 'next', 'resized', 'tapText'}: return None text = evt['curText'] null_word = len(text) == 0 or text[-1] == ' ' text = text.strip() bos = len(text) == 0 or text[-1] in '.?!' if typ == 'tapKey': return 'tapKey' if typ == 'tapBackspace': return 'tapBackspace' if typ == 'tapSuggestion': if bos: sugg_mode = 'bos' elif null_word: sugg_mode = 'full' else: sugg_mode = 'part' return 'tapSugg_' + sugg_mode assert False, typ def get_content_stats_single_suggestion(sugg, word_freq_analyzer): from suggestion import suggestion_generator sugg = sugg.copy() meta = sugg.pop('flags') if not meta['domain'].startswith('yelp'): return if sugg['cur_word']: # Skip partial words. return model = suggestion_generator.Model.get_or_load_model(meta['domain']) try: toks = suggestion_generator.tokenize_sofar(sugg['sofar']) except: # Tokenization failed. return # Optimization: trim context to the n-gram level, plus some padding. toks = toks[-10:] state = model.get_state(toks)[0] clf_startstate = suggestion_generator.sentiment_classifier.get_state(toks) res = [] for sugg_slot, rec in enumerate(sugg['recs']['predictions']): phrase = rec['words'] if phrase: sentiment_posteriors = suggestion_generator.sentiment_classifier.classify_seq_by_tok(clf_startstate, phrase) sentiment = np.mean(sentiment_posteriors, axis=0) @ suggestion_generator.sentiment_classifier.sentiment_weights else: sentiment = None analyzer_indices = [word_freq_analyzer.word2idx.get(tok) for tok in phrase] res.append(dict( request_id=sugg['request_id'], sugg_slot=sugg_slot, sugg_contextual_llk=model.score_seq(state, phrase)[0], sugg_unigram_llk=np.nanmean(np.array([word_freq_analyzer.log_freqs[idx] if idx is not None else np.nan for idx in analyzer_indices])), sugg_sentiment=sentiment)) return res
bd3081c830696819735002e529dbbb9483b40d02
7d8cafdc9e2a00979381f93149ba247b400badf9
/RequestDemo/script/add_house_develop.py
bb2ea12dfe5ca4bfef7b578ecc96101b3055b62a
[]
no_license
zhonglinglong/isz_request
1987d0897aac390c77a018a08bd0a65647eaf4c4
8eccabfd8bcefdb58f79db0cd9cb5f3f9d227b3a
refs/heads/master
2021-05-12T06:20:22.312090
2018-01-18T11:59:28
2018-01-18T11:59:28
117,217,090
1
0
null
null
null
null
UTF-8
Python
false
false
13,002
py
# -*- coding:utf8 -*- from time import sleep import pymysql import json from requests import Session import sys reload(sys) sys.setdefaultencoding('utf8') sqlConn = pymysql.connect(host='192.168.0.208', user='zhonglinglong', password='zll.123',db='isz_erp_npd',charset='utf8',port=3306) sqlCursor = sqlConn.cursor() def searchSQL(sql,type='tuple'): sqlCursor.execute(sql) if type == 'list': value = map(lambda x:x[0].encode('utf-8'),sqlCursor.fetchall()) return value if type == 'dict': value = {} data = sqlCursor.fetchall() for i in data: try: value[i[0].encode('utf-8')] = i[1].encode('utf-8') except: value[i[0].encode('utf-8')] = str(i[1]) return value if type == 'tuple': value = sqlCursor.fetchall() return value class RequestsApi: def __init__(self): self.S = Session() def SendPost(self, url, header,datas): data = { "authTag": "4028803E60E8CE080160F3A2C1ED0058", "auth_code": "EA4A263F29FF586C9FC6D16A20E8C86ABD708EEE6CFAE74074727F766533FA33F12EFB25CF3B273F912CB1A096C9B9A7DBF53B27F7A7302F22E6CBBCE51E4311A8B6A1CBC7BCC2F28C611200F7166DC8EDB90287CF05CF045DCC9BE29AA5EE74F77544AB717D8433F12C269751243CE0E8F78955AB8BC8028490D40323F337D0929C8150AB3511DB1F34234446D3D8BAC71000B3BB723D189F74424EDF0E0A773D922AE7991CE199D672EB0DE067940BD69450A2D5CE334F1C234B9F868429E26F056702028732D5DD89063E463D17B0ABAD033DCF3599F1A4C370C8D8D3ECEAFB2C71054650AB26ECBE35DD2E15A30D5A78E8DC8E84B8AF5BF2B63A5A8FDCD8F4B3774B036758BB8A0DE2303BEBCA5876D1373405DA084E9A2997D113F80D2974D0567F512732FD11011F163553A206E2C6E08C9DE2CD86D80E7B2ACD3C76A7", "user_phone": "18279881085", "user_pwd": "isz123456", "verificationCode": "0451" } self.r = self.S.post(url='http://isz.ishangzu.com/isz_base/LoginController/login.action', data=json.dumps(data), headers={"Content-Type": "application/json"}) self.r=self.S.post(url=url,headers=eval(header),data=json.dumps(eval(datas))) return self.r.json() def add_develop_house(ApartmentData,RoomNumberData): "新增楼盘" try: sql = "SELECT sd.parent_id from sys_department sd INNER JOIN sys_user sur on sur.dep_id = sd.dep_id INNER JOIN sys_position spt on spt.position_id = sur.position_id " \ "where sd.dep_district = '330100' and sd.dep_id <> '00000000000000000000000000000000' and (spt.position_name like '资产管家%' or spt.position_name like '综合管家%') " \ "ORDER BY RAND() LIMIT 1" dutyDepID = searchSQL(sql)[0][0] header = '{ "Content-Type": "application/json", "Referer": "http://isz.ishangzu.com/isz_house/jsp/residential/residentialList.jsp"}' url = 'http://isz.ishangzu.com/isz_house/ResidentialController/saveResidential.action' data = '''{"residential_name": "%s", "residential_jianpin": "zllgj", "residential_jianpin": "csgj", "city_code": "330100", "area_code": "330102", "taBusinessCircleString": "5", "address": "工具创建楼盘", "gd_lng": "120.149395", "gd_lat": "30.298125", "property_type": "ordinary", "taDepartString": "%s", "build_date": "1988", "totle_buildings": "2", "total_unit_count": "200", "total_house_count": "1000", "build_area": "100.00", "property_company": "杭州科技有限公司", "property_fee": "20", "plot_ratio": "30.00", "green_rate": "100.00", "parking_amount": "200", "other_info": "楼盘亮点", "bus_stations": "公交站", "metro_stations": "地铁站","byname": "fh"}''' % (ApartmentData,dutyDepID) result = RequestsApi().SendPost(url, header, data) if result["code"] == 0: print ("新增楼盘名称为:'"+"%s"+"'成功!") % ApartmentData else: print result return except BaseException as e: print e return #新增栋座 try: sql = "select residential_id from residential WHERE residential_name='%s' and deleted=0" % ApartmentData residentialID = searchSQL(sql)[0][0] header = '{ "Content-Type": "application/json", "Referer": "http://isz.ishangzu.com/isz_house/jsp/residential/residentialList.jsp"}' url = 'http://isz.ishangzu.com/isz_house/ResidentialBuildingController/saveResidentialBuildingNew.action' data = '''{ "property_name": "%s", "building_name": "1幢", "no_building": "无", "gd_lng": "120.152476", "gd_lat": "30.287232", "housing_type": "ordinary", "ground_floors": "20", "underground_floors": "2", "ladder_count": "10", "house_count": "200", "residential_id": "%s", "have_elevator": "Y"}''' % (ApartmentData, residentialID) result = RequestsApi().SendPost(url, header, data) if result["code"] == 0: print "新增栋成功!" else: print result return except BaseException as e: print e return # 新增单元 try: sql = "SELECT building_id from residential_building where residential_id ='%s'and deleted=0 " % residentialID buildingID = searchSQL(sql)[0][0] header = '{ "Content-Type": "application/json", "Referer": "http://isz.ishangzu.com/isz_house/jsp/residential/residentialList.jsp"}' url = 'http://isz.ishangzu.com/isz_house/ResidentialBuildingController/saveResidentialBuildingUnit.action' data = '''{"property_name": "%s","unit_name": "A","no_unit": "无","building_id": "%s"}''' % (ApartmentData + '1幢', buildingID) result = RequestsApi().SendPost(url, header, data) if result["code"] == 0: print "新增单元成功!" else: print result return except BaseException as e: print e return # 新增楼层 try: sql = "SELECT unit_id from residential_building_unit where building_id='%s' " % buildingID unitID = searchSQL(sql)[0][0] header = '{ "Content-Type": "application/json", "Referer": "http://isz.ishangzu.com/isz_house/jsp/residential/residentialList.jsp"}' url = 'http://isz.ishangzu.com/isz_house/ResidentialBuildingController/saveResidentialBuildingFloor.action' data = '{"property_name":"%s","floor_name":"1","building_id":"%s","unit_id":"%s"}' % (ApartmentData + '1幢A', buildingID, unitID) result = RequestsApi().SendPost(url, header, data) if result["code"] == 0: print "新增楼层成功!" else: print result return except BaseException as e: print e return # 新增房间号 try: sql = "SELECT floor_id from residential_building_floor where unit_id='%s' " % unitID floorID = searchSQL(sql)[0][0] housenumber = 100 for i in range(int(RoomNumberData)): housenumber = housenumber + 1 header = '{ "Content-Type": "application/json", "Referer": "http://isz.ishangzu.com/isz_house/jsp/residential/residentialList.jsp"}' url = 'http://isz.ishangzu.com/isz_house/ResidentialBuildingController/saveResidentialBuildingHouseNo.action' data = '''{ "property_name": "%s", "house_no": "%s", "rooms": "1", "livings": "1", "bathrooms": "1", "kitchens": "1", "balconys": "1", "build_area": "100.00", "orientation": "NORTH", "building_id": "%s", "unit_id": "%s", "floor_id": "%s"}''' % (ApartmentData + '1幢A1层', housenumber, buildingID, unitID, floorID) result = RequestsApi().SendPost(url, header, data) if result["code"] == 0: print ("新增"+"%s"+"房间成功!") % housenumber else: print result return except BaseException as e: print e return # 新增房源 try: housenoID = [] sql = "SELECT house_no_id from residential_building_house_no where floor_id='%s' ORDER BY create_time " % floorID housenoID.append(searchSQL(sql)) house_no = 100 residential_name = ApartmentData + '(fh)' for i in range(int(RoomNumberData)): house_no_search = housenoID[0][i][0] house_no = house_no + 1 residential_address = '杭州市 上城区 四季青 ' + ApartmentData url = "http://isz.ishangzu.com/isz_house/HouseController/saveHouseDevelop.action" header = '{ "Content-Type": "application/json", "Referer": "http://isz.ishangzu.com/isz_house/jsp/house/develop/houseDevelopinfoAdd.jsp"}' data = """{ "residential_name_search": "%s", "building_name_search": "%s", "unit_search": "%s", "house_no_search": "%s", "residential_name": "%s", "building_name": "1幢", "unit": "A", "house_no": "%s", "residential_address": "%s", "city_code": "330100", "area_code": "330102", "business_circle_id": "35", "contact": "钟晓晓", "did": "8A215243584E2141015867FD6E1F5E9D", "uid": "4028803E5B196FD1015B1E5CF23C0294", "house_status": "WAITING_RENT", "category": "NOLIMIT", "source": "INTRODUCE", "rental_price": "4567.00", "rooms": "1", "livings": "1", "kitchens": "1", "bathrooms": "1", "balconys": "1", "build_area": "100", "orientation": "NORTH", "property_type": "MULTI_LIFE", "property_use": "HOUSE", "remark": "测试工具新增房源", "look_type": "DIRECTION", "residential_id": "%s", "building_id": "%s", "unit_id": "%s", "house_no_id": "%s", "business_circle_name": "四季青", "contact_tel": "18233669988", "floor": "1", "floor_id": "%s"}""" % (residentialID, buildingID, unitID, house_no_search, residential_name, house_no, residential_address, residentialID, buildingID, unitID, house_no_search, floorID) result = RequestsApi().SendPost(url, header, data) if result["code"] == 0: print ("新增楼盘名称:'"+"%s'下%s"+"房源成功!") % (residential_address,house_no) else: print result return except BaseException as e: print e return # 审核房源 try: sql = 'SELECT house_develop_id from house_develop where residential_name = "%s" ORDER BY create_time and deleted=0 ' % residential_name sqltime = 'SELECT update_time from house_develop where residential_name = "%s" ORDER BY create_time and deleted=0 ' % residential_name housedevelopid = [] update_times = [] housedevelopid.append(searchSQL(sql)) update_times.append(searchSQL(sqltime)) house_no = 100 for i in range(int(RoomNumberData)): update_time = update_times[0][i][0] house_develop_id = housedevelopid[0][i][0] house_no = house_no + 1 house_no_search = housenoID[0][i][0] url = "http://isz.ishangzu.com/isz_house/HouseController/auditHouseDevelop.action" header = '{ "Content-Type": "application/json", "Referer":"http://isz.ishangzu.com/isz_house/jsp/house/develop/houseDevelopList.jsp?from=waitAudit"}' data = '''{ "residential_name_search": "%s", "building_name_search": "%s", "unit_search": "%s", "house_no_search": "%s", "residential_name": "%s", "building_name": "1幢", "floor": "1", "house_no_suffix": "xxx", "residential_address": "杭州市 上城区 四季青 工具创建楼盘", "residential_department_did": "%s", "house_status": "WAITING_RENT", "category": "NOLIMIT", "rental_price": "4567.00", "build_area": "100.00", "rooms": "1", "livings": "1", "kitchens": "1", "bathrooms": "1", "balconys": "1", "orientation": "NORTH", "source": "INTRODUCE", "property_use": "HOUSE", "property_type": "MULTI_LIFE", "look_type": "DIRECTION", "remark": "测试工具新增房源", "houseRent": { "house_status": "WAITING_RENT", "category": "NOLIMIT", "source": "INTRODUCE", "look_type": "DIRECTION", "rental_price": "4567.00", "remark": "测试工具新增房源" }, "audit_status": "PASS", "building_id": "%s", "residential_id": "%s", "unit_id": "%s", "unit": "A", "floor_id":"%s", "house_no": "%s", "house_no_id": "%s", "area_code": "330102", "city_code": "330100", "house_develop_id": "%s", "update_time": "%s", "audit_content": "同意"}''' % (residentialID, buildingID, unitID, house_no_search, residential_name,dutyDepID, buildingID, residentialID, unitID,floorID, house_no, house_no_search, house_develop_id, update_time) result = RequestsApi().SendPost(url, header, data) if result["code"] == 0: print ("审核杭州市 上城区 四季青 工具创建楼盘下:"+"%s"+"号房间房源成功!") % house_no else: print result return except BaseException as e: print e return print '添加开发房源OK' add_develop_house("新增开发房源脚本重构",3)
045342ac2e42a05f9cab53a4746fa576a9d0dea4
244ecfc2017a48c70b74556be8c188e7a4815848
/res_bw/scripts/common/lib/xml/dom/minidom.py
b74bd0880ba9e6ca29ea81fe6f521e6852347bd7
[]
no_license
webiumsk/WOT-0.9.12
c1e1259411ba1e6c7b02cd6408b731419d3174e5
5be5fd9186f335e7bae88c9761c378ff5fbf5351
refs/heads/master
2021-01-10T01:38:36.523788
2015-11-18T11:33:37
2015-11-18T11:33:37
46,414,438
1
0
null
null
null
null
WINDOWS-1250
Python
false
false
60,353
py
# 2015.11.18 12:06:40 Střední Evropa (běžný čas) # Embedded file name: scripts/common/Lib/xml/dom/minidom.py """Simple implementation of the Level 1 DOM. Namespaces and other minor Level 2 features are also supported. parse("foo.xml") parseString("<foo><bar/></foo>") Todo: ===== * convenience methods for getting elements and text. * more testing * bring some of the writer and linearizer code into conformance with this interface * SAX 2 namespaces """ import xml.dom from xml.dom import EMPTY_NAMESPACE, EMPTY_PREFIX, XMLNS_NAMESPACE, domreg from xml.dom.minicompat import * from xml.dom.xmlbuilder import DOMImplementationLS, DocumentLS _nodeTypes_with_children = (xml.dom.Node.ELEMENT_NODE, xml.dom.Node.ENTITY_REFERENCE_NODE) class Node(xml.dom.Node): namespaceURI = None parentNode = None ownerDocument = None nextSibling = None previousSibling = None prefix = EMPTY_PREFIX def __nonzero__(self): return True def toxml(self, encoding = None): return self.toprettyxml('', '', encoding) def toprettyxml(self, indent = '\t', newl = '\n', encoding = None): writer = _get_StringIO() if encoding is not None: import codecs writer = codecs.lookup(encoding)[3](writer) if self.nodeType == Node.DOCUMENT_NODE: self.writexml(writer, '', indent, newl, encoding) else: self.writexml(writer, '', indent, newl) return writer.getvalue() def hasChildNodes(self): if self.childNodes: return True else: return False def _get_childNodes(self): return self.childNodes def _get_firstChild(self): if self.childNodes: return self.childNodes[0] def _get_lastChild(self): if self.childNodes: return self.childNodes[-1] def insertBefore(self, newChild, refChild): if newChild.nodeType == self.DOCUMENT_FRAGMENT_NODE: for c in tuple(newChild.childNodes): self.insertBefore(c, refChild) return newChild else: if newChild.nodeType not in self._child_node_types: raise xml.dom.HierarchyRequestErr('%s cannot be child of %s' % (repr(newChild), repr(self))) if newChild.parentNode is not None: newChild.parentNode.removeChild(newChild) if refChild is None: self.appendChild(newChild) else: try: index = self.childNodes.index(refChild) except ValueError: raise xml.dom.NotFoundErr() if newChild.nodeType in _nodeTypes_with_children: _clear_id_cache(self) self.childNodes.insert(index, newChild) newChild.nextSibling = refChild refChild.previousSibling = newChild if index: node = self.childNodes[index - 1] node.nextSibling = newChild newChild.previousSibling = node else: newChild.previousSibling = None newChild.parentNode = self return newChild def appendChild(self, node): if node.nodeType == self.DOCUMENT_FRAGMENT_NODE: for c in tuple(node.childNodes): self.appendChild(c) return node else: if node.nodeType not in self._child_node_types: raise xml.dom.HierarchyRequestErr('%s cannot be child of %s' % (repr(node), repr(self))) elif node.nodeType in _nodeTypes_with_children: _clear_id_cache(self) if node.parentNode is not None: node.parentNode.removeChild(node) _append_child(self, node) node.nextSibling = None return node def replaceChild(self, newChild, oldChild): if newChild.nodeType == self.DOCUMENT_FRAGMENT_NODE: refChild = oldChild.nextSibling self.removeChild(oldChild) return self.insertBefore(newChild, refChild) else: if newChild.nodeType not in self._child_node_types: raise xml.dom.HierarchyRequestErr('%s cannot be child of %s' % (repr(newChild), repr(self))) if newChild is oldChild: return if newChild.parentNode is not None: newChild.parentNode.removeChild(newChild) try: index = self.childNodes.index(oldChild) except ValueError: raise xml.dom.NotFoundErr() self.childNodes[index] = newChild newChild.parentNode = self oldChild.parentNode = None if newChild.nodeType in _nodeTypes_with_children or oldChild.nodeType in _nodeTypes_with_children: _clear_id_cache(self) newChild.nextSibling = oldChild.nextSibling newChild.previousSibling = oldChild.previousSibling oldChild.nextSibling = None oldChild.previousSibling = None if newChild.previousSibling: newChild.previousSibling.nextSibling = newChild if newChild.nextSibling: newChild.nextSibling.previousSibling = newChild return oldChild def removeChild(self, oldChild): try: self.childNodes.remove(oldChild) except ValueError: raise xml.dom.NotFoundErr() if oldChild.nextSibling is not None: oldChild.nextSibling.previousSibling = oldChild.previousSibling if oldChild.previousSibling is not None: oldChild.previousSibling.nextSibling = oldChild.nextSibling oldChild.nextSibling = oldChild.previousSibling = None if oldChild.nodeType in _nodeTypes_with_children: _clear_id_cache(self) oldChild.parentNode = None return oldChild def normalize(self): L = [] for child in self.childNodes: if child.nodeType == Node.TEXT_NODE: if not child.data: if L: L[-1].nextSibling = child.nextSibling if child.nextSibling: child.nextSibling.previousSibling = child.previousSibling child.unlink() elif L and L[-1].nodeType == child.nodeType: node = L[-1] node.data = node.data + child.data node.nextSibling = child.nextSibling if child.nextSibling: child.nextSibling.previousSibling = node child.unlink() else: L.append(child) else: L.append(child) if child.nodeType == Node.ELEMENT_NODE: child.normalize() self.childNodes[:] = L def cloneNode(self, deep): return _clone_node(self, deep, self.ownerDocument or self) def isSupported(self, feature, version): return self.ownerDocument.implementation.hasFeature(feature, version) def _get_localName(self): return None def isSameNode(self, other): return self is other def getInterface(self, feature): if self.isSupported(feature, None): return self else: return return def getUserData(self, key): try: return self._user_data[key][0] except (AttributeError, KeyError): return None return None def setUserData(self, key, data, handler): old = None try: d = self._user_data except AttributeError: d = {} self._user_data = d if key in d: old = d[key][0] if data is None: handler = None if old is not None: del d[key] else: d[key] = (data, handler) return old def _call_user_data_handler(self, operation, src, dst): if hasattr(self, '_user_data'): for key, (data, handler) in self._user_data.items(): if handler is not None: handler.handle(operation, key, data, src, dst) return def unlink(self): self.parentNode = self.ownerDocument = None if self.childNodes: for child in self.childNodes: child.unlink() self.childNodes = NodeList() self.previousSibling = None self.nextSibling = None return defproperty(Node, 'firstChild', doc='First child node, or None.') defproperty(Node, 'lastChild', doc='Last child node, or None.') defproperty(Node, 'localName', doc='Namespace-local name of this node.') def _append_child(self, node): childNodes = self.childNodes if childNodes: last = childNodes[-1] node.__dict__['previousSibling'] = last last.__dict__['nextSibling'] = node childNodes.append(node) node.__dict__['parentNode'] = self def _in_document(node): while node is not None: if node.nodeType == Node.DOCUMENT_NODE: return True node = node.parentNode return False def _write_data(writer, data): """Writes datachars to writer.""" if data: data = data.replace('&', '&amp;').replace('<', '&lt;').replace('"', '&quot;').replace('>', '&gt;') writer.write(data) def _get_elements_by_tagName_helper(parent, name, rc): for node in parent.childNodes: if node.nodeType == Node.ELEMENT_NODE and (name == '*' or node.tagName == name): rc.append(node) _get_elements_by_tagName_helper(node, name, rc) return rc def _get_elements_by_tagName_ns_helper(parent, nsURI, localName, rc): for node in parent.childNodes: if node.nodeType == Node.ELEMENT_NODE: if (localName == '*' or node.localName == localName) and (nsURI == '*' or node.namespaceURI == nsURI): rc.append(node) _get_elements_by_tagName_ns_helper(node, nsURI, localName, rc) return rc class DocumentFragment(Node): nodeType = Node.DOCUMENT_FRAGMENT_NODE nodeName = '#document-fragment' nodeValue = None attributes = None parentNode = None _child_node_types = (Node.ELEMENT_NODE, Node.TEXT_NODE, Node.CDATA_SECTION_NODE, Node.ENTITY_REFERENCE_NODE, Node.PROCESSING_INSTRUCTION_NODE, Node.COMMENT_NODE, Node.NOTATION_NODE) def __init__(self): self.childNodes = NodeList() class Attr(Node): nodeType = Node.ATTRIBUTE_NODE attributes = None ownerElement = None specified = False _is_id = False _child_node_types = (Node.TEXT_NODE, Node.ENTITY_REFERENCE_NODE) def __init__(self, qName, namespaceURI = EMPTY_NAMESPACE, localName = None, prefix = None): d = self.__dict__ d['nodeName'] = d['name'] = qName d['namespaceURI'] = namespaceURI d['prefix'] = prefix d['childNodes'] = NodeList() self.childNodes.append(Text()) def _get_localName(self): return self.nodeName.split(':', 1)[-1] def _get_specified(self): return self.specified def __setattr__(self, name, value): d = self.__dict__ if name in ('value', 'nodeValue'): d['value'] = d['nodeValue'] = value d2 = self.childNodes[0].__dict__ d2['data'] = d2['nodeValue'] = value if self.ownerElement is not None: _clear_id_cache(self.ownerElement) elif name in ('name', 'nodeName'): d['name'] = d['nodeName'] = value if self.ownerElement is not None: _clear_id_cache(self.ownerElement) else: d[name] = value return def _set_prefix(self, prefix): nsuri = self.namespaceURI if prefix == 'xmlns': if nsuri and nsuri != XMLNS_NAMESPACE: raise xml.dom.NamespaceErr("illegal use of 'xmlns' prefix for the wrong namespace") d = self.__dict__ d['prefix'] = prefix if prefix is None: newName = self.localName else: newName = '%s:%s' % (prefix, self.localName) if self.ownerElement: _clear_id_cache(self.ownerElement) d['nodeName'] = d['name'] = newName return def _set_value(self, value): d = self.__dict__ d['value'] = d['nodeValue'] = value if self.ownerElement: _clear_id_cache(self.ownerElement) self.childNodes[0].data = value def unlink(self): elem = self.ownerElement if elem is not None: del elem._attrs[self.nodeName] del elem._attrsNS[self.namespaceURI, self.localName] if self._is_id: self._is_id = False elem._magic_id_nodes -= 1 self.ownerDocument._magic_id_count -= 1 for child in self.childNodes: child.unlink() del self.childNodes[:] return def _get_isId(self): if self._is_id: return True else: doc = self.ownerDocument elem = self.ownerElement if doc is None or elem is None: return False info = doc._get_elem_info(elem) if info is None: return False if self.namespaceURI: return info.isIdNS(self.namespaceURI, self.localName) return info.isId(self.nodeName) return def _get_schemaType(self): doc = self.ownerDocument elem = self.ownerElement if doc is None or elem is None: return _no_type else: info = doc._get_elem_info(elem) if info is None: return _no_type if self.namespaceURI: return info.getAttributeTypeNS(self.namespaceURI, self.localName) return info.getAttributeType(self.nodeName) return defproperty(Attr, 'isId', doc='True if this attribute is an ID.') defproperty(Attr, 'localName', doc='Namespace-local name of this attribute.') defproperty(Attr, 'schemaType', doc='Schema type for this attribute.') class NamedNodeMap(object): """The attribute list is a transient interface to the underlying dictionaries. Mutations here will change the underlying element's dictionary. Ordering is imposed artificially and does not reflect the order of attributes as found in an input document. """ __slots__ = ('_attrs', '_attrsNS', '_ownerElement') def __init__(self, attrs, attrsNS, ownerElement): self._attrs = attrs self._attrsNS = attrsNS self._ownerElement = ownerElement def _get_length(self): return len(self._attrs) def item(self, index): try: return self[self._attrs.keys()[index]] except IndexError: return None return None def items(self): L = [] for node in self._attrs.values(): L.append((node.nodeName, node.value)) return L def itemsNS(self): L = [] for node in self._attrs.values(): L.append(((node.namespaceURI, node.localName), node.value)) return L def has_key(self, key): if isinstance(key, StringTypes): return key in self._attrs else: return key in self._attrsNS def keys(self): return self._attrs.keys() def keysNS(self): return self._attrsNS.keys() def values(self): return self._attrs.values() def get(self, name, value = None): return self._attrs.get(name, value) __len__ = _get_length __hash__ = None def __cmp__(self, other): if self._attrs is getattr(other, '_attrs', None): return 0 else: return cmp(id(self), id(other)) return def __getitem__(self, attname_or_tuple): if isinstance(attname_or_tuple, tuple): return self._attrsNS[attname_or_tuple] else: return self._attrs[attname_or_tuple] def __setitem__(self, attname, value): if isinstance(value, StringTypes): try: node = self._attrs[attname] except KeyError: node = Attr(attname) node.ownerDocument = self._ownerElement.ownerDocument self.setNamedItem(node) node.value = value else: if not isinstance(value, Attr): raise TypeError, 'value must be a string or Attr object' node = value self.setNamedItem(node) def getNamedItem(self, name): try: return self._attrs[name] except KeyError: return None return None def getNamedItemNS(self, namespaceURI, localName): try: return self._attrsNS[namespaceURI, localName] except KeyError: return None return None def removeNamedItem(self, name): n = self.getNamedItem(name) if n is not None: _clear_id_cache(self._ownerElement) del self._attrs[n.nodeName] del self._attrsNS[n.namespaceURI, n.localName] if 'ownerElement' in n.__dict__: n.__dict__['ownerElement'] = None return n else: raise xml.dom.NotFoundErr() return def removeNamedItemNS(self, namespaceURI, localName): n = self.getNamedItemNS(namespaceURI, localName) if n is not None: _clear_id_cache(self._ownerElement) del self._attrsNS[n.namespaceURI, n.localName] del self._attrs[n.nodeName] if 'ownerElement' in n.__dict__: n.__dict__['ownerElement'] = None return n else: raise xml.dom.NotFoundErr() return def setNamedItem(self, node): if not isinstance(node, Attr): raise xml.dom.HierarchyRequestErr('%s cannot be child of %s' % (repr(node), repr(self))) old = self._attrs.get(node.name) if old: old.unlink() self._attrs[node.name] = node self._attrsNS[node.namespaceURI, node.localName] = node node.ownerElement = self._ownerElement _clear_id_cache(node.ownerElement) return old def setNamedItemNS(self, node): return self.setNamedItem(node) def __delitem__(self, attname_or_tuple): node = self[attname_or_tuple] _clear_id_cache(node.ownerElement) node.unlink() def __getstate__(self): return (self._attrs, self._attrsNS, self._ownerElement) def __setstate__(self, state): self._attrs, self._attrsNS, self._ownerElement = state defproperty(NamedNodeMap, 'length', doc='Number of nodes in the NamedNodeMap.') AttributeList = NamedNodeMap class TypeInfo(object): __slots__ = ('namespace', 'name') def __init__(self, namespace, name): self.namespace = namespace self.name = name def __repr__(self): if self.namespace: return '<TypeInfo %r (from %r)>' % (self.name, self.namespace) else: return '<TypeInfo %r>' % self.name def _get_name(self): return self.name def _get_namespace(self): return self.namespace _no_type = TypeInfo(None, None) class Element(Node): nodeType = Node.ELEMENT_NODE nodeValue = None schemaType = _no_type _magic_id_nodes = 0 _child_node_types = (Node.ELEMENT_NODE, Node.PROCESSING_INSTRUCTION_NODE, Node.COMMENT_NODE, Node.TEXT_NODE, Node.CDATA_SECTION_NODE, Node.ENTITY_REFERENCE_NODE) def __init__(self, tagName, namespaceURI = EMPTY_NAMESPACE, prefix = None, localName = None): self.tagName = self.nodeName = tagName self.prefix = prefix self.namespaceURI = namespaceURI self.childNodes = NodeList() self._attrs = {} self._attrsNS = {} def _get_localName(self): return self.tagName.split(':', 1)[-1] def _get_tagName(self): return self.tagName def unlink(self): for attr in self._attrs.values(): attr.unlink() self._attrs = None self._attrsNS = None Node.unlink(self) return def getAttribute(self, attname): try: return self._attrs[attname].value except KeyError: return '' def getAttributeNS(self, namespaceURI, localName): try: return self._attrsNS[namespaceURI, localName].value except KeyError: return '' def setAttribute(self, attname, value): attr = self.getAttributeNode(attname) if attr is None: attr = Attr(attname) d = attr.__dict__ d['value'] = d['nodeValue'] = value d['ownerDocument'] = self.ownerDocument self.setAttributeNode(attr) elif value != attr.value: d = attr.__dict__ d['value'] = d['nodeValue'] = value if attr.isId: _clear_id_cache(self) return def setAttributeNS(self, namespaceURI, qualifiedName, value): prefix, localname = _nssplit(qualifiedName) attr = self.getAttributeNodeNS(namespaceURI, localname) if attr is None: attr = Attr(qualifiedName, namespaceURI, localname, prefix) d = attr.__dict__ d['prefix'] = prefix d['nodeName'] = qualifiedName d['value'] = d['nodeValue'] = value d['ownerDocument'] = self.ownerDocument self.setAttributeNode(attr) else: d = attr.__dict__ if value != attr.value: d['value'] = d['nodeValue'] = value if attr.isId: _clear_id_cache(self) if attr.prefix != prefix: d['prefix'] = prefix d['nodeName'] = qualifiedName return def getAttributeNode(self, attrname): return self._attrs.get(attrname) def getAttributeNodeNS(self, namespaceURI, localName): return self._attrsNS.get((namespaceURI, localName)) def setAttributeNode(self, attr): if attr.ownerElement not in (None, self): raise xml.dom.InuseAttributeErr('attribute node already owned') old1 = self._attrs.get(attr.name, None) if old1 is not None: self.removeAttributeNode(old1) old2 = self._attrsNS.get((attr.namespaceURI, attr.localName), None) if old2 is not None and old2 is not old1: self.removeAttributeNode(old2) _set_attribute_node(self, attr) if old1 is not attr: return old1 elif old2 is not attr: return old2 else: return setAttributeNodeNS = setAttributeNode def removeAttribute(self, name): try: attr = self._attrs[name] except KeyError: raise xml.dom.NotFoundErr() self.removeAttributeNode(attr) def removeAttributeNS(self, namespaceURI, localName): try: attr = self._attrsNS[namespaceURI, localName] except KeyError: raise xml.dom.NotFoundErr() self.removeAttributeNode(attr) def removeAttributeNode(self, node): if node is None: raise xml.dom.NotFoundErr() try: self._attrs[node.name] except KeyError: raise xml.dom.NotFoundErr() _clear_id_cache(self) node.unlink() node.ownerDocument = self.ownerDocument return removeAttributeNodeNS = removeAttributeNode def hasAttribute(self, name): return name in self._attrs def hasAttributeNS(self, namespaceURI, localName): return (namespaceURI, localName) in self._attrsNS def getElementsByTagName(self, name): return _get_elements_by_tagName_helper(self, name, NodeList()) def getElementsByTagNameNS(self, namespaceURI, localName): return _get_elements_by_tagName_ns_helper(self, namespaceURI, localName, NodeList()) def __repr__(self): return '<DOM Element: %s at %#x>' % (self.tagName, id(self)) def writexml(self, writer, indent = '', addindent = '', newl = ''): writer.write(indent + '<' + self.tagName) attrs = self._get_attributes() a_names = attrs.keys() a_names.sort() for a_name in a_names: writer.write(' %s="' % a_name) _write_data(writer, attrs[a_name].value) writer.write('"') if self.childNodes: writer.write('>') if len(self.childNodes) == 1 and self.childNodes[0].nodeType == Node.TEXT_NODE: self.childNodes[0].writexml(writer, '', '', '') else: writer.write(newl) for node in self.childNodes: node.writexml(writer, indent + addindent, addindent, newl) writer.write(indent) writer.write('</%s>%s' % (self.tagName, newl)) else: writer.write('/>%s' % newl) def _get_attributes(self): return NamedNodeMap(self._attrs, self._attrsNS, self) def hasAttributes(self): if self._attrs: return True else: return False def setIdAttribute(self, name): idAttr = self.getAttributeNode(name) self.setIdAttributeNode(idAttr) def setIdAttributeNS(self, namespaceURI, localName): idAttr = self.getAttributeNodeNS(namespaceURI, localName) self.setIdAttributeNode(idAttr) def setIdAttributeNode(self, idAttr): if idAttr is None or not self.isSameNode(idAttr.ownerElement): raise xml.dom.NotFoundErr() if _get_containing_entref(self) is not None: raise xml.dom.NoModificationAllowedErr() if not idAttr._is_id: idAttr.__dict__['_is_id'] = True self._magic_id_nodes += 1 self.ownerDocument._magic_id_count += 1 _clear_id_cache(self) return defproperty(Element, 'attributes', doc='NamedNodeMap of attributes on the element.') defproperty(Element, 'localName', doc='Namespace-local name of this element.') def _set_attribute_node(element, attr): _clear_id_cache(element) element._attrs[attr.name] = attr element._attrsNS[attr.namespaceURI, attr.localName] = attr attr.__dict__['ownerElement'] = element class Childless(): """Mixin that makes childless-ness easy to implement and avoids the complexity of the Node methods that deal with children. """ attributes = None childNodes = EmptyNodeList() firstChild = None lastChild = None def _get_firstChild(self): return None def _get_lastChild(self): return None def appendChild(self, node): raise xml.dom.HierarchyRequestErr(self.nodeName + ' nodes cannot have children') def hasChildNodes(self): return False def insertBefore(self, newChild, refChild): raise xml.dom.HierarchyRequestErr(self.nodeName + ' nodes do not have children') def removeChild(self, oldChild): raise xml.dom.NotFoundErr(self.nodeName + ' nodes do not have children') def normalize(self): pass def replaceChild(self, newChild, oldChild): raise xml.dom.HierarchyRequestErr(self.nodeName + ' nodes do not have children') class ProcessingInstruction(Childless, Node): nodeType = Node.PROCESSING_INSTRUCTION_NODE def __init__(self, target, data): self.target = self.nodeName = target self.data = self.nodeValue = data def _get_data(self): return self.data def _set_data(self, value): d = self.__dict__ d['data'] = d['nodeValue'] = value def _get_target(self): return self.target def _set_target(self, value): d = self.__dict__ d['target'] = d['nodeName'] = value def __setattr__(self, name, value): if name == 'data' or name == 'nodeValue': self.__dict__['data'] = self.__dict__['nodeValue'] = value elif name == 'target' or name == 'nodeName': self.__dict__['target'] = self.__dict__['nodeName'] = value else: self.__dict__[name] = value def writexml(self, writer, indent = '', addindent = '', newl = ''): writer.write('%s<?%s %s?>%s' % (indent, self.target, self.data, newl)) class CharacterData(Childless, Node): def _get_length(self): return len(self.data) __len__ = _get_length def _get_data(self): return self.__dict__['data'] def _set_data(self, data): d = self.__dict__ d['data'] = d['nodeValue'] = data _get_nodeValue = _get_data _set_nodeValue = _set_data def __setattr__(self, name, value): if name == 'data' or name == 'nodeValue': self.__dict__['data'] = self.__dict__['nodeValue'] = value else: self.__dict__[name] = value def __repr__(self): data = self.data if len(data) > 10: dotdotdot = '...' else: dotdotdot = '' return '<DOM %s node "%r%s">' % (self.__class__.__name__, data[0:10], dotdotdot) def substringData(self, offset, count): if offset < 0: raise xml.dom.IndexSizeErr('offset cannot be negative') if offset >= len(self.data): raise xml.dom.IndexSizeErr('offset cannot be beyond end of data') if count < 0: raise xml.dom.IndexSizeErr('count cannot be negative') return self.data[offset:offset + count] def appendData(self, arg): self.data = self.data + arg def insertData(self, offset, arg): if offset < 0: raise xml.dom.IndexSizeErr('offset cannot be negative') if offset >= len(self.data): raise xml.dom.IndexSizeErr('offset cannot be beyond end of data') if arg: self.data = '%s%s%s' % (self.data[:offset], arg, self.data[offset:]) def deleteData(self, offset, count): if offset < 0: raise xml.dom.IndexSizeErr('offset cannot be negative') if offset >= len(self.data): raise xml.dom.IndexSizeErr('offset cannot be beyond end of data') if count < 0: raise xml.dom.IndexSizeErr('count cannot be negative') if count: self.data = self.data[:offset] + self.data[offset + count:] def replaceData(self, offset, count, arg): if offset < 0: raise xml.dom.IndexSizeErr('offset cannot be negative') if offset >= len(self.data): raise xml.dom.IndexSizeErr('offset cannot be beyond end of data') if count < 0: raise xml.dom.IndexSizeErr('count cannot be negative') if count: self.data = '%s%s%s' % (self.data[:offset], arg, self.data[offset + count:]) defproperty(CharacterData, 'length', doc='Length of the string data.') class Text(CharacterData): nodeType = Node.TEXT_NODE nodeName = '#text' attributes = None def splitText(self, offset): if offset < 0 or offset > len(self.data): raise xml.dom.IndexSizeErr('illegal offset value') newText = self.__class__() newText.data = self.data[offset:] newText.ownerDocument = self.ownerDocument next = self.nextSibling if self.parentNode and self in self.parentNode.childNodes: if next is None: self.parentNode.appendChild(newText) else: self.parentNode.insertBefore(newText, next) self.data = self.data[:offset] return newText def writexml(self, writer, indent = '', addindent = '', newl = ''): _write_data(writer, '%s%s%s' % (indent, self.data, newl)) def _get_wholeText(self): L = [self.data] n = self.previousSibling while n is not None: if n.nodeType in (Node.TEXT_NODE, Node.CDATA_SECTION_NODE): L.insert(0, n.data) n = n.previousSibling else: break n = self.nextSibling while n is not None: if n.nodeType in (Node.TEXT_NODE, Node.CDATA_SECTION_NODE): L.append(n.data) n = n.nextSibling else: break return ''.join(L) def replaceWholeText(self, content): parent = self.parentNode n = self.previousSibling while n is not None: if n.nodeType in (Node.TEXT_NODE, Node.CDATA_SECTION_NODE): next = n.previousSibling parent.removeChild(n) n = next else: break n = self.nextSibling if not content: parent.removeChild(self) while n is not None: if n.nodeType in (Node.TEXT_NODE, Node.CDATA_SECTION_NODE): next = n.nextSibling parent.removeChild(n) n = next else: break if content: d = self.__dict__ d['data'] = content d['nodeValue'] = content return self else: return return def _get_isWhitespaceInElementContent(self): if self.data.strip(): return False else: elem = _get_containing_element(self) if elem is None: return False info = self.ownerDocument._get_elem_info(elem) if info is None: return False return info.isElementContent() return defproperty(Text, 'isWhitespaceInElementContent', doc='True iff this text node contains only whitespace and is in element content.') defproperty(Text, 'wholeText', doc='The text of all logically-adjacent text nodes.') def _get_containing_element(node): c = node.parentNode while c is not None: if c.nodeType == Node.ELEMENT_NODE: return c c = c.parentNode return def _get_containing_entref(node): c = node.parentNode while c is not None: if c.nodeType == Node.ENTITY_REFERENCE_NODE: return c c = c.parentNode return class Comment(Childless, CharacterData): nodeType = Node.COMMENT_NODE nodeName = '#comment' def __init__(self, data): self.data = self.nodeValue = data def writexml(self, writer, indent = '', addindent = '', newl = ''): if '--' in self.data: raise ValueError("'--' is not allowed in a comment node") writer.write('%s<!--%s-->%s' % (indent, self.data, newl)) class CDATASection(Text): nodeType = Node.CDATA_SECTION_NODE nodeName = '#cdata-section' def writexml(self, writer, indent = '', addindent = '', newl = ''): if self.data.find(']]>') >= 0: raise ValueError("']]>' not allowed in a CDATA section") writer.write('<![CDATA[%s]]>' % self.data) class ReadOnlySequentialNamedNodeMap(object): __slots__ = ('_seq',) def __init__(self, seq = ()): self._seq = seq def __len__(self): return len(self._seq) def _get_length(self): return len(self._seq) def getNamedItem(self, name): for n in self._seq: if n.nodeName == name: return n def getNamedItemNS(self, namespaceURI, localName): for n in self._seq: if n.namespaceURI == namespaceURI and n.localName == localName: return n def __getitem__(self, name_or_tuple): if isinstance(name_or_tuple, tuple): node = self.getNamedItemNS(*name_or_tuple) else: node = self.getNamedItem(name_or_tuple) if node is None: raise KeyError, name_or_tuple return node def item(self, index): if index < 0: return None else: try: return self._seq[index] except IndexError: return None return None def removeNamedItem(self, name): raise xml.dom.NoModificationAllowedErr('NamedNodeMap instance is read-only') def removeNamedItemNS(self, namespaceURI, localName): raise xml.dom.NoModificationAllowedErr('NamedNodeMap instance is read-only') def setNamedItem(self, node): raise xml.dom.NoModificationAllowedErr('NamedNodeMap instance is read-only') def setNamedItemNS(self, node): raise xml.dom.NoModificationAllowedErr('NamedNodeMap instance is read-only') def __getstate__(self): return [self._seq] def __setstate__(self, state): self._seq = state[0] defproperty(ReadOnlySequentialNamedNodeMap, 'length', doc='Number of entries in the NamedNodeMap.') class Identified(): """Mix-in class that supports the publicId and systemId attributes.""" def _identified_mixin_init(self, publicId, systemId): self.publicId = publicId self.systemId = systemId def _get_publicId(self): return self.publicId def _get_systemId(self): return self.systemId class DocumentType(Identified, Childless, Node): nodeType = Node.DOCUMENT_TYPE_NODE nodeValue = None name = None publicId = None systemId = None internalSubset = None def __init__(self, qualifiedName): self.entities = ReadOnlySequentialNamedNodeMap() self.notations = ReadOnlySequentialNamedNodeMap() if qualifiedName: prefix, localname = _nssplit(qualifiedName) self.name = localname self.nodeName = self.name def _get_internalSubset(self): return self.internalSubset def cloneNode(self, deep): if self.ownerDocument is None: clone = DocumentType(None) clone.name = self.name clone.nodeName = self.name operation = xml.dom.UserDataHandler.NODE_CLONED if deep: clone.entities._seq = [] clone.notations._seq = [] for n in self.notations._seq: notation = Notation(n.nodeName, n.publicId, n.systemId) clone.notations._seq.append(notation) n._call_user_data_handler(operation, n, notation) for e in self.entities._seq: entity = Entity(e.nodeName, e.publicId, e.systemId, e.notationName) entity.actualEncoding = e.actualEncoding entity.encoding = e.encoding entity.version = e.version clone.entities._seq.append(entity) e._call_user_data_handler(operation, n, entity) self._call_user_data_handler(operation, self, clone) return clone else: return return def writexml(self, writer, indent = '', addindent = '', newl = ''): writer.write('<!DOCTYPE ') writer.write(self.name) if self.publicId: writer.write("%s PUBLIC '%s'%s '%s'" % (newl, self.publicId, newl, self.systemId)) elif self.systemId: writer.write("%s SYSTEM '%s'" % (newl, self.systemId)) if self.internalSubset is not None: writer.write(' [') writer.write(self.internalSubset) writer.write(']') writer.write('>' + newl) return class Entity(Identified, Node): attributes = None nodeType = Node.ENTITY_NODE nodeValue = None actualEncoding = None encoding = None version = None def __init__(self, name, publicId, systemId, notation): self.nodeName = name self.notationName = notation self.childNodes = NodeList() self._identified_mixin_init(publicId, systemId) def _get_actualEncoding(self): return self.actualEncoding def _get_encoding(self): return self.encoding def _get_version(self): return self.version def appendChild(self, newChild): raise xml.dom.HierarchyRequestErr('cannot append children to an entity node') def insertBefore(self, newChild, refChild): raise xml.dom.HierarchyRequestErr('cannot insert children below an entity node') def removeChild(self, oldChild): raise xml.dom.HierarchyRequestErr('cannot remove children from an entity node') def replaceChild(self, newChild, oldChild): raise xml.dom.HierarchyRequestErr('cannot replace children of an entity node') class Notation(Identified, Childless, Node): nodeType = Node.NOTATION_NODE nodeValue = None def __init__(self, name, publicId, systemId): self.nodeName = name self._identified_mixin_init(publicId, systemId) class DOMImplementation(DOMImplementationLS): _features = [('core', '1.0'), ('core', '2.0'), ('core', None), ('xml', '1.0'), ('xml', '2.0'), ('xml', None), ('ls-load', '3.0'), ('ls-load', None)] def hasFeature(self, feature, version): if version == '': version = None return (feature.lower(), version) in self._features def createDocument(self, namespaceURI, qualifiedName, doctype): if doctype and doctype.parentNode is not None: raise xml.dom.WrongDocumentErr('doctype object owned by another DOM tree') doc = self._create_document() add_root_element = not (namespaceURI is None and qualifiedName is None and doctype is None) if not qualifiedName and add_root_element: raise xml.dom.InvalidCharacterErr('Element with no name') if add_root_element: prefix, localname = _nssplit(qualifiedName) if prefix == 'xml' and namespaceURI != 'http://www.w3.org/XML/1998/namespace': raise xml.dom.NamespaceErr("illegal use of 'xml' prefix") if prefix and not namespaceURI: raise xml.dom.NamespaceErr('illegal use of prefix without namespaces') element = doc.createElementNS(namespaceURI, qualifiedName) if doctype: doc.appendChild(doctype) doc.appendChild(element) if doctype: doctype.parentNode = doctype.ownerDocument = doc doc.doctype = doctype doc.implementation = self return doc def createDocumentType(self, qualifiedName, publicId, systemId): doctype = DocumentType(qualifiedName) doctype.publicId = publicId doctype.systemId = systemId return doctype def getInterface(self, feature): if self.hasFeature(feature, None): return self else: return return def _create_document(self): return Document() class ElementInfo(object): """Object that represents content-model information for an element. This implementation is not expected to be used in practice; DOM builders should provide implementations which do the right thing using information available to it. """ __slots__ = ('tagName',) def __init__(self, name): self.tagName = name def getAttributeType(self, aname): return _no_type def getAttributeTypeNS(self, namespaceURI, localName): return _no_type def isElementContent(self): return False def isEmpty(self): """Returns true iff this element is declared to have an EMPTY content model.""" return False def isId(self, aname): """Returns true iff the named attribute is a DTD-style ID.""" return False def isIdNS(self, namespaceURI, localName): """Returns true iff the identified attribute is a DTD-style ID.""" return False def __getstate__(self): return self.tagName def __setstate__(self, state): self.tagName = state def _clear_id_cache(node): if node.nodeType == Node.DOCUMENT_NODE: node._id_cache.clear() node._id_search_stack = None elif _in_document(node): node.ownerDocument._id_cache.clear() node.ownerDocument._id_search_stack = None return class Document(Node, DocumentLS): _child_node_types = (Node.ELEMENT_NODE, Node.PROCESSING_INSTRUCTION_NODE, Node.COMMENT_NODE, Node.DOCUMENT_TYPE_NODE) nodeType = Node.DOCUMENT_NODE nodeName = '#document' nodeValue = None attributes = None doctype = None parentNode = None previousSibling = nextSibling = None implementation = DOMImplementation() actualEncoding = None encoding = None standalone = None version = None strictErrorChecking = False errorHandler = None documentURI = None _magic_id_count = 0 def __init__(self): self.childNodes = NodeList() self._elem_info = {} self._id_cache = {} self._id_search_stack = None return def _get_elem_info(self, element): if element.namespaceURI: key = (element.namespaceURI, element.localName) else: key = element.tagName return self._elem_info.get(key) def _get_actualEncoding(self): return self.actualEncoding def _get_doctype(self): return self.doctype def _get_documentURI(self): return self.documentURI def _get_encoding(self): return self.encoding def _get_errorHandler(self): return self.errorHandler def _get_standalone(self): return self.standalone def _get_strictErrorChecking(self): return self.strictErrorChecking def _get_version(self): return self.version def appendChild(self, node): if node.nodeType not in self._child_node_types: raise xml.dom.HierarchyRequestErr('%s cannot be child of %s' % (repr(node), repr(self))) if node.parentNode is not None: node.parentNode.removeChild(node) if node.nodeType == Node.ELEMENT_NODE and self._get_documentElement(): raise xml.dom.HierarchyRequestErr('two document elements disallowed') return Node.appendChild(self, node) def removeChild(self, oldChild): try: self.childNodes.remove(oldChild) except ValueError: raise xml.dom.NotFoundErr() oldChild.nextSibling = oldChild.previousSibling = None oldChild.parentNode = None if self.documentElement is oldChild: self.documentElement = None return oldChild def _get_documentElement(self): for node in self.childNodes: if node.nodeType == Node.ELEMENT_NODE: return node def unlink(self): if self.doctype is not None: self.doctype.unlink() self.doctype = None Node.unlink(self) return def cloneNode(self, deep): if not deep: return else: clone = self.implementation.createDocument(None, None, None) clone.encoding = self.encoding clone.standalone = self.standalone clone.version = self.version for n in self.childNodes: childclone = _clone_node(n, deep, clone) if not childclone.ownerDocument.isSameNode(clone): raise AssertionError clone.childNodes.append(childclone) raise childclone.nodeType == Node.DOCUMENT_NODE and (clone.documentElement is None or AssertionError) elif not (childclone.nodeType == Node.DOCUMENT_TYPE_NODE and clone.doctype is None): raise AssertionError clone.doctype = childclone childclone.parentNode = clone self._call_user_data_handler(xml.dom.UserDataHandler.NODE_CLONED, self, clone) return clone def createDocumentFragment(self): d = DocumentFragment() d.ownerDocument = self return d def createElement(self, tagName): e = Element(tagName) e.ownerDocument = self return e def createTextNode(self, data): if not isinstance(data, StringTypes): raise TypeError, 'node contents must be a string' t = Text() t.data = data t.ownerDocument = self return t def createCDATASection(self, data): if not isinstance(data, StringTypes): raise TypeError, 'node contents must be a string' c = CDATASection() c.data = data c.ownerDocument = self return c def createComment(self, data): c = Comment(data) c.ownerDocument = self return c def createProcessingInstruction(self, target, data): p = ProcessingInstruction(target, data) p.ownerDocument = self return p def createAttribute(self, qName): a = Attr(qName) a.ownerDocument = self a.value = '' return a def createElementNS(self, namespaceURI, qualifiedName): prefix, localName = _nssplit(qualifiedName) e = Element(qualifiedName, namespaceURI, prefix) e.ownerDocument = self return e def createAttributeNS(self, namespaceURI, qualifiedName): prefix, localName = _nssplit(qualifiedName) a = Attr(qualifiedName, namespaceURI, localName, prefix) a.ownerDocument = self a.value = '' return a def _create_entity(self, name, publicId, systemId, notationName): e = Entity(name, publicId, systemId, notationName) e.ownerDocument = self return e def _create_notation(self, name, publicId, systemId): n = Notation(name, publicId, systemId) n.ownerDocument = self return n def getElementById(self, id): if id in self._id_cache: return self._id_cache[id] elif not (self._elem_info or self._magic_id_count): return else: stack = self._id_search_stack if stack is None: stack = [self.documentElement] self._id_search_stack = stack elif not stack: return result = None while stack: node = stack.pop() stack.extend([ child for child in node.childNodes if child.nodeType in _nodeTypes_with_children ]) info = self._get_elem_info(node) if info: for attr in node.attributes.values(): if attr.namespaceURI: if info.isIdNS(attr.namespaceURI, attr.localName): self._id_cache[attr.value] = node if attr.value == id: result = node elif not node._magic_id_nodes: break elif info.isId(attr.name): self._id_cache[attr.value] = node if attr.value == id: result = node elif not node._magic_id_nodes: break elif attr._is_id: self._id_cache[attr.value] = node if attr.value == id: result = node elif node._magic_id_nodes == 1: break elif node._magic_id_nodes: for attr in node.attributes.values(): if attr._is_id: self._id_cache[attr.value] = node if attr.value == id: result = node if result is not None: break return result def getElementsByTagName(self, name): return _get_elements_by_tagName_helper(self, name, NodeList()) def getElementsByTagNameNS(self, namespaceURI, localName): return _get_elements_by_tagName_ns_helper(self, namespaceURI, localName, NodeList()) def isSupported(self, feature, version): return self.implementation.hasFeature(feature, version) def importNode(self, node, deep): if node.nodeType == Node.DOCUMENT_NODE: raise xml.dom.NotSupportedErr('cannot import document nodes') elif node.nodeType == Node.DOCUMENT_TYPE_NODE: raise xml.dom.NotSupportedErr('cannot import document type nodes') return _clone_node(node, deep, self) def writexml(self, writer, indent = '', addindent = '', newl = '', encoding = None): if encoding is None: writer.write('<?xml version="1.0" ?>' + newl) else: writer.write('<?xml version="1.0" encoding="%s"?>%s' % (encoding, newl)) for node in self.childNodes: node.writexml(writer, indent, addindent, newl) return def renameNode(self, n, namespaceURI, name): if n.ownerDocument is not self: raise xml.dom.WrongDocumentErr('cannot rename nodes from other documents;\nexpected %s,\nfound %s' % (self, n.ownerDocument)) if n.nodeType not in (Node.ELEMENT_NODE, Node.ATTRIBUTE_NODE): raise xml.dom.NotSupportedErr('renameNode() only applies to element and attribute nodes') if namespaceURI != EMPTY_NAMESPACE: if ':' in name: prefix, localName = name.split(':', 1) if prefix == 'xmlns' and namespaceURI != xml.dom.XMLNS_NAMESPACE: raise xml.dom.NamespaceErr("illegal use of 'xmlns' prefix") else: if name == 'xmlns' and namespaceURI != xml.dom.XMLNS_NAMESPACE and n.nodeType == Node.ATTRIBUTE_NODE: raise xml.dom.NamespaceErr("illegal use of the 'xmlns' attribute") prefix = None localName = name else: prefix = None localName = None if n.nodeType == Node.ATTRIBUTE_NODE: element = n.ownerElement if element is not None: is_id = n._is_id element.removeAttributeNode(n) else: element = None d = n.__dict__ d['prefix'] = prefix d['localName'] = localName d['namespaceURI'] = namespaceURI d['nodeName'] = name if n.nodeType == Node.ELEMENT_NODE: d['tagName'] = name else: d['name'] = name if element is not None: element.setAttributeNode(n) if is_id: element.setIdAttributeNode(n) return n defproperty(Document, 'documentElement', doc='Top-level element of this document.') def _clone_node(node, deep, newOwnerDocument): """ Clone a node and give it the new owner document. Called by Node.cloneNode and Document.importNode """ if node.ownerDocument.isSameNode(newOwnerDocument): operation = xml.dom.UserDataHandler.NODE_CLONED else: operation = xml.dom.UserDataHandler.NODE_IMPORTED if node.nodeType == Node.ELEMENT_NODE: clone = newOwnerDocument.createElementNS(node.namespaceURI, node.nodeName) for attr in node.attributes.values(): clone.setAttributeNS(attr.namespaceURI, attr.nodeName, attr.value) a = clone.getAttributeNodeNS(attr.namespaceURI, attr.localName) a.specified = attr.specified if deep: for child in node.childNodes: c = _clone_node(child, deep, newOwnerDocument) clone.appendChild(c) elif node.nodeType == Node.DOCUMENT_FRAGMENT_NODE: clone = newOwnerDocument.createDocumentFragment() if deep: for child in node.childNodes: c = _clone_node(child, deep, newOwnerDocument) clone.appendChild(c) elif node.nodeType == Node.TEXT_NODE: clone = newOwnerDocument.createTextNode(node.data) elif node.nodeType == Node.CDATA_SECTION_NODE: clone = newOwnerDocument.createCDATASection(node.data) elif node.nodeType == Node.PROCESSING_INSTRUCTION_NODE: clone = newOwnerDocument.createProcessingInstruction(node.target, node.data) elif node.nodeType == Node.COMMENT_NODE: clone = newOwnerDocument.createComment(node.data) elif node.nodeType == Node.ATTRIBUTE_NODE: clone = newOwnerDocument.createAttributeNS(node.namespaceURI, node.nodeName) clone.specified = True clone.value = node.value elif not (node.nodeType == Node.DOCUMENT_TYPE_NODE and node.ownerDocument is not newOwnerDocument): raise AssertionError operation = xml.dom.UserDataHandler.NODE_IMPORTED clone = newOwnerDocument.implementation.createDocumentType(node.name, node.publicId, node.systemId) clone.ownerDocument = newOwnerDocument if deep: clone.entities._seq = [] clone.notations._seq = [] for n in node.notations._seq: notation = Notation(n.nodeName, n.publicId, n.systemId) notation.ownerDocument = newOwnerDocument clone.notations._seq.append(notation) if hasattr(n, '_call_user_data_handler'): n._call_user_data_handler(operation, n, notation) for e in node.entities._seq: entity = Entity(e.nodeName, e.publicId, e.systemId, e.notationName) entity.actualEncoding = e.actualEncoding entity.encoding = e.encoding entity.version = e.version entity.ownerDocument = newOwnerDocument clone.entities._seq.append(entity) if hasattr(e, '_call_user_data_handler'): e._call_user_data_handler(operation, n, entity) else: raise xml.dom.NotSupportedErr('Cannot clone node %s' % repr(node)) if hasattr(node, '_call_user_data_handler'): node._call_user_data_handler(operation, node, clone) return clone def _nssplit(qualifiedName): fields = qualifiedName.split(':', 1) if len(fields) == 2: return fields else: return (None, fields[0]) return None def _get_StringIO(): from StringIO import StringIO return StringIO() def _do_pulldom_parse(func, args, kwargs): events = func(*args, **kwargs) toktype, rootNode = events.getEvent() events.expandNode(rootNode) events.clear() return rootNode def parse(file, parser = None, bufsize = None): """Parse a file into a DOM by filename or file object.""" if parser is None and not bufsize: from xml.dom import expatbuilder return expatbuilder.parse(file) else: from xml.dom import pulldom return _do_pulldom_parse(pulldom.parse, (file,), {'parser': parser, 'bufsize': bufsize}) return def parseString(string, parser = None): """Parse a file into a DOM from a string.""" if parser is None: from xml.dom import expatbuilder return expatbuilder.parseString(string) else: from xml.dom import pulldom return _do_pulldom_parse(pulldom.parseString, (string,), {'parser': parser}) return def getDOMImplementation(features = None): if features: if isinstance(features, StringTypes): features = domreg._parse_feature_string(features) for f, v in features: if not Document.implementation.hasFeature(f, v): return None return Document.implementation # okay decompyling c:\Users\PC\wotsources\files\originals\res_bw\scripts\common\lib\xml\dom\minidom.pyc # decompiled 1 files: 1 okay, 0 failed, 0 verify failed # 2015.11.18 12:06:42 Střední Evropa (běžný čas)
81aa4a71b40e0f4171ac987b67ac21022703be28
200b310a18514177117cda1d1faed81dbfaa3a3e
/devel/.private/bwi_moveit_utils/lib/python2.7/dist-packages/bwi_moveit_utils/srv/_MoveitJointPose.py
0bd46260d0c17d725b0ae73147cbfad24f3bb357
[]
no_license
YoheiHayamizu/rl_ws
c63aedd2dc539bd56398dd19eafe9932bc598040
7fdde2f72a3b9cbef585e218d568e8c44c2e374e
refs/heads/main
2023-08-16T09:29:33.289334
2021-10-23T20:59:08
2021-10-23T20:59:08
420,521,618
0
0
null
null
null
null
UTF-8
Python
false
false
70,169
py
# This Python file uses the following encoding: utf-8 """autogenerated by genpy from bwi_moveit_utils/MoveitJointPoseRequest.msg. Do not edit.""" import sys python3 = True if sys.hexversion > 0x03000000 else False import genpy import struct import moveit_msgs.msg import geometry_msgs.msg import shape_msgs.msg import object_recognition_msgs.msg import std_msgs.msg class MoveitJointPoseRequest(genpy.Message): _md5sum = "75324f926a5e25d5030db04af6e4578c" _type = "bwi_moveit_utils/MoveitJointPoseRequest" _has_header = False #flag to mark the presence of a Header object _full_text = """float64[] target moveit_msgs/CollisionObject[] collision_objects moveit_msgs/Constraints constraints ================================================================================ MSG: moveit_msgs/CollisionObject # a header, used for interpreting the poses Header header # the id of the object (name used in MoveIt) string id # The object type in a database of known objects object_recognition_msgs/ObjectType type # the the collision geometries associated with the object; # their poses are with respect to the specified header # solid geometric primitives shape_msgs/SolidPrimitive[] primitives geometry_msgs/Pose[] primitive_poses # meshes shape_msgs/Mesh[] meshes geometry_msgs/Pose[] mesh_poses # bounding planes (equation is specified, but the plane can be oriented using an additional pose) shape_msgs/Plane[] planes geometry_msgs/Pose[] plane_poses # Adds the object to the planning scene. If the object previously existed, it is replaced. byte ADD=0 # Removes the object from the environment entirely (everything that matches the specified id) byte REMOVE=1 # Append to an object that already exists in the planning scene. If the does not exist, it is added. byte APPEND=2 # If an object already exists in the scene, new poses can be sent (the geometry arrays must be left empty) # if solely moving the object is desired byte MOVE=3 # Operation to be performed byte operation ================================================================================ MSG: std_msgs/Header # Standard metadata for higher-level stamped data types. # This is generally used to communicate timestamped data # in a particular coordinate frame. # # sequence ID: consecutively increasing ID uint32 seq #Two-integer timestamp that is expressed as: # * stamp.sec: seconds (stamp_secs) since epoch (in Python the variable is called 'secs') # * stamp.nsec: nanoseconds since stamp_secs (in Python the variable is called 'nsecs') # time-handling sugar is provided by the client library time stamp #Frame this data is associated with # 0: no frame # 1: global frame string frame_id ================================================================================ MSG: object_recognition_msgs/ObjectType ################################################## OBJECT ID ######################################################### # Contains information about the type of a found object. Those two sets of parameters together uniquely define an # object # The key of the found object: the unique identifier in the given db string key # The db parameters stored as a JSON/compressed YAML string. An object id does not make sense without the corresponding # database. E.g., in object_recognition, it can look like: "{'type':'CouchDB', 'root':'http://localhost'}" # There is no conventional format for those parameters and it's nice to keep that flexibility. # The object_recognition_core as a generic DB type that can read those fields # Current examples: # For CouchDB: # type: 'CouchDB' # root: 'http://localhost:5984' # collection: 'object_recognition' # For SQL household database: # type: 'SqlHousehold' # host: 'wgs36' # port: 5432 # user: 'willow' # password: 'willow' # name: 'household_objects' # module: 'tabletop' string db ================================================================================ MSG: shape_msgs/SolidPrimitive # Define box, sphere, cylinder, cone # All shapes are defined to have their bounding boxes centered around 0,0,0. uint8 BOX=1 uint8 SPHERE=2 uint8 CYLINDER=3 uint8 CONE=4 # The type of the shape uint8 type # The dimensions of the shape float64[] dimensions # The meaning of the shape dimensions: each constant defines the index in the 'dimensions' array # For the BOX type, the X, Y, and Z dimensions are the length of the corresponding # sides of the box. uint8 BOX_X=0 uint8 BOX_Y=1 uint8 BOX_Z=2 # For the SPHERE type, only one component is used, and it gives the radius of # the sphere. uint8 SPHERE_RADIUS=0 # For the CYLINDER and CONE types, the center line is oriented along # the Z axis. Therefore the CYLINDER_HEIGHT (CONE_HEIGHT) component # of dimensions gives the height of the cylinder (cone). The # CYLINDER_RADIUS (CONE_RADIUS) component of dimensions gives the # radius of the base of the cylinder (cone). Cone and cylinder # primitives are defined to be circular. The tip of the cone is # pointing up, along +Z axis. uint8 CYLINDER_HEIGHT=0 uint8 CYLINDER_RADIUS=1 uint8 CONE_HEIGHT=0 uint8 CONE_RADIUS=1 ================================================================================ MSG: geometry_msgs/Pose # A representation of pose in free space, composed of position and orientation. Point position Quaternion orientation ================================================================================ MSG: geometry_msgs/Point # This contains the position of a point in free space float64 x float64 y float64 z ================================================================================ MSG: geometry_msgs/Quaternion # This represents an orientation in free space in quaternion form. float64 x float64 y float64 z float64 w ================================================================================ MSG: shape_msgs/Mesh # Definition of a mesh # list of triangles; the index values refer to positions in vertices[] MeshTriangle[] triangles # the actual vertices that make up the mesh geometry_msgs/Point[] vertices ================================================================================ MSG: shape_msgs/MeshTriangle # Definition of a triangle's vertices uint32[3] vertex_indices ================================================================================ MSG: shape_msgs/Plane # Representation of a plane, using the plane equation ax + by + cz + d = 0 # a := coef[0] # b := coef[1] # c := coef[2] # d := coef[3] float64[4] coef ================================================================================ MSG: moveit_msgs/Constraints # This message contains a list of motion planning constraints. # All constraints must be satisfied for a goal to be considered valid string name JointConstraint[] joint_constraints PositionConstraint[] position_constraints OrientationConstraint[] orientation_constraints VisibilityConstraint[] visibility_constraints ================================================================================ MSG: moveit_msgs/JointConstraint # Constrain the position of a joint to be within a certain bound string joint_name # the bound to be achieved is [position - tolerance_below, position + tolerance_above] float64 position float64 tolerance_above float64 tolerance_below # A weighting factor for this constraint (denotes relative importance to other constraints. Closer to zero means less important) float64 weight ================================================================================ MSG: moveit_msgs/PositionConstraint # This message contains the definition of a position constraint. Header header # The robot link this constraint refers to string link_name # The offset (in the link frame) for the target point on the link we are planning for geometry_msgs/Vector3 target_point_offset # The volume this constraint refers to BoundingVolume constraint_region # A weighting factor for this constraint (denotes relative importance to other constraints. Closer to zero means less important) float64 weight ================================================================================ MSG: geometry_msgs/Vector3 # This represents a vector in free space. # It is only meant to represent a direction. Therefore, it does not # make sense to apply a translation to it (e.g., when applying a # generic rigid transformation to a Vector3, tf2 will only apply the # rotation). If you want your data to be translatable too, use the # geometry_msgs/Point message instead. float64 x float64 y float64 z ================================================================================ MSG: moveit_msgs/BoundingVolume # Define a volume in 3D # A set of solid geometric primitives that make up the volume to define (as a union) shape_msgs/SolidPrimitive[] primitives # The poses at which the primitives are located geometry_msgs/Pose[] primitive_poses # In addition to primitives, meshes can be specified to add to the bounding volume (again, as union) shape_msgs/Mesh[] meshes # The poses at which the meshes are located geometry_msgs/Pose[] mesh_poses ================================================================================ MSG: moveit_msgs/OrientationConstraint # This message contains the definition of an orientation constraint. Header header # The desired orientation of the robot link specified as a quaternion geometry_msgs/Quaternion orientation # The robot link this constraint refers to string link_name # optional axis-angle error tolerances specified float64 absolute_x_axis_tolerance float64 absolute_y_axis_tolerance float64 absolute_z_axis_tolerance # A weighting factor for this constraint (denotes relative importance to other constraints. Closer to zero means less important) float64 weight ================================================================================ MSG: moveit_msgs/VisibilityConstraint # The constraint is useful to maintain visibility to a disc (the target) in a particular frame. # This disc forms the base of a visibiliy cone whose tip is at the origin of the sensor. # Maintaining visibility is done by ensuring the robot does not obstruct the visibility cone. # Note: # This constraint does NOT enforce minimum or maximum distances between the sensor # and the target, nor does it enforce the target to be in the field of view of # the sensor. A PositionConstraint can (and probably should) be used for such purposes. # The radius of the disc that should be maintained visible float64 target_radius # The pose of the disc; as the robot moves, the pose of the disc may change as well # This can be in the frame of a particular robot link, for example geometry_msgs/PoseStamped target_pose # From the sensor origin towards the target, the disc forms a visibility cone # This cone is approximated using many sides. For example, when using 4 sides, # that in fact makes the visibility region be a pyramid. # This value should always be 3 or more. int32 cone_sides # The pose in which visibility is to be maintained. # The frame id should represent the robot link to which the sensor is attached. # It is assumed the sensor can look directly at the target, in any direction. # This assumption is usually not true, but additional PositionConstraints # can resolve this issue. geometry_msgs/PoseStamped sensor_pose # Even though the disc is maintained visible, the visibility cone can be very small # because of the orientation of the disc with respect to the sensor. It is possible # for example to view the disk almost from a side, in which case the visibility cone # can end up having close to 0 volume. The view angle is defined to be the angle between # the normal to the visibility disc and the direction vector from the sensor origin. # The value below represents the minimum desired view angle. For a perfect view, # this value will be 0 (the two vectors are exact opposites). For a completely obstructed view # this value will be Pi/2 (the vectors are perpendicular). This value defined below # is the maximum view angle to be maintained. This should be a value in the open interval # (0, Pi/2). If 0 is set, the view angle is NOT enforced. float64 max_view_angle # This angle is used similarly to max_view_angle but limits the maximum angle # between the sensor origin direction vector and the axis that connects the # sensor origin to the target frame origin. The value is again in the range (0, Pi/2) # and is NOT enforced if set to 0. float64 max_range_angle # The axis that is assumed to indicate the direction of view for the sensor # X = 2, Y = 1, Z = 0 uint8 SENSOR_Z=0 uint8 SENSOR_Y=1 uint8 SENSOR_X=2 uint8 sensor_view_direction # A weighting factor for this constraint (denotes relative importance to other constraints. Closer to zero means less important) float64 weight ================================================================================ MSG: geometry_msgs/PoseStamped # A Pose with reference coordinate frame and timestamp Header header Pose pose """ __slots__ = ['target','collision_objects','constraints'] _slot_types = ['float64[]','moveit_msgs/CollisionObject[]','moveit_msgs/Constraints'] def __init__(self, *args, **kwds): """ Constructor. Any message fields that are implicitly/explicitly set to None will be assigned a default value. The recommend use is keyword arguments as this is more robust to future message changes. You cannot mix in-order arguments and keyword arguments. The available fields are: target,collision_objects,constraints :param args: complete set of field values, in .msg order :param kwds: use keyword arguments corresponding to message field names to set specific fields. """ if args or kwds: super(MoveitJointPoseRequest, self).__init__(*args, **kwds) #message fields cannot be None, assign default values for those that are if self.target is None: self.target = [] if self.collision_objects is None: self.collision_objects = [] if self.constraints is None: self.constraints = moveit_msgs.msg.Constraints() else: self.target = [] self.collision_objects = [] self.constraints = moveit_msgs.msg.Constraints() def _get_types(self): """ internal API method """ return self._slot_types def serialize(self, buff): """ serialize message into buffer :param buff: buffer, ``StringIO`` """ try: length = len(self.target) buff.write(_struct_I.pack(length)) pattern = '<%sd'%length buff.write(struct.pack(pattern, *self.target)) length = len(self.collision_objects) buff.write(_struct_I.pack(length)) for val1 in self.collision_objects: _v1 = val1.header buff.write(_get_struct_I().pack(_v1.seq)) _v2 = _v1.stamp _x = _v2 buff.write(_get_struct_2I().pack(_x.secs, _x.nsecs)) _x = _v1.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = val1.id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _v3 = val1.type _x = _v3.key length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = _v3.db length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) length = len(val1.primitives) buff.write(_struct_I.pack(length)) for val2 in val1.primitives: buff.write(_get_struct_B().pack(val2.type)) length = len(val2.dimensions) buff.write(_struct_I.pack(length)) pattern = '<%sd'%length buff.write(struct.pack(pattern, *val2.dimensions)) length = len(val1.primitive_poses) buff.write(_struct_I.pack(length)) for val2 in val1.primitive_poses: _v4 = val2.position _x = _v4 buff.write(_get_struct_3d().pack(_x.x, _x.y, _x.z)) _v5 = val2.orientation _x = _v5 buff.write(_get_struct_4d().pack(_x.x, _x.y, _x.z, _x.w)) length = len(val1.meshes) buff.write(_struct_I.pack(length)) for val2 in val1.meshes: length = len(val2.triangles) buff.write(_struct_I.pack(length)) for val3 in val2.triangles: buff.write(_get_struct_3I().pack(*val3.vertex_indices)) length = len(val2.vertices) buff.write(_struct_I.pack(length)) for val3 in val2.vertices: _x = val3 buff.write(_get_struct_3d().pack(_x.x, _x.y, _x.z)) length = len(val1.mesh_poses) buff.write(_struct_I.pack(length)) for val2 in val1.mesh_poses: _v6 = val2.position _x = _v6 buff.write(_get_struct_3d().pack(_x.x, _x.y, _x.z)) _v7 = val2.orientation _x = _v7 buff.write(_get_struct_4d().pack(_x.x, _x.y, _x.z, _x.w)) length = len(val1.planes) buff.write(_struct_I.pack(length)) for val2 in val1.planes: buff.write(_get_struct_4d().pack(*val2.coef)) length = len(val1.plane_poses) buff.write(_struct_I.pack(length)) for val2 in val1.plane_poses: _v8 = val2.position _x = _v8 buff.write(_get_struct_3d().pack(_x.x, _x.y, _x.z)) _v9 = val2.orientation _x = _v9 buff.write(_get_struct_4d().pack(_x.x, _x.y, _x.z, _x.w)) buff.write(_get_struct_b().pack(val1.operation)) _x = self.constraints.name length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) length = len(self.constraints.joint_constraints) buff.write(_struct_I.pack(length)) for val1 in self.constraints.joint_constraints: _x = val1.joint_name length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = val1 buff.write(_get_struct_4d().pack(_x.position, _x.tolerance_above, _x.tolerance_below, _x.weight)) length = len(self.constraints.position_constraints) buff.write(_struct_I.pack(length)) for val1 in self.constraints.position_constraints: _v10 = val1.header buff.write(_get_struct_I().pack(_v10.seq)) _v11 = _v10.stamp _x = _v11 buff.write(_get_struct_2I().pack(_x.secs, _x.nsecs)) _x = _v10.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = val1.link_name length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _v12 = val1.target_point_offset _x = _v12 buff.write(_get_struct_3d().pack(_x.x, _x.y, _x.z)) _v13 = val1.constraint_region length = len(_v13.primitives) buff.write(_struct_I.pack(length)) for val3 in _v13.primitives: buff.write(_get_struct_B().pack(val3.type)) length = len(val3.dimensions) buff.write(_struct_I.pack(length)) pattern = '<%sd'%length buff.write(struct.pack(pattern, *val3.dimensions)) length = len(_v13.primitive_poses) buff.write(_struct_I.pack(length)) for val3 in _v13.primitive_poses: _v14 = val3.position _x = _v14 buff.write(_get_struct_3d().pack(_x.x, _x.y, _x.z)) _v15 = val3.orientation _x = _v15 buff.write(_get_struct_4d().pack(_x.x, _x.y, _x.z, _x.w)) length = len(_v13.meshes) buff.write(_struct_I.pack(length)) for val3 in _v13.meshes: length = len(val3.triangles) buff.write(_struct_I.pack(length)) for val4 in val3.triangles: buff.write(_get_struct_3I().pack(*val4.vertex_indices)) length = len(val3.vertices) buff.write(_struct_I.pack(length)) for val4 in val3.vertices: _x = val4 buff.write(_get_struct_3d().pack(_x.x, _x.y, _x.z)) length = len(_v13.mesh_poses) buff.write(_struct_I.pack(length)) for val3 in _v13.mesh_poses: _v16 = val3.position _x = _v16 buff.write(_get_struct_3d().pack(_x.x, _x.y, _x.z)) _v17 = val3.orientation _x = _v17 buff.write(_get_struct_4d().pack(_x.x, _x.y, _x.z, _x.w)) buff.write(_get_struct_d().pack(val1.weight)) length = len(self.constraints.orientation_constraints) buff.write(_struct_I.pack(length)) for val1 in self.constraints.orientation_constraints: _v18 = val1.header buff.write(_get_struct_I().pack(_v18.seq)) _v19 = _v18.stamp _x = _v19 buff.write(_get_struct_2I().pack(_x.secs, _x.nsecs)) _x = _v18.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _v20 = val1.orientation _x = _v20 buff.write(_get_struct_4d().pack(_x.x, _x.y, _x.z, _x.w)) _x = val1.link_name length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = val1 buff.write(_get_struct_4d().pack(_x.absolute_x_axis_tolerance, _x.absolute_y_axis_tolerance, _x.absolute_z_axis_tolerance, _x.weight)) length = len(self.constraints.visibility_constraints) buff.write(_struct_I.pack(length)) for val1 in self.constraints.visibility_constraints: buff.write(_get_struct_d().pack(val1.target_radius)) _v21 = val1.target_pose _v22 = _v21.header buff.write(_get_struct_I().pack(_v22.seq)) _v23 = _v22.stamp _x = _v23 buff.write(_get_struct_2I().pack(_x.secs, _x.nsecs)) _x = _v22.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _v24 = _v21.pose _v25 = _v24.position _x = _v25 buff.write(_get_struct_3d().pack(_x.x, _x.y, _x.z)) _v26 = _v24.orientation _x = _v26 buff.write(_get_struct_4d().pack(_x.x, _x.y, _x.z, _x.w)) buff.write(_get_struct_i().pack(val1.cone_sides)) _v27 = val1.sensor_pose _v28 = _v27.header buff.write(_get_struct_I().pack(_v28.seq)) _v29 = _v28.stamp _x = _v29 buff.write(_get_struct_2I().pack(_x.secs, _x.nsecs)) _x = _v28.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _v30 = _v27.pose _v31 = _v30.position _x = _v31 buff.write(_get_struct_3d().pack(_x.x, _x.y, _x.z)) _v32 = _v30.orientation _x = _v32 buff.write(_get_struct_4d().pack(_x.x, _x.y, _x.z, _x.w)) _x = val1 buff.write(_get_struct_2dBd().pack(_x.max_view_angle, _x.max_range_angle, _x.sensor_view_direction, _x.weight)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ try: if self.collision_objects is None: self.collision_objects = None if self.constraints is None: self.constraints = moveit_msgs.msg.Constraints() end = 0 start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) pattern = '<%sd'%length start = end end += struct.calcsize(pattern) self.target = struct.unpack(pattern, str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.collision_objects = [] for i in range(0, length): val1 = moveit_msgs.msg.CollisionObject() _v33 = val1.header start = end end += 4 (_v33.seq,) = _get_struct_I().unpack(str[start:end]) _v34 = _v33.stamp _x = _v34 start = end end += 8 (_x.secs, _x.nsecs,) = _get_struct_2I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: _v33.frame_id = str[start:end].decode('utf-8') else: _v33.frame_id = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: val1.id = str[start:end].decode('utf-8') else: val1.id = str[start:end] _v35 = val1.type start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: _v35.key = str[start:end].decode('utf-8') else: _v35.key = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: _v35.db = str[start:end].decode('utf-8') else: _v35.db = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) val1.primitives = [] for i in range(0, length): val2 = shape_msgs.msg.SolidPrimitive() start = end end += 1 (val2.type,) = _get_struct_B().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) pattern = '<%sd'%length start = end end += struct.calcsize(pattern) val2.dimensions = struct.unpack(pattern, str[start:end]) val1.primitives.append(val2) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) val1.primitive_poses = [] for i in range(0, length): val2 = geometry_msgs.msg.Pose() _v36 = val2.position _x = _v36 start = end end += 24 (_x.x, _x.y, _x.z,) = _get_struct_3d().unpack(str[start:end]) _v37 = val2.orientation _x = _v37 start = end end += 32 (_x.x, _x.y, _x.z, _x.w,) = _get_struct_4d().unpack(str[start:end]) val1.primitive_poses.append(val2) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) val1.meshes = [] for i in range(0, length): val2 = shape_msgs.msg.Mesh() start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) val2.triangles = [] for i in range(0, length): val3 = shape_msgs.msg.MeshTriangle() start = end end += 12 val3.vertex_indices = _get_struct_3I().unpack(str[start:end]) val2.triangles.append(val3) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) val2.vertices = [] for i in range(0, length): val3 = geometry_msgs.msg.Point() _x = val3 start = end end += 24 (_x.x, _x.y, _x.z,) = _get_struct_3d().unpack(str[start:end]) val2.vertices.append(val3) val1.meshes.append(val2) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) val1.mesh_poses = [] for i in range(0, length): val2 = geometry_msgs.msg.Pose() _v38 = val2.position _x = _v38 start = end end += 24 (_x.x, _x.y, _x.z,) = _get_struct_3d().unpack(str[start:end]) _v39 = val2.orientation _x = _v39 start = end end += 32 (_x.x, _x.y, _x.z, _x.w,) = _get_struct_4d().unpack(str[start:end]) val1.mesh_poses.append(val2) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) val1.planes = [] for i in range(0, length): val2 = shape_msgs.msg.Plane() start = end end += 32 val2.coef = _get_struct_4d().unpack(str[start:end]) val1.planes.append(val2) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) val1.plane_poses = [] for i in range(0, length): val2 = geometry_msgs.msg.Pose() _v40 = val2.position _x = _v40 start = end end += 24 (_x.x, _x.y, _x.z,) = _get_struct_3d().unpack(str[start:end]) _v41 = val2.orientation _x = _v41 start = end end += 32 (_x.x, _x.y, _x.z, _x.w,) = _get_struct_4d().unpack(str[start:end]) val1.plane_poses.append(val2) start = end end += 1 (val1.operation,) = _get_struct_b().unpack(str[start:end]) self.collision_objects.append(val1) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.constraints.name = str[start:end].decode('utf-8') else: self.constraints.name = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.constraints.joint_constraints = [] for i in range(0, length): val1 = moveit_msgs.msg.JointConstraint() start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: val1.joint_name = str[start:end].decode('utf-8') else: val1.joint_name = str[start:end] _x = val1 start = end end += 32 (_x.position, _x.tolerance_above, _x.tolerance_below, _x.weight,) = _get_struct_4d().unpack(str[start:end]) self.constraints.joint_constraints.append(val1) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.constraints.position_constraints = [] for i in range(0, length): val1 = moveit_msgs.msg.PositionConstraint() _v42 = val1.header start = end end += 4 (_v42.seq,) = _get_struct_I().unpack(str[start:end]) _v43 = _v42.stamp _x = _v43 start = end end += 8 (_x.secs, _x.nsecs,) = _get_struct_2I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: _v42.frame_id = str[start:end].decode('utf-8') else: _v42.frame_id = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: val1.link_name = str[start:end].decode('utf-8') else: val1.link_name = str[start:end] _v44 = val1.target_point_offset _x = _v44 start = end end += 24 (_x.x, _x.y, _x.z,) = _get_struct_3d().unpack(str[start:end]) _v45 = val1.constraint_region start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) _v45.primitives = [] for i in range(0, length): val3 = shape_msgs.msg.SolidPrimitive() start = end end += 1 (val3.type,) = _get_struct_B().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) pattern = '<%sd'%length start = end end += struct.calcsize(pattern) val3.dimensions = struct.unpack(pattern, str[start:end]) _v45.primitives.append(val3) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) _v45.primitive_poses = [] for i in range(0, length): val3 = geometry_msgs.msg.Pose() _v46 = val3.position _x = _v46 start = end end += 24 (_x.x, _x.y, _x.z,) = _get_struct_3d().unpack(str[start:end]) _v47 = val3.orientation _x = _v47 start = end end += 32 (_x.x, _x.y, _x.z, _x.w,) = _get_struct_4d().unpack(str[start:end]) _v45.primitive_poses.append(val3) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) _v45.meshes = [] for i in range(0, length): val3 = shape_msgs.msg.Mesh() start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) val3.triangles = [] for i in range(0, length): val4 = shape_msgs.msg.MeshTriangle() start = end end += 12 val4.vertex_indices = _get_struct_3I().unpack(str[start:end]) val3.triangles.append(val4) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) val3.vertices = [] for i in range(0, length): val4 = geometry_msgs.msg.Point() _x = val4 start = end end += 24 (_x.x, _x.y, _x.z,) = _get_struct_3d().unpack(str[start:end]) val3.vertices.append(val4) _v45.meshes.append(val3) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) _v45.mesh_poses = [] for i in range(0, length): val3 = geometry_msgs.msg.Pose() _v48 = val3.position _x = _v48 start = end end += 24 (_x.x, _x.y, _x.z,) = _get_struct_3d().unpack(str[start:end]) _v49 = val3.orientation _x = _v49 start = end end += 32 (_x.x, _x.y, _x.z, _x.w,) = _get_struct_4d().unpack(str[start:end]) _v45.mesh_poses.append(val3) start = end end += 8 (val1.weight,) = _get_struct_d().unpack(str[start:end]) self.constraints.position_constraints.append(val1) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.constraints.orientation_constraints = [] for i in range(0, length): val1 = moveit_msgs.msg.OrientationConstraint() _v50 = val1.header start = end end += 4 (_v50.seq,) = _get_struct_I().unpack(str[start:end]) _v51 = _v50.stamp _x = _v51 start = end end += 8 (_x.secs, _x.nsecs,) = _get_struct_2I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: _v50.frame_id = str[start:end].decode('utf-8') else: _v50.frame_id = str[start:end] _v52 = val1.orientation _x = _v52 start = end end += 32 (_x.x, _x.y, _x.z, _x.w,) = _get_struct_4d().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: val1.link_name = str[start:end].decode('utf-8') else: val1.link_name = str[start:end] _x = val1 start = end end += 32 (_x.absolute_x_axis_tolerance, _x.absolute_y_axis_tolerance, _x.absolute_z_axis_tolerance, _x.weight,) = _get_struct_4d().unpack(str[start:end]) self.constraints.orientation_constraints.append(val1) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.constraints.visibility_constraints = [] for i in range(0, length): val1 = moveit_msgs.msg.VisibilityConstraint() start = end end += 8 (val1.target_radius,) = _get_struct_d().unpack(str[start:end]) _v53 = val1.target_pose _v54 = _v53.header start = end end += 4 (_v54.seq,) = _get_struct_I().unpack(str[start:end]) _v55 = _v54.stamp _x = _v55 start = end end += 8 (_x.secs, _x.nsecs,) = _get_struct_2I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: _v54.frame_id = str[start:end].decode('utf-8') else: _v54.frame_id = str[start:end] _v56 = _v53.pose _v57 = _v56.position _x = _v57 start = end end += 24 (_x.x, _x.y, _x.z,) = _get_struct_3d().unpack(str[start:end]) _v58 = _v56.orientation _x = _v58 start = end end += 32 (_x.x, _x.y, _x.z, _x.w,) = _get_struct_4d().unpack(str[start:end]) start = end end += 4 (val1.cone_sides,) = _get_struct_i().unpack(str[start:end]) _v59 = val1.sensor_pose _v60 = _v59.header start = end end += 4 (_v60.seq,) = _get_struct_I().unpack(str[start:end]) _v61 = _v60.stamp _x = _v61 start = end end += 8 (_x.secs, _x.nsecs,) = _get_struct_2I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: _v60.frame_id = str[start:end].decode('utf-8') else: _v60.frame_id = str[start:end] _v62 = _v59.pose _v63 = _v62.position _x = _v63 start = end end += 24 (_x.x, _x.y, _x.z,) = _get_struct_3d().unpack(str[start:end]) _v64 = _v62.orientation _x = _v64 start = end end += 32 (_x.x, _x.y, _x.z, _x.w,) = _get_struct_4d().unpack(str[start:end]) _x = val1 start = end end += 25 (_x.max_view_angle, _x.max_range_angle, _x.sensor_view_direction, _x.weight,) = _get_struct_2dBd().unpack(str[start:end]) self.constraints.visibility_constraints.append(val1) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: length = len(self.target) buff.write(_struct_I.pack(length)) pattern = '<%sd'%length buff.write(self.target.tostring()) length = len(self.collision_objects) buff.write(_struct_I.pack(length)) for val1 in self.collision_objects: _v65 = val1.header buff.write(_get_struct_I().pack(_v65.seq)) _v66 = _v65.stamp _x = _v66 buff.write(_get_struct_2I().pack(_x.secs, _x.nsecs)) _x = _v65.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = val1.id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _v67 = val1.type _x = _v67.key length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = _v67.db length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) length = len(val1.primitives) buff.write(_struct_I.pack(length)) for val2 in val1.primitives: buff.write(_get_struct_B().pack(val2.type)) length = len(val2.dimensions) buff.write(_struct_I.pack(length)) pattern = '<%sd'%length buff.write(val2.dimensions.tostring()) length = len(val1.primitive_poses) buff.write(_struct_I.pack(length)) for val2 in val1.primitive_poses: _v68 = val2.position _x = _v68 buff.write(_get_struct_3d().pack(_x.x, _x.y, _x.z)) _v69 = val2.orientation _x = _v69 buff.write(_get_struct_4d().pack(_x.x, _x.y, _x.z, _x.w)) length = len(val1.meshes) buff.write(_struct_I.pack(length)) for val2 in val1.meshes: length = len(val2.triangles) buff.write(_struct_I.pack(length)) for val3 in val2.triangles: buff.write(val3.vertex_indices.tostring()) length = len(val2.vertices) buff.write(_struct_I.pack(length)) for val3 in val2.vertices: _x = val3 buff.write(_get_struct_3d().pack(_x.x, _x.y, _x.z)) length = len(val1.mesh_poses) buff.write(_struct_I.pack(length)) for val2 in val1.mesh_poses: _v70 = val2.position _x = _v70 buff.write(_get_struct_3d().pack(_x.x, _x.y, _x.z)) _v71 = val2.orientation _x = _v71 buff.write(_get_struct_4d().pack(_x.x, _x.y, _x.z, _x.w)) length = len(val1.planes) buff.write(_struct_I.pack(length)) for val2 in val1.planes: buff.write(val2.coef.tostring()) length = len(val1.plane_poses) buff.write(_struct_I.pack(length)) for val2 in val1.plane_poses: _v72 = val2.position _x = _v72 buff.write(_get_struct_3d().pack(_x.x, _x.y, _x.z)) _v73 = val2.orientation _x = _v73 buff.write(_get_struct_4d().pack(_x.x, _x.y, _x.z, _x.w)) buff.write(_get_struct_b().pack(val1.operation)) _x = self.constraints.name length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) length = len(self.constraints.joint_constraints) buff.write(_struct_I.pack(length)) for val1 in self.constraints.joint_constraints: _x = val1.joint_name length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = val1 buff.write(_get_struct_4d().pack(_x.position, _x.tolerance_above, _x.tolerance_below, _x.weight)) length = len(self.constraints.position_constraints) buff.write(_struct_I.pack(length)) for val1 in self.constraints.position_constraints: _v74 = val1.header buff.write(_get_struct_I().pack(_v74.seq)) _v75 = _v74.stamp _x = _v75 buff.write(_get_struct_2I().pack(_x.secs, _x.nsecs)) _x = _v74.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = val1.link_name length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _v76 = val1.target_point_offset _x = _v76 buff.write(_get_struct_3d().pack(_x.x, _x.y, _x.z)) _v77 = val1.constraint_region length = len(_v77.primitives) buff.write(_struct_I.pack(length)) for val3 in _v77.primitives: buff.write(_get_struct_B().pack(val3.type)) length = len(val3.dimensions) buff.write(_struct_I.pack(length)) pattern = '<%sd'%length buff.write(val3.dimensions.tostring()) length = len(_v77.primitive_poses) buff.write(_struct_I.pack(length)) for val3 in _v77.primitive_poses: _v78 = val3.position _x = _v78 buff.write(_get_struct_3d().pack(_x.x, _x.y, _x.z)) _v79 = val3.orientation _x = _v79 buff.write(_get_struct_4d().pack(_x.x, _x.y, _x.z, _x.w)) length = len(_v77.meshes) buff.write(_struct_I.pack(length)) for val3 in _v77.meshes: length = len(val3.triangles) buff.write(_struct_I.pack(length)) for val4 in val3.triangles: buff.write(val4.vertex_indices.tostring()) length = len(val3.vertices) buff.write(_struct_I.pack(length)) for val4 in val3.vertices: _x = val4 buff.write(_get_struct_3d().pack(_x.x, _x.y, _x.z)) length = len(_v77.mesh_poses) buff.write(_struct_I.pack(length)) for val3 in _v77.mesh_poses: _v80 = val3.position _x = _v80 buff.write(_get_struct_3d().pack(_x.x, _x.y, _x.z)) _v81 = val3.orientation _x = _v81 buff.write(_get_struct_4d().pack(_x.x, _x.y, _x.z, _x.w)) buff.write(_get_struct_d().pack(val1.weight)) length = len(self.constraints.orientation_constraints) buff.write(_struct_I.pack(length)) for val1 in self.constraints.orientation_constraints: _v82 = val1.header buff.write(_get_struct_I().pack(_v82.seq)) _v83 = _v82.stamp _x = _v83 buff.write(_get_struct_2I().pack(_x.secs, _x.nsecs)) _x = _v82.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _v84 = val1.orientation _x = _v84 buff.write(_get_struct_4d().pack(_x.x, _x.y, _x.z, _x.w)) _x = val1.link_name length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = val1 buff.write(_get_struct_4d().pack(_x.absolute_x_axis_tolerance, _x.absolute_y_axis_tolerance, _x.absolute_z_axis_tolerance, _x.weight)) length = len(self.constraints.visibility_constraints) buff.write(_struct_I.pack(length)) for val1 in self.constraints.visibility_constraints: buff.write(_get_struct_d().pack(val1.target_radius)) _v85 = val1.target_pose _v86 = _v85.header buff.write(_get_struct_I().pack(_v86.seq)) _v87 = _v86.stamp _x = _v87 buff.write(_get_struct_2I().pack(_x.secs, _x.nsecs)) _x = _v86.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _v88 = _v85.pose _v89 = _v88.position _x = _v89 buff.write(_get_struct_3d().pack(_x.x, _x.y, _x.z)) _v90 = _v88.orientation _x = _v90 buff.write(_get_struct_4d().pack(_x.x, _x.y, _x.z, _x.w)) buff.write(_get_struct_i().pack(val1.cone_sides)) _v91 = val1.sensor_pose _v92 = _v91.header buff.write(_get_struct_I().pack(_v92.seq)) _v93 = _v92.stamp _x = _v93 buff.write(_get_struct_2I().pack(_x.secs, _x.nsecs)) _x = _v92.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _v94 = _v91.pose _v95 = _v94.position _x = _v95 buff.write(_get_struct_3d().pack(_x.x, _x.y, _x.z)) _v96 = _v94.orientation _x = _v96 buff.write(_get_struct_4d().pack(_x.x, _x.y, _x.z, _x.w)) _x = val1 buff.write(_get_struct_2dBd().pack(_x.max_view_angle, _x.max_range_angle, _x.sensor_view_direction, _x.weight)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ try: if self.collision_objects is None: self.collision_objects = None if self.constraints is None: self.constraints = moveit_msgs.msg.Constraints() end = 0 start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) pattern = '<%sd'%length start = end end += struct.calcsize(pattern) self.target = numpy.frombuffer(str[start:end], dtype=numpy.float64, count=length) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.collision_objects = [] for i in range(0, length): val1 = moveit_msgs.msg.CollisionObject() _v97 = val1.header start = end end += 4 (_v97.seq,) = _get_struct_I().unpack(str[start:end]) _v98 = _v97.stamp _x = _v98 start = end end += 8 (_x.secs, _x.nsecs,) = _get_struct_2I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: _v97.frame_id = str[start:end].decode('utf-8') else: _v97.frame_id = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: val1.id = str[start:end].decode('utf-8') else: val1.id = str[start:end] _v99 = val1.type start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: _v99.key = str[start:end].decode('utf-8') else: _v99.key = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: _v99.db = str[start:end].decode('utf-8') else: _v99.db = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) val1.primitives = [] for i in range(0, length): val2 = shape_msgs.msg.SolidPrimitive() start = end end += 1 (val2.type,) = _get_struct_B().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) pattern = '<%sd'%length start = end end += struct.calcsize(pattern) val2.dimensions = numpy.frombuffer(str[start:end], dtype=numpy.float64, count=length) val1.primitives.append(val2) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) val1.primitive_poses = [] for i in range(0, length): val2 = geometry_msgs.msg.Pose() _v100 = val2.position _x = _v100 start = end end += 24 (_x.x, _x.y, _x.z,) = _get_struct_3d().unpack(str[start:end]) _v101 = val2.orientation _x = _v101 start = end end += 32 (_x.x, _x.y, _x.z, _x.w,) = _get_struct_4d().unpack(str[start:end]) val1.primitive_poses.append(val2) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) val1.meshes = [] for i in range(0, length): val2 = shape_msgs.msg.Mesh() start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) val2.triangles = [] for i in range(0, length): val3 = shape_msgs.msg.MeshTriangle() start = end end += 12 val3.vertex_indices = numpy.frombuffer(str[start:end], dtype=numpy.uint32, count=3) val2.triangles.append(val3) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) val2.vertices = [] for i in range(0, length): val3 = geometry_msgs.msg.Point() _x = val3 start = end end += 24 (_x.x, _x.y, _x.z,) = _get_struct_3d().unpack(str[start:end]) val2.vertices.append(val3) val1.meshes.append(val2) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) val1.mesh_poses = [] for i in range(0, length): val2 = geometry_msgs.msg.Pose() _v102 = val2.position _x = _v102 start = end end += 24 (_x.x, _x.y, _x.z,) = _get_struct_3d().unpack(str[start:end]) _v103 = val2.orientation _x = _v103 start = end end += 32 (_x.x, _x.y, _x.z, _x.w,) = _get_struct_4d().unpack(str[start:end]) val1.mesh_poses.append(val2) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) val1.planes = [] for i in range(0, length): val2 = shape_msgs.msg.Plane() start = end end += 32 val2.coef = numpy.frombuffer(str[start:end], dtype=numpy.float64, count=4) val1.planes.append(val2) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) val1.plane_poses = [] for i in range(0, length): val2 = geometry_msgs.msg.Pose() _v104 = val2.position _x = _v104 start = end end += 24 (_x.x, _x.y, _x.z,) = _get_struct_3d().unpack(str[start:end]) _v105 = val2.orientation _x = _v105 start = end end += 32 (_x.x, _x.y, _x.z, _x.w,) = _get_struct_4d().unpack(str[start:end]) val1.plane_poses.append(val2) start = end end += 1 (val1.operation,) = _get_struct_b().unpack(str[start:end]) self.collision_objects.append(val1) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.constraints.name = str[start:end].decode('utf-8') else: self.constraints.name = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.constraints.joint_constraints = [] for i in range(0, length): val1 = moveit_msgs.msg.JointConstraint() start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: val1.joint_name = str[start:end].decode('utf-8') else: val1.joint_name = str[start:end] _x = val1 start = end end += 32 (_x.position, _x.tolerance_above, _x.tolerance_below, _x.weight,) = _get_struct_4d().unpack(str[start:end]) self.constraints.joint_constraints.append(val1) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.constraints.position_constraints = [] for i in range(0, length): val1 = moveit_msgs.msg.PositionConstraint() _v106 = val1.header start = end end += 4 (_v106.seq,) = _get_struct_I().unpack(str[start:end]) _v107 = _v106.stamp _x = _v107 start = end end += 8 (_x.secs, _x.nsecs,) = _get_struct_2I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: _v106.frame_id = str[start:end].decode('utf-8') else: _v106.frame_id = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: val1.link_name = str[start:end].decode('utf-8') else: val1.link_name = str[start:end] _v108 = val1.target_point_offset _x = _v108 start = end end += 24 (_x.x, _x.y, _x.z,) = _get_struct_3d().unpack(str[start:end]) _v109 = val1.constraint_region start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) _v109.primitives = [] for i in range(0, length): val3 = shape_msgs.msg.SolidPrimitive() start = end end += 1 (val3.type,) = _get_struct_B().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) pattern = '<%sd'%length start = end end += struct.calcsize(pattern) val3.dimensions = numpy.frombuffer(str[start:end], dtype=numpy.float64, count=length) _v109.primitives.append(val3) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) _v109.primitive_poses = [] for i in range(0, length): val3 = geometry_msgs.msg.Pose() _v110 = val3.position _x = _v110 start = end end += 24 (_x.x, _x.y, _x.z,) = _get_struct_3d().unpack(str[start:end]) _v111 = val3.orientation _x = _v111 start = end end += 32 (_x.x, _x.y, _x.z, _x.w,) = _get_struct_4d().unpack(str[start:end]) _v109.primitive_poses.append(val3) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) _v109.meshes = [] for i in range(0, length): val3 = shape_msgs.msg.Mesh() start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) val3.triangles = [] for i in range(0, length): val4 = shape_msgs.msg.MeshTriangle() start = end end += 12 val4.vertex_indices = numpy.frombuffer(str[start:end], dtype=numpy.uint32, count=3) val3.triangles.append(val4) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) val3.vertices = [] for i in range(0, length): val4 = geometry_msgs.msg.Point() _x = val4 start = end end += 24 (_x.x, _x.y, _x.z,) = _get_struct_3d().unpack(str[start:end]) val3.vertices.append(val4) _v109.meshes.append(val3) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) _v109.mesh_poses = [] for i in range(0, length): val3 = geometry_msgs.msg.Pose() _v112 = val3.position _x = _v112 start = end end += 24 (_x.x, _x.y, _x.z,) = _get_struct_3d().unpack(str[start:end]) _v113 = val3.orientation _x = _v113 start = end end += 32 (_x.x, _x.y, _x.z, _x.w,) = _get_struct_4d().unpack(str[start:end]) _v109.mesh_poses.append(val3) start = end end += 8 (val1.weight,) = _get_struct_d().unpack(str[start:end]) self.constraints.position_constraints.append(val1) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.constraints.orientation_constraints = [] for i in range(0, length): val1 = moveit_msgs.msg.OrientationConstraint() _v114 = val1.header start = end end += 4 (_v114.seq,) = _get_struct_I().unpack(str[start:end]) _v115 = _v114.stamp _x = _v115 start = end end += 8 (_x.secs, _x.nsecs,) = _get_struct_2I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: _v114.frame_id = str[start:end].decode('utf-8') else: _v114.frame_id = str[start:end] _v116 = val1.orientation _x = _v116 start = end end += 32 (_x.x, _x.y, _x.z, _x.w,) = _get_struct_4d().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: val1.link_name = str[start:end].decode('utf-8') else: val1.link_name = str[start:end] _x = val1 start = end end += 32 (_x.absolute_x_axis_tolerance, _x.absolute_y_axis_tolerance, _x.absolute_z_axis_tolerance, _x.weight,) = _get_struct_4d().unpack(str[start:end]) self.constraints.orientation_constraints.append(val1) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.constraints.visibility_constraints = [] for i in range(0, length): val1 = moveit_msgs.msg.VisibilityConstraint() start = end end += 8 (val1.target_radius,) = _get_struct_d().unpack(str[start:end]) _v117 = val1.target_pose _v118 = _v117.header start = end end += 4 (_v118.seq,) = _get_struct_I().unpack(str[start:end]) _v119 = _v118.stamp _x = _v119 start = end end += 8 (_x.secs, _x.nsecs,) = _get_struct_2I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: _v118.frame_id = str[start:end].decode('utf-8') else: _v118.frame_id = str[start:end] _v120 = _v117.pose _v121 = _v120.position _x = _v121 start = end end += 24 (_x.x, _x.y, _x.z,) = _get_struct_3d().unpack(str[start:end]) _v122 = _v120.orientation _x = _v122 start = end end += 32 (_x.x, _x.y, _x.z, _x.w,) = _get_struct_4d().unpack(str[start:end]) start = end end += 4 (val1.cone_sides,) = _get_struct_i().unpack(str[start:end]) _v123 = val1.sensor_pose _v124 = _v123.header start = end end += 4 (_v124.seq,) = _get_struct_I().unpack(str[start:end]) _v125 = _v124.stamp _x = _v125 start = end end += 8 (_x.secs, _x.nsecs,) = _get_struct_2I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: _v124.frame_id = str[start:end].decode('utf-8') else: _v124.frame_id = str[start:end] _v126 = _v123.pose _v127 = _v126.position _x = _v127 start = end end += 24 (_x.x, _x.y, _x.z,) = _get_struct_3d().unpack(str[start:end]) _v128 = _v126.orientation _x = _v128 start = end end += 32 (_x.x, _x.y, _x.z, _x.w,) = _get_struct_4d().unpack(str[start:end]) _x = val1 start = end end += 25 (_x.max_view_angle, _x.max_range_angle, _x.sensor_view_direction, _x.weight,) = _get_struct_2dBd().unpack(str[start:end]) self.constraints.visibility_constraints.append(val1) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill _struct_I = genpy.struct_I def _get_struct_I(): global _struct_I return _struct_I _struct_B = None def _get_struct_B(): global _struct_B if _struct_B is None: _struct_B = struct.Struct("<B") return _struct_B _struct_d = None def _get_struct_d(): global _struct_d if _struct_d is None: _struct_d = struct.Struct("<d") return _struct_d _struct_i = None def _get_struct_i(): global _struct_i if _struct_i is None: _struct_i = struct.Struct("<i") return _struct_i _struct_3I = None def _get_struct_3I(): global _struct_3I if _struct_3I is None: _struct_3I = struct.Struct("<3I") return _struct_3I _struct_b = None def _get_struct_b(): global _struct_b if _struct_b is None: _struct_b = struct.Struct("<b") return _struct_b _struct_4d = None def _get_struct_4d(): global _struct_4d if _struct_4d is None: _struct_4d = struct.Struct("<4d") return _struct_4d _struct_2dBd = None def _get_struct_2dBd(): global _struct_2dBd if _struct_2dBd is None: _struct_2dBd = struct.Struct("<2dBd") return _struct_2dBd _struct_2I = None def _get_struct_2I(): global _struct_2I if _struct_2I is None: _struct_2I = struct.Struct("<2I") return _struct_2I _struct_3d = None def _get_struct_3d(): global _struct_3d if _struct_3d is None: _struct_3d = struct.Struct("<3d") return _struct_3d # This Python file uses the following encoding: utf-8 """autogenerated by genpy from bwi_moveit_utils/MoveitJointPoseResponse.msg. Do not edit.""" import sys python3 = True if sys.hexversion > 0x03000000 else False import genpy import struct class MoveitJointPoseResponse(genpy.Message): _md5sum = "9e58faa17a4877a1efc0e251b503c53b" _type = "bwi_moveit_utils/MoveitJointPoseResponse" _has_header = False #flag to mark the presence of a Header object _full_text = """bool completed """ __slots__ = ['completed'] _slot_types = ['bool'] def __init__(self, *args, **kwds): """ Constructor. Any message fields that are implicitly/explicitly set to None will be assigned a default value. The recommend use is keyword arguments as this is more robust to future message changes. You cannot mix in-order arguments and keyword arguments. The available fields are: completed :param args: complete set of field values, in .msg order :param kwds: use keyword arguments corresponding to message field names to set specific fields. """ if args or kwds: super(MoveitJointPoseResponse, self).__init__(*args, **kwds) #message fields cannot be None, assign default values for those that are if self.completed is None: self.completed = False else: self.completed = False def _get_types(self): """ internal API method """ return self._slot_types def serialize(self, buff): """ serialize message into buffer :param buff: buffer, ``StringIO`` """ try: buff.write(_get_struct_B().pack(self.completed)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ try: end = 0 start = end end += 1 (self.completed,) = _get_struct_B().unpack(str[start:end]) self.completed = bool(self.completed) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: buff.write(_get_struct_B().pack(self.completed)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ try: end = 0 start = end end += 1 (self.completed,) = _get_struct_B().unpack(str[start:end]) self.completed = bool(self.completed) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill _struct_I = genpy.struct_I def _get_struct_I(): global _struct_I return _struct_I _struct_B = None def _get_struct_B(): global _struct_B if _struct_B is None: _struct_B = struct.Struct("<B") return _struct_B class MoveitJointPose(object): _type = 'bwi_moveit_utils/MoveitJointPose' _md5sum = '63f4641487b3d9ad59149152e0942f80' _request_class = MoveitJointPoseRequest _response_class = MoveitJointPoseResponse
3d7128ad8c2784853ee5a33f3ae54cdc77d44044
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02778/s805881510.py
4e1cfd4d744d78cdc97b17f641d6bcb6444548dc
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
121
py
S=input() list=list(S) a=len(list) answer=[] s=0 while s<a: answer.append('x') s=s+1 y=''.join(answer) print(y)
04aa06f4bac7b7bbb2b7030e09e1f27f1ed8fde4
6206ad73052b5ff1b6690c225f000f9c31aa4ff7
/Code/Reshape the Matrix.py
360911bc17af54a593ab369ee1c177df5d68cbb7
[]
no_license
mws19901118/Leetcode
7f9e3694cb8f0937d82b6e1e12127ce5073f4df0
752ac00bea40be1e3794d80aa7b2be58c0a548f6
refs/heads/master
2023-09-01T10:35:52.389899
2023-09-01T03:37:22
2023-09-01T03:37:22
21,467,719
0
0
null
null
null
null
UTF-8
Python
false
false
1,005
py
class Solution: def matrixReshape(self, mat: List[List[int]], r: int, c: int) -> List[List[int]]: m, n = len(mat), len(mat[0]) #Get dimensions. if m * n != r * c: #If total number of elements do not match, cannot reshape so return mat. return mat reshape = [[0 for _ in range(c)] for _ in range(r)] #Initialize the reshape matrix. row, col = 0, 0 #Initialize the pointer to current row and column of pointer traversing reshape matrix. for i in range(m): #Traverse mat. for j in range(n): reshape[row][col] = mat[i][j] #Set the current element of reshape to current element of mat. row += (col + 1) // c #Update row. col = (col + 1) % c #Update col. return reshape
e38ae86f9b1b30b7cde74169a92408df5d3a5d51
8ce2ef401bfa8a7edc075f30671ceb7e12001566
/tensorflow/contrib/distribute/python/estimator_training_test.py
018512ae5a22eaa7fb78a8c4e5918fec22eb8178
[ "Apache-2.0" ]
permissive
TomZRoid/tensorflow
e8167a31dcd707279365c8ee5ec283c00edaafba
89390faf68c153ef8bea0e20ba128c0d54cee0e0
refs/heads/master
2020-03-30T22:38:50.662448
2018-11-08T06:25:34
2018-11-08T06:25:34
151,673,686
2
0
Apache-2.0
2018-10-05T05:15:45
2018-10-05T05:15:44
null
UTF-8
Python
false
false
23,226
py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests that show Distribute Coordinator works with Estimator.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import glob import json import os import sys import tempfile import threading from absl.testing import parameterized import numpy as np from tensorflow.contrib.distribute.python import collective_all_reduce_strategy from tensorflow.contrib.distribute.python import combinations from tensorflow.contrib.distribute.python import mirrored_strategy from tensorflow.contrib.distribute.python import multi_worker_test_base from tensorflow.contrib.distribute.python import parameter_server_strategy from tensorflow.contrib.optimizer_v2 import adagrad from tensorflow.python.data.ops import dataset_ops from tensorflow.python.distribute import distribute_coordinator as dc from tensorflow.python.distribute import estimator_training as dc_training from tensorflow.python.distribute.distribute_config import DistributeConfig from tensorflow.python.eager import context from tensorflow.python.estimator import exporter as exporter_lib from tensorflow.python.estimator import run_config as run_config_lib from tensorflow.python.estimator import training as estimator_training from tensorflow.python.estimator.canned import dnn_linear_combined from tensorflow.python.estimator.canned import prediction_keys from tensorflow.python.estimator.export import export as export_lib from tensorflow.python.feature_column import feature_column from tensorflow.python.platform import gfile from tensorflow.python.platform import test from tensorflow.python.summary import summary_iterator from tensorflow.python.summary.writer import writer_cache BATCH_SIZE = 10 LABEL_DIMENSION = 2 DATA = np.linspace( 0., 2., BATCH_SIZE * LABEL_DIMENSION, dtype=np.float32).reshape( BATCH_SIZE, LABEL_DIMENSION) EVAL_NAME = "foo" EXPORTER_NAME = "saved_model_exporter" MAX_STEPS = 10 CHIEF = dc._TaskType.CHIEF EVALUATOR = dc._TaskType.EVALUATOR WORKER = dc._TaskType.WORKER PS = dc._TaskType.PS original_run_std_server = dc._run_std_server class MockOsEnv(dict): def __init__(self, *args): self._thread_local = threading.local() super(MockOsEnv, self).__init__(*args) def get(self, key, default): if not hasattr(self._thread_local, "dict"): self._thread_local.dict = dict() if key == "TF_CONFIG": return dict.get(self._thread_local.dict, key, default) else: return dict.get(self, key, default) def __getitem__(self, key): if not hasattr(self._thread_local, "dict"): self._thread_local.dict = dict() if key == "TF_CONFIG": return dict.__getitem__(self._thread_local.dict, key) else: return dict.__getitem__(self, key) def __setitem__(self, key, val): if not hasattr(self._thread_local, "dict"): self._thread_local.dict = dict() if key == "TF_CONFIG": return dict.__setitem__(self._thread_local.dict, key, val) else: return dict.__setitem__(self, key, val) class DistributeCoordinatorIntegrationTest(test.TestCase, parameterized.TestCase): @classmethod def setUpClass(cls): """Create a local cluster with 2 workers.""" cls._cluster_spec = multi_worker_test_base.create_in_process_cluster( num_workers=3, num_ps=2, has_eval=True) def setUp(self): self._model_dir = tempfile.mkdtemp() self._mock_os_env = MockOsEnv() self._mock_context = test.mock.patch.object(os, "environ", self._mock_os_env) super(DistributeCoordinatorIntegrationTest, self).setUp() self._mock_context.__enter__() def tearDown(self): self._mock_context.__exit__(None, None, None) super(DistributeCoordinatorIntegrationTest, self).tearDown() def dataset_input_fn(self, x, y, batch_size, shuffle): def input_fn(): dataset = dataset_ops.Dataset.from_tensor_slices((x, y)) if shuffle: dataset = dataset.shuffle(batch_size) dataset = dataset.repeat(100).batch(batch_size) return dataset return input_fn def _get_exporter(self, name, fc): feature_spec = feature_column.make_parse_example_spec(fc) serving_input_receiver_fn = ( export_lib.build_parsing_serving_input_receiver_fn(feature_spec)) return exporter_lib.LatestExporter( name, serving_input_receiver_fn=serving_input_receiver_fn) def _extract_loss_and_global_step(self, event_folder): """Returns the loss and global step in last event.""" event_paths = glob.glob(os.path.join(event_folder, "events*")) self.assertGreater(len(event_paths), 0, msg="Event file not found in dir %s" % event_folder) loss = None global_step_count = None for e in summary_iterator.summary_iterator(event_paths[-1]): current_loss = None for v in e.summary.value: if v.tag == "loss": current_loss = v.simple_value # If loss is not found, global step is meaningless. if current_loss is None: continue current_global_step = e.step if global_step_count is None or current_global_step > global_step_count: global_step_count = current_global_step loss = current_loss return (loss, global_step_count) def _get_estimator(self, train_distribute, eval_distribute, remote_cluster=None): input_dimension = LABEL_DIMENSION linear_feature_columns = [ feature_column.numeric_column("x", shape=(input_dimension,)) ] dnn_feature_columns = [ feature_column.numeric_column("x", shape=(input_dimension,)) ] return dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=linear_feature_columns, dnn_hidden_units=(2, 2), dnn_feature_columns=dnn_feature_columns, label_dimension=LABEL_DIMENSION, model_dir=self._model_dir, dnn_optimizer=adagrad.AdagradOptimizer(0.001), linear_optimizer=adagrad.AdagradOptimizer(0.001), config=run_config_lib.RunConfig( experimental_distribute=DistributeConfig( train_distribute=train_distribute, eval_distribute=eval_distribute, remote_cluster=remote_cluster))) def _complete_flow(self, train_distribute, eval_distribute, remote_cluster=None, use_train_and_evaluate=True): estimator = self._get_estimator(train_distribute, eval_distribute, remote_cluster) input_dimension = LABEL_DIMENSION train_input_fn = self.dataset_input_fn( x={"x": DATA}, y=DATA, batch_size=BATCH_SIZE // len(train_distribute.worker_devices), shuffle=True) if eval_distribute: eval_batch_size = BATCH_SIZE // len(eval_distribute.worker_devices) else: eval_batch_size = BATCH_SIZE eval_input_fn = self.dataset_input_fn( x={"x": DATA}, y=DATA, batch_size=eval_batch_size, shuffle=False) linear_feature_columns = [ feature_column.numeric_column("x", shape=(input_dimension,)) ] dnn_feature_columns = [ feature_column.numeric_column("x", shape=(input_dimension,)) ] feature_columns = linear_feature_columns + dnn_feature_columns eval_spec = estimator_training.EvalSpec( name=EVAL_NAME, input_fn=eval_input_fn, steps=None, exporters=self._get_exporter(EXPORTER_NAME, feature_columns), start_delay_secs=0, throttle_secs=1) if use_train_and_evaluate: estimator_training.train_and_evaluate( estimator, estimator_training.TrainSpec(train_input_fn, max_steps=MAX_STEPS), eval_spec) else: estimator.train(train_input_fn, max_steps=MAX_STEPS) latest_ckpt_path = estimator.latest_checkpoint() metrics = estimator.evaluate(eval_input_fn, checkpoint_path=latest_ckpt_path, name=EVAL_NAME) # Export the eval result to files. eval_result = estimator_training._EvalResult( status=estimator_training._EvalStatus.EVALUATED, metrics=metrics, checkpoint_path=latest_ckpt_path) evaluator = estimator_training._TrainingExecutor._Evaluator(estimator, eval_spec, None) evaluator._export_eval_result(eval_result, True) return estimator def _inspect_train_and_eval_events(self, estimator): # Make sure nothing is stuck in limbo. writer_cache.FileWriterCache.clear() # Examine the training events. Use a range to check global step to avoid # flakyness due to global step race condition. training_loss, _ = self._extract_loss_and_global_step(self._model_dir) self.assertIsNotNone(training_loss) # Examine the eval events. The global step should be accurate. eval_dir = os.path.join(self._model_dir, "eval_" + EVAL_NAME) eval_loss, eval_global_step = self._extract_loss_and_global_step( event_folder=eval_dir) self.assertIsNotNone(eval_loss) self.assertGreaterEqual(eval_global_step, MAX_STEPS) # Examine the export folder. export_dir = os.path.join( os.path.join(self._model_dir, "export"), EXPORTER_NAME) self.assertTrue(gfile.Exists(export_dir)) # Examine the ckpt for predict. def predict_input_fn(): return dataset_ops.Dataset.from_tensor_slices({ "x": DATA }).batch(BATCH_SIZE) predicted_proba = np.array([ x[prediction_keys.PredictionKeys.PREDICTIONS] for x in estimator.predict(predict_input_fn) ]) self.assertAllEqual((BATCH_SIZE, LABEL_DIMENSION), predicted_proba.shape) @combinations.generate( combinations.combine( mode=["graph"], train_distribute_cls=[ collective_all_reduce_strategy.CollectiveAllReduceStrategy, mirrored_strategy.MirroredStrategy, parameter_server_strategy.ParameterServerStrategy ], eval_distribute_cls=[ None, mirrored_strategy.MirroredStrategy, parameter_server_strategy.ParameterServerStrategy, ], required_gpus=[0, 1])) def test_complete_flow_standalone_client(self, train_distribute_cls, eval_distribute_cls): try: train_distribute = train_distribute_cls(num_gpus=context.num_gpus()) except TypeError: train_distribute = train_distribute_cls(num_gpus_per_worker=2) if eval_distribute_cls: eval_distribute = eval_distribute_cls( num_gpus_per_worker=context.num_gpus()) else: eval_distribute = None cluster_spec = copy.deepcopy(self._cluster_spec) if (train_distribute_cls != parameter_server_strategy.ParameterServerStrategy): cluster_spec.pop("ps", None) estimator = self._complete_flow(train_distribute, eval_distribute, cluster_spec) self._inspect_train_and_eval_events(estimator) @combinations.generate( combinations.combine( mode=["graph"], train_distribute_cls=[ mirrored_strategy.MirroredStrategy, ], eval_distribute_cls=[ None, mirrored_strategy.MirroredStrategy, ], required_gpus=[0, 1])) def test_estimator_standalone_client(self, train_distribute_cls, eval_distribute_cls): train_distribute = train_distribute_cls( num_gpus_per_worker=context.num_gpus()) if eval_distribute_cls: eval_distribute = eval_distribute_cls( num_gpus_per_worker=context.num_gpus()) else: eval_distribute = None # We use the whole cluster for evaluation. cluster = copy.deepcopy(self._cluster_spec) cluster.pop("evaluator", None) estimator = self._complete_flow( train_distribute, eval_distribute, remote_cluster=cluster, use_train_and_evaluate=False) self._inspect_train_and_eval_events(estimator) def _mock_run_std_server(self, *args, **kwargs): ret = original_run_std_server(*args, **kwargs) # Wait for all std servers to be brought up in order to reduce the chance of # remote sessions taking local ports that have been assigned to std servers. self._barrier.wait() return ret def _task_thread(self, train_distribute, eval_distribute, tf_config): os.environ["TF_CONFIG"] = json.dumps(tf_config) with test.mock.patch.object(dc, "_run_std_server", self._mock_run_std_server): self._complete_flow(train_distribute, eval_distribute) def _run_task_in_thread(self, cluster_spec, task_type, task_id, train_distribute, eval_distribute): if task_type: tf_config = { "cluster": cluster_spec, "task": { "type": task_type, "index": task_id } } else: tf_config = { "cluster": cluster_spec, "task": { "type": task_type, "index": task_id } } t = threading.Thread( target=self._task_thread, args=(train_distribute, eval_distribute, tf_config)) t.start() return t def _run_multiple_tasks_in_threads(self, cluster_spec, train_distribute, eval_distribute): threads = {} for task_type in cluster_spec.keys(): threads[task_type] = [] for task_id in range(len(cluster_spec[task_type])): t = self._run_task_in_thread(cluster_spec, task_type, task_id, train_distribute, eval_distribute) threads[task_type].append(t) return threads @combinations.generate( combinations.combine( mode=["graph"], train_distribute_cls=[ collective_all_reduce_strategy.CollectiveAllReduceStrategy, parameter_server_strategy.ParameterServerStrategy, ], eval_distribute_cls=[ None, mirrored_strategy.MirroredStrategy, parameter_server_strategy.ParameterServerStrategy, ], required_gpus=[0, 1])) def test_complete_flow_indepedent_worker_between_graph( self, train_distribute_cls, eval_distribute_cls): train_distribute = train_distribute_cls( num_gpus_per_worker=context.num_gpus()) if (context.num_gpus() < 2 and eval_distribute_cls == collective_all_reduce_strategy.CollectiveAllReduceStrategy): self.skipTest("`CollectiveAllReduceStrategy` needs at least two towers.") if eval_distribute_cls: eval_distribute = eval_distribute_cls( num_gpus_per_worker=context.num_gpus()) else: eval_distribute = None if (train_distribute_cls == parameter_server_strategy .ParameterServerStrategy): cluster_spec = multi_worker_test_base.create_cluster_spec( num_workers=3, num_ps=2, has_eval=True) # 3 workers, 2 ps and 1 evaluator. self._barrier = dc._Barrier(6) else: cluster_spec = multi_worker_test_base.create_cluster_spec( num_workers=3, num_ps=0, has_eval=True) # 3 workers and 1 evaluator. self._barrier = dc._Barrier(4) threads = self._run_multiple_tasks_in_threads( cluster_spec, train_distribute, eval_distribute) for task_type, ts in threads.items(): if task_type == PS: continue for t in ts: t.join() estimator = self._get_estimator(train_distribute, eval_distribute) self._inspect_train_and_eval_events(estimator) @combinations.generate( combinations.combine( mode=["graph"], train_distribute_cls=[mirrored_strategy.MirroredStrategy], eval_distribute_cls=[None, mirrored_strategy.MirroredStrategy], required_gpus=[0, 1])) def test_complete_flow_indepedent_worker_in_graph(self, train_distribute_cls, eval_distribute_cls): train_distribute = train_distribute_cls( num_gpus_per_worker=context.num_gpus()) if eval_distribute_cls: eval_distribute = eval_distribute_cls( num_gpus_per_worker=context.num_gpus()) else: eval_distribute = None cluster_spec = multi_worker_test_base.create_cluster_spec( num_workers=3, num_ps=0, has_eval=True) # 3 workers and 1 evaluator. self._barrier = dc._Barrier(4) threads = self._run_multiple_tasks_in_threads( cluster_spec, train_distribute, eval_distribute) threads[WORKER][0].join() threads[EVALUATOR][0].join() estimator = self._get_estimator(train_distribute, eval_distribute) self._inspect_train_and_eval_events(estimator) TF_CONFIG_WITH_CHIEF = { "cluster": { "chief": ["fake_chief"], }, "task": { "type": "chief", "index": 0 } } TF_CONFIG_WITH_MASTER = { "cluster": { "master": ["fake_master"], }, "task": { "type": "master", "index": 0 } } TF_CONFIG_WITHOUT_TASK = {"cluster": {"chief": ["fake_worker"]}} class RunConfigTest(test.TestCase): def test_previously_unexpected_cluster_spec(self): with test.mock.patch.dict( "os.environ", {"TF_CONFIG": json.dumps(TF_CONFIG_WITHOUT_TASK)}): run_config_lib.RunConfig( experimental_distribute=DistributeConfig( train_distribute=mirrored_strategy.MirroredStrategy(num_gpus=2))) def test_should_run_distribute_coordinator(self): """Tests that should_run_distribute_coordinator return a correct value.""" # We don't use distribute coordinator for local training. self.assertFalse( dc_training.should_run_distribute_coordinator( run_config_lib.RunConfig())) # When `train_distribute` is not specified, don't use distribute # coordinator. with test.mock.patch.dict("os.environ", {"TF_CONFIG": json.dumps(TF_CONFIG_WITH_CHIEF)}): self.assertFalse( dc_training.should_run_distribute_coordinator( run_config_lib.RunConfig())) # When `train_distribute` is specified and TF_CONFIG is detected, use # distribute coordinator. with test.mock.patch.dict("os.environ", {"TF_CONFIG": json.dumps(TF_CONFIG_WITH_CHIEF)}): config_with_train_distribute = run_config_lib.RunConfig( experimental_distribute=DistributeConfig( train_distribute=mirrored_strategy.MirroredStrategy(num_gpus=2))) config_with_eval_distribute = run_config_lib.RunConfig( experimental_distribute=DistributeConfig( eval_distribute=mirrored_strategy.MirroredStrategy(num_gpus=2))) self.assertTrue( dc_training.should_run_distribute_coordinator( config_with_train_distribute)) self.assertFalse( dc_training.should_run_distribute_coordinator( config_with_eval_distribute)) # With a master in the cluster, don't run distribute coordinator. with test.mock.patch.dict("os.environ", {"TF_CONFIG": json.dumps(TF_CONFIG_WITH_MASTER)}): config = run_config_lib.RunConfig( experimental_distribute=DistributeConfig( train_distribute=mirrored_strategy.MirroredStrategy(num_gpus=2))) self.assertFalse(dc_training.should_run_distribute_coordinator(config)) def test_init_run_config_duplicate_distribute(self): with self.assertRaises(ValueError): run_config_lib.RunConfig( train_distribute=mirrored_strategy.MirroredStrategy(), experimental_distribute=DistributeConfig( train_distribute=mirrored_strategy.MirroredStrategy())) with self.assertRaises(ValueError): run_config_lib.RunConfig( eval_distribute=mirrored_strategy.MirroredStrategy(), experimental_distribute=DistributeConfig( eval_distribute=mirrored_strategy.MirroredStrategy())) def test_init_run_config_none_distribute_coordinator_mode(self): # We don't use distribute coordinator for local training. config = run_config_lib.RunConfig( train_distribute=mirrored_strategy.MirroredStrategy()) dc_training.init_run_config(config, {}) self.assertIsNone(config._distribute_coordinator_mode) # With a master in the cluster, don't run distribute coordinator. with test.mock.patch.dict("os.environ", {"TF_CONFIG": json.dumps(TF_CONFIG_WITH_MASTER)}): config = run_config_lib.RunConfig( train_distribute=mirrored_strategy.MirroredStrategy()) self.assertIsNone(config._distribute_coordinator_mode) # When `train_distribute` is not specified, don't use distribute # coordinator. with test.mock.patch.dict("os.environ", {"TF_CONFIG": json.dumps(TF_CONFIG_WITH_CHIEF)}): config = run_config_lib.RunConfig() self.assertFalse(hasattr(config, "_distribute_coordinator_mode")) def test_init_run_config_independent_worker(self): # When `train_distribute` is specified and TF_CONFIG is detected, use # distribute coordinator with INDEPENDENT_WORKER mode. with test.mock.patch.dict("os.environ", {"TF_CONFIG": json.dumps(TF_CONFIG_WITH_CHIEF)}): config = run_config_lib.RunConfig( train_distribute=mirrored_strategy.MirroredStrategy()) self.assertEqual(config._distribute_coordinator_mode, dc.CoordinatorMode.INDEPENDENT_WORKER) def test_init_run_config_standalone_client(self): # When `train_distribute` is specified, TF_CONFIG is detected and # `experimental.remote_cluster` is set use distribute coordinator with # STANDALONE_CLIENT mode. config = run_config_lib.RunConfig( train_distribute=mirrored_strategy.MirroredStrategy(), experimental_distribute=DistributeConfig( remote_cluster={"chief": ["fake_worker"]})) self.assertEqual(config._distribute_coordinator_mode, dc.CoordinatorMode.STANDALONE_CLIENT) if __name__ == "__main__": with test.mock.patch.object(sys, "exit", os._exit): test.main()
778b02ce1304dfc64f45b5c82dc3ad7d820143a9
bad62c2b0dfad33197db55b44efeec0bab405634
/sdk/recoveryservices/azure-mgmt-recoveryservicesbackup/azure/mgmt/recoveryservicesbackup/activestamp/aio/operations/_job_operation_results_operations.py
669fb507126bbbd85b124e09a62c97d867745408
[ "MIT", "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later" ]
permissive
test-repo-billy/azure-sdk-for-python
20c5a2486456e02456de17515704cb064ff19833
cece86a8548cb5f575e5419864d631673be0a244
refs/heads/master
2022-10-25T02:28:39.022559
2022-10-18T06:05:46
2022-10-18T06:05:46
182,325,031
0
0
MIT
2019-07-25T22:28:52
2019-04-19T20:59:15
Python
UTF-8
Python
false
false
4,956
py
# pylint: disable=too-many-lines # coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, Callable, Dict, Optional, TypeVar from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator_async import distributed_trace_async from azure.core.utils import case_insensitive_dict from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models as _models from ..._vendor import _convert_request from ...operations._job_operation_results_operations import build_get_request from .._vendor import MixinABC T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class JobOperationResultsOperations: """ .. warning:: **DO NOT** instantiate this class directly. Instead, you should access the following operations through :class:`~azure.mgmt.recoveryservicesbackup.activestamp.aio.RecoveryServicesBackupClient`'s :attr:`job_operation_results` attribute. """ models = _models def __init__(self, *args, **kwargs) -> None: input_args = list(args) self._client = input_args.pop(0) if input_args else kwargs.pop("client") self._config = input_args.pop(0) if input_args else kwargs.pop("config") self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") @distributed_trace_async async def get( # pylint: disable=inconsistent-return-statements self, vault_name: str, resource_group_name: str, job_name: str, operation_id: str, **kwargs: Any ) -> None: """Fetches the result of any operation. :param vault_name: The name of the recovery services vault. :type vault_name: str :param resource_group_name: The name of the resource group where the recovery services vault is present. :type resource_group_name: str :param job_name: Job name whose operation result has to be fetched. :type job_name: str :param operation_id: OperationID which represents the operation whose result has to be fetched. :type operation_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop('api_version', _params.pop('api-version', "2022-06-01-preview")) # type: str cls = kwargs.pop('cls', None) # type: ClsType[None] request = build_get_request( vault_name=vault_name, resource_group_name=resource_group_name, subscription_id=self._config.subscription_id, job_name=job_name, operation_id=operation_id, api_version=api_version, template_url=self.get.metadata['url'], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) # type: ignore pipeline_response = await self._client._pipeline.run( # type: ignore # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) get.metadata = {'url': "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.RecoveryServices/vaults/{vaultName}/backupJobs/{jobName}/operationResults/{operationId}"} # type: ignore
aa9712bce0f3ef3690bb9a42fab492d7fae1aaf2
5332fef91e044555e605bb37cbef7c4afeaaadb0
/hy-data-analysis-with-python-spring-2019-OLD/part01-e04_multiplication_table/src/multiplication_table.py
aa3628c78721753935ebdfc0a18b3e1524ce97a2
[]
no_license
nopomi/hy-data-analysis-python-2019
f3baa96bbe9b6ee7f0b3e6f6b8b0f3adfc3b6cc8
464685cb377cfdeee890a008fbfbd9ed6e3bcfd0
refs/heads/master
2021-07-10T16:16:56.592448
2020-08-16T18:27:38
2020-08-16T18:27:38
185,044,621
4
0
null
null
null
null
UTF-8
Python
false
false
191
py
#!/usr/bin/env python3 def main(): for i in range(1,11): for j in range(1,11): print(str(i*j)+'\t', end="") print('') if __name__ == "__main__": main()
24a21563e8b0f54b4f865519a0221f033b7f345c
2ab759b4796e36cee89df3718b7042eb527e4b26
/args.py
2ad011c5c0ff5f89e7e555c02e1b52b469c6fbe4
[ "Apache-2.0" ]
permissive
zhangjunjieGit/bert-utils
b78d289effedfa64716219b771a370c410f3d066
7142632ea6b2e6656a2873a60971dbf7330f9550
refs/heads/master
2020-08-22T06:47:33.103393
2019-10-20T09:58:54
2019-10-20T09:59:05
216,340,794
1
0
Apache-2.0
2019-10-20T10:00:53
2019-10-20T10:00:53
null
UTF-8
Python
false
false
748
py
import os import tensorflow as tf tf.logging.set_verbosity(tf.logging.INFO) file_path = os.path.dirname(__file__) model_dir = os.path.join(file_path, 'chinese_L-12_H-768_A-12/') config_name = os.path.join(model_dir, 'bert_config.json') ckpt_name = os.path.join(model_dir, 'bert_model.ckpt') output_dir = os.path.join(model_dir, '../tmp/result/') vocab_file = os.path.join(model_dir, 'vocab.txt') data_dir = os.path.join(model_dir, '../data/') num_train_epochs = 10 batch_size = 128 learning_rate = 0.00005 # gpu使用率 gpu_memory_fraction = 0.8 # 默认取倒数第二层的输出值作为句向量 layer_indexes = [-2] # 序列的最大程度,单文本建议把该值调小 max_seq_len = 5 # graph名字 graph_file = 'tmp/result/graph'
399eeab0b7aac90ad1fbae0cecd4ca49be31ec81
7437b9482592119dd6b4fc78706fed1c7c7df89f
/modules/neighbour_covariance_op.py
520f8756b84359cebb69699864b5c50b00d2df88
[ "BSD-3-Clause" ]
permissive
cms-pepr/HGCalML
163c5f2b0ca1079003628b5a53a4aee2305fb3e9
d28477501d93992d25c22b7d5c355a3da3bffa5c
refs/heads/master
2023-08-31T03:33:31.294369
2023-05-10T15:51:59
2023-05-10T15:51:59
236,987,707
11
13
BSD-3-Clause
2023-08-08T12:43:50
2020-01-29T13:25:18
Python
UTF-8
Python
false
false
1,973
py
import tensorflow as tf from tensorflow.python.framework import ops from accknn_op import AccumulateKnn def NeighbourCovariance(coordinates, distsq, features, n_idxs): ''' expands to V x F x C**2, but not in the neighbour dimension Feed features without activation! ''' features = tf.nn.sigmoid(features) + 1e-3 #make sure they're in a good range nF = features.shape[1] nC = coordinates.shape[1] nKf = tf.cast(distsq.shape[1],dtype='float32') #calc mean of features over all neighbours (1/K factor too much) sum_F = AccumulateKnn(distsq, features, n_idxs, mean_and_max=False)[0] * nKf #not gonna work like this #build feature-weighted coordinates: V x 1 x C * V x F x 1 FC = tf.expand_dims(coordinates,axis=1) * tf.expand_dims(features,axis=2) #reshape to V x F*C FC = tf.reshape(FC, [-1, nF*nC]) #sum over neighbours (factor 1/K too much) sum_FC = AccumulateKnn(distsq, FC, n_idxs, mean_and_max=False)[0] * nKf #reshape back to V x F x C mean_C = tf.reshape(sum_FC, [-1, nF, nC]) mean_C = tf.math.divide_no_nan(mean_C, tf.expand_dims(sum_F, axis=2)+1e-3) #now we have centred coordinates: V x F x C centered_C = tf.expand_dims(coordinates,axis=1) - mean_C #build covariance input: V x F x C x 1 * V x F x 1 x C cov = tf.expand_dims(centered_C, axis=3) * tf.expand_dims(centered_C, axis=2) # reshape to something useful cov = tf.reshape(cov, [-1, nF,nC**2]) cov *= tf.expand_dims(features, axis=2) #add feature weights cov = tf.reshape(cov, [-1, nF*nC**2]) #sum over neighbours cov = AccumulateKnn(distsq, cov, n_idxs, mean_and_max=False)[0] * nKf #reshape back cov = tf.reshape(cov, [-1, nF, nC**2]) cov = tf.math.divide_no_nan(cov, tf.expand_dims(sum_F, axis=2)+1e-3) cov = tf.reshape(cov, [-1, nF, nC**2])#just for keras return cov, mean_C
d7552e3b106bb7b596621fa2810ed985b0175dd9
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03013/s787334180.py
28e033a57e8473172944172d8c1031ab7c555e8e
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
324
py
N, M = map(int, input().split()) if N == 1: print(1) else: s = [-1] * N s[0] = 1 s[1] = 1 for m in range(0, M): i = int(input()) s[i] = 0 for n in range(2, N): if s[n] == 0: continue s[n] = s[n - 1] + s[n - 2] print((s[N-1] + s[N-2]) % 1000000007)
ab08ca6833912ff2321dd2234faded534afab1ab
c13ccf912360f02010f3185dc29f3e72205984dd
/Hauz/migrations/0015_auto_20180119_0824.py
a94915c8159be33de7285c6226946eca01f3f871
[ "MIT" ]
permissive
VirginiaNdungu1/HauzBox
e3dd238b8ef302e69dd4cefa2036a50500b6f3bc
c586d221a903f2be681b895eec20dd01664ce141
refs/heads/master
2021-05-15T05:41:37.189912
2018-01-31T14:45:43
2018-01-31T14:46:18
116,761,502
1
0
null
null
null
null
UTF-8
Python
false
false
519
py
# Generated by Django 2.0.1 on 2018-01-19 05:24 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('Hauz', '0014_auto_20180119_0821'), ] operations = [ migrations.AlterField( model_name='house', name='tenant_id', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='house_tenant', to='Hauz.Tenant'), ), ]
79dcbfe3d5544e48a61ca3c29afc26988d642d42
64bf39b96a014b5d3f69b3311430185c64a7ff0e
/intro-ansible/venv3/lib/python3.8/site-packages/ansible_collections/chocolatey/chocolatey/plugins/modules/win_chocolatey_source.py
cae7637ea3d821e51ef6c10dfcf1d8769d184a97
[ "LicenseRef-scancode-unknown-license-reference", "GPL-3.0-only", "MIT" ]
permissive
SimonFangCisco/dne-dna-code
7072eba7da0389e37507b7a2aa5f7d0c0735a220
2ea7d4f00212f502bc684ac257371ada73da1ca9
refs/heads/master
2023-03-10T23:10:31.392558
2021-02-25T15:04:36
2021-02-25T15:04:36
342,274,373
0
0
MIT
2021-02-25T14:39:22
2021-02-25T14:39:22
null
UTF-8
Python
false
false
3,734
py
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright: (c) 2018, Ansible Project # Copyright: (c) 2020, Chocolatey Software # GNU General Public License v3.0+ (see LICENSE or https://www.gnu.org/licenses/gpl-3.0.txt) ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = r''' --- module: win_chocolatey_source version_added: '2.7' short_description: Manages Chocolatey sources description: - Used to managed Chocolatey sources configured on the client. - Requires Chocolatey to be already installed on the remote host. options: admin_only: description: - Makes the source visible to Administrators only. - Requires Chocolatey >= 0.10.8. - When creating a new source, this defaults to C(no). type: bool allow_self_service: description: - Allow the source to be used with self-service - Requires Chocolatey >= 0.10.4. - When creating a new source, this defaults to C(no). type: bool bypass_proxy: description: - Bypass the proxy when using this source. - Requires Chocolatey >= 0.10.4. - When creating a new source, this defaults to C(no). type: bool certificate: description: - The path to a .pfx file to use for X509 authenticated feeds. - Requires Chocolatey >= 0.9.10. type: str certificate_password: description: - The password for I(certificate) if required. - Requires Chocolatey >= 0.9.10. name: description: - The name of the source to configure. required: yes priority: description: - The priority order of this source compared to other sources, lower is better. - All priorities above C(0) will be evaluated first, then zero-based values will be evaluated in config file order. - Requires Chocolatey >= 0.9.9.9. - When creating a new source, this defaults to C(0). type: int source: description: - The file/folder/url of the source. - Required when I(state) is C(present) or C(disabled) and the source does not already exist. source_username: description: - The username used to access I(source). source_password: description: - The password for I(source_username). - Required if I(source_username) is set. state: description: - When C(absent), will remove the source. - When C(disabled), will ensure the source exists but is disabled. - When C(present), will ensure the source exists and is enabled. choices: - absent - disabled - present default: present update_password: description: - When C(always), the module will always set the password and report a change if I(certificate_password) or I(source_password) is set. - When C(on_create), the module will only set the password if the source is being created. choices: - always - on_create default: always seealso: - module: win_chocolatey - module: win_chocolatey_config - module: win_chocolatey_facts - module: win_chocolatey_feature author: - Jordan Borean (@jborean93) ''' EXAMPLES = r''' - name: Remove the default public source win_chocolatey_source: name: chocolatey state: absent - name: Add new internal source win_chocolatey_source: name: internal repo state: present source: http://chocolatey-server/chocolatey - name: Create HTTP source with credentials win_chocolatey_source: name: internal repo state: present source: https://chocolatey-server/chocolatey source_username: username source_password: password - name: Disable Chocolatey source win_chocolatey_source: name: chocolatey state: disabled ''' RETURN = r''' '''
a9daa25aa586b9c519f86b630fdd29e6a115d159
c81ea73e93df307d35191ab184a85d6c67c57112
/dockers/rotnet/prepare_nets.py
63510dd367617d93fe4ec8309755cc686e82c50c
[]
no_license
BlenderCN-Org/diplomka
8d0503fc5902dfede8317aed84f5a17f691f687f
575fe3f2436b9c511496c1dc019d9cc3423ba5f0
refs/heads/master
2020-05-22T15:42:00.143738
2019-05-07T07:37:46
2019-05-07T07:37:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
567
py
import os def replace(file, what, for_what): # Read in the file with open(file, 'r') as f: filedata = f.read() # Replace the target string filedata = filedata.replace(what, for_what) #print(filedata) # Write the file out again with open(file, 'w') as f: f.write(filedata) def set_num_cats(file, num_cats, views): replace(file, '$NUMCATS', str(num_cats+1)) replace(file, "$INNER", str((num_cats+1) * views)) def set_batch_size(file, batch_size): replace(file, "$BATCHSIZE", str(batch_size))
cc9e9573db428adfe20c7a930d036f9c4a3eb3ba
29eacf3b29753d65d8ec0ab4a60ea1f7ddecbd68
/examples/pytorch_lightning_distributed/dcl.py
ecf6e7bcd014282101b6c04ec204b23362d2d964
[ "MIT" ]
permissive
lightly-ai/lightly
5b655fe283b7cc2ddf1d7f5bd098603fc1cce627
5650ee8d4057139acf8aa10c884d5d5cdc2ccb17
refs/heads/master
2023-08-17T11:08:00.135920
2023-08-16T12:43:02
2023-08-16T12:43:02
303,705,119
2,473
229
MIT
2023-09-14T14:47:16
2020-10-13T13:02:56
Python
UTF-8
Python
false
false
2,288
py
# Note: The model and training settings do not follow the reference settings # from the paper. The settings are chosen such that the example can easily be # run on a small dataset with a single GPU. import pytorch_lightning as pl import torch import torchvision from torch import nn from lightly.loss import DCLLoss from lightly.models.modules import SimCLRProjectionHead from lightly.transforms.simclr_transform import SimCLRTransform class DCL(pl.LightningModule): def __init__(self): super().__init__() resnet = torchvision.models.resnet18() self.backbone = nn.Sequential(*list(resnet.children())[:-1]) self.projection_head = SimCLRProjectionHead(512, 2048, 2048) # enable gather_distributed to gather features from all gpus # before calculating the loss self.criterion = DCLLoss(gather_distributed=True) # or use the weighted DCLW loss: # self.criterion = DCLWLoss(gather_distributed=True) def forward(self, x): x = self.backbone(x).flatten(start_dim=1) z = self.projection_head(x) return z def training_step(self, batch, batch_index): (x0, x1) = batch[0] z0 = self.forward(x0) z1 = self.forward(x1) loss = self.criterion(z0, z1) return loss def configure_optimizers(self): optim = torch.optim.SGD(self.parameters(), lr=0.06) return optim model = DCL() transform = SimCLRTransform(input_size=32) dataset = torchvision.datasets.CIFAR10( "datasets/cifar10", download=True, transform=transform ) # or create a dataset from a folder containing images or videos: # dataset = LightlyDataset("path/to/folder", transform=transform) dataloader = torch.utils.data.DataLoader( dataset, batch_size=256, shuffle=True, drop_last=True, num_workers=8, ) # Train with DDP and use Synchronized Batch Norm for a more accurate batch norm # calculation. Distributed sampling is also enabled with replace_sampler_ddp=True. trainer = pl.Trainer( max_epochs=10, devices="auto", accelerator="gpu", strategy="ddp", sync_batchnorm=True, use_distributed_sampler=True, # or replace_sampler_ddp=True for PyTorch Lightning <2.0 ) trainer.fit(model=model, train_dataloaders=dataloader)
63e8a987a551c5b04f8b8a223840ca4ec9d6208c
1fc7fc8cc0ad49133ba9a4dae910fd7d6e9b242c
/pyqtgraph/graphicsItems/HistogramLUTItem.py
89c45568d5230a161ace8f4ef141337ea99ff687
[ "MIT" ]
permissive
Yingzhang1122/DiffractionLimitedAnalysis
2a67ac2ac87e9fdaf9262a565cc717899e439561
6ea260b738a624962a329dcb7ae19ee048515edf
refs/heads/main
2023-06-03T16:12:15.684375
2021-05-26T18:47:40
2021-05-26T18:47:40
368,825,659
0
0
MIT
2021-05-19T10:11:17
2021-05-19T10:11:17
null
UTF-8
Python
false
false
13,765
py
# -*- coding: utf-8 -*- """ GraphicsWidget displaying an image histogram along with gradient editor. Can be used to adjust the appearance of images. """ from ..Qt import QtGui, QtCore from .. import functions as fn from .GraphicsWidget import GraphicsWidget from .ViewBox import * from .GradientEditorItem import * from .LinearRegionItem import * from .PlotDataItem import * from .AxisItem import * from .GridItem import * from ..Point import Point from .. import functions as fn import numpy as np from .. import debug as debug import weakref __all__ = ['HistogramLUTItem'] class HistogramLUTItem(GraphicsWidget): """ This is a graphicsWidget which provides controls for adjusting the display of an image. Includes: - Image histogram - Movable region over histogram to select black/white levels - Gradient editor to define color lookup table for single-channel images ================ =========================================================== image (:class:`~pyqtgraph.ImageItem` or ``None``) If *image* is provided, then the control will be automatically linked to the image and changes to the control will be immediately reflected in the image's appearance. fillHistogram (bool) By default, the histogram is rendered with a fill. For performance, set ``fillHistogram=False`` rgbHistogram (bool) Sets whether the histogram is computed once over all channels of the image, or once per channel. levelMode 'mono' or 'rgba'. If 'mono', then only a single set of black/white level lines is drawn, and the levels apply to all channels in the image. If 'rgba', then one set of levels is drawn for each channel. ================ =========================================================== """ sigLookupTableChanged = QtCore.Signal(object) sigLevelsChanged = QtCore.Signal(object) sigLevelChangeFinished = QtCore.Signal(object) def __init__(self, image=None, fillHistogram=True, rgbHistogram=False, levelMode='mono'): GraphicsWidget.__init__(self) self.lut = None self.imageItem = lambda: None # fake a dead weakref self.levelMode = levelMode self.rgbHistogram = rgbHistogram self.layout = QtGui.QGraphicsGridLayout() self.setLayout(self.layout) self.layout.setContentsMargins(1,1,1,1) self.layout.setSpacing(0) self.vb = ViewBox(parent=self) self.vb.setMaximumWidth(152) self.vb.setMinimumWidth(45) self.vb.setMouseEnabled(x=False, y=True) self.gradient = GradientEditorItem() self.gradient.setOrientation('right') self.gradient.loadPreset('grey') self.regions = [ LinearRegionItem([0, 1], 'horizontal', swapMode='block'), LinearRegionItem([0, 1], 'horizontal', swapMode='block', pen='r', brush=fn.mkBrush((255, 50, 50, 50)), span=(0., 1/3.)), LinearRegionItem([0, 1], 'horizontal', swapMode='block', pen='g', brush=fn.mkBrush((50, 255, 50, 50)), span=(1/3., 2/3.)), LinearRegionItem([0, 1], 'horizontal', swapMode='block', pen='b', brush=fn.mkBrush((50, 50, 255, 80)), span=(2/3., 1.)), LinearRegionItem([0, 1], 'horizontal', swapMode='block', pen='w', brush=fn.mkBrush((255, 255, 255, 50)), span=(2/3., 1.))] for region in self.regions: region.setZValue(1000) self.vb.addItem(region) region.lines[0].addMarker('<|', 0.5) region.lines[1].addMarker('|>', 0.5) region.sigRegionChanged.connect(self.regionChanging) region.sigRegionChangeFinished.connect(self.regionChanged) self.region = self.regions[0] # for backward compatibility. self.axis = AxisItem('left', linkView=self.vb, maxTickLength=-10, parent=self) self.layout.addItem(self.axis, 0, 0) self.layout.addItem(self.vb, 0, 1) self.layout.addItem(self.gradient, 0, 2) self.range = None self.gradient.setFlag(self.gradient.ItemStacksBehindParent) self.vb.setFlag(self.gradient.ItemStacksBehindParent) self.gradient.sigGradientChanged.connect(self.gradientChanged) self.vb.sigRangeChanged.connect(self.viewRangeChanged) add = QtGui.QPainter.CompositionMode_Plus self.plots = [ PlotCurveItem(pen=(200, 200, 200, 100)), # mono PlotCurveItem(pen=(255, 0, 0, 100), compositionMode=add), # r PlotCurveItem(pen=(0, 255, 0, 100), compositionMode=add), # g PlotCurveItem(pen=(0, 0, 255, 100), compositionMode=add), # b PlotCurveItem(pen=(200, 200, 200, 100), compositionMode=add), # a ] self.plot = self.plots[0] # for backward compatibility. for plot in self.plots: plot.setRotation(90) self.vb.addItem(plot) self.fillHistogram(fillHistogram) self._showRegions() self.vb.addItem(self.plot) self.autoHistogramRange() if image is not None: self.setImageItem(image) def fillHistogram(self, fill=True, level=0.0, color=(100, 100, 200)): colors = [color, (255, 0, 0, 50), (0, 255, 0, 50), (0, 0, 255, 50), (255, 255, 255, 50)] for i,plot in enumerate(self.plots): if fill: plot.setFillLevel(level) plot.setBrush(colors[i]) else: plot.setFillLevel(None) def paint(self, p, *args): if self.levelMode != 'mono': return pen = self.region.lines[0].pen rgn = self.getLevels() p1 = self.vb.mapFromViewToItem(self, Point(self.vb.viewRect().center().x(), rgn[0])) p2 = self.vb.mapFromViewToItem(self, Point(self.vb.viewRect().center().x(), rgn[1])) gradRect = self.gradient.mapRectToParent(self.gradient.gradRect.rect()) p.setRenderHint(QtGui.QPainter.Antialiasing) for pen in [fn.mkPen((0, 0, 0, 100), width=3), pen]: p.setPen(pen) p.drawLine(p1 + Point(0, 5), gradRect.bottomLeft()) p.drawLine(p2 - Point(0, 5), gradRect.topLeft()) p.drawLine(gradRect.topLeft(), gradRect.topRight()) p.drawLine(gradRect.bottomLeft(), gradRect.bottomRight()) def setHistogramRange(self, mn, mx, padding=0.1): """Set the Y range on the histogram plot. This disables auto-scaling.""" self.vb.enableAutoRange(self.vb.YAxis, False) self.vb.setYRange(mn, mx, padding) def autoHistogramRange(self): """Enable auto-scaling on the histogram plot.""" self.vb.enableAutoRange(self.vb.XYAxes) def setImageItem(self, img): """Set an ImageItem to have its levels and LUT automatically controlled by this HistogramLUTItem. """ self.imageItem = weakref.ref(img) img.sigImageChanged.connect(self.imageChanged) self._setImageLookupTable() self.regionChanged() self.imageChanged(autoLevel=True) def viewRangeChanged(self): self.update() def gradientChanged(self): if self.imageItem() is not None: self._setImageLookupTable() self.lut = None self.sigLookupTableChanged.emit(self) def _setImageLookupTable(self): if self.gradient.isLookupTrivial(): self.imageItem().setLookupTable(None) #lambda x: x.astype(np.uint8)) else: self.imageItem().setLookupTable(self.getLookupTable) ## send function pointer, not the result def getLookupTable(self, img=None, n=None, alpha=None): """Return a lookup table from the color gradient defined by this HistogramLUTItem. """ if self.levelMode != 'mono': return None if n is None: if img.dtype == np.uint8: n = 256 else: n = 512 if self.lut is None: self.lut = self.gradient.getLookupTable(n, alpha=alpha) return self.lut def regionChanged(self): if self.imageItem() is not None: self.imageItem().setLevels(self.getLevels()) self.sigLevelChangeFinished.emit(self) def regionChanging(self): if self.imageItem() is not None: self.imageItem().setLevels(self.getLevels()) self.update() self.sigLevelsChanged.emit(self) def imageChanged(self, autoLevel=False, autoRange=False): if self.imageItem() is None: return if self.levelMode == 'mono': for plt in self.plots[1:]: plt.setVisible(False) self.plots[0].setVisible(True) # plot one histogram for all image data profiler = debug.Profiler() h = self.imageItem().getHistogram() profiler('get histogram') if h[0] is None: return self.plot.setData(*h) profiler('set plot') if autoLevel: mn = h[0][0] mx = h[0][-1] self.region.setRegion([mn, mx]) profiler('set region') else: mn, mx = self.imageItem().levels self.region.setRegion([mn, mx]) else: # plot one histogram for each channel self.plots[0].setVisible(False) ch = self.imageItem().getHistogram(perChannel=True) if ch[0] is None: return for i in range(1, 5): if len(ch) >= i: h = ch[i-1] self.plots[i].setVisible(True) self.plots[i].setData(*h) if autoLevel: mn = h[0][0] mx = h[0][-1] self.region[i].setRegion([mn, mx]) else: # hide channels not present in image data self.plots[i].setVisible(False) # make sure we are displaying the correct number of channels self._showRegions() def getLevels(self): """Return the min and max levels. For rgba mode, this returns a list of the levels for each channel. """ if self.levelMode == 'mono': return self.region.getRegion() else: nch = self.imageItem().channels() if nch is None: nch = 3 return [r.getRegion() for r in self.regions[1:nch+1]] def setLevels(self, min=None, max=None, rgba=None): """Set the min/max (bright and dark) levels. Arguments may be *min* and *max* for single-channel data, or *rgba* = [(rmin, rmax), ...] for multi-channel data. """ if self.levelMode == 'mono': if min is None: min, max = rgba[0] assert None not in (min, max) self.region.setRegion((min, max)) else: if rgba is None: raise TypeError("Must specify rgba argument when levelMode != 'mono'.") for i, levels in enumerate(rgba): self.regions[i+1].setRegion(levels) def setLevelMode(self, mode): """ Set the method of controlling the image levels offered to the user. Options are 'mono' or 'rgba'. """ assert mode in ('mono', 'rgba') if mode == self.levelMode: return oldLevels = self.getLevels() self.levelMode = mode self._showRegions() # do our best to preserve old levels if mode == 'mono': levels = np.array(oldLevels).mean(axis=0) self.setLevels(*levels) else: levels = [oldLevels] * 4 self.setLevels(rgba=levels) # force this because calling self.setLevels might not set the imageItem # levels if there was no change to the region item self.imageItem().setLevels(self.getLevels()) self.imageChanged() self.update() def _showRegions(self): for i in range(len(self.regions)): self.regions[i].setVisible(False) if self.levelMode == 'rgba': imax = 4 if self.imageItem() is not None: # Only show rgb channels if connected image lacks alpha. nch = self.imageItem().channels() if nch is None: nch = 3 xdif = 1.0 / nch for i in range(1, nch+1): self.regions[i].setVisible(True) self.regions[i].setSpan((i-1) * xdif, i * xdif) self.gradient.hide() elif self.levelMode == 'mono': self.regions[0].setVisible(True) self.gradient.show() else: raise ValueError("Unknown level mode %r" % self.levelMode) def saveState(self): return { 'gradient': self.gradient.saveState(), 'levels': self.getLevels(), 'mode': self.levelMode, } def restoreState(self, state): if 'mode' in state: self.setLevelMode(state['mode']) self.gradient.restoreState(state['gradient']) self.setLevels(*state['levels'])
0ccaa945ee61fe6e02bfa5331ec1bacd14f0ee07
a560269290749e10466b1a29584f06a2b8385a47
/Notebooks/py/sonukumarsaw/fork-of-titanic-survivors-dataset/fork-of-titanic-survivors-dataset.py
e15a01032f6d55138434ecd5ca6cd6a3f757da58
[]
no_license
nischalshrestha/automatic_wat_discovery
c71befad1aa358ae876d5494a67b0f4aa1266f23
982e700d8e4698a501afffd6c3a2f35346c34f95
refs/heads/master
2022-04-07T12:40:24.376871
2020-03-15T22:27:39
2020-03-15T22:27:39
208,379,586
2
1
null
null
null
null
UTF-8
Python
false
false
6,475
py
#!/usr/bin/env python # coding: utf-8 # In[ ]: # This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load in import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns get_ipython().magic(u'matplotlib inline') # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list the files in the input directory import os print(os.listdir("../input")) # Any results you write to the current directory are saved as output. # In[ ]: train = pd.read_csv('../input/train.csv') gender_sub = pd.read_csv('../input/gender_submission.csv') test = pd.read_csv('../input/test.csv') # **Training Dataset** # In[ ]: #showing the sample of train data train.head() # In[ ]: # describe the train dataset train.describe() # In[ ]: #checking for null values in data sns.heatmap(train.isnull(),yticklabels=False,cbar=False,cmap='viridis') # We can see here in the heat map Age and Cabin columns have lots of null data. # What we can do here is either drop the column or fill the null values with average age. # We cant fill cabin values becouse there isn't any relation between cabin and other columns so we will drop it from the table. # In[ ]: # Count of survived and those who don't sns.set_style('whitegrid') sns.countplot(x='Survived',data=train,palette='RdBu_r') # In[ ]: # Those who survived (male /female) sns.set_style('whitegrid') sns.countplot(x='Survived',hue='Sex',data=train,palette='RdBu_r') # In[ ]: # survived on basis of class sns.set_style('whitegrid') sns.countplot(x='Survived',hue='Pclass',data=train,palette='rainbow') # In[ ]: # column has so much null values train=train.drop('Cabin',axis=1) # In[ ]: train.head() # In[ ]: sns.countplot(x='SibSp',data=train) # Below Graph shows the relation between the age of passanger and there class # In[ ]: # Average age and passanger class plt.figure(figsize=(16, 10)) sns.boxplot(x='Pclass',y='Age',data=train,palette='winter') # Above graph shows that Passangers having class 1 have average age of 37 similarly class 2 average age is 29 and class 3 have age of 24 years. # In[ ]: def impute_age(cols): Age = cols[0] Pclass = cols[1] if pd.isnull(Age): if Pclass == 1: return 37 elif Pclass == 2: return 29 else: return 24 else: return Age train['Age']=train[['Age','Pclass']].apply(impute_age,axis=1) # In[ ]: train.head() # We Just filled all the null values with the average age of passangers. # In[ ]: sex = pd.get_dummies(train['Sex'],drop_first=True) embark = pd.get_dummies(train['Embarked'],drop_first=True) # In[ ]: train.drop(['Sex','Embarked','Name','Ticket'],axis=1,inplace=True) # In[ ]: train = pd.concat([train,sex,embark],axis=1) # Regression model cant predict on strings therefore we converted the string here to binaries # In[ ]: train.head() # In[ ]: plt.figure(figsize=(16, 10)) # this graph is showing that there is no null value in dataset sns.heatmap(train.isnull(),yticklabels=False,cbar=False,cmap='viridis') # Now dataset is ready for fitting in algorithm # # **Testing dataset** # # In[ ]: sns.heatmap(test.isnull(),yticklabels=False,cbar=False,cmap='viridis') # Here, in testing set also we have null values. # What we have done with training set we will repeat the same with testing set. # In[ ]: # droping the cabin test = test.drop('Cabin',axis=1) #here axis 1 specifies that we are searching for columns if it is 0 then rows. # In[ ]: test.head() # * Now we have to convert Sex and Embarked columns from string to binaries. # * Fill the age with average values # In[ ]: sex = pd.get_dummies(test['Sex'],drop_first=True) embark = pd.get_dummies(test['Embarked'],drop_first=True) test.drop(['Sex','Embarked','Name','Ticket'],axis=1,inplace=True) test= pd.concat([test,sex,embark],axis=1) # In[ ]: test.head() # In[ ]: plt.figure(figsize=(16, 10)) sns.boxplot(x='Pclass',y='Age',data=test,palette='winter') # We can see here that there is slight deference in average age between training set and testing dataset. We will now impute age on the basis of this new graph. # In[ ]: def impute_age(cols): Age = cols[0] Pclass = cols[1] if pd.isnull(Age): if Pclass == 1: return 42 elif Pclass == 2: return 28 else: return 24 else: return Age test['Age']=test[['Age','Pclass']].apply(impute_age,axis=1) # In[ ]: test.head() # In[ ]: plt.figure(figsize=(16, 10)) sns.heatmap(test.isnull(),yticklabels=False,cbar=False,cmap='viridis') # Fare column is having a null value. Better we should fill it with average value rather than droping it. # # For this we have to check is there is any relation between pclass. # In[ ]: plt.figure(figsize=(16, 10)) sns.boxplot(x='Pclass',y='Fare',data=test,palette='winter') plt.ylim(0,100) # In[ ]: def impute_fare(cols): Fare = cols[0] Pclass = cols[1] if pd.isnull(Fare): if Pclass == 1: return 60 elif Pclass == 2: return 16 else: return 10 else: return Fare test['Fare']=test[['Fare','Pclass']].apply(impute_fare,axis=1) # Now our test set is also ready for fitting in algorithm. # **MACHINE LEARNING** # In[ ]: X_train=train.drop('Survived',axis=1) X_train.head() # In[ ]: y_train=train['Survived'] y_train.head() # In[ ]: y_test=gender_sub['Survived'] # In[ ]: from sklearn.linear_model import LogisticRegression # In[ ]: logmodel = LogisticRegression() logmodel.fit(X_train,y_train) # In[ ]: X_test=test # In[ ]: predictions = logmodel.predict(X_test) # In[ ]: from sklearn.metrics import classification_report # In[ ]: print(classification_report(y_test,predictions)) # In[ ]: from sklearn.metrics import jaccard_similarity_score jaccard_similarity_score(y_test, predictions) # In[ ]: passid=np.array(list(range(892,1310))) df = pd.DataFrame({'PassengerId':passid,'Survived':predictions}) df.to_csv('submission.csv',index=False) # In[ ]:
bc7efdd131ecce9958da72f2a08feb76ecb8da2f
b24c7086c8174023177f67a88980cb2b4a92522d
/src/robots/naoqi/res.py
22647370c74cb65b99651d261179ecfc88cc6c6b
[ "ISC" ]
permissive
chili-epfl/pyrobots-nao
f67da21112dcb3cb33b5c5336a4d0c1abb090673
981addf10beda75466dc3e0a7a4be223b39c260c
refs/heads/master
2021-01-20T11:09:57.440700
2015-02-28T11:42:54
2015-02-28T11:42:54
29,869,379
0
1
null
null
null
null
UTF-8
Python
false
false
260
py
from robots.resources import Resource, CompoundResource # hardware resource that need to be shared LEYE = Resource("left eye") REYE = Resource("right eye") EYES = CompoundResource(LEYE, REYE, name = "eyes") AUDIO = Resource("audio") HEAD = Resource("head")
2aefd765c2ca7565c4eead4054bcd72a6c70737b
72316a1d1a2e0358486d50aeecbac8219ccdf092
/ietf/group/migrations/0006_auto__chg_field_groupmilestonehistory_time.py
bd66b5d0e282adc4bb69431ab002dd658d62d069
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
algby/ietfdb
363541941bd6e806bed70891bed4c7f47c9f0539
9ff37e43abbecac873c0362b088a6d9c16f6eed2
refs/heads/master
2021-01-16T18:57:50.100055
2014-09-29T21:16:55
2014-09-29T21:16:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
24,502
py
# encoding: utf-8 from south.db import db from south.v2 import SchemaMigration class Migration(SchemaMigration): def forwards(self, orm): # Changing field 'GroupMilestoneHistory.time' db.alter_column('group_groupmilestonehistory', 'time', self.gf('django.db.models.fields.DateTimeField')()) def backwards(self, orm): # Changing field 'GroupMilestoneHistory.time' db.alter_column('group_groupmilestonehistory', 'time', self.gf('django.db.models.fields.DateTimeField')(auto_now=True)) models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '64'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'doc.document': { 'Meta': {'object_name': 'Document'}, 'abstract': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'ad': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'ad_document_set'", 'null': 'True', 'to': "orm['person.Person']"}), 'authors': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['person.Email']", 'symmetrical': 'False', 'through': "orm['doc.DocumentAuthor']", 'blank': 'True'}), 'expires': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'external_url': ('django.db.models.fields.URLField', [], {'max_length': '200', 'blank': 'True'}), 'group': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['group.Group']", 'null': 'True', 'blank': 'True'}), 'intended_std_level': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['name.IntendedStdLevelName']", 'null': 'True', 'blank': 'True'}), 'internal_comments': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255', 'primary_key': 'True'}), 'note': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'notify': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'order': ('django.db.models.fields.IntegerField', [], {'default': '1', 'blank': 'True'}), 'pages': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'rev': ('django.db.models.fields.CharField', [], {'max_length': '16', 'blank': 'True'}), 'shepherd': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'shepherd_document_set'", 'null': 'True', 'to': "orm['person.Person']"}), 'states': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['doc.State']", 'symmetrical': 'False', 'blank': 'True'}), 'std_level': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['name.StdLevelName']", 'null': 'True', 'blank': 'True'}), 'stream': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['name.StreamName']", 'null': 'True', 'blank': 'True'}), 'tags': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['name.DocTagName']", 'null': 'True', 'blank': 'True'}), 'time': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['name.DocTypeName']", 'null': 'True', 'blank': 'True'}) }, 'doc.documentauthor': { 'Meta': {'ordering': "['document', 'order']", 'object_name': 'DocumentAuthor'}, 'author': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['person.Email']"}), 'document': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['doc.Document']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'order': ('django.db.models.fields.IntegerField', [], {'default': '1'}) }, 'doc.state': { 'Meta': {'ordering': "['type', 'order']", 'object_name': 'State'}, 'desc': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'next_states': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "'previous_states'", 'blank': 'True', 'to': "orm['doc.State']"}), 'order': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '50', 'db_index': 'True'}), 'type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['doc.StateType']"}), 'used': ('django.db.models.fields.BooleanField', [], {'default': 'True'}) }, 'doc.statetype': { 'Meta': {'object_name': 'StateType'}, 'label': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'slug': ('django.db.models.fields.CharField', [], {'max_length': '30', 'primary_key': 'True'}) }, 'group.changestategroupevent': { 'Meta': {'ordering': "['-time', 'id']", 'object_name': 'ChangeStateGroupEvent', '_ormbases': ['group.GroupEvent']}, 'groupevent_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['group.GroupEvent']", 'unique': 'True', 'primary_key': 'True'}), 'state': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['name.GroupStateName']"}) }, 'group.group': { 'Meta': {'object_name': 'Group'}, 'acronym': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '40', 'db_index': 'True'}), 'ad': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['person.Person']", 'null': 'True', 'blank': 'True'}), 'charter': ('django.db.models.fields.related.OneToOneField', [], {'blank': 'True', 'related_name': "'chartered_group'", 'unique': 'True', 'null': 'True', 'to': "orm['doc.Document']"}), 'comments': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'list_archive': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'list_email': ('django.db.models.fields.CharField', [], {'max_length': '64', 'blank': 'True'}), 'list_subscribe': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '80'}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['group.Group']", 'null': 'True', 'blank': 'True'}), 'state': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['name.GroupStateName']", 'null': 'True'}), 'time': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['name.GroupTypeName']", 'null': 'True'}), 'unused_states': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['doc.State']", 'symmetrical': 'False', 'blank': 'True'}), 'unused_tags': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['name.DocTagName']", 'symmetrical': 'False', 'blank': 'True'}) }, 'group.groupevent': { 'Meta': {'ordering': "['-time', 'id']", 'object_name': 'GroupEvent'}, 'by': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['person.Person']"}), 'desc': ('django.db.models.fields.TextField', [], {}), 'group': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['group.Group']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'time': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'type': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'group.grouphistory': { 'Meta': {'object_name': 'GroupHistory'}, 'acronym': ('django.db.models.fields.CharField', [], {'max_length': '40'}), 'ad': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['person.Person']", 'null': 'True', 'blank': 'True'}), 'comments': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'group': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'history_set'", 'to': "orm['group.Group']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'list_archive': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'list_email': ('django.db.models.fields.CharField', [], {'max_length': '64', 'blank': 'True'}), 'list_subscribe': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '80'}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['group.Group']", 'null': 'True', 'blank': 'True'}), 'state': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['name.GroupStateName']", 'null': 'True'}), 'time': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['name.GroupTypeName']", 'null': 'True'}), 'unused_states': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['doc.State']", 'symmetrical': 'False', 'blank': 'True'}), 'unused_tags': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['name.DocTagName']", 'symmetrical': 'False', 'blank': 'True'}) }, 'group.groupmilestone': { 'Meta': {'ordering': "['due', 'id']", 'object_name': 'GroupMilestone'}, 'desc': ('django.db.models.fields.CharField', [], {'max_length': '500'}), 'docs': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['doc.Document']", 'symmetrical': 'False', 'blank': 'True'}), 'due': ('django.db.models.fields.DateField', [], {}), 'group': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['group.Group']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'resolved': ('django.db.models.fields.CharField', [], {'max_length': '50', 'blank': 'True'}), 'state': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['name.GroupMilestoneStateName']"}), 'time': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}) }, 'group.groupmilestonehistory': { 'Meta': {'ordering': "['due', 'id']", 'object_name': 'GroupMilestoneHistory'}, 'desc': ('django.db.models.fields.CharField', [], {'max_length': '500'}), 'docs': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['doc.Document']", 'symmetrical': 'False', 'blank': 'True'}), 'due': ('django.db.models.fields.DateField', [], {}), 'group': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['group.Group']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'milestone': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'history_set'", 'to': "orm['group.GroupMilestone']"}), 'resolved': ('django.db.models.fields.CharField', [], {'max_length': '50', 'blank': 'True'}), 'state': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['name.GroupMilestoneStateName']"}), 'time': ('django.db.models.fields.DateTimeField', [], {}) }, 'group.groupstatetransitions': { 'Meta': {'object_name': 'GroupStateTransitions'}, 'group': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['group.Group']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'next_states': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'previous_groupstatetransitions_states'", 'symmetrical': 'False', 'to': "orm['doc.State']"}), 'state': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['doc.State']"}) }, 'group.groupurl': { 'Meta': {'object_name': 'GroupURL'}, 'group': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['group.Group']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'url': ('django.db.models.fields.URLField', [], {'max_length': '200'}) }, 'group.milestonegroupevent': { 'Meta': {'ordering': "['-time', 'id']", 'object_name': 'MilestoneGroupEvent', '_ormbases': ['group.GroupEvent']}, 'groupevent_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['group.GroupEvent']", 'unique': 'True', 'primary_key': 'True'}), 'milestone': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['group.GroupMilestone']"}) }, 'group.role': { 'Meta': {'object_name': 'Role'}, 'email': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['person.Email']"}), 'group': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['group.Group']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['name.RoleName']"}), 'person': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['person.Person']"}) }, 'group.rolehistory': { 'Meta': {'object_name': 'RoleHistory'}, 'email': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['person.Email']"}), 'group': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['group.GroupHistory']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['name.RoleName']"}), 'person': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['person.Person']"}) }, 'name.doctagname': { 'Meta': {'ordering': "['order']", 'object_name': 'DocTagName'}, 'desc': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'order': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'slug': ('django.db.models.fields.CharField', [], {'max_length': '8', 'primary_key': 'True'}), 'used': ('django.db.models.fields.BooleanField', [], {'default': 'True'}) }, 'name.doctypename': { 'Meta': {'ordering': "['order']", 'object_name': 'DocTypeName'}, 'desc': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'order': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'slug': ('django.db.models.fields.CharField', [], {'max_length': '8', 'primary_key': 'True'}), 'used': ('django.db.models.fields.BooleanField', [], {'default': 'True'}) }, 'name.groupmilestonestatename': { 'Meta': {'ordering': "['order']", 'object_name': 'GroupMilestoneStateName'}, 'desc': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'order': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'slug': ('django.db.models.fields.CharField', [], {'max_length': '8', 'primary_key': 'True'}), 'used': ('django.db.models.fields.BooleanField', [], {'default': 'True'}) }, 'name.groupstatename': { 'Meta': {'ordering': "['order']", 'object_name': 'GroupStateName'}, 'desc': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'order': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'slug': ('django.db.models.fields.CharField', [], {'max_length': '8', 'primary_key': 'True'}), 'used': ('django.db.models.fields.BooleanField', [], {'default': 'True'}) }, 'name.grouptypename': { 'Meta': {'ordering': "['order']", 'object_name': 'GroupTypeName'}, 'desc': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'order': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'slug': ('django.db.models.fields.CharField', [], {'max_length': '8', 'primary_key': 'True'}), 'used': ('django.db.models.fields.BooleanField', [], {'default': 'True'}) }, 'name.intendedstdlevelname': { 'Meta': {'ordering': "['order']", 'object_name': 'IntendedStdLevelName'}, 'desc': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'order': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'slug': ('django.db.models.fields.CharField', [], {'max_length': '8', 'primary_key': 'True'}), 'used': ('django.db.models.fields.BooleanField', [], {'default': 'True'}) }, 'name.rolename': { 'Meta': {'ordering': "['order']", 'object_name': 'RoleName'}, 'desc': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'order': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'slug': ('django.db.models.fields.CharField', [], {'max_length': '8', 'primary_key': 'True'}), 'used': ('django.db.models.fields.BooleanField', [], {'default': 'True'}) }, 'name.stdlevelname': { 'Meta': {'ordering': "['order']", 'object_name': 'StdLevelName'}, 'desc': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'order': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'slug': ('django.db.models.fields.CharField', [], {'max_length': '8', 'primary_key': 'True'}), 'used': ('django.db.models.fields.BooleanField', [], {'default': 'True'}) }, 'name.streamname': { 'Meta': {'ordering': "['order']", 'object_name': 'StreamName'}, 'desc': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'order': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'slug': ('django.db.models.fields.CharField', [], {'max_length': '8', 'primary_key': 'True'}), 'used': ('django.db.models.fields.BooleanField', [], {'default': 'True'}) }, 'person.email': { 'Meta': {'object_name': 'Email'}, 'active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'address': ('django.db.models.fields.CharField', [], {'max_length': '64', 'primary_key': 'True'}), 'person': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['person.Person']", 'null': 'True'}), 'time': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}) }, 'person.person': { 'Meta': {'object_name': 'Person'}, 'address': ('django.db.models.fields.TextField', [], {'max_length': '255', 'blank': 'True'}), 'affiliation': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'ascii': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'ascii_short': ('django.db.models.fields.CharField', [], {'max_length': '32', 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255', 'db_index': 'True'}), 'time': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'user': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['auth.User']", 'unique': 'True', 'null': 'True', 'blank': 'True'}) } } complete_apps = ['group']
[ "[email protected]@7b24d068-2d4e-4fce-9bd7-cbd2762980b0" ]
[email protected]@7b24d068-2d4e-4fce-9bd7-cbd2762980b0
f2056e40108d671f9b0355deab9f4e12a257eebc
6564b596ec27e67ee1b48377da1e7cee59cdcfe9
/shenfun/optimization/__init__.py
d1a6e8057a3b55601f99b532c29a35d270f271d9
[ "BSD-2-Clause" ]
permissive
GeraintPratten/shenfun
077b13d904fd6bf6880c412f74300d78494bee11
d92eb058c9969175da19b23926fb80148cf92ace
refs/heads/master
2023-07-04T13:46:27.969149
2021-08-10T11:48:32
2021-08-10T11:48:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,095
py
"""Module for optimized functions Some methods performed in Python may be slowing down solvers. In this optimization module we place optimized functions that are to be used instead of default Python methods. Some methods are implemented solely in Cython and only called from within the regular Python modules. """ import os import importlib from functools import wraps from . import cython try: from . import numba except ModuleNotFoundError: numba = None def optimizer(func): """Decorator used to wrap calls to optimized versions of functions.""" mod = os.environ.get('SHENFUN_OPTIMIZATION', 'cython') if mod.lower() not in ('cython', 'numba'): # Use python function #print(func.__name__ + ' not optimized') return func mod = importlib.import_module('shenfun.optimization.'+mod.lower()) fun = getattr(mod, func.__name__, func) #if fun is func: # print(fun.__name__ + ' not optimized') @wraps(func) def wrapped_function(*args, **kwargs): u0 = fun(*args, **kwargs) return u0 return wrapped_function
b2c253c3b2b826b2d4c91a55667970a087f6c604
1786dad5941d4b50561e04104d11d1412433d1f3
/core/admin.py
10d5f471b467447c2538cf468cbb6db779b18fd1
[]
no_license
daryabsb/imdb
5dc4704cb589d97815d98cfa97866a50055ab690
649f9dcc673a3b56c28329af15d1d1bae5f3c370
refs/heads/master
2022-12-25T06:59:26.738297
2020-09-19T13:55:05
2020-09-19T13:55:05
290,747,050
0
0
null
null
null
null
UTF-8
Python
false
false
160
py
from django.contrib import admin from .models import Movie, MovieLink # Register your models here. admin.site.register(Movie) admin.site.register(MovieLink)
22c3b4bba12d8a2089c01805105ab6950a3845eb
23db23583a49dd42002f3815bcfb26249096cb99
/input/channelConfig_dielectron_Legacy2018_EBEE.py
b14170031da10b7294d93389ddde0313092551aa
[]
no_license
JanFSchulte/BiasTests
34560adb1bc747aa3b594dd2c1014dee6093a25e
ff9ad12a2391fe0f409bac2945d21576f4a0cb3d
refs/heads/master
2021-04-22T01:00:35.124191
2020-03-24T23:23:07
2020-03-24T23:23:07
249,836,538
0
0
null
null
null
null
UTF-8
Python
false
false
7,672
py
import ROOT,sys ROOT.gROOT.SetBatch(True) ROOT.gErrorIgnoreLevel = 1 from ROOT import * from math import sqrt from resolution_cfg_2018 import DCB_para nBkg = -1 dataFile = "input/eventList_ele_2018_BE.txt" def addBkgUncertPrior(ws,label,channel,uncert): beta_bkg = RooRealVar('beta_%s_%s'%(label,channel),'beta_%s_%s'%(label,channel),0,-5,5) getattr(ws,'import')(beta_bkg,ROOT.RooCmdArg()) uncert = 1. + uncert bkg_kappa = RooRealVar('%s_%s_kappa'%(label,channel),'%s_%s_kappa'%(label,channel),uncert) bkg_kappa.setConstant() getattr(ws,'import')(bkg_kappa,ROOT.RooCmdArg()) ws.factory("PowFunc::%s_%s_nuis(%s_%s_kappa, beta_%s_%s)"%(label,channel,label,channel,label,channel)) ws.factory("prod::%s_%s_forUse(%s_%s, %s_%s_nuis)"%(label,channel,label,channel,label,channel)) def provideSignalScaling(mass,spin2=False): nz = 3401386 nsig_scale = 1./0.031377 eff = signalEff(mass,spin2) result = (nsig_scale*nz*eff) return result def signalEff(mass,spin2=False): eff_a = 0.01461 eff_b = 479.6 eff_c = 635.3 eff_d = -1.071e+05 eff_e = 8.345e+04 eff_f = 1.302e+07 eff_g = 2.337e+07 if spin2: eff_a = 0.06212 eff_b = -7.192 eff_c = 56.72 eff_d = -43.69 eff_e = 822.9 eff_f = 3.579e08 eff_g = 3.048e09 return (eff_a+eff_b/(mass+eff_c)+eff_d/(mass*mass+eff_e))+eff_f/(mass**3+eff_g) def provideUncertainties(mass): result = {} result["sigEff"] = [1.08] # must be list in case the uncertainty is asymmetric result["massScale"] = 0.01 result ["bkgUncert"] = 1.4 result ["res"] = 0.0 result ["reco"] = [0.0] result["bkgParams"] = {"bkg_a":0.00313740766932294824, "bkg_b":0.01135596583199909373, "bkg_c":0.54125714622824727673, "bkg_d":0.00000000000000000000, "bkg_e":0.00194931370350556223, "bkg_b2":0.01948124695032613443, "bkg_c2":0.28782235398250377578, "bkg_d2":0.41138999196844272532, "bkg_thr":0.01928153410885654132} return result def provideCorrelations(): result = {} ''' Combine correlates uncertainties that have the same name. So wa hve to adjust the names to achieve what we want. 1) put the full channel name. That will make it uncorrelated with all other channels 2) keep the channel name but remove the last bit: will correlate between the two subcategories within a year 3) Just keep the dimuon or dielectron name, so we correlate between the years 4) To correlate some specific combination of uncertainties, come up with a name and add it to all releavent channel configs ''' #result['sigEff'] = 'dielectron' #result['massScale'] = 'dielectron' #result['bkgUncert'] = 'dielectron_Legacy2018_EBEE' #result['res'] = 'dielectron' #result['bkgParams'] = 'dielectron_Legacy2018_EBEE' result['sigEff'] = 'dielectron' result['massScale'] = 'dielectron_Legacy2018_EBEE' result['bkgUncert'] = 'dielectron_Legacy2018_EBEE' result['res'] = 'dielectron_Legacy2018_EBEE' result['reco'] = 'dielectron_Legacy2018_EBEE' result['bkgParams'] = 'dielectron_Legacy2018_EBEE' return result def getResolution(mass): CBObject = DCB_para("dcb") CBObject.get_value(mass,False) result = {} result["res"] = CBObject.sigma result["scale"] = CBObject.mean result["nR"] = CBObject.PowerR result["nL"] = CBObject.PowerL result["alphaL"] = CBObject.CutL result["alphaR"] = CBObject.CutR if result["nR"] < 0: result["nR"] = 0. return result def loadBackgroundShape(ws,useShapeUncert=False): bkg_a = RooRealVar('bkg_a_dielectron_Legacy2018_EBEE','bkg_a_dielectron_Legacy2018_EBEE',11.76585112) bkg_b = RooRealVar('bkg_b_dielectron_Legacy2018_EBEE','bkg_b_dielectron_Legacy2018_EBEE',-0.003566666494) bkg_c = RooRealVar('bkg_c_dielectron_Legacy2018_EBEE','bkg_c_dielectron_Legacy2018_EBEE',-2.513733207e-07) bkg_d = RooRealVar('bkg_d_dielectron_Legacy2018_EBEE','bkg_d_dielectron_Legacy2018_EBEE',0.0) bkg_e = RooRealVar('bkg_e_dielectron_Legacy2018_EBEE','bkg_e_dielectron_Legacy2018_EBEE',-2.860692377) bkg_b2 = RooRealVar('bkg_b2_dielectron_Legacy2018_EBEE','bkg_b2_dielectron_Legacy2018_EBEE',-0.00159101029) bkg_c2 = RooRealVar('bkg_c2_dielectron_Legacy2018_EBEE','bkg_c2_dielectron_Legacy2018_EBEE',-2.610407295e-08) bkg_d2 = RooRealVar('bkg_d2_dielectron_Legacy2018_EBEE','bkg_d2_dielectron_Legacy2018_EBEE',2.822681727e-12) bkg_thr = RooRealVar('bkg_thr_dielectron_Legacy2018_EBEE','bkg_thr_dielectron_Legacy2018_EBEE',537.7173207) bkg_a.setConstant() bkg_b.setConstant() bkg_c.setConstant() bkg_d.setConstant() bkg_e.setConstant() getattr(ws,'import')(bkg_a,ROOT.RooCmdArg()) getattr(ws,'import')(bkg_b,ROOT.RooCmdArg()) getattr(ws,'import')(bkg_c,ROOT.RooCmdArg()) getattr(ws,'import')(bkg_d,ROOT.RooCmdArg()) getattr(ws,'import')(bkg_e,ROOT.RooCmdArg()) bkg_b2.setConstant() bkg_c2.setConstant() bkg_d2.setConstant() bkg_thr.setConstant() getattr(ws,'import')(bkg_b2,ROOT.RooCmdArg()) getattr(ws,'import')(bkg_c2,ROOT.RooCmdArg()) getattr(ws,'import')(bkg_d2,ROOT.RooCmdArg()) getattr(ws,'import')(bkg_thr,ROOT.RooCmdArg()) # background systematics bkg_syst_a = RooRealVar('bkg_syst_a_dielectron_Legacy2018_EBEE','bkg_syst_a_dielectron_Legacy2018_EBEE',1.0) bkg_syst_b = RooRealVar('bkg_syst_b_dielectron_Legacy2018_EBEE','bkg_syst_b_dielectron_Legacy2018_EBEE',0.0) bkg_syst_a.setConstant() bkg_syst_b.setConstant() getattr(ws,'import')(bkg_syst_a,ROOT.RooCmdArg()) getattr(ws,'import')(bkg_syst_b,ROOT.RooCmdArg()) # background shape if useShapeUncert: bkgParamsUncert = provideUncertainties(1000)["bkgParams"] for uncert in bkgParamsUncert: addBkgUncertPrior(ws,uncert,"dielectron_Legacy2018_EBEE",bkgParamsUncert[uncert] ) ws.factory("ZPrimeEleBkgPdf5::bkgpdf_dielectron_Legacy2018_EBEE(mass_dielectron_Legacy2018_EBEE, bkg_a_dielectron_Legacy2018_EBEE_forUse, bkg_b_dielectron_Legacy2018_EBEE_forUse, bkg_c_dielectron_Legacy2018_EBEE_forUse,bkg_d_dielectron_Legacy2018_EBEE_forUse,bkg_e_dielectron_Legacy2018_EBEE_forUse, bkg_b2_dielectron_Legacy2018_EBEE_forUse, bkg_c2_dielectron_Legacy2018_EBEE_forUse,bkg_d2_dielectron_Legacy2018_EBEE_forUse,bkg_thr_dielectron_Legacy2018_EBEE_forUse,bkg_syst_a_dielectron_Legacy2018_EBEE,bkg_syst_b_dielectron_Legacy2018_EBEE)") ws.factory("ZPrimeEleBkgPdf5::bkgpdf_fullRange(massFullRange, bkg_a_dielectron_Legacy2018_EBEE_forUse, bkg_b_dielectron_Legacy2018_EBEE_forUse, bkg_c_dielectron_Legacy2018_EBEE_forUse,bkg_d_dielectron_Legacy2018_EBEE_forUse,bkg_e_dielectron_Legacy2018_EBEE_forUse, bkg_b2_dielectron_Legacy2018_EBEE_forUse, bkg_c2_dielectron_Legacy2018_EBEE_forUse,bkg_d2_dielectron_Legacy2018_EBEE_forUse,bkg_thr_dielectron_Legacy2018_EBEE_forUse,bkg_syst_a_dielectron_Legacy2018_EBEE,bkg_syst_b_dielectron_Legacy2018_EBEE)") else: ws.factory("ZPrimeEleBkgPdf5::bkgpdf_dielectron_Legacy2018_EBEE(mass_dielectron_Legacy2018_EBEE, bkg_a_dielectron_Legacy2018_EBEE, bkg_b_dielectron_Legacy2018_EBEE, bkg_c_dielectron_Legacy2018_EBEE,bkg_d_dielectron_Legacy2018_EBEE,bkg_e_dielectron_Legacy2018_EBEE, bkg_b2_dielectron_Legacy2018_EBEE, bkg_c2_dielectron_Legacy2018_EBEE,bkg_d2_dielectron_Legacy2018_EBEE,bkg_thr_dielectron_Legacy2018_EBEE,bkg_syst_a_dielectron_Legacy2018_EBEE,bkg_syst_b_dielectron_Legacy2018_EBEE)") ws.factory("ZPrimeEleBkgPdf5::bkgpdf_fullRange(massFullRange, bkg_a_dielectron_Legacy2018_EBEE, bkg_b_dielectron_Legacy2018_EBEE, bkg_c_dielectron_Legacy2018_EBEE,bkg_d_dielectron_Legacy2018_EBEE,bkg_e_dielectron_Legacy2018_EBEE, bkg_b2_dielectron_Legacy2018_EBEE, bkg_c2_dielectron_Legacy2018_EBEE,bkg_d2_dielectron_Legacy2018_EBEE,bkg_thr_dielectron_Legacy2018_EBEE,bkg_syst_a_dielectron_Legacy2018_EBEE,bkg_syst_b_dielectron_Legacy2018_EBEE)") return ws
372479be2663f3a0b763022ee4cd64facba7add6
5e0755091efd2d4ed61bead8aa38b45bab5a8b07
/python/anyascii/_data/_034.py
0c20f1bba793e6f964ca6785a7c6290389254b52
[ "ISC" ]
permissive
casept/anyascii
c27261d87257c17c47fe0e9fc77438437de94c1c
d4f426b91751254b68eaa84c6cd23099edd668e6
refs/heads/master
2022-12-05T07:13:53.075144
2020-08-07T07:55:50
2020-08-07T07:55:50
285,904,577
0
0
ISC
2020-08-07T19:20:00
2020-08-07T19:19:59
null
UTF-8
Python
false
false
875
py
b='Qiu Tian Hei Kua Wu Yin Yi Xie Chou Nuo Dan Dai Xu Xing Xiong Liu Lin Xiang Yong Xin Zhen Dai Wu Pan Ru Ma Qian Yi Yin Nei Cheng Feng Taai Zhuo Fang Ao Wu Zuo Zhou Dong Su Yi Qiong Kuang Lei Nao Zhu Shu Xu Shen Jie Die Nuo Su Yi Long Ying Beng Lan Miao Yi Li Ji Yu Luo Chai Nom Hun Xu Hui Rao Zhou Caam Han Xi Tai Yao Hui Jun Ma Lue Tang Yao Zhao Zhai Yu Zhuo Er Ran Qi Chi Wu Han Tang Se Si Qiong Lei Sa Kui Pu Ta Shu Yang Ou Tai Mian Yin Diao Yu Mie Jun Niao Xie You Che Feng Lei Li Sin Luo Sek Ji Kwaan Jip Quan Cai Liang Gu Mao Gung Gua Sui Din Wang Mao Man Quan Shi Li Wang Kou Du Zhen Ting Bing Huo Dong Gong Cheng Qin Jiong Lu Xing Nan Xie Mie Bi Jie Su Hung Gong Gung You Xing Qia Pi Dian Fu Luo Qia Qia Tang Bai Gan Ci Xuan Lang Fu She Diu Li Hua Tou Pian Di Ruan E Qie Yi Zhuo Rui Jian Gong Chi Chong Xi'
33a273361603bc9162e66b2ca04a3dc441178775
8ef477149fdd8cd8c0ad88f160e2b8a445550a1e
/base_ecommerce_v13/models/stock.py
86a7f7c483c94f799c99fe122bff69e115aeeda4
[]
no_license
cokotracy/ebay_connector_v13
97f3e23ba951f14457514b71b408b389a7c16dc7
3c08603875d464e5bee818091fa704f5f7192499
refs/heads/master
2022-07-19T21:15:23.065880
2020-05-20T15:20:23
2020-05-20T15:20:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
186
py
from odoo import api, fields, models, _ import odoo.netsvc class stock_picking(models.Model): _inherit = "stock.picking" shop_id = fields.Many2one('sale.shop', string='Shop')
[ "https://[email protected]" ]
4889cedcd8425ab04971c8f8ff25cf9734da01c9
e5e8553fe434f399d24c1a8f981d5d258574e4af
/universal_landmark_detection/model/networks/globalNet.py
0b2bab7140532e0dbb277efecde6822b98a6b8f8
[ "MIT" ]
permissive
egozoro/YOLO_Universal_Anatomical_Landmark_Detection
4dee00cf4ee140fa373b2dafeea8c95b69ff66c7
465a3d6afcdb23fdec609efe336beebdc9ed61f4
refs/heads/main
2023-08-24T02:04:40.543561
2021-10-07T13:58:16
2021-10-07T13:58:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,472
py
import torch import torch.nn as nn import torch.nn.functional as F class myConv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=1): super(myConv2d, self).__init__() padding = (kernel_size-1)//2 self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=padding) def forward(self, x): return self.conv(x) class dilatedConv(nn.Module): ''' stride == 1 ''' def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1): super(dilatedConv, self).__init__() # f = (kernel_size-1) * d +1 # new_width = (width - f + 2 * padding)/stride + stride padding = (kernel_size-1) * dilation // 2 self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, dilation=dilation, padding=padding) self.bn = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU(inplace=True) def forward(self, x): return self.relu(self.bn(self.conv(x))) class GlobalNet(nn.Module): def __init__(self, in_channels, out_channels, scale_factor=0.25, kernel_size=3, dilations=None): super(GlobalNet, self).__init__() self.scale_factor = scale_factor if not isinstance(in_channels, list): in_channels = [in_channels] if not isinstance(out_channels, list): out_channels = [out_channels] mid_channels = 128 if dilations is None: dilations = [1, 2, 5] for i, n_chan in enumerate(in_channels): setattr(self, 'in{i}'.format(i=i), myConv2d(n_chan, mid_channels, 3)) for i, n_chan in enumerate(out_channels): setattr(self, 'out{i}'.format(i=i), myConv2d(mid_channels, n_chan, 1)) convs = [dilatedConv(mid_channels, mid_channels, kernel_size, dilation) for dilation in dilations] convs = nn.Sequential(*convs) setattr(self, 'convs{}'.format(i), convs) def forward(self, x, task_idx=0): size = x.size()[2:] sf = self.scale_factor x = F.interpolate(x, scale_factor=sf) x = getattr(self, 'in{}'.format(task_idx))(x) x = getattr(self, 'convs{}'.format(task_idx))(x) x = getattr(self, 'out{}'.format(task_idx))(x) x = F.interpolate(x, size=size) return {'output': torch.sigmoid(x)}
847b6985e225a008a43c6455650f7843ffa2f1d6
99697559d046cdd04dd9068bd518e4da4177aaa2
/Finish/M019_Remove_Nth_Node_From_End_of_List.py
d1a7c1a10eb90195f94c135192f33c5f6de79380
[]
no_license
Azurisky/Leetcode
3e3621ef15f2774cfdfac8c3018e2e4701760c3b
8fa215fb0d5b2e8f6a863756c874d0bdb2cffa04
refs/heads/master
2020-03-18T22:46:35.780864
2018-10-07T05:45:30
2018-10-07T05:45:30
135,364,168
0
0
null
null
null
null
UTF-8
Python
false
false
668
py
# Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.val = x # self.next = None class Solution: def removeNthFromEnd(self, head, n): """ :type head: ListNode :type n: int :rtype: ListNode """ first = head ans = second = ListNode(0) second.next = head for i in range(n): first = first.next while first: first = first.next second = second.next second.next = second.next.next return ans.next
f8b639c29269c2aae5cac88c606ca55cac9e1ec6
1d871064c463d4e55c6eec8e479dd3a594e07593
/tests/sequence_classification_tests/dataset_test.py
d892a00ba89dddefe0212dea0065e6d00cbed7d5
[ "Apache-2.0" ]
permissive
little-bigtiger/transformers-keras
76ad5f67e71a1286971735208a13b2b235afc281
d8712a21e0a34a3f26d1e48459d7505c96931a5d
refs/heads/master
2023-08-17T04:19:05.080257
2021-09-29T03:08:42
2021-09-29T03:08:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,295
py
import unittest from transformers_keras.sequence_classification.dataset import SequenceClassificationDataset class DatasetTest(unittest.TestCase): """Dataset test.""" def test_sequence_classification_dataset_examples(self): print() print("====from_jsonl_files") d = SequenceClassificationDataset.from_jsonl_files( "testdata/sequence_classify.jsonl", vocab_file="testdata/vocab.bert.txt", batch_size=2 ) print(next(iter(d))) print("====jsonl_to_examples") examples = SequenceClassificationDataset.jsonl_to_examples( "testdata/sequence_classify.jsonl", vocab_file="testdata/vocab.bert.txt" ) for i in range(2): print(examples[i]) print("====from_examples") d = SequenceClassificationDataset.from_examples(examples, batch_size=2) print(next(iter(d))) print("====examples_to_tfrecord") SequenceClassificationDataset.examples_to_tfrecord(examples, output_files=["testdata/sequence_classify.tfrecord"]) print("====from_tfrecord_files") d = SequenceClassificationDataset.from_tfrecord_files("testdata/sequence_classify.tfrecord", batch_size=2) print(next(iter(d))) if __name__ == "__main__": unittest.main()
1c29f61d1b995d9e89dc5f3a52a350d1a6308b32
3ab7695bfc34355ba579bc43b9fea396933514dc
/dbaas_cloudstack/util/models.py
79546d1939ff00c64b02437d9629be07d551d26d
[]
no_license
globocom/dbaas-cloudstack
d59ee6147235c5933eb5fa36a3047c61a9de9e5a
8445dde83c231a6af932ef179821c3e0b62485ff
refs/heads/master
2023-01-05T00:18:36.304237
2018-04-18T20:51:30
2018-04-18T20:51:30
18,342,699
8
1
null
2022-12-26T19:43:38
2014-04-01T20:02:04
Python
UTF-8
Python
false
false
769
py
# -*- coding: utf-8 -*- from __future__ import absolute_import, unicode_literals from django.db import models from django.utils.translation import ugettext_lazy as _ class BaseModel(models.Model): """Base model class""" created_at = models.DateTimeField(verbose_name=_("created_at"), auto_now_add=True) updated_at = models.DateTimeField(verbose_name=_("updated_at"), auto_now=True) class Meta: abstract = True def __unicode__(self): if hasattr(self, 'name'): result = "%s" % self.name if hasattr(self, 'region'): result = result + " - %s" % self.region return result elif hasattr(self, '__unicode__'): result = self.__unicode__() return result
113a7bac74c95751ac2210ca63365a1b2e1fd96e
42b61bf376b172a36759e6c3264562e585630d47
/ascent/wsgi.py
e0b9ba7dc44cd2c055733c9d3a2cd7ec618e6449
[]
no_license
destinymalone/ascent
9ad4d9e1a0db017c6ff8d4820fb92e46b0f282e6
526227115ce6703f66f4c39a7bb2e12153427757
refs/heads/master
2020-09-23T05:03:44.071148
2020-01-27T14:54:59
2020-01-27T14:54:59
225,411,341
1
0
null
2019-12-05T18:50:43
2019-12-02T15:44:27
null
UTF-8
Python
false
false
389
py
""" WSGI config for ascent project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "ascent.settings") application = get_wsgi_application()
13284b6e642981ad9bab7c9f4b5bd1a8b32ea645
88553181929aa251bc5ae02d81f17970249bca40
/django/angular/aenv/Scripts/painter.py
f7b0e2584de0e394bb34f5a8be649eb0ce7ac5de
[]
no_license
reddymadhira111/Python
2d9c3e5dba8238df6be9a67d422468ac1ca16d35
0f1a0c87748e67a879cd8c31eda7b65c69c5d648
refs/heads/master
2022-11-05T07:23:30.211706
2017-06-13T19:11:25
2017-06-13T19:11:25
94,243,400
0
1
null
2022-10-29T10:56:29
2017-06-13T18:13:59
Python
UTF-8
Python
false
false
2,205
py
#!c:\users\reddy\desktop\python\django\angular\aenv\scripts\python.exe # # The Python Imaging Library # $Id$ # # this demo script illustrates pasting into an already displayed # photoimage. note that the current version of Tk updates the whole # image every time we paste, so to get decent performance, we split # the image into a set of tiles. # import sys if sys.version_info[0] > 2: import tkinter else: import Tkinter as tkinter from PIL import Image, ImageTk # # painter widget class PaintCanvas(tkinter.Canvas): def __init__(self, master, image): tkinter.Canvas.__init__(self, master, width=image.size[0], height=image.size[1]) # fill the canvas self.tile = {} self.tilesize = tilesize = 32 xsize, ysize = image.size for x in range(0, xsize, tilesize): for y in range(0, ysize, tilesize): box = x, y, min(xsize, x+tilesize), min(ysize, y+tilesize) tile = ImageTk.PhotoImage(image.crop(box)) self.create_image(x, y, image=tile, anchor=tkinter.NW) self.tile[(x, y)] = box, tile self.image = image self.bind("<B1-Motion>", self.paint) def paint(self, event): xy = event.x - 10, event.y - 10, event.x + 10, event.y + 10 im = self.image.crop(xy) # process the image in some fashion im = im.convert("L") self.image.paste(im, xy) self.repair(xy) def repair(self, box): # update canvas dx = box[0] % self.tilesize dy = box[1] % self.tilesize for x in range(box[0]-dx, box[2]+1, self.tilesize): for y in range(box[1]-dy, box[3]+1, self.tilesize): try: xy, tile = self.tile[(x, y)] tile.paste(self.image.crop(xy)) except KeyError: pass # outside the image self.update_idletasks() # # main if len(sys.argv) != 2: print("Usage: painter file") sys.exit(1) root = tkinter.Tk() im = Image.open(sys.argv[1]) if im.mode != "RGB": im = im.convert("RGB") PaintCanvas(root, im).pack() root.mainloop()
[ "reddymadhira111gmail.com" ]
reddymadhira111gmail.com
62af4afbd3bef2ec5d05634ac926d9d41c739692
4a9dada02c749e9e5277fe1e35357d7b2b28ad5c
/顾天媛2018010980/操作系统实验/作业3.py
7e4ba1e0148c936d956319f37d9a32e6f1f3efc9
[]
no_license
wanghan79/2020_Option_System
631cc80f52829390a128a86677de527472470348
f37b870614edf7d85320da197d932df2f25a5720
refs/heads/master
2021-01-09T13:10:05.630685
2020-07-10T03:30:39
2020-07-10T03:30:39
242,312,271
13
9
null
2020-07-04T16:13:11
2020-02-22T09:12:56
Python
UTF-8
Python
false
false
1,037
py
# !/usr/bin/python3 # -*- coding: UTF-8 -*- """ Author: Ty.Gu Purpose: multiprocessing Created: 26/6/2020 """ # 作业3. 采用Python语言创建多进程;提示:采用Python内置工具包multiprocessing from multiprocessing import Pool import time, os from random import random def task(task_name): print('开始做任务啦!', task_name) start = time.time() time.sleep(random() * 2) end = time.time() print('完成任务:{}! 耗时:{} ,进程ID:{}'.format(task_name, (end - start), os.getpid())) # 容器 container = [] def callback_func(n): container.append(n) if __name__ == '__main__': pool = Pool(5) tasks = ['听音乐', '看电影', '读书', '看报', '玩游戏', '打篮球', '弹钢琴'] for t in tasks: pool.apply_async(task, args=(t,)) pool.close() # 关闭进程池,不允许继续添加进程 pool.join() # 等待进程池中的所有进程结束 print('------' * 10) for c in container: print(c) print('over!!!!!!!!!!')
b7e58fa1fcf498998c1ed4a723ca290fc280f15c
23514a0e2baf6da053690dd511f1eef75a573e6b
/log-mining/com/haodou/log-mining/log/searchKeyword45.py
57442a3fa8cb219cd0a04d9be9ebe10fd6f97859
[]
no_license
rainly/scripts-1
b5f31880a1a917df23e4c110bb7661685851eff5
3ef01a58162b94fb36cdd38581c899d8a118eda0
refs/heads/master
2020-07-12T01:41:31.491344
2019-08-27T08:50:10
2019-08-27T08:50:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,296
py
#encoding=utf-8 # #专门为4.5版本定制 import sys import operator sys.path.append("./") sys.path.append("../") sys.path.append("../abtest") import column import column2 from clickCount import * from cardClick import * CardFix="##Card##_" def getRidPos(ret): rids={} if "rids" in ret: size=FirstPageNum if len(ret["rids"]) < FirstPageNum: size=len(ret["rids"]) for i in range(size): rids[ret["rids"][i]]=i return rids THead=".html?id=" THeadLen=len(THead) inn=0 def searchFollowMapper(f): lastIP="" rids={} oc=0 otherRids={} otherAids={} otherTids={} searchRet={} click=None keywordClick={} lastK="" hc=0 keyword="" cardBank=CardBank() for line in f: if True: cols=line.strip().split("\t") if len(cols) < 3: continue ip=cols[0] if lastIP == "": lastIP=ip if lastIP != ip: lastIP=ip keyword="" rids={} uc={} otherRids={} otherAids={} otherTids={} searchRet={} click=None lastSearchRet={} lastClick=None cardBank.reset() if line.find("m.haodou.com") > 0 and line.find("GET") > 0: cols=cols[2].strip().split("\01") if len(cols) < 5: continue p=cols[4].find(THead) if p > 0: end=cols[4].find("&",p+THeadLen) if end < 0: end=len(cols[4]) id=cols[4][p+THeadLen:end] if id !="": if "topicId" in searchRet and searchRet["topicId"] == id: click.addTopicHit(id) oc+=1 if "ttitle" in searchRet: title=searchRet["ttitle"] click.addTopicTitleHit(title,keyword) elif id in otherTids: oc+=1 click.getMs().tb+=1 else: if cols[4].find("uuid") > 0: sys.stderr.write(line) mtid=id continue if len(cols) < column.APP_LOG_COLUMNS+1: continue version=cols[column.VERSION_CID+1] v=column.intVersion(version) if v < 400: continue u=column.uuidFirst(cols[1:]) #获得uuid if u == None or u.find("{") >= 0: u="" para=cols[column.PARA_ID+1] #得到请求参数 method=cols[column.METHOD_CID+1] #获得请求的方法 hasSearch=False if method == 'search.getsearchindex': #搜索方法 keyword=V45Fix+column.getValue(para,"keyword") #搜索的关键字 hasSearch=True searchRet=column2.FuncMap[method](cols[-1]) #获得搜索返回的食谱列表 rids=getRidPos(searchRet) if keyword not in keywordClick: keywordClick[keyword]=Click() click=keywordClick[keyword] click.addSearchRet(searchRet,keyword) cardBank.addSearch(keyword[len(V45Fix):],searchRet) otherRids={} otherAids={} otherTids={} if "rids" in searchRet: for i in range(FirstPageNum,len(searchRet["rids"]),1): otherRids[searchRet["rids"][i]]=i elif method == "search.getlist" and (v < 450 or v >= 480): offset=column.getValue(para,"offset") scene=column.getValue(para,"scene") if scene != "k1": continue #keyword=column.getValue(para,"keyword") #搜索的关键字 searchRet=column2.FuncMap[method](cols[-1]) # if offset != "0": kw=column.getValue(para,"keyword") if kw != keyword: continue if "rids" in searchRet: for i in range(len(searchRet["rids"])): otherRids[searchRet["rids"][i]]=i continue keyword=column.getValue(para,"keyword") hasSearch=True rids=getRidPos(searchRet) otherRids={} #otherAids={} #otherTids={} if "rids" in searchRet: for i in range(len(searchRet["rids"])): if i >= FirstPageNum: otherRids[searchRet["rids"][i]]=i continue rids[searchRet["rids"][i]]=i if keyword not in keywordClick: keywordClick[keyword]=Click() click=keywordClick[keyword] click.addSearchRet(searchRet,keyword) cardBank.addSearch(keyword,searchRet,False) if hasSearch: if lastK != "": keywordClick[lastK].addHitCount(hc) if hc + oc > 0: keywordClick[lastK].addHasHit() hc=0 oc=0 lastK=keyword if click == None: continue if method == "info.getinfo": rid=column.getValue(para,"rid") #获得点击的食谱id pos=-1 if rid in rids: click.addRecipeHit(rid,rids[rid]) kw=keyword if v >= 450: kw=keyword[len(V45Fix):] cardBank.addHit(kw,rid,rids[rid],(v >= 450)) hc+=1 pos=rids[rid] elif rid in otherRids: oc+=1 click.getMs().rb+=1 if pos >= 0: ret=column2.FuncMap[method](cols[-1]) if ret == None: pass #sys.stderr.write(cols[-1]) elif "title" in ret: title=ret["title"] click.addTitleHit(title,pos,keyword) elif method == "info.getfoodinfo": fid=column.getValue(para,"foodid") if fid != "" and "food" in searchRet and fid == searchRet["food"]: click.addFoodHit(fid) oc+=1 elif v >= 450: if method == "info.getalbuminfo": id=column.getValue(para,"aid") #获取点击的专辑id if id !="": if "aid" in searchRet and searchRet["aid"]==id : click.addAlbumHit(id) oc+=1 if "atitle" in searchRet: title=searchRet["atitle"] click.addAlbumTitleHit(title,keyword) elif id in otherAids: oc+=1 click.getMs().ab+=1 elif method == "search.gettags": kw=V45Fix+column.getValue(para,"keyword") #搜索的关键字 if kw != keyword: continue tags=column2.FuncMap[method](cols[-1]) for tagid in tags: if tagid not in click.getMs().rTagShow: click.getMs().rTagShow[tagid]=1 else: click.getMs().rTagShow[tagid]+=1 elif method == "search.getlist": offset=column.getValue(para,"offset") scene=column.getValue(para,"scene") if scene != "k1": continue kw=V45Fix+column.getValue(para,"keyword") #搜索的关键字 if kw != keyword: continue searchRet=column2.FuncMap[method](cols[-1]) # if "rids" in searchRet: for i in range(len(searchRet["rids"])): otherRids[searchRet["rids"][i]]=i if offset != "0": continue tagid=column.getValue(para,"tagid") if tagid == "" or tagid == "null": click.getMs().r+=1 else: if tagid not in click.getMs().rt: click.getMs().rt[tagid]=1 else: click.getMs().rt[tagid]+=1 click.getMs().rtn=1 elif method == "search.getalbumlist": offset=column.getValue(para,"offset") kw=V45Fix+column.getValue(para,"keyword") #搜索的关键字 if kw != keyword: continue ret=column2.getList(cols[-1],"AlbumId") for aid in ret: otherAids[aid]=1 if offset == "0": click.getMs().a+=1 elif method == "search.gettopiclist": offset=column.getValue(para,"offset") kw=V45Fix+column.getValue(para,"keyword") #搜索的关键字 if kw != keyword: continue ret=column2.getList(cols[-1],"TopicId","int") for tid in ret: #sys.stderr.write("tid:"+tid+"\n") otherTids[tid]=1 if offset == "0": click.getMs().t+=1 if lastK != "": keywordClick[lastK].addHitCount(hc) if hc + oc > 0: keywordClick[lastK].addHasHit() ck45=Click() ck44=Click() for kw in keywordClick: if kw.startswith(V45Fix): ck45.merge(keywordClick[kw]) else: ck44.merge(keywordClick[kw]) print kw+"\t"+str(keywordClick[kw]) print "ck45_##total##"+"\t"+str(ck45) print "ck44_##total##"+"\t"+str(ck44) for card in cardBank.bank: print CardFix+str(cardBank.bank[card]) def searchFollowReducer(f): lastK="" ck=Click() for line in sys.stdin: cols=line.split("\t") kw=cols[0] #空搜索 if kw.strip() == "": kw="[VOID]" if lastK == "": lastK=kw if kw.startswith(CardFix): cc=CardClick(kw) if lastK != kw: if lastK.startswith(CardFix): print cc else: print lastK+"\t"+str(ck) if kw.startswith(CardFix): cc=CardClick(kw) else: ck=Click() lastK=kw try: if line.startswith(CardFix): tcc=readCardClick(cols) cc.merge(tcc) else: (kw,tck)=readClick(cols) ck.merge(tck) except: sys.stderr.write(line) if lastK != "": if lastK.startswith(CardFix): print cc else: print lastK+"\t"+str(ck) if __name__=="__main__": if sys.argv[1] == "map": searchFollowMapper(sys.stdin) elif sys.argv[1] == "reduce": searchFollowReducer(sys.stdin)
d8c7a38a8aeec36a0e7f7cb277b9cbcea34d348d
1fbb308b15a83fd53d7d1eeee1ad103d3ba36ac4
/venv/bin/pip
87b74d7a8f139ff92ee41d635bc4ef98e35fbf19
[]
no_license
jcohen66/twit
a2b585f523a7168c1438c4eea6cf872d7dc3a985
3d164947a63d3102b2b34c86199b26b2f17cc4db
refs/heads/master
2023-03-25T01:29:25.814931
2021-03-16T00:33:07
2021-03-16T00:33:07
347,211,087
0
0
null
null
null
null
UTF-8
Python
false
false
257
#!/Users/jcohen66/PycharmProjects/twit/venv/bin/python # -*- coding: utf-8 -*- import re import sys from pip._internal.cli.main import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
4266bb3abd19427b2cd8572b67e7b4af4d73d196
54708c482b13760fc4a747274b62849b5e8b8277
/leetcode_python/Hash_table/contains-duplicate-ii.py
cc82bea65b88eb03d3c4b67b958a77ccc25b4d1e
[]
no_license
DataEngDev/CS_basics
6520818caa61609eae9b026fb5b25ef9e4ea6961
05e8f5a4e39d448eb333c813093fc7c1df4fc05e
refs/heads/master
2023-03-02T18:58:42.469872
2021-02-14T02:23:27
2021-02-14T02:23:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,021
py
""" Given an array of integers and an integer k, find out whether there are two distinct indices i and j in the array such that nums[i] = nums[j] and the absolute difference between i and j is at most k. Example 1: Input: nums = [1,2,3,1], k = 3 Output: true Example 2: Input: nums = [1,0,1,1], k = 1 Output: true Example 3: Input: nums = [1,2,3,1,2,3], k = 2 Output: false """ # Time: O(n) # Space: O(n) # # Given an array of integers and an integer k, return true if # and only if there are two distinct indices i and j in the array # such that nums[i] = nums[j] and the difference between i and j is at most k. # # V0 # V1 # https://blog.csdn.net/coder_orz/article/details/51674266 # IDEA : HASH TABLE class Solution(object): def containsNearbyDuplicate(self, nums, k): """ :type nums: List[int] :type k: int :rtype: bool """ num_map = {} for i in range(len(nums)): if nums[i] in num_map and i - num_map[nums[i]] <= k: return True else: num_map[nums[i]] = i return False # V1' # https://blog.csdn.net/coder_orz/article/details/51674266 # IDEA : SET # IDEA : SET OPERATION # In [12]: window = set([1,3,4,]) # ...: # In [13]: window # Out[13]: {1, 3, 4} # In [14]: window.discard(1) # In [15]: window # Out[15]: {3, 4} # In [16]: window.discard(3) # In [17]: window # Out[17]: {4} class Solution(object): def containsNearbyDuplicate(self, nums, k): """ :type nums: List[int] :type k: int :rtype: bool """ window = set([]) for i in range(len(nums)): if i > k: window.discard(nums[i-k-1]) if nums[i] in window: return True else: window.add(nums[i]) return False # V1' # https://www.jiuzhang.com/solution/contains-duplicate-ii/#tag-highlight-lang-python class Solution: """ @param nums: the given array @param k: the given number @return: whether there are two distinct indices i and j in the array such that nums[i] = nums[j] and the absolute difference between i and j is at most k """ def containsNearbyDuplicate(self, nums, k): # Write your code here dic = {} for index, value in enumerate(nums): if value in dic and index - dic[value] <= k: return True dic[value] = index return False # V2 class Solution: # @param {integer[]} nums # @param {integer} k # @return {boolean} def containsNearbyDuplicate(self, nums, k): lookup = {} for i, num in enumerate(nums): if num not in lookup: lookup[num] = i else: # It the value occurs before, check the difference. if i - lookup[num] <= k: return True # Update the index of the value. lookup[num] = i return False
af950af06cd4d8cb80ff701f37666dc4d78deba6
34652a47355a8dbe9200db229a1bbc62619de364
/Matlibplots/samples2/axes_demo.py
4d3fa3d8cc09e86facd7b5e96a3059c143a7f1e4
[]
no_license
btrif/Python_dev_repo
df34ab7066eab662a5c11467d390e067ab5bf0f8
b4c81010a1476721cabc2621b17d92fead9314b4
refs/heads/master
2020-04-02T13:34:11.655162
2019-11-10T11:08:23
2019-11-10T11:08:23
154,487,015
0
1
null
null
null
null
UTF-8
Python
false
false
771
py
#!/usr/bin/env python from pylab import * # create some data to use for the plot dt = 0.001 t = arange(0.0, 10.0, dt) r = exp(-t[:1000] / 0.05) # impulse response x = randn(len(t)) s = convolve(x, r)[:len(x)] * dt # colored noise # the main axes is subplot(111) by default plot(t, s) axis([0, 1, 1.1 * amin(s), 2 * amax(s) ]) xlabel('time (s)') ylabel('current (nA)') title('Gaussian colored noise') # this is an inset axes over the main axes a = axes([.65, .6, .2, .2], axisbg='y') n, bins, patches = hist(s, 400, normed=1) title('Probability') setp(a, xticks=[], yticks=[]) # this is another inset axes over the main axes a = axes([0.2, 0.6, .2, .2], axisbg='y') plot(t[:len(r)], r) title('Impulse response') setp(a, xlim=(0, .2), xticks=[], yticks=[]) show()
027f90da6ae7a9f981c03a08fedff984b0d56959
c309e7d19af94ebcb537f1e8655c0122dbe0cb13
/Chapter03/01-chapter-content/read_video_file_all_properties.py
db4569016c150e9cb77c318253011c5af90209bc
[ "MIT" ]
permissive
PacktPublishing/Mastering-OpenCV-4-with-Python
0fb82c88cb7205c7050c8db9f95a6deb3b1b3333
4194aea6f925a4b39114aaff8463be4d18e73aba
refs/heads/master
2023-03-07T04:51:16.071143
2023-02-13T10:17:48
2023-02-13T10:17:48
151,057,527
375
226
MIT
2022-08-27T13:32:19
2018-10-01T08:27:29
Python
UTF-8
Python
false
false
3,750
py
""" Example to introduce how to read a video file and get all properties """ # Import the required packages: import cv2 import argparse def decode_fourcc(fourcc): """Decodes the fourcc value to get the four chars identifying it""" # Convert to int: fourcc_int = int(fourcc) # We print the int value of fourcc print("int value of fourcc: '{}'".format(fourcc_int)) # We can also perform this in one line: # return "".join([chr((fourcc_int >> 8 * i) & 0xFF) for i in range(4)]) fourcc_decode = "" for i in range(4): int_value = fourcc_int >> 8 * i & 0xFF print("int_value: '{}'".format(int_value)) fourcc_decode += chr(int_value) return fourcc_decode # We first create the ArgumentParser object # The created object 'parser' will have the necessary information # to parse the command-line arguments into data types. parser = argparse.ArgumentParser() # We add 'video_path' argument using add_argument() including a help. parser.add_argument("video_path", help="path to the video file") args = parser.parse_args() # Create a VideoCapture object and read from input file # If the input is the camera, pass 0 instead of the video file name capture = cv2.VideoCapture(args.video_path) # Get and print these values: print("CV_CAP_PROP_FRAME_WIDTH: '{}'".format(capture.get(cv2.CAP_PROP_FRAME_WIDTH))) print("CV_CAP_PROP_FRAME_HEIGHT : '{}'".format(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))) print("CAP_PROP_FPS : '{}'".format(capture.get(cv2.CAP_PROP_FPS))) print("CAP_PROP_POS_MSEC : '{}'".format(capture.get(cv2.CAP_PROP_POS_MSEC))) print("CAP_PROP_POS_FRAMES : '{}'".format(capture.get(cv2.CAP_PROP_POS_FRAMES))) print("CAP_PROP_FOURCC : '{}'".format(decode_fourcc(capture.get(cv2.CAP_PROP_FOURCC)))) print("CAP_PROP_FRAME_COUNT : '{}'".format(capture.get(cv2.CAP_PROP_FRAME_COUNT))) print("CAP_PROP_MODE : '{}'".format(capture.get(cv2.CAP_PROP_MODE))) print("CAP_PROP_BRIGHTNESS : '{}'".format(capture.get(cv2.CAP_PROP_BRIGHTNESS))) print("CAP_PROP_CONTRAST : '{}'".format(capture.get(cv2.CAP_PROP_CONTRAST))) print("CAP_PROP_SATURATION : '{}'".format(capture.get(cv2.CAP_PROP_SATURATION))) print("CAP_PROP_HUE : '{}'".format(capture.get(cv2.CAP_PROP_HUE))) print("CAP_PROP_GAIN : '{}'".format(capture.get(cv2.CAP_PROP_GAIN))) print("CAP_PROP_EXPOSURE : '{}'".format(capture.get(cv2.CAP_PROP_EXPOSURE))) print("CAP_PROP_CONVERT_RGB : '{}'".format(capture.get(cv2.CAP_PROP_CONVERT_RGB))) print("CAP_PROP_RECTIFICATION : '{}'".format(capture.get(cv2.CAP_PROP_RECTIFICATION))) print("CAP_PROP_ISO_SPEED : '{}'".format(capture.get(cv2.CAP_PROP_ISO_SPEED))) print("CAP_PROP_BUFFERSIZE : '{}'".format(capture.get(cv2.CAP_PROP_BUFFERSIZE))) # Check if camera opened successfully if capture.isOpened() is False: print("Error opening video stream or file") # Read until video is completed while capture.isOpened(): # Capture frame-by-frame ret, frame = capture.read() if ret is True: # Print current frame number per iteration print("CAP_PROP_POS_FRAMES : '{}'".format(capture.get(cv2.CAP_PROP_POS_FRAMES))) # Get the timestamp of the current frame in milliseconds print("CAP_PROP_POS_MSEC : '{}'".format(capture.get(cv2.CAP_PROP_POS_MSEC))) # Display the resulting frame cv2.imshow('Original frame', frame) # Convert the frame to grayscale: gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # Display the grayscale frame cv2.imshow('Grayscale frame', gray_frame) # Press q on keyboard to exit if cv2.waitKey(25) & 0xFF == ord('q'): break # Break the loop else: break # Release everything: capture.release() cv2.destroyAllWindows()
418631b09fa5046da457ec6b6d12fde3127fe3a9
fab14fae2b494068aa793901d76464afb965df7e
/benchmarks/f3_wrong_hints/scaling_software_termination/11-2Nested_false-termination_13.py
e93f6811be066b40a1149e24f28d064d54e66d26
[ "MIT" ]
permissive
teodorov/F3
673f6f9ccc25acdfdecbfc180f439253474ba250
c863215c318d7d5f258eb9be38c6962cf6863b52
refs/heads/master
2023-08-04T17:37:38.771863
2021-09-16T07:38:28
2021-09-16T07:38:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,279
py
from typing import Tuple, FrozenSet from pysmt.environment import Environment as PysmtEnv from pysmt.fnode import FNode import pysmt.typing as types from utils import symb_to_next from hint import Hint, Location def transition_system(env: PysmtEnv) -> Tuple[FrozenSet[FNode], FNode, FNode, FNode]: assert isinstance(env, PysmtEnv) mgr = env.formula_manager pc = mgr.Symbol("pc", types.INT) x = mgr.Symbol("x", types.INT) y = mgr.Symbol("y", types.INT) x_pc = symb_to_next(mgr, pc) x_x = symb_to_next(mgr, x) x_y = symb_to_next(mgr, y) symbols = frozenset([pc, x, y]) m_1 = mgr.Int(-1) n_locs = 3 max_int = n_locs ints = [] pcs = [] x_pcs = [] for idx in range(n_locs): num = mgr.Int(idx) ints.append(num) pcs.append(mgr.Equals(pc, num)) x_pcs.append(mgr.Equals(x_pc, num)) for idx in range(n_locs, max_int): num = mgr.Int(idx) ints.append(num) pcend = mgr.Equals(pc, m_1) x_pcend = mgr.Equals(x_pc, m_1) init = pcs[0] cfg = [] # pc = 0 & (x >= 0) -> pc' = 1 cond = mgr.GE(x, ints[0]) cfg.append(mgr.Implies(mgr.And(pcs[0], cond), x_pcs[1])) # pc = 0 & !(x >= 0) -> pc' = -1 cfg.append(mgr.Implies(mgr.And(pcs[0], mgr.Not(cond)), x_pcend)) # pc = 1 -> pc' = 2 cfg.append(mgr.Implies(pcs[1], x_pcs[2])) # pc = 2 -> pc' = 0 cfg.append(mgr.Implies(pcs[2], x_pcs[0])) # pc = -1 -> pc' = -1 cfg.append(mgr.Implies(pcend, x_pcend)) trans = [] same_x = mgr.Equals(x_x, x) same_y = mgr.Equals(x_y, y) same = mgr.And(same_x, same_y) # pc = 0 -> same trans.append(mgr.Implies(pcs[0], same)) # pc = 1 -> x' = x + y & same_y trans.append(mgr.Implies(pcs[1], mgr.And(mgr.Equals(x_x, mgr.Plus(x, y)), same_y))) # pc = 2 -> same_x & y' = y + 1 trans.append(mgr.Implies(pcs[2], mgr.And(same_x, mgr.Equals(x_y, mgr.Plus(y, ints[1]))))) # pc = end -> same trans.append(mgr.Implies(pcend, same)) trans = mgr.And(*cfg, *trans) fairness = mgr.Not(mgr.Equals(pc, m_1)) return symbols, init, trans, fairness def hints(env: PysmtEnv) -> FrozenSet[Hint]: assert isinstance(env, PysmtEnv) mgr = env.formula_manager pc = mgr.Symbol("pc", types.INT) x = mgr.Symbol("x", types.INT) y = mgr.Symbol("y", types.INT) symbs = frozenset([pc, x, y]) m_100 = mgr.Int(-100) m_1 = mgr.Int(-1) i_0 = mgr.Int(0) i_1 = mgr.Int(1) i_2 = mgr.Int(2) i_4 = mgr.Int(4) i_20 = mgr.Int(20) x_pc = symb_to_next(mgr, pc) x_x = symb_to_next(mgr, x) x_y = symb_to_next(mgr, y) res = [] stutter = mgr.Equals(x_x, x) loc = Location(env, mgr.GE(x, i_20), mgr.GE(y, i_1), stutterT=stutter) loc.set_progress(0, mgr.Equals(x_x, mgr.Plus(x, y))) h_x = Hint("h_x0", env, frozenset([x]), symbs) h_x.set_locs([loc]) res.append(h_x) stutter = mgr.Equals(x_y, y) loc = Location(env, mgr.TRUE(), mgr.LE(x, i_20), stutterT=stutter) loc.set_progress(0, mgr.Equals(x_y, mgr.Plus(x, y))) h_y = Hint("h_y1", env, frozenset([y]), symbs) h_y.set_locs([loc]) res.append(h_y) stutter = mgr.Equals(x_x, x) loc = Location(env, mgr.GE(x, i_1), mgr.GE(y, i_1), stutterT=stutter) loc.set_progress(0, mgr.Equals(x_x, mgr.Plus(x, y))) h_x = Hint("h_x1", env, frozenset([x]), symbs) h_x.set_locs([loc]) res.append(h_x) loc0 = Location(env, mgr.GE(y, m_100), mgr.LE(x, i_20)) loc0.set_progress(1, mgr.Equals(x_y, mgr.Plus(x, y))) loc1 = Location(env, mgr.TRUE(), mgr.GE(x, m_100)) loc1.set_progress(0, mgr.Equals(x_y, m_100)) h_y = Hint("h_y2", env, frozenset([y]), symbs) h_y.set_locs([loc0, loc1]) res.append(h_y) loc0 = Location(env, mgr.GE(x, i_1), mgr.GE(y, i_1)) loc0.set_progress(1, mgr.Equals(x_x, mgr.Plus(x, y))) loc1 = Location(env, mgr.GE(x, i_2), mgr.GE(y, i_1)) loc1.set_progress(0, mgr.Equals(x_x, y)) h_x = Hint("h_x2", env, frozenset([x]), symbs) h_x.set_locs([loc0, loc1]) res.append(h_x) loc0 = Location(env, mgr.GE(x, i_1), mgr.GE(y, i_1)) loc0.set_progress(1, mgr.Equals(x_x, mgr.Times(x, y))) loc1 = Location(env, mgr.GE(x, i_1), mgr.GE(y, i_1)) loc1.set_progress(0, mgr.Equals(x_x, y)) h_x = Hint("h_x3", env, frozenset([x]), symbs) h_x.set_locs([loc0, loc1]) res.append(h_x) loc0 = Location(env, mgr.Equals(pc, i_1)) loc0.set_progress(1, mgr.GT(x_pc, pc)) loc1 = Location(env, mgr.GE(pc, i_2)) loc1.set_progress(0, mgr.Equals(x_pc, mgr.Div(pc, pc))) h_pc = Hint("h_pc2", env, frozenset([pc]), symbs) h_pc.set_locs([loc0, loc1]) res.append(h_pc) loc0 = Location(env, mgr.GE(y, m_100)) loc0.set_progress(1, mgr.Equals(x_y, mgr.Times(y, y))) loc1 = Location(env, mgr.GE(y, i_0)) loc1.set_progress(0, mgr.GE(x_y, mgr.Plus(y, i_1))) h_y = Hint("h_y6", env, frozenset([y]), symbs) h_y.set_locs([loc0, loc1]) res.append(h_y) loc0 = Location(env, mgr.LE(x, i_20)) loc0.set_progress(1, mgr.Equals(x_x, mgr.Plus(mgr.Times(x, x), i_1))) loc1 = Location(env, mgr.GE(x, i_20)) loc1.set_progress(0, mgr.LT(x_x, mgr.Times(m_1, x, x))) h_x = Hint("h_x6", env, frozenset([x]), symbs) h_x.set_locs([loc0, loc1]) res.append(h_x) loc0 = Location(env, mgr.GE(y, i_0), mgr.GE(pc, i_1)) loc0.set_progress(1, mgr.Equals(x_y, mgr.Plus(y, pc))) loc1 = Location(env, mgr.GE(y, i_1)) loc1.set_progress(0, mgr.Equals(x_y, y)) h_y = Hint("h_y7", env, frozenset([y]), symbs) h_y.set_locs([loc0, loc1]) res.append(h_y) loc0 = Location(env, mgr.GE(x, i_1), mgr.GT(y, i_1)) loc0.set_progress(1, mgr.Equals(x_x, mgr.Plus(mgr.Times(x, y), i_1))) loc1 = Location(env, mgr.GE(x, i_2)) loc1.set_progress(2, mgr.LT(x_x, mgr.Times(m_1, x, x))) loc2 = Location(env, mgr.LE(x, i_4)) loc2.set_progress(0, mgr.GE(x_x, mgr.Div(x, x))) h_x = Hint("h_x7", env, frozenset([x]), symbs) h_x.set_locs([loc0, loc1, loc2]) res.append(h_x) return frozenset(res)
13cd64bc158351be30552a0174bbd7805c1ee073
98c6ea9c884152e8340605a706efefbea6170be5
/examples/data/Assignment_8/ksskou001/question1.py
cbf7c2c649b94f8451d86b9956d6a62f42752649
[]
no_license
MrHamdulay/csc3-capstone
479d659e1dcd28040e83ebd9e3374d0ccc0c6817
6f0fa0fa1555ceb1b0fb33f25e9694e68b6a53d2
refs/heads/master
2021-03-12T21:55:57.781339
2014-09-22T02:22:22
2014-09-22T02:22:22
22,372,174
0
0
null
null
null
null
UTF-8
Python
false
false
1,146
py
'''This program uses a recursion function to shows whether or not a string is palindromique By Hermann KOUASSI: KSSKOU001 On 3 May 2014''' def pal(the_str): '''check if a given string is palindromic''' #in case empty string is the input if len(the_str)==0: print('Palindrome!') #stop condition elif len(the_str) == 2 or len(the_str)==3: #when first character == last character if the_str[0]==the_str[-1]: print('Palindrome!') #stop checking else: print('Not a palindrome!') #when more than 3 characters in string else: # call function to carry on checking if same first and last character if the_str[0]==the_str[-1]: #new string leaves out the first and last characters pal(the_str[1:len(the_str)-1]) else: #otherwise stop checking print('Not a palindrome!') def main(): '''main function''' #get the string the_str = input('Enter a string:\n') #call palindromic function pal(the_str) if __name__=="__main__": main()
856eaeeccbd6c812aee69d362e74757971e1e1b9
391937be6d8c8bcf5c3fe9fae8790024fc1e1727
/Starctf_2019/girlfriend/changeld.py
03c035cf38d567f31740c7a68a2268662cc4b46a
[]
no_license
n132/Watermalon
a9d93d3f0d598de7f8ed9bbe13ed02af364f770f
79b4479458ae0884d9cdd52d317674298d601d0a
refs/heads/master
2022-05-13T21:04:08.108705
2022-04-08T23:29:48
2022-04-08T23:29:48
154,925,917
6
2
null
null
null
null
UTF-8
Python
false
false
1,358
py
import os from pwn import * def change_ld(binary, ld): """ Force to use assigned new ld.so by changing the binary """ if not os.access(ld, os.R_OK): log.failure("Invalid path {} to ld".format(ld)) return None if not isinstance(binary, ELF): if not os.access(binary, os.R_OK): log.failure("Invalid path {} to binary".format(binary)) return None binary = ELF(binary) for segment in binary.segments: if segment.header['p_type'] == 'PT_INTERP': size = segment.header['p_memsz'] addr = segment.header['p_paddr'] data = segment.data() if size <= len(ld): log.failure("Failed to change PT_INTERP from {} to {}".format(data, ld)) return None binary.write(addr, ld.ljust(size, '\0')) if not os.access('/tmp/pwn', os.F_OK): os.mkdir('/tmp/pwn') path = '/tmp/pwn/{}_debug'.format(os.path.basename(binary.path)) if os.access(path, os.F_OK): os.remove(path) info("Removing exist file {}".format(path)) binary.save(path) os.chmod(path, 0b111000000) #rwx------ success("PT_INTERP has changed from {} to {}. Using temp file {}".format(data, ld, path)) return ELF(path)
db424bfcd1d912fa13fa0d54efe254c2af125fb6
93ccc1138fd28385e7cebf69fda8327cbf974d13
/test/generate_runtime.py
59710979953e46f6194872112714237b001bfb78
[]
no_license
hbcbh1999/Phy-Net
09613fbd146b6c70e4b52e7e00837ae92c9e6ef8
06ba854b3f281027546b8acfdec29fdbe6eb6649
refs/heads/master
2021-01-19T22:53:19.430191
2017-04-07T19:10:32
2017-04-07T19:10:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,327
py
import math import numpy as np import tensorflow as tf import sys sys.path.append('../') from model.ring_net import * from model.loss import * from utils.experiment_manager import make_checkpoint_path from systems.fluid_createTFRecords import generate_feed_dict import random import time from tqdm import * FLAGS = tf.app.flags.FLAGS # get restore dir RESTORE_DIR = make_checkpoint_path(FLAGS.base_dir, FLAGS) # shape of test simulation shape = FLAGS.test_dimensions.split('x') shape = map(int, shape) def evaluate(): """ Eval the system""" with tf.Graph().as_default(): # make inputs state, boundary = inputs(empty=True) state = state[0:1,0] boundary = boundary[0:1,0] # unwrap y_1, small_boundary_mul, small_boundary_add, x_2, y_2 = continual_unroll_template(state, boundary) # make variable to iterate compressed_shape = [x / pow(2,FLAGS.nr_downsamples) for x in shape] print(compressed_shape) compressed_state_1 = tf.Variable(np.zeros([1] + compressed_shape + [FLAGS.filter_size_compression], dtype=np.float32), trainable=False) small_boundary_mul_var = tf.Variable(np.zeros([1] + compressed_shape + [FLAGS.filter_size_compression], dtype=np.float32), trainable=False) small_boundary_add_var = tf.Variable(np.zeros([1] + compressed_shape + [FLAGS.filter_size_compression], dtype=np.float32), trainable=False) # make steps to init assign_compressed_state_step = tf.group(compressed_state_1.assign(y_1)) assign_boundary_mul_step = tf.group(small_boundary_mul_var.assign(small_boundary_mul)) assign_boundary_add_step = tf.group(small_boundary_add_var.assign(small_boundary_add)) # computation! compressed_state_1_boundary = (small_boundary_mul_var * compressed_state_1) + small_boundary_add_var compressed_state_2 = compress_template(compressed_state_1_boundary) run_step = tf.group(compressed_state_1.assign(compressed_state_2)) state_out = decoding_template(compressed_state_2) # restore network init = tf.global_variables_initializer() #variables_to_restore = tf.trainable_variables() #saver = tf.train.Saver(variables_to_restore) sess = tf.Session() sess.run(init) #ckpt = tf.train.get_checkpoint_state(RESTORE_DIR) #if ckpt and ckpt.model_checkpoint_path: # print("restoring file from " + ckpt.model_checkpoint_path) # saver.restore(sess, ckpt.model_checkpoint_path) #else: # print("no chekcpoint file found from " + RESTORE_DIR + ", this is an error") # exit() # make fake zero frame to test on state_feed_dict = np.zeros([1]+shape+[FLAGS.lattice_size]) boundary_feed_dict = np.zeros([1]+shape+[1]) feed_dict = {state:state_feed_dict, boundary:boundary_feed_dict} assign_compressed_state_step.run(session=sess, feed_dict=feed_dict) assign_boundary_mul_step.run(session=sess, feed_dict=feed_dict) assign_boundary_add_step.run(session=sess, feed_dict=feed_dict) run_step.run(session=sess) # open file to log results with open("figs/" + "runtime_log.txt", "a") as myfile: # run no state_out t = time.time() run_length = 1000 for step in tqdm(xrange(run_length)): run_step.run(session=sess) elapsed = time.time() - t print("time per " + str(run_length) + " step is " + str(elapsed) + " with shape " + str(shape) + " and compression shape " + str(compressed_shape) + "\n") myfile.write("no decompression time per " + str(run_length) + " step is " + str(elapsed) + " with shape " + str(shape) + " and compression shape " + str(compressed_shape) + "\n") # run with state out t = time.time() run_length = 1000 for step in tqdm(xrange(run_length)): run_step.run(session=sess) state_out.eval(session=sess) elapsed = time.time() - t print("with decompression time per " + str(run_length) + " step is " + str(elapsed) + " with shape " + str(shape) + " and compression shape " + str(compressed_shape)) myfile.write("with decompression time per " + str(run_length) + " step is " + str(elapsed) + " with shape " + str(shape) + " and compression shape " + str(compressed_shape) + "\n") def main(argv=None): # pylint: disable=unused-argument evaluate() if __name__ == '__main__': tf.app.run()
a127a74237962f2453d6466dd7901670b2f745be
c67b74a8de4d60f2aba025dfba8351996cdaa46c
/tkinter/other/autologging/grid_layout/target_ui.py
f97b6f974a38b238aa9d4c893c0ccf4e81479fff
[]
no_license
texttest/storytext-selftest
a30a58a0ab75fd26e60056222150cf6ae773470e
438977bf044c1ebc98089b667f0ae3d835bc7f37
refs/heads/master
2020-04-26T18:16:20.242220
2015-02-17T15:53:27
2015-02-17T15:53:27
173,739,750
0
0
null
null
null
null
UTF-8
Python
false
false
475
py
# File: hello2.py try: from tkinter import * except ImportError: from Tkinter import * class App: def __init__(self, master): Label(master, text="Top Left").grid(row=0, column=0) Label(master, text="Top Right").grid(row=0, column=1, rowspan=3) Label(master, text="Bottom Left").grid(row=1, column=0) Button(master, text="QUIT", fg="red", command=master.quit).grid(row=2, column=0) root = Tk() app = App(root) root.mainloop()
fb98535b70b7993474b77e91b3feff3d46b9b3de
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/7BYXC8befjYqzhMsc_11.py
66660ac86c91acd077e3841dd8119a65d3ac8e96
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
2,737
py
""" Kathleen owns a beautiful rug store. She likes to group the rugs into 4 mutually exclusive categories. * imperfect * horizontally symmetric * vertically symmetric * perfect An **imperfect** rug is one that is **neither horizontally nor vertically symmetric**. Here is an example of an **imperfect** rug: [ ["a", "a", "a", "a"], ["a", "a", "a", "a"], ["a", "a", "b", "b"] ] The following is an **horizontally symmetric** rug. You could "fold" the rug across a hypothetical x-axis, and both sides would be identical. A horizontally symmetric rug is **not** vertically symmetric (otherwise this rug would be classified as **perfect** ). [ ["c", "a", "a", "a"], ["b", "b", "b", "b"], ["c", "a", "a", "a"] ] The following is a **vertically symmetric** rug. You could "fold" the rug across a hypothetical y-axis, and both sides would be identical. A vertically symmetric is **not** horizontally symmetric (otherwise this rug would be classified as **perfect** ). [ ["a", "b", "a"], ["b", "b", "b"], ["a", "b", "a"], ["a", "b", "a"] ] Finally, a **perfect** rug is one that is **both vertically and horizontally symmetric**. That is, folded either length-wise or width-wise will yield two identical pieces. [ ["a", "b", "b", "a"], ["b", "b", "b", "b"], ["a", "b", "b", "a"] ] Given a rug of `m x n` dimension, determine whether it is **imperfect, horizontally symmetric, vertically symmetric or perfect**. Rugs are represented using a two-dimensional list. ### Examples classify_rug([ ["a", "a"], ["a", "a"] ]) ➞ "perfect" classify_rug([ ["a", "a", "b"], ["a", "a", "a"], ["b", "a", "a"] ]) ➞ "imperfect" classify_rug([ ["b", "a"], ["b", "a"] ]) ➞ "horizontally symmetric" classify_rug([ ["a", "a"], ["b", "b"] ]) ➞ "vertically symmetric" ### Notes You can consider a `1 x n` rug as being trivially **horizontally symmetric** , an `n x 1` rug as being trivially **vertically symmetric** , and a `1 x 1` rug as being trivially **perfect**. """ def classify_rug(pattern): p = pattern c = [1,1] for i in range(len(p)//2): if not p[i]==p[-i-1]: c[0]=0 break for e in p: if c[1]==0: break for j in range(len(e)//2): if not e[j]==e[-j-1]: c[1]=0 break ​ if sum(c)==0: return "imperfect" elif sum(c)==1: if c[0]==1: return "horizontally symmetric" else: return "vertically symmetric" else: return "perfect"
8f17fad612ed72e9207bd0bc6151fd98258a7479
c047518e0bc0be1d1a46b734fbf53610cb8a407f
/URI/1564.py
3cf5007b193896b8264fe8720ab63225560887f8
[]
no_license
fernandozanutto/competitive_programming
c3e006544ddba1702a37eeb437cb015713e8c2d1
cf721a7bcce6c5d5fc9f739ad729079c939fc421
refs/heads/master
2020-06-19T06:57:32.288602
2020-04-04T14:58:45
2020-04-04T14:58:45
196,607,123
2
0
null
null
null
null
UTF-8
Python
false
false
183
py
while True: try: x = int(input()) if x > 0: print('vai ter duas!') else: print('vai ter copa!') except EOFError: break
6bafb7696525ab7f42a5402714c53c58186334ea
90419da201cd4948a27d3612f0b482c68026c96f
/sdk/python/pulumi_azure_nextgen/machinelearning/v20160501preview/get_web_service.py
0310879ee63fd0a9c81caf2427c8125f783e25fc
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
test-wiz-sec/pulumi-azure-nextgen
cd4bee5d70cb0d332c04f16bb54e17d016d2adaf
20a695af0d020b34b0f1c336e1b69702755174cc
refs/heads/master
2023-06-08T02:35:52.639773
2020-11-06T22:39:06
2020-11-06T22:39:06
312,993,761
0
0
Apache-2.0
2023-06-02T06:47:28
2020-11-15T09:04:00
null
UTF-8
Python
false
false
3,930
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs __all__ = [ 'GetWebServiceResult', 'AwaitableGetWebServiceResult', 'get_web_service', ] @pulumi.output_type class GetWebServiceResult: """ Instance of an Azure ML web service resource. """ def __init__(__self__, location=None, name=None, properties=None, tags=None, type=None): if location and not isinstance(location, str): raise TypeError("Expected argument 'location' to be a str") pulumi.set(__self__, "location", location) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if properties and not isinstance(properties, dict): raise TypeError("Expected argument 'properties' to be a dict") pulumi.set(__self__, "properties", properties) if tags and not isinstance(tags, dict): raise TypeError("Expected argument 'tags' to be a dict") pulumi.set(__self__, "tags", tags) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) @property @pulumi.getter def location(self) -> str: """ Specifies the location of the resource. """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> Optional[str]: """ Specifies the name of the resource. """ return pulumi.get(self, "name") @property @pulumi.getter def properties(self) -> 'outputs.WebServicePropertiesForGraphResponse': """ Contains the property payload that describes the web service. """ return pulumi.get(self, "properties") @property @pulumi.getter def tags(self) -> Optional[Mapping[str, str]]: """ Contains resource tags defined as key/value pairs. """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> str: """ Specifies the type of the resource. """ return pulumi.get(self, "type") class AwaitableGetWebServiceResult(GetWebServiceResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetWebServiceResult( location=self.location, name=self.name, properties=self.properties, tags=self.tags, type=self.type) def get_web_service(resource_group_name: Optional[str] = None, web_service_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetWebServiceResult: """ Use this data source to access information about an existing resource. :param str resource_group_name: Name of the resource group in which the web service is located. :param str web_service_name: The name of the web service. """ __args__ = dict() __args__['resourceGroupName'] = resource_group_name __args__['webServiceName'] = web_service_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-nextgen:machinelearning/v20160501preview:getWebService', __args__, opts=opts, typ=GetWebServiceResult).value return AwaitableGetWebServiceResult( location=__ret__.location, name=__ret__.name, properties=__ret__.properties, tags=__ret__.tags, type=__ret__.type)
9821c77472261b94840d40045f8030e18e1d5e13
927748a4de2b1388d83e554eb76deaa61c1ef167
/namer/admin.py
b47d64e5ce90b02485e6bdd8686abc92b7c2286c
[ "Apache-2.0" ]
permissive
grahamgilbert/macnamer
f2486758ac25ce8fb93a9cabaa8d56600f7f5d71
809345a5c82d890ece2ee6a26e797f540561f49c
refs/heads/master
2021-06-06T20:50:29.651924
2014-11-01T12:06:29
2014-11-01T12:06:29
6,016,337
23
6
Apache-2.0
2019-03-01T01:36:12
2012-09-30T06:08:49
Python
UTF-8
Python
false
false
158
py
from django.contrib import admin from namer.models import * admin.site.register(Computer) admin.site.register(ComputerGroup) admin.site.register(Network)
cffd172dc336a08ee43dd702322e72e587f814a8
ae7ba9c83692cfcb39e95483d84610715930fe9e
/csrgxtu/maxent/src/basketball/CVKNN.py
5cd2ae78495e3c298550c337b20cafe503e6473c
[]
no_license
xenron/sandbox-github-clone
364721769ea0784fb82827b07196eaa32190126b
5eccdd8631f8bad78eb88bb89144972dbabc109c
refs/heads/master
2022-05-01T21:18:43.101664
2016-09-12T12:38:32
2016-09-12T12:38:32
65,951,766
5
7
null
null
null
null
UTF-8
Python
false
false
5,299
py
#!/usr/bin/env python # coding = utf-8 # # Author: Archer Reilly # Date: 23/DEC/2014 # File: CVKNN.py # Desc: KNN -- K Nearest Neighbours, use KNN classifier # # Produced By CSRGXTU import cv2 import numpy as np from Utility import loadMatrixFromFile, loadSeasons, loadTeamIds # buildTrainingSets # build training sets from raw data file # # @param inputFile # @return numpy.ndarray def buildTrainingSets(inputFile): res = [] mat = loadMatrixFromFile(inputFile) for row in mat: if (float(row[1]) - float(row[2])) < 0: leaguerank = 0 else: leaguerank = 1 res.append([row[0], leaguerank]) return np.array(res).astype(np.float32) # buildTrainingLabels # build training labels from raw data file # # @param inputFile # @return numpy.ndarray def buildTrainingLabels(inputFile): res = [] mat = loadMatrixFromFile(inputFile) for row in mat: if row[3] == 'W': WIN = 1 else: WIN = 0 res.append([[WIN]]) return np.array(res).astype(np.float32) # buildTestingSets # build testing sets from raw data file # # @param inputFile # @return numpy.ndarray def buildTestingSets(inputFile): res = [] mat = loadMatrixFromFile(inputFile) for row in mat: if (float(row[1]) - float(row[2])) < 0: leaguerank = 0 else: leaguerank = 1 res.append([row[0], leaguerank]) return np.array(res).astype(np.float32) # buildTestingLabels # build testing labels from raw data file # # @param inputFile # @return numpy.ndarray def buildTestingLabels(inputFile): res = [] mat = loadMatrixFromFile(inputFile) for row in mat: if row[3] == 'W': WIN = 1 else: WIN = 0 res.append([[WIN]]) return np.array(res).astype(np.float32) # teamMain # train and test for team def teamMain(): DIR = '/home/archer/Documents/maxent/data/basketball/leaguerank/' teamIds = loadTeamIds(DIR + 'teamidshortname.csv') teamNames = [x[1] for x in loadMatrixFromFile(DIR + 'teamidshortname.csv')] countTotal = 0 total = 0 for team in teamIds: trainData = buildTrainingSets(DIR + team + '-train.csv') trainLabels = buildTrainingLabels(DIR + team + '-train.csv') testData = buildTestingSets(DIR + team + '-test.csv') testLabels = buildTestingLabels(DIR + team + '-test.csv') total = total + len(testLabels) knn = cv2.KNearest() knn.train(trainData, trainLabels) # Accuracy count = 0 for i in range(len(testLabels)): ret, results, neighbours, dist = knn.find_nearest(np.array([testData[i]]), 11) if results[0][0] == testLabels[i][0]: count = count + 1 countTotal = countTotal + count print 'INFO: Accuracy(', teamNames[teamIds.index(team)], ')', count/float(len(testLabels)) print 'INFO: Total Accuracy: ', countTotal/float(total) # seasonMain # train and test for seasons def seasonMain(): DIR = '/home/archer/Documents/maxent/data/basketball/leaguerank/' seasons = loadSeasons(DIR + 'seasons-18-Nov-2014.txt') countTotal = 0 total = 0 for season in seasons: trainData = buildTrainingSets(DIR + season + '-train.csv') testData = buildTestingSets(DIR + season + '-test.csv') trainLabels = buildTestingLabels(DIR + season + '-train.csv') testLabels = buildTestingLabels(DIR + season + '-test.csv') total = total + len(testLabels) knn = cv2.KNearest() knn.train(trainData, trainLabels) # Accuracy count = 0 for i in range(len(testLabels)): ret, results, neighbours, dist = knn.find_nearest(np.array([testData[i]]), 11) if results[0][0] == testLabels[i][0]: count = count + 1 countTotal = countTotal + count print 'INFO: Accuracy(', season, ')', count/float(len(testLabels)) print 'INFO: Total Accuracy: ', countTotal/float(total) # main # train and test for all def main(): DIR = '/home/archer/Documents/maxent/data/basketball/leaguerank/' seasons = loadSeasons(DIR + 'seasons-18-Nov-2014.txt') total = 0 count = 0 trainData = [] trainLabels = [] testData = [] testLabels = [] for season in seasons: tmpTrainData = buildTrainingSets(DIR + season + '-train.csv').tolist() tmpTrainLabels = buildTestingLabels(DIR + season + '-train.csv').tolist() tmpTestData = buildTestingSets(DIR + season + '-test.csv').tolist() tmpTestLabels = buildTestingLabels(DIR + season + '-test.csv').tolist() trainData.extend(tmpTrainData) trainLabels.extend(tmpTrainLabels) testData.extend(tmpTestData) testLabels.extend(tmpTestLabels) trainData = np.array(trainData).astype(np.float32) trainLabels = np.array(trainLabels).astype(np.float32) testData = np.array(testData).astype(np.float32) testLabels = np.array(testLabels).astype(np.float32) total = len(testLabels) knn = cv2.KNearest() knn.train(trainData, trainLabels) for i in range(len(testLabels)): ret, results, neighbours, dist = knn.find_nearest(np.array([testData[i]]), 21) if results[0][0] == testLabels[i][0]: count = count + 1 print 'INFO: Total Accuracy: ', count/float(total) if __name__ == '__main__': print "+++++++++++++++++Main+++++++++++++++++++++++++" main() print "+++++++++++++++++teamMain+++++++++++++++++++++++++" teamMain() print "+++++++++++++++++seasonMain+++++++++++++++++++++++++" seasonMain()
1c7d4811f1c3dfd5bc63c22ca4fa582315a02824
0809673304fe85a163898983c2cb4a0238b2456e
/tmp/ve_asus-rt-n14uhp-mrtg/lib/python3.4/site-packages/setuptools/command/test.py
39746a02bf60246a3d7f1feb3e2f9243977c6177
[ "Apache-2.0" ]
permissive
jasonwee/asus-rt-n14uhp-mrtg
244092292c94ff3382f88f6a385dae2aa6e4b1e1
4fa96c3406e32ea6631ce447db6d19d70b2cd061
refs/heads/master
2022-12-13T18:49:02.908213
2018-10-05T02:16:41
2018-10-05T02:16:41
25,589,776
3
1
Apache-2.0
2022-11-27T04:03:06
2014-10-22T15:42:28
Python
UTF-8
Python
false
false
7,134
py
import sys import contextlib from distutils.errors import DistutilsOptionError from unittest import TestLoader from setuptools.extern import six from setuptools.extern.six.moves import map from pkg_resources import (resource_listdir, resource_exists, normalize_path, working_set, _namespace_packages, add_activation_listener, require, EntryPoint) from setuptools import Command from setuptools.py31compat import unittest_main class ScanningLoader(TestLoader): def loadTestsFromModule(self, module, pattern=None): """Return a suite of all tests cases contained in the given module If the module is a package, load tests from all the modules in it. If the module has an ``additional_tests`` function, call it and add the return value to the tests. """ tests = [] tests.append(TestLoader.loadTestsFromModule(self, module)) if hasattr(module, "additional_tests"): tests.append(module.additional_tests()) if hasattr(module, '__path__'): for file in resource_listdir(module.__name__, ''): if file.endswith('.py') and file != '__init__.py': submodule = module.__name__ + '.' + file[:-3] else: if resource_exists(module.__name__, file + '/__init__.py'): submodule = module.__name__ + '.' + file else: continue tests.append(self.loadTestsFromName(submodule)) if len(tests) != 1: return self.suiteClass(tests) else: return tests[0] # don't create a nested suite for only one return # adapted from jaraco.classes.properties:NonDataProperty class NonDataProperty(object): def __init__(self, fget): self.fget = fget def __get__(self, obj, objtype=None): if obj is None: return self return self.fget(obj) class test(Command): """Command to run unit tests after in-place build""" description = "run unit tests after in-place build" user_options = [ ('test-module=', 'm', "Run 'test_suite' in specified module"), ('test-suite=', 's', "Test suite to run (e.g. 'some_module.test_suite')"), ('test-runner=', 'r', "Test runner to use"), ] def initialize_options(self): self.test_suite = None self.test_module = None self.test_loader = None self.test_runner = None def finalize_options(self): if self.test_suite and self.test_module: msg = "You may specify a module or a suite, but not both" raise DistutilsOptionError(msg) if self.test_suite is None: if self.test_module is None: self.test_suite = self.distribution.test_suite else: self.test_suite = self.test_module + ".test_suite" if self.test_loader is None: self.test_loader = getattr(self.distribution, 'test_loader', None) if self.test_loader is None: self.test_loader = "setuptools.command.test:ScanningLoader" if self.test_runner is None: self.test_runner = getattr(self.distribution, 'test_runner', None) @NonDataProperty def test_args(self): return list(self._test_args()) def _test_args(self): if self.verbose: yield '--verbose' if self.test_suite: yield self.test_suite def with_project_on_sys_path(self, func): """ Backward compatibility for project_on_sys_path context. """ with self.project_on_sys_path(): func() @contextlib.contextmanager def project_on_sys_path(self): with_2to3 = six.PY3 and getattr(self.distribution, 'use_2to3', False) if with_2to3: # If we run 2to3 we can not do this inplace: # Ensure metadata is up-to-date self.reinitialize_command('build_py', inplace=0) self.run_command('build_py') bpy_cmd = self.get_finalized_command("build_py") build_path = normalize_path(bpy_cmd.build_lib) # Build extensions self.reinitialize_command('egg_info', egg_base=build_path) self.run_command('egg_info') self.reinitialize_command('build_ext', inplace=0) self.run_command('build_ext') else: # Without 2to3 inplace works fine: self.run_command('egg_info') # Build extensions in-place self.reinitialize_command('build_ext', inplace=1) self.run_command('build_ext') ei_cmd = self.get_finalized_command("egg_info") old_path = sys.path[:] old_modules = sys.modules.copy() try: sys.path.insert(0, normalize_path(ei_cmd.egg_base)) working_set.__init__() add_activation_listener(lambda dist: dist.activate()) require('%s==%s' % (ei_cmd.egg_name, ei_cmd.egg_version)) yield finally: sys.path[:] = old_path sys.modules.clear() sys.modules.update(old_modules) working_set.__init__() def run(self): if self.distribution.install_requires: self.distribution.fetch_build_eggs( self.distribution.install_requires) if self.distribution.tests_require: self.distribution.fetch_build_eggs(self.distribution.tests_require) cmd = ' '.join(self._argv) if self.dry_run: self.announce('skipping "%s" (dry run)' % cmd) return self.announce('running "%s"' % cmd) with self.project_on_sys_path(): self.run_tests() def run_tests(self): # Purge modules under test from sys.modules. The test loader will # re-import them from the build location. Required when 2to3 is used # with namespace packages. if six.PY3 and getattr(self.distribution, 'use_2to3', False): module = self.test_suite.split('.')[0] if module in _namespace_packages: del_modules = [] if module in sys.modules: del_modules.append(module) module += '.' for name in sys.modules: if name.startswith(module): del_modules.append(name) list(map(sys.modules.__delitem__, del_modules)) unittest_main( None, None, self._argv, testLoader=self._resolve_as_ep(self.test_loader), testRunner=self._resolve_as_ep(self.test_runner), ) @property def _argv(self): return ['unittest'] + self.test_args @staticmethod def _resolve_as_ep(val): """ Load the indicated attribute value, called, as a as if it were specified as an entry point. """ if val is None: return parsed = EntryPoint.parse("x=" + val) return parsed.resolve()()
ee5cb4dba4207a57b701f57cb2ad43198828c213
096fde1f6e629de8b921de621c1e2eaed3d149e7
/src/android/toga_android/widgets/label.py
66e971a274fe62d5a88ba01b124bb779f3afec2b
[ "BSD-3-Clause" ]
permissive
zeerorg/toga
78079ccde9fc33970f03dd0718cb191d037d9db8
be8182e6131938982dc757f847f938349009de7e
refs/heads/master
2021-01-23T03:16:17.750455
2017-03-19T06:44:37
2017-03-19T06:44:37
86,062,968
0
0
null
2017-03-24T11:54:09
2017-03-24T11:54:09
null
UTF-8
Python
false
false
1,250
py
# from ..app import MobileApp # from .base import Widget # # from toga.constants import * # # # class Label(Widget): # def __init__(self, text=None, alignment=LEFT_ALIGNED): # super(Label, self).__init__() # # self.startup() # # self.alignment = alignment # self.text = text # # def startup(self): # print ("startup label") # self._impl = TextView(MobileApp._impl) # # @property # def alignment(self): # return self._alignment # # @alignment.setter # def alignment(self, value): # self._alignment = value # self._impl.setGravity({ # LEFT_ALIGNED: Gravity.CENTER_VERTICAL | Gravity.LEFT, # RIGHT_ALIGNED: Gravity.CENTER_VERTICAL | Gravity.RIGHT, # CENTER_ALIGNED: Gravity.CENTER_VERTICAL | Gravity.CENTER_HORIZONTAL, # JUSTIFIED_ALIGNED: Gravity.CENTER_VERTICAL | Gravity.CENTER_HORIZONTAL, # NATURAL_ALIGNED: Gravity.CENTER_VERTICAL | Gravity.CENTER_HORIZONTAL, # }[value]) # # @property # def text(self): # return self._text # # @text.setter # def text(self, value): # self._text = value # self._impl.setHint(self._text)
c5ee9c15ca65ada5c73aba41feef5b69a74b50d4
9805edf2b923c74cf72a3cfb4c2c712255256f15
/python/120_triangle.py
719010ee065e6c6d8cc995ea1c85fc78889cc7a4
[ "MIT" ]
permissive
jixinfeng/leetcode-soln
5b28e49c2879cdff41c608fc03628498939b0e99
24cf8d5f1831e838ea99f50ce4d8f048bd46c136
refs/heads/master
2022-10-12T17:02:53.329565
2022-10-06T03:21:56
2022-10-06T03:21:56
69,371,757
0
1
null
null
null
null
UTF-8
Python
false
false
1,283
py
""" Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below. For example, given the following triangle [ [2], [3,4], [6,5,7], [4,1,8,3] ] The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11). Note: Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle. In oldMinSum=newMinSum[:] the [:] can not be omitted. """ class Solution(object): def minimumTotal(self, triangle): """ :type triangle: List[List[int]] :rtype: int """ if triangle is None or triangle == []: return 0 height = len(triangle) newMinSum = [0] * height for row in triangle: oldMinSum = newMinSum[:] #deep copy for i in range(len(row)): if i == 0: newMinSum[i] = oldMinSum[i] + row[i] elif i == len(row) - 1: newMinSum[i] = oldMinSum[i - 1] + row[i] else: newMinSum[i] = min(oldMinSum[i], oldMinSum[i - 1]) + row[i] return min(newMinSum) a = Solution() print(a.minimumTotal([[-1],[2,3],[1,-1,-3]]))
3605b8c88df214a553152d099f2136282236394f
bd01fbbc28b98814c0deb428b412aeec456a3712
/make_train_target.py
360bc19136e82616fd92eb8929c7c0ac37f2beb0
[]
no_license
thusodangersimon/sanral_hack
d693a8fedf6de4f10dde5efcdb1bc5e0a95b0b9d
69c71fc80935ee42488226962b29d643d0a6e75a
refs/heads/master
2020-08-11T18:09:23.997842
2019-10-12T14:31:24
2019-10-12T14:31:24
214,606,084
2
1
null
null
null
null
UTF-8
Python
false
false
1,579
py
""" This file creates training data set. """ import pandas as pd from sklearn.base import BaseEstimator, TransformerMixin class MakeTarget(BaseEstimator, TransformerMixin): def __init__(self, start, end, time_col, segment_col, agg_col): self.start = start self.end = end self.time_col = time_col self.segment_col = segment_col self.agg_col = agg_col def fit(self, X, y=None): return self def transform(self, X, y=None): train_df = X.set_index(self.time_col) train_df = train_df.groupby([pd.Grouper(freq='H'), self.segment_col])[self.agg_col].count() # get daterange date_range = pd.date_range(self.start, self.end, freq='H') # fill in data out_df = train_df.reset_index().groupby(self.segment_col).apply(self._reindex, date_range=date_range) return out_df def _reindex(self, df, date_range): df = df.set_index(self.time_col) out_df = df.reindex(date_range, fill_value=0) out_df = out_df[[self.agg_col]] return out_df if __name__ == '__main__': train_path = 'data/train.csv' train_df = pd.read_csv(train_path) # make col datetime train_df['Occurrence Local Date Time'] = pd.to_datetime(train_df['Occurrence Local Date Time']) # init transformer make_target = MakeTarget('2016-01-01', '2019-01-01', 'Occurrence Local Date Time', 'road_segment_id', 'EventId') target = make_target.fit_transform(train_df) print('found events =', target.EventId.sum()) target.to_csv('train_target.csv')
213eae2e246ee6a732fe0b4e2584202dfc940337
b6a97526938a923f442d54b3c02e82051c0df1ff
/tests/functions_tests/test_concat.py
32c9def4fe7e3bdeef21c63267e77160d6a381ac
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
amoliu/chainer
96992ff235dec616e39edb0a840d621fbea4ce12
df4362bc8a2a7bef6513ac788f373f0b5028e03b
refs/heads/master
2021-01-22T16:38:16.727714
2015-06-18T08:31:13
2015-06-18T08:31:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,853
py
from unittest import TestCase import numpy from chainer import cuda, Variable from chainer.cuda import to_gpu, GPUArray from chainer.gradient_check import assert_allclose from chainer.functions import concat cuda.init() class Concat(TestCase): def setUp(self): self.y0 = numpy.arange(42, dtype=numpy.float32).reshape(2, 7, 3) self.xs0 = [self.y0[:, :2], self.y0[:, 2:5], self.y0[:, 5:]] self.y1 = numpy.arange(21, dtype=numpy.float32).reshape(7, 3) self.xs1 = [self.y1[:2], self.y1[2:5], self.y1[5:]] def check_forward(self, xs_data, y_data, axis): xs = tuple(Variable(x_data) for x_data in xs_data) y = concat(xs, axis=axis) assert_allclose(y_data, y.data, atol=0, rtol=0) def test_forward_cpu_0(self): self.check_forward(self.xs0, self.y0, axis=1) def test_forward_cpu_1(self): self.check_forward(self.xs1, self.y1, axis=0) def test_forward_gpu_0(self): self.check_forward( [to_gpu(x.copy()) for x in self.xs0], to_gpu(self.y0), axis=1) def test_forward_gpu_1(self): self.check_forward( [to_gpu(x.copy()) for x in self.xs1], to_gpu(self.y1), axis=0) def check_backward(self, xs_data, axis): xs = tuple(Variable(x_data) for x_data in xs_data) y = concat(xs, axis=axis) y.grad = y.data y.backward() for x in xs: assert_allclose(x.data, x.grad, atol=0, rtol=0) def test_backward_cpu_0(self): self.check_backward(self.xs0, axis=1) def test_backward_cpu_1(self): self.check_backward(self.xs1, axis=0) def test_backward_gpu_0(self): self.check_backward([to_gpu(x.copy()) for x in self.xs0], axis=1) def test_backward_gpu_1(self): self.check_backward([to_gpu(x.copy()) for x in self.xs1], axis=0)
efd3b2095fe805965d530e8825bb361b4af2b186
dfab6798ece135946aebb08f93f162c37dd51791
/core/luban/cli/db/help.py
efa834580fb7667beb71a842f62daa146103d562
[]
no_license
yxqd/luban
405f5f7dcf09015d214079fe7e23d644332be069
00f699d15c572c8bf160516d582fa37f84ac2023
refs/heads/master
2020-03-20T23:08:45.153471
2012-05-18T14:52:43
2012-05-18T14:52:43
137,831,650
0
0
null
null
null
null
UTF-8
Python
false
false
713
py
# -*- Python -*- # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # Jiao Lin # California Institute of Technology # (C) 2006-2011 All Rights Reserved # # {LicenseText} # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # import os def run(*args, **kwds): from . import public_commands print( 'luban db -- db management commands') print( 'http://lubanui.org') print() print('Commands:') for cmd in public_commands: print(' luban db %s' % cmd) continue return def parse_cmdline(): return [], {} # End of file
bc78baed56d1faf996c6ec825a93f0f64c9c943f
8e18c91dae4787b53e1ff6b35dc04fa38aa374d3
/Pautas Interrogaciones/Examen/Pregunta 2/P2a.py
ccb0956454e0a77b4a1a6193255f4836793b511d
[]
no_license
GbPoblete/syllabus
4a0cb0a2d92fea04b7891c84efef678e4596fa08
ca0e8c44d7c13c98ce4e4b99b4559daf99804cab
refs/heads/master
2020-05-16T00:49:10.663749
2015-12-01T23:22:14
2015-12-01T23:22:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,391
py
__author__ = 'figarrido' def _promedio(datos): return sum(datos) / len(datos) def _varianza(datos): prom = _promedio(datos) suma = 0 for i in datos: suma += (i - prom)**2 return suma / len(datos) class Estrella: def __init__(self, clase, RA, DEC, id, observaciones=[]): self.clase = clase self.RA = RA self.DEC = DEC self.id = id self.observaciones = observaciones def get_brillos(self): return [i.brillo for i in self.observaciones] @property def promedio(self): brillos = self.get_brillos() return _promedio(brillos) @property def varianza(self): brillos = self.get_brillos() return _varianza(brillos) def agregar_observacion(self, observacion): self.observaciones.append(observacion) class Observacion(object): def __init__(self, brillo, tiempo, error): self.brillo = brillo self.tiempo = tiempo self.error = error class Field: def __init__(self, estrellas=[]): self.estrellas = estrellas def agregar_estrella(self, estrella): self.estrella.append(estrella) class Cielo: def __init__(self, fields=[]): self.fields = fields def agregar_field(self, field): self.fields.append(field)
9d6b2500746c6557a739357ecf53aed73bbf15d8
55a849e02a9a3819c72d67e0ef52cee2b5223db2
/ftrace/parsers/sched_task_usage_ratio.py
e6f8c72c3122c2121fd387d2e76aaa87edd6c514
[ "Apache-2.0" ]
permissive
Gracker/SystraceAnalysis
08055bceea6018f6e1dd425d1976c1893bd9f945
b27217e33a260614a9fe9ff3f8c3e470efdbd9a3
refs/heads/master
2023-02-18T19:34:26.071277
2021-01-21T01:51:37
2021-01-21T01:57:40
248,390,276
4
3
null
null
null
null
UTF-8
Python
false
false
2,032
py
#!/usr/bin/python # Copyright 2015 Huawei Devices USA Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # # Authors: # Chuk Orakwue <[email protected]> import re from ftrace.common import ParserError from .register import register_parser try: from ftrace.third_party.cnamedtuple import namedtuple except ImportError: from collections import namedtuple TRACEPOINT = 'sched_task_usage_ratio' __all__ = [TRACEPOINT] SchedTaskUsageRatioBase = namedtuple(TRACEPOINT, [ 'comm', 'pid', 'ratio' ] ) class SchedTaskUsageRatio(SchedTaskUsageRatioBase): """ Tracked task cpu usage ratio [0..1023]. """ __slots__ = () def __new__(cls, comm, pid, ratio): pid = int(pid) ratio = float(self.ratio)/1023.0 return super(cls, SchedTaskUsageRatio).__new__( cls, comm=comm, pid=pid, ratio=ratio, ) sched_task_usage_ratio_pattern = re.compile( r"""comm=(?P<comm>.*)\s+ pid=(?P<pid>\d+)\s+ ratio=(?P<ratio>\d+)\s+ """, re.X|re.M ) @register_parser def sched_task_usage_ratio(payload): """Parser for `sched_task_usage_ratio` tracepoint""" try: match = re.match(sched_task_usage_ratio_pattern, payload) if match: match_group_dict = match.groupdict() return SchedTaskUsageRatio(**match_group_dict) except Exception, e: raise ParserError(e.message)
d2791fd72bd25721bcc5818685206a2359cb9cb0
3f100a1002a1f8ed453c8b81a9b403444d77b4c6
/assignment_2/assignment_2_final.py
d1cdbd0f6ced27c57032a5e8f8d15b90444bac53
[]
no_license
Kimuda/Phillip_Python
c19c85a43c5a13760239e4e94c08436c99787ebf
59d56a0d45839656eb15dbe288bdb0d18cb7df2b
refs/heads/master
2016-09-09T22:19:02.347744
2015-05-01T10:56:49
2015-05-01T10:56:49
32,330,951
0
0
null
null
null
null
UTF-8
Python
false
false
4,362
py
uniprot_text="""Entry Gene names Cross-reference (PDB) Length O95813 CER1 DAND4 267 Q8N907 DAND5 CER2 CKTSF1B3 GREM3 SP1 189 O60565 GREM1 CKTSF1B1 DAND2 DRM PIG2 184 P41271 NBL1 DAN DAND1 4X1J; 181 Q96S42 NODAL 4N1D; 347 Q15465 SHH 3HO5;3M1N;3MXW; 462""" uniprot_text_list=uniprot_text.split("\n") protein_list=uniprot_text_list[1:] #print(uniprot_text_list,protein_list) d=[] newlist=[] for i in protein_list: d=i.split("\t") newlist+=[d] #print(newlist) list3=[] counter=0 counter2=len(newlist)-1 while counter<len(newlist): newlist2={} newlist2["Entry"]=newlist[counter2][0] newlist2["Gene_name"]=newlist[counter2][1] newlist2["Cross_ref_pdb"]=newlist[counter2][2] newlist2["Length"]=newlist[counter2][3] list3+=[newlist2] counter=counter+1 counter2=counter2-1 #print(list3) #----Question 1. Create a function that returns the protein ID of the shortest protein---- def ID_of_shortest_protein(): list_sorted_by_length = sorted(list3, key=lambda k: k['Length']) protein_with_shortest_length=list_sorted_by_length[0] print("The protein ID of the shortest protein is-",protein_with_shortest_length["Entry"]) ID_of_shortest_protein() #----Question 2. Create a function that receives a gene name and returns the protein ID.---- def genesearch(): query=(input("Enter a gene name to retrieve the protein ID or a blank line to exit: ")).upper() listofgenes="" while query!="": for gene in list3: listofgenes=gene["Gene_name"] if query in listofgenes: print("Protein ID for",query,"is",gene["Entry"]) query=(input("To exit enter a blank line or Enter a gene name to continue: ")).upper() genesearch() #GLITCHES; even a single letter in query, returns a result, and when no match is found the user is not informed. #----Question 3. Create a function that receives protein ID and returns the PDB IDs. If the protein doesn’t have PDBs reported, the function should return False. def pdbqueryusingproteinID(): query=(input("Enter a protein ID to retrieve the protein PDB IDs or a blank line to exit: ")).upper() listofproteinIDs="" while query!="": for proteinID in list3: listofproteinIDs=proteinID["Entry"] if query in listofproteinIDs: if proteinID["Cross_ref_pdb"]!="": commaseperatedpdbs=proteinID["Cross_ref_pdb"].split(";") for i in commaseperatedpdbs: if i!="": print(i+(","),end="") print() else: print("False") query=(input("To exit enter a blank line or Enter a protein ID to continue: ")).upper() pdbqueryusingproteinID() #GLITCHES; even a single letter can return a result, and when no match is found the user is not informed. #----Question 4. Create a function that prints the proteins IDs and the number of reported genes. The list should be sorted by the number of genes. def proteinIDsnumberofgenes(): print("Protein ID\tNumber of genes") list2=[] for item in list3: list2=list2 + [[item["Entry"]]+item["Gene_name"].split()] newdictionary={t[0]:t[1:] for t in list2} #print(newdictionary numberofgeneslist=[] for key in newdictionary: numberofgeneslist+=[[key]+[len(newdictionary[key])]] sortednumberofgeneslist=sorted(numberofgeneslist, key=lambda k: k[1]) #print(key,len(newdictionary[key])) #print(numberofgeneslist) for item in sortednumberofgeneslist: print(item[0],"\t\t",item[1]) #print(sortednumberofgeneslist) proteinIDsnumberofgenes() #----Question 5. Create a function that prints a list of pairs of all the reported combinations of genes and PDBs def gene_names_paired_with_pdbs(): print("Gene_name\tCross_ref_pdb") for item in list3: for item2 in item["Cross_ref_pdb"].split(";"): if item2!="": for item3 in item["Gene_name"].split(): print(item3,'\t\t',item2) gene_names_paired_with_pdbs() #GlITCHES; the tabulation, sometimes makes the results look misaligned when gene_names of varying word length are used (i tried it with a different batch of uniprot data)
0fa399848f39ede5587c2770483c24ccf4e954b1
dd14fd0545093bc7fd3ff8b93e32180cec00e24d
/data_utils/load_dataset.py
fb31455fa3afab4b18465f204cfa5061c220c449
[]
no_license
bigdatasciencegroup/PyTorch-GAN-Shop
ce38abf86185c6894ee46166bd41419260b026e5
95d4c3f8d836255cea162b8af38f810b5c638f2a
refs/heads/master
2022-11-08T20:59:29.839442
2020-06-19T05:32:56
2020-06-19T05:32:56
273,416,695
2
0
null
2020-06-19T06:03:16
2020-06-19T06:03:16
null
UTF-8
Python
false
false
4,837
py
from torch.utils.data import Dataset import os import h5py as h5 import numpy as np from scipy import io import torch import torchvision.transforms as transforms from torchvision.datasets import CIFAR10, STL10 from torchvision.datasets import ImageFolder class LoadDataset(Dataset): def __init__(self, dataset_name, data_path, train, download, resize_size, hdf5_path=None, consistency_reg=False, make_positive_aug=False): super(LoadDataset, self).__init__() self.dataset_name = dataset_name self.data_path = data_path self.train = train self.download = download self.resize_size = resize_size self.hdf5_path = hdf5_path self.consistency_reg = consistency_reg self.make_positive_aug = make_positive_aug self.load_dataset() def load_dataset(self): if self.dataset_name == 'cifar10': if self.hdf5_path is not None: print('Loading %s into memory...' % self.hdf5_path) with h5.File(self.hdf5_path, 'r') as f: self.data = f['imgs'][:] self.labels = f['labels'][:] else: self.data = CIFAR10(root=os.path.join('data', self.dataset_name), train=self.train, download=self.download) elif self.dataset_name == 'imagenet': if self.hdf5_path is not None: print('Loading %s into memory...' % self.hdf5_path) with h5.File(self.hdf5_path, 'r') as f: self.data = f['imgs'][:] self.labels = f['labels'][:] else: mode = 'train' if self.train == True else 'val' root = os.path.join('data','ILSVRC2012', mode) self.data = ImageFolder(root=root) elif self.dataset_name == "tiny_imagenet": if self.hdf5_path is not None: print('Loading %s into memory...' % self.hdf5_path) with h5.File(self.hdf5_path, 'r') as f: self.data = f['imgs'][:] self.labels = f['labels'][:] else: mode = 'train' if self.train == True else 'val' root = os.path.join('data','TINY_ILSVRC2012', mode) self.data = ImageFolder(root=root) else: raise NotImplementedError def __len__(self): if self.hdf5_path is not None: num_dataset = self.data.shape[0] else: num_dataset = len(self.data) return num_dataset @staticmethod def _decompose_index(index): index = index % 18 flip_index = index // 9 index = index % 9 tx_index = index // 3 index = index % 3 ty_index = index return flip_index, tx_index, ty_index def __getitem__(self, index): if self.hdf5_path is not None: img = np.asarray((self.data[index]-127.5)/127.5, np.float32) label = int(self.labels[index]) elif self.hdf5_path is None and self.dataset_name == 'imagenet': img, label = self.data[index] size = (min(img.size), min(img.size)) i = (0 if size[0] == img.size[0] else (img.size[0] - size[0]) // 2) j = (0 if size[1] == img.size[1] else (img.size[1] - size[1]) // 2) img = img.crop((i, j, i + size[0], j + size[1])) img = np.asarray(img.resize((self.resize_size, self.resize_size)), np.float32) img = np.transpose((img-127.5)/127.5, (2,0,1)) else: img, label = self.data[index] img = np.asarray(img, np.float32) img = np.transpose((img-127.5)/127.5, (2,0,1)) if self.consistency_reg or self.make_positive_aug: flip_index, tx_index, ty_index = self._decompose_index(index) img_aug = np.copy(img) c,h,w = img_aug.shape if flip_index == 0: img_aug = img_aug[:,:,::-1] pad_h = int(h//8) pad_w = int(w//8) img_aug = np.pad(img_aug, [(0, 0), (pad_h, pad_h), (pad_w, pad_w)], mode='reflect') if ty_index == 0: i = 0 elif ty_index == 1: i = pad_h else: i = 2*pad_h if tx_index == 0: j = 0 elif tx_index == 1: j = pad_w else: j = 2*pad_w img_aug = img_aug[:, i:i+h, j:j+w] img = torch.from_numpy(img) img_aug = torch.from_numpy(img_aug) return img, label, img_aug img = torch.from_numpy(img) return img, label
07c6474da4c44a115dfccccca315bbc59945c0d8
a8b37bd399dd0bad27d3abd386ace85a6b70ef28
/airbyte-integrations/connectors/source-convex/source_convex/source.py
ecf094ff9c01ce502d526d5681fd2131c8a7bb17
[ "MIT", "LicenseRef-scancode-free-unknown", "Elastic-2.0" ]
permissive
thomas-vl/airbyte
5da2ba9d189ba0b202feb952cadfb550c5050871
258a8eb683634a9f9b7821c9a92d1b70c5389a10
refs/heads/master
2023-09-01T17:49:23.761569
2023-08-25T13:13:11
2023-08-25T13:13:11
327,604,451
1
0
MIT
2021-01-07T12:24:20
2021-01-07T12:24:19
null
UTF-8
Python
false
false
8,739
py
# # Copyright (c) 2023 Airbyte, Inc., all rights reserved. # from datetime import datetime from json import JSONDecodeError from typing import Any, Dict, Iterable, Iterator, List, Mapping, MutableMapping, Optional, Tuple, TypedDict import requests from airbyte_cdk.models import SyncMode from airbyte_cdk.sources import AbstractSource from airbyte_cdk.sources.streams import IncrementalMixin, Stream from airbyte_cdk.sources.streams.http import HttpStream from airbyte_cdk.sources.streams.http.requests_native_auth.token import TokenAuthenticator ConvexConfig = TypedDict( "ConvexConfig", { "deployment_url": str, "access_key": str, }, ) ConvexState = TypedDict( "ConvexState", { "snapshot_cursor": Optional[str], "snapshot_has_more": bool, "delta_cursor": Optional[int], }, ) CONVEX_CLIENT_VERSION = "0.2.0" # Source class SourceConvex(AbstractSource): def _json_schemas(self, config: ConvexConfig) -> requests.Response: deployment_url = config["deployment_url"] access_key = config["access_key"] url = f"{deployment_url}/api/json_schemas?deltaSchema=true&format=convex_json" headers = { "Authorization": f"Convex {access_key}", "Convex-Client": f"airbyte-export-{CONVEX_CLIENT_VERSION}", } return requests.get(url, headers=headers) def check_connection(self, logger: Any, config: ConvexConfig) -> Tuple[bool, Any]: """ Connection check to validate that the user-provided config can be used to connect to the underlying API :param config: the user-input config object conforming to the connector's spec.yaml :param logger: logger object :return Tuple[bool, any]: (True, None) if the input config can be used to connect to the API successfully, (False, error) otherwise. """ resp = self._json_schemas(config) if resp.status_code == 200: return True, None else: return False, format_http_error("Connection to Convex via json_schemas endpoint failed", resp) def streams(self, config: ConvexConfig) -> List[Stream]: """ :param config: A Mapping of the user input configuration as defined in the connector spec. """ resp = self._json_schemas(config) if resp.status_code != 200: raise Exception(format_http_error("Failed request to json_schemas", resp)) json_schemas = resp.json() table_names = list(json_schemas.keys()) return [ ConvexStream( config["deployment_url"], config["access_key"], table_name, json_schemas[table_name], ) for table_name in table_names ] class ConvexStream(HttpStream, IncrementalMixin): def __init__(self, deployment_url: str, access_key: str, table_name: str, json_schema: Mapping[str, Any]): self.deployment_url = deployment_url self.table_name = table_name if json_schema: json_schema["additionalProperties"] = True json_schema["properties"]["_ab_cdc_lsn"] = {"type": "number"} json_schema["properties"]["_ab_cdc_updated_at"] = {"type": "string"} json_schema["properties"]["_ab_cdc_deleted_at"] = {"anyOf": [{"type": "string"}, {"type": "null"}]} else: json_schema = {} self.json_schema = json_schema self._snapshot_cursor_value: Optional[str] = None self._snapshot_has_more = True self._delta_cursor_value: Optional[int] = None self._delta_has_more = True super().__init__(TokenAuthenticator(access_key, "Convex")) @property def name(self) -> str: return self.table_name @property def url_base(self) -> str: return self.deployment_url def get_json_schema(self) -> Mapping[str, Any]: return self.json_schema primary_key = "_id" cursor_field = "_ts" # Checkpoint stream reads after this many records. This prevents re-reading of data if the stream fails for any reason. state_checkpoint_interval = 128 @property def state(self) -> ConvexState: return { "snapshot_cursor": self._snapshot_cursor_value, "snapshot_has_more": self._snapshot_has_more, "delta_cursor": self._delta_cursor_value, } @state.setter def state(self, value: ConvexState) -> None: self._snapshot_cursor_value = value["snapshot_cursor"] self._snapshot_has_more = value["snapshot_has_more"] self._delta_cursor_value = value["delta_cursor"] def next_page_token(self, response: requests.Response) -> Optional[ConvexState]: if response.status_code != 200: raise Exception(format_http_error("Failed request", response)) resp_json = response.json() if self._snapshot_has_more: self._snapshot_cursor_value = resp_json["cursor"] self._snapshot_has_more = resp_json["hasMore"] self._delta_cursor_value = resp_json["snapshot"] else: self._delta_cursor_value = resp_json["cursor"] self._delta_has_more = resp_json["hasMore"] return self.state if self._delta_has_more else None def path( self, stream_state: Optional[ConvexState] = None, stream_slice: Optional[Mapping[str, Any]] = None, next_page_token: Optional[ConvexState] = None, ) -> str: # https://docs.convex.dev/http-api/#sync if self._snapshot_has_more: return "/api/list_snapshot" else: return "/api/document_deltas" def parse_response( self, response: requests.Response, stream_state: ConvexState, stream_slice: Optional[Mapping[str, Any]] = None, next_page_token: Optional[ConvexState] = None, ) -> Iterable[Any]: if response.status_code != 200: raise Exception(format_http_error("Failed request", response)) resp_json = response.json() return list(resp_json["values"]) def request_params( self, stream_state: ConvexState, stream_slice: Optional[Mapping[str, Any]] = None, next_page_token: Optional[ConvexState] = None, ) -> MutableMapping[str, Any]: params: Dict[str, Any] = {"tableName": self.table_name, "format": "convex_json"} if self._snapshot_has_more: if self._snapshot_cursor_value: params["cursor"] = self._snapshot_cursor_value if self._delta_cursor_value: params["snapshot"] = self._delta_cursor_value else: if self._delta_cursor_value: params["cursor"] = self._delta_cursor_value return params def request_headers( self, stream_state: ConvexState, stream_slice: Optional[Mapping[str, Any]] = None, next_page_token: Optional[ConvexState] = None, ) -> Dict[str, str]: """ Custom headers for each HTTP request, not including Authorization. """ return { "Convex-Client": f"airbyte-export-{CONVEX_CLIENT_VERSION}", } def get_updated_state(self, current_stream_state: ConvexState, latest_record: Mapping[str, Any]) -> ConvexState: """ This (deprecated) method is still used by AbstractSource to update state between calls to `read_records`. """ return self.state def read_records(self, sync_mode: SyncMode, *args: Any, **kwargs: Any) -> Iterator[Any]: self._delta_has_more = sync_mode == SyncMode.incremental for record in super().read_records(sync_mode, *args, **kwargs): ts_ns = record["_ts"] ts_seconds = ts_ns / 1e9 # convert from nanoseconds. # equivalent of java's `new Timestamp(transactionMillis).toInstant().toString()` ts_datetime = datetime.utcfromtimestamp(ts_seconds) ts = ts_datetime.isoformat() # DebeziumEventUtils.CDC_LSN record["_ab_cdc_lsn"] = ts_ns # DebeziumEventUtils.CDC_DELETED_AT record["_ab_cdc_updated_at"] = ts record["_deleted"] = "_deleted" in record and record["_deleted"] # DebeziumEventUtils.CDC_DELETED_AT record["_ab_cdc_deleted_at"] = ts if record["_deleted"] else None yield record def format_http_error(context: str, resp: requests.Response) -> str: try: err = resp.json() return f"{context}: {resp.status_code}: {err['code']}: {err['message']}" except (JSONDecodeError, KeyError): return f"{context}: {resp.text}"
e0e2a417665d20c8069db0592caec6107e06bf18
328afd873e3e4fe213c0fb4ce6621cb1a450f33d
/W3School/conditional_statement_loops/s.py
46f9fed08f807249747610045fd405d9e9df72d3
[]
no_license
TorpidCoder/Python
810371d1bf33c137c025344b8d736044bea0e9f5
9c46e1de1a2926e872eee570e6d49f07dd533956
refs/heads/master
2021-07-04T08:21:43.950665
2020-08-19T18:14:09
2020-08-19T18:14:09
148,430,171
0
0
null
null
null
null
UTF-8
Python
false
false
535
py
row=15 col=18 result_str="" for i in range(1,row+1): if((i<=3)or(i>=7 and i<=9)or(i>=13 and i<=15)): for j in range(1,col): result_str=result_str+"o" result_str=result_str+"\n" elif(i>=4 and i<=6): for j in range(1,5): result_str=result_str+"o" result_str=result_str+"\n" else: for j in range(1,14): result_str=result_str+" " for j in range(1,5): result_str=result_str+"o" result_str=result_str+"\n" print(result_str);
81e30fa5ec864972411e2d70f75db454d407a91c
15581a76b36eab6062e71d4e5641cdfaf768b697
/LeetCode_30days_challenge/2020/November/Longest Mountain in Array.py
027f86eb75dd45b219ebf43ad294d9e1baa32db8
[]
no_license
MarianDanaila/Competitive-Programming
dd61298cc02ca3556ebc3394e8d635b57f58b4d2
3c5a662e931a5aa1934fba74b249bce65a5d75e2
refs/heads/master
2023-05-25T20:03:18.468713
2023-05-16T21:45:08
2023-05-16T21:45:08
254,296,597
0
0
null
null
null
null
UTF-8
Python
false
false
1,061
py
class Solution: def longestMountain(self, A): if len(A) < 3: return 0 peak = False max_length = curr_length = 1 for i in range(1, len(A)): if A[i] > A[i - 1]: if peak: max_length = max(max_length, curr_length) curr_length = 2 peak = False else: curr_length += 1 elif A[i] < A[i - 1]: if curr_length == 1: continue if not peak: peak = True curr_length += 1 else: if curr_length == 1: continue if not peak: curr_length = 1 else: max_length = max(curr_length, max_length) curr_length = 1 if peak: max_length = max(max_length, curr_length) if max_length < 3: return 0 else: return max_length
010db5b2f3c269b146f0cb527d435487f4a08c5e
c548c10c4fd0b6c1d1c10cc645cb3b90b31f2de6
/keras/keras35_4_load_model.py
b8b3c7da89651bd7a87c1f5e27aeb77c05f64640
[]
no_license
sswwd95/Study
caf45bc3c8c4301260aaac6608042e53e60210b6
3c189090c76a68fb827cf8d6807ee1a5195d2b8b
refs/heads/master
2023-06-02T21:44:00.518810
2021-06-26T03:01:26
2021-06-26T03:01:26
324,061,105
0
0
null
null
null
null
UTF-8
Python
false
false
2,019
py
import numpy as np a = np.array(range(1,11)) size = 5 def split_x(seq, size): aaa = [] for i in range(len(seq) - size +1): subset = seq[i : (i+size)] aaa.append(subset) print(type(aaa)) return np.array(aaa) dataset = split_x(a, size) print("=======================") print(dataset) x = dataset[:,:4] y = dataset[:,4] print(x.shape) print(y.shape) x = x.reshape(x.shape[0],x.shape[1],1) from tensorflow.keras.models import load_model model = load_model("../data/h5/save_keras35.h5") ''' ###############테스트 ##################### from tensorflow.keras.layers import Dense model.add(Dense(5)) # summary 이름 : dense model.add(Dense(1)) # summary 이름 : dense_1 # 에러 뜨는 이유 : 이름 중복 ########################################### ''' from tensorflow.keras.layers import Dense model.add(Dense(10, name = 'kingkeras1')) model.add(Dense(1, name = 'kingkeras2')) # 위, 아래 레이어 붙이기 가능 # dense_3 (Dense) (None, 110) 12210 # _________________________________________________________________ # dense_4 (Dense) (None, 1) 111 # _________________________________________________________________ # kingkeras1 (Dense) (None, 10) 20 # _________________________________________________________________ # kingkeras2 (Dense) (None, 1) 11 # ================================================================= model.summary() # 3. 컴파일, 훈련 model.compile(loss = 'mse', optimizer='adam') from tensorflow.keras.callbacks import EarlyStopping early_stopping = EarlyStopping(monitor='loss',patience=20, mode='min') model.fit(x, y, batch_size=1, callbacks=[early_stopping],epochs=1000) #4. 평가,예측 loss = model.evaluate(x,y, batch_size=1) print('loss : ',loss) x_pred = np.array([7,8,9,10]) x_pred = x_pred.reshape(1,4,1) result = model.predict(x_pred) print('result : ',result) # loss : 0.0750507190823555 # result : [[10.734548]]
e3d34ccc3b810f8a408faaffe681a75d70af1e98
213b8cab639c7d45cbf6a4fd46eb23e379d9d374
/python/curses_examples/tutorial/05_center_text.py
a255e9f843510cbe683534ba35f7dd302d8b021c
[]
no_license
DevDungeon/Cookbook
f85b04b690ea0a202ddfaeda6460b6ba5797cb70
a49a1c77f2b89dc303fa9f2563bb3c19777e4c6c
refs/heads/master
2023-05-12T06:58:50.606019
2022-03-30T04:48:16
2022-03-30T04:48:16
34,371,982
307
94
null
2023-05-03T22:53:45
2015-04-22T06:02:53
HTML
UTF-8
Python
false
false
651
py
# Draw text to center of screen import curses import time screen = curses.initscr() num_rows, num_cols = screen.getmaxyx() def print_center(message): # Calculate center row middle_row = int(num_rows / 2) # Calculate center column, and then adjust starting position based # on the length of the message half_length_of_message = int(len(message) / 2) middle_column = int(num_cols / 2) x_position = middle_column - half_length_of_message # Draw the text screen.addstr(middle_row, x_position, message) screen.refresh() print_center("Hello from the center!") # Wait and cleanup time.sleep(3) curses.endwin()
1e4ec58320505450428e6b302e9b75e278535852
cbd2f187fb60939c49a00f154570f53d4bb19910
/rxpy/src/rxpy/engine/parallel/beam/engine.py
3fab110bdf23a65bf2b9be38f20a95c3820dac6c
[]
no_license
andrewcooke/rxpy
3c4443f3ccba479d936f0e49d7d009a64dfc89b3
e7f330dc8c5fa49392a1a018ceda6312270e9a93
refs/heads/master
2021-01-10T13:46:37.129155
2011-06-03T23:29:58
2011-06-03T23:29:58
52,740,676
1
0
null
null
null
null
UTF-8
Python
false
false
3,500
py
# The contents of this file are subject to the Mozilla Public License # (MPL) Version 1.1 (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License # at http://www.mozilla.org/MPL/ # # Software distributed under the License is distributed on an "AS IS" # basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See # the License for the specific language governing rights and # limitations under the License. # # The Original Code is RXPY (http://www.acooke.org/rxpy) # The Initial Developer of the Original Code is Andrew Cooke. # Portions created by the Initial Developer are Copyright (C) 2010 # Andrew Cooke ([email protected]). All Rights Reserved. # # Alternatively, the contents of this file may be used under the terms # of the LGPL license (the GNU Lesser General Public License, # http://www.gnu.org/licenses/lgpl.html), in which case the provisions # of the LGPL License are applicable instead of those above. # # If you wish to allow use of your version of this file only under the # terms of the LGPL License and not to allow others to use your version # of this file under the MPL, indicate your decision by deleting the # provisions above and replace them with the notice and other provisions # required by the LGPL License. If you do not delete the provisions # above, a recipient may use your version of this file under either the # MPL or the LGPL License. from rxpy.engine.parallel.base import ParallelEngine from rxpy.engine.parallel.beam.support import States class BeamEngine(ParallelEngine): ''' Restrict the total number of states under consideration, doubling on failure until we either match, or fail with no discards. ''' def __init__(self, parser_state, graph, hash_state=False, beam_start=1, beam_scale=2): super(BeamEngine, self).__init__(parser_state, graph, hash_state=hash_state) self.__beam_start = beam_start self.__beam_scale = beam_scale def _new_states(self, initial): return States(initial, self._hash_state, beam_start=self.__beam_start, beam_scale=self.__beam_scale) def _outer_loop(self, states, search, new_state): initial_offset = self._offset growing = True while not states.final_state and growing: super(BeamEngine, self)._outer_loop(states, search, new_state) if not states.final_state and states.overflowed: growing = True states.grow() self._set_offset(initial_offset) else: growing = False class HashingBeamEngine(BeamEngine): def __init__(self, parser_state, graph, hash_state=True, beam_start=1, beam_scale=2): super(HashingBeamEngine, self).__init__(parser_state, graph, hash_state=hash_state, beam_start=beam_start, beam_scale=beam_scale)
5370e7752ece0589186787cb62da98ecb25774b8
a43b180c8911736bb158a98bb49200001c25ef88
/test/dynamo/test_unspec.py
392dbc899743b7e4c1d142a49711b309ec223fbe
[ "BSD-2-Clause", "LicenseRef-scancode-secret-labs-2011", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "BSL-1.0", "Apache-2.0" ]
permissive
unlimblue/pytorch
bafbe98eba7412456c956d99f5c61b64478a8492
4433f508e7b1d916820da7f12ce265a868e17cca
refs/heads/main
2023-06-17T16:01:53.631576
2023-06-14T03:19:12
2023-06-14T03:19:12
193,814,069
0
2
NOASSERTION
2019-06-30T15:29:08
2019-06-26T02:20:36
C++
UTF-8
Python
false
false
10,462
py
# Owner(s): ["module: dynamo"] import math import random import unittest import numpy as np import torch import torch._dynamo.test_case import torch._dynamo.testing import torch.nn.functional as F from torch._dynamo.comptime import comptime from torch._dynamo.testing import same # The intention of this test file is you should put test cases specifically # for assume_static_by_default=False, aka you want to YOLO make everything as # dynamic as possible. If you want to test the more normal situation where # you assume static by default, put it in a regular test file and # test_dynamic_shapes will cover both the YOLO and non-YOLO cases. @torch._dynamo.config.patch(dynamic_shapes=True, assume_static_by_default=False) class UnspecTests(torch._dynamo.test_case.TestCase): def test_numpy_correctness(self): def fn(x, y, z): xy = [x + y, y, False] np_x = x.numpy() np_y = y.numpy() return { "x": x, "z": z, "a": np_y.sum(), "b": xy, "c": np_y[0][0] / 68, "d": np_x.sum(), "e": np_x + np_y, }, x + np_y.sum() + z x = torch.tensor([[1.0, 2.0], [3.0, 4.0]], dtype=torch.float64) y = torch.ones([2, 2], dtype=torch.int64) z = np.int64(12) res1 = fn(x, y, z) cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cnts)(fn) res2 = opt_fn(x, y, z) self.assertTrue(same(res1, res2)) def test_no_recompilations(self): # no recompilations if passing on different numpy int values def fn(x, y): return {"a": x + 1, "b": y / 2} x = torch.tensor([[1.0, 2.0], [3.0, 4.0]], dtype=torch.float64) cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cnts)(fn) for i in range(10): opt_fn(x, np.int64(i)) self.assertEqual(cnts.frame_count, 1) self.assertEqual(cnts.op_count, 2) def test_builtin_max_min(self): # test unspecialized primitive max/min def fn(x, y, z): return z + 1, max(x, y), min(x - 4, y) x = np.int64(12) y = 10 z = torch.tensor([[1.0, 2.0], [3.0, 4.0]], dtype=torch.float64) res1 = fn(x, y, z) cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cnts)(fn) res2 = opt_fn(x, y, z) self.assertTrue(same(res1, res2, relax_numpy_equality=True)) def test_feed_random_values_into_graph_only(self): def fn(shape): torch.manual_seed(123) x = torch.randn(shape, device="cpu") * random.randint(30, 100) return x shape = [2, 3] random.seed(1) res1 = fn(shape) cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cnts)(fn) random.seed(1) res2 = opt_fn(shape) self.assertTrue(same(res1, res2)) def test_random_values_with_graph_break(self): def fn(x): r1 = random.random() y = x + random.uniform(10, 20) y.sum().item() r2 = random.randint(2, 18) # no graph output in this frame y.sum().item() return y + r1, r2 x = torch.tensor([[1.0, 2.0], [3.0, 4.0]]) random.seed(1) res1 = fn(x) cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cnts)(fn) random.seed(1) res2 = opt_fn(x) self.assertTrue(same(res1, res2)) # Really annoying intersection of specialization and RandomValueSource # If we get a RandomValueSource with a single element tensor, we should return a ConstantVariable like other # unspects... but if we do, we break the bytecode assumptions and guards will not work as we will be reffering # to a name from a source that is not there. If we call .item() and take the wrapped_value out, where we do # wrapped_value = wrapped_value.item() where we send unspec down to wrap_fx_proxy, this test passes and then # some models fail on missing codegen.tx.output.random_values_var. If we let the tensor value go into wrap as # it is, this test fails. # The real solution here is to rewrite RandomValueSource and all the codegen it does from the ground up. def test_multiple_consecutive_random_calls_before_graph(self): def fn(x): dim1 = random.randrange(start=0, stop=5) dim2 = random.randrange(start=0, stop=5) dim3 = random.randrange(start=0, stop=5) y = torch.rand(dim1, dim2, dim3) return x + 2, y x = torch.tensor([[1.0, 2.0], [3.0, 4.0]]) random.seed(1) res1 = fn(x) cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cnts)(fn) random.seed(1) res2 = opt_fn(x) self.assertTrue(same(res1, res2)) def test_compiled_random_calls_are_random(self): # For compiled functions with random calls, # it should return different values for every iteration. # https://github.com/pytorch/pytorch/issues/95425 @torch.compile(backend="eager", fullgraph=True) def fn(x): return (x + 1) * random.uniform(0, 1) res = [] for _ in range(5): res.append(fn(torch.ones(2))) for i in range(1, 5): self.assertFalse(same(res[i - 1], res[i])) def test_random_call_with_while_loop(self): def fn(x): dim1 = random.randrange(start=0, stop=3) dim2 = dim1 while dim1 == dim2: dim2 = random.randrange(start=0, stop=3) return x * 2 x = torch.randn(4) random.seed(1) res1 = fn(x) opt_fn = torch._dynamo.optimize("eager")(fn) random.seed(1) res2 = opt_fn(x) self.assertTrue(same(res1, res2)) @unittest.expectedFailure # https://github.com/pytorch/pytorch/issues/103545 def test_builtin_getitem(self): # builtin getitem args[0] is python list and args[1] is unspec def fn(x, idx): return (torch.zeros(idx), x[idx], x[idx:]) x = list(range(50)) ref = fn(x, 48) # 48 is unspecialized cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cnts)(fn) res = opt_fn(x, 48) self.assertTrue(same(ref, res)) @unittest.skipIf(not torch.cuda.is_available(), "requires cuda") def test_builtin_functions_on_cuda(self): def fn(x, scaler): m = torch.nn.ReLU() y = m(x) * scaler return y x = torch.randn([3, 6], device="cuda") scaler = 0.23 # 0.23 is unspecialized ref = fn(x, scaler) cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cnts)(fn) res = opt_fn(x, scaler) self.assertTrue(same(ref, res)) self.assertEqual(ref.device, res.device) def test_unspec_float_precision(self): def fn(image, scale_factor): image = torch.nn.functional.interpolate( image[None], size=None, scale_factor=scale_factor, mode="bilinear", recompute_scale_factor=True, align_corners=False, )[0] return image.shape x = torch.rand([3, 427, 640]) scale_factor = 1.873536229133606 ref = fn(x, scale_factor) cnts = torch._dynamo.testing.CompileCounter() opt_fn = torch._dynamo.optimize(cnts)(fn) res = opt_fn(x, scale_factor) self.assertTrue(same(ref, res)) def test_specializing_numpy_float_in_control_flow(self): # np.float is unspecialized by default, # but it should be specialized when used in control flow. def fn(x, y): if y > 1.0: return x + 1 else: return x - 1 x = torch.rand(4) opt_fn = torch._dynamo.optimize("eager", nopython=True)(fn) for t in [np.float16, np.float32, np.float64]: y = t(1.23) ref = fn(x, y) res = opt_fn(x, y) self.assertTrue(same(ref, res)) def test_shape_graph_break(self): from torch._dynamo.comptime import comptime def fn(x): x_shape = x.size() comptime.graph_break() return x + torch.randn(x_shape) x = torch.randn(20) opt_fn = torch._dynamo.optimize("eager")(fn) opt_fn(x) def test_isinstance_symint(self): def fn(x): assert isinstance(x.size(0), int) return x * 2 x = torch.randn(20) opt_fn = torch._dynamo.optimize("eager")(fn) opt_fn(x) y = torch.randn(30) torch._dynamo.mark_dynamic(y, 0) opt_fn(y) def test_mark_01_dynamic(self): def fn(x): return x * 2 x = torch.randn(1) torch._dynamo.mark_dynamic(x, 0) opt_fn = torch._dynamo.optimize("eager")(fn) # This will fail to compile a generic kernel, but we should not # complain about it (mark dynamic will try its best but 0/1 # specialization is allowed) opt_fn(x) @unittest.expectedFailure def test_conv1d_symint_padding(self): kernel = torch.randn(1, 1, 4) def func(x): padding = math.ceil((kernel.shape[-1] + x.shape[-1] % 2) / 2) - 1 out = F.conv1d(x, kernel, padding=padding, stride=2) return out # TODO: NameError: name 's1' is not defined when dynamic=True opt_func = torch.compile(func) x = torch.randn(1, 1, 175) opt_func(x) # passes x = torch.randn(1, 1, 249) opt_func(x) # crashes @torch._dynamo.config.patch("assume_static_by_default", True) def test_propagate_dynamic_dim(self): x = torch.randn(20) torch._dynamo.mark_dynamic(x, 0) @torch.compile() def fn(x): y = x * 2 comptime.graph_break() z = y * 2 return z z = fn(x) self.assertEqual(z._dynamo_weak_dynamic_indices, {0}) if __name__ == "__main__": from torch._dynamo.test_case import run_tests run_tests()
d6d449b80e62d56b88fbfb2e7e3bc89530bb83f6
1aa5216e8ed1fc53999637a46c6af0716a8a8cdf
/disk_snapshot_service/business_logic/locker_manager.py
3668ebcb7834e64b93ca17fbb9226de6467e3525
[]
no_license
ShawnYi5/DiskInProgress
c3a47fd5c52b1efeeaeee5b0de56626077a947a4
b13d0cdcd0ab08b6dd5b106cda739d7c8ac9e41a
refs/heads/master
2020-05-17T06:19:40.579905
2019-08-22T03:29:31
2019-08-22T03:29:31
183,555,060
0
1
null
null
null
null
UTF-8
Python
false
false
549
py
import threading class LockWithTrace(object): def __init__(self): self._locker = threading.Lock() self._current_trace = None def acquire(self, trace): self._locker.acquire() self._current_trace = trace return self def release(self): self._current_trace = None self._locker.release() def __enter__(self): pass def __exit__(self, exc_type, exc_val, exc_tb): self.release() @property def current_trace(self): return self._current_trace
576462d84b48c93ce54baefe84067f27897cbe9b
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/adjectives/_neutral.py
49c9babdf333c189682df5fb0fa4e46a59f17ec3
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
801
py
#calss header class _NEUTRAL(): def __init__(self,): self.name = "NEUTRAL" self.definitions = [u'not saying or doing anything that would encourage or help any of the groups involved in an argument or war: ', u'A neutral ground or field is a sports stadium that does not belong to either of the two teams taking part in a competition or game: ', u'having features or characteristics that are not easily noticed: ', u'A neutral chemical substance is neither an acid nor an alkali: ', u'A neutral object in physics has no electrical charge: '] self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.specie = 'adjectives' def run(self, obj1, obj2): self.jsondata[obj2] = {} self.jsondata[obj2]['properties'] = self.name.lower() return self.jsondata
7847b19733a6494cd75d660ff936f2f6c1b72c56
17658f39e410b6a179f4640e49ff86d86a6541ba
/taxonomic-annotation/reconcile.py
f76cf0b4962f05e96ca6ebeb9d0de3c6da90d91f
[ "MIT" ]
permissive
luispedro/Coelho2021_GMGCv1
f91f82d3c78cf0773b69ce39cd0143d872933716
caa9b5e156f5f74e147fde371e36ea259fee1407
refs/heads/main
2023-04-16T05:49:27.375227
2022-02-22T14:38:21
2022-02-22T14:38:21
368,166,901
14
8
null
null
null
null
UTF-8
Python
false
false
1,654
py
import pandas as pd from taxonomic import ncbi n = ncbi.NCBI() taxonomic = pd.read_table('/g/bork1/coelho/DD_DeCaF/genecats.cold/GMGC10.taxonomic.map', index_col=0, engine='c') species = pd.read_table('/g/bork1/coelho/DD_DeCaF/genecats.cold/GMGC10.species.match.map', header=None, usecols=[1,2], index_col=0, squeeze=True, names=['gene', 'TaxID'], engine='c') superkingdom = pd.read_table('/g/bork1/coelho/DD_DeCaF/genecats.cold/GMGC10.kingdom.annotation', header=None, names=['gene', 'superkingdom'], index_col=0, squeeze=True, engine='c') taxid = taxonomic['NCBI TaxID'].to_dict() d_superkingdom = superkingdom.to_dict() d_species = species.to_dict() d_predicted_taxid = taxonomic['NCBI TaxID'].to_dict() taxid = taxonomic['NCBI TaxID'][taxonomic.Rank == 'species'].to_dict() gs = {} for g,t in taxid.items(): gs[g] = n.ancestors.get(str(t), '1') if len(gs) % 10_000_000 == 0: print(len(gs) // 1_000_000) no_match = {'None', 'no_match'} prok = {'Bacteria', 'Archaea'} final = d_species.copy() for g,sk in d_superkingdom.items(): if sk in no_match: continue if g in d_species: continue elif sk not in prok: final[g] = sk elif g in gs: final[g] = gs[g] else: final[g] = d_predicted_taxid.get(g, 1) for g,p in d_predicted_taxid.items(): if g not in final: final[g] = 1 final = pd.Series(final) finalstr = final.map(str) finalnames = finalstr.map(n.names) finalranks = finalstr.map(n.ranks) finalframe = pd.DataFrame({'taxid' : finalstr, 'rank' : finalranks, 'name': finalnames}) finalframe.to_csv('taxonomic.final.tsv', sep='\t')
a873f56004bb76bdee75e786e67d6e1897053095
2e682fd72e3feaa70e3f7bf2a3b83c50d783ec02
/PyTorch/contrib/cv/semantic_segmentation/FastSCNN/segmentron/models/unet.py
f6425505373e615f46bcd51c550b3f3410fe3164
[ "Apache-2.0", "BSD-2-Clause", "MIT", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "LicenseRef-scancode-unknown-license-reference", "GPL-1.0-or-later" ]
permissive
Ascend/ModelZoo-PyTorch
4c89414b9e2582cef9926d4670108a090c839d2d
92acc188d3a0f634de58463b6676e70df83ef808
refs/heads/master
2023-07-19T12:40:00.512853
2023-07-17T02:48:18
2023-07-17T02:48:18
483,502,469
23
6
Apache-2.0
2022-10-15T09:29:12
2022-04-20T04:11:18
Python
UTF-8
Python
false
false
4,555
py
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.import torch import torch.nn as nn import torch.nn.functional as F from .segbase import SegBaseModel from .model_zoo import MODEL_REGISTRY from ..modules import _FCNHead from ..config import cfg __all__ = ['UNet'] @MODEL_REGISTRY.register() class UNet(SegBaseModel): def __init__(self): super(UNet, self).__init__(need_backbone=False) self.inc = DoubleConv(3, 64) self.down1 = Down(64, 128) self.down2 = Down(128, 256) self.down3 = Down(256, 512) self.down4 = Down(512, 512) self.head = _UNetHead(self.nclass) self.__setattr__('decoder', ['head', 'auxlayer'] if self.aux else ['head']) def forward(self, x): size = x.size()[2:] x1 = self.inc(x) x2 = self.down1(x1) x3 = self.down2(x2) x4 = self.down3(x3) x5 = self.down4(x4) outputs = list() x = self.head(x1, x2, x3, x4, x5) x = F.interpolate(x, size, mode='bilinear', align_corners=True) outputs.append(x) return tuple(outputs) class _UNetHead(nn.Module): def __init__(self, nclass, norm_layer=nn.BatchNorm2d): super(_UNetHead, self).__init__() bilinear = True self.up1 = Up(1024, 256, bilinear) self.up2 = Up(512, 128, bilinear) self.up3 = Up(256, 64, bilinear) self.up4 = Up(128, 64, bilinear) self.outc = OutConv(64, nclass) def forward(self, x1, x2, x3, x4, x5): x = self.up1(x5, x4) x = self.up2(x, x3) x = self.up3(x, x2) x = self.up4(x, x1) logits = self.outc(x) return logits class DoubleConv(nn.Module): """(convolution => [BN] => ReLU) * 2""" def __init__(self, in_channels, out_channels): super().__init__() self.double_conv = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True), nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True) ) def forward(self, x): return self.double_conv(x) class Down(nn.Module): """Downscaling with maxpool then double conv""" def __init__(self, in_channels, out_channels): super().__init__() self.maxpool_conv = nn.Sequential( nn.MaxPool2d(2), DoubleConv(in_channels, out_channels) ) def forward(self, x): return self.maxpool_conv(x) class Up(nn.Module): """Upscaling then double conv""" def __init__(self, in_channels, out_channels, bilinear=True): super().__init__() # if bilinear, use the normal convolutions to reduce the number of channels if bilinear: self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) else: self.up = nn.ConvTranspose2d(in_channels // 2, in_channels // 2, kernel_size=2, stride=2) self.conv = DoubleConv(in_channels, out_channels) def forward(self, x1, x2): x1 = self.up(x1) # input is CHW diffY = torch.tensor([x2.size()[2] - x1.size()[2]]) diffX = torch.tensor([x2.size()[3] - x1.size()[3]]) x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2]) # if you have padding issues, see # https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a # https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd x = torch.cat([x2, x1], dim=1) return self.conv(x) class OutConv(nn.Module): def __init__(self, in_channels, out_channels): super(OutConv, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1) def forward(self, x): return self.conv(x)
c59757992997a99fd2580f5c29f1c4843bfa9307
e4ee9f2ca60b60ea9fa1b05c982594a2c1b10484
/day30 课堂笔记以及代码/day30/验证客户端合法性/server.py
2e9c5a0e7e6055064d96994f662687f7d8d4dcdc
[]
no_license
tianshang486/Pythonlaonanhai
100df2cc437aad1ee1baf45bdfc4500b1302092b
2a5b46986f5ca684b2ae350596e293db54e1e2f4
refs/heads/master
2022-09-19T02:16:56.972160
2020-06-04T09:24:30
2020-06-04T09:24:30
269,314,860
1
0
null
null
null
null
UTF-8
Python
false
false
692
py
import os import socket import hashlib secret_key = b'alex_sb' sk = socket.socket() sk.bind(('127.0.0.1',9001)) sk.listen() conn,addr = sk.accept() # 创建一个随机的字符串 rand = os.urandom(32) # 发送随机字符串 conn.send(rand) # 根据发送的字符串 + secrete key 进行摘要 sha = hashlib.sha1(secret_key) sha.update(rand) res = sha.hexdigest() # 等待接收客户端的摘要结果 res_client = conn.recv(1024).decode('utf-8') # 做比对 if res_client == res: print('是合法的客户端') # 如果一致,就显示是合法的客户端 # 并可以继续操作 conn.send(b'hello') else: conn.close() # 如果不一致,应立即关闭连接
346794fd0cf489c5c4b7c4d74e700415d735faa8
4d43aabef4cd709bf27dbc644d12a6f32eddddf4
/tensorflow/contrib/layers/python/ops/loss_ops_test.py
1453af533180c2616ce322f43139aabc19d50b93
[ "Apache-2.0" ]
permissive
jmhodges/tensorflow
560165f6804d97f12edc6adb395bfcaf81091e0b
672b969b8c033548df4cbec89b87694b6024bf12
refs/heads/master
2022-10-13T09:53:57.176987
2016-03-24T16:27:10
2016-03-24T16:27:10
54,669,784
1
0
Apache-2.0
2022-09-23T22:51:01
2016-03-24T19:48:15
C++
UTF-8
Python
false
false
12,024
py
# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for contrib.layers.python.ops.loss_ops.""" # pylint: disable=unused-import,g-bad-import-order from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from tensorflow.contrib.layers.python.framework import tensor_util pi = 3.14 indiana_pi = 3.2 # https://en.wikipedia.org/wiki/Indiana_Pi_Bill class ReduceBatchSumTest(tf.test.TestCase): def testDimensionNone(self): with self.test_session(): input_array = np.array([ [1.0, 2.0], [-1.0, -2.0] ], dtype=np.float32) placeholder_vec = tf.placeholder(tf.float32, name="placeholder_vec") expected_result = np.array([3.0, -3.0]) actual_result = tf.contrib.layers.reduce_batch_sum(placeholder_vec) self.assertEqual(actual_result.get_shape().as_list(), [None]) self.assertAllClose(expected_result, actual_result.eval(feed_dict={ placeholder_vec: input_array })) def testDimension0(self): with self.test_session(): input_vec = tf.constant(2.0) with self.assertRaises(ValueError): tf.contrib.layers.reduce_batch_sum(input_vec) def testDimension1(self): with self.test_session(): input_vec = tf.constant([1.0, 2.0]) expected_result = np.array([1.0, 2.0]) actual_result = tf.contrib.layers.reduce_batch_sum(input_vec) self.assertAllClose(expected_result, actual_result.eval()) def testDimension2(self): with self.test_session(): input_vec = tf.constant([ [1.0, 2.0], [-1.0, -2.0] ]) expected_result = np.array([3.0, -3.0]) actual_result = tf.contrib.layers.reduce_batch_sum(input_vec) self.assertAllClose(expected_result, actual_result.eval()) def testReturnShape(self): with self.test_session(): input_vec = tf.constant([ [1.0, 2.0], [-1.0, -2.0] ]) expected_result = np.array([3.0, -3.0]) actual_result = tf.contrib.layers.reduce_batch_sum(input_vec) self.assertShapeEqual(expected_result, actual_result) def testDimensionN(self): with self.test_session(): input_vec = tf.constant([ [ [1.0, 2.0], [3.0, 4.0] ], [ [5.0, 6.0], [7.0, 8.0] ] ]) expected_result = np.array([10.0, 26.0]) actual_result = tf.contrib.layers.reduce_batch_sum(input_vec) self.assertAllClose(expected_result, actual_result.eval()) class AbsoluteLossTest(tf.test.TestCase): def _getTestVectors(self): target = tf.constant([1.0, 0.0, 3.0, 2.0], shape=[2, 2], name="target") predicted = tf.constant([1.1, -0.2, 3.3, 1.6], shape=[2, 2], name="predicted") expected_loss = np.array([0.1, 0.2, 0.3, 0.4]).reshape(2, 2) return target, predicted, expected_loss def testAbsoluteLoss(self): with self.test_session(): target, predicted, expected_loss = self._getTestVectors() result = tf.contrib.layers.absolute_loss(predicted, target) self.assertAllClose(expected_loss, result.eval()) def testAbsoluteLossReturnShape(self): with self.test_session(): target, predicted, expected_loss = self._getTestVectors() result = tf.contrib.layers.absolute_loss(predicted, target) self.assertShapeEqual(expected_loss, result) def testInvalidShapesValueError(self): with self.test_session(): target = tf.constant([1.0, 0.0, 3.0, 2.0], shape=[2, 2], name="target") incompatible_shape = tf.constant([0.0, 1.1], shape=[2], name="incompatible_shape") with self.assertRaises(ValueError): tf.contrib.layers.absolute_loss(incompatible_shape, target) class SquaredLossTest(tf.test.TestCase): def _getTestVectors(self): target = tf.constant([1.0, 0.0, 3.0, 2.0], shape=[2, 2], name="target") predicted = tf.constant([1.1, -0.2, 3.3, 1.6], shape=[2, 2], name="predicted") expected_loss = np.array([0.005, 0.02, 0.045, 0.08]).reshape(2, 2) return target, predicted, expected_loss def testSquaredLoss(self): with self.test_session(): target, predicted, expected_loss = self._getTestVectors() result = tf.contrib.layers.squared_loss(predicted, target) self.assertAllClose(expected_loss, result.eval()) def testSquaredLossReturnShape(self): with self.test_session(): target, predicted, expected_loss = self._getTestVectors() result = tf.contrib.layers.squared_loss(predicted, target) self.assertShapeEqual(expected_loss, result) def testInvalidShapesValueError(self): with self.test_session(): target = tf.constant([1.0, 0.0, 3.0, 2.0], shape=[2, 2], name="target") incompatible_shape = tf.constant([0.0, 1.1], shape=[2], name="incompatible_shape") with self.assertRaises(ValueError): tf.contrib.layers.squared_loss(incompatible_shape, target) class SumSquaredLossTest(tf.test.TestCase): def _getTestVectors(self): target = tf.constant([[0.0, 1.0], [3.0, 2.0]], shape=[2, 2], name="target") predicted = tf.constant([[3.0, -2.0], [1.0, 2.0]], shape=[2, 2], name="predicted") expected_loss = np.array([9.0, 2.0]) return target, predicted, expected_loss def testSumSquaredLoss(self): with self.test_session(): target, predicted, expected_loss = self._getTestVectors() result = tf.contrib.layers.sum_squared_loss(predicted, target) self.assertAllClose(expected_loss, result.eval()) def testSumSquaredLossReturnShape(self): with self.test_session(): target, predicted, expected_loss = self._getTestVectors() result = tf.contrib.layers.sum_squared_loss(predicted, target) self.assertShapeEqual(expected_loss, result) def testInvalidShapesValueError(self): with self.test_session(): target = tf.constant([1.0, 0.0, 3.0, 2.0], shape=[2, 2], name="target") incompatible_shape = tf.constant([0.0, 1.1], shape=[2], name="incompatible_shape") with self.assertRaises(ValueError): tf.contrib.layers.sum_squared_loss(incompatible_shape, target) class ScalarAbsoluteLossTest(tf.test.TestCase): def testScalarAbsoluteLoss(self): with self.test_session(): actual = tf.constant([pi], name="pi") actual_placeholder = tf.placeholder(tf.float32) label = tf.constant([indiana_pi], name="lbl") label_placeholder = tf.placeholder(tf.float32, name="lbl_ph") expected_loss = abs(indiana_pi - pi) # Both shapes are set. both_shapes_loss = tf.contrib.layers.scalar_absolute_loss(actual, label) tf.initialize_all_variables().run() np.testing.assert_almost_equal( both_shapes_loss.eval(), expected_loss, decimal=6) # No shape for 'actual' - check that the loss layer can be created. no_actual_shape_loss = tf.contrib.layers.scalar_absolute_loss( actual_placeholder, label) tf.initialize_all_variables().run() np.testing.assert_almost_equal( no_actual_shape_loss.eval({actual_placeholder: [pi]}), expected_loss, decimal=6) # No shape for 'label' - check that the loss layer can be created. no_label_shape_loss = tf.contrib.layers.scalar_absolute_loss( actual, label_placeholder) tf.initialize_all_variables().run() np.testing.assert_almost_equal( no_label_shape_loss.eval({label_placeholder: [indiana_pi]}), expected_loss, decimal=6) # No shapes. no_shape_loss = tf.contrib.layers.scalar_absolute_loss( actual_placeholder, label_placeholder) tf.initialize_all_variables().run() np.testing.assert_almost_equal( no_shape_loss.eval({label_placeholder: [indiana_pi], actual_placeholder: [pi]}), expected_loss, decimal=6) # Evaluate the previous one again, but this time with different # (matching) shapes. This should still work. np.testing.assert_almost_equal( no_shape_loss.eval({label_placeholder: [indiana_pi, indiana_pi], actual_placeholder: [pi, pi]}), expected_loss, decimal=6) class ScalarSquaredLossTest(tf.test.TestCase): def testScalarSquaredLoss(self): with self.test_session(): actual = tf.constant([pi], name="pi") actual_placeholder = tf.placeholder(tf.float32) label = tf.constant([indiana_pi], name="lbl") label_placeholder = tf.placeholder(tf.float32, name="lbl_ph") expected_loss = (indiana_pi - pi) * (indiana_pi - pi) / 2 # Both shapes are set. both_shapes_loss = tf.contrib.layers.scalar_squared_loss(actual, label) tf.initialize_all_variables().run() np.testing.assert_almost_equal( both_shapes_loss.eval(), expected_loss, decimal=6) # No shape for 'actual' - check that the loss layer can be created. no_actual_shape_loss = tf.contrib.layers.scalar_squared_loss( actual_placeholder, label) tf.initialize_all_variables().run() np.testing.assert_almost_equal( no_actual_shape_loss.eval({actual_placeholder: [pi]}), expected_loss, decimal=6) # No shape for 'label' - check that the loss layer can be created. no_label_shape_loss = tf.contrib.layers.scalar_squared_loss( actual, label_placeholder) tf.initialize_all_variables().run() np.testing.assert_almost_equal( no_label_shape_loss.eval({label_placeholder: [indiana_pi]}), expected_loss, decimal=6) # No shapes. no_shape_loss = tf.contrib.layers.scalar_squared_loss( actual_placeholder, label_placeholder) tf.initialize_all_variables().run() np.testing.assert_almost_equal( no_shape_loss.eval({label_placeholder: [indiana_pi], actual_placeholder: [pi]}), expected_loss, decimal=6) # Evaluate the previous one again, but this time with different # (matching) shapes. This should still work. np.testing.assert_almost_equal( no_shape_loss.eval({label_placeholder: [indiana_pi, indiana_pi], actual_placeholder: [pi, pi]}), expected_loss, decimal=6) class ScalarLogisticLossTest(tf.test.TestCase): def _expected_loss(self, logit, target): sigmoid = 1.0 / (1.0 + np.exp(-logit)) logistic_loss = (target * -np.log(sigmoid)) - ( (1.0 - target) * np.log(1.0 - sigmoid)) batch_losses = np.sum(logistic_loss, 1) return np.sum(batch_losses) / len(batch_losses) def test_scalar_logistic_loss(self): logit = np.array([[9.45, -42], [4.2, 1], [-0.6, 20]]) target = np.array([[0.8, 0.9], [0.45, 0.99999], [0.1, 0.0006]]) with self.test_session(): result = tf.contrib.layers.scalar_logistic_loss( tf.constant(logit), tf.constant(target)) self.assertAllClose(self._expected_loss(logit, target), result.eval()) if __name__ == "__main__": tf.test.main()
72ddea90b5285225d914e9a05f92d1fcd6f57ce3
e10a6d844a286db26ef56469e31dc8488a8c6f0e
/explaining_risk_increase/input_fn.py
96a243efb7905e56aa629b71a68dcb4a3c29b3c0
[ "Apache-2.0", "CC-BY-4.0" ]
permissive
Jimmy-INL/google-research
54ad5551f97977f01297abddbfc8a99a7900b791
5573d9c5822f4e866b6692769963ae819cb3f10d
refs/heads/master
2023-04-07T19:43:54.483068
2023-03-24T16:27:28
2023-03-24T16:32:17
282,682,170
1
0
Apache-2.0
2020-07-26T15:50:32
2020-07-26T15:50:31
null
UTF-8
Python
false
false
13,661
py
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Input function to observation sequence model.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.compat.v1 as tf from tensorflow.compat.v1 import estimator as tf_estimator from tensorflow.contrib import data as contrib_data CONTEXT_KEY_PREFIX = 'c-' SEQUENCE_KEY_PREFIX = 's-' def _example_index_to_sparse_index(example_indices, batch_size): """Creates a 2D sparse index tensor from a list of 1D example indices. For example, this would do the transformation: [0, 0, 0, 1, 3, 3] -> [[0,0], [0,1], [0,2], [1,0], [3,0], [3,1]] The second column of the output tensor is the running count of the occurrences of that example index. Args: example_indices: A sorted 1D Tensor with example indices. batch_size: The batch_size. Could be larger than max(example_indices) if the last examples of the batch do not have the feature present. Returns: The sparse index tensor. The maxmium length of a row in this tensor. """ binned_counts = tf.bincount(example_indices, minlength=batch_size) max_len = tf.to_int64(tf.reduce_max(binned_counts)) return tf.where(tf.sequence_mask(binned_counts)), max_len def _remove_empty_timesteps(sp_tensor): """Creates a 3D SparseTensor skipping empty time steps. Args: sp_tensor: A SparseTensor with at least 2 dimensions (subsequent ones will be ignored and simply flattened into the 2nd dimension). Returns: A 3D SparseTensor with index 0 for dimension 3 and a series from [0,..k] for dimension 1 for each batch entry. """ batch_size = tf.to_int32(sp_tensor.dense_shape[0]) indices, max_len = _example_index_to_sparse_index( tf.to_int32(sp_tensor.indices[:, 0]), batch_size) indices = tf.concat([indices, tf.zeros_like(indices[:, 0:1])], axis=1) return tf.SparseTensor( indices=indices, values=sp_tensor.values, dense_shape=[batch_size, max_len, 1]) def _extend_with_dummy(extend_with, to_extend, dummy_value='n/a'): """Extends one SparseTensor with dummy_values at positions of other.""" dense_shape = tf.to_int64( tf.concat([[tf.shape(extend_with)[0]], [tf.maximum(tf.shape(extend_with)[1], tf.shape(to_extend)[1])], [tf.maximum(tf.shape(extend_with)[2], tf.shape(to_extend)[2])]], axis=0)) additional_indices = tf.sets.set_difference( tf.SparseTensor( indices=extend_with.indices, values=tf.zeros_like(extend_with.values, dtype=tf.int32), dense_shape=dense_shape), tf.SparseTensor( indices=to_extend.indices, values=tf.zeros([tf.shape(to_extend.indices)[0]], dtype=tf.int32), dense_shape=dense_shape)).indices # Supply defaults for all other indices. default = tf.tile( tf.constant([dummy_value]), multiples=[tf.shape(additional_indices)[0]]) string_value = ( tf.as_string(to_extend.values) if to_extend.values.dtype != tf.string else to_extend.values) return tf.sparse_reorder( tf.SparseTensor( indices=tf.concat([to_extend.indices, additional_indices], axis=0), values=tf.concat([string_value, default], axis=0), dense_shape=dense_shape)) def _sparse_intersect_indices(sp_tensor, required_sp_tensor): """Filters timestamps in sp_tensor to those present in required_sp_tensor.""" # We extend both sp_tensor and required_sp_tensor with each others indices # so that they have the same indices. # E.g. their dense representation of one batch entry could be: # [dummy, dummy, 1 ] dummy_value = 'n/a' dummy_required_sp_tensor = _extend_with_dummy( sp_tensor, required_sp_tensor, dummy_value) dummy_sp_tensor = _extend_with_dummy(required_sp_tensor, sp_tensor, dummy_value) # We get rid to dummy values both for indices in the required_sp_tensor and # the sp_tensor. # First get rid of indices with dummy values in dummy_required_sp_tensor. in_required = tf.sparse_retain( dummy_sp_tensor, tf.logical_not(tf.equal(dummy_required_sp_tensor.values, dummy_value))) # Remove empty timesteps so that the timesteps align with the original # required_sp_tensor. # Then remove the indices with dummy values. in_required = tf.sparse_retain( _remove_empty_timesteps(in_required), tf.logical_not(tf.equal(in_required.values, dummy_value))) if sp_tensor.values.dtype != tf.string: in_required = tf.SparseTensor( indices=in_required.indices, dense_shape=in_required.dense_shape, values=tf.strings.to_number( in_required.values, out_type=sp_tensor.values.dtype)) return in_required def _dense_intersect_indices(tensor, required_sp_tensor): required_2d_indices = required_sp_tensor.indices[:, 0:2] values = tf.gather_nd(tensor, required_2d_indices) indices, max_len = _example_index_to_sparse_index( tf.to_int32(required_sp_tensor.indices[:, 0]), tf.to_int32(required_sp_tensor.dense_shape[0])) return tf.expand_dims( tf.sparse_to_dense( indices, tf.stack([required_sp_tensor.dense_shape[0], max_len]), values), axis=2) def _intersect_indices(sequence_feature, required_sp_tensor): if isinstance(sequence_feature, tf.SparseTensor): return _sparse_intersect_indices(sequence_feature, required_sp_tensor) else: return _dense_intersect_indices(sequence_feature, required_sp_tensor) def _make_parsing_fn(mode, label_name, sequence_features, dense_sequence_feature): """Creates an input function to an estimator. Args: mode: The execution mode, as defined in tf.estimator.ModeKeys. label_name: Name of the label present as context feature in the SequenceExamples. sequence_features: List of sequence features (strings) that are valid keys in the tf.SequenceExample. dense_sequence_feature: Name of the float sequence feature. Returns: Two dictionaries with the parsing config for the context features and sequence features. """ sequence_features_config = dict() for feature in sequence_features: dtype = tf.string if feature == dense_sequence_feature: dtype = tf.float32 sequence_features_config[feature] = tf.io.VarLenFeature(dtype) sequence_features_config['eventId'] = tf.io.FixedLenSequenceFeature( [], tf.int64, allow_missing=False) context_features_config = dict() context_features_config['timestamp'] = tf.io.FixedLenFeature( [], tf.int64, default_value=-1) context_features_config['sequenceLength'] = tf.io.FixedLenFeature( [], tf.int64, default_value=-1) if mode != tf_estimator.ModeKeys.PREDICT: context_features_config[label_name] = tf.io.VarLenFeature(tf.string) def _parse_fn(serialized_examples): """Parses tf.(Sparse)Tensors from the serialized tf.SequenceExamples. Requires TF versions >= 1.12 but is faster than _parse_fn_old. Args: serialized_examples: A batch of serialized tf.SequenceExamples. Returns: A dictionary from name to (Sparse)Tensors of the context and sequence features. """ context, sequence, _ = tf.io.parse_sequence_example( serialized_examples, context_features=context_features_config, sequence_features=sequence_features_config, name='parse_sequence_example') feature_map = dict() for k, v in context.items(): feature_map[CONTEXT_KEY_PREFIX + k] = v for k, v in sequence.items(): feature_map[SEQUENCE_KEY_PREFIX + k] = v return feature_map return _parse_fn def _make_feature_engineering_fn(required_sp_tensor_name, label_name): """Creates an input function to an estimator. Args: required_sp_tensor_name: Name of the SparseTensor that is required. Other sequence features will be reduced to times at which this SparseTensor is also present. label_name: Name of label. Returns: Two dictionaries with the parsing config for the context features and sequence features. """ def _process(examples): """Supplies input to our model. This function supplies input to our model after parsing. Args: examples: The dictionary from key to (Sparse)Tensors with context and sequence features. Returns: A tuple consisting of 1) a dictionary of tensors whose keys are the feature names, and 2) a tensor of target labels if the mode is not INFER (and None, otherwise). """ # Combine into a single dictionary. feature_map = {} # Flatten sparse tensor to compute event age. This dense tensor also # contains padded values. These will not be used when gathering elements # from the dense tensor since each sparse feature won't have a value # defined for the padding. padded_event_age = ( # Broadcast current time along sequence dimension. tf.expand_dims(examples.pop(CONTEXT_KEY_PREFIX + 'timestamp'), 1) # Subtract time of events. - examples.pop(SEQUENCE_KEY_PREFIX + 'eventId')) examples[SEQUENCE_KEY_PREFIX + 'deltaTime'] = padded_event_age if CONTEXT_KEY_PREFIX + label_name in examples: label = examples.pop(CONTEXT_KEY_PREFIX + label_name) label = tf.sparse.to_dense(tf.SparseTensor( indices=label.indices, dense_shape=[label.dense_shape[0], 1], values=tf.ones_like(label.values, dtype=tf.float32))) feature_map[CONTEXT_KEY_PREFIX + label_name] = label for k, v in examples.items(): if k.startswith(CONTEXT_KEY_PREFIX): feature_map[k] = v else: feature_map[k] = _intersect_indices( v, examples[SEQUENCE_KEY_PREFIX + required_sp_tensor_name]) sequence_length = tf.reduce_sum( _intersect_indices( tf.ones_like(examples[SEQUENCE_KEY_PREFIX + 'deltaTime']), examples[SEQUENCE_KEY_PREFIX + required_sp_tensor_name]), axis=1) feature_map[CONTEXT_KEY_PREFIX + 'sequenceLength'] = sequence_length return feature_map return _process def get_input_fn(mode, input_files, label_name, sequence_features, dense_sequence_feature, required_sequence_feature, batch_size, shuffle=True): """Creates an input function to an estimator. Args: mode: The execution mode, as defined in tf.estimator.ModeKeys. input_files: List of input files in TFRecord format containing tf.SequenceExamples. label_name: Name of the label present as context feature in the SequenceExamples. sequence_features: List of sequence features (strings) that are valid keys in the tf.SequenceExample. dense_sequence_feature: Name of float sequence feature. required_sequence_feature: Name of SparseTensor sequence feature that determines which events will be kept. batch_size: The size of the batch when reading in data. shuffle: Whether to shuffle the examples. Returns: A function that returns a dictionary of features and the target labels. """ def input_fn(): """Supplies input to our model. This function supplies input to our model, where this input is a function of the mode. For example, we supply different data if we're performing training versus evaluation. Returns: A tuple consisting of 1) a dictionary of tensors whose keys are the feature names, and 2) a tensor of target labels if the mode is not INFER (and None, otherwise). """ is_training = mode == tf_estimator.ModeKeys.TRAIN num_epochs = None if is_training else 1 with tf.name_scope('read_batch'): file_names = input_files files = tf.data.Dataset.list_files(file_names) if shuffle: files = files.shuffle(buffer_size=len(file_names)) dataset = ( files.apply( contrib_data.parallel_interleave( tf.data.TFRecordDataset, cycle_length=10)).repeat(num_epochs)) if shuffle: dataset = dataset.shuffle(buffer_size=100) parse_fn = _make_parsing_fn(mode, label_name, sequence_features, dense_sequence_feature) feature_engineering_fn = _make_feature_engineering_fn( required_sequence_feature, label_name) feature_map = ( dataset.batch(batch_size) # Parallelize the input processing and put it behind a # queue to increase performance by removing it from the # critical path of per-step-computation. .map(parse_fn, num_parallel_calls=8) .map(feature_engineering_fn, num_parallel_calls=8) .prefetch(buffer_size=1).make_one_shot_iterator().get_next()) label = None if mode != tf_estimator.ModeKeys.PREDICT: label = feature_map.pop(CONTEXT_KEY_PREFIX + label_name) return feature_map, {label_name: label} return input_fn
0007bb4b25661e5bdbf01bf24eb7cc44d2721b2d
b11899d2edfa17f88da4f45cc828f092125091a0
/udacity/wsgi.py
79b9e9c0657245bbc91b43c1df6900d525977d0f
[]
no_license
chemalle/udacity
15726c03a108dc0e68952027e63b5689870cc5b0
69ee8e5acda4776df1f46c922b30ec799f5589af
refs/heads/master
2020-03-09T14:11:32.381362
2018-04-09T20:17:43
2018-04-09T20:17:43
128,828,589
0
0
null
null
null
null
UTF-8
Python
false
false
392
py
""" WSGI config for udacity project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.11/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "udacity.settings") application = get_wsgi_application()
84cd1164a4f1b0551e720d90ed604c3b8a83c45b
d83fde3c891f44014f5339572dc72ebf62c38663
/_bin/google-cloud-sdk/.install/.backup/lib/surface/access_context_manager/levels/__init__.py
fd037667cf0efbce2318d315932364a60be5025f
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
gyaresu/dotfiles
047cc3ca70f4b405ba272856c69ee491a79d2ebe
e5e533b3a081b42e9492b228f308f6833b670cfe
refs/heads/master
2022-11-24T01:12:49.435037
2022-11-01T16:58:13
2022-11-01T16:58:13
17,139,657
1
1
null
2020-07-25T14:11:43
2014-02-24T14:59:59
Python
UTF-8
Python
false
false
1,021
py
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The command group for the Access Context Manager levels CLI.""" from __future__ import absolute_import from __future__ import unicode_literals from googlecloudsdk.calliope import base class AccessContextManager(base.Group): """Manage Access Context Manager levels. An access level is a classification of requests based on raw attributes of that request (e.g. IP address, device identity, time of day, etc.). """
71b112d6742fd0c9701974a2bddaacf7c0f5fc91
dde1cf596cf5969812ecda999828baa9c73e788d
/isi_sdk_8_1_1/api/sync_policies_api.py
b89f81af89e7ae2f788de9d37722a0e1d4e5d839
[]
no_license
dctalbot/isilon_sdk_python3.7
bea22c91096d80952c932d6bf406b433af7f8e21
4d9936cf4b9e6acbc76548167b955a7ba8e9418d
refs/heads/master
2020-04-25T20:56:45.523351
2019-02-28T19:32:11
2019-02-28T19:32:11
173,065,379
0
0
null
null
null
null
UTF-8
Python
false
false
5,319
py
# coding: utf-8 """ Isilon SDK Isilon SDK - Language bindings for the OneFS API # noqa: E501 OpenAPI spec version: 6 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import re # noqa: F401 # python 2 and python 3 compatibility library import six from isi_sdk_8_1_1.api_client import ApiClient class SyncPoliciesApi(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. Ref: https://github.com/swagger-api/swagger-codegen """ def __init__(self, api_client=None): if api_client is None: api_client = ApiClient() self.api_client = api_client def create_policy_reset_item(self, policy_reset_item, policy, **kwargs): # noqa: E501 """create_policy_reset_item # noqa: E501 Reset a SyncIQ policy incremental state and force a full sync/copy. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.create_policy_reset_item(policy_reset_item, policy, async=True) >>> result = thread.get() :param async bool :param Empty policy_reset_item: (required) :param str policy: (required) :return: CreateResponse If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.create_policy_reset_item_with_http_info(policy_reset_item, policy, **kwargs) # noqa: E501 else: (data) = self.create_policy_reset_item_with_http_info(policy_reset_item, policy, **kwargs) # noqa: E501 return data def create_policy_reset_item_with_http_info(self, policy_reset_item, policy, **kwargs): # noqa: E501 """create_policy_reset_item # noqa: E501 Reset a SyncIQ policy incremental state and force a full sync/copy. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.create_policy_reset_item_with_http_info(policy_reset_item, policy, async=True) >>> result = thread.get() :param async bool :param Empty policy_reset_item: (required) :param str policy: (required) :return: CreateResponse If the method is called asynchronously, returns the request thread. """ all_params = ['policy_reset_item', 'policy'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method create_policy_reset_item" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'policy_reset_item' is set if ('policy_reset_item' not in params or params['policy_reset_item'] is None): raise ValueError("Missing the required parameter `policy_reset_item` when calling `create_policy_reset_item`") # noqa: E501 # verify the required parameter 'policy' is set if ('policy' not in params or params['policy'] is None): raise ValueError("Missing the required parameter `policy` when calling `create_policy_reset_item`") # noqa: E501 collection_formats = {} path_params = {} if 'policy' in params: path_params['Policy'] = params['policy'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'policy_reset_item' in params: body_params = params['policy_reset_item'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['basicAuth'] # noqa: E501 return self.api_client.call_api( '/platform/1/sync/policies/{Policy}/reset', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='CreateResponse', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats)
c3d3ce522f487468d1cd7a2495dd1144c24a1b38
2f98aa7e5bfc2fc5ef25e4d5cfa1d7802e3a7fae
/python/python_6658.py
d053f34bf35961831817d9b5d3b432ed001ec245
[]
no_license
AK-1121/code_extraction
cc812b6832b112e3ffcc2bb7eb4237fd85c88c01
5297a4a3aab3bb37efa24a89636935da04a1f8b6
refs/heads/master
2020-05-23T08:04:11.789141
2015-10-22T19:19:40
2015-10-22T19:19:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
106
py
# Paramiko SFTP - Avoid having to specify full local filename? os.path.join(os.getcwd(), remote_filename)
a720749f0cff19ebb480f74da0728b668a147c1e
276e15e7426b97ae550e45f2f7ffb6c3acc3ce07
/company/meituan/1.py
2f23806abc88bfd559908d4e1caca1b0600cb164
[]
no_license
JDer-liuodngkai/LeetCode
1115b946a1495622b1a5905257a8c92523022b8b
4ca0ec2ab9510b12b7e8c65af52dee719f099ea6
refs/heads/master
2023-03-25T03:43:16.630977
2020-11-13T00:44:01
2020-11-13T00:44:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
973
py
""" 每天最多 n 个,各有1个正整数重量 已做好 m 个 买 最重 最轻 a,b; 保证 a/b 大小关系 剩余 n - m 在烤 """ # 不保证 a/b 大小关系 # 1 ≤ n,m,a,b ≤ 1000 , m≤n , 蛋糕重量不会超过1000 def cake(): vmax, vmin = max(arr), min(arr) tmax, tmin = max(a, b), min(a, b) # 已做出的蛋糕 不满足要求 if vmax > tmax or vmin < tmin: return 'NO' # 仍在区间内 remain = n - m if remain == 0: if vmax == tmax and vmin == tmin: # 比如两个都相等 return 'YES' else: return 'NO' elif remain == 1: if vmax == tmax or vmin == tmin: # 只要有1个已经相等 即可 return 'YES' else: return 'NO' else: # 仍在区间内,并且还有两个能做 return 'YES' while True: n, m, a, b = list(map(int, input().split())) arr = list(map(int, input().split())) print(cake())
1c15f3b8d623086176e436fd2f27d05307235689
caed98915a93639e0a56b8296c16e96c7d9a15ab
/Walmart Labs/Container With Most Water.py
fa9f0a5f15d485592776bc34920e9a6c3966b44c
[]
no_license
PiyushChandra17/365-Days-Of-LeetCode
0647787ec7e8f1baf10b6bfc687bba06f635838c
7e9e9d146423ca2c5b1c6a3831f21dd85fa376d5
refs/heads/main
2023-02-13T10:41:36.110303
2021-01-17T11:58:51
2021-01-17T11:58:51
319,974,573
0
0
null
null
null
null
UTF-8
Python
false
false
318
py
class Solution: def maxArea(self, height: List[int]) -> int: i,j = 0,len(height)-1 water = 0 while i < j: water = max(water,(j-i)*min(height[i],height[j])) if height[i] < height[j]: i += 1 else: j -= 1 return water
9c85607ad9ff5b44cb32636cec3ac25cc7456f43
fb28906c1f0347ffe50193f6c2bad2d4b490fa9c
/budger/schedules/migrations/0033_add_group.py
7da1b8b63df95fef6af8c788e35aaecf915488d1
[]
no_license
pavkozlov/budger-server
20c695309c34a0451d25b83ab8583b14f0d21c0c
7a98c1789414c83625bda1e5b29cbe5587c3cd6a
refs/heads/master
2020-12-17T06:35:10.550905
2020-01-13T13:27:42
2020-01-13T13:27:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,128
py
# Generated by Django 2.2.8 on 2019-12-12 06:48 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('schedules', '0032_auto_20191211_1652'), ] operations = [ migrations.AlterModelOptions( name='event', options={'ordering': ['exec_from'], 'permissions': [('manage_event', 'Создание и редактирование черновиков.')]}, ), migrations.AddField( model_name='event', name='group', field=models.PositiveSmallIntegerField(blank=True, choices=[(1, 'Контрольные мероприятия. Последующий контроль за исполнением бюджета Московской области'), (2, 'Последующий контроль за исполнением бюджета Территориального фонда обязательного медицинского страхования Московской области'), (3, 'Последующий контроль за исполнением бюджетов муниципальных образований, в бюджетах которых доля дотаций из других бюджетов бюджетной системы Российской Федерации и (или) налоговых доходов по дополнительным нормативам отчислений в размере, не превышающем расчетного объема дотации на выравнивание бюджетной обеспеченности (части расчетного объема дотации), замененной дополнительными нормативами отчислений, в течение двух из трех последних отчетных финансовых лет превышала 50 процентов объема собственных доходов местных бюджетов, а также в муниципальных образованиях, которые не имеют годовой отчетности об исполнении местного бюджета за один год и более из трех последних отчетных финансовых лет'), (4, 'Тематические контрольные мероприятия'), (5, 'Экспертно-аналитические мероприятия. Последующий контроль за исполнением бюджета Московской области'), (6, 'Оперативный контроль за исполнением бюджета Московской области'), (7, 'Оперативный контроль за исполнением бюджета Территориального фонда обязательного медицинского страхования Московской области'), (8, 'Тематические экспертно-аналитические мероприятия')], null=True), ), ]
7221f4e4fe00f96cc27131f8659619b01f6e8124
84bdc0fd6aaaac7c519866fef855be8eae88a80f
/0x07-python-classes/3-square.py
1c50d5d34600f02b131a03adfde770787a230345
[]
no_license
KatyaKalache/holbertonschool-higher_level_programming
b74ca3e3c32ded6f54a40748775d0d4475e32409
e746a41ccb3f268c9d6d4578b80a0b9e7cf7d067
refs/heads/master
2021-01-20T02:29:04.972257
2017-10-11T06:24:17
2017-10-11T06:24:17
89,413,672
1
0
null
null
null
null
UTF-8
Python
false
false
311
py
#!/usr/bin/python3 class Square: def __init__(self, size=0): if not isinstance(size, int): raise TypeError("size must be an integer") if (size < 0): raise ValueError("size must be >= 0") self.__size = size def area(self): return self.__size ** 2
f3ae81f967741b44a1451c0540bfd316e877f45c
9804b20e9bbd2b4ac405700b920b93fb0b4394c0
/server/plugins/admin.py
2d1770caa66eb0d80b9d35ee8f10c5ece83289ef
[]
no_license
jonathanverner/brython-misc
ba5c53989159fdf1684cc956e51e6a22728ca75b
b9d6d243000aa0c4dc587fbcd0e6cf3e7359a9fe
refs/heads/master
2020-04-06T07:02:30.362571
2016-08-20T11:28:22
2016-08-20T11:28:22
58,376,490
1
1
null
null
null
null
UTF-8
Python
false
false
263
py
from ..lib.tornado import RPCService, export from tornado.gen import coroutine class AdminService(RPCService): SERVICE_NAME='admin' @coroutine @export def persists_storage(self): yield self._api.store.persist() services = [AdminService]
1e3830f608817ee5f8ae218d7fe951a627fe886e
09e57dd1374713f06b70d7b37a580130d9bbab0d
/benchmark/startCirq2360.py
e567cdcc03d3850100d2ad44ef059ff6d601d9e8
[ "BSD-3-Clause" ]
permissive
UCLA-SEAL/QDiff
ad53650034897abb5941e74539e3aee8edb600ab
d968cbc47fe926b7f88b4adf10490f1edd6f8819
refs/heads/main
2023-08-05T04:52:24.961998
2021-09-19T02:56:16
2021-09-19T02:56:16
405,159,939
2
0
null
null
null
null
UTF-8
Python
false
false
3,005
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 5/15/20 4:49 PM # @File : grover.py # qubit number=4 # total number=36 import cirq import cirq.google as cg from typing import Optional import sys from math import log2 import numpy as np #thatsNoCode from cirq.contrib.svg import SVGCircuit # Symbols for the rotation angles in the QAOA circuit. def make_circuit(n: int, input_qubit): c = cirq.Circuit() # circuit begin c.append(cirq.H.on(input_qubit[0])) # number=9 c.append(cirq.H.on(input_qubit[1])) # number=2 c.append(cirq.H.on(input_qubit[2])) # number=3 c.append(cirq.H.on(input_qubit[3])) # number=4 c.append(cirq.H.on(input_qubit[0])) # number=5 c.append(cirq.Y.on(input_qubit[2])) # number=18 c.append(cirq.CNOT.on(input_qubit[3],input_qubit[0])) # number=33 c.append(cirq.Z.on(input_qubit[3])) # number=34 c.append(cirq.CNOT.on(input_qubit[3],input_qubit[0])) # number=35 c.append(cirq.H.on(input_qubit[1])) # number=6 c.append(cirq.H.on(input_qubit[2])) # number=7 c.append(cirq.H.on(input_qubit[3])) # number=8 c.append(cirq.H.on(input_qubit[3])) # number=20 c.append(cirq.CZ.on(input_qubit[0],input_qubit[3])) # number=21 c.append(cirq.H.on(input_qubit[3])) # number=22 c.append(cirq.X.on(input_qubit[3])) # number=13 c.append(cirq.H.on(input_qubit[3])) # number=23 c.append(cirq.CZ.on(input_qubit[0],input_qubit[3])) # number=24 c.append(cirq.H.on(input_qubit[3])) # number=25 c.append(cirq.CNOT.on(input_qubit[2],input_qubit[0])) # number=10 c.append(cirq.H.on(input_qubit[1])) # number=19 c.append(cirq.H.on(input_qubit[0])) # number=15 c.append(cirq.CZ.on(input_qubit[2],input_qubit[0])) # number=16 c.append(cirq.H.on(input_qubit[0])) # number=17 c.append(cirq.Y.on(input_qubit[1])) # number=26 c.append(cirq.Y.on(input_qubit[1])) # number=27 c.append(cirq.SWAP.on(input_qubit[1],input_qubit[0])) # number=29 c.append(cirq.SWAP.on(input_qubit[1],input_qubit[0])) # number=30 c.append(cirq.X.on(input_qubit[0])) # number=31 c.append(cirq.X.on(input_qubit[0])) # number=32 # circuit end c.append(cirq.measure(*input_qubit, key='result')) return c def bitstring(bits): return ''.join(str(int(b)) for b in bits) if __name__ == '__main__': qubit_count = 4 input_qubits = [cirq.GridQubit(i, 0) for i in range(qubit_count)] circuit = make_circuit(qubit_count,input_qubits) circuit = cg.optimized_for_sycamore(circuit, optimizer_type='sqrt_iswap') circuit_sample_count =2000 simulator = cirq.Simulator() result = simulator.run(circuit, repetitions=circuit_sample_count) frequencies = result.histogram(key='result', fold_func=bitstring) writefile = open("../data/startCirq2360.csv","w+") print(format(frequencies),file=writefile) print("results end", file=writefile) print(circuit.__len__(), file=writefile) print(circuit,file=writefile) writefile.close()
5bdfd26ec6382992c81f1083de5d813e77df1989
41710e9133d660739f8f9f17040a2a8a6082e9fb
/python/aa_modules/argsparse/mutually_exclusive1.py
922f775acf7b00de572185f03d88335e0519a460
[]
no_license
hanjiangxue007/Programming
591678150e2e300051fdeaf09124d3893076d3a9
7a545ef2300b004497f30d27d1f2aaa032e26af5
refs/heads/master
2020-06-29T18:50:27.776557
2016-10-27T18:31:39
2016-10-27T18:31:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
838
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Author : Bhishan Poudel; Physics PhD Student, Ohio University # Date : Oct-15-2016 Sat # Last update : # # Ref: https://docs.python.org/3.5/howto/argparse.html # # Imports import argparse parser = argparse.ArgumentParser(description="calculate X to the power of Y") group = parser.add_mutually_exclusive_group() group.add_argument("-v", "--verbose", action="store_true") group.add_argument("-q", "--quiet", action="store_true") parser.add_argument("x", type=int, help="the base") parser.add_argument("y", type=int, help="the exponent") args = parser.parse_args() answer = args.x**args.y if args.quiet: print(answer) elif args.verbose: print("{} to the power {} equals {}".format(args.x, args.y, answer)) else: print("{}^{} == {}".format(args.x, args.y, answer))
92aea1fc2467f5278d784d1a69ffb5aecdbbc629
1858001ecc913ad5270f12b2e69e46eead3c7970
/awx/main/tests/functional/models/test_job_options.py
c601413a5d8f46e7ff479e88b5d1b8d2466d3b78
[ "Apache-2.0" ]
permissive
mabashian/awx
e3274046cabe3e539bf842f1f8ee2409efb28677
904cb4af34141ca0cfec6f597eb8016e575a670e
refs/heads/devel
2023-09-04T04:30:31.256861
2017-09-22T17:39:24
2017-09-22T17:39:24
104,504,771
0
1
Apache-2.0
2021-03-22T20:41:15
2017-09-22T18:12:24
Python
UTF-8
Python
false
false
1,245
py
import pytest from django.core.exceptions import ValidationError from awx.main.models import Credential @pytest.mark.django_db def test_clean_credential_with_ssh_type(credentialtype_ssh, job_template): credential = Credential( name='My Credential', credential_type=credentialtype_ssh ) credential.save() job_template.credential = credential job_template.full_clean() @pytest.mark.django_db def test_clean_credential_with_invalid_type_xfail(credentialtype_aws, job_template): credential = Credential( name='My Credential', credential_type=credentialtype_aws ) credential.save() with pytest.raises(ValidationError): job_template.credential = credential job_template.full_clean() @pytest.mark.django_db def test_clean_credential_with_custom_types(credentialtype_aws, credentialtype_net, job_template): aws = Credential( name='AWS Credential', credential_type=credentialtype_aws ) aws.save() net = Credential( name='Net Credential', credential_type=credentialtype_net ) net.save() job_template.extra_credentials.add(aws) job_template.extra_credentials.add(net) job_template.full_clean()
7963ef741b939e0ecb1eb8a00e0e97309e07b69b
8a378ddae37f834a1c00ba6e63d3ff8f9cabbffb
/tailpos_sync/tailpos_sync/report/product_bundle__register_report/other_methods.py
44e1da2be0547326648c3e5adb24f39630bb769d
[ "MIT" ]
permissive
aakvatech/tailpos-sync
2985d998d0e7ee394c68da578e19819f00cc4acd
7f199459769395d8d21e8effad1af39b1512c205
refs/heads/master
2020-09-08T19:16:57.633724
2020-04-22T05:56:49
2020-04-22T05:56:49
221,221,323
2
0
NOASSERTION
2020-04-22T05:56:50
2019-11-12T13:13:32
null
UTF-8
Python
false
false
5,896
py
import frappe def get_columns(columns): columns.append({"fieldname": "invoice_date", "label": "Invoice Date", "fieldtype": "Data", "width": 150}) columns.append({"fieldname": "invoice_number", "label": "Invoice Number", "fieldtype": "Link", "options": "Sales Invoice", "width": 150, }) columns.append({"fieldname": "receipt_no", "label": "Receipt Number", "fieldtype": "Data", "width": 150}) columns.append({"fieldname": "receipt_date", "label": "Receipt Date", "fieldtype": "Data", "width": 150}) columns.append({"fieldname": "cost_center", "label": "Cost Center", "fieldtype": "Data", "width": 150}) columns.append({"fieldname": "pos_profile", "label": "POS Profile", "fieldtype": "Data", "width": 150}) columns.append({"fieldname": "store_id", "label": "Store ID", "fieldtype": "Data", "width": 150}) columns.append({"fieldname": "item_code", "label": "Item Code", "fieldtype": "Data", "width": 150}) columns.append({"fieldname": "item_name", "label": "Item Name", "fieldtype": "Data", "width": 150}) columns.append({"fieldname": "uom", "label": "UOM", "fieldtype": "Data", "width": 150}) columns.append({"fieldname": "qty", "label": "QTY", "fieldtype": "Data", "width": 150}) columns.append({"fieldname": "rate", "label": "Rate", "fieldtype": "Float", "width": 150, "precision" : 2}) columns.append({"fieldname": "amount", "label": "Amount", "fieldtype": "Float", "width": 150, "precision" : 2}) columns.append({"fieldname": "packed_items", "label": "Packed Items", "fieldtype": "Data", "width": 150}) columns.append({"fieldname": "packed_item_code", "label": "Item Code", "fieldtype": "Data", "width": 150}) columns.append({"fieldname": "packed_item_name", "label": "Item Name", "fieldtype": "Data", "width": 150}) columns.append({"fieldname": "packed_qty", "label": "Qty", "fieldtype": "Float", "width": 150, "precision" : 2}) columns.append({"fieldname": "packed_uom", "label": "UOM", "fieldtype": "Data", "width": 150}) columns.append({"fieldname": "packed_valuation_rate", "label":"Valuation Rate", "fieldtype": "Float", "width": 150, "precision" : 2}) columns.append({"fieldname": "warehouse", "label":"Warehouse", "fieldtype": "Data", "width": 150}) def get_invoices(filters, data): from_date = filters.get("from_date") to_date = filters.get("to_date") print(from_date) print(to_date) query = """ SELECT SI.name as name, SI.posting_date as posting_date, R.receiptnumber as receiptnumber, R.date as date, R.deviceid as deviceid FROM `tabSales Invoice` AS SI INNER JOIN `tabReceipts` AS R ON SI.name = R.reference_invoice WHERE SI.posting_date BETWEEN '{0}' AND '{1}' ORDER BY SI.name """.format(from_date,to_date) invoices = frappe.db.sql(query, as_dict=1) modify_records(invoices, data) return invoices def modify_records(invoices, data): for idx, value in enumerate(invoices): total = { "qty": "Total", "rate": 0, "amount": 0, "packed_valuation_rate": 0, } sales_invoice_item = frappe.db.sql(""" SELECT * FROM `tabSales Invoice Item` WHERE parent=%s """, value.name, as_dict=True) device = frappe.db.sql(""" SELECT * FROM `tabDevice` WHERE name=%s""",value.deviceid, as_dict=True) obj = { "invoice_date": value.posting_date, "invoice_number": value.name, "receipt_no": value.receiptnumber, "receipt_date": value.date, "packed_items": "", } if len(device) > 0: pos_profile = frappe.db.sql(""" SELECT * FROM `tabPOS Profile` WHERE name=%s""", device[0].pos_profile, as_dict=True) if len(pos_profile) > 0: obj['cost_center'] = pos_profile[0].cost_center obj['pos_profile'] = device[0].pos_profile obj['store_id'] = device[0].name for idxx, i in enumerate(sales_invoice_item): if idxx == 0: obj['item_code'] = i.item_code obj['item_name'] = i.item_name obj['qty'] = i.qty obj['rate'] = i.rate obj['amount'] = i.amount else: obj = { "item_code": i.item_code, "item_name": i.item_name, "qty": i.qty, "rate": i.rate, "amount": i.amount, } total["rate"] += i.rate total["amount"] += i.amount packed_items = frappe.db.sql(""" SELECT * FROM `tabPacked Item` WHERE parent_item=%s and parent=%s """, (i.item_code, value.name) , as_dict=True) for idxxx,ii in enumerate(packed_items): if idxxx == 0: obj['packed_item_code'] = ii.item_code obj['packed_item_name'] = ii.item_name obj['packed_qty'] = ii.qty obj['packed_uom'] = ii.uom obj['warehouse'] = ii.warehouse else: obj = { "packed_item_code": ii.item_code, "packed_item_name": ii.item_name, "packed_qty": ii.qty, "packed_uom": ii.uom, "warehouse": ii.warehouse, } valuation_rate = frappe.db.sql(""" SELECT * FROM tabItem WHERE name=%s""", ii.item_code, as_dict=True) if len(valuation_rate) > 0: obj['packed_valuation_rate'] = valuation_rate[0].valuation_rate total["packed_valuation_rate"] += valuation_rate[0].valuation_rate data.append(obj) data.append(obj) data.append(total)
ada51a31e0faed934a41299946478c420f2573b6
4d51aa09c7b65d2c54212a3004794a50f36a7a89
/leetcode/DP/213.HouseRobber/213HouserRoober.py
87c13157a361c4607ac3426c9c4425ec78b843c3
[]
no_license
letterbeezps/leetcode-algorithm
30bd7335e96fdcca3c3ec1269c1c6fa78afd2f3b
b6211b1bfd699e45164a8cb5a8fbf2b4ec9756f9
refs/heads/master
2021-07-06T18:29:18.666607
2020-08-06T17:52:50
2020-08-06T17:52:50
158,728,987
10
2
null
2020-08-06T17:50:17
2018-11-22T16:56:13
JavaScript
UTF-8
Python
false
false
674
py
class Solution: def rob(self, nums: List[int]) -> int: if not nums: return 0 if len(nums) <= 3: return max(nums) if len(nums) == 4: return max(nums[0]+nums[2], nums[1]+nums[3]) n = len(nums) f = [0] * n num1 = nums[:-1] f[1] = num1[0] for i in range(2, n): f[i] = max(f[i-2]+num1[i-1], f[i-1]) temp1 = f[n-1] f = [0] * n num2 = nums[1:] f[1] = num2[0] for i in range(2, n): f[i] = max(f[i-2]+num2[i-1], f[i-1]) temp2 = f[n-1] return max(temp1, temp2)
5d758d4d95cc1b6405db90c73d4118106a45b53a
6219e6536774e8eeb4cadc4a84f6f2bea376c1b0
/scraper/storage_spiders/aobongdacom.py
73b1780602e6b41472488d0a26444813f9b8abeb
[ "MIT" ]
permissive
nguyenminhthai/choinho
109d354b410b92784a9737f020894d073bea1534
d2a216fe7a5064d73cdee3e928a7beef7f511fd1
refs/heads/master
2023-05-07T16:51:46.667755
2019-10-22T07:53:41
2019-10-22T07:53:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
927
py
# Auto generated by generator.py. Delete this line if you make modification. from scrapy.spiders import Rule from scrapy.linkextractors import LinkExtractor XPATH = { 'name' : "//h1[@class='product-title']", 'price' : "//div[@class='price-box']/h4[@class='product-price']", 'category' : "//ol[@class='breadcrumb pull-left']/li/a", 'description' : "//div[@class='art-content']", 'images' : "//div[@class='main-slider']//li/a/@href", 'canonical' : "", 'base_url' : "", 'brand' : "" } name = 'aobongda.com' allowed_domains = ['aobongda.com'] start_urls = ['http://aobongda.com/'] tracking_url = '' sitemap_urls = [''] sitemap_rules = [('', 'parse_item')] sitemap_follow = [] rules = [ Rule(LinkExtractor(allow=['/[a-zA-Z0-9-]+-id\d+-c\d+\.htm$']), 'parse_item'), Rule(LinkExtractor(deny=['/[a-zA-Z0-9-]+-id\d+-c\d+\.htm$']), 'parse'), #Rule(LinkExtractor(), 'parse_item_and_links'), ]
4a1e2aa3c3a7ae5b3de5e9f843d7313f73b1a3d0
9b3f578e63a7e17e2b1bab5f38aa8625b8a80251
/descarteslabs/workflows/types/array/array_.py
30e0fa674c82ddb4c8c20b53cc3d60ea823a17f7
[ "Apache-2.0" ]
permissive
carderne/descarteslabs-python
e6f7000f08cd1569e0ddd0f7fb8e53abb6765183
757b480efb8d58474a3bf07f1dbd90652b46ed64
refs/heads/master
2022-12-09T23:19:02.361226
2020-08-13T11:52:30
2020-08-13T11:52:30
287,264,851
0
0
NOASSERTION
2020-08-13T11:46:58
2020-08-13T11:46:57
null
UTF-8
Python
false
false
3,060
py
import numpy as np from descarteslabs.common.graft import client from ...cereal import serializable from ..core import ProxyTypeError from ..containers import List from ..primitives import Int, Float, Bool from .base_array import BaseArray DTYPE_KIND_TO_WF = {"b": Bool, "i": Int, "f": Float} WF_TO_DTYPE_KIND = dict(zip(DTYPE_KIND_TO_WF.values(), DTYPE_KIND_TO_WF.keys())) @serializable() class Array(BaseArray): """ Proxy Array representing a multidimensional, homogenous array of fixed-size items. Can be instantiated from a NumPy ndarray (via `from_numpy`), or a Python iterable. Currently, Arrays can only be constructed from small local arrays (< 10MB). Array follows the same syntax as NumPy arrays. It supports vectorized operations, broadcasting, and multidimensional indexing. There are some limitations including slicing with lists/arrays in multiple axes (``x[[1, 2, 3], [3, 2, 1]]``) and slicing with a multidimensional list/array of integers. Note ---- Array is an experimental API. It may be changed in the future, will not necessarily be backwards compatible, and may have unexpected bugs. Please contact us with any feedback! Examples -------- >>> import descarteslabs.workflows as wf >>> # Create a 1-dimensional Array of Ints >>> arr = wf.Array([1, 2, 3, 4, 5]) >>> arr <descarteslabs.workflows.types.array.array_.Array object at 0x...> >>> arr.compute(geoctx) # doctest: +SKIP array([1, 2, 3, 4, 5]) >>> import numpy as np >>> import descarteslabs.workflows as wf >>> ndarray = np.ones((3, 10, 10)) >>> # Create an Array from the 3-dimensional numpy array >>> arr = wf.Array(ndarray) >>> arr <descarteslabs.workflows.types.array.array_.Array object at 0x...> """ def __init__(self, arr): if isinstance(arr, np.generic): arr = arr.tolist() if isinstance(arr, (int, float, bool)): self._literal_value = arr self.graft = client.apply_graft("wf.array.create", arr) elif isinstance(arr, (Int, Float, Bool, List)): self.graft = client.apply_graft("wf.array.create", arr) else: if not isinstance(arr, np.ndarray): try: arr = np.asarray(arr) except Exception: raise ValueError("Cannot construct Array from {!r}".format(arr)) if arr.dtype.kind not in ("b", "i", "f"): raise TypeError("Invalid dtype {} for an Array".format(arr.dtype)) self._literal_value = arr arr_list = arr.tolist() self.graft = client.apply_graft("wf.array.create", arr_list) @classmethod def _promote(cls, obj): if isinstance(obj, cls): return obj try: return obj.cast(cls) except Exception: try: return Array(obj) except Exception as e: raise ProxyTypeError("Cannot promote {} to Array: {}".format(obj, e))
395840ba68ac389c3468cbd55fcc66294d3322da
c2f42e145c03feb891d83ea294cdda9f37cfc717
/src/modelling/capacity_planning/erlang/erlangb.py
7695f16ce57e10ce6be5b40622e5f76eb9e2d211
[]
no_license
FelixKleineBoesing/queuingSystem
5b38c123f206d9c71014064404b2f50f0f4491a5
09ff583831aa7f8b604f01dc97cf0284ed342f77
refs/heads/master
2023-04-12T00:00:20.309232
2021-04-25T11:55:04
2021-04-25T11:55:04
361,413,917
0
0
null
null
null
null
UTF-8
Python
false
false
835
py
import numpy as np from src.modelling.capacity_planning.erlang.erlang_base import ErlangBase from src.modelling.helpers import power_faculty class ErlangB(ErlangBase): def get_probability(self, number_agents: int, lambda_: float, mu: float): """ calculates the probability that there are c number people in the system :param number_agents: number of available agents :param lambda_: average arrival time in times per second :param mu: average supply time in times per second :return: probability of a blocked queue """ workload = lambda_ / mu sum = 0.0 for i in range(number_agents + 1): sum += power_faculty(workload, i) if np.isnan(sum): break return power_faculty(workload, number_agents) / sum
9899e3436a3df3f0622c8329670adccfbfa8ae22
f8961fc56e95ea75f2edbb08fae5ad1af102f6f0
/chapter_12/when_to_use_threading.py
08613b1bc4647ea050623289f895564f0a8b60d5
[]
no_license
larago/python_cookbook
eb2cea7425033802775a168d63199eb8e43e2d50
34abdb173c78d9eea046707f88a4bd976dfa26e9
refs/heads/master
2021-01-09T20:12:50.605774
2016-07-13T14:06:22
2016-07-13T14:06:22
63,230,687
0
0
null
null
null
null
UTF-8
Python
false
false
581
py
# GIL limit python only run in single thread, not proper to run cpu concentration task # Better to handle them with mutiple cpu # But thread is appropriate to use when handling potential blocking muti-task # like IO / get result from databse these kind of jobs from threading import Thread class CountdownThread(Thread): def __init__(self, n): super(CountdownThread,self).__init__() self.n = 0 def run(self): while self.n > 0: print('T-minus', self.n) self.n -= 1 time.sleep(5) c = CountdownThread(5) c.start()
a8b67575d0a9a5cbdc8f1fe45b98a99aa43eb729
1978a9455159b7c2f3286e0ad602652bc5277ffa
/exercises/05_basic_scripts/task_5_1c.py
4613a5511bcd55aadf4fb864116bb31116c9e7d4
[]
no_license
fortredux/py_net_eng
338fd7a80debbeda55b5915dbfba4f5577279ef0
61cf0b2a355d519c58bc9f2b59d7e5d224922890
refs/heads/master
2020-12-03T17:32:53.598813
2020-04-08T20:55:45
2020-04-08T20:55:45
231,409,656
0
0
null
null
null
null
UTF-8
Python
false
false
2,620
py
# -*- coding: utf-8 -*- ''' Задание 5.1c Переделать скрипт из задания 5.1b таким образом, чтобы, при запросе параметра, которого нет в словаре устройства, отображалось сообщение 'Такого параметра нет'. > Попробуйте набрать неправильное имя параметра или несуществующий параметр, чтобы увидеть какой будет результат. А затем выполняйте задание. Если выбран существующий параметр, вывести информацию о соответствующем параметре, указанного устройства. Пример выполнения скрипта: $ python task_5_1c.py Введите имя устройства: r1 Введите имя параметра (ios, model, vendor, location, ip): ips Такого параметра нет Ограничение: нельзя изменять словарь london_co. Все задания надо выполнять используя только пройденные темы. То есть эту задачу можно решить без использования условия if. ''' london_co = { 'r1': { 'location': '21 New Globe Walk', 'vendor': 'Cisco', 'model': '4451', 'ios': '15.4', 'ip': '10.255.0.1' }, 'r2': { 'location': '21 New Globe Walk', 'vendor': 'Cisco', 'model': '4451', 'ios': '15.4', 'ip': '10.255.0.2' }, 'sw1': { 'location': '21 New Globe Walk', 'vendor': 'Cisco', 'model': '3850', 'ios': '3.6.XE', 'ip': '10.255.0.101', 'vlans': '10,20,30', 'routing': True } } device = input('Введите имя устройства: ') ''' vocab = london_co[device].keys() vocab = str(vocab) vocab = vocab[11:-2] ''' vocab = str(london_co[device].keys()) #Shorter version vocab = vocab[11:-2] vocab = vocab.replace("'", "") paste = 'Введите имя параметра (' + vocab + '):' param = input(paste) variable0 = london_co[device] ''' variable1 = variable0.get(param, 'Такого параметра нет') # Вариант менее громоздкий # variable1 = variable0[param] # Так было print(variable1) ''' print(variable0.get(param, 'Такого параметра нет')) # Вариант сложнее